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Abstract Computationally Efficient SLAM (CESLAM) was proposed to improve
the accuracy and runtime efficiency of FastSLAM 1.0 and FastSLAM 2.0. This
method adopts the landmark measurement with the maximum likelihood, where the
particle state is updated before updating the landmark estimate. Also, CESLAM
solves the problem of real-time performance. In this paper, a modified version of
CESLAM, called adaptive computation SLAM (ACSLAM), as an adaptive SLAM
enhances the localization and mapping accuracy along with better runtime perfor-
mance. In an empirical evaluation in a rich environment, we show that ACSLAM
runs about twice as fast as FastSLAM 2.0 and increases the accuracy of the location
estimate by a factor of two.
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1 Introduction

Simultaneous localization and mapping (SLAM) is a crucial part of robot naviga-
tion in unknown environments. It is necessary, whenever a robot needs to locate
itself and build a map of the environment simultaneously [1]. Using the landmark
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measurements and odometry of the robot, we can calculate the robot’s position and
build a map of the environment. There are two popular approaches to SLAM:
EKF-SLAM [2] and FastSLAM [3]. The EKF-SLAM is based on extended Kalman
filter (EKF), using landmark measurement and odometry information to calculate
the EKF’s covariance matrix, and then conducts the prediction and correction to
finish the localization and mapping. But EKF-SLAM can only converge at a fast
speed when the robot system is linear. Several attempts were proposed to address
this problem for nonlinear systems. For example, Dissanayake et al. describe a
strategy for deleting unsuitable landmarks to improve the accuracy of robot’s
position and landmark estimation [4]. There are some soft-computing approaches
[5–7] that also enhance the EKF-SLAM algorithm. Due to computational com-
plexity, increasing the number of landmarks results in squaring the size of the
covariance matrix.

Section 2 presents an overview of related work. Section 3 presents a detailed
description of the ACSLAM algorithm. Empirical results of several realistic
environments are shown in Sect. 4. The paper concludes with Sect. 5.

2 Related Work

In order to speed up EKF-SLAM, some FastSLAM algorithms are proposed that
use Rao-Blackwell normalization on particle filters (RBPF) [8]. The FastSLAM
algorithm separates the SLAM problem into localization and mapping phases,
where localization uses particle filters (PF) and the mapping uses EKF. Unlike
EKF-SLAM, FastSLAM allows each landmark to be calculated by a single EKF,
respectively. This can avoid the cost of dealing with large matrices. FastSLAM has
two versions, FastSLAM 1.0 [3] and FastSLAM 2.0 [1]. FastSLAM 1.0 only uses
odometry to estimate the robot’s position, while FastSLAM 2.0 adds the recent
sensor measurements to improve estimation accuracy. Though FastSLAM 2.0
seems better than FastSLAM 1.0, the run-time of FastSLAM 2.0 can increase
dramatically when the number of landmarks increases.

CESLAM [9] is proposed to solve this problem. Taking advantage of FastSLAM
1.0, and FastSLAM 2.0, CESLAM improves the estimation accuracy and compu-
tational efficiency. In the beginning, CESLAM only uses odometry information to
estimate the robot’s position and updates the particle state and landmark informa-
tion when a measurement has a maximum likelihood. This paper proposes a
modified SLAM algorithm derived from CESLAM, called adaptive computation
SLAM (ACSLAM) which improves runtime performance of the algorithm.
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3 ACSLAM for Mobile Robots

The number of particles is a crucial parameter in FastSLAM 1.0, FastSLAM 2.0,
and CESLAM. Too few particles will result in poor localization accuracy or
aliasing problems, but too many particles will result in poor runtime, since the
runtime grows linearly with the number of particles.

The proposed ACSLAM generates a probabilistic guess of the robot’s position
similar to CESLAM. The main difference between the new ACSLAM algorithm
and CESLAM is that ACSLAM tries to reduce the runtime of the algorithm by
dynamically changing the number of particles.

To improve the runtime, ACSLAM uses the effective sample size (ESS) [10] to
decide the next generation’s particle number. If the value of ESS is small, it means
the difference between each particle’s importance weight is large. Then, we will
increase the particle number. If the value of ESS is large, it means the differences
between each particle’s importance weight is small. Next, we decrease the particle
number. Figure 1 shows the flowchart of the proposed ACSLAM. Detailed
descriptions are listed below:

3.1 Generate a New Proposal

For particle m = 1, …, M, consider the control input ut to generate a probabilistic
guess of the robot’s position

xmt ∼ p xtjxmt− 1, ut
� � ð1Þ

3.2 Data Association

Use the robot’s position and the information of landmarks k = 1 …, N in particle
m to generate estimated measurement.

z ̂mt = g x ̂mt , θ
m
k, t− 1

� � ð2Þ

If the estimated measurement is out of the laser range, then we will set the estimated
measurement’s likelihood as zero and skip further calculation. Otherwise, we use
the estimated measurement to compute the likelihood by using the following
equation.

pk =
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πSkj jp exp −

1
2

zt − zk̂, tð ÞT Skð Þ− 1 zt − zk̂, tð Þ
� �

ð3Þ
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Where zt is an actual measurement gathered by a sensor, z ̂k, t is the estimated
measurement, and Sk is the innovation covariance matrix:

Hθk = ∂g xmt , θ
m
k, t− 1

� �
∂̸θmk, t− 1

Sk =HθkΣ
m
k, t− 1H

T
θk
+Rt

ð4Þ

If any of the estimated measurement’s likelihood is larger than the threshold, then
the largest one will be used to update the landmark. If not, that means the landmark
was not detected before, then we add it as a new landmark to the particle.

3.3 Updating the Particle State and the Landmark Estimates

As CESLAM, if the likelihood is larger than the threshold, this means the landmark
has been recorded. Before updating the landmark, we have to use the value to
correct the particle’s state first. This is to make sure that our particle would not be
updated to the wrong position.

Hxt = ∂g xmt , θ
m
k, t− 1

� �
∂̸xmt

∑
m

xt , t
= HT

xt Skð Þ− 1Hxt + ∑
m

xt , t

 !− 1
2
4

3
5

− 1

umxt , t = ∑
m

xt , t
HT

xt Skð Þ− 1 zt − z ̂mt
� �

+ umxt , t− 1

ð5Þ

Next, we use the particle’s state to calculate the new estimated measurement to
update the landmark estimation by EKF.

K = ∑
m

nt , t− 1
HT

θn ̂
S− 1
n ̂

umn ̂, t = umn̂, t− 1 +K zt − z ̂mt
� �

∑
m

n ̂, t
= I −KHθn ̂ð Þ ∑

m

n ̂, t− 1

ð6Þ

We add the new landmark to the particle if there is no likelihood larger than the
threshold.

Nm
t =Nm

t− 1 + 1

umn ̂, t = g− 1 xmt , ẑn ̂, t
� �

∑
m

n̂, t
= HT

θn ̂
R− 1
t Hθn ̂

� �− 1
ð7Þ
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3.4 Calculating Importance Weight and Effective
Sample Size

We calculate the importance weight by the following equation:

wm
t =

target distribution
proposal distribution

=
pðxt,mjzt, ut, ntÞ

p xt− 1,mjzt− 1, ut− 1, nt− 1ð Þp xmt jxt− 1,m, zt, ut, nt
� � ð8Þ

Then, we use the importance weight to calculate the effective sample size (ESS).

ESS=
M

1+ cv2t
ð9Þ

M is the particle number, cv2t is the importance weight’s coefficient of variation.

cv2t =
1
M

∑
M

i=1
MwðiÞ− 1ð Þ2 ð10Þ

According to the value of ESS, we decrease resampling particle number if ESS is
large, and we increase the resampling particle number if ESS is small.

3.5 Resampling

After each particle is assigned an importance weight and we have the next gener-
ation’s particle number, a tournament selection [11] mechanism is adopted for
resampling.

4 Simulation Results

To evaluate the performance, we compare FastSLAM 1.0 and FastSLAM 2.0 with
the proposed method. The software environment uses Visual Studio 2010 with the
OpenCV library. The map can separate in sparse and compressed block, while the
dimension is 500 * 500 pixels. A robot can move 10 pixels or rotate 15° per
step. Since real world application of the odometry consists of errors, therefore, the
Gaussian noise is introduced with distance and rotation. The simulation of laser
range is 180°. The lasers and each landmark in the particle will generate 181
measurements. The maximum distance of the laser range finder is 100 pixels.
A robot will need to move 100 steps along the path in each run.
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In the proposed method, the maximum particle number we set is 20, and the
minimum particle number we set is 10. Once we run the process, the average
particle number is 16, then we set the other algorithm’s particle number as 16.

Figure 2 depicts the simulation results of the three different SLAM algorithms.
The pink points are the true path of the robot trajectory, and gray points are the
localization from the best particle. The green circles are the particle, and the yellow
circle which is overlapped with the convergent green particles is the robot. The
black dots with brown circle are the landmarks, and the red circles are estimations
of landmarks. The laser range scanning is shown by blue lines. As the simulation
shown in Fig. 2, the robot’s localization and landmark estimation in the ACSLAM
are more accurate than FastSLAM 1.0 and FastSLAM 2.0. Figure 3 shows the
relation between each step and the localization error. Apparently, the compressed
block, three algorithms’ localization errors are small before counting to the forty
fifth step. But after the forty fifth step, the proposed method can adjust the particle
number according to the environment as the landmark becomes sparse. As a result,
the proposed method outperforms others.

Table 1 shows the localization results of the simulation in different SLAM
algorithms. The ‘localization error’ represents the error between estimated and true
robot’s position; ‘localization RMSE’ means the RMSE between estimated and true
robot’s position. In the table, the performance of ACSLAM in localization is better
than FastSLAM 1.0 and FastSLAM 2.0.

Fig. 2 Simulation results of different SLAM algorithms. a FastSLAM 1.0. b FastSLAM 2.0.
c ACSLAM

Fig. 3 Simulation’s
localization error
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Table 2 shows the runtime efficiency in different SLAM algorithms. Since the
computational time can be reduced, the proposed method performs better than
FastSLAM 1.0 and FastSLAM 2.0.

5 Conclusion

In this paper, we propose an extension of CESLAM. The goal is to improve the
accuracy, when the particle’s measurement has a maximum likelihood in the known
landmark. We update the particle state before updating landmark estimation. The
proposed algorithm also uses the effective sample size to adjust the particle
calculation number so that we can improve the runtime efficiency. As a result, the
proposed ACSLAM adopts the advantages of FastSLAM 1.0, FastSLAM 2.0, and
CESLAM to ensure better estimation accuracy and runtime in the simulations.

Acknowledge This research is partially supported by the “Aim for the Top University Project” and
“Center of Learning Technology for Chinese” of National Taiwan Normal University (NTNU),
sponsored by the Ministry of Education, Taiwan, R.O.C. and the “International Research-Intensive
Center of Excellence Program” of NTNU and Ministry of Science and Technology, Taiwan, under
Grants no. MOST 104-2911-I-003-301 and MOST 103-2221-E-003-027.

References

1. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: an improved particle
filtering algorithm for simultaneous localization and mapping that provably converges. In:
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1151–1156 (2003)

2. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int.
J. Robot. 5, 56–58 (1986)

Table 1 Simulation
localization results of different
SLAM algorithms

SLAM
algorithms

Localization
error (pixel)

Localization
RMSE (pixel)

FastSLAM 1.0 4.17 3.26
FastSLAM 2.0 1.51 1.16
ACSLAM 1.09 0.59

Table 2 Runtime efficiency
of different SLAM algorithms

SLAM algorithms Runtime (s)

FastSLAM 1.0 62.32
FastSLAM 2.0 100.67
ACSLAM 58.84

82 D.-W. Kung et al.



3. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the
simultaneous localization and mapping problem. In: Proceedings of AAAI National
Conference on Artificial Intelligence, pp. 593–598 (2002)

4. Dissanayake, G., Williams, S.B., Durrant-Whyte, H., Bailey, T.: Map management for
efficient simultaneous localization and mapping (SLAM). Auton. Robots 12, 267–286 (2002)

5. Chatterjee, A.: Differential evolution tuned fuzzy supervisor adapted, extended Kalman
filtering for SLAM problems in mobile robots. Robotica 27, 411–423 (2009)

6. Chatterjee, A., Matsuno, F.: A neuro-fuzzy assisted extended Kalman based approach for
simultaneous localization and mapping (SLAM) problems. IEEE Trans. Fuzzy Syst. 15,
984–997 (2007)

7. Chatterjee, A., Matsuno, F.: A geese PSO tuned fuzzy supervisor for EKF based solutions of
simultaneous localization and mapping (SLAM) problems in mobile robots. Expert Syst. Appl.
37, 5542–5548 (2010)

8. Murphy, K.: Bayesian map learning in dynamic environments. Neural Inf. Proc. Syst. 12,
1015–1021 (2000)

9. Yang, C.-K., Hsu, C.-C., Wang, Y.-T.: Computationally efficient algorithm for simultaneous
localization and mapping (SLAM). In: Proceedings of the IEEE International Conference on
Networking, Sensing and Control (ICNSC), pp. 328–332 (2013)

10. Liu, J.S., et al.: A theoretical framework for sequential importance sampling and resampling.
In: Doucet, A., De Freitas, N., Gordon, N.J. (eds.) Sequential Monte Carlo in Practice.
Springer (2001)

11. Miller, B. L., Goldberg, D. E.: Genetic Algorithms, Tournament Selection, and the Effects of
Noise, IlliGAL Report No. 95006 (1995)

Adaptive Computation Algorithm for Simultaneous … 83


	7 Adaptive Computation Algorithm for Simultaneous Localization and Mapping (SLAM)
	Abstract
	1 Introduction
	2 Related Work
	3 ACSLAM for Mobile Robots
	3.1 Generate a New Proposal
	3.2 Data Association
	3.3 Updating the Particle State and the Landmark Estimates
	3.4 Calculating Importance Weight and Effective Sample Size
	3.5 Resampling

	4 Simulation Results
	5 Conclusion
	Acknowledge
	References


