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Abstract Robotics projects of novice engineering students commonly focus on
modeling predetermined reactive behaviors. This paper proposes an alternative
approach, namely engaging students in creation of and experimentation with
learning robots. To verify the feasibility of such approach, we conducted a case
study, in which two novice engineering students constructed a humanoid robot and
implemented a robot learning experiment. The project assignment was to build a
humanoid robot capable to learn to adapt its posture while lifting various weights.
The students successfully performed the project. Their robot learned from successes
and failures of its trials while referring to analytical analysis made by a remote
computer. Our case study showed that practice in teaching a robot to learn had
significant advantages: It introduced the students to advanced concepts of robotics
and AI, taught to perform engineering experiments by combining empirical and
analytical methods, and inspired thinking about learning and meaning-making.

1 Introduction

There is an open debate on different strategies of educational robotics [1]. It has
become a common practice to engage novice engineering students in projects
focused on learning-by-doing activities of robot construction [2]. Constructivist
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educators point to the need to deepen learning-by-doing toward learning-by-
thinking activities of selecting, organizing, and integrating knowledge [3]. Educa-
tors and researchers call to implement alternative approaches that will make
robotics an attractive and meaningful subject for different learners [4].

In this paper, we propose and explore an approach in which the challenge of
implementation of robot learning is used to inspire students’ thinking. Accordingly,
the student is assigned to implement a robot task in which the desired robot
behavior cannot be preprogrammed, but has to evolve during its autonomous
operation. In such a project, the student learns how to teach the robot to learn. This
brings the student closer to the frontier of robotics and AI research, as development
of learning capabilities of autonomous robots is one of the challenges faced by
robot intelligence technology.

Robot competitions are an effective way to promote research in this area by
posing standard benchmark problems in a real-world context [5]. One example of
such a competition is the FIRA HuroCup, which poses a number of challenging
tasks to be performed by humanoid robots. The goal of combining different tasks in
the HuroCup is to avoid exploiting narrow specialized hardware solutions and
encourage development of more sophisticated AI-based solutions [6].

One of the main problems in the HuroCup is keeping the humanoid robot stable
throughout the tasks. This problem becomes challenging when the robot has to lift
and carry unknown weights. Weight lifting is a benchmark problem of humanoid
robotics that has been studied in general and in the HuroCup context, based on an
analytical approach [7]. The analytical solutions cannot take into account all factors
influencing the robot stability in the real world. They also tend to be mathematically
complicated and difficult for understanding for novice students.

The project performed by our students addresses this problem by taking the
empirical approach based on robot learning through self-directed experiments and
basic analytical analysis. The humanoid robot implements a robot learning proce-
dure to experientially determine a right posture for lifting a given weight.

This project is the first step of our ongoing educational study aimed to develop a
strategy for engaging novice engineering students in an experiential inquiry into
robot learning. The questions we asked at this step were as follows:

1. Can the chosen Bioloid kit be used to support student experimentation in robot
learning?

2. What skills can students learn through such experimentation?
3. Can a project that focuses on robot learning foster students’ awareness and

understanding of learning?

The project was conducted at the Technion Center for Robotics and Digital
Technology Education (http://edu-tech.technion.ac.il/). The participants were two
female students, a freshman and a sophomore, majoring in mechanical engineering
at MIT. They came to the Technion in the framework of the MIT international
student internship program MISTI (http://misti.mit.edu/student-programs/
internships).
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In the following sections, we will present the project and the conclusions that we
made with regard to the above questions.

2 Pedagogy of Robot Learning

The starting point in our project was the discussion of how people learn [8]. We
considered the constructivist approach to education and how it can be interpreted in
the context of robot learning. The following features of learning were emphasized:

• Learners are not passive recipients of information. They construct their
knowledge through activities and interaction with the environment.

• Learning includes receiving, retaining, retrieving, and processing information.
• Knowledge is constructed in the form of internal (mental) representations of

information from the environment with inferences about its meaning.
• Learners update the internal representations in light of new experiences.
• Learning leads to and is expressed in changes in learner’s behavior.
• Learning is determined by the activity, its context, and outcomes.
• Learning is shaped through social interaction and discourse.
• While the learner is responsible for acquisition of knowledge, the teacher’s

responsibility is for creating a safe environment for learning.

One more educational concept that was discussed with the students was the
concept of experiential learning. According to Kolb [9], experiential learning is the
process in which knowledge is developed through four stages: concrete experience,
reflective observation, abstract conceptualization, and active experimentation. The
learner experiences a situation and then reflects on how he can use this experience
to gain knowledge and a greater understanding of the world. This reflection
motivates the learner to conceptualize a new idea or to change his previous
understanding of a concept. The learner then applies these abstract concepts to the
world around him.

In this project, we guided the students to apply the discussed educational con-
cepts to the design of learning behaviors of the robot. For robots, experiential
learning is necessary to adapt to unfamiliar situations and to react to changes in
known situations and their environment [10]. In robot learning, machine learning is
combined with robotics in an effort to impart upon robots cognitive and
decision-making skills similar to those of humans. While there are many different
ways to implement robot learning, our study focuses primarily on adaptive learning
through experience. This involves the robot using trials to gather data to better
understand how it should interact with its environment.

Specifically, we explore the task of weight lifting in which the robot is per-
forming a series of trials to lift unknown weights. This task is especially topical for
humanoid robots, as it severely undermines the stability of the robot that depends
on the complex dynamics of the entire robot’s body [11].
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3 Robot Development

The humanoid robots in this project were constructed using the ROBOTIS Bioloid
Premium kit (http://en.robotis.com/index/product.php?cate_code=121010). From
our experience [12], the kit is a suitable platform for rapid prototyping of humanoid
robots. This practice opens opportunities for students, even novices, to explore
advanced concepts in robotics that have previously only been available to
professionals.

3.1 Construction of the Robot

Following the instructions in the kit manual, the students constructed a humanoid
robot with 18 servomotors, an IR sensor, an accelerometer, and a sound sensor
(Fig. 1a). The code provided by the company included some basic preprogrammed
movements, such as walking and standing up. Additional motions were pro-
grammed using the RoboPlus software. To enable communication between the
robot and the remote computer, the students used the ROBOTIS BT-210 Bluetooth
module. They developed the necessary software for the remote computer as a
Python script.

3.2 Development of the Virtual Robot

A virtual model of the robot was developed using PTC Creo Parametric CAD
modeling software (http://www.ptc.com/cad/3d-cad/creo-parametric). We imported

Fig. 1 a The humanoid robot and b the virtual model of the robot
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into Creo the CAD models of the Bioloid parts available on the ROBOTIS Web site
and assembled the virtual robot in the same way as the physical one. The completed
virtual robot’s joints were assigned the same range of motion as the physical robot.
The virtual robot can thus serve as a useful instructional tool in learning to
manipulate the physical robot. The Creo-based virtual model, used for the analytical
analysis of robot stability, is presented in Fig. 1b.

3.3 Stability Analysis

A simplified model of the robot was used to analyze the stability of the robot
holding different weights. In this model, the robot is represented by six blocks, each
containing several motors and regarded as a point mass. The horizontal distances
between the center of mass of each block and the edge of the robot’s foot were
measured in the position shown in Fig. 1b. The moment about point A was cal-
culated as a function of the tilt angle of the robot. This simple analytical analysis
allowed us to estimate the critical angle at which the robot would fall over for any
given weight.

The critical angle α can be found from the equilibrium condition about point A:

MA = 0 = TðL sinðαÞ+ xiÞ+2mðd1 + d2 + d3 + d4 + d5 + 2L sinðαÞÞ+Pðd6 +L sinðαÞÞ
ð1Þ

α = sin− 1 − ðTxi +2mðd1 + d2 + d3 + d4 + d5Þ+Pd6Þ
LðT +P+4mÞ

� �
ð2Þ

where m is the mass of each motor, T is the mass of robot’s torso (g), P is the mass
of plate with added weight (g), L is the distance from hip rotation to CM of torso (m),
and d1–d6 are distances from edge of robot’s foot to the 6 blocks (m). The calcu-
lated angle value α is used in the analytical solution.

4 The Experiment

In the experiment, the robot learns to select the best posture to lift a given weight.
During this learning process, two modes of operation are applied. In the data
gathering mode, the robot experiments with lifting unknown weights, while each
experiment is logged in the remote computer. In the advising mode, the robot tries
to lift a measured weight by setting its standing posture following an advice from
the remote computer.
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4.1 Data Gathering Mode

In this mode, the robot tests its ability to hold a measured weight at various postures
of body tilt angle. The robot evaluates its success or failure and sends the test results
to a remote computer database. In each discrete experiment, the robot is given an
unknown weight, while sitting down. As the hardware does not provide means to
measure the weight directly, the measurement is carried out indirectly. We found
that when the motors are idle and loaded by an external torque, the angular velocity
of the motor axis is roughly proportional to this torque. Based on this finding, we
act in the following way. The robot first records the original angle of the two motors
in its shoulder joints and then makes those motors idle for a specific time interval
(half a second). It then measures the new angles of the motors and calculates the
resulting angle displacements. Using the mentioned proportionality, the robot cal-
culates the amount of weight that it holds in its hands. After that, the robot performs
weight lifting trials for body tilt angles ranging from 10° to 40°, each time
attempting to stand up from the sitting position. Success or failure of each trial is
self-evaluated by the robot. Here, success means that the robot succeeded to stand
up holding the weight, while failure means that the robot falls over. The robot
recognizes falling using an abrupt change in the values in its accelerometer.

A remote computer interacts with the robot and performs data collection, pro-
cessing, and analysis. Following repeated trials, data for varying angles and weights
are sent via Bluetooth to the computer and populate a database. The data sent after
each trial include the weight lifted, the tilt angle taken, and the status of success or
failure in performing the task. The trials are plotted on a graph, which has weight on
the horizontal axis and tilt angle on the vertical axis. In such graph, ‘× ’ marks
represent failure and dots represent success, as shown in Fig. 2. For example, the
dot at 174 g and 24° represents a trial where the robot succeeded to lift a weight of

Fig. 2 Graph of a sample
gathering data experiment
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174 g at a tilt angle of 24°. On the other hand, the ‘× ’ at 210 g and 10° represents a
failed attempt to hold 210 g at a tilt angle of 10°.

The graph is automatically updated each time the robot completes a trial. On the
same axes, the script plots a function that describes the relationship between the
critical angle α and the weight.

4.2 Advising Mode

In this mode, the robot just measures a weight and sends the value to the remote
computer. The computer uses the empirical data of robot trials, accumulated in the
database, together with the analytical solution, and sends a recommended tilt angle
to the robot. The robot uses that tilt angle in a trial and determines its success or
failure as described above. It sends the result of the trial to the computer, to be
added to the database. Figure 2 presents sample data collected from one experiment
involving 31 trials and the calculated angle weight dependency. One can see the
discrepancies between the analytical and the actual successes and failures. Some of
the experimental results presented in Fig. 2 appear to be duplicate measurements of
roughly the same weight, for instance at an angle of 10° and a weight of 90 and
100 g. This occurs because of inaccuracies in weight measurement done by the
robot.

The data gathered in Fig. 2 were used to advise the robot, and the results of 10
trials in advising mode are shown in Fig. 3.

The advising algorithm had an 80 % success rate, and we can see from the graph
that the advice improved as the robot provided feedback on the previous advice. For
example, we see the ‘× ’ at a weight of 334 g and an angle of 17°. After this failed
trial, the robot was given the same weight again. It measured the weight as slightly

Fig. 3 Graph of a sample
advising mode experiment
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heavier (374 g), but the robot successfully held the weight because it increased the
angle to 20°, as we can see with the dot at that point. The advising algorithm was
100 % successful for weights within the range for which the robot already had
gathered data (0–300 g). The only failures occurred for weights that were beyond
this range (334 and 443 g).

5 Discussion and Conclusion

Back to the first of the three questions posed in Sect. 1, the study shows that the
humanoid robot constructed from the ROBOTIS Bioloid Premium kit can be used
for experimentation in robot learning. To implement the robot learning project
described in the previous sections, the basic platform of the Bioloid kit can be
enhanced by the addition of the ROBOTIS BT-210 Bluetooth module and a remote
computer used for data storage, analysis, and communication. We found Python to
be an effective programming tool for this remote computer. The robot adapts its
posture through the experiential learning cycle. At the concrete experience step, it
gains experience by gathering experimental data through trials of lifting different
weights. At the reflective observation step, the robot records and communicates to
the computer information about successes and failures of the trials. At the con-
ceptualization step, it receives from the computer results of data analysis, based on
the comparison between the experimental results and the analytical calculation.
Lastly, at the active experimentation step, the robot takes what it has learned from
its past experiences and accordingly adapts its behavior.

To summarize, laboratory experiments confirmed that the robot is capable of
improving its posture to successfully perform the weight-lifting task.

Regarding the second question, our follow-up showed that the project strongly
engaged both students and exposed them to different areas of modern engineering
that were new for them and are traditionally introduced in advanced studies. The
students learned and applied concepts in robot control, remote communication,
CAD-based analysis, human–robot interaction, and others. They acquired skills of
engineering experimentation in determining basic mechanical properties such as
center of mass, torque, and balance. They performed analytical calculations,
compared results to the actual experimental results, and discussed discrepancies.
The students developed skills of computer and robot programming. They got
practical experience in presenting the main ideas of the project to robotics
researchers, professional engineers, and school students.

To the third question, the study gave indications of an increase in students’
awareness and understanding of learning following their participation in the project.
The students implemented the discussed features of learning in the robot behavior
and designed the experiment as an experiential learning cycle. The students pre-
sented their project to a group of 34 American high school pupils participating in
the Technion international summer outreach program. They also developed an
instructional unit on the subject.
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The presented educational experiment is the first step in developing a strategy for
engaging novice engineering students in an experiential inquiry into robot learning.
Following its positive results, the authors plan to develop a curriculum to expose
advanced high school students to robot learning and basic engineering concepts.

The robot learning experiment can be enhanced by using an Internet-of-Things
platform to facilitate Web-based communication between multiple robots and a
shared database. Further stability analysis can be performed with the virtual robot
and CAD software.
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