
Chapter 4
Axion and Dilaton + Metric Emerge Jointly
from an Electromagnetic Model Universe
with Local and Linear Response Behavior

Friedrich W. Hehl

Universally coupled, thus gravitational, scalar fields are still
active players in contemporary theoretical physics. So, what is
the relationship between the scalar of scalar-tensor theories, the
dilaton and the inflaton? Clearly this is an unanswered and
important question. The scalar field is still alive and active, if
not always well, in current gravity research.

Carl H. Brans (1997)

Abstract We take a quick look at the different possible universally coupled scalar
fields in nature. Then, we discuss how the gauging of the group of scale transforma-
tions (dilations), together with the Poincaré group, leads to a Weyl-Cartan spacetime
structure. There the dilaton field finds a natural surrounding. Moreover, we describe
shortly the phenomenology of the hypothetical axion field. In the second part of our
essay, we consider a spacetime, the structure of which is exclusively specified by the
premetricMaxwell equations and a fourth rank electromagnetic response tensor den-
sity χi jkl = −χ j ikl = −χi jlk with 36 independent components. This tensor density
incorporates the permittivities, permeabilities, and the magneto-electric moduli of
spacetime. No metric, no connection, no further property is prescribed. If we forbid
birefringence (double-refraction) in this model of spacetime, we eventually end up
with the fields of an axion, a dilaton, and the 10 components of a metric tensor with
Lorentz signature. If the dilaton becomes a constant (the vacuum admittance) and
the axion field vanishes, we recover the Riemannian spacetime of general relativity
theory. Thus, the metric is encapsulated in χi jkl , it can be derived from it.
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4.1 Dilaton and Axion Fields

4.1.1 Scalar Fields

The Jordan-Brans1-Dicke scalar, the dilaton, the axion, the inflaton—scalar fields
everywhere—and eventually even one, the scalar, that is, the spinless Higgs boson
H 0, which has been found experimentally as heavy as some 134 protons. These
different scalar fields2 are not necessarily independent from each other, it could be,
for example, that the JBD-scalar can be identified with the dilaton (see [30]) or
the Higgs boson with the inflaton (see [6, 7]). Thus, the list of potentially existing
universally coupled scalar fields could be somewhat smaller. For the history of the
JBD-scalar, one can compare Brans [11] and Goenner [32] and, for the role of the
inflaton in different models, Vennin et al. [97].

4.1.2 Einstein Gravity and the Energy-Momentum Current

As remarked by Brans [10] in the quotation above, if universally coupled, the
scalar fields are intrinsically related to the gravitational field. In Einstein’s theory
of gravity, general relativity (GR), the gravitational potential is the metric gi j , with
i, j = 0, 1, 2, 3 as (holonomic) coordinate indices. As its source acts the symmet-
ric energy-momentum tensor Ti j of matter. This is a second rank tensor, which is
generated already in special relativity (SR) with the help of the group T (4) of trans-
lations in space and in time. Together with the Lorentz transformations SO(1, 3),
the translations T (4) build up the Poincaré group P(1, 3) as a semi-direct product:
P(1, 3) = T (4) � SO(1, 3). This is the group of motion in the Minkowski space of
special relativity, see [31].

Accordingly, if one desires to understand gravity from the point of view of the
gauge principle, the T (4) is an indispensable part of these considerations. However,
being only one piece of the P(1, 3), it is suggestive to gauge the complete P(1, 3).
This is exactly what Sciama and Kibble did during the beginning 1960s, see [73],
[9, Chap. 4], and [16].

1Carl Brans is one of the pioneers of the scalar-tensor theory of gravitation. This essay is dedicated
to Carl on the occasion of his 80th birthday with all best wishes to him and his family. During the
year of 1998, we had the privilege to host Carl, as an Alexander von Humboldt awardee, for several
months at the University of Cologne. I remember with pleasure the many lively discussions we had
on scalars, on structures of spacetime, on physics in general, and on various other topics.
2We skip here the plethora of scalar mesons,

π±,π0, η, f0(500), η
′(958), f0(980), a0(980), ...,

K ±, K 0, K 0
S , K 0

L , K ∗
0 (1430), D±, D0, D∗

0 (2400)
0, D±

s , ... ;
they are all composed of two quarks. Thus, the scalar mesons do not belong to the fundamental
particles.
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4.1.3 Einstein-Cartan Gravity: The Additional Spin Current

This gauging of the P(1, 3) extends the geometrical framework of gravity. The
4 translational potentials ei

α and the 6 Lorentz potentials Γi
αβ = −Γi

βα span a
Riemann-Cartan spacetime, enriching the Riemannian spacetime of GR by the pres-
ence of Cartan’s torsion; here α,β = 0, 1, 2, 3 are (anholonomic) frame indices.
Whereas the translational potentials couple to the canonical energy-momentum ten-
sor of matter Σα

i , the Lorentz potentials couple to the canonical spin current of
matter ταβ

i = −τβα
i .

The simplest version of the emerging Poincaré gauge models is the Einstein-
Cartan theory (EC), a viable gravitational theory competingwithGR if highestmatter
densities are involved. If lPlanck denotes the Planck length and λCompton the Compton
wave length of a particle, then deviations of the Einstein-Cartan from Einstein’s the-
ory are expected at length scales of below∼(l2Planck λCompton)

1/3; for protons, prevalent
in the early cosmos, it is about 10−29 m. According to Mukhanov [65], it is exactly
this order of magnitude down to which, according to recent cosmological data, GR
is known to be valid.

From a gauge theoretical point of view, the EC-theory looks more reasonable
than GR since the Einsteinian principles of how to heuristically derive a gravitational
theory were followed closely: they were just applied to fermionic matter instead of
to macroscopic point particles or Euler fluids or to classical electromagnetism, as
Einstein did.

Incidentally, in the EC-theory and, more generally, in the Poincaré gauge theory,
the Poincaré and, in particular, the Lorentz covariance are valid locally by construc-
tion, similar as in a SU(2) Yang-Mills theory, we have local SU(2) covariant. Kost-
elecký (priv. comm., Jan. 2016) agrees that the “Einstein-Cartan theory maintains
local Lorentz invariance.” Then the same is true for a Poincaré gauge theory, which
acts likewise in a Riemann-Cartan spacetime with torsion and curvature. However, in
an experimental set-up, according to Kostelecký [48], torsion must be considered as
an external field and, according to the “standard lore for backgrounds,” local Lorentz
invariance is broken. By the same token, an external magnetic field in electrodynam-
ics breaks local Lorentz invariance. This is, in my opinion, an abuse of language,
which conveys the wrong message that the existence of a torsion field violates local
Lorentz invariance.

If, for theoretical reasons, one wants to evade the emergence of the Riemann-
Cartan spacetime, then one can manipulate, in the underlying Minkowski space, the
intrinsic or spin part of the total angular momentum of matter in such a way that it
vanishes on the cost of increasing the orbital part of it by the corresponding amount,
see [63]. This procedure is called Belinfante-Rosenfeld symmetrization of the canon-
ical energy-momentum current, which, in general, is defined as an asymmetric tensor
by the Noether procedure. Accordingly, by symmetrization the energy-momentum
current is made fit to act as a source of the Einstein field equation. In this way, one
can effectively sweep the spin and the torsion under the rug and can live happily
forever in the paradise of the Riemannian spacetime of GR.
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Of course, in the end observations and/or experiments will decide which of the
two theories, GR or EC, will survive. We opt for the latter.

4.1.4 Dilaton Field and Dilation Current

The dilaton field φ entered life as a Nambu-Goldstone boson of broken scale invari-
ance, see Fujii in [30]. Thus, φ is related to dilat[at]ions or scale transforma-
tions in space and time. But the dilaton also occurs in theories of gravity (JBD)
and in string theory, see Di Vecchia et al. [21]. The P(1, 3), if multiplied (semi-
directly) with the scale group, becomes the Weyl group W (1, 3). This 11-parameter
group is an invariance group for massless particles in special relativity. The trans-
lations, via Noether’s theorem, generate the conserved energy-momentum tensor
Σi j , the Lorentz transformations the conserved total angular momentum tensor
Ji j

k := τi jk + x[iΣ j]k = −Jji
k , and the dilation the conserved total dilation current

Υ k := Δk + xlΣl
k ,

∂kΣi
k = 0 , (4.1)

∂k Ji j
k = ∂kτi j

k − Σ[i j] = 0 , (4.2)

∂kΥ
k = ∂kΔ

k + Σk
k = 0 , (4.3)

see [47, 59] particularly for Υ k . Thus, if a universal coupling is assumed, then φ
should have the intrinsic dilation currentΔk as its source; for theories inWeyl spaces
in which Δk does not play a role, see Scholz [86, 87].

There are numerous field theoretical models under way which, if scale or dilation
invariance is implemented, have conformal invariance as a consequence; for a more
recent review see Nakayama [66]. Hence, jumping to conformal invariance, before
one understood scale invariance, is probably not a very good strategy. For this reason
we confine ourselves here to scale invariance, to the dilaton, and to the 11-parametric
Weyl group. But it should be understood that the light cone is also invariant under the
15-parametric conformal group, see Barut and Ra̧czka [5] and Blagojević [8] and,
for a historical account, Kastrup [45].

Both currents, the intrinsic dilation currentΔk and the energy-momentum current
Σi

k are related to external groups, to the dilation (scale) and to the translation groups,
respectively. This is the reason for their universality.

4.1.5 The Weyl-Cartan Spacetime as a Natural Habitat
of the Dilaton Field

We only tried to make a strong case in favor of the EC-theory in order to repeat the
corresponding arguments for the dilation group. Gauging the Weyl group yields a
Weyl-Cartan spacetime. The classical paper in that respect is the one of Charap and
Tait, see [9, Chap. 8]. A universally coupled massless scalar field induces a Weyl
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covector Qi as the corresponding dilation potential willy nilly. This is the type of
spacetime Weyl used (with vanishing torsion) for his failed unified theory of 1918.
Here the Weyl space with the connection WΓ is resurrected for the dilation current,
instead of for the electric current, see [8]:

W∇ i g jk = −Qig jk , WΓi jk = RCΓi jk + 1

2
(Qig jk + Q jgki − Qkgi j ) ; (4.4)

RCΓ is the connection of the Riemann-Cartan space. Again, as in the case of the
Lorentz group, one can manipulate the total dilation current Υ k and can transform
its intrinsic part into an orbital part by modifying in this case the trace Σk

k of
the energy-momentum current. Then, again, one can stay within the realm of the
Riemannian space of GR, see Callan et al. [13].

As we mentioned already, the gauge theoretical answer was given by Charap and
Tait [15].Again,which approachwill succeed is eventually a question to experimental
verification.

We see, if the JBD-scalar is interpreted as a dilaton, then we would expect that the
Weyl-Cartan spacetime is its arena. Clearly this does only provide the kinematics of
the theory. The dynamicswould depend on the exact choice of the dilatonLagrangian.

Recently, Lasenby and Hobson [53] wrote an in-depth review of gauging theWeyl
group and, moreover, formulated an “extendedWeyl gauge theory.” Also within their
framework, the Weyl-Cartan space, and a straightforward extension of it, play an
important role, see also Haghani et al. [33]. Definite progress has also been achieved
in the study of equations of motion within the scalar tensor theories of gravity,
see Obukhov and Puetzfeld [76, 81, 82]. The breaking of scale invariance in the
more general approach of metric-affine gravity was studied in [34], for example; for
somewhat analogous breaking mechanisms, see [60–62].

4.1.6 Axion Field

Dicke did not only introduce in 1961, together with Brans [12], a scalar field into
gravity, but he also discussed, in 1964, and pseudoscalar or axial scalar field ϕ2 in
the context of gravitational theory, see [20, Appendix 4, p. 51, Eq. (7)].

Subsequently, in the early 1970s, Ni [67] investigated matter coupled to the grav-
itational field and to electromagnetism and looked for consistency with the equiv-
alence principle. He found it possible to introduce in this context a new neutral
pseudoscalar field accompanying the metric field, see also [4, 68–70]. Later, in
the context of the vacuum structure of quantum chromodynamics, a light neutral
pseudoscalar, subsequently dubbed “axion” was hypothesized, see Weinberg [98,
pp. 458–461]. Similar as Ni’s field, the axion couples also to the electromagnetic
field, see Wilczek’s paper [99] on “axion electrodynamics”.

The axion field is of a similar universality as the gravitational field. In other words,
the axion belongs to the universally coupled scalar fields. Let in electrodynamics,
Hi j = (D, H) = −H j i and Fi j = (E, B) = −Fji denote the excitation and the field
strength, respectively. The constitutive relation characterizing the axion field α(x)
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(in elementary particle terminology it is called A0) reads [35],

Hi j = 1

2
αεi jkl Fkl or

{
Da = αBa ,

Ha = −αEa ,
(4.5)

see also [37] for the corresponding formalism; here ε is the totally antisymmetric
Levi-Civita symbol with εi jkl = ±1, moreover, a = 1, 2, 3. Clearly, the axion
embodies the magnetoelectric effect par excellence. It is a pseudoscalar under 4-
dimensional diffeomorphisms.

In electrotechnical terms, the axion behaves like the (nonreciprocal Tellegen)
gyrator of network analysis, see [49, 100]; also the perfect electromagnetic con-
ductor (PEMC) of Lindell and Sihvola [58, 93] represents an analogous structure.
Metaphorically speaking, as we see from (4.5), the axion “rotates” the voltages
(B, E) into the currents (D, H). In SI, we have the units [B] = Vs/m2, [E] =
V/m; [D] = As/m2, [H] = A/m. Thus, [α] = 1/ohm = 1/Ω carries the physical
dimension of an admittance. Now, in the Maxwell Lagrangian, we find an additional
piece ∼ α(x)εi jkl Fi j Fkl ∼ α(x)E · B, a term, which was perhaps first discussed
by Schrödinger [89, pp. 25–26]. If α were a constant, the field equations would not
change.

As we already remarked, α is a 4-dimensional pseudoscalar. The same is true for
the von Klitzing constant RK ≈ 25 813Ω . And this covariance is a prerequisite for
its universal meaning. Phenomenologically, the quantum Hall effect (QHE) can also
be described by a constitutive law of the type (4.5), see [35, Eq. (B.4.60)].

It is possible to apply the constitutive relation (4.5) directly to a solid, too. By
the evaluation of experiments we have shown [37] that in the multiferroic Cr2O3

(chromium sesquioxide) we have a nonvanishing axion piece of up to ∼10−3λ0,
where λ0 is the vacuum admittance of about 1/377Ω . This fact demonstrates that
there exist materials with a nonvanishing, if small, (pseudoscalar) axion piece. This
may be considered as a plausibility argument in favor of a similar structure emerging
in fundamental physics. If the A0 were found, it would not be an unprecedented
structure, see in this context also Ni et al. [72].

In matter-coupled N = 2 supergravity models, there are examples in which a
dilaton and an axion are contained simultaneously in the allowed particle spectrum,
see Freeman and Van Proeyen [29, p. 451]. However, in the next section we will
demonstrate that in a fairly simple classical model of an electromagnetic universe,
the axion can emerge jointly with a dilaton and the metric.

More recently, there have been attempts to relate the axion field to the torsion
of spacetime, see, for example Mielke et al. [64] and Castillo-Felisola et al. [14].
To us, this assumed link between the internal symmetry U (1) of the axion with the
external translation symmetry T (4) related to the torsion appears to be artificial and
not supported by physical arguments.
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4.2 An Electromagnetic Model Universe

4.2.1 The Premetric Maxwell Equations

We consider a 4-dimensional differentiable manifold. The electromagnetic field is
specified by its excitationHi j , a 2nd rank antisymmetric contravariant tensor density,
and by its field strength Fi j , a 2nd rank antisymmetric covariant tensor; the electric
current J k is a contravariant vector density, see Post [80]. On this manifold, the
Maxwell equations read

∂kHik = J k , ∂[i Fjk] = 0 ; (4.6)

the brackets [ ] denote antisymmetrization of the corresponding indices with 1/3! as
a factor, see [88]; for the Tonti-diagram of (4.6), compare [95, p. 315].

In none of these equations the metric tensor gi j nor the connection Γi j
k are

involved. Still, these equations are valid and are generally covariant in theMinkowski
space of special relativity, in the Riemann space of general relativity, and in the
Riemann-Cartan orWeyl-Cartan space of gravitational gauge theories. TheMaxwell
equations (4.6) as such, apart from a historical episode up to 1916, see [22, 23], have
no specific relation to the Poincaré or the Lorentz group.

Perlick [78] has shown that the initial value problem in electrodynamics can
be particularly conveniently implemented by means of the premetric form of the
Maxwell equations.

In contrast to most textbook representations, no “comma goes to semicolon rule”
is required. The Maxwell equations (4.6) are just universally valid for all forms of
electrically charged matter. Incidentally, this represents also a simplifying feature for
numerical implementations. The price one has to pay is to introduce, asMaxwell did,
the excitationHi j , besides Fi j , as an independent field quantity and to note that it is
a tensor density. From a phenomenological point of view, this is desirable anyway,
since the excitation has an operational definition of its own, namely as charge/length2

(D) and current/length (H), respectively, which is independent from the definition
of the field strength as force/charge (E) and force/current (B). For a rendition in the
calculus of exterior differentiable forms, one can compare with the axiomatic scheme
in [18, 35], see also [19].

Let us stress additionally that Hi j , Fi j , and J k can be defined in a background
independent way.

TheMaxwell equations (4.6) are based on the conservation laws of electric charge
Q := ∫

dσi jkεi jkl J l (unit in SI “coulomb”) and magnetic flux Φ := ∫
dσi j Fi j

(unit in SI “weber”). Charge Q and flux Φ are 4-dimensional scalars. They induce
the structure of the excitationHi j and the field strength Fi j . In this context, the field
strength is operationally defined via the Lorentz force density fi = Fi jJ j , the current
being directly observable and the force and its measurement known frommechanics.
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The charge and its conservation is the anchor of electrodynamics. Its current J k

defines, by means of the Lorentz force density fi , the field strength Fi j , which allows
to define the magnetic flux Φ. Faraday’s induction law is an incarnation of magnetic
flux conservation.

Some people have no intuition about the conservation of a quantity that is defined
in 3dimensions by integrationover a 2-dimensional area∼ ∫

dσa Ba , sinceweusually
associate conservation with a quantity won by 3-dimensional volume integration,
namely ∼ ∫

dV ρ. Some mathematics education about dimensions will enable us to
understand the induction law as a “continuity equation.”

Summing up: the premetric Maxwell equations are a close-knit structure, the 4-
dimensional diffeomorphisms covariance holds it all together. Clearly, a metric as
well as a connection are alien to the Maxwell equations.

4.2.2 A Local and Linear Electromagnetic Response

In order to fill the Maxwell equations with life, one has to relate Fi j toHi j :

Hi j = Hi j (Fkl) (4.7)

If we assume this functional to be local, that is,Hi j (x) depends only on Fkl(x), and
linear homogeneously, then we find

Hi j = 1

2
χi jkl Fkl with χi jkl = −χi jlk = −χ j ikl ; (4.8)

here the field χi jkl(x) represents the electromagnetic response tensor density of rank
4 and weight+1, with the physical dimension [χ] = 1/resistance. An antisymmetric
pair of indices corresponds, in 4 dimensions, to 6 independent components. Thus,
χi jkl can be understood as a 6 × 6 matrix with 36 independent components.

We want to characterize the electromagnetic model spacetime by this response
tensor field χi jkl(x) with 36 independent components.3 This is the tensor density
defining the structure of spacetime. It transcends the metric and/or the connection.

We decompose the 6× 6 matrix into its 3 irreducible pieces. On the level of χi jkl ,
this induces [17, 35]

χi jkl = (1)χi jkl + (2)χi jkl + (3)χi jkl . (4.9)

36 = 20 ⊕ 15 ⊕ 1 .

3Schuller et al. [90] took theχi jkl -tensor density,which arises so naturally in electrodynamics, called
the tensor proportional to it “areametric”, and generalized it to n dimensions and to string theory. For
reconstructing a volume element, they have, depending on the circumstances, two different recipes,
like, for example, taking the sixth root of a determinant. From the point of view of 4-dimensional
electrodynamics, the procedure of Schuller et al. looks contrived to us.
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The third part, the axion part, is totally antisymmetric (3)χi jkl := χ[i jkl] = α εi jkl ,
with the pseudoscalar α, see also [83]. The skewon part is defined according to
(2)χi jkl := 1

2 (χ
i jkl − χkli j ). Under reversible conditions, (4.8) can be derived from

a Lagrangian, then (2)χi jkl = 0. The principal part (1)χi jkl fulfills the symmetries
(1)χi jkl = (1)χkli j and (1)χ[i jkl] = 0.

The local and linear response relation now reads

Hi j = 1

2

(
(1)χi jkl + (2)χi jkl + α εi jkl

)
Fkl , (4.10)

and, split in space and time [35, 37],

Da = (εab − εabc nc)Eb + ( γa
b + sb

a − δa
b sc

c)Bb + α Ba , (4.11)

Ha = (μ−1
ab − εabcmc)Bb + (−γb

a + sa
b − δb

asc
c)Eb − α Ea ; (4.12)

here εabc = εabc = ±1, 0 are the 3-dimensional Levi-Civita symbols. The 6 permit-
tivities εab = εba , the 6 permeabilities μab = μba were already known to Maxwell.
The 8magnetoelectric pieces γa

b (its trace vanishes, γc
c = 0)were found since 1961,

see Astrov [2]. Eventually, the hypothetical skewon piece [35] carries 3 permittiv-
ities na , the 3 permeabilities ma , and the 9 magnetoelectric pieces sa

b. Equivalent
response relations were formulated by Serdyukov et al. [91, p. 86] and studied in
quite some detail, see also de Lange and Raab [52].

Suppose we have as special case a vacuum spacetime described by a Riemannian
metric gi j . Then the response tensor turns out to be

χi jkl = (1)χi jkl = 2λ0
√−ggi[kgl] j and Hi j = λ0

√−gFi j , (4.13)

with the vacuum admittance λ0 ≈ 1/377Ω . Thus, we recover known structures,
and we recognize that the relation (4.8) represents a natural generalization of the
vacuum case. The metric gi j can be considered as some kind of a square root of the
electromagnetic response tensor χi jkl .

We should keep in mind that a local and homogeneous electromagnetic response
like (4.8) can be, if the circumstances require it, generalized to nonlocal and/or
to nonlinear laws. Examples of nonlocal laws have been proposed by Bopp and
Podolsky4 and by Mashhoon.5 Nonlinear laws are due to Heisenberg and Euler,6

Born and Infeld,7 and Plebański.8 Fresnel surfaces for the nonlinear case were found
byObukhov andRubilar [77], for example.More recently, Lämmerzahl et al. [51] and
Itin et al. [44] investigated electrodynamics in Finsler spacetimes. In the premetric

4See [28, Sect. 28-8].
5See [35, Sect. E.2.2].
6See [35, Sect. E.2.3].
7See [35, Sect. E.2.4].
8See [35, Sect. E.2.5].
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framework, this corresponds to a nonlocal constitutive law, see [44, Eq. (3.29)],
somewhat reminiscent of the Bopp-Podolsky scheme.

4.2.3 Propagation of Electromagnetic Disturbances

The obvious next step in evaluating the physics of our model of spacetime is
to look how electromagnetic disturbances propagate in this spacetime. One can
either consider the short wave-length limit of the electromagnetic theory, the WKB-
approximation, or one can study, as we will do here, the propagation of electromag-
netic disturbances with a technique developed by Hadamard; for a general outline,
see [96, Chap. C].

Hadamard describes an elementary wave as a process that forms a wave surface.
Across this surface, the electromagnetic field is continuous, but the derivative of
the field has a jump. The direction of a jump is given by the wave covector. The
subsequent integration produces the rays, with the wave vectors as tangents to rays,
see for our case [35, 40, 46, 74]. In the meantime, our methods have been improved,
see [3, 24, 27].

Out of the electromagnetic response tensor density we can define, with the help
of the covariant Levi-Civita symbol εi jkl = ±1, 0, the premetric “diamond” (single)
dual and the diamond double dual, respectively:

χ	 i j
kl := 1

2
χi jcdεcdkl , 	χ	

i jkl := 1

2
εi jabχ

	 ab
kl = 1

4
εi jabχ

abcdεcdkl . (4.14)

The covariant Levi-Civita symbol carries weight −1 and χabcd weight +1. Thus, the
double dual has weight +1, too. Performing the double dual apparently corresponds
to a lowering of all four indices of χabcd—and this is achieved without having access
to a metric of spacetime.

After this preparation, it is straightforward to define the (premetric) 4th rank
Kummer tensor density, which is cubic in χ, as [3]

Ki jkl[χ] := χaibj 	χ	
acbdχ

ckdl . (4.15)

It has weight +1 and obeys the symmetry Ki jkl = Kkli j .

At each point in spacetime, the wave covectors qi = (ω, k) of the electromag-
netic waves span the Fresnel wave surfaces, which are quartic in the wave covectors
according to

Ki jkl[χ] qi q j qkql = K(i jkl)[χ] qi q j qkql = 0 . (4.16)

The Tamm-Rubilar (TR) tensor density [35, 84], with the conventional factor 1/6,
is defined by
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Gi jkl [χ] := 1

6
K(i jkl)[χ] = 1

6
χa(i j |b 	χ	

acbdχ
c|kl)d . (4.17)

It is totally symmetric and carries 35 independent components. By straightforward
algebra it can be shown that the axion field drops out from the TR-tensor:

Gi jkl [χ] = Gi jkl [ (1)χ + (2)χ] ; (4.18)

see in this connection also [39] and the references given there. The effect of the
skewon piece on light propagation has been studied in [75]. Ni [68] was the first to
understand that the axion field doesn’t influence the light propagation in the geomet-
rical optics limit. Note that (1)χ + (2)χ has 20+ 15 independent components, exactly
as G—probably not by chance.

Accordingly, the totally symmetric TR-tensor Gi jkl[χ], with its 35 independent
components, can, up to a factor, be observed by optical means, that is, the TR-
tensor—in contrast to theKummer tensor, as far aswe know—has a direct operational
interpretation.

4.2.4 Fresnel Wave Surface

The (generalized) Fresnel equation

Gi jkl[χ] qi q j qkql = 0 , (4.19)

determines a Fresnelwave surface. A trivial test for checking the correctness of (4.19)
is to substitute the response tensor for theMaxwell-Lorentz vacuum electrodynamics
(4.13)1 into the TR-tensor of (4.19). One finds straightforwardly (gi j qi q j )

2 = 0, that
is, two light cones that collapse onto each other. The decomposition of (4.19) into
space and time can be found in [35, (D.2.44)].

For illustration, following [3, 85], see also [41],wewill display a classical example
of such a surface. In Eqs. (4.11) and (4.12), we choose an anisotropic permittivity
tensor with three different principal values and assume trivial vacuum permeability,
whereas all magnetoelectric moduli—with the possible exception of the axion α—
vanish,

(εab) =
⎛
⎝ε1 0 0
0 ε2 0
0 0 ε3

⎞
⎠ and (μ−1

ab ) = μ−1
0

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠ . (4.20)

Substitution into the Fresnel equation yield the quartic polynomial

(α2x2 + β2y2 + γ2z2)(x2 + y2 + z2)

− [
α2(β2 + γ2)x2 + β2(γ2 + α2)y2 + γ2(α2 + β2)z2

] + α2β2γ2 = 0 , (4.21)
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with the 3 parameters9 α := c/
√

ε1, β := c/
√

ε2, γ := c/
√

ε3, and with c =
1/

√
ε0μ0 as the vacuum speed of light.

The corresponding surface is drawn in Fig. 4.1. As an example of a Fresnel surface
for a more exotic material, we provide one for the so-called PQ-medium of Lindell
[56]. It may turn out that this response tensor can only be realized with the help
of a suitable metamaterial, see [92]. Corresponding investigations are underway by
Favaro [25].

Let us shortly look back on what we have achieved so far: We have formulated the
Maxwell equation in a premetric way. For the response tensor only local and linear
notions are used, no distances or angles were mentioned nor implemented. Under
such circumstances, electromagnetic disturbances propagate in a birefringent way in
accordance with the Fresnel wave surfaces, such as presented in Figs. 4.1 and 4.2.

How can we now bring in distances and angles, which are concepts omnipresent
in everyday life? The answer is obvious, we have to suppress birefringence.

4.2.5 Suppression of Birefringence: The Light Cone

Looking at the figures, it is clear that we have to take care that both shells in each
Fresnelwave surface become identical spheres. Then light propagates like in vacuum.
For this purpose, we can solve the quartic Fresnel equation (4.19) with respect to
the frequency q0, keeping the 3-covector qa fixed. One finds four solutions, for
the details please compare [38, 50]. To suppress birefringence, one has to demand
two conditions. In turn, the quartic equation splits into a product of two quadratic
equations proportional to each other. Thus, we find a light cone gi j (x) qi q j = 0 at
each point of spacetime.

Perhaps surprisingly, we derived also the Lorentz signature, see [35, 42, 43]. This
can be traced back to theLenz rule,which determines the relative sign of the two terms
in the induction law, as compared to the relative sign in the Ampère-Maxwell law.
The Lorentz signature can be understood on the level of classical electrodynamics,
no appeal to quantum field theory, which is widespread in the literature, is necessary.

Globally in the cosmos, birefringence is excluded with high accuracy, see the
observations of Polarbear [1] and the discussion of Ni [71].

4.2.6 Axion, Dilaton, Metric

At the premetric level of our framework, besides the principal piece, first the skewon
and the axion fields emerged. Only subsequently the light cone was brought up. The
skewon field was phased out by our insistence of the vanishing birefringence in the
vacuum. Accordingly, the axion field and the light cone survived the suppression of
the birefringence.

9Here, in this context, α is not the axion field!.
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Fig. 4.1 Fresnel wave surface for the permittivities and the permeabilities of Eq. (4.20). It had
been drawn by Jaumann for an optically biaxial crystal, see Schaefer [85, p. 485]. This crystal has
the property of birefringence (or double refraction). The origin at x = y = z = 0 is the point in
3-dimensional space from where the wave covectors k originate. They end on the Fresnel wave
surface. Their modulus is proportional to the reciprocal of the phase velocity ω/k. In other words,
up to a sign, we have usually in one direction two different phase velocities. This is an expression
of the birefringence. Only along the optical axes I and II, we have only one wave covector. The
upper half depicts the exterior shell with the funnel shaped singularities, the lower half the inner
shell. The two shells cross each other at four points forming cusps
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Fig. 4.2 Fresnel wave surface for a PQ-medium of Lindell [56, 57]. Using Lindell’s dyadic version
of the Fresnel equation [54, 55], Sihvola [94] drew the Fresnel wave surface by using Mathematica.
Our image was later created by Favaro [25] in a similar way, again with Mathematica. For the wave
covector, we have qi = (ω, k1, k2, k3)

The light cone does not define the metric uniquely. Rather an arbitrary function
λ(x) is left over:

λ(x) gi j (x) qi q j = 0 . (4.22)

The light cone is invariant under the 15-parametric conformal group. The 4 proper
conformal transformation correspond to a reflection at the unit circle and, as such,
are of a nonlocal nature. As a consequence, if two frames are related to each other by
a proper conformal transformation and one frame is inertial, the other one is acceler-
ated with respect to the former one. Accordingly, there is an operational distinction
possible between a proper conformal and a dilation or scale transformation. Thus,
only the 11 parameter Weyl subgroup of the 15 parameter conformal group is based
on local transformations.

If we compare our result in (4.22) with vacuum response in (4.13), we recog-
nize, not forgetting the axion field, that we find the following response equation for
vanishing birefringence:

Hi j = [ λ(x)︸︷︷︸
dilaton

√−g gik(x) g jl(x) + α(x)︸︷︷︸
axion

εi jkl ] Fkl . (4.23)
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Because of the presence of the dilation within theWeyl group, it is natural to identify
the function λ(x) with the dilaton field.10

In the calculus of exterior differential forms, see [35], the twisted excitation 2-form
H = 1

2 εi jklHkldxi ∧ dx j and the untwisted field strength 2-form F = 1
2 Fi j dxi ∧

dx j , together with the twisted current 3-form J = 1
3!εi jklJ ldxi ∧ dx j ∧ dxk , obey

the Maxwell equations d H = J and d F = 0. By means of the metric, we can
introduce the Hodge star � operator. Then the response relation (4.23) becomes even
more compact [26, 36]:

H = [λ(x) � + α(x)]F . (4.24)

Equations (4.23) and (4.24) represent the end result of investigating an electro-
magnetic spacetime model with local and linear response and without birefringence.
The three fields λ(x), gi j (x), and α(x) come up together with a reasonable interpre-
tation. At least in the way we defined them here, λ(x), gi j (x), and α(x) are all three
descendants of electromagnetism.

Aswe have argued in Sect. 1.5, the dilaton seems to be at home in theWeyl-Cartan
spacetime. Our results (4.23) or (4.24) are consistent with this expectation, that is,
we believe that these equations are valid in a Weyl-Cartan spacetime.

What are we told by experiments and observations? The axion A0 has not been
found so far, so we can provisionally put α = 0. Moreover, under normal circum-
stances, the dilaton seems to be a constant field and thereby sets a certain scale, that
is, λ(x) = λ0 = const, where λ0 is the admittance of free space, the value of which
is, in SI-units, ≈1/(377 Ω). Under these conditions, we are left with the response
relation of conventional Maxwell-Lorentz electrodynamics,

Hi j = λ0
√−g Fi j or H = λ0

�F . (4.25)

The possible generalizations are apparent.

4.3 Discussion

Gravity, coupling to all objects carrying energy-momentum, is a truly universal inter-
action. Electromagnetism is only involved in electrically charged matter. What is
curious and what we still do not understand is that the gravitational potential gi j

emerges in an electromagnetic context, that is, in studying electromagnetic dis-
turbances, we can suppress birefringence, and then the light cone emerges. And
the light cone is essentially involved in general relativity. In other words, we

10In the early 1980s, Ni [69] has shown the following: Suppressing the birefringence is a neces-
sary and sufficient condition for a Lagrangian based constitutive tensor to be decomposable into
metric+dilaton+axion in a weak gravitational field (weak violation of the Einstein equivalence prin-
ciple), a remarkable result. Note that Ni assumed the existence of a metric. We, in (4.23), derived
the metric from the electromagnetic response tensor density χi jkl .

http://dx.doi.org/10.1007/978-3-319-31299-6_1
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cannot formulate a general-relativistic theory of gravity unless some electric charge
is around: electromagnetic waves are a necessary tool for constructing general rela-
tivity.

Perlick is not concerned about it. He observes that [79] “...the vacuum Maxwell
equations are but one example that have the light cones of the spacetime metric
for their characteristics. The same is true of the Dirac equation, the Klein-Gordon
equation and others....” Yes, this is true. However, if a metric is not prescribed, we
cannot even formulate Dirac’s theory. In contrast, in premetric electrodynamics, if
a local and linear response tensor density is assumed, we can derive the metric, as
we discussed above. In this sense, electrodynamics is distinguished from Dirac’s
theory—and in this, and only in this sense, the premetric Maxwell equations are
more fundamental than the Dirac equation.

Accordingly, there seems to be a deep connection between electromagnetism and
gravity, even though gravity is truly universal, in contrast to electrodynamics.
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