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Abstract Explicit representations are constructed for the resolvents of the operators
of the form B DbACQ1 and B DbA2CQ2, wherebA andbA2 are linear closed operators
with known resolvents and Q1 and Q2 are perturbation operators embedding inner
products of bA and bA2 as they appear in integro-differential equations and other
applications.
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Introduction

The present article is concerned with the study of generalized boundary value
problems containing differential or integro-differential operators by means of the
resolvent operator. Specifically, we derive explicit representations for the resolvent
operators for three classes of problems.

The first problem involves a linear operator defined in the complex Hilbert space
H of the form

B DbA C Q1 DbA �
m
X

iD1

gihbA �; �iiH ; D.B/ D D.bA/; (1)

where bA is a linear closed, not necessarily bounded, operator, g1; g2; : : : ; gm are
linearly independent elements of H, �1; �2; : : : ; �m 2 H and h�; �iH denotes the
inner product in H. Note that the operator B can be viewed as a perturbation of
the operator bA by the operator Q1. Moreover, the operators bA, B are extensions of
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a minimal operator A0 � bA with D.A0/ D D.bA/ \ ker Q1. We prove that when
the resolvent set �.bA/ and the resolvent operator R�.bA/ D .bA � �I/�1 of bA are
known then we can find the resolvent set �.B/ \ �.bA/ and the resolvent operator
R�.B/ D .B � �I/�1 of B in closed form.

The second problem encompasses an operator of the kind

B DbA2 C Q2 DbA2 �
m
X

iD1

sihbA�; �iiH �
m
X

iD1

gihbA2�; �iiH ; D.B/ D D.bA2/; (2)

where in addition si 2 H; i D 1; : : : ; m. We show that the resolvent set �.B/\�.bA2/

and the resolvent operator R�.B/ D .B � �I/�1 of the operator B can be evaluated
when their counterparts �.bA2/ and R�.bA2/ D .bA2 � �I/�1 of the simpler operatorbA2

are known.
A special form of the second problem with interest is obtained when we take gi 2

D.bA/ and si D Bgi, i D 1; : : : ; m. In this case B D B2, i.e. B becomes a quadratic
operator. The explicit formula for the resolvent operator R�2.B/ for �2 2 �.B/ is
constructed from the resolvent operators R�.bA/ and R��.bA/ for ˙� 2 �.bA/.

Resolvent operators are associated with the spectral theory and their origin goes
as back as to the early days of functional analysis, see, e.g., [13] and [10]. When
the resolvent R�.B/ of an operator B exists and is provided in an analytic form, it
is valuable for the study of the operator B itself and the solution of the problems
.B � �I/x D f ; f 2 H and Bx D f .� D 0/. Perturbation theory for linear operators
was first introduced by Rayleigh and Schrödinger [17] and founded later by
Kato [10]. Since then it occupies an important place in theoretical physics,
mechanics and applied mathematics. Extension theory was initiated by von
Neumann [19] and developed further by [12, 23] and [1], commonly known as
Birman–Kreı̌n–Vishik theory, as well as [3, 5, 11, 14, 21, 22] and many others.
Integro-differential equations appear in the mathematical modeling in biology,
engineering, telecommunications and economics. Of interest here are the following
works. In [4, 6, 7, 15, 16] and [8], resolvent methods have been employed to
study a class of integro-differential equations, occurring in heat conduction
and viscoelasticity, where bA in (1) is a specific operator and Q1 is a Volterra
operator. By the same means certain integro-differential equations, arising in
quantum-mechanical scattering theory, where bA is a special operator and Q1 is
a one-dimensional perturbation (m D 1), have also been investigated, see, e.g., [2].
The resolvent and the spectrum of perturbed operators of the type (1) where bA is
a symmetric operator and hbA �; �iiH D aih �; giiH; ai 2 R have been studied by [9]
and the references therein. Finally, a Fredholm type boundary integral equation in
elasticity with hbA �; �iiH D pi.�/ has been considered in [18].

In the rest we make use of the following notation. Namely, F D
.�1; : : : ; �m/; G D .g1; : : : ; gm/ and AF D .A�1; : : : ; A�m/ are vectors of
Hm. We write Ft and hAx; FtiHm for the column vectors col.�1; : : : ; �m/ and
col. hAx; �1iH; : : : ; hAx; �miH /, respectively. We denote by M .resp: Mt/ the
conjugate (resp. transpose) matrix of M and by hGt; FiHm the m � m matrix whose
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i; j-th entry is the inner product hgi; �jiH. Notice that hGt; FiHm defines the matrix
inner product and has the properties:

hGt; FCiHm D hGt; FiHmC; hGt; FiHm D hFt; Gi t
Hm ; (3)

where C is an m � k constant complex matrix. We denote by Im the m � m identity
matrix and by 0m the m � m zero matrix. It is understood that D.A/ and R.A/ stand
for the domain and the range of A, respectively.

The paper is organized as follows. In sections “Resolvent of Extensions of
a Minimal Operator,” “Resolvent of Extensions of the Square of a Minimal
Operator,” and “Resolvent of Quadratic Operators” we develop the theory for
acquiring analytic formulas for the resolvent operators corresponding to each of
the three classes of problems presented. In section “Resolvent of Extensions of
a Minimal Operator” we apply the theory to three Fredholm type, generalized
integro-differential boundary value problems to demonstrate the power of the theory
developed.

Resolvent of Extensions of a Minimal Operator

In this section we consider the operator B in Eq. (1) and determine the necessary
and sufficient conditions for the existence of the resolvent R�.B/ and we find it in
an explicit form provided R�.bA/ is known. In [22] the perturbed operator B has been
studied as the extension of the minimal operator A0, i.e.

A0x DbAx for x 2 D.A0/ D fx 2 D.bA/ W hbAx; FtiHm D 0tg

We begin by giving the definition of the resolvent. Let A W H ! H be a linear
operator. We say that � 2 C belongs to the resolvent set �.A/ of A if there exists
the operator R� D R�.A/ D .A � �I/�1 which is bounded and D.R�/ is dense in H
( D.R�/ D H ). The operator R�.A/ is called the resolvent of A. We recall from [13,
Lemma 7.2-3] the following result.

Lemma 1. Let X be a complex Banach space, A W X ! X a linear operator, and
� 2 �.A/. Assume that (a) A is closed or (b) A is bounded. Then the resolvent
operator R�.A/ of A is defined on the whole space X and is bounded.

The proposition below is well known and is utilized here several times.

Proposition 1. If in a Hilbert space H,bA W H ! H is a closed linear operator and
� 2 �.bA/, then

bAR�.bA/ D I C �R�.bA/ and bAR�.bA/ D R�.bA/bA: (4)

We now prove the key theorem for obtaining the resolvent of the operator B.
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Theorem 1. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, � 2 �.bA/ and B W H ! H the operator defined by

Bx DbAx � GhbAx; FtiHm ; D.B/ D D.bA/; (5)

where the vectors G D .g1; : : : ; gm/, with g1; : : : ; gm being linearly independent
elements, Ft D col.�1; : : : ; �m/ 2 Hm and x 2 D.B/. Let the operator

B�x D .B � �I/x D f ; D.B�/ D D.bA/; (6)

where I is the identity operator on D.B/ and f 2 H. Then:

(i) � 2 �.B/ if and only if

det L� D det
h

Im � hFt; bAR�.bA/GiHm

i

¤ 0: (7)

(ii) �.B/ \ �.bA/ D f� 2 �.bA/ W det L� ¤ 0g.
(iii) For � 2 �.B/ \ �.bA/ the resolvent operator R�.B/ is defined on the whole

space H, is bounded and has the representation

R�.B/f D R�.bA/f C R�.bA/GL�1
� hbAR�.bA/f ; FtiHm : (8)

Proof. (i)–(iii) Suppose that det L� ¤ 0. Since D.bA/ D D.bA � �I/ D D.B � �I/
then from (6) for x 2 D.bA/ we have

.bA � �I/x � GhbAx; FtiHm D f ; 8f 2 H: (9)

Since bA is closed, the resolvent operator R�.bA/ is defined on the whole
space H and is bounded as it is implied by Lemma 1. By applying first the
operator R�.bA/ and then the operatorbA on (9) we get

x � R�.bA/GhbAx; FtiHm D R�.bA/f ; (10)

bAx �bAR�.bA/GhFt;bAxiHm D bAR�.bA/f : (11)

By taking the inner products of both sides of (11) with the components of
the vector Ft and by observing that the inner product is conjugate linear in
the second factor, see Eq. (3), we obtain

hFt; bAxiHm � hFt; bAR�.bA/GiHmhFt; bAxiHm D hFt; bAR�.bA/f iHm ;
h

Im � hFt; bAR�.bA/GiHm

i

hFt; bAxiHm D hFt; bAR�.bA/f iHm ;

L�hFt; bAxiHm D hFt; bAR�.bA/f iHm : (12)

Hence, since det L� ¤ 0;
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hFt; bAxiHm D L�1
� hFt; bAR�.bA/f iHm ;

hbAx; FtiHm D L�1
� hbAR�.bA/f ; FtiHm : (13)

By substituting (13) and x D .B � �I/�1f into (10), we have

x D R�.bA/f C R�.bA/GL�1
� hbAR�.bA/f ; FtiHm ; (14)

from where Eq. (8) follows. From Proposition 1 we have

bAR�.bA/f D .I C �R�.bA//f

and since R�.bA/ is defined on the whole space H and is bounded, it follows
that the resolvent operator R�.B/ is also defined on the whole space H and
is bounded. Consequently, � 2 �.B/.

Conversely, let � 2 �.B/ \ �.bA/. We will show that det L� ¤ 0.
Assume that det L� D 0, then det L� D 0. Hence, exists a nonzero vector
at D col.a1; : : : ; am/ 2 Cm such that L�at D 0t. We consider the element
x0 D R�.bA/Gat 2 D.bA/. Since the components of the vector G are
linearly independent elements we have Gat ¤ 0 and therefore x0 ¤ 0.
By substituting in (6) we get

B�x0 D .bA � �I/x0 � GhFt; bAx0iHm

D .bA � �I/R�.bA/Gat � GhFt; bAR�.bA/GatiHm

D Gat � GhFt; bAR�.bA/GiHmat

D G
h

Im � hFt; bAR�.bA/GiHm

i

at

D GL�at D G0t D 0: (15)

This means that x0 2 ker B� and so � … �.B/, which contradicts the
assumption that � 2 �.B/ \ �.bA/. Thus, det L� ¤ 0 and �.B/ \ �.bA/ D
f� 2 �.bA/ W det L� ¤ 0g. ut

Remark 1. The linear independence of the components of the vector G is required
to prove the necessary condition of (i). Hence, if the components of the vector G are
not linearly independent, then holds only: � 2 �.B/ if det L� ¤ 0.

Resolvent of Extensions of the Square of a Minimal Operator

In this section we extend the results of the previous section for the case of the
operator B defined in Eq. (2). This operator has been studied in [22] as an extension
of the minimal operator A2

0, namely
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A2
0x DbA2x for x 2 D.A2

0/ D fx 2 D.bA2/ W hbAx; FtiHm D hbA2x; FtiHm D 0tg:

We find here the resolvent set �.B/ \ �.bA2/ and a resolvent R�.B/ when the �.bA2/

and R�.bA2/ are known.
First, we recall the following proposition from [20, pp. 39]

Proposition 2. If A is a closed operator on a complex Banach space and its
resolvent set �.A/ is not empty, then An is closed too for each n 2 N.

We now prove the theorem for the resolvent of the operator B.

Theorem 2. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, �.bA/ is not empty, � 2 �.bA2/ and B W H ! H the operator defined by

Bx DbA2x � ShbAx; FtiHm � GhbA2x; FtiHm ; D.B/ D D.bA2/; (16)

where Ft D col.�1; : : : ; �m/, S D .s1; : : : ; sm/ and G D .g1; : : : ; gm/ 2 Hm, with
the components of the vector .S; G/ being linearly independent elements of H, and
x 2 D.B/. Let the operator

B�x D .B � �I/x D f ; D.B�/ D D.bA2/; (17)

where I is the identity operator on D.B/ and f 2 H. Then:

(i) � 2 �.B/ if and only if

det W� D det

 

Im � hFt; bAR�.bA2/SiHm �hFt; bAR�.bA2/GiHm

�hFt; bA2R�.bA2/SiHm Im � hFt; bA2R�.bA2/GiHm

!

¤ 0:

(18)
(ii) �.B/ \ �.bA2/ D f� 2 �.bA2/ W det W� ¤ 0g.

(iii) For � 2 �.B/ \ �.bA2/ the resolvent operator R�.B/ is defined on the whole
space H, is bounded and has the representation

R�.B/f D R�.bA2/f C R�.bA2/.S W�1
�11 C G W�1

�21/hbAR�.bA2/f ; FtiHm

C R�.bA2/.S W�1
�12 C G W�1

�22/hbA2R�.bA2/f ; FtiHm ;

(19)

where W�1
�ij ; i; j D 1; 2 are the m�m submatrices of the partition of the 2m�2m

inverse matrix W�1
� .

Proof. (i)–(iii)Let us assume that (18) is true, specifically det W� ¤ 0. Since
D.bA2/ D D.bA2 � �I/ D D.B � �I/ then from (17) and for x 2 D.bA2/

we have
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.bA2 � �I/x � ShbAx; FtiHm � GhbA2x; FtiHm D f : (20)

Proposition 2 states that the operatorbA2 is closed and because � 2 �.bA2/, it
follows from Lemma 1 that the resolvent operator R�.bA2/ is defined and is
bounded on the whole space H. By applying the resolvent operator R�.bA2/

on (20), we get

x � R�.bA2/
h

ShbAx; FtiHm C GhbA2x; FtiHm

i

D R�.bA2/f : (21)

By employing the operatorsbA and bA2, we have

bAx�bAR�.bA2/
h

ShbAx; FtiHmCGhbA2x; FtiHm

i

DbAR�.bA2/f ; (22)

bA2x�bA2R�.bA2/
h

ShbAx; FtiHmCGhbA2x; FtiHm

i

DbA2R�.bA2/f :

(23)

Taking the inner products of (22) and (23) with the components of the
vector Ft, we obtain the system

hFt; bAxiHm � hFt; bAR�.bA2/
h

ShFt; bAxiHm C GhFt; bA2xiHm

i

iHm

D hFt; bAR�.bA2/f iHm ;

(24)

hFt; bA2xiHm � hFt; bA2R�.bA2/
h

ShFt; bAxiHm C GhFt; bA2xiHm

i

iHm

D hFt; bA2R�.bA2/f iHm :

(25)

Exploiting the conjugate linear property of the inner product as in (3), we
get

h

Im � hFt; bAR�.bA2/SiHm

i

hFt; bAxiHm � hFt; bAR�.bA2/GiHm hFt; bA2xiHm

D hFt; bAR�.bA2/f iHm ;

(26)

�hFt; bA2R�.bA2/SiHm hFt; bAxiHm C
h

Im � hFt; bA2R�.bA2/GiHm

i

hFt; bA2xiHm

D hFt; bA2R�.bA2/f iHm :

(27)
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Writing Eqs. (26) and (27) in a matrix form by using the matrix W� in (18)
and inverting, since det W� ¤ 0, we have

 

hFt; bAxiHm

hFt; bA2xiHm

!

D
�

W�1
�11 W�1

�12

W�1
�21 W�1

�22

�

 

hFt; bAR�.bA2/f iHm

hFt; bA2R�.bA2/f iHm

!

; (28)

or, by taking the conjugates,

 

hbAx; FtiHm

hbA2x; FtiHm

!

D
�

W�1
�11 W�1

�12

W�1
�21 W�1

�22

�

 

hbAR�.bA2/f ; FtiHm

hbA2R�.bA2/f ; FtiHm

!

: (29)

Substituting (29) into (21) and using x D .B��I/�1f the resolvent operator
R�.B/ is obtained as in Eq. (19). Since bA2R�.bA2/f D .I C �R�.bA2//f by
Proposition 1 and R�.bA2/ is defined on the whole space H and is bounded,
it follows that R�.B/ is also defined on the whole space H and is bounded.
Hence � 2 �.B/.

Conversely, let � 2 �.B/ \ �.bA2/. We will show that det W� ¤ 0.
Suppose det W� D 0 , then det W� D 0. Hence, there exists a nonzero
vector at D col.a1; a2/ D col.a1; : : : ; am; amC1; : : : ; a2m/ 2 C2m such that
W�at D 0t. We consider the element x0 D R�.bA2/.Sat

1 C Gat
2/ 2 D.bA2/.

The components of the vector .S; G/ are linearly independent and therefore
Sat

1 C Gat
2 ¤ 0 and hence x0 ¤ 0. Substituting into (17), we have

B�x0 D .bA2 � �I/x0 � ShFt; bAx0iHm � GhFt; bA2x0iHm

D .bA2 � �I/ŒR�.bA2/.Sat
1 C Gat

2/� � ShFt; bAR�.bA2/.Sat
1 C Gat

2/iHm

� GhFt; bA2R�.bA2/.Sat
1 C Gat

2/iHm

D Sat
1 C Gat

2 � ShFt; bAR�.bA2/SiHmat
1 � ShFt; bAR�.bA2/GiHmat

2

� GhFt; bA2R�.bA2/SiHmat
1 � GhFt; bA2R�.bA2/GiHmat

2

D S
h�

Im � hFt; bAR�.bA2/SiHm

�

at
1 � hFt; bAR�.bA2/GiHmat

2

i

C G
h�

Im � hFt; bA2R�.bA2/GiHm

�

at
2 � hFt; bA2R�.bA2/SiHmat

1

i

D .S; G/W�at D .S; G/0t D 0: (30)

Consequently, x0 2 ker B� and so � … �.B/, which is not true since � 2
�.B/ \ �.bA2/. Therefore det W� ¤ 0 and �.B/ \ �.bA2/ D f� 2 �.bA2/ W
det W� ¤ 0g. ut
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Remark 2. The linear independence of the components of the vector .S; G/ is
required to prove the necessary condition of (i). So, if the components of the vector
.S; G/ are not linearly independent, then holds only: � 2 �.B// if det W� ¤ 0.

Resolvent of Quadratic Operators

In reference [22, Theorem 4.6] it is stated that for the operator B defined in (16)
holds B D B2, where B is as in (5), if and only if

G 2 D.bA/ and S D BG DbAG � GhFt;bAGiHm : (31)

This is important because it provides the means to construct the resolvent R�2.B2/

of the quadratic operator B2 from the resolvents R�.bA/ and R��.bA/ as it is shown
below.

Before we articulate the main theorem we have to prove first the next lemma.

Lemma 2. IfbA W H ! H is a closed linear operator in a complex Hilbert space H
and the resolvent set �.bA/ is nonempty, then:

(i) For ˙� 2 �.bA/ the resolvent operators R�.bA/ and R��.bA/ are bounded and
are defined on the whole H and commute.

(ii) The resolvent set �.bA2/ D f�2 2 C W ˙� 2 �.bA/g, i.e. �2 2 R�2 .bA2/ if and
only if ˙� 2 �.bA/. The resolvent operator R�2.bA2/ is bounded and is defined
on the whole H. Moreover,

R�2 .bA2/ D R�.bA/R��.bA/; (32)

bAR�2.bA2/ D R��.bA/ C �R�2.bA2/; (33)

bAR�2.bA2/ D R�.bA/ � �R�2.bA2/: (34)

(iii) If in addition � ¤ 0, then

R�2.bA2/ D 1

2�
ŒR�.bA/ � R��.bA/�; (35)

bAR�2.bA2/ D 1

2

h

R�.bA/ C R��.bA/
i

; (36)

bA2R�2.bA2/ D I C �

2

h

R�.bA/ � R��.bA/
i

: (37)

Proof. (i) Since bA is a closed linear operator and ˙� 2 �.bA/ then the resolvent
operators R��.bA/ and R�.bA/ are bounded and are defined on the whole H by
Lemma 1. The commuting property R�.bA/R��.bA/ D R��.bA/R�.bA/ follows
from the resolvent equation
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R�1 .bA/ � R�2.bA/ D .�1 � �2/R�1.bA/R�2.bA/ (38)

which holds for every closed operator bA in a complex Banach space and for
every �1; �2 2 �.bA/, see, e.g., [10].

(ii) Note that for each � 2 C and D.bA ˙ �I/ D D.bA/; D.bA2 ˙ �2I/ D D.bA2/

we have

bA2 � �2I D .bA C �I/.bA � �I/;

.bA2 � �2I/x D .bA C �I/.bA � �I/x D f ; x 2 D.bA2/; f 2 H: (39)

Let ˙� 2 �.bA/. Then because of case (i) we get

R��.bA/.bA C �I/.bA � �I/x D R��.bA/f ;

R�.bA/.bA � �I/x D R�.bA/R��.bA/f ;

x D R�.bA/R��.bA/f : (40)

It follows from (39) that

x D .bA2 � �2I/�1f D R�.bA/R��.bA/f (41)

and hence R�2.bA2/ is bounded and is defined on the whole H. Thus, �2 2 �.bA2/.
Conversely, by Proposition 2 the operator bA2 is closed. Let �2 2 �.bA2/.

Then by Lemma 1, the resolvent operator R�2.bA2/ is bounded and defined
on the whole H. From (39) and since ker.bA2 � �2I/ D f0g and the operators
.bA � �I/; .bA C �I/ commute, it follows that ker.bA ˙ �I/ D f0g and .bA2 �
�2I/�1 D .bA � �I/�1.bA C �I/�1. Because R.bA2 � �2I/ D H it is implied that
R.bA ˙ �I/ D H. SincebA is closed thenbA ˙ �I and (bA ˙ �I/�1 are closed too.
By the Closed Graph theorem the operators (bA ˙ �I/�1 are bounded. Hence
˙� 2 �.bA/.

Furthermore, the identity (32) follows from Eq. (41) while the identities
(33) and (34) are easily proved, viz.

bAR�2.bA2/ DbAR�.bA/R��.bA/ D ŒI C �R�.bA/�R��.bA/ D R��.bA/ C �R�2.bA2/;

bAR�2.bA2/ DbAR��.bA/R�.bA/ D ŒI � �R��.bA/�R�.bA/ D R�.bA/ � �R�2.bA2/:

(iii) From (41) and (38) we get

R�2.bA2/ D R�.bA/R��.bA/ D 1

2�
ŒR�.bA/ � R��.bA/�:

By actingbA on the last equation we obtain

bAR�2.bA2/ D 1

2�
ŒbAR�.bA/ �bAR��.bA/�

D 1

2�
fI C �R�.bA/ � ŒI C .��/R��.bA/�g D 1

2

h

R�.bA/ C R��.bA/
i

:
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Finally, operatingbA on this equation we get (37). This completes the proof. ut
Now we present the main theorem for the resolvent of the quadratic operator B.

Theorem 3. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, ˙� 2 �.bA/ and B the operator defined by (16). Suppose the vectors
G; S satisfy (31) and the components of the vector .S; G/ are linearly independent
elements. Let the operator

B�2 x D .B � �2I/x DbA2x � ShbAx; FtiHm � GhbA2x; FtiHm � �2x D f ;

D.B�2 / D D.bA2/; (42)

where f 2 H. Then:

(i) �2 2 �.B/ if and only if

det L� D detŒIm � hFt; bAR�.bA/GiHm� ¤ 0; (43)

det L�� D detŒIm � hFt; bAR��.bA/GiHm� ¤ 0: (44)

(ii) �.B/ \ �.bA2/ D f�2 2 �.bA2/ W det L� ¤ 0; det L�� ¤ 0g.
(iii) If � ¤ 0, det L� ¤ 0 and det L�� ¤ 0 , then there exists the resolvent operator

R�2.B/ which is defined on the whole space H, is bounded and is given by

R�2.B/f D 1

2�

h

R�.bA/f � R��.bA/f C R�.bA/GL�1
� hbAR�.bA/f ; FtiHm

� R��.bA/GL�1��hbAR��.bA/f ; FtiHm

i

: (45)

Proof. Note that here, for brevity and for ease of presentation, we denote the inner
products without their index Hm , e.g. hFt; GiHm D hFt; Gi. Also, we use some others
shorthands which are explained as they appear.

(i) and (ii) Since bA is a closed, so is bA2 by Proposition 2. By hypothesis the
vectors S and G satisfy (31) and hence by [22, Theorem 4.6] the operator
B D B2, where B as in (5). Theorem 2 affirms that �2 2 �.B/ if and only if
det W�2 ¤ 0. By introducing the notations T1 DbAR�2.bA2/ and T2 DbA2R�2.bA2/

for convenience, the det W�2 in Eq. (18) is written as follows:

det W�2 D jW�2 j D
ˇ

ˇ

ˇ

ˇ

Im � hFt; T1Si �hFt; T1Gi
�hFt; T2Si Im � hFt; T2Gi

ˇ

ˇ

ˇ

ˇ

: (46)

Substituting S DbAG � GhFt; bAGi and utilizing property (3), we have

jW�2 j D
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Im � hFt; T1

h

bAG � GhFt; bAGi
i

i �hFt; T1Gi
�hFt; T2

h

bAG � GhFt; bAGi
i

i Im � hFt; T2Gi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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D
ˇ

ˇ

ˇ

ˇ

Im � hFt; T1
bAGi C hFt; T1GihFt; bAGi �hFt; T1Gi

�hFt; T2
bAGi C hFt; T2GihFt; bAGi Im � hFt; T2Gi

ˇ

ˇ

ˇ

ˇ

: (47)

Multiplying from the right the elements of the second column by hFt; bAGi
and adding to the matching elements of the first column, and replacing T1 D
bAR�2.bA2/ and T2 DbA2R�2.bA2/, we obtain

jW�2 j D
ˇ

ˇ

ˇ

ˇ

Im � hFt; bAR�2.bA2/bAGi �hFt; bAR�2.bA2/Gi
hFt; bAGi � hFt; bA2R�2.bA2/bAGi Im � hFt; bA2R�2.bA2/Gi

ˇ

ˇ

ˇ

ˇ

: (48)

Now, by using Proposition 1, Eqs. (33), (34) and the commuting property
R�.bA/bAG D bAR�.bA/G, and denoting R˙� D R˙�.bA/ and P D R�R�� for
ease of presentation, we get

jW�2 j D
ˇ

ˇ

ˇ

ˇ

Im � hFt; .I C �2P/Gi �hFt; .R�� C �P/Gi
hFt; bAGi � hFt; bA.I C �2P/Gi Im � hFt; .I C �2P/Gi

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

Im � hFt; Gi � �2hFt; PGi �hFt; R��Gi � �hFt; PGi
��2hFt; R��Gi � �3hFt; PGi Im � hFt; Gi � �2hFt; PGi

ˇ

ˇ

ˇ

ˇ

ˇ

: (49)

Multiplying the elements of the first row by �� and adding to the correspond-
ing elements of the second row, we obtain

jW�2 j D
ˇ

ˇ

ˇ

ˇ

ˇ

Im � hFt; Gi � �2hFt; PGi �hFt; R��Gi � �hFt; PGi
��I C �hFt; Gi � �2hFt; R��Gi Im � hFt; Gi C �hFt; R��Gi

ˇ

ˇ

ˇ

ˇ

ˇ

:

(50)

Furthermore, multiplying the elements of the second column by � and adding
to the matching elements of the first column, and replacing P D R�R��, we
get

jW�2 j D
ˇ

ˇ

ˇ

ˇ

Im � hFt; .I C �R�� C 2�2R�R��/Gi �hFt; .I C �R�/R��Gi
0m Im � hFt; .I � �R��/Gi

ˇ

ˇ

ˇ

ˇ

:

(51)

Using Proposition 1 and (32)–(34) we get I � �R�� DbAR�� and

I C �R�� C 2�2R�R�� D I C �.bAR�R�� � �R�R��/ C 2�2R�R��

D I C �bAR�R�� C �2R�R��

D I C �.R� � �R��R�/ C �2R�R��

D I C �R� DbAR�: (52)



Resolvent Operators for Some Classes of Integro-Differential Equations 547

Substituting these results in (51), we acquire

det W�2 D det
h

Im � hFt; bAR�Gi
i

� det
h

Im � hFt; bAR��Gi
i

; (53)

Hence, �2 2 �.B/ \ �.bA2/ if and only if det L˙� ¤ 0.
(iii) It has been proven that bA2 is a closed operator and �2 2 �.B/ \ �.bA2/. Then

˙� 2 �.bA/ by Lemma 2 and also ˙� 2 �.B/ by Theorem 1. From Lemma 2
for � ¤ 0 we find

R�2.B/ D 1

2�
ŒR�.B/ � R��.B/�; (54)

where the resolvent operator R�.B/ is set out in (8) and R��.B/ is the same as
in (8) except that � is replaced by ��. Substituting these formulas into (54) we
obtain (45). The resolvent operators R˙�.B/ are bounded and are defined on
the whole H and so is R�2.B/ by (54). This completes the proof.

Applications

In this section we apply the theory presented in the previous sections to boundary
value problems involving integro-differential equations of the Fredholm type. In
particular, we find the resolvent sets and provide closed form representations for
the resolvent operators. Some auxiliary results needed are quoted in Appendix for
ease of reference. By H1.0; 1/ (resp. H2.0; 1// is denoted the Sobolev space of
all complex functions of L2.0; 1/ which have generalized derivatives up to the first
(resp. second) order that are Lebesgue integrable.

First Order Integro-differential Equation

Consider the following integro-differential boundary value problem

iu0.t/ � iei� t
Z 1

0

xu0.x/dx � �u.t/ D f .t/;

u.0/ C u.1/ D 0; u.t/ 2 H1.0; 1/: (55)

In Problem 1 in the Appendix it is quoted that the operator bA W L2.0; 1/ !
L2.0; 1/ defined by

bAu D iu0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ C u.1/ D 0g; (56)
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is a linear closed operator and that �.bA/ D f� 2 C W � ¤ .2k C 1/�; k 2 Zg, while
for � 2 �.bA/ the resolvent operator R�.bA/ is defined on the whole space L2.0; 1/, is
bounded and is given explicitly by the formula (98). Let B W L2.0; 1/ ! L2.0; 1/ be
the operator

Bu.t/ D iu0.t/ � iei� t
Z 1

0

xu0.x/dx

D bAu.t/ � GhbAu.t/; Fti; D.B/ D D.bA/; (57)

where G D ei� t and F D t. We express the boundary value problem (55) in the
operator form

B�u.t/ D .B � �I/u.t/ D f .t/; D.B�/ D D.bA/: (58)

In applying Theorem 1 we have first to compute the determinant

det L� D det
h

Im � hFt; bAR�.bA/GiHm

i

¤ 0: (59)

Acting R�.bA/ on G, operating bybA and taking the inner products, we find

R�.bA/G D ie�i�t

�

.ei� C 1/�1

Z 1

0

ei�xei�xdx �
Z t

0

ei�xei�xdx

�

D � ei� t

� C �
;

bAR�.bA/G D �

� C �
ei� t;

hFt; bAR�.bA/GiHm D �

� C �

Z 1

0

xe�i�xdx D � 2 C i�

.� C �/�
: (60)

Substituting Eq. (60) into (59) we have

det L� D det

�

1 C 2 C i�

.� C �/�

�

D �2 C �� C i� C 2

.� C �/�
¤ 0; (61)

which implies that det L� ¤ 0 if and only if � ¤ �.�2 C 2/=� C i. Then from
Theorem 1 it follows that � 2 �.B/ if � ¤ .2k C 1/�; k 2 Z and � ¤ �.�2 C
2/=� C i. Moreover, the resolvent operator R�.B/ is bounded and defined in all
L2.0; 1/ and is given by

R�.B/f D R�.bA/f C R�.bA/GL�1
� hbAR�.bA/f ; FtiHm : (62)
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ApplyingbA on Eq. (98) and then forming the inner products we get

bAR�.bA/f D e�i�ti�

�

.ei� C 1/�1

Z 1

0

f .x/ei�xdx �
Z t

0

f .x/ei�xdx

�

C f .t/;

hbAR�.bA/f ; FtiHm D
Z 1

0

�

e�i�ti�

�

.ei� C 1/�1

Z 1

0

f .x/ei�xdx

�
Z t

0

f .x/ei�xdx

�

C f .t/

	

tdt

D i�.ei� C 1/�1

Z 1

0

e�i�ttdt
Z 1

0

f .x/ei�xdx

�i�
Z 1

0

e�i�t

�Z t

0

f .x/ei�xdx

�

tdt C
Z 1

0

tf .t/dt: (63)

Exploiting the Fubini theorem we find

hbAR�.bA/f ; FtiHm D i�.ei� C 1/�1

Z 1

0

f .x/ei�xdx
1

�2




e�i�.i� C 1/ � 1
�

� i�
Z 1

0

f .x/ei�xdx
Z 1

x
e�i�ttdt C

Z 1

0

f .t/tdt

D i



e�i�.i� C 1/ � 1
�

�.ei� C 1/

Z 1

0

f .x/ei�xdx

� i.1 C i�/

�

Z 1

0

f .x/ei�.x�1/dx

C
Z 1

0

i.i�x C 1/

�
f .x/dx C

Z 1

0

f .x/xdx

D i



e�i�.i� C 1/ � 1
�

�.ei� C 1/

Z 1

0

f .x/ei�xdx

� i.1 C i�/

�

Z 1

0

f .x/ei�.x�1/dx C i

�

Z 1

0

f .x/dx

D i



e�i�.i� C 1/ � 1
�

�.ei� C 1/

Z 1

0

ei�xf .x/dx

� i
Z 1

0

.1 C i�/ei�.x�1/ � 1

�
f .x/dx: (64)

Finally, by substituting (98), (60), (64) and the inverse L�1
� from (61) into (62), we

get

R�.B/f .t/ D R�.bA/f .t/

� i�ei� t

�2 C �� � i� C 2

�

e�i�.i� C 1/ � 1

�.ei� C 1/

Z 1

0

f .x/ei�xdx
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�
Z 1

0

.1 C i�/ei�.x�1/ � 1

�
f .x/dx

	

D R�.bA/f .t/

� i�ei� t.ei� C 1/�1

�2 C .� � i/� C 2

Z 1

0

ei� C 1 � .2 C i�/ei�x

�
f .x/dx : (65)

Second Order Integro-differential Equation

Consider the following boundary value problem involving a second order Fredholm
integro-differential equation

u00.t/ � t
Z 1

0

u0.x/ cos 2�xdx �
Z 1

0

u00.x/ cos 2�xdx � �u.t/ D f .t/;

u.0/ D u.1/; u0.0/ D u0.1/; u.t/ 2 H2.0; 1/: (66)

We define the operatorsbA; bA2 W L2.0; 1/ ! L2.0; 1/ as follows:

bAu D u0.t/; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g; (67)

bA2u D u00.t/; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g:
(68)

In Problem 2 in the Appendix it is given that the operatorbA2 is closed and that the
resolvent set is �.bA2/ D f� 2 C W � ¤ �4k2�2; k 2 Zg, whereas for � 2 �.bA2/ the
resolvent operator R�.bA2/ is defined on the whole space L2.0; 1/, is bounded and is
expressed analytically in (105). Additionally, we define the operator B W L2.0; 1/ !
L2.0; 1/ as

Bu.t/ D u00.t/ � t
Z 1

0

u0.x/ cos 2�xdx �
Z 1

0

u00.x/ cos 2�xdx

D bA2x � ShbAx; FtiHm � GhbA2x; FtiHm ; D.B/ D D.bA2/; (69)

where S D t, G D 1 and F D cos 2�t. We reformulate the integro-differential
equation (66) as

B�u.t/ D .B � �I/u.t/ D f .t/; D.B�/ D D.bA2/: (70)

According to Theorem 2, any � from �.bA2/ belongs to �.B/ if and only if Eq.
(18) is satisfied, i.e. det W� ¤ 0. By acting R�.bA2/ from Eq. (105) on S, applyingbA
andbA2 and taking the inner products, we have
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R�.bA2/S D 1

2�

"

et
p

�

e
p

� � 1
C e.1�t/

p
�

1 � e
p

�
� 2t

#

; (71)

bAR�.bA2/S D 1

2
p

�

"

et
p

�

e
p

� � 1
C e.1�t/

p
�

e
p

� � 1
� 2p

�

#

; (72)

bA2R�.bA2/S D et
p

�

2.e
p

� � 1/
C e.1�t/

p
�

2.1 � e
p

�/
; (73)

hFt; bAR�.bA2/SiH D 1

2
p

�

Z 1

0

"

et
p

�

e
p

� � 1
C e.1�t/

p
�

e
p

� � 1
� 2
p

�

#

cos 2�tdt

D 1

� C 4�2
; (74)

hFt; bA2R�.bA2/SiH D 0: (75)

Imitating the same procedure for G, we get

R�.bA2/G D � 1

�
; (76)

bAR�.bA2/G DbA2R�.bA2/G D 0; (77)

hFt; bAR�.bA2/GiH D hFt; bA2R�.bA2/GiH D 0: (78)

Substituting Eqs. (74), (75) and (78) into (18), we obtain

det W� D det

 

1 � 1

.�C4�2/
0

0 1

!

D � C 4�2 � 1

� C 4�2
¤ 0: (79)

Hence � 2 �.B/ if � ¤ �4k2�2; k 2 Z and � ¤ 1 � 4�2. Moreover, Theorem 2
provides the resolvent operator R�.B/ as in formula (19).

The inverse matrix W�1
� is easily computed as

W�1
� D

�

W�1
�11 W�1

�12

W�1
�21 W�1

�22

�

D
 N�C4�2

N�C4�2�1
0

0 1

!

: (80)

Using Eqs. (71), (76) and (80) as well as the fact that the operator R�.bA2/ is linear,
we find

R�.bA2/.SW�1
�11 C GW�1

�21/ D � C 4�2

2�.� C 4�2 � 1/

"

et
p

�

e
p

� � 1
C e.1�t/

p
�

1 � e
p

�
� 2t

#

;

(81)
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R�.bA2/.SW�1
�12 C GW�1

�22/ D � 1

�
: (82)

Acting bA on (105), taking the inner products and utilizing the Fubini theorem, we
obtain

bAR�.bA2/f .t/ D 1

2.1 � e
p

�/

Z 1

0

h

e
p

�.t�xC1/ � e�p
�.t�x/

i

f .x/dx

C1

2

Z t

0

h

e
p

�.t�x/ C e�p
�.t�x/

i

f .x/dx;

hbAR�.bA2/f .t/; FtiH

D 1

2.1 � e
p

�/

Z 1

0

cos 2�tdt
Z 1

0

h

e
p

�.t�xC1/ � e�p
�.t�x/

i

f .x/dx

C1

2

Z 1

0

cos 2�tdt
Z t

0

h

e
p

�.t�x/ C e�p
�.t�x/

i

f .x/dx

D 1

2.1 � e
p

�/

Z 1

0

f .x/dx
Z 1

0

cos 2�t
h

e
p

�.t�xC1/ � e�p
�.t�x/

i

dt C

C1

2

Z 1

0

f .x/dx
Z 1

x
cos 2�t

h

e
p

�.t�x/ C e�p
�.t�x/

i

dt

D 1

2.1 � e
p

�/

Z 1

0

p
�
�

e
p

�.x�1/ � e
p

�x C e
p

�.2�x/ � e
p

�.1�x/
�

� C 4�2
f .x/dx C

C1

2

Z 1

0

�p
�e

p
�.x�1/ C p

�e
p

�.1�x/ � 4� sin 2�x

� C 4�2
f .x/dx

D �2�

� C 4�2

Z 1

0

sin 2�xf .x/dx: (83)

Working in the same way withbA2, we get

bA2R�.bA2/f .t/ D f .t/ C �R�.bA2/f .t/;

hbA2R�.bA2/f .t/; FtiH D hf .t/ C �R�.bA2/f .t/; FtiH

D hf .t/; FtiH C �hR�.bA2/f .t/; FtiH

D hf .t/; FtiH

C
p

�

2.1 � e
p

�/

Z 1

0
cos 2�tdt

Z 1

0

h

e
p

�.t�xC1/ C e
p

�.x�t/
i

f .x/dx
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C
p

�

2

Z 1

0
cos 2�tdt

Z t

0

h

e
p

�.t�x/ � e
p

�.x�t/
i

f .x/dx:

D hf .t/; FtiH

C
p

�

2.1 � e
p

�/

Z 1

0
f .x/dx

Z 1

0

h

e
p

�.t�xC1/ C e
p

�.x�t/
i

cos 2�tdt

C
p

�

2

Z 1

0

f .x/dx
Z 1

x

h

e
p

�.t�x/ � e
p

�.x�t/
i

cos 2�tdt

D hf .t/; FtiH

C �

2.1 � e
p

�/.� C 4�2/

Z 1

0

h

e
p

�x � e
p

�.x�1/ C e
p

�.2�x/ � e
p

�.1�x/
i

f .x/dx

C �

2.� C 4�2/

Z 1

0

h

e
p

�.x�1/ C e
p

�.1�x/ � 2 cos 2�x
i

f .x/dx

D
Z 1

0
cos 2�xf .x/dx � �

� C 4�2

Z 1

0
cos 2�xf .x/dx

D 4�2

� C 4�2

Z 1

0
cos 2�xf .x/dx: (84)

Lastly, by substituting (105) and (81)–(84) into (19) we obtain the resolvent operator
R�.B/ in the following closed form

R�.B/f D R�.bA2/f .t/

� �.e
p

�t � e
p

�.1�t/ C 2t.1 � e
p

�/

�.� C 4�2 � 1/.e
p

� � 1/

Z 1

0

sin 2�xf .x/dx

� 4�2

�.� C 4�2/

Z 1

0

cos 2�xf .x/dx: (85)

Integro-Differential Equation with a Quadratic Operator

Consider the following boundary value problem which can be expressed in terms of
a quadratic operator

u.t/ D u00.t/ � �.2 cos 2�t � sin 2�t/
Z 1

0

u0.x/ cos 2�xdx

� sin 2�t
Z 1

0

u00.x/ cos 2�xdx � �2u.t/ D f .t/;

u.0/ D u.1/; u0.0/ D u0.1/; u.t/ 2 H2.0; 1/: (86)
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LetbA; bA2 W L2.0; 1/ ! L2.0; 1/ be the operators

bAu D u0.t/; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g; (87)

bA2u D u00.t/; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g: (88)

Note that, from Problem 2 in the Appendix, � 2 �.bA/ if and only if � ¤ 2k�i; k 2
Z. Then �2 2 �.bA2/ iff ˙� 2 �.bA/ by Lemma 2. Consequently, �2 2 �.bA2/ if and
only if � ¤ ˙2k�i; k 2 Z. In addition, we define the operator B W L2.0; 1/ !
L2.0; 1/ as follows:

Bu.t/ D u00.t/ � �.2 cos 2�t � sin 2�t/
Z 1

0

u0.x/ cos 2�xdx

� sin 2�t
Z 1

0

u00.x/ cos 2�xdx

D bA2u.t/ � ShbAu.t/; FtiHm � GhbA2u.t/; FtiHm ; D.B/ D D.bA2/; (89)

where S D �.2 cos 2�t � sin 2�t/, G D sin 2�t and F D cos 2�t. We observe that
the components of the vector (S, G) are linearly independent and most important
S and G satisfy (31). Therefore the operator B is quadratic and hence we apply
Theorem 3. Accordingly, we rewrite the integro-differential equation (86) in the
operator form

B�2u.t/ D .B � �2I/u.t/ D f .t/; D.B�2 / D D.bA2/: (90)

Theorem 3 claims that the resolvent operator R�2.B/ exists if and only if Eqs.
(43) and (44) are satisfied, namely det L� ¤ 0 and det L�� ¤ 0. In computing these
determinants we need the resolvent operators R�.bA/ and R��.bA/ which are set out in
(103) and (104) in the Appendix. By applying R�.bA/ on G, employingbA and taking
the inner products, we obtain

R�.bA/G D 1

1 � e�

Z 1

0

e�.t�xC1/ sin 2�xdx C
Z t

0

e�.t�x/ sin 2�xdx

D �� sin 2�t � 2� cos 2�t

�2 C 4�2
;

bAR�.bA/G D �2�� cos 2�t C 4�2 sin 2�t

�2 C 4�2
;

hFt; bAR�.bA/Gi D ���

�
2 C 4�2

;

L� D
h

Im � hFt; bAR�.bA/Gi
i

D �
2 C 4�2 C ��

�
2 C 4�2

: (91)
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Repeating the same sequence of operations for R��.bA/, we have

R��.bA/G D 1

1 � e��

Z 1

0

e��.t�xC1/ sin 2�xdx C
Z t

0

e��.t�x/ sin 2�xdx;

bAR��.bA/G D 2�� cos 2�t C 4�2 sin 2�t

�2 C 4�2
;

hFt; bAR��.bA/Gi D ��

�
2 C 4�2

;

L�� D
h

Im � hFt; bAR��.bA/Gi
i

D �
2 C 4�2 � ��

�
2 C 4�2

: (92)

It is evident that det L� ¤ 0 if and only if � ¤ �.�1 ˙ i
p

15/=2 and det L�� ¤ 0 if
and only if � ¤ �.1˙ i

p
15/=2. From Theorem 3, �2 2 �.B/ if � ¤ ˙2k�i; k 2 Z

and � ¤ �.˙1 ˙ i
p

15/=2g and the resolvent operator R�2.B/ exists and has the
representation as in (45).

By acting bA on Eq. (103), making use of Proposition 1 and applying the Fubini
theorem, we get

hbAR�.bA/f .t/; Fti D hf C �R�.bA/f .t/; Fti

D
Z 1

0

cos 2�xf .x/dx

C
Z 1

0

cos 2�t

�

�

1 � e�

Z 1

0

e�.t�xC1/f .x/dx C �

Z t

0

e�.t�x/f .x/dx

�

dt

D
Z 1

0

cos 2�xf .x/dx C �

1 � e�

Z 1

0

cos 2�te�tdt
Z 1

0

e�.�xC1/f .x/dx

C�

Z 1

0

e��xf .x/dx
Z 1

x
e�t cos 2�tdt

D
Z 1

0

cos 2�xf .x/dx � �2

�2 C 4�2

Z 1

0

e�.1�x/f .x/dx

C �

�2 C 4�2

Z 1

0

Œ�e�.1�x/ � .� cos 2�x C 2� sin 2�x/�f .x/dx

D � 2��

�2 C 4�2

Z 1

0

sin 2�xf .x/dx C 4�2

�2 C 4�2

Z 1

0

cos 2�xf .x/dx

D 2�

�2 C 4�2

Z 1

0

.2� cos 2�x � � sin 2�x/f .x/dx: (93)

By operating alike on (104), we acquire
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hbAR��.bA/f .t/; Fti D 2�

�2 C 4�2

Z 1

0

.2� cos 2�x C � sin 2�x/f .x/dx: (94)

Substituting (103), (104), L�1˙� from (91) and (92), (93) and (94) into (45), we get

R�2.B/f D 1

2�

�

1

1 � e�

Z 1

0




e�.t�xC1/ C e��.t�x/
�

f .x/dx

C
Z t

0




e�.t�x/ � e��.t�x/
�

f .x/dx

� 2�.� sin 2�t C 2� cos 2�t/

.�2 C 4�2/.�2 C 4�2 C ��/

Z 1

0

.2� cos 2�x � � sin 2�x/f .x/dx

� 2�.� sin 2�t � 2� cos 2�t/

.�2 C 4�2/.�2 C 4�2 � ��/

Z 1

0

.2� cos 2�x C � sin 2�x/f .x/dx

	

: (95)

The resolvent operator R�2.B/ for every �2 2 �.B/ is defined on the whole space
L2.0; 1/ and is bounded.

Appendix

Problem 1. Let the operatorbA W L2.0; 1/ ! L2.0; 1/ be defined by

bAu D iu0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ C u.1/ D 0g (96)

Then OA is closed and:

(i) � 2 �.bA/ if and only if � ¤ .2k C 1/�; k 2 Z, i.e.

�.bA/ D f� 2 C W � ¤ .2k C 1/�; k 2 Zg: (97)

(ii) For � 2 �.bA/ the resolvent operator R�.bA/ is bounded and defined on the
whole space L2.0; 1/ by the formula

R�.bA/f .t/ D i
Z 1

0

ei�.x�t/



.ei� C 1/�1 � �.t � x/
�

f .x/dx; (98)

where

�.t � x/ D
8

<

:

1; x � t
is the Heaviside’s function:

0; x > t
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Problem 2. Let the operatorbA W L2.0; 1/ ! L2.0; 1/ be defined by

bAu D u0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g: (99)

Then the quadratic operatorbA2 W L2.0; 1/ ! L2.0; 1/ is closed and defined by

bA2u D u00 D f ; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g;
(100)

the resolvent sets ofbA andbA2 are

�.bA/ D f� 2 C W � ¤ 2k�i; k 2 Zg; (101)

�.bA2/ D f� 2 C W � ¤ �4k2�2; k 2 Zg (102)

and the resolvent operators R˙�.bA/; R�.bA2/ are bounded and defined on the whole
space L2.0; 1/ by

R�.bA/ f .t/ D 1

1 � e�

Z 1

0

e�.t�xC1/f .x/dx C
Z t

0

e�.t�x/f .x/dx (103)

R��.bA/f .t/ D 1

1 � e��

Z 1

0

e��.t�xC1/f .x/dx C
Z t

0

e��.t�x/f .x/dx (104)

R�.bA2/f .t/ D 1

2
p

�.1 � e
p

�/

Z 1

0

h

e
p

�.t�xC1/ C e�p
�.t�x/

i

f .x/dx

C 1

2
p

�

Z t

0

h

e
p

�.t�x/ � e�p
�.t�x/

i

f .x/dx: (105)
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