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Abstract Let p.z/ D a0 C a1z C a2z2 C a3z3 C� � �C anzn be a polynomial of degree
n, where the coefficients aj, for 0 � j � n, may be complex, and p.z/ ¤ 0 for
jzj < 1. Then

M.p; R/ �
�Rn C 1

2

�
jjpjj; for R � 1; (1)

and

M.p; r/ �
� r C 1

2

�njjpjj; for 0 < r � 1; (2)

where M.p; R/ WD max
jzjDR�1

jp.z/j, M.p; r/ WD max
jzjDr�1

jp.z/j, and jjpjj WD max
jzjD1

jp.z/j.
Inequality (1) is due to Ankeny and Rivlin (Pac. J. Math. 5, 849–852, 1955),
whereas Inequality (2) is due to Rivlin (Am. Math. Mon. 67, 251–253, 1960). These
inequalities, which due to their applications are of great importance, have been the
starting point of a considerable literature in Approximation Theory, and in this paper
we study some of the developments that have taken place around these inequalities.
The paper is expository in nature and would provide results dealing with extensions,
generalizations and refinements of these inequalities starting from the beginning of
this subject to some of the recent ones.
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Introduction

Several years after chemist Mendeleev invented the periodic table of elements he
made a study of the specific gravity of a solution as a function of the percentage of
the dissolved substance, and for this he needed an answer to the following question.

Question If p.x/ is a quadratic polynomial with real coefficients and jp.x/j � 1 on
�1 � x � 1, then how large can jp0.x/j be on �1 � x � 1 ?

To see how an answer to the above question of Mendeleev helped him in the
solution of the problem in Chemistry he was interested in, we refer to the paper of
Boas [6].

Note that, even though Mendeleev was a chemist, he was able to show that
jp0.x/j � 4 for �1 � x � 1. This estimate is best possible in the sense that
there is a quadratic polynomial p.x/ D 1 � 2x2 for which jp.x/j � 1 on Œ�1; 1�

but jp0.˙1/j D 4. In the general case when p.x/ is a polynomial of degree n with
real coefficients the problem was solved by Markov [26], who proved the following
result which is known as Markov’s Theorem.

Theorem 1.1. Let p.x/ D
nX

jD0

ajx
j be an algebraic polynomial of degree n such that

jp.x/j � 1 for x 2 Œ�1; 1�. Then

jp0.x/j � n2; x 2 Œ�1; 1� (3)

The inequality is sharp. Equality holds only if p.x/ D ˛Tn.x/, where ˛ is a complex
number such that j˛j D 1, and

Tn.x/ D cos.n cos�1 x/ D 2n�1

nY
jD1

�
x � cos..j � 1

2
/�=n/

�

is the nth degree Tchebycheff polynomial of the first kind. It can be easily verified
that jTn.x/j � 1 for x 2 Œ�1; 1� and jT 0

n.1/j D n2.

It would be natural to go on and ask for an upper bound for jp.k/.x/j where 1 �
k � n. Iterating Markov’s Theorem yields jp.k/.x/j � n2kL if jp.x/j � L. However,
this inequality is not sharp; the best possible inequality was found by Markov’s
brother, Markov [27], who proved the following.

Theorem 1.2. Let p.x/ D
nX

jD0

ajx
j be an algebraic polynomial of degree n with real

coefficients such that jp.x/j � 1 for x 2 Œ�1; 1�. Then

jp.k/.x/j � .n2 � 12/.n2 � 22/ � � � .n2 � .k � 1/2/

1 � 3 � � � .2k � 1/
; x 2 Œ�1; 1�: (4)
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The inequality is sharp, and the equality holds again only for p.x/ D Tn.x/, where
Tn.x/ D cos.n cos�1 x/ is the Chebyschev polynomial of degree n.

Several years later, around 1926, Serge Bernstein needed the analogue of the above
result Theorem 1.1 of A. A. Markov for polynomials in the complex domain and
proved the following, which in the literature is known as Bernstein’s Inequality.

Theorem 1.3. Let p.z/ D
nX

jD0

ajz
j be a complex polynomial of degree at most n.

Then

max
jzjD1

jp0.z/j � n max
jzjD1

jp.z/j: (5)

The inequality is best possible and equality holds only for polynomials of the form
p.z/ D ˛zn; ˛ ¤ 0 being a complex number.

The above theorem is, in fact, a special case of a more general result due to Riesz
[35] for trigonometric polynomials.

For the sake of brevity, throughout in this paper, we shall be using the following
notations.

Definition 1. Let p.z/ D
nX

jD0

ajz
j be a complex polynomial of degree at most n. We

will denote

M.p; r/ WD max
jzjDr

jp.z/j; r > 0;

jjpjj WD max
jzjD1

jp.z/j;

and

D.0; K/ WD fz W jzj < Kg; K > 0:

In 1945, S. Bernstein initiated and observed the following result, which in
fact is a simple consequence of the maximum modulus principle (see [29] or
[35, volume 1, p. 137]). This inequality is also known as the Bernstein’s Inequality.

Theorem 1.4. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n. Then for R � 1,

M.p; R/ � Rnjjpjj: (6)

Equality holds for p.z/ D ˛zn, ˛ being a complex number.
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If one applies the above inequality to the polynomial P.z/ D znp.1=z/ and use
maximum modulus principle, one easily gets

Theorem 1.5. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n. Then for 0 < r � 1,

M.p; r/ � rnjjpjj: (7)

Equality holds for p.z/ D ˛zn, ˛ being a complex number.

The above result is due to Varga [38] who attributes it to E. H. Zarantonello.
By use of the transformation P.z/ D znp.1=z/ and the maximum modulus

principle it is not difficult to see that Theorems 1.4 and 1.5 can be obtained from
each other. The fact that Theorem 1.3 can be obtained from Theorem 1.4 was
proved by Bernstein himself. However, it was not known if Theorem 1.4 can also
be obtained from Theorem 1.3, and this has been shown by Govil et al. [22]. Thus
all the above three Theorems 1.3, 1.4 and 1.5 are equivalent in the sense that anyone
can be obtained from any of the others.

For the sharpening of Theorems 1.3, 1.4 and 1.5 we refer the reader to the paper
of Frappier et al. [12] (also, see Sharma and Singh [37]).

For polynomial of degree n not vanishing in the interior of the unit circle, Ankeny
and Rivlin [1] proved the following result.

Theorem 1.6. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for R � 1,

M.p; R/ �
�Rn C 1

2

�
jjpjj: (8)

Here equality holds for p.z/ D ˛ C ˇzn

2
, where j˛j D jˇj D 1.

For some generalizations of inequalities (6) and (8), see Govil et al. [23].
The analogue of Inequality (7) for polynomials not vanishing in the interior of a

unit circle was proved later in 1960 by Rivlin [36], who in fact proved

Theorem 1.7. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for 0 < r � 1,

M.p; r/ �
� r C 1

2

�njjpjj; (9)

and equality holding for p.z/ D
�˛ C ˇz

2

�n
, where j˛j D jˇj D 1.

The above results, Theorems 1.4–1.5 which are known as Bernstein inequalities
concerning growth of polynomials, and Theorems 1.6–1.7 have been the starting
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point of a considerable literature in Approximation Theory. Several books and
research monographs have been written on this subject of inequalities (see, for
example, Govil and Mohapatra [20], Milovanović et al. [28], Pinkus [30], and Rah-
man and Schmeisser [34]) and in this chapter we study some of the developments
that have, over a period, taken place around these inequalities.

The present chapter is expository in nature and consists of four sections. Having
introduced Bernstein type inequalities concerning the growth of polynomials,
Theorems 1.4–1.7 in section “Introduction,” we in section “Results Concerning
Generalizations, Extensions and Refinements of Theorem 1.6” study inequalities
related to the inequality in Theorem 1.6 while section “Results Concerning Gener-
alizations, Extensions and Refinements of Theorem 1.7” will consist of inequalities
related to Theorem 1.7. Lastly, the section “Polynomials Having all the Zeros on
S.0; K/” deals with inequalities concerning the growth of polynomials having all
their zeros on a circle.

Results Concerning Generalizations, Extensions
and Refinements of Theorem 1.6

We begin with Theorem 1.6 stated in section “Introduction,” and which is due to
Ankeny and Rivlin [1].

Theorem 2.1. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for R � 1,

M.p; R/ �
�Rn C 1

2

�
jjpjj: (10)

Equality holding for p.z/ D ˛ C ˇzn

2
, where j˛j D jˇj D 1.

We present here the brief outlines of the proof of Theorem 2.1 as given by Ankeny
and Rivlin in [1], which makes use of Erdös-Lax Theorem. As is well known, the
Erdös-Lax Theorem which is stated below as Lemma 2.2, was conjectured by Erdös
and proved by Lax [25]. It may be remarked that a simpler proof of Lemma 2.2 was
provided by Aziz and Mohammad [3].

Lemma 2.2 (Lax [25]). Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then

M.p0; 1/ � n

2
jjpjj: (11)

Proof (Proof of Theorem 2.1). Let us assume that p.z/ does not have the form
˛ C ˇzn

2
. In view of Lemma 2.2
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jp0.ei� /j � n

2
jjpjj; 0 � � < 2�; (12)

from which we may deduce that

jp0.rei� /j <
n

2
rn�1jjpjj; 0 � � < 2�; r > 1; (13)

by applying Theorem 1.4 to the polynomial p0.z/=.n=2/ and observing that we have

the strict inequality in (13) because p.z/ does not have the form
˛ C ˇzn

2
. But for

each �; 0 � � < 2� , we have

p.Rei� / � p.ei� / D
Z R

1

ei� p0.rei� /dr:

Hence

ˇ̌
p.Rei� / � p.ei� /

ˇ̌ �
Z R

1

jp0.rei� /jdr <
n

2
jjpjj

Z R

1

rn�1dr D jjpjj
2

.Rn � 1/;

and

ˇ̌
p.Rei� /j <

jjpjj
2

.Rn � 1/ C ˇ̌
p.ei� /j � jjpjj

2
.1 C Rn/:

Finally, if p.z/ D ˛ C ˇzn

2
; j˛j D jˇj D 1, then clearly

M.p; R/ D 1 C Rn

2
; R > 1;

and the proof of Theorem 2.1 is thus complete.

It may be remarked that later a simpler proof of Theorem 2.1 which does not
make use of Erdös-Lax Theorem was given by Dewan [7].

Remark 1. The converse of Theorem 2.1 is false as the simple example p.z/ D
.zC 1

2
/.zC3/ shows. However, the following result in the converse direction, which

is also due to Ankeny and Rivlin [1], is valid.

Theorem 2.3. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n such that p.1/ D 1

and

M.p; R/ �
�Rn C 1

2

�
jjpjj
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for 0 < R � 1 < ı, where ı is any positive number. Then p.z/ does not have all its
zeros within the unit circle.

In 1989, Govil [17] observed that since the equality in (10) holds only for
polynomials p.z/ D ˛ C ˇzn; j˛j D jˇj, which satisfy

ˇ̌
coefficient of zn

ˇ̌ D 1

2
jjpjj; (14)

it should be possible to improve upon the bound in (10) for polynomials not
satisfying (14), and therefore in this connection he proved the following refinement
of (10).

Theorem 2.4. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for R � 1,

M.p; R/ �
�Rn C 1

2

�
jjpjj

�n.jjpjj2 � 4janj2/

2jjpjj

(
.R � 1/jjpjj
jjpjj C 2janj � ln

"
1 C .R � 1/jjpjj

jjpjj C 2janj

#)

(15)

Equality holding for p.z/ D ˛ C ˇzn, where j˛j D jˇj.
In 1998, Dewan and Bhat [9] sharpened the above Theorem 2.4 as follows:

Theorem 2.5. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for R � 1,

M.p; R/ �
�Rn C 1

2

�
jjpjj �

�Rn � 1

2

�
m

�n

2

"
.jjpjj � m/2 � 4janj2

.jjpjj � m/

#(
.R � 1/.jjpjj � m/

.jjpjj � m/ C 2janj

� ln

"
1 C .R � 1/.jjpjj � m/

.jjpjj � m/ C 2janj

#)
; (16)

where m D min
jzjD1

jp.z/j. Here again, equality holds for p.z/ D ˛ C ˇzn, where

j˛j D jˇj.
In 2001, Govil and Nyuydinkong [21] generalized Theorem 2.5, where they

considered polynomials not vanishing in D.0; K/; K � 1. More specifically, they
proved
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Theorem 2.6. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K � 1. Then for R � 1,

M.p; R/ �
�Rn C K

1 C K

�
jjpjj �

�Rn � 1

1 C K

�
m � n

1 C K

"
.jjpjj � m/2 � .1 C K/2janj2

.jjpjj � m/

#

�
(

.R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C K/janj � ln

"
1 C .R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C K/janj

#)
;

(17)

where m D min
jzjDK

jp.z/j.

Following immediately, Gardner et al. [14] generalized Theorem 2.6 by consid-

ering polynomials of the form a0 C
nX

jDt

ajz
j; 1 � t � n, and for this, they proved

the following:

Theorem 2.7. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0; K/; K � 1. Then for R � 1,

M.p; R/ �
�Rn C Kt

1 C Kt

�
jjpjj �

�Rn � 1

1 C Kt

�
m � n

1 C Kt

"
.jjpjj � m/2 � .1 C Kt/2janj2

.jjpjj � m/

#

�
(

.R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C Kt/janj � ln

"
1 C .R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C Kt/janj

#)
;

(18)

where m D min
jzjDK

jp.z/j.

Clearly, for t D 1, Theorem 2.7 gives Theorem 2.6, which for K D 1 reduces to
Theorem 2.5.

In 2005, Gardner et al. [15] proved the following generalization and sharpening
of Theorem 2.4.

Theorem 2.8. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0; K/; K � 1. Then for R � 1,
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M.p; R/ �
�Rn C s0

1 C s0

�
jjpjj �

�Rn � 1

1 C s0

�
m � n

1 C s0

"
.jjpjj � m/2 � .1 C s0/2janj2

.jjpjj � m/

#

�
(

.R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C s0/janj � ln

"
1 C .R � 1/.jjpjj � m/

.jjpjj � m/ C .1 C s0/janj

#)
;

(19)

where m D min
jzjDK

jp.z/j, and

s0 D KtC1

t

n
� jatj

ja0j � m
Kt�1 C 1

t

n
� jatj

ja0j � m
KtC1 C 1

:

Dividing both sides of (19) by Rn, and letting R ! 1, one gets

Corollary 2.9. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0; K/; K � 1. Then

janj � 1

1 C s0

�jjpjj � m
�
; (20)

where m D min
jzjDK

jp.z/j.

In case one does not have knowledge of m D min
jzjDK

jp.z/j, one could use the

following result due to Gardner et al. [15] which does not depend on m.

Theorem 2.10. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0; K/; K � 1. Then for R � 1,

M.p; R/ �
�Rn C s1

1 C s1

�
jjpjj � n

1 C s1

"
jjpjj2 � .1 C s1/2janj2

jjpjj

#

�
(

.R � 1/jjpjj
jjpjj C .1 C s1/janj � ln

"
1 C .R � 1/jjpjj

jjpjj C .1 C s1/janj

#)
;

(21)
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where

s1 D KtC1

t

n
� jatj

ja0jKt�1 C 1

t

n
� jatj

ja0jKtC1 C 1

:

If, in the above theorem, one divides both sides of (21) by Rn and let R ! 1,
one obtains the following

Corollary 2.11. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0; K/; K � 1. Then

janj � 1

1 C s1

jjpjj: (22)

Both Corollaries 2.9 and 2.11 generalize and sharpen the well-known inequality,

obtainable by an application of Visser’s Inequality [39], that if p.z/ D
nX

jD0

ajz
j is a

polynomial of degree n and p.z/ ¤ 0 in D.0; 1/ then janj � 1

2
jjpjj.

We present some of the examples Gardner et al. [15] gave to illustrate the quality
of Theorems 2.7, 2.8 and 2.10.

Example 1. Let p.z/ D 1000 C z2 C z3 C z4. Clearly, here t D 2 and n D 4,
and one can take K D 5:4, since numerically p ¤ 0 for jzj < 5:4483. For this
polynomial, the bound for M.p; 2/ by Theorem 2.7 comes out to be 1447.503, and
by Theorem 2.8, it comes out to be 1101.84, which is a significant improvement over
the bound obtained from Theorem 2.7. Numerically, for this polynomial M.p; 2/ �
1028, which is quite close to the bound 1101.84, that is obtainable by Theorem 2.10.
The bound for M.p; 2/ obtained by Theorem 2.10 is 1105.05, which is also quite
close to the actual bound � 1028. However, in this case Theorem 2.8 gives the best
bound.

Example 2. Let p.z/ D 1000 C z2 � z3 � z4. Here also, t D 2 and n D 4. Again,
numerically p.z/ ¤ 0 for jzj < 5:43003, and thus take K D 5:4. If R D 3, then
for this polynomial the bound for M.p; 3/ obtained by Theorem 2.7 comes out to be
3479.408, while by Theorem 2.10 it comes out to be 1545.3, and by Theorem 2.8
it comes out to be 1534.5, a considerable improvement. Thus again the bounds
obtained from Theorem 2.8 and Theorem 2.10 are considerably smaller than the
bound obtained from Theorem 2.7, and the bound 1534.5 obtained by Theorem 2.8
is much closer to the actual bound M.p; 3/ � 1100:6 than the bound 3479.408,
obtained from Theorem 2.7.
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In 1981, Aziz and Mohammad [4] sharpened Theorem 2.1 by proving the
following.

Theorem 2.12. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for R � 1,

M.p; R/ � .Rn C 1/.R C K/n

.R C K/n C .1 C RK/n
jjpjj (23)

Theorem 2.12 is a generalization of Theorem 2.1 in a compact form but
unfortunately with the exception of n D 1, the Inequality (23) does not appear to
be sharp for K > 1. However, a precise estimate is given by the following theorem,
which is also due to Aziz and Mohammad [4].

Theorem 2.13. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for R � 1,

M.p; R/ � .R C K/n

.1 C K/n
jjpjj for 1 � R � K2 (24)

and

M.p; R/ � Rn C Kn

1 C Kn
jjpjj for R � K2 (25)

The result is best possible with equality in (25) for p.z/ D .zn C Kn/=.1 C Kn/

and in (24) for p.z/ D .z C K/n=.1 C K/n.

The following theorem which is due to Govil et al. [22] sharpens Inequality (24)
in the above Theorem 2.13.

Theorem 2.14. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K � 1. Then for 1 � R � K2,

M.p; R/ �
 

K2 C 2Rj�jK C R2

K2 C 2j�jK C 1

!n=2

M.p; 1/; (26)

where � D �.K/ WD Ka1

na0

.

The fact that the Inequality (26) sharpens Inequality (24) follows because if p.z/ DPn
jD0 ajzj ¤ 0 for jzj < K, where K � 1, then j�j D jKa1=na0j � 1, and therefore
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K2 C 2Rj�jK C R2

K2 C 2j�jK C 1

!
�
 

K2 C 2RK C R2

K2 C 2K C 1

!
D
 

R C K

K C 1

!2

;

from which the conclusion follows.
In the case R � K2, Govil et al. [22] proved

Theorem 2.15. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K > 1. Then for R � K2,

M.p; R/ � Rn

Kn

 
Kn

Kn C 1

!.R�K2/=.RCK2/

M.p; 1/: (27)

About 6 years after Aziz and Mohammad [4] proved Theorem 2.13, Aziz [2]
obtained more results in this direction, some of which are presented below.

Theorem 2.16. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for R � 1,

M.p; R/ � Rn C 1

2
jjpjj � Rn � 1

2
min
jzjD1

jp.z/j: (28)

The result is best possible and equality in (28) holds for the polynomial p.z/ D
˛zn C ˇKn; j˛j D jˇj D 1; K � 1.

As an application of Theorem 2.16, Aziz [2] established

Theorem 2.17. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for 0 � r � K,

.1 C rn/M.p; r/ � .1 � rn/min
jzjD1

jp.z/j � 2rnjjpjj: (29)

The result is best possible and equality in (29) holds for the polynomial p.z/ D
˛zn C ˇKn, where j˛j D jˇj D 1, and K � 1.

In 2002, Aziz and Zargar [5] proved the following refinement of Theorem 2.12
which includes Theorem 2.16 as a special case.

Theorem 2.18. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for R � 1,
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M.p; R/ � F.R/

(
.Rn C 1/jjpjj �

"
Rn �

 
1 C RK

R C K

!n#
m

)
; (30)

where m WD min
jzjDK

jp.z/j and F.R/ WD .R C K/n

.R C K/n C .1 C RK/n
.

For K D 1, the above theorem reduces to Theorem 2.16. In the same paper, they
[5] proved the following which is a refinement of (24).

Theorem 2.19. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n and p.z/ ¤ 0 in

D.0; K/; K � 1. Then for 1 � R � K2,

M.p; R/ �
 

R C K

1 C K

!n

jjpjj �
( 

R C K

1 C K

!n

� 1

)
m; (31)

where m WD min
jzjDK

jp.z/j.

Theorem 2.18, in some special cases, can provide much better information than
Theorem 2.12 regarding M.p; R/; R > 1, and thus they [5] illustrate with the help
of the following examples.

Example 3. Let p.z/ D .z2 C 9/.z � 19/. Then p.z/ is a polynomial of degree 3
which does not vanish in D.0; t/, where t 2 .0; 3�. Clearly

jp.z/j � �
9 � jzj2��19 � jzj�

which in particular gives M.p; 2/ � 85 and jjpjj D 200. Using Theorem 2.12 with
K D t D 3; R D 2, it follows that

M.p; 2/ � 480:8; (32)

whereas using Theorem 2.18 with K D 2, and R D 2, we get

M.p; 2/ � 435:5; (33)

which is much better than (32).

Example 4. Let p.z/ D z3 C 33. Then p.z/ does not vanish in D.0; t/, where t 2
.0; 3�. Evidently,

M.p; 2/ � 19 and M.p; 1/ D 28: (34)

Using Theorem 2.12 with K D t D 3; R D 2, it follows that

M.p; 2/ � 67:4: (35)



306 N.K. Govil and E.R. Nwaeze

Using Theorem 2.18 with K D t D 2; R D 2, gives

M.p; 2/ � 46:5; (36)

which is much better than (35).

For more results in this direction we refer the reader to [18, 19, 33, 37]. We wrap up
this part by presenting the following results where the maximum modulus is taken
on an ellipse rather than on a circle.

Theorem 2.20 (Duffin and Schaeffer [10]). Let p.z/ D
nX

jD0

ajz
j be a polynomial

of degree n such that max�1�x�1
jp.x/j � 1 and p.z/ is real for real z,. Then for R > 1,

max
z2ER

jp.z/j � Rn C R�n

2
;

where ER WD
(

z D x C iy W x2

�
RCR�1

2

�2
C y2

�
R�R�1

2

�2
D 1

)

In the following result the hypothesis on the polynomial p.z/ that p.z/ is real for real
z has been dropped.

Theorem 2.21 (Frappier and Rahman [11]). If p.z/ D
nX

jD0

ajz
j is a polynomial of

degree n such that max�1�x�1
jp.x/j � 1, then for R > 1, we have

max
z2ER

jp.z/j � Rn

2
C 5 C p

17

4
Rn�2;

where ER is the same as above.

Results Concerning Generalizations, Extensions
and Refinements of Theorem 1.7

So far we have been dealing with improvements and generalizations of Inequal-
ity (10), and now we turn our attention to Inequality (9), given in Theorem 1.7. In
this regard, Govil [16] generalized this Theorem 1.7 by proving

Theorem 3.1. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for 0 < r � � � 1,
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M.p; r/ �
� 1 C r

1 C �

�n
M.p; �/: (37)

The result is best possible and equality holds for the polynomial p.z/ D
� 1 C z

1 C �

�n
.

If polynomial p.z/ has all its zeros on jzj D 1, the polynomial q.z/ D znp. 1
z / also

has its zeros on jzj D 1. Further, if 1 � � � r, then 1
r � 1

�
� 1, and when (37) is

applied to q.z/, it yields

M
�

q;
1

r

�
�
 

1 C 1
r

1 C 1
�

!n

M
�

q;
1

�

�
;

which is equivalent to (37).
The above explanation thus leads to the following corollary.

Corollary 2.2. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on the unit circle. Then for 0 < r � � � 1, and for 1 � � � r,

M.p; r/ �
� 1 C r

1 C �

�n
M.p; �/: (38)

The result is best possible and equality holds for the polynomial p.z/ D .1 C z/n.

If in Theorem 3.1 one also assumes that p0.0/ D 0, the bound in (37) can be
considerably improved. Govil [16] in the same paper obtained the following in this
direction.

Theorem 3.2. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Let p0.0/ D 0. Then for 0 < r �

� � 1,

M.p; r/ �
� 1 C r

1 C �

�n

8̂
<̂
ˆ̂:

1

1 � .1 � �/.� � r/n

4

� 1 C r

1 C �

�n�1

9>>=
>>;

M.p; �/: (39)

Theorem 3.1 is best possible, however, if 0 < r < � < 1, then for any polynomial
p.z/ having no zeros in D.0; 1/, and p0.0/ D 0, the bound obtained by Theorem 3.2
can be considerably sharper than the bound obtained by Theorem 3.1. Govil [16]
illustrated this by means of the following examples.

Example 5. Let p.z/ D 1 C z3; � D 0:5; r D 0:1. Theorem 3.1 gives M.p; r/ �
.0:3943704/M.p; �/, while by Theorem 3.2, M.p; r/ � .0:4289743/M.p; �/.
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Example 6. Let p.z/ D 1Cz7; � D 0:168; r D 0:022. Theorem 3.1 gives M.p; r/ �
.0:3926959/M.p; �/, while by Theorem 3.2, M.p; r/ � .0:4341115/M.p; �/.

In 1992, Qazi [32] extended Theorem 3.1 to polynomials with gaps. Specifically
he proved

Theorem 3.4. Let 1 � m � n and p.z/ D a0 C
nX

jDm

ajz
j ¤ 0 in D.0; 1/. Then for

0 < r < � � 1,

M.p; r/ �
� 1 C rm

1 C �m

�n=m
M.p; �/I (40)

more precisely

M.p; r/ � exp

 
� n

Z �

r

tm C .m=n/jam=a0jtm�1

tmC1 C .m=n/jam=a0j.tm C t/ C 1
dt

!
M.p; �/: (41)

If m D 1, Theorem 3.4 gives

Corollary 2.5. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for 0 < r < � � 1,

M.p; r/ �
 

1 C 2j�jr C r2

1 C 2j�j� C �2

!n=2

M.p; �/; (42)

where � WD a1

na0

.

Proof. It is easy to see that

exp

 
� n

Z �

r

t C .1=n/ja1=a0j
t2 C .2=n/ja1=a0jt C 1

dt

!
D
 

1 C 2ja1=na0jr C r2

1 C 2ja1=na0j� C �2

!n=2

;

and on applying Inequality (41), the corollary follows.

For � D 1, the above corollary reduces to

Corollary 2.6. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; 1/. Then for 0 < r < 1,

M.p; r/ �
 

1 C 2j�jr C r2

2 C 2j�j

!n=2

M.p; 1/; (43)

where � WD a1

na0

.
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In 2003, Govil et al. [22] extended Corollary 2.6 to polynomials not vanishing in
D.0; K/; K � 1. They, in fact, proved

Theorem 3.7. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K � 1. Then for 0 < r < 1,

M.p; r/ �
 

K2 C 2rj�jK C r2

K2 C 2j�jK C 1

!n=2

M.p; 1/; (44)

where � D �.K/ WD Ka1

na0

.

In the case where n is even, (44) becomes an equality for polynomials of the form
c.K2 C 2Kzeiˇ cos ˛ C z2e2iˇ/n=2; c 2 C; c ¤ 0; ˛ 2 R; ˇ 2 R.

For any n, Inequality (44) may be replaced by

M.p; r/ �
 

r C K

K C 1

!n

M.p; 1/; 0 < r < 1; (45)

where the bound is attained if p.z/ D c.zeiˇ C K/n; c 2 C; c ¤ 0; ˇ 2 R. It may
be noted that even (45) is a generalization of (9).

Assuming that p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K � 1, Govil et al. [22] proved

the following result.

Theorem 3.8. Let p.z/ D
nX

jD0

ajz
j ¤ 0 in D.0; K/; K � 1. Then for 0 < r � K2,

M.p; r/ �
 

K2 C 2rj�jK C r2

K2 C 2j�jK C 1

!n=2

M.p; 1/; (46)

where � D �.K/ WD Ka1

na0

.

In the case where n is even, (46) becomes an equality for polynomials of the form
c.K2 C 2Kzeiˇ cos ˛ C z2e2iˇ/n=2; c 2 C; c ¤ 0; ˛ 2 R; ˇ 2 R.

For any n, Inequality (46) may be replaced by

M.p; r/ �
 

r C K

K C 1

!n

M.p; 1/; 0 < r � K2; (47)

where the bound is attained if p.z/ D c.zeiˇ C K/n; c 2 C; c ¤ 0; ˇ 2 R.
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Inequality (47) extends and refines a result of Jain [24, Inequality (1.4)], who had
obtained it under the assumption that all the zeros of p lie on the circle S.0; K/ WD
fz W jzj D Kg; K > 0.

Polynomials Having all the Zeros on S.0;K/

While trying to obtain inequality analogous to (10) for polynomials not vanishing in
D.0; K/; K � 1, Dewan and Ahuja [8] were able to prove this only for polynomials
having all the zeros on the circle S.0; K/ WD fz W jzj D Kg; 0 < K � 1.

Theorem 4.1. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1 and for every positive integer s,

fM.p; R/gs �
"

Kn�1.1 C K/ C .Rns � 1/

Kn�1 C Kn

#
fM.p; 1/gs: (48)

For s D 1, the Theorem 4.1 yields

Corollary 4.2. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1,

M.p; R/ �
"

Kn�1.1 C K/ C .Rn � 1/

Kn�1 C Kn

#
M.p; 1/: (49)

The following corollary immediately follows from Inequality (49), if one takes
K D 1.

Corollary 4.3. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; 1/. Then for R � 1,

M.p; R/ �
 

Rn C 1

2

!
M.p; 1/: (50)

In the same paper, Dewan and Ahuja [8] also proved

Theorem 4.4. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1 and for every positive integer s,
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fM.p; R/gs � 1

Kn

"
njanjfKn.1 C K2/ C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1 C K2/

#

fM.p; 1/gs: (51)

The following example illustrates that in some case the bound obtained in
Theorem 4.4 is considerably better than the bound obtained in Theorem 4.1.

Example 7. Let p.z/ D z4 � 1

50
z2 C 1

1002
and K D 1

10
; R D 1:5 and s D 2. Using

Theorem 4.1, one gets

fM.p; R/gs � 22390:91477fM.p; 1/gs;

while Theorem 4.4 gives

fM.p; R/gs � 2439:505569fM.p; 1/gs;

showing that the bound obtained by Theorem 4.4 can be considerably sharper than
what one gets from Theorem 4.1.

For s D 1 in Theorem 4.4 yields

Corollary 4.5. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1,

M.p; R/ � 1

Kn

"
njanjfKn.1CK2/CK2.Rn � 1/gCjan�1jf2Kn C Rn � 1g

2jan�1j C njanj.1 C K2/

#
M.p; 1/:

(52)

By restricting ourselves to polynomials of degree n � 2, Pukhta [30] obtained an
improvement and generalization of Theorem 4.1 and Theorem 4.4. More precisely,
he proved

Theorem 4.6. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1 and for every positive integer s,

fM.p; R/gs �
"

Kn�1.1 C K/ C .Rns � 1/

Kn�1 C Kn

#
fM.p; 1/gs (53)

�sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#
fM.p; 1/gs�1;
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for n > 2; and

fM.p; R/gs �
"

Kn�1.1 C K/ C .Rns � 1/

Kn�1 C Kn

#
fM.p; 1/gs (54)

�sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#
fM.p; 1/gs�1;

for n D 2.

Setting s D 1 in Theorem 4.6 reduces to

Corollary 4.7. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1,

M.p; R/ �
"

Kn�1.1 C K/ C .Rn � 1/

Kn�1 C Kn

#
M.p; 1/ (55)

�ja1j
"

Rn � 1

n
� Rn�2 � 1

n � 2

#
;

for n > 2; and

M.p; R/ �
"

Kn�1.1 C K/ C .Rn � 1/

Kn�1 C Kn

#
M.p; 1/ (56)

�ja1j
"

Rn � 1

n
� Rn�1 � 1

n � 1

#
;

for n D 2.

The following result which deals for polynomials having all the zeros on the circle
S.0; K/; K � 1 is also due to Pukhta [30].

Theorem 4.8. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1 and for every positive integer s,
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fM.p; R/gs � 1

Kn

"
njanjfKn.1 C K2/ C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1 C K2/

#

fM.p; 1/gs � sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#
fM.p; 1/gs�1; for n > 2

and

fM.p; R/gs � 1

Kn

"
njanjfKn.1 C K2/ C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1 C K2/

#

fM.p; 1/gs � sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#
fM.p; 1/gs�1; for n D 2:

Choosing s D 1 in Theorem 4.8 gives

Corollary 4.9. Let p.z/ D
nX

jD0

ajz
j be a polynomial of degree n having all its zeros

on S.0; K/; K � 1. Then for R � 1,

M.p; R/ � 1

Kn

"
njanjfKn.1 C K2/ C K2.Rn � 1/g C jan�1jf2Kn C Rn � 1g

2jan�1j C njanj.1 C K2/

#
M.p; 1/

�ja1j
"

Rn � 1

n
� Rn�2 � 1

n � 2

#
; for n > 2

and

M.p; R/ � 1

Kn

"
njanjfKn.1 C K2/ C K2.Rn � 1/gCjan�1jf2Kn C Rn � 1g

2jan�1jCnjanj.1 C K2/

#
M.p; 1/

�ja1j
"

Rn � 1

n
�Rn�1�1

n � 1

#
; for n D 2:

We close this section by stating the following two recent results due to Pukhta [31]
which are for polynomials with gaps, and therefore generalize the above results.

Theorem 4.10. Let p.z/ D anzn C
nX

jD�

an�jz
n�j; 1 � � < n be a polynomial of

degree n having all its zeros on S.0; K/; K � 1. Then for R � 1 and for every
positive integer s,
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fM.p; R/gs �
"

Kn�2�C1.1 C K�/C.Rns � 1/

Kn�2�C1CKn��C1

#
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#
fM.p; 1/gs�1;

for n > 2I and

fM.p; R/gs �
"

Kn�2�C1.1 C K�/C.Rns � 1/

Kn�2�C1CKn��C1

#
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#
fM.p; 1/gs�1;

for n D 2.

Note that for � D 1, the above Theorem 4.10 reduces to Theorem 4.6.

Theorem 4.11. Let p.z/ D anzn C
nX

jD�

an�jz
n�j; 1 � � < n be a polynomial of

degree n having all its zeros on S.0; K/; K � 1. Then for R � 1 and for every
positive integer s,

fM.p; R/gs � G.s; k; �/

Kq
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#
fM.p; 1/gs�1; n > 2

and

fM.p; R/gs � G.s; k; �/

Kq
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#
fM.p; 1/gs�1; n D 2;

where

G.s; k; �/ D njanjfKq.K��1 C K2�/ C K2�.Rns � 1/g C jan��jf�.Kn C Kq C K��1.Rns � 1//g
�jan��j.K��1 C 1/ C njanj.K��1 C K2�/

;

q D n � � C 1:
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