
Orr Dunkelman
Liam Keliher (Eds.)

 123

LN
CS

 9
56

6

22nd International Conference
Sackville, NB, Canada, August 12–14, 2015
Revised Selected Papers

Selected Areas
in Cryptography –
SAC 2015

Lecture Notes in Computer Science 9566

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Orr Dunkelman • Liam Keliher (Eds.)

Selected Areas
in Cryptography –

SAC 2015
22nd International Conference
Sackville, NB, Canada, August 12–14, 2015
Revised Selected Papers

123

Editors
Orr Dunkelman
University of Haifa
Haifa
Israel

Liam Keliher
Mount Allison University
Sackville, NB
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-31300-9 ISBN 978-3-319-31301-6 (eBook)
DOI 10.1007/978-3-319-31301-6

Library of Congress Control Number: 2016933230

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

For the last 22 years, the Conference on Selected Areas in Cryptography (SAC) has
been the leading Canadian venue for the presentation and publication of cryptographic
research. The conference, which this year was held at Mount Allison University in
Sackville, New Brunswick (for the second time; the first was in 2008), offers a relaxed
and supportive atmosphere for researchers to present and discuss new results.

SAC has three regular themes:

– Design and analysis of symmetric key primitives and cryptosystems, including
block and stream ciphers, hash functions, MAC algorithms, and authenticated
encryption schemes

– Efficient implementations of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology

The following special (or focus) theme was added this year:

– Privacy- and anonymity-enhancing technologies and their analysis

A total of 91 submissions were received, out of which the Program Committee
selected 29 papers for presentation (three of which were accepted as short papers). It is
our pleasure to thank the authors of all the submissions for the high quality of their
work. The review process was thorough (each submission received the attention of at
least three reviewers, and at least five for submissions involving a Program Committee
member).

There were two invited talks. The Stafford Tavares Lecture was given by Paul
Syverson, who spoke about “Trust Aware Traffic Security,” and the second invited talk
was given by Gaëtan Leurent, who spoke on “Generic Attacks Against MAC
Algorithms.”

Finally, this year we expanded SAC in a new direction by introducing what we hope
will become an annual tradition — the SAC Summer School (S3). S3 is intended to be
a place where young researchers can increase their knowledge of cryptography through
instruction by and interaction with leading researchers. This year, we were fortunate to
have Kaisa Nyberg and Christian Rechberger presenting symmetric-key cryptanalysis,
and Jan Camenisch and Paul Syverson presenting various aspects of privacy-enhancing
technologies. We would like to express our sincere gratitude to these four presenters for
dedicating their time and effort to this inaugural event.

Finally, the members of the Program Committee, especially the co-chairs, are
extremely grateful to Thomas Baignères and Matthieu Finiasz for the iChair software,
which facilitated a smooth and easy submission and review process.

August 2015 Orr Dunkelman
Liam Keliher

SAC 2015
The 22th Selected Areas in Cryptography

Conference

Sackville, New Brunswick, Canada, August 12–14, 2015

Program Chairs

Orr Dunkelman University of Haifa, Israel
Liam Keliher Mount Allison University, Canada

Program Committee

Carlisle Adams University of Ottawa, Canada
Elena Andreeva KU Leuven, Belgium
Jean-Philippe Aumasson Kudelski Security, Switzerland
Roberto Avanzi Qualcomm Product Security, Germany
Paulo S.L.M. Barreto University of Sao Paulo, Brazil
Josh Benaloh Microsoft Research, USA
Daniel J. Bernstein University of Illinois at Chicago, USA, and

TU Eindhoven, The Netherlands
John Black University of Colorado at Boulder, USA
Nikita Borisov University of Illinois at Urbana-Champaign, USA
Itai Dinur École Normale Supérieure, France
Orr Dunkelman University of Haifa, Israel (Co-chair)
Guang Gong University of Waterloo, Canada
Tim Güneysu University of Bremen, Germany
Seda Gürses Princeton University, USA
Michael Jacobson University of Calgary, Canada
Antoine Joux Paris 6 University, France
Nathan Keller Bar Ilan University, Israel
Liam Keliher Mount Allison University, Canada (Co-chair)
Tanja Lange TU Eindhoven, The Netherlands
Gregor Leander Ruhr University Bochum, Germany
Anja Lehmann IBM Research Zurich, Switzerland
Petr Lisonek Simon Fraser University, Canada
Florian Mendel TU Graz, Austria
María Naya-Plasencia Inria, France
Kaisa Nyberg Aalto University, Finland
Christian Rechberger Technical University of Denmark, Denmark
Dipanwita Roy Chowdhury IIT Kharagpur, India
Palash Sarkar Indian Statistical Institute, India
Meltem Sönmez Turan NIST, USA

Douglas Stinson University of Waterloo, Canada
Carmela Troncoso Gradiant, Spain
Vanessa Vitse Institut Fourier, Université de Grenoble I, France
Bo-Yin Yang Academia Sinica, Taiwan
Amr Youssef Concordia University, Canada
Moti Yung Google, USA

Additional Reviewers

Ahmed AbdelKhalek
Christof Beierle
Begül Bilgin
Céline Blondeau
Christina Boura
Billy Bob Brumley
Yao Chen
Chitchanok Chuengsatiansup
Thomas De Cnudde
Christoph Dobraunig
Manu Drijvers
Léo Ducas
Maria Eichlseder
Philippe Elbaz-Vincent
Junfeng Fan
Xinxin Fan
Magnus Gausdal Find
Benoît Gérard
Shamit Ghosh
Alejandro Hevia
Simon Hoerder
Philipp Jovanovic
Marc Joye
Elif Bilge Kavun
John M. Kelsey
Aggelos Kiayias
Stefan Kölbl
Thorsten Kranz
Stephan Krenn
Sukhendu Kuila
Thijs Laarhoven

Virginie Lallemand
Kerstin Lemke-Rust
Gaëtan Leurent
Sebastian Lindner
Atul Luykx
Evan MacNeil
Nicolas Meloni
Bart Mennink
Amir Moradi
Nicky Mouha
Christophe Négre
Oscar Reparaz
Arnab Roy
Enrique Argones Rua
Dhiman Saha
Pascal Sasdrich
Tobias Schneider
Peter Schwabe
Nicolas Sendrier
Abhrajit Sengupta
Valentin Suder
Eduarda S.V. Freire
Yin Tan
Cihangir Tezcan
Tyge Tiessen
Elmar Tischhauser
M. Tolba
Christine van Vredendaal
Kerem Varıcı
Alexander Wild
Bo Zhu

VIII SAC 2015

Stafford Tavares Lecture

Trust Aware Traffic Security

Paul Syverson

U.S. Naval Research Laboratory
paul.syverson@nrl.navy.mil

Abstract. We will trace the development of trust-aware traffic security in onion
routing networks 2009–2015. Beginning with the question of how to mathe-
matically model diversity of trust across an onion routing network, we will also
discuss defining adversaries for a trust-aware context, representing trust in a
usable way, accounting for all the network elements to which trust might be
assigned, and making use of trust to design more secure routing.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

Invited Lecture

Generic Attacks Against MAC Algorithms

Gaëtan Leurent

Inria, France
Gaetan.Leurent@inria.fr

Message Authentication Codes (MACs) are important cryptographic constructions, used
to ensure the authenticity of messages. MACs can be built from scratch (SipHash,
Chaskey), from block ciphers (CBC-MAC, PMAC), from hash functions (HMAC), or
from universal hash functions (GMAC, Poly1305). Constructions based on a lower level
primitive are usually studied with a provable security approach: for commonly used
MAC algorithms, security proofs rule out any attack on the MAC with complexity less
than 2n/2 (the birthday bound), when using an ideal n-bit block cipher or compression
function. On the other hand, a generic collision attack against iterated MACs by Preneel
and van Oorschot [8] using 2n/2 queries show that the security proofs are tight.

The security of MAC algorithms seems to be well understood, but the generic
attack of Preneel and van Oorschot is only an existential forgery attack, and stronger
attacks (e.g. key-recovery attacks) are usually more expensive. In order to evaluate the
security of common MAC algorithms below the birthday bound, we now focus on
generic attacks, rather than on security proofs. The two approaches are complementary:
generic attacks yields upper bounds on the security of a mode, and security proofs yield
a lower bound. It is important to comin both, because constructions with a similar
security proof can actually have a very different loss of security after the birthday
bound.

For instance, there is a collision-based almost universal forgery attack against
several CBC-MAC variants with birthday complexity [4]. There is also an attack with
birthday complexity recovering the secret mask in PMAC using collisions [5]; this
implies a universal forgery attack. More recently, a similar attack was shown against
AEZ v3, but it yields a full key-recovery attack because of the way the secret mask is
derived from the master key [2].

Hash-based MACs also have varying security beyond the birthday bound. The
main constructions process the message with an unkeyed iteration, and use the key only
in the initialization (secret-prefix MAC), in the finalization (secret-suffix MAC), or both
in the initialization and finalization (HMAC, envelope MAC, sandwich MAC). All
these constructions are good MACs when used with a random oracle, but they offer
different levels of security in practice. Constructions using the key only in the final-
ization are much less secure, because collisions in the hash function directly lead to
forgeries independently of the key. In particular, these collisions can be computed
offline, and do not require any queries to a MAC oracle. Secret-suffix MAC and
envelope MAC are also susceptible to a key-recovery attack based on collisions with
partial blocks [9]. Interestingly, the key-recovery attack can be applied to envelope

MAC but not to sandwich MAC, although the construction are very close and have a
similar security proof.

Over the last years, a series of papers have studied more complex generic attacks
against HMAC and similar hash-based MAC algorithms [1, 3, 6, 7]. This proved that
distinguishing-H, state-recovery, and universal forgery attacks against HMAC require
less than 2n operations, contrary to what was previously assumed. The first attacks used
the structure of the cycle graph of random functions in an elegant way to build a
distinguishing-H and state-recovery attack with complexity 2n/2 [6]. Variants with short
messages were also given, using the entropy loss of random functions (with complexity
22n/3), and later extended to HAIFA hash functions (with complexity 24n/5) [1]. Sur-
prisingly, extensions of those techniques also lead to universal forgery attacks against
long messages [3, 7]. In addition, the state recovery attacks can be extended to key-
recovery attacks for HMAC based on a hash function with an internal checksum. In
particular, this gives a key-recovery attack with complexity 2192 against HMAC-GOST
(with n = 256), and 2419 against HMAC-Streebog (with n = 512).

All those examples show a large variety in the attack techniques and complexity,
with several key-recovery attacks more efficient than exhaustive search. This highlights
the importance of studying generic attacks in addition to the provable security driven
approach to the design of MAC algorithms.

References

1. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and HAIFA. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 149–168. Springer,
Berlin (2014)

2. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates. In: Iwata, T.,
Cheon, J.H. (eds.) Advances in Cryptology - ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–
532. Springer, Berlin (2015)

3. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against HMAC and
NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 131–148.
Springer, Berlin (2014)

4. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and second-preimage attacks on CBC-
Like MACs. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 349–361. Springer, Berlin (2009)

5. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Forgery and key recovery attacks on PMAC and
Mitchell's TMAC variant. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol.
4058, pp. 421–431. Springer, Berlin (2006)

6. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 1–20. Springer, Berlin (2013)

7. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based MACs. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 147–164.
Springer, Heidelberg (2014)

8. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash functions. In:
Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer, Berlin (1995)

9. Preneel, B., van Oorschot, P.C.: On the security of Two MAC algorithms. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Berlin (1996)

XVI G. Leurent

Contents

Privacy Enhancing Technologies

Formal Treatment of Privacy-Enhancing Credential Systems. 3
Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen

Minimizing the Number of Bootstrappings in Fully
Homomorphic Encryption . 25

Marie Paindavoine and Bastien Vialla

Privacy-Preserving Fingerprint Authentication Resistant
to Hill-Climbing Attacks . 44

Haruna Higo, Toshiyuki Isshiki, Kengo Mori, and Satoshi Obana

Cryptanalysis of Symmetric-Key Primitives

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 67
Muhammed F. Esgin and Orhun Kara

Related-Key Attack on Full-Round PICARO . 86
Anne Canteaut, Virginie Lallemand, and María Naya-Plasencia

Cryptanalysis of Feistel Networks with Secret Round Functions 102
Alex Biryukov, Gaëtan Leurent, and Léo Perrin

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 122
Li Lin, Wenling Wu, and Yafei Zheng

Implementation of Cryptographic Schemes

Sandy2x: New Curve25519 Speed Records . 145
Tung Chou

ECC on Your Fingertips: A Single Instruction Approach for Lightweight
ECC Design in GF(p) . 161

Debapriya Basu Roy, Poulami Das, and Debdeep Mukhopadhyay

Exploring Energy Efficiency of Lightweight Block Ciphers 178
Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni

http://dx.doi.org/10.1007/978-3-319-31301-6_1
http://dx.doi.org/10.1007/978-3-319-31301-6_2
http://dx.doi.org/10.1007/978-3-319-31301-6_2
http://dx.doi.org/10.1007/978-3-319-31301-6_3
http://dx.doi.org/10.1007/978-3-319-31301-6_3
http://dx.doi.org/10.1007/978-3-319-31301-6_4
http://dx.doi.org/10.1007/978-3-319-31301-6_5
http://dx.doi.org/10.1007/978-3-319-31301-6_6
http://dx.doi.org/10.1007/978-3-319-31301-6_7
http://dx.doi.org/10.1007/978-3-319-31301-6_8
http://dx.doi.org/10.1007/978-3-319-31301-6_9
http://dx.doi.org/10.1007/978-3-319-31301-6_9
http://dx.doi.org/10.1007/978-3-319-31301-6_10

Short Papers

Forgery and Subkey Recovery on CAESAR Candidate iFeed 197
Willem Schroé, Bart Mennink, Elena Andreeva, and Bart Preneel

Key-Recovery Attacks Against the MAC Algorithm Chaskey 205
Chrysanthi Mavromati

Differential Forgery Attack Against LAC . 217
Gaëtan Leurent

Privacy Preserving Data Processing

Private Information Retrieval with Preprocessing Based
on the Approximate GCD Problem . 227

Thomas Vannet and Noboru Kunihiro

Dynamic Searchable Symmetric Encryption with Minimal Leakage
and Efficient Updates on Commodity Hardware . 241

Attila A. Yavuz and Jorge Guajardo

Side Channel Attacks and Defenses

Affine Equivalence and Its Application to Tightening Threshold
Implementations . 263

Pascal Sasdrich, Amir Moradi, and Tim Güneysu

Near Collision Side Channel Attacks . 277
Barış Ege, Thomas Eisenbarth, and Lejla Batina

Masking Large Keys in Hardware: A Masked Implementation of McEliece . . . 293
Cong Chen, Thomas Eisenbarth, Ingo von Maurich,
and Rainer Steinwandt

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 310
Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor,
Elmar Tischhauser, and Marc Witteman

New Cryptographic Constructions

An Efficient Post-Quantum One-Time Signature Scheme 331
Kassem Kalach and Reihaneh Safavi-Naini

Constructing Lightweight Optimal Diffusion Primitives
with Feistel Structure. 352

Zhiyuan Guo, Wenling Wu, and Si Gao

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-31301-6_11
http://dx.doi.org/10.1007/978-3-319-31301-6_12
http://dx.doi.org/10.1007/978-3-319-31301-6_13
http://dx.doi.org/10.1007/978-3-319-31301-6_14
http://dx.doi.org/10.1007/978-3-319-31301-6_14
http://dx.doi.org/10.1007/978-3-319-31301-6_15
http://dx.doi.org/10.1007/978-3-319-31301-6_15
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://dx.doi.org/10.1007/978-3-319-31301-6_17
http://dx.doi.org/10.1007/978-3-319-31301-6_18
http://dx.doi.org/10.1007/978-3-319-31301-6_19
http://dx.doi.org/10.1007/978-3-319-31301-6_20
http://dx.doi.org/10.1007/978-3-319-31301-6_21
http://dx.doi.org/10.1007/978-3-319-31301-6_21

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures. . . . 373
Anne Canteaut, Sébastien Duval, and Gaëtan Leurent

Authenticated Encryption

A New Mode of Operation for Incremental Authenticated Encryption
with Associated Data . 397

Yu Sasaki and Kan Yasuda

SCOPE: On the Side Channel Vulnerability of Releasing
Unverified Plaintexts . 417

Dhiman Saha and Dipanwita Roy Chowdhury

On the Hardness of Mathematical Problems

Bit Security of the CDH Problems over Finite Fields. 441
Mingqiang Wang, Tao Zhan, and Haibin Zhang

Towards Optimal Bounds for Implicit Factorization Problem 462
Yao Lu, Liqiang Peng, Rui Zhang, Lei Hu, and Dongdai Lin

Cryptanalysis of Authenticated Encryption Schemes

Forgery Attacks on Round-Reduced ICEPOLE-128 479
Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Analysis of the CAESAR Candidate Silver. 493
Jérémy Jean, Yu Sasaki, and Lei Wang

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 510
Ivan Tjuawinata, Tao Huang, and Hongjun Wu

Author Index . 527

Contents XIX

http://dx.doi.org/10.1007/978-3-319-31301-6_22
http://dx.doi.org/10.1007/978-3-319-31301-6_23
http://dx.doi.org/10.1007/978-3-319-31301-6_23
http://dx.doi.org/10.1007/978-3-319-31301-6_24
http://dx.doi.org/10.1007/978-3-319-31301-6_24
http://dx.doi.org/10.1007/978-3-319-31301-6_25
http://dx.doi.org/10.1007/978-3-319-31301-6_26
http://dx.doi.org/10.1007/978-3-319-31301-6_27
http://dx.doi.org/10.1007/978-3-319-31301-6_28
http://dx.doi.org/10.1007/978-3-319-31301-6_29

Privacy Enhancing Technologies

Formal Treatment of Privacy-Enhancing
Credential Systems

Jan Camenisch1, Stephan Krenn2(B), Anja Lehmann1,
Gert Læssøe Mikkelsen3, Gregory Neven1, and Michael Østergaard Pedersen4

1 IBM Research – Zurich, Rüschlikon, Switzerland
{jca,anj,nev}@zurich.ibm.com

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 Alexandra Institute, Aarhus, Denmark
gert.l.mikkelsen@alexandra.dk
4 Miracle A/S, Aarhus, Denmark

mop@miracleas.dk

Abstract. Privacy-enhancing attribute-based credentials (PABCs) are
the core ingredients to privacy-friendly authentication systems. They
allow users to obtain credentials on attributes and prove possession of
these credentials in an unlinkable fashion while revealing only a subset of
the attributes. In practice, PABCs typically need additional features like
revocation, pseudonyms as privacy-friendly user public keys, or advanced
issuance where attributes can be “blindly” carried over into new creden-
tials. For many such features, provably secure solutions exist in isolation,
but it is unclear how to securely combined them into a full-fledged PABC
system, or even which properties such a system should fulfill.

We provide a formal treatment of PABCs supporting a variety of
features by defining their syntax and security properties, resulting in
the most comprehensive definitional framework for PABCs so far. Unlike
previous efforts, our definitions are not targeted at one specific use-case;
rather, we try to capture generic properties that can be useful in a variety
of scenarios. We believe that our definitions can also be used as a start-
ing point for diverse application-dependent extensions and variations of
PABCs. We present and prove secure a generic and modular construction
of a PABC system from simpler building blocks, allowing for a “plug-
and-play” composition based on different instantiations of the building
blocks. Finally, we give secure instantiations for each of the building
blocks.

Keywords: Privacy · Anonymous credentials · Provable security

This work was supported by the Horizon 2020 project PRISMACLOUD under grant
agreement no. 644962, and the FP7 projects FutureID and ABC4Trust under grant
agreement nos. 318424 and 257782. Parts of this work were done while the second
author was at IBM Research – Zurich. The full version is available online [1].

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-31301-6 1

4 J. Camenisch et al.

1 Introduction

Privacy-enhancing attribute-based credentials systems (aka PABCs, anonymous
credentials, or pseudonym systems) allow for cryptographically strong user
authentication while preserving the users’ privacy by giving users full control
over the information they reveal. There are three types of parties in a PABC
system. Issuers assign sets of attribute values to users by issuing credentials for
these sets. Users can present (i.e., prove possession of) their credentials to ver-
ifiers by revealing a subset of the attributes from one or more credentials. The
verifiers can then check the validity of such presentations using the issuers’ pub-
lic keys, but they do not learn any information about the hidden attributes and
cannot link different presentations by the same user. This basic functionality of a
PABC system can be extended in a large number of ways, including pseudonyms,
revocation of credentials, inspection, proving relations among attributes hidden
in presented credentials, and key binding [2,3].

The importance of privacy and data minimization has been emphasized, e.g.,
by the European Commission in the European privacy standards [4,5] and by
the US government in the National Strategy for Trusted Identities in Cyberspace
(NSTIC) [6]. With IBM’s Identity Mixer based on CL-signatures [7–10] and
Microsoft’s U-Prove based on Brands’ signatures [11,12], practical solutions for
PABCs exist and are currently deployed in several pilot projects [2,13–15]. In
fact, numerous anonymous credential schemes as well as special cases thereof
such as group signatures, direct anonymous attestation, or identity escrow have
been proposed, offering a large variety of different features [8,10–12,16–24].

Despite this large body of work, a unified definitional framework for the secu-
rity properties of a full-fledged PABC system is still missing. Existing schemes
either have targeted security definitions for specific use cases [8,18–20] or do not
provide provable security guarantees at all [12,21,22]. One possible reason for
the lack of a generic framework is that dedicated schemes for specific scenarios
are often more efficient than generic solutions. However, defining, instantiating,
and re-proving tailored variants of PABCs is hard and error-prone. Clearly, it is
desirable to have a unified definitional approach providing security definitions
for a full-fledged PABC system. It turns out that achieving such definitions is far
from trivial as they quickly become very complex, in particular, if one allows for
relations between hidden attributes when issuing and presenting credentials, as
we shall discuss. Nevertheless, in this paper we take a major step towards such
a unified framework for PABCs by formally defining the most relevant features,
detached from specific instantiations or use cases. We further provide a generic
construction of a PABC system based on a number of simpler building blocks
such as blind signatures or revocation schemes, and a formal proof that this con-
struction meets our security definitions. Finally, we give concrete instantiations
of these components, with detailed security proofs provided in the full version.

Considered Features. Our definition of PABC systems comprises the richest
set of features integrated into a holistic PABC scheme so far. It supports creden-
tials with any fixed number of attributes, of which any subset can be revealed

Formal Treatment of Privacy-Enhancing Credential Systems 5

during presentation. A single presentation can reveal attributes from multiple
credentials. Users can prove equality of attributes, potentially across different
credentials, without revealing their exact values. Users have secret keys from
which arbitrarily many scope-exclusive pseudonyms can be derived. That is, for
a given secret key and scope, only one unique pseudonym can be derived. Thus,
by reusing the same scope in multiple presentations, users can intentionally
create linkability between presentations; using different scopes yields mutually
unlinkable pseudonyms.

Credentials can optionally be bound to the users’ secret keys to prevent
users from sharing their credentials. For a presentation that involves multiple
credentials and/or a pseudonym, all credentials and the pseudonym must be
bound to or derived from the same user secret key, respectively. Issuers can
revoke credentials, so that they can no longer be used. During issuance, some
attribute values may be hidden from the issuer or “carried over” from existing
credentials. This latter advanced issuance means that the issuer does not learn
their values but is guaranteed that they are equal to an attribute in an existing
credential.

Our Contributions. We give formal security definitions for a full PABC system
that incorporates all of the features mentioned above. We provide a generic
construction from lower-level building blocks that satisfies our definitions and
we present secure instantiations of the building blocks.

In terms of security, informally, we expect presentations to be unforgeable, i.e.,
users can only present attributes from legitimately obtained and unrevoked cre-
dentials, and to be private, i.e., they do not reveal anything more than intended.
For privacy, we distinguish weak privacy, where presentations of a credential
cannot be linked to a specific issuance session, and the strictly stronger notion
of simulatable privacy, where in addition presentations of the same credential
cannot be linked to each other. This allows us to cover (slight variants of) the
most prevalent schemes used in practice, U-Prove and Identity Mixer.

Formally defining these properties is far from trivial because of the com-
plexity of our envisaged system. For example, user can obtain credentials on
(i) revealed, (ii) blindly carried-over, and (iii) fully blind attributes. Each type
comes with different security expectations that must be covered by a single
definition. Carried-over attributes, for example, present a challenge when defin-
ing unforgeability: While the issuer never learns the attributes, the adversary
must not be able to present a value that was not previously issued as part of a
pre-existing credential. For privacy, one challenge is to formalize the exact infor-
mation that users intend to reveal, as they might reveal the same and possibly
identifying attributes in different presentations. Revocation gives the issuer the
power to exclude certain credentials from being used, which must be modeled
without cementing trivial linking attacks into the model that would turn the
definition moot.

As our definitions are rather complex, proving that a concrete scheme sat-
isfies them from scratch can be a challenging and tedious task. Also, proofs for
such monolithic definitions tend to be hard to verify. We thus further define

6 J. Camenisch et al.

building blocks, strongly inspired by existing work, and show how to generically
compose them to build a secure PABC system. Our construction is efficient in
the sense that its complexity is roughly the sum of the complexities of the build-
ing blocks. Additionally, this construction allows for simple changes of individual
components (e.g., the underlying revocation scheme) without affecting any other
building blocks and without having to reprove the security of the system. Finally,
we give concrete instantiations for all our building blocks based on existing pro-
tocols.

Related Work. Our definitions are inspired by the work of Chase et al. [18,25],
who provide formal, property-based definitions of delegatable anonymous cre-
dential systems and give a generic construction from so-called P-signatures [26].
However, their work focus on pseudonymous access control with delegation, but
lacks additional features such as attributes, revocation, and advanced issuance.

PABCs were first envisioned by Chaum [16,27], and they have been a vivid
area of research over the last decade. The currently most mature solutions are
IBM’s Identity Mixer based on CL-signatures [7–10] and Microsoft’s U-Prove
based on Brands’ signatures [11,12]. A first formal definition [8] in the ideal-
real world paradigm covered the basic functionalities without attributes and
revocation. Their definition is stand-alone and does not allow composability as
honest parties never output any cryptographic values such as a credentials or
pseudonyms. This restriction makes it infeasible to use their schemes as building
block in a larger system. These drawbacks are shared by the definition of Garman
et al. [19].

A recent MAC-based credential scheme [20] allows for multiple attributes
per credential, but requires issuer and verifier to be the same entity. It does
not cover pseudonyms, advanced issuance, or revocation and provides rather
informal definitions only. Similarly, Hanser and Slamanig [28] do not consider
any of these features nor blind issuance, i.e., the issuer always learns all the
user’s attributes.

Baldimtsi and Lysyanskaya [29] define a blind signature scheme with
attributes and claim that it yields an efficient linkable anonymous credential
scheme, again without giving formal definitions. The scheme can be seen as
a weakened version of our signature building block without unlinkability or
extractability of hidden attributes – properties that are crucial for our PABC
system.

Camenisch et al. [24] provide a UC-definition for anonymous credentials and
a construction based on bilinear maps. However, their definition does not cover
a full-blown credential systems but just a primitive to issue and verify signatures
on attributes, i.e., a primitive we call privacy-enhancing signatures in this paper.

Finally, existing definitions of attribute-based signatures, e.g., [30–32] differ
substantially from those of our building block for privacy-enhancing attribute-
based signature (cf. Sect. 4.3), as again they do not consider, e.g., blind issuance.

Formal Treatment of Privacy-Enhancing Credential Systems 7

2 Notation

Algorithms and parties are denoted by sans-serif fonts, e.g., A,B. For deter-
ministic (probabilistic) algorithms we write a ← A(in) (a ←$ A(in)), if a is
the output of A on inputs in. For an interactive protocol (A,B) let (outA, outB)
← 〈A(inA),B(inB)〉 denote that, on private inputs inA to A and inB to B, A and
B obtained outputs outA and outB, respectively. For a set S, s ←$ S denotes
that s is drawn uniformly at random from S. We write Pr[E : Ω] to denote
the probability of event E over the probability space Ω. We write vectors as
�x = (xi)k

i=1 = (x1, . . . , xk).
A function ν : N → R is negligible if for every k and all sufficiently large n

we have ν(n) < 1
nk . Let ±{0, 1}k := [−2k + 1, 2k − 1] ∩ Z, and [n] := {1, . . . , n}.

Finally, κ is the main security parameter, and ε the empty string or list.

3 Privacy ABC Systems

A privacy-enhancing attribute-based credential system for an attribute space
AS is a set of algorithms SPGen, UKGen, IKGen, Present, Verify, ITGen, ITVf,
and Revoke and a protocol 〈U .Issue, I.Issue〉. Wherever possible (i.e., except for
(advanced) issuance which is inherently interactive), we opted for non-interactive
protocols. This is because rounds of interaction are an expensive resource in
practice, and should thus be kept as few as possible.

Parties are grouped into issuers, users, and verifiers. The publicly available
system parameters are generated using SPGen by a trusted party (in practice,
this might be implemented using multiparty techniques). Each issuer can issue
and revoke credentials that certify a list of attribute values under his issuer
public key. Users hold secret keys that can be used to derive pseudonyms that are
unique for a given scope string, but are unlinkable across scopes. Using Present,
users can create non-interactive presentation tokens from their credentials that
reveal any subset of attributes from any subset of their credentials, or prove
that certain attributes are equal without revealing them. Presentation tokens
can be publicly verified using Verify, on input the token and the issuers’ public
keys. To obtain a credential, a user generates an issuance token defining the
attribute values of the new credential using ITGen. After the issuer verified the
issuance token using ITVf, the user and the issuer run 〈U .Issue, I.Issue〉, at the
end of which the user obtains a credential. Issuance can be combined with a
presentation of existing credentials to hide some of the attribute values from the
issuer, or to prove that they are equal to attributes in credentials that the user
already owns. Hence, issuance tokens can be seen as an extension of presentation
tokens. Credentials can optionally be bound to a user’s secret key, meaning that
knowledge of this key is required to prove possession of the credential. Now, if a
pseudonym or multiple key-bound credentials are used in a presentation token,
then all credentials and the pseudonym must be bound to the same key. Finally,
an issuer can revoke a credential using the Revoke algorithm. This algorithm
outputs some public revocation information RI that is published and should be
used as input to the verification algorithm of presentation and issuance tokens.

8 J. Camenisch et al.

Issuers and users agree on the parameters for issuance tokens including a
revocation handle and the revealed attributes of the new credential (upon which
the user has generated the issuance token) in a step preceding issuance. Issuers
further verify the validity of these tokens before engaging in this protocol. There
are no requirements on how revocation handles are chosen, but in practice they
should be different for each credential an issuer issues.

3.1 Syntax

Before formalizing the security properties, we introduce the syntax of PABCs.

System parameter generation. The system parameters of a PABC-system are
generated as spar ←$ SPGen(1κ). For simplicity we assume that the system
parameters in particular contain an integer L specifying the maximum number
of attributes that can be certified by one credential, as well as a description of
the attribute space AS. For the rest of this document, we assume that all honest
parties only accept attributes from AS and abort otherwise.

The system parameters are input to all algorithms presented in the following.
However, for notational convenience, we will sometimes not make this explicit.

User key generation. Each user generates a secret key as usk ←$ UKGen(spar).

Issuer key generation. Each issuer generates a public/private issuer key pair and
some initial revocation information as (ipk, isk,RI) ←$ IKGen(spar). We assume
that RI also defines the set of all supported revocation handles for this issuer,
and that honest parties only accept such revocation handles and abort otherwise.

Presentation. A user generates a pseudonym nym and presentation token pt as

(nym, pt) ←$ Present
(
usk, scope,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k

i=1
, E,M

)
, where

• usk is the user’s secret key, which can be ε if scope = ε and none of the
credentials (credi)k

i=1 is bound to a user secret key;
• scope is the scope of the generated pseudonym nym, where scope = ε if no

pseudonym is to be generated (in which case nym = ε);
• (credi)k

i=1 are k user-owned credentials that are involved in this presentation;
• ipki and RIi are the public key and current revocation information of the

issuer of credi;
• (ai,j)ni

j=1 is the list of attribute values certified in credi, where each ai,j ∈ AS;
• Ri ⊆ [ni] is the set of attribute indices for which the value is revealed;
• E induces an equivalence relation on {(i, j) : i ∈ [k] ∧ j ∈ [ni]}, where

((i, j), (i′, j′)) ∈ E means that pt will prove that ai,j = ai′,j′ without revealing
the actual attribute values. That is, E enables one to prove equality predicates;

• M ∈ {0, 1}∗ is a message to which the presentation token is to be bound.
This might, e.g., be a nonce chosen by the verifier to prevent replay attacks
in which a verifier uses a valid presentation token to impersonate a user.

If k = 0 and scope
= ε, only a pseudonym nym is generated while pt = ε.

Formal Treatment of Privacy-Enhancing Credential Systems 9

Presentation verification. A verifier can check the validity of a pseudonym nym
and a presentation token pt:

accept/reject ← Verify
(
nym, pt, scope,

(
ipki,RIi, (ai,j)j∈Ri

)k

i=1
, E,M

)
,

where the inputs are as for presentation. For notational convenience from now
on a term like (ai,j)j∈Ri

implicitly also describes the set Ri.

Issuance token generation. Before issuing a credential, a user generates an
issuance token defining the attributes of the credentials to be issued, where
(some of) the attributes and the secret key can be hidden from the issuer and
can be blindly “carried over” from credentials that the user already possesses (so
that the issuer is guaranteed that hidden attributes were vouched for by another
issuer). Similarly to a presentation token we have:

(nym, pit, sit) ←$ ITGen
(
usk, scope, rh,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k+1

i=1
, E,M

)
,

where most of the inputs and outputs are as before, but

• pit and sit are the public and secret parts of the issuance token,
• credk+1 = ε is the new credential to be issued,
• rh is the revocation handle for credk+1 (maybe chosen by the issuer before),
• ipkk+1 and RIk+1 are the public key and current revocation information of

the issuer of the new credential,
• (ak+1,j)j∈Rk+1 are the attributes of credk+1 that are revealed to the issuer,
• (ak+1,j)j �∈Rk+1 are the attributes of credk+1 that remain hidden, and
• ((k + 1, j), (i′, j′)) ∈ E means that the jth attribute of the new credential will

have the same value as the j′th attribute of the i′
th credential.

Issuance token verification. The issuer verifies an issuance token as follows:

accept/reject ←$ ITVf
(
nym, pit, scope, rh,

(
ipki,RIi, (ai,j)j∈Ri

)k+1

i=1
, E,M

)
.

For j ∈ [k] all inputs are as for Verify, but for k+1 they are for the new credential
to be issued based on pit.

Issuance. Issuance of credentials is a protocol between a user and an issuer:

(cred,RI′) ←$ 〈(U .Issue(sit, pit); I.Issue(isk, pit,RI)〉.

The inputs are defined as before, and pit has been verified by the issuer before.
The user obtains a credential as an output, while the issuer receives an updated
revocation information RI′.

Revocation. To revoke a credential with revocation handle rh, the issuer runs:
RI′ ←$ Revoke(isk,RI, rh) to generate the new revocation information RI′ based
on the issuer’s secret key, the current revocation information, and the revocation
handle to be revoked.

10 J. Camenisch et al.

3.2 Oracles for Our Security Definitions

Our security definitions of PABC systems require a number of oracles, some of
which are the same for different definitions. We therefore present them all in one
place. The oracles are initialized with a set of honestly generated keys of nI honest
issuers {(ipk∗

i , isk
∗
i ,RI

∗
i)}nI

i=1 and nU users with keys {usk∗
i }nU

i=1, respectively. Let
IK∗ = {ipk∗

i }nI
i=1. The oracles maintain initially empty sets C, HP, IT , IRH,

RRH, RI. Here, C contains all credentials that honest users have obtained as
instructed by the adversary, while HP contains all presentation tokens generated
by honest users. All public issuance tokens that the adversary used in successful
issuance protocols with honest issuers are stored in IT . The set IRH contains
all issued revocation handles, i.e., the revocation handles of credentials issued
by honest issuers, while RRH contains the revoked handles per issuer. Finally,
RI contains the history of the valid revocation information of honest issuers at
any point in time. Time is kept per issuer I through a counter epoch∗

I that is
initially 0 and increased at each issuance and revocation by I.

Honest Issuer Oracle Oissuer. This oracle allows the adversary to obtain and
revoke credentials from honest issuers. It provides the following interfaces:

• On input (issue,nym, pit, scope, rh, (ipki,RIi, (ai,j)j∈Ri
)k+1
i=1 , E,M) the oracle

checks that ITVf accepts the issuance token pit and that the revocation infor-
mation of all honest issuers is authentic, i.e., that a tuple (ipki,RIi, ·) exists
in RI for all honest issuers ipki. Further, it verifies that ipkk+1 is the public
key of an honest issuer ipk∗

I with corresponding secret key isk∗
I and current

revocation information RI∗I = RIk+1. If one of the checks fails, the oracle out-
puts ⊥ and aborts.
The oracle then runs I.Issue(iskk+1, pit,RI∗I) in interaction with A until
the protocol outputs RIk+1. It returns RIk+1 to A, sets RI∗I ← RIk+1,
increases epoch∗

I , adds (ipk∗
I ,RI

∗
I , epoch

∗
I) to RI. It adds

(
nym, pit, scope, (ipki,

RIi, (ai,j)j∈Ri
)k+1
i=1 , E,M

)
to IT and adds (ipk∗

I , rh) to the set IRH.
• On input (revoke, I, rh) the oracle checks that the revocation handle rh has

been the input of a successful issuance protocol with an honest issuer with
key ipk∗

I , or returns ⊥ otherwise. The oracle runs RI∗I ←$ Revoke(isk∗
I ,RI

∗
I , rh),

increases epoch∗
I , adds (ipk∗

I , rh, epoch
∗
I) to RRH, adds (ipk∗

I ,RI
∗
I , epoch

∗
I) to

RI, and returns RI∗I to the adversary.

Honest User Oracle Ouser. This oracle gives the adversary access to honest users,
which he can trigger to obtain credentials and request presentation tokens on
inputs of his choice. The adversary does not get the actual credentials, but
only unique credential identifiers cid by which he can refer to the credentials. It
provides the following interfaces:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)k
i=1, E,M) the oracle checks if

U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, credi, (ai,j)ni
j=1) ∈ C exists.

For all credentials from honest issuers, Ouser verifies if RIi is authentic, i.e.,
if for all honest issuer public keys ipki = ipk∗

I there exists (ipki,RIi, ·) ∈ RI.

Formal Treatment of Privacy-Enhancing Credential Systems 11

If any check fails, Ouser returns ⊥, otherwise it computes (nym, pt) ←$

Present
(
usk∗

U , scope, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1, E,M
)

and adds
(
nym,

pt, scope, (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,M

)
to HP. It returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)k+1
i=1 , E,M, (ak+1,j)

nk+1
j=1) the

oracle checks if U ∈ [nU] and, for all i ∈ [k], a tuple (U, cidi, credi, (ai,j)ni
j=1) ∈

C exist. It further checks that the revocation information of honest issuers is
authentic, i.e., that a tuple (ipki,RIi, ·) ∈ RI exists for all honest issuers
ipki ∈ IK∗. The oracle computes the issuance token (nym, pit, sit) ←$

ITGen
(
usk∗

U , scope, rh, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k+1

i=1 , E,M
)
. If ipkk+1
∈

IK∗, the oracle sends (nym, pit) to the adversary and runs U .Issue(sit, pit)
in interaction with the adversary until it returns a credential cred and stores
(U, cidk+1, cred, (ak+1,j)

nk+1
j=1) in C. If ipkk+1 = ipk∗

I ∈ IK∗, the oracle runs
U .Issue(sit, pit) internally against I.Issue(isk∗

I , pit) until they output a cre-
dential cred and revocation information RI′, respectively. The oracle adds
(U, cidk+1, cred, (ak+1,j)

nk+1
j=1) to C and adds (ipk∗

I , rh) to IRH. It further
increases epoch∗

I , sets RI∗I ← RI′, and adds (ipk∗
I ,RI

∗
I , epoch

∗
I) to RI. Finally,

the oracle chooses a fresh and unique credential identifier cidk+1 for the new
credential and outputs it to A (note that A’s choice of cidk+1 is ignored).

3.3 Security Definitions for PABCs

We now formalize the security properties required from PABC-systems.

Correctness. The correctness requirements are what one would expect, i.e.,
whenever all parties are honest and run all algorithms correctly, none of the
algorithms aborts or outputs reject. That is, (i) if all inputs are correct, Issue
always outputs a valid credential, (ii) holding valid credentials satisfying the
specified relations allows a user to generate valid presentation- and issuance
tokens, and (iii) issuers are able to revoke any attribute of their choice.

Pseudonym Collision-Resistance. On input spar ←$ SPGen(1κ), no PPT
adversary can come up with two user secret keys usk0
= usk1 and a scope
scope such that NymGen(spar, usk0, scope) = NymGen(spar, usk1, scope) with non-
negligible probability.

Furthermore, we require that a pseudonym is a deterministic function of the
system parameters, user secret and the scope. That is, we require that for some
deterministic function NymGen, and for all usk, scope, rh, E,E′,M,M′ and all
honest tuples C,C ′ of the form (ipki,RIi, credi, (ai,j)ni

j=1, Ri)k
i=1 it holds that:

Pr[nym = nymi = nymp : spar ←$ SPGen(1κ),nym ← NymGen(spar, usk, scope),

(nymi, pit, sit) ←$ ITGen(usk, scope, rh, C ′, E′,M′),

(nymp, pt) ←$ Present(usk, scope, C,E,M)] = 1.

12 J. Camenisch et al.

Unforgeability. In the unforgeability game, the adversary can request creden-
tials from honest issuers, or trigger honest users to receive or present creden-
tials, using the oracles from Sect. 3.2. After this interaction, the adversary out-
puts a number of presentation tokens and pseudonyms, i.e., a set FT of tuples
(nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1), E,M) as defined in the syntax of the

Verify algorithm. The adversary wins the game if at least one of the presentation
tokens is a forgery or if at least one of the issuance tokens submitted to the hon-
est issuer oracle was a forgery. Note that unforgeability of credentials is implied
by this definition, as the adversary can always derive a forged presentation token
from a forged credential.

Experiment ForgeA(1
κ, nI, nU):

spar ←$ SPGen(1κ)

(ipk∗
I , isk∗

I ,RI∗
I) ←$ IKGen(spar) for I = 1, . . . , nI

usk∗
U ←$ UKGen(spar) for U = 1, . . . , nU

FT ←$ AOissuer,Ouser
(spar, (ipk∗

I ,RI∗
I)

nI
I=1, nU)

Return 1 if and only if:
FT , IT , HP, IRH, RRH, and RI are not consistent.

Fig. 1. ForgeA(1κ, nI, nU)

Informally, a forgery is an issuance or presentation token for which the cor-
responding credentials were not issued to the adversary or are not supposed to
be valid w.r.t. the revocation information stated in the token. Now, as the issuer
does not see all attributes nor the user secret key of issued credentials, it is often
not clear whether or not a given issued credential is one of the credentials corre-
sponding to a token. However, if we assume that we knew all hidden values for
each credential issued (including the user secret key), then we can efficiently test
whether or not a given issuance or presentation token is a forgery. Thus, if there
is an assignment for all the hidden values of the issued credentials such that all
the issuance and presentation tokens presented by the adversary correspond to
valid credentials, then there is no forgery among the tokens. Or, in other words,
if there is no such assignment, then the adversary has produced a forgery and
wins the game. Regarding the validity of credentials, the adversary also wins if
he outputs a valid token for a credential that was already revoked with respect to
the revocation information specified by the adversary (which may not necessarily
be the latest published revocation information).

Definition 1 (Unforgeability). A PABC-scheme satisfies unforgeability, if
for every PPT adversary A and all nU, nI ∈ N there exists a negligible func-
tion ν such that Pr[ForgeA = 1] ≤ ν, where the experiment is described in Fig. 1,
and the oracles Oissuer and Ouser are as in Sect. 3.2.

We now define what consistency of the sets FT , IT , HP, IRH, RRH, and
RI means. First, the set FT must only contain “fresh” and valid presentation
tokens, meaning that for each tuple (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1),

Formal Treatment of Privacy-Enhancing Credential Systems 13

E,M) in FT must pass Verify and that for all i ∈ [k] where ipki ∈ IK∗ there
exists a tuple (ipki,RIi, ·) ∈ RI. If any tuple in FT does not satisfy these con-
ditions, then the adversary loses the game. Let USK ⊂ {0, 1}∗ be a hypothetical
set containing the user secret keys that the adversary may have used through-
out the game, and let CRED be a hypothetical set containing the credentials
from honest issuers that the adversary may have collected during the game. In
the latter set, we write (usk, ipk∗

I , rh, (α1, . . . , αn)) ∈ CRED if the adversary
obtained a credential from issuer ipk∗

I with revocation handle rh and attribute
values (α1, . . . , αn) bound to user secret usk. Now, we consider the sets FT , IT ,
HP, IRH, RRH and RI to be consistent if there exist sets USK and CRED
such that the following conditions hold:

1. Each credential is the result of a successful issuance. For all revocation handles
rh and honest issuer public keys ipk∗

I , the number of tuples (·, ipk∗
I , rh, ·) ∈

CRED is at most the number of tuples (ipk∗
I , rh) ∈ IRH.

2. All presentation or issuance tokens correspond to honestly obtained unrevoked
credentials. For every tuple

(
nym, pt, scope, (ipki,RIi, epochi, (ai,j)j∈Ri

)k
i=1, E,

M
)

∈ FT ∪ IT there exists a usk ∈ USK and a set of credentials {credi =
(uski, ipki, rhi, (αi,j)ni

j=1) : ipki ∈ IK∗} ⊆ CRED such that:
(a) uski ∈ {usk, ε} (all key-bound credentials are bound to the same key),
(b) nym = scope = ε or nym = NymGen(spar, usk, scope) (if there is a

pseudonym, it is for usk and scope),
(c) αi,j = ai,j for all j ∈ Ri (the revealed attribute values are correct),
(d) αi,j = αi′,j′ for ((i, j), (i′, j′)) ∈ E with ipki′ ∈ IK∗ (the attributes satisfy

the equality relations to other credentials from honest issuers), and
(e) there exists (ipki,RIi, epochi) ∈ RI such that there exists no tuple

(ipki, rhi, epoch′
i) ∈ RRH with epoch′

i ≤ epochi (the credentials were not
revoked in the epoch where they were presented).

Thus, the adversary wins the game, if there do not exist sets USK and CRED
that satisfy all the information captured in FT , IT , HP, IRH, RRH, and RI.

We had to make a number of design decisions for our definitions, which we
want to explain in the following:

• First, we do not require strong unforgeability, i.e., we do not consider a token
a forgery if it contains the identical elements as a pt or pit generated by an
honest user. In practice, tokens will be bound to messages M that uniquely
identify the current session, and thus an adversary will neither be able to reuse
pt or pit, nor will it be able to benefit from a weak forgery thereof.

• Next, we do not require that adversarially generated issuance tokens are satis-
fied until the issuance protocol finishes. That is, we consider forgery of issuance
tokens to be a problem only if they are later used in a successful issuance proto-
col. This is acceptable, as an invalid issuance token does not give an adversary
any meaningful power if he cannot use it to obtain a credential. Requiring the
stronger property that issuance tokens are unforgeable by themselves is pos-
sible, but would further increase the complexity of our definitions – without
providing stronger guarantees in practice.

14 J. Camenisch et al.

• For blindly issued attributes we require that they satisfy E, but do not for-
bid, e.g., that an adversary runs the issuance protocol twice with the same
issuance token, but with the resulting credentials containing different values
for the blinded attributes as long as they satisfy E. This is not a real-world
problem, as the adversary could otherwise just run multiple sessions for dif-
ferent issuance tokens, as the issuer will, by definition of blind attributes, not
obtain any guarantees on those attributes apart from what E specifies.

• Finally, we allow presentation tokens for earlier epochs than the one under-
lying a credential to be generated. This makes sense for off-line verifiers who
cannot update their revocation information continuously. However, our defi-
nition and construction could easily be modified to forbid such tokens.

Simulatable Privacy. For privacy, all issuance protocols and presentation
tokens performed by honest users must be simulatable using only the public
information that is explicitly revealed during the issuance or presentation. That
is, the simulator is not given the credentials, values of hidden attributes, or even
the index of the user that is supposed to perform the presentation or issuance,
but must provide a view to A that is indistinguishable from a real user.

Experiment PrivacyA(1
κ, nU):

b ←$ {0, 1}
If b = 0: If b = 1:

spar ←$ SPGen(1κ) (spar, τ) ←$ S1(1
κ)

usk∗
U ←$ UKGen(spar) for U = 1, . . . , nU

USK∗ = {usk∗
U }nU

U=1
b ←$ AOuser

(spar, nU) b ←$ AF(nU,·)|S2(τ)(spar, nU)

Return 1 if and only if b = b .

Fig. 2. PrivacyA(1κ, nU)

Formalizing this is not straightforward, however. It does not suffice to require
two separate simulators that work for issuance and presentation, respectively,
because pseudonyms and revocation introduce explicit dependencies across dif-
ferent issuance and presentation queries that must also be reflected in the simu-
lation. Moreover, the simulator must not generate presentation tokens that could
not have been generated in the real world, e.g., because the user does not have
the required credentials. But as the simulator does not see any user indices or
hidden attribute values, it cannot know which queries can be satisfied.

We therefore define a game where an adversary A either runs in a real world
with access to an honest user oracle performing the actual protocols, or runs
in a simulated world, where oracle queries are first filtered by a filter F and
then responded to by a stateful simulator S. The filter’s role is to sanitize the
queries from non-public information such as user indices, credential identifiers,
etc., and to intercept queries that could not be satisfied in the real world. Note
that the filter thereby enforces that the adversary can only obtain presentation

Formal Treatment of Privacy-Enhancing Credential Systems 15

tokens for valid inputs. This must be guaranteed by the credential system as
well, otherwise the adversary could distinguish between both worlds.

Definition 2 (Privacy). A PABC system is private, if there exist PPT algo-
rithms S1,S2 such that for every PPT adversary A and every nU ∈ N there
exists a negligible function ν such that: Pr[PrivacyA(1κ, nU) = 1] ≤ 1/2 + ν(κ),
cf. (Fig. 2).

Here, Ouser is as described in Sect. 3.2, while F maintains initially empty
lists C and P , a counter ctr = 0, and internal state stS = τ , and behaves as
follows:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)k
i=1, E,M), the filter checks if

U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, ipki, (ai,j)ni
j=1, revi) ∈ C exists.

Here, revi is the code of an algorithm that on input RIi outputs a bit indicating
whether credi is to be considered revoked. F checks if revi(RIi) = 0 ∀i ∈ [k] and
that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If a check fails, the filter returns ⊥.
If scope
= ε and (U, scope, p)
∈ P then F sets ctr ← ctr + 1, p ← ctr, and
adds (U, scope, p) to P . It then executes (stS,nym, pt) ←$ S2(stS, present,
scope, p, (ipki, (ai,j)j∈Ri

)k
i=1, E,M). Finally, it returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)k+1
i=1 , E,M, (ak+1,j)

nk+1
j=1), the

filter checks if U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, ipki, (ai,j)ni
j=1,

revi) ∈ C exists. For all credentials, F checks if revi(RIi) = 0 ∀i ∈ [k] and
that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter
returns ⊥. The filter then looks up the same value p as in Opresent. It sets
(stS,nym, pit) ←$ S2(stS, obtain, scope, p, (ipki, (ai,j)j∈Ri

)k+1
i=1 , E,M, rh) and

returns (nym, pit) to A. For the subsequent flows in the issuance protocol, F
answers each incoming message Min from A by running (stS,Mout) ←$ S2(stS,
Min). At the last flow, S2 returns a tuple (stS,Mout, cid, rev). If cid
= ⊥, F
adds (U, cid, ipkk+1, (ak+1,j)

nk+1
j=1 , rev) to C and returns Mout to A.

Weak Privacy. The definition above ensures a very strong notion of privacy that
is not satisfied by all existing PABC schemes as they do not provide unlinkability
across multiple presentation tokens that were derived from the same credential.
For instance, for U-Prove [11,12] an arbitrary number of presentations cannot
be linked to a specific issuance session, but any two presentations of the same
credential can be linked to each other. We thus also introduce a strictly weaker
privacy notion called weak privacy. Informally, we there give the simulator some
more information to be able to generate “linkable” presentation tokens if the
adversary requests multiple presentations tokens for some credential. This is
done by giving S2 “anonymized” pointers to credential identifiers as input, and
thus, the simulator is aware if the same credential is used in multiple presen-
tation sessions and can prepare the simulated token accordingly. Due to the
anonymization, the simulator still does not learn the connection between an
issued credential and a presentation token, thus untraceability (meaning presen-
tation sessions cannot be linked to the actual issuance of the credential) still
holds.

16 J. Camenisch et al.

4 Building Blocks

We next introduce the syntax for the building blocks needed in our construction.
We omit detailed security definitions of the building blocks here and refer to the
full version [1], where we also present concrete instantiations of all components.
Compared to PABC-systems, most of the security requirements presented in the
following are relatively easy to formalize and prove for a specific instantiation.
However, in Sect. 5 we will show that these properties are actually sufficient to
obtain PABC-systems, by giving a generic construction for PABC-systems from
these building blocks. We stress that the following definitions are heavily inspired
by existing work, but have been adapted to facilitate the generic construction.

4.1 Global Setup

Global system parameters are parameters that are shared by all building blocks.

Global System Parameter Generation. The global system parameters are gen-
erated as sparg = (1κ,AS, 	, L, sparc, ck, spar′

g) ←$ SPGeng(1κ), where AS ⊆
±{0, 1}� is the message space of the signature scheme, and the revocation and
pseudonym systems support inputs from at least ±{0, 1}�. The integer L spec-
ifies the maximum number of attributes that can be signed by one signature.
Furthermore, sparc ←$ SPGenc(1κ,) and ck ←$ ComKGen(sparc) is a public
master commitment key. Finally, spar′

g potentially specifies further parameters.

4.2 Commitment Schemes

A commitment scheme is a tuple of six algorithms (SPGenc,ComKGen,Com,
ComOpenVf,ComPf,ComProofVf), where SPGenc generates commitment para-
meters sparc. Taking these as inputs, ComKGen generates commitment keys ck,
which can be used to compute a commitment/opening pair (c, o) to a mes-
sage m using the commitment algorithm Com. This pair can be verified using
ComOpenVf. Furthermore, we require that one can generate a non-interactive
proof of knowledge π of the content m of a commitment c, and the corre-
sponding opening c, using ComPf. This proof can then be publicly verified using
ComProofVf.

4.3 Privacy-Enhancing Signatures

We next define the main building block: privacy-enhancing attribute-based signa-
tures (PABS). Informally, parties are split into issuers signing attributes, users
obtaining signatures, and verifiers checking whether users possess valid signa-
tures on certain attributes. After setting up some PABS-specific system parame-
ters, each issuer computes his signing/verification key pair, such that everybody
can verify that keys are well-formed. At issuance time, users can reveal certain
attributes to the issuer and get the remaining attributes signed blindly. Hav-
ing received a signature, a user can verify its correctness. Presentation is then

Formal Treatment of Privacy-Enhancing Credential Systems 17

done in a non-interactive manner: users compute signature presentation tokens,
potentially revealing certain attributes, and verifiers can check these tokens.

System Parameter Generation. The signature system parameters are generated
as spars = (sparg, spar′

s) ←$ SPGens(sparg), where the input are global system
parameters and spar′

s potentially specifies further parameters.
Similar to Sect. 3.1, we assume that the respective system parameters are

input to all the other algorithms of the given scheme. However, for notational
convenience, we will sometimes not make this explicit.

Key Generation. An issuer generates a key pair (ipk, isk) ←$ IKGen(spars).
We assume that the issuer public key implicitly also defines a maximum L of
attributes a signature may contain.

Key Verification. An issuer public key ipk can be verified for correctness with
respect to κ as accept/reject ← KeyVf(ipk).

Signature Issuance. Issuance of a signature is a protocol between a user and a
signature issuer:

(sig/⊥, ε) ←$ 〈U .Sign(ipk, (cj , oj)j /∈R,�a); I.Sign(isk, (ai)i∈R, (cj , πj)j �∈R)〉,where

• �a = (ai)L
i=1 ∈ ASL are the attributes to be signed,

• R denotes indices of attributes that are revealed to the issuer
• cj is a verified commitment to aj , oj is the associated opening information, and

πj is a non-interactive proof of knowledge of the opening of cj . In particular,
cj might be re-used from a preceding signature presentation, allowing users
to blindly carry over attributes into new credentials.

Signature Verification. The correctness of a signature can be verified using SigVf
on input a signature sig, attributes �a and a issuer public key ipk:

accept/reject ← SigVf(sig,�a, ipk).

Signature Presentation Token Generation. The user can compute a signature
presentation token spt that proves that he possesses a signature for a set of
revealed attributes R and committed attributes (cj , oj)j∈C where C ∩ R = ∅.
Furthermore, a signature presentation token can be bound to a specific mes-
sage M specifying, e.g., some context information or random nonce to disable
adversaries to re-use signature presentation tokens in subsequent sessions:

spt/⊥ ←$ SignTokenGen(ipk, sig,�a,R, (cj , oj)j∈C ,M).

Signature Presentation Token Verification. A signature presentation token can
be verified as accept/reject ←$ SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M).

18 J. Camenisch et al.

4.4 Revocation Schemes

Suppose a set of users, e.g., employees, who are granted access to some online
resource. Then this set will often change over time. While adding users would
be possible with the features presented so far, revoking access for specific users
would not. In the following we thus define revocation for signature systems.

We chose a blacklisting approach rather than whitelisting, as whitelists
require verifiers to update their local copy of the revocation information every
time a new signature gets issued, which makes it harder to realize offline applica-
tions. For blacklists, different verifiers may obtain updates at different intervals,
depending on their security policies. As a consequence, our generic construction
also only supports blacklisting, while the interfaces and definitions from Sect. 3
would also support whitelisting or hybrid approaches.

After having set up system parameters, a revocation authority generates a
secret revocation key, together with some public revocation key and revocation
information. Using its secret key, the authority can revoke revocation handles
by updating the revocation information accordingly. Proving that a revocation
handle has not yet been revoked is again done non-interactively: a user can
generate a token showing that some commitment contains an unrevoked handle.
This token can later be publicly verified.

System Parameter Generation. On input global system parameters, revocation
parameters are generated as sparr = (sparg,RS, spar′

r) ←$ SPGenr(sparg), where
RS specifies the set of supported revocation handles, and spar′

r potentially spec-
ifies further parameters.

Revocation Setup. The revocation authority (in the definitions of Sect. 3 this role
is taken by the issuer) runs the revocation setup to obtain a secret key rsk, an
associated public key rpk and a public revocation information RI:

(rsk, rpk,RI) ←$ RKGen(sparr).

Attribute Revocation. A revocation handle rh can get revoked by a revocation
authority by updating the public revocation information RI to incorporate rh:

RI′ ←$ Revoke(rsk,RI, rh).

Revocation Token Generation. A user can generate a token proving that a certain
revocation handle, committed to in c, has not been revoked before:

rt/⊥ ←$ RevTokenGen(rh, c, o,RI, rpk).

In practice, a revocation presentation will always be tied to a signature pre-
sentation to prove that the signature presentation is valid. The value of c in the
former will therefore be one of the commitments from the latter.

Revocation Token Verification. A revocation token is verified by:

accept/reject ← RevTokenVf(rt, c,RI, rpk).

Formal Treatment of Privacy-Enhancing Credential Systems 19

4.5 Pseudonyms

Users can be known to different issuers and verifiers under unlinkable
pseudonyms.

System Parameter Generation. The parameters of a pseudonym system are gen-
erated as sparp = (sparg, spar′

p) ←$ SPGenp(sparg), where the input are global
system parameters, and spar′

p potentially specifies further pseudonym parame-
ters.

User key generation. A user generates his secret key as usk ←$ UKGen(sparp).

Pseudonym generation. A pseudonym nym for given usk and scope ∈ {0, 1}∗ is
computed deterministically as nym ← NymGen(usk, scope).

Pseudonym presentation. On input a user’s secret key usk, a commitment c to usk
with opening information o, and a scope string scope ∈ {0, 1}∗, the pseudonym
presentation algorithm generates a pseudonym nym with a proof π:

(nym, π) ←$ NymPres(usk, c, o, scope).

Pseudonym verification. A pseudonym nym and proof π are verified for a com-
mitment c and scope scope as accept/reject ← NymVf(sparp, c, scope,nym, π).

5 Generic Construction of PABCs

We next present a generic construction of PABC systems from the building blocks
introduced above. Our construction uses a global setup procedure, a commitment
scheme, a PABS scheme, a revocation scheme, as well as a pseudonym scheme,
where the syntax is as introduced in Sect. 4.

The idea underlying our construction is to use the pseudonym and revocation
schemes unchanged to obtain the according properties for the PABC-system.
Issuance and presentation are realized via the given PABS-scheme. However,
instead of just signing the attributes, the issuer additionally signs the user secret
key and the revocation handle whenever applicable. Similarly, whenever a user
computes a presentation token for a set of credentials, it proves knowledge of the
corresponding signature on the contained attributes, the revocation handle, and
the user secret key, where the latter is always treated as an unrevealed attribute.

These independent components are linked together using commitments. For
instance, to show that indeed the revocation handle contained in a credential was
shown to be unrevoked, the same commitment/opening pair is used to generate
revocation and signature presentation tokens.

20 J. Camenisch et al.

5.1 Formal Description of the Construction

Let eq be a function mapping an attribute index (i, j) to its equivalence class as
induced by E, i.e., eq(i, j) = {(i, j)}∪{(i′, j′) : ((i, j), (i′, j′)) ∈ E}. Let E be the
set of all these equivalence classes, and (ae)e∈E be the corresponding attribute
values, i.e., eq(i, j) = e ⇒ ai,j = ae. Finally, let Ei = {j : ((i, j), (i′, j′)) ∈ E}.

As some algorithm names from PABC schemes also appear in the building
blocks, we stress that all algorithms called in the construction are those from
the building blocks and never from the PABC scheme.

System parameter generation. This algorithm outputs spar = (sparg, spars, sparr,
sparp), where the different parts are generated using the system parameter algo-
rithms of the building blocks. We assume that the algorithms of all building
blocks take their respective parameters as implicit inputs.

User key generation. Users generate their secret keys as usk ←$ UKGen(1κ).

Issuer key generation. Issuers generate signature keys (ipk′, isk′) ←$ IKGen(spars)
and revocation keys (rsk, rpk,RI′) ←$ RKGen(sparr). The algorithm outputs
(ipk, isk,RI) = ((ipk′, rpk), (isk′, rsk),RI′).

Presentation. On inputs (usk, scope, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1, E,M), this
algorithm outputs whatever AuxPresent (cf. Fig. 3) outputs, where ipki =
(ipk′

i, rpki), credi = (sigi, rhi), and M̂ = pres‖M.

Presentation verification. On inputs (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,

M), Verify outputs whatever AuxVerify described in Fig. 4 outputs.

Issuance token generation. An issuance token for inputs (usk, scope, rhk+1,
(ipki,RIi, credi, (ai,j)ni

j=1, Ri)k+1
i=1 , E,M), is generated as specified in Fig. 5.

(cusk, ousk) ←$ Com(usk)
(nym, πnym) = (ε, ε)
if scope �= ε:
(nym, πnym) ←$ NymPres(usk, cusk, ousk, scope)

(ce, oe) ←$ Com(ae) ∀e ∈ E
for i = 1, . . . , k do:
(crh,i, orh,i) ← (ε, ε)
if credi is revocable:
(crh,i, orh,i) ←$ Com(rhi)

rti ←$ RevTokenGen(rhi, crh,i, orh,i, RIi, rpki)

M̂
′
= M̂‖scope‖(ipki, (ai,j)j∈Ri

)k
i=1‖E

for i = 1, . . . , k do:
spti ←$ SignTokenGen(ipk′

i, sigi, ((ai,j)
ni
j=1, usk, rhi), Ri,

((ceq(i,j), oeq(i,j))j∈Ei
, cusk, ousk, crh,i, orh,i), M̂

′
)

pt = (cusk, πnym, (ce)e∈E , (crh,i, rti, spti)
k
i=1)

if rti �= ⊥ and spti �= ⊥ for i = 1, . . . , k :
Output (nym, pt)

Output (⊥, ⊥)

Fig. 3. AuxPresent(usk, scope, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, M̂)

Formal Treatment of Privacy-Enhancing Credential Systems 21

M̂
′
= M̂‖scope‖(ipki, (ai,j)j∈Ri

)k
i=1‖E

if scope �= ε ∧ NymVf(cusk, scope, nym, πnym) = reject:
Output reject

for i = 1, . . . , k do:
if RevTokenVf(rti, crh,i, RIi, rpki) = reject or

SignTokenVf(ipki, spti, (ai,j)j∈Ri
, ((ceq(i,j))j∈Ei

, cusk, crh,i)
k
i=1, M̂

′
) = reject:

Output reject
Output accept

Fig. 4. AuxVerify(nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)
k
i=1, E, M̂)

(nym, pt) ←$ AuxPresent(usk, scope, (ipki, RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, iss‖M)

thereby saving the used (ce, oe)e∈E

(cj , oj) ←$ Com(ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πj ←$ ComPf(ceq(k+1,j), oeq(k+1,j), ak+1,j) ∀j ∈ Ek+1

πj ←$ ComPf(cj , oj , ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πusk ←$ ComPf(cusk, ousk, usk)
pit = (pt, rhk+1, (cj)j �∈Rk+1∪Ek+1 , πusk, (πj)j /∈Rk+1

)

sit = ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1 , (cj , oj)j /∈Rk+1∪Ek+1
, cusk, ousk, ipk

′
k+1,

(ak+1,j)
nk+1
j=1 , usk, rhk+1)

Output (pit, sit, nym)

Fig. 5. ITGen(usk, scope, rhk+1, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k+1
i=1 , E,M)

Issuance token verification. To verify pit = (pt, rhk+1, (ck+1,j , πk+1,j)j �∈Rk+1 ,
πusk), the verifier returns the output of:

AuxVerify
(
nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1, E, iss‖M

)
.

Issuance. For issuance, the user and the issuer run:

〈U .Sign(ipk′
k+1, ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1 , (cj , oj)j /∈Rk+1∪Ek+1 , cusk, ousk),

((ak+1,j)
nk+1
j=1 , usk, rhk+1));

I.Sign(isk′, ((ai)i∈Rk+1 , rhk+1), ((ceq(k+1,j), πj)j∈Ek+1 , (cj , πj)j /∈Rk+1∪Ek+1 ,

(cusk, πusk)))〉,

where they extract their inputs from sit, and isk and pit, respectively. When the
user’s protocol returns sig, the user outputs cred = (sig, rhk+1).

Revocation. On input an issuer secret key isk = (isk′, rsk), a revocation infor-
mation RI and a revocation handle rh, the revocation algorithm returns RI′ ←$

Revoke(rsk,RI, rh).
The formal statements and proofs of the following theorem are given in [1].

Theorem 1 (informal). Let the used building blocks satisfy all security prop-
erties introduced in Sect. 4. Then the PABC scheme resulting from the above
construction is secure and simulatably private according Sect. 3.3. Furthermore,
if the PABS scheme is weakly user private, the resulting scheme is secure and
weakly private.

22 J. Camenisch et al.

6 Conclusion

We provided security definitions, a modular construction, and secure instan-
tiations of a PABC system. Our framework encompasses a rich feature set
including multi-attribute credentials, multi-credential presentations, key bind-
ing, pseudonyms, attribute equality proofs, revocation, and advanced credential
issuance with carried-over attributes. Prior to our work, most of these features
found provably secure instantiations in isolation, but their combination into a
bigger PABC system was never proved secure, nor even defined formally.

Proving formal implications among existing definitions and ours might
require substantial further research as for each related work, all definitions would
first have to be reduced to the set of commonly considered features.

Finally, even though we think that our feature set is rich enough to cover a
wide range of use cases (cf. Sect. 1), there are more features that can be added to
our framework. Among these features are inspection, where presentation tokens
can be de-anonymized by trusted inspectors, or attribute predicates, allowing to
prove for example greater-than relations between attributes.

References

1. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen, M.O.:
Formal Treatment of Privacy-Enhancing Credential Systems. ePrint, 2014/708
(2014)

2. ABC4Trust - Attribute-based Credentials for Trust: EU FP7 Project (2015).
http://www.abc4trust.eu

3. Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-
S.: Concepts and languages for privacy-preserving attribute-based authentication.
In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 34–52. Springer, Heidelberg (2013)

4. European Parliament and Council of the European Union: Regulation (EC) No
45/2001. Official Journal of the European Union (2001)

5. European Parliament and Council of the European Union: Directive 2009/136/EC.
Official Journal of the European Union (2009)

6. Schmidt, H.A.: National strategy for trusted identities in cyberspace. Cyberwar-
Resources Guide, Item 163 (2010)

7. Camenisch, J., Herreweghen, E.V.: Design and Implementation of the idemix
Anonymous Credential System. In: Atluri, V. (ed.) ACM CCS 02, pp. 21–30. ACM
(2002)

8. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

9. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

http://www.abc4trust.eu

Formal Treatment of Privacy-Enhancing Credential Systems 23

11. Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates - Build-
ing in Privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)

12. Paquin, C., Zaverucha, G.: U-prove Cryptographic Specification v1.1 (Revision 2).
Technical report, Microsoft Corporation (2013)

13. IRMA - I Reveal My Attributes: Research Project (2015). https://www.irmacard.
org

14. IBM Research Security Team: Specification of the Identity Mixer Cryptographic
Library. IBM Technical report RZ 3730 (99740) (2010)

15. Corporation, M.: Proof of Concept on integrating German Identity Scheme
with U-Prove technology (2011). http://www.microsoft.com/mscorp/twc/
endtoendtrust/vision/eid.aspx

16. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

17. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 533. Springer, Heidelberg (2001)

18. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

19. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS
2014. The Internet Society (2014)

20. Chase, M., Meiklejohn, S., Zaverucha, G.M.: Algebraic MACs and Keyed-
Verification Anonymous Credentials. eprint, 2013/516 (2013)

21. Nguyen, L., Paquin, C.: U-Prove Designated-Verifier Accumulator Revocation
Extension. Technical report MSR-TR-2013-87 (2013)

22. Zaverucha, G.: U-Prove ID escrow extension. Technical report MSR-TR-2013-86
(2013)

23. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 82–99. Springer, Heidelberg (2013)

24. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable &
modular anonymous credentials: definitions and practical constructions. In: Iwata,
T., Jung, H.C. (eds.) ASIACRYPT 2015, PartII. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015)

25. Chase, M.: Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applica-
tions. Ph.D. thesis, Brown University (2008)

26. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

27. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

28. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)

29. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM CCS 13,
pp. 1087–1098. ACM (2013)

30. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS 10, pp. 60–69.
ACM (2010)

https://www.irmacard.org
https://www.irmacard.org
http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx
http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx

24 J. Camenisch et al.

31. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

32. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures
and their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

Minimizing the Number of Bootstrappings
in Fully Homomorphic Encryption

Marie Paindavoine1,2(B) and Bastien Vialla3

1 Orange Labs, Applied Crypto Group, Caen, France
2 Université Claude Bernard Lyon 1, LIP (CNRS/ENSL/INRIA/UCBL),

46 Allée d’Italie, 69364 Lyon Cedex 07, France
marie.paindavoine@ens-lyon.fr

3 Université Montpellier, LIRMM, CNRS, 161 rue Ada, 34095 Montpellier, France
bastien.vialla@lirmm.fr

Abstract. There has been great progress regarding efficient implemen-
tations of fully homomorphic encryption schemes since the first construc-
tion by Gentry. However, evaluating complex circuits is still undermined
by the necessary resort to the bootstrapping procedure. Minimizing the
number of times such procedure is called is a simple yet very efficient
way to critically improve performances of homomorphic evaluations.
To tackle this problem, a first solution has been proposed in 2013 by
Lepoint and Paillier, using boolean satisfiability. But their method can-
not handle the versatility of fully homomorphic encryption schemes. In
this paper, we go one step forward providing two main contributions.
First, we prove that the problem of minimizing bootstrapping is NP-
complete with a reduction from a graph problem. Second, we propose a
flexible technique that permits to determine both such minimal number
of bootstrappings and where to place them in the circuit. Our method
is mainly based on linear programming. Our result can advantageously
be applied to existing constructions. As an example, we show that for
the Smart-Tillich AES circuit, published on the Internet in 2012, we find
about 70 % less bootstrappings than naive methods.

Keywords: Fully homomorphic encryption · Bootstrapping · Complex-
ity analysis · Mixed integer linear programming

1 Introduction

Homomorphic encryption extends traditional encryption in the sense that it
becomes feasible to perform operations on ciphertexts, without the knowledge
of the secret decryption key. As such, it enables someone to delegate heavy com-
putations on his sensitive data to an untrusted third party, in a secure way. More

B. Vialla—This work is partially funded by the HPAC project and the CATREL
project of the French Agence Nationale de la Recherche (ANR 11 BS02 013),
(ANR 12 BS02 001).

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 25–43, 2016.
DOI: 10.1007/978-3-319-31301-6 2

26 M. Paindavoine and B. Vialla

precisely, with such a system, one user can encrypt his sensitive data such that
the third party can evaluate a function on the encrypted data, without learning
any information on the underlying plain data. Getting back the encrypted result,
the user can use his secret key to decrypt it and obtain the result of the evalua-
tion of the function on his sensitive plain data. For a cloud user, the applications
are numerous, and reconcile both a rich user experience and a strong privacy
protection.

Such a promising idea has first been proposed by Rivest, Adleman and
Dertouzos in 1978 [20]. The first homomorphic cryptosystems were able to han-
dle only additions (e.g. [14,19]), or only multiplications (e.g. [8]), or an arbitrary
number of additions but only one multiplication [2]. The first fully homomorphic
encryption (FHE) scheme, able to handle an arbitrary number of additions and
multiplications on ciphertexts, has been proposed by Gentry in 2009 [10].

In homomorphic encryption schemes, the executed function is typically rep-
resented as an arithmetic circuit. In practice, any circuit can be described as a
set of successive operation gates, each one being either a sum or a product per-
formed over some ring. As we will see, the multiplication is the most important
operation to be studied for efficiency optimization of a FHE schemes, and the
multiplicative depth of a circuit, that is the maximum number of multiplications
in a path, is an important parameter for FHE schemes.

In Gentry’s construction, based on lattices, each ciphertext is associated
with some noise, which grows at each operation (addition or multiplication)
done throughout the evaluation of the function (procedure called HE.Eval in
the sequel). When this noise reaches a certain limit, decryption is not possible
anymore. To overcome this limitation, closely related to the number of operations
that the HE.Eval procedure can handle, Gentry proposed in [10] a technique of
noise refreshment called “bootstrapping”.

The main idea behind this bootstrapping procedure is to homomorphically
run the decryption procedure of the scheme on the ciphertext, using an encrypted
version of the secret key. It comes along with a circular security assumption, as
we have to feed the decryption circuit with an encryption of the secret key. This
permits to get a “refreshed” ciphertext, which encrypts the same plaintext, but
with less noise: the decryption is then always feasible. However, the counterpart
is that its computational cost is quite heavy and it should be avoided as much
as possible [16]. Ducas and Micciancio proposed a bootstrapping procedure in
less than a second [7], but their procedure can only be applied to ciphertexts
encrypting a single bit. HElib [15] procedure, on the other hand, takes roughly
6 min. However, the plaintext space is much larger, yielding an amortized cost
per bit operation of the same order. In such a context, it is of great importance
to determine the exact minimum number of bootstrappings needed to evaluate
a given circuit. This way, the time execution for the evaluation of a function will
be optimal for a given FHE scheme.

Noise Growth Model. Such a study requires a model to point out how noise grows
operation after each operation. Following [17], we associate to each ciphertext
ci a discrete noise level li with li = 1, 2, Level 1 corresponds to the noise

Minimizing the Bootstrappings in Fully Homomorphic Encryption 27

X1 X2 X3 X4 X5 X6 X7 X8

S1

(a) Bootstrapping after
each multiplication.

X1 X2 X3 X4 X5 X6 X7 X8

S1

(b) Bootstrapping before
each multiplication.

X1 X2 X3 X4 X5 X6 X7 X8

S1

(c) Optimal solution.

Fig. 1. In dashed rectangle, the bootstrapping positions given by the different heuris-
tics in a FHE scheme with lmax = 2. (a) The first heuristic uses 5 bootstrappings.
(b) The second heuristic uses 4 bootstrappings. (c) Whereas the optimal solution is
3 bootstrappings.

of encryption procedure output. The last level at which it is necessary to either
stop the computation or to bootstrap the ciphertext is denoted lmax. The boot-
strapping procedure does not reset the noise level of a ciphertext to 1 in general
but to a level 1 ≤ N < lmax. As we will see later, FHE schemes can be divided
into two categories depending on the effect of multiplication on noise level, the
exponential ones and the linear ones.

Minimizing Bootstrapping. We introduce the lmax-minimizing bootstrapping
problem as finding (one of) the minimal set of ciphertexts one has to boot-
strap in order to correctly evaluate a given circuit. Naively, two heuristics can
be used in order to avoid unnecessary bootstrappings.

Heuristic 1: One can bootstrap a ciphertext as soon as its noise level reaches
lmax. It usually means to bootstrap a ciphertext just after a multiplicative
gate.
Heuristic 2: When a ciphertext with noise level lmax is produced, one waits
as long as possible before bootstrapping it. It usually means to bootstrap a
ciphertext just before it is used as input into a multiplicative gate.

But, as shown in Fig. 1, these two heuristics most of the time fail to produce a
solution to the lmax-minimizing bootstrapping problem. In this paper, our aim
is then to provide a generic method to find such solution.

Previous Works. To the best of our knowledge, the only method to com-
pute a minimal number of bootstrappings has been proposed by Lepoint and
Paillier in [17]. It is based on the SAT problem, known to be NP-complete, and
on the definition of some noise management rules. They focus on exponential
schemes and proposed a method for any lmax. In order to handle linear schemes

28 M. Paindavoine and B. Vialla

as well, they need to modify the circuit so they can apply their algorithm as a
blackbox. Regarding efficiency, the running time of their solving algorithm grows
exponentially with lmax, and they do not give timings for lmax ≥ 4.

Outline and Contributions. In this context, our contribution is twofold. We first
prove that the lmax-minimizing bootstrapping problem is polynomial for lmax = 2
and NP-complete for lmax ≥ 3. We then propose a new method to determine
the minimal number of bootstrappings needed for a given FHE scheme and a
given circuit. As well as the previous work, our method also permits to exactly
know where to place them in the circuit. We use linear programming to find
the best outcome for our problem. The main advantage of our method over the
previous one is that it is highly flexible and can be adapted for numerous types
of homomorphic encryption schemes and circuits.

The paper is organized as follows. In the next section, we introduce the
tools we need all along the paper. Section 3 provides our complexity analysis:
the lmax-minimizing bootstrapping problem is polynomial for lmax = 2 and NP-
complete for lmax ≥ 3. Finally, Sect. 4 gives our new method for solving the lmax-
minimizing bootstrapping problem.

2 Background

In this section, we first recall some technical details about graph theory, and
in particular arithmetic circuits. We then describe noise growth model during
homomorphic evaluation of an arithmetic circuit. Next, we introduce some basic
notions of complexity theory. Finally, we present our main tool for solving the
lmax-minimizing bootstrapping problem which is mixed integer linear program-
ming.

2.1 Graph Theory

As sketched in the introduction, functions handled by homomorphic encryption
are arithmetic circuits. They are a particular type of graph. This allows us to
make use of complexity results over graph problems for our complexity analysis.

A graph G is a couple (V,E) where V is the set of vertices and E is the set of
edges. An edge from a vertex u to a vertex v is noted (u, v). A directed graph is
a graph where all the edges are oriented, meaning that ∀u, v ∈ V, (u, v) �= (v, u).
For a directed edge (u, v), u is called the tail and v the head. A (u1 −un+1)-path
of length n is a collection of n edges ((u1, u2), (u2, u3) · · · , (un, un+1)) and a cycle
is a path where the first vertex equals the last. A directed graph is said acyclic if
it does not contain any directed cycles. A directed acyclic graph is denoted DAG.
The input degree of a vertex x is |{(u, x) ∈ E}|, and a vertex whose input degree
is equal to 0 is called a source. The output degree of a vertex x is |{(x, u) ∈ E}|,
and a vertex whose output degree is equal to 0 is called a sink.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 29

Arithmetic Circuit. An arithmetic circuit C = (G,W) is a DAG defined over a
ring R and a set of n variables X = {X1,X2, · · · ,Xn} as follows. The vertices G
of C are called gates. The edges W of C are called wires. A gate of input degree
0 is an input gate and is labelled either by a variable from X or a ring element.
Every other gate has an input degree 2, and is labelled either by × or +. We
respectively call them product gates and sum gates. Every gate of output degree
0 is called an output gate. In the case of binary circuits defined over F2, we also
have gates of input degree 1. They are labelled NOT, and are called NOT gates.

Let P be a path in C. We call the multiplicative length of P the number of
product gates in P. Let us note that the multiplicative length of P is defined with
respect to the number of product gates of P, whereas its length is defined with
respect to the number of edges. Therefore, for a path P that is only composed
of k product gates (and no sum gates), its length is k − 1 and its multiplicative
length is k.

2.2 Noise Growth Model

In existing homomorphic encryption schemes, each ciphertext has some noise
attached to it. This noise grows throughout the HE.Eval procedure. In this
section, we model how the noise grows operations-wise. As pointed out in the
introduction, we use a discretized noise model.

Additions in homomorphic encryption are almost free. The noise growth
induced by additions is indeed logarithmic with regard to the noise growth
induced by multiplications. It can therefore be neglected most of the time. In
this case, let c1, c2 be two ciphertexts of noise level l1 and l2, and let c3 = c1+c2.
We have l3 = max(l1, l2). However, this restriction is not necessary to apply our
method for solving the lmax-minimizing bootstrapping problem, and the loga-
rithmic noise induced by additions can be taken into account in our model.

The effect of a multiplication on noise levels divides FHE schemes into two
categories. Let c1, c2 be two ciphertexts of noise level l1, l2 and c3 = c1 · c2 with
noise level l3.

– The exponential schemes [4,6,9,24]: in these schemes, we have l3 = l1 + l2.
Therefore, the evaluation of a circuit with a multiplicative depth D will require
lmax > 2D. This becomes quickly unacceptable and in practice lmax is set to 2.

– The linear schemes [3,11]: in these schemes, we have l3 = max(l1, l2) + 1.
However, in those schemes, the user can set lmax to be greater than the multi-
plicative depth of the circuit to be evaluated. This comes at the cost of greater
public parameters. When the multiplicative depth of the circuit is not known
in advance, or is too important, one still has to resort to bootstrapping.

2.3 Complexity Theory

We recall the basic definitions of the classic complexity classes that we use in
Sect. 3.

30 M. Paindavoine and B. Vialla

A decision problem is a yes-or-no question on an infinite set of inputs.
A problem P is in the NP class if the verifying a feasible solution can be done in
polynomial time. A problem P is NP-hard if P is at least as hard as the hardest
problem in NP. In particular, a NP-hard problem is not necessary in NP.

To prove that a problem P is NP-hard we use a reduction that preserves the
NP-hardness defined as follows:

Definition 1 (Reduction). Let A and B be two decision problems, A NP-hard.
Let x be an instance of A. A reduction is a pair of algorithms (f, g) such that:

– f is a polynomial algorithm transforming x into an instance f(x) of B,
– g is a polynomial algorithm transforming a solution y of B in f(x) into a

solution g(x, y) in x of A.

A problem P is NP-complete if P is in NP and P is NP-hard.

2.4 Mixed Integer Linear Programming

To solve the lmax-minimizing bootstrapping problem, we use linear programming
[21], and especially mixed integer linear programming (MILP). Linear program-
ming is used to minimize a linear function whose variables are subject to linear
constraints. An integer linear programming problem is expressed in the follow-
ing form. Let A be a matrix in Mm×n(R), b ∈ R

m, c ∈ R
n, x, l, u ∈ Z

n. The
program objective is:

Minimize c1x1 + c2x2 + · · · + cnxn

Subject To a11x1 + a12x2 + · · · + c1nxn ≥ b1

...
an1x1 + an2x2 + · · · + cnnxn ≥ bn

∀xi, li ≤ xi ≤ ui.

We call cTx the objective function, x the problem variables, l the lower bounds
on x, u the upper bounds on x and Ax the linear constraints. Constraints should
not be defined with strict inequalities. If xi ∈ {0, 1}, they are named boolean
variables. The goal of this formulation is to find values for x that minimize the
objective function without violating any constraints.

A mixed integer linear programming problem is an integer linear programming
problem where some of the xis (and the corresponding uis and lis) are allowed
to be in R.

Note that non-linear terms are not allowed in the model. Expressing con-
straints on the multiplication of variables or the maximum of variables is not
straightforward, but is still possible with various techniques.

As for any optimization problem, a solution that satisfies all constraints is
a feasible solution. An optimal solution is a feasible solution that achieves the
best objective function value.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 31

Theorem 1. The decisional version of the mixed integer linear programming
problem is NP-complete.

Proof. See [21]. ��

3 Complexity Analysis of the lmax-Minimizing
Bootstrapping Problem

In this section, we first formally introduce the lmax-minimizing bootstrapping
problem, before proving that it is polynomial for lmax = 2 and NP-complete for
lmax ≥ 3.

The lmax-minimizing bootstrapping problem is formally defined as a decision
problem as follows.

Definition 2 (lmax-Minimizing Bootstrapping (lmax-MB)). Let lmax be
the desired maximum noise level and C = (G,W) be an arithmetic circuit. Is
there a subset S ⊆ G of size ω such that each path P ⊆ C of multiplicative length
lmax has at least one gate in S?

3.1 A Polynomial Time Algorithm for lmax =2

In order to prove that the lmax-minimizing bootstrapping problem is polynomial
for lmax = 2, we design an algorithm that solves it using a graph connectivity
algorithm as a blackbox.

In a DAG G = (V,E), with a source s and a sink t we define a (s, t)-separator,
that is, a subset W ⊆ V such that each (s, t)-paths has at least one vertex in W .
The graph connectivity problem consists in finding a minimal (s, t)-separator.
This problem can be solved in O(|V ||E| log(|V |2/|E|)) (see [1]).

In what follows, we describe the algorithm solving the 2-minimizing boot-
strapping problem using the graph connectivity problem. Let C be a circuit and
G = (V,E) the underlying DAG. As only one level of product is allowed between
each bootstrapping, the goal is to split G into subgraphs where each path has a
multiplicative length of 1.

The first step is to delete every arc (u, v) ∈ E where v is a product gate. The
resulting graph is named G′. This step is depicted in Fig. 2a.

The connected components of G′ are also directed acyclic graphs, but the
underlying circuit has at most one level of multiplication. The second step is
to add an edge from the source s to each product gate and one from each
component’s sinks to t. With this construction, each (s, t)-path passes through
one and only one product gate. Therefore, in order to correctly evaluate the
circuit C, we want to bootstrap each ciphertext once per path. In other words,
we have to find the smallest subset of vertices S ⊆ V , for which each path has
a gate in S. S is an (s, t)-separator of G.

In Fig. 3, we represent our algorithm which computes the minimal set of
bootstrappings. A (toy) running example is depicted in Fig. 2.

32 M. Paindavoine and B. Vialla

(a) Delete every edge en-
tering a product gate.

s

t

(b) Add an edge from s
to each product gate, and
from every sink to t.

s

t

(c) Solve the graph connec-
tivity problem on this in-
stance.

Fig. 2. Algorithm for finding the optimal solution for lmax = 2 applied to the circuit
from Fig. 1

Algorithm 1: Building the minimum set of bootstrappings for lmax = 2.
Data: C a circuit and G = (V,E) the associated directed acyclic graph.
Result: The minimum set S of variables to bootstrap.
begin

Delete every edge (u, v) where v is a product gate (figure 2a);
Add two vertices s and t, s will be the source of G and t the sink;
For each multiplication vertices v, add an edge (s, v) (figure 2b);
For each edges (u, v) deleted in step 1, add an edge (u, t) (figure 2b);
Compute the minimal (s, t)-vertex separator S (figure 2c);
Return S;

Fig. 3. Algorithm to compute the minimal set of bootstrapping for exponential
schemes.

Theorem 2. The asymptotic complexity of Algorithm 1 is

O(|V ||E| log(|V |2/|E|)).

Proof. The complexity of the first and third steps is O(|V |) and the complexity
of the fourth step is O(|E|). The second step is executed in constant time. The
complexity for computing a minimal (s, t)-separator is O(|V ||E| log(|V |2/|E|)),
therefore, the general complexity of the algorithm is O(|V ||E| log(|V |2/|E|)). ��

Thus, the 2-minimizing bootstrapping problem, which mostly corresponds
to exponential schemes can be solved in polynomial time. Moreover, graph con-
nectivity algorithms provide us with the optimal bootstrapping location in the
circuit.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 33

3.2 NP-Completeness of the lmax-Minimizing Bootstrapping
Problem

In this section we prove that the lmax-minimizing bootstrapping problem is
NP-complete for lmax ≥ 3. We reduce the vertex cover problem known to be
NP-complete to the lmax-MB problem. We need to introduce an intermediary
problem: the k-path vertex cover problem.

Let us first recall the decison version of the vertex cover problem on a
DAG [18].

Definition 3 (Vertex Cover in Directed Acyclic Graph (VCD)). Let
G = (V,E) be a directed acyclic graph. Is there a subset W ⊆ V of size ω, such
that each edge in E admits a vertex of W as tail or head (or both)?

Theorem 3. The VCD problem is NP-complete.

Proof. See [18]. ��

Let us now extend the definition of VCD to a directed version of the k-path
vertex cover problem from [5].

Definition 4 (k-Path Vertex Cover in Directed Acyclic Graph
(k-PVCD)). Let G = (V,E) be a directed acyclic graph. Is there a subset
W ⊆ V of size ω, such that each path P in G of length k has a vertex in
W , i.e., P ∩ W �= ∅?

Problems VCD k − PVCD

Instances x
f→−� f(x)

Solutions g(x, Y) solution of x
g←−� Y solution of f(x)

Fig. 4. Scheme of a reduction from the VCD problem to the k-PVCD problem.

Theorem 4. The k-PVCD problem is NP-complete for k ≥ 2.

Proof. A scheme of the reduction is depicted Fig. 4.
Note that for k = 2, k-PVCD is the same as VCD which is NP-complete.
For k > 2 we show a reduction (f, g) from the VCD problem to the k-PVCD

problem.
Let G = (V,E) be an arbitrary directed acyclic graph. We transform G into

a k-PVCD instance f(G) = G′. Let G′ = (V ′, E′) be the graph obtained from
G such that for all x ∈ V we add a directed path of

⌊
k
2

⌋
− 1 new vertices where

x is the head; and a path of size
⌈
k
2

⌉
− 1 new vertices where x is the tail. We

call the vertices of G original vertices, and the others the new vertices. This
transformation f has a linear complexity with respect to |V |. An example is
depicted in Fig. 5.

34 M. Paindavoine and B. Vialla

(a) Original graph G. (b) Graph G′ for k = 4. (c) Graph G′ for k = 5.

Fig. 5. Example of the G′ construction.

We now have to transform back a k-PVCD feasible solution Y in G′ into a
VCD feasible solution g(G, y) in G.

Let y be a k-path vertex cover in G′. Suppose that y contains a new vertex
u that lies in one of the added path, i.e., ∃u ∈ Y, u �∈ V . Let v ∈ V be the
original vertex closest to u. Note that u only secures one path, hence we can
swap u with v in Y . We can apply this procedure until all vertices of y are in
V . Let us name g the algorithm just described. We claim that g(G,Y) ⊆ V is a
vertex cover in G.

Let us suppose otherwise. There is an edge (u, v) ∈ E such that u, v �∈
g(G,Y). Depending on the orientation of the edge between u and v, consider the
path P in G′, composed of the path attached to x where u is the head (resp.
the tail), of the edge (u, v) (resp. (v, u)), and of the path attached to v where v
is the tail (resp. the head). Then P does not contain any vertex from y, and it
has k

2 � + �k
2 � − 2 + 2 = k vertices, which is a contradiction. Hence, g(G,Y) is

a vertex cover in G.
The transformation g of a k-PVCD feasible solution in G′ into a VCD feasible

solution in G has a linear complexity with respect to |V |.
Conversely, we prove that a vertex cover X in G yields a k-path vertex cover

in G′. Let us suppose otherwise. There is a path P of length k in G′ such that
P ∩X = ∅. By construction of G′, at least one edge of P is in G, let e = (u, v) ∈ P
be this edge. So, u, v �∈ X which is a contradiction because X is a vertex cover.
Hence, X is a k-path cover in G′.

Thus, there is reduction (f, g) from VCD to k-PVCD: k-PVCD is NP-hard.
We finally prove that an alleged solution of k-PVCD in a DAG G̃ = (Ṽ , Ẽ)

can be verified in polynomial time. Let Δ− be the maximum output degree of
G̃. The number of paths of size k in G̃ is at most O(|Ṽ |Δ−k), and the paths
of length k can be computed using a truncated breadth first search on every
vertex, with a complexity of O(|Ṽ |(|Ṽ | + |Ẽ|)). So a solution can be verified in
polynomial time. k-PVCD lies in NP.

Hence k-PVCD is NP-hard and NP: it is NP-complete. ��

Now we can prove that lmax-MB is NP-complete by reducing the k-PVCD
problem to the lmax-MB problem. A scheme of the reduction is depicted Fig. 7.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 35

Theorem 5. lmax-MB is NP-complete for lmax ≥ 3.

Proof. We show a reduction (f, g) from the k-path vertex cover problem to the
lmax-minimizing bootstrapping, for lmax ≥ 3 and k = lmax − 1.

Let G = (V,E) be an arbitrary directed acyclic graph. We transform G into a
lmax-MB instance f(G) = C. C is not required evaluate any “interesting”function.
For our reduction purpose, we only need that any path P of length k in G is
transformed into a path P in C with multiplicative length lmax.

Let Δ+(G) be the maximum input degree of G. In order to transform G into
a circuit C = (G,W), we distinguish three cases. When a vertex of G has input
degree 2, it is directly transformed into a product gate. When a vertex of G
has input degree 1, it is transformed into a product gate, the second input of
the gate being a field constant. Finally, every vertex x ∈ V with input degree
at least 3 is transformed into a subcircuit only composed of sum gates (each of
input degree 2) except for the last one that will be a product gate, see Fig. 6.
Note that f is a bijection between the vertices of G and the product gates of C,
and that f has a linear complexity with regard to |V |.

We now have to transform a lmax-MB feasible solution y in C into a k-PVCD
feasible solution g(G, y) in G.

Let Y be a lmax-MB feasible solution in C. The transformation g consists in
moving every bootstrapping that is placed on a sum gate to the next product
gate downwards. Every bootstrapping is now on a product gate. We claim that
g(x, Y) is a (lmax − 1)-path cover of G.

Let us suppose otherwise. There is a path P ⊆ G of length lmax − 1 which is
not covered by g(x, Y). Let P ⊆ C be the path obtained after the transformation
of P . A path of length lmax − 1 is composed of lmax vertices. Each of these
vertices is transformed into a subcircuit that contains exactly one multiplication.
So the multiplicative length of P is equal to lmax. Therefore, there is a path in C
of multiplicative length lmax that is not covered by y, which is a contradiction.
Hence, g(x, Y) is a (lmax − 1)-path cover of G. The transformation g between a
lmax-MB feasible solution in C and a k-PVCD feasible solution in G has linear
complexity with regard to |V |.

Conversely, using a similar reasoning, we can show that a (lmax − 1)-path
vertex cover of in G yields a lmax-MB in C.

Hence the lmax-MB problem is NP-hard. We have now to prove that the lmax-
MB problem is NP. That is any alleged solution of lmax-MB in an arithmetic
circuit C̃ = (G̃, W̃) can be verified in polynomial time. Let Δ− be the maximum
output degree of C̃. The paths of multiplicative length lmax can be computed
using a truncated breadth first search on every vertex, with a complexity of
O(|G̃|(|G̃| + |W̃|)). So a solution can be verified in polynomial time, so lmax-MB
lies in NP.

Hence, lmax-MB is in NP and is NP-hard: it is NP-complete. ��

Thus, the lmax-minimizing bootstrapping problem, for lmax ≥ 3, is NP-
complete. In the following section we provide a constructive method to solve it.

36 M. Paindavoine and B. Vialla

(a) Vertex of G. (b) Vertex transformation in C.

Fig. 6. Transformation a vertex of input degree greater than 2.

Problems k − PVCD lmax − MB

Instances x
f→−� f(x)

Solutions g(x, Y) solution of x
g←−� Y solution of f(x)

Fig. 7. Scheme of a reduction from the k-PVCD problem to the lmax-MB problem.

4 Minimizing Bootstrappings with Mixed
Integer Linear Programming

In this section we present a general and adaptable method based on mixed inte-
ger linear programming for solving the lmax-minimizing bootstrapping problem.
We first introduce the model’s variables and then we describe a general MILP
model that can take into account many types of FHE operations. Moreover,
one can choose the noise level at which the ciphertexts are refreshed after a
bootstrapping.

4.1 Defining Variables and Objective Function of the Program

At each gate of the circuit, we attach a boolean variable which will take the value
true if it is necessary to bootstrap after the node. The goal of our optimization
program will be to minimize the sum of those bootstrapping variables.

For each gate G(i) of the circuit we denote by G
(i)
1 and G

(i)
2 the noise levels

of the gate inputs. For each output wire of a gate, we add a fictive node cor-
responding to our bootstrapping boolean variable that we denote B(i). If B(i)

equals to one, it means that a bootstrapping is necessary after the ith gate of
the circuit. In order to keep the notations simple, B(i) will be used either for the
boolean variable or for the fictive bootstrapping computation node. We consider
that the B(i) node takes as input the noise level of the gate output it is attached
to, which we denote G

(i)
in and outputs a noise level variable G

(i)
out. These variables

are depicted in Fig. 8.
Each of those variables admits 1 as lower bound and lmax as upper bound.

Furthermore we require that the noise level of each circuit output is strictly less
than lmax in order to have a correct decryption or to allow further computations.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 37

G
(i)
2

G
(i)
1

G
(i)
in

G
(i)
out

B(i)

Fig. 8. Variables representing the noise level of a gate in the mixed integer linear
programming problem.

Minimizing the number of bootstrappings is equivalent to minimizing the number
of boolean variables set to true. Hence, the objective function to be minimized is:

∑
i

B(i).

4.2 Linear Constraints

We translate the relations between the noise levels of each gate into linear con-
straints. We describe them thoroughly for the main FHE operations: addition
and multiplication. The model can easily be modified to include other kinds
of FHE operations as long as the noise growth can be translated into linear
constraints.

Bootstrapping. We first express the constraints that rule the noise growth after
the bootstrapping gate added to each gate of the circuit. We recall that the
scheme can handle lmax operations before the first bootstrapping and that each
bootstrapping resets the noise level to N . If we do not bootstrap at a gate B(i),
the noise level of the output of the gate is not affected, and we want G

(i)
in to be

equal to G
(i)
out. We can formulate these into a simple constraint:

G
(i)
out = G

(i)
in · (1 − B(i)) + N · B(i). (1)

This quadratic constraint can be written as a linear constraint using an
auxiliary constant X such as X ≥ lmax. The constraints system becomes:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G
(i)
out ≥ N · B(i) (2)

G
(i)
out ≤ N + (1 − B(i)) · X (3)

G
(i)
out ≥ G

(i)
in − X · B(i) (4)

G
(i)
out ≤ G

(i)
in + X · B(i). (5)

We can see that if the solver decides to bootstrap at gate i, both Eqs.
(2) and (3) will force the equality G

(i)
out = N while Eqs. (4) and (5) remain true.

38 M. Paindavoine and B. Vialla

On the other hand, if the solver decides not to bootstrap, Eqs. (4) and (5) will
force the equality G

(i)
out = G

(i)
in while the other two will remain true.

Addition. Let c1, c2 be two ciphertexts with noise levels l1, l2 respectively. We
denote c3 = c1 + c2 with noise level l3. We want to ensure that l3 = max(l1, l2).
The maximum is not a linear function, so it cannot be directly used in a con-
straint. We prove later that the following implication is enough for our purposes:

A
(i)
in = max(A(i)

1 , A
(i)
2) =⇒

{
A

(i)
in ≥ A

(i)
1

A
(i)
in ≥ A

(i)
2 .

These equations are linear so we can use them as constraints with the fol-
lowing bounds on the variables: 1 ≤ A

(i)
in ≤ lmax and 1 ≤ A

(i)
j ≤ lmax.

Remark 1. If the proportion of sum gates in the circuit is overwhelming, our
model can consider the logarithmic noise growth induce by additions. Let ε ∈
[0, 1] be the noise added by a sum gate normalized with respect to the noise added
by a product gate. The noise level of a sum gate output is l3 = max(l1, l2) + ε.
Working with mixed integer linear programming instead of integer linear pro-
gramming allows to consider this noise using the following linear constraints:

{
A

(i)
in ≥ A

(i)
1 + ε

A
(i)
in ≥ A

(i)
2 + ε,

with the same lower and upper bounds as for the addition case.

Multiplication. Let c1, c2 be two ciphertexts with noise levels l1, l2 respec-
tively. We denote c3 = c1 · c2 with noise level l3. We want to ensure have
l3 = max(l1, l2) + 1. We have the following linear constraints:

l3 = max(l1, l2) + 1 =⇒
{

M
(i)
in ≥ M

(i)
1 + 1

M
(i)
in ≥ M

(i)
2 + 1,

with 1 ≤ M
(i)
in ≤ lmax and 1 ≤ M

(i)
j ≤ lmax − 1 as upper and lower bounds for

the linear program.

Other Operations. Other gates types can fit in our model as long as the noise
growth rules can be expressed as linear constraints. For example, a multiplication
by a constant roughly adds half a level [12] and therefore can be considered. In
the GSW scheme [13], the authors used NAND gates. Our model can be applied
to such a scheme as a NAND gate behaves with regard to noise growth exactly
as a multiplicative gate.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 39

Theorem 6. The above MILP is equivalent to the lmax-minimizing bootstrap-
ping problem.

Proof. The constraints definition straightforwardly implies that every solution
to the lmax-MB problem is a solution of the MILP.

Let us now show the converse. Let S be a MILP solution that is not a lmax-
MB solution. There exists a path P in the circuit with multiplicative length lmax

such that P ∩ S = ∅. The noise level of a ciphertext along this path respects all
the MILP constraints. In particular, it increases by at least 1 at each product
gate. Its noise level at the end of the path is thus at least lmax. This is in
contradiction with the noise variables constraints: each one of them is bounded
by lmax and the circuit outputs has a noise level strictly less than lmax. Then S
cannot be a MILP solution. ��

4.3 Practical Experimentations

In this section we discuss the practical results of our model on several circuits
from [22], and on the AES circuit used in [12]. Circuits’ characteristics are
described in Table 1. We assume that the circuit’s inputs noise level is equal
to 1 and we require that the noise level of each circuit output is strictly less than
lmax.

MILP Solvers. MILP solvers do not only solve the original program but also its
dual. The transformation of a primal form of a MILP into its dual in our case is
the following:

min
{
cTx | Ax ≥ b, l ≤ x ≤ u

}
�→ max

{
bT y | Ay ≤ c, l ≤ y ≤ u

}
.

A feasible solution of the dual problem gives a lower bound on the optimal
solution [21]. The difference between a feasible solution of the linear program
and a feasible solution of its dual is called the gap, until it reaches zero. It
then means that the solution found is optimal. The gap gives a hint on how
far the given solution is from the optimum in the worst case. As we will see in
experimentations, the gap value is useful because it allows to get an approximate
solution quickly.

Benchmarks. For the experimentation we ran both the Gurobi Optimizer 61 and
IBM CPLEX 12.62 on an Apple MacBook Pro with 2.3 GHz Intel Core i7 and
16 GB of RAM. Each solver implements many different optimization routines,
which makes difficult to predict the computation time. We tried both solvers on
small circuits and choose the faster one to tackle the problem on bigger circuits.
In our case, Gurobi performs better on all circuits. The results are displayed in
Table 2. We tested two settings:

1. (lmax = 2, N = 1). For this setting, we found the same solutions as in [17].
1 http://www.gurobi.com/.
2 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud.

http://www.gurobi.com/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

40 M. Paindavoine and B. Vialla

Table 1. Circuits’ characteristics.

Circuits Mult. gates Add. gates NOT gates Mult. depth

Adder 32 bits 127 61 187 64

Adder 64 bits 265 115 379 128

Comparator 32 bits 150 0 150 23

Multiplier 32 × 32 5926 1069 5379 128

AES (expanded key) 5440 20325 1927 41

DES (expanded key) 18175 1351 10875 262

MD5 29084 14150 34627 2973

SHA256 90825 42029 103258 3977

Circuit Mult. gates Add. gates Mult. cst gates Mult. depth

AES [12] 30 220 230 40

2. (lmax = 20, N = 9) as more realistic parameters, similar to those used in [16],
except for the AES from [12] where we chose the same parameters as the
authors.

For the simplest circuits, such as Adder and Comparator, the heuristics find
the optimal solution or a close one. For those circuits, computing the optimal
solution is done in less than a second.

Table 2. Minimal number of bootstrappings.

Circuits lmax N Solution heuristic 1 Solution heuristic 2 MILP solution

Adder 32 bits 2 1 127 127 127

Adder 32 bits 20 9 5 5 4

Adder 64 bits 2 1 265 267 265

Adder 64 bits 20 9 10 12 10

Comparator 20 9 1 1 1

Multiplier 2 1 6350 5926 5924

Multiplier 20 9 105 116 69

AES 2 1 4504 5440 3040

AES 20 9 736 1600 220±20

AES [12] 23 11 2

DES 2 1 18399 18175 18041

DES 20 9 4435 4006 440±20

MD5 2 1 29084 34496 28896

SHA256 2 1 90825 97009 88178

Minimizing the Bootstrappings in Fully Homomorphic Encryption 41

For bigger circuits, running time is difficult to predict. For lmax being small,
as well as “close” to the circuit multiplicative depth the optimal solution is found
in a couple of minutes. Between these settings, the solver can take hours to find
the optimal solution. Nonetheless, the solver always finds a good approximation,
better than both heuristics, in tens of minutes. But it can take a couple of hours
to prove optimality. This is where the gap value is important: one can choose
to stop the computation time when the gap reaches some desired threshold. For
the DES circuit, we stopped the solver after 3.5 hours of computation, when the
gap reached 5 % of error. In comparison with the more efficient heuristic, this
spares 3566 bootstrappings.

Unlike circuits from [22], the AES circuit from [12] exploits all the possibilities
offered by a FHE scheme. In particular they use SIMD [23], where ciphertexts
are vectors of encrypted plaintexts, and operations are performed component-
wise. These vectors are regularly permuted. This does not impact the noise level
of ciphertexts. The plaintext space is also bigger than for the binary circuits
from [22] which explains that much fewer bootstrappings are needed to correctly
evaluate it. This circuit is described is Table 1.

5 Conclusion

While homomorphic encryption implementations are now available for anyone
who wants to evaluate circuits on encrypted data, performances in the compu-
tation are largely undermined either by time taken by the bootstrapping step
or by memory requirement when increasing lmax. In this paper we proposed an
efficient and flexible technique to determine the minimal number of bootstrap-
ping when evaluating circuits in homomorphic encryption. In [5], the authors
give an upper bound on the size of the solution of the k-path vertex cover with
respect to the vertices degree of the graph. It would be interesting to see if it is
possible to adapt those formulas for the case of the lmax-minimizing bootstrap-
ping problem, as that could give constraints on the design of arithmetic circuits.
Also, it should be interesting to go further in the complexity analysis of the
problem by finding a monadic second order logic formulation, which would allow
to apply many meta-theorems giving better insights on the problem. A future
work is to provide an automatic tool that, given a circuit and a FHE scheme,
could generate a new circuit with optimal bootstrapping placement.

Acknowledgments. We thank Rémi Coletta, Tancrède Lepoint and Guillerme
Duvillie for their insights and expertise, and Sébastien Canard, Pascal Giorgi, Laurent
Imbert and Fabien Laguillaumie for discussion and comments that greatly improved
the manuscript.

42 M. Paindavoine and B. Vialla

References

1. Berge, C.: Graphs. North-Holland Mathematical Library. North Holland
Publishing Co., Amsterdam (1985)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106 (2011)

5. Bresar, B., Kardos, F., Katrenic, J., Semanisin, G.: Minimum k-path vertex cover.
Discrete Appl. Math. 159(12), 1189–1195 (2011)

6. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

7. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015)

8. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

9. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

11. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

14. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, 5–7 May 1982, San Francisco, California,
USA, pp. 365–377 (1982)

15. Shoup, V., Halevi, S.: Design and implementation of a homomorphic-encryption
library

16. Shoup, V., Halevi, S.: Bootstrapping for helib. Cryptology ePrint Archive, Report
2014/873 (2014). http://eprint.iacr.org/2014/873

17. Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic
circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862,
pp. 189–200. Springer, Heidelberg (2013)

http://eprint.iacr.org/2014/873

Minimizing the Bootstrappings in Fully Homomorphic Encryption 43

18. Naumann, U.: DAG reversal is NP-complete. J. Discrete Algorithms 7(4), 402–410
(2009)

19. Pieprzyk, J.P., Harper, G., Menezes, A., Vanstone, S.A., Paillier, P.: Public-key
cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

20. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phism. Found. Secur. Comput. 4, 168–177 (1978)

21. Sierksma, G., Linear, I.P.: Theory and Practice. Advances in Applied Mathematics,
2nd edn. Taylor & Francis, London (2001)

22. Smart, N.P., Tillich, S.: Circuits of basic functions suitable for MPC and FHE.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

23. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryp-
tology ePrint Archive 133 (2011)

24. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Privacy-Preserving Fingerprint Authentication
Resistant to Hill-Climbing Attacks

Haruna Higo1(B), Toshiyuki Isshiki1, Kengo Mori1, and Satoshi Obana2

1 NEC Corporation, Tokyo, Japan
h-higo@aj.jp.nec.com, {t-issiki,ke-mori}@bx.jp.nec.com

2 Hosei University, Tokyo, Japan
obana@hosei.ac.jp

Abstract. This paper proposes a novel secure biometric authentica-
tion scheme that hides the biometric features and the distance between
the enrolled and authenticated biometric features, and prevent imper-
sonation. To confirm that the proposed scheme has such properties, we
formally model secure biometric authentication schemes by generaliz-
ing the related and proposed schemes. As far as we know, the proposed
scheme is the first one that has been proved to satisfy all the properties.
In particular, the proposed scheme achieves security under the decisional
Diffie-Hellman assumption.

Keywords: Biometric authentication · Fingerprint minutiae · Hill-
climbing attack · Privacy-preserving technology

1 Introduction

Background. Traditionally, ID/passwords and tokens including cards are widely
used as a means of authentication. However, they are at risk of being forgot
or stolen. In contrast, biometric characteristics including fingerprint, face, palm
veins, palm print, iris, and retina cannot be forgot or stolen. Therefore, biometric
authentication has an advantage compared to traditional authentication means.

Biometric authentication makes use of the similarity of biometric features
extracted from the same biometric characteristic. If a biometric feature presented
by a client is similar enough to an enrolled biometric feature in some distance
metrics, the client is successfully authenticated by the server. Since biometric
features are unchangeable private information, it is required to prevent them
from being leaked. Moreover, impersonation should also be prevented.

Related Works. For protecting biometric features from being leaked and prevent-
ing impersonation, many schemes have been proposed [16,18]. Some of them
exploit secret information (i.e., helper data) that is remembered [6,12,13,15]
or tokens (e.g., smart cards or devices) brought along [5,14] by the clients in
addition to their biometric characteristics. However, to exploit the advantage of
biometric characteristics that there is no risk of them being forgotten or stolen,
it is preferable not to use other secret information that has such risks.
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 44–64, 2016.
DOI: 10.1007/978-3-319-31301-6 3

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 45

Without additional secrets, some schemes [1,3,4,10,11] employ a third entity
called a decryptor that manages a secret key to protect biometric features from
being leaked and prevent impersonation. In the schemes in [1,3,4,10,11], the
decryptor computes the distance between the enrolled and authenticated bio-
metric features and compares them with a predetermined threshold. However,
it is known that the distances are useful for hill-climbing attacks [19] in which
the attacker guesses the enrolled biometric feature by observing the change in
the distance from multiple authentication trials.

In ACISP 2012, Shahandashti, Safavi-Naini, and Ogunbona [17] proposed a
fingerprint matching scheme using minutiae. Minutiae are feature points in fin-
gerprints and are widely used for fingerprint matching. Their scheme makes use
of polynomials that are evaluated to be 0 or 1 in accordance with the correspon-
dence of the two input fingerprints. Since the polynomials are evaluated to be
binary values, the scheme prevents the distances from being leaked. However,
the scheme requires the server to store the enrolled fingerprint itself (i.e., not
an encrypted version) while the scheme hides the biometric features during the
authentication due to leveraging homomorphic encryption.

Contributions of this Paper. The main contribution of this paper is proposing a
secure biometric authentication scheme that uses fingerprint minutiae. The pro-
posed scheme is designed for hiding information of enrolled and authenticated
minutiae and the distance between them, and preventing impersonation. The
comparison of the minutiae is done in accordance with their locations and orien-
tations, which is the well-known method as in [14,17]. In the proposed scheme,
enrolled minutiae are represented in the form of polynomials that are evaluated
to be 1 or a random value in accordance with whether the input minutia is
considered to be the same as the enrolled one. The scheme utilizes the modified
Elgamal cryptosystem to evaluate the polynomials without leaking information
of minutiae and distance [8,17]. Similar to the previous schemes [1,3,4,10,11], the
decryptor is employed in addition to the server and clients, and it manages the
secret key of the homomorphic encryption scheme. Since the operations handled
by the decryptor are only decryption and comparison of plaintexts, the decryp-
tor of our scheme can be implemented by hardware security modules (HSM).
Therefore, it seems that utilization of the decryptor is realistic with respect to
the proposed scheme.

To analyze the security of the proposed scheme, we formally model a secure
biometric authentication scheme. The model is a generalization of the previous
schemes [1,3,4,10,11] and the proposed one. That is, three types of entities,
the server, clients, and decryptor, are employed. We formalize the following four
security requirements: (a) hide biometric features from the server (which we call
template protection against server), (b) hide biometric features from the decryp-
tor (which we call template protection against decryptor), (c) prevent imperson-
ation (which we call security for authentication), and (d) hide distances from the
decryptor (which we call security against hill-climbing attacks). Requirements
(a) and (c) are defined by generalizing the security definition provided by Hirano
et al. [11] while we newly define requirement (b) and (d). We prove that the

46 H. Higo et al.

proposed scheme satisfies all requirements under standard cryptographic
assumptions. In particular, we prove that the proposed scheme satisfies all
requirements under the decisional Diffie-Hellman (DDH) assumption.

Table 1. Comparison with previous schemes.

Scheme [17] [11] This paper

Representation of biometric features Minutiae Vector Minutiae

Number of entities 2 3 3

BGN cryptosystem Not used Necessary Not used

Template protection against server No Yes Yes

Template protection against decryptor – No Yes

Security for authentication Yes Yes Yes

Security against hill-climbing attacks Yes No Yes

We compare the related works and our work in Table 1. Shahandashti et al.’s
scheme [17] is performed by a server and a client (a decryptor is not included)
and hides authenticated biometric features. The template is the information of
minutiae in the enrolled fingerprint itself and is not concealed. Therefore, it
does not satisfy the requirements for template protection. On the other hand,
the scheme satisfies the other two notions. Due to employing a third party, our
scheme makes it possible to protect the information of both the enrolled and
authenticated biometric features and the distance between them. As mentioned
above, the decryptor in Hirano et al.’s scheme [11] does not hide the distance
from the decryptor. Also, the scheme makes use of a special type of homomorphic
encryption scheme with which evaluation of 2-DNF formulas is feasible when
performed on ciphertext introduced by Boneh et al. [2].

2 Preliminaries

In this section, we describe preliminaries that are used in the proposed scheme.

2.1 Homomorphic Encryption Scheme

The homomorphic encryption scheme is a type of public key encryption scheme
that has a special property. The property is that from ciphertexts, a new cipher-
text corresponding to a result of some operation on the plaintexts can be gener-
ated without knowledge of the secret key. We focus on addition as the operation.
That is, by using two ciphertexts c1 = Enc(m1) and c2 = Enc(m2), a cipher-
text of m1 + m2 is computable. Such schemes are called additive homomorphic
encryption schemes.

We utilize the modified (or lifted) Elgamal cryptosystem [7] in the proposed
scheme. The modified Elgamal cryptosystem is an additive homomorphic encryp-
tion scheme where algorithms (Gen,Enc,Dec) run as follows:

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 47

– (pk , sk) := ((p, g, y), (g, x)) ← Gen(1κ) where G is a group of prime order p, g
is a generator of G, x ∈ Zp, and y := gx.

– (c1, c2) := (gr, yrgm) ← Enc(pk ,m) where message m is in Zp and r ∈ Zp is
chosen randomly.

– m′ := logg c2/cx
1 = Dec(sk , (c1, c2)).

To divide Dec into two subalgorithms, we define two algorithms as
c2/cx

1 = Dec1(x, (c1, c2)) and loggz = Dec2(g, z). Apparently Dec(sk , (c1, c2)) =
Dec2(g,Dec1(x, (c1, c2))) holds. The first algorithm Dec1 is computable for any
ciphertext while the second Dec2 is not always feasible since it requires comput-
ing of the discrete logarithm, which is assumed to be hard in general. However,
in the proposed scheme, we just check if the plaintext is equal to 0, which is
feasible by verifying the result of Dec1 is 1 or not.

The modified Elgamal cryptosystem has been proved to be IND-CPA secure
under the decisional Diffie-Hellman (DDH) assumption that states that solving
the DDH problem is hard. It is easy to see that the modified Elgamal cryp-
tosystem has the homomorphic property. From two ciphertexts c = (c1, c2) ←
Enc(m) and c′ = (c′

1, c
′
2) ← Enc(m′), it holds that c·c′ := (c1c′

1, c2c
′
2) =

(gr+r′
, yr+r′

gm+m′
) which is a ciphertext of m + m′.

This property is applicable in evaluating polynomials. An n-th degree poly-
nomial F (X) can be represented in the form of F (X) =

∑n
i=0 ai · Xi. As

explained above, Enc(ai · xi) = Enc(ai)xi

holds for any x, i, and ai. There-
fore, from encrypted coefficients Enc(a0), · · · ,Enc(ai) and any x, a ciphertext of
the evaluated value F (x) is computable by just multiplying Enc(ai ·xi) for every
i, since it holds that Enc(F (x)) = Enc(

∑n
i=0 ai · xi) =

∏n
i=0 Enc(ai · xi).

2.2 Biometric Authentication and Fingerprint Minutiae

Biometric authentication is a technique that uses biometric characteristics such
as fingerprints for authenticating individuals. Two biometric features extracted
from the same biometric characteristic are, in most cases, different but close in
some metric. Therefore, to verify if two biometric features are derived from the
same individual, it is sufficient to check if they are close under that metric.

A client who would like to enroll himself extracts a biometric feature from his
biometric characteristics using some devices such as sensors and cameras. The
server stores a template that is generated from the biometric feature. To make
the server authenticate a client, the client extracts a biometric feature again.
Then, the server estimates the distance between the biometric feature to be
authenticated and the biometric feature that has been generated and stored in a
template to check if they have originated from the same biometric characteristic.

A fingerprint contains a number of ridges. Some of them abruptly end (called
ridge endings), and others are divided into two ridges (called ridge bifurcations).
Feature points such as ridge endings and ridge bifurcations are called minutiae.
In general, a minutia is represented by its location (x, y) and orientation t.
Different types (e.g., ridge endings or ridge bifurcations) are also used in some
cases. We assume that the coordinate system is aligned every time biometric

48 H. Higo et al.

characteristics are captured. We refer the readers to [14] and its references for
information on pre-alignment techniques.

In authenticating an individual with minutiae, a set of minutiae is extracted
from the fingerprint. Two fingerprints are considered to match if they have more
than a threshold number of pairs of corresponding minutiae.

Two minutiae are said to correspond if their locations and orientations are
close enough. That is, two minutiae ((x, y), t) and ((x′, y′), t′) correspond if both
d2((x, y), (x′, y′)) :=

√
(x − x′)2 + (y − y′)2 ≤ Δd and d1(t, t′) := |t − t′| ≤ Δt

hold where Δd and Δt are predetermined thresholds, and d1 and d2 stand for
the Euclidean distance in one and two dimensions, respectively. In this paper,
each location and orientation are assumed to be represented by integers.

3 Secure Biometric Authentication Schemes

We provide formal definitions of the secure biometric authentication scheme in
this section. First, the components and procedures of the scheme are explained.
After that, we define its security in accordance with Hirano et al.’s definition [11].

3.1 Algorithms and Procedures

There are three kinds of entities, a server, clients, and a decryptor, in the model
of secure biometric authentication scheme. A client uses his own biometric fea-
ture to enroll or authenticate himself. Clients are not required to have any secret
information other than their own biometric characteristics. The enrolled infor-
mation is stored by the server. Authentication is performed with the aid of the
decryptor who has the secret key. The server decides the authentication result
in accordance with whether the enrolled and authenticated biometric features
are considered to have originated from the same biometric characteristic.

The procedures of the secure biometric authentication scheme include three
phases, setup, enrollment, and authentication. The setup phase is done only once,
and afterward the enrollment phase and the authentication phase are executed
repeatedly by the clients in an arbitrary order. We now describe the procedures
of each phase in detail (Fig. 1).

In the setup phase, the decryptor executes the setup algorithm. It takes as
input the security parameter and a tuple of parameters, which includes informa-
tion about the metrics for evaluating distance and the thresholds of acceptance to
generate a public parameter and a secret key. The public parameter is published
while the secret key is kept secret from other entities.

In the enrollment phase, a client who would like to register himself on the
system runs the pseudonymous identifier encoder (PIE). It generates a protected
template from the client’s biometric feature. The protected template is sent to
the server. The server sets identification data for the client, and the client is
informed of the identification data. The protected template with the identifica-
tion data is stored by the server. Depending on the application, the identification
data is decided by the client and the client notifies the client of it.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 49

Fig. 1. Algorithms and procedures of secure biometric authentication scheme.

At the beginning of the authentication phase, a client who would like to be
authenticated by the server shows his/her identification data to the server. The
server selects the protected template that is associated with the identification
data and interacts with the client through the pseudonymous identifier recoder
(PIR) (for simplicity, we divide the PIR into three algorithms in the definition
below). Finally, the server sends a verification query to the decryptor who runs
the pseudonymous identifier comparator (PIC) with its secret key to determine
the authentication result.

As mentioned in Sect. 2.2, the PIE and the PIR take as input a pre-aligned
biometric feature extracted from a biometric characteristic. In Fig. 1, we denote
the feature extraction algorithm by FE. This algorithm captures a biometric
characteristic and outputs an appropriately aligned biometric feature. Since the
pre-alignment technique is out of the range of the secure biometric authentication
scheme, the feature extraction algorithm is not included in the tuple of the secure
biometric authentication scheme.

The secure biometric authentication scheme is defined as follows. Note that
the previous schemes [1,3,4,10,11] can be adapted to the formalization.

Definition 1. A secure biometric authentication scheme is a tuple of six algo-
rithms (SU,PIE,PIRS,1,PIRC ,PIRS,2,PIC) that satisfy the following:

– (pp, sk) ← SU(1κ, param) on input security parameter κ and parameter
param, outputs public parameter pp and secret key sk.

– PT ← PIE(pp,BF) on input public parameter pp and biometric feature BF,
outputs protected template PT.

– (CH ,AD) ← PIRS,1(pp,PT) on input public parameter pp and protected tem-
plate pp, outputs challenge CH and auxiliary data AD.

– AQ ← PIRC(pp,BF ,CH) on input public parameter pp, biometric feature
BF, and challenge CH , outputs authentication query AQ.

50 H. Higo et al.

– VQ ← PIRS,2(pp,AQ ,AD) on input public parameter pp, authentication
query AQ, and auxiliary data AD, outputs verification query VQ.

– res ← PIC(sk ,VQ) on inputs secret key sk and verification query VQ, outputs
authentication result res ∈ {Accept ,Reject}.

When it is obvious from the context, we omit pp from the input of the algorithms.
For (pp, sk) ← SU(1κ) and two biometric features BF e and BF a,

let (CH ,AD) ← PIRS,1(PIE(BF e)),AQ ← PIRC(BF a,CH), (VQ) ←
PIRS,2(pp,AQ ,AD), and res ← PIC(sk ,VQ). For correctness, we assume that
if BF e and BF a are extracted from the same biometric characteristic, then
res = Accept holds; otherwise res = Reject .

3.2 Security

Adversarial clients may try to impersonate a legitimate user while an adversarial
server and decryptor aim to obtain some information about the enrolled biomet-
ric features. We define these properties under the proposed framework described
in the previous section. Note that the decryptor is assumed not to collude with
any other entity. We formalize the following four security requirements: (a) hide
biometric features from the server (which we call template protection against
server), (b) hide biometric features from the decryptor (template protection
against decryptor), (c) prevent impersonation (security for authentication), and
(d) hide the distances between the enrolled and authenticated biometric features
from the decryptor (security against hill-climbing attacks).

Hirano et al. [11] defined security that is specific to their scheme in the
semi-honest model where the adversary is considered to corrupt some clients.
We follow the definition of [11] about requirements (a) and (c) but we slightly
modify the definitions to make them applicable to the proposed framework.

The major difference between the definitions in [11] and ours is to consider
the security against an adversarial decryptor. Since the decryptor possesses the
secret key, the decryptor is so powerful in the proposed framework that it can
even obtain the biometric feature itself by mounting hill-climbing attack in some
schemes (e.g., [11]). To capture such attacks by the decryptor, we newly define
requirements (b) and (d). Here requirement (b) is defined in the semi-honest
model similar to the definition of requirement (a). On the other hand, we newly
define requirement (d) as the inability of the decryptor to obtain any information
other than the authentication results.

Note that the definitions of requirements (a), (b), and (c) are in
the semi-honest model similar to the definitions in [11] while we con-
sider malicious adversaries in the definition of requirement (d). Below, let
(SU,PIE,PIRS,1,PIRC ,PIRS,2,PIC) be a tuple that satisfies Definition 1.

Template protection against server. This security requirement captures an adver-
sarial server that has templates and authentication queries from clients and try
to obtain enrolled biometric features. We introduce a security game between
challenger C and attacker A as follows (Fig. 2).

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 51

Enrollment
phase

Authen ca on
phase

Setup
phase

SU

PIE
PIE

PIRS,1

PIRS,1

PIRC

PIRC

PIRS,2

PIRS,2

PIC
PIC

 if ,
 if otherwise

.lahC.vdA

Fig. 2. Game for template protection against server.

Setup: C runs the setup algorithm to obtain (pp, sk) and chooses bit β randomly.
pp is sent to A.

Enrollment: As for the i-th query, A chooses and sends two biometric features
BF i,0 and BF i,1 to C. C runs PT i,0 ← PIE(BF i,0) and PT i,1 ← PIE(BF i,1)
and selects two identification data ID i,0 and ID i,1 from ID. C stores two
pairs (PT i,0, ID i,0) and (PT i,1, ID i,1) and returns (PT i,β , ID i,β) to A.

Authentication: For identification data ID i from A, C executes (CH i,0,
AD i,0) ← PIRS,1(PT i,0) and (CH i,1,AD i,1) ← PIRS,1(PT i,1). Given CH i,β

from C, A chooses and sends to C two biometric features BF ′
i,0 and BF ′

i,1.
Then, C runs AQ i,0 ← PIRC(BF ′

i,0,CH i), AQ i,1 ← PIRC(BF ′
i,1,CH i),

VQ i,0 ← PIRS,2(AQ i,0,AD i), VQ i,1 ← PIRS,2(AQ i,1,AD i), resi,0 ←
PIC(VQ i,0), and resi,1 ← PIC(VQ i,1), sequentially. C returns (AQ i,β , resi,β)
to A if resi,0 = resi,1 and ⊥ otherwise.

Output: Finally, A outputs β∗.

Note that the enrollment and authentication phases can be repeated in an arbi-
trary order.

The advantage of A is defined as AdvTP,S
A (κ) := Pr[β = β∗] − 1/2. With this

advantage, the security property is defined as follows.

Definition 2. We say that a biometric authentication scheme satisfies template
protection against server if for any PPT A, AdvTP,S

A (κ) ≤ negl(κ).

Template protection against decryptor. As in Fig. 3, to capture an adversarial
decryptor obtaining enrolled biometric features, we slightly modify the game for
template protection against server.

Definition 3. We say that a biometric authentication scheme satisfies template
protection against decryptor if for any PPT A, AdvTP,D

A (κ) ≤ negl(κ).

52 H. Higo et al.

Enrollment
phase

Authen ca on
phase

Setup
phase

SU

PIE
PIE

PIRS,1

PIRS,1

PIRC

PIRC

PIRS,2

PIRS,2

PIC
PIC

 if ,
 if otherwise

.lahC.vdA

Fig. 3. Game for template protection against decryptor.

Enrollment
phase

Authen ca on
phase

Setup
phase request SU

 FE
PIE

 FE
PIRS,1

PIRC
PIRS,2
PIC

Output PIRS,1

.lahC.vdA

Fig. 4. Game for security for authentication.

Security for authentication. To capture an illegitimate client generating a valid
authentication query, we define the following game (Fig. 4).

Setup: C runs the setup algorithm to obtain (pp, sk), and pp is sent to A.
Enrollment: On the i-th request from A, C chooses a biometric characteristic

Bi and extracts a biometric feature BF i ← Bi. Also, C chooses identification
data ID i ∈ ID. Then, C stores the pair (PT i, ID i) and also returns it to A.

Authentication: For identification data ID i from A, C extracts a biometric
feature from the i-th biometric characteristic BF ′

i ← Bi. With the pro-
tected template PT i that is stored with ID i, C executes (CH i,AD i) ←
PIRS,1(PT i), AQ i ← PIRC(BF ′

i,CH i), VQ i ← PIRS,2(AQ i,AD i), and
resi ← PIC(VQ i), sequentially, and returns (CH i,AQ i, resi) to A.

Output: For identification data ID i from A, C executes (CH ∗,AD∗) ←
PIRS,1(PT i) and returns CH ∗. Finally, A outputs AQ∗

i .

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 53

Note that the enrollment and authentication phases can be repeated in an arbi-
trary order.

The advantage of A is defined as AdvAuthA (κ) := Pr[PIC(PIRS,2(AQ∗,AD∗)) =
Accept]. With this advantage, security for authentication is defined as follows.

Definition 4. We say that a biometric authentication scheme is secure in the
sense of authentication if for any PPT A, AdvAuthA (κ) ≤ negl(κ).

Security against hill-climbing attacks. It is preferable that the decryptor obtains
as little information as possible. For example, distance is useful in guessing
the enrolled biometric feature. Such guessing attacks are called hill-climbing
attacks [19]. In the attacks, an attacker casts two queries and learns the dis-
tances between the queried biometric features and the enrolled one. From the
distances, the attacker is able to learn which query is nearer to the enrolled
one. Repeating this approach, he will successfully obtain some accepted queries.
Therefore, it is preferable that the schemes do not to give out any information
other than the authentication result (acceptance or rejection) to the decryptor.
We define the following game (Fig. 5).

Enrollment
phase

Authen ca on
phase

Setup
phase

SU

PIRS,1

PIE

Output

PIRS,2

PIRS,1

PIRS,2
PIRS,2
PIC
PIC

if ,
 if otherwise

.lahC.vdA

Fig. 5. Game for security against hill-climbing attacks.

Setup: C runs the setup algorithm to obtain (pp, sk) and chooses β ∈ {0, 1}
randomly. (pp, sk) is sent to A.

Enrollment: On the i-th request from A for biometric feature BF i, C runs
PT i ← PIE(pp,BF i) and chooses index ID i ∈ ID. C stores pair (PT i, ID i)
and returns ID i to A.

54 H. Higo et al.

Authentication: For identification data ID i from A, C executes (CH i,AD i) ←
PIRS,1(PT i) where PT i is the protected templates that are stored with ID i.
Given CH i, A chooses and sends to C an authentication query AQ i. Then,
C runs VQ i ← PIRS,2(AQ i,AD i) and returns VQ i to A.

Output: For identification data ID i and two biometric features BF ∗
0

and BF ∗
1 from A, C executes (CH ∗,AD∗) ← PIRS,1(PT i), AQ∗

0 ←
PIRC(BF ∗

0,CH
∗), AQ∗

1 ← PIRC(BF ∗
1,CH

∗), VQ∗
0 ← PIRS,2(AQ∗

0,AD
∗),

VQ∗
1 ← PIRS,2(AQ∗

1,AD
∗), res∗

0 ← PIC(VQ∗
0), and res∗

1 ← PIC(VQ∗
1),

sequentially. Then, C chooses β ∈ {0, 1} randomly and returns VQ∗
β to A if

res∗
0 = res∗

1 and returns ⊥ otherwise. Finally, A outputs β∗.

Note that the enrollment and authentication phases can be repeated in an arbi-
trary order.

The advantage of A is defined as AdvDist
A (κ) := Pr[β = β∗] − 1/2. With this

advantage, security against hill-climbing attacks is defined as follows.

Definition 5. We say that a biometric authentication scheme is secure against
hill-climbing attacks if for any PPT A, AdvDist

A (κ) ≤ negl(κ).

4 Proposed Scheme

We propose a secure biometric authentication scheme that uses fingerprint minu-
tiae. That is, the biometric features that the proposed scheme deals with consist
of a set of minutiae. Acceptance is decided by the closeness of the minutiae as
explained in Sect. 2.2. Note that it is easy to extend the scheme to deal with the
types of minutiae.

4.1 Construction

Here, we propose a secure biometric authentication scheme. Prior to the in-depth
description, we give an outline of the scheme.

In the enrollment phase, two polynomials are generated in accordance with
the location and orientation of each minutia in the enrolled fingerprint. The
polynomials are generated to satisfy the following condition: if a minutia that is
close to the enrolled minutia is input into the polynomials, both of them result
in 1. The template is a tuple of encrypted coefficients of the polynomials.

Later in the authentication phase, the polynomials are evaluated for every
minutia of the fingerprint to be authenticated in the ciphertext domain. Then,
the decryptor with the secret key checks to find out if the evaluated values of
polynomials are 1 to determine if the authenticated minutia and the enrolled
minutia are close enough to be corresponding minutiae.

As explained above, the proposed scheme proceeds in the same way for every
pair of minutiae in the enrolled and authenticated fingerprints. Therefore, for
simplicity, we explain the proposed scheme for matching a pair of minutiae. By
just doing the same for every minutia pair, it is easy to extend the scheme to
deal with fingerprints that consist of multiple minutiae.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 55

Now we describe the algorithms of the proposed scheme (SU,PIE,PIRS,1,
PIRC ,PIRS,2,PIC). In the following algorithms, PKE = (Gen,Enc,Dec) represents
the modified Elgamal cryptosystem of which the plaintext domain is denoted by
Zp. For simplicity, the homomorphic operations are described as Enc(m1+m2) =
Enc(m1)Enc(m2) and Enc(m)i = Enc(im). In addition, we define a ciphertext
transformation function Trans by Trans(r; (c1, c2)) = (cr

1, c2) where r ∈ Zp and
(c1, c2) is a ciphertext. Informally, without r, the decryptor cannot decrypt the
transformed ciphertexts. It is easy to see that the additive homomorphic property
also holds for transformed ciphertexts.

SU(1κ, param) where param includes the thresholds Δd and Δt:
1. Generates a public/secret key pair of the homomorphic encryption

scheme as (pk , sk) ← Gen(1κ).
2. Outputs public parameter pp := (pk , param) and the secret key sk .

PIE(BF = ((x, y), t)):
1. Generates two polynomials

F (X,Y) =
∑

i

∑
j

ai,j · Xi · Y j , and (1)

G(T) =
∑

k

bk · T k (2)

that satisfy F (X,Y) = 1 if d2((X,Y), (x, y)) ≤ Δd and G(T) = 1 if
d1(T, t) ≤ Δt (the details of the polynomials including the values i, j,
and k are provided below).

2. Encrypts Ai,j ← Enc(ai,j) and Bk ← Enc(bk), and outputs the protected
template PT := ({Ai,j}i,j , {Bk}k).

PIRS,1(PT = ({Ai,j}i,j , {Bk}k)):
1. Chooses rF , rG, and r randomly from Zp and computes A′

i,j :=
Trans(r;ArF

i,j), B′
k := Trans(r;BrG

k) for every i, j, and k.
2. Encrypts R ← Enc(−rF − rG).
3. Lets CH := ({A′

i,j}i,j , {B′
k}k) and AD := (R, r) and outputs (CH ,AD).

PIRC(CH = ({A′
i,j}i,j , {B′

k}k),BF ∗ = ((x∗, y∗), t∗)):

1. Outputs AQ :=
∏

i

∏
j

(
A

′(x∗)i(y∗)j

i,j

)
·
∏

k B
′(t∗)k

k .

PIRS,2(AQ ,AD = (R, r)):

1. Chooses r′ ∈ Zp randomly and outputs VQ := (Trans(1/r;AQ) · R)r′
.

PIC(VQ):
1. If Dec1(VQ) = 1 then outputs Accept ; otherwise outputs Reject .

Before explaining the details of the construction of the polynomials, let us
confirm the correctness of the proposed scheme. Since it holds that A′

i,j =
(Enc(ai,j))rF = Enc(rF · ai,j) and B′

k = (Enc(bk))rG = Enc(rG · bk) for any
i, j, and k, the challenge from the server is a tuple of encrypted coefficients of
randomized polynomials F ′(X,Y) = rF · F (X,Y) =

∑
i

∑
j(rF · ai,j) · Xi · Y j

56 H. Higo et al.

and G′(T) = rG · G(T) =
∑

k(rG · bk) · T k. They satisfy F ′(X,Y) = rF and
G′(T) = rG if minutiae ((x, y), t) and ((X,Y), T) correspond. The authentica-
tion query is a ciphertext of the sum of the evaluated value of the polynomials
for the authenticated minutia as

Trans(1/r;AQ) =
∏

i

∏
j

Enc(rF · ai,j)(x
∗)i(y∗)j ·

∏
k

Enc(rG · bk)(t
∗)k

= Enc (F ′(x∗, y∗) + G′(t∗)) .

Therefore, the verification query computed by the server is

VQ = (Enc (F ′(x∗, y∗) + G′(t∗)) · Enc (−rF − rG))r′

= Enc (r′ (rF (F (x∗, y∗) − 1) + rG (G(t∗) − 1))) .

Thus, if the enrolled and authenticated minutiae correspond, VQ is a ciphertext
of 0 that is Dec1(VQ) = 1 holds.

Description of polynomials. In the above scheme, polynomials F (X,Y) and G(T)
that satisfy F (X,Y) = 1 if d2((X,Y), (x, y)) ≤ Δd and G(T) = 1 if d1(T, t) ≤
Δt, respectively, are generated in accordance with enrolled minutia {((x, y), t)}.
Such polynomials are constructible as

F (X,Y) = RF

∏
�∈L

{
(X − x)2 + (Y − y)2 − �

}
+ 1, and (3)

G(T) = RG

Δt∏
�=−Δt

{(T − t) − �} + 1, (4)

where RF and RG are randomly chosen and the set L := {d22((X,Y), (X ′, Y ′)) ≤
Δ2

d | X,X ′, Y, Y ′ ∈ Z} consists of the possible values of the squared Euclidean
distance that are smaller than the squared threshold Δ2

d. In the above scheme, we
describe the functions as an expanded form as F (X,Y) =

∑2|L|
i=0

∑2|L|
j=0 ai,j ·Xi·Y j

and G(T) =
∑2Δt+1

k=0 bk · T k.
It is easy to see that they satisfy the required properties. F (X,Y) − 1 =

RF

∏
�∈L

{
(X − x)2 + (Y − y)2 − �

}
= 0 holds for all (X,Y) that satisfy

d22((X,Y), (x, y)) = (X − x)2 + (Y − y)2 = � for some � ∈ L. G(T) − 1 =
RG

∏Δt

�=−Δt
{(T − t) − �} = 0 holds for all T that satisfy d1(T, t) = T − t = �

for some � ∈ {−Δt, · · · ,Δt}.
Recall that all locations are integers, the set L is a subset of and is smaller

than the set {0, 1, · · · ,Δ2
d}. For example, there exists no tuple (X,X ′, Y, Y ′) that

satisfies d22((X,Y), (X ′, Y ′) = 3. Therefore, 3 /∈ L holds. Set L is determined by
Δd, for example, L = {0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25} when Δd = 5. The
number of terms in the derived polynomial F is computed to be 2|L|2 +3|L|+1.

4.2 Security

We show that the proposed scheme satisfies the security notions defined in
Sect. 3.2. Detailed proofs are provided in Appendix A.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 57

Template protection against server and template protection against decryptor.
Under the IND-CPA security of the modified Elgamal cryptosystem, the pro-
posed scheme can be proved to satisfy template protection against server and
template protection against decryptor.

Theorem 1. Under the IND-CPA security of the modified Elgamal cryptosys-
tem, the proposed scheme satisfies template protection against server.

Theorem 2. Under the IND-CPA security of the modified Elgamal cryptosys-
tem, the proposed scheme satisfies template protection against decryptor.

Security for authentication. Under Assumption 1, we can prove Theorem 3.

Assumption 1. For any PPT algorithm A, it holds that

Pr
[
t = Dec(t∗)

∣∣∣∣
(pk , sk) ← Gen(1κ); s, t ← {0, 1}κ;
t∗ ← A(pk ,Enc(s),Enc(st));

]
≤ negl(κ).

Theorem 3. Provided that the modified Elgamal cryptosystem satisfies Assump-
tion 1, the proposed scheme satisfies security for authentication.

Security against hill-climbing attacks. In the authentication phase, the decryptor
checks if the decrypted value of the verification query is equal to 0. 0 implies
that the distance does not exceed the threshold. Since non-0 values, which mean
that the distance is greater than the threshold, are determined by the random
values which the server chooses in every authentication, it looks random from
the decryptor. Therefore, the decryptor can only know the authentication result
but cannot guess the distance.

Theorem 4. The proposed scheme satisfies security against hill-climbing
attacks.

5 Conclusion

We have defined the model of secure biometric authentication. A third party
called a decryptor is employed in our model in addition to the normal entities in
biometric authentication. Also, we have formally defined its security by adapting
the security definition provided by Hirano et al. [11] to our model.

In the defined model, we have proposed a scheme that hides biometric fea-
tures from the server and the decryptor. Moreover, no entity is able to obtain the
distance between the enrolled and authenticated biometric features. Therefore,
the proposed scheme is resistant to hill-climbing attacks [19]. Since the opera-
tions of the decryptor, key generation, and decryption are light enough, they can
be implemented by hardware security modules (HSM). By utilizing the modified
Elgamal cryptosystem [7], we have showed the security of the proposed scheme
under the decisional Diffie-Hellman assumption.

Acknowledgment. We would like to appreciate Anja Lehmann and the anony-
mous reviewers for their valuable comments. The fourth author is supported by JSPS
KAKENHI Grant Number 15K00193.

58 H. Higo et al.

A Security of Proposed Scheme

In this section, we prove that the proposed scheme satisfies all security prop-
erties defined in Sect. 3.2. For simplicity, we show the proof of it where the
adversary makes one enrollment query one authentication query. Also we prove
three properties, template protection against server, security for authentication,
and security against hill-climbing attacks for simpler but less secure version. The
simpler version is without Trans. That is, it is different from the version in Sect. 4
in PIRS,1 and PIRS,2 as follows.

PIRS,1(PT = ({Ai,j}i,j , {Bk}k)):
1. Randomly generates rF and rG.
2. For every i, j, and k, computes A′

i,j := ArF
i,j , B′

k := BrG

k .
3. Encrypts R ← Enc(−rF − rG).
4. Lets CH := ({A′

i,j}i,j , {B′
k}k) and AD := R and outputs (CH ,AD).

PIRS,2(AQ ,AD):
1. Randomly chooses r′ and outputs VQ := (AQ · AD)r′

.

Template protection against decryptor cannot be proved for the simpler ver-
sion of the scheme. We explain the reason and that the scheme in Sect. 4 satisfies
the property later.

A.1 Proof of Theorem 1 (Template Protection Against Server)

The modified Elgamal cryptosystem satisfies IND-CPA security under the DDH
assumption.

Definition 6. A public key encryption scheme PKE = (Gen,Enc,Dec) is indis-
tinguishable against a chosen plaintext attack (CPA), or shortly IND-CPA-
secure, if for any PPT algorithm A it holds that

AdvINDA (κ) := Pr

[
β = β∗

∣∣∣∣ (pk , sk) ← Gen(1κ); (m0, m1, α) ← A(pk);
β ← {0, 1}; c ← Enc(mb); b

∗ ← A(c, α);

]
≤ negl(κ).

The proof of Theorem 1 is provided using a sequence of games. We first present
three games and after that discuss the relations among them.

Game 0. Game 0 is the game of security for template protection. We describe
the game for the case of the proposed scheme as follows:

Setup: On input 1κ and param, C runs (pk , sk) ← Gen(1κ) and chooses β ∈
{0, 1} at random. (pk , param) is sent to A.

Enrollment: A chooses and sends two minutiae ((x0, y0), t0) and ((x1, y1), t1)
to C. C generates two polynomials Fβ and Gβ according to ((xβ , yβ), tβ) as
in Eqs. (3) and (4), and expands them as in Eqs. (1) and (2). C encrypts the
coefficients of the polynomials as Ai,j ← Enc(ai,j) and Bk ← Enc(bk) and
sends the protected template PT := ({Ai,j}i,j , {Bk}k) to A.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 59

Authentication: On a request from A, C chooses rF and rG at ran-
dom and let A′

i,j ← Enc(rF ai,j) and B′
k ← Enc(rGbk). On receiving

CH =
(
{A′

i,j}i,j , {B′
k}k

)
from C, A chooses two minutiae ((x′

0, y
′
0), t

′
0)

and ((x′
1, y

′
1), t

′
1) and sends them to C. If for two pairs of minutiae

(((x0, y0), t0), ((x′
0, y

′
0), t

′
0)) and (((x1, y1), t1), ((x′

1, y
′
1), t

′
1)), one of them cor-

responds and the other is not, then C returns ⊥ to A. Otherwise, C sends
AQ := Enc(rF · Fβ(x′

β , y′
β) + rG · Gβ(t′β)) to A.

Output: Finally, A outputs β∗.

We define the advantage of the adversary in game 0 as Adv0A(κ) := Pr[β =
β∗] − 1/2. Apparently Adv0A(κ) is the same as AdvTP,S

A (κ) for the scheme.

Game 1. To make game 1, we only modify the way to generate AQ of game
0. The difference is as follows: Before generating AQ , C additionally chooses a
random bit β′ and let AQ := Enc(rF · Fβ(x′

β , y′
β) + rG · Gβ(t′β)) if β′ = 0 and

AQ := Enc(rF · F1−β(x′
1−β , y′

1−β) + rG · G1−β(t′1−β)) otherwise. F1−β and G1−β

are the functions generated according to the minutia ((x1−β , y1−β), t1−β) which
was obtained in the enrollment query through Eqs. (3) and (4) with the same
random values RF and RG that are used in making Fβ and Gβ .

Obviously, if β′ = 0, game 1 runs exactly the same way as the game 0. We
define the advantage of the adversary in game 1 as Adv1A := Pr[β = β∗] − 1/2.

Game 2. We further modify the method of generating AQ to define game 2 as
follows: Before generating AQ , C additionally chooses two random bit β′ and
let AQ := Enc(rF · Fβ(x′

β , y′
β) + rG · Gβ(t′β)) if β′ = 0 and AQ := Enc(rF ·

Fβ′′(x′
β′′ , y′

β′′) + rG · Gβ′′(t′β′′)) otherwise.
If β′ = 0 or β′′ = β, this game runs exactly the same way as the game 0. We

define the advantage of the adversary in game 2 as Adv2A := Pr[β′′ = β∗] − 1/2.
We note that this probability is not taken over β but β′′.

In order to prove Theorem 1, we show the following lemmas. The first lemma
says that the advantage of game 2 is negligible under the IND-CPA security of
the underlying cryptosystem.

Lemma 1. Let PKE = (Gen,Enc,Dec) be an IND-CPA secure public key encryp-
tion scheme. Then for any PPT algorithm A it holds that Adv2A(κ) ≤ negl(κ).

Proof. We assume that there exists an PPT algorithm A such that Adv2A is non-
negligible and show that PKE is not IND-CPA secure. In order to show it we
construct an adversary A′ of IND-CPA game as follows:

First, given an public key pk , A′ input (pk , param) into A. When A queries
two minutiae ((x0, y0), t0) and ((x1, y1), t1) to C for enrollment, A′ chooses β ∈
{0, 1} randomly, generates two polynomials Fβ and Gβ , and returns PT as in
the description of the game 0.

On an authentication query from A, A′ chooses β′ ∈ {0, 1} and rF and
rG randomly. If β′ = 0, A′ returns AQ := Enc(rF · Fβ(x′

β , y′
β) + rG · Gβ(t′β))

to A. Otherwise A′ outputs m0 := rF · F0(x′
0, y

′
0) + rG · G0(t′0)) and m1 :=

rF · F1(x′
1, y

′
1) + rG · G1(t′1)) as its challenge. Given a ciphertext c, A′ returns it

to A. Finally, A′ outputs β∗ ∈ {0, 1} that A outputs.

60 H. Higo et al.

From the description of IND-CPA game, c is the ciphertext of mβ′′ where β′′

is a randomly chosen bit. By the assumption, the probability that the output β∗

of A is equal to β′′ is non-negligibly greater than 1/2. Thus it is straightforward
to see that AdvIND

A ≥ negl(κ).

Next we show that the advantage of game 1 is negligible from IND-CPA
security of the underlying cryptosystem.

Lemma 2. Let PKE = (Gen,Enc,Dec) be an IND-CPA secure public key encryp-
tion scheme. Then for any PPT algorithm A, it holds that Adv1A(κ) ≤ negl(κ).

To prove this lemma, we use the well-known result that for an IND-CPA secure
public key encryption scheme sequences of ciphertexts are also indistinguishable.

Lemma 3. Let PKE = (Gen,Enc,Dec) be a public key encryption scheme. PKE
is n-IND-CPA secure if

Advn,IND
A (κ) :=Pr

⎡
⎢⎢⎢⎢⎣β = β∗

∣∣∣∣∣∣∣∣∣∣

(pk , sk) ← Gen(1κ);
((m1

0, . . . , m
n
0), (m1

1, . . . , m
n
1), α) ← A(pk);

β ← {0, 1};
c1 ← Enc(m1

b); · · · ; cn ← Enc(mn
b);

b∗ ← A((c1, . . . , cn), α);

⎤
⎥⎥⎥⎥⎦≤negl(κ)

for any PPT algorithm A and n ∈ Z. Then PKE is IND-CPA secure if and only
if PKE is n-IND-CPA secure.

We refer to [9] for the formal proof. Instead of directly showing Lemma 2 from
IND-CPA security of the underlying cryptosystem, we prove it from n-IND-CPA
security as follows:

Proof. We assume that there exists an PPT algorithm A such that Adv2A is non-
negligible and show that PKE is not n-IND-CPA secure. In order to show it we
construct an adversary A′ of n-IND-CPA game as follows:

First, given an public key pk , A′ input (pk , param) into A. When A queries
two minutiae ((x0, y0), t0) and ((x1, y1), t1) to C for enrollment, A′ generates four
polynomials F0, F1, G0, and G1 by following Eqs. (3) and (4) where RF is the
same for F0 and F1 and RG is the same for G0 and G1. Expanding them as in
Eqs. (1) and (2), A′ outputs two tuples of plaintexts where the first one consists
of the coefficients of F0 and G0, and the second F1 and G1. when A′ obtains the
ciphertexts of one of the tuples, A′ returns them to A.

On a authentication query from A, A′ chooses α ∈ {0, 1} and rF and rG

randomly. A′ returns AQ := Enc(rF Fα(x′
α, y′

α) + rGGα(t′α)) to A. Finally, A′

outputs β∗ ∈ {0, 1} that A outputs.
Now let β be a bit that the challenger chooses. That is, the tuple that A′

obtains are the ciphertexts of the coefficients of Fβ and Gβ . Then, if β = α AQ :=
Enc(rF ·Fβ(x′

β , y′
β)+ rG ·Gβ(t′β)), otherwise AQ := Enc(rF ·F1−β(x′

1−β , y′
1−β)+

rG · G1−β(t′1−β)),
From the assumption, the probability that the output β∗ of A is the same as

β is non-negligibly greater than 1/2. It implies that the cryptosystem does not
satisfy n-IND-CPA security.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 61

Next we show a relation among the games as Lemma 4. By combining
Lemmas 1, 2, and 4, Theorem 1 is proved.

Lemma 4. Let Adv2A(κ) ≤ negl(κ) then for any PPT algorithm A′ it holds that
|Adv0A′(κ) − Adv1A′(κ)| ≤ negl(κ).

Proof. Recall that the differences among the games are only the ways to gen-
erate AQ . In game 2, if β = β′′, AQ = Enc(rF · Fβ(x′

β , y′
β) + rG · Gβ(t′β)).

In this case, the behavior of game 2 is the same as that of game 0. For the
case where β �= β′′, AQ = Enc(rF Fβ(x′

β , y′
β) + rGGβ(t′β)) if β′ = 0 and

AQ = Enc(rF F1−β(x′
1−β , y′

1−β) + rGG1−β(t′1−β)) otherwise. This is the same
as game 1. Thus, if the advantage of adversary in game 2 is negligible, the dif-
ference between advantages of adversary in games 0 and 1 is also negligible.

A.2 Proof of Theorem 2 (Template Protection Against Decryptor)

In the simpler version of the scheme, the malicious decryptor who has the secret
key can determine the bit β by decrypting the challenge. Therefore, we introduce
the transform function Trans. Transformed ciphertexts cannot be decrypted by
the secret key. This property is proved under the DDH assumption. The complete
proof will be appeared in the final version of this manuscript.

A.3 Proof of Theorem 3 (Security for Authentication)

Here, we prove Theorem 3 under Assumption 1. Note that this assumption holds
for the modified Elgamal cryptosystem under the computational Diffie-Hellman
(CDH) assumption.

Lemma 5. Under the CDH assumption, Assumption 1 holds for the modified
Elgamal cryptosystem.

Proof. Let A be a PPT algorithm that does not satisfy Assumption 1 for the
modified Elgamal cryptosystem, and we show that there exists a PPT algorithm
A′ that breaks the CDH assumption. We construct A′ as follows:

For tuple (G, p, g, g1, g2) where g1 = ga and g2 = gb for some a, b ∈ Zp

that is input into A′, let h0 := g1 = ga, h1 := g = h
1/a
0 and h2 :=

g2 = h
b/a
0 . A′ chooses x, r, r′ ∈ Zp, and let y := hx

0 . Then, A′ inputs tuple
((p, g, y), (hr

0, h1y
r), (hr′

0 , h2y
r′

)) into A. Here, for the key pair pk = (p, h0, y)
and sk = x, (hr

0, h1y
r) and (hr′

0 , h2y
r′

) are ciphertexts of 1/a and b/a, respec-
tively. Therefore, A outputs a ciphertext (c1, c2) := (hr′′

0 , hb
0y

r′′
) of b for some

r′′ ∈ Zp with non-negligible probability. Now it is easy to see which A′ outputs
c2/cx

1 = hb
0 = gab, which breaks the CDH assumption.

Now we prove Theorem 3.

Proof. We first describe the game of security for authentication for the proposed
scheme between an adversary A and a challenger C as follows:

62 H. Higo et al.

Setup: On input of 1κ and param, C runs (pk , sk) ← Gen(1κ) and chooses bit
β at random. (pk , param) is sent to A.

Enrollment: On request from A, C chooses a minutia ((x, y), t) and computes
two polynomials F and G in accordance with it as in Eqs. (1), (2), (3),
and (4). Then, C encrypts the coefficients of the polynomials as Ai,j ←
Enc(ai,j) and Bk ← Enc(bk) and returns the protected template PT :=
({Ai,j}i,j , {Bk}k) to A.

Authentication: On request from A, C chooses rF and rG at random and
computes A′

i,j ← Enc(rF · ai,j) and B′
k ← Enc(rG · bk). Then, C lets

CH :=
(
{A′

i,j}i,j , {B′
k}k

)
, AQ := Enc(−rF − rG) and sends back tuple

(CH ,AQ ,Accept) to A.
Output: On request from A, C chooses r′

F and r′
G randomly and sends back

CH ∗ :=
(
{A′′

i,j}i,j , {B′′
k}k

)
to A where A′′

i,j ← Enc(r′
F · ai,j) and B′′

k ←
Enc(r′

G · bk). Finally, A outputs AQ∗.

The advantage of A that can be described as AdvAuthA (κ) := Pr[Dec(AQ∗) =
r′
F +r′

G] is assumed to be non-negligible. We construct algorithm A′ that breaks
Assumption 1 for the underlying cryptosystem as follows:

On input of (pk ,Enc(s),Enc(st)), A′ chooses minutia ((x, y), t). For the loca-
tion of the minutia, A′ computes polynomial F as in Eqs. (1) and (3) and
encrypts the coefficients of the polynomials as Ai,j ← Enc(ai,j). Also, A′ gen-
erates the polynomial G as in Eqs. (2) and (4) where RG := s. That is, if
we write polynomial G̃ as G̃(T) =

∏Δt

�=−Δt
{(T − t) − �} + 1 =

∑
k b̃k · T k,

it holds that bk = s · b̃k for any k. Therefore, A′ encrypts the coefficients as
Bk := Enc(s)b̃k = Enc(s · b̃k) = Enc(bk). Then, A′ sends the protected template
PT := ({Ai,j}i,j , {Bk}k) to A.

On authentication query from A, A′ chooses rF and rG at random and com-
putes A′

i,j ← Enc(rF · ai,j) and B′
k := Enc(s)rG·b̃k = Enc(rG · bk). Then, C

lets CH :=
(
{A′

i,j}i,j , {B′
k}k

)
, AQ := Enc(−rF − rG) and sends back tuple

(CH ,AQ ,Accept) to A.
On output query from A, A′ chooses r′

F randomly and computes A′′
i,j ←

Enc(r′
F ·ai,j) and B′′

k := Enc(st)b̃k = Enc(t·bk). Given CH ∗ :=
(
{A′′

i,j}i,j , {B′′
k}k

)
,

A outputs AQ∗. Finally, A′ outputs t∗ := AQ∗ · Enc(−r′
F).

Note that the random values rG and r′
G that the challenger chooses in the

game for authentication is set to be s and t, respectively, by A′. Therefore, from
the assumption, AQ∗ is a ciphertext of r′

F + r′
G = r′

F + t with non-negligible
probability. This means that the output of A′ is a ciphertext of t with non-
negligible probability. That is, A′ breaks Assumption 1.

A.4 Proof of Theorem 4 (Security Against Hill-Climbing Attacks)

Proof. We first describe the game of security against hill-climbing attacks for
the proposed scheme between an adversary A and a challenger C as follows:

Setup: On input of 1κ and param, C runs (pk , sk) ← Gen(1κ) and chooses bit
β at random. ((pk , param), sk) is sent to A.

Privacy-Preserving Fingerprint Auth. Resistant to Hill-Climbing Attacks 63

Enrollment: On request from A for a minutia ((x, y), t), C computes two poly-
nomials F and G in accordance with it as in Eqs. (1)–(4). C encrypts the
coefficients of the polynomials as Ai,j ← Enc(ai,j) and Bk ← Enc(bk) and
returns protected template PT := ({Ai,j}i,j , {Bk}k) to A.

Authentication: On request from A, C chooses rF and rG at random and
lets A′

i,j ← Enc(rF · ai,j) and B′
k ← Enc(rG · bk). On receiving CH =(

{A′
i,j}i,j , {B′

k}k

)
from C, A sends back AQ . Then, C chooses r at random

and computes VQ := (AQ · Enc(−rF − rG))r and sends it to A.
Output: A requests C for two minutiae ((x′

0, y
′
0), t

′
0) and ((x′

1, y
′
1), t

′
1). If for

two pairs of minutiae (((x, y), t), ((x′
0, y

′
0), t

′
0)) and (((x, y), t), ((x′

1, y
′
1), t

′
1)),

one of them corresponds and the other does not, then C returns ⊥ to A.
Otherwise, C chooses bit β and r′

F , r′
G, and r′ randomly and returns VQ∗ ←

Enc(r(r′
F · F (x′

β , y′
β) + r′

G · G(t′β) − r′
F − r′

G)) to A. Finally, A outputs β∗.

The advantage of adversary A is defined as AdvDist
A (κ) := Pr[β = β∗] − 1/2. The

adversary may obtain information related to β only in the output phase. If the
correspondences of two pairs of minutiae are different, A does not obtain any
information in the output phase. Also, if both pairs correspond, VQ∗ that A
obtains in the output phase is the ciphertext of 0 no matter which bit is chosen
as β. In these two cases, we can say that A does not obtain any information
on β. Thus, A has no chance to distinguish the bit β. The remaining case is
where both pairs do not correspond. In this case, although A who has the secret
key sk obtains VQ∗, which is related to β, it is randomized by a new random
value r that is used only once. Therefore, A cannot guess β in this case as well.

References

1. Barbosa, M., Brouard, T., Cauchie, S., de Sousa, S.M.: Secure biometric authen-
tication with improved accuracy. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 21–36. Springer, Heidelberg (2008)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Bringer, J., Chabanne, H.: An authentication protocol with encrypted biometric
data. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 109–124.
Springer, Heidelberg (2008)

4. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the goldwasser-micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586,
pp. 96–106. Springer, Heidelberg (2007)

5. Campisi, P. (ed.): Security and Privacy in Biometrics. Springer, London (2013)
6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys

from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

7. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985). IEEE

64 H. Higo et al.

8. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

9. Goldreich, O.: The Foundations of Cryptography - Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

10. Hattori, M., Matsuda, N., Ito, T., Shibata, Y., Takashima, K., Yoneda, T.:
Provably-secure cancelable biometrics using 2-DNF evaluation. J. Inf. Process.
20(2), 496–507 (2012). IPSJ

11. Hirano, T., Hattori, M., Ito, T., Matsuda, N.: Cryptographically-secure and effi-
cient remote cancelable biometrics based on public-key homomorphic encryption.
In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 183–200.
Springer, Heidelberg (2013)

12. Juels, A., Sudan, M.: A fuzzy vault scheme. In: ISIT 2002, p. 408. IEEE (2002)
13. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: CCS 1999, pp. 28–36.

ACM (1999)
14. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recog-

nition, 2nd edn. Springer Publishing Company, Incorporated, London (2009)
15. Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-based fuzzy vault: imple-

mentation and performance. IEEE Trans. Inf. Forensics Secur. 2(4), 744–757
(2007). IEEE

16. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biomet-
rics. EURASIP J. Inf. Secur. 2011(1), 3 (2011). Springer International Publishing
AG

17. Shahandashti, S.F., Safavi-Naini, R., Ogunbona, P.: Private fingerprint matching.
In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 426–
433. Springer, Heidelberg (2012)

18. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing
template security and privacy in biometric authentication systems. IEEE Trans.
Inf. Forensics Secur. 7(2), 833–841 (2012). IEEE

19. Uludag, U., Jain, A.K.: Attacks on biometric systems: a case study in fingerprints.
In: Delp, E.J., Wong, P.W. (eds.) Proceedings of SPIE 5306, pp. 622–633. SPIE
(2004)

Cryptanalysis of Symmetric-Key
Primitives

Practical Cryptanalysis of Full Sprout
with TMD Tradeoff Attacks

Muhammed F. Esgin1,2(B) and Orhun Kara1

1 TÜBİTAK BİLGEM UEKAE, Gebze, Kocaeli, Turkey
{muhammed.esgin,orhun.kara}@tubitak.gov.tr

2 Graduate School of Natural and Applied Sciences,
İstanbul Şehir University, İstanbul, Turkey

Abstract. The internal state size of a stream cipher is supposed to be at
least twice the key length to provide resistance against the conventional
Time-Memory-Data (TMD) tradeoff attacks. This well adopted security
criterion seems to be one of the main obstacles in designing, particularly,
ultra lightweight stream ciphers. At FSE 2015, Armknecht and Mikhalev
proposed an elegant design philosophy for stream ciphers as fixing the
key and dividing the internal states into equivalence classes where any
two different keys always produce non-equivalent internal states.

The main concern in the design philosophy is to decrease the inter-
nal state size without compromising the security against TMD tradeoff
attacks. If the number of equivalence classes is more than the cardinality
of the key space, then the cipher is expected to be resistant against TMD
tradeoff attacks even though the internal state (except the fixed key) is
of fairly small length. Moreover, Armknecht and Mikhalev presented a
new design, which they call Sprout, to embody their philosophy.

In this work, ironically, we mount a TMD tradeoff attack on Sprout
within practical limits using 2d output bits in 271−d encryptions of Sprout
along with 2d table lookups. The memory complexity is 286−d where
d ≤ 40. In one instance, it is possible to recover the key in 231 encryp-
tions and 240 table lookups if we have 240 bits of keystream output by
using tables of 770 Terabytes in total. The offline phase of preparing the
tables consists of solving roughly 241.3 systems of linear equations with 20
unknowns and an effort of about 235 encryptions. Furthermore, we mount
a guess-and-determine attack having a complexity about 268 encryptions
with negligible data and memory. We have verified our attacks by con-
ducting several experiments. Our results show that Sprout can be prac-
tically broken.

Keywords: Sprout · Stream cipher · Keystream generator · Time Mem-
ory Data tradeoff attacks · LFSR · NLFSR · Guess-and-determine ·
Divide-and-conquer

This author’s work is based upon work from COST Action CRYPTACUS, supported
by COST (European Cooperation in Science and Technology).

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 67–85, 2016.
DOI: 10.1007/978-3-319-31301-6 4

68 M.F. Esgin and O. Kara

1 Introduction

One of the main design principles for stream ciphers is that internal state size
should be at least twice the key size. Otherwise, the cipher will be vulnerable to
generic Time-Memory-Data (TMD) tradeoff attacks [3,5–7,11,16]. This princi-
ple makes lightweight stream cipher design more challenging in comparison to
designing block ciphers even though the same generic attacks are valid for block
ciphers, particularly, when they are used in stream cipher modes such as OFB
or CTR mode.

There have been several lightweight block cipher designs appeared in the
literature such as Present [8], ITUBee [17], Lblock [21], Prince [9], Ktantan
[10], Twine [20] and many more in the last decade. An example that does not
follow the common tendency of designing lightweight block ciphers rather than
lightweight stream ciphers is the new stream cipher design Sprout, presented at
FSE 2015 [2] by Armknecht and Mikhalev. The cipher makes use of a variable
internal state of only 80 bits and a fixed key of 80 bits as well. The authors show
that a cipher design such as Sprout is resistant to classical TMD tradeoff attacks
even though its (variable) internal state size is strictly less than twice the key
size.

The property of having a smaller internal state size results from the uncom-
mon design principle adopted by the designers of Sprout [2]. According to this
principle, the key is also incorporated into the next state function of the cipher
as a fixed vector and the internal states including the keys are divided into
equivalence classes. Each key is in a different equivalence class. That is, it is
impossible to obtain two equivalent internal states with different keys. There-
fore, the conventional TMD tradeoff attacks are ineffective since the number of
equivalence classes is not less than the cardinality of the key space and one needs
to travel almost all the equivalence classes to recover one specific key, rendering
the generic tradeoff attacks slower than the exhaustive search.

The design of Sprout is inspired by Grain 128a in [1]. The sizes of both the
NLFSR and the LFSR of Grain family are reduced to half of their values and
the functions are slightly changed. The design philosophy of output generation
and feedback functions is almost conserved except adding a round key function
to incorporate key bits for each clock. As a result, a stream cipher of area cost
roughly 800 GE is developed whereas Grain needs 1162 GE for the same level
of 80-bit security [2].

Sprout has immediately attracted the interest of the cryptology community
intensively, indicating that the design philosophy itself introduces several open
questions about the security of such ciphers. Even though it is a very recent
cipher, there have been a couple of its analyses [4,12,18,19].

The first attack paper is by Lallemand and Naya-Plasencia, and they have
shown that it is possible to recover the key with a time complexity equivalent
to roughly 270 Sprout encryptions by merging the sets of possible LFSRs and
NLFSRs through a careful sieving [18]. Indeed, the actual workload is 274.51

steps but since the cost of each step is considered to be 25.64 times faster than

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 69

one step of exhaustive search in [18], the overall time complexity is finalized as
269.36. The memory complexity for leading the values for the registers is 246.

In another analysis, Maitra et al. show that when the whole (variable) internal
state is known, the key can be found using a SAT solver [19]. The system of
nonlinear equations generated from the output is quite easy to solve. The authors
show that it is possible to solve the system with roughly 900 keystream bits in
less than half a second on an ordinary PC. Moreover, the authors show that
it is still possible to solve the system even though two thirds of LFSR bits are
also unknown. However, solving the system takes around one minute this time.
Hence, guessing the variables of whole NLFSR and one third of the variables
of LFSR and then solving all the corresponding 254 systems of equations, it is
possible to recover the key. On the other hand, the authors do not compare the
time complexity of solving 254 equations with that of exhaustive search. Besides
their algebraic attack, they give an example of a fault attack as well [19].

The guess-and-determine attack in [19] using a SAT solver is further improved
in [4] by Banik. After guessing 50 bits of the state, the remaining bits including
key bits can be solved in roughly half a minute on a standard PC by means
of Cryptominisat 2.9.5 solver installed in SAGE 5.7. Moreover, Banik observed
that the LFSR is expected to be initialized to the all zero vector in one of
240 random synchronizations. When such an event occurs, the NLFSR is easily
recovered with the key by guessing 33 bits of its state. The total time complexity
is around 267 encryptions with negligible memory and about 242 bits of output.
A distinguisher attack is also included by observing that it is possible to produce
shifted versions of a keystream up to a factor of 80 with the same key by using
different IVs. When the factor for shifting is limited as 210, it is possible to
distinguish Sprout output with 257 bits of memory and 232 encryptions [4].

In [12], a related-key chosen-IV distinguisher is shown. However, the designers
of the Sprout regard related-key attacks as out of scope since the key is assumed
to be fixed.

Table 1. The time complexities are given in terms of number of encryptions except
when specified as number of table lookups (TLs). The memory complexities are given
in terms of number of rows. Additionally, we assume an effort of 1 s = 215 encryptions
and that of 1 min = 221 encryptions on a standard PC.

Time Data Memory

[18] 270 Negligible 246

[19] 275 Negligible Negligible

Sect. 3 in [4] 270 Negligible Negligible

Sect. 5 in [4] 266.7 242 bits Negligible

Sect. 3 in this work 268 Negligible Negligible

Sect. 4.1 in this work 240 TLs + 231 240 bits 246

TMD Tradeoff in this work 2d TLs + 271−d 2d bits 286−d

70 M.F. Esgin and O. Kara

In Table 1, we compare the complexities of known attacks on Sprout. Our
straightforward C/C++ implementation of Sprout runs more than 223.5 clocks
in a second on a standard PC. Thus, we make the assumption that an effort
of a second is equivalent to 215 Sprout encryptions and that of a minute to 221

Sprout encryptions. One may further improve these numbers by a more efficient
and performance-oriented implementation. As we show in Appendix A, one clock
of Sprout costs about 2−8.33 Sprout encryptions.

Our Contribution: None of the attacks in the literature so far has practi-
cal workloads. We introduce a new TMD tradeoff cryptanalysis of full Sprout
within the practical bounds where all data, memory and time complexities can
be upperbounded by 245. We first show that when the internal state is known
(excluding the key), it is much easier to obtain the secret key when the cipher
is run backwards compared to running the cipher forward. Later, guessing the
internal states from the keystream bits is described based on a time-memory-
data tradeoff approach. For the key-recovery part, our attack is a combination
of both guess-and-determine and divide-and-conquer approaches. We show that
the key recovery part itself can be transformed to a guess-and-determine attack
of a complexity 268 encryptions with negligible data and memory.

Our TMD tradeoff attack is based on a specific occasion where incorporation
of key bits into the register can be discarded during the keystream production.
So, Sprout behaves like Grain family since the round key function is bypassed.
We can compute the internal states in advance for all the predefined occasions
and store them with the produced keystream bits in a table. We can produce
some keystream bits for these special internal states without knowing the key.

In general, one may expect that the special internal states to be stored are
deduced by exhaustively searching them. However, we can deduce these states
without a search-and-eliminate mechanism, reducing the time complexity of the
precomputation phase dramatically. We show that computing the special internal
states which cause to bypass the key bits is as easy as solving some systems of
linear equations. Each of our guesses gives a valid solution. So, unlike generic
TMD tradeoff attacks where the offline phase is generally as expensive as an
exhaustive search, our offline phase of the attack is also in practical limits. To
sum up, we explore and exploit a special kind of lack of sampling resistance in
Sprout. The objective of this procedure is similar to the one of BSW sampling
applied to A5/1 cipher [7].

In the online phase of the attack, we check if a special occasion occurs in
the given keystream. The time complexity is 279−d Sprout clocks when we have
2d bits of keystream (not necessarily from the same IV). The memory require-
ment is about 286−d. For example, when d = 40, we can recover the key in only
231 encryptions and 240 table lookups by using 240 bits of keystream with 770
Terabytes of memory. The precomputation cost of preparing the tables is equiv-
alent to solving about 241.32 systems of linear equations with 20 unknowns
and about 235 encryptions. We have verified our results by conducting several
experiments.

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 71

Organization of the Paper: Section 2 describes the high level structure of
Sprout. In Sect. 3, we show how to efficiently recover the secret key when the
(variable) internal state of Sprout is known and introduce a guess-and-determine
attack. Section 4 introduces a TMD tradeoff approach to deal with filling the
internal state, including how to construct systems of linear equations during
the off-line phase of the attack. We conclude the paper with some remarks and
propose a solution in Sect. 5. Some details of Sprout is given in Appendix A and
we provide experimental results verifying our attack in Appendix B.

2 High Level Description of Sprout

Sprout [2] is a lightweight stream cipher inspired by Grain family [1,13–15]. The
(variable) internal state of Sprout consist of an LFSR and an NLFSR, and there
is also a fixed key that is used in the state update function. The sizes of LFSR
and NLFSR are 40 bits each and the key length is 80 bits. An IV of size 70 bits
is also incorporated during the initialization phase. The feedback functions of
NLFSR and LFSR, and the nonlinear part of the output function are denoted
by g, f and h, respectively (See Fig. 1 in the appendix). We follow the notations
below throughout the paper.

– t - the clock-cycle number
– ⊕ - the XOR operation
– Lt := (lt0, l

t
1, . . . , l

t
39) - state of the LFSR at clock-cycle t

– Nt := (nt
0, n

t
1, . . . , n

t
39) - state of the NLFSR at clock-cycle t

– Ct := (ct0, c
t
1, . . . , c

t
8) - state of the counter at clock-cycle t

– K := (k0, k1, . . . , k79) - the fixed key
– IV := (iv0, iv1, . . . , iv69) - the initialization vector
– k∗

t - the round key bit generated during clock t
– nt - the output bit of NLFSR during clock t
– lt - the output bit of LFSR during clock t
– zt - the keystream bit generated during clock t

A 9-bit counter is used in the algorithm to count the number of rounds for the
initialization phase (which has 320 rounds). After initialization, its first seven
bits run cyclically from 0 to 79 and determine the index of the key bit selected
at the current time. Moreover, the fourth bit of the counter ct4 is involved in the
NLFSR feedback.

The linear relation of the LFSR is lt+1
39 = f(Lt) = lt0 ⊕ lt5 ⊕ lt15 ⊕ lt20 ⊕ lt25 ⊕ lt34.

The function g is the nonlinear feedback function for the NLFSR. Its output
is XORed with the round key bit k∗

t , the counter bit ct4 and the output of
the LFSR as nt+1

39 = g(Nt) ⊕ k∗
t ⊕ lt0 ⊕ ct4 where k∗

t = ktmod 80 · δt with δt :=
lt4 ⊕ lt21 ⊕ lt37 ⊕ nt

9 ⊕ nt
20 ⊕ nt

29. Remark that one clock of Sprout is equivalent to
2−8.33 encryption of an exhaustive key search. We give the necessary details in
the analysis sections. Also, one can refer to [2] or Appendix A for details.

72 M.F. Esgin and O. Kara

3 A Key Recovery Attack

It is easy to see that Sprout’s next state function is invertible. So, once we obtain
the whole state (including the key), we can clock the internal states of the cipher
forward and backwards, as well. So, it is straightforward to recover the internal
state at clock-cycle t from the internal state at clock-cycle t+1. We first decrease
the counter. Then, for the LFSR feedback, we have

lt0 = lt+1
39 ⊕ lt+1

4 ⊕ lt+1
14 ⊕ lt+1

19 ⊕ lt+1
24 ⊕ lt+1

33 (1)

and lti+1 = lt+1
i for 0 ≤ i ≤ 38. For the NLFSR feedback, we have

nt
0 = k∗

t ⊕ ct4 ⊕ lt+1
39 ⊕ lt+1

4 ⊕ lt+1
14 ⊕ lt+1

19 ⊕ lt+1
24 ⊕ lt+1

33

⊕ nt+1
39 ⊕ nt+1

12 ⊕ nt+1
18 ⊕ nt+1

34 ⊕ nt+1
38 ⊕ nt+1

1 nt+1
24

⊕ nt+1
2 nt+1

4 ⊕ nt+1
6 nt+1

7 ⊕ nt+1
13 nt+1

20 ⊕ nt+1
15 nt+1

17 ⊕ nt+1
21 nt+1

23 ⊕ nt+1
25 nt+1

31

⊕ nt+1
32 nt+1

35 nt+1
36 nt+1

37 ⊕ nt+1
9 nt+1

10 nt+1
11 ⊕ nt+1

26 nt+1
29 nt+1

30 (2)

where

k∗
t = kt, 0 ≤ t ≤ 79

k∗
t = ktmod 80 · (lt+1

3 ⊕ lt+1
20 ⊕ lt+1

36 ⊕ nt+1
8 ⊕ nt+1

19 ⊕ nt+1
28)

and nt
i+1 = nt+1

i for 0 ≤ i ≤ 38 (see [2] or Appendix A). Now, the keystream zt
can be generated while the index t is decreasing.

Maitra et al. has shown in their recent paper that it is possible to recover the
key once the (variable) internal state is known by solving a system of nonlinear
equations by a SAT Solver in less than half second on a single PC, using roughly
900 bits of keystream sequence [19]. We have a similar problem indeed: We
make a guess for the internal state and then, we do not just want to determine
the key from the internal state but also we would like to check if our guess is
correct simultaneously without recovering the whole set of the key bits. The
simple observation below gives us a much faster key recovery and internal state
checking mechanism. Indeed, we do not need to solve a system of nonlinear
equations. The following property suggests that recovering key from the internal
state and output is much easier if we trace backwards through the registers.

Proposition 1. Assume that at time t + 1, we know the internal states of both
registers NLFSR and LFSR, but the whole key is unknown and that δt = 1. While
clocking the registers backwards, when a key bit appears in the keystream for the
first time, it will appear as a single unknown inside nt−1

1 in the keystream bit
zt−1. This happens before the key bit is incorporated into the feedback of NLFSR
through the g function.

The proof of Proposition 1 is straightforward. Assume that while the cipher
is run backwards, at some clock-cycle t + 1, we guess the value of the whole
internal state (excluding the key) and δt = 1. One clock later, nt

0 becomes a term

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 73

of the form ki ⊕a where a is a known value obtained from the NLFSR feedback,
the LFSR output and the counter. Now, at time t, nt

0 is not incorporated into
the NLFSR feedback function. Thus, ki ⊕ a shifts to the position nt−1

1 and
nt−1
0 does not depend on ki (it may depend on another key bit but that is not

important). Now, at time t − 1, we know all the register values except for nt−1
0

and nt−1
1 = ki ⊕ a. But, nt−1

0 is not involved in the output function. So, we can
easily determine ki as ki = zt−1 ⊕ a ⊕ a′ where a′ is a known value coming from
the tap points of the output function.

As a result, when we make a guess for the registers, at each clock, we will
either have opportunity to check if the keystream bit we generate matches the
corresponding output bit, or a key bit will appear as a single unknown and we
will determine the key bit from the output. Hence, if the state candidate does
not yield a contradiction, we again end up with registers that are completely
known except maybe for the first bit nt

0 of NLFSR. However, if a key bit is
involved in that term, it will be determined one clock later before going into the
feedback. To sum up, continuing the procedure recursively, either we recover a
single key bit or we have a check bit for each clock. Let us illustrate this with a
simple example.

Example 1. Assume that at time t+1 we know the whole internal state but the
secret key and let δt = δt−1 = δt−2 = 1 and δt−3 = 0. Let k0, k1, k2 and k3
be the key bits selected in given order. In Table 1, we show how the values of
NLFSR bits and keystream bits proceed.

Table 2. � denotes a known value, ? a value that is either known or unknown, D(ki)
determining the value of ki and C is a check if the keystream bit generated matches
the actual one.

Clock-cycle δi ni
0 ni

1 ni
2 ni

3 · · · ni
39 zi D/C

i = t + 1 - � � � � � � � C

i = t 1 k0 ⊕ � � � � � � � C

i = t − 1 1 k1 ⊕ � k0 ⊕ � � � � � k0 ⊕ � D(k0)

i = t − 2 1 k2 ⊕ � k1 ⊕ � � � � � k1 ⊕ � D(k1)

i = t − 3 0 � k2 ⊕ � � � � � k2 ⊕ � D(k2)

i = t − 4 - ? � � � � � � C

The probability that a key bit does not appear in the output for p blocks
of length 80 bits is 2−p. Hence, after roughly 160 clocks, 60 different key bits
will appear in the output and will thus be determined. The time complexity
of recovering roughly 60 bits of the key for a correct guess of internal state is
almost 160 clocks of Sprout. The remaining 20 bits can be recovered by searching
exhaustively. On the other hand, the probability that a guess for an internal state
survives for 2r clocks is 2−r. On average for each 2 clocks, half of the possible

74 M.F. Esgin and O. Kara

guesses will be eliminated. So, the average number of clocks for each elimination
among 2s possible guesses is

s∑
i=0

2 · 2s−i

2s
=

s∑
i=0

1
2i−1

≈ 4 for 21 ≤ s ≤ 40.

We see that we can check if a given state is correct in 4 clocks on aver-
age. Moreover, it is possible to mount a guess-and-determine attack by using
Proposition 1. We can guess 77 bits of the internal state and determine the three
remaining bits that appear as XOR in the output (such as lt31, l

t
30, l

t
29) since three

bits of keystream can be produced without knowing the key. Observe that the
bits lti for 28 ≥ i ≥ 25 are incorporated into the output as XOR at time t+ i−30
for the first time after clock t during the backward clocking. So, the guess-and-
determine attack can be improved by further determining lti for 28 ≥ i ≥ 25, if
a key bit is not involved in the output along with lti (that is, δt+i−29 = 0). If
δt+i−29 = 1, then guess lti as well and determine the related key bit. So, we guess
at least 73 and at most 77 bits according to the values of δt+i−29. The overall
complexity is around 270 encryptions. It can be further improved by assuming
that δt+i−29 = 0 for 28 ≥ i ≥ 25. In this case, we guess 69 bits and determine
11 bits (lt36, l

t
35, l

t
34, l

t
33 from δt+i−29 = 0 and lt31, . . . , l

t
25 from keystream bits).

The cipher is clocked 9 times on average to come up with a contradiction (5 clocks
during determining lt31, . . . , l

t
25 and 4 clocks for the key recovery and checking).

Repeat the attack 16 times by using shifted keystreams to fulfill the assump-
tion. Hence, the average complexity is 24 · 269 · 23.17 = 276.17 clocks and thus
276.17 ·2−8.33 = 267.84 encryptions of Sprout. The data and memory complexities
are negligible.

4 A Time-Memory-Data Tradeoff Attack

Recall that, treating the bits of the registers as the terms of a sequence, we
denote lt+i+j := lt+j

i and nt+i+j := nt+j
i . We mount an attack on Sprout with

2d data and a time complexity of 279−d clocks where d ≤ 40 by enhancing the
idea of the guess-and-determine attack given in Sect. 3. We make use of memory
also, having roughly 286−d entries.

The attack scenario is simple. Assume that δt is zero for consecutive d clocks.
That is, the key bits are not incorporated into the NLFSR during d consecutive
clocks: t−9, t−8, . . . , t+d−10. Then we can make a guess to the internal state
at time t and then check if the guess is correct and the condition is satisfied
since we can produce d bits of outputs without knowing any key bit.

Assuming that δt−9 = δt−8 = · · · = δt+d−10 = 0, we get the following d linear
equations of the internal state bits.

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 75

lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+d−6 ⊕ lt+d+11 ⊕ lt+d+27 ⊕ nt+d−1 ⊕ nt+d+10 ⊕ nt+d+19 = 0

If d ≤ 20, we have d linear equations with at most 80 unknowns since there
will be no feedback for NLFSR. Note that we can write an LFSR feedback as a
linear equation without adding new unknowns. So, we simply exclude both the
linear equations and new unknowns coming from LFSR feedback. However, if
d > 20, the new unknowns from the feedback of the NLFSR will appear with
some nonlinear equations. The new equations coming from the feedback are

ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+d−21
4 ⊕ lt+d−21 ⊕ nt+d+19 ⊕ g(Nt+d−21) = 0,

which are adding d − 20 more equations with d − 20 new unknowns nt+40,. . .,
nt+d+19. We have 2d − 20 equations with 60 + d unknowns. We see that by
carefully choosing 80 − d unknowns to be guessed, we mostly come up with
2d−20 linear equations with 2d−20 unknowns. Solving the linear system for each
counter set, we can determine 2d − 20 unknown bits. That is, we can determine
the whole internal state. Then we can produce the output up to d+3 bits for all
possible counter combinations. See Sect. 4.1 for solving the system of equations
in the most extreme case.

Let us store all the guessed internal states where δt = 0 for d consecutive
clocks with their outputs up to d + 3 bits for each counter, sorted according to
the outputs. Note that we can generate keystream bits zt−10, zt, . . . , zt+d−8 due
to the fact that the output is not affected by the most and the least significant
taps of the NLFSR.

We need at most 80 tables having 280−d rows each to produce a table for
each counter. During the online phase of the attack, any d + 3 clock output x
at a certain time (so counter is known) is searched in the table with the related
counter. There are 277−2d internal states producing the output x. Check if any of
the internal state is correct. Repeat this procedure 2d times since the probability
that δt = 0 for d consecutive clocks is 2−d. We expect this event to occur once.
Then, we can recover the internal state from the tables and then recover the

76 M.F. Esgin and O. Kara

key easily once the internal state is known. Recovering the key from a known
internal state is explained in Sect. 3.

For each output of d + 3 bits, we have on average 277−2d internal states
producing the output. We both check the validity of the internal state and recover
the key bits for each candidate. On average, clocking 4 times is enough for
the checking. Hence, the time complexity is 4 · 277−d = 279−d clocks which is
equivalent to 271−d encryptions of Sprout along with 2d table lookups.

4.1 Detailed Workload for d = 40

We focus on the extreme case d = 40 (i.e., δt = 0 for 40 consecutive t values)
and give the workloads in detail for this case. We need to solve the following
systems of equations: a linear system LS and a nonlinear system NS.

LS :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+33 ⊕ lt+50 ⊕ lt+66 ⊕ nt+38 ⊕ nt+49 ⊕ nt+58 = 0
lt+34 ⊕ lt+51 ⊕ lt+67 ⊕ nt+39 ⊕ nt+50 ⊕ nt+59 = 0

NS :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+18
4 ⊕ lt+18 ⊕ nt+58 ⊕ g(Nt+18) = 0

ct+19
4 ⊕ lt+19 ⊕ nt+59 ⊕ g(Nt+19) = 0

First of all, we can easily write all li’s in LS as linear combinations of lj ’s
for t ≤ j ≤ t + 39. Let LS ′ be the new system of equations where all li’s
for t − 5 ≤ i ≤ t − 1 and t + 40 ≤ i ≤ t + 67 are replaced with lj ’s for
t ≤ j ≤ t + 39 in accordance with the LFSR feedback function. Now denoting
L := (lt, lt+1, . . . , lt+39)T and

B := (nt ⊕ nt+11 ⊕ nt+20, nt+1 ⊕ nt+12 ⊕ nt+21, . . . , nt+39 ⊕ nt+50 ⊕ nt+59)T ,

we can write LS ′ as M · L = B where M is the 40 × 40 coefficient matrix of lj ’s
and T is the transpose operation.

The sequence lt−5⊕lt+12⊕lt+28 can be also produced by the LFSR of Sprout.
Since its characteristic polynomial is primitive, the coefficient matrix M is a

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 77

power of the next state matrix and hence it is invertible. We also have verified
on a computer that M is invertible. Hence, L = M−1B implying we can equate
each lj , t ≤ j ≤ t + 39, to linear combinations of some ni’s for t ≤ i ≤ t + 59.
Plugging in the values of lj ’s for t ≤ j ≤ t+19 in NS, we end up with a system,
denoted by NS ′, of 20 nonlinear equations in 60 variables (ignoring the counter
values for the moment). As a result, the main goal is to find all the solutions of
NS ′ and store them in a table with their outputs.

It’s expected that there exist 240 solutions for the system. One approach for
solving it may be to use a SAT solver. However, this approach is quite inefficient
compared to solving a system of linear equations. Having a more detailed look at
the equations in NS ′, we see that by carefully guessing 40 ni values, the system
becomes almost linear. To do that, one possible choice for selected ni values,
SEC{ni} is as follows:

nt+5 nt+6 nt+8 nt+9 nt+11 nt+12 nt+14 nt+15 nt+17 nt+18

nt+19 nt+21 nt+22 nt+23 nt+25 nt+26 nt+27 nt+29 nt+30 nt+31

nt+32 nt+33 nt+34 nt+35 nt+36 nt+38 nt+39 nt+40 nt+41 nt+42

nt+43 nt+45 nt+46 nt+47 nt+48 nt+49 nt+50 nt+52 nt+54 nt+55

Selection of these ni values mostly (but not always) follows the rule that ni+1 and
ni+2 should be guessed to make an ni value appear as a linear term. Fixing the
values in SEC{ni}, there still exists (at most 3) nonlinear terms nt+51nt+53,
nt+51nt+56 and nt+56nt+57 with probability 1

2 . We see some nonlinear terms
when (nt+48, nt+52, nt+54, nt+55) ∈ S where

S :={(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 0, 0)}.

It is expected that each 40-bit guess in both cases,

(nt+48, nt+52, nt+54, nt+55) ∈ S and (nt+48, nt+52, nt+54, nt+55) �∈ S

yields 1 solution on average, which we have verified experimentally (see
Appendix B). Hence, by solving all the cases where the system is linear, we
can obtain around 239 solutions. As a result, we can obtain half of the solutions
with an effort of solving 1

2 · 240 = 239 systems of linear equations. If one wishes
to obtain all the solutions, then in order to make the system linear, 2 more ni

values (e.g., adding nt+51 and nt+57 to SEC{ni} and forming EXSEC{ni})
need to be guessed. Hence, the effort of finding all the solutions is equivalent to
solving 1

2 · 242 + 239 ≈ 241.32 systems of linear equations. The nonlinear cases
can be solved using a SAT solver as well. However, this is still less efficient than
guessing 2 more bits and solving a linear system.

We can repeat the computations for each candidate of the counter values. For
d = 40, there are 39 different values of (ct4, c

t+1
4 , . . . , ct+d−21

4), which we will refer
as a counter array. Observe that the counter values are added to the system NS ′

linearly. Therefore, we can do row reduction operation once and find solutions
for different counter arrays. However, we still need to store separate tables for

78 M.F. Esgin and O. Kara

Algorithm 1. Creating Tables
for each choice of 40 ni values in SEC{ni} with (nt+48, nt+52, nt+54, nt+55) ∈ S do

Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ← M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , NCi

t−9, L
Ci
t−9) in a table TCi

Z sorted by Zt+32
t−10

end for
end for
for each choice of 42 ni values in EXSEC{ni} with (nt+48, nt+52, nt+54, nt+55) �∈ S

do
Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ← M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , NCi

t−9, L
Ci
t−9) in a table TCi

Z sorted by Zt+32
t−10

end for
end for

each counter array to produce 43 bits of output for each internal state. Since
there are 74 possible counter arrays to produce 43 output bits, we need to store
74 separate tables. The solutions give internal states at the t-th clock. Store the
internal states at time (t − 9) just to avoid clocking backwards 9 times before
mounting the key recovery attack in Sect. 3.

Algorithms 1 and 2 summarizes the full attack. Algorithm 1 is the off-
line phase of the attack, related to preparing tables for each counter value.
Algorithm 2 gives the set of instructions of how to recover key or come to
a contradiction in a formal way for each trial of 43-bit keystream segment.
We verified by producing some test values that Algorithm1 generates internal
states ((Nt, Lt) pairs) for which (δt−9, δt−8, . . . , δt+30) = (0, 0, . . . , 0) and that
Algorithm 2 finds the correct key when our assumption about δt is fulfilled during
keystream generation (see Appendix B).

The data complexity is given as D = 240 bits of output, not necessarily
produced by just one IV, and we have 74 tables of each having 240 rows. Each
row contains 80-bit internal state and 3 output bits, indexed by the remaining 40
bits of the output. Hence, the memory requirement M is roughly 770 Terabytes1

(this can be reduced by storing some of the tables in cost of increased data
complexity). The precomputation for creating the tables is 241.32 row reduction
operations of at most 20 by 20 matrices along with producing 43 bit outputs
for each solution. Since 60 ni values and all the li values are known, 33-bit
1 One may choose to store only 60 ni values to reduce the memory requirement. In

this case about 580TB of memory is needed. But, in the online phase, the values of
LFSR need to be computed.

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 79

Algorithm 2. Online Phase of the Attack
Take 240 keystream bits (not necessarily generated using the same IV)
for each 43-bit keystream block do

// Cj := corresponding counter array for the current clock-cycle

if Keystream block exists in T
Cj

Z then

Fill NLFSR and LFSR according to values in T
Cj

Z

while Internal state does not produce a contradiction do
Clock cipher backwards
if keystream is in {0, 1} then

Check state!
else

Determine key bit value involved
end if

end while
end if

end for

output may be generated by substituting the appropriate values in the output
function without needing to clock the whole cipher. In addition, we need to
clock backwards 9 times to produce the remaining 10 output bits, which brings
an additional effort of about 9 ·240 ·2−8.33 ≈ 234.84 encryptions. The workload of
adding an output with its internal state to the appropriate table in a sorted way
is negligible. The time complexity during the online phase is 240 table lookups
along with 2−3 · 240 · 5 · 2−8.33 ≈ 231 encryptions. Recall that only 1/8 of the
keystreams are in one of the tables. And, if a keystream is found in a table, the
corresponding internal state obtained is for time t − 9, but we already make use
of zt−10. Hence, a candidate is checked in 1 + 4 = 5 clocks on average.

4.2 Reducing the Data Complexity

Let Δd
t := (δt, δt+1, . . . , δt+d−1). We focused on the case when Δ40

t = (0, 0, . . . , 0)
for some t. However, suppose Δ40

t contains a single 1 at i-th index and ki is
incorporated into the NLFSR feedback at clock-cycle t + i. In that case, we can
create the tables for ki = 0 and ki = 1 separately (which would double the
table size) and apply the same attack. If we do this for each possible index i, M
increases by a factor of 2·40 = 80 and D decreases by a factor of 40. Generalizing
this idea, we can create tables for each possible Δd

t . If there are n 1s in Δd
t , M

increases by a factor of 2n ·
(
d
n

)
while D decreases by a factor of

(
d
n

)
.

5 Conclusion and Discussion

We illustrated Time-Memory-Data tradeoff attacks and a guess-and-determine
attack mounted on full Sprout. The TMD attacks combine both guess-and-
determine and divide-and-conquer techniques. We have guessed some taps of

80 M.F. Esgin and O. Kara

the internal state satisfying a certain property and then determined the remain-
ing taps by solving a specific system of linear equations. After storing all such
internal states in tables with their outputs (we can produce some output bits
without knowing the key bits, thanks to the special property that the internal
states satisfy), we mount a divide-and-conquer attack to recover the key from
the given output keystream bits. The complexities indicate that the attack is
highly feasible. We have verified our statements by conducting several exper-
iments. The detailed experimental results including an implementation of the
attack with a small-scale table are given in Appendix B.

Designing ultra lightweight stream ciphers allocating less than 1K GE in
hardware with a moderate security level such as 80 bits, is a new challenge,
initiated by Armknecht and Mikhalev [2]. Even though their first design attempt
does not achieve the required security level, we believe that several other designs
will likely appear in the literature soon and some of them will probably be secure
enough to be used in the industry.

We claim that producing output during each clocking of the registers is not a
convenient design philosophy for ciphers whose internal state sizes are not large
enough. Otherwise, they may be prone to guess-and-determine or divide-and-
conquer attacks. We think that adopting the design philosophy of Grain family,
particularly in bitwise operations and clockwise output generation, has brought
the security failure to Sprout. The research question is about the optimization of
the rate of the output generation over the register clocking in terms of security
versus throughput. This can be considered as a generic question relating to all
ultra lightweight stream ciphers. One straightforward countermeasure against all
the attacks on Sprout may be decreasing the throughput of Sprout and giving
only one bit output in, for instance, 16 clockings of Sprout registers. That output
may be the sum of all the 16 bit outputs of the original Sprout.

Acknowledgments. We would like to thank anonymous reviewers for their helpful
comments, especially the second reviewer who makes a comprehensive analysis of the
paper and a lot of useful suggestions. We would also like to thank Ferhat Karakoç and
Güven Yücetürk for commenting on the paper.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wire. Mob. Comput. 5(1), 48–59 (2011)

2. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer,
Heidelberg (2015)

3. Babbage, S.: Improved exhaustive search attacks on stream ciphers. Security and
Detection, European Convention IET (1995)

4. Banik, S.: Some results on Sprout. Cryptology ePrint Archive, Report 2015/327
(2015). http://eprint.iacr.org/

5. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 81

6. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

7. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

8. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A Low-Latency Block Cipher for Pervasive Computing
Applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

11. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

12. Hao, Y.: A related-key chosen-iv distinguishing attack on full Sprout stream cipher.
Cryptology ePrint Archive, Report 2015/231 (2015). http://eprint.iacr.org/

13. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618, July 2006

14. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

15. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007)

16. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theor.
26(4), 401–406 (1980)

17. Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: a software oriented lightweight
block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
16–27. Springer, Heidelberg (2013)

18. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of full Sprout. In: Gennaro, R.,
Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015. LNCS, vol. 9215,
pp. 663–682. Springer, Heidelberg (2015)

19. Maitra, S., Sarkar, S., Baksi, A., Dey, P.: Key recovery from state information of
Sprout: application to cryptanalysis and fault attack. Cryptology ePrint Archive,
Report 2015/236 (2015). http://eprint.iacr.org/

20. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

21. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

82 M.F. Esgin and O. Kara

A Details of Sprout

�

�

�

h

RKF

g f

zt

RSFLRSFLN

KEY

ct4

7

6

27

33
29

Fig. 1. The high level structure of Sprout

RKF in Fig. 1 represents the round key function. The LFSR is clocked as
lt+1
39 = f(Lt) = lt0 ⊕ lt5 ⊕ lt15 ⊕ lt20 ⊕ lt25 ⊕ lt34 and lt+1

i = lti+1 for 0 ≤ i ≤ 38.
The function g is the nonlinear feedback function for the NLFSR. Its output
is XORed with the round key bit k∗

t , the counter bit ct4 and the output of the
LFSR lt = lt0. So, the feedback of the NLFSR nt+1

39 is given as follows:

nt+1
39 = g(Nt) ⊕ k∗

t ⊕ lt0 ⊕ ct4

= k∗
t ⊕ lt0 ⊕ ct4 ⊕ nt

0 ⊕ nt
13 ⊕ nt

19 ⊕ nt
35 ⊕ nt

39 ⊕ nt
2n

t
25

⊕ nt
3n

t
5 ⊕ nt

7n
t
8 ⊕ nt

14n
t
21 ⊕ nt

16n
t
18 ⊕ nt

22n
t
24 ⊕ nt

26n
t
32

⊕ nt
33n

t
36n

t
37n

t
38 ⊕ nt

10n
t
11n

t
12 ⊕ nt

27n
t
30n

t
31

where

k∗
t = kt, 0 ≤ t ≤ 79

k∗
t = ktmod 80 · (lt4 ⊕ lt21 ⊕ lt37 ⊕ nt

9 ⊕ nt
20 ⊕ nt

29)

with δt := lt4 ⊕ lt21 ⊕ lt37 ⊕ nt
9 ⊕ nt

20 ⊕ nt
29. Once the internal state is determined

for clock-cycle t, the keystream bit zt is generated as follows:

zt = nt
4l

t
6 ⊕ lt8l

t
10 ⊕ lt32l

t
17 ⊕ lt19l

t
23 ⊕ nt

4l
t
32n

t
38

⊕ lt30 ⊕ nt
1 ⊕ nt

6 ⊕ nt
15 ⊕ nt

17 ⊕ nt
23 ⊕ nt

28 ⊕ nt
34

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 83

Initialization Phase: The feedback registers are initialized as follows:

ni = ivi, for 0 ≤ i ≤ 39
li = iv40+i, for 0 ≤ i ≤ 29
li = 1, for 30 ≤ i ≤ 38
l39 = 0

After filling the registers, the cipher is run 320 clocks without producing
keystream while the output zt is fed back into both feedback registers such
that lt+1

39 = zt ⊕ f(Lt) and nt+1
39 = zt ⊕ k∗

t ⊕ lt0 ⊕ ct4 ⊕ g(Nt). The keystream
generator starts generating the keystream after the initialization phase.

The designers of Sprout suggest to generate up to 240 keystream bits with one
(key, IV) pair.

Workload of Exhaustive Search: To exhaustively search a key, one has to run
the initialization phase first (320 clocks), and then generate 80 bits of keystream
for a unique match. However, since each keystream bit generated matches the
corresponding actual keystream bit one with probability 1

2 , 280 keys are tried for
1 clock and roughly half of them are eliminated, 279 for one more clock and half
of the remaining keys are eliminated, and so on. Hence, the average number of
clocks per one trial after the initialization step among 280 keys is

79∑
i=0

280−i

280
=

79∑
i=0

1
2i

≈ 2

As a result, we will assume that clocking the registers once will cost roughly
1

322 ≈ 2−8.33 encryptions.

B Experiments

We did not implement the whole attack due to our memory shortage. Instead, we
have conducted several experiments to verify our attack. We have solved millions
of the systems of linear equations to collect some of the special internal states
where δt = 0 for consecutive 40 values of t and stored the solutions in tables.
Then, we have accomplished to recover an internal state in the table with the
key used in the given keystream sequence.

First of all, we performed a run test on δt values to check if the probabil-
ity that 40 consecutive δt values vanish simultaneously is around 2−40 for the
Sprout internals. We chose 30 random (IV, K) pairs, and run the cipher 240

clocks for each selection. We depict the average number of runs having length i
in Table 3. The values for 10 ≤ i ≤ 21 are not given in the table since they are
too big to display. However, we can simply say that the empirical result for any
10 ≤ i ≤ 21 does not deviate from the corresponding expected value more than
0.0678 percent.

Moreover, we have implemented the attack with a small-scale table in Sage
6.5. We found more than 5 million solutions for the system NS ′ and generated
tables for different counter values. The total size of all the tables is about 215

84 M.F. Esgin and O. Kara

Table 3. Comparison between the empirical results and the expected number of runs.

i i + 1 i + 2

Empirical Expected Empirical Expected Empirical Expected

i = 22 65596.66 65536 32802.60 32768 16398.17 16384

i = 25 8202.73 8192 4114.03 4096 2042.5 2048

i = 28 1025.9 1024 509.9 512 259.4 256

i = 31 127.8 128 64.2 64 31.33 32

i = 34 17.63 16 7.7 8 4.13 4

i = 37 1.83 2 1.2 1 0.400 0.500

i = 40 0.333 0.250 0.133 0.125 0 0.062

i = 43 0 0.031 0.067 0.016 0.033 0.008

Table 4. Number of state candidates eliminated at each clock i.

Clock-cycle number # of states eliminated at i-th clock

i = 1 250071

i = 2 187325

i = 3 140862

i = 4 105620

i = 5 79061

i = 6 59067

i = 7 44714

i = 8 33287

i = 9 25044

i = 10 18590

Average # of clocks run 3.999 · · ·

MB. For a randomly chosen state in the tables, we have found a valid (IV, K)
pair generating the state. Then, we mounted the attack on the corresponding
keystream sequence and successfully recovered the key. The (IV, K) pair was

IV = 1101010110100000111010011001011101111010
011011100110110011000001001010

K = 1000100100011001111111110000011000111110
0011001110100100010110100010000100101001

where the left-most bit represents the value for index 0. At time t = 25916
(after initialization), (δt−9, δt−8, . . . , δt+30) = (0, 0, . . . , 0) is satisfied. The target

Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks 85

Table 5. Number of solutions for NS ′ for each cases when (nt+48, nt+52, nt+54, nt+55)
∈ S or (nt+48, nt+52, nt+54, nt+55) �∈ S.

of solutions # of eqns with i solns when # of eqns with i solns when

(nt+48, nt+52, nt+54, nt+55) ∈ S (nt+48, nt+52, nt+54, nt+55) �∈ S

i = 0 6049 6478

i = 1 5198 4376

i = 2 3704 4637

i = 3 671 0

i = 4 344 501

i = 5 9 0

i = 6 20 0

i = 7 1 0

i = 8 4 8

Average 1.012 0.982

internal state at time t was

Lt = 0100111111110010000010111111011100101111
Nt = 1111011001011111111011111001000101100000

which is in one of the tables. Running the key recovery attack, we have found
62 key bits in 160 clocks, verifying our statements. The remaining bits can be
recovered by an exhaustive search.

We also verified the average number of clocks iterated before arriving at a
contradiction during the internal-state-check mechanism. We chose 1 million
random internal states and ran the key recovery attack for each of them. Each
state was clocked backwards once before starting the test since the output at this
clock is definitely a check bit. Table 4 shows how many states were eliminated
at each clock i. The average number of clocks run for a candidate was about
3.999, as expected (See Sect. 3). Another experiment was about verifying the
assumption that there exists approximately 240 solutions for the system NS ′

in total. We have solved the system 16000 times for each case when

(nt+48, nt+52, nt+54, nt+55) ∈ S and (nt+48, nt+52, nt+54, nt+55) �∈ S.

Table 5 summarizes the results of the experiment, supporting our assumption
about the number of solutions.

Related-Key Attack on Full-Round PICARO

Anne Canteaut(B), Virginie Lallemand, and Maŕıa Naya-Plasencia

Inria, project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Virginie.Lallemand,Maria.Naya Plasencia}@inria.fr

Abstract. Side-channel cryptanalysis is a very efficient class of attacks
that recover secret information by exploiting the physical leakage of a
device executing a cryptographic computation. To address this type of
attacks, many countermeasures have been proposed, and some papers
addressed the question of constructing an efficient masking scheme for
existing ciphers. In their work, G. Piret, T. Roche and C. Carlet took
the problem the other way around and specifically designed a cipher
that would be easy to mask. Their careful analysis, that started with
the design of an adapted Sbox, leads to the construction of a 12-round
Feistel cipher named PICARO. In this paper, we present the first full-
round cryptanalysis of this cipher and show how to recover the key in
the related-key model. Our analysis takes advantage of the low diffusion
of the key schedule together with the non-bijectivity of PICARO Sbox.
Our best trade-off has a time complexity equivalent to 2107.4 encryptions,
a data complexity of 299 plaintexts and requires to store 217 (plaintext,
ciphertext) pairs.

Keywords: Related-key attack · Differential cryptanalysis · PICARO

1 Introduction

While performance and side-channel attacks resistance are most of the time
considered separately and as distinct problems — new design papers focus on
performance figures while countermeasure papers focus on how to implement a
specific protection in order to reduce performance overheads —, some new cipher
proposals tackle the two problems together by designing new primitives that fit
given protections. Examples of such constructions are PICARO [8], Zorro [6], and
the family of LS-design [7] (including Robin and Fantomas as concrete instanti-
ations).

The countermeasure studied in these three designs is the masking scheme [10]
for which the heavier parts to protect are the operations which are not linear with
respect to the group operation used to share the sensitive variables. For these
three ciphers as for most ciphers, these non-linear operations are concentrated
in the Sboxes, and then the straightforward way to limit the masking cost is to

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 86–101, 2016.
DOI: 10.1007/978-3-319-31301-6 5

Related-Key Attack on Full-Round PICARO 87

reduce the number of Sbox applications1 as well as to choose Sboxes that are
masking-friendly, for instance by reducing the number of field multiplications
processed2. This later direction is the one followed by Piret, Roche and Carlet
while devising PICARO [8,9]: their design relies on a non-bijective Sbox defined
by two bivariate polynomials over GF (24), reducing the number of non-linear
multiplications to four. This Sbox is integrated to the round function of a Feistel
scheme, composed of four operations which are an expansion, a key addition, an
Sbox-layer and a compression.

In this paper we show that despite the fact that the authors of PICARO
aim at resisting to related-key attacks, as pointed out in [9]3, we have been
able to mount related-key attacks on the full cipher. Our attacks exploit some
weaknesses in the key-schedule, the non-bijective properties of the Sbox and
some properties of the linear layer. They provide different trade-offs between
time and data complexities.

The paper is organized as follows. In Sect. 2, we give a brief description of the
PICARO block cipher and of its design choices, in Sect. 3 we give some definitions
and in Sect. 4, we present an analysis of PICARO key-schedule that leads to the
related-key attack described in Sect. 5. The paper ends with a conclusion.

2 Description of PICARO

2.1 Round Function

One of the main objectives of G. Piret, T. Roche and C. Carlet when designing
PICARO was to propose a 128-bit block cipher that would get an advantage
over other ciphers regarding the ease to protect against side-channel attacks.
To achieve this, they started from Rivain and Prouff’s masking scheme [10] and
determined which operations are difficult to mask to derive some new design
criteria. Their analysis brought to light that efforts have to focus on the Sboxes
since the masking scheme implies heavy overheads for the non-linear operations.

This condition must be added to the usual criteria coming from the (non-
physical) usual attacks (including the prominent linear, differential, algebraic
cryptanalyses and their variants) that require the Sbox be highly non-linear,
have a high algebraic degree and a low differential-uniformity.

Their deep analysis resulted in the selection of an Sbox defined as the con-
catenation of two polynomials:

S : GF (24) × GF (24) → GF (24) × GF (24)
(x, y) �→ (xy, (x3 + 0x02)(y3 + 0x04))

where 0x02 and 0x04 represent elements of GF (24) defined as GF (2)[x]/(X4 +
X3 + 1). Its full look-up table is given in AppendixA.
1 This direction has been followed in the design of Zorro.
2 When considering binary masking, this criterion is equivalent to limiting the number

of AND processed (see for instance the LS-design [7]).
3 Section 7.2 of [9]: “We want our scheme to resist known attacks on a key schedule

algorithm, in particular related-key attacks...”.

88 A. Canteaut et al.

This non-bijective Sbox has already been studied in [5] and possesses the
following desirable characteristics: a non-linearity equal to 94, an algebraic degree
equal to 4, a maximal differential probability equal to 4/256. Furthermore, to
fit well the masking protection, it can be implemented with only 4 non-linear
operations; moreover all these non-linear operations are defined in the small field
GF (24).

An obvious but quite important remark that has to be made is that since
the Sbox is not bijective, there exist sets of values that all have the same image
through the Sbox. In other words, it is possible to cancel a difference entering
the Sbox: a byte that is active before applying the Sbox can lead to an inac-
tive output. Since the cube function is 3-to-1 over GF (24)∗, we deduce from
the definition of the Sbox that it is a 3-to-1 function over GF (24)2\{(0, 0)}.
Moreover, it is very easy to prove that, for any non-zero input difference Δ,
the transition Δ → 0 holds with probability 2−7. In other words, the equation
S(x + Δ) + S(x) = 0 has exactly two solutions x.

The choice of a non-bijective Sbox was motivated by the fact that finding a
good Sbox is easier in this case. However, it requires to find a way to include it
in a construction that makes the cipher invertible, and also to take the resulting
differential properties into account. Therefore, this non-bijective Sbox is used
within the Feistel construction. But, as noticed by the designers, the use of
a basic Sbox layer as an inner function would make the cipher vulnerable to a
quite simple but very efficient differential attack with only one active Sbox every
2 rounds.

To thwart this sort of attacks, PICARO designers choose to use an expansion
and a compression function that have good diffusion, more precisely that ensure
that a minimum of 7 Sboxes are active in each active round. This is achieved
by using linear operations deduced from linear codes with minimum distance 7.
The expansion G takes as input a 64-bit word and outputs an extended word of
112 bits. The corresponding matrix is depicted below (its entries are elements in
GF (28) defined as GF (2)[X]/(1 + X2 + X3 + X4 + X8)). Then, the inner state
must be compressed back at the end of the round function. To this end, another
linear operation is used, defined by the matrix H = GT , which converts 112-bit
words into 64-bit ones.

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 00 00 00 00 00 00 00 01 01 0A 01 09 0C
00 01 00 00 00 00 00 00 05 01 01 0A 01 09
00 00 01 00 00 00 00 00 06 05 01 01 0A 01
00 00 00 01 00 00 00 00 0C 06 05 01 01 0A
00 00 00 00 01 00 00 00 09 0C 06 05 01 01
00 00 00 00 00 01 00 00 01 09 0C 06 05 01
00 00 00 00 00 00 01 00 0A 01 09 0C 06 05
00 00 00 00 00 00 00 01 01 0A 01 09 0C 06

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To sum up, the round function is made of four operations, as depicted on
Fig. 1: first, the 64-bit left part is extended by the expansion function defined
by G, then the round-key is added. This is followed by the Sbox application
(14 parallel applications of S) and finally the state is compressed back to
64 bits, and is XORed to the right part of the internal state.

Related-Key Attack on Full-Round PICARO 89

PICARO encryption routine is made of 12 iterations of this round function.

expansion SB compressionARK

Fig. 1. One round of PICARO block cipher.

2.2 Key-Schedule

The previous algorithm requires twelve 112-bit subkeys that are derived from the
128-bit master key K. The designers wanted a simple and efficient key-schedule,
together with resistance to the two main attacks exploiting the key-schedule,
namely related-key attacks [1] and slide attacks [3]. In addition to that, Piret
et al. looked for round-keys that could be computed on the fly, i.e. for which the
computation of the subkey of round i can be done from the knowledge of the
subkey at round (i − 1) (or from the knowledge of the subkey at round (i + 1),
in decryption mode).

Their analysis has resulted in a linear key-schedule composed of rota-
tions, bitwise additions and truncations. Namely, K denotes the 128-bit mas-
ter key and K(1),K(2),K(3)and K(4) are the four 32-bit chunks composing K:
K = (K(1),K(2),K(3),K(4)). Let T : (GF (2)32)4 → (GF (2)32)4 be the linear
transformation defined as follows:⎛

⎜⎜⎝
T (K)(1)

T (K)(2)

T (K)(3)

T (K)(4)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

K(1)

K(2)

K(3)

K(4)

⎞
⎟⎟⎠

Then, to compute the subkeys from the master key K, we first compute the
extended key (κ1, κ2, · · · κ12) (where each κi is 128-bit long) with the following
formulas: ⎧⎪⎨

⎪⎩
κ1 = K

κi = T (K) ≫ Θ(i) for i = 2, 4, 6, 8, 10, 12

κi = K ≫ Θ(i) for i = 3, 5, 7, 9, 11

90 A. Canteaut et al.

where Θ(i) is:

i 2 3 4 5 6 7 8 9 10 11 12

Θ(i) 1 16 17 32 33 85 86 101 102 117 118

and then we obtain the round keys ki by extracting the first 112 bits from κi. We
denote by skw = (k1||k2||...k12) the ‘subkey word’ made of the concatenation of
the ki.

The fact that T is an involution allows to easily deduce the ‘on-the-fly’ expres-
sions, which are:

{
κ1 = K

κi = T (κi−1) ≫ θ(i) for i = 2, · · · , 12

where θ is defined by:

i 2 3 4 5 6 7 8 9 10 11 12

θ(i) 1 15 1 15 1 52 1 15 1 15 1

Since we do not need it here, we refer to the design document [8] for the
formulas of the round-key derivation in decryption mode.

3 Definitions and Notation

In most block cipher constructions, the Sboxes are bijective, implying that in
a differential attack a non-zero difference at the input of an Sbox is equivalent
to a non-zero difference at its output. Here, the situation is different since the
Sboxes are not bijective. Therefore, in order to avoid any ambiguity, we give a
more precise definition of the notion of active Sbox :

Definition 1 (Active Sbox). An active Sbox is an Sbox with a nonzero input
difference (and a possibly zero output difference).

Definition 2 (Data, Time and Memory Complexities).

– The data complexity is defined as the number of plaintext/ciphertext pairs
necessary to conduct the attack;

– The time complexity, which is expressed as a number of full 12-round encryp-
tions, incorporates all the operations performed by the attacker to recover the
key, and includes the encryptions needed to compute the necessary data;

– The memory complexity, which is expressed as a number of 128-bit blocks,
measures the memory needed during the attack.

Definition 3 (nR-attack [2]). A nR-attack is a differential attack that covers
R rounds with a differential characteristic and attacks R+n rounds in total. We
extend this definition to the related-key setting and call the additional rounds the
key-recovery rounds.

Related-Key Attack on Full-Round PICARO 91

4 Key-Schedule Analysis

In this section we focus on PICARO key-schedule. We first focus on keys under
which a given plaintext leads to the same ciphertext and then extend our analysis
to a related-key attack.

4.1 Keys Leading to Colliding Ciphertexts

In this section we are interested in sets of keys that with high probability encrypt
a given plaintext into the same ciphertext after the 12 rounds of PICARO. Note
that in the ideal case, if one plaintext is fixed and encrypted under different
keys, assuming that the resulting function is random, a ciphertext collision is
expected to occur with probability 2−128.

In the case of PICARO, we can remark that the round structure enables us to
cancel a key difference quite easily: indeed, since the key addition is immediately
followed by the Sbox layer, composed of non-bijective Sboxes, a key difference
can be immediately canceled by going through the Sbox, resulting in an internal-
state collision at the input of the compression function.

Obtaining colliding ciphertexts becomes then possible if we can construct
keys differing in as few positions as possible, in order to make the probability
of the event “all the subkey differences are canceled by the Sboxes” higher than
2−128. This means that we can cancel a maximum of s Sboxes, with s satisfying
2−7×s > 2−128, so we have to find keys such that the corresponding subkey words
differ in at most 18 bytes.

To find such keys, we first remark that the key-schedule algorithm is linear
over GF (2). This implies that the words corresponding to the concatenation of
the subkeys (skw) belong to a linear code C of dimension k = 128 and length
n = 112 × 12 = 1344. Our search then boils down to the search for codewords
with a low Hamming weight. We first focus on the Hamming weights of the
codewords over GF (2) and we will then move to the Hamming weight over
GF (28), i.e., the number of non-zero bytes, which is the relevant parameter in
our attack.

To determine if it is possible to obtain keys differing in less than 18 bytes, i.e.,
at the inputs of less than 18 Sboxes, a first idea is to compute the minimum dis-
tance of the binary code, hereafter denoted by d. A straightforward computation
of d would be too complicated due to the large size of the code. Some algorithms
for finding low-weight codewords, e.g [4], could be used to determine d. But we
now show that it can be easily deduced from the structure of the code with very
simple arguments. We first make some observations coming from the structure
of the generator matrix depicted on Fig. 2.

– If we consider all possible master keys of weight 1, the minimum weight among
all corresponding codewords is 20, implying that d ≤ 20

– According to the key-schedule description, 6 subkeys, namely k1, k3, k5, k7,
k9 and k11 consist of a selection of bits from the master key K. Following
this, if we consider a master key of weight 1, then the word made by the

92 A. Canteaut et al.

 0

 128

 0 112 224 336 448 560 672 784 896 1008 1120 1232 1344

Fig. 2. Graphical representation of the generator matrix of linear code corresponding
to the key-schedule.

concatenation of the subkeys skw contains at least 4 ones. Indeed, we have
a 1 for sure in κ1, κ3, κ5, κ7, κ9 and κ11 but after the truncation, a maximum
of two of these ones may disappear. Accordingly, every time we add a one in
the master key, the weights of the odd subkey words increase by at least 4.

All in one, those remarks show that, if they exist, the codewords of weight
strictly less than 20 are obtained from master keys of weight at most 4. An
exhaustive search over all these master keys shows that the minimum distance
of the code is d = 18. The active positions of all master keys that reach this
minimum are given in Table 1.

Table 1. Positions of the active bits in the round-keys that correspond to a minimum-
weight subkey word (the bits entering the first Sbox are indexed from 0 to 7).

set K k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

1 27, 123 27 28 11, 43 12, 44 27, 59 28, 60 80 81 0, 96 1, 97 16 17

2 28, 124 28 29 12, 44 13, 45 28, 60 29, 61 81 82 1, 97 2, 98 17 18

3 29, 125 29 30 13, 45 14, 46 29, 61 30, 62 82 83 2, 98 3, 99 18 19

4 30, 126 30 31 14, 46 15, 47 30, 62 31, 63 83 84 3, 99 4, 100 19 20

5 91, 123 91 92 11, 107 12, 108 27 28 48, 80 49, 81 64, 96 65, 97 80 81

6 92, 124 92 93 12, 108 13, 109 28 29 49, 81 50, 82 65, 97 66, 98 81 82

7 93, 125 93 94 13, 109 14, 110 29 30 50, 82 51, 83 66, 98 67, 99 82 83

8 94, 126 94 95 14, 110 15, 111 30 31 51, 83 52, 84 67, 99 68, 100 83 84

Note that these configurations might have been expected: the best scenarios
are the ones for which the differences do not propagate a lot, so for keys differing
in more than 2 bits we are looking for differences that cancel each other by the
T map, i.e. that are at the same relative position in the 32-bit chunks of the
master key. Moreover, the best configurations correspond to differences that end
up as often as possible in the truncated part of the subkeys.

We note that the previous analysis determines the subkey words having a low
Hamming weight counted in bits, while the relevant quantity is the number of
nonzero bytes since it corresponds to the number of active Sboxes. However, the
structure of the previous result indicates that the words with minimal weight
over GF (28) are derived from master keys having at most two nonzero bytes. An
exhaustive search over this set enables us to determine a set W of 30 minimum-
weight codewords over GF (28), corresponding to the (24 − 1) non-zero linear

Related-Key Attack on Full-Round PICARO 93

combinations of the first four rows in Table 1 and to the (24 − 1) non-zero linear
combinations of the last four rows. This analysis exhibits the following bias in
PICARO:

The probability that any given plaintext is encrypted to the same ciphertext
under two keys whose difference belongs to the set W is (2−7)18 = 2−126.

5 Related-Key Attack on the Full-Round PICARO

We have shown in the previous section that we can ensure that the differences
introduced by the two keys are integrally canceled with probability greater than
2−128. In this section, we show how to use this property in order to build a
distinguisher and recover the encryption key with a related-key attack. We con-
sider a scenario in which the attacker is given the right to ask for the encryption
of plaintexts under the secret encryption key and under a second key which is
related to the first one by a fixed difference.

In the following, we denote by ai, i = 1 · · · 12 the number of active Sboxes in
each round (including the rounds not covered by the characteristic) and by ai→j

the number of active Sboxes in rounds i to j. We provide in Fig. 3 a concrete
example providing the best trade-off.

5.1 A First 2R-Attack

We describe here a simple related-key attack on the full cipher and give some
optimizations in the following sections. Our attack is based on a differential
characteristic (in which all the differences are canceled by the Sboxes) that covers
the first 10 rounds and ends with a 2-round key-recovery.

The two points that make the 2-round key-recovery holds are the following:
first, the characteristic - that cancels all the differences - allows us to obtain a
good filter on the ciphertexts. Second, a property of the compression function
allows us to invert the compression step with a limited complexity.

Ciphertext Filter. For a plaintext and a pair of keys following the character-
istic, the state entering round 11 is free of differences, and we know the value
of the round-key differences entering the Sboxes at round 11, so we can deter-
mine a set of possible differences at the output of round 11. In the worst case
scenario, there are 27 possible output differences for each active Sbox, so 27 × a11

differences are possible out of 264 for the corresponding half of the ciphertext.
This remark implies that we can filter out some pairs that for sure do not follow
the characteristic.

Property of the Compression Function. The following proposition will be
extensively used in the attack. It shows that the knowledge of the output of the
compression function and of any 6 bytes of the input uniquely determines all
input bytes.

94 A. Canteaut et al.

Fig. 3. Related-key attack on full-round PICARO. This figure represents the variant
providing the best data complexity: 299, with a time complexity of 2107.4. The master
key differences are positioned in bits 16 and 80.

Proposition 1. Two distinct 14-byte words having the same image under the
compression function coincide on at most five bytes.

Proof. The compression function is defined by

Compr : GF (28)14 → GF (28)8

x �→ xH

Related-Key Attack on Full-Round PICARO 95

where H is a 14 × 8 matrix over GF (28) defined in Sect. 2.1. Then, the set
of all inputs which have the same image under Compr is an affine subspace of
GF (28)14 of dimension 6, which is a coset of the kernel

C = ker(Compr) = {x : xH = 0}.

Therefore, any two elements x and x′ having the same output under Comp
are such that (x + x′) belongs to C. Moreover, C can also be seen as the linear
code of length 14 and dimension 6 over GF (28) with parity-check matrix HT .
Since HT has been chosen by the designers of PICARO as the generator matrix
of an MDS code, it also corresponds to the parity-check matrix of an MDS code,
implying that the minimum distance of C is 14 − 6 + 1 = 9. Now, assume that
there exist two distinct inputs x and x′ which have the same output under Compr
and which coincide on 6 input bytes. Then, (x + x′) is a non-zero element of C
and it has at most 14 − 6 = 8 nonzero bytes, which contradicts the fact that the
minimum distance of C equals 9. ��

Moreover, for any fixed output y of Compr and any set I ⊂ {1, . . . , 14} of
6 input positions, the unique 14-byte word equal to a given α on I can be
determined by elementary algebra. We first observe that the matrix H defining
the compression function is equal to

(
Id8

ZT

)

where Z denotes the 8 × 6-right part of matrix G defined in Sect. 2.1. Then,
the set of all words whose image equals y is equal to C + ỹ where ỹ is the
14-byte word equal to y on the first 8 bytes and which vanishes on the other
6 bytes, and C = ker(Compr) is the linear space spanned by the rows of matrix
M = (Z, Id6). Let MI (resp. MI) denote the columns of M corresponding to I
(resp. to I = {1, . . . , 14}\I). The previous proposition shows that MI is non-
singular. Therefore, the unique element x in Compr−1(y) which is equal to α on I
corresponds to the sum of ỹ and of the element in C which is equal to α + ỹ|I
on I. This implies that the value of x on I is equal to ỹ|I + (α + ỹ|I)M−1

I MI .

Obtaining Suggestions for the Values of the Subkey at Round 12.

1. Choose a master-key difference Δ with a minimum number of active Sboxes
in the first 10 rounds and ask for 27×a1→10 triples (Pi, Ci, C

′
i) generated from

different plaintexts Pi, where Ci and C ′
i are respectively the corresponding

ciphertext under the secret master key K and the corresponding ciphertext
under the key K ′ = K ⊕ Δ.

2. Filter out the triples by looking at the ciphertext differences: the number of
remaining triples is 27×a1→10−(64−7×a11).

3. Since the internal state entering round 11 is free of difference, the left part
of the ciphertext difference is equal to the difference at the output of the
compression function at round 12. Given that, guess 6 bytes of the difference

96 A. Canteaut et al.

entering the compression function and deduce the value of the full 112-bit dif-
ference entering the compression function at round 12 (this value is uniquely
determined as shown by Proposition 1). There are 248 possibilities for each
triple.

4. Starting from the right half of the ciphertext difference, compute the expan-
sion function and add the difference coming from the key difference to deduce
the value of the difference entering the Sboxes at round 12.

5. With the help of the difference distribution table, check the difference tran-
sitions of the 14 Sboxes at round 12. If all the transitions are valid, compute
the possible intermediate state values that permit these transitions. In order
to estimate the average number of states returned by this procedure, we use
that, for any Sbox, the product between the probability that a transition is
valid and the average number of values following this transition is equal to 1.
For PICARO Sbox S (note that the reasoning would be similar for any Sbox),
we consider the number δ(a, b) of inputs x such that S(x + a) + S(x) = b,
and the number τ of valid transitions, i.e., τ is the number of pairs (a, b) such
that δ(a, b) > 0. The sum of all (non-zero) entries in the difference table of S
equals 22 × 8, i.e., the sum over all valid (a, b) of δ(a, b) equals 22 × 8. It then
follows that ⎛

⎝1
τ

∑
valid (a,b)

δ(a, b)

⎞
⎠ ×

(τ

22 × 8

)
= 1.

Therefore, for each Sbox transition considered in the attack, we obtain in
average one intermediate state which satisfies this transition. So, we get a
total of

27×a1→10−(64−7×a11) × 248 = 27×a1→11−16 candidates.

6. From the ciphertext value, deduce the intermediate state value before the key
addition in round 12. From that, we obtain 27×a1→11−16 candidate values for
the subkey of round 12.

This algorithm requires 27×a1→10+1 full encryptions for obtaining the initial
triples, then 27×a1→11−16+1 × 1

12 encryptions (since only round 12 is computed)
to obtain candidates for k12, which leads to an overall time complexity corre-
sponding to the cost of

27×a1→10+1 + 27×a1→11−18.58 encryptions.

5.2 Optimizations

Reducing the Initial Number of Encryptions. A potential bottleneck in
the previous algorithm comes from the data complexity and then from the cost
of the generation of the initial data. In this section, we detail a technique (close
to the notion of structures which is commonly used in differential attacks) that
reduces it by a factor of 27×a1 . The idea here is to let the first round-key difference
spread freely and to cancel this difference by introducing a difference in another
plaintext.

Related-Key Attack on Full-Round PICARO 97

For each plaintext Pi encrypted under the master key K, we ask for the
encryption of a set of plaintexts P set

i encrypted under the second key. These
plaintexts are made by adding to Pi all the possible differences coming from
the subkey difference. To compute these differences, we exhaust all the (28×a1)
possibilities for the difference at the output of the active Sboxes at round 1 and
apply the (linear) compression function.

Since this set contains all the possible differences, one of them corresponds to
the actual difference and will cancel the first round difference. Now, we extend
that remark by asking the oracle for the encryption of the same set P set

i under
the master key. We then possesses 28×a1+1 plaintexts and each plaintext in the
first set is such that the difference introduced by the first round-key is canceled
by exactly one plaintext in the second set. To sum up, we have exactly 28×a1

pairs that lead to a zero difference at the end of round 1 from 28×a1+1 encryptions
only. The other parts in the algorithm remain the same. So to obtain one pair
that leads to a zero difference at round 10 we need

27×a2→10−8×a1+8×a1+1 = 27×a2→10+1 encryptions.

If we apply this technique to the previous algorithm, the number of initial
encryptions is reduced from 27×a1→10+1 to 27×a2→10+1.

Speeding up the Master-Key Recovery. The previous algorithm returns
candidates for the 112 bits of the subkey at round 12. From that point, we can
naively perform an exhaustive search for the remaining 16 bits of the master key,
which would lead to an attack with data complexity 27×a2→10+1, time complexity
27×a2→10+1 +27×a1→11−16 ×216 and with memory complexity 28×a1+1 (necessary
to store the initial ‘structures’).

We can further reduce the second term in the time complexity by using the
previous rounds to filter out wrong candidates faster than with a trial encryption.
Indeed, we can check if the candidate key gives the right Sbox transitions round
after round, and discard a candidate as soon as the Sbox transition is wrong.

The optimal configuration would be the one for which we can deduce from
the candidate value for k12 the key bits of k1 and k11 that enter the active Sboxes
at rounds 1 and 11. In such a case, the attacker can directly (i.e. without any
additional key guess) check if the candidate value for k12 leads to the right Sbox
transitions at rounds 1 and 11. This corresponds to a filter of about 2−7a1 and
2−7a11 . The remaining operations (checking the Sbox transitions at the other
rounds and guessing the remaining bits) are comparatively of negligible time
complexity.

In case only a few key bits are known, the attacker can also reduce the time
complexity by doing this gradual check. For the 27a1→11−16 pairs and candidate
values for k12, she can compute the expansion function at the round in which the
largest number of information bits is known. At this round, she needs to guess
the unknown bits in order to check the active Sbox transitions and then, for
the right guesses, she can compute the entire round function in order to access
another round. The full round function is then computed only for the guesses

98 A. Canteaut et al.

Table 2. List of all master-key differences (of weight less than 4) minimizing a2→10

(a2→10 = 14) with the smallest value for a1→11 (a1→11 = 18). The last 2 columns
indicate the number of key bytes (and bits) deduced from k12 at the positions corre-
sponding to the active Sboxes at rounds 1 and 11.

Diff. positions a1 a2→10 a11 a1→11 Known bytes (bits) in k1 Known bytes (bits) in k11

11 107 2 14 2 18 1 (14) 2 (16)

12 108 2 14 2 18 1 (14) 2 (16)

13 109 2 14 2 18 1 (14) 2 (16)

14 110 2 14 2 18 1 (14) 2 (16)

15 111 2 14 2 18 1 (14) 2 (16)

16 80 2 14 2 18 2 (16) 2 (16)

17 81 2 14 2 18 2 (16) 2 (16)

18 82 2 14 2 18 2 (16) 2 (16)

19 83 2 14 2 18 2 (16) 0 (14)

20 84 2 14 2 18 2 (16) 0 (14)

21 85 2 14 2 18 2 (16) 0 (14)

22 86 2 14 2 18 2 (16) 0 (14)

23 87 2 14 2 18 2 (16) 0 (14)

24 88 2 14 2 18 0 (4) 0 (14)

25 89 2 14 2 18 0 (4) 0 (14)

26 90 2 14 2 18 0 (4) 0 (14)

27 91 2 14 2 18 0 (4) 0 (0)

28 92 2 14 2 18 0 (4) 0 (0)

29 93 2 14 2 18 0 (4) 0 (0)

30 94 2 14 2 18 0 (4) 0 (0)

31 95 2 14 2 18 0 (4) 0 (0)

32 96 2 14 2 18 0 (0) 0 (0)

33 97 2 14 2 18 0 (0) 0 (0)

34 98 2 14 2 18 0 (0) 0 (0)

35 99 2 14 2 18 0 (0) 0 (2)

36 100 2 14 2 18 0 (0) 0 (2)

37 101 2 14 2 18 0 (0) 0 (2)

38 102 2 14 2 18 0 (0) 0 (2)

39 103 2 14 2 18 0 (0) 0 (2)

40 104 2 14 2 18 0 (12) 0 (2)

41 105 2 14 2 18 0 (12) 0 (2)

leading to the valid Sbox transitions. This occurs with probability 2−7 while
at most 8 bits must be guessed. Therefore, we can consider that this step has
negligible time complexity compared to 27×a1→11−18.58.

Hence, the total data complexity is 27×a2→10+1, the time complexity is
reduced to 27×a2→10+1+27×a1→11−18.58, and the memory is unchanged (28×a1+1).

Choosing a2→10 and a1→11. According to the previous analysis the bottleneck
in the time complexity is:

27×a2→10+1 + 27×a1→11−18.58.

Related-Key Attack on Full-Round PICARO 99

It is then parametrized by a2→10 (the amount of active Sboxes from round 2
to 10) and by a1→11 (the amount of active Sboxes from round 1 to 11).

A simple search finds that the minimum for a2→10 is 14 and that the minimum
for a1→11 is 17. Unfortunately, the two minima cannot be reached simultaneously,
which gives raise to the following two possible options.

Variant 1: minimizing a2→10. We consider here situations for which a2→10 = 14,
the minimum for a1→11 in these cases is 18 (see Table 2 for the difference positions
that reach these minima and Fig. 3 for an example of a related-key attack using
this variant).

Fig. 4. Related-key attack on full-round PICARO . This figure represents the attack
with the best time complexity: 2106, with a data complexity of 2106. The master-key
differences are located at bits 27 and 123.

100 A. Canteaut et al.

Table 3. List of all master-key differences (of weight less than 4) minimizing a1→11

(a1→11 = 17) with the smallest value for a2→10 (a2→10 = 15). The last 2 columns indi-
cate the number of key bytes (and bits) deduced from k12 at the positions corresponding
to the active Sboxes at rounds 1 and 11.

diff. positions a1 a2→10 a11 a1→11 known bytes (bits) in k1 known bytes (bits) in k11

27 123 1 15 1 17 0(2) 0(0)

28 124 1 15 1 17 0(2) 0(0)

29 125 1 15 1 17 0(2) 0(0)

30 126 1 15 1 17 0(2) 0(0)

91 123 1 15 1 17 0(2) 0(0)

92 124 1 15 1 17 0(2) 0(0)

93 125 1 15 1 17 0(2) 0(0)

94 126 1 15 1 17 0(2) 0(0)

One of the advantages of this variant is that some of the options we can
choose for the master-key difference allow us to speed up the search for the
master-key. Indeed, two active Sbox transitions at round 1 and two other ones
at round 11 can be checked without any additional key guess, as previously
explained. However, this speed-up is imperceptible since it does not decrease the
time complexity bottleneck. The final time complexity is

27×a2→10+1 + 27×a1→11−18.58 = 27×14+1 + 27×18−18.58 = 299 + 2107.4 = 2107.4.

The total data complexity is 27×a2→10+1 = 299, and the memory complexity
is 28×a1+1 = 217.
Variant 2: minimizing a1→11. If we choose to minimize a1→11, the minimum
value of a2→10 is 15, and the time necessary to generate the data becomes
27×a2→10+1 = 2106.

An exhaustive search among these configurations, as presented in Table 3,
shows that none of them allows to do the direct sieving with k1 and k11 that
was possible in the previous variant. The attack obtained when the master-key
difference is chosen at positions 27 and 123 is depicted in Fig. 4. The final data
complexity (which is also the time complexity bottleneck) is 27×15+1 = 2106, the
time complexity is 27×a2→10+1 + 27×a1→11−18.58 = 2106 + 2100.4 = 2106 and the
memory complexity is 28×a1+1 = 29.

6 Conclusion

In this paper we exhibit related-key attacks on the full-round block cipher
PICARO. Our attacks exploit a weakness in the key-schedule as well as the
non-bijectivity of the Sbox. We think that a stronger key-schedule with a better
diffusion would help thwarting this type of attack.

Despite the fact that our related-key attacks do not represent a threat to the
cipher in other more realistic scenarios, the authors aimed at providing related-
key resistance, and we believe that such claim should be revised.

Related-Key Attack on Full-Round PICARO 101

A PICARO Sbox

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 08 0c 03 06 06 04 05 06 05 04 0c 0c 04 03 05 03
10 0a 1f 29 3b 4b 55 62 7b 82 95 af bf c5 d9 e2 f9
20 01 2d 45 6a 8a ac cf ea 9f bc dd fd 1c 35 5f 75
30 0f 34 61 52 c2 fb a3 92 13 2b 74 44 db e1 b3 81
40 0f 44 81 c2 92 db 13 52 b3 fb 34 74 2b 61 a3 e1
50 0e 59 a4 f8 d8 87 7c 28 3c 67 99 c9 e7 b4 4c 14
60 02 63 ca ad 1d 71 d7 bd 27 41 e3 83 31 5a f7 9a
70 0f 74 e1 92 52 2b b3 c2 a3 db 44 34 fb 81 13 61
80 02 83 9a 1d bd 31 27 ad f7 71 63 e3 41 ca d7 5a
90 0e 99 b4 28 f8 67 4c d8 7c e7 c9 59 87 14 3c a4
a0 0a af d9 7b 3b 95 e2 4b 62 c5 bf 1f 55 f9 82 29
b0 0a bf f9 4b 7b c5 82 3b e2 55 1f af 95 29 62 d9
c0 0e c9 14 d8 28 e7 3c f8 4c 87 59 99 67 a4 7c b4
d0 01 dd 35 ea 6a bc 5f 8a cf 1c fd 2d ac 75 9f 45
e0 02 e3 5a bd ad 41 f7 1d d7 31 83 63 71 9a 27 ca
f0 01 fd 75 8a ea 1c 9f 6a 5f ac 2d dd bc 45 cf 35

References

1. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology
7(4), 229–246 (1994)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology 4(1), 3–72 (1991)

3. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

4. Canteaut, A., Chabaud, F.: A New algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

5. Carlet, C.: Relating Three Nonlinearity Parameters of Vectorial Functions and
Building APN Functions from Bent Functions. Des. Codes Crypt. 59(1–3), 89–109
(2011)

6. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block Ciphers That
Are Easier to Mask: How Far Can We Go? In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

7. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-Designs: Bitslice Encryp-
tion for Efficient Masked Software Implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

8. Piret, G., Roche, T., Carlet, C.: PICARO – A Block Cipher Allowing Efficient
Higher-Order Side-Channel Resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.)
ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

9. Piret, G., Roche, T., Carlet, C.: PICARO - A Block Cipher Allowing Efficient
Higher-Order Side-Channel Resistance, extended version, IACR Cryptology ePrint
Archive 2012, 358 (2012). http://eprint.iacr.org/2012/358

10. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

http://eprint.iacr.org/2012/358

Cryptanalysis of Feistel Networks with Secret
Round Functions

Alex Biryukov1, Gaëtan Leurent2, and Léo Perrin3(B)

1 University of Luxembourg, Luxembourg City, Luxembourg
alex.biryukov@uni.lu

2 Inria, project-team SECRET, Rocquencourt, France
gaetan.leurent@inria.fr

3 SnT, University of Luxembourg, Luxembourg City, Luxembourg
leo.perrin@uni.lu

Abstract. Generic distinguishers against Feistel Network with up to
5 rounds exist in the regular setting and up to 6 rounds in a multi-key
setting. We present new cryptanalyses against Feistel Networks with 5,
6 and 7 rounds which are not simply distinguishers but actually recover
completely the unknown Feistel functions.

When an exclusive-or is used to combine the output of the round
function with the other branch, we use the so-called yoyo game which we
improved using a heuristic based on particular cycle structures. The com-
plexity of a complete recovery is equivalent to O(22n) encryptions where
n is the branch size. This attack can be used against 6- and 7-round

Feistel Networks in time respectively O(2n2n−1+2n) and O(2n2n+2n).
However when modular addition is used, this attack does not work. In
this case, we use an optimized guess-and-determine strategy to attack

5 rounds with complexity O(2n23n/4
).

Our results are, to the best of our knowledge, the first recovery attacks
against generic 5-, 6- and 7-round Feistel Networks.

Keywords: Feistel Network · Yoyo · Generic attack · Guess-and-
determine

1 Introduction

The design of block ciphers is a well researched area. An overwhelming majority
of modern block ciphers fall in one of two categories: Substitution-Permutation
Networks (SPN) and Feistel Networks (FN). Examples of those two structures
are the block ciphers standardized by the American National Institute for Stan-
dards and Technology, respectively the AES [1] and the DES [2]. However, since
block ciphers are simply keyed permutations, the same design strategies can be
applied to the design of so-called S-Boxes.

S-Boxes are “small” functions operating usually on at most 8-bits of data
which are used to ensure a high non-linearity. For instance, both the DES and

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 102–121, 2016.
DOI: 10.1007/978-3-319-31301-6 6

Cryptanalysis of Feistel Networks with Secret Round Functions 103

the AES use S-Boxes, respectively mapping 6 bits to 4 and permuting 8 bits. If
a bijective S-Box is needed, it can be built like a small unkeyed block cipher. For
example, the S-Box of Khazad [3] is a 3-round SPN and the S-Box of Zorro [4]
is a 3-round FN. These 8 × 8 bits S-Boxes are built from smaller 4 × 4 ones to
diminish memory requirements.

Keeping the design process of an S-Box secret might be necessary in the con-
text of white-box cryptography, as described e.g. in [5]. In this paper, Biryukov
et al. describe a memory-hard white-box encryption scheme relying on a SPN
with large S-Boxes built like smaller SPN. Their security claim needs the fact
that an adversary cannot decompose these S-Boxes into their different linear
and non-linear layers. Such memory-hard white-box implementation may also
be used to design proofs-of-work such that one party has an advantage over the
others. Knowing the decomposition of a memory-hard function would effectively
allow a party to bypass this memory-hardness. Such functions can have many
use cases including password hashing and crypto-currency design.

Decomposing SPNs into their components is possible for up to 3 S-Box layers
when the S-Boxes are small using the multi-set attack on SASAS described
in [6]. A more general strategy for reverse-engineering of unknown S-Boxes was
proposed recently in [7]. Our work pursues the same line of research but targets
FN specifically: what is the complexity of recovering all Feistel functions of a
R-round FN? Our results are different depending on whether the Feistel Network
attacked uses an exclusive-or (⊕) or a modular addition (�). Thus, we refer to a
Feistel Network using XOR as a ⊕-Feistel and to one based on modular addition
as a �-Feistel.

This work also has implications for the analysis of format-preserving encryp-
tion schemes, which are designed to encrypt data with a small plaintext set, for
instance credit-card numbers (a 16 decimal digits number). In particular, the
BPS [8] and FFX [9] constructions are Feistel schemes with small blocks; BPS
uses 8 rounds, while FFX uses between 12 and 36 rounds (with more rounds for
smaller domains). When these schemes are instantiated with small block sizes,
recovering the full round functions might be easier than recovering the master
key and provides an equivalent key.

Previous Work. Lampe et al. [10], followed by Dinur et al. [11], studied Feistel
Networks where the Feistel function at round i consists in x �→ Fi(x ⊕ ki), with
Fi being public but ki being kept secret. If the subkeys are independent then it
is possible to recover all of them for a 5-round (respectively 7-round) FN in time
O(22n) (resp. O(23n)) using only 4 known plaintexts with the optimised Meet-
in-the-Middle attack described in [11]. However, we consider the much more
complex case where the Feistel functions are completely unknown.

A first theoretical analysis of the Feistel structure and the first generic attacks
were proposed in the seminal paper by Luby and Rackoff [12]. Since then, several
cryptanalyses have been identified with the aim to either distinguish a Feistel
Network from a random permutation or to recover the Feistel functions. Differ-
ential distinguishers against up to 5 rounds in the usual setting and 6 rounds in
a multi-key setting are presented in [13], although they assume that the Feistel

104 A. Biryukov et al.

functions are random functions and thus have inner-collisions. Conversely, an
impossible differential covering 5 rounds in the case where the Feistel functions
are permutations is described in [14] and used to attack DEAL, a block cipher
based on a 6-round Feistel Network. Finally, a method relying on a SAT-solver
was recently shown in [7]. It is capable of decomposing Feistel Networks with
up to n = 7 in at most a couple of hours. How this time scales for larger n is
unclear. These attacks, their limitations and their efficiency are summarized in
Table 1. A short description of some of them is given in Sect. 2 for the sake of
completeness.

Table 1. Generic attacks against Feistel Networks.

R Type Power Restrictions Time Data Ref.

4 Differential Distinguisher Non bij. round func. 2n/2 2n/2 [13]

Guess & Det. Full recovery – 23n/2 23n/2 Sect. 5.2

5 Differential Distinguisher Non bij. round func. 2n 2n [13]

Imp. diff Distinguisher Bij. round func. 22n 2n [14]

SAT-based Full recovery n ≤ 7 Practical 22n [7]

Yoyo Full Recovery Only for ⊕-Feistel 22n 22n Sect. 4.3

Integral Full recovery S1 or S3 bij. 22.81n 22n Sect. 6

Guess & Det. Full recovery – 2n23n/4
22n Sect. 5.3

6 Differential Distinguisher Multi-key setting 22n 22n [13]

Yoyo Full recovery Only for ⊕-Feistel 2n2n−1+2n 22n Sect. 4.4

7 Yoyo Full recovery Only for ⊕-Feistel 2n2n+2n 22n Sect. 4.4

Our Contribution. We present attacks against generic 5-round Feistel Networks
which recover all Feistel functions efficiently instead of only distinguishing them
from random. Furthermore, unlike distinguishers from the litterature, our attacks
do not make any assumptions about whether the Feistel functions are bijective
or not. Our attack against ⊕-Feistel uses the yoyo game, a tool introduced in [15]
which we improve by providing a more general theoretical framework for it and
leveraging particular cycle structures to diminish its cost. The principle of the
yoyo game is introduced in Sect. 3 and how to use cycles to improve it is described
in Sect. 4. We also present an optimized guess-and-determine attack which, unlike
yoyo cryptanalysis, works against �-Feistel. It exploits a boomerang-like prop-
erty related to the one used in our yoyo game to quickly explore the implications
of the guess of an S-Box entry, see Sect. 5. Finally, an integral attack is given in
Sect. 6.

We note that several of our attack have a double exponential complexity,
and can only be used in practice for small values of n, as used for 8-bit S-Boxes
(n = 4) or format-preserving encryption with a small domain.

Cryptanalysis of Feistel Networks with Secret Round Functions 105

Notation. We introduce some notation for the different states during encryption
(see Fig. 1). Each of the values is assigned a letter, e.g. the left side of the input
is in position “A”. When we look at 5-round Feistel Networks, the input is fed
in positions A and B and the output is read in G,F . For 6 rounds, the input
is the same but the output is read in H,G with H = S5(G) + F . If we study a
�-Feistel then “+” denotes modular addition (�); it denotes exclusive-or (⊕) if
we attack a ⊕-Feistel. Concatenation is denoted “||” and encryption is denoted E
(the number of rounds being clear from the context). For example, E(a||b) = g||f
for a 5-round Feistel Network. The bit-length of a branch of the Feistel Network
is equal to n.

In addition we remark that, for an R-round Feistel, we can fix one entry of
the last R− 2 Feistel functions (or the first R− 2 ones) arbitrarily. For example,
the output of the 5-round Feistel Network described in Fig. 2 does not depend
on α0, α1 or α2.

S0+

S1+ C

S2+ D

S3+ E

S4+

A B

FG

Fig. 1. Internal state notation.

S0+

S1+

S2+

S3+

S4+

+α0

�
−α0

�
+α1

�
−α1

�
+α2−α0

�
−α2

�
−α1

�
−α2

�

Fig. 2. Equivalent Feistel Networks.

2 Previous Attacks Against 5- and 6-Round Feistel
Networks

2.1 Differential Distinguishers

In [13], Patarin shows a differential distinguisher against 5-round Feistel Net-
works. However, it only works if the Feistel functions have inner-collisions. It
is based on the following observation. Let (gi||fi) be the image of (ai||bi) by a
permutation and let bi be constant. Then for i �= j, such that fi = fj , count
how many times ai ⊕ aj = gi ⊕ gj . This number is roughly twice as high for a
5-round Feistel Network than for a random permutation.

In the same paper, Patarin suggests two distinguishers against 6-round ⊕-
Feistel Networks. However, these do not target a permutation but a genera-
tor of permutation. This can be interpreted as a multi-key attack: the attacker
has a black-box access to several permutations and either none or all of which

106 A. Biryukov et al.

are 6-round ⊕-Feistel Networks. The first attack uses that the signature of a
⊕-Feistel Network is always even. The second attack exploits a statistical bias
too weak to be reliably observable using one codebook but usable when several
permutations are available. It works by counting all quadruples of encryptions
(ai||bi) → (gi||hi), i = 1..4 satisfying this system:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

b1 = b3, b2 = b4

g1 = g2, g3 = g4

a1 ⊕ a3 = a2 ⊕ a4 = g1 ⊕ g3

h1 ⊕ h2 = h3 ⊕ h4 = b1 ⊕ b2.

If there are λ black-boxes to distinguish and if m queries are performed for each
then we expect to find about λm42−8n solutions for a random permutation and
2λm42−8n for 6-round Feistel Networks, i.e. twice as much.

2.2 Impossible Differential

Knudsen described in [14] an impossible differential attack against his AES pro-
posal, DEAL, a 6-round Feistel Network using the DES [2] as a round function.
This attack is made possible by the existence of a 5-round impossible differen-
tial caused by the Feistel functions being permutations. In this case, an input
difference (α||0) cannot be mapped to a difference of (α||0) after 5 rounds. This
would imply that the non-zero difference which has to appear in D as the image
of α by S2 is mapped to 0, which is impossible.

To distinguish such a 5-round FN from a random permutation we need to
generate λ · 22n pairs with input difference (Δ||0). Among those, about λ should
have an output difference equal to (Δ||0) if the permutation is a random permu-
tation while it is impossible to observe if for a 5-round FN with bijective Feistel
functions. Note that while the time complexity is O(22n), the data complexity
can be brought down to O(2n) using structures.

An attack on 6 rounds uses this property by identifying pairs of encryptions
with difference (α||0) in the input and (α||Δ) for the output for any Δ �= 0. A pair
as a correct output difference with probability 2−n(1− 2−n) since α is fixed and
Δ can take any value except 0. We repeat this process for the whole codebook
and all α �= 0 to obtain 2n+(2n−1) · 2−n(1 − 2−n) = 22n−1 − 2n−1 pairs. Each of
them gives an impossible equation for S5: if {(a||b) → (g||h), (a ⊕ α||b) → (g ⊕
α||h⊕Δ)} is a pair of encryptions then it is impossible that S5(g)⊕S5(g⊕α) = Δ
as it would imply the impossible differential. In the end, we have a system of
about 22n−1 − 2n−1 impossible equations, a random Feistel function satisfying
an impossible equation with probability (1 − 2−n). Thus, this attack filters out
all but the following fraction of candidates for S5:

Impossible differential filter =
(
1 − 2−n

)22n−1−2n−1

≈ 20.72−1.443·2n−1
.

Cryptanalysis of Feistel Networks with Secret Round Functions 107

3 Yoyo Game and Cryptanalysis

3.1 The Original Yoyo Game

Several cryptanalyses have been proposed in the literature that rely on encrypt-
ing a plaintext, performing an operation on the ciphertext and then decrypting
the result. For example, the “double-swiping” used against newDES [16] in the
related-key setting relies on encrypting a pair of plaintexts using two related-
keys and decrypting the result using two different related-keys. Another example
is the boomerang attack introduced by Wagner [17] in the single-key setting.
A pair with input difference δ is encrypted. Then, a difference Δ is added to the
ciphertexts and the results are decrypted, hopefully yielding two plaintexts with
a difference of δ.

The yoyo game was introduced by Biham et al. in [15] where it was used
to attack the 16 center rounds of Skipjack [18], a block cipher operating on
four 16-bits words. We describe this attack using slightly different notation
and terminology to be coherent with the rest of our paper. In this paragraph,
Ek denotes an encryption using round-reduced Skipjack under key k.

It was noticed that if the difference between two encryptions at round 5 is
(0,Δ, 0, 0) where Δ �= 0 then the other three words have difference 0 between
rounds 5 and 12. Two encryptions satisfying this truncated differential are said
to be connected. The key observation is the following. Consider two plaintexts
x = (x0, x1, x2, x3) and x′ = (x′

0, x
′
1, x2, x

′
3) where x2 is constant. If they are

connected, then the pair φ(x, x′) =
(
(x0, x

′
1, x2, x3), (x′

0, x1, x2, x
′
3)

)
is connected

as well (see [15] for a detailed explanation on why it is the case). Furthermore,
let y = (y0, y1, y2, y3) = Ek(x) and y′ = (y′

0, y
′
1, y

′
2, y

′
3) = Ek(x′). We can form

two new ciphertexts by swapping their first words to obtain z = (y′
0, y1, y2, y3)

and z′ = (y0, y′
1, y

′
2, y

′
3). If we decrypt them to obtain (u, u′) = (E−1

k (z), E−1
k (z′)),

then u and u′ are connected. If we denote ψ(x, x′) the function which encrypts x
and x′, swaps the first words of the ciphertexts obtained and decrypts the result
then ψ preserves connection, just like φ. It is thus possible to iterate φ and ψ to
obtain many connected pairs, this process being called the yoyo game.

In this section, we present other definitions of the connection and of the
functions φ and ψ which allow us to play a similar yoyo game on 5-round Feistel
Networks.

3.2 Theoretical Framework for the Yoyo Game

Consider two plaintexts a||b and a′||b′ such that the difference between their
encryptions in positions (C,D) is equal to (γ, 0) with γ �= 0. Then the difference
in position E is equal to γ. Conversely, the difference in (E,D) being (γ, 0)
implies that the difference in C is γ. When this is the case, the two encryptions
satisfy the systems of equations and the trail described in Fig. 3.

Definition 1. If the encryptions of a||b and a′||b′ follow the trail in Fig. 3 then
they are said to be connected in γ.

108 A. Biryukov et al.

{
S0(b) ⊕ S0(b

′) = a ⊕ a′ ⊕ γ

S1(a ⊕ S0(b)) ⊕ S1(a
′ ⊕ S0(b

′)) = b ⊕ b′

{
S4(f) ⊕ S4(f

′) = g ⊕ g′ ⊕ γ

S3(g ⊕ S4(f)) ⊕ S3(g
′ ⊕ S4(f

′)) = g ⊕ g′

+

+ γ

+ 0

+ γ

+

a ⊕ a′ b ⊕ b′

g ⊕ g′ f ⊕ f ′

Fig. 3. The equations defining connection in γ and the corresponding differential trail.

This connection is an “exclusive” relation: if (a||b) and (a′||b′) are connected,
then neither (a||b) nor (a′||b′) can be connected to anything else. Furthermore,
we can replace (a, a′) by (a ⊕ γ, a′ ⊕ γ) in the top equations and still have them
being true. Indeed, the two γ cancel each other in the first one. In the second,
the values input to each call to S1 are simply swapped as a consequence of the
first equation. Similarly, we can replace (g, g′) by (g ⊕ γ, g′ ⊕ γ) in the bottom
equations.1 As consequence of these observation, we state the following lemma.

Lemma 1. We define the following two involutions

φγ(a||b) = (a ⊕ γ)||b, ψγ = E−1 ◦ φγ ◦ E .

If a||b and a′||b′ are connected then, with probability 1:

– φγ(a||b) and φγ(a′||b′) are connected,
– ψγ(a||b) and ψγ(a′||b′) are connected.

By repeatedly applying φγ and ψγ component-wise on a pair of plaintexts
(x, x′), we can play a yoyo game which preserves connection in γ. This process
is defined formally below.

Definition 2. Let
(
x0 = (a0||b0), x′

0 = (a′
0||b′

0)
)
be a pair of inputs. The yoyo

game in γ starting in (x0, x
′
0) is defined recursively as follows:

(
xi+1, x

′
i+1

)
=

{(
φγ(xi), φγ(x′

i)
)

if i is even,(
ψγ(xi), ψγ(x′

i)
)

if i is odd

Lemma 2. If (x0, x
′
0) is connected in γ then all pairs in the game starting in

(x0, x
′
0) are connected in γ. In other words, either all pairs within the game

played using φγ and ψγ are connected in γ or none of them are.

1 However, such a yoyo game cannot be played against a �-Feistel, as explained in
Sect. 3.4. It only works in characteristic 2.

Cryptanalysis of Feistel Networks with Secret Round Functions 109

3.3 The Yoyo Cryptanalysis Against 5-Round ⊕-Feistel Networks

Given a yoyo game connected in γ, it is easy to recover Feistel functions S0

and S4 provided that the yoyo game is long enough, i.e. that it contains enough
connected pairs to be able to recover all 2n entries of both S-Boxes. If the yoyo
game is not connected in γ then yoyo cryptanalysis (Algorithm 1) identifies it as
such very efficiently.

It is a differential cryptanalysis using that all pairs in the game are (supposed
to be) right pairs for the differential trail defining connection in γ. If it is not
the case, S0 or S4 will end up requiring contradictory entries, e.g. S0(0) =
0 and S0(0) = 1. In this case, the game is not connected in γ and must be
discarded. Yoyo cryptanalysis is described in Algorithm12. It only takes as inputs
a (possible) yoyo game and the value of γ. Algorithm 2 describes AddEntry,
a subroutine handling some linear equations. Note that one entry can be set
arbitrarily (here, S0(0) = 0) as summarized in Fig. 2.

Let Y be a (supposed) yoyo game of size |Y|. For each pair in it, either an
equation is added to the list, FAIL is returned or AddEntry is called. While the
recursive calls to AddEntry may lead to a worst time complexity quadratic in
|Y| if naively implemented, this problem can be mitigated by using a hashtable
indexed by the Feistel functions inputs instead of a list. Furthermore, since
already solved equations are removed, the total time complexity is O(|Y|).

Algorithm 1. Yoyo cryptanalysis against a 5-round ⊕-Feistel Network
Inputs supposed yoyo game

(
ai||bi, a

′
i||b′

i

)
; difference γ | Output S0 or FAIL

Le ← [] � List of equations
S0 ← empty S-Box
δ0 ← a0 ⊕ a′

0 ⊕ γ
S0(b0) ← 0, S0(b

′
0) ← δ0

for all i ≥ 1 do
δi ← ai ⊕ a′

i ⊕ γ
if S0(bi) and S0(b

′
i) are already known and S0(bi) ⊕ S0(b

′
i) �= δi then

return FAIL

else if S0(bi) is known but not S0(b
′
i) then

AddEntry
(
S0, b

′
i, S0(bi) ⊕ δi, Le

)
; if it fails then return FAIL

else if S0(b
′
i) is known but not S0(bi) then

AddEntry
(
S0, bi, S0(b

′
i) ⊕ δi, Le

)
; if it fails then return FAIL

else
add “S0(b

′
i) ⊕ S0(bi) = δi” to Le.

end if
end for
return S0

2 It can also recover S4 in an identical fashion but this part is omitted for the sake of
clarity.

110 A. Biryukov et al.

Algorithm 2. Adding new entry to S0 (AddEntry)
Inputs S-Box S0 ; input x ; output y ; List of equations Le | Output SUCCESS
or FAIL

if S0(x) already set and S0(x) = y then
return SUCCESS � No new information

else if S0(x) already set and S0(x) �= y then
return FAIL � Contradiction identified

else
S0(x) ← y
for all Equation S0(xi) ⊕ S0(x

′
i) = Δi in Le do

if S0(xi) and S0(x
′
i) are set then

if S0(xi) ⊕ S0(x
′
i) �= Δi then return FAIL ; else Remove eq. from Le

� Eq. satisfied
else if S0(xi) is set but not S0(x

′
i) then

AddEntry
(
S0, x

′
i, S0(xi) ⊕ Δi, Le

)
; if it fails then return FAIL

� Eq. gives new entry
else if S0(x

′
i) is set but not S0(xi) then

AddEntry
(
S0, xi, S0(x

′
i) ⊕ Δi, Le

)
; if it fails then return FAIL

� Eq. gives new entry
end if

end for
end if
return SUCCESS

3.4 On the Infeaseability of Our Yoyo Game Against an �-Feistel

Assume that the following equations holds:
{(

S0(b) + a
)

−
(
S0(b′) + a′) = γ(

S1(S0(b) + a) + b
)

−
(
S1(S0(b′) + a′) + b′) = 0.

(1)

In order to be able to play a yoyo game against the corresponding �-Feistel, we
need to be able to replace a by a+γ and a′ by a′ +γ in System (1) and still have
it hold. In other words, we need that Eq. (1) holding implies that the following
equations hold as well:

{(
S0(b) + a + γ

)
−

(
S0(b′) + a′ + γ

)
= γ(

S1(S0(b) + a + γ) + b
)

−
(
S1(S0(b′) + a′ + γ) + b′) = 0.

(2)

The first one trivially does. Using it, we note that S0(b)+a+γ = S0(b′)+a′+2γ.
Let X = S0(b′)+a′. Then the left-hand side of the second equation in System (2)
can be re-written as S1(X + 2γ) − S1(X + γ) + b − b′. Furthermore, the second
equation in System (1), which is assumed to hold, implies that S1(X + γ) −
S1(X) = b′ − b. Thus, the left-hand side of the second equation in System (2) is
equal to

S1(X + 2γ) − (b′ − b + S1(X)) + b − b′ = S1(X + 2γ) − S1(X) − 2(b′ − b).

Cryptanalysis of Feistel Networks with Secret Round Functions 111

The term S1(X +2γ)−S1(X) has an unknown value unless γ = 2n−1. Neverthe-
less, in this case, we would need 2(b′ − b) = 0 which does not have a probability
equal to 1. However both S1(X + 2γ) − S1(X) and 2(b′ − b) are always equal to
0 in characteristic 2 which is why our yoyo game can always be played against a
⊕-Feistel.

4 An Improvement: Using Cycles

4.1 Cycles and Yoyo Cryptanalysis

A yoyo game is a cycle of ψγ and φγ applied iteratively component-wise on a pair
of elements. Thus, it can be decomposed into two cycles, one for each “side” of
the game: (x0, x1, x2, ...) and (x′

0, x
′
1, x

′
2, ...). This means that both cycles must

have the same length, otherwise the game would imply that x0 is connected to
x′

j for j �= 0, which is impossible. Since both φγ and ψγ are involutions, the cycle
can be iterated through in both directions. Therefore, finding one cycle gives us
two directed cycles.

In order to exploit yoyo games, we could generate pairs (x0, x
′
0) at random,

generate the yoyo game starting at this pair and then try and recover S0 and S4

but this endeavour would only work with probability 2−2n (the probability for
two random points to be connected). Instead, we can use the link between cycles,
yoyo games and connection in γ as is described in this section. Note that the use
of cycles in cryptography is not new; in fact it was used in the first cryptanalyses
against ENIGMA. More recently, particular distribution of cycle sizes were used
to distinguish rounds-reduced PRINCE-core [19] from random [20] and to attack
involutional ciphers [21].

4.2 Different Types of Cycles

Let C = (xi)�−1
i=0 be a cycle of length 	 of ψγ and φγ , with x2i = ψγ(x2i−1) and

x2i+1 = φγ(x2i). We denote the point connected to xi as yi, where all indices
are taken modulo 	. Since xi and yi are connected, and the connection relation
is one-to-one, we also have y2i = ψγ(y2i−1) and y2i+1 = φγ(y2i). Therefore,
C′ = (yi)�−1

i=0 is also a cycle of length 	.
We now classify the cycles according to the relationship between C and C′.

– If C and C′ are Distincts, C is a Type-D cycle. A representation is given in
Fig. 4a. Otherwise, there exists k such that y0 = xk.

– If k is even, we have xk+1 = φγ(xk). Since xk = y0 is connected to x0,
xk+1 = φγ(xk) is connected to φγ(x0) = x1, i.e. y1 = xk+1. Further, xk+2 =
ψγ(xk+1) is connected to ψγ(x1) = x2, i.e. y2 = xk+2. By induction, we have
yi = xk+i. Therefore x0 is connected to xk and xk is connected to x2k. Since
the connection relation is one-to-one, this implies that 2k = 	.
We denote this setting as a Type-S cycle. Each element xi is connected to
xi+�/2. Thus, if we represent the cycle as a circle, the connections between
the elements would all cross in its center, just like Spokes, as can be seen in
Fig. 4b.

112 A. Biryukov et al.

– If k is odd, we have xk−1 = φγ(xk). Since xk = y0 is connected to x0, xk−1 =
φγ(xk) is connected to φγ(x0) = x1, i.e. y1 = xk−1. Further, xk−2 = ψγ(xk−1)
is connected to ψγ(x1) = x2, i.e. y2 = xk−2. By induction, we have yi = xk−i.
We denote this setting as a Type-P cycle. If we represent the cycle as a circle,
the connections between the elements would all be Parallel to each other as
can be seen in Fig. 4c.
In particular, there at exactly two pairs (xi, xi+1) such that xi and xi+1 are
connected. Indeed, we have xi+1 = yi if and only if i + 1 ≡ k − i mod 	 i.e.
i ≡ (k − 1)/2 mod 	/2. As a consequence, the existence of w connected pairs
(x, x′) with x′ = φγ(x) or x′ = ψγ(x) implies the existence of w/2 Type-P
cycles.
In addition, Type-P cycles can only exist if either S1 or S3 are not bijections.
Indeed, if (a||b) and (a ⊕ γ||b) are connected then the difference in position
D cannot be zero unless S1 can map a difference of γ to zero. If it is a
permutation, this is impossible. The situation is identical for S3. Furthermore,
each value c such that S1(c) = S1(c ⊕ γ) implies the existence of 2n values
(a||b) connected to φγ(a||b) as b can be chosen arbitrarily and a computed from
b and c. Again, the situation is identical for S3. Thus, if S1(x) = S1(x ⊕ γ)
has w1 solutions and if S3(x) = S3(x ⊕ γ) has w3 solutions then there are
(w1 + w3) · 2n−2 Type-P cycles.

Fig. 4. All the types of cycles that can be encountered. φγ is a blue line, ψγ is a red
one and connection is a green one (remember that φγ and ψγ are involutions) (Color
figure online).

4.3 The Cycle-Based Yoyo Cryptanalysis

Exploiting a Type-S cycle is a lot easier than exploiting a Type-P or a pair
of Type-D cycles. Indeed, the connected pairs (xi, xi+�/2) can be immediately
derived from the length 	 of the cycle, while we have to guess a shift amount for
connected pairs in a Type-P cycle, or between two type D cycles. Thus, it makes
sense to target those specifically, for instance by implementing Algorithm3.

Cryptanalysis of Feistel Networks with Secret Round Functions 113

Algorithm 3. The cycle based yoyo cryptanalysis.
for all γ ∈ {0, 1}2n\{0} do

for all s ∈ {0, 1}2n do
if s was not encountered before for this γ then

C ← empty list
x ← s
repeat

x ← φ(x); append x to C
x ← ψ(x); append x to C

until x = s
if |C| ≥ 2n+2 then

Build yoyo game Y =
(C[0, .., � − 1], C[�, .., 2� − 1]

)
with � = |C|

2

Run yoyo cryptanalysis (Algorithm 1) against Y
if yoyo cryptanalaysis is a success then

return S0, S4

end if
end if

end if
end for

end for

Let qS(n) be the probability that a Type-S cycle exists for the chosen γ for a
5-round Feistel Network built out of bijective Feistel functions. When averaged
over all such Feistel Networks, this probability does not depend on γ. The full
version of this paper [22] contains a more detailed discussion of this probability
in Sect. 3.4, and examples of functional graphs in the Appendix.

This attacks requires O(22n/n) blocks of memory to store which plaintexts
were visited and O(22n) time. Indeed, at most all elements of the codebook will
be evaluated and inspected a second time when attempting a yoyo cryptanalysis
on each cycle large enough. Even though the attack must be repeated about
1/qS(n) times to be able to obtain a large enough Type-S cycle, qS(n) increases
with n so that 1/qS(n) can be upper-bounded by a constant independent of n.3

Note also that special points can be used to obtain a time-memory tradeoff:
instead of storing whether all plaintexts were visited or not, we only do so for
those with, say, the first B bits equal to 0. In this case, the time complexity
becomes O(B · 22n) and the memory complexity O

(
22n/(n · B)

)
). Access to the

hash table storing whether an element has been visited or not is a bottle-neck
in practice so special points actually give a “free” memory improvement in the
sense that memory complexity is decreased without increasing time. In fact, wall
clock time may actually decrease. An attack against a ⊕-Feistel with n = 14 on
a regular desktop computer4 takes about 1 hour to recover both S0 and S4.
3 We experimentally found that a lower bound of 0.1 is more than sufficient even for

n as small as 4.
4 CPU: Intel core i7-3770 (3.40 GHz); 8 Gb of RAM. The program was compiled with
g++ and optimization flag -O3.

114 A. Biryukov et al.

4.4 Attacking 6 and 7 Rounds

An Attack on 6 Rounds. A naive approach could consist in guessing all of the
entries of S5 and, for each guess, try running a cycle-based yoyo cryptanalysis. If
it fails then the guess is discarded. Such an attack would run in time O

(
2n2n+2n

)
.

However, it is possible to run such an attack at a cost similar to that of guessing
only half of the entries of S5, namely O(2n2n−1+2n) which corresponds to a gain
of 2n2n−1

.
Instead of guessing all the entries, this attack requires guessing the values of

Δ5(x, γ) = S5(x) ⊕ S5(x ⊕ γ). Once these are know, we simply need to replace
ψγ by ψ′

γ with
(
E ◦ ψ′

γ ◦ E−1
)
(g||h) =

(
g ⊕ γ || h ⊕ Δ5(x, γ)

)
.

The cycle-based yoyo cryptanalysis can then be run as previously because, again,
both φγ and ψ′

γ preserve connection in γ. Once it succeeds, the top S-Box is
known which means that it can be peeled of. The regular attack is then performed
on the remaining 5 rounds. Note that if the yoyo cryptanalysis fails because of
inner collisions in S1 or S3 then we can still validate a correct guess by noticing
that there are O(2n) cycles instead of O(2n) as would be expected5.

In this algorithm, 2n−1 values of [0, 2n − 1] must be guessed and for each of
those an attack with running time O(22n) must be run. Hence, the total running
time is O

(
2n2n−1+2n

)
. The time necessary to recover the remainder of the Feistel

functions is negligible.

An Attack on 7 Rounds. A ⊕-Feistel with 7 rounds can be attacked in a
similar fashion by guessing both Δ0(x, γ) and Δ6(x, γ) for all x. These guesses
allow the definition of φ′′

γ and ψ′′
γ , as follows:

φ′′
γ(a||b) =

(
a ⊕ Δ0(x, γ) || b ⊕ γ

)
(
E ◦ ψ′′

γ ◦ E−1
)
(g||h) =

(
h ⊕ Δ6(x, γ) || g ⊕ γ

)
.

For each complete guess
(
(Δ0(x, γ0),∀x), (Δ6(x, γ0),∀x)

)
, we run a yoyo crypt-

analysis. If it succeeds, we repeat the attack for a new difference γ1. In this
second step, we don’t need to guess 2n−1 values for each Δ0(x, γ1) and Δ6(x, γ1)
but only 2n−2 as Δi(x ⊕ γ0, γ1) = Δi(x, γ0) ⊕ Δ(x ⊕ γ1, γ0) ⊕ Δi(x, γ1). We run
again a cycle-based yoyo cryptanalysis to validate our guesses. The process is
repeated n − 1 times in total so as to have

∑n−1
k=0 2k = 2n independent linear

equations connecting the entries of S0 and another 2n for the entries of S6. Solv-
ing those equations gives the two outer Feistel functions, meaning that they can
be peeled off. We then run a regular yoyo-cryptanalysis on the 5 inner rounds
to recover the remainder of the structure.

Since
∑n−1

k=0 2n2k+2n = O
(
2n2n+2n

)
, the total time complexity of this attack

is O
(
2n2n+2n

)
, which is roughly the complexity of a naive 6-round attack based

on guessing a complete Feistel function and running a cycle-based yoyo crypt-
analysis on the remainder.
5 A random permutation of a space of size N is expected to have about loge(N) cycles.

Cryptanalysis of Feistel Networks with Secret Round Functions 115

5 Guess and Determine Attack

Since the yoyo game is only applicable to an ⊕-Feistel, we now describe a dif-
ferent attack that works for any group operation +. This guess and determine
attack is based on a well-known boomerang-like distinguisher for 3-round Feistel
Networks, initially described by Luby and Rackoff [12]. This is used to attack
Feistel Networks with 4 or 5 rounds using a guess and determine approach: we
guess entries of S3 and S4 in order to perform partial encryption/decryption for
some values, and we use the distinguisher on the first three rounds in order to
verify the consistency of the guesses, and to recover more values of S3 and S4.

S2+

S1+

S0+

a b

e d

c

S2+

S1+

S0+

a′ b′

e + δ d

c + δ

S2+

S1+

S0+

a + δ b

e′ d′

c + δ

Fig. 5. Distinguisher for a 3-round Feistel

5.1 Three-Round Property

The distinguisher is illustrated by Fig. 5, and works as follows:

– Select arbitrary values a, b, δ (δ �= 0);
– Query (e, d) = E(a, b) and (e′, d′) = E(a + δ, b);
– Query (a′, b′) = E−1(e + δ, d);
– If E is a three-round Feistel, then d − b′ = d′ − b.

The final equation is always true for a 3-round Feistel Network because the
input to the third Feistel function is c + δ for both queries E(a + δ, b) and
E−1(e+ δ, d). Therefore the output of S1 is the same in both cases. On the other
hand, the relation only holds with probability 2−n for a random permutation.

5.2 Four-Round Attack

We now explain how to use this property to decompose a four-round Feistel
network. We first fix S3(0) = 0, and guess the value S3(1). Then we use known
values of S3 to iteratively learn new values as follows (see Fig. 6):

116 A. Biryukov et al.

S3+

S2+

S1+

S0+

a b

e d

f e

S3+

S2+

S1+

S0+

a′ b′

e + δ d

f ′ e + δ

S3+

S2+

S1+

S0+

a + δ b

e′ d′

f ′′ e′

Fig. 6. Attack against 4-round Feistel

– Select e and δ such that S3(e) and S3(e + δ) are known, with δ �= 0.
– For every d ∈ F

n
2 , we set f = d + S3(e) and f ′ = d + S3(e + δ); we query

(a, b) = E−1(f, e) and (a′, b′) = E−1(f ′, e + δ)
– Then we query (f ′′, e′) = E(a+δ, b). Using the three-round property, we know

that:
d − b′ = d′ − b, where d′ = f ′′ − S3(e′).

This gives the value of S3(e′) as f ′′ − d + b′ − b.

We iterate the deduction algorithm until we either detect a contradiction
(if the guess of S3(1) is wrong), or we recover the full S3. Initially, we select
e = 0, δ = 1, or e = 1, δ = −1, with 2n choices of d: this allows 2n+1 deductions.
If the guess of S3(1) is wrong, we expect to find a contradiction after about 2n/2

deductions. If the guess is correct, almost all entries of S3 will be deduced with
a single choice of e and δ, and we will have many options for further deduction.
Therefore, the complexity of this attack is about 23n/2.

5.3 Five-Round Attack

The extension from 4 rounds to 5 rounds is similar to the extension from a
three-round distinguisher to a four-round attack. First, we guess some entries of
the last S-Box, so that we can invert the last round for a subset of the outputs.
Then, we use those pairs to perform an attack on a reduced version so as to test
whether the guess was valid. However, we need to guess a lot more entries in
this context. The deductions are performed as follows (see Fig. 7):

– Select d, e and δ such that S3(e), S3(e+δ), S4(d+S3(e)) and S4(d+S3(e+δ))
are known.

– Let (f, g) = (d+S3(e), e+S4(f)) and (f ′, g′) = (d+S3(e+ δ), e+ δ +S4(f ′)),
then query (a, b) = E−1(g, f) and (a′, b′) = E−1(g′, f ′)

Cryptanalysis of Feistel Networks with Secret Round Functions 117

S4+

S3+

S2+

S1+

S0+

a b

e d

f e

g f

S4+

S3+

S2+

S1+

S0+

a′ b′

e + δ d

f ′ e + δ

g′ f ′

S4+

S3+

S2+

S1+

S0+

a + δ b

e′ d′

f ′′ e′

g′′ f ′′

Fig. 7. Attack against 5-round Feistel

– Finally, query (g′′, f ′′) = E(a + δ, b). Assuming that S4(f ′′) is known, we can
use the three-round property and deduce:

d − b′ = d′ − b, where d′ = f ′′ − S3(g′′ − S4(f ′′))

This gives the value of S3(g′′ − S4(f ′′)) as f ′′ − d + b′ − b.

Guessing Strategy. The order in which we guess entries of S3 and S4 is very
important in order to obtain a low complexity attack. We first guess the values of
S3(i) and S4(S3(i)) for i < 	, with 	 > 2n/2. This allows to try deductions with
d = 0 and any e, e+δ ≤ 	, i.e. 	2 attempts. Since 	 entries of S4 are known, each
attempt succeeds with probability 	2−n, and we expect to guess about 	32−n

new values of S3. With 	 > 2n/2, this will introduce a contradiction with high
probability.

When an initial guess is non-contradictory, we select x such that S3(x) has
been deduced earlier, we guess the corresponding value S4(S3(x)), and run again
the deduction. The new guess allows to make 	 new deduction attempts with
d = 0, e < 	 and e′ = x. We expect about 	22−n successful new deductions.
With 	 = 23n/4+ε with a small ε > 0, the probability of finding a contradiction
is higher than 2−n, and the size of the search tree decreases.

The attack will also work if we start with 2n/4 entries in S3 and 23n/4 entries
in S4: the first step will deduce 23n/4 values in S3. Therefore, we have to make
only 2n/4 + 23n/4 ≈ 23n/4 guesses, and the total complexity is about 2n23n/4

.

118 A. Biryukov et al.

Application to n = 4. We now explain the attack in more detail with n = 4.
We first set S4(0) = S3(0) = 0 and we guess the values of S3(1), S3(2), S4(S3(1)),
and S4(S3(2)). In particular this allows to compute the last two rounds for the
following (e, d) values:

(0, 0) (1, 0) (2, 0)

This gives 6 candidates (e, d), δ for the deduction algorithm:

(0, 0), δ ∈ {1, 2} (1, 0), δ ∈ {1,−1} (2, 0), δ ∈ {−1,−2}

Each candidate gives a deduction with probability 3/16 because three entries are
known in S4. Therefore there is a good probability to get one deduction S4(x).
In this case, we guess the value S3(S4(x)), so that we can also compute the last
two rounds for (d, e) = (x, 0). We have at least 6 new candidates (e, d), δ for the
deduction algorithm:

(x, 0), δ ∈ {−x, 1 − x, 2 − x} (0, 0), δ = x (1, 0), δ = x − 1 (2, 0), δ = x − 2

In total, we have 12 candidates, and each of them gives a deduction with prob-
ability 4/16, including the deduction made in the first step. We expect about
3 deductions in total, which leads to 7 known values in S3. Since 7 > 2n/2, there
is already a good chance to detect a contradiction. For the remaining cases, we
have to make further guesses of S4 entries, and repeat the deduction procedure.

Since we had to make five guesses for most branches of the guess and deter-
mine algorithm, the complexity is about 220. In practice, this attack takes less
than one second on a single core with n = 4 (on a 3.4 GHz Haswell CPU).

6 Integral attack

Finally, we present an integral attack against 5-round Feistels, that was shown to
us by one of the anonymous reviewers. This attack has a complexity of 23n, and
works for any group operation +, but it requires S1 or S3 to be a permutation.

The attack is based on an integral property, as introduced in the cryptanalysis
of Square [23,24]. In the following, we assume that S1 is a permutation; if S3

is a permutation instead, the attack is performed against the decryption oracle.
An attacker uses a set of 2n plaintexts (ai, b) where ai takes all possible values,
and b is fixed to a constant value. She can then trace the evolution of this set of
plaintext through the Feistel structure:

– ci = ai + S0(b) takes all possible values once;
– di = b + S1(ci) takes all possible values once, since S1 is a permutation;
– ei = ci + S2(di) has a fixed sum:

∑
i

ei =
∑

x∈{0...2n−1}
x +

∑
x∈{0...2n−1}

S2(x) = S.

The first term is 0 for a ⊕-Feistel, and 2n−1 for a �-Feistel, while the second
term is equal to the first if S2 is a permutation, but otherwise unknown.

Cryptanalysis of Feistel Networks with Secret Round Functions 119

After collecting the 2n ciphertexts (gi, fi) corresponding to the set of plain-
texts, she can express ei = gi − S4(fi). The fixed sum

∑
ei = S gives a linear

equation between the values S4(fi) and S. This can be repeated with 2n different
sets of plaintexts, in order to build 2n linear equations. Solving the equations
recovers the values S4(fi), i.e. the full S4 box.

When S2 is a permutation, S is known, and the system has a single solution
with high probability. However, when S is unknown, the system has n equations
and n + 1 unknowns; with high probability it has rank n and 2n solutions.
Therefore, an attacker has to explore the set of solutions, and to use a 4-round
distinguisher to verify the guess. Using the attack of Sect. 5.2, this has complexity
25n/2.

For a ⊕-Feistel, the cost of solving the linear system is 23n with Gaussian
elimination, but can be improved to O(22.81n) with Strassen’s Algorithm (the
currently best known algorithm [25] has complexity only O(22.3729n) but is prob-
ably more expensive for practical values of n).

For a �-Feistel, solving a linear system over Z/2n
Z is harder. However, we

can solve the system bit-by-bit using linear algebra over F2. We first consider
the equations modulo 2, and recover the least significant bit of S4. Next, we
consider the equations modulo 4. Since the least significant bits are known, this
also turns into linear equations over F2, with the second bits as unknowns. We
repeat this technique from the least significant bit to the most significant. At
each step, we might have to consider a few different candidates if the system is
not full rank.

In total, this attack has a time complexity about 22.81n.

7 Conclusion

We presented new generic attacks against Feistel Networks capable of recover-
ing the full description of the Feistel functions without making any assumptions
regarding whether they are bijective or not. To achieve this, we have improved
the yoyo game proposed in [15] using cycles and found an efficient guessing
strategy to be used if modular addition is used instead of exclusive-or. We imple-
mented our attacks to check our claims. We finally described an integral attack
suggested by an anonymous reviewer.

Our attacks allow an efficient recovery of the Feistel functions for 5-round
Feistel Networks and cycle-based yoyo cryptanalysis can be pushed to attack
6-round and(respectively 7-round) ⊕-Feistel at a cost similar to guessing half
(resp. all) of the entries of a Feistel function.

Our results differ significantly between ⊕-Feistel and �-Feistel. It remains an
open problem to find a more efficient attack against �-Feistel or to theoretically
explain such a difference.

Acknowledgment. We would like to thank the anonymous reviewers for their valu-
able comments, and in particular for showing us the attack of Sect. 6. The work of
Léo Perrin is supported by the CORE ACRYPT project (ID C12-15-4009992) funded
by the Fonds National de la Recherche (Luxembourg).

120 A. Biryukov et al.

References

1. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Heidelberg (2002)

2. U.S. Department of commerce, National Institute of Standards and Technology:
Data encryption standard. Federal Information Processing Standards Publication
(1999)

3. Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. Primitive submitted
to NESSIE, vol. 97 (2000)

4. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

5. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014)

6. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Biryukov, A., Perrin, L.: On reverse-engineering S-Boxes with hidden design crite-
ria or structure. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 116–140. Springer, Heidelberg (2015)

8. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal.
Submission to NIST (2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/modes
development.html

9. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption. Submission to NIST (2010). http://csrc.nist.gov/groups/
ST/toolkit/BCM/modes development.html

10. Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer,
Heidelberg (2015)

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel struc-
tures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015)

12. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

13. Patarin, J.: Generic attacks on Feistel schemes. Cryptology ePrint Archive, Report
2008/036 (2008). http://eprint.iacr.org/

14. Knudsen, L.R.: DEAL - a 128-bit block cipher, AES submission (1998)
15. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial obser-

vations on Skipjack: cryptanalysis of Skipjack-3XOR. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 362–375. Springer, Heidelberg (1999)

16. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-way, Biham-
DES, CAST, DES-X, newDES, RC2, and TEA. In: Proceedings of the First Inter-
national Conference on Information and Communication Security, ICICS 1997,
pp. 233–246. Springer, London (1997). ISBN: 3-540-63696-X. http://dl.acm.org/
citation.cfm?id=646277.687180

17. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999)

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://eprint.iacr.org/
http://dl.acm.org/citation.cfm?id=646277.687180
http://dl.acm.org/citation.cfm?id=646277.687180

Cryptanalysis of Feistel Networks with Secret Round Functions 121

18. National Security Agency, N.S.A.: SKIPJACK and KEA Algorithm Specifications
(1998)

19. Borghoff, J., et al.: PRINCE - a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

20. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015)

21. Biryukov, A.: Analysis of involutional ciphers: Khazad and Anubis. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 45–53. Springer, Heidelberg (2003)

22. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of Feistel Networks with Secret
Round Functions. IACR eprint report 2015/723, July 2015

23. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

24. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

25. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Nabeshima, K.,
Nagasaka, K., Winkler, F., Szántó, Á. (eds.) International Symposium on Symbolic
and Algebraic Computation, ISSAC 2014, Kobe, Japan, 23–25 July 2014, pp. 296–
303. ACM (2014)

Improved Meet-in-the-Middle Distinguisher
on Feistel Schemes

Li Lin1,2,3(B), Wenling Wu1,2,3, and Yafei Zheng1,2,3

1 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 University of Chinese Academy of Science, Beijing, China

{linli,wwl,zhengyafei}@tca.iscas.ac.cn

Abstract. Improved meet-in-the-middle cryptanalysis with efficient
tabulation technique has been shown to be a very powerful form of
cryptanalysis against SPN block ciphers, especially AES. However, few
results have been proposed on Balanced-Feistel-Networks (BFN) and
Generalized-Feistel-Networks (GFN). This is due to the stagger of
affected trail and special truncated differential trail in the precompu-
tation phase, i.e. these two trails differ a lot from each other for BFN
and GFN ciphers. In this paper, we describe an efficient and generic
algorithm to search for an optimal improved meet-in-the-middle distin-
guisher with efficient tabulation technique on word-oriented BFN and
GFN block ciphers. It is based on recursive algorithm and greedy algo-
rithm. To demonstrate the usefulness of our approach, we show key
recovery attacks on 14/16-round CLEFIA-192/256 which are the best
attacks. We also give key recovery attacks on 13/15-round Camellia-
192/256 (without FL/FL−1).

Keywords: Block ciphers · Improved meet-in-the-middle attack · Effi-
cient tabulation technique · Automatic search algorithm · CLEFIA ·
Camellia

1 Introduction

Meet-in-the-middle attack is first proposed by Diffie and Hellman to attack DES
[8]. In recent years, it is widely researched due to its effectiveness against block
cipher AES [4]. For AES, Gilbert and Minier show in [12] some collision attacks
on 7-round AES. At FSE 2008, Demirci and Selçuk improve the Gilbert and
Minier attacks using meet-in-the-middle technique instead of collision idea. More
specifically, they show that the value of each byte of 4-round AES ciphertext can
be described by a function of the δ-set, i.e. a set of 256 plaintexts where a byte
(called active byte) can take all values and the other 15 bytes are constant,
parameterized by 25 [5] and 24 [6] 8-bit parameters. The last improvement is
due to storing differences instead of values. This function is used to build a dis-
tinguisher in the offline phase, i.e. they build a lookup table containing all the
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 122–142, 2016.
DOI: 10.1007/978-3-319-31301-6 7

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 123

possible sequences constructed from a δ-set. In the online phase, they identify
a δ-set, and then partially decrypt the δ-set through some rounds and check
whether it belongs to the table. At ASIACRYPT 2010, Dunkelman, Keller and
Shamir develop many new ideas to solve the memory problems of the Demirci
and Selçuk attacks [10]. First of all, they only store multiset, i.e. an unordered
sequence with multiplicity, rather than the ordered sequence. The second and
main idea is the differential enumeration technique which uses a special prop-
erty on a truncated differential characteristic to reduce the number of parame-
ters that describes the set of functions from 24 to 16. Furthermore, Derbez,
Fouque and Jean present a significant improvement to the Dunkelman et al.
attacks at EUROCRYPT 2013 [7], called efficient tabulation technique. Using
this rebound-like idea, they show that many values in the precomputation table
are not reached at all under the constraint of a special truncated differential
trail. Actually, the size of the precomputation table is determined by 10 byte-
parameters only. At FSE 2014, Li et al. give an attack on 9-round AES-192 using
some relations among subkeys [17].

In [18], Lin et al. summarize former works of improved MITM distinguisher,
and then define T -δ-set which is a special δ-set of T active cells and S-multiset
which is a multiset of S cells. With these definitions, they get affected trail
which is a function connecting a T -δ-set to an S-multiset with the minimal
number of active cells after R-round encryption. After that, they introduce a
general algorithm to search for the affected trail from a T -δ-set to an S-multiset,
and find that building a better distinguisher is equivalent to a positive integer
optimization problem.

Although new results on Substitution-Permutation Networks(SPN) block
ciphers using improved meet-in-the-middle attack with efficient tabulation tech-
nique are given in many literatures [7,16–18], few results have been proposed on
Balanced-Feistel-Networks (BFN) [14] and Generalized-Feistel-Networks (GFN)
[23]1. This is due to the stagger of affected trail and special truncated differen-
tial trail in the precomputation phase, i.e. these two trails differ a lot from each
other for BFN and GFN ciphers. However, they are almost the same for SPN
block ciphers.

Our Contribution. In this paper, we describe an efficient and generic algo-
rithm to search for an optimal improved meet-in-the-middle distinguisher with
efficient tabulation technique on word-oriented BFN and GFN block ciphers. It
is based on recursive algorithm and greedy algorithm. Given an affected trail D
connecting a T -δ-set to an S-multiset by the algorithm of [18], our algorithm
can get an optimal truncated differential trail. The algorithm is made up of two
phases: table construction phase and searching phase.

The table construction phase is based on the precomputation phase proposed
by Fouque et al. in [11]. In this phase, we build a 2-equipartite directed acyclic
graph G containing all the possible one-round transitions.

The searching phase is based on the algorithm proposed by Matsui to find the
best differential characteristics for DES [22]. Our algorithm works by recursion
1 [13] was published after the accomplishment of this paper.

124 L. Lin et al.

and can be seen as a tree traversal in a depth-first manner. One truncated
differential trail is a path in this tree, and its weight equals the product of
all traversed edges. We are looking for the path with the minimum number of
guessed-cells in this tree under certain transition probability. The knowledge of
the previous best truncated differential trail allows pruning during the procedure.
To speed up this algorithm, We also use greedy algorithm to divide the search
process into 2 parts: one starts from the beginning, the other one starts from
the end.

To demonstrate the usefulness of our approach, we apply our algorithm
to CLEFIA-192/256 [24] and Camellia-192/256 (without FL/FL−1)2 [1]. For
CLEFIA-256, we give a 10-round distinguisher, and then give a 16-round key
recovery attack with data complexity of 2113 chosen-plaintexts, time complexity
of 2219 encryptions and memory complexity of 2210 128-bit blocks. To the best
of our knowledge, this is currently the best attack with respect to the num-
ber of attacked rounds. For CLEFIA-192, we give a 9-round distinguisher, and
then give a 14-round key recovery attack with data complexity of 2113 chosen-
plaintexts, time complexity of 2155 encryptions and memory complexity of 2146

128-bit blocks. To the best of our knowledge, this is currently the best attack
with respect to the complexity.

We also give an 8-round distinguisher on Camellia*-192, and then give a
13-round key recovery attack with data complexity of 2113 chosen-plaintexts,
time complexity of 2180 encryptions and memory complexity of 2130 128-bit
blocks. For Camellia*-256, we give a 9-round distinguisher, and then give a
15-round key recovery attack with data complexity of 2113 chosen-plaintexts,
time complexity of 2244 encryptions and memory complexity of 2194 128-bit
blocks. Although Lu et al. proposed a 14-round attack on Camellia*-192 and
a 16-round attack on Camellia*-256 [21], they didn’t consider the whitening
operations. So we think our works on Camellia* have certain significance.

We present here a summary of our attack results on CLEFIA and Camellia*,
and compare them to the best attacks known for them. This summary is given
in Table 1.

Organization of the paper. The rest of this paper is organized as follows.
Section 2 provides notations and definitions used throughout this paper, and then
gives a brief review of the previous improved MITM distinguishers. Section 2 also
gives the general attack scheme, and discusses distinguisher on Feistel schemes
with efficient tabulation technique. We provide the automatic search algorithm to
search for an optimal improved meet-in-the-middle distinguisher with efficient
tabulation technique on Feistel schemes in Sect. 3. Our attacks on CLEFIA-
192/256 and Camellia*-192/256 are described in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2 Preliminaries

In this section, we give notations used throughout this paper, and then briefly
recall the previous improved MITM distinguishers, and after that the attack
2 We call it Camellia* in this paper.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 125

Table 1. Summary of the best attacks on CLEFIA-192/256, Camellia*-192/256.

Cipher Attack type Rounds Data Memory Time Source

(Bytes) (Euc)

CLEFIA-192 Improbable 14 2127.0 CPs 2127.0 2183.2 [25]

Multidim. ZC 14 2127.5 KPs 2115 2180.2 [2]

Improved MITM 14 2113 CPs 2150 2155 Sect. 4.1

CLEFIA-256 Improbable 15 2127.4 CPs 2127.4 2247.5 [25]

Multidim. ZC 15 2127.5 KPs 2115 2244.2 [2]

Improved MITM 16 2113 CPs 2214 2219 Sect. 4.1

Camellia*-192 Impossible Diff 12 2119 CPs 2124 2147.3 [19]

Impossible Diff 14ww 2117 CPs 2122.1 2182.2 [20]

HO MITM 14ww 2118 CPs 2166 2164.6 [21]

Improved MITM 13 2113 CPs 2134 2180 Sect. 4.2.1

Camellia*-256 Impossible Diff 15ww 2122.5 KPs 2233 2236.1 [3]

Impossible Diff 16ww 2123 KPs 2129 2249 [20]

HO MITM 16ww 2120 CPs 2230 2252 [21]

Improved MITM 15 2113 CPs 2198 2244 Sect. 4.2.2

KPs: Known-Plaintexts. CPs: Chosen-Plaintexts. ww: Without Whiten Operation

scheme is given. Finally, we discuss the improved meet-in-the-middle distin-
guisher on Feistel schemes with efficient tabulation technique.

2.1 Notation

The following notations will be used throughout this paper (the sizes are counted
in number of cells):

– b: number of cells in a state.
– k: the size of the master key.
– o: the size of one branch.
– r: number of rounds.
– c: number of bits in a cell.
– n: number of branches that will get through F -function in a state.
– |X|: number of active cells in a state X.
– xi: the input state of round-i.
– yi: the state after the key addition layer of round-i.
– zi: the state after the S-box layer of round-i.
– wi: the state after the linear transformation layer of round-i.
– s[i]: the ith branch of a state.
– s[i][j]: the jth cell in the ith branch of a state.
– Ki[j]: the jth cell of the ith round key.

126 L. Lin et al.

2.2 Reviews of Former Works

In this section, we present a unified view of the previously known MITM dis-
tinguishers on AES in [5,7,10] and the algorithm to search for the affected trail
given by Lin et al. in [18]. Let’s start with particular structures of messages
captured by Definitions 1 and 2.

Definition 1 (δ-set, [4]). Let a δ-set be a set of 256 AES-states that are all
different in one state byte (active byte) and all equal in the other state bytes
(inactive bytes).

Definition 2 (Multisets of bytes, [7]). A multiset generalizes the set concept
by allowing elements to appear more than once. Here, a multiset of 256 bytes
can take as many as

(
28+28−1

28

)
≈ 2506.17 different values.

Proposition 1 (Differential Property of S, [7]). Given Δi and Δ0 two non-
zero differences, the equation of S-box

S(x) ⊕ S(x ⊕ Δi) = Δ0, (1)

has one solution in average.

Demirci and Selçuk distinguisher. Consider the set of functions

f : {0, 1}8 −→ {0, 1}8

that maps a byte of a δ-set to another byte of the state after four AES rounds.
A convenient way is to view f as an ordered byte sequence (f(0), . . . , f(255))
so that it can be represented by 256 bytes. The crucial observation made by
the generalizing Gilbert and Minier attacks [12] is that this set is tiny since it
can be described by 25 byte-parameters (225·8 = 2200) compared with the set
of all functions of this type which counts as may as 28·28 = 22048 elements [5].
Considering the differences (f(0) − f(0), f(1) − f(0), . . . , f(255) − f(0)) rather
than values, the set of functions can be described by 24 parameters [6]. The
24 byte-parameters which map x1[0] to Δx5[0] are presented as gray cells in
Fig. 1.

Dunkelman et al. Distinguisher and Derbez et al. Distinguisher. In
[10], Dunkelman et al. introduced two new improvements to further reduce the
memory complexity of [6]. The first uses multiset which is an unordered sequence

Fig. 1. The 4-round AES distinguisher used in [6]. The gray cells represent 24 byte-
parameters, δ represents the δ-set and m represents the differential sequence to be
stored.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 127

with multiplicity to replace ordered sequence in the offline phase, since there
is enough information so that the attack succeeds. The second improvement
uses a novel idea named differential enumeration technique. The main idea of
this technique is to use a special 4-round property on a truncated differential
characteristic to reduce the number of parameters which describes the set of
functions from 24 to 16.

In [7], Derbez et al. presented an improvement to Dunkelman et al.’s differen-
tial enumeration technique, called efficient tabulation technique (Proposition 2).
Combining with the rebound-like idea, many values in the precomputation table
are not reached at all under the constraint of a special truncated differential
trail.

Proposition 2 (Efficient Tabulation Technique, [7]). If a message of δ-set
belongs to a pair conforming to the 4-round truncated differential trail outlined
in Fig. 2, the values of multiset are only determined by 10 byte-parameters of
intermediate state Δz1[0]||x2[0, 1, 2, 3]||Δx5[0]||z4[0, 1, 2, 3] presented as gray cells
in this figure.

Fig. 2. The truncated differential trail of 4-round AES used in [5], the gray cells rep-
resent 10 byte-parameters, Δ represents difference.

The main idea of their works is that suppose one get a pair of messages con-
forming to this truncated differential trail, the differences Δx3 and Δy3 can be
determined by these 10 byte-parameters. By Proposition 1, part of the 24 byte-
parameters in the Demirci and Selçuk distinguisher, i.e. x3, can be determined.

Lin et al. Algorithm. In [18], Lin et al. summarized former works of improved
MITM distinguisher and gave a general model for this kind of distinguisher on
SPN block ciphers. In their works, they define T -δ-set which is a special δ-set of T
active cells and S-multiset which is a multiset of S cells to extend the definitions
of δ-set and multiset. With these definitions, they get affected trail which is
a function connecting a T -δ-set to an S-multiset with the minimal number of
active cells3 after r-round encryption. We call these active cells guessed-cells
in this paper. As shown in Fig. 1, x1[0] is an 1-δ-set and Δx5[0] is an 1-multiset.
(x4[0, 5, 10, 15]||x3||x2[0, 1, 2, 3]) is the affected trail connecting x1[0] to x5[0], i.e.
the value of Δx5 can be determined by x1[0] and these bytes. After that, they
introduce a general algorithm to search for the best affected trail from a T -δ-set
3 These active cells are before the S-box layer, so we need to guess their values to get

the S-multiset.

128 L. Lin et al.

Fig. 3. (A) 4-round example of propagation-then-pruning algorithm; (B) General
scheme of the improved meet-in-the-middle attack with efficient tabulation technique.

to an S-multiset, and find that building a better affected trail is equivalent to a
positive integer optimization problem. In this paper, T represents a T -δ-set and
S represents an S-multiset. With these two definitions in mind, we can choose
appropriate values of |T | and |S| according to the success probability [18].

The search algorithm is based on the propagation-then-pruning algorithm as
shown in Fig. 3(A). Suppose we have one (T, S) pair, the algorithm to build an
affected trail D is as follows:

1. Propagation. In the forward direction, differences of T can propagate from
one round to the next. Active cells before the S-box layer need to be guessed,
and then S can be got from this trail.

2. Pruning. In this trail, some guessed-cells have nothing to do with the build-
ing of S. These cells are pruned.

Using this algorithm, we can get an affected trail D for (T, S).

2.3 Attack Scheme

In this subsection, we present our new unified view of the improved meet-in-the-
middle attack, where R rounds of block cipher can be split into three consecutive
parts: r1, r, and r2.

The general attack scheme is shown in Fig. 3(B), here T represents a T -δ-set
and S represents an S-multiset, T ∗ represents input difference of the truncated
differential trail and S∗ represents the output difference. For SPN block ciphers,
(T, S) and (T ∗, S∗) are almost the same. But for Feistel block ciphers, they are
always different. The reason will be explained in Subsect. 2.4.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 129

The general attack scheme uses two successive phases:

Precomputation phase
1. In the precomputation phase, we build an affected trail from T to S by

guessing some cells.
2. Use efficient tabulation technique to build a special truncated differential

trail from T ∗ to one middle round, and then build a truncated differential
trail from S∗ to another middle round in the reverse direction. This step
needs to guess some more cells. Using Proposition 1, we can prune some
guessed-cells made in step 1.

3. Build a lookup table L containing all the possible sequences constructed
from T such that one message verifies the truncated differential trail.

Online phase
1. In the online phase, we need to identify a T -δ-set containing a message

m verifying the desired property. This is done by using a large number
of plaintexts and ciphertexts, and expecting that for each key candidate,
there is one pair of plaintexts satisfying the truncated differential trail
from P → T ∗ and C → S∗. m is one member of this plaintext pair. Then
use m to build a T -δ-set.

2. Finally, we partially decrypt the associated T -δ-set through the last r2
rounds and check whether it belongs to L.

2.4 Feistel Ciphers with Efficient Tabulation Technique

In this paper, we focus on the application of efficient tabulation technique on
word-oriented BFN and GFN. The round function F is made up of 3 layers: key
addition layer, S-box layer and linear transformation layer. This is true for most
BFN and GFN ciphers.

The advantage of improved meet-in-the-middle attack with efficient tabula-
tion technique on Feistel ciphers is that it can use Proposition 1 in � b

n×o� rounds,
i.e. less cells are guessed in these rounds. We take CLEFIA [24] as an example.
CLEFIA is a 4-branch type-2 GFN cipher with b = 16, n = 2 and o = 4.

As shown in Fig. 4(A), Δyi[0] = Δxi[0], Δzi[0] = M−1
0 (Δxi[1] ⊕ Δxi+2[3]).

If Δxi and Δxi+2 are known, using Proposition 1, the values of active bytes
in yi[0] can be got. Using the same method, if Δxi and Δxi+2 are known, the
values of active bytes in yi[2], yi+1[0] and yi+1[2] can be got as well. So if the
special truncated differential trail is got, some cells need not to be guessed.

Although affected trail and truncated differential trail are almost the same
for SPN ciphers, they differ a lot from each other for BFN and GFN ciphers.
We also take CLEFIA as an example. As shown in Fig. 4(B), the guessed-cells of
affected trail and truncated differential trail are totally different in the backward
direction. For affected trail, if we want to get Δxi+2[1][0] from Δxi, Δxi+2[1][0] =
Δxi+1[1][0] = Δwi[2][0]⊕Δxi[3][0], only yi[2] need to be guessed. For truncated
differential trail, if Δxi+2[1][0] is active and we know its value, by guessing
yi+1[2][0], Δxi+1[2][0] and Δxi+1[3] can be got. By guessing yi[0], Δxi can be
got. So yi+1[2][0] and yi[0] need to be guessed in addition. But for another

130 L. Lin et al.

Fig. 4. (A) The truncated differential trail using Proposition 1; (B) The stagger of an
affected trail and a truncated differential trail (Color figure online).

truncated differential trail, if Δxi+2[2][0] is active, by guessing yi[0][0], Δxi can
be got. So only one additional cell need to be guessed.

In order to apply this technique to Feistel schemes, first of all, we should get
an affected trail; and then we can use a truncated differential trail to restrain
values of guessed-cells in the middle � b

n×o� rounds by guessing some extra cells.
These two trails may differ a lot from each other, so we need to find a method
to minimize the total number of guessed-cells.

To solve this problem, we present an automatic search algorithm in Sect. 3 to
search for an optimal improved meet-in-the-middle distinguisher with efficient
tabulation technique on BFN and GFN ciphers.

3 Automatic Search Algorithm Using Efficient Tabulation
Technique

In this section, we present a practical algorithm to derive an optimal improved
meet-in-the-middle distinguisher on Feistel schemes with efficient tabulation
technique, which combines the precomputation phase of [11] and the search
procedure of [22].

Suppose we get the affected trail [18] gives, our algorithm works by recursion
and consists of 2 phases: table construction phase and searching phase.

3.1 Table Construction Phase

As shown in [11], the table construction phase builds a 2-equipartite directed
acyclic graph G which contains all the possible one-round transitions. This graph
can be built and stored efficiently by observing its inner structure: the block
cipher internal state output depends only on the block cipher internal state
input. Unlike [11], since we don’t consider the key schedule, the graph is small
and can be stored in truncated differential characteristic4. A toy example of G
is shown in Fig. 5.
4 The memory cost of CLEFIA is less than 20 MB.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 131

2S

3S

0S

1S

2S

3S

0S

1S

Fig. 5. Example of graph product to build G, with 4 possible internal states s0, s1, s2
and s3. There is an edge from si to sj if and only if si → sj after one round encryption.

A 2-equipartite directed acyclic graph G−1 that contains all the possible
one-round transitions in the backward direction should also be built as well.

3.2 Searching Phase

As the algorithm in [22], our searching phase finds an optimal n-round improved
meet-in-the-middle distinguisher. The algorithm works by recursion and can be
seen as a tree traversal in a depth-first manner, where the tree represents all the
possible truncated differential trail in the cipher layered by round. The nodes
represent the truncated differential characteristics and the edges the possible
transitions between them, and are labeled by their numbers of guessed-cells and
transition probabilities. One truncated differential trail is a path in this tree,
and its weight equals the product of all traversed edges. We are looking for
the path with the minimum number of guessed-cells in this tree under certain
transition probability. The knowledge of the previous best truncated differential
trail allows pruning during the procedure. Since we only consider truncated
differential characteristic and the pruning is very efficient, the running time will
not be too long.

3.2.1 Trail Probability
Almost all the truncated differential trails used in the distinguishers on SPN
ciphers are with probability 1. In our algorithm, we consider the truncated dif-
ferential trail with probability less than 1, i.e. operations such as XOR can
output inactive cells with certain probability. Suppose there is one less active
cell in the backward direction (with probability 2−c), it may cause less extra
cells to be guessed. Getting a trail with probability 2−c means that the online
phase should be repeated 2c times. So our algorithm require an “initial value”
for the minimum trail probability, which is presented as P . This value can be
determined by analyzing the online phase.

3.2.2 Comparing Trails
Next we introduce a (quasi-)order relation for two truncated differential trail T1

and T2 as follows:

132 L. Lin et al.

Definition 3 (�). T1 is better than T2 if and only if it has less guessed-cells or
its probability is higher with the same number of guessed-cells, i.e.

T1 � T2 ⇔

⎧
⎪⎨
⎪⎩

G(T1) < G(T2)
or
G(T1) = G(T2) and P(T1) > P(T2)

(2)

Also T1 ≡ T2 ⇔ G(T1) = G(T2) and P(T1) = P(T2)5.

3.2.3 Ending Condition
Given key length k, probability lower bound P and the best trail Tbest we found
so far, we define ending condition E as follows:

T ∈ E ⇔

⎧
⎪⎨
⎪⎩

P(T) ≤ P

or G(T) ≥ k

or Tbest � T
(3)

If a trail belongs to E , we should stop the search procedure and try another
trail.

3.2.4 Finding an Optimal Trail
Although we could test all the truncated differential trail under the probability
lower bound P to find the best one, we have a more efficient way using the
greedy algorithm. Since the affected trail is unique for each (S, T) pair, we can
find out � b

n×o� successive rounds which need to guess more cells than others, i.e.
there are more active cells in these rounds. This means that more cells need not
to be guessed using Proposition 1. If the number of these successive rounds is
more than one, the beginning of these rounds can be represented as a set, called
SR-set.

With SR-set in mind, the search procedure can be divided into 2 parts:
one starts at the first round in the forward direction, the other starts at the last
round in the backward direction. This algorithm will divide an r-round truncated
differential trail search process into 2 parts: r1 and r2, where r = r1+� b

n×o�+r2.
At the beginning of this algorithm, we should decrease G(D) by the number

of guessed-cells in the middle � b
n×o� rounds. We may meet the situation that

not all the guessed-cells can be pruned in the middle � b
n×o� rounds, i.e. there are

inactive cells in the truncated differential trail. However, since this also restrains
the values of guessed-cells in the truncated differential trail, the total number of
guessed-cells remains unchanged.

Although the first and last truncated differential characteristics in the trail
can take any values, we put some limitations on them by some observations. Since
there is little difference between an affected trail and a truncated differential trail
in the first r1-round, we fix the first truncated differential characteristic T ∗ to T .
5 G: total number of guessed-cells including the affected trail. P: trail probability.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 133

And by the propagation of differences, we constrain values of the last truncated
differential characteristics S∗ with |S∗| ≤ |S|.

The framework of our algorithm for the first r1 and the last r2 rounds is now
established by Algorithms 1 and 2 including essentially recursive calls.

The inputs of Algorithms 1 and 2 are affected trail D, input truncated dif-
ferential trail T , best truncated differential trail Tbest, probability lower bound
P and graph G/G−1.

Algorithm 1. Search the first r1-round
1: function Procedure Roundbegin

i (D, T , Tbest, P)
2: Find all truncated values this trail can lead to in graph G
3: Sort these truncated differential characteristics
4: for all truncated differential characteristics do
5: Add this characteristic to T
6: if T /∈ E then
7: if i < r1 − 1 then
8: Call Procedure Roundbegin

i+1

9: else
10: for all truncated differences S∗ satisfying |S∗| ≤ |S| do
11: Call Procedure Roundend

0 with S∗

12: end for
13: end if
14: end if
15: end for
16: end function

The sorting algorithm of line 3 in Algorithms 1 and 2 is according to �.

Line 10 of Algorithm 2 means sr1
� b
n×o �rounds

−−−−−−−−−→ sr2 , where sr1 and sr2 are
truncated differential characteristics of round-r1 and round-(r1 + � b

n×o�) in the
trail, respectively. Take CLEFIA as an example, since the branch number of M0

and M1 is 5, if the total number of active cells before and after M0 or M1 is less
than 5, we should stop the search procedure and try another trail.

Algorithm 3 presents the search algorithm for a (T, S) pair.
We can loop through all possible(T, S) pairs to find an optimal r-round distin-

guisher under P , and then find rmax = max{r|P(Tbest) > P and G(Tbest) < k}.

4 Applications

In this section, we give our attacks on CLEFIA-192/256 and Camellia*-192/256.

4.1 Applications to CLEFIA-192/256

CLEFIA is a lightweight 128-bit block cipher designed by Shirai et al. in 2007
[24] and based on a 4-branch type-2 GFN. It is adopted as an international
ISO/IEC 29192 standard in lightweight cryptography. We refer to [24] for a
detailed description.

134 L. Lin et al.

Algorithm 2. Search the last r2-round
1: function Procedure Roundend

i (D, T , Tbest, P)
2: Find all truncated values this trail can lead to in graph G−1

3: Sort these truncated differential characteristics
4: for all truncated differential characteristics do
5: Add this characteristic to T
6: if T /∈ E then
7: if i < r2 − 1 then
8: Call Procedure Roundend

i+1

9: else
10: if Combining 2 parts of T leads to a trail and T /∈ E then
11: Tbest ← T
12: end if
13: end if
14: end if
15: end for
16: end function

Algorithm 3. Search for an optimal trail for (T, S)
1: function Procedure SerachingTrail(D, P , T , S, � b

n×o
�)

2: Initial Tbest with k and P
3: Get the SR-set from D
4: for all r1 in SR-set do
5: Decrease G(D) by the number of guessed-cells in these � b

n×o
� rounds

6: Call Roundbegin
0 with r1 and T

7: end for
8: return Tbest

9: end function

4.1.1 9/10-Round Distinguisher on CLEFIA
First, we use our search algorithm to find an optimal 10-round distinguisher
on CLEFIA-256 and 9-round distinguisher on CLEFIA-192. They are shown in
Figs. 6 and 7.

In the attack of CLEFIA, we apply an equivalent transformation to the
10-round and 9-round distinguishers, as shown in Figs. 6 and 7. Namely, the right
linear transformations of round i + 8 and i + 7 are removed from these rounds,
and these linear transformations are added to three different positions in order
to obtain distinguishers that are computationally equivalent to the original one.

The 10-round distinguisher on CLEFIA-256 is based on the proposition
below.

Proposition 3. Considering to encrypt 28 values of the (1-)δ-set after 10-round
CLEFIA-256 starting from round-i, where xi[1][0] is the active byte, in the case
of that a message of the δ-set belongs to a pair which conforms to the trun-
cated differential trail outlined in Fig. 6, then the corresponding (1-)multiset of
Δxi+10[1][0] only contains about 2208 values.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 135

δ

Fig. 6. 10-Round Distinguisher on CLEFIA-256

Proof. As shown in Fig. 6, we first consider the affected trail from xi[1][0] to
xi+10[1][0]. This affected trail is determined by 39 byte-parameters: yi+1[0][0]
||yi+2[0]||yi+3[0]||yi+3[2][0]||yi+4[0]||yi+4[2]||yi+5[0]||yi+5[2]||yi+6[0]||yi+6[2]||yi+7

[2]||yi+8[2][0].
This can be easily seen from the figure.
Furthermore, if there exists a message of the (1-)δ-set belongs to a pair

which conforms the truncated differential trail as in Fig. 6, the 35 byte-
parameters yi+1[0][0]||yi+2[0]||yi+3[0]||yi+3[2][0]||yi+4[0]||yi+4[2]||yi+5[0]||yi+5[2]
||yi+6[0]||yi+6[2][0]||yi+7[2] is determined by 22 byte-parameters: Δxi[1][0]||yi+1[0
][0]||yi+2[0]||yi+3[0]||yi+3[2][0]||yi+6[0]||yi+6[2][0]||yi+7[2]||yi+8[0][0]||Δxi+10[2][0].

Using 11 byte-parameters Δxi[1][0]||yi+1[0][0]||yi+2[0]||yi+3[0]||yi+3[2][0], we
can deduce Δxi+4. In the backward direction, using Δxi+10[2][0]||yi+8[0][0]||yi+7

[2]||yi+6[0]||yi+6[2][0],we can deduce Δxi+6. By Proposition 1, this can deduce
yi+4[0], yi+4[2], yi+5[0] and yi+5[2].

In conclusion, the corresponding multiset of byte Δxi+10[1][0] only contains
about 2208 values with the truncated differential trail. �

The 9-round distinguisher on CLEFIA-192 is based on the proposition below,
and we will meet the situation Sect. 3.2.4 gives.

Proposition 4. Considering to encrypt 28 values of the (1-)δ-set after 9-round
CLEFIA-192 starting from round-i, where xi[1][0] is the active byte, in the case

136 L. Lin et al.

of that a message of the δ-set belongs to a pair which conforms to the trun-
cated differential trail outlined in Fig. 7, and then the corresponding multiset of
Δxi+9[1][0] only contains about 2144 values.

Fig. 7. 9-Round Distinguisher on CLEFIA-192

The proof of this proposition is the same as before and is shown in Fig. 7.
The online phase of 16/14-round attack on CLEFIA-256/192 is shown in

Appendix A. For CLEFIA-256, we give a 16-round key recovery attack with
data complexity of 2113 chosen-plaintexts, time complexity of 2219 encryptions
and memory complexity of 2210 128-bit blocks. For CLEFIA-192, we give a
14-round key recovery attack with data complexity of 2113 chosen-plaintexts,
time complexity of 2155 encryptions and memory complexity of 2146 128-bit
blocks.

4.2 Applications to Camellia*-192/256

Camellia is a 128-bit block cipher designed by Aoki et al. in 2000 [1]. It is
a Feistel-like construction where two key-dependent layer FL and FL−1 are
applied every 6 rounds to each branch. In this paper, we analyze Camellia with-
out FL and FL−1, and call it Camellia* here. We refer to [1] for the detailed
description of Camellia.

4.2.1 Attack on Camellia*-192
The 8-round distinguisher of Camellia*-192 with 16 guessed-bytes is shown in
Fig. 8. We apply an equivalent transformation to the distinguisher. Namely, the
linear transformation of round i + 6 is removed, and this linear transformation

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 137

is added to three different positions in order to obtain distinguishers that are
computationally equivalent to the original one. This idea is inspired by [9,15].

Fig. 8. 8-Round Distinguisher on Camellia*-192

By guessing yi+1[0][0], yi+2[0][0, 1, 2, 4, 7], yi+3[0], yi+4[0], yi+5[0][1, 2, 4, 6, 7]
and yi+6[0][5], we can get multiset of Δxi+8[1][5]. If there is a trun-
cated differential trail from xi[1][0] to xi+8[0][0] as the figure shows, then
yi+1[0][0], yi+2[0][0, 1, 2, 4, 7], yi+3[0], yi+4[0] and yi+5[0][1, 2, 4, 7] can be
determined by Δxi[1][0], yi+1[0][0], yi+2[0][0, 1, 2, 4, 7], Δxi+8[0][0], yi+6[0][0],
yi+5[0][0, 1, 2, 4, 7].

In a word, the multiset of byte Δxi+8[1][5] can be determined by 16 byte-
parameters.

The online phase of this attack is the same as the 12-round attack on
Camellia-192 in [15]. So we can extend 2 rounds on the top and 3 rounds on
the bottom to build a 13-round attack on Camellia*-192 with time complex-
ity of 2180 encryptions, data complexity of 2113 chosen plaintexts and memory
complexity of 2130 128-bit blocks.

138 L. Lin et al.

4.2.2 Attack on Camellia*-256
For the distinguisher of Camellia*-256, we simply extend one round after round-
(i + 3) by guessing the whole 8 byte-parameters after the key addition layer.
Then we can get a 10-round distinguisher on Camellia*-256.

In the online phase, we simply extend one round after the distinguisher by
guessing all the 8 byte-parameters after the key addition layer. Then we can build
a 15-round attack on Camellia*-256 with time complexity of 2244 encryptions,
data complexity of 2113 chosen plaintexts and memory complexity of 2194 128-bit
blocks.

5 Conclusion and Future Work

This paper has shown the improved meet-in-the-middle distinguisher with effi-
cient tabulation technique on BFN and GFN block ciphers. We discuss the prob-
lem why this technique is rarely used on the attacks of BFN and GFN ciphers,
and then describe an efficient and generic algorithm to search for an optimal
improved meet-in-the-middle distinguisher with efficient tabulation technique
on them. It is based on recursive algorithm and greedy algorithm.

To demonstrate the usefulness and versatility of our approaches, we show
attacks on CLEFIA and Camellia*. Among them, we would like to stress that
the presented attacks on 14/16-round CLEFIA-192/256 are the best attacks.
Since our approach is generic, it is expected to be applied to other BFN and GFN
ciphers. We believe that our results are useful not only for a deeper understanding
of the security of Feistel schemes, but also for designing a secure block cipher.

The research community still has a lot to learn on the way to build better
attacks and there are many future works possible: the algorithm combining the
precomputation phase and online phase together, and the link between this kind
of attack with other kinds of attacks, such as truncated differential attack and
impossible differential attack.

Acknowledgements. We would like to thank the anonymous reviewers for providing
valuable comments. The research presented in this paper is supported by the National
Basic Research Program of China (No. 2013CB338002) and National Natural Science
Foundation of China (No. 61272476, No.61232009 and No. 61202420).

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards Camellia and
CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 306–323. Springer, Heidelberg (2014)

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 139

3. Chen, J., Jia, K., Yu, H., Wang, X.: New impossible differential attacks of reduced-
round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P. (eds.) ACISP
2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2002)

5. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

6. Demirci, H., Taşkın, I., Çoban, M., Baysal, A.: Improved meet-in-the-middle
attacks on AES. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol.
5922, pp. 144–156. Springer, Heidelberg (2009)

7. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

8. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

9. Dong, X., Li, L., Jia, K., Wang, X.: Improved attacks on reduced-round Camellia-
128/192/256. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 59–83.
Springer, Heidelberg (2015)

10. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

11. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and Chosen-Key
Distinguisher of 9-Round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

12. Gilbert, H., Minier, M.: A collisions attack on the 7-rounds Rijndael. In: AES
Candidate Conference, Citeseer (2000)

13. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic
Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 458–477. Springer, Heidelberg (2014)

14. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

15. Li, L., Jia, K.: Improved meet-in-the-middle attacks on reduced-round Camellia-
192/256. IACR Cryptology ePrint Archive 2014, 292 (2014)

16. Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on AES-192 and
PRINCE. IACR Cryptology ePrint Archive 2013, 573 (2013)

17. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015)

18. Lin, L., Wu, W., Wang, Y., Zhang, L.: General model of the single-key meet-in-the-
middle distinguisher on the word-oriented block cipher. In: Lee, H.-S., Han, D.-G.
(eds.) ICISC 2013. LNCS, vol. 8565, pp. 203–223. Springer, Heidelberg (2014)

19. Jiqiang, L.: Cryptanalysis of block ciphers. Ph.D. thesis. University of London, UK
(2008)

20. Jiqiang, L., Wei, Y., Fouque, P.-A., Kim, J.: Cryptanalysis of reduced versions of
the Camellia block cipher. IET Inf. Secur. 6(3), 228–238 (2012)

21. Jiqiang, L., Wei, Y., Kim, J., Pasalic, E.: The higher-order meet-in-the-middle
attack and its application to the Camellia block cipher. Theoret. Comput. Sci.
527, 102–122 (2014)

140 L. Lin et al.

22. Matsui, M.: On correlation between the order of S-Boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

23. Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

24. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

25. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

Appendix A: 16/14-Round Attack on CLEIFA-256/192

Based on the 10-round distinguisher, we extend 3 rounds on the top and 3 rounds
on the bottom to present a 16-round improved meet-in-the-middle attack on
CLEFIA-256, and based on the 9-round distinguisher, we extend 3 rounds on
the top and 2 rounds on the bottom to present a 14-round improved meet-in-
the-middle attack on CLEFIA-192. The procedure of the attack on CLEFIA-256
is shown in Fig. 9.

The following proposition is important in finding the special truncated dif-
ferential trail.

Proposition 5. If Mi(Δs0) = (a0, 0, 0, 0) and Mi(Δs1) = (a1, 0, 0, 0), then
Mi(Δs0 ⊕ Δs1) = (a2, 0, 0, 0), where a0, a1, a2are any bytes6.

This is because of the linearity of Mi. The set of 28 differences that results in
(a, 0, 0, 0) after the linear transformation layer is called α-set, and it is marked
by red triangle in Fig. 9.

The detailed attack is shown below:

1. Precomputation phase. In the precomputation phase of the attack, we
build the lookup table L that contains the multiset of size 2208 for difference
Δx13[1][0] by following the method of Proposition 4.

2. Online Phase.

(a) Detecting the Right Pair:

i. We prepare a structure of 280 plaintexts where ΔP [0][0], ΔP [2] and
ΔP [3] take all the 272 values and ΔP [1] takes all the values of the α-
set. Hence, we can generate 280×(280−1)/2 ≈ 2159 pairs satisfying the
plaintext differences. Choose 233 structures and get the corresponding
ciphertexts. Among the 2159+33 = 2192 corresponding ciphertext pairs,
we expect 2192 × 2−48 = 2144 pairs to verify the truncated difference
pattern where ΔC[0][0], ΔC[2], ΔC[3] have differences, and ΔC[1] has
difference in α-set. Store the 2144 remaining pairs in a hash table. This
step require 2113 plaintext and ciphertext pairs.

6 Mi denotes the linear transformation layer.

Improved Meet-in-the-Middle Distinguisher on Feistel Schemes 141

Fig. 9. 16-Round Attack on CLEFIA-256

ii. Guess the values of K0[0], K1, y1[0] and y2[2][0], using the guessed
values to encrypt the remaining pairs to x3. We choose the pairs that
have difference only in byte x3[1][0], there are 2144−72 = 272 pairs left.

iii. Guess the values of K30[0], K31, y14[2] and y13[2][0], using the guessed
values to decrypt the remaining pairs to x13. We choose the pairs that
have differences only in byte x13[2][0], there are 272−72 = 1 pair left.

(b) Creating and Checking the Multiset:

i. For each guess of the 20 bytes made in Phase (a), decrypt the 28

possible differences in Δx3 to Δx0 using the knowledge of K0[0],
K1, y1[0] and y2[2][0]. Then XOR it with one plaintext P0 of the
pair.

ii. Using P0 as the standard plaintext, denote the other 255 plaintexts as
P1 to P255, and the corresponding ciphertexts as C0 to C255. Partially
decrypt the ciphertexts to x13 (here x′

13[1] = M1(x13[1])), and then
get the multiset of Δx13[1][0] by guessing K30[1, 2, 3], y13[0], and
using the knowledge of K30[0], K31, y14[2].

iii. Checking whether the multiset exists in L. If not, discard the key
guess. The probability for a wrong guess to pass this test is smaller
than 22082−506.17 = 2−306.17.

(c) Searching the Rest of Key: For each remaining key guess, find the
remaining key bytes by exhaustive search.

Complexity. The look up table of the 2208 possible values requires about 2210

128-bit blocks to be stored [7]. To construct the table, we have to perform 2208

partial encryptions on 256 messages, which we estimate to be equivalent to
2208+8−4 = 2212 encryptions.

We take another look at online phase to evaluate the complexity. For each of
the 2144 remaining pairs after the first part of Phase (a), since Δy0[2] = ΔP [2]

142 L. Lin et al.

and Δz0[2] = M−1
1 (ΔP [3]⊕Δx1[2]) = M−1

1 (ΔP [3]), by Proposition 1, we can get
K1. By guessing y2[2][0], we can deduce Δx2[3], and then get y1[0] and K0[0] for
the same reason as before. Since Δy15[2] = ΔC[2] and Δz15[2] = M−1

1 (ΔC[3]),
by Proposition 1, we can get K31. By guessing y14[2][0], we can deduce Δx14[2],
and then get y14[2] and K30[0] for the same reason as before. Therefore, there are
216 of 20 byte-parameters for one pair. After that, we should guess K30[1, 2, 3]
and y13[0] in addition. In conclusion, for each of the 2144 found pairs, we perform
272 partial encryptions/decryptions of a δ-set. We evaluate the time complexity
of this part to 2144+72+8−5= 2219 encryptions.

Hence, the data complexity is 2113 chosen-plaintexts, the time complexity is
2219 encryptions and the memory complexity is 2210 128-bit blocks.

The 14-round attack on CLEFIA-192 is almost the same as the former
attack. The data complexity is 2113 chosen-plaintexts, the time complexity is
2155 encryptions and the memory complexity is 2146 128-bit blocks.

Implementation of Cryptographic
Schemes

Sandy2x: New Curve25519 Speed Records

Tung Chou(B)

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
blueprint@crypto.tw

Abstract. This paper sets speed records on well-known Intel chips for
the Curve25519 elliptic-curve Diffie-Hellman scheme and the Ed25519
digital signature scheme. In particular, it takes only 159 128 Sandy Bridge
cycles or 156 995 Ivy Bridge cycles to compute a Diffie-Hellman shared
secret, while the previous records are 194 036 Sandy Bridge cycles or
182 708 Ivy Bridge cycles.

There have been many papers analyzing elliptic-curve speeds on Intel
chips, and they all use Intel’s serial 64× 64 → 128-bit multiplier for field
arithmetic. These papers have ignored the 2-way vectorized 32 × 32 →
64-bit multiplier on Sandy Bridge and Ivy Bridge: it seems obvious that
the serial multiplier is faster. However, this paper uses the vectorized
multiplier. This is the first speed record set for elliptic-curve cryptogra-
phy using a vectorized multiplier on Sandy Bridge and Ivy Bridge. Our
work suggests that the vectorized multiplier might be a better choice
for elliptic-curve computation, or even other types ofcomputation that
involve prime-field arithmetic, even in the case where the computation
does not exhibit very nice internal parallelism.

Keywords: Elliptic curves · Diffie-Hellman · Signatures · Speed ·
Constant time · Curve25519 · Ed25519 · Vectorization

1 Introduction

In 2006, Bernstein proposed Curve25519, which uses a fast Montgomery curve for
Diffie-Hellman (DH) key exchange. In 2011, Bernstein, Duif, Schwabe, Lange and
Yang proposed the Ed25519 digital signature scheme, which uses a fast twisted
Edwards curve that is birationally equivalent to the same Montgomery curve.
Both schemes feature a conservative 128-bit security level, very small key sizes,
and consistent fast speeds on various CPUs (cf. [1,8]), as well as microprocessors
such as ARM ([3,16]), Cell ([2]), etc.

Curve25519 and Ed25519 have gained public acceptance and are used in
many applications. The IANIX site [17] has lists for Curve25519 and Ed25519

This work was supported the Netherlands Organisation for Scientific Research
(NWO) under grant 639.073.005. Permanent ID of this document: 33050f87509019
320b8192d4887bc053. Date: 2015.09.30.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 145–160, 2016.
DOI: 10.1007/978-3-319-31301-6 8

146 T. Chou

deployment, which include the Tor anonymity network, the QUIC transport layer
network protocol developed by Google, openSSH, and many more.

This paper presents Sandy2x, a new software which sets speed records for
Curve25519 and Ed25519 on the Intel Sandy Bridge and Ivy Bridge microarchi-
tectures. Previous softwares set speed records for these CPUs using the serial
multiplier. Sandy2x, instead, uses of a vectorized multiplier. Our results show
that previous elliptic-curve cryptography (ECC) papers using the serial multi-
plier might have made a suboptimal choice.

A part of our software (the code for Curve25519 shared-secret computation)
has been submitted to the SUPERCOP benchmarking toolkit, but the speeds
have not been included in the eBACS [8] site yet. We plan to submit the whole
software soon for public use.

1.1 Serial Multipliers Versus Vectorized Multipliers

Prime field elements are usually represented as big integers in softwares. The
integers are usually divided into several small chunks called limbs, so that field
operations can be carried out as sequences of operations on limbs. Algorithms
involving field arithmetic are usually bottlenecked by multiplications, which are
composed of limb multiplications. On Intel CPUs, each core has a powerful
64 × 64 → 128-bit serial multiplier, which is convenient for limb multiplications.
There have been many ECC papers that use the serial multiplier for field arith-
metic. For example, [1] uses the serial multipliers on Nehalem/Westmere; [6]
uses the serial multipliers on Sandy Bridge; [5] uses the serial multipliers on Ivy
Bridge.

On some other chips, it is better to use a vectorized multiplier. The Cell
Broadband Engine has 7 Synergistic Processor Units (SPUs) which are special-
ized for vectorized instructions; the primary processor has no chance to compete
with them. ARM has a 2-way vectorized 32 × 32 → 64-bit multiplier, which is
clearly stronger than the 32×32 → 64 serial multiplier. A few ECC papers exploit
the vectorized multipliers, including [3] for ARM and [2] for Cell. In 2014, there is
finally one effort for using a vectorized multiplier on Intel chips, namely [4]. The
paper uses vectorized multipliers to carry out hyperelliptic-curve cryptography
(HECC) formulas that provide a natural 4-way parallelism. ECC formulas do
not exhibit such nice internal parallelism, so vectorization is expected to induce
much more overhead than HECC.

Our speed records rely on using a 2-way vectorized multipliers on Sandy
Bridge and Ivy Bridge. The vectorized multiplier carries out only a pair of
32 × 32 → 64-bit multiplication in one instruction, which does not seem to have
any chance to compete with the 64 × 64 → 128-bit serial multiplier, which is
used to set speed records in previous Curve25519/Ed25519 implementations. In
this paper we investigate how serial multipliers and vectorized multipliers work
(Sect. 2), and give arguments on why the vectorized multiplier can compete.

Our work is similar to [4] in the sense that we both use vectorized multipliers
on recent Intel microarchitectures. The difference is that our algorithm does not
have very nice internal parallelism, especially for verification. Our work is also

Sandy2x: New Curve25519 Speed Records 147

Table 1. Performance results for Curve25519 and Ed25519 of this paper, the CHES
2011 paper [1], and the implementation by Andrew Moon “floodyberry” [7]. All imple-
mentations are benchmarked on the Sandy Bridge machine “h6sandy” and the Ivy
Bridge machine “h9ivy” (abbreviated as SB and IB in the table), of which the details
can be found on the eBACS website [8]. Each cycle count listed is the measurement
result of running the software on one CPU core, with Turbo Boost disabled. The table
sizes (in bytes) are given in two parts: read-only memory size + writable memory size.

SB cycles IB cycles Table size Reference Implementation

Curve25519 public-key

generation

54 346 52 169 30720 + 0 (new) this paper

61 828 57 612 24576 + 0 [7]

194 165 182 876 0 + 0 [1] CHES 2011 amd64-51

Curve25519 shared secret

computation

159 128 156 995 0 + 0 (new) this paper

194 036 182 708 0 + 0 [1] CHES 2011 amd64-51

Ed25519 public-key

generation

57 164 54 901 30720 + 0 (new) this paper

63 712 59 332 24576 + 0 [7]

64 015 61 099 30720 + 0 [1] CHES 2011 amd64-51-30k

Ed25519 sign 63 526 59 949 30720 + 0 (new) this paper

67 692 62 624 24576 + 0 [7]

72 444 67 284 30720 + 0 [1] CHES 2011 amd64-51-30k

Ed25519 verification 205 741 198 406 10240 + 1920 (new) this paper

227 628 204 376 5120 +960 [7]

222 564 209 060 5120 +960 [1] CHES 2011 amd64-51-30k

similar to [3] in the sense that the vectorized multipliers have the same input
and output size. We stress that the low-level optimization required on ARM
is different to Sandy/Ivy Bridge, and it is certainly harder to beat the serial
multiplier on Sandy/Ivy Bridge.

1.2 Performance Results

The performance results for our software are summarized in Table 1, along with
the results for [1,7]. [1] is chosen because it holds the speed records on the eBACS
site for publicly verifiable benchmarks [7,8] is chosen because it is the fastest
constant-time public implementation for Ed25519 (and Curve25519 public-key
generation) to our knowledge. The speeds of our software (as [1,7]) are fully
protected against simple timing attacks, cache-timing attacks, branch-prediction
attacks, etc.: all load addresses, all store addresses, and all branch conditions are
public.

For comparison, Longa reported ≈ 298 000 Sandy Bridge cycles for the
“ECDHE” operation, which is essentially 1 public-key generation plus 1 secret-
key computation, using Microsoft’s 256-bit NUMS curve [19]. OpenSSL 1.0.2,
after heavy optimization work from Intel, compute a NIST P-256 scalar multi-
plication in 311 434 Sandy Bridge cycles or 277 994 Ivy Bridge cycles.

For Curve25519 public-key generation, [7] and our implementation gain much
better results than [1] by performing the fixed-base scalar multiplications on the
twisted Edwards curve used in Ed25519 instead of the Montgomery curve; see
Sect. 3.2. Our implementation strategy for Ed25519 public-key generation and

148 T. Chou

signing is the same as Curve25519 public-key generation. Also see Sect. 3.1 for
Curve25519 shared-secret computation, and Sect. 4 for Ed25519 verification.

We also include the tables sizes of [1,7] and Sandy2x in Table 1. Note that our
current code uses the same window sizes as [1,7] but larger tables for Ed25519
verification. This is because we use a data format that is not compact but more
convenient for vectorization. Also note that [1] has two implementations for
Ed25519: amd64-51-30k and amd64-64-24k. The tables sizes for amd64-64-24k
are 20% smaller than those of amd64-51-30k, but the speed records on eBACS
are set by amd64-51-30k.

1.3 Other Fast Diffie-Hellman and Signature Schemes

On the eBACS website [8] there are a few DH schemes that achieve fewer
Sandy/Ivy Bridge cycles for shared-secret computation than our software:
gls254prot from [12] uses a GLS curve over a binary field; gls254 is a non-
constant-time version of gls254prot; kummer from [4] is a HECC scheme;
kumfp127g from [13] implements the same scheme as [4] but uses an obsolete
approach to perform scalar multiplication on hyperelliptic curves as explained
in [4].

GLS curves are patented, making them much less attractive for deployment,
and papers such as [14,15] make binary-field ECC less confidence-inspiring.
There are algorithms that are better than the Rho method for high-genus curves;
see, for example, [20]. Compared to these schemes, Curve25519, using an elliptic
curve over a prime field, seems to be a more conservative (and patent-free) choice
for deployment.

The eBACS website also lists some signature schemes which achieve better
signing and/or verification speeds than our work. Compared to these schemes,
Ed25519 has the smallest public-key size (32 bytes), fast signing speed (super-
seded only by multivariate schemes with much larger key sizes), reasonably fast
verification speed (can be much better if batched verification is considered, as
shown in [1]), and a high security level (128-bit).

2 Arithmetic in F2
255−19

A radix-2r representation represents an element f in a b-bit prime field as
(f0, f1, . . . , f�b/r�−1), such that

f =
�b/r�−1∑

i=0

fi2�ir�.

This is called a radix-2r representation. Field arithmetic can then be carried out
using operations on limbs; as a trivial example, a field addition can be carried
out by adding corresponding limbs of the operands.

Since the choice of radix is often platform-dependent, several radices have
been used in existing software implementations of Curve25519 and Ed25519.

Sandy2x: New Curve25519 Speed Records 149

This section describes and compares the radix-251 representation (used by [1])
with the radix-225.5 representation (used by [3] and this paper), and explains how
a small-radix implementation can beat a large-radix one on Sandy Bridge and
Ivy Bridge, even though the vectorized multiplier seems to be slower. The radix-
264 representation by [1] appears to be slower than the radix-251 representation
for Curve25519 shared-secret computation, so only the latter is discussed in this
section.

2.1 The Radix-251 Representation

[1] represents an integer f modulo 2255 − 19 as

f0 + 251f1 + 2102f2 + 2153f3 + 2204f4

As the result, the product of f0 + 251f1 + 2102f2 + 2153f3 + 2204f4 and g0 +
251g1 + 2102g2 + 2153g3 + 2204g4 is h0 + 251h1 + 2102h2 + 2153h3 + 2204h4 modulo
2255 − 19 where

h0 = f0g0+ 19f1g4+ 19f2g3+ 19f3g2+ 19f4g1,
h1 = f0g1+ f1g0+ 19f2g4+ 19f3g3+ 19f4g2,
h2 = f0g2+ f1g1+ f2g0+ 19f3g4+ 19f4g3,
h3 = f0g3+ f1g2+ f2g1+ f3g0+ 19f4g4,
h4 = f0g4+ f1g3+ f2g2+ f3g1+ f4g0.

One can replace g by f to derive similar equations for squaring.
The radix-251 representation is designed to fit the 64 × 64 → 128-bit serial

multiplier, which can be accessed using the mul instruction. The usage of the mul
is as follows: given a 64-bit integer (either in memory or a register) as operand,
the instruction computes the 128-bit product of the integer and rax, and stores
the higher 64 bits of in rdx and lower 64 bits in rax.

The field multiplication function begins with computing f0g0, f0g1, . . . , f0g4.
For each gj , f0 is first loaded into rax, and then a mul instruction is used to
compute the product; some mov instructions are required to move the rdx and
rax to the registers where hj is stored. Each monomial involving fi where i > 0
also takes a mul instruction, and an addition (add) and an addition with carry
(adc) are required to accumulate the result into hk. Multiplications by 19 can
be handled by the imul instruction. In total, it takes 25 mul, 4 imul, 20 add,
and 20 adc instructions to compute h0, h1, . . . , h4

1. Note that some carries are
required to bring the hk back to around 51 bits. We denote such a radix-51 field
multiplication including carries as m; m− represents m without carries.

2.2 The Radix-225.5 Representation

[3] represents an integer f modulo 2255 − 19 as

f0 + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9.
1 [1] uses one more imul; perhaps this is for reducing memory access.

150 T. Chou

As the result, the product of f0 +226f1 +251f2 + · · · and g0 +226g1 +251g2 + · · ·
is h0 + 226h1 + 251h2 + · · · modulo 2255 − 19 where

h0 = f0g0+ 38f1g9+ 19f2g8+ 38f3g7+ 19f4g6+ 38f5g5+ 19f6g4+ 38f7g3+ 19f8g2+ 38f9g1,

h1 = f0g1+ f1g0+ 19f2g9+ 19f3g8+ 19f4g7+ 19f5g6+ 19f6g5+ 19f7g4+ 19f8g3+ 19f9g2,

h2 = f0g2+ 2f1g1+ f2g0+ 38f3g9+ 19f4g8+ 38f5g7+ 19f6g6+ 38f7g5+ 19f8g4+ 38f9g3,

h3 = f0g3+ f1g2+ f2g1+ f3g0+ 19f4g9+ 19f5g8+ 19f6g7+ 19f7g6+ 19f8g5+ 19f9g4,

h4 = f0g4+ 2f1g3+ f2g2+ 2f3g1+ f4g0+ 38f5g9+ 19f6g8+ 38f7g7+ 19f8g6+ 38f9g5,

h5 = f0g5+ f1g4+ f2g3+ f3g2+ f4g1+ f5g0+ 19f6g9+ 19f7g8+ 19f8g7+ 19f9g6,

h6 = f0g6+ 2f1g5+ f2g4+ 2f3g3+ f4g2+ 2f5g1+ f6g0+ 38f7g9+ 19f8g8+ 38f9g7,

h7 = f0g7+ f1g6+ f2g5+ f3g4+ f4g3+ f5g2+ f6g1+ f7g0+ 19f8g9+ 19f9g8,

h8 = f0g8+ 2f1g7+ f2g6+ 2f3g5+ f4g4+ 2f5g3+ f6g2+ 2f7g1+ f8g0+ 38f9g9,

h9 = f0g9+ f1g8+ f2g7+ f3g6+ f4g5+ f5g4+ f6g3+ f7g2+ f8g1+ f9g0.

One can replace g by the f to derive similar equations for squaring.
The representation is designed to fit the vector multiplier on Cortex-A8,

which performs a pair of 32 × 32 → 64-bit multiplications in one instruction.
On Sandy Bridge and Ivy Bridge a similar vectorized multiplier can be accessed
using the vpmuludq2 instruction. The AT&T syntax of the vpmuludq instruction
is as follows:

vpmuludq src2, src1, dest

where src1 and dest are 128-bit registers, and src2 can be either a 128-bit
register or (the address of) an aligned 32-byte memory block. The instruction
multiplies the lower 32 bits of the lower 64-bit words of src1 and src2, multiplies
the lower 32 bits of the higher 64-bit words ofsrc1 and src2, and stores the
64 bits products in 64-bit words of dest.

To compute h = fg and h′ = f ′g′ at the same time, we follow the
strategy of [3] but replace the vectorized addition and multiplication instruc-
tions by corresponding ones on Sandy/Ivy Bridge. Given (f0, f ′

0), . . . (f9, f
′
9)

and (g0, g′
0), . . . (g9, g

′
9), first prepare 9 vectors (19g1, 19g′

1), . . . , (19g9, 19g′
9) with

10 vpmuludq instructions and (2f1, 2f ′
1), (2f3, 2f ′

3), . . . , (2f9, 2f ′
9) with 5 vector-

ized addition instructions vpaddq. Note that the reason to use vpaddq instead
of vpmuludq is to balance the loads of different execution units on the CPU
core; see analysis in Sect. 2.3. Each (f0gj , f ′

0g
′
j) then takes 1 vpmuludq, while

each (figj , f ′
ig

′
j) where i > 0 takes 1 vpmuludq and 1 vpaddq. In total, it takes

109 vpmuludq and 95 vpaddq to compute (h0, h
′
0), (h1, h

′
1), . . . , (h9, h

′
9). We

denote such a vector of two field multiplications as M2, including the carries
that bring hk (and also h′

k) back to 26 − (kmod 2) bits; M2− represents M2

without carries. Similarly, we use S2 and S2− for squarings.
We perform a carry from hk to hk+1 (the indices work modulo 10), which is

denoted by hk → hk+1, in 3 steps:

• Perform a logical right shift for the 64-bit words in hk using a vpsrlq instruc-
tion. The shift amount is 26 − (kmod 2).

2 The starting ‘v’ indicate that the instruction is the VEX extension of the pmuludq

instruction. The benefit of using vpmuludq is that it is a 3-operand instruction. In
this paper we show vector instructions in their VEX extension form, even though
vector instructions are sometimes used without the VEX extension.

Sandy2x: New Curve25519 Speed Records 151

• Add the result of the first step into hk+1 using a vpaddq instruction.
• Mask out the most significant 38+(kmod 2) bits of hk using a vpand instruc-

tion.

For h9 → h0 the result of the shift has to be multiplied by 19 before being
added to h0. Note that the usage of vpsrlq suggests that we are using unsigned
limbs; there is no vectorized arithmetic shift instruction on Sandy Bridge and
Ivy Bridge.

To reduce number of bits in all of h0, h1, . . . , h9, the simplest way is to perform
the carry chain

h0 → h1 → h2 → h3 → h4 → h5 → h6 → h7 → h8 → h9 → h0 → h1.

The problem of the simple carry chain is that it suffers severely from the instruc-
tion latencies. To mitigate the problem, we instead interleave the 2 carry chains

h0 → h1 → h2 → h3 → h4 → h5 → h6,

h5 → h6 → h7 → h8 → h9 → h0 → h1.

It is not always the case that there are two multiplications that can be paired
with each other in an elliptic-curve operation; sometimes there is a need to
vectorize a field multiplication internally. We use a similar approach to [3] to
compute h0, h1, . . . , h9 in this case; the difference is that we compute vectors
(h0, h1), . . . , (h8, h9) as result. The strategy for performing the expensive carries
on h0, h1, . . . , h9 is the same as [3]. Such an internally-vectorized field multipli-
cation is denoted as M.

2.3 Why Is Smaller Radix Better?

m takes 29 multiplication instructions (mul and imul), while M2 takes 109/2 =
54.5 multiplication instructions (vpmuludq) per field multiplication. How can our
software, (which is based on M2) be faster than [1] (which is based on m) using
almost twice as many multiplication instructions?

On Intel microarchitechtures, an instruction is decoded and decomposed into
some micro-operations (µops). Each µop is then stored in a pool, waiting to be
executed by one of the ports (when the operands are ready). On each Sandy
Bridge and Ivy Bridge core there are 6 ports. In particular, Port 0, 1, 5 are
responsible for arithmetic. The remaining ports are responsible for memory
access, which is beyond the scope of this paper (Table 2).

The arithmetic ports are not identical. For example, vpmuludq is decomposed
into 1 µop, which is handled by Port 0 each cycle with latency 5. vpaddq is
decomposed into 1 µop, which is handled by Port 1 or 5 each cycle with latency 1.
Therefore, an M2− would take at least 109 cycles. Our experiment shows that
M2− takes around 112 Sandy Bridge cycles, which translates to 56 cycles per
multiplication.

152 T. Chou

Table 2. Instructions field arithmetic used in [1] and this paper. The data is mainly
based on the well-known survey by Fog [10]. The survey does not specify the port
utilization for mul, so we figure this out using the performance counter (accessed using
perf-stat). Throughputs are per-cycle. Latencies are given in cycles .

Instruction Port Throughput Latency

vpmuludq 0 1 5

vpaddq either 1 or 5 2 1

vpsubq either 1 or 5 2 1

mul 0 and 1 1 3

imul 1 1 3

add either 0, 1, or 5 3 1

adc either two of 0,1,5 1 2

The situation for m is more complicated: mul is decomposed into 2 µops,
which are handled by Port 0 and 1 each cycle with latency 3. imul is decom-
posed into 1 µop, which is handled by Port 1 each cycle with latency 3. add is
decomposed into 1 µop, which is handled by one of Port 0,1,5 each cycle with
latency 1. adc is decomposed into 2 µops, which are handled by two of Port 0,1,5
each cycle with latency 2. In total it takes 25 mul, 4 imul, 20 add, and 20 adc,
accounting for at least (25 · 2 + 4 + 20 + 20 · 2)/3 = 38 cycles. Our experiment
shows that m− takes 52 Sandy Bridge cycles. The mov instructions explain a
few cycles out of the 52 − 38 = 14 cycles. Also, the performance counter shows
that the core fails to distribute µops equally over the ports.

Of course, by just looking at these cycle counts it seems that M2 is still a bit
slower, but at least we have shown that the serial multiplier is not as powerful
as it seems to be. Here are some more arguments in favor of M2:

• m spends more cycles on carries than M2 does: m takes 68 Sandy Bridge
cycles, while M2 takes 69.5 Sandy Bridge cycles per multiplication.

• The algorithm built upon M2 might have additions/subtractions. Some
speedup can be gained by interleaving the code; see Sect. 2.5.

• The computation might have some non-field-arithmetic part which can be
improved using vector unit; see Sect. 3.2.

2.4 Importance of Using a Small Constant

For the ease of reduction, the prime fields used in ECC and HECC are often a
big power of 2 subtracted by a small constant c. It might seem that as long as c
is not too big, the speed of field arithmetic would remain the same. However, in
the following example, we show that using the slightly larger c = 31 (2255 − 31
is the large prime before 2255 − 19) might already cause some overhead.

Consider two field elements f, g which are the results of two field multipli-
cations. Because the limbs are reduced, the upper bound of f0 would be close

Sandy2x: New Curve25519 Speed Records 153

to 226, and the upper bound of f1 would be close to 225, and so on; the same
bounds apply for g. Now suppose we need to compute (f −g)2, which is batched
with another squaring to form an S2. To avoid possible underflow, we compute
the limbs of h = f − g as hi = (fi + 2 · qi) − gi instead of hi = fi − gi, where qi
is the corresponding limb of 2255 − 19. As the result, the upper bound of h6 is
around 3 · 226. To perform the squaring c · h2

6 is required. When c = 19 we can
simply multiply h6 by 19 using 1 vpmuludq, and then multiply the product by
h6 using another vpmuludq. Unfortunately the same instructions do not work
for c = 31, since 31 · h6 can take more than 32 bits.

To overcome such problem, an easy solution is to use a smaller radix so that
each (reduced) limb takes fewer bits. This method would increase number of
limbs and thus increase number of vpmuludq required. A better solution is to
delay the multiplication by c: instead of computing 31fi1gj1 + 31fi2gj2 + · · · by
first computing 31gj1 , 31gj2 , . . . , compute fi1gj1 +fi2gj2 + · · · and then multiply
the sum by 31. The sum can take more than 32 bits (and vpmuludq takes only
32-bit inputs), so the multiplication by 31 cannot be handled by vpmuludq. Let
s = fi1gj1 +fi2gj2 +· · · , one way to handle the multiplication by 19 is to compute
32s with one shift instruction vpsllq and then compute 32s− s = 31s with one
subtraction instruction vpsubq. This solution does not make Port 0 busier as
vpsllq also takes only one cycle in Port 0 as vpmuludq, but it does make Port
1 and 5 busier (because of vpsubq), which can potentially increase the cost for
S2− by a few cycles.

It is easy to imagine for some c’s the multiplication can not be handled in
such a cheap way as 31. In addition, delaying multiplication cannot handle as
many c’s as using a smaller radix; as a trivial example, it does not work if
cfi1gj1 + cfi2gj2 + · · · takes more than 64 bits. We note that the computation
pattern in the example is actually a part of elliptic-curve operation (see lines 6–9
in Algorithm 1), meaning a bigger constant c actually can slow down elliptic-
curve operations.

We comment that usage of a larger c has bigger impact on constrained
devices. If c is too big for efficient vectorization, at least one can go for the
64 × 64 → 128-bit serial multiplier, which can handle a wide range of c with-
out increasing number of limbs. However, on ARM processors where the serial
multiplier can only perform 32×32 → 64-bit multiplications, even the serial mul-
tiplier would be sensitive to the size of c. For even smaller devices the situation
is expected to be worse.

2.5 Instruction Scheduling for Vectorized Field Arithmetic

The fact that µops are stored in a pool before being handled by a port allows
the CPU to achieve so called out-of-order execution: a µop can be executed
before another µop which is from an earlier instruction. This feature is some-
times viewed as the CPU core being able to “look ahead” and execute a later
instruction whose operands are ready. However, the ability of out-of-order exe-
cution is limited: the core is not able to look too far away. It is thus better to
arrange the code so that each code block contains instructions for each port.

154 T. Chou

While Port 0 is quite busy in M2, Port 1 and 5 are often idle. In an elliptic-
curve operation (see the following sections) an M2 is often preceded by a few field
additions/subtractions. Since vpaddq and the vectorized subtraction instruction
vpsubq can only be handled by either Port 1 and Port 5, we try to interleave
the multiplication code with the addition/subtraction code to reduce the chance
of having an idle port. Experiment results show that the optimization brings a
small yet visible speedup. It seems more difficult for an algorithm built upon m
to use the same optimization.

3 The Curve25519 Elliptic-Curve-Diffie-Hellman Scheme

[11] defines Curve25519 as a function that maps two 32-byte input strings to a
32-byte output string. The function can be viewed as an x-coordinate-only scalar
multiplication on the curve

EM : y2 = x3 + 486662x2 + x

over F2255−19. The curve points are denoted as EM (F2255−19). The first input
string is interpreted as an integer scalar s, while the second input string is
interpreted as a 32-byte encoding of xP , the x-coordinate of a point P ∈
EM (F2255−19); the output is the 32-byte encoding of xsP .

Given a 32-byte secret key and the 32-byte encoding of a standard base
point defined in [11], the function outputs the corresponding public key. Simi-
larly, given a 32-byte secret key and a 32-byte public key, the function outputs
the corresponding shared secret. Although the same routine can be used for gen-
erating both public keys and shared secrets, the public-key generation can be
done much faster by performing the scalar multiplication on an equivalent curve.
The rest of this section describes how we implement the Curve25519 function
for shared-secret computation and public-key generation.

3.1 Shared-Secret Computation

The best known algorithm for x-coordinate-only variable-base-point scalar mul-
tiplication on Montgomery curves is the Montgomery ladder. [1,3] and our soft-
ware all use the Montgomery ladder for Curve25519 shared secret computation.
Similar to the double-and-add algorithm, the algorithm also iterates through
each bit of the scalar, from the most significant to the least significant one. For
each bit of the scalar the ladder performs a differential addition and a doubling.
The differential addition and the doubling together are called a ladder step. Since
the ladder step can be carried out by a fixed sequence of field operations, the
Montgomery ladder is almost intrinsically constant-time. We summarize the lad-
der step for Curve25519 in Algorithm 1. Note that Montgomery uses projective
coordinates.

In order to make the best use of the vector unit (see Sect. 2), multiplications
and squarings are handled in pairs whenever convenient. The way we pair mul-
tiplications is shown in the comments of Algorithm 1. It is not specified in [3]

Sandy2x: New Curve25519 Speed Records 155

Algorithm 1. The Montgomery ladder step for Curve25519
1: function LadderStep(x2, z2, x3, z3, xP)
2: t0 ← x3 − z3
3: t1 ← x2 − z2
4: x2 ← x2 + z2
5: z2 ← x3 + z3
6: z3 ← t0 · x2; z2 ← z2 · t1 � batched multiplications
7: x3 ← z3 + z2
8: z2 ← z3 − z2
9: x3 ← x2

3; z2 ← z2
2 � batched squarings

10: z3 ← xP · z2;
11: t0 ← t21; t1 ← x2

2 � batched squarings
12: x2 ← t1 − t0
13: z3 ← x2 · 121666
14: z2 ← t0 + z3
15: z2 ← x2 · z2; x2 ← t1 · t0 � batched multiplications
16: return (x2, z2, x3, z3)
17: end function

whether they pair multiplications and squarings in the same way, but this seems
to be the most natural way. Note that the multiplication by 121666 (line 13)
and the multiplication by x1 (line 10) are not paired with other multiplications.
We deal with the two multiplications as follows:

• Compute multiplications by 121666 without carries using 5 vpmuludq.
• Compute multiplications by x1 without carries. This can be completed in 50
vpmuludq since we precompute the products of small constants (namely, 2,
19, and 38) and limbs in x1 before the ladder begins.

• Perform batched carries for the two multiplications.

This uses far fewer cycles than handling the carries for the two multiplications
separately.

Note that we often have to “transpose” data in the ladder step. More specif-
ically, after an M2 which computes (h0, h

′
0), . . . , (h9, h

′
9), we might need to com-

pute h + h′ and h − h′; see lines 6–8 of Algorithm 1. In this case, we compute
(hi, hi+1), (h′

i, h
′
i+1) from (hi, h

′
i), (hi+1, h

′
i+1) for i ∈ {0, 2, 4, 6, 8}, and then per-

form additions and subtractions on the vectors. The transpositions can be carried
out using the “unpack” instructions vpunpcklqdq and vpunpckhqdq. Similarly,
to obtain the operands for M2 some transpositions are also required. Unpack
instructions are the same as vpaddq and vpsubq in terms of port utilization, so
we also try to interleave them with M2 or S2 as described in Sect. 2.5.

3.2 Public-Key Generation

Instead of performing a fixed-base scalar multiplication directly on the
Montgomery curve, we follow [7] to perform a fixed-base scalar multiplication

156 T. Chou

on the twisted Edwards curve

ET : −x2 + y2 = 1 − 121665/121666x2y2

over F2255−19 and convert the result back to the Mongomery curve with one
inversion. The curve points are denoted as ET (F2255−19). There is an efficiently
computable birational equivalence between ET and EM , which means the curves
share the same group structure and ECDLP difficulty. Unlike Mongomery curves,
there are complete formulas for point addition and doubling on twisted Edwards
curves; we follow [1] to use the formulas for the extended coordinates proposed
in [9]. The complete formulas allow utilization of a table of many precomputed
points to accelerate the scalar multiplication, which is the reason fixed-base mul-
tiplications (on both EM and ET) can be carried out much faster than variable-
base scalar multiplications.

In [1] a fixed-base scalar multiplication sB where s ∈ Z and B ∈ ET (F2255−19)
(B corresponds to the standard base point in EM (F2255−19)) is performed as
follows: write s (modulo the order of B) as

∑15
i=0 16isi where si ∈ {−8,−7, . . . , 7}

and obtain sB by computing the summation of s0B, s116B, . . . , s151615B. To
obtain si16iB, the strategy is to precompute several multiples of 16iB and store
them in a table, and then perform a constant-time table lookup using si as index
on demand. [1] also shows how to reduce the size of the table by dividing the
sum into two parts:

P0 = s0B + s2162B + · · · + s141614B

and
P1 = s1B + s3162B + · · · + s151614B.

sB = P0 + 16P1 is then obtained with 4 point doublings and 1 point addition.
In this way, the table contains only multiples of B, 162B, . . . , 1614B.

We do better by vectorizing between computations of P0 and P1: all the
data related to P0 and P1 are loaded into the lower half and upper half of the
128-bit registers, respectively. This type of computation pattern is very friendly
for vectorization since there no need to “transpose” the data as in the case of
Sect. 3.1.

While parallel point additions can be carried out easily, an important issue
is how to perform parallel constant-time table lookups in an efficient way. In [1],
suppose there is a need to lookup siP , the strategy is to precompute a table
containing P, 2P, . . . , 8P , and then the lookup is carried out in two steps:

• Load |si|P in constant time, which is the main bottleneck of the table lookup.
• Negate |si|P if si is negative.

For the first step it is convenient to use the conditional move instruction (cmov):
To obtain each limb (of each coordinate) of |si|P , first initialize a 64-bit register
to the corresponding limb of ∞, then for each of P, 2P, . . . , 8P , conditionally
move the corresponding limb into the register. Computation of the conditions
and conditional negation are relatively cheap compared to the cmov instructions.

Sandy2x: New Curve25519 Speed Records 157

[1] uses a 3-coordinate system for precomputed points, so the table-lookup func-
tion takes 3 · 8 · 5 = 120 cmov instructions. The function takes 159 Sandy Bridge
cycles or 158 Ivy Bridge cycles.

We could use the same routine twice for parallel table lookups, but we do
better by using vector instructions. Here is a part of the inner loop of our qhasm
([18]) code.

v0 = mem64[input_1 + 0] x2
v1 = mem64[input_1 + 40] x2
v2 = mem64[input_1 + 80] x2
v0 &= mask1
v1 &= mask1
v2 &= mask1
t0 |= v0
t1 |= v1
t2 |= v2

The first line v0 = mem64[input 1 + 0] x2 loads the first and second limb
(each taking 32 bits) of the first coordinate of P and broadcasts the value to the
lower half and upper half of the 128-bit register v0 using the movddup instruction.
The line v0 &= mask1 performs a bitwise AND of v0 and a mask; the value in the
mask depends on whether si = 1. Finally, v0 is ORed into t0, which is initialized
in a similar way as in the cmov-based approach. Similarly, the rest of the lines
are for the second and third coordinates. Similar code blocks are repeated 7
more times for 2P, 3P, . . . , 8P , and all the code blocks are surrounded by a loop
which iterates through all the limbs. In total it takes 3 · 8 · 5 · 2 = 240 logic
instructions. The parallel table-lookup function (inlined in our implementation)
takes less than 160 Sandy/Ivy Bridge cycles, which is almost twice as fast as the
cmov-based table lookup function.

4 Vectorizing the Ed25519 Signature Scheme

This section describes how the Ed25519 verification is implemented with focus
on the challenge of vectorization. Since the public-key generation and signing
process, as the Curve25519 public-key generation, is bottlenecked by a fixed-base
scalar multiplication on ET , the reader can check Sect. 3.2 for the implementation
strategy.

4.1 Ed25519 Verification

[1] verifies a message by computing the double-scalar multiplication of the form
s1P1+s2P2. The double-scalar multiplication is implemented using a generaliza-
tion of the sliding-window method such that s1P1 and s2P2 share the doublings.
With the same window sizes, we do better by vectorizing the point doubling and
point addition functions.

158 T. Chou

Algorithm 2. The doubling function for twisted Edwards curves
1: function ge dbl p2(X, Y, Z)
2: A ← X2; B ← Y 2 � batched squarings
3: G ← A − B
4: H ← A + B
5: C ← 2Z2; D = (X + Y)2 � batched squarings
6: E ← H − D
7: I ← G + C
8: X ′ ← E · I; Y ′ ← G · H � batched multiplications
9: Z′ ← G · I

10: return (X ′, Y ′, Z′)
11: end function

On average each verification takes about 252 point doublings, accounting
for more than 110000 cycles. There are two doubling functions in our imple-
mentation; ge dbl p2, which is adapted from the “E ← 2E” doubling described
in [9], is the most frequently used one; see [9] for the reason to use different
doubling and addition functions. On average ge dbl p2 is called 182 times per
verification, accounting for more than 74000 cycles. The function is summarized
in Algorithm 2. Given (X : Y : Z) representing (X/Z, Y/Z) ∈ ET , the function
returns (X ′ : Y ′ : Z ′) = (X : Y : Z)+ (X : Y : Z). As in Sect. 3.1, squarings and
multiplications are paired whenever convenient. However it is not always possible
to do so, as the multiplication in line 9 can not be paired with other operations.
The single multiplication slows down the function, and the same problem also
appears in addition functions.

Another problem is harder to see. E = X2 + Y 2 − (X + Y)2 has limbs with
upper bound around 4 ·226, and I = X2 −Y 2 +2Z2 has limbs with upper bound
around 5 · 226. For the multiplication E · I, limbs of either E or I have to be
multiplied by 19 (see Sect. 2.2), which can be more than 32 bits. This problem is
solved by performing extra carries on limbs in E before the multiplication. The
same problem appears in the other doubling function.

In general the computation pattern for verification is not so friendly for
vectorization. However, even in this case our software still gains non-negligible
speedup over [1,7]. We conclude that the power of vector unit on recent Intel
microarchitectures might have been seriously underestimated, and implementors
for ECC software should consider trying vectorized multipliers instead of serial
multipliers.

References

1. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011). Citations in this document: §1, §1.1, §1.2,
§1.2, §1.2, §1.2, §1.2, §1, §1, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §1.3, §2, §2, §2.1,
§1, §2, §2, §2.3, §3.1, §3.2, §3.2, §3.2, §3.2, §3.2, §4.1, §4.1

Sandy2x: New Curve25519 Speed Records 159

2. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the cell broad- band
engine. In: AFRICACRYPT 2009, pp. 368–385 (2009). Citations in this document:
§1, §1.1

3. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). Citations
in this document: §1, §1.1, §1.1, §2, §2.2, §2.2, §2.2, §2.2, §3.1, §3.1

4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: EUROCRYPT 2015, pp. 317–337 (2014). Citations
in this document: §1.1, §1.1, §1.3, §1.3, §1.3

5. Costello, C., Hisil, H., Smith, B.: Faster compact Diffie-Hellman: endomorphisms
on the x-line. In: EUROCRYPT 2014, pp. 183–200 (2014). Citations in this docu-
ment: §1.1

6. Longa, P., Sica, F., Smith, B.: Four-dimensional Gallant-Lambert-Vanstone scalar
multiplication. In: Asiacrypt 2012, pp. 718–739 (2012). Citations in this document:
§1.1

7. Andrew, M.: “Floodyberry”, Implementations of a fast Elliptic-curve Digital Signa-
ture Algorithm (2013). https://github.com/floodyberry/ed25519-donna. Citations
in this document: §1.2, §1.2, §1.2, §1.2, §1, §1, §1.2, §1.2, §1.2, §1.2, §1.2, §1.2, §3.2,
§4.1

8. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems (2014). http://bench.cr.yp.to. Citations in this document: §1, §1,
§1, §1, §1.2, §1.3

9. Hisil, H., Wong, KK.-H., Carter, G., Dawson, Ed.: Twisted Ed- wards curves revis-
ited. In: Asiacrypt 2008, pp. 326–343 (2008). Citations in this document: §3.2, §4.1,
§4.1

10. Fog, A.: Instruction tables (2014). http://www.agner.org/optimize/instruction
tables.pdf. Citations in this document: §2, §2

11. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: PKC 2006, pp.
207–228 (2006). Citations in this document: §3, §3

12. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013). Citations in this doc-
ument: §1.3

13. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013). Citations in this document: §1.3

14. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: ASIACRYPT 2012, pp. 451–466 (2012). Citations in this document: §1.3

15. Semaev, I.: New algorithm for the discrete logarithm problem on elliptic curves
(2015). https://eprint.iacr.org/2015/310.pdf. Citations in this document: §1.3

16. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcon-
trollers. Des. Codes Crypt. 77(2), 493–514 (2015). http://cryptojedi.org/papers/
\#mu25519. Citations in this document: §1

17. IANIX. www.ianix.com. Citations in this document: §1
18. Bernstein, D.J.: qhasm sofware package (2007). http://cr.yp.to/qhasm.html. Cita-

tions in this document: §3.2

https://github.com/floodyberry/ed25519-donna
http://bench.cr.yp.to
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://eprint.iacr.org/2015/310.pdf
http://cryptojedi.org/papers/#mu25519
http://cryptojedi.org/papers/#mu25519
www.ianix.com
http://cr.yp.to/qhasm.html

160 T. Chou

19. Longa, P.: NUMS Elliptic Curves and their Implementation. http://patricklonga.
webs.com/NUMS Elliptic Curves and their Implementation-UoWashington.pdf.
Citations in this document: §1.2

20. Thériault, N.: Index calculus attack for hyperelliptic curves of small genus. In:
Asiacrypt 2003, pp. 75–92 (2003). Citations in this document: §1.3

http://patricklonga.webs.com/NUMS_Elliptic_Curves_and_their_Implementation-UoWashington.pdf
http://patricklonga.webs.com/NUMS_Elliptic_Curves_and_their_Implementation-UoWashington.pdf

ECC on Your Fingertips: A Single Instruction
Approach for Lightweight ECC Design in GF (p)

Debapriya Basu Roy(B), Poulami Das, and Debdeep Mukhopadhyay

Secured Embedded Architecture Laboratory (SEAL),
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India
{deb.basu.roy,debdeep}@cse.iitkgp.ernet.in, poulamidas22@gmail.com

Abstract. Lightweight implementation of Elliptic Curve Cryptography
on FPGA has been a popular research topic due to the boom of ubiq-
uitous computing. In this paper we propose a novel single instruction
based ultra-light ECC crypto-processor coupled with dedicated hard-IPs
of the FPGAs. We show that by using the proposed single instruction
framework and using the available block RAMs and DSPs of FPGAs,
we can design an ECC crypto-processor for NIST curve P-256, requiring
only 81 and 72 logic slices on Virtes-5 and Spartan-6 devices respectively.
To the best of our knowledge, this is the first implementation of ECC
which requires less than 100 slices on any FPGA device family.

Keywords: Elliptic curve · Single instruction · URISC · SBN · FPGA ·
Hard-IPs

1 Introduction

With the recent boom in ubiquitous computing, specially in Internet-of-Things
(IoT), the need of lightweight crypto-algorithms, either at algorithmic or imple-
mentation level, has increased significantly. Though the researchers have pro-
posed various lightweight symmetric ciphers, the most popular options for pub-
lic key cryptography are RSA and Elliptic Curve Cryptography (ECC). ECC
based crypto-system is being preferred over its counterpart RSA because of its
wonderful property of increased security level per key bit over RSA. Any ECC
based protocol or algorithm is based on underlying elliptic curve scalar multi-
plication whose computation is based on a number of field operations, making it
computationally extensive. Software implementations of ECC, running on smart
cards or AVR are slow and can become performance bottleneck for many appli-
cations. As an alternative, dedicated ECC-crypto processors are being built on
hardware platforms like ASICs (Application Specific Integrated Circuits) and
FPGAs (Field Programmable Gate Arrays).

D. Mukhopadhyay—This work was partially supported by project from
Defence Research and Development Organization (DRDO), India [Sanction No:
ERIP/ER/1100420/M/01/1517].

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 161–177, 2016.
DOI: 10.1007/978-3-319-31301-6 9

162 D.B. Roy et al.

Although ASIC implementations are faster than those based on FPGAs,
FPGAs are sometimes preferred over ASIC for cryptographic applications due
to its inherent properties of reconfigurability, short time to market and in house
security. The entire design cycle of an FPGA based system can be completed
inside a single lab unlike ASIC based systems where several different parties
are involved in the design cycle. Moreover, modern FPGAs with various device
families provide interesting design choices to the designer. Additionally, these
FPGAs are now equipped with dedicated hard IPs like DSP blocks, Block RAMs,
which when properly utilized results in efficient design of dedicated ECC-based
crypto-processors in GF (p) with improved timing performance and reduced area
overhead.

There have been many works in the literature which focus on efficient imple-
mentation of ECC crypto-processor in GF (p) on FPGAs. An overview of such
implementations can be found in [1]. A lightweight ASIC design was reported
in [2]. Considerably high speed designs for FPGAs can be found in [3] which
is significantly faster than previous designs reported in [4,5]. But, though the
proposed design requires much less area compared to the previous designs (1715
logic slices on Virtex-4 platform for NIST P-256), it is still considerably large for
lightweight applications. A fast pipelined modular multiplier for ECC field mul-
tiplication was proposed in [6], whereas optimized tiling methodology targeting
rectangular DSP blocks of Virtex-5 FPGA was proposed in [7]. However, both of
them have considerable area overhead, hence can not be applied in lightweight
applications.

A lightweight ECC algorithm for RFID tags was presented in [8] and authen-
tication and ID transfer protocols based on lightweight ECC was introduced
in [9]. On implementation level, authors have proposed a lightweight architec-
ture, known as Micro-ECC, in [10]. The proposed design methodology shows
significant improvement in terms of area-time product compared to the previous
implementation [11–13]. However, Micro-ECC was implemented on Virtex-II
platform which is no longer a recommended design platform by Xilinx [14].
Moreover, unlike [11–13], Micro-ECC architecture does not support generalized
ECC scalar multiplication on any prime field. Nevertheless, for fixed P-256 and
P-224 curve, the performance of Micro-ECC outperforms other by big mar-
gin. Lightweight implementation of IPsec protocols comprising implementation
of lightweight block cipher PRESENT, lightweight hash function PHOTON and
ECC crypto-processor (P-160 and P-256) was presented in [15]. The ECC imple-
mentation requires 670 logic slices on Spartan-6 platform for NIST P-256 curve.
Consequently, a lightweight architecture supporting both RSA and ECC along
with some side channel countermeasure was proposed in [16]. The slice con-
sumption of the proposed design is 1914 logic slices on Virtex-5 platform which
is quite low considering dual support of RSA and ECC, provided by the design.
As an alternative of standard NIST specified curves, many researchers have
recommended use of Edward curve and hyper elliptic curve (HECC). Efficient
lightweight implementation of ECC scalar multiplication on such curves can be
found in [17,18].

ECC on Your Fingertips 163

In this paper, we want to propose an alternative single instruction approach
for designing lightweight ECC scalar multiplier which has not been adopted
in the previous works. It is well known that using a single instruction like SBN
(subtract and branch if negative), SUBLEQ (subtract and branch if the answer is
negative or equal to zero), we can construct a Turing complete computer proces-
sor. However, though single instruction processor can execute any arithmetical
or logical operation, the execution time of some operations become so large that
it can not be used in practical scenarios. Hence, a stand alone URISC processor
can not be used to design computationally intensive ECC applications. How-
ever, in this paper we will show that using the dedicated hard-IPs of FPGA,
and with some simple modification of a URISC processor, it is possible to design
an immensely lightweight and yet practical ECC architecture.

This architecture is extremely lightweight and to our best of knowledge this
is the first implementation of ECC scalar multiplication which requires less than
100 slices on Virtex-5 and Spartan-6 platform. This significant reduction in slice
consumption has been achieved by the lightweight architecture of single instruc-
tion processor along with intensive usage of hard-IPs of the modern FPGAs. ECC
scalar multiplication execution requires to compute and store multiple tempo-
rary variables along with the inputs and outputs. This contributes to significant
number of register usage and hence increases the slice consumption. In this
paper, we will show an alternative design approach where we intensively use the
block RAMs and reduce the slice consumption significantly. Further reduction
is obtained by replacing the LUT logics with high speed DSP blocks whenever
possible. The strategy of using block RAMs to reduce the slice consumption has
already been applied for lightweight block ciphers like PRESENT [19], where the
authors have shown that block RAM based block cipher design can be extremely
lightweight resulting in more slices left for other applications.

Thus the contribution of the present paper can be listed as below:

– We propose a single instruction ECC crypto-processor for NIST P-256 curve,
and analyze various challenges along with their solutions that a designer will
face while applying single instruction approach in the context of lightweight
implementation of ECC designs.

– We show that single instruction based ECC crypto-processor, coupled with
intensive usage of block RAMs and DSP blocks, can yield extremely light-
weight design for ECC scalar multiplication execution. The proposed proces-
sor requires less than 100 slices on both Virtex-5 and Spartan-6 family and
involves thorough usage of FPGA hard-IPs.

The rest of the paper is structured as below: Sect. 2 gives a very brief
introduction of ECC and single instruction processor. Section 3 gives a detailed
description of single instruction processor along with the modifications required
for efficient ECC scalar multiplication. Consequently, Sect. 4 focuses on the archi-
tecture of the proposed ECC crypto-processor. Next, in Sect. 6, we discuss the
timing and area performance of our design followed by conclusion in Sect. 7.

164 D.B. Roy et al.

2 Preliminaries

In this section, we will give a brief summary of ECC and single instruction
processors.

2.1 Elliptic Curve Cryptography

As we have previously mentioned, elliptic curve cryptography (ECC) is a pub-
lic key cryptography based on elliptic curves and finite field. Security of ECC
depends upon the mathematical intractability of discrete logarithm of a point
in elliptic curve with respect to a known base point.

ECC in finite field GF (p) is defined by the following equation

y2 = x3 + ax + b; a, b ∈ GF (p), b �= 0. (1)

Scalar multiplication is the most important operation in ECC for performing
key agreement or digital signature schemes. Given a point P on an elliptic curve
and a scalar k, scalar multiplication is computed by adding the point P , k times.
The basic algorithm used for scalar multiplication is Double-and-Add algorithm,
defined in Algorithm 1 in AppendixA, which shows that scalar multiplication
is executed by a repeated sequence of point doubling and point additions. It is
advantageous to use standard projective coordinates [20] for ECC scalar multipli-
cation as it requires less number of field inversion operations compared to affine
coordinate system. In this paper, we have used standard projective coordinates
during implementation of ECC scalar multiplication.

Now, each point addition and point doubling operation involves multiple
field multiplication operation, making it most critical operation for efficient
scalar multiplication execution. NIST specified curves are efficient for hardware
implementation as modular reduction operation in those curves are simple as
it involves a combination of few addition and subtraction. The fast modular
reduction algorithm for NIST P-256 is shown in AppendixA.

In our proposed design, we have concentrated on the NIST P-256 curve.
Nevertheless, our approach can be extended to other NIST certified curves also.

2.2 Single Instruction Processor

The concept of single instruction computer or one instruction set computer
(OISC) was first proposed in [21]. It has been shown in [22] that using just
a single instruction it is possible to create a Turing complete machine. The idea
of applying URISC on cryptographic applications was proposed in [23]. In the
similar direction, application of one instruction set computer on encrypted data
computation was analyzed in [24], but in that paper the authors have investi-
gated OISC in the context of homomorphic encryption and have not considered
elliptic curves, which is the precise objective of the present paper.

ECC on Your Fingertips 165

A standard single instruction processor can be designed by instruction like

1. ADDLEQ (Add the operands and branch if the answer is less than or equal
to zero)

2. SUBLEQ (Subtract the operands and branch if the answer is less than or
equal to zero)

3. SBN (Subtract the operands and branch if the answer is less than zero)
4. RSSB (Reverse subtract and skip if borrow)
5. SBNZ (Subtract the operands and branch if the answer is non-zero)

The main advantage of OISC is that we don’t need any instruction decoding
mechanism, which makes the processor architecture exceptionally simple and
lightweight. The instruction format of a standard OISC is shown in Fig. 1.

Jump Address1st Operand Address 2nd Operand Address

Fig. 1. Instruction format of OISC

For the present work, we have chosen SBN as the single instruction. However,
the proposed design strategy can be tweaked to adopt any of the above described
instructions. The operation of SBN instruction is described in Table 1 (code 1.1):

Table 1. SBN and addition using SBN

Code 1.1 SBN: Subtract and Branch Code 1.2 Addition using SBN
if negative

SBN A,B,C
D.Mem[A]=D.Mem[A]-D.Mem[B]
if(D.Mem[A]<0)//D.Mem=Data Memory
jump to C
else
jump to next instruction

ADD C,A,B //D.Mem[C]=D.Mem[A]+D.Mem[B]
1. SBN X,X,2 // D.Mem[X]=0
2. SBN X,A,3 // D.Mem[X]=-D.Mem[A]
3. SBN X,B,4 // D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBN C,C,5 // D.Mem[C]=0
5. SBN C,X,6 // D.Mem[C]=D.Mem[A]+D.mem[B]

Using this instruction, we can execute any mathematical, logical, flow-
control, memory control or load-store type of instruction. For example, in Table 1
(code 1.2), we will show how to perform addition of two operands using SBN
instruction.

In this section we have given a brief idea about elliptic curves and OISC. In
the next section, we will go into more details of OISC based on SBN instruction
and will analyze it from the point of view of elliptic curve applications.

3 SBN-OISC and Elliptic Curve Scalar Multiplication

In the previous subsection, we have given a brief idea about the ECC and OISC,
based on SBN instruction (from hereafter we will refer this as SBN-OISC).

166 D.B. Roy et al.

In this section we will focus more on SBN-OISC in the context of ECC implemen-
tation. We will identify the critical challenges that the designer will face while
implementing ECC using SBN-OISC and will provide the solutions to tackle
those challenges. We will first describe a stand-alone SBN-OISC processor in
the next subsection

3.1 Stand-Alone SBN-OISC Processor

A stand-alone SBN-OISC processor is shown in Fig. 2. The main components of
a SBN processor are characterized below:

– Instruction Memory: Instruction memory stores the instructions to be exe-
cuted and can be implemented on FPGA using block RAMs, configured as
single port ROM. In the Fig. 2, the instruction memory can store up to 211

number of instructions and each instruction is 21 bits wide. The format of the
instruction is similar to Fig. 1, where address of both the operands are 5 bits
wide and the length of the jump address is 11 bits.

– Data Memory: Data memory stores the final result of any computation,
along with the input and all the temporary results, required during the com-
putation. This has been implemented using block RAM, configured as true
dual port RAM. The data memory has space of 32 entries, each of which are
260 bits wide. While implementing scalar multiplication in NIST P-256, the
partially modular reduced output can be of size 259 bits which can be repre-
sented by 260 bits signed representation. Hence we have chosen the data path
to be 260 bits wide.

– ALU: Arithmetical logical unit (ALU) of SBN-OISC contains a subtracter,
which computes difference between the two inputs. If the result is negative,
program counter gets updated by the jump address, specified in the instruc-
tion. Otherwise, the program counter gets updated by the immediate next
instruction.

The above described architecture is simple and extremely lightweight, requir-
ing 66 logic slices on a Virtex-5 platform. But, as we will show in the next sub-
section, further optimization of ECC operation can be achieved by introducing
different variants of SBN instruction. In the next subsection, we will mainly
concentrate on different variants of SBN instructions and will discuss how these
different versions of SBN can accelerate ECC implementation.

3.2 Instruction Level Optimizations

Generally, though an OISC processor executes only a single instruction, it is
possible to realize different versions of that single instruction to accelerate the
desired operation. This approach helps us to reduce the size of instruction mem-
ory and consequently, results in faster execution of the aimed design. This is
extremely helpful for computationally intensive ECC applications, as illustrated
in the following discussion.

ECC on Your Fingertips 167

D

T
A

A

M
E
M
O
R

Ins

Memory

Y

Program Counter

 Sub−
tractorAddress

Instruction

en_ins

addr. port A

addr. port B

dout port A

dout port B

Control Unit

we_a

en_a

clk reset
clk reset

clk

reset

resetclk

we_a=write enable for port A
en_a=read enable for port A
en_b= read enable for port B

en_b

+1

5

5
1

260

260

11

260

11

21

Fig. 2. Architecture of SBN-OISC

Switching Off Memory Write-Back. When we consider traditional SBN
instruction (SBN A,B,C), the memory location A always get updated by the
result D.Mem[A]−D.Mem[B] (D.Mem is the data memory). But we can reduce
the required number of instruction count considerably, if we can switch off this
memory write-back operation in some cases.

Let us consider a prime field addition operation. We assume that we need to
add two operands stored at memory location A and B and the modulus of the
field is stored at memory location P . In Table 2 (code 1.3) shows the realization
of this operation using SBN. In this case, we can see that to implement prime
field addition we will require 11 SBN instructions. Now, if each SBN instruction
execution takes n clock cycles, total clock cycles requirement for field operation
will be 11n clock cycles.

Now, let us consider the scenario shown in Table 2 (code 1.4), where we
consider two variations of SBN instruction: SBNnw and SBNw. SBNw A,B,C
instruction is similar to normal SBN instruction, where memory location A get
updated by the value D.Mem[A] = D.Mem[A] − D.Mem[B]. But in case of
SBNnw A,B,C, memory location A does not get updated and continue to store
the previous value. If we use a combination of SBNw and SBNnw to implement
prime field addition, we will need only 7 instruction as shown in Table 2 (code
1.4). Thus, we have a saving of 4 instructions if we use the strategy depicted in
Table 2 (code 1.4). Similar saving can be obtained for field subtraction operation
also. Now, in the case of ECC scalar multiplication, where for each key bit
we need to do point doubling and if the key bit is 1, we need to do point
addition, this saving translates into significant speed up. Each point doubling

168 D.B. Roy et al.

operation involves 11 field addition and each point addition operation requires
7 field addition. Considering a random distribution of key value for NIST P-
256 curve, containing 128 bits of zero and 128 bits of one, we can save around
256 × 11 × 4 + 128 × 7 × 4 = 14848 number of instructions, which is quite large.

Table 2. Field addition using different SBN instructions

Code 1.3 Field Addition using Code 1.4 Field Addition using
Traditional SBN our Modification

ADDp C,A,B
//D.Mem[C]=D.Mem[A]+D.Mem[B] mod D.Mem[P]
1. SBN X,X,2 // D.Mem[X]=0
2. SBN X,A,3 // D.Mem[X]=-D.Mem[A]
3. SBN X,B,4 // D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBN C,C,5 // D.Mem[C]= 0
5. SBN C,X,6 // D.Mem[C]=D.Mem[A]+D.Mem[B]
6. SBN R,R,7 // D.Mem[R]=0
7. SBN R,X,8 // D.Mem[R]=D.Mem[A]+D.Mem[B]
8. SBN R,P,12 // D.Mem[R]=D.Mem[R]-D.Mem[P],

// on negative jump to ins. 12
9. SBN X,X,10 // D.Mem[X]=0
10. SBN X,R,11 // D.Mem[X]= -D.Mem[R]
11. SBN C,X,12 // D.Mem[C]= D.Mem[R]
12. SBN ... // Next Operation Code

ADDp C,A,B
//D.Mem[C]=D.Mem[A]+D.Mem[B]

mod D.Mem[P]
1. SBNw X,X,2 // D.Mem[X]=0
2. SBNw X,A,3
// D.Mem[X]=-D.Mem[A]
3. SBNw X,B,4
// D.Mem[X]=-D.Mem[A]-D.Mem[B]
4. SBNw C,C,5 // D.Mem[C]= 0
5. SBNw C,X,6
// D.Mem[C]=D.Mem[A]+D.Mem[B]
6. SBNnw C,P,8
// Check if C<P,if yes jump
//to ins. 8
7. SBNw C,P,8
// D.Mem[C]=D.Mem[C]-D.Mem[P]
8. SBN ...
// Next Operation Code

Right Shift on SBN Processor. Right shift is an important operation for
elliptic curve scalar multiplication execution as it is required during the field
inversion operation. Right shift operation can be executed through SBN instruc-
tion by repeated subtraction of the operand. For example, if we wish to right
shift an operand by 1 bit position, we need to subtract the operand by 2 until
the subtraction result become less than 2. Now as we are concentrating on NIST
P-256 curve, the operands are typically 256 bits long, making the sequence of
repeated subtraction operation extremely time consuming. On the other hand,
shifter design on the FPGA has zero LUT overhead if the number of bits to be
shifted are fixed. Hence, it is better if we implement right shift operation using
a dedicated right shifter module instead of using SBN.

To facilitate this in our architecture, we have introduced another flag (SBNrs

and SBNrs) in our instruction format. When this flag is set, the dedicated right
shifter module reads the operand and shift it right by one bit position.

Shifting Key Register. As we have stated in Algorithm 1, the elliptic curve
scalar multiplication operation involves point addition and point doubling oper-
ation. Point doubling happens for every key bit, but point addition happens only
when the key bit value is one. Hence we need to scan the key value bit by bit
to execute scalar multiplication operation. On a standard processor this can be

ECC on Your Fingertips 169

implemented using shift and logical AND operation. However, executing logi-
cal operations using only SBN instruction is again time consuming and hence
practically infeasible.

To solve this challenge, we have used a dedicated key register, separate from
the data memory shown in Fig. 2. Also we have introduced another flag in our
instruction format (SBNks and SBNks), which when enabled will left shift the
key register by one bit. The shifted out bit from the key register will decide
whether point doubling or point addition will occur.

Multiplication Using SBN. Field multiplication using SBN is carried out
by repeated addition. For example to multiply operand A with Operand B we
need to add operand A, B times. Now we have already shown how to implement
field addition using SBN in Table 2. To complete the multiplication operation,
we need to run that code, B times using a loop. Now, in the worst case scenario,
the operands value in NIST P-256 curve are in the range of 2256, which makes
repeated addition implementation impractical as the loop need to run 2256 times.
Hence, we can not implement field multiplication using only SBN for ECC scalar
multiplication.

To solve this problem, we have designed a lightweight multiplier using DSP
blocks, which acts as an external multiplier core and execute the field multiplica-
tion operation. However, to reset this multiplier core and to provide operand data
to the multiplier we need another variant of SBN instruction, which we refer as
SBNmul and SBNmul. The SBNmul instruction resets the multiplier, whereas
SBNmul initiates the multiplication operation. The detailed description of this
external multiplier core along with its interfacing with the SBN-OISC processor
is provided in the next section.

In this section, we have discussed about different variations of SBN instruc-
tion, that is required for optimized ECC implementation. The list of these vari-
ants can be found in Table 3, where we have combined the discussed SBN instruc-
tion variations. It should be noted that when we reset the multiplier we don’t
need any memory write-back, as ALU output does not matter in that situation.
Similarly when we are shifting the key register or doing the right shift operation,
no memory write-back is needed.

Table 3. Different variant of SBN instruction

Instruction Memory write-back Multiplier reset Key-shift Right-shift

SBNwmulksrs � x x x

SBNnwmulksrs x x x x

SBNnwmulksrs x x � x

SBNwmulksrs � x x �
SBNnwmulksrs x � x x

170 D.B. Roy et al.

To adopt these variations of SBN instructions in our architecture we also need
to modify the instruction format. The modified instruction format is shown in
Fig. 3. In the next section, we will discuss the modified SBN architecture which
can support these instruction variants, along with field multiplier architecture.
We would like to stress that though we are introducing different variants of SBN
instruction, we are still using same ALU for each of this variant. Hence these
variants are part of the same SBN instruction, with different flag values as shown
in Table 3.

w/nw mul/mul ks/ks rs/rs 1st Operand Address 2nd Operand Address Jump Address

5 51 1 1 1 11

23 22 21 20 15 1024

Fig. 3. Modified instruction format of SBN-OISC

4 Lightweight Field Multiplier for SBN-OISC

As we have stated in the previous sections, we need to provide a dedicated light
weight multiplier core to the SBN-OISC processor for efficient execution of the
ECC operations. In this section we will focus on the architecture of this dedicated
field multiplier and will describe the design strategies behind the proposed filed
multiplier methodology.

The architecture of the field multiplier is shown in Fig. 4. As we can see, the
architecture requires two DSP blocks, one for integer multiplication and another
one for modular reduction operation. DSP blocks of Virtex-5 FPGA can sup-
port 25× 18 signed multiplication. It can also provide 48 bit adder/accumulator
support. For our implementation, we have used DSP block as 16 × 16 unsigned
multiplier, configured in multiply and accumulate mode. Moreover, during addi-
tion operation, DSP block is configured as 32 bit adder.

We will first focus on the integer multiplier and will follow it with a discussion
on the modular reduction operation.

4.1 Integer Multiplication

The integer multiplier receives two 256 bits long operands as input. The operands
are divided into 16 bit words and are passed to the first DSP block through two
multiplexers. The DSP block is configured in multiply and accumulate mode and
support two different operations. In the first operation, DSP block computes
A ∗B +P where A and B are two multiplexer output and P is the accumulator
output. This operation computes the summation of the partial products which
are aligned with each other. Let us illustrate this with a small example in Eq. 2.

Let us consider a 32 bit multiplication of two operands R(= r1216 + r0)
and S(= s1216 + s0), divided into 16 bit words. In this scenario the addition of

ECC on Your Fingertips 171

....

....

a[15:0]

a[255:240]

b[15:0]

b[255:240]

sel_b

DSP BLOCK

Acc. M
E
M
O
R
Y

addr_a

addr_b

we

mul_sel

16 bit right shift

32 bit right shift

DSP BLOCK

Acc.

a

rs

16

16

16

16

16

16

32

32

16 16

48 16

48

output

mod_out
right_shift_output

result_memory

sel_a

mul_selb_les a_les we

48

add/sub mod_sel

addr_b

addr_a
Multiplier Control Unit

clk

Fig. 4. Architecture of Lightweight Field Multiplier

partial products r1s0 and r0s1 are carried out by the operation A ∗ B + P as
these partial products are aligned to each other. But for the partial products
which are shifted, DSP blocks operate using the second instruction A ∗ B + C,
where C = P >> 16. The result is stored in memory of dimension 16×32 which
is implemented using a block RAM configured as true dual port RAM.

R × S =
1∑

j=0

rj2j∗16 ×
1∑

i=0

si2i∗16 = r0s0 + (r1s0 + r0s1)216 + r1s1232 (2)

The integer multiplication requires 256 iteration of the DSP block, along with
three clock cycles for updating the data memory. Hence the total clock cycle
count for integer multiplication is 259.

4.2 Modular Reduction

Once the memory is loaded with the integer multiplication result, modular
reduction operation is initiated. For NIST curves, modular reduction operation
requires a combination of addition and subtraction operation as shown in Algo-
rithm2 in AppendixA. Now in Algorithm 2, the modular reduction operation
needs to add operands T, S1, S2, S3.S4 and subtract D1.D2,D3,D4 from them.
We have separated the operands in 32 bit words and have used a DSP adder
to execute the addition/subtraction operations. The memory produces 32 bits
of output in a single clock cycle, which are added or subtracted depending on

172 D.B. Roy et al.

the control signal add/sub. Like the previous DSP blocks, this one also supports
two operation: P ±C and C +CONCAT , where CONCAT = P >> 32 and P
is the accumulator output. The first operation does the addition or subtraction
of a 32 bit operand with the accumulator result, and the second operation is
required to add the carry bits generated from the previous additions.

The addition and subtraction sequence of the operands are decided by the
modular reduction algorithm for NIST P-256 curve, shown in AppendixA. More-
over, the produced result is not fully reduced but is within the range [−4p, 5p] [3],
where p is the modulus of the curve. The total clock cycles required for this par-
tial modular reduction operation is 68, making the total clock cycle requirement
for field multiplication 327.

As we have shown in the Fig. 4, our architecture is also coupled with a ded-
icated right shifter module. Now, when the rs flag is set high, the design will
produce the right shifter output of the input operand a. Otherwise, it will pro-
duce the output of the field multiplier.

D

T
A

A

M
E
M
O
R
Y

Program Counter

 Sub−
tractor

dout port A

we_a

clk reset

resetclk

en_b

+1

5
1

clk reset

Instruc
tion

Memory

addr_a

mul_add

web

addr_b en_a

addr_0

instruction

shift by 1
addr_1

ks

key register

Control Unit

Address

we_a=write enable for port A
en_a=read enable for port A
en_b= read enable for port B
we_b=write enable for port B

ks

5

5

5

5

256

260

dinA

web

 Multiplier
{mul,rs}

260

260

dout port BdinB

2

260

11

11

clk

reset

Fig. 5. ECC SBN-OISC processor architecture

5 Complete ECC SBN-OISC Processor

In this section, we will present the detailed description of our proposed ECC
SBN-OISC processor. The complete architecture of the processor is shown in
Fig. 5. The architecture and the working of the proposed processor is nearly
similar to the stand alone SBN processor shown in Fig. 2 with some few modifi-
cations which are described below.

The ECC SBN-OISC processor is coupled with the multiplier core described
in the previous section. Multiplier core is initiated by the mul flag of the instruc-
tion. As long as the mul flag is set to one, the multiplier stays in its initial stage.
Once it is set low, the multiplier starts its operation and produces the partially

ECC on Your Fingertips 173

reduced output along with signal web which indicates the completion of multipli-
cation operation. In the stand alone SBN (Fig. 2), the data memory is updated
only through port A. But in our case, we are also using the unused port B for
writing the multiplier output into the memory. It must be noted that when the
rs flag is set high, the multiplier module produces right shifted output of input,
available through port A.

As we have mentioned earlier, we introduced a flag ks in our instruction
format for shifting the key register. Key is stored in a different register which
goes though a single bit left shift when ks flag is set high. If the MSB of the
key bit is one, we select the address of the memory location containing value
1 (addr 1) and pass it to the data memory. Otherwise if the MSB bit is zero,
we select the memory location containing value 0 (addr 0). Once this is done
we can easily switch between point doubling and addition operation depending
upon the memory location passed to the data memory.

The ALU of the proposed SBN-OISC processor is a subtracter, implemented
through cascaded DSP blocks. The subtraction operation requires 6 clock cycles
to be completed. Instruction fetch, memory read and memory write-back require
single clock cycle for each operation. Hence total clock cycle required for a single
SBN instruction requires 9 clock cycles.

6 Result and Comparison

In this section we will analyze the performance of the proposed ECC SBN-
OISC processor in terms of timing and area. Table 4 shows the timing and area
performance of the proposed processor. As we can see, the slice count required by
the design for both Virtex-5 and Spartan-6 is very small. This is achieved by in-
depth usage of block-RAMs and DSP blocks. The stand alone SBN processor is
itself very lightweight, and the dedicated multiplier core is designed by judicious
use of DSPs and block RAMs making the slice count extremely small. The
block RAMs are used to implement both data and instruction memory of the
SBN-OISC processor. Moreover all the temporary storages along with control
units are also implemented through block RAMs which increases the block RAM
consumption, but reduces the slice count considerably. A designer can choose a
budget of slices and block RAMs and then can design the ECC crypto-processor
according to that budget. In this paper, we wanted to explore the limit up-to
which we can reduce the slice count by increasing the block RAM usage. The
result in Table 4 shows that saving is significant in terms of slice usage and hence
the objective of the paper is achieved.

Table 5 shows the comparison with the previous results. Among the pre-
vious work, the design proposed in [3] targets high speed architecture and is
not intended for lightweight applications. Apart from that, the proposed ECC
SBN-OISC processor shows comparable performance in terms of area and time
product. But it is unfair to directly compare the proposed design and the previ-
ous designs [10,11] as they were implemented on Virtex-II pro which is extremely
inefficient in comparison with Virtex-5 device family. However as FPGA devices

174 D.B. Roy et al.

Table 4. Area and timing performance of the proposed ECC SBN-OISC processor

Platform Freq. Slices LUTs Flip-Flops DSP DSP for Block-RAM Time

(MHz) for ALU Multiplier (ms)

Virtex-5 171.5 81 212 35 6 2 22 11.1

Spartan-6 156.25 72 193 35 6 2 24 12.2

Table 5. Comparison of ECC SBN-OISC processor with existing designs

Reference Slices MULTs BRAMs Freq (MHz) Latency (ms) FPGA

Micro-ECC P-256 16 bit [10] 773 1 3 210 10.02 Virtex-II Pro

Micro-ECC P-256 32 bit [10] 1158 4 3 210 4.52 Virtex-II Pro

[11] 16 bit any prime curve 1832 2 9 108.20 29.83 Virtex-II Pro

[11] 32 bit any prime curve 2085 7 9 68.17 15.76 Virtex-II Pro

[3] P-256 1715 32 (DSP) 11 490 .62 Virtex-4

[15] P-256 221 1 3 Not shown Not shown Spartan-6

Present work, P-256 81 8(DSP) 22 171.5 11.1 Virtex-5

Present work, P-256 72 8(DSP) 24 156.25 12.2 Spartan-6

has evolved significantly in the last decade, there is a need to update design
strategies which will be efficient on these modern FPGAs. Additionally, these old
FPGA families are no longer recommended for new designs by Xilinx. Motivated
by these reasons, we have chosen Virtex-5 and Spartan-6 as our implementation
platform, as these two FPGA family though not much new, are equipped with
most of the modern hard-IPs, present in the FPGAs. The proposed processor
is also much faster when compared with lightweight software libraries for ECC
like TinyECC [25]. The developed architecture is the first implementation which
has reduced the slice requirement of an ECC processor to be less than 100 on
Virtex-5 and Spartan-6 device family. The results shown here are obtained after
post place and route analysis on Xilinx ISE.

7 Conclusion

In this paper we have merged two design strategies to create an extremely light-
weight ECC crypto-processor for scalar multiplication in NIST P-256 curve.
The first strategy was to use a single instruction processor (ECC SBN-OISC
processor) to create lightweight framework for ECC scalar multiplication. Then
we have equipped this processor with dedicated field multiplier along with some
simple modification of the processor architecture and instruction format to make
the scalar multiplication operation practical time feasible. The second strategy
is to use the dedicated hard-IPs of the FPGA to reduce the slice consumption
further. We have shown that by thorough usage of DSP blocks and block RAMs,
the slice requirement decreases significantly. For Virtex-5 and Spartan-6, we
have been able to achieve less than 100 slice consumption. To the best of our
knowledge, this is the first implementation which has been able to achieve this
feat.

ECC on Your Fingertips 175

A Appendix 1

Here we will show two algorithm. The first algorithm is for ECC scalar multi-
plication using double and add methodology, shown in Algorithm1.

Algorithm 1. Double-and-Add Algorithm
Data: Point P and scalar k = km−1, km−2, km−3...k2, k1, k0, where km−1 = 1
Result: Q = kP

1 Q = P
2 for i = m − 2 to 0 do
3 Q = 2Q (Point Doubling)
4 if ki=1 then
5 Q = Q + P (Point Addition)

Next, we will present NIST specified fast algorithm for modular reduction in
NIST P-256 curve, shown in Algorithm 2.

Algorithm 2. Fast Modular Reduction Algorithm for NIST P-256 Curve
Data: 512 bit product C represented as C = C15||C14|| . . . ||C0, where each Ci is

a 32 bit integer, i ∈ {0, 15}
Result: P = C mod P-256

1 T = (C7||C6||C5||C4||C3||C2||C1||C0)
2 S1 = (C15||C14||C13||C12||C11||0||0||0)
3 S2 = (0||C15||C14||C13||C12||0||0||0)
4 S3 = (C15||C14||0||0||0||C10||C9||C8)
5 S4 = (C8||C13||C15||C14||C13||C11||C10||C9)
6 D1 = (C10||C8||0||0||0||C13||C12||C11)
7 D2 = (C11||C9||0||0||C15||C14||C13||C12)
8 D3 = (C12||0||C10||C9||C8||C15||C14||C13)
9 D4 = (C13||0||C11||C10||C9||0||C15||C14)

10 P = T + 2S1 + 2S2 + S3 + S4 − D1 − D2 − D3 − D4 mod P-256

References

1. Daly, A., Marnane, W., Kerins, T., Popovici, E.: An FPGA implementation of a
GF(p) ALU for encryption processors. Microprocess. Microsyst. 28(56), 253–260
(2004). Special Issue on FPGAs: Applications and Designs

2. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
elliptic curve cryptography for wireless sensor networks. In: Buttyán, L., Gligor,
V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer,
Heidelberg (2006)

176 D.B. Roy et al.

3. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

4. Satoh, A., Takano, K.: A scalable dual-field elliptic curve cryptographic processor.
IEEE Trans. Comput. 52, 449–460 (2003)

5. Orlando, G., Paar, C.: A scalable GF (p) elliptic curve processor architecture for
programmable hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 356–371. Springer, Heidelberg (2001)

6. Alrimeih, H., Rakhmatov, D.: Pipelined modular multiplier supporting multiple
standard prime fields. In: 2014 IEEE 25th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), pp. 48–56, June 2014

7. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J., Multiplication, T.B.: An
efficient strategy to optimize DSP multiplier for accelerating prime field ECC for
NIST curves. In: The 51st Annual Design Automation Conference, DAC 2014,
San Francisco, CA, USA, 1–5 June 2014, pp. 177:1–177:6 (2014)

8. Kim, C.-J., Yun, S.-Y., Park, S.-C.: A lightweight ECC algorithm for mobile RFID
service. In: Proceedings of the 5th International Conference on Ubiquitous Infor-
mation Technologies and Applications (CUTE 2010), pp. 1–6, December 2010

9. He, D., Kumar, N., Chilamkurti, N., Lee, J.-H.: Lightweight ECC based RFID
authentication integrated with an ID verifier transfer protocol. J. Med. Syst.
38(10), 116 (2014)

10. Varchola, M., Güneysu, T., Mischke, O.: MicroECC: a lightweight reconfigurable
elliptic curve crypto-processor. In: International Conference on Reconfigurable
Computing and FPGAs, ReConFig 2011, Cancun, Mexico, November 30–December
2, 2011, pp. 204–210 (2011)

11. Vliegen, J., Mentens, N,. Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I:. A compact FPGA-based architecture for elliptic curve cryptography
over prime fields. In: 21st IEEE International Conference on Application-Specific
Systems Architectures and Processors, ASAP 2010, Rennes, France, 7–9 July 2010,
pp. 313–316 (2010)

12. Tawalbeh, L.A., Mohammad, A., Gutub, A.A.-A.: Efficient FPGA implementa-
tion of a programmable architecture for GF(p) elliptic curve crypto computations.
Signal Process. Syst. 59(3), 233–244 (2010)

13. Ghosh, S., Alam, M., Chowdhury, D.R., Gupta, I.S.: Parallel crypto-devices for
GF(P) elliptic curve multiplication resistant against side channel attacks. Comput.
Electr. Eng. 35(2), 329–338 (2009)

14. Xilinx Inc.: Virtex-II and Virtex-II Pro X FPGA User Guide, 14 February 2011
15. Driessen, B., Güneysu, T., Kavun, E.B., Mischke, O., Paar, C., Pöppelmann, T.:

IPSecco: a lightweight and reconfigurable IPSec core. In: International Confer-
ence on Reconfigurable Computing and FPGAs, ReConFig 2012, Cancun, Mexico,
5–7 December 2012, pp. 1–7 (2012)

16. Pöpper, C., Mischke, O., Güneysu, T.: MicroACP - a fast and secure recon-
figurable asymmetric crypto-processor. In: Goehringer, D., Santambrogio, M.D.,
Cardoso, J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 240–247.
Springer, Heidelberg (2014)

17. Himmighofen, A., Jungk, B., Reith, S.: On a FPGA-based method for authenti-
cation using edwards curves. In: 8th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), Darmstadt, Germany,
10–12 July 2013, pp. 1–7 (2013)

ECC on Your Fingertips 177

18. Fan, J., Batina, L., Verbauwhede, I.: Light-weight Implementation options for
curve-based cryptography: HECC is also ready for RFID. In: ICITST, pp. 1–6.
IEEE (2009)

19. Kavun, E.B., Yalcin, T.: RAM-based ultra-lightweight FPGA implementation
of PRESENT. In: International Conference on Reconfigurable Computing and
FPGAs (ReConFig 2011), pp. 280–285, November 2011

20. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2003)

21. Mavaddat, F., Parhamt, B.: URISC: the ultimate reduced instruction set computer.
Int. J. Electr. Eng. Educ. 25, 327–334 (1988)

22. Gilreath, W.F., Laplante, P.A.: Computer Architecture : A Minimalist Perspective.
The Springer International Series in Engineering and Computer Science. Springer,
New York (2003)

23. Naccache, D.: Is theoretical cryptography any good in practice? In: CHES (2010)
24. Tsoutsos, N.G., Maniatakos, M.: Investigating the application of one instruc-

tion set computing for encrypted data computation. In: Gierlichs, B., Guilley, S.,
Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 21–37. Springer,
Heidelberg (2013)

25. Liu, A., Ning, P., Tinyecc,: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN, pp. 245–256. IEEE Computer Society (2008)

Exploring Energy Efficiency of Lightweight
Block Ciphers

Subhadeep Banik1(B), Andrey Bogdanov1, and Francesco Regazzoni2

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{subb,anbog}@dtu.dk

2 ALARI, University of Lugano, Lugano, Switzerland
regazzoni@alari.ch

Abstract. In the last few years, the field of lightweight cryptography
has seen an influx in the number of block ciphers and hash functions
being proposed. One of the metrics that define a good lightweight design
is the energy consumed per unit operation of the algorithm. For block
ciphers, this operation is the encryption of one plaintext. By studying the
energy consumption model of a CMOS gate, we arrive at the conclusion
that the energy consumed per cycle during the encryption operation of an
r-round unrolled architecture of any block cipher is a quadratic function
in r. We then apply our model to 9 well known lightweight block ciphers,
and thereby try to predict the optimal value of r at which an r-round
unrolled architecture for a cipher is likely to be most energy efficient.
We also try to relate our results to some physical design parameters
like the signal delay across a round and algorithmic parameters like the
number of rounds taken to achieve full diffusion of a difference in the
plaintext/key.

Keywords: AES · Lightweight block cipher · Low power/energy circuits

1 Introduction

In the last few years, we have assisted to the pervasive diffusion of embedded
and smart devices, touching every aspect of our lives. These devices, are often
used for sensitive applications, such as the ones related to access control, bank-
ing and health, and they are often connected to create what is called internet
of things. The security needs of these applications lead to the creation of the
research area of Lightweight Cryptography, which aims at designing and imple-
menting security primitives fitting the needs of extremely constrained devices.
Two main approaches can be followed to achieve this goal: designing new algo-
rithms to be implemented into constrained devices, or trying to implement stan-
dards and known algorithms in a lightweight fashion, eventually relaxing the
performance constraints. Examples of the first approach are the large number of
algorithms proposed in recent years, such as HIGHT [16], KATAN [8], Klein [13],
LED [14], Noekeon [10], Present [6], Piccolo [21], Prince [7], Simon/Speck [3]

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 178–194, 2016.
DOI: 10.1007/978-3-319-31301-6 10

Exploring Energy Efficiency of Lightweight Block Ciphers 179

and TWINE [22]. Possible examples of the second approach are implementa-
tions of the Advanced Encryption Standard algorithm (AES) [11], SHA-256 [1],
or Keccak [4].

Focusing on block ciphers in particular, it is important to notice that AES still
remains the preferred choice for providing security also in constrained devices,
even if some lightweight algorithms are now standardized. For this reason, sev-
eral implementations of AES and its basic transformations (such as S-boxes)
targeting low area and low power were proposed in the past, for example, the
implementation of Feldhofer et al. [12] and the one of Moradi et al. [19]. The
first design is based on a 8-bit datapath, and occupies approximately 3400 Gate
Equivalents (GE). The second design features a mixed data path and requires
approximately 2400 GE. The work of Hocquet et al. [15] discusses the silicon
implementation of low power AES. The authors showed that by exploiting tech-
nological advances and algorithmic optimization the AES core, can consume as
little as 740 pJ per encryption.

Despite a large number of previous works targeting area and power, only
limited efforts were devoted to the optimization of the energy parameter. Energy
and power are, for obvious reasons, correlated parameters. Power is the amount
of energy consumed per unit time or simply the rate of energy consumption.
More specifically, energy consumption is a measure of the total electrical effort
expended during the execution of an operation, and the total energy consumed
is essentially the time integral of power. However, being directly linked with the
battery life or the amount of electrical work to be harvested, energy, rather than
power, would become a more relevant parameter for evaluating the suitability of
a design. In fact, energy is a much stricter constraint for future cyber-physical
systems as well as for the next generation of implantable devices.

Designing for low energy can be significantly different than designing for low
power. Furthermore, there is no guarantee that low power architectures would
lead to low energy consumption. For instance, block ciphers implemented using
smaller datapath and aggressively exploiting serialization to reuse components,
result generally in smaller power consumption compared to round based designs
having datapath as large as the blocksize of the cipher. However, serial implemen-
tations have high latency, which can be significantly larger compared to round
based designs. As a result, the energy consumed per encryption for serial designs
could be much higher than the corresponding figure for round based designs.

Starting with the AES algorithm, in this work, we carry out a complete
exploration of the implementation choice of block ciphers concentrating on their
energy consumption, discussing and evaluating the design choice of each round
transformation, and the best trade-off between datapath and serialization. From
the detailed analysis of this exploration, we extract a model for the energy con-
sumption of a circuit, using as reference, a number of lightweight algorithms
recently proposed.

The most significant previous works on this area are the one of Kerckhof
et al. [17] and the one of Batina et al. [2]. The first work, addresses the prob-
lem of efficiency for lightweight designs. The authors present a comprehensive

180 S. Banik et al.

study comparing a number of algorithms using different metrics such as area,
throughput, power, and energy, and applying state of the art techniques for
reducing power consumption such as voltage scaling. However, the evaluation
reported in the paper is at very high level and concentrates only on a specific
implementation, without considering the effects on energy consumption of dif-
ferent design choices, such as size of the datapath, amount of serialization, or
effects of architectural optimization applied at each stage of the algorithm. The
second work explores area, power, and energy consumption of several recently-
developed lightweight block ciphers and compares it with the AES algorithm,
considering also possible optimization for the non linear transformation. How-
ever, no possible optimization was considered for the other transformations, and
effects of other design choices, such as serialization were not considered in the
work. In another work [18], a comparison of the energy consumptions of fully and
partially unrolled circuits was done with respect to the latency in the circuit.

1.1 Contribution and Organization of the Paper

In this paper we complete the analysis started with these works, looking at all
the parameters which might affect the energy consumption of a design. We start
with the case of AES and investigate how the variation in (a) the architectural
design of the individual components (S-box, MixColumn), (b) frequency of the
clock signal and (c) serializing or unrolling the design can affect the energy
consumption. Furthermore, starting with the detailed analysis of our exploration,
we build an energy model for any r-round unrolled architecture of block ciphers.
We prove that if all other factors are constant, then the total energy consumed
per encryption in an r-round unrolled circuit is quadratic in r. We validate our
model by estimating the energy consumed by several lightweight algorithms and
comparing it with the figures obtained by simulating their implementations.

The remainder of the paper is organized as follows. Section 2 presents, as a
motivating example a detailed study of the AES algorithm from the energy point
of view. Section 3 presents our model for estimating the energy consumption of
a block cipher, discussing how the contribution of each component is modeled
and included into the overall energy consumption equation. Section 4 reports
how our model is validated using a number of lightweight algorithms. Section 5,
tabulates the final energy figures for all the block ciphers that we have considered,
and relates these results to physical parameters like critical path and algorithmic
parameters like the minimum number of rounds required to achieve full diffusion
of a difference introduced in the plaintext or key. Section 6 concludes the paper.

2 A Case Study of Energy Consumption of AES 128

In this section, we investigate how the choice of architecture can affect the energy
performance of implementations of AES 128. In our experiments, we consid-
ered three factors that would likely affect the energy metric of the encryption
algorithm.

Exploring Energy Efficiency of Lightweight Block Ciphers 181

(a) Architecture of S-Box/MixColumn: It is known that the Canright
architecture [9] is the one of the most compact representations of the AES
S-box in terms of gate area. However it is unlikely to be the most efficient
energy-wise. We then experimented with a Lookup table based S-box. How-
ever, we found that the Decoder-Switch-Encoder (DSE) architecture [5] is
the most energy-efficient. We also considered two different variants of the
MixColumn architecture. Considering AES MixColumn to be a linear map
from {0, 1}32 → {0, 1}32, it can be composed with 152 xor gates by follow-
ing the mathematical definition. However, as shown by [20], the outputs of
several xor gates can be reused and it is possible to get a compact design
in 108 gates. The 108 gate variant is likely to be more energy efficient as it
provides a balanced datapath and also uses less gates. In Table 1, we present
the area and energy per encryption figure for the round based designs for a
combination of all the above choices of S-boxes/MixColumns at an operat-
ing frequency of 10 MHz (using the standard cell library of the STM 90 nm
low leakage process). Clearly the DSE S-box and the 108 gate MixColumn
is optimal in terms of energy efficiency.

(b) Clock Frequency: As already pointed out in [17], the energy consump-
tion required to compute an encryption operation should be independent of
frequency of operation, as energy is a metric which is a measure of the total
switching activity of a circuit during the process. This is true for sufficiently
high frequencies, where the total leakage energy consumed by the system
is low over the total number of cycles required for encryption. However for
the STM 90 nm low leakage process, at frequencies lower than 1 MHz, leak-
age energy naturally starts to play a significant role, thereby increasing the
energy consumption. Furthermore, gates selected by synthesis tools for meet-
ing a high clock frequency can be significantly different from the ones selected
for achieving a low clock frequency. The selection of different gates, which is
an indirect consequence of the clock frequency, would also affect the energy
consumption. In Fig. 1, we present the variation in the energy consumption,
for the round based AES architecture (using the DSE S-box and the 108
gate MixColumn) for frequencies ranging from 100 KHz to 100 MHz. We can
see that for frequencies higher than 1 MHz, the energy consumption is more
or less invariant with respect to frequency.

(c) Width of the Data path/Unrolled Design: We performed our experi-
ments with numerous serialized implementations of AES in which the data-
path width varies from 8 to 32 to 64 bits. For our experiments, we used the
8-bit serial architecture described in [19]. For the 32-bit serialized datapath
we used three architectures described as follows
1. A1: In this architecture every round is completed in 9 cycles: 4 for the

Substitution operation, 4 for the MixColumn operation and 1 for Shift
row. This architecture takes 94 cycles to complete one encryption.

2. A2: In this architecture every round is completed in 5 cycles: 4 cycles are
used for the combined Substitution operation and MixColumn operation
and 1 is used for Shift row. This architecture takes 54 cycles to complete
one encryption.

182 S. Banik et al.

Table 1. Area, energy figures for round based AES 128 using different component
architectures

S-box MixColumn Area (in GE) Energy (in pJ) Energy/bit (in pJ)

1 LUT 152 gates 13836.2 797.2 6.23

2 LUT 108 gates 13647.9 755.3 5.90

3 Canright 152 gates 8127.9 753.6 5.89

4 Canright 108 gates 7872.5 708.5 5.53

5 DSE 152 gates 12601.7 377.5 2.95

6 DSE 108 gates 12459.0 350.7 2.74

3. A3: In this architecture every round is completed in 4 cycles. Extra mul-
tiplexers are used to ensure that each clock cycle performs the Shift Row,
Substitution and MixColumn operation on a given chunk of 32 bit data.
This architecture takes 44 cycles to complete one encryption.

Similarly, we used three architectures B1, B2 and B3 for the 64-bit serial
design that takes 52, 32 and 22 cycles respectively. Thereafter we continue
to explore lower latency designs like the round based architecture and the 2,
3, 4, 5, 10 round unrolled architectures.

105 106 107 108

400

600

800

1,000

1,200

Frequency (in Hz)

E
n
er

g
y

(i
n
p
J
)

Fig. 1. Energy consumption for round based AES 128 over a range of clock frequencies

We present the area and energy per encryption figure for all the architectures
using the DSE S-box, and the 108 gate MixColumn for designs synthesized with
the standard cell library based on the STM 90 nm logic process, at a clock
frequency of 10 MHz in Table 2. We found that the round based implementation
of AES 128 is the most energy efficient. Since the serialized architectures take
longer time to complete an encryption operation it was expected that they would
consume more energy, but the fact that the round based design was better in

Exploring Energy Efficiency of Lightweight Block Ciphers 183

terms of energy than its unrolled counterparts was certainly an interesting result.
To understand the reason for this we first need to understand which components
of the architecture are consuming the most energy. A breakdown of this energy
consumption, by percentage of the total energy, for the various components is
shown in Fig. 2.

Table 2. Area and energy figures for different AES 128 architectures

Design Area (in GE) #Cycles Energy (pJ) Energy/bit (pJ)

1 8-bit 2722.0 226 1913.1 14.94

2 32-bit (A1) 4069.7 94 1123.3 8.77

32-bit (A2) 4061.8 54 819.2 6.40

32-bit (A3) 5528.4 44 801.7 6.26

3 64-bit (B1) 6380.9 52 1018.7 7.96

64-bit (B2) 6362.6 32 869.8 6.79

64-bit (B3) 7747.5 22 616.2 4.81

4 Round based 12459.0 11 350.7 2.74

5 2-round 22842.3 6 593.6 4.64

6 3-round 32731.9 5 1043.0 8.15

7 4-round 43641.1 4 1416.5 11.07

8 5-round 53998.7 3 1634.4 12.77

9 10-round 101216.7 1 2129.5 16.64

We can see that the Substitution layer consumes the most part of the energy
budget (24% and 36.3%) in the round based design and the 2-round unrolled
designs respectively. However we also find that in the 2-round unrolled design,
the second round functions (Substitution Layer, MixColumn, Add round key
and round key logic) consume more energy than the first. To understand the
reason for this trend, we need to study the energy consumption model in CMOS
gates, and start to analyze the situation from there.

3 CMOS Energy Consumption Model

Currently, static CMOS is the dominant technology used for producing electronic
devices. Two main reasons were behind the widespread diffusion of static CMOS:
its robustness against noise and its limited static power consumption. With
the shrinking of technologies, static power consumption of CMOS is increasing.
Nevertheless, static CMOS is likely to continue to be the preferred technology
for electronic fabrications in the foreseeable future.

Energy consumption of a static CMOS gate, is defined by the following equa-
tion:

Egate = Eload + Esc + Eleakage

184 S. Banik et al.

24%

S.Layer

20.8%

Reg

15.3%
RKL

12.4%

MC

10.9%

Input Mux

10.3%

ARK

4.9%

Round Mux

1.4%
Other

(a) Round based

8%

S.Layer1
28.3%

S.Layer2

8.4%

Reg

6%

RKL1

12.7%

RKL2
4%

MC1

10.4%

MC2

6.9%

Input Mux

4.4%

ARK1

7.1%

ARK2

3.7%
Round Mux

0.1% Other

(b) 2-round unrolled

S.Layer: Substitution Layer Reg: Registers MC: MixColumn ARK: Add Round Key RKL: Round Key Logic

Fig. 2. Energy shares for the round based and 2-round unrolled AES 128

where Esc is the energy due to the short-circuit current. Eleakage is the energy
consumed due to the sub-threshold leakage current when the transistor is OFF.
This component is usually small, but is gaining importance as the technology
scaling makes the sub-threshold leakage more significant. Eload is the energy
dissipated for charging and discharging the capacitive load CL of a gate when
output transitions occur.

Hardware implementations of any cryptographic primitive consist of a num-
ber of registers and logic blocks connected together as required by the specifi-
cations of the algorithm itself. Block ciphers based on SPN or Feistel designs,
consist in particular of a round function and round key generation logic which
transform a plaintext and key into a ciphertext by iterating the round function
for a specific amount of rounds. Consider an ideal block cipher E operating on a
plaintext space {0, 1}Lp and a key space {0, 1}Lk . Its hardware implementation,
illustrated in Fig. 3, would include:

A. A state register (SReg) and a key register (KReg) of Lp and Lk bits respec-
tively, to store the intermediate states produced by the round function and
the computed round keys.

B. Two input multiplexers placed before the state register and the key register
respectively used to control the updating of the state or the loading of the
plaintext or the initial key.

C. Depending on the choices of the designer, one or more instances of the round
function (RFi) and the round key generation logic (RKi)

D. Additional logic needed to generate control signals, round constants etc.

A designer, depending on the specific requirements of the target applica-
tion, can implement the algorithm following different strategies. One of the most
important decisions in this respect is the number of instances of the round func-
tion to be replicated in hardware. The smallest amount of replication happens
when a single instance of the round function and the round key are instanti-
ated: implementations following this style are called round based architectures.

Exploring Energy Efficiency of Lightweight Block Ciphers 185

Plaintext

Key

Ciphertext

SReg

KReg

RF1 RF2 RFr

RK1 RK2 RKr

K1 K2 Kr

Fig. 3. Block cipher architecture

The round based architecture of a block cipher which has to be executed for
R rounds, can be compute the result of an encryption in R + 1 clock cycles (1
cycle for the loading of the plaintext/key and the remaining R cycles for exe-
cuting the R rounds). A designer can instantiate more than one round function,
opting for an unrolled architecture. An r-round unrolled architecture consists
of r instances of the round function and round key logic. Encryption on such a
circuit would take 1 +

⌈
R
r

⌉
clock cycles.

The selection of the number of round functions instantiated depends on the
specific optimization parameters. For instance, an r-round unrolled circuit for
high values of r would require a smaller number of clock cycles to compute the
encrypted ciphertext compared to a round based design. However, its power
consumption is usually higher. It is thus interesting to investigate how the value
of r affects the energy consumption for a given block cipher. To tackle this
problem from a purely analytical point of view, one can make the following
observations:

1. Assume that the designer has fixed the logic process and the frequency of
operation of the circuit. Consider the input signal seen by the multiplexers
i.e., outputs of RFr and RKr, respectively in an r-round design. If τF , τK

represent the delays in each of the RFi, RKi blocks, then each multiplexer
will see a signal that will be switching for around rτF , rτK respectively in
every clock cycle before stabilizing. If each of the muxes itself introduce a
delay of τM , then their outputs will be switching for rτF + τM , rτK + τM

in every round. Since in a low leakage environment, the energy consumed is
essentially the measure of the total number of logic switches, we can assume
that the energy consumed in the each of the multiplexers is proportional to
rτF + τM , rτK + τM respectively. Let EMux,r be used to denote the total
energy drawn per cycle by the multiplexers in an r-round unrolled design.

186 S. Banik et al.

Then we can write (α and β are constants of proportionality)

EMux,r − EMux,1 = α · [(rτF + τM) − (τF + τM)]
+ β · [(rτK + τM) − (τK + τM)]

= (r − 1) · (ατF + βτK) = (r − 1) · dEMux,

where dEMux is therefore the difference between EMux,r and EMux,r−1, i.e.
energy consumed per cycle in the multiplexers in the r and r−1 round unrolled
architectures. One can see that the EMux,1, EMux,2, . . . forms an arithmetic
sequence with difference between successive terms equal to dEMux.

2. Similarly, we can derive the energy drawn by the registers. However, registers
switch only at the positive/negative edge of the clock (assuming a synchronous
design). If EReg,r is the total energy per cycle drawn by the registers in the
r-round architecture, we have

EReg,r = EReg,1 + (r − 1) · dEReg.

However the value of incremental energy dEReg when compared to EReg,1 is
generally much smaller.

3. By similar arguments, the energy consumed in each successive logic block
RFi and similarly RKi is likely to constitute two arithmetic sequences. The
total energy drawn per cycle by the r round function blocks, given by ERF is

ERF =
r∑

i=1

ERF,i =
r∑

i=1

ERF,1 + (i − 1) · dERF

= rERF,1 +
r(r − 1)

2
· dERF ,

and similarly, the total energy drawn per cycle by the r round key logic blocks
is

ERK = rERK,1 +
r(r − 1)

2
· dERK

where ERF,i and ERK,i are the energy drawn per cycle by RFi and RKi

respectively. dERF , dERK denote the incremental energy consumption per
cycle between successive round function and round key logic blocks respec-
tively. In deriving the above equations we have made the implicit assumption
that the capacitive loads driven by the final blocks RFr, RKr are the same as
the ones driven by the previous blocks RFi, RKi (for i < r). This, however,
is not always true. For example, RFr drives the multiplexer in front of the
state register, and all of the previous RFi blocks drive the subsequent RFi+1.
This may result in small deviation in the actual and the estimated energy
consumed in the final block. However the deviation is usually negligible.

4. The energy drawn by the rest of the logic (Erem) may or may not form a
sequence with any special property for increasing values of r. This would

Exploring Energy Efficiency of Lightweight Block Ciphers 187

naturally depend on the specific algorithm of the block cipher. The value
of this figure is usually a small fraction of the total energy drawn by the
circuit: in the set of ciphers we have considered in this work, Erem was never
exceeding 5% of the total energy budget.

Summing all the contributions, we can write the total energy Er consumed per
cycle in an r-round unrolled circuit as:

Er = EMux,r + EReg,r + ERK + ERF + Erem

= EMux,1 + (r − 1) · dEMux + EReg,1 + (r − 1) · dEReg

+ r · ERF,1 +
r(r − 1)

2
· dERF + r · ERK,1 +

r(r − 1)
2

· dERK + Erem

Er is a quadratic function in r in the form Ar2 + Br + C, where

A =
dERF + dERK

2
, B = ERF,1 + ERK,1 + dEReg + dEMux − dERF + dERK

2
C = EReg,1 + EMux,1 + Erem − dEReg − dEMux.

To compute the total energy Er which a particular implementation consumes to
perform an encryption, the energy required for one round needs to be multiplied
for total time required for the computation i.e.

(
1 +

⌈
R
r

⌉)
:

Er = Er ·
(

1 +
⌈

R

r

⌉)
= (Ar2 + Br + C) ·

(
1 +

⌈
R

r

⌉)
(1)

As before, Er is a function in r of the form αr2 + βr + γ + δ
r . The analysis for a

fully unrolled circuit is slightly different such circuits do not need registers used
to store intermediate values. As a result, the total energy consumed by a fully
unrolled design does not contain the EReg,r component. Also, a fully unrolled
circuit takes only a single clock cycle to complete an encryption.

4 Application of the Model

In this section we apply our model to determine the most energy efficient
configuration for 9 lightweight block ciphers. For each algorithm, we measure
(a) the parameters EReg, EMux, ERF,1, ERK1 , Erem and (b) the energy dif-
ferentials dERF , dERK , . . . by simulating the energy consumption of the round
based and 2-round unrolled design. Using this data, we predict the energy con-
sumption required for one encryption by changing the number of unrolled rounds.
Thereafter, we determine the value of r which achieves the highest energy effi-
ciency. Finally, we compare our predictions with the actual energy consumption
estimated using a well recognized gate level power simulator.

Estimation of power consumption (and, as a consequence, energy consump-
tion) can be carried out at different levels. A designer has to trade the desired

188 S. Banik et al.

precision in the estimation with the time (and the level of circuit details) required
for the simulation. A first approximation of power consumption can be achieved
by simply counting the amount of switches which each node of the circuit makes
during a given time period. This approach is extremely fast. However, the accu-
racy is very limited, as all the gates are assumed to consume the same amount of
power. A better estimation can be obtained by collecting the switching activity
of the circuit under test, obtained by simulating a significant and sufficiently
large test bench, and annotating it back to the power estimation tool. In this
way, the amount of switches is combined with the power fingerprint of each gate
indicated in the technological library and produces a more precise estimation.
The back-annotation of the switching activity can be carried out in different
ways. The first and simpler, consists of annotating only the switching activity at
the primary inputs. In this case, the tool estimates the switching of the internal
gates. A more precise back annotation involves annotating the exact amount of
switching of each gate, as produced by the simulation of a test bench. It is worth
mentioning that most precise estimation of power consumption is obtained by
simulating a circuit at SPICE level. This simulation, however, requires the avail-
ability of technological models (which are often not provided by the foundry)
and needs significant amount of time to be carried out. For this reason, SPICE
level simulation is not the preferred way to estimate power consumption. Power
consumption estimation is also affected by the point in the design flow where
it is carried out. A post-synthesized netlist contains all the information for esti-
mating the power consumed by the gates, however it does not have information
about the interconnecting wires. To obtain them, it is necessary complete the
placement and the routing of the circuit, which is out of the scope of this work.

In this work, we are mainly concerned by the energy consumed by the gates.
Hence, we carried out the energy estimation using the following design flow: The
design was implemented at RTL level. A functional verification of the VHDL
code was done using Mentorgraphics ModelSim. Synopsys Design Compiler was
used to synthesize the RTL design. The switching activity of each gate of the
circuit was collected by running post-synthesis simulation. The average power
was obtained using Synopsys Power Compiler, using the back annotated switch-
ing activity. The energy was then computed as the product of the average power
and the total time taken for one encryption.

For all the circuits, we set the operating Frequency at 10 MHz and the target
library was the standard cell library of the STM 90 nm low leakage process. The
operating frequency was fixed at 10 MHz since we have already established that
at sufficiently high frequencies, the energy consumption of a circuit is invariant
with frequency. We selected a set of 9 lightweight block ciphers of different design
flavors. We classified them into two categories:

(a) Iterated ciphers are those all of whose round functions are similar. In this
category we have AES 128, Noekeon, Present, Piccolo, TWINE and Simon
64/96. Such ciphers readily fit the model of energy consumption given by
Eq. (1).

Exploring Energy Efficiency of Lightweight Block Ciphers 189

(b) Non-iterated ciphers are those whose round functions are not all similar.
For example, in the cipher LED 128, the most significant bits and the least
significant bits of the 128-bit key are alternately added to the state after
every 4 rounds. So, in a round based design, to account for the addition of
the round key once every four cycles, one needs to place a multiplexer/and
gate to filter the key every fourth round. However, in a 2-round unrolled
design, this filtering is not needed in the second round function. In a 3-
round unrolled design, filtering would be needed in all the rounds, whereas
in a 4-round unrolled design, filtering is not needed in any of the rounds. So,
this is a cipher in which the structure of the round function varies widely
from one architecture to another, we will call this a non-iterative cipher.
Another example is Prince, in which 3 different type of round functions are
used in the design itself. Finally we have the KATAN64 block cipher which is
based on a bitwise Shift register. Since the cipher is based on a Shift register,
its functioning is very different from the existing SPN/Feistel designs. Each
round consists of the execution of a few simple Boolean Functions over only
a limited number of bits of the current state. This is why we do not see
a compounding of switching activity across rounds. Such ciphers do not
readily fit the model for energy consumption as defined in Eq. (1). But the
core logic remains the same, rounds further away from the register would
consume more energy that the ones closer to it.

For all the iterated ciphers in our set we measured the values of EReg,1, dEReg,
EMux,1, dEMux, ERF,1, dERF , ERK,1, dERK Erem and formulate the expression
for Er as given in Eq. (1). The results are shown in Table 3.

Table 3. Measured parameters for the iterated ciphers (all figures in pJ)

Noekeon, when operated in direct mode, does not use a key schedule opera-
tion and hence ERK,1, dERK parameters are both zero for this cipher. Similarly,
in Piccolo, the key schedule consists of selecting different portions of the key
depending on the current round number and adding a round constant to it.
This functionality can be achieved by a set of multiplexers and xor gates for any
r-round unrolled architecture and so dERK = 0 for this cipher. The key schedule
of Present is such that extremely slow diffusion occurs in the key path. So, the
switching activity of the RK1 block does not necessarily compound the switch-
ing activity in RK2 and ERK,1 = 0.1, dERK = 0 is a reasonable approximation
for analyzing less than 5-round unrolled designs.

190 S. Banik et al.

By analyzing the expressions for Er in Table 3, one can conclude that r = 2,
is the optimal energy configuration for Present, TWINE and Simon 64/96. For
AES 128, Piccolo and Noekeon, r = 1 is likely to be optimal in terms of energy.
In Fig. 4, we compare our estimates for the energy consumption for upto the
4-round unrolled implementation calculated as per the Equation for Er in
Table 3, with the actual figures. It can be seen that for Present, TWINE and
Simon 64/96, our prediction that r = 2 is the optimal energy configuration
holds good. Similarly our prediction that the round based architecture is the
most energy-efficient for AES 128, Noekeon and Piccolo also holds good.

For the non-iterated ciphers, although it is not possible to model the energy
consumption of round unrolled designs, the concept holds that successive round
functions consume more energy than the previous. The simulation results for all
ciphers are given in Table 4. It can be seen that the round based configurations
of LED 128 is most energy-efficient. Prince uses three types of round functions:
Forward, Middle and Inverse. We implemented 3 architectures for Prince: the
round based, Fully unrolled and a Half unrolled design in which Forward/Middle
and the Inverse rounds are executed in one cycle each. Again, the round based
design was found to be most energy efficient. Finally, we experimented with the
round based and 2, 4, 8, 16 and 32 round unrolled versions of KATAN64. As can
be seen in Table 4, the 16-round version was found to consume the least energy.

5 Discussion

Under a low leakage environment, the energy consumption in an circuit over a
period of time is essentially a measure of the electrical work done by the voltage
source in order to charge and discharge its gates. We have already seen that in
any unrolled architecture, the gates in the later rounds of the design consume
more energy, because the switching activity is compounded from one round to
the next. Even then, intuitively it makes sense to investigate which degree of
unrolling optimizes energy consumption, since an r-round unrolled design will
inevitably reduce the total energy required to write updated states onto the
state/key registers by a factor of almost r.

We know that the difference in the energy consumptions in any two succes-
sive rounds in any unrolled design will depend on the average number of gates
that switch in the first round. A physical parameter that is closely related to the
average number of gate switchings is the total signal delay in one round. The
figures in Table 4 confirm that the ciphers which have low differential energies
across successive unrolled architectures are also those in which a signal experi-
ences low delay across a round. These are also the ciphers in which the 2-round
unrolled design is more energy efficient. For example in Present, the critical path
is composed of 1 S-box and 1 xor gate. In Simon 64/96, the critical path includes
3 xor gates and a single and gate. In Twine, the critical path is made up of 2 xor
gates and an S-box. In all other ciphers, the critical path is comprised of atleast
one S-box, multiple xor gates and MixColumn layers.

A design parameter that has considerable correlation with the differential
energies, is the number of rounds required for full diffusion to take place. This

Exploring Energy Efficiency of Lightweight Block Ciphers 191

0 1 2 3 4 5 6

400

600

800

1,000

1,200

1,400

1,600

1 2 3 4
Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(a) AES 128

0 1 2 3 4 5
200

400

600

800

1,000

1,200

1,400

1 2 3 4
Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(b) Noekeon

0 1 2 3 4 5
150

160

170

180

190

200

210

1 2 3 4

160

170

180

190

200

Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(c) Present

0 1 2 3 4 5
100

200

300

400

500

600

1 2 3 4
Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(d) Piccolo

0 1 2 3 4 5
200

220

240

260

280

300

320

1 2 3 4
Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(e) TWINE

0 1 2 3 4 5
200

220

240

260

280

300

1 2 3 4
Ei

E
ne

rg
y

(p
J
)

Predicted
Actual

(f) Simon 64/96

Fig. 4. Actual and predicted energy consumptions

192 S. Banik et al.

Table 4. Area, energy and related figures for all the ciphers

is defined as the minimum number of rounds that it takes for a difference
introduced in any one byte/nibble of the state/key to spread across to all the
bytes/nibbles of the current state/key. This figure directly controls the quantum
of switching activity across a round, and as Table 4 suggests, the ciphers with
low differential energies are also the ones which take more rounds to achieve
complete diffusion.

Overall, if we compare the energy consumptions of all the ciphers we find
that the 16-round unrolled implementation of KATAN64 consumes least energy.
A round in KATAN64 is composed of extremely simple Boolean equations, and
hence the trend for KATAN64 is such that unrolling more rounds does not always
lead to increase of switching across the rounds. Among the SPN/Feistel archi-
tectures, the round based implementation of Prince consumes the least energy,
as it takes only 13 cycles to complete an encryption, and the fact that it does not
employ any key schedule operation. Close second, is the 2-round unrolled imple-
mentation of Present, followed by the round based implementations of Present

Exploring Energy Efficiency of Lightweight Block Ciphers 193

and Piccolo. Piccolo benefits from the fact that it does not have a key schedule
operation, and hence does not expend any energy on writing values to a key
register. Coming in next are the 3 and 4 round unrolled Present and the 2-round
unrolled designs of Simon 64/96 and TWINE. It is also interesting to note that
if we use a DSE based S-box, then the energy/bit figure of round based AES
128 is quite comparable to Prince and Present.

6 Conclusion

In this paper, we looked at the energy consumption figures of several light-
weight ciphers with different degrees of unrolling. By constructing a model of
energy consumption, we proved that the total energy consumed in a circuit dur-
ing an encryption operation has roughly a quadratic relation with the degree of
unrolling. In this respect we looked to apply our model to a number of light-
weight ciphers and predict the most energy efficient architecture for the design.
In the end, we tried to relate the energy consumption in an arbitrarily unrolled
architecture of a circuit to physical parameters like critical path in a single round
function and algorithmic parameters like number of rounds required to achieve
full diffusion.

References

1. Descriptions of SHA-256, SHA-384, and SHA-512. http://csrc.nist.gov/groups/
STM/cavp/documents/shs/sha256-384-512.pdf

2. Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I.,
Yalçin, T.: Dietary recommendations for lightweight block ciphers: power, energy
and area analysis of recently developed architectures. In: Hutter, M., Schmidt,
J.-M. (eds.) RFIDsec 2013. LNCS, vol. 8262, pp. 101–110. Springer, Heidelberg
(2013)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The Simon and Speck Families of Lightweight Block Ciphers. IACR eprint archive.
https://eprint.iacr.org/2013/404.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak Reference. http://
keccak.noekeon.org/Keccak-reference-3.0.pdf

5. Bertoni, G., Macchetti, M., Negri, L., Fragneto, P.: Power-efficient ASIC synthesis
of cryptographic S-boxes. In: Proceedings of the 14th ACM Great Lakes Sympo-
sium on VLSI. ACM, pp. 277–281(2004)

6. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Borghoff, J., et al.: Prince – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

8. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://eprint.iacr.org/2013/404.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

194 S. Banik et al.

9. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

10. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON.
http://gro.noekeon.org/Noekeon-spec.pdf

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

12. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEEE Proc. Inf. Secur. 152(1), 13–20 (2005)

13. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

14. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

15. Hocquet, C., Kamel, D., Regazzoni, F., Legat, J.-D., Flandre, D., Bol, D., Stan-
daert, F.-X.: Harvesting the potential of nano-CMOS for lightweight cryptography:
an ultra-low-voltage 65 nm AES coprocessor for passive RFID tags. J. Crypto-
graph. Eng. 1(1), 79–86 (2011)

16. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006)

17. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green
cryptography: a comparison of lightweight ciphers from the energy viewpoint.
In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407.
Springer, Heidelberg (2012)

18. Knežević, M., Nikov, V., Rombouts, P.: Low-latency encryption – is “Lightweight
= Light + Wait”? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 426–446. Springer, Heidelberg (2012)

19. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

20. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

21. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

22. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: a lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

http://gro.noekeon.org/Noekeon-spec.pdf

Short Papers

Forgery and Subkey Recovery on CAESAR
Candidate iFeed

Willem Schroé1,2, Bart Mennink1,2(B), Elena Andreeva1,2, and Bart Preneel1,2

1 Department of Electrical Engineering, ESAT/COSIC,
KU Leuven, Leuven, Belgium

{bart.mennink,elena.andreeva,
bart.preneel}@esat.kuleuven.be

2 iMinds, Ghent, Belgium

Abstract. iFeed is a blockcipher-based authenticated encryption design
by Zhang, Wu, Sui, and Wang and a first round candidate to the
CAESAR competition. iFeed is claimed to achieve confidentiality and
authenticity in the nonce-respecting setting, and confidentiality in the
nonce-reuse setting. Recently, Chakraborti et al. published forgeries on
iFeed in the RUP and nonce-reuse settings. The latter attacks, however,
do not invalidate the iFeed designers’ security claims. In this work, we
consider the security of iFeed in the nonce-respecting setting, and show
that a valid forgery can be constructed after only one encryption query.
Even more, the forgery leaks both subkeys EK(0128) and EK(PMN ‖1),
where K is the secret key and PMN the nonce used for the authenticated
encryption. Furthermore, we show how at the price of just one additional
forgery one can learn EK(P ∗) for any freely chosen plaintext P ∗. These
design weaknesses allow one to decrypt earlier iFeed encryptions under
the respective nonces, breaking the forward secrecy of iFeed, and leading
to a total security compromise of the iFeed design.

Keywords: CAESAR · iFeed · Forgery · Subkey recovery · Breaking
forward secrecy

1 Introduction

The CAESAR [3] competition was launched in 2014 to select a portfolio of rec-
ommended robust and efficient authenticated encryption algorithms by 2018.
CAESAR is much in the spirit of the Advanced Encryption Standard [1] (AES)
and SHA-3 hash [5] algorithm competitions, which were organized by the Amer-
ican institute of standards and technology (NIST). The main goal of this type
of competitions is that they allow for public discussions, analysis, and there-
fore more comprehensive, secure and collectively agreed upon choices of crypto-
graphic algorithms. In March, 2014, CAESAR received 57 submissions. In July
2015, 30 of them have advanced to the second round.

In this work we analyze the security of the first round CAESAR submis-
sion iFeed[AES] v1 – iFeed for short – by Zhang et al. [6]. iFeed is an AES
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 197–204, 2016.
DOI: 10.1007/978-3-319-31301-6 11

198 W. Schroé et al.

blockcipher-based design which combines PMAC-style authentication with ded-
icated encryption. Below we will treat iFeed generically, and consider it to be
based on an arbitrary blockcipher E. iFeed processes the data in an on-line man-
ner and it is inverse-free, meaning that both encryption and decryption only use
the block cipher in forward direction. The design is inherently nonce-based: the
authors claim and prove confidentiality and authenticity of iFeed in a setting
where the adversary is not allowed to make repeated queries under the same
nonce. We refer to this setting and type of adversary as nonce-respecting. The
design is moreover claimed to achieve confidentiality under some conditions also
in the nonce-reuse setting.

iFeed uses the secret key K to derive two subkeys: a nonce-independent
Z0 = EK(0128) and its multiples Zi = 2i · Z0, and a nonce-dependent U =
EK(PMN ‖10∗) where PMN is a variable public message number (nonce) and
10∗ is the padding to a full 128-bit block with one 1 bit and appropriate num-
ber of 0 bits. The processing of the associated data and of the message are done
independently of each other, both resulting in a subtag. The XOR of the two sub-
tags produces the final tag. The general encryption and decryption procedures
of iFeed are given in Figs. 1 and 2, respectively. The processing of the associated
data is distinctively independent of the nonce: the inputs to the blockcipher E
are masked only using Zi. The data is encrypted using both the Zi and U . One
design choice of iFeed is that the computation of the subtags is performed using
the same subkeys: Z1 or Z2 for the associated data, and Z1 ⊕ U and Z2 ⊕ U for
the plaintext.1

Chakraborti et al. [4] recently presented forgeries on iFeed both in the nonce-
reuse setting, and in a setting where the adversary is granted access to ciphertext
decryptions irrespective of the verification result, also known as the release of
unverified plaintext (RUP) setting from [2]. The iFeed designers, however, do not
claim any security against these properties, and the attacks from Chakraborti
et al. do not invalidate the security of iFeed.

Our Contribution. In this paper, we present a simple forgery attack on iFeed
in the nonce-respecting model. Our attack exploits the unfortunate repetition of
the Z1 (respectively Z2) subkeys at the finalization of the associated data and
plaintext. Our attack on iFeed leads to a total security break and also invalidates
the security claims and proofs posited by the designers of iFeed. The attack
uses only one encryption query with no associated data and an arbitrary n-bit
(or single block) plaintext. Then, we show how to construct a valid forgery with
n-bit associated data and 2n-bit ciphertext.

As a consequence of our attack the values of the subkeys Z0 and U are
also leaked. These subkeys are valuable information as they can be used to
recover plaintext from old encryptions, even though they were performed under
a different nonce. Namely, we show how at the price of just a single additional
forgery, one learns EK(P ∗) for any plaintext P ∗. More concretely, the extra
forgery allows an attacker to learn the U ′ = EK(PMN ′‖10∗) values for some
1 Z1 is used if the last associated data block is fractional; Z2 is used otherwise. Simi-

larly for Z1 ⊕ U and Z2 ⊕ U with respect to the last plaintext block.

Forgery and Subkey Recovery on CAESAR Candidate iFeed 199

earlier used nonce PMN ′. Once U ′ is obtained, the ciphertext with PMN ′ for
any P ∗ can be retrieved: the inputs to EK in the decryption algorithm can
be computed offline (using Zi, U ′, and the ciphertext), and forgeries can be
performed to find out the plaintexts one by one.

Our forgeries not only invalidate the security claim and proof of iFeed [6],
but they also break its forward secrecy. To gain a better understanding of the
presented iFeed security weaknesses, we conclude by revisiting and pointing out
the errata in the security proof of iFeed.

Outline. We introduce iFeed in Sect. 2. Our forgery and subkey recovery attack
on iFeed is given in Sect. 3. Next, we show how the subkeys can be used to learn
EK(P ∗) for any P ∗ in Sect. 4. We elaborate on the key properties that caused
this attack to work and look back at the proof of iFeed in Sect. 5. The paper is
concluded in Sect. 6.

2 iFeed

iFeed [6] is a blockcipher-based authenticated encryption scheme. It is originally
specified using the AES-128 blockcipher. Our attacks are generic and do not
exploit any weakness of AES-128. Therefore, from now we simply describe iFeed
based on any blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n, where n = 128. iFeed
is on-line, it only uses E in forward direction (inverse-free), and it allows for
parallelized encryption.

The scheme is keyed via a key K ∈ {0, 1}n. It operates on public message
numbers PMN of size between 1 and 127 bits, associated data A in {0, 1}≤|A|max ,
and plaintexts/ciphertexts P/C from {0, 1}≤|P |max , where |A|max and |P |max

are some large values which sum to at most 271 − 512. The tag T is of size
32 ≤ τ ≤ n = 128. In the nonce-respecting setting, the public message number
is required to be unique for every query to the iFeed encryption function E . The
iFeed encryption E and decryption D functions are depicted in Figs. 1 and 2,
respectively. Here, Pad(X) equals X if |X| = n and X‖10n−1−|X| if |X| < n,
and the usage of Z1 versus Z2 (resp. Z ′

1 versus Z ′
2) depends on the last block of

A (resp. P): Z2/Z
′
2 is used if the last data block is of size n bits, Z1/Z

′
1 is used if

the last block is fractional. We remark that our attacks use integral blocks only,
for which Pad(X) = X and Z2 is used instead of Z1.

For the presentation of the attacks, however, it suffices to only discuss a
simplified version of iFeed. In more detail, in our attacks we will only query E
on input of n-bit plaintext and no associated data. We also make the forgery
queries to D for either n or 2n-bit associated data and 2n-bit ciphertext. All
queries consider 127-bit PMN and tag size τ = n = 128. In Algorithms 1 and 2,
we give a formal description of iFeed’s E and D, respectively, for the input sizes
relevant for our attacks. We refer to [6] for the general description of iFeed, and
stress that our attacks easily translate to the general case.

The iFeed mode makes use of secret subkey Z0 = EK(0128) which is used to
derive additional subkeys Zi = 2 · Zi−1. Here, the multiplication is performed

200 W. Schroé et al.

Fig. 1. iFeed encryption E . All wires represent n-bit values. The output is the ciphertext
C1 · · ·C� and the tag T = leftτ (TA ⊕ C�+1)

Fig. 2. iFeed decryption D. All wires represent n-bit values. The output is the plaintext
P1 · · ·P� when T is leftτ (TA ⊕ C�+1)

Forgery and Subkey Recovery on CAESAR Candidate iFeed 201

Algorithm 1. iFeed E for |PMN | = 127, |A| = 0, and |P1| = n

1: Z0 = EK(0128)
2: for i = 1, . . . , 3 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: TA = 0128

6: C1 = EK(Z3 ⊕ U) ⊕ P1

7: C2 = EK(P1 ⊕ Z2 ⊕ U)
8: return (C, T) = (C1, TA ⊕ C2)

Algorithm 2. iFeed D for |PMN | = 127, |A′| = n or 2n, and |C ′| = 2n

1: Z0 = EK(0128)
2: for i = 1, . . . , 4 do
3: Zi = 2 · Zi−1

4: U = EK(PMN ‖1)
5: if |A′| = n then
6: define A′

1 = A′

7: T ′
A = EK(A′

1 ⊕ Z2)
8: else
9: parse A′

1A
′
2 = A′

10: T ′
A = EK(EK(A′

1 ⊕ Z3) ⊕ A′
2 ⊕ Z2)

11: parse C′
1C

′
2 = C′

12: P ′
1 = EK(Z3 ⊕ U) ⊕ C′

1 ⊕ Z4 ⊕ U
13: P ′

2 = EK(P ′
1 ⊕ Z4 ⊕ U) ⊕ C′

2

14: C′
3 = EK(P ′

2 ⊕ Z2 ⊕ U)
15: if T ′ = T ′

A ⊕ C′
3 then

16: return P ′ = P ′
1P

′
2

17: else
18: return ⊥

in the binary Galois Field GF(2128) defined by the primitive polynomial x128 +
x7 + x2 + x + 1.

3 Forgery and Subkey Recovery Attack on iFeed

Let K
$←− {0, 1}n be the secret key and consider τ = n. We present our forgery

attack on iFeed. It consists of one encryption query and the forgery itself. Upon
successful verification, the forgery will disclose the subkeys Z0 = EK(0128) and
U = EK(PMN ‖1).

– Fix arbitrary PMN ∈ {0, 1}127 and arbitrary P1 ∈ {0, 1}128, and make
encryption query with no associated data A = ε:

(C1, T) = EK(PMN , ε, P1);

202 W. Schroé et al.

– Write C ′
1 = C1 ⊕ P1 ⊕ PMN ‖1, and fix an arbitrary C ′

2 ∈ {0, 1}128. Set
A = C ′

2, T ′ = 0128, and output forgery:

DK(PMN , A,C ′
1C

′
2, T

′).

We next demonstrate that the forgery attempt is successful. First, regarding the
encryption query, note that

C1 = EK(Z3 ⊕ U) ⊕ P1. (1)

Now, verification of the forgery (cf. Algorithm 2) succeeds if T ′ = T ′
A⊕C ′

3 = 0128.
Note that we have

P ′
1 = EK(Z3 ⊕ U) ⊕ C ′

1 ⊕ Z4 ⊕ U

= PMN ‖1 ⊕ Z4 ⊕ U,

P ′
2 = EK(P ′

1 ⊕ Z4 ⊕ U) ⊕ C ′
2

= EK(PMN ‖1) ⊕ C ′
2 = U ⊕ C ′

2,

C ′
3 = EK(P ′

2 ⊕ Z2 ⊕ U)
= EK(C ′

2 ⊕ Z2).

As we defined A = C ′
2, this yields successful verification:

T ′
A = EK(A ⊕ Z2) = EK(C ′

2 ⊕ Z2) = C ′
3.

As verification is successful, D returns P ′
1P

′
2. The values U = P ′

2 ⊕ C ′
2 and

Z0 = 2−4(P ′
1 ⊕ PMN ‖1 ⊕ U) are directly obtained.

4 Finding EK(P ∗) for any Plaintext P ∗

Below, we construct an additional forgery, which is based on the information
gained from the main forgery attack. Namely, the goal is to use the knowledge
of the subkeys U , Z0, and the value EK(Z3 ⊕U) = C1 ⊕P1 from (1), to produce
another forgery, which would allow one to learn EK(P ∗) for any plaintext data
P ∗ ∈ {0, 1}n.

– Let PMN be as before, define (A′′
1 , A′′

2) = (P ∗⊕Z3, U), (C ′′
1 , C ′′

2) = (EK(Z3⊕
U) ⊕ P ∗, 0128), and T = 0128, and output forgery:

DK(PMN , A′′
1A′′

2 , C ′′
1 C ′′

2 , T ′′).

The verification (cf. Algorithm 2) is successful if T ′′ = T ′′
A ⊕ C ′′

3 = 0128. Note
that we have

P ′′
1 = EK(Z3 ⊕ U) ⊕ C ′′

1 ⊕ Z4 ⊕ U

= P ∗ ⊕ Z4 ⊕ U,

P ′′
2 = EK(P ′′

1 ⊕ Z4 ⊕ U) ⊕ C ′′
2

= EK(P ∗),
C ′′

3 = EK(P ′′
2 ⊕ Z2 ⊕ U)

= EK(EK(P ∗) ⊕ Z2 ⊕ U).

Forgery and Subkey Recovery on CAESAR Candidate iFeed 203

On the other hand, T ′′
A is computed from the two-block (A′′

1A′′
2) as follows

T ′′
A = EK(EK(A′′

1 ⊕ Z3) ⊕ A′′
2 ⊕ Z2)

= EK(EK(P ∗) ⊕ Z2 ⊕ U),

thus C ′′
3 = T ′′

A, and the verification is successful. The resulting plaintext satisfies
P ′′
2 = EK(P ∗). This attack works for any n-bit data block P ∗, it can for instance

be used to recover the subkeys of older iFeed encryptions (by putting P ∗ =
PMN ′‖10∗ �= PMN ‖1), and indirectly to decrypt earlier encryptions without
having possession of the key K.

5 Why the Attack Works

The attack of Sect. 3 is possible due to two main iFeed properties:

1. iFeed uses Z2 as masking in both the T ′
A and C ′

l+1;
2. The second last ciphertext block (C1 in our encryption example) is not masked

with Z4 ⊕ U as other ciphertext blocks.

Using these properties, the forgery is constructed in such a way upon decryption,
PMN ‖1 is directly fed into EK and the term U in the final mask Z2 ⊕ U is
canceled out.

The original submission document of iFeed [6] comes with an authenticity
proof of security in the nonce-respecting setting. Our attack of Sect. 3, however,
shows that this security claims is invalid. At a high level, the flaw is caused by an
oversight that the subkeys for the associated data and the plaintext are depen-
dent. Indeed, the associated data is masked with Z1, . . . , Za+2 and the plaintext
with Z1 ⊕ U, . . . , Z�+2 ⊕ U (where a and � denote the number of associated data
and plaintext blocks). For the decryption query, the proof claims that both TA

and C�+1 is randomly generated except with a small probability.2 These two
cases independently of each other rely on the randomness of Z0. In our attacks,
TA and C�+1 are, indeed, both newly and randomly generated. However, their
drawing is not independent, in fact, they satisfy TA = C�+1. Unfortunately, this
is what in our analysis indicates a security problem which as exemplified leads
to serious security problems.

6 Conclusion

Our attacks completely disprove and break the authenticity of the iFeed authen-
ticated encryption scheme. In more detail, if an adversary has access to D, it can
forge and learn the secret subkeys. We furthermore show that with the knowledge
of these data, an attacker can use D to decrypt earlier ciphertexts, even if they
2 In fact, it is claimed that Pw+1 is random, where w is the first block in the forgery

that is different from the older encryption query with the same nonce, and that all
subsequent values Pw+2, . . . , P�, C�+1 are random.

204 W. Schroé et al.

were encrypted under a different nonce (because of Sect. 4). On the other hand,
it appears that in the absence of a decryption mechanism, the confidentiality
(CPA security) of iFeed still stands.

As a possible remedy to the design of iFeed and future work we suggest the
exploration of the possibilities for applying different masks. One option may be
to use Zi ⊕ U as is for plaintext encryption but 3 · Zi for the associated data.
We, however, do not recommend the replacement of nonce encryptions with
encryptions of nonces masked with Z values since the same type of weaknesses
surfaces.

Acknowledgments. The authors would like to thank Liting Zhang for verifying the
attack. This work was supported in part by European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 644052 HECTOR and grant
agreement No. H2020-MSCA-ITN-2014-643161 ECRYPT-NET, and in part by the
Research Council KU Leuven: GOA TENSE (GOA/11/007). Elena Andreeva and Bart
Mennink are Postdoctoral Fellows of the Research Foundation – Flanders (FWO).

References

1. Announcing the Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197. United States National Institute of Stan-
dards and Technology (NIST), October 2001

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, May 2014. http://competitions.cr.yp.to/caesar.html

4. Chakraborti, A., Datta, N., Minematsu, K., Gupta, S.S.: Forgery on iFeed[AES] in
RUP and Nonce-Misuse Settings, CAESAR mailing list (2015)

5. SHA-3 Competition (2007–2012), United States National Institute of Standards and
Technology (NIST). http://csrc.nist.gov/groups/ST/hash/sha-3/

6. Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[AES] v1, submission to CAESAR
competition (2014)

http://competitions.cr.yp.to/caesar.html
http://csrc.nist.gov/groups/ST/hash/sha-3/

Key-Recovery Attacks Against the MAC
Algorithm Chaskey

Chrysanthi Mavromati1,2(B)

1 R&D Lab, Capgemini-Sogeti, Paris, France
chrysanthi.mavromati@sogeti.com

2 Laboratoire PRISM, Université de Versailles Saint-Quentin-en-Yvelines,
Versailles, France

Abstract. Chaskey is a Message Authentication Code (MAC) for
32-bit microcontrollers proposed by Mouha et al. at SAC 2014. Its
underlying blockcipher uses an Even-Mansour construction with a per-
mutation based on the ARX methodology. In this paper, we present key-
recovery attacks against Chaskey in the single and multi-user setting.
These attacks are based on recent work by Fouque, Joux and Mavromati
presented at Asiacrypt 2014 on Even-Mansour based constructions. We
first show a simple attack on the classical single-user setting which con-
firms the security properties of Chaskey. Then, we describe an attack in
the multi-user setting and we recover all keys of 243 users by doing 243

queries per user. Finally, we show a variant of this attack where we are
able to recover keys of two users in a smaller group of 232 users.

Keywords: Message Authentication Code · Collision-based cryptanaly-
sis · ARX · Even-Mansour · Chaskey · Multi-user setting

1 Introduction

A Message Authentication Code (MAC) algorithm is a basic component in many
cryptographic systems and its goal is to provide integrity and data authentica-
tion. For this, it takes as input a message M and a n-bit secret key K, and
outputs a tag τ which is usually appended to M . In general, MAC algorithms
are built from universal hash functions, hash functions or block ciphers. The first
security property of a MAC is that it should be impossible to recover the key
K faster than 2n operations (key recovery attack). It should also be impossible
for an attacker to forge a tag for any unseen message without knowing the key
(MAC forgery). Here, the attacker selects a message and simply guesses the cor-
rect MAC value without any knowledge of the key. The probability that the guess
will be correct is 2−t where t is the size of the tag τ . However, such attacks can
be avoided by making the tag sufficiently large. MACs based on universal hash
functions compute the universal hash of the message to authenticate and then
encrypt this value. MAC algorithms based on block ciphers are usually given as
a mode of operation for the block cipher. Typically, CBC-MAC is very similar to
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 205–216, 2016.
DOI: 10.1007/978-3-319-31301-6 12

206 C. Mavromati

the CBC encryption mode of operation and is one of the most commonly used
MACs.

The implementation of a MAC algorithm on a typical microcontroller is a
challenging issue as many problems may appear. More precisely, the use of a
MAC based on a hash function or a block cipher might have a negative impact on
the speed of the microcontroller due to the computational cost of the operations
required by the underlying functions.

Recently, at SAC 2014, a new MAC algorithm named Chaskey has been
introduced by Mouha et al. [8]. It is a permutation-based MAC algorithm and
its underlying permutation relies on the ARX design. The designers claim that
Chaskey is a lightweight algorithm which overcomes the implementation issues
of a MAC on a microcontroller. The construction of Chaskey is based on some
simple variants of the CBC-MAC proposed by Black et al. [3]. As CBC-MAC
is not secure when used with messages of variable length, these variants were
designed to authenticate arbitrary length messages. Alternatively, Chaskey can
also be seen as an iterated Even-Mansour construction where the same subkey
is xored in the input and output of the last permutation round.

In Asiacrypt 2014, Fouque et al. [6] presented new techniques to attack the
Even-Mansour scheme in the multi-user setting. Based on this work, we present
here some key-recovery attacks against the MAC algorithm Chaskey in the single
and multi-user setting.

The paper is organized as follows: in Sect. 2 we recall the necessary back-
ground, present the multi-user setting, the Even-Mansour scheme and the gen-
eral principle of collision-based attacks using the distinguished points method,
in Sect. 3 we present the main specifications of the Chaskey MAC algorithm and
finally, in Sect. 4, we describe new attacks against Chaskey.

2 Preliminaries

2.1 The Multi-user Setting

The security of most schemes in cryptography is usually studied when we have
a single recipient of encrypted data: the single-user model. However, this setting
ignores an important dimension of the real world where there are many users,
who are all using the same algorithms, but each one has its own key. In this
setting, the attacker tries to recover all or fraction of keys more efficiently than
the complexity of the attack in the single-user model times the number of users.
This can be done by amortizing the cost of the attack among the users.

In [7], Menezes studies the security of MAC algorithms in the multi-user
setting. He shows that the security degrades when we pass from one to many
users. The scenario attack against MAC algorithms in the multi-user setting
can be seen as follows. Let HK : {0, 1}∗ → {0, 1}t be a family of MACs where
K ∈ {0, 1}k. In the single-user model, it should be hard for an attacker who
has access to an oracle HK to generate a valid message-tag pair (m, τ) without
knowing the key K. In the multi-user setting, we suppose that we have L users

Key-Recovery Attacks Against the MAC Algorithm Chaskey 207

with keys K(i) ∈ {0, 1}k where 0 ≤ i ≤ (L − 1). Then for an attacker who has
access to oracles for HK(i) , it should be difficult to produce a triplet (i,m, τ).

2.2 Collision-Based Attacks Using the Distinguished Point
Technique Against the Even-Mansour Scheme

The Distinguished Point Technique. The distinguished point technique allows to
find collisions in a very efficient way. For this, we first have to define a function
f on a set S of size N and then define a distinguished subset S0 of S with
D distinguished points. The distinguished points should be easy to recognize
and generate. For example, we can choose our distinguished points to be n-bits
values with d zeros at the end. So, in a set of cardinality N = 2n our distinguished
subset contains D = 2n−d elements. Starting from a random point x0 ∈ S we
build chains by evaluating the function f :

xi+1 = f(xi).

When a distinguished point is detected, i.e. x� ∈ S0, the construction of the
chain stops. To be able to recover the chain we need to store the starting point
x0, the distinguished point x� and the length of the chain � which corresponds
to the number of iterations of the function f . Two chains that pass through the
same point necessarily end at the same distinguished point. To detect a collision
we use the inverse result: two chains that end at the same distinguished point
necessarily merge at some point unless one chain is a subchain of the other. Once
a collision in the distinguished points set is detected, the real collision can easily
be recovered. We assume that we have two colliding chains of length � and �

′

and that � ≥ �
′
. Then, starting from the longer chain, we rebuild the chain by

taking exactly � − �
′
steps. From that point, it now suffices to build both chains

in parallel until a collision is reached.

Collision-Based Attacks Against Even-Mansour. The Even-Mansour scheme is a
minimalistic very efficient design of a block cipher proposed at Asiacrypt 91 [5].
The main idea is the construction of a keyed permutation family ΠK1,K2 by a
public permutation π that operates on n-bit values (N = 2n):

ΠK1,K2 = π(m ⊕ K1) ⊕ K2,

where m is the plaintext and K1 and K2 are the two whitening keys. There is
also a simpler version presented by Dunkelman et al. [4], the Single-key Even-
Mansour, where K1 = K2. Even and Mansour showed that this simple block-
cipher is secure up to O(2n/2) queries of the adversary to the keyed permutation
Π and to the public permutation π. It has also been proved [4] that the Single-
key Even-Mansour has the same security bound as the original version.

In [6], Fouque et al. describe a new technique for collision-based attacks using
the distinguished point technique. They use this method to form attacks against
the Even-Mansour scheme in the multi-user setting. The main idea is to find a
collision between two chains, one constructed from the public permutation π and

208 C. Mavromati

one from the keyed permutation Π. For this, as we cannot use permutations to
detect collisions, we have to construct two functions F and f , one based on Π
and one based on π. In previous attacks on Even-Mansour [2,4], these functions
have been constructed by using the Davies-Meyer construction: F (m) = Π(m)⊕
Π(m ⊕ δ) and f(m) = π(m) ⊕ π(m ⊕ δ). However, these functions cannot be
used with the distinguished point technique as chains built by F and f defined
as previously can eventually cross but they cannot merge as they consist of
evaluations of two different functions. As a consequence, they use a different
definition of F and f to solve this problem:

F (m) = m ⊕ Π(m) ⊕ Π(m ⊕ δ) and f(m) = m ⊕ π(m) ⊕ π(m ⊕ δ).

For two messages m and m
′

such as m
′
= m ⊕ K1, they remark that F (m

′
) =

f(m)⊕K1 and so they get two parallel chains, i.e. two chains that have a constant
difference between them.

They also remark that, for two different users i and j, two chains con-
structed by using F

(i)
Π and F

(j)
Π , where F

(i)
Π (m) = m ⊕ Π(i)(m) ⊕ Π(i)(m ⊕ δ)

and F
(j)
Π (m) = m ⊕ Π(j)(m) ⊕ Π(j)(m ⊕ δ), can also become parallel and their

constant difference would be equal to the XOR of the users keys, i.e. K
(i)
1 ⊕K

(j)
1 .

To attack Even-Mansour using the distinguished point technique in the multi-
user setting, they build a set of chains for the public user using the function f
and a small number of chains for every user by using the keyed permutation F .
Whenever a collision F (i)(x) = F (j)(y) for two points x and y, where x = y⊕K1,
is detected between two users Ui and Uj , it yields K

(i)
1 ⊕ K

(j)
1 . From these

collisions it is possible to construct a graph whose vertices are the users and the
edges represent the xor of the first keys of the users with two colliding chains,
i.e. K

(i)
1 ⊕ K

(j)
1 . When enough edges are present a giant component appears in

the graph. Then, it suffices to find a single collision F (i)(x) = f(y) between a
user and the public user to reveal all keys of the users in the giant component.

One of the main ideas of their technique is to detect parallel chains by simply
testing if π(y)⊕π(y ⊕ δ) = Π(x)⊕Π(x⊕ δ) for two distinguished point x and y
where x = y ⊕K1. This does not add any extra cost, as values of π(y)⊕π(y ⊕ δ)
and Π(x)⊕Π(x⊕δ) are needed to calculate the next element of the chain. Also,
it does not require to go back and recompute the chains to detect the merging
points.

3 The MAC Algorithm Chaskey

Chaskey was proposed at SAC 2014 by Mouha et al. It is a permutation-based
MAC algorithm and its underlying permutation is based on the ARX design. Its
design is similar to the permutation of the MAC algorithm SipHash [1]. However,
in Chaskey, a state of 128-bits (instead of 256-bits in SipHash) is used which is
decomposed in 4 words of 32-bits (instead of 64-bits in SipHash). Also, different
rotation constants are used.

Key-Recovery Attacks Against the MAC Algorithm Chaskey 209

Chaskey takes as input a message M of arbitrary size and a 128-bit key K.
The message M is split into � blocks m1,m2, . . . ,m� of 128 bits each. If the last
block is incomplete, a padding is applied. It outputs the t-bit tag τ (where t ≤ n)
that authenticates the message M . The underlying function is a permutation
constructed using the ARX design.

Two subkeys K1 and K2 are generated from K as follows: K1 is equal to the
result of the multiplication by 2 (binary notation) of K and K2 is equal to the
multiplication by 2 of K1. In general, we define K1 = αK and K2 = α2K. To
define multiplication in GF (2n), we need to specify the irreducible polynomial
f(x) of degree n that defines the representation of the field. The designers of
Chaskey choose their irreductible polynomial to be f(x) = x128+x7+x2+x+1.

Chaskey operates in � + 3 steps. On the first step, we xor the first block m1

with the key K. On the next step, we process the previous result through the
permutation π and we xor the output with the next block. This procedure is
repeated � − 1 times until all blocks are being processed. If the last block m�,
which has been xored at the end of the � − 1 step, is a complete block, then, on
the �-th step, we simply xor the key K1. If it is an incomplete block, it should be
padded with 10n−|m�|−1 before being used. Then, on the �-th step, the key K2

will be used instead of K1. Then, the state will pass through the permutation π
and will be xored with K1 if m� is complete or with K2 if incomplete. Finally, the
t least significant bits are selected to be used as the tag τ . The whole procedure
can be seen on Fig. 1.

K

m1

π

m2

π . . . π

ml K1

π

K1

τ

K

m1

π

m2

π . . . π

ml||pad K2

π

K2

τ

Fig. 1. The Chaskey MAC algorithm. First line when |m�| = n and second line when
0 ≤ |m�| ≤ n where pad = 10n−|m�|−1.

There is also a variant of Chaskey, called Chaskey-B, where Chaskey can
be seen as a MAC algorithm based on the Even-Mansour [5] block cipher. The
authors define the block cipher E as EX||Y (m) = π(m⊕X)⊕Y and so it suffices
to evaluate recursively the function hi+1 = EK||K(hi ⊕mi) for i = 1, ..., l−1 and
h1 = 0n. If the last block is complete, we calculate h� = EK⊕K1||K1(h� ⊕ m�).
If not, we calculate h� = EK⊕K2||K2(h� ⊕ m�||10n−|m�|−1). Finally, the tag τ is
equal to the t least significant bits. However, in this case, we can easily see that
the key K, which is XORed after the application of the permutation π, vanishes
at each iteration of the block cipher E. As a result, the key K intervenes only
on the first block and the keys K1 or K2 on the last block:

τ = π(π(π(π(m1 ⊕ K) ⊕ m2) ⊕ . . .) ⊕ ml ⊕ K1) ⊕ K1.

210 C. Mavromati

The permutation π consists of 8 rounds of a function that follows the ARX
design: addition modulo 232, bit rotations and XOR. For constructing this round
function, the authors use the same structure as SipHash [1] but instead of 64-bit
words they are using words of 32 bits and different rotation constants. They
consider that 8 applications of the round function is secure but they suggest
that the 16 rounds version (Chaskey-LTS: long term security) should also be
implemented in case of security issues.

The authors prove that Chaskey is secure up to D = 2n/2 chosen plaintexts
and T = 2n/D queries to π or π−1.

4 Collision-Based Attacks Against Chaskey

In this section, we show that the collision-based attack described in [6] can be
applied on Chaskey. Furthermore, we show that variants of this attack can be
applied in the case of Chaskey. All attacks can be performed when we use single-
block messages. Chaskey then becomes an Even-Mansour cipher:

m

K ⊕ K1

π τ

K1

m||10n−|m|−1

K ⊕ K2

π τ

K2

Fig. 2. Single-block messages in Chaskey

The main idea of all attacks is to build chains by using a function based on
Chaskey and then search for collisions between them. For this, a function that
can be used to build chains should be defined. However, in the case of Chaskey,
for every user we can build two different chains depending on the subkey that
we are using (Fig. 2).

To build the chains needed, we define the functions:

fs(M) = Ks ⊕ π(M ⊕ (Ks ⊕ K))

Ffs
(M) = fs(M) ⊕ fs(M ⊕ δ) ⊕ M

where K is the users key, Ks with s ∈ {1, 2} represents the two subkeys generated
as mentioned in Sect. 3 and δ is an arbitrary but fixed non zero constant.

In the multi-user setting we assume that L different users are all using the
Chaskey MAC algorithm based on the same public permutation π. Each user Ui,
with 0 ≤ i ≤ L, chooses its own key K(i) at random and independently from all

Key-Recovery Attacks Against the MAC Algorithm Chaskey 211

the other users and generates Ks with s ∈ {1, 2}. We define the functions fs(M)
and Ffs

(M) as above and we also define the function Fπ(M) for the public user
as follows:

Fπ(M) = M ⊕ π(M) ⊕ π(M ⊕ δ).

We remark that for two plaintexts M and M
′
where M

′
= M ⊕ Ks ⊕ K, we

have Ffs
(M ⊕Ks ⊕K) = Fπ(M)⊕ (Ks ⊕K). So, two chains based on functions

Ffs
and Fπ may become parallel.

4.1 Key-Recovery Attack in the Single-User Setting

In this section, we show that an attack with complexity 264 can be applied in
the classical single-user scenario. This attack does not contradict the security
bound showed in the original paper of Chaskey and has similar complexity with
possible slide attacks based on [2]. However, with this attack we show a simple
application on Chaskey of the parallel chains detection technique.

The attack is described below:

1. Create two chains constructed by using both:

Ff1(M) = f1(M)⊕f1(M ⊕δ)⊕M and Ff2(M
′
) = f2(M

′
)⊕f2(M

′ ⊕δ)⊕M
′

until f1(M)⊕f1(M ⊕δ) and f2(M
′
)⊕f2(M

′ ⊕δ) reach a distinguished point.
2. Store all endpoints of the constructed chains and search for collisions between

the two different types of chains, i.e. for two plaintexts M and M
′
search for

(Ff1(M))a = (Ff2(M
′
))b where a, b ≥ 1 is the number of iterations of the

respective functions. (For the rest of this paper, to facilitate the reading, the
use of a and b will be omitted from equations that represent collisions between
chains.)

3. If a collision is found, recover the XOR of the two inputs M ⊕ M
′

which is
expected to be equal to:

K1 ⊕ K ⊕ K2 ⊕ K = (α + α2)K

and thus recover the key K.

Analysis of the Attack. To find a collision between the two sets of endpoints,
one constructed by using the function Ff1 and one constructed by using Ff2 , we
need to construct two chains each of length 264. So, the total cost of the attack
is 264. As said previously, this attack does not contradict the security claim of
Chaskey. It is just an example which shows how to use the distinguished point
technique to attack Chaskey in the single-user setting.

4.2 Key-Recovery Attack in the Multi-user Setting

To apply the attack of Fouque et al. we use the iteration functions fs, Ffs
and

Fπ defined previously. The attack is described below:

212 C. Mavromati

1. In a set of L users, for every user Ui where 0 ≤ i ≤ (L − 1), build a constant
number of chains, starting from an arbitrary plaintext, using the function
Ffs

. For every user, create some chains using the function Ff1(M) = f1(M)⊕
f1(M ⊕ δ) ⊕ M until f1(M) ⊕ f1(M ⊕ δ) reaches a distinguished point and
some chains using the function Ff2(M) = f2(M) ⊕ f2(M ⊕ δ) ⊕ M until
f2(M) ⊕ f2(M ⊕ δ) reaches a distinguished poit.

2. Construct some chains for the unkeyed user starting from an arbitrary plain-
text, by iterating the function Fπ.

3. Store the endpoints and search for collisions between the users. In the case
of Chaskey, we can have three types of collisions between the keyed users:
– A collision between the two chains Ff1(M) and Ff2(M

′
) of the same user

i and, in this case, we recover K
(i)
1 ⊕ K(i) ⊕ K

(i)
2 ⊕ K(i). As K

(i)
1 = αK(i)

and K
(i)
2 = α2K(i), we have that M ⊕ M

′
= (α + α2)K(i).

– A collision between two similar chains of two different users i and
j: F

(i)
f1

(M) = F
(j)
f1

(M
′
) or F

(i)
f2

(M) = F
(j)
f2

(M
′
). Then, we recover

K
(i)
1 ⊕K(i)⊕K

(j)
1 ⊕K(j) = (1+α)(K(i)⊕K(j)) or K

(i)
2 ⊕K(i)⊕K

(j)
2 ⊕K(j) =

(1 + α2)(K(i) ⊕ K(j)).
– A collision between two different type of chains between two different users

i and j (cross collision): F
(i)
f1

(M) = F
(j)
f2

(M
′
). Then, we learn K

(i)
1 ⊕K(i)⊕

K
(j)
2 ⊕ K(j) = (1 + α)K(i) ⊕ (1 + α2)K(j).

Also search for collisions between a chain of a keyed user i and the unkeyed
user for whom we build chains by using the function Fπ. A collision of this
type may occur by using both Ff1 or Ff2 . From the first function, we learn
K

(i)
1 ⊕ K(i) and from the second function K

(i)
2 ⊕ K(i). As a consequence, in

both cases, we are able to recover K(i).
4. Build a graph where vertices represent the keyed and unkeyed users. More

precisely, each user is represented by two vertices as for each user we use two
different functions to build chains. Whenever a collision is obtained between
two chains, add an edge between the corresponding vertices. This edge is
labelled by the relation between the keys as explained in the previous step.
An example of the graph can be seen in Fig. 3.

5. From the key relations found before, resolve the system and recover the users
keys. With only a single collision for the unkeyed user, we learn almost all
keys of the giant component. If we also find a collision for the unkeyed user,
then we are able to learn all keys of our giant component.

Analysis of the Attack. From [6] we know that in a group of N1/3 users we
expect to recover almost all keys by doing c · N1/3 queries per user (where c is
a small arbitrary constant) and N1/3 unkeyed queries. So, for Chaskey, we are
able to recover almost all keys of a group of 243 users by doing 243 queries to
the unkeyed user and 243 queries per user.

Improvement. We show here that in the case of Chaskey, the use of δ can be
eliminated. This technique can be used when we search for a collision between
two similar chains of two different users.

Key-Recovery Attacks Against the MAC Algorithm Chaskey 213

Ui

Up

Uq

Ur

Uj

U

(α + α2)K(i) (1 + α)K(j)

(1 + α2)K(j) ⊕ (1 + α)K(r)

(1 + α2)(K(r) ⊕ K(q))

(1 + α)(K(p) ⊕ K(q))

Fig. 3. Example of a giant component

If we use a full-block message x and its corresponding ciphertext y we observe
that:

αx ⊕ (1 + α)y = α(x
′ ⊕ (1 + α)K) ⊕ (1 + α)(y

′ ⊕ αK)

= αx
′ ⊕�����

α(1 + α)K ⊕ (1 + α)y
′ ⊕�����

α(1 + α)K

= αx
′ ⊕ (1 + α)y

′

where x, x
′
, y and y

′
are represented in Fig. 4.

x

(1 + α)K

x
′ π y

′ y

αK

Fig. 4. The MAC algorithm Chaskey when single-block full messages are used (the
subkey K1 = αK is used).

As previously, our goal is to define a function and build chains by using this
function. Here, we define the function Ff1(x) as follows:

Ff1(x) = x ⊕ αx ⊕ (1 + α)f1(x) = (1 + α)(x ⊕ f1(x))

where f1(x) = K1 ⊕ π(x ⊕ (K1 ⊕ K)). We also assume that two plaintexts x1

and x2 satisfy x1 ⊕ x2 = (1 + α)(K(i) ⊕ K(j)).

214 C. Mavromati

Thus, for two users i and j for whom we detect a collision, we have that:

f
(i)
1 (x1) ⊕ f

(j)
1 (x2) = α(K(i) ⊕ K(j))

x1 ⊕ x2 ⊕ f
(i)
1 (x1) ⊕ f

(j)
1 (x2) = x1 ⊕ x2 ⊕ α(K(i) ⊕ K(j))

(x1 ⊕ f
(i)
1 (x1)) ⊕ (x2 ⊕ f

(j)
1 (x2)) = K(i) ⊕ K(j)

(1 + α)(x1 ⊕ f
(i)
1 (x1)) ⊕ (1 + α)(x2 ⊕ f

(j)
1 (x2)) = (1 + α)(K(i) ⊕ K(j))

F
(i)
f1

⊕ F
(j)
f1

= (1 + α)(K(i) ⊕ K(j))

and so we observe that chains constructed by Ff1 can become parallel and their
constant difference would be equal to (1 + α)(K(i) ⊕ K(j)).

A similar technique can be used when the last block is incomplete and so the
key K2 is used. Here, we observe that:

α2m ⊕ (1 + α2)τ = α2(m
′ ⊕ (1 + α2)K) ⊕ (1 + α2)(τ

′ ⊕ α2K)

= α2m
′ ⊕������

α2(1 + α2)K ⊕ (1 + α2)τ
′ ⊕������

α2(1 + α2)K

= α2m
′ ⊕ (1 + α2)τ

′
.

Thus, in this case, we define the function Ff2 as follows:

Ff2(x) = x ⊕ α2x ⊕ (1 + α2)f2(x) = (1 + α2)(x ⊕ f2(x))

where f2(x) = K2 ⊕ π(x ⊕ (K2 ⊕ K)). We also assume that two plaintexts x1

and x2 satisfy x1 ⊕ x2 = (1 + α2)(K(i) ⊕ K(j)).
Equivalently, for two users i and j, we observe that:

F
(i)
f2

⊕ F
(i)
f2

= (1 + α2)(K(i) ⊕ K(j)).

So, chains constructed by Ff2 can also become parallel and their constant dif-
ference would be equal to (1 + α2)(K(i) ⊕ K(j)).

Thus, if we build our chains in the way presented here, we are able to have
a small improvement and gain a factor of

√
2 on the calculation of our chains.

4.3 Variant of the Previous Attack with Cross Collisions

We show in this section that a variant of the previous attack is also possible.
Indeed, we are able to apply a similar technique and we show that we can learn
keys of two users when we detect one cross collision between them.
The attack works as follows:

1. For two users Ui and Uj in a set of L users, build a constant number of chains,
starting from an arbitrary plaintext, using the function Ffs

, for s ∈ {1, 2}. For
each user, create some chains using the function Ff1(M) = f1(M) ⊕ f1(M ⊕
δ)⊕M and some chains using the function Ff2(M) = f2(M)⊕f2(M ⊕δ)⊕M .
The construction of the chains stops when f1(M) ⊕ f1(M ⊕ δ) and f2(M) ⊕
f2(M ⊕ δ) reach a distinguished point.

Key-Recovery Attacks Against the MAC Algorithm Chaskey 215

2. For each chain, store the endpoints and search for a cross collision. A cross
collision for users Ui and Uj and for two plaintexts M and M

′
is detected

when F
(i)
f1

(M) = F
(j)
f2

(M
′
). This indicates that the XOR of the two inputs

M ⊕ M
′
is expected to be equal to:

K
(i)
1 ⊕ K(i) ⊕ K

(j)
2 ⊕ K(j) = (1 + α)K(i) ⊕ (1 + α2)K(j).

3. If a cross collision is detected, recover also the XOR of the corresponding
outputs, which is equal to:

K
(i)
1 ⊕ K

(j)
2 = αK(i) ⊕ α2K(j).

4. Solve the system:

(1 + α)K(i) ⊕ (1 + α2)K(j) = Δ1

αK(i) ⊕ α2K(j) = Δ2

and thus recover K(i) and K(j).

Analysis of the Attack. This attack uses similar techniques to the attack
described before. However, the innovation here consists of the fact that we are
able to recover keys of two users, in a smaller group than before, by finding only
a cross collision between them. More specifically, to find a cross collision between
two users, it suffices to have a group of 4

√
N users and perform 4

√
N queries per

user. So, in the case of Chaskey, we are able to recover two keys in a group of
232 by doing 232 queries per user. However, if we want to recover the keys of all
users, then we need a group of 243 users as previously.

5 Conclusion

In this paper, we presented key-recovery attacks against the MAC algorithm
Chaskey. All attacks are using algorithmic ideas for collision based attacks of
Fouque et al. presented in [6]. They all work when using single-block messages
in the single or multi-user setting.

First, we show how to use these techniques to form an attack in the classical
single-user setting. By applying this attack, we are able to recover the key of
the user by doing 264 operations. However, this attack does not contradict the
security claim of Chaskey. Next, we presented two attacks in the multi-user
setting. The first one is able to recover almost all keys of a group of 243 users by
doing 243 queries per user. We also show that we can improve this attack and
gain a factor of

√
2. Finally, the second attack in the multi-user setting, is able

to recover the keys of 2 users in a smaller group of 232 by doing 232 queries per
user. We are able to achieve this new result by exploiting the use of two different
keys for the last block of Chaskey.

216 C. Mavromati

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012)

2. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

3. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. J. Cryptology 18(2), 111–131 (2005)

4. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

5. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

6. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014)

7. Menezes, A.: Another look at provable security. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, p. 8. Springer, Heidelberg (2012)

8. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Heidelberg (2014)

Differential Forgery Attack Against LAC

Gaëtan Leurent(B)

Inria, project-team SECRET, Rocquencourt, France
Gaetan.Leurent@inria.fr

Abstract. LAC is one of the candidates to the CAESAR competition.
In this paper we present a differential forgery attack on LAC. We study
the collection of characteristics following a fixed truncated characteristic,
in order to obtain a lower bound on the probability of a differential. We
show that some differentials have a probability higher than 2−64, which
allows a forgery attack on the full LAC.

This work illustrates the difference between the probability of differ-
entials and characteristics, and we describe tools to evaluate the proba-
bility of some characteristics.

Keywords: Differential cryptanalysis · Differentials · Characteristics ·
Forgery attack · Truncated differential · LBlock · LAC

1 Introduction

The CAESAR competition is an ongoing effort to identify new authenticated
encryption primitives [3]. Authenticated encryption schemes provide both confi-
dentiality and authenticity in a single primitive, instead of using an encryption
scheme together with a MAC. The competition received 57 submissions in March
2014, and an important effort is now devoted to analyzing those candidates.

LAC is a CAESAR candidate designed by Zhang, Wu, Wang, Wu, and
Zhang [10]. LAC uses the same structure as ALE [2]: it is based on a modi-
fied block cipher (the G function in LAC is based on LBlock [9]) that leaks part
of its state. The main step of the algorithm is to encrypt the current state, and
the leaked data is used as a keystream to produce the ciphertext. Meanwhile,
a key schedule produces new keys for each encryption, and plaintext blocks are
xored inside the state, so that the final state can be used to produce the tag T .
This is depicted in Fig. 1.

In LAC, the main state is 64-bit wide, the key register is 80-bit wide, and the
plaintext is divided in blocks of 48 bits. The G function is a modified version of
LBlock. It uses 16 rounds of Feistel network, where the round function F applies
a key addition, 8 parallel S-Boxes on the nibbles of the state, (the 8 S-Boxes
are identical), and a nibble permutation. In addition, the inactive branch of the
Feistel network is rotated by 2 nibbles; this is shown in in Fig. 2. The S-Box has
a maximum differential probability of 2−2, which is optimal for a 4-bit S-Box; it
is defined as:

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 217–224, 2016.
DOI: 10.1007/978-3-319-31301-6 13

218 G. Leurent

N

K
Init Final T

64

KS KS KS
80

G
leak

G
leak

G
leak

64

m1

48

m2 m3

c1 c2 c3

48

Fig. 1. LAC main structure

s s s s s s s s

k

2

Fig. 2. A Feistel round of LAC (LBlock-s)

S = {E, 9, F, 0, D, 4, A, B, 1, 2, 8, 3, 7, 6, C, 5}.

We omit the description of the leak function and of the key schedule, because
they don’t affect our attack.

The security goals of LAC against forgery attacks is stated as:

Claim 2 (Integrity for the Plaintext). The security claim of integrity
for the plaintext is that any forgery attack with an unused tuple (PMN∗,
α∗, c∗, τ∗) has a success probability at most 2−64.

1.1 Description of the Attack

Our attack is a differential forgery attack: given the authenticated encryption
(C, T) of a message M , we build a cipher-text (C ′, T ′) = (C ⊕Δ,T) that is valid
with a probability higher than 2−64.

More precisely, we use a two-block difference Δ = (α, β) so that a difference α
is first injected in the state, and we predict the difference β after one evaluation

Differential Forgery Attack Against LAC 219

of G in order to cancel it. This will be successful if we can find a differential
α � β in the function G with a probability p higher than 2−64.

In Sect. 2.2, we give a differential with probability p ≈ 2−61.52. This yields a
forgery attack using a single known ciphertext (of at least two blocks), with a
success probability of 2−61.52.

In addition, the truncated characteristic we use does not affect the leaked
output, so that, if the tag is valid, the plaintext corresponding to (C ⊕ Δ,T) is
M ⊕ Δ.

1.2 Characteristics and Differentials

We now introduce important notions for differential cryptanalysis.

A differential is given by an input difference α and an output difference β. The
probability of the differential is the probability than a pair of plaintext with
difference α gives a pair of ciphertext with difference β:

Pr [α � β] = Pr
K,x

[E(x ⊕ α) = E(x) ⊕ β] .

The probability of differentials is important to evaluate the security of a cipher
against differential cryptanalysis, but it is quite challenging to compute this
probability. Therefore, we introduce the notion of characteristics.

A characteristic is given by an input difference α, the difference αi after each
round, and the output difference β. Since all the intermediate difference are fixed,
it is quite easy to evaluate the probability of a characteristic using the Markov
cipher model (i.e. assuming that the rounds are independent). The probability
of the differential α � β is the sum of the probability of all characteristics with
input difference α and output difference β.

The designers of LAC studied its resistance against differential cryptanalysis
using truncated characteristics. They show that any characteristic must have at
least 35 active S-Boxes. Since the best transitions for the S-Box have a proba-
bility of 2−2, any characteristic has a probability at most 2−70. However, this
does not imply a lower bound for the probability of differentials: if many good
characteristics contribute to the same differential, the probability can increase
significantly.

Proving an upper bound on the probability of differential is much harder
than proving an upper bound for characteristics, and very few results are known
in this setting. A notable example is the AES, for which an upper bound of 2−150

for any 4-round characteristic can easily be shown [4], and an upper bound of
1.881 × 2−114 for any 4-round differential was proved using significantly more
advanced techniques [5].

In this work we give a more accurate estimation of the probability of differen-
tials in the G function of LAC by considering more than one characteristic. Our
results actually lead to a lower bound on the probability of some differential.

220 G. Leurent

2 Characteristics Following the Same Truncated Trail

Truncated differential cryptanalysis was introduced by Knudsen in 1994 [6].
A truncated characteristic D does not specify the exact value of the differences
at each step but uses partial information. The state is divided in words of a fixed
size (usually bytes, but we use nibbles for LAC), and D only specifies whether
the difference in each word in zero (inactive word) or non-zero (active word).

For a given truncated characteristic D, there exist many ways to instanti-
ate the input/output differences and the intermediate differences. For a given
input/output difference (α, β), we consider all the possible intermediate differ-
ences following D; this defines a collection of characteristics that all contribute
to the same differential. If we can efficiently compute the sum of the probabil-
ities of all those characteristics, this will give a more accurate lower bound of
Pr [α � β] than by considering a single characteristic.

2.1 Related Work

Recently, a technique was proposed to find differential characteristics using
Mixed Integer Linear Programming (MILP) [7,8]. When a good characteristic
α � β is found, this technique can also be used to find a collection of char-
acteristics following the same differential α � β, by adding this constraint to
the MILP problem. This has been applied quite successfully, but it inherently
requires to enumerate all the considered characteristics.

An analysis of TWINE by Biryukov, Derbez and Perrin is also based on
clustering differential characteristics [1], using the same technique as presented
here. TWINE is very similar to LBlock (and LAC), but the S-Box has a more
uniform differential probability which limits this clustering effect compared to
our results on LAC.

2.2 Computation of the Probability of a Truncated Characteristic

In this work we use a technique to compute the probability of a collection of char-
acteristics without having to explicitly list all the characteristics. This allows to
take into account a large number of characteristics. The collection of character-
istics is defined by a truncated characteristic D, which specifies whether each
word is active (i.e. with a non-zero difference), or inactive.

We denote by Pr [D : α � β] the probability that a pair with input difference
α gives an output difference β, in a way that all the intermediate differences fol-
low the truncated characteristic D. We also denote the reduced version of D with
only i rounds as Di. We will compute exactly Pr [D : α � β], i.e. we consider the
collection of all characteristics corresponding to the truncated characteristics,
with all possible choices of non-zero values.

In order to compute Pr [D : α � β] for a given (α, β), we will first compute
Pr

[
D1 : α � α

(1)
j

]
for all the differences α

(1)
j following D1. Then we iteratively

Differential Forgery Attack Against LAC 221

build Pr
[
Di : α � α

(i)
k

]
for all α

(i)
k following Di using the results for Di−1:

Pr
[
Di : α � α

(i)
k

]
=

∑
j

Pr
[
Di−1 : α � α

(i−1)
j

]
× Pr

[
α
(i−1)
j � α

(i)
k

]

This corresponds to a matrix multiplication, where the matrix
Mi =

[
Pr[α(i−1)

j � α
(i)
k]

]
contains the probability of all the transitions α

(i−1)
j �

α
(i)
k corresponding to round i of the truncated characteristic. However, we don’t

explicitly perform a vector-matrix product, because the matrix is very sparse;
instead we deduce the possible α

(i−1)
j with a non-zero Pr

[
α
(i−1)
j � α

(i)
k

]
from

each α
(i)
k .

2.3 Application to LAC

In order to apply this analysis to LAC, we first have to identify a good trun-
cated characteristic. We use an automatic search for truncated characteristics,
where we represent the state with a 16-bit vector, with zero and one to rep-
resent active and inactive nibbles. After computing all the possible transitions
(there are at most 28 × 216 allowed transitions because of the Feistel structure),
the problem of finding an optimal r-round truncated differential is reduced to
the search of a shortest path in graph with (r + 1) × 216 nodes, and at most
(r +1)×224 edges. Moreover, the graph is structured with edges only from node
of round i to nodes of round i + 1. This allows a very efficient search, round by
round, with complexity (r + 1) × 224.

We found several truncated characteristics with 35 active S-Boxes, and we
use the one given in Fig. 3. Gray square denote active nibbles. When two active
nibbles are xor-ed, the truncated characteristic specifies whether the sum should
be zero (slashed square) or non-zero (black square). We note that this character-
istic has at most 6 active nibbles at a given round; therefore there are at most
224 possible differences α

(i)
j at round i, and the vector

[
Pr

[
Di : α � α

(i)
j

]]
has

at most 224 entries. Moreover, each step has at most 3 active S-Boxes, therefore
we have at most 29 possible transitions to consider for any fixed α

(i)
j . Using this

truncated characteristic, the algorithm can compute Pr [D : α � β] for a fixed
α and for all differences β following D with at most 16 × 29 × 224 = 237 simple
operations.

After running this computation with all input differences α allowed by the
truncated characteristic, we identified 17512 differentials with probability higher
than 2−64; the best differential identified by this algorithm has a probability
Pr [D : α � β] ≈ 2−61.52. More precisely, the best differentials found are:

Pr
[
0000000000004607

16� 0000040000004400
]

≥ 2−61.52

Pr
[
0000000000004607

16� 0000060000004400
]

≥ 2−61.52

222 G. Leurent

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Key: Sum of two active nibbles

inactive nibble cancellation (must be inactive)

active nibble no cancellation (must be active)

can be active or inactive

Fig. 3. Truncated characteristic for LAC with 35 active S-boxes.

Differential Forgery Attack Against LAC 223

These probabilities correspond to a collection of 302116704 truncated char-
acteristics. The use of multiple characteristics allows to improve the estimation
of the probability of the differential from 2−70 to 2−61.52.

2.4 Experimental Verification

In order to check that the algorithm is correct, we ran it with a reduced version
of LAC with 8 rounds. We used the second half of the truncated differentials
of Fig. 3, with 17 active S-boxes. We found that this leads to differentials with
probability at least 2−29.76:

Pr
[
0000000000006404

8� 0000040000004400
]

≥ 2−29.76

Pr
[
0000000000006404

8� 0000060000004400
]

≥ 2−29.76

In this case, the use a multiple characteristics allows to improve the estimation
of the probability of the differential from 2−34 (17 active S-Boxes) to 2−29.76.

For this reduced version, we ran experiments with 240 random plaintext pairs
following the first differential, and random round keys. We detected 1204 pairs
with the expected output difference, which match very closely our prediction
(240 · 2−29.76 ≈ 1209). This indicates that our computation is correct, and the
lower bound is quite tight in this case.

3 Conclusion

Our analysis shows that there exists differentials for the full G function of LAC
with probability higher than 2−64. This allows a simple forgery attack with prob-
ability higher than 2−64 on the full version of LAC, contradicting the security
claims. This shows that the security margin of LAC is insufficient.

Our analysis is based on aggregating a collection of characteristics following
the same truncated characteristic. While each characteristic has a probability
at most 2−70, a collection of characteristics can have a probability as high as
2−61.52, giving a lower bound on the probability of the corresponding differential.

Since this technique is relatively simple, we recommend all designers to check
whether it can be applied to their designs.

References

1. Biryukov, A., Derbez, P., Perrin, L.: Differential analysis and meet-in-the-middle
attack against round-reduced TWINE. In: Leander, G. (ed.) FSE 2015. LNCS, vol.
9054, pp. 3–27. Springer, Heidelberg (2015)

2. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 447–466. Springer, Heidelberg (2014)

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

http://competitions.cr.yp.to/caesar.html

224 G. Leurent

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

5. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability
for two-round Advanced Encryption Standard. IET Inf. Secur. 1(2), 53–57 (2007)

6. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

7. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.:
Constructing mixed-integer programming models whose feasible region is exactly
the set of all valid differential characteristics of SIMON. IACR Cryptology ePrint
Arch. 2015, 122 (2015). http://eprint.iacr.org/2015/122

8. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014)

9. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

10. Zhang, L., Wu, W., Wang, Y., Wu, S., Zhang, J.: LAC: a lightweight authenticated
encryption cipher. Submission to CAESAR, March 2014. http://competitions.cr.
yp.to/round1/lacv1.pdf (v1)

http://eprint.iacr.org/2015/122
http://competitions.cr.yp.to/round1/lacv1.pdf
http://competitions.cr.yp.to/round1/lacv1.pdf

Privacy Preserving Data Processing

Private Information Retrieval
with Preprocessing Based on the Approximate

GCD Problem

Thomas Vannet(B) and Noboru Kunihiro

The University of Tokyo, Tokyo, Japan
tvannet@gmail.com

Abstract. PIR protocols allow clients to privately recover data on a
server. While many protocols exist, none of them are practical due to
their high computation requirement. We explain how preprocessing is
a necessity to solve this issue, then we present two independent but
related results. First, we show how Goldberg’s robust multi-server PIR
protocol is compatible with preprocessing techniques. We detail the the-
oretical computation/memory tradeoff and present practical implemen-
tation results. Then, we introduce a new single-server PIR protocol that
is reminiscent of Goldberg’s protocol in its structure but relies on the
unrelated Approximate GCD assumption. We describe its performance
and security, along with implementation results.

Keywords: Privacy · Distributed databases · Information-Theoretic
Protocols · Sublinear computation · Sublinear communication · Approx-
imate GCD

1 Introduction

Private Information Retrieval was introduced in 1995 [4] as a way to protect a
client’s privacy when querying public databases. Since there exists a trivial solu-
tion consisting in sending the entire database regardless of the query, all efforts
were focused on building algorithms sending less data [3]. Eventually algorithms
with average communication cost independent of the database [6] were proposed
and the problem seemed solved. However a technical report published in 2007 by
Sion [14] showed that in practice the algorithms suggested were all performing
slower than the trivial one. Essentially, as network speeds increase just as fast as
computing power does, the sending of the whole database to a client will never
be much more than a constant times slower than the reading of said database by
the server. As a consequence of this observation, subsequent PIR research mainly
focused instead on improving the running time of the algorithms. Overall, it is
fair to measure a PIR algorithm’s efficiency as the sum of its computation time
(which depends on the CPU) and communication time (which depends on the
type of link between client and server). Asymptotically, the overall complexity
will be the worse of the two.
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 227–240, 2016.
DOI: 10.1007/978-3-319-31301-6 14

228 T. Vannet and N. Kunihiro

It is well known that PIR algorithms must read at least as many bits as the
entire database to provide information theoretical client privacy. As such, and
regardless of the communication efficiency of the protocol, all those algorithms
will asymptotically perform no better than the sending of the entire database
with its overall linear complexity.

Clearly, a different approach was needed to achieve practicality. In 2004,
Beimel et al. introduced [1] the notion of PIR with preprocessing in multi-server
settings, allowing for faster running times. Other approaches include the batching
of queries [9–11], where several queries are performed in a single read of the
database, or the use of trusted hardware on the server [16,17,19]. All of those
schemes come however with clear limitations and may only be used in specific
settings. Namely, Beimel et al.’s scheme only works when several non colluding
servers host the database, query batching only improves complexity by a constant
factor and trusted hardware still requires some degree of trust on the client’s side.

We argue that an alternative exists in single-server PIR with preprocess-
ing based on computational assumptions. This type of scheme would have its
limitation be the computational assumption, but so do most widely used cryp-
tographic schemes. To the best of our knowledge, there is so far no scheme that
manages to answer queries while reading less bits than the entire database size
in a completely generic setting.

We point out strong structural similarities between a sublinear protocol by
Beimel et al. [1] and a well performing and high-security multi-server protocol
by Goldberg [7]. This allows us to combine the best of each protocol and turn
Goldberg’s protocol into a potentially sublinear one with a noticeably lower
computational cost.

However this protocol, like any other information theoretically secure pro-
tocol, does not maintain client privacy when every server cooperates. Alterna-
tively, the protocol cannot be used when there is only one server (or a single
entity owning all the servers) hosting the database. While Goldberg also sug-
gested a computationally secure protocol that solves this issue, it is particularly
inefficient and our preprocessing technique cannot be used on it.

We thus also introduce a brand new single-server PIR protocol. Its com-
putational security is derived from the Approximate GCD assumption [15],
well-studied in the field of Fully Homomorphic Encryption. Its low communica-
tion rate is obtained using the common construction in Goldberg’s and Beimel
et al.’s protocols we pointed out earlier. Finally, its low computation complexity
is possible using the precomputation techniques we introduce in the first sections
of this paper.

The paper is organized as follows. First, we show how Goldberg’s protocol
is a perfect fit to allow for some preprocessing. Then we show how to do the
actual preprocessing as efficiently as possible. In the second part, we present the
Approximate GCD assumption and how it can be combined with Goldberg’s
approach to result in a new single-server PIR protocol. Then we show how pre-
computations can be achieved on this new protocol. We suggest and justify
parameters to keep the scheme safe and present implementation performance.

PIR with Preprocessing Based on the AGCD Problem 229

1.1 Notations

In Sects. 2 and 3, we work in the usual multi-server PIR setting where several
servers are hosting the same copy of a public database of size n. This database
is (b1, · · · , bn), bi ∈ {0, 1}. We call t ≥ 2 the minimum number of servers the
client has to query for the protocol to work. In Sect. 4, we work in a single-server
setting (t = 1).

We use the standard notation δx,y = 1 if x = y, 0 otherwise.

For a variable x and a distribution D, we use the notation x
$←− D to indicate

that x is picked at random from the distribution.

2 The 2-Dimension Database Construction

2.1 Motivation

In this section, we present the construction which will serve as the central build-
ing block for the next sections. It was independently used by Goldberg [7] and to
some extent by Beimel et al. [1]. It is also found in Gasarch and Yerukhimovich’s
proposal [5]. Essentially, it is a very simple structure which can be declined in
many different ways. It usually provides a communication complexity of roughly
O(

√
n), along with a computational complexity of O(

√
n) on the client side.

While this seems very high compared to other schemes achieving O(nε) for any
ε > 0 or even constant rate on average, we argue that this is more than enough.
This is due to the fact that a query recovers an entire block of O(

√
n) bits. As

it turns out, this value seems to correspond to what real-world systems would
need. Indeed, for a medium-sized database of 230 bits which would likely contain
text data, a query recovering a couple kilobytes of data makes perfect sense.
Similarly, in a large database of 250 bits likely containing media files, recovering
a megabyte or more of data seems standard.

Besides, its structure is the perfect candidate for precomputations as we will
detail in Sect. 3. Finally, this structure can be used in recursive schemes as in
Gasarch and Yerukhimovich’s protocol [5].

2.2 Goldberg’s Robust Protocol

Here we present Goldberg’s version, on which we will be able to add a layer of
precomputions in Sect. 3 and replace the security assumption in Sect. 4.

Recall that the database is (b1, · · · , bn), bi ∈ {0, 1}. We assume the data-
base can be split into nb blocks of wpb words of bpw bits each, such that
nb wpb bpw = n. Note that nb stands for number of blocks, wpb for words per block
and bpw for bits per word. If n cannot be decomposed in such a way, we can easily
pad the database with a few extra bits to make it so. We set up the database as a
2-dimensional array of words where every word is characterized by two coordi-
nates. In other words, we rewrite {bi}1≤i≤n as {wi,j |1 ≤ i ≤ nb, 1 ≤ j ≤ wpb}.
We also call block X the set of words {wX,j |1 ≤ j ≤ wpb}. All t ≥ 2 servers are
using the same conventions for this 2-dimensional database.

230 T. Vannet and N. Kunihiro

Suppose the client wants to recover block X while keeping X secret. We set
S a field with at least t elements. The client selects nb polynomials P1, · · · , Pnb

of degree t−1 with random coefficients in S, except the constant term always set
such that PX(0) = 1 and Pi(0) = 0 when i �= X. He also selects distinct values
α1, · · · , αt ∈ S. These values can be anything and do not have to be kept secret.
For instance αk = k will work. The protocol has only one round, the client sends
a request, the server responds and finally the client deduces the value of every
bit in block X from the response.

During the first step, the client sends a request to every server involved in
the protocol. Specifically, for 1 ≤ k ≤ t, the client sends (P1(αk), · · · , Pnb(αk))
to server k.

We consider wi,j as an element of S. Now we define, for 1 ≤ j ≤ wpb, the
degree t − 1 polynomial Qj with coefficients in S.

Qj =
nb∑

i=1

Piwi,j

We will keep this notation through the paper. Note that it exclusively
depends on the values the client sent and the database contents.

During the second step, every server answers. Specifically, server k computes
the following values and sends them to the client.

{
Qj(αk) =

nb∑
i=1

Pi(αk)wi,j

}

1≤j≤wpb

After receiving the answer of all t servers, the client knows Qj(α1), · · · ,
Qj(αt) for every 1 ≤ j ≤ wpb. Since Qj is of degree t−1, the client can interpolate
all of its coefficients and compute

Qj(0) =
nb∑

i=1

Pi(0)wi,j = wX,j

Thus the client knows the value of every word in block X.

2.3 Security

Informally, as a variant on Shamir’s secret sharing scheme [13], this scheme is
information theoretically as secure as possible. It is a well known fact that a pro-
tocol cannot be information theoretically secure if every single server cooperates,
thus the best we can hope for is information theoretical protection when at least
one server does not collaborate, which is what is achieved here. More formally,
the scheme is information theoretically secure against a coalition of up to t − 1
servers. Clearly if it is safe against a coalition of t − 1 servers, it is safe against
any coalition of less than t − 1 servers.

PIR with Preprocessing Based on the AGCD Problem 231

2.4 Communication Complexity

The client sends nb elements of S to each server. Similarly, each server returns
wpb elements of S. Total communication is t(nb + wpb) log |S|, which becomes
2t

√
n log |S| = O(t log t

√
n) when nb = wpb =

√
n, bpw = 1 and S has exactly

t elements. Note that the computational complexity is still linear in the size of
the database here since every bi has to be read by the servers. The seemingly
high communication compared to protocols with polylogarithmic [3] or constant
[6] communication rate is actually a non-issue, since asymptotically (and also in
practice [14]), the server’s computation time will be much higher than the data
transmission time.

3 Adding Precomputations to Goldberg’s Robust
Protocol

In this section, we will show how we can improve the protocol from Sect. 2 by
adding an offline step only executed once. First we use the exact same approach
as Beimel et al., which is not practical in our setting, and then we show how to
modify it to make it pratical and efficient.

3.1 Using Precomputations

We now show we can improve Goldberg’s protocol’s running time. To reduce
the computational complexity on the server side we add a precomputation step
before the algorithm is run. A similar idea was introduced in [1], which used
essentially the same 2-dimensional database structure describe in Sect. 2. This
step is only run once, has polynomial running time and can be done offline prior
to any interaction with clients. Its complexity is thus irrelevant to the actual
protocol running time.

Here is how we proceed. First, for every 1 ≤ j ≤ wpb (every word in a block),
we partition the m = nb bpw bits b1,j , · · · , bm,j into m/r disjoint sets of r bits
each (without loss of generality, we assume r divides m). There are m/r such
sets for every j, or n/r sets in total. We call these sets Ci,j , 1 ≤ i ≤ m/r
and 1 ≤ j ≤ wpb. For every Ci,j , the server computes all |S|r possible linear

combinations with coefficients in S. That is, every Pre(C,Δ) =
r∑

d=1

δdC[d] for

any Δ = (δ1 · · · δr) ∈ S
r. This requires a total of n|S|r log |S|

r bits.
If we set |S| = t (which is the minimal number of distinct elements in S,

attained when bpw is 1) and r = ε log n for some ε, this means a total of
n1+ε log t log t

ε log n bits have to be precomputed and stored on the servers. This value
is potentially very large if t is too large. We will solve this issue in Sect. 3.2.
Computing one Pre(C,Δ) requires r operations and overall the preprocessing
of the whole database requires O(n1+ε log t) operations.

During the online phase, each server only reads m/r elements of S to compute
Qj(αk). Over all t servers, only tn log |S|

r bits are read. Note that the precomputed

232 T. Vannet and N. Kunihiro

database should be ordered in such a way that, for a fixed i, all Pre(Ci,j ,Δ) are
stored consecutively. This way Δ, which is sent by the client, only has to be read
by the server once. The nature of the algorithm (reusing the same Δ for every
1 ≤ i ≤ nb) is what allows us to achieve sublinearity where different protocols
would not benefit from the computations.

Once again, if we set |S| = t, bpw = 1 and r = ε log n for some ε, a total of
nt log t
ε log n bits are read during the online phase. If t log t < ε log n, that means the
server’s computation is sublinear in the size of the database.

Communication complexity and security are exactly the same as detailed in
Sect. 2. Indeed, a coallition of servers receives exactly the same information from
a client as before. This is interesting however if one notes in particular that the
sublinear complexity would allow, from an information theoretical point of view,
any individual server to distinguish some bits from the original database which
are definitely not requested by the client. This could have potentially lead to an
attack from a coallition of servers if it was not for the formal proof of Sect. 2. This
shows yet again how fitting Goldberg’s scheme is for this type of computational
improvements through precomputation.

3.2 Decomposition over Base 2

In this section, we present another approach to make precomputations even more
efficient. This potentially improves Goldberg’s complexity by several orders of
magnitude.

Clearly the most limiting factor in the construction from the previous section
(and in Beimel et al.’s approach [1]) is the |S|r factor. In some scenarios, we want
t (and thus |S|) to be large for redundancy purposes. Using words with more
than a single bit can also be interesting. Besides, it is possible to create schemes
based on a computational assumption which require very large groups S, as we
will show in Sect. 4. Alternatively, some implementations (including Goldberg’s
percy++ [8]) set a fixed large S regardless of how many servers the client decides
to use. In all of those situations, the space requirements on the server become
prohibitive. We assume here that S = Z� for a possibly large �.

As before, in the first step the client sends to server k the following values.

(P1(αk), · · · , Pm(αk))

We can however decompose those values as follows, since elements of S have
a standard representation as integers.

Pi(αk) =
log �∑
c=0

Pi,c2c where Pi,c ∈ {0, 1}

Then the server’s computation can be modified using the following equality.

nb∑
i=1

Pi(αk)wi,j =
log �∑
c=0

2c
nb∑

i=1

Pi,cwi,j

PIR with Preprocessing Based on the AGCD Problem 233

Now once again we partition {1, · · · ,m} as defined earlier into m/r disjoint
sets Ci,j of r elements each, where 1 ≤ i ≤ m/r and 1 ≤ j ≤ wpb. For every

such set C and δ1, · · · , δr ∈ {0, 1}, the server precomputes
r∑

d=1

δdC[d]. Each

precomputed value requires only log r bits for storage.
If r = ε log n, the following holds regarding the precomputed database size.

m

r
wpb2r log r = n1+ε log(ε log n)

ε log n
< n1+ε

Thus less than n1+ε bits are precomputed and stored in total. This value is
independent of the size of S and thus indirectly independent of t. The one-time
preprocessing requires O(n1+ε) elementary operations.

Now during the online phase, Qj can be computed in m
r log l operations.

Overall, the t servers will return their results in n t log �
r = n t log �

ε log n operations,
which is sublinear if t log � < ε log n. Note that for real world values, log r =
log(ε log n) is small and summing m/r values should give a number that fits
in 64 bits. This means that the online phase of the protocol can be efficiently
implemented without using any large integer libraries for its most expensive step.
Then only log � operations have to be performed using large integers. Because
of this feature, the algorithm remains highly efficient even when t log l > ε log n
as is the case with very large l, t or small ε (to save space).

3.3 A Note on Goldberg’s Computationally Secure Scheme

If all t servers collaborate, it is very easy for them to recover the secret X.
Furthermore, we know it is impossible to make an information theoretically
secure protocol with sublinear communication when every server cooperates.
However it is still possible to make a computationally secure protocol in this
situation as shown in [7]. Note that because all of the servers can collaborate, we
might as well consider that all t servers are the same, and that gives us a single
server PIR protocol (although in some scenarios having several servers can also
be convenient).

The basic idea behind the protocol is to encrypt the shares sent to the servers
with an additively homomorphic scheme and to have the servers perform the
computation on the ciphertexts. In practice, the Paillier cryptosystem is used.
It has the interesting property that the product of ciphertexts is a ciphertext
associated to the sum of the original plaintexts. It is not possible to add a pre-
computing step in this situation because the parameters (the modulus) must be
chosen privately by the client. As such, all hypothetical precomputations would
be done in Z instead of some Z/�Z and reading a hypothetical precomputed
product would require reading as many bits as reading the individual compo-
nents of the product.

Instead, we can choose to use another additive homomorphic scheme like
one based on the Approximate GCD problem. The scheme has however to be
changed in several ways which we describe in the next section.

234 T. Vannet and N. Kunihiro

4 Single Server PIR Using the Approximate
GCD Assumption

4.1 Computational Assumptions

In this section we reuse the 2-dimensional construction of the database, but
instead of securing it through Shamir’s secret sharing scheme, we rely on the
Approximate GCD assumption. The assumption, which has been the subject of
widespread study thanks to its importance in the field of Fully Homomorphic
Encryption, states that it is computationally hard to solve the Approximate
GCD problem for sufficiently large parameters. This problem can be formulated
as in Definition 1.

For any bit length λq and odd number p, we call D(λq, p) the random dis-
tribution of values pq + ε where q has λq bits and ε � p. In addition, for a bit
b ∈ {0, 1}, we call D(λq, p, b) the random distribution of values pq +2ε+ b where
q has λq bits and ε � p.

Definition 1 (Approximate GCD). Let {zi}i
$←− D(λq, p) be a polynomially

large collection of integers. Given this collection, output p.

It was introduced in 2010 by Van Dijk et al. [15]. In the same paper, they
also showed that the following problem can be reduced to the Approximate GCD
problem.

Definition 2 (Somewhat Homomorphic Encryption). Let {zi}i
$←− D(λq, p) be

a polynomially large collection of integers, b
$←− {0, 1} a secret random bit and

z
$←− D(λq, p, b). Given {zi}i and z, output b.

Now here is how we construct the scheme.
As before we assume the database is wi,j , 1 ≤ i ≤ nb, 1 ≤ j ≤ wpb, each wi,j

containing bpw bits. Note that we have nb wpb bpw = n, the total bit size of the
database. First we consider the convenient case where bpw = 1 (every word is a
single bit).

Suppose the client wants to recover block X consisting of {wX,j}1≤j≤wpb. The
client picks a large random odd number p which will be its secret key. He selects
nb random large numbers qi and εi and computes Pi = pqi + 2εi + δi,X .

Then the server computes for every j from 1 to wpb, Rj =
nb∑

i=1

bi,jPi. He then

sends {Rj}1≤j≤wpb to the client.
For every Rj received, the client can compute (Rj mod p) mod 2 =

(
nb∑

i=1

bi,j(pqi + 2εi + δi,X) mod p) mod 2 =
nb∑

i=1

bi,j(2εi + δi,X) mod 2 = bX,j .

As such, he retrieves the entire block X.
It is important to note that this construction is somewhat homomorphic

and has been used to create fully homomorphic encryption [15], but here we

PIR with Preprocessing Based on the AGCD Problem 235

only care about the additive property of the scheme. This is very important
because without any multiplications, the noise will progress very slowly and
we realistically do not have to worry about it becoming too large. Also, our
construction is unrelated to other PIR protocols based off generic somewhat or
fully homomorphic encryption systems like Yi et al.’s [18] or Boneh et al.’s [2].

4.2 Complexity

First let us look at the communication complexity. The client sends nb values
Pi and the server returns wpb values Rj . We call λp the bit size of the secret p
and λq the bit size of the qis. We also write λ = λp + λq. The actual values of
these security parameters will be discussed in Sect. 4.4. Each Pi is thus λ bits
long. Since Rj is essentially a sum of nb Pis, its bit size is λ + log2 nb.

The overall communication of the protocol is nbλ+wpb(λ+log2 nb) to retrieve
a block of wpb bits. When nb = wpb =

√
n, and for fixed security parameters,

the communication is O(
√

n log n) or O(log n) per bit recovered.
Now let us detail the computational complexity. For clarity’s sake, we call

operation any addition of two λ+log2 nb or less bits integers, or a multiplication
of a λp bit-long integer by a λq bit-long one. The client performs O(nb) operations
to send the query, the server in turn performs O(nb wpb) operations to execute
it. Finally the client performs O(wpb) operations to recover the block values from
the server’s reply.

The overall computational complexity of the protocol is O(nb wpb(λ+log nb).
When nb = wpb =

√
n, and for fixed security parameters, this becomes

O(n log n).

4.3 Precomputations

As the scheme uses the 2-dimensional structure of the database, we can use
precomputations in the exact same way we described in Sect. 3.2. We write Pi =
λ−1∑
k=0

Pi,k2k, where Pi,k ∈ {0, 1}. The server selects a precomputing parameter r

and computes every possible sum of r consecutive words in the database. The
client sends the Pi,ks by groups of r bits for a fixed k. Now the server can
compute the Rjs r times faster than previously by working with small integers
and only performing λ large integer operations per Rj . See Sect. 3.2 for details
on this technique.

Communications are unchanged (the client sends the same amount of bits,
simply changing their order) at O(log n) bits transmitted for every bit recovered.

Computations are unchanged on the client side. On the server side, each Rj

requires λ nb/r small integer operations and λ large integer operations. Overall
computational complexity is O(λn/r + λ2), which is asymptotically a r times
improvement over the standard version.

236 T. Vannet and N. Kunihiro

4.4 Security

The security of a PIR scheme is defined by the following problem. Given two
client queries for blocks X1 and X2 respectively, it should be computationally
hard to distinguish them. In this scheme, this means that the server must dis-
tinguish two queries dX1 and dX2 where dX = {Pi|Pi

$←− D(λ, p, 0) when i �=
X,Pi

$←− D(λ, p, 1) otherwise}. Let us call DX the distribution of all possible
queries dX .

Now we can show that if an attacker can indeed distinguish these two queries
when given access to as many samples from D(λ, p, 0) as it needs, it can break the
Somewhat Homomorphic Encryption (Definition 2) and thus solve the Approxi-
mate GCD Problem (Definition 1).

Theorem 1. Given access to values of D(λ, p, 0), if it is possible to distinguish
two queries for distinct bits of a database in polynomial-time, then it is also
possible to recover the value p in polynomial-time.

Proof. Let us assume there exists a distinguishing algorithm A(d) that returns
1 with probability σ if d ∈ DX1 and returns 1 with probability σ +α if d ∈ DX2 .
Now given an encryption e = pq + 2ε + b of a secret bit b, we build an algorithm
B(e) that recovers b with probability at least 1/2 + α/4.

First, with probability α/2, we return 0 and stop immediately. Otherwise, we

draw r
$←− D(λ, p, 0) and nb − 2 random elements from D(λ, p, 0). We generate

a query d with the random elements in every position but X1 and X2. We
randomly pick X1 or X2 and place e in this position, r in the other position.
We then return A(d) if the picked position was X1, 1 − A(d) otherwise.

If b was equal to 0, then d contains only random encryptions of 0 and does not
belong to some DX . In this case, let us say A(d) returns 1 with probability σ′.
Then B(e) returns 1 with probability (1−α/2)(1/2·σ′+1/2·(1−σ′)) = 1/2−α/4.
Now if b was equal to 1, then B(e) returns 1 with probability (1−α/2)(1/2 · (σ+
α) + 1/2(1 − σ)) = 1/2 + α/2(3/4 − α/4) ≥ 1/2 + α/4 since 0 < α ≤ 1.

Then we use the result from Van Dijk et al. [15] to show the reduction from
recovering b to recovering the secret p and breaking the AGCD assumption.

Note that here we had to assume that the attacker has access to random
encryptions of 0. In real life scenarios, this is a fair assumption as it is common
for a server to know some metadata about the encrypted information which
includes always-0 bits.

4.5 Multiple Bits Recovery

The process can easily be modified to recover words of more than 1 bit at no
additional cost. Essentially, instead of picking the Pis as pqi + 2ε + δi,X , we can
pick Pi = pqi + 2bpwε + δi,X where bpw is the number of bits per word. Since
λp has to be large for security reasons and the noise only progresses linearly
when processing the database, we can afford to start with a fairly large noise.

PIR with Preprocessing Based on the AGCD Problem 237

For instance, if λp is 1024 bits and we process databases with less than 280

blocks, we could pick an ε with 512 bits and that would allow bpw to be as high
as 432.

The server’s response in this case is unchanged, Rj =
nb∑

i=1

Piwi,j where each

wi is a word of bpw bits. The client then recovers block X consisting of all the
wX,j by computing wX,j = (Rj mod p) mod 2bpw.

The overall communication of the protocol is still nb λ + wpb(λ + log2 nb)
but we now retrieve a block of wpb bpw bits. Besides, we have bpw wpb nb = n,
which means that when nb = wpb =

√
n/bpw the communication is O(

√
n
bpw

(λ+

log n
bpw

)) or O(1
bpw

(λ + log n
bpw

)) per bit recovered (note that λ has to be larger
than bpw).

The overall computational complexity of the protocol is also unchanged at
O(nb wpb(λ + log nb)). When nb = wpb =

√
n/bpw this becomes O(n

bpw
(λ +

log n
bpw

)). To sum up, both the communication and computational costs are
improved by a factor of bpw, which can be several hundreds high. Note that
the same improvement was possible on Goldberg’s original scheme, and it comes
at the cost of recovering blocks of bits bpw times larger.

The question this naturally brings up is whether or not this affects the secu-
rity of the scheme. First, the scheme can be reduced to a version of the Some-
what Homomorphic Encryption scheme (Definition 2) on bpw bits as detailed in
Sect. 4.4. Furthermore, we can show that this version of the Somewhat Homo-
morphic Encryption scheme can be reduced to the AGCD problem for numbers
pq + 2kε + b, b ∈ {0, 1}. We do not detail the proof of this step as it follows
exactly Van Dijk et al.’s [15].

This shows that this scheme is at least as secure as a version of the AGCD
problem with bpw−1 known noise bits. Alternatively, any generic AGCD problem
instance can be turned into one of those instances by bruteforcing the value of
said bits. As such, for small enough word sizes (say, up to 32 bits), the security
of the scheme is mostly unaffected.

5 Implementation

Goldberg provided an implementation called percy++ [8] that included the
robust protocol from [7] along with that of other PIR protocols. Running tests
showed that in multi-server settings, Chor et al.’s protocol [4] performed the
fastest, followed by Goldberg’s [7]. Note that Goldberg’s, and by extension our
version described in Sect. 3.2, contains much stronger security features. In single-
server settings, Aguilar-Melchor et al.’s scheme [12] was deemed the best per-
forming. The security of this scheme is based off the so called Differential Hidden
Lattice Problem which the authors introduced and studied. In comparison, our
single-server scheme defined in Sect. 4 relies on the computational Approximate
GCD assumption on which the main candidate for fully homomorphic encryption
is based and has thus received a lot of attention.

238 T. Vannet and N. Kunihiro

We made a straightforward implementation of our protocols without aiming
for high levels of optimization. For multi-server protocols, we always picked t = 2
servers, the minimum to keep the protocol safe. In real world situations, a much
higher number would be desirable, multiplying the overall time complexity by
a non negligible constant. For our single server scheme, λ = 1024 was chosen
with a noise ε always around p/nb > 2896. This is more than enough to stop
all known lattice-based and other attacks against the assumption. In fact, much
lower values may provide enough security if no other attacks are developped.

We only care about the computational complexity of the server since the
communication and client computational complexities are asymptotically neg-
ligible. In situations where the preprocessing would generate files too large for
our environment, we simulated reading from random files instead, which makes
no difference from the server’s point of view since the data received is indistin-
guishable from random data.

There are a lot of parameters that can be modified when running actual tests.
For Goldberg’s scheme, the preprocessing parameter r described in Sect. 3.1, the
number of bits per word and the size of the database. Our implementation shows
that, as expected, in identical settings the version with preprocessing performs
r times faster than the original one. This is true for databases small enough
that the preprocessed version would still fit in RAM and for databases large
enough that it does not fit in RAM even without preprocessing. For middle-sized
databases, the added preprocessing forces the algorithm to read data directly
from the harddrive in a semi-random manner, which can slow it down compared
to the original version depending on reading speeds.

Goldberg already showed that his multi-server robust scheme was several
orders of magnitude faster than Aguilar-Melchor et al.’s heavily optimized single
server scheme. In our implementation of our single-server from Sect. 4.5, we
obtain speeds comparable to Golbeger’s protocol. Adding precomputations, our
scheme can be several times faster.

6 Conclusion

A completely practical PIR scheme has yet to be found. As long as the entire
database has to be read for every query, such schemes will always perform too
slowly. Based on the observation that preprocessing is a necessity to reach that
goal, we first showed how such precomputations can be added to some already
existing protocols and designed a new protocol compatible with this technique.

We presented the first PIR protocol allowing the recovery of a block of bits,
protection against strong server collusion and Byzantine servers while perform-
ing in sublinear time. Its performance is theoretically better than other such
algorithms and the design allows efficient implementations by mostly avoiding
the need for large integers libraries. Actual implementation corroborates the the-
oretical findings. Our scheme is both a generalization of Goldberg’s protocol and
Beimel et al.’s protocol. Compared to Goldberg’s, ours can perform many times
faster but requires a polynomial expansion of the database. Even a quadratic

PIR with Preprocessing Based on the AGCD Problem 239

expansion is sufficient to provide a much faster protocol. Compared to Beimel
et al.’s, the scheme provides much stronger security against several servers coop-
erating, a major weakpoint of multi-server PIR protocols.

We also presented an efficient single-server scheme with a simple structure.
It allows for precomputations and relies on a computational assumption which
is fairly new but is receiving and will likely continue to receive a lot of attention
from the research community. Furthermore, the way we use it allows for relatively
small parameters compared to FHE schemes based on it.

Acknowledgment. This research was supported by CREST, JST.

References

1. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in private
information retrieval: PIR with preprocessing. J. Cryptol. 17(2), 125–151 (2004)

2. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. Cryptology ePrint Archive, Report
2013/422 (2013). http://eprint.iacr.org/

3. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

4. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

5. Gasarch, W., Yerukhimovich, A.: Computational inexpensive cPIR (2006). http://
www.cs.umd.edu/arkady/pir/pirComp.pdf

6. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

7. Goldberg, I.: Improving the robustness of private information retrieval. In:
Proceedings of the IEEE Symposium on Security and Privacy (2007)

8. Goldberg, I., Devet, C., Hendry, P., Henry, R.: Percy++ project on sourceforge
(2014). http://percy.sourceforge.net. (version 1.0. Accessed January 2015)

9. Henry, R., Huang, Y., Goldberg, I.: One (block) size fits all: PIR and SPIR with
variable-length records via multi-block queries. In: 20th Annual Network and Dis-
tributed System Security Symposium, NDSS, San Diego, California, USA, 24–27
February 2013 (2013)

10. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions (2004)

11. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information
retrieval (2015, to appear)

12. Melchor, C.A., Gaborit, P.: A lattice-based computationally-efficient private infor-
mation retrieval protocol. Cryptology ePrint Archive, Report 2007/446 (2007).
http://eprint.iacr.org/

13. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
14. Sion, R.: On the computational practicality of private information retrieval. In:

Proceedings of the Network and Distributed Systems Security Symposium, Stony
Brook Network Security and Applied Cryptography Lab Tech Report (2007)

http://eprint.iacr.org/
http://www.cs.umd.edu/arkady/pir/pirComp.pdf
http://www.cs.umd.edu/arkady/pir/pirComp.pdf
http://percy.sourceforge.net
http://eprint.iacr.org/

240 T. Vannet and N. Kunihiro

15. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

16. Wang, S., Ding, X., Deng, R., Bao, F.: Private information retrieval using trusted
hardware. Cryptology ePrint Archive, Report 2006/208 (2006). http://eprint.iacr.
org/

17. Yang, Y., Ding, X., Deng, R.H., Bao, F.: An efficient PIR construction using trusted
hardware. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 64–79. Springer, Heidelberg (2008)

18. Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private informa-
tion retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng.
25(5), 1125–1134 (2013)

19. Yu, X., Fletcher, C.W., Ren, L., Van Dijk, M., Devadas, S.: Efficient private infor-
mation retrieval using secure hardware

http://eprint.iacr.org/
http://eprint.iacr.org/

Dynamic Searchable Symmetric Encryption
with Minimal Leakage and Efficient
Updates on Commodity Hardware

Attila A. Yavuz1(B) and Jorge Guajardo2

1 The School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331, USA

attila.yavuz@oregonstate.edu
2 Robert Bosch Research and Technology Center, Pittsburgh, PA 15203, USA

Jorge.GuajardoMerchan@us.bosch.com

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) enables
a client to perform keyword queries and update operations on the
encrypted file collections. DSSE has several important applications such
as privacy-preserving data outsourcing for computing clouds. In this
paper, we developed a new DSSE scheme that achieves the highest
privacy among all compared alternatives with low information leakage,
efficient updates, compact client storage, low server storage for large
file-keyword pairs with an easy design and implementation. Our scheme
achieves these desirable properties with a very simple data structure
(i.e., a bit matrix supported with two hash tables) that enables efficient
yet secure search/update operations on it. We prove that our scheme is
secure and showed that it is practical with large number of file-keyword
pairs even with an implementation on simple hardware configurations.

Keywords: Dynamic Searchable Symmetric Encryption · Privacy
enhancing technologies · Secure data outsourcing · Secure computing
clouds

1 Introduction

Searchable Symmetric Encryption (SSE) [8] enables a client to encrypt data
in such a way that she can later perform keyword searches on it via “search
tokens” [19]. A prominent application of SSE is to enable privacy-preserving
keyword searches on cloud-based systems (e.g., Amazon S3). A client can store
a collection of encrypted files at the cloud and yet perform keyword searches
without revealing the file or query contents [13]. Desirable properties of a SSE
scheme are as follows:

• Dynamism: It should permit adding or removing new files/keywords from the
encrypted file collection securely after the system set-up.

• Efficiency and Parallelization: It should offer fast search/updates, which are
parallelizable across multiple processors.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 241–259, 2016.
DOI: 10.1007/978-3-319-31301-6 15

242 A.A. Yavuz and J. Guajardo

• Storage Efficiency: The SSE storage overhead of the server depends on
the encrypted data structure (i.e., encrypted index) that enables keyword
searches. The number of bits required to represent a file-keyword pair in the
encrypted index should be small. The size of encrypted index should not grow
with the number of operations. The persistent storage at the client should be
minimum.

• Communication Efficiency: Non-interactive search/update a with minimum
data transmission should be possible to avoid the delays.

• Security: The information leakage must be precisely quantified based on for-
mal SSE security notions (e.g., dynamic CKA2 [12]).

Our Contributions. The preliminary SSEs (e.g.,[8,18]) operate on only static
data, which strictly limits their applicability. Later, Dynamic Searchable Sym-
metric Encryption (DSSE) schemes (e.g., [4,13]), which can handle dynamic file
collections, have been proposed. To date, there is no single DSSE scheme that
outperforms all other alternatives for all metrics: privacy (e.g., info leak), per-
formance (e.g., search, update times) and functionality. Having this in mind, we
develop a DSSE scheme that achieves the highest privacy among all compared
alternatives with low information leakage, non-interactive and efficient updates
(compared to [12]), compact client storage (compared to [19]), low server storage
for large file-keyword pairs (compared to [4,12,19]) and conceptually simple and
easy to implement (compared to [12,13,19]). Table 1 compares our scheme with
existing DSSE schemes for various metrics. We outline the desirable properties
of our scheme as follows:

• High Security: Our scheme achieves a high-level of update security (i.e., Level-
1), forward-privacy, backward-privacy and size pattern privacy simultane-
ously (see Sect. 5 for the details). We quantify the information leakage via
leakage functions and formally prove that our scheme is dynamic CKA2-
secure in random oracle model [3].

• Compact Client Storage: Compared to some alternatives with secure updates
(e.g., [19]), our scheme achieves smaller client storage (e.g., 10–15 times with
similar parameters). This is an important advantage for resource constrained
clients such as mobile devices.

• Compact Server Storage with Secure Updates: Our encrypted index size
is smaller than some alternatives with secure updates (i.e., [12,19]). For
instance, our scheme achieves 4 · κ smaller storage overhead than that of the
scheme in [12], which introduces a significant difference in practice. Asymp-
totically, the scheme in [19] is more server storage efficient for small/moderate
number of file-keyword pairs. However, our scheme requires only two bits per
file-keyword pair with the maximum number of files and keywords.

• Constant Update Storage Overhead: The server storage of our scheme does not
grow with update operations, and therefore it does not require re-encrypting
the whole encrypted index due to frequent updates. This is more efficient
than some alternatives (e.g., [19]), whose server storage grows linearly with
the number of file deletions.

Searchable Encryption with Minimal Leakage on Commodity Hardware 243

• Dynamic Keyword Universe: Unlike some alternatives (e.g., [8,12,13]), our
scheme does not assume a fixed keyword universe, which permits the addition
of new keywords to the system after initialization. Hence, the file content
is not restricted to a particular pre-defined keyword but can be any token
afterwards (encodings)1.

• Efficient, Non-interactive and Oblivious Updates: Our basic scheme achieves
secure updates non-interactively. Even with large file-keyword pairs (e.g.,
N = 1012), it incurs low communication overhead (e.g., 120 KB for m = 106

keywords and n = 106 files) by further avoiding network latencies (e.g., 25–100
ms) that affect other interactive schemes (e.g., as considered in [4,12,16,19]).
One of the variants that we explore requires three rounds (as in other DSSE
schemes), but it still requires low communication overhead (and less trans-
mission than that of [12] and fewer rounds than [16]). Notice that the scheme
in [16] can only add or remove a file but cannot update the keywords of a file
without removing or adding it, while our scheme can achieve this function-
ality intrinsically with a (standard) update or delete operation. Finally, our
updates take always the same amount of time, which does not leak timing
information depending on the update.

• Parallelization: Our scheme is parallelizable for both update and search
operations.

• Efficient Forward Privacy: Our scheme can achieve forward privacy by retriev-
ing not the whole data structure (e.g., [19]) but only some part of it that has
already been queried.

2 Related Work

SSE was introduced in [18] and it was followed by several SSE schemes (e.g.,
[6,8,15]). The scheme of Curtmola et al. in [8] achieves a sub-linear and optimal
search time as O(r), where r is the number of files that contain a keyword. It also
introduced the security notion for SSE called as adaptive security against chosen-
keyword attacks (CKA2). However, the static nature of those schemes limited
their applicability to applications with dynamic file collections. Kamara et al.
developed a DSSE scheme in [13] that could handle dynamic file collections via
encrypted updates. However, it leaked significant information for updates and
was not parallelizable. Kamara et al. in [12] proposed a DSSE scheme, which
leaked less information than that of [13] and was parallelizable. However, it
incurs an impractical server storage. Recently, a series of new DSSE schemes
(e.g., [4,16,17,19]) have been proposed by achieving better performance and
security. While being asymptotically better, those schemes also have drawbacks.
We give a comparison of these schemes (i.e., [4,16,17,19]) with our scheme in
Sect. 6.

Blind Seer [17] is a private database management system, which offers private
policy enforcement on semi-honest clients, while a recent version [10] can also

1 We assume the maximum number of keywords to be used in the system is pre-defined.

244 A.A. Yavuz and J. Guajardo

Table 1. Performance Comparison of DSSE schemes.

Scheme/Property [13] Kamara 12’ [12] Kamara 13’ [19] Stefanov [4]
(∏dyn,ro

2lev

)
This work

Size privacy No No No No Yes

Update privacy L5 L4 L3 L2 L1

Forward privacy No No Yes Yes Yes

Backward privacy No No No No Yes

Dynamic keyword No No Yes Yes Yes

Client storage 4κ 3κ κ log(N′) κ · O(m′) κ · O(n + m)

Index size (server) z · O(m + n) O((κ + m) · n) 13κ · O(N′) c′′/b · O(N′) 2 · O(m · n)

Grow with updates No No Yes Yes No

Search time O((r/p) · log n) O((r/p)
· log3(N′))

O((r + dw)/p) 1/b · O(r/p) O(m
p·b)

Rounds update 1 3 3 1 1

Update bandwidth z · O(m′′) (2zκ)O(m log n) z · O(m′′ log N′) z · O(m log n + m′′) b · O(m)

Update time O(m′′) O((m/p)· log n) + t O((m′′/p)·
log2(N′)) + t

O(m′′/p) + t b · O(m/p)

Parallelizable No Yes Yes Yes Yes

• All compared schemes are dynamic CKA2 secure in Random Oracle Model
(ROM) [3], and leak search and access patterns. The analysis is given for the worst-
case (asymptotic) complexity.
• m and n are the maximum # of keywords and files, respectively. m′ and n′ are
the current # of keywords and files, respectively. We denote by N ′ = m′ · n′ the
total number of keywords and file pairs currently stored in the database. m′′ is the
unique keywords included in an updated file (add or delete). r is # of files that
contain a specific keyword.
• Rounds refer to the number of messages exchanged between two communicating
parties. A non-interactive search and an interactive update operation require two and
three messages to be exchange, respectively. Our main scheme, the scheme in [13]
and some variants in [4] also achieve non-interactive update with only single message
(i.e., an update token and an encrypted file to be added for the file addition) to be
send from the client to the server. The scheme in [19] requires a transient client
storage as O(N ′α).
• κ is the security parameter. p is the # of parallel processors. b is the block size of
symmetric encryption scheme. z is the pointer size in bits. t is the network latency
introduced due to the interactions. α is a parameter, 0 < α < 1.
• Update privacy levels L1,...,L5 are described in Sect. 5. In comparison with Cash
et al. [4], we took variant

∏dyn,ro
bas as basis and estimated the most efficient variant∏dyn,ro

2lev , where dw, aw, and c′′ denote the total number of deletion operations, addi-
tion operations, the constant bit size required to store a single file-keyword pair,
respectively (in the client storage, the worst case of aw = m). To simplify notation,
we assume that both pointers and identifiers are of size c′′ and that one can fit b such
identifiers/pointers per block of size b (also a simplification). The hidden constants
in the asymptotic complexity of the update operation is significant as the update of
[4] requires at least six PRF operations per file-keyword pair versus this work, which
requires one.
∗Our persistent client storage is κ·O(m+n). This can become 4κ if we store this data
structure on the server side, which would cost one additional round of interaction.

Searchable Encryption with Minimal Leakage on Commodity Hardware 245

handle malicious clients. Blind Seer focuses on a different scenario and system
model compared to traditional SSE schemes: “The SSE setting focuses on data
outsourcing rather than data sharing. That is, in SSE the data owner is the
client, and so no privacy against the client is required” [17]. Moreover, Blind
Seer requires three parties (one of them acts as a semi-trusted party) instead of
two. Our scheme focuses on only basic keyword queries but achieves the highest
update privacy in the traditional SSE setting. The update functionality of Blind
Seer is not oblivious (this is explicitly noted in [17] on page 8, footnote 2).
The Blind Seer solves the leakage problem due to non-oblivious updates by
periodically re-encrypting the entire index.

3 Preliminaries and Models

Operators || and |x| denote the concatenation and the bit length of variable

x, respectively. x
$← S means variable x is randomly and uniformly selected

from set S. For any integer l, (x0, . . . , xl)
$← S means (x0

$← S, . . . , xl
$← S).

|S| denotes the cardinality of set S. {xi}l
i=0 denotes (x0, . . . , xl). We denote by

{0, 1}∗ the set of binary strings of any finite length. �x� denotes the floor of x
and �x� denotes the ceiling of x. The set of items qi for i = 1, . . . , n is denoted by
〈q1, . . . , qn〉. Integer κ denotes the security parameter. log x means log2 x. I[∗, j]
and I[i, ∗] mean accessing all elements in the j’th column and the i’th row of a
matrix I, respectively. I[i, ∗]T is the transpose of the i’th row of I.

An IND-CPA secure private key encryption scheme is a triplet E =
(Gen,Enc,Dec) of three algorithms as follows: k1 ← E .Gen(1κ) is a Probabilis-
tic Polynomial Time (PPT) algorithm that takes a security parameter κ and
returns a secret key k1; c ← E .Enck1(M) takes secret key k1 and a message M ,
and returns a ciphertext c; M←E .Deck1(c) is a deterministic algorithm that takes
k1and c, and returns M if k1 was the key under which c was produced. A Pseudo
Random Function (PRF) is a polynomial-time computable function, which is
indistinguishable from a true random function by any PPT adversary. The func-
tion F : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF, denoted by τ ← Fk2 (x),

which takes as input a secret key k2
$← {0, 1}κ and a string x, and returns a token

τ . G : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a keyed PRF denoted as r ← Gk3 (x), which
takes as input k3 ← {0, 1}κ and a string x and returns a key r. We denote by
H : {0, 1}|x| → {0, 1} a Random Oracle (RO) [3], which takes an input x and
returns a bit as output.

We follow the definitions of [12,13] with some modifications: fid and w denote
a file with unique identifier id and a unique keyword that exists in a file, respec-
tively. A keyword w is of length polynomial in κ, and a file fid may contain any
such keyword (i.e., our keyword universe is not fixed). For practical purposes,
n and m denote the maximum number of files and keywords to be processed by
application, respectively. f = (fid1 , . . . , fidn

) and c = (cid1 , . . . , cidn
) denote a

collection of files (with unique identifiers id1, . . . , idn) and their corresponding
ciphertext computed under k1 via Enc, respectively. Data structures δ and γ
denote the index and encrypted index, respectively.

246 A.A. Yavuz and J. Guajardo

Definition 1. A DSSE scheme is comprised of nine polynomial-time algorithms,
which are defined as below:

1. K ← Gen(1κ): It takes as input a security parameter κ and outputs a secret
key K.

2. (γ, c) ← EncK (δ, f): It takes as input a secret key K, an index δ and files f,
from which δ was constructed. It outputs encrypted index γ and ciphertexts c.

3. fj ← DecK (cj): It takes as input secret key K and ciphertext cj and outputs
a file fj.

4. τw ← SrchToken(K,w): It takes as input a secret key K and a keyword w. It
outputs a search token τw.

5. idw ← Search(τw, γ): It takes as input a search token τw and an encrypted
index γ. It outputs identifiers idw ⊆ c.

6. (τf , c) ← AddToken(K, fid): It takes as input a secret key K and a file fid

with identifier id to be added. It outputs an addition token τf and a ciphertext
c of fid.

7. (γ′, c′) ← Add(γ, c, c, τf): It takes as input an encrypted index γ, current
ciphertexts c, ciphertext c to be added and an addition token τf . It outputs a
new encrypted index γ′ and new ciphertexts c′.

8. τ ′
f ← DeleteToken(K, fid): It takes as input a secret key K and a file fid with

identifier id to be deleted. It outputs a deletion token τ ′
f .

9. (γ′, c′) ← Delete(γ, c, τ ′
f): It takes as input an encrypted index γ, ciphertexts

c, and a deletion token τ ′
f . It outputs a new encrypted index γ′ and new

ciphertexts c′.

Definition 2. A DSSE scheme is correct if for all κ, for all keys K generated
by Gen(1κ), for all f, for all (γ, c) output by EncK (δ, f), and for all sequences
of add, delete or search operations on γ, search always returns the correct set of
identifier idw.

Most known efficient SSE schemes (e.g., [4,5,12,13,16,19]) reveal the access
and search patterns that are defined below.

Definition 3. Given search query Query = w at time t, the search pattern
P(δ,Query, t) is a binary vector of length t with a 1 at location i if the search
time i ≤ t was for w, 0 otherwise. The search pattern indicates whether the same
keyword has been searched in the past or not.

Definition 4. Given search query Query = wi at time t, the access pattern
Δ(δ, f, wi, t) is identifiers idw of files f, in which wi appears.

We consider the following leakage functions, in the line of [12] that captures
dynamic file addition/deletion in its security model as we do, but we leak much
less information compared to [12] (see Sect. 5).

Definition 5. Leakage functions (L1,L2) are defined as follows:

Searchable Encryption with Minimal Leakage on Commodity Hardware 247

1. (m,n, idw, 〈|fid1 |, . . . , |fidn
|〉) ← L1(δ, f): Given the index δ and the set of files

f (including their identifiers), L1 outputs the maximum number of keywords
m, the maximum number of files n, the identifiers idw = (id1, . . . , idn) of
f and the size of each file |fidj

|, 1 ≤ j ≤ n (which also implies the size of its
corresponding ciphertext |cidj

|).
2. (P(δ,Query, t),Δ(δ, f, wi, t)) ← L2(δ, f, w, t): Given the index δ, the set of

files f and a keyword w for a search operation at time t, it outputs the search
and access patterns.

Definition 6. Let A be a stateful adversary and S be a stateful simulator.
Consider the following probabilistic experiments:

RealA(κ): The challenger executes K ← Gen(1κ). A produces (δ, f) and receives
(γ, c) ← EncK (δ, f) from the challenger. A makes a polynomial number of adap-
tive queries Query ∈ (w, fid, fid′) to the challenger. If Query = w then A receives
a search token τw ← SrchToken(K,w) from the challenger. If Query = fid is a
file addition query then A receives an addition token (τf , c) ← AddToken(K, fid)
from the challenger. If Query = fid′ is a file deletion query then A receives a dele-
tion token τ ′

f ← DeleteToken(K, fid′) from the challenger. Eventually, A returns
a bit b that is output by the experiment.

IdealA,S(κ): A produces (δ, f). Given L1(δ, f), S generates and sends (γ, c)
to A . A makes a polynomial number of adaptive queries Query ∈ (w, fid, fid′)
to S . For each query, S is given L2(δ, f, w, t). If Query = w then S returns a
simulated search token τw. If Query = fid or Query = fid′ , S returns a simulated
addition token τf or deletion token τ ′

f ,respectively. Eventually, A returns a bit
b that is output by the experiment.

A DSSE is said (L1,L2)-secure against adaptive chosen-keyword attacks
(CKA2-security) if for all PPT adversaries A , there exists a PPT simulator
S such that

|Pr[RealA(κ) = 1] − Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

Remark 1. In Definition 6, we adapt the notion of dynamic CKA2-security
from [12], which captures the file addition and deletion operations by simulating
corresponding tokens τf and τ ′

f , respectively (see Sect. 5).

4 Our Scheme

We first discuss the intuition and data structures of our scheme. We then outline
how these data structures guarantee the correctness of our scheme. Finally, we
present our main scheme in detail (an efficient variant of our main scheme is
given in Sect. 6, several other variants of our main scheme are given in the full
version of this paper in [20]).

Intuition and Data Structures of Our Scheme. The intuition behind our
scheme is to rely on a very simple data structure that enables efficient yet secure

248 A.A. Yavuz and J. Guajardo

search and update operations on it. Our data structure is a bit matrix I that
is augmented by two static hash tables Tw and Tf . If I[i, j] = 1 then it means
keyword wi is present in file fj , else wi is not in fj . The data structure con-
tains both the traditional index and the inverted index representations. We use
static hash tables Tw and Tf to uniquely associate a keyword w and a file f
to a row index i and a column index j, respectively. Both matrix and hash
tables also maintain certain status bits and counters to ensure secure and cor-
rect encryption/decryption of the data structure, which guarantees a high level
of privacy (i.e., L1 as in Sect. 5) with dynamic CKA2-security [12]. Search and
update operations are encryption/decryption operations on rows and columns
of I, respectively.

As in other index-based schemes, our DSSE scheme has an index δ repre-
sented by a m×n matrix, where δ[i, j] ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n.
Initially, all elements of δ are set to 0. I is a m×n matrix, where I[i, j] ∈ {0, 1}2.
I[i, j].v stores δ[i, j] in encrypted form depending on state and counter informa-
tion. I[i, j].st stores a bit indicating the state of I[i, j].v. Initially, all elements
of I are set to 0. I[i, j].st is set to 1 whenever its corresponding fj is updated,
and it is set to 0 whenever its corresponding keyword wi is searched. For the
sake of brevity, we will often write I[i, j] to denote I[i, j].v. We will always be
explicit about the state bit I[i, j].st. The encrypted index γ corresponds to the
encrypted matrix I and a hash table. We also have client state information2 in
the form of two static hash tables (defined below). We map each file fid and key-
word w pair to a unique set of indices (i, j) in matrices (δ, I). We use static hash
tables to associate each file and keyword to its corresponding row and column
index, respectively. Static hash tables also enable to access the index informa-
tion in (average) O(1) time. Tf is a static hash table whose key-value pair is
{sfj

, 〈j, stj〉}, where sfj
← Fk2(idj) for file identifier idj corresponding to file

fidj
, index j ∈ {1, . . . , n} and st is a counter value. We denote access operations

by j ← Tf (sfj
) and stj ← Tf [j].st. Tw is a static hash table whose key-value

pair is {swi
, 〈i, sti〉}, where token swi

← Fk2(wi), index i ∈ {1, . . . , n} and st is a
counter value. We denote access operations by i ← Tw(swi

) and sti ← Tw[i].st.
All counter values are initially set to 1.

We now outline how these data structures and variables work and ensure the
correctness of our scheme.

Correctness of Our Scheme. The correctness and consistency of our scheme
is achieved via state bits I[i, j].st, and counters Tw[i].st of row i and counters
Tf [j].st of column j, each maintained with hash tables Tw and Tf , respectively.

The algorithms SrchToken and AddToken increase counters Tw[i].st for key-
word w and Tf [j].st for file fj , after each search and update operations, respec-
tively. These counters allow the derivation of a new bit, which is used to encrypt
the corresponding cell I[i, j]. This is done by the invocation of random oracle

2 It is always possible to eliminate client state by encrypting and storing it on the
server side. This comes at the cost of additional iteration, as the client would need to
retrieve the encrypted hash tables from the server and decrypt them. Asymptotically,
this does not change the complexity of the schemes proposed here.

Searchable Encryption with Minimal Leakage on Commodity Hardware 249

as H(ri||j||stj) with row key ri, column position j and the counter of column
j. The row key ri used in H(.) is re-derived based on the value of row counter
sti as ri ← Gk3 (i||sti), which is increased after each search operation. Hence,
if a search is followed by an update, algorithm AddToken derives a fresh key
ri ← Gk3 (i||sti), which was not released during the previous search as a token.
This ensures that AddToken algorithm securely and correctly encrypts the new
column of added/deleted file. Algorithm Add then replaces new column j with
the old one, increments column counter and sets state bits I[∗, j] to 1 (indicating
cells are updated) for the consistency.

The rest is to show that SrchToken and Search produce correct search results.
If keyword w is searched for the first time, SrchToken derives only ri, since there
were no past search increasing the counter value. Otherwise, it derives ri with
the current counter value sti and ri with the previous counter value sti−1, which
will be used to decrypt recently updated and non-updated (after the last search)
cells of I[i, ∗], respectively. That is, given search token τw, the algorithm Search
step 1 checks if τw includes only one key (i.e., the first search) or corresponding
cell value I[i, j] was updated (i.e., I[i, j].st = 1). If one of these conditions holds,
the algorithm Search decrypts I[i, j] with bit H(ri||j||stj) that was used for
encryption by algorithm Enc (i.e., the first search) or AddToken. Otherwise, it
decrypts I[i, j] with bit H(ri||j||stj). Hence, the algorithm Search produces the
correct search result by properly decrypting row i. The algorithm Search also
ensures the consistency by setting all state bits I[i, ∗].st to zero (i.e., indicating
cells are searched) and re-encrypting I[i, ∗] by using the last row key ri.

Detailed Description. We now describe our main scheme in detail.

K ← Gen(1κ): The client generates k1←E .Gen(1κ), (k2, k3)
$← {0, 1}κ and K ←

(k1, k2, k3).
(γ, c) ← EncK (δ, f): The client generates (γ, c):

1. Extract unique keywords (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′),
where n′ ≤ n and m′ ≤ m. Initially, set all the elements of δ to 0.

2. Construct δ for j = 1, . . . , n′ and i = 1, . . . ,m′:
(a) swi

← Fk2 (wi), xi ← Tw(swi
), sfj

← Fk2 (idj) and yj ← Tf (sfj
).

(b) If wi appears in fj set δ[xi, yj] ← 1.
3. Encrypt δ for j = 1, . . . , n and i = 1, . . . ,m:

(a) Tw[i].st ← 1, Tf [j].st ← 1 and I[i, j].st ← 0.
(b) ri ← Gk3 (i||sti), where sti ← Tw[i].st.
(c) I[i, j] ← δ[i, j] ⊕ H(ri||j||stj), where stj ← Tf [j].st.

4. cj ← E .Enck1(fidj
) for j = 1, . . . , n′ and c ← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

5. Output (γ, c), where γ ← (I, Tf). The client gives (γ, c) to the server,
and keeps (K,Tw, Tf).

fj ← DecK (cj): The client obtains the file as fj ← E .Deck1(cj).
τw ← SrchToken(K,w): The client generates a token τw for w:

1. swi
← Fk2 (w), i ← Tw(swi

), sti ← Tw[i].st and ri ← Gk3 (i||sti).
2. If sti = 1 then τw ← (i, ri) . Else (if sti > 1), ri ← Gk3 (i||sti − 1) and

τw ← (i, ri, ri).

250 A.A. Yavuz and J. Guajardo

3. Tw[i].st ← sti + 1. The client outputs τw and sends it to the server.
idw ← Search(τw, γ): The server finds indexes of ciphertexts for τw:

1. If ((τw = (i, ri) ∨ I[i, j].st) = 1) hold then I ′[i, j] ← I[i, j] ⊕ H(ri||j||stj),
else set I ′[i, j] ← I[i, j]⊕ H(ri||j||stj), where stj ← Tf [j].st for
j = 1, . . . , n.

2. Set I[i, ∗].st ← 0, l′ ← 1 and for each j satisfies I ′[i, j] = 1, set yl′ ← j
and l′ ← l′ + 1.

3. Output idw ← (y1, . . . ,yl). The server returns (cy1 , . . . , cyl
) to the client,

where l ← l′ − 1.
4. After the search is completed, the server re-encrypts row I ′[i, ∗] with ri

as I[i, j] ← I ′[i, j] ⊕ H(ri||j||stj) for j = 1, . . . , n, where stj ← Tf [j].st
and sets γ ← (I, Tw).

(τf , c) ← AddToken(K, fidj
): The client generates τf for a file fidj

:
1. sfj

← Fk2 (idj), j ← Tf (sfj
), Tf [j].st ← Tf [j].st + 1, stj ← Tf [j].st.

2. ri ← Gk3 (i||sti), where sti ← Tw[i].st for i = 1, . . . ,m.
3. Extract (w1, . . . , wt) from fidj

and compute swi
← Fk2 (wi) and xi ←

Tw(swi
) for i = 1, . . . , t.

4. Set I[xi] ← 1 for i = 1, . . . , t and rest of the elements as {I[i] ←
0}m

i=1,i/∈{x1,...,xt}. Also set I ′[i] ← I[i] ⊕ H(ri||j||stj) for i = 1, . . . , m.
5. Set c ← E .Enck1(fidj

) and output (τf ← (I ′, j), c). The client sends (τf , c)
to the server.

(γ′, c′) ← Add(γ, c, c, τf): The server performs file addition:
1. I[∗, j] ← (I ′)T , I[∗, j].st ← 1 and Tf [j].st ← Tf [j].st + 1.
2. Output (γ′, c′), where γ′ ← (I, Tf) and c′ is (c, j) added to c.

τ ′
f ← DeleteToken(K, f): The client generates τ ′

f for f :
1. Execute steps (1–2) of AddToken algorithm, which produce (j, ri, stj).
2. I ′[i] ← H(ri||j|stj) for i = 1, . . . ,m3.
3. Output τ ′

f ← (I ′, j). The client sends τ ′
f to the server.

(γ′, c′) ← Delete(γ, c, τ ′
f): The server performs file deletion:

1. I[∗, j] ← (I ′)T , I[∗, j].st ← 1 and Tf [j].st ← Tf [j].st + 1.
2. Output (γ′, c′), where γ′ ← (I, Tf), c′ is (c, j) removed from c.

Keyword Update for Existing Files: Some existing schemes (e.g., [16]) only
permit adding or deleting a file, but do not permit updating keywords in an
existing file. Our scheme enables keyword update in an existing file. To update
an existing file f by adding new keywords or removing existing keywords, the
client prepares a new column I[i] ← bi, i = 1, . . . ,m, where bi = 1 if wi is
added and bi = 0 otherwise (as in AddToken, step 4). The rest of the algorithm
is similar to AddToken.

3 This step is only meant to keep data structure consistency during a search operation.

Searchable Encryption with Minimal Leakage on Commodity Hardware 251

5 Security Analysis

We prove that our main scheme achieves dynamic adaptive security against
chosen-keyword attacks (CKA2) as below. It is straightforward to extend the
proof for our variant schemes. Note that our scheme is secure in the Random Ora-
cle Model (ROM) [3]. That is, A is given access to a random oracle RO(.) from
which she can request the hash of any message of her choice. In our proof, cryp-
tographic function H used in our scheme is modeled as a random oracle via
function RO(.).

Theorem 1. If Enc is IND-CPA secure, (F,G) are PRFs and H is a RO then
our DSSE scheme is (L1,L2)-secure in ROM according to Definition 6 (CKA-2
security with update operations).

Proof. We construct a simulator S that interacts with an adversary A in an
execution of an IdealA,S(κ) experiment as described in Definition 6.

In this experiment, S maintains lists LR, LK and LH to keep track the
query results, states and history information, initially all lists empty. LR is
a list of key-value pairs and is used to keep track RO(.) queries. We denote
value ← LR(key) and ⊥ ← LR(key) if key does not exist in LR. LK is used
to keep track random values generated during the simulation and it follows the
same notation that of LR. LH is used to keep track search and update queries,
S ’s replies to those queries and their leakage output from (L1,L2).

S executes the simulation as follows:

I. Handle RO(.) Queries: b ← RO (x) takes an input x and returns a bit b as

output. Given x, if ⊥ = LR(x) set b
$← {0, 1}, insert (x, b) into LR and return

b as the output. Else, return b ← LR(x) as the output.

II. Simulate (γ, c): Given (m,n, 〈id1, . . . , idn′〉, 〈|cid1 |, . . . , |cidn′ |〉) ← L1(δ, f),
S simulates (γ, c) as follows:

1. sfj

$← {0, 1}κ, yj ← Tf (sfj
), insert (idj , sfj

, yj) into LH and encrypt cyj
←

E .Enck({0}|cidj
|), where k

$← {0, 1}κ for j = 1, . . . , n′.
2. For j = 1, . . . , n and i = 1, . . . ,m

(a) Tw[i].st ← 1 and Tf [j].st ← 1.

(b) zi,j
$← {0, 1}2κ, I[i, j] ← RO (zi,j) and I[i, j].st ← 0.

3. Output (γ, c), where γ ← (I, Tf) and c ← {〈c1, y1〉, . . . , 〈cn′ , yn′〉}.

Correctness and Indistinguishability of the Simulation: c has the correct size
and distribution, since L1 leaks 〈|cid1 |, . . . , |cidn′ |〉 and Enc is a IND-CPA secure
scheme, respectively. I and Tf have the correct size since L1 leaks (m,n). Each
I[i, j] for j = 1, . . . , n and i = 1, . . . , m has random uniform distribution as
required, since RO(.) is invoked with a separate random number zi,j . Tf has
the correct distribution, since each sfj

has random uniform distribution, for
j = 1, . . . , n′. Hence, A does not abort due to A ’s simulation of (γ, c). The

252 A.A. Yavuz and J. Guajardo

probability that A queries RO(.) on any zi,j before S provides I to A is
negligible (i.e., 1

22κ). Hence, S also does not abort.

III. Simulate τw: Simulator S receives a search query w on time t. S is given
(P(δ,Query, t),Δ(δ, f, wi, t)) ← L2(δ, f, w, t). S adds these to LH. S then sim-
ulates τw and updates lists (LR,LK) as follows:

1. If w in list LH then fetch corresponding swi
. Else, swi

$← {0, 1}κ, i ← Tw(swi
),

sti ← Tw[i].st and insert (w,L1(δ, f), swi
) into LH.

2. If ⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK. Else, ri ←
LK(i, sti).

3. If sti > 1 then ri ← LK(i||sti − 1), τw ← (i, ri, ri). Else, τw ← (i, ri).
4. Tw[i].st ← sti + 1.
5. Given L2(δ, f, w, t), S knows identifiers idw = (y1, . . . , yl). Set I ′[i, yj] ← 1,

j = 1, . . . , l, and rest of the elements as {I ′[i, j] ← 0}j=1,j /∈{y1,...,yl}.
6. If ((τw = (i, ri)∨ I[i, j].st) = 1) then V [i, j] ← I[i, j]′ ⊕ I[i, j] and insert tuple

(ri||j||stj , V [i, j]) into LR for j = 1, . . . , n, where stj ← Tf [j].st.
7. I[i, ∗].st ← 0.
8. I[i, j] ← I ′[i, j] ⊕ RO (ri||j||stj), where stj ← Tf [j].st for j = 1, . . . , n.
9. Output τw and insert (w, τw) into LH.

Correctness and Indistinguishability of the Simulation: Given any Δ(δ, f, wi, t),
S simulates the output of RO(.) such that τw always produces the correct search
result for idw ← Search(τw, γ). S needs to simulate the output of RO(.) for two
conditions (as in III-Step 6): (i) The first search of wi (i.e., τw = (i, ri)), since
S did not know δ during the simulation of (γ, c). (ii) If any file fidj

containing
wi has been updated after the last search on wi (i.e., I[i, j].st = 1), since S does
not know the content of update. S sets the output of RO(.) for those cases by
inserting tuple (ri||j||stj , V [i, j]) into LR (as in III-Step 6). In other cases, S just
invokes RO(.) with (ri||j||stj), which consistently returns previously inserted bit
from LR (as in III-Step 8).

During the first search on wi, each RO(.) output V [i, j] = RO (ri||j|stj)
has the correct distribution, since I[i, ∗] of γ has random uniform distribution
(see II-Correctness and Indistinguishability argument). Let J = (j1, . . . , jl) be
the indexes of files containing wi, which are updated after the last search on
wi. If wi is searched then each RO(.) output V [i, j] = RO (ri||j|stj) has the
correct distribution, since τf ← (I ′, j) for indexes j ∈ J has random uniform
distribution (see IV-Correctness and Indistinguishability argument). Given that
S ’s τw always produces correct idw for given Δ(δ, f, wi, t), and relevant values
and RO(.) outputs have the correct distribution as shown, A does not abort
during the simulation due to S ’s search token. The probability that A queries
RO(.) on any (ri||j|stj) before him queries S on τw is negligible (i.e., 1

2κ), and
therefore S does not abort due to A ’s search query.

IV. Simulate (τf ,τ ′
f): S receives an update request Query = (〈Add, |cidj

|〉,
Delete) at time t. S simulates update tokens (τf , τ ′

f) as follows:

Searchable Encryption with Minimal Leakage on Commodity Hardware 253

1. If idj in LH then fetch its corresponding (sfj
, j) from LH, else set sfj

$←
{0, 1}κ, j ← Tf (sfj

) and insert (sfj
, j, fidj

) into LH.
2. Tf [j].st ← Tf [j].st + 1, stj ← Tf [j].st.
3. If ⊥ = LK(i, sti) then ri ← {0, 1}κ and insert (ri, i, sti) into LK, where

sti ← Tw[i].st for i = 1, . . . , m.

4. I ′[i] ← RO (zi), where zi
$← {0, 1}2κ for i = 1, . . . ,m.

5. I[∗, j] ← (I ′)T and I[∗, j].st ← 1.
6. If Query = 〈Add, |cidj

|〉, simulate cj ← E .Enck({0}|cid|), add cj into c, set
τf ← (I ′, j) output (τf , j). Else set τ ′

f ← (I ′, j), remove cj from c and output
τ ′
f .

Correctness and Indistinguishability of the Simulation: Given any access pat-
tern (τf , τ ′

f) for a file fidj
, A checks the correctness of update by searching

all keywords W = (wi1 , . . . , wil
) included fidj

. Since S is given access pattern
Δ(δ, f, wi, t) for a search query (which captures the last update before the search),
the search operation always produces a correct result after an update (see
III-Correctness and Indistinguishability argument). Hence, S ’s update tokens
are correct and consistent.

It remains to show that (τf , τ ′
f) have the correct probability distribution.

In real algorithm, stj of file fidj
is increased for each update as simulated in

IV-Step 2. If fidj
is updated after wi is searched, a new ri is generated for wi

as simulated in IV-Step 3 (ri remains the same for consecutive updates but
stj is increased). Hence, the real algorithm invokes H(.) with a different input
(ri||j||stj) for i = 1, . . . ,m. S simulates this step by invoking RO(.) with zi

and I ′[i] ← RO (zi), for i = 1, . . . ,m. (τf , τ ′
f) have random uniform distribution,

since I ′ has random uniform distribution and update operations are correct and
consistent as shown. cj has the correct distribution, since Enc is an IND-CPA
cipher. Hence, A does not abort during the simulation due to S ’s update tokens.
The probability that A queries RO(.) on any zi before him queries S on (τf , τ ′

f)
is negligible (i.e., 1

22·κ), and therefore S also does not abort due to A ’s update
query.

V. Final Indistinguishability Argument: (swi
, sfj

, ri) for i = 1, . . . , m and
j = 1, . . . , n are indistinguishable from real tokens and keys, since they are
generated by PRFs that are indistinguishable from random functions. Enc is a
IND-CPA scheme, the answers returned by S to A for RO(.) queries are con-
sistent and appropriately distributed, and all query replies of S to A during
the simulation are correct and indistinguishable as discussed in I-IV Correctness
and Indistinguishability arguments. Hence, for all PPT adversaries, the outputs
of RealA(κ) and that of an IdealA,S(κ) experiment are negligibly close:

|Pr[RealA(κ) = 1] − Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

�

254 A.A. Yavuz and J. Guajardo

Remark 2. Extending the proof to Variant-I presented in Sect. 6 is straight-
forward4. In particular, (i) interaction is required because even if we need to
update a single entry (column) corresponding to a single file, the client needs
to re-encrypt the whole b-bit block in which the column resides to keep consis-
tency. This, however, is achieved by retrieving the encrypted b-bit block from the
server, decrypting on the client side and re-encrypting using AES-CTR mode.
Given that we use ROs and a IND-CPA encryption scheme (AES in CTR mode)
the security of the DSSE scheme is not affected in our model, and, in particular,
there is no additional leakage. (ii) The price that is paid for this performance
improvement is that we need interaction in the new variant. Since the mes-
sages (the columns/rows of our matrix) exchanged between client and server are
encrypted with an IND-CPA encryption scheme there is no additional leakage
either due to this operation.

Discussions on Privacy Levels. The leakage definition and formal security
model described in Sect. 3 imply various levels of privacy for different DSSE
schemes. We summarize some important privacy notions (based on the various
leakage characteristics discussed in [4,12,16,19]) with different levels of privacy
as follows:

• Size pattern: The number of file-keyword pairs in the system.
• Forward privacy: A search on a keyword w does not leak the identifiers of

files matching this keyword for (pre-defined) future files.
• Backward privacy: A search on a keyword w does not leak the identifiers of

files matching this keywords that were previously added but then deleted
(leaked via additional info kept for deletion operations).

• Update privacy: Update operation may leak different levels of information
depending on the construction:

– Level-1 (L1) leaks only the time t of the update operation and an index
number. L1 does not leak the type of update due to the type operations per-
formed on encrypted index γ. Hence, it is possible to hide the type of update
via batch/fake file addition/deletion5. However, if the update is addition and
added file is sent to the server along with the update information on γ, then
the type of update and the size of added file are leaked.

– Level-2 (L2) leaks L1 plus the identifier of the file being updated and the
number of keywords in the updated file (e.g., as in [19]).

– Level-3 (L3) leaks L2 plus when/if that identifier has had the same key-
words added or deleted before, and also when/if the same keyword have been
searched before (e.g., as in [4]6).

4 This variant encrypts/decrypts b-bit blocks instead of single bits and it requires
interaction for add/delete/update operations.

5 In our scheme, the client may delete file fidj from γ but still may send a fake file
f ′

idj
to the server as a fake file addition operation.

6 Remark that despite the scheme in [4] leaks more information than that of ours
and [19] as discussed, it does not leak the (pseudonymous) index of file to be updated.

Searchable Encryption with Minimal Leakage on Commodity Hardware 255

– Level-4 (L4) leaks L3 plus the information whether the same keyword added
or deleted from two files (e.g., as in [12]).

– Level-5 (L5) leaks significant information such as the pattern of all intersec-
tions of everything is added or deleted, whether or not the keywords were
search-ed for (e.g., as in [13]).

Note that our scheme achieves the highest level of L1 update privacy, forward-
privacy, backward-privacy and size pattern privacy. Hence, it achieves the highest
level of privacy among its counterparts.

6 Evaluation and Discussion

We have implemented our scheme in a stand-alone environment using C/C++.
By stand-alone, we mean we run on a single machine, as we are only interested
in the performance of the operations and not the effects of latency, which will be
present (but are largely independent of the implementation7.) For cryptographic
primitives, we chose to use the libtomcrypt cryptographic toolkit version 1.17
[9] and as an API. We modified the low level routines to be able to call and
take advantage of AES hardware acceleration instructions natively present in
our hardware platform, using the corresponding freely available Intel reference
implementations [11]. We performed all our experiments on an Intel dual core
i5-3320M 64-bit CPU at 2.6 GHz running Ubuntu 3.11.0-14 generic build with
4GB of RAM. We use 128-bit CCM and AES-128 CMAC for file and data
structure encryption, respectively. Key generation was implemented using the
expand-then-extract key generation paradigm analyzed in [14]. However, instead
of using a standard hash function, we used AES-128 CMAC for performance
reasons. Notice that this key derivation function has been formally analyzed and
is standardized. Our use of CMAC as the PRF for the key derivation function is
also standardized [7]. Our random oracles were all implemented via 128-bit AES
CMAC. For hash tables, we use Google’s C++ sparse hash map implementation
[2] but instead of using the standard hash function implementation, we called our
CMAC-based random oracles truncated to 80 bits. Our implementation results
are summarized in Table 2.

Experiments. We performed our experiments on the Enron dataset [1] as in
[13]. Table 2 summarizes results for three types of experiments: (i) Large number
of files and large number of keywords, (ii) large number of files but comparatively
small number of keywords and (iii) large number of keywords but small number
of files. In all cases, the combined number of keyword/file pairs is between 109

and 1010, which surpass the experiments in [13] by about two orders of magnitude
and are comparable to the experiments in [19]. One key observation is that in

7 As it can be seen from Table 1, our scheme is optimal in terms of the number of rounds
required to perform any operation. Thus, latency will not affect the performance of
the implementation anymore than any other competing scheme. This replicates the
methodology of Kamara et al. [13].

256 A.A. Yavuz and J. Guajardo

contrast to [19] (and especially to [4] with very high-end servers), we do not
use server-level hardware but a rather standard commodity Intel platform with
limited RAM memory. From our results, it is clear that for large databases
the process of generating the encrypted representation is relatively expensive,
however, this is a one-time only cost. The cost per keyword search depends
linearly as O(n)/128 on the number of files in the database and it is not cost-
prohibiting (even for the large test case of 1010 keyword/file pairs, searching takes
only a few msec). We observe that despite this linear cost, our search operation is
extremely fast comparable to the work in [13]. The costs for adding and deleting
files (updates) is similarly due to the obliviousness of these operations in our
case. Except for the cost of creating the index data structure, all performance
data extrapolates to any other type of data, as our data structure is not data
dependant and it is conceptually very simple.

Table 2. Execution times of our DSSE scheme. w.: # of words, f.: # of files

Operation Time (ms)

w. 2 · 105 f. 5 · 104 w. 2000 f. 2 · 106 w. 1 · 106 f. 5000

Building searchable representation (offline, one-time cost at initialization)

Keyword-file mapping, extraction 6.03 s 52min 352ms

Encrypt searchable representation 493ms 461ms 823ms

Search and Update Operations (online, after initialization)

Search for single key word 0.3ms 10ms 0.02ms

Add file to database 472ms 8.83ms 2.77 s

Delete file from database 329ms 8.77ms 2.36 s

Comparison with Existing Alternatives. Compared to Kamara et al. in [13],
which achieves optimal O(r) search time but leaks significant information for
updates, our scheme has linear search time (for # of files) but achieves completely
oblivious updates. Moreover, the [13] can not be parallelized, whereas our scheme
can. Kamara et al. [12] relies on red-black trees as the main data structure,
achieves parallel search and oblivious updates. However, it incurs impractical
server storage overhead due to its very large encrypted index size. The scheme
of Stefanov et al. [19] requires high client storage (e.g., 210 MB for moderate
size file-keyword pairs), where the client fetches non-negligible amount of data
from the server and performs an oblivious sort on it. We only require one hash
table and four symmetric secret keys storage. The scheme in [19] also requires
significant amount of data storage (e.g., 1600 bits) for per keyword-file pair at the
server side versus 2 bits per file-keyword pair in our scheme (and a hash table8).

8 The size of the hash table depends on its occupancy factor, the number of entries
and the size of each entry. Assuming 80-bits per entry and a 50 % occupancy factor,
our scheme still requires about 2 × 80 + 2 = 162 bits per entry, which is about a
factor 10 better than [19]. Observe that for fixed m-words, we need a hash table
with approximately 2m entries, even if each entry was represented by 80-bits.

Searchable Encryption with Minimal Leakage on Commodity Hardware 257

The scheme in [4] leaks more information compared to [19] also incurring in
non-negligible server storage. The data structure in [4] grows linearly with the
number of deletion operations, which requires re-encrypting the data structure
eventually. Our scheme does not require re-encryption (but we assume an upper
bound on the maximum number of files), and our storage is constant regardless
of the number of updates. The scheme in [16] relies on a primitive called “Blind-
Storage”, where the server acts only as a storage entity. This scheme requires
higher interaction than its counterparts, which may introduce response delays for
distributed client-server architectures. This scheme leaks less information than
that of [4], but only support single keyword queries. It can add/remove a file but
cannot update the content of a file in contrast to our scheme.

We now present an efficient variant of our scheme:

Variant-I: Trade-off Between Computation and Interaction Overhead.
In the main scheme, H is invoked for each column of I once, which requires
O(n) invocations in total. We propose a variant scheme that offers significant
computational improvement at the cost of a plausible communication overhead.

We use counter (CTR) mode with a block size b for E . We interpret columns
of I as d =

⌈
n
b

⌉
blocks with size of b bits each, and encrypt each block Bl,

l = 0, . . . , d − 1, separately with E by using a unique block counter stl. Each
block counter stl is located at its corresponding index al (block offset of Bl)
in Tf , where al ← (l · b) + 1. The uniqueness of each block counter is achieved
with a global counter gc, which is initialized to 1 and incremented by 1 for
each update. A state bit Tf [al].b is stored to keep track the update status of its
corresponding block. The update status is maintained only for each block but
not for each bit of I[i, j]. Hence, I is a binary matrix (unlike the main scheme,
in which I[i, j] ∈ {0, 1}2). AddToken and Add algorithms for the aforementioned
variant are as follows (DeleteToken and Delete follow the similar principles):

(τf , c) ← AddToken(K, fidj
): The client generates τf for fidj

as follows:
1. sfj

← Fk2 (fidj
), j ← Tf (sfj

), l ←
⌊

j
b

⌋
, al ← (l · b) + 1 and stl ←

Tf [al].st. Extract (w1, . . . , wt) from fidj
and compute swi

← Fk2 (wi) and
xi ← Tw(swi

) for i = 1, . . . , t. For i = 1, . . . , m:
(a) ri ← Gk3 (i||sti), where sti ← Tw[i].st 9.
(b) The client requests l’th block, which contains index j of fid from the

server. The server then returns the corresponding block (I[i, al], . . . ,
I[i, al+1 − 1]), where al+1 ← b(l + 1) + 1.

(c) (I[i, al], . . . , I[i, al+1 − 1]) ← E .Decri
(I[i, al], . . . , I[i, al+1 − 1], stl).

2. Set I[xi, j] ← 1 for i = 1, . . . , t and {I[i, j] ← 0}m
i=1,i/∈{x1,...,xt}.

3. gc ← gc + 1, Tf [al].st ← gc, stl ← Tf [al].st and Tf [al].b ← 1.
4. (I ′[i, al], . . . , I ′[i, al+1 − 1]) ← E .Encri

(I[i, al], . . . , I[i, al+1 − 1], stl) for
i = 1, . . . ,m. Finally, c ← E .Enck1(fidj

).
5. Output τf ← (I ′, j). The client sends (τf , c) to the server.

(γ′, c′) ← Add(γ, c, c, τf): The server performs file addition as follows:

9 In this variant, G should generate a cryptographic key suitable for the underlying
encryption function E (e.g., the output of KDF is b = 128 for AES with CTR mode).

258 A.A. Yavuz and J. Guajardo

1. Replace (I[∗, al], . . . , I[∗, al+1 − 1]) with I ′.
2. gc ← gc + 1, Tf [al].st ← gc and Tf [al].b ← 1.
3. Output (γ′, c′), where γ′ ← (I, Tf) and c′ is (c, j) added to c.

Gen and Dec algorithms of the variant scheme are identical to that of main
scheme. The modifications of SrchToken and Search algorithms are straightfor-
ward (in the line of AddToken and Add) and therefore will not be repeated.
In this variant, the search operation requires the decryption of b-bit blocks for
l = 0, . . . , d − 1. Hence, E is invoked only O(n/b) times during the search oper-
ation (in contrast to O(n) invocation of H as in our main scheme). That is, the
search operation becomes b times faster compared to our main scheme. The block
size b can be selected according to the application requirements (e.g., b = 64,
b = 128 or b = 256 based on the preferred encryption function). For instance,
b = 128 yields highly efficient schemes if the underlying cipher is AES by taking
advantage of AES specialized instructions in current PC platforms. Moreover,
CTR mode can be parallelizable and therefore the search time can be reduced
to O(n/(b · p)), where p is the number of processors in the system. This vari-
ant requires transmitting 2 · b · O(m) bits for each update compared to O(m)
non-interactive transmission in our main scheme. However, one may notice that
this approach offers a trade-off, which is useful for some practical applications.
That is, the search speed is increased by a factor of b (e.g., b = 128) with the
cost of transmitting just 2 · b · m bits (e.g., less than 2MB for b = 128,m = 105).
However, a network delay t is introduced due to interaction.

Remark 3. The b-bit block is re-encrypted via an IND-CPA encryption scheme
on the client side at the cost of one round of interaction. Hence, encrypting
multiple columns does not leak additional information during updates over our
main scheme.

We discuss other variants of our main scheme in the full version of this paper
in [20].

References

1. The enron email dataaset. http://www.cs.cmu.edu/enron/
2. Sparsehash: an extemely memory efficient hash map implementation, February

2012. https://code.google.com/p/sparsehash/
3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing

efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security (CCS 1993), pp. 62–73. ACM, New York (1993)

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawcyk, H., Rosu, M.-C., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: 21th Annual Network and Distributed System Security Symposium
– NDSS. The Internet Society, 23–26 February 2014

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

http://www.cs.cmu.edu/ enron/
https://code.google.com/p/sparsehash/

Searchable Encryption with Minimal Leakage on Commodity Hardware 259

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Chen, L.: NIST special publication 800–108: recomendation for key derivation using
pseudorandom functions (revised). Technical report NIST-SP800-108, Computer
Security Division, National Institute of Standards and Technology, October 2009.
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

8. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS 2006, pp. 79–
88. ACM, New York (2006)

9. St Denis, T.: LibTomCrypt library. http://libtom.org/?page=features&
newsitems=5&whatfile=crypt. Accessed 12 May 2007

10. Fisch, B., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T.,
Bellovin, S.M.: Malicious-client security in blind seer: a scalable private DBMS.
In: IEEE Symposium on Security and Privacy, SP. IEEE Computer Society, 18–20
May 2015

11. Gueron, S.: White Paper: Intel Advanced Encryption Standard (AES) New
Instructions Set, Document Revision 3.01, September 2012. https://software.
intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf. Soft-
ware Library https://software.intel.com/sites/default/files/article/181731/
intel-aesni-sample-library-v1.2.zip

12. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013)

13. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the ACM Conference on Computer and Communications
Security, CCS 2012, pp. 965–976. ACM, New York (2012)

14. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010)

15. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012)

16. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: 35th IEEE Symposium on Security and Privacy, pp. 48–62, May
2014

17. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George,
W., Keromytis, A.D., Bellovin, S.: Blind seer: a scalable private DBMS. In: IEEE
Symposium on Security and Privacy, SP, pp. 359–374. IEEE Computer Society,
18–21 May 2014

18. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the IEEE Symposium on Security and Privacy, SP 2000,
pp. 44–55. IEEE Computer Society, Washington, D.C. (2000)

19. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: 21st Annual Network and Distributed System Security
Symposium – NDSS. The Internet Society, 23–26 February 2014

20. Yavuz A.A., Guajardo, J.: Dynamic searchable symmetric encryption with minimal
leakage and efficient updates on commodity hardware. IACR Cryptology ePrint
Archive 107, March 2015

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip
https://software.intel.com/sites/default/files/article/181731/intel-aesni-sample-library-v1.2.zip

Side Channel Attacks and Defenses

Affine Equivalence and Its Application
to Tightening Threshold Implementations

Pascal Sasdrich(B), Amir Moradi, and Tim Güneysu

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum,
Bochum, Germany

{pascal.sasdrich,amir.moradi,tim.gueneysu}@rub.de

Abstract. Motivated by the development of Side-Channel Analysis
(SCA) countermeasures which can provide security up to a certain order,
defeating higher-order attacks has become amongst the most challeng-
ing issues. For instance, Threshold Implementation (TI) which nicely
solves the problem of glitches in masked hardware designs is able to
avoid first-order leakages. Hence, its extension to higher orders aims at
counteracting SCA attacks at higher orders, that might be limited to
univariate scenarios. Although with respect to the number of traces as
well as sensitivity to noise the higher the order, the harder it is to mount
the attack, a d-order TI design is vulnerable to an attack at order d+ 1.

In this work we look at the feasibility of higher-order attacks on
first-order TI from another perspective. Instead of increasing the order
of resistance by employing higher-order TIs, we go toward introducing
structured randomness into the implementation. Our construction, which
is a combination of masking and hiding, is dedicated to TI designs and
deals with the concept of “affine equivalence” of Boolean functions. Such
a combination hardens a design practically against higher-order attacks
so that these attacks cannot be successfully mounted. We show that
the area overhead of our construction is paid off by its ability to avoid
higher-order leakages to be practically exploitable.

1 Introduction

Side-channel analysis (SCA) attacks exploit information leakage related to
cryptographic device internals e.g., by analyzing the power consumption [11].
Hence, integration of dedicated countermeasures to SCA attacks into security-
sensitive applications is essential particularly in case of pervasive applications
(see [9,17,20]). Amongst the known countermeasures, masking as a form of
secret sharing scheme has been extensively studied by the academic commu-
nities [8,12]. Based on Boolean masking and multi-party computation concept,
Threshold Implementation (TI) has been developed particularly for hardware
platforms [15]. Since the TI concept is initially bases on counteracting only first-
order attacks, trivially higher-order attacks, which make use of higher-order sta-
tistical moments to exploit the leakages, can still recover the secrets. Hence, the
TI has been extended to higher orders [3] which might be limited to univariate

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 263–276, 2016.
DOI: 10.1007/978-3-319-31301-6 16

264 P. Sasdrich et al.

settings [18]. In addition to its area and time overheads, which increase with the
desired security order, the minimum number of shares also naturally increases,
e.g., 3 shares for the first-order, 5 shares for the second-order, and at least
7 shares for the third-order security.

Contribution: In this work we look at the feasibility of higher-order attacks
on first-order secure TI designs from another perspective. Instead of increasing
the resistance against higher-order attacks by employing higher-order TIs, we
intend to introduce structured randomness into a first-order secure TI. Our goal
is to practically harden designs against higher-order attacks that are known to
be sensitive to noise.

Concretely, we investigate the PRESENT [7] S-box under first-order secure
TI settings that is decomposed into two quadratic functions thereby allowing the
minimum number of three shares. By changing the decompositions during the
operation of the device we can introduce (extra) randomness to the implemen-
tation. In particular we present different approaches to find and generate these
decompositions on an FPGA platform and compare them in terms of area and
time overheads. More importantly, we examine and compare the practical eval-
uation results of our constructions using a state-of-the-art leakage assessment
methodology [10] at higher orders.

Our proposed approach which can be considered as a hiding technique is
combined with first-order TI which provides provably secure first-order resis-
tance. Therefore, although such a combination leads to higher area overhead, it
brings its own advantage, i.e., practically avoiding the feasibility of higher-order
attacks.

Outline: The remainder of this article is organized as follows: Sect. 2 recapitu-
lates the concept of TI. We also briefly introduce the S-box decomposition for
TI and affine equivalence in case of the PRESENT S-box. In Sect. 3 different
approaches to find and exchange affine equivalent functions are presented and
compared. Practical evaluation of our construction is given in Sect. 4. Finally,
we conclude our research in Sect. 5.

2 Background

2.1 Threshold Implementation

We use lower-case letters for single-bit random variables, bold ones for vectors,
raising indices for shares, and lowering indices for elements within a vector. We
represent functions with sans serif fonts, and sets with calligraphic ones.

Let us denote an intermediate value of a cipher by x made of s single-bit
signals 〈x1, . . . , xs〉. The underlying concept of Threshold Implementation (TI) is
to use Boolean masking to represent x in a shared form (x1, . . . ,xn), where x =
n⊕

i=1

xi and each xi similarly denotes a vector of s single-bit signals 〈xi
1, . . . , x

i
s〉.

A linear function L(.) can be trivially applied over the shares of x as L(x) =
n⊕

i=1

L(xi). However, the realization of non-linear functions, e.g., an S-box, over

Affine Equivalence and Its Application to Threshold Implementations 265

Boolean masked data is challenging. Following the concept of TI, if the algebraic
degree of the underlying S-box is denoted by t, the minimum number of shares
to realize the S-box under the first-order TI settings is n = t + 1. Further, such
a TI S-box provides the output y = S(x) in a shared form (y1, . . . ,ym) with
m ≥ n shares (usually m = n) in case of Bijective S-boxes. In case of a bijective
S-box (e.g., of PRESENT) the bit length of x and y (respectively of their shared
forms) are the same.

Each output share yj∈{1,...,m} is given by a component function fj(.) over a
subset of the input shares. To achieve the first-order security, each component
functions fj∈{1,...,m}(.) must be independent of at least one input share.

Since the security of masking schemes is based on the uniform distribution
of the masks, the output of a TI S-box must be also uniform as it is used as
input in further parts of the implementation (e.g., the SLayer output of one
PRESENT cipher round which is given to the next SLayer round after being
processed by the linear PLayer and key addition). To express the uniformity
under the TI concept suppose that for a certain input x all possible sharings

X =
{

(x1, . . . ,xn)|x =
n⊕

i=1

xi
}

are given to a TI S-box. The set made by

the output shares, i.e.,
{(

f1(.), . . . , fm(.)
)
|(x1, . . . ,xn) ∈ X

}
, should be drawn

uniformly from the set Y =
{

(y1, . . . ,ym)|y =
m⊕
i=1

yi
}

as all possible sharings

of y = S(x).
This process so-called uniformity check should be individually performed for

∀ x ∈ {0, 1}s. We should note that if an S-box is a bijection and m = n, each
(x1, . . . ,xn) should be mapped to a unique (y1, . . . ,yn). In other words, in this
case it is enough to check whether the TI S-box forms also a bijection with
s · n input (and output) bit length. For more detailed information we refer the
interested reader to the original article [15].

2.2 S-Box Decomposition

Since the nonlinear part of most block ciphers, i.e., the S-box, has algebraic
degree of t > 2, the number of input and output shares n,m > 3, which
directly affects the circuit complexity and its area overhead. Therefore, it is
preferable to decompose the S-box S(.) into smaller functions, e.g., g ◦ f(.), each
of them with maximum algebraic degree of 2. It is noteworthy that if S(.) is a
bijection, each of the smaller functions (here in this case g(.) and f(.)) must also
be a bijection. Such a trick helps keeping the number of shares for input and
output at minimum, i.e., n = m = 3. However, it comes with the disadvantage
of the necessity to place a register between each two consecutive TI smaller
functions to avoid the glitches being propagated. Although such a composition
is feasible in case of small S-boxes (let say up to 6-bit permutations [5]), it
is still challenging to find such decompositions for 8 × 8 S-boxes. As stated
before, the target of this work is an implementation of PRESENT cipher, which
involves a 4 × 4 invertible cubic S-box (i.e., with the algebraic degree of 3) with

266 P. Sasdrich et al.

Truth Table C56B90AD3EF84712. Therefore, all the representations below are
coordinated based on 4-bit bijections.

In [16], where the first TI of PRESENT is presented, the authors gave a
decomposition of the PRESENT S-box by two quadratic functions, i.e., each
of which with the algebraic degree of 2. Later the authors of [4,5] presented a
systematic approach which allows deriving the TI of all 4-bit bijections. In their
seminal work they provided 302 classes of 4-bit bijections, with the application
that every 4-bit bijection is affine equivalent to only one of such 302 classes.
Based on their classification, the PRESENT S-box belongs to the cubic class
C4
266 with Truth Table 0123468A5BCFED97. It other words, it is possible to write

the PRESENT S-box as S : A′ ◦ C4
266 ◦A, where A′(.) and A(.) are 4-bit bijective

affine functions. Therefore, given the uniform TI representation of C4
266 one can

easily apply A(.) on all input shares and A′(.) on all output shares to obtain a
uniform TI of the PRESENT S-box.

As stated in [5] C4
266 can be decomposed into two 4-bit quadratic bijections

belonging to the following combinations of classes: (Q12 ◦ Q12), (Q293 ◦ Q300),
(Q294 ◦ Q299), (Q299 ◦ Q294), (Q299 ◦ Q299), (Q300 ◦ Q293), and (Q300 ◦ Q300).
However, the uniform TI of the quadratic class Q300 with 3 shares can only be
achieved if it is again decomposed in two parts. Therefore, the above decom-
positions in which Q300 is involved need to be implemented in 3 stages if the
minimum number of 3 shares is desired. Excluding such decompositions we have
four options to decompose the PRESENT S-box in two stages with 3-share uni-
form TI since the PRESENT S-box is affine equivalent to C4

266.
For the sake of simplicity – as an example – we consider the first decompo-

sition, i.e., Q12 ◦ Q12, which indicates that it is possible to write the PRESENT
S-box as S : A′′ ◦Q12 ◦A′ ◦Q12 ◦A, where all three A′′(.), A′(.), and A(.) are 4-bit
affine bijections. Thanks to the classifications given in [5] a uniform first-order
TI of Q12 can be achieved by direct sharing. For Q12:0123456789CDEFAB we can
write

e = a, f = b + bd + cd, g = c + bd, h = d, (1)

with 〈a, b, c, d〉 the 4-bit input, 〈e, f, g, h〉 the 4-bit output, and a and e the least
significant bits.

The component functions of the uniform first-order TI of Q12 can be derived
by f i,j

Q12
(〈ai, bi, ci, di〉, 〈aj , bj , cj , dj〉) = 〈e, f, g, h〉 as

e = ai, f = bi + bjdj + cjdj + djbi + djci + bjdi + cjdi,
g = ci + bjdj + djbi + bjdi, h = di.

(2)
The three 4-bit output shares provided by f2,3

Q12
(., .), f3,1

Q12
(., .) and f1,2

Q12
(., .) make

a uniform first-order TI of Q12. Since the affine transformations (A,A′,A′′) do
not change the uniformity, by applying them on each 4-bit share separately we
can construct a 3-share uniform first-order TI of the PRESENT S-box. Figure 1
shows the graphical view of such a construction, and the detailed formulas of
the component functions are given in Appendix A.

Affine Equivalence and Its Application to Threshold Implementations 267

A

A

A

A′

A′

A′

A′′

A′′

A′′

Q12 Q12
fQ12

fQ12

fQ12

fQ12

fQ12

fQ12

x

x

x

y

y

y

Fig. 1. A first-order TI of the PRESENT S-box

2.3 Affine Equivalence

In order to find such affine functions we give a pseudo code in Algorithm 1
which is mainly formed following [6]. The algorithm is based on precomputation
of all 4 × 4 linear functions, i.e. 20 160 cases, each of which is represented by
a 4 × 4 binary matrix with columns (c0, c1, c2, c3). Hence, each affine function
A(.) is considered as a matrix multiplication followed by a constant addition
A(x) = [c0 c1 c2 c3] · x ⊕ c.

Algorithm 1. Find affine equivalent triples
Input : L4: all 4 × 4 linear permutations,

S: targeted S-box,
F, G: targeted functions

Output: A: all (A,A′,A′′) as S : A′′ ◦ G ◦ A′ ◦ F ◦ A

A ← ∅
for ∀L ∈ L4, ∀c ∈ {0, 1}4 do

form affine A by L and constant c
for ∀L′ ∈ L4, ∀c′ ∈ {0, 1}4 do

form affine A′ by L′ and constant c′

c′′ ← G
(
A′ (F (A (S−1 (0)

))))
c′′
1 ← G

(
A′ (F (A (S−1 (1)

))))⊕ c′′

c′′
2 ← G

(
A′ (F (A (S−1 (2)

))))⊕ c′′

c′′
3 ← G

(
A′ (F (A (S−1 (4)

))))⊕ c′′

c′′
4 ← G

(
A′ (F (A (S−1 (8)

))))⊕ c′′

form affine A′′−1
by columns (c′′

1 , c
′′
2 , c

′′
3 , c

′′
4) and constant c′′

if ∀y ∈ {0, 1}4 \ {0, 1, 2, 4, 8}, G
(
A′ (F (A (S−1 (y)

)))) ?
= A′′−1

(y) then

derive affine A′′ as the inverse of A′′−1

A ← A ∪ {(A,A′,A′′)
}

end

end

end

Given the PRESENT S-box and f = g = Q12 the algorithm finds 147 456
such 3-tuple affine bijections (A,A′,A′′). Table 1 lists the number of found affine
triples for each of the aforementioned decompositions.

268 P. Sasdrich et al.

Table 1. The number of existing affine triples for different compositions

Decomposition No. of Triples #(A) #(A′) #(A′′) #(L) #(L′) #(L′′)

Q12 ◦ Q12 147 456 384 36 864 384 48 2 304 48

Q294 ◦ Q299 229 376 512 57 344 448 56 3 584 64

Q299 ◦ Q294 229 376 448 57 344 512 64 3 584 56

Q299 ◦ Q299 200 704 448 50 176 448 56 3 136 56

3 Design Considerations

This section briefly demonstrates the architecture the PRESENT TI which we
have implemented. Afterwards, different approaches for generating and exchang-
ing affine triples are presented and compared.

3.1 Threshold Implementation of PRESENT Cipher

PRESENT is a lightweight symmetric block cipher with a block size of 64 bits
and either 80-bit or 128-bit security level (i.e., key size). The encryption of a
plaintext is based on a Substitution-Permutation (S/P) network always taking
31 rounds and 32 sub-keys to compute the ciphertext (independently of the
security level). The only difference between PRESENT-80 and PRESENT-128
is in the key schedule function to derive the sub-keys from the initial 80-bit or
128-bit key. Figure 2 gives an overview of our hardware architecture implemented
on an Xilinx Spartan-6 FPGA. We opted to implement the PRESENT encryp-
tion scheme in a round-based manner along with the 128-bit key schedule variant.
The sub-keys are derived on-the-fly. The substitution layer uses the first-order
TI of the PRESENT S-box shown in Fig. 1 and implements 16 S-boxes in parallel
before the permutation is applied bitwise to all 64-bit states. Due to the addi-
tional register stage within the TI S-box each round requires two clock cycles.

As stated in Sect. 2.3, given a certain decomposition there exist many triple
affine functions to realize a uniform first-order TI of the PRESENT S-box. Our
goal is to randomly change such affine functions on the fly, that it first does
not affect the correct functionality of the S-box, and second randomizes the
intermediate values – particularly the shared Q12 inputs – with the aim of hard-
ening higher-order attacks. As shown in Fig. 2 all S-boxes share the same affine
triple. In other words, at the start of each encryption an affine triple is randomly
selected, and all S-boxes are configured accordingly. Although it is possible to
change the affines more frequently, we kept the selected affines for an entire
encryption process. To this end, we need an architecture to derive the affine
triples randomly. Below we discuss about different ways to realize such a part of
the design.

Affine Equivalence and Its Application to Threshold Implementations 269

Key Schedule
Affine Equivalent
Triple Generator

S
u

b
st

it
u

ti
o

n
 L

ay
er

(T
h

re
sh

o
ld

 Im
p

le
m

en
ta

ti
o

n
)

Key
Expansion

A | A-1

A'' | A''-1

key

share 1 share 2 share 3

Permutation PermutationPermutation

BRAM

random select

S0

A

Q12

A'

Q12

A''

... S15

A

Q12

A'

Q12

A''

A

Q12

A'

Q12

A''
A'

shared
ciphertext

Fig. 2. Architecture of the PRESENT encryption design

3.2 Searching for the Affine Triples

At a first step, we decided to implement Algorithm 1 as a hardware circuit
which searches for the affine triples in parallel to the encryption. The found
affine triples are stored into a “First In, First Out” (FIFO) memory, and prior
to each encryption one affine triple is taken from the FIFO with which the
corresponding part of the TI S-boxes are configured. If the FIFO is empty, the
previous affine triple is used again. Due to the fact that the search is not time-
invariant, i.e., new affine triples are not found periodically, some affines are used
multiple times in a row while others are only used once. Since the efficiency of
SCA countermeasures depends on the uniformity of the used randomness, such
an implementation may not achieve the desired goal (i.e., hardening the higher-
order attacks) if certain affines are used more often that the others. One solution
to find affine triples more often is to run the search circuit with a higher clock
frequency compared to that of the encryption circuit. Although this measure is
limited, it at least alleviates the problem of changing S-boxes not periodically.
On the other hand, if affine triples are found too fast this may cause a FIFO
overflow. In this case either some search results should be ignored or the search
circuit should be stopped requiring some additional control logic.

3.3 Selecting Precomputed Affine Triples

As stated in Table 1, considering the decomposition Q12◦Q12, there exist 147 456
triple affines (A,A′,A′′). Each single affine transformation is a 4-bit permutation,
and it can be represented as a look-up table containing sixteen 4-bit entries which
requires 64 bits of memory. This results in 27 Mbit memory in order to store
all the affine triples. However, the employed Xilinx Spartan-6 FPGA (LX75)
offers only 3 Mbit storage in terms of general purpose block memory (BRAM).
Therefore, alternative approaches to generate the affine equivalent triples are
necessary.

270 P. Sasdrich et al.

Instead of storing the affines in a look-up table, in the second option we
represent an exemplary affine A(x) = L · x ⊕ c, with x as a 4-bit vector, L a
4 × 4 binary matrix and c a 4-bit constant. In this case, only the binary matrix
and the constant need to be stored which reduces the memory requirements to
20 bits per affine. However, still more than 8 Mbit memory are necessary to store
all affine triples. Therefore, we could store only a fraction of all possible affine
triples. As an example, 16 384 affine triples occupy 60 BRAMs of the Spartan-6
(LX75) FPGA.

3.4 Generating Affine Triples On-the-fly

A detailed analysis of the affine triples led to interesting observations. First, the
number of affine triples depends on the components in the underlying decompo-
sition. For instance, in case of Q299 ◦ Q299 448 × 448 and in case of Q299 ◦ Q294

448 × 512 affine triples exist (see Table 1). Second, the total number of affine
triples is limited by the number of unique input affines A and the number of
output affines A′′ such that |A| × |A′′| gives the number of corresponding affine
triples. This means that all affine triples of a decomposition can be generated
by combining all A with all A′′. Furthermore, we have observed that all affines A
(for each decomposition) consist of a few linear matrices combined with certain
constants. In particular, in case of the decomposition Q12 ◦ Q12 the 384 input
affines A are formed by 48 binary matrices L each of which combined with 8
different constants c ∈ {0, . . . , 7} or c ∈ {8, . . . , 15}. Indeed the same holds for
the 384 output affines A′′ which are made of 48 binary matrices L′′ by con-
stants c ∈ {0, 1, 4, 5, 10, 11, 14, 15} or c ∈ {2, 3, 6, 7, 8, 9, 12, 13}. Therefore, it is
sufficient to store only all relevant binary matrices L and L′′ in addition to a
single bit indicating to which group their constants belong to. Hence, in total
48×2×(16+1) = 1632 bits of memory (fitting into a single BRAM) are required
to store all necessary data. Even better, by arranging the binary matrices in the
memory smartly the group of the corresponding constants can be derived from
the address where the binary matrix is stored.

Given two input and output affines A and A′′, we need to derive the middle
affine A′. To this end, an approach similar to Algorithm 1 can be used. If we
represent the middle affine as A′(x) = L′ ·x⊕c′, the constant c and the columns
(c′

1, c
′
2, c

′
3, c

′
4) of the binary matrix L can be derived as

c′ =Q12
−1

(
A′′−1

(
S

(
A−1

(
Q12

−1 (0)
))))

(3)

c′
1 =Q12

−1
(
A′′−1

(
S

(
A−1

(
Q12

−1 (1)
))))

⊕ c′ (4)

c′
2 =Q12

−1
(
A′′−1

(
S

(
A−1

(
Q12

−1 (2)
))))

⊕ c′ (5)

c′
3 =Q12

−1
(
A′′−1

(
S

(
A−1

(
Q12

−1 (4)
))))

⊕ c′ (6)

c′
4 =Q12

−1
(
A′′−1

(
S

(
A−1

(
Q12

−1 (8)
))))

⊕ c′ (7)

Obviously, this requires the inverse of both A and A′′. Since it is not efficient
to derive such inverse affines on the fly, we need to store all binary matrices L−1

and L′′−1 in addition to all L and L′′. Fortunately, all such binary matrices

Affine Equivalence and Its Application to Threshold Implementations 271

(requiring 3 kbits) still fit into a single 16-kbit BRAM of Spartan-6 FPGA. It is
noteworthy that the constant of each inverse affine can be computed by L−1 · c.

In summary, at the start of each encryption two L and L′′ (each of which from
a set of 48 cases) are randomly selected, that needs 6 + 6 bits of randomness1.
In addition, 3 + 3 random bits are also required to form constants c and c′′.
As exampled before, one bit of each constant should be additionally saved or
derived from the address of the binary matrix. Therefore – excluding the masks
required to represent the plaintext in a 3-share form for the TI design – in total
18 bits randomness is required for each encryption.

For ASIC platforms, where block memories are not easily available, an alter-
native is to derive the content of binary matrices L and L′′ as Boolean functions
over the given random bits. Hence, a fully combinatorial circuit can provide the
input and output affines followed (as before) by a module which retrieves the
middle affine.

3.5 Comparison

Table 2 gives an overview of the design of the three above-mentioned approaches
to derive the affine triples. The table reports the area overhead, reconfiguration
time, and coverage of the affines’ space. Comparing the first naive approach (of
searching the affine triples in parallel to the encryption) to the approach of pre-
computing affine triples, the logic requirements could be dramatically decreased
at cost of additional memory. In addition, the amount of affine triples that are
covered is limited potentially reducing the security gain. We should note that
the 20 BRAMs used in the “Search” approach are due to the space required to
store all 4 × 4 linear permutations L4 required to run Algorithm 1 (excluding
those required for the FIFO). The last approach where the affine triples are
generated on-the-fly seems to be the best choice. It not only leads to the least
area overhead (both logic and memory requirements) but also covers the whole
number of possible affine triples.

We should note that our design needs a single clock cycle to derive the middle
affine A′. Indeed the 114 LUTs (reported in Table 2) are mainly due to realization
of the Eqs. (3) and (7) in a fully combinatorial fashion.

Further, with respect to the design architecture of the encryption function
(Fig. 2) the quadratic component functions of Q12 are implemented by look-up
tables (LUTs), and the affine functions by fully combinatorial circuits realizing
the binary matrix multiplication (AND operations) and XOR with the constant.
Therefore, given (16 + 4) bits as the content of the binary matrix and the con-
stant, the circuit does not need any extra clock cycles for configuration. Table 2
also gives an overview of the area and speed overhead of our design compared
to a similar designs. For the first reference, the TI S-box is implemented by the
design of [16] (i.e., without any random affine). The second reference implements
both a first-order and a second-order TI S-box for PRESENT in a similar fash-
ion (using Q294 and Q299 instead of Q12) but with fixed affine transformations.

1 For each selection ∈ {1, . . . 48} reject sampling with 6-bit random should be used.

272 P. Sasdrich et al.

Table 2. Area and time overhead of different design approaches

Section/Method/Module Resource utilization Reconfig. time Affine coverage Max. freq. Order of TI

Logic Memory (Cycles) (Percent) (MHz)

(LUT) (FF) (BRAM16)

Section 3.2/Search 562 250 20 16 100.0 - -

Section 3.3/Precompute 204 0 60 0 11.1 - -

Section 3.4/Generate 114 20 1 1 100.0 - -

Encryption [this work] 1720 722 0 - - 112 1st

Encryption [16] 641 384 0 - - 218 1st

Encryption [14] 808 384 0 - - 207 1st

Encryption [14] 2245 1680 0 - - 204 2nd

The numbers for the encryption function exclude the PRNG as well as the cir-
cuit which finds/derives the affines. Due to the extra logic to support arbitrary
affines, our design is certainly larger and slower.

4 Evaluation

We employed a SAKURA-G platform [1] equipped with a Spartan-6 FPGA for
practical side-channel evaluations using the power consumption of the device.
The power consumption traces have been measured and recorded by means of
a digital oscilloscope with a 1Ω resistor in the Vdd path and capturing at the
embedded amplifier of the SAKURA-G board. We sampled the voltage drop at a
rate of 500MS/s and a bandwidth limit of 20MHz while the design was running
at a low clock frequency of 3MHz to reduce the noise caused by overlapping of
the power traces.

4.1 Non-specific Statistical t-test

In order to evaluate the resistance or vulnerabilities of our designs against higher-
order side-channel attacks we applied the well-known state-of-the-art leakage
assessment metric called Test Vector Leakage Assessment (TVLA) methodology.
This evaluation scheme is based on the Welch’s (two-tailed) t-test and also known
as fix vs. random or non-specific t-test. For further details, particularly how to
apply this assessment tool for higher-order leakages as well as how to implement
it efficiently in particular for large-scale investigations, we refer the reader to [19]
giving detailed practical instructions. In short, we should note that such an
assessment scheme examines the existence of leakage at a certain order without
giving any reference to whether the detected leakage is exploitable by an attack.
However, if the test reports no detectable leakage, it can be concluded that –
with a high level of confidence – the device under test does not exhibit any
exploitable leakage.

4.2 Results

In this section we present the result of the side-channel evaluations concerning
the efficiency of our introduced approaches to avoid higher-order leakages. In

Affine Equivalence and Its Application to Threshold Implementations 273

0 6.25 18.75 25

−50

0

50

100

Time [µs]

(a) Constant affine

0 6.25 18.75 25

−50

0

50

100

Time [µs]

(b) Random affines

Fig. 3. Sample traces of the PRESENT encryption function

order to solely evaluate the influence of randomly exchanging the affine triples
we considered a single design in our evaluations. As a reference, the design is kept
running with a constant affine triple2, and its evaluation results are compared to
the case where the affine triples are randomly changed prior to each encryption.
Note that in both cases (constant affine and random affine) the PRNG which
provides masks for the initial second-order masking (with three shares) is kept
active. In other words, both designs – based on the TI concept – are expected
to provide first-order resistance, and their difference should be in exhibiting
higher-order leakages.

In Sect. 3 we introduced three different approaches to derive affine triples.
Due to the issues and limitation of both first approaches, we have included the
practical evaluation results of only the third option in Sect. 3.4, i.e., generating
affine triples on-the-fly, which covers all possible affine triples.

Figure 3 shows two sample traces corresponding to the cases where the affine
triple is constant or random. The main difference between these two traces can
be seen by a large power peak at the beginning of the trace belonging to the
random affines. Such a peak indicates the corresponding clock cycle where the
random affine is selected and the middle affine is computed (as stated in Sect. 3.5,
it is implemented by a fully combinatorial circuit). The first-order, second-order
and third-order t-test results are shown in Figs. 4, 5 and 6 respectively for both
constant and random affine. As expected, both designs do not exhibit any first-
order leakage confirming the validity of our setup and designs. However, changing
the affine triples randomly could avoid the second- and third-order leakage from
being detectable. This can be seen in Figs. 5 and 6. We should highlight that
the evaluations of the design with a constant affine have been performed by
50 million traces while we continued the measurements and evaluations of the
design with random affines up to 200 million traces.

5 Discussions

The scheme, which we have introduced here to harden higher-order attacks, at
the first glance seems to just add more randomness to the design. We should
stress that our approach is not the same as the concept of remasking applied
in [2,5,13]. Remasking (or mask refreshing) can be done e.g., by adding two

2 This has been easily done by fixing the corresponding 18 random bits.

274 P. Sasdrich et al.

0 6.25 18.75 25

−4.5

0

4.5

Time [µs]

t

(a) Constant affine, 50 million traces

0 6.25 18.75 25

−4.5

0

4.5

Time [µs]

t

(b) Random affines, 200 million traces

Fig. 4. Non-specific t-test: first-order evaluation results

0 6.25 18.75 25

−21

0

21

Time [µs]

t

(a) Constant affine, 50 million traces

0 6.25 18.75 25

−4.5

0

4.5

Time [µs]

t
(b) Random affines, 200 million traces

Fig. 5. Non-specific t-test: second-order evaluation results

0 6.25 18.75 25

−14

0

14

Time [µs]

t

(a) Constant affine, 50 million traces

0 6.25 18.75 25

−4.5

0

4.5

Time [µs]

t

(b) Random affines, 200 million traces

Fig. 6. Non-specific t-test: 3rd-order evaluation results

new fresh random masks r1 and r2 to the input of the TI S-box in Fig. 1 as
(x1⊕r1,x2⊕r2,x3⊕r1⊕r2). Since our construction of the PRESENT TI S-box
fulfills the uniformity, such a remasking does not have any effect on the practical
security of the design as both (x1,x2,x3) and (x1 ⊕ r1,x2 ⊕ r2,x3 ⊕ r1 ⊕ r2)
are 3-share representations of x. In contrast, in our approach e.g., the input
affine A randomly changes. Hence the input of the first Q12 function is a 3-share
representation of A(x). Considering a certain x, random selection of the input
affine leads to random A(x) which is also represented by three Boolean shares.
Therefore, the intermediate values of the S-box (at both stages) are not only
randomized but also uniformly shared. As a result, hardening both second- and
third-order attacks which make use of the leakage of the S-box can be justified.
Note that since the S-box output stays valid as a Boolean shared representation
of S(x) and random affine triples do not affect the PLayer (of the PRESENT
cipher), the key addition and the values stored in the state register, our approach
is not expected to harden third-order attacks that target the leakage of these
modules. However, our construction (which is a combination of masking and
hiding) allows to achieve the presented efficiencies with low number of (extra)
required randomness, i.e., 18 bits per encryption. Indeed, our approach might be
seen as a form of shuffling which can be applied on the order of S-box executions

Affine Equivalence and Its Application to Threshold Implementations 275

in a serialized architecture. However, our construction is independent of the
underlying architecture (serialized versus round-based) and allows hiding the
exploitable higher-order leakages in a systematic way.

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

6. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanalysis:
linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

9. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of the
KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 203–220. Springer, Heidelberg (2008)

10. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

11. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

13. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

14. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015)

15. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

276 P. Sasdrich et al.

16. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptology 24(2), 322–345 (2011)

17. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: or how to
rapidly clone some GSM cards. In: IEEE Symposium on Security and Privacy, pp.
31–41. IEEE Computer Society (2002)

18. Reparaz, O.: A note on the security of higher-order threshold implementations.
Cryptology ePrint Archive, Report 2015/001 (2015). http://eprint.iacr.org/

19. Schneider, T., Moradi, A.: Leakage assessment methodology - a clear roadmap
for side-channel evaluations. Cryptology ePrint Archive, Report 2015/207 (2015).
http://eprint.iacr.org/

20. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the need of physical secu-
rity for small embedded devices: a case study with COMP128-1 implementations
in SIM cards. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 230–238.
Springer, Heidelberg (2013)

A Necessary Component Functions for a First-Order TI of PRESENT
S-box

y1 =f2,3
Q12

(〈a2, b2, c2, d2〉, 〈a3, b3, c3, d3〉) = 〈e, f, g, h〉
e =a2, f = b2 + b3d3 + c3d3 + d3b2 + d3c2 + b3d2 + c3d2,

g =c2 + b3d3 + d3b2 + b3d2, h = d2. (8)

y2 =f3,1
Q12

(〈a3, b3, c3, d3〉, 〈a1, b1, c1, d1〉) = 〈e, f, g, h〉
e =a3, f = b3 + b1d1 + c1d1 + d1b3 + d1c3 + b1d3 + c1d3,

g =c3 + b1d1 + d1b3 + b1d3, h = d3. (9)

y3 =f1,2
Q12

(〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉) = 〈e, f, g, h〉
e =a1, f = b1 + b2d2 + c2d2 + d2b1 + d2c1 + b2d1 + c2d1,

g =c1 + b2d2 + d2b1 + b2d1, h = d1. (10)

http://eprint.iacr.org/
http://eprint.iacr.org/

Near Collision Side Channel Attacks

Barış Ege1(B), Thomas Eisenbarth2, and Lejla Batina1

1 Radboud University, Nijmegen, The Netherlands
b.ege@cs.ru.nl

2 Worcester Polytechnic Institute, Worcester, MA, USA

Abstract. Side channel collision attacks are a powerful method to
exploit side channel leakage. Otherwise than a few exceptions, collision
attacks usually combine leakage from distinct points in time, making
them inherently bivariate. This work introduces the notion of near col-
lisions to exploit the fact that values depending on the same sub-key
can have similar while not identical leakage. We show how such knowl-
edge can be exploited to mount a key recovery attack. The presented
approach has several desirable features when compared to other state-
of-the-art collision attacks: Near collision attacks are truly univariate.
They have low requirements on the leakage functions, since they work
well for leakages that are linear in the bits of the targeted intermediate
state. They are applicable in the presence of masking countermeasures if
there exist distinguishable leakages, as in the case of leakage squeezing.
Results are backed up by a broad range of simulations for unprotected
and masked implementations, as well as an analysis of the measurement
set provided by DPA Contest v4.

Keywords: Side channel collision attack · Leakage squeezing · Differ-
ential power analysis

1 Introduction

Side channel analysis and countermeasures belong to the most active research
areas of applied cryptography today. Many variants are known and all kinds of
attacks and defenses are introduced since the seminal paper by Kocher et al. [13].
The assumptions for attacks, power and adversary models vary, but all together
it can be said that the challenges remain to defend against this type of attacks
as an adversary is assumed to always take the next step.

For example, side channel collision attacks exploit the fact that identical
intermediate values consume the same power and hence similar patterns can
be observed in power/EM measurements. More in detail, an internal collision
attack exploits the fact that a collision in an algorithm often occurs for some
intermediate values. This happens if, for at least two different inputs, a function
within the algorithm returns the same output. In this case, the side channel
traces are assumed to be very similar during the time span when the internal
collision persists. Since their original proposal [21], a number of works have
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 277–292, 2016.
DOI: 10.1007/978-3-319-31301-6 17

278 B. Ege et al.

improved on various aspects of collision attacks, such as collision finding [5] or
effective key recovery [10].

There are also different approaches in collision detection. Batina et al. intro-
duce Differential Cluster Analysis (DCA) as a new method to detect internal col-
lisions and extract keys from side channel signals [2]. The new strategy includes
key hypothesis testing and the partitioning step similar to those of DPA. Being
inherently multivariate, DCA as a technique also inspired a simple extension
of standard DPA to multivariate analysis. The approach by Moradi et al. [17]
extends collision attacks by creating a first order (or higher order in [15]) leak-
age model and comparing it to the leakage of other key bytes through corre-
lation. The approach is univariate only if leakages for different sub-keys occur
at the same time instance, i.e. for parallel implementations, as often found in
hardware. When software implementations are considered, these two sensitive
values would leak in different times, therefore other papers pursued the pos-
sibility to pursue a similar attack for software implementations in a bivariate
setting [8,23]. Although finding the exact time samples which leak information
about the intended intermediate variables increases the attack complexity, this
type of attacks are especially favourable when the leakage function is unknown,
or it is a non-linear function of the bits of the sensitive variable [10].

In general, it is desirable for attacks to apply to a wide range of leakage
functions. Some strategies are leakage model agnostic, e.g. Mutual Information
Analysis [11]. In contrast to this assumption-less leakage model approach, there
is also an alternative in choosing a very generic model as in stochastic mod-
els approach [20]. We follow this direction in terms of restricting ourselves to
leakages that are linear functions of the contributing bits. Nevertheless, in our
scenario this is considered merely as a ballpark rather than a restriction.

When univariate attacks are considered such as the one that is proposed in
this work, the best way to mitigate is to implement a masking scheme. However,
one of the biggest drawbacks of masking schemes is the overhead introduced
into implementations. Recently there has been a rising interest in reducing the
entropy needed and thereby the implementation overhead by cleverly choosing
masks from a reduced set. These approaches are commonly referred to as Low
entropy masking schemes (LEMS) or leakage squeezing. In fact, LEMS are a low-
cost solution proposed to at least keep or even enhance the security over classical
masking [7,18,19]. Since the proposal, LEMS have been analyzed from different
angles, including specific attacks [24], a detailed analysis of the applicability of
made assumptions [12] and problems that may occur during its implementa-
tion [16]. Attention to LEMS has been stipulated to a specific version of LEMS,
the Rotating S-box Masking (RSM) [18], since it has been used for both DPA
contest v4 and v4.2 [3].

Our Contributions. The contribution of this work can be summarised as
follows:

– We introduce a new way of analysing side channel measurements which is void
of strong assumptions on the power consumption of a device.

Near Collision Side Channel Attacks 279

– The attack that we propose is a non-profiled univariate attack which only
assumes that the leakage function of the target device is linear.

– We further extend this idea to analyse a low entropy masking scheme by
improving on [24], and we show that our technique is more efficient to recover
the key than generic univariate mutual information analysis.

– The proposed attack is applicable to any low entropy mask set that is a binary
linear code [4].

Structure. The rest of the paper is structured as follows. Section 2 introduces
the notation used throughout the work and also the ideas in the literature
that leads to our new attack. Section 3 introduces the near collision attack and
present simulated results in comparison to other similar attacks in the litera-
ture. Section 4 introduces the extension of our idea to a low entropy masking
scheme together with a summary of the previous work that it is improved upon.
This section also presents comparative results of the extended attack and other
attacks similar to it in the literature, and a discussion on the attack complexity.
Finally, Sect. 5 concludes the paper with some directions for further research.

2 Backgound and Notation

In this section we briefly summarize side channel attacks and also introduce the
notation used throughout the paper.

Side channel analysis is a cryptanalysis method aiming to recover the secret
key of a cryptographic algorithm by analyzing the unintended information leak-
ages observed through various methods. In this work, we focus on the information
leakage on the power consumption or electro-magnetic leakage of an implemen-
tation. Further, we use the Advanced Encryption Standard (AES) to explain
our new attack and run experiments as it is a widely deployed crypto algorithm
around the world. This ensures comparability with other works in the literature
that use AES for presenting results, but does not hinder generalization to other
block ciphers in a natural way.

Correlation based power or EM analysis (CPA) against AES implementations
usually focuses on the output of the S-box operation which is the only non-linear
element of the algorithm. This non-linearity ensures a good distinguishability
between the correct and incorrect key guesses for CPA; the correlation between
the observed and the predicted power or EM leakage will be (close to) zero if the
key guess is incorrect, due to the highly nonlinear relation between the predicted
state and the key. To run a CPA the analyst observes the power (or EM) leakages
of the device for each input x ∈ X and stores it as an observed value ox ∈ OX .
The next step is to reveal the relation between ox and x through estimating the
power consumption of the target device. Assume that the analyst would like to
estimate power consumption with the Hamming weight function (HW(x)) which
returns the number of ones in the bit representation of a given variable. In this
case, the power estimation for the input value x becomes P (x, kg) = HW(S(x ⊕
kg)), where kg is a key guess for the part of the key related to x. Proceeding

280 B. Ege et al.

this way, the analyst forms 256 sets Pkg
= {P (x, kg) : x ∈ X} from the known

input values xi ∈ X for each key guess kg ∈ F
8
2. What remains is to compare

the estimated power consumptions Pkg
with the set of observations OX on the

power consumption through a distinguisher, in this case through computing the
Pearson correlation coefficient ρ(Pkg

, OX), ∀kg ∈ F
8
2. If the analyst has sufficient

data and if the modelled leakage P is close enough to the actual leakage function
L of the device (i.e. a linear representative of L), then the correct key kc should
result in a distinguishing value for the Pearson correlation when compared to
the wrong key guesses kw. In case P is not a linear representative of L however,
then the correct key may not be distinguishable with this technique. Therefore,
the choice of power model determines the strength of CPA.

Collision attacks aim to amend this problem by removing the requirement to
estimate L in an accurate manner. Linear collision attacks against AES use the
fact that if there are two S-box outputs equal to each other, then their power
consumption should be the same [5]. If two S-box outputs for inputs xi and xj

are equal to each other, then

S(xi ⊕ ki) = S(xj ⊕ kj) (1)
⇒ xj ⊕ kj = xj ⊕ kj (2)
⇒ xi ⊕ xj = ki ⊕ kj (3)

when S is an injective function. Since the AES S-box is bijective, collisions as
above reveal information about the relation of a pair of key bytes. Detecting
collisions can be a challenging task, and therefore Moradi et al. [17] proposes
to use Pearson correlation for collision detection by comparing pairs of vectors
which have a fixed difference in their input bytes, which in turn represents the
difference between the corresponding key bytes as explained above. After run-
ning a linear collision attack (referred to as the ‘correlation enhanced collision
attack ’), the analyst can reduce the key space radically and solve the remaining
linear system of equations to recover the entire key. Hence the only challenge
remains is finding the time instances where the targeted leakages occur, which
can be a time consuming task depending on the amount of samples the analyst
acquires for analysis.

Although the resulting work load for brute forcing the key is reduced signif-
icantly by a linear collision attack, to further reduce the work load, Ye et al.
[23] proposes a new collision attack (namely the ‘non-linear collision attack ’) to
directly recover a key byte rather than a linear relation of two key bytes. Rather
than looking for a collision in the same power measurement, non-linear collision
attack looks for a linear relation between the input of the S-box for a plaintext
value x and an S-box output value of another input x′ which are related to the
same key byte as:

x′ ⊕ k = S(x ⊕ k) (4)
x′ = S(x ⊕ k) ⊕ k. (5)

Therefore, the collision can be tested by building a hypothesis for k and when-
ever a collision is detected, the correct key for that byte is immediately revealed.

Near Collision Side Channel Attacks 281

Even though the key byte can be recovered directly with this attack, the intrinsic
problem here remains and that is the challenge to find the two leaking samples
which refer to the leakage of such values. Next section presents the univari-
ate solution to this problem which removes the requirement of strong leakage
assumptions to be able to mount a side channel attack similar to side channel
collision attacks.

3 Side Channel Near Collision Attack

In this chapter we introduce the univariate non-profiled attack, namely the side
channel near collision attack (NCA) with an example to an AES implementation.
NCA is very similar to other collision attacks in the sense that a priori knowledge
of the leakage function is not required to mount it. However, unlike collision
attacks proposed up until now, near collision attack exploits the existence of very
similar but yet distinct values that are computed when the inputs are assumed
to be selected uniformly at random from the entire set of inputs: F8

2. This brings
up an implicit power model assumption that the power consumption should be
linearly related to the bits of the sensitive value that is computed in the device.
In comparison to the popular Hamming weight model, this implicit power model
assumption is a much weaker one and therefore makes the attack more powerful
against a wider range of platforms and devices with different leakage functions.

The main idea of a near collision attack (NCA) is to separate the mea-
surements into two vectors and statistically compare how these two vectors are
related to each other. Assuming that the S-box output leaks in the measure-
ments, for any input byte x0, another input value x1 is computed for the same
byte and for a key guess kg as:

S(x1 ⊕ kg) = S(x0 ⊕ kg) ⊕ Δ(t) (6)
x1 = S−1(S(x0 ⊕ kg) ⊕ Δ(t)) ⊕ kg (7)

where Δ(t) is an 8-bit value with a ‘1’ at the tth bit position and ‘0’ elsewhere.
If the key guess is correct, then the S-box outputs have only one bit (XOR)
difference. If the key guess is not correct, then the outputs will have a random
(XOR) difference in between. Note that this property holds due to AES S-box’s
strength against differential cryptanalysis. Proceeding in this way, one can form
a pair of vectors, X0 and X1 such that

X0 = [xi
0 ∈ F

8
2 : i ∈ {1, . . . , 128}, S(xi

0 ⊕ kg) ∧ Δ(t) = 0] (8)

where ∧ is the bit-wise AND operation, and X1 is formed from each element of
X0 through the relation given in Eq. (7). This way the whole set of values in F

8
2

are separated into two vectors and now they can be used to generate a statistic
for kg which in turn can be used to distinguish the correct key from others.

For t = 8, the observed values corresponding to the sets X0 and X1 can be
visualized in Fig. 1 for an incorrect and a correct key guess under the assumption
that the Hamming weight of a value leaks in observations. The difference between

282 B. Ege et al.

the observed values is also included in the plot for ease of comparison. As it is
clearly visible from Fig. 1, when the key guess is correct, there is a clear linear
relation between the vectors of observed values OX0 and OX1 corresponding to
X0 and X1 respectively. Therefore Pearson correlation coefficient (ρ(OX0 , OX1))
can be used as a statistical distinguisher in this case to recover the key.

0 20 40 60 80 100 120

−4

−2

0

2

4

6

8

Correct Key Guess

Observed X
0

Observed X
1

Difference

0 20 40 60 80 100 120

−4

−2

0

2

4

6

8

Incorrect Key Guess

Observed X
0

Observed X
1

Difference

Fig. 1. Simulation values in sets X0 and X1 for incorrect (left) and correct (right) key
guesses.

For real measurements, this attack can be implemented in a known plaintext
setting by computing the mean of the observed values μ(Oxi

0) and μ(Oxi
1) for

each input value xi
0 and xi

1 to reduce noise as in [17]. Furthermore, the attack can
be run on larger than 128 value vectors to reduce multiple times for different
values of t to compute the byte difference Δ(t), and the resulting correlation
coefficients can be added together for each key guess kg to constitute one final
value to better distinguish the key.

3.1 Simulated Experiments on Unprotected AES Implementation

We have run simulated experiments to assess the capabilities of the near collision
attack (NCA) and its efficiency in comparison to other similar attacks in the
literature. To evaluate how our attack reacts to noise, we have fixed the number
of traces and conducted experiments with various signal to noise ratio values
(SNR = var(signal)

var(noise) , where signal and noise are computed as defined in [14]).
An important note here is that we have use scaled simulated values to mimic

the measurements collected from an oscilloscope. Usually when simulated mea-
surements are analysed, the fact that the simulations provide unnaturally opti-
mistic measurements is neglected. Since this may lead to misleading simulation
results which cannot be reproduced in real life, we have chosen to filter the sim-
ulated traces and scale them to the resolution of an 8-bit oscilloscope, therefore
producing 256 unique values for traces. Note that, depending on the noise level
the simulated traces can cover a large range of values. Therefore we have chosen
to scale the values in a way such that the maximum and minimum values (128
and −127) are assigned to values (μ+3×σ) and (μ− 3×σ) respectively, where

Near Collision Side Channel Attacks 283

μ is the mean, and σ is the standard deviation of the simulated traces. The rest
of the values are distributed equally over the sub-ranges which are of equal size.

As to measure the robustness of our technique against different linear leakage
functions, we have used two ways to compute the simulated traces:

(a) The first method computes the Hamming weight of the S-box output (HW
model).

(b) The second method is a weighted linear function of the bits of the S-box
output, where the weight values are picked uniformly at random in the range
[−1, 1] ⊂ R (Random linear model).

For comparison, we have selected the popular non-profiling univariate
attacks, namely: correlation power analysis (CPA) [6], absolute sum DPA
(AS-DPA) [1], non-profiled linear regression attack (NP-LRA) [9], and univariate
mutual information analysis (UMIA) [11]. We have included CPA with Hamming
weight model to have a basis for comparison as it is a popular choice for doing
side channel analysis. The choice of AS-DPA and NP-LRA are to have a com-
parison with attacks which also have weak assumptions on the leakage model;
AS-DPA assumes that each bit of the sensitive variable contribute significantly
to the power consumption, where NP-LRA usually limits the algebraic order
of the leakage function. For this work, we have restricted the basis functions
of NP-LRA to linear relations (the case d = 1 in [9]), so that it would be a
fair comparison to our work. Furthermore, we have included the leakage model
dependent UMIA with Hamming weight model (UMIA-(HW)), and the leakage
model agnostic variant UMIA which measures the mutual information between
the least significant 7 bits of the sensitive variable and power measurements
(UMIA-(7 LSB)).

We have run the experiments with 10 000 traces to put all methods on fair
ground. Note that MIA requires a large number of traces as its distinguishing
ability depends on the accuracy of the joint probability distribution estimations
between the sensitive variable and power traces. We have computed the guessing
entropy [22] over 100 independent experiments for each SNR value considered.
Figure 2 presents the results of these experiments. As it is visible in Fig. 2(a)
which shows results for Hamming weight leakage function, CPA has an obvious
advantage over all other methods. When the second leakage function is consid-
ered however (Fig. 2(b)), the attacks using relaxed assumptions on the leakage
function outperforms CPA. We also clearly see that MIA cannot deal with high
levels of noise as efficiently as NCA, AS-DPA and NP-LRA.

Finally, if we only consider the attacks which have fewer assumptions on the
leakage function, absolute sum DPA and the non-profiled linear regression attack
seems to be able to deal with noise more efficiently when compared to NCA in an
unprotected setting. Section 4 explains how the near collision approach of looking
for small differences in the sensitive values can lead to a significant improvement
over the state of the art attack against low entropy masking schemes.

284 B. Ege et al.

−10 −9 −8 −7 −6 −5 −4

0

1

2

3

4

5

6

7

Avg GE for HW model

log
2
(SNR)

lo
g 2 (

gu
es

si
ng

 e
nt

ro
py

)

This Work (All bits)
CPA (HW)
UMIA (HW)
UMIA (7 LSB)
NP−LRA (d=1)
AS−DPA

−10 −9 −8 −7 −6 −5 −4

0

1

2

3

4

5

6

7

Avg GE for Random Linear model

log
2
(SNR)

lo
g 2 (

gu
es

si
ng

 e
nt

ro
py

)

This Work (All bits)
CPA (HW)
UMIA (HW)
UMIA (7 LSB)
NP−LRA (d=1)
AS−DPA

(a) (b)

Fig. 2. SNR vs Guessing Entropy values computed over 100 independent experiments
with 10 000 traces for perfect HW leakage (a), and random linear leakage (b).

3.2 Implementation Efficiency of NCA

Although near collision attack has the advantage of having reduced assumptions
on the target device, this comes at a price, namely in computation time. For
each key guess, the analyst should find the measurements which have a partic-
ular value in its corresponding plaintext. Although this can be a cumbersome
operation, it does not scale up when the analyst has to run the analysis on mul-
tiple samples of collected measurements. To give a more accurate idea on the
timing cost of NCA, Table 1 summarizes the average running time of each attack
that is run in the previous section. The table presents average running time of
each attack on 10 000 traces. All attacks are implemented as Matlab scripts
executed in Matlab 2015a running on a PC with a Xeon E7 CPU. Note that the
performance numbers assume the traces to be already loaded into memory in all
cases.

Table 1. Average timing results from 100 independent experiments.

Technique Time (s)

NCA 5.2727

CPA (HW) 1.0285

AS-DPA 1.1568

NP-LRA (d = 1) 2.7621

UMIA (HW) 1.4130

UMIA (7 LSB) 6.6153

Looking at the results presented in Table 1 and also Fig. 2, AS-DPA seems to
be the best choice for the analyst in the tested cases in terms of running time and
the ability to deal with Gaussian noise. However, even AS-DPA and NP-LRA
are more efficient in the unprotected case, these techniques are not applicable in
a univariate attack setting against low entropy masking schemes.

Near Collision Side Channel Attacks 285

4 Near Collision Attack Against LEMS

A rather effective countermeasure against first order attacks such as introduced
in the previous sections of this work is to use a masking scheme. However, one
of the biggest drawbacks of masking schemes is the overhead introduced to the
implementations. Low entropy masking schemes (LEMS) are a solution proposed
to keep the security of classical masking [7,18,19] but reducing the implementa-
tion costs significantly. In this section, we argue how near collision attack idea
can be extended to low entropy masking schemes. In particular, we focus on the
mask set that is also used in the DPA Contest v4 traces:

M16 = {00, 0F, 36, 39, 53, 5C, 65, 6A, 95, 9A, A3, AC, C6, C9, F0, FF}.

4.1 Leaking Set Collision Attack

Leaking set collision attack is based on the observation that two sensitive vari-
ables which are masked with the mask set M16 lead to the same 16 leaking
(masked) values if they are the bit-wise complement of each other [24]. Follow-
ing this observation, the authors propose to compare the so-called leaking sets,
the measurements corresponding to the 16 masked values, for each input x and
it’s pair x′ computed as

x′ = S−1(S(x ⊕ k) ⊕ (FF)16). (9)

Once the input pairs per key guess are computed, the analyst collects the
observed values Ox and Ox′

corresponding to x and x′. If the key guess is correct,
Ox and Ox′

should have the same distribution. If the key guess is not correct
however, the resulting distributions will differ significantly, thanks to the AES
S-box’s good resistance against differential attacks. For comparing the distribu-
tions of these two sets, authors of [24] propose to use the 2-sample Kolmogorov-
Smirnov (KS) test statistic. As KS test measures the distance between two dis-
tributions, the correct key guess should result in a lower KS test statistic than
the incorrect key guesses do.

4.2 Leaking Set Near Collision Attack

We now define the ‘leaking set near collision attack ’ (LS-NCA) as a combination
of the LSCA idea proposed in [24] and the near collision attack (NCA) introduced
in Sect. 3. Leaking set near collision attack can be summarized as an extension
of the idea explained in Sect. 4.1 to the entire mask set of M16. Similarly, we use
the same observation that some input values lead to the same distribution in the
S-box output as a direct result of the properties of the mask set that is used.
As the authors of [24] point out in their work, whenever a sensitive value x is
protected with the mask set M16, the value x ⊕ (FF)16 also results in the same
values after applying the mask set. A further observation on the mask set M16 is

286 B. Ege et al.

that it is a closed set with respect to the XOR operation. In other words, XOR
of any two elements in the set M16 results in another element of the mask set:

mi ⊕ mj ∈ M16,∀mi,mj ∈ M16. (10)

This means that a sensitive variable x protected with the mask set M16, and
another sensitive variable y(i) = x ⊕ mi, mi ∈ M16 leads to the same masked
values. It is easy to see that the property exploited in [24] is one particular case
of the observation given in Eq. (10). Therefore, rather than directly comparing
two similar distributions, if one collects all data from the input values which
lead to the same distribution in the same set, this will lead to an equally reliable
statistical analysis with less data. One should note that once all data that con-
tribute to the same distribution are collected together, it is no longer possible
to make a comparison between different sets and expect the same distribution.
Therefore, we utilize a similar approach as we have done in Sect. 3 and look for
sensitive values with 1-bit differences for comparison.

Leaking set near collision attack can be summarized as follows:

1. Generate the (disjoint) subsets of inputs (x) of which the S-box outputs con-
tribute to the same distribution:

Dxi

M16
= {x : x = S−1(S(xi) ⊕ m), ∀ m ∈ M16}.

2. Make a key guess kg.
3. For each input byte x⊕kg which contribute to the same distribution (e.g. x⊕

kg ∈ Dxi

M16
), collect the corresponding measurement sample in a set Oxi(kg).

4. Use 2-sample Kolmogorov-Smirnov (KS) test to check how similar the distrib-
utions of Oxi(kg) and Oxj (kg) are, where S(xi)⊕S(xj) = Δ(t), ∀t ∈ {1, ..., 8}.

5. Store sum of all 2-sample KS test statistics for each kg.

Note that in Step 4, only the sets which have a 1-bit difference in between are
used for 2-sample KS-test statistic calculation. In fact, sets with more than one
bit difference in their S-box outputs might have the same Hamming weight,
which in turn leads to similar (but not the same) distributions. Therefore, we
expect the correct key to lead to a large distance between the two distributions.
In case of an incorrect key guess however, each of the 16 elements in the set
Dxi

M16
will lead to 16 distinct values after the S-box, therefore resulting in a

distribution which spans the entire space F
8
2. Sets with only one bit difference

however will always result in different distributions. For instance, if the device
leaks the Hamming weight of a value it computes, comparing sets with more
than one bit difference would introduce noise in the cumulative KS-test statistic
as values (05)16 and (03)16 have a 2-bit XOR difference in between, but have the
same Hamming weight. Further note that doing the analysis on 1-bit different
sensitive values limits the analysis to 64 calls to the 2-sample KS-test, therefore
saves running time when the device leaks the Hamming weight of the sensitive
variable. On the other hand, if the leakage function is an injection, all

(
16
2

)
= 120

combinations should be compared cumulatively. Here, using only the sets with

Near Collision Side Channel Attacks 287

1-bit difference for comparison can be thought of a method similar to using
mutual information analysis (MIA) by estimating power consumption with the
Hamming weight model, since there is an implicit leakage function assumption
that there is no inter-bit interaction in the leaking variable. In fact, if the leakage
function is non-linear, the improvement gained through using only 1-bit different
sets for comparing distributions would be less pronounced.

Unlike LSCA (outlined in Sect. 4.1), the cumulative test statistic now results
in much smaller values for the incorrect key guesses. This is due to the fact that a
wrong key guess (kw) results in a random sampling of the set F8

2 and taking into
account that 16 masks in M16 results in 16 distinct values for each sample in the
set, the resulting Oxi(kw) has a cardinality much closer to |F8

2|. However, this
does not diminish the distinguishability of the correct key from other candidates.
In the case where the key guess is correct (kc), the set Oxi(kc) will have around
16 unique values (the exact number can increase due to noise in the measurement
setup). Now that we have a much smaller sampling of the set F

8
2, a comparison

of distinct sets ([Oxi(kc), Oxj (kc)], i �= j) is more meaningful, and in fact the
cumulative 2-sample KS-test statistic value results in a larger value than the one
obtained for a wrong key guess as the distributions are definitely different.

Note that this mask set is an example of the mask sets that are generated
as a linear code [4]. As binary linear codes have the intrinsic property of being
closed sets with respect to the XOR operation, any mask set that is a binary
linear code is vulnerable to the attack explained in this section.

4.3 Simulated Experiments on AES Implementation with LEMS

In this section we present results of our simulated experiments with different SNR
values and also with two different leakage functions as it is done in Sect. 3.1. In
our simulations, we compare our attacks to the previously proposed univari-
ate, non-profiled attacks: univariate MIA (UMIA) and LSCA that is recalled
in Sect. 4.1. To compare the efficiency of the attacks in terms of the expected
remaining work to find the key, we use the guessing entropy metric [22]. For each
experiment using a random linear model as the leakage function, we generate
8 values which are picked uniformly at random from [1, 10] ⊂ R. Unlike the sim-
ulations presented in Sect. 3.1, we have chosen to use a linear leakage function
which is slightly different, and favour the attacks assuming that each bit of the
sensitive value contributes to the leakages. Although this may not always be the
case in real life, we choose to use this leakage function as it is a favourable leak-
age model for MIA using the Hamming weight model. We present results that
show the proposed technique in Sect. 4.2 is more efficient than MIA in terms of
handling the noise in an unknown linear leakage model setting even when the
leakage model favours MIA.

The experiments are carried out with various SNR values and the results
are presented in Fig. 3 for both Hamming weight model and the random linear
leakage model we computed for each experiment. Note that the attack which
assumes a linear leakage model and computes only 64 comparisons is marked as
‘Linear’, and the attack which computes all possible 120 comparisons is marked

288 B. Ege et al.

−2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8
Avg GE of 32 simulations, 40000 traces, Random Linear Model

log
2
(SNR)

lo
g 2 (

gu
es

si
ng

 e
nt

ro
py

)

This Work (Linear)
This Work (ID)
LSCA
UMIA (HW)
UMIA (7 LSB)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8
Avg GE of 32 simulations, 40000 traces, HW Model

log
2
(SNR)

lo
g 2 (

gu
es

s i
ng

 e
nt

ro
py

)

This Work (Linear)
This Work (ID)
LSCA
UMIA (HW)
UMIA (7 LSB)

Fig. 3. Efficiency of the proposed attacks in comparison with previous works for various
SNR values.

as ‘ID’ for identity model. A quick look at Fig. 3 shows that, similar to the case
in near collision attack proposed in Sect. 3, the attack is indifferent to changes in
the leakage model as long as it stays linear. Moreover, if the leakage model is a
random linear function of the bits of the sensitive variable, univariate MIA fails
to recover the key for leakage models with a high variance of its weight values.
However when the leakage model follows a strict Hamming weight leakage, then
univariate MIA seems to handle noise more efficiently than both of our proposed
approaches to analyse the low entropy masking scheme at hand.

4.4 Experiments on DPA Contest V4 Traces

This section shows the efficiency of our attacks compared to the similar previ-
ously proposed methods in the context of a real world scenario. For reproducibil-
ity of our results, we used DPA Contest v4 traces which are EM measurements
collected from a smart card having an ATMega-163 microcontroller which imple-
ments an LEMS against first and second order attacks [19]. The implementation
uses the mask set M16 given in Sect. 4.

Figure 4 presents an analysis in time domain which reveals that even with
1000 traces, it is possible to recover the key with high confidence. To further test
the reliability of our technique on the DPA Contest v4 traces, we have focused
our analysis on the time samples where each of the 16 S-box outputs lead to
the highest signal-to-noise ratio (SNR computed following the definition in [14])
for computing guessing entropy and the results of the analysis are presented in
Fig. 5.

First thing to notice in the figure is that LSCA has some room for improve-
ment even when compared to a generic univariate MIA (UMIA (7-bit) in Fig. 5).
On the other hand, when MIA is applied with a more accurate power model (in
this case the Hamming weight model), the gap is rather large. When the leaking
set near collision attack proposed in this work is considered, it is easy to see that
the one which does not assume any power model (‘ID’) performs twice as efficient

Near Collision Side Channel Attacks 289

0 100 200 300 400 500 600 700 800 900 1000

5

6

7

8

9

10

11

12

13

14

Time Samples

C
um

ul
at

iv
e

2−
S

am
pl

e
K

S
−

T
es

t S
ta

tis
tic

Fig. 4. Leaking set near collision attack results VS time samples.

1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

6

7

Avg GE of 16 bytes from DPA Contest v4 traces

Number of traces

lo
g 2 (

gu
es

si
ng

 e
nt

ro
py

)

This Work (Linear)
This Work (ID)
LSCA
UMIA (HW)
UMIA (7 bit)

Fig. 5. Logarithm of average partial guessing entropy for various univariate attacks on
DPA Contest v4 traces.

in terms of the number of traces required to recover the full key when compared
to the generic univariate MIA (‘7 LSB’). Moreover, when the leakage function is
assumed to have a linear relation with respect to the bits of the leaking value,
the results are almost identical to the ones from a univariate MIA which models
the power consumption as the Hamming weight of the leaking value. One should
note that Hamming weight model is rather accurate in this case as SNR values
(computed with Hamming weight model) vary between 3 and 5 for the points
taken into consideration for the analysis.

4.5 Implementation Efficiency of the Attack

Similar to the near collision attack, leaking set near collision attack also requires
to find the traces in the measurement set which correspond to a set of input bytes.
Although this operation is computationally heavy when applied to a large trace
set, it does not get worse when multiple samples are needed to be analysed.

290 B. Ege et al.

Table 2. Average timing results from 100 independent experiments.

Technique Time (s)

LS-NCA (Linear) 13.7144

LS-NCA (ID) 15.4003

LSCA 8.6176

UMIA (HW) 1.5648

UMIA (7 LSB) 7.6951

The analyst can group all the traces corresponding to a leaking set and then
compute 2-sample KS test statistic for each sample of a pair of leaking sets.

As in Sect. 3, we have run simulated experiments to assess the time required
to run the proposed attacks in comparison to the other attacks run in this
section. Table 2 presents the average running times of each attack applied to the
chosen low entropy masking scheme. Timings presented in the table are average
running times over 100 independent experiments that are run over 10 000 traces.
Similar to the experiments before, all attacks are implemented as Matlab scripts
executed in Matlab 2015a run on a PC with a Xeon E7 CPU. Note that the
performance numbers assume the traces to be already loaded into memory in all
cases.

Looking at the results presented in Table 2 and taking into consideration that
the leaking set near collision attacks (LS-NCA) require less number of traces,
they are the strongest attacks against software implementations of LEMS.

5 Conclusions

In this work, we introduced a new way of analysing side channel traces, namely
the side channel near collision attack (NCA). Unlike the collision attacks pro-
posed in the literature, NCA is intrinsically univariate and only assumes the leak-
age function to be linear. Simulations show that NCA is indifferent to changes
in the linear leakage function.

Furthermore, we present a new attack, leaking set near collision attack,
against the low entropy masking scheme used in DPA Contest v4 [19]. This
attack improves the attack proposed in [24] by fully exploiting the properties of
the used mask set, and combining it with the NCA approach. As the proposed
attack is univariate, it is especially of interest for software implementations of
low entropy masking schemes. Simulations show that in case the leakage function
diverges from a perfect Hamming weight leakage but yet stays a linear function,
our attack overpowers univariate MIA.

It should be noted that not only the mask set M16, but all mask sets which
have a linear relation in between (as proposed in [4]) are vulnerable to the attack
presented in this paper.

Application of the proposed analysis methods to non-linear leakage functions
remains a research direction to follow as a future work.

Near Collision Side Channel Attacks 291

Acknowledgements. This work was supported in part by the Technology Foundation
STW (project 12624 - SIDES), The Netherlands Organization for Scientific Research
NWO (project ProFIL 628.001.007), the ICT COST actions IC1204 TRUDEVICE,
and IC1403 CRYPTACUS. LB is supported by NWO VIDI and Aspasia grants. TE is
supported by the National Science Foundation under grant CNS-1314770.

References

1. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003). http://dx.doi.org/10.1007/978-3-540-45238-6 2

2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg
(2009). http://dx.doi.org/10.1007/978-3-642-04138-9 9

3. Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas,
V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 201–218. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-12060-7 14

4. Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware:
low-weight dth-order correlation-immune Boolean functions. Cryptology ePrint
Archive, Report 2013/303 (2013). http://eprint.iacr.org/

5. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85053-3 3

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-28632-5 2

7. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order two.
In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 120–
139. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-34931-7 8

8. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected AES. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-23951-9 4

9. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel
attacks and leakage modeling. J. Cryptograph. Eng. 1(2), 123–144 (2011).
http://dx.doi.org/10.1007/s13389-011-0010-2

10. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks
and their application in a non-profiled setting. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 175–192. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-33027-8 11

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85053-3 27

12. Grosso, V., Standaert, F.X., Prouff, E.: Leakage Squeezing, Revisited (2013)
13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets

of Smart Cards (Advances in Information Security). Springer, New York, Secaucus
(2007)

http://dx.doi.org/10.1007/978-3-540-45238-6_2
http://dx.doi.org/10.1007/978-3-642-04138-9_9
http://dx.doi.org/10.1007/978-3-319-12060-7_14
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-85053-3_3
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-34931-7_8
http://dx.doi.org/10.1007/978-3-642-23951-9_4
http://dx.doi.org/10.1007/s13389-011-0010-2
http://dx.doi.org/10.1007/978-3-642-33027-8_11
http://dx.doi.org/10.1007/978-3-540-85053-3_27

292 B. Ege et al.

15. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445.
Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-29011-4 26

16. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-07536-5 20

17. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analy-
sis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010). http://dx.doi.org/
10.1007/978-3-642-15031-9 9

18. Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security
trade-off in first-order masking countermeasures against side-channel attacks. In:
Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 22–
39. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-25578-6 4

19. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, DATE 2012,
EDA Consortium, San Jose, CA, USA, pp. 1173–1178 (2012). http://dl.acm.org/
citation.cfm?id=2492708.2492999

20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11545262 3

21. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003). http://dx.doi.org/10.1007/978-3-540-39887-5 16

22. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the
analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-01001-9 26

23. Ye, X., Chen, C., Eisenbarth, T.: Non-linear collision analysis. In: Sadeghi, A.-R.,
Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651, pp. 198–214. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-13066-8 13

24. Ye, X., Eisenbarth, T.: On the vulnerability of low entropy masking schemes.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 44–60.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-08302-5 4

http://dx.doi.org/10.1007/978-3-642-29011-4_26
http://dx.doi.org/10.1007/978-3-319-07536-5_20
http://dx.doi.org/10.1007/978-3-642-15031-9_9
http://dx.doi.org/10.1007/978-3-642-15031-9_9
http://dx.doi.org/10.1007/978-3-642-25578-6_4
http://dl.acm.org/citation.cfm?id=2492708.2492999
http://dl.acm.org/citation.cfm?id=2492708.2492999
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-540-39887-5_16
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-319-13066-8_13
http://dx.doi.org/10.1007/978-3-319-08302-5_4

Masking Large Keys in Hardware: A Masked
Implementation of McEliece

Cong Chen1(B), Thomas Eisenbarth1, Ingo von Maurich2,
and Rainer Steinwandt3

1 Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth}@wpi.edu

2 Ruhr-Universität Bochum, Bochum, Germany
ingo.vonmaurich@rub.de

3 Florida Atlantic University, Boca Raton, USA
rsteinwa@fau.edu

Abstract. Instantiations of the McEliece cryptosystem which are
considered computationally secure even in a post-quantum era still
require hardening against side channel attacks for practical applications.
Recently, the first differential power analysis attack on a McEliece cryp-
tosystem successfully recovered the full secret key of a state-of-the-art
FPGA implementation of QC-MDPC McEliece. In this work we show
how to apply masking countermeasures to the scheme and present the
first masked FPGA implementation that includes these countermeasures.
We validate the side channel resistance of our design by practical DPA
attacks and statistical tests for leakage detection.

Keywords: Threshold implementation · McEliece cryptosystem ·
QC-MDPC codes · FPGA

1 Motivation

Prominent services provided by public-key cryptography include signatures and
key encapsulation, and their security is vital for various applications. In addition
to classical cryptanalysis, quantum computers pose a potential threat to cur-
rently deployed asymmetric solutions, as most of these have to assume the hard-
ness of computational problems which are known to be feasible with large-scale
quantum computers [18]. Given these threats, it is worthwhile to explore alter-
native public-key encryption schemes that rely on problems which are believed
to be hard even for quantum computers, which might become reality sooner
than the sensitivity of currently encrypted data expires [5]. The McEliece cryp-
tosystem [12] is among the promising candidates, as it has withstood more than
35 years of cryptanalysis. To that end, efficient and secure implementations of
McEliece should be available even nowadays. The QC-MDPC variant of the
McEliece scheme proposed in [13] is a promising efficient alternative to prevail-
ing schemes, while maintaining reasonable key sizes. The first implementations
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 293–309, 2016.
DOI: 10.1007/978-3-319-31301-6 18

294 C. Chen et al.

of QC-MDPC McEliece were presented in [10], and an efficient and small hard-
ware engine of the scheme was presented in [19]. However, embedded crypto
cores usually require protection against the threat of physical attacks when used
in practice. Otherwise, side channel attacks can recover the secret key quite
efficiently, as shown in [6].
Our Contribution. In this work we present a masked hardware implemen-
tation of QC-MDPC McEliece. Our masked design builds on the lightweight
design presented in [19]. We present several novel approaches of dealing with
side channel leakage. First, our design implements a hybrid masking approach,
to mask the key and critical states, such as the syndrome and other intermediate
states. The masking consists of Threshold Implementation (TI) based Boolean
masking for bit operations and arithmetic masking for needed counters. Next, we
present a solution for efficiently masking long bit vectors, as needed to protect
the McEliece keys. This optimization is achieved by generating a mask on-the-fly
using a LFSR-derived PRG. Through integration of PRG elements, the amount
of external randomness needed by the engine is considerably reduced when com-
pared to other TI-based implementations. Our design is fully implemented and
analyzed for remaining side channel leakage. In particular, we validate that the
DPA attack of [6] is no longer feasible. We further show that there are also no
other remaining first-order leakages nor other horizontal leakages as exploited
in [6].

After introducing necessary background in Sect. 2, we present the masked
McEliece engine in Sects. 3 and 4. Performance results are presented in Sect. 5.
A thorough leakage analysis is presented in Sect. 6.

2 Background

In the following we introduce moderate-density parity-check (MDPC) codes and
their quasi-cyclic (QC) variant with a focus on decoding since we aim to protect
the secret key. Afterwards we summarize how McEliece is instantiated with QC-
MDPC codes as proposed in [13]. As our work extends an FPGA implementation
of QC-MDPC McEliece that is unprotected against side channel attacks [19], we
give a short overview of the existing implementation and summarize relevant
works on the masking technique of threshold implementations.

2.1 Moderate-Density Parity-Check Codes

MDPC codes belong to the family of binary linear [n, k] error-correcting codes,
where n is the length, k the dimension, and r = n − k the co-dimension of a
code C. Binary linear error-correcting codes are equivalently described either
by their generator G or by their parity-check matrix H. The rows of generator
matrix G ∈ F

k×n
2 form a basis of C while H ∈ F

r×n
2 describes the code as the

kernel C = {c ∈ F
n
2 |HcT = 0⊥} where 0⊥ represents an all-zero column vector.

The syndrome of any vector x ∈ F
n
2 is defined as s = HxT ∈ F

r
2. Hence, the code

C is comprised of all vectors x ∈ F
n
2 whose syndrome is zero for a particular

Masking Large Keys in Hardware: A Masked Implementation of McEliece 295

parity-check matrix H. MDPC codes are defined by only allowing a moderate
Hamming weight w = O(

√
n log(n)) for each row of the parity-check matrix.

By an (n, r, w)-MDPC code we refer to a binary linear [n, k] code with such a
constant row weight w.

A code C is called quasi-cyclic (QC) if for some positive integer n0 > 0 the
code is closed under cyclic shifts of its codewords by n0 positions. Furthermore,
it is possible to choose the generator and parity-check matrix to consist of p × p
circulant blocks if n = n0 ·p for some positive integer p. This allows to completely
describe the generator and parity-check matrices by their first row. If an (n, r, w)-
MDPC code is quasi-cyclic with n = n0·r, we refer to it as an (n, r, w)-QC-MDPC
code.

Several t-error-correcting decoders have been proposed for (QC-)MDPC
codes [1,8,10,11,13,21]. The implementation that we base our work on imple-
ments the optimized decoder presented in [10], which in turn is an extended
version of the bit-flipping decoder of [8]. Decoding a ciphertext x ∈ F

n
2 , is

achieved by:

1. Computing the syndrome s = HxT .
2. Computing the number of unsatisfied parity checks #upc for every ciphertext

bit.
3. If #upc exceeds a precomputed threshold b, invert the corresponding cipher-

text bit and add the corresponding column of the parity-check matrix to the
syndrome.

4. In case s = 0⊥, decoding was successful, otherwise repeat Steps 2/3.
5. Abort after a defined maximum of iterations with a decoding error.

2.2 McEliece Public Key Encryption with QC-MDPC Codes

The McEliece cryptosystem was introduced using binary Goppa codes [12].
Instantiating McEliece with t-error-correcting (QC-)MDPC codes was proposed
in [13], mainly to significantly reduce the size of the keys while still maintaining
reasonable security arguments. The proposed parameters for an 80-bit security
level are n0 = 2, n = 9602, r = 4801, w = 90, t = 84, which results in a much
more practical public key size of 4801 bit and a secret key size of 9602 bit com-
pared to binary Goppa codes which require around 64 kByte for public keys at
the same security level.

The main idea of the McEliece cryptosystem is to encode a plaintext into a
codeword using the generator matrix of a code selected by the receiver and to
add a randomly generated error vector of weight t to the codeword which can
only be removed by the intended receiver. We summarize QC-MDPC McEliece
in the following by introducing key-generation, encryption and decryption.
Key-Generation. The parity-check matrix H is the secret key in QC-MDPC
McEliece. As the code is quasi-cyclic, the parity-check matrix consists of n0

concatenated r×r blocks H = (H0 | . . . |Hn0−1). We denote the first row of each
of these blocks by h0, . . . , hn0−1 ∈ F

r
2. The public key in QC-MDPC McEliece is

296 C. Chen et al.

the corresponding generator matrix G, which is computed from H in standard
form as G = [Ik |Q] by concatenation of the identity matrix Ik ∈ F

k×k
2 with

Q =

⎛
⎜⎜⎝

(H−1
n0−1 · H0)T

(H−1
n0−1 · H1)T

· · ·
(H−1

n0−1 · Hn0−2)T

⎞
⎟⎟⎠ .

The key generation starts by randomly selecting first row candidates
h0, . . . , hn0−1 ∈R F

r
2 such that the overall row weight (wt) sums up to w =∑n0−1

i=0 wt(hi). Since we intend to generate a code which is quasi-cyclic, the n0

blocks of the parity-check matrix are generated from the first rows by cyclic
shifts. The resulting parity-check matrix belongs to an (n, r, w)-QC-MDPC code
with n = n0 · r. If the last block Hn0−1 is non-singular, i. e., if H−1

n0−1 exists, the
public key is computed as G = [Ik |Q]. Otherwise new candidates for hn0−1 are
generated until a non-singular Hn0−1 is found.
Encryption. A plaintext m ∈ F

k
2 is encrypted by encoding it into a codeword

using the recipient’s public key G and by adding a random error vector e ∈ F
n
2 of

weight wt(e) ≤ t to it. Hence, the ciphertext is computed as x = (m·G⊕e) ∈ F
n
2 .

Decryption. Given a ciphertext x ∈ F
n
2 , the intended recipient removes the

error vector e from x using the secret code description H and a QC-MDPC
decoding algorithm ΨH yielding mG. Since G = [Ik |Q], the first k positions of
mG are equal to the k-bit plaintext.

2.3 FPGA Implementation of QC-MDPC McEliece

Our work extends on the lightweight implementation of McEliece based on QC-
MDPC code for reconfigurable devices by [19]. Their resource requirements are
64 slices and 1 block RAM (BRAM) to implement encryption and 159 slices and
3 BRAMs to implement decryption on a Xilinx Spartan-6 XC6SLX4 FPGA. The
goal of our work is to protect the secret key. Hence, only the decryption engine
is discussed in this paper. From a high-level point of view, decryption works
as follows: at first the syndrome of the ciphertext is computed. Then for each
ciphertext bit the number of unsatisfied parity-checks #upc are counted and if
they exceed a defined threshold, the ciphertext bit is inverted. When a ciphertext
bit is inverted, the corresponding row of the parity-check matrix is added to the
syndrome. The DPA presented in [6] shows that the described architecture is
vulnerable to an efficient horizontal key recovery attack, since neither the key
nor internal states are masked.

2.4 Threshold Implementation

Threshold implementation (TI) is a masking-based technique to prevent first
order and higher order side channel leakage. Since its introduction in [15], many
symmetric cryptosystems have been implemented in TI [2–4,14,17]. More impor-
tantly, most of these works have performed thorough leakage analysis and have

Masking Large Keys in Hardware: A Masked Implementation of McEliece 297

shown that TI actually prevents the promised order leakage (if carefully imple-
mented). Even higher-order leakage, while not prevented, usually comes at a
highly increased cost of needed observations. TI performs Boolean secret shar-
ing on all sensitive variables. Computations on the shares are then performed in
a way that ensures correctness, maintains uniformity of the shares, and ensures
non-completeness of the computation, that is, each sub-operation can only be
performed on a strict sub-set of the inputs. A detailed description of TI is avail-
able in [15].

We choose TI for McEliece because TI is fairly straightforward to apply
and to implement, yet it is effective. Furthermore, large parts of McEliece are
linear, and hence cheap to mask using TI. The decoder part, while not linear,
is also fairly efficient to mask using TI, as shown in Sect. 4. At the same time,
our implementation avoids several of the disadvantages of TI: Unlike [16], we
convert our addition to arithmetic masking once the values get larger, yielding a
much more efficient addition engine than one solely relying on TI. By including
the pseudorandom mask generation in the crypto core, we significantly cut both
the required memory space usually unavoidably introduced by TI as well as the
required overhead of random bits consumed by TI engines. Note that the TI-
AES engines presented in [3,14] consume about 8000 bits of randomness per
encryption, while our engine only consumes 160 bits per decryption.

3 Masking QC-MDPC McEliece

An effective way to counteract side channel analysis is to employ masking. Mask-
ing schemes aim to randomize sensitive intermediate states such that the leakage
is independent of processed secrets. In QC-MDPC McEliece, the key bits and
the syndrome are sensitive values that need to be protected and therefore they
must be masked whenever they are manipulated. Similarly, since the decoding
operation processes the sensitive syndrome, leakage of the decoder needs to be
masked as well.

3.1 Masked Syndrome Computation

As described in Sect. 2.1, the decoding algorithm begins with the syndrome com-
putation s = HxT . Both the parity-check matrix H and the syndrome s are sen-
sitive values and can cause side channel leakage. However, since the syndrome
computation is a linear operation, masking this operation is simple and efficient.
Intuitively, H can be split into two shares, Hm and M such that H = Hm ⊕ M ,
by Boolean masking. The mask matrix M is created in correspondence to H, by
first generating uniformly distributed random masks for hi, m0, . . . ,mn0−1 ∈ F

r
2

of the n0 blocks, which then comprise the first row of mask matrix M . Each
bit in the mi is uniformly set to 0 or 1. Next, the remaining rows of the mask
matrix M are obtained by quasi-cyclic shifts of the first row, according to the
construction of H. The masked syndrome sm and the syndrome mask ms can
be computed independently as sm = HmxT and ms = MxT . The syndrome s is
available as the combination of the two shares s = sm ⊕ ms.

298 C. Chen et al.

Algorithm 1. Masked Error Correction Decoder
Input: Hm, M1, M2, sm, ms1 , ms2 , x, B = b0, ..., bmax−1, max
Output: Error free codeword x or DecodingFailure
1: for i = 0 to max−1 do
2: for every ciphertext bit xj do
3: #upc = SecHW(SecAND(sm, ms1 , ms2 , Hm,j , M1,j , M2,j))
4: d = (#upc > bi) , d ∈ {0, 1}
5: x = x ⊕ (d · 1j) � Flip the jth bit of x
6: sm = sm ⊕ (d · Hm,j ⊕ d̄ · M2,j) � Update syndrome
7: ms1 = ms1 ⊕ M1,j � Update masks
8: ms2 = ms2 ⊕ M2,j ⊕ (d̄ · M1,j)
9: end for

10: if SecHW(sm, ms1 , ms2) == 0 then � Check for remaining errors
11: return x
12: end if � For constant run time, this if-statement can be moved after the

for-loop
13: end for
14: return DecodingFailure

3.2 Masked Decoder

After syndrome computation, the error correction decoder computes the num-
ber of unsatisfied parity check equations between the sensitive syndrome and
one row of the sensitive parity check matrix. By comparing that number with
a predefined threshold (usually denoted b), the decoder decides whether to flip
the corresponding bit in the ciphertext. Masking the actual decoding steps is
more complex, since both inputs, namely the syndrome and the parity check
matrix, as well as the control flow of the decoder can leak sensitive information
and thus need to be protected. Unlike the syndrome computation, the decoder
performs a binary AND and a Hamming weight computation on sensitive data.
Both operations are non-linear and thus need more elaborate protection than
just a straightforward Boolean masking. In the following we explain how these
operations can be implemented. Algorithm 1 describes the masked version of the
decoder. Note that the algorithm has been formulated with a constant execu-
tion flow to better represent the intended hardware implementation. Further
note that the algorithm and its FPGA implementation exhibit a constant tim-
ing behavior (except the number of decoder iterations) and that all key-related
variables are masked. The number of decoder iterations can be set to maximum
by simply moving the if-statement out of the loop. For the chosen 9602/4801
parameter set, max would be set to 5, increasing the average run time roughly
by a factor 2 (cf. [21]).

In Algorithm 1, we make use of two special functions. Function SecAND com-
putes the bitwise AND operation between syndrome s and secret key H in a
secure way without leaking any sensitive information. The other function SecHW
computes the Hamming Weight of a given vector. Both functions are explained in

Masking Large Keys in Hardware: A Masked Implementation of McEliece 299

detail in the following. An all-zero vector with the jth bit equal to 1 is indicated
by 1j .
Secure AND Computation. One important step when decoding a QC-MDPC
code is to compute the unsatisfied parity-check equations which starts with a
non-linear bitwise AND operation between the syndrome and one row of the
secret key matrix. Our function SecAND performs a bitwise AND operation
between two bit vectors, namely s ∧ h. Since the AND is a non-linear opera-
tion, simple two-share Boolean masking is not applicable. Instead, we follow the
concept of Threshold Implementation as described in Sect. 2.4. We adopt the bit-
wise AND operation from [15], which provides first-order security when applied
to three Boolean shares. This means that the two-share representations of the
two inputs, i. e., the syndrome and parity check matrix, need to be extended to
a three-share representation.

To achieve a three-share representation of both syndrome and parity check
matrix, the masking is expanded in the following way: After syndrome compu-
tation as explained in Sect. 3.1, the syndrome is represented as sm ⊕ms and the
secret key is represented as Hm,j ⊕ Mj . Next, the syndrome representation is
extended as sm ⊕ ms1 ⊕ ms2 and the key as Hm,j ⊕ M1,j ⊕ M2,j . Here, ms2 and
M2,j are two new uniformly distributed random mask vectors and ms1 is derived
as ms1 = ms ⊕ ms2 and M1,j = Mj ⊕ M2,j . The following equations show how
to achieve a TI version of s ∧ h that satisfies correctness and non-completeness,
but not uniformity.

s ∧ h = (sm ⊕ ms1 ⊕ ms2) ∧ (Hm,j ⊕ M1,j ⊕ M2,j)
= (sm ∧ Hm,j) ⊕ (sm ∧ M1,j) ⊕ (Hm,j ∧ ms1)⊕

(ms1 ∧ M1,j) ⊕ (ms1 ∧ M2,j) ⊕ (M1,j ∧ ms2)⊕
(ms2 ∧ M2,j) ⊕ (ms2 ∧ Hm,j) ⊕ (M2,j ∧ sm)

(1)

As pointed out in [15], in order to fulfill uniformity, one can introduce addi-
tional uniform random masks to mask each share. By introducing two more
uniformly random vectors r1 and r2, the three output shares can be computed
as follows. Let sh denote the result of the TI version of the AND operation.
Using the equations above, sh can be split into three shares shi, which are now
uniformly distributed thanks to the ri and are given as:

sh1 = (sm ∧ Hm,j) ⊕ (sm ∧ M1,j) ⊕ (Hm,j ∧ ms1) ⊕ r1

sh2 = (ms1 ∧ M1,j) ⊕ (ms1 ∧ M2,j) ⊕ (M1,j ∧ ms2) ⊕ r2

sh3 = (ms2 ∧ M2,j) ⊕ (ms2 ∧ Hm,j) ⊕ (M2,j ∧ sm) ⊕ r1 ⊕ r2

(2)

Secure Hamming Weight Computation. In the unprotected FPGA imple-
mentation of [19], the Hamming weight computation of sh is performed by look-
ing up the weight of small chunks of sh from a precomputed table and then
accumulating those weights to get the Hamming weight of sh. However, the
weight of a chunk is always present in plain and the computation of it can result
in side channel leakage that will lead to the recovery of the Hamming weight.

300 C. Chen et al.

Even though the knowledge of the weight does not necessarily recover the chunk
value, it still yields information about sh and thus the secret key h.

For a side-channel secure implementation, both the input and the output
of a Hamming weight computation for each chunk must be masked. Since the
weight of all chunks needs to be accumulated, it is preferable to use Arithmetic
masking instead of Boolean masking. For example, the Hamming weight of sh
can be calculated using the following equation:

wt(sh) =
|sh|∑
i=1

sh1,i ⊕ sh2,i ⊕ sh3,i (3)

where subscript i refers to the i-th bit of each share and |sh| is the length of sh
in bits. Using a secure conversion function from Boolean masking to Arithmetic
masking [7], each Boolean mask tuple (sh1,i, sh2,i, sh3,i) can be converted to an
Arithmetic mask pair (A1,i, A2,i) such that sh1,i ⊕ sh2,i ⊕ sh3,i = A1,i + A2,i.
Then, the Hamming weight of sh can be computed as:

wt(sh) =
|sh|∑
i=1

A1,i + A2,i =
|sh|∑
i=1

A1,i +
|sh|∑
i=1

A2,i (4)

According to Eq. (4), we only accumulate A1 =
∑|sh|

i=1 A1,i and A2 =
∑|sh|

i=1 A2,i,
respectively, and sum them up in the end to obtain the total Hamming weight
wt(sh) = A1 + A2.
Secure Syndrome Checking. In order to test whether decoding of the input
vector was successful, the syndrome has to be tested for zero. If the Hamming
weight of the syndrome is zero, then all bits of the syndrome must be zero.
Otherwise, there must be some bits set as 1 and the number of set bits equals
the Hamming weight of the syndrome. Note that we perform SecHW operation
over the three shares of syndrome s in order to prevent the leakage.

4 Implementing a Masked QC-MDPC McEliece

This section presents more details of the masked FPGA implementation of QC-
MDPC McEliece decryption based on the unprotected one in [19]. We follow
the structure of the original design, including the same security parameters, but
replace vulnerable logic circuits with masked circuits.

4.1 Overview of the Masked Implementation

Each time before the decryption is started, both the ciphertext and the masked
secret keys h0m, h1m are written into the BRAMs of the decryption engine. As
shown in Fig. 1, one BRAM stores the 2 · 4801-bit ciphertext, the second BRAM
stores the 2 · 4801-bit masked secret key and third BRAM stores the 4801-bit
masked syndrome and the 4801-bit syndrome mask. Note that the secret keys are

Masking Large Keys in Hardware: A Masked Implementation of McEliece 301

Fig. 1. Abstract block diagram of the masked QC-MDPC McEliece decryption imple-
mentation.

masked before being transferred to the crypto core. The seeds for the internal
PRG are transferred with the masked key. Each BRAM is dual-ported, offers
18/36 kBit, and allows to read/write two 32-bit values at different addresses in
one clock cycle.

Computations are performed in the same order as in [19]: To compute the
masked syndrome sm, set bits in the ciphertext x select rows of the masked
parity-check matrix blocks that are accumulated. In parallel, the syndrome mask
ms is computed in the same manner. Rotating the two parts of the secret key is
implemented in parallel, as in the unprotected implementation. Efficient rotation
is realized using the Read First mode of Xilinx’s BRAMs which allows to read
the content of a 32-bit memory cell and then to overwrite it with a new value,
all within one clock cycle.

An abstraction of this implementation is depicted in Fig. 1. The three block
RAMs are used to store the masked keys (h0m and h1m), the shared syndrome
(sm and ms) and the ciphertext (ct0 and ct1). The LFSR blocks are used to
generate the missing masks on-the-fly. The logic blocks for the two phases of the
McEliece decryption are shown on the left side of Fig. 1.

4.2 Masking Syndrome Computation

The syndrome computation is a linear operation and requires only two shares
for sensitive variables. Once the decryption starts, 32-bit blocks of the masked
secret keys h0m, h1m are read from the secret key BRAM at each clock cycle
and are XORed with the 32-bit block of sm read from the syndrome BRAM
depending on whether the corresponding ciphertext bits are 1. Then the result
will be written back into the syndrome BRAM at the next clock cycle and at
the same time the rotated 32-bit blocks of the masked keys will be written back
into the secret key BRAM. Meanwhile, we need to keep track of the syndrome
mask ms. Since syndrome computation is a linear operation, we can similarly
add up the secret key masks synchronously to generate the syndrome mask.

302 C. Chen et al.

In our secure engine, we use two 32-bit leap forward LFSRs to generate random
32-bit secret key masks each clock cycle which are XORed with the 32-bit block
of ms read from the syndrome BRAM depending on the ciphertext.
Cyclic Rotating LFSRs. Our 32-bit leap forward LFSRs not only generate
a 32-bit random mask at each clock cycle but also rotate synchronously with
the key. For example, the LFSR for h0m first needs to generate the 4801-bit
mask mh0 in the following sequence: mh0 [0 : 31],mh0 [32 : 63], . . . ,mh0 [4767 :
4799],mh0 [4800]. This is done in 150 clock cycles. In the next round, the secret
key is rotated by one bit as h0m ≫ 1 and hence the mask sequence should be:
mh0 [4800 : 30],mh0 [31 : 62], . . . ,mh0 [4766 : 4798],mh0 [4799]. After 4801 rounds
of rotation, the LFSR ends up with its initial state. In order to construct a cyclic
rotating PRG with a period of 4801 bits, we combine a common 32-bit leap
forward LFSR with additional memory and circuits, based on the observation
that the next state of the LFSR either completely relies on the current state or
actually sews two ends of the sequence together, e.g., mh0 [4800 : 30]. As shown in
Fig. 2, five 32-bit registers are employed instead of just one. The combinational
logic circuit computes the next 32-bit random mask given the input stored in
IntStateReg. The following steps describe the functionality of our LFSR:

1. Initially, the 32-bit seed seed [0 : 31] of the sequence is stored in register
IvReg and the first 32 bits of the sequence, e.g., mh0 [0 : 31] are stored in the
other registers.

2. During the rotation, the combinational logic circuits output the new 32-bit
result and feed it back. If the new result is part of the 4801-bit sequence,
then it will go through the Mux, overwriting the current state registers
IntStateReg and ExtStateReg at the next clock cycle.

3. If the new result contains bits that are not part of the sequence, then those
bits will be replaced. For example, when mh0 [4767 : 4799] is in IntStateReg,
the new result will be mh0 [4800 : 4831] in which only bit mh0 [4800] is in the
mask sequence and mh0 [4801 : 4831] will be dropped. The Mux gate will only
let mh0 [4800] go through together with mh0 [0 : 30] stored in ExtBit0 31 and
the concatenation mh0 [4800 : 30] will overwrite register ExtStateReg.

4. mh0 [4800 : 30] will not be written into register IntStateReg because given
mh0 [4800 : 30] as input, the combinational logic circuit will not output the
next valid state mh0 [31 : 62]. Therefore, we concatenate part of the seed in
IvReg and part of the first 32-bits in IntBit0 31, e.g., {seed[31],mh0 [0 : 30]}
and overwrite IntStateReg. Then, the new output will be mh0 [31 : 62]. The
concatenation is implemented as a cyclic bit rotation as shown in Fig. 2. After
32 rotations, the seed is rotated to IntBit0 31 and the first 32-bit mh0 [0 : 31]
is rotated to IvReg. Hence, they will be swapped back in the next clock
cycle.

To sum up, ExtStateReg always contains the valid 32-bit mask while
IntStateReg always contains 32-bit input that results in the next valid state.
The rotated secret key is generated in 150 clock cycles. After 4801 × 150 clock
cycles, the LFSR returns to its initial state and idles.

Masking Large Keys in Hardware: A Masked Implementation of McEliece 303

Fig. 2. The structure of the cyclic
rotating LFSR that is used to generate
the masks on-the-fly.

Fig. 3. Layout of our pipelined
QC-MDPC McEliece decoder for the
first part of the secret key, h0.

4.3 Masking the Decoder

As mentioned in Sect. 3, the masked secret keys and the syndrome are extended
to three shares. Hence, more LFSRs are instantiated to generate the additional
shares as shown in Fig. 1. Two LFSRs generate the third shares of h0 and h1,
another LFSR generates the third share of the syndrome.

We use h0 as example to describe the decoder, since h1 is processed in parallel
using identical logic circuits. We split h0 into three shares: h0m stored in the
BRAM and m1,h0 and m2,h0 generated by two LFSRs. The syndrome is split
into sm and ms1 which are stored in BRAM and ms2 which is generated by an
LFSR. After decoding is started, each 32-bit share is read or generated at each
clock cycle and then SecAND and SecHW are performed. This is implemented
using a pipelined approach as shown in Fig. 3.

The left part of Fig. 3 illustrates the bitwise SecAND operation using Eq. (2).
The 32-bit shares are fed into shared functions f1, f2, f3, and the outputs are
three 32-bit shares of the result. As mentioned before, two additional random
vectors r1, r2 are required to mask the outputs in order to achieve uniformity.
Our design uses only two fresh random bits b1, b2 together with the shifted input
shares as the random vectors because the neighboring bits are independent of
each other. That is r1 = {b1,m1,h0 [0 : 30]} and r2 = {b2,m2,h0 [0 : 30]}. Both
m1,h0 [31] and m2,h0 [31] are shifted out and are used as b1 and b2 in the next clock
cycle. The right part shows the structure of SecHW. To compute the Hamming
weight of the unmasked result sh1 ⊕ sh2 ⊕ sh3 without leaking side channel
information, a parallel counting algorithm is applied to accumulate the weight
of each bit position of the word. We use 32×2 6-bit Arithmetic masked counters1

and each bit in the word sh1 ⊕ sh2 ⊕ sh3 will be added into the corresponding
counter during each clock cycle. More specifically, the three shares of each bit
of sh are converted and added into the two Arithmetic masked counters. After
150 clock cycles, we sum the overall Arithmetic masked Hamming weight. To
convert and accumulate the masked weights, we employ the secure conversion
method developed in [7].

1 Note that the Hamming weight of s ∧ H is bounded to the weight of hi, i. e., wt(s ∧
hi) ≤ w/2 = 45, i. e., 6-bit registers are always sufficient.

304 C. Chen et al.

5 Implementation Results

The masked design is implemented in VHDL and is synthesized for Xilinx
Virtex-5 XC5VLX50 FPGA which holds the crypto engine in the side chan-
nel evaluation board SASEBO-GII. The implementation results are listed in
Table 1 in comparison with the unprotected implementation of [19]. In terms of
Flip-Flops (FFs) and Look-Up Tables (LUTs), the masked implementation uses
8 times as many resources as the unprotected implementation. The increase is
mainly due to the masked Hamming weight computation which requires many
registers to store the Hamming weights of small chunks. Moreover, the leap for-
ward LFSR also utilizes many Flip-Flops and has to be instantiated five times in
our design. The number of occupied BRAMs remains constant, only the occupied
memory within the syndrome BRAM increases by a factor of 2 in the masked
implementation because the syndrome masks are also stored in this BRAM. The
performance of the masked design is compromised for security and the maximum
clock frequency is reduced by a factor of 4.3. This is mainly because the addi-
tion of 32 6-bit weight registers in SecHW is done in one clock cycle resulting
a long critical path and in turn a low clock frequency. Shortening the critical
path can be an interesting goal in future work. Note that the number of clock
cycles remains the same as for the unprotected implementation, unless the early
termination of the decoder is disabled, in which case the average run time dou-
bles compared to [19] (assuming that the maximum number of iterations is set
to 5 similarly to [20], with early termination enabled the decoder requires 2.4
iterations on average as was shown in [10,21]). The resulting mean overhead of
our implementation is 4, which is in line with other masked implementations2.
The TI AES engine in [14] introduces an area overhead of a factor 4 as well, but
that implementation does not include the pseudorandom generators needed to
generate the 48 bits of randomness consumed per cycle, while ours does.

Table 1. Resources usage comparison between the unprotected and masked implemen-
tations on Xilinx Virtex-5 XC5VLX50 FPGAs.

Implementation FFs LUTs Slices BRAMs Frequency

Unprotected [19] 412 568 148 3 318 MHz

Masked 3045 4672 1549 3 73 MHz

Overhead factor 7.4x 8.2x 10.5x 1x 4.3x

6 Leakage Analysis

Next we analyze the implementation for remaining leakage. We first apply the
DPA presented in [6] on the protected implementation. Next we use the leak-
age detection methodology developed in [9] to detect any other potentially
2 When computing the geometric mean of the overhead of the three hardware compo-

nents (LUTs, FFs, and BRAMs), the resulting area overhead is actually 3.9.

Masking Large Keys in Hardware: A Masked Implementation of McEliece 305

exploitable leakages. The evaluated implementation is placed on the Xilinx
Virtex-5 XC5VLX50 FPGA of the SASEBO-GII board. The power measure-
ments are acquired using a Tektronix DSO 5104 oscilloscope. The board was
clocked at 3 MHz and the sampling rate was set to 100 M samples per second. In
order to quantify the resilience of our masked implementation to power analysis
attacks, we collected 10, 000 measurements using the same ciphertext but two
different sets of secret keys. The first set is actually 5, 000 repetitions of a fixed
key while the second set contains 5, 000 random keys. The two sets of keys are
fed into the decryption engine alternatingly.

6.1 Differential Power Analysis

A Differential Power Analysis on the FPGA implementation of QC-MDPC
McEliece of [19] was presented in [6]. The attack exploits the leakage caused
by the key rotation in the syndrome computation phase. The 4801-bit keys h0

and h1 rotate in parallel for 4801 rounds, each round lasts for 150 clock cycles.
Thus during one decryption, each key bit is rotated into the one bit carry reg-
ister 150 times which results in a strong leakage. By averaging the 150 leakage
samples for each key bit, one can generate the 4801-sample differential trace
which contains features caused by the set key bits and then one can recover the
value of the key bits by interpreting the features. For the unprotected implemen-
tation, the secret key can be completely recovered using the average differential
trace of only 10 measurements. For more details about the key recovery we refer
to [6]. In contrast to the unprotected implementation, no features are present
in the differential trace of the fixed secret key (red line) even with 500 times
more traces, as shown in Fig. 4. Hence, the key bit value cannot be recovered.
The peaks in the trace are not the features caused by set key bits because in the
differential trace of the random secret keys where the key bits are randomly set
as 1 the same peaks appear. Thus, they cannot be used as features to recover
secret key bits as done in [6]. The two differential traces almost overlap, showing
that the leakage is indistinguishable between fixed key and random key when
using a masked implementation.

6.2 Leakage Detection

We employ Welch’s T-test suite to quantify the leakage indistinguishability
between two sets of secret keys. Welch’s T-test is a statistical hypothesis test
used to decide whether the means of two distributions are the same. T-statistic
t can be computed as:

t =
X − Y√
sX2

NX
+ sY 2

NY

(5)

where X,Y are the sample means of random variables X,Y , sX , sY are the
sample variances and NX , NY are the sample sizes. The pass fail criteria is

306 C. Chen et al.

500 1000 1500 2000 2500 3000 3500 4000 4500

0.4

0.5

0.6

0.7

0.8

0.9

1

key bits

Δ c
Differential trace of fixed secret key
Differential trace of random secret keys

Fig. 4. Comparison between two differential traces of two sets of secret keys.

defined as [−4.5, 4.5] as developed in [9]. In our case, we obtained two groups of
leakage samples, one for the fixed key set and the other for the random key set.
Each group has 5, 000 power traces as well as 5, 000 derived differential traces.
We first performed the T-test using the original power traces and Fig. 5.1 shows
the t-statistics along the whole decryption. The t-statistics are within the range
of [−4.5, 4.5] which implies a confidence of more than 99.999 % for the null
hypothesis showing that the two sample groups are indistinguishable.

To assess the vulnerability to first-order horizontal attacks, we also performed
a T-test on the derived differential traces. The results are shown in Fig. 5.2.
Similarly, the t-statistics are also within the predefined range and it validates
the indistinguishability between the two sets of secret keys. Hence, it can be
concluded that the design does not contain any remaining first-order leakage of
the key.

6.3 Masking the Ciphertext?

The decoder corrects errors in the ciphertext x, eventually yielding the plaintext
derived value m · G and thereby implicitly the error vector e. Similarly, the
values d and #upc assigned in line 3 and 4 of Algorithm1 are not masked and
can potentially reveal the error locations, hence e. In either case, the equivalent
leakage of information of e or m · G is possible. In our implementation, we
chose not to mask x and its intermediate state, nor d and #upc. This choice is
justifiable for two reasons. First, both e or m·G are key-independent and will not
reveal information about the secret key. Furthermore, e or m · G are ciphertext
dependent, that is, any information that can be revealed will be only valid for the
specific encrypted message. Hence, if such information is to be discovered, it must
be recovered using SPA-like approaches. More explicitly, the only possible attack
is a message recovery attack, and that requires SPA techniques, as, e.g., applied
in [20]. Nevertheless, d and #upc are variables that have dependence on both the
ciphertext and the key, just as the number of decoding iterations that might be
revealed by a non-constant time implementation, i. e., if the decoding algorithm

Masking Large Keys in Hardware: A Masked Implementation of McEliece 307

1 2 3 4 5 6 7

x 10
4

−8

−6

−4

−2

0

2

4

6

8

Time samples

t−
st

at
is

tic

5.1: Results of original traces

500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8

key bits

t−
st

at
is

tic

5.2: Results of differential traces

Fig. 5. T-test between the two groups of original power traces (5.1) and differential
power traces (5.2) corresponding to the two sets of secret keys. Both cases indicate the
absence of leakage for the given number of traces.

tests the syndrome for zero after each decoding iteration and exits when this
condition is reached. However, up to now there is no evidence suggesting that
their information can be used to perform key recovery attacks. We leave this as
an open question for future research.

7 Conclusion

This work presents the first masked implementation of a McEliece cryptosystem.
While masking the syndrome computation is straightforward and comes at a low
overhead, the decoding algorithm requires more involved masking techniques.

308 C. Chen et al.

Through on-the-fly mask generation, the area overhead is limited to a factor of
approximately 4. While the maximum clock frequency of the engine decreases,
the number of clock cycles for the syndrome computation and each decoder run
is unaffected by the countermeasures. The effectiveness of the applied masking
has been analyzed by leakage detection methods and by showing that previous
attacks do not succeed anymore. Exploring if any information about the secret
key can be derived from the number of decoding iterations leaves an interesting
challenge for future work.

Acknowledgments. This work is supported by the National Science Foundation
under grant CNS-1261399 and grant CNS-1314770. IvM was supported by the Euro-
pean Union H2020 PQCrypto project (grant no. 645622) and the German Research
Foundation (DFG). RS is supported by NATO’s Public Diplomacy Division in the
framework of “Science for Peace”, Project MD.SFPP 984520.

References

1. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386
(1978)

2. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer,
Heidelberg (2014)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

5. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 36th IEEE Sym-
posium on Security and Privacy (2015)

6. Chen, C., Eisenbarth, T., von Maurich, I., Steinwandt, R.: Differential power analy-
sis of a McEliece cryptosystem. In: Malkin, T., et al. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 538–556. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28166-7 26.
Preprint http://eprint.iacr.org/2014/534

7. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014)

8. Gallager, R.: Low-density Parity-check Codes. IRE Trans. Inf. Theor. 8(1), 21–28
(1962)

9. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011)

10. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg
(2013)

http://dx.doi.org/10.1007/978-3-319-28166-7_26
http://eprint.iacr.org/2014/534

Masking Large Keys in Hardware: A Masked Implementation of McEliece 309

11. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. cambridge
University Press, Cambridge (2010)

12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Netw. Prog. Rep. 44, 114–116 (1978)

13. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of
the IEEE International Symposium on Information Theory (ISIT), pp. 2069–2073.
IEEE (2013)

14. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

15. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

16. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking.
In: Malkin, T., et al. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 27

17. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent SIMON: a threshold implementa-
tion under 100 slices. In: Proceedings of IEEE Symposium on Hardware Oriented
Security and Trust (HOST) (2015)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

19. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In: Design, Automation and Test
in Europe - DATE, pp. 1–6. IEEE (2014)

20. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations
of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014)

21. von Maurich, I., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece
encryption. ACM Trans. Embed. Comput. Syst. 14(3), 44:1–44:27 (2015)

http://dx.doi.org/10.1007/978-3-319-28166-7_27

Fast and Memory-Efficient Key Recovery
in Side-Channel Attacks

Andrey Bogdanov1, Ilya Kizhvatov2(B), Kamran Manzoor1,2,3,
Elmar Tischhauser1, and Marc Witteman2

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{anbog,ewti}@dtu.dk
2 Riscure B.V., Delft, The Netherlands
{kizhvatov,witteman}@riscure.com
3 Aalto University, Espoo, Finland

kamran.manzoor@aalto.fi

Abstract. Side-channel attacks are powerful techniques to attack imple-
mentations of cryptographic algorithms by observing its physical parame-
ters such as power consumption and electromagnetic radiation that are
modulated by the secret state. Most side-channel attacks are of divide-
and-conquer nature, that is, they yield a ranked list of secret key chunks,
e.g., the subkey bytes in AES. The problem of the key recovery is then
to find the correct combined key.

An optimal key enumeration algorithm (OKEA) was proposed by
Charvillon et al. at SAC’12. Given the ranked key chunks together with
their probabilities, this algorithm outputs the full combined keys in the
optimal order – from more likely to less likely ones. OKEA uses plenty of
memory by its nature though, which limits its practical efficiency. Espe-
cially in the cases where the side-channel traces are noisy, the memory
and running time requirements to find the right key can be prohibitively
high.

To tackle this problem, we propose a score-based key enumeration
algorithm (SKEA). Though it is suboptimal in terms of the output order
of candidate combined keys, SKEA’s memory and running time require-
ments are more practical than those of OKEA. We verify the advantage
at the example of a DPA attack on an 8-bit embedded software imple-
mentation of AES-128. We vary the number of traces available to the
adversary and report a significant increase in the success rate of the key
recovery due to SKEA when compared to OKEA, within practical limi-
tations on time and memory. We also compare SKEA to the probabilistic
key enumeration algorithm (PKEA) by Meier and Staffelbach and show
its practical superiority in this case.

SKEA is efficiently parallelizable. We propose a high-performance
solution for the entire conquer stage of side-channel attacks that includes
SKEA and the subsequent full key testing, using AES-NI on Haswell Intel
CPUs.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 310–327, 2016.
DOI: 10.1007/978-3-319-31301-6 19

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 311

1 Introduction

In a Nutshell. Side-channel attacks are powerful techniques to extract cryp-
tographic keys from secure chips. With a few exceptions, they are divide-and-
conquer attacks recovering individual small chunks of the key. For every chunk
of the key, the attack’s divide phase called a distinguisher will assign a rank-
ing value to every possible candidate. Depending on the attack technique, this
value can be a correlation coefficient or a probability value. The output of the
distinguisher is a set of lists of all key chunk candidates and their ranking values.

If the attacker can perform a sufficient number of measurements to reduce
noise, the conquer phase is trivial. The correct full key is obtained by taking
the top-ranking candidate. However, this is rare in practical settings with low
signal-to-noise ratio due to target complexity and countermeasures, and limited
time to perform the attack. In such practical settings, the correct key chunks
are not likely to be ranked on the top of the list, but somewhere close to the
top. Hence, to recover the full key, the attacker needs to perform the search
over different combinations of key chunk candidates. By taking into account
the ranking values coming from the distinguisher, the search can be made more
efficient. The problem is known as key enumeration. More generally, besides key
enumeration, the conquer phase also includes key verification.

Related Work and Motivation. Though most research in side-channel
attacks focuses on the divide phase, there are several papers tackling the issue
of key enumeration. The most recent line of relevant research is the optimal key
enumeration algorithm (OKEA) proposed Charvillon et al. in SAC’12 [14,15].
It is optimal with respect to the order of the full keys by their probabilities.
OKEA is superior to the very similar algorithm of Pan et al. from SAC’10 [10]
in terms of memory use, and to the probabilistic key enumeration algorithm
(PKEA) suggested by Meier and Staffelbach in EUROCRYPT’91 [9] (and well
applicable in the context of DPA and DFA) in terms of the amount of candidates
tried. A dedicated solution for the case of an attack recovering individual bits
was proposed by Dichtl in COSADE’10 [3]. The papers [8,16] include solutions
to tackle the conquer phase as well.

The optimal key enumeration algorithm from [15] has some practical limi-
tations though. First, for practical cases, it consumes a lot of memory and its
performance is hampered by random memory access pattern. Second, it is diffi-
cult to efficiently parallelize on a multi-core CPU1. Thus, we are more interested
in the practical optimality, i.e., an optimality in terms of how much time on aver-
age it takes to find the key on a modern CPU. Previous papers lack a systematic
comparison with respect to this metric.
1 We focus on a common non-specialized platform, namely, on a workstation with a

multi-core CPU. We are fully aware that dedicated platforms, in particular GPUs
and FPGAs, may bring faster smart brute force solutions; they are out of scope of
this work.

312 A. Bogdanov et al.

In an independent work [7], a parallelizable score-based key enumeration
algorithm is presented. It casts the key enumeration problem as a solution to a
multi-dimensional integer knapsack, which is achieved by listing all valid paths
in the respective graph representation. The algorithm is shown to be more effi-
cient than OKEA. The approach also provides efficient key rank estimation by
counting paths in the graph.

Quality Versus Speed. Two aspects are of great importance when searching
for a key: quality and speed. With quality we mean the relation between candidate
generation and the correctness probability of a key candidate. A brute force
algorithm that tries every key candidate in the plain numerical order is likely
to have a bad quality. This is because probable key candidates will not get
precedence over unprobable candidates. With speed we mean how fast subsequent
key candidates are generated. Typically the key verification can be done with
optimized hardware or software implementations of the cryptographic algorithm.
Ideally, the enumeration should be faster than the verification to benefit from
the optimization of the cryptographic implementation.

The overall performance of the approach, i.e. the time it takes to find the
correct key, depends on both quality and speed. In this paper we look at both
factors and find that a high quality may reduce speed and suboptimality may
minimize the search time.

Our Contributions. The contributions of this paper are as follows. First, we
propose a new key enumeration algorithm, namely, the score-based key enumer-
ation algorithm (SKEA), that can find the full key in practice faster than OKEA
and can be efficiently parallelized. Second, we provide a comprehensive compar-
ison of OKEA, PKEA and SKEA in terms of the practical runtime metric for
DPA on an embedded 8-bit software target. Finally, we propose a full solution for
the conquer stage (including key enumeration and testing) for AES that includes
an efficient key verification implementation using AES-NI extensions on Haswell
CPUs.

Thus, our work aims to bridge the gap between theory and practice in key
enumeration and puts forward the importance of the practical metrics for esti-
mating implementation attack complexity.

Part of this work has been first presented in [1,6].

2 Background on Key Enumeration Algorithms

Most side-channel attacks are based on a divide-and-conquer approach in which
a side-channel distinguisher is used to obtain ranking information about parts
(chunks) of the key (“divide”) which is then used to determine candidates for
the complete key (“conquer”). This complete key is the result of a function, e.g.
concatenation, of all the key parts. A key part candidate is a possible value of a
key part that is chosen because the attack suggests a good probability for that
value to be correct.

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 313

For instance, in a side-channel attack on the S-box step of a block cipher, such
a key part comprises all key bits corresponding to a single S-box. The complete
key recovered by the attack would be the concatenation of all such key parts in
one round.

The problem of finding (candidates for) the complete key based on the
observed side-channel information for the key parts is called the key enumeration
problem: For each of the m key parts, we are given a list of key part candidates,
each of which has a certain associated side-channel information (e.g., leakage).
We are then to enumerate candidates for the complete key, ideally in order of
likelihood according to the likelihood of the individual key part candidates.

Several key enumeration algorithms have been proposed, among them the
classic probabilistic algorithm (PKEA) due to Meier and Staffelbach [9], peak
distribution analysis by Pan et al. [10], and the recent optimal key enumeration
(OKEA) by Veyrat-Charvillon et al. from SAC 2012 [15].

Ranking vs. Likelihood. Both PKEA and OKEA require the discrete probability
distribution of each subkey part to be known and computable by the attacker.
In profiled side-channel attacks, the training phase allows the attacker to rank
the key part candidates k for each of the m key parts according to their actual
probabilities Pr(k | Li), with Li denoting the complete available side-channel
information for the i-th key part. In non-profiled attacks, the ranking of key
part candidates is performed according to certain statistics extracted from the
side-channel information, which might not reflect their actual likelihood. In [15],
a method called Bayesian extension has been proposed in order to convert the
ranking statistics into an equivalent probability value based on a certain leakage
model. It essentially does a Bayesian model comparison to obtain the conditional
probabilities Pr(k | Li) from the probabilities Pr(Li | k) which are obtained
according to the leakage model.

2.1 Probabilistic Key Enumeration (PKEA)

At EUROCRYPT 1991, Meier and Staffelbach [9] describe a probabilistic key
enumeration algorithm which we denote PKEA. In their work, the attacker is
assumed to have no knowledge about the key part distributions, but is able to
sample from them. The algorithm then simply samples key parts according to
their individual distributions and tests the resulting complete key candidates.

Besides its simplicity, one of its main advantages is that it only requires
a small constant amount of memory. On the other hand, the most likely key
candidates will occur many times due to the stateless nature of this algorithm,
which leads to unnecessary work duplication.

2.2 Optimal Key Enumeration (OKEA)

At SAC 2012, Veyrat-Charvillon et al. proposed a deterministic key enumeration
algorithm which guarantees to output the key candidates in nondecreasing order

314 A. Bogdanov et al.

of their likelihood [15]. Due to this property, it is referred to as an optimal key
enumeration algorithm, or OKEA.

This algorithm is based on the idea that if the key part candidates for the m
key parts are given in decreasing order of their probability, the m-dimensional
space of all complete key candidates can be enumerated in order of their likeli-
hood by only keeping track of the next most likely candidate in each dimension
(this set of key part candidates is called the Frontier set). By pruning already
enumerated complete key candidates and following a recursive decomposition for
higher dimensions than two, this algorithm generates key candidates in optimal
order without having to keep all possible key part combinations in memory at
any time.

While constituting a significant improvement over both PKEA and the naive
enumeration approach, OKEA is usually memory-bound, which means that even
though keys are enumerated in optimal order, the memory required to keep track
of the (nested) Frontier sets can be prohibitive in practice before the correct key
is found, especially for higher dimensions such as m = 16 for attacks on the
AES. Furthermore, the way the recursive decomposition is performed and the
intermediate results are recombined also makes effective parallelization of OKEA
difficult.

3 Our Score-Based Algorithm (SKEA)

In this section, we introduce SKEA, our proposed score-based algorithm for the
key enumeration problem. Like OKEA, it is a deterministic algorithm. Instead
of guaranteeing an optimal enumeration order, it is intended to be optimized for
practical applicability by only employing a fixed maximum amount of memory
(as opposed to OKEA’s dynamically increasing memory usage) and by being
easily parallelizable.

3.1 Score Concepts

SKEA works with scores which are assigned to each key part candidate based
on the likelihood that it will be part of the correct complete key according to
the available side-channel information.

Scores are integer values, and can be derived for instance from a correlation
value in a side-channel analysis attack, or the number of faults that match with
a candidate key part value in differential fault attack. SKEA can deal with
scores assigned from an arbitrary integer interval [smin, smax], and the size of
this interval will typically be chosen according to the required precision, since a
larger interval means more distinctive possible scores.2

2 For a standard power analysis attack on an 8-bit S-box in AES, computing the score
as �50 |ρ| + 0.5� for a correlation coefficient of ρ, resulting in an interval size of 50,
was found to yield good results (see Sect. 5).

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 315

We furthermore define the cumulated score as the sum of all the key part
scores comprising one complete key. SKEA generates candidate keys by descend-
ing cumulated scores. It starts by generating the key with the largest possible
cumulated score Smax, and proceeds by finding all keys with a score equal to
Smax − 1, and so forth. This property guarantees a certain quality, i.e. good key
candidates will be enumerated earlier than worse ones. Note that candidates
with the same score are generated in no particular order, so a lack of precision
in scores will lead to some decrease of quality.

An Example with m = 4. For simplicity, we will explain the score concept
for m = 4 key parts with 4 candidates each (corresponding to 4 key parts of
2 bits each). This will also serve as a running example to illustrate the SKEA
algorithm. Figure 1 shows a simple example of a score table. The key consists of
columns representing 4 key parts that can have only 4 values. The cells in the
columns contain the sorted scores. Row 0 shows the best scores for all key parts,
while row 3 shows the worst scores. A complete key candidate consists of the
concatenation of selected cells for all columns, having a cumulated score equal
to the sum of the individual scores for each key part. We directly see that the
best cumulated score would be 19, resulting from the sequence {0, 0, 0, 0}, while
the worst cumulated score would be 3, resulting from the sequence {3, 3, 3, 3}.

Fig. 1. Example of a score table for m = 4 and a 2-bit S-box.

3.2 Enumerating Score Paths

SKEA now makes use of the score table in order to enumerate key candidates
in order of decreasing cumulated scores. We refer to a combination of key part
candidates with cumulated score equal to s to a possible score path for score s.
Given a best possible cumulated score of Smax, we then must find all possible
score paths leading to a cumulated score of Smax, followed by Smax − 1, and
so on.

In order to find valid score paths conforming to a certain cumulated score,
SKEA makes use of a simple backtracking strategy. This algorithm essentially
performs a depth-first search, which is efficient because impossible paths can be
pruned early. The pruning is controlled by the score that must be reached for
the solution to be accepted.

316 A. Bogdanov et al.

Fig. 2. Possible score paths conforming to cumulated scores of 19, 18, 17 and 16.

We continue our toy example with m = 4 and 2-bit key parts from Sect. 3.1
by listing all possible score paths s for cumulated scores of 19, 18, 17, and 16 in
Fig. 2.

3.3 Efficiently Eliminating Incompatible Score Paths

To achieve a fast decision process during the backtracking, SKEA makes use of
precomputed tables containing possible ranges of key part selection indices that
may lead to score paths with the desired cumulated score. Suppose we are given
a score table S[i][k] containing the scores of candidate k for the i-th key part.

Cumulated Minimum and Maximum Scores. First we compute tables for minimal
and maximal cumulated scores that can be reached by completing a path to the
right:

cMin[i] = min
k

m−1∑
j=i

S[j][k], 0 ≤ i < m,

cMax[i] = max
k

m−1∑
j=i

S[j][k], 0 ≤ i < m.

When completing a score path from left to right, the cumulated minimum and
maximum score table gives the minimum and maximum score that can be added
by including cells from the current column, and to the right.

Fig. 3. Minimum and maximum cumulated scores

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 317

For our running example, these tables are given in Fig. 3. They show that
by adding only the rightmost column, a minimum of 2, and a maximum of 5
can be added to the score. Likewise, by adding the 2nd, 3rd, and 4th columns a
minimum of 3, and a maximum of 14 can be added to the cumulated score.

Key Part Index Limits. Using the cumulated minimum and maximum tables,
we create two additional tables that hold the indices for completing the path
successfully for a certain desired cumulated score, when proceeding from a score
path up to a given key part index:

iMin[i][s] = arg min
k

(S[i][k] + cMin[i + 1]) ≥ s,

iMax[i][s] = arg max
k

(S[i][k] + cMax[i + 1]) ≤ s,

0 ≤ i < m, cMin[i] ≤ s ≤ cMax[i], cMin[m] = cMax[m] = 0.

Fig. 4. Minimum and maximum indices

In other words, these tables represent for a desired score which minimal and
maximal cell indices in the given column can be used.

For our running example, the corresponding tables are given in Fig. 4. For
instance, if a score of 12 is desired from key part 1 onward, only the candidate
key parts in row 0 and 1 will match.

Altogether, the preparation of these tables enables a fast pruning of impos-
sible paths, and speeds up the selection of proper candidates.

3.4 The SKEA Algorithm

The full SKEA algorithm can then be presented as follows. Given the number
of key parts m and a score table S[i][k] for all key part candidates k for key
part number i, we first use Algorithm 3.1 to precompute the tables containing
the cumulated minima, maxima and corresponding index selection limits. These
tables are then used for efficient pruning in a depth-first search identifying all
possible score paths conforming to a cumulated score equal to Smax, Smax−1, . . .
and so forth, see Algorithm 3.2, where line 2 can be efficiently parallelized.

318 A. Bogdanov et al.

Algorithm 3.1. Generating score bounds for SKEA
Input: Number m of key parts
Input: Score table S[i][k] holding score of candidate k for key part i (0 ≤ i < m)
Output: cMin[i], the global cumulative minima per key part index: For 0 ≤ i < m,

cMin[i] = mink

∑m−1
j=i S[j][k], cMin[m] = 0.

Output: cMax[i], the global cumulative maxima per key part index: For 0 ≤ i < m,
cMax[i] = maxk

∑m−1
j=i S[j][k], cMax[m] = 0.

Output: iMin[i][s], the minimum index for attaining a certain minimum score s start-
ing from key part i: iMin[i][s] = arg mink (S[i][k] + cMin[i + 1]) ≥ s.

Output: iMax[i][s], the maximum index for attaining a certain minimum score s start-
ing from key part i: iMax[i][s] = arg maxk (S[i][k] + cMax[i + 1]) ≤ s.

Algorithm 3.2. Scored-based key enumeration algorithm (SKEA)
Input: Number m of key parts
Input: Score table S[i][k] holding score of candidate k for key part i (0 ≤ i < m)
Output: List L of complete key candidates
1: cMin, cMax, iMin, iMax ← Bounds(S) (using Alg. 3.1)
2: for s = cMax[0] downto cMin[0] do
3: i ← 0
4: k[0] ← iMin[0][s]
5: cs ← s
6: while i ≥ 0 do
7: while i < m − 1 do
8: cs ← cs − S[i][k[i]]
9: i ← i + 1

10: k[i] ← iMin[i][cs]
11: end while
12: add complete key candidate k to L
13: while i ≥ 0 and k[i] ≥ iMax[i][cs] do
14: i ← i − 1
15: if i ≥ 0 then
16: cs ← cs + S[i][k[i]]
17: end if
18: end while
19: if i ≥ 0 then
20: k[i] ← k[i] + 1
21: end if
22: end while
23: end for

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 319

4 Comparison Methodology and Setting

The primary goal of the comparison is to understand which enumeration algo-
rithm finds the full key faster on a typical workstation.

4.1 Methodology

We perform comparison between OKEA, PKEA, and SKEA in an experimental
setting. We run the algorithm implementations on a sample of lists obtained from
CPA of a SW AES implementation. We register the running time for finding the
correct full key. From the collected running times we estimate success rate [12]
of the full key recovery as a function of the running time and the number of
traces used to obtain the lists. This is our main comparison metric.

To make the comparison feasible, we limit the maximum running time and
maximum memory available to the algorithm implementations. The maximum
running time is set to 10 days on a single CPU core. The maximum memory
per core is set to 12 GB (the limitation imposed by the configuration of the
computing cluster we have at hand).

We note that the imposed limits introduce right censoring to the data we
measure. Therefore, computing obvious statistics such as average time to find
the key is not straightforward. This is why we choose to use success rate for com-
parison. Additionally, we analyze and compare the histograms of the obtained
data.

In addition to the execution time, we also register and analyze other para-
meters: the number of key candidates tried and the amount of memory required.
This lets us better understand the behavior of the algorithms.

At this point we compare only the enumeration running time. Full key veri-
fication in the experiment is done by comparison to the known correct full key.
Full key verification for the real-life unknown key setting is addressed in Sect. 6.

4.2 Experimental Setting

1. Obtaining the lists. We obtain the lists of correlation coefficients from CPA
of a SW AES implementation RijndaelFurious [11] running on an 8-bit AVR
microcontroller3. We acquire 2000 power consumption traces and perform 20
independent attacks with up to 100 traces. Each attack is performed in an
incremental way: we obtain the lists for the number of traces varying from
10 to 100. Each attack for a given number of traces results in a set of 16 lists
with 256 correlation values each, together with the corresponding key byte
candidate values.

2. Converting the lists. We convert the correlation values according to the
algorithm requirements. For OKEA and PKEA we use the Bayesian extension
(see Sect. 2). For SKEA we use conversion to integer scores (see Sect. 3.1).

3 The target is chosen only for the sake of efficient comparison; real enumeration on
this target is hardly needed because very small amount of traces is required for
successful CPA.

320 A. Bogdanov et al.

3. Algorithm implementations. For OKEA, we use the open-source imple-
mentation [13]. For PKEA and SKEA, we use our own implementations in C.
All the three implementations are single-threaded. Through a unified wrap-
per, an implementation takes a set of 16 per-key lists and returns the running
time, the maximum memory used, and the number of key candidates tried
in case the correct key is found within the defined time and memory limits.
Otherwise, an out-of-time or out-of-memory notification is returned. We build
all the three algorithm implementations for x86 64 Linux with gcc using full
optimization (-O3).

4. Running the algorithms. We deploy the algorithms to a computing cluster.
The cluster consists of 42 IBM NeXtScale nx360 M4 nodes each having 2 Intel
Xeon E5-2680 v2 CPUs and 128 GB RAM, and 64 HP ProLiant SL2x170z
G6 nodes each having 2 Intel Xeon X5550 CPUs and 24 GB RAM. To ensure
sufficient amount of memory available, we run one experiment instance per
node. We run enumeration experiments for the number of traces starting from
60 down to 42 in steps of 2 or 3. With more than 60 traces, enumeration is not
required as the full key is successfully recovered by combining the topmost
key byte candidates from the lists. With less than 42 traces, the algorithms
fail to recover the key in less than 10 core-days for all the 20 experimental
samples. For OKEA, all the unsuccessful cases are due to out-of-memory error
and not due to the 10-day limit.

5 Comparison Results

First, we visualize the success rate of the full key recovery versus number of
traces for the attack in Fig. 5. The figure shows success rate for different time
boundaries: 10 days (the maximum we could run), 1 day, and 1 h. It can be seen
that SKEA provides distinctly higher success rate, especially when it is possible
to run key enumeration for longer time.

Fig. 5. Success rate of the full key recovery

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 321

Next, we compare memory use and number of key tries for SKEA and OKEA.
Figure 6 shows the empirical dependency of memory use on the number of enu-
merated keys. As expected, OKEA memory use grows with the increase in the
number of key tires, becoming prohibitive in our setting when the full key is in
positions deeper than 232. SKEA memory use does not depend on enumeration
depth. Additional figures are given in Appendix A.

Fig. 6. Memory use versus rank for successful cases

Finally, to understand the relation between the full key rank and the running
time, for the experiments where both SKEA and OKEA succeed we calculate
SKEA-to-OKEA ratio of the full key rank and SKEA-to-OKEA ratio of the
running time. We present the scatter plot of the ratios in Fig. 7. The gray lines
are boundaries where the corresponding ratios are equal to 1, i.e. the algorithms
take the same time resp. make the same number of tries to find the correct
key. The quadrants of the plot relative to the (1, 1) point have the following
interpretation.

– Bottom right: SKEA takes more time and makes less trials.
– Top right: SKEA takes more time and makes more trials.
– Bottom left: SKEA takes less time and makes less trials.
– Top left: SKEA takes less time and makes more trials.

It can bee seen that even when SKEA makes more trials, in most of the cases it
still finds the key faster than OKEA.

From our empirical comparison we conclude that in practice SKEA appears
to be more efficient than OKEA. In particular, it requires less memory, especially
when the number of trials (i.e. the full key rank) is high.

322 A. Bogdanov et al.

Fig. 7. SKEA-to-OKEA ratio of the full key rank versus SKEA-to-OKEA ratio of the
running time

6 Combining with Key Verification

In this section, we discuss how to combine the score-based key enumeration
algorithm with an efficient key verification procedure. For concreteness, we focus
on AES-128 as the block cipher, and on general-purpose Intel CPUs equipped
with the AES-NI instruction set [4,5].

The Setting. We consider an architecture in which both SKEA and the key
verification process are implemented in software on general-purpose CPUs. The
concrete CPU used in our experiments is an Intel Core i5-2400 (Sandy Bridge
microarchitecture) with four cores running at 3.1 GHz. For consistency, Turbo
Boost was disabled during our measurements.

The key candidates enumerated by SKEA are verified by trial encryption
of a small number of known plaintexts and comparing the encryption results
with the ciphertexts produced by the correct but unknown key. It is expected
that one or two blocks of known plaintext will typically be enough to uniquely
identify the key. We note that both the key enumeration (SKEA) and the key
verification can be parallelized.

In order to make optimal use of the available resources, it is desirable to
have a balanced throughput (measured in keys per second) between both the
key enumeration and key verification phases. On our platform, an optimized
implementation of SKEA achieves an enumeration throughput of about 225.7

keys per second. On the other hand, a straightforward implementation of AES
encryption using AES-NI instructions results in a key verification throughput of
only about 224.1 keys per second. This means that roughly three cores doing key

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 323

verifications would be necessary to match the performance of the key enumera-
tion on a single core.

The reason for this low AES throughput is that Intel’s AES instructions are
designed for encrypting large amounts of data with the same key. As a result, the
AES round function instructions are heavily pipelined, while the key schedule
helper instructions are not: On all microarchitectures from Sandy/Ivy Bridge to
Haswell, the aeskeygenassist instruction has a latency of 10 cycles with an
inverse throughput of 8. Since expanding an AES-128 master key requires 10
applications of aeskeygenassist plus some shifts and XORs, this amounts to
a latency of around 100 cycles per key.

6.1 Optimized Parallel Key Verification

A solution to overcome this performance bottleneck is based on the observation
that one can avoid using aeskeygenassist by using the aesenclast instruction
plus pshufb for the S-box step of the key schedule, and then computing the LFSR
manually using SSE instructions [2]. By doing this for four keys in parallel, all
operations can be carried out on 128-bit XMM registers. In pseudocode, the AES
key schedule for four user-supplied keys k1, . . . , k4 is then computed as follows:

register w0: first 32 bits of k1,...,k4

...

register w3: last 32 bits of k1,...,k4

rk1,...,rk4 contain first round keys corresponding to k1,...,k4

loop from r=1 to 11:

pshufb tmp, w3, ROL8_MASK

aesenclast tmp, ZERO

aesenc block1, rk1

aesenc block2, rk2

aesenc block3, rk3

aesenc block4, rk4

pshufb tmp, SHIFTROWS_INV

pxor tmp, RC[r]

pxor w0, tmp

pxor w1, w0

pxor w2, w1

pxor w3, w2

... combine first 32 bits of w0,w1,w2,w3 in rk1

using punpck(l/h)dq and shifts on Sandy/Ivy bridge

or vpunpck(l/h)dq and vpblend on Haswell

... likewise for rk2, rk3, rk4

This way, one can keep the instruction pipeline at least partially filled. On
Sandy/Ivy Bridge, aesenc and aesenclast have a latency of 4; on Haswell,
the latency is 7. The reciprocal throughput is always 1. This means that the
pipeline can be filled completely on Sandy/Ivy Bridge, and to 5/7 on Haswell.
This optimized implementation of the AES key schedule results in an improved
throughput of about 225.5 keys per second on our test platform, yielding a factor
of 2.6 speed-up for the key verification process.

324 A. Bogdanov et al.

With this optimized key verification, we have roughly equal throughput for
both steps, which means that one core for key enumeration can be paired to one
core for key verification.

6.2 Combined Performance Measurements

We provide an overview of the performance of key enumeration, verification and
their combination on our test platform in Table 1. All measurements we averaged
over 200 executions of the algorithm.

Table 1. Performance of combined key enumeration and verification using AES-NI on
a Core i5-2400. All numbers are given in keys per second.

1 core 2 cores 4 cores

(1) SKEA key enumeration 225.68 226.62 227.59

(2) Key verification (naive) 224.10 225.08 226.09

(3) Key verification (optimized) 225.46 226.44 227.41

(1) + (3) combined 223.87 225.39 226.41

Discussion. One can observe that the key enumeration throughput of SKEA
scales basically linearly with the number of available cores. The same essentially
holds for the key verification, both in the straightforward and the optimized
AES-NI implementations. When combining enumeration with verification on a
single core, the overall performance becomes limited by the extent to which AES
instructions and general purpose instructions needed for SKEA (ALU, memory
accesses) can be carried out concurrently while contending for the memory inter-
face. When both enumeration and verification can be assigned to separate cores,
however, the combined performance is essentially equal to the minimum of the
single-core performances of the two individual tasks. Being able to run two copies
of these in the 4-core setup again roughly doubles the achieved throughput. This
indicates that off-the-shelf general purpose CPUs can offer an attractive platform
for the combined key enumeration and verification.

Acknowledgements. We would like to thank Nicolas Veyrat-Charvillon and
François-Xavier Standaert for providing detailed explanations about the Bayesian
extension of non-profiled side-channel attacks introduced in [15].

References

1. Bogdanov, A., Kizhvatov, I., Manzoor, K., Witteman, M.: Efficient practical key
recovery for side channel attacks. MCrypt Seminar in Cryptography, Les Deux
Alpes (2014). http://mcrypt.org/pub/kizhvatov mcrypt.pdf

http://mcrypt.org/pub/kizhvatov_mcrypt.pdf

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 325

2. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 447–466. Springer, Heidelberg (2014)

3. Dichtl, M.: A new method of black box power analysis and a fast algorithm
for optimal key search. J. Cryptograph. Eng. 1(4), 255–264 (2011). Presented in
COSADE’10

4. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer, Heidelberg
(2009)

5. Gueron, S.: Intel Advanced Encryption Standard (AES) New Instructions Set. Intel
Corporation (2010)

6. Manzoor, K.: Efficient practical key recovery for side-channel attacks. Master’s the-
sis, Aalto University, June 2014. http://cse.aalto.fi/en/personnel/antti-yla-jaaski/
msc-thesis/2014-msc-kamran-manzoor.pdf

7. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. Cryptology ePrint Archive, Report 2015/689 (2015).
http://eprint.iacr.org/2015/689

8. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014)

9. Meier, W., Staffelbach, O.: Analysis of pseudo random sequences generated by
cellular automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547,
pp. 186–199. Springer, Heidelberg (1991)

10. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011)

11. Poettering, B.: AVRAES: The AES block cipher on AVR controllers. http://
point-at-infinity.org/avraes/

12. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

13. Veyrat-Charvillon, N.: Key enumeration and key rank estimation software. http://
people.irisa.fr/Nicolas.Veyrat-Charvillon/software.html

14. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.: Efficient implemen-
tations of a key enumeration algorithm. In: COSADE 2012 (2012, in press)

15. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

16. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014)

A Additional Figures
Figure 8 shows empirical distributions (histograms) of the algorithm running
time versus the number of traces for the experiment described in Sect. 4. Bins
are spanned along the vertical axis showing the running time, the value of
each bin is represented by the color intensity, there 200 bins of width 4320 s

http://cse.aalto.fi/en/personnel/antti-yla-jaaski/msc-thesis/2014-msc-kamran-manzoor.pdf
http://cse.aalto.fi/en/personnel/antti-yla-jaaski/msc-thesis/2014-msc-kamran-manzoor.pdf
http://eprint.iacr.org/2015/689
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
http://people.irisa.fr/Nicolas.Veyrat-Charvillon/software.html
http://people.irisa.fr/Nicolas.Veyrat-Charvillon/software.html

326 A. Bogdanov et al.

Fig. 8. Empirical distributions of the algorithm running time

(1 h 12 min). The last (topmost) bin accumulates cases that ran out of time or
(for OKEA) out of memory.

Figures 9 and 10 show memory use and the number of full key candidates
tried before the correct key is found.

Fast and Memory-Efficient Key Recovery in Side-Channel Attacks 327

Fig. 9. Memory use for successful cases

Fig. 10. Number of key tries for successful cases

New Cryptographic Constructions

An Efficient Post-Quantum One-Time
Signature Scheme

Kassem Kalach1(B) and Reihaneh Safavi-Naini2

1 Department of Combinatorics and Optimization and Institute
for Quantum Computing, University of Waterloo, Waterloo, ON, Canada

k2kalach@uwaterloo.ca
2 Department of Computer Science, University of Calgary, Calgary, Canada

Abstract. One-time signature (OTS) schemes are important crypto-
graphic primitives that can be constructed using one-way functions, and
provide post-quantum security. They have found diverse applications
including forward security and broadcast authentication. OTS schemes
are time-efficient, but their space complexity is high: the sizes of signa-
tures and keys are linear in the message size. Regular schemes (e.g., based
on discrete logarithm or factoring problems, and their variants), however,
have very low space complexity but are not time-efficient. Therefore, in
particular, they are not suitable for resource-constraint devices. Many
widely used signature schemes are not post-quantum. In this paper, we
give a signature scheme that has the advantages of the previous two
approaches. It provides constant-size short signatures, and is much more
time-efficient than schemes in the second approach. We prove that our
scheme is post-quantum secure as long as the SVP in ideal lattices is
hard in the presence of a quantum computer. We use SWIFFT: a family
of provable collision-resistant functions, which have efficient implemen-
tations, comparable with that of SHA-256, hence our proposed scheme
could be used on resource-constrained devices.

Keywords: Post-quantum cryptography · Broadcast authentication ·
Digital signatures

1 Introduction

Digital signatures schemes may be grouped into two main categories or types
depending on the two fundamentally distinct approaches of Lamport [25] and
Diffie-Hellman [14], each with its own features and target applications. Here is
a brief overview.

The first type, known as one-time signature (OTS) schemes, is typically
founded on general one-way functions (e.g., SHA-256), and allows to sign one

K. Kalach–The bulk of this research was done when the author was a Post-doctoral
Fellow at the University of Calgary. The author has been a member of the Cryp-
toWorks21 program.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 331–351, 2016.
DOI: 10.1007/978-3-319-31301-6 20

332 K. Kalach and R. Safavi-Naini

message per secret/public key pair. The first scheme of this type was described
in 1976 by Diffie and Hellman [14], based on a suggestion of Lamport, and
eventually published in 1979 [25]. More generally, fixed-time or t-time signature
schemes allow to sign at most t messages using the same key pair; signing more
messages makes the scheme insecure. The parameter t is a positive integer that
must be chosen properly during the setup phase.

The second type involves one-way functions whose security is based on
the computational hardness of some strongly structured mathematical prob-
lems (e.g., the discrete logarithm and factoring problems), and allows to sign
an undetermined number (polynomially bounded) of messages using the same
key pair. They are known as ordinary or regular schemes because the most
deployed schemes, which are variants of ElGamal [18]–DSA, and ECDSA [24]–
and RSA [41], belong to this category. Regular schemes have usually short
keys and signatures. However, they involve time-consuming arithmetic opera-
tions (modular multiplications and exponentiations), particularly inconvenient
for applications on devices with limited resources.

OTS schemes has attractive properties: (i) they can be constructed from
general one-way functions, thus increasing the possible problems on which the
security can be based [4]; (ii) they are usually very computationally efficient; and
(iii) if the one-way function became insecure, then one could replace the function
(e.g. SHA-1 with SHA-2). This is not possible in regular schemes; (iv) impor-
tantly, such one-way functions are quantum secure; one may only need to double
the size of the domain to overcome attacks based on Grover’s algorithm [21].

Applications of OTS schemes are many and diverse. They have been used to
(i) construct on-line/off-line schemes that combine OTS and regular schemes [19];
(ii) transform regular unforgeable schemes into strong ones [23]; (iii) construct
chosen-ciphertext composed encryption schemes [15]; (iv) construct fail-stop
schemes [22]; and (v) provide forward-secure signatures [1] and one-time proxy
signatures [28]. They are also used in broadcast authentication [38,40]. Impor-
tantly, they are used to construct post-quantum digital signatures [8,9].

A signature scheme must provide (0) some well defined security; and should
afford at least some of the following features: (1) short signatures; (2) fast key-
generation, signing and verification algorithms; (3) possibility to sign many mes-
sages per key pair; and (4) short keys. These properties, whose order depends
on the target application, have driven the research on signature schemes.

Important typical shortcomings of OTS schemes are (i) the number of mes-
sages to be signed per key pair is predetermined; (ii) the signature is long; and
(iii) the secret/public keys are also long. Overcoming the last two has moti-
vated much research over the years [4,6,9,16,30,35,39,40,48]. Here we focus on
schemes that are based on (general) post-quantum one-way functions, which are
evolutions of Lamport scheme [25], and have a number of attractive properties.

Here is a review of some schemes that are relevant to our work. Throughout
this work, let f : {0, 1}γ → {0, 1}γ a one-way function with a security parameter
γ, and M an �-bit message. Lamport scheme to sign a 1-bit message b works as
follows. Choose randomly two secrets, x0, x1, and compute their corresponding

An Efficient Post-Quantum One-Time Signature Scheme 333

images under f , y0 = f(x0) and y1 = f(x1). The signing key is SK := (x0, x1)
and the verification key is PK := (y0, y1). The signature is then xb. Any party
can verify the signature by evaluating f on xb and comparing the result with yb

in the public key. The scheme is provably secure, efficient, and simple. However,
there are two main disadvantages: the signature size and keys size are linear in the
message size. Subsequently, this construction has been improved or generalized
over decades [4–6,16,30–32,39,40,48].

The first improvement (M-OTS) is due to Merkle [30,32] who reduced the
keys and signature sizes to almost half on the price of only logarithmic additional
time overhead. Here is briefly the idea. The key generation consists in choosing
random secrets xi and computing the public values yi = f(xi) for 1 ≤ i ≤ t
where t = � + �log �� + 1. To sign a message M , form M ′ = M ||c = (b1, . . . , bt)
where c is the binary representation of the number of zeros in M , then find the
positions i1 < · · · < ik such bij = 1 where 1 ≤ j ≤ k. The signature is then
(s1, . . . , sk) with sj = xij . To verify a signature σ = (s1, . . . , sk) on M , again
form M ′, determine the positions of ones, then accept σ if and only if yj = f(sj)
for all 1 ≤ j ≤ k. More details can be found in [29,46].

Winternitz [30,32] proposed to Merkle the idea, called W-OTS, of signing
several bits simultaneously at the expense of more evaluations of the one-way
function, thus trading time for space. More details are given in Sect. 5.4.

Implicitly based on cover-free families (defined in Sect. 3.1), Bos and Chaum
gave a scheme able to reduce the public key size to almost half, or to decrease
the signature size and verification time at the expense of increasing the public
key length [6]. Signing is by revealing k out of e = 2k secret elements. Reyzin
and Reyzin [40] presented a slight generalization of BC [6], considering a general
k instead of k = e/2. They also proposed an r-time signature scheme HORS
(for Hash to Obtain Random Subset) [40]. For time and space efficiency, they
use random structures instead of explicit CFF constructions. However, the secu-
rity holds using a strong additional assumption: the existence of subset-resilient
functions. The signature scheme can be used r times, for small values of r. How-
ever, the security decreases as r increases. Pieprzyk et al. [39] proposed a t-time
signature scheme (HORS++) that achieves security against t-adaptive chosen-
message attacks, using explicitly a t-CFF. They gave t-CFF constructions based
on polynomials, error-correction codes, etc. However, it “is only of theoretical
interest” [39]. They also extended the scheme to increase the number of messages
to sign, using one-way hash chains.

Based on the discrete log assumption [37], van Heyst and Pedersen gave a fail-
stop scheme (vHP) with signature twice as long as the security parameter [22].
They also gave methods to transform OTS scheme into t-time one. Groth [20]
employed an NIZK proof system to construct a OTS scheme similar to that van
Heyst and Pedersen. Inspired by Pedersen commitment scheme [37], Zaverucha
and Stinson gave a OTS scheme (ZS) with signature size about 273 bits for 128-
bit security, thanks to the algebraic properties of the DLP. However, the latter
has an efficient quantum algorithm [44], and the scheme verification algorithm
is slower than most OTS schemes and ECDSA.

334 K. Kalach and R. Safavi-Naini

1.1 Contribution

We present a new OTS (and t-time signature) scheme that combines the advan-
tages of both reviewed approaches. Indeed, it provides signatures independent
of the message size, thus much shorter signatures, compared with all schemes
based on general one-way functions [3,5,6,25,30,40] (including Winternitz one)
while maintaining the same time complexity.

The scheme is much more time-efficient than regular schemes, which are based
on discrete logarithm or factoring problems and their variants. In particular, it
has very simple and fast signing, requiring only regular additions, and a very fast
verifying, requiring only additions and one evaluation of a hash function. We use
a family of hash functions (SWIFFT), which can have efficient implementations
comparable with that of SHA-256, hence our scheme could be used even on
resource-constrained devices.

The security of the scheme is strongly unforgeable under adaptive chosen-
message attacks and reduced to the security of knapsack functions (SWIFFT),
which are provably collision-resistant assuming the hardness of the shortest vec-
tor problem in cyclic lattices. We give a formal security proof based on cover-free
families and hash functions. On top of that, the scheme is post-quantum secure,
meaning resistant against quantum attacks.

We use a perceived disadvantage of SWIFFT, not pseudo-random due to
linearity, as a feature and use its “conditional” linearity (when the input is
not binary vector) to compress several secrets into one, resulting in a short
signatures. However, there is a main challenge: SWIFFT security holds if the
input is a vector of small coefficients. Adding component-wise many vectors may
result in a vector of large coefficients, and render the function easy to invert or
collide. We give solutions to overcome this issue using some new technical ideas.

1.2 The Scheme High-Level Description

The scheme is based on 1-cover-free families and one-way functions. A w-cover-
free family is a collection B of subsets of a set E with the property that the
union of any w subsets in B will not include (“cover”) any other subset in B.
As observed by Merkle, the one-way function can be viewed as a commitment
scheme. During key generation, the signer commits to randomly chosen secret
elements associated with E by computing and publishing their corresponding
images. This makes the public key. Each message corresponds to a unique sub-
set in B. To sign a message, the signer finds its corresponding subset in B and
typically reveals the secret elements corresponding to this subset. Using the
homomorphic property of SWIFFT, we can add these secrets and effectively
compress them into a single value, making up a short signature. This also pro-
vides faster verification: to verify a signed message, again find the associated
subset in B and add mod p the corresponding public values. Finally, compare
the result with the provided signature.

An Efficient Post-Quantum One-Time Signature Scheme 335

1.3 Paper Organization

The remaining material is organized as follows. Related work are given in the
next section while preliminaries are given in Sect. 3. Our new scheme is the
subject of Sects. 4, and 5 contains our conclusions and future work.

2 Related Work

The literature on OTS schemes and their variants is immense, more details about
this topic can be found in [16,29,46]. Here is a review of some additional related
schemes.

One main disadvantage of OTS schemes is the authentication and manage-
ment of many public keys. Using a complete binary tree and a collision-resistant
hash function, Merkle [30,32] introduced a solution to this problem, which allows
to transform any OTS into a scheme that allows to sign many messages using
one public key.

Naor et al. [36] studied whether OTS became practical by applying recent
improvements in hash tree traversal to M-OTS scheme. In order to provide a
practical efficient broadcast authentication protocol, Perrig proposed an r-time
signature scheme [38] having fast verification and relatively short signatures
when compared with the earlier related schemes. Both efficiency and security
are based on the birthday problem, thus the name “BiBa” (for Bins and Balls).
BiBa’s disadvantages are the signing time, which is longer than that of most
previously similar schemes, and its security considered in the random oracle
model and decreases as r increases.

Bleichenbacher and Maurer formalized the concept of one-time signatures
in terms of acyclic graphs. In particular, they unified the schemes of Lamport,
Merkle, Winternitz, Vaudenay [47], and Even et al. [19]. To solve the problem
of packet source authentication for multicast, Rohatgi [42] presented a hybrid
signature mainly based on a collision-resistant hash function and a commitment
scheme. The scheme improves over the scheme of [19]. In terms of power con-
sumption, Seys and Preneel [43] evaluated ECDSA, M-OTS, W-OTS, HORS
with or without Merkle trees.

Lyubashevsky and Micciancio gave an “asymptotically efficient” one-time
signature scheme [26], which we will try to compare with our scheme. Mohassel
gave a general construction for transforming any chameleon hash function to
strongly unforgeable OTS schemes, in addition to instantiations based on the
hardness of factoring, discrete-log, and worst-case lattice-based assumptions [35].

3 Preliminaries

The symbol ‘⊗’ is used for vector convolution, and ‘·’ to emphasize scalar mul-
tiplication, and [k] = {0, . . . , k} for integer k. The logarithm base 2 is denoted
by log.

336 K. Kalach and R. Safavi-Naini

3.1 Cover-Free Families

Definition 1 (Cover-free Families). A set system (E,B) is called a k-uniform
w-cover-free family if E is a finite set of e elements (or points), B is a collection
of s subsets (or blocks) of size k, and for all Δ ⊂ E with |Δ| = w and all i /∈ Δ,
it holds that ∣∣∣∣∣∣

Bi \
⋃
j∈Δ

Bj

∣∣∣∣∣∣
≥ 1.

A w-cover-free family with e elements and s subsets is denoted by w-CFF (e, s).

In this work, we consider k-uniform 1-CFF where each subset has size k,
and any two distinct subsets in B differ on at least one element. Importantly,
a 1-CFF has optimal construction, which consists of setting k = �e/2�. Indeed,
there is a simple encoding algorithm that requires k subtractions (or additions)
and about e comparisons using some pre-computation; it is well explained in
[3,48]. In practice, encoding is twice faster than MD5 hashing, assuming MD5
requires 500 arithmetic operations [3]. The algorithm and more details are given
in Sect. 5.3

3.2 Compact Knapsack Functions (SWIFFT)

A family of SWIFFT functions [27] is described by three main parameters: power
of 2 security parameter n, small integer m > 0, and modulus p > 0. Define
R = Zp[α]/(αn +1) to be the ring of polynomials in α having integer coefficients
modulo p and αn + 1. Any element of R can be written as a polynomial of
degree smaller than n with coefficients in Zp = {0, 1, . . . , p − 1}. An instance of
the family is specified by m fixed elements a1, . . . , am ∈ R. These elements (or
multipliers) must be chosen uniformly and independently. The function output
then corresponds to the following algebraic expression:

f(x) =
m∑

i=1

(ai ⊗ xi) ∈ Z
n
p

where x1, . . . , xm are polynomials in R with binary coefficients, and correspond
to the input x ∈ {0, 1}n×m. These functions are provably collision-resistant.

The security of the functions depends on the choice of the parameters, in
particular the domain. In [26], R = Zp[α]/(αn + 1) where n is power of 2, the
domain D = {y ∈ R : ‖y‖∞ ≤ d} for some d; m > log p

log 2d ; and p > 4dmn1.5 log n.
Originally [34], the domain was D = {0, . . . , �pδ�}n for positive δ. In practice,
for most efficient FFT, p will be a prime such that p − 1 is multiple of 2n [27].
Here ‖y‖∞ is the infinite norm of y. Unfortunately, the exact value of d is not
known yet, it is a work in progress [33].

An Efficient Post-Quantum One-Time Signature Scheme 337

3.3 OTS Security Definition

The standard security notion for digital signatures is the (existential) unforge-
ability under adaptive chosen-message attacks, which can be modelled using
the following security game between a challenger and an adversary. Consider
DSS = (Gen, Sign, Ver) with some security parameter η, message space, and
polynomial-time (in η) quantum adversary A.

1. Run Gen(1η) to obtain a signing secret key SK and corresponding verification
public key PK.

2. Give A the public key PK and a signature for at most one message. Let M1

be the query asked by A and σ1 its corresponding signature.
3. A finally outputs (M,σ).

An adversary A (existentially) forges a signature, or wins the unforgeability
game (uf-cma) for DSS, if Ver(PK,M, σ) = 1 and M �= M1. Let PROBuf-cma

DSS,A
denote the probability that A forges a signature taken over the random bits of
the challenger and adversary; symbolically

PROBuf-cma
DSS,A = Pr[(M �= M1) ∧ Ver(PK,M, σ) = 1].

An adversary A is said to (t, ε)-win the security game if (M,σ) is output in time
t such that PROBuf-cma

DSS,A = ε.

Definition 2 (uf-cma OTS post-quantum security). A signature scheme
is (existentially) unforgeable under chosen-message quantum attacks, or secure,
if every polynomial-time quantum adversary forges a signature, or wins the
unforgeability experiment, only with probability negligible in the security para-
meter.

This definition is the same as the standard classical one except that it con-
siders quantum attacks. These attacks are captured in the security game, and
model the real life scenarios of (classical) OTS schemes. More precisely, A can
make use of any quantum computation (or communication) such as evaluating
the hash function in superpositions. On the other hand, A cannot do queries
in superpositions to the signing oracle, since the signing algorithm is controlled
by a key only known to the signer, and signs one message at a time. In this
definition, we assume that the scheme is implemented on a classical computer,
otherwise it may require a different security model.

In this framework, systems based on DLP or factoring are not post-quantum
because of Shor’s quantum polynomial time algorithm for these problems [44].
However, this is not the case for SVP on which the security of SWIFFT functions
are based.

Dedicated discussions about the requirements for the quantum security of
classical schemes, which are satisfied in this work, are established by Song [45].

338 K. Kalach and R. Safavi-Naini

4 The New Scheme

In this section we describe our new signature scheme, give its formal proof of
security, analyze its time and space complexity, and compare it with selected
work. We also provide concrete parameters for a practical security level.

4.1 Scheme Description

We consider without loss of generality signatures of �-bit messages M ; longer
messages can be adapted to this length using some secure hash function. We
first give our OTS signature scheme, which can easily be extended into t-time
signature one using standard techniques.

Setup: Consider an optimal k-uniform 1-CFF(E,B) with E = {1, 2, . . . , e}, and
choose parameters e and k such that

(
e
k

)
≥ 2�. An optimal 1-CFF requires that

k = �e/2�. Let S : {0, 1}� → B be a bijection that maps a message 0 ≤ M <(
e
k

)
into the Mth element of B denoted by BM . A very efficient constructive

algorithm of this bijective is discussed in Sect. 3.1.
Let f : {0, 1}nm → Z

n
p be a SWIFFT function where m, n, and p are the

main parameters. The function also maintains its security even in a domain for
small entries (see Sect. 3.2), this is needed for the security proof.

Key Generation: Choose randomly secret elements x1, . . . , xe ∈ {0, 1}nm and
compute their images yi = f(xi) for i = 1, . . . , e. Output the secret signing key
SK := (x1, . . . , xe) and the public verification key PK := (y1, . . . , ye).

Signing: To sign a message M using SK, compute the k-subset BM ∈ B, then

σ :=

(∑
i∈BM

xi

)
∈ [k]nm .

Verification: Given (M,σ, PK) as input, to verify whether σ is a valid signature
for M using PK, compute BM , check that σ ∈ [k]nm and output 1 if and only if

f(σ) =

(∑
i∈BM

yi mod p

)
.

Output 0 otherwise.

Remark 1. Since k < p is always the case in this work, the signature is actu-
ally the component-wise addition of k binary vectors of dimension nm, thus a
vector in [k]nm. Consequently, signing becomes much faster being reduced to
component-wise counting, which can be done in parallel.

An Efficient Post-Quantum One-Time Signature Scheme 339

Remark 2. The functions are linear if addition is done in Zp but not in Z2. This
is straightforward to verify viewing the algebraic expression of f with nmmul-
tipliers a1, . . . , am and input x ∈ {0, 1}nm as the matrix-vector product Ax.
The matrix A is obtained from the skew-circulant matrices of ai for 1 ≤ i ≤ m
(Sect. 3.2). Consequently, Ver will output 1 whenever presented with a valid
signature. Mathematically, the verification process is easy to validate:

f(σ) = Aσ = A

(∑
i∈BM

xi

)
=

∑
i∈BM

Axi =
∑

i∈BM

f(xi) =
∑

i∈BM

yi mod p .

4.2 Security Proof

Theorem 1. If A is a quantum adversary that (t, ε)-wins the unforgeability
security game for our one-time signature scheme, then A can be used to (t+c, εc′)
find function collisions where c, c′ are constants.

Proof. Let DSS denote our one-time signature scheme, and assume that A
queries a signature σ1 for one message M1 and outputs (M,σ) with M �= M1,
which can be verified using PK; meaning Pr[Ver(PK,M, σ) = 1] ≥ ε.

Informally, forging a signature σ for a new M after obtaining a valid signature
for M1 is reduced to find collisions in SWIFFT functions. Considering the post-
quantum security of the function, this cannot be done in polynomial time even
using quantum computers. Otherwise, we could use the quantum forger to find
collisions in the functions. Note that a quantum forger can always have some
speedup over a classical one using Grover’s search [21], reducing the adversary
complexity by a square root at most. However, this is not considered in theory.

We now proceed with the formal proof. We devise a (quantum) algorithm
A′A that uses A as a subroutine to find function collisions in time in the order of
t with probability “close” to ε. Given access to f and other public parameters,
the collision-finding algorithm A′A works as follows.

1. Create an instance of DSS using f
(a) Choose xi ∈ {0, 1}nm and set yi = f(xi) for all i ∈ [e].
(b) Run A on PK = (y1, . . . , ye) and all other system parameters.

2. When A queries a signature for M1 do
(a) Compute BM1 ;
(b) Return σ1 :=

∑
i∈BM1

xi.
3. When A outputs (M,σ)

(a) Return σ.

We now analyze the behaviour of A′A. First of all, it runs in time in the
order of t (running time of A). Indeed, the steps 1, 2 and 3 take a constant
time. In Step 1, PK is exactly distributed as in the real execution. In Step 2,
A′A answers similarly to a real execution the adaptive query made by A since
it knows all the secrets. Therefore, A′A can answer any signature query with
probability one.

340 K. Kalach and R. Safavi-Naini

Next, we prove that the reduction succeeds in outputting a collision when
A makes a forgery, and compute the probability of finding a collision. Let
σ̄ =

∑
i∈BM1

x̄i be the legitimate signature, and σ =
∑

i∈BM
xi. There are

the following cases in which f(σ) = f(σ̄) =
∑

i∈BM
yi mod p :

1. σ = σ̄ with σ �= σ1;
2. σ = σ̄ with σ = σ1;
3. σ �= σ̄.

The objective now is to show that the probability of the first two cases is
negligible. Case (1) happens with probability smaller than 2−nm. Indeed, σ̄ is
not known to the adversary, and it requires at least one uniformly distributed
secret value in {0, 1}nm since |BM \ BM1 | ≥ 1. The only thing A knows about
σ̄ is that it is the sum of at least one uniformly secret nm-dimensional binary
vector, which was not considered beforehand, and other values in [k]nm, which
may be part of σ1 (see Lemma of Sect. 5.1).

Case (2) essentially happens with the same probability as the first case since it
reduces to the problem of finding a different k-subset of elements in the SK that
sums to σ. Again, this requires at least one element in {0, 1}mn. The probability
of this even is upper bounded by one over the number of possible distinct k-
subset sums, meaning in the order of 2−nm.

Case (3) happens with complementary probability exponentially close to 1.
Accordingly, A′A can find a collision whenever A makes a forgery. The proba-
bility of this event is

PROBf (A′A) ≥ PROBuf-cma
DSS,A · (1 − negl(nm)).

Given that f is collision-resistant, PROBf (A′A) is negl in nm when t = poly(n).
Therefore, PROBuf-cma

DSS,A is negligible. In conclusion, the security of the signature
scheme is reduced to the collision-resistance. This ends the proof.

Keep in mind that the security proof holds for quantum adversaries. The only
difference may arise in the concrete sense where the success probability may be
slightly larger because of some non-significant quantum search speed-up.

Remark 3. We now discuss a tricky point related to the function security, which
depends on the domain (see Sect. 3.2). The coefficients of σ are in [k/2] on the
average. Now, if k/2 is so large that σ violates the domain constraint, then the
signature may be a vector in Z

nm
p for which the function is easy to invert or

have collisions. If this is the case, then an adversary may choose some M , com-
pute BM , add the corresponding values in the public key, giving y =

∑
i∈BM

yi

mod p, then output the inverse of y as a forgery. To avoid this concern, it is suf-
ficient to choose k appropriately. Fortunately, this is always possible by several
means. First of all, k is smaller than p for any set of parameters, in particular
k < p/2 since k ≤ e/2. Second, we can always trade large p for time (or space);
the domain is D = {0, . . . , �pδ�}n for positive δ.

An Efficient Post-Quantum One-Time Signature Scheme 341

Strong Unforgeability. In the strong unforgeability game means that a new
signature σ �= σ1 on a previously signed message M1 is also a forgery. Our scheme
is strongly unforgeable, and the proof is reduced to the collision case. Note that
this is not the standard definition, but may be useful in some cryptographic
applications.

4.3 Asymptotic Evaluation

We give in this section an asymptotic comparison with the most related work,
summarized in Table 1, and a concrete evaluation is given in Sect. 4.4. We com-
pare with (stand-alone) OTS schemes because they can be used as building
blocks (without Merkle tree), even beyond digital signatures, and determine the
overall efficiency when used with Merkle trees [3,7,9,16,30,36]. We classify the
schemes into categories, compare the schemes in each category, then compare
the categories together.

In order to provide a reasonable evaluation, the time complexity is measured
in terms of the number of evaluations of a general one-way function (OWF),
SWIFFT function (our case) or explicit arithmetic operations. To give the reader
a more concrete feeling about the timing, it is useful to recall of the following.
Although SWIFFT competes with SHA-3 (see Sect. 5.2), we assume that it is
multiple times slower. On the other hand, an implementation with the crypto++
library indicates that an exponentiation in a 160-bit group costs about 3 300
hashes [2]. Therefore, it is fair to assume that working in a 224-bit or 256-
bit group still requires few thousands hashes of (OWF or SWIFFT) function.
Finally, message encoding is twice faster than MD5 hash [3], see Sect. 5.3 for
more details.

OWF-based Schemes. Efficient schemes based on general one-way functions
essentially have the same time and space complexity. Indeed, the schemes BC,
BCC, RR, BTT, etc. [3,6,39,40] are more general and more efficient than L-OTS
[25]. We refer to them as BC (category) since they have the same time and space
complexity when using 1-CFF, and BC scheme was the first to use the optimal
setting. They provide post-quantum security and very efficient time complexity.

M-OTS and BC also have the same space and time complexity essentially.
Indeed, we found that � < e because 2� ≤

(
e
k

)
is necessary to sign �-bit messages,

and it is known that
(

e
k

)
< 2e. Therefore, we don’t loose much by assuming that

e ∼ �̃ = �+ �log �� + 1. M-OTS signature size is γ�̃/2 bits (on the average) while
BC signature is γe/2.

It is also relevant to discuss W-OTS, whose signature size (or communica-
tion cost) drops linearly in its parameter w while the computational cost grows
exponentially. Therefore, any performance gain, if any, is only possible for small
values of w. Indeed, a theoretical result [16] claims that W-OTS is most efficient
when w = 2, and practical one recommends w = 4 since it is fast and give
relatively short signatures. Another result [43] says that the minimum power
consumption cost occurs when w = 2. In Table 1, the key generation costs is

342 K. Kalach and R. Safavi-Naini

Cgen = (2w − 1) ˜�/w while the signing and verification are Cgen/2 on the aver-
age. However, W-OTS is unique in that the public key is not needed to be a part
of the signature using Merkle tree.

The main disadvantage of such schemes is the space complexity, which is
linear in the security parameter. However, the secret key can be reduced to a
single seed using a pseudo-random number generator (PRNG), and the public
key can be reduced to a single value using some hash function. These are common
techniques [4,8,16,36]. Thus, the most challenging limitation for these schemes
is the signature size, which we improve significantly in this work.

DLP-based Schemes. The scheme of van Heyst and Pedersen (vHP) (and
Groth [20]) essentially provides the best balanced performance using the minimal
assumption (DLP). Bellare and Shoup scheme [2] provides the shortest keys and
best time complexity. However, they use a collision-resistant hash function and
DLP, and did not improve the signature size. Mohassel scheme provides a nice
theoretical constructions, but using a target collision-resistant function (TCRF)
and without practical advanatge. Zaverucha and Stinson scheme provides the
shortest signatures using only DLP, but on the expense of much slower key-
generation phase and longer public-keys. None of them is post-quantum.

DLP-based Schemes vs BC. BC is post-quantum secure and provides very
efficient time complexity; this is true even compared with any signature scheme.
DLP-based ones provide much better space complexity, however, they are much
slower and not post-quantum.

Our Scheme vs the Others. Our scheme is time and space efficient, providing
the advantages of both approaches. First of all our signature size is independent
of the message size, which is not the case for all schemes based on general
one-way functions. Consequently, it is much shorter, which improves the main
limitation of this category (BC). The key generation and signing algorithms are
essentially as efficient as those of BC. The time of key generation is equivalent
to e evaluations of an efficient hash function. The only difference is that we
use SWIFFT functions, which are competitive with SHA-3 (see Sect. 5.2). Now,
the signing is very efficient requiring only encoding, and regular additions of
k binary vectors, which is very fast and can be done in parallel. Thus, it is
dominated by the encoding algorithm, which is very efficient (see Sect. 5.3). Our
verification algorithm requires k additions in Z

n
p , one evaluation of SWIFFT and

one comparison, in contrast with k evaluations and k comparisons in BC.
Comparing with DLP-based schemes, our scheme has (i) a much faster key

generation, requiring e evaluations, in contrast with at least two modular expo-
nentiations in any of the DLP-based schemes; in particular it is much faster
ZS one; (ii) a faster signing, requiring regular additions, in contrast with group
additions or multiplications; (iii) a much faster verification, requiring k modular
additions and one function evaluation, in contrast with modular exponentia-
tions. Further more, our scheme is post-quantum assuming the shortest vector

An Efficient Post-Quantum One-Time Signature Scheme 343

Table 1. Asymptotic comparison: γ and λ are security parameters for OWF and DL,
respectively, and � is the message length. Here x̃ ≤ x + log x + 2, seed is 128 bits, and
Cgen = (2w − 1) ˜�/w. Arithmetic: count (add binary vectors), add (modular addition),
mult (modular multiplication), exp (modular exponentiation).

Security Time (function evaluations) Space (bits)

Scheme Func PQ Gen Sign Ver SK PK σ

L-OTS OWF Yes 2� – � seed 2�γ �γ

M-OTS OWF Yes �̃ – �̃ seed �̃γ �̃γ/2

W-OTS OWF Yes Cgen ≈ Cgen/2 ≈ Cgen/2 seed (˜�/w)γ (˜�/w)γ

BC . . . OWF Yes e ≈ �̃ encode k eval seed eγ kγ

vHP DLP No 4 exp 2 mult 3 exp 4λ 2λ 2λ

2 mult 2 add 2 mult

BS DLP No 2 exp 1 mult 1 exp 2λ λ 2λ

CRHF

Moh DLP, No 5+exp 2 mult 5+exp 5λ 4λ 2λ

TCR 4 add

ZS DLP No 2e exp k add 2 exp seed O(λ�) λ + c

e mult encode k mult

This work SWIFFT Yes e eval k count 1 eval seed en log p mn log k
2

encode k add

problem in idea lattices is hard for quantum computers. However, our signature
is much longer because of SWIFFT input size.

Note that there is an encoding step during verification (Ver) whenever there is
one during signing (Sign). However, we do not show it in Table 1 for convenience
because it is so efficient that it is dominated by the other operations.

Lattice-Based OTS Schemes. For completeness, we compare with related
OTS schemes based on knapsack functions. Lyubashevsky and Micciancio gave
a direct construction of OTS scheme, which is asymptotically efficient [26] and
whose idea is the following. The scheme is parametrized by integers m,n, k; a ring
R; subsets of matrices H ⊂ Rn×m, K ⊆ Rm×k; and vectors M ⊆ Rk, S ⊆ Rm.
The parameters should satisfy certain properties for the scheme to be secure.
The underlying hardness assumption is the collision resistance of a linear hash
function family mapping S into Rn. The secret key is a matrix K ∈ Rm×k while
the public key consists of a matrix H ∈ Rn×m along with the matrix product
HK. To sigh a message v ∈ Rk, compute σ = Kv. To verify (σ, v), check that
v ∈ S and Hσ = HKv. Choosing R = Z[x]/(xn + 1) and R = Zp produces a
scheme based on the Ring-SIS and SIS problem, respectively.

There is some connection with our scheme, however, it is not easy to provide a
comparison since the paper does not contain concrete or asymptotic evaluation,

344 K. Kalach and R. Safavi-Naini

or a comparison with any previous work. We can still observe the following.
Our signing algorithm is simply the component-wise addition of binary vectors,
instead of matrix multiplication, and our verification algorithm requires only
one matrix multiplication and ring elements additions instead of two matrix
multiplication. Our scheme use a different encoding technique, and able to sign
a message without being encoded as a vector. It is not clear how these differences
may affect the concrete efficiency. Thus, a future careful comparison is important.

SWIFFT was suggested in [10] to implement the general one-way function in
W-OTS, arguing that it has provable security. However, SWIFFT requires input
at least 4 times larger than SHA-3 for the same security level, thus making the
signature at least 4 times more.

4.4 Concrete Parameters

For a concrete security level and more accurate comparison with other work,
we select parameters to sign messages of size � = 224 bits, and provide classical
security level of 112 bits; quantum ones may be part of a future work. Therefore,
we can use SHA-224 or SHA-256, which are suitable collision-resistant hash
functions for digital signatures. While 80-bit security level is disallowed after
2014, 112-bit level is acceptable until 2030 according to NIST recommendation
in July 2012 [17]. We will consider two possible implementations of the OWF
depending on the output lengths γ = 224 or 128.

As with elliptic curve cryptography in general, the bit size of the public key
believed to be needed for ECDSA is about twice the size of the security level,
thus the group order q should have 224 bits.

For SWIFFT with n = 64, m = 16 and p = 257, the known algorithms to
invert a function have about 2128 time and space complexity, and those to find
collisions takes time at least 2106 and requires almost as much space. Since the
security of our scheme reduces to the collision resistance, we assume randomized
hashing [12] is used so that known algorithms to find collisions require at least
2112 time complexity. We can always increase n, but it would be too much unless
a security level much larger than 112 bits is desired. Finally, the output length
is about 512 bits, which “can easily be represented using 528 bits” [27].

Considering 224-bit messages to sign, optimal 1-CFF is obtained by setting
e = 229 and k = 114 so that

(
229
114

)
> 2224. However, we consider the minimum

k satisfying this inequality, which is k = 107. This relaxation mainly allows to
have small coefficients and slightly shorter signatures.

Table 2 shows that our scheme provides signatures of 6 144 bits (0.75 KB) on
the average, which is the shortest among all schemes based on general one-way
functions, including Winternitz, and essentially keeps the same time efficiency.
Our signing (and verification) is faster than W-OTS even for its typical value w =
3. In any case, our scheme provides multiple times shorter signatures (even using
OWF with 128-bit output length), and the most efficient verification algorithm,
which is dominated by one evaluation of SWIFFT. Our PK is 14.76 KB, which
is the longest among all schemes. This fact is due to the function output length.

An Efficient Post-Quantum One-Time Signature Scheme 345

Table 2. Concrete evaluation with the most related efficient work. Security level 112
bits; W-OTS parameter w = 2, 3; � = 224 bits.

Security Time (function evaluation) Space (bits)

Scheme OWF PQ Gen Sign Ver SK PK σ

W-OTS SHA-224 Yes 351 176 176 seed 26,208 26,208

Yes 553 277 277 seed 17,696 17,696

BC SHA-224 Yes 229 encode 107 seed 51,296 23,968

vHP DLP No 4 exp 2 mult 3 exp 896 448 448

2 mult 2 add 2 mult

ZS DLP No 458 exp encode 2 exp, seed 51,296 241

229 mult 107 add 107 mult

Ours SWIFFT Yes 229 107 count 107 add, seed 120,912 6,144

encode 1 eval

However, the public key size is not a main concern and can be reduced using a
standard technique.

Comparing with DLP-based schemes, our scheme has much better time com-
plexity, but longer signatures due to the SWIFFT input length. The ZS signature
size is 241 bits. However, the key generation time takes 458 exponentiations.

Note that our verification algorithm is the fastest one among all schemes
considered in this work.

Finally, observe that the signature coefficients are now in [0, 54] on the aver-
age, which are considered to be small mod 257. If smaller values are needed,
then we use the solutions of Remark 3. For example, we can use p = 641, which
slightly increases the PK size.

Using AES128-Based OWF. The OWF may be implemented using primi-
tives with smaller output length, using AES-128 for instance. Even in this case,
our scheme improves on the most efficient scheme, W-OTS with w = 3, where
the signature is 10 112 bits (1.65 times longer than our signature), and the key
generation is 553 evaluations.

4.5 General CFF

There are essentially two methods to convert a OTS scheme into t-time signature
scheme, Merkle hash tree and w-CFF with w > 1. The first one was mentioned
earlier and is a standard technique, so we only comment on the general type of
CFF.

A w-CFF with w > 1 allows to turn a OTS scheme into many/multiple-time
scheme with relatively efficient time-complexity. However, the keys size becomes
so large (hundreds of Mb to sign 1000 messages) that they become impractical.
In theory too, it turns out that signing w messages using w instances of a 1-CFF

346 K. Kalach and R. Safavi-Naini

instead of using a single w-CFF would reduce storage by a factor of w/ log w [48].
The main advantage of 1-CFFs is their simple and efficient optimal construction,
which also give easier reduction. A drawback is that the number of public keys
to manage increases, but this can be solved using Merkle hash tree.

5 Conclusion and Future Work

We gave a one-time (and fixed-time) signature scheme that keeps the useful prop-
erties of those based on general one-way functions (post-quantum security and
time-efficiency) while providing shorter signatures, thus improving significantly
the main limitation of such schemes. Our verification algorithm is dominated by
one evaluation of the hash function, which is a unique feature among all other
related schemes. Accordingly, our scheme may be convenient for applications
running on devices of limited resources.

Regular schemes (based on DLP and factoring) are insecure against quantum
adversaries while our scheme is reduced to the security of SWIFFT functions,
which are post-quantum collision-resistant as long as the SVP in ideal lattices is
hard for quantum computers. Besides, our scheme is much more time-efficient.
On the other hand, our signatures (and keys) are multiple times longer because
of the function input and output length.

This work arises several possible extensions. A first one may be implementing
the scheme, with or without Merkle tree, in order to provide more concrete eval-
uations. It is also important to provide a more accurate analysis of the concrete
parameters involved in the security level. In particular, SWIFFT security level
was estimated using the “best known” classical attack. Therefore, a future work
should accomplish more detailed analysis of the parameters, and consider the
best known quantum attacks.

An important work would be to improve further the signature (and prefer-
ably the keys) size. A straightforward method would be to find some family of
functions having some homomorphic properties with small input (and output)
size. The current function has input size that is 4 to 8 times larger than the gen-
eral functions. Another important work would be to design an efficient t-time
signature scheme, even for small t, without using Merkle tree.

Acknowledgments. The authors would like to thank Anne Broadbent for her com-
ments on an earlier version of this paper, Andreas Hülsing for helping in the security
proof, John Schanck for discussions on lattices, and Fang Song for discussions on the
reduction of an earlier version. The authors would also like to thank the anonymous
reviewers for their valuable comments.

This work is in part supported by Natural Sciences and Engineering Research
Council (NSERC) of Canada, and CryptoWorks21.

An Efficient Post-Quantum One-Time Signature Scheme 347

Appendix: Other Useful Material

5.1 Technical Lemma

Lemma 1 ([48]). Let χn be the probability distribution on [n2�] defined as χn =
X1 + . . . Xn where Xi is the uniform distribution on [2�]. The min-entropy of χn

is then at least � bits.

5.2 SWIFFT Implementation

SWIFFT has efficient software implementations using number-theoretic or mod-
ular arithmetic FFT algorithm and its inherent parallelism for implementing
multiplication. Importantly, the more the numbers are large the faster the FFT
is when compared with the most efficient multiplications algorithms, which is
in favour of FFT in the context of cryptography [13]. It was implemented using
C and compiled using gcc version 4.1.2 on a PC running under Linux kernel
2.6.18 [27]. Tests on a 3.2 GHz Intel Pentium 4 show that the basic compression
function can be evaluated in 1.5 μs on the above system, yielding a throughput
close to 40 MB/s in a standard chaining mode of operation. For comparison,
SHA-256 was tested on the same system using the highly optimized implemen-
tation in openssl version 0.9.8 (using the openssl speed benchmark), yielding a
throughput of 47 MB/s when run on 8 KB blocks.

5.3 Encoding Algorithm

Cover-free family constructions and encoding algorithms have been studied in
detail, and several approaches have been proposed [6,11,39,40]. In this work, we
consider k-uniform 1-CFF where each subset has size k, and any two distinct
subsets in B differ on at least one element. Importantly, 1-CFFs have an opti-
mal construction, which consists of setting k = �e/2�. Indeed, there is a simple
and very efficient “ranking” algorithm, which is described in [3,48] and due to
Cover [11]. The encoding algorithm requires k subtractions (or additions) and
about e comparisons using some pre-computation. Here is the pseudo-code by
Bicakci, Tung, and Tsudik [3] after their quotation; “To put things in perspec-
tive, consider that a single MD5 hash computation requires approximately 500
arithmetic operations. Thus, our mapping (in both directions) costs less than
one MD5 hash.”.

Input : Message m, set E=[1,e], subset size k;
Output: Unique k-subset of E (k-dimensional vector a);
q:=1;
for i=1 to k do

while m > Binomial(e-q,k-i) do
m:=m - Binomial(e-q,k-i);
q:=q+1;

end while;

348 K. Kalach and R. Safavi-Naini

a[i]:=q;
q:=q+1;

end for;

For example, to encode 3-bit messages, we need a set of size 5 and subsets of
size 2 so that the total number of subsets is at least 23 = 8.

S(1)= [1, 2]
S(2)= [1, 3]
S(3)= [1, 4]
S(4)= [1, 5]
S(5)= [2, 3]
S(6)= [2, 4]
S(7)= [2, 5]
S(8)= [3, 4]
>

5.4 Winternitz OTS (W-OTS)

Winternitz [30,32] suggested to Merkle the idea, called W-OTS, of signing several
bits simultaneously on the expense of more evaluations of the one-way function,
thus trading time for space. Given a small positive integer w, the secret key is
SK := (x1, . . . , xt) and public key is PK := (y1|| . . . ||yt) where yi = f2w−1(xi).
Here t = ��/w� + ��log 2w�/w�/w� and fk means the k-fold composition of f
with itself. To sign an �-bit M , split it into w-bit blocks (including a check sum),
d1, . . . , dt, then the signature is (s1, . . . , st) where di is treated as an integer and
si = fdi(xi) for 1 ≤ i ≤ t. Verifying consists in forming the blocks as before,
computing yi = f2w−1−di(si), and accepting if and only it verifies with PK.

5.5 Signing Many Messages

It is easy to transform our OTS scheme into a t-time signature scheme, using the
same techniques as for schemes based on OWF. Indeed, the security game can
be generalized as follows. Run the key generation algorithm t times to obtain
SK1, . . . , SKt and PK1, . . . , PKt. Give A the keys PKi for 1 ≤ i ≤ t and
signatures for at most t adaptive messages, one signature per key, where t is
a polynomial in the security parameter. Let Q = {M1, . . . ,Mt} be the set of
queries asked by A and {σ1, . . . , σt} the corresponding signatures. Finally, A
outputs (M,σ, i). The probability that A forges a signature is defined to be
PROBuf-cma

DSS,A = Pr[(M /∈ Q) ∧ Ver(PKi,M, σ) = 1]. Note that the signature
now include a number i to indicate the PK with which to verify. However, the
standard approach to sign many messages is to use Merkle tree.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000)

An Efficient Post-Quantum One-Time Signature Scheme 349

2. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

3. Bicakci, K., Tung, B., Tsudik, G.: How to construct optimal one-time signatures.
J. Comput. Netw. 43(3), 339–349 (2003)

4. Bleichenbacher, D., Maurer, U.M.: Directed acyclic graphs, one-way functions and
digital signatures. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
75–82. Springer, Heidelberg (1994)

5. Bleichenbacher, D., Maurer, U.M.: Optimal tree-based one-time digital signature
schemes. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
361–374. Springer, Heidelberg (1996)

6. Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993)

7. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)

8. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

9. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

10. Buchmann, J., Lindner, R., Rückert, M., Schneider, M.: Post-quantum cryptogra-
phy: lattice signatures. Computing 85(1–2), 105–125 (2009)

11. Cover, T.: Enumerative source encoding. IEEE Trans. Inf. Theor. 19(1), 73–77
(1973)

12. Dang, Q.: Randomized Hashing for Digital Signatures. NIST Special Publication
800–106 (2009)

13. David, J.P., Kalach, K., Tittley, N.: Hardware complexity of modular multiplica-
tion and exponentiation. IEEE Trans. Comput. 56(10), 1308–1319 (2007)

14. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

15. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

16. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005)

17. Barker, E., William Barker, W., Smid, M.: Recommendation for Key Management
- Part 1: General (Revision 3), NIST Special Publication 800–57, July 2012

18. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

19. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology
9(1), 35–67 (1996)

20. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

21. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79(2), 325–328 (1997)

22. van Heyst, E., Pedersen, T.P.: How to make efficient fail-stop signatures. In:
Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 366–377. Springer,
Heidelberg (1993)

350 K. Kalach and R. Safavi-Naini

23. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007)

24. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

25. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, SRI International Computer Science Laboratory (1979)

26. Lyubashevsky, V., Micciancio, D.: Asymptotically Efficient Lattice-Based Digital
Signatures. Cryptology ePrint Archive, Report 2013/746 (2013)

27. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008)

28. Mehta, M., Harn, L.: Efficient one-time proxy signatures. IEE Proc. Commun.
152(2), 129–133 (2005)

29. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

30. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. Ph.D. thesis, Stan-
ford University (1979)

31. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

32. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

33. Micciancio, D.: Personal communication
34. Micciancio, D.: Generalized Compact Knapsacks Cyclic Lattices and Efficient One-

Way Functions. Computational Complexity 16(4), 365–411 (2007). preliminary
version in FOCS 2002

35. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011)

36. Naor, D., Shenhav, A., Wool, A.: One-Time Signatures Revisited: Have They
Become Practical? Cryptology ePrint Archive, Report 2005/442 (2005)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

38. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Proceedings of the 8th ACM Conference on Computer and Communications
Security, CCS 2001, pp. 28–37 (2001)

39. Pieprzyk, J., Wang, H., Xing, C.: Multiple-time signature schemes against adaptive
chosen message attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 88–100. Springer, Heidelberg (2004)

40. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol.
2384, pp. 144–153. Springer, Heidelberg (2002)

41. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

42. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: Proceedings of the 6th ACM Conference on Computer and
Communications Security, CCS 1999, pp. 93–100 (1999)

An Efficient Post-Quantum One-Time Signature Scheme 351

43. Seys, S., Preneel, B.: Power consumption evaluation of efficient digital signature
schemes for low power devices. In: IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications, vol. 1, pp. 79–86 (2005)

44. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

45. Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Heidelberg
(2014)

46. Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Chapman and
Hall/CRC, Boca Raton (2005)

47. Vaudenay, S.: One-time identification with low memory. In: Camion, P., Charpin,
P., Harari, S. (eds.) EUROCODE 1992. International Centre for Mechanical Sci-
ences, CISM Courses and Lectures, vol. 339, pp. 217–228. Springer, Heidelberg
(1992)

48. Zaverucha, G.M., Stinson, D.R.: Short one-time signatures. Adv. Math. Commun.
5, 473–488 (2011)

Constructing Lightweight Optimal Diffusion
Primitives with Feistel Structure

Zhiyuan Guo1,2,3(B), Wenling Wu1,2,3, and Si Gao1,2,3

1 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{guozhiyuan,wwl}@tca.iscas.ac.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. As one of the core components in any SPN block cipher and
hash function, diffusion layers are mainly introduced by matrices with
maximal branch number. Surprisingly, the research on optimal binary
matrices is rather limited compared with that on MDS matrices. Espe-
cially, not many general constructions for binary matrices are known
that give the best possible branch number and guarantee the efficient
software/hardware implementations as well. In this paper, we propose
a new class of binary matrices constructed by Feistel structure with bit
permutation as round functions. Through investigating bounds on the
branch number our structure can achieve, we construct optimal binary
matrices for a series of parameters with the lowest hardware cost up to
now. Compared to the best known results, our optimal solutions for
size 16 × 16 and 32 × 32 can save about 20 % and 33.3 % gate equiva-
lents respectively. Without loss of hardware efficiency, a list of software-
friendly optimal binary matrices can be constructed by Feistel structure
with cyclic shift as round functions. The characteristics of this class of
matrices are summarized and involutory optimal instances with com-
monly used dimensions are also provided. In the case of 8 × 8, we prove
that optimal matrices from our structure can not be involutory. Finally,
we extend the strategy to Generalized Feistel Structure and present some
typical experimental results.

Keywords: Lightweight cryptography · Diffusion layer · Optimal
binary matrix · Feistel structure · Multiple platforms

1 Introduction

As a central part of Substitution-Permutation Networks, diffusion layers are very
important for the overall security and efficiency of cryptographic schemes. On the
one hand, they play a role in spreading internal dependencies, which contributes
to enhancing the resistance of statistical cryptanalysis. On the other hand, with
the rapid development of lightweight cryptography, designing hardware-efficient
diffusion layers has already been a hot research topic due to the increasing impor-
tance of ubiquitous computing.
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 352–372, 2016.
DOI: 10.1007/978-3-319-31301-6 21

Constructing Lightweight Optimal Diffusion Primitives 353

The quality of a diffusion layer is connected to its branch number, whose
cryptographic significance corresponds to the minimal number of active S-boxes
in any two consecutive rounds. Obviously, the larger the branch number is, the
better the diffusion effect will be, and simultaneously the cipher will not be
vulnerable to unexpected attacks. Therefore, most designers chose to focus on
diffusion layers with the best possible branch number to ensure a relatively
strongest security.

From a coding theory perspective, Maximum Distance Separable (MDS)
codes are quite good choices for the construction of diffusion layers since their
branch numbers are maximum (known as the Singleton bound [1]). Not only are
MDS matrices used in many block ciphers [2–4], but they promote generations
of various related design strategies [5–7]. However, a problem with using MDS
matrices is that they usually come at the price of a less efficient implementation.
Due to Galois field multiplications, hardware implementations will often suffer
from an important area requirement, with the result that MDS matrices are not
suitable for the resource-constrained environments, such as RFID systems and
sensor networks. Although this unfavorable situation is greatly improved with
the advent of recursive MDS matrices [8–10], the temporary memory required
(and hence hardware area) for the computation of matrices is still not reduced
to a degree of satisfaction sometimes.

Another attractive type of diffusion layers is derived from Maximum Distance
Binary Linear (MDBL) codes. The corresponding binary matrices are optimal
in the sense that they achieve the largest possible branch number. Though the
diffusion speed of optimal binary matrices can not keep pace with the one of
MDS matrices, it is an overwhelming advantage that they involve no finite field
multiplication, which is more propitious to a low-cost implementation. Typical
examples are block ciphers E2 [11], Camellia [12] and ARIA [13], who get an
excellent hardware efficiency and remarkable software performance on various
platforms as well. It is accordingly our belief that, in many cases, it is easier
to obtain an overall construction through using optimal binary matrix (or in
general a matrix with branch number not meeting the Singleton bound), despite
sacrificing the diffusion speed to a certain extent.

Compared with the study on constructions of MDS matrices, the research
on designs of MDBL matrices is rather limited [14,15]. Early strategy from [16]
(partially) guided the design of diffusion layers in E2 and Camellia, and unified
method presented in [17] was conducive to summarizing the characteristics of
8×8 optimal binary matrices. For constructions of large dimensions (e.g. 16×16
and 32×32), designers in [18,19] considered combining small matrices into bigger
ones, where each block matrix corresponds a finite field element. Indeed, in
our opinion, the generalities of most previous constructions (focusing only on
a few dimensions) are very weak, not to mention making them have efficient
implementation. Here, one exception is the proposal of Dehnavi et al. [20], who
recently investigated a special kind of binary linear layers for commonly used
sizes with efficient implementation.

354 Z. Guo et al.

Feistel structure is one of the most prominently used structures in cryptog-
raphy and accounts for substantial portion of data encrypted today. This was
facilitated by the introduction of DES [21], which indicated the generation of
modern block cipher. Not only is this classical structure used in large quantities
of symmetric-key algorithms, but it inspires plenty of designs of cryptographic
primitives. For example, S-boxes in [22–24] are constructed by 3-round Feistel
structure, and linear layers in E2 and Camellia are implicitly implemented with
4-round Feistel structure.

Our Contributions. In this paper, we propose constructing diffusion layers
over F2 with maximal branch number and efficient hardware implementation by
use of Feistel structure with bit permutation as round functions. After introduc-
ing necessary notations and concepts in Sect. 2, we investigate the bounds on
the branch number this construction can achieve, which will later help us judge
whether hardware efficiency (hereby focus mainly on the area and latency) of
the resulting matrix is optimal. Meanwhile, taking account of the improvement
of software performance, we restrict the round function to cyclic shift and give
the overall search strategy for “optimal solutions” in Sect. 3.

In order to demonstrate the generality of our construction, we provide typical
optimal solutions for a series of feasible parameters (up to 32) in Sect. 4. To
the best of our knowledge, the hardware cost of most proposals is the lowest
compared with previous results. For cryptographic applications, our focus is
further placed on involutory optimal solutions with commonly used dimensions
in Sect. 5, and we prove that it is impossible to obtain an involutory 8×8 optimal
diffusion layer from this structure.

Along similar lines, we present diffusion layers constructed by Generalized
Feistel Structure in Sect. 6, improving their applicabilities on other platforms
without loss of hardware efficiency. According to figures listed in Sect. 7, we
afterwards show that optimal solutions for size 16 × 16 and 32 × 32 can save
about 20% and 33.3% gate equivalents respectively, compared to the best known
results. Finally, we conclude the paper in Sect. 8.

2 Preliminaries

In this section, we fix the basic notions and further more introduce several
judgement methods of branch number. Since diffusion layers investigated in the
present paper are linear transformations on the n-dimensional vector space over
F2, we directly use an n × n binary matrix to represent a linear layer in the
subsequent discussions.

2.1 Branch Number

Assume v = (v1, v2, . . . , vn)T is a vector such that vi ∈ F2, 1 ≤ i ≤ n. Then
the Hamming weight of v, denoted by wb(v), is equal to the number of non-zero
elements in v.

Constructing Lightweight Optimal Diffusion Primitives 355

Definition 1. [3] The differential branch number of a diffusion layer D is given
by

Bd(D) = min
v �=0

{wb(v) + wb(D(v))}. (1)

Analogously, we can define the linear branch number.

Definition 2. [3] The linear branch number of a diffusion layer D is given by

Bl(D) = min
v �=0

{wb(v) + wb(DT (v))}, (2)

where DT is the transposition of D.

As the differential branch number of an n × n linear transformation is equal
to the minimum distance of its associated [2n, n] linear code, the maximal Bd of
a binary matrix is known for small dimension according to [25]. A binary matrix
is optimal if it achieves the maximal Bd and Bl. Since each n × n (with the
exception of n = 32) diffusion layer over F2 constructed in this article satisfies
Bd = Bl, we omit linear branch number in the sequel.

Definition 3. [14] Two matrices A, B are permutation homomorphic to each
other if there exists a row permutation ρ and a column permutation γ satisfying

ρ(γ(A)) = γ(ρ(A)) = B. (3)

Proposition 1. [14] If two matrices A, B are permutation homomorphic to
each other, then A, B are of the same branch number.

2.2 Judgement Methods

There is a one-to-one correspondence between an n × n linear transformation
θ(x) = M · x and a linear code Cθ with the generator matrix Gθ = [In×n|M], so
we can use the following property to determine Bd(M).

Proposition 2. [3] A linear code has minimum distance d if and only if every
d−1 columns of its parity check matrix are linearly independent and there exists
some set of d columns that are linearly dependent.

To deal with an n×n binary matrix with branch number s, it costs approximately∑s
i=1

(
2n
i

)
Gaussian eliminations according to Proposition 2, while it needs to

exhaust all possible non-zero input vectors based on Definition 1. After analyzing
the characteristics of minimum-weight codewords among Cθ, we give Algorithm 2
(cf. AppendixA for more details) as main detection method, reducing the time
complexity to 2

∑�s/2�
i=1

(
n
i

)
.

356 Z. Guo et al.

3 On Properties of Proposed Diffusion Layers

3.1 The General Construction

Throughout this paper, we consider diffusion layers over F2 constructed by Feistel
structure with bit permutation as round functions. Let x = (xL, xR) and y =
(yL, yR) be the n-bit input and output respectively, then a diffusion layer shown
in Fig. 1 can be characterized as

M =
(

0 I
I 0

)(
Pr I
I 0

)
· · ·

(
P1 I
I 0

)
, (4)

where the size of each block matrix is n
2 × n

2 . In the rest of this paper, we
only extract the sequence of permutation matrices, namely, [P1, P2, . . . , Pr] to
represent M for simplicity. According to [21], it holds that

M−1 = [Pr, Pr−1, . . . , P1], (5)

which means the inverse matrix could be implemented with the same structure by
simply reversing the order of round functions. This decided advantage guarantees
the diffusion layer and its inverse require equal XOR’s in terms of hardware
implementation. In particular, the encryption and decryption can even use the
exact same circuit in the case of involutory instances, i.e. round transformations
appearing symmetrically (e.g. [P1, P2, P1] and [P1, P2, P2, P1]).

Fig. 1. A diffusion layer over F2 constructed with Feistel structure

As hardware efficiency can have very different meanings depending on the
utilization scenario targeted by the designer, we hereby chose to focus on two
classical metrics: silicon area and latency. Clearly, to make the perfect diffusion
layer hardware-optimal under this construction, the number of iterations should
be as small as possible on the premise of maximal branch number. Therefore it
is necessary to investigate the bound on the branch number of resulting diffusion
layer.

Constructing Lightweight Optimal Diffusion Primitives 357

3.2 Upper Bound of the Branch Number

Before elaborating our main theorem, we need to introduce the following novel
observation. Remember that in technical terms, the Fibonacci sequence F (n) is
defined by the recurrence relation F (n + 2) = F (n + 1) + F (n), with seed values
F (0) = 1, F (1) = 1.1

Lemma 1. Assume (0, α) is the input of the structure shown in Fig. 1 such that
wb(α) = 1. Then the Hamming weight of the output of round i, wb(yi), is upper
bounded by the i-th number of the Fibonacci sequence:

wb(yi) ≤ F (i). (6)

Fig. 2. Propagation of the Hamming weight on the input (0, α)

Proof. Let us illustrate it by mathematical induction. According to the output
of the first three rounds (see Fig. 2), we know that wb(y1) = F (1), wb(y2) = F (2)
and wb(y3) ≤ F (3).

Now suppose the induction hypothesis is true for round i, 3 ≤ i < r. Then
we only need to prove wb(yi+1) ≤ F (i + 1). Notice that the transformation of
round i + 1 can be represented as

{
yi+1,L = Pi+1(yi,L) ⊕ yi,R

yi+1,R = yi,L

and we always have wb(yi,L) = wb(Pi+1(yi,L)), which implies wb(yi+1,L) ≤
wb(yi,L) + wb(yi,R).
Likewise, we obtain

wb(yi+1,R) = wb(yi,L) ≤ wb(yi−1,L) + wb(yi−1,R).

Thus it holds

wb(yi+1) = wb(yi+1,L) + wb(yi+1,R)
≤ wb(yi,L) + wb(yi,R) + wb(yi−1,L) + wb(yi−1,R)
≤ F (i) + F (i − 1)
= F (i + 1),

and we complete the proof. ��
1 Alternatively, the chosen starting points are fixed to F (0) = 0, F (1) = 1, which has

no substantial impact on the global sequence.

358 Z. Guo et al.

Theorem 1. The branch number of the diffusion layer constructed as in Fig. 1
satisfies

B(r)
d ≤

{
2F

(
r+1
2

)
r is odd

F
(

r
2

)
+ F

(
r
2 + 1

)
r is even,

(7)

where the superscript is used to emphasize the number of rounds in the proposed
construction.

Proof. Our strategy is similar to the start-from-the-middle technique [26]: start
with a particular state value at the middle round and then propagate forward
and backward to the output and input of the Feistel structure respectively. Note
that middle round means different positions depending on whether the number
of rounds is odd or even.

Fig. 3. Upper bound of the branch number of proposed diffusion layers

When r is odd, let (0, α) be the input of round (r+1)/2 such that wb(α) = 1.
For r = 1, it is easy to see that wb(y0) + wb(y1) = 2F (1). For r ≥ 3, both the
forward and backward propagations begin with the same initial value2 (α, 0) and
contain (r + 1)/2 − 1 rounds (see Fig. 3.(a)). According to Lemma 1, we obtain
one input/output pair whose Hamming weight satisfies

wb(y0) ≤ F

(
r + 1

2

)
, wb(yr) ≤ F

(
r + 1

2

)
,

which implies the branch number of the resulting diffusion layer is at most
2F ((r + 1)/2).

When r is even, we change the target position to round r/2 + 1, with the
result that each direction consists of r/2 rounds (see Fig. 3.(b)). Likewise it holds

wb(y0) + wb(yr) ≤ F
(r

2
+ 1

)
+ F

(r

2

)
,

2 Notice that we consider the input of round (r + 1)/2 + 1 as the forward starting
point.

Constructing Lightweight Optimal Diffusion Primitives 359

since the inputs of the backward and forward direction are (α, 0) and (0, α)
respectively. Hence we complete the proof. ��

Remark 1. For an expected branch number, Theorem1 gives insights on the
lower bound on the number of rounds our construction should have, efficiently
reducing a lot of unnecessary search works. As an illustration, we need at least
8 iterations in the Feistel structure to get a diffusion layer with Bd = 12 due to
B(7)

d ≤ 2F (4) = 10.

3.3 Search Strategy for Software-Friendly Diffusion Layers

In this section, we will explain how to improve software performances of the pro-
posed diffusion layers without loss of hardware efficiency. Compared with the bit
permutation, cyclic shift is undoubtedly much more attractive as suitable rota-
tion can be implemented as a single instruction on the corresponding processor.
For example, while constructing a 16 × 16 binary matrix with cyclic shift as
round transformations, all operations of each round are based on 32-bit words
on condition that 4-bit S-boxes are used. As a result, instead of bit permutation,
cyclic shift is our first choice and the round function is afterwards restricted to
Pi(x) = x <<< ti, 0 ≤ ti < n/2.

The pseudo-code of our basic search procedure is shown in Algorithm 1. The
function BasicSearch (n, r, T , G) returns all n × n binary matrices with
Bd ≥ T constructed by r-round Feistel structure. Here G denotes the set of
transformation matrices that can be selected as round functions. On the basis of
the above strategy, we initialize it to the set of matrices representing cyclic shift
(which implies |G| = n/2) and begin the first attempt with minimum possible r
according to Theorem 1. If no optimal solution is found (i.e. E = ∅), choose to
increase r or relax restrictions on some round functions to continue searching,
until suboptimal solutions are returned.

Algorithm 1. Search for optimal diffusion layers over F2

1: function BasicSearch(n, r, T , G)
2: E ← ∅
3: for all M ∈ { [P1, P2, . . . , Pr]| Pi ∈ G, 1 ≤ i ≤ r} do
4: if Bd(M) ≥ T then
5: E ← E ∪ {M}
6: end if
7: end for
8: return E

9: end function

Remark 2. “Optimal solutions” here refer to binary matrices with maximal Bd

constructed by the least possible number of cyclic shift operations. For instance,
an 8 × 8 matrix with Bd = 5 constructed by 4 cyclic shifts is optimal solution

360 Z. Guo et al.

owing to B(3)
d ≤ 4. Moreover, “suboptimal solutions” have different forms since

bigger r results in higher cost in hardware implementation, while enlarged G

(from the set of cyclic shift matrices to the one of permutation matrices) leads
to the loss of advantages in software performance. Consequently, there are various
trade-offs when we search for suboptimal solutions3.

Next, we introduce the following statement to relate certain matrices that
lead to the same branch number.

Theorem 2. For any diffusion layer M = [P1, P2, . . . , Pr] constructed by r-
round Feistel structure, there always exists a corresponding M ′ = [I, P2

′, . . . , Pr
′]

such that Bd(M ′) = Bd(M).

Proof. First of all, it is not difficult to see that we can place P1 after the XOR
operation in round 1 as shown in Fig. 4.(b), since

y1,L = P1(xL) ⊕ xR = P1(xL ⊕ P−1
1 (xR)).

By using similar equivalent transforms, P1 can be moved to the end of the
structure (see Fig. 4.(c) and (d)), with each round function redefined as Pi

′ =
Pi · P1 (i is even) or Pi

′ = P−1
1 · Pi (i is odd). Then depending on whether the

number of rounds is even or odd, it holds

M =
(

P1 0
0 I

)
· M ′ ·

(
I 0
0 P−1

1

)
or M =

(
I 0
0 P1

)
· M ′ ·

(
I 0
0 P−1

1

)
,

respectively, which means M and M ′ are permutation homomorphic to each
other. Thus their branch numbers are equal according to Proposition 1 and we
complete the proof. ��

Note that all matrices constructed by r-round Feistel structure can be clas-
sified according to any Pi, i ∈ {1, . . . r}, although we simply choose P1 = I in
Theorem 2. In other words, each diffusion layer constructed with P1 = I is a rep-
resentative of an equivalence class, from which one can obtain all diffusion layers
in the same equivalence class through analogous transforms mentioned above.
We will make use of this property to reduce the search space by one round in
the subsequent experiment.

4 Constructing Optimal Diffusion Layers with Feistel
Structure

In this section, we will provide the results on constructing diffusion layers for
various parameters. According to the search strategy, cyclic shift is preferred
choice and for convenience, we abuse the symbol Ri, i = 0, . . . , n/2 − 1, to

3 As we take maximal branch number as primary premise, the branch number of
suboptimal solutions is equal to that of optimal solutions.

Constructing Lightweight Optimal Diffusion Primitives 361

Fig. 4. Equivalence partitioning of the proposed diffusion layers

represent the matrix which corresponds to the transformation L(x) = x <<< i,
where the size of x is n/2. As an example, an 8 × 8 matrix M = [R0, R3, R2, R1]
denotes the diffusion layer constructed by the following round functions:

P1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , P3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , P4 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ .

Clearly, R0 is the representation of identity matrix and more R0’s implies more
efficient software implementation.

4.1 Diffusion Layers for n = 4, 8, 16 and 32

First, we ran Algorithm 1 to search for optimal diffusion layers with commonly
used dimensions in cryptography, that is, n = 2k, where k = 2, 3, 4, 5. The
total number of optimal solutions and typical instance of M we obtained are
summarized in Table 1, accompanied by the cost in hardware implementation
for each parameter. Notice that the branch number of 32 × 32 binary matrices
we can find is 12, which is consistent with the best known value.

Table 1. Experimental results for optimal diffusion layers with n = 4, 8, 16, and 32

n Bd Optimal solutions XOR gates

Total number Example of M

4 4 2 [R0, R1, R0] 6

8 5 32 [R0, R1, R2, R0] 16

16 8 9760 [R0, R1, R1, R2, R2, R0] 48

32 12† 6272 [R0, R1, R1, R13, R13, R0, R8, R6] 128

362 Z. Guo et al.

The time complexity of the exhaustive search for optimal solutions with given
length n is (n/2)r, where r is the least possible number of rounds to achieve the
maximal Bd. Actually it took us less than 20 h to find all the best 32 × 32
binary matrices through parallel search, and with the help of Theorem2, we can
further reduce the search time by a factor of 24. Additionally, the examples in
Table 1 are perfect in the sense that they are constructed with the most possible
number of R0’s, cutting down on as many rotation instructions as possible in
software implementation. Yet it is noteworthy that the technique of equivalence
partitioning is not applicable in this case, as matrices in the same equivalence
class are constructed by different sequences of round functions.

Moreover, we need to point out for any n × n diffusion layer constructed
by r-round Feistel structure, the number of XOR gates required for hardware
implementation is nr/2, which enjoys an overwhelming advantage even if we have
not done any other optimization. For instance, although the total number of ones
in any 32 × 32 binary matrix with Bd = 12 is lower bounded by 11 × 32 = 352,
each of our optimal solutions can be implemented just with 128 XOR’s, which
is the best result up to our knowledge.

4.2 Results for Other Parameters

To illustrate the generality of our proposal, we also search for diffusion layers
with other sizes (n is even and n < 20), despite the fact that they are probably
not often used. As shown in Table 2, we obtain optimal solutions for each given
length, with the exception of n = 12. In other words, no 12 × 12 optimal binary
matrix can be constructed by 6-round Feistel structure with cyclic shift as round
functions. This means we need to consider searching for suboptimal solutions
using the methods described in Sect. 3.3.

Laying particular stress on hardware efficiency, we hereby adopt the second
strategy (i.e. enlarging G for only one round function) and find 120 suboptimal
solutions. One of the best results is

M12×12 = [R5, P1, R4, R1, R1, R0],

where P1 is a permutation matrix. Due to the lack of space, we will give the
concrete form of P1 and M12×12 in AppendixB.

Table 2. Experimental results for diffusion layers with other interesting sizes

n Bd Optimal solutions XOR gates

Total number Example of M

6 4 12 [R0, R1, R0] 9

10 6 80 [R0, R1, R2, R0, R4] 25

14 8 42 [R0, R1, R3, R6, R5, R3] 42

18 8 36720 [R0, R1, R1, R2, R2, R0] 54

Constructing Lightweight Optimal Diffusion Primitives 363

4.3 Other Information from the Proposed Structure

Below we elaborate how to acquire a prior knowledge of the resulting matrix.
First, it is clear that any matrix constructed by r-round Feistel structure can be
characterized as

M (r) =
(

A1 A2

A3 A4

)
, (8)

where each block matrix is an expression that consists of Pi, 1 ≤ i ≤ r. For
example, based on

M (3) =
(

P2P1 ⊕ I P2

P3P2P1 ⊕ P3 ⊕ P1 P3P2 ⊕ I

)
,

we get A4 = P3P2 ⊕ I in this case. Let T (Ai) be the number of terms in Ai and
through exploring the regularity on changes of T (Ai), we have

Theorem 3. The four block matrices constituting M (r) as shown in (8) satisfy

T (A1) = F (r − 1), T (A2) = F (r − 2), T (A3) = F (r), T (A4) = F (r − 1).

This observation is straightforward and we omit the proof here. It seems that
Theorem 3 places major focus only on the expanded form, nevertheless, we will
later see that it contributes to understanding the generic picture of optimal
matrices.

As a matter of fact, each n
2 × n

2 block matrix in the resulting matrix Mn×n

is a circulant matrix [27] for the optimal solution. To explain conveniently, we
denote a t × t circulant matrix with i ones in the first row by U

(t)
i . Then each

optimal solution in the case of n = 4 satisfies4

M4×4 =

(
U

(2)
2 U

(2)
1

U
(2)
1 U

(2)
2

)
,

since the terms in Ai are always eliminated pairwise during calculating. Taking
n = 8 as anther illustration, in the light of T (A1) = 3, T (A2) = 2, T (A3) =
5, T (A4) = 3 and the fact that each row in an optimal solution has at least 4
ones, we conclude

M8×8 =

(
U

(4)
3 U

(4)
2

U
(4)
3 U

(4)
3

)
, or

(
U

(4)
3 U

(4)
2

U
(4)
1 U

(4)
3

)
,

which is in accord with the experimental results. Specifically, there are only 8
instances with the latter form (among 32 optimal solutions) and one example
will be introduced in AppendixC.
4 The necessary condition implies the number of optimal solutions of M4×4 is at most

4 since U
(2)
2 is determined and U

(2)
1 has only two forms. As can be seen in our search

result, solutions achieve the maximal branch number only if “U
(2)
1 = U

(2)
1 ”.

364 Z. Guo et al.

5 Searching for Involutory Optimal Diffusion Layers

In this section, we consider constructing involutory optimal matrix by Feistel
structure with cyclic shift as round function, which enjoys an attractive advan-
tage as it requires only one procedure to be implemented for the encryption
and decryption. Notice that the search strategy is derived from Algorithm1 and
most instances come from the optimal solutions. For sizes that are often used in
block ciphers, we list some examples in Table 3. Below are some explications of
our experimental results:

(1) For parameter n = 4, the two optimal solutions we find themselves are
involutory, however, the proportion (= 24/9760) is very low for n = 16.

(2) In the case of n = 32, the largest branch number of the involutory matrices
constructed by 8-round Feistel structure is 11. We do not search further (for
involutory matrices with Bd = 12) since the results are lightweight enough
to have promising applications.

(3) As for n = 8, we do not obtain even one involutory instance despite of many
attempts on the number of rounds. Before jumping to the full explanation
of this situation, we need the following lemma.

Table 3. Experimental results for involutory diffusion layers with n = 4, 16, and 32

n Bd Total number Example of M

4 4 2 [R1, R0, R1]

16 8 24 [R0, R1, R2, R2, R1, R0]

32 11 640 [R0, R1, R6, R14, R14, R6, R1, R0]

Lemma 2. Assume M is an 8 × 8 optimal matrix as shown in (8) where each
Ai, 1 ≤ i ≤ 4, is a circulant matrix. Then no Ai can be “0” or U

(4)
4 .

Proof. Suppose not, then two cases should be discussed:

(a) Without loss of generality, we let A1 = 0, then A3 = U
(4)
4 since every column

in M contains at least 4 ones, which implies M is singular and hence is a
contradiction.

(b) Similarly let A1 = U
(4)
4 . Then it needs A3 = U

(4)
3 or A3 = U

(4)
1 to make M

invertible. Note that in these cases, we have Bd ≤ 4 as there exists a vector
v = (1, 1, 0, . . . , 0)T with wb(v) = 2 such that wb(v) + wb(M · v) = 4. This
contradicts the optimality condition.

Consequently, there is no “0” or U
(4)
4 among the four block matrices and we

complete the proof. ��

Constructing Lightweight Optimal Diffusion Primitives 365

In addition, the following statement, deduced from [17], is very useful for our
illustration.

Proposition 3. For any 8× 8 binary matrix with Bd = 5, if the rows have only
two different Hamming weights and each contains half number of rows, then it
must belong to one of the following cases:

(1) the rows are of Hamming weight 4 and 5.
(2) the rows are of Hamming weight 5 and 6.

Theorem 4. Any 8 × 8 optimal diffusion layer constructed by r-round Feistel
structure with cyclic shift as round functions can not be involutory.

Proof 5. First, the conditions in Proposition 3 are always satisfied for every 8×8
optimal matrix constructed by the structure as shown in Fig. 1. Furthermore, the
four block matrices are all circulant matrices as explained before and according
to Lemma 2 and Proposition 3, it is easy to see that the form of any resulting
matrix belongs to one of the following eight cases:6

(
U3 U3

U3 U2

)
,

(
U2 U3

U3 U3

)
,

(
U1 U3

U3 U2

)
,

(
U2 U3

U3 U1

)
, (9)

(
U3 U3

U2 U3

)
,

(
U3 U2

U3 U3

)
,

(
U3 U2

U1 U3

)
,

(
U3 U1

U2 U3

)
. (10)

For the sake of clarity, we simply denote the resulting matrix by

M̃ =
(

A B
C D

)
,

and now suppose M̃ is involutory. Then bases on M̃2 = I and the property that
multiplications here are commutative, we have

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A2 ⊕ BC = I (11)
(A ⊕ D)B = 0 (12)
(A ⊕ D)C = 0 (13)
A2 = D2 (14)

Next, we claim neither A nor D is equal to U2. Otherwise, one is singular and the
other is invertible, since there is only one U2 among each of the eight matrices.
This contradicts (14) and we thereby exclude all cases in (9).

5 Throughout this proof, we omit the superscript in U
(4)
i for simplicity.

6 With the view of permutation homomorphic, these forms can be considered as two
types on condition that the (row and column) permutation in Definition 2 is block-
wise.

366 Z. Guo et al.

For cases in (10), we suppose C = U2 without loss of generality. Then B is a
nonsingular matrix and we have B−1 = U1, or B−1 = U3.

Due to BC 	= 0, we have A2 	= I from (11). Furthermore, as A = U3 and
A2 = (U4 ⊕ U1)(U4 ⊕ U1) = U2

1 , it holds

A2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

Then according to (11), we can easily obtain

C =

{
(I ⊕ A2)U1 B−1 = U1

(I ⊕ A2)(U4 ⊕ U1) = (I ⊕ A2)U1 B−1 = U3,

which implies the first and third columns in C are the same (the remaining
two columns are also the same). Therefore, there always exists a vector v =
(1, 0, 1, 0, . . . , 0)T with wb(v) = 2 such that wb(v) + wb(C · v) = 4. This is a
contradiction and all cases in (10) are thus excluded.

In summary, no involutory 8 × 8 optimal binary matrix can be constructed
by Feistel structure with cyclic shift as round functions and we complete the
proof. ��

6 Diffusion Layers Constructed with Generalized Feistel
Structure

As explained in Sect. 3.3, we restrict the round function to cyclic shift with the
purpose of improving software performance. However, an unfavourable situation
we are likely to face is that the length of n/2 words is longer than the word size
of the processor. For example, in the case of 8-bit S-box, the software efficiency
of our 16 × 16 optimal diffusion layer on 32-bit processor is weaken since the
rotation on a 64-bit word becomes complicated.

To make up for the above shortcomings, an instinctive idea is to construct
diffusion layers using r-round Type-II Generalized Feistel Structure (GFS, [29]),
which be characterized as

Mgfs =

⎛
⎜⎜⎝

0 0 0 I
I 0 0 0
0 I 0 0
0 0 I 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P2r−1 I 0 0
0 0 I 0
0 0 P2r I
I 0 0 0

⎞
⎟⎟⎠ · · ·

⎛
⎜⎜⎝

P1 I 0 0
0 0 I 0
0 0 P2 I
I 0 0 0

⎞
⎟⎟⎠ (15)

where round functions in round i, P2i−1 and P2i, are cyclic left shifts. Also, we
use [P1, P2, . . . , P2r] to represent Mgfs for simplicity.

Owing to the slow diffusion property of Type-II GFS, one may take it for
granted that the number of rounds will be increased compared with the Feistel
structure on the premise of the same Bd. However, that is not the case according

Constructing Lightweight Optimal Diffusion Primitives 367

Table 4. Experimental results for diffusion layers constructed by Type-II GFS

n Bd example of Mgfs

8 5
[R0, R0, R0, R1,

R1, R1, R0, R1]

16 8
[R0, R0, R0, R0, R1, R1,

R1, R2, R0, R0, R0, R0]

32 11
[R0, R0, R0, R0, R4, R5, R1, R1,

R1, R0, R0, R0, R1, R3, R3, R4]

to our search results listed in Table 4. Actually, the conclusion of Theorem 1 also
holds for Type-II GFS and hence the solutions we find are optimal in terms of
the number of rounds.

Compared to the Feistel structure, the cost of hardware implementation of
each round in Type-II GFS remains unchanged, which means we can almost
perfectly solve the problem introduced at the beginning of this section. Yet, it is
to be noticed that the time complexity of r-round search becomes (n/4)2r, far
greater than (n/2)r when n > 8. For example, while searching for 32×32 binary
matrix with Bd = 11 constructed by Type-II GFS, the total number of matrices
to be detected is 248. Despite the help of equivalence partitioning technique, the
search space (i.e. 242) is still so huge that we need highly parallel computations
to obtain all solutions.

7 Comparison with Known Results

In this section, we compare our Feistel-structure-based proposals with previous
known results on hardware implementation. As can be seen in Table 5, solutions
we found for n = 32 can save approximately 33.3% gate equivalents compared
to the best known result. Furthermore, while considering the constructions with
Bd = 11, this improvement shots up to a staggering 64.7%.

For the size n = 16, a noteworthy comparison comes between the diffusion
layer used in ARIA and ours. The area can be reduced by 36.8% provided that
the original linear layer is replaced by our optimal instances. Moreover, in the
case of n = 8, the hardware cost of the design in [16] is equal to ours. The reason,
which we have mentioned in the introduction, is that the examples given in [16]
can be implicitly implemented by 4-round Feistel structure (while the last swap
is not removed).

Here we omit comparisons on the software performance for two reasons. One
is some of the previous constructions place the major focus on maximizing the
branch number using algebraic methods, ignoring the estimate of implemen-
tation efficiency, and thus there is no need to make comparisons. The other is
diffusion layers in cryptographic algorithms are often implemented together with
S-boxes, which makes the comparisons complicated. Nevertheless, as explained

368 Z. Guo et al.

Table 5. Comparison of our diffusion layers with the known results

n Bd XOR gates Involutory Reference

4 4 6 Yes This paper

8 5 34 Yes [18]

5 16 No [16]

5 16 No This paper

16 8 95 Yes [18]

8 76 Yes [13]

8 64 No [20]

8 60 Yes [14]

8 48 Yes This paper

32 10 286 No [15]

10 112 Yes This paper

11 363 No [19]

11 128 Yes This paper

12 328 Yes [19]

12 192 No [20]

12 128 No This paper

in Sects. 3.3 and 6, our proposals still have excellent software performance even
without any optimization.

8 Conclusion

In this paper, we propose a new class of optimal diffusion layers over F2 by use
of Feistel structure with bit permutation as round functions. Through investi-
gating bounds on the branch number our structure can achieve, we construct
optimal binary diffusion layers for a series of parameters (up to 32 × 32) with
excellent software/hardware performances. As far as we know, the hardware cost
of most proposals is the lowest compared to the previous results. Involutory opti-
mal instances for the commonly used dimensions are also presented, with the
exception of 8 × 8. Finally, we investigate optimal diffusion layers constructed
by Type-II GFS and provide some typical solutions. Since the hardware cost of
our results are extremely low, we expect our strategy will be useful for future
construction of lightweight ciphers based on (involutory) binary diffusion com-
ponents.

Acknowledgments. The authors would like to thank the anonymous referees for
their valuable comments. We are also grateful to Shengbao Wu and Renzhang Liu for
providing useful suggestions. This work is supported by the National Basic Research
Program of China (No. 2013CB338002) and National Natural Science Foundation of
China (No. 61272476, No. 61232009, No. 61202422).

Constructing Lightweight Optimal Diffusion Primitives 369

A Determination of Branch Number

For a [2n, n, d] linear code Cθ, there exists at least one codeword v =
(v1, . . . , v2n)T such that wb(v) = d. Let

vleft = (v1, . . . , vn)T , vright = (vn+1, . . . , v2n)T ,

and then it must hold

wb(vleft) ≤ d/2 or wb(vright) ≤ d/2,

which implies the number of input vectors to be computed according to (1) is
at most 2d/2.

Specifically, as both Gθ = [I|M] and G′
θ = [M−1|I] are the generator matrices

of Cθ, we can determine Bd(M) by searching for the minimum value between
wb(x) + wb(M · x) and wb(x) + wb(M−1 · x) among at most 2d/2 input vectors
of low Hamming weights.

Algorithm 2. Determining the branch number of a binary matrix
1: function BinaryBranchNumber(M , dimension)
2: InvM ← inverse matrix of M
3: x ← (1, 0, . . . , 0)T

4: miniweight ← 2 · dimension
5: while wb(x) < miniweight/2 do
6: weight ← wb(x) + wb(M · x)
7: if weight ≤ miniweight then
8: miniweight ← weight
9: end if

10: weight ← wb(x) + wb(InvM · x)
11: if weight ≤ miniweight then
12: miniweight ← weight
13: end if
14: update x in the increasing order by Hamming weight
15: end while
16: return miniweight
17: end function

370 Z. Guo et al.

B M12×12 Constructed by [R5, P1, R4, R1, R1, R0]

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

M12×12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 1 1 1 1 0 1 1
1 1 1 1 0 0 1 1 0 0 1 0
1 0 1 0 1 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 1 1 1 1
1 0 0 1 1 1 0 1 0 1 1 0
0 1 1 1 0 1 0 1 1 1 0 0
0 0 1 1 1 0 1 0 1 1 1 0
0 1 1 0 1 0 1 1 1 0 0 1
1 1 1 1 1 0 0 0 0 1 0 1
1 1 0 0 0 1 1 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 1 1
1 1 0 1 1 1 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C M8×8 Constructed by [R0, R2, R1, R1]

M8×8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 0 1
1 1 1 0 1 1 0 0
0 1 1 1 0 1 1 0
1 0 1 1 0 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1
1 0 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

References

1. Tilborg, H.C.A.: Coding Theory - A First Course. Lecture Notes on Error-
Correcting Codes. Springer (1993)

2. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

4. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

5. Sajadieh, M., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of invo-
lutory MDS matrices from Vandermonde Matrices in GF (2q). Des. Codes Crypt.
64(3), 287–308 (2012)

6. Chand Gupta, K., Ghosh Ray, I.: On constructions of circulant MDS matrices for
lightweight cryptography. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol.
8434, pp. 564–576. Springer, Heidelberg (2014)

Constructing Lightweight Optimal Diffusion Primitives 371

7. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015)

8. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers
for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 385–401. Springer, Heidelberg (2012)

9. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (lightweight) block ciphers
and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707,
pp. 355–371. Springer, Heidelberg (2013)

10. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using
shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 3–17. Springer, Heidelberg (2015)

11. Kanda, M., Moriai, S., Aoki, K., Ueda, H., Takashima, Y., Ohta, K., Matsumoto,
T.: E2 - a new 128-bit block cipher. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E83(A1), 48–59 (2000)

12. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

13. Kwon, D., Kim, J., Park, S., Sung, S., Sohn, Y., Song, J., Yeom, Y., Yoon, E., Lee,
S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: ARIA. In: Lim, J.-I.,
Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg
(2004)

14. Koo, B.-W., Jang, H.S., Song, J.H.: Constructing and cryptanalysis of a 16 × 16
binary matrix as a diffusion layer. In: Chae, K.-J., Yung, M. (eds.) WISA 2003.
LNCS, vol. 2908, pp. 489–503. Springer, Heidelberg (2004)

15. Koo, B.-W., Jang, H.S., Song, J.H.: On constructing of a 32 × 32 binary matrix
as a diffusion layer for a 256-bit block cipher. In: Rhee, M.S., Lee, B. (eds.) ICISC
2006. LNCS, vol. 4296, pp. 51–64. Springer, Heidelberg (2006)

16. Kanda, M., Takashima, Y., Matsumoto, T., Aoki, K., Ohta, K.: A strategy for
constructing fast round functions with practical security against differential and
linear cryptanalysis. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556,
pp. 264–279. Springer, Heidelberg (1999)

17. Gao, Y., Guo, G.: Unified approach to construct 8×8 binary matrices with branch
number 5. In: First ACIS International Symposium on Cryptography, and Network
Security, Data Mining and Knowledge Discovery, E-Commerce and Its Applica-
tions, and Embedded Systems, pp. 413–416 (2010)

18. Aslan, B., Sakalli, M.: Algebraic construction of cryptographically good binary
linear transformations. Secur. Commun. Netw. 7(1), 53–63 (2014)

19. Sakalli, M., Aslan, B.: On the algebraic construction of cryptographically good
32×32 binary linear transformations. J. Comput. Appl. Math. 259, 485–494 (2014)

20. Dehnavi, S., Rishakani, A., Shamsabad, M.: Bitwise linear mappings with good
cryptographic properties and efficient implementation. IACR Cryptology ePrint
Archive, 225 (2015)

21. DAta Encryption Standard (1999). http://csrc.nist.gov/publications/fips/
fips46-3/fips46-3.pdf

22. Lim, C.: CRYPTON: a new 128-bit block cipher. In: The First AES Candidate
Conference. National Institute for Standards and Technology (1998)

23. Specification of the 3Gpp. Confidentiality, Integrity Algorithms 128-EEA3, 128-
EIA3. Document 4: Design and Evaluation Report, version 1.3 (2011)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

372 Z. Guo et al.

24. Li, Y., Wang, M.: Constructing S-boxes for lightweight cryptography with Feistel
structure. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
127–146. Springer, Heidelberg (2014)

25. Code Tables: Bounds on the parameters of various types of codes. http://
codetables.de

26. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

27. Davis, P.: Circulant Matrices, 2nd edn. American Mathematical Society, Provi-
dence (2012)

28. Sakalli, M., Akleylek, S., Aslan, B., Bulus, E., Sakalli, F.: On the construction
of 20 × 20 and 24 × 24 binary matrices with good implementation properties for
lightweight block ciphers and hash functions. Math. Prob. Eng. 2014, 1–12 (2014).
Article ID 540253

29. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

http://codetables.de
http://codetables.de

Construction of Lightweight S-Boxes
Using Feistel and MISTY Structures

Anne Canteaut(B), Sébastien Duval, and Gaëtan Leurent

Inria, project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Sebastien.Duval,Gaetan.Leurent}@inria.fr

Abstract. The aim of this work is to find large S-Boxes, typically oper-
ating on 8 bits, having both good cryptographic properties and a low
implementation cost. Such S-Boxes are suitable building-blocks in many
lightweight block ciphers since they may achieve a better security level
than designs based directly on smaller S-Boxes. We focus on S-Boxes
corresponding to three rounds of a balanced Feistel and of a balanced
MISTY structure, and generalize the recent results by Li and Wang on
the best differential uniformity and linearity offered by such a construc-
tion. Most notably, we prove that Feistel networks supersede MISTY net-
works for the construction of 8-bit permutations. Based on these results,
we also provide a particular instantiation of an 8-bit permutation with
better properties than the S-Boxes used in several ciphers, including
Robin, Fantomas or CRYPTON.

Keywords: S-Box · Feistel network · MISTY network · Lightweight
block-cipher

1 Introduction

A secure block cipher must follow Shannon’s criteria and provide confusion and
diffusion [42]. In most cases, confusion is achieved with small substitution boxes
(S-Boxes) operating on parts of the state (usually bytes) in parallel, and diffusion
is achieved with linear operations mixing the state. The security of the cipher
is then strongly dependent on the cryptographic properties of the S-Boxes. For
instance, the AES uses an 8-bit S-Box based on the inversion in the finite field
with 28 elements. This S-Box has the smallest known differential probability and
linear correlation, and then allows the AES to be secure with a small number
of rounds, and to reach very good performances. However, it is not always the
best option for constrained environments. In software, an S-Box can be imple-
mented with a look-up table in memory, but this takes 256 bytes for the AES
S-Box, and there might be issues with cache-timing attacks [7]. In hardware, the
best known implementation of the AES S-Box requires 115 gates [13]; this hard-
ware description can also be used for a bit-sliced software implementation [25].

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 373–393, 2016.
DOI: 10.1007/978-3-319-31301-6 22

374 A. Canteaut et al.

For some constrained environments, this cost might be too high. Therefore, the
field of lightweight cryptography has produced many alternatives with a smaller
footprint, such as Tea [47], Crypton [29,30], Noekeon [16], PRESENT [11],
Katan [17], LBlock [48], Prince [12], Twine [44], the LS-Designs [23], or
Pride [2]. In particular, many of those lightweight ciphers use S-Boxes operat-
ing on 4-bit words, or even on a smaller alphabet like in [1]. But, reducing the
number of variables increases the values of the optimal differential probability
and linear correlation. Therefore, more rounds are required in order to achieve
the same resistance against differential and linear attacks.

An alternative approach when constructing a lightweight cipher consists in
using larger S-Boxes, typically operating on 8 bits like in the AES, but with a
lower implementation cost. Then, we search for S-Boxes with better implemen-
tations than the AES S-Box, at the cost of suboptimal cryptographic properties.
Finding 8-bit S-Boxes which offer such an interesting trade-off is a difficult prob-
lem: they cannot be classified like in the 4-bit case [18,27], and randomly chosen
S-Boxes have a high implementation cost [46]. Therefore, we focus on construc-
tions based on smaller S-Boxes and linear operations. This general approach
has been used in several previous constructions: Crypton v0.5 [29] (3-round
Feistel), Crypton v1.0 [30] (2-round SPN), Whirlpool [5] (using five small S-
Boxes), Khazad [4] (3-round SPN), Iceberg [43] (3-round SPN), Zorro [21]
(4-round Feistel with mixing layer), and the LS-Designs [23] (3-round Feistel
and MISTY network). As in [23], we here focus on constructions with a 3-round
Feistel network, or a 3-round balanced MISTY network, because they use only
3 smaller S-Boxes, but can still provide good large S-Boxes. And we study the
respective merits of these two constructions, since this comparison is raised as
an open question in [23].

The Feistel and MISTY structures have been intensively studied in the con-
text of block cipher design, and bounds are known for the maximum expected
differential probability (MEDP) [3,32,38] and maximum expected linear poten-
tial (MELP) [3,37]. However, those results are not relevant for the construction of
S-Boxes, because they only consider the average value over all the keys, while an
S-Box is unkeyed. Therefore, the differential and linear properties of the Feistel
and MISTY constructions need to be analyzed in the unkeyed setting. Such a
study has been initiated recently by Li and Wang [28] in the case of 3 rounds of
a Feistel network. In this work, we expand the results of Li and Wang, by giving
some more general theoretical results for unkeyed Feistel and MISTY structures,
with a particular focus on the construction of 8-bit permutations. Due to the
page limitation, some of the results are not detailed here and are presented in
the full version of this paper [15] only.

Our contributions. We first explain why the usual MEDP and MELP notions are
meaningless in the unkeyed setting. In particular we exhibit a 3-round MISTY
network where there exists a differential with probability higher than the MEDP
for any fixed key, but this optimal differential depends on the key. Then, Sect. 3
gives some lower bounds on the differential uniformity and linearity of any
3-round balanced MISTY structure, which involve the properties of the three

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 375

inner S-Boxes. Similar results on 3-round Feistel networks are also detailed in
Sect. 5 of [15], which generalize the previous results from [28]. Section 4 then
focuses on the construction of 8-bit permutations. Most notably, we show that
3 rounds of a Feistel network with appropriate inner S-Boxes provide better cryp-
tographic properties than any 3-round MISTY network, explaining some exper-
imental results reported in [23]. Section 5 then gives an instantiation of such an
8-bit permutation, which offers a very good trade-off between the cryptographic
properties and the implementation cost. It can be implemented efficiently in
hardware and for bit-sliced software, and has good properties for side-channel
resistant implementations with masking. In particular, this S-Box supersedes the
S-Boxes considered in many lightweight ciphers including CRYPTON, Robin and
Fantomas.

2 From Keyed Constructions to Unkeyed S-Boxes

2.1 Main Cryptographic Properties for an S-Box

In this paper, we focus on S-Boxes having the same number of input and output
bits. The resistance offered by an S-Box against differential [10] and linear [31]
cryptanalysis is quantified by the highest value in its difference table (resp. table
of linear biases, aka linear-approximation table). More precisely, these two major
security parameters are defined as follows.

Definition 1 (Differential uniformity [36]). Let F be a function from F
n
2

into F
n
2 . For any pair of differences (a, b) in F

n
2 , we define the set

DF (a → b) = {x ∈ F
n
2 | F (x ⊕ a) ⊕ F (x) = b}.

The entry at position (a, b) in the difference table of F then corresponds to the
cardinality of DF (a → b) and will be denoted by δF (a, b).

Moreover, the differential uniformity of F is

δ(F) = max
a�=0,b

δF (a, b).

Obviously, the differential uniformity of an S-Box is always even, implying
that, for any F , δ(F) ≥ 2. The functions F for which equality holds arze named
almost perfect nonlinear (APN) functions.

Similarly, the bias of the best linear approximation of an S-Box is measured
by its linearity.

Definition 2 (Walsh transform of an S-Box). Let F be a function from F
n
2

into F
n
2 . The Walsh transform of F is the function

F
n
2 × F

n
2 → Z

(a, b) �→ λF (a, b) =
∑

x∈Fn
2
(−1)b·F (x)+a·x.

Moreover, the linearity of F is

L(F) = max
a,b∈Fn

2 ,b �=0
|λF (a, b)|.

376 A. Canteaut et al.

Indeed, up to a factor 2n, the linearity corresponds to the bias of the best
linear relation between the input and output of F :

PrX [b · F (X) + a · X = 1] =
1

2n

(
2n−1 − 1

2

∑
x∈Fn2

(−1)b·F (x)+a·x
)

=
1

2

(
1 − λF (a, b)

2n

)
.

It is worth noticing that, for any fixed output mask b ∈ F
n
2 , the function

a �→ λF (a, b), corresponds to the Walsh transform of the n-variable Boolean
component of F : x �→ b ·F (x). In particular, it enjoys all properties of a discrete
Fourier transform, for instance the Parseval relation.

2.2 Constructing S-Boxes from Smaller Ones

If this paper we focus on the construction of S-Boxes using several smaller
S-Boxes. Indeed small S-Boxes are much cheaper to implement that large S-
Boxes:

– for table-based software implementations, the tables are smaller;
– for hardware implementations, the gate count is lower;
– for bit-sliced software implementation, the instructions count is lower;
– for vectorized implementation, small S-Boxes can use vector permutations.

In many cases, implementing several small S-Boxes requires less resources than
implementing a large one. Therefore, constructing S-Boxes from smaller ones
can reduce the implementation cost.

The Feistel construction is a well-known construction to build a 2n-bit permu-
tation from smaller n-bit functions, introduced in 1971 for the design of Lucifer
(which later became DES [34]). It is a good candidate for constructing large
S-Boxes from smaller ones at a reasonable implementation cost. In particular,
this construction has been used for the S-Boxes of Crypton v0.5 [29], ZUC [20]
(for S0), Robin [23] and iScream [22]. The MISTY construction introduced by
Matsui [32] uses a different structure, but offers a similar level of security. The
main advantage of the MISTY network is that it can offer a reduced latency
because the first two S-Boxes can be evaluated in parallel. Therefore it is a nat-
ural alternative to Feistel networks for the construction of lightweight S-Boxes,
and it has been used in the design of Fantomas [23] and Scream [22]. In order
to reduce the number of gates used for implementing the construction, we focus
on balanced MISTY networks, while the MISTY block cipher proposed in [33] is
unbalanced and combines an (n − 1)-bit S-Box and an (n + 1)-bit S-Box.

The two structures we study are depicted in Figs. 1 and 2. It is worth notic-
ing a major difference between the two: the function resulting from the Feistel
construction is always invertible (since one round is an involution, up to a permu-
tation of the outputs), while the function resulting from the MISTY construction
is invertible if and only if all the inner S-Boxes are invertible.

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 377

S3

S2

S1

xRxL

zRzL

k1

k2

k3

Fig. 1. 3-round MISTY network

S3

S2

S1

xRxL

zRzL

k1

k2

k3

Fig. 2. 3-round Feistel network

Analysis of Feistel and MISTY Structures. Since these two constructions
have been used for the design of many block ciphers (in particular the DES [34]
and MISTY [33], respectively), their security properties have been intensively
studied. A natural way to measure the resistance of the resulting block cipher
against differential and linear cryptanalysis is to study the probabilities of the
differentials (respectively the potentials of the linear approximations) averaged
over all keys.

Definition 3 (MEDP and MELP). Let FK be a family of function from F
n
2 into

F
n
2 . The MEDP is the maximum probability of a differential, averaged over all

keys:

MEDP(FK) = max
a�=0,b

1
2k

∑

K∈Fk
2

δFK
(a, b)
2n

.

The MELP is the maximum potential of a linear approximation, averaged over
all keys:

MELP(FK) = max
a,b �=0

1
2k

∑

K∈Fk
2

(
λFK

(a, b)
2n

)2

.

The following theorem shows that the MEDP and MELP of a Feistel or
MISTY network can be bounded.

Theorem 1 (Feistel or MISTY, averaged over all keys, [3,32,38]). Given
S1, S2 and S3 three n-bit permutations, let p = maxi δ(Si)/2n and q =
maxi(L(Si)/2n)2. Then the family of functions (FK)K=(K1,K2,K3)∈F3k

2
defined

by 3 rounds of a Feistel or of a MISTY network with Si as inner functions
verifies

MEDP(FK) ≤ p2 and MELP(FK) ≤ q2.

378 A. Canteaut et al.

This theorem is very powerful for the construction of iterated block ciphers: it
shows that a big function with strong cryptographic properties can be built from
small functions with strong cryptographic properties. However, for the design of
an S-Box from smaller S-Boxes, it is of little use. Indeed, we are interested in
the properties of a single fixed S-Box, rather than the average properties of a
family of S-Boxes. For a fixed (a, b) the theorem proves that the average values
of δFK

(a, b) and λFK
(a, b) are bounded, therefore there exists at least one key

for which the value is smaller than or equal to the average. However, it might be
that the values a, b where the maximum is reached are not the same for every
key. Therefore if we select a key so that δFK

(a, b) is small for an a, b maximizing
the average probability, the maximum can be reached for another entry of the
differential table.

More strikingly, we discovered some choices of S1, S2, S3 such that the max-
imum differential probability of the functions in the corresponding family is
always higher than the MEDP.

Example 1. We consider a MISTY structure with three identical S-Boxes:

Si = [A, 7, 9, 6, 0, 1, 5, B, 3, E, 8, 2, C, D, 4, F].

We have MEDP(FK) ≤ 16/256 according to Theorem 1, because δ(Si) = 4.
However, for any function in this family, there exists a differential with proba-
bility 32/256. This is not a contradiction, because the differential reaching the
maximum depends on the key.

The relevant property for the construction of an S-Box is the maximum
differential probability (respectively maximum linear potential). Therefore, we
could derive some information on this quantity for FK for some fixed keys from
the knowledge of the average value of the maximal differential probability, i.e.,
the EMDP (resp. EMLP), which may significantly differ from the MEDP (resp.
MELP). We would like to point out that there is a confusion between the two
notions in [33]: the definition corresponds to the expected maximum differential
probability (respectively expected maximum linear potential), while the theo-
rems apply to the MEDP and MELP.

Analysis of Feistel and MISTY Structures with Fixed Key. In order
to study the properties of Feistel and MISTY structures for the construction of
lightweight S-Boxes, we must study these structures with a fixed key. Equiva-
lently, we can consider the structures without any key, because a structure with
a fixed key is equivalent to an unkeyed one with different S-Boxes. Indeed, using
an S-Box Si with round key ki is equivalent to using S′

i : x �→ Si(x + ki) as an
S-Box without any key. In the following, we always consider a key-less variant.

In a recent analysis of the fixed-key Feistel structure [28], Li and Wang derive
the best differential uniformity and linearity which can be achieved by a 3-round
Feistel cipher with a fixed key, and give examples reaching this bound. Their
main results are as follows:

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 379

Theorem 2 (Feistel unkeyed, [28]). Let S1, S2 and S3 be three n-bit S-Boxes
and F be the 2n-bit function defined by the corresponding 3-round Feistel net-
work. Then, δ(F) ≥ 2δ(S2). Moreover, if S2 is not a permutation, δ(F) ≥ 2n+1.

If n = 4, F satisfies δ(F) ≥ 8. If equality holds, then L(F) ≥ 64.

3 S-Boxes Obtained from 3 Rounds of MISTY or Feistel

3.1 Our Results

In this paper, we generalize the bounds of Li and Wang [28] on Feistel structures,
and derive bounds for MISTY structures. The results are very similar for the two
structures, but for a MISTY structure, optimal results are only achieved with
non-invertible inner functions. Therefore, our work shows that Feistel structures
allow better results than MISTY structures for the design of invertible 8-bit
S-Boxes.

More precisely, we introduce two new S-Box properties δmin and Lmin in order
to derive our bounds: Lmin is the smallest linearity we can have for a non-trivial
component of the S-Box. Similarly, δmin is the smallest value we can have for
the maximum maxb δ(a, b) within a row in the difference table. In particular, for
any 4-bit function S, δmin(S) ≥ 2 and Lmin(S) ≥ 4. Moreover, if S is a 4-bit
permutation, then δmin(S) ≥ 4 and Lmin(S) ≥ 8.

We first present the general lower bounds we obtain on the differential uni-
formity and linearity of 3 rounds of a Feistel and of a MISTY construction.

1. For a Feistel network with inner S-Boxes S1, S2 and S3:
– δ(F) ≥ δ(S2)max (δmin(S1), δmin(S3))
– if S2 is not a permutation, δ(F) ≥ 2n+1.
– if S2 is a permutation, δ(F) ≥ max

i�=2,j �=i,2

(
δ(Si)δmin(Sj), δ(Si)δmin(S−1

2)
)
.

– L(F) ≥ L(S2)max (Lmin(S1), Lmin(S3))
– ifS2 is a permutation, L(F) ≥ max

i�=2,j �=i,2

(
L(Si)Lmin(Sj), L(Si)Lmin(S−1

2)
)
.

2. For a MISTY network with inner S-Boxes S1, S2 and S3:
– δ(F) ≥ δ(S1)max (δmin(S2), δmin(S3))
– if S1 is not a permutation, δ(F) ≥ 2n+1.
– if S1 is a permutation, δ(F) ≥ max

i�=1,j �=1,i

(
δ(Si)δmin(Sj), δ(Si)δmin(S−1

1)
)
;

– L(F) ≥ max (L(S1)Lmin(S2),L(S2)Lmin(S1), L(S3)Lmin(S1));
– if S3 is a permutation, L(F) ≥ L(S1)Lmin(S−1

3).
– if S1 is a permutation, L(F) ≥ L(S3)Lmin(S2).
– if S1 and S3 are permutations, L(F) ≥ L(S2)Lmin(S−1

3).

If n = 4 this yields for both constructions:

δ(F) ≥ 8 and L(F) ≥ 48.

Moreover, L(F) ≥ 64 unless δ(F) ≥ 32.

380 A. Canteaut et al.

For the MISTY construction with n = 4, if F is a permutation, we obtain
tighter bounds: δ(F) ≥ 16 and L(F) ≥ 64. This implies that the Feistel con-
struction is more appropriate for constructing 8-bit permutations. We will also
show that all these bounds for n = 4 are tight. We now detail the results in the
case of the MISTY construction, while the results for the Feistel construction
are presented in the full version [15].

3.2 Differential Uniformity of 3 Rounds of MISTY

Our lower bound on the differential uniformity of the 3-round MISTY relies on
the evaluation of the number of solutions of some differentials for which the
input difference of one of the 3 S-Boxes is canceled (see Fig. 3 in [15]).

Proposition 1. Let S1, S2 and S3 be three n-bit S-Boxes and F be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then, for all a,
b and c in F

n
2 , we have:

(i) δF (0‖a, b‖c) = δS1(a, c) × δS3(c, b ⊕ c);

(ii) If S1 is bijective,

δF (a‖0, b‖c) = δS2(a, a ⊕ c) × δS3(a, b ⊕ c);

(iii) δS1(a, b)× δS2(b, c) ≤ δF (b‖a, c‖c) ≤
∑
d∈F

n
2

δS1(a, b⊕d)× δS2(b, c⊕d)×γS3(d)

where γS3(d) is 0 if δS3(d, 0) = 0 and 1 otherwise. Most notably, if S3 is
bijective,

δF (b‖a, c‖c) = δS1(a, b) × δS2(b, c).

Proof. Let x be the input of the MISTY network, and let xL and xR be its left
and right parts respectively.

(i) x = (xL, xR) satisfies F (xL‖xR) ⊕ F (xL‖(xR ⊕ a)) = b‖c if and only if
{

S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR ⊕ a) ⊕ xL) = b ⊕ c,
S2(xL) ⊕ S1(xR) ⊕ xL ⊕ S2(xL) ⊕ S1(xR ⊕ a) ⊕ xL = c

⇔
{

S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR ⊕ a) ⊕ xL) = b ⊕ c,
S1(xR) ⊕ S1(xR ⊕ a) = c

or equivalently

xR ∈ DS1(a → c) and xL ∈ S1(xR) ⊕ DS3(c → b ⊕ c).

Hence, we deduce that there are exactly δS1(a, c) values of xR, and for each
of those, δS3(c, b ⊕ c) values of xL, such that x verifies the differential.

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 381

(ii) x = (xL, xR) satisfies F (xL‖xR) ⊕ F ((xL ⊕ a)‖xR) = b‖c if and only if
{

S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR) ⊕ xL ⊕ a) = b ⊕ c,
S2(xL) ⊕ S1(xR) ⊕ xL ⊕ S2(xL ⊕ a) ⊕ S1(xR) ⊕ xL ⊕ a = c

⇔
{

S1(xR) ⊕ xL ∈ DS3(a → b ⊕ c),
S2(xL) ⊕ S2(xL ⊕ a) = a ⊕ c

or equivalently,

xL ∈ DS2(a → a ⊕ c) and S1(xR) ∈ xL ⊕ DS3(a → b ⊕ c).

If S1 is invertible, for any fixed xL, each one of the δS3(a, b ⊕ c) values
defined by the second condition determines a unique value of xR. Therefore,
the number of (xL, xR) satisfying the differential is exactly δS2(a, a ⊕ c) ×
δS3(a, b ⊕ c).

(iii) (xL, xR) satisfies F (xL‖xR) ⊕ F ((xL ⊕ b)‖(xR ⊕ a)) = c‖c if and only if
{

S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR ⊕ a) ⊕ xL ⊕ b) = 0,
S2(xL) ⊕ S1(xR) ⊕ xL ⊕ S2(xL ⊕ b) ⊕ S1(xR ⊕ a) ⊕ xL ⊕ b = c

⇔
{

S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR ⊕ a) ⊕ xL ⊕ b) = 0,
S2(xL) ⊕ S1(xR) ⊕ S2(xL ⊕ b) ⊕ S1(xR ⊕ a) = b ⊕ c

This equivalently means that there exists some d ∈ F
n
2 such that

{
xR ∈ DS1(a → b ⊕ d), xL ∈ DS2(b → c ⊕ d),
S3(S1(xR) ⊕ xL) ⊕ S3(S1(xR ⊕ a) ⊕ xL ⊕ b) = 0,

i.e.,

xR ∈ DS1(a → b ⊕ d), xL ∈ DS2(b → c ⊕ d) and S1(xR) ⊕ xL ∈ DS3(d → 0).

Then, for any fixed d ∈ F
n
2 such that δS3(d, 0) = 0, no pair (xL, xR) satisfies

the third condition. If δS3(d, 0) > 0, then some of the values (xL, xR) defined
by the first two conditions may also satisfy the third one, and if d = 0, the
third condition is always satisfied. It then follows that

δS1(a, b) × δS2(b, c) ≤ δF (b‖a, c‖c) ≤
∑
d∈Fn2

δS1(a, b ⊕ d) × δS2(b, c ⊕ d) × γS3(d)

where γS3(d) is 0 if δS3(d, 0) = 0 and 1 otherwise. Moreover, if S3 is bijective,
δS3(d, 0) > 0 if and only if d = 0, implying that the two previous bounds are
equal, i.e.,

δF (b‖a, c‖c) = δS1(a, b) × δS2(b, c).

�

These three particular types of differentials provide us with the following
lower bound on the differential uniformity of any 3-round MISTY network.

382 A. Canteaut et al.

Theorem 3. Let S1, S2 and S3 be three n-bit S-Boxes and let F be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then,

δ(F) ≥ δ(S1)max (δmin(S2), δmin(S3)) where δmin(S) = min
a�=0

max
b

δS(a, b).

Moreover,

– if S1 is a permutation,

δ(F) ≥ max
i�=1,j �=1,i

max
(
δ(Si)δmin(Sj), δ(Si)δmin(S−1

1)
)
,

– if S1 is not a permutation, δ(F) ≥ 2n+1.

Proof. The result is a direct consequence of Proposition 1. We here derive the
bounds from the first item in Proposition 1; the other cases can be similarly
deduced from the other two items. Let us first consider a pair of differences
(α, β) which achieves the differential uniformity of S1, i.e., δ(S1) = δS1(α, β).
Then, we choose a = α and c = β, and get that, for any b ∈ F

n
2 ,

δF (0‖α, b‖β) = δ(S1) × δS3(β, β ⊕ b).

Then, we can choose for b the value which maximizes δS3(β, β ⊕ b). This value
is always greater than or equal to δmin(S3). Similarly, we can now consider a
pair of differences (α, β) which achieves the differential uniformity of S3, i.e.,
δ(S3) = δS3(α, β). In this case, we choose c = α and b = α ⊕β, and get that, for
any a ∈ F

n
2 ,

δF (0‖a, (α ⊕ β)‖α) = δS1(a, α) × δ(S3).

We then choose for a the value which maximizes δS1(a, α) which is always greater
than or equal to δmin(S−1

1) when S1 is a permutation.
Let us now assume that S1 is not bijective. This means that there exists some

nonzero a ∈ F
n
2 such that δS1(a, 0) ≥ 2. Then, we deduce from the first item in

Proposition 1, with b = c = 0, that F (xL‖xR) ⊕ FK(xL ⊕ a‖xR) = (0, 0) has
δS1(a, 0) × δS3(0, 0) ≥ 2 × 2n = 2n+1 solutions in F

2n
2 .
�

3.3 Linearity of 3 Rounds of MISTY

The lower bound on the linearity of a three-round MISTY structure can be
derived in a similar way. The proofs of the following results are given in [15].

Proposition 2. Let S1, S2 and S3 be three n-bit S-Boxes and F the 2n-bit
function defined by the corresponding 3-round MISTY network. Then, for all a,
b and c in F

n
2 , we have:

(i) λF (a‖b, 0‖c) = λS1(b, c)λS2(a ⊕ c, c)
(ii) λF (a‖b, c‖c) = λS1(b, a)λS3(a, c)
(iii) If S1 is bijective, λF (a‖0, b‖c) = λS2(a, b ⊕ c)λS3(b ⊕ c, b)

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 383

As in the differential case, the previous three linear approximations provide
us with a lower bound on the linearity of any 3-round MISTY network. This
bound involves both the linearity of the constituent S-Boxes and another quan-
tity denoted by Lmin computed from the table of linear biases as follows.

Definition 4 (Lmin). Let F be an n-bit S-Box. We define

Lmin(F) = min
b∈Fn

2 ,b �=0
max
a∈Fn

2

|λF (a, b)|.

Most notably, Lmin(F) ≥ 2
n
2 and this bound is not tight when F is bijective.

Proof. By definition, Lmin(F) is the smallest linearity achieved by a component
Fb : x �→ b · F (x) of F , when b varies in F

n
2\{0}. Since any Fb is an n-variable

Boolean function, its linearity is at least 2
n
2 with equality if and only if Fb is

bent [41]. Since bent functions are not balanced, none of the components of a
permutation is bent, implying that Lmin(F) > 2

n
2 when F is a permutation.
�

We then derive the following lower bound on the linearity of any 3-round
MISTY network. The proof is given in [15].

Theorem 4. Let S1, S2 and S3 be three n-bit S-Boxes and let F be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then,

L(F) ≥ max (L(S1)Lmin(S2), L(S2)Lmin(S1), L(S3)Lmin(S1)) .

Moreover, if S1 is a permutation, L(F) ≥ L(S3)Lmin(S2); if S3 is a permutation,
L(F) ≥ L(S1)Lmin(S−1

3), and if both S1 and S3 are permutations, then L(F) ≥
L(S2)Lmin(S−1

3).

4 Application to 8-Bit S-Boxes

In this section, we investigate the cryptographic properties of 8-bit S-Boxes cor-
responding to a 3-round MISTY structure with 4-bit inner S-Boxes, with a par-
ticular focus on the case where the three inner S-Boxes are bijective, since it
corresponds to the case where the resulting function is a permutation.

4.1 Differential Uniformity

The following bound on the differential uniformity of any 3-round MISTY net-
work over F

8
2 is a direct consequence of Theorem 3.

Corollary 1. Any 8-bit function F corresponding to a 3-round MISTY network
satisfies δ(F) ≥ 8.

Proof. The bound clearly holds when S1 is not bijective, since we known from
Theorem 3 that δ(F) ≥ 32 in this case. If S1 is bijective, then δ(S1) ≥ 4 since
APN permutations over F

4
2 do not exist, as proved in [24, Theorem 2.3]. Obvi-

ously, any 4-bit S-Box S satisfies δmin(S) ≥ 2, implying that

δ(F) ≥ δ(S1)δmin(S2) ≥ 8.

�

384 A. Canteaut et al.

Besides this general result, we can provide some necessary conditions on the
constituent S-Boxes to achieve the previous lower bound.

Theorem 5. Let S1, S2 and S3 be three 4-bit S-Boxes and let F be the 8-bit
function defined by the corresponding 3-round MISTY network. Then, δ(F) = 8
implies that S1 is a permutation with δ(S1) = 4 and S2 and S3 are two APN
functions. Otherwise, δ(F) ≥ 12.

Proof. Since δ(F) ≥ 32 when S1 is not bijective, we only need to focus on the case
where S1 is a permutation. If any of the constituent S-Boxes Si has differential
uniformity strictly greater than 4, i.e., δ(Si) ≥ 6, we deduce from Theorem 3
that δ(F) ≥ δ(Si)δmin(Sj) ≥ 12. Therefore, δ(F) = 8 can be achieved only if
δ(S1) = 4, δ(S2) ≤ 4, and δ(S3) ≤ 4. The fact that δ(F) ≥ 16 when at least one
of the S-Boxes S2 or S3 has differential uniformity 4 is proved in Lemma 1 in
the full version [15].
�

We can then prove that the lower bound in Corollary 1 is tight by exhibiting
three 4-bit S-Boxes satisfying the previous conditions which lead to a 3-round
MISTY network with differential uniformity 8.

Example 2. The following 4-bit S-Boxes yield an 8-bit S-Box with differential
uniformity 8 and linearity 64 when used in a MISTY structure:

S1 = [4, 0, 1, f, 2, b, 6, 7, 3, 9, a, 5, c, d, e, 8]
S2 = [0, 0, 0, 1, 0, a, 8, 3, 0, 8, 2, b, 4, 6, e, d]
S3 = [0, 7, b, d, 4, 1, b, f, 1, 2, c, e, d, c, 5, 5]

With Bijective Inner S-Boxes. We now focus on the case where the three
inner S-Boxes are permutations since this guarantees that the resulting MISTY
network is a permutation. We have proved that, in this case, the lowest possible
differential uniformity we can obtain is 12. Here, we refine this result and show
that the differential uniformity cannot be lower than 16. This improved bound
exploits the following lemma on the difference tables of 4-bit permutations.

Lemma 1. Let S1, S2 and S3 be 4-bit permutations. Then, there exists a
nonzero difference γ ∈ F

4
2\{0} such that at least one of the following statements

holds:

– The difference table of S1 has at least one value greater than or equal to 4 in
Column γ and the difference table of S2 has at least one value greater than or
equal to 4 in Row γ;

– The difference table of S1 has at least one value greater than or equal to 4 in
Column γ and the difference table of S3 has at least one value greater than or
equal to 4 in Row γ,

– The difference table of S2 has at least one value greater than or equal to 4 in
Row γ and the difference table of S3 has at least one value greater than or
equal to 4 in Row γ.

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 385

Proof. This result relies on an exhaustive search over the equivalence classes
defined by composition on the left and on the right by an affine transformation,
exactly as in the classification of optimal 4-bit S-Boxes in [18,27]. There are
302 equivalence classes for 4-bit permutations. From each of the classes we picked
a representative, and checked that its difference table has at least six rows defined
by some nonzero input difference a which contain a value greater than or equal
to 4. Let R(S) denote the corresponding set (of size at least six):

R(S) =
{
a ∈ F

4
2\{0} : ∃b ∈ F

4
2\{0}, δS(a, b) ≥ 4

}
.

Therefore, if there exists no difference γ ∈ F
4
2\{0} satisfying one of the three

statements in the lemma, then this would mean that the three sets R(S2), R(S3)
and R(S−1

1) are disjoint. In other words, we could find 18 distinct values amongst
the 15 nonzero elements in F

4
2, which is impossible.
�

We then deduce the following refined lower bound on the differential unifor-
mity of a 3-round MISTY network over F

8
2 with inner permutations.

Theorem 6. Let S1, S2 and S3 be three 4-bit permutations and let F be the 8-
bit function defined by the corresponding 3-round MISTY network. Then, δ(F) ≥
16.

Proof. The result is a direct consequence of Proposition 1 combined with the
previous lemma. Indeed, Lemma 1 guarantees the existence of a, b and c such
that at least one of the three following properties holds:

– δS1(a, c) ≥ 4 and δS3(c, b ⊕ c) ≥ 4,
– δS2(a, a ⊕ c) ≥ 4 and δS3(a, b ⊕ c) ≥ 4,
– δS1(a, b) ≥ 4 and δS2(b, c) ≥ 4.

In each of these three situations, Proposition 1 exhibits a differential (α, β) for
F with δF (α, β) = 16.
�

4.2 Linearity

In order to apply Theorem4 to the case of 8-bit MISTY network, we need to
estimate the best linearity (and Lmin) for 4-bit S-Boxes. It is well-known that
the lowest linearity for a 4-bit permutation is 8. But, this result still holds if the
S-Box is not bijective.

Lemma 2. Any 4-bit S-Box S satisfies L(S) ≥ 8.

Proof. Assume that there exists some S from F
4
2 into F

4
2 with L(S) < 8, i.e.,

with L(S) ≤ 6. Then, all nonzero Boolean components of S, Sc : x �→ c · S(x)
with c = 0, satisfy L(Sc) ≤ 6. From the classification of all Boolean functions of
at most 5 variables by Berlekamp and Welch [6], we deduce that any Sc, c = 0,
is affine equivalent either to x1x2x3x4 + x1x2 + x3x4 or to x1x2 + x3x4, because
these are the only classes of Boolean functions with linearity at most 6. Let L1

386 A. Canteaut et al.

(resp. L2) denote the set of all nonzero c ∈ F
4
2 such that Sc belongs to the first

(resp. second) class. Since the degree is invariant under affine transformations,
L1 (resp. L2) corresponds to the components with degree 4 (resp. with degree at
most 2). The sum of two components of degree at most 2 has degree at most 2,
implying that L2∪{0} is a linear subspace V of F4

2. It follows that the projection
of S on V can be seen as a function from F

4
2 into F

dimV
2 with linearity 4, i.e., a

bent function. It has been shown by Nyberg [35] that, if a function F from F
n
2

into F
m
2 is bent, then m ≤ n/2. Therefore, dimV ≤ 2. But, the sum of any two

components Sc of degree 4 cannot have degree 4 since there is a single monomial
of degree 4 of 4 variables. We deduce that, if L1 contains t words of weight 1
(i.e., if S has t coordinates with linearity 6), then

#L2 ≥
(

t

2

)
+ 24−t − 1 > 3,

for all 0 ≤ t ≤ 4, a contradiction.
�

Combined with the previous lemma and with Definition 4, Theorem 4 pro-
vides the following lower bound on the linearity of a 3-round MISTY network
over F

8
2.

Corollary 2. Any 8-bit function F corresponding to a 3-round MISTY network
satisfies L(F) ≥ 32.

This bound is of marginal interest since, up to our best knowledge, L(S) = 32
is the lowest known linearity for an 8-bit S-Box. But, once again, the previous
lower bound can be improved when focusing on permutations. Indeed, we can
exploit that Lmin(S) ≥ 8 for any 4-bit permutation:

Lemma 3. For any 4-bit permutation S, the table of linear biases of S has at
least one value greater than or equal to 8 on every row and column.

Proof. This result is obtained by an exhaustive search over all affine equivalence
classes. The 302 representatives have been examined, and we could check the
result for each of them.
�

Using that any 4-bit permutation S satisfies L(S) ≥ 8 and Lmin(S) ≥ 8, we
directly deduce from Theorem 4 the following improved lower bound.

Proposition 3. Let S1, S2 and S3 be three 4-bit S-Boxes and let F be the 8-bit
function defined by the corresponding 3-round MISTY network. If any of the three
inner S-Boxes is a permutation, then L(F) ≥ 64. Most notably, if L(F) < 64,
then δ(F) ≥ 32.

The last statement in the previous theorem is deduced from the first item in
Theorem 3. While it shows that 3-round MISTY with L(F) < 64 would be of
little interest, we show in [15] the following theorem proving that their linearity
is at least 48.

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 387

Theorem 7. Let S1, S2 and S3 be three 4-bit S-Boxes and let F be the 8-bit
function defined by the corresponding 3-round MISTY network. Then L(F) ≥ 48.

We conjecture that any MISTY network with 4-bit inner functions actually
satisfies L(F) ≥ 64, but it seems hard to prove without a full classification of
the 4-bit functions.

5 Constructions

We now use the previous results to design concrete 8-bit invertible S-Boxes opti-
mized for lightweight implementations. We use Feistel and MISTY networks,
and select 4-bit S-Boxes Si’s with a low-cost implementation that provide good
cryptographic properties of the resulting 8-bit S-Box. Such S-Boxes have been
considered as good candidates for many lightweight constructions (e.g. the LS-
designs [23]), but their respective merits and their cryptographic properties
remained open.

We focus on implementing functions with a low gate count for hardware
implementations, and a low instruction count for bit-sliced implementations
(for table-based implementations, the table size is independent of the concrete
S-Boxes). Moreover, we focus on implementations with a small number of non-
linear gates, because non-linear gates are much harder to implement than linear
gates in some dedicated settings such as masking [40], multi-party computation,
or homomorphic encryption [1]. Bit-slicing can be used as an implementation
technique to take advantage of some platform characteristics (for instance, it
yields the fastest known implementation of AES on some Intel processors [25]),
but it can also be a design criterion. Indeed, using a bit-sliced S-Box allows
compact implementations without tables, and good performances both in soft-
ware and hardware. In addition, S-Boxes implemented in this way are eas-
ier to protect against side-channel attacks with masking. Therefore, this app-
roach is used by many lightweight designs such as Serpent [9], Noekeon [16],
Keccak [8], Robin and Fantomas [23], Pride [2], Prøst [26], or Ascon [19].
This makes the construction of S-Boxes with a low gate count particularly
relevant for lightweight cryptography.

Following the previous sections, the best results we can achieve for an 8-bit
invertible S-Box are:

With a MISTY network: δ(F) = 16 and L(F) = 64.
With a Feistel network: δ(F) = 8 and L(F) = 64.

We can provide some examples fulfilling these bounds: Example 2 is optimal for
the MISTY construction, and an example for the Feistel construction is now
exhibited. It is worth noticing that these results explain the compared proper-
ties of the S-Boxes obtained by the simulations reported in [23]. Since Feistel
networks can reach a better security, we will mostly consider this construction.
In this case, the optimal differential uniformity can be reached only if S1, S3 are
APN, and S2 is a permutation with δ(S2) = 4, as proved in Th. 9 in the full

388 A. Canteaut et al.

version [15]. Note that, in some other contexts, the MISTY construction presents
some advantages since it offers better performance in terms of throughput and
latency because the first two S-Boxes can be evaluated in parallel.

5.1 Feistel Network with Low Gate Count and Instruction Count

Rather than choosing S-Boxes S1, S2 and S3 with good properties first, and
then searching for an efficient implementation of these S-Boxes (as in [13,39] for
instance), we take the opposite approach, following Ullrich et al. [45]. We build
gate descriptions of S-Boxes, and we test their cryptographic properties until we
find a good candidate. Indeed, we do not have to specify in advance the 4-bit
S-Boxes S1, S2, S3. Instead, we look for a good implementation of a permutation
with δ(S) = 4 for S2, a good implementation of an APN function for S1 and
S3, and we test the properties of the resulting Feistel structure. With good
probability, this results in a Feistel network F with δ(F) = 8 and L(F) = 64.

Following Ullrich et al., we run a search oriented towards bit-sliced imple-
mentations. We consider sequences of software instructions, with instructions
AND, OR, XOR, NOT, and MOV, using at most 5 registers. This directly translates to
a hardware representation: the MOV instruction becomes a branch while the other
instructions represent the corresponding gates. There are 85 choices of instruc-
tions at each step, but we use an equivalence relation to restrict the search. For
S2, we can directly reuse the results of [45]: they give an optimal implementa-
tion of a 4-bit permutation with δ(S) = 4. For S1 and S3, we implemented a
version of their algorithm, and searched for APN functions. We found that there
is no construction of an APN function with 9 or fewer instructions. There are
solutions with 10 instructions, but they have at least 6 non-linear instructions
(AND, OR), which is not efficient for a masked implementation. Finally, with 11
instructions, there are constructions of APN functions with 4 non-linear instruc-
tions, 5 XOR instructions, and 2 MOV (copy) instructions. This search requires
about 6000 core-hours of computation. The branching factor of our search is
close to 10, while Ullrich et al. report a branching factor of less than 7; this is
because we do not restrict the search to permutations (indeed, 4-bit APN func-
tions are not permutations). This results in a very efficient 8-bit S-Box with good
cryptographic properties, using 12 nonlinear gates, and 26 XORs. According to
Theorem 9 in [15] and to the following lemma, this is the optimal number of
non-linear gates.

Lemma 4. Let S be a 4-bit permutation with δ(S) ≤ 4 or a 4-bit APN function.
Any implementation of S requires at least 4 non-linear gates.

Proof. If S can be implemented with 3 non-linear gates or less, then the algebraic
expression of the output variables is a linear combination of the input variables,
and of the 3 polynomials corresponding to the output of the 3 non-linear gates.
Therefore, there exists a linear combination of the input and output variables
that sums to a constant, i.e. L(S) = 16. According to the classification of 4-bit

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 389

permutation in [18], any permutation with δ(S) = 4 satisfies L(S) ≤ 12. Fur-
thermore, the classification of 4-bit APN functions [14] shows that they satisfy
L(S) = 8, which proves the lemma.
�

x0 x1 x2 x3

y0 y1 y2 y3

3.1. S1, APN function with δ(S1) = 2.
S1 = [0, 0, 4, d, c, 0, 0, 5, 8, 0, 7, 6, 5, a, 2, 4]

x0 x1 x2 x3

y0 y1 y2 y3

3.2. S2, permutation with δ(S2) = 4.
S2 = [0, 8, 6, d, 5, f, 7, c, 4, e, 2, 3, 9, 1, b, a]

Fig. 3. Construction of a lightweight S-Box S with a three-round Feistel (S1, S2, S1)
satisfying δ(S) = 8 and L(S) = 64.

We give an example of such an implementation in Fig. 3, and we compare
our results with previous designs in Table 1. In particular, we reach a better
differential uniformity than the S-Boxes used in Robin and Fantomas [23], for
a small number of extra gates. For comparing the respective merits of the S-
Boxes considered in Table 1, we use the fact that, as a simple approximation,
the number of rounds needed to reach a fixed security level against differential
attacks is proportional to 1/ log(δ(S)/256), and the implementation cost per
round is proportional to the number of non-linear gates (for a bit-sliced software
implementation with masking). This allows to derive a simple implementation
cost metric for the S-Boxes presented in the last column, taking 1 for the AES,
and considering only security against differential attacks.

5.2 Unbalanced MISTY Structure

Finally, we consider an alternative to MISTY structures as studied in this paper.
Instead of dividing the input into two halves of equal size, we consider unbalanced
networks. The idea is to split the 8 input bits in two unequal parts of 3 and 5 bits.
Thus, the MISTY network will use only 3- and 5-bit S-Boxes. The advantage of
3- and 5-bit S-Boxes is that invertible S-Boxes with δ = 2 exist, contrarily to the

390 A. Canteaut et al.

case of 4-bit S-Boxes. We managed to obtain 8-bit S-Boxes S with δ(S) = 8 using
unbalanced MISTY networks, which is better than the lower bound δ(S) ≥ 16
proved for balanced MISTY networks. However, this method uses 5-bit S-Boxes,
which are more complicated to implement than 4-bit S-Boxes.

Example 3. We consider a 3-round unbalanced MISTY structure, with 5-bit per-
mutations S1, S3 and a 3-bit permutation S2. After S1 and S3, the 3-bit xL is
xored in the 3 MSB of xR; after S2 the 3 MSB of the 5-bit xL are xored into xL.
The following S-Boxes define an 8-bit S-Box with δ = 8 and L = 64:

S1 = [00, 01, 02, 04, 03, 08, 0d, 10, 05, 11, 1c, 1b, 1e, 0e, 18, 0a,
06, 13, 0b, 14, 1f, 1d, 0c, 15, 12, 1a, 0f, 19, 07, 16, 17, 09]

S2 = [2, 5, 6, 4, 0, 1, 3, 7]
S3 = [00, 01, 02, 04, 03, 08, 10, 1c, 05, 0a, 1a, 12, 11, 14, 1f, 1d,

06, 15, 18, 0c, 16, 0f, 19, 07, 0e, 13, 0d, 17, 09, 1e, 1b, 0b]

This shows that generalizing our results to the unbalanced case, especially for
the MISTY construction, may be of interest.

Table 1. Comparison of some 8-bit S-Boxes. δ and L respectively denote the differential
uniformity and the linearity of the S-Box (see Sect. 2.1 for the definitions), the last
column presents the relative overall implementation cost (taking 1 for the AES).

S-Box Construction Implementation Properties

AND/OR XOR L δ cost

AES [13] Inversion in F28 + affine 32 83 32 4 1

Whirlpool [5] Lai-Massey 36 58 56 8 1.35

CRYPTON [29] 3-round Feistel 49 12 64 8 1.83

Robin [23] 3-round Feistel 12 24 64 16 0.56

Fantomas [23] 3-round MISTY (3/5 bits) 11 25 64 16 0.51

Unnamed [23] Whirlpool-like 16 41 64 10 0.64

New 3-round Feistel 12 26 64 8 0.45

6 Conclusion

Our results give a better understanding of the cryptographic properties of light-
weight S-Boxes built from smaller S-Boxes. We give a precise description of the
best security achievable with a 3-round balanced Feistel or MISTY structure
for an 8-bit S-Box, and necessary conditions to reach the bound. Interestingly,
the MISTY network cannot offer the same security as the Feistel network for

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 391

constructing an invertible 8-bit S-Box. Using those results, we describe an 8-
bit S-Box S using only 12 non-linear gates and 26 XOR gates, with δ(S) = 8
and L(S) = 64. This is the best security that can be achieved with a 3-round
Feistel or MISTY structure, and our construction uses the minimal number of
non-linear gates to reach this security. This is an improvement over previous
proposals, including the S-Boxes used in CRYPTON, Fantomas and Robin, but
further work is required to determine whether different structures can provide
better S-Boxes.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg
(2014)

3. Aoki, K., Ohta, K.: Strict evaluation of the maximum average of differential prob-
ability and the maximum average of linear probability. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E80A(1), 2–8 (1997)

4. Barreto, P.S., Rijmen, V.: The KHAZAD Legacy-Level Block Cipher. NESSIE
submission

5. Barreto, P.S., Rijmen, V.: The WHIRLPOOL Hashing Function. NESSIE submis-
sion

6. Berlekamp, E.R., Welch, L.R.: Weight distributions of the cosets of the (32, 6)
Reed-Muller code. IEEE Trans. Inf. Theor. 18(1), 203–207 (1972)

7. Bernstein, D.J.: Cache-timing on AES. In: Symmetric-Key Encryption Workshop
- SKEW 2005 (2005). http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, January
2011. http://keccak.noekeon.org/

9. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998)

10. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Crypt. 4(1), 3–72 (1991)

11. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

13. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://keccak.noekeon.org/

392 A. Canteaut et al.

14. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimen-
sion five. Des. Codes Crypt. 49(1–3), 273–288 (2008)

15. Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes using
Feistel and MISTY structures (Full Version). IACR eprint report 2015/711, Jul
2015. http://eprint.iacr.org/2015/711

16. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal. In: NOEKEON
(2000)

17. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

18. De Cannière, C.: Analysis and Design of Symmetric Encryption Algorithms. Ph.D.
thesis, KU Leuven (2007)

19. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. In: CAESAR
Competition (2014). http://competitions.cr.yp.to/round1/asconv1.pdf

20. ETSI/SAGE: specification of the 3GPP confidentiality and integrity algorithms
128-EEA3 & 128-EIA3. document 4: design and evaluation report. Technical report
(2011)

21. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

22. Grosso, V., Leurent, G., Standaert, F.X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: SCREAM & iSCREAM side-channel resistant authenticated encryp-
tion with masking. In: CAESAR Competition (2014). http://competitions.cr.yp.
to/round1/screamv1.pdf

23. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

24. Hou, X.D.: Affinity of permutations of Fn
2 . Discrete Appl. Math. 154(2), 313–325

(2006)
25. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,

C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

26. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın,
T.: Prøst. CAESAR Proposal (2014). http://proest.compute.dtu.dk

27. Leander, G., Poschmann, A.: On the classification of 4 bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

28. Li, Y., Wang, M.: Constructing S-Boxes for lightweight cryptography with Feistel
structure. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
127–146. Springer, Heidelberg (2014)

29. Lim, C.H.: CRYPTON: A new 128-bit block cipher. AES submission (1998)
30. Lim, C.H.: A revised version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R.

(ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)
31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
32. Matsui, M.: New structure of block ciphers with provable security against differen-

tial. In: Gollmann, Dieter (ed.) FSE 1996. LNCS, vol. 1039, pp. 205–218. Springer,
Heidelberg (1996)

33. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

http://eprint.iacr.org/2015/711
http://competitions.cr.yp.to/round1/asconv1.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
http://proest.compute.dtu.dk

Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 393

34. National Institute of Standards and Technology: Data Encryption Standard, FIPS
Publication 46-2, December 1993

35. Nyberg, K.: Perfect nonlinear S-Boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

36. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

37. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

38. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Crypt.
8(1), 27–37 (1995)

39. Osvik, D.A.: Speeding up Serpent. In: AES Candidate Conference, pp. 317–329
(2000)

40. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

41. Rothaus, O.S.: On “bent” functions. J. Comb. Theor. Ser. A 20(3), 300–305 (1976)
42. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),

656–715 (1949)
43. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG:

an involutional cipher efficient for block encryption in reconfigurable hardware.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer,
Heidelberg (2004)

44. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: a lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

45. Ullrich, M., De Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4×4-bit S-Boxes. In: SKEW 2011
Symmetric Key Encryption Workshop, Copenhagen, Denmark, pp. 16–17 (2011)

46. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner, New York
(1987)

47. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1994)

48. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

Authenticated Encryption

A New Mode of Operation for Incremental
Authenticated Encryption with Associated Data

Yu Sasaki1,2 and Kan Yasuda1(B)

1 NTT Secure Platform Laboratories, Tokyo, Japan
{sasaki.yu,yasuda.kan}@lab.ntt.co.jp

2 Nanyang Technological University, Singapore, Singapore

Abstract. We propose a new mode of operation for authenticated
encryption with associated data (AEAD) that achieves incrementality
and competitive performance with many designs in CAESAR. The incre-
mentality of a function F (·) means the property that once F (x) is stored,
the value F (x′) with a slightly modified input x′ can be updated from
F (x) much faster than computing F (x′) from scratch. It turns out that
the security of incremental AEAD needs to be treated carefully. Incre-
mental operations leak more information than ordinary ones. Moreover, if
the scheme is nonce-based, nonce repetition must be taken into account.
We discuss which structures are (un)suitable for incrementality. Paral-
lelizability is a minimum requirement, but there are many other require-
ments, often subtle and complex, especially for combining associated
data A with a message M . For example, using PMAC for both A and
M would spoil incrementality. We go through 57 designs submitted to
CAESAR and show that none of them meets all the requirements. It
turns out that options are quite limited and the design of an incremental
AEAD mode is almost uniquely determined. We propose a new construc-
tion providing incremental operations such as update, append and chop.
Interestingly, our encryption part is composed of the XE construction
instead of XEX, hence optimizing the efficiency.

Keywords: Incremental cryptography · AEAD · PMAC · OCB · CAE-
SAR · Enc-then-MAC · XE

1 Introduction

Recently, many AEAD schemes have been proposed especially for CAE-
SAR [10], which determines a new portfolio of AEAD. AEAD schemes are
evaluated in many criteria including the performance in various platforms,
security of integrity/confidentiality in nonce-respect/nonce-repeat models, and
additional features such as parallelizability, provable security, length optimal-
ity, efficient processing for repeated associated data, variable tag size, a small
masking cost against side-channel analysis, etc. Incrementality is one of such
additional features.

The preliminary version was presented at Dagstuhl Seminar 14021 in 2014.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 397–416, 2016.
DOI: 10.1007/978-3-319-31301-6 23

398 Y. Sasaki and K. Yasuda

Incremental cryptography was introduced by Bellare et al. [6]. Suppose that
an input x was once processed by a function F (·), and the output was stored.
Then, a fraction of x is modified to x′. The incremental cryptography allows to
quickly update F (x) to F (x′) in time proportional to the amount of modification
made to x, which is faster than recomputing F (x′) from scratch.

Incremental cryptography in early days focused on hashing, signature, and
MAC rather than encryption [6,8]. A work in [7] initiated the discussion for incre-
mental encryption/decryption. The security of incremental encryption schemes
is always worse than the ordinary schemes. [7] introduced the security policy
as hiding all the information other than the amount of difference for incre-
mental operations. The proposed schemes provide most of practical operations
i.e. update, delete, and insert. As a drawback, their scheme requires extra ran-
domness and the randomness must be sent to a verifier, which causes a tag
expansion. Moreover the construction needs to make the plaintext size at least
twice of the original plaintext so that the modification history for all message
blocks are recorded in the extended blocks.

More closely related work is the one by Buonanno et al. [15] about incremen-
tal AE (without AD). Buonanno et al. study a generic composition of probabilis-
tic encryptions and incremental-MACs (instantiated with randomized ECB and
the XOR scheme in [7]) to achieve a provable security with respect to unforge-
ability. One of the proposed schemes, RPC-mode, provides insert and delete func-
tionalities. As a side-effect, the encryption cost becomes 4 times more than the
ordinary scheme, which is unlikely to be accepted in the CAESAR competition.

There are a few more researches on incremental cryptography, e.g. byte-wise
incremental encryption [4,5] and incremental MAC with SHA-3 [18]. We omit
their details in this paper.

Achieving the incrementality for both of the efficient encryption and MAC
at the same time is not an easy task. Considering the basic requirements of
the incrementality, the following two conditions are inevitable: (1) paralleliz-
ability for encryption and decryption and (2) the same nonce must be iterated
multiple times, thus the scheme must provide some robustness against nonce
repetition. The GCM mode [28] can meet the first condition. However, under
the nonce-repeating model, the key stream for all blocks are leaked, which does
not meet the second condition. The OCB mode [35] can meet the both condi-
tions for encryption/decryption. However, its authentication (tag generation) is
the encryption of the message checksum, which can be broken easily under the
nonce-repeating model. The COPA mode [2,3] is parallelizable and nonce-misuse
resistant. However, its onlineness, i.e. modifying 1 message block affects all the
subsequent blocks, cannot allow the incremental operation.

Our Contributions. This paper investigates incremental AEAD. Our final
goal is developing a new mode of operation for incremental AEAD, which is
also secure and practically efficient; as efficient as CAESAR candidates. There-
fore, we avoid the ciphertext expansion, tag expansion, and extra randomness.
We make the scheme simple and minimize the cost of each operation. We begin
with formalizing nonce-based incremental AEAD. Then, we investigate various

A New Mode for Incremental AE with Associated Data 399

operations used in the CAESAR candidates with respect to (un)suitability for
the incremental operation. Finally we propose a new mode of operation with
security proof. Contributions of this paper are further detailed as follows.

1. Formalization. As pointed out by Bellare et al. [7], in principle it is
inevitable that incremental operations, especially encrypting, should leak
more information than ordinary, non-incremental ones. In particular, for
nonce-based schemes [34], one needs to carefully consider the problem of
security under “nonce repetition.” Moreover, in nonce-based AEAD [32], the
combination of various components raises subtle and complex issues. In this
work, a framework of incremental AEAD is formalized, rigorously defining the
syntax of incremental operations, the model of adversaries, and the notion of
security.

2. Design Requirements. The presence of associated data A causes potential
problems, which need to be carefully addressed. For instance, consider Enc-
then-MAC approach [9]. Suppose that A is processed by PMAC [13] and that
its output and C are again processed by PMAC. We call this construction
layered PMAC and illustrate it in Fig. 1. Here one would expect the paral-
lelizability of PMAC to be useful for incremental operations. However, one
would soon notice that incremental operations cannot be performed on A,
since the two PMACs are “stacked.” This motivates us to slightly change the
processing method for A from PMAC to the one used in OCB3 [26]. The
resulting scheme is illustrated in Fig. 2. This scheme now allows incremental
update of A. In this way we identify suitable and unsuitable constructions for
designing an incremental AEAD mode of operation.

3. New Mode of Operation. It turns out that there are a number of require-
ments essential for a secure incremental AEAD mode of operation. Indeed,
we perform a survey on the CAESAR candidates and confirm that none of
them fulfills all the requirements. This motivates us to build a new mode that
satisfies all these conditions. Interestingly, options are quite limited, and the
overall structure of the mode is almost uniquely determined according to the
design conditions. Fortunately there is one that satisfies all the conditions.
This work presents one concrete, optimized example. The new AEAD mode
achieves greater efficiency and enables incremental operations at a minimal
cost. Unlike previous proposals [7], the new mode does not need ciphertext
expansion, tag expansion, or additional randomness. The computational cost
of incremental operations is only linear to the number of blocks to be updated.
The new mode is capable of executing update, append and chop operations.

The overall design of the new AEAD mode is inspired by PMAC [13] which
was already incremental to a certain degree. Specifically, we utilize XE con-
struction [33] within Enc-then-MAC paradigm [9]. Unlike OCB [35], the XE
construction, rather than XEX [33], turns out to be sufficient for realizing the
encryption part, owing to the Enc-then-MAC composition and “verify-then-
decrypt” functionality [1]. This reduces the number of masks and the cost of
an XOR operation per block.

400 Y. Sasaki and K. Yasuda

Fig. 1. Bad example: layered PMAC. Fig. 2. Good example: OCB3 + PMAC.

2 Our Goals

We begin with stating properties that we want an incremental AEAD scheme
to have. At the same time we mention properties that we do not—that is, the
properties that ordinary AEAD schemes possess but seem “incompatible” with
incrementality and inessential in the practical use.

Let Π be an AEAD scheme. Let N denote the nonce. Let A = A1A2 · · · Aa

be associated data divided into n-bit blocks Ai. Let M = M1M2 · · · Mm be a
message and C = C1C2 · · · Cm the ciphertext. Let T denote the tag. In the
following we consider the case of incremental authenticated encryption; the case
of verification and decryption can be treated in the same manner.

Types of Incremental Operations. We demand Π to be capable of update,
append and chop operations on A and M , since these appear to be feasible by
basing on a PMAC-like internal structure. Here, the update operation either
recomputes new T ′ given new A′

i and the original T and Ai or recomputes new
T ′ and C ′

i given the new M ′
i and the original T , Ci and Mi. The append operation

either recomputes new T ′ given an additional data block Aa+1 and the original
T or recomputes new T ′ and C ′

m+1 given an additional message block Mm+1

and the original T . The chop operation is similarly defined. It should be noted
that in many of the existing nonce-based AEAD schemes [32] the ciphertext C
is not affected by A, which is a desirable property for incremental AEAD.

Efficiency. We demand the incremental operations to be efficient. Specifically,
the computational cost should increase only linearly to the number of blocks to
be modified.

Nonce-Based. We follow the well-established nonce-based framework, which
was formalized by Rogaway [34]. The crucial problem here is that incremental
operations by definition imply the use of the same nonce value N multiple times,

A New Mode for Incremental AE with Associated Data 401

which contradicts the security notions of nonce-based framework. We formalize
the security notions under such circumstances.

No Randomization or Expansion. Since we follow the nonce-based frame-
work, we do not allow Π to be randomized. In general randomization would
require the use of pseudo-random number generator, which is costly. Moreover,
randomization would expand the output size of the encryption algorithm. We
would like to keep the original size of the ciphertext and the tag of an ordinary
nonce-based AEAD scheme.

3 Formalization

In this section we formalize the framework of incremental AEAD by defining its
algorithmic syntax, adversarial model, and security notions.

3.1 Syntax

An incremental AEAD scheme (Π,Δ) consists of an ordinary AEAD algo-
rithms Π = (EK ,DK) and the set of incremental operations Δ which consists of
(UA

K ,AA
K ,CA

K) for associated data and (UM
K ,AM

K ,CM
K) for the message part. The

syntax of these algorithms are as follows.

• The encryption algorithm EK takes as input a nonce N ∈ N , associated data
A ∈ A and a message M ∈ M and outputs a pair (C, T) of ciphertext C ∈ C
and tag T ∈ {0, 1}n, so that we have (C, T) ← EK(N,A,M). For simplicity we
assume that the length of associated data A, of a message M , or of ciphertext
C is always a multiple of n bits.

• The decryption algorithm DK takes as input a nonce N , associated data A,
a ciphertext C and a tag T and outputs either the reject symbol ⊥ or a
message M , so that we have ⊥ or M ← DK(N,A,C, T).

• We demand that EK and DK should be consistent; that is, whenever (C, T) ←
EK(N,A,M), we must have M = DK(N,A,C, T).

• The update operation U
A
K takes as input a nonce N , the position i to be

updated, the original Ai, the new A′
i and the original T and outputs a new

tag value T ′, so that T ′ ← U
A
K(N, i,Ai, A

′
i, T). Similarly, the update function

U
M
K takes as input a nonce N , the position i to be updated, the original Ci,

the new M ′
i and the original T and outputs a new ciphertext block C ′

i and a
new tag value T ′, so that we have (C ′

i, T
′) ← U

M
K(N, i, Ci,M

′
i , T).

• The append operation A
A
K takes as input a nonce N , the current

number of blocks a of A, a new block Aa+1 to be appended, and the
original T and outputs a new tag value T ′, as T ′ ← A

A
K(N, a,Aa+1, T).

Similarly, the append function A
M
K takes as input a nonce N , the current

number m of ciphertext blocks, the new Mm+1 and the original T and out-
puts a new ciphertext block Ca+1 and a new tag value T ′, so that we have
(Cm+1, T

′) ← A
M
K(N,m,Mm+1, T).

402 Y. Sasaki and K. Yasuda

• The chop operation C
A
K takes as input a nonce N , the current number a of

blocks in A, the original Aa, and the original T and outputs a new tag value
T ′, so we can write T ′ ← C

A
K(N, a,Aa, T). Similarly, the chop function C

M
K

takes as input a nonce N , the current number m of ciphertext blocks, the
original Cm, and the original T and outputs a new tag value T ′, and so we
simply have T ′ ← C

M
K(N,m,Cm, T).

• We demand that the incremental operations are consistent with each other;
that is, if the same value of a block Ai or Mj is “restored” after performing a
sequence of incremental operations, then we must have the same value for Cj

and T .
• We demand that the incremental operations are consistent with the encryption

and decryption algorithms; that is, if (N,A′, C ′, T ′) is a result after performing
incremental operations, we must have M ′ = DK(N,A′, C ′, T ′).

3.2 Adversarial Model

An adversary is an oracle machine. In the conventional setting of AEAD, an
adversary A is given access to the encryption oracle EK(·, ·, ·) and the decryp-
tion oracle DK(·, ·, ·, ·). We follow the framework of nonce-based symmetric-key
encryption and demand that A should be nonce-respecting to its encryption ora-
cle. That is, adversary A is not allowed to use the same value of N in making
queries to its encryption oracle EK .

Now in the current setting of incremental AEAD we give A access also to the
incremental oracles, UA

K , AA
K , CA

K , UM
K , AM

K and C
M
K . We forbid A from making

queries to these incremental oracles with an “unused” nonce N ; that is, these
values of N which have not been used in the encryption oracle EK . We write
Δ = (UA

K ,AA
K , . . . ,CM

K) to gather the six oracles.
Since we assume that adversary A is nonce-respecting and does not make

incremental queries with an unused nonce, from the value of N it should be
clear which (A,C, T) is relevant when A makes a query to one of its incremental
oracles. We allow A to interleave its queries to the encryption, decryption and
incremental oracles. A can make its queries to these oracles in any combination.

Suppose that A has access to its oracles O1,O2, We write AO1,O2,... to
denote the value returned by A after interacting with its oracles.

3.3 Security Notions

In the conventional AEAD, the key notions of security were privacy and authen-
ticity. We follow these notions. We formalize the notions of security and authen-
ticity when adversaries have additional access to the incremental oracles.

Privacy. In the conventional AEAD setting the notion of privacy was defined in
terms of indistinguishability between the real encryption oracle EK and the ideal
oracles $ where $ is an oracle having the same interface with EK but returns a

A New Mode for Incremental AE with Associated Data 403

random string of expected length upon a query (N,A,M). Here of course the
adversary is assumed to be nonce-respecting.

We do similarly for the incremental setting. Specifically, we consider ran-
dom oracles having the same interfaces with the six incremental operations.
In the ideal world adversary has access to this random oracle, which we write
&=($,$,$,$,$,$) where each oracle is an independent random oracle having the
corresponding interface. We define

Advpriv
Π,Δ(A) := Pr

[
AEK ,Δ = 1

]
− Pr

[
A$,& = 1

]
,

where the probabilities are taken over the choice of key K and randomness used
in the oracles and in the adversary A. This convention of probability definition
apply to the rest of the paper. Here we demand that A be nonce-respecting.
Without loss of generality we also assume that A never makes incremental
queries that lead to a trivial win. These are incremental queries which A can
check the consistency conditions of the incremental oracles in the real world.

Authenticity. In the conventional AEAD the authenticity was defined in terms
of unforgeability under chosen-message attacks. Here adversary A is given access
to both the encryption oracle EK and the decryption oracle DK . By a forgery we
mean the event that A makes a non-trivial query (N,A,C, T) to its decryption
oracle where the oracle would return something other than the reject symbol ⊥.

This notion of authenticity is extended to our incremental setting in a
straightforward way. We simply give A additional access to the incremental
oracles Δ and consider a forgery event. That is, we define

Advauth
Π,Δ(A) := Pr

[
AEK ,DK ,Δ forges

]
,

where by “forges” we mean the event that DK would return something other
than ⊥. We assume that A is nonce-respecting and does not make a trivial-win
query to its decryption oracle DK .

4 Design Requirements

Parallelizability. An obvious requirement to be incremental is the paralleliz-
ability for encryption, decryption and tag generation. Ideally, those computa-
tions should be block-wise, but they can be processed with neighboring blocks
as long as the scheme is parallelizable. This requirement excludes several design
principles, e.g. online ciphers with up-to-prefix privacy and offline ciphers. Serial
designs, e.g. SpongeWrap [11], is also excluded.

Encryption for Combined Data. For the MAC generation, intermediate
values computed in parallel must be combined efficiently. The combined data
is sensitive, thus some secure finalization computation must be applied to the
combined data so that adversaries cannot recover it from the tag. Moreover,

404 Y. Sasaki and K. Yasuda

when a part of blocks are modified for incremental operations, the combined
data also needs to be updated. Ideally, the design allows to obtain the combined
data without touching any unmodified blocks. The possible solution is recovering
the combined data from the tag with the knowledge of the key. Those constraints
lead to the usage of encryption for the combined data.

Security Against Nonce Reuse. During the incremental operations, unmod-
ified blocks need to stay unchanged, which requires the reuse of the same nonce.
Thus, the scheme must provide some robustness against nonce-repeating adver-
saries. As a result, the schemes using keystream for encryption and decryption
like GCM is not suitable. Indeed, trivial attacks can be mounted against GCM
with incremental operation. The adversary first makes query of (N,A,M) to the
encryption oracle and obtains the corresponding (N,A,C, T). Key stream can
be recovered with M ⊕C. Then, the adversary incrementally modifies a fraction
of M to M ′. The nonce N is repeated and the key stream never changes, which
allows to predict corresponding C ′ = M ′ ⊕ keystream. Similarly, integrity must
be ensured against the nonce repetition to avoid trivial distinguishers. Encrypt-
ing the check-sum of M as OCB is unsuitable for incremental AEAD.

No Tag Truncation. Truncating a state to generate tag is incompatible with
incremental operations. Let us explain an example of incremental operation for
PMAC, which computes a tag T for a message M = M1‖M2‖ · · · ‖Mn as follows.

Σ ← 0, Σ ← Σ ⊕ EK(Mi ⊕ Li) for i = 1, . . . , n − 1, T ← EK(Σ ⊕ Mn ⊕ L′),

where Li and L′ are the masks. With the tag truncation, T̂ ← trunc(T) is output
as a tag, where trunc truncates the input value to the tag size. To incrementally
update tag, the user first needs to recover Σ by inverting the last block cipher
call. If the tag truncation is applied, T cannot be recovered from T̂ (no clue for
the user to guess the discarded bits of T).

No Layered PMAC. Associated data A needs to be incorporated carefully.
An unsuitable choice is a layered PMAC in Minalpher [36], which computes a tag
by PMAC(PMAC(A)‖C). Because PMAC(A) cannot be recovered from T , the
user cannot update A incrementally. A slightly modified procedure in OCB3 [26]
can avoid this problem. Let OCB3A be the function to process A in OCB3, which
initializes Σ to 0 and updates it as Σ ← Σ ⊕ EK(Ai ⊕ Li) for i = 1, 2, . . . , n.
In short, the special treatment of the last block of PMAC is removed. The
original motivation of replacing PMAC with OCB3A was improving hardware
implementation, but it also makes the scheme suitable for incremental AEAD.
Namely, if the tag is computed as PMAC(OCB3A(A)‖C), both of A and C
can be incrementally updated (see Figs. 1 and 2).

No Ciphertext Translation. Another unsuitable example is the ciphertext
translation proposed by [32] as a generic way to incorporate A in nonce-based

A New Mode for Incremental AE with Associated Data 405

AE schemes. It processes A by a universal hash function fA, say OCB3A, and
generates the tag by XORing fA(A) and a part of C. Intuitively C is a random
string as long as the nonce is respected, and it takes a role of hiding fA(A). It
is also possible to generate the tag as fA(A)⊕fC(C) with a deterministic MAC
fC , say PMAC. Using a deterministic MAC for fC is crucial because incremental
AEAD reuses the same nonce. Here the combination of universal hash fA and
deterministic MAC fC spoils incremental AEAD. The construction with OCB3A

for A and PMAC for fC is given in Fig. 3. In order to incrementally update C,
the last block-cipher call in PMAC needs to be inverted. Without the knowledge
of OCB3A(A), the user cannot recover the block-cipher’s output. Note that the
same applies when fA is PMAC and fC is OCB3A (then A cannot be updated
incrementally).

Fig. 3. Ciphertext translation assuming fA is OCB3A and fC is PMAC.

Parallel Mask Generation. The mask for each block needs to be generated
in parallel. Using serial pseudo-random number generates for generating masks
is unsuitable for incremental AEAD.

5 Survey of Existing Schemes

We investigate the modes of operation for 57 algorithms submitted to CAESAR
with respect to the suitability for incremental AEAD. We list the algorithms pro-
viding block-wise encryption and discuss their suitability for incremental AEAD.
GCM is also discussed for comparison.

CPFB [30] basically follows the CTR mode. In each block, the keystream is
generated with XOR of the counter and the previous plaintext block. The
serial structure of the decryption and the reproduction of the same keystream
in the nonce-repeating model make CPFB unsuitable for incremental AEAD.
The tag generation is suitable for incremental AEAD. In short, it initializes
Σ ← 0 and generates a tag T for A1, . . . , Am and M1, . . . ,Mn as Σ ←

406 Y. Sasaki and K. Yasuda

Σ⊕EK(Ai‖i) for i = 1, . . . ,m, Σ ← Σ⊕EKj

(
(Mj‖j)⊕K

)
for j = 1, . . . , n,

and T ← EK′(Σ⊕L), where K,Kj ,K
′, and L are key and mask values. Each

block can be incrementally updated after DK′(T) ⊕ L is computed.
Enchilada [20] processes M with the XEX construction and computes tag

with GHASH(A,C), which seems suitable for incremental AEAD. However
the mask values for the XEX construction are generated by ChaCha stream-
cipher, which breaks parallelizability.

GCM [28] adopts the CTR mode. The reproduction of the same keystream in
the nonce-repeating model raises a security concern for incremental AEAD.

iFeed [37] processes A with PMAC and processes M with the inversion of
the CBC mode. The tag is generated by CBC-MAC(M) ⊕ PMAC(A) with
the ciphertext translation. Decryption of iFeed is not parallelizable and the
ciphertext translation spoils incremental operations.

Minalpher [36] processes M with the XEX construction and computes tag
with layered-PMAC, i.e. PMAC(PMAC(A)‖C). The layered PMAC spoils
incremental AEAD. The block-cipher is built with the double-block-length
permutation with the Even-Mansour construction which causes the tag trun-
cation at the end. The serial mask generation is also a drawback.

OCB [27] is also used in some other designs including CBA [21], Deoxys [22],
Joltik [23], KIASU [24], and SCREAM [19]. The only but important concern
for OCB is the integrity in the nonce-repeating model.

OTR [29] which is also used in Prøst-OTR [25] is similar to OCB except
that encryption and decryption are processed in every 2 blocks with 2-round
Feistel network. Interestingly, security of OTR is worse than OCB for incre-
mental AEAD. In addition to the modified block position, it leaks how the
2 blocks are modified. Suppose that M2i and M2i−1 are encrypted as

C2i−1 = EK(2i−1L ⊕ M2i−1) ⊕ M2i,

C2i = EK(2i−1L ⊕ δ ⊕ C2i−1) ⊕ M2i−1,

where L and δ are mask values. Then, incrementally updating M2i only
simply affects to C2i−1, which does not provide the ideal confidentiality.

PAEQ [12] works like the CTR mode with a big permutation. In each block,
a part of permutation output is used as keystream which raises the prob-
lem against nonce-repetition. The overall structure for tag generation, which
takes XOR of results of each message block and each associated data block
then performs the permutation at the end, is suitable for incremental AEAD.
However, the last permutation output is always truncated due to the big per-
mutation size, which prevents incremental operations.

π-Cipher [17] has the similar structure as PAEQ. Besides the security issue
about the reproduction of keystream, the tag for A and M are lastly XORed
for the ciphertext translation, which is unsuitable for incremental AEAD.

Silver [31] is a tweakable block-cipher (TBC) based design. The computation
structure basically follows the one in OCB in a TBC level. Similarly to OCB,
the integrity in the nonce-repeating model is the main drawback.

A New Mode for Incremental AE with Associated Data 407

Fig. 4. Incremental encryption. Fig. 5. Incremental decryption.
MtE is omitted.

YAES [14] processes A with a PMAC-like structure. The encryption is sim-
ilar to the CTR mode. The PMAC-like structure is again used by taking
intermediate value of each block as input. Finally, the results of two PMAC-
like computations are XORed for ciphertext translation. Reproduction of
keystream and ciphertext translation are unsuitable for incremental AEAD.

Summary is available in Table 1 in Appendix. None of the existing schemes
achieves incremental AEAD. In the next section, we will propose a new con-
struction suitable for incremental AEAD.

6 A Concrete Example

6.1 Choice of Generic Constructions

In general, there are three approaches to construct authenticated encryptions:
Enc-then-MAC (EtM), Enc-and-MAC, (E&M), and MAC-then-Enc (MtE).
Here, we compare the cost of incremental operations with those three approaches.

Encryption Cost. Encryption with those approaches are illustrated in
Fig. 4. For incremental AEAD, (C, T) ← (K,N,A,M) is once computed and
(K,N,A,C, T) is stored for decryption. An important remark is that M dis-
appears in the 5-tuple value passed to the decryption side. Then, for modified
values (A′,M ′), new values (C ′, T ′) are updated from (C, T,A′,M ′).

As illustrated in Fig. 4, E&M and MtE are similar. With MtE, modifying 1
bit of A can affect to C, which is not desired for the incrementality. Hereafter,
we exclude MtE from our choices and show the comparison between EtM and
E&M.

Several conditions are required to achieve incrementality. First, we suppose
that the conversion from M to C (or C to M in decryption) is processed in block-
wise, i.e. 1 block change in M only requires 1-block computation to obtain new
C ′. For integrity, we need to avoid simple forgery attack in the nonce-repeating
model. Let X be C in EtM and X be M in E&M. We assume that each block in A
and X is processed by some computation, and moreover the sum of their compu-
tations is processed again. Namely, for a given (A1‖A2‖ · · · ‖An,X1‖X2‖ · · · ‖Xl),
T is computed as follows.

408 Y. Sasaki and K. Yasuda

Σ ← 0, Σ ← Σ ⊕
n⊕

i=1

F i
K(Ai), Σ ← Σ ⊕

l⊕
j=1

Gj
K(Xj), T ← HK(Σ), (1)

where F i
K and Gj

K are block-wise key-dependent computations and HK is an
invertible key-dependent computation.

The incremental update operation requires the following computations.

1. Recover the intermediate value Σ from T .
2. Compute the impact from old (A,X) to Σ for the modified blocks.
3. (a) If M is modified to M ′, compute new C ′ for the modified blocks. (skip if

only A is modified)
(b) Compute the impact from new (A′,M ′) to Σ′ for the modified blocks.

4. Compute new T ′ from Σ′.

Let us consider the cost of the update operation in EtM and E&M when s
blocks are modified. In Step 1, both approaches require 1-block computation of
H−1

K . Step 2 yields a difference. In EtM, X is C which is stored in (K,N,A,C, T),
thus it requires s-block computations. While in E&M, X is M however M is not
stored. M needs to be recovered from C and then the impact from M to Σ is
computed, which requires 2s-block computations. In Step 3, both approaches
require between 2s- and s-block computations depending on how many blocks
of A and M are modified. In 4, both approaches require 1-block computation.
In the end, Step 2 yields a difference and it brings an advantage for EtM.

Regarding the append operation, Step 2 can be removed from the above
procedure, because the append operations only adds the new impact to Σ.
Hence, the advantage of EtM disappears. Regarding the chop operation, Step 3
is removed from the above procedure, because nothing new is added to Σ. Hence,
EtM keeps the advantage over E&M. All in all, we conclude that EtM is better
for incremental encryption.

Decryption Cost. Decryption with EtM and E&M are illustrated in Fig. 5.
(M,T) ← (K,N,A,C, T) is once computed and (K,N,A,M, T) is stored for
incremental computations. C does not have to be stored. There are two ways
to utilize incrementality of decryption. In the first way, the tag verification fails
and later only a fraction of (A,C) is modified as correction. In the second way,
after decrypting (K,N,A,C, T), it is expected to decrypt the similar tuples of
(A′, C ′). Actually, authentication of several messages in which only the header
part is different was the original motivation of the incremental cryptography [6].

As it can be seen in Figs. 4 and 5, encryption of EtM and encryption of E&M
have duality against decryption of E&M and decryption of EtM, respectively.
The procedure of the incremental operations is basically the same as Step 1 to
Step 4. When the impact to Σ from old C (for EtM) or old M (for E&M) is
computed, EtM requires 2s-block computations while E&M requires only s-block
computation. Thus, E&M has an advantage compared to EtM.

A New Mode for Incremental AE with Associated Data 409

In summary, due to the duality, there is no choice with an overwhelming
advantage. EtM and E&M should be chosen depending on which of encryption
and decryption is the main target.

Favoring Enc-then-MAC. Given the above discussion, it seems reasonable
to choose EtM for incremental encryption and E&M for incremental decryption.
However, we argue that EtM can be also an attractive option for incremental
decryption.

The reason is that one can use a “weak” (IND-CPA) algorithm for the encryp-
tion part in EtM composition [9], whereas in E&M one needs relatively stronger
encryption algorithm such as IND-CCA. In particular, for block-wise encryption
the XE construction, rather than XEX, is sufficient for building the encryption
part if the scheme is based on the EtM composition. As a result, within the
EtM paradigm one can construct a mode of operation that is efficient for both
incremental encryption and decryption, as we shall show in the following section.

6.2 New Mode of Operation

In this section we present a new mode of operation for incremental AEAD. We
first explain the method of mask generations. Consider the set {0, 1}n as the
finite field of 2n elements with respect to some primitive polynomial f(x), so
that the degree of f is n and the element x generates the whole multiplicative
group. Let Γi denote the i-th Gray code, for i ≥ 1. We define γi ← ΓiL0,
Δi ← ΓiL1, δi ← ΓiL2 and δ′ ← L3 where Lj ← EK

(
N‖(j)2

)
for j = 0, 1, 2, 3

with (j)2 being a 2-bit representation of integer j. Here EK is the underlying
n-bit block cipher with a secret key K and N ∈ {0, 1}n−2 is a nonce. The choice
of Gray code rather than doubling comes from the fact that we need to compute
i-th mask from scratch when one of the incremental operations is performed.

For simplicity we assume that T ∈ {0, 1}n and the lengths of A, M and C
are always a multiple of n bits. In practice A and M might need to be padded, so
that their lengths become a multiple of n bits. In principle this would not affect
the feasibility of our construction, as in most of the cases the padding affect only
the last block (as in the standard 10∗ padding), and the last block can be always
handles by the update, append and chop operations.

Now the new mode of operation iterates an n-bit block cipher EK and is
based on XE construction given by Rogaway [33]. Its pseudo-code is given in
Figs. 6 and 7. The encryption algorithm is also illustrated in Fig. 8.

6.3 Security of the New Mode

We prove the security of the incremental AEAD scheme specified above. We
follow the adversarial model and the security notions defined in Sect. 3.

The first step is to replace the block cipher calls with the secret masks with
independent random functions (not permutations). This is possible owing to the
result of XE construction given by Rogaway. The result says that the block

410 Y. Sasaki and K. Yasuda

1: function EK(N, A, M)
2: A1A2 · · · Aa ← A
3: M1M2 · · · Mm ← M
4: Σ ← 0
5: for i = 1 to a do
6: Σ ← Σ ⊕ EK(Ai ⊕ Δi)
7: end for
8: for i = 1 to m do
9: Ci ← EK(Mi ⊕ γi)

10: Σ ← Σ ⊕ EK(Ci ⊕ δi)
11: end for
12: C ← C1C2 · · · Cm

13: T ← EK(Σ ⊕ δ)
14: return (C, T)
15: end function

1: function DK(N, A, C, T)
2: A1A2 · · · Aa ← A
3: C1C2 · · · Cm ← C
4: Σ ← 0
5: for i = 1 to a do
6: Σ ← Σ ⊕ EK(Ai ⊕ Δi)
7: end for
8: for i = 1 to m do
9: Mi ← E−1

K (Ci)γi

10: Σ ← Σ ⊕ EK(Ci ⊕ δi)
11: end for
12: M ← M1M2 · · · Mm

13: T ← EK(Σ ⊕ δ)
14: if T = T then
15: return M
16: else
17: return ⊥
18: end if
19: end function

Fig. 6. Pseudo-code of the new mode of operation, the ordinary AEAD part.

1: function U
A
K(N, i, Ai, Ai, T)

2: Σ∗ ← E−1
K (T)

3: Σ∗ ← Σ∗ ⊕ EK(Ai ⊕ Δi) ⊕
EK(Ai ⊕ Δi)

4: T ← EK(Σ∗)
5: return T
6: end function
7:
8: function A

A
K(N, a, Aa+1, T)

9: Σ∗ ← E−1
K (T)

10: Σ∗ ← Σ∗ ⊕ EK(Aa+1 ⊕ Δa+1)
11: T ← EK(Σ∗)
12: return T
13: end function
14:
15: function C

A
K(N, a, Aa, T)

16: Σ∗ ← E−1
K (T)

17: Σ∗ ← Σ∗ ⊕ EK(Aa ⊕ Δa)
18: T ← EK(Σ∗)
19: return T
20: end function

1: function U
M
K(N, i, Ci, Mi , T)

2: Σ∗ ← E−1
K (T)

3: Ci ← EK(Mi ⊕ γi)
4: Σ∗ ← Σ∗ ⊕ EK(Ci ⊕ δi) ⊕

EK(Ci ⊕ δi)
5: T ← EK(Σ∗)
6: return (Ci, T)
7: end function
8:
9: function A

M
K(N, m, Mm+1, T)

10: Σ∗ ← E−1
K (T)

11: Cm+1 ← EK(Mm+1 ⊕ γm+1)
12: Σ∗ ← Σ∗ ⊕ EK(Cm+1 ⊕ δm+1)
13: T ← EK(Σ∗)
14: return (Cm+1, T)
15: end function
16:
17: function C

M
K(N, m, Cm, T)

18: Σ∗ ← E−1
K (T)

19: Σ∗ ← Σ∗ ⊕ EK(Cm ⊕ δm)
20: T ← EK(Σ∗)
21: return T
22: end function

Fig. 7. Pseudo-code of the new mode of operation, the incremental operations.

A New Mode for Incremental AE with Associated Data 411

Fig. 8. An illustration of the encryption algorithm of the new mode of operation

cipher calls can be considered as secure tweakable block ciphers, with tweak
space (N, i). Moreover, the independence among the masks γ, Δ, δ and δ′ are
ensured. So now we replace these block cipher calls with independent random
functions and prove the security of the mode under such assumptions.

Privacy. We start with privacy. We prove the following theorem.

Theorem 1. Let (Π,Δ) be the incremental AEAD scheme specified above, with
the underlying block cipher calls E(·⊕ξ) replaced with independent random func-
tions ϕξ, where ξ ∈ {γi,Δi, δi, δ

′}. Then for any adversary A which makes at
most q queries, we have

Advpriv
(Π,Δ)(A) ≤ q2

2n+1
.

Proof. Since A is assumed to be nonce-respecting and not making a trivial-win
query, all ciphertext blocks Ci, whether output by the encryption oracle EK or
output by the incremental operations, are truly random strings. So we only need
to show that tag T should behave like a random string. There is an event that
the value T is not an independent random string. Namely, whenever we have
a collision of the input value Σ or Σ∗ to the tag-generation function ϕδ′ , the
output tag T does not become a freshly random string.

So let bad be the event that the values Σ or Σ∗ collide. Since the scheme
(Π,Δ) behaves like the ideal object as long as the event bad does not occur, we
have Advpriv

(Π,Δ)(A) ≤ Pr
[
A sets bad

]
.

For i = 1, 2, . . . , q let badi denote the event that the event bad occurs at the
i-th query for the first time; i.e. the event bad has not occurred for the queries
j = 1, 2, . . . , i − 1 so far. Clearly Pr

[
bad

]
≤

∑q
i=0 Pr

[
badi

]
.

We bound Pr
[
badi

]
. Suppose bad has not occurred so far and now A makes

the i-th query. Observe that by construction of the scheme, the computation of

412 Y. Sasaki and K. Yasuda

Σ or Σ∗ at the i-th query always involves an invocation of a random function
ϕ·; therefore, we must have Pr

[
badi

]
≤ (i − 1)/2n. Hence the overall probability

can be bounded as Pr
[
bad

]
≤

∑q
i (i − 1)/2n ≤ q2/2n+1. 	

Authenticity. We next prove authenticity. We prove the following theorem.

Theorem 2. Let (Π,Δ) be the incremental AEAD scheme specified above, with
the underlying block cipher calls E(·⊕ξ) replaced with independent random func-
tions ϕξ, where β ∈ {γi,Δi, δi, δ

′}. Then for any adversary A which makes at
most q queries to its encryption oracle and incremental oracles and at most q′

queries to its decryption oracle, the length of associated data being at most �A
blocks and the length of a message being at most �M blocks, we have

Advauth
(Π,Δ)(A) ≤ q2

2n+1
+

q′(�A�Mq + 3)
2n

.

Proof. Let bad be the event as defined in the privacy proof, neglecting queries
to the decryption oracle DK . Namely, queries to the DK oracle has no effect
on setting the event bad. Let forge denote the event that A forges. We have
Advauth

(Π,Δ)(A) = Pr
[
forge

]
≤ Pr

[
forge

∣∣ ¬bad
]

+
[
bad

]
. Similarly to the privacy

proof, we can show that Pr
[
bad

]
≤ q2/2n+1.

Now we bound Pr
[
forge

∣∣ ¬bad
]
. For this, we slightly change the game and

consider a game where A is allowed to make only a single query to its decryption
oracle. Let forge′ be the event that A forges in such a game. Then we have
Pr

[
forge

∣∣ ¬bad
]

≤ q′ Pr
[
forge′ ∣∣ ¬bad

]
where with abuse of notation each bad

denotes a bad event in the corresponding game.
So it remains to bound Pr

[
forge′ ∣∣ ¬bad

]
. Let (N◦, A◦, C◦, T ◦) denote the

query to the decryption oracle.

• Case N◦ is new. In this case the computation of a tag from (N◦, A◦, C◦)
involves an invocation of a random function ϕ·. Therefore, for any value T ◦,
we must have Pr

[
forge′ ∣∣ ¬bad

]
≤ 1/2n.

• Case N◦ is old but either A◦ or C◦ contains a new block relative to N◦.
Again, in this case the new block in A◦ or C◦ would cause an invocation of
the random function ϕ to compute a tag value from (N◦, A◦, C◦). Therefore,
we have Pr

[
forge′ ∣∣ ¬bad

]
≤ 1/2n.

• Case N◦ is old and all block of A◦ and C◦ are also old relative to N◦. This is
a tricky case. There is no new invocation of the functions ϕ when computing
a tag value from (N◦, A◦, C◦). Let Σ◦ denote the input value to the tag-
generation function ϕ′

δ, computed from the triplet (N◦, A◦, C◦). We emphasize
that in computing Σ◦ there is no fresh invocation of random functions ϕ. Let
A∗ and C∗ denote the associated data and the ciphertext corresponding to
the N◦-query to the encryption oracle EK . Since A◦ and C◦ must be chopped
forms of A∗ and C∗, respectively, the number of possible values of Σ◦ are at
most �A · �M.

• Case Σ◦ is a new input to ϕ′
δ. We have Pr

[
forge′ ∣∣ ¬bad

]
≤ 1/2n.

A New Mode for Incremental AE with Associated Data 413

• Case Σ◦ is an old input to ϕ′
δ Since there are at most q possible values of

Σ and Σ∗, under the event ¬bad, the event forge′ implies the event that
the value Σ◦ gets hit by one of these q values. Therefore, we must have
Pr

[
forge′ ∣∣ ¬bad

]
≤ �A�Mq/2n.

Hence the overall probability becomes

Pr
[
forge′ ∣∣ ¬bad

]
≤ 1

2n
+

1
2n

+
1
2n

+
�A�Mq

2n
=

�A�Mq + 3
2n

.

	

7 Discussion

In this section, we would discuss several topics on incremental authenticated
encryption with associated data.

• Incremental AEAD loses its efficiency when the number of modified blocks
is big. Suppose that there is a non-incremental AEAD scheme that requires
only 1 block-cipher call per block (twice faster than our construction). When
more than a half of the input blocks are modified, recalculating the result
from scratch with such a fast non-incremental is better.

• In many AEAD schemes especially for 1-pass schemes, the ciphertext is com-
puted block by block and sent to the receiver as soon as each block is com-
puted. The receiver also starts to decrypt the received ciphertext block by
block. To apply the incremental decryption, the ciphertext must be stored
even after the decryption is finished. In practice, such a scenario will occur in
storage encryption; storing the encrypted data is the main purpose.

• Under the assumption that the computation results, (C, T) for encryption and
M for decryption, are not disclosed, incrementality might be achieved with the
AEAD schemes requiring a single use of nonce. Abed et al. [16] summarized
the CAESAR candidates in this line.

Acknowledgments. We would like to thank anonymous reviewers and the attendees
of Dagstuhl Seminar 14021 on Symmetric Cryptography in 2014 for their helpful com-
ments. We are very grateful to Liting Zhang for pointing out an issue with the previous
version of our scheme in the pre-proceedings and for suggesting a possible solution.

A Summary of Existing Schemes

Table 1 lists the unsuitable factors for incremental AEAD adopted in each
design. Each column represents “block-wise encryption,” “block-wise decryp-
tion,” “integrity for nonce repeat,” “PRP for nonce repeat,” “tag-truncation
free,” “ciphertext translation free,” “layered PMAC for processing A,” and “par-
allel generation of mask (or counter),” respectively. “�” represents that the

414 Y. Sasaki and K. Yasuda

Table 1. Survey of CAESAR candidates and GCM for incremental AEAD.

Scheme BW-Enc BW-Dec INT-NR PRP-NR TT-free CT-free lPMAC mask/ctr

CPFB � − � − � � � �
Enchilada � � � � � � � −
GCM � � � − � � � �
iFeed � − � − � − � �
Minalpher � � � � − � − −
OCB-like � � − � � � � �
OTR � � − − � � � �
PAEQ � � � − − � � �
π-Cipher � � � − � − � �
Silver � � − � � � � �
YAES � � � − � − � �

scheme is suitable for incremental AEAD while “−” represents that the scheme
is unsuitable.

Parallelizability is a crucial requirement for incrementality. Without having
parallelizability, the scheme cannot be incremental. However for other require-
ments, the scheme can be incremental with paying additional cost or with addi-
tional restrictions in applications even if they are not satisfied. If the incremental
update is applied prior to the release of the encryption/decryption result to a
public domain, security issues in the nonce-repeating model do not arise. Besides,
security issues can be solved by combining other cryptographic techniques as
long as they can be processed in block-wise. The problems with tag truncation,
ciphertext translation and layered PMAC can be practically addressed by safely
storing the internal state value, which is of a relatively small cost, e.g. only with
additional one block information Also, the serial mask generation can also be
avoided if masks are precomputed and stored offline.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.:
How to securely release unverified plaintext in authenticated encryption. IACR
Cryptology ePrint Archive 144 (2014)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA v. 1. Submission to CAESAR (2014)

4. Atighehchi, K.: Space-efficient, byte-wise incremental and perfectly private encryp-
tion schemes. Cryptology ePrint Archive, Report 2014/104 (2014). http://eprint.
iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

A New Mode for Incremental AE with Associated Data 415

5. Atighehchi, K., Muntean, T.: Towards fully incremental cryptographic schemes. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W. (eds.) ASIA CCS 2013, pp. 505–510.
ACM (2013)

6. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

7. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and appli-
cation to virus protection. In: Leighton, F.T., Borodin, A. (eds.) STOC 1995, pp.
45–56. ACM (1995)

8. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

10. Bernstein, D.: CAESAR Competition (2013). http://competitions.cr.yp.to/caesar.
html

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

12. Biryukov, A., Khovratovich, D.: PAEQ v1. Submission to CAESAR (2014)
13. Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable mes-

sage authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 384–397. Springer, Heidelberg (2002)

14. Bosselaers, A., Vercauteren, F.: YAES v1. Submission to CAESAR (2014)
15. Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui,

M. (ed.) FSE 2001. LNCS, vol. 2355, p. 109. Springer, Heidelberg (2002)
16. Abed, F., Christian Forler, S.L.: General overview of the first-round CAESAR can-

didates for authenticated ecryption. Cryptology ePrint Archive, Report 2014/792
(2014)

17. Gligoroski, D., Mihajloska, H., Samardjiska, S., Jacobsen, H., El-Hadedy, M.,
Jensen, R.E.: π-Cipher v1. Submission to CAESAR (2014)

18. Gligoroski, D., Samardjiska, S.: iSHAKE: Incremental hashing with SHAKE128
and SHAKE256 for the zettabyte era. Presented at NIST SHA-3 Workshop 2014
(2014). http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/

19. Grosso, V., Leurent, G., Standaert, F.X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: SCREAM & iSCREAM side-channel resistant authenticated encryp-
tion with masking. Submission to CAESAR (2014)

20. Harris, S.: The Enchilada authenticated ciphers, v1. Submission to CAESAR
(2014)

21. Hosseini, H., Khazaei, S.: CBA mode (v1). Submission to CAESAR (2014)
22. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1. Submission to CAESAR (2014)
23. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. Submission to CAESAR (2014)
24. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Submission to CAESAR (2014)
25. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın,

T.: Prøst v1. Submission to CAESAR (2014)
26. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

27. Krovetz, T., Rogaway, P.: OCB (v1). Submission to CAESAR (2014)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/

416 Y. Sasaki and K. Yasuda

28. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

29. Minematsu, K.: AES-OTR v1. Submission to CAESAR (2014)
30. Montes, M., Penazzi, D.: AES-CPFB v1. Submission to CAESAR (2014)
31. Penazzi, D., Montes, M.: Silver V. 1. Submission to CAESAR (2014)
32. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)

ACM CCS 2002, pp. 98–107. ACM (2002)
33. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

34. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

35. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001, pp. 196–205. ACM (2001)

36. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1. Submission to CAESAR (2014)

37. Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[aes] v1. Submission to CAESAR
(2014)

Scope: On the Side Channel Vulnerability
of Releasing Unverified Plaintexts

Dhiman Saha(B) and Dipanwita Roy Chowdhury

Crypto Research Lab, Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India

{dhimans,drc}@cse.iitkgp.ernet.in

Abstract. In Asiacrypt 2014, Andreeva et al. proposed an interesting
idea of intermittently releasing plaintexts before verifying the tag which
was inspired from various practical applications and constraints. In this
work we try to asses the idea of releasing unverified plaintexts in the
light of side channel attacks like fault attacks. In particular we show
that this opens up new avenues of attacking the decryption module. We
further show a case-study on the APE authenticated encryption scheme
and reduce its key space from 2160 to 250 using 12 faults and to 224 using
16 faults on the decryption module. These results are of particular inter-
est since attacking the decryption enables the attacker to completely
bypass the nonce constraint imposed by the encryption. Finally, at the
outset this work also addresses a related problem of fault attacks with
partial state information.

Keywords: Authenticated encryption · Releasing unverified plain-
texts · APE · Differential fault analysis

1 Introduction

In conventional security notions of Authenticated Encryption (AE), release of
decrypted plaintext is subject to successful verification. In their pioneering paper
in Asiacrypt 2014, Andreeva et al. challenged this model by introducing and
formalizing the idea of releasing unverified plaintexts (RUP) [5,6]. The idea was
motivated by a lot of practical problems faced by the classical approach like
insufficient memory in constrained environments, real-time usage requirements
and inefficiency issues. The basic idea is to separate the plaintext computation
and verification during AE decryption, so that the plaintexts are always released
irrespective of the status of the verification process. In order to assess the security
under RUP and to bridge the gap with the classical approach, the authors have
introduced two new definitions: INT-RUP (for integrity) and plaintext awareness
or PA for privacy (in combination with IND-CPA).

In this work, we try to answer the question pertaining to RUP that arises from
a side-channel view-point: Can the ability to observe unverified plaintexts serve
as a source of side-channel information? Our research reveals that the answer is
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 417–438, 2016.
DOI: 10.1007/978-3-319-31301-6 24

418 D. Saha and D.R. Chowdhury

affirmative with respect to differential fault analysis (DFA) [8,10–14,16] which
is known to be one of the most effective side-channel attacks on symmetric-key
constructions. The basic requirement of any form of fault analysis is the ability
to induce a fault in the intermediate state of the cipher and consequently observe
the faulty output. Our first observation is that in the classical approach where
successful verification precedes release of plaintexts, fault attacks are infeasible.
This is attributed to the fact that if the attacker induces a fault, the probability
of the faulty plaintext to pass the verification is negligible, thereby denying
the ability to observe the faulty output. This scenario changes in the presence
of unverified plaintexts. So the first scope that RUP provides at the hands of
the attacker is the ability to observe faulty unverified plaintexts. Our second
observation is in terms of the nonce constraint. In Indocrypt 2014, Saha et al.
studied the impact of the nonce constraint in their EscApe fault attack [15] on
the authenticated cipher APE [3]. The authors showcased the restriction that the
uniqueness of nonces imposes on the replaying criterion1 of fault analysis and
demonstrated the idea of faulty collisions to overcome it. In this work we argue
that ability to attack the decryption, provided by RUP, gives the additional
benefit of totally bypassing the nonce constraint. This follows from the very
definition of AE decryption which allows an attacker to make multiple queries
to the decryption oracle with the same nonce. Thus prospect of nonce bypass
makes fault analysis highly feasible.

Following these observations, we mount Scope: a differential fault attack
on the decryption of APE which is also one of the submissions to the on-going
CAESAR [1] competition. The choice of APE is motivated by the fact that
according to PA classification of schemes provided by Andreeva et al. in [5,6],
APE which has offline decryption , is one of the CAESAR submissions that
supports RUP. Authenticated Permutation-based Encryption [4] or APE was
introduced by Andreeva et al. in FSE 2014 and later reintroduced in CAESAR
along with GIBBON and HANUMAN and an indigenous permutation called
PRIMATE as part of the authenticated encryption family PRIMATEs [2,3]. We
studied the fault diffusion in the inverse of the internal permutation PRIMATE
of APE using random uni-word fault injections in the penultimate round. We
capitalize on properties arising out of the non-square nature of the internal
state and also the knowledge of the fault-free unverified plaintext. Our analysis
shows average key-space reduction from 2160 to 250 using 12 faults and to 224

using 16 faults. Finally, this work identifies and addresses a broader problem in
differential fault analysis: Fault analysis with partial state information. Since,
only part of the state is observable, the fault analysis presented here deviates
from the classical DFA [8,10–14,16] which generally assumes availability of the
entire state at the output. Here we showcase that even knowledge of just one-
fifth (the size of a plaintext block) of the state can be used to reconstruct the
differential state and finally reduce the key-space. Moreover, close similarity
between PRIMATE permutation and AES [9], automatically amplifies the scope

1 The replaying criterion in differential fault analysis states that the attacker must be
able to induce faults while replaying a previous fault free run of the algorithm.

Scope: On the Side Channel Vulnerability of RUP 419

of the results presented here. The contributions of this work can be summarized
as below:

– Scrutinizing the recently introduced RUP model in the light of fault attacks.
– Showing that unverified plaintext can be an important source of side-channel

information.
– Showing the feasibility of fault induction using nonce bypass.
– For the first time attacking the decryption of an AE scheme using DFA.
– Presenting Scope attack exploiting: fault diffusion in the last two rounds of

the Inverse PRIMATE permutation and the ability to observe faulty unverified
plaintexts.

– Finally, achieving a key space reduction from 2160 to 250 with 12 faults and
224 with 16 faults using the random word fault model.

– Moreover, this work also brings into focus the idea of fault analysis of AES
based constructions with partial state information.

The rest of the work is organized as follows: Sect. 2 gives a brief description
of the PRIMATE permutation and its inverse and introduces the notations used
in this work. Section 3 looks at the RUP and classical models in the light of
side-channel analysis. Some properties of APE decryption that become relevant
in the presence of faults are discussed in Sect. 4. The proposed Scope attack is
introduced in Sect. 5. Section 6 furnishes the experimental results with a brief
discussion while Sect. 7 gives the concluding remarks.

2 Preliminaries

2.1 The Design of PRIMATE

PRIMATE has two variants in terms of size: PRIMATE-80 (200-bit permutation)
and PRIMATE-120 (280-bit) which operate on states of (5 × 8) and (7 × 8)
5-bit elements respectively. The family consists of four permutations p1, p2, p3, p4
which differ in the round constants used and the number of rounds. All notations
introduced in this section are with reference to PRIMATEs-80 with the APE
mode of operation.

Definition 1 (Word). Let T = F[x]/(x5 + x2 + 1) be the field F25 used in the
PRIMATE MixColumn operation. Then a word is defined as an element of T.

Definition 2 (State). Let S = (T5)8 be the set of (5 × 8)-word matrices. Then
the internal state of the PRIMATE-80 permutation family is defined as an ele-
ment of S. We denote a state s ∈ S with elements si,j as [si,j]5,8.

s = [si,j]5,8, where

{
si,j ∈ T

0 ≤ i ≤ 4, 0 ≤ j ≤ 7
(1)

420 D. Saha and D.R. Chowdhury

In the rest of the paper, for simplicity, we omit the dimensions in [si,j]5,8 and
use [si,j] as the default notation for the 5 × 8 state. We denote a column of
[si,j] as s∗,j while a row is referred to as si,∗. We now describe in brief the
design of PRIMATE permutation. In this work we also deal with the inverse
of the PRIMATE permutation. APE instantiates p1 which is a composition of
12 round functions. The inverse permutation p−1

1 applies the round functions in
the reverse order with each component operations itself being inverted. For the
sake of consistency, in the rest of the work rounds of p−1 will be denoted w.r.t
to the corresponding rounds of p. For instance, the last round of p−1 will be
referred to as R−1

1 since functionally it is the inverse of the first round of p.

p1, p
−1
1 : S −→ S, p1 = R12 ◦ R11 ◦ · · · ◦ R1 p−1

1 = R−1
1 ◦ R−1

2 ◦ · · · ◦ R−1
12

Rr,R−1
r : S −→ S, Rr = αr ◦ μr ◦ ρr ◦ βr R−1

r = β−1
r ◦ ρ−1

r ◦ μ−1
r ◦ α−1

r

where Rr is a composition of four bijective functions on S while R−1
r denotes the

inverse round function. The index r denotes the rth round and may be dropped
if the context is obvious. Here, the component function β represents the non-
linear transformation SubBytes which constitutes word-wise substitution of the
state according to predefined S-box. The definitions extend analogously for the
inverse.

βr, β
−1
r : S −→ S, s = [si,j]

β�→[S(si,j)], s = [si,j]
β−1

�→ [S−1(si,j)]

where S : T −→ T is the S-box given in Table 1. The transformation ρ corre-
sponds to ShiftRows which cyclically shifts each row of the state based on a set
of offsets. The same applies to ρ−1 with only the direction of shift being reversed.

ρr, ρ−1 : S −→ S, s = [si,j]
ρ�→[si,(j−σ(i)) mod 8], s = [si,j]

ρ−1

�→ [si,(j+σ(i)) mod 8]

where, σ = {0, 1, 2, 4, 7} is the ShiftRow offset vector and σ(i) defines shift-offset
for the ith row. The MixColumn operation, denoted by μ, operates on the state
column-wise. μ is actually a left-multiplication by a 5 × 5 matrix (Mμ) over the
finite field T. For the InverseMixColumn (μ−1), the multiplication is carried out
using (M−1

μ).

μr : S −→ S, s = [si,j] �−→ s′ = [s′
i,j], s′

∗,j = Mμ × s∗,j

The last operation of the round function is α which corresponds to the round
constant addition. The constants are the output {B1,B2, · · · ,B12} of a 5-bit
LFSR and are xored to the word s1,1 of the state [si,j]. α is involutory implying
α = α−1.

αr : S −→ S, [si,j] �−→ [s′
i,j], s′

i,j =

{
si,j ⊕ Br if i, j = 1
si,j , Otherwise

The APE mode of operation is depicted in Fig. 1. Here, N [·] represents a Nonce
block while A[·] and M [·] denote blocks of associated data and message respec-
tively. The IVs shown in Fig. 1 are predefined and vary according to the nature

Scope: On the Side Channel Vulnerability of RUP 421

Table 1. The PRIMATE 5-bit S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

(a) APE Encryption

(b) APE Decryption

Fig. 1. The APE mode of operation

of the length of message and associated data. Figure 1a and b show the encryp-
tion and decryption modules of APE respectively. In is evident from Fig. 1b that
the decryption starts from the last ciphertext block and proceeds in the reverse
direction which implies that APE decryption is offline.

2.2 Notations

Definition 3 (Differential state). A differential state is defined as the
element-wise XOR between a state [si,j] and the corresponding faulty state [s′

i,j].

s′
i,j = si,j ⊕ δi,j , ∀ i, j (2)

δ fully captures the initial fault as well as the dispersion of the fault in the state.
In this work we assume induction of random faults in some word of a state.
Thus, if the initial fault occurs in word sI,J ∈ s, the differential state is of the
following form:

422 D. Saha and D.R. Chowdhury

δi,j =

{
f : f

R←− T \ {0}, if (i = I, j = J)
0, Otherwise

(3)

If ∃j : δi,j = 0 ∀i then δ∗,j is called a pure column, otherwise δ∗,j is referred to
as a faulty column.

Definition 4 (Hyper-column). A Hyper-column is a (5× 1) column vector
where each element is again a vector of words i.e., a subset of T. It is denoted
by H.

H =

⎡
⎢⎢⎢⎣

b0
b1
...
b4

⎤
⎥⎥⎥⎦ where bj ⊂ T, Also, H = ∅ if ∃i : bi = ∅

The Hyper-column helps to capture the candidate words for a column that result
due to the fault analysis presented here. Also a hyper-column is considered to
be empty if at least one of its component sets is empty.

Definition 5 (Hyper-state [15]). A Hyper-state of a state s = [si,j], denoted
by sh = [sh

i,j], is a two-dimensional matrix, where each element sh
i,j is a non-

empty subset of T, such that s is an element-wise member of sh.

sh =

⎡
⎢⎢⎢⎣

sh
00 sh

01 · · · sh
07

sh
10 sh

11 · · · sh
17

...
...

. . .
...

sh
40 sh

41 · · · sh
47

⎤
⎥⎥⎥⎦ where

{
sh

i,j ⊂ T, sh
i,j �= ∅

si,j ∈ sh
i,j ∀i, j

(4)

The significance of a hyper-state sh is that the state s is in a way ‘hidden’ inside
it. This means that if we create all possible states taking one word from each
element of sh, then one of them will be exactly equal to s.

The hyper-state has some interesting properties with respect to the com-
ponent transformations of the PRIMATE permutation and consequently its
inverse. For instance all the inverse operations like InverseShiftRow(ρ−1),
InverseSubByte(β−1), InverseAddRoundConstant(α−1) can be applied on a
hyper-state with little technical changes. This is possible since all these opera-
tions work word-wise and thus can be applied as a whole to each element-set of
a hyper-state too with an equivalent effect. We define the analogs of these oper-
ations on a hyper-state as hyper-state-<operation>: (ρ−1)′, (β−1)′, (α−1

r)′. The
formal definitions are provided in Appendix A. Another observation of particular
interest is that hyper-state-<operation>(sh) = (<operation>(s))h.

Scope: On the Side Channel Vulnerability of RUP 423

Definition 6 (Kernel [15]). If sh is a hyper-state of s, then Kernel of
a column sh

∗,j ∈ sh, denoted by Ksh
∗,j , is defined as the cross-product of

sh
0,j , s

h
1,j , · · · , sh

4,j.

Subsequently, Kernel of the entire hyper-state is the set of the Kernels of all of
its columns: Ksh

= {Ksh
∗,0 ,Ksh

∗,1 , · · · ,Ksh
∗,7}

Here, wT
k represents the transpose of wk, thereby implying that wk is a column

vector. One should note that s∗,j ∈ Ksh
∗,j ∀j. Thus each column of s is contained

in each element of Ksh

. We now define an operation (μ−1)′ over the Kernel of a
hyper-state which is equivalent to μ−1 that operates on a state.

Definition 7 (Kernel-InverseMixColumn).
The Kernel-InverseMixColumn transformation denoted by (μ−1)′ is the left
multiplication of M−1

μ to each element of each Ksh
∗,j ∈ Ksh

.

(μ−1)′(Ksh
∗,j) = {M−1

μ × wi, ∀wi ∈ Ksh
∗,j}

(μ−1)′(Ksh

) = {(μ−1)′′(Ksh
∗,0), (μ−1)′(Ksh

∗,1), · · · , (μ−1)′(Ksh
∗,7)}

An important implication is that (μ−1)′(Ksh

) = K(μ−1(s))h . The notion of
Hyper-state and Kernel will be used in the Outbound phase of Scope
detailed in Subsect. 5.3.

3 RUP in the Light of Side-Channels

RUP which has been argued to be a very desirable property can be a major source
for side channel information. In this work we try to study how RUP stands out in
the light of fault attacks. Our research reveals that RUP opens up an exploitable
opportunity with respect to fault analysis which would not have been possible
if verification would precede release of the plaintexts. Moreover, attacking the
decryption also allows the attacker to bypass the nonce constraint imposed by
the encryption. It has been shown that nonce based encryption has an automatic
protection against DFA and hence ability to bypass the nonce constraint exposes
the AE scheme to fault attacks. In the rest of the paper we refer to the classical
model that does not allow RUP as RVP (Release of Verified Plaintexts).
We now argue why RVP has an implicit protection against fault attacks which
makes attacking the decryption infeasible.

In order to understand the significance of the scope that the RUP model puts
at the hands of the attacker, one has to be aware of why fault analysis in the
RVP model is infeasible. According to the classical RVP model, the decryption
oracle returns the entire plaintext if the verification passes and ⊥ otherwise.

424 D. Saha and D.R. Chowdhury

Now we define the term faulty forgery as the ability of the attacker to produce
a plaintext (p∗ �= p) after inducing faults such that the verification passes. Now,
in standard fault analysis it is assumed that the attacker can induce random
faults in the state but the value of the fault is unknown. Under this scenario, the
probability of the attacker to produce a faulty forgery is negligible (Fig. 2).

Fig. 2. RVP vs RUP from the perspective of fault analysis

On the contrary RUP gives the attacker the scope of inducing random faults
while decrypting any chosen or known ciphertext and unconditionally observe
the corresponding faulty plaintexts (which would never have passed verification
in the RVP model). This power opens up the side-channel for fault analysis and
is the basis of the differential fault attack presented in this work. Moreover, the
ability to attack the decryption has the additional and important advantage of
bypassing the nonce constraint that is imposed while making encryption queries.
This magnifies the feasibility of mounting fault attacks.

In the next section, we look at some of the features of APE decryption and
the inverse PRIMATE permutation p−1 that gain importance from a fault attack
perspective. Finally, building upon these observations we introduce the Scope
attack where for the first time we show how the decryption can also be attacked
under RUP to retrieve the entire internal state of p−1 leading to recovery of the
key with practical complexities.

4 Analyzing APE Decryption in the Presence of Faults

In this section we look at certain properties of APE decryption that become
relevant in the context of RUP and from the prospect of fault induction. We
first look at a property which by itself is of no threat to the security of APE but
becomes exploitable in the presence of faults in the RUP scenario.

4.1 The Block Inversion Property

The Block Inversion Property is purely attributed to the APE mode of opera-
tion. This property allows the attacker to retrieve partial information about the
contents of the state matrix after the last round InverseMixColumn operation.

Scope: On the Side Channel Vulnerability of RUP 425

Property 1. If the state after μ−1
1 in R−1

1 (the last round of p−1) be represented
as t = [ti,j] and the released plaintext block and next ciphertext block be p and c
respectively, then t0,∗ is public by the following expression:

t0,i = S(vi) where,

{
vi ∈ (p ⊕ c),
S → PRIMATE Sbox (Table 1)

Analysis: By virtue of the APE mode of operation and the SPONGE [7] con-
struction it follows, the rate part (top row of the state) after R−1

1 of p−1 is
released after XORing with the next ciphertext block as the plaintext block
(which can be observed unconditionally under RUP). If the state after R−1

1 be
s = [si,j] then p ⊕ c gives back s0,∗. We can now invert this block to get inside
R−1

1 despite partial knowledge of the state. This becomes possible since β oper-
ates word-wise and ρ operates row-wise. Moreover, ρ can be ignored for it has
no effect on top row as the shift-offset is zero. Thus applying β on s0,∗ we get
the value of t0,∗. However, the inversion stops here since μ operates column-wise
and only word of each column is known. �

Later in this work we show how the Scope attack can exploit the Block
Inversion Property along with RUP and use both faulty and fault-free plain-
texts to reconstruct differential state after μ−1

2 in R−1
2 . We now study the fault

induction and diffusion in the state of p−1 which is vital to understanding of the
attack presented here.

4.2 Fault Diffusion in the Inverse PRIMATE Permutation

In this section we describe the induction and diffusion of faults in the inverse
(p−1) of the PRIMATE permutation during APE decryption. In fact, our inten-
tion is to study the fault diffusion in the differential state of p−1 which we exploit
to formulate a fault attack on APE Decryption. The fault induction and subse-
quent differential plaintext block formation are illustrated in Fig. 3. One can see
from Fig. 3 that the fault is induced in the input of the penultimate round R−1

2

of p−1. The logic behind this will be clear from the following important property
of fault diffusion in the internal state of p−1.

Property 2. If a single column is faulty at the start of R−1
r+1 then there are

exactly three fault-free words in each row of the differential state after R−1
r .

Analysis: This property surfaces because in two rounds the fault does not
spread to the entire state matrix. This is primarily attributed to the fact that
the state matrix is non-square. To visualize this we need to first look at fault
diffusion in the R−1

r+1 round. Let us denote the differential state at the input of
R−1

r+1 as s = [si,j]. This analysis takes into account the structural dispersion of
the fault and is independent of the actual value of s. At the beginning of R−1

r+1

only one column s∗,j is faulty. The operation α−1 is omitted from analysis since
round-constant addition has no effect on the differential state.

426 D. Saha and D.R. Chowdhury

Fig. 3. Fault induction in APE decryption before releasing unverified plaintext and
the unverified differential plaintext block

– Fault diffusion in R−1
r+1

• μ−1
r+1 : Intra-column diffusion. Fault spreads to entire column s∗,j .

• ρ−1
r+1 : No diffusion, fault shifts to the words {si,(j+σ(i)) mod 8 : 0≤i<|σ|}.

• β−1
r+1 : No diffusion, fault limited to the same words as after ρ−1

r+1.

s∗,j

μ−1
r+1−−−→ s∗,j

β−1
r+1◦ρ−1

r+1−−−−−−−→ {si,(j+σ(i)) mod 8} (5)

– Fault diffusion in Rr

• μ−1
r : Fault spreads to each column s∗,(j+σ(i)) mod 8.

• ρ−1
r : No diffusion, fault shifts to the words {si,(j+σ(i)+σ(k)) mod 8 :

0≤i,k<|σ|}.
• β−1

r : No diffusion, fault limited to the same words as after ρ−1
r .

{si,(j+σ(i)) mod 8}
μ−1
r−−→ s∗,(j+σ(i)) mod 8

β−1
r ◦ρ−1

r−−−−−−→ {si,(j+σ(i)+σ(k)) mod 8}
(6)

From (5) and (6) we have the following relation between the faulty column s∗,j

at the start R−1
r+1 and the faulty words after R−1

r .

s∗,j

R−1
r ◦R−1

r−1−−−−−−−→
{
si,(j+σ(i)+σ(k)) mod 8 : 0≤i,k<|σ|

}
(7)

For PRIMATE-80, σ = {0, 1, 2, 4, 7}, implying that
∣∣σ∣∣ = 5. From (7), we have∣∣{si,(j+σ(i)+σ(k)) mod 8}

∣∣ = 25. Thus a single faulty column before R−1
r+1 results

in 25 faulty words at the end of R−1
r . Moreover, for each value of i we have∣∣{si,(j+σ(i)+σ(k)) mod 8 : 0≤k<5}

∣∣ = 5 implying that each row has 5 faulty words
and respectively 8 − 5 = 3 fault-free words at the end of R−1

r . An illustration of
the above analysis with the source fault in column s∗,3 is depicted in Fig. 4. �

Scope: On the Side Channel Vulnerability of RUP 427

Fig. 4. 2-round fault diffusion with a uni-word fault in column s∗,3

4.3 The Bijection Lemma

This lemma stems out of the property mentioned above and is pivotal in increas-
ing the efficiency of the Scope attack. Again it is a direct consequence of the
non-square nature of the internal state of p−1.

Lemma 1. If fault is induced in the jth column of the state at the input of
R−1

r+1, then the fault-free words in the differential plaintext block released after
R−1

r are ((j + 3), (j + 5), (j + 6)) mod 8.

Proof. This directly follows from relation (7). One can recall that for APE
decryption under RUP, the first row of the state is released after XORing with
next ciphertext block. However, since we are considering a differential here, the
effect of the ciphertext block is nullified. Now, for i = 0, from relation (7) we
have {s0,(j+σ(0)+σ(k)) mod 8 : 0≤k<5} = {s0,j , s0,j+1, s0,j+2, s0,j+4, s0,j+7} which
signifies the set of faulty words in the differential plaintext block. Hence, the
complement of this set w.r.t the set of all the words in the plaintext block is
{s0,j+3, s0,j+5, s0,j+6}, which signify the fault-free words. �

The implication of this lemma is that there exists a bijection between the
positions of the fault-free words in the differential plaintext block released after
R−1

r and position of the column in which the fault was induced before R−1
r+1.

This is vital to the analysis presented in this work and shows that by looking
at the unverified differential plaintext block the attacker can ascertain the col-
umn position of the fault. This makes the attack 8 times faster. However, this
information is not sufficient to guess the row position since all faults in the same
column will produce the same pattern for the fault-free words.

In case of p−1, r = 1 and the Bijection Lemma implies that by looking at
the unverified differential block (Fig. 3) released after R−1

1 , the attacker can
ascertain in which column the fault was induced before R−1

2 . With knowledge
of all these characteristics of the APE mode of operation as well as p−1, we are
now in a place to finally introduce the differential fault attack developed in this
work: Scope.

428 D. Saha and D.R. Chowdhury

5 Scope: Differential Fault Analysis of APE Decryption
(Exploiting Release of Unverified Plaintexts)

The first task is to run APE decryption and observe the released unverified
plaintexts. Next the attacker queries the decryption with same set of inputs.
Recall, that nonce constraint can be bypassed by definition. Every time, while
replaying the decryption, he induces a random uni-word fault at the input of R−1

2

of p−1 during the processing of the same ciphertext block. By RUP principle,
the attacker can observe the corresponding faulty plaintext blocks. The fault-free
plaintext block (p) along with each corresponding faulty plaintexts block (p′

i) are
stored. Now using the Bijection Lemma every differential plaintext block (p⊕p′

i)
is analyzed to get the faulty column before R−1

2 . The information is stored in the
fault count vector (F) which is an array keeping count of the number of faults
traced back to each column before R−1

2 . For each unverified faulty plaintext, the
Inbound phase is initiated to get back a set of hyper-columns. The process is
detailed in the next subsection.

5.1 The Inbound Phase

The main aim of this phase is to reduce the number of candidate words for the
column to which the fault was traced back. Let the state after μ−1

1 for the fault-
free case be s = [si,j] and for the faulty case be s′ = [s′

i,j]. Now, by virtue of
the Block Inversion Property, s0,∗ and s′

0,∗ are known to the attacker. He now
exploits the relation between the differential state before and after μ−1

1 that arises
from the fault diffusion to reconstruct the entire differential state after R−1

1 .
To be more precise, the attacker is interested in the nature of the differential
block (s0,∗ ⊕s′

0,∗). Due to the InverseMixColumn operation every non-zero word
(s0,∗⊕s′

0,∗) is a multiple of the non-zero word in the corresponding column before
μ−1
1 and the relation is governed by the InverseMixColumns matrix. Thus if the

source fault is in column 4, (s0,∗⊕s′
0,∗) is of the following form: {0, 0, x1×F5, x2×

F1, x3×F2, x4×F3, 0, x5×F4}. Now to get back each Fi from the differential row,
the attacker makes use of the Factor Matrix given in Table 2. As one can notice
the Factor Matrix is a circulant matrix. The ith row corresponds to the factors
to be used if the source fault is in the ith column. The ‘*’ represents the positions
of the zero values of the corresponding differential row. So, the attacker retrieves
each Fi by word-wise Galois Field division of the differential row (s0,∗ ⊕ s′

0,∗) by
using the appropriate row from the Factor Matrix. The method of generating
the Factor Matrix is detailed in Appendix D.

The attacker now has the entire differential state after R−1
2 . He cannot invert

further deterministically since β is nonlinear. However, as ρ and β are commu-
tative, he can apply ρ before β. By virtue of the fault diffusion described in
Property (2), the differential state after β−1

2 has only one non-zero column and
it is the same column where the fault was induced. The attacker now solves dif-
ferential equations involving the same column at the input of β−1

2 which arise due
the InverseMixColumns of R−1

2 . However, these equations are characterized by

Scope: On the Side Channel Vulnerability of RUP 429

Table 2. The Factor Matrix

6 22 31 * 1 * * 15

15 6 22 31 * 1 * *

* 15 6 22 31 * 1 *

* * 15 6 22 31 * 1

1 * * 15 6 22 31 *

* 1 * * 15 6 22 31

31 * 1 * * 15 6 22

22 31 * 1 * * 15 6

the row in which the initial fault was induced. One can recall that from Lemma 1,
that the information available is not sufficient to ascertain the exact row. For
instance, the fault invariants2 for different rows of column 4 is shown in Fig. 5.
So, the attacker solves the five sets of equations assuming all the possibilities.
Out of these one set corresponds to the actual row that was affected. Solving the
equations results in significant reduction in column space. The candidate words
that satisfy the equations are stored into hyper-columns (Definition 4). So each
row guess results in a different hyper-column and hence there can be maximum
of 5 hyper-columns. However, one may encounter a lot of wrong candidate words
getting accepted as they satisfy the wrong set of equations arising from the incor-
rect row guess. We refer to all accepted words other than the legitimate ones as
Noise. Thus one run of the Inbound Phase returns a set of hyper-columns with
a maximum cardinality of 5. The phase, is repeated for each faulty unverified
plaintext and corresponding set of hyper-columns appropriately stored in a set
of sets of hyper-columns: H. After all faulty plaintexts have been processed, the
set H along with the fault count vector F are passed on to the Noise handling
phase.

5.2 Noise Handling

Here the attacker takes the advantage of the fact that while he induces random
uni-word faults in input of R−1

2 , there is a high probability that some faults get
induced in the same column. Thus he will have multiple sets of hyper-columns
from the Inbound phase that reduced the column space for the same column
before R−1

2 . On the contrary, it might so happen that only one fault gets induced
for a particular column. The worst-case scenario occurs if none of the induced
faults affects some specific column. The former cases are dealt with in the next
subsections while for the later case the attacker is left with exhaustive search
implying that Noise handling phase will return a hyper-column that spans the
entire column space.
2 A discussion on the generation and nature of the fault invariants is furnished in

Appendix C.

430 D. Saha and D.R. Chowdhury

Fig. 5. Generation of hyper-columns using a word-fault at the beginning of R−1
2

(a) Noise Inclusion if Only One Fault
Traced back to a Column

(b) Noise Reduction if Multiple Faults
Traced back to the same Column

Fig. 6. The Noise handling phase

Noise Inclusion. When the attacker traces only one fault back to a column,
he faces an ambiguity regarding the source row. In this scenario, he has no other
option but to include all the hyper-columns for the next phase of the attack.
So he includes all the Noise in the final step. So Noise Inclusion corresponds
to word-wise union of all hyper-columns as depicted in Fig. 6a. Noise Inclusion,
definitely, increases the column-space, however, computer simulations show that
the final cardinality is still much better that brute force.

Noise Reduction. When the attacker traces multiple faults to the same col-
umn, he can significantly reduce the column space by eliminating Noisy hyper-
columns. For e.g. if two faults are traced back to column x, then the attacker
has two sets of hyper-columns. He now takes the cross-product of these two
sets. Every element of the cross-product is a pair of hyper-columns. He now
takes the set intersection between each such pair. The result is again a hyper-
column with the cardinality of its component sets highly reduced. However, if the

Scope: On the Side Channel Vulnerability of RUP 431

hyper-column turns out to be empty3, it is discarded. Experiments show that
most of the elements from the cross-product get eliminated due to this and the
attacker is left with a single final hyper-column. In case multiple hyper-columns
remain, a element-wise union is taken to form the final hyper-column.

This Noise handling phase is repeated for all the columns and returns a set
of eight hyper-columns for the last phase of the attack.

1: procedure HandleNoise(F , H) �

∣∣∣∣
F → Fault count vector

H → Set of all sets of hyper-columns

∣∣∣∣
2: HU = {b0, b1, b2, b3, b4}T , where bi = {0, 1, · · · , 31}

� HU → Exhaustive Hyper-column
3: for i = 0 : 7 do
4: if F(i) = 0 then � If no fault traced to column i
5: Hi = HU � Set hyper-column to be exhaustive

6: else if F(i) = 1 then �

{
If only one fault traced back
to column i: Noise Inclusion

7: Hi =
⋃

Hi,1 � Take union over the hyper-column set

8: else if F(i) > 1 then �

{
If multiple faults traced back
to column i: Noise Reduction

9: C = Hi,1 × Hi,2 × · · · × Hi,F(i) �

{
Take cross-product over
all sets of hyper-columns

10: j = 0

11: for ∀d ∈ C do �

{
Each element d ∈ C is a set of
hyper-columns and |d| = F(i)

12: Hj
temp =

⋂
d �

{
Take intersection over
each set of hyper-columns

13: if Hj
temp �= ∅ then �

{
Recall (Definition 4)
H = ∅ if ∃i : bi = ∅, bi ∈ H

14: j = j + 1
15: end if
16: end for

17: Hi =
⋃

Hj
temp �

{
Take union over the set of
all non-empty hyper-columns

18: end if
19: end for
20: return {H0,H1, · · · ,H7}

� Each Hi has candidate words for the ith column in the state after
μ−1
2 .

21: end procedure
3 Recall, that by Definition 4, a hyper-column is empty if any of its components is

empty.

432 D. Saha and D.R. Chowdhury

5.3 The Outbound Phase

The Outbound phase of Scope is inspired from the Outbound phase of the
EscApe [15] attack proposed by Saha et al. in Indocrypt 2014 and closely follows
it. It borrows the idea of a Hyper-state and Kernel from there. The input to this
phase is the set of eight hyper-columns. Since none of the hyper-columns are
empty, they can easily be combined structurally to form the hyper-state of the
state after μ−1

2 . Let us denote the state by s = [si,i] and then the hyper-state
is sh. This hyper-state sh captures the reduced state-space for the state s that
has been generated using the last two phases. In this phase we want to further
reduce the state-space using knowledge of the fault-free plaintext block by again
employing the Block Inversion property. This phase is called Outbound since
it tries to move outward from μ−1

2 . We start by propagating further into R−1
2

and then move into R−1
1 by applying some hyper-state-<operations> on sh. The

steps of the Outbound phase are enlisted below.

1. The attacker starts the Outbound phase by applying Hyper-state Inverse-
ShiftRow transformation (Definition 8) on sh followed by Hyper-state Invers-
eSubByte (Definition 9) on sh. This completes R−1

2 propagation.

sh (ρ−1)′
−−−−→ (ρ−1

2 (s))h (β−1)′
−−−−→ (β−1

2 (ρ−1
2 (s)))h → vh(say)

2. We now move forward into the last round of p−1 : R−1
1 . Let us denote the

state β−1
2 (ρ−1

2 (s)) as v. We now apply Hyper-state InverseAddRoundConstant
(Definition 10): (α−1

1)′ on the hyper-state vh. The next step is to compute
the Kernel for (α−1

1 (v))h : K(α−1
1 (v))h .

vh (α−1
1)′

−−−−→ (α−1
1 (v))h Compute Kernel−−−−−−−−−−→ K(α−1

1 (v))h

3. Then the attacker applies the Kernel-InverseMixColumn transformation on
the Kernel K(α−1

1 (v))h

K(α−1
1 (v))h (μ−1)′

−−−−→ K(μ−1
1 (α−1

1 (v)))h

4. Next comes the reduction step. It can be noted that K(μ−1
1 (α−1

1 (v)))h represents
the kernel for the hyper-state of (μ−1

1 (α−1
1 (v))). i.e., the state just before the

application of ρ−1
1 . Now let t = (μ−1

1 (α−1
1 (v))). Then by the Block Inver-

sion property, the actual value of t0,∗ is known. This knowledge is used to
reduce the size of each Kth∗,j ∈ Kth . This reduction algorithm is almost simi-
lar to ReduceKernel given in [15] and is restated in Appendix B for easy
reference.

A pictorial description of the Outbound phase is furnished in Fig. 7. Thus,
after the Outbound phase we get a reduced Kernel for the state at the end
of μ−1

1 . Every element of the cross-product of Kernels of each column is a can-
didate state. Finally, applying ρ−1

1 and β−1
1 on each candidate state produces

Scope: On the Side Channel Vulnerability of RUP 433

the reduced state-space at the end of R−1
1 of p−1. This reduced state-space

directly corresponds to the key-space of the state since recovering the internal
state implies recovery of the key. The overall Scope attack is summarized by
the following algorithm:

6 Experimental Results and Discussion

Scope was verified by extensive computer simulations. The experimental results
confirm large scale reduction in the state-space and consequently the key-space.
Average case analysis reveals that with 12 random uni-word faults at the input
of R−1

2 , the state-space at the end of R−1
1 reduces from 2160 to 250 while

16 faults give a reduced state-space of 224. It is interesting to note that the
fault distribution had a direct impact on state(key)-space reduction. To high-
light the impact we look at two different fault distributions with 12 faults. Let
the fault count vectors be F1 = {1, 2, 3, 0, 2, 2, 1, 1} and F2 = {2, 2, 2, 0, 2, 2, 1, 1}.

434 D. Saha and D.R. Chowdhury

Fig. 7. Final reduction in state-space using fault-free unverified plaintext block

The average reduction with these distributions are 245 and 228 respectively. This
extreme variance in the reduced key-spaces is attributed firstly to the fact that
F2 is a more uniform distribution. Secondly, F1 has three columns which get just
one fault. Thus, Noise reduction cannot be applied to them. While for F2 such
cases are two which leads to a better Noise reduction in the Noise handling
phase and hence the better reduction in overall key-space. To conclude, it can be
said that best results are obtained when fault distribution is such that maximum
number of columns receive at least two faults.

It might be argued that in comparison to EscApe attack by Saha et al.
Scope requires more faults. However, it must be kept in mind that Scope
works with only partial state information while EscApe has the full state at
its disposal. Moreover, since Scope attacks APE decryption it can bypass the
nonce constraint and hence also avoid the need of faulty collisions which are
inevitable for EscApe. Overall, Scope shows an interesting case-study where
an AES-like construction is analyzed using faults with partial state information
available to the attacker.

7 Conclusion

In this work we explore the scope provided by the RUP model with regards to
fault analysis. We argue that ability to observe unverified plaintext opens up
the fault side channel to attackers which is otherwise unavailable or available
with negligible probability. In this work for the first time we show how the
decryption of APE, an AE scheme that supports RUP, becomes vulnerable to
DFA. Experiments reveal that using the random word fault model the key-space
can be reduced from 2160 to 250 using 12 faults while 16 faults reduce it to 224. An
important implication of the ability to attack the decryption using RUP is that
the attacker can totally bypass the nonce constraint imposed by the encryption.
Finally, this work shows that though RUP is a desirable property addressing a
lot of practical problems, it provides a unique scope to the attacker for mounting
the Scope fault attack.

Scope: On the Side Channel Vulnerability of RUP 435

A Some More Definitions

Definition 8 (Hyper-state InverseShiftRow). This transformation, de-
noted by (ρ−1)′, corresponds to cyclically right shifting each row of sh based
on the predefined set of offsets σ.

It is interesting to note that, every word in the state ρ−1(s) will be a member
of the corresponding element of (ρ−1)′(sh), thereby implying that (ρ−1)′(sh) =
(ρ−1(s))h.

Definition 9 (Hyper-state InverseSubByte). This transformation, denoted
by (β−1)′, corresponds to word-wise substitution of each word of each element-set
of sh based on the inverse of the PRIMATE Sbox.

(β−1)′ : w �−→ S−1(w), ∀w ∈ sh
i,j , ∀i, j

Definition 10 (Hyper-state InverseAddRoundConstant). This transfor-
mation, denoted by (α−1

r)′, corresponds to appropriate round constant addition
to all words of element-set sh

1,1 of the hyper-state sh.

(α−1
r)′ : w �−→ w ⊕ Br, ∀w ∈ sh

1,1

B ReduceKernel Algorithm [15]

1: procedure ReduceKernel(Kth , t0,∗)
2: for j = 0 : 7 do
3: for all {e0, e1, e2, e3, e4}T ∈ Kth∗,j do
4: if e0 �= t0,j then
5: Kth∗,j = Kth∗,j − {e0, e1, e2, e3, e4}T

6: end if
7: end for
8: end for
9: Kth

red = Kth

10: return Kth

red

11: end procedure

C A Discussion on the Fault Invariants After µ−1
2 in R−1

2

The formation of the fault invariants due to a uni-word fault in the input of R−1
2

is completely governed by the InverseMixColumn Matrix (M−1
μ). It is worth

436 D. Saha and D.R. Chowdhury

mentioning that the fault-invariants are unique w.r.t to the row in which the
fault was induced in the state before R−1

2 and are independent of the column.
This implies that fault-invariants are fixed for a particular row irrespective of
which column the faulty word belonged to. Let the differential state before μ−1

2

be s = [si,j] and the one after μ−1
2 be t = [ti,j]. Also let the differential fault

value be f . Figure 8 depicts an example of fault invariant formation in t∗,7 for
a word-fault in s4,7. It can be noted that value of the invariant given in t∗,7 is
same for any word-fault in s4,∗ i.e. the fifth row of s. However, the position of
the invariant is due the column position of the fault which is the eighth column
of s. Table 3 gives the exhaustive list of fault invariants exploited in Scope and
their relation to the row location of the induced word fault.

Fig. 8. Formation of fault invariant. Value of the fault invariant determined by M−1
μ

and the row position of the word-fault before R−1
2 . Position of fault invariant deter-

mined by column position of the word-fault.Formation of fault invariant. Value of the
fault invariant determined by M−1

μ and the row position of the word-fault before R−1
2 .

Position of fault invariant determined by column position of the word-fault.

Table 3. Fault invariants exploited in Scope attack and the rows they correspond to.

Row position of fault 0 1 2 3 4

Fault invariant value

⎡
⎢⎢⎢⎢⎢⎢⎣

6 × f

15 × f

20 × f

11 × f

18 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

22 × f

19 × f

5 × f

3 × f

2 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

31 × f

8 × f

30 × f

19 × f

2 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f

f

5 × f

8 × f

18 × f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

15 × f

20 × f

11 × f

18 × f

f

⎤
⎥⎥⎥⎥⎥⎥⎦

D Constructing the Factor State

The factor state as stated earlier gives us the factors with which the differen-
tial row computed using the Block Inversion property needs to be divided to

Scope: On the Side Channel Vulnerability of RUP 437

reconstruct the state at the end of R−1
2 . The pseudo-code for generating the

factor matrix is given below:

1: procedure GenerateFactorMatrix
2: Take state s = [si,j]
3: for col = 0 : 7 do
4: si,j = 0, ∀ i, j
5: s∗,col = [1, 1, 1, 1, 1]T

6: s = μ−1(ρ−1(s))
7: factorMatcol,∗ = s1,∗
8: end for
9: return factorMat

10: end procedure

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Wang,
Q., Yasuda, K.: PRIMATEs v1 (2014). http://competitions.cr.yp.to/round1/
primatesv1.pdf

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Wang, Q., Yasuda, K.: PRIMATEs v1.01 (2014). http://primates.ae/wp-content/
uploads/primatesv1.01.pdf

4. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B.,
Mouha, N., Yasuda, K.: APE: Authenticated Permutation-Based Encryp-
tion for Lightweight Cryptography. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 168–186. Springer, Heidelberg (2015).
https://lirias.kuleuven.be/handle/123456789/450105

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to Securely Release Unverified Plaintext in Authenticated Encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

6. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. Cryptology
ePrint Archive, Report 2014/144 (2014). http://eprint.iacr.org/

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions. http://sponge.noekeon.org/CSF-0.1.pdf

8. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

10. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. IACR
Cryptology ePrint Archive 2003, 10 (2003). http://eprint.iacr.org/2003/010

11. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://primates.ae/wp-content/uploads/primatesv1.01.pdf
http://primates.ae/wp-content/uploads/primatesv1.01.pdf
https://lirias.kuleuven.be/handle/123456789/450105
http://eprint.iacr.org/
http://sponge.noekeon.org/CSF-0.1.pdf
http://eprint.iacr.org/2003/010

438 D. Saha and D.R. Chowdhury

12. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

13. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryption
Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

14. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique Against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

15. Saha, D., Kuila, S., Chowdhury, D.R.: EscApe: Diagonal Fault Analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
197–216. Springer, Heidelberg (2014)

16. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A Diagonal Fault Attack on
the Advanced Encryption Standard. Cryptology ePrint Archive, Report 2009/581
(2009). http://eprint.iacr.org/

http://eprint.iacr.org/

On the Hardness of Mathematical
Problems

Bit Security of the CDH Problems
over Finite Fields

Mingqiang Wang1, Tao Zhan1, and Haibin Zhang2(B)

1 Shandong University, Jinan, China
wangmingqiang@sdu.edu.cn, zhantao@moe.edu.cn

2 University of North Carolina, Chapel Hill, Chapel Hill, USA
haibin@cs.unc.edu

Abstract. It is a long-standing open problem to prove the existence
of (deterministic) hard-core predicates for the Computational Diffie-
Hellman (CDH) problem over finite fields, without resorting to the
generic approaches for any one-way functions (e.g., the Goldreich-Levin
hard-core predicates). Fazio et al. (FGPS, Crypto ’13) made important
progress on this problem by defining a weaker Computational Diffie-
Hellman problem over Fp2 , i.e., Partial-CDH problem, and proving, when
allowing changing field representations, the unpredictability of every sin-
gle bit of one of the coordinates of the secret Diffie-Hellman value. In this
paper, we show that all the individual bits of the CDH problem over Fp2

and almost all the individual bits of the CDH problem over Fpt for t > 2
are hard-core.

Keywords: CDH · Diffie-Hellman problem · d-th CDH problem · Finite
fields · Hard-core bits · List decoding · Multiplication code · Noisy
oracle · Partial-CDH problem

1 Introduction

Hard-core predicates [4,14] are central to cryptography. Of particular interest is
the hard-core predicate for the CDH problem, which is essential to establishing
the security for Diffie-Hellman (DH) key exchange protocol [7] and ElGamal
encryption scheme [9] without having to make a (potentially) much stronger DH
assumption—the Decisional Diffie-Hellman (DDH) assumption.

However, despite the generic approaches for randomized predicates work-
ing for any computationally hard problems [13,19], showing the existence of
deterministic and specific hard-core predicates for the CDH problem over finite
fields has proven elusive. This is in contrast to other conjectured hard problems
such as discrete logs, RSA, and Rabin, whose deterministic hard-core predi-
cates were discovered roughly three decades ago [2,4]. Recently, Fazio, Gennaro,
Perera, and Skeith (FGPS) [10] made a significant breakthrough by introducing
a relaxed variant of the CDH problem over finite fields Fp2 , i.e., the Partial-CDH
problem and proving the unpredictability for a large class of predicates.

Partial-CDH problem. Given a prime p, there are many different fields Fp2

which are all isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 441–461, 2016.
DOI: 10.1007/978-3-319-31301-6 25

442 M. Wang et al.

irreducible polynomial of degree 2 in Fp. We know that Fp2 is isomorphic to the
field Fp[x]/(h), where (h(x)) is a principal ideal in the polynomial ring Fp[x]
and elements of Fp2 can be written as linear polynomials. Namely, if g ∈ Fp2

then g = g1x + g0 and addition and multiplication are performed as polynomial
operations modulo h. Given g ∈ Fp2 we denote by [g]i the coefficient of the
degree-i term.

Let g denote a random generator of the multiplicative group of Fp2 . FGPS
defined the following Partial-CDH problem over Fp2 [10]: the Partial-CDH prob-
lem is hard over Fp2 if given random inputs g,A = ga, B = gb ∈ Fp2 , it is
computationally hard to output K = [gab]1 ∈ Fp (i.e., the coefficient of the
degree 1 term of gab), for any representation of Fp2 .

Assuming the hardness of the Partial-CDH problem, FGPS developed the
idea of randomizing the problem representation originally suggested by Boneh
and Shparlinski [5] and proved a large class of hard-core predicates over a random
representation of the finite field Fp2 . Namely, given an oracle that predicts any bit
of K =

[
gab

]
1

over a random representation of Fp2 with non-negligible advantage,
one can recover K with non-negligible probability.

However, the Partial-CDH problem is clearly weaker than the regular CDH
problem. Given a CDH oracle, one can easily solve the Partial-CDH problem.
Note that the reason why we need hard-core predicates is exactly that we do
not want to make stronger assumptions. Without characterizing the hardness
of the Partial-CDH problem, the FGPS result can hardly be based on a firm
foundation. Thus, studying the hardness of the Partial-CDH problem is left by
FGPS as an important open problem [10, Sect. 6].

The d-th CDH problems. It is natural to generalize the Partial-CDH problem
over Fp2 to define the d-th CDH problems over Fpt for t > 1 (history and related
work coming shortly). For a prime p and an integer t > 1, there are many
different fields Fpt , but they are all isomorphic to each other. Let h(x) be a monic
irreducible polynomial of degree t in Fp. It is well known that Fpt is isomorphic
to the field Fp[x]/(h), where (h(x)) is a principal ideal in the polynomial ring
Fp[x] and elements of Fpt can be written as polynomials of degree t−1. Namely, if
g ∈ Fpt then g = gt−1x

t−1+gt−2x
t−2+· · ·+g1x+g0. Addition and multiplication

of the elements in Fpt are performed as polynomial operations modulo h. In the
following, given g ∈ Fpt we denote by [g]i the coefficient of the degree-i term,
i.e., gi = [g]i.

Let g be a random generator of the multiplicative group of Fpt and d be an
integer such that 0 ≤ d ≤ t−1. Informally we say that the d-th CDH problem is
hard in Fpt if given g, ga, gb ∈ Fpt , it is computationally hard to compute [gab]d,
for any representations of Fpt .

Prior work on hardness of d-th CDH problems: Not yet perfect.
FGPS and an earlier version of this paper did not realize that the hardness of
d-th CDH problem had already been studied in [20,22]. Verheul [22, Theorem 21]
showed that given a perfect d-th CDH problem oracle (which always returns cor-
rect answers), one can solve the CDH problem over the same fields. Concretely,
given a CDH instance (gx, gy) ∈ (Fpt)2, Verheul’s algorithm needs to run the

Bit Security of the CDH Problems over Finite Fields 443

d-th CDH problem oracle on (gx, gy ·gr) for at least poly(t) times, with the same

gx and gy, yet uniformly chosen r
$←−Zpt−1. For some d, say, d = �t/2�, Verheul’s

algorithm even has to run the d-th CDH oracle for at least 2t times such that
the algorithm can have exponential running time in t.

Shparlinski [20] generalized Verheul’s result to handle the case of noisy ora-
cles (which return correct answers with some probabilities). Shparlinski’s reduc-
tion uses a strategy that is the same as Verheul’s to limit the behavior of the ora-
cle. Namely, the queries given to the d-th CDH oracle have the form of (gx, gy ·gr)
with uniformly chosen r. In this case, it is not guaranteed that the noisy d-th
CDH oracle would answer this type of queries correctly. It might well be the case
that a malicious d-th CDH problem oracle (adversary) simply always returns
incorrect answers for any query of the form (X, ·), if it has previously been given
a query with the same X. Hence, Shparlinski’s reduction is problematic in the
sense it failed to prove what’s claimed in the presence of noisy oracles. (Note
that Verheul’s reduction does not suffer from the same problem, as the answers
returned by the perfect oracles are always correct.)

1.1 Our Contributions

In this paper, we show that all the individual bits of the CDH problem over Fp2

and almost all the individual bits of the CDH problem over Fpt for t > 2 are
hard-core. Let’s explain our main contributions in a bit more detail.

The hardness of d-th CDH problem. In order to characterize the hardness
of d-th CDH problem, we consider a case of noisy oracles which is more gen-
eral than those of Verheul [22] and Shparlinski [20]. In our model, to compute
the secret CDH value, we just require that the d-th CDH oracle return correct
answers at some probability. Given a CDH instance (gx, gy) ∈ (Fpt)2, we need
to run the d-th CDH oracle on inputs (gx · gr, gy · gs) with uniformly chosen r
and s. The analysis for general t turns out to take some work.

With this model, we show that the 1-th CDH problem (i.e., the Partial-CDH
problem) and 0-th CDH problem (which we call Dual-Partial-CDH problem) over
finite fields Fp2 are strictly as hard as the regular CDH problem over the same
fields. Regarding general extension fields, we are able to prove that all the d-th
CDH problems over a random representation of finite fields Fpt (with t > 1) are
as hard as the regular CDH problem over the same fields; in particular, the 0-th
CDH problem and (t− 1)-th CDH problem given any field representation are as
hard as the CDH problem. We comment that applying our approach to the case
of perfect oracles, our reduction leads to no security loss, which is in contrast to
Verheul’s, where for many d’s, the algorithm can easily have exponential running
time in t.

The case of Fp2 . At the heart of the FGPS result is the list decoding app-
roach for hard-core predicates, which was developed by Akavia, Goldwasser and
Safra [1], and extended by Morillo and Ràfols [18] and Duc and Jetchev [8]. Up
to now, the list decoding approach has only been proven successful for multi-
plicative codes [1,8,18]. It is unclear if the approach can work more generally. In

444 M. Wang et al.

this paper, we will work directly on a non-multiplicative code. Still assuming the
hardness of the Partial-CDH problem, we are able to prove the unpredictability
of every single bit of the other coordinate (i.e., the coefficient of the lower degree
term) of the secret CDH value, by using a careful analysis of the Fourier coef-
ficients of the function. To the best of our knowledge, this is the first positive
result that the list decoding approach can be applied to a non-multiplicative
code, a result of independent interest.

Combining all the above-mentioned results, we are able to prove our main
result for the regular CDH problem over Fp2 : given an oracle O that predicts
any bit of the CDH value over a random representation of the field Fp2 with
non-negligible advantage, we can solve the regular CDH problem over Fp2 with
non-negligible probability.

The case of Fpt . We go on to prove that assuming the hardness of the d-th
CDH problem, every single bit of the d-th CDH coordinate for d �= 0 is hard-to-
compute. FGPS [10, Sect. 6] found that their technique was not powerful enough
to solve the generalized problem. To overcome the difficulty, we identify a gen-
eral yet simplified class of isomorphisms. The isomorphisms identified generalize
those of finite field Fp2 in FGPS to the case of general finite fields Fpt for any
t > 1. More importantly, they simplify those of FGPS by adopting a more restric-
tive class of isomorphisms. We comment that it is the simplicity that is essential
to overcoming the original technical difficulty and establishing the bit security
for general finite fields. To achieve this result, we also use another idea of Boneh
and Shparlinski [5] using d-th residues modulo p.

Together with the equivalence result between all the d-th CDH problems over
Fpt (with t > 1) and the regular CDH problem, we obtain another main result
of the paper: all bits except the bits of the degree-0 term of the usual CDH
problem over a random representation of the finite field Fpt are hard-core.

1.2 Further History and Discussion

An earlier version was put online [23]. Galbraith and Shani [11] extended our
work to obtain an essentially stronger hard-core result that works for every
individual bit for any finite fields Fpt with any t. Thus, as claimed by the authors,
this improvement can allow us to consider “the case of large t, and in particular
the case of fields with small characteristic” [11, p. 264]. We certainly agree with
this point of view, but one may not understand that our reduction approach is
inherently defective. The security loss in our reduction only comes from the loss
in proving the equivalence between the d-th CDH problem and the conventional
CDH problem. If one can find a way to prove their equivalence with no security
loss, as what we did for the case of perfect oracles, our result can be equally
expressive.

As commented by Galbraith and Shani [11, Remark 25], their approach does
not work for the popular polynomial basis, while our approach deals with this
case, and therefore our result will be useful when one desires a hard-core bit in
its polynomial basis.

Bit Security of the CDH Problems over Finite Fields 445

Another reason that makes our paper worth attending to is that as discussed
earlier, we point out the “problem” of studying the hardness of the d-th CDH
problem in prior work by Shparlinski [20]. We regard identifying the problem
and providing a more general and correct proof as an important contribution
of the paper. However, one may not really deem Verheul’s result [22] as being
“faulty” or “flawed”; rather, it is that our result provides a stronger result for
the problem.

By the same token, with Verheul’s result, one may regard that FGPS is actu-
ally the first (though they did not notice this) to solve the open problem whether
there exists “specific” hard-core bits over finite fields: half of the individual bits
of the secret CDH value over Fp2 are unpredictable. If one is uncomfortable
about their restricted reduction from CDH to d-th CDH, our result for the case
of both perfects oracles and noisy oracles can then come into use.

2 Preliminaries

2.1 Notation

We use the standard symbols N, Z, R and C to denote the natural numbers, the
integers, the real numbers and the complex numbers, respectively. Let Z+ and R+

stand for the positive integers and reals, respectively. A function ν(l) : N → R is
negligible if for every constant c ∈ R+ there exists lc ∈ N such that ν(l) < l−c for
all l > lc. A function ρ(l) : N → R is non-negligible if there exists a constant c ∈
R+ and lc ∈ N such that ρ(l) > l−c for all l > lc. For a Boolean function f : D →
{±1} over an arbitrary domain D, denote by majf = max{b=±1} Prα∈D[f(α) = b]
the bias of f toward its majority value.

2.2 Fourier Transform

Let G be a finite abelian group. For any two functions f, g : G → C, their inner
product is defined as 〈f, g〉 = 1/|G|

∑
x∈G

f(x)g(x). The l2-norm of f on the
vector space C(G) is defined as ‖f‖2 =

√
〈f, f〉. A character of G is a homo-

morphism χ : G → C
∗, i.e., χ(x + y) = χ(x)χ(y) for all x, y ∈ G. The set of all

characters of G forms a character group Ĝ, whose elements form an orthogonal
basis (the Fourier basis) for the vector space C(G). One can then describe any
function f ∈ C(G) via its Fourier expansion

∑
χ∈Ĝ

f̂(χ)χ, where f̂ : Ĝ → C is

the Fourier transform of f and we have f̂(χ) = 〈f, χ〉. The coefficients f̂(χ)
in the Fourier basis {χ}χ∈Ĝ

are the Fourier coefficients of f . The weight of a

Fourier coefficient is denoted by |f̂(χ)|2. When G = Zn (i.e., the additive group
of integers modulo n) and Ĝ = Ẑn, for each α ∈ Zn, the α-character is defined
as a function χα : Zn → C such that χα(x) = ωαx

n , where ωn = e2πi/n. If Γ is
a subset of Zn then it is natural to consider the projection of f in set Γ, i.e.,
f|Γ =

∑
α∈Γ f̂(α)χα, where f̂(α) = 〈f, χα〉. Since the characters are orthogonal,

we have ‖f‖2
2 =

∑
α∈Zn

|f̂(α)|2 and ‖f|Γ‖2
2 =

∑
α∈Γ |f̂(α)|2.

446 M. Wang et al.

Definition 1 (Fourier concentrated function [1]). A function f : Zn → C

is Fourier ε-concentrated if there exists a set Γ ⊆ Zn consisting of poly(log n, 1/ε)
characters, so that

‖f − f|Γ‖2
2 =

∑
α/∈Γ

|f̂(α)|2 ≤ ε.

A function f is called Fourier concentrated if it is Fourier ε-concentrated for
every ε > 0.

This and subsequent definitions can be readily made asymptotic by requiring
that ε depend on the security parameter.

Definition 2 (τ-heavy characters [1]). Given a threshold τ > 0 and an arbi-
trary function f : Zn → C, we say that a character χα is τ -heavy if the weight
of its corresponding Fourier coefficient is at least τ . The set of all τ -heavy char-
acters is denoted by

Heavyτ (f) = {χα : |f̂(α)|2 ≥ τ}.

2.3 Error Correcting Codes: Definitions and Properties

Error correcting codes can encode messages into codewords by adding redundant
data such that the message can be recovered even in the presence of noise. The
code to be discussed here encodes each element α ∈ Zn into a codeword Cα of
length n. Each codeword Cα can be represented by a function Cα : Zn → {±1}.
We now recall a number of definitions and lemmata [1,8] about codes over Zn.

Definition 3 (Fourier concentrated code). A code C = {Cα : Zn → {±1}}
is concentrated if each of its codewords Cα is Fourier concentrated.

Definition 4 (Recoverable code). A code C = {Cα : Zn → {±1}} is recov-
erable, if there exists a recovery algorithm that, given a character χ ∈ Ẑn and
a threshold τ , returns in time poly(log n, 1/τ) a list of all elements α associ-
ated with codewords Cα for which χ is a τ -heavy coefficient (i.e., {α ∈ Zn : χ ∈
Heavyτ (Cα)}).

Lemma 1 below shows that in a concentrated code C, any corrupted (“noisy”) ver-
sions C̃α of codeword Cα share at least one heavy coefficient with Cα. Lemma 2
shows that when given query access to any function f one can efficiently learn
all its heavy characters.

Lemma 1 ([1, Lemma1]). Let f, g : Zn → {±1} such that f is concentrated
and for some ε > 0,

Pr
α∈Zn

[f(α) = g(α)] ≥ majf + ε.

There exists a threshold τ such that 1/τ ∈ poly(1/ε, log n), and there exists a non-
trivial character χ �= 0 which is heavy for f and g: χ ∈ Heavyτ (f) ∩ Heavyτ (g).

Bit Security of the CDH Problems over Finite Fields 447

Lemma 2 ([1, Theorem6]). There is a probabilistic algorithm that, given
query access to w : Zn → {±1}, τ > 0 and 0 < δ < 1, outputs a list L of
O(1/τ) characters containing Heavyτ (w) with probability at least 1 − δ, whose

running time is Õ

(
log(n) · ln2 (1/δ)

τ5.5

)
.

2.4 Review of List Decoding Approach for Hard-Core Predicates

Informally, a cryptographic one-way function f : D → R is a function which is
easy to compute but hard to invert. Given a one-way function f and a predicate
π, we say π is hard-core if there is an efficient probabilistic polynomial-time
(PPT) algorithm that given α ∈ D computes π(α), but there is no PPT algorithm
A that given f(α) ∈ R predicts π(α) with probability majπ + ε for a non-
negligible ε.

Goldreich and Levin [13] showed hard-core predicates for general one-way
functions by providing a general list decoding algorithm for Hadamard code.
Akavia, Goldwasser, and Safra (AGS) [1] formalized the list decoding method-
ology and applied it to a broad family of conjectured one-way functions. In
particular, they proved the unpredictability of segment predicates [1] for any
one-way function f with the following homomorphic property: given f(α) and
λ, one can efficiently compute f(λα). This includes discrete logarithms in finite
fields and elliptic curves, RSA, and Rabin. Morillo and Ràfols [18] extended
the AGS result to prove the unpredictability of every individual bit for these
functions. Duc and Jetchev [8] showed how to extend to elliptic curve-based
one-way functions which do not necessarily enjoy the homomorphic property.
Their result instead requires introducing a random description of the curve, an
idea originally developed by Boneh and Shparlinski [5]. In their paper, Boneh
and Shparlinski proved for the elliptic curve Diffie-Hellman problem that the
least significant bit of each coordinate of the secret CDH value is hard-core over
a random representation of the curve. Recently, FGPS extended the Boneh and
Shparlinski idea to prove every individual bit (not merely the least significant
bit) of the elliptic curve Diffie-Hellman problem is hard-core. By extending the
same idea to the case of finite fields Fp2 , FGPS also proved for a weak CDH
problem (i.e. Partial-CDH problem) the unpredictability of every single bit of
one of the coordinates of the secret CDH value.

List decoding approach overview. Given a one-way function f : D → R
and a predicate π, one would have to identify an error-correcting code Cπ =
{Cα : D → {±1}}α∈D such that every input α of the one-way function is associ-
ated with a codeword Cα. The code needs to satisfy the following properties:
(1) Accessibility. One should be able to obtain a corrupted (“noisy”) version C̃α

of the original codeword Cα. Such a corrupted codeword must be close to the
original codeword, i.e., Prλ[Cα(λ) = C̃α(λ)] > majπ + ε for a non-negligible ε.
(2) Concentration. Each codeword Cα should be a Fourier concentrated function,
i.e., each codeword can be approximated by a small number of heavy coefficients
in the Fourier representation.

448 M. Wang et al.

(3) Recoverability. There exists a poly(log n, τ−1) algorithm that on input a
Fourier character χ and a threshold τ outputs a short list Lχ which contains
all the values α ∈ D such that χ is τ -heavy for the codeword Cα.

Roughly speaking, accessibility is related to both the code and the oracle,
while concentration and recoverability concern the code itself. We now show
how to invert y = f(α) with the prediction oracle Ω. Querying Ω will allow one
to have access to a corrupted codeword C̃α that is close to Cα. According to
Lemma 1, we know that there should exist a threshold τ and at least one Fourier
character that is τ -heavy for both C̃α and Cα. Applying the learning algorithm
in Lemma 2, we can find the set of all τ -heavy characters for C̃α. Due to the
recovery property, we are able to produce for each heavy character a polynomial
size list containing possible α. Note that one can identify the correct α since f
is efficiently computable.

List decoding via multiplication code. The crux of list decoding approach
is to identify the “right” code which is accessible, concentrated, and recoverable.
To this end, AGS and subsequent work either define a multiplication code, or
transform the original code to an equivalent multiplication code. (Such a mul-
tiplication code is of the form Cα(λ) = π(λα).) Indeed, as argued in [1,8], this
is at the basis of their proofs: multiplication codes can be proven to satisfy
concentration and recoverability.

In Sect. 3, we will directly work on a code that is not multiplicative. Not
surprisingly, this makes it hard to prove code concentration and recoverability.
To our knowledge, we are the first to apply the list decoding approach to the
case of a non-multiplicative code.

3 All Bits Security of the CDH Problems over Fp2

In this section, we show the following three results: (1) we show that over finite
fields Fp2 the Partial-CDH problem [10] is as hard as the regular CDH problem.
(2) assuming the hardness of the Partial-CDH problem over Fp2 , we prove the
unpredictability of every single bit of the other coordinate of the secret CDH
value; (3) we go on to prove the unpredictability of every single bit of the secret
CDH value for the regular CDH problem over Fp2 .

The Partial-CDH Assumption is Equivalent to the CDH Assumption
over Fp2 . Throughout the paper we fix a security parameter l. We consider an
instance generator G which takes as input 1l and outputs an l-bit prime p. Let
g be a random generator of the multiplicative group of Fp2 . The Partial-CDH
problem over Fp2 is a relaxed variant of the conventional CDH problem over Fp2 ,
which we formally state as follows:

Assumption 1 (The CDH assumption over Fp2). We say that the CDH
problem is hard in Fp2 if for any PPT adversary A, his CDH advantage

Advcdh
A,Fp2

:= Pr
[
A(p, g, ga, gb) = gab

∣∣p $←−G(1l); a, b
$←−

{
1, · · · , p2 − 1

}]

is negligible in l.

Bit Security of the CDH Problems over Finite Fields 449

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. Informally
we say that the Partial-CDH problem [10] is hard in Fp2 if for all h ∈ I2(p) no
efficient algorithm given g,A = ga, B = gb ∈ Fp2 can output

[
gab

]
1

∈ Fp.
Formally we consider the following assumption:

Assumption 2 (The Partial-CDH assumption over Fp2 [10]). We say
that the Partial-CDH problem is hard in Fp2 if for any PPT adversary A, his
Partial-CDH advantage for all h ∈ I2(p)

Advpcdh
A,h,Fp2

:= Pr
[
A(p, h, g, ga, gb) =

[
gab

]
1

∣∣p $←−G(1l); a, b
$←−

{
1, · · · , p2 − 1

}]

is negligible in l.

It is easy to see that the Partial-CDH problem is weaker than the regular CDH
problem over Fp2 . The following theorem shows that in the case of noisy oracles,
the regular CDH problem can be also reduced to the Partial-CDH problem in Fp2 .

Theorem 1. Suppose A is a Partial-CDH adversary that runs in time at most
ϕ and achieves advantage Advpcdh

A,h,Fp2
for any h ∈ I2(p). Then there exists a

CDH adversary B, constructed from A in a blackbox manner, that runs in time
at most 2ϕ plus the time to perform a small constant number of group operations
and achieves advantage Advcdh

B,h,Fp2
≥ (1 − 1

p) · (Advpcdh
A,h,Fp2

)2.

Proof: Our CDH adversary B works as follows, given input a random instance of
the CDH problem (ga, gb) ∈ (Fp2)2 and given a Partial-CDH adversary A under
the representation determined by any given polynomial h(x) = x2 + h1x + h0 ∈
I2(p).

First, adversary B chooses two random integers r, s
$←−Zp2−1, and computes

(ga+r, gb+s). For brevity, let A = a+r and B = b+s. Adversary B then runs the
Partial-CDH adversary A on the generated instance (gA, gB) to obtain

[
gAB

]
1
.

Let C = as+ br + rs. As gAB = gabgC mod h(x), we have the following equation

(
[
gC

]
0

−
[
gC

]
1
h1)

[
gab

]
1

+
[
gC

]
1

[
gab

]
0

=
[
gAB

]
1

Repeating the above process, B chooses two random integers r′, s′ $←−Zp2−1 and
gets the following equation

(
[
gC′]

0
−

[
gC′]

1
h1)

[
gab

]
1

+
[
gC′]

1

[
gab

]
0

=
[
gA′B′]

1
,

where A′ = a + r′, B′ = b + s′, and C ′ = as′ + br′ + r′s′.
Combining the above two equations, we obtain a linear equation set with the

unknowns
[
gab

]
1

and
[
gab

]
0
. If the coefficient matrix of the equation set has full

rank then adversary B can solve the equation set and obtain gab. The coefficient
matrix is of full rank if and only if its determinant is not zero, i.e.,

(
[
gC

]
0

−
[
gC

]
1
h1)

[
gC′]

1
− (

[
gC′]

0
−

[
gC′]

1
h1)

[
gC

]
1

�= 0.

450 M. Wang et al.

Note that [gC]i and [gC′
]i (i = 0, 1) in the above equation are independently

and uniformly distributed at random from Fp. Hence, the probability that the
matrix is of full rank is 1 − 1/p. This completes the proof of this theorem.

We can define a dual variant of the Partial-CDH problem over Fp2 : We say
that the Dual-Partial-CDH problem is hard in Fp2 if for all h ∈ I2(p) no efficient
algorithm given g,A = ga, B = gb ∈ Fp2 can output

[
gab

]
0

∈ Fp. We can show
that the Dual-Partial-CDH problem is also as hard as the conventional CDH
problem. The formal definition and the proof can be found in our full paper [23].
Therefore, both the Partial-CDH and Dual-Partial CDH problems are as hard
as the conventional CDH problem over Fp2 .

Bit Security for the other coordinate. Let Bk : Fp → {±1} denote
the k-th bit predicate (with a 0 bit being encoded as +1). Let βk be the
bias of Bk. For all h, ĥ ∈ I2(p) there exists an easily computable isomorphism
φh,ĥ : Fp[x]/(h) → Fp[x]/(ĥ). Informally we show that when given an oracle O
that predicts the k-th bit of the degree 0 coefficient of the CDH value with non-
negligible advantage, and the representation of the field, then we can break the
Partial-CDH assumption with non-negligible advantage.

Theorem 2. Under the Partial-CDH assumption over Fp2 (i.e., Assumption 2),
for any PPT adversary O, we have that for all h ∈ I2(p) the following quantity
is negligible in l:
∣∣ Pr

[
O(h, ĥ, g, ga, gb) = Bk

([
φh,ĥ(gab)

]
0

)∣∣ĥ $←− I2(p); a, b
$←−{1, · · · , p2−1}

]
−βk

∣∣.
We first give an informal intuition of the proof of the theorem. We aim at con-
structing a code similar to those of FGPS and Duc and Jetchev [8]. For an
element α ∈ Fp2 and a monic irreducible polynomial h ∈ I2(p), we would define
the following codeword:

Cα(ĥ) = Bk([φh,ĥ(α)]0).

Similar to the code defined in FGPS, the above code is accessible using O.
However, the predicate Bk is evaluated on the other coordinate of φh,ĥ(α). In
this case, it holds that [φh,ĥ(α)]0 = η[α]1 + [α]0 for some η ∈ Fp, according to
FGPS [10, Lemma 5.3] (recalled in Lemma 3 below).

Lemma 3 ([10, Lemma5.3]). For any h ∈ I2(p), there exists a unique func-
tion Lh : Fp×F

∗
p → I2(p) which takes a pair (η, λ) to the polynomial ĥ = Lh(η, λ)

such that the matrix
(

1 η
0 λ

)
defines an isomorphism from Fp[x]/(h) to Fp[x]/(ĥ)

that sends [α]1x + [α]0 �→ λ[α]1x + η[α]1 + [α]0.

Intuitively, one would consider the following code: for α ∈ Fp2 and for η ∈ Fp

(and λ ∈ F
∗
p), set

Cα(η) = Bk(η[α]1 + [α]0). (1)

Unfortunately, the above code in (1) is not multiplicative. In particular, this
makes it hard to prove concentration and recoverability. This is why FGPS con-
sidered defining the Partial-CDH problem over Fp2 as outputting the coefficient

Bit Security of the CDH Problems over Finite Fields 451

of the degree 1 term of gab, instead of the coefficient of the degree 0 term. More
generally, the list decoding approach has only been proven successful for multi-
plicative codes so far [1,8,18]. One natural question is if it is (even) possible to
apply list decoding approach to the case of non-multiplicative codes.

With a careful analysis, we are still able to show that the code in (1) is
concentrated and recoverable. Concentration will follow from the key observation
that the Fourier transform of the code in (1) is equal to that of a multiplication
code (to be defined shortly) up to a factor of a character. This follows from a
(well-known) scaling property of the Fourier transform, as shown in Lemma4
below. Hence, the l2-norm of the Fourier transform of the code is equal to that
of the multiplication code. That is, the code in (1) is concentrated if and only if
the multiplication code is. Note that it is easy to argue that the multiplication
code is concentrated.

The goal of recoverability is to recover the secret value from the heavy char-
acters of the code Cα. We find that a character χβ is heavy for Cα if and only
if χβ is heavy for a multiplicative code C ′

α. The associated constant of a heavy
character χβ for the multiplicative code C ′

α equals the product of the secret
value and an (easily determined) factor. Therefore, one can recover the secret
value with a heavy character.

We first describe the scaling property of the Fourier transform.

Lemma 4. Let F1, F2 be functions mapping Zn to C. If for any y, F2(y) =
F1(y − σ), where σ is a constant in Zn, then we have for α ∈ Zn, F̂2(α) =
χα(σ)F̂1(α).

Proof of Theorem 2: Suppose that there exists an oracle O such that
∣∣ Pr

η,a,b

[
O(h, ĥ, g, ga, gb) = Bk

([
φh,ĥ(gab)

]
0

)]
− βk

∣∣

is larger than a non-negligible quantity ε. We construct another oracle O′ that
takes as input a base representation h ∈ I2(p), a Diffie-Hellman triple g, ga, gb ∈
Fp2 , and an element of η ∈ Fp (instead of ĥ ∈ I2(p)). The new oracle selects

λ
$←−F

∗
p, constructs an isomorphism ĥ from the matrix

(
1 η
0 λ

)
as described in

Lemma 3, and returns O(h, ĥ, g, ga, gb). One can then show that
∣∣ Pr

η,a,b

[
O′(h, η, g, ga, gb) = Bk

(
η
[
gab

]
1

+
[
gab

]
0

)]
− βk

∣∣

is also larger than a non-negligible quantity.
For any element α ∈ Fp2 , we construct the following encoding of η[α]1 + [α]0

in its polynomial representation for Fp[x]/(h):

Cα : Fp → {±1} such that Cα(η) = Bk(η[α]1 + [α]0),

where, above, [α]1 and [α]0 are under the representation determined by h.

Accessibility. Accessibility proof is the same as that of FGPS. In particular,
the oracle O′ allows us to have access to a corrupted codeword C̃α of the above

452 M. Wang et al.

codeword defined as C̃α = O′(h, η, g, ga, gb). The code Cα(η) is conceptually the
same as the code Cα(ĥ). Therefore, if the oracle O has advantage ε then we have
|Prη[Cα(η) = C̃α(η)]| ≥ βk + ε. Accessibility of the code Cα follows.

Concentration. We now prove that the codeword Cα is a Fourier concentrated
code. To prove so, we define the following related code:

C ′
α(η) = Bk(η[α]1).

It is easy to see that C ′
α(η) = Cα(η − [α]−1

1 [α]0). According to Lemma 4, we can
obtain

χβ([α]−1
1 [α]0)Ĉα(β) = Ĉ ′

α(β).

This immediately implies |Ĉα(β)| = |Ĉ ′
α(β)|. Therefore, the code Cα(η) is con-

centrated if and only if the code C ′
α(η) is. Note that it is easy to argue that

C ′
α(η) is a multiplication code. The proof for concentration of the code C ′

α(η) is
similar to those of [10,18], and now we describe our proof in some detail.

For β ∈ Fp, if C ′
α(η) is ε-concentrated in Γα = {χβ} then Bk(η[α]1) is

ε-concentrated in the set {χη : η = β[α]−1
1 }. Thus, we just need to prove the

Fourier concentration of Bk(η[α]1). We would need to analyze the Fourier coef-
ficients of Bk : Fp → {±1}.

We define g(x) as

g(x) =
Bk(x) + Bk(x + 2k)

2
.

Morillo and Ràfols [18] notice that the Fourier transform of Bk(x) and the Fourier
transform of g(x) can be related with the following equation:

ĝ(η) =
ω2kη

p + 1
2

B̂k(η),

where η ∈ Fp and ωp = e2πi/p.
In particular, assuming η ∈ [−p−1

2 , p−1
2], they consider the following two

cases for η:

1. η ≥ 0, consider δη,k := 2kη − (p − 1)/2mod p and let λη,k ∈ [0, 2k−1 − 1] be
the unique integer for which 2kη = (p − 1)/2 + δη,k + pλη,k.

2. η < 0, consider δη,k := 2kη + (p + 1)/2mod p and let λη,k ∈ [0, 2k−1 − 1] be
the unique integer for which 2kη = −(p + 1)/2 + δη,k + pλη,k.

For both cases, there are unique integers μη,k ∈ [0, r], where r is the largest
integer less than p/2k+1 and rη,k ∈ [0, 2k − 1] such that ap(2kη − (p − 1)/2) =
μη,k2k + rη,k, where ap(x) = min{xmod p, p − xmod p} for xmod p being taken
in [0, p − 1]. The definition of Γτ in Sect. 3 is as follows

Γτ = {η : (λη,k, μη,k) ∈ [0, 1/τ] × [0, 1/τ]}.

Bit Security of the CDH Problems over Finite Fields 453

Here we select τ such that 1/τ = poly(log p). Morillo and Ràfols [18] obtain the
following upper bound of B̂k(η):

|B̂k(η)|2 < O(
1

λ2
η,kμ2

η,k

).

Now one can conclude that Bk(η[α]1) is Fourier concentrated.
A character χβ is τ -heavy for Cα if and only if χβ is τ -heavy for C ′

α. There-
fore, according to the discussion in FGPS, for a threshold τ > 0, the τ -heavy
characters of Cα belong to the set

Γα,τ = {χβ : β = η[α]1 for η ∈ Γτ},

where Γτ is a set containing the τ -heavy coefficients of the function Bk. For each
η ∈ Γτ , there exists a unique integer pair (ξη, ςη) ∈ [0, 1/τ] × [0, 1/τ]. Note that
by [18, Lemma 9], the size of Γτ is at most 4τ−2.

Recoverability. The proof for recoverability is similar to those of [10,18].
According to Lemma 1, we know that there exists a threshold τ which is polyno-
mial in the non-negligible quantity ε and at least one τ -heavy Fourier character
χ �= 0 for Cα and C̃α such that χ ∈ Heavyτ (Cα) ∩ Heavyτ (C̃α).

Given a polynomial h(x) ∈ I2(p), on input g, ga, gb ∈ Fp2 , the following
algorithm that has access to O produces a polynomial size list of elements in Fp2

which contains gab with probability 1 − δ.
Let τ be the threshold determined by Lemma 1. We write α = [α]1x+[α]0 to

denote gab ∈ Fp2 . Using the learning algorithm of AGS [1] (i.e., the algorithm
in Lemma 2), we obtain a polynomial size list Lα of all the τ -heavy Fourier
characters for C̃α. If χβ is a non-trivial τ -heavy character for Cα, we have [α]1 =
η−1β. Given χβ ∈ Lα, we define Lβ = {[α]1 : [α]1 = η−1β for η ∈ Γτ}.

Let L =
⋃

χβ∈Lα
Lβ . Note that L is of polynomial size and α ∈ L with

probability 1 − δ. Since this is a polynomial size set, we can guess a result for
[α]1 and hence get [gab]1. The theorem now follows.

Hard-core predicates for the CDH problem over Fp2 . Note that for a
given h ∈ I2(p), any element α ∈ Fp2 of length 2l can be written as [α]1x + [α]0,
i.e., [α]1 and [α]0 are the leftmost and rightmost l bits value of α, respectively.
Let B̃k : Fp2 → {±1} denote the k-th bit predicate (where 1 ≤ k ≤ 2l) and let
βk be the bias of B̃k. In the following, we prove that given an oracle O that
predicts the k-th bit of the CDH value over a random representation of the field
Fp2 with non-negligible advantage, we can solve the regular CDH problem over
Fp2 with non-negligible probability.

Theorem 3. Under the CDH assumption over Fp2 (i.e., Assumption 1), for any
PPT adversary O, we have that for all h ∈ I2(p) the following quantity is negli-
gible in l:

∣∣ Pr
[
O(h, ĥ, g, ga, gb) = B̃k

(
φh,ĥ(gab)

)∣∣ĥ $←− I2(p); a, b
$←−{1, · · · , p2 − 1}

]
− βk

∣∣.

454 M. Wang et al.

Proof Sketch: For an element α ∈ Fp2 and a given h ∈ I2(p), we define a codeword
as follows: Cα(ĥ) = B̃k(φh,ĥ(α)). If k ≤ l, we have B̃k(φh,ĥ(α)) = Bk([φh,ĥ(α)]0).

Otherwise if k > l, we have B̃k(φh,ĥ(α)) = Bk−l([φh,ĥ(α)]1). Along the same lines
as the proofs of [10, Theorem 5.2] and Theorem 2, predicting any individual bit of
the secret CDH value defined above can break the Partial-CDH assumption over
Fp2 , and hence break the CDH assumption over Fp2 , as shown in Theorem 1.

4 Almost All Bits Security of the CDH Problems
over Fpt for t > 1

4.1 Hardness of the d-th CDH Assumption over Fpt

We begin with the definition of the d-th CDH problem over Fpt . For a given
prime p, there are many different fields Fpt , but they are all isomorphic to each
other. Let h(x) = xt+ht−1x

t−1+· · ·+h1x+h0 be a monic irreducible polynomial
of degree t in Fp. It is well known that Fpt is isomorphic to the field Fp[x]/(h),
where (h(x)) is a principal ideal in the polynomial ring Fp[x] and therefore
elements of Fpt can be written as polynomials of degree t − 1, i.e., if g ∈ Fpt

then g = gt−1x
t−1+gt−2x

t−2+ · · ·+g1x+g0 and addition and multiplication are
performed as polynomial operations modulo h. In the following, given g ∈ Fpt we
denote by [g]i the coefficient of the degree-i term, i.e., gi = [g]i. Let It(p) be the
set of monic irreducible polynomials of degree t in Fp, and let g be a generator of
the multiplicative group of Fpt . First, the CDH problem can be easily extended
to the case of finite fields Fpt for t > 1.

Assumption 3 (The CDH assumption over Fpt). We say that the CDH
problem is hard in Fpt for t > 1 if for any PPT adversary A, his CDH advantage

Advcdh
A,Fpt

:= Pr
[
A(p, g, ga, gb) = gab

∣∣p $←−G(1l); a, b
$←−

{
1, · · · , pt − 1

}]

is negligible in l.

We say that the d-th CDH problem (where 0 ≤ d ≤ t − 1) is hard in Fpt if for
all h ∈ It(p) no efficient algorithm given g,A = ga, B = gb ∈ Fpt can output[
gab

]
d

∈ Fp. Formally we consider the following assumption:

Assumption 4 (The d-th CDH assumption over Fpt). We say that the
d-th CDH problem (where 0 ≤ d ≤ t − 1) is hard in Fpt (for t > 1) if for any
PPT adversary A, his d-th CDH advantage for all h ∈ It(p)

Advdcdh
A,h,Fpt

:= Pr
[
A(p, h, g, ga, gb) =

[
gab

]
d

∣∣p $←−G(1l); a, b
$←−

{
1, · · · , pt − 1

}]

is negligible in l.

Bit Security of the CDH Problems over Finite Fields 455

It is well known that the probability of a random polynomial h ∈ Fp[X] of degree
t being irreducible is at least 1

2t . The following theorem asserts that the regular
CDH problem over Fpt with t > 1 can be reduced to any d-th CDH problem
(0 ≤ d ≤ t−1) over a random representation of Fpt . Therefore, all the d-th CDH
problems over a random representation of finite fields Fpt for t > 1 are as hard
as the regular CDH problem over the same fields.

Theorem 4. Let Fpt be a finite field of size l and t > 1. Suppose A is a d-th
CDH adversary that runs in time at most ϕ and achieves advantage Advdcdh

A,h,Fpt

for a monic polynomial h
$←−Fp[X] of degree t and h ∈ It(p). Then there exists

a CDH adversary B, constructed from A in a blackbox manner, that runs in
time at most tϕ plus the time to perform poly(l) group operations and achieves
advantage Advcdh

B,Fpt
≥ (1 − 1

p)t · e− 2
p−1 · (Advdcdh

A,h,Fpt
)t.

Before proceeding to the proof, we introduce a useful lemma, which claims that
if all the entries in a square matrix are independently and uniformly chosen at
random over a large finite field Fp then there is a good chance that the matrix
is nonsingular. Note that we require that the probability depends only on the
size of the finite field p, but not on the size of the matrix m. The proof of the
lemma is fairly easy and can be found in our full paper [23].

Lemma 5. Let M be an m × m square matrix over the finite field Fp. If every
element of the matrix is chosen independently and uniformly at random, then
the probability that M is nonsingular is at least e− 2

p−1 .

Proof of Theorem 4: Let h(x) = xt + ht−1x
t−1 + · · · + hx + h0 be the irre-

ducible polynomial of degree t over Fp, where its coefficients being uniformly
and independently selected at random.

Given a challenge instance (ga, gb) ∈ (Fpt)2 of the CDH problem, our CDH
adversary B works as follows. First, adversary B chooses t pairs of integers
(rι, sι)

$←− (Zpt−1)2 (ι = 0, 1, · · · , t−1), and computes (ga+rι , gb+sι). For brevity,
let Aι = a + rι and Bι = b + sι for ι = 0, 1, · · · , t − 1. Adversary B runs the d-th
CDH problem under the representation determined by h(x) on each (gAι , gBι)
to get the d-th coordinate of the CDH value

[
gAιBι

]
d

(ι = 0, 1, · · · , t − 1).
Adversary B computes gasι+brι+rιsι = (ga)sι(gb)rιgrιsι . Let Cι = asι + brι +

rιsι. It is easy to see that gAιBι = gabgCι mod h(x), i.e.,

t−1∑
k=0

[gAιBι]kxk ≡
(t−1∑

i=0

[gab]ixi

)(t−1∑
j=0

[gCι]jxj

)
mod h(x).

Therefore [gAιBι]d can be written as a linear expression with the coordinates of
gab being variables and with some known coefficients eιν ∈ Fp (0 ≤ ι, ν ≤ t − 1)
such that

[gAιBι]d =
t−1∑
ν=0

eιν [gab]ν , ι = 0, 1, · · · , t − 1.

456 M. Wang et al.

If the coefficient matrix (eιν)t×t for the above equation set has full rank, adver-
sary B can use Gaussian elimination to compute the unknowns and therefore
obtain gab, in polynomial time of l.

Indeed, we can show (with the proof in our full paper [23]) that the probability
of every element of the coefficient matrix (eιν)t×t being chosen independently
and uniformly at random is at least (1− 1

p)t, and then according to Lemma5 we
know that the probability of the coefficient matrix being nonsingular is at least
(1 − 1

p)t · e− 2
p−1 .

Therefore, running adversary A for t times and solving the equation set
obtained, adversary B can compute the desired CDH value, that runs in time at
most tϕ plus the time to perform poly(l) group operations with a non-negligible
advantage (1 − 1

p)t · e− 2
p−1 · (Advdcdh

A,h,Fpt
)t. The theorem now follows.

We comment that if an adversary A can solve the d-th CDH problem over Fpt

with respect to a monic polynomial h
$←−Fp[X] of degree t and h ∈ It(p) then we

can construct an adversary B that solves all the d-CDH problems over Fpt for
0 ≤ d ≤ t−1 regarding any h′ ∈ It(p). To see this, for h, h′ ∈ It(p), we know that
there exists an easily computable isomorphism φh,h′ : Fp[x]/(h) → Fp[x]/(h′).
When adversary B learns the CDH value with respect to h, it can easily compute
all the d-th coordinates under any representation h′.

Theorem 4 proves a slightly weaker result than that of Theorem 1. In
Theorem 1, the reduction works for any h ∈ I2(p), but in Theorem 4, it works

for a random h
$←−Fp[X] of degree t and h ∈ It(p). (It could be the case that

there exists some h ∈ It(p) such that some d-th CDH problem might not be
equivalent to the CDH problem over Fpt , although we conjecture that these two
problems are equivalent with respect to any h ∈ It(p).) However, we are able
to prove that the 0-th CDH problem and the (t − 1)-th CDH problem are both
strictly equivalent to the CDH problem with respect to any h ∈ It(p), and we
have the following theorem:

Theorem 5. Let Fpt be a finite field of size l and t > 1. Suppose A is a
0-th (resp., (t − 1)-th) CDH adversary that runs in time at most ϕ and achieves
advantage Adv0cdh

A,h,Fpt
(resp., Adv(t−1)cdh

A,h,Fpt
) for any h ∈ It(p). Then there exists a

CDH adversary B, constructed from A in a blackbox manner, that runs in time at
most tϕ plus the time to perform poly(l) group operations and achieves advantage
Advcdh

B,Fpt
≥ e− 2

p−1 · (Adv0cdh
A,h,Fpt

)t (resp., Advcdh
B,Fpt

≥ e− 2
p−1 · (Adv(t−1)cdh

A,h,Fpt
)t).

The case of perfect oracles. Applying our approach to the case of perfect
oracles, our reduction leads to no security loss and a strict equivalence result.
This is in contrast to Verheul’s [22], where for many d’s, the algorithm can easily
have exponential running time in t.

4.2 Bit Security of the CDH Problem over Fpt

We now show the following result: assuming the hardness of the d-th CDH
problem over Fpt with t > 1, if d �= 0, we prove the unpredictability of every

Bit Security of the CDH Problems over Finite Fields 457

single bit of the degree-d coordinate of the secret CDH value. Together with
the equivalence result, this implies that for the conventional CDH problems
over Fpt for an l-bit prime p and an integer t > 1, (t − 1)l out of tl secret CDH
bits—including every individual bit except that of the degree 0 coordinate—are
hard-core.

We begin with the definition of d-th residues modulo p. Let p be a prime and
d be an integer. We say that an element α ∈ F

∗
p is a d-th residue modulo p, if

there exists an element x ∈ Fp such that xd ≡ α mod p. Let Fd
p denote the set of

the d-th residues modulo p. The following lemma provides a well-known result
on d-th residues modulo p:

Lemma 6. Let p be a prime and d ∈ Z+. The number of the d-th residues
modulo p is (p − 1)/(d, p − 1).

We present a lemma that gives a characterization of the isomorphisms between
two representations of the fields Fpt . The isomorphisms generalize that of finite
fields Fp2 in FGPS to the case of general finite fields Fpt for any t > 1. More
importantly, they simplify that of FGPS in the sense we identify a more restric-
tive class of isomorphisms. This simplicity turns out to be essential to establish-
ing the bit security for general finite fields.

Lemma 7. For any h(x) ∈ It(p), there exists a unique function Lh : F∗
p → It(p)

which takes λ to the polynomial ĥλ = Lh(λ) = h(λx)
λt such that λ defines an

isomorphism from Fp[x]/(h) to Fp[x]/(ĥλ) that sends

t∑
i=0

[α]ixi �→
t∑

i=0

λi[α]ixi.

Proof: For any λ ∈ F
∗
p, let ĥλ(x) = h(λx)

λt . It is easy to see that ĥλ(x) is a
monic irreducible polynomial over Fp, i.e., ĥλ(x) ∈ It(p). Hence, there is an
isomorphism from Fp[x]/(h) to Fp[x]/(ĥλ). In order to specify a homomorphism
ψ from Fp[x]/(h) to another field J of characteristic p, it is both necessary and
sufficient to choose ψ(x) = y ∈ J such that h(y) = 0 in J . The definition of ĥλ

implies that x sends to λx. The lemma now follows. �

Theorem 6. Under the d-th CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 4), for any PPT adversary O, if d �= 0, we have that for all h ∈ It(p) the
following quantity is negligible:

∣∣ Pr
[
O(h, λ, g, ga, gb) = Bk

([
φh,ĥλ

(gab)
]
d

)∣∣λ $←−F
∗
p; a, b

$←−{1, · · · , p2 − 1}
]
− βk

∣∣.

Proof: For an element α ∈ Fpt and a monic irreducible polynomial h ∈ It(p),

λ
$←−F

∗
p, the prediction oracle O gives noisy access to the codeword Bk(λd[α]d).

Note that when d �= 1 the above code is not multiplicative. Again, this would

458 M. Wang et al.

make it hard to prove concentration and recoverability. In order to apply the
techniques of [1], we would need noisy access to the multiplication code

Cα : Fp �→ {±1}, defined as Cα(λ) = Bk(λ[α]d) (extended by Cα(0) = −1).

We construct another oracle O′ that takes as input a base representation
h ∈ It(p), a Diffie-Hellman triple g, ga, gb ∈ Fpt , and λ

$←−F
∗
p, and returns

O(h, rλ, g, ga, gb) if λ is a d-th residue modulo p, where rd
λ ≡ λ(mod p), oth-

erwise tosses a βk-biased coin.
Suppose that there exists an oracle O such that

∣∣ Pr
λ,a,b

[
O(h, λ, g, ga, gb) = Bk

([
φh,ĥλ

(gab)
]
d

)]
− βk

∣∣ ≥ ε (2)

where ε is a non-negligible quantity. Following the technique in Boneh and
Shparlinski [5], we now show that

∣∣ Pr
λ,a,b

[
O′(h, λ, g, ga, gb) = Bk

(
λ
[
gab

]
d

)]
− βk

∣∣ ≥ ε/d.

Let Egab be the event that O′(h, λ, g, ga, gb) = Bk

(
λ
[
gab

]
d

)
. Note that if λ is

uniform in F
d
p\{0} then rλ is uniform in F

∗
p. Therefore, we have

Pr[Egab] =
1

(d, p − 1)
Pr[Egab |λ ∈ F

d
p] + (1 − 1

(d, p − 1)
) Pr[Egab |λ /∈ F

d
p] (Lemma 6)

≥ 1

(d, p − 1)
(βk + ε) + (1 − 1

(d, p − 1)
)βk (condition (2))

= βk +
ε

(d, p − 1)
≥ βk +

ε

d
.

Note that t > d and therefore the above quantity is non-negligible.

Accessibility. The oracle O′ allows us to have access to a corrupted codeword
C̃α of the above codeword defined as C̃α = O′(h, λ, g, ga, gb). Therefore, if the
oracle O has advantage ε then we have |Pr[Cα(λ) = C̃α(λ)]| ≥ βk + ε/d. Acces-
sibility of the code Cα follows.

Concentration. The proof is similar to that of Theorem2. For a threshold
τ > 0, the τ -heavy characters of Cα belong to the set

Γα,τ = {χβ : β = λ[α]d for λ ∈ Γτ},

where Γτ is a set containing the τ -heavy coefficients of the function Bk. For
each λ ∈ Γτ , there exists a unique integer pair (ξλ, ςλ) ∈ [0, 1/τ] × [0, 1/τ]. As
in Theorem 2, the proof for concentration of the code Cα(λ) is now similar to
those of [10,18].

Recoverability. First, by Lemma 1 we know that there exists a threshold τ
which is polynomial in the non-negligible quantity ε and at least one τ -heavy
Fourier character χ �= 0 for Cα and C̃α such that χ ∈ Heavyτ (Cα)∩Heavyτ (C̃α).

Bit Security of the CDH Problems over Finite Fields 459

Given a polynomial h(x) ∈ It(p), on input g, ga, gb ∈ Fpt , the following
algorithm that has access to O produces a polynomial size list of elements in Fpt

which contains gab with probability 1 − δ.
Let τ be the threshold determined by Lemma 1. We write α =

∑t−1
i=0[α]ixi

to denote gab ∈ Fpt . Again using the learning algorithm of AGS [1], we obtain
a polynomial size list Lα of all the τ -heavy Fourier characters for C̃α. If χβ is a
non-trivial τ -heavy character for Cα, we have [α]d = λ−1β. Given χβ ∈ Lα, we
define Lβ = {[α]d : [α]d = λ−1β for λ ∈ Γτ}.

Let L =
⋃

χβ∈Lα
Lβ , which is a set of polynomial size. Also we have α ∈ L

with probability 1 − δ. We can guess a result for [α]d and hence get [gab]d. The
theorem now follows.

Discussion. It is worth mentioning that Theorem6 proves what is slightly dif-
ferent in concept from those of FGPS and Theorem2. In FGPS and Theorem2,
it is shown that any bit prediction oracle must have negligible success probabil-
ity ranging over all representations, whereas Theorem 6 shows that the success
probability must be negligible ranging over a restricted class. However, in any
application, participants would agree upon some representation that they want
to use, and therefore our result does not limit its applicability and it is in fact
simpler.

Following from Theorems 4 and 6, we obtain the following result: almost all
individual bits of the CDH value of the traditional CDH problem over finite fields
Fpt for t > 1 are hard-core. We require that the underlying field representation h
be chosen uniformly at random (just as the generator g). Formally we have the
following theorem:

Theorem 7. Under the CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 3), for any PPT adversary O, if d �= 0, the following quantity is negligible:

∣∣ Pr
[
O(h, λ, g, ga, gb) = Bk

([
φh,ĥλ

(gab)
]
d

)∣∣h $←−Fp[x] and h ∈ It(p);λ $←−F
∗
p;

a, b
$←− {1, · · · , pt − 1}

]
− βk

∣∣.
Following from Theorems 5 and 6, we have the following theorem which holds
for an arbitrary field representation:

Theorem 8. Under the CDH assumption over Fpt for t > 1 (i.e., Assump-
tion 3), for any PPT adversary O and any h ∈ It(p); the following quantity is
negligible:

∣∣ Pr
[
O(h, λ, g, ga, gb) = Bk

([
φh,ĥλ

(gab)
]
t−1

)∣∣λ $←−F
∗
p; a, b

$←−{1, · · · , pt−1}
]
−βk

∣∣.

5 Conclusion

In this paper, we revisited the d-th CDH problem for any 0 ≤ d ≤ t − 1 over
finite fields Fpt for t > 1 [20,22]. In contrast to prior work, we considered the

460 M. Wang et al.

most general case of noisy oracles. We proved that all the d-th CDH problems
over a random representation of finite fields Fpt for t > 1 are as hard as the
regular CDH problem over the same fields. In particular, the 0-th CDH problem
and (t − 1)-th CDH problem given any field representation are as hard as the
CDH problem. This latter claim applies to the special case of the Partial-CDH
and the Dual-Partial CDH problems over Fp2 .

We advanced the list decoding approach, and for the first time, we applied
it to the case of a non-multiplicative code. We proved that the Partial-CDH
problem also admits the hard-core predicates for every individual bit of the other
coordinate of the secret CDH value over a random representation of the finite
field Fp2 . By combining all these, we obtained one of our main results: given an
oracle O that predicts any bit of the CDH value over a random representation
of the field Fp2 with non-negligible advantage, we can solve the regular CDH
problem over Fp2 with non-negligible probability.

We continued to prove that over finite fields Fpt for any t > 1, each d-th CDH
problem except d �= 0 admits a large class of hard-core predicates, including every
individual bit of d-th coordinate. Hence we proved that almost all bits of the
CDH value of the traditional CDH problem over finite fields Fpt for t > 1 are
hard-core.

Acknowledgments. Mingqiang Wang is supported by National 973 Grant
2013CB834205 and NSFC Grant 61272035. Haibin Zhang is supported by NSF CNS
1228828. We are greatly indebted to SAC15 and past PC members for their valu-
able comments and corrections. Many thanks to William E. Skeith for kindly verify-
ing the proofs and for providing insightful corrections, comments, and suggestions. We
thank Kai-Min Chung, Alexandre Duc, Matt Franklin, Dimitar Jetchev, Phil Rogaway,
Xiaoyun Wang, and Haiyang Xue for helpful comments and discussion.

References

1. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: FOCS, pp. 146–157. IEEE Computer Society (2003)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

3. Ben-Or, M.: Probabilistic algorithms in finite fields. In: FOCS 1981, vol. 11, pp.
394–398 (1981)

4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

5. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001)

6. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

7. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

Bit Security of the CDH Problems over Finite Fields 461

8. Duc, A., Jetchev, D.: Hardness of computing individual bits for one-way functions
on elliptic curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 832–849. Springer, Heidelberg (2012)

9. ElGamal, T.: A public-key cryptosystem, a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. IT–31(4), 469–472 (1985)

10. Fazio, N., Gennaro, R., Perera, I.M., Skeith III, W.E.: Hard-core predicates for
a Diffie-Hellman problem over finite fields. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 148–165. Springer, Heidelberg (2013)

11. Galbraith, S.D., Shani, B.: The multivariate hidden number problem. In: Lehmann,
A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 250–268. Springer, Heidelberg
(2015)

12. von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

13. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32. ACM Press (1989)

14. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)
15. H̊astad, J., Näslund, M.: The security of individual RSA bits. In: FOCS, pp. 510–

521 (1998)
16. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small

characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 355–380. Springer, Heidelberg (2014)

17. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)
18. Morillo, P., Ràfols, C.: The security of all bits using list decoding. In: Jarecki, S.,

Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 15–33. Springer, Heidelberg
(2009)

19. Näslund, M.: All bits in ax + b mod p are hard. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 114–128. Springer, Heidelberg (1996)

20. Shparlinski, I.E.: Security of polynomial transformations of the Diffie-Hellman key.
Finite Fields Appl. 10(1), 123–131 (2014)

21. Slinko, A.: A generalization of Komlós’s theorem on random matrices. N. Z. J.
Math. 30(1), 81–86 (2001)

22. Verheul, E.R.: Certificates of recoverability with scalable recovery agent security.
In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 258–275. Springer,
Heidelberg (2000)

23. Wang, M., Zhan, T., Zhang, H.: Bit security of the CDH problems over finite fields.
Full version, Cryptology ePrint Archive: Report 2014/685. http://eprint.iacr.org

http://eprint.iacr.org

Towards Optimal Bounds for Implicit
Factorization Problem

Yao Lu1,2, Liqiang Peng1, Rui Zhang1(B), Lei Hu1, and Dongdai Lin1

1 State Key Laboratory of Information Security (SKLOIS),
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
lywhhit@gmail.com, {pengliqiang,r-zhang,hulei,ddlin}@iie.ac.cn

2 The University of Tokyo, Tokyo, Japan

Abstract. We propose a new algorithm to solve the Implicit Factoriza-
tion Problem, which was introduced by May and Ritzenhofen at PKC’09.
In 2011, Sarkar and Maitra (IEEE TIT 57(6): 4002–4013, 2011) improved
May and Ritzenhofen’s results by making use of the technique for solv-
ing multivariate approximate common divisors problem. In this paper,
based on the observation that the desired root of the equations that
derived by Sarkar and Maitra contains large prime factors, which are
already determined by some known integers, we develop new techniques
to acquire better bounds. We show that our attack is the best among all
known attacks, and give experimental results to verify the correctness.
Additionally, for the first time, we can experimentally handle the implicit
factorization for the case of balanced RSA moduli.

Keywords: Lattices · Implicit factorization problem · Coppersmith’s
method · LLL algorithm

1 Introduction

The RSA cryptosystem is the most widely used public-key cryptosystem in prac-
tice, and its security is closely related to the difficulty of Integer Factorization
Problem (IFP): if IFP is solved then RSA is broken. It is conjectured that fac-
toring cannot be solved in polynomial-time without quantum computers.

In Eurocrypt’85, Rivest and Shamir [20] first studied the factoring with
known bits problem. They showed that N = pq (p, q is of the same bit size) can
be factored given 2

3 -fraction of the bits of p. In 1996, Coppersmith [2] improved
[20]’s bound to 1

2 . Note that for the above results, the unknown bits are within
one consecutive block. The case of n blocks was later considered in [7,15].

Motivated by the cold boot attack [4], in Crypto’09, Heninger and Shacham
[6] considered the case of known bits are uniformly spread over the factors p
and q, they presented a polynomial-time attack that works whenever a 0.59-
fraction of the bits of p and q is given. As a follow-up work, Henecka et al. [5]
focused on the attack scenario that allowed for error correction of secret factors,

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 462–476, 2016.
DOI: 10.1007/978-3-319-31301-6 26

Towards Optimal Bounds for Implicit Factorization Problem 463

which called Noisy Factoring Problem. Later, Kunihiro et al. [12] discussed secret
key recovery from noisy secret key sequences with both errors and erasures.
Recently, Kunihiro and Honda [11] discussed how to recover RSA secret keys
from noisy analog data.

1.1 Implicit Factorization Problem (IFP)

The above works require the knowledge of explicitly knowing bits of secret factor.
In PKC’09, May and Ritzenhofen [18] introduced a new factoring problem with
implicit information, called Implicit Factorization Problem (IFP). Consider that
N1 = p1q1, . . . , Nk = pkqk be n-bit RSA moduli, where q1, . . . , qk are αn(α ∈
(0, 1))-bit primes: Given the implicit information that p1, . . . , pk share certain
portions of bit pattern, under what condition is it possible to factorize N1, . . . , Nk

efficiently? This problem can be applied in the area of malicious generation
of RSA moduli, i.e. the construction of backdoored RSA moduli. Besides, it
also helps to understand the complexity of the underlying factorization problem
better.

Since then, there have been many cryptanalysis results for this problem
[3,14,18,19,21–23]. Sarkar and Maitra [22] developed a new approach, they used
the idea of [10], which is for the approximate common divisor problem (ACDP),
to solve the IFP, and managed to improve the previous bounds significantly.

We now give a brief review of their method. Suppose that primes p1, . . . , pk

share certain amount of most significant bits (MSBs). First, they notice that

gcd(N1, N2 + (p1 − p2)q2, . . . , Nk + (p1 − pk)qk) = p1

Then they try to solve the simultaneous modular univariate linear equations
⎧
⎪⎨
⎪⎩

N2 + u2 ≡ 0 mod p1
...

Nk + uk ≡ 0 mod p1

(1)

for some unknown divisor p1 of known modulus N1. Note that if the root
(u(0)

2 , . . . , u
(0)
k) = ((p1 − p2)q2, . . . , (p1 − pk)qk) is small enough, we can extract

them efficiently. In [22], Sarkar and Maitra proposed an algorithm to find the
small root of Eq. (1). Recently, Lu et al. [14] performed a more effective analysis
by making use of Cohn and Heninger’s algorithm [1].

1.2 Our Contributions

In this paper, we present a new algorithm to obtain better bounds for solving
the IFP. As far as we are aware, our attack is the best among all known attacks.

Technically, our algorithm is also to find a small root of Eq. (1). Concretely,
our improvement is based on the observation that for 2 ≤ i ≤ k, u

(0)
i contains a

large prime qi, which is already determined by Ni.

464 Y. Lu et al.

Table 1. Comparison of our generalized bounds against previous bounds

[18] [3] [22] [14] [19] This paper

βn-bit LSBs case (β > ·) k
k−1

α - F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs case (γ > ·) - k
k−1

α + 6
n

F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs and βn-bit LSBs
together case (γ + β > ·)

- - F (α, k) H(α, k) G(α, k) T (α, k)

δn-bit in the Middle case (δ > ·) - 2k
k−1

α + 7
n

- - - -

1 F (α, k) =
αk2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2

2 H(α, k) = 1 − (1 − α)
k

k−1

3 G(α, k) = k
k−1

(
α − 1 + (1 − α)

k+1
k + (k + 1)(1 − (1 − α)

1
k)(1 − α)

)

4 T (α, k) = k(1 − α)
(
1 − (1 − α)

1
k−1
)

5 The symbol “-” means that this corresponding case has not been considered.

Therefore, we separate ui into two unknown variables xi and yi i.e. ui = xiyi.
Consider the following equations

⎧
⎪⎨
⎪⎩

N2 + x2y2 ≡ 0 mod p1
...

Nk + xkyk ≡ 0 mod p1

with the root (x(0)
2 , . . . , x

(0)
k , y

(0)
2 , . . . , y

(0)
k) = (q2, . . . , qk, p1 − p2, . . . , p1 − pk).

Then we introduce k−1 new variables zi for the prime factor pi (2 ≤ i ≤ k), and
use the equation xizi = Ni to decrease the determinant of the desired lattice.
That is the key reason why we get better results than [22].

In Fig. 1, we give the comparison with previous bounds for the case k = 2.
In Table 1, we list the comparisons between our generalized bounds and the
previous bounds.

Recently in [19], Peng et al. proposed another method for the IFP. Instead of
applying Coppersmith’s technique directly to the ACDP, Peng et al. utilized the
lattice proposed by May and Ritzenhofen [18], and tried to find the coordinate
of the desired vector which is not included in the reduced basis, namely they
introduced a method to deal with the case when the number of shared bits is
not large enough to satisfy the bound in [18].

In this paper, we also investigate Peng et al.’s method [19]. Surprisingly, we
get the same result with a different method. In Sect. 5, we give the experimental
data for our two methods.

We organize the rest of the paper as follows. In Sect. 2, we review the neces-
sary background for our approaches. In Sect. 3, based on new observations, we
present our new analysis on the IFP. In Sect. 4, we revisit Peng et al.’s method
[19]. Finally, in Sect. 5, we give the experimental data for the comparison with
previous methods.

Towards Optimal Bounds for Implicit Factorization Problem 465

Fig. 1. Comparison with previous bounds on γ with respect to α: k = 2. MR Attack
denotes May and Ritzenhofen’s attack [18], SM Attack denotes Sarkar and Maitra’s
attack [22], PHXHX Attack denotes Peng et al.’s attack [19].

2 Preliminaries

2.1 Notations

Let N1 = p1q1, . . . , Nk = pkqk be n-bit RSA moduli, where q1, . . . , qk are αn(α ∈
(0, 1))-bit primes. Three cases are considered in this paper, we list them below:

– p1, . . . , pk share βn LSBs where β ∈ (0, 1);
– p1, . . . , pk share γn MSBs where γ ∈ (0, 1);
– p1, . . . , pk share γn MSBs and βn LSBs together where γ ∈ (0, 1) and β ∈

(0, 1);

For simplicity, here we consider αn, βn and γn as integers.

2.2 Lattice

Consider a set of linearly independent vectors u1, . . . , uw ∈ Z
n, with w � n. The

lattice L, spanned by {u1, . . . , uw}, is the set of all integer linear combinations of
the vectors u1, . . . , uw. The number w of vectors is the dimension of the lattice.
The set u1, . . . , uw is called a basis of L. In lattices with large dimension, finding
the shortest vector is a very hard problem, however, approximations of a shortest
vector can be obtained in polynomial-time by applying the well-known LLL basis
reduction algorithm [13].

Lemma 1 (LLL [13]). Let L be a lattice of dimension w. In polynomial-time,
the LLL algorithm outputs reduced basis vectors vi, 1 � i � w that satisfy

‖ v1 ‖�‖ v2 ‖� · · · �‖ vi ‖� 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

466 Y. Lu et al.

We also state a useful lemma from Howgrave-Graham [9]. Let g(x1, . . . , xk) =∑
i1,...,ik

ai1,...,ikxi1
1 · · · xik

k . We define the norm of g by the Euclidean norm of its
coefficient vector: ||g||2 =

∑
i1,...,ik

a2
i1,...,ik

.

Lemma 2 (Howgrave-Graham [9]). Let g(x1, . . . , xk) ∈ Z[x1, . . . , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, . . . , yk) = 0mod pm for some | y1 |� X1, . . . , | yk |� Xk and
2. ‖ g(x1X1, . . . , xkXk) ‖< pm

√
w

Then g(y1, . . . , yk) = 0 holds over the integers.

The approach we used in the rest of the paper relies on the following heuristic
assumption [7,17] for computing multivariate polynomials.

Assumption 1. The lattice-based construction in this work yields algebraically
independent polynomials, this common roots of these polynomials can be com-
puted using techniques like calculation of the resultants or finding a Gröbner
basis.

Gaussian Heuristic. For a random n-dimensional lattice L in R
n [8], the

length of the shortest vector λ1 is expected to be approximately
√

n

2πe
det(L)

1
n .

In our attack, the low-dimensional lattice we constructed is not a random
lattice, however, according to our practical experiments, the length of the first
vector of the lattice basis outputted from the L3 algorithm to that specific lat-
tice is indeed asymptotically close to the Gaussian heuristic, similarly as the
assumption says for random lattices. Moreover, the lengths of other vectors in
the basis are also asymptotically close to the Gaussian heuristic. Hence, we can
roughly estimate the sizes of the unknown coordinate of desired vector in the
reduced basis.

3 Our New Analysis for Implicit Factorization

As described in the previous section, we will use the fact the desired common
root of the target equations contains large prime factors qi (2 ≤ i ≤ k) which
are already determined by Ni to improve Sarkar-Maitra’s results.

3.1 Analysis for Two RSA Moduli: The MSBs Case

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different n-bit RSA moduli with
αn-bit q1, q2 where α ∈ (0, 1). Suppose that p1, p2 share γn MSBs where γ ∈
(0, 1). Then under Assumption 1, N1 and N2 can be factored in polynomial-
time if

γ > 2α(1 − α)

Towards Optimal Bounds for Implicit Factorization Problem 467

Proof. Let p̃2 = p1 − p2. We have N1 = p1q1, N2 = p2q2 = p1q2 − p̃2q2, and
gcd(N1, N2 + p̃2q2) = p1. Then we want to recover q2, p̃2 from N1, N2. We focus
on a bivariate polynomial f(x, y) = N2 + xy with the root (x(0), y(0)) = (q2, p̃2)
modulo p1. Let X = Nα, Y = N1−α−γ , Z = N1−α be the upper bounds of
q2, p̃2, p2. In the following we will use the fact that the small root q2 is already
determined by N2 to improve Sarkar-Maitra’s results.

First let us introduce a new variable z for p2. We multiply the polynomial
f(x, y) by a power zs for some s that has to be optimized. Additionally, we can
replace every occurence of the monomial xz by N2. Define two integers m and
t, let us look at the following collection of trivariate polynomials that all have
the root (x0, y0) modulo pt

1.

gk(x, y, z) = zsfkN
max{t−k,0}
1 for k = 0, . . . , m

For gk(x, y, z), we replace every occurrence of the monomial xz by N2 because
N2 = p2q2. Therefore, every monomial xkykzs(k ≥ s) with coefficient ak is
transformed into a monomial xk−syk with coefficient akNs

2 . And every monomial
xkykzs(k < s) with coefficient ak is transformed into a monomial ykzs−k with
coefficient akNk

2 .
To keep the lattice determinant as small as possible, we try to eliminate

the factor of N i
2 in the coefficient of diagonal entry. Since gcd(N1, N2) = 1,

we only need to multiply the corresponding polynomial with the inverse of N i
2

modulo N t
1.

Compare to Sarkar-Maitra’s lattice, the coefficient vectors gk(xX, yY, zZ) of
our lattice contain less powers of X, which decreases the determinant of the lat-
tice spanned by these vectors, however, on the other hand, the coefficient vectors
contain powers of Z, which in turn increases the determinant. Hence, there is
a trade-off and one has to optimize the parameter s subject to a minimization
of the lattice determinant. That is the key reason why we can get better result
than Sarkar-Maitra’s results.

We have to find two short vectors in lattice L. Suppose that these two vec-
tors are the coefficient vectors of two trivariate polynomial f1(xX, yY, zZ) and
f2(xX, yY, zZ). These two polynomials have the root (q2, p̃2, p2) over the inte-
gers. Then we can eliminate the variable z from these polynomials by setting
z = N2

x . Finally, we can extract the desired root (q2, p̃2) from the new two poly-
nomials if these polynomials are algebraically independent. Therefore, our attack
relies on Assumption 1.

We are able to confirm Assumption 1 by various experiments later. This
shows that our attack works very well in practice.

Now we give the details of the condition for which we can find two sufficiently
short vectors in the lattice L. The determinant of the lattice L is

det(L) = N
t(t+1)

2
1 X

(m−s)(m−s+1)
2 Y

m(m+1)
2 Z

s(s+1)
2

The dimension of the lattice is w = m + 1.

468 Y. Lu et al.

To get two polynomials sharing the root q2, p̃2, p2, we get the condition

2
w(w−1)

4w det(L)
1
w <

pt
1√
w

Substituting the values of the det(L) and neglecting low-order terms, we obtain
the new condition

t2

2
+ α

(m − s)2

2
+ (1 − α − γ)

m2

2
+ (1 − α)

s2

2
< (1 − α)tm

Let t = τm, s = σm. The optimized values of parameters τ and σ are given by

τ = 1 − α σ = α

Plugging in this values, we finally end up with the condition

γ > 2α(1 − α)

One can refer to Fig. 1 for the comparison with previous theoretical results.

3.2 Extension to k RSA Moduli

In this section, we give an analysis for k (k > 2) RSA moduli.

Theorem 2. Let N1 = p1q1, . . . , Nk = pkqk be k different n-bit RSA moduli with
αn-bit q1, . . . , qk where α ∈ (0, 1). Suppose that p1, . . . , pk share γn MSBs where
γ ∈ (0, 1). Then under Assumption 1, N1, . . . , Nk can be factored in polynomial-
time if

γ > k(1 − α)
(
1 − (1 − α)

1
k−1

)

Proof. Let p̃i = p1 − pi. We have N1 = p1q1 and Ni = piqi = p1qi − p̃iqi

(2 ≤ i ≤ k). We have gcd(N1, N2 + p̃2q2, . . . , Nk + p̃kqk) = p1. Then we want
to recover qi, p̃i (2 ≤ i ≤ k) from N1, . . . , Nk. We construct a system of k − 1
polynomials ⎧

⎪⎨
⎪⎩

f2(x2, y2) = N2 + x2y2
...

fk(xk, yk) = Nk + xkyk

with the root (x(0)
2 , y

(0)
2 , . . . , x

(0)
k , y

(0)
k) = (q2, p̃2, . . . , qk, p̃k) modulo p1. Using a

technique similar to that of Theorem 1, and introducing k − 1 new variables zi

for pi (2 ≤ i ≤ k), we define the following collection of trivariate polynomials.

gi2,...,ik (x2, . . . , xk, y2, . . . , yk, z2, . . . , zk) = (z2 · · · zk)sf i2
2 · · · f ik

k N
max{t−i2−···−ik,0}
1

with 0 ≤ i2 + · · · + ik ≤ m (Because of the symmetric nature of the unknown
variables x2, . . . , xk, i.e., all the x2, . . . , xk have the same size, we use the same
parameter s).

Towards Optimal Bounds for Implicit Factorization Problem 469

For gi2,...,ik , we replace every occurrence of the monomial xizi by Ni. We
can eliminate the factor of N j2

2 · · · N jk
k in the coefficient of diagonal entry. The

determinant of the lattice L is

det(L) = NsN
1

k∏
i=2

X
sXi
i Y

sYi
i Z

sZi
i

where

sN =
t∑

j=0

j

(
t − j + k − 2

k − 2

)
=

(
t + k − 1

k − 1

)
t

k

sX2 = · · · = sXk
=

m−s∑
j=0

j

(
m − s − j + k − 2

k − 2

)
=

(
m − s + k − 1

k − 1

)
m − s

k

sY2 = · · · = sYk
=

m∑
j=0

j

(
m − j + k − 2

k − 2

)
=

(
m + k − 1

k − 1

)
m

k

sZ2 = · · · = sZk
=

s∑
j=0

j

(
m − s + j + k − 2

k − 2

)

=
(

m + k − 1
k

)
ks − m

m
+

(
m − s − 1 + k − 1

k

)
k + m − s − 1

m − s − 1

Here Xi = Nα, Yi = N1−α−γ , Zi = N1−α are the upper bounds of qi, p̃i, pi. The
dimension of the lattice is

w = dim(L) =
m∑

j=0

(
j + k − 2

j

)
=

(
m + k − 1

m

)

To get 2k − 2 polynomials sharing the root q2, p̃2, p2, we get the condition

2
w(w−1)

4(w+4−2k) det(L)
1

w+4−2k <
pt
1√
w

Substituting the values of the det(L) and neglecting low-order terms, we obtain
the new condition

(
t + k − 1

k − 1

)
t

k
+ (k − 1)α

(
m − s + k − 1

k − 1

)
m − s

k

+ (k − 1)(1 − α − γ)
(

m + k − 1
k − 1

)
m

k
+ (k − 1)(1 − α)

(
m + k − 1

k

)
ks − m

m

+ (k − 1)(1 − α)
(

m − s − 1 + k − 1
k

)
k + m − s − 1

m − s − 1

< (1 − α)t
(

m + k − 1
m

)

470 Y. Lu et al.

Let t = τm, s = σm, the optimized values of parameters τ and σ were given by

τ = (1 − α)
1

k−1 σ = 1 − (1 − α)
1

k−1

Plugging in this values, we finally end up with the condition

γ > k(1 − α)
(
1 − (1 − α)

1
k−1

)

One can refer to Table 1 for the comparison with previous theoretical results.

3.3 Extension to the LSBs Case.

In the following, we show a similar result in the case of p1, . . . , pk share some
MSBs and LSBs together. This also takes care of the case when only LSBs are
shared.

Theorem 3. Let N1 = p1q1, . . . , Nk = pkqk be k different n-bit RSA moduli
with αn-bit qi (α ∈ (0, 1)). Suppose that p1, · · · , pk share γn MSBs (γ ∈ (0, 1))
and βn LSBs (β ∈ (0, 1)) together. Then under Assumption 1, N1, · · · , Nk can
be factored in polynomial-time if

γ + β > k(1 − α)
(
1 − (1 − α)

1
k−1

)

Proof. Suppose that p1, . . . , pk share γn MSBs and βn LSBs together. Then we
have the following equations: ⎧

⎪⎨
⎪⎩

p2 = p1 + 2βnp̃2
...

pk = p1 + 2βnp̃k

We can write as follows

Niq1 − N1qi = 2βnp̃iq1qi for 2 ≤ i ≤ k

Then we get

(2βn)−1Niq1 − p̃iq1qi ≡ 0 mod N1 for 2 ≤ i ≤ k

Let Ai ≡ (2βn)−1Nimod N1 for 2 ≤ i ≤ k. Thus, we have
⎧
⎪⎨
⎪⎩

A2 − q2p̃2 ≡ 0 mod p1
...

Ak − qkp̃k ≡ 0 mod p1

Then we can construct a system of k − 1 polynomials⎧
⎪⎨
⎪⎩

f2(x2, · · · , xk) = A2 + x2y2
...

fk(x2, · · · , xk) = Ak + xkyk

with the root (x(0)
2 , y

(0)
2 , . . . , x

(0)
k , y

(0)
k) = (q2, p̃2, . . . , qk, p̃k) modulo p1. The rest

of the proof follows s similar technique as in the proof of Theorem 2. We omit
the details here.

Towards Optimal Bounds for Implicit Factorization Problem 471

4 Revisiting Peng et al.’s Method [19]

In [19], Peng et al. gave a new idea for IFP. In this section, we revisit Peng
et al.’s method and modify the construction of lattice which is used to solve the
homogeneous linear modulo equation. Therefore, a further improved bound on
the shared LSBs and MSBs is obtained.

Recall the method proposed by May and Ritzenhofen in [18], the lower bound
on the number of shared LSBs has been determined, which can ensure the vector
(q1, · · · , qk) is shortest in the lattice, namely the desired factorization can be
obtained by lattice basis reduction algorithm.

Peng et al. took into consideration the lattice introduced in [18] and discussed
a method which can deal with the case when the number of shared LSBs is not
enough to ensure that the desired factorization can be solved by applying reduc-
tion algorithms to the lattice. More narrowly, since (q1, · · · , qk) is in the lattice,
it can be represented as a linear combination of reduced lattice basis. Hence the
problem of finding (q1, · · · , qk) is transformed into solving a homogeneous linear
equation with unknown moduli. Peng et al. utilized the result from Herrmann
and May [7] to solve the linear modulo equation and obtain a better result.

Firstly, we recall the case of primes shared LSBs. Assume that there are k
different n-bit RSA moduli N1 = p1q1, · · · , Nk = pkqk, where p1, · · · , pk share
γn LSBs and q1, · · · , qk are αn-bit primes. The moduli can be represented as

⎧
⎪⎨
⎪⎩

N1 = (p + 2γnp̃1)q1
...

Nk = (p + 2γnp̃k)qk

Furthermore, we can get following modular equations
⎧
⎪⎨
⎪⎩

N−1
1 N2q1 − q2 ≡ 0 mod 2γn

...
N−1

1 Nkq1 − qk ≡ 0 mod 2γn

(2)

In [18], May and Ritzenhofen introduced a k-dimensional lattice L1 which is
generated by the row vectors of following matrix

⎛
⎜⎜⎜⎜⎜⎝

1 N−1
1 N2 N−1

1 N3 · · · N−1
1 Nk

0 2γn 0 · · · 0
0 0 2γn · · · 0
...

...
...

. . .
...

0 0 0 · · · 2γn

⎞
⎟⎟⎟⎟⎟⎠

.

Since (2) holds, the vector (q1, · · · , qk) is the shortest vector in L1 with a good
probability when γ ≥ k

k−1α. Then by applying the LLL reduction algorithm to
the lattice, the vector (q1, · · · , qk) can be solved. Conversely, when γ < k

k−1α
the reduced basis (λ1, · · · , λk) doesn’t contain vector (q1, · · · , qk), nevertheless,

472 Y. Lu et al.

we can represent the vector (q1, · · · , qk) as a linear combination of reduced basis.
Namely, there exist integers x1, x2, · · · , xk such that (q1, · · · , qk) = x1λ1 + · · · +
xkλk. Moreover, the following system of modular equations can be obtained,

⎧
⎪⎨
⎪⎩

x1l11 + x2l21 + · · · + xklk1 = q1 ≡ 0 mod q1
...

x1l1k + x2l2k + · · · + xklkk = qk ≡ 0 mod qk

(3)

where λi = (li1, li2, · · · , lik), i = 1, 2, · · · , k.
Based on the experiments, the size of the reduced basis can be roughly esti-

mated as Gaussian heuristic. We estimate the length of λi and the size of lij as
det(L2)

1
k = 2

nt(k−1)
k , hence the solution of (3) is |xi| ≈ qi

klij
≈ 2αn− nt(k−1)

k −log2k ≤
2αn− nt(k−1)

k .
Then using the Chinese Remainder Theorem, from (3) we can get the fol-

lowing homogeneous modular equation

a1x1 + a2x2 + · · · + akxk ≡ 0 mod q1q2 · · · qk (4)

where ai is an integer satisfying ai ≡ lij mod Nj for 1 ≤ j ≤ k and it can be
calculated from the lij and Nj .

For this linear modular equation, Peng et al. directly utilized the method of
Herrmann and May [7] to solve it and obtain that when

γ ≥ k

k − 1
(α − 1 + (1 − α)

k+1
k + (k + 1)(1 − (1 − α)

1
k)(1 − α)

the desired solution can be solved.
In this paper, we notice that the linear modular equation is homogeneous

which is a variant of Herrmann and May’s equation, hence we utilize the following
theorem which is proposed by Lu et al. in [16] to modify the construction of
lattice used in [19].

Theorem 4. Let N be a sufficiently large composite integer (of unknown fac-
torization) with a divisor p (p ≥ Nβ). Furthermore, let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a homogenous linear polynomial in n(n ≥ 2) variables.
Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the equation
f(x1, . . . , xn) = 0 (mod p) with gcd(y1, . . . , yn) = 1, |y1| ≤ Nγ1 , . . . |yn| ≤
Nγn if

n∑
i=1

γi <
(
1 − (1 − β)

n
n−1 − n(1 − β)

(
1 − n−1

√
1 − β

))

The running time of the algorithm is polynomial in log N but exponential in n.

For this homogeneous linear Eq. (4) in k variables modulo q1q2 · · · qk ≈
(N1N2 · · · Nk)α, by Theorem 4 with the variables xi < (N1N2 · · · Nk)δi ≈
2kδin, i = 1, 2, · · · , k, we can solve the variables when

k∑
i=1

δi ≈ kδi ≤ 1 − (1 − α)
k

k−1 − k(1 − α)
(
1 − (1 − α)

1
k−1

)

Towards Optimal Bounds for Implicit Factorization Problem 473

where δ1 ≈ δ2 ≈ · · · ≈ δk.
Hence, when

α − γ(k − 1)
k

≤ 1 − (1 − α)
k

k−1 − k(1 − α)
(
1 − (1 − α)

1
k−1

)

Namely,

γ ≥ k

k − 1

(
α − 1 + (1 − α)

k
k−1 + k(1 − (1 − α)

1
k−1)(1 − α)

)

= k(1 − α)
(
1 − (1 − α)

1
k−1

)

the desired vector can be found out.
The above result can be easily extend to MSBs case using the technique

in [19]. Surprisingly we get the same result as Theorem 2 by modifying Peng
et al.’s technique.

5 Experimental Results

We implemented our analysis in Magma 2.20 computer algebra system on a
PC with Intel(R) Core(TM) Duo CPU(2.80 GHz, 2.16 GB RAM Windows 7).
Note that for the first time, we can experimentally handle the IFP for the case
of balanced RSA moduli. The column theo. denotes the asymptotic bound of
shared bits when the dimension is infinite and the column expt. denotes the best
experimental results for a fixed dimension of our constructed lattice. Since the
method of [22] can not deal with the case of balanced RSA moduli, we use ‘-’ to
fill the Table 2. Moreover, [19] showed that they can obtain an theoretical bound
when p and q are balanced, however, they failed to obtain the experimental
results, thus we also use ‘-’ to fill the Table 3. All of the running time of the
experiments are measured in seconds.

Table 2. Theoretical and Experimental data of the number of shared MSBs in [22]
and shared MSBs in Our Method in Sect. 3

k Bitsize of (pi, qi), i.e.,

((1−α)log2Ni, αlog2Ni)

No. of shared MSBs in pi [22] No. of shared MSBs in pi (Sect. 3)

Theo. Expt. Dim Time of L3 Theo. Expt. (m,t,s) Dim Time of L3

2 (874,150) 278 289 16 1.38 257 265 (45,38,6) 46 2822.152

2 (824,200) 361 372 16 1.51 322 330 (45,36,9) 46 2075.406

2 (774,250) 439 453 16 1.78 378 390 (45,34,11) 46 1655.873

2 (724,300) 513 527 16 2.14 425 435 (45,32,13) 46 1282.422

3 (774,250) 352 375 56 51.04 304 335 (13,11,1) 105 11626.084

3 (724,300) 417 441 56 70.55 346 375 (13,11,2) 105 10060.380

3 (674,350) 480 505 56 87.18 382 420 (13,11,2) 105 14614.033

3 (624,400) 540 569 56 117.14 411 435 (13,10,3) 105 5368.806

3 (512,512) - - - - 450 460 (13,9,4) 105 2012.803

474 Y. Lu et al.

We present some numerical values for comparisons between our method of
Sect. 3 and [22]’s method in Table 2. The running time of LLL algorithm depends
on the lattice dimension and bit-size of the entries in lattice, and the largest
coefficient of entries in lattice has a bit-size of at most t log(N1). Thus the running
time is decided by parameters m and t, that explains why the time is reduced as
p and q get more balanced. For the case k = 2, when the bitlength of q increases,
namely α increases, the optimal value of t decreases. Thus, the running time
of LLL algorithm is reduced when α increased which means p and q get more
balanced.

Table 3. Theoretical and Experimental data of the number of shared MSBs in [19]
and shared MSBs in Our Method in Sect. 4

k Bitsize of (pi, qi), i.e.,

((1−α)log2Ni, αlog2Ni)

No. of shared MSBs in pi [19] No. of shared MSBs in pi (Sect. 4)

Theo. Expt. dim Time of L3 theo. Expt. (m,t) Dim Time of L3

2 (874,150) 267 278 190 1880.10 257 265 (45,7) 46 410.095

2 (824,200) 340 357 190 1899.21 322 335 (45,9) 46 470.827

2 (774,250) 405 412 190 2814.84 378 390 (45,11) 46 918.269

2 (724,300) 461 470 190 2964.74 425 440 (45,13) 46 1175.046

3 (774,250) 311 343 220 6773.48 304 335 (13,2) 105 4539.301

3 (724,300) 356 395 220 7510.86 346 380 (13,2) 105 8685.777

3 (674,350) 395 442 220 8403.91 382 420 (13,2) 105 10133.233

3 (624,400) 428 483 220 9244.42 410 435 (13,3) 105 22733.589

3 (512,512) 476 - - - 450 490 (13,4) 105 49424.252

Note that in the practical experiments, we always found many integer equa-
tions which share desired roots over the integers when the numbers of shared
bits is greater than the listed results. It means that in the reduced basis, there
are several vectors that satisfy Howgrave-Graham’s bound. Moreover, the more
integer equations corresponding to the vectors we choose, the less time calcu-
lating Gröbner basis. For an instance, when k = 3, (m, t, s) = (13, 9, 4) and the
bitlengths of p and q are both 512-bits, we constructed a 105-dimensional lattice
and by applying the L3 algorithm to the lattice, we successfully collected 74
polynomial equations which share desired roots over the integers when q1, q2, q3
shared 460 MSBs. When we chose all of integer equations, the calculation of
Gröbner basis took 12.839 s.

Meanwhile our method of Sect. 4 is based on an improved method of [19],
we present some numerical values for comparison with these two methods in
Table 3. As it is shown, by using an improved method to solve the homogeneous
equations, we obtained an improved bound on the numbers of shared bits and
the experiments also showed this improvement. For a fixed dimension of lattice,
similarly since entries of our constructed lattice is decided by m and t, the
running time of LLL algorithm increases when t increases.

Note that the running time of the method of Sect. 3 is faster than the method
of Sect. 4 when p and q get more balanced, especially for balanced moduli. For
the unbalanced case, the method of Sect. 4 is faster.

Towards Optimal Bounds for Implicit Factorization Problem 475

Acknowledgments. We would like to thank the anonymous reviewers for helpful
comments. Y. Lu was supported by CREST, JST. Part of this work was also sup-
ported by Strategic Priority Research Program of the Chinese Academy of Sciences
(No. XDA06010703, No. XDA06010701 and No. XDA06010702), the National Key
Basic Research Project of China (No. 2011CB302400 and No. 2013CB834203), and
National Science Foundation of China (No. 61379139 and No. 61472417).

References

1. Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: ANTS X
(2012)

2. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

3. Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-
nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 70–87. Springer, Heidelberg (2010)

4. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

5. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010)

6. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

7. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

8. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryp-
tography. Springer, New York (2008)

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

10. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, p. 51. Springer, Heidelberg (2001)

11. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
261–278. Springer, Heidelberg (2014)

12. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 180–197. Springer, Heidelberg (2013)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

14. Lu, Y., Zhang, R., Lin, D.: Improved bounds for the implicit factorization problem.
Adv. Math. Comm. 7(3), 243–251 (2013)

15. Lu, Y., Zhang, R., Lin, D.: Factoring multi-power RSA modulus N = prq with
partial known bits. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp.
57–71. Springer, Heidelberg (2013)

476 Y. Lu et al.

16. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 189–213. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 9

17. A. May: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis
(2003)

18. May, A., Ritzenhofen, M.: Implicit factoring: on polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009)

19. Peng, L., Hu, L., Xu, J., Huang, Z., Xie, Y.: Further improvement of factor-
ing RSA moduli with implicit hint. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 165–177. Springer, Heidelberg (2014)

20. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In:
Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer,
Heidelberg (1986)

21. Sarkar, S., Maitra, S.: Further results on implicit factoring in polynomial time.
Adv. in Math. of Comm. 3(2), 205–217 (2009)

22. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Trans. Inf. Theo. 57(6), 4002–4013 (2011)

23. Sarkar, S., Maitra, S.: Some applications of lattice based root finding techniques.
Adv. in Math. of Comm. 4(4), 519–531 (2010)

http://dx.doi.org/10.1007/978-3-662-48797-6_9

Cryptanalysis of Authenticated
Encryption Schemes

Forgery Attacks on Round-Reduced
ICEPOLE-128

Christoph Dobraunig(B), Maria Eichlseder, and Florian Mendel

IAIK, Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. ICEPOLE is a family of authenticated encryptions schemes
submitted to the ongoing CAESAR competition and in addition pre-
sented at CHES 2014. To justify the use of ICEPOLE, or to point out
potential weaknesses, third-party cryptanalysis is needed. In this work,
we evaluate the resistance of ICEPOLE-128 against forgery attacks. By
using differential cryptanalysis, we are able to create forgeries from a
known ciphertext-tag pair with a probability of 2−60.3 for a round-
reduced version of ICEPOLE-128, where the last permutation is reduced
to 4 (out of 6) rounds. This is a noticeable advantage compared to simply
guessing the right tag, which works with a probability of 2−128. As far as
we know, this is the first published attack in a nonce-respecting setting
on round-reduced versions of ICEPOLE-128.

Keywords: CAESAR · ICEPOLE · Forgery · Differential cryptanalysis

1 Introduction

ICEPOLE is a family of authenticated encryption schemes, which has been pre-
sented at CHES 2014 [17] and submitted to CAESAR [16]. CAESAR [18] is an
open cryptographic competition aiming to find a suitable portfolio of authen-
ticated encryption algorithms for many use cases. For the first round, 57 can-
didates have been submitted. Due to the open nature of CAESAR, those can-
didates have different design goals ranging from high-speed software designs to
designs suitable for compact hardware implementations. This makes comparison
of the submitted ciphers difficult, which is nevertheless necessary to determine
the ciphers for the next rounds. However, all designs have one goal in common:
security. Thus, as much security analysis as possible is needed to sort out weak
CAESAR candidates and get insight in the security of the others.

The goal of authenticated encryption is to provide confidentiality and authen-
ticity. Our attacks focus solely on the authenticity in a forgery attack. The goal
is to manipulate known ciphertext-tag pairs in a way such that they are valid
with a certain probability. For ICEPOLE-128, the intended number of bits of
security with respect to authenticity is 128. Therefore we consider only attacks
with a success probability above the generic 2−128 applicable.

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 479–492, 2016.
DOI: 10.1007/978-3-319-31301-6 27

480 C. Dobraunig et al.

The method of choice for our attacks is differential cryptanalysis [7]. To
create forgeries, we need differential characteristics which hold with a high prob-
ability and fulfill certain constraints explained later. By using this technique,
we are able to attack versions of ICEPOLE-128 where the last permutation is
reduced to 4 out of 6 rounds. As far as we know, no forgery attacks have been
performed on round-reduced versions of ICEPOLE. In addition, we have ana-
lyzed the main building block of ICEPOLE, its permutation. We were able to
improve the results of the designers regarding high-probability characteristics
for the ICEPOLE permutation without any additional constrains. Our results
are summarized in Table 1. Note that we have verified the forgery for 3 rounds
practically by using the reference implementation of ICEPOLE-128 submitted
to CAESAR.

Table 1. Results for ICEPOLE.

Type Rounds Probability

ICEPOLE-128 Forgery 3/6 2−14.8

4/6 2−60.3

ICEPOLE permutation Differential characteristic 5 2−104.5

6 2−258.3

Related Work. In the submission document [16], the designers bounded
the minimum number of active S-boxes in a differential characteristic for the
ICEPOLE permutation. They are able to show that for 3 rounds, the minimum
number of active S-boxes is 9, and that there are no characteristics with 13 or
fewer active S-boxes for 4 rounds. In addition, Morawiecki et al. [16] heuristi-
cally searched for differential characteristics. For 5 rounds, their best published
differential characteristic has a probability of 2−186.2, and for 6 rounds 2−555.3.

Recently, Huang et al. [13] presented state-recovery attacks on ICEPOLE in
a nonce-misuse scenario. They show that in this scenario, the internal state of
ICEPOLE-128 and ICEPOLE-128a can be recovered with complexity 246, and
the internal state of ICEPOLE-256a with complexity 260.

Outline. The remainder of the paper is organized as follows. We describe the
design of ICEPOLE in Sect. 2. Afterwards, we give a high-level overview about
the techniques used to find suitable differential characteristics in Sect. 3, followed
by our attacks on round-reduced versions of ICEPOLE in Sect. 4. Finally, we
conclude in Sect. 5.

2 Description of ICEPOLE

In this section, we give a short description of ICEPOLE-128 as it is specified in
the CAESAR design document [16]. For more details about ICEPOLE-128 and

Forgery Attacks on Round-Reduced ICEPOLE-128 481

the other members of the family, we refer to the CAESAR design document [16].
In case of disagreement between the specifications of ICEPOLE-128 in the CHES
and CAESAR documents, we always stick to the version submitted to CAESAR
and the available reference implementations of this version.

2.1 Mode of Operation

ICEPOLE uses a duplex-like [5] mode of operation, which operates on an internal
state of 1280 bits. This state S is represented as 20 64-bit words S[0..3][0..4].
Bits on the same position of all 20 words are called slice. The encryption (as well
as the decryption) can be split into the three subsequent phases: initialization,
processing of data, and finalization (tag generation), and is shown in Fig. 1.

P12

σAD
0

P6

IV

IV

Initialization Processing Finalization

key‖nonce σSM

cSM

pad

P6

σAD
m

P6

σP
0

c0

pad

P6

pad pad

σP
n

cn

P6

pad

T

Fig. 1. Encryption of ICEPOLE-128.

Initialization. First, the state S is initialized with a constant value. Afterwards,
the 128-bit key and the 128-bit nonce are xored to the internal state. Then, the
12-round variant P12 of the ICEPOLE permutation is applied.

Processing of Data. For processing, the associated data and the plaintext are
split into 1024-bit blocks, with possibly smaller last blocks. Each of these blocks
is padded to 1026 bits. The padding rule is to append a frame bit, followed by
a single 1 and zeros until 1026 bits are reached.

After the initialization, the padded secret message number σSM is xored
to the internal state and cSM is extracted. Then, 6 rounds of the ICEPOLE
permutation P6 are applied. After the processing of the secret message number,
the associated data blocks σAD

i are padded and injected, separated by the 6-
round ICEPOLE permutation P6. The plaintext blocks σP

i are processed in a
similar way, except that ciphertext blocks ci are extracted. For easier comparison
with other sponge-based [3,4] primitives, we move the last permutation call P6

(after the last plaintext block) to the finalization.

482 C. Dobraunig et al.

Finalization. Since we moved the last permutation call of the processing to
the finalization, the finalization starts with calling P6. Afterwards, the 128-bit
tag T is extracted from the state:

T = S[0][0]‖S[1][0].

2.2 Permutation

Two variants of the ICEPOLE permutation are used: One with 6 rounds, P6, and
one with 12 rounds, P12. Each round R consists of five steps, R = κ◦ψ ◦π ◦ρ◦μ.

– μ: Mixing of every 20-bit slice through an MDS matrix over GF (25).
– ρ: Rotation within all 64-bit words.
– π: Reordering of 64-bit words (words are swapped).
– ψ: Parallel application of 256 identical 5-bit S-boxes.
– κ: Constant addition.

For a detailed description of κ, ψ, π, ρ, and μ, we refer to the CAESAR
design document [16].

3 Search for Differential Characteristics

As we will see later, the existence of differential characteristics holding with
a high probability is crucial for our attacks on round-reduced ICEPOLE-
128. Since ICEPOLE-128 is a bit-oriented construction, automatic search tools
are helpful for finding complex differential characteristics with a high prob-
ability. ICEPOLE-128 has a rather big internal state of 1280 bits involving
many operations per permutation round. Therefore, we have decided to use the
guess-and-determine techniques already used for several attacks on hash func-
tions [12,14,15] together with a greedy strategy, which has already been used to
find differential characteristics with a high probability for SipHash [10].

We first describe the used concepts for representing differences within the
used automatic search tool and propagating them in Sect. 3.1. Then, we give a
high-level overview of our search strategy in Sect. 3.2.

3.1 Generalized Conditions and Propagation

To represent differential characteristics within the search tool, we have chosen
generalized conditions [8]. These conditions are suitable for guess-and-determine-
based searches, since they have a very high level of granularity. For instance,
with a ‘?’, it can be represented that no restrictions are given at some point of a
search, or the value of a pair of bits can be completely determined, for instance
by ‘1’ denoting that both bits of the pair have to have the value 1. The complete
set of all 16 generalized conditions can be found in Table 2.

Forgery Attacks on Round-Reduced ICEPOLE-128 483

Table 2. Generalized conditions [8].

x, x′ 0, 0 1, 0 0, 1 1, 1

? � � � �
- � − − �
x − � � −
0 � − − −
u − � − −
n − − � −
1 − − − �
− − − −

x, x′ 0, 0 1, 0 0, 1 1, 1

3 � � − −
5 � − � −
7 � � � −
A − � − �
B � � − �
C − − � �
D � − � �
E − � � �

Apart from the representation, the propagation of differences (or in this case
of the generalized conditions) through the components of the ICEPOLE permu-
tation has to be modeled. Here, we make the distinction between the linear part
of one round, consisting of the application of μ, ρ, and π, and the nonlinear part
ψ, which is the application of 256 5-bit S-boxes. The propagation for each S-box
is done by exhaustively calculating all possible solutions for given input and
output differences (basically look-ups in the difference distribution table). The
propagation of the linear part of each round is modeled by techniques described
in [11].

3.2 Search Strategy

On a high level, our search strategy can be split into the following two phases:

1. Search for a valid characteristic with a low number of active S-boxes.
2. Optimize the probability of the characteristic.

The first phase primarily serves to narrow the search space for the second
phase. In this first phase, we search for truncated differentials with as few dif-
ferentially active S-boxes as possible. In this context, an S-box is called active
if there are differences on its inputs and outputs. The number of active S-boxes
sets an upper bound on the best possible probability of a characteristic, since
the maximum differential probability of the ICEPOLE S-box is 2−2.

In the second phase, we search for the actual characteristic. In fact, just using
the truncated differential and searching for the best assignment does not give us
the best overall result. As we will see later, we search for characteristics having
a special form, where a low number of active S-boxes does not necessarily give
the best characteristic. Thus, we only fix the truncated differential for one or
two rounds, leaving the other rounds completely undetermined, and search for
high-probability characteristics by using the greedy algorithm presented in [10].

In summary, the first phase narrows the search space and gives us a good
starting point for the second phase. Then, in the second phase, the actual char-
acteristic is searched.

484 C. Dobraunig et al.

4 The Attack

The first thing to do when analyzing a cryptographic primitive is to find a
promising point to attack. Thus, we explain the observations that have led to
the attack on the finalization of ICEPOLE-128 using differential cryptanalysis in
Sect. 4.1. After that, we discuss our first findings regarding forgeries in Sect. 4.2,
and explain the trick leading to an improvement of the attack in Sect. 4.3. Finally,
in Sect. 4.4, we show characteristics for 5 and 6 rounds of the ICEPOLE permu-
tation which are not suitable for a forgery, but have a better probability than
the best characteristics published by the designers [16].

4.1 Basic Attack Strategy

ICEPOLE uses a sponge-like mode of operation like several other CAESAR can-
didates including Ascon [9], Keyak [6], or NORX [1,2]. When comparing those
Sponge constructions with ICEPOLE, it is noticeable that the last permutation,
which separates the last plaintext injection from the extraction of the tag, has
much fewer rounds in the case of ICEPOLE compared to the others.

For more detail, we have a closer look at the number of permutation rounds
during the three different stages for the proposals of Ascon, ICEPOLE, Keyak,
and NORX, which have the same security level of 128 bits. The number of rounds
in each stage for these four primitives is given in Table 3. We can see that for
Ascon and NORX, the number of rounds for data processing is reduced com-
pared to finalization and initialization and for all three competitors of ICEPOLE,
the finalization is equally strong as the initialization. In the case of ICEPOLE,
the permutation used in the finalization has the same number of rounds as the
permutation during the processing of data, and thus just half of the rounds of
the permutation used during the initialization. So it is interesting to evaluate
if the designers of the competitors of ICEPOLE have been overly conservative
in the design of their respective finalization, or if their decision to invest more
rounds can be justified.

Table 3. Permutation rounds for some sponge-like CAESAR candidates.

Initialization Data processing Finalization

Ascon 12 6 12

ICEPOLE 12 6 6

Keyak 12 12 12

NORX 8 4 8

Forgery Attacks on Round-Reduced ICEPOLE-128 485

4.2 Creating Forgeries

In this section, we first describe the principles of our attack on a high level.
Afterwards, we discuss our preliminary results regarding suitable characteristics
when just considering the 1024 bits of the ciphertext blocks to inject differences.

Attack Strategy. For creating forgeries with the help of differential charac-
teristics, we have in principle two attack points in sponge-like constructions as
ICEPOLE-128. We can either attack the data processing, or we can perform
the attack on the finalization. In both cases, the key to a successful attack lies
in the search for a suitable differential characteristic which holds with a high
probability.

Figure 2 shows how a forgery during the processing of the data works. This
approach requires a differential characteristic with differences only in those parts
of the state that can be modified with message blocks, while the rest of the state
has to remain free of differences. In other words, we search for a characteristic
capable of producing collisions on the internal state. If we have found such a
characteristic with input difference Δ0 that holds with probability 2−x, we can
create a forgery which succeeds with probability 2−x as follows: Assume we know
a valid ciphertext-tag pair consisting of two ciphertext blocks (c0‖c1, T). Then,
the ciphertext-tag pair (c0 ⊕ Δ0‖c1, T) is valid with probability 2−x. Thus, a
valid forgery can be created with complexity 2x.

P6

σP
0 ⊕ Δ0

c0 ⊕ Δ0

pad

P6

T

P6

σP
1 ⊕ Δ1c1

pad

Fig. 2. Forgery during data processing.

The second option, attacking the finalization, is pictured in Fig. 3. In contrast
to the previous attack, the requirements on a suitable characteristic can be
relaxed. Here, we do not require a collision. It is sufficient that the difference Δ1

for the tag T is known. The actual difference in the rest of the state does not
matter in this attack. In other words, a forgery can be created from a known
ciphertext-tag (c0‖c1, T) by applying suitable differences to c1 and T to get
(c0‖c1 ⊕ Δ0, T ⊕ Δ1).

In case of ICEPOLE, the permutation during the processing of the data and
the finalization is equally strong. The requirements on suitable characteristics are
less restrictive when attacking the finalization. Thus, attacks on the finalizations

486 C. Dobraunig et al.

P6

σP
0c0

pad

P6

T ⊕ Δ1

P6

σP
1 ⊕ Δ0

c1 ⊕ Δ0

pad

Fig. 3. Forgery during finalization.

are easier to achieve. In addition, the fact that the linear layer is located before
the application of the S-boxes comes in handy. ICEPOLE has a state size of
1280 bits. For the generation of the tag, only 128 bits of the 1280 bits are
extracted. The other bits do not influence the tag. Since the S-boxes are located
at the end of the permutation, 128 of the 256 S-boxes of the last round have no
influence on the tag and therefore, do not contribute to the probability of creating
a forgery. Moreover, the other 128 S-boxes of the last round only contribute a
single bit, which also has a positive effect on the total probability.

Suitable Characteristics. As discussed before, we need characteristics with a
good probability, where the input differences lie in the part of the state that can
be controlled by a ciphertext block, and where as many of the active S-boxes as
possible lie in parts which do not contribute to the probability. However, before
we present our results, we describe the findings of the designers [16] and the
results by Huang et al. [13].

The designers of ICEPOLE already searched for differential characteristics
without any special restrictions. They have found characteristics for 3 rounds
with probability 2−18.4, 4 rounds with 2−52.8, 5 rounds with 2−186.2 and 6 rounds
with 2−555.5. Indeed, when considering that the last round of ICEPOLE only
contributes partially to the probability, these results look promising from the
perspective of an attacker. However, as already observed by Huang et al. [13],
these characteristics cannot be used for attacks on the cipher. They showed
that if only 1024 bits of a message block are considered suitable for introducing
differences, it is impossible to find a 3-round path with 9 active S-boxes in the
form 4-1-4. Moreover, they show that the minimum number of active S-boxes in
the first round is 2 in this case.

Our search for suitable characteristics supports their result. If we just con-
sider the 1024 bits of the message block suitable for differences, we can create
forgeries for 3 rounds with probability 2−25.3 and, for 4 rounds with a probability
close to 2−128. However, in the next section, we explain how we improved the
probability for the 4-round attack to 2−60.3 by exploiting the padding rule of the
last processed plaintext block.

Forgery Attacks on Round-Reduced ICEPOLE-128 487

4.3 Exploiting the Padding

ICEPOLE uses at most 1024-bit message blocks, which are padded to 1026 bits
by appending a frame bit, which is 0 for the last plaintext block, followed by a
single 1 and as many zeros until 1026 bits are reached. So using, for instance, a
1016-bit block and a 1024-bit block (where the last byte fulfills the padding rule
applied to the 1016-bit block) virtually flips a bit in an otherwise unaccessible
part of the state. By using this trick, we are able to use characteristics where
only one S-box is active in the first round.

With these improved differential characteristics, we are able to create forg-
eries for ICEPOLE-128 with the finalization reduced to 3 (out of 6) rounds with
probability 2−14.8, and for 4 rounds (out of 6) with probability 2−60.3. The char-
acteristics for the 3-round attack can be found in Table 4, and for the 4-round
attack in Table 5 of Appendix A.

The 3-round attack on ICEPOLE-128 has been verified using the reference
implementation ICEPOLE128v1 submitted to CAESAR with a modified number
of rounds for permutation P6. We fixed a random key at the beginning and
encrypted random 1024-bit messages (last byte of messages has to be equal to
the padding 0x2) with random nonces to get 1024-bit ciphertexts. The forgeries
are created by applying the difference shown in Table 4 to ciphertext and tag
and discarding the last byte of the ciphertext. Removing the last byte of the
ciphertext introduces a difference at bit 1026. Backed up by our experiments
(228 message-tag pairs), a forgery for round-reduced ICEPOLE-128, where the
finalization is reduced to 3 out of 6 rounds, can be created with probability 2−11.7.
For the 4-round attack, the probability is too low to be verified experimentally.
However, parts of the used characteristic which have a high probability have
been verified.

To introduce differences with the help of the padding, we can either extend
or truncate known ciphertexts. As already discussed before, creating forgeries
by truncating the last byte of the ciphertext only works if the last byte of the
message before encryption equals the padding. Extending 1016-bit ciphertexts
requires to guess 8 bits of the internal state correctly and hence decreases the
probability by 2−8. In the case of messages consisting of a fractional number of
bytes, 1022-bit ciphertexts can be extended, leading to a decrease of 2−2.

4.4 Characteristics for the Permutation

We also considered characteristics without any special restrictions. We have been
able to improve the results published in the design documents. We have found
a 5-round characteristic with an estimated probability of 2−104.5 and a 6-round
characteristic with an estimated complexity of 2−258.4. The characteristics are
given in Tables 6 and 7 of Appendix A. Both characteristics are a perceptible
improvement over the characteristics given in the design document [16], which
have a probability of 2−186.2 and 2−555.3, respectively.

488 C. Dobraunig et al.

5 Conclusion

In this work, we have analyzed the resistance of ICEPOLE-128 against forgery
attacks. Our attacks work for versions of ICEPOLE-128 where the permutation
used during the finalization is reduced to 4 (out of 6) rounds. This means that
ICEPOLE-128 has a security margin of 2 rounds, which is lower than the 3
rounds expected by the designers [16].

Acknowledgments. The work has been supported in part by the Austrian Sci-
ence Fund (project P26494-N15) and by the Austrian Research Promotion Agency
(FFG) and the Styrian Business Promotion Agency (SFG) under grant number 836628
(SeCoS).

References

1. Aumasson, J., Jovanovic, P., Neves, S.: NORX. Submission to the CAESAR com-
petition (2014). http://competitions.cr.yp.to/round1/norxv1.pdf

2. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 19–36.
Springer, Heidelberg (2014)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: ECRYPT
Hash Workshop 2007, May 2007

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak.
Submission to the CAESAR competition (2014). http://competitions.cr.yp.to/
round1/keyakv1.pdf

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

8. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR competition (2014). http://competitions.cr.yp.to/round1/asconv1.pdf

10. Dobraunig, C., Mendel, F., Schläffer, M.: Differential cryptanalysis of siphash. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 165–182. Springer,
Heidelberg (2014)

11. Eichlseder, M., Mendel, F., Nad, T., Rijmen, V., Schläffer, M.: Linear propagation
in efficient guess-and-determine attacks. In: Budaghyan, L., Tor Helleseth, M.G.P.
(eds.) International Workshop on Coding and Cryptography, pp. 193–202 (2013)

12. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015)

http://competitions.cr.yp.to/round1/norxv1.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://competitions.cr.yp.to/round1/asconv1.pdf

Forgery Attacks on Round-Reduced ICEPOLE-128 489

13. Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 243–263. Springer, Heidelberg
(2015)

14. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

15. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

16. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE. Submission to the CAESAR
competition (2014). http://competitions.cr.yp.to/round1/icepolev1.pdf

17. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE: high-speed, hardware-oriented
authenticated encryption. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 392–413. Springer, Heidelberg (2014)

18. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.
html

A Differential Characteristics

Table 4. 3-round characteristic suitable for forgery with probability 2−14.8.

S[0][0]0 --x-

S[0][1]0 --

S[0][2]0 --x-

S[0][3]0 --

S[0][4]0 --x-

S[1][0]0 --

S[1][1]0 --x-

S[1][2]0 --x-

S[1][3]0 --x-

S[1][4]0 --

S[2][0]0 --

S[2][1]0 --x-

S[2][2]0 --x-

S[2][3]0 --x-

S[2][4]0 --

S[3][0]0 --

S[3][1]0 --x-

S[3][2]0 --x-

S[3][3]0 --x-

S[3][4]0 --

S[0][0]1 --0-

S[0][1]1 --x-

S[0][2]1 --

S[0][3]1 --

S[0][4]1 --

S[1][0]1 --

S[1][1]1 --

S[1][2]1 --

S[1][3]1 --

S[1][4]1 --

S[2][0]1 --

S[2][1]1 --

S[2][2]1 --

S[2][3]1 --

S[2][4]1 --

S[3][0]1 --

S[3][1]1 --

S[3][2]1 --

S[3][3]1 --

S[3][4]1 --

S[0][0]2 --

S[0][1]2 -------1--

S[0][2]2 -------x--

S[0][3]2 --

S[0][4]2 --

S[1][0]2 --

S[1][1]2 --

S[1][2]2 --

S[1][3]2 --

S[1][4]2 --

S[2][0]2 ---x----

S[2][1]2 --

S[2][2]2 --

S[2][3]2 ------------------1---

S[2][4]2 ------------------x--1----

S[3][0]2 --x-------

S[3][1]2 --

S[3][2]2 --

S[3][3]2 --

S[3][4]2 --1-------

S[0][0]3 x---

S[0][1]3 ----E-----------------------?---------------------------7--7----

S[0][2]3 ----E-----------------------?--------?------------------?--?----

S[0][3]3 ?---?-----------------------x--------?------------------?--?----

S[0][4]3 ?---?--------------------------------x------------------?--?----

S[1][0]3 --

S[1][1]3 ---7------

S[1][2]3 --?----------7------

S[1][3]3 --?----------?------

S[1][4]3 --x----------?------

S[2][0]3 ------------?--?-----?-------------------------------------?-?--

S[2][1]3 ------------?--?-----?-------------------------------------?-?--

S[2][2]3 ------------?--?-----?-------------------------------------?-?--

S[2][3]3 ------------?--?-----?-------------------------------------?-?--

S[2][4]3 ------------?--?-----?-------------------------------------?-?--

S[3][0]3 ----------------------------?-?-------------------?---?------?--

S[3][1]3 ----------------------------?-?-------------------?---?------?--

S[3][2]3 ----------------------------?-?-------------------?---?------?--

S[3][3]3 ----------------------------?-?-------------------?---?------?--

S[3][4]3 ----------------------------?-?-------------------?---?------?--

http://competitions.cr.yp.to/round1/icepolev1.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html

490 C. Dobraunig et al.

Table 5. 4-round characteristic suitable for forgery with probability 2−60.3.

S[0][0]0 --x-

S[0][1]0 --

S[0][2]0 --x-

S[0][3]0 --

S[0][4]0 --x-

S[1][0]0 --

S[1][1]0 --x-

S[1][2]0 --x-

S[1][3]0 --x-

S[1][4]0 --

S[2][0]0 --

S[2][1]0 --x-

S[2][2]0 --x-

S[2][3]0 --x-

S[2][4]0 --

S[3][0]0 --

S[3][1]0 --x-

S[3][2]0 --x-

S[3][3]0 --x-

S[3][4]0 --

S[0][0]1 --0-

S[0][1]1 --x-

S[0][2]1 --

S[0][3]1 --

S[0][4]1 --

S[1][0]1 --

S[1][1]1 --

S[1][2]1 --

S[1][3]1 --

S[1][4]1 --

S[2][0]1 --

S[2][1]1 --

S[2][2]1 --

S[2][3]1 --

S[2][4]1 --

S[3][0]1 --

S[3][1]1 --

S[3][2]1 --

S[3][3]1 --

S[3][4]1 --

S[0][0]2 --

S[0][1]2 -------1--

S[0][2]2 -------x--

S[0][3]2 --

S[0][4]2 --

S[1][0]2 --

S[1][1]2 --

S[1][2]2 --

S[1][3]2 --

S[1][4]2 --

S[2][0]2 ---x----

S[2][1]2 --

S[2][2]2 --

S[2][3]2 ------------------1---

S[2][4]2 ------------------x--1----

S[3][0]2 --x-------

S[3][1]2 --

S[3][2]2 --

S[3][3]2 --

S[3][4]2 --1-------

S[0][0]3 x---0--x----

S[0][1]3 ----1-----------------------x---------------------------x--x----

S[0][2]3 ----x-----------------------x-----------------------------------

S[0][3]3 ----------------------------x--------1--------------------------

S[0][4]3 1------------------------------------x---------------------x----

S[1][0]3 ---0------

S[1][1]3 ---x------

S[1][2]3 ---0------

S[1][3]3 --1----------1------

S[1][4]3 --x-----------------

S[2][0]3 ---x----

S[2][1]3 ---------------------1-------------------------------------x----

S[2][2]3 ---------------------x-------------------------------------x-1--

S[2][3]3 ------------1--1---x--

S[2][4]3 ------------x--x--

S[3][0]3 --x----------1--

S[3][1]3 ------------------------------1------------------------------x--

S[3][2]3 ------------------------------x---------------------------------

S[3][3]3 ----------------------------1-------------------------1---------

S[3][4]3 ----------------------------x---------------------1---x---------

S[0][0]4 ----------------------------x-------xx--------------------x--x--

S[0][1]4 -E-?--E-------?-?--------?-----------?----?------?7-------------

S[0][2]4 -E-?--E-------?-?--------?-----?--?--?----?----?-??-------------

S[0][3]4 -?-x--?-------x-x--------x--?--?--?-??----x----?-??-------?--?--

S[0][4]4 -?----?---------------------?--x--x-??---------x-x?-------?--?--

S[1][0]4 ---------------------------------------x------x-----------------

S[1][1]4 ---------------------?---?-E?------7--------7--------E---------E

S[1][2]4 ---?-?---------------?---?-E?-----??-------??------?-E?--------E

S[1][3]4 ---?-?---------------x---x-?x-----??---?---??-?----?-??--------?

S[1][4]4 ---x-x---------------------?------x?---?---x?-?----x-?x--------?

S[2][0]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][1]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][2]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][3]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[2][4]4 ?-?---??----??-?--?------?-?------?---?-??------?----?--?-----??

S[3][0]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][1]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][2]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][3]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

S[3][4]4 ---?-?--------------?-?-?--?-?-?----?-------??--?-??------?---?-

Forgery Attacks on Round-Reduced ICEPOLE-128 491

Table 6. 5-round characteristic with probability 2−104.5.

S[0][0]0 x------x---xx---------x--x--------------------x----------------x

S[0][1]0 x---x-x----xx-----x--xx------------------x-------------------x--

S[0][2]0 ----x-----x-------x------xx--------------x----x--------x-------x

S[0][3]0 x---x--x--x-x-----x---x--xx-------------------x--------x-------x

S[0][4]0 x------x--x-x--------xx--xx-------------------x--------x-------x

S[1][0]0 x------x---x-------------xx-------------------------------------

S[1][1]0 x------x----x---------x-----------------------x----------------x

S[1][2]0 x---x--x---xx-----x--x---xx------------------x------------------

S[1][3]0 -------x--xxx--------xx---x----x--------------x--------x-----x-x

S[1][4]0 ------xx---xx-----x--x---x---------------x---xx--------x-----x-x

S[2][0]0 ------xx----x--------x---------------------------------x-----x--

S[2][1]0 x------x---xx---------x--x---------------x---x------------------

S[2][2]0 ----x-xx----x-----x---x------------------x-------------x-----x--

S[2][3]0 x---x--x--x-----------x--xx----x---------x---x---------x--------

S[2][4]0 ------xx--x-----------x--x-----x--------------x--------------x-x

S[3][0]0 ------xx--xx----------x-----------------------x--------------x-x

S[3][1]0 x------x----x---------x------------------x---x------------------

S[3][2]0 x---x-xx--x-------x--xx----------------------xx----------------x

S[3][3]0 x------x--xxx-----x--x----x--------------x---x---------x--------

S[3][4]0 x---x--x---x---------x---xx----x---------x---xx----------------x

S[0][0]1 1-------------------x---------0---------------------------------

S[0][1]1 x--x----------------x---------x---------------------------------

S[0][2]1 x--x----------------x---------x---------------------------------

S[0][3]1 x--x----------------0---------x---------------------------------

S[0][4]1 1-------------------x---------1---------------------------------

S[1][0]1 --------------------x---------1---------------------------------

S[1][1]1 ---1----------------x---------0---------------------------------

S[1][2]1 x--x----------------0---------x---------------------------------

S[1][3]1 0-------------------x---------x---------------------------------

S[1][4]1 x-------------------x---------0---------------------------------

S[2][0]1 ---1----------------x---

S[2][1]1 1--0----------------x---

S[2][2]1 x--x----------------1---------x---------------------------------

S[2][3]1 ---x----------------x---------0---------------------------------

S[2][4]1 ---0----------------x---------x---------------------------------

S[3][0]1 1-------------------x---

S[3][1]1 0-------------------x---------1---------------------------------

S[3][2]1 x--x--------------------------x---------------------------------

S[3][3]1 x--0----------------x---

S[3][4]1 0--x----------------x---

S[0][0]2 --0---

S[0][1]2 --x---

S[0][2]2 --x---

S[0][3]2 --x---

S[0][4]2 --0---

S[1][0]2 --

S[1][1]2 --1---

S[1][2]2 --x---

S[1][3]2 --

S[1][4]2 --

S[2][0]2 --

S[2][1]2 --

S[2][2]2 --x---

S[2][3]2 --x---

S[2][4]2 --

S[3][0]2 --

S[3][1]2 --

S[3][2]2 --x---

S[3][3]2 --0---

S[3][4]2 --x---

S[0][0]3 --

S[0][1]3 --

S[0][2]3 --

S[0][3]3 --

S[0][4]3 --

S[1][0]3 --

S[1][1]3 -1--

S[1][2]3 -x--

S[1][3]3 --

S[1][4]3 --

S[2][0]3 --

S[2][1]3 --

S[2][2]3 --

S[2][3]3 --

S[2][4]3 --

S[3][0]3 --

S[3][1]3 --

S[3][2]3 --

S[3][3]3 --

S[3][4]3 --

S[0][0]4 --

S[0][1]4 ----------1---

S[0][2]4 ----------x---

S[0][3]4 --

S[0][4]4 --

S[1][0]4 --x-------------

S[1][1]4 --

S[1][2]4 --

S[1][3]4 --

S[1][4]4 --1-------------

S[2][0]4 --x-

S[2][1]4 --

S[2][2]4 --

S[2][3]4 --

S[2][4]4 --1-

S[3][0]4 ---1--------

S[3][1]4 ---x--------

S[3][2]4 --

S[3][3]4 --

S[3][4]4 --

S[0][0]5 --1-----------0-

S[0][1]5 1------1--x--------1--x-

S[0][2]5 x------x-----------------------1---------------------------x----

S[0][3]5 -------------------------------x--------------------------------

S[0][4]5 --

S[1][0]5 ---0----------1---

S[1][1]5 ---1----------x---

S[1][2]5 -------------------1--

S[1][3]5 -------------------x-----------------------------0--------------

S[1][4]5 ---x--------------

S[2][0]5 --

S[2][1]5 --

S[2][2]5 1--1------

S[2][3]5 x-----------------1--------------------------------------x------

S[2][4]5 ------------------x---

S[3][0]5 1---x1------------------

S[3][1]5 x--------------------------------1-----------x------------------

S[3][2]5 ---------------------------------x------------------------1-----

S[3][3]5 --x-----

S[3][4]5 --1-------------------

492 C. Dobraunig et al.

Table 7. 6-round characteristic with probability 2−258.3.

S[0][0]0 x------x--xxx---------x--x--------------------x----------------x

S[0][1]0 x---x-x----xx-----x--xx------------------x-------------------x--

S[0][2]0 ----x-------------x------xx--------------x----x--------x-------x

S[0][3]0 x---x--x----x-----x---x--xx-------------------x--------x-------x

S[0][4]0 x------x----x--------xx--xx-------------------x--------x-------x

S[1][0]0 x------x---x-------------xx-------------------------------------

S[1][1]0 x------x----x---------x-----------------------x----------------x

S[1][2]0 x---x--x---xx-----x--x---xx------------------x------------------

S[1][3]0 -------x--xxx--------xx---x----x--------------x--------x-----x-x

S[1][4]0 ------xx--xxx-----x--x---x---------------x---xx--------x-----x-x

S[2][0]0 ------xx--x-x--------x---------------------------------x-----x--

S[2][1]0 x------x---xx---------x--x---------------x---x------------------

S[2][2]0 ----x-xx--x-x-----x---x------------------x-------------x-----x--

S[2][3]0 x---x--x--x-----------x--xx----x---------x---x---------x--------

S[2][4]0 ------xx--------------x--x-----x--------------x--------------x-x

S[3][0]0 ------xx--xx----------x-----------------------x--------------x-x

S[3][1]0 x------x--x-x---------x------------------x---x------------------

S[3][2]0 x---x-xx--x-------x--xx----------------------xx----------------x

S[3][3]0 x------x---xx-----x--x----x--------------x---x---------x--------

S[3][4]0 x---x--x--xx---------x---xx----x---------x---xx----------------x

S[0][0]1 1-------------------x---------0---------------------------------

S[0][1]1 x--x----------------x---------x---------------------------------

S[0][2]1 x--x----------------x---------x---------------------------------

S[0][3]1 x--x----------------0---------x---------------------------------

S[0][4]1 1-------------------x---------1---------------------------------

S[1][0]1 --------------------x---------1---------------------------------

S[1][1]1 ---1----------------x---------0---------------------------------

S[1][2]1 x--x----------------0---------x---------------------------------

S[1][3]1 0-------------------x---------x---------------------------------

S[1][4]1 x-------------------x---------0---------------------------------

S[2][0]1 ---1----------------x---

S[2][1]1 1--0----------------x---

S[2][2]1 x--x----------------1---------x---------------------------------

S[2][3]1 ---x----------------x---------0---------------------------------

S[2][4]1 ---0----------------x---------x---------------------------------

S[3][0]1 1-------------------x---

S[3][1]1 0-------------------x---------1---------------------------------

S[3][2]1 x--x--------------------------x---------------------------------

S[3][3]1 x--0----------------x---

S[3][4]1 0--x----------------x---

S[0][0]2 --0---

S[0][1]2 --x---

S[0][2]2 --x---

S[0][3]2 --x---

S[0][4]2 --0---

S[1][0]2 --

S[1][1]2 --1---

S[1][2]2 --x---

S[1][3]2 --

S[1][4]2 --

S[2][0]2 --

S[2][1]2 --

S[2][2]2 --x---

S[2][3]2 --x---

S[2][4]2 --

S[3][0]2 --

S[3][1]2 --

S[3][2]2 --x---

S[3][3]2 --0---

S[3][4]2 --x---

S[0][0]3 --

S[0][1]3 --

S[0][2]3 --

S[0][3]3 --

S[0][4]3 --

S[1][0]3 --

S[1][1]3 -1--

S[1][2]3 -x--

S[1][3]3 --

S[1][4]3 --

S[2][0]3 --

S[2][1]3 --

S[2][2]3 --

S[2][3]3 --

S[2][4]3 --

S[3][0]3 --

S[3][1]3 --

S[3][2]3 --

S[3][3]3 --

S[3][4]3 --

S[0][0]4 --

S[0][1]4 ----------1---

S[0][2]4 ----------x---

S[0][3]4 --

S[0][4]4 --

S[1][0]4 --x-------------

S[1][1]4 --

S[1][2]4 --

S[1][3]4 --

S[1][4]4 --1-------------

S[2][0]4 --x-

S[2][1]4 --

S[2][2]4 --

S[2][3]4 --

S[2][4]4 --1-

S[3][0]4 ---1--------

S[3][1]4 ---x--------

S[3][2]4 --

S[3][3]4 --

S[3][4]4 --

S[0][0]5 x---1-----------0-

S[0][1]5 x------1--x--------1--x-

S[0][2]5 x------x-----------------------1---------------------------x----

S[0][3]5 -------------------------------x--------------------------------

S[0][4]5 --

S[1][0]5 ---0----------1---

S[1][1]5 ---1----------x---

S[1][2]5 -------------------1--

S[1][3]5 -------------------x-----------------------------0--------------

S[1][4]5 ---x--------------

S[2][0]5 ------------------x---

S[2][1]5 x-----------------x---

S[2][2]5 0-----------------x--------------------------------------1------

S[2][3]5 x-----------------0--------------------------------------x------

S[2][4]5 ------------------0---

S[3][0]5 1---x1------------x-----

S[3][1]5 x--------------------------------1-----------x------------1-----

S[3][2]5 ---------------------------------x------------------------x-----

S[3][3]5 --1-----

S[3][4]5 --1-------------x-----

S[0][0]6 -------------x----1------------x--------x---1-------------0-----

S[0][1]6 -------1----------x--------1----------------x---------1---x1----

S[0][2]6 ------1x--------11---1-----x1----------1--------------x----x----

S[0][3]6 ------x------x--xx---x------x---------1x----------1-1-----------

S[0][4]6 -------------0-----------------1------x-1---------x-x-----------

S[1][0]6 ----------------0-------------------------xx---1-x-------1------

S[1][1]6 ----------------x1-----------------------------x---------1------

S[1][2]6 ---------1-------x------1---1-----------------x-----------------

S[1][3]6 --------1x--------------x---x----11-----------0----------x1-----

S[1][4]6 --------x-------x----------------xx-------11--x--1-------xx-----

S[2][0]6 ----------1----x------------1-x------------------------x---x-1--

S[2][1]6 ----------x-----------1-----x------------------x-------------0--

S[2][2]6 --------------------x-x------------------------x---1---------x--

S[2][3]6 1-----1-------1-1-1-0------------------------------x---------1--

S[2][4]6 x-----x-------x1x-x-x---------1----------------0-------1---1-1--

S[3][0]6 ------------x---0----------x--0----1--x-----x--111----1-x----1--

S[3][1]6 ----------------1-1-----------1----x------1----xxx----x------x--

S[3][2]6 -11-----1---------x-----------------------x---------------------

S[3][3]6 -xx-----x-------0-------------0-1---1---------------------------

S[3][4]6 ------------1---x----------1--x-x---x-1-----1-----------1-------

Analysis of the CAESAR Candidate Silver

Jérémy Jean1(B), Yu Sasaki1,2, and Lei Wang1,3

1 Nanyang Technological University, Singapore, Singapore
JJean@ntu.edu.sg

2 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

3 Shanghai Jiao Tong University, Shanghai, China
wanglei@cs.sjtu.edu.cn

Abstract. In this paper, we present the first third-party cryptanalysis
against the authenticated encryption scheme Silver. In high-level, Sil-
ver builds a tweakable block cipher by tweaking AES-128 with a dedi-
cated method and performs a similar computation as OCB3 to achieve
128-bit security for both of integrity and confidentiality in nonce-
respecting model. Besides, by modifying the tag generation of OCB3,
some robustness against nonce-repeating adversaries is claimed. We first
present a forgery attack against 8 (out of 10) rounds with 2111 blocks of
queries in the nonce-respecting model. The attack exploits a weakness
of the dedicated AES tweaking method of Silver. Then, we present sev-
eral attacks in the nonce-repeating model. Those include (1) a forgery
against full Silver with 249.46 blocks of queries which matches a conser-
vative security claim by the designers, (2) a plaintext recovery against
full Silver with a single query and (3) a key recovery against 8 rounds
with 2111 blocks of queries. In particular, the plaintext recovery breaks
the security claim by the designers. Considering that the current best
key recovery for plain AES-128 is up to seven rounds, Silver lowers the
security margin of AES due to its tweaking method. The attacks have
been partially implemented and experimentally verified.

Keywords: Silver · CAESAR · Authenticated encryption · Forgery ·
Plaintext recovery · Key recovery

1 Introduction

An authenticated encryption is a symmetric-key cryptographic scheme that pro-
vides both of integrity and confidentiality at one time. Currently the CAESAR
competition [1] is being conducted to determine a portfolio of authenticated
encryptions, and research development for authenticated encryption deserves
careful attention.

Security and efficiency are obviously important factors of authenticated
encryption designs. Thanks to the AES-NI, which is a set of instructions in Intel’s
CPU, basing the scheme on block cipher AES [3] is a promising way of designing
authenticated encryptions. On the other hand, the block size of AES (128 bits)
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 493–509, 2016.
DOI: 10.1007/978-3-319-31301-6 28

494 J. Jean et al.

is often too small as a next-generation cryptographic scheme because security
bound in many cases can only be proven up to a half of the block size. As a conse-
quence, designing authenticated encryption schemes with large enough security
while maintaining the efficiency advantages of AES-NI is a challenging topic.

One possible direction is designing some structure on top of AES to construct a
tweakable block cipher [12]. The OCB mode designed by Rogaway [15] shows that
a tweakable block cipher with n-bit block size enables to design an authenticated
encryption with n-bit security. Several CAESAR candidates were designed in this
line [5–7,13], including our target Silver [13].

As mentioned above, Silver [13] designed by Penazzi and Montes proposes a
dedicated way of tweaking AES-128 to provide 128-bit security for both integrity
and confidentiality in the nonce-respecting model. The way of tweaking AES-128
is a little bit complicated and thus a more careful security analysis is necessary.
So far, no third-party analysis has been provided.

Silver provides some robustness against nonce repetition. The following argu-
ment is claimed for integrity and confidentiality against nonce-repeating adver-
saries: “It is safe to assume that a forgery cannot be made with probability greater
than, say, 2−50 for tags of length 128”, and “any attack against Silver should
be readily converted into an attack on AES-ECB. Thus, although there is loss of
indistinguishability, the loss of confidentiality is not catastrophic, and it sim-
ply reduces to the loss one would be prepared to accept when using ECB.” Thus,
cryptanalysis in the nonce-repeating model is also important to examine the
designers’ claims.

Apparently a unique design feature of Silver is the way of tweaking AES-128.
In each block, the tweak value only impacts to subkeys. Namely, when all the
eleven subkeys are specified, computation between plaintext and ciphertext is
exactly the same as plain AES. Subkeys in each block are generated with a key
K, a nonce N and a tweak tw that depends on the block position. The algo-
rithm is briefly explained as follows. First, α ← AESK(N) is computed and then
(k0, . . . , k10) ← AESKS(K) and (α0, . . . , α10) ← AESKS(α) are computed, where
AESKS is the key schedule of AES-128. Additionally, an intermediate 128-bit
value γ is computed from α. Intuitively, subkeys for the i-th message or asso-
ciated data block are generated as follows (a complete specification appears in
Sect. 2).

{
skj ← kj ⊕ αj for j = 0, 2, 3, 4, 6, 7, 8, 10,
skj ← kj ⊕ αj ⊕ (α + i · γ) for j = 1, 5, 9,

(1)

where ‘+’ is the modular addition operated in 64 bits each. The multiplication
by block index i introduces different impact among different block positions. The
value a+ i ·γ is injected every four rounds to exploit the good diffusion property
of 4-round AES.

Another unique design feature of Silver is the tag generation. Intuitively, the
tag is the encryption of ΣA ⊕ ΣP ⊕ ΣC . Here, ΣA is the result of processing
associate data which is similar to OCB3 [10] and ΣP is the message checksum
which is the same as OCB3. Then, ΣC is computed as

⊕
i(Ci + α + i · γ) with

Analysis of the CAESAR Candidate Silver 495

Ci as the i-th ciphertext block. This additional checksum makes the essential
difference from OCB3, and thus analyzing its security impact is important.

Our Contributions. We first present reduced-round analysis in the nonce-
respecting model. We show a forgery against eight rounds with 2111 blocks of
queries. Then, we explain several attacks in the nonce-repeating model. The first
result is a forgery against full Silver with a complexity of 249.46 blocks of queries.
The second result is a plaintext recovery, i.e. breaking confidentiality of full Silver
with a single query. The last result is a key recovery against eight rounds, which
makes use of the above 8-round forgery as a tool and the bottleneck of the
complexity is in that part, i.e. 2111 blocks of queries.

In general, differential cryptanalysis is hard to apply in the nonce-respecting
model. To avoid this problem, our 8-round forgery in the nonce-respecting model
exploits the internal (higher-order) difference [14], i.e. difference between the
blocks of a single plaintext. As shown in Eq. (1), computations in different blocks
only differ in the tweak value i ·γ, which is only injected in three subkeys. Thus,
many subkeys have no difference (Δsk0 = 0,Δsk2 = 0 etc.). Such sparse tweak
injections allow us to mount an internal differential cryptanalysis even in the
nonce-respecting model. By analyzing 256 consecutive blocks, the tweak value
assumes the values γ, 2γ, . . . , 255γ. Then, by forcing γ to have a single bit to one
(and 127 zeros), an integral (8th-order differential) cryptanalysis [2,9] is applied.

Our forgery attack in the nonce-repeating model exploits the tag generation
structure, which is the encryption of ΣP ⊕ΣC (for empty associated data). Let n
be the block size, i.e. n = 128 for Silver. We observe that the modular addition to
compute ΣC allows us to compute the sum of the x least significant bits (LSBs),
where x ∈ {1, 2, . . . , n}, independently of the n−x most significant bits (MSBs).
We first make 2n/3 queries under the same nonce to generate the first message
block pair (P1, P

′
1) such that the 2n/3 LSBs of P1 and P ′

1 are colliding and the
2n/3 LSBs of C1 and C ′

1 are also colliding. The same is iterated until the n/3-th
block. Now, we have 2n/3 possible combinations of plaintext blocks, in which any
of them produces the same 2n/3 LSBs of ΣP ⊕ ΣC and one pair will produce
the same n/3 MSBs. With this pair of messages producing the same ΣP ⊕ΣC , a
forgery can be mounted by the length extension attack, i.e. appending the same
message block p to each of two messages. The number of queries is about 2n/3 and
each query consists of n/3 blocks. Thus, the data complexity is about n/3 ·2n/3,
which is 248.08 for n = 128. By increasing the success probability and optimizing
attack procedure, the complexity becomes 249.46 message blocks with success
probability 0.36, which is almost the same as the one for the ordinary birthday
paradox. The designers claim a conservative 50-bit security against forgery in the
nonce-repeating model. Here, the choice of 50 bits is very unclear without any
reasoning. Our attack shows that their claim is no longer conservative, i.e. forgery
in the nonce-repeating model can be mounted with a complexity at most 250.

Our plaintext-recovery attack exploits the weakness of the domain separation
when the last message block is not full. For any ciphertext C1‖ · · · ‖CN−1‖CN

for some N where |CN | < 128, the corresponding last block of the plaintext PN

496 J. Jean et al.

is recovered with a single encryption query under the same nonce. Considering
that the ECB mode never allows such a plaintext-recovery attack, it breaks the
security claim by the designers, who state that “any attack against Silver should
be readily converted into an attack on AES-ECB”.

Our key-recovery attack makes use of the fact that ΣC in the tag generation
is computed by modular addition. We first generate a tag collision with 1-block
messages (and empty associated data) by making 264 queries under the same
nonce. For the colliding pair, we can directly observe the ciphertext difference
ΔC. The tag collision indicates ΔΣP ⊕ ΔΣC = 0, where ΣP = P for 1 block
message, and thus we can recover ΔΣC . For a 1-block message, ΣC is computed
as ΣC = C + (α + γ). From ΔC and ΔΣC , we recover the secret value (α + γ)
similarly with the analysis by Lipmaa and Moriai [11] about XOR difference
propagation through the modular addition. We notice that the current best key
recovery attack on plain AES-128 [4] is up to seven rounds. In this sense, Silver
lowers the security margin of AES-128 due to its tweaking method.

Our attacks exploit several design aspects of Silver such as the dedicated
AES-128 tweaking method, tag generation structure, combination of XOR and
modular addition, domain separation for special treatment, and so on. We believe
that the presented analysis in this paper will bring useful feedback for the design
of authenticated encryption schemes based on tweaked AES. Our results are sum-
marized in Table 1.

Table 1. Summary of the cryptanalysis of Silver presented in this paper.

Model Rounds Type #Queries Reference

Nonce respecting 4 Forgery 279 Sect. 3.1

8 Forgery 2111 Sect. 3.2

Nonce repeating Full Forgery 249.46 Sect. 4.1

Full Plaintext recovery 1 Sect. 4.2

8 Key recovery 2111 Sect. 4.3

2 Description of Silver

Silver is an authenticated encryption scheme relying on a tweakable block cipher
derived from the AES-128 block cipher E. We note that it can be regarded as an
instance of the TWEAKEY framework introduced in [8] to construct tweakable
block ciphers, where the tweaked values are injected by XORing together with
the subkeys.

We describe here the design of Silver with the set of parameters recommended
by the designers [13]. The original description being a bit hard to follow, we intro-
duce new notations and figures to describe the cipher. Four inputs are processed
by the encryption algorithm: a 128-bit public message number N , a 128-bit secret

Analysis of the CAESAR Candidate Silver 497

key k, possibly empty associated data A and a plaintext P . Those values are
encrypted and authenticated in the form of a ciphertext C and a 128-bit tag T .
From (N,A,C, T), the decryption algorithm produces the plaintext P if the tag
T is verified, and ⊥ otherwise.

Notations. We denote the byte length of P by bP , bA refers to the byte
length of A, and g = bA || bP encodes the two byte lengths of A and P in a
128-bit value. The XOR operation is denoted by ⊕. We represent the 64-bit
most significant bits of a 128-bit value x by xL, and its 64-bit less significant
bits by xR. We consider that x = xL || xR, where || denotes the concatenation.
More generally, we refer to the n least significant bits of x by �x�n, and similarly
to its n most significant by 	x
n. We denote the empty string by ε. Modular addi-
tion represented by + is performed on 128-bit values in (Z/264Z) × (Z/264Z),
where the two 64-bit halves of the values are added independently. Finally, x
denotes the value x with the least significant bit forced to 1, i.e. x = x ∨ 1.

Initialization. Before processing the inputs, Silver requires an initialization
step with one block cipher call, and two calls to the AES-128 key scheduling
algorithm. The block cipher call is parameterized by the secret key k and trans-
forms N into an internal secret value that we denote α, i.e. α = Ek(N). Then,
the AES-128 key schedule produces two sequences of eleven subkeys from both
the secret k, and the value α: (k0, . . . , k10) and (α0, . . . , α10), respectively. The
two sets of subkeys are used in the function denoted KS, which combines the
subkeys with a 128-bit input value S: KS(S) = (u0, . . . , u10), with:

u0 = k0 ⊕ α1, u4 = k4 ⊕ α4, u8 = k8 ⊕ α8,

u1 = k1 ⊕ (α + S), u5 = k5 ⊕ α5 ⊕ (α + S), u9 = k9 ⊕ (α + S),
u2 = k2 ⊕ α2, u6 = k6 ⊕ α6, u10 = k10 ⊕ α10.

u3 = k3 ⊕ α3, u7 = k7 ⊕ α7,

Finally, two secret counters are also initialized: γA later used to process the
associated data, and γ used during the plaintext encryption:

γ = αL
9

∣∣∣
∣∣∣ αR

9 , γA = αL
9

∣∣∣
∣∣∣ 064.

The tweakable block cipher used in Silver replaces the original AES-128 subkeys
(k0, . . . , k10) by the subkeys KS(S) for a given tweak value S.

Associated Data. Similarly to several other authenticated encryption
schemes [5–7,10], Silver first computes a MAC ΣA on the associated data A,
and then uses this value internally to authenticate A. The process is described
on Fig. 1. First, A is divided into t blocks of 128 bits, possibly using the 10∗

padding. Then, it applies the tweaked AES with subkeys KS(i · γA) indepen-
dently on each block i, and XORs the t results to produce the checksum ΣA.

498 J. Jean et al.

A1

EKS(γA)

· · ·0

At

EKS(t · γA)

. . . ΣA

At||10∗

EKS(0)

. . . ΣA

Fig. 1. Associated data. There are t blocks in A. If the last block is not full, pad it
using the 10∗ padding. The checksum produced is ΣA.

P1

0

EKS(γ)

C1

α + γ

0

P2

· · ·

EKS(2 · γ)

C2

· · ·

α + 2 · γ

Ps

ΣP

EKS(s · γ)

Cs

ΣC

α + s · γ

Ps

bP || bP

EKS(s · γ)

Cs

μ

Ps l

EKS
(
(s + 1) · γ

)

ΣP ′

Fig. 2. Encryption. ΣP is the checksum over the full input blocks, ΣC is a checksum
over the ciphertext blocks shifted by modular additions. The last partial block (if any)
is processed with two calls to E.

Note that if the last block has been padded, the tweak input is 0 to produce
subkeys KS(0) for the last padded block.1

Encryption. To encrypt the plaintext P , we first divide it into blocks of
128 bits, say s blocks, the last one possibly non-full. The tweaked AES-128
denoted E is used to transform each block Pi to ciphertext block Ci using the
tweaked subkeys produced by KS(i · γ). Then, a checksum ΣP is computed
from the XOR of all the plaintext blocks, and a checksum ΣC is computed from
modularly masked value of the ciphertext blocks (see Fig. 2, left), namely:

ΣP =
s⊕

i=1

Pi, and ΣC =
s⊕

i=1

(Ci + α + i · γ).

In the event that the last block is not full and contains 0 < l < 16 bytes
(see Fig. 2, right), one first generates a mask μ from the encryption of bP || bP

under subkeys KS(s · γ) and XORs it to the actual partial block Ps to produce
the partial ciphertext block Cs. The unused bits from the mask μ are appended
to Ps to produce a new 128-bit block, whose last byte is replaced by l, which is
encrypted to produce another checksum ΣP ′ .
1 This special treatment of the last partial block, in particular the special tweak input

value 0, will be later exploited in our forgery attacks in Sect. 3.

Analysis of the CAESAR Candidate Silver 499

ΣA ΣP ΣC ΣP ′

Eπ
(
KS(g)

)
g = bA || bP

Σ

T

Fig. 3. Tag generation. The tag consists of the encryption of the XOR of the four
checksums ΣA, ΣP , ΣC and ΣP ′ .

Tag Generation. To produce the tag T , one first XORs all the four (possibly
null) checksums ΣA, ΣP , ΣC and ΣP ′ to get Σ. Then, the tag T results from
the encryption of Σ using E parameterized by the subkeys π(KS(g)), where the
permutation π changes the order of the subkeys: π = (2, 9, 3, 4, 6, 1, 7, 8, 10, 5, 0).

3 Nonce-Respecting Analysis

In this section, we propose an attack on reduced-round Silver against a nonce-
respecting adversary. Our goal is to exploit the well-known integral property
of the AES [2,3] by using the counter computation in the associated data.
Ultimately, we show how to select associated data A comprised of 256 blocks
A = (A1, . . . , A255, A0) such that the checksum ΣA equals zero. The following
demonstrates that this behavior occurs with probability higher than 2−128 and
can be used to replace A by A′ producing the same ΣA = 0, hence leading to a
forgery attack.

We start by describing a simpler 4-round attack and later extend it to eight
rounds.

3.1 Forgery on 4-Round Silver

In Sect. 2, we have introduced a counter value γA used to compute ΣA from the
associated data. We recall that γA is defined from a 128-bit value α9 by γA =
αL
9 || 064, in which αL

9 overwrites the LSB of αL
9 with a single bit 1. Therefore,

with probability 2−63, γA = 063 1 ||064. If this holds, then the sequence of tweaks
in the associated data computation with the non-full last block depicted on Fig. 4
would be:

γA = 056 00000001 || 064,

2 · γA = 056 00000010 || 064,

3 · γA = 056 00000011 || 064,
...

255 · γA = 056 11111111 || 064,

0 = 056 00000000 || 064.

500 J. Jean et al.

Additionally, we require that eight bits from α are fixed to zero, so that the
modular additions with the counter values i · γA performed in the KS function
do not propagate any carry. Indeed, KS(i · γA) computes i · γA + α, and if the
eight least significant bits of αL are zeros, then no carry is propagated in the
addition. This restriction on α occurs with probability 2−8.

To summarize, with probability 2−71, the 256 values ci = i · γA + α
for i ∈ [0, 255] take all the 256 possible values on the eight least signifi-
cant bits of cL

i . To use this property, we consider a 256-block associated data
A = A1|| · · · ||A255||A0 = f(B), where:

A0 = B,

∀ i ∈ {1, . . . , 255}, Ai = B || 107,

with B a random 120-bit value. This definition of A ensures that all full blocks
are equal after the 10∗ padding (see Fig. 4).

B||107

EKS(γA)

B1

0

B||107

EKS(2 · γA)

B2

. . .

. . .

B||107

EKS(255 · γA)

B255

B||107

EKS(0)

ΣA

B0

Fig. 4. We consider t = 256 blocks in A such that the 256 inputs to the block cipher
calls are all equal.

In this context, the 256 equal blocks are processed with counter values car-
rying an integral-like property, which can be observed in the checksum value
ΣA. We recall that we consider a reduced variant of E where we apply only
four rounds. We explain now why the resulting ΣA equals zero by analyzing
the propagation of the integral property in the different blocks. The following
Fig. 5 shows the status of each byte in the state during the encryption across the
256 blocks. Namely, a byte marked C means that the same value appears for this
byte in each of the 256 states, an A stands for a byte having the 256 different
values in the 256 states, and a 0 means that the XOR of the bytes from the
256 states produces zero.

From the well-known integral property of the AES structure, the XOR of the
256 outputs produces zero in the 16 bytes after four rounds, with a difference
introduced in the second subkey. As a result, the associated data of this particular
A produces ΣA = 0 with probability 2−71.

Therefore, after querying the encryption oracle 271 times with distinct nonce
N , we expect that one query (N,A,M = ε) yields the ciphertext and tag pair
(C, T) with the internal ΣA = 0. Once this event happens, any subsequent

Analysis of the CAESAR Candidate Silver 501

C C C C
C C C C
C C C C
C C C C

B||1

C C C C
C C C C
C C C C
C C C C

k0 ⊕ α1
ARK

C C C C
C C C C
C C C C
C C C C

SB

C C C C
C C C C
C C C C
C C C C

SR

C C C C
C C C C
C C C C
C C C C

MC

C C C C
C C C C
C C C C
C C C C

C C C C
C C C C
C C C C
C A C C

k1 ⊕ (α + γA)
ARK

C C C C
C C C C
C C C C
C A C C

SB

C C C C
C C C C
C C C C
C A C C

SR

C C C C
C C C C
C C C C
C C A C

MC

C C A C
C C A C
C C A C
C C A C

C C C C
C C C C
C C C C
C C C C

k2 ⊕ α2
ARK

C C A C
C C A C
C C A C
C C A C

SB

C C A C
C C A C
C C A C
C C A C

SR

C C A C
C A C C
A C C C
C C C A

MC

A A A A
A A A A
A A A A
A A A A

C C C C
C C C C
C C C C
C C C C

k3 ⊕ α3
ARK

A A A A
A A A A
A A A A
A A A A

SB

A A A A
A A A A
A A A A
A A A A

SR

A A A A
A A A A
A A A A
A A A A

MC

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

C C C C
C C C C
C C C C
C C C C

k4 ⊕ α4
ARK

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Fig. 5. Integral property in the associated data of Silver processed by the 4-round
block cipher E.

decryption (N,A′, C, T) query under the same nonce but with different associ-
ated data A′ = f(B′) for a random 120-bit B′ = B would be a forgery. Indeed,
the integral property still holds for the different input B′, and the intermediate
checksum ΣA for the modified associated data would also be zero. Hence, the
same tag has to be produced.

The procedure of the attack is described in Algorithm 1. We have experi-
mentally verified that it works as expected assuming the event with probability
2−71 holds. The attack requires a total of queries of 271+8 = 279 blocks.

3.2 Forgery on 8-Round Silver

The idea behind the 8-round forgery attack on Silver is essentially the same as
the one for four rounds, except that we make sure that the pre-added four rounds
do not alter the integral property. We still want to find a 256-block associated
data value such that ΣA = 0. The main difference here is the choice of these
blocks, as the integral property does not propagate over eight rounds.

However, on the nine subkeys added in the eight rounds, only two carry
the tweak input, which is different for each block of associated data, namely,
the second and the fifth subkeys. Hence, if we choose 256 blocks Ai such that
the internal states after the second subkey addition are the same for all the

502 J. Jean et al.

Algorithm 1 – Forgery for 4-round Silver.

1: A
$← {0, 1}120

2: B
$← {0, 1}120 � Need to ensure A �= B

3: AD ← (A||107)255 || A � |AD| = bA = 212 − 1
4: AD′ ← (B||107)255 || B
5: for i = 1 → 271 do
6: Ni ← {0, 1}128 � Pick a random nonce
7: (C = ε, Ti) ← Silver(Ni, AD, M = ε) � 4-round encryption query
8: P ← Silver−1(Ni, AD′, C, Ti) � 4-round decryption query
9: if P �= ⊥ then return (Ni, AD′, C, Ti) � Success with probability 2−71

256 blocks, then all the states would also be equal before the fifth subkey addi-
tion. Then, we know that the XOR of all the outputs after the last subkey
addition yields zero, as in the previous case.

We are then left with the problem of choosing 256 blocks Ai such that
the same state value X is reached after one-round encryption under subkeys
u0 = k0 ⊕ α1 and u1 = k1 ⊕ (α + i · γA). To find them (see Fig. 6), we pick a
random value for this constant state X, apply all the 256 possible values to byte
corresponding to the active byte in u1. Then, we guess 32 bits of the subkeys
u0 (marked in gray) to partially decrypt the states. This results in 256 input
states Ai, and each is partially encrypted to the same state value X by the first
round. For each guess of 32 bits, the resulting sequence of 256 blocks Ai can be
precomputed and stored along with the guessed value.

C A C C
C C A C
C C C A
A C C C

Ai

C C C C
C C C C
C C C C
C C C C

ARK
u0 = k0 ⊕ α1

C A C C
C C A C
C C C A
A C C C

SB

C A C C
C C A C
C C C A
A C C C

SR

C A C C
C A C C
C A C C
C A C C

MC

C C C C
C C C C
C C C C
C A C C

C C C C
C C C C
C C C C
C A C C

ARK

u1 = k1 ⊕ (α + i · γA)

C C C C
C C C C
C C C C
C C C C X

SB
4 constant rounds

C C C C
C C C C
C C C C
C A C C

ARK

u5 = k5 ⊕ α5 ⊕ (α + i · γA)

C C C C
C C C C
C C C C
C A C C

SB
3 rounds

C C C C
C C C C
C C C C
C C C C

ARK
u8 = k8 ⊕ α8

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Fig. 6. Integral property in the associated data of Silver processed by the 8-round
block cipher E. The four bytes marked in gray correspond to guessed values.

Analysis of the CAESAR Candidate Silver 503

Similarly as the 4-round attack, we note that the last block A256 needs to
be a partial block (e.g., it contains only 15 bytes) as we need the zero tweak
value in the integral property. As before, this restricts the 255 other blocks on
their last byte, but we emphasize that this can be handled easily as the last byte
remains constant across all the blocks. The attack requires a total of queries of
271+32+8 = 2111 blocks.

4 Nonce-Repeating Analysis

In this section, we propose to analyze the security of Silver with respect to
the nonce-reuse scenario. In the original document, the designer make unclear
statements about the expected security of Silver when the adversary reuses the
nonce. Namely, they require the design to be used with non-repeating nonce,
but still argue that the loss of security is not complete.

On the one hand, dealing with forgery, the designers claim that “Silver has
high forgery resistance even under nonce repetition.” They conjecture that a
forgery cannot be made with probability greater than 2−50 for 128-bit tags.
However, we show in Sect. 4.1 that 50-bit security is no longer conservative and it
can actually match the upperbound of the security by showing how an adversary
can forge a message in 249.46 blocks of nonce-repeating queries.

On the other hand, about privacy, they write that “any attack against Silver
should be readily converted into an attack on AES-ECB. Thus, although there is
loss of indistinguishability, the loss of confidentiality is not catastrophic, and it
simply reduces to the loss one would be prepared to accept when using ECB ”. In
the following Sect. 4.2, we show how a single nonce-repeating query can partially
break the confidentiality of Silver by recovering part of the plaintext.

Finally, in Sect. 4.3, we show how to launch a key-recovery attack on 8-round
Silver in 2111 blocks of queries, by extending the nonce-respecting forgery attack
presented in the previous section.

4.1 Forgery Attack

Our forgery attack is mainly based on a divide-and-conquer approach to effi-
ciently find two plaintext-ciphertexts (N,A, P,C, T) and (N,A, P ′, C ′, T ′) that
have the same nonce and associated data, have the same plaintext length, and
collide on the tag T = T ′. Once such a pair is obtained, we choose a random
one-block p, query (N,A, P‖p) to receive (C‖c, T ′′), and forge (N,A,C ′‖c, T ′′).
From T = T ′, it gives ΣA ⊕ ΣP ⊕ ΣC = ΣA ⊕ Σ′

P ⊕ Σ′
C , which is preserved

after adding one more block p. Therefore the tag T ′′ is valid for (N,A,C ′‖c) and
moreover the corresponding plaintext of forged decryption query is P ′||p.

Simple Attack. We now focus on how to find such a pair of plaintext-
ciphertexts of Silver. The attack targets the mode used in Silver, and can be
applied to any underlying block cipher. Therefore, we describe it in a general
form with n being the block size in bits (e.g., n = 128 in the case of Silver).

504 J. Jean et al.

To start with, we select a nonce N randomly, and use it as the nonce para-
meter for all the subsequent queries to Silver. Next, we construct a set of
plaintexts which all collide on �ΣP ⊕ ΣC�2n/3. In detail, we find a pair of i-
th plaintext-ciphertext blocks (P ∗

i , C∗
i) and (P $

i , C$
i), for 1 ≤ i ≤ n/3, such that

�P ∗
i �2n/3 = �P $

i �2n/3 and �C∗
i �2n/3 = �C$

i �2n/3. This can be done by selecting
2n/3 plaintexts, whose i-th blocks P j

i with 1 ≤ j ≤ 2n/3 have the same 2n/3 LSBs
and differ in n/3 MSBs; namely, �P j

i �2n/3 = �P j′
i �2n/3 and 	P j

i
n/3 = 	P j′
i
n/3

for any distinct 1 ≤ j, j′ ≤ 2n/3, querying them under the nonce N to receive
ciphertexts, and finding a pair of i-th ciphertext blocks Cj

i and Cj′
i colliding on

the 2n/3 LSBs, i.e., �Cj
i �2n/3 = �Cj′

i �2n/3. Their corresponding i-th plaintext
blocks are selected as (P ∗

i , P $
i). After that, a set of plaintexts is constructed:

{
P j1
1 ‖P j2

2 ‖ · · · ‖P jn/3

n/3

∣∣∣ j1, j2, . . . jn/3 ∈ {∗, $}
}

.

It is trivial to get that all plaintexts in this set have the same 2n/3 LSBs for
both ΣP and ΣC . Finally, we query those n/3-block plaintexts with N as nonce
and A = ε as associated data to Silver, and find a pair of plaintext-ciphertext
that collide on the received tag. Note that if a pair of plaintexts also have the
same 	ΣP ⊕ΣC
n/3, then the tags collide. Since there are in total 2n/3 plaintexts
in the set, we can expect to obtain a pair colliding on tag with a good probability.

Here, one may think that trying 2n/6 plaintexts instead of trying 2n/3 plain-
texts is sufficient to find a colliding pair on the n/3 MSBs. However this does
not work. The important thing is that the 2n/3 plaintexts are not chosen ran-
domly. They are generated by linearly combining n/3 paired message blocks,
which prevents us from using classical birthday arguments.

Overall, the forgery attack on Silver in the nonce-repeating model is com-
pleted. The complexity for finding a collision for the first n/3 blocks requires
2n/3+1 queries and each query has n/3 blocks. The same complexity is required
for finding the tag collision. In the end, the complexity amounts to n/3 · 2n/3+2

queried blocks, which equals 250.08, and this slightly exceeds the claimed 50-bit
security. In addition, considering the success probability of finding a collision in
each block, more queries are required. In the following explanation, we show how
to improve the data complexity.

Advanced Attack. The overall idea consists in generating two colliding mes-
sage pairs in each of the first n/6 blocks, while the simple attack generated one
pair in each of the first n/3 blocks. In the tag collision phase, we first have
2 choices in each block regarding which message pairs we pick. Namely, we have
2n/6 choices of n/6-block message-pairs chain. Then, for each of them, we can
further consider 2n/6 combinations of messages. In total, 2n/6 · 2n/6 = 2n/3 mes-
sages are examined for finding a tag collision, which is the same as the simple
attack. With this effort, the complexity for generating collisions in each block
is roughly n/6 · 2n/3+2, which stays unchanged from the simple attack, and the
complexity for finding tag collision is reduced to n/6 · 2n/3+1, which is a half of
the simple attack.

Analysis of the CAESAR Candidate Silver 505

Hereafter, we evaluate the details with optimization particular for Silver,
i.e. n = 128. First, to generate two colliding pairs in each block, we fix
the 84 LSBs of the plaintext and try all the 244 values in the 44 MSBs.
Then, we examine the collision on the 84 LSBs of the ciphertext. Accord-
ing to the birthday paradox, we find a collision with probability 0.36 with
242 messages. According to [16, Theorem 3.2], the probability of obtaining a
collision for (log N)-bit output function with trying θ · N1/2 inputs is given
by 1 − e− θ2

2 . With 244 messages, θ equals to 4, thus the success probability
of finding a collision is 1 − e−8 ≈ 0.999. The probability of finding the sec-
ond collision is almost the same, thus with probability (1 − e−8)2, two collid-
ing pairs can be obtained. We simultaneously apply this analysis for the first
22 blocks. Namely, each query consists of 22 blocks and the 84 LSBs are always
fixed. This is iterated 244 times by changing the value of 44 MSBs in all the
blocks. In the end, the number of queries is 22 · 244 = 248.46 message blocks
and the probability of obtaining two colliding pairs in all the 22 blocks is
(1 − e−8)44 ≈ 0.985.

Generating a tag collision is rather simple, which is done as mentioned in the
overview. We first choose which of colliding message pairs is used in each of the
first 22 blocks, which yields 222 choices of message-pair chains. For each of them,
we further choose the message for each block, in which the 84 LSBs of ΣP and
ΣC always take the same value. With 222 messages, the probability for colliding
44 MSBs is 2−22. Thus by examining all 222 choices of 22-block message-pair
chains, a tag collision can be generated. The number of queries for generating
a tag collision is 22 · 244 ≈ 248.46 message blocks and the success probability is
e−1.

By combining the above two phases, the number of queries equals 248.46 +
248.46 = 249.46 message blocks, and the success probability is (1 − e−8)44 · e−1 ≈
0.36, which is almost the same as one for the ordinary birthday paradox. With
this attack, we claim that 50-bit security against forgery in the nonce-repeating
model is no longer conservative.

4.2 Breaking Confidentiality

First of all, we point out that Silver encrypts the last partial message block in the
similar manner as the CTR mode, i.e. it generates the key stream and takes the
XOR with the plaintext. Thus, the designers’ claim only comparing the security
of the ECB mode is strange. Comparison with the combination of the ECB and
CTR modes seems more natural. Due to the property of CTR-mode like structure,
recovering the plaintext of the last partial block with nonce-repeating queries is
easy. Yet, we show another way of recovering plaintext which is particular to the
computation structure in Silver.

Our observation to break confidentiality in Silver under nonce repetition
essentially relies on a missing domain separation. In most ciphers, the cases of
full block and partial block treatments are made distinct by using independent
permutations by, for instance, injecting different tweak values in the correspond-
ing block cipher calls. In Silver, this is not the case, and the adversary can use
this at his advantage to learn internal values during an encryption.

506 J. Jean et al.

Consider a short plaintext P of 15 bytes, a given nonce N and a secret key
k. There is no associated data. To encrypt P , we observe that its length bP = 15
does not fill one block, so we use the partial-block treatment (see Fig. 2, right).
Namely, we first generate the mask μ = EKS(s·γ)(bp || bp), where s = 1, and
simply XOR its 15 most significant bytes to P to produce the corresponding
ciphertext C. The subsequent operations related to the tag generation T are
irrelevant here.

Once an adversary gets (N,C, T) with |C| = 15, he can recover the original
plaintext P as long as he can recompute the internal mask value μ. We note
that this is indeed possible using the nonce-repeating encryption query (N,A =
ε, P = bp || bp) since the same subkeys KS(s · γ) yield the same permutation to
be used since s = 1.

Therefore, with a single encryption query under the same nonce, the adver-
sary can break the confidentiality of C. We note that the same observation for
longer P with bp not a multiple of 16 can be conducted, but would only recover
the last bp (mod 16) bytes of P . The second query would simply consist of s− 1

random blocks, s =
⌊

bp

16

⌋
and the same last block bp || bp to use the same per-

mutation to reveal μ.

4.3 Key-Recovery Attack on 8-Round Silver

The forgery attack on 8-round Silver in the nonce-respecting model discussed in
Sect. 3.2, can be further extended into a key-recovery attack working on the same
number of rounds in the nonce-repeating model. Recall that this attack recovers
four bytes (marked in gray in Fig. 6) of u0 = k0 ⊕α1 for a nonce N . Then, if the
value of α1 for that nonce N can be recovered, which in turn determines four
bytes of k0, we can do a brute-force search to recover the other bytes of k0, and
therefore the key k. Therefore, we are left to find an algorithm to recover this
α1.

First, note that with respect to the target α1, it is known that the 8 least
significant bits of α and the 63 most significant bits of αL

9 are zeros. Hence,
the number of candidate values for α1 is essentially reduced to 257=(128−8−63).
Below, we explain how to further reduce the number of its candidate values, and
eventually to recover its value in the nonce-reuse model.

For a nonce N , let (N,A, P,C, T) and (N,A, P ′, C ′, T ′) be two plaintext-
ciphertext pairs of Silver with N as the nonce and with the same associated
data A. Moreover, both P and P ′ are one full-block long. We observe that if
T = T ′ holds, it implies ΣA ⊕ ΣP ⊕ ΣC = ΣA ⊕ Σ′

P ⊕ Σ′
C , which is equivalent

to:

ΣC ⊕ Σ′
C =

(
C + (α + γ)

)
⊕

(
C ′ + (α + γ)

)
= P ⊕ P ′.

From the known values of C, C ′ and P ⊕ P ′, we can recover partially the
value of α+γ. For the sake of simplicity, we denote α+γ as X and P ⊕P ′ as Y ,
the i-th bit of C as C[i], and the i-th carry bit for C + X as CR[i]. Similarly, we

Analysis of the CAESAR Candidate Silver 507

define C ′[i], X[i], Y [i] and CR′[i]. At the bit level, the computation of ΣC ⊕ Σ′
C

gives:
(
C[i] ⊕ X[i] ⊕ CR[i]

)
⊕

(
C ′[i] ⊕ X[i] ⊕ CR′[i]

)
= Y [i],

which is equivalent to:

CR[i] ⊕ CR′[i] = C[i] ⊕ C ′[i] ⊕ Y [i].

Hence, we can compute the difference for each carry bit between C + X and
C ′+X, that is CR[i]⊕CR′[i] for each i. Moreover, at the bit level, the computations
of C + X and C ′ + X give:

CR[i + 1] =
(
C[i] + X[i] + CR[i]

)
� 1,

CR′[i + 1] =
(
C ′[i] + X[i] + CR′[i]

)
� 1,

where � denotes the right shift by one bit.

Observation 1. If C[i] = C ′[i] and P [i] ⊕ P ′[i] = 1, then X[i] can be computed
as: X[i] = C[i] ⊕ CR[i + 1] ⊕ CR′[i + 1].

Proof. From Y [i] = P [i] ⊕ P ′[i] = 1 and C[i] = C ′[i], we have CR[i] ⊕ CR′[i] = 1.
Without loss of generality, we assume CR[i] = 0 and CR′[i] = 1 and distinguish
two cases with C[i] = 0 and C[i] = 1 separately.

• Case C[i] = C ′[i] = 0. We have that:

CR[i + 1] ⊕ CR′[i + 1] = ((0 + X[i] + 0) � 1) ⊕ ((0 + X[i] + 1) � 1),
= (X[i] + 1) � 1.

It is trivial to get that CR[i + 1] ⊕ CR′[i + 1] = 0 implies X[i] = 0, and
CR[i+1]⊕CR′[i+1] = 1 implies X[i] = 1. Hence X[i] = C[i]⊕CR[i+1]⊕CR′[i+1]
holds.

• Case C[i] = C ′[i] = 1. We have that:

CR[i + 1] ⊕ CR′[i + 1] = ((1 + X[i] + 0) � 1) ⊕ ((1 + X[i] + 1) � 1),
= ((X[i] + 1) ⊕ (X[i] + 2)) � 1.

It is trivial to get that CR[i + 1] ⊕ CR′[i + 1] = 0 implies X[i] = 1, and
CR[i+1]⊕CR′[i+1] = 1 implies X[i] = 0. Hence X[i] = C[i]⊕CR[i+1]⊕CR′[i+1]
holds. ��

Based on the above observation, for a nonce N , an algorithm of recovering
partially its corresponding α + γ is as follows. The notations follow the above
definitions.

508 J. Jean et al.

1. Select two sets of 264 distinct one full-block plaintext {P} and {P ′} such
that all plaintexts of {P} (resp. {P ′}) have the same value of PR (resp.
P ′R) and moreover PR ⊕ P ′R = 164 holds. Query all (N,A = ε, P)s and
(N,A = ε, P ′)s to Silver and receive (C, T)s and (C ′, T ′)s, respectively. Find
a pair (N,A, P,C, T) and (N,A, P ′, C ′, T ′) with T = T ′.

2. Compute the difference of carry bits CR ⊕ CR′ between C + X and C ′ + X,
where X refers to α + γ.

3. Recover the bits X[i]s that satisfy C[i] = C ′[i] and P [i] ⊕ P ′[i] = 1.

We now evaluate the number of bits of X that can be recovered. Particularly,
for each i with 1 ≤ i ≤ 64, the condition P [i] ⊕ P ′[i] = 1 always holds, and X[i]
can be recovered as long as C[i] = C ′[i] holds. Therefore on average 32 bits of
the right half XR of X can be recovered. Then, by doing a similar attack again
which forces PL ⊕P ′L = 164 instead, we can recover 32 bits of the left half XL of
X. Combining together, we get to know (at least) 64 bits of X with a complexity
of 266.

Putting everything together, the key-recovery algorithm for 8-round Silver
in the nonce-repeating model is detailed as follows.

1. Launch the forgery attack in Sect. 3. Let N be the nonce used in the forged
decryption query.

2. For this nonce N , launch the above attack algorithm to recover (at least)
64 bits of its corresponding α + γ.

3. Guess the unknown 65 of α9 (corresponding to the nonce N) exhaustively,
then compute key schedule function of AES to get α, α1 and α + γ, and
examine if all the conditions on them are satisfied or not. This recovers the
correct value of α9 and in turn α1.

4. Compute 32 bits of k0 (marked in grey in Fig. 6). Finally recover the other
bits of k0 by a brute-force search, which in turn recovers the key k.

The overall complexity is obviously dominated by Step 1, which is 2111 blocks
for all queries.

5 Conclusion

In this paper, we have presented the first third-party security analysis of the
CAESAR candidate Silver. For nonce-respecting adversaries, we show an 8-round
forgery attack with 2111 blocks of queries. The attack exploits the sparse injec-
tion of the block tweak, which allows to exploit the internal difference between
blocks. For nonce-repeating adversaries, we show practical forgery and plaintext-
recovery attacks against full Silver and a key-recovery attack against eight rounds
of Silver. Our plaintext-recovery attack shows that the security of Silver in the
nonce-repeating model is much less than that of AES-ECB, which breaks the
security claim made by the designers. Our key-recovery attack shows that the
adversaries can attack more rounds against Silver than AES-128.

We believe that achieving 128-bit security based on AES-128 is very chal-
lenging but definitely worth trying. Proposing a new construction for tweaking

Analysis of the CAESAR Candidate Silver 509

AES seems a good approach. Our results show that careful security analysis, or
possibly security proofs, is strongly required when a new tweaking method is
proposed. More security analysis on the other tweaked AES based designs are
open.

Acknowledgement. Jérémy Jean is supported by the Singapore National Research
Foundation Fellowship 2012 (NRF-NRFF2012-06). Lei Wang is supported by the
Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06), Major
State Basic Research Development Program (973 Plan) (2013CB338004), National Nat-
ural Science Foundation of China (61472250) and Innovation Plan of science and tech-
nology of Shanghai (14511100300).

References

1. Bernstein, D.: CAESAR Competition (2013). http://competitions.cr.yp.to/caesar.
html

2. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

4. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

5. Jean, J., Nikolić, I., Peyrin, T.: Deoxysv1.2 Submission to the CAESAR competi-
tion (2014)

6. Jean, J., Nikolić, I., Peyrin, T.: Joltikv1.2 Submission to the CAESAR competi-
tion (2014)

7. Jean, J., Nikolić, I., Peyrin, T.: Kiasuv1.2 Submission to the CAESAR competition
(2014)

8. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology—ASIACRYPT
2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014)

9. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, p. 112. Springer, Heidelberg (2002)

10. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

11. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 336. Springer,
Heidelberg (2002)

12. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 31. Springer, Heidelberg (2002)

13. Penazzi, D., Montes, M.: Silver v1. submitted to the CAESAR competition (2014)
14. Peyrin, T.: Improved differential attacks for ECHO and Grøstl. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)
15. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

16. Vaudenay, S.: A Classical Introduction to Cryptography: Applications for Com-
munications Security. Springer, Heidelberg (2006)

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html

Cryptanalysis of the Authenticated Encryption
Algorithm COFFE

Ivan Tjuawinata(B), Tao Huang, and Hongjun Wu

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore
S120015@e.ntu.edu.sg, {huangtao,wuhj}@ntu.edu.sg

Abstract. COFFE is a hash-based authenticated encryption scheme.
In the original paper, it was claimed to have IND-CPA security and
also ciphertext integrity even in nonce-misuse scenario. In this paper, we
analyse the security of COFFE. Our attack shows that even under the
assumption that the primitive hash function is ideal, a valid ciphertext
can be forged with 2 enquiries with success probability close to 1. The
motivation of the attack is to find a collision on the input of each of the
hash calls in the COFFE instantiation. It can be done in two ways.

The first way is by modifying nonce and last message block size. Cho-
sen appropriately, we can ensure two COFFE instantiations with differ-
ent nonce and different last message block size can have exactly the same
intermediate state value. This hence leads to a valid ciphertext to be
generated. Another way is by considering two different COFFE instanti-
ations with different message block size despite same key. In this case, we
will use the existence of consecutive zero in the binary representation of
π to achieve identical intermediate state value on two different COFFE
instantiations. Having the state collisions, the forgery attack is then con-
ducted by choosing two different plaintexts with appropriate nonce and
tag size to query. Having this fact, without knowing the secret key, we
can then validly encrypt another plaintext with probability equal to 1.

Keywords: COFFE · Authenticated cipher · Forgery attack

1 Introduction

Authenticated encryption is a symmetric encryption scheme aiming to pro-
vide authenticity at the same time as confidentiality to the message. Initially,
Bellare and Namprempre proposed the authenticated encryption(AE) schemes
by integrating an encryption scheme with an authentication scheme in 2000, [1].
In 2001, Krawczyk published a paper [8] that studies the possibility to solve this
problem by applying the existing symmetric key cryptosystem and hash function
one after another.

The difficulty of the general composition approach is although the security of
the parts individually is well-studied, the application of one function may affect
the security of the other. Furthermore, in implementation point of view, it is
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 510–526, 2016.
DOI: 10.1007/978-3-319-31301-6 29

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 511

not very efficient and error-prone considering it is required to have two different
primitives, one for encryption, one for plaintext integrity.

To tackle the first difficulty, a lot of dedicated designs to simultaneously
encrypt and authenticate the message have been proposed, among which the
authenticated encryption mode is a commonly used design approach. Some
examples of these mode of operations are IAPM [7], OCB [11], Jambu [13],
GCM [5], CCM [4] and ELmD [3].

The consideration for the efficiency comes from the fact that encryption and
authentication is done independently with each of their own primitive. So one
way to solve this is to consider using the same primitive for both purposes. The
initial direction that research goes was to construct a block-cipher based hash
function for the authentication purpose such as the ones found in [9,10].

Another way to solve this problem is to purely use a hash function for both
encryption and authentication purposes. Some of AE modes that is based on
hash functions are OMD [2] and COFFE [6].

COFFE is a hash-function-based authenticated encryption scheme designed
by Forler et al. It was published in ESC 2013 [6]. COFFE is designed to be secure
for computationally constraint environment. As mentioned above, COFFE utilises
a hash function for both encryption and authentication without introducing any
block cipher primitive. According to [6], COFFE is one of the first authenticated
encryption that is purely based on hash function. This alternative direction of
constructing an authenticated encryption system is interesting for constructing
a secure authenticated encryption.

The designers claim that COFFE is secure against chosen plaintext attack in
nonce-respecting scenario. It is also claimed to have ciphertext-integrity even in
nonce-misuse scenario. In particular, it is claimed that the ciphertext integrity
of COFFE is at least strong as the indistinguishability of the hash function
used. That is, forging a ciphertext with a valid tag should be as hard as finding
collision in the underlying hash function. Furthermore, it also provides addi-
tional features. Firstly, it provides failure-friendly authenticity, that is, COFFE
provides reasonable authenticity in the case of weaker underlying hash func-
tion. Secondly, it also provides side channel resistance under nonce-respecting
scenario.

In this paper, we first analyse the design of COFFE. During the analysis
we consider the scheme firstly under the nonce-repeating scenario. Instead of
using any specific hash function for the underlying primitive, we analyse it on
the generic construction case with an ideal underlying hash function. We show
that under these settings, some instances of COFFE with particular parameters
are vulnerable to distinguishing attack, ciphertext forgery attack, or related key
recovery attack. Thus, the security claim of COFFE for these parameters does
not hold.

The attacks come from the consideration that intermediate state values of
two different COFFE instantiations can be made the same while having different
inputs. The vulnerability comes from the fact that having most of the parameters
to be variables, different set of parameters can be chosen and combined to create

512 I. Tjuawinata et al.

the collision. The attack starts by first trying to find a specific value for the
parameters where this can happen. Having found these parameters, different
approaches are made to exploit this discovery to launch either distinguishing
attack, forgery attack, or key recovery attack. In this paper, we found that for
the distinguishing and forgery attack, if we use the same secret key for all the
instantiations, the success probability is close to 1.

The rest of this paper is structured as follows: The generic specification of
COFFE is given in Sect. 2. Section 3 provides some analysis and observation of
COFFE. Section 4 introduces the distinguishing attack. Section 5 provides two
variants of ciphertext forgery attack. We proposed a related key recovery attack
on Sect. 6. Lastly, Sect. 7 concludes the paper.

2 The COFFE Authenticated Cipher

The COFFE family of authenticated ciphers uses six parameters: key length,
nonce length, block size, hash function input and output size, and tag length.
We will briefly describe the specification of COFFE authenticated cipher. The
full specification can be found in [6]. An overview of COFFE is provided in Fig. 1.

Fig. 1. General scheme of COFFE encryption and authentication (Fig. 2 of [6])

2.1 Notations

Throughout this paper, we will be using the following notations:

– F : Underlying Hash function
• γ: Input size for F assuming “one compression function invocation per

hash function call”
• δ: Output size for F

– LK : Secret key length expressed in bits. The length of this string should be a
multiple of a byte

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 513

– LV : Nonce length expressed in bits. The length of this string should be a
multiple of a byte

– LT : Tag length expressed in bits. The length of this string should be a multiple
of a byte, LT ≤ δ

– α: Message block size
– β: Last message block size, β ≤ α ≤ δ
– x: Bits for domain value. The number of byte for used for x follows the number

of bytes needed to express β + 5 in bits.
– Let v be a binary string and b be a positive integer.

• |v| : The length of v in bits.
• |v|b : A b−bit binary representation of v.
• [v] : The length of v in byte.
• [v]b : A b−byte binary representation of v.
• b : [β + 5].

– S1||S2: Concatenation of string S1 followed by S2.
– S1

⊕
� S2: The �- bit string obtained by XOR-ing the � least significant bits

of S1 and S2.
• S1 =b S2: The last b bits of both S1 and S2 is the same.

– S1||0�||S2: When clear the total length should be, say a bits, concatenate
S1 with 0-bits then with S2 with the number of 0-bits being the difference
between a and the total length of S1 and S2.

– K: Secret key string
– V: Nonce
– L: The number of message blocks for the encryption
– S: Session Key with length δ bits
– H: Associated Data
– M[i], 1 ≤ i ≤ L: The i-th message block, an α bit string except for M[L]

having length β bits.
– C[0]: The initial vector
– C[i], 1 ≤ i ≤ L: The i-th ciphertext block with the same length as M[i]
– T [i], 0 ≤ i ≤ L: Chaining values for the scheme each of which having length δ

bits
– T : Message Tag.

2.2 Associated Data Processing

The method of processing the associated data, H, can be divided into three cases
based on the length of the associated data.

– If the length of H is less than δ bits, it is appended by 1 followed by appropriate
number of zeros to reach δ bits. This is defined as T [0] and a domain value x
is defined to be 1.

– If the length of H is exactly δ bits, this is directly defined as T [0] while the
domain value x is set to be 2.

– If the length of H is more than δ bits, feed H to F and the resulting hash
output is used as the value of T [0] and x is defined as 3.

514 I. Tjuawinata et al.

2.3 Initialization

There are two values that need to be computed in the initialization phase, S and
C[0]. Firstly, the session key, S which is defined based on K,V,LK ,LV , and b.
The value of S is defined to be F(K||V||0�||LK ||LV ||[0]b). Note that here 0� is
used to pad the string to make the length equals to γ.

Next, the constant C[0] which depends only on the message block size α. C[0]
is defined to be the first α

4 post-decimal values of π interpreted as a hexadecimal
string. So for example, since the decimal values of π is .14159 . . . , if α = 16,
Then C[0] = 0 × 1415 = 0001010000010101.

2.4 Processing Plaintext

Plaintext is encrypted to obtain the ciphertext after the generation of session key
S, the initialization vector C[0], initial chain value T [0] and the domain value,
x. The plaintext blocks are processed as follow:

T [1] = F((S
⊕

T [0]) || C[0] || 0� || [x]b)
C[1] = M[1]

⊕
α T [1]

for all blocks M[i], 2 ≤ i ≤ L − 1{
T [i] = F((S

⊕
T [i − 1]) || C[i − 1] || 0� || [4]b)

C[i] = M[i]
⊕

α T [i]
}

T [L] = F((S
⊕

T [L − 1]) || C[L − 1] || 0� || [4]b)
C[L] = M[L]

⊕
β T [L].

2.5 Tag Generation

After the associated data and plaintext are processed, the LT -bit tag T is
derived:

T = F((S
⊕

T [L]) || C[L] || 0� || LT || β + 5)

The decryption is trivial and we omit it here. For the verification, only the
LT least significant bits of the tags are checked.

2.6 Security Goals of COFFE

COFFE is claimed to have the INT-CTXT (ciphertext integrity) and IND-
CPA(indistinguishable under chosen plaintext attack) property under nonce-
respecting scenario.

In particular, in Lemma 1 of [6], we have:

Lemma 1. Let Π be a COFFE scheme as defined above with F as its under-
lying hash function. Then the advantage of adversary A under nonce-respecting

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 515

scenario with q queries and � message blocks to the encryption oracle with time
bounded by t can be upper bounded by:

AdvCPA
Π (q, �, t) ≤ 8�2 + 3q2

2n
+ 2.AdvPRF-XRK

F (q, �, t).

In other words, distinguishing COFFE from a random function with chosen
input under the bound of (q, �, t) should be at least as hard as distinguishing F
from a random function $: {0, 1}γ ⇒ {0, 1}δ.

Additionally, COFFE has some other security claim under different circum-
stances. Firstly, under the nonce-misuse scenario, it claimed that

– “..., the integrity of the ciphertext does not depend on a nonce, but only on
the security of F”.

In particular, in Lemma 2 of [6], we have:

Lemma 2. Let Π be a COFFE scheme as defined above with F as its underly-
ing hash function. Then in the nonce-ignoring adversary scenario with q queries
for � message blocks and t times, we have

AdvINT-CTXT
Π (q, �, t) ≤ 3�2 + 2q2

2δ
+

q

2LT
+ AdvPRF

F (q + �,O(t)).

This implies that the hardness of forging a ciphertext with a valid tag should
be at least as hard as distinguishing F from a random function from {0, 1}γ to
{0, 1}δ.

Secondly, COFFE also provides a failure-friendly authenticity. That is, under
a weaker assumption on the security of the underlying hash function F , the
authenticity of the message is still kept.

Lastly, COFFE also provides a reasonable resistance against side channel
attack. This is so because “for each encryption process, a new short term key is
derived from a nonce and the long term key” [6].

3 Analysis on the COFFE Scheme

In our analysis, we will assume F : {0, 1}� ⇒ {0, 1}δ to be an arbitrary ideal
hash function with γ being the largest possible length of the input to ensure
exactly one compression function invocation per hash function call. Here we are
assuming the possibility of the parameters to have length more than 255 bits.
In other words, it is possible that it requires more than 1 byte to represent
LK ,LV ,LT in their binary format.

The first observation is about the input for the hash function call. Note that
since we are only considering concatenation, there is not always a way, given the
concatenated string, to uniquely determine the value for each strings before the
concatenation. For example, if a||b = 11011, it is possible for a = 110, b = 11 or
a = 1, b = 1011. This leads to the possibility that two different sets of strings to
be concatenated to the same string.

516 I. Tjuawinata et al.

Observation 1. For the input of any hash function call, due to the absence of
separator between substrings and changeable elements lengths, it is possible to
have two different sets of strings to be concatenated to the same string.

On the following subsections, we analyse this observation further to find
whether it is possible to utilise this to cause a collision in the intermediate state
value of the COFFE. We first consider the case when we fix the message block
size while allowing two different last message block sizes, β1 and β2, to be used.
The analysis is focused on the case when |β1 − β2| is a multiple of 256. The
analysis on this can be found on Sect. 3.1. Next we also consider the possibility
of having identical intermediate state values when we change the message block
size, α, while keeping β fixed. The analysis is focused on how α should be chosen
in such a way for the first message block encryption of both instantiations to
have identical hash value output. This is discussed in Section 3.2.

3.1 Modification of β

We fix α and consider different values of β. In our next observation, with large
enough α, it is possible to have β1 < β2 ≤ α such that β2−β1 is a multiple of 256.
This implies that the last byte of the input of F in the tag generation for the two
different plaintexts can be the same. As discussed above, however, we want the
collision to happen in the whole input string for any F input. If both β1 +5 and
β2 + 5 require 2 bytes to represent in binary format, the second to last byte will
never agree. So for collision to happen, we need β1+5 < 256, 256 ≤ β2+5 < 65536
and β2 = β1 + 256ρ for some integer 1 ≤ ρ ≤ 255.

To further analyse this observation, we consider the note by the designers
regarding the increase of number of byte required for the binary representations
of the domain. In [6], it is stated that if β + 5 exceeds one byte, all domain
representations in the current COFFE will be encoded as two-byte values instead
of one. So this is important in our analysis on the possibility of exploring this
observation to introduce a successful attack.

Note that in the message processing, assuming that γ is big enough, there
are enough bits of the zero padding between C[i] and the domain values for the
encryption to absorb the additional byte for the domain values in case β + 5 is
increased from one byte to two bytes value. So the parts that need to be taken
care of for this to happen are the session key generation and tag generation.

In the session key generation, we consider the last several bytes of the input
of F . Here we have the input to be . . . || a || LK || LV || 0. Note that when we
expand the domain value from 1- to 2-byte value, the domain value should still
have the same value. So the second to last byte for the input must be 0. This
gives us our next observation.

Observation 2. To ensure that collision can occur when extending the domain
from 1- to 2-byte value, the initial value of LV must be a multiple of 256. This
means that if the initial LV is a 1-byte value, it must be 0, that is, no nonce in
the first instance.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 517

Our primary goal in this section is to investigate the possibilities to have two
different (key, nonce) pairs, (K1,V1) and (K2,V2) with lengths LK1 ,LV1 ,LK2 ,
LV2 respectively such that

(K1 || V1 || 0� || LK1 || LV1 || [0]1) = (K2 || V2 || 0� || LK2 || LV2 || [0]2).

For simplicity, let

S1 = (K1 || V1 || 0� || LK1 || LV1 || [0]1),

S2 = (K2 || V2 || 0� || LK2 || LV2 || [0]2).

Here, we note that collision is indeed possible as illustrated by the following
example: Let SHA-512 be our hash function. We can choose any 256-bit string,
say K, and set K1 = K2 = K. Now we use any one bit value (0 or 1) as our V2

while V1 is set to be V2 appended by 255 zeros. Now if we use 472 zero paddings
on the first string while using 727 bits for the second string we will have

S1 = S2 = (K || 1 || 0255 || 0472 || [1]1 || [0]1 || [1]1 || [0]1 || [0]1).

In the remaining of this section, we will try to analyse whether such collision
is possible for other instances of COFFE. Here we analyse different cases of S1

on the possibility of having S1 = S2. The factors that we need to consider are the
number of bytes required for LKi

,LVi
and whether there is any zero paddings

required. Note that if LKi
or LVi

is a 3-byte value, the value will be at least 65536
which is too big. To simplify our discussion, for this paper, we will only consider
the key and nonce to have length whose binary format can be represented as at
most a 2-byte value. Due to the big number of cases we need to consider and
the similarity of the cases, we will just discuss one case as example and a full
analysis of the other cases can be found in the appendix of the full version paper
[12] while the Table 1 containing the conclusion is provided for reference.

I.3.c Case I.3.c.: S1 has no zero paddings, [LK1] = 1, [LV1] = 2, [LK2] = 1,
[LV2] = 2.

By Observation 2, LV1 = 256b and LK1 = a where 1 ≤ a,b ≤ 255. Both a
and b are nonzero because of the following reasons. First of all, since LK1 =
a, if a = 0, then there is no secret key, in which case, no confidentiality
for the message. So we can disregard the case when LK = 0. Next, since
[LV1] = 2, this should mean that LV1 ≥ 256 since otherwise, [LV1] = 1. So
if b = 0, this implies LV1 = 0 which violates the requirement LV1 ≥ 256.
Hence

S1 = (K1 || V1 || a || b || [0]2).

Let V1 = V ′
1 || d where d is the last byte of V1. So

S1 = (K1 || V ′
1 || d || a || b || [0]2).

Consider the alternative string S2. Recall that here we want S1 = S2

where S2 has its domain value represented as a 2-bytes value. This implies

518 I. Tjuawinata et al.

that the [0]2 in the last 2 bytes of S1 must appear as the domain for
S2. So this implies that LK2 = d and LV2 = 256a + b. Let t′ be the
number of zero padding in S2 where t′ ≥ 0. Equating S1 with S2, we have
K1 || V ′

1 = K2 || V2 || 0t′
. Now comparing the length of these substrings, we

have a+256b−8 = d+256a+b+t′ or equivalently, 255(b−a) = d+8+t′.
Consider the family:

F(1,2),(1,2) = {(a,b,d, t′) : 1 ≤ a,b,d ≤ 255, t′ ≥ 0, 255(b − a) = d + 8 + t′}.

Now we consider the feasibility of each element of F(1,2),(1,2). Feasibility
here means the possibilities of using these values as the parameters to
have the collision. Let (a,b,d, t′) ∈ F(1,2),(1,2). Note that the collision may
not happen with probability 1 due to the case when K1 �= K2. Note that
since key is the first part of the collided string, this can only happen when
LK1 �= LK2 .

Before going on to the analysis, we have an assumption first. Suppose that
LK1 > LK2 . Since K1 is the first LK1 bits of S1,K2 is the first LK2 bits
of S2 and we need S1 = S2, the first LK2 bits of K1 must be K2. Instead
of assuming that this happens by chance, we will assume the following:
The user has 2 different instantiations of COFFE scheme with different
parameter and different key length. However, the keys chosen by the user
are not independent. The longer key is an extension of the shorter key by
a random secret string. We note that this assumption is only made for the
related key setting attack and not for the general attack.

Based on this assumption, we then have the probability of K1 to have its
first LK2 bits to be the same as K2 is exactly 1.

Now back to our case, we have that LK1 = a and LK2 = d. So the length
difference of the two keys is |a − d| bits. Now if a = d, then we have
K1 = K2. Now the rest of the two strings are V ′

1 || d || a || b || [0]2 and
V2 || 0t′ || d || a || b || [0]2. So we have V1 = V2 || 0t′ || d. Now since V1

can be controlled by the attacker, we can easily set this to be true. So the
probability of the two strings to collide is 1 if a = d.

Now consider when a �= d, specifically, a > d. The other case can be
analysed using exactly the same way. Now let K1 = K2 || K′

1 where K′
1

is the last a − d bits of K1. We have K′
1 || V ′

1 || d || a || b || [0]2 and
V2 || 0t′ || d || a || b || [0]2 as the remaining part of the two strings
truncating the first d bits. Thus, K′

1 || V ′
1 = V2 || 0t′

. Note that since
1 ≤ a,d ≤ 255,a − d ≤ 255,V2 has length 256a + b ≥ 256. So the entire
K′

1 is in V2. In other words, for the two strings to collide, we need the last
a−d bits of V2 must be equal to K′

1. Since K′
1 is supposed to be unknown,

the probability of this collision is 2a−d. It is easy to see that the remaining
substring can be set to collide with probability 1. So the probability of

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 519

Table 1. Session key generation input collision

[LK1] [LV1] t [LK2] [LV2] t′ Collision? Probability Key restriction

1 1 Any Any Any Any No 0 Not Applicable

2 1 Any 1 1 Any No ≈ 0 Not Applicable

2 1 0 2 1 Any F(2,1),(2,1) 2−(LK1−LK2) K1 =(t′+8) 0t′ || �LK2
256

�
2 1 0 < t < 8 2 1 Any Fp,(2,1),(2,1) 2−(LK1−LK2) K1 =(t′+8−t) 0t′ || � LK2

28+t �
2 1 Any Any 2 Any No 0 Not Applicable

1 2 Any 1 1 255LV2 + t Yes 1 No
1 2 Any 2 1 Any No ≈ 0 Not Applicable

1 2 0 1 2 Any F(1,2),(1,2) 2−|LK1−LK2 | No

1 2 0 < t < 8 1 2 Any Fp,(1,2),(1,2) 2−|LK1−LK2 | No

1 2 0 2 2 Any F(1,2),(2,2) 2−(LK2−LK1) No

1 2 0 < t < 16 2 2 Any Fp,(1,2),(2,2) 2−(LK2−LK1) No

2 2 Any 1 1 Any No 0 Not Applicable
2 2 Any 2 1 255LV2 + t Yes 1 No
2 2 Any 1 2 Any No ≈ 0 Not Applicable

2 2 0 2 2 Any F(2,2),(2,2) 2−|LK1−LK2 | K1 =max(0,t′−(LV1−8)) 0

2 2 0 < t < 8 2 2 Any Fp,(2,2),(2,2) 2−|LK1−LK2 | K1 =max(0,t′−(LV1−(8−t))) 0

collision to happen is 2−(a−d). Using exactly the same analysis, we will see
that when d > a, the probability of collision to happen is 2−(d−a).Hence,
for any non-negative integer k, we can define a subfamily of F(1,2),(1,2),

F(1,2),(1,2),k = {(a,b,d, t′) ∈ F(1,2),(1,2) : |a − d| ≤ k}.

Then for any quadruplet (a,b,d, t′) ∈ F(1,2),(1,2),k we take as parameter,
the collision probability is at least 2−k.

We remark that this probability is applicable for any choices of K1 and
K2. This observation is essential in our attacks later to decide whether the
attacks are only applicable to a family of key to any value of key with the
given length.

We include in Table 1 the full list of conclusion of the session key generation
analysis. Here we will use t to represent the zero padding for S1 and t′ for S2.
In the Collision column, No means a collision in this case is impossible, yes
means a collision will always happen on any choices of the parameter values
(with appropriate choice of key and nonce). Lastly, F(a,b),(c,d) or Fp,(a,b),(c,d) is
the family of parameter values that belongs to the respected case that collision
is possible. The definition of each of the family can be found in the complete
analysis of each case that is either can be found above or in the appendix of the
full version paper [12].

Recall that in the tag generation, given T [L],S, and C[L], the input of F is
((

S
⊕

T [L]
)

|| C[L] || 0� || LT || β + 5
)

.

We note here that here we do not use the byte-aligned assumption in our
analysis. The analysis can be restricted to a byte-aligned one by adding a restric-

520 I. Tjuawinata et al.

tion on the families to have some of the values to be divisible by 8. Here the
values that are related to the remainder of any value divided by 256 must be
divisible by 8. So for example, in the case when [LK] = 2, if LK = (a || b),
then we do not need a to be divisible by 8. We just need b to be divisible by
8. This will not change the existence of any of the families. However, it will
certainly requires a bigger parameter value. For example, for the case when
[LK1] = [LV1] = [LK2] = 2 and [LV2] = 1, if we want all the values to be byte
aligned, the smallest parameters we can use is when LK1 = LK2 = 256,LV2 = 8,
and LV1 = 2048. This leads to the input size for the hash function to be at least
2048 + 256 + 5 × 8 = 2394 bits. Here we set V2 = 128 and V1 = V2 || 02040 and
the other settings to be the same as the previous example.

We move on to the tag generation when β + 5 changes from 1-byte value to
2-byte value. Note that the only possible source of this 1-byte value is from LT .
So, in the second instantiation where β + 5 is changed to a 2-byte value, the tag
length will be different from the initial one. In fact, the first tag length needs to
be a 2-bytes value, say a || b and the second tag length needs to be a while the
difference between the two βs needs to be 256 × b.

3.2 Modification of α

This section discusses a special case of the analysis in which the user has at least
two instantiations of COFFE where they have different message block sizes but
the same (or related) key. Since we are considering changing α, the one we really
need to take care of is just the generation of C[0]. This is because for any other
place where α affects the system, it is generated by the previous chain in which
we can truncate easily.

Recall that C[0] is the first α
4 post decimal values of π interpreted as hexadec-

imal values. Suppose that we want the difference of the two block sizes, α1 and
α2, to be k with α2 being the larger value. Since we are assuming the ideality of
F , we want the input of F in this point for both instantiation to coincide. So in
other words, if the initial vector of the first instantiation is the α1 bit C1 and the
second one to be the α2 bit C2, the additional k bits of α2 should be absorbed
by the next substring of the input, which is the zero padding. Hence, the last
k bits of C2 should all be zeros. In other words, the value of α1 so that it can
coincide with the positions in the post decimal values of π to have a consecutive
0k bits. So for example, if we want α2 = α1 + 8, and α1 and α2 to be a multiple
of 8, then we will need to wait until the 306-th decimal place to get the 8 bits
of consecutive zeros. In this case, α1 = 1224 and α2 = 1232. The requirement
that α1 and α2 are divisible by 8 comes if we are assuming that the design is
byte-aligned. Note that different αs can be found along the places where we can
find k consecutive zeros in the binary representation of π.

4 Distinguishing Attack

In this section, to form a distinguishing attack, we use the session key collision
discussed in the previous section and the appendix of the full version paper [12].

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 521

Assuming that we have the same secret key, different nonce, and different number
of byte of domain value but the same session key, as before, we assume that now
the session key for each instantiation is the same, each uses the proper number
of byte of domain value.

We set the parameters α, β1, β2,LT1 and LT2 as follows:

1. β1 + 5 < 256 < β2 + 5 ≤ α + 5 ≤ δ + 5
2. β2 − β1 = 256ρ for some positive integer ρ
3. LT1 < 256 ≤ LT2 where LT2 = 256LT1 + ρ.

Set the first plaintext to be a two-blocks message, M1 = (MB1 || MB2)
such that MB1 has α bits and MB2 has β1 bits with tag length set to be LT2 .
Assume the ciphertext is C1 = (CB1 || CB2) with T1 as the tag.

The second message block, is then chosen to be M2 = (MB1 || MB′
2) such

that MB′
2 has β2 bits. Here we will use the tag length to be LT1 . We also assume

the ciphertext is C2 = (CB′
1 || CB′

2) with T2 as the tag.
As discussed above, since the first block of both message are the same, MB1,

we should have CB1 = CB′
1 and T [1] and T [2] should also be the same. Now

remember that MB2

⊕
CB2 and MB′

2

⊕
CB′

2 tells us the last β1 and β2 bits
of T [2] respectively. So if C1 and C2 are both from COFFE instantiation, we
must have CB1 = CB′

1 and the last β1 bits of CB2 and the last β1 bits of CB′
2

should agree. So we will guess that it is a COFFE instantiation instead of a
random function if these requirements are met. Note that this can happen if it
is a random function with probability 2−(α+β1).

Recall that a distinguishing attack works as follows. An oracle randomly
chooses whether it uses a random function or a COFFE instantiation with the
given parameter. Then as an attacker, we can request for encryption for some
plaintext. Then an adversary tries to decide whether the oracle uses a random
function or a COFFE instantiation. The distinguishing attack described above
has error probability 0 if we conclude that the oracle uses a random function.
However, if we guess that the oracle uses a COFFE instantiation, there is a
probability of 2−(α+β1) of the function is actually a random function instead
of COFFE. Note that since α ≥ 256 in our attack, the failure probability is
at most 2−256 which is very small. Therefore, with 2 enquiries to the oracle
with 4 message blocks, COFFE with ideal underlying hash function in nonce-
respecting scenario can be distinguished with probability close to 1. So in these
instantiations of COFFE, the security claim given in Lemma1 is not satisfied.

5 Ciphertext Forgery Attack

In this section, we will propose two different ciphertext forgery attacks. The first
attack is based on the observation on Subsect. 3.1. It exploits the possibility of
having an identical intermediate state value for two different instantiations when
we fix α while using different values of β. The detail of the attack can be found in
Sect. 5.1. Similarly, Sect. 5.2 discusses the forgery attack based on the discussion
on Subsect. 3.2. Here we try to forge a valid ciphertext in the case when there

522 I. Tjuawinata et al.

exists two different COFFE instantiations with same key for different message
block size. Here both attacks require 2 enquiries and can forge a valid ciphertext
with probability one. The success probability 1 is applicable whenever we assume
for both instantiations, the secret key used is the same instead of one key being
an extension of the other. Lastly, we will also discuss the possibility of combining
the two forgery attacks. This can be found in Subsect. 5.3.

5.1 Forgery Attack with Constant Message Block Size

Take any (K1,V1), (K2,V2) (key, nonce) pairs from the discussion session such
that they generate the same session key, one with 1-byte domain value, the other
with two. Let S1 be the input for session key generation with 1-byte domain value
and S2 be the input for the session key generation with 2−bytes domain value.
Here we assume that the input for session key generation is chosen accordingly
based on the number of bytes of domain value. Hence, after this point, we can
ignore the secret key and nonce and we can just assume that for each instantia-
tion, we are using the same session key and associated data.

Note that any full block plaintext-ciphertext pair leaks α least significant
bits of the output of the hash function for a fixed input, while any β-bit block
plaintext-ciphertext pair leaks only β least significant bits of it. So since β ≤ α,
it is always more desirable to get a full-block plaintext-ciphertext pairs since
they leak the output value more.

Here we set the parameters α, β1, β2,LT1 and LT2 as described before in
Sect. 4.

Next we define the first message M1, a 3−block message (MB1 || MB2 || MB3)
such that |MB1| = |MB2| = α, |MB3| = β2. Let the ciphertext of this message
be C1 = (CB1 || CB2 || CB3) with tag T1 with LT set to any value. Here we can
compute the values of CB1 and CB2 since MB1

⊕
CB1 gives us the last α bits

of T [1] and M2

⊕
C2 gives us the last α bits of T [2] which are essential in the

attack.
We define our second message M2, a 2−block message (MB1 || MB′

2) with
the length of MB′

2 to be β1 bits and tag length to be LT2 . The first block is
chosen to be exactly the same as before to ensure the value of T [1] and T [2] can
be kept constant. Based on the previous message, the least α bits of both values
are known. Suppose that the ciphertext of this plaintext is C2 = (CB1 || CB′

2)
with tag T2.

Using the information we obtain, we generate the following valid ciphertext.
Define another 2-block message M3 = (MB1 || MB′′

2). Here we set MB1 to be
the same as the first block from the previous message blocks. This is again to
ensure the value of T [1] and T [2] can be kept constant. We let the length of
MB′′

2 to be β2 and choose MB′′
2 such that MB′′

2

⊕
β2

T [2] = C2 || 0β2−β1 . Here,
MB′′

2 can be calculated since we know the last α bits of T [2] and α > β2. Using
this message, it is easy to see that the tag generation will have the same input
as before, although LT is now LT1 . So the tag for this ciphertext will be the last
β1 bits of T2.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 523

This attack has success probability equal to the probability of the two strings
used as the input session key generation to be the same. As we have discussed
before, for some parameters such as the ones in case I.3 and case II.3, this can
even be 1. In other words, in the case when the success probability is one, the
attack above proves that the ciphertext integrity of this cipher does not satisfy
the bound given in Lemma2 even in an ideal hash function situation.

Note that here we use three COFFE instantiations for each attack (2 for
enquiry and 1 for the guess), while in our discussion on session key generation
collision, we only consider the collision for two (key, nonce) pairs. So the same
attack cannot directly work for nonce-respecting scenario unless we can find
three (key, nonce) pairs that collide to the same session key.

5.2 Forgery Attack with Dynamic Message Block Size

In this section, we are assuming the existence of two different instantiations of
COFFE with different message block size but the same secret key and constant
last message block size β. Now we pick α1 < α2 such that α2 − α1 = k. Next we
find the valid size of α1 and α2 based on our discussion in the discussion section.
Here since we assume constant last message block size, β, we assume β ≤ α1.
Since we are using constant last message block size, to get the same session key,
we can consider the nonce-misuse scenario where we use the same key and nonce
for both instantiations. Note that this means the tag length should still be kept
the same.

First, we generate message, M1 = (MB1 || MB2) with |MB1| = α2 and
|MB2| = β. Now assume that we get the ciphertext C1 = (CB1 ‖ CB2) with tag
T1. In this pair, our objective is to find the last α2 bits of T [1] which can be
obtained by calculating MB1

⊕
CB1.

We then consider the following message: M2 = (MB′
1 || MB′

2) with |MB′
1| =

α2 and |MB′
2| = β. We further require the last k bits of MB′

2

⊕
α1

T [1] are all
zeros. Note that MB′

2 can be generated easily with the knowledge of the last α1

bits of T [1]. Assume that the ciphertext is C2 = (CB′
1 || CB′

2) with tag T2. Here
the last k bits of CB′

1 are all zero and CB′
2

⊕
MB′

2 tells us the last β bits of T [2]
when the first block of the message is MB′

1.
Now having this information, we will proceed to our forgery attack. The

message block that we will use is M3 = (MB′′
1 || MB′

2). Here we have |MB′′
1 | =

α1 and MB′′
1 is chosen such that

(
MB′′

1

⊕
α1 T [1]

)
|| 0k = CB′

1.

We also note that the second block is exactly the same used in M2. Then it is
easy to see that the ciphertext is C3 = (CB′′

1 || CB′
2) where CB′′

1 = MB′′
1

⊕
α1

T [1].
Furthermore, the tag is exactly T2.

This forgery attack requires 2 enquiries to the oracle with 4 message blocks.
So this attack provides a family of instances of COFFE that cannot provide
ciphertext integrity as claimed in Lemma 2 under nonce-misuse scenario.

524 I. Tjuawinata et al.

5.3 Combination of the Existing Attacks

In our previous two subsections, we change one of the parameters (α, β) while
letting the other constant. This is done to simplify the analysis. However, it is
possible for us to combine both attacks to generate new attack, that is, we change
α and β in the same time. Notice that by combining the two attacks, the “nonce-
misuse” requirement is not a must anymore. As discussed in the constant message
block size subsection, as long as we can find a triple of (key,nonce) pairs that
generate the same session key, we can launch the attack in the nonce-respecting
scenario.

6 Related Key Recovery Attack

Note that, in most of the attacks we have mentioned, we are assuming same
secret key. In this section, we will discuss the case with two different instances of
COFFE with different key length. As discussed in our observations, in this case
we assume that the longer key is obtained by extending the shorter key with
secret string. As we have discussed in the appendix of the full version paper [12],
there are (K1,V1), (K2,V2) pairs that leads to the same session key (with one of
them using one-byte domain value while the other using two-byte value) with
different key length. Here we will use the pairs with k-bits key length difference
and all of the difference are all in the nonce of the corresponding shorter length
key. Now assume that |LK1 | > |LK2 |.

We again choose the parameters α, β1, β2,LT1 , and LT2 as in Sect. 4. The
attack here is an adaptation of the distinguishing attack we proposed earlier.
We use the two messages M1 and M2 as described in Sect. 4. The difference
here is that for M2 with two bytes domain value and shorter key length, we will
enquire 2k different blocks of it with different k most significant bits of V2. Note
that if the k most significant bits of V2 coincide with the k-bit extension of the
secret key, then CB1 = CB′

1 and the last β1 bits of CB2 and the last β1 bits of
CB′

2 should agree. So by using this approach, we can guess the k-bits extension of
the secret key with the same complexity as exhaustive search for a k-bits secret
key.

As discussed in the distinguishing attack section, when we decide that the
guessed k-bits is wrong, the probability that the k-bits is actually the correct
extension key is 0. So there will not be a false negative. However, when the
k-bits we guess is wrong, the probability of false positive is, as discussed in the
distinguishing attack, 2α+β1 which is at least 2−255 which is negligible.

So for the related key recovery attack, to recover the k-bit extension of the
secret key in nonce-respecting scenario, we will need 2k + 1 plaintext-ciphertext
pairs with success probability approximately 1. Note that the exact same attack
can be adapted to the case when |K1| < |K2|.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 525

7 Conclusion

7.1 Attack Summary

From the discussion above, we see that the security claim for the nonce-misusing
scenario is not met for many different parameters. The same attack can be
adapted to give a distinguishing attack for the nonce-respecting scenario for
some subfamilies of the parameters mentioned above.

Lastly, having two different instances of COFFE with different key length
with the longer key being the extension of the shorter key may not be a good
idea. This is because if the parameter used belongs to the family we have found
earlier, the extension of the key can be recovered with exhaustive search in the
same way as if the secret key is just k bits.

In conclusion, COFFE does not satisfy any of the two security claims for
some of the parameters that we have discussed before. The problem arises from
the fact that concatenation of strings cannot be inverted uniquely and hence
giving the opportunity of having two different set of strings concatenated to the
same resulting strings.

7.2 Lesson Learned

Here we see that the the forgery and distinguishing attacks are feasible due to
the possibility to have different (key,nonce) pairs to generate the same session
key. This can be fixed by fixing the space for every given parameters. If some
parameters are variables (such as the message block size in COFFE), we should
ensure that the values of the variables get authenticated so as to prevent the
forgery attack.

References

1. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

2. Cogliani, S., Maimut, D.S., Naccache, D., do Canto, R.P., Reyhanitabar, R., Vau-
denay, S., Vizźar, D.: Offset Merkle-Damg̊ard (OMD) version 1.0 A CAESAR
proposal. In: CAESAR (2014). http://competitions.cr.yp.to/caesar-submissions.
html

3. Datta, N., Nandi, M.: ELmD v1.0. In: CAESAR (2014). http://competitions.cr.
yp.to/caesar-submissions.html

4. Dworkin, M.: Recommendation for BlockCipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. NIST Special Publication 800–38C,
May 2004

5. Dworkin, M.: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode(GCM) and GMAC. NIST Special Publication 800–38D,
November 2007

6. Forler, C., McGrew, D., Lucks, S., Wenzel, J.: COFFE: Ciphertext Output Feed-
back Faithful Encryption authenticated encryption without a block cipher. In:
Early Symmetric Crypto ESC (2013). https://eprint.iacr.org/2014/1003.pdf

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://eprint.iacr.org/2014/1003.pdf

526 I. Tjuawinata et al.

7. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

8. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, p. 310. Springer, Heidelberg (2001)

9. Meyer. C., Matyas. S.: Secure program load with manipulation detection code. In:
Proceedings of Securicom, vol. 88, pp. 111–130 (1988)

10. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

11. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security, pp. 196–205 (2001)

12. Tjuawinata, I., Huang, T., Wu. H.: Cryptanalysis of the Authenticated Encryption
Algorithm COFFE. Cryptology ePrint Archive, Report 2015/783 (2015). http://
eprint.iacr.org/

13. Wu, H., Huang, T.: JAMBU Lightweight Authenticated Encryption Mode
and AES-JAMBU. In: CAESAR (2014). http://competitions.cr.yp.to/
caesar-submissions.html

http://eprint.iacr.org/
http://eprint.iacr.org/
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

Author Index

Andreeva, Elena 197

Banik, Subhadeep 178
Batina, Lejla 277
Biryukov, Alex 102
Bogdanov, Andrey 178, 310

Camenisch, Jan 3
Canteaut, Anne 86, 373
Chen, Cong 293
Chou, Tung 145
Chowdhury, Dipanwita Roy 417

Das, Poulami 161
Dobraunig, Christoph 479
Duval, Sébastien 373

Ege, Barış 277
Eichlseder, Maria 479
Eisenbarth, Thomas 277, 293
Esgin, Muhammed F. 67

Gao, Si 352
Guajardo, Jorge 241
Güneysu, Tim 263
Guo, Zhiyuan 352

Higo, Haruna 44
Hu, Lei 462
Huang, Tao 510

Isshiki, Toshiyuki 44

Jean, Jérémy 493

Kalach, Kassem 331
Kara, Orhun 67
Kizhvatov, Ilya 310
Krenn, Stephan 3
Kunihiro, Noboru 227

Lallemand, Virginie 86
Lehmann, Anja 3
Leurent, Gaëtan 102, 217, 373
Lin, Dongdai 462

Lin, Li 122
Lu, Yao 462

Manzoor, Kamran 310
Mavromati, Chrysanthi 205
Mendel, Florian 479
Mennink, Bart 197
Mikkelsen, Gert Læssøe 3
Moradi, Amir 263
Mori, Kengo 44
Mukhopadhyay, Debdeep 161
Naya-Plasencia, María 86

Neven, Gregory 3

Obana, Satoshi 44

Paindavoine, Marie 25
Pedersen, Michael Østergaard 3
Peng, Liqiang 462
Perrin, Léo 102
Preneel, Bart 197

Regazzoni, Francesco 178
Roy, Debapriya Basu 161
Safavi-Naini, Reihaneh 331

Saha, Dhiman 417
Sasaki, Yu 397, 493
Sasdrich, Pascal 263
Schroé, Willem 197
Steinwandt, Rainer 293

Tischhauser, Elmar 310
Tjuawinata, Ivan 510

Vannet, Thomas 227
Vialla, Bastien 25
von Maurich, Ingo 293

Wang, Lei 493
Wang, Mingqiang 441
Witteman, Marc 310

Wu, Hongjun 510
Wu, Wenling 122, 352

Yasuda, Kan 397
Yavuz, Attila A. 241

Zhan, Tao 441
Zhang, Haibin 441
Zhang, Rui 462
Zheng, Yafei 122

528 Author Index

	Preface
	SAC 2015 The 22th Selected Areas in Cryptography Conference
	Stafford Tavares Lecture
	Trust Aware Traffic Security
	Invited Lecture
	Generic Attacks Against MAC Algorithms
	Contents
	Privacy Enhancing Technologies
	Formal Treatment of Privacy-Enhancing Credential Systems
	1 Introduction
	2 Notation
	3 Privacy ABC Systems
	3.1 Syntax
	3.2 Oracles for Our Security Definitions
	3.3 Security Definitions for PABCs

	4 Building Blocks
	4.1 Global Setup
	4.2 Commitment Schemes
	4.3 Privacy-Enhancing Signatures
	4.4 Revocation Schemes
	4.5 Pseudonyms

	5 Generic Construction of PABCs
	5.1 Formal Description of the Construction

	6 Conclusion
	References

	Minimizing the Number of Bootstrappings in Fully Homomorphic Encryption
	1 Introduction
	2 Background
	2.1 Graph Theory
	2.2 Noise Growth Model
	2.3 Complexity Theory
	2.4 Mixed Integer Linear Programming

	3 Complexity Analysis of the lmax-Minimizing Bootstrapping Problem
	3.1 A Polynomial Time Algorithm for lmax=2
	3.2 NP-Completeness of the lmax-Minimizing Bootstrapping Problem

	4 Minimizing Bootstrappings with Mixed Integer Linear Programming
	4.1 Defining Variables and Objective Function of the Program
	4.2 Linear Constraints
	4.3 Practical Experimentations

	5 Conclusion
	References

	Privacy-Preserving Fingerprint Authentication Resistant to Hill-Climbing Attacks
	1 Introduction
	2 Preliminaries
	2.1 Homomorphic Encryption Scheme
	2.2 Biometric Authentication and Fingerprint Minutiae

	3 Secure Biometric Authentication Schemes
	3.1 Algorithms and Procedures
	3.2 Security

	4 Proposed Scheme
	4.1 Construction
	4.2 Security

	5 Conclusion
	A Security of Proposed Scheme
	A.1 Proof of Theorem 1 (Template Protection Against Server)
	A.2 Proof of Theorem 2 (Template Protection Against Decryptor)
	A.3 Proof of Theorem 3 (Security for Authentication)
	A.4 Proof of Theorem 4 (Security Against Hill-Climbing Attacks)

	References

	Cryptanalysis of Symmetric-Key Primitives
	Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks
	1 Introduction
	2 High Level Description of Sprout
	3 A Key Recovery Attack
	4 A Time-Memory-Data Tradeoff Attack
	4.1 Detailed Workload for d=40
	4.2 Reducing the Data Complexity

	5 Conclusion and Discussion
	References

	Related-Key Attack on Full-Round PICARO
	1 Introduction
	2 Description of PICARO
	2.1 Round Function
	2.2 Key-Schedule

	3 Definitions and Notation
	4 Key-Schedule Analysis
	4.1 Keys Leading to Colliding Ciphertexts

	5 Related-Key Attack on the Full-Round PICARO
	5.1 A First 2R-Attack
	5.2 Optimizations

	6 Conclusion
	A PICARO Sbox
	References

	Cryptanalysis of Feistel Networks with Secret Round Functions
	1 Introduction
	2 Previous Attacks Against 5- and 6-Round Feistel Networks
	2.1 Differential Distinguishers
	2.2 Impossible Differential

	3 Yoyo Game and Cryptanalysis
	3.1 The Original Yoyo Game
	3.2 Theoretical Framework for the Yoyo Game
	3.3 The Yoyo Cryptanalysis Against 5-Round -Feistel Networks
	3.4 On the Infeaseability of Our Yoyo Game Against an -Feistel

	4 An Improvement: Using Cycles
	4.1 Cycles and Yoyo Cryptanalysis
	4.2 Different Types of Cycles
	4.3 The Cycle-Based Yoyo Cryptanalysis
	4.4 Attacking 6 and 7 Rounds

	5 Guess and Determine Attack
	5.1 Three-Round Property
	5.2 Four-Round Attack
	5.3 Five-Round Attack

	6 Integral attack
	7 Conclusion
	References

	Improved Meet-in-the-Middle Distinguisher on Feistel Schemes
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Reviews of Former Works
	2.3 Attack Scheme
	2.4 Feistel Ciphers with Efficient Tabulation Technique

	3 Automatic Search Algorithm Using Efficient Tabulation Technique
	3.1 Table Construction Phase
	3.2 Searching Phase

	4 Applications
	4.1 Applications to CLEFIA-192/256
	4.2 Applications to Camellia*-192/256

	5 Conclusion and Future Work
	References

	Implementation of Cryptographic Schemes
	Sandy2x: New Curve25519 Speed Records
	1 Introduction
	1.1 Serial Multipliers Versus Vectorized Multipliers
	1.2 Performance Results
	1.3 Other Fast Diffie-Hellman and Signature Schemes

	2 Arithmetic in F2255-19
	2.1 The Radix-251 Representation
	2.2 The Radix-225.5 Representation
	2.3 Why Is Smaller Radix Better?
	2.4 Importance of Using a Small Constant
	2.5 Instruction Scheduling for Vectorized Field Arithmetic

	3 The Curve25519 Elliptic-Curve-Diffie-Hellman Scheme
	3.1 Shared-Secret Computation
	3.2 Public-Key Generation

	4 Vectorizing the Ed25519 Signature Scheme
	4.1 Ed25519 Verification

	References

	ECC on Your Fingertips: A Single Instruction Approach for Lightweight ECC Design in GF(p)
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve Cryptography
	2.2 Single Instruction Processor

	3 SBN-OISC and Elliptic Curve Scalar Multiplication
	3.1 Stand-Alone SBN-OISC Processor
	3.2 Instruction Level Optimizations

	4 Lightweight Field Multiplier for SBN-OISC
	4.1 Integer Multiplication
	4.2 Modular Reduction

	5 Complete ECC SBN-OISC Processor
	6 Result and Comparison
	7 Conclusion
	A Appendix 1
	References

	Exploring Energy Efficiency of Lightweight Block Ciphers
	1 Introduction
	1.1 Contribution and Organization of the Paper

	2 A Case Study of Energy Consumption of AES 128
	3 CMOS Energy Consumption Model
	4 Application of the Model
	5 Discussion
	6 Conclusion
	References

	Short Papers
	Forgery and Subkey Recovery on CAESAR Candidate iFeed
	1 Introduction
	2 iFeed
	3 Forgery and Subkey Recovery Attack on iFeed
	4 Finding EK(P*) for any Plaintext P*
	5 Why the Attack Works
	6 Conclusion
	References

	Key-Recovery Attacks Against the MAC Algorithm Chaskey
	1 Introduction
	2 Preliminaries
	2.1 The Multi-user Setting
	2.2 Collision-Based Attacks Using the Distinguished Point Technique Against the Even-Mansour Scheme

	3 The MAC Algorithm Chaskey
	4 Collision-Based Attacks Against Chaskey
	4.1 Key-Recovery Attack in the Single-User Setting
	4.2 Key-Recovery Attack in the Multi-user Setting
	4.3 Variant of the Previous Attack with Cross Collisions

	5 Conclusion
	References

	Differential Forgery Attack Against LAC
	1 Introduction
	1.1 Description of the Attack
	1.2 Characteristics and Differentials

	2 Characteristics Following the Same Truncated Trail
	2.1 Related Work
	2.2 Computation of the Probability of a Truncated Characteristic
	2.3 Application to LAC
	2.4 Experimental Verification

	3 Conclusion
	References

	Privacy Preserving Data Processing
	Private Information Retrieval with Preprocessing Based on the Approximate GCD Problem
	1 Introduction
	1.1 Notations

	2 The 2-Dimension Database Construction
	2.1 Motivation
	2.2 Goldberg's Robust Protocol
	2.3 Security
	2.4 Communication Complexity

	3 Adding Precomputations to Goldberg's Robust Protocol
	3.1 Using Precomputations
	3.2 Decomposition over Base 2
	3.3 A Note on Goldberg's Computationally Secure Scheme

	4 Single Server PIR Using the Approximate GCD Assumption
	4.1 Computational Assumptions
	4.2 Complexity
	4.3 Precomputations
	4.4 Security
	4.5 Multiple Bits Recovery

	5 Implementation
	6 Conclusion
	References

	Dynamic Searchable Symmetric Encryption with Minimal Leakage and Efficient Updates on Commodity Hardware
	1 Introduction
	2 Related Work
	3 Preliminaries and Models
	4 Our Scheme
	5 Security Analysis
	6 Evaluation and Discussion
	References

	Side Channel Attacks and Defenses
	Affine Equivalence and Its Application to Tightening Threshold Implementations
	1 Introduction
	2 Background
	2.1 Threshold Implementation
	2.2 S-Box Decomposition
	2.3 Affine Equivalence

	3 Design Considerations
	3.1 Threshold Implementation of PRESENT Cipher
	3.2 Searching for the Affine Triples
	3.3 Selecting Precomputed Affine Triples
	3.4 Generating Affine Triples On-the-fly
	3.5 Comparison

	4 Evaluation
	4.1 Non-specific Statistical t-test
	4.2 Results

	5 Discussions
	References

	Near Collision Side Channel Attacks
	1 Introduction
	2 Backgound and Notation
	3 Side Channel Near Collision Attack
	3.1 Simulated Experiments on Unprotected AES Implementation
	3.2 Implementation Efficiency of NCA

	4 Near Collision Attack Against LEMS
	4.1 Leaking Set Collision Attack
	4.2 Leaking Set Near Collision Attack
	4.3 Simulated Experiments on AES Implementation with LEMS
	4.4 Experiments on DPA Contest V4 Traces
	4.5 Implementation Efficiency of the Attack

	5 Conclusions
	References

	Masking Large Keys in Hardware: A Masked Implementation of McEliece
	1 Motivation
	2 Background
	2.1 Moderate-Density Parity-Check Codes
	2.2 McEliece Public Key Encryption with QC-MDPC Codes
	2.3 FPGA Implementation of QC-MDPC McEliece
	2.4 Threshold Implementation

	3 Masking QC-MDPC McEliece
	3.1 Masked Syndrome Computation
	3.2 Masked Decoder

	4 Implementing a Masked QC-MDPC McEliece
	4.1 Overview of the Masked Implementation
	4.2 Masking Syndrome Computation
	4.3 Masking the Decoder

	5 Implementation Results
	6 Leakage Analysis
	6.1 Differential Power Analysis
	6.2 Leakage Detection
	6.3 Masking the Ciphertext?

	7 Conclusion
	References

	Fast and Memory-Efficient Key Recovery in Side-Channel Attacks
	1 Introduction
	2 Background on Key Enumeration Algorithms
	2.1 Probabilistic Key Enumeration (PKEA)
	2.2 Optimal Key Enumeration (OKEA)

	3 Our Score-Based Algorithm (SKEA)
	3.1 Score Concepts
	3.2 Enumerating Score Paths
	3.3 Efficiently Eliminating Incompatible Score Paths
	3.4 The SKEA Algorithm

	4 Comparison Methodology and Setting
	4.1 Methodology
	4.2 Experimental Setting

	5 Comparison Results
	6 Combining with Key Verification
	6.1 Optimized Parallel Key Verification
	6.2 Combined Performance Measurements

	References

	New Cryptographic Constructions
	An Efficient Post-Quantum One-Time Signature Scheme
	1 Introduction
	1.1 Contribution
	1.2 The Scheme High-Level Description
	1.3 Paper Organization

	2 Related Work
	3 Preliminaries
	3.1 Cover-Free Families
	3.2 Compact Knapsack Functions (SWIFFT)
	3.3 OTS Security Definition

	4 The New Scheme
	4.1 Scheme Description
	4.2 Security Proof
	4.3 Asymptotic Evaluation
	4.4 Concrete Parameters
	4.5 General CFF

	5 Conclusion and Future Work
	5.1 Technical Lemma
	5.2 SWIFFT Implementation
	5.3 Encoding Algorithm
	5.4 Winternitz OTS (W-OTS)
	5.5 Signing Many Messages

	References

	Constructing Lightweight Optimal Diffusion Primitives with Feistel Structure
	1 Introduction
	2 Preliminaries
	2.1 Branch Number
	2.2 Judgement Methods

	3 On Properties of Proposed Diffusion Layers
	3.1 The General Construction
	3.2 Upper Bound of the Branch Number
	3.3 Search Strategy for Software-Friendly Diffusion Layers

	4 Constructing Optimal Diffusion Layers with Feistel Structure
	4.1 Diffusion Layers for n = 4, 8, 16 and 32
	4.2 Results for Other Parameters
	4.3 Other Information from the Proposed Structure

	5 Searching for Involutory Optimal Diffusion Layers
	6 Diffusion Layers Constructed with Generalized Feistel Structure
	7 Comparison with Known Results
	8 Conclusion
	A Determination of Branch Number
	B M12 12 Constructed by [R5,P1,R4,R1,R1,R0]
	C M8 8 Constructed by [R0,R2,R1,R1]
	References

	Construction of Lightweight S-Boxes Using Feistel and MISTY Structures
	1 Introduction
	2 From Keyed Constructions to Unkeyed S-Boxes
	2.1 Main Cryptographic Properties for an S-Box
	2.2 Constructing S-Boxes from Smaller Ones

	3 S-Boxes Obtained from 3 Rounds of MISTY or Feistel
	3.1 Our Results
	3.2 Differential Uniformity of 3 Rounds of MISTY
	3.3 Linearity of 3 Rounds of MISTY

	4 Application to 8-Bit S-Boxes
	4.1 Differential Uniformity
	4.2 Linearity

	5 Constructions
	5.1 Feistel Network with Low Gate Count and Instruction Count
	5.2 Unbalanced MISTY Structure

	6 Conclusion
	References

	Authenticated Encryption
	A New Mode of Operation for Incremental Authenticated Encryption with Associated Data
	1 Introduction
	2 Our Goals
	3 Formalization
	3.1 Syntax
	3.2 Adversarial Model
	3.3 Security Notions

	4 Design Requirements
	5 Survey of Existing Schemes
	6 A Concrete Example
	6.1 Choice of Generic Constructions
	6.2 New Mode of Operation
	6.3 Security of the New Mode

	7 Discussion
	A Summary of Existing Schemes
	References

	Scope: On the Side Channel Vulnerability of Releasing Unverified Plaintexts
	1 Introduction
	2 Preliminaries
	2.1 The Design of PRIMATE
	2.2 Notations

	3 RUP in the Light of Side-Channels
	4 Analyzing APE Decryption in the Presence of Faults
	4.1 The Block Inversion Property
	4.2 Fault Diffusion in the Inverse PRIMATE Permutation
	4.3 The Bijection Lemma

	5 Scope: Differential Fault Analysis of APE Decryption (Exploiting Release of Unverified Plaintexts)
	5.1 The Inbound Phase
	5.2 Noise Handling
	5.3 The Outbound Phase

	6 Experimental Results and Discussion
	7 Conclusion
	A Some More Definitions
	B ReduceKernel Algorithm [15]
	C A Discussion on the Fault Invariants After -12 in R-12
	D Constructing the Factor State
	References

	On the Hardness of Mathematical Problems
	Bit Security of the CDH Problems over Finite Fields
	1 Introduction
	1.1 Our Contributions
	1.2 Further History and Discussion

	2 Preliminaries
	2.1 Notation
	2.2 Fourier Transform
	2.3 Error Correcting Codes: Definitions and Properties
	2.4 Review of List Decoding Approach for Hard-Core Predicates

	3 All Bits Security of the CDH Problems over Fp2
	4 Almost All Bits Security of the CDH Problems over Fpt for t>1
	4.1 Hardness of the d-th CDH Assumption over Fpt
	4.2 Bit Security of the CDH Problem over Fpt

	5 Conclusion
	References

	Towards Optimal Bounds for Implicit Factorization Problem
	1 Introduction
	1.1 Implicit Factorization Problem (IFP)
	1.2 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Lattice

	3 Our New Analysis for Implicit Factorization
	3.1 Analysis for Two RSA Moduli: The MSBs Case
	3.2 Extension to k RSA Moduli
	3.3 Extension to the LSBs Case.

	4 Revisiting Peng et al.'s Method
	5 Experimental Results
	References

	Cryptanalysis of Authenticated Encryption Schemes
	Forgery Attacks on Round-Reduced ICEPOLE-128
	1 Introduction
	2 Description of ICEPOLE
	2.1 Mode of Operation
	2.2 Permutation

	3 Search for Differential Characteristics
	3.1 Generalized Conditions and Propagation
	3.2 Search Strategy

	4 The Attack
	4.1 Basic Attack Strategy
	4.2 Creating Forgeries
	4.3 Exploiting the Padding
	4.4 Characteristics for the Permutation

	5 Conclusion
	References

	Analysis of the CAESAR Candidate Silver
	1 Introduction
	2 Description of Silver
	3 Nonce-Respecting Analysis
	3.1 Forgery on 4-Round Silver
	3.2 Forgery on 8-Round Silver

	4 Nonce-Repeating Analysis
	4.1 Forgery Attack
	4.2 Breaking Confidentiality
	4.3 Key-Recovery Attack on 8-Round Silver

	5 Conclusion
	References

	Cryptanalysis of the Authenticated Encryption Algorithm COFFE
	1 Introduction
	2 The COFFE Authenticated Cipher
	2.1 Notations
	2.2 Associated Data Processing
	2.3 Initialization
	2.4 Processing Plaintext
	2.5 Tag Generation
	2.6 Security Goals of COFFE

	3 Analysis on the COFFE Scheme
	3.1 Modification of
	3.2 Modification of

	4 Distinguishing Attack
	5 Ciphertext Forgery Attack
	5.1 Forgery Attack with Constant Message Block Size
	5.2 Forgery Attack with Dynamic Message Block Size
	5.3 Combination of the Existing Attacks

	6 Related Key Recovery Attack
	7 Conclusion
	7.1 Attack Summary
	7.2 Lesson Learned

	References

	Author Index

