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Preface

Mathematical Analysis, Approximation Theory, and Their Applications highlights
the classical and new results in important areas of mathematical research. These
include essential achievements in pure mathematical analysis and approximation
theory, as well as some of their fascinating applications. The contributed papers
have been written by experts from the international mathematical community. These
papers deepen our understanding of some of the current research problems and
theories.

The presentation of concepts and methods discussed here make it an invaluable
source for a wide readership.

We would like to express our deepest thanks to all of the scientists who
contributed to this book. We would also wish to acknowledge the superb assistance
that the staff of Springer has provided for the publication of this book.

Athens, Greece Themistocles M. Rassias
New Delhi, India Vijay Gupta
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Bernstein Type Inequalities Concerning Growth of Polynomials . . . . . . . . . . . 293
N.K. Govil and Eze R. Nwaeze

Approximation for Generalization of Baskakov–Durrmeyer Operators . . 317
Vijay Gupta

A Tour on p.x/-Laplacian Problems When p D 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Yiannis Karagiorgos and Nikos Yannakakis

An Umbral Calculus Approach to Bernoulli–Padé Polynomials . . . . . . . . . . . . 363
Dae San Kim and Taekyun Kim

Hadamard Matrices: Insights into Their Growth Factor
and Determinant Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Christos D. Kravvaritis

Localized Summability Kernels for Jacobi Expansions . . . . . . . . . . . . . . . . . . . . . . 417
H.N. Mhaskar

Quadrature Rules with Multiple Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Gradimir V. Milovanović and Marija P. Stanić
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Romania

Nikolaos Samaras Department of Applied Informatics, University of Macedonia,
Thessaloniki, Greece
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A Brief History of the Favard Operator
and Its Variants

Ulrich Abel

Abstract In the year 1944 the well-known French mathematician Jean Favard
(1902–1965) introduced a discretely defined operator which is a discrete analogue
of the familiar Gauss–Weierstrass singular convolution integral. In the present
chapter we sketch the history of this approximation operator during the past 70
years by presenting known results on the operator and its various extensions and
variants. The first part after the introduction is dedicated to saturation of the classical
Favard operator in weighted Banach spaces. Furthermore, we discuss the asymptotic
behaviour of a slight generalization Fn;�n of the Favard operator and its Durrmeyer
variant QFn;�n . In particular, the local rate of convergence when applied to locally
smooth functions is considered. The main result of this part consists of the complete
asymptotic expansions for the sequences .Fn;�n f / .x/ and

� QFn;�n f
�
.x/ as n tends to

infinity. Furthermore, these asymptotic expansions are valid also with respect to
simultaneous approximation. A further part is devoted to the recent work of several
Polish mathematicians on approximation in weighted function spaces. Finally, we
define left quasi-interpolants for the Favard operator and its Durrmeyer variant in
the sense of Sablonnière.

Keywords Approximation by positive operators • Rate of convergence • Degree
of approximation.

Introduction

In the year 1944 J. Favard [7, pp. 229, 239] introduced the operator Fn defined by

.Fnf / .x/ D 1p
�n

1X

�D�1
f
��

n

�
exp

�
�n

��
n

� x
�2�

(1)

U. Abel (�)
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2 U. Abel

which is a discrete analogue of the familiar Gauss–Weierstrass singular convolution
integral

.Wnf / .x/ D
r

n

�

1Z

�1
f .t/ exp

�
�n .t � x/2

�
dt

(see, e.g., the book [6, Eq. (3.1.32), p. 125], where the denotation W .f I xI 1= .4n//
is used) in order to approximate functions defined on the real axis. The operators
can be applied to functions f defined on R satisfying the growth condition

f .t/ D O
�

eKt2
�

as jtj ! 1; (2)

for a constant K > 0. Favard proved that .Fnf / .x/ converges to f .x/ as n ! 1
pointwise for every x 2 R, and even uniformly on any compact subinterval of R, for
all functions f continuous on R satisfying (2).

In the first part (section “Saturation in Weighted Banach Spaces”) we present
results by Becker et al. [5] on saturation in weighted Banach spaces consisting of
functions of polynomial and exponential growth, respectively.

The second part (section “Complete Asymptotic Expansions”) contains further
developments with respect to results by Gawronski and Stadtmüller [8]. They
considered in 1982, for a sequence of positive reals �n, the generalization

.Fn;�n f / .x/ D
1X

�D�1
pn;�;�n .x/ f

��
n

�
; (3)

where

pn;�;�n .x/ D 1p
2�n�n

exp

�
� 1

2�2n

��
n

� x
�2�

:

The particular case �2n D 1= .2n/ reduces to Favard’s classical operator (1).
Under certain conditions on f and .�n/n2N the operators possess the basic prop-

erty that .Fn;�n f / .x/ converges to f .x/ in each continuity point x of f . Among other
results, Gawronski and Stadtmüller [8, Eq. (0.6)] established the Voronovskaja-type
theorem

lim
n!1

1

�2n
Œ.Fn;�n f / .x/� f .x/� D 1

2
f 00 .x/ (4)

uniformly on proper compact subsets of Œa; b�, for f 2 C2 Œa; b� .a; b 2 R/ and
�n ! 0 as n ! 1, provided that certain conditions on the first three moments
of Fn;�n are satisfied. Actually, Eq. (4) was proved for a truncated variant of (3)
which possesses the same asymptotic properties as (3) [8, cf. Theorem 1 (iii) and
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Remark (i), p. 393]. For a Voronovskaja-type theorem (cf. [21]) in the particular
case �2n D �= .2n/ see [5, Theorem 4.3]. Abel and Butzer extended Formula (4) by
deriving a complete asymptotic expansion of the form

Fn;�n f � f C
1X

kD0
ck .f / �

k
n .n ! 1/

for f sufficiently smooth. The latter formula means that for all positive integers q
there holds

Fn;�n f D f C
qX

kD1
ck .f / �

k
n C o

�
�q

n

�
.n ! 1/ :

The coefficients ck, which depend on f but are independent of n, are explicitly
determined. It turns out that ck .f / D 0, for all odd integers k > 0. Moreover,
we present results on simultaneous approximation by the operators (3). A truncated
version of them was defined by Gawronski and Stadtmüller [8, cf. Eq. (0.7)].

In 1999 Pych-Taberska and Nowak [18] defined the Kantorovich variant

� OFn;�n f
�
.x/ D n

1X

�D�1
pn;�;�n .x/

.�C1/=nZ

�=n

pn;�;�n .t/ f .t/ dt (5)

and in 2001 a Durrmeyer variant [12–15]

� QFn;�n f
�
.x/ D n

1X

�D�1
pn;�;�n .x/

1Z

�1
pn;�;�n .t/ f .t/ dt (6)

of Favard operators. The third part (section “Approximation in Weighted Spaces”)
reports about recent results of several Polish mathematicians on approximation by
those variants in weighted function spaces.

Also for the Durrmeyer variant (6) a complete asymptotic expansion

QFn;�n f � f C
1X

kD0
Qck .f / �

k
n .n ! 1/ ;

for f sufficiently smooth will be presented. The coefficients Qck, which depend on
f but are independent of n, are explicitly determined. As in the case of the Favard
operators (3) we have ck .f / D 0, for all odd integers k > 0. Moreover, results
concerning simultaneous approximation by the operators (6) are included.
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Finally, in section “Quasi-Interpolants” we define left quasi-interpolants (LQI)
for the Favard operator and its Durrmeyer variant in the sense of Sablonnière and
present their asymptotic expansions.

For more results on approximation by linear operators see, e.g., the recent
textbook [9].

Saturation in Weighted Banach Spaces

In this section we sketch the main results by Becker et al. [5]. Actually, the authors
considered the slightly more general operators Fn;�n when �2n D �= .2n/ with a
constant � > 0. For the sake of simplicity we restrict our representation to the case
� D 1 which is Favard’s classical operator (1).

Functions of Polynomial Growth

For N 2 N, define the weight function

wN .x/ D �
1C x2N

��1
(7)

and consider the Banach space

CN .R/ WD ˚
f 2 C .R/ W f .x/ D o

�
w�1

N .x/
�

for jxj ! C1�
(8)

equipped with the norm

kf kN WD kwNf k1 D sup
x2R

ˇ
ˇ
ˇ
�
1C x2N

��1
f .x/

ˇ
ˇ
ˇ : (9)

The Favard operators Fn W CN .R/ ! CN .R/ are bounded operators, more precisely
there holds

Theorem 1 (Boundedness). For each N 2 N, there exists a constant MN such that

kFnf kN �
�
1C MN

n

�
kf kN .f 2 CN .R// :

Furthermore, the sequence .Fn/n2N constitutes an approximation process on each
space CN .R/.

Theorem 2 (Approximation). For each N 2 N, there holds

lim
n!1 kFnf � f kN D 0 .f 2 CN .R// :
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If the Favard operators act on the subspace

DN .R/ WD ˚
f 2 CN .R/ W f 0; f 00 2 CN .R/

�

we have the following Voronovskaja-type formula.

Theorem 3 (Voronovskaja-Type Result). For all f 2 DN .R/, there holds the
asymptotic formula

lim
n!1

	
	
	
	n .Fnf � f / � 1

4
f 00
	
	
	
	

N

D 0:

A certain stability condition which follows by the boundedness and the
Voronovskaja-type formula are the main assumptions of a general theorem by
Trotter which implies the following saturation result.

Theorem 4 (Saturation). Let f 2 CN .R/. Then the following three statements are
equivalent:

kFnf � f kN D O
�
n�1� .n ! 1/ ;

kf .x C h/� 2f .x/C f .x � h/kN D O
�
h2
�

.h ! 0/ ;

f 2 eDN .R/ .the completion relative to CN .R/ /:

An equivalence result for the Favard operator in polynomial weight spaces can
be found in [4].

Functions of Exponential Growth

For real numbers ˇ > 0, define the weight function

wˇ .x/ D e�ˇx2 (10)

and the norm

kf kˇ WD kwf k1 D sup
x2R

ˇ
ˇ
ˇe�ˇx2 f .x/

ˇ
ˇ
ˇ :

We consider the space

X WD
\

ˇ>0

˚
f 2 C .R/ W kf kˇ < C1�

:

Analogously to the preceding subsection there hold the following theorems.
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Theorem 5 (Approximation). For ˇ > 0, there holds

lim
n!1 kFnf � f kˇ D 0 .f 2 X/ :

Theorem 6 (Voronovskaja-Type Result). For all real numbers ˇ > 0 and f 2
D0 WD ff 2 X W f 0; f 00 2 Xg, we have

lim
n!1

		
	
	n .Fnf � f / � 1

4
f 00
		
	
	
ˇ

D 0:

Theorem 7 (Saturation). Let f 2 X. Then the following two statements

kFnf � f kˇ D O
�
n�1� .n ! 1/

and

kf .x C h/� 2f .x/C f .x � h/kˇ D O
�
h2
�

.h ! 0/

are equivalent.

The paper [5] does not contain a result on the saturation class with regard to the
space X.

Complete Asymptotic Expansions

Throughout this section we assume that

�n > 0; �n ! 0; ��1
n D O

�
n1��

�
.n ! 1/ (11)

with (an arbitrarily small) constant � > 0. Note that the latter condition implies that
n�n ! 1 as n ! 1.

The following theorem (see [1–3]) presents the complete asymptotic expansion
for the sequences .Fn;�n/ .x/ and

� QFn;�n

�
.x/ as n ! 1. For r 2 N and x 2 R let

W ŒrI x� be the class of functions on R satisfying growth condition (2), which admit
a derivative of order r at the point x.

Theorem 8. Let q 2 N and x 2 R. Suppose that the real sequence .�n/ satisfies
the conditions (11). For each function f 2 WŒ2qI x�, the generalized Favard
operators (3) possess the complete asymptotic expansion

.Fn;�n f / .x/ D f .x/C
qX

kD1

f .2k/ .x/

.2k/ŠŠ
�2k

n C o
�
�2q

n

�
(12)
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and

� QFn;�n f
�
.x/ D f .x/C

qX

kD1

f .2k/ .x/

kŠ
�2k

n C o
�
�2q

n

�
(13)

as n ! 1.

Here mŠŠ denote the double factorial numbers defined by 0ŠŠ D 1ŠŠ D 1 and
mŠŠ D m � .m � 2/ŠŠ for integers m � 2. Note that the asymptotic expansions contain
only terms with even order derivatives of the function f .

The crucial tool for the proof of Theorem 8 is a classical transformation formula
for the elliptic theta function (see, e.g., [6, p. 126]). An immediate consequence is
the Voronosvkaja-type theorem of [8, Eq. (0.6), Theorem 1 (iii) and Remark (i)].

Corollary 1. Let x 2 R. Suppose that the real sequence .�n/ satisfies the
conditions (11). For each function f 2 WŒ2I x�, we have the asymptotic relations

lim
n!1 ��2

n ..Fn;�n f / .x/� f .x// D 1

2
f 00 .x/

and

lim
n!1 ��2

n

�� QFn;�n f
�
.x/ � f .x/

� D f 00 .x/ :

Concerning simultaneous approximation, it turns out that the complete asymp-
totic expansion can be obtained by differentiating (12) term-by-term (see [1–3]).

Theorem 9. Let ` 2 N0, q 2 N and x 2 R. Suppose that the real sequence
.�n/ satisfies condition (11). For each function f 2 WŒ2 .`C q/ I x�, the following
complete asymptotic expansions are valid as n ! 1:

.Fn;�n f /.`/ .x/ D f .`/ .x/C
qX

kD1

f .2kC`/ .x/
.2k/ŠŠ

�2k
n C o

�
�2q

n

�
(14)

and

� QFn;�n f
�.`/

.x/ D f .`/ .x/C
qX

kD1

f .2kC`/ .x/
kŠ

�2k
n C o

�
�2q

n

�
: (15)

Remark 1. The latter formulas can be written in the equivalent form

lim
n!1��2q

n

 

.Fn;�n f /.`/ .x/� f .`/ .x/�
qX

kD1

f .2kC`/ .x/
.2k/ŠŠ

�2k
n

!

D 0;

lim
n!1 ��2q

n

 
� QFn;�n f

�.`/
.x/ � f .`/ .x/�

qX

kD1

f .2kC`/ .x/
kŠ

�2k
n

!

D 0:
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The proof of Eq. (14) in Theorem 9 essentially uses a representation of .Fn;�n f /.`/

in terms of Fn;�n which follows by a certain identity of Hermite polynomials. A
similar representation is used to derive Eq. (15).

Assuming smoothness of f on intervals I D .a; b/, a; b 2 R, it can be shown that
the above expansions hold uniformly on compact subsets of I.

The proofs are based on a localization result which is interesting in itself. We
quote only the result for the ordinary Favard operator (3).

Proposition 1. Fix x 2 R and let ı > 0. Assume that the function f W R ! R

vanishes in .x � ı; x C ı/ and satisfies, for positive constants Mx;Kx, the growth
condition

jf .t/j � MxeKx.t�x/2 .t 2 R/ : (16)

Then, for positive � < 1=
p
2Kx, there holds the estimate

j.Fn;� f / .x/j �
r
2

�

Mx�=ı

1 � 2Kx�2
exp

 

�1 � 2Kx�
2

2

�
ı

�

�2!

:

Consequently, under the general assumption (11) there exists a positive constant
A such that the sequence ..Fn;�n f / .x// can be estimated by

.Fn;�n f / .x/ D o

�
exp

�
�A

ı2n
�2n

��

as n ! 1.

Remark 2. Note that a function f W R ! R satisfies condition (2) if and only if
condition (16) is valid. The elementary inequality .t � x/2 � 2

�
t2 C x2

�
implies

that

MxeKx.t�x/2 � MeKt2 .t; x 2 R/

with constants M D Mxe2Kx2 and K D 2Kx.

Gawronski and Stadtmüller [8, Eq. (0.7)] also considered a truncated version of
Fn;�n , namely

�
F�

n;�n;ın
f
�
.x/ D 1p

2�n�n

X

�j�=n�xj�ın

f
��

n

�
exp

�
� 1

2�2n

��
n

� x
�2�

(17)

for certain values ın > 0. Note that in [8, Eq. (0.7)] cn D nın. A direct consequence
of Proposition (1) is the following:
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Corollary 2. Fix x 2 R and let ı > 0. If f satisfies condition (16) then, for each
positive � < 1=

p
2Kx, there holds the estimate

ˇ
ˇ.Fn;� f / .x/ � �

F�
n;�;ı f

�
.x/
ˇ
ˇ �

r
2

�

Mx�=ı

1 � 2Kx�2
exp

 

�1 � 2Kx�
2

2

�
ı

�

�2!

:

Consequently, under the general assumption (11) both sequences of operators

.Fn;�n/ and
�

F�
n;�n;ın

�
are asymptotically equivalent if �n D o .ın/ as n ! 1. This

means that under these conditions there is a positive constant A (depending on f
and x) such that

.Fn;�n f / .x/� �
F�

n;�n;ın
f
�
.x/ D o

�
�n

ın
exp

�
�A

ı2n
�2n

��

as n ! 1. For the derivatives of all orders a similar estimate is valid.
A direct consequence is the fact that, under the condition

log
ın

�n
C A

ı2n
�2n

� 2q jlog �nj ! C1 .n ! 1/ ;

the asymptotic expansions (12) as well as (14) are valid also for the sequences
�

F�
n;�n;ın

f
�

n2N and

��
F�

n;�n;ın
f
�.`/�

n2N
, respectively, of the truncated version (17)

of the Favard operators.

Approximation in Weighted Spaces

Beginning with the year 1998 a couple of Polish mathematicians continued the study
of approximation by Favard operators and its variants in weighted function spaces.
We begin with polynomial weights (7), i.e. the spaces DN .R/ equipped with the
norm kf kN as defined in Eqs. (8) and (9), respectively.

In 1998 Pych-Taberska [17] proved the inequality

!2 .Fn;� f ; t/N � M � ��1C t20
�
!2 .f ; t/N C t2 kf kN

�
; 0 < t < t0;

where the second weighted modulus of smoothness of f is given by

!2 .f ; t/N WD sup
0<h�t

	
	�2

hf
	
	

N :

In 1999 Pych-Taberska and Nowak [18] defined the Favard–Kantorovich oper-
ators (5) and estimated their rate of pointwise convergence at the Lebesgue or
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Lebesgue–Denjoy points of f when applied to functions f which are locally
integrable in the sense of Lebesgue or Denjoy–Perron. In 2001, the same authors
defined the Favard–Durrmeyer operators (6).

In 2003 Nowak gave direct results for the Kantorovich and Durrmeyer variants
of the generalized Favard operators in terms of the Ditzian–Totik modulus of
smoothness.

In 2004 Rempulska and Tomczak [19] enhanced the rate of convergence by
applying Favard operators to Taylor polynomials of smooth functions.

In 2006 Nowak obtained inverse approximation theorems for Kantorovich–
Durrmeyer and Favard–Durrmeyer operators applied to functions f such that wNf 2
Lp .R/, where 1 � p � 1.

Now we consider the exponential weights (10). In 2007 and 2010 Nowak and
Sikorska–Nowak considered the Kantorovich–Favard and the Durrmeyer–Favard
operators for functions f such that wˇf 2 Lp .R/, where 1 � p � 1 and wˇ .ˇ > 0/
is as defined in (10). In [15] both authors proved an inverse approximation theorem.
In [16] they presented some direct approximation theorems.

Quasi-Interpolants

The results of the preceding section show that the optimal degree of approximation
cannot be improved in general by higher smoothness properties of the function f .
In order to obtain much faster convergence quasi-interpolants were considered. Let
us briefly recall the definition of the quasi-interpolants in the sense of Sablonnière
[20]. For another method to construct quasi-interpolants see [10, 11].

Denote˘j the space of algebraic polynomials of order at most j .j D 0; 1; 2; : : :/.
If the operators Bn let invariant ˘j, for each j (the most approximation operators
possess this property), i.e,

Bn
�
˘j
� � ˘j .0 � j � n/ ;

Bn W ˘n ! ˘n is an isomorphism which can be represented by linear differential
operators

Bn D
nX

kD0
ˇn;kDk

with polynomial coefficients ˇn;k and Df D f 0, D0 D id.
The inverse operator B�1

n � An W ˘n ! ˘n satisfies

An D
nX

kD0
˛n;kDk
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with polynomial coefficients ˛n;k. Sablonnière defined new families of intermediate
operators obtained by composition of Bn and its truncated inverses

A .r/
n D

rX

kD0
˛n;kDk:

In this way he obtained a family of LQI defined by

B.r/
n D A .r/

n ı Bn; 0 � r � n;

and a family of right quasi-interpolants (RQI) defined by

BŒr�
n D Bn ı A .r/

n ; 0 � r � n:

Obviously, there holds B.0/
n D BŒ0�

n D Bn, and B.n/
n D BŒn�

n D I when acting on
˘n. In the following we consider only the family of LQI. The definition reveals that
B.r/

n f is a linear combination of derivatives of Bnf . Furthermore, B.r/
n .0 � r � n/

has the nice property to preserve polynomials of degree up to r, because, for p 2 ˘r,
we have

B.r/
n p D

�
A .r/

n ı Bn

�
p D

rX

kD0
˛n;kDk.Bnp/

„ƒ‚…
2˘r

D
nX

kD0
˛n;kDk .Bnp/

D �
A �1

n ı Bn
�

p D p:

For many concrete approximation operators we have B.r/
n f � f D O

�
n�br=2C1c� as

n ! 1.
Unfortunately, the Favard operator as well as its Durrmeyer variant doesn’t let

invariant the spaces ˘j, for 0 � j � n. However, under appropriate assumptions
on the sequence .�n/ they do it asymptotically up to a remainder which decays
exponentially fast as n tends to infinity. Writing ' for this “asymptotic equality” we
obtain, for fixed n 2 N,

Fn;�n pk ' ek

with pk D kŠ
bk=2cX

jD0
.�1/j �2j

n

2jjŠ .k � 2j/Š
ek�2j;

where em denote the monomials em .t/ D tm .m D 0; 1; 2; : : :/. Hence, for the
inverse,
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.Fn;�n/
�1 ek ' pk D

bk=2cX

jD0
.�1/j �

2j
n

2jjŠ
„ ƒ‚ …

D˛n;2j

D2jek

Note that ˇn;2kC1 D ˛n;2kC1 D 0 .k D 0; 1; 2; : : :/ and that neither ˇn;k nor ˛n;k

depend on the variable x. The analogous results for the Favard–Durrmeyer operators
are similar. Proceeding in this way we define the following operators:

Definition 1 (Favard Quasi-Interpolants). The LQI F.r/n;�n
and QF.r/n;�n

.r D 0; 1; 2;

: : :/ of the Favard and Favard–Durrmeyer operators, respectively, are given by

F.r/n;�n
D

rX

kD0
˛n;kDkFn;�n WD

br=2cX

kD0
.�1/k �2k

n

.2k/ŠŠ
D2kFn;�n

and

QF.r/n;�n
D

rX

kD0
Q̨n;kDk

n;�n
QFn;�n WD

br=2cX

kD0
.�1/k �

2k
n

kŠ
D2k QFn;�n :

Remark 3. Note that F.2r/
n;�n

D F.2rC1/
n;�n

and QF.2r/
n;�n

D QF.2rC1/
n;�n

.r D 0; 1; 2; : : :/.

The local rate of convergence is given by the next theorem [1].

Theorem 10. Let ` 2 N0, q 2 N and x 2 R. Suppose that the real sequence
.�n/ satisfies condition (11). For each function f 2 WŒ2 .`C q/ I x�, the following
complete asymptotic expansions are valid as n ! 1:

�
F.2r/

n;�n
f
�.`/

.x/ � f .`/ .x/C .�1/r
1X

kDrC1

 
k � 1

r

!
f .2kC`/ .x/
.2k/ŠŠ

�2k
n

and

� QF.2r/
n;�n

f
�.`/

.x/ D f .`/ .x/C .�1/r
qX

kD1

 
k � 1

r

!
f .2kC`/ .x/

kŠ
�2k

n C o
�
�2q

n

�
:

Remark 4. An immediate consequence are the asymptotic relations

�
F.2r/

n;�n
f
�
.x/ � f .x/ D O

�
�2.rC1/

n

�

and
� QF.2r/

n;�n
f
�
.x/� f .x/ D O

�
�2.rC1/

n

�

as n ! 1.
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Abstract The goal of this chapter is to present a survey of the literature on
approximation of functions of two variables by linear positive operators. We study
the approximation properties of these operators in the space of functions of two
variables, continuous on a compact set. We also discuss the convergence of the
operators in a weighted space of functions of two variables and find the rate of
this convergence by means of modulus of continuity.
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Bivariate Bernstein Operators

The well-known Bernstein polynomial of mth degree, corresponding to a bounded
function f .x/ and the interval Œ0; 1� has the following expression:

Bm.f I x/ D
mX

iD0
	m;i.x/f

�
i

m

�
;

where 	m;i.x/ D �m
i

�
xi.1 � x/m�i; x 2 Œ0; 1�.
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The fundamental property of the polynomials Bm is that Bm.f I x/ ! f .x/ as m ! 1,
uniformly on the interval Œ0; 1�, if f .x/ is continuous on Œ0; 1�. We use the following
approximation formula

f .x/ 	 Bm.f I x/: (1)

Kingsley [30] introduced the Bernstein polynomials for functions of two variables
of class C.k/.R/;where C.k/.R/ is the space of all continuous functions 
 and having
the partial derivatives @m

@xs@ym�s 2 C.R/; s D 1; 2; :::mI m D 1; 2; :::; k and R W 0 �
x � 1; 0 � y � 1: Let 
.x; y/ be a continuous function in a closed region R. The
Bernstein polynomials Bm;n.x; y/ associated with the function 
.x; y/ are given by

Bm;n.x; y/ D
nX

pD0

mX

qD0


�p

n
;

q

m

�
	n;p.x/	m;q.y/: (2)

Taking into account that

nX

pD0
	n;p.x/ D 1 and

nX

pD0
.nx � p/2	n;p.x/ D nx.1� x/;

if we define for k � 0; i D 0; 1; 2 : : : k,

Ai;k�i
p;q D

iX

˛D0

k�iX

ˇD0
.�1/˛Cˇ

 
i

˛

! 
k � i

ˇ

!




�
p C .i � ˛/

n
;

q C .k � i � ˛/
m

�
;

then by mathematical induction, the following two lemmas hold:

Lemma 1 ([30]). If 0 � i � k; i � n; k � m and x; y 2 R, then the kth partial
derivatives of Bernstein polynomials (2) are given by

B.i;k�i/
m;n D nŠmŠ

.n � i/Š.m � k C i/Š

n�iX

pD0

m�kCiX

qD0
Ai;k�i

p;q 	n�i;p	m�kCi;q:

Lemma 2 ([30]). If 0 � i � k; 0 � p � n � i; 0 � q � m �k C i; and if 
.x; y/ is of
class C.k/.R/ for x and y in R, then there exist two real numbers � D �.p/; � D �.q/
such that 0 < � < 1; 0 < � < 1 and such that

Ai;k�i
p;q D 1

nimk�i

.i;k�i/

�
p C �i

n
;

q C �.k � i/

m

�
:

Lemma 3 ([30]). For fixed x and y in R and for fixed positive integers M and N, let
d be arbitrary positive number and let a.p; q/ be a quantity dependent upon p and
q such that
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ja.p; q/j � �1 for
ˇ
ˇ
ˇx � p

N

ˇ
ˇ
ˇ � d and

ˇ
ˇ
ˇy � q

M

ˇ
ˇ
ˇ � d;

ja.p; q/j � �2 for
ˇ̌
ˇx � p

N

ˇ̌
ˇ > d and

ˇ̌
ˇy � q

M

ˇ̌
ˇ > d:

Furthermore, assume that it is possible to split off from a.p; q/ terms a0.p/
independent of q or terms b0.q/ independent of p, that is

a.p; q/ D a00.p; q/C a0.p/ D b00.p; q/C b0.q/

such that

ja00.p; q/j � �3 for
ˇ̌
ˇx � p

N

ˇ̌
ˇ � d and

ˇ̌
ˇy � q

M

ˇ̌
ˇ > d;

ja0.p; q/j � �4 for
ˇ
ˇ
ˇx � p

N

ˇ
ˇ
ˇ � d

jb00.p; q/j � �5 for
ˇ
ˇ
ˇx � p

N

ˇ
ˇ
ˇ > d and

ˇ
ˇ
ˇy � q

M

ˇ
ˇ
ˇ � d;

jb0.q/j � �6 for
ˇ
ˇ
ˇy � q

M

ˇ
ˇ
ˇ � d;

then,

ˇ
ˇ̌
ˇ
ˇ
ˇ

NX

pD0

MX

qD0
a.p; q/	N;p	M;q

ˇ
ˇ̌
ˇ
ˇ
ˇ

� �1 C �4 C �6 C �2.M C N/

8MNd2
C �3

4Md2
C �5

4Nd2
:

Theorem 1 ([30]). If 
.x; y/ is of class C.k/.R/, then lim
m;n!1 B.s;k�s/

m;n D 
.s;k�s/ and

the convergence is uniform in R.

Butzer [14] also proved the above theorem in a direct manner. For this, he needed
the following lemmas:

Lemma 4. If f .x; y/ is bounded in the square R, then at every point of continuity
.x; y/ of f

lim
n1;n2!1 Bf

n1;n2
.x; y/ D f .x; y/;

the result holding uniformly in x and y if f .x; y/ is continuous in R.

Lemma 5. If all the partial derivatives of f .x; y/ of order � p exist and are
continuous in R, then

@p

@xq@yp�q
Bf

n1;n2
.x; y/ ! @p

@xq@yp�q
f .x; y/;

uniformly in R as n1; n2 approach infinity in any manner whatever.
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Lemma 6.

dl

dul
.u�.1 � u/n��/ D Q.u/u��l.1 � u/n���l;

where Q.u/ D
X

i;j

ni.� � nu/jhl
i;j.u/; i; j � 0; 2i C j � l and the hl

i;j.u/ are

polynomials in u independent of � and n.

Pop [38] obtained the rate of convergence in terms of the modulus of continuity
and established the Voronovskaja type asymptotic theorem for the bivariate case of
Bernstein polynomials:

Theorem 2. Let f W Œ0; 1� 
 Œ0; 1� ! R be a bivariate function.

.i/ If .x; y/ 2 Œ0; 1� 
 Œ0; 1� and f admits partial derivatives of second order
continuous in a neighborhood of the point .x; y/, then

lim
m!1 m.Bm;m.f I x; y/ � f .x; y// D x.1 � x/

2
f 00
xx.x; y/C y.1 � y/

2
f 00
yy.x; y/: (3)

If f admits partial derivatives of second order continuous on Œ0; 1� 
 Œ0; 1�,
then the convergence given in (3) is uniform on Œ0; 1� 
 Œ0; 1�.

.ii/ If f is continuous on Œ0; 1� 
 Œ0; 1�, then

jBm;m.f I x; y/ � f .x; y/j � 25

16
!

�
f I 1p

m
;
1p
m

�

for any .x; y/ 2 Œ0; 1� 
 Œ0; 1�, any m 2 N.

Stancu [42] defined another bivariate Bernstein polynomials on the triangle

� WD S D f.x; y/ W x C y � 1; 0 � x; y � 1g:

For the functions f W S ! R, he considered Gn.f I x; y/ as follows:

Gn.f I x; y/ D
mX

iD0

m�iX

jD0

 
m

i

! 
m � i

j

!

xiyj.1 � x � y/m�i�jf

�
i

m
;

j

m

�
; .x; y/ 2 S:

(4)

Let 
1 D 
1.x/ and 
2 D 
2.x/ be two polynomials which on the interval Œ0; 1�
possess the following properties: 
2 � 
1 � 0. Assuming the function f .x/ is
defined on the domain D, determined by the equations y D 
1; y D 
2; x D 0;

x D 1, let us make the following change of the variable

y D .
2 � 
1/t C 
1: (5)
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Using the formula (1), we get

f .x; y/ D f .x; .
2 � 
1/t C 
1/ 	
mX

iD0
	m;i.x/


�
i

m
; t

�
;

where 


�
i
m ; t

�
D f

�
i
m ;

�

2
�

i
m

�� 
1
�

i
m

�
�

t C 
1
�

i
m

�
�

. Let us attach to the node

i
m , the natural number ni. By the formula (1), applied to the variable t we have




�
i

m
; t

�
	

niX

jD0
	ni;j.t/


�
i

m
;

j

ni

�
:

In this way, we obtain the approximation formula f .x; y/ 	 B.f I x; y/, where

B.f I x; y/ D
mX

iD0

niX

jD0
	m;i.x/	ni;j.t/


�
i

m
;

j

ni

�
;

where t is given by (5). More explicitly,

B.f I x; y/ D
mX

iD0

niX

jD0
	m;i.x/	ni;j

�
y � 
1


2 � 
1
�


f

�
i

m
;

�

2

�
i

m

�
� 
1

�
i

m

��
j

ni
C 
1

�
i

m

��
:

For this function to represent a polynomial, we must conveniently particularize the
polynomials 
1 and 
2. The following cases are remarkable:

(a) 
1 D 0; 
2 D 1; ni D n.i D .0;m//. In this case the domain D becomes the
square R and we get the polynomial (2) of degree .m; n/.

(b) 
1 D 0; 
2 D 1� x; ni D m � i.i D .0;m//. Now we obtain the polynomial (4)
corresponding to the triangle�.

(c) 
1 D 0; 
2 D x; ni D m � i.i D .0;m//. The domain D transforms into the
triangle � W x � 0; y � 0; y � x � 0 and we have

Bm.f I x; y/ D
mX

iD0

iX

jD0
	

i;j
m .x; y/f

�
i

m
;

j

m

�
; (6)

where

	
i;j
m .x; y/ D

 
m

i

! 
i

j

!

.1 � x/m�iyj.x � y/i�j:
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(d) 
1 D x; 
2 D 1; ni D m � i.i D .0;m//. The corresponding Bernstein
polynomial is

Bm.f I x; y/ D
mX

iD0

m�iX

jD0
	

i;j

m .x; y/f

�
i

m
;

i C j

m

�
; (7)

where

	
i;j

m .x; y/ D
 

m

i

! 
m � i

j

!

xi.y � x/j.1 � x/m�i�j;

the domain D being reduced to the triangle � determined by the equations
y D x; y D 1; x D 0.

(e) 
1 D 1 � x; 
2 D 1; ni D i.i D .0;m//. In this case we have the triangle �
determined by y D 1; y D 1 � x; x D 1 and the Bernstein polynomial

Bm.f I x; y/ D
mX

iD0

iX

jD0
	

i;j

m .x; y/f

�
i

m
; 1 � i

m
C j

m

�
; (8)

where

	
i;j

m .x; y/ D
 

m

i

! 
i

j

!

.1 � x/m�i.x C y � 1/j.1 � y/i�j:

Remark 1. The polynomials (4), (6), (7), and (8) have the global degree equal to
m. We can pass from one of these to another by a simple transformation. Thus, for
instance, applying the transformation W u D x; v D x C y to (4) gives us (7).

The complete modulus of continuity of a function f .x; y/ is defined by

!.ı1; ı2/ D sup jf .x00; y00/� f .x0; y0/j;

where ı1 > 0; ı2 > 0 are real numbers, whereas .x0; y0/ and .x00; y00/ are points of �
such that jx00 � x0j � ı1; jy00 � y0j � ı2.
Alternately, the complete modulus of continuity of f which we denote by !.f I ı/ is
defined as

!.f I ı/ D supp
.x1�x2/2C.y1�y2/2�ı

jf .x1; y1/ � f .x2; y2/j:
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Taking into account that on � we have

	m.x; y/ � 0;

mX

iD0

m�iX

jD0
	i;j

m .x; y/ D 1;

jf .x00; y00/� f .x0; y0/j � !.jx00 � x0j; jy00 � y0j/ � !.ı1; ı2/

and the inequality (see, e.g., [3])

!.	1ı1; 	2ı2/ � .	1 C 	2 C 1/!.ı1; ı2/; 	1 > 0; 	2 > 0;

Now, we give here the proof of convergence of the polynomials defined by (4)
for a continuous function in the triangle �.

Theorem 3. Let f be continuous on the �, then we have

jf .x; y/� Bm.f I x; y/j � 2!

�
1p
m
;
1p
m

�
:

Proof. We can write successively

jf .x; y/� Bm.f W x; y/j �
mX

iD0

m�iX

jD0
	i;j

m .x; y/

ˇ̌
ˇ
ˇf .x; y/� f

�
i

m
;

j

m

� ˇ̌
ˇ
ˇ

�
mX

iD0

m�iX

jD0
	i;j

m .x; y/!

�ˇˇ
ˇ
ˇx � i

m

ˇ
ˇ
ˇ
ˇ;
ˇ
ˇ
ˇ
ˇy � j

m

ˇ
ˇ
ˇ
ˇ

�

�
mX

iD0

m�iX

jD0
	i;j

m .x; y/

�
1C 1

ı1

ˇ
ˇ̌
ˇx � i

m

ˇ
ˇ̌
ˇC 1

ı2

ˇ
ˇ̌
ˇy � j

m

ˇ
ˇ̌
ˇ

�
!.ı1; ı2/

�
�
1C 1

2
p

m

�
1

ı1
C 1

ı2

��
!.ı1; ı2/;

since

mX

iD0

m�iX

jD0
	i;j

m .x; y/

ˇ
ˇ
ˇ
ˇx � i

m

ˇ
ˇ
ˇ
ˇ �

� mX

iD0

m�iX

jD0
	i;j

m .x; y/

�
x � i

m

�2�1=2

D
� mX

iD0

 
m

i

!

xi.1 � x/m�i

�
x � i

m

�2�1=2

D
�

x.1 � x/

m

�1=2
� 1

2
p

m
; etc.
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By choosing ı1; ı2 D 1p
m

, we get the inequality

jf .x; y/� Bm.f I x; y/j � 2!

�
1p
m
;
1p
m

�
:

Hence, uniformly on � W Bm.f I x; y/ ! f .x; y/, as m ! 1.

For the polynomials (2), we have the following inequality of Popoviciu proved by
Ipatov [26]

jf .x; y/ � Bm;n.f I x; y/j � 3

2
!

�
1p
m
;
1p
n

�
:

In 1989, Martinez [33] studied some approximation properties of two-
dimensional Bernstein polynomials. He showed the convergence of the polynomials
with integral coefficients B.i;k�i/;e

m;n f to f .k/i;k�i both in the uniform and Lp norms. Here
the superscript “e” will denote a polynomial with integral coefficients in the above
sense and k:kp will denote the LpŒR� norm .1 � p � 1/.
The partial moduli of continuity of f are defined as

!.1/.f I ı/ D !.f I ı; 0/ D sup
y

sup
jx1�x2j�ı

jf .x1; y/ � f .x2; y/j

!.2/.f I ı/ D !.f I 0; ı/ D sup
x

sup
jy1�y2j�ı

jf .x; y1/ � f .x; y2/j

and !.f I ı; ε/ is the complete modulus of continuity of f .
The complete modulus of continuity!.f I ı; ε/ of the function f is connected with

its partial moduli of continuity !.f I ı; 0/ and !.f I 0; ε/ by the inequalities

!.f I ı; ε/ � !.f I ı; 0/C !.f I 0; ε/ � 2!.f I ı; ε/:
First, we give some basic lemmas which are needed to prove the main theorem:

Lemma 7. If f is continuous in R and Bm;n.f I x/ is the Bernstein polynomial of f ,
then

jBm;n.f I x; y/ � f .x; y/j�3
2

�
!.1/.f I n�1=2/C!.2/.f I m�1=2/

�
�3!.f I n�1=2;m�1=2/;

where !.i/.f I ı/; i D 1; 2, are the partial moduli of continuity of f .

We now define the polynomial

B
.i;k�i/
m;n f D .m � i/Š

mŠ

.n � k C i/Š

nŠ
mink�iB.i;k�i/

m;n f

and let B
.i;k�i/;e
m;n f be its corresponding polynomial with integral coefficients.
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Lemma 8. Let f be a function such that its partial derivatives of the first k orders
exist and are continuous in R.

(a) If 1 � p < 1, then

	
		f .k/i;k�i � B

.i;k�i/;e
m;n f

	
		

p
� A C B C O..mn/�1=p/;

where A D 3 !.f .k/i;k�iI .m� i/�1=2; .n�kC i/�1=2/; B D !.f .k/i;k�iI i=m; .k� i/=n/I
(b) If p D 1 and the numbers min.k�i/�i

x;m�1�
k�i
y;n�1 f .u1; u2/ are integers, where

u1 is either zero or .m � i/=m and u2 is either zero or .n � k C i/=n, then

	
	
	f .k/i;k�i � B

.i;k�i/;e
m;n f

	
	
	1 � A C B C O..mn/�1/

where A and B are as in .a/.

Theorem 4. Let max.q; r � q/ > 1; n1 D min.m; n/, and let f be a function such
that its partial derivatives of the first k orders exist and are continuous in R.

(a) If 1 � p < 1, then

	
		f .k/i;k�i � B

.i;k�i/;e
m;n f

	
		

p
� A C B C O..n1/

�	.p//;

where A and B are as in Lemma 8 and

	.p/ D



1 ; if p D 1

2=p ; if 2 � p < 1:

(b) If p D 1 and the numbers mŠ=.m � i/Š nŠ=.n � k C i/Š �i
x;m�1�

k�i
y;n�1 f .u1; u2/

are integers, where u1 is either zero or .m � i/=m, and u2 is either zero or
.n � k C i/=n, then

	
	
	f .k/i;k�i � B

.i;k�i/;e
m;n f

	
	
	1 � A C B C O..n1/

�1/;

where A and B are as in Lemma 8.

Bivariate Case of Bernstein–Schurer–Stancu Operators

Barbosu [11] introduced the Schurer–Stancu bivariate operators. The Bernstein–
Schurer–Stancu operators QS˛;ˇm;p W CŒ0; 1 C p� ! CŒ0; 1�, defined for any m 2 N and
any f 2 CŒ0; 1C p� by
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QS˛;ˇm;p.f I x/ D
mCpX

kD0
Q	m;k.x/f

�
k C ˛

m C ˇ

�
; (9)

where Q	m;k.x/ D �mCp
k

�
xk.1 � x/mCp�k.

Note that for ˛ D ˇ D 0, the operator (9) reduces to Schurer operators and for
p D 0, (9) reduces to Stancu operator.
To construct the bivariate Schurer–Stancu type operators QS˛1;ˇ1;˛2;ˇ2m;n;p;q W C.Œ0; 1C p�

Œ0; 1 C q�/ ! C.Œ0; 1� 
 Œ0; 1�/, where p; q � 0 are given integers and 0 � ˛1 �
ˇ1; 0 � ˛2 � ˇ2 are real parameters,

let

QS˛1;ˇ1m;p W C.Œ0; 1C p�/ ! C.Œ0; 1�/;

QS˛2;ˇ2n;q W C.Œ0; 1C q�/ ! C.Œ0; 1�/

be the univariate Schurer–Stancu operators defined by (9).
The parametric extensions (see [10]) of these operators are

xQS˛1;ˇ1m;p yQS˛2;ˇ2n;q W C.Œ0; 1C p� 
 Œ0; 1C q�/ ! C.Œ0; 1� 
 Œ0; 1�/

defined, respectively, by

.xQS.˛1;ˇ1/m;p f /.x; y/ W
mCpX

kD0
Q	m;k.x/f ..k C ˛1/=.m C ˇ1/; y/; (10)

.yQS.˛2;ˇ2/n;q f /.x; y/ W
nCqX

jD0
Q	n;j.y/f .x; .j C ˛2/=.n C ˇ2//: (11)

Lemma 9. The parametric extensions (10) and (11) are linear positive
operators.

Lemma 10. The parametric extensions xQS˛1;ˇ1m;p yQS˛2;ˇ2n;q of Schurer–Stancu operator
commute on C.Œ0; 1Cp�
 Œ0; 1Cq�/. Their product is the bivariate Schurer–Stancu
type operators

QS˛1;ˇ1;˛2;ˇ2m;n;p;q W C.Œ0; 1C p� 
 Œ0; 1C q�/ ! C.Œ0; 1� 
 Œ0; 1�/

defined for any f 2 C.Œ0; 1C p� 
 Œ0; 1C q�/ and any m; n 2 N by

.QS˛1;ˇ1;˛2;ˇ2m;n;p;q f /.x; y/ D
mCpX

kD0

nCqX

jD0
Q	m;k.x/ Q	n;j.y/f

�
k C ˛1

m C ˇ1
;

j C ˛2

n C ˇ2

�
: (12)
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Lemma 11. The bivariate Schurer–Stancu type operator (12) is linear and positive.

Approximations Properties of the Sequence f QS’1;“1;’2;“2
m;n;p;q f g

First, we discuss the convergence of the sequence fQS.˛1;ˇ1;˛2;ˇ2/m;n;p;q f gm;n2N .
Let eij.s; t/ D sitj; .i; j/ 2 N 
 N denote the test functions.
We need the following Bohman–Korovkin Theorem for the approximation of
bivariate functions (see [44]).

Theorem 5. Let .Lm;n/m;n2N be a sequence of linear positive operators applying the
space C.Œa; b� 
 Œc; d�/ into itself and having the properties

(i) Lm;n.1I x; y/ D 1C um;n.x; y/I
(ii) Lm;n..e10 � x/2I x; y/ D vm;n.x; y/I

(iii) Lm;n..e01 � y/2I x; y/ D wm;n.x; y/I
(iv) lim

m;n!1 um;n.x; y/ D lim
m;n!1 vm;n.x; y/ D lim

m;n!1 wm;n.x; y/ D 0, uniformly on

Œa; b� 
 Œc; d�.
Then the sequence .Lm;nf /m;n2N converges to f , uniformly on Œa; b� 
 Œc; d�, for any
f 2 C.Œa; b� 
 Œc; d�/.
Lemma 12. The bivariate Schurer–Stancu type operators verify

QS˛1;ˇ1;˛2;ˇ2m;n;p;q .1I x; y/ D 1I

QS˛1;ˇ1;˛2;ˇ2m;n;p;q ..e10 � x/2I x; y/ D .p � ˇ1/
2

.m C ˇ1/2
C m C p

.m C ˇ1/2
x.1 � x/

C2˛1.mp � 2mˇ1 � ˇ21/
.m C ˇ2/3

x C ˛21.3m C p/

.m C ˇ1/3
I

QS˛1;ˇ1;˛2;ˇ2m;n;p;q ..e01 � y/2I x; y/ D .q � ˇ2/
2

.n C ˇ2/2
C n C q

.n C ˇ2/2
y.1 � y/

C2˛2.nq � 2nˇ2 � ˇ22/
.n C ˇ2/3

y C ˛22.3n C q/

.n C ˇ2/3
:

Theorem 6. The sequence .QS˛1;ˇ1;˛2;ˇ2m;n;p;q f /m;n2N converges to f , uniformly on Œ0; 1� 

Œ0; 1�, for any f 2 C.Œ0; 1C p� 
 Œ0; 1C q�/.

A quantitative estimation of approximation order of a continuous bivariate
function using a sequence of linear positive bivariate operators is given in the
following theorem, due to Shisha and Mond (see [44]).

Theorem 7. Let .Lm;n/m;n2N be a sequence of bivariate linear positive operators
Lm;n W C.Œa; b� 
 Œc; d�/ ! C.Œa; b� 
 Œc; d�/, reproducing the constant functions.
For any f 2 C.Œa; b� 
 Œc; d�/ and any .x; y/ 2 Œa; b� 
 Œc; d� and any .ı1; ı2/ 2
Œ0; b � a� 
 Œ0; d � c�, the following
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j.Lm;nf /.x; y/�f .x; y/j �
�
1Cı�1

1

q
Lm;n..��x/2I x; y/Cı�1

2

q
Lm;n..��y/2I x; y/

Cı�1ı�1
2

q
Lm;n..��x/2I x; y/Lm;n..��y/2I x; y/

�
!.ı1; ı2/

holds.

Theorem 8. For any f 2 C.Œ0; 1 C p� 
 Œ0; 1C q�/, any .x; y/ 2 Œ0; 1� 
 Œ0; 1�, the
bivariate Schurer–Stancu type operators verify

j.QS˛1;ˇ1;˛2;ˇ2m;n;p;q f /.x; y/ � f .x; y/j � 4!

�q
ım;p;˛1;ˇ1;x;

q
ın;q;˛2;ˇ2;y

�

where

ım;p;˛1;ˇ1;x D .p � ˇ1/2
.m C ˇ1/2

C m C p

.m C ˇ1/2
x.1 � x/

C2˛1.mp � 2mˇ1 � ˇ21/

.m C ˇ2/3
x C ˛21.3m C ˇ1/

.m C ˇ1/3

and

ın;q;˛2;ˇ2;y D .q � ˇ2/2
.n C ˇ2/2

C n C q

.n C ˇ2/2
y.1 � y/

C2˛2.nq � 2nˇ2 � ˇ22/

.m C ˇ2/2
y C ˛22.3n C ˇ2/

.n C ˇ2/3
:

The order of global approximation is expressed in:

Theorem 9. For any f 2 C.Œ0; 1C p�
 Œ0; 1C q�/, the operators QS˛1;ˇ1;˛2;ˇ2m;n;p;q satisfy

j.QS˛1;ˇ1;˛2;ˇ2m;n;p;q f /.x; y/ � f .x; y/j � 4!.
q
ım;p;˛1;ˇ1 ;

q
ın;q;˛2;ˇ2 /

where

ım;p;˛1;ˇ1 D max
x2Œ0;1� ım;p;˛1;ˇ1;x

ın;q;˛2;ˇ2 D max
y2Œ0;1� ın;q;˛2;ˇ2;y

and ım;p;˛1;ˇ1;x; ın;q;˛2;ˇ2;y are given, respectively, in Theorem 8, for all .x; y/ 2
Œ0; 1� 
 Œ0; 1�.
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Bivariate Case of Bernstein–Kantorovich Operators

Let m 2 N be fixed. The Bernstein–Kantorovich operators [28] Km W L1.Œ0; 1�/ !
CŒ0; 1�, are defined by

Km.f I x/ D .m C 1/

mX

kD0

 
m

k

!

xk.1 � x/m�k
Z kC1

mC1

k
mC1

f .t/dt:

The bivariate case of the Bernstein–Kantorovich was considered by Cabulea and
Aldea [16] as follows:

Km;n.f I x; y/ D .m C 1/.n C 1/

nX

kD0

mX

hD0

 
n

k

! 
m

h

!

xk.1 � x/n�kyh.1 � x/m�h

Z kC1
nC1

k
nC1

Z hC1
mC1

h
mC1

f .u; v/dudv;

where f 2 L1.Œ0; 1� 
 Œ0; 1�/.
Lemma 13. The bivariate operators of Bernstein–Kantorovich satisfy the
relations:

(i) Km;n.e00I x; y/ D 1I
(ii) Km;n.e10I x; y/ D n

nC1x C 1
2.nC1/ I

(iii) Km;n.e01I x; y/ D m
mC1y C 1

2.mC1/ I
(iv) Km;n.e11I x; y/ D

�
n

nC1x C 1
2.nC1/

��
m

mC1y C 1
2.mC1/

�
I

(v) Km;n.e20I x; y/ D n.n�1/
.nC1/2 x2 C 2n

.nC1/2 x C 1
3.nC1/2 I

(vi) Km;n.e02I x; y/ D m.m�1/
.mC1/2 y2 C 2m

.mC1/2 y C 1
3.mC1/2 .

Theorem 10. The bivariate operators of Kantorovich have the properties

(i) lim
m;n!1 Km;nf D f uniformly on Œ0; 1�;
Œ0; 1�; 8 f 2 C.Œ0; 1� 
 Œ0; 1�/I

(ii) lim
m;n!1 Km;nf D f ; 8 f 2 Lp.Œ0; 1� 
 Œ0; 1�/; p � 1.

The bivariate Stancu–Kantorovich operators [16] are defined by

K˛
m;n.f I x; y/ D .m C 1/.n C 1/

nX

kD0

mX

hD0
w˛n;k.x/w

˛
m;h.y/

Z kC1
mC1

k
mC1

Z hC1
nC1

h
nC1

f .u; v/dudv;

where

w˛n;k.x/ D
 

n

k

!
x.k;�˛/.1 � x/.n�k;�˛/

1.n;�˛/
; x.k;�˛/ D x.x C ˛/ : : : .x C .k � 1/˛/
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and

w˛m;h.y/ D
 

m

h

!
y.h;�˛/.1 � y/.m�h;�˛/

1.m;�˛/
; y.h;�˛/ D y.y C ˛/ : : : .y C .h � 1/˛/:

Lemma 14. The bivariate operators of Kantorovich satisfy the relations:

(i) K˛
m;n.e00I x; y/ D 1I

(ii) K˛
m;n.u � xI x; y/ D 1�2x

2.nC1/ I
(iii) K˛

m;n.v � yI x; y/ D 1�2y
2.mC1/ I

(iv) K˛
m;n..u � x/.v � y/I x; y/ D 1�2x

2.nC1/ :
1�2y
2.mC1/ I

(v) K˛
m;n..u � x/2I x; y/ D x.1 � x/

n n˛C1
˛C1 �1
.nC1/2 C 1

3.nC1/2 I
(vi) K˛

m;n..v � y/2I x; y/ D y.1 � y/
m m˛C1

˛C1 �1
.mC1/2 C 1

3.mC1/2 .

A result analogous to Theorem 10 can be proved similarly for the operators K˛
m;n.

Pop [38] discussed the rate of approximation of f by Km;n.f I x; y/ in terms of the
modulus of continuity and proved a Voronovskaja type asymptotic theorem for the
bivariate case.

Theorem 11. Let f W Œ0; 1� 
 Œ0; 1� ! R be a bivariate function.

.i/ If .x; y/ 2 Œ0; 1� 
 Œ0; 1� and f admits partial derivatives of second order
continuous in a neighborhood of the point .x; y/, then

lim
m!1 m.Km;m.f I x; y/ � f .x; y// D 1 � 2x

2
f 0
x.x; y/

C1 � 2y

2
f 0
y.x; y/C x.1 � x/

2
f 00
xx.x; y/

Cy.1 � y/

2
f 00
yy.x; y/; (13)

If f admits partial derivatives of second order continuous on Œ0; 1�
 Œ0; 1�, then
the convergence given in (13) is uniform on Œ0; 1� 
 Œ0; 1�.

.ii/ If f is continuous on Œ0; 1� 
 Œ0; 1�, then

jKm;m.f I x; y/� f .x; y/j � 4!

�
f I 1p

m
;
1p
m

�
;

for any .x; y/ 2 Œ0; 1� 
 Œ0; 1�, any natural number m;m � 3.

Bivariate Operators of Kantorovich Type on the Triangle [39] Let the sets
�2.x; y/ D f.x; y/ 2 R
R W x; y � 0; x C y � 1g and F .�2/ D ff W �2 ! Rg. For
m 2 N, the bivariate operators of Kantorovich type are defined as
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Km.f I x; y/D.mC1/2
X

k;jD0
kCj�m

pm;k;j.x; y/
Z kC1

mC1

k
mC1

Z jC1
mC1

j
mC1

f .s; t/dsdt for any .x; y/ 2 �2;

where pm;k;j.x; y/ D mŠ
kŠjŠ.m�k�j/Šx

kyj.1� x � y/m�k�j, for any k; j � 0; k C j � m.

Let the functions eij W �2 ! R; eij.x; y/ D xiyj for any .x; y/ 2 �2, where i; j 2 N0

(the set of nonnegative integers).

Lemma 15. The operators .Km/m�1 verify for any .x; y/ 2 �2, the following
equalities

(1) Km.e00I x; y/ D 1I
(2) Km.e10I x; y/ D 2mxC1

2.mC1/ I
(3) Km.e01I x; y/ D 2myC1

2.mC1/ I
(4) Km..s � x/2I x; y/ D 3.m�1/x.1�x/C1

3.mC1/2 I
(5) Km..t � y/2I x; y/ D 3.m�1/y.1�y/C1

3.mC1/2 .

Lemma 16. The operators .Km/m�1 verify for any .x; y/ 2 �2, the following
estimations

(1) Km..s � x/2I x; y/ � 1
mC1 I

(2) Km..t � y/2I x; y/ � 1
mC1 I

(3) Km..s � x/2.t � y/2I x; y/ � 1
.mC1/2 I

for any m 2 N.

Approximation and Convergence Theorems for the Bivariate Operators
of Kantorovich Type

Theorem 12. Let the function f 2 C.Œ0; 1� 
 Œ0; 1�/. Then, for any .x; y/ 2 �2, any
m 2 N;m � 4, we have

jKm.f I x; y/ � f .x; y/j �
�
1C 1

ı1
p

m C 1

��
1C 1

ı2
p

m C 1

�
!.f I ı1; ı2/

for any ı1; ı2 > 0 and

jKm.f I x; y/� f .x; y/j � 4!

�
f I 1p

m C 1
;

1p
m C 1

�
:

Corollary 1. If f 2 C.Œ0; 1� 
 Œ0; 1�/, then

lim
m!1Km.f I x; y/ D f .x; y/;

uniformly on �2.
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Bivariate Rational Type Functions

Following [9], let f .x; y/ be a function of two variables, defined in Œ0;1/ 
 Œ0;1/.
By Bernstein type rational functions of two variables corresponding to f .x; y/, we
mean the following:

Rm;n.f I x; y/ D 1

.1C anx/n
1

.1C cmy/m

nX

kD0

mX

jD0
Pn;k.x/Pm;j.y/f

�
k

bn
;

j

dm

�
; .n D m D 1; 2; :::/; (14)

where an; bn; cm; dm are suitably chosen real numbers, independent of x and y and
Pn;k.x/ D �n

k

�
.anx/k and therefore Pm;j.x/ D �m

j

�
.cmy/j.

Convergence Theorem

Let Rm;n.f I x; y/ be the functions defined by (14) with an D bn
n ; bn D n2=3; cm D

dm
m ; dm D m2=3.n D m D 1; 2; : : :/ and let !2A.ı/ be the modulus of continuity of

the function f .x; y/ in Œ0; 2A� 
 Œ0; 2A�, there holds the following theorem:

Theorem 13. Let f .x; y/ be a continuous function defined in Œ0;1/ 
 Œ0;1/ such
that f .x; y/ D O.e˛.xCy//.x ! 1; y ! 1/ for some real number ˛. Then in any
square 0 � x � A; 0 � y � A; .A � 0/ the inequality

jRm;n.f I x; y/ � f .x; y/j � c0!2A

�r
1

n2=3
C 1

m2=3

�
(15)

is valid if n;m are sufficiently large, where c0 is a constant depending on A and ˛
only. The inequality (15) shows that Rm;n.f I x; y/ ! f .x; y/ when x � 0; y � 0 if
m; n ! 1, and this convergence is uniform in every finite square.

Asymptotic Approximation

Theorem 14. Let f .t; �/ be a function defined in Œ0;1/
 Œ0;1/ such that f .t; �/ D
O.e˛.tC�//.t; � ! 1; ˛ is a fixed real number), then at each point .x; y/ in which
f 00
xx; f

00
xy, and f 00

yy exist finitely, we have
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Rm;n.f I x; y/ D f .x; y/C anf 0
x.x; y/

� �x2

1C anx

�
C cnf 0

y.x; y/

� �y2

1C cmy

�

Canf 00
xx.x; y/

� anbnx4 C x
bn

2bn.1C anx/2

�
Cancmf 00

xy.x; y/

�
x2y2

.1Canx/.1Ccmy/

�

Ccmf 00
yy.x; y/

� cmdmy4 C y
cm

2dm.1C cmy/2

�
C .an C cm/m;n;

where m;n ! 0; an D bn
n ! 0; cm D dm

m ! 0; n1=2

bn
! 0; m1=2

dm
! 0, as m; n ! 1.

Bivariate Operators of Durrmeyer Type

Let m; n 2 N. The bivariate operator of Durrmeyer type Mm;n W L1.Œ0; 1�
 Œ0; 1�/ !
C.Œ0; 1� 
 Œ0; 1�/ is defined for any function f 2 L1.Œ0; 1� 
 Œ0; 1�/ and any .x; y/ 2
Œ0; 1� 
 Œ0; 1� by

Mm;n.f I x; y/ D .m C 1/.n C 1/

mX

kD0

nX

jD0
	m;k.x/	n;j.y/

Z 1

0

Z 1

0

	m;k.t/	n;j.s/f .t; s/dtds:

Theorem 15 ([38]). Let f W Œ0; 1� 
 Œ0; 1� ! R be a bivariate function.

.i/ If .x; y/ 2 Œ0; 1� 
 Œ0; 1� and f admits partial derivatives of second order
continuous in a neighborhood of the point .x; y/, then

lim
m!1 m.Mm;m.f I x; y/ � f .x; y// D .1 � 2x/f 0

x.x; y/

C.1 � 2y/f 0
y.x; y/C x.1 � x/f 00

xx.x; y/

Cy.1 � y/f 00
yy.x; y/: (16)

If f admits partial derivatives of second order continuous on Œ0; 1�
 Œ0; 1�, then
the convergence given in (16) is uniform on Œ0; 1� 
 Œ0; 1�.

.ii/ If f is continuous on Œ0; 1� 
 Œ0; 1�, then

jMm;m.f I x; y/ � f .x; y/j � 25

4
!

�
f I 1p

m
;
1p
m

�

for any .x; y/ 2 Œ0; 1� 
 Œ0; 1�, any natural number m;m � 3.
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Bivariate Operators of Stancu Type

Following Pop [38], for the real numbers ˛1; ˛2; ˇ1; ˇ2 with ˛1 � 0 and ˛2 �
0;m1;m2; �

˛1;ˇ1 and �˛2;ˇ2 are defined through

mi D



maxf1;�Œˇi�g ; if ˇi 2 R n Z

maxf1; 1� ˇig ; if ˇi 2 Z;

�ˇi D mi C ˇi D



maxf1C ˇi; fˇigg ; if ˇi 2 R n Z

maxf1C ˇi; 1g ; if ˇi 2 Z;

�˛i;ˇi D
(

1 ; if ˛i � ˇi

1C ˛i�ˇi
�ˇi

; if ˛i > ˇi;

where i 2 f1; 2g.
Let the bivariate operators of Stancu type P˛1;ˇ1;˛2;ˇ2m;n W C.Œ0; �˛1;ˇ1 �
 Œ0; �˛2;ˇ2 �/ !
C.Œ0; 1� 
 Œ0; 1�/ be defined for any function f 2 C.Œ0; �˛1;ˇ1 � 
 Œ0; �˛2;ˇ2 �/ by

P˛1;ˇ1;˛2;ˇ2m;n .f I x; y/ D
mX

kD0

nX

jD0
	m;k.x/	n;j.y/f

�
k C ˛1

m C ˇ1
;

j C ˛2

n C ˇ2

�

for any .x; y/ 2 Œ0; 1� 
 Œ0; 1� and any natural numbers m; n;m � m1, and n � m2.

Theorem 16. Let f W C.Œ0; �˛1;ˇ1 � 
 Œ0; �˛2;ˇ2 �/ ! R be a bivariate function.

.i/ If .x; y/ 2 Œ0; 1� 
 Œ0; 1� and f admits partial derivatives of second order
continuous in a neighborhood of the point .x; y/, then

lim
m!1 m.P˛1;ˇ1;˛2;ˇ2m;m .f I x; y/�f .x; y// D .˛1�ˇ1x/f 0

x.x; y/C.˛2�ˇ2y/f 0
y.x; y/

Cx.1 � x/

2
f 00
xx.x; y/C y.1� y/

2
f 00
yy.x; y/:

(17)

If f admits partial derivatives of second order continuous on Œ0; 1�
 Œ0; 1�, then
the convergence given in (17) is uniform on Œ0; 1� 
 Œ0; 1�.

.ii/ If f is continuous on Œ0; 1� 
 Œ0; 1�, then

jP˛1;ˇ1;˛2;ˇ2m;m .f I x; y/ � f .x; y/j � 81

16
!

�
f I 1p

m
;
1p
m

�

for any .x; y/ 2 Œ0; 1� 
 Œ0; 1�, any natural number m;m.0/.
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The Bernstein–Stancu polynomials [43] are defined by

Bn;˛;ˇ D
nX

kD0

 
n

k

!

xk.1 � x/n�kf

�
k C ˛

n C ˇ

�
(18)

Following [22], there are two type of extensions of the polynomial (18) in the case
of two variables. The Bernstein type polynomials of nth degree with respect to x

and mth degree with respect to y, corresponding to the square S W


˛1
nCˇ1 ;

nC˛1
nCˇ1

�




˛2

nCˇ2 ;
nC˛2
nCˇ2

�
is defined in the following form (see [42, 43]):

S˛k;�k ;ˇk;�k
n;m .f I x; y/ D

nX

iD0

mX

jD0
f

�
i C �1

n C �1
;

j C �2

m C �2

�
pn;i;˛i ;ˇi.x/qm;j;˛2;ˇ2.y/;

where

pn;i;˛i;ˇi .x/ D
�

n C ˇ

n

�n
 

n

i

!

.x � ˛1

n C ˇ1
/i
�

n C ˛1

n C ˇ2
� x

�n�i

;

qm;j;˛2;ˇ2.y/ D
�

m C ˇ

m

�m
 

m

j

!�
y � ˛2

m C ˇ2

�j �m C ˛2

m C ˇ2
� y

�m�j

and ˛k; �k; ˇk; �k.k D 1; 2/ are positive numbers providing 0 < ˛1 � �1 � �1 � ˇ1
and ˛2; �2; �2; ˇ2.
On the other hand, the Bernstein type polynomials on the triangle � WD f.x; y/ W
x C y � nC2˛

nCˇ ; x; y � ˛
nCˇ g are defined as

S˛k;�k;ˇk ;�k
n;n .f I x; y/ D

nX

kD0

n�kX

lD0
f

�
k C ˛1

n C ˇ1
;

l C ˛2

n C ˇ2

�
pk;l

n;˛;ˇ.x; y/; (19)

where

pk;l
n;˛;ˇ.x; y/ D

�
n C ˇ

n

�n
 

n

k

! 
n � k

l

!�
x � ˛

n C ˇ

�k

�
y � ˛

n C ˇ

�l �n C 2˛

n C ˇ
� x � y

�n�k�l

:
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Theorem 17. Let f 2 C.S/. The following inequalities hold:

(i) If .�2 � ˇ2/ � .�2 � ˛2/ and .�1 � ˇ1/ � .�1 � ˛1/

jS˛k ;�k ;ˇk ;�k
n;m .f I x; y/� f .x; y/j � 3

2



!.1/

�
f I
q
4.�1 � ˇ1/2.

nC˛1
nCˇ1

/2 C n

.n C �1/

�

C!.2/
�

f I
q
4.�2 � ˇ2/2.

mC˛2
mCˇ2

/2 C m

.m C �2/

��
I

and if .�1 � ˇ1/ < .�1 � ˛1/ and .�2 � ˇ2/ < .�2 � ˛2/

jS˛k;�k;ˇk ;�k
n;m .f I x; y/� f .x; y/j � 3

2



!.1/

�
f I
p
4.�1 � ˛1/2 C n

.n C �1/

�

C!.2/
�

f I
p
4.�2 � ˛2/2 C m

.m C �2/

��

(ii) If .�2 � ˇ2/ � .�2 � ˛2/ and .�1 � ˇ1/ � .�1 � ˛1/

jS˛k;�k ;ˇk;�k
n;m .f I x; y/ � f .x; y/j

� 3

2



!

�
f I
s
4.�1 � ˇ1/2.

nC˛1
nCˇ1 /

2 C n

.n C �1/2
C
4.�2 � ˇ2/2.

mC˛2
mCˇ2 /

2 C m

.m C �2/2

��
:

Theorem 18. Let f 2 C.�/, where � is defined in (19). Then the following
inequalities hold:

(i) If .ˇ � ˇ2/ � .˛ � ˛2/ and .ˇ � ˇ1/ � .˛ � ˛1/, then

jS˛k;�k ;ˇk ;�k
n;n .f I x; y/ � f .x; y/j � 2!

�
q
4.ˇ � ˇ1/2.

nC˛
nCˇ /2 C n

.n C ˇ1/
;

q
4.ˇ � ˇ2/2. nC˛

nCˇ /2 C n

.n C ˇ2/

�
I

(ii) If .ˇ � ˇ2/ < .˛ � ˛2/ and .ˇ � ˇ1/ < .˛ � ˛1/, then

jS˛k;�k;ˇk ;�k
n;n .f I x; y/ � f .x; y/j � 2!

�p
4.˛ � ˛1/2 C n

.n C ˇ1/
;

p
4.˛ � ˛2/2 C n

.n C ˇ2/

�
:
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Bivariate Baskakov Operators

Let N WD f1; 2; : : :g;RC WD .0;1/;R0 WD RC [ f0g;R2C WD RC 
 RC and
R
2
0 WD R0 
 R0. Following [12], for a fixed p 2 N0, we define the function wp on

R0 by

w0.x/ WD 1;wp.x/ WD .1C xp/�1 if p � 1:

Next, for fixed p; q 2 N0, we define the weighted function wp;q on R
2
0 by

wp;q.x; y/ WD wp.x/wq.y/;

and the weighted space Cp;q of all real-valued continuous functions f on R
2
0 for

which wp;qf is uniformly continuous and bounded on R
2
0 and the norm is given by

the formula

jjf jjp;q � jjf .�; �/jj WD sup
.x;y/2R20

wp;q.x; y/jf .x; y/j:

For f 2 Cp;q, we define the modulus of continuity

!.f ;Cp;qI t; s/ WD sup
0�h�t;0�ı�s

jj�h;ıf .�; �/jjp;q; t; s � 0; (20)

where�h;ı f .x; y/ WD f .x C h; y C ı/� f .x; y/ for .x; y/ 2 R
2
0 and h; ı 2 R0.

For every f 2 Cp;q, we have

!.f ;Cp;qI t1; s1/ � !.f ;Cp;qI t2; s1/ � !.f ;Cp;qI t2; s2/;

for 0 � t1 < t2 and 0 � s1 < s2, and

lim
t;s!0C!.f ;Cp;qI t; s/ D 0: (21)

Moreover, for fixed m 2 N and p; q 2 N0, let Cm
p;q be the set of all functions f 2 Cp;q

having the partial derivatives
@kf

@xs@yk�s
2 Cp;q; s D 1; 2; :::k; k D 1; 2; : : : ;m:

In [25], Gurdek et al. considered the Baskakov operators

Am;n.f I x; y/ WD
1X

jD0

1X

kD0
am;j.x/an;k.y/f

�
j

m
;

k

n

�
;

where aq;r.z/ WD �q�1Cr
r

�
zr.1C z/�q�r , and the Baskakov-Kantorovich operators

Bm;n.f I x; y/ WD
1X

jD0

1X

kD0
am;j.x/an;k.y/mn

Z jC1
m

j
m

dt
Z kC1

n

k
n

f .t; z/dz;

.x; y/ 2 R
2
0;m; n 2 N defined for functions f 2 Cp;q; p; q 2 N0.



36 P.N. Agrawal and M. Goyal

Moreover, if f 2 Cp;q and if f .x; y/ D f1.x/f2.y/ for all .x; y/ 2 R
2
0, then

Am;n.f .t; z/I x; y/DAm.f1.t/I x/An.f2.z/I y/;Bm;n.f .t; z/I x; y/DBm.f1.t/I x/Bn.f2.z/I y/;

for .x; y/ 2 R
2
0;m; n 2 N. The authors [25] proved the following lemmas:

Lemma 17. For all n 2 N and x 2 R0, we have

An.t � xI x/ D 0; Bn.t � xI x/ D 1

2n
;

An..t � x/2I x/ D 
.x/

n
; Bn..t � x/2I x/ D 
.x/

n
C 1

3n2
;

where 
.x/ WD x.1C x/.

Lemma 18. Let Ln 2 fAn;Bng, i.e. Ln D An for all n 2 N or Ln D Bn for all n 2 N.
Then for every fixed x0 2 R0 there exists a positive constant M1.x0/ such that for
n 2 N,

Ln..t � x/4I x0/ � M1.x0/n
�2:

Lemma 19. Let Ln 2 fAn;Bng. Then for every p 2 N0 there exist positive constants
Mk.p/, k D 2; 3, such that

wp.x/Ln

�
1

wp.t/
I x

�
� M2.p/;

wp.x/An

�
.t � x/2

wp.t/
I x

�
� M3.p/


.x/

n
;

wp.x/Bn

�
.t � x/2

wp.t/
I x

�
� M3.p/


.x/C 1

n
;

for all n 2 N and x 2 R0.

Lemma 20. For every p 2 N0 there exists a positive constant M4.p/ such that

wp.x/
1X

kD0

ˇ
ˇ
ˇ̌ d

dx
an;k.x/

ˇ
ˇ
ˇ̌
�

wp

�
k

n

���1
� M4.p/n;

wp.x/
1X

kD0

ˇ
ˇ
ˇ
ˇ

d

dx
an;k.x/

ˇ
ˇ
ˇ
ˇ n
Z kC1

n

k=n

dt

wp.t/
� M4.p/n;

for all n 2 N and x 2 R0.

Lemma 21. Let Lm;n 2 fAm;n;Bm;ng. Then for every p; q 2 N0 there exist two
positive constants Mi.p; q/; i D 5; 6; such that
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		Lm;n

�
1

wp;q.t; z/
I �; �
�		
		 � M5.p; q/; m; n 2 N;

and for every f 2 Cp;q and for all m; n 2 N

kLm;n.f I �; �/kp;q � M5.p; q/jjf jjp;q;
	
	
	
	

d

dx
Lm;n.f I x; y/

	
	
	
	

p;q

� M6.p; q/mjjf jjp;q;

	
	
	
	

d

dy
Lm;n.f I x; y/

	
	
	
	

p;q

� M6.p; q/njjf jjp;q:

Hence, Lm;n is linear positive operator from the space Cp;q into C1
p;q.

Rate of Convergence

Theorem 19. Suppose that f 2 C1
p;q with some p; q 2 N0. Then there exists a

positive constant M7.p; q/ such that for all .x; y/ 2 R
2C and m; n 2 N

wp;q.x; y/jAm;n.f I x; y/ � f .x; y/j � M7.p; q/

(

jjf 0
x jjp;q

r

.x/

m
C jjf 0

y jjp;q

r

.y/

n

)

and

wp;q.x; y/jBm;n.f I x; y/�f .x; y/j�M7.p; q/

(

jjf 0
x jjp;q

r

.x/C1

m
Cjjf 0

y jjp;q

r

.y/C1

n

)

:

Theorem 20. Suppose that f 2 Cp;q with some p; q 2 N0. Then there exists a
positive constant M11.p; q/ such that for all .x; y/ 2 R

2C and m; n 2 N

wp;q.x; y/jAm;n.f I x; y/� f .x; y/j � M11.p; q/!

 

f ;Cp;qI
r

.x/

m
;

r

.y/

n

!

and

wp;q.x; y/jBm;n.f I x; y/� f .x; y/j � M11.p; q/!

 

f ;Cp;qI
r

.x/C 1

m
;

r

.y/C 1

n

!

for all .x; y/ 2 R
2C and m; n 2 N.

Corollary 2. Let Lm;n 2 fAm;n;Bm;ng and let f 2 Cp;q with some p; q 2 N0. Then for
every .x; y/ 2 R

2C

lim
m;n!1 Lm;n.f I x; y/ D f .x; y/ (22)
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Moreover, the assertion (22) holds uniformly on every rectangle 0 � x � a; 0 �
y � b.

Voronovskaja Type Asymptotic Theorems

Theorem 21. Suppose that f 2 C2
p;q with some p; q 2 N0. Then for every .x; y/ 2

R
2C

lim
n!1 nfAn;n.f I x; y/ � f .x; y/g D 
.x/

2
f 00
xx.x; y/C 
.y/

2
f 00
yy.x; y/;

and

lim
n!1 nfBn;n.f I x; y/ � f .x; y/gD1

2
ff 0

x.x; y/C f 0
y.x; y/CC
.x/f 00

xx.x; y/C
.y/f 00
yy.x; y/g:

Theorem 22. Let Lm;n 2 fAm;n;Bm;ng and let f 2 C1
p;q with some p; q 2 N0. Then

for every .x; y/ 2 R
2C

lim
n!1

@

@x
Ln;n.f I x; y/ D @f

@x
;

lim
n!1

@

@y
Ln;n.f I x; y/ D @f

@y
:

Generalized Baskakov Operators Mihesan [34] introduced an important general-
ization of the well-known Baskakov operators depending on a nonnegative constant
a, independent of n as

Ba
n.f I x/ D

1X

kD0
Wa

n;k.x/f

�
k

n

�
; (23)

where

Wa
n;k.x/ D e

�ax
1Cx

Pk.n; a/

kŠ

xk

.1C x/n�k
;Pk.n; a/ D

kX

iD0

 
k

i

!

.n/ia
k�i;

with rising factorial given by .n/i D n.n C 1/ : : : .n C i � 1/; .n/0 D 1: (24)

Following [46, 47], in the space Cp;q, we define the operators for functions of two
variables with nonnegative constants a; b, independent of n as

Ba;b
m;n.f I x; y/ D

1X

jD0

1X

kD0
Wa

m;j.x/W
b
n;k.y/f

�
j

m
;

k

n

�
; m; n 2 N; x; y 2 R

2
0; (25)
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Lemma 22. For f 2 Cp;q and Ba;b
m;n.f I x; y/ as defined in (25), we have

.Ba;b
m;n.f //

0
x.x; y/ D m

x.1C x/
fBa;b

m;n.f .t; z/.t � x/I x; y/ � Ba
m.t � xI x/Ba;b

m;n.f .t; z/I x; y/g

and

.Ba;b
m;n.f //

0
y.x; y/ D n

y.1C y/
fBa;b

m;n.f .t; z/.z � y/I x; y/� Bb
n.z � yI y/Ba;b

m;n.f .t; z/I x; y/g:

Simultaneous Approximation

Theorem 23. For f 2 C1
p;qa; b � 0 and every .x; y/ 2 R

2C

lim
n!1.B

a;b
n;n.f //

0
x.x; y/ D f 0

x.x; y/

and

lim
n!1.B

a;b
n;n.f //

0
y.x; y/ D f 0

y.x; y/

Voronovskaja Type Theorems

Theorem 24. Let f 2 C3
p;q. Then, for every .x; y/ 2 R

2C, we have

n lim
n!1f.Ba;b

n;n.f //
0
x.x; y/ � f 0

x.x; y/g D 1C 2x

2
f 00
xx.x; y/C y.1C y/

2
f 000
xyy.x; y/

Cx.1C x/

2
f 000
xxx.x; y/C a

.1C x/2
f 0
x.x; y/

C ax

1C x
f 00
xx.x; y/C ay

1C y
f 00
xy.x; y/;

n lim
n!1f.Ba;b

n;n.f //
0
y.x; y/ � f 0

y.x; y/g D 1C 2y

2
f 00
yy.x; y/C x.1C x/

2
f 000
xxy.x; y/

Cy.1C y/

2
f 000
yyy.x; y/C a

.1C y/2
f 0
x.x; y/

C ay

1C y
f 00
yy.x; y/C ax

1C x
f 00
xy.x; y/:

Bivariate Case for Genaralized Baskakov–Kantorovich Operators Erencin
[18] proposed a Durrmeyer type modification of the operators (23) by considering
the weights of the beta basis function and established some direct results. Agrawal
and Goyal [4] investigated the Kantorovich modification of the operators (23)
and obtained some results concerning the rate of convergence in ordinary and
simultaneous approximation. Subsequently, the same authors [24] considered the
bivariate generalization of the generalized Baskakov–Kantorovich operators and
discussed the rate of approximation.
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In [24], for f 2 C.p;q/ we define a bivariate extension of the generalized Baskakov
operators as follows:

Ga
n1;n2 .f I x; y/ D .n1 C 1/.n2 C 1/

1X

k1D0

1X

k2D0
Wa

n1;n2;k1;k2 .x; y/

Z k2C1
n2C1

k2
n2C1

Z k1C1
n1C1

k1
n1C1

f .u; v/du dv; (26)

where

Wa
n1;n2;k1;k2

.x; y/ D xk1yk2pk1.n; a/pk2.n; a/e
�ax
1Cx e

�ay
1Cy

k1Šk2Š.1C x/n1Ck1 .1C y/n2Ck2
:

Auxiliary Results

Lemma 23. Let ei;j W R
2
0 ! R

2
0; ei;j D xiyj; 0 � i; j � 2 be two-dimensional

test functions. Then the bivariate operators defined in (26) satisfy the following
results:

(i) Ga
n1;n2 .e0;0I x; y/ D 1I

(ii) Ga
n1;n2 .e1;0I x; y/ D 1

n1 C 1

�
n1x C ax

1Cx C 1
2

�
I

(iii) Ga
n1;n2

.e0;1I x; y/ D 1

n2 C 1

�
n2y C ay

1Cy C 1
2

�
I

(iv) Ga
n1;n2 .e2;0I x; y/ D 1

.n1 C 1/2

�
n21x

2 C n1x2 C 2n1x C 2an1x2

1C x
C a2x2

.1C x/2
C

2ax

1C x
C 1

3

�
I

(v) Ga
n1;n2

.e0;2I x; y/ D 1

.n2 C 1/2

�
n22y

2 C n2y2 C 2n2y C 2an2y2

1C y
C a2y2

.1Cy/2
C 2ay

1Cy

C 1
3

�
I

(vi) Ga
n1;n2 .e3;0I x; y/ D 1

.n1 C 1/3

�
n31x

3 C 3n21x
2

2
.3 C 2x/C 3n1x2

2
C n1x

2
.4x2 C

6x C 5/C 3ax3n21
1C x

C3an1x2

1C x



.3C x/C ax

1C x

�
C ax

1C x



7

2
C 7

2

ax

.1C x/
C a2x2

.1C x/2

�
C 1

4

�
I

(vii) Ga
n1;n2 .e0;3I x; y/ D 1

.n2 C 1/3

�
n32y

3 C 3n22y
2

2
.3 C 2y/C 3n2y2

2
C n2y

2
.4y2 C

6y C 5/C 3ay3n22
1C y

C3an2y2

1C y



.3C y/C ay

1C y

�
C ay

1C y



7

2
C 7

2

ay

.1C y/
C a2y2

.1C y/2

�
C 1

4

�
.



Bivariate Extension of Linear Positive Operators 41

Lemma 24. For n1; n2 2 N, we have

(i) Ga
n1;n2

.u � xI x; y/ D 1

n1 C 1

�
� x C ax

1C x
C 1

2

�
I

(ii) Ga
n1;n2 .v � yI x; y/ D 1

n2 C 1

�
� y C ay

1C y
C 1

2

�
I

(iii) Ga
n1;n2 ..u � x/2I x; y/ D 1

.n1 C 1/2

�
.n1 C 1/x2 C .n1 � 1/x C a2x2

.1C x/2
C

2ax

�
1 � x

1C x

�
C 1

3

�
I

(iv) Ga
n1;n2 ..v � y/2I x; y/ D 1

.n2 C 1/2

�
.n2 C 1/y2 C .n2 � 1/y C a2y2

.1C y/2
C

2ay

�
1 � y

1C y

�
C 1

3

�
.

Remark 2. For every x 2 Œ0;1/ and n 2 N, we have

Ga
n1;n2

..u � x/2I x; y/ � fıa
n1.x/g2

n1 C 1
;

where fıa
n1 .x/g2 D 
2.x/C .1Ca/2

n1C1 and 
.x/ D p
x.1C x/.

Lemma 25. For every p 2 N0 there exist positive constants Mk.p/; k D 1; 2 such
that

(i) !p.x/Ga
n

�
1

!p.t/
I x

�
� M1.p/,

(ii) !p.x/Ga
n

�
.t � x/2

!p.t/
I x

�
� M2.p/

fıa
n.x/g2

n C 1
,

for all x 2 R0 D RC [ f0g;RC D .0;1/ and n 2 N.

Lemma 26. For every p; q 2 N0 there exists positive constant M3.p; q/, such that

k Ga
n1;n2

.f I :; :/ kp;q� M3.p; q/ k f kp;q

for every f 2 Cp;q and for all n1; n2 2 N.

Local Approximation For f 2 CB.R
2
0/ (the space of all bounded and uniformly

continuous functions on I, let C2
B.R

2
0/ D ff 2 CB.R

2
0/ W f .r;s/ 2 CB.R

2
0/;

1 � r; s � 2g, where f .r;s/ is .r; s/th-order partial derivative with respect to x; y
of f , equipped with the norm

jjf jjC2B.R
2
0/

D jjf jjCB.R
2
0/

C
2X

iD1

	
	
	
	
@if

@xi

	
	
	
	C

2X

iD1

	
	
	
	
@if

@yi

	
	
	
	 :
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The Peetre’s K-functional of the function f 2 CB.R
2
0/ is given by

K .f I ı/ D inf
g2C2B.R

2
0/

fjjf � gjjCB.R
2
0/

C ıjjgjjC2B.R
2
0/
; ı > 0g:

It is also known that the following inequality

K .f I ı/ � M1f!2.f I
p
ı/C min.1; ı/jjf jjCB.R

2
0/

g

holds for all ı > 0 ([15], page 192). The constant M1 is independent of ı and f and
!2.f I p

ı/ is the second order modulus of continuity which is defined in a similar
manner as the second order modulus of continuity for one variable case:

!2.f ;
p
ı/ D sup

0<h�p
ı

sup
x;xC2h2Œ0;1/

jf .x C 2h/� 2f .x C h/C f .x/j:

Now, we find the order of approximation of the sequence Ga
n1;n2 .f I x; y/ to the

function f .xI y/ 2 C2
B.R

2
0/ by Peetre’s K-functional.

Theorem 25. For the function f 2 CB.R
2
0/, the following inequality

jGa
n1;n2 .f I x; y/ � f .x; y/j � 4K .f I Mn1;n2 .x; y//

C!
�

f I
s�

1

n1 C 1

�
� x C ax

1C x
C 1

2

��2
C
�

1

n2 C 1

�
�yC ay

1C y
C1

2

��2 �

�M



!2

�
f I
s

Mn1;n2 .x; y/

�
Cminf1;Mn1;n2 .x; y/gjjf jjC2B.I/

�

C!
�

f I
s�

1

n1 C 1

�
�xC ax

1C x
C1

2

��2
C
�

1

n2C1
�

�yC ay

1Cy
C1

2

��2 �

holds, where M is a positive constant independent of f and

Mn1;n2 .x; y/ D fıa
n1.x/g2

n1 C 1
C fıa

n2 .y/g2
n2 C 1

.

Rate of Convergence

Theorem 26. Suppose that f 2 C1
p;q with p; q 2 N0 then there exists a positive

constant M5.p; q/ such that for all .x; y/ 2 I and n1; n2 2 N

!p;q.x; y/jGa
n1;n2

.f I x; y/�f .x; y/j�M5.p; q/



k f 0

x kp;q
ıa

n1 .x/p
n1 C 1

C k f 0
y kp;q

ıa
n2.y/p
n2 C 1

�
:

Theorem 27. Suppose that f 2 Cp;q with some p; q 2 N0. Then there exists a
positive constant M9.p; q/ such that
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!p;q.x; y/ j Ga
n;n.f .t; z/I x; y/�f .x; y/ j

�M9.p; q/!

�
f I Cp;qI ıa

n1 .x/p
n1C1

;
ıa

n2 .y/p
n2C1

�
;

for all .x; y/ 2 R
2
0 and n1; n2 2 N.

As a consequence of Theorem 27, we have

Theorem 28. Let f 2 Cp;q with some p; q 2 N0. Then for every .x; y/ 2 R
2
0,

lim
n1;n2!1 Ga

n1;n2
.f I x; y/ D f .x; y/:

Voronovskaja Type Theorem

Theorem 29. Let f 2 C2
p;q. Then for every .x; y/ 2 R

2
0,

lim
n!1 nfGa

n;n.f I x; y/ � f .x; y/g D
�

� x C ax

1C x
C 1

2

�
fx.x; y/

C
�

� y C ay

1C y
C 1

2

�
fy.x; y/

C x

2
.x C 2/fxx.x; y/C y

2
.y C 2/fyy.x; y/:

Simultaneous Approximation

Theorem 30. Let f 2 C1
p;q. Then, for every .x; y/ 2 R

2C we have

lim
n!1

�
@

@!
Ga

n;n.f I!; y/
�

!Dx

D @f

@x
.x; y/;

lim
n!1

�
@

@�
Ga

n;n.f I x; �/

�

�Dy

D @f

@y
.x; y/:

Theorem 31. Let f 2 C3
p;q. Then for every .x; y/ 2 R

2C, we have

lim
n!1 n


�
@

@!
Ga

n;n.f I!; y/
�

!Dx

� @f

@x
.x; y/

�
D
�

� 1C a

.1C x/2

�
fx.x; y/

C
�
1C ax

1C x

�
fxx.x; y/

C
�

� y C ay

1C y
C 1

2

�
fxy.x; y/

C y

2
.1C y/fxyy.x; y/

C x

2
.1C x/fxxx.x; y/
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and

lim
n!1 n


�
@

@�
Ga

n;n.f I x; �/

�

�Dy

� @f

@y
.x; y/

�
D
�

� 1C a

.1C y/2

�
fy.x; y/

C
�
1C ay

1C y

�
fyy.x; y/

C
�

� x C ax

1C x
C 1

2

�
fxy.x; y/

C x

2
.1C x/fxxy.x; y/

C y

2
.1C y/fyyy.x; y/:

Bivariate Szász–Mirakyan Operators

For the functions f W R20 ! R, the SzKasz–Mirakyan operators [40] are defined as

Sm;n.f I x/ WD e�mx�ny
1X

jD0

1X

kD0

.mx/j.ny/k

jŠkŠ
f

�
j

m
;

k

n

�
;

.x; y/ 2 R
2
0 and m; n 2 N.

Bivariate Generalized Szász–Mirakyan Operators From [13] for p > 0, let Cp

denote the space of all functions f .x/ such that e�pxf .x/ is bounded and uniformly
continuous on R0. For f 2 Cp, Rempulska and Graczyk [41] introduced the
generalized Szász–Mirakyan operators for f 2 Cp as follows:

SŒr�n;p.f I x/ D a

Ar.nx/

1X

kD0

.nx/rk

.rk/Š
f

�
rk

n C p

�
; x 2 R0; n 2 N; (27)

where r 2 N is fixed and

Ar.t/ WD
1X

kD0

trk

.rk/Š
; for t 2 R0:

and studied the rate of convergence and the Voronovskaja type asymptotic theorem.
To discuss their results, first we give some definitions and auxiliary results.

We denote by Ep;q, the exponential weighted space of functions of two variables.
For fixed p 2 N0, we define the function vp on R0 by vp D e�px, for p > 0 and

x 2 R0. Let p; q > 0 be fixed numbers, let vp;q.x; y/ D vp.x/vq.y/ D e�px�qy for
x; y 2 R

2
0.
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The space Ep;q is the set of all functions f W R20 ! R such that vp;qf is uniformly
continuous and bounded on R

2
0 and the norm

k f kp;qDk f .:; :/ kp;qWD sup
.x;y/2R20

vp;q.x; y/jf .x; y/j:

Let r; s 2 N be fixed and let Ar be given by (27). For functions f 2 Ep;q; p; q > 0,
we define the following generalized Szász–Mirakyan operators

SŒr;s�m;nIp;q.f I x; y/ D 1

Ar.mx/As.ny/

1X

jD0

1X

kD0

.mx/rj.ny/sk

.rj/Š.sk/Š
f

�
rj

m C p
;

sk

n C q

�
;

(28)

.x; y/ 2 R
2
0 and m; n 2 N. In particular, for f0.x; y/ D 1 we have

SŒr;s�m;nIp;q.f0I x; y/ D 1; for .x; y/ 2 R
2
0; and m; n 2 N:

If r D s D 1, then by (27) and (28),

SŒ1;1�m;nIp;q.f I x; y/ D e�mx�ny
1X

jD0

1X

kD0

.mx/j.ny/k

.j/Š.k/Š
f

�
j

m C p
;

k

n C q

�
:

Lemma 27. For fixed p; q > 0 and r; s 2 N there is M1.r; s/ D M0.r/M0.s/ where
M0.t/ is a positive constant depending only on t, for fixed t 2 N such that for every
f 2 Ep;q,

k SŒr;s�m;nIp;q.f / kp;q� M1.r; s/ k f kp;q; for m; n 2 N:

Rate of Convergence

Theorem 33. For fixed p; q > 0 and r; s 2 N there exists M3 D M3.p; q; r; s/ D
const. > 0 such that if f 2 E1p;q, then

vp;q.x; y/jSŒr;s�m;nIp;qf .x; y/� f .x; y/j � M3



k f 0

x kp;q

s
x2 C x

m C p
C k f 0

y kp;q

s
y2 C y

n C q

�
;

for .x; y/ 2 R
2
0 and m; n 2 N.

Theorem 32. Let p; q > 0 and r; s 2 N be fixed. Then there exists M2 D
M2.p; q; r; s/ D const. > 0 such that if f 2 Ep;q, then

vp;q.x; y/jSŒr;s�m;nIp;qf .x; y/ � f .x; y/j � M2!

�
f I Ep;qI

s
x2 C x

m C p
;

s
y2 C y

n C q

�
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for .x; y/ 2 R
2
0 and m; n 2 N, where !.f I Ep;q/ is the modulus of continuity of f

defined by (20).

From Theorem 32 and (21), we get the following:

Corollary 3. For fixed p; q > 0 and r; s 2 N and every f 2 Ep;q there holds

lim
m;n!1 SŒr;s�m;nIp;qf .x; y/ D f .x; y/; at every .x; y/ 2 R

2
0:

This convergence is uniform on every rectangle Œx1; x2� 
 Œy1; y2� with x1; y1 � 0.

Voronovskaja Type Theorem

Theorem 34. Let p; q; r, and s satisfy the assumptions of Theorem 32. If f 2 E2p;q,
then

lim
n!1 n



SŒr;s�n;nIp;qf .x; y/� f .x; y/

�
D � pxf 0

x.x; y/� qyf 0
y.x; y/C

x

2
f 00
xx.x; y/C

y

2
f 00
yy.x; y/

for .x; y/ 2 R
2
0.

Bivariate Case of BBH Operators

Adell et al. [2] exhibited a bivariate version of the BBH operators as follows: Let as
set � WD f.x; y/ 2 R

2jx � 0; y � 0; xy < 1g and define for .x; y/ 2 �; n 2 N and
any real function f on �

Ln.f I x; y/ D
nX

kD0

n�kX

lD0
f

�
k

n � k C 1
;

l

n � l C 1

� 
n

k; l

!�
x

1C x

�k � y

1C y

�l

�
1 � xy

.1C x/.1C y/

�n�k�l

; n 2 N

with the multinomial coefficient
� n

k;l

� D nŠ
kŠlŠ.n�k�l/Š . Abel [1] obtained the complete

asymptotic expansion for the operators Ln; as n tends to 1:

Alternatively, the bivariate case for BBH operator [1] is defined by

Ln.f I x; y/ D .1C x C y/�n
nX

kD0

n�kX

jD0
f

�
k

n � k � j C 1
;

j

n � k � j C 1

� 
n

k; j

!

xkyj;

for f 2 C.R20/: (29)

Khan [46] studied the convergence properties of these operators and a
Voronovskaja type theorem. He proved the following results:
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Theorem 35. Let f 2 C.R20/, where R20 D f.x; y/I x � 0; y � 0g. Then

jLn.f I x; y/�f .x; y/j �
�
1C
p
.1CxCy/.9.x2Cy2/C8.xCy//

�
!

�
f ;

1p
n C 1

�
:

Theorem 36. Let f 2 CB.R
2
0/, and let N.x; y/ be the least integer � 1

2
�.x; y/ � 1,

where �.x; y/ D .xCy/.1CxCy/ b.x;y/Cb.y;x/
2

Cpb.x; y/b.y; x/. Then for n � N.x; y/
we have

Ln.f I x; y/ � f .x; y/ � 2M

"

!2

 

f ;

s
�.x; y/

2.n C 1/

!

C jjf jj �.x; y/
2.n C 1/

#

;

where M is a constant.

Let

B WD ff 2 C.R20/; for each ˛ > 0 and each ˇ > 0; f .x; y/ D O.1/e˛xCˇyg:

Theorem 37. Ln.f I x; y/ ! f .x; y/, as n ! 1; 8f 2 B and for each .x; y/ 2 R
2
0.

Theorem 38. Let f 2 B and suppose that the first two partial derivatives of f exist
and are continuous in N WD f.˛; ˇ/ W j˛ � xj < ı1; jˇ � yj < ı2; ı1; ı2 > 0g. Let
Ln.f ; x; y/ be defined by (29). Then

lim
n!1 .Ln.f ; x; y/� f .x; y// D .1C x C y/

2

˚
x.1C x/fxx C 2xyfxy C y.1C y/fyy

�
:

Let m; n 2 N and CB.R
2
0/ denote the space of all bounded and continuous

functions on R
2
0. For any function f 2 CB.R

2
0/ and any .x; y/ 2 R

2
0, the bivariate

operator of Bleimann–Butzer–Hahn type Lm;n W CB.R
2
0/ ! CB.R

2
0/ is defined by

Lm;n.f I x; y/ D 1

.1C x/m.1C y/n

mX

kD0

nX

jD0

 
m

k

! 
n

j

!

f

�
k

m C 1 � k
;

j

n C 1 � j

�
:

Pop [38] proved that

Theorem 39. Let f W Œ0;1/ 
 Œ0;1/ ! R be a bivariate function.

(i) If .x; y/ 2 Œ0;1/ 
 Œ0;1/ and f admits partial derivatives of second order
continuous in a neighborhood of the point .x; y/, then

lim
m!1 m.Lm;m.f I x; y/� f .x; y// D x.1C x/2

2
f 00
xx.x; y/C y.1C y/2

2
f 00
yy.x; y/:
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(ii) If f is continuous on Œ0;1/ 
 Œ0;1/, then

jLm;m.f I x; y/ � f .x; y/j � .1C 8b.1C b/2 C 16b2.1C b/4/!

�
f I 1p

m
;
1p
m

�

for any .x; y/ 2 Œ0; b� 
 Œ0; b�, any natural number m; m � 24.1C b/.

Applications of q-Calculus In the last decade, one of the most important areas
of research in approximation theory is the application of q-calculus. In the theory
of approximation by linear positive operators, Lupas [31] was the first person
who initiated the study in this direction by introducing a q-analogue of the
classical Bernstein polynomials. In 1997, Phillips [37] gave another generalization
of Bernstein polynomials based on q-integers which became more popular. After
that many researchers published papers in this direction. Recently, Aral et al. [8]
compiled the research work done on the q-analogues of different sequences and
classes of operators and discussed their approximation properties. We mention
below some of the notations and definitions. The details can be found in [19, 27].
Let parameter q be a positive real number and n a nonnegative integer. Œn�q denotes
a q-integer, defined by

Œn�q WD
8
<

:

1 � qn

1 � q
; q ¤ 1 for n 2 N and Œ0�q D 0;

n; q D 1;

The q-analogue of factorial n is defined by

Œn�qŠ D


Œn�qŒn � 1�q : : : Œ1�q; n D 1; 2 : : : ;

1; n D 0;

The q-binomial coefficient
�n

k

�
q

and the q-product .a C b/nq are defined by

"
n

k

#

q

D Œn�qŠ

Œn � k�qŠŒk�qŠ

and

.a C b/nq D
n�1Y

jD0
.a C qjb/

respectively.
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The q-Jackson integral and q-improper integral are given by

Z b

a
f .x/dqx D .1 � q/a

1X

nD0
f .aqn/qnI a > 0

and
Z 1=A

a
f .x/dqx D .1 � q/

1X

nD�1
f

�
qn

A

�
qn

A
I A > 0

respectively, where the sums are assumed to be absolutely convergent.
The Riemann type q� integral introduced by Gauchman [47] and Marinkovic et

al. [48] is defined as follows:
R b

a f .t/dR
q t D .1 � q/.b � a/

P1
jD0 f .a C .b � a/qj/,

where the real numbers a; b satisfy 0 < a < b:
For q 2 .0; 1/ and any arbitrary real function f W R ! R, the q-derivative Dqf .x/

is defined as

Dqf .x/ D

8
<̂

:̂

f .x/ � f .qx/

.1 � q/x
; x ¤ 0;

lim
x!0

Dqf .x/; x D 0;

The q-derivative of the product is given by the formula

Dq.f .x/g.x// D f .qx/Dq.g.x//C g.x/Dq.f .x//:

The q-analogue Ex
q of classical exponential function is defined as

Ex
q D

1X

jD0
qj.j�1/=2 xj

Œj�Š
:

The q-analogue of beta function of second kind is defined by

Bq.t; s/ D K.A; t/
Z 1=A

0

xt�1

.1C x/tCs
q

dqx;

where K.x; t/ D 1

x C 1
xt

�
1 C 1

x

�t

q

.1 C x/1�t
q ; and .a C b/sq D ˘ s�1

iD0
�
a C qib

�
,

s 2 Z
C.

In particular, for any positive integers n;m, we have

K.x; n/ D q
n.n�1/
2 ; K.x; 0/ D 1;

and

Bq.m; n/ D �q.m/�q.n/

�q.m C n/
:
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In what follows, we shall discuss the approximation properties of the bivariate
case of the linear positive operators based on q-integers.

Bivariate Extension of q-Szász–Mirakjan–Kantorovich
Operators

For n 2 N; 0 < q1; q2 < 1 and 0 � x < q1
1�qn

1
; 0 � y < q2

1�qn
2
, the bivariate extension

of q-Szász–Mirakjan–Kantorovich operators [35] is defined as follows :

Kq1;q2
n .f I x; y/ D Œn�q1 Œn�q2Eq1

�
�Œn�q1

x

q1

�
Eq2

�
�Œn�q2

y

q2

� 1X

lD0

1X

kD0

.Œn�q1x/
k

Œk�q1q
k
1

.Œn�q2y/
l

Œl�q2q
l
2

Z ŒlC1�q2 =Œn�q2
q2Œl�q2 =Œn�q2

Z ŒkC1�q1 =Œn�q1
q1Œk�q1 =Œn�q1

f .t; s/dR
q1

tdR
q2

s; (30)

where

Z d

c

Z b

a
f .t; s/dR

q1 td
R
q2s D .1� q1/.1 � q2/.b � a/.c � d/

1X

jD0

1X

iD0
f .a C .b � a/qi

1; c C .c � d/qj
2/q

i
1q

j
2: (31)

Also, f is a qR�integrable function, so the series in (31) converges.
First, we give the following Lemma:

Lemma 28. Let eij D xiyj; i; j 2 N0 
N0 with i C j � 2 be the two-dimensional test
functions, Then the following results hold for the operators given by (30):

(i) Kq1;q2
n .e00I x; y/ D 1I

(ii) Kq1;q2
n .e10I x; y/ D x C 1

Œ2�q1 Œn�q1
I

(iii) Kq1;q2
n .e01I x; y/ D y C 1

Œ2�q2 Œn�q2
I

(iv) Kq1;q2
n .e20I x; y/ D q1x2 C

�
q1 C 2

Œ2�q1

�
1

Œn�q1
x C 1

Œ3�q1 Œn�
2
q1

I

(v) Kq1;q2
n .e02I x; y/ D q2y2 C

�
q2 C 2

Œ2�q2

�
1

Œn�q2
y C 1

Œ3�q2 Œn�
2
q2

.

Orkcu [33] established some A� weighted statistical approximation properties of
the operators given by (30). Further, the pointwise convergence result was obtained
by means of modulus of continuity.
The Korovkin-type theorem for functions of two variables was proved by Volkov
[45]. The theorem on weighted approximation for functions of several variables
was proved by Gadjiev in [21].
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Let B! be the space of real-valued functions defined on R
2 and satisfying the

bounded condition jf .x; y/j � Mf!.x; y/, where !.x; y/ � 1 for all .x; y/ 2 R
2

is called a weight function if it is continuous on R
2 and limp

x2Cy2!1
!.x; y/ ! 1.

We denote by C! the space of all continuous functions in the space B! with the
norm k f k!D sup.x;y/2R2

jf .x;y/j
!.x;y/ .

Theorem 40 ([21]). Let !1.x; y/ and !2.x; y/ be weight functions satisfying

limp
x2Cy2!1

!1.x; y/

!2.x; y/
D 0:

Assume that Tn is a sequence of linear positive operators acting from C!1 to B!2 .
Then, for f 2 C!1 ,
lim

n!1 k Tnf � f k!2D 0 if and only if lim
n!1 k TnFv � Fv k!1D 0; .v D 0; 1; 2; 3/,

where F0.x; y/ D !1.x/
1Cx2Cy2

;F1.x; y/ D x!1.x/
1Cx2Cy2

;F2.x; y/ D y!1.x/
1Cx2Cy2

;F3.x; y/ D
.x2Cy2/!1.x/
1Cx2Cy2

.

Let A WD .ank/ be an infinite summability matrix. For a given sequence x WD .xk/,

the A�transform of x, denoted by Ax WD ..Ax/n/, is defined as .Ax/n WD
1X

kD1
ankxk

provided the series converges for each n. A is said to be regular if lim
n
.Ax/n D L

whenever lim x D L. Suppose that A is a nonnegative regular summability matrix.
Then x is A�statistically convergent to L if for every ε> 0; lim

n

X

kWjxk�Lj�ε

ank D 0,

and we write stA � lim x D L. If A D C1, the Cesaro matrix of order one, then A-
statistical convergence reduces to the statistical convergence. Also, taking A D I, the
identity matrix, A�statistical convergence coincides with the ordinary convergence.
We consider !1.x; y/ D 1 C x2 C y2 and !2.x; y/ D .1 C x2 C y2/1C˛ for ˛ >

0; .x; y/ 2 R
2
0.

We obtain statistical approximation properties of the operator defined by (30) with
the help of Korovkin-type Theorem 40. Let .q1; n/ and .q2; n/ be two sequences in
the interval .0; 1/ so that

stA � lim
n

qn
1;n D 1 and stA � lim

n
qn
2;n D 1;

stA � lim
n

1

Œn�q1;n
D 0 and stA � lim

n

1

Œn�q2;n
D 0: (32)

Theorem 41. Let A D .ank/ be a nonnegative regular summability matrix, and
let .q1;n/ and .q2;n/ be two sequences satisfying (32). Then, for any qR�integrable
function f 2 C!1.R

2
0/ and for ˛ > 0 we have

stA � lim
n

k Kq1;n;q2;n
n f � f k!2 D 0:
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Let CB.R
2
0/ be the space of all bounded and uniformly continuous functions on R

2
0.

For f 2 CB.R
2
0/, we have

jKq1;q2
n .f I x; y/ � f .x; y/j � 2!.ı/:

Orkcu [36] defined another extension of q-Szász–Mirakyan–Kantorovich opera-
tors in the bivariate case.

For q1; q2 2 .0; 1/ and m; n 2 N 
 N, the new operators q-Szász–Mirakjan–
Kantorovich operators for functions of two variables is defined as follows:

Sq1;q2
m;n .f I x; y/

D
1X

lD0

1X

kD0

Œm�kC1
q1

xk

Œk�q1 Š

Œn�lC1q2
yl

Œl�q2 Š
qk.k�1/�1
1 ql.l�1/�1

2 Eq1.�Œm�q1qk
1x/Eq2 .�Œn�q2ql

2y/



Z ŒlC1�q2 =qk�1

2 Œn�q2

Œl�q2 =qk�1
2 Œn�q2

Z ŒkC1�q1 =qk�1
1 Œm�q1

Œk�q1 =qk�1
1 Œm�q1

f .t; s/dR
q1

t dR
q2

s: (33)

Lemma 29. Let q1; q2 2 .0; 1/ and m; n 2 N 
 N. One has

(i) Sq1;q2
m;n .1I x; y/ D 1I

(ii) Sq1;q2
m;n .e10I x; y/ D x C q1

Œ2�q1 Œm�q1
I

(iii) Sq1;q2
m;n .e01I x; y/ D y C q2

Œ2�q2 Œn�q2
I

(iv) Sq1;q2
m;n .e20I x; y/ D x2 C

�
1C 2q1

Œ2�q1

�
1

Œm�q1
x C q21

Œ3�q1 Œm�
2
q1

I

(v) Sq1;q2
m;n .e02I x; y/ D y2 C

�
1C 2q2

Œ2�q2

�
1

Œn�q2
y C q22

Œ3�q2 Œn�
2
q2

.

Approximation Properties in Polynomial Weighted Spaces For bivariate opera-
tors Sq1;q2

m;n , let us recall the space Cp;q as considered in section “Bivariate Baskakov
operators”:

For each z 2 R0, define the function 
z by 
r
z .t/ D .t � z/r; t 2 R0; r 2 N. For the

one-dimensional operator Ls; s 2 N, and for each r 2 N, a polynomial �r.t/ exists
such that

sr=2.Ls

r
z /.t/ � �r.t/; deg�r.t/ � r: (34)

Theorem 42 ([3]). Let .p; q/ 2 N0
N0. Then for any .m; n/ 2 N
N, the operator

Lm;n.f I x; y/ D
1X

iD0

1X

jD0
am;i.x/bn;j.y/f .xm;i; yn;j/; .x; y/ 2 R

2
0

verifies

k Lm;n.
1

!p;q
I :/ kp;q� c.p; q/;

and hence k Lm;n.f I :/ kp;q� c.p; q/ k f kp;q; f 2 Cp;q.
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Theorem 43 ([3]). Let .p; q/ 2 N0
N0. For any .m; n/ 2 N
N, the operator Lm;n

verifies

!p;q.x; y/j.Lm;nf /.x; y/� f .x; y/j � c.p; q/!f

�

.x/p

m
;

.y/p

n

�
;

.x; y/ 2 R
2
0, where 
 is given by


.t/ D
p
�2.t/C

vuu
t�2.t/C

pX

kD0

 
p

k

!

�kC2.t/;

with the polynomials ��.t/; � D .2; p C 2/, being indicated at (34) and c.p; q/ is a
suitable constant.

Convergence Theorem

Theorem 44 ([3]). Let .p; q/ 2 N0 
 N0 and f 2 Cp;q. For any .x; y/ 2 R
2
0, there

holds

lim
m;n!1.Lm;nf /.x; y/ D f .x; y/; f 2 Cp;q: (35)

If K1;K2 are compact intervals included in R0, then (35) holds uniformly on the
domain K1 
 K2.

Now, let .x; y/ D .1Cx2Cy2/�1 and C2.R20/ be the space of all functions f .x; y/
such that .x; y/f .x; y/ is uniformly continuous and bounded on R

2
0, endowed with

the norm kf k2 D sup.x;y/2R20 jf .x; y/j
Lemma 30. The operator Sq1;q2

m;n ; .m; n/ 2 N 
 N; q1; q2 2 .0; 1/ given by (33)
verifies

	
	
	
	Sq1;q2

m;n

�
1

.t; s/
I :
�		
	
	
2

� 10

3
;

	
	Sq1;q2

m;n .f I :/		
2

� 10

3
k f k2; f 2 C.R20/:

Theorem 45. For any .m; n/ 2 N
N and f 2 C2.R20/ the operators Sq1;q2
m;n ; q1; q2 2

.0; 1/ satisfy

.x; y/j.Sq1;q2
m;n f /.x; y/� f .x; y/j � 10

3
!f

�

.x; q1/

Œm�q1
;

.y; q2/

Œn�q2

�
;

where .x; y/ 2 R
2
0; 
.x; q/ D q

Œ2�q
C
�
1C 1

q C q
Œ2�q

�
x2 C

�
1C 3q

Œ2�q
C 2q2

Œ3�q

�
x C q3

Œ4�q
.

We replace q1 and q2 in (33) by sequences .q1;m/; .q2;n/ so that
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lim
m!1 q1;m D 1; lim

n!1 q2;n D 1;

lim
m!1

1

Œn�q1;m
D 0; lim

n!1
1

Œn�q2;n
D 0: (36)

Let C2
2.R

2
0/ be the class of all functions f in which the second partial derivatives

of f belong to C2.R20/.

Theorem 46. Let .m; n/ 2 N 
 N and let .q1;m/; .q2;n/ be sequences in the interval
.0; 1/ satisfying (36). Let f 2 C2

2.R
2
0/ qR�integrable function. For any .x; y/ 2 R

2
0,

the pointwise convergence takes place

lim
m;n!1.S

q1;m;q2;n
m;n f / D f .x; y/: (37)

If K1 and K2 are compact intervals included in R0, then (37) holds uniformly on the
domain K1 
 K2.

We present the Voronovskaya-type theorem.

Theorem 47. Let .q1;n/; .q2;n/ be sequences in the interval .0; 1/ satisfying (36).
Suppose that f 2 C2

2.R
2
0/ and be a qR�integrable function. Then, for every .x; y/ 2

R
2
0, we have

lim
n!1 nf.Sq1;n;q2;n

n;n f / � f .x; y/g D x

2
fxx.x; y/C y

2
C 1

2
fx.x; y/C 1

2
fy.x; y/:

Bivariate Extension for q-BBH Operators

Let f W R20 ! R and 0 < qm; qn � 1. Further, let CB.R0/ be the space of all bounded
and continuous functions on R0 and H!.R0/; the subspace of CB.R0/ consisting of
all functions f satisfying jf .t/ � f .x/j � !.j. t

1Ct /� . x
1Cx /j/. Ersan [20] defined the

bivariate extension of the q-Bleimann–Butzer and Hahn operators as follows:

Lm;n.f I qm; qn; x; y/ D 1

lm;qm.x/

1

ln;qn.y/



mX

k1D0

nX

k2D0
f

�
Œk1�

Œm�k1C1�qk1
m

;
Œk2�

Œn�k2C1�qk2
n

�


q
k1.k1�1/

2
m q

k2.k2�1/
2

n

"
m

k1

#

qm

"
n

k2

#

qn

xk1yk2 : (38)

Here lm;qm.x/ D
m�1Y

sD0
.1C qs

mx/.

Choosing qm D qn D 1, BBH operators reduce to the classical bivariate BBH
operators.
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Lemma 31. Let eij W R20 ! Œ0; 1/ be the two-dimensional test function defined as

eij D �
x

1Cx

�i
�

y
1Cy

�j
. Then we have the following items for the operator (38):

(i) Lm;n.e00I qm; qn; x; y/ D 1,
(ii) Lm;n.e10I qm; qn; x; y/ D Œm�

ŒmC1�
x

1Cx ,

(iii) Lm;n.e01I qm; qn; x; y/ D Œn�
ŒnC1�

y
1Cy ,

(iv) Lm;n.e20I qm; qn; x; y/ D Œm�Œm�1�
ŒmC1�2 q2m 
 x2

.1Cx/.1Cqmx/ C Œm�
ŒmC1�2

x
1Cx ,

(v) Lm;n.e02I qm; qn; x; y/ D Œn�Œn�1�
ŒnC1�2 q2n 
 y2

.1Cy/.1Cqny/ C Œn�
ŒnC1�2

y
1Cy .

Theorem 48 ([7]). Let An be the sequence of linear positive operators acting from
H!.R0/ to CB.R0/ satisfying

lim
n!1

	
	
		An

��
t

1C t

��
I x

�
�
�

x

1C x

��		
		

CB

D 0; � D 0; 1; 2

then for any function f 2 H!.R0/

lim
n!1 kAn.f / � f kCB

D 0

holds.

Let H!.R
2
0/; consisting of functions satisfying jf .t; s/�f .x; y/j � !.j. t

1Ct ;
s

1Cs /�
. x
1Cx ;

y
1Cy/j/.

Theorem 49. Let q D .qm/ and q D qn satisfy 0 < qm � 1; 0 < qn � 1 and let
qm ! 1 and qn ! 1 for m; n ! 1. If the sequence of linear positive operator
Am;n W

Am;n W H!.R
2
0/ ! CB.R

2
0/ satisfies the following conditions;

(i) lim
m;n!1 kAm;n.e00I qm; qn; x; y/ � e00kC.R20/

D 0,

(ii) lim
m;n!1 kAm;n.e10I qm; qn; x; y/ � e10kC.R20/

D 0,

(iii) lim
m;n!1 kAm;n.e01I qm; qn; x; y/ � e01kC.R20/

D 0,

(iv) lim
m;n!1 kAm;n.e20I qm; qn; x; y/ � e20kC.R20/

D 0,

then for any function f ; f 2 H!.R
2
0/

lim
m;n!1 kAm;n.f I qm; qn; x; y/ � f kC.R20/

D 0

holds. Here eij W R
2
0 ! Œ0; 1�; eij D �

x
1Cx

�i
�

y
1Cy

�j
are two-dimensional test

functions.
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Theorem 50. Let q D .qm/ and q D qn satisfy 0 < qm � 1; 0 < qn � 1 and let
qm ! 1 and qn ! 1 for m; n ! 1. If the sequence of linear positive operator
Lm;n W H!.R

2
0/ ! CB.R

2
0/ satisfies conditions of Theorem 49 .i/–.iv/, then Lm;n

converges uniformly to f in R
2
0 for all f 2 H!.R

2
0/. That is, 8f 2 H!.R

2
0/

lim
m;n!1 kLm;n.f I qm; qn; x; y/� f kC.R20/

D 0:

Here eij D �
x

1Cx

�i
�

y
1Cy

�j
.

Theorem 51. Let q D .qm/ and q D qn satisfy 0 < qm � 1; 0 < qn � 1 and let
qm ! 1 and qn ! 1 for m; n ! 1. So we have

jLm;n.f I qm; qn; x; y/ � f .x; y/j � 4 Q!.f I ı1.x/; ı2.y//

8f 2 H!.R
2
0/ and x; y � 0. Here

ık.x/ D biggf x2

.1C x/2

 
qnk Œnk�qnk

Œnk � 1�qnk
.1C x/

Œnk C 1�2qnk
.1C qnk x/

� 2Œnk�qnk

Œnk C 1�qnk

C 1

!

C Œnk�qnk
x

Œnk C 1�2qnk
.1C x/

� 1
2

; k D 1; 2:

Bivariate Extension for q-MKZ Operators

Let I2 D Œ0; a� 
 Œ0; a�. Doğru and Gupta [17] considered a bivariate extension of
q-MKZ operators

Mm;n.f I q1I q2I x; y/ D um;q1 .x/un;q2 .y/
1X

k1D0

1X

k2D0

f

�
qm
1

k1 C m
;

qn
2

k2 C n

�"
m C k

k1

#"
n C k2

k2

#

xk1yk2 ; (39)

where um;q.x/ D Qn
sD0.1� xqs/.

Approximation Properties of the Bivariate q-MKZ Operators Let C.I2/ be a
Banach space with the norm k f kC.I2/D max.x;y/2I2 jf .x; y/j. If limm;n!1 k fm;n �
f kC.I2/D 0, then we say that the sequence ffm;ng converges uniformly to f .

Lemma 32. Let eij W I2 ! I2; eij D xiyj, be the two-dimensional test functions.
Then the following results hold for the operators (39):
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1. Mm;n.e00I q1I q2I x; y/ D 1I
2. Mm;n.e10I q1I q2I x; y/ D qm

1 xI
3. Mm;n.e01I q1I q2I x; y/ D qn

1yI
4. q2m

1 x2 � Mm;n.e20I q1I q2I x; y/ � q2mC1
1 x2 C q2m

1

Œm�q1
I

5. q2n
2 y2 � Mm;n.e02I q1I q2I x; y/ � q2nC1

2 y2 C q2n
2

Œn�q2
.

Let .Xi/iD1;2 be compact subset of R. For each j D 1; 2 we denote by prj WQ2
iD1 Xi ! Xj the jth projection which is defined by prj.x/ WD xj for every x D

.xi/iD1;2 2 Q2
iD1 Xi.

Theorem 52 ([6, 45]). f1; pr1; pr2; pr21 C pr22g is a Korovkin subset in C.Œ0; 1� 

Œ0; 1�/ for the identity operator.

Replacing q in (39) by a sequence .qn/ in the interval .0; 1� so that

lim
n

qn
n D 1 and lim

n

1

Œn�qn

D 0: (40)

In the light of above theorem, the following result holds.

Theorem 53. If the sequences .q1; n1/ and .q2; n2/ satisfy conditions (40) in the
interval .0; 1�, then the sequence of operators (39) converges uniformly to f .x; y/
for any f 2 C.I2/.

Corollary 4. If the sequences .q1; n1/ and .q2; n2/ in Œ0; 1/ satisfy conditions qni
i !

bi, i D 1; 2 in the interval .0; 1�, then

k Mm;n.f /� M1;1.f / k! 0: for every f 2 C.I2/:

Rates of Convergence of the Bivariate Operators

Theorem 54. If the sequences .q1; n1/ and .q2; n2/ satisfy conditions (40) in the
interval .0; 1�, then

k Mm;n.f I q1;n1 ; q2;n2 / � f k� 4!.f ; ı1;n1 ; ı2;n2 /; 8 f 2 C.I2/; 0 < a < 1;

where

ı1;n1 D
vu
ut.1 � qn1

1;n1
/2a2 C aq2n1

1;n1

Œn1�q1;n1
and ı2;n2 D

vu
ut.1 � qn2

2;n2
/2a2 C aq2n2

2;n2

Œn2�q2;n2
:

Now, we introduce the following Lipschitz class in the bivariate case:

LipM.f I˛1; ˛2/ D ff W jf .t; s/ � f .x; y/j � Mjt � xj˛1 js � yj˛2g;

where 0 � ˛1 � 1 and 0 � ˛2 � 1.
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Theorem 55. Let the sequences .q1; n1/ and .q2; n2/ satisfy conditions (40) in the
interval .0; 1�. If f 2 LipM.f I˛1; ˛2/, then

k Mm;n.f I q1;n1 ; q2;n2 /� f k� Mı˛11;n1 ı
˛2
2;n2
;

where ı1;n1 ; ı2;n2 are same as defined in Theorem 54.

Bernstein–Schurer–Kantorovich Operators Based on q-Integers Let I D
Œ0; 1 C p�, where p 2 f0; 1; 2; : : :g and J D Œ0; 1�. For I2 D I 
 I, let C.I2/
denote the space of all real-valued continuous functions on I2 endowed with
the norm kf kI D sup

.x;y/2I2
jf .x; y/j. Analogously, for J2 D J 
 J, we denote by

kf kJ D sup
.x;y/2J2

jf .x; y/j, the sup-norm on J2, where J D Œ0; 1�.

For f 2 C.I2/ and 0 < qn1 ; qn2 < 1, Agrawal et al. [5] defined the bivariate case
of Kantorovich type q-Bernstein–Schurer operators as follows:

Kn1;n2;p.f I qn1 ; qn2 ; x; y/ D Œn1C1�qn1
Œn2C1�qn2

n1CpX

k1D0

n2CpX

k2D0
b

qn1 ;qn2
n1Cp;n2Cp;k1;k2

.x; y/q�k1
n1 q�k2

n2



Z Œk2C1�qn2

=Œn2C1�qn2

Œk2�qn2
=Œn2C1�qn2

Z Œk1C1�qn1
=Œn1C1�qn1

Œk1�qn1
=Œn1C1�qn1

f .t; s/dR
qn1

t dR
qn2

s;

(41)

where b
qn1 ;qn2
n1Cp;n2Cp;k1;k2

.x; y/ D
 

n1 C p

k1

!

qn1

 
n2 C p

k2

!

qn2

xk1yk2 .1 � x/n1Cp�k1
qn1

.1 �

y/n2Cp�k2
qn2

; .x; y/ 2 J2 and
R d

c

R b
a f .t; s/dR

q1 td
R
q2s is given by (31).

Lemma 33. Let eij D xiyj, .x; y/ 2 I2, .i; j/ 2 N
0 
 N

0 with i C j � 2 be the two-
dimensional test functions. Then, the following equalities hold for the operators
given by (41):

(i) Kn1;n2;p.e00I qn1 ; qn2 ; x; y/ D 1I
(ii) Kn1;n2;p.e10I qn1 ; qn2 ; x; y/D

Œn1Cp�qn1

Œn1C1�qn1

2qn1

Œ2�qn1

xC 1

Œ2�qn1
Œn1C1�qn1

I

(iii) Kn1;n2;p.e01I qn1 ; qn2 ; x; y/D
Œn2Cp�qn2

Œn2C1�qn2

2qn2

Œ2�qn2

yC 1

Œ2�qn2
Œn2C1�qn2

I

(iv) Kn1;n2;p.e20I qn1 ; qn2 ; x; y/D
1

Œn1C1�2qn1
Œ3�qn1

Cqn1 .3C 5qn1C4q2n1/

Œ2�qn1
Œ3�qn1

Œn1Cp�qn1

Œn1C1�2qn1

xC
q2n1 .1Cqn1C4q2n1 /

Œ2�qn1
Œ3�qn1

Œn1Cp�qn1
Œn1Cp�1�qn1

Œn1C1�2qn1

x2I
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(v) Kn1;n2;p.e02I qn1 ; qn2 ; x; y/D
1

Œn2C1�2qn2
Œ3�qn2

Cqn2 .3C5qn2C4q2n2 /

Œ2�qn2
Œ3�qn2

Œn2Cp�qn2

Œn2C1�2qn2

y C
q2n2 .1C qn2 C 4q2n2 /

Œ2�qn2
Œ3�qn2

Œn2 C p�qn2
Œn2 C p � 1�qn2

Œn2 C 1�2qn2

y2.

Remark 3. From Lemma 33, we get

(i) Kn1;n2;p..t � x/I qn1 ; qn2 ; x; y/ D 1

Œ2�qn1
Œn1 C 1�qn1

C x

�
Œn1 C p�qn1

Œn1 C 1�qn1

2qn1

Œ2�qn1

� 1
�

I

(ii) Kn1;n2;p..s � y/I qn1 ; qn2 ; x; y/ D 1

Œ2�qn2
Œn2 C 1�qn2

C y

�
Œn2 C p�qn2

Œn2 C 1�qn2

2qn2

Œ2�qn2

� 1
�

I

(iii) Kn1;n2;p..t�x/2I qn1 ; qn2 ; x; y/D
�

q2n1 .1Cqn1C4q2n1/

Œ2�qn1
Œ3�qn1

Œn1Cp�qn1
Œn1Cp�1�qn1

Œn1C1�2qn1

�
Œn1Cp�qn1

Œn1C1�qn1

4qn1

Œ2�qn1

C1
�

x2C
�

qn1 .3C5qn1C4q2n1/

Œ2�qn1
Œ3�qn1

Œn1Cp�qn1

Œn1C1�2qn1

� 2

Œn1C1�qn1
Œ2�qn1

�
x

C 1

Œn1 C 1�2qn1
Œ3�qn1

I

(iv) Kn1;n2;p..s � y/2I qn1 ; qn2 ; x; y/D
�

q2n2.1Cqn2C4q2n2/

Œ2�qn2
Œ3�qn2

Œn2Cp�qn2
Œn2Cp�1�qn2

Œn2C1�2qn2

�
Œn2Cp�qn2

Œn2C1�qn2

4qn2

Œ2�qn2

C1
�

y2C
�

qn2.3C5qn2C4q2n2/

Œ2�qn2
Œ3�qn2

Œn2Cp�qn2

Œn2C1�2qn2

� 2

Œn2C1�qn2
Œ2�qn2

�
y

C 1

Œn2 C 1�2qn2
Œ3�qn2

.

In what follows, let fqnig; i D 1; 2 be sequences in .0; 1/ such that qni ! 1 and
1
Œn�qi

as ni ! 1:

Theorem 56. For any f 2 C.I2/, we have

lim
n1;n2!1 kKn1;n2;p.f /� f kJ D 0:

Theorem 57. Let f 2 C.I2/. Then for all .x; y/ 2 J2, we have

jKn1;n2;p.f I qn1 ; qn2 ; x; y/ � f .x; y/j � 4!.f ;
p
ın1 .x/;

p
ın2 .y//;

where ın1 .x/ D Kn1;p..t � x/2I qn1 ; x/ and ın2.y/ D Kn2;p..s � y/2I qn2 ; y/.

Theorem 58. Let f 2 LipM.˛1; ˛2/. Then for all .x; y/ 2 J2, we have

jKn1;n2;p.f I qn1 ; qn2 ; x; y/ � f .x; y/j � Mı˛1=2n1
.x/ı˛2=2n2

.y/;

where ın1 .x/ and ın2 .y/ are defined as in Theorem 57.
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Theorem 59. Let f 2 C1.I2/ and .x; y/ 2 J2. Then, we have

jKn1;n2;p.f I qn1 ; qn2 ; x; y/ � f .x; y/j � kf 0
xkI

p
ın1 .x/C kf 0

ykI

p
ın2 .y/;

where ın1 .x/ and ın2 .y/ are defined as in Theorem 57.

Voronovskaja Type Theorem

Theorem 60. Let f 2 C2.I2/ and fqng be a sequence in .0; 1/ such that qn ! 1 and
qn

n ! 0 as n ! 1. Then, we have
lim

n!1Œn�qn.Kn;n;p.f I qn; x; y/� f .x; y//

D f 0
x.x; y/

2
.1� x/C f 0

y.x; y/

2
.1 � y/C f 00

xx.x; y/

2
x.1 � x/C f 00

yy.x; y/

2
y.1 � y/;

uniformly on J2.
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Ser Mat. 11(1), 1–8 (2003)
12. Baskakov, V.A.: An instance of a sequence of linear positive operators in the space of

continuous functions. Dokl. Akad. Nauk. SSSR 113, 249–251 (1957)



Bivariate Extension of Linear Positive Operators 61

13. Becker, M., Kucharski, D., Nessel, R.J.: Global approximation theorems for the Szàsz-
Mirakyan operators in exponential weight spaces. In: Linear Spaces and Approximation
(Proceedings of the Conference, Oberwolfach, 1977), vol. 40, pp. 319–333. Birkhäuser, Basel
(1978)

14. Butzer, P.L.: On two dimensional Bernstein polynomials. Can. J. Math. 5, 107–113 (1953)
15. Butzer, P.L., Berens, H.: Semi-Groups of Operators and Approximation, xi+318 pp. Springer,

New York (1967)
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Positive Green’s Functions for Boundary Value
Problems with Conformable Derivatives

Douglas R. Anderson

Abstract We use a newly introduced conformable derivative to formulate several
boundary value problems with three or four conformable derivatives, including
those with conjugate, right-focal, and Lidstone conditions. With the conformable
differential equation and boundary conditions established, we find the correspond-
ing Green’s functions and prove their positivity under appropriate assumptions.

Keywords Positivity • Green’s Function • Conformable Derivative

Introduction

The search for the existence of positive solutions and multiple positive solutions to
nonlinear fractional boundary value problems has expanded greatly over the past
decade; for some recent examples, please see [2, 5–11, 15–20]. In all of these works
and the references cited therein, however, the definition of the fractional derivative
used is either the Caputo or the Riemann–Liouville fractional derivative, involving
an integral expression and the gamma function. Recently [1, 12, 14] a new local,
limit-based definition of a conformable derivative has been formulated which is not
a fractional derivative. In this paper, we use this conformable derivative of order ˛
for 0 < ˛ � 1 and t 2 Œ0;1/ given by

D˛f .t/ WD lim
"!0

f .te"t
�˛
/� f .t/

"
; D˛f .0/ D lim

t!0C

D˛f .t/; (1)

provided the limits exist; note that if f is fully differentiable at t, then

D˛f .t/ D t1�˛ f 0.t/; (2)

where f 0.t/ D lim"!0Œf .t C "/ � f .t/�=". A function f is ˛-differentiable at a point
t � 0 if the limit in (1) exists and is finite.
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Using this new definition of a conformable derivative, we reformulate several
common boundary value problems, including those with conjugate, right-focal, and
Lidstone conditions. With the conformable differential equation and conformable
boundary conditions established, we find the corresponding Green’s functions
and prove their positivity under appropriate assumptions. This work thus sets
the stage for using fixed point theorems to prove the existence of positive and
multiple positive solutions to nonlinear conformable problems based on the local
conformable derivative (1) and these boundary value problems, as the kernel of the
integral operator is often Green’s function.

Recently, the conformable derivative (1) has been used successfully to explore
two iterated conformable derivatives in comparison with a conformable derivative
of order between 1 and 2 in [3]. There is also some potential application in quantum
mechanics of this conformable derivative, as shown in [4]. In this work we will focus
on boundary value problems with three or four iterated conformable derivatives.

Conformable Derivative Properties

Throughout this work we are considering the Katugampola derivative formulation
of conformable calculus [12], specifically the operator D˛ given in (1), where 0 <
˛ � 1 and t � 0. This definition yields the following results [12, Theorem 2.3] for
functions f and g that are ˛-differentiable at a point t > 0:

• D˛Œaf C bg� D aD˛Œf �C bD˛Œg� for all a; b 2 R;
• D˛tn D ntn�˛ for all n 2 R;
• D˛c D 0 for all constants c 2 R;
• D˛Œfg� D fD˛Œg�C gD˛Œf �;
• D˛Œf=g� D gD˛Œf ��fD˛ Œg�

g2
;

• D˛Œf ı g�.t/ D f 0.g.t//D˛Œg�.t/ for f differentiable at g.t/.

Three Iterated Conformable Derivatives

We begin the main discussion by considering the three iterated conformable
derivative nonlinear right-focal problem

D�DˇD˛x.t/ D f .t; x.t//; 0 � t � 1; (3)

x.0/ D D˛x.�/ D DˇD˛x.1/ D 0; (4)

where ˛; ˇ; � 2 .0; 1�, with boundary point � satisfying 0 < � < 1. One could
impose further the conditions ˛ C ˇ 2 .1; 2� and ˛ C ˇ C � 2 .2; 3� if one wishes
to explore a conformable problem of order .2; 3�. Our approach to the existence
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of positive solutions would involve Green’s function for this problem. Once the
following three theorems are established, an interested reader could then apply a
fixed point theorem to get positive solutions to (3), (4), although the details are
omitted here.

Theorem 1 (Conformable Right-Focal Problem). Let ˛; ˇ; � 2 .0; 1� and 0 <
� < 1. The corresponding Green’s function for the homogeneous problem

D�DˇD˛x.t/ D 0

satisfying boundary conditions (4) is given by

G.t; s/ D

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
:

s 2 Œ0; �� W
(

u.t; s/ W 0 � t � s � 1

x.0; s/ W 0 � s � t � 1

s 2 Œ�; 1� W
(

u.t; �/ W 0 � t � s � 1

u.t; �/C x.t; s/ W 0 � s � t � 1

(5)

where

u.t; s/ D .˛ C ˇ/t˛sˇ � ˛t˛Cˇ

˛ˇ.˛ C ˇ/
(6)

and x.�; �/ is the Cauchy function given by

x.t; s/ D ˛t˛
�
tˇ � sˇ

�C ˇsˇ .s˛ � t˛/

˛ˇ.˛ C ˇ/
: (7)

Proof. Let h be any continuous function. We will show that

x.t/ D
Z 1

0

G.t; s/h.s/s��1ds;

for G given by (5), is a solution to the linear boundary value problem

D�DˇD˛x.t/ D h.t/

with boundary conditions (4).
First let t 2 Œ0; ��. Then

x.t/ D
Z t

0

x.0; s/h.s/s��1ds C
Z �

t
u.t; s/h.s/s��1ds C

Z 1

�

u.t; �/h.s/s��1dsI (8)

clearly x.0/ D 0 by (6). Differentiating (8), we have
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D˛x.t/ D x.0; t/h.t/t��1t1�˛ C
Z �

t

�
sˇ � tˇ

ˇ

�
h.s/s��1ds

�u.t; t/h.t/t��1t1�˛ C
Z 1

�

�
�ˇ � tˇ

ˇ

�
h.s/s��1ds

D 1

ˇ

Z �

t

�
sˇ � tˇ

�
h.s/s��1ds C 1

ˇ

Z 1

�

�
�ˇ � tˇ

�
h.s/s��1ds:

Clearly the second boundary condition D˛x.�/ D 0 is met. Differentiating again,
we have

DˇD˛x.t/ D 1

ˇ

Z �

t

��ˇtˇ�1t1�ˇ
�

h.s/s��1ds C 1

ˇ

Z 1

�

��ˇtˇ�1t1�ˇ
�

h.s/s��1ds

D
Z t

1

h.s/s��1ds:

It follows that DˇD˛x.1/ D 0 and D�DˇD˛x.t/ D h.t/, proving the claim in this
case.

Next let t 2 Œ�; 1�. Then

x.t/ D
Z �

0

x.0; s/h.s/s��1ds C
Z t

�

x.t; s/h.s/s��1ds C u.t; �/
Z 1

�

h.s/s��1dsI (9)

again x.0/ D 0 by (6). Differentiating (9), we have

D˛x.t/ D 1

ˇ

Z t

�

�
tˇ � sˇ

�
h.s/s��1ds C

�
�ˇ � tˇ

ˇ

�Z 1

�

h.s/s��1ds:

The second boundary condition D˛x.�/ D 0 is clearly met. Differentiating again,
we have

DˇD˛x.t/ D
Z t

1

h.s/s��1dsI

as in the previous case, DˇD˛x.1/ D 0 and D�DˇD˛x.t/ D h.t/, proving the claim
in this case as well. ut
Theorem 2. For G.t; s/ given in (5), we have that

0 < G.t; s/ � G.�; s/ (10)

for t 2 .0; 1� and s 2 .0; 1�, provided the condition u.1; �/ > 0 is met for u in (6),
that is to say the inequality
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� >

�
˛

˛ C ˇ

�1=ˇ
(11)

holds.

Proof. Referring to (5)–(7), we see that

u.s; s/ D x.0; s/; x.0; �/ D u.t; �/C x.t; �/;

ensuring that G.t; s/ is a well-defined function; we also see that G.t; s/ D 0 if t D 0

or s D 0. From (6) specifically, u.0; s/ D 0 for all s and

d

dt
u.t; s/ D t˛�1.sˇ � tˇ/

ˇ
� 0; s � t:

Moreover, from (7) we have x.s; s/ D 0 and

d

dt
x.t; s/ D t˛�1.tˇ � sˇ/

ˇ
� 0; t � s;

so that G.t; s/ is non-decreasing on Œ0; �� and non-increasing on Œ�; 1�. Thus (10) will
hold if G.1; �/ > 0 holds, which occurs if u.1; �/ > 0. This is equivalent to (11),
completing the proof. ut
Theorem 3. For all t; s 2 Œ0; 1�,

g.t/G.�; s/ � G.t; s/ � G.�; s/ (12)

where

g.t/ WD min



t˛

ˇ�˛Cˇ
�
.˛ C ˇ/�ˇ � ˛tˇ

�
;
1 � t

1 � �
�
: (13)

Proof. From the preceding theorem, we have G.t; s/ � G.�; s/ for all t; s 2
Œ0; 1�. For the lower bound, we proceed by cases on the branches of the Green’s
function (5), that is we use (6) and (7).

.i/ 0 � t � s � � : Here G.t; s/ D u.t; s/, G.�; s/ D x.0; s/ D 1
˛.˛Cˇ/ s

˛Cˇ . For
these t; s we have

u.t; s/

x.0; s/
� u.t; �/

x.0; �/
� t˛

ˇ�˛Cˇ
�
.˛ C ˇ/�ˇ � ˛tˇ

�

which implies

G.t; s/ � t˛

ˇ�˛Cˇ
�
.˛ C ˇ/�ˇ � ˛tˇ

�
G.�; s/:
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.ii/ 0 � t � � � s � 1: In this case G.t; s/ D u.t; �/ and G.�; s/ D u.�; �/, so
again we have

G.t; s/ � t˛

ˇ�˛Cˇ
�
.˛ C ˇ/�ˇ � ˛tˇ

�
G.�; s/:

.iii/ 0 � s � t � � or 0 � s � � � t � 1: Since G.t; s/ D G.�; s/ D 1
˛.˛Cˇ/ s

˛Cˇ ,
it follows that

G.t; s/ D G.�; s/:

.iv/ � � t � s � 1: As in .ii/, G.t; s/ D u.t; �/ and G.�; s/ D u.�; �/. Define

w.t/ WD u.t; �/�
�
1 � t

1 � �
�

u.�; �/ (14)

D G.t; s/ �
�
1 � t

1 � �
�

G.�; s/:

Now w.�/ D 0, w0.�/ > 0, and w.1/ D G.1; s/ > 0 by (11). Since w is
concave down, w.t/ � 0 on Œ�; 1�, hence

G.t; s/ �
�
1 � t

1 � �

�
G.�; s/:

.v/ � � s � t � 1: Note that G.�; s/ D u.�; �/, while G.t; s/ D u.t; �/C x.t; s/ �
u.t; �/; consequently, the employment of w as in (14) yields

G.t; s/ �
�
1 � t

1 � �

�
G.�; s/:

This completes the proof. ut

Four Iterated Conformable Derivatives

In this section we consider four iterated conformable derivatives in the differential
operator, with several types of boundary conditions. First, consider the nonlinear
two-point cantilever beam eigenvalue problem

DıD�DˇD˛x.t/ D 	a.t/f .x/; 0 � t � 1; (15)

x.0/ D D˛x.0/ D DˇD˛x.1/ D D�DˇD˛x.1/ D 0; (16)
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where ˛; ˇ; �; ı 2 .0; 1�, and with ˛C ˇ 2 .1; 2�, ˛ C ˇC � 2 .2; 3�, and ˛ C ˇC
�Cı 2 .3; 4� if one wishes to explore this problem as a conformable order between
3 and 4. The theme throughout this work has been to approach the existence of
positive solutions to nonlinear equations such as (15) with boundary conditions (16)
by involving Green’s function for this problem. Please note: to obtain symmetry
in Green’s function below we must take � D ˛ in the conformable differential
equation, but we will maintain the more general form (� not necessarily equal to ˛)
in the proofs to follow.

Theorem 4 (Conformable Cantilever Beam). Let ˛; ˇ; �; ı 2 .0; 1�. The corre-
sponding Green’s function for the homogeneous problem

DıD�DˇD˛x.t/ D 0 (17)

satisfying boundary conditions (16) is given by

G.t; s/ D

8
ˆ̂
<

ˆ̂
:

t˛Cˇ

�


s�

ˇ.˛ C ˇ/
� t�

.ˇ C �/.˛ C ˇ C �/

�
W 0 � t � s � 1;

sˇC�

˛


t˛

ˇ.ˇ C �/
� s˛

.˛ C ˇ/.˛ C ˇ C �/

�
W 0 � s � t � 1:

(18)

Proof. Let h be any continuous function. We will show that

x.t/ D
Z 1

0

G.t; s/h.s/sı�1ds;

for G given by (18), is a solution to the linear boundary value problem

DıD�DˇD˛x.t/ D h.t/

with boundary conditions (16).
For any t 2 Œ0; 1�, using the branches of (18) we have

x.t/ D
Z t

0

sˇC�

˛


t˛

ˇ.ˇ C �/
� s˛

.˛ C ˇ/.˛ C ˇ C �/

�
h.s/sı�1ds

� t˛Cˇ

�

Z t

1


s�

ˇ.˛ C ˇ/
� t�

.ˇ C �/.˛ C ˇ C �/

�
h.s/sı�1dsI

clearly x.0/ D 0. Taking the ˛-conformable derivative yields

D˛x.t/ D 1

ˇ.ˇ C �/

Z t

0

sˇC�Cı�1h.s/ds � tˇ

ˇ�

Z t

1

s�Cı�1h.s/ds

C tˇC�

�.ˇ C �/

Z t

1

sı�1h.s/ds:
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It is easy to see that D˛x.0/ D 0. Taking the ˇ-conformable derivative of the
˛-conformable derivative yields

DˇD˛x.t/ D 1

�

Z t

1

.t� � s� / sı�1h.s/ds;

so that DˇD˛x.1/ D 0. Next,

D�DˇD˛x.t/ D
Z t

1

sı�1h.s/ds;

from which we have D�DˇD˛x.1/ D 0, and

DıD�DˇD˛x.t/ D h.t/:

This finishes the proof. ut
Theorem 5. For all t; s 2 Œ0; 1�, the cantilever beam Green’s function given by (18)
satisfies

0 � G.t; s/ � G.1; s/:

Proof. First observe from (18) that

d

dt
G.t; s/ D

(
t˛Cˇ�1

ˇ�.ˇC�/ Œ�s� C ˇ .s� � t� /� W t � s;
sˇC� t˛�1

ˇ.ˇC�/ W s � t:
(19)

Now fix s 2 Œ0; 1�. By the first boundary condition G.0; s/ D 0, and d
dt G.t; s/

as given above implies that G.�; s/ is monotone increasing on .0; 1�. In particular,
G.1; s/ � G.t; s/ � 0 for all t 2 Œ0; 1�. ut

The next Green’s function we consider is for the conformable .2; 2/-conjugate
problem

D˛D˛D˛D˛x.t/ D f .x/; 0 � t � 1;

x.0/ D 0 D D˛x.0/; x.1/ D 0 D D˛x.1/;

where ˛ 2 .0; 1�.
Theorem 6 (Conformable .2; 2/-Conjugate). Let ˛ 2 .0; 1�. The symmetric
Green’s function for the homogeneous problem

D˛D˛D˛D˛x.t/ D 0 (20)
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satisfying the conformable .2; 2/-conjugate boundary conditions

x.0/ D 0 D D˛x.0/; x.1/ D 0 D D˛x.1/ (21)

is given by

G.t; s/ D
(

u.t; s/ W 0 � t � s � 1;

u.s; t/ W 0 � s � t � 1;
(22)

where

u.t; s/ D t2˛ .1 � s˛/2

6˛3
Œs˛ � t˛ C 2s˛ .1 � t˛/� : (23)

Proof. In this proof we construct Green’s function from scratch, modifying the
classical approach, found, for example, in [13, Chap. 5]. Here Green’s function takes
the form of

G.t; s/ D
(

u.t; s/ W t � s;

u.t; s/C 1
3Š

�
t˛�s˛

˛

�3 W s � t;

where u.t; s/ satisfies (20) and the two boundary conditions in (21) set at t D 0.
Thus

u.t; s/ D a.s/t2˛ C b.s/t3˛I

the two boundary conditions at t D 1 are satisfied when

a.s/ D s˛ .1 � s˛/2

2˛3
and b.s/ D .1 � s˛/2 .1C 2s˛/

�6˛3 :

Combining terms and simplifying leads to (22) and (23). ut
Theorem 7. For all t; s 2 .0; 1/, the .2; 2/-conjugate Green’s function given
by (22) satisfies

0 < G.t; s/ �
(
2
3

�
1�s˛

˛

�3 � s˛

3�2s˛
�2 W 0 � s � 2�1=˛;

2
3

�
s˛

˛

�3 � 1�s˛

1C2s˛
�2 W 2�1=˛ � s � 1:

Proof. From (23), it is evident that u.0; s/ D u.t; 1/ D 0, and u.t; s/ � 0 for
0 � t � s � 1. For fixed s, u.t; s/ has a local maximum when t˛ D 2s˛

1C2s˛ , and
u.s; t/ has a local maximum when t˛ D 1

3�2s˛ . After substitution and comparison,
the result holds. ut
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Finally, we will end the present discussion by considering another common
set of boundary conditions, namely the so-called Lidstone conditions. Unlike the
argument used below, one could also approach this problem as the conjunction of
two conjugate problems, whose Green’s function is given in [3, (2.4)].

Theorem 8 (Conformable Lidstone). Let ˛; ˇ 2 .0; 1�. The symmetric Green’s
function for the homogeneous problem

DˇD˛DˇD˛x.t/ D 0 (24)

satisfying the Lidstone-type boundary conditions

x.0/ D 0 D DˇD˛x.0/; x.1/ D 0 D DˇD˛x.1/ (25)

is given by

G.t; s/ D
(

u.t; s/ W 0 � t � s � 1;

u.s; t/ W 0 � s � t � 1;
(26)

where

u.t; s/ D t˛

˛ˇ.˛ C ˇ/.2˛ C ˇ/

�
2˛s˛

�
1 � sˇ

� � ˇ .1 � s˛/
�
t˛Cˇ C s˛Cˇ�� : (27)

Proof. Let x.t; s/ be the Cauchy function associated with (17), namely a function
satisfying

x.s; s/ D D˛x.s; s/ D DˇD˛x.s; s/ D 0; D�DˇD˛x.t; s/ D 1:

(Note that we will use � for now, and take � D ˛ for symmetry purposes at the
conclusion.) Using (2) at each step, it is easy to verify that here the Cauchy function
is given by

x.t; s/ D 1

�

Z t

s

Z �

s
.�� � s� / �ˇ�1�˛�1d�d�; (28)

and again Green’s function takes the form of

G.t; s/ D
(

u.t; s/ W t � s;

u.t; s/C x.t; s/ W s � t;

where u.t; s/ satisfies (17) and the two boundary conditions set at t D 0. Thus

u.t; s/ D a.s/C b.s/t˛ C c.s/t˛Cˇ C d.s/t˛CˇC� I
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the Lidstone boundary conditions force a.s/ D c.s/ D 0. The two boundary
conditions at t D 1 are satisfied by .u C x/ for x given in (28). In particular, we
use

DˇD˛Œu.t; s/C x.t; s/�jt!1 D 0

to solve for d, leading to

d.s/ D s� � 1
�.ˇ C �/.˛ C ˇ C �/

;

and then u.1; s/C x.1; s/ D 0 to solve for b, which yields

b.s/ D s˛CˇC�

˛.˛ C ˇ/.˛ C ˇ C �/
� sˇC�

˛ˇ.ˇ C �/

Cs�

�

�
1

ˇ.˛ C ˇ/
� 1

.ˇ C �/.˛ C ˇ C �/

�
:

Altogether we have

u.t; s/ D s� t˛
�

s˛Cˇ

˛.˛ C ˇ/.˛ C ˇ C �/
C ˛ C 2ˇ C �

ˇ.˛ C ˇ/.ˇ C �/.˛ C ˇ C �/

� sˇ

˛ˇ.ˇ C �/

�
C .s� � 1/t˛CˇC�

�.ˇ C �/.˛ C ˇ C �/
:

To achieve symmetry and to satisfy (24), we take � D ˛ and arrive at (27). ut
Theorem 9. For all t; s 2 .0; 1/, the Lidstone Green’s function given by (26)
satisfies

G.t; s/ > 0:

Proof. Clearly u.0; s/ D u.t; 1/ D 0 from (27), and

u.t; s/ � 2s˛t˛

˛ˇ.˛ C ˇ/.2˛ C ˇ/

�
˛
�
1 � sˇ

� � ˇ .1 � s˛/ sˇ
�

for 0 � t � s. Define

k.s/ WD ˛
�
1 � sˇ

� � ˇ .1 � s˛/ sˇ D ˇs˛Cˇ � .˛ C ˇ/sˇ C ˛:

Then k.0/ D ˛ > 0, k.1/ D 0, and

k0.s/ D ˇ.˛ C ˇ/sˇ�1 .s˛ � 1/ < 0:

Thus, k is strictly decreasing, so that k.s/ > 0 for s 2 Œ0; 1/, forcing u.t; s/ � 0 for
t; s 2 Œ0; 1�. Therefore the result holds. ut
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with a Convergent Iterative Algorithm
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Abstract Let .X; d/ be a complete metric space and f W X ! X be an operator with
a nonempty fixed point set, i.e., Ff WD fx 2 X W x D f .x/g ¤ ;. We consider an
iterative algorithm with the following properties:

(1) for each x 2 X there exists a convergent sequence .xn.x// such that xn.x/ !
x�.x/ 2 Ff as n ! 1;

(2) if x 2 Ff , then xn.x/ D x, for all n 2 N.

In this way, we get a retraction mapping r W X ! Ff , given by r.x/ D x�.x/.
Notice that, in the case of Picard iteration, this retraction is the operator f 1, see I.A.
Rus (Picard operators and applications, Sci. Math. Jpn. 58(1):191–219, 2003). By
definition, the operator f satisfies the retraction-displacement condition if there is an
increasing function W RC ! RC which is continuous at 0 and satisfies  .0/ D 0,
such that

d.x; r.x// �  .d.x; f .x//; for all x 2 X:

In this paper, we study the fixed point equation x D f .x/ in terms of a retraction-
displacement condition. Some examples, corresponding to Picard, Krasnoselskii,
Mann and Halpern iterative algorithms, are given. Some new research directions
and open questions are also presented.
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algorithm • Halpern algorithm • Ulam-Hyers stability • Well-posedness of the
fixed point equation • Ostrowski stability • Multi-valued operator

Introduction

In this paper we will consider the following two conditions involving a single-valued
operator f from a metric space X to itself.

Definition 1. Let .X; d/ be a metric space and f W X ! X be an operator so that
its fixed point set Ff is nonempty. Let r W X ! Ff be a set retraction. Then,
by definition, f satisfies the . ; r/ retraction-displacement condition ( -condition
in [11], . ; r/-operator in [41],  -weakly Picard operator in the case of Picard
iterations in [37], the collage condition in [2]) if:

(i)  W RC ! RC is increasing, continuous at 0 and  .0/ D 0;
(ii) d.x; r.x// �  .d.x; f .x//, for every x 2 X.

Remark 1. If Ff D fx�g, then the . ; r/ retraction-displacement condition takes the
following form:

(i)  W RC ! RC is increasing, continuous at 0 and  .0/ D 0;
(ii) d.x; x�/ �  .d.x; f .x//, for every x 2 X.

We will call it the .x�;  / retraction-displacement condition.

Definition 2. Let .X; d/ be a metric space and f W X ! X be an operator so that its
fixed point set Ff is nonempty. Let



xnC1 D fn.xn/; n 2 N

x0 2 X
(1)

(where fn W X ! X is a sequence of single-valued operators, for n 2 N) be an
iterative algorithm such that

(i) Ffn D Ff ;
(ii) the sequence .xn/n2N converges to an element x�.x0/ 2 Ff as n ! C1.

If we denote by r W X ! Ff given by r.x/ WD x�.x/ the retraction defined above,
then, by definition, the above algorithm satisfies a retraction-displacement condition
if the operator f satisfies a . ; r/ retraction condition.

Notice that r is the limit operator of the iterative algorithm.
In this paper we study the fixed point equation x D f .x/ in terms of a retraction-

displacement condition. Some examples, corresponding to Picard, Krasnoselskii,
Mann and Halpern iterative algorithms, are given. Some new research directions are
also presented.
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Through the paper we will denote by R the set of real numbers, by N the set of
natural numbers, by RC the set of positive numbers, by R�C the set of strict positive
numbers and by N� WD Nnf0g. We also denote by RmC the space of all m-dimensional
vectors with positive components.

Generalized Contractions: Examples

We will start this section by presenting some notions and results concerning
generalized contractions, which will be used in our main section.

A first generalization of the Banach contraction principle involves the concept of
comparison function.

Definition 3 ([36, 39]). A function ' W RC ! RC is called a comparison function
if it satisfies:

.i/' ' is increasing;
.ii/' the sequence .'n.t//n2N converges to 0 as n ! 1, for all t 2 RC.

If the condition .ii/' is replaced by the condition:

.iii/'

1X

kD0
'k.t/ < 1, for any t > 0,

then ' is called a strong comparison function.
Moreover, if the condition .iii/' is replaced by the condition:

.iv/' t � '.t/ ! C1, as t ! C1,
then ' is said to be a strict comparison function.

As a consequence of the above definition, we have the following lemmas.

Lemma 1 ([36, 39]). If ' W RC ! RC is a comparison function, then the following
hold:

(i) '.t/ < t, for any t > 0;
(ii) '.0/ D 0;

(iii) ' is continuous at 0.

Lemma 2 ([3, 24, 39]). If ' W RC ! RC is a strong comparison function, then the
following hold:

(i) ' is a comparison function;
(ii) the function s W RC ! RC, defined by

s.t/ D
1X

kD0
'k.t/; t 2 RC; (2)

is increasing and continuous at 0;
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(iii) there exist k0 2 N, a 2 .0; 1/ and a convergent series of nonnegative terms
1X

kD1
vk such that

'kC1.t/ � a'k.t/C vk; for k � k0 and any t 2 RC:

Remark 2. Some authors use the notion of (c)-comparison function defined by the
statements (i) and (iii) in Lemma 2. Actually, the concept of (c)-comparison function
coincides with that of strong comparison function.

Example 1. (1) ' W RC ! RC, '.t/ D at, where a 2 Œ0; 1Œ, is a strong comparison
function and a strict comparison function. In this case, f is called a contraction
with constant a 2 Œ0; 1Œ.

(2) ' W RC ! RC, '.t/ D t

1C t
is a strict comparison function, but is not a strong

comparison function.
(3) ' W RC ! RC defined by

'.t/ WD

8
<̂

:̂

1

2
t; t 2 Œ0; 1�

t � 1

2
; t > 1

is a strong comparison function.

(4) ' W RC ! RC, '.t/ D at C 1

2
Œt�, where a 2

�
0;
1

2


is a strong comparison

function.

For other considerations on comparison functions, see [3, 17, 18, 36, 39], and the
references therein.

The Retraction-Displacement Condition in the Theory
of Weakly Picard Operators

The first part of the following result is known as Matkowski’s Theorem (see [20]),
while the second part belongs to Rus [36].

Theorem 1. Let .X; d/ be a complete metric space and f W X ! X be a '-
contraction, i.e., ' W RC ! RC is a comparison function and

d.f .x/; f .y// � '.d.x; y// for all x; y 2 X:

Then f is a Picard operator, i.e., f has a unique fixed point x� 2 X and
lim

n!C1 f n.x/ D x�, for all x 2 X. Moreover, if ' W RC ! RC is a strict comparison

function, then f is a  -Picard operator, i.e., f is a Picard operator and
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d.x; x�/ �  '.d.x; f .x///; for all x 2 X;

where  ' W RC ! RC is given by  '.t/ WD supfsjs � '.s/ � tg.

The second conclusion of the above theorem gives an answer to the following
very general problem.

Problem 1. Let .X; d/ be a metric space and f W X ! X. Which generalized
contractions f are  -Picard operators? Which generalized contractions f satisfy a
. ; r/ retraction-displacement condition?

A general result concerning the above problem is the following.

Theorem 2. Let .X; d/ be a metric space, f W X ! X be an operator, ' W RC !
RC a strict comparison function and � W RC ! RC be an increasing function,
continuous at 0 with � .0/ D 0. We suppose that:

(i) Ff D fx�g;
(ii) d.f .x/; x�/ � ' .d.x; x�//C � .d.x; f .x///, for all x 2 X:

Then:

d.x; x�/ �  ' .d .x; f .x//C � .d.x; f .x/// ; for all x 2 X; (3)

i.e., f is a  -Picard operator with  D  ' ı �1R
C

C �
�

Proof. We have

d.x; x�/ � d .x; f .x//C d
�
f .x/; x�� �

� d .x; f .x//C '
�
d.x; x�/

�C � .d.x; f .x/// :

From the definition of  ' we get the conclusion. We remark that the function  D
 ' ı �1R

C

C �
�

is increasing, continuous at 0 and  .0/ D 0.

A class of  -Picard operators (with a particular  .t/ WD ˛t, for some ˛ 2 Œ0; 1Œ
and with a particular �.t/ D Lt, for some L � 0) is given by the following
consequence.

Corollary 1. Let .X; d/ be a metric space and f W X ! X be an operator. We
suppose:

(a) Ff D fx�g;
(b) (see [32]) there exists ˛ 2 Œ0; 1Œ and L � 0 such that

d.f .x/; x�/ � ˛d.x; x�/C Ld.x; f .x//; for all x 2 X:

Then:

d.x; x�/ � 1C L

1 � ˛ d.x; f .x///; for all x 2 X:
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We will present now some examples of generalized contractions which satisfy
the assumptions (a) and (b) in the above theorems. For example, using the Hardy
and Rogers type condition, we can prove the following result.

Theorem 3. Let .X; d/ be a complete metric space and f W X ! X be an operator.
We suppose there exist a; b; c 2 RC with a C 2b C 2c < 1 such that, for all x; y 2 X,
we have

d.f .x/; f .y// � ad.x; y/C b.d.x; f .x//C d.y; f .y///C c.d.x; f .y//C d.y; f .x///:

Then:

(i) Ff D fx�g;
(ii) d.x; x�/ � 1Cb�c

1�a�2c d.x; f .x///; for all x 2 X:

Proof. Let x0 2 X and xn WD f n.x0/, n 2 N�. Then, by Hardy–Rogers’ fixed point
theorem we get Ff D fx�g. Now, we also have

d.f .x/; x�/ D d.f .x/; f .x�// �
ad.x; x�/C b.d.x; f .x/C d.x�; f .x�//C c.d.x; f .x�//C d.x�; f .x///:

Thus

d.f .x/; x�/ � a C c

1 � c
d.x; x�/C b

1 � c
d.x; f .x/; for all x 2 X:

The conclusion follows now from Theorem 2.

We will discuss now the case of so-called Suzuki type contractions.

Theorem 4. Let .X; d/ be a metric space, � W RC ! RC such that � .0/ D 0,
' W RC ! RC be a strict comparison function and f W X ! X be an operator. We
suppose that

(i) Ff D fx�g;
(ii) x; y 2 X, � .d.f .x/; x// � d .x; y/ H) d .f .x/ ; f .y// � ' .d.x; y//.

Then:

d.x; x�/ �  ' .d .x; f .x/// ; for all x 2 X: (4)

Proof. We take in .ii/ x D x� and we apply Theorem 2.

Remark 3. It is worth to notice that there exists operators which satisfy all the
assumptions in Theorem 2, but which are not Picard operators. For example,
f W R ! R, f .x/ WD 2x. In this case, Ff WD f0g and

jf .x/j � 1

2
jxj C 2jx � f .x/j; for all x 2 X;

but f is not a Picard operator.
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In the next part of this section, the case of the cyclic '-contractions is discussed.
One of the most important generalizations of the Banach Contraction Principle

was given in 2003 by Kirk, Srinivasan and Veeramani, using the concept of cyclic
operator. More precisely, they proved in [19] the following result.

Theorem 5 ([19, Theorem 2.4]). Let fAigm
iD1 be nonempty subsets of a complete

metric space and suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ � AiC1 for 1 � i � m, where AmC1 D A1;
(2) d.f .x/; f .y// � '.d.x; y//, for all x 2 Ai, and all y 2 AiC1, for 1 � i � m,

where the mapping ' W RC ! RC is upper semi-continuous from the right and
satisfies the condition 0 � '.t/ < t for t > 0.

Then f has a unique fixed point.

An extension of this result was given by Păcurar and Rus in [24]. See also [38].

Theorem 6 ([24, Theorem 2.1]). Let fAigm
iD1 be nonempty subsets of a complete

metric space and suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ � AiC1 for 1 � i � m, where AmC1 D A1;
(2) there exists a comparison function ' W RC ! RC such that

d.f .x/; f .y// � '.d.x; y//; for all x 2 Ai and all y 2 AiC1; 1 � i � m:

Then:

(a) f has a unique fixed point x� 2
m\

iD1
Ai and, for each x 2 A WD

m[

iD1
Ai the sequence

xn WD .f n.x//n2N converges to x� as n ! C1;
(b) the following estimates take place:

d.xn; x
�/�s.'n.d.x0; f .x0/// and d.xn; x

�/ � s.'.d.xn; f .xn///; for all n 2 N�I

(c) the following relation holds:

d.x; x�/ � s.d.x; f .x///; for all x 2 A;

where s W RC ! RC is defined by s.t/ WD
1X

kD0
'k.t/.

Our next result is an extension of the previous result.



82 V. Berinde et al.

Theorem 7. Let fAigm
iD1 be nonempty subsets of a complete metric space and

suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ � AiC1 for 1 � i � m, where AmC1 D A1;
(2) there exists a strict comparison function ' W RC ! RC such that

d.f .x/; f .y// � '.d.x; y//; for all x 2 Ai and all y 2 AiC1; 1 � i � m:

Then:

(a) f is a Picard operator, i.e., f has a unique fixed point and, for each x 2 A WD
m[

iD1
Ai the sequence xn WD .f n.x//n2N converges to x� as n ! C1;

(b) x� 2
m\

iD1
Ai;

(c) the following relation holds:

d.x; x�/ �  '.d.x; f .x///; for all x 2 A;

where  ' W RC ! RC is given by  '.t/ WD supfsjs � '.s/ � tg.

Proof. The conclusions (a) and (b) follow by Theorem 6. The conclusion (c) follows

(since x� 2
m\

iD1
Ai) by the following relations:

d.x; x�/ � d.x; f .x//C d.f .x/; f .x�// � d.x; f .x//C '.d.x; x�//:

Another general open problem is the following one.

Problem 2. Let .X; d/ be a metric space and f W X ! X be such that there exists
n0 2 N� such that f n0 is a generalized contraction. Under which conditions f is a  -
Picard operator (or a  -weakly Picard operator)? Under which conditions f satisfies
the  -condition with respect to a set retraction r?

For the above problem, we have the following result (see [22, 35, 46, 52], etc.).

Theorem 8. Let .X; d/ be a complete metric space and f W X ! X be such that
there exists n0 2 N� such that f n0 is a contraction with constant a 2 Œ0; 1Œ. We also
suppose that f is L-Lipschitz with constant L � 1. Then, the following conclusions
hold:

(i) f is a Picard operator and Ff D fx�g;
(ii) (a) if L > 1, then

d.x; x�/ � Ln0 � 1

.1 � a/.L � 1/
d.x; f .x//; for all x 2 X:
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(b) if L D 1, then

d.x; x�/ � n0
1 � a

d.x; f .x//; for all x 2 X:

Proof. We only need to prove (ii). Since f n0 is a contraction with constant a 2 Œ0; 1Œ,
we get that f is a 1

1�a -Picard operator. Thus, for all x 2 X, we have

d.x; x�/ � 1

1 � a
d.x; f n0 .x// �

1

1 � a
.d.x; f .x//C d.f .x/; f 2.x//C d.f n0�1.x/; f n0 .x///

� Ln0 � 1
.1 � a/.L � 1/d.x; f .x//:

In a similar way one obtain (b).

A third general problem is the following.

Problem 3. Let .X; d/ be a metric space and f W X ! X be such that there exists
n0 2 N� such that fjf n0 .X/

W f n0 .X/ ! f n0 .X/ is a generalized contraction. Under
which conditions f is a  -Picard operator (or a  -weakly Picard operator)? Under
which conditions f satisfies the  -condition with respect to a set retraction r?

A first answer to the above problem is the following theorem.

Theorem 9. Let .X; d/ be a complete metric space and f W X ! X be such that
there exists n0 2 N� such that fjf n0 .X/

W f n0 .X/ ! f n0 .X/ is a contraction with
constant a 2 Œ0; 1Œ. Suppose that f is Lipschitz with constant L � 1. Then, the
following conclusions hold:

(i) f is a Picard operator and Ff D fx�g;
(ii) (a) if L > 1, then

d.x; x�/ � .
Ln0 � 1
L � 1 C Ln0

1 � a
/ � d.x; f .x//; for all x 2 X:

(b) if L D 1, then

d.x; x�/ � .n0 C 1

1 � a
/ � d.x; f .x//; for all x 2 X:

Proof. (a) Since fjf n0 .X/
is a contraction with constant a, we obtain that fjf n0 .X/

is a

contraction with constant a, too. Thus, Ff WD fx�g. Moreover, since f n0 is a 1
1�a -

Picard operator, for all x 2 X, we have
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d.f n0 .x/; x�/ � 1

1 � a
d.f n0 .x/; f .f n0 .x/// � Ln0

1 � a
d.x; f .x//:

On the other hand, for all x 2 X, we can write:

d.x; x�/ � d.x; f n0 .x//C d.f n0 .x/; x�/ �

.d.x; f .x//C d.f .x/; f 2.x//C d.f n0�1.x/; f n0 .x///C Ln0

1 � a
d.x; f .x// � � � � �

Ln0 � 1
L � 1 d.x; f .x//C Ln0

1 � a
d.x; f .x//:

Notice now that (b) follows by a similar approach.

Notice now that in Theorem 2 and Corollary 1 the uniqueness of the fixed point
can be deduced by the imposed condition (b). In the absence of the uniqueness
assumption for the fixed point, we can prove the following extension of Corollary 1.

Corollary 2. Let .X; d/ be a metric space and f W X ! X be an operator. We
suppose:

(a) for each x 2 X there exists a sequence .xn.x//n2N and there exists x�.x/ 2 Ff

with lim
n!C1 xn.x/ D x�.x/. In particular, if x 2 Ff , then xn.x/ D x, for all n 2 N.

Thus, r W X ! Ff x 7! x�.x/ is a set retraction.
(b) there exists ˛ 2 Œ0; 1Œ and L � 0 such that

d.f .x/; r.x// � ˛d.x; r.x//C Ld.x; f .x//; for all x 2 X:

Then

d.x; r.x// � 1C L

1 � ˛
d.x; f .x//; for all x 2 X:

Proof. Notice that, for every x 2 X, we have

d.x; r.x// � d .x; f .x//C d .f .x/; r.x// �
� d .x; f .x//C ˛d.x; r.x//C Ld.x; f .x//:

As an illustrative example, we have the following result for graphic contractions.

Theorem 10. Let .X; d/ be a complete metric space and f W X ! X be an operator.
We suppose:

(a) there exists a 2 Œ0; 1Œ such that

d.f .x/; f 2.x// � ad.x; f .x//; for all x 2 X:
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(b) f has closed graph.
Then:

(i) for each x 2 X, the sequence xn WD f n.x/, n 2 N� converges to an element
x�.x/ D f 1.x/ 2 Ff ;

(ii)

d.x; f 1.x// � 1

1 � a
d.x; f .x// for all x 2 X:

Proof. (i) is the well-known Graphic Contraction Principle. For the sake of com-
pleteness, we recall here the proof. Let x0 2 X and xn WD f n.x0/, n 2 N. Then, by
(a), the sequence .xn/ is Cauchy and, by the completeness of the space .X; d/, there
exists x�.x0/ 2 X such that lim

n!C1 xn D x�.x0/. By (b), we get that x�.x0/ 2 Ff .

Now, for each x 2 X, we also have

d.f .x/; f 1.x// � d.f .x/; f 2.x//C d.f 2.x/; f 3.x//C � � � C d.f n.x/; f 1.x// �
ad.x; f .x//C a2d.x; f .x//C � � � C an�1d.x; f .x//C d.f n.x/; f 1.x// D

D a.1� an�1/
1 � a

d.x; f .x//C d.f n.x/; x�.x//:

Letting n ! C1, we get that

d.f .x/; f 1.x// � a

1 � a
d.x; f .x//; for all x 2 X:

Now we can conclude

d.x; f 1.x// � d .x; f .x//C d .f .x/; f 1.x// �

� d .x; f .x//C a

1 � a
d.x; f .x// D 1

1 � a
d.x; f .x//:

In the case of Caristi–Browder operators (see [18, 39]) we have a similar result.

Theorem 11. Let .X; d/ be a complete metric space, f W X ! X be an operator and
' W X ! RC be a given function. We suppose:

(a) d.x; f .x// � '.x/ � '.f .x//; for all x 2 X;
(b) f has closed graph.

Then:

(i) Ff ¤ ;;
(ii) for each x 2 X, the sequence xn WD f n.x/, n 2 N� converges to an element

f 1.x/ 2 Ff ;
(ii) if, additionally, there is ˛ 2 R�C such that '.x/ � ˛d.x; f .x//, then
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d.x; f 1.x// � ˛d.x; f .x//; for all x 2 X:

Proof. For (i) and (ii), let us consider x 2 X. From (a) it follows

nX

kD0
d.f k.x/; f kC1.x// � '.x/ � '.f nC1.x// � '.x/:

This implies that .f n.x//n2N is a convergent sequence. Let us denote by f 1.x/ 2 X
its limit. From (b) we have that f 1.x/ 2 Ff .

For (iii), notice that for each x 2 X, we have

d.x; f nC1.x// �
nX

kD0
d.f k.x/; f kC1.x// � '.x/ � ˛d.x; f .x//:

Thus, d.x; f 1.x// � ˛d.x; f .x//; for all x 2 X.

Remark 4. For other considerations on weakly Picard operator theory, see [6, 13,
27, 37, 40, 45], etc.

Remark 5. For generalized contractions conditions and related results, see [3, 17,
18, 23, 28, 30, 31, 34, 36, 39, 46, 52], etc.

The Retraction-Displacement Condition in the Case
of Other Iterative Algorithms

Let .X;C;R; k � k/ be a Banach space, Y � X a nonempty convex subset, f W Y ! Y
an operator, 0 < 	 < 1 and ƒ WD .	n/n2N with 0 < 	n < 1, n 2 N.

Krasnoselskii Algorithm

By the Krasnoselskii perturbation of f we understand the operator f	 W Y ! Y
defined by

f	.x/ D .1 � 	/x C 	f .x/; x 2 Y:

For this perturbation of f we have (see [3, 4, 10, 42, 50, 51], etc.):

Theorem 12. Let f	 be defined as above. Then:

(i) Ff	 D Ff . In general Ff n
	

¤ Ff n , n � 2.
(ii) If f is l-Lipschitz, then f	 is l-Lipschitz.

(iii) If f is a '-contraction, then f	 is a '	-contraction.
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(iv) If in addition Y is bounded and closed and f is nonexpansive, then f	 is
asymptotically regular.

(v) If f satisfies a.r;  / retraction-displacement condition, then f	 satisfies the

.r; �/ retraction-displacement condition with �.t/ D  

�
1

	
t

�
, t 2 RC.

(vi) If X is an ordered Banach space, then f increasing implies f	 increasing.

The following problem arises:

Problem 4. If f	 is WPO, in which conditions on f , f	 satisfies the .f 1
	 ;  /

retraction-displacement condition?

Some results for this problem were given in section “The Retraction-Displace-
ment Condition in the Case of Other Iterative Algorithms” when f is a generalized
contraction (see (v) in Theorem 12).

Remark 6. For the condition in which f	 is WPO see [3, 10, 18, 50, 51], etc. For
example, the following result is well known, see [3].

Definition 4. Let H be a Hilbert space with inner product h�; �i and norm k�k. An
operator f W H ! H is said to be a generalized pseudo-contraction if there exists a
constant r > 0 such that, for all x; y in H,

k f .x/ � f .y/k2 � r2 k x � y k2 C k f .x/ � f .y/ � r.x � y/ k2 : (5)

Remark 7. Condition 5 is equivalent to

hf .x/� f .y/; x � yi � r k x � yk2 ; for all x; y 2 H; (6)

or to

h.I � f / x � .I � f / yi � .1 � r/ k x � yk2 : (7)

Remark 8. Note that any Lipschitzian operator f , that is, any operator for which
there exists s > 0 such that

k f .x/ � f .y/k � s � k x � yk ; x; y 2 H; (8)

is also a generalized pseudo-contractive operator, with r D s.

Theorem 13. Let K be a nonempty closed convex subset of a real Hilbert space
and let f W K ! K be a generalized pseudocontractive and Lipschitzian operator
with the corresponding constants r and s, respectively, such that

0 < r < 1 and r � s: (9)

Then

(i) f has a unique fixed point p;
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(ii) For each x0 2 K, the Krasnoselskii iteration fxng1
nD0, given by

xnC1 D .1 � 	/xn C 	 f .xn/ ; n D 0; 1; 2; : : : ; (10)

converges (strongly) to p, for all 	 2 .0; 1/ satisfying

0 < 	 < 2.1� r/=.1 � 2r C s2/: (11)

(iii) The following retraction-displacement condition holds:

d.x; f 1
	 .x// � 	

1 � �
d.x; f .x//; 8x 2 K;

where

� D �
.1 � 	/2 C 2	.1� 	/ r C 	2s2

�1=2
: (12)

Proof. Denote

f	.x/ D .1 � 	/x C 	 � f .x/ ; x 2 K; (13)

for all 	 2 .0; 1/.
Since f is generalized pseudo-contractive and Lipschitzian, we have

kf	.x/� f	.y/k2 D k .1 � 	/ x C 	 f .x/� .1 � 	/ y � 	f .y/k2 D (14)

k .1 � 	/.x � y/C 	.f .x/� f .y/k2 D (15)

.1 � 	/2 � k x � yk2 C 2	.1� 	/ � hf .x/ � f .y/; x � yi C 	2 � kf .x/ � f .y/k2 �
(16)

�
.1 � 	/2 C 2	.1 � 	/r C 	2s2

� � k x � yk2 ; (17)

which yields

kf	.x/� f	.y/k � � � k x � yk ; for all x; y 2 K: (18)

In view of condition (12), we get that 0 < � < 1, so f	 is a �-contraction. The
conclusion now follows by Theorem 3.6 in [3] and Theorem 12.

A more general result can be similarly proven.

Theorem 14. Let K be a nonempty closed convex subset of a Banach space and let
f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;
(ii) The Krasnoselskii iteration fxng1

nD0 converges to x�.x/ 2 Ff , for any x 2 K;
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(iii) There exist 0 � ı < 1 and a function � W RC ! RC, continuous at 0 with
�.0/ D 0, such that

kf .x/ � x�k � ıkx � x�k C �.kx � f .x/k/; 8x 2 K; x� 2 Ff : (19)

Then the following retraction-displacement condition holds:

kx � f 1
	 .x/k � 1

1 � ı .kx � f .x/k C �.kx � f .x/k// ; 8x 2 K:

Mann Algorithm

Let us consider the Mann algorithm corresponding to f and ƒ (see [3, 10, 51]):

x0 2 Y; xnC1.x0/ D f	n.xn.x0//; n 2 N:

We suppose that this algorithm is convergent, i.e.,

for all x0 2 Y; xn.x0/�!x�.x0/ 2 Ff as n ! 1:

In this condition we define the operator

f 1
ƒ W Y ! Ff ; x 7! x�.x/

operator which is a set retraction.
By definition a convergent Mann algorithm satisfies a retraction-displacement

condition if

kx � f 1
ƒ .x/k �  .kx � f .x/k/; 8 x 2 Y

with  as in Definition 1.
The basic problem is the following:

Problem 5. If the Mann algorithm is convergent, in which conditions on f andƒ it
satisfies a retraction-displacement condition?

Remark 9. For the conditions in which the Mann algorithm is convergent see: [3,
10, 51], etc. For example, we have the following well-known result, see [3], Chap. 4.

Theorem 15. Let E be an arbitrary Banach space, K a closed convex subset of E,
and f W K ! K a Zamfirescu operator. Let fxng1

nD0 be the Mann iteration defined by
x0 2 K and

xnC1 D .1 � ˛n/xn C ˛nf .xn/ ; n D 1; 2; : : : (20)
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with f˛ng � Œ0; 1� satisfying

.iv/
1X

nD0
˛n D 1 :

Then

(i) f is a Picard operator with Ff D fpg;
(ii) fxng1

nD0 converges strongly to the unique fixed point of f ;
(iii) f satisfies the following retraction-displacement condition

kx � pk � 2ı

1 � ı
kx � f .x/k; 8x 2 K:

Proof. Remind that if f is a Zamfirescu mapping on K, then there exist the real
numbers a; b; c satisfying 0 � a < 1; 0 � b < 0:5 and 0 � c < 0:5; such that, for
each x; y 2 X, at least one of the following is true:

(z1) kf .x/ � f .y/k � a kx � ykI
(z2) kf .x/ � f .y/k � bŒkx � f .x/k C ky � f .y/k�I
(z3) kf .x/ � f .y/k � cŒkx � f .y/k C ky � f .x/k�:

It is well known that f is a Picard operator (see, for example, Theorem 2.4 in [3]).
By .z1/–.z3/, we obtain that, for all x; y 2 K, T satisfies

kf .x/ � f .y/k � ıkx � yk C 2ıkx � f .x/k (21)

where

ı D max



a;

b

1 � b
;

c

1 � c

�
< 1: (22)

Let fxng1
nD0 be the Mann iteration given by 20, with x0 2 K arbitrary. Then

kxnC1 � pk D 	
	.1 � ˛n/xn C ˛nf .xn/� .1 � ˛n C ˛n/p

	
	 D

D 	
	.1 � ˛n/.xn � p/C ˛n.f .xn/� p/

	
	 �

� .1 � ˛n/kxn � pk C ˛nkf .xn/� pk : (23)

Take x WD p and y WD xn in 21 to obtain

kf .xn/� pk � ı � kxn � pk;
which together with 23 yields

kxnC1 � pk � �
1 � .1 � ı/˛n

�kxn � pk ; n D 0; 1; 2; : : : : (24)
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Inductively we get

kxnC1 � pk �
nY

kD0

�
1 � .1 � ı/˛k

� � kx0 � pk ; n D 0; 1; 2; : : : : (25)

As 0 < ı < 1, ˛k 2 Œ0; 1� and
1P

kD0
˛k D 1, by a standard argument it results that

lim
n!1

nY

kD0

�
1 � .1 � ı/˛k

� D 0 ;

which, together with the previous inequality, implies

lim
n!1 kxnC1 � pk D 0 ;

i.e., fxng1
nD0 converges strongly to p. So, (i) and (ii) are proven. To prove (iii), we

use the fact that

kx � pk � kx � f .x/k C kf .x/ � f .p/k:

So, by inequality 21,

kf .x/ � f .p/k � ıkx � pk C 2ıkx � f .x/k;

the desired estimate follows.

A more general result can be similarly proven.

Theorem 16. Let K be a nonempty closed convex subset of a Banach space and let
f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;
(ii) The Mann iteration fxng1

nD0 converges to x�.x/ 2 Ff , for any x 2 K;
(iii) There exist 0 � ı < 1 and a function � W RC ! RC, continuous at 0 with

�.0/ D 0, such that

kf .x/ � x�k � ıkx � x�k C �.kx � f .x/k/; 8x 2 K; x� 2 Ff : (26)

Then, the following retraction-displacement condition holds:

kx � f 1
	 .x/k � 1

1 � ı .kx � f .x/k C �.kx � f .x/k// ; 8x 2 K:

Remark 10. By Theorem 16, one can obtain a convergence theorem for Mann
iteration by considering f an almost contraction with a unique fixed point, see, for
example, [3].
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Halpern Algorithm

Now we consider the Halpern algorithm (see [3, 10, 41, 50], etc.):

x0 2 Y; xnC1.x0/ D .1 � 	n/u C 	nf .xn.x0//; n 2 N;

where u 2 Y is a fixed anchor, see [47, 54, 55, 59] for more details.
We suppose that this algorithm is convergent, i.e.,

for all x0 2 Y; xn.x0/ ! x�.x0/ 2 Ff as n ! 1:

So, if we denote ƒ D ff	ng1
nD0 W 	n 2 Œ0; 1�g, then we have the set retraction,

f 1
ƒ W Y ! Ff , f 1

ƒ .x/ D x�.x/.
By definition, a convergent Halpern algorithm satisfies a retraction-displacement

condition if

kx � f 1
ƒ .x/k �  .kx � f .x/k/; 8 x 2 Y;

with  as in Definition 1.
Similarly to the case of the previous algorithms, we have

Problem 6. If the Halpern algorithm is convergent, under which condition on f and
ƒ it satisfies a retraction-displacement condition?

Remark 11. For some conditions under which the Halpern algorithm is convergent,
see [1, 3, 33, 47, 50, 53–55, 59, 60], etc.

A general result similar to the ones established for Krasnoselskii and Mann
algorithms can be easily proven for Halpern iteration, too.

Theorem 17. Let K be a nonempty closed convex subset of a Banach space and let
f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;
(ii) The Halpern iteration fxn.x/g1

nD0 converges to x�.x/ 2 Ff , for any x 2 K;
(iii) There exist 0 � ı < 1 and a function � W RC ! RC, continuous at 0 with

�.0/ D 0, such that

kf .x/ � x�k � ıkx � x�k C �.kx � f .x/k/; 8x 2 K; x� 2 Ff : (27)

Then the following retraction-displacement condition holds:

kx � f 1
� .x/k � 1

1 � ı .kx � f .x/k C �.kx � f .x/k// ; 8x 2 K:

The next corollary provides an answer to Problem 6.
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Corollary 3. Let K be a nonempty closed convex subset of a Banach space and let
f W K ! K be a Zamfirescu mapping. Then

(i) Ff D fx�g;
(ii) The Halpern iteration fxng1

nD0 converges to x� 2 Ff , for any x0 2 K, provided
that f	ng1

nD0 � Œ0; 1� satisfies the following condition:

lim
n!1	n D 0: (28)

(iii) The following retraction-displacement condition holds:

kx � f 1
� .x/k � 1C 2ı

1 � ı
kx � f .x/k; 8x 2 K:

Proof. (i) This follows by Theorem 2.4 in [3].
(ii) Let fxng1

nD0 be the Halpern iteration, defined by x0 2 K, the fixed anchor u 2 K
and the parameter sequence f	ng1

nD0 � Œ0; 1� satisfying 28. Then we have

kxnC1�x�kDk	nuC.1�	n/f .xn/�x�kDk	nu�	nx�C.1�	n/.f .xn/�f .x�/k
� 	nku � x�kC.1�	n/kf .xn/�f .x�/k � 	nku � x�k C .1 � 	n/ıkxn � x�k

� ıkxn � x�k C 	nku � x�k:

Thus

kxnC1 � x�k � ıkxn � x�k C 	nku � x�k; n � 0;

which, by applying Lemma 1.6 in [3], yields the conclusion.
(iii) Since f is a Zamfirescu mapping, see Theorem 15, the inequality 21 holds and

so, by Theorem 16, we get the estimate

kx � f 1
ƒ .x/k � 1C 2ı

1 � ı kx � f .x/k; 8x 2 K;

where ı is given by

ı D max



a;

b

1� b
;

c

1 � c

�
< 1 (29)

and a; b; c are the constants appearing in Zamfirescu’s conditions .z1/� .z3/.
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Retraction-Displacement Condition and the Condition (I), in the
Case Ff D fx�g

In this section we briefly discuss, in the context of fixed point iterative algorithms,
the connection between the retraction-displacement condition considered in the
present paper and the condition (I), the latter introduced by Senter and Dotson
in [48] (see also [58]) for the case of single-valued mappings, and used by many
authors mainly in the case of multi-valued operators, to study the convergence of
Mann and Ishikawa iterations for nonexpansive type mappings, see [25, 48, 49, 56,
57] and the references therein.

Definition 5 ([48]). Let .X; d/ be a metric space. A mapping f W X ! X is said to
satisfy condition (I) if there is a nondecreasing function � W Œ0;C1/ ! Œ0;C1/

with �.0/ D 0 and �.r/ > 0 for all r > 0 such that

d.x;Tx/ � �.d.x;Ff //;8x 2 X;

where Ff denotes, as usually, the set of fixed points of f .

In the particular case announced in the title of this section, i.e., when Ff D fx�g, it
is easy to see that condition (I) requires in fact that

d.x;Tx/ � �.d.x; x�//;8x 2 X:

Example 2. Let .X; d/ be a metric space and f W X ! X a 	-contraction (0�	<1).
Then, f satisfies condition (I) with �.r/ D .1 � 	/ � r, for all r > 0.

Example 3. Let .X; d/ be a metric space and f W X ! X a Kannan mapping, i.e., a
mapping for which there exists 0 < ˇ < 0:5 such that

d.f .x/; f .y// � ˇŒd.x; f .x//C d.y; f .y//�; 8x; y 2 X:

Then, f satisfies condition (I) with �.r/ D 1 � 2ˇ

2ˇ
r, for all r > 0.

Example 4. Let .X; d/ be a metric space and f W X ! X a Zamfirescu mapping,

see Theorem 16. Then, f satisfies condition (I) with �.r/ D 1 � 2ı

2ı
r, for all r > 0,

where

ı D max



a;

b

1 � b
;

c

1 � c

�
< 1; (30)

and a; b; c are the constants appearing in conditions .z1/–.z3/.

Based on Examples 2–4, we can state the following generic result.
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Proposition 1. Let K be a nonempty closed convex subset of a Banach space and
let f W K ! K be a mapping satisfying the following assumptions:

(i) Ff D fx�g;
(ii) A certain iterative algorithm fP � fxn.x0/g1

nD0 converges to x�, for any x0 2 K;
(iii) f satisfies condition (I) with � a bijection.

Then the algorithm fP satisfies the following retraction-displacement condi-
tion:

kx � f 1
P .x/k � ��1 .kx � f .x/k/ ; 8x 2 K:

Remark 12. In the case of Krasnoselskii algorithm we have P D f	g, 	 2 .0; 1/,
and hence fP � f	, while in the case of Mann iteration we have P � ƒ D f	ng1

nD0,
	n 2 .0; 1/, and hence fP � fƒ.

The Impact of Retraction-Displacement Condition
on the Theory of Fixed Point Equations

Let .X; d/ be a metric space and f W X ! X an operator with Ff ¤ ;. We suppose
that f satisfies a retraction-displacement condition as in Definition 1. In this section
we consider the fixed point equation

x D f .x/: (31)

Data Dependence

Let us consider the fixed point equation (31) and let g W X ! X be an operator such
that Fg ¤ ;.

We have

Theorem 18. We suppose that:

(i) f satisfies the .r1;  1/ retraction-displacement condition;
(ii) g satisfies the .r2;  2/ retraction-displacement condition;

(iii) there exists � > 0 such that

d.f .x/; g.x// � �; 8 x 2 X:

Then, Hd.Ff ;Fg/ � max. 1.�/;  2.�//.
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Proof. Let x� 2 Ff . Then, r2.x�/ 2 Fg and

d.x�; r2.x�// �  2.d.x
�/; g.x�// D  2.d.f .x

�/; g.x�/// �  2.�/:

Let y� 2 Fg. Then r1.y�/ 2 Ff and

d.y�; r1.y�// �  1.d.y
�/; f .y�// D  1.d.g.y

�/; f .y�/// �  1.�/:

From a well-known property of the Pompeiu–Hausdorff functional (see, for exam-
ple, [31], p. 76) it follows that

Hd.Ff ;Fg/ � max. 1.�/;  2.�//:

Theorem 19. We suppose that

(i) Ff D fx�g and f satisfies a .r;  / retraction-displacement condition, where
r.x/ D x�, 8 x 2 X;

(ii) there exists � > 0 such that

d.f .x/; g.x// � �; 8 x 2 X:

Then, d.y�; x�/ �  .�/, for each y� 2 Fg.

Proof. Let y� 2 Fg. Then

d.y�; x�/ D d.y�; r.y�// �  .d.y�/; f .y�// D  .d.g.y�//; f .y�// �  .�/:

Example 5. Let us consider the following functional integral equation

x.t/ D
Z t

t��
f .s; x.s//ds; where t 2 RC: (32)

This equation is a mathematical model for epidemics and population growth (see,
for example, [12, 14] and the references therein.

Let 0 < m < M and / < ˛ < ˇ. We suppose:

(i) f 2 C.R 
 Œ˛; ˇ�/;
(ii) there exists ! > 0 such that f .t C !; u/ D f .t; u/, for all t 2 R and all u 2

Œ˛; ˇ�/;
(iii) there exists k > 0 such that k� < 1 and jf .t; u/ � f .t; v/j � kju � vj, for all

t 2 R and all u; v 2 Œ˛; ˇ�/;
(iv) m � f .t; u/ � M, for all t 2 R and all u 2 Œ˛; ˇ�/;
(v) ˛ � m� and ˇ � M� .

If we define

X! WD fx 2 C.R; Œ˛; ˇ�/ j x.t C !/ D x.t/; for each t 2 Rg
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endowed with the metric

d.x; y/ WD max
0�t�! jx.t/ � y.t/j;

then the operator A defined as

Ax.t/ WD
Z t

t��
f .s; x.s//ds; where t 2 RC

has (using .i/–.iv/) the following properties:

(a) A.X!/ � X! ;
(b) A is a k�-contraction.

Then, by the Contraction Principle and Theorem 19, we obtain

Theorem 20. Let us consider Eq. (32) and suppose that the assumptions (i)–(v)
take place. Then:

(1) Eq. (32) has in X! a unique solution x�;
(2) d.x; x�/ � 1

1�k� d.x;A.x//, for all x 2 X!;
(3) let g W R 
 Œ˛; ˇ� ! R be a function which satisfies the conditions (i),(ii),(iv)

and (v) above. In addition, we suppose that there exists � > 0 such that

jf .t; u/ � g.t; u/j � �; for all t 2 R and u 2 Œ˛; ˇ�/I

If y 2 X! is a solution of the integral equation

y.t/ D
Z t

t��
g.s; y.s//ds; where t 2 RC;

then

d.x; y/ � ��

1 � k�
:

Ulam Stability

We start our considerations with the following notions (see [44]).

Definition 6. By definition, the fixed point equation (31) is Ulam–Hyers stable if
there exists a constant cf > 0 such that: for each " > 0 and each solution y� 2 X of
the inequation

d.y; f .y// � " (33)
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there exists a solution x� of Eq. (31) such that

d.y�; x�/ � cf ":

Definition 7. By definition, Eq. (31) is generalized Ulam–Hyers stable if there
exists � W RC ! RC increasing and continuous in 0 with �.0/ D 0 such that:
for each " > 0 and for each solution y� of (33) there exists a solution x� of (31)
such that

d.y�; x�/ � �."/:

We have

Theorem 21. If f satisfies a .r;  / retraction-displacement condition, then Eq. (31)
is generalized Ulam–Hyers stable.

Proof. Let y� 2 X be a solution of (33). Then x� D r.y�/ 2 Ff . Since f satisfies the
.r;  / retraction-displacement condition we have

d.y�; x�/ �  .d.y�/; f .y�// �  ."/:

Remark 13. If in the Theorem 21, the function  .t/ D cf t, 8t 2 RC, then Eq. (31)
is Ulam–Hyers stable.

Example 6. Let˝ be a bounded domain in Rm and let X WD C.˝;R/ endowed with
the metric d.x; y/ WD max

t2˝
jx.t/ � y.t/j.

We consider on X the following integral equation

x.t/ D
Z

˝

K.t; s; x.s//ds C l.t/; t 2 ˝: (34)

With respect to the above equation, we suppose:

(i) K 2 C.Œ˝ 
˝ 
 R;R/ and l 2 C.˝;R/;
(ii) there exists k > 0 such that

jK.t; s; u/ � K.t; s; v/j � kju � vj; for all t; s 2 ˝ and u; v 2 RI

(iii) k � mes.˝/ < 1.
Then, if we define A W X ! X by

Ax.t/ WD
Z

˝

K.t; s; x.s//ds C l.t/; t 2 ˝;

then, by (ii) and (iii), we obtain that A is a k � mes.˝/-contraction. Applying
the Contraction Principle and Theorem 21, we get
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Theorem 22. Consider Eq. (34) and suppose that the assumption (i)–(iv) take
place. Then, Eq. (34) is Ulam–Hyers stable.

Remark 14. For Ulam stability theory related to fixed point equations see [7, 21,
26, 44], etc.

Well-Posedness for Fixed Point Problems

Let .X; d/ be a metric space and f W X ! X be an operator such that its fixed point
set Ff D fx�g. Following F.S. De Blasi and J. Myjak (see [39] p. 42, see also [43]),
we say, by definition, that the fixed point problem

x D f .x/; x 2 X

is well-posed if the following implication holds:

.xn/n2N � X and d.xn; f .xn// ! 0 as n ! C1 ) lim
n!1 xn D x�:

In this setting, we have the following general result.

Theorem 23. Let .X; d/ be a metric space and f W X ! X be an operator such
that its fixed point set Ff D fx�g. If the operator f satisfies an .r;  / retraction-
displacement condition, then the fixed point problem for f is well-posed.

Proof. Let .xn/n2N � X such that d.xn; f .xn// ! 0 as n ! C1. Then, we have

d.xn; x
�/ �  .d.xn; f .xn// ! 0 as n ! 1:

Ostrowski Stability

Let .X; d/ be a metric space and f W X ! X be an operator such that its fixed point
set Ff D fx�g. Let

xnC1 D fn.xn/; n 2 N

be an iterative algorithm with fn W X ! X. By definition, this algorithm is said to be
Ostrowski stable if the following implication holds:

.yn/n2N � X and d.ynC1; fn.yn// ! 0 as n ! C1 ) lim
n!1 yn D x�:

Some authors refer to the above property as the “limit shadowing property” (see
[16, 23, 29, 41, 46], etc.).
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The following open question seems to be a difficult one.

Open Question In which conditions a retraction-displacement condition on f
implies that the fixed point problem for f is Ostrowski stable?

Remark 15. For a general fixed point iteration scheme and the concept of virtual
stability of an iteration scheme see [9]. For other stability concepts see also [15].

Some New Research Directions

Examples in Rm

We will present in this section some examples related to the following problem:

Problem 7. Which operators f W Rn ! Rn with Ff ¤ ; and r W Rn ! Ff a retraction
satisfies the retraction-displacement condition

d .x; r .x// �  .d .x; f .x/// ; for all x 2 Rn ‹

Example 7. Let f W R ! R such that Ff D ŒaI b�. Then f satisfies the retraction-
displacement condition with  .t/ D ct, c > 0 and r W R ! Ff

r .x/ D
8
<

:

a; x < a
x; x 2 ŒaI b�
b; x > b

if the following conditions are satisfied:

a

c
C c � 1

c
x � f .x/ or

c C 1

c
x � a

c
� f .x/ for x < a;

and

b

c
C c � 1

c
x � f .x/ or

c C 1

c
x � b

c
� f .x/ for x > b:

Example 8. Let R > 0 and

Di D ˚
.x; y/ 2 R2 j x2 C y2 � R

�
;

De D ˚
.x; y/ 2 R2 j x2 C y2 > R

�

Let f W R2 ! R2 be defined by
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f .x; y/ D



.x; y/ ; .x; y/ 2 Di

.x cos˛ � y sin ˛; x sin˛ C y cos˛/ ; .x; y/ 2 De

with ˛ 2�0I 2�Œ.
In this case we have that Ff D Di.
Let’s consider

r .x; y/ D
8
<

:

.x; y/ ; .x; y/ 2 Di�
R xp

x2Cy2
;R yp

x2Cy2

�
; .x; y/ 2 De:

Then

k.x; y/� r .x; y/k � c � k.x; y/ � f .x; y/k ; .x; y/ 2 R2;

with c D 1p
2.1�cos˛/

; i.e., f satisfies the retraction-displacement condition with

 .t/ D ct.

Proof. For .x; y/ 2 Di the retraction-displacement condition with  .t/ D ct, c > 0,
and r is satisfied for any c > 0.

If .x; y/ 2 De, then

k.x; y/� r .x; y/k D k.x; y/k � R

and

k.x; y/� f .x; y/k D k.x; y/k �p2 .1 � cos˛/:

The function ' W ŒRI C1Œ! R defined by

' .t/ D t � R

t
p
2 .1 � cos˛/

is an increasing bounded function with

' .t/ <
1

p
2 .1 � cos˛/

; t 2 ŒRI C1Œ;

thus

k.x; y/� r .x; y/k
k.x; y/� f .x; y/k D k.x; y/k � R

k.x; y/k �p2 .1 � cos˛/
<

1
p
2 .1 � cos˛/

; 8 .x; y/ 2 De;

and we get the conclusion.
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The Case of Rm
C-Metric Spaces

Another research direction is the study of the retraction-displacement condition
in the case of generalized metric spaces (see [18, 23, 39, 44, 44, 45], etc.) For
example, if we consider a vector-valued metric (i.e., d.x; y/ 2 RmC, then we can
do the following commentaries:

(1) Let X be a nonempty set and let d W X 
 X ! RmC be a RmC-metric on X.
Let f W X ! X be an operator such that Ff ¤ ; and let r W X ! Ff be a
set retraction. Then, by definition, f satisfies the . ; r/ retraction-displacement
condition if:

(i)  W RmC ! RmC is increasing, continuous at 0 with  .0/ D 0;
(ii) d.x; r.x// �  .d.x; f .x//, for all x 2 X.

(2) For the weakly Picard operator theory in RmC-metric spaces, see [36, 37, 39, 45],
etc.

(3) For the Ulam stability in RmC-metric spaces, see [7, 26, 44], etc.

The Case of Nonself Operators

Let .X; d/ be a metric space and Y be a nonempty subset of X. Then, by definition,
the operator f W Y ! X with Ff ¤ ; satisfies the . ; r/ retraction-displacement
condition if:

(i)  W RmC ! RmC is increasing, continuous at 0 with  .0/ D 0;
(ii) r W Y ! Ff is a set retraction;

(iii) d.x; r.x// �  .d.x; f .x///, for all x 2 Y.

In this case, the problem is to study the fixed point equation x D f .x/ in terms of
the . ; r/ retraction-displacement condition.

Again some commentaries can be done:

(1) Let Qr W X ! Y be a set retraction such that Ff D FQrıf . Then, the problem is
to find a retraction r W Y ! Ff as the limit operator of an iterative algorithm
corresponding to the self-operator Qr ı f .

(2) For some results concerning this problem, see [5, 11, 29, 43].

The Case of Multi-valued Operators

We will present first a concept of set-retraction related to multi-valued operators.
Recall first that, if T W X ! P.X/ is a multi-valued operator, then we denote by
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Graph.T/ WD f.x; y/ 2 X 
 X W y 2 T.x/g; the graphic of T

and by

FT WD fx 2 Xj x 2 T.x/g; the fixed point set of T:

Definition 8. Let X be a nonempty set, Y 2 P.X/ and T W X ! P.X/ be a multi-
valued operator. An operator r W Graph.T/ ! Y is called a strong set-retraction of
X onto Y if r.x; x/ D x, for all x 2 Y.

Then, we define the retraction-displacement condition for multi-valued operators
as follows.

Definition 9. Let .X; d/ be a metric space and let T W X ! P.X/ be a multi-valued
operator such that its fixed point set FT is nonempty. Then, by definition, T satisfies
the . ; r/ retraction-displacement condition if there exist  W RC ! RC and a
strong set retraction r W Graph.T/ ! P.FT/ such that:

(i)  W RC ! RC is increasing, continuous at 0 with  .0/ D 0;
(ii) d.x; r.x; y// �  .d.x; y//; for all .x; y/ 2 Graph.T/:

In this case, the problem is to study the fixed point inclusion x 2 T.x/ and the
strict fixed point equation fxg D T.x/ in terms of the . ; r/ retraction-displacement
condition.

The case of nonself multi-valued operators can also be considered in a similar
way.

Moreover, in particular, if T W X ! P.X/ is a multi-valued weakly Picard
operator (i.e., for each .x; y/ 2 Graph.T/ there exists a sequence .xn/n2N such
that:

(i) x0 D x, x1 D y;
(ii) xnC1 2 T.xn/, for each n 2 N;

(iii) .xn/n2N is convergent and its limit is a fixed point of T),
and we define the multi-valued operator T1 W Graph.T/ ! P.FT/ by the
formula T1.x; y/ WD f z 2 FT j there exists a sequence .xn/n2N satisfying the
assertions (i) and (ii) and convergent to z), then the strong set retraction r is
any selection of T1 which satisfies the condition (ii) in Definition 9.

For the weakly Picard operator theory for multi-valued operators and related
topics (data dependence, Ulam–Hyers stability, iterative algorithms) see [21, 26, 27,
29, 30, 36, 39, 44], etc. For retraction theory in the multi-valued operators context,
see also [8].
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5. Berinde, V., Măruşter, Ş., Rus, I.A.: An abstract point of view on iterative approximation of

fixed points of nonself operators. J. Nonlinear Convex Anal. 15, 851–865 (2014)
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An Adaptive Finite Element Method for Solving
a Free Boundary Problem with Periodic
Boundary Conditions in Lubrication Theory

O. Chau, D. Goeleven, and R. Oujja

Abstract A duality approximation method combined with an adaptive finite
element method is applied to solve a free boundary problem with periodic boundary
conditions in lubrication theory.

Keywords Lubrication theory • Free boundary problem • Periodic conditions •
Adaptive finite element method

Introduction

We consider a journal bearing consisting of two circular cylinders—the shaft and
the bush—that are in relative motion with a constant angular velocity ! and have
parallel axis (Fig. 1).

The narrow gap between the cylinders is occupied by a lubricant and the
pressure p of this lubricant satisfies the Reynolds equation. Let r; �; x be cylindrical
coordinates with origin in the bottom of the cylinder and � measured from the line
of maximum clearance of the centers. As a consequence of the thin-film hypothesis,
the pressure depends on the angular coordinate � and the height of the cylinders x
and does not depend on the normal coordinate r. Therefore, the mathematical model
can be posed on the set ˝ D Œ0; 2�� 
 Œ0; 1� which represents the lateral area of the
shaft.

Let rs be the radius of the shaft and rb the radius of the bush, e the distance
between the axes of the cylinders, and � D e

rs�rb
; 0 � � < 1 the eccentricity ratio of

the bearing. The thickness of the thin fluid film is represented by the function

h.�/ D .rs � rb/.1 � � cos.� � ˛// (1)
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Fig. 1 Schematic representation of the bearing

Fig. 2 A cross of the bearing

where ˛ is the angle of vector
��!
OO0 (

��!
OO0 D .e cos˛; e sin ˛/) (Fig. 2).

When considering the non-coincidence of the axes of the cylinders (i.e., � > 0),
overpressure areas and low pressure areas are produced, and it results in the
appearance of bubbles phenomenon known as cavitation. Mathematical models
of the phenomenon of cavitation consider that the lubricant pressure satisfies the
Reynolds equation in the lubricated area ˝C

� 1

rb

@

@�

� h3

12�rb

@p

@�

� � @

@x

� h3

12�

@p

@x

� D � rb!

2

dh

d�

where � is a constant viscosity coefficient, while in the rest ˝0 (cavitated zone) the

pressure vanishes. By taking rb D 1, h WD h
rs�rb and p WD .rs�rb/

2p
6�!

we can write the
Reynolds equation in the dimensionless form

@

@�

�
h3
@p

@�

�C @

@x

�
h3
@p

@x

� D dh

d�

where h.�/ D 1� � cos.� � ˛/.
The problem to solve is written in the following form (Fig. 3):
Find the pressure p.X/ (X D .�; x/) and the regions˝C and˝0 such

@

@�

�
h3
@p

@�

�C @

@x

�
h3
@p

@x

� D dh

d�
; p > 0 in ˝C: (2)
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Fig. 3 The domain ˝

p D 0 in ˝0: (3)

p D @p

@n
D 0 on ˙ D ˝0 \˝C: (4)

p.�; 0/ D p.�; 1/ D 0; 0 � � � 2�: (5)

p.2�; x// D p.0; x/; 0 � x � 1: (6)

The free boundary˙ is an additional unknown of the problem.
Equations (2)–(4) may be summarized as

p � 0 and p.div.h3rp/� dh

d�
/ D 0 in ˝:

Let us consider the set

K D f' 2 H1.˝/; 2� � periodic '.x; 0/ D '.x; 1/ D 0 W ' � 0g:

The above problem can be formulated as a variational inequality
find p 2 K such that

Z

˝

h3rp � r.' � p/ dX �
Z

˝

h
@

@�
.' � p/ dX 8' 2 K: (7)

Existence and uniqueness results of (7) are known classical results. There exist a
unique p.�; x/ satisfying (7) and a no empty cavity area ˝0 ¤ ; (see [6, 7]).



110 O. Chau et al.

Approximation Method

Numerical approach of inequality (7) can be placed in the frame of some approxi-
mation methods for variational inequalities based on classical results for monotone
operators given in [3, 8]. For this purpose we give first the following formulation of
this inequality,

find p 2 V , such that

Z

˝

h3rp:r.' � p/ dX C IK.'/ � IK.p/ �
Z

˝

h
@

@�
.' � p/ dX;8' 2 V (8)

where

V D f' 2 H1.˝/; '.:; 0/ D '.:; 1/ D 0; ' is 2�- periodicg

and IK is the indicatrix function of the non-empty closed and convex set K.
From the definition of the sub-differential @IK we have

ˇ 2 @IK.p/ () IK.'/ � IK.p/ �< ˇ; ' � p >;8' 2 V:

It follows then from (8) that

ˇ D Div.h3rp/� @h

@�
2 @IK.p/; (9)

and we obtain this equivalent formulation of the problem,
find p 2 V such that

Z

˝

h3rp:r' dX C
Z

˝

ˇ' dX D �
Z

˝

dh

d�
' dX;8' 2 V; (10)

ˇ 2 @IK.p/: (11)

Now following [2] we introduce the multiplier � D ˇ � !p with ! � 0 and we
get the formulation,

find p 2 V such that

Z

˝

h3rp:r' dX C !

Z

˝

p' dX D �
Z

˝

�' dX �
Z

˝

@h

@�
' dX;8' 2 V (12)

� 2 @IK.p/ � !p: (13)

Let 	 > 0, suppose that 	! < 1 and set T D @IK � !I. We have

I C 	T D .1 � 	!/I C 	@IK : (14)
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It can be proved that for all f 2 V there exists a unique y 2 V such that

f 2 .I C 	T/.y/:

The single-valued map

JT
	 D .I C 	T/�1

is the resolvent operator of T. And the map

T	 D I � JT
	

	

is the Moreau–Yosida approximation of T. The map T	 is single-valued and 1
	

-
Lipschitz continuous. Moreover it satisfies the following property:

Lemma 1. For all y and u in V, we have the equivalence property,

u 2 T.y/ () u D T	.y C 	u/: (15)

Proof. Let u D T	.x/. Then

u D x � JT
	 .x/

	
() 	u D x � JT

	 .x/

() JT
	 .x/ D x � 	u

() x 2 .I C 	T/.x � 	u/ D x � 	u C 	T.x � 	u/

() 	u 2 	T.x � 	u/

() u 2 T.x � 	u/

and by taking x � 	u D y we get

u 2 T.y/ () u D T	.y C 	u/

ut
Taking into account (15) in (12) and (13) we get the final formulation,

find p 2 V such that

Z

˝

h3rp:r' dX C !

Z

˝

p' dX D �
Z

˝

�' dX �
Z

˝

dh

d�
' dX;8' 2 V (16)

� D T	.p C 	�/: (17)
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Iterative Algorithm

To compute the solution .p; �/ of (16) and (17) we apply the following iterative
method:

(0) start with some arbitrary value of the multiplier �0.
(1) for �j known, compute pj solution to

Z

˝

h3rpj:r' dX C!

Z

˝

pj' dX D �
Z

˝

�j' dX �
Z

˝

dh

d�
' dX;8' 2 V (18)

(2) update multiplier �j as

�jC1 D T	.pj C 	�j/: (19)

(3) Go to (1) until stop criterion is reached.

Theorem 1. For a parameter 	 � 1

2!
we have the convergence

lim
j!1 kpj � pk D 0:

Proof. The mapping T	 is
1

	
-Lipschitz and thus

k� � �jC1k2 D kT	.p C 	�/� T	.pj C 	�j/k2

� 1

	2
k.p C 	�/� .pj C 	�j/k2

D 1

	2
k.p � pj/C 	.� � �j/k2

D 1

	2
kp � pjk2 C 2

	
.p � pj; � � �j/C k� � �jk2:

Therefore

k� � �jk2 � k� � �jC1k2 � � 1

	2
kp � pjk2 � 2

	
.p � pj; � � �j/ (20)

From (12) and (18) we have

Z

˝

h3r.p � pj/:r' dX C !

Z

˝

.p � pj/' dX D �
Z

˝

.� � �j/' dX; 8' 2 V:

And by taking ' D p � pj we obtain
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!kp � pjk2 �
Z

˝

h3jr.p � pj/j2 dX C !

Z

˝

.p � pj/
2 dX

D �
Z

˝

.� � �j/.p � pj/ dX:

Now by substituting this inequality in (20) we obtain

k� � �jk2 � k� � �jC1k2 � � 1

	2
kp � pjk2 C 2!

	
kp � pjk2

D 1

	
.2! � 1

	
/kp � pjk2:

And if 	 � 1

2!
, we get

k� � �jk2 � k� � �jC1k2 � 0:

The sequence .k� � �jk2/j�0 is then decreasing and positive, therefore

lim
j!1 k�j � �k2 D 0

and finally

lim
j!1 kpj � pk2 D 0

ut

An Adaptive Finite Element Method

Our purpose in this section is to apply a P1-Galerkin finite element method to
discretize equation (18). Let T be a regular triangulation of the domain into
triangles and h an abstract discretization parameter. The discretization method
consists in the construction of a finite-dimensional space

Vh WD f 2 C .˝/\ V W 8T 2 T  jT is affineg:
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The discrete solution ph 2 Vh is defined as

Z

˝

h3rph:r' dX C !

Z

˝

ph' dX D �
Z

˝

�j' dX �
Z

˝

dh

d�
' dX;8' 2 Vh (21)

As mentioned before, high pressure variations occur in the bearing and cause the
appearance of cavitated areas. The accuracy of discrete solution ph depends then on
the triangulationT in the sense that singularities and high variations of ph have to be
resolved by the triangulation. For this purpose we apply an adaptive method where
triangulation T is improved automatically by use of a mesh-refinement where high
variations occur. Moreover, the solution ph can become smoother in some area of
domain when iteration proceeds; we then remove certain elements from T and mesh
coarsening is done.

More precisely to get a refined triangulation from the current triangulation,
we first solve the equation to get the solution on the current triangulation. The
error is estimated using the solution, and used to mark a set of triangles that are
to be refined or coarsened. Triangles are refined or coarsened in such a way to
keep regularity of the triangulations. This method is based on the following error
estimator introduced by Babuska and Rheinboldt [1] and used in most works on
convergence and optimality.

Theorem 3. Given a triangulation T and let be ph the solution of the discrete
problem; there exists a constant C > 0 and an error estimator �h > 0 depending on
ph such that

kpj � phkH1.˝/ � C�h:

Proof. Let ' 2 V . We have with arbitrary 'h 2 Vh

Z

˝

h3r.pj � ph/:r' dX C !

Z

˝

.pj � ph/' dX D
Z

˝

h3r.pj � ph/:r.' � 'h/ dX C !

Z

˝

.pj � ph/.' � 'h/ dX

D �
Z

˝

�j.' � 'h/ dX �
Z

˝

dh

d�
.' � 'h/ dX

�
Z

˝

h3rph:r.' � 'h/ dX � !

Z

˝

ph.' � 'h/ dX

D
X

T2T

h
�
Z

T
�j.' � 'h/ dX �

Z

T

dh

d�
.' � 'h/ dX C

Z

T
Div.h3rph/.' � 'h/ dX

�!
Z

T
ph.' � 'h/ dX C 1

2

Z

@Tn@˝
Œ
@.h3ph/

@n
�.' � 'h/dS

i
:
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D
X

T2T

h Z

T

�
Div.h3rph/ � !ph � �j � dh

d�

�
.' � 'h/ dX

C1

2

Z

@Tn@˝

h@.h3ph/

@n

i
.' � 'h/dS

i
:

We obtain two kinds of residuals, Div.h3rph/�!ph��j� dh
d� is a point-wise residual

and
h
@.h3ph/

@n

i
is a measure of regularity of the discrete solution.

By applying the Cauchy–Schwarz inequality we get

Z

˝

h3r.pj � ph/:r' dX C !

Z

˝

.pj � ph/' dX �
X

T2T

h
kDiv.h3rph/�!ph��j� @h

@�
kTk'�'hkTCk1

2

h@.h3ph/

@n

i
k@T� k'�'hk@T�

i

where @T� D @T n @˝ . We now chose 'h D Ch' with Clement interpolation
operator Ch W V ! Vh (see [4]) which verifies the interpolation estimate,

k' � Ch'kT C d1=2T k' � Ch'k@T � CdTkr'k˝T

with ˝T denoting the set of neighboring elements of T and dT its diameter.
It then follows
Z

˝

h3r.pj � ph/:r'dX C !

Z

˝

.pj � ph/'dX

�
X

T2T
C
h
dTkDiv.h3rph/ � !ph � �j � @h

@�
kT C d1=2T

2
k
h@.h3ph/

@n

i
k@T�

i
kr'k˝T

�
X

T2T
2C
h
d2TkDiv.h3rph/�!ph��j� @h

@�
k2T C dT

4
k
h@.h3ph/

@n

i
k2@T�

i1=2kr'k˝T

� C
� X

T2T
�2T

�1=2� X

T2T
kr'k2˝T

�1=2 � C�hkr'k:

where �2T D
h
4d2TkDiv.h3rph/�!ph � �j � @h

@�
k2T C dTk

h@.h3ph/

@n

i
k2@T�

i
. We have

used in the last step that the number of neighbors of any triangle T is bounded due
to the uniform shape-regularity of the meshes. Taking ' D pj � ph we obtain the
global upper bounded

min..1 � �/3; !/kpj � phkH1.˝/ � C�h;

with the residual-based error estimator �h D .
X

T2T
�2T/

1=2 ut
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Numerical Results

For numerical simulations we take ! D 0:1 and 	 D 5 so approximation
condition (14) and theorem 2 convergence hypothesis are satisfied. We start
algorithm (18) and (19) with �0 D 0 and take triangulation given in Fig. 4 as initial
mesh for the adaptive finite element method in the first step.

At each step jC1 we take the final triangulationTj obtained in the step j as initial
triangulation for the adaptive method.

Given a triangulation T , if the error estimator �h < ı, where ı is a fixed
tolerance, the corresponding solution ph is accepted and the adaptive method
stopped. Otherwise, we apply the Dorfler criterion [5] to mark elements T 2 T
for refinement. This criterion seeks to determine the minimal set M � T such that

�.
X

T2T
�2T/ �

X

T2M
�2T ;

for some parameter � 2�0; 1Œ. We fixed � D 0:5.

For coarsening we make elements T 2 T such that �2T < �
ı2

N
I where � 2�0; 1Œ,

ı is a fixed tolerance and NT the number of nodes of triangulation T . We take
here � D ı D 1. A stop criterion ε is fixed also for the algorithm (18) and (19).
We summarize the method in the diagram shown below, and we give numerical
simulations for ˛ D � and ˛ D 0 in Figs. 5 and 6 respectively.
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Fig. 5 Pressure ph, the final mesh Th and the pressure norm kpjk evolution, .1 � j � 20/, for
˛ D �
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Fig. 6 Pressure ph, the final mesh Th and the pressure norm kpjk evolution kpjk, .1 � j � 20/,
for ˛ D 0
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Evolution Solutions of Equilibrium
Problems: A Computational Approach

Monica-Gabriela Cojocaru and Scott Greenhalgh

Abstract This paper proposes a computational method to describe evolution
solutions of known classes of time-dependent equilibrium problems (such as
time-dependent traffic network, market equilibrium or oligopoly problems, and
dynamic noncooperative games). Equilibrium solutions for these classes have been
studied extensively from both a theoretical (regularity, stability behaviour) and a
computational point of view.

In this paper we highlight a method to further study the solution set of such
problems from a dynamical systems perspective, namely we study their behaviour
when they are not in an (market, traffic, financial, etc.) equilibrium state. To this end,
we define what is meant by an evolution solution for a time-dependent equilibrium
problem and we introduce a computational method for tracking and visualizing
evolution solutions using a projected dynamical system defined on a carefully
chosen L2-space. We strengthen our results with various examples.

Keywords Projected dynamics • Time-dependent equilibrium problems •
Dynamic adjustment • Applications

Introduction

Equilibrium problems have been studied over four decades and their formulation
has become fairly complex. Most papers in the literature to date are concerned with
the equilibrium states of these problems, where equilibrium is defined depending on
the context of the problem: Wardrop [5, 15, 16, 27], Nash-Cournot [10, 11, 21, 27],
market [4, 20, 27], physical/mathematical equilibrium [1, 2, 23, 25] and many others.
The classes of equilibrium problems have been shown to be equivalent to different
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types of variational inequality problems both finite- and infinite-dimensional, as is
the case in all cited papers above. Variational inequalities are well-studied mathe-
matical constructs that allow substantial qualitative studies of equilibrium states of
various problems. In their finite-dimensional form, they provide a (collection of)
solution(s) to an equilibrium problem.

Time-dependent equilibrium problems (TDEP) (see, for instance, [1, 16, 19])
are those whose data depend on a parameter, usually taken to mean physical
time. For instance, in a traffic network problem, the flows on routes will be time-
dependent, and thus the demands on those routes can be thought of varying with
time. In a game setting (see [10, 11]), strategies, as well as players’ utilities or
payoffs can be time-dependent. Infinite-dimensional variational inequalities provide
a mathematical framework for studying equilibrium states of TDEP which are
described as a succession of equilibrium states over a time interval of interest,
generically denoted by t 2 Œ0;T�.

Much studies have been devoted to identifying and computing—theoretically
and algorithmically—the equilibrium states of such problems (see for instance
[18, 22] and the references therein). We argue here that the continual drive for
finding equilibria is an incomplete venue of investigation in the class of TDEP since
such privileged states are not necessarily observed. For instance, in a classic traffic
network equilibrium problem the non-equilibrium states are given by flow patterns
on the network that do not satisfy the Wardrop-type conditions. To complete the
investigation of TDEP, we propose to study their evolving states.

To this end, we associate to a TDEP a nonsmooth (projected) differential equation
on a subset of the space L2.Œ0;T�;Rk/ whose stationary solutions also describe
market equilibria, traffic equilibria, Nash/Cournot equilibria, etc. [8–11, 14].
Consequently, any non-stationary solution of the projected equation represents
a time-dependent, evolving state of the underlying problem.

In this paper we show how non-equilibrium states of a TDEP can be computed
with the help of the associated projected differential equation, and with the help of a
selection of initial conditions for this equation. While it is known that, in theory,
the projected equation on a specific type of Lebesgue integrable function space
describes the dynamic evolution of an initial state of a problem towards later states
at t > 0 (see [8, 12] where this was first introduced as double layer dynamics), there
is no formalized approach to compute and visualize these evolutions in the literature
to date.

The organization of this paper is as follows: We start by recalling several
important concepts in section “PrDE.” In section “TDEP,” we briefly review
(TDEPs) and their relation to projected differential equations. Section “Evolution
Solutions of TDEP” outlines our computational method and section “Examples and
Discussion” shows the method applied to several types of TDEP. We close with a
few concluding remarks.
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Preliminaries

PrDE

We start by recalling several concepts which are related to monotonicity. Let X be a
Hilbert space of arbitrary dimension, let K � X be a non-empty, closed and convex
set and let F W K ! X a mapping.

Definition 1. The problem of finding a point x� 2 K so that

hF.x�/; y � x�i � 0; 8y 2 K

is called a variational inequality problem. The set of points x� 2 K satisfying
the inequality above is the solution set of the variational inequality, denoted by
SOLVI.F;K/.

Since their introduction in the 1960s [6, 26], VI problems have been extensively
used in the study of Wardrop, Nash, Walras, Cournot and mathematical physics
equilibrium problems. A classic result on the existence of solutions x� as in
Definition 1 is that of a compact set K and a continuous mapping F [25].

Definition 2. The tangent cone to a point x 2 K is defined to be

TK.x/ D
[

ı>0

1

ı
.K � x/:

In general a VI problem can be associated with the following differential equation
(see [1, 12, 17, 27]):

Definition 3. Consider the VI problem of Definition 1. The discontinuous ordinary
differential equation,

dx.�/

d�
D PTK.x.�//.�F.x.�/// WD ˘K.x.�/;�F.x.�///; x.0/ 2 K; (1)

where PTK.z/; z 2 X is the closest element mapping from X to the set TK.z/ 2 X, is
called a projected differential equation (PrDE).

It is known that Eq. (1) has unique solutions x 2 AC.RC;K/ for each initial point
x.0/ 2 K [1, 12, 13, 17]. Moreover, this equation has the property (see [1, 12, 13, 17]
for proofs):

x� 2 SOL.VI.F;K// , ˘K.x
�;�F.x�// D 0;

That is, a solution of the VI problem is a stationary (or equilibrium) point of the
PrDE and vice versa.
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TDEP

A time-dependent equilibrium problem is an equilibrium problem whose data
(variables, constraints) depend on time, t, taken to mean physical time. A state
variable of such a problem is typically denoted by x 2 K, where K is traditionally
thought of as a subset of X WD Lp.Œ0;T�;Rq/. As t varies over Œ0;T�, the data of the
equilibrium problem vary with t and thus a state x is taken to belong to a constraint
(feasible) set K given by

K D
n
x 2 Lp.Œ0;T�;Rq/ j 	.t/ � x.t/ � �.t/; A.t/x.t/ D .t/; for a:a: t 2 Œ0;T�

o
;

(2)
where 	;� 2 Lp.Œ0;T�;Rq/, A 2 Lp.Œ0;T�;Rl�q/ and  2 Lp.Œ0;T�;Rl/. Such a set
K is closed, convex and bounded in X, provided that good conditions on 	;�;A and
 are considered.

There is a wide array of TDEPs (in the sense defined in this section) whose
constraint sets amount to a subset of Lp.Œ0;T�;Rq/ of the form (2) (models of
time-dependent traffic network problems, spatial equilibrium problems, financial
equilibrium problems, as well as oligopolies and dynamic games: [4, 10, 11, 16, 21]
and the references therein).

It is also known that steady states x� 2 K of TDEP can be found by formulating
the problem as an evolutionary variational inequality (EVI) (see [3, 16, 19]):

find x� 2 K such that
Z T

0

hF.t; x�.t//; v.t/ � x�.t/i � 0; 8v 2 K; (3)

where F W Œ0;T� 
 K ! .Lp.Œ0;T�;Rq//� is taken to be Lipschitz continuous
with respect to the state variable belonging to K; or equivalently as the variational
problem:

for a:a: t 2 Œ0;T�;find x�.t/2K.t/ such that hF.t; x�.t//; v.t/ � x�.t/i � 0;
8v.t/ 2 K.t/: (4)

The questions of existence, uniqueness and regularity of solutions to problems (3)
and (4) are studied in detail in several works (see, for instance, [3, 4, 16, 19] and the
references therein).

As in the case of a generic VI problem (see Definition 1 of section “Preliminar-
ies”), we can associate a projected differential equation with an EVI problem (3) for
p D 2:

dx.�; �/
d�

D PTK.x.�;�//.�F.x.�; �///; x.�; 0/ 2 K � L2.Œ0;T�;Rq/; (5)

where a solution of this equation is given by absolutely continuous functions
Œ0;1/ 3 � 7! x.�; �/ 2 K (see []) with K of the form (2).
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In [14] the association between a PrDE and an EVI as above is called double lay-
ered dynamics (DLD). Results on existence, uniqueness and stability of solutions
to DLD (5) may be found in [8, 9, 14].

Evolution Solutions of TDEP

In this section we present a new framework for modeling evolution solutions of
TDEPs. Unless otherwise mentioned, we consider a TDEP modeled on a constraint
set as in (2) (with a possible modification as in Corollary 1 below).

In general, in the class of TDEP, much use is being made of existence results that
ensure uniqueness of equilibrium states at almost all time moments t 2 Œ0;T�. It
is easy to see why, since most TDEP require a computational approach for finding
approximates of their equilibrium states. In order to ensure that point-wise computed
equilibria [typically using a formulation based on (4)] are meaningful to interpolate,
uniqueness of point-wise states is required (see, for instance, [3, 14, 16, 27], etc.).
Consequently, the current literature is concerned with imposing monotonicity type
or pseudo-monotonicity conditions (strict or strong) specifically to ensure that a
TDEP has a unique curve x� of equilibrium states.

Given that we are not computing equilibrium states of TDEP we have no need
for such restrictions, and in fact we highlight (as we did in previous works in related
contexts [7, 24]) that dropping monotonicity-type conditions makes the dynamics
of a problem much richer, but not complex enough to be intractable. Using the
computational method which we present below in section “Computing Evolution
Trajectories” completely removes the need to impose uniqueness of point-wise
steady states and opens up the possibilities of finding perhaps several curves of
steady states (i.e., non-unique points in the solution set of an EVI problem), periodic
behaviour (evolution trapped in a periodic cycle, which has no counterpart in any
VI or EVI model), or simply finding an estimate of the evolution of a particular
initial state of TDEP into a later one. This is a completely novel approach as are the
examples that we present to illustrate the method.

Evolution Solutions of TDEP

Definition 4. An evolution solution of a TDEP is x.�; �/ 2 AC.Œ0;1/;K/ such that
dx.�;�/

d� D PTK.x.�;�//.�F.x.�; �/// ¤ 0 for at least some time interval Œ0; ��; � > 0.

We remark that given an evolution solution x as in Definition 4, for each
arbitrarily fixed � 2 Œ0;1�, the point x.�; �/ 2 K. Thus, for each such � , the mapping
t 7! x.t; �/ describes the evolution of states for t 2 Œ0;T� at � . We note here that
Eq. (5) can be solved, as long as an initial distribution of flows x.�; 0/ is given.
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However, in applications, identifying an initial distribution of states of the
problem over the interval Œ0;T� cannot be realistically expected. Thus we show next
that the amount of initial information regarding states of a modelled equilibrium
problem can be significantly small, without imposing an obstacle to simulating and
testing its evolution from these states into further ones.

Proposition 1. Assuming the following properties on the functions 	;�; A; 
[introduced in (2)] are satisfied:

1. 	 is convex and � is concave in t;
2. A is a constant coefficient matrix,  is linear in t,

then there exists an initial distribution of states x.t; 0/ 2 K extrapolated from a finite
number of discrete observation points fx.0; 0/; x.t1; 0/; : : : ; x.tk D T; 0/g over the
interval of interest Œ0;T� given by

x.t; 0/ WD

8
ˆ̂
<̂

ˆ̂
:̂

t1�t
t1

x.0; 0/C .1 � t1�t
t1
/x.t1; 0/; t 2 Œ0; t1�

t2�t
t2�t1

x.t1; 0/C .1 � t2�t
t2�t1

/x.t2; 0/; t 2 .t1; t2�
: : : : : : ::

T�t
T�tk�1

x.tk�1; 0/C .1 � T�t
T�tk�1

/x.T; 0/; t 2 .tk�1;T�

with the property that the mapping Œ0;T� 3 t
x.�;0/7! x.t; 0/ belongs to K.

Proof. It is a quick check to see that by denoting �i WD ti�t
tiC1�ti

2 Œ0; 1�, for
any t 2 .ti; tiC1�, the function x.t; 0/ is a convex combination of the end values
x.ti; 0/; x.tiC1; 0/.

Let us now fix t 2 Œ0;T� arbitrarily. Without loss of generality, we can consider
t 2 .ti; tiC1� for some i 2 f0; : : : ; kg. We can now check that

x.t; 0/ 2 K.t/ WD fw 2 R
q j 	.t/ � w � �.t/;A.t/w D .t/g;

using the following facts: x.ti; 0/ 2 K.ti/, x.tiC1; 0/ 2 K.tiC1/ and 	;�;A;  are as
in the hypothesis.

We thus have

	.ti/ � x.ti; 0/ � �.ti/; A.ti/x.ti; 0/ D .ti/ and

	.tiC1/ � x.tiC1; 0/ � �.tiC1/; A.tiC1/x.tiC1; 0/ D .tiC1/

Since 	;� are, respectively, convex and concave in t, then

	.�ix.ti; 0/C .1 � �i/x.tiC1; 0// � x.t; 0/ � �.�ix.ti; 0/C .1 � �i/x.tiC1; 0//;

which gives, given the expression of �i above, the following:
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	.t/ � x.t; 0/ � �.t/:

Similarly, assuming A.t/ D constant for any t, then A.ti/ D A.tiC1/ DW A and so

�iAx.ti; 0/C .1 � �i/Ax.tiC1; 0/ D �i.ti/C .1 � �i/.tiC1/ H) Ax.t; 0/ D .t/;

by virtue of required linearity of .

Corollary 1.

1) Assuming the hypothesis of Proposition 1, but considering problems defined on
a set K where equality constraints are replaced with inequality constraints (i.e.,
A.t/x.t/ � .t/) then the conclusion of Proposition 1 holds for functions  which
are concave on Œ0;T�.

2) We can relax the linearity requirement of  in case of equality constraint by
requiring a piecewise linear function, possibly with discontinuities at finite
number of points.

Lats but not least, it seems that requiring some form of linearity on the right-
hand side of constraint of K might be a big restriction on the problem. However,
in practice we might not have a priori knowledge of the shape or properties of
this function, so, when it comes to estimating an initial condition x.t; 0/ from a
number of discrete points, we may benefit from using the information on discrete
values of .t/ at the observation times. Then we can also estimate a shape of .t/
consistent with the values of x.t; 0/. We illustrate this point in Examples 1, 3 in
section “Examples and Discussion.”

Computing Evolution Trajectories

We present next our computational approach for tracking the evolution of a TDEP,
starting from an initial curve x.t; 0/, given, for instance, by a procedure highlighted
in Proposition 1.

Assumptions.

1) We consider the problem (5) where F is Lipschitz in x with constant b, for all
t 2 Œ0;T�.

2) Assume there exists t 7! x.t; 0/ a function in K, which is considered the initial
condition of the problem (5).

3) Let � W f0 � t1 � t2 � : : : � Tg a division of Œ0;T�.

Step 1: Evaluate x.t; 0/ at points tk 2 �; Set the evolution time step for the
projected equation to be � � l

m , where l WD L
jjF.x0.�;0//jjL2CbL , for a given L > 0,

the radius of a ball B.x.�; 0/;L/ 2 L2.Œ0;T�;Rq/, and a given m to represent
the number of steps covering the interval Œ0; l�.
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Step 2: For each tk 2 �, generate at every time step ı WD n� , 1 < n � m,
n 2 ZC a new set of points (of a new curve):

x.tk; ı/ WD PK.tk/.x.tk; ı � �/ � �F.x.tk; ı � �//:

Step 3(optional): Check if two consecutive sets of x values are close enough
for a given tolerance TOL, i.e., check

jjx.�; ı/� x.�; ı � �/jj1 WD max
k

fjx.tk; ı/� x.tk; ı � �/jg � TOL (6)

Step 4: If inequality (6) holds true, then STOP. Otherwise, go back to Step 2.

Remark 1.

1. The step size � is estimated according to the constructive proof from [12],
adapted to the present context;

2. The computation of the projection of points in Step 2 can be implemented in
multiple ways, as is the minimization of distance between the points x.tk; ı��/�
�F.x.tk; ı � �/ and the set K.tk/; the modeler has a wide choice for computing
these points.

3. Generally, Step 3 is not necessary if all is needed is to track evolution for a finite
number of steps � .

But Step 3 may be of interest in some cases, since it detects potential
equilibrium states arising from evolution from an initial condition in finite � time
(see conditions and examples of finite time evolution in [8, 9, 14]).

In this paper, we use it to check the viability of the proposed computational
method: we check if the method above is able to find equilibria of TDEP, in
known examples, where these equilibria are point-wise unique, global, finite-
time attractors (in �), thus they should be detected from any initial conditions
of (5). When Step 3 is implemented we set our TOL D 10�5.

Examples and Discussion

Example 1. We first solve a test TDEP problem, with known dynamic behaviour, to
show that the proposed method finds the known equilibrium solutions of this TDEP.
Since the TDEP problem satisfies very strong conditions, the dynamic behaviour
of its states is relatively simple, namely, we expect all initial states x.t; 0/ 2 K to
evolve, over a finite amount of time steps � , to the unique equilibrium curve x� 2 K.

This example is presented in detail in [14]. Consider a transportation network
with one OD pair, with two links; the flow on links is, respectively, x1.t/; x2.t/,
t 2 Œ120� so that

K D fx 2 L2.Œ0; 120�/;R2/ j .0; 0/ � x.t/ � .100; 100/; x1.t/C x2.t/ D .t/ a:e:g
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and the cost on the links is F D .2x1.t/Cx2.t/C1; x1.t/Cx2.t/C2/. It is shown that
F is strongly monotone with degree ˛ D 1 and as such the EVI model (4) of this
network admits a unique, globally, finite-time attracting curve of equilibria given by
x�.t/ D .1; .t/� 1/, with  a measurable function.

With this in mind, we apply our method above noticing that 	.t/ D .0; 0/,�.t/ D
.100; 100/. We assume the following observation points:

.x1.t/; x2.t// D

8
ˆ̂
<

ˆ̂
:

.50; 20/; t D 0

.60; 30/; t D 20

.35; 40/; t D 50

.30; 20/; t D 70

We assume now that the initial condition for problem (5) in this case is the piecewise
continuous function:

.x1.t/; x2.t// D

8
ˆ̂<

ˆ̂
:

.50; 20/; t 2 Œ0; 20�
.60; 30/; t 2 .20; 50�
.35; 40/; t 2 .50; 70�
.30; 20/; t 2 .70; 120�

Our Proposition 1 requires a linear function .t/, or at least a piecewise one. We
thus simply employ .t; 0/ D x1.t; 0/ C x2.t; 0/ to get values of f70; 90; 75; 50g
on the respective time subintervals. Now we note that �F is Lipschitz with constant
5Cp

3, and that jj�F.x.t; 0//jjL2 	 2882, thus taking L D 200we obtain l 	 0:047.
Taking a number m D 10 of � steps to cover Œ0; l�, we get � 	 0:0047. Finally, we
sampled the time interval Œ0; 120� with 13 points.

From the previous dynamic analysis of this problem in [14] we know that the
equilibrium curve will be reached in a finite number n of steps � . Our simulations
below give n 	 200 steps for the initial curves to reach the known equilibrium ones
(Fig. 1):

Example 2. A related example to this one was first introduced in [24]. Here we
adapt it to our context. Let us assume that a TDEP is given in a form of an EVI (4)
where F.t; x.t// WD .�x1.t/C ax2.t/;�ax1.t/ � x2.t//, where a 2 Œ0; 1� and

K WD fu 2 L2.Œ0; 10�;R2/ j �1 � xi.t/ � 1; a:a: t 2 Œ0; 10�; i D f1; 2gg:

Here 	;� are constant functions. The matrix A.t/ is the 0-matrix, so we do not have
any equality constraints.

As stated above, we are interested in TDEP problems that may give rise to EVI
problems whose F does not satisfy any monotonicity-type conditions. We can check
right away that F above is not monotone, for any value of a (we get that hF.x1; x2/�
F.u; v/; .x1�u; x2�v/i = �.x1�u/2� .x2�v/2) and so all previous analyses based
on variational inequalities theory are not of use here.

Let us now look at this TDEP as modelled by the projected equation (5). We
have that �F.x1.t/; x2.t// WD .x1.t/ � ax2.t/; ax1.t/ C x2.t// is linear in x, thus
it is Lipschitz continuous; for instance, b WD p

1C a2 > 0 is an L-constant for
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Fig. 1 We show here the evolution of the flows on this network, from initial piecewise values
(blue curve) to the end equilibrium curve (yellow). Left panel represents x1.t; �/ and right panel
represents x2.t; �/ over 200 � steps. We see that x�

1 .t/ D 1 constant, as predicted (left) where as
x�

2 .t/ D .t/� 1

F. Assume now that we have a few observation data points for the states x1; x2 at
t 2 f0; 2; 4; 5; 7g as

.x1.t/; x2.t// D

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

.0:5; 0:5/; t D 0

.0:8; 0/; t D 2

.0:9;�0:2/; t D 4

.0:4; 0:3/; t D 5

.�0:1; 0:3/; t D 7

These points indicate that we can consider as initial value for Eq. (5) the curve x.t; 0/
given by

.x1.t; 0/; x2.t; 0// D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.0:5C 0:15t; 0:5 � 0:25t/; t 2 Œ0; 2�
.0:7C 0:05t; 0:2� 0:1t/; t 2 .2; 4�
.2:9 � 0:5t;�2:2C 0:5t/; t 2 .4; 5�
.1:65� 0:25t; 1:8� 0:3t/; t 2 .5; 7�

.�0:1; 0:3/; t 2 .7; 10�

This gives jj � F.x.t; 0//jjL2 	 5:43 for a D 1 and 8:589 for a D 2.
We choose L D 1 and thus l D L

jj�F.x.t;0//jjL2CbL D 1

4:75Cp
1Ca2

. For values of
a D 1, respectively a D 2 we get

l D 0:1461; respectively l D 0:1304 H)

for a given m D 10 we have



Evolution Solutions of Equilibrium Problems: A Computational Approach 131

� D 0:0146; respectively � D 0:013:

We sampled the time interval Œ0; 10� with 21 points.
In Figs. 2 and 3 we present our simulations for a D 1; respectively, a D 2.

Comparing the two rows of panels in Fig. 2, we see vastly different behaviour
being displayed by the two curves x1.t; 0/ and x2.t; 0/ as � increases. All four
simulations have been run for 100 � steps. Since we are unclear as to what type
of dynamic behaviour we might expect, and exploiting the fact that this problem
is 2-dimensional, we plotted in Fig. 3 the phase portraits of the evolutions, i.e. we
eliminated t and plotted x1.�; �/ vs. x2.�; �/.

We note a much clearer picture emerging: when a D 1, the initial phase portrait
at � D 0 represents a spiral curve ending at .�1; 1/ (Fig. 3, left panel, blue curve,
filled in dots); it evolves into a different spiral curve ending at .�1;�1/ (Fig. 3, left
panel, brown curve, marked with *).

However, for a D 2, we seem to evolve the initial curve into a periodic curve
inside and around the boundary of Œ�1; 1� (Fig. 3, right panel). This indicates that
there will be periodic behaviour arising in the TDEP, specifically, that there exists
�1 > �2 > 0 so that a curve x.�; �2/ D x.�; �1/. So states in the TDEP may reoccur.

Example 3. Let us now assume that we observe at discrete moments a traffic
network over a time interval Œ0; 90min]. We consider that the user traffic equilibrium
states are generically described as in [16], between 1 origin (o1) and 3 destinations
(d1; d2; d3). We assume the flows are functions of time x1.t/, x2.t/, x3.t/, t 2
Œ0; 90min] (corresponding to pairs .o1; d1, o1; d2, respectively, o1; d3). It is known
that there exist demand functions .t/ and  .t/ on certain combination of routes,
such as x1.t/ C x2.t/ C x3.t/ D .t/ and x1.t/ C 1=2x2.t/ D  .t/. Finally, we
reasonably assume that there is a lower and upper bound for flows on each route,
thus 0 � xi.t/ � M for each i 2 f1; 2; 3g.

We assume known that the cost of traveling on the three routes is given by the
function F W K ! L2.Œ0; 90�;R3/, given by

F.x/ D .3x1 � x2 C x3;
3

2
x1 � 4x2 C x3; 2x1 � 7x2 C x3/:

In general, such a traffic problem is modeled by an EVI problem (4) formulated on
the constraint set:

KD fx 2 L2.Œ0; 90�;R3/ j 0� x.t/� M; x1.t/C x2.t/C x3.t/D .t/; x1.t/C 1

2
x2.t/D .t/g;

and depending on monotonicity properties of F above it would be studied from the
perspective of its user equilibrium states only, given certain demand functions ;  .
A simple computation (see Appendix) shows that F is monotone on K for any t,
but it is not strictly monotone. Clearly from the Appendix, there are many points in
each set K.t/ where F is not strictly monotone. It is at these points that we cannot
employ the theoretical results from EVI theory, instead we rely on the double layer
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Fig. 2 The upper two panels display the evolution of the initial curves for a D 1; the lower panels
display the evolution for a D 2

dynamics and evolution from initial states to study what happens to the traffic flows.
We see that this example falls under the hypotheses of Proposition 1.

Moreover, given a set of discrete observation data points we extrapolate not only
an initial curve of states for the traffic problem, but also demand functions ;  
consistent with our observations. Unlike in the case of Example 1 above, we make
here ;  linear and continuous.

We assume that we observe the traffic at 15-min intervals over a 90-min length
of time, as follows:
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Fig. 3 Here we follow the evolution of curves in phase portrait depiction. Left panel has a D 1,
right panel has a D 2

.x1.t/; x2.t/; x3.t// D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

.10; 20; 25/; t D 0

.15; 20; 20/; t D 15

.20; 25; 25/; t D 30

.30; 10; 30/; t D 45

.30; 20; 30/; t D 60

.10; 20; 15/; t D 75

.10; 10; 10/; t D 90

Given the structure of the demands on certain route combinations, we then deduce

.t/ D x1.t/C x2.t/C x3.t//  .t/ D x1.t/C 1
2
x2.t/

55, t=0 20, t=0

55, t=0 25, t=15

75, t=30 32.5 t=30

70, t=45 70, t=45

80, t=60 40, t=60

45, t=75 20, t=75

30, t=90 15, t=90

Then the initial curve of states for this transportation problem, as well as
estimates for the demand functions consistent with observations, is as given by
Proposition 1:

For this initial curve, we compute k � F.x.t; 0//kL2 	 2476 and b D 2. For L D
1000 we thus get l D L

k�F.x.t;0//kL2CbL 	 0:22; we thus choose m D 10 H) � WD
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.x1.t; 0/; x2.t; 0/; x3.t; 0// .t/  .t/ Time

(10+1/3t, 20,25�t/3) 55 20+t/3 t 2 Œ0; 15�

(10+t/3,15+t/3,15+t/3) 40+t 17.5+0.5t t 2 .15; 30�

(2t/3,55�t, 15+t/3) 70 0.16t+27.5 t 2 .30; 45�

(30, �20+2t/3, 30) 40+2t/3 20+0.334t t 2 .45; 60�

(110�4t/3, 20,90�t) 220�7t/3 120�4t/3 t 2 .60; 75�

(10, 70�2t/3,40�t/3) 120�t 45�0.334t t 2 .75; 90�
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Fig. 4 We depict here the evolution of the initial states after 100 � steps. Given that the demand
functions are piecewise continuous, and given results in [3] we expect to see a piecewise continuous
evolution

0:022. Here we sampled the time interval Œ0; 90� with 46 points. Our simulations are
presented in Fig. 4 above. We see that in 100 � steps we evolve the initial curves to
later ones, depicted with a dagger sign in all panels of Fig. 4.

To see how different initial observed states behave under this dynamics, let us
consider that ;  are as in the above table, and assume that we observe a constant
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Fig. 5 We depict here the evolution of the initial states after 100 � steps. The dark brown curves
are the states of the problem the at end of simulated time. They are distinct than the ones obtained
in Fig. 4, over the same length of simulated time

density flow x1.t; 0/ D 10, for any t. Then respecting the flow demands, we have
x2.t; 0/ D 2. .t/ � 10/ and x3.t; 0/ D  � .10 C x2.t; 0//. This initial condition
gives the following evolution over 100 � steps, shown in Fig. 5 above. We note that
the flows have evolved in a distinct manner than for the previous initial condition
of above table. This was expected, since we are not in possession of a global strict
monotonicity condition for F over K.
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Conclusions and Future Work

We addressed here an open problem in the projected dynamics and EVI areas,
namely that of giving a method to track evolution solutions of TDEP problems.
This is by no means a complete answer to the question of how such evolution
should be studied, however our main point here is that it should be studied. Our
proposed method was mainly guided by reasonable assumptions on how much data
one may be in possession of, when one studies a TDEP, and how one might use this
information to get a picture of the changes in the states of a TDEP. The method is
specifically concerned with cases of TDEP for which well-known VI theory fails to
give a clear picture of the potential dynamics.

We included here examples (Examples 1 and 3) drawn from traffic network
equilibrium problems, however, the method need not be restricted to this TDEP
class. In Example 2, one can easily reinterpret the data as coming from a continuous
time dynamic game, with F WD .�rx1U1;rx2U2/ being a gradient of a quadratic
payoff, such as U1 WD x21 � ax1x2 C t, and U2 WD ax1x2 � x22=2 C t2, where each
player wishes to maximize its U.

We hope that the reader will find it useful to apply and/or extend this method
to specific classes of TDEP which fall under a generic formulation as variational
inequality problems. One such application is currently concerning the evolution
solutions of a dynamic casual encounters game. These are a sequence of repeated
games between two potential sexual partners where one is HIVC and the other is
HIV�. It is sought to quantify the potential increase in infection in a homosexual
population using a double layer dynamics model.

Appendix to Example 3

Recalling the mapping

F.x/ D

0

BB
B
B
B
@

3x1 � x2 C x3

3
2
x1 � 4x2 C x3

2x1 � 7x2 C x3

1

CC
C
C
C
A
;

with the constraint set

K.t/D fx2L2.Œ0; 90�;R3/ j 0�x.t/; x1.t/Cx2.t/Cx3.t/D.t/; x1.t/C1

2
x2.t/D .t/g;
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We show below that F is monotone, but not strictly so. In what follows we make
use of the following identities which can be derived from K: for all x; y 2 K we
have that

x3 � y3 D �.x1 � y1/� .x2 � y2/; (7)

and

x2 � y2 D �2.x1 � y1/: (8)

We evaluate now hF.y/� F.x/; y � xi D
3X

iD1
Fi.x/.xi � yi/ with (7), (8) yielding

2.x1 � y1/
2 � 0; 8x ¤ y 2 K.t/:
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Cantor, Banach and Baire Theorems
in Generalized Metric Spaces

Stefan Czerwik and Krzysztof Król

Abstract In the paper we present basic results for generalized metric spaces:
Cantor, Banach and Baire theorems, well known and widely applied in metric spaces
and mathematics.
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Introduction

At first we recall the idea of generalized metric space (shortly GMS) introduced by
Luxemburg [5] (see also [2]). Let X be a set (nonempty). A function

d W X 
 X ! Œ0;1�

is said to be a generalized metric on X, provided that for x; y; z 2 X,

(i) d.x; y/ D 0 if and only if x D y,
(ii) d.x; y/ D d.y; x/,

(iii) d.x; y/ � d.x; z/C d.z; y/,

A pair .X; d/ is called a generalized metric space.

S. Czerwik (�)
Institute of Mathematics, Silesian University of Technology, Kaszubska 23,
44-100 Gliwice, Poland
e-mail: steczerw@gmail.com

K. Król
Education Department, Zabrze City Hall, Powstańców Śla̧skich 5-7, 41-800 Zabrze, Poland
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The specialized notation, which we use, is the same as in the relevant articles.
Standard symbols: N; N0 denote the set of all natural numbers and nonnegative
integers, respectively. By A we denote the closure of a set A.

We shall need further on the following remark.

Remark 1. Let .X; d/ be a gms and let A � X be a set. If xn 2 A; n 2 N and xn ! x
as n ! 1, then x 2 A.

The simple proof is left to the reader.

Basic Results

At first we shall note the Cantor theorem for generalized metric spaces.

Theorem 1. Let .X; d/ be a generalized metric space. Assume that An � X, n D
1; 2; : : : are nonempty closed subsets such that AnC1 � An for n 2 N and

lim
n!1 ı.An/ D 0; (1)

where

ı.An/ WD supfd.x; y/ W x; y 2 Ang: (2)

Then there exists exactly one point x 2 X such that

1\

nD1
An D fxg: (3)

Proof. Since, in view of Remark 1, the proof can be done similarly as for a metric
space, we omit the details here. ut

Now we shall apply the Cantor theorem to prove the Banach contraction principle
for generalized metric spaces (for a different approach, see [2, 5]).

Theorem 2. Let .X; d/ be a complete generalized metric space and the function
T W X ! X satisfies the Lipschitz condition

d .T.x/;T.y// � ˛d.x; y/ for all x; y 2 X; (4)

where

0 � ˛ < 1: (5)

Assume that x 2 X is arbitrarily fixed. Then the following alternative holds:
either



Cantor, Banach and Baire Theorems in Generalized Metric Spaces 141

(A) for every nonnegative integer n D 0; 1; 2; : : :, one has

d.Tn.x/;TnC1.x// D 1;

or
(B) there exists a number k 2 N0 such that

d.Tk.x/;TkC1.x// < 1:

In the case (B):

(i) the sequence fTn.x/g is convergent to a fixed point u 2 X of T, i.e. T.u/ D u;
(ii) u is the unique fixed point of T in

B WD fz 2 X W d.Tk.x/; z/ < 1gI

(iii) for every z 2 B,

d.Tn.z/; u/ ! 0 as n ! 1:

Proof. Put

� WD d.Tk.x/;TkC1.x//

and

K D K.Tk.x/; r/ WD fz 2 X W d.Tk.x/; z/ � rg;

where r � �

1�˛ :
Now we verify that T.K/ � K. For if y 2 T.K/, then y D T.z/ for some z 2 K.

One has

d.Tk.x/; y/ � d.Tk.x/;TkC1.x//C d.TkC1.x/;T.z//

� � C ˛d.Tk.x/; z/ � � C ˛r

� r.1 � ˛/C ˛r D r;

whence y 2 K and consequently T.K/ � K.
Clearly (A denotes the closure of A)

T.K/ � K D K

and we get T.K/ � K. In the sequel

T2.K/ D T.T.K// � T.K/ � K
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and also

T2.K/ � T.K/:

By the induction we get

TnC1.K/ � Tn.K/ for n D 1; 2; : : : : (6)

Define

ı.Tn.K// WD supfd.x; y/ W x; y 2 Tn.K/g:

Obviously ı.K/ � 2r. We shall verify that

ı.T.K// � 2˛r: (7)

To this end let x; y 2 T.K/, then x D T.u/; y D T.v/; u; v 2 K and

d.x; y/ D d.T.u/;T.v// � ˛d.u; v/ � 2˛r;

whence since x and y are arbitrary from T.K/, we obtain ı.T.K// � 2˛r.
Now take x; y 2 T.K/, then there exist sequences fxng; fyng � T.K/, xn D T.un/,

yn D T.vn/; un; vn 2 K, with xn ! x and yn ! y as n ! 1. Therefore, for " > 0

and n 2 N sufficiently large

d.x; y/ � d.x; xn/C d.xn; yn/C d.yn; y/

� "C d.T.un/;T.vn// � "C ˛d.un:vn/

� "C 2˛r:

Letting " ! 0, we get d.x; y/ � 2˛r which implies

ı.T.K// � 2˛r:

By the induction we get easily

ı.Ts.K// � 2˛sr; s D 1; 2; : : : : (8)

Taking into account (6) and (8), from the Cantor Theorem 1, there exists exactly one
element u 2 X such that

1\

nD1
Tn.K/ D fug: (9)
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Now we shall show that

T.A/ � T.A/; A � X: (10)

In fact, if x 2 T.A/, then x D T.a/ and a 2 A; so there exists a sequence fang � A
such that an ! a as n ! 1. But fT.an/g � T.A/ and by the continuity of T,
resulting from (4),

lim
n!1 T.an/ D T.a/ D x 2 T.A/;

which ends the proof of the condition (10).
Consequently, one has by (10)

T.u/ D T

 1\

nD1
Tn.K/

!

�
1\

nD1
T.Tn.K//

�
1\

nD1
TnC1.K/ �

1\

nD1
Tn.K/ D fug;

i.e. T(u)=u.
The condition (ii), in view of (4), is obvious.
Finally we shall prove the condition (iii) (so also (i)). Let z 2 B, therefore for

r D d.Tk.x/; z/ < 1;

z 2 K.Tk.x/; r/. But since Tn.z/ 2 Tn.K/ for n D 1; 2; : : :, we have

d.Tk.z/; u/ � ı.Tn.K// � 2˛nr; n D 1; 2; : : : ;

and by (5)

d.Tk.z/; u/ ! 0 as n ! 1;

which completes the proof of the theorem. ut
Remark 2. If z 2 B, then

d.z; u/ � 1

1 � ˛ d.z;T.z//: (11)

In fact, one has

d.z; u/ � d.z;T.z//C d.T.z/;T.u// � d.z;T.z//C ˛d.z; u/;

which implies the condition (11).
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Remark 3. As a consequence of Theorem 2 we get the famous Banach contraction
principle (see [1, 3]).

Now we shall present another basic theorem for complete generalized metric
space, called the Baire theorem.

Theorem 3. Any complete generalized metric space is a second category set.

Proof. The proof of this statement can be done similarly as for a metric space. For
details the reader is referred, e.g., to [4]. ut

Let’s note also the useful remark.

Remark 4. Any closed subset of a complete generalized metric space is also a
complete generalized metric space.
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A Survey of Perturbed Ostrowski Type
Inequalities

Silvestru Sever Dragomir

Abstract In this paper we survey a number of recent perturbed versions of
Ostrowski inequality that have been obtained by the author and provide their
connections with numerous classical results of interest.

Keywords Ostrowski inequality • Lebesgue integral • Integral mean • Integral
inequalities

Introduction

Ostrowski’s Inequality

As revealed by a simple search in MathSciNet database with the key words
“Ostrowski” and “inequality” in the title, an exponential evolution of research
papers devoted to this result has been registered in the last decade. There are now
at least 360 papers that can be found by performing the above search. Numerous
extensions, generalizations in both the integral and discrete case have been discov-
ered. More general versions for n-time differentiable functions, the corresponding
versions on time scales, for vector valued functions or multiple integrals have been
established as well. Numerous applications in Numerical Analysis, Approximation
Theory, Probability Theory & Statistics, Information Theory, and other fields have
also been given.

In this paper, after presenting some inequalities of Ostrowski type for absolutely
continuous functions, we survey a number of recent perturbed versions of this
inequality that have been obtained lately by the author and provide their connections
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with numerous classical results of interest. Complete proofs are provided and the
necessary references where all these results have been obtained first are also given.

In 1938, Ostrowski [21] proved the following inequality concerning the distance
between the integral mean 1

b�a

R b
a f .t/ dt and the value f .x/, x 2 Œa; b� in the case of

differentiable functions on an open interval:

Theorem 1 (Ostrowski, 1938 [21]). Let f W Œa; b� ! R be continuous on Œa; b�
and differentiable on .a; b/ such that f 0 W .a; b/ ! R is bounded on .a; b/, i.e.,
kf 0k1 WD sup

t2.a;b/
jf 0 .t/j < 1. Then

ˇ
ˇ
ˇ̌f .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ �

2

41
4

C
 

x � aCb
2

b � a

!23

5
	
	f 0		1 .b � a/ ; (1)

for all x 2 Œa; b� and the constant 1
4

is the best possible.

In [17], S.S. Dragomir and S. Wang, by the use of the Montgomery integral
identity [20, p. 565],

f .x/ � 1

b � a

Z b

a
f .t/ dt D 1

b � a

Z b

a
p .x; t/ f 0 .t/ dt ; x 2 Œa; b� ;

where p W Œa; b�2 ! R is given by

p .x; t/ WD
8
<

:

t � a if t 2 Œa; x� ;

t � b if t 2 .x; b�;

gave a simple proof of Ostrowski’s inequality and applied it for special means
(identric mean, logarithmic mean, etc.) and to the problem of estimating the error
bound in approximating the Riemann integral

R b
a f .t/ dt by an arbitrary Riemann

sum (see [17], Section Ostrowski for Lp-Norm). For related results see [14] and [19].

A Refinement for L1-Norm

The following result, which is an improvement on Ostrowski’s inequality, holds.

Theorem 2 (Dragomir, 2002 [4]). Let f W Œa; b� ! C be an absolutely continuous
function on Œa; b� whose derivative f 0 2 L1 Œa; b�. Then

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (2)
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� 1

2 .b � a/

h	
	f 0		

Œa;x�;1 .x � a/2 C 	
	f 0		

Œx;b�;1 .b � x/2
i

�

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

kf 0kŒa;b�;1
"
1
4

C
�

x� aCb
2

b�a

�2#

.b � a/ I

1
2

�kf 0k˛Œa;x�;1 C kf 0k˛Œx;b�;1
� 1
˛

h�
x�a
b�a

�2ˇ C �
b�x
b�a

�2ˇi 1ˇ
.b � a/ ;

where ˛ > 1; 1
˛

C 1
ˇ

D 1I

1
2

�kf 0kŒa;x�;1 C kf 0kŒx;b�;1
� 

1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

�2
.b � a/

for all x 2 Œa; b�, where k�kŒm;n�;1 denotes the usual norm on L1 Œm; n�, i.e., we
recall that

kgkŒm;n�;1 D ess sup
t2Œm;n�

jg .t/j < 1:

Proof. Using the integration by parts formula for absolutely continuous functions
on Œa; b�, we have

Z x

a
.t � a/ f 0 .t/ dt D .x � a/ f .x/�

Z x

a
f .t/ dt (3)

and

Z b

x
.t � b/ f 0 .t/ dt D .b � x/ f .x/ �

Z b

x
f .t/ dt; (4)

for all x 2 Œa; b�.
Adding these two equalities, we obtain the Montgomery identity (see, for

example, [20, p. 565]):

.b � a/ f .x/�
Z b

a
f .t/ dt D

Z x

a
.t � a/ f 0 .t/ dt C

Z b

x
.t � b/ f 0 .t/ dt (5)

for all x 2 Œa; b�.
Taking the modulus, we deduce

ˇ
ˇ
ˇ
ˇ.b � a/ f .x/�

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ

Z x

a
.t � a/ f 0 .t/ dt

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ

Z b

x
.t � b/ f 0 .t/ dt

ˇ
ˇ
ˇ
ˇ (6)
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�
Z x

a
.t � a/

ˇ̌
f 0 .t/

ˇ̌
dt C

Z b

x
.b � t/

ˇ̌
f 0 .t/

ˇ̌
dt

� 	
	f 0		

Œa;x�;1

Z x

a
.t � a/ dt C 	

	f 0		
Œx;b�;1

Z b

x
.b � t/ dt

D 1

2

h	
	f 0		

Œa;x�;1 .x � a/2 C 	
	f 0		

Œx;b�;1 .b � x/2
i

and the first inequality in (2) is proved.
Now, let us observe that

	
	f 0		

Œa;x�;1 .x � a/2 C 	
	f 0		

Œx;b�;1 .b � x/2

� max
n	
	f 0		

Œa;x�;1 ;
	
	f 0		

Œx;b�;1
o h
.x � a/2 C .b � x/2

i

D max
n	
	f 0		

Œa;x�;1 ;
	
	f 0		

Œx;b�;1
o
"
1

2
.b � a/2 C 2

�
x � a C b

2

�2#

D .b � a/2 max
n	
	f 0		

Œa;x�;1 ;
	
	f 0		

Œx;b�;1
o
"
1

2
C 2 �

�
x � aCb

2

�2

.b � a/2

#

D .b � a/2
	
	f 0		

Œa;b�;1

"
1

2
C 2 �

�
x � aCb

2

�2

.b � a/2

#

;

and the first part of the second inequality in (2) is proved.
For the second inequality, we employ the elementary inequality for real numbers

which can be derived from Hölder’s discrete inequality

0 � ms C nt � .m˛ C n˛/
1
˛ 
 �sˇ C tˇ

� 1
ˇ ; (7)

provided that m; s; n; t � 0; ˛ > 1 and 1
˛

C 1
ˇ

D 1.
Using (7), we obtain

	
	f 0		

Œa;x�;1 .x � a/2 C 	
	f 0		

Œx;b�;1 .b � x/2

�
�	
	f 0		˛

Œa;x�;1 C 	
	f 0		˛

Œx;b�;1
� 1
˛
h
.x � a/2ˇ C .b � x/2ˇ

i 1
ˇ

and the second part of the second inequality in (2) is also obtained.
Finally, we observe that

	
	f 0		

Œa;x�;1 .x � a/2 C 	
	f 0		

Œx;b�;1 .b � x/2

� max
n
.x � a/2 ; .b � x/2

o h	
	f 0		

Œa;x�;1 C 	
	f 0		

Œx;b�;1
i
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D


b � a

2
C
ˇ̌
ˇ
ˇx � a C b

2

ˇ̌
ˇ
ˇ

�2 h	
	f 0		

Œa;x�;1 C 	
	f 0		

Œx;b�;1
i

and the last part of the second inequality in (2) is proved.

The following corollary is also natural.

Corollary 1. Under the above assumptions, we have the midpoint inequality

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (8)

� 1

8
.b � a/

		f 0		h
a; aCb

2

i
;1 C 		f 0		h

aCb
2 ;b

i
;1

�

�

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

1
4
.b � a/ kf 0kŒa;b�;1 I

1

2
3ˇ�1
2

.b � a/


kf 0kh̨

a; aCb
2

i
;1 C kf 0kh̨ aCb

2 ;b
i
;1

� 1
˛

;

where ˛ > 1; 1
˛

C 1
ˇ

D 1:

Ostrowski for L1-Norm

L1-Norm Inequality

In 1997, Dragomir and Wang proved the following Ostrowski type inequality [15].

Theorem 3. Let f W Œa; b� ! R be an absolutely continuous function on Œa; b�. Then
we have the inequality

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ �

"
1

2
C
ˇ̌
x � aCb

2

ˇ̌

b � a

#
	
	f 0		

Œa;b�;1
; (9)

for all x 2 Œa; b�, where k�k1 is the Lebesgue norm on L1 Œa; b�, i.e., we recall it
kgkŒa;b�;1 WD R b

a jg .t/j dt: The constant 1
2

is best possible.

Note that the fact that 1
2

is the best constant for differentiable functions was
proved in [22] and (9) can also be obtained from a more general result obtained
by A. M. Fink in [18] choosing n D 1 and doing some appropriate computation.
However the inequality (9) was not stated explicitly in [18].
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A Refinement for L1-Norm

The following result, which is an improvement on the inequality (9), holds.

Theorem 4 (Dragomir, 2002 [3]). Let f W Œa; b� ! C be an absolutely continuous
function on Œa; b�. Then

ˇ
ˇ̌
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (10)

� x � a

b � a

	
	f 0		

Œa;x�;1
C b � x

b � a

	
	f 0		

Œx;b�;1

�

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

1
2

�kf 0kŒa;b�;1 C ˇ
ˇkf 0kŒa;x�;1 � kf 0kŒx;b�;1

ˇ
ˇ�

h�
x�a
b�a

�ˇ C �
b�x
b�a

�ˇi 1ˇ �ˇˇkf 0k˛Œa;x�;1
ˇ
ˇC kf 0k˛Œx;b�;1

� 1
˛

where ˛ > 1 and 1
˛

C 1
ˇ

D 1;


1
2

C jx� aCb
2 j

b�a

�
kf 0kŒa;b�;1

for all x 2 Œa; b�.
Proof. Start with the Montgomery identity for absolutely continuous functions
proved in Theorem 2

.b � a/ f .x/�
Z b

a
f .t/ dt D

Z x

a
.t � a/ f 0 .t/ dt C

Z b

x
.t � b/ f 0 .t/ dt (11)

for all x 2 Œa; b�.
Taking the modulus, we deduce

ˇ
ˇ̌
ˇ.b � a/ f .x/ �

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ �

ˇ
ˇ̌
ˇ

Z x

a
.t � a/ f 0 .t/ dt

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ

Z b

x
.t � b/ f 0 .t/ dt

ˇ
ˇ̌
ˇ (12)

�
Z x

a
.t � a/

ˇ
ˇf 0 .t/

ˇ
ˇ dt C

Z b

x
.b � t/

ˇ
ˇf 0 .t/

ˇ
ˇ dt

� .x � a/
Z x

a

ˇ
ˇf 0 .t/

ˇ
ˇ dt C .b � x/

Z b

x

ˇ
ˇf 0 .t/

ˇ
ˇ dt

D .x � a/
	
	f 0		

Œa;x�;1
C .b � x/

	
	f 0		

Œx;b�;1

and the first inequality in (10) is proved.
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Now, let us observe that

.x � a/
	
	f 0		

Œa;x�;1 C .b � x/
	
	f 0		

Œx;b�;1

� max
n	
	f 0		

Œa;x�;1
;
	
	f 0		

Œx;b�;1

o
.b � a/

D 1

2

h	
	f 0		

Œa;b�;1 C
ˇ
ˇ
ˇ
	
	f 0		

Œa;x�;1 � 	
	f 0		

Œx;b�;1

ˇ
ˇ
ˇ
i
.b � a/

and the first part of the second inequality is proved.
For the second inequality, we employ the elementary inequality for real numbers

which can be derived from Hölder’s discrete inequality

0 � ms C nt � .m˛ C n˛/
1
˛ 
 �sˇ C tˇ

� 1
ˇ ; (13)

provided that m; s; n; t � 0, ˛ > 1 and 1
˛

C 1
ˇ

D 1.
Using (13), we obtain

.x � a/
	
	f 0		

Œa;x�;1
C .b � x/

	
	f 0		

Œx;b�;1

�
�	
	f 0		˛

Œa;x�;1
C 	
	f 0		˛

Œx;b�;1

� 1
˛
h
.x � a/ˇ C .b � x/ˇ

i 1
ˇ

and the second part of the second inequality in (10) is also obtained.
Finally, we observe that

.x � a/
	
	f 0		

Œa;x�;1 C .b � x/
	
	f 0		

Œx;b�;1

� max fx � a; b � xg
h		f 0		

Œa;x�;1
C 		f 0		

Œx;b�;1

i

D


b � a

2
C
ˇ
ˇ
ˇ
ˇx � a C b

2

ˇ
ˇ
ˇ
ˇ

� 	
	f 0		

Œa;b�;1

and the last part of the second inequality in (10) is proved.

The following corollary is also natural.

Corollary 2. Under the above assumptions, we have

ˇ
ˇ
ˇ̌f
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ � 1

2

	
	f 0		

Œa;b�;1
: (14)

Another interesting result is the following one.
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Corollary 3. Under the above assumptions, and if there is an x0 2 Œa; b� with

Z x0

a

ˇ
ˇf 0 .t/

ˇ
ˇ dt D

Z b

x0

ˇ
ˇf 0 .t/

ˇ
ˇ dt (15)

then we have the inequality

ˇ̌
ˇ
ˇf .x0/� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ � 1

2

	
	f 0		

Œa;b�;1
: (16)

Ostrowski for Lp-Norm

Lp-Norm Inequality

In 1998, Dragomir and Wang proved the following Ostrowski type inequality [16].

Theorem 5. Let f W Œa; b� ! R be an absolutely continuous function on Œa; b�. If
f 0 2 Lp Œa; b� ; then we have the inequality

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (17)

� 1

.q C 1/1=q

"� x � a

b � a

�qC1 C
�

b � x

b � a

�qC1#1=q

.b � a/1=q
		f 0		

Œa;b�;p
;

for all x 2 Œa; b�, where p > 1; 1p C 1
q D 1 and k�kŒa;b�;p is the p-Lebesgue norm on

Lp Œa; b�, i.e., we recall it

kgkŒa;b�;p WD
�Z b

a
jg .t/jp dt

�1=p

:

From (17) we get the following midpoint inequality

ˇ̌
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ � 1

2 .q C 1/1=q
.b � a/1=q

	
	f 0		

Œa;b�;p
; (18)

and 1
2

is a best possible constant.
Indeed, if we take f W Œa; b� ! R with f .t/ D ˇ

ˇt � aCb
2

ˇ
ˇ ; then f is absolutely

continuous
R b

a f .t/ dt D .b�a/2

4
; kf 0kŒa;b�;p D .b � a/1=p and if we assume that (18)
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holds with a constant C > 0 instead of 1
2
; then we get 1

4
.b � a/ � C

.qC1/1=q .b � a/

for any q > 1: Letting q ! 1C; we obtain C � 1
2
; which proves the sharpness of

the constant.
In the following, we provide some refinements of (17) and (18).

A Refinement for Lp-Norm

The following result, which is an improvement on the inequality (17), holds.

Theorem 6 (Dragomir, 2013 [9]). Let f W Œa; b� ! C be an absolutely continuous
function on Œa; b�. If f 0 2 Lp Œa; b� ; then

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (19)

� 1

.q C 1/1=q

2

4
� x � a

b � a

� qC1
q 		f 0		

Œa;x�;p
C
�

b � x

b � a

� qC1
q 		f 0		

Œx;b�;p

3

5 .b � a/1=q

� 1

.q C 1/1=q




8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

1
2

�kf 0kŒa;x�;p C kf 0kŒx;b�;p C ˇ
ˇkf 0kŒa;x�;p � kf 0kŒx;b�;p

ˇ
ˇ�



�

x�a
b�a

� qC1
q C �

b�x
b�a

� qC1
q

�
.b � a/1=q

�kf 0k˛Œa;x�;p C kf 0k˛Œx;b�;p
� 1
˛

�
x�a
b�a

� qC1
q ˇ C �

b�x
b�a

� qC1
q ˇ
� 1
ˇ

.b � a/1=q

where ˛ > 1 and 1
˛

C 1
ˇ

D 1;

�kf 0kŒa;x�;p C kf 0kŒx;b�;p
� 

1
2

C
ˇ̌
ˇ
ˇ

x� aCb
2

b�a

ˇ̌
ˇ
ˇ

� qC1
q

.b � a/1=q

for all x 2 Œa; b�, where p > 1; 1p C 1
q D 1.

Proof. Start with the Montgomery identity for absolutely continuous functions

.b � a/ f .x/ �
Z b

a
f .t/ dt D

Z x

a
.t � a/ f 0 .t/ dt C

Z b

x
.t � b/ f 0 .t/ dt (20)

for all x 2 Œa; b�.
Taking the modulus, we deduce
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ˇ
ˇ̌
ˇ.b � a/ f .x/ �

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ �

ˇ
ˇ̌
ˇ

Z x

a
.t � a/ f 0 .t/ dt

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ

Z b

x
.t � b/ f 0 .t/ dt

ˇ
ˇ̌
ˇ (21)

�
Z x

a
.t � a/

ˇ
ˇf 0 .t/

ˇ
ˇ dt C

Z b

x
.b � t/

ˇ
ˇf 0 .t/

ˇ
ˇ dt:

Utilizing Hölder’s integral inequality we have

Z x

a
.t � a/

ˇ
ˇf 0 .t/

ˇ
ˇ dt C

Z b

x
.b � t/

ˇ
ˇf 0 .t/

ˇ
ˇ dt

�
�Z x

a
.t�a/q dt

�1=q �Z x

a

ˇ
ˇf 0 .t/

ˇ
ˇp dt

�1=p

C
�Z b

x
.b�t/q dt

�1=q �Z b

x

ˇ
ˇf 0 .t/

ˇ
ˇp dt

�1=p

D 1

.b � a/ .q C 1/1=q

h
.x � a/

qC1
q
	
	f 0		

Œa;x�;p
C .b � x/

qC1
q
	
	f 0		

Œx;b�;p

i

for all x 2 Œa; b�; and the first inequality in (19) is proved.
Now, let us observe that

.x � a/
qC1

q
	
	f 0		

Œa;x�;p C .b � x/
qC1

q
	
	f 0		

Œx;b�;p

� max
n	
	f 0		

Œa;x�;p ;
	
	f 0		

Œx;b�;p

o h
.x � a/

qC1
q C .b � x/

qC1
q

i

D 1

2

h	
	f 0		

Œa;x�;p
C 	
	f 0		

Œx;b�;p
C
ˇ
ˇ
ˇ
	
	f 0		

Œa;x�;p
� 	
	f 0		

Œx;b�;p

ˇ
ˇ
ˇ
i



h
.x � a/

qC1
q C .b � x/

qC1
q

i

and the first part of the second inequality is proved.
For the second inequality, we employ the elementary inequality for real numbers

which can be derived from Hölder’s discrete inequality

0 � ms C nt � .m˛ C n˛/
1
˛ 
 �sˇ C tˇ

� 1
ˇ ; (22)

provided that m; s; n; t � 0, ˛ > 1 and 1
˛

C 1
ˇ

D 1.
Using (22), we obtain

.x � a/
qC1

q
		f 0		

Œa;x�;p
C .b � x/

qC1
q
		f 0		

Œx;b�;p

�
�	
	f 0		˛

Œa;x�;p
C 	
	f 0		˛

Œx;b�;p

� 1
˛
h
.x � a/

qC1
q ˇ C .b � x/

qC1
q ˇ
i 1
ˇ

and the second part of the second inequality in (19) is also obtained.



A Survey of Perturbed Ostrowski Type Inequalities 155

Finally, we observe that

.x � a/
qC1

q
	
	f 0		

Œa;x�;p
C .b � x/

qC1
q
	
	f 0		

Œx;b�;p

� max
n
.x � a/

qC1
q ; .b � x/

qC1
q

o h	
	f 0		

Œa;x�;p
C 	
	f 0		

Œx;b�;p

i

D


b � a

2
C
ˇ
ˇ
ˇ
ˇx � a C b

2

ˇ
ˇ
ˇ
ˇ

� qC1
q h	

	f 0		
Œa;x�;p

C 	
	f 0		

Œx;b�;p

i

and the last part of the second inequality in (19) is proved.

The following corollary is also natural.

Corollary 4. Under the above assumptions, we have

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (23)

� 1

2.qC1/=q .q C 1/1=q

		f 0		h
a; aCb

2

i
;p

C 		f 0		h
aCb
2 ;b

i
;p

�
.b � a/1=q :

Another interesting result is the following one.

Corollary 5. Under the above assumptions, and if there is an x0 2 Œa; b� with

Z x0

a

ˇ
ˇf 0 .t/

ˇ
ˇp dt D

Z b

x0

ˇ
ˇf 0 .t/

ˇ
ˇp dt (24)

then we have the inequality

ˇ
ˇ
ˇ
ˇf .x0/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (25)

� 1

.q C 1/1=q

2

4
�x0 � a

b � a

� qC1
q C

�
b � x0
b � a

� qC1
q

3

5
	
	f 0		

Œa;x0�;p
.b � a/1=q :

Remark 1. If we take in (19) ˛ D p and ˇ D q; where p > 1; 1p C 1
q D 1; then we

get the following refinement of (17)

ˇ
ˇ
ˇ̌f .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (26)

� 1

.q C 1/1=q

2

4
� x � a

b � a

� qC1
q 	
	f 0		

Œa;x�;p
C
�

b � x

b � a

� qC1
q 	
	f 0		

Œx;b�;p

3

5 .b � a/1=q
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� 1

.q C 1/1=q

"
� x � a

b � a

�qC1 C
�

b � x

b � a

�qC1#1=q

.b � a/1=q
	
	f 0		

Œa;b�;p ;

for all x 2 Œa; b�.
This is true, since for ˛ D p we have

�	
	f 0		˛

Œa;x�;p
C 	
	f 0		˛

Œx;b�;p

� 1
˛ D

�	
	f 0		p

Œa;x�;p
C 	
	f 0		p

Œx;b�;p

� 1
p

D
�Z x

a

ˇ
ˇf 0 .t/

ˇ
ˇp dt C

Z b

x

ˇ
ˇf 0 .t/

ˇ
ˇp
�1=p

D 	
	f 0		

Œa;b�;p :

Ostrowski for Bounded Derivatives

We start with the following result.

Theorem 7 (Dragomir, 2003 [7]). Let f W Œa; b� ! R be an absolutely continuous
function on Œa; b� and x 2 Œa; b�. Suppose that there exist the functions mi, Mi W
Œa; b� ! R

�
i D 1; 2

�
with the properties:

m1 .x/ � f 0 .t/ � M1 .x/ for a:e: t 2 Œa; x� (27)

and

m2 .x/ � f 0 .t/ � M2 .x/ for a:e: t 2 .x; b� : (28)

Then we have the inequalities:

1

2 .b � a/

h
m1 .x/ .x � a/2 � M2 .x/ .b � x/2

i
(29)

� f .x/ � 1

b � a

Z b

a
f .t/ dt

� 1

2 .b � a/

h
M1 .x/ .x � a/2 � m2 .x/ .b � x/2

i
:

The constant 1
2

is sharp on both sides.

Proof. Start with the Montgomery identity

f .x/ D 1

b � a

Z b

a
f .t/ dt C 1

b � a

Z x

a
.t � a/ f 0 .t/ dt C 1

b � a

Z b

x
.t � b/ f 0 .t/ dt

(30)
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for any x 2 Œa; b�.
Using the assumption (27) and (28), we have

m1 .x/ .t � a/ � .t � a/ f 0 .t/ � M1 .x/ .t � a/ for a:e: t 2 Œa; x� (31)

and

M2 .x/ .t � b/ � f 0 .t/ .t � b/ � m2 .x/ .t � b/ for a:e: t 2 .x; b� : (32)

Integrating (31) on Œa; x� and (32) on Œx; b� and summing the obtained inequalities,
we have

1

2
m1 .x/ .x � a/2 � 1

2
M2 .x/ .b � x/2

�
Z x

a
.t � a/ f 0 .t/ dt C

Z b

x
.t � b/ f 0 .t/ dt

� 1

2
M1 .x/ .x � a/2 � 1

2
m2 .x/ .b � x/2 :

Using the representation (30), we deduce (29).
Assume that the first inequality in (29) holds with a constant c > 0; that is

c

b � a

h
m1 .x/ .x � a/2 � M2 .x/ .b � x/2

i
� f .x/� 1

b � a

Z b

a
f .t/ dt: (33)

Consider the function f W Œa; b� ! R, f .t/ D M jt � xj, M > 0. Then f is absolutely
continuous and

f 0 .t/ D
8
<

:

�M if t 2 Œa; x�

M if t 2 .x; b�:

Thus, if we choose m1 D �M, m2 D M in (33), we get

�M
c

b � a

h
.x � a/2 C .b � x/2

i
� � M

b � a

Z b

a
jt � xj dt

D � M

b � a

"
.b � x/2 C .x � a/2

2

#

for all x 2 Œa; b�, implying that c � 1
2
, that is, 1

2
is the best constant in the first

member of (29).
Using a similar process, we may prove that 1

2
is the best constant in the third

member of (29) and the theorem is completely proved.



158 S.S. Dragomir

Corollary 6. If f W Œa; b� ! R is absolutely continuous on Œa; b� and the derivative
f 0 W Œa; b� ! R is bounded above and below, that is,

�1 < m � f 0 .t/ � M < 1 for a:e: t 2 Œa; b� ; (34)

then we have the inequality

1

2 .b � a/

h
m .x � a/2 � M .b � x/2

i
� f .x/ � 1

b � a

Z b

a
f .t/ dt (35)

� 1

2 .b � a/

h
M .x � a/2 � m .b � x/2

i

for all x 2 Œa; b�. The constant 1
2

is the best in both inequalities.

Applying Taylor’s formula

g .x/ D g

�
a C b

2

�
C
�

x � a C b

2

�
g0
�

a C b

2

�
C 1

2

�
x � a C b

2

�2
g00
�

a C b

2

�

for g .x/ D M .x � a/2 � m .b � x/2, we obtain

g .x/ D 1

4
.M � m/ .b � a/2 C 2

�
x � a C b

2

��
M C m

2

�
.b � a/

C .M � m/

�
x � a C b

2

�2
:

The same formula applied for h .x/ D m .x � a/2 � M .b � x/2 will reveal that

h .x/ D 1

4
.M � m/ .b � a/2 C 2

�
x � a C b

2

��
M C m

2

�
.b � a/

� .M � m/

�
x � a C b

2

�2
:

Consequently, we may rewrite Corollary 6 in the following equivalent manner:

Corollary 7. With the assumptions on Corollary 6, we have

ˇ
ˇ
ˇ̌f .x/ � 1

b � a

Z b

a
f .t/ dt �

�
x � a C b

2

��
M C m

2

�ˇˇ
ˇ̌ (36)

� 1

2
.M � m/ .b � a/

2

4

 
x � aCb

2

b � a

!2
C 1

4

3

5

for all x 2 Œa; b�.
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Remark 2. If we assume that kf 0k1 WD ess sup
t2Œa;b�

jf 0 .t/j, then obviously we may

choose in (35) m D kf 0k1 and M D kf 0k1, obtaining Ostrowski’s inequality for
absolutely continuous functions whose derivatives are essentially bounded:

ˇ
ˇ
ˇ
ˇf .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ � kf 0k1

2 .b � a/

h
.x � a/2 C .b � x/2

i

D
2

41
4

C
 

x � aCb
2

b � a

!23

5 .b � a/
	
	f 0		1 ;

for all x 2 Œa; b�. The constant 1
4

here is best.

Remark 3. Ostrowski’s inequality for absolutely continuous mappings in terms of
kf 0k1 basically states that

� kf 0k1
2 .b � a/

h
.x � a/2 C .b � x/2

i
� f .x/ � 1

b � a

Z b

a
f .t/ dt (37)

� kf 0k1
2 .b � a/

h
.x � a/2 C .b � x/2

i

for all x 2 Œa; b�.
Now, if we assume that (27) and (28) hold, then � kf 0k1 � m1 .x/, m2 .x/ and

M1 .x/, M2 .x/ � kf 0k1, which implies

� kf 0k1
2 .b � a/

h
.x � a/2 C .b � x/2

i
(38)

� 1

2 .b � a/

h
m1 .x/ .x � a/2 � M2 .x/ .b � x/2

i

� f .x/� 1

b � a

Z b

a
f .t/ dt

� 1

2 .b � a/

h
M1 .x/ .x � a/2 � m2 .x/ .b � x/2

i

� kf 0k1
2 .b � a/

h
.x � a/2 C .b � x/2

i
:

Thus, the inequality (29) may also be regarded as a refinement of the classical
Ostrowski result.

An important particular case is x D aCb
2

providing the following corollary.
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Corollary 8. Assume that the derivative f 0 W Œa; b� ! R satisfy the conditions:

�1 < m1 � f 0 .t/ � M1 < 1 for a:e: t 2


a;
a C b

2

�
(39)

and

�1 < m2 � f 0 .t/ � M2 < 1 for a:e: t 2
�

a C b

2
; b

�
: (40)

Then we have the inequalities

1

8
.m1 � M2/ .b � a/ � f

�
a C b

2

�
� 1

b � a

Z b

a
f .t/ dt (41)

� 1

8
.M1 � m2/ .b � a/ :

The constant 1
8

is the best in both inequalities.

Finally, if we know some global bounds for the derivative f 0 on Œa; b�, then we
may state the following corollary.

Corollary 9. Under the assumptions of Corollary 6, we have the midpoint
inequality:

ˇ̌
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ � 1

8
.M � m/ .b � a/ : (42)

The constant 1
8

is best.

Proof. The inequality is obvious by Corollary 6 putting x D aCb
2

. We observe that
the function f W Œa; b� ! R, f .x/ D k

ˇ
ˇx � aCb

2

ˇ
ˇ, k > 0 is absolutely continuous and

�k � f 0 .t/ � k for all t 2 Œa; b�. Thus, we may choose M D k, m D �k and as

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ D 1

8
.M � m/ .b � a/ D k .b � a/

4
;

we conclude that the constant 1
8

is best in (42).
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Functional Ostrowski Inequality for Convex Mappings

A Generalization of Ostrowski’s Inequality

The following result holds:

Theorem 8 (Dragomir, 2013 [9]). Let f W Œa; b� ! R be absolutely continuous on
Œa; b� : If ˚ W R ! R is convex (concave) on R then we have the inequalities

˚

�
f .x/ � 1

b � a

Z b

a
f .t/ dt

�
(43)

� .�/ 1

b � a

Z x

a
˚
�
.t � a/ f 0 .t/

�
dt C

Z b

x
˚
�
.t � b/ f 0 .t/

�
dt

�

for any x 2 Œa; b� :
Proof. Utilizing the Montgomery identity

f .x/� 1

b � a

Z b

a
f .t/ dt D 1

b � a

Z x

a
.t � a/ f 0 .t/ dt C

Z b

x
.t � b/ f 0 .t/ dt

�
(44)

D x � a

b � a

�
1

x � a

Z x

a
.t � a/ f 0 .t/ dt

�

C b � x

b � a

�
1

b � x

Z b

x
.t � b/ f 0 .t/ dt

�
;

which holds for any x 2 .a; b/ and the convexity of ˚ W R ! R, we have

˚

�
f .x/� 1

b � a

Z b

a
f .t/ dt

�
(45)

� x � a

b � a
˚

�
1

x � a

Z x

a
.t � a/ f 0 .t/ dt

�

C b � x

b � a
˚

�
1

b � x

Z b

x
.t � b/ f 0 .t/ dt

�

for any x 2 .a; b/, which is an inequality of interest in itself as well.
If we use Jensen’s integral inequality

˚

�
1

d � c

Z d

c
g .t/ dt

�
� 1

d � c

Z d

c
˚ Œg .t/� dt
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we have

˚

�
1

x � a

Z x

a
.t � a/ f 0 .t/ dt

�
� 1

x � a

Z x

a
˚
�
.t � a/ f 0 .t/

�
dt (46)

and

˚

�
1

b � x

Z b

x
.t � b/ f 0 .t/ dt

�
� 1

b � x

Z b

x
˚
�
.t � b/ f 0 .t/

�
dt (47)

for any x 2 .a; b/ :
Making use of (45)–(47) we get the desired result (43) for the convex functions.
If x D b; then

f .b/� 1

b � a

Z b

a
f .t/ dt D 1

b � a

Z b

a
.t � a/ f 0 .t/ dt

and by Jensen’s inequality we get

˚

�
f .b/� 1

b � a

Z b

a
f .t/ dt

�
� 1

b � a

Z b

a
˚
�
.t � a/ f 0 .t/

�
dt;

which proves the inequality (43) for x D b:
The same argument can be applied for x D a.
The case of concave functions goes likewise and the theorem is proved.

Corollary 10 (Dragomir, 2013 [9]). With the assumptions of Theorem 8 we have

˚ .0/ � .�/ 1

b � a

Z b

a
˚

�
f .x/� 1

b � a

Z b

a
f .t/ dt

�
dx (48)

� .�/ 1

.b � a/2

Z b

a
.b � x/ ˚

�
.x � a/ f 0 .x/

�
dx

C
Z b

a
.x � a/˚

�
.x � b/ f 0 .x/

�
dx

�
:

Proof. By Jensen’s integral inequality we have

1

b � a

Z b

a
˚

�
f .x/ � 1

b � a

Z b

a
f .t/ dt

�
dx

� .�/˚


1

b � a

Z b

a

�
f .x/� 1

b � a

Z b

a
f .t/ dt

�
dx

�
D ˚ .0/ ;

which proves the first inequality in (48).
Integrating the inequality (43) over x we have
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1

b � a

Z b

a
˚

�
f .x/� 1

b � a

Z b

a
f .t/ dt

�
dx (49)

� .�/ 1

.b � a/2

Z b

a

Z x

a
˚
�
.t � a/ f 0 .t/

�
dt C

Z b

x
˚
�
.t � b/ f 0 .t/

�
dt

�
dx:

Integrating by parts we have

Z b

a

�Z x

a
˚
�
.t � a/ f 0 .t/

�
dt

�
dx

D x
Z x

a
˚
�
.t � a/ f 0 .t/

�
dt

ˇ
ˇ
ˇ
ˇ

b

a

�
Z b

a
xd

�Z x

a
˚
�
.t � a/ f 0 .t/

�
dt

�

D b
Z b

a
˚
�
.t � a/ f 0 .t/

�
dt �

Z b

a
x˚

�
.x � a/ f 0 .x/

�
dx

D
Z b

a
.b � x/ ˚

�
.x � a/ f 0 .x/

�
dx

and

Z b

a

�Z b

x
˚
�
.t � b/ f 0 .t/

�
dt

�
dx

D x

�Z b

x
˚
�
.t � b/ f 0 .t/

�
dt

�ˇˇ̌
ˇ

b

a

�
Z b

a
xd

�Z b

x
˚
�
.t � b/ f 0 .t/

�
dt

�

D �a

�Z b

a
˚
�
.t � b/ f 0 .t/

�
dt

�
C
Z b

a
x˚

�
.x � b/ f 0 .x/

�
dx

D
Z b

a
.x � a/ ˚

�
.x � b/ f 0 .x/

�
dx:

Utilizing the inequality (49) we deduce the desired inequality (48).

Remark 4. If we write the inequality (43) for the convex function˚ .x/ D jxjp; p �
1, then we get the inequality

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ

p

(50)

� 1

b � a

Z x

a
.t � a/p

ˇ
ˇf 0 .t/

ˇ
ˇp dt C

Z b

x
.b � t/p

ˇ
ˇf 0 .t/

ˇ
ˇp dt

�

for x 2 Œa; b� :
Utilizing Hölder’s inequality we have
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B .x/ WD
Z x

a
.t � a/p

ˇ̌
f 0 .t/

ˇ̌p
dt C

Z b

x
.b � t/p

ˇ̌
f 0 .t/

ˇ̌p
dt (51)

�

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
:̂

.x�a/pC1

pC1 kf 0kp
Œa;x�;1 if f 0 2 L1 Œa; x� I

.x�a/pC1=˛

.p˛C1/1=˛ kf 0kp
Œa;x�;pˇ

if f 0 2 Lpˇ Œa; x� ;
˛ > 1; 1=˛ C 1=ˇ D 1I

.x � a/p kf 0kp
Œa;x�;p

C

8
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

.b�x/pC1

pC1 kf 0kp
Œx;b�;1 if f 0 2 L1 Œx; b� I

.b�x/pC1=˛

.p˛C1/1=˛ kf 0kp
Œx;b�;pˇ

if f 0 2 Lpˇ Œx; b� ;
˛ > 1; 1=˛ C 1=ˇ D 1I

.b � x/p kf 0kp
Œx;b�;p

for x 2 Œa; b� :
Utilizing the inequalities (50) and (51) we have for x 2 Œa; b� that

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ

p

(52)

� 1

.b � a/ .p C 1/

h
.x � a/pC1 		f 0		p

Œa;x�;1 C .b � x/pC1 		f 0		p
Œx;b�;1

i

� 1

.p C 1/

"� x � a

b � a

�pC1 C
�

b � x

b � a

�pC1#
.b � a/p

		f 0		p
Œa;b�;1

provided f 0 2 L1 Œa; b�,

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ

p

(53)

� 1

.b � a/ .p˛ C 1/1=˛

h
.x � a/pC1=˛ 		f 0		p

Œa;x�;pˇ
C .b � x/pC1=˛ 		f 0		p

Œx;b�;pˇ

i

� 1

.p˛ C 1/1=˛

"
� x � a

b � a

�pC1=˛ C
�

b � x

b � a

�pC1=˛#
.b � a/p�1=ˇ 		f 0		p

Œa;b�;pˇ

provided f 0 2 Lpˇ Œa; b� ; ˛ > 1; 1=˛C 1=ˇ D 1 and

ˇ
ˇ
ˇ̌f .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌
p

(54)
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� 1

b � a

h
.x � a/p

	
	f 0		p

Œa;x�;p
C .b � x/p

	
	f 0		p

Œx;b�;p

i

� max


� x � a

b � a

�p
;

�
b � x

b � a

�p�
.b � a/p�1 		f 0		p

Œa;b�;p

D
(
1

2
C
ˇ
ˇ
ˇ̌
ˇ
x � aCb

2

b � a

ˇ
ˇ
ˇ̌
ˇ

) p

.b � a/p�1 		f 0		p
Œa;b�;p

provided f 0 2 Lp Œa; b�.

Remark 5. If we take p D 1 in the above inequalities (53)–(54), then we obtain

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (55)

� 1

2 .b � a/

h
.x � a/2

		f 0		
Œa;x�;1 C .b � x/2

		f 0		
Œx;b�;1

i

� 1

2

"
� x � a

b � a

�2 C
�

b � x

b � a

�2#

.b � a/
	
	f 0		

Œa;b�;1

D
2

41
4

C
 

x � aCb
2

b � a

!23

5 .b � a/
	
	f 0		

Œa;b�;1

for x 2 Œa; b� ; provided f 0 2 L1 Œa; b�,

ˇ
ˇ
ˇ̌f .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (56)

� 1

.b � a/ .˛ C 1/1=˛

h
.x � a/1C1=˛

	
	f 0		

Œa;x�;ˇ C .b � x/1C1=˛
	
	f 0		

Œx;b�;ˇ

i

� 1

.˛ C 1/1=˛

"� x � a

b � a

�1C1=˛ C
�

b � x

b � a

�1C1=˛#
.b � a/1=˛

	
	f 0		

Œa;b�;ˇ

for x 2 Œa; b� ; provided f 0 2 Lˇ Œa; b� ; ˛ > 1; 1=˛ C 1=ˇ D 1 and

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (57)

� 1

b � a

h
.x � a/

	
	f 0		

Œa;x�;1
C .b � x/

	
	f 0		

Œx;b�;1

i

D
(
1

2
C
ˇ
ˇ
ˇ
ˇ̌
x � aCb

2

b � a

ˇ
ˇ
ˇ
ˇ̌

)
	
	f 0		

Œa;b�;1

for x 2 Œa; b�.
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Applications for p-Norms

We have the following inequalities for Lebesgue norms of the deviation of a function
from its integral mean:

Theorem 9 (Dragomir, 2013 [9]). Let f W Œa; b� ! R be absolutely continuous on
Œa; b�.

(i) If f 0 2 L1 Œa; b� ; then

	
	
	
	f � 1

b � a

Z b

a
f .t/ dt

	
	
	
	
Œa;b�;p

�


2

.p C 1/ .p C 2/

�1=p

.b � a/1C
1
p
	
	f 0		

Œa;b�;1 :

(58)
(ii) If f 0 2 Lpˇ Œa; b� ; with ˛ > 1; 1=˛ C 1=ˇ D 1, then

	
	
	
	f � 1

b � a

Z b

a
f .t/ dt

	
	
	
	
Œa;b�;p

(59)

�
"

2

.p˛ C 1/1=˛ .p C 1=˛ C 1/

#1=p
		f 0		

Œa;b�;pˇ
.b � a/1C

1
˛p :

(iii) We have

	
		
	f � 1

b � a

Z b

a
f .t/ dt

	
		
	
Œa;b�;p

� 1

2

�
2pC1 � 1

p C 1

�1=p

.b � a/
		f 0		

Œa;b�;p
: (60)

Proof. Integrating on Œa; b� the inequality (52) we have

Z b

a

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ

p

dx (61)

� 1

.b � a/ .p C 1/

	
	f 0		p

Œa;b�;1

Z b

a

h
.x � a/pC1 C .b � x/pC1i dx

D 1

.b � a/ .p C 1/

	
	f 0		p

Œa;b�;1

"
2 .b � a/pC2

p C 2

#

D 2

.p C 1/ .p C 2/

	
	f 0		p

Œa;b�;1 .b � a/pC1

which is equivalent with (58).
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Integrating the inequality (53)

Z b

a

ˇ̌
ˇ
ˇf .x/� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ

p

dx (62)

� 1

.b � a/ .p˛ C 1/1=˛

	
	f 0		p

Œa;b�;pˇ

Z b

a

h
.x � a/pC1=˛ C .b � x/pC1=˛i dx

D 1

.b � a/ .p˛ C 1/1=˛

	
	f 0		p

Œa;b�;pˇ

"
2 .b � a/pC1=˛C1

p C 1=˛ C 1

#

D 2

.p˛ C 1/1=˛ .p C 1=˛ C 1/

	
	f 0		p

Œa;b�;pˇ
.b � a/pC1=˛

which is equivalent with (59).
Integrating the inequality (54) we have

Z b

a

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ

p

dx (63)

� 1

b � a

	
	f 0		p

Œa;b�;p

Z b

a
max f.x � a/p ; .b � x/pg dx:

Since

Z b

a
max f.x � a/p ; .b � x/pg dx

D
Z aCb

2

a
.b � x/p dx C

Z b

aCb
2

.x � a/p dx

D �
�

b�a
2

�pC1

p C 1
C .b � a/pC1

p C 1
C .b � a/pC1

p C 1
�
�

b�a
2

�pC1

p C 1

D 1

p C 1

�
2pC1 � 1
2p

�
.b � a/pC1

then from (63) we get

Z b

a

ˇ
ˇ̌
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ

p

dx � 1

p C 1

�
2pC1 � 1

2p

�
.b � a/p

		f 0		p
Œa;b�;p

;

which is equivalent with (60).
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Applications for the Exponential

If we write the inequality (43) for the convex function ˚ .x/ D exp .x/, then we get
the inequality

exp


f .x/� 1

b � a

Z b

a
f .t/ dt

�
(64)

� 1

b � a

Z x

a
exp

�
.t � a/ f 0 .t/

�
dt C

Z b

x
exp

�
.t � b/ f 0 .t/

�
dt

�

for x 2 Œa; b� :
If we write the inequality (43) for the convex function ˚ .x/ D cosh .x/ WD

exCe�x

2
, then we get the inequality

cosh


f .x/� 1

b � a

Z b

a
f .t/ dt

�
(65)

� 1

b � a

Z x

a
cosh

�
.t � a/ f 0 .t/

�
dt C

Z b

x
cosh

�
.t � b/ f 0 .t/

�
dt

�

for x 2 Œa; b� :
Utilizing the inequality (64) we have the following multiplicative version of

Ostrowski’s inequality:

Theorem 10 (Dragomir, 2013 [9]). Let f W Œa; b� ! .0;1/ be absolutely continu-
ous on Œa; b� : Then we have the inequalities

f .x/

exp
h

1
b�a

R b
a ln f .t/ dt

i (66)

� 1

b � a

Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt C

Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

�

for any x 2 Œa; b� and

R b
a f .x/ dx

exp
h

1
b�a

R b
a ln f .t/ dt

i (67)

� 1

b � a

Z b

a
.b � x/ exp


.x � a/

f 0 .x/
f .x/

�
dx

C
Z b

a
.x � a/ exp


.x � b/

f 0 .x/
f .x/

�
dx

�
:
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Proof. If we replace f by ln f in (64), we get

exp


ln f .x/ � 1

b � a

Z b

a
ln f .t/ dt

�
(68)

� 1

b � a

Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt C

Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

�

for any x 2 Œa; b� :
Since

exp


ln f .x/� 1

b � a

Z b

a
ln f .t/ dt

�

D exp


ln f .x/ � ln



exp

�
1

b � a

Z b

a
ln f .t/ dt

���

D exp

2

4ln

0

@ f .x/

exp
�

1
b�a

R b
a ln f .t/ dt

�

1

A

3

5

D f .x/

exp
�

1
b�a

R b
a ln f .t/ dt

�

for any x 2 Œa; b� ; then we get from (68) the desired inequality (66).
If we integrate the inequality (66), we get

R b
a f .x/ dx

exp
h

1
b�a

R b
a ln f .t/ dt

i (69)

� 1

b � a

Z b

a

Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt C

Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

�
dx:

Integrating by parts we have

Z b

a

�Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt

�
dx

D x
Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt

ˇ
ˇ
ˇ̌
b

a

�
Z b

a
xd

�Z x

a
exp


.t � a/

f 0 .t/
f .t/

�
dt

�

D b
Z b

a
exp


.t � a/

f 0 .t/
f .t/

�
dt �

Z b

a
x exp


.x � a/

f 0 .x/
f .x/

�
dx

D
Z b

a
.b � x/ exp


.x � a/

f 0 .x/
f .x/

�
dx
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and

Z b

a

�Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

�
dx

D x
Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

ˇ̌
ˇ
ˇ

b

a

�
Z b

a
xd

�Z b

x
exp


.t � b/

f 0 .t/
f .t/

�
dt

�

D �a
Z b

a
exp


.t � b/

f 0 .t/
f .t/

�
dt C

Z b

a
x exp


.x � b/

f 0 .x/
f .x/

�
dx

D
Z b

a
.x � a/ exp


.x � b/

f 0 .x/
f .x/

�
dx;

then by (69) we deduce the desired inequality (67).

Applications for Midpoint-Inequalities

We have from the inequality (43) written for �f the following result:

Proposition 1 (Dragomir, 2013 [9]). Let f W Œa; b� ! R be absolutely continuous
on Œa; b� : If ˚ W R ! R is convex (concave) on R, then from (43) we have the
inequalities

˚

�
1

b � a

Z b

a
f .t/ dt � f

�
a C b

2

��
(70)

� .�/ 1

b � a

"Z b

aCb
2

˚
�
.b � t/ f 0 .t/

�
dt C

Z aCb
2

a
˚
�
.a � t/ f 0 .t/

�
dt

#

:

If f W Œa; b� ! R is convex on Œa; b� ; then by Hermite–Hadamard inequality we
have

1

b � a

Z b

a
f .t/ dt � f

�
a C b

2

�
:

We can state the following result in which the function ˚ is assumed to be convex
only on Œ0;1/ or .0;1/ :

Proposition 2. If f W Œa; b� ! R is convex on Œa; b� ; monotonic nondecreasing
on
�
a; aCb

2

�
and monotonic nonincreasing

�
a; aCb

2

�
:If ˚ W Œ0;1/ ; .0;1/! R is

convex (concave) on Œ0;1/ or .0;1/ ; then (70) holds true.

If f W Œa; b� ! R is strictly convex on Œa; b� ; monotonic nondecreasing on�
a; aCb

2

�
and monotonic nonincreasing

�
a; aCb

2

�
; then by taking˚ .x/ D ln x; which
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is strictly concave on .0;1/ ; we get the logarithmic inequality

ln

�
1

b � a

Z b

a
f .t/ dt � f

�
a C b

2

��
(71)

� 1

b � a

"Z b

aCb
2

ln
�
.b � t/ f 0 .t/

�
dt C

Z aCb
2

a
ln
�
.a � t/ f 0 .t/

�
dt

#

:

If f W Œa; b� ! R is convex on Œa; b� ; monotonic nondecreasing on
�
a; aCb

2

�
and

monotonic nonincreasing
�
a; aCb

2

�
; then by taking ˚ .x/ D xq; with q 2 .0; 1/ we

also have

�
1

b � a

Z b

a
f .t/ dt � f

�
a C b

2

��q

(72)

� 1

b � a

"Z b

aCb
2

�
.b � t/ f 0 .t/

�q
dt C

Z aCb
2

a

�
.a � t/ f 0 .t/

�q
dt

#

:

If ˚ W Œ0;1/ ; .0;1/! R is convex (concave) on Œ0;1/ or .0;1/ ; and if we take
f .t/ WD ˇ

ˇt � aCb
2

ˇ
ˇp ; p � 1; then we get from (70)

˚

�
.b � a/p

2p .p C 1/

�
� .�/ 1

b � a

"Z b

aCb
2

˚

"

p .b � t/

�
t � a C b

2

�p�1#
dt (73)

C
Z aCb

2

a
˚

"

.t � a/

�
a C b

2
� t

�p�1#
dt

#

:

Assume that ˚ W R ! R is convex (concave) on R.
Now, if we take f .t/ D 1

t in (70), where t 2 Œa; b� � .0;1/ ; then we have

˚

�
A .a; b/� L .a; b/

A .a; b/L .a; b/

�
(74)

� .�/ 1

b � a

"Z b

aCb
2

˚

�
t � b

t2

�
dt C

Z aCb
2

a
˚
� t � a

t2

�
dt

#

:

If we take f .t/ D � ln t in (70), where t 2 Œa; b� � .0;1/ ; then we have

˚

�
ln

�
A .a; b/

I .a; b/

��
(75)

� .�/ 1

b � a

"Z b

aCb
2

˚

�
t � b

t

�
dt C

Z aCb
2

a
˚
� t � a

t

�
dt

#

:
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If we take f .t/ D tp; p 2 Rn f0;�1g in (70), where t 2 Œa; b� � .0;1/ ; then we
have

˚
�
Lp

p .a; b/ � Ap .a; b/
�

(76)

� .�/ 1

b � a

"Z b

aCb
2

˚
�
p .b � t/ tp�1� dt C

Z aCb
2

a
˚
�
p .a � t/ tp�1� dt

#

:

Perturbed Ostrowski Type Inequalities for Functions
of Bounded Variation

Some Identities

We start with the following identity that will play an important role in the following:

Lemma 1 (Dragomir, 2013 [10]). Let f W Œa; b� ! C be a function of bounded
variation on Œa; b� and x 2 Œa; b� : Then for any 	1 .x/ and 	2 .x/ complex numbers,
we have

f .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/� .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt (77)

D 1

b � a

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�C 1

b � a

Z b

x
.t � b/ d Œf .t/ � 	2 .x/ t� ;

where the integrals in the right-hand side are taken in the Riemann–Stieltjes sense.

Proof. Utilizing the integration by parts formula in the Riemann–Stieltjes integral,
we have

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t� (78)

D .t � a/ Œf .t/ � 	1 .x/ t�jx
a �

Z x

a
Œf .t/ � 	1 .x/ t� dt

D .x � a/ Œf .x/� 	1 .x/ x� �
Z x

a
f .t/ dt C 1

2
	1 .x/

�
x2 � a2

�

D .x � a/ f .x/ � 	1 .x/ x .x � a/�
Z x

a
f .t/ dt C 1

2
	1 .x/

�
x2 � a2

�

D .x � a/ f .x/ �
Z x

a
f .t/ dt � 1

2
.x � a/2 	1 .x/
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and

Z b

x
.t � b/ d Œf .t/ � 	2 .x/ t� (79)

D .t � b/ Œf .t/ � 	2 .x/ t�jb
x �

Z b

x
Œf .t/ � 	2 .x/ t� dt

D .b � x/ Œf .x/ � 	2 .x/ x� �
Z b

x
f .t/ dt C 1

2
	2 .x/

�
b2 � x2

�

D .b � x/ f .x/�
Z b

x
f .t/ dt � .b � x/ 	2 .x/ x C 1

2
	2 .x/

�
b2 � x2

�

D .b � x/ f .x/�
Z b

x
f .t/ dt C 1

2
.b � x/2 	2 .x/ :

By adding the equalities (78) and (79) and dividing by b � a we get the desired
representation (77).

Corollary 11. With the assumption in Lemma 1, we have for any 	 .x/ 2 C that

f .x/C
�

a C b

2
� x

�
	 .x/� 1

b � a

Z b

a
f .t/ dt (80)

D 1

b � a

Z x

a
.t � a/ d Œf .t/ � 	 .x/ t�C 1

b � a

Z b

x
.t � b/ d Œf .t/ � 	 .x/ t� :

We have the following midpoint representation:

Corollary 12. With the assumption in Lemma 1, we have for any 	1; 	2 2 C that

f

�
a C b

2

�
C 1

8
.b � a/ .	2 � 	1/� 1

b � a

Z b

a
f .t/ dt (81)

D 1

b � a

Z aCb
2

a
.t � a/ d Œf .t/ � 	1t�

C 1

b � a

Z b

aCb
2

.t � b/ d Œf .t/ � 	2t� :

In particular, if 	1 D 	2 D 	; then we have the equality

f

�
a C b

2

�
� 1

b � a

Z b

a
f .t/ dt (82)

D 1

b � a

Z aCb
2

a
.t � a/ d Œf .t/ � 	t�C 1

b � a

Z b

aCb
2

.t � b/ d Œf .t/ � 	t� :
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Remark 6. If we take 	 .x/ D 0 in (80) we recapture the Montgomery type identity
established in [2].

Inequalities for Functions of Bounded Variation

The following lemma will be used in the sequel and is of interest in itself as well [1,
p. 177]. For a simple proof, see also [8].

Lemma 2. Let f ; u W Œa; b� ! C. If f is continuous on Œa; b� and u is of bounded
variation on Œa; b� ; then the Riemann–Stieltjes integral

R b
a f .t/ du .t/ exists and

ˇ̌
ˇ
ˇ

Z b

a
f .t/ du .t/

ˇ̌
ˇ
ˇ �

Z b

a
jf .t/j d

 
t_

a

.u/

!

� max
t2Œa;b�

jf .t/j
b_

a

.u/ : (83)

We denote by ` W Œa; b� ! Œa; b� the identity function, namely ` .t/ D t for any
t 2 Œa; b� :

We have the following result:

Theorem 11 (Dragomir, 2013 [10]). Let f W Œa; b� ! C be a function of bounded
variation on Œa; b� and x 2 Œa; b� : Then for any 	1 .x/ and 	2 .x/ complex numbers,
we have the inequality

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (84)

� 1

b � a

"Z x

a

 
x_

t

.f � 	1 .x/ `/

!

dt C
Z b

x

 
t_

x

.f � 	2 .x/ `/
!

dt

#

� 1

b � a

"

.x � a/
x_

a

.f � 	1 .x/ `/C .b � x/
b_

x

.f � 	2 .x/ `/

#

�

8
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:

max

(
x_

a

.f � 	1 .x/ `/ ;
b_

x

.f � 	2 .x/ `/
)


1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

� x_

a

.f � 	1 .x/ `/C
b_

x

.f � 	2 .x/ `/

!

;
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where
d_

c

.g/ denotes the total variation of g on the interval Œc; d� :

Proof. Taking the modulus in (77) and using the property (83) we have

ˇ
ˇ
ˇ̌f .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (85)

� 1

b � a

ˇ
ˇ
ˇ
ˇ

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

ˇ
ˇ
ˇ
ˇ

C 1

b � a

ˇ̌
ˇ
ˇ

Z b

x
.t � b/ d Œf .t/ � 	2 .x/ t�

ˇ̌
ˇ
ˇ

� 1

b � a

Z x

a
.t � a/ d

 
t_

a

.f � 	1 .x/ `/
!

C 1

b � a

Z b

x
.b � t/ d

 
t_

a

.f � 	2 .x/ `/
!

:

Integrating by parts in the Riemann–Stieltjes integral, we have

Z x

a
.t � a/ d

 
t_

a

.f � 	1 .x/ `/

!

D .t � a/
t_

a

.f � 	1 .x/ `/
ˇ
ˇ
ˇ̌
ˇ

x

a

�
Z x

a

 
t_

a

.f � 	1 .x/ `/
!

dt

D .x � a/
x_

a

.f � 	1 .x/ `/�
Z x

a

 
t_

a

.f � 	1 .x/ `/

!

dt

D
Z x

a

 
x_

t

.f � 	1 .x/ `/

!

dt

and

Z b

x
.b � t/ d

 
t_

a

.f � 	2 .x/ `/
!

D .b � t/
t_

a

.f � 	2 .x/ `/

ˇ̌
ˇ
ˇ
ˇ

b

x

C
Z b

x

 
t_

a

.f � 	2 .x/ `/

!

dt

D
Z b

x

 
t_

a

.f � 	2 .x/ `/

!

dt � .b � x/
x_

a

.f � 	2 .x/ `/
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D
Z b

x

 
t_

x

.f � 	2 .x/ `/

!

dt:

Using (85) we deduce the first inequality in (84).
We also have

Z x

a

 
x_

t

.f � 	1 .x/ `/

!

dt � .x � a/
x_

a

.f � 	1 .x/ `/

and

Z b

x

 
t_

x

.f � 	2 .x/ `/

!

dt � .b � x/
b_

x

.f � 	2 .x/ `/ ;

which prove the second inequality in (84).
The last part is obvious.

The following result holds:

Corollary 13. Let f W Œa; b� ! C be a function of bounded variation on Œa; b� and
x 2 Œa; b� : Then for any 	 .x/ a complex number, we have the inequality

ˇ
ˇ
ˇ̌f .x/C

�
a C b

2
� x

�
	 .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (86)

� 1

b � a

"Z x

a

 
x_

t

.f � 	 .x/ `/
!

dt C
Z b

x

 
t_

x

.f � 	 .x/ `/

!

dt

#

� 1

b � a

"

.x � a/
x_

a

.f � 	 .x/ `/C .b � x/
b_

x

.f � 	 .x/ `/
#

�

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

1
2

b_

a

.f � 	 .x/ `/C 1
2

ˇ̌
ˇ
ˇ
ˇ

b_

x

.f � 	 .x/ `/ �
x_

a

.f � 	 .x/ `/
ˇ̌
ˇ
ˇ
ˇ


1
2

C
ˇ
ˇ
ˇ̌ x� aCb

2

b�a

ˇ
ˇ
ˇ̌
� b_

a

.f � 	 .x/ `/ :

Remark 7. Let f W Œa; b� ! C be a function of bounded variation on Œa; b�. Then for
any 	 2 C we have the inequalities

ˇ
ˇ
ˇ̌f
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (87)
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� 1

b � a

2

6
4
Z aCb

2

a

0

B
@

aCb
2_

t

.f � 	`/

1

C
A dt C

Z b

aCb
2

0

B
@

t_

aCb
2

.f � 	`/

1

C
A dt

3

7
5

� 1

2

b_

a

.f � 	`/ :

This is equivalent to

ˇ̌
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (88)

� 1

b � a
inf
	2C

2

6
4
Z aCb

2

a

0

B
@

aCb
2_

t

.f � 	`/

1

C
A dt C

Z b

aCb
2

0

B
@

t_

aCb
2

.f � 	`/

1

C
A dt

3

7
5

� 1

2
inf
	2C

"
b_

a

.f � 	`/

#

:

Inequalities for Lipshitzian Functions

We can state the following result:

Theorem 12 (Dragomir, 2013 [10]). Let f W Œa; b� ! C be a bounded function
on Œa; b� and x 2 .a; b/ : If 	1 .x/ and 	2 .x/ are complex numbers and there exist
the positive numbers L1 .x/ and L2 .x/ such that f � 	1 .x/ ` is Lipschitzian with the
constant L1 .x/ on the interval Œa; x� and f �	2 .x/ ` is Lipschitzian with the constant
L2 .x/ on the interval Œx; b� ; then

ˇ
ˇ
ˇ̌f .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (89)

� 1

2

"
� x � a

b � a

�2
L1 .x/C

�
b � x

b � a

�2
L2 .x/

#

.b � a/
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�

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

"
1
4

C
�

x� aCb
2

b�a

�2#

max fL1 .x/ ;L2 .x/g .b � a/ ;

1
2

h�
x�a
b�a

�2q C �
b�x
b�a

�2q
i1=q �

Lp
1 .x/C Lp

2 .x/
�1=p

.b � a/ ;

p > 1; 1p C 1
q D 1;


1
2

C
ˇ
ˇ
ˇ̌ x� aCb

2

b�a

ˇ
ˇ
ˇ̌
�

L1.x/CL2.x/
2

.b � a/ :

Proof. It is known that if g W Œc; d� ! C is Riemann integrable and u W Œc; d� ! C

is Lipschitzian with the constant L > 0, then the Riemann–Stieltjes integralR d
c g .t/ du .t/ exists and

ˇ
ˇ
ˇ
ˇ

Z d

c
g .t/ du .t/

ˇ
ˇ
ˇ
ˇ � L

Z d

c
jg .t/j dt: (90)

Taking the modulus in (77) and using the property (90) we have

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ

� 1

b � a

ˇ̌
ˇ
ˇ

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

ˇ̌
ˇ
ˇ

C 1

b � a

ˇ
ˇ
ˇ̌
Z b

x
.t � b/ d Œf .t/ � 	2 .x/ t�

ˇ
ˇ
ˇ̌

� 1

b � a


L1 .x/

Z x

a
.t � a/ dt C L2 .x/

Z b

x
.b � t/ dt

�

D L1 .x/ .x � a/2 C L2 .x/ .b � x/2

2 .b � a/

D 1

2

"

L1 .x/
� x � a

b � a

�2 C L2 .x/

�
b � x

b � a

�2#

.b � a/ ;

and the first inequality in (89) is proved.
By Hölder’s inequality we have

L1 .x/
� x � a

b � a

�2 C L2 .x/

�
b � x

b � a

�2
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�

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

h�
x�a
b�a

�2 C �
b�x
b�a

�2i
max fL1 .x/ ;L2 .x/g

h�
x�a
b�a

�2q C �
b�x
b�a

�2q
i1=q �

Lp
1 .x/C Lp

2 .x/
�1=p

;

p > 1; 1p C 1
q D 1

max
n�

x�a
b�a

�2
;
�

b�x
b�a

�2o
ŒL1 .x/C L2 .x/� ;

which proves, upon simple calculations, the last part of the inequality (89).

Corollary 14. Let f W Œa; b� ! C be a bounded function on Œa; b� and x 2 .a; b/ :
If 	 .x/ is a complex number and there exist the positive number L .x/ such that
f � 	 .x/ ` is Lipschitzian with the constant L .x/ on the interval Œa; b�, then

ˇ
ˇ
ˇ̌f .x/C

�
a C b

2
� x

�
	 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (91)

�
2

41
4

C
 

x � aCb
2

b � a

!23

5L .x/ .b � a/ :

Remark 8. If 	 is a complex number and there exists the positive number L such
that f � 	` is Lipschitzian with the constant L on the interval Œa; b�, then

ˇ̌
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ � 1

4
L .b � a/ : (92)

Inequalities for Monotonic Functions

Now, the case of monotonic integrators is as follows:

Theorem 13 (Dragomir, 2013 [10]). Let f W Œa; b� ! R be a bounded function on
Œa; b� and x 2 .a; b/ : If 	1 .x/ and 	2 .x/ are real numbers such that f � 	1 .x/ `
is monotonic nondecreasing on the interval Œa; x� and f � 	2 .x/ ` is monotonic
nondecreasing on the interval Œx; b� ; then

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (93)

� 1

b � a


.2x � a � b/ f .x/C

Z b

a
sgn .t � x/ f .t/ dt
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�1
2

h
	1 .x/ .x � a/2 C 	2 .x/ .b � x/2

i�

� 1

b � a
f.x � a/ Œf .x/ � f .a/� 	1 .x/ .x � a/�

C .b � x/ Œf .b/� f .x/� 	2 .x/ .b � x/�g

�

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

1
2
Œf .b/� f .a/� 	1 .x/ .x � a/� 	2 .x/ .b � x/�

C
ˇ
ˇ
ˇf .x/ � f .a/Cf .b/

2
� 1

2
	1 .x/ .x � a/C 1

2
	2 .x/ .b � x/

ˇ
ˇ
ˇ ;


1
2

C
ˇ
ˇ̌
ˇ

x� aCb
2

b�a

ˇ
ˇ̌
ˇ

�


 Œf .b/� f .a/ � 	1 .x/ .x � a/� 	2 .x/ .b � x/� :

Proof. It is known that if g W Œc; d� ! C is continuous and u W Œc; d� ! C is
monotonic nondecreasing, then the Riemann–Stieltjes integral

R d
c g .t/ du .t/ exists

and

ˇ̌
ˇ
ˇ

Z d

c
g .t/ du .t/

ˇ̌
ˇ
ˇ �

Z d

c
jg .t/j du .t/ : (94)

Taking the modulus in (77) and using the property (94) we have

ˇ̌
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/ � .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (95)

� 1

b � a

ˇ
ˇ
ˇ̌
Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

ˇ
ˇ
ˇ̌

C 1

b � a

ˇ
ˇ
ˇ
ˇ

Z b

x
.t � b/ d Œf .t/ � 	2 .x/ t�

ˇ
ˇ
ˇ
ˇ

� 1

b � a

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

C 1

b � a

Z b

x
.b � t/ d Œf .t/ � 	2 .x/ t� :

Integrating by parts in the Riemann–Stieltjes integral we have

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

D .t � a/ Œf .t/ � 	1 .x/ t�jxa �
Z x

a
Œf .t/ � 	1 .x/ t� dt
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D .x � a/ Œf .x/� 	1 .x/ x� �
Z x

a
Œf .t/ � 	1 .x/ t� dt

D .x � a/ f .x/ � 	1 .x/ x .x � a/�
Z x

a
f .t/ dt C 	1 .x/

x2 � a2

2

D .x � a/ f .x/ �
Z x

a
f .t/ dt � 1

2
	1 .x/ .x � a/2

and

Z b

x
.b � t/ d Œf .t/ � 	2 .x/ t�

D .b � t/ Œf .t/ � 	2 .x/ t�jb
x C

Z b

x
Œf .t/ � 	2 .x/ t� dt

D
Z b

x
f .t/ dt � 	2 .x/

Z b

x
tdt � .b � x/ Œf .x/� 	2 .x/ x�

D
Z b

x
f .t/ dt � 	2 .x/

b2 � x2

2
� .b � x/ f .x/C .b � x/ 	2 .x/ x

D
Z b

x
f .t/ dt � .b � x/ f .x/ � 1

2
	2 .x/ .b � x/2 :

If we add these equalities, we get

Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�C

Z b

x
.b � t/ d Œf .t/ � 	2 .x/ t�

D .x � a/ f .x/�
Z x

a
f .t/ dt � 1

2
	1 .x/ .x � a/2

C
Z b

x
f .t/ dt � .b � x/ f .x/� 1

2
	2 .x/ .b � x/2

D .2x � a � b/ f .x/C
Z b

a
sgn .t � x/ f .t/ dt

� 1

2

h
	1 .x/ .x � a/2 C 	2 .x/ .b � x/2

i

and by (95) we get the first inequality in (93).
Now, since f � 	1 .x/ ` is monotonic nondecreasing on the interval Œa; x�, then
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Z x

a
.t � a/ d Œf .t/ � 	1 .x/ t�

� .x � a/ Œf .x/ � 	1 .x/ x � f .a/C 	1 .x/ a�

D .x � a/ Œf .x/ � f .a/� 	1 .x/ .x � a/�

and, since f � 	2 .x/ ` is monotonic nondecreasing on the interval Œx; b� ; then also

Z b

x
.b � t/ d Œf .t/ � 	2 .x/ t�

� .b � x/ Œf .b/� 	2 .x/ b � f .x/C 	2 .x/ x�

D .b � x/ Œf .b/� f .x/ � 	2 .x/ .b � x/� :

These prove the second inequality in (93).
The last part follows by the properties of maximum and the details are omitted.

Corollary 15. Let f W Œa; b� ! R be a bounded function on Œa; b� and x 2 .a; b/ :
If 	 .x/ is a real number such that f � 	 .x/ ` is monotonic nondecreasing on the
interval Œa; b�, then

ˇ̌
ˇ
ˇf .x/C

�
a C b

2
� x

�
	 .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (96)

� 1

b � a


.2x � a � b/ f .x/C

Z b

a
sgn .t � x/ f .t/ dt

�
2

41
4

C
 

x � aCb
2

b � a

!23

5 .b � a/2 	 .x/

3

5

� 1

b � a
f.x � a/ Œf .x/� f .a/� 	 .x/ .x � a/�

C .b � x/ Œf .b/� f .x/ � 	 .x/ .b � x/�g
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�

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

f .b/�f .a/
2

� 1
2
	 .x/ .b � a/

C
ˇ
ˇ̌f .x/� f .a/Cf .b/

2
� 1

2
	 .x/ .2x � a � b/

ˇ
ˇ̌
;


1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

�


 Œf .b/� f .a/� 	 .x/ .b � a/� :

Remark 9. If 	 is a real number such that f �	` is monotonic nondecreasing on the
interval Œa; b�, then

ˇ̌
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (97)

� 1

b � a

Z b

a
sgn

�
t � a C b

2

�
f .t/ dt � 1

4
	 .b � a/2

�

� 1

2
Œf .b/ � f .a/� 	 .b � a/� :

Some Perturbed Ostrowski Type Inequalities for Absolutely
Continuous Functions

Some Identities

We start with the following identity that will play an important role in the following:

Lemma 3 (Dragomir, 2013 [11]). Let f W Œa; b� ! C be an absolutely continuous
on Œa; b� and x 2 Œa; b� : Then for any 	1 .x/ and 	2 .x/ complex numbers, we have

f .x/C 1

2 .b � a/

h
.b � x/2 	2 .x/� .x � a/2 	1 .x/

i
� 1

b � a

Z b

a
f .t/ dt (98)

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � 	1 .x/

�
dt C 1

b � a

Z b

x
.t � b/

�
f 0 .t/ � 	2 .x/

�
dt;

where the integrals in the right-hand side are taken in the Lebesgue sense.

Proof. Utilizing the integration by parts formula in the Lebesgue integral, we have
Z x

a
.t � a/

�
f 0 .t/ � 	1 .x/

�
dt (99)

D .t � a/ Œf .t/ � 	1 .x/ t�jx
a �

Z x

a
Œf .t/ � 	1 .x/ t� dt
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D .x � a/ Œf .x/� 	1 .x/ x� �
Z x

a
f .t/ dt C 1

2
	1 .x/

�
x2 � a2

�

D .x � a/ f .x/ � 	1 .x/ x .x � a/�
Z x

a
f .t/ dt C 1

2
	1 .x/

�
x2 � a2

�

D .x � a/ f .x/ �
Z x

a
f .t/ dt � 1

2
.x � a/2 	1 .x/

and

Z b

x
.t � b/

�
f 0 .t/ � 	2 .x/

�
dt (100)

D .t � b/ Œf .t/ � 	2 .x/ t�jb
x �

Z b

x
Œf .t/ � 	2 .x/ t� dt

D .b � x/ Œf .x/ � 	2 .x/ x� �
Z b

x
f .t/ dt C 1

2
	2 .x/

�
b2 � x2

�

D .b � x/ f .x/�
Z b

x
f .t/ dt � .b � x/ 	2 .x/ x C 1

2
	2 .x/

�
b2 � x2

�

D .b � x/ f .x/�
Z b

x
f .t/ dt C 1

2
.b � x/2 	2 .x/ :

If we add the identities (99) and (100) and divide by b � a, we deduce the desired
identity (98).

Corollary 16. With the assumption in Lemma 3, we have for any 	 .x/ 2 C that

f .x/C
�

a C b

2
� x

�
	 .x/� 1

b � a

Z b

a
f .t/ dt (101)

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � 	 .x/� dt C 1

b � a

Z b

x
.t � b/

�
f 0 .t/ � 	 .x/� dt:

Remark 10. If we take 	 .x/ D 0 in (101), then we get Montgomery’s identity for
absolutely continuous functions, i.e.

f .x/ � 1

b � a

Z b

a
f .t/ dt (102)

D 1

b � a

Z x

a
.t � a/ f 0 .t/ dt C 1

b � a

Z b

x
.t � b/ f 0 .t/ dt;

for x 2 Œa; b� :
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We have the following midpoint representation:

Corollary 17. With the assumption in Lemma 3, we have for any 	1; 	2 2 C that

f

�
a C b

2

�
C 1

8
.b � a/ .	2 � 	1/� 1

b � a

Z b

a
f .t/ dt (103)

D 1

b � a

Z aCb
2

a
.t � a/

�
f 0 .t/ � 	1

�
dt C 1

b � a

Z b

aCb
2

.t � b/
�
f 0 .t/ � 	2

�
dt:

In particular, if 	1 D 	2 D 	; then we have the equality

f

�
a C b

2

�
� 1

b � a

Z b

a
f .t/ dt (104)

D 1

b � a

Z aCb
2

a
.t � a/

�
f 0 .t/ � 	

�
dt C 1

b � a

Z b

aCb
2

.t � b/
�
f 0 .t/ � 	� dt:

Remark 11. The identity (98) has many particular cases of interest.
If we assume that the derivatives f 0C .a/, f 0� .b/ and f 0 .x/ exist and are finite, then

by taking

	1 .x/ D f 0C .a/C f 0 .x/
2

and 	2 .x/ D f 0 .x/C f 0� .b/
2

in (98) we get

f .x/C 1

2

�
a C b

2
� x

�
f 0 .x/ � 1

b � a

Z b

a
f .t/ dt (105)

C 1

4 .b � a/

h
.b � x/2 f 0� .b/� .x � a/2 f 0C .a/

i

D 1

b � a

Z x

a
.t � a/


f 0 .t/ � f 0C .a/C f 0 .x/

2

�
dt

C 1

b � a

Z b

x
.t � b/


f 0 .t/ � f 0 .x/C f 0� .b/

2

�
dt:

In particular, we have

f

�
a C b

2

�
C 1

16
.b � a/

�
f 0� .b/� f 0C .a/

� � 1

b � a

Z b

a
f .t/ dt (106)

D 1

b � a

Z aCb
2

a
.t � a/

"

f 0 .t/ � f 0C .a/C f 0 � aCb
2

�

2

#

dt

C 1

b � a

Z b

aCb
2

.t � b/

"

f 0 .t/ � f 0 � aCb
2

�C f 0� .b/
2

#

dt:
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Inequalities for Bounded Derivatives

Now, for �; � 2 C and Œa; b� an interval of real numbers, define the sets of complex-
valued functions

NUŒa;b� .�; � /

WD
n
f W Œa; b� ! Cj Re

h
.� � f .t//

�
f .t/ � �

�i
� 0 for almost every t 2 Œa; b�

o

and

N�Œa;b� .�; � / WD



f W Œa; b� ! Cj
ˇ
ˇ
ˇ
ˇf .t/ � � C �

2

ˇ
ˇ
ˇ
ˇ � 1

2
j� � � j for a:e: t 2 Œa; b�

�
:

The following representation result may be stated.

Proposition 3 (Dragomir, 2013 [11]). For any �; � 2 C, � ¤ �; we have that
NUŒa;b� .�; � / and N�Œa;b� .�; � / are nonempty, convex, and closed sets and

NUŒa;b� .�; � / D N�Œa;b� .�; � / : (107)

Proof. We observe that for any z 2 C we have the equivalence

ˇ̌
ˇ
ˇz � � C �

2

ˇ̌
ˇ
ˇ � 1

2
j� � � j

if and only if

Re Œ.� � z/ .Nz � N�/� � 0:

This follows by the equality

1

4
j� � � j2 �

ˇ
ˇ̌
ˇz � � C �

2

ˇ
ˇ̌
ˇ

2

D Re Œ.� � z/ .Nz � N�/�

that holds for any z 2 C.
The equality (107) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that

Corollary 18. For any �; � 2 C, � ¤ �; we have that

NUŒa;b� .�; � / D ff W Œa; b� ! C j .Re� � Re f .t// .Re f .t/ � Re �/ (108)

C .Im� � Im f .t// .Im f .t/ � Im �/ � 0 for a:e: t 2 Œa; b�g :
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Now, if we assume that Re .� / � Re .�/ and Im .� / � Im .�/ ; then we can
define the following set of functions as well:

NSŒa;b� .�; � / WD ff W Œa; b� ! C j Re .� / � Re f .t/ � Re .�/ (109)

and Im .� / � Im f .t/ � Im .�/ for a:e: t 2 Œa; b�g :

One can easily observe that NSŒa;b� .�; � / is closed, convex and

; ¤ NSŒa;b� .�; � / � NUŒa;b� .�; � / : (110)

Theorem 14 (Dragomir, 2013 [11]). Let f W Œa; b� ! C be an absolutely
continuous on Œa; b� and x 2 .a; b/ : Suppose that �i; �i 2 C with �i ¤ �i; i D 1; 2

and f 0 2 NUŒa;x� .�1; �1/\ NUŒx;b� .�2; �2/, then we have

ˇ̌
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt (111)

C 1

2 .b � a/


.b � x/2

�2 C �2

2
� .x � a/2

�1 C �1

2

�ˇˇ
ˇ̌

� 1

4

"

j�1 � �1j
� x � a

b � a

�2 C j�2 � �2j
�

b � x

b � a

�2#

.b � a/

� 1

4
.b � a/




8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

"
1
4

C
�

x� aCb
2

b�a

�2#

max fj�1 � �1j ; j�2 � �2jg :

h�
x�a
b�a

�2p C �
b�x
b�a

�2p
i1=p

Œj�1 � �1jq C j�2 � �2jq�
1=q

p > 1; 1p C 1
q D 1;


1
2

C
ˇ
ˇ̌
ˇ

x� aCb
2

b�a

ˇ
ˇ̌
ˇ

�
Œj�1 � �1j C j�2 � �2j� :

Proof. Since f 0 2 NUŒa;x� .�1; �1/\ NUŒx;b� .�2; �2/ ; then by taking the modulus in (98)
for 	1 .x/ D �1C�1

2
and 	2 .x/ D �2C�2

2
we get

ˇ̌
ˇ
ˇf .x/� 1

b � a

Z b

a
f .t/ dt

C 1

2 .b � a/


.b � x/2

�2 C �2

2
� .x � a/2

�1 C �1

2

�ˇˇ
ˇ̌
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� 1

b � a

ˇ
ˇ
ˇ̌
Z x

a
.t � a/


f 0 .t/ � �1 C �1

2

�
dt

ˇ
ˇ
ˇ̌

C 1

b � a

ˇ
ˇ
ˇ
ˇ

Z b

x
.t � b/


f 0 .t/ � �2 C �2

2

�
dt

ˇ
ˇ
ˇ
ˇ

� 1

b � a

Z x

a
.t � a/

ˇ̌
ˇ
ˇf

0 .t/ � �1 C �1

2

ˇ̌
ˇ
ˇ dt

C 1

b � a

Z b

x
.t � b/

ˇ
ˇ̌
ˇf

0 .t/ � �2 C �2

2

ˇ
ˇ̌
ˇ dt

� 1

b � a

j�1 � �1j
2

Z x

a
.t � a/ dt C 1

b � a

j�2 � �2j
2

Z b

x
.b � t/ dt

D 1

4

"

j�1 � �1j
� x � a

b � a

�2 C j�2 � �2j
�

b � x

b � a

�2#

.b � a/

and the first inequality in (111) is proved.
The last part follows by Hölder’s inequality

mn C pq � .m˛ C p˛/1=˛
�
nˇ C qˇ

�1=ˇ
;

where m; n; p; q � 0 and ˛ > 1 with 1
˛

C 1
ˇ

D 1:

Corollary 19. Let f W Œa; b� ! C be an absolutely continuous on Œa; b� and x 2
.a; b/ : Suppose that �; � 2 C with � ¤ �; and f 0 2 NUŒa;b� .�; � /, then we have

ˇ̌
ˇ
ˇf .x/C

�
a C b

2
� x

�
� C �

2
� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (112)

� 1

2
j� � � j

2

41
4

C
 

x � aCb
2

b � a

!23

5 .b � a/ :

In particular, we have

ˇ
ˇ
ˇ̌f
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ � 1

8
j� � � j .b � a/ : (113)

Remark 12. If the derivative f 0 W Œa; b� ! R is bounded above and below, that is,
there exist the constants M > m such that

�1 < m � f 0 .t/ � M < 1 for a:e: t 2 Œa; b� ;
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then we recapture from (112) the inequality [7]

ˇ
ˇ̌
ˇf .x/C

�
a C b

2
� x

�
M C m

2
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ

� 1

2
.M � m/

2

41
4

C
 

x � aCb
2

b � a

!23

5 .b � a/ :

Remark 13. Let f W Œa; b� ! C be an absolutely continuous on Œa; b� : Suppose that
�i; �i 2 C with �i ¤ �i; i D 1; 2 and f 0 2 NUh

a; aCb
2

i .�1; �1/\ NUh
aCb
2 ;b

i .�2; �2/, then

we have from (111) that

ˇ
ˇ̌
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt C 1

8
.b � a/

�
�2 C �2

2
� �1 C �1

2

�ˇˇ̌
ˇ (114)

� 1

16
Œj�1 � �1j C j�2 � �2j� .b � a/ :

Inequalities for Derivatives of Bounded Variation

Assume that the function f W I ! C is differentiable on the interior of I; denoted VI;
and Œa; b� � VI: Then, as in (105), we have the equality

f .x/C 1

2

�
a C b

2
� x

�
f 0 .x/ � 1

b � a

Z b

a
f .t/ dt (115)

C 1

4 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i

D 1

b � a

Z x

a
.t � a/


f 0 .t/ � f 0 .a/C f 0 .x/

2

�
dt

C 1

b � a

Z b

x
.t � b/


f 0 .t/ � f 0 .x/C f 0 .b/

2

�
dt;

for any x 2 Œa; b� :
Theorem 15 (Dragomir, 2013 [11]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: If the derivative f 0 W VI ! C is of bounded variation on Œa; b� ; then
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ˇ
ˇ̌
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt C 1

2

�
a C b

2
� x

�
f 0 .x/ (116)

C 1

4 .b � a/

h
.b � x/2 f 0 .b/ � .x � a/2 f 0 .a/

iˇˇ
ˇ
ˇ

� 1

4

"
� x � a

b � a

�2 x_

a

�
f 0�C

�
b � x

b � a

�2 b_

x

�
f 0�
#

.b � a/

� 1

4
.b � a/
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

"
1
4

C
�

x� aCb
2

b�a

�2#"
1
2

b_

a

.f 0/C 1
2

ˇ
ˇ̌
ˇ
ˇ

x_

a

.f 0/ �
b_

x

.f 0/

ˇ
ˇ̌
ˇ
ˇ

#

;

h�
x�a
b�a

�2p C �
b�x
b�a

�2p
i1=p

""
x_

a

.f 0/
#q

C
"

b_

x

.f 0/
#q#1=q

p > 1; 1p C 1
q D 1;


1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

� b_

a

.f 0/ ;

for any x 2 Œa; b� :
Proof. Taking the modulus in (115) we have

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt C 1

2

�
a C b

2
� x

�
f 0 .x/ (117)

C 1

4 .b � a/

h
.b � x/2 f 0 .b/ � .x � a/2 f 0 .a/

iˇˇ
ˇ
ˇ

� 1

b � a

ˇ
ˇ̌
ˇ

Z x

a
.t � a/


f 0 .t/ � f 0 .a/C f 0 .x/

2

�
dt

ˇ
ˇ̌
ˇ

C 1

b � a

ˇ
ˇ
ˇ
ˇ

Z b

x
.t � b/


f 0 .t/ � f 0 .x/C f 0 .b/

2

�
dt

ˇ
ˇ
ˇ
ˇ

� 1

b � a

Z x

a
.t � a/

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .a/C f 0 .x/
2

ˇ
ˇ
ˇ
ˇ dt

C 1

b � a

Z b

x
.b � t/

ˇ
ˇ̌
ˇf

0 .t/ � f 0 .x/C f 0 .b/
2

ˇ
ˇ̌
ˇ dt:
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Since f 0 W VI ! C is of bounded variation on Œa; x� and Œx; b� ; then

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .a/C f 0 .x/
2

ˇ
ˇ
ˇ
ˇ D jf 0 .t/ � f 0 .a/C f 0 .t/ � f 0 .x/j

2

� 1

2

�ˇˇf 0 .t/ � f 0 .a/
ˇ
ˇC ˇ

ˇf 0 .x/� f 0 .t/
ˇ
ˇ�

� 1

2

x_

a

�
f 0�

for any t 2 Œa; x� and, similarly,

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .x/C f 0 .b/
2

ˇ
ˇ
ˇ
ˇ � 1

2

b_

x

�
f 0�

for any t 2 Œx; b� :
Then

Z x

a
.t � a/

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .a/C f 0 .x/
2

ˇ
ˇ
ˇ
ˇ dt � 1

2

x_

a

�
f 0�
Z x

a
.t � a/ dt

D 1

4
.x � a/2

x_

a

�
f 0�

and

Z b

x
.b � t/

ˇ̌
ˇ
ˇf

0 .t/ � f 0 .x/C f 0 .b/
2

ˇ̌
ˇ
ˇ dt � 1

2

b_

x

�
f 0�
Z b

x
.b � t/ dt

D 1

4
.b � x/2

b_

x

�
f 0�

and by (117) we get the desired inequality (116).
The last part follows by Hölder’s inequality

mn C pq � .m˛ C p˛/1=˛
�
nˇ C qˇ

�1=ˇ
;

where m; n; p; q � 0 and ˛ > 1 with 1
˛

C 1
ˇ

D 1:

Corollary 20. Let f W I ! C be a differentiable function on VI and Œa; b� � VI: If the

derivative f 0 W VI ! C is of bounded variation on Œa; b� ; then
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ˇ
ˇ̌
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt C 1

16
.b � a/

�
f 0 .b/� f 0 .a/

�
ˇ
ˇ̌
ˇ (118)

� 1

16
.b � a/

b_

a

�
f 0� :

Remark 14. If p 2 .a; b/ is a median point in bounded variation for the derivative,

i.e.
p_

a

.f 0/ D
b_

p

.f 0/ ; then under the assumptions of Theorem 15, we have

ˇ
ˇ
ˇ
ˇf .p/� 1

b � a

Z b

a
f .t/ dt C 1

2

�
a C b

2
� p

�
f 0 .p/ (119)

C 1

4 .b � a/

h
.b � p/2 f 0 .b/� .p � a/2 f 0 .a/

iˇˇ
ˇ
ˇ

� 1

8
.b � a/

2

41
4

C
 

p � aCb
2

b � a

!23

5
b_

a

�
f 0� :

Inequalities for Lipschitzian Derivatives

We say that v W Œa; b� ! C is Lipschitzian with the constant L > 0; if it satisfies the
condition

jv .t/ � v .s/j � L jt � sj for any t; s 2 Œa; b� :

Theorem 16 (Dragomir, 2013 [11]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: Let x 2 .a; b/ : If the derivative f 0 W VI ! C is Lipschitzian with the
constant K1 .x/ on Œa; x� and constant K2 .x/ on Œx; b� ; then

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt C 1

2

�
a C b

2
� x

�
f 0 .x/ (120)

C 1

4 .b � a/

h
.b � x/2 f 0 .b/ � .x � a/2 f 0 .a/

iˇˇ̌
ˇ

� 1

8

"
� x � a

b � a

�3
K1 .x/C

�
b � x

b � a

�3
K2 .x/

#

.b � a/2

� 1

8
.b � a/2
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

h�
x�a
b�a

�3 C �
b�x
b�a

�3i
max fK1 .x/ ;K2 .x/g ;

h�
x�a
b�a

�2p C �
b�x
b�a

�2p
i1=p �

Kq
1 .x/C Kq

2 .x/
�1=q

p > 1; 1p C 1
q D 1;


1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

�3
ŒK1 .x/C K2 .x/� :

Proof. Since f 0 W VI ! C is Lipschitzian with the constant K1 .x/ on Œa; x� and
constant K2 .x/ on Œx; b� ; then

ˇ
ˇ̌
ˇf

0 .t/ � f 0 .a/C f 0 .x/
2

ˇ
ˇ̌
ˇ D jf 0 .t/ � f 0 .a/C f 0 .t/ � f 0 .x/j

2

� 1

2

�ˇ̌
f 0 .t/ � f 0 .a/

ˇ̌C ˇ̌
f 0 .x/� f 0 .t/

ˇ̌�

� 1

2
K1 .x/ Œjt � aj C jx � tj�

D 1

2
K1 .x/ .x � a/

for any t 2 Œa; x� and, similarly,

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .x/C f 0 .b/
2

ˇ
ˇ
ˇ
ˇ � 1

2
K2 .x/ Œjt � xj C jb � tj�

D 1

2
K2 .x/ .b � x/

for any t 2 Œx; b� :
Then

Z x

a
.t � a/

ˇ
ˇ
ˇ̌f 0 .t/ � f 0 .a/C f 0 .x/

2

ˇ
ˇ
ˇ̌ dt � 1

2
K1 .x/ .x � a/

Z x

a
.t � a/ dt

D 1

8
.x � a/3 K1 .x/

and

Z b

x
.b � t/

ˇ
ˇ
ˇ
ˇf

0 .t/ � f 0 .x/C f 0 .b/
2

ˇ
ˇ
ˇ
ˇ dt � 1

2
K2 .x/ .b � x/

Z b

x
.b � t/ dt

D 1

8
.b � x/3 K2 .x/ :
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Making use of the inequality (117) we deduce the first bound in (120).
The second part is obvious.

Corollary 21. Let f W I ! C be a differentiable function on VI and Œa; b� � VI: If the

derivative f 0 W VI ! C is Lipschitzian with the constant K on Œa; b�, then

ˇ
ˇ
ˇ
ˇf .x/ � 1

b � a

Z b

a
f .t/ dt C 1

2

�
a C b

2
� x

�
f 0 .x/ (121)

C 1

4 .b � a/

h
.b � x/2 f 0 .b/ � .x � a/2 f 0 .a/

iˇ̌
ˇ
ˇ

� 1

8

"
� x � a

b � a

�3 C
�

b � x

b � a

�3#

K .b � a/2

for any x 2 Œa; b� :
In particular, we have

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
C 1

16
.b � a/

�
f 0 .b/� f 0 .a/

� � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (122)

� 1

32
K .b � a/2 :

Other Perturbed Ostrowski Type Inequalities for Absolutely
Continuous Function

Inequalities for Derivatives of Bounded Variation

Assume that the function f W I ! C is differentiable on the interior of I; denoted VI;
and Œa; b� � VI: Then, we have the equality [12]

f .x/C
�

a C b

2
� x

�
f 0 .x/ � 1

b � a

Z b

a
f .t/ dt (123)

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � f 0 .x/

�
dt C 1

b � a

Z b

x
.t � b/

�
f 0 .t/ � f 0 .x/

�
dt

for any x 2 Œa; b� :
We have the following result:

Theorem 17 (Dragomir, 2013 [12]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: If the derivative f 0 W VI ! C is of bounded variation on Œa; b� ; then
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ˇ
ˇ̌
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (124)

� 1

b � a

"Z x

a
.t � a/

x_

t

�
f 0� dt C

Z b

x
.b � t/

t_

x

�
f 0� dt

#

� 1

2
.b � a/

"
� x � a

b � a

�2 x_

a

�
f 0� dt C

�
b � x

b � a

�2 b_

x

�
f 0�
#

� 1

2
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1
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;
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x_
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.f 0/
#q

C
"

b_

x

.f 0/
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p > 1; 1p C 1
q D 1;


1
2

C
ˇ
ˇ̌
ˇ

x� aCb
2

b�a

ˇ
ˇ̌
ˇ

� b_

a

.f 0/ ;

for any x 2 Œa; b� :
Proof. Taking the modulus in (123) we have

ˇ
ˇ̌
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (125)

� 1

b � a

ˇ
ˇ
ˇ
ˇ

Z x

a
.t � a/

�
f 0 .t/ � f 0 .x/

�
dt

ˇ
ˇ
ˇ
ˇ

C 1

b � a

ˇ
ˇ
ˇ
ˇ

Z b

x
.t � b/

�
f 0 .t/ � f 0 .x/

�
dt

ˇ
ˇ
ˇ
ˇ

� 1

b � a

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt

C 1

b � a

Z b

x
.b � t/

ˇ̌
f 0 .t/ � f 0 .x/

ˇ̌
dt:
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Since the derivative f 0 W VI ! C is of bounded variation on Œa; x� and Œx; b� ; then

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ �

x_

t

�
f 0� for t 2 Œa; x�

and

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ �

t_

x

�
f 0� for t 2 Œx; b� :

Therefore
Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt �

Z x

a
.t � a/

x_

t

�
f 0� dt

� 1

2
.x � a/2

x_

a

�
f 0� dt

and

Z b

x
.b � t/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt �

Z b

x
.b � t/

t_

x

�
f 0� dt

� 1

2
.b � x/2

b_

x

�
f 0� ;

which, by (125) produce the first two inequalities in (124).
The last part follows by Hölder’s inequality

mn C pq � .m˛ C p˛/1=˛
�
nˇ C qˇ

�1=ˇ
;

where m; n; p; q � 0 and ˛ > 1 with 1
˛

C 1
ˇ

D 1:

Corollary 22. With the assumptions of Theorem 17, we have

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (126)

� 1

b � a

2

6
4
Z aCb

2

a
.t � a/

aCb
2_

t

�
f 0� dt C

Z b

aCb
2

.b � t/
t_

aCb
2

�
f 0� dt

3

7
5

� 1

8
.b � a/

b_

a

�
f 0� dt:
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Remark 15. If p 2 .a; b/ is a median point in bounded variation for the derivative,

i.e.
p_

a

.f 0/ D
b_

p

.f 0/ ; then under the assumptions of Theorem 17 we have

ˇ
ˇ
ˇ̌f .p/C

�
a C b

2
� p

�
f 0 .p/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (127)

� 1

b � a

"Z p

a
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p_

t

�
f 0� dt C

Z b

p
.b � t/

t_

p

�
f 0� dt

#

� 1

4
.b � a/

2

41
4

C
 

p � aCb
2

b � a

!23

5
b_

a

�
f 0� :

Inequalities for Lipschitzian Derivatives

We start with the following result.

Theorem 18 (Dragomir, 2013 [12]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: Let x 2 .a; b/ : If ˛i > �1 and L˛i > 0 with i D 1; 2 are such that

ˇ̌
f 0 .t/ � f 0 .x/

ˇ̌ � L˛1 .x � t/˛1 for any t 2 Œa; x/ (128)

and
ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ � L˛2 .t � x/˛2 for any t 2 .x; b�; (129)

then we have
ˇ
ˇ
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (130)

� 1

b � a


L˛1

.˛1 C 1/ .˛1 C 2/
.x � a/˛1C2 C L˛2

.˛2 C 1/ .˛2 C 2/
.b � x/˛2C2

�
:

Proof. Taking the modulus in (123) we have

ˇ̌
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (131)

� 1

b � a

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt

C 1

b � a

Z b

x
.b � t/

ˇ̌
f 0 .t/ � f 0 .x/

ˇ̌
dt:
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Using the properties (128) and (129) we have

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt � L˛1

Z x

a
.t � a/ .x � t/˛1 dt

D L˛1 .x � a/˛1C2
Z 1

0

u .1 � u/˛1 du

D L˛1 .x � a/˛1C2
Z 1

0

u˛1 .1 � u/ du

D 1

.˛1 C 1/ .˛1 C 2/
L˛1 .x � a/˛1C2

and

Z b

x
.b � t/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt � L˛2

Z b

x
.b � t/ .t � x/˛2 dt

D 1

.˛2 C 1/ .˛2 C 2/
L˛2 .b � x/˛2C2 :

Utilizing (131) we get the desired result (130).

Corollary 23. Let f W I ! C be a differentiable function on VI and Œa; b� � VI: If the
derivative is f 0 of r-H-Hölder type on Œa; b� ; i.e. we have the condition

ˇ
ˇf 0 .t/ � f 0 .s/

ˇ
ˇ � H jt � sjr

for any t; s 2 Œa; b� ; where r 2 .0; 1� and H > 0 are given, then

ˇ
ˇ
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (132)

� H

.r C 1/ .r C 2/

"
� x � a

b � a

�rC2 C
�

b � x

b � a

�rC2#
.b � a/rC1 ;

for any x 2 Œa; b� :
In particular, if f 0 is Lipschitzian with the constant L > 0; then

ˇ
ˇ
ˇ̌f .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (133)

� 1

6
L

"
� x � a

b � a

�3 C
�

b � x

b � a

�3#

.b � a/2 ;

for any x 2 Œa; b� :
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Inequalities for Differentiable Convex Functions

The case of convex functions is as follows:

Theorem 19 (Dragomir, 2013 [12]). Let f W I ! C be a differentiable convex
function on VI and Œa; b� � VI: Then for any x 2 Œa; b� we have

0 � 1

b � a

Z b

a
f .t/ dt � f .x/�

�
a C b

2
� x

�
f 0 .x/ �

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

I1 .x/

I2 .x/

I3 .x/

(134)

where

I1 .x/ WD .b � x/ f .b/C .x � a/ f .a/

b � a
� f .x/� 2f 0 .x/

�
a C b

2
� x

�
;

I2 .x/ WD 1

2

f 0 .b/ .b � x/2 � f 0 .a/ .x � a/2

b � a
� f 0 .x/

�
a C b

2
� x

�

and

I3 .x/ WD 1

2


f .b/ .b � x/C f .a/ .x � a/

b � a
� f .x/

�
� f 0 .x/

�
a C b

2
� x

�
:

Proof. We have the equality

1

b � a

Z b

a
f .t/ dt � f .x/ �

�
a C b

2
� x

�
f 0 .x/ (135)

D 1

b � a

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt

for any x 2 Œa; b� :
Since f is a differentiable convex function on VI; then f 0 is monotonic nondecreas-

ing on VI and then

Z x

a
.t � a/

�
f 0 .x/� f 0 .t/

�
dt � 0

and

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt � 0;
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which proves the first inequality in (134).
We have

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt � .x � a/

Z x

a

�
f 0 .x/� f 0 .t/

�
dt

D .x � a/
�
f 0 .x/ .x � a/� f .x/C f .a/

�

and

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt � .b � x/

Z b

x

�
f 0 .t/ � f 0 .x/

�
dt

D .b � x/
�
f .b/� f .x/ � f 0 .x/ .b � x/

�
:

Adding these inequalities we get

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt C

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt

� .x � a/
�
f 0 .x/ .x � a/� f .x/C f .a/

�

C .b � x/
�
f .b/� f .x/� f 0 .x/ .b � x/

�

D .b � x/ f .b/C .x � a/ f .a/ � .b � a/ f .x/

C f 0 .x/ Œ2x � .a C b/� .b � a/

and by (135) we get the second inequality for I1 .x/ :
We also have

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt �

Z x

a
.t � a/

�
f 0 .x/ � f 0 .a/

�
dt

D 1

2

�
f 0 .x/� f 0 .a/

�
.x � a/2

and

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt �

Z b

x
.b � t/

�
f 0 .b/� f 0 .x/

�
dt

D 1

2

�
f 0 .b/� f 0 .x/

�
.b � x/2 :
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Adding these inequalities we get

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt C

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt

� 1

2

�
f 0 .x/� f 0 .a/

�
.x � a/2 C 1

2

�
f 0 .b/� f 0 .x/

�
.b � x/2

D 1

2

h
f 0 .b/ .b � x/2 � f 0 .a/ .x � a/2 C f 0 .x/ .b � a/ Œ2x � .a C b/�

i

and by (135) we get the second inequality for I2 .x/ :
Further, we use the Čebyšev inequality for asynchronous functions (functions of

opposite monotonicity), namely

1

d � c

Z d

c
g .t/ h .t/ dt � 1

d � c

Z d

c
g .t/ dt � 1

d � c

Z d

c
h .t/ dt:

Therefore

1

x � a

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt

� 1

x � a

Z x

a
.t � a/ dt � 1

x � a

Z x

a

�
f 0 .x/� f 0 .t/

�
dt

D .x � a/2

2 .x � a/
� f 0 .x/ .x � a/� f .x/C f .a/

x � a

D 1

2

�
f 0 .x/ .x � a/� f .x/C f .a/

�

and

1

b � x

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt

� 1

b � x

Z b

x
.b � t/ dt � 1

b � x

Z b

x

�
f 0 .t/ � f 0 .x/

�
dt

D .b � x/2

2 .b � x/
� f .b/� f .x/ � f 0 .x/ .b � x/

b � x

D 1

2

�
f .b/� f .x/ � f 0 .x/ .b � x/

�
:
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Adding these inequalities, we have

1

b � a

Z x

a
.t � a/

�
f 0 .x/ � f 0 .t/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .t/ � f 0 .x/

�
dt

� 1

2

Œf 0 .x/ .x � a/ � f .x/C f .a/� .x � a/

b � a

C 1

2

Œf .b/� f .x/ � f 0 .x/ .b � x/� .b � x/

b � a

D 1

2 .b � a/

��
f 0 .x/ .x � a/� f .x/C f .a/

�
.x � a/

�

C 1

2 .b � a/

��
f .b/� f .x/ � f 0 .x/ .b � x/

�
.b � x/

�

D 1

2


f .b/ .b � x/C f .a/ .x � a/

b � a
� f .x/

�
C f 0 .x/

�
x � a C b

2

�

which proves the inequality for I3 .x/ :

Remark 16. From the first inequality in (134) we have

1

b � a

Z b

a
f .t/ dt � .b � x/ f .b/C .x � a/ f .a/

b � a
� f 0 .x/

�
a C b

2
� x

�
(136)

for any x 2 Œa; b� :
From the second inequality in (134) we have

1

b � a

Z b

a
f .t/ dt � f .x/ � 1

2
� f 0 .b/ .b � x/2 � f 0 .a/ .x � a/2

b � a
(137)

for any x 2 Œa; b� :
From the third inequality in (134) we have

1

b � a

Z b

a
f .t/ dt � 1

2


f .b/ .b � x/C f .a/ .x � a/

b � a
C f .x/

�
(138)

for any x 2 Œa; b� :
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Inequalities for Absolutely Continuous Derivatives

The case of absolutely continuous derivatives is as follows:

Theorem 20 (Dragomir, 2013 [12]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: If the derivative f 0 is absolutely continuous on Œa; b� ; then for any
x 2 Œa; b�

ˇ
ˇ
ˇ̌f .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌ (139)

� 1

b � a



8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1
6
.x � a/3 kf 00kŒa;x�;1 ;

q
.qC1/.qC2/ .x � a/1=qC2 kf 00kŒa;x�;p ;

1
2
.x � a/2 kf 00kŒa;x�;1 ;

C 1

b � a



8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

1
6
.b � x/3 kf 00kŒx;b�;1 ;

q
.qC1/.qC2/ .b � x/1=qC2 kf 00kŒx;b�;p ;

1
2
.b � x/2 kf 00kŒx;b�;1 ;

where p > 1; 1p C 1
q D 1:

Proof. Taking the modulus in (123) we have

ˇ
ˇ
ˇ̌f .x/� 1

b � a

Z b

a
f .t/ dt C

�
a C b

2
� x

�
f 0 .x/

ˇ
ˇ
ˇ̌ (140)

� 1

b � a

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt C 1

b � a

Z b

x
.b � t/

ˇ
ˇf 0 .t/ � f 0 .x/

ˇ
ˇ dt

D 1

b � a

Z x

a
.t � a/

ˇ
ˇ̌
ˇ

Z t

x
f 00 .s/ ds

ˇ
ˇ̌
ˇC 1

b � a

Z b

x
.b � t/

ˇ
ˇ̌
ˇ

Z t

x
f 00 .s/ ds

ˇ
ˇ̌
ˇ

� 1

b � a

Z x

a
.t � a/

Z x

t

ˇ
ˇf 00 .s/

ˇ
ˇ ds C 1

b � a

Z b

x
.b � t/

Z t

x

ˇ
ˇf 00 .s/

ˇ
ˇ ds:

Using Hölder’s integral inequality we have for p > 1; 1p C 1
q D 1;
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Z x

a
.t � a/

Z x

t

ˇ
ˇf 00 .s/

ˇ
ˇ ds �

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

R x
a .t � a/ .x � t/ kf 00kŒt;x�;1 dt

R x
a .t � a/ .x � t/1=q kf 00kŒt;x�;p dt

R x
a .t � a/ kf 00kŒt;x�;1 dt

�

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

kf 00kŒa;x�;1
R x

a .t � a/ .x � t/ dt

kf 00kŒa;x�;p
R x

a .t � a/ .x � t/1=q dt

kf 00kŒa;x�;1
R x

a .t � a/ dt

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1
6
.x � a/3 kf 00kŒa;x�;1

q
.qC1/.qC2/ .x � a/1=qC2 kf 00kŒa;x�;p
1
2
.x � a/2 kf 00kŒa;x�;1

and, similarly

Z b

x
.b � t/

Z t

x

ˇ
ˇf 00 .s/

ˇ
ˇ ds �

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1
6
.b � x/3 kf 00kŒx;b�;1

q
.qC1/.qC2/ .b � x/1=qC2 kf 00kŒx;b�;p
1
2
.b � x/2 kf 00kŒx;b�;1 :

Utilizing the inequality (140) we get the desired result (139).

Remark 17. Since

1

6
.x � a/3

	
	f 00		

Œa;x�;1 C 1

6
.b � x/3

	
	f 00		

Œx;b�;1

� 1

6

h
.x � a/3 C .b � x/3

i
max

n	
	f 00		

Œa;x�;1 ;
	
	f 00		

Œx;b�;1
o

D 1

6
.b � a/

h
.x � a/2 � .x � a/ .b � x/C .b � x/2

i 	
	f 00		

Œa;b�;1 ;

then by (139) we get

ˇ
ˇ
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (141)
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� 1

6

"
� x � a

b � a

�2 �
� x � a

b � a

�� b � x

b � a

�
C
�

b � x

b � a

�2#


 .b � a/2
	
	f 00		

Œa;b�;1 ;

for any x 2 Œa; b� :
Since

.x � a/1=qC2 		f 00		
Œa;x�;p C .b � x/1=qC2 		f 00		

Œx;b�;p

�
h
.x � a/2qC1 C .b � x/2qC1i1=q h		f 00		p

Œa;x�;p
C 		f 00		

Œx;b�;p

i1=p

D
h
.x � a/2qC1 C .b � x/2qC1i1=q 	

	f 00		
Œa;b�;p

;

then by (139) we get

ˇ̌
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/ � 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ (142)

� q

.q C 1/ .q C 2/

"
� x � a

b � a

�2qC1 C
�

b � x

b � a

�2qC1#1=q


 .b � a/1C1=q
		f 00		

Œa;b�;p
;

for any x 2 Œa; b� :
Since

.x � a/2
	
	f 00		

Œa;x�;1
C .b � x/2

	
	f 00		

Œx;b�;1

� max
n
.x � a/2 ; .b � x/2

o h	
	f 00		

Œa;x�;1
C 	
	f 00		

Œx;b�;1

i

D

1

2
.b � a/C

ˇ̌
ˇ
ˇx � a C b

2

ˇ̌
ˇ
ˇ

�2 	
	f 00		

Œa;b�;1
;

then by (139) we get

ˇ̌
ˇ
ˇf .x/C

�
a C b

2
� x

�
f 0 .x/� 1

b � a

Z b

a
f .t/ dt

ˇ̌
ˇ
ˇ

� 1

2

"
1

2
C
ˇ
ˇ̌
ˇ
ˇ
x � aCb

2

b � a

ˇ
ˇ̌
ˇ
ˇ

#2
.b � a/

	
	f 00		

Œa;b�;1

for any x 2 Œa; b� :
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More Perturbed Ostrowski Type Inequalities for Absolutely
Continuous Functions

Inequalities for Derivatives of Bounded Variation

Assume that the function f W I ! C is differentiable on the interior of I; denoted VI;
and Œa; b� � VI: Then, we have the equality

f .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/ � .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt (143)

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt;

for any x 2 Œa; b� :
In particular, for x D aCb

2
; we have

f

�
a C b

2

�
C 1

8
.b � a/

�
f 0 .b/� f 0 .a/

� � 1

b � a

Z b

a
f .t/ dt (144)

D 1

b � a

Z aCb
2

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt

C 1

b � a

Z b

aCb
2

.b � t/
�
f 0 .b/� f 0 .t/

�
dt:

Theorem 21 (Dragomir, 2013 [13]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: If the derivative f 0 W VI ! C is of bounded variation on Œa; b� ; then
for any x 2 Œa; b�
ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (145)

� 1

b � a

"Z x

a
.t � a/

t_

a

�
f 0� dt C

Z b

x
.b � t/

b_

t

�
f 0� dt

#
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� 1

b � a

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

1
2
.x � a/2

x_

a

.f 0/ ;

1

.qC1/1=q .x � a/1C1=q

 
R x

a

 
t_

a

.f 0/
!p

dt

!1=p

;

.x � a/
R x

a

 
t_

a

.f 0/
!

dt

C 1

b � a

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

1
2
.b � x/2

b_

x

.f 0/ ;

1

.qC1/1=q .b � x/1C1=q

 
R b

x

 
b_

t

.f 0/
!p

dt

!1=p

;

.b � x/
R b

x

 
b_

t

.f 0/
!

dt:

where p > 1; 1p C 1
q D 1:

Proof. Taking the modulus in (143) we have

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (146)

� 1

b � a

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .a/

ˇ
ˇ dt C 1

b � a

Z b

x
.b � t/

ˇ
ˇf 0 .b/� f 0 .t/

ˇ
ˇ dt;

for any x 2 Œa; b� :
Since the derivative f 0 W VI ! C is of bounded variation on Œa; b� ; then

ˇ
ˇf 0 .t/ � f 0 .a/

ˇ
ˇ �

t_

a

�
f 0� for any t 2 Œa; x�

and

ˇ̌
f 0 .b/� f 0 .t/

ˇ̌ �
b_

t

�
f 0� for any t 2 Œx; b� :
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Therefore

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .a/

ˇ
ˇ dt �

Z x

a
.t � a/

t_

a

�
f 0� dt

and

Z b

x
.b � t/

ˇ
ˇf 0 .b/� f 0 .t/

ˇ
ˇ dt �

Z b

x
.b � t/

b_

t

�
f 0� dt

for any x 2 Œa; b� :
Adding these two inequalities and dividing by b � a we get the first inequality

in (145).
Using Hölder’s integral inequality we have

Z x

a
.t � a/

t_

a

�
f 0� dt �

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

x_

a

.f 0/
R x

a .t � a/ dt;

�R x
a .t � a/q dt

�1=q

 
R x

a

 
t_

a

.f 0/
!p

dt

!1=p

;

.x � a/
R x

a

 
t_

a

.f 0/
!

dt;

D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

1
2
.x � a/2

x_

a

.f 0/ ;

1

.qC1/1=q .x � a/1C1=q

 
R x

a

 
t_

a

.f 0/
!p

dt

!1=p

;

.x � a/
R x

a

 
t_

a

.f 0/
!

dt
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and

Z b

x
.b � t/

b_

t

�
f 0� dt �

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

1
2
.b � x/2

b_

x

.f 0/ ;

1

.qC1/1=q .b � x/1C1=q

 
R b

x

 
b_

x

.f 0/
!p

dt

!1=p

;

.b � x/
R b

x

 
b_

x

.f 0/
!

dt:

Remark 18. From the first branch in (145) we have the sequence of inequalities

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (147)

� 1

b � a

"Z x

a
.t � a/

t_

a

�
f 0� dt C

Z b

x
.b � t/

b_

t

�
f 0� dt

#

� 1

2
.b � a/

"
� x � a

b � a

�2 x_

a

�
f 0�C

�
b � x

b � a

�2 b_

x

�
f 0�
#

� 1

2
.b � a/




8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

"
1
4

C
�

x� aCb
2

b�a

�2#"
1
2

b_

a

.f 0/C 1
2

ˇ
ˇ
ˇ
ˇ̌

x_

a

.f 0/ �
b_

x

.f 0/

ˇ
ˇ
ˇ
ˇ̌

#

;

h�
x�a
b�a

�2p C �
b�x
b�a

�2p
i1=p

""
x_

a

.f 0/
#q

C
"

b_

x

.f 0/
#q#1=q

p > 1; 1p C 1
q D 1;


1
2

C
ˇ̌
ˇ
ˇ

x� aCb
2

b�a

ˇ̌
ˇ
ˇ

� b_

a

.f 0/ ;

for any x 2 Œa; b� :
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From the second branch in (145) we have

ˇ
ˇ̌
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (148)

� 1

b � a

"Z x

a
.t � a/

t_

a

�
f 0� dt C

Z b

x
.b � t/

b_

t

�
f 0� dt

#

� 1

.q C 1/1=q

8
<

:

� x � a

b � a

�1C1=q
 Z x

a

 
t_

a

�
f 0�
!p

dt

!1=p

C
�

b � x

b � a

�1C1=q
 Z b

x

 
b_

t

�
f 0�
!p

dt

!1=p
9
=

;
.b � a/1=q

� 1

.q C 1/1=q

"
� x � a

b � a

�qC1 C
�

b � x

b � a

�qC1#1=p



"Z x

a

 
t_

a

�
f 0�
!p

dt C
Z b

x

 
b_

t

�
f 0�
!p

dt

#1=p

.b � a/1=q

� 1

.q C 1/1=q

"
� x � a

b � a

�qC1 C
�

b � x

b � a

�qC1#1=p



"

.x � a/

 
x_

a

�
f 0�
!p

C .b � x/

 
b_

x

�
f 0�
!p#1=p

.b � a/1=q

for any x 2 Œa; b� and p > 1; 1p C 1
q D 1:

From the third branch in (145) we have

ˇ
ˇ̌
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (149)

� 1

b � a

"Z x

a
.t � a/

t_

a

�
f 0� dt C

Z b

x
.b � t/

b_

t

�
f 0� dt

#

�
� x � a

b � a

� Z x

a

 
t_

a

�
f 0�
!

dt C
�

b � x

b � a

�Z b

x

 
b_

t

�
f 0�
!

dt
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�

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂


1
2

C
ˇ
ˇ
ˇ
ˇ

x� aCb
2

b�a

ˇ
ˇ
ˇ
ˇ

� "R x
a

 
t_

a

.f 0/
!

dt C R b
x

 
b_

t

.f 0/
!

dt

#

��
x�a
b�a

�q C �
b�x
b�a

�q�1=q



""
R x

a

 
t_

a

.f 0/
!

dt

#p

C
"
R b

x

 
b_

t

.f 0/
!

dt

#p#1=p

max

(
R x

a

 
t_

a

.f 0/
!

dt;
R b

x

 
b_

t

.f 0/
!

dt

)

for any x 2 Œa; b� and p > 1; 1p C 1
q D 1:

Remark 19. We observe that if we take x D aCb
2

in (147) then we get the perturbed
midpoint inequality

ˇ
ˇ̌
ˇf
�

a C b

2

�
C 1

8
.b � a/

�
f 0 .b/ � f 0 .a/

� � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (150)

� 1

b � a

"Z aCb
2

a
.t � a/

t_

a

�
f 0� dt C

Z b

aCb
2

.b � t/
b_

t

�
f 0� dt

#

� 1

8
.b � a/

b_

a

�
f 0� :

Inequalities for Lipschitzian Derivatives

We start with the following result.

Theorem 22 (Dragomir, 2013 [13]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: Let x 2 .a; b/ : If ˛i > �1 and L˛i > 0 with i D 1; 2 are such that

ˇ
ˇf 0 .t/ � f 0 .a/

ˇ
ˇ � L˛1 .t � a/˛1 for any t 2 Œa; x/ (151)

and

ˇ
ˇf 0 .b/� f 0 .t/

ˇ
ˇ � L˛2 .b � t/˛2 for any t 2 .x; b�; (152)

then we have



212 S.S. Dragomir

ˇ
ˇ̌
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (153)

� 1

b � a


L˛1

˛1 C 2
.x � a/˛1C2 C L˛2

˛2 C 2
.b � x/˛2C2

�
:

Proof. Using the conditions (151) and (152) we have
ˇ
ˇ
ˇ̌f .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ̌

� 1

b � a

Z x

a
.t � a/

ˇ
ˇf 0 .t/ � f 0 .a/

ˇ
ˇ dt C 1

b � a

Z b

x
.b � t/

ˇ
ˇf 0 .b/� f 0 .t/

ˇ
ˇ dt

� 1

b � a
L˛1

Z x

a
.t � a/˛1C1 dt C 1

b � a
L˛2

Z b

x
.b � t/˛2C1 dt

D 1

b � a
L˛1

.x � a/˛1C2

˛1 C 2
C 1

b � a
L˛2

.b � x/˛2C2

˛2 C 2

D 1

b � a


L˛1

˛1 C 2
.x � a/˛1C2 C L˛2

˛2 C 2
.b � x/˛2C2

�

and the inequality (153) is obtained.

Corollary 24. Let f W I ! C be a differentiable function on VI and Œa; b� � VI: If the
derivative is f 0 of r-H-Hölder type on Œa; b� ; i.e. we have the condition

ˇ
ˇf 0 .t/ � f 0 .s/

ˇ
ˇ � H jt � sjr

for any t; s 2 Œa; b� ; where r 2 .0; 1� and H > 0 are given, then
ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (154)

� H

r C 2

"
� x � a

b � a

�rC2 C
�

b � x

b � a

�rC2#
.b � a/rC1 ;

for any x 2 Œa; b� :
In particular, if f 0 is Lipschitzian with the constant L > 0; then

ˇ
ˇ
ˇ
ˇf .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (155)

� 1

3
L

"
� x � a

b � a

�3 C
�

b � x

b � a

�3#

.b � a/2 ;

for any x 2 Œa; b� :



A Survey of Perturbed Ostrowski Type Inequalities 213

Remark 20. With the assumptions of Corollary 24 we have the midpoint inequality

ˇ
ˇ̌
ˇf
�

a C b

2

�
C 1

8
.b � a/

�
f 0 .b/ � f 0 .a/

� � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ̌
ˇ (156)

� H

2rC1 .r C 2/
.b � a/rC1 :

If if f 0 is Lipschitzian with the constant L > 0; then

ˇ
ˇ
ˇ
ˇf
�

a C b

2

�
C 1

8
.b � a/

�
f 0 .b/ � f 0 .a/

� � 1

b � a

Z b

a
f .t/ dt

ˇ
ˇ
ˇ
ˇ (157)

� 1

12
L .b � a/2 :

Inequalities for Differentiable Functions with the Property .S/

Let f W I ! C be a differentiable convex function on VI and Œa; b� � VI: Then f 0 is
monotonic nondecreasing and by the equality (143) we have

f .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt � 0 (158)

or, equivalently

1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt � f .x/ (159)

for any x 2 Œa; b� :
We observe that the inequalities (158) and (159) remain valid for the larger

class of differentiable functions f that satisfy the property .S/ on the interval Œa; b� ;
namely

f 0 .a/ � f 0 .t/ � f 0 .b/ (S)

for any t 2 Œa; b� :
Theorem 23 (Dragomir, 2013 [13]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI:

(i) Let x 2 Œa; b� : If f satisfies the property .S/ on the interval Œa; x� and Œx; b� ;
then
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f 0 .x/
�

a C b

2
� x

�
� 1

b � a

Z b

a
f .t/ dt � f .x/ : (160)

(ii) If f satisfies the property (S) on the interval Œa; b� ; then for any x 2 Œa; b�

f .a/ .x � a/C f .b/ .b � x/

b � a
� 1

b � a

Z b

a
f .t/ dt (161)

� 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
:

Proof. (i) Since f satisfies the property .S/ on the interval Œa; x� and Œx; b� ; then

f .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt

� 1

b � a

Z x

a
.t � a/

�
f 0 .x/ � f 0 .a/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .b/� f 0 .x/

�
dt

D f 0 .x/� f 0 .a/
b � a

Z x

a
.t � a/ dt C f 0 .b/� f 0 .x/

b � a

Z b

x
.b � t/ dt

D f 0 .x/� f 0 .a/
b � a

� .x � a/2

2
C f 0 .b/� f 0 .x/

b � a
� .b � x/2

2

D 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� f 0 .x/

�
a C b

2
� x

�
;

which proves the inequality (160).
(ii) If f satisfies the property .S/ on the interval Œa; b� ; then for any x 2 Œa; b�

1

b � a

Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt

� x � a

b � a

Z x

a

�
f 0 .t/ � f 0 .a/

�
dt C b � x

b � a

Z b

x

�
f 0 .b/� f 0 .t/

�
dt

D 1

b � a
.x � a/

�
f .x/� f .a/� f 0 .a/ .x � a/

�

C 1

b � a
.b � x/

�
f 0 .b/ .b � x/� f .b/C f .x/

�

D 1

b � a

h
f .x/ .x � a/� f .a/ .x � a/� f 0 .a/ .x � a/2

i
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C 1

b � a

h
f 0 .b/ .b � x/2 � f .b/ .b � x/C f .x/ .b � x/

i

D f 0 .b/ .b � x/2 � f 0 .a/ .x � a/2

b � a
C f .x/ � f .a/ .x � a/C f .b/ .b � x/

b � a
;

which proves the inequality (161).

Remark 21. The inequality (160) was obtained for the case of convex functions in
[5] while (161) was established for convex functions in [6] with different proofs.

Further, we use the Čebyšev inequality for synchronous functions (functions with
same monotonicity), namely

1

d � c

Z d

c
g .t/ h .t/ dt � 1

d � c

Z d

c
g .t/ dt � 1

d � c

Z d

c
h .t/ dt: (162)

Theorem 24 (Dragomir, 2013 [13]). Let f W I ! C be a differentiable function on
VI and Œa; b� � VI: Let x 2 Œa; b� : If f is convex on the interval Œa; x� and Œx; b� ; then

1

2


f .x/C f .a/ .x � a/C f .b/ .b � x/

b � a

�
� 1

b � a

Z b

a
f .t/ dt: (163)

Proof. We have

f .x/C 1

2 .b � a/

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
� 1

b � a

Z b

a
f .t/ dt (164)

D 1

b � a

Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt C 1

b � a

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt

for any x 2 Œa; b� :
Since f 0 is monotonic nondecreasing on Œa; x� ; then by Čebyšev inequality (154)

we have
Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt � 1

x � a

Z x

a
.t � a/ dt �

Z x

a

�
f 0 .t/ � f 0 .a/

�
dt

D 1

2

h
f .x/ .x � a/� f .a/ .x � a/� f 0 .a/ .x � a/2

i

and, by the same inequality,

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt � 1

b � x

Z b

x
.b � t/ dt �

Z b

x

�
f 0 .b/� f 0 .t/

�
dt

D 1

2

h
f 0 .b/ .b � x/2 � f .b/ .b � x/C f .x/ .b � x/

i
:
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If we add these two inequalities, then we get

Z x

a
.t � a/

�
f 0 .t/ � f 0 .a/

�
dt C

Z b

x
.b � t/

�
f 0 .b/� f 0 .t/

�
dt

� 1

2

h
f .x/ .x � a/� f .a/ .x � a/� f 0 .a/ .x � a/2

i

C 1

2

h
f 0 .b/ .b � x/2 � f .b/ .b � x/C f .x/ .b � x/

i

D 1

2

h
.b � x/2 f 0 .b/� .x � a/2 f 0 .a/

i
C 1

2
f .x/ .b � a/

� 1

2
Œf .a/ .x � a/C f .b/ .b � x/� :

Dividing by b � a and utilizing the equality (164) we deduce the inequality (163).

Remark 22. If the function is convex on the whole interval Œa; b�, then the inequal-
ity (163) is true for any x 2 Œa; b� :
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Hyers–Ulam–Rassias Stability of the
Generalized Wilson’s Functional Equation

Elqorachi Elhoucien, Youssef Manar, and Sammad Khalil

Abstract In this chapter, we apply the fixed point theorem and the direct method
to the proof of Hyers–Ulam–Rassias stability property for generalized Wilson’s
functional equation

Z

K

Z

G
f .xtk:y/dkd�.t/ D f .x/g.y/; x; y 2 G;

where f ; g are continuous complex valued functions on a locally compact group G,
K is a compact subgroup of morphisms of G, dk is the normalized Haar measure on
K and � is a K-invariant complex measure with compact support.

Keywords Banach space • Complex measure • Fixed point • Hyers-Ulam-
Rassias stability • Locally compact group • Wilson’s functional equation

Introduction

In 1940, Ulam [33] gave a wide-ranging talk before the mathematics club of the
University of Wisconsin in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of a group
homomorphisms:

“Let G be a group and let .H; d/ be a metric group. Given ε> 0, does there exists a ı > 0

such that if a function f W G ! H satisfies the inequality d.f .xy/; f .x/f .y// � ı for all
x; y 2 G, then there exists a homomorphism a W G ! H such that d.f .x/; a.x// �ε for all
x 2 G?”
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The case of approximately additive functions was solved by Hyers [17] under the
condition that G and H are Banach spaces. Indeed the method used by Hyers is
called the direct method. Rassias [26] attempted to weaken the condition for the
bound of the norm of the Cauchy difference as follows: kf .x C y/� f .x/� f .y/k �ε
.kxkp C kykp/ and derived Hyer’s theorem for the stability of the additive mapping
as a special case. Thus in [26], a proof of the generalized Hyers–Ulam stability
for the linear mapping between Banach spaces was obtained. A particular case
of Rassias’s theorem regarding the Hyers–Ulam stability of the additive mapping
was proved by Aoki [1]. The stability concept that was introduced by Rassias’s
theorem provided a large influence to a number of mathematicians to develop the
notion of what is known today as Hyers–Ulam–Rassias stability. Since then, the
stability of several functional equations has been extensively investigated by several
mathematicians. The terminology Hyers–Ulam–Rassias stability originates from
those historical backgrounds. The terminology can also be applied to the case of
other functional equations. For more detailed definitions of such terminologies, we
refer to [14, 18–20, 22, 25, 27].

In 2003 Cadǎriu and Radu [7] notice that a fixed point alternative method is
very important for the solution of the Hyers–Ulam–Rassias stability problem. Sub-
sequently, this method was applied to investigate the Hyers–Ulam–Rassias stability
for Jensen’s functional equation, as well as for the additive Cauchy’s functional
equation by considering a general control function '.x; y/, with suitable properties.
Using such an elegant idea, several authors applied the method to investigate the
stability of some functional equations see, for example, [2, 3, 5, 9, 15, 16, 21, 23, 24].

In this chapter, we will apply the fixed point method and the direct method to
prove the Hyers–Ulam–Rassias stability of generalized Wilson’s functional equation

Z

K

Z

G
f .xtk:y/dkd�.t/ D f .x/g.y/; x; y 2 G; (1)

where K is a compact subgroup of morphisms of G, � is a K-invariant measure with
compact support and dk is the normalized Haar measure on K.

Solution for the particular cases of the functional equation (1) was investigated
by several authors. An important example of (1) with � D ıe (Dirac measure
concentrated at the identity element of G) is the functional equation of a K-spherical
function

Z

K
f .xk:y/dk D f .x/f .y/; x; y 2 G: (2)

This functional equation with G D C, K finite (K D Zq), viz.
Pq�1

kD0 f .x C wk/ D
f .x/f .y/, where w D exp. 2� i

q /, occurs in Förg-Rob and Schwaiger [13].
The bounded solution of K-spherical function in Abelians group is obtained

by Chojnacki [10] and later by Badora [4] while Stetkaer [29–32] studied some
generalization of (1).

In [28] Shin’y described all continuous solution of (2) on Abelian groups.
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Badora’s equation:

Z

K

Z

G
f .xtk:y/dkd�.t/ D f .x/f .y/; x; y 2 G; (3)

is considered in [4]. Non-zero essentially bounded solutions of Eq. (3) are obtained,
see [3, 4, 12].

The Hyers–Ulam stability of Eq. (1) was recently obtained by Bouikhalene and
Elqorachi [6].

The results of the present chapter are organized as follows.
In section “Hyers–Ulam–Rassias Stability of Eq. (1): Fixed Point Method,” we

apply the fixed point method to prove the Hyers–Ulam–Rassias stability of the
functional equation (1).

In section “Hyers–Ulam–Rassias Stability of Eq. (1): Direct Method,” we apply
the direct method to prove the Hyers–Ulam–Rassias stability of that equation.

Preliminaries

Throughout this chapter, let G denote a locally compact group, let K be a compact
subgroup of morphisms of G. The action of k 2 K on x 2 G will be denoted by
k � x and the normalized Haar measure on K by dk. Let M.G/ denote the topological
dual of C0.G/: the Banach space of continuous functions vanishing at infinity. For
any � 2 M.G/ with compact support and any continuous function f on G we put
< k ��; f >D< �; k � f >, where .k � f /.x/ D f .k�1 � x/ for all x 2 G and we say that
� is K-invariant if k � � D � for all k 2 K. We say that f satisfy Kannappan type
Condition if

Z

K

Z

G
f .ztxsy/d�.t/d�.s/ D

Z

K

Z

G
f .ztysx/d�.t/d�.s/: (4)

for all x; y; z 2 G.
Let X be a set. A function d W X 
 X ! Œ0;1� is called a generalized metric on

X if d satisfies the following properties.

(i) d.x; y/ D 0 if and only if x D y;
(ii) d.x; y/ D d.y; x/ for all x; y 2 X;

(iii) d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X.

Note that the only substantial difference on the generalized metric from the
metric is that the range of generalized includes the infinity. We now recall one of the
fundamental results of fixed point theory. For the proof, we refer to [11].

Theorem 1 ([11]). Let .X; d/ be complete generalized metric space. Assume that
J W X ! X is a strictly contractive operator with the Lipshitz constant 0 < L < 1.
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If there exists a nonnegative integer n0 such that d.Jn0x; Jn0C1x/ < C1, for some
x 2 X, then we have the following properties:

1. the sequence Jnx converges to a fixed point x� of J;
2. x� is the unique fixed point of J in the set Y D fy 2 X W d.Jn0x; y/ < 1g;
3. d.y; x�/ � 1

1�L d.y; Jy/ for all y 2 Y.

Hyers–Ulam–Rassias Stability of Eq. (1): Fixed Point Method

In this section, by using an idea of Cădariu and Radu (see [7, 8]), we prove the
Hyers–Ulam–Rassias stability of generalized Wilson’s functional equation (1).

For any complex valued function g on a group G we define the set Gg;� D fa 2
G=jg.a/j > k�kg.

Theorem 2. Let f ; g W G ! C be the continuous functions satisfying the inequality

ˇ
ˇ
ˇ
ˇ

Z

K

Z

G
f .xtk � y/dkd�.t/� g.y/f .x/

ˇ
ˇ
ˇ
ˇ �  .x; y/ (5)

for all x; y 2 G and for some continuous mapping  W G ! R. If G�;g ¤ ;,

ˇ
ˇ
ˇ
ˇ

Z

K

Z

G
 .xtk � a; y/dj�j.t/dk

ˇ
ˇ
ˇ
ˇ �  .x; y/; for all x; y 2 G and for all a 2 G�;g (6)

where � D �

k�k and f satisfies the Kannappan type condition (4). Then there exists
a unique function F W G ! C such that

Z

K

Z

G
F .xtk � y/dkd�.t/ D g.y/F .x/ (7)

for all x; y 2 G,

�Z

K

Z

G
g.xtk � y/dkd�.t/ � g.x/g.y/

�
F .z/ D 0 for all x; y; z 2 G: (8)

and

jf .x/� F�.x/j � inf
a2S�;f

 .a; x/

jg.a/j � k�k for all x 2 G: (9)

Proof. Dividing the both sides of (5) by k�k2 and replacing y by a, we get

Z

K

Z

G
F.xtk � a/dkd�.t/� ˛F.x/ �  .x; a/

k�k2 for all x 2 G; (10)
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where F D f
k�k , � D �

j�k and ˛ D g.a/
k�k > 1. We consider the set A D fh W G ! Cg.

First, we denote by d the generalized metric on A defined as

d.h; l/ D inffK 2 Œ0;1� jh.x/� l.x/j � K
 .x; a/

k�k2 ; for all x 2 Gg

Then, as in the proof of Cadariu and Radu [7, 8], we can show that .A; d/ is complete.
Now, let us define an operator Ja W A ! A by

.Jah/.y/ D 1

˛

Z

K

Z

G
h.ytk � a/dkd�.t/ for every y 2 G:

Next, we are going to prove that Ja is a strictly contractive on A with the Lipschitz
constant L. Given h and l in A and K � 0 an arbitrary constant with d.g; h/ � K,
that is,

jg.x/� h.x/j � K
 .x; a/

k�k2 (11)

for all x 2 G so, from inequality (5) we have

j.Jal/.x/ � .Jah/.x/j D
ˇ
ˇ̌
ˇ
1

˛

Z

K

Z

G
l.xtk � a/d�.t/dk � 1

˛

Z

K

Z

G
h.xtk � a/d�.t/dk

ˇ
ˇ̌
ˇ

� 1

j˛j
K

k�k2
Z

K

Z

G
 .xtk:a; a/dj�j.t/dk

� 1

j˛jK
 .x; a/

k�k2

for all x 2 G. This means that d.Ja.h/; Ja.l// � Ld.h; l/ for any h; l 2 A, where
L D k�k

jg.a/j .
On the other hand inequality (10) can be written as follows, we get

j.JaF/.x/� F.x/j � 1

j˛j
 .x; a/

k�k2

for all x 2 G, which implies that

d.JaF;F/ � 1

j˛j < 1: (12)

Taking n0 D 0 in Theorem 1 there exists a function fa W G ! C such that

1. fa is the unique fixed point of Ja in the set A1 D fh 2 A=d.F; h/ < 1g;
2. limn�!1 d.Jn

aF; fa/ D 0;
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3. d.F; fa/ � 1
1�L d.JaF;F/ � k�k

jg.a/j�k�k .

Moreover, since f satisfies the Kannappan type condition (4), we get by easy
computation that Jn

aF satisfies (4) and then the function fa verify the Kannapaann
type condition (4).

Now, we will prove that fa is independent of the variable a. That is fa D fb for all
a; b 2 G�;g.

For every x in G and for all n 2 N�, we define a sequence functions Fn by

F1.x/ D
Z

K

Z

G
F.xtk � a/dkd�.t/; FnC1.x/ D

Z

K

Z

G
Fn.xtk � a/dkd�.t/; n � 1:

(13)
First step, we use induction on n to prove the following inequality

kFnC1.x/� ˛Fn.x/k �  .x; a/

k�k2 (14)

for all n 2 N and x 2 G. It follows from (6) and (10) that

jF2.x/� ˛F1.x/j

D
ˇ̌
ˇ
ˇ

Z

K

Z

G
F1.xtk � a/dkd�.t/� ˛

Z

K

Z

G
F.xtk � a/dkd�.t/

ˇ̌
ˇ
ˇ

D
ˇ
ˇ
ˇ̌
Z

K

Z

K

Z

G

Z

G
F.xt1k1 � at2k2 � a/dk1dk2d�.t1/d�.t2/

�˛
Z

K

Z

G
F.xt1k1 � a/dk1d�.t1/

ˇ
ˇ
ˇ
ˇ

�
Z

K

Z

G

ˇ̌
ˇ
ˇ

Z

K

Z

G
F.xt1k1 � at2k2 � a/d�.t2/dk2 � ˛F.xt1k1 � a/

ˇ̌
ˇ
ˇ dj�.t1/jdk1

� 1

k�k2
Z

K

Z

G
 .xt1k1 � a; a/dj�.t1/jdk1

�  .x; a/

k�k2 ;

which proves that the assertion (14) is true for n D 1. Now, we assume that (14) is
true for some n 2 N. By using (13) we have

jFnC2.x/� ˛FnC1.x/j D
ˇ
ˇ
ˇ
ˇ

Z

K

Z

G
FnC1.xtk � a/dkd�.t/� ˛

Z

K

Z

G
Fn.xtk � a/dkd�.t/

ˇ
ˇ
ˇ
ˇ

�
Z

K

Z

G
jFnC1.xtk � a/� ˛Fn.xtk � a/jdj�.t/jdk
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�
Z

K

Z

G

 .x; a/

k�k2 dkdj�.t/j

�  .x; a/

k�k2 ;

which implies the validity of the inequality (14) for all n 2 N.
Second step, we improve that

jFn.x/� ˛nF.x/j �  .x; a/

k�k2 .1C j˛j C j˛j2 C : : :C j˛jn�1/: (15)

For n D 1. From (10) we have

jF1.x/� ˛F.x/j D
ˇ
ˇ
ˇ
ˇ

Z

K

Z

G
F.xtk � a/dkd�.t/� ˛F.x/

ˇ
ˇ
ˇ
ˇ

�  .x; a/

k�k2

for all x 2 G. Suppose that the inequality (15) holds for n 2 N. Using the triangle
inequality and taking (15) into account we have

jFnC1.x/ � ˛nC1F.x/j � jFnC1.x/ � ˛Fn.x/j C j˛jjFn.x/ � ˛nF.x/j

�  .x; a/

k�k2 C j˛j .x; a/k�k2 .1C j˛j C j˛j2 C : : :C j˛jn�1/

�  .x; a/

k�k2 .1C j˛j C j˛j2 C : : :C j˛jn/:

This implies the inequality (15) for all n 2 N.
Now, we are ready to prove that fa D fb for all a; b 2 G�;g. By using (15), it easy

to check that, for all a; b 2 G�;g

jFn.x/ � ˛nF.x/j �  .x; a/

k�k2 .
j˛jn � 1
j˛j � 1

/ (16)

and

jGn.x/ � ˇnF.x/j �  .x; b/.
jˇjn � 1

jˇj � 1
/ (17)

where Gn is defined by (13) by replacing the variable a by b.
Moreover, f satisfies the Kannappan type condition (4), so, we have
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Z

K

Z

G

Z

K

Z

G
f .xtk � ask

0 � b/d�.t/d�.s/dkdk
0

D
Z

K

Z

G

Z

K

Z

G
f .xtk

0 � bsk � a/d�.t/d�.s/dkdk
0

for all x; a; b 2 G. On the other hand, we have

ˇ̌
ˇ̌
Z

G

Z

K
: : :F.xt1k1 � at2k2 � a : : : tnkn � a/dk1dk2 : : : dknd�.t1/d�.t2/ : : : d�.tn/ � ˛nF.x/

ˇ̌
ˇ̌

�  .x; a/.
j˛jn � 1

j˛j � 1
/

and
ˇ̌
ˇ̌
Z

G

Z

K
: : :F.xt1k1 � bt2k2 � b : : : tnkn � b/dk1dk2 : : : dknd�.t1/d�.t2/ : : : d�.tn/ � ˇnF.x/

ˇ̌
ˇ̌

�  .x; a/.
jˇjn � 1
jˇj � 1

/;

where ˇ D g.b/
k�k . So, we get

j
Z

G

Z

K
: : :F.xs1k

0

1 � bs2k
0

2 � b : : : snk
0

n � bt1k1 � at2k2 � a : : : tnkn � a/

dk
0

1 : : : dk
0

ndk1 : : : dknd�.s1/ : : : d�.sn/d�.t1/ : : : d�.tn/

�˛n
Z

G

Z

K
: : :F.xs1k

0

1 � bs2k
0

2 � b : : : snk
0

n � b/d�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

nj

� .
j˛jn � 1
j˛j � 1 /

ˇ̌
ˇ
ˇ

Z

G

Z

K
: : :  .xs1k

0

1 � bs2k
0

2 � b : : : snk
0

n � b; a/d�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

n

ˇ̌
ˇ
ˇ

� .
j˛jn � 1

j˛j � 1
/ .x; a/;

and

j
Z

G

Z

K
: : :F.xs1k

0

1 � as2k
0

2 � a : : : snk
0

n � at1k1 � bt2k2 � b : : : tnkn � b/

d�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

nd�.t1/ : : : d�.tn/dk1 : : : dkn

�ˇn
Z

G

Z

K
: : :F.xs1k

0

1 � as2k
0

2 � a : : : snk
0

n � a/d�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

nj

� .
jˇjn � 1
jˇj � 1 / .x; b/:
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Since
Z

G

Z

K
: : :F.xs1k

0

1 � as2k
0

2 � a : : : snk
0

n � at1k1 � bt2k2 � b : : : tnkn � b/

d�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

nd�.t1/ : : : d�.tn/dk1 : : : dkn

D
Z

G

Z

K
: : :F.xt1k1 � bt2k2 � b : : : tnkn � bs1k

0

1 � as2k
0

2 � a : : : snk
0

n � a/

d�.t1/ : : : d�.tn/dk1 : : : dknd�.s1/ : : : d�.sn/dk
0

1 : : : dk
0

n;

and by the triangle inequality we obtain

j˛n
Z

K
: : :

Z

K
F.xs1k

0

1 � bs2k
0

2 � b : : : snk
0

n � b/dk
0

1 : : : dk
0

nd�.s1/ : : : d�.sn/ (18)

�ˇn
Z

K
: : :

Z

K
F.xs1k

0

1 � as2k
0

2 � b : : : snk
0

n � a/dk
0

1 : : : dk
0

nd�.s1/ : : : d�.sn/j

�  .x; a/.
j˛jn � 1

j˛j � 1 /C  .x; b/.
jˇjn � 1
jˇj � 1

/:

Dividing both sides of (18) by j˛jnjˇjn we get

jˇ�n
Z

K
: : :

Z

K
F.xs1k

0

1 � bs2k
0

2 � b : : : snk
0

n � b/dk
0

1 : : : dk
0

nd�.s1/ : : : d�.sn/ (19)

�˛�n
Z

K
: : :

Z

K
F.xs1k

0

1 � as2k
0

2 � b : : : snk
0

n � a/dk
0

1 : : : dk
0

nd�.s1/ : : : d�.sn/j

�  .x; a/

jˇjn.j˛j � 1/.1 � 1

j˛jn
/C  .x; b/

j˛jn.jˇj � 1/.1 � 1

jˇjn
/;

and by letting n ! 1 we obtain fa.x/ D fb.x/ for all x 2 G. Finally there exists a
unique function F

k�k such that F
k�k D fa for all a 2 G�;g. From (13) and a 2 G�;g

arbitrary we have

jF.x/� F

k�k .x/j � inf
a2S�;g

1

k�k
 .x; a/

jg.a/j � k�k ; (20)

that is

jf .x/� F .x/j � inf
a2S�;g

 .x; a/

jg.a/j � k�k (21)

for all x 2 G.
Now, we will show that F is a solution of functional equation

Z

G

Z

K
F .xtk � y/dkd�.t/ D g.y/F .x/ (22)
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for all x; y 2 G. By using (10) and (6) we get

j
Z

G
: : :

Z

G

Z

K
: : :

Z

K
F.xt1k1 � at2k2 � a : : : tnkn � atk:y/d�.t/d�.t1/ : : : d�.tn/dkdk1 : : : dkn

� g.y/

k�k
Z

G
: : :

Z

G

Z

K
: : :

Z

K
F.xt1k1:at2k2 � a : : : tnkn � a/d�.t1/ : : : d�.tn/dk1 : : : dknj (23)

� 1

k�k2
Z

G
: : :

Z

G
 .xt1k1 � at2k2 � a : : : tnkn � a; y/d�.t1/ : : : d�.tn/dk1 : : : dkn

�  .x; y/

for all x; y 2 S. Dividing both sides of inequality (23) by ˛n and letting n ! 1 we
deduce that F is a solution of the functional equation (22). Now, showing that the
pair .F ; g/ satisfies (8). Since � is k-invariant and F is a solution of Eq. (7) then,
for all x; y; a 2 G we can write

Z

K

Z

G

Z

K

Z

G
F .ask

0 � .xhk � y//d�.h/dk
0

dk D F .a/
Z

K

Z

G
g.xhk � y/d�.h/dk

(24)

and on the other hand we rewrite by using the invariance of the Haar measure dk
and the fact that F satisfies the Kannappan type condition (4) that

Z

K

Z

G

Z

K

Z

G
F .ask

0 � .xhk � y//d�.s/d�.h/dkdk
0

D
Z

K

Z

G

Z

KC

Z

G
F .ask

0 � xhk
0

k � y//d�.s/d�.h/dkdk
0

C
Z

K

Z

G

Z

K�

Z

G
F .ask

0

k � yk
0 � x//d�.s/d�.h/dkdk

0

D
Z

K

Z

G

Z

KC

Z

G
F .ask � xk � x//d�.s/d�.h/dkdk

0

C
Z

K

Z

G

Z

K�

Z

G
F .ask

0 � xk � y//d�.s/d�.h/dkdk
0

D
Z

G

Z

K

Z

G

Z

K
F .ask

0 � xhk � y/d�.s/d�.h/dkdk
0

D .

Z

K

Z

G
F .ask

0 � x/d�.s/dk
0

/g.y/

D F .a/g.x/g.y/;

which proves (8). This completes the proof.
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Hyers–Ulam–Rassias Stability of Eq. (1): Direct Method

In this section we investigate the Hyers–Ulam–Rassias stability of Eq. (1) by using
the direct method.

Theorem 3. Let f ; g W G ! C and ' W G ! RC be a continuous functions
satisfying

ˇ
ˇ
ˇ
ˇ

Z

K

Z

G
f .xtk � y/dkd�.t/� g.y/f .x/

ˇ
ˇ
ˇ
ˇ � '.y/ (25)

for all x; y 2 G and such that f satisfies the Kannappan type Condition (4) and
G�;g ¤ ;. Then there exists a unique continuous function Fa W G ! C such that

Z

K

Z

G
Fa.xtk � y/dkd�.t/ D Fa.x/g.y/ (26)

for all x; y 2 G,

jf .x/ � Fa.x/j � inf
a2G�;f

1

k�k
'.a/

jg.a/j � k�k (27)

for all x 2 G and

�Z

K

Z

G
g.xtk � y/dkd�.t/� g.x/g.y/

�
Fa.z/ D 0 (28)

for all x; y; z 2 G.

Proof. Substituting y by a 2 Sg;� and dividing both sides of (25) by k�k2, we get

Z

K

Z

G
F.xtk � y/dkd�.t/� ˛F.x/ � '.a/

k�k2 ; x; y 2 G; (29)

where F D f
k�k , � D �

j�k and ˛ D g.a/
k�k > 1.

For every x in G and for all n 2 N�, we define a function sequence Fn by

F1.x/ D
Z

K

Z

G
F.xtk � a/dkd�.t/; FnC1.x/ D

Z

K

Z

G
Fn.xtk � a/dkd�.t/; n � 1:

(30)

Now, by using the same computations as in the proof of Theorem 2 we prove by
induction on n the following inequalities

jFnC1.x/ � ˛Fn.x/j � '.a/

k�k2 ; (31)
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jFn.x/ � ˛nF.x/j � '.a/

k�k2 .1C j˛j C j˛j2 C : : :C j˛jn�1/ (32)

and

j˛�.nC1/FnC1.x/� ˛�nFn.x/j � 1

˛nC1
'.a/

k�k2 : (33)

Define for all x 2 G

Fa.x/ D lim
n!1˛�nFn.x/:

Using (30) and letting n ! 1 we get

˛Fa.x/ D
Z

K

Z

G
Fa.xtk:a/dkd�.t/; x 2 G; (34)

and from (32) we get (27).
Proving now that Fa is a solution of the functional equation

Z

K

Z

G
Fa.xtk � y/dkd�.t/ D ˛Fa.x/

g.y/

k�k ; x; y 2 G: (35)

First, make the induction assumption

ˇ
ˇ
ˇ̌˛�n

Z

K

Z

G
Fn.xtk � y/dkd�.t/� ˛�nFn.x/

g.y/

k�k
ˇ
ˇ
ˇ̌ � '.y/

k�k2
k�kn

'.a/n
(36)

From (30) and inequality (25) and taking into account the condition (4), we obtain

j˛�1j
ˇ̌
ˇ̌
Z

K

Z

G
F1.xtk � y/dkd�.t/ � F1.x/

g.y/

k�k
ˇ̌
ˇ̌

D j˛�1j
ˇ
ˇ̌
ˇ

Z

K

Z

K

Z

G

Z

G
F.xtk � ysk

0 � a/dkdk
0

d�.t/d�.s/ �
Z

K

Z

G
F.xtk

0 � a/dk
0

d�.t/
g.y/

k�k
ˇ
ˇ̌
ˇ

D j˛�1j
ˇ̌
ˇ̌
Z

K

Z

K

Z

G

Z

G
F.xtk

0 � ask � y/dkdk
0

d�.t/d�.s/ �
Z

K

Z

G
F.xtk

0 � a/dk
0

d�.t/
g.y/

k�k
ˇ̌
ˇ̌

� '.y/

k�k2
k�k
'.a/
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which proves (36) for n D 1. Now, We will show that the induction assumption (36)
is true with n replaced by n C 1.

ˇ
ˇ
ˇ̌˛�.nC1/

Z

K

Z

G
FnC1.xtk � y/dkd�.t/� ˛�.nC1/FnC1.x/

g.y/

k�k
ˇ
ˇ
ˇ̌

D j˛�1j
ˇ
ˇ
ˇ
ˇ

Z

G

Z

K

Z

K

Z

G
˛�nFn.xtk � ysk

0 � a/dkdk
0

d�.t/d�.s/

�
Z

K

Z

G
˛�nFn.xtk

0 � a/dk
0

d�.t/
g.y/

k�k
ˇ̌
ˇ
ˇ

D j˛�1j
ˇ
ˇ
ˇ̌
Z

G

Z

K

Z

K

Z

G
˛�nFn.xtk

0 � ask � y/dkdk
0

d�.t/d�.s/

�
Z

K

Z

G
˛�nFn.xtk

0 � a/dk
0

d�.t/
g.y/

k�k
ˇ
ˇ
ˇ
ˇ

� j˛�1j '.y/k�k2
� k�k
'.a/

�n

D '.y/

k�k2
� k�k
'.a/

�nC1
;

this implies that inequality (36) holds for all n.
Assume now that there exists another solution of Eq. (35), namely Ga satisfying

the inequality (27).
For all x 2 G and all n 2 N, we have

jFa.x/ � Ga.x/j D j˛j�1
ˇ
ˇ
ˇ̌
Z

K

Z

G
F�.xt1k1 � a/dk1d�.t1/ �

Z

K

Z

G
Ga.xt1k1 � a/dk1d�.t1/

ˇ
ˇ
ˇ̌

D j˛j�2j
Z

K

Z

G

Z

K

Z

G
Fa.xt1k1 � at2k2 � a/dk1dk2d�.t1/d�.t2/

�
Z

K

Z

G

Z

K

Z

G
Ga.xt1k1 � at2k2 � a/dk1dk2d�.t1/d�.t2/j

D j˛j�nj
Z

K
: : :

Z

K

Z

G
: : :

Z

G
Fa.xt1k1 � at2k2 � a : : : tnkn � a/dk1dk2 : : : dknd�.t1/d�.t2/ : : : d�.tn/

�
Z

K
: : :

Z

K

Z

G
: : :

Z

G
G�.xt1k1 � at2k2 � a : : : tnkn � a/dk1dk2 : : : dknd�.t1/d�.t2/ : : : d�.tn/j

� j˛j�n'.a/

k�k
2

jg.a/j � k�k :
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Since j˛j > 1 so, by letting n ! 1, we obtain Fa.x/ D Ga.x/ for all x 2 G. The
rest of the proof is contained in the proof of Theorem 2. This completes the proof
of theorem.
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Abstract In this chapter, firstly for q > 1 the exact order near to the best
approximation, 1

qn , is obtained in approximation by complex q-Favard–Szász–
Mirakjan, q-Szász–Kantorovich operators and q-Baskakov operators attached to
functions of exponential growth conditions, which are entire functions or analytic
functions defined only in compact disks (without to require to be defined on the
whole axis Œ0;C1/). Quantitative Voronovskaja-type results of approximation
order 1

q2n are proved. For q-Szász–Kantorovich operators, the case q D 1 also is

considered, when the exact order of approximation 1
n is obtained. Approximation

results for a link operator between the Phillips and Favard–Szász–Mirakjan opera-
tors are also obtained. Then, by using a sequence bn

an
WD 	n > 0, an; bn > 0, n 2 N

with the property that 	n ! 0 as fast we want, we obtain the approximation order
O.	n/ for the generalized Szász–Faber operators and the generalized Baskakov–
Faber operators attached to analytic functions of exponential growth in a continuum
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Introduction

The overconvergence phenomenon for positive and linear operators in the complex
domain, that is the extension of approximation properties from real domain to
complex domain is a topic of increasing interest in the recent years. In this context,
the first qualitative kind results were obtained in the papers [4, 44, 45]. Then,
in the books [8, 12] quantitative approximation results are presented for several
type of approximation operators. For Szász–Mirakjan operator and its Stancu
variant in complex domain, we refer the readers to [1, 3, 7, 24, 25, 30, 31, 40].
Also for complex Bernstein–Durrmeyer operators, several papers are available in
the literature (see, e.g., [10, 11, 14, 15, 22, 32, 35, 37, 38]), for complex Szász–
Durrmeyer operators see [16, 18], for complex Baskakov operators see [21, 39],
while for complex q-Balász–Szabados operators see [26].

In this chapter we firstly deal with the approximation properties of the complex
q-Favard–Szász–Mirakjan and q-Szász–Kantorovich operators, for q � 1, under
exponential growth conditions on the approximated analytic functions. The results
are new and appear for the first time here.

For that purpose, we need some concepts and notations in [27]. For k 2 N
Sf0g,

the q�integer, Œk�q, and the q�factorial, Œk�qŠ, are defined by

Œk�q WD
(

1�qk

1�q if q > 0; q 6D 1;

k if q D 1

)

and

Œk�qŠ WD Œ1�q Œ2�q : : : Œk�q for k 2 N and Œ0�Š D 1;

respectively.
For k 2 f0; 1; : : : ; ng, the q-binomial coefficient is given by


n
k

�
WD Œn�qŠ

Œk�qŠ Œn � k�qŠ
:

For q > 1; the q-derivative Dqf .z/ of f is defined by

Dqf .z/ D
(

f .qz/�f .z/
.q�1/z ; z ¤ 0;

f
0

.0/ ; z D 0

)

:

If jqj > 1; or 0 < jqj < 1 and jzj < 1
1�q ; then we define the q-exponential function

Eq .z/ by

Eq .z/ WD
1X

kD0

zk

Œk�qŠ
:
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If jqj > 1, then it is known that Eq .z/ is an entire function and we have

Eq .z/ D
1Y

jD0

�
1C .q � 1/

z

qjC1

�
; jqj > 1:

For f W Œ0;1/ ! R, the classical Favard–Szász–Mirakjan operators are given by
(see [5, 34, 42])

Sn .f I x/ D e�nx
1X

kD0
f

�
k

n

�
nkxk

kŠ
:

According to, e.g., [5], if f is of exponential growth, that is jf .x/j � C exp.Bx/,
for all x 2 Œ0;1/, with C;B > 0, then Sn .f I x/ converges to f .x/. In addition,
concerning quantitative estimates, in, e.g., [43] it is proved that we have jSn.f I x/ �
f .x/j � C=n, for all x 2 Œ0;1/; n 2 N, for some additional hypothesis on f .

If q � 1, then the complex q�Favard–SzKasz–Mirakjan operators were defined in
[30] by

Sn;q .f I z/ D
1X

kD0
f

 
Œk�q
Œn�q

!
1

qk.k�1/=2
Œn�kq zk

Œk�qŠ
Eq
�� Œn�q q�kz

�
(1)

and the complex q- Szász–Kantorovich operators were defined in [23] by

Kn;q .f I z/ D
1X

jD0
Eq
�� Œn�q q�jz

�
�
Œn�q z

�j

Œj�qŠ

1

q
j.j�1/
2

1Z

0

f

�
q Œj�q C t

Œn C 1�

�
dt: (2)

Note that for q D 1 we have Sn;q.f I z/ D Sn.f I z/.
Without to impose exponential growth conditions to the approximated functions

in compact disks, the approximation properties of the complex q-Favard–Szász–
Mirakjan operators were studied for q D 1 in [9], for q > 1 in [30], while
the approximation properties of the complex q-Szász–Kantorovich operators were
studied for q D 1 in [33] and for q > 1 in [23].

The absence of exponential growth conditions in compact disks in approxi-
mation by the complex Favard–Szász–Mirakjan-type operators, however, requires
the boundedness on Œ0;C1/ and the analyticity in a disk of double ray of the
approximated functions.

Under exponential growth conditions, the approximation properties of the com-
plex q-Favard–Szász–Mirakjan operators were studied in [7] (see also the book [8],
pp. 104–113), but only in the case of q D 1, while the study of approximation by
the complex q-Szász–Kantorovich operators is missing for all q � 1.

The first main goal of the present work is to study under exponential growth
conditions, approximation results for the complex q-Favard–Szász–Mirakjan-type
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operators in the case of q > 1 and for the complex q-Szász–Kantorovich-
type operators in the cases of q � 1. In the case when q > 1, the near to the
best approximation order, 1=qn, is obtained.

The formulas (1) and (2) evidently require that f be defined on Œ0;C1/ too,
which seems to be not completely in accordance with the fact that the approximation
results are obtained only inside the bounded disk of analyticity of f , DR. This
disagreement can easily be avoided, by considering in the approximation of f .z/ DP1

kD0 ckek.z/; ek.z/ D zk; z 2 DR, the complex approximation operators

S�
n;q .f I z/ D

1X

kD0
ckSn;q .ekI z/ and K�

n;q .f I z/ D
1X

kD0
ckKn;q .ekI z/ ; z 2 DR; (3)

with Sn;q .ekI z/ given by (1) and Kn;q .ekI z/ given by (2), cases when evidently that
the values of f on Œ0;C1/ are not required.

To answer completely to this problem, we also point out that if f is entire
function, i.e. f .z/ D P1

kD0 ckzk for all z 2 C, of some exponential growth, then
the equality Ln.f I z/ D P1

kD0 ckLn.ekI z/, z 2 C holds for Ln D Sn;q, Ln D Kn;q

and the quantitative estimates are valid (for Ln) in any disk Dr, with r 2 Œ1; 1=A/,
A 2 .0; 1/.

Approximation results for a link operator between the Phillips and Favard–
Szász–Mirakjan operators are presented.

Also, we point out similar consideration on the q-Baskakov operators and on the
Balázs–Szabados operators.

As a second aim of the present chapter, by using a sequence bn
an

WD 	n > 0,
an; bn > 0, n 2 N with the property that 	n ! 0 as fast we want, we obtain
the approximation order O.	n/ for the generalized Szász–Faber operators and the
generalized Baskakov–Faber operators attached to analytic functions of exponential
growth in a continuum G � C. Several concrete examples of continuums G are
given for which these generalized operators can explicitly be constructed.

The plan of the chapter goes as follows. In section “Complex q-Favard–Szász–
Mirakjan Operators, q > 1 Case” the case of the complex q-Szász–Kantorovich
operators with q D 1 is studied. The case of the complex q-Favard–Szász–
Mirakjan for q > 1 is presented in section “Complex q-Favard–Szász–Mirakjan
Operators, q > 1 Case” and based on the results in section “Complex
q-Favard–Szász–Mirakjan Operators, q > 1 Case,” the case of the complex q-
Szász–Kantorovich operators when q > 1 is considered by section “Complex
q-Szász–Kantorovich Operators, q > 1 Case.” In section “Link Operators Between
Phillips and Szász–Mirakjan Operators,” approximation results for a link operator
between the Phillips and Szász–Mirakjan operators are presented. Section “Com-
plex q-Baskakov Operators, q � 1 and Balázs–Szabados Operators” summarizes
similar comments for the complex q-Baskakov operators, q � 1 and for the complex
Balázs–Szabados operators. In sections “Generalized Szász–Faber Operators in
Compact Sets” and “Generalized Baskakov–Faber Operators in Compact Sets,” the
cases of generalized Szász–Faber operators and of the generalized Baskakov–Faber
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operators attached to a continuum in C are considered, for which arbitrary orders of
approximation, given from the beginning, are obtained. Section “Approximation by
Baskakov–Szász–Durrmeyer Operators in Compact Disks” contains approximation
results for the complex Baskakov–Szász–Durrmeyer operators.

Complex q-Favard–Szász–Kantorovich Operators, q D 1 Case

For q D 1, in this section we will consider

Kn.f I z/ D e�nz
1X

kD0

.nz/k

kŠ

Z 1

0

f

�
k C t

n

�
dt:

For simplicity, we denote Sn;1.f I z/ D Sn.f I z/.
The first result shows that for entire functions f , we have the equality Kn.f I z/ DP1
kD0 ckKn.ekI z/.

Lemma 1. Let f W C ! C be entire function, i.e. f .z/ D P1
kD0 ckzk, for all z 2 C.

Suppose that there exist M > 0 and A 2 .0; 1/, with the property jckj � M Ak

kŠ ,
for all k D 0; 1; : : : ; (which implies jf .z/j � MeAjzj for all z 2 C) and consider
1 � r < 1=A.

(i) Denoting F.z/ D R z
0

f .t/dt, F is entire function with F.z/ D P1
kD1 bkzk, for all

z 2 C, such that jbkj � M
A � Ak

kŠ , for all k D 1; : : : ; (which implies jF.z/j � M
A eAjzj

for all z 2 C).
(ii) We have Kn.f I z/ D P1

kD0 ckKn.ekI z/, Sn.FI z/ D P1
kD1

ck
ck�1

Sn.ekI z/, for all

jzj � r and Kn.f I z/ D S0
n.F/.z/, for all z 2 C and n 2 N. Here ek.z/ D zk.

Proof. (i) We get F.z/ D R z
0

f .t/dt D P1
kD1

ck�1

k zk and denoting bk D ck�1

k it

follows jbkj � M
k � Ak�1

.k�1/Š D M
A � Ak

kŠ , for all k � 1.

(ii) Firstly, since by hypothesis we have jf .t/j � MeAt, for all t 2 Œ0;1/, it follows

jKn.f I z/j � M � je�nzj �
1X

kD0

nkjzjk

kŠ
�
Z 1

0

eA.kCt/=ndt

D M

A
� .n C 1/Œe1=n � 1� � je�nzj

1X

kD0

nkjzjk

kŠ
� eAk=n < C1;

since the last series is convergent by the ratio criterium.
Therefore, Kn.f I z/ is well defined for all z 2 C. Now, since the series

P1
kD0 ckuk

is uniformly convergent for u 2 Œj=n; .j C 1/=n�, we get
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Kn.f I z/ D e�nz
1X

jD0

.nz/j

jŠ
�
Z 1

0

( 1X

kD0
ckekŒ.j C t/=n�

)

dt

D e�nz
1X

jD0

.nz/j

jŠ

1X

kD0
ck

Z 1

0

ekŒ.j C t/=n�dt:

Now, if the two sums above would commute, then we would immediately get

Kn.f I z/ D
1X

kD0
ck � e�nz �

1X

jD0

.nz/j

jŠ

Z 1

0

ekŒ.j C t/=n�dt D
1X

kD0
ck � Kn.ekI z/;

which would prove the lemma.
It is well known that a sufficient condition for the commutativity of the infinite

sums sign, i.e. for
P1

kD0
P1

jD0 ak;j D P1
jD0

P1
kD0 ak;j, is that

P1
kD0

P1
jD0 jak;jj <

C1.
Applied to our case, this condition is

E WD je�nzj
e�njzj �

1X

kD0
jckj � e�njzj �

1X

jD0

.njzj/j
jŠ

�
Z 1

0

ekŒ.j C t/=n�dt < C1;

for all jzj � r.
But, since by direct calculating it easily follows Kn.f I z/ D S0

n.FI z/, we get

E D je�nzj
e�njzj �

1X

kD0
jckj � Kn.ekI jzj/ � M

je�nzj
e�njzj �

1X

kD0

Ak

kŠ
� Kn.ekI jzj/

D M
je�nzj
e�njzj �

1X

kD0

Ak

kŠ
� S0

n.ekC1=.k C 1/I jzj/;

where Sn.f I u/ D e�nu � P1
jD0

.nu/j

jŠ � f
�

j
n

�
, u � 0, is the classical Szász–Mirakjan

operator.
Now, according to Theorem 2 in [28] (see also, e.g., [13], formula (1), replacing

there bn=an by 1=n), we have the formula

Sn.f I u/ D
1X

jD0
Œ0; 1=n; 2=n; : : : ; j=nI f �uj; u � 0;

where Œ0; 1=n; 2=n; : : : ; j=nI f � denotes the divided difference of f on the knots
0; 1=n; : : : ; j=n. This implies

Sn.ekC1I u/ D
kC1X

jD0
Œ0; 1=n; 2=n; : : : ; j=nI ekC1�uj:



Szász and Baskakov Type Operators in the Complex Plane 241

It follows

S0
n.ekC1I u/ D

kC1X

jD1
j � Œ0; 1=n; 2=n; : : : ; j=nI ekC1�uj�1

� .k C 1/

kC1X

jD1
Œ0; 1=n; 2=n; : : : ; j=nI ekC1�uj�1;

which for all 0 � u � r with r > 1 implies

jS0
n.ekC1I u/j � .k C 1/ � rk �

kC1X

jD0
Œ0; 1=n; 2=n; : : : ; j=nI ekC1�:

Now, taking into account the first formula in the proof of Theorem 3.3 in [13]
(written for bn=an D 1=n), we get

kC1X

jD0
Œ0; 1=n; 2=n; : : : ; j=nI ekC1� � 2.k C 2/Š; for all k 2 N [ f0g;

and therefore

jS0
n.ekC1I u/j � 2.k C 1/.k C 2/Š � rk; for all 0 � u � r:

Summarizing these estimates, for all jzj � r, it follows

E � M
je�nzj
e�njzj �

1X

kD0

Ak

kŠ
� S0

n.ekC1=.k C 1//.jzj/ � 2M
je�nzj
e�njzj �

1X

kD0

Ak

kŠ
� .k C 2/Š � rk

D 2M
je�nzj
e�njzj �

1X

kD0
.k C 1/.k C 2/.Ar/k < C1:

This leads to Kn.f I z/ D P1
kD0 ckKn.ekI z/. Similarly we reason for Sn.FI z/. ut

Remark 1. From the point of view of approximation theory, the hypothesis on f in
Lemma 1 to be entire function can be weakened, by considering analytic functions
only in a finite disk DR and introducing in a natural way the approximation operator
K�

n .f I z/ D P1
kD0 ck � Kn.ekI z/. This definition has the advantage that omits the

values of f on Œ0;C1/.

The first main result is the following.

Theorem 1. Let 1 < R < C1 and suppose that f W DR ! C is analytic in DR, i.e.
f .z/ D P1

kD0 ckzk, for all z 2 DR, and that there exist M > 0 and A 2 .1=R; 1/, with
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the property jckj � M Ak

kŠ , for all k D 0; 1; : : : ; (which implies jf .z/j � MeAjzj for all
z 2 DR). Also, consider 1 � r < 1=A.

The complex approximation operator

K�
n .f I z/ D

1X

kD0
ck � Kn.ekI z/; z 2 Dr;

is well defined and if f is not a polynomial of degree � 1, then for all n 2 N we have

kK�
n .f /� f kr � 1

n
;

where the constants in the equivalence depend only on f , r, A;M.

Proof. Firstly, the operator K�
n .f I z/ is well defined for all jzj � r since we have

jK�
n .f I z/j �

1X

kD0
jckj � jKn.ekI z/j � M

1X

kD0

Ak

kŠ
kKn.ek/kr

� 2M
1X

kD0

Ak

kŠ
.k C 1/Šrk D 2M

1X

kD0
.Ar/k.k C 1/ < C1:

Above we used an analogue formula with that in Lemma 4 in [33],

Kn.ekI z/ D 1

nk
�

kX

jD0

 
k

j

!

� nj

k � j C 1
� Sn.ejI z/

and the inequality in [7], p. 1123, kSn.ej/ � ejkr � .jC1/Š
2n rj�1 � .j C 1/Šrj, which

implies kSn.ej/kr � kSn.ej/� ejkr C rj � 2.j C 1/Šrj.
Finally, we can identically apply Corollary 2.2 in [7] (see also Theorem 1.8.3,

p. 113 in [8]) and therefore, denoting S�
n .f I z/ D P1

kD0 ck � Sn.ekI z/ and applying
Lemma 1 (for the relationship between K�

n and ŒS�
n �

0), we immediately get kK�
n .f /�

f kr D kŒS�
n .F/�

0 � F0kr � 1
n . ut

The following Voronovskaja’s result holds.

Theorem 2. Let f ; r;M;A be satisfying the hypothesis in Theorem 1 and 1 � r <
r1 < 1=A. Then, for all jzj � r and n 2 N, we have

jK�
n .f /.z/ � f .z/ � z

2n
f 0.z/j � 3Mjzj

r21n
2

1X

kD0
.k C 1/.r1A/

k � r1
.r1 � 1/2

:
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Proof. Denoting S�
n .f I z/ D P1

kD0 ck � Sn.eI z/ and replacing in the statement of
Theorem 3.2 in [7] (or in the statement of Theorem 1.8.2, (i), p. 107 in [8]) f by F
and r by r1, we get

ˇ
ˇ
ˇS�

n .F/.z/� F.z/� z

2n
F00.z/

ˇ
ˇ
ˇ � 3Mjzj

r21n
2

1X

kD0
.k C 1/.r1A/

k;

for all n 2 N and jzj � r1.
Let � be the circle of radius r1 > r and center 0 and denote En.F/.z/ D

Sn.F/.z/�F.z/� z
2n F00.z/. Since for any jzj � r and v 2 � we have jv� zj � r1� r,

by the Cauchy formula, for all n 2 N and jzj � r we obtain

jE0
n.F/.z/j D 1

2�

ˇ
ˇ
ˇ
ˇ

Z

�

En.F/.v/

.v � z/2
dv

ˇ
ˇ
ˇ
ˇ � 3Mjzj

r2n2

1X

kD0
.k C 1/.r1A/

k � 1
2�

� 2�r1
.r1 � 1/2 ;

which by Lemma 1 implies

jK�
n .f /.z/ � f .z/� z

2n
f 0.z/j � 3Mjzj

r21n
2

1X

kD0
.k C 1/.r1A/

k � r1
.r1 � 1/2 ;

and proves the theorem. ut
Remark 2. The conditions r < 1=A and A 2 .1=R; 1/ in the above results show that
if we choose A as close we want to 1=R, then r can be chosen as close we want to R,
thus evidently improving the results in [33] where the necessary condition r < R=2
was required.

Remark 3. From Lemma 1, it is immediate that if f is supposed to be entire
function, then the results in Theorems 1 and 2 hold in any disk Dr with r 2 Œ1; 1=A/,
A 2 .0; 1/ and replacing K�

n .f / with Kn.f /.

Complex q-Favard–Szász–Mirakjan Operators, q > 1 Case

We begin with quantitative upper estimate in approximation by Sn;q.f I z/, with
q > 1. But since the order of approximation is O.1=qn/ and in approximation theory
we are always looking for a better degree of approximation, without an essential
loss in our considerations we can suppose that we are dealing with approximation
by Sn;q.f I z/ with q > 2. This choice for q is made here simply because in this way
we can use some relationships from previously published papers.

Theorem 3. Let f W DR ! C, 2 < q < R � C1, i.e. f .z/ D P1
kD0 ckzk, for all

z 2 DR. Suppose that there exist M > 0 and A 2 .1=R; 1=q/, with the property
jckj � M Ak

kŠ , for all k D 0; 1; : : : ; (which implies jf .z/j � MeAjzj for all z 2 DR).
Also, consider 1 � r < 1=.Aq/.
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(i) If R D C1, (1=R D 0), i.e. f is an entire function, then, Sn;q.f I z/ is entire
function and for all jzj � r, n 2 N, we have Sn;q.f I z/ D P1

mD0 cmSn;q.emI z/
and

jSn;q.f I z/ � f .z/j � Cr;M;A;q

Œn�q
;

with Cr;M;A;q D M
2qr

P1
mD2.m C 1/.qrA/m < 1.

(ii) If R < C1, then the complex approximation operator

S�
n;q.f I z/ D

1X

kD0
ck � Sn;q.ekI z/; z 2 Dr;

is well defined and jS�
n;q.f I z/ � f .z/j � Cr;M;A;q

Œn�q
, with Cr;M;A;q as at the above

point (i).

Proof. (i) From the hypothesis on f (that is jf .z/j � MeAjzj, for all z 2 C), exactly
as in the case of q D 1 (see, e.g., [4], pp. 1171–1172), it follows that Sn;q.f I z/ is
analytic in C, i. e. for all z 2 C, we have jSn;q.f I z/j < C1.

Since we have

Sn;q.f I z/ D
1X

kD0

2

4
1X

jD0
cj � ej.Œk�q=Œn�q/

3

5 1

qk.k�1/=2
Œn�kq zk

Œk�qŠ
Eq
�� Œn�q q�kz

�
;

if the above two infinite sums would commute, then we would obtain

Sn;q.f I z/ D
1X

jD0
cj

1X

kD0

�
ej.Œk�q=Œn�q/

� 1

qk.k�1/=2
Œn�kq zk

Œk�qŠ
Eq
�� Œn�q q�kz

�

D
1X

jD0
cj � Sn;q.ejI z/:

Reasoning exactly as in the proof of Lemma 1, (ii), it will be good enough if we
prove that

E WD

D Eq.�Œn�qq�kz/

Eq.�Œn�qq�kjzj �
1X

jD0
jcjj �

1X

kD0

�
ej.Œk�q=Œn�q/

� 1

qk.k�1/=2
Œn�kq jzjk

Œk�qŠ
Eq
�� Œn�q q�kjzj�

D Eq.�Œn�qq�kz/

Eq.�Œn�qq�kjzj/ �
1X

jD0
jcjj � Sn;q.ejI jzj/ < C1:
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But, from the below proved relationship in this proof, kSn;q.emI z/ � emkr �
.mC1/Š
2Œn�q

.qr/m�1, for all m � 2, n � 1, we immediately get (taking into account that
q > 2 too)

kSn;q.em/kr � .m C 1/Š

2Œn�q
.qr/m�1 C rm � .m C 1/Š

2Œn�q
.qr/m C .qr/m

� .m C 1/Š

2
.qr/m C .qr/m � .m C 1/Š.qr/m:

Therefore, for all jzjj � r we immediately get

E � M � Eq.�Œn�qq�kz/

Eq.�Œn�qq�kjzj �
1X

jD0

Aj

jŠ
.j C 1/Š � .qr/j

D M � Eq.�Œn�qq�kz/

Eq.�Œn�qq�kjzj �
1X

jD0
.j C 1/ � .qrA/j < C1;

since qrA < 1.
According to the proof of Theorem 1, p. 1788 in [30], we have the recurrence

formula Sn;q.emI z/ � zm D z
Œn�q

DqŒSn;q.em�1I z/� C z.Sn;q.em�1I z/ � zm�1/, which
immediately leads to

Sn;q.emI z/ � zm D z

Œn�q
DqŒSn;q.em�1I z/ � zm�1�C z.Sn;q.em�/I z/� zm�1/

C zm�1

Œn�q
� qm�1 � 1

q � 1
:

Then, by the proof of Theorem 1, p. 1789 in [30], for any polynomial of degree
� m, we have

jDq.PmI z/j � m

r
kPmkr:

Therefore, since Sn;q.emI z/ is a polynomial of degree � m, for all jzj � r, m � 2,
we get

jSn;q.emI z/ � em.z/j � r

Œn�q
� m � 1

r
kSn;q.em�1I z/ � em�1kr

C rkSn;q.em�1I z/ � em�1kr C .qr/m�1

.q � 1/Œn�q

�
�

r C m � 1
Œn�q

�
kSn;q.em�1I z/ � em�1kr C .qr/m�1.m � 1/

Œn�q
:
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In what follows, by mathematical induction after m � 2, we prove the inequality

kSn;q.em/� emkr � .m C 1/Š

2Œn�q
.qr/m�1; m � 2; n � 1:

Indeed, for m D 2, the left-hand side becomes (see, e.g., [30], Sect. 2, p. 1786) equal
to r

Œn�q
, while the right-hand side is 3r

2Œn�q
. Supposing now that it is valid for m, the

above recurrence implies

kSn;q.emC1/� emC1kr �
�

r C m

Œn�q

�
� .m C 1/Š

2Œn�q
.qr/m�1 C .qr/mm

Œn�q

�
�

qr C m

Œn�q

�
� .m C 1/Š

2Œn�q
.qr/m�1 C .qr/mm

Œn�q
:

It remains to prove that

�
qr C m

Œn�q

�
� .m C 1/Š

2Œn�q
.qr/m�1 C .qr/mm

Œn�q
� .m C 2/Š

2Œn�q
.qr/m;

which after simplification is equivalent to

�
qr C m

Œn�q

�
Œ.m C 1/Š�C 2.qr/m � .m C 2/Š.qr/:

Since for q > 1, Œn�q � n, it follows that it suffices if we prove the inequality

�
qr C m

n

�
Œ.m C 1/Š�C 2.qr/m � .m C 2/Š.qr/:

But this is exactly the inequality proved in [7], at p. 1123 (with qr > 1 instead of
r > 1) (see also the book [8], p. 106).

Therefore, we obtain Sn;q.f I z/ D P1
mD0 cmSn;q.emI z/, which from the hypothesis

on cm, implies for all jzj � r, n 2 N,

jSn;q.f I z/ � f .z/j �
1X

mD0
jcmj � kSn;q.emI z/ � em.z/kr

D
1X

mD2
jcmj � kSn;q.emI z/ � em.z/kr � M

1X

kD2

Am

mŠ
� .m C 1/Š

2Œn�q
.qr/m�1

D 1

Œn�q
� M

2qr

1X

kD2
.m C 1/.qrA/m;
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where by the hypothesis 1 � r < 1
Aq with A 2 .0; 1=q/ implies qrA < 1 and

P1
kD2.m C 1/.qrA/m < C1.

(ii) The operator S�
n;q.f /.z/ is well defined since for all jzj � r we have

jS�
n;q.f I z/j �

1X

kD0
jckj � jSn;q.ekI z/j � M

1X

kD0

Ak

kŠ
� .k C 1/Š.qr/k

D 2M
1X

kD0
.k C 1/.qrA/k < C1:

The rest of the proof is identical with the proof of (i). ut
The next result gives the Voronovskaja’s result in compact disks.

Theorem 4. Suppose that f ;M;A;R; r; q, Sn;q.f /, S�
n;q.f / are as in the statement of

Theorem 3. Then, for all jzj � r and n 2 N, we have

ˇ
ˇ
ˇ
ˇSn;q.f I z/ � f .z/ � 1

Œn�q
� Lq.f I z/

ˇ
ˇ
ˇ
ˇ � Cr;M;A;q

Œn�2q
; if R D C1;

ˇ
ˇ
ˇ
ˇS

�
n;q.f I z/ � f .z/ � 1

Œn�q
� Lq.f I z/

ˇ
ˇ
ˇ
ˇ � Cr;M;A;q

Œn�2q
; if R < C1;

with Cr;M;A;q D M
2

P1
mD3.m C 1/.m C 2/.qrA/m < 1, f .z/ D P1

mD0 cmzm and

Lq.f I z/ D Dqf .z/ � f 0.z/
q � 1

D
1X

mD2
cm.Œ1�q C : : :C Œm � 1�q/zm�1:

Proof. Let R D C1. Denoting Em;n.z/ D Sn;q.emI z/ � em.z/ � Œ1�qC:::CŒm�1�q
Œn�q

zm�1,
by the proof of Theorem 2, p. 1789 in [30], for all m � 2, z 2 C and n 2 N we have
the recurrence formula

Em;n.z/ D z

Œn�q
Dq.Sn;q.em�1I z/ � em�1.z//C zEm�1;n.z/:

Taking into account the estimate for kSn;q.em�1I z/ � em�1.z/kr in the proof of the
above Theorem 3, (i), for all jzj � r, m � 2, n 2 N, it follows

jEm;n.z/j � z

Œn�q
k.Sn;q.em�1/� em�1/0kr C jzj � jEm�1;n.z/j

� jzj � jEm�1;n.z/j C jzj
Œn�q

� m � 1
r

kSn;q.em�1/ � em�1kr
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� jzj � jEm�1;n.z/j C jzj.m � 1/

Œn�q
� mŠ

2Œn�q
.qr/m�1

� jzj � jEm�1;n.z/j C jzj
2Œn�2q

� Œ.m C 1/Š�.qr/m�1

� .qr/ � jEm�1;n.z/j C 1

2Œn�2q
�.m C 1/Š.qr/m:

Taking into account that E2;n.z/ D 0, step by step by mathematical induction we
easily obtain, for all m � 3,

jEm;n.z/j � .qr/m

2Œn�2q

 
mC1X

kD4
kŠ

!

� .qr/m

2Œn�2q
.m C 2/.m C 1/Š D mŠ.qr/m.m C 1/.m C 2/

2Œn�2q
:

This implies, together with Theorem 3, (i), that for all jzj � r, n 2 N, we have

ˇ
ˇ
ˇ̌Sn;q.f I z/ � f .z/ � 1

Œn�q
� Lq.f I z/

ˇ
ˇ
ˇ̌ �

1X

mD1
jcmj � jEm;n.z/j

D
X

mD3
jcmj � jSn;q.emI z/� em.z/ � Œ1�q C : : :C Œm � 1�q

Œn�q
zm�1j

� M

2Œn�2q
�

1X

mD3

Am

mŠ
� mŠ.qr/m.m C 1/.m C 2/

2Œn�2q
D 1

Œn�2q
� M

2

1X

mD3
.m C 1/.m C 2/.qrA/m:

The proof in the case of S�
n;q, i.e. when R < C1, follows identically the above lines

in the case when R D C1. ut
Corollary 1. Suppose that f ;M;A;R; r; q, Sn;q.f /, S�

n;q.f / are as in the statement of
Theorem 3. If f is not a polynomial of degree � 1, then

kSn;q.f /� f kr � 1

Œn�q
if R D C1; kS�

n;q.f / � f kr � 1

Œn�q
if R < C1;

with the constants in the equivalences are independent of n.

Proof. Let R D C1. Since

Sn;q.f I z/ � f .z/ D 1

Œn�q



Lq.f I z/C Œn�q

�
Sn;q.f I z/ � f .z/ � 1

Œn�q
� Lq.f I z/

��
;

by the inequality kF C Gkr � j kFkr � kGkr j � kFkr � kGkr we get
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kSn;q.f I z/ � f .z/kr � 1

Œn�q



kLq.f /kr � Œn�qkSn;q.f / � f � 1

Œn�q
� Lq.f /kr

�
:

Since by the proof of Theorem 3 in [30] we have kLq.f /kr > 0 and taking into
account that by Theorem 4 we get

Œn�q

ˇ
ˇ̌
ˇSn;q.f I z/ � f .z/� 1

Œn�q
� Lq.f I z/

ˇ
ˇ̌
ˇ � Cr;M;A;q

Œn�q
! 0 for n ! 1;

there exists n1 (depending only on f and r) such that for all n � n1 we have

kLq.f /kr � Œn�qkSn;q.f / � f � 1

Œn�q
� Lq.f /kr � 1

2
kLq.f /kr:

This immediately implies that kSn;q.f I z/ � f .z/kr � 1
2Œn�q

� kLq.f /kr , for all n � n1.

For 1 � n � n1 � 1 we have kSn;q.f /� f kr D 1
Œn�q

� Mr;n.f / > 0, where Mr;n.f / D
Œn�qkSn;q.f / � f kr , which finally implies

kSn;q.f I z/ � f .z/kr � Cr;q.f /

Œn�q
; for all n 2 N;

where Cr;q.f / D min
˚
1
2
kLq.f /kr;Mr;1.f /; : : : ;Mr;n1�1.f /

�
.

Combining this lower estimate with the upper estimate in Theorem 3, (i), the
proof is finished.

The proof in the case of S�
n;q.f /, i.e. when R < C1, is identical. ut

Remark 4. If R < C1, then the conditions r < 1
Aq and A 2 .1=R; 1=q/ in the above

results show that if we choose A as close we want to 1=R, then r can be chosen as
close we want to R

q , thus evidently improving the results in [30] where the necessary

condition r < R
2q is required.

Remark 5. By the obvious inequalities q�1
qn � 1

Œn�q
� q

qn , for all n 2 N and q > 1, it
follows that the approximation order in Theorem 3 and Corollary 1 is geometrical,
namely 1

qn .

Complex q-Szász–Kantorovich Operators, q > 1 Case

Firstly, we need the following auxiliary result.

Lemma 2. Let q > 2, 1 � r. For all m; n 2 N, we have

kKn;q.em/kr � .m C 1/Š .qr/m :



250 S.G. Gal

Proof. Since by Lemma 5 in [23], we have

Kn;q .emI z/ D 1

Œn C 1�mq

mX

kD0

 
m

k

!
qk Œn�kq

.m � k C 1/
Sn;q.ekI z/;

by the inequality kSn;q.em/kr � .m C 1/Š.qr/m obtained in the proof of Theorem 3,
(i), it follows, for all jzj � r, m 2 N

Sf0g, n 2 N,

ˇ
ˇKn;q .emI z/

ˇ
ˇ � .m C 1/Š .qr/m

Œn C 1�mq

mX

jD0

�
m
j

�
qj Œn�jq D .m C 1/Š .qr/m ;

which proves the lemma. ut
The first main result is the following quantitative upper estimate.

Theorem 5. Let f W DR ! C, 2 < q < R � C1, i.e. f .z/ D P1
kD0 ckzk, for all

z 2 DR. Suppose that there exist M > 0 and A 2 .1=R; 1=q/, with the property
jckj � M Ak

kŠ , for all k D 0; 1; : : : ; (which implies jf .z/j � MeAjzj for all z 2 DR).
Also, consider 1 � r < 1=.Aq/.
.ia/ If R D C1, (1=R D 0), i.e. f is an entire function, then Kn;q.f I z/ is entire

function and for all jzj � r, n 2 N, we have Kn;q.f I z/ D P1
mD0 cmKn;q.emI z/ and

jKn;q.f I z/ � f .z/j � Cr;M;A;q

Œn�q
;

with Cr;M;A;q D 3M
P1

mD1 m.m C 1/.qrA/m < 1.
.ib/ If R < C1, then the complex approximation operator

K�
n;q.f I z/ D

1X

kD0
ck � Kn;q.ekI z/; z 2 Dr;

is well defined and jK�
n;q.f I z/ � f .z/j � Cr;M;A;q

Œn�q
, with Cr;M;A;q as at the above point

.ia/.

Proof. .ia/ Let R D C1. By the proof of Theorem 1 in [23], relationship (5), we
have the relationship

Kn;q .emI z/� em .z/ D z

Œn�
Dq
�
Kn;q .em�1I z/

�C z
�
Kn;q .em�1I z/ � em�1 .z/

�

C 1

Œn C 1�mq

mX

kD0

�
m
k

�
qk Œn�kq

m � k C 1

(

1 � k

m
� k

mq Œn�q

)

Sn;q .ekI z/ ;



Szász and Baskakov Type Operators in the Complex Plane 251

where reasoning exactly as in the proof of Theorem 1 in [23] and taking into account
the estimate for kSn;q.ekkr in the proof of Theorem 3, (i), for all jzj � r we get

ˇ
ˇ
ˇ
ˇ
ˇ

1

Œn C 1�mq

mX

kD0

�
m
k

�
qk Œn�kq

m � k C 1

(

1 � k

m
� k

mq Œn�q

)

Sn;q .ekI z/

ˇ
ˇ
ˇ
ˇ
ˇ

� 2m C 1

Œn C 1�q
� .m C 1/Š .qr/m :

Now, by using the Bernstein’s inequality and reasoning exactly as in the proof of
Theorem 1 in [23], we immediately obtain

jKn;q.emI z/� em.z/j � rjKn;q.em�1I z/ � em�1.z/j C 3m � .m C 1/Š.qr/m

Œn�q
;

for jzj � r, m; n 2 N.
By writing the last inequality step by step for m D 1; 2; : : : ; we easily arrive at

jKn;q.emI z/ � em.z/j � 3

Œn�q
.qr/m

mX

kD1
k.k C 1/Š � 3

Œn�q
m.m C 1/mŠ.qr/m:

Since exactly in the proof of Theorem 3, (i), we can prove that Kn;q.f I z/ DP1
mD0 cmKn;q.emI z/, for all jzj � r, it follows

ˇ
ˇKn;q .f I z/ � f .z/

ˇ
ˇ �

1X

mD0
jcmj ˇˇKn;q .emI z/� em .z/

ˇ
ˇ � 3M

Œn�q

1X

mD1
m .m C 1/ .qrA/m ;

which proves .ia/.
.ib/ Let R < C1. The operator K�

n;q.f I z/ is well defined since by Lemma 2, for
all jzj � r we get

jK�
n;q.f I z/j D

1X

kD0
jckj�jKn;q.ekI z/j � M

1X

kD0

Ak

kŠ
�.kC1/Š.qr/k D M�

1X

kD0
.kC1/.qrA/k:

The proof in the case of K�
n;q, i.e. when R < C1, follows identically the above lines

in the case .ia/ when R D C1. ut
The next result gives the Voronovskaja’s result in compact disks.

Theorem 6. Suppose that f ;M;R; r;A; q, Kn;q.f /, K�
n;q.f / are as in the statement of

Theorem 5 and, in addition, that 2 < q < q2 < R. If 1 � r < 1
Aq2

, then for all
jzj � r and n 2 N, we have



252 S.G. Gal

ˇ
ˇ
ˇ̌Kn;q.f I z/ � f .z/ � 1

Œn�q
� Rq.f I z/

ˇ
ˇ
ˇ̌ �

1X

mD2
P4.m/.q

2rA/m � Cr;M;A;q

Œn�2q
; if R D C1;

ˇ
ˇ
ˇ
ˇK

�
n;q.f I z/ � f .z/ � 1

Œn�q
� Rq.f I z/

ˇ
ˇ
ˇ
ˇ �

1X

mD2
P4.m/.q

2rA/m � Cr;M;A;q

Œn�2q
; if R < 1;

with a constant Cr;M;A;q > 0 independent of n, P4.m/ a strictly positive polynomial
of degree � 4 in m 2 N, Rq.f I z/ D P1

mD1 cm � Vm;q.z/, Vm;q.z/ D q.Œ1�q C : : : C
Œm � 1�q/C mzm�1

2
.1 � 2z/ and

P1
mD2 P4.m/.q2rA/m < 1.

Proof. Let R D C1. Denote En;m.z/ D Kn;q.emI z/ � em.z/ � 1
Œn�q

Vm;q.z/. By using

the estimate for jKn;q.emI z/ � em.z/j in the proof of Theorem 5, (i), the estimate for
jSn;q.emI z/� em.z/j in the proof of Theorem 3, (i), and the estimate for jKn;q.emI z/j
in Lemma 2, by following the lines in the proof of Theorem 2, (i) in [23], we easily
arrive at an inequality of the form

jEn;m.z/j � rjEn�1;m.z/j C P3.m/

Œn�2q
.m C 1/Š � .q2r/m;

where P3.m/ is a strictly positive polynomial of degree 3 in m 2 N (P3.m/ could be
explicitly obtained by calculation, but for simplicity we omit it here).

From this recurrence we get, step by step

jEn;m.z/j � C � P4.m/mŠ

Œn�2q
�

1X

mD2
.q2rA/m;

(here P4.m/ is a polynomial of degree � 4 in m and C > 0 is a constant independent
of n) which by Kn;q.f I z/ D P1

mD0 cmKn;q.emI z/ immediately leads to

ˇ̌
ˇ
ˇKn;q.f I z/ � f .z/ � 1

Œn�q
Rq.f I z/

ˇ̌
ˇ
ˇ �

1X

mD1
jcmj�jEn;m.z/j � Cr;M;A;q

Œn�2q

1X

mD2
P4.m/.q

2rA/m:

The proof in the case when R < C1 follows exactly the same lines as above. ut
Corollary 2. Suppose that f ;R; r;M;A; q, Kn;q.f /, K�

n .f / are as in the statement of
Theorem 5 and, in addition, that 2 < q < q2 < R. If 1 � r < 1

Aq2
and f is not a

constant function, then

kKn;q.f / � f kr � 1

Œn�q
if R D 1; kK�

n;q.f /� f kr � 1

Œn�q
if R < 1:

Proof. Let R D C1. Reasoning exactly as in the proof of Theorem 2, (ii) in [23],
by the above Theorem 6 we obtain that limn!1Œn�qjKn;q.f I z/ � f .z/j D Rq.f I z/.
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Then, following word for word the proof of Theorem 3 in [23], we immediately
arrive at the desired result.

The case when R < C1 is identical. ut
Remark 6. The conditions r < 1

Aq2
and A 2 .1=R; 1/ in the above results show that

if we choose A as close we want to 1=R, then r can be chosen as close we want to
R
q2

, thus evidently improving the results in Theorem 3 in [23] where the necessary

condition r < R
2q2

is required.

Link Operators Between Phillips and Szász–Mirakjan
Operators

Let ˛;  > 0. The complex form of the link operator between the Phillips operator
and the Szász–Mirakjan operator is formally defined by

P˛.f ; z/ D
1X

kD1
s˛;k.z/

Z 1

0

�

˛;k.t/f .t/dt C e�˛zf .0/; z 2 C;

where

s˛;k.z/ D e�˛z .˛z/k

kŠ
; �


˛;k.t/ D ˛

� .k/
e�˛t.˛t/k�1:

For  D 1, it is clear that it reduces to the Phillips operator [36] and for  ! 1 one
obtains the Szász–Mirakjan operator.

In the present section we present quantitative estimates in closed disks Dr D
fz 2 CI jzj � rg, for the uniform convergence as ˛ ! 1, of the complex operator
P˛.f ; z/ attached to f entire function and of some exponential growth in C.

Throughout the section we denote kf kr D maxfjf .z/jI jzj � rg and ek.z/ D zk,
k 2 N [ f0g, z 2 C:

For M > 0 and A > 0, let us consider the following class of entire functions :

FM;A D
(

f W f .z/ D
1X

kD0
ckzk; z 2 C; jckj � M

Ak

kŠ
; for all k 2 N [ f0g

)

:

Notice that for f 2 FM;A, we have jf .z/j � MeAjzj, for all z 2 C.
The following main results hold.

Theorem 7 (Upper Estimate, See [17]). Let ˛;  > 0, E./ WD 1C 1

, A 2 .0; 1/

and f 2 FM;A. In this case, P˛.f /.z/ is well defined for all z 2 C and if 1 � r < 1
A ,

then for all jzj � r and ˛ � maxfE./; 2A


g, we have
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jP˛.f /.z/ � f .z/j � Cr;;A;M

˛
;

where Cr;;A;M D M�E./
r

P1
kD2.k C 1/.rA/k < 1.

Theorem 8 (Voronovskaja Formula, See [17]). Let ˛;  > 0, E./ WD 1C 1


and

f 2 FM;A with A 2
�
0;



1C
�

.

If 1 � r < r C 1= < 1
A then for all jzj � r and ˛;  > 0 with ˛ �

maxf2;E./; 2A


g, we have

ˇ
ˇ̌
ˇP

˛.f /.z/ � f .z/ � .1C 1=/z

2˛
f 00.z/

ˇ
ˇ̌
ˇ � C.1/

r;A;;M.f /

˛2
;

where

C.1/
r;A;;M.f / D 2M � E2./

.r C 1=/2
�

1X

kD2
.kC1/.kC2/.A.rC1=//k C 6M � E./

r.1 � Ar/2 � ln2.1=Ar/
:

Theorem 9 (Exact Order, See [17]). Under the hypothesis of Theorem 8, if f is
not a polynomial of degree � 1 then for all ˛;  > 0 with ˛ � maxf2;E./; 2A


g, we

have

kP˛.f /� f kr � C

˛
;

where the constant C in the equivalence depends only on f , r, and .

If in our results we take  D 1, then we get the approximation order 1
˛

for the
complex Phillips operators and if we take  ! 1, since E./ ! 1 and 2A


! 0,

then we get for the Szász–Mirakjan operator the same order of approximation 1
˛

.

Complex q-Baskakov Operators, q � 1 and Balázs–Szabados
Operators

For 0 � ˛ � ˇ and q � 1, the complex q-Baskakov–Stancu operators

W˛;ˇ
n;q .f /.z/ D

1X

jD0

Œn C j � 1�qŠ
Œn � 1�qŠ

q�j.j�1/=2

�ŒŒ˛�q=.Œn�q C Œˇ�q/; : : : ; .q
j�1Œ˛�C Œj�q/=.q

j�1.Œn�q C Œˇ�q//I f � � zj

.Œn�q C Œˇ�q/j
;
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were introduced and studied in [39] for q > 1 and in [21] for q D 1, under the
hypothesis that f .z/ D P1

kD0 ckzk is analytic and of exponential growth in a disk DR

and with all derivatives bounded on Œ0;1/.
As in the previous sections, for the study of these operators, we can consider two

approaches:

1. under the hypothesis that f is defined, analytic and of exponential growth only in
the finite disk DR, one can consider the complex approximation operators

W.˛;ˇ/�
n;q .f /.z/ D

1X

jD0
ckW˛;ˇ

n;q .ek/.z/;

recapturing for W.˛;ˇ/�
n;q the order of approximation 1=Œn�q, if q > 1.

2. under the stronger hypothesis that f is entire and of exponential growth in C, one
can recapture the same orders of approximation for W˛;ˇ

n;q .f /.

Also, the complex q-Balász–Szabados operators Rn;q.f /.z/, 0 < q � 1, were
introduced and studied for q � 1 in [26] and for q D 1 in [8], pp. 139–148. Defining

R�
n;q.f /.z/ D

1X

jD0
ckRn;q.ek/.z/;

similar approaches can be applied in this case too.
We omit here the details.

Remark 7. Since from the exponential growth condition on f imposed to the
coefficients ck in the finite disk DR, we easily get that jP1

kD0 ckzkj � P1
kD0 jckj�rk �

M
P1

kD0
.Ar/k

kŠ D MeAr < C1, for all r � 1, it follows that in fact f can be analyti-
cally extended in the whole complex plane. Therefore, under the exponential growth
conditions in the results of all sections “Complex q-Favard–Szász–Kantorovich
Operators, q D 1 Case,” “Complex q-Favard–Szász–Mirakjan Operators,
q > 1 Case,” “Complex q-Szász–Kantorovich Operators, q > 1 Case,” and “Link
Operators Between Phillips and Szász–Mirakjan Operators,” the operators denoted
with � are in fact the restrictions of the initial operators to the finite disks DR.

Generalized Szász–Faber Operators in Compact Sets

Let .an/n2N, .bn/n2N, be two sequences with the properties that bn
an

� 1, for all n 2 N

and bn
an

& 0 as fast as we want. In [3], a remarkable generalization of the Favard–
Szász–Mirakjan operators defined by
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Sn.f I anI bn/.z/ D e� an
bn

z
1X

jD0
f

�
jbn

an

�
� .anz/j

jŠbj
n

; z 2 C; n 2 N

was introduced, by proving that it approximates analytic functions f of some
exponential growth in compact disks, with the approximation order bn

an
.

Also, according to Theorem 1 in [3], one can write

Sn.f I anI bn/.z/ D
1X

jD0


0;

bn

an
;
2bn

an
; : : : ;

jbn

an
I f

�
zj; (4)

where
h
0; bn

an
; 2bn

an
; : : : ;

jbn
an

I f
i

denotes the divided difference of f on the knots

0; : : : ; jbn
an

.
Suggested by the Open Problem 1.11.8, pp. 152–153 in [8] and by Cetin and Ispir

[3], the aim of this section is to generalize this result to the approximation by the
so-called Favard–Szász–Mirakjan–Faber operators, attached to analytic functions
of exponential growth in a continuum in C. An upper estimate of order bn

an
in

approximation by these operators is obtained.
In what follows, let us briefly recall some basic concepts on Faber polynomials

and Faber expansions, which will be useful in the next section.
Throughout the paper, G � C will be considered a compact set such that

QC n G is connected. Let A.G/ be the Banach space of all functions that are
continuous on G and analytic in the interior of G endowed with the uniform norm
kf kG D supfjf .z/jI z 2 Gg. If we denote Dr D fz 2 CI jzj < rg, then according
to the Riemann Mapping Theorem, a unique conformal mapping � of QC n D1 onto
QC n G exists so that �.1/ D 1 and � 0.1/ > 0. The n-th Faber polynomial Fn.z/
attached to G may be defined by � 0.w/

�.w/�z D P1
nD0

Fn.z/
wnC1 ; z 2 G; jwj > 1. Then Fn.z/

is a polynomial of exact degree n.
If f 2 A.G/, then

an.f / D 1

2�i

Z

jujD1
f .�.u//

unC1 du D 1

2�

Z �

��
f .�.eit//e�intdt; n 2 N [ f0g (5)

are called the Faber coefficients of f and
P1

nD0 an.f /Fn.z/ is called the Faber
expansion (series) attached to f on G. The Faber series represents a natural
generalization of the Taylor series, when the unit disk is replaced by an arbitrary
simply connected domain bounded by a “nice” curve.

For further properties of Faber polynomials and Faber expansions, see, e.g., Gaier
[6] and Suetin [41].

Now, let G be a continuum (that is a connected compact subset of C) and suppose
that f is analytic on G, that is, there exists R > 1 such that f is analytic in GR, given
by f .z/ D P1

kD0 ak.f /Fk.z/, z 2 GR. Here recall that GR denotes the interior of the
closed level curve �R given by �R D f�.w/I jwj D Rg (G � Gr for all 1 < r < R).
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Suggested by the Open Problem 1.11.8, pp. 152–153 in [8] and by (4), the
Favard–Szász–Mirakjan–Faber operators attached to G and f might be defined by
the formula

Mn.f I an; bn;GI z/ D
1X

jD0


0;

bn

an
;
2bn

an
; : : : ;

jbn

an
I F.f /

�
� Fj.z/; z 2 G; n 2 N; (6)

where Fj.z/ is the Faber polynomial of degree j attached to G in the Faber’s
expansion of f and F.f / is defined by

F.f /.w/ D 1

2�i

Z

jujD1
f .�.u//

u � w
du D 1

2�

Z �

��
f .�.eit//eit

eit � w
dt;w 2 D1

[
C n D1:

(7)

Here
h
0; bn

an
; 2bn

an
; : : : ;

jbn
an

I F.f /
i

denotes the divided difference of F.f / on the knots

0; bn
an
; : : : ; jbn

an
and we suppose that there exist the constants B;C > 0 such that

jF.f /.x/j � CeBx, for all x 2 Œ0;C1/.
Under the above hypothesis, Mn.f I an; bn;GI z/ is well defined for all n 2 N and

z 2 Gr. Indeed, by the formula

Mn.f I an; bn;GI z/ D
1X

jD0

�
j
bn=an

jŠ.bn=an/j
� Fj.z/

D
1X

jD0

1

jŠ
�
�

an

bn

�j

� Fj.z/ �
jX

pD0

 
j

p

!

F.f /Œ.j � p/bn=an�

and by the well-known estimates jFj.z/j � C.r/rj, valid for all z 2 Gr, j � 0

(see, e.g., inequality (8), p. 43 in Suetin [41]), it is easily seen that

jMn.f I an; bn;GI z/j � C � C.r/
1X

jD0

1

jŠ

�
an

bn

�j

�
jX

pD0

 
j

p

!

� eB.j�p/bn=an � rj

D C � C.r/
1X

jD0

1

jŠ
�
�

an

bn

�j

� �r C eBbn=an
�j

D C � C.r/ � e.rCeBbn=an /�an=bn < C1:

Notice that according to Plemejl–Sokhoski formula, if, for example, f ı � is ˛-
Hölder function on fu 2 CI juj D 1g with ˛ 2 .0; 1/, then it is known that F.f /
given by (7) is continuous and bounded on Œ0;1/, which obviously implies that
F.f / is of exponential growth on Œ0;1/.
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Since from the proofs of all quantitative results in approximation by complex
operators it follows that a necessary key result is Mn.f I an; bn;GI z/ D P1

kD0 ak.f / �
Mn.FkI an; bn;GI z/, instead of defining Mn.f I an; bn;GI z/ as in (6), for simplicity
throughout the paper we will consider the following.

Definition 1 ([13]). Let G be a continuum (that is a connected compact subset of
C) and suppose that f is analytic on G, that is, there exists R > 1 such that f .z/ DP1

kD0 ak.f /Fk.z/ for all z 2 GR.
The Favard–Szász–Mirakjan–Faber operators attached to G and f will be

defined by

Mn.f I an; bn;GI z/ D
1X

kD0
ak.f / � Mn.FkI an; bn;GI z/;

(supposing that the above series is convergent)), where making use of

F.Fk/.w/ D 1

2�i

Z

jujD1
Fk.�.u//

u � w
du D wk WD ek.w/; for all jwj < 1;

(see [6], p. 48, first relation before relation (6.17)), it formally becomes

Mn.f I an; bn;GI z/ D
1X

kD0
ak.f / �

kX

jD0


0;

bn

an
; : : : ;

jbn

an
I ek

�
� Fj.z/: (8)

Remark 8. Formula (8) presents the advantage that the pretty strong hypothesis on
F.f / in formula (6) can be replaced by direct simple requirements on f , as we will
see in the next Theorem 7.

Remark 9. For G D D1, since Fj.z/ D zj and F.f /.z/ D f .z/, by Theorem 1 in [3],
the above Favard–Szász–Mirakjan–Faber operators reduce to the complex Favard–
Szász–Mirakjan operators introduced and studied in [3].

For the proof of the main result, we need two lemmas.

Lemma 3 ([13]). Let an; bn > 0, n 2 N, with 1 � bn
an

& 0. For all k; n 2 N with
k � Œan=bn� (here Œa� denotes the integer part of a) we have the inequality

Ek;n WD
k�1X

jD0


0;

bn

an
; : : : ;

jbn

an
I ek

�
� bn

an
� .k C 1/Š

2
:

Lemma 4 ([13]). Let an; bn > 0, n 2 N, with 1 � bn
an

& 0. Denoting m.n/ D
Œan=bn�, for all n 2 N and k � m.n/C 1 we have
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kX

jD0


0;

bn

an
; : : : ;

jbn

an
I ek

�
� .k C 1/Š:

Note that this lemma is an immediate consequence of the Lemma 6 in the next
section “Generalized Baskakov–Faber Operators in Compact Sets.”

We are now in a position to state the main result of this section.

Theorem 10 ([13]). Let f be analytic on the continuum G, that is, there exists R > 1
such that f is analytic in GR, given by f .z/ D P1

kD0 ak.f /Fk.z/, z 2 GR. Also,

suppose that there exist M > 0 and A 2 �
1
R ; 1

�
, with jak.f /j � M Ak

kŠ , for all k D
0; 1; : : : ; (which implies jf .z/j � C.r/MeAr for all z 2 Gr, 1 < r < R). Here GR

denotes the interior of the closed level curve �R given by �R D f�.w/I jwj D Rg
and G � Gr for all 1 < r < R.

Let 1 < r < 1
A be arbitrary fixed. Then, there exist an index n0 2 N and a

constant C.r; f / > 0 depending on r and f only, such that for all z 2 Gr and n � n0
we have

jMn.f I an; bn;GI z/ � f .z/j � C.r; f / � bn

an
:

Remark 10. If G is a disk centered at the origin and of radius R, then Mn in
Theorem 10 becomes the operator considered in [3] and we recapture the upper
estimate obtained there.

Remark 11. Theorem 10 holds under the more general hypothesis jak.f /j � Pm.k/ �
Ak

kŠ , for all k � 0, where Pm is an algebraic polynomial of degree m, satisfying
Pm.k/ > 0 for all k � 0. Indeed, since

P1
kD0.k C 1/Pm.k/.Ar/k < C1 and

P1
kD0 Pm.k C 1/ � .Ar/k

kŠ < C1, this is immediate from the proof of Theorem 10.

Remark 12. There are many concrete examples for G when the conformal mapping
� and the Faber polynomials associated with G, and consequently when the Favard–
Szász–Mirakjan–Faber operators too, can explicitly be written (for details, see, e.g.,
[12], pp. 81–83):

(i) G is the continuum bounded by the m-cusped hypocycloid Hm (m D 2; 3; : : : ;),
given by the parametric equation z D ei� C 1

m�1e�.m�1/i� ; � 2 Œ0; 2�/, case
when �.w/ D w C 1

.m�1/wm�1 and the Faber polynomials can explicitly be
calculated ;

(ii) G is the regular m-star (m D 2; 3; : : : ;) given by

Sm D fx!kI 0 � x � 41=m; k D 0; 1; : : : ;m � 1; !m D 1g;

case when �.w/ D w
�
1C 1

wm

�2=m
and the Faber polynomials can explicitly

be calculated;
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(iii) G is the m-leafed symmetric lemniscate, m D 2; 3; : : : ;with its boundary given
by

Lm D fz 2 CI jzm � 1j D 1g;

case when �.w/ D w
�
1C 1

wm

�1=m
and the Faber polynomials can explicitly

be calculated;
(iv) G is the semidisk SD D fz 2 CI jzj � 1 and jArg.z/j � �=2g, case when

�.w/ D 2.w3�1/C3.w2�w/C2.w2CwC1/3=2
w.wC1/p3

and the attached Faber polynomials can

explicitly be calculated ;
(v) G is a circular lune or G is an annulus sector, cases when again the conformal

mapping � and the Faber polynomials can explicitly be calculated.

Generalized Baskakov–Faber Operators in Compact Sets

For x real and � 0, the original formula of the classical now Baskakov operator is
given by (see [2])

Zn.f /.x/ D .1C x/�n
1X

kD0

 
n C k � 1

k

!�
x

1C x

�k

f .k=n/

and many approximation results of this operators were published.
According to [29], Theorem 2, under the same hypothesis on f that Zn.f /.x/ is

well defined and denoting by Œ0; 1=n; : : : ; j=nI f � the divided difference of f on the
knots 0, . . . , j=n, for x � 0 we can write

Zn.f /.x/ D Wn.f /.x/ D
1X

jD0

�
1C 1

n

�
�: : :�

�
1C j � 1

n

�
�Œ0; 1=n; : : : ; j=nI f �xj; x � 0;

(9)
(where for j D 0 and j D 1 we take .1C 1=n/ � : : : � .1C .j � 1/=n/ D 1). But as it
was remarked in [8], p. 124, if jxj < 1 is not positive then Wn.f /.x/ and Zn.f /.x/ do
not necessarily coincide and because of this reason in Sect. 1.8 of the book [8], pp.
124–138, they were studied separately, under different hypothesis on f and z 2 C.

For analytic functions satisfying some exponential-type growth condition, quan-
titative estimates of order O

�
1
n

�
in approximation by Wn.f /.z/ in compact disks with

center at origin were obtained in [8], Sect. 1.9, pp. 124–138. For f .z/ D P1
kD0 akzk,

all the quantitative results are based on the formula Wn.f /.z/ D P1
kD0 ak �Wn.ek/.z/,

with ek.z/ D zk, i.e. by using (9) too,

Wn.f /.z/ D
1X

kD0
ak �

kX

jD0

�
1C 1

n

�
� : : : �

�
1C j � 1

n

�
� Œ0; 1=n; : : : ; j=nI ek�z

j: (10)
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By using a sequence of real positive numbers, .	n/n2N, with the properties that
	n ! 0 as fast we want, suggested by the formula (10) too, the aim of this section is
to generalize the approximation by the operators Wn.f /.z/, to the approximation by
the so-called by us generalized Baskakov–Faber operators attached to analytic func-
tions of some exponential growth in a continuum in C, obtaining the approximation
order O .	n/.

Since 	n ! 0, obviously that without to lose the generality, everywhere in the
paper we may suppose that 0 < 	n � 1

2
, for all n 2 N.

In what follows, let us consider the basic concepts on Faber polynomials
and Faber expansions presented in the previous section “Complex q-Baskakov
Operators, q � 1 and Balázs–Szabados Operators.”

Suggested by the formula (10), we can introduce the following.

Definition 2 ([20]). The generalized Baskakov–Faber operators attached to G and
f is (formally) defined by Wn.f I	n;GI z/ D P1

kD0 ak.f / � Wn.ekI	n;GI z/, i.e.,

Wn.f I	n;GI z/D
1X

kD0
ak.f /�

kX

jD0
.1C 	n/�: : :�.1C .j � 1/	n/�Œ0; 	n; : : : ; j	nI ek��Fj.z/;

(11)
where for j D 0 and j D 1, by convention we take .1C 	n/�: : :�.1C .j � 1/	n/ D 1.

Remark 13. For 	n D 1=n, n 2 N and G D D1, since Fj.z/ D zj, the above
generalized Baskakov–Faber operators reduce to the complex Baskakov operators
of the form given by (10), introduced and studied in [8], Sect. 1.9.

For the proof of the main result, we need two lemmas, as follows.

Lemma 5 ([20]). Let 0 < 	n � 1
2
< 1, n 2 N, be with 	n ! 0. For all k; n 2 N

with k � Œ1=	n� (here Œa� denotes the integer part of a) we have the inequality

Ek;n WD
k�1X

jD0
.1C 	n/ � : : : � .1C .j � 1/	n/ � Œ0; 	n; : : : ; j	nI ek� � 	n � .k C 3/Š:

Here, by convention, for j D 0 and j D 1 we take .1C	n/ � : : : � .1C .j � 1/	n/ D 1:

Lemma 6 ([20]). Let 0 < 	n � 1
2
, n 2 N, be with 	n ! 0. For all k � 0 and

n 2 N, we have

Gk;n WD
kX

jD0
.1C 	n/ � : : : � .1C .j � 1/	n/ � Œ0; 	n; : : : ; j	nI ek� � .k C 1/Š:

The main result of this section is the following.

Theorem 11 ([20]). Let f be analytic on the continuum G, that is there exists R > 1
such that f is analytic in GR, given by f .z/ D P1

kD0 ak.f /Fk.z/, z 2 GR. Also,
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suppose that there exist M > 0 and A 2 �
1
R ; 1

�
, with jak.f /j � M Ak

kŠ , for all k D
0; 1; : : : ; (which implies jf .z/j � C.r/MeAr for all z 2 Gr, 1 < r < R).

Let 1 < r < 1
A be arbitrary fixed. Then, there exist an index n0 2 N and a

constant C.r; f / > 0 depending on r and f only, such that for all z 2 Gr and n � n0
we have

jWn.f I	n;GI z/ � f .z/j � C.r; f / � 	n:

Remark 14. Theorem 11 generalizes Theorem 1.9.1, p. 126 in [8], in two senses:
firstly, it is extended from compact disks with center at origin to compact sets and
secondly, the order of approximation O

�
1
n

�
is essentially improved to the order

O .	n/, with 	n ! 0 as fast we want.

Remark 15. It is clear that Theorem 11 holds under the more general hypothesis
jak.f /j � Pm.k/ � Ak

kŠ , for all k � 0, where Pm is an algebraic polynomial of degree m
with Pm.k/ > 0 for all k � 0.

Remark 16. There are many concrete examples for G when the conformal mapping
� and the Faber polynomials associated with G, and consequently when the
Baskakov–Faber operators too, can explicitly be written, see the Remark 12,
(i)–(v), from the end of the previous section “Generalized Szász–Faber Operators
in Compact Sets.”

Approximation by Baskakov–Szász–Durrmeyer Operators in
Compact Disks

In the present section, we study the rate of approximation of analytic functions in
a disk DR D fz 2 CI jzj < Rg, i.e. f .z/ D P1

kD0 ckzk, of exponential growth, and
the Voronovskaja type result, for a natural derivation from the complex operator
Ln.f /.z/ formally defined as operator of complex variable by

Ln.f /.z/ WD n
1X

vD1
bn;v.z/

Z 1

0

sn;v�1.t/f .t/dt C .1C z/�nf .0/; z 2 C; (12)

where

bn;k.z/ D
�

n C k � 1

k

�
zk

.1C z/nCk
; sn;k.t/ D e�nt .nt/k

kŠ
:

An important relationship used for the quantitative results in approximation of an
analytic function f by the complex operator Ln.f / would be Ln.f / D P1

kD0 ckLn.ek/,
but which requires some additional hypothesis on f (because the definition of
Ln.f /.z/ involves the values of f on Œ0;C1/ too) and implies restrictions on the
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domain of convergence. This situation can naturally be avoided, by defining directly
the approximation complex operator

L�
n .f /.z/ D

1X

kD0
ck � Ln.ek/.z/;

whose definition evidently omits the values of f outside of its disk of analyticity.
In this section we deal with the approximation properties of the complex operator

L�
n .f /.z/.

It is worth noting here that if instead of the above defined Ln.f /.z/ we consider
any other Szász-type or Baskakov-type complex operator, then for L�

n .f /.z/ defined
as above, all the quantitative estimates in, e.g., [1, 3, 9, 13, 16, 24, 25, 30] hold true
identically, without to need the additional hypothesis on the values of f on Œ0;1/

imposed there.
Our first main result is the following theorem for upper bound.

Theorem 12 ([19]). For f W DR ! C, 1 < R < C1, analytic on DR, i.e. f .z/ DP1
kD0 ckzk, for all z 2 DR, suppose that there exist M > 0 and A 2 . 1R ; 1/, with the

property that jckj � M Ak

kŠ ; for all k D 0; 1; : : : ; (which implies jf .z/j � MeAjzj for
all z 2 DR).

(i) If 1 � r < 1
A , then for all jzj � r and n 2 N with n > r C 2, L�

n .f /.z/ is well
defined and we have

jL�
n .f /.z/ � f .z/j � Cr;A;M

n
;

where Cr;A;M D M.rC2/
r �P1

kD2.k C 1/ � .rA/k < 1I
(ii) If 1 � r < r1 <

1
A , then for all jzj � r and n; p 2 N with n > r C 2, we have

jŒL�
n .f /�

.p/.z/ � f .p/.z/j � pŠr1Cr1;A;M

n.r1 � r/pC1 ;

where Cr1;A;M is given as at the above point (i).

The following Voronovskaja type result holds.

Theorem 13 ([19]). For f W DR ! C, 2 < R < C1, analytic on DR, i.e. f .z/ DP1
kD0 ckzk, for all z 2 DR, suppose that there exist M > 0 and A 2 . 1R ; 1/, with the

property that jckj � M Ak

kŠ ; for all k D 0; 1; : : : ;.
If 1 � r < r C 1 < 1

A , then for all jzj � r and n 2 N with n > r C 2, we have

ˇ
ˇ
ˇ̌L�

n .f /.z/ � f .z/ � z.z C 2/

2n
f 00.z/

ˇ
ˇ
ˇ̌ � Cr;A;M.f /

n2
;
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where Cr;A;M.f / D M
P1

kD2 k�1
kŠ ŒA.rC1/�kBk;rC 4M.rC2/

r � 1
ln2.1=/

�
�

1
.1�Ar/2

C 4
1�Ar

�
<

1 and

Bk;r D .k �1/2.k �2/r2C2.k �1/.k �2/.2k �3/.rC1/C .r C1/.r C2/ � .k C1/Š:

The following exact order of approximation can be obtained.

Theorem 14 ([19]). Suppose that the hypothesis in the previous theorem hold.

(i) If f is not a polynomial of degree � 1, then for all n > r C 2 we have

kL�
n .f / � f kr � 1

n
:

where the constants in the equivalence depend only on f , R, A, and r.
(ii) If 1 � r < r1 < r1C1 < 1=A and f is not a polynomial of degree � p �1; .p �

1/, then

kŒL�
n .f /�

.p/ � f .p/kr � 1

n
; for all n > r C 2;

where the constants in the equivalence depend only on f , R, A, r, r1, and p.
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On the Asymptotic Behavior of Sequences
of Positive Linear Approximation Operators

Ioan Gavrea and Mircea Ivan

Abstract We provide an analysis of the rate of convergence of positive linear
approximation operators defined on CŒ0; 1�. We obtain a sufficient condition for
a sequence of positive linear approximation operators to possess a Mamedov-type
property and give an application to the Durrmeyer approximation process.

Keywords Asymptotic expansion • Bernstein operators • Central moments •
Durrmeyer operstors • Least concave majorant • Mamedov property • Positive
linear operators • Rate of convergence • Voronovsakja type formulas

Introduction

A main problem in approximation theory is to estimate the rate of convergence for
sequences of positive linear approximation operators. Voronovsakja type formulas
are one of the most important tools for studying their asymptotic behavior.

Generalizations of the classical Voronovskaja’s theorem [16] related to the
Bernstein polynomials were intensively studied by Bernstein [1], Mamedov [11],
Sikkema and van der Meer [13], Gonska [8], Telyakovskii [15], Tachev [14], Gavrea
and Ivan [5–7], and in many subsequent papers that deal with this topic. A key tool
in this analysis is a limit involving the central moments of the Bernstein operators.
G. Tachev conjectured that this limit is zero [14, p. 1183]. Recently, the authors [5]
provided a positive answer to this question.

The main objective of this paper is to give an analysis, as general as possible,
of the rate of convergence of positive linear approximation operators defined on
CŒ0; 1�.
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Throughout the paper we will use the following notations:

CkŒ0; 1�, the space of all functions f W Œ0; 1� ! R, possessing a continuous derivative
of order k, k 2 N0, endowed with the sup norm kf k WD supx2Œ0;1� jf .x/j (CŒ0; 1� WD
C0Œ0; 1�);

Ln W CŒ0; 1� ! CŒ0; 1�, n D 0; 1; : : :, a sequence of positive linear approximation
operators preserving constants;

R.Ln; f ; q; x/ WD Ln.f I x/ �
qP

iD0
Ln..� � x/iI x/ f .i/.x/

iŠ ;

Q!.f I ı/, the least concave majorant of f W Œ0; 1� ! R given by

Q!.f I ı/ D
8
<

:
sup

0�x�ı<y�1
.ı � x/!.f I y/C .y � ı/!.f I x/

y � x
; 0 < ı � 1

!.f I 1/; ı > 1

(see, e.g., [4, 10, 12] and [3, Chaps. 2 & 6] for details).
an D o.bn/, Landau’s little-o notation

�
there exists a sequence 0n converging to zero

such that an D 0n bn
�
.

Let f W Œ0; 1� ! R. For any non-negative integer n, the classical Bernstein
operator Bn W CŒ0; 1� ! CŒ0; 1� is defined by

Bn.f I x/ D
nX

kD0

 
n

k

!

xk.1 � x/n�kf

�
k

n

�
; x 2 Œ0; 1�:

The classical Voronovskaja’s theorem on the asymptotic behavior of Bernstein
polynomials can be stated as follows.

Theorem 1 (Voronovskaja [16]). If f is bounded on Œ0; 1� and, for some x 2 Œ0; 1�,
f is differentiable in a neighborhood of x and possesses a second derivative f 00.x/,
then

lim
n!1 n .Bn.f I x/� f .x// D x.1 � x/

2
f 00.x/:

If f 2 C2Œ0; 1�, the convergence is uniform.

In 1932, S. N. Bernstein gave the following generalization of Voronovskaja’s
result (Theorem 1).

Theorem 2 (Bernstein [1]). If q 2 N is even and f 2 CqŒ0; 1�, then,

lim
n!1 nq=2

 

Bn.f I x/ �
qX

rD0
Bn..� � x/rI x/

f .r/.x/

rŠ

!

D 0;

uniformly on Œ0; 1�.
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In 1962, R.G. Mamedov obtained the following generalization of Bernstein’s
result.

Theorem 3 (Mamedov [11]). If q 2 N is even, f 2 CqŒ0; 1�, and Ln W CŒ0; 1� !
CŒ0; 1� is a sequence of positive linear operators preserving constants such that

lim
n!1

Ln..� � x/qC2jI x/

Ln..� � x/qI x/
D 0 (1)

for some x 2 Œ0; 1� and for at least one integer j > 0, then

lim
n!1

Ln.f I x/ �
qP

rD0
Ln..� � x/rI x/ f .r/.x/

rŠ

Ln..� � x/qI x/
D 0:

Let WCqŒ0; 1�, q � 0 denote the set of all functions in R
Œ0;1� possessing a

piecewise continuous derivative of order q. A complete asymptotic expansion in
quantitative form was given by Sikkema and van der Meer [13].

Theorem 4 (Sikkema and van der Meer [13]). Let .Ln/n2N be a sequence of
positive linear operators Ln W WCqŒ0; 1� ! CŒ0; 1� satisfying Ln.e0/ D 1. Then for
all f 2 WCqŒ0; 1�, x 2 Œ0; 1�, n 2 N and ı > 0, one has

ˇ
ˇ
ˇ
ˇ
ˇ
Ln.f I x/ �

qX

rD0
Ln..� � x/rI x/

f .r/.x/

rŠ

ˇ
ˇ
ˇ
ˇ
ˇ

� Cn;q.x; ı/ !.f
.q/I ı/;

where

Cn;q.x; ı/ D ıqLn

�
sq;�

� � � x

ı

�
I x
�
;

� D
(

1
2
; ifLn ..� � x/q I x/ � 0;

� 1
2
; ifLn ..� � x/q I x/ < 0;

sq;�.u/ D 1

qŠ

�
1

2
jujq C � uq

�
C 1

.q C 1/Š

�
bqC1.juj/� bqC1.juj � bjujc/� :

Here bqC1 is the Bernoulli polynomial of degree q C 1, b c denotes the integer part
function, and !.gI ı/ is the classical first order modulus of continuity of g 2 CŒ0; 1�.
Moreover the functions Cn;q.x; ı/ are the best possible.

In 2007, H. Gonska provided a quantitative improvement of Mamedov’s
Theorem 3:

Theorem 5 (Gonska [8, Theorem 3.2.]). Let q 2 N, f 2 CqŒ0; 1� and
L W CŒ0; 1� ! CŒ0; 1� be a positive linear operator. Then
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ˇ
ˇ
ˇ̌
ˇ
L.f I x/ �

qX

rD0
L..� � x/rI x/

f .r/.x/

rŠ

ˇ
ˇ
ˇ̌
ˇ

(2)

� L .j � �xjqI x/

qŠ
Q!
 

f .q/I 1

q C 1

L
�j � �xjqC1I x

�

L .j � �xjqI x/

!

;

where Q!.f I ı/ is the least concave majorant of f .

In 2012, by using the K-functionals technique, Tachev [14, Theorem 2] proved
that the classical result of Bernstein (Theorem 2) remains valid for odd values of q.
In this context we mention the following conjecture.

Conjecture 1 (Tachev [14, p. 1183]). For q 2 N and any x 2 .0; 1/, the following
statement holds true.

lim
n!1

Bn
�
.� � x/qC1I x

�

Bn .j � �xjqI x/
D 0:

Recently we have given [5, Theorem 13] an affirmative answer to Conjecture 1.
By using our result it follows that both the classical result of Bernstein (Theorem 2),
and its extension to odd values of q [14, Theorem 2] are immediate consequences
of Theorem 5.

The Mamedov Property

Let x 2 Œ0; 1� and q 2 N. As a necessity revealed by Conjecture 1, and in view of
condition (1), we propose the following definition.

Definition 1. We will refer to a sequence of operators .Ln/ satisfying

lim
n!1

Ln
�j � �xjqC1I x

�

Ln .j � �xjqI x/
D 0; (3)

as possessing the Mamedov property.

Remark 1. In connection with the Mamedov property we would like to emphasize
the following points:

• If .Ln/ is a sequence of positive linear operators preserving constants, then the

sequence

 
Ln
�j � �xjiC1I x

�

Ln .j � �xjiI x/

!

i2N
is nondecreasing.

• If a sequence of positive linear operators preserving constants .Ln/ possesses the
Mamedov property for a certain integer q, then:

– the same is true for all integers i D 0; 1; : : : ; q;
– the sequence

�
Ln
�j � �xjiI x

��qC1
iD0 constitutes an asymptotic scale as n ! 1.
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Indeed, if Ln .j � �xjqI x/ ¤ 0 then Ln
�j � �xjiI x

� ¤ 0 for all i 2 N (cf. Lemma 1).

Moreover, taking into account the fact that the sequence
Ln
�j � �xjiC1I x

�

Ln .j � �xjiI x/
, i 2 N, is

nondecreasing (cf. the Cauchy–Schwarz inequality for positive linear functionals),
we deduce that

lim
n!1

Ln
�j � �xjiC1I x

�

Ln .j � �xjiI x/
D 0; i D 0; 1; : : : ; q:

To check whether a sequence of operators possesses the Mamedov property is not
an easy task, even if we restrict ourselves to classical approximation operators. Note
that the particular case of the Bernstein operators has only been solved recently. As
far as we know, the problem in its general form has not been studied in the literature.
The Mamedov condition (3) will be a key tool in our analysis.

Some Operators Failing to Satisfy the Mamedov Property

There was a strong belief that positive linear approximation operators possess
the Mamedov property. This was probably induced by the case of the Bernstein
operators.

It is in this regard that the following remarks are particularly significant. They
warn us that, in general, sequences of positive linear approximation operators fail to
meet the Mamedov conditions (3).

Remark 2 (Gavrea and Ivan [7, Theorem 4]). There exist positive linear approxi-
mation operators preserving constants, Ln W CŒ0; 1� ! CŒ0; 1�, such that

Ln.j � �xjqC1I x/

Ln.j � �xjqI x/
6! 0; as n ! 1; x 2 Œ0; 1�;

for any q > 0.

An example is the sequence of operators

Proof (cf. [7]).

Lnf D f .0/C f .1/C n f

n C 2
; n 2 N:

lim
n!1

Ln.j � �xjqC1I x/

Ln.j � �xjqI x/
D xqC1 C .1 � x/qC1

xq C .1 � x/q
¤ 0; x 2 Œ0; 1�; q > 0:

ut
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Remark 3. For any q > 0, there exists a sequence of positive linear approximation
operators preserving constants, Ln W CŒ0; 1� ! CŒ0; 1�, such that

lim
n!1

Ln.jx � �jqC1I x/

Ln.jx � �jqI x/
D 0; and lim

n!1
Ln.jx � �jqC2I x/

Ln.jx � �jqC1I x/
¤ 0:

Proof. Indeed, let q > 0 and define the positive linear approximation operators
preserving constants Ln W CŒ0; 1� ! CŒ0; 1�,

Lnf D f .0/ n�1 C �
1 � n�1� f

��
1 � n� 1

qC1
��
�
; n D 1; 2; : : :

For f D j � �xja, we obtain

Ln.f I x/ D xa

n
C
�
1 � 1

n

�
n� a

1Cq xa;

and

Ln.j � �xjaC1I x/

Ln.j � �xjaI x/
D n

a
1Cq C n

q
1Cq � n� 1

1Cq

n C n
a

1Cq � 1
x; x 2 .0; 1�:

Therefore, we obtain

lim
n!1

Ln.j � �xjqC1I x/

Ln.j � �xjqI x/
D lim

n!1
2n

q
1Cq � n� 1

1Cq

n C n
q

1Cq � 1
x D 0

lim
n!1

Ln.j � �xjqC2I x/

Ln.j � �xjqC1I x/
D lim

n!1
n C n

q
1Cq � n� 1

1Cq

2n � 1
x D x

2
: ut

Some Properties Related to the Rate of Convergence
of Positive Linear Operators

In this section we provide some auxiliary results.

Lemma 1 (Gavrea and Ivan [7, Lemma 5]). Let L W CŒ0; 1� ! CŒ0; 1� be a
positive linear operator preserving constants and x 2 Œ0; 1�. If there exists a function
 2 CŒ0; 1� such that

(a)  .x/ D 0 and  .t/ > 0 for all t 2 Œ0; 1�n fxg .in particular, e.g., D j � �xjq/,
(b) L D 0,

then x is an interpolation point for L, i.e., L.f ; x/ D f .x/; 8f 2 CŒ0; 1�. In particular,
if there exists q > 0 such that L.j � �xjq; x/ D 0, then L.j � �xjp; x/ D 0 for all p > 0.
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In connection with the interpolation, we denote by SL, or simply by S when there
is no danger of ambiguity, the set of all non-interpolation points of the operator L.
Similarly, x 2 S.Ln/ means that x is not an interpolation point for any operator Ln,
n 2 N.

Since at any interpolation point of L “the approximation is exact,” in virtue of
Lemma 1 it remains to study the Mamedov property of the operator L only on the
set SL.

Proposition 1. Let x 2 S.Ln/. The necessary and sufficient condition such that

lim
n!1

Ln.f I x/ �
qP

iD1
f .i/.x/

iŠ Ln..� � x/iI x/

Ln.j � �xjqI x/
D 0; (4)

for all f 2 CqŒ0; 1�, is that the Mamedov condition

lim
n!1

Ln.j � �xjqC1I x/

Ln.j � �xjqI x/
D 0; (5)

be satisfied.

Proof. Suppose that (4) is satisfied for all f 2 CqŒ0; 1�. Then, by taking fx D j �
�xjqC1 in (4), we obtain

Ln.fxI x/ �
qX

iD0

fx.i/.x/

iŠ
Ln..� � x/iI x/ D Ln.j � �xjqC1I x/;

i.e., (5) is true. Conversely, if (5) holds true, then by using (2) we deduce that (4)
also holds true. ut
Remark 4. We mention that the constant 1

qŠ in (2) is the best possible.

Proof. Suppose that there exists ˛ 2 .0; 1/ such that
ˇ
ˇ
ˇ
ˇ
ˇ
Ln.f I x/ �

qX

iD0

f .i/.x/

iŠ
Ln..� � x/iI x/

ˇ
ˇ
ˇ
ˇ
ˇ

(6)

� ˛
Ln.j � �xjqI x/

qŠ
Q!
�

f .q/I Ln.j � �xjqC1I x/

.q C 1/ Ln.j � �xjqI x/

�
;

for all f 2 CqŒ0; 1�. For f D j � �xjqC1, Eq. (6) becomes

Ln.j � �xjqC1I x/ � ˛ Ln.j � �xjqI x/.q C 1/ Q!
�

j � �xjI Ln.j � �xjqC1I x/

.q C 1/ Ln.j � �xjqI x/

�
;

(7)
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Since the Lipschitz constant of the function j � �xj is 1, we obtain

Q!
�

j � �xjI Ln.j � �xjqC1I x/

.q C 1/ Ln.j � �xjqI x/

�
� Ln.j � �xjqC1I x/

.q C 1/ Ln.j � �xjq/
: (8)

From (7) and (8) we obtain

Ln.j � �xjqC1I x/ � ˛ Ln.j � �xjqC1I x/;

which is false (cf. x 2 S.Ln/). ut

A Sufficient Condition for the Mamedov Property

A general Bernstein–Voronovskaja property is provided in the following theorem:

Theorem 6 (Gavrea and Ivan [7, Theorem 10]). If Ln W CŒ0; 1� ! CŒ0; 1� is a
sequence of positive linear approximation operators, f 2 CqŒ0; 1� and x 2 Œ0; 1�,
then

R.Ln; f ; q; x/ D o
�p

Ln..� � x/2qI x/
�
; as n ! 1:

In order to obtain a better order of approximation, e.g., o .Ln.j � �xjqI x//, in
view of (2), we must restrict ourselves to the class of positive linear approximation
operators possessing the Mamedov property.

The following theorem provides a sufficient condition for a sequence .Ln/n2N of
positive linear approximation operators to possess the Mamedov property.

Theorem 7. Let x 2 S.Ln/ and q > 0. If there exists a constant K > 0 such that

Ln.j � �xj2qI x/

L2n.j � �xjqI x/
� K; 8n 2 N;

then the Mamedov condition

lim
n!1

Ln.j � �xjqC1I x/

Ln.j � �xjqI x/
D 0;

is satisfied.

Proof. Let us suppose that the Mamedov condition is not satisfied. It follows that
there exist 	 > 0 and a sequence of integers .nk/k�0 such that

Lnk .j � �xjqC1I x/

Lnk .j � �xjqI x/
> 	; 8 k � 0:
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For any fixed nk, an application of the Cauchy–Schwarz inequality for positive linear
functionals proves that the sequence

�
Lnk .j � �xjqC1I x/

Lnk .j � �xjqI x/

�

q�1

is non-decreasing. It follows that

Lnk.j � �xjqCiI x/

Lnk .j � �xjqCi�1I x/
> 	; i D 1; : : : ; q: (9)

Taking the product of both sides of (9) over 1 � i � q, we obtain

Lnk.j � �xj2qI x/

Lnk .j � �xjqI x/
> 	q;

hence

0 <
1

K
� L2nk

.j � �xjqI x/

Lnk .j � �xj2qI x/
<

�
1

	

�q

Lnk .j � �xjqI x/
k!1�! 0;

and this contradiction completes the proof. ut

The Rate of Convergence of the Durrmeyer Operators

In this section we give an application of Theorem 7 to a classical approximation
process, namely the Durrmeyer one. We prove that the Durrmeyer operators satisfy
the Mamedov property, and implicitly find an optimal estimate for the remainder
term in the approximation process.

Let f W Œ0; 1� ! R be integrable. The Durrmeyer operators are defined by (see,
e.g., Derriennic [2])

Dn.f I x/ D .n C 1/

nX

kD0
pn;k.x/

Z 1

0

pn;k.t/f .t/ dt; n 2 N:

For fixed n 2 N
�, we use the notation

Mr.x/ D Dn..� � x/rI x/; x 2 Œ0; 1�; r 2 N
�:

The recurrence formula given in the theorem below will be essential to obtain
estimates for the central moments of the Durrmeyer operators.
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Theorem 8. For any integer r � 1, the following identity is satisfied.

MrC1.x/ (10)

D 1

n C r C 2

�
.r C 1/.1 � 2x/Mr.x/C x.1 � x/M0

r.x/C 2 r x.1 � x/Mr�1.x/
�

Proof. We have

x.1 � x/M0
r.x/ (11)

D .n C 1/

nX

kD0
.k � nx/pn;k.x/

Z 1

0

pn;k.t/.t � x/r dt � rx.1 � x/Mr�1:

Note that

.k � nx/ pn;k.x/
Z 1

0

pn;k.t/.t � x/r dt

D pn;k.x/
Z 1

0

.k � nt/pn;k.t/.t � x/r dt C n
Z 1

0

pn;k.t/.t � x/rC1 dt;

for k D 0; : : : ; n. We have
Z 1

0

.k � nt/pn;k.t/.t � x/r dt D
Z 1

0

.pn;k.t//
0 t.1 � t/ .t � x/r dt:

Integrating by parts, we get

Z 1

0

.k � nt/ pn;k.t/.t � x/r dt (12)

D �
Z 1

0

pn;k.t/ .t � x/r�1�.1� 2t/.t � x/C rt.1 � t/
�

dt

D �
Z 1

0

pn;k.t/ .t � x/r�1�rx.1 � x/C .r C 1/.1� 2x/.t � x/ � .r C 2/.t � x/2
�

dt

Cn
Z 1

0

pn;k.t/.t � x/rC1 dt:

From (11) and (12) we obtain (10) and the proof is complete. ut
Corollary 1. The following statements hold true.

(a) M2s.x/ D
Ps

iD1 	i niXi CPs
iD0 ˇi Xi

.n C 2/.n C 3/ � � � .n C 2s C 1/
where 	i, ˇi are independent of x and n, and ˇ0 D .2s/Š
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(b) M2sC1.x/ D .1 � 2x/

Ps
iD1 ai niXi CPs

iD0 bi Xi

.n C 2/.n C 3/ � � � .n C 2s C 2/
where ai, bi are independent of x and n, and b0 D .2s C 1/Š

Proof. We prove the statements using mathematical induction on r, the equalities

M1.x/ D 1 � 2x

n C 2
; M2.x/ D 2nX C 2 � 6X

.n C 2/.n C 3/
;

and the recurrence formula (10). ut
Corollary 2. The following relations are satisfied.

(a) For x 2 Œ0; 1�, r > 0 and n X � 1, the following inequality is satisfied

Dn.j � �xjrI x/ � C.r/

�
X

n

�r=2

C B.r/

nr
;

where C.r/ and B.r/ are independent of x and n.
(b) For x 2 Œ0; 1�, r > 0 and n X < 1, we have

Dn.j � �xjrI x/ � D.r/

nr
;

where D.r/ is independent of x and n.

Proof. We start with the proof of statement .a/. We first consider the case
r D 2m > 0. By Corollary 1.a/

Dn.j � �xj2mI x/ �
mX

iD1

j	ij Xi

n2m�i
C

mX

iD1

jˇij Xi

n2m

D 1

nm

mX

iD1

j	ij Xm

.nX/m�i
C

mX

iD1

jˇij Xi

n2m

With C.m/ D Pm
iD1 j	ij, B.m/ D max

x2Œ0;1�
Pm

iD1 jˇijXi, we obtain

Dn.j � �xj2mI x/ � C.m/

�
X

m

�m

C B.m/

n2m
:

This proves statement .a/ for even r.
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Let 2m be the least even number greater than r. Since the function t 7! t
r
2m is

concave on .0;1/, by using the Jessen inequality for functionals [9], we obtain

Dn.j � �xjrI x/ D
nX

kD0
pn;k.x/.n C 1/

Z 1

0

pn;k.t/ jt � xjr dt

D
nX

kD0
pn;k.x/.n C 1/

Z 1

0

pn;k.t/
�jt � xj2m

� r
2m dt

�
 

nX

kD0
pn;k.x/.n C 1/

Z 1

0

pn;k.t/ jt � xj2m dt

! r
2m

:

Since 0 < r
2m < 1, we obtain

Dn.j � �xjrI x/ �
 

.n C 1/

nX

kD0
pn;k.x/

Z 1

0

pn;k.t/ jt � xj2m dt

! r
2m

�
�

C.2m/

�
X

n

�m

C B.2m/

n2m

� r
2m

� .C.2m//
r
2m

�
X

n

� r
2

C .B.2m//
r
2m

nr
:

and the proof of statement .a/ is complete.
Let us now proceed with the proof of statement .b/. For r D 2m > 0, from

Corollary 1, statement .a/, we obtain

Dn.j � �xj2mI x/ �
Pm

iD1.j	ij C jˇij/
.n C 2/ � � � .n C 2m C 1/

� D.2m/

n2m

where D.2m/ D Pm
iD1.j	ij C jˇij/.

Let r > 0 and let 2m be the least even number greater than r. The proof repeats
the steps of proving the statement .a/. ut

The next theorem shows us that the sequence of the Durrmeyer operators satisfies
the Mamedov property.

Theorem 9. For any integer q > 0, the following limit holds uniformly in x,

lim
n!1

Dn.j � �xjqC1I x/

Dn.j � �xjqI x/
D 0:

Proof. By Theorem 7, it is sufficient to prove that there exists a number K > 0 such
that
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Dn.j � �xj2qI x/

D2
n.j � �xjqI x/

� K; 8x 2 Œ0; 1�; 8n 2 N:

Consider the case nX � 1. We have

Dn.j � �xj2qI x/ � C.2q/
Xq

nq
C B.2q/

n2q
� C.2q/

Xq

nq
C B.2q/Xq

nq

By Jessen inequality for positive linear functionals [9], we obtain

Dn.j � �xjqI x/ � .Dn..� � x/2I x//q=2: (13)

By using the equality

Dn..� � x/2I x/ D X.2n � 6/C 2

.n C 2/.n C 3/
;

for n � 4, we obtain

Dn..� � x/2I x/ � X.2n � 6/

.n C 2/.n C 3/
(14)

From (13) and (14) we obtain

Dn.j � �xjqI x/ � Xq=2.2n � 6/q=2
.n C 2/q=2.n C 3/q=2

(15)

From (13) and (15) we obtain

Dn.j � �xj2qI x/

D2
n.j � �xjqI x/

� A.2q/

�
.n C 2/.n C 3/

.2n � 6/n

�q

� A.2q/

�
21

4

�q

(16)

In the case nX < 1, we have

Dn.j � �xj2qI x/ � D.2q/

n2q
; (17)

and

Dn..� � x/2I x/ � 2

.n C 2/.n C 3/
; (18)

From (17) and (18) we get

Dn..� � x/2qI x/

D2
n.j � �xjqI x/

� D.2q/

�
.n C 2/.n C 3/

2n2

�q

� D.2q/

�
21

19

�q

; (19)
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Equations (16) and (19) yield

Dn..� � x/2qI x/

D2
n.j � �xjqI x/

� K D max



A.2q/

�
21

4

�q

;D.2q/

�
21

19

�q�
;

and the proof is complete. ut
Since the Durrmeyer operators possess the Mamedov property, the .Dn/ remain-

der estimate deduced from Eq. (2) becomes effective.
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Approximation of Functions by Additive
and by Quadratic Mappings

Laura Găvruţa and Paşc Găvruţa

Abstract In this chapter, we characterize the functions with values in a Banach
space which can be approximated by additive mappings, with a given error. Also,
we give a characterization of functions with values in a Banach space which can be
approximated by a quadratic mapping, with a given error.

Keywords Hyers-Ulam-Rassias stability • Additive mapping • Quadratic map-
ping

Introduction

The study of stability problems for various functional equations originated from a
question posed by Ulam [17] in 1940, at the University of Wisconsin. He presented
there a number of unsolved problems and among them was the following question
concerning the stability of group homomorphisms.

Given G1 a group, G2 a metric group and " > 0, find ı > 0 such that, if

f W G1 ! G2

satisfies

d.f .xy/; f .x/f .y// � ı; for all x; y 2 G1

then there exists a homomorphism g W G1 ! G2 such that

d.f .x/; g.x// � "; for all x 2 G1:

The first affirmative answer to this question was the one provided by Hyers [7], who
solved the problem for Banach spaces, with
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ı D " and g.x/ D lim
n!1

f .2nx/

2n
:

Theorem 1 (Hyers [7]). Let f W E1 ! E2 (E1;E2 are Banach spaces) be a function
such that

kf .x C y/� f .x/ � f .y/k � ı

for some ı > 0 and for all x; y 2 E1. Then the limit

T.x/ D lim
n!1

f .2nx/

2n

exists for each x 2 E1 and T W E1 ! E2 is the unique additive mapping such that

kf .x/ � T.x/k � ı; for every x 2 E1:

Moreover, if f .tx/ is continuous in t for each fixed x 2 E1, then the function T is
linear.

Another important result was obtained by Rassias [13] for approximately additive
mappings, by using the so-called the direct method.

Theorem 2 (Rassias [13]). Let f W E1 ! E2 be a function between Banach spaces,
such that f .tx/ is continuous in t for each fixed x. If f satisfies the functional
inequality

kf .x C y/� f .x/� f .y/k � �.kxkp C kykp/

for some � � 0, 0 � p < 1 and for all x; y 2 E1, then there exists a unique linear
mapping T W E1 ! E2 such that

kf .x/ � T.x/k � 2�

2� 2p
kxkp; for each x 2 E1:

A further generalization was obtained by Găvruţa [4], by replacing the Cauchy
difference by a control mapping ' and also introduced the concept of generalized
Hyers–Ulam–Rassias stability in the spirit of Th.M. Rassias’ approach.

Theorem 3 (Găvruţa [4]). Let be ' W S 
 S ! Œ0;1/ (where S is an abelian
semigroup) a mapping such that

˚.x; y/ WD
1X

nD0

'.2nx; 2ny/

2nC1 < 1

and let f W S ! X be such that
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kf .x C y/� f .x/� f .y/k � '.x; y/; for all x; y 2 S: (1)

Then there exists a unique mapping T W S ! X such that

T.x C y/ D T.x/C T.y/; for all x; y 2 S

and kf .x/ � T.x/k � ˚.x; x/ D ˚.x/; for all x 2 S.
Moreover, if S is a Banach space and f .tx/ is continuous in t for each fixed x 2 S,

then the function T is linear.

The algebraic part of the Theorem 3 was generalized in the following form

Theorem 4 ([5]). Let .G;C/ be an abelian group, k an integer, k � 2, X a Banach
space, ' W G 
 G ! Œ0;1/ a mapping such that

˚k.x; y/ D
1X

nD0

1

knC1 '.k
nx; kny/ < 1

and f W G ! X a mapping with the property

kf .x C y/ � f .x/ � f .y/k � '.x; y/; .8/x; y 2 G:

Then there exists a unique additive mapping T W G ! X such that

kf .x/ � T.x/k �
1X

nD0
˚k.x;mx/; .8/x 2 G:

In the paper [6] we give a solution to the Ulam stability problem for continuous
Parseval frames in Hilbert spaces. We prove that if F is a nearly Parseval frame
then there exist a Parseval frame near F. Also, we give generalizations of this
result. The theory of frames is closely related to some notions of the quantum
information theory. In [15], Scott introduced a class of informationally complete
positive-operator-valued measures which are, in analogy with a tight frame, as close
at possible to orthonormal bases for the space of quantum states. For beautiful
presentations of the connections between frames and POVM, see [14, 18].

In our opinion, it is possible that the results or ideas of this paper can be applied
in quantum information theory.

For recent results on the Hyers–Ulam–Rassias stability, see also [3, 8–12].
Our paper is organized at follows. In section “Approximation of Functions

by Additive Mappings” we characterize the functions with values in a Banach
space, which can be approximated by additive mappings with a given error.
In section “Approximation of Functions by Quadratic Mappings,” we consider
functions with values in a Banach space and we approximate these functions by
a quadratic ones, with a given error.
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Approximation of Functions by Additive Mappings

We consider S to be an abelian semigroup, X to be a Banach space and the following
given functions:

f W S ! X and ˚ W S ! RC:

Definition 1. We say that f is ˚-approximable by an additive map if there exists
T W S ! X additive such that

kf .x/ � T.x/k � ˚.x/; x 2 S: (2)

We say that T is the additive ˚-approximation of f .

Problem 1. Give conditions on f such that f to be ˚-approximable by an additive
map.

We solve this problem by posing minimal conditions on ˚ . We denote by

A D


˚ W S ! RC W lim

n!1
˚.2nx/

2n
D 0

�
:

Theorem 5. Let be ˚ 2 A . Then f is ˚-approximable by an additive map if and
only if

lim
n!1

kf .2nx C 2ny/� f .2nx/ � f .2ny/k
2n

D 0; .8/ x; y 2 S

and there exists � 2 A such that

kf .2nx/� 2nf .x/k � �.2nx/C 2n˚.x/; x 2 S:

In this case, the additive ˚-approximation of f is unique and is given by

T.x/ D lim
n!1

f .2nx/

2n
:

Proof. First, we assume that f is ˚-approximable by an additive map, i.e. condi-
tion (2) holds.

Hence kf .x C y/� T.x C y/k � ˚.x C y/; .8/ x; y 2 S.
Now, for x; y 2 S, we have

kf .xCy/� f .x/� f .y/k � kf .xCy/� T.xCy/kCkT.x/ � f .x/kCkT.y/ � f .y/k
� ˚.xCy/C˚.x/C˚.y/:



Approximation of Functions by Additive and by Quadratic Mappings 285

It follows

kf .2n.x C y//� f .2nx/ � f .2ny/k
2n

� ˚.2n.x C y//C ˚.2n.x//C ˚.2ny/

2n

By letting n go to infinity in the above inequality, we obtain the desired condi-
tion, i.e.

lim
n!1

kf .2nx C 2ny/� f .2nx/� f .2ny/k
2n

D 0:

In (2) we put instead of x 7! 2nx and then we multiply (2) by 2n. So, we get

kf .2nx/� 2nf .x/k � kf .2nx/ � T.2nx/k C k2nT.x/ � 2nf .x/k
� ˚.2nx/C 2n˚.x/

Conversely, using hypothesis, we have

	
	
		

f .2nx/

2n
� f .x/

	
	
		 � �.2nx/

2n
C˚.x/; for x 2 S: (3)

But



f .2nx/

2n

�
is a Cauchy sequence. Indeed, if we put instead of x 7! 2mx in (3),

we obtain
	
	
	
	

f .2n2mx/

2n
� f .2mx/

	
	
	
	 � �.2n2mx/

2n
C˚.2mx/

and by dividing the above inequality by 2m we get

	
	
	
	

f .2nCmx/

2nCm
� f .2mx/

2m

	
	
	
	 � �.2nCmx/

2nCm
C ˚.2mx/

2m

hence

	
	
		

f .2nCmx/

2nCm
� f .2mx/

2m

	
	
		 ! 0; m; n ! 1:

Since X is a Banach space it follows that the limit T.x/ D lim
n!1

f .2nx/

2n
exists.

In (3), we make n ! 1 and we obtain relation (2).
Now we prove that T is additive. We know, from hypothesis, that

lim
n!1

	
		
	

f .2nx C 2ny/

2n
� f .2nx/

2n
� f .2ny/

2n

	
		
	 D 0

hence kT.x C y/ � T.x/ � T.y/k D 0 and from here we get that T is additive.
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Now we show that T is unique. We suppose that T satisfies relation (2) and exists
T 0 which satisfies

kT 0.x/ � f .x/k � ˚.x/

In (2), we take instead of x 7! 2nx and we get

k2nT.x/ � f .2nx/k � ˚.2nx/

and from here kT.x/ � f .2nx/

2n
k � ˚.2nx/

2n
.

We use the same computation for T 0 and we obtain

kT.x/ � T 0.x/k � 2
˚.2nx/

2n
:

But lim
n!1

˚.2nx/

2n
D 0 so T.x/ D T 0.x/.

Remark 1. The algebraic part of Theorem 3 follows from the above Theorem.

The first condition from Theorem 5 it follows from hypothesis. We prove that the
second condition holds. Indeed, if in (1) we take x D y, we obtain

kf .2x/ � 2f .x/k � '.x; x/

and instead of x 7! 2x in the above inequality, we get

kf .22x/ � 2f .2x/k � '.2x; 2x/:

So

kf .22x/� 22f .x/k � kf .22x � 2f .2x//k C k2f .2x/� 22f .x/k
� '.2x; 2x/C 2'.x; x/

D 22

'.x; x/

2
C '.2x; 2x/

22

�

� 22˚.x; x/

We suppose that kf .2nx/� 2nf .x/k � 2n˚.x; x/ and by taking x 7! 2x we get

kf .2nC1x/� 2nf .2x/k � 2n˚.2x; 2x/
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Hence

kf .2nC1x/ � 2nC1f .x/k � 2n˚.2x; 2x/C 2n'.x; x/

D 2nC1

'.x; x/

2
C ˚.2x; 2x/

2

�

D 2nC1˚.x; x/:

And we apply Theorem 5.

Approximation of Functions by Quadratic Mappings

We extend now our previous result for quadratic functional equations. First, we
recall some known facts about this type of functional equations. For a detailed
survey on the fast developing of the field of Hyers–Ulam stability, see the book
of Jung [8].

The functional equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/

is called a quadratic functional equation. Every solution of the quadratic functional
equation is said to be a quadratic mapping. The Hyers–Ulam stability for quadratic
functional equation was proved by Skof [16], for mappings acting between a normed
space and a Banach space. Cholewa [2] showed that Skof’s Theorem remains true
when the normed space is replaced with an abelian group.

Theorem 6 (Skof [16]). Let .G;C/ be an abelian group and let E be a Banach
space. If a function f W G ! E satisfies the inequality

kf .x C y/C f .x � y/ � 2f .x/� 2f .y/k � ı

for some ı � 0 and for all x; y 2 G, then there exists a unique quadratic function
Q W G ! E such that

kf .x/ � Q.x/k � .1=2/ı;

for any x 2 G.

Let .G;C/ be an abelian group and X a Banach space.
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Definition 2. We say that f is ˚-approximable by a quadratic map if there exists
Q W G ! X quadratic mapping such that

kf .x/ � Q.x/k � ˚.x/; x 2 G: (4)

We say that Q is the quadratic ˚ approximation of f .

Problem 2. Give conditions on f such that f to be ˚-approximable by a quadratic
map.

We denote by

Q D


˚ W G ! RC W lim

n!1
˚.2nx/

4n
D 0

�
:

The set Q is the analogous of the set A from the case of approximation by
additive mappings.

In this case, we have the following characterization of functions which can be
approximated by quadratic ones.

Theorem 7. Let be Q 2 Q. Then f is ˚-approximable by a quadratic map if and
only if the following two conditions hold

(i) lim
n!1

kf .2nx C 2ny/C f .2nx � 2ny/� 2f .2nx/ � 2f .2ny/k
4n

D 0; .8/ x; y 2 G

(ii) there exists � 2 Q such that

kf .2nx/� 4nf .x/k � �.2nx/C 4n˚.x/; x 2 G:

In this case, the quadratic ˚�approximation of f is unique and is given by

Q.x/ D lim
n!1

f .2nx/

4n

Proof. First, we assume that f is ˚-approximable by a quadratic map, i.e. the
condition (4) holds. Let be x; y 2 G

We have

kf .x C y/� Q.x C y/k � ˚.x C y/

kf .x � y/� Q.x � y/k � ˚.x � y/

It follows

kf .x C y/C f .x � y/ � 2f .x/� 2f .y/k �
� kf .x C y/� Q.x C y/k C kf .x � y/ � Q.x � y/k

C k2Q.x/� 2f .x/k C k2Q.y/� 2f .y/k
� ˚.x C y/C ˚.x � y/C 2˚.x/C 2˚.y/
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hence

kf .2n.x C y//C f .2n.x � y//� 2f .2nx/ � 2f .2ny/k
4n

�

� ˚.2n.x C y//C ˚.2n.x � y//C 2˚.2nx/C 2˚.2ny/

4n

By letting n go to infinity in the above inequality, we obtain condition .i/.
In (4) we put instead of x 7! 2nx to get

kf .2nx/ � Q.2nx/k � ˚.2nx/

and we multiply equation (4) by 4n to get

k4nf .x/� 4nQ.x/k � 4n˚.x/:

So

kf .2nx/ � 4nf .x/k D kf .2nx/ � Q.2nx/C 4nQ.x/ � 4nf .x/k
� kf .2nx/� Q.2nx/k C k4nQ.x/ � 4nf .x/k
� ˚.2nx/C 4n˚.x/

hence .ii/ holds with � 2 Q.
Conversely, we suppose that .i/ and .ii/ holds. From .ii/ it follows, for x 2 G,

	
	
	
	

f .2nx/

4n
� f .x/

	
	
	
	 � �.2nx/

4n
C ˚.x/: (5)

But



f .2nx/

4n

�
is a Cauchy sequence. Indeed, by putting instead of x 7! 2mx, we get

	
	
	
	

f .2n � 2mx/

4n
� f .2mx/

	
	
	
	 � �.2n � 2mx/

4n
C ˚.2mx/

and by dividing the above inequality by 4m, we obtain

	
	
	
	

f .2nCmx/

4nCm
� f .2mx/

4m

	
	
	
	 � �.2n � 2mx/

4nCm
C ˚.2mx/

4m

hence

	
	
		

f .2nCmx/

4nCm
� f .2mx/

4m

	
	
		 ! 0; m; n ! 1
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Since X is a Banach space it follows that there exists the limit Q.x/ WD
lim

n!1
f .2nx/

4n
and by letting n ! 1 in relation (5) we obtain condition (4).

We prove now that Q is a quadratic mapping. From hypothesis, we know that

lim
n!1

	
	
	
	

f .2n.x C y//

4n
C f .2n.x � y//

4n
� 2f .2nx/

4n
� 2f .2ny/

4n

	
	
	
	 D 0

hence kQ.x C y/C Q.x � y/ � 2Q.x/� 2Q.y/k D 0 so Q is a quadratic mapping.
Now we show that Q is unique. We suppose that Q satisfies

kQ.x/ � f .x/k � ˚.x/

and there exists Q0 which satisfies kQ0.x/ � f .x/k � ˚.x/. We apply the norm
inequality to get kQ.x/ � Q0.x/k � 2˚.x/. But Q and Q0 are quadratic mappings
and by putting instead of x 7! 2nx we get

k4nQ.x/� 4nQ0.x/k � 2˚.2nx/:

Dividing the above inequality by 4n we obtain

kQ.x/ � Q0.x/k � 2 � ˚.2
nx/

4n

But lim
n!1

˚.2nx/

4n
D 0 so Q.x/ D Q0.x/.

From Theorem 7 we have immediately the following result.

Corollary 1 (Borelli and Forti [1]). Let .G;C/ be an abelian group, X a Banach
space and f W G ! X a function with f .0/ D 0 and fulfilling

kf .x C y/C f .x � y/� 2f .x/� 2f .y/k � '.x; y/; (6)

for all x; y 2 G. Assume that the series

1X

nD0
2�2.nC1/'.2nx; 2nx/

converges for every x and call ˚.x/ its sum. If for every x; y we have

lim
n!1 2�2.nC1/'.2nx; 2ny/ D 0;

then there exists a unique quadratic function Q W G ! X such that

kf .x/ � Q.x/k � ˚.x/; x 2 X:
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Proof. In (6) we take x D y W

kf .2x/ � 4f .x/k � '.x; x/

and in the above inequality x 7! 2x W

kf .22x/ � 4f .2x/k � '.2x; 2x/:

Hence

kf .22x/ � 42f .x/k � '.2x; 2x/C 4'.x; x/

� 42˚.x; x/

Using the induction, we have

kf .2nx/ � 4nf .x/k � 4n˚.x; x/:

Hence the condition .ii/ in Theorem 7 holds. Condition .i/ holds from hypothesis.
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Bernstein Type Inequalities Concerning Growth
of Polynomials

N.K. Govil and Eze R. Nwaeze

Abstract Let p.z/ D a0Ca1zCa2z2Ca3z3C� � �Canzn be a polynomial of degree
n, where the coefficients aj, for 0 � j � n, may be complex, and p.z/ ¤ 0 for
jzj < 1. Then

M.p;R/ �
�Rn C 1

2

�
jjpjj; for R � 1; (1)

and

M.p; r/ �
� r C 1

2

�njjpjj; for 0 < r � 1; (2)

where M.p;R/ WD max
jzjDR�1

jp.z/j, M.p; r/ WD max
jzjDr�1

jp.z/j, and jjpjj WD max
jzjD1

jp.z/j.
Inequality (1) is due to Ankeny and Rivlin (Pac. J. Math. 5, 849–852, 1955),
whereas Inequality (2) is due to Rivlin (Am. Math. Mon. 67, 251–253, 1960). These
inequalities, which due to their applications are of great importance, have been the
starting point of a considerable literature in Approximation Theory, and in this paper
we study some of the developments that have taken place around these inequalities.
The paper is expository in nature and would provide results dealing with extensions,
generalizations and refinements of these inequalities starting from the beginning of
this subject to some of the recent ones.
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Introduction

Several years after chemist Mendeleev invented the periodic table of elements he
made a study of the specific gravity of a solution as a function of the percentage of
the dissolved substance, and for this he needed an answer to the following question.

Question If p.x/ is a quadratic polynomial with real coefficients and jp.x/j � 1 on
�1 � x � 1, then how large can jp0.x/j be on �1 � x � 1 ?

To see how an answer to the above question of Mendeleev helped him in the
solution of the problem in Chemistry he was interested in, we refer to the paper of
Boas [6].

Note that, even though Mendeleev was a chemist, he was able to show that
jp0.x/j � 4 for �1 � x � 1. This estimate is best possible in the sense that
there is a quadratic polynomial p.x/ D 1 � 2x2 for which jp.x/j � 1 on Œ�1; 1�
but jp0.˙1/j D 4. In the general case when p.x/ is a polynomial of degree n with
real coefficients the problem was solved by Markov [26], who proved the following
result which is known as Markov’s Theorem.

Theorem 1.1. Let p.x/ D
nX

jD0
ajx

j be an algebraic polynomial of degree n such that

jp.x/j � 1 for x 2 Œ�1; 1�. Then

jp0.x/j � n2; x 2 Œ�1; 1� (3)

The inequality is sharp. Equality holds only if p.x/ D ˛Tn.x/, where ˛ is a complex
number such that j˛j D 1, and

Tn.x/ D cos.n cos�1 x/ D 2n�1
nY

jD1

�
x � cos..j � 1

2
/�=n/

�

is the nth degree Tchebycheff polynomial of the first kind. It can be easily verified
that jTn.x/j � 1 for x 2 Œ�1; 1� and jT 0

n.1/j D n2.

It would be natural to go on and ask for an upper bound for jp.k/.x/j where 1 �
k � n. Iterating Markov’s Theorem yields jp.k/.x/j � n2kL if jp.x/j � L. However,
this inequality is not sharp; the best possible inequality was found by Markov’s
brother, Markov [27], who proved the following.

Theorem 1.2. Let p.x/ D
nX

jD0
ajx

j be an algebraic polynomial of degree n with real

coefficients such that jp.x/j � 1 for x 2 Œ�1; 1�. Then

jp.k/.x/j � .n2 � 12/.n2 � 22/ � � � .n2 � .k � 1/2/

1 � 3 � � � .2k � 1/
; x 2 Œ�1; 1�: (4)
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The inequality is sharp, and the equality holds again only for p.x/ D Tn.x/, where
Tn.x/ D cos.n cos�1 x/ is the Chebyschev polynomial of degree n.

Several years later, around 1926, Serge Bernstein needed the analogue of the above
result Theorem 1.1 of A. A. Markov for polynomials in the complex domain and
proved the following, which in the literature is known as Bernstein’s Inequality.

Theorem 1.3. Let p.z/ D
nX

jD0
ajz

j be a complex polynomial of degree at most n.

Then

max
jzjD1

jp0.z/j � n max
jzjD1

jp.z/j: (5)

The inequality is best possible and equality holds only for polynomials of the form
p.z/ D ˛zn; ˛ ¤ 0 being a complex number.

The above theorem is, in fact, a special case of a more general result due to Riesz
[35] for trigonometric polynomials.

For the sake of brevity, throughout in this paper, we shall be using the following
notations.

Definition 1. Let p.z/ D
nX

jD0
ajz

j be a complex polynomial of degree at most n. We

will denote

M.p; r/ WD max
jzjDr

jp.z/j; r > 0;

jjpjj WD max
jzjD1

jp.z/j;

and

D.0;K/ WD fz W jzj < Kg; K > 0:

In 1945, S. Bernstein initiated and observed the following result, which in
fact is a simple consequence of the maximum modulus principle (see [29] or
[35, volume 1, p. 137]). This inequality is also known as the Bernstein’s Inequality.

Theorem 1.4. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n. Then for R � 1,

M.p;R/ � Rnjjpjj: (6)

Equality holds for p.z/ D ˛zn, ˛ being a complex number.
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If one applies the above inequality to the polynomial P.z/ D znp.1=z/ and use
maximum modulus principle, one easily gets

Theorem 1.5. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n. Then for 0 < r � 1,

M.p; r/ � rnjjpjj: (7)

Equality holds for p.z/ D ˛zn, ˛ being a complex number.

The above result is due to Varga [38] who attributes it to E. H. Zarantonello.
By use of the transformation P.z/ D znp.1=z/ and the maximum modulus

principle it is not difficult to see that Theorems 1.4 and 1.5 can be obtained from
each other. The fact that Theorem 1.3 can be obtained from Theorem 1.4 was
proved by Bernstein himself. However, it was not known if Theorem 1.4 can also
be obtained from Theorem 1.3, and this has been shown by Govil et al. [22]. Thus
all the above three Theorems 1.3, 1.4 and 1.5 are equivalent in the sense that anyone
can be obtained from any of the others.

For the sharpening of Theorems 1.3, 1.4 and 1.5 we refer the reader to the paper
of Frappier et al. [12] (also, see Sharma and Singh [37]).

For polynomial of degree n not vanishing in the interior of the unit circle, Ankeny
and Rivlin [1] proved the following result.

Theorem 1.6. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for R � 1,

M.p;R/ �
�Rn C 1

2

�
jjpjj: (8)

Here equality holds for p.z/ D ˛ C ˇzn

2
, where j˛j D jˇj D 1.

For some generalizations of inequalities (6) and (8), see Govil et al. [23].
The analogue of Inequality (7) for polynomials not vanishing in the interior of a

unit circle was proved later in 1960 by Rivlin [36], who in fact proved

Theorem 1.7. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for 0 < r � 1,

M.p; r/ �
� r C 1

2

�njjpjj; (9)

and equality holding for p.z/ D
�˛ C ˇz

2

�n
, where j˛j D jˇj D 1.

The above results, Theorems 1.4–1.5 which are known as Bernstein inequalities
concerning growth of polynomials, and Theorems 1.6–1.7 have been the starting
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point of a considerable literature in Approximation Theory. Several books and
research monographs have been written on this subject of inequalities (see, for
example, Govil and Mohapatra [20], Milovanović et al. [28], Pinkus [30], and Rah-
man and Schmeisser [34]) and in this chapter we study some of the developments
that have, over a period, taken place around these inequalities.

The present chapter is expository in nature and consists of four sections. Having
introduced Bernstein type inequalities concerning the growth of polynomials,
Theorems 1.4–1.7 in section “Introduction,” we in section “Results Concerning
Generalizations, Extensions and Refinements of Theorem 1.6” study inequalities
related to the inequality in Theorem 1.6 while section “Results Concerning Gener-
alizations, Extensions and Refinements of Theorem 1.7” will consist of inequalities
related to Theorem 1.7. Lastly, the section “Polynomials Having all the Zeros on
S.0;K/” deals with inequalities concerning the growth of polynomials having all
their zeros on a circle.

Results Concerning Generalizations, Extensions
and Refinements of Theorem 1.6

We begin with Theorem 1.6 stated in section “Introduction,” and which is due to
Ankeny and Rivlin [1].

Theorem 2.1. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for R � 1,

M.p;R/ �
�Rn C 1

2

�
jjpjj: (10)

Equality holding for p.z/ D ˛ C ˇzn

2
, where j˛j D jˇj D 1.

We present here the brief outlines of the proof of Theorem 2.1 as given by Ankeny
and Rivlin in [1], which makes use of Erdös-Lax Theorem. As is well known, the
Erdös-Lax Theorem which is stated below as Lemma 2.2, was conjectured by Erdös
and proved by Lax [25]. It may be remarked that a simpler proof of Lemma 2.2 was
provided by Aziz and Mohammad [3].

Lemma 2.2 (Lax [25]). Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then

M.p0; 1/ � n

2
jjpjj: (11)

Proof (Proof of Theorem 2.1). Let us assume that p.z/ does not have the form
˛ C ˇzn

2
. In view of Lemma 2.2
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jp0.ei� /j � n

2
jjpjj; 0 � � < 2�; (12)

from which we may deduce that

jp0.rei� /j < n

2
rn�1jjpjj; 0 � � < 2�; r > 1; (13)

by applying Theorem 1.4 to the polynomial p0.z/=.n=2/ and observing that we have

the strict inequality in (13) because p.z/ does not have the form
˛ C ˇzn

2
. But for

each �; 0 � � < 2� , we have

p.Rei� / � p.ei� / D
Z R

1

ei�p0.rei� /dr:

Hence

ˇ
ˇp.Rei� /� p.ei� /

ˇ
ˇ �

Z R

1

jp0.rei� /jdr <
n

2
jjpjj

Z R

1

rn�1dr D jjpjj
2
.Rn � 1/;

and

ˇ
ˇp.Rei� /j < jjpjj

2
.Rn � 1/C ˇ

ˇp.ei� /j � jjpjj
2
.1C Rn/:

Finally, if p.z/ D ˛ C ˇzn

2
; j˛j D jˇj D 1, then clearly

M.p;R/ D 1C Rn

2
; R > 1;

and the proof of Theorem 2.1 is thus complete.

It may be remarked that later a simpler proof of Theorem 2.1 which does not
make use of Erdös-Lax Theorem was given by Dewan [7].

Remark 1. The converse of Theorem 2.1 is false as the simple example p.z/ D
.zC 1

2
/.zC3/ shows. However, the following result in the converse direction, which

is also due to Ankeny and Rivlin [1], is valid.

Theorem 2.3. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n such that p.1/ D 1

and

M.p;R/ �
�Rn C 1

2

�
jjpjj
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for 0 < R � 1 < ı, where ı is any positive number. Then p.z/ does not have all its
zeros within the unit circle.

In 1989, Govil [17] observed that since the equality in (10) holds only for
polynomials p.z/ D ˛ C ˇzn; j˛j D jˇj, which satisfy

ˇ̌
coefficient of zn

ˇ̌ D 1

2
jjpjj; (14)

it should be possible to improve upon the bound in (10) for polynomials not
satisfying (14), and therefore in this connection he proved the following refinement
of (10).

Theorem 2.4. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for R � 1,

M.p;R/ �
�Rn C 1

2

�
jjpjj

�n.jjpjj2 � 4janj2/
2jjpjj

(
.R � 1/jjpjj
jjpjj C 2janj � ln

"

1C .R � 1/jjpjj
jjpjj C 2janj

#)

(15)

Equality holding for p.z/ D ˛ C ˇzn, where j˛j D jˇj.
In 1998, Dewan and Bhat [9] sharpened the above Theorem 2.4 as follows:

Theorem 2.5. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for R � 1,

M.p;R/ �
�Rn C 1

2

�
jjpjj �

�Rn � 1

2

�
m

�n

2

"
.jjpjj � m/2 � 4janj2

.jjpjj � m/

#(
.R � 1/.jjpjj � m/

.jjpjj � m/C 2janj

� ln

"

1C .R � 1/.jjpjj � m/

.jjpjj � m/C 2janj

#)

; (16)

where m D min
jzjD1

jp.z/j. Here again, equality holds for p.z/ D ˛ C ˇzn, where

j˛j D jˇj.
In 2001, Govil and Nyuydinkong [21] generalized Theorem 2.5, where they

considered polynomials not vanishing in D.0;K/; K � 1. More specifically, they
proved
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Theorem 2.6. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K � 1. Then for R � 1,

M.p;R/ �
�Rn C K

1C K

�
jjpjj �

�Rn � 1

1C K

�
m � n

1C K

"
.jjpjj � m/2 � .1C K/2janj2

.jjpjj � m/

#



(

.R � 1/.jjpjj � m/

.jjpjj � m/C .1C K/janj � ln

"

1C .R � 1/.jjpjj � m/

.jjpjj � m/C .1C K/janj

#)

;

(17)

where m D min
jzjDK

jp.z/j.

Following immediately, Gardner et al. [14] generalized Theorem 2.6 by consid-

ering polynomials of the form a0 C
nX

jDt

ajz
j; 1 � t � n, and for this, they proved

the following:

Theorem 2.7. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0;K/; K � 1. Then for R � 1,

M.p;R/ �
�Rn C Kt

1C Kt

�
jjpjj �

�Rn � 1

1C Kt

�
m � n

1C Kt

"
.jjpjj � m/2 � .1C Kt/2janj2

.jjpjj � m/

#



(

.R � 1/.jjpjj � m/

.jjpjj � m/C .1C Kt/janj � ln

"

1C .R � 1/.jjpjj � m/

.jjpjj � m/C .1C Kt/janj

#)

;

(18)

where m D min
jzjDK

jp.z/j.

Clearly, for t D 1, Theorem 2.7 gives Theorem 2.6, which for K D 1 reduces to
Theorem 2.5.

In 2005, Gardner et al. [15] proved the following generalization and sharpening
of Theorem 2.4.

Theorem 2.8. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0;K/; K � 1. Then for R � 1,
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M.p;R/ �
�Rn C s0
1C s0

�
jjpjj �

�Rn � 1
1C s0

�
m � n

1C s0

"
.jjpjj � m/2 � .1C s0/2janj2

.jjpjj � m/

#



(

.R � 1/.jjpjj � m/

.jjpjj � m/C .1C s0/janj � ln

"

1C .R � 1/.jjpjj � m/

.jjpjj � m/C .1C s0/janj

#)

;

(19)

where m D min
jzjDK

jp.z/j, and

s0 D KtC1
t

n
� jatj

ja0j � m
Kt�1 C 1

t

n
� jatj

ja0j � m
KtC1 C 1

:

Dividing both sides of (19) by Rn, and letting R ! 1, one gets

Corollary 2.9. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0;K/; K � 1. Then

janj � 1

1C s0

�jjpjj � m
�
; (20)

where m D min
jzjDK

jp.z/j.

In case one does not have knowledge of m D min
jzjDK

jp.z/j, one could use the

following result due to Gardner et al. [15] which does not depend on m.

Theorem 2.10. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0;K/; K � 1. Then for R � 1,

M.p;R/ �
�Rn C s1
1C s1

�
jjpjj � n

1C s1

"
jjpjj2 � .1C s1/2janj2

jjpjj

#



(

.R � 1/jjpjj
jjpjj C .1C s1/janj � ln

"

1C .R � 1/jjpjj
jjpjj C .1C s1/janj

#)

;

(21)
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where

s1 D KtC1
t

n
� jatj

ja0jKt�1 C 1

t

n
� jatj

ja0jKtC1 C 1

:

If, in the above theorem, one divides both sides of (21) by Rn and let R ! 1,
one obtains the following

Corollary 2.11. Let p.z/ D a0 C
nX

jDt

ajz
j; 1 � t � n, be a polynomial of degree n

and p.z/ ¤ 0 in D.0;K/; K � 1. Then

janj � 1

1C s1
jjpjj: (22)

Both Corollaries 2.9 and 2.11 generalize and sharpen the well-known inequality,

obtainable by an application of Visser’s Inequality [39], that if p.z/ D
nX

jD0
ajz

j is a

polynomial of degree n and p.z/ ¤ 0 in D.0; 1/ then janj � 1

2
jjpjj.

We present some of the examples Gardner et al. [15] gave to illustrate the quality
of Theorems 2.7, 2.8 and 2.10.

Example 1. Let p.z/ D 1000 C z2 C z3 C z4. Clearly, here t D 2 and n D 4,
and one can take K D 5:4, since numerically p ¤ 0 for jzj < 5:4483. For this
polynomial, the bound for M.p; 2/ by Theorem 2.7 comes out to be 1447.503, and
by Theorem 2.8, it comes out to be 1101.84, which is a significant improvement over
the bound obtained from Theorem 2.7. Numerically, for this polynomial M.p; 2/ 	
1028, which is quite close to the bound 1101.84, that is obtainable by Theorem 2.10.
The bound for M.p; 2/ obtained by Theorem 2.10 is 1105.05, which is also quite
close to the actual bound 	 1028. However, in this case Theorem 2.8 gives the best
bound.

Example 2. Let p.z/ D 1000C z2 � z3 � z4. Here also, t D 2 and n D 4. Again,
numerically p.z/ ¤ 0 for jzj < 5:43003, and thus take K D 5:4. If R D 3, then
for this polynomial the bound for M.p; 3/ obtained by Theorem 2.7 comes out to be
3479.408, while by Theorem 2.10 it comes out to be 1545.3, and by Theorem 2.8
it comes out to be 1534.5, a considerable improvement. Thus again the bounds
obtained from Theorem 2.8 and Theorem 2.10 are considerably smaller than the
bound obtained from Theorem 2.7, and the bound 1534.5 obtained by Theorem 2.8
is much closer to the actual bound M.p; 3/ 	 1100:6 than the bound 3479.408,
obtained from Theorem 2.7.
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In 1981, Aziz and Mohammad [4] sharpened Theorem 2.1 by proving the
following.

Theorem 2.12. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for R � 1,

M.p;R/ � .Rn C 1/.R C K/n

.R C K/n C .1C RK/n
jjpjj (23)

Theorem 2.12 is a generalization of Theorem 2.1 in a compact form but
unfortunately with the exception of n D 1, the Inequality (23) does not appear to
be sharp for K > 1. However, a precise estimate is given by the following theorem,
which is also due to Aziz and Mohammad [4].

Theorem 2.13. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for R � 1,

M.p;R/ � .R C K/n

.1C K/n
jjpjj for 1 � R � K2 (24)

and

M.p;R/ � Rn C Kn

1C Kn
jjpjj for R � K2 (25)

The result is best possible with equality in (25) for p.z/ D .zn C Kn/=.1C Kn/

and in (24) for p.z/ D .z C K/n=.1C K/n.

The following theorem which is due to Govil et al. [22] sharpens Inequality (24)
in the above Theorem 2.13.

Theorem 2.14. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K � 1. Then for 1 � R � K2,

M.p;R/ �
 

K2 C 2Rj	jK C R2

K2 C 2j	jK C 1

!n=2

M.p; 1/; (26)

where 	 D 	.K/ WD Ka1
na0

.

The fact that the Inequality (26) sharpens Inequality (24) follows because if p.z/ DPn
jD0 ajzj ¤ 0 for jzj < K, where K � 1, then j	j D jKa1=na0j � 1, and therefore
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K2 C 2Rj	jK C R2

K2 C 2j	jK C 1

!

�
 

K2 C 2RK C R2

K2 C 2K C 1

!

D
 

R C K

K C 1

!2
;

from which the conclusion follows.
In the case R � K2, Govil et al. [22] proved

Theorem 2.15. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K > 1. Then for R � K2,

M.p;R/ � Rn

Kn

 
Kn

Kn C 1

!.R�K2/=.RCK2/

M.p; 1/: (27)

About 6 years after Aziz and Mohammad [4] proved Theorem 2.13, Aziz [2]
obtained more results in this direction, some of which are presented below.

Theorem 2.16. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for R � 1,

M.p;R/ � Rn C 1

2
jjpjj � Rn � 1

2
min
jzjD1

jp.z/j: (28)

The result is best possible and equality in (28) holds for the polynomial p.z/ D
˛zn C ˇKn; j˛j D jˇj D 1; K � 1.

As an application of Theorem 2.16, Aziz [2] established

Theorem 2.17. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for 0 � r � K,

.1C rn/M.p; r/� .1 � rn/min
jzjD1

jp.z/j � 2rnjjpjj: (29)

The result is best possible and equality in (29) holds for the polynomial p.z/ D
˛zn C ˇKn, where j˛j D jˇj D 1, and K � 1.

In 2002, Aziz and Zargar [5] proved the following refinement of Theorem 2.12
which includes Theorem 2.16 as a special case.

Theorem 2.18. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for R � 1,
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M.p;R/ � F.R/

(

.Rn C 1/jjpjj �
"

Rn �
 
1C RK

R C K

!n#

m

)

; (30)

where m WD min
jzjDK

jp.z/j and F.R/ WD .R C K/n

.R C K/n C .1C RK/n
.

For K D 1, the above theorem reduces to Theorem 2.16. In the same paper, they
[5] proved the following which is a refinement of (24).

Theorem 2.19. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n and p.z/ ¤ 0 in

D.0;K/;K � 1. Then for 1 � R � K2,

M.p;R/ �
 

R C K

1C K

!n

jjpjj �
( 

R C K

1C K

!n

� 1

)

m; (31)

where m WD min
jzjDK

jp.z/j.

Theorem 2.18, in some special cases, can provide much better information than
Theorem 2.12 regarding M.p;R/; R > 1, and thus they [5] illustrate with the help
of the following examples.

Example 3. Let p.z/ D .z2 C 9/.z � 19/. Then p.z/ is a polynomial of degree 3
which does not vanish in D.0; t/, where t 2 .0; 3�. Clearly

jp.z/j � �
9 � jzj2��19� jzj�

which in particular gives M.p; 2/ � 85 and jjpjj D 200. Using Theorem 2.12 with
K D t D 3; R D 2, it follows that

M.p; 2/ � 480:8; (32)

whereas using Theorem 2.18 with K D 2, and R D 2, we get

M.p; 2/ � 435:5; (33)

which is much better than (32).

Example 4. Let p.z/ D z3 C 33. Then p.z/ does not vanish in D.0; t/, where t 2
.0; 3�. Evidently,

M.p; 2/ � 19 and M.p; 1/ D 28: (34)

Using Theorem 2.12 with K D t D 3; R D 2, it follows that

M.p; 2/ � 67:4: (35)
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Using Theorem 2.18 with K D t D 2; R D 2, gives

M.p; 2/ � 46:5; (36)

which is much better than (35).

For more results in this direction we refer the reader to [18, 19, 33, 37]. We wrap up
this part by presenting the following results where the maximum modulus is taken
on an ellipse rather than on a circle.

Theorem 2.20 (Duffin and Schaeffer [10]). Let p.z/ D
nX

jD0
ajz

j be a polynomial

of degree n such that max�1�x�1 jp.x/j � 1 and p.z/ is real for real z,. Then for R > 1,

max
z2ER

jp.z/j � Rn C R�n

2
;

where ER WD
(

z D x C iy W x2
�

RCR�1

2

�2 C y2
�

R�R�1

2

�2 D 1

)

In the following result the hypothesis on the polynomial p.z/ that p.z/ is real for real
z has been dropped.

Theorem 2.21 (Frappier and Rahman [11]). If p.z/ D
nX

jD0
ajz

j is a polynomial of

degree n such that max�1�x�1 jp.x/j � 1, then for R > 1, we have

max
z2ER

jp.z/j � Rn

2
C 5C p

17

4
Rn�2;

where ER is the same as above.

Results Concerning Generalizations, Extensions
and Refinements of Theorem 1.7

So far we have been dealing with improvements and generalizations of Inequal-
ity (10), and now we turn our attention to Inequality (9), given in Theorem 1.7. In
this regard, Govil [16] generalized this Theorem 1.7 by proving

Theorem 3.1. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for 0 < r �  � 1,
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M.p; r/ �
� 1C r

1C 

�n
M.p; /: (37)

The result is best possible and equality holds for the polynomial p.z/ D
� 1C z

1C 

�n
.

If polynomial p.z/ has all its zeros on jzj D 1, the polynomial q.z/ D znp. 1z / also
has its zeros on jzj D 1. Further, if 1 �  � r, then 1

r � 1


� 1, and when (37) is
applied to q.z/, it yields

M
�

q;
1

r

�
�
 
1C 1

r

1C 1


!n

M
�

q;
1



�
;

which is equivalent to (37).
The above explanation thus leads to the following corollary.

Corollary 2.2. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on the unit circle. Then for 0 < r �  � 1, and for 1 �  � r,

M.p; r/ �
� 1C r

1C 

�n
M.p; /: (38)

The result is best possible and equality holds for the polynomial p.z/ D .1C z/n.

If in Theorem 3.1 one also assumes that p0.0/ D 0, the bound in (37) can be
considerably improved. Govil [16] in the same paper obtained the following in this
direction.

Theorem 3.2. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Let p0.0/ D 0. Then for 0 < r �
 � 1,

M.p; r/ �
� 1C r

1C 

�n

8
ˆ̂
<

ˆ̂
:

1

1 � .1� /. � r/n

4

� 1C r

1C 

�n�1

9
>>=

>>;
M.p; /: (39)

Theorem 3.1 is best possible, however, if 0 < r <  < 1, then for any polynomial
p.z/ having no zeros in D.0; 1/, and p0.0/ D 0, the bound obtained by Theorem 3.2
can be considerably sharper than the bound obtained by Theorem 3.1. Govil [16]
illustrated this by means of the following examples.

Example 5. Let p.z/ D 1 C z3;  D 0:5; r D 0:1. Theorem 3.1 gives M.p; r/ �
.0:3943704/M.p; /, while by Theorem 3.2, M.p; r/ � .0:4289743/M.p; /.
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Example 6. Let p.z/ D 1Cz7;  D 0:168; r D 0:022. Theorem 3.1 gives M.p; r/ �
.0:3926959/M.p; /, while by Theorem 3.2, M.p; r/ � .0:4341115/M.p; /.

In 1992, Qazi [32] extended Theorem 3.1 to polynomials with gaps. Specifically
he proved

Theorem 3.4. Let 1 � m � n and p.z/ D a0 C
nX

jDm

ajz
j ¤ 0 in D.0; 1/. Then for

0 < r <  � 1,

M.p; r/ �
� 1C rm

1C m

�n=m
M.p; /I (40)

more precisely

M.p; r/ � exp

 

� n
Z 

r

tm C .m=n/jam=a0jtm�1

tmC1 C .m=n/jam=a0j.tm C t/C 1
dt

!

M.p; /: (41)

If m D 1, Theorem 3.4 gives

Corollary 2.5. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for 0 < r <  � 1,

M.p; r/ �
 
1C 2j	jr C r2

1C 2j	jC 2

!n=2

M.p; /; (42)

where 	 WD a1
na0

.

Proof. It is easy to see that

exp

 

� n
Z 

r

t C .1=n/ja1=a0j
t2 C .2=n/ja1=a0jt C 1

dt

!

D
 
1C 2ja1=na0jr C r2

1C 2ja1=na0jC 2

!n=2

;

and on applying Inequality (41), the corollary follows.

For  D 1, the above corollary reduces to

Corollary 2.6. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0; 1/. Then for 0 < r < 1,

M.p; r/ �
 
1C 2j	jr C r2

2C 2j	j

!n=2

M.p; 1/; (43)

where 	 WD a1
na0

.
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In 2003, Govil et al. [22] extended Corollary 2.6 to polynomials not vanishing in
D.0;K/; K � 1. They, in fact, proved

Theorem 3.7. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K � 1. Then for 0 < r < 1,

M.p; r/ �
 

K2 C 2rj	jK C r2

K2 C 2j	jK C 1

!n=2

M.p; 1/; (44)

where 	 D 	.K/ WD Ka1
na0

.

In the case where n is even, (44) becomes an equality for polynomials of the form
c.K2 C 2Kzeiˇ cos˛ C z2e2iˇ/n=2; c 2 C; c ¤ 0; ˛ 2 R; ˇ 2 R.

For any n, Inequality (44) may be replaced by

M.p; r/ �
 

r C K

K C 1

!n

M.p; 1/; 0 < r < 1; (45)

where the bound is attained if p.z/ D c.zeiˇ C K/n; c 2 C; c ¤ 0; ˇ 2 R. It may
be noted that even (45) is a generalization of (9).

Assuming that p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K � 1, Govil et al. [22] proved

the following result.

Theorem 3.8. Let p.z/ D
nX

jD0
ajz

j ¤ 0 in D.0;K/; K � 1. Then for 0 < r � K2,

M.p; r/ �
 

K2 C 2rj	jK C r2

K2 C 2j	jK C 1

!n=2

M.p; 1/; (46)

where 	 D 	.K/ WD Ka1
na0

.

In the case where n is even, (46) becomes an equality for polynomials of the form
c.K2 C 2Kzeiˇ cos˛ C z2e2iˇ/n=2; c 2 C; c ¤ 0; ˛ 2 R; ˇ 2 R.

For any n, Inequality (46) may be replaced by

M.p; r/ �
 

r C K

K C 1

!n

M.p; 1/; 0 < r � K2; (47)

where the bound is attained if p.z/ D c.zeiˇ C K/n; c 2 C; c ¤ 0; ˇ 2 R.
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Inequality (47) extends and refines a result of Jain [24, Inequality (1.4)], who had
obtained it under the assumption that all the zeros of p lie on the circle S.0;K/ WD
fz W jzj D Kg; K > 0.

Polynomials Having all the Zeros on S.0; K/

While trying to obtain inequality analogous to (10) for polynomials not vanishing in
D.0;K/;K � 1, Dewan and Ahuja [8] were able to prove this only for polynomials
having all the zeros on the circle S.0;K/ WD fz W jzj D Kg; 0 < K � 1.

Theorem 4.1. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1 and for every positive integer s,

fM.p;R/gs �
"

Kn�1.1C K/C .Rns � 1/

Kn�1 C Kn

#

fM.p; 1/gs: (48)

For s D 1, the Theorem 4.1 yields

Corollary 4.2. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1,

M.p;R/ �
"

Kn�1.1C K/C .Rn � 1/
Kn�1 C Kn

#

M.p; 1/: (49)

The following corollary immediately follows from Inequality (49), if one takes
K D 1.

Corollary 4.3. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0; 1/. Then for R � 1,

M.p;R/ �
 

Rn C 1

2

!

M.p; 1/: (50)

In the same paper, Dewan and Ahuja [8] also proved

Theorem 4.4. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1 and for every positive integer s,
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fM.p;R/gs � 1

Kn

"
njanjfKn.1C K2/C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1C K2/

#

fM.p; 1/gs: (51)

The following example illustrates that in some case the bound obtained in
Theorem 4.4 is considerably better than the bound obtained in Theorem 4.1.

Example 7. Let p.z/ D z4 � 1

50
z2 C 1

1002
and K D 1

10
; R D 1:5 and s D 2. Using

Theorem 4.1, one gets

fM.p;R/gs � 22390:91477fM.p; 1/gs;

while Theorem 4.4 gives

fM.p;R/gs � 2439:505569fM.p; 1/gs;

showing that the bound obtained by Theorem 4.4 can be considerably sharper than
what one gets from Theorem 4.1.

For s D 1 in Theorem 4.4 yields

Corollary 4.5. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1,

M.p;R/ � 1

Kn

"
njanjfKn.1CK2/CK2.Rn � 1/gCjan�1jf2Kn C Rn � 1g

2jan�1j C njanj.1C K2/

#

M.p; 1/:

(52)

By restricting ourselves to polynomials of degree n � 2, Pukhta [30] obtained an
improvement and generalization of Theorem 4.1 and Theorem 4.4. More precisely,
he proved

Theorem 4.6. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1 and for every positive integer s,

fM.p;R/gs �
"

Kn�1.1C K/C .Rns � 1/

Kn�1 C Kn

#

fM.p; 1/gs (53)

�sja1j
"

Rns � 1
ns

� Rns�2 � 1

ns � 2

#

fM.p; 1/gs�1;
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for n > 2; and

fM.p;R/gs �
"

Kn�1.1C K/C .Rns � 1/

Kn�1 C Kn

#

fM.p; 1/gs (54)

�sja1j
"

Rns � 1
ns

� Rns�1 � 1

ns � 1

#

fM.p; 1/gs�1;

for n D 2.

Setting s D 1 in Theorem 4.6 reduces to

Corollary 4.7. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1,

M.p;R/ �
"

Kn�1.1C K/C .Rn � 1/

Kn�1 C Kn

#

M.p; 1/ (55)

�ja1j
"

Rn � 1
n

� Rn�2 � 1

n � 2

#

;

for n > 2; and

M.p;R/ �
"

Kn�1.1C K/C .Rn � 1/

Kn�1 C Kn

#

M.p; 1/ (56)

�ja1j
"

Rn � 1
n

� Rn�1 � 1

n � 1

#

;

for n D 2.

The following result which deals for polynomials having all the zeros on the circle
S.0;K/;K � 1 is also due to Pukhta [30].

Theorem 4.8. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1 and for every positive integer s,
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fM.p;R/gs � 1

Kn

"
njanjfKn.1C K2/C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1C K2/

#

fM.p; 1/gs � sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#

fM.p; 1/gs�1; for n > 2

and

fM.p;R/gs � 1

Kn

"
njanjfKn.1C K2/C K2.Rns � 1/g C jan�1jf2Kn C Rns � 1g

2jan�1j C njanj.1C K2/

#

fM.p; 1/gs � sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#

fM.p; 1/gs�1; for n D 2:

Choosing s D 1 in Theorem 4.8 gives

Corollary 4.9. Let p.z/ D
nX

jD0
ajz

j be a polynomial of degree n having all its zeros

on S.0;K/; K � 1. Then for R � 1,

M.p;R/ � 1

Kn

"
njanjfKn.1C K2/C K2.Rn � 1/g C jan�1jf2Kn C Rn � 1g

2jan�1j C njanj.1C K2/

#

M.p; 1/

�ja1j
"

Rn � 1
n

� Rn�2 � 1

n � 2

#

; for n > 2

and

M.p;R/ � 1

Kn

"
njanjfKn.1C K2/C K2.Rn � 1/gCjan�1jf2Kn C Rn � 1g

2jan�1jCnjanj.1C K2/

#

M.p; 1/

�ja1j
"

Rn � 1

n
�Rn�1�1

n � 1

#

; for n D 2:

We close this section by stating the following two recent results due to Pukhta [31]
which are for polynomials with gaps, and therefore generalize the above results.

Theorem 4.10. Let p.z/ D anzn C
nX

jD�
an�jz

n�j; 1 � � < n be a polynomial of

degree n having all its zeros on S.0;K/; K � 1. Then for R � 1 and for every
positive integer s,
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fM.p;R/gs �
"

Kn�2�C1.1C K�/C.Rns � 1/

Kn�2�C1CKn��C1

#

fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#

fM.p; 1/gs�1;

for n > 2I and

fM.p;R/gs �
"

Kn�2�C1.1C K�/C.Rns � 1/

Kn�2�C1CKn��C1

#

fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#

fM.p; 1/gs�1;

for n D 2.

Note that for � D 1, the above Theorem 4.10 reduces to Theorem 4.6.

Theorem 4.11. Let p.z/ D anzn C
nX

jD�
an�jz

n�j; 1 � � < n be a polynomial of

degree n having all its zeros on S.0;K/; K � 1. Then for R � 1 and for every
positive integer s,

fM.p;R/gs � G.s; k; �/

Kq
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�2 � 1

ns � 2

#

fM.p; 1/gs�1; n > 2

and

fM.p;R/gs � G.s; k; �/

Kq
fM.p; 1/gs

�sja1j
"

Rns � 1

ns
� Rns�1 � 1

ns � 1

#

fM.p; 1/gs�1; n D 2;

where

G.s; k; �/ D njanjfKq.K��1 C K2�/C K2�.Rns � 1/g C jan��jf�.Kn C Kq C K��1.Rns � 1//g
�jan��j.K��1 C 1/C njanj.K��1 C K2�/

;

q D n � �C 1:



Bernstein Type Inequalities Concerning Growth of Polynomials 315

References

1. Ankeny, N.C., Rivlin, T.J.: On a theorem of S. Bernstein. Pac. J. Math. 5, 849–852 (1955)
2. Aziz, A.: Growth of polynomials whose zeros are within or outside a circle. Bull. Aust. Math.

Soc. 35, 247–256 (1987)
3. Aziz, A., Mohammad, Q.G.: Simple proof of a theorem of Erdös and Lax. Proc. Am. Math.

Soc. 80, 119–122 (1980)
4. Aziz, A., Mohammad, G.: Growth of polynomials with zeros outside a circle. Proc. Am. Math.

Soc. 81, 549–553 (1981)
5. Aziz, A., Zargar, B.A.: Growth of maximum modulus of polynomials with prescribed zeros.

Glas. Mat. 37, 73–81 (2002)
6. Boas, R.P.: Inequalities for the derivatives of polynomials. Math. Mag. 42, 165–174 (1969)
7. Dewan, K.K.: Another proof of a theorem of Ankeny and Rivlin. Glas. Math. 18, 291–293

(1983)
8. Dewan, K.K., Ahuja, A.: Growth of polynomials with prescribed zeros. J. Math. Inequal. 5,

355–361 (2011)
9. Dewan, K.K., Bhat, A.A.: On the maximum modulus of polynomials not vanishing inside the

unit circle. J. Interdisciplinary Math. 1, 129–140 (1998)
10. Duffin, R.J., Schaeffer, C.: Some properties of functions of exponential type. Bull. Am. Math.

Soc. 44, 236–240 (1938)
11. Frappier, C., Rahman, Q.I.: On an Inequality of S. Bernstein. Can. J. Math. 34(4), 932–944

(1982)
12. Frappier, C., Rahman, Q.I., Ruscheweyh, S.: New inequalities for polynomials. Trans. Am.

Math. Soc. 288, 69–99 (1985)
13. Frappier, C., Rahman, Q. I., Ruscheweyh, S. : New Inequalities for Polynomials. Trans. Am.

Math. Soc. 288, 69–99 (1985)
14. Gardner, R.B., Govil, N.K., Weems, A.: Some results concerning rate of growth of polynomi-

als. East J. Approx. 10, 301–312 (2004)
15. Gardner, R.B., Govil, N.K., Musukula, S.R.: Rate of growth of polynomials not vanishing

inside a circle. J. Inequal. Pure Appl. Math. 6(2), article 53 (2005)
16. Govil, N.K.: On the maximum modulus of polynomials. J. Math. Anal. Appl. 112, 253–258

(1985)
17. Govil, N.K.: On the maximum modulus of polynomials not vanishing inside the unit circle.

Approx. Theory Appl. 5, 79–82 (1989)
18. Govil, N.K.: On a theorem of Ankeny and Rivlin concerning maximum modulus of polynomi-

als. Complex Variables 40, 249–259 (2000)
19. Govil, N.K.: On Growth of polynomials. J. Inequal. Appl. 7(5), 623–631 (2002)
20. Govil, N.K., Mohapatra, R.N. : Markov and Bernstein type inequalities for polynomials.

J. Inequal. Appl. 3, 349–387 (1999)
21. Govil, N.K., Nyuydinkong, G.: On maximum modulus of polynomials not vanishing inside a

circle. J. Interdisciplinary Math. 4, 93–100 (2001)
22. Govil, N.K., Qazi, M.A., Rahman, Q.I.: Inequalities describing the growth of polynomials not

vanishing in a disk of prescribed radius. Math. Inequal. Appl. 6(3), 453–467 (2003)
23. Govil, N.K., Liman, A., Shah, W.M.: Some inequalities concerning derivative and maximum

modulus of polynomials. Aust. J. Math. Anal. Appl. 8, 1–8 (2011)
24. Jain, V.K.: Certain interesting implications of T. J. Rivlins’s result on maximum modulus of a

polynomial. Glas. Math. 33, 33–36 (1998)
25. Lax, P.D.: Proof of a conjecture of P. Erdös on the derivatives of a polynomial. Bull. Am. Math.

Soc. 50, 509–513 (1944)
26. Markov, A.A.: On a problem of D. I. Mendeleev (Russian), Zapiski Imp. Akad. Nauk 62, 1–24

(1889)
27. Markov, V.A.: Über Polynome die in einem gegebenen Intervalle möglichst wenig von null

abweichen, Math. Ann. 77, 213–258 (1916)



316 N.K. Govil and E.R. Nwaeze
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Approximation for Generalization
of Baskakov–Durrmeyer Operators

Vijay Gupta

Abstract In the present article, we study certain approximation properties of the
modified form of generalized Baskakov operators introduced by Erencin (Appl.
Math. Comput. 218(3):4384–4390, 2011). We estimate a recurrence relation for
the moments of their Durrmeyer type modification. First we estimate rate of
convergence for functions having derivatives of bounded variation. Next, we discuss
some direct results in simultaneous approximation by these operators, e.g. point-
wise convergence theorem, Voronovskaja-type theorem and an estimate of error in
terms of the modulus of continuity.

Keywords Baskakov operators • Simultaneous approximation • Rate of conver-
gence • Modulus of continuity • Bounded variation

Introduction

The well-known Baskakov operators for f 2 CŒ0;1/ are defined as

Bn.f I x/ D
1X

kD0

 
n C k � 1

k

!
xk

.1C x/nCk
f

�
k

n

�

D
1X

kD0

n.n C 1/.n C 2/ � � � .n C k � 1/

kŠ

xk

.1C x/nCk
f

�
k

n

�
: (1)

Several variants of these operators have been discussed, Gupta [6] proposed the
Bézier variant of the Baskakov operators defined by (1). In [13], Mihesan proposed
a generalization of the operators (1). He started by considering the following identity
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.k � i/Š

Replacing t D x=.1C x/, we get

eax=.1Cx/:.1C x/n D
1X

kD0

kX

iD0

 
k

i

!
.n/iak�i

kŠ

�
x

1C x

�k

introduced the following generalized Baskakov operators with a non-negative
constant a � 0 independent of n W

Ba
n.f I x/ D

1X

kD0
va

n;k.x/f

�
k

n

�
; (2)

where

va
n;k.x/ D e�ax=.1Cx/Pk.n; a/

kŠ

xk

.1C x/nCk

such that
1X

kD0
va

n;k.x/ D 1 and Pk.n; a/ D
kX

iD0

 
k

i

!

.n/ia
k�i. In case a D 0, we get at

once the Baskakov operators (1).
Also, another generalization of the Baskakov operators defined by Chen [2] was

considered in the following way:

Bˇn .f I x/ D
1X

kD0

n.n C ˇ/.n C 2ˇ/ � � � .n C .k � 1/ˇ/
kŠ

xk

.1C ˇx/n=ˇCk
f

�
k

n

�
: (3)

Combining (2) and (3), we propose the following more general form for a � 0 and
ˇ > 0, which include these two generalizations of the Baskakov operators as special
cases:

Ba;ˇ
n .f I x/ D

1X

kD0
v

a;ˇ
n;k .x/f

�
k

n

�
; (4)
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where

v
a;ˇ
n;k .x/ D e�aˇx=.1Cˇx/

kX

iD0

 
k

i

!
i�1Y

jD0
.

n

ˇ
C j/:ak�i

kŠ

.ˇx/k

.1C ˇx/n=ˇCk

such that
1X

kD0
v

a;ˇ
n;k .x/ D 1. The operators (4) as such are not possible to approximate

Lebesgue integrable functions on the interval Œ0;1/, to approximate integrable
functions, we introduce the Durrmeyer type modification by considering the
parameters a � 0 and ˇ > 0, in the following form:

La;ˇ
n .f I x/ D

1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/f .t/dt; (5)

where va;ˇ
n;k .x/ is as defined in (4) and the Beta basis function is defined as

bn;k.t/ D 1

B.k C 1; n/

tk

.1C t/nCkC1

the beta function is given by

B.m; n/ D
Z 1

0

tm�1

.1C t/mCn
dt D � .m/� .n/

� .m C n/
; m; n > 0:

As a special case, for a D 0 and ˇ D 1 these operators become the well-known
Baskakov–Beta operators introduced by the author Gupta [7] (see also [3, 4]). We
may point out that one may consider the Stancu type generalization by considering
two more parameters as done in [15], here we consider the form (5).

Let L denote the class of all Lebesgue measurable functions f on Œ0;1/ as

L D



f W
Z 1

0

jf .t/j
.1C t/m

dt < 1; for some positive integer m

�
:

Note that the class L is bigger than the class of Lebesgue integrable functions on
the interval Œ0;1/.

For different problems related to the present article, we refer the reader to [8, 9].
The aim of the present paper is to discuss some approximation properties of the
operators La;ˇ

n . We estimate rate of convergence for functions having derivatives of
bounded variation. We also discuss simultaneous approximation properties, which
include point-wise convergence, asymptotic formula and error estimations.
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Basic Lemmas

In this section, we present some basic lemmas, which are necessary to prove main
results.

Lemma 1. For every x 2 .0;1/, we have

x.1C ˇx/2



d

dx
v

a;ˇ
n;k .x/

�
D


.k � nx/.1C ˇx/ � aˇx

�
v

a;ˇ
n;k .x/:

Proof. Differentiating va;ˇ
n;k .x/ with respect to x and multiplying by x.1 C ˇx/2 on

both sides, the result easily follows, hence the details are omitted.

Lemma 2. For m 2 N0, if the mth order moment of the generalized Baskakov
operators Ba

n is defined as

�a;ˇ
n;m.x/ D Ba;ˇ

n ..t � x/mI x/ D
1X

kD0
v

a;ˇ
n;k .x/

�
k

n
� x

�m

:

Then, for m � 1, we have the following recurrence relation

n.1C ˇx/�a;ˇ
n;mC1.x/ D x.1C ˇx/2.�a;ˇ

n;m.x//
0 C aˇx�a;ˇ

n;m.x/C mx.1C ˇx/2�a;ˇ
n;m�1.x/:

(6)

In particular

�
a;ˇ
n;0 .x/ D 1; �

a;ˇ
n;1 .x/ D aˇx

n.1C ˇx/
:

Consequently,

(i) �a;ˇ
n;m.x/ is a rational function of x depending on the parameters a; ˇI

(ii) for each x 2 .0;1/ and m 2 N0, �a;ˇ
n;m.x/ D O.n�Œ.mC1/=2�/, where Œs� denotes

the integer part of s.

Proof. By definition of �a;ˇ
n;m.x/ we have
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D
1X

kD0
Œ.k � nx/.1C ˇx/ � aˇx�va;ˇ

n;k .x/

�
k

n
� x

�m

�mx.1C ˇx/2�a;ˇ
n;m�1.x/

D n.1C ˇx/�a;ˇ
n;mC1.x/ � aˇx�a;ˇ

n;m.x/� mx.1C ˇx/2�a;ˇ
n;m�1.x/:

This completes the proof of recurrence relation. The consequences (i) and (ii) follow
from (6) by using induction on m.

We establish below a Lorentz-type lemma for the derivatives of the kernel va;ˇ
n;k .x/

of the generalized Baskakov operators (4).

Lemma 3. For each x 2 .0;1/ and r 2 N0, there exist polynomials qi;j;r.x/ in x
independent of n and k such that

dr

dxr
v

a;ˇ
n;k .x/ D v

a;ˇ
n;k .x/

X

2iCj�r
i;j�0

ni.k � nx/j
qi;j;r.x/

.x.1C ˇx/2/r
:

The proof of the above lemma follows along the lines of Gupta and Agarwal [8], we
omit the details.

Lemma 4. The mth order .m 2 N0 WD N [ f0g/ moment for the operators (5) is
defined as

Ta;ˇ
n;m.x/ WD La;ˇ

n .tmI x/ D
1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/t
mdt; n > m:

Then, Ta;ˇ
n;0 .x/ D 1 and there holds the following recurrence relation for n > m C 1:

.n � m � 1/Ta;ˇ
n;mC1.x/ D x.1C ˇx/.Ta;ˇ

n;m.x//
0

C
�
.m C 1/C nx C aˇx

.1C ˇx/

�
Ta;ˇ

n;m.x/: (7)

Proof. For x D 0, the relation (7) is easily verified. For x 2 .0;1/, we proceed as
follows:

From Lemma 1, we may write

.Ta;ˇ
n;m.x//

0 D
1X

kD0

d

dx
.v

a;ˇ
n;k .x//

Z 1

0

bn;k.t/t
mdt

D
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kD0

..k � nx/.1C ˇx/ � aˇx/va;ˇ
n;k .x/
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Z 1

0

bn;k.t/t
mdt
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D 1
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v
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� aˇ

.1C ˇx/2

1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/t
mdt

D I1 � aˇ

.1C ˇx/2
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n;m.x/: (8)

We may write I1 as

I1 D 1

x.1C ˇx/
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kD0
v
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n;k .x/

Z 1

0

bn;k.t/Œk � .n C 1/t C .n C 1/t � nx�tmdt

D 1

x.1C ˇx/

1X

kD0
v

a;ˇ
n;k .x/

Z 1

0
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Ta;ˇ

n;mC1.x/

� nx
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Ta;ˇ

n;m.x/

D I2 C .n C 1/

x.1C ˇx/
Ta;ˇ

n;mC1.x/ � nx

x.1C ˇx/
Ta;ˇ

n;m.x/: (9)

Now, we consider I2. Making use of the identity

t.1C t/
d

dt

�
bn;k.t/

�
D .k � .n C 1/t/bn;k.t/; t 2 .0;1/

and then integrating by parts, we obtain for n > m C 1 the following:

I2 D � 1

x.1C ˇx/

1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/

�
.m C 1/tm C .m C 2/tmC1

�
dt

D 1

x.1C ˇx/

�
� .m C 1/Ta;ˇ

n;m.x/ � .m C 2/Ta;ˇ
n;mC1.x/

�
: (10)

From Eqs. (8)–(10), we get the required recurrence relation.

Corollary 1. For the function Ta;ˇ
n;m.x/, we have

1. For n > 1, we have

La;ˇ
n .tI x/ D 1

.n � 1/

�
nx C aˇx

.1C ˇx/
C 1

�
:
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2. For n > 2, we have

La;ˇ
n .t2I x/ D 1

.n � 1/.n � 2/

�
.n2 C n/x2 C 4nx

C a2x2

.1C ˇx/2
C 2nax2

.1C ˇx/
C 4ax

.1C ˇx/
C 2

�
:

3. For each x 2 .0;1/ and m 2 N,

Ta;ˇ
n;m.x/ D am.n/x

m C n�1.pm.x; a; ˇ/C o.1//;

where

am.n/ D
Qm�1

jD0 .n C j/
Qm

jD1.n � j/

and pm.x; a; ˇ/ is a rational function of x depending on the parameters a; ˇ
and m.

Lemma 5. For the mth order central moment �a;ˇ
n;m.x/; n > m defined as
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n ..t � x/mI x/ D
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kD0
v
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n;k .x/

Z 1
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.n � 1/ C aˇx
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and the following recurrence relation for all n � m C 1:
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h
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i

C
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�
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n;m.x/:

Proof. Using Lemma 2, we have
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D .1C ˇx/
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kD0
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Using the identity

t.1C t/ D .t � x/2 C .1C 2x/.t � x/C x.1C x/;

and integrating by parts, we have
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h
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This completes the proof of recurrence relation.

Corollary 2. For the function �a;ˇ
n;m.x/, we have

(i) �a;ˇ
n;m is a rational function of x and n depending on the parameter a; ˇ and mI

(ii) for every x 2 .0;1/, �a;ˇ
n;m.x/ D O.n�Œ.mC1/=2�/, where Œ˛� denotes the integer

part of ˛.

Let  x.t/ D .t �x/. For r 2 N0 and x 2 .0;1/, applying Schwarz inequality and
Corollary 2 (ii), we have

La;ˇ
n .j r

x.t/j; x/ �
q

La;ˇ
n . 2r

x .t/I x/ D O
�
n�r=2

�
:

From Lemma 5, for n > 2, we obtain
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Œ.1C ˇ/n C 2�x2 C .2n C 4/x
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C 4aˇx2
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C 3aˇx

1C ˇx
C 2

�
: (11)



Approximation for Generalization of Baskakov–Durrmeyer Operators 325

Hence, for 	 > 1 and n sufficiently large, by using Schwarz inequality and (11), we
have

La;ˇ
n .j x.t/jI x/ �

r
	xŒ2C .1C ˇ/x�

n
: (12)

To study the approximation of functions having a derivative of bounded variation,
let us rewrite the operators (5) as

La;ˇ
n .f I x/ D

Z 1

0

Ka;ˇ
n .xI t/f .t/dt;

where Ka;ˇ
n .x; t/ is the kernel function given by

Ka;ˇ
n .xI t/ D

1X

kD0
v

a;ˇ
n;k .x/bn;k.t/:

Lemma 6. For a fixed x 2 .0;1/ and n sufficiently large, we have

	n;a;ˇ.xI y/ WD
Z y

0

Ka;ˇ
n .xI t/dt � 	xŒ2C .1C ˇ/x�

n.x � y/2
; 0 � y < x; (13)

1 � 	n;a;ˇ.xI z/ WD
Z 1

z
Ka;ˇ

n .xI t/dt � 	xŒ2C .1C ˇ/x�

n.z � x/2
; x < z < 1: (14)

The proof of the above lemma easily follows and so the details are omitted.

Rate of Approximation

In this section, we shall estimate the rate of convergence for the generalized
Baskakov–Durrmeyer operators La;ˇ

n for functions with derivatives of bounded
variation. In the recent years, several researchers have made significant contributions
in this direction. We refer the reader to some of the related papers (cf. [1, 11, 12, 14]
etc).

Let f 2 DBV� Œ0;1/, � � 0 be the class of all functions defined on Œ0;1/,
having a derivative of bounded variation on every finite subinterval of Œ0;1/ and
jf .t/j � Mt� , 8 t > 0.

It turns out that for f 2 DBV� Œ0;1/, we may write

f .x/ D
Z x

0

g.t/dt C f .0/;

where g.t/ is a function of bounded variation on each finite subinterval of Œ0;1/.
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Theorem 1. Let f 2 DBV� Œ0;1/, � � 0. Then, for every x 2 .0;1/, 	 > 1; r 2 N
.2r � �/ and for n sufficiently large, we have
ˇ
ˇ
ˇ
ˇ
ˇ
La;ˇ

n .f I x/ � f .x/ � f 0.xC/ � f 0.x�/
2

r
	xŒ2C .1C ˇ/x�

n

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
f 0.xC/C f 0.x�/

2

ˇ
ˇ
ˇ
ˇ

�
1C x

n � 1
C aˇx

.1C ˇx/.n � 1/

�

C xp
n

xC x
p

n_

x� x
p

n

.f 0
x/C 	Œ2C .1C ˇ/x�

n

Œ
p

n�X

kD1

xC x
k_

x� x
k

.f 0
x/

C C1.x; r; a; ˇ/

nr
C jf .x/j�

a
n;2.x/

x2
C jf 0.xC/j

r
	xŒ2C .1C ˇ/x�

n

C 	xŒ2C .1C ˇ/x�

n
jf .2x/� f .x/ � xf 0.xC/j;

where

f 0
x.t/ D

8
<

:

f 0.t/ � f 0.xC/; x < t < 1
0; t D x

f 0.t/ � f 0.x�/; 0 � t < x
(15)

and _d
c.f

0
x/ is the total variation of f 0

x on Œc; d� � .0;1/.

Proof. It follows from (15) that

f 0.t/ D 1

2
.f 0.xC/C f 0.x�//C f 0

x.t/C f 0.xC/ � f 0.x�/
2

sgn.t � x/

Cıx.t/

�
f 0.t/ � 1

2
.f 0.xC/C f 0.x�//

�
;

where

ıx.t/ D


1; x D t
0; x ¤ t

By simple computation, we have

jLa;ˇ
n .f I x/� f .x/j �

ˇ
ˇ̌
ˇ
f 0.xC/C f 0.x�/

2

ˇ
ˇ̌
ˇjLa;ˇ

n .t � x; x/j

C
ˇ
ˇ
ˇ
ˇ
f 0.xC/ � f 0.x�/

2

ˇ
ˇ
ˇ
ˇL

a;ˇ
n .jt � xj; x/

C jE1.n; x; a; ˇ/j C jE2.n; x; a; ˇ/j; (16)
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where

E1.n; x; a; ˇ/ D
Z x

0

�Z x

t
f 0
x.u/du

�
Ka;ˇ

n .x; t/dt

and

E2.n; x; a; ˇ/ D
Z 1

x

�Z t

x
f 0
x.u/du

�
Ka;ˇ

n .x; t/dt:

First, we obtain an estimate of E1.n; x; a; ˇ/. From the definition of 	n;a.x; t/ given
in (13), we may write

E1.n; x; a; ˇ/ D
Z x

0

�Z x

t
f 0
x.u/du

�
@

@t
	n;a;ˇ.x; t/dt:

Applying the integration by parts, we get

jE1.n; x; a; ˇ/j �
Z x

0

jf 0
x.t/j	n;a;ˇ.x; t/dt

�
Z x� x

p

n

0

jf 0
x.t/j	n;a;ˇ.x; t/dt C

Z x

x� x
p

n

jf 0
x.t/j	n;a;ˇ.x; t/dt

D J1 C J2; say: (17)

Since f 0
x.x/ D 0 and 	n;a;ˇ.x; t/ � 1, we have

J2 D
Z x

x� x
p

n

jf 0
x.t/ � f 0

x.x/j	n;a;ˇ.x; t/dt

�
Z x

x� x
p

n

x_

t

.f 0
x/dt

�
x_

x� x
p

n

.f 0
x/

Z x

x� x
p

n

dt D xp
n

x_

x� x
p

n

.f 0
x/: (18)

Next, we estimate J1. By applying Lemma 6 and putting t D x � x
u , we have

J1 � 	xŒ2C .1C ˇ/x�

n

Z x� x
p

n

0

jf 0
x.t/ � f 0

x.x/j
dt

.x � t/2

� 	xŒ2C .1C ˇ/x�

n

Z x� x
p

n

x

x_

t

.f 0
x/

dt

.x � t/2
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D 	Œ2C .1C ˇ/x�

n

Z p
n

1

x_

x� x
u

.f 0
x/du

� 	Œ2C .1C ˇ/x�

n

Œ
p

n�X

kD1

x_

x� x
u

.f 0
x/: (19)

Substituting the values of J1 and J2 in (17), we obtain

jE1.n; x; a; ˇ/j � xp
n

x_

x� x
p

n

.f 0
x/C 	Œ2C .1C ˇ/x�

n

Œ
p

n�X

kD1

x_

x� x
u

.f 0
x/: (20)

Now, we find an estimate of E2.n; x; a; ˇ/.

E2.n; x; a; ˇ/ �
ˇ
ˇ
ˇ̌
Z 1

2x

�Z t

x
f 0
x.u/du

�
Ka;ˇ

n .x; t/dt

ˇ
ˇ
ˇ̌

C
ˇ̌
ˇ
ˇ

Z 2x

x

�Z t

x
f 0
x.u/du

�
@

@t
.1 � 	n;a;ˇ.x; t//dt

ˇ̌
ˇ
ˇ

�
ˇ
ˇ
ˇ̌
Z 1

2x
Œf .t/�f .x/�Ka;ˇ

n .x; t/dt

ˇ
ˇ
ˇ̌Cjf 0.xC/j

ˇ
ˇ
ˇ̌
Z 1

2x
.t�x/Ka;ˇ

n .x; t/dt

ˇ
ˇ
ˇ̌

C
ˇ
ˇ̌
ˇ

Z 2x

x
f 0
x.u/du

ˇ
ˇ̌
ˇj1�	n;a;ˇ.x; 2x/jC

ˇ
ˇ̌
ˇ

Z 2x

x
f 0
x.t/dt.1�	n;a;ˇ.x; t//dt

ˇ
ˇ̌
ˇ:

We note that there exists an integer r .2r � �/, such that f .t/ D O.t2r/, for every
t > 0. Proceeding in a manner similar to the treatment of E1.n; x; a; ˇ/ in (17), on
using (12) and Lemma 6, we have

jE2.n; x; a; ˇ/j � M
Z 1

2x
t2rKa;ˇ

n .x; t/dt C jf .x/j
Z 1

2x
Ka;ˇ

n .x; t/dt

Cjf 0.xC/j
r
	xŒ2C .1C ˇ/x�

n

C	Œ2C .1C ˇ/x�

n
jf .2x/� f .x/ � xf 0.xC/j C xp

n

xC x
p

n_

x

.f 0
x/

C	Œ2C .1C ˇ/x�

n

Œ
p

n�X

kD1

xC x
k_

x

.f 0
x/: (21)
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Since t � 2.t � x/ and x � t � x when t � 2x, in view of HRolder’s inequality and
Corollary 2 (ii), we obtain

Z 1

2x
t2rKa;ˇ

n .x; t/dt C jf .x/j
Z 1

2x
Ka;ˇ

n .x; t/dt

� 22r
Z 1

2x
.t � x/2rKa;ˇ

n .x; t/dt C jf .x/j
x2

Z 1

2x
.t � x/2Ka;ˇ

n .x; t/dt

� 22r
Z 1

2x
.t � x/2rKa;ˇ

n .x; t/dt C jf .x/j
x2

�
a;ˇ
n;2 .x/

� C1.x; r; a; ˇ/

nr
C jf .x/j�

a;ˇ
n;2 .x/

x2
: (22)

Finally, combining (35) and (20)–(22), we get the required result. Hence, the proof
is completed.

Simultaneous Approximation

In the following theorem, we show that the derivative

�
dr

dwr La;ˇ
n .f I w/

�

wDx

converges

to f .r/.x/.

Theorem 2. Let f 2 L be bounded on every finite sub-interval of Œ0;1/ and f .t/ D
O.t˛/ as t ! 1 for some ˛ > 0. If f .r/ exists at a point x 2 .0;1/, then we have

lim
n!1

�
dr

dwr
La;ˇ

n .f I w/

�

wDx

D f .r/.x/: (23)

Proof. By our hypothesis, we have

f .t/ D
rX

iD0

f .i/.x/

iŠ
.t � x/i C  .t; x/.t � x/r; t 2 Œ0;1/; (24)

where the function  .t; x/ ! 0 as t ! x and  .t; x/ D O..t � x/� / as t ! 1 for
some � > 0.

From Eq. (24), we can write

�
dr

dwr
La;ˇ

n .f .t/I w/

�

wDx

D
rX

iD0

f .i/.x/

iŠ

�
dr

dwr
La;ˇ

n ..t � x/iI w/

�

wDx

C
�

dr

dwr
La;ˇ

n . .t; x/.t � x/rI w/

�

wDx

WD I1 C I2: (25)
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First, we estimate I1.

I1 D
rX

iD0

f .i/.x/

iŠ


dr

dwr

� iX

vD0

 
i

v

!

.�x/i�vLa;ˇ
n .tvI w/

�

wDx

�

D
rX

iD0

f .i/.x/

iŠ

iX

vD0

 
i

v

!

.�x/i�v
�

dr

dwr
La;ˇ

n .tvI w/

�

wDx

D
r�1X

iD0

f .i/.x/

iŠ

iX

vD0

 
i

v

!

.�x/i�v
�

dr

dwr
La;ˇ

n .tvI w/

�

wDx

C f .r/.x/

rŠ

rX

vD0

 
r

v

!

.�x/r�v
�

dr

dwr
La;ˇ

n .tv I w/

�

wDx

WD I3 C I4: (26)

Now, we may write

I4 D f .r/.x/

rŠ

r�1X

vD0

 
r

v

!

.�x/r�v
�

dr

dwr
La;ˇ

n .tv I w/

�

wDx

C f .r/.x/

rŠ

�
dr

dwr
La;ˇ

n .trI w/

�

wDx

WD I5 C I6: (27)

Making use of Corollary 1 (iii), we obtain

I6 D f .r/.x/ar.n/C O

�
1
n

�
, and the terms I3 D O

�
1
n

�
and I5 D O

�
1
n

�
.

Combining (25)–(27), for each x 2 .0;1/ we have I1 ! f .r/.x/ as
n ! 1.

In view of Lemma 1, we have

jI2j �
1X

kD0

X

2iCj�r
i;j�0

nijk � nxjj jqi;j;r.x/j
.x.1C ˇx//r

v
a;ˇ
n;k .x/

Z 1

0

bn;k.t/j .t; x/jj.t � x/jrdt

�

wDx

:

(28)

Since  .t; x/ ! 0 as t ! x, for a given ε> 0 there exists a ı > 0 such that
j .t; x/j <ε whenever jt � xj < ı. For jt � xj � ı, we can find some � > 0 such that
j .t; x/j � Mjt � xj� , for some M > 0. Thus, from Eq. (28) we may write
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jI2j �
1X

kD0

X

2iCj�r
i;j�0

nijk � nxjj jqi;j;r.x/j
.x.1C ˇx//r

v
a;ˇ
n;k .x/

�
ε

Z

jt�xj<ı
bn;k.t/jt � xjrdt

CM
Z

jt�xj�ı
bn;k.t/jt � xjrC�dt

�

WD J1 C J2; say: (29)

Let K D sup
2iCj�r

i;j�0

jqi;j;r.x/j
.x.1Cˇx//r .

Using Schwarz inequality, Lemma 2 and Corollary 2 (ii) we have

J1 � ε K
1X

kD0

X

2iCj�r
i;j�0

nijk � nxjjv
a;ˇ
n;k .x/

�Z 1

0

bn;k.t/.t � x/2rdt

�1=2

� ε K
X

2iCj�r
i;j�0

ni

� 1X

kD0
v

a;ˇ
n;k .x/.k � nx/2j

�1=2� 1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/.t � x/2rdt

�1=2

D ε K
X

2iCj�r
i;j�0

O.n
2iCj
2 /O.n�r=2/

D ε :O.1/: (30)

Since ε> 0 is arbitrary, J1 ! 0 as n ! 1.
Let s.2 N/ > r C � . Proceeding in a manner similar to the estimate of J1, we

obtain

J2 � M K

ıs�r��
1X

kD0

X

2iCj�r
i;j�0

nijk � nxjjv
a;ˇ
n;k .x/

Z

jt�xj�ı
bn;k.t/jt � xjsdt

� M1

ıs�r��
1X

kD0

X

2iCj�r
i;j�0

nijk�nxjjv
a;ˇ
n;k .x/

�Z 1

0

bn;k.t/.t � x/2sdt

�1=2
; where M1DM K

� M1

ıs�r��
X

2iCj�r
i;j�0

ni

� 1X

kD0
v

a;ˇ
n;k .x/.k � nx/2j

�1=2� 1X

kD0
v

a;ˇ
n;k .x/

Z 1

0

bn;k.t/.t � x/2sdt

�1=2

D M1

ıs�r��
X

2iCj�r
i;j�0

niO.nj=2/O.n�s=2/

D M1

ıs�r�� O.n.r�s/=2/; (31)

which implies that J2 ! 0 as n ! 1.
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Combining the estimates of J1 and J2, I2 ! 0 as n ! 1.
Thus, from the estimates of I1 and I2, the required result follows. This completes

the proof.

Next, we establish a Voronovskaja type asymptotic formula in simultaneous
approximation.

Theorem 3. Let f 2 L be bounded on every finite sub-interval of Œ0;1/ and f .t/ D
O.t˛/ as t ! 1 for some ˛ > 0. If f admits a derivative of order .r C 2/ at a fixed
point x 2 .0;1/, then we have

lim
n!1 n

��
dr

dwr
La;ˇ

n .f I w/

�

wDx

� f .r/.x/

�
D

rC2X

vD1
Q.v; r; a; ˇ; x/f .v/.x/;

where Q.v; r; a; ˇ; x/ are certain rational functions of x depending on the
parameter a.

Proof. From the Taylor’s theorem, we may write

f .t/ D
rC2X

vD0

f .v/.x/

vŠ
.t � x/v C  .t; x/.t � x/rC2; t 2 Œ0;1/; (32)

where the function  .t; x/ ! 0 as t ! x and  .t; x/ D O..t � x/� / as t ! 1 for
some � > 0. From Eq. (32), we obtain

�
dr

dwr
La;ˇ

n .f .t/I w/

�

wDx

D
rC2X

vD0

f .v/.x/

vŠ

�
dr

dwr
La;ˇ

n ..t � x/vI w/

�

wDx

C
�

dr

dwr
La;ˇ

n . .t; x/.t � x/rC2I w/

�

wDx

D
rC2X

vD0

f .v/.x/

vŠ

vX

jD0

 
v

j

!

.�x/v�j

�
dr

dwr
La;ˇ

n .tjI w/

�

wDx

C
�

dr

dwr
La;ˇ

n . .t; x/.t � x/rC2I w/

�

wDx

WD I1 C I2: (33)

Proceeding along the lines of the estimate of I2 of Theorem 2, it follows that for
each x 2 .0;1/

lim
n!1 n

�
d

dw
.La;ˇ

n . .t; x/.t � x/rC2I w/

�

wDx

D 0:
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Now, we estimate I1.

I1 D
r�1X

vD0

f .v/.x/

vŠ

vX

jD0

 
v

j

!

.�x/v�j

�
dr

dwr
La;ˇ

n .tjI w/

�

wDx

C f .r/.x/

rŠ

rX

jD0

 
r

j

!

.�x/r�j

�
dr

dwr
La;ˇ

n .tjI w/

�

wDx

C f .rC1/.x/
.r C 1/Š

rC1X

jD0

 
r C 1

j

!

.�x/rC1�j

�
dr

dwr
La;ˇ

n .tjI w/

�

wDx

C f .rC2/.x/
.r C 2/Š

rC2X

jD0

 
r C 2

j

!

.�x/rC2�j

�
dr

dwr
La;ˇ

n .tjI w/

�

wDx

: (34)

In view of Corollary 1 (iii), we have

I1 D
r�1X

vD1

f .v/.x/

vŠ
O

�
1

n

�
C f .r/.x/

rŠ

�
ar.n/rŠC O

�
1

n

��

C f .rC1/.x/
.r C 1/Š

�
.r C 1/rŠ.�x/ar.n/C arC1.n/.r C 1/Šx C O

�
1

n

��

C f .r C2/.x/
.r C2/Š

�
.r C2/Šx

2

2
ar.n/� .r C2/Šx2ar C1.n/C.r C2/Šx

2

2
ar C2.n/CO

�
1

n

��

D
r�1X

vD1
f .v/.x/O

�
1

n

�
C f .r/.x/

�
ar.n/C O

�
1

n

��

Cf .rC1/.x/
�
.arC1.n/� ar.n//x C O

�
1

n

��

C f .rC1/.x/x2

2

�
ar.n/� 2arC1.n/C arC2.n/C O

�
1

n

��
; (35)

where the coefficients of n�1 in O

�
1
n

�
terms are certain rational functions of x

depending on the parameter a.
Since ar.n/ D n.nC1/.nC2/:::.nCr�1/

.n�1/.n�2/.n�3/:::.n�r/ , which implies that arC1.n/ � ar.n/ D
ar.n/

�
2rC1

n�r�1

�
and ar.n/�2arC1.n/CarC2.n/ D 2ar.n/

�
nC.2rC1/2

.n�r�1/.n�r�2/

�
, it follows

that

I1 D f .r/.x/C n�1
� rC2X

vD1
Q.v; r; a; ˇ; x/f .v/.x/C o.1/

�
.

Combining the estimates of I1 and I2, we get the required result.
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Corollary 3. From the above lemma, we have for r D 0

lim
n!1 n.La;ˇ

n .f I x/ � f .x// D
�
1C x C aˇx

1C ˇx

�
f 0.x/C x


1C x

.1C ˇ/

2

�
f 00.x/I

Next, we give an estimate of the degree of the approximation by
�

dr

dwr La;ˇ
n .:I w/

�

wDx
for smooth functions.

Theorem 4. Let r � p � rC2 and f 2 L be bounded on every finite sub-interval of
Œ0;1/. Let f .t/ D O.t˛/ as t ! 1 for some ˛ > 0. If f .p/ exists and is continuous
on .a � �; b C �/ � .0;1/, � > 0, then for sufficiently large n

		
	
	

�
dr

dwr
La;ˇ

n .f I w/

�

wDx

� f .r/.x/

		
	
	 � C1n

�1
� pX

iD1
kf .i/k

�

CC2n
�.p�r/=2!f .p/ .n

�1=2/C O.n�2/;

where C1 and C2 are both independent of f and n, !f .p/ .ı/ is the modulus of
continuity of f .p/ on .a � �; b C �/ and k:k denotes the sup-norm on Œa; b�.

Proof. By our hypothesis

f .t/ D
pX

iD0

f .i/.x/

iŠ
.t � x/i C f .p/.�/ � f .p/.x/

pŠ
.t � x/p�.t/C h.t; x/.1 � �.t//;

(36)

where � lies between t and x and �.t/ is the characteristic function of .a ��; b C�/.
For t 2 .a � �; b C �/ and x 2 Œa; b�, we have

f .t/ D
pX

iD0

f .i/.x/

iŠ
.t � x/i C f .p/.�/ � f .p/.x/

pŠ
.t � x/p:

For t 2 Œ0;1/ n .a � �; b C �/ and x 2 Œa; b�, we define

h.t; x/ D f .t/ �
pX

iD0

f .i/.x/

iŠ
.t � x/i;

which implies that we can choose a ı > 0 in such a way that jt � xj � ı for all
x 2 Œa; b� and thus there exists � > 0 such that jh.t; x/j � Mjt � xj� , for some
constant M.
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Operating on the equality (36) by

�
dr

dwr La;ˇ
n .:I w/

�

wDx

and breaking the right-

hand side into three parts I1, I2 and I3, say, corresponding to the three terms on the
right-hand side of (36), as in the estimate of I1 of Theorem 3, we obtain

kI1k � C1n
�1
� pX

iD1
kf .i/k

�
C O.n�2/;

uniformly in x 2 Œa; b�.
Applying Schwarz inequality, Lemma 2 and Corollary 2 (ii), it follows that for

s D 0; 1; 2; : : :

1X

kD0
jk � nxjjv

a;ˇ
n;k .x/

Z 1

0

bn;k.t/jt � xjsdt D O.n.j�s/=2/; (37)

uniformly in x 2 Œa; b�.
Now, in order to estimate I2, using jf .p/.�/ � f .p/.x/j �

�
1 C jt � xj

ı

�
!f .p/ .ı/,

ı > 0 and (37), we get kI2k � C2n�.p�r/=2!f .p/ .n
�1=2/, on choosing ı D n�1=2.

Finally, applying Cauchy–Schwarz inequality, Lemma 2 and Corollary 2 (ii) we
obtain kI3k D O.n�s/, for any s > 0, uniformly in x 2 Œa; b�.

Combining the estimates of I1-I3, the required result follows.

For sufficiently small � > 0, the Steklov mean f�;2 of 2nd order corresponding to
f 2 C� Œ0;1/ and t 2 Ii D Œai; bi�; i D 1; 2 is defined as follows:

f�;2.t/ D ��2
Z �=2

��=2

Z �=2

��=2
.f .t/ ��2

hf .t//dt1dt2

where h D t1Ct2
2

and �2
h is the second order forward difference operator with

step length h. The following properties are satisfied (see [8, 10] and the references
therein):

1. f�;2 has continuous derivatives up to order 2 over I1I
2. k f .r/�;2 kC.I2/� C��r!r.f ; �; I2/; r D 1; 2I
3. k f � f�;2 kC.I2/� C!2.f ; �; I1/I
4. k f�;2 kC.I2/� C k f kC.I1/� Cjjf jj� ,

where C is a constant not necessarily the same at each occurrence and is independent
of f and �.

Lemma 7 ([5]). Let f 2 C.I/. Then,

k f .i/�;2k kC.I/� Cifk f�;2 kC.I/ C k f .2k/
�;2 kC.I/g; i D 1; 2; : : : ; 2k � 1;

where Ci’s are certain constants independent of f .



336 V. Gupta

Theorem 5. Let f 2 C� Œ0;1/ for some � > 0 and 0 < a < a1 < b1 < b < 1.
Then for ˛ sufficiently large, we have

	
	
	
	

�
dr

dwr
La;ˇ

n .f I w/

�

wDx

� f .r/
	
	
	
	

C.I1/

� K1!2.f
.r/; ˛�1=2; I/C K2˛

�1kf k� ;

where K1 D K1.r/ and K2 D K2.r; f /.

Proof. We can write
	
	
	
	

�
dr

dwr
La;ˇ

n .f I w/

�

wDx

� f .r/
	
	
	
	

C.I1/

�
	
	
	
	

�
dr

dwr
La;ˇ

n .f � f�;2I w/

�

wDx

	
	
	
	

C.I1/

C
	
	
	
	

�
dr

dwr
La;ˇ

n .f�;2I w/

�

wDx

� f .r/�;2

	
	
	
	

C.I1/

Ckf .r/ � f .r/�;2kC.I1/

D M1 C M2 C M3:

Since f .r/�;2 D .f .r//�;2, hence by property .iii/ of the Steklov mean, we get

M3 � K1!2.f
.r/; �; I/:

Next, applying Theorem 3 and Lemma 7, we obtain

M2 � K2˛
�1

rC2X

iDr

k f .i/�;2 kC.I1/� K3˛
�1fk f�;2 kC.I1/ C k f .rC2/

�;2 kC.I1/g:

By using properties .ii/ and .iv/ of Steklov mean, we get

M2 � K4˛
�1fk f k� C��2!2.f .r//; �; I/g:

Let a� and b� be such that 0 < a < a� < a1 < b1 < b� < b < 1 and I� denote
the interval Œa�; b��.

Now, we estimate M1. Let f � f�;2 � F. By our hypothesis we can write

F.t/ D
rX

mD0

F.m/.x/

mŠ
.t � x/m C F.r/.�/C F.r/.x/

rŠ
.t � x/r�.t/C �.t; x/.1 � �.t//;

(38)

where � lies between t and x, and � denotes the characteristic function of the interval
I�. For t 2 I� and x 2 I1, we get

F.t/ D
rX

mD0

F.m/.x/

mŠ
.t � x/m C F.r/.�/C F.r/.x/

rŠ
.t � x/r;
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and for t 2 Œ0;1/ n I�; x 2 I1 we set

�.t; x/ D F.t/ �
rX

mD0

F.m/.x/

mŠ
.t � x/m:

Operating DrLa;ˇ
n on both sides of (38), we get three terms J1; J2, and J3, corre-

sponding to three terms in right-hand side of (38). Using Theorem 3, we get

jJ1j �k f .r/ � f .r/�;2 kC.I1/ :

Next, by using Theorem 3, we obtain

jJ2j � 2 k F.r/ k
rŠ

L.r/˛ ..t � x/r�.t/; x/

� K5 k f .r/ � f .r/�;2 kC.I
�

/ :

Lastly, we easily have

jJ3j D dr

dxr
La;ˇ

n .1 � �.t/�.t; x/; x/ D O.˛�s/; for any s > 0:

Combining J1 � J3, and from property .iii/ of the Steklov mean, we obtain

M1 � K6 k f .r/ � f .r/�;2 kC.I
�

/� K6 !2.f
.r/; �; I/:

Finally choosing � D ˛�1=2, the required result follows at once.

References

1. Acar, T., Gupta, V., Aral, A.: Rate of convergence for generalized Szász operators. Bull. Math.
Sci. 1(1), 99–113 (2011)

2. Chen, W.Z.: Approximation Theory of Operators. Xiamen University Publishing House,
Xiamen (1989)

3. Erencin, A.: Durrmeyer type modification of generalized Baskakov operators. Appl. Math.
Comput. 218(3), 4384–4390 (2011)

4. Erencin, A., Bascanbaz-Tunca, G.: Approximation properties of a class of linear positive
operators in weighted spaces. C. R. Acad. Bulgare Sci. 63(10), 1397–1404 (2010)

5. Goldberg, S., Meir, V.: Minimum moduli of ordinary differential operators. Proc. Lond. Math.
Soc. 23(3), 1–15 (1971)

6. Gupta, V.: An estimate on the convergence of Baskakov–Bézier operators. J. Math. Anal. Appl.
312(1), 280–288 (2005)

7. Gupta, V.: A note on modified Baskakov type operators. Approx. Theory Appl. 10(3), 74–78
(1994)



338 V. Gupta

8. Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer,
New York (2014)

9. Gupta, V., Srivastava, G.S.: Simultaneous approximation by Baskakov-Szász type operators.
Bull. Math. de la Soc. Sci. de Roumanie (N. S.) 37 (85)(3–4), 73–85 (1993)

10. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. McGraw Hill, New York (1956)
11. Ispir, N.: Rate of convergence of generalized rational type Baskakov operators. Math. Comput.

Model. 46, 625–631 (2007)
12. Karsli, H.: Rate of convergence of new gamma type operators for functions with derivatives of

bounded variation. Math. Comput. Model. 45, 617–624 (2007)
13. Mihesan, V.: Uniform approximation with positive linear operators generated by generalized

Baskakov method. Autom. Comput. Appl. Math. 7(1), 34–37 (1998)
14. ROzarslan, M.A., Duman, O., KannaLglu, C.: Rates of convergence of certain King-type operators

for functions with derivative of bounded variation. Math. Comput. Model. 52, 334–345 (2010)
15. Verma, D.K., Gupta, V., Agrawal, P.N.: Some approximation properties of Baskakov-

Durrmeyer-Stancu operators. Appl. Math. Comput. 218(11), 6549–6556 (2012)



A Tour on p.x/-Laplacian Problems
When p D 1

Yiannis Karagiorgos and Nikos Yannakakis

Abstract Most of the times, in problems where the p.x/-Laplacian is involved, the
variable exponent p.�/ is assumed to be bounded. The main reason for this is to
be able to apply standard variational methods. The aim of this paper is to present
the work that has been done so far, in problems where the variable exponent p.�/
equals infinity in some part of the domain. In this case the infinity Laplace operator
arises naturally and the notion of weak solution does not apply in the part where p.�/
becomes infinite. Thus the notion of viscosity solution enters into the picture. We
study both the Dirichlet and the Neumann case.

Keywords p.x/-Laplacian • Viscosity solution • Infinity harmonic function •
Dirichlet problem • Neumann problem • Lipschitz constant

Introduction

In this paper we study problems concerning the equation

�p.x/u D 0; in ˝; (1)

where˝ � R
N is a bounded smooth domain,

�p.x/u WD div.jrujp.x/�2ru/;

is the p.x/-Laplace operator and the variable exponent p.�/ satisfies

pjD D 1; (2)

in a subdomain D of ˝ .
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Manfredi et al. in [20] considered condition (2) for the first time for the Dirichlet
problem with Lipschitz boundary conditions. Working in the same direction the
authors in [17] studied the corresponding Neumann problem. Our purpose here
is to briefly present these two cases. We will also mention some further results
concerning the Dirichlet case, studied in [28].

Recently, the case of p.x/ ! 1 has been studied in several problems where the
p.x/-Laplacian is involved. See, for instance, [21] or [24] and [25]. On the other
hand, when p is constant the case of p ! 1 in problems with the p-Laplacian was
first studied in [5], in which the physical motivation was given as well. On both
cases the notion of infinity Laplacian arises naturally as the limit case.

Partial Differential Equations involving the p.x/-Laplacian appear in a variety of
applications. In [7] the authors proposed a framework for image restoration based
on a variable exponent Laplacian. This was the starting point for the research on the
connection between PDEs with variable exponents and image processing. Recently
there has been quite a rapid progress in this direction.1 Other applications that
use variable exponent type Laplacians are elasticity theory and the modelling of
electrorheological fluids (see [26]).

Under these preliminaries, the structure of our paper is as follows. In sec-
tion “Preliminaries,” we state some general definitions and propositions concerning
the tools to be needed for the main results. Section “The Dirichlet Case” is devoted
to the study of Dirichlet problem and a discussion of the results in [20]. Furthermore,
we briefly present some interesting results of [28] concerning the emptiness and
non-emptiness of the functional set S introduced there. Finally, in section “The
Neumann Case” we study the corresponding Neumann problem [17].

Preliminaries

In this section we summarize some basic properties of the variable exponent
Lebesgue and Sobolev spaces. For details the interested reader is referred to [13, 19]
and [10].

Let ˝ � R
N and denote by L0.˝/ the space of real valued measurable functions

in˝ . If p W ˝ ! Œ1;1� is a measurable function, we define a semimodular �Lp.�/ on
L0.˝/ by setting

�Lp.�/ .u/ WD
Z

˝

ju.x/jp.x/dx I

where we use the convention t1 D 1�
.1;1�.t/. We define the variable exponent

Lebesgue space as

1The reader can visit the website http://www.helsinki.fi/~pharjule/varsob/index.shtml for further
details.

http://www.helsinki.fi/~pharjule/varsob/index.shtml
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Lp.�/.˝/ D



u 2 L0.˝/ W �Lp.�/ .	u/ < 1; for some 	 > 0

�

equipped with the norm

kukLp.�/.˝/ WD kukp.�/ D inf



	 > 0 W�Lp.�/ .

u

	
/ � 1

�
:

The variable exponent Sobolev space is defined by

W1;p.�/.˝/ D



u 2 Lp.�/.˝/ W ru 2 Lp.�/.˝;RN/

�

with norm

kukW1;p.�/.˝/ D kukLp.�/.˝/ C krukLp.�/.˝;RN /:

Remark 1. For the definition of the variable exponent Lebesgue space, Lp.�/, we
follow [10, Chap. 3] using a semimodular instead of the modular given in [19].
Nevertheless the two definitions are equivalent.

The spaces Lp.�/.˝/; W1;p.�/.˝/ are Banach spaces and if

1 < p� WD ess inf
x2˝ p.x/ � pC WD ess sup

x2˝
p.x/ < 1;

they are also separable and reflexive.
We also define the variable exponent Sobolev space with zero boundary values,

W1;p.�/
0 .˝/ as the closure of the set of compactly supported W1;p.�/.˝/-functions

(see [10, Definition 8.1.10]). When p is bounded and smooth functions are dense in
W1;p.˝/, we could equivalently define W1;p.�/

0 .˝/ as the closure of C1
0 .˝/.

When p is constant, it is well known that smooth functions are dense in W1;p.˝/.
This is no longer true when we deal with variable exponent spaces, (see [12, 27]
and [10]). In fact, we have to consider additional conditions for the variable
exponent. The most natural one is the so-called log-Hölder continuity: there exists
C > 0, such that

jp.x/� p.y/j � C

log.e C 1
jx�yj /

; for x; y 2 ˝:

Log-Hölder continuity is also a sufficient condition for the variable exponent version
of Poincaré’s inequality, i.e.,

kukLp.�/.˝/ � C.N; p/ diam.˝/krukLp.�/.˝;RN /; for all u 2 W1;p.�/
0 .˝/:
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On the next Proposition we state another sufficient condition for the Poincaré
inequality, the so-called jump condition (see [15] and [10, Theorem 8.2.18]).

Proposition 1. Let ˝ � R
N and p W ˝ ! Œ1;1� a measurable function. If there

exists ı > 0 such that for every x 2 ˝ either

pC
B.x;ı/\˝ � Np�

B.x;ı/\˝
N � p�

B.x;ı/\˝
or p�

B.x;ı/\˝ � N (3)

then the Poincaré inequality holds in W1;p.�/
0 .˝/.

Remark 2. The Poincaré inequality plays a crucial role in the proof of Lemma 1 in
obtaining the coercivity of the functional Ik.

Proposition 2. Let p W ˝ ! R be a measurable function. The dual space of
Lp.�/.˝/ is the space Lq.�/.˝/, where 1

p.�/C 1
q.�/ D 1 in˝ . Also, the variable exponent

version of Hölder’s inequality holds, namely

Z

˝

ju.x/v.x/j dx � 2kukp.�/kvkq.�/; forall u 2 Lp.�/.˝/; v 2 Lq.�/.˝/:

The next proposition is very useful, since it allows us to compare the norm kukp.�/
with the integral

R
˝

ju.x/jp.x/dx.

Proposition 3. Let u 2 Lp.�/.˝/.

(i) If kukp.�/ > 1, then

kukp
�

p.�/ �
Z

˝

ju.x/jp.x/dx � kukpC

p.�/:

(ii) If kukp.�/ < 1, then

kukpC

p.�/ �
Z

˝

ju.x/jp.x/dx � kukp
�

p.�/:

(iii) kukp.�/ D 1 , R
˝

ju.x/jp.x/dx D 1.

Let p.�/ be a variable exponent in ˝ which satisfies the following hypothesis

pjD D 1;

where D is a subdomain of ˝ . Moreover, p 2 C1.˝ n D/ with

pC WD sup
x2˝nD

p.x/ < 1 (4)
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and

p� WD inf
x2˝ p.x/ > N: (5)

For k 2 N, consider pk.�/ such that

pk.x/ D minfp.x/; kg: (6)

Then pk.x/ ! p.x/, as k ! 1, while for k > pC we have that

pk.x/ D
(

p.x/; x 2 ˝ n D

k; x 2 D:
(7)

Remark 3. The sequence .pk.�// has been introduced in [20]. The reason is the
following: let uk be the unique solution of the corresponding pk.�/-problem. If we
assume for a moment that the limit limk!1 uk exists, then it is a candidate solution
for the original p.�/-problem.

Proposition 4. The space C1.˝/ is dense in W1;pk.�/.˝/.

Proof. This is straightforward, if we use Theorem 9.3.5 of [10, p. 298] with
˝1 D ˝nD and˝2 D D, where each of ˝i; i D 1; 2 has Lipschitz boundary. ut
Remark 4. The above Proposition is instrumental for both the Dirichlet and the
Neumann case. For the Dirichlet case it provides us with the density of the set
C1
0 .˝/ in W1;pk.�/

0 .˝/which is necessary for the weak formulation of problem (Pk).
Also it provides us with the direct method of calculus of variations which we use in
Lemmas 1 and 3. Finally it is needed at Lemmas 2 and 4.

The next proposition is needed for the Neumann case.

Proposition 5. There exists C > 0 such that the following Poincaré type inequality
holds

kuk1;pk.�/ � CkrukLpk .�/ ; for all u 2 W1;pk.�/.˝/ s:t
Z

˝

u D 0: (8)

Proof. Apply Theorem 8.2.17 in [10, p. 256] with D1 D ˝nD, D2 D D. Then,

.pkjD1 /� WD inf
x2D1

p.x/ � p� > N

and

.pkjD2/� D k > N:
ut

Proposition 6. Let p be a variable exponent such that p� > N. Then the following
holds
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(i)

W1;p.�/.˝/ ,! W1;p
�.˝/ ,! C.˝/: (9)

(ii) If q 2 C.@˝/, the embedding

W1;p.�/.˝/ ,! Lq.�/.@˝/; (10)

is compact and continuous.

For reference, see [10, 13, 19] for (i) and [30, Proposition 2.6] for (ii).

Remark 5. From (i) of Proposition 6 we know that we always deal with continuous
functions. Also in the Dirichlet case we ensure that we can check the boundary data
pointwise. Note that (ii) is needed for the Neumann case in Proposition 10, with

.pk/� > N and pkj@˝ D p 2 C.@˝/:

The notion of viscosity solution is of great importance throughout this paper,
since the notion of weak solution does not apply in some cases. Here, we give the
classical definition. Later in the following sections we give the ones that fit to each
problem. For reference see [8].

Let F W ˝
R
N 
S

N ! R, where SN is the space of the N-dimensional symmetric
matrices. F is said to be degenerate elliptic, if for each X;Y 2 S

N with X � Y (i.e.
hX �; �i � hY �; �i, for � 2 R

N), then

F.x; �;X/ � F.x; �;Y/:

We are ready to give the definition of a viscosity solution based on pointwise
evaluation of the operator F. Recall that by D2u we denote the Hessian matrix of u.

Definition 1. Let F W ˝ 
 R
N 
 S

N ! R be a degenerate elliptic operator and
u W ˝ ! R.

(i) Let u be a lower semicontinuous function in ˝ . We say that u is a viscosity
supersolution of F.x;ru;D2u/ D 0 in ˝ , if for every ' 2 C2.˝/ such that
u � ' attains its strict minimum at x0 2 ˝ with u.x0/ D '.x0/, we have

F.x0;r'.x0/;D2'.x0// � 0:

(ii) Let u be an upper semicontinuous function in ˝ . We say that u is a viscosity
subsolution of F.x;ru;D2u/ D 0 in˝ , if for every ' 2 C2.˝/ such that u�'
attains its strict maximum at x0 2 ˝ with u.x0/ D '.x0/, we have

F.x0;r'.x0/;D2'.x0// � 0:

(iii) We say that u 2 C.˝/ is a viscosity solution of F.x;ru;D2u/ D 0 in ˝ , if it
is both a viscosity supesolution and subsolution.
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Next we turn our attention to the infinity Laplace operator

�1u WD
NX

i;jD1

@u

@xi

@u

@xj

@2u

@xixj
I

which appears naturally in the part of the domain where the variable exponent p.�/
equals infinity. It was discovered by G. Aronsson (see [1, 2]) when he studied the
Lipschitz extension problem as a limit procedure (as p ! 1) for the variational
problem of minimizing the functional

Ip.u/ D
Z

˝

jru.x/jpdx:

Aronsson showed that there is a connection between optimal Lipschitz extensions
and the solutions of the equation

��1u D 0

in the classical sense. In particular he proved that if ˝ is a bounded domain of RN

and g 2 C.@˝/, then a classical solution u of the Dirichlet problem

(
��1u D 0; in ˝

u D g; in @˝
(11)

is also an absolutely minimizing Lipschitz extension (AMLE for short). The latter
means, that for every bounded subset V of ˝ and for each v 2 C.V/, with u D v in
@V , one has

krukL1.V/ � krvkL1.V/: (12)

When the viscosity theory appeared, Jensen in [16] proved that problem (11) has
a unique viscosity solution u 2 C.˝/, which is also an absolutely minimizing
Lipschitz extension. Crandall, Evans and Gariepy (see [9] or the survey paper [3])
used the so-called comparison with cones principle and proved the above connection
in a direct way (without using the approximation procedure).

Definition 2. We say that u 2 C.˝/ is infinity harmonic (in the viscosity sense) in
˝ , if it is a viscosity solution of the equation

��1u D 0; in ˝:

Smooth solutions of the equation�1u D 0 have some nice geometric properties
concerning their gradient which are very useful in image processing (see [6]).
Infinity harmonic functions appear also in optimal transportation (see [11, 14]), and
more recently in tug of war games (see [23]).
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The Dirichlet Case

In this section we focus on the Dirichlet case. In particular we present the results of
[20, 28]. Consider the following problem

(
��p.x/u.x/ D 0; x 2 ˝

u.x/ D f .x/; x 2 @˝ (P1)

where˝ � R
N is a bounded smooth domain and N � 2.

�p.x/u WD div.jrujp.x/�2ru/

is the p.x/-Laplacian operator which is the variable exponent version of the p-
Laplacian. Also, the function f W @˝ ! R appearing in the boundary condition
is Lipschitz continuous on @˝ . The variable exponent p satisfies the following
hypothesis

pjD D 1

where D is a convex subdomain of ˝ with C1 boundary. Also, p 2 C1.˝ n D/ with

pC WD sup
x2˝nD

p.x/ < 1 (13)

and

p� WD inf
x2˝ p.x/ > N (14)

Remark 6. For a C2 function u, if we compute the p.x/-Laplacian we get

��p.x/u.x/ D � jru.x/jp.x/�2�u.x/

D � .p.x/� 2/jru.x/jp.x/�4�1u.x/

� jru.x/jp.x/�2 ln.jru.x/j/ru.x/ � rp.x/:

Due to the appearance of the term rp.x/ we need p 2 C1.˝ n D/ to ensure that the
map x 7! ��p.x/u.x/ is continuous.

Remark 7. The convexity of D is needed so that the set of Lipschitz functions on D
and W1;1.D/ coincide and the Lipschitz constant is the L1- norm of their gradient.

Remark 8. Condition (14) guarantees that the embedding

W1;p.�/.˝/ ,! W1;p
� .˝/ ,! C.˝/
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holds (see (9)) and so we are considering the boundary condition in the classical
sense.

To find out what a solution of (P1) might be, the authors in [20] considered a
sequence of bounded variable exponents pk such that

pk.x/ D minfp.x/; kg: (15)

Then pk.x/ ! p.x/ as k ! 1, while for k > pC we have that

pk.x/ D
(

p.x/; x 2 ˝ n D

k; x 2 D:
(16)

Remark 9. Note that for k > pC, the boundary of the set fx W p.x/ > kg coincides
with the boundary of D and so is independent of k. Due to this fact we have no
problems when passing to the limit as k ! 1.

If we replace p with pk in problem (P1) we have the intermediate boundary value
problems,

(
��pk.x/u.x/ D 0; x 2 ˝

u.x/ D f .x/; x 2 @˝: (Pk)

Using standard variational methods, one can obtain the existence of a unique weak
solution uk for problem (Pk). In this case, limk uk is a natural candidate as a solution
to the problem (P1). Nevertheless the existence of the above limit is not a trivial
issue. The following questions arise naturally :

• When does this limit exist?
• What is the equation that this limit should satisfy?

The set

S D



u 2 W1;p
�.˝/ W uj˝nD 2 W1;p.x/.˝ n D/; krukL1.D/ � 1 and uj@˝ D f

�

will play crucial role for the first question, while the infinity Laplace operator

�1u WD
NX

i;jD1

@u

@xi

@u

@xj

@2u

@xixj
:

for the second one.
We proceed with two subsections. On the first one we give a brief presentation

of the results of [20] and on the second one we discuss the results of [28].
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Main Results

Our aim here is to state the main results of [20], and try to point out the basic tools
and ideas that are necessary. (For a nice analytic presentation of [20], see also [18,
Sect. 4].) We also give a sketch for some proofs. As we discussed in the previous
section a natural candidate for a solution to problem (P1) is the limit limk uk, where
uk is the unique solution to problem (Pk). Before we study the existence of the above
limit, we have to deal with some independent results concerning the intermediate
problems (Pk). The following Lemmas are in this direction. Recall that a function
u 2 W1;pk.�/.˝/ is a weak solution to problem (Pk) if uj@˝ D f and

Z

˝

jrujpk.x/�2ru � rvdx D 0; for all v 2 C1
0 .˝/ : (17)

Lemma 1. There exists a unique weak solution uk to problem (Pk), which is the
unique minimizer of the functional

Ik.u/ D
Z

˝

jrujpk.x/

pk.x/
dx

in the set

Sk D



u 2 W1;pk.�/.˝/ W uj@˝ D f

�
:

Proof. [Sketch] The basic tool to apply the direct method of calculus of variations
for functional Ik is Poincaré’s inequality and the density of C1

0 .˝) functions in

W1;pk.�/
0 .˝/ (see Remarks 2 and 4). For k > pC the variable exponent pk.�/ satisfies

pk.�/ � .pk/� � p� > N (18)

and the jump condition (1) is true. Thus, the Poincaré inequality holds. Also from
Proposition 4 smooth functions are dense W1;pk.�/.˝/. Hence C1

0 .˝) is dense in

W1;pk.�/
0 .˝/. Finally we can check the boundary condition pointwise since from (18)

we have that

W1;pk.�/.˝/ ,! W1;p
�.˝/ ,! C.˝/: (19)

ut
The next Lemma is very useful since it provides us with a problem that has the

same weak solutions as problem (Pk) but which allows us to take separate cases.
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Lemma 2. The following problem

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

��pk.x/u.x/ D 0; x 2 ˝nD

��ku.x/ D 0; x 2 D

jru.x/jk�2 @u
@�
.x/ D jru.x/jp.x/�2 @u

@�
.x/; x 2 @D \˝

u.x/ D f .x/; x 2 @˝:

(20)

has the same weak solutions as problem (Pk), where � is the exterior unit normal to
@D in ˝ .

Remark 10. To conclude that the weak formulation of (20) is the same with the one
of problem (Pk) we multiply by a test function v 2 C1

0 .˝/ and use integration by
parts and the Gauss–Green theorem.

Next we state the definition of viscosity solutions that correspond to problems
like (20) and (25) which involve a transmission condition. For reference see [8].

Definition 3. Let F1;F2 W ˝ 
R
N 
 S

N ! R, B W ˝ 
R
 R
N ! R be degenerate

elliptic operators and u W ˝ ! R. Consider the following problem

F1.x;ru;D2u/ D 0; in ˝nD (21)

F2.x;ru;D2u/ D 0; in D (22)

with transmission condition

B.x; u;ru/ D 0; on @D \˝ (23)

and boundary condition

u D f ; on @˝: (24)

(i) Let u be a lower semicontinuous function in ˝. We say that u is a viscosity
supersolution of problem (21)–(24) if for every ' 2 C2.˝/ such that u � '

attains its strict minimum at x0 2 ˝ with u.x0/ D '.x0/, we have

• if x0 2 ˝nD, then F1.x0;r'.x0/;D2'.x0// � 0.
• If x0 2 D, then F2.x0;r'.x0/;D2'.x0// � 0.
• If x0 2 @D \˝ , then

maxfF1.x0;r'.x0/;D2'.x0//;F2.x0;r'.x0/;D2'.x0//;

B.x0; '.x0/;r'.x0//g � 0:
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(ii) Let u be an upper semicontinuous function in ˝ . We say that u is a viscosity
subsolution of problem (21)–(24), if for every ' 2 C2.˝/ such that u � '

attains its strict maximum at x0 2 ˝ with u.x0/ D '.x0/, we have

• if x0 2 ˝nD, then F1.x0;r'.x0/;D2'.x0// � 0.
• If x0 2 D, then F2.x0;r'.x0/;D2'.x0// � 0.
• If x0 2 @D \˝ , then

maxfF1.x0;r'.x0/;D2'.x0//;F2.x0;r'.x0/;D2'.x0//;

B.x0;r'.x0/;D2'.x0/g � 0:

(iii) Finally, u is called a viscosity solution of problem (21)–(24), if it is both a
viscosity subsolution and a viscosity supersolution.

The next proposition is of great importance when passing to the limit.

Proposition 7. Let u be a continuous weak solution of (Pk). Then u is a solution
of (Pk) in the viscosity sense.

Remark 11. For the proof we have to verify Definition 3 with

F1.x;r'.x/;D2'.x// D ��p.x/'.x/; F2.x;r'.x/;D2'.x// D ��k'.x/

and

B.x; '.x/;r'.x// D jr'.x/jk�2 @'
@�
.x/� jr'.x/jp.x/�2 @'

@�
.x/;

where ' 2 C2.˝/. Recall also that for x 2 ˝ n D the map x 7! ��p.x/'.x/ is
continuous and this is also needed for the proof.

Proposition 8. Assume that S is non-empty and let uk be the minimizer of Ik in Sk.
If v 2 S, then

Ik.uk/ D
Z

˝

jrukjpk.x/

pk.x/
dx �

Z

D

jrvjk

k
dx C

Z

˝nD

jrvjp.x/

p.x/
dx :

Hence the sequence .Ik.uk//k is uniformly bounded and .uk/k is uniformly bounded
in W1;p

�.˝/ and equicontinuous in C.˝/.

Remark 12. The crucial step for the proof of Proposition 8 is to compare the norm
krukkLp.˝;RN / with Ik.uk/ and give a uniform bound. Then the result follows using
Poincaré’s inequality for the norm kuk � f k

W
1;p

�

0 .˝/
.

Remark 13. The previous proposition is instrumental for the limit case, since it
allows the use of Arzellà–Ascoli theorem which will play a crucial role in later
results.
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Now we have all the ingredients we need to study the limit case. We first treat
the case S D ;.

Theorem 1. Assume that @˝\D ¤ ; and the Lipschitz constant of f@˝\D is strictly
greater than 1. Then

lim
n!1 inf.Ik.uk//

1
k > 1:

Hence, Ik.uk/ ! 1 and the natural energy associated with uk is unbounded.

Proof. [Sketch] Arguing by contradiction, suppose that

lim
n!1 inf.Ik.uk//

1
k � 1:

Then one can construct a function u 2 W1;1.D/ which is a Lipschitz extension
of f@˝\D to D, such that krukL1.D/ � 1. This contradicts the hypotheses, since a
Lipschitz extension cannot decrease the Lipschitz constant. ut
Remark 14. In the case of @˝ \ D ¤ ;, the condition that the Lipschitz constant
of f@˝\D is strictly greater than 1 (i.e, Lip.f ; @˝ \ D/ > 1) is sufficient for the
emptiness of the set S. Indeed, any Lipschitz extension u of f j@˝\D to D satisfies
krukL1.D/ > 1.

Next, we focus on the case S ¤ ;. In this case the next theorem guarantees
that the uniform limit, u1 WD limk uk exists and is some kind of solution to
the original problem (P1). A characterization of general conditions that guarantee
the non-emptiness of S remains an open problem. We state some trivial sufficient
conditions for the non-emptiness of S.

• If Lip.f ; @˝/ � 1, then we obtain an element in S by taking the McShane–
Whitney extension (see [22, 29]) of f in ˝ . Hence S ¤ ;.

• If @˝ \ D D ; (i.e, D is compactly supported in ˝), then S ¤ ;. Indeed we can
obtain an element of S by assuming a constant function u in D which satisfies
uj@˝ D f and extending it (as a Lipschitz function) to ˝ .

So far we have one sufficient condition for the emptiness of S (see Remark 14) and
two for the non-emptiness of S. The tricky case is when @˝ \ D ¤ ; and the
Lipschitz constant of f satisfies

Lip.f ; @˝ \ D/ � 1; and Lip.f ; @˝/ > 1:

The authors in [20] constructed a counterexample showing that the above condition
is necessary but not sufficient for the non-emptiness of S. The authors in [28] studied
this case exhaustively where they tried to identify conditions that guarantee the
emptiness (and the non-emptiness) of S. We study this case in the next section.

We return now on the main purpose of [20] which is to figure out what a solution
of (P1) might be and what is the problem (as a limit case) that it solves.
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For the next theorem, consider the functional I W S ! R, such that

I.v/ WD
Z

˝nD

jrvjp.x/

p.x/
dx; for each v 2 S � Sk:

Theorem 2. Let uk be the unique minimizer of Ik in Sk. Then there exists a function
u1 2 S, such that u1 minimizes I in S and is also infinity harmonic in D.

Proof. [Sketch] From Proposition 8 there exists a function u1 2 C.˝/ such that
along subsequences we have

uk ! u1 ; uniformlyin ˝I

uk
w�! u1 ; in W1;p

�.˝/I

and

uk
w�! u1 ; in W1;p.�/.˝nD/:

Also u1 is a minimizer of I in S. To prove that u1 is infinity harmonic in D we
use the fact that uk is k-harmonic in D and uk ! u1 uniformly in ˝ (see [5, 16,
Proposition 2.2] or Theorem 2.8 in [18, p. 17]). ut
Remark 15. The uniform convergence of .uk) to u1 allows us to find a sequence
.xk/ in ˝nD such that xk ! x0 and uk � ' attains its strict minimum at xk (see, for
instance, [5, Proposition 2.2] or Theorem 2.8 in [18, p. 17]). This is necessary when
one wants to prove that a uniform limit of k-harmonic functions is 1-harmonic.
This fact plays also a key role in the proof of Theorem 3.

Remark 16. The minimizer u1 is unique in the following sense. Any other
minimizer of I in S that is infinity harmonic in D coincides with u1. This is a
straightforward result due to the strict convexity of I in S and the uniqueness of the
Dirichlet problem for the infinity Laplacian due to R. Jensen (see [16]).

In the following theorem we state the problem of which u1 is a viscosity
solution.

Theorem 3. Let .uk/ be the sequence of solutions of problems (Pk) and u1 the
uniform limit of a subsequence of .uk/. Then u1 is a viscosity solution of the
following problem

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

��p.x/u.x/ D 0; x 2 ˝nD

��1u.x/ D 0; x 2 D

sgn.jru.x/j � 1/sgn. @u
@�
.x// D 0; x 2 @D \ @˝

u.x/ D f .x/; x 2 @˝

(25)
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Proof. [Sketch] For the proof one has to verify Definition 3. The uniform conver-
gence of .uk) to u1 plays again a crucial role (see Remark 15). Also Lemma 2
and Proposition 7 together with the fact that for ' 2 C2.˝/, the mapping x 7!
��p.x/'.x/ is continuous in ˝ n D allow us to pass to the limit safely. Note that the
boundary condition is trivially satisfied for u1, since ukj@˝ D f j@˝ for each k. ut
Remark 17. For the one-dimensional case, see [20, Sect. 5] and [18, Sect. 5].

More on the Set S

In this section we discuss further the results of [28]. As mentioned above we
are interested in conditions that guarantee us that S ¤ ;. Recall that so far we
have the following sufficient conditions for non-emptiness and emptiness of S,
respectively.

• If Lip.f ; @˝/ � 1, then S ¤ ;.
• If @D \ @˝ D ;, then S ¤ ;.
• If @D \ @˝ ¤ ; and Lip.f ; @D \ @˝/ > 1, then S D ;,

while the condition

• @D \ @˝ ¤ ;, Lip.f ; @D \ @˝/ � 1 and Lip.f ; @˝/ > 1,

is necessary but not sufficient for the emptiness of S. In this direction, the authors in
[28] tried to identify conditions for the emptiness and non-emptiness of S. They also
gave several concrete examples that are quite illustrative (see [28, Sect. 5]). To avoid
technicalities we are just going through the main results. To simplify the discussion
we give the following notation (see [28]). Define the sets,

˝� D ˝ n D; Q D @D \ @˝; Q� D Q \ @˝�:

Also define the following subset of S.

SL D ff W ˝ ! R W f isLipschitzg:

• Non-emptiness of S ([28, Sect. 3]).
The problem arises when we are close to the points of Q�. The following

results hold.

1. If @˝ , @D are C1-smooth and there is an open neighborhood W of Q such that

Lip.f ;W \ @˝/ � 1;

then SL ¤ ;. Thus S is non-empty ([28, Theorem 3.2 (i)]).
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2. If we drop the C1-smoothness condition for D and ˝ , we have to put
some additional hypotheses to control the distance between the points of Q�
(roughly speaking), for concluding that SL ¤ ; ([28, Theorem 3.1]).

3. Now consider that @˝ and @D are C1-smooth but we cannot find a neigh-
borhood of Q where the Lipschitz constant of f is less than or equal to 1.
Assume further that f can be written as a sum of two components with the one
satisfying condition 1. Then if we put some extra hypotheses to handle things
near Q�, we have again that SL ¤ ; ([28, Theorem 3.2 (ii)]).

4. Assume again that @˝ and @D are C1-smooth and f does not satisfy conditions
1 and 3. In this case we have to construct an element of S step by step, since
we might have that SL D ;. The key step here is to construct a function
f 0 such that for each z 2 Q� and Zz a sufficiently small neighborhood of z
we have that f 0 2 W1;p.x/.Zz \ ˝�/. (Note that if f 2 SL, then immediately
f 2 W1;.p.x//.˝ n D/.) For this purpose we have to put some extra conditions
concerning the variable exponent p.�/, the dimension N and the set Q� to gain
the non-emptiness of S ([28, Theorem 3.2 (iii)]).

Remark 18. Recall (see the discussion about S in section “Main Results”) that
finding a necessary and sufficient condition for the non-emptiness of S is an open
problem.

• Emptiness of S ([28, Sect. 4]).
Here, we briefly mention some sufficient conditions for the emptiness of S.

1. If there are points in some neighborhood of Q that keep the Lipschitz constant
of f away from 1 (that is roughly speaking), then SL D ; ([28, Theorem 4.1
(i)]).

2. If there are some points z 2 Q� where the variable exponent p.�/ and the
dimension N satisfy certain inequalities, then S D ;. The reason is that if
we assume that there exists an element f 2 S, then at such a point z one can
show that f … W1;p.x/.Zz \ ˝�/, where Zz is again a neighborhood of z ([28,
Theorem 4.1 (ii), (iii)]).

The Neumann Case

Now we are turning our attention to the Neumann case studied in [17]. Consider the
following problem

(
��p.x/u.x/ D 0; x 2 ˝
jru.x/jp.x/�2 @u

@�
.x/ D g.x/; x 2 @˝ (P2)

where ˝ � R
N is a bounded smooth domain, with N � 2, and @

@�
is the outer

normal derivative. Also, g 2 C.@˝/ and satisfies
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Z

@˝

g D 0:

Note that this latter condition is necessary, since otherwise problem (P2) has no
solution. The setting is similar to the one of problem (P1). In particular the variable
exponent p satisfies the following hypothesis

pjD D 1
where D is a compactly supported subdomain of ˝ , with Lipschitz boundary.

Moreover, p 2 C1.˝ n D/ with

pC WD sup
x2˝nD

p.x/ < 1 (26)

and

p� WD inf
x2˝

p.x/ > N (27)

Remark 19. Note that p is defined also in @˝ due to the boundary condition, while
here we demand D to be compactly supported to ˝ . The reason for this is to have a
Lemma similar to Lemma 2.

Remark 20. In [20] the set D is assumed to be convex with smooth boundary. The
main reason for this is that the set of Lipcshitz function on D and W1;1.D/ coincide.
In this case we only assume that D has Lipschitz boundary which we need to have
the density of smooth functions in W1;pk.�/.˝/ by Proposition 4.

We consider again the sequence of variable exponents .pk/ introduced in
section “The Dirichlet Case” (see (15)). If we replace p with pk, we have the
intermediate boundary value problems corresponding to problem (P2).

(
��pk.x/u.x/ D 0; x 2 ˝
jru.x/jpk.x/�2 @u

@�
.x/ D g.x/; x 2 @˝ (P0

k)

We follow the same strategy that is used in [20]. Using standard methods we prove
the existence of a unique weak solution uk, for problem (P0

k), that is also a viscosity
solution. From the Arzellà–Ascoli theorem, we then show that the uniform limit of
.uk/ exists. We call this uniform limit u1 and show that it satisfies a variational
characterization in the set

S0 D



u 2 W1;p
�.˝/ W uj˝nD 2 W1;p.x/.˝ n D/; krukL1.D/ � 1 and

Z

˝

u D 0

�

(28)

and that it is infinity harmonic in D.
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Remark 21. The condition
R
˝ u D 0 in the definition of S0 plays a crucial role in

the proof of the existence and uniqueness of the solutions uk (since it provides us
with Proposition 6) and also in their uniform boundedness.

Remark 22. Note that in the Neumann case we do not have to worry about the
emptiness of S0, since the zero function is always an element of S0.

We state now the main results of [17]. As we did in the Dirichlet case, we give
first the results corresponding to the intermediate problem (P0

k).

Definition 4. Let u 2 W1;pk.�/.˝/. We say that u is a weak solution of prob-
lem (P0

k) if

Z

˝

jrujpk.x/�2ru � rvdx D
Z

@˝

gvdS; forall v 2 W1;pk.�/.˝/ : (29)

Lemma 3. There exists a unique weak solution uk to problem (P0
k), which is the

unique minimizer of the functional

I0
k.u/ D

Z

˝

jrujpk.x/

pk.x/
dx �

Z

@˝

gu dS

in the set

S0
k D



u 2 W1;pk.�/.˝/ W

Z

˝

u D 0

�
:

The next Lemma is similar to Lemma 2.

Lemma 4. The following problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

��pk.x/u.x/ D 0; x 2 ˝nD

��ku.x/ D 0; x 2 D

jru.x/jk�2 @u
@�
.x/ D jru.x/jp.x/�2 @u

@�
.x/; x 2 @D

jru.x/jp.x/�2 @u
@�
.x/ D g.x/; x 2 @˝:

(30)

has the same weak solutions as problem (P0
k).

Remark 23. Unlike the Dirichlet case, for the validity of the above Lemma we want
D to be compactly supported in ˝ .

Next we follow the ideas of [4] to give the definition of a viscosity solution for a
problem like (30). A similar definition corresponds to problem (31), which follows
later.
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Recall that D has only Lipschitz boundary. Thus, the normal vector field �.�/ is
not uniquely defined. For this reason to each point x 2 @D we define the set of
outward unit normals N.x/, as the collection of all vectors � for which we can find a
sequence .xk/ in @D, such that xk ! x and for each k there exists a unique outward
unit normal vector �k on @D at xk, such that �k ! �. Note that since D has Lipschitz
boundary, N.x/ is nonempty.

Definition 5. (i) Let u be a lower semicontinuous function in ˝. We say that u
is a viscosity supersolution of problem (30), if for every ' 2 C2.˝/ such that
u � ' attains its strict minimum at x0 2 ˝ with u.x0/ D '.x0/, we have

• if x0 2 ˝nD, then ��p.x0/'.x0/ � 0.
• If x0 2 D, then ��k'.x0/ � 0.
• If x0 2 @D, then

maxf ��p.x0/'.x0/;��k'.x0/;

sup
�2N.x0/

f.jr'.x0/jk�2 � jr'.x0/jp.x0/�2/r'.x0/ � �gg � 0 :

• If x0 2 @˝ , then

maxfjr'.x0/jp.x0/�2 @'
@�
.x0/� g.x0/;��p.x0/'.x0/g � 0:

(ii) Let u be an upper semicontinuous function in ˝ . We say that u is a viscosity
subsolution of problem (30), if for every ' 2 C2.˝/ such that u � ' attains its
strict maximum at x0 2 ˝ with u.x0/ D '.x0/, we have

• if x0 2 ˝nD, then ��p.x0/'.x0/ � 0.
• If x0 2 D, then ��k'.x0/ � 0.
• If x0 2 @D, then

minf ��p.x0/'.x0/;��k'.x0/;

inf
�2N.x0/

f.jr'.x0/jk�2 � jr'.x0/jp.x0/�2/r'.x0/ � �gg � 0:

• If x0 2 @˝ , then

minfjr'.x0/jp.x0/�2 @'
@�
.x0/� g.x0/;��p.x0/'.x0/g � 0:

(iii) Finally, u is called a viscosity solution of problem (30), if it is both a viscosity
subsolution and a viscosity supersolution.

Proposition 9. Let u be a continuous weak solution of (P0
k). Then u is a solution

of (30) in the viscosity sense.
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Proof. [Sketch] Depending on the location of x0, one has to verify Definition 5.
When x0 2 ˝ n D or x0 2 D the proof is similar to the one that corresponds to
the Dirichlet case. When x0 2 @D we follow the ideas of [4]. In [20], the case of
x0 2 @˝ is trivially verified because of the Dirichlet boundary condition. Here, the
boundary condition in the viscosity sense is not immediately satisfied and one has
to use the continuity of the boundary data g. ut

Next we state a Proposition similar to Proposition 8 that allows us to characterize
the candidate solution of (P2) as a uniform limit.

Proposition 10. Let uk be a weak solution of problem (P2). Then the sequence .uk/

is equicontinuous and uniformly bounded.

Remark 24. Note that in the above Proposition, in contrast to Proposition 8 there
can be no comparison of the p� norm of jrukj with Ik.uk/, due to existence of the
term

R
@˝

gukdS, in the definition of Ik. To overcome this difficulty we have to use
the estimates given in Proposition 3. Also the hypothesis

R
˝

uk D 0 allows us to use
the Poincaré–Wirtinger inequality to conclude the proof.

Remember that (see 28)

S0 D



u 2 W1;p
�.˝/ W uj˝nD 2 W1;p.�/.˝nD/; krukL1.D/ � 1 and

Z

˝

u D 0

�
:

Let I0 W S0 ! R be such that, if v 2 S � Sk, we have

I0.v/ WD
Z

˝nD

jrvjp.x/

p.x/
dx �

Z

@˝

gv dS

The next theorem is the analogue of Theorem 2 for the Neumann case. We give
a variational characterization of the limit function u1 in ˝ n D, where

pC WD sup
˝nD

p.x/ < 1

and next we prove that u1 is infinity harmonic in D in the viscosity sense.

Theorem 4. Let uk be the unique minimizer of Ik in Sk. Then there exists a function
u1 2 S, such that u1 minimizes I0 in S0 and is also infinity harmonic in D.

Remark 25. The proof is similar to the one of Theorem 2. Also, the minimizer of
I0 in S0 is unique. Indeed let u1; u2 be minimizers of I0 in S0 that are also infinity
harmonic in D. Then, there exists some C 2 R such that

u2 D u1 C C in ˝nD;
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which by the uniqueness of the Dirichlet problem for the infinity Laplacian gives us
that u2 D u1 C C also in D. Hence u2 D u1 C C in ˝ which implies uniqueness by
the fact that the mean value of both u1, u2 is zero.

Next we state the problem of which u1 is a viscosity solution. This arises
naturally from Lemma 4 and Proposition 9 as a limit case.

Theorem 5. Let .uk/ be the sequence of solutions of problems (P0
k) and u1 the

uniform limit of a subsequence of .uk/. Then u1 is a viscosity solution of the
following problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

��p.x/u.x/ D 0; x 2 ˝nD

��1u.x/ D 0; x 2 D

sgn.jru.x/j � 1/sgn. @u
@�
.x// D 0; x 2 @D

jru.x/jp.x/�2 @u
@�
.x/ D g.x/; x 2 @˝

(31)

Proof. [Sketch] To show that u1 is a viscosity solution of (31), we have to verify a
definition similar to Definition 5. When x0 2 ˝ n D or x0 2 D the proof is similar
to the one of Theorem 3. When x0 2 @D we prove that

maxf��p.x0/'.x0/; ��1'.x0/; sup
�2N.x0/

fsgn.jr'.x0/j � 1/sgn.r'.x0/ � �/gg � 0;

to show that u1 is a viscosity supersolution. To verify the boundary condition in the
viscosity sense we use again the continuity of the boundary data g. ut

Conclusions

As mentioned at the beginning of this paper, the problems where the variable
exponent assumed to be infinite are rare in the literature. Nevertheless, these
problems are quite interesting, since they combine the concepts of variable exponent
theory and the infinity Laplacian. The latter means that one should try different
approaches than the usual variational one, such as viscosity theory, absolutely
minimal Lipschitz extensions, etc.

This paper is an attempt to briefly present the work has been done so far, and
hopefully give a motivation for further research.

Acknowledgement The authors would like to thank the anonymous referee for his useful remarks
and suggestions.
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An Umbral Calculus Approach
to Bernoulli–Padé Polynomials

Dae San Kim and Taekyun Kim

Abstract In this paper, we consider Bernoulli–Padé polynomials of fixed order
whose generating function is based on the Padé approximant of the exponential
function. We derive, by using umbral calculus techniques, several recurrence rela-
tions for these polynomials and investigate connections between our polynomials
and several known families of polynomials.

Keywords Bernoulli–Padé polynomials • Umbral calculus

Introduction

Let C be the complex field and let F be the set of all formal power series in the
variable t:

F D
(

f .t/ D
1X

kD0
ak

tk

kŠ

ˇ
ˇ
ˇ̌
ˇ
ak 2 C

)

: (1)

Let P D C Œx� and let P� be the vector space of all linear functionals on P. We
denote by hL j p .x/i the action of the linear functional L on the polynomial p .x/,
and recall that the vector space operations on P

� are defined by hL C M j p .x/i D
hL j p .x/i C hM j p .x/i ; and hcL j p .x/i D c hL j p .x/i ; where c is a complex
constant in C. Let f .t/ 2 F . Then we define the linear functional on P by setting

h f .t/j xni D an; .n � 0/ ; .see [11–13]/ : (2)
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By (1) and (2), we get

˝
tk
ˇ
ˇ xn
˛ D nŠın;k; .n; k � 0/ ; .see Œ10; 13�/ ; (3)

where ın;k is the Kronecker symbol.

For fL .t/ D P1
kD0

h Ljxki
kŠ tk, we have h fL .t/j xni D hL j xni. That is, fL .t/ D L.

So, the map L 7! fL .t/ is vector space isomorphism from P
� onto F .

Henceforth,F denotes both the algebra of formal power series in t and the vector
space of all linear functionals on P, and so an element f .t/ of F will be thought of
as both a formal power series and a linear functional.F is called the umbral algebra,
the study of which umbral calculus is. The order of f .t/ .2 F / is the smallest
integer k such that the coefficient of tk does not vanish and is denoted by o .f .t//. If
o .f .t// D 1, then f .t/ is called a delta series; if o .g .t// D 0, then g .t/ is called an
invertible series. For f .t/ ; g .t/ 2 F with o .f .t// D 1 and o .g .t// D 0, there exists
a unique sequence sn .x/ .deg sn .x/ D n/ such that

˝
g .t/ f .t/k

ˇ
ˇ sn .x/

˛ D nŠın;k; for
n; k � 0. Such a sequence sn .x/ is called the Sheffer sequence for .g.t/; f .t//; which
is denoted by sn .x/ � .g.t/; f .t//.

The sequence sn .x/ is Sheffer for .g .t/ ; f .t// if and only if

1

g
�
f .t/

�eyf .t/ D
1X

kD0

sk .y/

kŠ
tk; .y 2 C/ ; .see Œ3; 9; 13�/ ; (4)

where f .t/ is the compositional inverse of f .t/ ; with f .f .t// D f
�
f .t/

� D t.
Let f .t/ ; g .t/ 2 F , and p .x/ 2 C Œx�. Then we have

h f .t/ g .t/j p .x/i D h f .t/j g .t/ p .x/i D hg .t/j f .t/ p .x/i ; (5)

and

f .t/ D
1X

kD0

˝
f .t/j xk

˛ tk

kŠ
; p .x/ D

1X

kD0

˝
tk j p .x/

˛ xk

kŠ
; .see Œ13�/ : (6)

By (6), we easily get

tkp .x/ D p.k/ .x/ D dkp .x/

dxk
; eytp .x/ D p .x C y/ ; (7)

and

˝
eyt
ˇ
ˇ p .x/

˛ D p .y/ :

The following Eqs. (8)–(10) are equivalent to the fact that sn .x/ is Sheffer for
.g .t/ ; f .t//, for some invertible g.t/ (see [13]):
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f .t/ sn .x/ D nsn�1 .x/ ; .n � 0/ ; (8)

sn .x C y/ D
nX

jD0

 
n

j

!

sj .x/ pn�j .y/ ; (9)

with pn .x/ D g .t/ sn .x/ ;

sn .x/ D
nX

jD0

1

jŠ

D
g
�
f .t/

��1
f .t/j

ˇ
ˇ
ˇ xn
E

xj: (10)

Note that

snC1 .x/ D
�

x � g0 .t/
g .t/

�
1

f 0 .t/
sn .x/ ; (11)

h f .t/j xp .x/i D h@tf .t/j p .x/i ; (12)

d

dx
sn .x/ D

n�1X

lD0

 
n

l

!
˝
f .t/

ˇ
ˇ xn�l

˛
sl .x/ ; .n � 1/ ; (13)

where sn .x/ � .g .t/ ; f .t//.
For sn .x/ � .g .t/ ; f .t//, and rn .x/ � .h .t/ ; l .t//, we have

sn .x/ D
nX

mD0
Cn;mrm .x/ ; .n � 0/ ; (14)

where

Cn;m D 1

mŠ

*
h
�
f .t/

�

g
�
f .t/

� l
�
f .t/

�m

ˇ
ˇ̌
ˇ
ˇ
xn

+

; .see Œ9; 13�/ : (15)

The Padé approximant, introduced by Georg Frobenius and developed by Henri
Padé, is a rational function of given order which best approximates a given
function (c.f. [1, 2, 4, 7]). It gives better approximation of the function than just
truncating its Taylor series. For this reason, it is widely used in electronic computer
computations, has connection with certain type of continued fractions, and is used
in Diophantine approximation and transcendental number theory. In this paper, we
will consider Bernoulli–Padé polynomials of fixed order whose generating function
is based on the Padé approximant of the exponential function. These Bernoulli–Padé
polynomials include the ordinary Bernoulli polynomials and several other types of
polynomials such as van der Pol polynomials as special cases.
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An Umbral Calculus Approach to Bernoulli–Padé Polynomials

Let r; s be given nonnegative integers. Then the n-th Bernoulli–Padé polynomials
B.r;s/n .x/ of order .r; s/ are defined by

.�1/s rŠsŠtrCsC1ext

.r C s/Š .r C s C 1/Š
�
Q.r;s/ .t/ et � P.r;s/ .t/

� D
1X

nD0
B.r;s/n .x/

tn

nŠ
; (16)

where

P.r;s/ .t/ D
rX

jD0

 
r

j

!
.r C s � j/Š

.r C s/Š
tj; (17)

Q.r;s/ .t/ D
sX

jD0

 
s

j

!
.r C s � j/Š

.r C s/Š
.�t/j :

When x D 0, B.r;s/n D B.r;s/n .0/ are called the n-th Bernoulli–Padé numbers of
order .r; s/.

Here, we note that B.0;0/n .x/ D Bn .x/ ;B.0;0/n D Bn .0/ D Bn, where Bn .x/ are
Bernoulli polynomials given by the generating function

t

et � 1ext D
1X

nD0
Bn .x/

tn

nŠ
; .see Œ1 � 9; 11 � 13�/ :

Actually,

Œr=s� D P.r;s/ .t/

Q.r;s/ .t/
; .r; s D 0; 1; 2; : : : / (18)

are the Padé approximants to et, so that

et � P.r;s/ .t/

Q.r;s/ .t/
� 0 .mod trCsC1/: (19)

More precisely, one can show that

et � P.r;s/ .t/

Q.r;s/ .t/
D .�1/s rŠsŠ

.r C s/Š .r C s C 1/Š
trCsC1 C higher order terms; (20)

and hence B.r;s/0 D 1:

The Bernoulli–Padé polynomials and numbers were introduced in [2]. These
polynomials and numbers were further generalized, with certain exceptions, to
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the case of arbitrary complex parameters in [1]. Special cases of Bernoulli–Padé
numbers Ak;n and Vk;n were studied earlier by Howard in [4, 7]. They are given by

1
kŠ t

k

et �Pk�1
jD0 tj

jŠ

D
1X

nD0
Ak;n

tn

nŠ
D

1X

nD0
B.k�1;0/

n

tn

nŠ
; .k � 1/ ; (21)

and

kŠ
.2kC1/Š t

2kC1

tkyk
�� 2

t

�
et � .�t/k yk

�
2
t

� D
1X

nD0
Vk;n

tn

nŠ
D

1X

nD0
B.k;k/n

tn

nŠ
; (22)

where yk .x/ is the Bessel polynomial of degree k defined by

yk .x/ D
kX

jD0

.k C j/Š

jŠ .k � j/Š

� x

2

�j
: (23)

For k D 1 in (22), we have

1
6
t3

.t � 2/ et C .t C 2/
D

1X

nD0
V1;n

tn

nŠ
D

1X

nD0
Vn

tn

nŠ
; (24)

and Vn are called van der Pol numbers, which were investigated in [5, 6, 8].
From (16), we note that B.r;s/n .x/ is the Appell sequence for

.r C s/Š .r C s C 1/Š
�
Q.r;s/ .t/ et � P.r;s/ .t/

�

.�1/s rŠsŠtrCsC1 ;

so that

B.r;s/n .x/ �
 
.r C s/Š .r C s C 1/Š

�
Q.r;s/ .t/ et � P.r;s/ .t/

�

.�1/s rŠsŠtrCsC1 ; t

!

: (25)

Sometimes, for simplicity, we will put dr;s D .�1/srŠsŠ
.rCs/Š.rCsC1/Š .

As B.r;s/n .x/ is an Appell sequence, we have

tB.r;s/n .x/ D d

dx
B.r;s/n .x/ D nB.r;s/n�1 .x/ ; (26)

B.r;s/n .x C y/ D
nX

jD0

 
n

j

!

B.r;s/j .x/ yn�j; (27)
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and

B.r;s/n .x/ D
nX

jD0

 
n

j

!

B.r;s/j xn�j: (28)

In addition, we get

B.r;s/n .1 � x/ D .�1/n B.s;r/n .x/ : (29)

Here, we note that (29) follows from (16) by using the fact Q.s;r/ .�t/ D p.r;s/ .t/.
The above (26)–(29) were stated as Proposition 2.2 in [2].

For nonnegative integer r; s with r C s C 1 � n, we have

Q.r;s/ .D/B.r;s/n .x C 1/� P.r;s/ .D/B.r;s/n .x/ D .�1/s
� n

rCsC1
�

�rCs
r

� xn�.rCsC1/; (30)

where D D d
dx (see [2, Proposition 2.3]).

Proof (Proof of (30)).
Taking the advantage of umbral calculus, we can give very short proof for this.

Since B.r;s/n .x/ is an Appell sequence from (16), we have

B.r;s/n .x/ D dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn: (31)

Multiplying Q.r;s/ .t/ et � P.r;s/ .t/ on both sides gives
�

Q.r;s/ .t/ et � P.r;s/ .t/
�

B.r;s/n .x/ D dr;st
rCsC1xn: (32)

Thus, by (32), we get

Q.r;s/.D/B.r;s/n .x C 1/� P.r;s/ .D/B.r;s/n .x/ (33)

Ddr;s .n/rCsC1 xn�.rCsC1/

D .�1/s � n
rCsC1

�

�rCs
r

� xn�.rCsC1/:

For r C s C 1 � n, we have

sX

jD0
.�1/j

�s
j

��n
j

�

�rCs
j

� B.r;s/n�j .x C 1/�
rX

jD0

�r
j

��n
j

�

�rCs
j

� B.r;s/n�j .x/ (34)

D .�1/s
� n

rCsC1
�

�rCs
r

� xn�.rCsC1/; .see Œ2;Corollary 2:1�/ :
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Proof (Proof of (34)). This is immediate from (30) by using the definition of
Q.r;s/ .t/ and P.r;s/ .t/ in (17).

From (11) and (25), we have

B.r;s/nC1 .x/ D xB.r;s/n .x/� g0 .t/
g .t/

B.r;s/n .x/ ; (35)

where

g .t/ D Q.r;s/ .t/ et � P.r;s/ .t/

dr;strCsC1 :

Now, we observe that

g0 .t/
g .t/

D .log .g .t///0 (36)

D �
log

�
Q.r;s/ .t/ et � P.r;s/ .t/

� � log dr;s � .r C s C 1/ log t
�0

D
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
� r C s C 1

t
:

Note that

g0 .t/
g .t/

B.r;s/n .x/ (37)

D
 �

Q.r;s/ .t/ et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
� r C s C 1

t

!

B.r;s/n .x/

DtrCsC1
 �

Q.r;s/ .t/ et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
� r C s C 1

t

!


 B.r;s/nCrCsC1 .x/
.n C 1/ .n C 2/ � � � .n C r C s C 1/

D nŠ

.n C r C s C 1/Š

�
1

dr;s

�
Q.r;s/ .t/ et � P.r;s/ .t/

�0 dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

� .r C s C 1/ trCs
�

B.r;s/nCrCsC1 .x/

D nŠ

.n C r C s C 1/Š

1

dr;s

�
Q.r;s/ .t/ et � P.r;s/ .t/

�0



nCrCsC1X

mD0

 
n C r C s C 1

m

!

B.r;s/nCrCsC1�m

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xm
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� r C s C 1

n C 1
B.r;s/nC1 .x/

D .�1/s
�rCs

r

�

�nCrCsC1
n

�
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0



nCrCsC1X

mD0

 
n C r C s C 1

m

!

B.r;s/nCrCsC1�mB.r;s/m .x/ � r C s C 1

n C 1
B.r;s/nC1 .x/ :

Before proceeding, we note that

�
Q.r;s/ .t/

�0 D � s

r C s
Q.r;s�1/ .t/ ; (38)

and

�
P.r;s/ .t/

�0 D r

r C s
P.r�1;s/ .t/ : (39)

Thus, by (38) and (39), we get

�
Q.r;s/ .t/ et � P.r;s/ .t/

�0
(40)

D �
Q.r;s/ .t/

�0
et C Q.r;s/ .t/ et � �

P.r;s/ .t/
�0

D � s

r C s
Q.r;s�1/ .t/ et C Q.r;s/ .t/ et � r

r C s
P.r�1;s/ .t/

D � s

r C s

s�1X

jD0

 
s � 1

j

!
.r C s � 1 � j/Š

.r C s � 1/Š
.�1/j ettj

C
sX

jD0

 
s

j

!
.r C s � j/Š

.r C s/Š
.�1/j ettj

� r

r C s

r�1X

jD0

 
r � 1

j

!
.r C s � 1 � j/Š

.r C s � 1/Š
tj

Det

sŠ

 
r C s

r

!�1
.�1/s ts C

0

@
s�1X

jD0

1

jŠ

 
r C s � j

r

!

.�1/j ettj

1

A

 
r C s

r

!�1

�
 

r C s

r

!�1 s�1X

jD0

1

jŠ

 
r C s � 1 � j

r

!

.�1/j ettj

�
 

r C s

r

!�1 r�1X

jD0

1

jŠ

 
r C s � 1 � j

s

!

tj
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D 1

sŠ

 
r C s

r

!�1
.�1/s etts C

 
r C s

r

!�1 s�1X

jD0

1

jŠ

 
r C s � 1 � j

r � 1

!

.�1/j ettj

�
 

r C s

r

!�1 r�1X

jD0

1

jŠ

 
r C s � 1 � j

s

!

tj:

From (40), we have

.�1/s
�rCs

r

�

�nCrCsC1
n

�
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0
(41)



nCrCsC1X

mD0

 
n C r C s C 1

m

!

B.r;s/nCrCsC1�mB.r;s/m .x/

D .�1/s
 

n C r C s C 1

n

!�1 (
.�1/s

nCrCsC1X

mDs

 
n C r C s C 1

m

! 
m

s

!


 B.r;s/nCrCsC1�mB.r;s/m�s .x C 1/

C
s�1X

jD0

nCrCsC1X

mDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s C 1

m

! 
m

j

!


 B.r;s/nCrCsC1�mB.r;s/m�j .x C 1/

�
r�1X

jD0

nCrCsC1X

mDj

 
r C s � 1 � j

s

! 
n C r C s C 1

m

! 
m

j

!

B.r;s/nCrCsC1�mB.r;s/m�j .x/

9
=

;
:

By (35), (37), and (41), we get

B.r;s/nC1 .x/ (42)

DxB.r;s/n .x/ � .�1/s
 

n C r C s C 1

n

!�1



(

.�1/s
nCrCsC1X

mDs

 
n C r C s C 1

m

! 
m

s

!

B.r;s/nCrCsC1�mB.r;s/m�s .x C 1/

C
s�1X

jD0

nCrCsC1X

mDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s C 1

m

! 
m

j

!


 B.r;s/nCrCsC1�mB.r;s/m�j .x C 1/



372 D.S. Kim and T. Kim

�
r�1X

jD0

nCrCsC1X

mDj

 
r C s � 1 � j

s

! 
n C r C s C 1

m

! 
m

j

!

B.r;s/nCrCsC1�mB.r;s/m�j .x/

9
=

;

C r C s C 1

n C 1
B.r;s/nC1.x/:

Thus, by (42), we get the following equation.
For s; r � 1, n � 0, we have

n � r � s

n C 1
B.r;s/nC1 .x/ � xB.r;s/n .x/ (43)

D .�1/s�1
 

n C r C s C 1

n

!�1 (
.�1/s

nCrCsC1X

mDs

 
n C r C s C 1

m

! 
m

s

!


 B.r;s/nCrCsC1�mB.r;s/m�s .x C 1/

C
s�1X

jD0

nCrCsC1X

mDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s C 1

m

! 
m

j

!


 B.r;s/nCrCsC1�mB.r;s/m�j .x C 1/

�
r�1X

jD0

nCrCsC1X

mDj

 
r C s � 1 � j

s

! 
n C r C s C 1

m

! 
m

j

!

B.r;s/nCrCsC1�mB.r;s/m�j .x/

9
=

;
:

Let n � 1. Then, by (3), we get

B.r;s/n .y/ (44)

D
* 1X

iD0
B.r;s/i .y/

ti

iŠ

ˇ
ˇ̌
ˇ
ˇ
xn

+

D
�

dr;strCsC1eyt

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ̌
ˇ xn

�

D
�
@t

�
dr;strCsC1eyt

Q.r;s/ .t/ et � P.r;s/ .t/

�ˇˇ
ˇ
ˇ xn�1

�

D
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
@t
�
eyt
�
ˇ̌
ˇ
ˇ x

n�1
�

C
�
@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
eyt

ˇ
ˇ
ˇ̌ xn�1

�

DyB.r;s/n�1 .y/C
�

t@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
eyt

ˇ
ˇ
ˇ
ˇ

xn

n

�
:
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Note that the order of t@t

�
dr;strCsC1

Q.r;s/.t/et�P.r;s/.t/

�
is at least one.

We observe that

t@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
(45)

D .r C s C 1/
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
�
 

t
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/

!



�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
:

Thus, by (45), we get

�
t@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
eyt

ˇ
ˇ
ˇ
ˇ

xn

n

�
(46)

Dr C s C 1

n

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ
ˇ
ˇ xn

�

� 1

n

*
t
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ̌
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn

+

Dr C s C 1

n
B.r;s/n .y/� 1

n

*
t
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ
ˇ̌
ˇ
B.r;s/n .x/

+

:

Note that

� 1

n

*
t
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ
ˇ
ˇ̌B.r;s/n .x/

+

(47)

D � 1

n

*
trCsC1 �Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ
ˇ̌
ˇ

B.r;s/nCrCs .x/

.n C 1/ � � � .n C r C s/

+

D � .n � 1/Š
dr;s .n C r C s/Š



��

Q.r;s/ .t/ et � P.r;s/ .t/
�0

eyt

ˇ
ˇ̌
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
B.r;s/nCrCs .x/

�

D � .n � 1/Š
dr;s .n C r C s/Š

nCrCsX

mD0

 
n C r C s

m

!

B.r;s/nCrCs�m



��

Q.r;s/ .t/ et � P.r;s/ .t/
�0

eyt

ˇ
ˇ̌
ˇB.r;s/m .x/

�
:
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From (40), we have

�
Q.r;s/ .t/ et � P.r;s/ .t/

�0
eyt (48)

D 1

sŠ

 
r C s

r

!�1
.�1/s e.yC1/tts C

 
r C s

r

!�1



s�1X

jD0

1

jŠ

 
r C s � 1 � j

r � 1

!

.�1/j e.yC1/ttj

�
 

r C s

r

!�1 r�1X

jD0

1

jŠ

 
r C s � 1 � j

s

!

eyttj:

By (47) and (48), we get

� 1

n

*
t
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/
eyt

ˇ
ˇ
ˇ
ˇ̌B.r;s/n .x/

+

(49)

D .�1/s�1
�nCrCs

n�1
�

nCrCsX

mD0

 
n C r C s

m

!

B.r;s/nCrCs�m



1

sŠ
.�1/s ˝e.yC1/tts

ˇ
ˇB.r;s/m .x/

˛

C
s�1X

jD0

1

jŠ

 
r C s � 1 � j

r � 1

!

.�1/j ˝e.yC1/ttj
ˇ̌
B.r;s/m .x/

˛

�
r�1X

jD0

1

jŠ

 
r C s � 1 � j

s

!
˝
eyttj

ˇ̌
B.r;s/m .x/

˛
9
=

;

D .�1/s�1
�nCrCs

n�1
�

(

.�1/s
nCrCsX

mDs

 
n C r C s

m

! 
m

s

!

B.r;s/nCrCs�mB.r;s/m�s .y C 1/

C
s�1X

jD0

nCrCsX

mDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s

m

! 
m

j

!


 B.r;s/nCrCs�mB.r;s/m�j .y C 1/�
r�1X

jD0

nCrCsX

mDj

 
r C s � 1 � j

s

! 
n C r C s

m

! 
m

j

!


B.r;s/nCrCs�mB.r;s/m�j .y/
o
:
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For r; s � 1, n � 1, by (44), (46), and (49), we obtain the following equation:

n � r � s � 1
n

B.r;s/n .x/� xB.r;s/n�1 .x/ (50)

D .�1/s�1
 

n C r C s

n � 1

!�1 (
.�1/s

nCrCsX

mDs

 
n C r C s

m

! 
m

s

!

B.r;s/nCrCs�mB.r;s/m�s .x C 1/

C
s�1X

jD0

nCrCsX

mDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s

m

! 
m

j

!

B.r;s/nCrCs�mB.r;s/m�j .x C 1/

�
r�1X

jD0

nCrCsX

mDj

 
r C s � 1 � j

s

! 
n C r C s

m

! 
m

j

!

B.r;s/nCrCs�mB.r;s/m�j .x/

9
=

;
:

We see that this is the same as the result in (43) upon replacing n by n C 1 and
hence that it gives another proof for (43).

We will derive an identity by computing the following expression in two different
ways. Here, we assume m � r C s C 1.

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ̌
ˇ xn

�
: (51)

On one hand, it is
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ̌
ˇ xn

�
(52)

D
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ
ˇ tmxn

�

D .n/m

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ
ˇ xn�m

�

D.n/m
* 1X

iD0
B.r;s/i

ti

iŠ

ˇ
ˇ̌
ˇ
ˇ
xn�m

+

D .n/m B.r;s/n�m:

On the other hand, it is
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ
ˇ
ˇ xn

�
(53)

D
�
@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
tm

�ˇ̌
ˇ
ˇ xn�1

�
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D
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
@t .t

m/

ˇ
ˇ
ˇ̌ xn�1

�

C
��
@t

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
tm

ˇ
ˇ
ˇ
ˇ xn�1

�
:

The first term of (53) is

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
@t .t

m/

ˇ
ˇ
ˇ
ˇ xn�1

�
(54)

Dm

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
tm�1

ˇ
ˇ̌
ˇ xn�1

�

Dm .n � 1/m�1
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ
ˇ xn�m

�

Dm .n � 1/m�1

* 1X

iD0
B.r;s/i

ti

iŠ

ˇ
ˇ
ˇ
ˇ
ˇ
xn�m

+

Dm .n � 1/m�1 B.r;s/n�m:

We recall that

@t

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�

D .r C s C 1/
dr;strCs

Q.r;s/ .t/ et � P.r;s/ .t/

�
�
Q.r;s/ .t/ et � P.r;s/ .t/

�0

Q.r;s/ .t/ et � P.r;s/ .t/

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
:

Now, the second term of (53) is

��
@t

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
tm

ˇ
ˇ̌
ˇ xn�1

�
(55)

D .r C s C 1/

�
tm�1

ˇ
ˇ
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn�1

�

�
* �

Q.r;s/ .t/ et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ̌
ˇ
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn�1

+
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D .r C s C 1/
D
tm�1 ˇ̌B.r;s/n�1 .x/

E
�
* �

Q.r;s/ .t/ et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ
ˇ̌
ˇ
B.r;s/n�1 .x/

+

D .r C s C 1/ .n � 1/m�1 B.r;s/n�m �
* �

Q.r;s/ .t/ et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ
ˇ
ˇ̌B.r;s/n�1 .x/

+

:

We observe that
* �

Q.r;s/et � P.r;s/ .t/
�0

Q.r;s/ .t/ et � P.r;s/ .t/
tm

ˇ
ˇ̌
ˇ
ˇ
B.r;s/n�1 .x/

+

(56)

D 1

dr;s

��
Q.r;s/ .t/ et � P.r;s/ .t/

�0 dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ̌

B.r;s/nCrCs�m .x/

n .n C 1/ � � � .n C r C s � m/

+

D .�1/s .r C s C 1/Š
.n � 1/Š

.n C r C s � m/Š

 
r C s

r

!



��

Q.r;s/ .t/ et � P.r;s/ .t/
�0
ˇ̌
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
B.r;s/nCrCs�m .x/

�

D .�1/s .r C s C 1/Š
.n � 1/Š

.n C r C s � m/Š

 
rCs

r

!
nCrCs�mX

lD0

 
nCrCs�m

l

!

B.r;s/nCrCs�m�l



D �

Q.r;s/ .t/ et � P.r;s/ .t/
�0ˇ̌
ˇB.r;s/l .x/

E

D .�1/s .r C s C 1/Š
.n � 1/Š

.n C r C s � m/Š



nCrCs�mX

lD0

 
n C r C s � m

l

!

B.r;s/nCrCs�m�l



1

sŠ
.�1/s

D
etts
ˇ
ˇB.r;s/l .x/

E

C
s�1X

jD0

1

jŠ

 
r C s � 1 � j

r � 1

!

.�1/j
D
ettj
ˇ
ˇB.r;s/l .x/

E

�
r�1X

jD0

1

jŠ

 
r C s � 1 � j

s

!
D
tj
ˇ
ˇB.r;s/l .x/

E
9
=

;

D .�1/s .r C s C 1/Š
.n � 1/Š

.n C r C s � m/Š
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(

.�1/s
nCrCs�mX

lDs

 
n C r C s � m

l

!



 

l

s

!

B.r;s/nCrCs�m�lB
.r;s/
l�s .1/

C
s�1X

jD0

nCrCs�mX

lDj

.�1/j
 

r C s � 1 � j

r � 1

!



 

n C r C s � m

l

! 
l

j

!

B.r;s/nCrCs�m�lB
.r;s/
l�j .1/

�
r�1X

jD0

nCrCs�mX

lDj

 
r C s � 1 � j

s

! 
n C r C s � m

l

! 
l

j

!

B.r;s/nCrCs�m�lB
.r;s/
l�j

9
=

;
:

For 1 � m � min fn; r C s C 1g, by (52)–(56), we get

.n/m B.r;s/n�m (57)

Dm .n � 1/m�1 B.r;s/n�m C .r C s C 1/ .n � 1/m�1 B.r;s/n�m

C .�1/s�1 .r C s C 1/Š
.n � 1/Š

.n C r C s � m/Š



(

.�1/s
nCrCs�mX

lDs

 
n C r C s � m

l

! 
l

s

!

B.r;s/nCrCs�m�lB
.r;s/
l�s .1/

C
s�1X

jD0

nCrCs�mX

lDj

.�1/j
 

r C s � 1 � j

r � 1

!



 

n C r C s � m

l

! 
l

j

!

B.r;s/nCrCs�m�lB
.r;s/
l�j .1/

�
r�1X

jD0

nCrCs�mX

lDj

 
r C s � 1 � j

s

! 
n C r C s � m

l

! 
l

j

!

B.r;s/nCrCs�m�lB
.r;s/
l�j

9
=

;
:

Dividing both sides by .n � 1/m�1, we obtain: for 1 � m � min fn; r C s C 1g,

fn � m � .r C s C 1/g B.r;s/n�m (58)

D .�1/s�1 .r C s C 1/

 
n C r C s � m

r C s

!�1
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(

.�1/s
nCrCs�mX

lDs

 
n C r C s � m

l

! 
l

s

!

B.r;s/nCrCs�m�lB
.r;s/
l�s .1/

C
s�1X

jD0

nCrCs�mX

lDj

.�1/j
 

r C s � 1 � j

r � 1

! 
n C r C s � m

l

! 
l

j

!


 B.r;s/nCrCs�m�lB
.r;s/
l�j .1/

�
r�1X

jD0

nCrCs�mX

lDj

 
r C s � 1 � j

s

! 
n C r C s � m

l

! 
l

j

!

B.r;s/nCrCs�m�lB
.r;s/
l�j

9
=

;
:

Let us consider the following two Sheffer sequences:

B.r;s/n .x/ �
�

Q.r;s/ .t/ et � P.r;s/ .t/

dr;strCsC1 ; t

�
; .x/n � �

1; et � 1
�
: (59)

From (14), (15), and (59), we have

B.r;s/n .x/ D
nX

mD0
Cn;m .x/m ; (60)

where

Cn;m D
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ̌ 1

mŠ

�
et � 1

�m
xn

�
(61)

D
*

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ
ˇ

1X

lDm

S2 .l;m/
tl

lŠ
xn

+

D
nX

lDm

 
n

l

!

S2 .l;m/

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ̌
ˇ xn�l

�

D
nX

lDm

 
n

l

!

S2 .l;m/B.r;s/n�l :

Therefore, by (60) and (61), we obtain the following equation:

B.r;s/n .x/ D
nX

mD0

nX

lDm

 
n

l

!

S2 .l;m/B.r;s/n�l .x/m ; .n � 0/ : (62)
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For B.r;s/n .x/ �
�

Q.r;s/.t/et�P.r;s/.t/
dr;strCsC1 ; t

�
, x.n/ D x .x C 1/ � � � .x C n � 1/ �

.1; 1� e�t/, we have

B.r;s/n .x/ D
nX

mD0
Cn;mx.m/; .n � 0/ ; (63)

where

Cn;m D 1

mŠ

�
dr;strCsC1

Q.r;s/et � P.r;s/ .t/

�
1 � e�t

�m
ˇ
ˇ
ˇ
ˇ x

n

�
(64)

D
�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
e�mt

ˇ̌
ˇ
ˇ
1

mŠ

�
et � 1

�m
xn

�

D
*

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
e�mt

ˇ
ˇ̌
ˇ

1X

lDm

S2 .l;m/
tl

lŠ
xn

+

D
nX

lDm

 
n

l

!

S2 .l;m/

�
e�mt

ˇ
ˇ
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn�l

�

D
nX

lDm

 
n

l

!

S2 .l;m/
D
e�mt

ˇ̌
B.r;s/n�l .x/

E

D
nX

lDm

 
n

l

!

S2 .l;m/B.r;s/n�l .�m/ :

Therefore, by (63) and (64), we obtain the following equation:

B.r;s/n .x/ D
nX

mD0

nX

lDm

 
n

l

!

S2 .l;m/B.r;s/n�l .�m/ x.m/: (65)

For B.r;s/n .x/ �
�

Q.r;s/.t/et�P.r;s/.t/
dr;strCsC1 ; t

�
, B.s/n .x/ �

��
et�1

t

�s
; t
�

, we have

B.r;s/n .x/ D
nX

mD0
Cn;mB.s/m .x/ ; (66)

where

Cn;m D 1

mŠ

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
et � 1

t

�s

tm

ˇ
ˇ
ˇ
ˇ xn

�
(67)

D 1

mŠ

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
et � 1

t

�sˇˇ̌
ˇ tmxn

�
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D
 

n

m

!�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ̌
ˇ

�
et � 1

t

�s

xn�m

�

D
 

n

m

!*
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ̌

1X

lD0

sŠ

.l C s/Š
S2 .l C s; s/ tlxn�m

+

D
 

n

m

!
n�mX

lD0

sŠ

.l C s/Š
S2 .l C s; s/ .n � m/l

D 

�

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

ˇ
ˇ
ˇ̌ xn�m�l

�

D
 

n

m

!
n�mX

lD0

sŠ

.l C s/Š
S2 .l C s; s/ .n � m/l B.r;s/n�m�l:

Therefore, by (66) and (67), we obtain the following equation.

B.r;s/n .x/ D
nX

mD0

 
n

m

!
n�mX

lD0

sŠ

.l C s/Š
S2 .l C s; s/ .n � m/l B.r;s/n�m�lB

.s/
m .x/ : (68)

It is well known that Frobenius–Euler polynomials of order s .2 N/ are defined
by the generating function to be

�
1 � 	

et � 	

�s

ext D
1X

nD0
H.s/

n .x j 	/ tn

nŠ
; .	 2 C with 	 ¤ 1/ : (69)

From (69), we have

H.s/
n .x j 	/ �

��
et � 	

1 � 	
�s

; t

�
: (70)

By (14), (15), (25), and (70), we have

B.r;s/n .x/ D
nX

mD0
Cn;mH.s/

m .x j 	/ ; (71)

where

Cn;m D 1

mŠ

�
dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/

�
et � 	

1 � 	
�s

tm

ˇ
ˇ
ˇ
ˇ xn

�
(72)

D
�n

m

�

.1 � 	/s

��
et � 	�s

ˇ
ˇ
ˇ
ˇ

dr;strCsC1

Q.r;s/ .t/ et � P.r;s/ .t/
xn�m

�
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D
�n

m

�

.1 � 	/s

*
sX

jD0

 
s

j

!

.�	/s�j ejt

ˇ
ˇ
ˇ̌
ˇ
ˇ
B.r;s/n�m .x/

+

D
�n

m

�

.1 � 	/s

sX

jD0

 
s

j

!

.�	/s�j B.r;s/n�m .j/ :

Therefore, by (71) and (72), we obtain the following equation:

B.r;s/n .x/ D .1 � 	/�s
nX

mD0

 
n

m

!
sX

jD0

 
s

j

!

.�	/s�j B.r;s/n�m .j/H.s/
m .x j 	/ ;

where n � 0.
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Hadamard Matrices: Insights into Their Growth
Factor and Determinant Computations

Christos D. Kravvaritis

Abstract In this expository paper we survey the most important progress in the
growth problem for Hadamard matrices. The history of the problem is presented,
the importance of determinant calculations is highlighted, and the relevant open
problems are discussed. Emphasis is laid on the contribution of determinant manip-
ulations to the study of the growth factor for Hadamard matrices after application
of Gaussian Elimination with complete pivoting on them, which is an important
scientific field in Numerical Analysis.

Keywords Hadamard matrices • Gaussian Elimination • Complete pivoting •
Growth factor • Determinant calculus

Introduction

Hadamard Matrices

It is interesting to study the pivot patterns of Hadamard matrices, as they are the
only known matrices that attain growth factor equal to their order. Besides, they are
an attractive tool for several applications [18, 25, 29, 47, 55, 59, 64].

For instance, in Coding Theory (error correction coding) Hadamard matrices
are used for generating the error correcting Hadamard codes, which have good
coding properties. Hence, data sequences are transmitted more assuredly over a
noisy channel and high error correction rate is provided. A famous application of
the Hadamard code was in the NASA Mariner spacecraft missions in 1969 and
1972 to Mars, for correcting the picture transmission errors and for digitalizing
and transmitting photos of Mars back to Earth, where the messages were fairly
weak. Information transmission during recent flybys of the outer planets in the
solar system is based on Hadamard matrices, too. Hadamard matrices are associated
with symmetric balanced incomplete block designs (SBIBDs) in the way that a
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Hadamard matrix of order 4t exists if and only if there is an SBIBD with parameters
.4t � 1; 2t � 1; t � 1/. Moreover, Hadamard matrices are used in Cryptography
for guaranteeing the encryption, concealment, and secure transmission of data
over a nonsecure channel. Hadamard matrices are related to bent functions, which
have the highest possible non-linearity. Thus they effectively disguise and confuse
characteristics of data sequences. Applications of Hadamard matrices in digital
Signal/Image Processing, modern telecommunications, optical multiplexing, and
design/analysis of statistics can be found as well.

Definition 1. A Hadamard matrix H � Hn of order n (denoted by Hn) has entries
˙1 and satisfies HHT D HTH D nIn.

Example 1.

H1 D .1/ ; H2 D
�
1 1

1 �1
�
; H4 D

0

B
B
@

1 1 1 1

1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1

C
C
A

It follows from the above definition that every two distinct rows and columns of
a Hadamard matrix are mutually orthogonal. Hadamard matrices are defined only
for n D 1; 2 and n � 0mod 4. Hadamard matrices can be considered as a special
case of weighing matrices. A .0; 1;�1/matrix W D W.n; n � k/, k D 0; 1; 2; : : :, of
order n satisfying WWT D WTW D .n � k/In is called a weighing matrix of order
n and weight n � k or simply a weighing matrix. A W.n; n/, n � 0 .mod 4/, is a
Hadamard matrix.

In 1893 Hadamard [22] specified quadratic matrices of orders 12 and 20 with
entries ˙1 having all their rows and columns mutually orthogonal. These matrices
satisfied the following famous Hadamard inequality.

Theorem 1 (Hadamard’s Inequality [22], [8, p. 496]). For any matrix
A D .aij/1�i;j�n with entries on the unit disc

j det Aj �
nY

jD1

 
nX

iD1
jaijj2

! 1
2

D
nY

jD1
kajk2 � n

n
2 ;

where aj denotes the jth column of A. The equalities hold if and only if jaijj D 1 for
all i; j and the rows of A are mutually orthogonal.

However, these matrices for every order being a power of 2 have been first
discovered in 1867 by Sylvester [52]. The following well-known result describes
the possible order n of a Hadamard matrix.

Theorem 2 ([22]). If H is an n
n Hadamard matrix and n > 2, then n is a multiple
of 4.



Hadamard Matrices: Insights into Their Growth Factor and Determinant Computations 385

Theorem 2 is usually proved by describing the sign patterns in three rows of a
Hadamard matrix like

x
‚ …„ ƒC � � � C

y
‚ …„ ƒC � � � C

z
‚ …„ ƒC � � � C

w
‚ …„ ƒC � � � C

C � � � C C � � � C � � � � � � � � � �
C � � � C � � � � � C � � � C � � � � �

;

where x; y; z;w denote the number of columns of the respective form. Another
elegant proof for Theorem 2 is given in [8], which is facilitated by the next result.

Proposition 1 ([8, 38]). Let B be an n 
 n matrix with elements ˙1. Then

(i) det B is an integer and 2n�1 divides det B;
(ii) when n � 6, the only possible values for det B are given in Table 1, and they do

all occur.

Proposition 1 leads to the following open conjecture.

Conjecture 1.

Determinants of ˙1 matrices
The determinant of an n 
 n matrix with elements ˙1 is

0 or p; for p D 2n�1; 2 � 2n�1; 3 � 2n�1; : : : ; s � 2n�1;

where

s � 2n�1 D maxfdet.A/jA 2 R
n�n;with entries ˙ 1g

and the value 0 is excluded from the case n D 1.

One more recent proof for Theorem 2 can be found in [4]. Theorem 2 does not
assure the existence of Hadamard matrices for every n being a multiple of 4. There
exists the following relevant conjecture.

Table 1 Possible determinant values for n�n
˙1 matrices

n det

1 1

2 0,2

3 0,4

4 0,8,16

5 0,16,32,48

6 0,32,64,96,128,160

7 0,64,128,192,256,320,384,448,512,576
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Conjecture 2.

Existence of Hadamard matrices
There exists a Hadamard matrix of order n for every n multiple of 4.

This conjecture seems very realistic but is not proved yet. The smallest order, for
which a Hadamard matrix has not been found, is 668 [29]. Recently a Hadamard
matrix of order 428 was found [32]. Other orders smaller than 1000, for which
Hadamard matrices have not been found yet, are 716, 764, 892.

Finally, we introduce an important notion for the study of the problem, the
Hadamard equivalence.

Definition 2. Two matrices are said to be Hadamard equivalent or H-equivalent if
one can be obtained from the other by a sequence of the operations:

1. interchange any pairs of rows and/or columns;
2. multiply any rows and/or columns through by �1.

Notations

Throughout this paper we assume, without loss of generality, that the entries of
the first row and column of a Hadamard matrix are always C1 (normalized form),
because this can be achieved easily by multiplying columns and/or rows with �1
and leaves unaffected the properties of the matrix. The entries of an .1;�1/ matrix
will be denoted by .C;�/. In and Jn stand for the identity matrix of order n and the
matrix with ones of order n, respectively. We write A.j/ for the absolute value of the
determinant of the j 
 j principal submatrix in the upper left corner of the matrix
A, i.e. the j 
 j leading principal minor. Similarly, AŒj� denotes the magnitude of the
determinant of the lower right j 
 j principal submatrix of A.

We write Jb1;b2;��� ;bz for the all ones matrix with diagonal blocks of sizes b1 

b1; b2 
 b2 � � � bz 
 bz; and aijJb1;b2;��� ;bz for the matrix, for which the elements of
the block with corners
.i C b1 C b2 C � � � C bj�1; i C b1 C b2 C � � � C bi�1/,
.i C b1 C b2 C � � � C bj�1; b1 C b2 C � � � C bi/,
.b1 C b2 C � � � C bj; i C b1 C b2 C � � � C bi�1/,
.b1Cb2C� � �Cbj; b1Cb2C� � �Cbi/ are the integers aij. We write .ki�aii/Ib1;b2;��� ;bz

for the matrix direct sum
.k1 � a11/Ib1 C .k2 � a22/Ib2 C � � � C .kz � azz/Ibz :
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Minors of Hadamard Matrices

Sharpe’s Results

The first known effort for calculating minors of Hadamard matrices is estimated to
be accomplished in 1907 by Sharpe [49]. The essence of his results is summarized
in the next Theorem.

Theorem 3. Let H be a Hadamard matrix of order n. The cofactor of any element
of H is ˙n

n
2�1, the sign being the same as the sign of that element. The second

minors of H are 2n
n
2�2 or 0, according as the complementary minor is 2 or 0. The

third minors of H are 4n
n
2�3 or 0, according as the complementary minor is 4 or 0.

Theorem 3 actually gives all possible values of n � j, j D 1; 2; 3, minors of
Hadamard matrices according to the determinant of the respective excluded j 
 j
matrix. Sharpe’s idea, which leads to short, elegant proofs, is based on considering
a special arrangement of the entries in a Hadamard matrix. It takes appropriately
into account the definition HHT D nIn by observing that when comparing any pair
of rows or columns, there is always an equal number of changes and permanences
of sign amongst the corresponding elements. But unfortunately it doesn’t seem to
be applicable for calculating minors of orders n � j for j > 3.

A New Technique

A new idea for computing n � j minors was proposed in 2001 [34]. First of all, the
notion of a matrix denoted as Uj, containing all possible columns of a normalized
Hadamard matrix clustered together for some number of rows j, was introduced as
follows.

Let yT
ˇC1 be the vectors containing the binary representation of each integer ˇ C

2j�1 for ˇ D 0; : : : ; 2j�1 � 1. Replace all zero entries of yT
ˇC1 by �1 and define the

j 
 1 vectors uk D y2j�1�kC1; k D 1; : : : ; 2j�1. Uj shall denote all the matrices with
j rows and the appropriate number of columns, in which uk occurs uk times. In other
words, Uj is the matrix containing all possible 2j�1 columns of size j with elements
˙1 starting with C1. So,

Uj D

u1‚ …„ ƒC : : :C
u2‚ …„ ƒC : : :C : : :

u
2j�1

�1‚ …„ ƒC : : :C
u
2j�1

‚ …„ ƒC : : :C
C : : :C C : : :C : : : � : : :� � : : :�

: : : : : : :

: : : : : : :

C : : :C C : : :C : : : � : : :� � : : :�
C : : :C � : : :� : : : C : : :C � : : :�

D

u1 u2 : : : u2j�1�1 u2j�1

C C : : : C C
C C : : : � �
:::
:::

:::
:::

C C : : : � �
C � : : : C �

:
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Example 2. U3 D
u1 u2 u3 u4
C C C C
C C � �
C � C �

; U4 D

u1 u2 u3 u4 u5 u6 u7 u8
C C C C C C C C
C C C C � � � �
C C � � C C � �
C � C � C � C �

The matrix Uj is important in this study because it depicts a general form for the
first j rows of a normalized Hadamard matrix.

With respect to this definition, every Hadamard matrix H can be written in the
form

H D


M Uj

C

�
; (1)

where M and C are of orders j and n� j, respectively. The various values of det C are
the required n � j minors. It is important to emphasize that this method calculated
all possible n � j minors. The selected rows, which are written as the first j rows
of H, do not necessarily appear there but they can be located everywhere in the
matrix. They can be made to appear as first rows with appropriate row and/or column
interchanges, which leave unaffected the properties of the matrix. They are written
at the top only for the sake of better presentation and without any loss of generality.
This idea serves also the idea of standardizing a technique. The fact that all possible
upper left j 
 j corners are examined guarantees that with this technique all possible
.n � j/ 
 .n � j/ minors of A are calculated and no appearing values are missed out.

Next, the matrix CCT is formed and, taking into account the definition of
Hadamard matrices HHT D nIn, it can be written as a block matrix of the form

CCT D .n � j/Iu1;u2;:::;uz C aikJu1;u2;:::;uz ; z D 2j�1; (2)

where .aik/ D .�ui � uk/, with � the inner product. The required minor det C can be
computed using the following Theorem.

Theorem 4 (Determinant Simplification Theorem [35]). Let A D .ki � aii/

Ib1;b2;��� ;bz C aijJb1;b2;��� ;bz , i; j D 1; : : : ; z. Then

det A D
zY

iD1
.ki � aii/

bi�1 det D;

where

D D

2

6
6
6
4

k1 C .b1 � 1/a11 b2a12 b3a13 � � � bza1z

b1a21 k2 C .b2 � 1/a22 b3a23 � � � bza2z
:::

:::
:::

:::

b1az1 b2az2 b3az2 � � � kz C .bz � 1/azz

3

7
7
7
5
:
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Hence,

det C D .nn�2j�1�j det D/1=2; (3)

where

D D

2

6
6
6
4

n � ju1 u2a12 u3a13 � � � uza1z

u1a21 n � ju2 u3a23 � � � uza2z
:::

:::
:::

:::

u1az1 u2az2 u3az2 � � � n � juz

3

7
7
7
5
: (4)

In order to find only the feasible values of ui, the properties of a Hadamard matrix
led to the formulation of the following constraints for the number of columns of Uj

0 � t � u1 � u2 � : : : � u2j�3 � j;

0 � t � u2j�3C1 � : : : � u2j�2 � j;

0 � t � u2j�2C1 � : : : � u2j�2C2j�3 � j;

0 � t � u2j�2C2j�3C1 � : : : � u2j�31 � j:

This problem has been treated from an optimization point of view and the
appropriate methods have been applied for deriving the required results. This
technique confirmed Sharpe’s already known results and extended them to the n � 4
case, as given in the next Theorem.

Theorem 5. The n � 4 minors of a Hadamard matrix of order n are 0, 8n
n
2�4 or

16n
n
2�4.

The idea used for proving Theorem 5 could be theoretically generalized to an
algorithm MINORS1 for computing all possible n� j minors of Hadamard matrices.
But it was impossible to implement this idea in practice for j > 4 due to the
demanding involved complexity. This issue is mainly connected with the huge
amount of all possible j 
 j matrices M, which can exist in a Hadamard matrix,
especially while j grows, and also with the difficulty to handle the values of ui

effectively.

A Further Development

A few years later in 2003 a new algorithm MINORS2 for computing n � j minors
of Hadamard matrices was proposed [37]. This idea is similar to the one used in
[34] but there are some essential differences, which made it possible to obtain new
results.

This paper suggests the notion of IP equivalence as a criterion for reducing
the total number of matrices M, when the form (1) is considered. Two matrices
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are called IP equivalent (inner product equivalent) if they have the same IP
profile vector. For a matrix M of order j the IP profile vector is the vector
.m12;m13; : : : ;m1j;m23;m24; : : : ;m2j; : : : ;mj�1;j/ formed by all possible inner prod-
ucts mkl for every pair of rows k and l of M. The usefulness of this criterion will be
explained later in this subsection.

In order to skip more unimportant matrices M, the notion of Hadamard submatrix
was also introduced. The matrix N WD ŒM Uj� is formed and the linear system,
occurring from the order of N and the orthogonality of any three of its rows (which
constitute the matrix N1), with unknowns the number of columns of Uj is set up.
If the solution of this system has nonnegative integer components and the solution
satisfies the following Lemma 1, then N1 is called a Hadamard submatrix.

Lemma 1. For the first j rows, j � 3, of a normalized Hadamard matrix H of order
n, n > 3, and for all the 2j�1 possible columns u1; : : : ;u2j�1 of Uj, it holds

0 � ui � n

4
; for i D 1; : : : ; 2j�1:

This Lemma is useful for finding only feasible values of ui, and moreover for
limiting any calculations, since the numbers of columns in Uj are proven to be
subject to the constraints given in Lemma 1. The notion of Hadamard submatrix
is useful since it identifies matrices, which are possible to exist embedded inside a
Hadamard matrix, and skips the rest.

The proposed algorithm for computing minors has the following functionality.
First, all IP inequivalent ˙1 matrices M of order j are generated. From these
matrices only the possible Hadamard submatrices are kept. Then, for each possible
Hadamard submatrix, a linear system with unknowns the numbers of columns of
Uj is formed, taking into account the dimension and the orthogonality of every
two rows of a Hadamard matrix. The determinant is evaluated with the help of
formulas (3) and (4).

The concept of IP equivalence is useful in the above procedure for constructing
only the different linear systems that can arise by considering the first j rows of a
Hadamard matrix, i.e. only IP inequivalent matrices give different linear systems.
The IP equivalent ones yield same systems and don’t have to be taken into account
for the rest of the algorithm.

The new technique verifies the already known results up to j D 4. The technique
seems to be applicable for some more values of j, but the result won’t be of general
nature, i.e. it can’t be proved for every n but only for specific values of n fixed.
This happens because in such cases the number of unknowns in the linear systems
is greater than the number of equations, so there exist parameters in the solutions.
The only known possibility so far for estimating the parameters, which actually
correspond to some columns of Uj, is Lemma 1. The upper bound given there is
n-dependent, so the same will hold for the resulting values of minors.

Algorithm MINORS2 has been tested for n D 12; 16 and for j D 1; 2; : : : ; 7 and
the results are presented in Table 2. These results lead to formulating the following
conjecture for minors of Hadamard matrices.
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Table 2 All possible values of minors of orders n � 1; : : : ; n � 7 for
Hadamard matrices of order n D 12; 16, where D D nn=2

Order Values of minors

n � 1 .1=n/D

n � 2 0, .2=n2/D

n � 3 0, .4=n3/D

n � 4 0, .q=n4/D; q D 8; 16

n � 5 0, .q=n5/D; q D 16; 32; 48

n � 6 0, .q=n6/D; q D 32; 64; 96; 128; 160

n � 7 0, .q=n7/D; q D 64; 128; 192; 256; 320; 384; 448; 512; 576

Conjecture 3.

.n � j/ 
 .n � j/ minors of Hadamard matrices
All possible .n � j/ 
 .n � j/, j � 1, minors of Hadamard matrices are

0 or p � n.n=2/�j; for p D 2j�1; 2 � 2j�1; 3 � 2j�1; : : : ; s � 2j�1;

where

s � 2j�1 D maxfdet AjA 2 R
j�j;with entries ˙ 1g

and the value 0 is excluded from the case j D 1.

Alternatively, the obtained results can be summarized with the formula

Mn�j D 0 or p � n.n=2/�j; j D 0; 1; 2; : : : ;

where for the evaluation of the coefficient p the following procedure is adopted:
p WD 2j�1
m WD maxfdet.A/jA 2 R

j�j;with elements ˙ 1g
k WD 1

repeat
p D k � p
k D k C 1

until
p D m.
The maximum determinant values for ˙1 n 
 n matrices are given in Table 1.
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The Latest Algorithm

The state-of-the-art algorithm MINORS3 for computing n � j minors of Hadamard
matrices was introduced in [40]. The algorithm employs the same main idea as
[37], but it handles in a totally different and more effective way the classification of
matrices M and the final determinant.

The idea is again based on the partitioning (1). The possible existing matrices M
in the upper left j 
 j corner are identified with the help of algorithm EXIST. This
algorithm specifies whether a set of j 
 j matrices Mi can always exist or not among
all possible columns that can appear in the first j rows of a Hadamard matrix of order
n, or equivalently in its upper left corner (this can be done with H-equivalent column
interchanges). The main idea of the algorithm is to form the linear system that results
(1) from summing all possible columns of length j with elements ˙1 starting with
C1 (namely, the total number of columns of the matrix Uj must be equal to the order
n) and (2) from the property that every two distinct rows of a Hadamard matrix are
orthogonal. The system is solved (the parameters, if there are any, are bounded with
the help of Lemma 1) and it is examined whether the columns, which constitute the
matrices under investigation Mi, always appear among the solutions. If they appear,
it is implied that the matrices Mi always exist within the first j rows of a Hadamard
matrix of order n, otherwise not.

EXIST is actually a generalization of the criterion “Hadamard submatrix,”
which is implemented in a symbolical computer algebra setting that guarantees
furthermore its precision. Algorithm EXIST is based formally on the special
structure and properties of Hadamard matrices, in contrast with the more intuitive
and less stringent concepts of “IP equivalent matrices” and “Hadamard submatrix.”
However, the performance of EXIST is about the same as the combination of these
two criteria, i.e. it doesn’t achieve any new remarkable reduction in the total amount
of possible matrices under examination M. From now on, the intention is to write
down for every possible upper left j 
 j corner M the appearing values for the
determinant of C, which is the required minor. For this purpose, the following
preliminary results are used.

Lemma 2. Let A D .k � 	/Iv C 	Jv , where k; 	 are integers. Then,

det A D Œk C .v � 1/	�.k � 	/v�1 (5)

and for k ¤ 	;�.v � 1/	, A is nonsingular with

A�1 D 1

k2 C .v � 2/k	 � .v � 1/	2
fŒk C .v � 1/	�Iv � 	Jvg: (6)

The first part of Lemma 2 is straightforward to show, while the second part is a
special case of the Sherman–Morrison formula [7, p. 239], which computes the
inverse of a rank-one-correction of a nonsingular matrix B as
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.B � uvT/�1 D B�1 C B�1uvTB�1

1 � vTB�1u
;

where u; v are vectors and vT B�1u ¤ 1. Indeed, (6) occurs for B D .� � 	/Iv and
u D �	Œ1 1 : : : 1�T and v D Œ1 1 : : : 1�T .

Lemma 3 (Schur Determinant Formula [30, p. 21]). Let B D


B1 B2
B3 B4

�
,

B1 nonsingular. Then

det B D det B1 � det.B4 � B3B
�1
1 B2/: (7)

In the sequel, a system of 1C . j
2
/ equations with 2j�1 unknowns the numbers of

columns of Uj is solved for every M; the system results from the order of H and from
the orthogonality of its first j rows. The matrix CT C is formed taking into account
HTH D nIn and the result is written in block form as

CTC �


E1 F1
FT
1 G1

�
;

where E1 D nIu1 � jJu1 . Initially, the matrix

G1 � FT
1E�1

1 F1 �


E2 F2
FT
2 G2

�

is computed, where E2 is of order u2 
 u2. Then, according to (7),

det CTC D det E1 � det.G1 � FT
1E�1

1 F1/

D det E1 � det E2 � det.G2 � FT
2E�1

2 F2/:

From (5) det E1 and det E2 are calculated and the algorithm proceeds with calcu-
lating G2 � FT

2E�1
2 F2 with the help of (6). So the aim is to derive det CTC by

consecutive applications of formula (7), with help of (5) and (6).
Due to the clustering of same columns in Uj, CTC and all the intermediate

matrices Gk�FT
k E�1

k Fk, k D 1; : : : ; 2j�1�1, will appear in block form with diagonal
blocks of known orders ui 
 ui, i D k C 1; : : : ; 2j�1, and due to the orthogonality of
H, all blocks will be of the form .a � b/I C bJ, for various a; b.

For k D 2; : : : ; 2j�1 � 1 the sequence of matrices

Gk � FT
k E�1

k Fk �


EkC1 FkC1
FT

kC1 GkC1

�

is computed, where each Ek is of order uk 
 uk. The determinants of Ek are stored.
The last matrix of the sequence
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G2j�1�1 � FT
2j�1�1E

�1
2j�1�1F2j�1�1 D E2j�1

consists of one block of order u2j�1 
 u2j�1 and its determinant is evaluated directly
with (5). The required absolute value of the determinant is computed from the
formulas

det DTD WD
2j�1Y

iD1
det Ei; j det Dj D

p
det DTD:

Although algorithm MINORS3 might seem extremely complicated at a first
glance, it is designed in such a way that the special structure and properties of every
appearing matrix are taken into account. So, all necessary matrix multiplications
and inversions are not performed explicitly but in an efficient manner and the
total computational cost remains at relatively low levels. The computational cost
is O.23.j�1// operations for matrix multiplications and inversions. This amount
is significantly less than the number of flops required, if the calculations are
performed explicitly, even if the fastest possible algorithm for matrix multiplication
and inversion is used (see [26]). It is interesting to mention that some matrix
multiplications in MINORS3 are carried out with the lowest possible cost, which
is n2 operations for n 
 n matrices.

Regardless of all this effort and although the minimum possible cost for
matrix multiplication is reached, the total computational cost of the algorithm
remains at high levels, because of the exhaustive (complete) searches performed
for determining the possible matrices M and the feasible values of parameters
according to Lemma 1. Unfortunately these searches cannot be avoided because
if some cases are excluded, some values of minors might be skipped, which could
probably appear, and in this way the result is false, since not all possible values will
be calculated. Algorithm MINORS3 verified the results of Table 2 and extended
them only for the case n D 20.

Gaussian Elimination and the Growth Problem

Consider a linear system of the form A � x D b, where A D Œaij� 2 R
n�n is

nonsingular. Gaussian elimination (GE) [7, 19, 26, 27, 57] is the simplest way
to solve such a system by hand, and also the standard method for solving it on
computers. GE without pivoting fails if any of the pivots is zero and it behaves
worse if any pivot becomes close to zero. In this case the method can be carried out
to completion but it is totally unstable and the obtained results may be totally wrong,
as it is already demonstrated in a famous example by Forsythe and Moler [15].

Therefore, a search for the element with maximum absolute value is performed.
If the search is done in the respective column, then we have GE with partial pivoting,
else if it is done in the respective lower right submatrix we have GE with complete
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pivoting. Let A.k/ D Œa.k/ij � denote the matrix obtained after the first k pivoting

operations, so A.n�1/ is the final upper triangular matrix. A diagonal entry of that
final matrix will be called a pivot.

Traditionally, backward error analysis for GE is expressed in terms of the growth
factor

g.n;A/ D maxi;j;k ja.k/ij j
maxi;j jaijj ;

which involves all the elements a.k/ij ; k D 1; 2; : : : ; n that occur during the
elimination. The growth factor actually measures how large the entries become
during the process of elimination. The following classic theorem illustrates the
accuracy of the computed solution.

Theorem 6 (Wilkinson [26, p. 165]). Let A 2 R
n�n and suppose GE with partial

pivoting produces a computed solution Ox to A � x D b. Then there exists a matrix�A
and a constant c3n such that

.A C�A/Ox D b; k�Ak1 � c3nn2g.n;A/kAk1:

It is clear that the stability of GE depends on the growth factor. If g.n;A/ is of
order 1, not much growth has taken place, and the elimination process is stable. If
g.n;A/ is bigger than this, we must expect instability. If GE can be unstable, why is
it so famous and so popular? The answer seems to be that although some matrices
cause instability, these represent such an extraordinarily small proportion of the set
of all matrices that they “never” arise in practice simply for statistical reasons. This
explanation gives rise to a statistical approach to the growth factor and motivates
the study of its behavior for random matrices [9, 58]. In practice the growth factor
is usually of order 10 and therefore most numerical analysts regard the occurrence
of serious element growth in GE with partial pivoting as highly unlikely in practice.
So, the method can be used with confidence and constitutes a stable algorithm in
practice [56].

The determination of g.n;A/ in general remains a mystery. Regarding the
possible magnitude of the growth factor for partial pivoting, it is easy to show
that g.n;A/ � 2n�1. Wilkinson in [61, p. 289] and [62, p. 212] has reported of
special form matrices attaining this upper bound. Higham and Higham characterize
all matrices attaining this upper bound in the following theorem.

Theorem 7 ([28]). All real n 
 n matrices A, for which g.n;A/ D 2n�1 for partial
pivoting, are of the form

A D DM

2

4T
::: �d

0
:::

3

5 ;
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Table 3 Values of f .n/ for Wilkinson’s bound

n 10 20 50 100 200 1000

f .n/ 19 67 530 3300 26,000 7,900,000

where D D diag.˙1/, M is unit lower triangular with mij D �1 for i > j,
T is an arbitrary nonsingular upper triangular matrix of order n � 1, d D
.1; 2; 4; : : : ; 2n�1/T , and � is a scalar such that � WD ja1nj D maxi;j jaijj.

Although the growth factor can be as large as 2n�1 for an n 
 n matrix, the
occurrence of a growth factor even as large as n is rare. However, later than the early
1990s some applications with large growth factors have been published [14, 16, 63].
Efforts have been made to explain this phenomenon with some success [28, 57, 58],
yet the matter is far from completely understood.

For complete pivoting, Wilkinson has showed in [61, pp. 282–285] that

g.n;A/ � Œn 2 31=2 : : : n1=.n�1/�1=2 � f .n/ � cn1=2n
1
4 log n

and that this bound is not attainable. The bound is a much more slowly growing
function than 2n�1, but it can still be quite large, cf. Table 3.

Matrices with the property that no exchanges are actually needed during GE
with complete pivoting are called completely pivoted (CP) or feasible. Equivalently,
a matrix is CP if the rows and columns have been permuted so that GE without
pivoting satisfies the requirements for complete pivoting, hence the maximum
elements on each elimination step appear on the diagonal position. For a CP matrix
A we have

g.n;A/ D maxfp1; p2; : : : ; png
ja11j ; (8)

where p1; p2; : : : ; pn are the pivots of A. The study of the values appearing for g.n;A/
and the specification of pivot patterns are referred to as the growth problem.

Cryer [6] defined

g.n/ D supf g.n;A/ j A 2 R
n�n ;CPg:

The function g.n/ plays a role in the analysis of roundoff errors in GE ([15, p. 103]
and [62, p. 213]). Wilkinson in [62, p. 213] noted that there were no known examples
of matrices for which g.n;A/ > n. The problem of determining g.n/ for various
values of n is called the growth problem. The following results are known:

• g.2/ D 2 (trivial)
• g.3/ D 21

4
[5, 6, 8, 54]

• g.4/ D 4 [5, 6, 54]
• g.5/ < 5:005 [5]



Hadamard Matrices: Insights into Their Growth Factor and Determinant Computations 397

History of the Problem

In 1964 Tornheim [54] (see also [6]) proved that g.n;H/ � n for a CP n 
 n
Hadamard matrix H. In 1968 Cryer [6] formulated the following confecture.

Conjecture 4.

The Complete Pivoting Conjecture for Gaussian Elimination
g.n;A/ � n, with equality iff A is a Hadamard matrix”.

20 years later, in 1988 Day and Peterson [8] provided useful insight into the pivot
structures of Hadamard matrices belonging to the Sylvester class [29], the matrices
of which are constructed according to the scheme

H2n D


Hn Hn

Hn �Hn

�
:

Actually, they have shown the following result.

Proposition 2 ([8]). Suppose A is n 
 n and CP and let ˝kA denote the Kronecker
product of k copies of A. Then A˝H2 is CP and its pivots are the Kronecker product
of the pivots of A with those of H2, that is, the entries of

Œa.0/11 : : : a.n�1/
nn �˝ Œ1 2�:

Therefore A ˝ Hn is CP for all n and the pivots are the Kronecker products of the
pivots of A with ˝nŒ1 2� D Œ1 2 2 4 2 4 4 8 : : :�. If A is replaced by H2, we obtain
the pivot structure of Hadamard matrices of orders 2n that belong to the Sylvester
equivalence class, and the next corollary holds.

Corollary 1. For any Hadamard matrix H of order n with growth factor g.n;H/
and maximum pivot pn, there exists a Hadamard matrix of order 2tn with growth
factor 2tg.n;A/ and maximum pivot 2tpn.

Corollary 1 shows in fact Cryer’s conjecture for Hadamard matrices belonging in
the Sylvester equivalence class. Day and Peterson provided also some experimental
results for pivot patterns of 16 
 16 Hadamard matrices and conjectured that the
fourth pivot from the end is n=4, which was shown to be false in 1998 by Edelman
and Friedman [11], who found the first H16 with fourth pivot from the end n=2.
In 1991 Gould reported on matrices that exhibited, in presence of roundoff error,
growth larger than n [10, 20], cf. Table 4. These matrices were created by simulating
the process of GE as an appropriate optimization problem. Thus the first part
of Cryer’s conjecture was shown to be false. The second part of the conjecture
concerning the growth factor of Hadamard matrices still remains an open problem.

Over all these years small progress has been made towards the Hadamard part of
Cryer’s conjecture. In 1995 Edelman and Mascarenhas [12] proved that the growth
factor of H12 is 12 by demonstrating its unique pivot pattern. In this work the
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Table 4 Gould’s results
on growth factors greater
than n

n Growth

13 13.02

18 20.45

20 24.25

25 32.99

difficulties of such problems in general have been stated for first time, and also
more specifically:

“it appears very difficult to prove that g.16;H16/ D 16”.

It is known that if GE with complete pivoting is applied to Hadamard matrices
of order 16, over 30 different pivot patterns are attained, by contrast with Hadamard
matrices of orders less than or equal to 12, which yield only one pivot pattern [12].
Hadamard matrices of order 16 can be classified with respect to the H-equivalence in
five classes of equivalence I,: : : ;V, see [23, 59]. Classes IV and V are one another’s
transpose, and so they are identical for GE with complete pivoting, since a matrix is
CP iff its transpose is CP, in which case both give the same pivot pattern.

Extensive experiments revealed 34 possible pivot patterns for Hadamard matrices
of order 16, though not all patterns appeared for each equivalence class. A great
difficulty arises at the study of this problem because H-equivalence operations do
not preserve pivots, i.e. H-equivalent matrices do not have necessarily the same pivot
pattern and the pivot pattern is not invariant under H-equivalence. Therefore it is not
sufficient to specify the pivot pattern of a representative matrix of an equivalence
class, but there must be available information from all matrices. This property is
an obstacle for studying theoretically the pivots of H16, which are classified in
five equivalence classes [59] and had given until that time more than 30 pivot
sequences. So, for the case of proving the pivot structures of H16, a naive computer
exhaustive search creating all possible H16 by performing all possible H-equivalence
operations would require .16Š/2.216/2 	 1036 trials. Taking into account that GE
should be applied additionally to these matrices, then it becomes clear that the total
amount of trials and computations cannot be carried out within a realistic, sensible
time framework, even by very powerful computers. In 2007 [40] all 34 possible
pivot patterns of H16 were demonstrated theoretically and the complete pivoting
conjecture for H16 was proved.

The Importance of Determinant Calculations

In the following we will describe the principal technique used in the majority of the
works for calculating pivots of Hadamard matrices, which is based on determinant
evaluations. The idea takes advantage of the following lemma, which constitutes a
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powerful tool for this research, since it offers a possibility for calculating pivots in
connection with minors.

Lemma 4 ([6, 8, 12, 17, 42]). Let A be a CP matrix.

(i) The magnitude of the pivots appearing after application of GE operations on A
is given by

pj D A.j/

A.j � 1/ ; j D 1; 2; : : : ; n; A.0/ D 1: (9)

(ii) The maximum j 
 j leading principal minor of A, when the first j � 1 rows and
columns are fixed, is A.j/.

So, it is obvious that the calculation of minors is important in order to study
pivot structures, and moreover the growth problem for CP Hadamard matrices.
Since Cryer’s conjecture is connected with CP Hadamard matrices, Eq. (9) can be
exploited for calculating pivots for them but it is important to emphasize that the
results are valid for every H16 if GE with complete pivoting is applied. Indeed, if
a matrix isn’t initially CP, the row and column operations of GE with complete
pivoting bring it always in CP form, hence we can deal without loss of generality
only with CP Hadamard matrices.

The second part of Lemma 4 assures that the maximum j
 j minor appears in the
upper left j
 j corner of A. So, if the existence of a matrix with maximal determinant
is proved for a CP Hadamard matrix, we can indeed assume that it always appears
in the upper left corner.

Computation of .n � j/ � .n � j/ Minors

Pivots from the end of the pivot structure of Hadamard matrices are calculated in
the bibliography with relation (9). In order to take advantage of (9) for this purpose,
one has to calculate minors of orders .n � j/ 
 .n � j/, j D 1; 2; : : : for Hadamard
matrices of orders n.

Day and Peterson’s Results

After many years of unremarkable progress towards the growth factor of Hadamard
matrices, Day and Peterson [8] presented an interesting variety of results regarding
the growth factor generally. The portion relevant to the growth problem for
Hadamard matrices is summarized in the next proposition.

Proposition 3 ([8]). Let H be an n 
 n CP Hadamard matrix and reduce H by GE.
Let D D nn=2. Then the possible values for H.k/ and jh.k�1/

kk j when k � n � 6 are
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k H.k/ jh.k�1/
kk j

n D n

n � 1 .1=n/D n=2

n � 2 .2=n2/D n=2

n � 3 .4=n3/D n=2 n=4

n � 4 .q=n4/D; q D 8; 16 np; p D 1; 1=2; 1=4; 1=3; 1=6

n � 5 .q=n5/D; q D 16; 32; 48 np; p D 3=2; 1; 3=4; 1=2; 3=8; 1=3;

3=10; 1=4; 1=5; 1=8; 1=10

n � 6 .q=n6/D; q D 32; 64; 96; 128; 160

The values of H.k/ in Proposition 3 are proved by exploiting the next proposition,
which establishes an explicit connection between k
k upper left and .n�k/
.n�k/
lower right principal minors of Hadamard matrices.

Proposition 4 ([8]). If H is a Hadamard matrix of order n, then

nn=2H.k/ D nkHŒn � k�: (10)

The values of jh.k�1/
kk j in Proposition 3 are proved by substituting appropriately the

values of H.k/ in (9).
The results presented in section “Minors of Hadamard Matrices” concerning the

evaluation of minors of orders .n � j/ 
 .n � j/, j D 1; 2; : : : form a recent progress
to this issue which can be adopted for the computation of pivots from the end.

Computation of j � j Minors

In this section we will illustrate briefly the two principal techniques that have been
used in the works [12] and [40] for calculating j 
 j minors of CP Hadamard
matrices.These calculations can lead us to the specification of pivots from the
beginning. The results H.1/ D 1, H.2/ D 2 and H.3/ D 4 for a CP Hadamard
matrix are trivial.

Lemma 5 ([8]). If H is a CP Hadamard matrix, then H.4/ D 16, i.e. the 4 
 4

principal submatrix of H is a Hadamard matrix of order 4.

The Technique Used for H12

For estimating H.5/ for a CP H12, the authors of [12] utilize the interpretation of
a Hadamard matrix as a symmetric block design (cf. section “The Pivot Pattern of
H12”) in appropriate combination with the property of Lemma 4(ii).

Lemma 6 ([12]). If H is a CP Hadamard matrix of order 12, then H.5/ D 48.
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The Technique Used for H16

The main idea presented in [40] for deriving values of j 
 j minors is to specify all
possible matrices that can always exist embedded inside a CP Hadamard matrix.
Hence, if a matrix is proved to exist as a possible submatrix of a CP Hadamard
matrix, then one can claim that its determinant is a possible minor for the Hadamard
matrix. The first question towards applying this idea is, which matrices should be
examined. An obvious answer would be to construct all possible j 
 j matrices
with entries ˙1 and first row and column with C1’s and to use them as input for
an appropriately designed algorithm. This idea would lead to a forbidding from a
computational point of view strategy, because, e.g., for j D 7 one should construct
236 	 1010 matrices. Furthermore, any information obtained from the order n of
the Hadamard matrix wouldn’t be taken into account under this perspective and it
would be also hard to apply the CP property as a selection criterion.

The proposed remedy is a stepwise extension procedure. It starts with the 2 
 2
matrix

C C
C �

�

(which is actually H2). An important assumption is that H2 exists embedded inside
any Hn. This follows straightforwardly from the orthogonality of the first two rows,
which implies the existence of some entry �1 in the second row, and so this entry
can be brought by means of a column permutation at position .2; 2/. In the sequel,
the following procedure was adopted for producing and classifying the matrices of
higher orders.

Extension Procedure

For j D 3; 4; : : :

1. Extension of the .j � 1/
 .j � 1/ existing matrices to all possible normalized ˙1
j 
 j matrices;

2. From all possible extensions only the CP ones are kept;
3. The CP extensions are separated into classes according to the appearing values

of determinants;
4. The set Mj with the matrices that can always exist among the first j rows of H16 is

kept. Mj is created by examining the extensions with the maximum determinant.
If they always exist, their set is denoted as Mj, otherwise we proceed with the
second maximum appearing determinant value. If the matrices with the two
largest determinant values always exist, their set is denoted as Mj, otherwise
we proceed with the third maximum appearing value, and so on.



402 C.D. Kravvaritis

The second crucial question is, how to examine whether a matrix exists embed-
ded inside a CP Hn. The answer is partially given by the previously described
algorithm EXIST, which verifies the occurrence or not of a matrix inside Hn but
doesn’t consider at all the CP property of Hn. This is actually done with the help of
Lemma 4 (ii), which guarantees that the minor with maximum magnitude appears
in the upper left corner of a CP matrix. So, if a matrix is proved to exist inside
Hn and at the same time this matrix attains the maximal value of determinant
with respect to the range of determinant values of all possible existing matrices
of the same order, then it can be deduced that this matrix can always appear (with
H-equivalence operations, if necessary) in the upper left corner of a CP Hadamard
matrix. This strategy is incorporated as Step 4 in the above described extension
procedure.

For instance, according to this procedure, the matrix

A � H4 D

2

6
6
4

C C C C
C � C �
C C � �
C � � C

3

7
7
5 ;

which is proved to exist in every Hn for n > 4, is extended to all possible 5 
 5

matrices of the form
2

6
6
6
6
6
4

C C C C C
C � C � �
C C � � �
C � � C �
C � � � �

3

7
7
7
7
7
5
;

where the elements � can be ˙1. From these 27 D 128 possible 5 
 5 matrices
only the 52 CP matrices with determinants 48 and 32 forming M5, and tested with
algorithm EXIST can always exist among all possible columns that can appear in
the first five rows, and furthermore in the upper left corner of a CP H16. Since the
52 matrices M5 with determinants 48 and 32 always exist among the rows of H16,
from Lemma 4(ii) we derive that

H16.5/ D 32 or 48:

Following a similar manner the following results have been also derived.

• H16.6/ D 128 or 160;
• H16.7/ D 256 or 384 or 512 or 576;
• H16.8/ D 1024 or 1536 or 2048 or 2304 or 2560 or 3072 or 4096:
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Computation of Pivot Patterns

The first four pivots of a CP Hadamard matrix were determined by Day and Peterson
[8] as given in the next result.

Proposition 5 ([8]). If Hn is a CP Hadamard matrix, n � 4, then the first four
pivots are 1, 2, 2, and 4, respectively. For n > 4, the fifth pivot is 2 or 3.

When performing GE with complete pivoting on a Hadamard matrix, the final
pivot always has magnitude n [6, Theorem 2.4]. This result was also verified by the
technique introduced in [34] and extended as follows.

Proposition 6 ([34]). If Hn is a CP Hadamard matrix, n � 4, then the last four
pivots are (in backward order) n; n

2
; n
2

and n
4

or n
2
.

After having derived the results of section “A New Technique,” this proposition
was easily proved by substituting appropriately the values of minors in the relative
quotients obtained by Eq. (9). This result verifies theoretically the occurrence of the
two possible values as fourth pivot from the end.

The Pivot Pattern of H12

Husain [31] showed that there is only one Hadamard matrix of order 12 up to
H-equivalence. Edelman and Mascarenhas [12] take the first step towards proving
the Hadamard part of Cryer’s conjecture by settling a conjecture by Day and
Peterson [8, p. 508] that only one set of pivot magnitudes is possible for a Hadamard
matrix of order 12. Their proof is carried out in a very elegant and compact manner
by utilizing the notion of symmetric block designs to reduce the complexity that
would be encountered in enumerating cases. Lemma 5 is taken also into account.
So, they take for granted that H4 appears in the upper left corner of a H12 and show
that some 5 
 5 submatrix of H12 with determinant 48 includes H4. Hence, one can
conclude that H12.5/ D 48. Indeed, if there is a submatrix M5 with determinant 48,
then Lemma 4(ii) in combination with Table 2 tell that 48 D j det M5j � H12.5/ �
48, implying H12.5/ D 48.

A symmetric block design with parameters v; k, and 	 is a collection of v objects
and v blocks such that

• every block contains k objects;
• every object appears in k blocks;
• every pair of blocks has 	 objects in common;
• every pair of objects can be found in 	 blocks.

A Hadamard matrix of order n D 4t is equivalent to a symmetric block design with
parameters v D 4t �1, k D 2t �1 and 	 D t �1 [24]. Hence, H12 can be interpreted
as an arrangement of 11 objects into 11 blocks containing five objects such that each
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object appears in exactly five blocks, every pair of distinct objects appears together
exactly twice and every pair of distinct blocks has exactly two elements in common.

The fifth pivot of a CP H12 is calculated by substituting the results of Lemmas 5
and 6 in (9) as

p5 D H12.5/

H12.4/
D 3:

For deriving the rest of the pivots of H12, the authors of [12] take advantage of
Proposition 4 and of the following corollary.

Corollary 2 ([12, Corollary 2.1]). If H is a Hadamard matrix of order n, then the
kth pivot from the end is

pnC1�k D nHŒk � 1�

HŒk�
:

Substituting H12.5/ D 48 in (10) gives HŒ7� D 576. The remaining values of
minors are obtained by taking into account that each n 
 n ˙1 matrix attaining
the maximum determinant contains an .n � 1/ 
 .n � 1/ submatrix with maximum
determinant. So, one can conclude HŒ5� D 48; HŒ4� D 16; HŒ3� D 4; HŒ2� D 2

and HŒ1� D 1. The last seven pivots follow from Corollary 2. Hence, the unique
pivot pattern of a CP H12 is

Œ1; 2; 2; 4; 3; 10=3; 18=5; 4; 3; 6; 6; 12�:

The Pivot Patterns of H16

The main idea for trying initially to reduce the forbidding cost for finding the pivots
of H16 described in section “History of the Problem” was to split this task into
two independent subproblems: calculation of pivots from the beginning and from
the end of the pivot pattern. So, the results of sections “The Technique Used for
H16” and “The Latest Algorithm” can be utilized separately. A benefit from the
discrimination of the two tasks is that one deals in this manner only with relatively
small matrices not exceeding the order 8. On the contrary, if one would like to use
only the technique of section “The Latest Algorithm” or “The Technique Used for
H16” for the computation of the whole pivot pattern, then it would be mandatory
to deal with matrices of order up to 12, what would complicate furthermore the
computations.

Hence, the pivots p5; p6; p7, and p8 were calculated by taking advantage of
the strategy of section “The Technique Used for H16” and the pivots p10; p11, and
p12 with help of the results of section “The Latest Algorithm.” In both cases, the
appropriate values of minors were substituted carefully in formula (9) for deriving
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Table 5 Pivots of H16

Pivot Values

1 1

2 2

3 2

4 4

5 2,3

6 4, 8
3
, 10
3

7 2,4, 8
10=3

, 16
5

, 18
5

8 4, 9
2
,5,6,8

9 2, 8
3
, 16
5

, 4, 9
2
, 16
3

10 4, 16
8=5

,5,8

11 4, 16
10=3

,6,8

12 8, 16
3

13 4,8

14 8

15 8

16 16

magnitudes of pivots. By saying carefully it is meant that one should always take
the origin of a minor into account, i.e. to check whether a minor of order j is really
obtained from a minor of order j � 1 and not substitute blindly all values of minors
of orders j and j � 1 in (9). For example, all possible minor quotients for forming
p12 would be p12 D H16.12/

H16.11/
D

16 � 164
32 � 163 or

16 � 164
48 � 163 or

8 � 164
16 � 163 or

16 � 164
16 � 163 or

8 � 164
32 � 163 or

8 � 164
48 � 163 ;

by taking into account the values n�4 and n�5 from Table 2. The three last quotients
are rejected as possible values for p12 by using algorithm EXIST appropriately and
determining that the respective matrices cannot exist always in a H16.

The ninth pivot is calculated afterwards separately by using the property that the
product of the pivots equals the determinant of the matrix. The resulting pivot values
for H16 are summarized in Table 5. All 34 possible different pivot patterns of H16

are given in [40] and the classification of the pivot patterns in the five equivalence
classes is done experimentally only in [33].
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Further Progress and a Good Pivots Property

Here we present the latest results achieved on this topic. Additionally, we highlight
the significance of the newly introduction of a new notion of good pivots for the
analysis of the problem and study its properties, contribution, and a further outlook.

State-of-the-Art Results

Moreover, further progress on the complete pivoting conjecture for Hadamard
matrices and a new good pivots property are established in [41]. A fundamental
result of this study is presented in Proposition 7.

Proposition 7 ([41]). For every pivot pk, k D 2; : : : ; n, of a CP Hadamard matrix
H of order n it holds pk > 1. Furthermore, the leading principal minors form an
increasing sequence, namely H.k/ > H.k � 1/, k D 1; : : : ; n.

The result is proved by taking advantage of the special block form of the subma-
trices of H after the first k elimination steps, Hadamard’s inequality successively for
them and relation (9). The outcomes of Proposition 7 can be utilized appropriately
for demonstrating explicitly some possible values of their theoretically admissible
minors, resp., pivots, leading to the formulation of Corollary 3.

Corollary 3. Let H be a CP Hadamard matrix of order n. The possible values of
the leading principal minors of orders 5, 6, 7, and 8 of H are given in Table 6.

Applying Eq. (9) one can proceed to the specification of the theoretically
admissible minors and pivot values according to Proposition 7. It is not explicitly
proved that all of them appear actually. By means of the aforementioned theoretical
tools and argumentation, one can compute explicitly the possible values that the fifth
pivot of a CP Hadamard matrix can attain.

Corollary 4. The fifth pivot of a CP Hadamard matrix H of order n � 8 is 2 or 3,
after application of GE on H.

Table 6 All possible values H.5/, H.6/, H.7/, and H.8/ for any CP
Hadamard matrix H

H.5/ 32, 48

H.6/ 64, 96, 128, 160

H.7/ 128, 192, 256, 320, 384, 448, 512, 576

H.8/ 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408,

1536, 1664, 1792, 1920, 2048, 2176, 2304, 2560, 3072, 4096
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The following Lemma certifies that some specific values cannot be attained by
the sixth and seventh pivots. As a consequence they can be excluded from the
theoretical considerations.

Lemma 7. Let H be a CP Hadamard matrix H of order n � 8. After application of
GE with complete pivoting on H, the sixth pivot p6 and the seventh pivot p7 cannot
take the value 5 and 9, respectively.

An essential ingredient of the novel strategy for the computation of growth
factors for certain matrices is not necessarily the explicit specification of these
matrices, as it was done so far. It is sufficient to derive inequalities for their pivots
and to utilize them for calculating finally the growth factor simply with the aid of its
definition. For instance, we illustrate here the result concerning the possible values
of the sixth and seventh pivots appearing after application of GE on a CP Hadamard
matrix.

Corollary 5. The following bounds hold for the sixth and seventh pivots, resp., after
application of GE on a CP Hadamard matrix H

4=3 � p6 � 4 (11)

6=5 � p7 � 8 (12)

Moreover, careful substitution of minor values in (9) and taking into account
Proposition 7, Corollary 4 and the possible values of ˙1 determinants of order 6
and 7 presented in [8], one obtains the possible values for the sixth and seventh
pivots given in Table 7.

With the previously illustrated theoretical tools one can directly compute the
growth factor of a Hadamard matrix of order 12, offering a new proof for the issue,
which is simpler and more practical than the ones presented in [12] and [42]. These
techniques computed explicitly the pivot pattern of a Hadamard matrix of order
12 taking advantage of several strategies, in contrast to the latest approach with
the aforementioned theoretical results that doesn’t require analytical computation of
pivot patterns. The new proof is brief, demonstrates that all pivots are less or equal
to 12, and deploys also the definition (8) of the growth factor for CP matrices.

Corollary 6. The growth factor of a CP Hadamard matrix of order 12 is 12, when
GE is applied.

Table 7 All possible values of the sixth and seventh,
resp., sixth last and seventh last pivots for any CP
Hadamard matrix

p6 4/3, 2, 8/3, 3, 10/3, 4

p7 6/5, 4/3, 8/5, 2, 12/5, 5/2, 8/3, 14/5, 3,

16/5, 10/3, 7/2, 18/5, 4, 9/2, 14/3, 5, 16/3, 6, 7, 8
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Good Pivots

We present a new notion of good pivot patterns (or simply good pivots) that was
introduced in [41], in addition, e.g., to the one elaborated in [44].

Definition 3. A pivot pattern Œp1; p2; : : : ; pn� appearing after application of GE on
a matrix of order n is called good, if its pivots satisfy

pipn�iC1 D n; i D 1; : : : ; n:

According to this definition, good pivot patterns have evidently the form

"

p1; p2; : : : ; p n
2
;

n

p n
2

; : : : ;
n

p2
;

n

p1

#

;

i.e. their pivots appear with a specific sense of symmetry in the pattern. Hadamard
matrices are the only matrices known so far that lead to good pivot patterns. An
interesting observation is that numerical experiments suggest the rare appearance of
Hadamard matrices with this good pivots property. It is also difficult to construct
Hadamard matrices artificially so that they acquire this feature. It is meaningful
to study good pivot patterns obtained after GE with complete pivoting, since this
particular elimination strategy is important in view of Cryer’s growth conjecture.

The following Proposition 8 constitutes a criterion for the specification of
matrices possessing good pivot patterns.

Proposition 8 (The Equality of Quotients of Minors Property [41]). Let H be a
CP Hadamard matrix of order n with good pivot pattern. Then

H.k/

H.k � 1/ D HŒk�

HŒk � 1�
; (13)

where HŒk� denotes the magnitude of the lower right k 
 k principal minor of H.

Utilizing the previous results in this section one can demonstrate the following
fundamental Theorem 8. It reveals the usefulness and significance of the appearance
of good pivot patterns with respect to the computation of the growth factor of a CP
Hadamard matrix.

Theorem 8 ([41]). If the pivots Œp1; p2; : : : ; pn� of a CP Hadamard matrix H of
order n are good, then g.n;H/ D n.

In the sequel we present the latest results concerning pivot patterns of any
CP Hadamard matrix of order up to 20. They lead to posing the good pivots
conjecture. It concerns the specification of a Hadamard matrix in each equivalence
class satisfying the equality of quotients of minors criterion, which lead to growth
equal to their dimension.
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Table 8 On the application of GE with complete pivoting for
Hadamard matrices of orders n up to 20 (order, number of
H-equivalence classes, number of pivot patterns, number of good pivot
patterns)

n H-equivalence classes Pivot patterns Good pivots patterns

8 1 1 1

12 1 1 1

16 5 34 11

20 3 � 1128 � 47

Results concerning the application of GE with complete pivoting to Hadamard
matrices of order up to 20 are presented in Table 8. The results for orders 8, 12, and
16 are presented in [8, 12, 40], respectively. The results for n D 20 correspond to
extensive numerical experiments on a sufficiently large number of matrices carried
out for the needs of [41].

It is interesting to highlight that the 11 good pivot sequences appearing for H16

are split in all five H-equivalence classes existing when n D 16. Indeed, it is
straightforward to infer the exact distribution in the classes in view of all resulting
possible pivot patterns for H16 in [40]. Analogous experimentation can be performed
numerically for H20.

Hence, we notice that for Hadamard matrices of orders up to 20 there exists in
each equivalence class a representative Hadamard matrix possessing the good pivots
property. This m matrix fulfills the equality of quotients of minors criterion. With
the aid of this specific result, one can detect the representative Hadamard matrix of
a H-equivalence class with the good pivot pattern.

All the above results and remarks lead to stating the following conjecture.

Conjecture 5.

The good pivots conjecture
Every CP Hadamard matrix H of order n can be transformed with

H-equivalence operations to a form eH, satisfying the equality of quotients of
minors property. The growth of eH is equal to n.

The good pivots conjecture is confirmed for orders up to 20. For instance, the
H20 has operated as follows. A computer search algorithm generates H-equivalent
H20 matrices from the three possible equivalence classes. It has shown that some
pivot patterns, which appear for H20 belonging to the three equivalence classes, are
good. We notice that Hadamard matrices of order 20 belong to three H-equivalence
classes, cf., e.g., [46, 50]. For example, the following pivot pattern appears for
Hadamard matrices of order 20 from the three H-equivalence classes.

Œ1; 2; 2; 4; 3; 10=3; 18=5; 4; 40=9; 24=5; 20=.24=5/; 9=2; 5; 20=.18=5/;

6; 20=3; 5; 10; 10; 20�
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Thus, one can conclude that there can be found always a H20 being H-equivalent
to a H20 with good pivots. Concluding, one can find three nonequivalent Hadamard
matrices of order 20 in [46, 50]. The matrix in [46] from the first equivalence class
gives good pivots.

Infinite Classes of Hadamard Matrices with Good Pivots

Here we specify a possible construction of an infinite family of Hadamard matrices
with good pivots by means of the ordinary Kronecker product, cf, e.g., [43, p. 598].
The class can be generated starting from a CP Hadamard matrix with good pivots
and applying the following Theorem 9 consecutively.

Theorem 9 ([41]). Suppose the pivots of a CP matrix An of order n are good. Then
the pivots of An ˝ H2 are also good.

The proof takes also advantage of the fact that if the pivots Œp1; p2; : : : ; pn� of
a CP matrix An of order n are good, then the pivots of An ˝ H2 are known [8,
Proposition 5.12] to be

Œp1; p2; : : : ; pn�˝ Œ1; 2� D Œp1 ˝ Œ1; 2�; p2 ˝ Œ1; 2�; : : : ; pn ˝ Œ1; 2��:

Calculation of the last expression discloses that the pivots of An ˝ H2 are also
good, with the respective pivots product constant being 2n.

Relevant Open Problems

Through the description of the various techniques in sections “A New Tech-
nique,” “A Further Development,” and “The Latest Algorithm” it becomes evident
that the huge amount of matrices M, which can exist in the upper left j
 j corner of a
Hadamard matrix according to scheme (1), plays a crucial role in making algorithms
MINORS1, 2, and 3 impossible to implement in practice within a realistic period
of time, especially for j � 7. The criteria developed so far for reducing the total
amount of these matrices, based either on more intuitive ideas (“IP equivalent
matrices,” “Hadamard submatrix”) or on more formal aspects (algorithm EXIST),
didn’t succeed in a significant reduction of the total amount of matrices to the
“really useful” matrices M. By saying “really useful” it is meant the minimum
necessary amount of matrices M, which would give all possible different values
of the n � j minors. Hence there emerges the need to establish a theoretically correct
and practically feasible criterion for eliminating the unnecessary for the algorithms
matrices M, which at the same time doesn’t skip any appearing values of minors.
The same framework can be regarded also for reducing the amount of matrices in the
sets Mj, but in this case one should explore the mechanisms of Gaussian Elimination
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in order to find out which j 
 j matrices yield ultimately same pivot patterns, and
therefore are useless with respect to this study.

The study of the conjecture concerning n� j minors of Hadamard matrices might
furthermore lead to useful results concerning the possible values of determinants
of ˙1 matrices, which are not exactly specified even for relatively small orders
(n D 8). The relevant known results are given in Table 1. Comparing Conjectures 1
and 3 (or, equivalently Tables 1 and 2), one sees that there seems to be a connection
between the possible determinant values of j 
 j ˙1 matrices and the magnitudes of
minors of Hadamard matrices of respective orders n � j. Namely, the former values
appear as coefficients for the latter values before an n- and j-term. This observation
gives rise to the intuition that these two problems could be somehow connected.
So, any progress for the n � j minors of Hadamard matrices for j > 7 could yield
useful results concerning the possible determinants of ˙1 j 
 j matrices for j > 7,
and vice versa. Additionally, if one manages to implement a version of algorithm
MINORS (or another technique with the same purpose) up to the n�15 case, then it
would be possible to obtain an estimation for the maximum determinant of a 15
15
matrix with entries ˙1, which is an unsolved problem so far. Related problems about
determinants of .0;˙1/ matrices can be found in [3, 13, 22, 48].

Another open problem is to classify theoretically the appearing pivot patterns of
H16 or of other Hadamard matrices of higher orders in the appropriate equivalence
classes. It is known [59, p. 421] that H16 matrices can be classified with respect to the
H-equivalence in five classes I,: : : ;V. This research would require more information
on the properties of the classes, see [23, 59]. For example, the following reasoning
could be a motivation for such an effort. We observe [33] that the value 10=3 for
the sixth pivot does not appear in the I-Class of equivalence. Looking closely at
the possible relative quotients we see that this value corresponds to H16.6/ D 160.
Hence, in order to prove the nonoccurrence of p6 D 10=3 in I-Class, it is equivalent
to show that a 6 
 6 submatrix with determinant 160 cannot exist inside a matrix
of this class. The 6 
 6 ˙1 matrix attaining the maximum determinant value 160 is
called the D-optimal design of order 6 .D6). Or, whenever p5 D 3, equivalently this
means that the D-optimal design of order 5 exists embedded in these H16.

The methods presented in this work can be used as the basis for calculating the
pivot pattern of Hadamard matrices of higher orders, such as H20, H24 etc. The
complexity of such problems points out the need for developing algorithms that
can implement very effectively the ideas introduced in this work, or other, more
elaborate ideas. For instance, a question towards this direction is, is there a reliable
criterion for reducing the total amount of matrices M used as input for algorithm
Minors, so that no appearing values are skipped? The reduction of the amount of
matrices occurring with the extension procedure of section “The Technique Used
for H16” is a matter of concern, too. Another observation, which could lead to a
computational improvement, is the fact that all acceptable solutions of the linear
systems of algorithm EXIST, k � 5, are always obtained for the parameter values
0; : : : ; n=8. Hence, there arises the obvious question whether there is a more precise
upper bound for the possible columns in the first rows of a Hadamard matrix than the
one given in Lemma 1. Furthermore, a parallel implementation, which would limit
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significantly the computational time needed by the algorithms, could be a matter
under investigation.

It is also interesting to mention that the values of the pivots depend on the choice
of the maximum element at each elimination step, when there are at least two equal
maximum entries in the respective submatrix. More pivoting strategies leading to
several choices of the maximum entry are described in [14, 26]. For example, it
is known that the D-optimal design of order 5 can exist embedded inside a H16,
leading to the value of the fifth pivot p5 D 3. We attempt to find the pivot pattern of
a H16, which is equivalent to the one constructed with the command hadamard(16)
in Matlab. If we use a straightforward selection of the maximum element, i.e. to
choose the first maximum entry of every respective lower right matrix as pivot, we
get p5 D 2. But if we select as pivot the last maximum entry we might be led to
p5 D 3. Hence, it is challenging to investigate furthermore this phenomenon and to
determine the choices of maximum entries that lead to specific pivot values.

Finally, it is a mystery why the value 8 as fourth pivot from the end appears only
for matrices from the Hadamard–Sylvester class (called also I-Class of equivalence),
and specifically only in one pivot pattern. It is interesting to study this issue and to
find out whether the construction properties of this class can explain this exceptional
case. This issue is discussed in detail in [36], where it is proved that the construction
of the Hadamard–Sylvester class gives an infinite family of Hadamard matrices
with fourth last pivot n=2. It is also conjectured that this value can appear only
for Hadamard matrices belonging to the Sylvester equivalence class.

In conclusion, the study of the growth factor is a intriguing and important issue
in Numerical Analysis because it characterizes the roundoff estimates of Gaussian
Elimination and captures its stability properties. Particularly, its investigation for
Hadamard matrices led to the formulation of the open Complete Pivoting conjecture
for GE and to the publication of several relevant articles. It would be also interesting
to study the growth factors for other matrix factorizations, e.g. as it was done
recently in [60] for the modified Gram–Schmidt algorithm by deriving upper bounds
for growth factors arising at the solution of least squares problems.

Research on the values of minors of Hadamard matrices is ongoing, cf., e.g., [53]
and the references therein. This work provides a distribution for any minors of orders
j of Hadamard matrices with reference to minors of orders n � j, up to a factor nj� n

2 .
This issue is closely related to the specification of the possible determinant values of
matrices with entries ˙1. A survey on this problem and current updates and results
can be found in [45], cf. also [8, 38]. Further progress on this issue can help in the
study of Cryer’s growth conjecture for Hadamard matrices, since Eq. (9) provides a
powerful tool for computing pivots in terms of leading principal minors.

Further ongoing research is focused on how the criterion of Proposition 8
could be devised effectively for specifying good pivots for Hadamard matrices
of general order. Such a study would contribute significantly to proving Cryer’s
growth conjecture. The specification of the H-equivalence classes giving good pivots
remains an open problem. The identification of good pivot patterns for specific
constructions except for Sylvester–Kronecker (e.g., Paley, Williamson, etc. [29, 51])
is under consideration, too. Also the role of the maximum element selection strategy
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in pivoting procedures is investigated. It is important to clarify which maximum
selection approaches leads to good pivot patterns.

Other recent worthwhile scientific results and applications concerning Hadamard
matrices, which are given from a Numerical Analysis viewpoint and without
necessarily any reference to their minors, are presented in [1, 2]. The significance
of developing efficient algorithms for the computation of principal minors of a
matrix is highlighted, e.g., in [21]. Similar techniques to the ones presented here
for Hadamard matrices can be adopted also for other classes of orthogonal designs
as well, cf., e.g., [38, 39].
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32. Kharaghani, H., Tayfeh-Rezaie, B.: A Hadamard matrix of order 428. J. Comb. Des. 13,

435–440 (2005)
33. Koukouvinos, C., Lappas, E., Mitrouli, M., Seberry, J.: On the complete pivoting conjecture

for Hadamard matrices of small orders. J. Res. Pract. Inf. Techol. 33, 298–309 (2001)
34. Koukouvinos, C., Mitrouli, M., Seberry, J.: An algorithm to find formulae and values of minors

of Hadamard matrices. Linear Algebra Appl. 330, 129–147 (2001)
35. Koukouvinos, C., Mitrouli, M., Seberry, J.: Values of minors of an infinite family of D-optimal

designs and their application to the growth problem. SIAM J. Matrix Anal. Appl. 23, 1–14
(2001)

36. Koukouvinos, C., Mitrouli, M., Seberry, J.: An infinite family of Hadamard matrices with
fourth last pivot n/2. Linear Multilinear Algebra 50, 167–173 (2002)

37. Koukouvinos, C., Mitrouli, M., Seberry, J.: An algorithm to find formulae and values of minors
of Hadamard matrices: II. Linear Algebra Appl. 371, 111–124 (2003)

38. Kravvaritis, C., Mitrouli, M.: Evaluation of Minors associated to weighing matrices. Linear
Algebra Appl. 426, 774–809 (2007)

39. Kravvaritis, C., Mitrouli, M.: A technique for computing minors of binary Hadamard matrices
and application to the growth problem. Electron. Trans. Numer. Anal. 31, 49–67 (2008)

40. Kravvaritis, C., Mitrouli, M.: The growth factor of a Hadamard matrix of order 16 is 16. Numer.
Linear Algebra Appl. 16, 715–743 (2009)

41. Kravvaritis, C., Mitrouli, M.: On the complete pivoting conjecture for Hadamard matrices:
further progress and a good pivots property. Numer. Algorithms 62, 571–582 (2013)

42. Kravvaritis, C., Mitrouli, M., Seberry, J.: On the pivot structure for the weighing matrix
W.12; 11/. Linear Multilinear Algebra 55, 471–490 (2007)

43. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)
44. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian Elimination. Linear

Algebra Appl. 240, 131–151 (1996)
45. Orrick, W. P., Solomon, B.: Spectrum of the determinant function. Indiana University. http://

www.indiana.edu/~maxdet/spectrum.html (2012). Cited 19 May 2015
46. Seberry, J.: Hadamard matrices: some constructions for order 20. University of Wollongong.

http://www.uow.edu.au/$\sim$jennie/hadamard.html (2001). Cited 19 May 2015
47. Seberry, J., Yamada, M.: Hadamard matrices, sequences and block designs. In: Stinson, D.J.,

Dinitz, J.H. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. Wiley,
New York (1992)

48. Seberry, J., Xia, T., Koukouvinos, C., Mitrouli, M.: The maximal determinant and subdetermi-
nants of ˙1 matrices. Linear Algebra Appl. 373, 297–310 (2003)

http://www.indiana.edu/~maxdet/spectrum.html
http://www.indiana.edu/~maxdet/spectrum.html
http://www.uow.edu.au/$sim $jennie/hadamard.html


Hadamard Matrices: Insights into Their Growth Factor and Determinant Computations 415

49. Sharpe, F.R.: The maximum value of a determinant. Bull. Am. Math. Soc. 14, 121–123 (1907)
50. Sloane, N.J.A.: A library of Hadamard matrices. http://neilsloane.com/hadamard/ (1999). Cited

19 May 2015
51. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004)
52. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and

tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental
tile-work, and the theory of numbers. Philos. Mag. 34, 461–475 (1867)
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Localized Summability Kernels for Jacobi
Expansions

H.N. Mhaskar

Abstract While the direct and converse theorems of approximation theory enable
us to characterize the smoothness of a function f W Œ�1; 1� ! R in terms of its
degree of polynomial approximation, they do not account for local smoothness.
The use of localized summability kernels leads to a wavelet-like representation,
using the Fourier–Jacobi coefficients of f , so as to characterize the smoothness of
f in a neighborhood of each point in terms of the behavior of the terms of this
representation. In this paper, we study the localization properties of a class of
kernels, which have explicit forms in the “space domain,” and establish explicit
bounds on the Lebesgue constants on the summability kernels corresponding to
some of these.

Keywords Jacobi expansions • Localized kernels • Jacobi translates • Product
formulas

Introduction

Let f W Œ�1; 1� ! R be a continuous function, and n � 1. In this paper, we denote
the class of all algebraic polynomials of degree < n by ˘n. A very simple and
oft-used way to approximate f from˘n is to minimize

Z 1

�1
jf .y/ � P.y/j2dy (1)

over all polynomials P 2 ˘n. Of course, it is well known that a solution to this
problem can be written explicitly in terms of the Legendre expansion of f . Denoting
by Pk the Legendre polynomial of degree k defined by
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Pk.x/ D .�1/k
2kkŠ

dk

dxk
.1 � x2/k; x 2 Œ�1; 1�;

and

Of .k/ D
p

k C 1=2

Z 1

�1
f .y/Pk.y/dy; k D 0; 1; � � � ;

the polynomial that minimizes the square integral error in (1) is given by

sn.f /.x/ D
n�1X

kD0

p
k C 1=2 Of .k/Pk.x/:

(For clarity of exposition, the notation used in the introduction will be slightly
different from the one used in the rest of the paper.) We will refer to sn.f / as the
projection of f on ˘n.

Although the projection is the best approximation to f in the sense of L2

approximation, the projections do not converge to f uniformly unless f is sufficiently
smooth. Moreover, even if f is analytic everywhere on Œ�1; 1� except at a small
number of points, the behavior of these projections is affected adversely at all points
of Œ�1; 1� (cf. for example, the left figure in Fig. 1.)

In the theory of spectral methods for numerical solutions of differential equa-
tions, a standard strategy therefore is to first estimate the location of such “singu-
larities,” and device different methods for approximation of f on intervals where it
is smooth, and where it is not [4, 13, 14]. This task, however, is difficult, because
the starting point of spectral methods is the data fOf .k/g1

kD0 (actually, a finite set
of the coefficients), and this sequence by itself does not reveal the locations of
the singularities. For this reason, polynomial approximation is often abandoned in
practice in favor of spline or wavelet approximations.

Fig. 1 On the left, the plot of log10 jf .x/ � sn.f /.x/j, on the right, the plot of
log10 jf .x/� �n.f /.x/j, n D 256, where f is defined in (18.4)
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Clearly, it is desirable to devise methods based on the information f Of .k/gn�1
kD0 for

a finite integer n � 1 that would detect the location of singularities accurately, as
well as yield pointwise approximation automatically adjusting the accuracy to the
optimal one depending on the local smoothness of the function f . This would avoid
the use of elaborate separate methods for approximating f on different intervals.

We have carried out such an analysis in a series of papers [2, 7, 8, 10]. In
particular, we have shown that a filtered projection of the form

�n.f /.x/ D
n�1X

kD0
h.k=n/

p
k C 1=2 Of .k/Pk.x/

has the necessary localization properties, if h is sufficiently smooth, and satisfies
some other technical conditions. From the definition of Of .k/, it is clear that

�n.f /.x/ D
Z 1

�1
f .y/˚n.x; y/dy; (2)

where

˚n.x; y/ D
n�1X

kD0
h.k=n/.k C 1=2/Pk.x/Pk.y/:

In [7, 8], we have proved in particular that for any integer S � 2, h can be chosen to
ensure that

j˚n.cos �; cos
/j � c
n2

max.1; .nj� � 
j/S/ ; n D 1; 2; � � � ; �; 
 2 Œ0; ��; (3)

where c > 0 is a constant depending on S alone.
We discuss an example to illustrate the effect of this localization. Let

f .x/ D jx C 1=2j1=2 C jx � 3=4j1=3; x 2 Œ�1; 1�: (4)

Clearly, f is analytic on Œ�1; 1� except at �1=2; 3=4. We choose

h.t/ WD

8
ˆ̂
<

ˆ̂
:

1; if 0 � t � 1=2;

exp

�
�exp.2=.1� 2t//

1� t

�
; if 1=2 < t < 1,

0; if t � 1:

It is seen readily from Fig. 1 that because of the singularities at �1=2 and 3=4, the
error in approximation by the projection sn.f / exceeds 10�4 also at “far away” points
such as ˙1; 0:2. The corresponding errors by the filtered projection �n.f / are at least
100 times smaller.



420 H.N. Mhaskar

In [8], we have obtained the necessary quadrature formulas to enable us to
approximate the integral expression (2) for �n.f / based on “scattered data” on f ;
i.e., values of f at points which are not necessarily the Gauss–Jacobi quadrature
nodes, while making sure that the degree of approximation estimates are the same
as those for the integral operator based on f Of .k/g. The filtered projection method
with this modification was used recently for numerical differentiation, and applied
to the problem of short-term prediction of blood glucose levels based on continuous
glucose monitoring devices [9]. The result was substantially better than the state-of-
the-art technology.

For such applications, it is desirable to use a kernel which has a closed form
formula. The purpose of this paper is to propose such a kernel, and study its
necessary localization properties, analogous to (3) for the kernels ˚n. A version
of this kernel was given in [3] in the case of spherical polynomials. We will do
this in the more general setting of Jacobi polynomials. In section “Main Results,”
we introduce these kernels, and state their localization properties. Some ideas on the
computational aspects of evaluating the kernels are discussed in section “Comments
on Implementation.” The proofs of the results in section “Main Results” are given
in section “Proofs.”

Main Results

For ˛; ˇ > �1, we define the Jacobi weight (with parameters ˛; ˇ) by

w˛;ˇ.y/ D .1 � y/˛.1C y/ˇ; y 2 .�1; 1/: (5)

For integer k � 0, the (orthonormalized) Jacobi polynomial p.˛;ˇ/k is a polynomial

of degree k, with positive leading coefficient, such that the sequence fp.˛;ˇ/k g1
kD0

satisfies the orthogonality condition

Z 1

�1
p.˛;ˇ/k .y/p.˛;ˇ/j .y/w˛;ˇ.y/dy D ık;j; k; j D 0; 1; � � � : (6)

Clearly,

p.ˇ;˛/k .y/ D .�1/kp.˛;ˇ/k .�y/; k D 0; 1; � � � ; y 2 Œ�1; 1�:

Therefore, it is customary to state and prove theorems in the theory of Jacobi
polynomials assuming that ˛ � ˇ, and we will make this assumption throughout
this paper.

If f W Œ�1; 1� ! R, and w˛;ˇ f is Lebesgue integrable on Œ�1; 1�, then we define

Of .k/ D Of .˛; ˇI k/ D
Z 1

�1
f .y/p.˛;ˇ/k .y/w˛;ˇ.y/dy; k D 0; 1; � � � ; (7)
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and define the Fourier–Jacobi projection operator by

sn.f /.x/ D sn.˛; ˇI f /.x/ D
n�1X

kD0
Of .k/p.˛;ˇ/k .x/; n D 1; 2; � � � : (8)

Clearly,

sn.f /.x/ D
Z 1

�1
f .y/Kn.x; y/w˛;ˇ.y/dy; n D 1; 2; � � � ; x 2 Œ�1; 1�; (9)

where the Christoffel–Darboux kernel Kn is defined by

Kn.x; y/ D K.˛;ˇ/
n .x; y/ D

n�1X

kD0
p.˛;ˇ/k .x/p.˛;ˇ/k .y/; n D 1; 2; � � � ; x; y 2 Œ�1; 1�:

(10)

In the theory of Fourier–Jacobi expansions, the Christoffel–Darboux kernel plays
the role of the Dirichlet kernel in the theory of classical trigonometric Fourier series.

An important fact in the latter is that the partial sum of the trigonometric Fourier
series can be expressed as a convolution with the Dirichlet kernel, so that in the
proofs of several theorems, one may prove statements only at the point 0 rather than
arbitrary points on Œ��; ��. We now describe a convolution structure for Jacobi
polynomials, where the role of 0 will be played by 1. Koornwinder has shown in
[6] that for ˛ � ˇ � �1=2, k D 0; 1; � � � , the Jacobi polynomials p.˛;ˇ/k satisfy the
following product formula: for x; y 2 Œ�1; 1�,

p.˛;ˇ/k .x/ p.˛;ˇ/k .y/ D p.˛;ˇ/k .1/

Z �

0

Z 1

0

p.˛;ˇ/k .Z.x; yI r;  // dm˛;ˇ.r;  /; (11)

where

Z.x; yI r;  / D 1

2
.1Cx/.1Cy/C 1

2
.1�x/.1�y/ r2C

p
1 � x2

p
1 � y2 r cos �1

(12)

and

dm˛;ˇ.r;  / D

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

2 � .˛C1/p
� � .˛�ˇ/ � .ˇC1=2/ .1 � r2/˛�ˇ�1 r2ˇC1 sin2ˇ  dr d ;

if ˛ > ˇ > �1=2;
2� .˛C1/p
� � .˛C1=2/ .1 � r2/˛�1=2 dr 1

2
fı.0/C ı.�/g;

if ˛ > ˇ D �1=2;
� .˛C1/p
� � .˛C1=2/ ı.1 � r/ sin2ˇ  d ;

if ˛ D ˇ > �1=2;
ı.1 � r/ 1

2
fı.0/C ı.�/g;
if ˛ D ˇ D �1=2;

(13)



422 H.N. Mhaskar

where ı denotes the Dirac delta measure supported at 0. The constants are chosen
such that

Z �

0

Z 1

0

dm˛;ˇ.r;  / D 1; (14)

i.e., m˛;ˇ is a probability measure.
The Jacboi translation Ty of a function f by y 2 Œ�1; 1� evaluated at x 2 Œ�1; 1�

is defined (whenever the integral expression below is well defined) by

Tyf .x/ D
Z �

0

Z 1

0

f .Z.x; yI r;  // dm˛;ˇ.r;  /: (15)

In view of (11),

Ty.p
.˛;ˇ/
k .1/ p.˛;ˇ/k /.x/ D p.˛;ˇ/k .x/ p.˛;ˇ/k .y/ D Tx.p

.˛;ˇ/
k .1/ p.˛;ˇ/k /.y/; (16)

and we may rewrite (9) in form

sn.f /.x/ D
Z 1

�1
f .y/TxKn.y; 1/w˛;ˇ.y/dy; n D 1; 2; � � � ; x 2 Œ�1; 1�; (17)

in complete analogy with the classical expression for the trigonometric Fourier
projection in terms of convolution with the Dirichlet kernel. It is convenient to
overload the notation and denote

Kn.y/ D Kn.y; 1/; y 2 Œ�1; 1�: (18)

With this preparation, we are now ready to define our kernel and state our main
theorem. Let S � 2 be an integer. For integer n D 1; 2; � � � and y 2 Œ�1; 1�, we
define

FS;n.y/ WD F˛;ˇIS;n.y/ WD KS.n�1/C1.y/
�

Kn.y/

Kn.1/

�S�1
; (19)

Clearly, FS;n 2 ˘.2S�1/.n�1/C1. Corresponding to this kernel, we define

VS;n.f /.x/ D
Z 1

�1
f .y/TxFS;n.y/w˛;ˇ.y/dy; n D 1; 2; � � � ; x 2 Œ�1; 1�: (20)

In order to state our theorem, we need some further notation. For a Lebesgue
measurable function f W Œ�1; 1� ! R, we define

kf kp D kf k˛;ˇIp D

8
<̂

:̂

�Z 1

�1
jf .y/jpw˛;ˇ.y/dy

�1=p

; if 1 � p < 1,

ess supy2Œ�1;1�jf .y/j; if p D 1.
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The space of all functions f for which kf kp < 1 will be denoted by Lp D Lp
˛;ˇ ,

with the usual convention that functions which are equal almost everywhere are
considered to be equal as members of Lp. The notation Xp D Xp

˛;ˇ will denote Lp if
1 � p < 1, and the space of all continuous functions on Œ�1; 1�, endowed with the
uniform norm, if p D 1. Thus, Xp is the Lp–closure of

S
n�1 ˘n. For f 2 Xp, we

define the degree of approximation of f by ˘n by

En;p.f / D En;p.˛; ˇI f / D min
P2˘n

kf � Pkp: (21)

In the sequel, it is convenient to write

$˛;ˇ.y/ D .1 � y/˛=2C1=4.1C y/ˇ=2C1=4; y 2 Œ�1; 1�: (22)

Also, we make the following convention regarding constants. In the sequel, c; c1; � � �
denote positive constants depending only on ˛, ˇ, S, and other such obvious
parameters fixed in the discussion. Their values may be different at different
occurrences, even with a single formula. The notation A � B means c1A � B � c2A.

Our main theorem is the following.

Theorem 1. Let ˛ � ˇ � �1=2, x D cos � , y D cos
, �; 
 2 Œ0; ��, S � 2, n � 2

be integers, and 1 � p � 1.

(a) For P 2 Πn, Vn.P/ D P.
(b) We have

Z 1

�1
jTxFS;n.y/jw˛;ˇ.y/dy � S˛C1: (23)

Hence, for f 2 Lp,

kVS;n.f /kp � S˛C1kf kp; (24)

and

E.2S�1/.n�1/C1;p.f / � kf � VS;n.f /kp � .1C S˛C1/En;p.f /: (25)

(c) We have

jTxFS;n.y/j � c
n2˛C2

max.1; .nj� � 
j/.˛�ˇC1/.S�1//
: (26)

and

$.x/$.y/jTxFS;n.y/j � c
n˛C3=2

max.1; .nj� � 
j/.˛�ˇC1/.S�1/C1/
: (27)
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To illustrate the localization of the kernels FS;n, we observe the following
corollary, which shows that if S is sufficiently large, then the maximum absolute
value of jVS;n.f /.x/j on a neighborhood of a point x0 is bounded by the maximum
absolute value of jf .x/j on a slightly larger neighborhood plus a term that tends to 0
as n ! 1. For x0 D cos �0 2 Œ�1; 1�, and r > 0, we denote

B.x0; r/ D fcos � W j� � �0j � rg:

Corollary 1. Let ˛ � ˇ � �1=2, f 2 X1, x0 2 Œ�1; 1�, ı > 0. Then

max
x2B.x0;ı/

jVS;n.f /.x/j � c.x0; ı/



max

x2B.x0;3ı=2/
jf .x/j C kf k1

n.˛�ˇC1/.S�1/�2˛�2

�
: (28)

Comments on Implementation

Since it is difficult to evaluate the Jacobi translates directly from the definition (15),
we make some comments on computing the kernel FS;n in this section. The idea is
to express the kernel first as an expansion in Jacobi polynomials using (41) below,
and then use (16).

In view of (41),

FS;n.y/ D 2.˛ C 1/

2S.n � 1/C ˛ C ˇ C 2

p.˛C1;ˇ/
2S.n�1/ .1/

�
p.˛C1;ˇ/

n�1 .1/
�S�1 p.˛C1;ˇ/

2S.n�1/ .y/
�

p.˛C1;ˇ/
n�1 .y/

�S�1
:

(29)

Since the fraction expression above can be computed using (40), we will describe
the implementation of p.˛C1;ˇ/

n�1 .y/p.˛C1;ˇ/
n�1 .y/S�1. More generally, we will describe

an expansion of p.˛C1;ˇ/
m .y/p.˛C1;ˇ/

` .y/ for integers `;m D 0; 1; � � � . It is well known
[1, Theorem 5.1] that under our assumption that ˛ � ˇ � �1=2,

p.˛C1;ˇ/
m .y/p.˛C1;ˇ/

` .y/ D
`CmX

kDj`�mj
C.k; `;m/p.˛C1;ˇ/

k .y/; `;m � 0: (30)

where linearization coefficients C.k; `;m/ are positive numbers. Setting
C.k; `;m/D 0 when any of the variables k, `, m are out of their indicated ranges,
one can obtain a recurrence formula for these coefficients (cf. [5]).

To describe this recurrence, we first observe the recurrence formula for the Jacobi
polynomials themselves:

yp.˛C1;ˇ/
k .y/ D kp.˛C1;ˇ/

kC1 .y/C dkp.˛C1;ˇ/
k .y/C k�1p.˛C1;ˇ/

k�1 .y/; (31)
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with the initial terms p.˛C1;ˇ/
�1 .y/ D 0, and

p.˛C1;ˇ/
0 .y/ D

s
� .˛ C ˇ C 3/

2˛CˇC2� .˛ C 2/� .ˇ C 1/
; (32)

where

0 WD 2

˛ C ˇ C 3

s
.˛ C 2/.ˇ C 1/

˛ C ˇ C 4
; d0 WD 2.ˇ � ˛ � 1/

2˛ C 2ˇ C 5
; (33)

and for k D 1; 2; � � � ,

k WD 2

s
.k C 1/.k C ˛ C 2/.k C ˇ C 1/.k C ˛ C ˇ C 2/

.2k C ˛ C ˇ C 2/.2k C ˛ C ˇ C 3/2.2k C ˛ C ˇ C 4/
;

dk WD ˇ2 � .˛ C 1/2

.2k C ˛ C ˇ C 1/.2k C ˛ C ˇ C 2/
: (34)

The recurrence (31) leads to

yp.˛C1;ˇ/
m .y/p.˛C1;ˇ/

` .y/

D mp.˛C1;ˇ/
mC1 .y/p.˛C1;ˇ/

` .y/C dmp.˛C1;ˇ/
m .y/p.˛C1;ˇ/

` .y/C
m�1p.˛C1;ˇ/

m�1 .y/p.˛C1;ˇ/
` .y/

D
X

k

fmC.k; `;m C 1/C dmC.k; `;m/C m�1C.k; `;m � 1/g p.˛C1;ˇ/
k .y/:

(35)

On the other hand, (30) and (31) imply that

yp.˛C1;ˇ/
m .y/p.˛C1;ˇ/

` .y/

D
X

k

C.k; `;m/yp.˛C1;ˇ/
k .y/

D
X

k

C.k; `;m/
n
kp.˛C1;ˇ/

kC1 .y/C dkp.˛C1;ˇ/
k .y/C k�1p.˛C1;ˇ/

k�1 .y/
o

D
X

k

fk�1C.k � 1; `;m/C dkC.k; `;m/C kC1C.k C 1; `;m/g p.˛C1;ˇ/
k .y/:

(36)
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Comparing (36) and (35), we get a “five star” recurrence formula

mC.k; `;m C 1/

D k�1C.k � 1; `;m/C dkC.k; `;m/C kC1C.k C 1; `;m/

�dmC.k; `;m/ � m�1C.k; `;m � 1/: (37)

To apply this formula, we note that for every k; ` D 0; 1; � � � ,

C.k; `;�1/ D 0; C.k; `; 0/ D ık;`: (38)

Assuming that we know C.k; `; j/ for all k; ` D 0; 1; � � � , and �1 � j � m � 1, we
can use (37) recursively to obtain C.k; `;m/ in (30).

Now, to compute FS;n.y/, we first use (30) repeatedly to obtain

FS;n.y/ D
X

k

ak.S; n; ˛; ˇ/p
.˛C1;ˇ/
k .y/;

and hence, using (41),

FS;n.y/ D
X

k

Ak.S; n; ˛; ˇ/p
.˛;ˇ/
k .1/p.˛;ˇ/k .y/:

The required Jacobi translate is then given by

FS;n.y/ D
X

k

Ak.S; n; ˛; ˇ/p
.˛;ˇ/
k .x/p.˛;ˇ/k .y/: (39)

Proofs

The proof of Theorem 1 requires some preparation. We begin by listing some well-
known results about Jacobi polynomials.

Lemma 1. Let ˛ � ˇ � �1=2, y 2 Œ�1; 1�, n � 1 be an integer.

(a)

jp.˛;ˇ/n .y/j � p.˛;ˇ/n .1/

D


2n C ˛ C ˇ C 1

2˛CˇC1
� .n C 1/� .n C ˛ C ˇ C 1/

� .n C ˛ C 1/� .n C ˇ C 1/

� 1=2
� .n C ˛ C 1/

� .˛ C 1/� .n C 1/

� n˛C1=2: (40)
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(b)

Kn.y/ D 2.˛ C 1/

2n C ˛ C ˇ
p.˛C1;ˇ/

n�1 .1/p.˛C1;ˇ/
n�1 .y/: (41)

(c)

Kn.1/ D 2�˛�ˇ�1 � .n C ˛ C ˇ C 1/� .n C ˛ C 1/

� .˛ C 1/� .˛ C 2/� .n/� .n C ˇ/

D n2˛C2

2˛CˇC1� .˛ C 1/� .˛ C 2/
.1C o.1=n//: (42)

(d)

jp.˛;ˇ/n .y/j � c



min..1 � y/�˛=2�1=4; n˛C1=2/; if 0 � y � 1,
min..1C y/�ˇ=2�1=4; nˇC1=2/; if �1 � y < 0,

(43)

In particular,

max
y2Œ�1;1� j$.y/p

.˛;ˇ/
n .y/j � c; (44)

and

.
p
1 � y C 1=n/2˛C1.

p
1C y C 1=n/2ˇC1Kn.y; y/ � n; (45)

where the constants are independent of y.

Proof. Part (a) is [12, Estimate (7.32.2), Eq. (4.1.1)]. Part (b) follows from [12,
Eqs. (4.5.3), (4.3.4)] by writing n � 1 in place of n to account for our different
notation. Part (c) is [12, Eq. (4.5.8)], again with the same replacement. The
estimates (43) and (44) in part (d) can be deduced easily from [12, Theorem 7.32.2],
and the estimate (45) is given in [11, Lemma 5, p. 108]. ut

Next, we state a few important properties of the Jacobi translation, summarized
from [1].

Proposition 1. Let 1 � p � 1, f 2 Xp, x; y 2 Œ�1; 1�. Then each of the following
statements holds.

(a) Tyf .x/ D Txf .y/.
(b) kTxf kp � kf kp, with equality if p D 1.
(c)

Z 1

�1
Txf .y/w˛;ˇ.y/dx D

Z 1

�1
f .y/w˛;ˇ.y/dy:
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We need some more refined estimates than those given in Proposition 1. We find
it easier to prove the statements than to find a reference.

Theorem 2. Let g W Œ0; 2� ! Œ0;1/ be non-increasing on Œ0; 2�, P 2 Πn, f 2 X1,
x D cos � , y D cos
, �; 
 2 Œ0; ��.
(a) If jf .z/j � g.1 � z/ for all z 2 Œ�1; 1�,

jTyf .x/j � g.1� cos.� � 
//:

(b) If

$.z/jf .z/j � g.1 � z/; z 2 Œ�1; 1�; (46)

then

$.x/$.y/jTyf .x/j � cg.1� cos.� � 
//: (47)

In order to prove Theorem 2, we first prove a lemma.

Lemma 2. Let A � B � 0, �; 
 2 Œ0; ��, x D cos � , y D cos
, r 2 Œ0; 1�,
 2 Œ0; ��, and Z D Z.x; yI r;  / be as defined in (12). We have

.1�Z/A.1CZ/B � c.1�x/A.1�y/A.1Cx/B.1Cy/B.1� r2/A�BrB sin2B. /: (48)

Proof. We observe that

1 � Z D 1 � xy �
p
1 � x2

p
1 � y2 � 1

2
.1� x/.1 � y/.r2 � 1/

�
p
1 � x2

p
1 � y2.r cos � 1/

D 1 � cos.� � 
/C 1

2
.1 � x/.1 � y/.1 � r2/

C
p
1 � x2

p
1 � y2.1 � r cos /

� 1

2
.1 � x/.1 � y/.1� r2/;  2 Œ0; ��: (49)

Let  2 Œ0; �=2/, so that cos > 0. Then the definition (12) of Z and the
arithmetic–geometric mean inequality show that

1C Z D 1

2
.1C x/.1C y/C 1

2
.1 � x/.1 � y/ r2 C

p
1 � x2

p
1 � y2 r cos 

� 1

2
.1C x/.1C y/C 1

2
.1 � x/.1 � y/ r2 �

p
1 � x2

p
1 � y2r: (50)
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Further, [cf. (49)]

1 � Z D 1 � cos.� � 
/C 1

2
.1 � x/.1 � y/.1 � r2/

C
p
1 � x2

p
1 � y2.1 � r cos /

�
p
1 � x2

p
1 � y2.1 � r cos / �

p
1 � x2

p
1 � y2.1 � cos /

D 2
p
1� x2

p
1 � y2 sin2. =2/: (51)

Since sin2. =2/ � .1=4/ sin2  , (50) and (51) yield

1 � Z2 � .1=2/.1� x2/.1� y2/r sin2  ;  2 Œ0; �=2/: (52)

Since

.1 � Z/A.1C Z/B D .1 � Z/A�B.1 � Z2/B; (53)

we obtain (48) from (49) and (52) in the case when  2 Œ0; �=2�.
Next, let  2 Œ�=2; ��, so that cos � 0. In view of the arithmetic–geometric

mean inequality,

ˇ
ˇ
ˇ
p
1 � x2

p
1 � y2 r cos 

ˇ
ˇ
ˇ � 1

2
.1C x/.1C y/ cos2  C 1

2
.1 � x/.1 � y/ r2:

Hence, the first equation in (50) shows that

1C Z � 1

2
.1C x/.1C y/ sin2  C 1

2
.1C x/.1C y/ cos2  C 1

2
.1 � x/.1 � y/ r2

C
p
1 � x2

p
1 � y2 r cos 

� 1

2
.1C x/.1C y/ sin2  : (54)

Similarly, using the arithmetic–geometric mean inequality we obtain

1C Z � 1

2
.1 � x/.1 � y/ r2 sin2  C 1

2
.1 � x/.1 � y/ r2 cos2  C 1

2
.1C x/.1C y/

C
p
1 � x2

p
1 � y2 r cos 

� 1

2
.1 � x/.1 � y/r2 sin2  : (55)

Using (54), (55), and the arithmetic–geometric mean inequality once more,

1C Z � 1

4
.1C x/.1C y/ sin2  C 1

4
.1 � x/.1 � y/r2 sin2  

� .1=2/
p
1 � x2

p
1 � y2r sin2  : (56)
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Since cos � 0, (51) shows that

1 � Z �
p
1 � x2

p
1 � y2;

we conclude from (56) that

1 � Z2 � .1=2/.1� x2/.1 � y2/r sin2  ;  2 Œ�=2; ��: (57)

The estimate (48) follows from (49) and (57) in the case when 2 Œ�=2; ��. ut
We are now ready to prove Theorem 2.

Proof of Theorem 2. Part (a) was proved in [2, Lemma 3.1]. To prove part (b), we
need only to consider the cases when ˛ > ˇ > �1=2, ˛ D ˇ > �1=2, and
˛ > ˇ D �1=2. We will use the notation Z D Z.x; yI r;  /, A D ˛=2 C 1=4,
B D ˇ=2 C 1=4, so that A � B D .˛ � ˇ/=2. The conditions of Lemma 2 are
satisfied with these choices. We note that (49) shows that

1 � Z.x; yI r;  / � 1 � cos.� � 
/: (58)

Case ˛ > ˇ > �1=2.
The definition (13) shows that

Z �

0

Z 1

0

.1 � r2/�.A�B/r�B sin�2B dm˛;ˇ.r;  /

D c
Z �

0

Z 1

0

.1 � r2/˛=2�ˇ=2�1r.3=2/.ˇC1=2/ sinˇ�1=2  drd � c: (59)

Hence, using (11), (46), (48), and (58) we conclude that

.1 � x/A.1 � y/A.1C x/B.1C y/BjTyf .x/j

� c
Z �

0

Z 1

0

.1 � Z/A.1C Z/Bjf .Z/j.1 � r2/�.A�B/r�B sin�2B  dm˛;ˇ.r;  /

� c
Z �

0

Z 1

0

g.1� Z/.1 � r2/�.A�B/r�B sin�2B  dm˛;ˇ.r;  /

� cg.1 � cos.� � 
//
Z �

0

Z 1

0

.1 � r2/�.A�B/r�B sin�2B  dm˛;ˇ.r;  /

� cg.1 � cos.� � 
//:

This proves (47) in the case ˛ > ˇ > �1=2.
Case ˛ D ˇ > �1=2
In this case, A D B, and the measure dm˛;˛.r;  / is supported only on f1g
Œ0; ��.

In view of (13),
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Z �

0

sin�2B dm˛;˛.1;  / � c
Z �

0

sinˇ�1=2 d � c: (60)

For r D 1, A D B, (48) takes the form

.1 � Z2/A � c.1 � x/A.1 � y/A.1C x/B.1C y/B sin2B. /:

Hence, (11), (46), (58), and (60) imply as before that

.1 � x2/A.1 � y2/AjTyf .x/j � cg.1� cos.� � 
//

Z �

0

sin�2B  dm˛;˛.1;  /

� cg.1� cos.� � 
//:

This proves (47) in the case ˛ D ˇ > �1=2.
Case ˛ > ˇ D �1=2
In this case, B D 0, and (48) takes the form

.1� x/A.1� y/A � c.1� Z.x; yI r;  //A.1 � r2/1=4�˛=2; r 2 Œ0; 1�;  2 Œ0; ��:
Therefore, using (15), (13), (46), and (58) we conclude as before that

.1 � x/A.1 � y/BjTyf .x/j � cg.1 � cos.� � 
//

Z 1

0

.1 � r2/˛=2�1=4dr

� cg.1 � cos.� � 
//:

This proves (47) also in this final case. ut
We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let P 2 ˘n. Then KS�1
n P 2 ˘S.n�1/C1, and hence, the

reproducing property of KS.n�1/C1 shows that

Z 1

�1
FS;n.y/P.y/w˛;ˇ.y/dy D

Z 1

�1
KS.n�1/C1.y/ .Kn.y/=Kn.1//

S�1 P.y/w˛;ˇ.y/dy

D .Kn.1/=Kn.1//
S�1 P.1/ D P.1/: (61)

If P.y/ D Pn�1
kD0 akp.˛;ˇ/k .1/p.˛;ˇ/k .y/, then (16) shows that

TxP.y/ D
n�1X

kD0
akp.˛;ˇ/k .x/p.˛;ˇ/k .y/;

so that TxP.1/ D P.x/, and part (a) follows by using (61) with TxP in place of P.
It follows from (41) and (40) that jKn.y/j � Kn.1/. Hence, using Schwarz

inequality, the reproducing property of the kernels Kn, and (41) again, we obtain
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Z 1

�1
jFS;n.y/jw˛;ˇ.y/dy

� 2
�

Z 1

�1
jKS.n�1/C1.y/j jKn.y/=Kn.1/j w˛;ˇ.y/dy

� 2

�

Z 1

�1
jKS.n�1/C1.y/j2w˛;ˇ.y/dy

� 
Z 1

�1
jKn.y/=Kn.1/j2 w˛;ˇ.y/dy

�

D KS.n�1/C1.1/
Kn.1/

� S2˛C2:

In view of Proposition 1(b), this leads to (23).
The definition (20) now leads easily to (24) when p D 1 and p D 1. The general

case follows using the Riesz–Thorin interpolation theorem [15, Theorem XII.1.11].
The first estimate in (25) is clear since VS;n.f / 2 ˘.2S�1/.n�1/C1. To prove the second
inequality in (25), let P 2 ˘n be arbitrary. Then part (a) and (24) imply that

kf � VS;n.f /kp D kf � P � VS;n.f � P/kp � kf � Pkp C kVS;n.f � P/kp

� .1C S˛C1/kf � Pkp:

Since P 2 ˘n was arbitrary, this leads to the second inequality in (25), and
completes the proof of part (b).

In order to prove part (c), we first estimate Kn.y/=Kn.1/. Using (41), (40),
and (43), we obtain

jKn.y/j � cn˛C1=2


.1 � y/�˛=2�3=4; if 0 � y < 1;
nˇC1=2; if �1 � y < 0.

(62)

Hence, (42) implies that

ˇ
ˇ
ˇ
ˇ
Kn.y/

Kn.1/

ˇ
ˇ
ˇ
ˇ � cn�˛�3=2



.1 � y/�˛=2�3=4; if 0 � y < 1;
nˇC1=2; if �1 � y < 0.

D c



.n2.1 � y//�˛=2�3=4; if 0 � y < 1;
nˇ�˛�1; if �1 � y < 0.

(63)

Since ˇ � �1=2, ˛ � ˇ C 1 � ˛ C 3=2. Also, if �1 � y < 0, then 1 < 1 � y � 2.
Hence, (63) shows that for all y 2 Œ�1; 1� and n � 1,

ˇ
ˇ
ˇ
ˇ
Kn.y/

Kn.1/

ˇ
ˇ
ˇ
ˇ � c

.n2.1 � y//.˛�ˇC1/=2 : (64)
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Next, using (41) and (40), we obtain

jKS.n�1/C1.y/j � cn˛C1=2jp.˛C1;ˇ/
S.n�1/ .y/j � cn2˛C2: (65)

Together with (64), this implies that

jFS;n.y/j � cn2˛C2�.˛�ˇC1/.S�1/.1 � y/�.a�ˇC1/.S�1/=2:

In view of Theorem 2(a), this leads to (26).
In order to prove (27), we use (41), (40), and (43) to obtain

$.y/jK.2S�1/.n�1/C1.y/j � cn˛C1=2$.y/jp.˛C1;ˇ/
.2S�1/.n�1/.y/j � c

n˛C3=2

n.1 � y/�1=2
:

In view of (63), this yields

$.y/jFS;n.y/j � cn˛C3=2�.˛�ˇC1/.S�1/�1.1� y/�.˛�ˇC1/.S�1/=2�1=2:

An application of Theorem 2(b) now leads to (27). ut
Proof of Corollary 1. Let  be an infinitely differentiable function such that
 .x/ D 1 if x 2 B.x0; 3ı=2/, and  .x/ D 0 if x 2 Œ�1; 1� n B.x0; 2ı/.
If x D cos � 2 B.x0; ı=2/, and y D cos
 2 Œ�1; 1� n B.x0; 3ı=2/, then

j
 � � j � j
 � �0j � j� � �0j � ı=2:

Therefore, (26) shows that

jTxFS;n.y/j � c.ı/n2˛C2�.˛�ˇC1/.S�1/:

Consequently,

jVS;n..1 �  /f /.x/j

D
ˇ
ˇ
ˇ
ˇ

Z 1

�1
.1 �  .y//f .y/TxFS;n.y/w˛;ˇ.y/dy

ˇ
ˇ
ˇ
ˇ

�
Z

y2B.x;ı=2/
jf .y/jjTxFS;n.y/jw˛;ˇ.y/dy

� c.ı/n2˛C2�.˛�ˇC1/.S�1/kf k1: (66)

Further, in view of (24),

jVS;n. f /.x/j � ck f k1 � c max
x2B.x0;3ı=2/

jf .x/j; (67)
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Since

VS;n.f /.x/ D VS;n. f /.x/C VS;n..1 �  /f /.x/;

the estimates (66), (66) lead to (28). ut
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Quadrature Rules with Multiple Nodes

Gradimir V. Milovanović and Marija P. Stanić

Abstract In this paper a brief historical survey of the development of quadrature
rules with multiple nodes and the maximal algebraic degree of exactness is given.
The natural generalization of such rules are quadrature rules with multiple nodes and
the maximal degree of exactness in some functional spaces that are different from
the space of algebraic polynomial. For that purpose we present a generalized quad-
rature rules considered by Ghizzeti and Ossicini (Quadrature Formulae, Academie,
Berlin, 1970) and apply their ideas in order to obtain quadrature rules with multiple
nodes and the maximal trigonometric degree of exactness. Such quadrature rules
are characterized by the so-called s- and �-orthogonal trigonometric polynomials.
Numerical method for constructing such quadrature rules is given, as well as a
numerical example to illustrate the obtained theoretical results.

Keywords Multiple nodes • Quadrature rules • Degree of exactness •
s-orthogonal polynomials • �-orthogonal polynomials

Introduction and Preliminaries

The most significant discovery in the field of numerical integration in the nineteenth
century was made by Carl Friedrich Gauß in 1814. His method [14] dramatically
improved the earlier Newton’s method. Gauss’ method was enriched by significant
contributions of Jacobi [21] and Christoffel [5]. More than hundred years after
Gauß published his famous method there appeared the idea of numerical integration
involving multiple nodes. Taking any system of n distinct points f�1; : : : ; �ng and
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n nonnegative integers m1; : : : ;mn, and starting from the Hermite interpolation
formula, Chakalov [2] in 1948 obtained the quadrature formula

Z 1

�1
f .t/ dt D

nX

�D1

�
A0;� f .��/C A1;� f

0.��/C � � � C Am��1;� f .m��1/.��/
�
; (1)

which is exact for all polynomials of degree at most m1 C � � � C mn � 1. He gave a
method for computing the coefficients Ai;� in (1). Such coefficients are given by
Ai;� D R 1

�1 `i;� .t/ dt, � D 1; : : : ; n, i D 0; 1; : : : ;m� � 1, where `i;� .t/ are the
fundamental functions of Hermite interpolation.

Taking m1 D � � � D mn D k in (1), Turán [48] in 1950 studied numerical
quadratures of the form

Z 1

�1
f .t/ dt D

k�1X

iD0

nX

�D1
Ai;� f

.i/.��/C Rn;k.f /: (2)

Obviously, for any given nodes �1 � �1 � � � � � �n � 1 the formula (2) can be
made exact for f 2 Pkn�1 (Pm, m 2 N0, is the set of all algebraic polynomials of
degree at most m). However, for k D 1 the formula (2), i.e.,

Z 1

�1
f .t/ dt D

nX

�D1
A0;� f .��/C Rn;1.f /

is exact for all polynomials of degree at most 2n � 1 if the nodes �� are the zeros of
the Legendre polynomial Pn (it is the well-known Gauss–Legendre quadrature rule).
Because of that it is quite natural to consider whether nodes �� can be chosen in such
a way that the quadrature formula (2) will be exact for all algebraic polynomials of
degree less than or equal to .k C 1/n � 1. Turán [48] showed that the answer is
negative for k D 2, while it is positive for k D 3. He proved that the nodes �� , � D
1; 2; : : : ; n, should be chosen as the zeros of the monic polynomial ��

n .t/ D tn C� � �
which minimizes the integral

R 1
�1Œ�n.t/�4 dt, where �n.t/ D tn C an�1tn�1 C � � � C

a1t C a0. In the general case, the answer is negative for even, and positive for odd k,
when �� , � D 1; 2; : : : ; n, must be the zeros of the monic polynomial��

n minimizingR 1
�1Œ�n.t/�kC1 dt. Specially, for k D 1, ��

n is the monic Legendre polynomial bPn.
Let us now assume that k D 2s C 1, s � 0. Instead of (2), it is also interesting to

consider a more general Gauss–Turán type quadrature formula

Z

R

f .t/ d	.t/ D
2sX

iD0

nX

�D1
Ai;� f

.i/.��/C Rn;2s.f /; (3)

where d	.t/ is a given nonnegative measure on the real line R, with compact or
unbounded support, for which all moments�k D R

R
tk d	.t/, k D 0; 1; : : :, exist and
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are finite, and �0 > 0. It is known that formula (3) is exact for all polynomials of
degree at most 2.s C 1/n � 1, i.e., Rn;2s.f / D 0 for f 2 P2.sC1/n�1. The nodes �� ,
� D 1; : : : ; n, in (3) are the zeros of the monic polynomial �n;s.t/, which minimizes
the integral

F.a0; a1; : : : ; an�1/ D
Z

R

Œ�n.t/�
2sC2 d	.t/;

where �n.t/ D tn C an�1tn�1 C � � � C a1t C a0. This minimization leads to the
conditions

1

2s C 2
� @F

@ak
D
Z

R

Œ�n.t/�
2sC1tk d	.t/ D 0; k D 0; 1; : : : ; n � 1: (4)

These polynomials �n D �n;s are known as s-orthogonal (or s-self associated)
polynomials on R with respect to the measure d	.t/ (for more details, see
[15, 35–37]. For s D 0 they reduce to the standard orthogonal polynomials and (3)
becomes the well-known Gauss–Christoffel formula.

Using some facts about monosplines, Micchelli [22] investigated the sign of the
Cotes coefficients Ai;� in the Turán quadrature formula.

For the numerical methods for the construction of s-orthogonal polynomials as
well as for the construction of Gauss–Turán-type quadrature formulae, we refer
readers to the articles [17, 23, 24].

A next natural generalization of the Turán quadrature formula (3) is generaliza-
tion to rules having nodes with different multiplicities. Such rule for d	.t/ D dt on
.a; b/ was derived independently by Chakalov [3, 4] and Popoviciu [38]. Important
theoretical progress on this subject was made by Stancu [43, 44] (see also [46]).

Let us assume that the nodes �1 < �2 < � � � < �n, have multiplicities
m1;m2; : : : ;mn, respectively (a permutation of the multiplicities m1;m2; : : : ;mn,
with the nodes held fixed, in general yields to a new quadrature rule).

It can be shown that the quadrature formula (1) is exact for all polynomials of
degree less than 2

Pn
�D1Œ.m� C 1/=2�. Thus, the multiplicities m� that are even do

not contribute toward an increase in the degree of exactness, so that it is reasonable
to assume that all m� are odd integers, i.e., that m� D 2s� C 1, � D 1; 2; : : : ; n.
Therefore, for a given sequence of nonnegative integers � D .s1; s2; : : : ; sn/ the
corresponding quadrature formula

Z

R

f .t/ d	.t/ D
nX

�D1

2s�X

iD0
Ai;� f

.i/.��/C R.f /
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has the maximal degree of exactness dmax D 2
Pn

�D1 s� C 2n � 1 if and only if

Z

R

nY

�D1
.t � ��/2s�C1tk d	.t/ D 0; k D 0; 1; : : : ; n � 1: (5)

The previous orthogonality conditions correspond to (4) and they could be
obtained by the minimization of the integral

Z

R

nY

�D1
.t � ��/2s�C2 d	.t/:

The existence of such quadrature rules was proved by Chakalov [4], Popoviciu
[38], Morelli and Verna [33], and existence and uniqueness by Ghizzetti and
Ossicini [19].

The conditions (5) define a sequence of polynomials f�n;�gn2N0 ,

�n;� .t/ D
nY

�D1
.t � �.n;�/� /; �

.n;�/
1 < �

.n;�/
2 < � � � < �.n;�/n ;

such that

Z

R

�k;� .t/
nY

�D1
.t � �.n;�/� /2s�C1 d	.t/ D 0; k D 0; 1; : : : ; n � 1:

These polynomials �k;� are called �-orthogonal polynomials, and they correspond
to the sequence � D .s1; s2; : : :/. Specially, for s D s1 D s2 D � � � , the �-orthogonal
polynomials reduce to the s-orthogonal polynomials.

At the end of this section we mention a general problem investigated by Stancu
[43, 44, 46]. Namely, let �1; : : : ; �m .�1 < � � � < �m/ be given fixed (or prescribed)
nodes, with multiplicities `1; : : : ; `m, respectively, and �1; : : : ; �n .�1 < � � � < �n/

be free nodes, with given multiplicities m1; : : : ;mn, respectively. Stancu considered
interpolatory quadrature formulae of a general form

I.f / D
Z

R

f .t/ d	.t/ Š
nX

�D1

m��1X

iD0
Ai;� f

.i/.��/C
mX

�D1

`��1X

iD0
Bi;� f

.i/.��/; (6)

with an algebraic degree of exactness at least M C L � 1, where M D Pn
�D1 m� and

L D Pm
�D1 `� .

Using free and fixed nodes we can introduce two polynomials

QM.t/ W D
nY

�D1
.t � ��/

m� and qL.t/ W D
mY

�D1
.t � ��/`� :
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Choosing the free nodes to increase the degree of exactness leads to the so-called
Gaussian type of quadratures. If the free (or Gaussian) nodes �1; : : : ; �n are such that
the quadrature rule (6) is exact for each f 2 PMCLCn�1, then we call it the Gauss–
Stancu formula (see [26]). Stancu [45] proved that �1; : : : ; �n are the Gaussian nodes
if and only if

Z

R

tkQM.t/qL.t/ d	.t/ D 0; k D 0; 1; : : : ; n � 1: (7)

Under some restrictions of node polynomials qL.t/ and QM.t/ on the support
interval of the measure d	.t/ we can give sufficient conditions for the existence
of Gaussian nodes (cf. Stancu [20, 45]). For example, if the multiplicities of the
Gaussian nodes are odd, e.g., m� D 2s� C 1, � D 1; : : : ; n, and if the polynomial
with fixed nodes qL.t/ does not change its sign in the support interval of the measure
d	.t/, then, in this interval, there exist real distinct nodes �� , � D 1; : : : ; n. This
condition for the polynomial qL.t/ means that the multiplicities of the internal fixed
nodes must be even. Defining a new (nonnegative) measure d O	.t/ WD jqL.t/j d	.t/,
the “orthogonality conditions” (7) can be expressed in a simpler form

Z

R

tkQM.t/ d O	.t/ D 0; k D 0; 1; : : : ; n � 1:

This means that the general quadrature problem (6), under these conditions, can be
reduced to a problem with only Gaussian nodes, but with respect to another modified
measure. Computational methods for this purpose are based on Christoffel’s
theorem and described in detail in [16] (see also [20]).

For more details about the concept of power orthogonality and the corresponding
quadrature with multiple nodes and the maximal algebraic degree of exactness and
about the numerical methods for their construction we refer readers to the article
[25] and the references therein, as well as to a nice book by Shi [41].

The next natural generalization represents quadrature rules with multiple nodes
and the maximal degree of exactness in some functional spaces which are different
from the space of algebraic polynomials.

A Generalized Gaussian Problem

For a finite interval Œa; b� and a positive integer N, Ghizzeti and Osicini in
[18] considered quadrature rules for the computation of an integral of the typeR b

a f .x/w.x/ dx, where the weight function w and function f satisfy the following
conditions: w.x/ 2 LŒa; b�, f .x/ 2 ACN�1Œa; b� (ACmŒa; b�, m 2 N0, is the class of
functions f whose mth derivative is absolutely continuous in Œa; b�).
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For a fixed number m � 1 of points a � x1 < x2 < � � � < xm � b and a fixed
linear differential operator E of order N of the form

E D
NX

kD0
ak.x/

dN�k

dxN�k
;

where a1.x/ D 1, ak.x/ 2 ACN�k�1Œa; b�, k D 1; 2; : : : ;N � 1, and aN.x/ 2 L.a; b/,
they considered (see [18, pp. 41–43]) a generalized Gaussian problem, i.e., they
studied the quadrature rule

Z b

a
f .x/w.x/ dx D

mX

�D1

N�1X

jD0
Aj;� ; f

.j/.x�/C R.f /

such that E.f / D 0 implies R.f / D 0.
According to [18, p. 28] quadrature rule which is exact for all algebraic

polynomials of degree less than or equal � � 1 is relative to the differential operator
E D d�

dx� , and quadrature rule which is exact for all trigonometric polynomials of
degree less than or equal to � is relative to the differential operator (of order 2�C1):
E D d

dx

Q�
kD1
�

d2

dx2
C k2

�
.

They considered whether there can exist a rule of the form

Z b

a
f .x/w.x/ dx D

mX

�D1

N�p��1X

jD0
Aj;� f

.j/.x�/C R.f /; (8)

with fixed integers p� , 0 � p� � N �1, � D 1; 2; : : : ;m, such that at least one of the
integers p� is greater than or equal to 1, satisfying that E.f / D 0 implies R.f / D 0,
too. The answer is given in the following theorem (see [18, p. 45] for the proof).

Theorem 1. For the given nodes x1; x2; : : : ; xm, the linear differential operator E
of order N and the nonnegative integers p1; p2; : : : ; pm, 0 � p� � N � 1, � D
1; 2; : : : ;m, such that there exists � 2 f1; 2; : : : ;mg for which p� � 1, consider the
following homogenous boundary differential problem

E.f / D 0; f .j/.x�/ D 0; j D 0; 1; : : : ;N � p� � 1; � D 1; 2; : : : ;m: (9)

If this problem has no non-trivial solutions .whence N � mN � Pm
�D1 p�/ it is

possible to write a quadrature rule of the type (8) with mN�Pm
�D1 p��N parameters

chosen arbitrarily. If, on the other hand, the problem (9) has q linearly independent
solutions Ur, r D 1; 2; : : : ; q, with N � mN C Pm

�D1 p� � q � p� for all � D
1; 2; : : : ;m, then the formula (8) may apply only if the following q conditions

Z b

a
Ur.x/w.x/ dx D 0; r D 1; 2; : : : ; q;
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are satisfied; if so, mN � Pm
�D1 p� � N C q parameters in the formula (8) can be

chosen arbitrary.

Since the quadrature rules with multiple nodes and the maximal algebraic degree
of exactness are widespread in literature, in what follows we restrict our attention to
the quadrature rules with multiple nodes and the maximal trigonometric degree of
exactness.

Quadrature Rules with Multiple Nodes and the Maximal
Trigonometric Degree of Exactness

For a nonnegative integer n and for � 2 f0; 1=2g by T
�
n we denote the linear span of

the set fcos.k C �/x; sin.k C �/x W k D 0; 1; : : : ; ng. It is obvious that T0n D Tn is the

linear space of all trigonometric polynomials of degree less than or equal to n, T1=2n

is the linear space of all trigonometric polynomials of semi-integer degree less than
or equal to n C 1=2 and dim.T�n / D 2.n C �/C 1. By T� D S

n2N0 T
�
n we denote

the set of all trigonometric polynomials (for � D 0) and the set of all trigonometric
polynomials of semi-integer degree (for � D 1=2). For � D 0 we simple write
T instead of T0. Finally, by eTn we denote the linear space Tn � spanfsin nxg or
Tn � spanfcos nxg.

We use the following notation: O� D 1 � 2� , � 2 f0; 1=2g.
In what follows we simple say that trigonometric polynomial has degree k C � ,

k 2 N0, � 2 f0; 1=2g, which always means that for � D 0 it is trigonometric
polynomial of precise degree k, while for � D 1=2 it is trigonometric polynomial of
precise semi-integer degree k C 1=2.

Obviously, every trigonometric polynomial of degree n C � can be represented
in the form

T�n .x/ D
nX

kD0
.ck cos.k C �/x C dk sin.k C �/x/ ; c2n C d2n ¤ 0; (10)

where ck; dk 2 R, k D 0; 1; : : : ; n. For � D 0 we always set d0 D 0. Coefficients cn

and dn are called the leading coefficients.
Let us suppose that w is a weight function, integrable and nonnegative on the

interval Œ��; �/, vanishing there only on a set of a measure zero.
The quadrature rules with simple nodes and the maximal trigonometric degree of

exactness were considered by many authors. For a brief historical survey of available
approaches for the construction of such quadrature rules we refer readers to the
article [30] and the references therein. Following Turetzkii’s approach (see [49]),
which is a simulation of the development of Gaussian quadrature rules for algebraic
polynomials, quadrature rules with the maximal trigonometric degree of exactness
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with an odd number of nodes (� D 1=2) and with an even number of nodes (� D 0)
were considered in [30] (see also [9]) and in [47], respectively.

It is well known that in a case of quadrature rule with maximal algebraic degree
of exactness the nodes are the zeros of the corresponding orthogonal algebraic
polynomial. In a case of quadrature with an odd maximal trigonometric degree of
exactness the nodes are the zeros of the corresponding orthogonal trigonometric
polynomials, but for an even maximal trigonometric degree of exactness the
nodes are not zeros of trigonometric polynomial, but zeros of the corresponding
orthogonal trigonometric polynomial of semi-integer degree. Similarly, when the
quadrature rules with multiple nodes and the maximal algebraic degree of exactness
are in question it is necessary to consider power orthogonality in the space of
algebraic polynomials. But, if we want to consider quadrature rules with multiple
nodes and the maximal trigonometric degree of exactness, we have to consider
power orthogonality in the space of trigonometric polynomials or in the space of
trigonometric polynomials of semi-integer degree, which depends on the number of
nodes.

In mentioned papers [30, 47] the existence and the uniqueness of orthogonal
trigonometric polynomials of integer or of semi-integer degree were proved under
the assumption that two of the coefficients in expansion (10) are given in advance
(it is usual to choose the leading coefficients in advance). Also, if we directly
compute the zeros of orthogonal trigonometric polynomial (of integer or semi-
integer degree), we can fix one of them in advance since for 2.n C �/ zeros we
have 2.n C �/ � 1 orthogonality conditions.

Let n be positive integer, � 2 f0; 1=2g, s� nonnegative integers for � D
O�; O� C 1; : : : ; 2n, and � D .s O� ; s O�C1; : : : ; s2n/. For the given weight function w we
considered a quadrature rule of the following type

Z �

��
f .x/w.x/ dx D

2nX

�D O�

2s�X

jD0
Aj;� f

.j/.x�/C Rn.f /: (11)

which have maximal trigonometric degree of exactness, i.e., for which Rn.f / D 0

for all f 2 TN1 , where N1 D P2n
�D O� .s� C 1/ � 1. In this case boundary differential

problem (9) has the following form

E.f / D 0; f .j/.x�/ D 0; j D 0; 1; : : : ; 2s�; � D O�; O� C 1; : : : ; 2n; (12)

where E is the following differential operator of order N D 2N1 C 1:

E D d

dx

N1Y

kD1

�
d2

dx2
C k2

�
:

The boundary problem (12) has the following 2n� O� linear independent nontrivial
solutions
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U`.x/ D
2nY

�D O�

�
sin

x � x�
2

�2s�C1
cos.`C �/x; ` D 0; 1; : : : ; n � 1;

V`.x/ D
2nY

�D O�

�
sin

x � x�
2

�2s�C1
sin.`C �/x; ` D O�; O� C 1; : : : ; n � 1:

According to Theorem 1, the nodes x O� ; x O�C1; : : : ; x2n of the quadrature rule (11)
satisfy conditions

Z �

��

2nY

�D O�

�
sin

x � x�
2

�2s�C1
cos.`C �/x w.x/ dx D 0; ` D 0; 1; : : : ; n � 1;

Z �

��

2nY

�D O�

�
sin

x � x�
2

�2s�C1
sin.`C �/x w.x/ dx D 0; ` D O�; O� C 1; : : : ; n � 1;

i.e.,

Z �

��

2nY

�D O�

�
sin

x � x�
2

�2s�C1
t�n�1.x/w.x/ dx D 0; for all t�n�1 2 T

�
n�1: (13)

Trigonometric polynomial T��;n D Q2n
�D O� sin.x � x�/=2 2 T

�
n which satisfies

orthogonality conditions (13) is called �-orthogonal trigonometric polynomial of
degree n C � with respect to weight function w on Œ��; �/. Therefore, the nodes
of quadrature rule (11) with the maximal trigonometric degree of exactness are the
zeros of the corresponding �-orthogonal trigonometric polynomial.

Specially, for s O� D s O�C1 D � � � D s2n D s, �-orthogonality conditions (13)
reduce to

Z �

��

0

@
2nY

�D O�
sin

x � x�
2

1

A

2sC1

t�n�1.x/w.x/ dx D 0; t�n�1 2 T
�
n�1: (14)

Trigonometric polynomial T�s;n D Q2n
�D O� sin.x � x�/=2 2 T

�
n which satisfies (14) is

called s-orthogonal trigonometric polynomial of degree n C � with respect to w on
Œ��; �/.

For � D 1=2, s-orthogonal trigonometric polynomials of semi-integer degree
were defined and considered in [29], while �-orthogonal trigonometric polynomials
of semi-integer degree were defined and their main properties were proved in [31].
For � D 0, the both s- and �-orthogonal trigonometric polynomials were defined
and studied in [47].

It is obvious that s-orthogonal trigonometric polynomials can be considered as
a special case of �-orthogonal trigonometric polynomials. However, we first prove
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the existence and uniqueness of s-orthogonal trigonometric polynomials because it
can be done in a quite simple way, by using the well-known facts about the best
approximation given in the Remark 1 below (see [10, pp. 58–60]). The proofs of
the existence and uniqueness of �-orthogonal trigonometric polynomials are more
complicated. We prove them by using theory of implicitly defined orthogonality (see
[13, Sect. 5.3] for implicitly defined orthogonal algebraic polynomials).

Remark 1. Let X be a Banach space and Y be a closed linear subspace of X. For
each f 2 X, infg2Y kf � gk is the error of approximation of f by elements from Y. If
there exists some g D g0 2 Y for which that infimum is attained, then g0 is called
the best approximation to f from Y. For each finite dimensional subspace Xn of X
and each f 2 X, there exists the best approximation to f from Xn. In addition, if
X is a strictly convex space, then each f 2 X has at most one element of the best
approximation in each closed linear subspace Y � X.

Analogously as it was proved in [30, 47] for orthogonal trigonometric polynomi-
als, one can prove the existence and uniqueness of s- and �-orthogonal trigonometric
polynomials fixing in advance two of their coefficients or one of their zeros.
Before we prove the existence and uniqueness of s- and �-orthogonal trigonometric
polynomials, we prove that all of their zeros in Œ��; �/ are simple. Of course, it is
enough to prove that for �-orthogonal trigonometric polynomials.

Theorem 2. The �-orthogonal trigonometric polynomial T��;n 2 T
�
n with respect to

the weight function w.x/ on Œ��; �/ has in Œ��; �/ exactly 2.n C �/ distinct simple
zeros.

Proof. It is easy to see that the trigonometric polynomial T��;n.x/ must have at least
one zero of odd multiplicity in Œ��; �/, because if we assume the contrary, then for
n 2 N we obtain that

Z �

��

2nY

�D O�

�
sin

x � x�
2

�2s�C1
cos.0C �/x w.x/ dx D 0;

which is impossible, because the integrand does not change its sign on Œ��; �/.
We know (see [6, 7]) that T��;n.x/ must change its sign an even number of times for
� D 0 and an odd number of times for � D 1=2.

First, we suppose that � D 0 and that the number of zeros of odd multiplicities
of T�;n.x/ on Œ��; �/ is 2m, m < n. We denote these zeros by y1; y2; : : : ; y2m, and
set t.x/ D Q2m

kD1 sin..x � yk/=2/. Since t 2 Tm, m < n, we have

Z �

��

2nY

�D1

�
sin

x � x�
2

�2s�C1
t.x/w.x/ dx D 0;

which also gives a contradiction, since the integrand does not change its sign on
Œ��; �/. Thus, T�;n must have exactly 2n distinct simple zeros on Œ��; �/.
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Similarly, for � D 1=2 by y1; y2; : : : ; y2mC1, m < n, we denote the zeros of odd
multiplicities of T1=2�;n .x/ on Œ��; �/ and set Ot.x/ D Q2mC1

kD1 sin..x � yk/=2/. Since
Ot 2 T

1=2
m , m < n, we have

Z �

��

2nY

�D0

�
sin

x � x�
2

�2s�C1
.x/Ot.x/w.x/ dx D 0;

which again gives a contradiction, since the integrand does not change its sign on
Œ��; �/, which means that T1=2�;n .x/ must have exactly 2n C 1 distinct simple zeros
on Œ��; �/. ut

s-Orthogonal Trigonometric Polynomials

Theorem 3. Trigonometric polynomial T�s;n.x/ 2 T
�
n , � 2 f0; 1=2g, with given

leading coefficients, which is s-orthogonal on Œ��; �/ with respect to a given weight
function w is determined uniquely.

Proof. Let us set X D L2sC2Œ��; ��,

u D w.x/1=.2sC2/.cn;� cos.n C �/x C dn;� sin.n C �/x/ 2 L2sC2Œ��; ��;

and fix the following 2n � O� linearly independent elements in L2sC2Œ��; ��:

uj D w.x/1=.2sC2/ cos.j C �/x; j D 0; 1; : : : ; n � 1;

vk D w.x/1=.2sC2/ sin.k C �/x; k D O�; O� C 1; : : : ; n � 1:

Then Y D spanfuj; vk W j D 0; 1; : : : ; n � 1; k D O�; O� C 1; : : : ; n � 1g is a finite
dimensional subspace of X and, according to Remark 1, for each element from X
there exists the best approximation from Y, i.e., there exist 2n � O� constants ˛j;� ,
j D 0; 1; : : : ; n � 1, and ˇk;� , k D O�; O� C 1; : : : ; n � 1, such that the error

	
	
	
	u �

� n�1X

kD0
˛k;�uk C

n�1X

kD O�
ˇk;� vk

�		
	
	 D

�Z �

��

�
cn;� cos.n C �/x C dn;� sin.n C �/x

�
� n�1X

kD0
˛k;� cos.k C �/x C

n�1X

kD O�
ˇk;� sin.k C �/x

��2sC2
w.x/ dx

�1=.2sC2/
;

is minimal, i.e., for every n and for every choice of the leading coefficients cn;� ; dn;� ,
c2n;� C d2n;� ¤ 0, there exists a trigonometric polynomial of degree n C �
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T�s;n.x/ D cn;� cos.n C �/x C dn;� sin.n C �/x

�
� n�1X

kD0
˛k;� cos.k C �/x C

n�1X

kD O�
ˇk;� sin.k C �/x

�
;

such that
Z �

��
.T�s;n.x//

2sC2 w.x/ dx

is minimal. Since the space L2sC2Œ��; �� is strictly convex, according to Remark 1,
the problem of the best approximation has the unique solution, i.e., the trigonometric
polynomial T�s;n is unique.

Therefore, for each of the following 2n � O� functions

FC
k .	/ D

Z �

��
�
T�s;n.x/C 	 cos.k C �/x

�2sC2
w.x/ dx; k D 0; 1; : : : ; n � 1;

FS
k .	/ D

Z �

��
�
T�s;n.x/C 	 sin.k C �/x

�2sC2
w.x/ dx; k D O�; O� C 1; : : : ; n � 1;

its derivative must be equal to zero for 	 D 0. Hence,

Z �

��
�
T�s;n.x/

�2sC1
cos.k C �/x w.x/ dx D 0; k D 0; 1; : : : ; n � 1;

Z �

��
�
T�s;n.x/

�2sC1
sin.k C �/x w.x/ dx D 0; k D O�; O� C 1; : : : ; n � 1;

which means that the polynomial T�s;n.x/ satisfies (14). ut

� -Orthogonal Trigonometric Polynomials

In order to prove the existence and uniqueness of �-orthogonal trigonometric
polynomials we fix in advance the zero x O� D �� and consider the �-orthogonality
conditions (13) as the system with unknown zeros.

Theorem 4. Let w be the weight function on Œ��; �/ and let p be a nonnegative
continuous function, vanishing only on a set of a measure zero. Then there exists a
trigonometric polynomial T�n , � 2 f0; 1=2g, of degree n C � , orthogonal on Œ��; �/
to every trigonometric polynomial of degree less than or equal to n � 1 C � with
respect to the weight function p

�
T�n .x/

�
w.x/.
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Proof. By bT�n we denote the set of all trigonometric polynomials of degree n C �

which have 2.n C �/ real distinct zeros �� D x O� < x O�C1 < � � � < x2n < � and
denote

S2n�O� D ˚
x D .x

O�C1; x O�C2; : : : ; x2n/ 2 R
2n�O� W �� < x

O�C1 < x
O�C2 < � � � < x2n < �

�
:

For a given function p and an arbitrary Q�
n 2 bT�n , we introduce the inner product as

follows:

�
f ; g
�

Q
�
n

D
Z �

��
f .x/g.x/ p.Q�

n .x//w.x/ dx:

It is obvious that there is one to one correspondence between the setsbT�n and S2n� O� .
Indeed, for every element x D .x O�C1; x O�C2; : : : ; x2n/ 2 S2n� O� and for

Q�
n .x/ D cos

x

2

2nY

�D O�C1
sin

x � x�
2

(15)

there exists a unique system of orthogonal trigonometric polynomials U�
k 2 bT�k ,

k D 0; 1; : : : ; n, such that
�
U�

n ; cos.k C �/x
�

Q
�
n

D �
U�

n ; sin.j C �/x
�

Q
�
n

D 0, for all

k D 0; 1; : : : ; n � 1, j D O�; O� C 1; : : : ; n � 1, and
�
U�

n ;U
�
n
�

Q
�
n

¤ 0.
In such a way, we introduce a mapping Fn W S2n� O� ! S2n� O� , defined in the

following way: for any x D .x O�C1; x O�C2; : : : ; x2n/ 2 S2n� O� we have Fn.x/ D y,
where y D .y O�C1; y O�C2; : : : ; y2n/ 2 S2n� O� is such that ��; y O�C1; y O�C2; : : : ; y2n are
the zeros of the orthogonal trigonometric polynomial of degree n C � with respect
to the weight function p.Q�

n.x//w.x/, where Q�
n .x/ is given by (15). It is easy to

see that the function p
�
cos.x=2/

Q2n
�D O�C1 sin..x � x�/=2/

�
w.x/ is also an admissible

weight function for arbitrary x D .x O�C1; x O�C2; : : : ; x2n/ 2 S2n� O�nS2n� O� .
Now, we prove that Fn is continuous mapping on S2n� O� . Let x 2 S2n� O� be an

arbitrary point, fx.m/g, m 2 N, a convergent sequence of points from S2n� O� , which
converges to x, y D Fn.x/, and y.m/ D Fn.x.m//, m 2 N. Let y� 2 S2n� O� be an
arbitrary limit point of the sequence fy.m/g when m ! 1. Thus,

Z �

��
cos

x

2

2nY

�D O�C1
sin

x � y.m/�

2
cos.k C �/x


 p

0

@cos
x

2

2nY

�D O�C1
sin

x � x.m/�

2

1

A w.x/ dx D 0; k D 0; 1; : : : ; n � 1;

Z �

��
cos

x

2

2nY

�D O�C1
sin

x � y.m/�

2
sin.j C �/x
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 p

0

@cos
x

2

2nY

�D O�C1
sin

x � x.m/�

2

1

A w.x/ dx D 0; j D O�; O� C 1; 2; : : : ; n � 1:

Applying Lebesgue Theorem of dominant convergence (see [32, p. 83]), when
m ! C1 we obtain

Z �

��
cos

x

2

2nY

�D O�C1
sin

x � y�
�

2
cos.k C �/x

p

0

@cos
x

2

2nY

�D O�C1
sin

x � x�
2

1

A w.x/ dx D 0; k D 0; 1; : : : ; n � 1;

Z �

��
cos

x

2

2nY

�D O�C1
sin

x � y�
�

2
sin.j C �/x


 p

0

@cos
x

2

2nY

�D O�C1
sin

x � x�
2

1

A w.x/ dx D 0; j D O�; O� C 1; : : : ; n � 1;

i.e., cos.x=2/
Q2n
�D O�C1 sin..x � y�

� /=2/ is the trigonometric polynomial of degree
n C � which is orthogonal to all trigonometric polynomials from T

�
n�1 with respect

to the weight function p
�
cos.x=2/

Q2n
�D O�C1 sin..x � x�/=2/

�
w.x/ on Œ��; �/. Such

trigonometric polynomial has 2.n C �/ distinct simple zeros in Œ��; �/ (see
[30, 47]). Therefore, y� 2 S2n� O� and y� D Fn.x/. Since y D Fn.x/, because of
the uniqueness we have y� D y, i.e., the mapping Fn is continuous on S2n� O� .

Finally, we prove that the mapping Fn has a fixed point. The mapping Fn is
continuous on the bounded, convex and closed set S2n� O� � R

2n� O� . Applying the
Brouwer fixed point theorem (see [34]) we conclude that there exists a fixed point
of Fn. Since Fn.x/ 2 S2n� O� for all x 2 S2n� O�nS2n� O� , the fixed point of Fn belongs
to S2n� O� .

If we denote the fixed point of Fn by x D .x O�C1; x O�C2; : : : ; x2n/, then for Tn.x/ D
cos.x=2/

Q2n
�D O�C1 sin..x � x�/=2/ we get

Z �

��
T�n .x/ cos.k C �/x p

�
T�n .x/

�
w.x/ dx D 0; k D 0; 1; : : : ; n � 1;

Z �

��
T�n .x/ sin.j C �/x p

�
T�n .x/

�
w.x/ dx D 0; j D O�; O� C 1; : : : ; n � 1: ut
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Construction of Quadrature Rules with Multiple Nodes and the
Maximal Trigonometric Degree of Exactness

The construction of quadrature rule with multiple nodes and the maximal trigono-
metric degree of exactness is based on the application of some properties of the
topological degree of mapping (see [39]). For that purposes we use a certain
modification of ideas of Bojanov [1], Shi [40], Shi and Xu [42] (for algebraic
�-orthogonal polynomials) and Dryanov [11]. Using a unique notation for � 2
f0; 1=2g and omitting some details we present here results obtained in [31] and
[47] for � D 1=2 and � D 0, respectively.

For a 2 Œ0; 1�, n 2 N, and

F.x; a/ D
Z �

��

�
cos

x

2

�2as
O�C1 2nY

�D O�C1

ˇ
ˇ
ˇsin

x � x�
2

ˇ
ˇ
ˇ
2as�C1


 sgn

0

@
2nY

�D O�C1
sin

x � x�
2

1

A t�n�1.x/w.x/ dx; t�n�1 2 T
�
n�1;

we consider the following problem

F.x; a/ D 0 for all t�n�1 2 T
�
n�1; (16)

with unknowns x O�C1; x O�C2; : : : ; x2n.
The �-orthogonality conditions (13) (with x1 D ��) are equivalent to the

problem (16) for a D 1, which means that the nodes of the quadrature rule (11)
can be obtained as a solution of the problem (16) for a D 1.

For a D 0 and a D 1 the problem (16) has the unique solution in the simplex
S2n� O� . According to Theorem 4 we know that the problem (16) has solutions in the
simplex S2n� O� for every a 2 Œ0; 1�. We will prove the uniqueness of the solution
x 2 S2n� O� of the problem (16) for all a 2 .0; 1/.

Let us denote

W.x; a; x/ D
2nY

�D O�C1

ˇ
ˇ
ˇsin

x � x�
2

ˇ
ˇ
ˇ
2as�C2

and


k.x; a/ D
Z �

��

�
cos

x

2

�2as
O�C1 W.x; a; x/

sin
x � xk

2

w.x/ dx; (17)

for k D O� C 1; O� C 2; : : : ; 2n.
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Applying the same arguments as in [11, Lemma 3.2], the following auxiliary
result can be easily proved.

Lemma 1. There exists " > 0 such that for every a 2 Œ0; 1� the solutions x of the
problem (16) belong to the simplex

S";� D ˚
y W " � y O�C1 C �; " � y O�C2 � y O�C1; : : : ; " � y2n � y2n�1; " � � � y2n

�
:

Also, the following result holds (see [31, Lemma 2.3] and [47, Lemma 4.4] for
the proof).

Lemma 2. The problem (16) and the following problem


k.x; a/ D 0; k D O� C 1; O� C 2; : : : ; 2n; (18)

where 
k.x; a/ are given by (17), are equivalent in the simplex S2n� O� .

It is important to emphasize that the problems (16) and (18) are equivalent in the
simplex S";� , for some " > 0, as well as in the simplex S"1;� , for all 0 < "1 < ", but
they are not equivalent in S2n� O� .

For the proof of the main result we need the following lemma (for the proof see
[31, Lemma 2.4]).

Lemma 3. Let p�;�.x/ be a continuous function on Œ��; ��, which depends contin-
uously on parameters �; � 2 Œc; d�, i.e., if .�m; �m/ approaches .�0; �0/ then the
sequences p�m;�m.x/ tend to p�0;�0.x/ for every fixed x. If the solution x.�; �/ of
the problem (18) with the weight function p�;�.x/w.x/ is always unique for every
.�; �/ 2 Œc; d�2, then the solution x.�; �/ depends continuously on .�; �/ 2 Œc; d�2.

Now, we are ready to prove the main result.

Theorem 5. The problem (18) has a unique solution in the simplex S2n� O� for all
a 2 Œ0; 1�.
Proof. We call the problem (18) as .aI s O�C1; s O�C2; : : : ; s2nI w/ problem and prove
this theorem by mathematical induction on n.

The uniqueness for n D 0 is trivial.
As an induction hypothesis, we suppose that the .aI s O�C1; s O�C2; : : : ; s2n�2I w/

problem has a unique solution for every a 2 Œ0; 1� and for every weight function
w, integrable and nonnegative on the interval Œ��; �/, vanishing there only on a set
of a measure zero.

For .�; �/ 2 Œ��; ��2 we define the weight functions

p�;�.x/ D
ˇ
ˇ
ˇ̌sin

x � �

2

ˇ
ˇ
ˇ̌
2as2n�1C2 ˇˇ̌sin

x � �
2

ˇ
ˇ̌2as2nC2

w.x/:

According to the induction hypothesis, the .aI s O�C1; s O�C2; : : : ; s2n�2I p�;�/ problem
has a unique solution .x O�C1.�; �/; x O�C2.�; �/; : : : ; x2n�2.�; �// for every a 2 Œ0; 1�,
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such that �� < x O�C1.�; �/ < � � � < x2n�2.�; �/ < � , and x�.�; �/ for all � D
O�C1; O�C2; : : : ; 2n �2 depends continuously on .�; �/ 2 Œ��; ��2 (see Lemma 3).

We will prove that the solution of the .aI s O�C1; s O�C2; : : : ; s2nI w/ problem is
unique for every a 2 Œ0; 1�.

Let us denote x2n�1.�; �/ D �, x2n.�; �/ D �,

W.x.�; �/; a; x/ D
2nY

�D O�C1

ˇ
ˇ
ˇ
ˇsin

x � x�.�; �/

2

ˇ
ˇ
ˇ
ˇ

2as�C2
;

and


k.x.�; �/; a/ D
Z �

��

�
cos

x

2

�2as
O�C1 W.x.�; �/; a; x/

sin
x � xk.�; �/

2

w.x/ dx; k D O� C 1; : : : ; 2n:

The induction hypothesis gives us that


k.x.�; �/; a/ D 0; k D O� C 1; O� C 2; : : : ; 2n � 2; (19)

for .�; �/ 2 D, where D D f.�; �/ W x2n�2.�; �/ < � < � < �g.
Let us now consider the following problem in D with unknown t D .�; �/:

'1.t; a/ D
Z �

��

�
cos

x

2

�2as
O�C1 W.x.�; �/; a; x/

sin
x � �
2

w.x/ dx D 0; (20)

'2.t; a/ D
Z �

��

�
cos

x

2

�2as
O�C1 W.x.�; �/; a; x/

sin
x � �

2

w.x/ dx D 0:

If .�; �/ 2 D is a solution of the problem (20), then, according to (19), x.�; �/ is
a solution of the .aI s O�C1; : : : ; s2nI w/ problem in the simplex S2n� O� . On the contrary,
if x D .x O�C1; x O�C2; : : : ; x2n/ is a solution of the .aI s O�C1; : : : ; s2nI w/ problem in
the simplex S2n� O� , then .x2n�1; x2n/ is a solution of the problem (20). Applying
Lemma 1 we conclude that every solution of the problem (20) belongs to D" D
f.�; �/ W " � � � x2n�2.�; �/; " � �� �; " � � � �g, for some " > 0.

Let x be a solution of the problem .aI s O�C1; s O�C2; : : : ; s2nI w/ in S";� . Then,
differentiating '1 with respect to the xk, for all k D O�C 1; O� C 2; : : : ; 2n � 2; 2n, we
have

@'1

@xk
D � .ask C 1/

Z �

��

�
cos

x

2

�2as
O�C1 2nY

�D O�C1

ˇ
ˇ
ˇsin

x � x�
2

ˇ
ˇ
ˇ
2as�C1


 sgn

0

@
2nY

�D O�C1
sin

x � x�
2

1

A
2nY

�DO�C1
�¤k; �¤2n�1

sin
x � x�
2

cos
x � xk

2
w.x/ dx:
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Since

2nY

�DO�C1
�¤k; �¤2n�1

sin
x � x�
2

cos
x � xk

2
2 T

�
n�1;

applying Lemma 2, we conclude that @'1
@xk

D 0, for all k D O� C 1; : : : ; 2n � 2; 2n.
Further, applying elementary trigonometric transformations we get the following
identity

cos
x � y

2
D cos

x

2
cos

y

2
C sin

x � y

2
cos

y

2
sin

y

2
C cos

x � y

2
sin2

y

2
;

and for

I WD @'1

@x2n�1
D �2as2n�1 C 1

2

Z �

��

�
cos

x

2

�2as
O�C1 2nY

�DO�C1
�¤2n�1

ˇ
ˇ
ˇsin

x � x�
2

ˇ
ˇ
ˇ
2as�C2



ˇ
ˇ
ˇsin

x � x2n�1
2

ˇ
ˇ
ˇ
2as2n�1

cos
x � x2n�1

2
w.x/ dx;

we obtain

cos
x2n�1
2

I D �2as2n�1 C 1

2

�
I1 C sin

x2n�1
2

I2
�
; (21)

where

I1D
Z �

��

�
cos

x

2

�2as
O�C1 2nY

�DO�C1
�¤2n�1

ˇ
ˇ̌sin

x�x�
2

ˇ
ˇ̌2as�C2 ˇˇ̌sin

x � x2n�1
2

ˇ
ˇ̌2as2n�1

cos
x

2
w.x/ dx;

I2 D
Z �

��

�
cos

x

2

�2as
O�C1 2nY

�DO�C1
�¤2n�1

ˇ
ˇ
ˇsin

x � x�
2

ˇ
ˇ
ˇ
2as�C2



ˇ
ˇ
ˇsin

x � x2n�1
2

ˇ
ˇ
ˇ
2as2n�1

sin
x � x2n�1

2
w.x/ dx:

Obviously, I1 > 0 (the integrand does not change its sign on Œ��; �/) and I2 D 0

(because of (20)). Since �� < x2n�1 < � , from (21) we get

sgn

�
@'1

@x2n�1

�
D �1:
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Analogously,

@'2

@xk
D 0; k D O� C 1; O� C 2; : : : ; 2n � 1; sgn

�
@'2

@x2n

�
D �1:

Thus, at any solution t D .�; �/ of the problem (20) from D" we have

@'1

@�
D

2nX

kDO�C1

k¤2n�1

@'1

@xk
� @xk

@�
C @'1

@x2n�1
D @'1

@x2n�1
;

@'1

@�
D 0;

@'2

@�
D

2n�1X

kD O�C1

@'2

@xk
� @xk

@�
C @'2

@x2n
D @'2

@x2n
;

@'2

@�
D 0:

Hence, the determinant of the corresponding Jacobian J.t/ is positive.
We are going to prove that the problem (20) has a unique solution in D"=2. We

prove it by using the topological degree of a mapping. Let us define the mapping
'.t; a/ W D"=2 
 Œ0; 1� ! R

2, by '.t; a/ D .'1.t; a/; '2.t; a//, t 2 R
2, a 2 Œ0; 1�. If

x.�; �/ is a solution of the .aI s O�C1; : : : ; s2nI w/ problem in S";� , then the solutions of
the problem '.t; a/ D .0; 0/ in D"=2 belong to D". The problem '.t; a/ D .0; 0/ has
the unique solution in D"=2 for a D 0. It is obvious that '. � ; 0/ is differentiable on
D"=2, the mapping '.t; a/ is continuous in D"=2 
 Œ0; 1�, and '.t; a/ ¤ .0; 0/ for all
t 2 @D"=2 and a 2 Œ0; 1�. Then deg.'. � ; a/;D"=2; .0; 0// D sgn.det.J.t/// D 1, for
all a 2 Œ0; 1�, which means that deg.'. � ; a/;D"=2; .0; 0// is a constant independent
of a. Therefore, the problem '.t; a/ D .0; 0/ has the unique solution in D"=2 for all
a 2 Œ0; 1�. Hence, the .aI s O�C1; : : : ; s2nI w/ problem has a unique solution in S2n� O�
which belongs to S";� . ut
Theorem 6. The solution x D x.a/ of the problem (18) depends continuously on
a 2 Œ0; 1�.
Proof. Let famg, am 2 Œ0; 1�, m 2 N, be a convergent sequence, which converges
to a� 2 Œ0; 1�. Then for every am, m 2 N, there exists the unique solution
x.am/ D .x O�C1.am/; : : : ; x2n.am// of the system (18) with a D am. The unique
solution of system (18) for a D a� is x.a�/ D .x O�C1.a�/; : : : ; x2n.a�//. Let
x� D .x�

O�C1; : : : ; x
�
2n/ be an arbitrary limit point of the sequence x.am/ when

am ! a�. According to Theorem 5, for each m 2 N we have

Z �

��

�
cos

x

2

�2ams
O�C1 W.x.am/; am; x/

sin
x � xk.am/

2

w.x/ dx D 0; k D O� C 1; O� C 2; : : : ; 2n:
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When am ! a� the above equations lead to

Z �

��

�
cos

x

2

�2a�s
O�C1 W.x�; a�; x/

sin
x � x�

k

2

w.x/ dx D 0; k D O� C 1; O� C 2; : : : ; 2n:

According to Theorem 5 we get that x� D x.a�/, i.e., lim
am!a�

x.am/ D x.a�/. ut

Numerical Method for Construction of Quadrature Rules with
Multiple Nodes and the Maximal Trigonometric Degree of
Exactness

Based on the previously given theoretical results we present the numerical method
for construction of quadrature rules of the form (11), for which Rn.f / D 0 for all
f 2 TN1 , where N1 D P2n

�D O� .s� C 1/ � 1. The first step is a construction of nodes,
and the second one is a construction of weights knowing nodes.

Construction of Nodes

We chose x O� D �� and obtain the nodes x O�C1; x O�C2; � � � ; x2n by solving system
of nonlinear equations (18) for a D 1, applying Newton–Kantorovič method.
Obtained theoretical results suggest that for fixed n the system (18) can be solved
progressively, for an increasing sequence of values for a, up to the target value
a D 1. The solution for some a.i/ can be used as the initial iteration in Newton–
Kantorovič method for calculating the solution for a.iC1/, a.i/ < a.iC1/ � 1. If for
some chosen a.iC1/ Newton–Kantorovič method does not converge, we decrease
a.iC1/ such that it becomes convergent, which is always possible according to
Theorem 6. Thus, we can set a.iC1/ D 1 in each step, and, if that iterative process
is not convergent, we set a.iC1/ WD .a.iC1/ C a.i//=2 until it becomes convergent. As
the initial iteration for the first iterative process, for some a.1/ > 0, we choose the
zeros of the corresponding orthogonal trigonometric polynomial of degree n C � ,
i.e., the solution of system (18) for a D 0.

Let us introduce the following matrix notation

x D �
x O�C1 x O�C2 � � � x2n

�T
;

x.m/ D
h
x.m/O�C1 x.m/O�C2 � � � x.m/2n

iT
; m D 0; 1; : : : ;

�.x/ D �

 O�C1.x/ 
 O�C2.x/ � � � 
2n.x/

�T
:
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Jacobian of �.x/,

W D W.x/ D Œwi;j�.2n� O�/�.2n� O�/ D

@
iC O�
@xjC O�

�

.2n� O�/�.2n� O�/
;

has the following entries

@
i

@xj
D � .1Casj/

Z �

��

�
cos

x

2

�2as
O�C1 2nY

�D O�C1

ˇ̌
ˇsin

x � x�
2

ˇ̌
ˇ
2as�C1

sgn

0

@
2nY

�D O�C1
sin

x � x�
2

1

A



2nY

�DO�C1
�¤i;�¤j

sin
x�x�
2

cos
x � xj

2
w.x/ dx; i ¤ j; i; j D O� C 1; O�C2; : : : ; 2n;

@
i

@xi
D �1C 2asi

2

Z �

��

�
cos

x

2

�2as
O�C1 2nY

�DO�C1
�¤i

ˇ̌
ˇsin

x � x�
2

ˇ̌
ˇ
2as�C2



ˇ
ˇ
ˇsin

x � xi

2

ˇ
ˇ
ˇ
2asi

cos
x � xi

2
w.x/ dx; i D O� C 1; O� C 2; : : : ; 2n:

All of the above integrals can be computed by using a Gaussian type quadrature
rule for trigonometric polynomials (see [30, 47])

Z �

��
f .x/w.x/ dx D

2NX

�D O�
A� f .x�/C RN.f /;

with 2N � P2n
�D O� s� C 2n.

The Newton–Kantorovič method for calculating the zeros of the �-orthogonal
trigonometric polynomial T��;n is given as follows

x.mC1/ D x.m/ � W�1.x.m//�.x.m//; m D 0; 1; : : : ;

and for sufficiently good chosen initial approximation x.0/, it has the quadratic
convergence.

Construction of Weights

Knowing the nodes of quadrature rule (11), it is possible to calculate the correspond-
ing weights. The weights can be calculating by using the Hermite trigonometric
interpolation polynomial (see [11, 12]). Since the construction of the Hermite
interpolation trigonometric polynomial is more difficult than in the algebraic case,
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we use an adaptation on the method which was first given in [17] for construction
of Gauss–Turán quadrature rules (for algebraic polynomials) and then generalized
for Chakalov–Popoviciu’s type quadrature rules (also for algebraic polynomials) in
[27, 28]. For � D 1=2 and � D 0 the corresponding method for construction of
weights of quadrature rule (11) is presented in [31] and [47], respectively.

Our method is based on the facts that quadrature rule (11) is of interpolatory type
and that it is exact for all trigonometric polynomials of degree less than or equal toP2n

�D O�.s� C 1/� 1 D P2n
�D O� s� C 2.n C �/� 1. Thus, the weights can be calculated

requiring that quadrature rule (11) integrates exactly all trigonometric polynomials
of degree less than or equal to

P2n
�D O� s� C .n C �/ � 1. Additionally, in the case

� D 0 (i.e., O� D 1) we require that (11) integrates exactly cos
�P2n

�D1 s� C n
�
x,

when
P2n

�D1.2s� C 1/x� D `� for an odd integer `, or sin
�P2n

�D1 s� C n
�
x when

P2n
�D1.2s� C 1/x� D `� for an even integer `, while if

P2n
�D1.2s� C 1/x� ¤ `� , ` 2

Z, one can choose to require exactness for cos
�P2n

�D1 s� Cn
�
x or sin

�P2n
�D1 s� Cn

�
x

arbitrary (see [6, 7, 47]). In such a way we obtain a system of linear equations for the
unknown weights. That system can be solved by decomposing into a set of 2.n C�/

upper triangular systems. For � D 0 we explain that decomposing method in the
case when

P2n
�D1.2s� C 1/x� D `� , ` 2 Z.

Let us denote

˝�.x/ D
2nY

iDO�

i¤�

�
sin

x � xi

2

�2siC1
; � D O�; O� C 1; : : : ; 2n;

uk;�.x/ D
�

sin
x � x�
2

�k
˝�.x/; � D O�; O� C 1; : : : ; 2n; k D 0; 1; : : : ; 2s�;

and

tk;�.x/ D
(

uk;�.x/ cos
x � x�
2

; k-even, � D 0, or k-odd, � D 1=2,

uk;�.x/; k-odd, � D 0, or k-even, � D 1=2,
(22)

for all � D O�; O� C 1; : : : ; 2n, k D 0; 1; : : : ; 2s� . It is easy to see that tk;� is a
trigonometric polynomial of degree less than or equal to

P2n
�D O� s� C n, which for

� D 0 has the leading term cos
�P2n

�D1 s� C n
�
x or sin

�P2n
�D1 s� C n

�
x, but not the

both of them. Quadrature rule (11) is exact for all such trigonometric polynomials,
i.e., Rn.tk;�/ D 0 for all � D O�; O� C 1; : : : ; 2n, k D 0; 1; : : : ; 2s� .

By using the Leibniz differentiation formula it is easy to check that t.j/k;�.xi/ D 0,
j D 0; 1; : : : ; 2s� , for all i ¤ �. Hence, for all k D 0; 1; : : : ; 2s� we have

�k;� D
Z �

��
tk;� .x/w.x/ dx D

2s�X

jD0
Aj;� t

.j/
k;�.x�/; � D O�; O� C 1; : : : ; 2n: (23)
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In such a way, we obtain 2.n C �/ independent systems for calculating the weights
Aj;� , j D 0; 1; : : : ; 2s� , � D O�; O� C 1; : : : ; 2n. Here, we need to calculate the

derivatives t.j/k;�.x�/, k D 0; 1; : : : ; 2s� , j D 0; 1; : : : ; 2s� , for each � D O�; O� C
1; : : : ; 2n. For that purpose we use the following result (see [31] for details).

Lemma 4. For the trigonometric polynomials tk;� , given by (22) we have

t.i/k;�.x�/ D 0; i < kI t.k/k;�.x�/ D kŠ

2k
˝�.x�/;

and for i > k

t.i/k;�.x�/ D
(
v
.i/
k;�.x�/; k-even, � D 0, or k-odd, � D 1=2,

u.i/k;�.x�/; k-odd, � D 0, or k-even, � D 1=2,

where

v
.i/
k;�.x�/ D

Œi=2�X

mD0

 
i

2m

!
.�1/m
22m

u.i�2m/
k;� .x�/;

and the sequence u.i/k;�.x�/, k 2 N0, i 2 N0, is the solution of the difference equation

f .i/k;� D
Œ.i�1/=2�X

mDŒ.i�k/=2�

 
i

2mC1

!
.�1/m
22mC1 f .i�2m�1/

k�1;� .x�/; � D O�; O�C1; : : : ; 2n; k 2 N; i 2 N0;

with the initial conditions f .i/0;� D ˝
.i/
� .x�/.

Finally, the remaining problem of calculating ˝.i/
� .x�/, � D O�; O� C 1; : : : ; 2n, is

solved in [31, Lemma 3.3].

Lemma 5. Let us denote

˝�;k.x/ D
Y

i�k
i¤�

�
sin

x � xi

2

�2siC1
:

Then˝�;��1.x/ D ˝�;�.x/ and˝�.x/ D ˝�;2n.x/. The sequence˝.i/
�;k;`.x/, `; i 2 N0,

where

˝�;k;`.x/ D
�

sin
x � xkC1

2

�`
˝�;k.x/; k D O�; O� C 1; : : : ; 2n � 1; k ¤ � � 1;

is the solution of the following difference equation

f .i/�;k;`.x/ D
iX

mD0

 
i

m

!
1

2m
sin
�x � xkC1

2
C m�

2

�
f .i�m/
�;k;`�1.x/; ` 2 N0;
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with the initial conditions f .i/�;k;0 D ˝
.i/
�;k, i 2 N0. The following equalities

˝
.i/
�;k;2skC1C1.x/ D ˝

.i/
�;kC1;0.x/; k ¤ � � 1;

˝.i/
� .x/ D ˝

.i/
�;2n.x/ D ˝

.i/
�;2n�1;2s2nC1.x/; � ¤ 2n;

˝
.i/
2n .x/ D ˝

.i/
2n;2n�1.x/ D ˝

.i/
2n;2n�2;2s2n�1C1.x/

hold.

According to Lemma 4, the systems (23) are the following upper triangular
systems

2

6
6
6
66
6
6
6
4

t0;�.x�/ t00;�.x�/ � � � t.2s�/
0;� .x�/

t01;�.x�/ � � � t.2s�/
1;� .x�/

: : :
:::

t.2s�/
2s� ;�

.x�/

3

7
7
7
77
7
7
7
5

�

2

6
6
6
66
6
6
6
4

A0;�

A1;�

:::

A2s� ;�

3

7
7
7
77
7
7
7
5

D

2

6
6
6
66
6
6
6
4

�0;�

�1;�

:::

�2s� ;�

3

7
7
7
77
7
7
7
5

; � D O�; O� C 1; : : : ; 2n:

Remark 2. For the case � D 0, if
P2n

�D1.2s� C 1/x� ¤ `� , ` 2 Z, then we choose
tk;� , k D 0; 1; : : : ; 2s� , � D 1; 2; : : : ; 2n, in one of the following ways

tk;� .x/ D uk;�.x/ cos

x C
2nP

iD1
i¤�

.2si C 1/xi C 2s�x�

2

or

tk;�.x/ D uk;�.x/ sin

x C
2nP

iD1
i¤�

.2si C 1/xi C 2s�x�

2
;

which provides that

tk;� 2 TP2n
�D1 s�Cn � span



cos

� 2nX

�D1
s� C n

�
x

�

or

tk;� 2 TP2n
�D1 s�Cn � span



sin

� 2nX

�D1
s� C n

�
x

�
;

k D 0; 1; : : : ; 2s� , � D 1; 2; : : : ; 2n, respectively.
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Numerical Example

In this section we present one numerical example as illustration of the obtained
theoretical results. Numerical results are obtained using our proposed progressive
approach. For all computations we use MATHEMATICA and the software package
OrthogonalPolynomials explained in [8] in double precision arithmetic.

Example 1. We construct quadrature rule (11) for � D 0, n D 3,
� D .3; 3; 3; 4; 4; 4/, with respect to the weight function

w.x/ D 1C cos 2x; x 2 Œ��; �/:

For calculation of nodes we use proposed progressive approach with only two steps,
i.e., two iterative processes: for a D 1=2 (with 9 iterations) and for a D 1 (with 8
iterations). The nodes x� , � D 1; 2; : : : ; 6, are the following:

�3:141592653589793; �2:264556388673865; �1:179320242581565;
�0:1955027724705077; 0:8612188670819011; 2:178685249095223:

The corresponding weight coefficients Aj;� , j D 0; 1; : : : ; 2s� , � D 1; 2; : : : ; 6,
are given in Table 1 (numbers in parentheses denote decimal exponents).

Table 1 Weight coefficients Aj;� , j D 0; 1; : : : ; 2s� , � D 1; 2; : : : ; 2n, for w.x/ D 1C cos 2x,
x 2 Œ��; �/, n D 3 and � D .3; 3; 3; 4; 4; 4/

j Aj;1 Aj;2 Aj;3

0 1:676594372192496 7:305332409592605.�1/ 3:487838013502532.�1/
1 �3:606295932640399.�3/ �8:705060748567067.�2/ 6:802235520408829.�2/
2 4:450266475268382.�2/ 1:929684165460602.�2/ 1:120920249826093.�2/
3 �6:813768854008439.�2/ �9:825070962211830.�4/ 8:081866652580276.�4/
4 2:575834718221877.�4/ 1:050037121874394.�4/ 6:594073161399015.�5/
5 �2:025745530496365.�7/ �2:102329131299247.�6/ 1:808851807084914.�6/
6 3:780621226622374.�7/ 1:413143818423462.�7/ 9:154154335491590.�8/
j Aj;4 Aj;5 Aj;6

0 1:880646586862865 9:170128528217915.�1/ 7:296144529929201.�1/
1 6:328640684710125.�2/ �1:557489854117211.�1/ 1:399304206896031.�1/
2 7:316493158593520.�2/ 3:683058320865013.�2/ 2:916174720939193.�2/
3 1:252054136886738.�3/ �2:974661584717919.�3/ 2:588432069654582.�3/
4 7:029326017474412.�4/ 3:381006758789474.�4/ 2:606855435340879.�4/
5 6:219410600844099.�6/ �1:428080829445919.�5/ 1:209621855269665.�5/
6 2:280678345497009.�6/ 1:008832884300956.�6/ 7:540115736887533.�7/
7 8:397304312672816.�9/ �1:865855244589502.�8/ 1:546523556082379.�8/
8 2:276058254314503.�9/ 8:981189180630658.�10/ 6:501031023479647.�10/
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A -Summability of Sequences of Linear
Conservative Operators

Daniel Cárdenas-Morales and Pedro Garrancho

Abstract This work deals with the approximation of functions by sequences of
linear operators. Here the classical convergence is replaced by matrix summabil-
ity. Beyond the usual positivity of the operators involved in the approximation
processes, more general conservative approximation properties are considered.
Quantitative results, as well as results on asymptotic formulae and saturation are
stated. It is the intention of the authors to show the way in which some concepts
of generalized convergence entered Korovkin-type approximation theory. This is
a survey work that gathers and orders the results stated by the authors and other
researchers within the aforesaid subject.

Keywords Linear operator • Matrix summability method • Conservative approx-
imation • Asymptotic formula • Saturation

Introduction

Given a sequence of infinite regular matrices, denoted by A , our concern with this
work is to show the way in which A -summability theory entered the so-called
Korovkin-type approximation theory, and then show as well how this matter
was investigated through the classical topics that one encounters on studying
approximation processes by sequences of linear operators, as those the aforesaid
theory deals with. Special emphasis is made on the shape approximation properties
of the operators. This is a survey work that gathers and orders some results stated
mainly by the authors.

In the rest of this section we first review some classical results on (conservative)
approximation by linear operators, and then present the notion of A -summability
and how it was introduced in approximation theory. In the way, we anticipate
the contents of the other three sections of this work, devoted respectively to
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quantitative results, asymptotic formulae and saturation results, via A -summability,
and considering conservative approximation processes.

Basics on Korovkin-Type (Conservative) Approximation

Korovkin-type theory treats the problem of approximating a function f by using
sequences of functions Lnf defined from a sequence Ln of linear operators. Let us
recall that given an operator L, Lf D L.f / denotes the image of f by L; an operator
L between two function spaces is linear if given any two functions f and g in the
domain, then ˛f C ˇg belongs to the domain as well for any ˛; ˇ 2 R, and L.˛f C
ˇg/ D ˛L.f /C ˇL.g/; the operator L is said to be positive if f � 0 implies Lf � 0.

The foundations of this branch of approximation theory were laid in the 1950s
by Popoviciu, Bohmann and finally by Korovkin who gave the name to the theory
probably after the publication of his book [16]. The theory found much further
development since then (see [3]).

The most basic statement reads as follows. Here and in the sequel k � k denotes
the uniform norm, ei.t/ D ti and as usual Ck.X/ stands for the space of all k-times
continuously differentiable functions defined on the set X; C0.X/ D C.X/.

Theorem 1. Let X be a compact real interval and let Kn be a sequence of positive
linear operators defined on C.X/. If kKnei � eik ! 0 for all i 2 f0; 1; 2g, then

kKnf � f k ! 0 for each function f 2 C.X/:

The list of variations and extensions of this result is endless. According to our
aim for this work, we shall focus our attention on the more general setting where
the element to be approximated is Lf instead of f , L being a linear operator, and
where the hypotheses of positivity of the operators is extended and replaced by a
conservative property related to a cone a functions, that is to say, a set of functions
closed under multiplication by non-negative real numbers. To fix ideas the reader
may think of L as Dk, i.e. the classical kth differential operator of order k, and
think of the conservative property as if it were k-convexity. Recall that an operator
is said to be k-convex if it maps k-convex functions onto k-convex functions, and
recall also that a function f , k-times differentiable on certain interval, is said to be
k-convex on that interval if Dkf is non-negative there. This situation naturally takes
us to the setting of the so-called simultaneous approximation. In this point, we just
refer the reader to the paper [22] for a general Korovkin-type result on conservative
approximation.

Once an approximation process is proved to be convergent, the next step consists
of studying the rate of convergence, leading this way to quantitative versions of
the first results. Here the basic important tool is represented by the modulus of
continuity of a function, defined for f 2 C.X/ by
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!.f ; ı/ D supfjf .x/� f .y/j W x; y 2 X; jx � yj < ıg:

The most known quantitative version of Theorem 1 was stated in 1968 by Shisha
and Mond [23] and reads as follows. Here and throughout the paper we use the
notation ex

i .t/ D .t � x/i.

Theorem 2. Let X be a compact real interval and let Kn be a sequence of positive
linear operators defined on C.X/. Assume that the function Kne0 is bounded for all
n 2 N. Then for each function f 2 C.X/, and all n 2 N,

kf � Knf k � kf k � kKne0 � e0k C kKne0 C e0k � !.f ; �n/;

where �2n D supx2XfKnex
2.x/g.

In [7] the reader can consult a generalization of this last theorem, stated under
the more general setting we shall be concerned with, roughly described above.

Just to mention in advance one of our aims, we note that the results in [7, 22],
extensions of the pioneers statements by Korovkin, Shisha, and Mond, remain
valid when considering notions of convergence more general than the usual, and
maintaining similar shape preserving assumptions on the operators. We could
introduce right now these notions, however we now try to present further aims
that turn to be extensions of the results that deal with the next natural step
within approximation by linear operators, namely the study of the goodness of the
estimates that yield the quantitative results. Obviously we are referring to the topic
of saturation and to the natural previous step represented by the establishment of
asymptotic formulae.

One of the seminal results in this context was given in 1932 by Voronovskaya
[26] for the classical Bernstein operator,

Bnf .x/ D
nX

kD0

 
n

k

!

f

�
k

n

�
xk.1 � x/n�k; f 2 CŒ0; 1�; x 2 Œ0; 1�;

namely,

Theorem 3. If f is a function bounded on Œ0; 1�, differentiable in a neighbourhood
of x 2 Œ0; 1�, such that f 00.x/ exists, then

lim
n!C1 n.Bnf .x/� f .x// D x.1 � x/

2
f 00.x/:

If f 2 C2Œ0; 1�, then the convergence is uniform.

The result assures that Bnf .x/ � f .x/ is of order not better that 1=n if f 00.x/ ¤ 0.
A proof of the following extension can be consulted in [9]:

Theorem 4. Let Ln W CkŒa; b� �! CkŒc; d�, with Œc; d� � Œa; b�, be a sequence of
linear k-convex operators and let x 2 Œc; d�. Assume that DkLnex

kC4.x/ D o.	�1
n / and
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that there exists a sequence of positive real numbers 	n ! C1 and a function p D
p.t/, k times differentiable and positive on .a; b/, such that for each i 2 f0; 1; : : : ;
k C 2g,

lim
n!C1	n.D

kLnex
i .x/� Dkex

i .x// D Dk.pD2ex
i /.x/:

Then for each f 2 CkŒa; b�, k C 2 times differentiable in a neighbourhood of x,

lim
n!C1	n.D

kLnf .x/� Dkf .x// D Dk.pD2f /.x/:

As regards saturation, we refer the reader to a result of Lorentz [18] for the
Bernstein operators, and to an extension of it stated in 1972 by Lorentz and
Schumaker [19]. Then, following the same scheme as above, we find a paper
of the authors [6], where the results are moved into the setting of simultaneous
approximation. For illustrative purposes we merely detail an application to the
Bernstein operators.

Theorem 5. Let 0 < a < b < 1. Then for k 2 N and f 2 CkŒ0; 1�,

2n
ˇ
ˇDkBnf .x/ � Dkf .x/

ˇ
ˇ � M

1

.1 � x/k�1 C o.1/; x 2 .a; b/;

if and only if

.e1 � e2/
k

�
1

ek�1
DkC1f C k � 1

ek
Dkf

�
2 LipM1 en .a; b/:

A -Summability and Korovin-Type Approximation

In 1948 Lorentz [17] introduced and characterized the notion of almost convergence.
Here, for the sake of clarity, we use that characterization as a definition.

Definition 1. A sequence of real numbers xj is said to be almost convergent to `,
written in short as xj + `, if

lim
k!C1

1

k

nCk�1X

jDn

xj D ` uniformly in n:

Twenty years later this notion was studied in approximation theory by King and
Swetits [14]. They handled sequences of the type
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Lif .x/ D
1X

jD1
aij.x/f .xij/; i D 1; 2; : : :

related to interesting summability matrices .aij.x//, i; j D 1; 2; : : :, and came up with
certain connections between the convergence of the sequences and the regularity of
those infinite matrices. We recall now these concepts that we shall use later in a
different context.

Definition 2. Let A D .akj/ be an infinite matrix with real entries, and let xj be a
sequence. We define the A-transform of xj to be the sequence whose elements are
given by

1X

jD1
akjxj; k D 1; 2; 3; : : :

whenever the series converge for all k. If this last sequence converges to a limit `,
then we say that xj is A-summable to `.

As for the aforementioned regularity we quote a definition and ask the reader to
recall the popular characterization theorem of Silverman–Toeplitz.

Definition 3. An infinite matrix A is said to be regular if the convergence of a
sequence x towards its limit ` implies the convergence to the same limit of its
A-transform.

King and Swetits proved the following result analogous to the classical
Korovkin’s one:

Theorem 6. Let Kj be a sequence of positive linear operators defined on CŒa; b�.
Then Kjf + f 8f 2 CŒa; b� if and only if Kjei + ei 8i 2 f0; 1; 2g.

Later on, Mohapatra [20] studied the error of approximation by stating a result
similar to Theorem 2. He introduced some notation and used a norm as follows:
with a sequence of linear operators Kj W C.X/ ! C.X/, a function f 2 C.X/, and
a non-negative integer k, one associates the sequence of functions tkf , whose terms
are given by

tn
k f D 1

k

nCk�1X

jDn

Kjf ; n D 1; 2; : : :

Its norm, natural extension of the uniform one, is defined as

ktkf k D sup
n

sup
x2X

jtn
k f .x/j:
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With this notation, the sequence Kjf is almost convergent to g 2 C.X/, uniformly in
X, if and only if ktkf � gk tends to 0 as k tends to infinity.

Under the setting of simultaneous approximation, the almost convergence was
first studied in [12] from a qualitative point of view. The corresponding quantitative
version will be studied in the next section, under the more general framework
introduced in 1973 by Bell [4] via the following definition:

Definition 4. Let A.n/, n D 1; 2; : : :, be a sequence of infinite matrices with A.n/ D
.a.n/k;j / and a.n/k;j � 0 for n; k; j D 1; 2; : : :. The sequence xj is said to be A.n/-summable
to ` if

lim
k!1

1X

jD1
a.n/k;j xj D `

uniformly in n, provided the series are convergent for all k and all n.

This concept unifies convergence and almost convergence. Indeed, if a.n/k;j D 1=k

for n � j < k C n and a.n/k;j D 0 otherwise, then A.n/-summability coincides with

almost convergence. On the other hand, if a.n/k;j D ıkj, ıkj being the Kronecker delta,

then A.n/-summability amounts to convergence. Moreover, if A.n/ D A for all n and
certain matrix A, then A.n/-summability refers to classical summability matrix, and
if in addition A is lower triangular and akj D 1=k, then A.n/-summability reduces to
the well-known Cesàro or .C; 1/ summability.

Swetits [25] proved a quantitative Korovkin-type result for sequences of positive
linear operators under A.n/-summability. He considered Lj W CŒa; b� ! CŒa; b� and
A.n/, and defined for f 2 CŒa; b� and k; n D 1; 2; : : : ,

A.n/k .f ; x/ D
1X

jD1
a.n/kj Ljf .x/; kAkf k D sup

n
sup

x2Œa;b�
jA.n/k .f ; x/j:

Then he proved the following result, extension of Theorem 2 and the corresponding
one by Mohapatra:

Theorem 7. Under the previous conditions, assume that kAke0k < 1 and let
�2k D kAkex

2k. Then for each f 2 CŒa; b� and k D 1; 2; : : :,

kf � Akf k � kf k � kAke0 � e0k C kAke0 C e0k � !.f ; �k/:

The following section is devoted to present an extension of this last result to
the setting of conservative approximation. It turns to be a quantitative version via
A.n/-summability of the general result proved in [12]. The last two sections deal
with asymptotic formulae and saturation results. These results complete the study
of A.n/-summability in conservative approximation theory. They were published in
the last few years in [1, 2, 11].
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Quantitative Results

Let X D Œa; b� or X D T (understood to be R with the identifications of points
modulo 2�), both endowed with the usual metric that we denote by d, i.e. d.x; y/ D
jx�yj or d.x; y/ D minfjx�yj; 2��jx�yjg, respectively. For f 2 C.X/, the modulus
of continuity is defined accordingly.

Let A be a sequence of infinite matrices A.n/ D .a.n/k;j /, n D 1; 2; : : :with a.n/k;j � 0

for n; k; j D 1; 2; : : :. Let L be a sequence of linear operators Lj W C.X/ !
C.X/; j D 1; 2; : : :, and for each f 2 C.X/, let us consider the double sequence
(whenever the series converge)

A k;n
L f WD

1X

jD1
a.n/kj Ljf ; k; n D 1; 2; : : : :

Our attention is now paid in the approximation process of A k;n
L f towards f as

k ! 1, uniformly in X and uniformly for n D 1; 2; : : : . The convergence amounts
to the A -summability of Ljf towards f uniformly in X. Equivalently, if we call A k

L f
the sequence whose elements are given by A k;n

L f , n D 1; 2; : : :, then we can consider
the norm

kA k
L f k D sup

n
sup
x2X

ˇ
ˇ
ˇA k;n

L f .x/
ˇ
ˇ
ˇ :

This way, Ljf is A -summable to f uniformly in X, if and only if

sup
n

sup
x2X

jA k;n
L f .x/ � f .x/j ! 0 cuando k ! 1;

which amounts to the fact that

kA k
L f � f k ! 0 as k ! 1:

Now we state a quantitative result on general conservative approximation via
A -summability. With this aim, we consider the following ingredients: a subspace
W � C.X/, a cone C � W, a linear operator T W W �! C.X/ and, from it, the
set P D ff 2 W W Tf .x/ � 0 8x 2 Xg; and finally a sequence of linear operators
Lj W W �! W denoted by L .

Obviously, our objective is to study the A -summability of TLjf towards Tf (TLjf
represents .T ı Lj/.f / D T.Lj.f //). We shall assume the following conservative
property related to the cone C: Lj.P \ C/ � P, j D 1; 2; : : :. Specifically we shall
estimate the quantity

kA k
TıL f � Tf k D sup

n
sup
x2X

jA k;n
TıL f .x/ � Tf .x/j;
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where

A k;n
TıL f D

1X

jD1
a.n/kj TLjf :

Theorem 8 ([1]). Under the conditions above, let u 2 W such that Tu D e0, and
for each x 2 X, let 'x 2 C such that, for certain constants M > 0 and 	 � 1,
T'x.x/ D 0 for all x 2 X and T'x.t/ � Md.t; x/	 for all t; x 2 X. Let us also assume
that for each f 2 W there exists ˛f � 0 such that for ˛ � ˛f , � 2 Œ�1; 3� and x 2 X,
we have that ˙f C ˛'x C � kTf k u 2 C. Finally, for each k 2 N, let us suppose that	
	A k

TıL u
	
	 < 1 and �	k WD supn supx2X A k;n

TıL 'x.x/ < 1. Then, for f 2 W and
k 2 N

	
	A k

TıL f � Tf
	
	 � kTf k 		A k

TıL u � e0
	
	C 	

	A k
TıL u

	
	!.Tf ; �k/

Cmax
n
!.Tf ;�k/

M ; �	k˛f

o
:

Next we show some applications of the result. However, we firstly try to make
it easier its understanding. With this purpose, let W D Cm.X/ and T D Dm.
Thus P � Cm.X/ is the set of all m-convex functions and we are studying the A -
summability of DmLjf towards Dmf , by estimating the quantity

kA k
DmıL f � Dmf k D sup

n
sup

x

ˇ
ˇ
ˇ
ˇ
ˇ̌

1X

jD1
a.n/kj DmLjf .x/� Dmf .x/

ˇ
ˇ
ˇ
ˇ
ˇ̌ :

Notice that if the series above is finite, then A k
DmıL f D Dm

�
A k

L f
�
, which takes

us, if we were restricted to the usual convergence, to the topic of simultaneous
approximation. Some papers in this line are [7, 8, 21, 22].

On the other hand, assume that for each x 2 X, 'x D Ps
iD1 ˛i.x/fi for certain

functions fi 2 W and ˛i defined on X. Then, from the hypotheses of the theorem,

A k;n
TıL 'x.x/ D A k;n

TıL 'x.x/ � T'x.x/ D
1X

jD1
a.n/kj TLj'x.x/ � T'x.x/

D
sX

iD1
˛i.x/

0

@
1X

jD1
a.n/kj TLjfi.x/ � Tfi.x/

1

A D
sX

iD1
˛i.x/

�
A k;n

TıL fi.x/ � Tfi.x/
�
:

Thus, if for i D 1; : : : ; s, the functions ˛i are bounded on X and the functions TLjfi
are A -summable to Tfi uniformly in X, then
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�	k �
sX

iD1
k˛ik

		A k
TıL fi � Tfi

		 ; �k �! 0:

If in addition TLju is A -summable to Tu uniformly in X, then for each f 2 W, TLjf
is A -summable to Tf and we have an estimate of the order of A -summability in
terms of the corresponding orders of TLjfi and TLju.

Applications

From Theorem 8 we first recover classical results on convergence and almost
convergence. Then we consider more general domains and more general conser-
vative properties. Finally, we deal with some particular well-known sequences of
operators.

Particular Cases and Extensions

Let X D Œa; b�, W D C D C.X/, T D I (the identity operator) and a.n/kj D ıkj. Let us
apply Theorem 8 with u D e0 and 'x.t/ D .t � x/2. It appears the classical result of
Shisha and Mond [23]. Analogously, if we let X D T, W D C D C.X/, T D I and
a.n/kj D ıkj, and then apply the theorem with u D e0 and 'x.t/ D sin2. t�x

2
/, it appears

the other result of Shisha and Mond [24] in the trigonometric case.
If, under the previous framework, we consider a.n/kj D 1=k for n � j < k C n, and

a.n/kj D 0 otherwise, then we recover the result of Mohapatra [20].
On the other hand, it is important to notice that, with obvious modifications,

Theorem 8 remains valid if X is replaced by any compact, convex subset of Rm.
Under the usual convergence, this case was studied in [7].

On Almost Convex Operators

Now we deal with almost convexity of order m � 1, for certain m 2 N. This shape
preserving property was first considered in [15]: the operator Lj is said to be almost
convex of order m � 1 if there exists a subset ˝ � f0; 1; : : : ;m � 1g such that

Lj

0

@
\

i2˝[fmg
Hi

X

1

A � Hm
X ; (1)

where Hi
X WD ff 2 Ci.X/ W Dif .x/ � 0 8x 2 Xg.

Next result follows directly from Theorem 8.



472 D. Cárdenas-Morales and P. Garrancho

Corollary 1. Let m 2 N and let Lj W CmŒ0; 1� ! CmŒ0; 1� be a sequence of linear
operators fulfilling (1) for X D Œ0; 1� and certain subset ˝ � f0; 1; : : : ;m � 1g. Let
'x 2 hemin˝; : : : ; emC2i such that Dm'x.t/ D .t � x/2 and Di'x.0/ D 1C kDiC1'xk
for i D m � 1;m � 2; : : : ;min˝ , and finally let

�2k D sup
x2X

sup
n2N

A k;n
DmıL 'x.x/:

Then, for each f 2 CmŒ0; 1� and k 2 N,

	
	A k

DmıL f � Dmf
	
	 � !.Dmf ; �k/

mŠ

	
	A k

DmıL em

	
	C 1

mŠ
kDmf kkA k

DmıL em � Dmemk

C max



!.Dmf ; �k/; �

2
k max

i2˝



kDif k C kDmf k

.m � i/Š

��
:

We apply now the previous corollary to the well-known sequence of Meyer–
König and Zeller operators, defined by

Mnf .x/ D .1 � x/nC1
1X

pD0
f

�
p

p C n

� 
n C p

p

!

xp; x 2 Œ0; 1/; Mnf .1/ D f .1/:

Some shape preserving properties of these operators are known:

Mn.H
i
Œ0;1�/ � Hi

Œ0;1�; i D 0; 1; 2; Mn.H
3
Œ0;1�/ 6� H3

Œ0;1�;

Mn.H
2
Œ0;1� \ H3

Œ0;1�/ � H2
Œ0;1� \ H3

Œ0;1�;

Mn.H
2
Œ0;1� \ H3

Œ0;1� \ H4
Œ0;1�/ � H2

Œ0;1� \ H3
Œ0;1� \ H4

Œ0;1�

and

Mn.H
2
Œ0;1� \ H3

Œ0;1� \ H4
Œ0;1� \ H5

Œ0;1�/ � H2
Œ0;1� \ H3

Œ0;1� \ H4
Œ0;1� \ H5

Œ0;1�:

Equivalently, these operators are positive, 1-convex and 2-convex. They are not
3-convex but almost convex of order k, for k D 3; 4; 5 with ˝ D f2; : : : ; k � 1g.

Knoop and Pottinger [15] obtained estimates for jjD1Mnf � D1f jj and
jjD2Mnf � D2f jj. Under the usual convergence, Corollary 1 applies for m D 3; 4; 5.
But also, given any sequence of matrices A under the conditions of Theorem 8, we
can consider a sequence of positive real numbers ˇn that is A -summable to 0 and
not necessarily convergent in the classical sense, and consider from it

cMnf D .1C ˇn/Mnf :

The new sequence cMn inherits from Mn the aforesaid shape preserving properties,
so Corollary 1 applies.
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A Trigonometric Case

For i 2 N0 [ fC1g and 
 2 C.T/, let

Ti
.t/ D a0
2

C
iX

vD1
av cos.vt/C bv sin.vt/;

av, bv being the Fourier coefficients of 
 2 C.T/ and let Hi
T

WD f
 2 C.T/ W Ti
 �
0g. We fix m 2 N and consider X D T, W D C.T/, T D Tm and C D T

i2˝ Hi
T

,
where ˝ is a subset of f0; 1; : : : ;m � 1g, and assume that the operators Lj satisfy
that Lj.P \ C/ � P. Under these conditions the following result can be proved with
the aid of Theorem 8.

Corollary 2. Let h D max˝ , 'x.t/ D PhC1
vD1.1 � cos.v.t � x/// and

�2k D sup
x2X

sup
n2N

A k;n
TmıL 'x.x/:

Then for each f 2 W and k 2 N

kA k
TmıL f � Tmf k � w.Tmf ; �k/

	
	A k

TmıL e0
	
	C kTmf k 		A k

TmıL e0 � e0
	
	

C max



�2!.Tmf ; �k/

2
; �2k max

i2˝ fkTif k C kTmf kg
�
:

Asymptotic Formulae

In this section we pass on to study the next natural topic, once qualitative and
quantitative results have been studied. To have a quick idea of what we are
referring to, we recall the following expression for the mth derivative of the classical
Bernstein operators: given f , m-times continuously differentiable on Œ0; 1� and
m C 2-times differentiable at x 2 .0; 1/,

lim
n!1 n.DmBnf .x/ � Dmf .x// D Dm.pD2f /.x/;

where p D p.t/ D t.1� t/=2. And also take a look at this other that follows, related
to the almost convergence of DmBkf .x/ towards Dmf .x/:

lim
k!1

k

log k

0

@
nCk�1X

jDn

1

k
DmBjf .x/ � Dmf .x/

1

A D Dm.pD2f /.x/

uniformly en n.
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This last formula is illustrative but of low interest, as the usual convergence of
DmBkf .x/ towards Dmf .x/ implies its almost convergence. Nevertheless it shows
the type of result that we are about to state in this section. Here we do not
consider a framework as general as the one considered in the previous section
in Theorem 8. We consider the space CŒa; b�, we do not consider any cones
and restrict our attention to the case T D Dm, that is to say, we assume that
the operators are m-convex. Moreover, in the applications, instead of considering
general A -summability, we focus on almost convergence.

Let L be a sequence of linear operators Lj W CmŒa; b� ! CmŒa; b� and let A WD
fA.n/g D fa.n/kj g. Let us assume that the operators Lj are m-convex. For f 2 CmŒa; b�
and x 2 Œa; b� we consider the double sequence (whenever it makes sense)

A k;n
DmıL f .x/ WD

1X

jD1
a.n/kj DmLjf .x/; k; n D 1; 2; : : :

Our concern now is to study the A -summability of DmLjf .x/ towards Dmf .x/,
specifically, the asymptotic behaviour of the expression

A k;n
DmıL f .x/� Dmf .x/:

In this respect, under the conditions above, we present the following result published
in [11]. It can be considered a sort of Korovkin-type result for asymptotic formulae.

Theorem 9. Let x 2 .a; b/ such that the series A k;n
DmıL ex

i .x/ is convergent for
i D 0; 1; : : : ;m C 4 and for k; n D 1; 2; : : : .

Assume that:

(a) There exists a sequence of positive real numbers 	k ! C1 and a function
p D p.t/, m-times differentiable and strictly positive on .a; b/, such that for
each i 2 f0; 1; : : : ;m C 2g,

lim
k!C1	k

�
A k;n

DmıL ex
i .x/ � Dmex

i .x/
�

D Dm
�
pD2ex

i

�
.x/

uniformly for n 2 N,
(b)

lim
k!C1	kA

k;n
DmıL ex

mC4.x/ D 0

uniformly for n 2 N.

Then for each f 2 CmŒa; b�, m C 2-times differentiable in a neighbourhood of the
point x,

lim
k!C1	k

�
A k;n

DmıL f .x/� Dmf .x/
�

D Dm
�
pD2f

�
.x/

uniformly for n 2 N.
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Applications

First of all we notice that [10, Lemma 5.2] and Theorem 4 proved in [9] are
particular cases of Theorem 9. On the other hand, we roughly pointed out at the
beginning of the section the type of formulae that can be obtained for the derivatives
of the Bernstein polynomials via almost convergence. Now we pay attention to some
generalizations.

Modified Bernstein Operators and Almost Convergence

We make use of generalized Lototsky matrices (see [13, 14]). Given f 2 CŒ0; 1� we
consider the sequence of operators Lj defined by

Ljf .x/ D
jX

vD0
bjv.x/f .v=j/; x 2 Œ0; 1�; (2)

where the infinite matrix B D .bjv.x// is defined as follows:

b00 D 1; b0v D 0; v > 0;


j.x/
jY

iD1
.hi.x/y C 1 � hi.x// D

jX

vD0
bjv.x/y

v;


j.x/ being a sequence of functions defined on Œ0; 1� with 0 � 
j.x/ for each
j D 1; 2; : : : and x 2 Œ0; 1�, and hi.x/ being a sequence of functions defined on
Œ0; 1� with 0 � hi.x/ � 1 for each i D 1; 2; : : : and x 2 Œ0; 1�.

Notice that if 
j D e0 for all j and hi D e1 for all i, then the operators given in
(2) coincide with the classical Bernstein ones.

In [14] the authors stated a qualitative result on the almost convergence of the
sequence given in (2). Specifically, it was proved that if the .C; 1/-transform of hi

converges to e1 uniformly in Œ0; 1�, and if 
j.x/ is almost convergent to 1 uniformly
in Œ0; 1�, then for each f 2 CŒ0; 1�, the sequence Ljf .x/ is almost convergent to f .x/
uniformly in Œ0; 1�.

For the sake of simplicity, we consider the particular case where hi D e1 for all i
and 
j.x/ is almost convergent to 1, non-necessarily convergent. Thus, the operators
Lj turn to be a sort of Bernstein type operators. We can consider as example the
sequence of functions 
j.x/ D 1 C .�1/jx=2, which does not converge but almost
converges to 1. In this way, if we rename as L
j the operators of this particular

sequence, then we have that L
j f .x/ does not converge to f .x/, but does almost
converge, that is to say
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lim
k!1

nCk�1X

jDn

1

k
L
j f .x/ D f .x/ uniformemente para n 2 N:

For sequences of this type the corollary below follows as a direct application of
Theorem 9.

Corollary 3. Let f 2 CŒ0; 1� twice differentiable in a neighbourhood of a point
x 2 .0; 1/, then, uniformly for n 2 N,

lim
k!C1

k

log k

0

@
nCk�1X

jDn

1

k
L
j f .x/ � f .x/

1

A D x.1 � x/

2
D2f .x/:

Saturation Results

In this section we review the topic of saturation under the same general framework
that was considered in the previous section.

Our concern now is to study the saturation in the A -summability processes of
DmLjf .x/ towards Dmf .x/. To do this we start from the following three assumptions:

(P1) for each f 2 CmŒa; b� and x 2 Œa; b�, DmLjf .x/ is A -summable to Dmf .x/, or
equivalently

A k;n
DmıL f .x/ WD

1X

jD1
a.n/kj DmLjf .x/

converges to Dmf as k tends to infinity, uniformly in n,
(P2) each Lj is m-convex.

As a direct consequence of this property, for f ; g 2 CmŒa; b�,

Dmf .t/ � Dmg.t/ 8t 2 Œa; b� ) A k;n
DmıL f .t/ � A k;n

DmıL g.t/ 8t 2 Œa; b�:

(P3) there exists a sequence of real positive numbers 	k ! C1 and three strictly
positive functions w0;w1;w2 defined on .a; b/ with wi 2 C2�i.a; b/ such that
for f 2 CmŒa; b�, m C 2-times differentiable in some neighbourhood of a
point x 2 .a; b/,

lim
k!C1	k

�
A k;n

DmıL f .x/ � Dmf .x/
�

D 1

w2
D1

�
1

w1
D1

�
1

w0
Dmf

��
.x/

uniformly in n.
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The formula given in (P3) gives information about the order of convergence of
A k;n

DmıL f .x/ towards Dmf .x/; it assures that it is not better than 	�1
k if that limit is

different from zero. Thus, 	�1
k is called optimal order of convergence and those

functions which attained it form the so-called saturation class.
Our aim with this part of the work is to obtain that saturation class for the

A-summability processes we are dealing with. We follow the line of work of [6],
based upon the pioneers results by Lorentz and Schumaker [19]. We include some
applications in the end.

Firstly, we discuss the reason why we use in (P3) the expression

1

w2
D1

�
1

w1
D1

�
1

w0
Dmf

��
.x/;

instead of the one that we considered in the previous section, i.e.

Dm
�
pD2f C qD1f

�
.x/:

The reason is that the results look nicer and the saturation classes are clearly
expressed from the functions wi.

Secondly, if consider a subinterval J � Œa; b� and fix a point c 2 J, it is well
known that the functions

u0.t/ D w0.t/;

u1.t/ D w0.t/
Z t

c
w1.s/ds;

u2.t/ D w0.t/
Z t

c
w1.t1/

Z t1

c
w2.t2/dt2dt1 (3)

form (in J) an extended complete Tchebychev system T D fu0; u1; u2g. On the
other hand, fu0; u1g is a fundamental system of solutions of the second order
differential equation (with unknown v) that appears in (P3)

Dv WD w�1
2 D1

�
w�1
1 D1

�
w�1
0 v

�� D 0: (4)

In addition, Du2 D e0.
From the machinery introduced by Bonsall [5] in 1950, these considerations

allow to talk about sub-.D/ functions in J. This notion, that we recall now, will
play an important role in the sequel. It amounts to certain generalized convexity, as
we try to state with a proposition.

Definition 5. A function f defined on J is said to be sub-.D/ in J if for each
t; t1; t2 2 J such that t1 < t < t2, one has that

f .t/ � F.f ; t1; t2/;

where F.f ; t1; t2/ is the unique solution of (4) which takes the values f .t1/ and f .t2/,
respectively, at t1 and t2.
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Proposition 1. Let f be continuous on J. The following statements are
equivalent:

(i) f is sub-.D/ in J,
(ii) f is convex on J with respect to fu0; u1g,

(iii) for any t1; t; t2 2 J with t1 < t < t2

ˇ
ˇ̌
ˇ
ˇ
ˇ

u0 .t1/ u1 .t1/ f .t1/
u0 .t/ u1 .t/ f .t/
u0 .t2/ u1 .t2/ f .t2/

ˇ
ˇ̌
ˇ
ˇ
ˇ

� 0:

Moreover, in connection with the Tchebychev system, we present the operator

4T f D 1

w1
D1

�
1

w0
f

�
;

and then the class LipT
M 1, M � 0, both introduced and studied in [19], formed by

those functions f , such that 4T f is absolutely continuous and fulfill

j4T f .t2/ � 4T f .t1/j � M
Z t2

t1

w2.s/ds; (5)

which amounts to the fact that f 0 is absolutely continuous and fulfill almost
everywhere the inequality jD f j � M.

It is important to notice that if w2 D e0, then the fact that f belongs to the class
LipT

M 1 is equivalent to 4T f belongs to the classical Lipschitz class LipM1.
Now we present a lemma proved in [19], which relates convexity and Liptschitz

conditions.

Lemma 1. A function f 2 C.J/ belongs to LipT
M 1 if and only if the functions

.�f C Mu2/ and .f C Mu2/ are both convex with respect to fu0; u1g.

As a last ingredient to achieve the desired result, we state some notation to
compare rates of convergence. If ˛.n/k is a double sequence of real numbers such

that limk!C1 ˛
.n/
k D 0 uniformly in n 2 N, and ˇk is another sequence with

limk!C1 ˇk D 0, then we shall write

˛
.n/
k D o.n/.ˇk/

to indicate that

lim
k!C1

˛
.n/
k

ˇk
D 0 uniformly for n 2 N:

Now we write one after the other the results that takes us to the main statement
of this section.
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Lemma 2. Let J be an open subinterval of Œa; b�. Let g; h 2 C.J/ and t0; t1; t2 2 J
such that t0 2 .t1; t2/, g.t1/ D g.t2/ D 0 and g.t0/ > 0. Then there exist a real
number � < 0, a solution of the differential equation (4) in J, say z, and a point
x 2 .t1; t2/ such that

�h.t/C z.t/ � g.t/ 8t 2 Œt1; t2�;
�h.x/C z.x/ D g.x/:

Lemma 3. Let f 2 CmŒa; b�. If Dmf is a solution of the differential equation (4) in
some neighbourhood of x 2 .a; b/, then

A k;n
DmıL f .x/� Dmf .x/ D o.n/.	�1

k /:

Lemma 4. Let f ; g 2 CmŒa; b� and let x 2 .a; b/. Assume that there exists a
neighbourhood Nx of x where Dmf � Dmg. Then

A k;n
DmıL f .x/ � A k;n

DmıL g.x/C o.n/.	�1
k /:

Proposition 2. Let f 2 CmŒa; b�, then

(a) Dmf is convex with respect to fu0; u1g in .a; b/ if and only if for each x 2 .a; b/

A k;n
DmıL f .x/ � Dmf .x/C o.n/.	�1

k /:

(b) If A k;n
DmıL f .x/ � A kC1;n

DmıL f .x/C o.n/.	�1
k / for all x 2 .a; b/, then Dmf is convex

with respect to fu0; u1g in .a; b/.

Proposition 3. Let M be a positive constant and let f ;w 2 CmŒa; b�. Then the
following statements are equivalent:

(i) MDmw C Dmf and MDmw � Dmf are convex with respect to fu0; u1g in .a; b/,
(ii) for each x 2 .a; b/,

ˇ
ˇ
ˇA k;n

DmıL f .x/ � Dmf .x/
ˇ
ˇ
ˇ � M

�
A k;n

DmıL w.x/ � Dmw.x/
�

C o.n/.	�1
k /:

We find different saturation results by taking different choices of the function w.
We show two. In the first one, the saturation class is expressed in terms of the
classical Lipschitz spaces, whereas in the second it appears the differential operator
which appears in the corresponding asymptotic formula.

Theorem 10. Let f 2 CmŒa; b�. Then

	k

ˇ
ˇ
ˇA k;n

DmıL f .x/� Dmf .x/
ˇ
ˇ
ˇ � M

w2.x/
C o.n/.1/; x 2 .a; b/
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if and only if, in .a; b/,

4T Dmf D w�1
1 D1.w�1

0 .D
mf / 2 LipM1:

Theorem 11. Let f 2 CmŒa; b�. Then

	k

ˇ
ˇ
ˇA k;n

DmıL f .x/ � Dmf .x/
ˇ
ˇ
ˇ � M C o.n/.1/; x 2 .a; b/

if and only if,

ˇ
ˇ
ˇ̌ 1
w2

D1

�
1

w1
D1

�
1

w0
Dmf

��ˇˇ
ˇ̌ � M a.e. on .a; b/:

Applications

Finally, we illustrate the use of the previous results. One has to make use of the
corresponding asymptotic formulae that can be obtained from the previous section.
We restrict our attention to Bernstein type operators and we do not go beyond almost
convergence, as a particular case of A -summability.

Corollary 4. Let M > 0 and f 2 C3Œ0; 1�, then

k

log k

ˇ̌
ˇ
ˇ
ˇ
ˇ

nCk�1X

jDn

1

k
D3Bjf .x/ � D3f .x/

ˇ̌
ˇ
ˇ
ˇ
ˇ

� M
1

2.1 � x/2
C o.n/.1/; x 2 .0; 1/

if and only if

.e1 � e2/
3

�
1

e2
D4f C 2

e3
D3f

�
2 LipM1 in .0; 1/:

Corollary 5. Let M > 0 and f 2 C3Œ0; 1�, then

k

log k

ˇ̌
ˇ
ˇ
ˇ
ˇ

nCk�1X

jDn

1

k
D3Bjf .x/ � D3f .x/

ˇ̌
ˇ
ˇ
ˇ
ˇ

� M C o.n/.1/; x 2 .a; b/

if and only if

jD3..e1 � e2/D
2f /j � M a.e. on .0; 1/:

Now we consider the sequence of linear operators Lj given in section “Modified
Bernstein Operators and Almost Convergence.”
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Corollary 6. Let M > 0 and f 2 CŒ0; 1�, then

k

log k

ˇ
ˇ
ˇ
ˇ̌
ˇ

nCk�1X

jDn

1

k
Ljf .x/ � f .x/

ˇ
ˇ
ˇ
ˇ̌
ˇ

� M
x.1 � x/

2
C o.n/.1/; x 2 .0; 1/

if and only if

D1f 2 LipM1 in .0; 1/:

Corollary 7. Let M > 0 and f 2 CŒ0; 1�, then

k

log k

ˇ
ˇ
ˇ
ˇ̌
ˇ

nCk�1X

jDn

1

k
Ljf .x/� f .x/

ˇ
ˇ
ˇ
ˇ̌
ˇ

� M C o.n/.1/; x 2 .0; 1/

if and only if

j..e1 � e2/D
2f /j � M a.e. on .0; 1/:
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Simultaneous Weighted Approximation
with Multivariate Baskakov–Schurer Operators

Antonio-Jesús López-Moreno, Joaquín Jódar-Reyes, and José-Manuel
Latorre-Palacios

Abstract We study the properties of weighted simultaneous approximation of
multivariate Baskakov–Schurer operators. We obtain quantitative estimates with
explicit constants of the weighted approximation error for the partial derivatives.
Moreover, we analyze the behavior of the operators with respect to weighted
Lipschitz functions. For this purpose, we first compute the best constants, M 2 R,
in the inequalities of the type An;p ..1C jtj/r/ � M.1C jtj/r.

Keywords Weighted simultaneous approximation • Lipschitz functions • Moduli
of continuity • Multivariate operators

Introduction

Along the last years we find in the literature many papers devoted to the analysis
of weighted approximation properties of different operators by means of several
weighted modifications of classical moduli of continuity. We compute in this
paper certain sharp constants for the multivariate version of the Baskakov–Schurer
operators [11] that in combination with some extensions of the ideas in [9, 10] allow
us to establish several inequalities for the weighted approximation error with explicit
constants and for the Lipschitz constants preservation. In this section we start with
the notation and main definitions of the paper.

Basic Notation

Given m 2 N D f1; 2; : : : g and ˛ 2 R
m, the i-th, i D 1; : : : ;m, component of

the vector ˛ is denoted by ˛i, so that ˛ D .˛1; : : : ; ˛m/. For ˇ 2 R
m and a 2 R,

as usual, we will write, whenever it makes sense, j˛j D ˛1 C � � � C ˛m, ˛Š D
˛1Š � � �˛mŠ, ˛ˇ D ˛

ˇ1
1 � � �˛ˇm

m , ˛a D .˛a
1 ; : : : ; ˛

a
m/, a˛ D aj˛j, a˛ D .a˛1; : : : ; a˛m/,
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˛ˇ D .˛1ˇ1; : : : ; ˛mˇm/,
�
˛
ˇ

� D ˛Š
ˇŠ.˛�ˇ/Š and also

�a
ˇ

� D aŠ
ˇŠ.a�jˇj/Š . Besides, we will

make use of the following notations for sums with several indexes,

ˇX

iD˛
Ai D

X

i2Zm;˛�i�ˇ
Ai and

1X

iD˛
Ai D

X

i2Zm;˛�i

Ai;

where ˛ � ˇ stands for ˛i � ˇi for all i D 1; : : : ;m. Finally, we define 0 D
.0; : : : ; 0/ 2 R

m and ei D .0; : : : ; 0;
i/
1; 0; : : : ; 0/ 2 R

m, i D 1; : : : ;m.
In order to avoid confusions we will write the boldface symbol jjjjjjjjj�jjjjjjjjj for the absolute

value of a number while j�j stands for the sum of the components of a vector.
We will denote by t W Rm 3 z 7! t.z/ D z 2 R

m the identity map in R
m and by

ti W Rm 3 z D .z1; : : : ; zm/ 7! ti.z/ D zi 2 R the ith projection. The restrictions of t
and ti to any subset of Rm will also be denoted by t and ti, respectively.

Given ˛ 2 N
m
0 (where N0 D f0; 1; 2 : : : g), we denote by D˛ the partial derivative

operator ˛1 times with respect to the first variable, . . . , ˛m times with respect to the
m-th variable. For U � R

m, C.U/ is the set of continuous functions on U.
Finally, given i; j 2 N0, the Stirling numbers, � j

i , of the second kind are the unique
coefficients that make true the identity xi D Pi

jD0 �
j
i x

j, where xj D x.x � 1/ : : :

.x � jC1/ is the falling factorial, being x0 D 1. If we take ˛; ˇ 2 N
m
0 we will extend

the definition of the second kind Stirling numbers by �ˇ˛ D �
ˇ1
˛1 � � ��ˇm

˛m .

The Baskakov–Schurer Operators

From now on, let us fix m 2 N and take H D .RC
0 /

m. Given p 2 N0 and n 2 N we
define the multivariate Baskakov–Schurer operators, An;p, as follows: for f W H ! R

and x 2 H,

An;pf .x/ D .1C jxj/�.nCp/
1X

kD0

f

�
k

n

��
n C p C jkj � 1

k

��
x

1C jxj
�k

:

When m D 1, we obtain the original univariate Baskakov–Schurer operators
[14, 15] defined on Œ0;1/. Notice that this multivariate extension is not trivial in
the sense that it is not a tensor product of the operators on Œ0;1/. The univariate
version was introduced by Schurer as an extension of the original operators defined
by Baskakov [3] (case p D 0) to approximate continuous functions on the semi-
axis Œ0;1/. Multivariate Baskakov type operators are studied in several papers
[8, 13, 16]. In particular, the authors have computed their complete asymptotic
expansion in [12] and several properties relative to the approximation of functions
of exponential growth in [11].

It is known that the operators An;p represent an approximation method for
functions of polynomial growth on H and their partial derivatives. The aim of
this paper is to study this simultaneous approximation process. We do so from
two points of view. We first compute quantitative estimates for the approximation
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error of f by An;pf in section “Weighted Approximation Error for An;pf ” and for
the corresponding partial derivatives in section “Simultaneous Approximation.”
Second, we analyze the conservation of Lipschitz properties by An;p and its partial
derivatives in the last section.

Since H is a noncompact set, if we want to deal with functions of polynomial
growth we have to use the weighted norms and moduli of continuity that we consider
in section “Weighted Approximation Error for An;pf .”

The starting point of the estimates that we are going to obtain is the calculation
of the best constants, M 2 R

C, in the inequality

An;p ..1C jtj/r/ � M.1C jtj/r:

Such best constants are strongly related to the eigenvalues and eigenvectors of the
operators. Section “Best Constants for ‰r” is devoted to this last problem.

In the sequel we denote � D 1 C jtj for short and throughout the paper we
consider p to be a fixed number of N0.

Best Constants for ‰ r

In [12] it is proved that for � 2 N
m
0 ,

An;p.t
�/ D

�X

iD0

.n C p C jij � 1/jij
n�

� i
� t

i: (1)

Let Pr denote the space of polynomials of total degree r 2 N. From (1) it is
immediate to conclude that the matrix of the linear operator An;p W Pr ! Pr with
respect to the basis ft� W � 2 N

m
0 ; j�j � rg is diagonal whenever we order its

elements in an increasing way depending on the sum j�j. Then, its matrix has the
block decomposition,

0

B
B
B
B
BB
B
B
@

1 0 0 0 � � � 0

0 	1Id1 R1;2 R1;3 � � � R1;s
0 0 	2Id2 R2;3 � � � R2;s
0 0 0 	3Id3 � � � R3;s
:::

:::
:::

: : :
: : :

:::

0 0 0 � � � 0 	rIdr

1

C
C
C
C
CC
C
C
A

;

where 	i D .nCpCi�1/i
ni , Ri;j are certain matrices, Id stands for the identity matrix

of order d, and di D �mCi
i

� � �mCi�1
i�1

�
for i D 1; : : : ; r. It is obvious that 	i is an

eigenvalue of An;p with di independent eigenvectors of the form

pi;� D t� C lower powers of t;
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for each � 2 N
m
0 with j�j D i. The explicit computation of such eigenvectors is not

easy and can only be carried out by means of recurrence relations as it is done for
the Bernstein operators in [6, 7].

In order to obtain bounds for the approximation error we would like to have
simple functions with a behavior close to that of the eigenvectors (once we know
that we cannot compute them easily). For our purpose it would be useful to find a
polynomial function 
r � 0 of total degree r such that An;p.
r/ � 	r
r. We solve
this problem by proving that

An;p .�
r/ � 	r�

r:

The initial remarks about the eigenstructure of An;p stress the fact that the eigenvalue
	r is the best constant that makes true this inequality.

One could think of simpler functions, 
r, as jtjr, 1 C jtjr or t� with j�j D r for
this purpose. However, a simple computation shows that they are not suitable (take,
for instance, the case m D 2 and use (1)).

First of all, notice that from the definition of binomial numbers with vector
arguments given above, we can write a couple of multivariate versions of Newton’s
binomial formula: given ˛; ˇ 2 N

m
0 , r 2 N0 and x; y 2 R

m,

.x C y/˛ D
X̨

iD0

 
˛

i

!

xiy˛�i; jxjr D
X

i2Nm
0 ;jijDr

 
r

i

!

xi: (2)

Moreover, some well-known properties of binomial and Stirling numbers (see [1,
Sect. 24.1.4.II.A]) can be extended to the multivariate notation as follows:

�
ˇ
˛Cej

D ˇj�
ˇ
˛ C �

ˇ�ej
˛ ; j D 1; : : : ;m and

 
r C 1

˛

!

D
 

r

˛

!

C
mX

jD1
˛j¤0

 
r

˛ � ej

!

:

(3)
We start proving a couple of technical lemmas.

Lemma 1. Given r 2 N, N 2 R
C and i 2 N

m
0 such that 1 � jij � r, let us denote

G.r; i;N/ D
X

�2Nm
0

i��;j�j�r

 
r

�

!
� i
�

N�
:

Then,

G.r; i;N/ � .N C r � 1/r�jij

Nr

 
r

i

!

: (4)

To prove the preceding lemma, we need the following sub-lemma:
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Lemma 2. Given r 2 N and i 2 N
m
0 such that 1 < jij � r, it is satisfied that

G.r C 1; i;N/ D
�
1C jij

N

�
G.r; i;N/C 1

N

mX

jD1
ij¤0

G.r; i � ej;N/:

Proof (of Lemma 2). Applying the definition of G.rC1; i;N/ and the second identity
in (3), we have

G.rC1; i;N/ D
X

�2Nm
0

i��;j�j�rC1

 
r C 1

�

!
� i
�

N�
D

X

�2Nm
0

i��;j�j�rC1

2

6
6
4

 
r

�

!

C
mX

jD1
�j¤0

 
r

� � ej

!
3

7
7
5
� i
�

N�
:

Taking into account that
�r
�

� D 0 when j�j D r C 1,

G.r C 1; i;N/ D G.r; i;N/C
X

�2Nm
0

i��;j�j�rC1

mX

jD1
�j¤0

 
r

� � ej

!
� i
�

N�

D G.r; i;N/C
mX

jD1
ij¤0

X

�2Nm
0

i�ej��;j�j�r

 
r

�

!
� i
�Cej

N�Cej

and from the first identity in (3),

G.r C 1; i;N/ D G.r; i;N/C
mX

jD1

ij
N

X

�2Nm
0

i��;j�j�r

 
r

�

!
� i
�

N�
C 1

N

mX

jD1
ij¤0

X

�2Nm
0

i�ej��;j�j�r

 
r

�

!
�

i�ej
�

N�

D G.r; i;N/C jij
N

G.r; i;N/C 1

N

mX

jD1
ij¤0

G.r; i � ej;N/:

Proof (of Lemma 1). The result is clear for r D jij. It is also true for jij D 1 since
then i D ej for some j 2 f1; : : : ;mg and

G.r; ej;N/ D
X

�2Nm
0

ej��;j�j�r

 
r

�

!
�

ej
�

N�
D

rX

sD1

 
r

sej

!
�

ej
sej

Nsej
D

rX

sD1

 
r

s

!
1

Ns

D
�
1C 1

N

�r

� 1 � r
.N C r � 1/r�1

Nr
D .N C r � 1/r�jejj

Nr

 
r

ej

!

;

where the last inequality can be easily proved by induction on r.
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We are ready to prove (4) again by induction on r. For r D 1 the result is
immediate. Let us suppose that it is true for r 2 N and i 2 N

m
0 with 1 � jij � r and

prove it for r C1 and i 2 N
m
0 with 1 < jij < r C1 (for jij D 1; r C1 we have already

the result as we indicated before):

G.r C 1; i;N/ D
�
1C jij

N

�
G.r; i;N/C 1

N

mX

jD1
ij¤0

G.r; i � ej;N/

�
�
1C jij

N

�
.N C r � 1/r�jij

Nr

 
r

i

!

C 1

N

mX

jD1
ij¤0

.N C r � 1/
r�ji�ejj

Nr

 
r

i � ej

!

� .N C r/rC1�jij

NrC1

2

6
6
4

 
r

i

!

C
mX

jD1
ij¤0

 
r

i � ej

!
3

7
7
5 D .N C r/rC1�jij

NrC1

 
r C 1

i

!

and the induction process is finished.

Let us establish now the announced optimal inequality for functions of the kind
.K C jtj/r.
Theorem 1. Given n 2 N, r 2 N0 and K 2 Œ1;1/,

An;p ..K C jtj/r/ � .n C p C r � 1/r

nr
.K C jtj/r:

Proof. From (2) and (1) we have

An;p ..K C jtj/r/ D
rX

sD0

 
r

s

!

Kr�sAn;p .jtjs/ D
rX

sD0

 
r

s

!

Kr�s
X

�2Nm
0j�jDs

 
s

�

!

An;p.t
�/

D
rX

sD0

 
r

s

!

Kr�s
X

�2Nm
0j�jDs

 
s

�

!
�X

iD0

.n C p C jij � 1/jij
n�

� i
� t

i

D
rX

sD0

 
r

s

!

Kr�s
X

i2Nm
0jij�s

X

�2Nm
0

i��;j�jDs

 
s

�

!
.n C p C jij � 1/jij

n�
� i
� t

i

D
X

i2Nm
0jij�r

.n C p C jij � 1/jijti
rX

sDjij
Kr�s

X

�2Nm
0

i��;j�jDs

 
r

s

! 
s

�

!
� i
�

n�
:
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If j�j D s, then
�r

s

��s
�

� D � r
j�j
��j�j

�

� D �r
�

�
; so that

An;p ..K C jtj/r/ D
X

i2Nm
0jij�r

.n C p C jij � 1/jijti
rX

sDjij
Kr�s

X

�2Nm
0

i��;j�jDs

 
r

�

!
� i
�

n�

D
X

i2Nm
0jij�r

.n C p C jij � 1/jijtiKr
X

�2Nm
0

i��;j�j�r

 
r

�

!
� i
�

.Kn/�

D
X

i2Nm
0jij�r

.n C p C jij � 1/jijtiKrG.r; i;Kn/

�
X

i2Nm
0jij�r

.n C p C jij � 1/jijtiKr .Kn C r � 1/r�jij

.Kn/r

 
r

i

!

�
X

i2Nm
0jij�r

.n C p C jij � 1/jijtiKr�jij .n C p C r � 1/r�jij

nr

 
r

i

!

D
X

i2Nm
0jij�r

ti .n C p C r � 1/r
nr

Kr�jij
 

r

i

!

D .n C p C r � 1/r

nr

rX

sD0
Kr�s

X

i2Nm
0jijDs

ti

 
r

i

!

D .n C p C r � 1/r
nr

rX

sD0

 
r

s

!

Kr�s
X

i2Nm
0jijDs

ti

 
s

i

!

D .n C p C r � 1/r
nr

rX

sD0

 
r

s

!

Kr�s jtjs D .n C p C r � 1/r
nr

.K C jtj/r:

Weighted Approximation Error for An;pf

Since H is a noncompact set, we can find unbounded continuous functions on H
for which the classical sup norm and moduli of continuity give no information (see
for instance [2]). For this reason we need to make approximation with weights.
The computations of the preceding section allow us to think of weight functions
of the type �˛ . We are going to consider spaces of functions, norms and moduli
of continuity relatives to these polynomial weights. We will find estimates of the
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weighted approximation error between An;pf and f in terms of such weighted moduli
of continuity.

Given q 2 N, k�kq is the classical sub-q norm on R
m. Let us also write HS D

Sm�1 \ H, where

Sm�1 D fx 2 R
m W kxk2 D 1g;

and set B.x; ı/ the Euclidean ball centered at x 2 R
m with radius ı 2 R

C. The
weighted moduli of continuity that we introduce below make necessary to consider
functions, f W H ! R, with a good behavior as x tends to infinity in the following
sense:

Definition 1. Given f W H ! R we will say that

lim f D 
;

for a function 
 W HS ! R, whenever

8" 2 R
C; 9 ı 2 R

C=x 2 H � B.0; ı/ )
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇf .x/ � 


�
x

kxk2
� ˇˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ � ":

Now, for any ˛ 2 N0 we will consider the classes of functions

B.˛/ D ff 2 C.H/ W lim
f

�˛
D 
 2 C.HS/g;

and

QB.˛/ D ff W H ! R W 9K 2 R
C=8x 2 H;

jjjjjjjjjf .x/jjjjjjjjj
�.x/˛

� Kg

both of them equipped with the norm kf k.˛/ D supx2H
jjjjjjjjjf .x/jjjjjjjjj
�.x/˛ . It is immediate that

B.˛/ � QB.˛/. The usage of the following modulus of continuity is suitable for the
functions of B.˛/: given f 2 B.˛/ and ı 2 R

C,

˝˛.f ; ı/ D sup
h2Rm;khk2�ı

x;xCh2H

jjjjjjjjjf .x C h/� f .x/jjjjjjjjj
.1C jxj C khk1/˛ :

First of all, it is clear that

f 2 QB.˛/ ) ˝˛.f ; ı/ � 2kf k.˛/ < 1:

That is to say, for those functions these moduli are well defined. Furthermore, ˝˛

satisfies standard inequalities of the classical moduli of continuity and meet good
properties with respect to the class B.˛/. Let us see it in the following two lemmas.
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Lemma 3. Given f 2 B.˛/, � 2 N and ı 2 R
C,

˝˛.f ; �ı/ � �˝˛.f ; ı/:

Proof. We have˝˛.f ; �ı/ D suph2Rm;khk2�ı
x;xC�h2H

jjjjjjjjjf .x C �h/� f .x/jjjjjjjjj
.1C jxj C k�hk1/˛„ ƒ‚ …

.�/

and

.�/ �
��1X

iD0

jjjjjjjjjf .x C .i C 1/h/� f .x C ih/jjjjjjjjj
.1C jx C ihj C khk1/˛

.1C jx C ihj C khk1/˛
.1C jxj C �khk1/˛

�
��1X

iD0

jjjjjjjjjf .x C .i C 1/h/� f .x C ih/jjjjjjjjj
.1C jx C ihj C khk1/˛

.1C jxj C .i C 1/khk1/˛
.1C jxj C �khk1/˛

� �˝˛.f ; ı/:

Given U � R
m we call !U the classical modulus of continuity on U. That is to

say, for f W U ! R and ı 2 R
C,

!U.f ; ı/ D sup
h2Rm;khk2�ı

x;xCh2U

jjjjjjjjjf .x C h/� f .x/jjjjjjjjj:

We also denote kf kU D supx2U jjjjjjjjjf .x/jjjjjjjjj, the sup norm on U. It is immediate that for a
compact set U, f 2 C.U/ implies limı!0 !U.f ; ı/ D 0 and kf kU < 1. We employ
this all to prove our second lemma.

Lemma 4. Given f 2 B.˛/, limı!0 ˝˛.f ; ı/ D 0.

Proof. Since f 2 B.˛/, lim f
�˛

D 
 2 C.HS/. Then, for any " 2 R
C we can find

� 2 Œ1;1/ such that x 2 H � B.0; �/ implies
ˇ̌
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌̌̌
ˇ f .x/
.1Cjxj/˛ � 


�
x

kxk2
� ˇ̌
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌̌̌
ˇ � ".

Take any fixed number �0 � � C ı. We have

˝˛.f ; ı/ �

max

(

sup
h2Rm;khk2�ı

x;xCh2B.0;�0/\H

jjjjjjjjjf .x C h/� f .x/jjjjjjjjj
.1C jxj C khk1/˛

„ ƒ‚ …
�!B.0;�0/\H.f ;ı/

; sup
h2Rm;khk2�ı

x;xCh2H�B.0;�/

jjjjjjjjjf .x C h/� f .x/jjjjjjjjj
.1C jxj C khk1/˛„ ƒ‚ …

.�/

)

;

and

.�/ D
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌ f .x C h/ � f .x/

.1C jxj C khk1/˛ � 


�
x

kxk2
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ˇ
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1 � .1C jx C hj/˛

.1C jxj C khk1/˛
�

C !HS.
; khk2/

� 2"C kf k.˛/
�
1 � .1C jxj C khk1 � khk1/˛

.1C jxj C khk1/˛
�

C kf k.˛/
�
1 � .1C jxj C khk1 C jhj � khk1/˛

.1C jxj C khk1/˛
�

C !HS.
; khk2/

D 2"C kf k.˛/
.1C jxj C khk1/˛

X̨

jD1

 
˛

j

!

.1C jxj C khk1/˛�j.�1/jC1khkj
1

� kf k.˛/
.1C jxj C khk1/˛

X̨

jD1

 
˛

j

!

.1C jxj C khk1/˛�j.jhj � khk1/j

C!HS.
; khk2/

� 2"C kf k.˛/
X̨

jD1

 
˛

j

!

khkj
1 C kf k.˛/

X̨

jD1

 
˛

j

!

jjhj � khk1jj C !HS.
; khk2/

� 2"C .1C 2˛/kf k.˛/khk1
X̨

jD1

 
˛

j

!

khkj�1
1 C !HS.
; khk2/

� 2"C .1C 2˛/m
˛
2 kf k.˛/ı

X̨

jD1

 
˛

j

!

ıj�1 C !HS.
; ı/:

Hence, we finally obtain that

˝˛.f ; ı/ �

max



!B.0;�0/\H.f ; ı/; 2"C .1C 2˛/m

˛
2 kf k.˛/ı

X̨

jD1

 
˛

j

!

ıj�1 C !HS.
; ı/

�
:
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Since B.0; �0/ \ H and HS are compact sets and both f and 
 are continuous
functions, we have that limı!0 !B.0;�0/\H.f ; ı/ D limı!0 !HS.
; ı/ D 0 and then
limı!0 ˝˛.f ; ı/ � 2". As " has been chosen arbitrarily this ends the proof.

Once we have a weighted modulus of continuity suitable for functions of
polynomial growth on H we are going to use it to estimate the approximation error
kAn;pf � f k.˛/. For this purpose we use a multivariate extension of the techniques
that we find in [9].

Theorem 2. Let f 2 B.˛/ and ˛ > 1,

kAn;pf � f k.˛C1/ � 3˛
�
1C .p C 2˛/˛ � 1

n

��
1C p C p2

n

� 1
2

˝˛.f ;
1p
n
/:

Proof. Given z; x 2 H, from the definition of ˝˛ we have

jjjjjjjjjf .z/ � f .x/jjjjjjjjj � .1C jxj C kz � xk1/˛˝˛.f ; kz � xk2/:

From Lemma 3 it is easy to check that for any 	; ı 2 R
C, ˝˛.f ; 	ı/ � .1 C 	/

˝˛.f ; ı/: Take 	 D kz�xk2
ı

to obtain

jjjjjjjjjf .z/ � f .x/jjjjjjjjj � .1C jxj C kz � xk1/˛.1C kz � xk2
ı

/˝˛.f ; ı/

� .1C 2 jxj C jzj/˛.1C kz � xk2
ı

/˝˛.f ; ı/:

If we apply An;p and evaluate at x,

jjjjjjjjjAn;pf .x/ � f .x/jjjjjjjjj � An;p

�
.1C 2 jxj C jtj/˛.1C kt � xk2

ı
/

�
.x/˝˛.f ; ı/:

By means of a Cauchy-Schwartz type inequality we have

An;p

�
.1C 2 jxj C jtj/˛.1C kt � xk2

ı
/

�
.x/ �

� An;p ..1C 2 jxj C jtj/˛/ .x/C A
1
2
n;p
�
.1C 2 jxj C jtj/2˛� .x/A

1
2
n;p

�kt � xk22
ı2

�
.x/

� .n C p C ˛ � 1/˛
n˛

.1C 3 jxj/˛

C
�
.n C p C 2˛ � 1/2˛

n2˛

� 1
2

.1C 3 jxj/˛
�
1C p C p2

n

� 1
2

.1C jxj/
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� 3˛
.n C p C 2˛ � 1/˛

n˛
.1C jxj/˛C1

�
1C p C p2

n

� 1
2

� 3˛
�
1C .p C 2˛/˛ � 1

n

�
.1C jxj/˛C1

�
1C p C p2

n

� 1
2

;

where we have taken ı D 1p
n

and we have used that .1 C 3 jxj/˛ C .1 C jxj/
.1C 3 jxj/˛ � 3˛.1C jxj/˛C1 and also that

An;p
�kt � xk22

�
.x/ �

�
1

n
C p C p2

n2

�
.1C jxj/2

which can be deduced from (1).

The inequality of the preceding result is also valid for ˛ D 0 and ˛ D 1 if we
write 2 and 25

8
, respectively, in place of 3˛.

Simultaneous Approximation

In this section we study the error of simultaneous approximation. In other words we
compute bounds for kD�An;pf � D� f k.˛/ with � 2 N

m
0 . Our computations are based

on the results of the preceding section and on the formula proved for the partial
derivatives of An;p in [12]: given � 2 N

m
0 ,

D�An;pf D 1

��
An;p

�
.n� C p C j� j � 1/j� j��

1
n
f
�
; (5)

where for a function g W H ! R, x 2 H and h 2 R
C, ��

h g.x/ is the
forward difference of g of order � at x recursively defined by �0

hg.x/ D g.x/ and
�
�Cei
h g.x/ D �

�
h g.x C hei/ � �

�
h g.x/. Recall that the mean value theorem implies

that if D�g is continuous then ��
h g.x/ D h�D�g.�x/ for a �x with x � �x � x C h� .

By means of (5) and Theorem 1 we can transfer Theorem 2 to the partial
derivatives.

Fix � 2 N
m
0 and ˛ 2 N0 along this section.

Theorem 3. Let f W H ! R be such that D� f 2 B.˛/. Then,

jjjjjjjjjD�An;pf � D� f jjjjjjjjj � EnCn˝˛.D
� f ;

k�k2
n
/.1C j� j

n
C jtj/˛

C En

�
Cn � .n C k/�

n�

�
kD� f k.˛/�˛ C 1

��
jjjjjjjjjAn;p .�

�D� f / � ��D� f jjjjjjjjj;
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where Cn W H ! R is given by Cn D ..n C k/� C k/j� j

n���
, En D .n C ˛ C k/˛

n˛
and

k D p C j� j � 1.

Proof. From (5) we have

D�An;pf � D� f D 1

��
An;p

�
.n� C k/j� j

�
�
�
1
n
f � 1

n�
D� f

��

C 1

��

 

An;p

 
.n� C k/j� j

n�
D� f

!

� ��D� f

!

: (6)

On the other hand, for any z 2 H, ��
1
n
f .z/ D 1

n� D� f .�z/ for certain �z 2 H with

z � �z � z C �

n and then,

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌��

1
n
f .z/ � 1

n�
D� f .z/

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌ D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌ 1
n�
.D� f .�z/� D� f .z//

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌

� .1C k�z � zk1 C jzj/˛ 1
n�
˝˛.D

� f ; k�
n

k2/

�
�
1C j� j

n
C jzj

�˛
1

n�
˝˛.D

� f ;
k�k2

n
/:

In this case,
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌An;p

�
.n� C k/j� j

�
�
�
1
n
f � 1

n�
D� f

�� ˇˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌

� 1

n�
˝˛.D

� f ;
k�k2

n
/An;p

�
.n� C k/j� j.1C j� j

n
C jtj/˛

�
: (7)

For any N 2 R, it is immediate that .N C k/j� j D Pj� j
rD0 rNr for certain constants

0; 1; : : : ; j� j 2 N0, being j� j D 1. Then,

An;p

�
.n� C k/j� j.1C j� j

n
C jtj/˛

�
D

j� jX

rD0
rn

rAn;p

�
� r.1C j� j

n
C jtj/˛

�

D
j� jX

rD0
rn

r
X̨

jD0

 
˛

j

!
j� j˛�j

n˛�j
An;p

�
� rCj

�

�
j� jX

rD0
rn

r
X̨

jD0

 
˛

j

!
j� j˛�j

n˛�j

.n C p C r C j � 1/rCj

nrCj
� rCj
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D
j� jX

rD0
rn

r
X̨

jD0

 
˛

j

!
j� j˛�j

n˛�j

.n C p C r C j � 1/j
nj

.n C p C r � 1/r

nr
� rCj

� En

j� jX

rD0
r.n C p C r � 1/r� r

X̨

jD0

 
˛

j

!
j� j˛�j

n˛�j
� j

� En.1C j� j
n

C jtj/˛
j� jX

rD0
r Œ.n C k/��r

� En.1C j� j
n

C jtj/˛ ..n C k/� C k/j� j : (8)

Furthermore, if we denote Fn D ˇ̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌
An;p .�

�D� f / � ��D� f
ˇ̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌̌
,

ˇ
ˇ
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0

@
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A � ��D� f
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ˇ

ˇ
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ˇ
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ˇ

ˇ
ˇ
ˇ
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ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ̌
ˇ
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0

@
j� j�1X

rD0
rn

r�j� j� rD� f

1

A

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ̌
ˇ
C Fn

� kD� f k.˛/
ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ̌
ˇ
An;p

0

@
j� j�1X

rD0
rn

r�j� j� rC˛
1

A

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ̌
ˇ
C Fn

� kD� f k.˛/
j� j�1X

rD0
rn

�.˛Cj� j/.n C p C r C ˛ � 1/rC˛� rC˛ C Fn

� kD� f k.˛/En�
˛

j� j�1X

rD0
rn

�j� j.n C k/r� r C Fn

� kD� f k.˛/En�
˛

2

4
j� jX

rD0

r

n�
.n C k/r� r � .n C k/j� j

n�
��

3

5C Fn

D kD� f k.˛/En�
˛

"
Œ.n C k/� C k�j� j

n�
� .n C k/j� j

n�
��

#

C Fn:

(9)

If we use (7)–(9) in (6) we finish the proof.

Notice that Cn is a decreasing function of jtj so Cn � Cn.0/. Then, it suffices
to employ Theorem 2 with the preceding one to obtain the following quantitative
estimates:
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Theorem 4. Suppose that 1 � j� j � ˛ and take f W H ! R such that D� f 2
B.˛�j� j/, the following holds true:

jjjjjjjjjD�An;pf � D� f jjjjjjjjj � EnCn.0/˝˛.D
� f ;

k�k2
n
/.1C j� j

n
C jtj/˛

C En

�
Cn.0/� .n C k/�

n�

�
kD� f k.˛/�˛

C 3˛�˛�j� jC1
�
1C .p C 2˛/˛ � 1

n

��
1C p C p2

n

� 1
2

˝˛.�
�D� f ;

1p
n
/

and

kD�An;pf � D� f k.˛/ �
�
1C j� j

n

�˛
EnCn.0/˝˛.D

� f ;
k�k2

n
/

C En

�
Cn.0/� .n C k/�

n�

�
kD� f k.˛/

C 3˛
�
1C .p C 2˛/˛ � 1

n

��
1C p C p2

n

� 1
2

˝˛

�
��D� f ;

1p
n

�
:

Remark 1. The coefficients Cn that appear in Theorems 3 and 4 are functions
defined on H but they are actually uniformly bounded on that domain. It is not
difficult to obtain inequalities that describe more precisely their behavior.

Take R � 1. It is clear that

..n C k/R C k/j� j � .n C k/�R� D
j� j�1X

i;jD0
Bi;jn

iRj

for certain constants Bi;j 2 N0. Taking n D R D 1, the former identity gives .1 C
2k/j� j �.1Ck/j� j D Pj� j�1

i;jD0 Bi;j. Moreover, Bj� j�1;j� j�1 D 1
2
.pCk/ j� j and Bj� j�1;j D

0 for j D 0; : : : ; j� j � 2. Since R; n � 1, we have

..nCk/RCk/j� j �.n C k/�R�

n�R�
� .p C k/ j� j

2nR
C .1C 2k/j� j �.k C 1/� � .pCk/j� j

2

n2R
:

Hence, taking R D � ,

0 � Cn � .n C k/�

n�
� .p C k/ j� j

2n�
C .1C 2k/j� j � .k C 1/� � .pCk/j� j

2

n2�
:

On the other hand, it is also easy to check that

.n C k/�

n�
� 1C j� j k

n
C .k C 1/� � 1 � j� j k

n2
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and these two last inequalities yield

Cn � 1C j� j k

n
C .k C 1/� � 1 � j� j k

n2
C .p C k/ j� j

2n�

C .1C 2k/j� j � .k C 1/� � .pCk/j� j
2

n2�
:

Finally, the same techniques lead us to En � 1C ˛kC ˛.˛C1/
2

n C .1C˛Ck/˛ �1�˛k� ˛.˛C1/
2

n2
:

Preservation of Lipschitz Constants

It is a well-known fact that most of the classical sequences of linear positive
operators present Lipschitz constants preservation properties. One of the first papers
devoted to this question is the one by Brown et al. [4] where, for the Bernstein
operators on Œ0; 1�, Bn, it is proved that given a Lipschitz function f W Œ0; 1� ! R

we have that Bnf is also Lipschitz with the same Lipschitz constant as f . From
that moment on, many other authors have investigated these kind of preserving
properties for different sequences of operators and different Lipschitz type constants
both in the univariate [10] and multivariate [5, 17] case.

In this last section we consider the problem of the preservation of Lipschitz
constants by the Baskakov–Schurer operators again for weighted approximation.

For this purpose let us take the following definition for the weighted Lipschitz
constants: given ˛ 2 N0, 0 < s 2 N

m
0 , � � jsj and ı 2 R

C,

�.s/˛;�.f ; ı/ D sup
h2RC; 0<h�ı

x2H

jjjjjjjjj�s
hf .x/jjjjjjjjj

h�.1C h C jxj/˛

and

�.s/˛;�.f / D sup
ı2RC

�.s/˛;�.f ; ı/:

We will say that a function f is Lipschitz of order .s; �/ whenever �.s/˛;�.f / < 1 for
some ˛.

In our last result we are going to establish relations between the Lipschitz
constant for Dˇf and DˇAn;pf , ˇ 2 N

m
0 . An immediate consequence of these

relationship is the fact that Dˇf is Lipschitz of order .s; jsj/ implies that DˇAn;pf
is so.
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Theorem 5. Given ˇ 2 N
m
0 and ˛ 2 N0, if � � jsj then

�.s/˛;�.D
ˇAn;pf ;

1

n
/ � .Fn/

˛

�
1C jˇj

n C 1

�˛
QCn.0/ QEn�

.s/
˛;�.D

ˇf ;
1

n
/

and if � D jsj then

�
.s/
˛;jsj.D

ˇAn;pf / � .Gn/
˛

�
1C jˇj

n C 1

�˛
QCn.0/ QEn�

.s/
˛;jsj.D

ˇf ;
1

n
/;

where QCn and QEn are the coefficients Cn, En of Theorem 3 obtained for � D s C ˇ,
Fn D Gn D 1C 1

n , if jsj D 1, and Fn D 1C jsj
nC1 and Gn D jsj, if jsj > 1.

Proof. If we use (5), we know that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌̌̌�s

hDˇAn;pf .x/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌̌̌

h�.1C h C jxj/˛ D hs
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌̌̌DsCˇAn;pf .�x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌̌
ˇ
ˇ̌̌
ˇ
ˇ̌̌̌̌

h�.1C h C jxj/˛

D hjsj��n��

.1C h C jxj/˛
ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌
ˇ

An;p

 

.n� C Qk/jsCˇj �
sCˇ
1
n

f

n��.1C 1
n Cjtj/˛ .1C 1

n C jtj/˛
!

.�x/

�.�x/sCˇ

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ̌
ˇ
;

where Qk D p C js C ˇj � 1 and x � �x � x C hs. On the other hand, for any z 2 H
there exists z � �z � z C ˇ

n such that

�
sCˇ
1
n

f .z/ D �
ˇ
1
n
�s

1
n
f .z/ D n�ˇDˇ�s

1
n
f .�z/ D n�ˇ�s

1
n
Dˇf .�z/

and hence
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
�

sCˇ
1
n

f .z/
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌

n��.1C 1
n C jzj/˛ D n�ˇ

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌
�s

1
n
Dˇf .�z/

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ̌

n��.1C 1
n C jzj/˛ � n�ˇ�.s/˛;�.Dˇf ;

1

n
/
.1C 1

n C j�zj/˛
.1C 1

n C jzj/˛

� n�ˇ�.s/˛;�.Dˇf ;
1

n
/
.1C 1

n C jzj C jˇj
n /

˛

.1C 1
n C jzj/˛ � n�ˇ

�
1C jˇj

n C 1

�˛
�.s/˛;�.D

ˇf ;
1

n
/:

Therefore,

ˇ
ˇ
ˇ̌̌̌̌̌̌̌̌̌̌̌̌̌̌
ˇ�s

hDˇAn;pf .x/
ˇ
ˇ
ˇ̌̌̌̌̌̌̌̌̌̌̌̌̌̌
ˇ

h�.1C h C jxj/˛ � hjsj��njsj��

.1C h C jxj/˛
�
1C jˇj

n C 1

�˛
�.s/˛;�.D

ˇf ;
1

n
/



An;p

�
.n� C Qk/jsCˇj.1C 1

n C jtj/˛
�
.�x/

nsCˇ.1C j�xj/sCˇ
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� hjsj��njsj��
�
1C jˇj

n C 1

�˛
QCn.�x/ QEn�

.s/
˛;�.D

ˇf ;
1

n
/
.1C 1

n C j�xj/˛
.1C h C jxj/˛

�

8
ˆ̂
<

ˆ̂
:

hjsj��njsj�� .Fn/
˛
�
1C jˇj

nC1
�˛ QCn.0/ QEn�

.s/
˛;�.Dˇf ; 1n /; if h � 1

n ;

hjsj��njsj�� .Gn/
˛
�
1C jˇj

nC1
�˛ QCn.0/ QEn�

.s/
˛;�.Dˇf ; 1n /; in all cases;

where we have obtained the third step by using the same arguments as in (8) and the
last one taking into account that �x � x C hs. In the last expression of the chain of
inequalities we can cancel out h and n if � D jsj or when � < jsj and h � 1

n .
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Approximation of Discontinuous Functions
by q-Bernstein Polynomials

Sofia Ostrovska and Ahmet Yaşar Özban

In the memory of Professor Hüseyin Şirin Hüseyin

Abstract This chapter presents an overview of the results related to the q-Bernstein
polynomials with q > 1 attached to discontinuous functions on Œ0; 1�. It is
emphasized that the singularities of such functions located on the set

Jq WD f0g [ fq�lg1
lD0; q > 1;

are definitive for the investigation of the convergence properties of their q-Bernstein
polynomials.

Keywords q-Bernstein polynomial • Discontinuous function • Time scale •
Convergence

Introduction

The Bernstein polynomials first appeared in [3] published by S.N. Bernstein in 1912.
There, it was proved that, given f 2 CŒ0; 1�, polynomials

Bn.f I x/ WD
nX

kD0
f

�
k

n

��n

k

�
xk.1 � x/n�k; n D 1; 2; : : : ; (1)

converge to f uniformly on Œ0; 1�. Nowadays, polynomials (1) are called the
Bernstein polynomials and their remarkable properties have made them an area
of intensive research. A vast number of studies have been conducted not only on
the behavior, but also on various applications of the Bernstein polynomials see, for
example, [9] and [19]. In [20], V.S. Videnskii analyzed ideas and problems, leading
to the discovery of polynomials (1).
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Originally, the Bernstein polynomials were used only for the continuous func-
tions and, later on, L.V. Kantorovich pioneered the application of these polynomials
to wider classes of functions. In [8], he introduced modified Bernstein polynomials,
known today as the Kantorovich polynomials, to approximate integrable functions
on Œ0; 1� and, subsequently, G.G. Lorentz employed the latter polynomials to
approximate functions f 2 LpŒ0; 1� in the Lp-metric. Historical notes on the subject
can be found in [21]. Afterwards, Lorentz considered approximation of unbounded
functions by the Bernstein polynomials, stating ‘Remarkable phenomena can occur
for unbounded functions’ (cf. [9, Chap. 1, Sect. 1.9]), which has been confirmed
by profound theorems proved by Chlodovsky, Herzog, Hill, and Lorentz himself.
Recently, Weba [22] obtained new results on the approximation of unbounded
functions by the Bernstein polynomials.

On the other hand, due to an intensive development in the q-calculus, various
q-versions of the classical Bernstein polynomials have appeared. Regrettably, the
first one proposed by Lupaş in 1987 [10] remained in the shadow caused by the
very limited availability of his article published in regional conference proceedings.
Today, though, this situation has changed—see, for example, [1]—along with
improvements in the communication technology. The most popular q-generalization
which appeared 10 years after Lupaş’s paper [10] belongs to G.M. Philips [17],
who constructed new polynomials known today as the q-Bernstein polynomials.
The bibliography on the q-Bernstein polynomials comprises about 200 papers and
the research in the area is still going on.

Initially, the q-Bernstein polynomials had been considered exclusively for
continuous functions, where both the similarities and distinctions with the classical
Bernstein polynomials had been established. Recently, it has been discovered that
the investigation of the q-Bernstein polynomials attached to discontinuous functions
is also a fruitful field of research because, in this direction, new phenomena
have been revealed. More precisely, the behavior of these polynomials depends
on whether singularity belongs to a certain sequence, in which case the type of
singularity affects the approximation properties.

In this work, an overview of the results related to the q-Bernstein polynomials
for discontinuous functions is presented.

Preliminaries

Let N0 and N denote the set of nonnegative integers and positive integers, respec-
tively, 0 < q 2 R, and let f W Œ0; 1� ! C. For any positive integer n and k 2 N0

with 0 � k � n, let Œk�q; Œk�qŠ, and
� n

k

�
q

be the q-integer, q-factorial, and q-binomial
coefficients defined by

Œk�q WD 1C q C � � � C qk�1 .k 2 N/ ; Œ0�q WD 0;

Œk�qŠ WD Œ1�qŒ2�q : : : Œk�q .k 2 N/; Œ0�qŠ WD 1;
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and

hn

k

i

q
WD Œn�qŠ

Œk�qŠŒn � k�qŠ
;

respectively ([2], Chap. 10).

Definition 1 ([17]). The q-Bernstein polynomials are defined by:

Bn;q.f I x/ WD
nX

kD0
f

�
Œk�q
Œn�q

�
pnk.qI x/; n 2 N;

where

pnk.qI x/ WD
hn

k

i

q
xk

n�k�1Y

sD0
.1 � qsx/; k D 0; 1; : : : n; (2)

For q D 1;Bn;q.f I x/ is the classical Bernstein polynomial Bn.f I x/ and, conven-
tionally, the term q-Bernstein polynomial implies that q ¤ 1. It is a noteworthy fact
that both the Bernstein and q-Bernstein polynomials are closely related to probabil-
ity theory; more specifically, to the binomial and the q-binomial distributions. See
[3, 5–7].

Throughout the chapter, we take q > 1. Although, in general, the discussion on
the approximation properties of the q-Bernstein polynomials deals with the interval
Œ0; 1�, the set Jq defined by

Jq WD f0g [ fq�lg1
lD0;

plays an important role in our studies. Let us point out that Jq is a time scale and
that the authors will continue to use this term. The definition of a time scale and an
introduction to the calculus on time scales can be found, for example, in [4, Chap. 1],
where the notation .1=q/N0 is employed for this set.

In this chapter, the results are presented on the q-Bernstein polynomials for the
functions of the class F˛ consisting of all functions continuous on Œ0; 1�nf˛g which
possess an analytic continuation into disc D˛ D fz 2 C W jzj < ˛g. All theoretical
outcomes are illustrated by numerical examples, which have been obtained in a
MAPLE 8 environment using 1000 digits in precision and displayed in Figs. 1, 2, 3,
4, 5, 6, 7, 8, and 9. In each of these figures, part a demonstrates general behaviour
of the functions on the entire interval [0, 1], while the other parts emphasize specific
details on smaller subintervals. In all the numerical computations, we take q D 2,
and all of the figures exhibit the well-known end-point interpolation property of the
q-Bernstein polynomials, namely:

Bn;q.f I 0/ D f .0/; Bn;q.f I 1/ D f .1/ for all n 2 N and all q > 0
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a b

Fig. 1 Graphs of the error functions E.n; 2; x/, for n D 6; 7; 10; 11; 14, and 15

The Role of Time Scale Jq

The investigation of convergence of the q-Bernstein polynomials reveals that the set
Jq plays a key role in this circle of problems.

Proposition 1. The set Jq is a ‘minimal’ set, where the sequence fBn;q.f I x/g
converges for all f 2 CŒ0; 1�, in the sense that:

(i) fBn;q.f I x/g ! f .x/ when x 2 Jq; f 2 CŒ0; 1�. Moreover, the convergence on Jq

is uniform;
(ii) There exists f 2 CŒ0; 1�, such that x … Jq ) ˇ

ˇBn;q.f I x/
ˇ
ˇ ! 1 as n ! 1.

If f 2 F˛ , the set Jq is still essential when the convergence of fBn;q.f I :/g is
concerned. To begin with, one has to distinguish whether ˛ 2 Jq or ˛ … Jq. The
results of the next section demonstrate that, when ˛ … Jq, the approximation results
are quite similar to those for f 2 CŒ0; 1� and also to the well-known convergence
theorem for the Maclaurin polynomials. In contrast, the case ˛ 2 Jq reveals a
new phenomenon, thoroughly considered in section “Singularity at q�m;m 2 N.”
It should be mentioned that the convergence theorems of the forthcoming sections
are proved with the help of Vitali’s Theorem [18, Chap. 5, Theorem 5.21], where
the convergence on Jq is a crucial issue.
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a b

c

Fig. 2 Graphs of the error functions E.n; 2; x/, for n D 4; 6; 9; 10; 11; 25, and 50

Singularity Outside of the Time Scale Jq

As mentioned already, if ˛ … Jq, then the situation in terms of convergence
for fBn;q.f I :/g resembles the one for f 2 CŒ0; 1�. In particular, statement .i/ of
Proposition 1 remains true (see, Lemma 2 of [14]). To trace the resemblance, let us
refer to Theorem 2.3 of [11] concerning the continuous case and its counterpart
Theorem 1 in [16] concerning F˛ . The respective findings are summarized as
follows.
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a b

Fig. 3 Graphs of the function y D f .x/ and its q-Bernstein polynomial Bn;2.f I x/ for
n D 2; 3; 4, and 5

a b

Fig. 4 Graphs of the function y D f .x/ and its q-Bernstein polynomial Bn;2.f I x/ for
n D 2; 3; 4, and 5

Theorem 1. (i) Let f 2 CŒ0; 1� admit an analytic continuation into a disc
Da; a > 0. Then, f is uniformly approximated by its q-Bernstein polynomials
on any compact subset of .�a; a/.

(ii) Let ˛ 2 Œ0; 1� n Jq and f 2 F˛ . Then, f is uniformly approximated by its
q-Bernstein polynomials on any compact subset of .�˛; ˛/.
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a b

Fig. 5 Graphs of the function y D f .x/ and its q-Bernstein polynomial Bn;2.f I x/ for
n D 7; 8; 9, and 10

These statements are illustrated with the help of the examples below.

Example 1. Let f .x/ D sin.2x/
xC1=3 .

Figure 1a and b displays the graphs of the error functions E.n; q; x/ WD Bn;q.f I x/ �
f .x/ for n D 6; 7; 10; 11; 14, and 15. Figure 1a demonstrates the general behavior of
E.14; 2; x/ and E.15; 2; x/ on Œ0; 1�, while related details are provided in Fig. 1b. It
is observed that, as n increases, the values of E.n; q; x/ approach 0 if x 2 Œ0; 1=3/ or
x D 0:5 2 Jq, and grow in magnitude otherwise. It can be proved that although f is
continuous on Œ0; 1�, it is not approximated by its q-Bernstein polynomials on this
interval.

Example 2. Let f .x/ D sin.2x/
x�1=3 if x ¤ 1=3 and f .1=3/ D 0.

Figure 2a–c shows the graphs of the error functions E.n; 2; x/ when n D
4; 6; 9; 10; 11; 25, and 50. Despite the fact that the graphs are very different from
those in Fig. 1, the qualitative behavior is rather similar. Namely, as n increases,
the values of E.n; 2; x/ approach 0 on Œ0; 1=3/ and at x D 0:5 2 Jq while, outside
of those points, the values of the error functions grow in magnitude. However, to
observe these tendencies, one needs to use polynomials of higher degrees because
the convergence near the pole x D 1=3 is slow. In Fig. 2c the graphs of the error
functions when the degrees of polynomials equal 10, 25, and 50 are shown.
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a b

c

Fig. 6 Graphs of the function y D f .x/ and its q-Bernstein polynomials Bn;2.f I x/ for
n D 2; 3; 4; 5 and 6

Singularity on the Time Scale Jq

On the whole, if ˛ … Jq, then the results cannot be viewed as significantly different
from those corresponding to f 2 CŒ0; 1� and, as such, we focus on ˛ 2 Jq. As for the
time scale itself, the points are distinguished regarding their characteristic properties
as follows:
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a b

c

Fig. 7 Graphs of the function y D f .x/ and its q-Bernstein polynomials Bn;2.f I x/ for
n D 4; 5; 6; 7; 8; 9; 10 and 11

• x D 0 is an accumulation point for the set JqI
• x D 1 is one of the nodes for all n 2 N and also an isolated point for the set of

nodes;

• x D q�m;m 2 N, is an accumulation point for the nodes
Œn � m�q
Œn�q

.

In the same order, the cases when ˛ is one of those will be discussed separately
in the sequel.
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a b

c

Fig. 8 Graphs of the function y D f .x/ and its q-Bernstein polynomials Bn;2.f I x/ for
n D 6; 7; 8; 10; 24 and 25

Singularity at 0

Here, the time scale is still a minimal set of convergence since, by Corollary 4 of
[14], the sequence fBn;q.f I x/g ! f .x/ for x 2 Jq; f 2 F0. Meanwhile, the following
results show that the convergence at all other points may fail. The next theorem deals
with the functions possessing either the power or the logarithmic singularities at 0.
For their proofs, we refer to [12, 14].
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a b

Fig. 9 Graphs of the function y D f .x/ and its q-Bernstein polynomial Bn;2.f I x/ for
n D 3; 4; 5; 10; 20, and 50

Theorem 2. (i) Let f 2 F0, so that limx!0C
x� f .x/ D K ¤ 0 for some � > 0 and

f .0/ D A 2 R. Then, for q � 2,

jBn;q.f I x/j ! 1 as n ! 1 8 x 2 R n Jq:

(ii) Let f 2 F0, so that limx!0C
x�mf .x/ D K ¤ 0 for some m 2 N and f .0/ D

A 2 R. Then,

jBn;q.f I x/j ! 1 as n ! 1 8 x 2 R n Jq:

Example 3. Let f .x/ D 1
3
p

x
; x ¤ 0 and f .0/ D 0.

Figure 3a and b demonstrates the graphs of the function f and its q-Bernstein
polynomials of degree 2; 3; 4, and 5. Both the convergence to f on the time scale
and the divergence elsewhere are noticeable.

Example 4. Let f .x/ D ln x; x ¤ 0 and f .0/ D 0.

The graphs of f and its q-Bernstein polynomials Bn;q.f I x/ when n D 2; 3; 4 and
5 are shown in Fig. 4a and b. The general behavior of the polynomials regarding the
convergence is similar to the preceding example.
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Singularity at 1

It can be readily seen that since x D 1 is an isolated node for all q-Bernstein
polynomials, the singularity at 1 does not affect the expression for the fBn;q.f I x/g.
As a result, the sequence fBn;q.f I x/g is pointwise convergent to f .x/ on the entire
interval Œ0; 1�, while the convergence on Jq is uniform. More precisely, the following
statement holds.

Theorem 3. Let f 2 F1. Then,

Bn;q.f I x/ ! f .x/ uniformly on any compact subset of .�1; 1/

and, consequently, Bn;q.f I x/ ! f .x/ at every x 2 Œ0; 1�.
The assertion has been previously obtained only for rational functions on Œ0; 1�—

see [13] and [15]—but it is not difficult to extend it for the entire class F1.

Example 5. f .x/ D 1
.sin. �2 x/�1/2 ; x ¤ 1 and f .1/ D 0.

The graphs of f and Bn;q.f I x/ are given in Fig. 5a and b. Since f is unbounded
on Œ0; 1�, its uniform approximation on the entire interval is not possible. The figure
illustrates the pointwise approximation on Œ0; 1�I however, one can observe that the
approximation at the points close to 1 is rather slow.

Singularity at q�m; m 2 N

This case is the most interesting one because a new remarkable phenomenon occurs
at this stage: the interval of convergence is governed by the type of singularity at ˛.
A comprehensive analysis of this situation has been performed in [16], while certain
preliminary efforts were made in [13, 15].

Further, the following subsets of F˛—depending on the type of singularity—are
taken into account:

• A D ff 2 F˛ W there exists � > 0; such that lim
x!˛�

f .x/.˛ � x/� D K 2 R n f0gg.

• B D ff 2 F˛ W lim
x!˛�

f .x/.˛ � x/� D 1 for all � > 0g.

• C D ff 2 F˛ W lim
x!˛�

f .x/.˛ � x/� D 0 for all � > 0g.

Given this classification, the sets of convergence for the q-Bernstein polynomials
are identified.

The first result is related to class A . It turns out that � , the parameter describing
the singularity of f at ˛, is crucial for finding the interval of convergence for
polynomials Bn;q.f I �/.
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Theorem 4. Let f 2 A and ˛ D q�m;m 2 N. Then,

(i) Bn;q.xI q�l/ ! f .q�l/; l D 0; 1; : : : ;m � 1 and l > m C � I
(ii) f .x/ is uniformly approximated by Bn;q.f I x/ on any compact subset of

.�˛q�� ; ˛q�� /I
(iii) if jxj > ˛q�� and x … Jq, then jBn;q.f I x/j ! 1 as n ! 1.

It appears that .i/ is sharp in the sense that, for the other points of the time scale,
this approximation does not occur.

Example 6. Let f .x/ D 1

.x� 1
2 /
; x ¤ 1

2
and f . 1

2
/ D 0.

The graphs of f and the associated q-Bernstein polynomials for n D 2; 3; 4; 5,
and 6 are given in Fig. 6a–c. We have m D 1; ˛ D 1

2
and � D 1. While the uniform

approximation on any compact subset of .0; 1
4
/ is easily viewed in Fig. 6b and c, the

divergence for x > 1
4

when x … Jq can also be detected in Fig. 6 as a whole.

Example 7. Let f .x/ D 1

.x� 1
2 /
2
; x ¤ 1

2
and f . 1

2
/ D 0.

Figure 7a–c supplies the graphs of the function f and the corresponding q-Bernstein
polynomials for n D 4; 5; 6; 7; 8; 9; 10, and 11. Here, m D 1; ˛ D 1

2
but, in

distinction from the previous example, � D 2. As a result, the interval on which the
convergence occurs has been halved compared with Example 6. Apart from that,
the situation in terms of approximation is rather similar, and only the number of
time scale points at which Bn;2.f I x/ converge to f .x/ is reduced by 1 point.

On a different note, for functions belonging to B, the q-Bernstein polynomials
have very poor convergence properties. This fact is expressed by:

Theorem 5. Let f 2 B. Then, Bn;q.f I x/ ! f .x/ if x 2 f1; q�1; : : : ; q�.m�1/; 0g and
jBn;q.f I x/j ! 1, otherwise.

To summarize, the set of convergence for fBn;q.f I x/g is reduced just to a finite
number of points in Jq.

Example 8. Let f .x/ D e.x� 1
2 /

�

1
5 ; x ¤ 1

2
and f . 1

2
/ D 0.

The graphs of f and Bn;q.f I x/ are given in Fig. 8a–c, which pictures the lack
of convergence on .0; 1/ for the q-Bernstein polynomials of f . The convergence at
x D 0 and x D 1 originates from the end-point interpolation property.

Finally, let f 2 C ; that is, f possesses a relatively ‘mild’ singularity at ˛. Then, it
has been established that the approximation by the q-Bernstein polynomials occurs
on the same interval as by the Maclaurin polynomials.

Theorem 6. Let f 2 C . Then, Bn;q.f I x/ ! f .x/ uniformly on any compact subset
of .�˛; ˛/.

The statement of Theorem 6 contains no information on the convergence of
fBn;q.f I �/g outside of .�˛; ˛/. This is because, in general, the functions of class
C may have a wider interval of the approximation than .�˛; ˛/. Therefore, it is
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beneficial to demonstrate the sharpness of Theorem 6. That is, to show that there
exists f 2 C , such that its q-Bernstein polynomials diverge for all jxj > ˛; x … Jq.
This sharpness is achieved by the following result proved in [16].

Theorem 7. Let f 2 C and f .x/ D g.x/ ln jx�˛j for x 2 Œ0; ˛/, where the function g
admits an analytic continuation from Œ0; ˛/ intoDˇ with ˇ > ˛. Then, jBn;q.f I x/j !
1 for jxj > ˛ with x … Jq.

Example 9. Let f .x/ D ln
ˇ
ˇx � 1

8

ˇ
ˇ ; x ¤ 1

8
and f . 1

8
/ D 0.

The graphs of f and corresponding q-Bernstein polynomials for n D 3; 4; 5; 10; 20,
and 50 are shown in Fig. 9a and b. Here, the q-Bernstein polynomials uniformly
approximate f on all compact subsets of .�˛; ˛/ and, hence, on the compact subsets
of Œ0; ˛/ D Œ0; 1

8
/, as can be observed in the figure. In addition, outside of the interval

.0; 1
8
/, the convergence to f appears only on the time scale.
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Nests, and Their Role in the Orderability
Problem

Kyriakos Papadopoulos

Abstract This chapter is divided into two parts. The first part is a survey of some
recent results on nests and the orderability problem. The second part consists of
results, partial results and open questions, all viewed in the light of nests. From
connected LOTS, to products of LOTS and function spaces, up to the order relation
in the Fermat Real Line.

Keywords Nests • Orderability problem • LOTS • Products of LOTS •
Function spaces • Fermat reals

Introduction

. . . confusion connotes something which possesses no order,
the individual parts of which are so strangely admixed and interwined,
that it is impossible to detect where each element actually belongs. . .

(Extract from The Musical Dialogue, by Nikolaus Harnoncourt, Amadeus Press,
1997.)

What is an orderability theorem? In particular in S. Purisch’s account of results
on orderability and suborderability (see [12]), one can read the formulation and
development of several orderability theorems, starting from the beginning of the
twentieth century and reaching our days. By an orderability theorem, in topology,
we mean the following. Let .X;T / be a topological space. Under what conditions
does there exist an order relation < on X such that the topology T< induced by the
order < is equal to T ? As we can see, this problem is very fundamental as it is of
the same weight as the metrizability problem, for example (let X be a topological
space: is there a metric d, on X, such that the metric topology generated by this
metric to be equal to the original topology of X?).
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Some History

Order is a concept as old as the idea of number
and much of early mathematics was devoted to
constructing and studying various subsets of the
real line. (Steve Purisch [12])

The great German mathematician Georg Cantor (1845–1918) is credited to be
one of the inventors of set theory. This fact makes him automatically one of the
inventors of order-theory as well, as he is the one who first introduced the class
of cardinals and the class of ordinal numbers, two classes of rich order-theoretic
properties. Cantor was not only interested in defining classes of ordered sets, and
studying their arithmetic; he also produced major results while examining order-
isomorphisms, that is, bijective order-preserving mappings between sets whose
inverses are also order-preserving. S. Purisch gives a complete list of these historic
papers written by Cantor, in his article “A History of Results on Orderability and
Suborderability” [12].

Together with set theory, the field of topology met a rapid rising in the
early twentieth century and new problems, combining both fields, appeared. A
topologist’s temptation is always to examine what sort of topology can be introduced
in a given set. So, a very early question was what is the relationship between the
natural topology of a set and the topology which is induced by an ordering in this
set; this question led to the formulation of the orderability problem.

According to Purisch, one of the earliest orderability theorems was introduced by
O. Veblen and N.J. Lennes, who were both students of the American mathematician
E.H. Moore (1862–1932), and who attended his geometry seminar. This theorem
stated that every metric continuum, with exactly two non-cut points, is homeomor-
phic to the unit interval. For the statement of the theorem, Veblen combined the
notions of ordered set and topology, for defining a simple arc. Lennes used up-to-
date machinery to prove Veblen’s statement, a proof that was published in 1911.

In the meanwhile, some of the greatest mathematicians of the first half of the
twentieth century, like the French mathematicians R. Baire, M. Fréchet, the Dutch
mathematician L.E.J. Brouwer, the Jewish-German mathematician F. Hausdorff,
the Polish mathematicians S. Mazurkiewicz, W. Sierpínski, the Russian mathe-
maticians P. Alexandroff and P. Urysohn and others, were devoted to constructing
various subsets of the real line. In particular, Baire used ideas of the Yugoslavian
mathematician D. Kurepa and of the Dutch mathematician A.F. Monna, on non-
Archimedean spaces, in order to characterize the set of irrational numbers. The
British mathematician, A.J. Ward, found a topological characterization of the real
line (1936), stating that the real line is homeomorphic to a separable, connected
and locally connected metric space X, such that X � fpg consists of exactly two
components, for every p 2 X.
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A more general result (1920), by Mazurkiewicz and Sierpínski, stated that
compact, countable metric spaces are homeomorphic to well-ordered sets; this is
one of the first, if not the first, topological characterizations of abstract ordered sets.

Having in mind that a special version of the orderability problem was solved
in the beginning of the 1970s (J. van Dalen and E. Wattel), its formulation started
from the beginning of the 1940s. In particular, the Polish-American mathematician
S. Eilenberg, gave in 1941 the following result: a connected space, X, is weakly
orderable, if and only if X 
 X minus the diagonal is not connected. This condition
is also necessary and sufficient for a connected, locally connected space to be
orderable.

The American mathematician E. Michael extended this work and showed, in
1951, that a connected Hausdorff space X is a weakly orderable space, if and only
if X admits a continuous selection.

It took two more decades, for a complete topological characterization of GO-
spaces and LOTS to appear. In 1972 J. de Groot and P.S. Schnare showed [2]
that a compact T1 space X is LOTS, if and only if there exists an open subbase
S of X which is the union of two nests, such that every cover of the space, by
elements of S , has a two element subcover. J. van Dalen and E. Wattel used
the characterization of de Groot and Schnare as a basis for their construction [20],
which led to a solution of the orderability problem via nests. We revisited van Dalen
and Wattel’s characterization in [8], and we introduced a simpler proof of their main
characterization theorem.

In [16] we analyzed further the order-theoretic results from [10] and gave a list
of open problems.

The study of ordered spaces did not finish with the solution to the orderability
problem that was proposed by van Dalen and Wattel. On the contrary, many
interesting and important results have appeared since then. We will now refer to
those results which have motivated our own research in particular.

In 1986, G.M. Reed published an article with title “The Intersection Topology
w.r.t. the Real Line and the Countable Ordinals” [13]. The author constructed there
a class which was shown to be a surprisingly useful tool in the study of abstract
spaces. We know that if T1;T2 are topologies on a set X, then the intersection
topology, with respect to T1 and T2, is the topology T on X such that the set
fU1 \ U2 W U1 2 T1 and U2 2 T2g forms a base for .X;T /. Reed introduced the
class C , where .X;T / 2 C if and only if X D fx˛ W ˛ < !1g � R, where T1 D TR

and T2 D T!1 and T is the intersection of TR (the subspace real line topology
on X) and T!1 (the order topology on X, of type !1). In particular, Reed showed
that if .X;T / 2 C , then X has rich topological, but not very rich order-theoretic
properties. In particular, X is a completely regular, submetrizable, pseudo-normal,
collectionwise Hausdorff, countably metacompact, first countable, locally countable
space, with a base of countable order, that is neither subparacompact, metalindelöf,
cometrizable nor locally compact. That an .X;T / 2 C does not necessarily have
rich order-theoretic properties comes from the fact that there exists, in ZFC, an
.X;T / 2 C which is not normal.
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Eric K. van Douwen characterized in 1993 [15] the noncompact spaces, whose
every noncompact image is orderable, as the noncompact continuous images of !1.
Van Douwen refers to a closed non-compact set as cub (corresponding to closed
unbounded sets in ordinals—also met as club in the literature), and he calls bear a
space which is noncompact and has no disjoint cubs. Here we state his result that
has motivated our research on ordinals (see [8]):

For a noncompact space X, the following are equivalent:

1. X is a continuous image of !1.
2. Every noncompact continuous image of X is orderable.
3. X is scattered first countable orderable bear.
4. X is locally countable orderable bear.
5. X has a compatible linear order, all initial closed segments of which are compact

and countable.

A Survey of Recent Results on Nests

Characterizations of LOTS

As we also mentioned in section “Some History,” van Dalen and Watten used nests
in order to give a solution to the orderability problem, and in [8] we gave a more
order- and set-theoretic dimension to this characterization. In particular, we did not
declare our space being T1, but its topology generated by a (so-called) T1-separating
subbase.

Definition 1. Let X be a set. We say that a collection of subsets S of X:

1. T0-separates X, if and only if for all x; y 2 X, such that x ¤ y, there exists S 2 S ,
such that x 2 S and y … S or y 2 S and x … S,

2. T1-separates X, if and only if for all x; y 2 X, such that x ¤ y, there exist
S;T 2 S , such that x 2 S and y … S and also y 2 T and x … T and

One can easily see that a space is T0 (resp. T1) if and only if its topology is
generated by a T0- (resp. T1-) separating subbase, but the statement of Definition 1
is not valid for the T2 separation axiom, if one defines a T2-separating subbase in an
analogous way.

Definition 2. Let X be a set and let L � P.X/. We define an order GL on X by
declaring that x GL y, if and only if there exists some L 2 L , such that x 2 L and
y … L.

In [8] we showed the close link between nests and linear orders in Theorem 1
that follows below.

Theorem 1. Let X be a set and let L � P.X/. Then, the following hold:

1. If L is a nest, then GL is a transitive relation.
2. L is a nest, if and only if for every x; y 2 X, either x D y or x �L y or y �L x.
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3. L is T0-separating, if and only if for every x; y 2 X, either x D y or x GL y or
y GL x.

4. L is a T0-separating nest, if and only if GL is a linear order.

We still needed some more tools, in order to restate van Dalen and Wattel’s char-
acterization theorem in a more elementary way. Theorem 2 shows the connection
between a subbase which generates a GO-topology and two T0-separating nests with
reverse orders, whose union T1-separates the space.

Theorem 2. Let X be a set. Suppose that L andR are two nests on X. Then,L [R
is T1-separating, if and only if L and R are both T0-separating and GL D FR .

A key tool, for van Dalen and Wattel’s solution of the Orderability Problem, was
the notion of interlocking.

Definition 3. Let X be a set and let S � P.X/. We say that S is interlocking, if
and only if for each T 2 S , such that:

T D
\

fS W T � S; S 2 S � fTgg

we have that:

T D
[

fS W S � T; S 2 S � fTgg:

By Lemma 1 that follows, we clarified the relationship between an interlocking
nest and the properties of its induced order.

Lemma 1. Let X be a set and let L be a T0-separating nest on X. Then, the
following hold for L 2 L :

1. L D TfM 2 L W L � Mg, if and only if X � L has no GL -minimal element.
2. L D SfM 2 L W M � Lg, if and only if L has no GL -maximal element.

It is immediate, from Definition 3, that a collection L is interlocking, if and only
if for all L 2 L , either L D SfN 2 L W N � Lg or L ¤ TfN 2 L W L � Ng. So,
we observed that Theorem 1 and Lemma 1 therefore imply the following.

Theorem 3. Let X be a set and let L be a T0-separating nest on X. The following
are equivalent:

1. L is interlocking;
2. for each L 2 L , if L has a GL -maximal element, then X � L has a GL -minimal

element;
3. for all L 2 L , either L has no GL -maximal element or X � L has a GL -minimal

element.
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So, Theorem 3 is a specific version of the notion interlocking in the case of
a linearly ordered topological space, and this gave us enough tools to prove the
following alteration of van Dalen and Wattel’s Theorem:

Theorem 4 (van Dalen & Wattel). Let .X;T / be a topological space. Then:

1. If L and R are two nests of open sets, whose union is T1-separating, then every
GL -order open set is open, in X.

2. X is a GO space, if and only if there are two nests, L and R, of open sets, whose
union is T1-separating and forms a subbase for T .

3. X is a LOTS, if and only if there are two interlocking nests L and R, of open
sets, whose union is T1-separating and forms a subbase for T .

Characterizations of Ordinals

Ordinals, like LOTS and GO-spaces, are fundamental building blocks for set-
theoretic and topological examples. In [8] we used properties of nests in order to
characterize ordinals topologically. To achieve this, we considered our spaces to be
“scattered by a nest”.

Definition 4. A topological space X is scattered, if every non-empty subset A � X
has an isolated point, i.e. for every non-empty A � X, there exists a 2 A and U open
in X, such that U \ A D fag.

Therefore, a space X is scattered, if for every non-empty A � X, there exists U
open in X, such that jU \ Aj D 1.

Definition 5. Let S be a family of subsets of a set X. We say that X is scattered by
S , if and only if for every A � X, there exists S 2 S , such that jA \ Sj D 1.

Theorem 5. Let X be a set and let L be a nest on X. Then, the following are
equivalent:

1. L scatters X.
2. GL is a well-order on X.
3. L is T0-separating and well ordered by �.
4. L is T0-separating and, for every non-empty subset A of X, there is an a 2 A,

such that for any x 2 A and any L 2 L , if x 2 L, then a 2 L.

Theorem 6. Let X be a space. The following are equivalent:

1. X is homeomorphic to an ordinal.
2. X has two interlocking nests L and R, of open sets, whose union is a T1-

separating subbase, such that L scatters X.
3. X has two interlocking nests L and R, of open sets, whose union is a T1-

separating subbase, one of which is well-ordered by � or .
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4. X is scattered by a nest L , of clopen sets, such that:

a. L ¤ SfM W M � Lg, for any L 2 L and
b. fL � M W L;M 2 L g is a base for X.

5. X is scattered by a nest of compact clopen sets.

Corollary 1 that follows leaded us to a characterization of the ordinal !1, with
clear links to the well-known Pressing (or Pushing) Down Lemma in Set Theory.

Corollary 1. X is homeomorphic to a cardinal, if and only if X is scattered by a
nest L , of compact clopen sets, such that jLj < jXj, for each L 2 L .

In particular, X is homeomorphic to !1, if and only if X is uncountable and is
scattered by a nest of compact, clopen, countable sets.

A Generalization of the Orderability Problem

In [11], we restated Theorem 4 via the interval topology, in the corollary that
follows.

Corollary 2. A topological space .X;T / is:

1. a LOTS, iff there exists a nest L on X, such that L is T0-separating and
interlocking and also T D T �L

in .
2. a GO-space, iff there exists a nest L on X, such that L is T0-separating and

also T D T �L

in .

An answer to the following question will give a weaker orderability theorem.

Question Let X be a set equipped with a transitive relation < and the interval
topology T �

in , defined via �, where � is < plus reflexivity. Under which necessary
and sufficient conditions will T< be equal to T �

in ?

Some New Thoughts

Connectedness and Orderability

In this section we give a characterization of interlockingness via connectedness.
This will give a condition for a connected space to be LOTS.

Definition 6. A partial order <, on a set X, is said to be dense if, for all x and y in
X for which x < y, there exists some z in X, such that x < z < y.

So, given Definition 6, the next lemma follows naturally.
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Lemma 2. Let X be a set and let L be a nest on X. Then, the order GL is dense in
X, if and only if for every x; y 2 X, x ¤ y, there exist L;M 2 L , L � M, such that
x 2 L and y … M or y 2 L and x … M.

Proposition 1. Let X be a set and let L ;R be two nests of open sets on X, such
that L [R creates a T1-separating subbase for a topology on X. If X is connected,
with respect to the topology that is induced by the union of L and R, then GL is
dense in X.

Proof. Suppose GL is not dense. Then, there exist x; y 2 X, such that .x; y/ D ;.
So, there exists L 2 L , such that x 2 L and y … L and there also exists R 2 R, such
that x … R and y 2 R and also L \ R D ; and L [ R D X. So, X is not connected.

In Theorem 3 we described interlocking nests, in terms of maximal and minimal
elements. Here we use this result, in order to give a characterization of connected
spaces via nests.

Theorem 7. Let X be a set and let L ;R be two nests of open sets on X, such that
L [R creates a T1-separating subbase for a topology on X. If X is connected, with
respect to the topology with subbase L [R, then L and R are interlocking nests.

Proof. If L is not interlocking then, according to Theorem 3, there exists L 2 L ,
such that L D .�1; x�, but X � L has no minimal element. The set L is open,
as a subbasic element for the topology that is generated by L [ R. So, for every
z 2 X � L, there exists z0, such that x GL z0 GL z. But, there exists Rz 2 R, such that
z0 … Rz and z 2 Rz. So, X � L D S

z…L Rz, i.e. Rz \ L D ;. Thus, X � L is open and
L is open, hence X is not connected. In a similar way, R is interlocking, too.

Theorem 7 permits us now to view LOTS, in the light of connectedness.

Corollary 3. Let X be a set and let L ;R be two nests of open sets on X, such that
L [R creates a T1-separating subbase for a topology on X. If X is connected with
respect to the topology with subbase L [ R, then X is a LOTS.

Proof. The proof follows immediately from the statements of Theorem 4 and
Theorem 7.

Powers of LOTS

Let I be a set of indices. Let X be a LOTS and let � its i-th canonical projection.
Here we examine properties of powers of LOTS, linking X with XI via projections.

Proposition 2. Let X be a LOTS and let LXI be a nest on XI. Then, �i.LXI/ D
f�i.L/ W L 2 LXI g will be a nest on X, for every i 2 I.

Proof. Let �i.L1/; �i.L2/ 2 �i.LXI/, where L1;L2 2 LXI . Then, L1 � L2 or L2 �
L1, which implies that �i.L1/ � �i.L2/ or �i.L2/ � �i.L1/, proving that �i.LXI / is
a nest, too.
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Proposition 3. Let LX be a nest on X. Then, ��1
i .LX/ D f��1

i .L/ W L 2 LXg will
be a nest on XI, for every i 2 I.

Proof. Let ��1
i .L1/; ��1

i .L2/ 2 ��1
i .LX/. Since LX is a nest, then either L1 � L2

or L2 � L1. If L1 � L2, then ��1
i .L1/ � ��1

i .L2/, and if L2 � L1, then ��1
i .L2/ �

��1
i .L1/. Thus, ��1

i .LX/ will be a nest, too.

Definition 7. Let X be a set, and let LXI be a nest on XI , satisfying the condition
that if .xi/i2I; .yi/i2I 2 XI , such that xj ¤ yj, j 2 I, then there exists L 2 LXI , such
that .xi/i2I 2 L and .yi/i2I … L or .yi/i2I 2 L and .xi/i2I … L. Then, we say that the
nest LXI is weakly T0-separating, with respect to the j-th variable.

Definition 8. Let X be a set and let LXI be a nest on XI . Let also .xi/i2I , .yi/i2I , be
such that xj ¤ yj, for a fixed j 2 I. Then, we define .xi/i2I GLXI .yi/i2I , if there exists
a set L 2 LXI , such that .xi/i2I 2 L and .yi/i2I … L.

Theorem 8. If LXI is a weakly T0�separating nest on XI, with respect to the j-th
variable, such that it satisfies the condition that if .xi/i2I … L 2 LXI , then xj … �j.L/,
then �j.LXI / D f�j.L/ W L 2 LXI g is a T0-separating nest on X.

Proof. Proposition 2 gives that �j.LXI/ is a nest.
For proving that �j.LXI / is T0-separating, let x1; x2 2 X, such that x1 ¤ x2. Then,

we form .yi/i2I , .zi/i2I , so that we place x1 in the j-th position of .yi/i2I and x2 in the
j-th position of .zi/i2I . The rest yi and zi are considered arbitrary.

Since LXI is T0-separating, with respect to the j-th variable, then there exists
L 2 LXI , such that .yi/i2I 2 L and .zi/i2I … L or .zi/i2I 2 L and .yi/i2I … L.

So, �j..yi/i2I/ D x1 2 �j.L/ and �j..zi/i2I/ D x2 … �j.L/ or �j..zi/i2I/ D x2 2
�j.L/ and �j..yi/i2I/ D x1 … �j.L/, which proves that �j.LXI/ is T0-separating.

Remark 1. Let LXI be a weakly T0-separating nest in XI . Then, if .yi/i2I , .zi/i2I

have in the j-th position the elements yj and zj, respectively, then .yi/i2I GLXI .zi/i2I

implies that yj G�j.LXI / zj.

Definition 9. Let X be a set and let LXI , RXI be nests on XI. Then, LXI [RXI will
be called weakly T1-separating, with respect to the j-th variable, if and only if for
every .xi/i2I; .yi/i2I 2 XI , such that xj ¤ yj, there exist L 2 LXI and R 2 RXI , such
that .xi/i2I 2 L and .yi/i2I … L and also .yi/i2I 2 R and .xi/i2I … R.

In this case, it is easy to see that .xi/i2I GLXI .yi/i2I , if and only if .yi/i2I GRXI

.xi/i2I .

Proposition 4. Let X be a set and let also LX and RX be two nests on X, such that
LX [RX is T1-separating in X. Then, ��1

j .LX/[��1
j .RX/ is weakly T1-separating

in X 
 X, with respect to the j-th variable.

Proof. Let .xi/i2I; .yi/i2I 2 XI , such that xj ¤ yj. Then, there exist L 2 LX and
R 2 RX, such that xj 2 L and yj … L and also yj 2 R and xj … R, which implies that
.xi/i2I 2 ��1

j .L/, .yi/i2I … ��1
j .R/, and also .yi/i2I 2 ��1

j .R/ and .xi/i2I … ��1
j .R/.

Thus,��1
j .LX/[��1

j .RX/ is weakly T1-separating, with respect to the j-th variable.



526 K. Papadopoulos

Proposition 5. Let X be a set and let LXI and RXI be two nests in XI, such that
LXI [ RXI is weakly T1-separating in XI, with respect to the j-th variable. Let also
LXI and RXI satisfy the condition that if .xi/i2I … L 2 LXI , then �j..xi/i2I/ D xj …
�j.LXI/, and if .xi/i2I … R 2 RXI , then �j..xi/i2I/ … �j.R/. Then, �j.LXI /[�j.RXI /

is T1- separating in X.

Proof. Let x1 ¤ x2. Then, .yi/i2I ¤ .zi/i2I , where yj D x1, zj D x2, and the rest yi

and zi are arbitrary. Since LXI [ RXI is weakly T1-separating, there exist L 2 LXI ,
R 2 RXI , such that .yi/i2I 2 L and .zi/i2I … L and also .zi/i2I 2 R and .yi/i2I … R,
which implies that x1 2 �j.L/ and x2 … �j.R/ and also x2 2 �j.R/ and x1 … �j.R/.

Theorem 9. Let X be a set and let LX be an interlocking nest in X. Then, M D
f��1

j .L/ W L 2 LXg will be an interlocking nest in XI.

Proof. Suppose M 2 M be such that M D TfM0 2 M W M0
� Mg. By the

definition of M , there exists L 2 L such that: M D ��1
j .L/ D ˘ifYi W Yi D

X; ifi ¤ jandYi D Lifi D jg. Making a similar substitution for all M0 2 M , we
deduce that: ˘ifYi W Yi D X; ifi ¤ jandYi D L; ifi D jg D T

˘ifZi W Zi D X; ifi ¤
jandZi D L0; if i D j; L0 2 L ; L0  Lg D TfWi W Wi D X; ifi ¤ jandWi DTfL0 2 L W L0

� Lg; ifi D jg. So, L D TfL0 2 L W L0
� Lg, which implies

that L D SfL0 2 L W L0
� Lg. Hence, M D ˘ifYi W Yi D X; ifi ¤ jandYi D

L; ifi D jg D ˘if‚i W ‚i D X; if; i ¤ jand‚i D SfL0 2 L W L0
� Lg; ifi D jg. So,

M D SfM0 2 M W M0
� Mg, which proves that M is interlocking.

Lemma 3. Let X be a set and let LXI be a collection of subsets of XI. If the
following condition holds: [if .xi/i2I … L, L 2 LXI , then xj … �j.L/], then
�j.L/  Tf�j.L0/ W �j.L0/ � �j.L/g implies that L  TfL0 W L0

� Lg.

Proof. If
TfL0 W L0

� Lg � L, then there exists .xi/i2I , such that .xi/i2I 2 TfL0 W
L0

� Lg and .xi/i2I … L. So, .xi/i2I 2 L0, for every L0
� L, and �j..xi/i2I/ D xj …

�j.L/. Thus, xj 2 �j.L0/, for all �j.L0/ � �j.L/ and xj … �j.L/, which contradicts
the statement of the Lemma 3.

Theorem 10. Let LXI be an interlocking nest in XI. Then, �j.LXI /, j 2 I, is an
interlocking nest in X, if the condition in Lemma 3 holds.

Proof. We have that �j.LXI / D f�j.L/ W L 2 LXI g. Let

�j.L/ D
\

f�j.L
0/g W �j.L

0/ � �j.L/: (1)

We will prove that

�j.L/ D
[

f�j.L
0/ W �j.L

0/ � �j.L/g (2)

or, equivalently, we will prove that:

�j.L/ �
[

f�j.L
0/ W �j.L

0/ � �j.L/g
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Since (1) is satisfied, we have that �j.L/  Tf�j.L0/ W �j.L0/ � �j.L/g which
implies, by Lemma 3, that L  TfL0 W L0

� Lg. But since it is always true that L �TfL0 W L0
� Lg, we have that L D TfL0 W L0

� Lg, and since LXI is interlocking,
we have that �j.L/ � Sf�j.L0/ W L0

� Lg � Sf�j.L0/ W �j.L0/ � �j.L/g, which
completes the proof.

Theorem 11. Let X be a topological space and let LXI , RXI be two interlocking,
weakly T0-separating nests in XI, such that their union, LXI [ RXI is weakly T1-
separating, with respect to the j-th variable. Let also for L 2 LXI and R 2 RXI , LXI

and RXI satisfy the following two conditions:

1. If xj … L, then xj … �j.L/.
2. If xj … R, then xj … �j.R/

Then, �j.LXI / and �j.RXI / are interlocking, T0-separated nests of open sets, in X,
such that their union, �j.LXI / [ �j.RXI / is T1-separating (thus, the topology of X
will coincide with the order topology).

Proof. We have already shown that the canonical projection of a weakly T0-
separating nest is a T0-separating nest, that the projection of a weakly T1-separating
union of two nests of open sets is T1-separating, and also that interlockingness is
preserved in a nest, if we project it via canonical projection. The only thing that
remains to complete the proof is to remark that �j is an open mapping, so for each
L open in XI , �j.L/ and �j.R/ are open sets in X, and this completes the proof.

Corollary 4. Let X be a topological space and let L and R be two T0-separating,
interlocking nests of open sets, in X, such that L [R is T1-separating. Then, S D
fTjk2Jk

��1
jk
.L \ R/g, Jk � I; L 2 L ;R 2 Rg will be a base for a topology in XI.

LOTS and Function Spaces

Let X and Y be two sets and let F .X;Y/ D ff W f isafunction; f W X ! Yg. Then, it
is known that F .X;Y/ D ˘x2XYX , where YX D Y, for all x 2 X.

Theorem 12. Let X and Y be two sets, and let F .X;Y/ be the function space, that
consists of all functions from X to Y. Let alsoL be a nest on Y. Then, for each x 2 X,
the set L x

F .X;Y/ D f.x;L/ W L 2 L g, where .x;L/ D ff 2 F .X;Y/ W f .x/ 2 Lg, will
be a nest on F .X;Y/.

Proof. We remark that L x
F .X;Y/ D f��1

x .L/ W L 2 L g is a nest, and this proves the
assertion of the theorem.

Remark 2. Let F .X;Y/ be a function space and let also LY and RY be two nests
on Y, such that LY [ RY is T1-separating. Let also x 2 X be a point in X. Then,
f.x;L/ W L 2 LYg [ f.x;R/ W R 2 RYg is weakly T1-separating, with respect to x.
This means that if f ; g 2 F .X;Y/, such that f .x/ ¤ g.x/, then there exist L;R in
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LY ;RY , respectively, such that f 2 .x;L/ and g … .x;L/ and also g 2 .x;R/ and
f … .x;R/, which is an immediate consequence of Proposition 4.

Last but not least, the union
S

x2X LF .X;Y/ [ S
x2X RF .x;y/ is a subbase for the

point-open topology.

Corollary 5. Let X and Y be two sets and let also L be a nest on Y. Then, for each
x 2 X, all the nests of the form L x D f.x;L/ W L 2 L g are interlocking.

Nests and the Ring �
R of Fermat Reals

A Short Introduction

The idea of the ring of Fermat Reals �
R has come as a possible alternative to Syn-

thetic Differential Geometry (see, e.g., [4–7]) and its main aim is the development of
a new foundation of smooth differential geometry for finite and infinite-dimensional
spaces. In addition, �

R could play a role of a potential alternative in some certain
problems in the field ?

R in Nonstandard Analysis (NSA), because the applications
of NSA in differential geometry are very few. One of the “weak” points of �

R at the
moment is the lack of a natural topology, carrying the strong topological properties
of the line.

P. Giordano and M. Kunzinger have recently done brave steps towards the
topologization of the ring �

R of Fermat Reals. In particular, they have constructed
two topologies: the Fermat topology and the omega topology (see [7]). The
Fermat topology is generated by a complete pseudo-metric and is linked to the
differentiation of non-standard smooth functions. The omega topology is generated
by a complete metric and is linked to the differentiation of smooth functions on
infinitesimals. Although both topologies are very useful in developing infinitesimal
instruments for smooth differential geometry, none of these two topologies aims
to characterize the Fermat real line from an order-theoretic perspective. In fact,
neither makes the space T1, while an appropriate order-topology would equip the
Fermat Real Line with the structure of a monotonically normal space, at least. The
possibility to define a linear order relation on �

R, so that it can be viewed as a
LOTS (linearly ordered topological space) can be considered important, because
�
R is an alternative mathematical model of the real line, having some features with

respect to applications in smooth differential geometry and mathematical physics. It
is therefore natural to ask whether for �

R peculiar characteristics of R hold or not.
In this section we will focus in the order relation which is stated in [4], and we

will interpreted through nests.
As we shall see in Definition 11, the idea of the formation of �

R starts with an
equivalence relation in the little-oh polynomials, where �

R is the quotient space
under this relation. This treatment permits us to view these little-oh polynomials as
numbers.
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Definitions

Definition 10. A little-oh polynomial xt (or x.t/) is an ordinary set-theoretical
function, defined as follows:

1. x W R�0 ! R and
2. xt D r CPk

iD1 ˛itai C o.t/, as t ! 0C, for suitable k 2 N, r; ˛1; � � � ; ˛k 2 R and
a1; � � � ; ak 2 R�0.

The set of all little-oh polynomials is denoted by the symbol RoŒt�. So, x 2 Ro.t/, if
and only if x is a polynomial function with real coefficients, of a real variable t � 0,
with generic positive powers of t and up to a little-oh function o.t/, as t ! 0C.

Definition 11. Let x; y 2 RoŒt�. We declare x � y (and we say x D y in �
R), if and

only if x.t/ D y.t/C o.t/, as t ! 0C.

The relation � in Definition 11 is an equivalence relation and �
R WD RoŒt�= �.

A first attempt to define an order in �
R has come from Giordano.

Definition 12 (Giordano). Let x; y 2 �
R. We declare x � y, if and only if there

exists z 2 �
R, such that z D 0 in �

R (i.e. limt!0C

zt=t D 0) and for every t � 0

sufficiently small, xt � yt C zt.

For simplicity, one does not use equivalence relation but works with an equivalent
language of representatives. If one chooses to use the notations of [4], one has to
note that Definition 12 does not depend on representatives.

As the author describes in [4], the order relation in NSA admits all formal
properties among all the theories of (actual) infinitesimals, but there is no good
dialectic of these properties with their informal interpretation. In particular, the order
in ?

R inherits by transfer all the first order properties but, on the other hand, in the
quotient field ?

R it is difficult to interpret these properties of the order relation as
intuitive properties of the corresponding representatives. For example, a geometrical
interpretation like that of �

R seems not possible for ?R. Definition 12 provides a
clear geometrical representation of the ring �

R (see, for instance, Sect. 4.4 of [4]).

The Fermat Topology and the Omega-Topology on �
R

A subset A � �
R

n is open in the Fermat topology, if it can be written as
A D Sf�U � A W UisopeninthenaturaltopologyinRng. Giordano and Kunzinger
describe this topology as the best possible one for sets having a “sufficient amount
of standard points”, for example �U. They add that this connection between the
Fermat topology and standard reals can be glimpsed by saying that the monad
�.r/ WD fx 2 �

R W standardpartofx D rg of a real r 2 R is the set of all points which
are limits of sequences with respect to the Fermat topology. However it is obvious
that in sets of infinitesimals there is a need for constructing a (pseudo-)metric
generating a finer topology that the authors call the omega-topology (see [7]). Since
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neither the Fermat nor the omega-topology is Hausdorff when restricted to �
R and

since each of them describes sets having a “sufficient amount” of standard points
or infinitesimals, respectively, there is a need for defining a natural topology on �

R

describing sufficiently all Fermat reals and carrying the best possible properties.

Interlocking Nests on �
R

Theorem 13. The pair .�R; <F/, where <F is defined as follows:

x <F y ,

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂:

9 fk 2 �
R W k � lg; some l 2 �

R; such that x 2 fk 2 �
R W k � lg 63 y; l 2 �

R

or

x D maxfk 2 �
R W k � lg; some l 2 �

R and 9h 2 �
R W h > 0; y D x C h

or

y D minfk 2 �
R W l � kg; some l 2 �

R and 9h 2 �
R W h > 0; x D y � h

where x; y are distinct Fermat reals, is a linearly ordered set.

Proof. The order of Definition 12 gives two nests, namely the nest L , which
consists of all sets L D fk 2 �

R W k � lg, some l 2 �
R and the nest R, which

consists of all sets R D fk 2 �
R W l � kg, some l 2 �

R. In addition, we have that
�L D�RD�.

We remark that, for any L 2 L (respectively for any R 2 R), L (resp. R) has a
�L -maximal element (resp. �R-maximal element for R), such that X � L has no
�L -minimal element (resp. X � R has no �R-minimal element). So, neither L nor
R are interlocking.

Now, for all L D fk 2 �
R W k � lg 2 L , some l 2 �

R, let xL denote the �L -
maximal element of L and for all R D fk 2 �

R W l � kg 2 R, some l 2 �
R let yR

denote the �L -minimal element of R.
Furthermore, for each L 2 L choose xC

L 2 �
R and for each R 2 R choose

y�
R 2 �

R, where xC
L and y�

R are distinct points in �
R, and define a map p W �

R !
�
R � .fxC

L W L 2 L g [ fy�
R W R 2 Rg/, as follows:

p.x/ D

8
ˆ̂<

ˆ̂
:

x; if x 2 �
R � .fxC

L W L 2 L g [ fy�
R W R 2 Rg/

xL; if x D xC
L

yR; if x D y�
R

Now, define an order <F on �
R, so that:
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x <F y ,

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
:

p.x/ GL p.y/

or

x D xL and y D xC
L

or

x D y�
R and y D yR

Obviously, <F is a linear order and the restriction of <F to �
R � .fxC

L W L 2
L g [ fy�

R W R 2 Rg/ equals �L , the order in Definition 12. In addition, we can set
xC

L D xL C h, where h is not zero in �
R and h > 0, that is, limt!0C

ht=t ¤ 0 and,
respectively, we set x�

R D xR � h, and this completes the proof.

Theorem 14. �
R equipped with the order topology from <F is a LOTS.

Proof. We will now show that the topology T on �
R � .fxC

L W L 2 L g [ fy�
R W R 2

Rg/ coincides with the subspace topology on �
R� .fxC

L W L 2 L g [ fy�
R W R 2 Rg/

that is inherited from the <F-order topology on �
R.

But, since L [ R forms a subbasis for T , that consists of two nests, every set
in T can be written as a union of sets of the form L \ R, where L 2 L and R 2 R.
It suffices therefore to show that every L 2 L and R 2 R can be written as the
intersection of an order-open set with �

R � .fxC
L W L 2 L g [ fy�

R W R 2 Rg/.
But this is always true, since if L 2 L , with �L -maximal element xL, then L D
�
R � .fxC

L W L 2 L g [ fy�
R W R 2 Rg/\ fx 2 �

R W x <F xC
L g.

The argument for R 2 R is similar, and this completes the proof.

Remarks

1. The order topology T<F equals the topology TL<F [R<F
, where L<F D fk 2

�
R W k <F lg, some l 2 �

R and R<F D fk 2 �
R W l <F kg, some l 2 �

R. This
is because L<F [ R<F T1-separates �

R and both L<F and R<F are interlocking
nests. So, unlike the GO-space topology T� on �

R, where T� � TL[R, <F

provides a natural extension of the natural linear order of the set of real numbers
to the Fermat real line and the order topology from <F can be completely
described via the nests L<F and R<F .

2. Viewing the Fermat real line as a LOTS and working with nests L<F and R<F ,
one can now define the product topology for �

R
n, some positive integer n, or even

more generally for ˘i2I
�
Ri, some arbitrary indexing set I, in the usual way via

the subbasis ��1
j0
.Aj0 / D ˘i2If�

Ri W i ¤ j0g 
 Aj0 , where Aj0 is an open subset in
the coordinate space �

Rj0 in the order topology T<F and �i W ˘i2I
�
Ri ! �

Ri the
projection.

3. In this way one can define continuity for any function f from a topological space
Y into the product space ˘i2I

�
Ri via the continuity of �i ı f W Y ! �

Ri.
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4. The neight of �
R is 2 and the neight of �

R
n D n C 1 (see [1]). Using the product

topology, as stated in Remark 2, we use four nests in order to define -for example-
the topology in �

R
2, but since the neight of �

R
2 is 3, one can define a topology

using three nests exclusively.

Questions

1. As a LOTS, .�R; <F/ has rich topological properties. It is, for example, a
monotone normal space. It would be interesting though to have an extensive
study on the metrizability of this space. It is known that in a GO-space the terms
metrizable, developable, semistratifiable, etc. are equivalent (see [3] and [9]).
The real line (i.e. the set of all standard reals, from the point of view of �

R) is a
developable LOTS and this is equivalent to say that it is also a metrizable LOTS.
Is .�R;T<F / developable?

2. Which of the subspaces of .�R;T<F / are developable?

Since any sequence x1; x2; � � � of points in ˘i2I
�
Ri will converge to a point x 2

˘i2I
�
Ri, iff for every projection �i W ˘i2I

�
Ri ! �

Ri the sequence �i.x1/; �i.x2/; � � �
converges to �i.x/ in the coordinate space �

Ri, any answer to the above questions
will be fundamental towards our understanding of convergence in the ring of Fermat
Reals.
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Resolvent Operators for Some Classes
of Integro-Differential Equations

I.N. Parasidis and E. Providas

Abstract Explicit representations are constructed for the resolvents of the operators
of the form B DbACQ1 and B DbA2CQ2, wherebA andbA2 are linear closed operators
with known resolvents and Q1 and Q2 are perturbation operators embedding inner
products of bA and bA2 as they appear in integro-differential equations and other
applications.

Keywords Resolvent Operator • Integro-Differential Equations • Boundary value
Problems • Exact Solution

Introduction

The present article is concerned with the study of generalized boundary value
problems containing differential or integro-differential operators by means of the
resolvent operator. Specifically, we derive explicit representations for the resolvent
operators for three classes of problems.

The first problem involves a linear operator defined in the complex Hilbert space
H of the form

B DbA C Q1 DbA �
mX

iD1
gihbA �; 
iiH ; D.B/ D D.bA/; (1)

where bA is a linear closed, not necessarily bounded, operator, g1; g2; : : : ; gm are
linearly independent elements of H, 
1; 
2; : : : ; 
m 2 H and h�; �iH denotes the
inner product in H. Note that the operator B can be viewed as a perturbation of
the operator bA by the operator Q1. Moreover, the operators bA, B are extensions of
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a minimal operator A0 � bA with D.A0/ D D.bA/ \ ker Q1. We prove that when
the resolvent set .bA/ and the resolvent operator R	.bA/ D .bA � 	I/�1 of bA are
known then we can find the resolvent set .B/ \ .bA/ and the resolvent operator
R	.B/ D .B � 	I/�1 of B in closed form.

The second problem encompasses an operator of the kind

B DbA2 C Q2 DbA2 �
mX

iD1
sihbA�; 
iiH �

mX

iD1
gihbA2�; 
iiH ; D.B/ D D.bA2/; (2)

where in addition si 2 H; i D 1; : : : ;m. We show that the resolvent set .B/\.bA2/
and the resolvent operator R	.B/ D .B � 	I/�1 of the operator B can be evaluated
when their counterparts .bA2/ and R	.bA2/ D .bA2�	I/�1 of the simpler operatorbA2

are known.
A special form of the second problem with interest is obtained when we take gi 2

D.bA/ and si D Bgi, i D 1; : : : ;m. In this case B D B2, i.e. B becomes a quadratic
operator. The explicit formula for the resolvent operator R	2.B/ for 	2 2 .B/ is
constructed from the resolvent operators R	.bA/ and R�	.bA/ for ˙	 2 .bA/.

Resolvent operators are associated with the spectral theory and their origin goes
as back as to the early days of functional analysis, see, e.g., [13] and [10]. When
the resolvent R	.B/ of an operator B exists and is provided in an analytic form, it
is valuable for the study of the operator B itself and the solution of the problems
.B � 	I/x D f ; f 2 H and Bx D f .	D 0/. Perturbation theory for linear operators
was first introduced by Rayleigh and Schrödinger [17] and founded later by
Kato [10]. Since then it occupies an important place in theoretical physics,
mechanics and applied mathematics. Extension theory was initiated by von
Neumann [19] and developed further by [12, 23] and [1], commonly known as
Birman–Kreı̌n–Vishik theory, as well as [3, 5, 11, 14, 21, 22] and many others.
Integro-differential equations appear in the mathematical modeling in biology,
engineering, telecommunications and economics. Of interest here are the following
works. In [4, 6, 7, 15, 16] and [8], resolvent methods have been employed to
study a class of integro-differential equations, occurring in heat conduction
and viscoelasticity, where bA in (1) is a specific operator and Q1 is a Volterra
operator. By the same means certain integro-differential equations, arising in
quantum-mechanical scattering theory, where bA is a special operator and Q1 is
a one-dimensional perturbation (m D 1), have also been investigated, see, e.g., [2].
The resolvent and the spectrum of perturbed operators of the type (1) where bA is
a symmetric operator and hbA �; 
iiH D aih �; giiH; ai 2 R have been studied by [9]
and the references therein. Finally, a Fredholm type boundary integral equation in
elasticity with hbA �; 
iiH D pi.�/ has been considered in [18].

In the rest we make use of the following notation. Namely, F D
.
1; : : : ; 
m/; G D .g1; : : : ; gm/ and AF D .A
1; : : : ;A
m/ are vectors of
Hm. We write Ft and hAx;FtiHm for the column vectors col.
1; : : : ; 
m/ and
col. hAx; 
1iH; : : : ; hAx; 
miH /, respectively. We denote by M .resp:Mt/ the
conjugate (resp. transpose) matrix of M and by hGt;FiHm the m 
 m matrix whose
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i; j-th entry is the inner product hgi; 
jiH. Notice that hGt;FiHm defines the matrix
inner product and has the properties:

hGt;FCiHm D hGt;FiHmC; hGt;FiHm D hFt;Gi t
Hm ; (3)

where C is an m 
 k constant complex matrix. We denote by Im the m 
 m identity
matrix and by 0m the m 
 m zero matrix. It is understood that D.A/ and R.A/ stand
for the domain and the range of A, respectively.

The paper is organized as follows. In sections “Resolvent of Extensions of
a Minimal Operator,” “Resolvent of Extensions of the Square of a Minimal
Operator,” and “Resolvent of Quadratic Operators” we develop the theory for
acquiring analytic formulas for the resolvent operators corresponding to each of
the three classes of problems presented. In section “Resolvent of Extensions of
a Minimal Operator” we apply the theory to three Fredholm type, generalized
integro-differential boundary value problems to demonstrate the power of the theory
developed.

Resolvent of Extensions of a Minimal Operator

In this section we consider the operator B in Eq. (1) and determine the necessary
and sufficient conditions for the existence of the resolvent R	.B/ and we find it in
an explicit form provided R	.bA/ is known. In [22] the perturbed operator B has been
studied as the extension of the minimal operator A0, i.e.

A0x DbAx for x 2 D.A0/ D fx 2 D.bA/ W hbAx;FtiHm D 0tg

We begin by giving the definition of the resolvent. Let A W H ! H be a linear
operator. We say that 	 2 C belongs to the resolvent set .A/ of A if there exists
the operator R	 D R	.A/ D .A � 	I/�1 which is bounded and D.R	/ is dense in H
( D.R	/ D H ). The operator R	.A/ is called the resolvent of A. We recall from [13,
Lemma 7.2-3] the following result.

Lemma 1. Let X be a complex Banach space, A W X ! X a linear operator, and
	 2 .A/. Assume that (a) A is closed or (b) A is bounded. Then the resolvent
operator R	.A/ of A is defined on the whole space X and is bounded.

The proposition below is well known and is utilized here several times.

Proposition 1. If in a Hilbert space H,bA W H ! H is a closed linear operator and
	 2 .bA/, then

bAR	.bA/ D I C 	R	.bA/ and bAR	.bA/ D R	.bA/bA: (4)

We now prove the key theorem for obtaining the resolvent of the operator B.
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Theorem 1. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, 	 2 .bA/ and B W H ! H the operator defined by

Bx DbAx � GhbAx;FtiHm ; D.B/ D D.bA/; (5)

where the vectors G D .g1; : : : ; gm/, with g1; : : : ; gm being linearly independent
elements, Ft D col.
1; : : : ; 
m/ 2 Hm and x 2 D.B/. Let the operator

B	x D .B � 	I/x D f ; D.B	/ D D.bA/; (6)

where I is the identity operator on D.B/ and f 2 H. Then:

(i) 	 2 .B/ if and only if

det L	 D det
h
Im � hFt; bAR	.bA/GiHm

i
¤ 0: (7)

(ii) .B/\ .bA/ D f	 2 .bA/ W det L	 ¤ 0g.
(iii) For 	 2 .B/ \ .bA/ the resolvent operator R	.B/ is defined on the whole

space H, is bounded and has the representation

R	.B/f D R	.bA/f C R	.bA/GL�1
	 hbAR	.bA/f ; FtiHm : (8)

Proof. (i)–(iii) Suppose that det L	 ¤ 0. Since D.bA/ D D.bA � 	I/ D D.B � 	I/
then from (6) for x 2 D.bA/ we have

.bA � 	I/x � GhbAx; FtiHm D f ; 8f 2 H: (9)

Since bA is closed, the resolvent operator R	.bA/ is defined on the whole
space H and is bounded as it is implied by Lemma 1. By applying first the
operator R	.bA/ and then the operatorbA on (9) we get

x � R	.bA/GhbAx;FtiHm D R	.bA/f ; (10)

bAx �bAR	.bA/GhFt;bAxiHm D bAR	.bA/f : (11)

By taking the inner products of both sides of (11) with the components of
the vector Ft and by observing that the inner product is conjugate linear in
the second factor, see Eq. (3), we obtain

hFt; bAxiHm � hFt; bAR	.bA/GiHmhFt; bAxiHm D hFt; bAR	.bA/f iHm ;
h
Im � hFt; bAR	.bA/GiHm

i
hFt; bAxiHm D hFt; bAR	.bA/f iHm ;

L	hFt; bAxiHm D hFt; bAR	.bA/f iHm : (12)

Hence, since det L	 ¤ 0;
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hFt; bAxiHm D L�1
	 hFt; bAR	.bA/f iHm ;

hbAx; FtiHm D L�1
	 hbAR	.bA/f ; FtiHm : (13)

By substituting (13) and x D .B � 	I/�1f into (10), we have

x D R	.bA/f C R	.bA/GL�1
	 hbAR	.bA/f ; FtiHm ; (14)

from where Eq. (8) follows. From Proposition 1 we have

bAR	.bA/f D .I C 	R	.bA//f

and since R	.bA/ is defined on the whole space H and is bounded, it follows
that the resolvent operator R	.B/ is also defined on the whole space H and
is bounded. Consequently, 	 2 .B/.

Conversely, let 	 2 .B/ \ .bA/. We will show that det L	 ¤ 0.
Assume that det L	 D 0, then det L	 D 0. Hence, exists a nonzero vector
at D col.a1; : : : ; am/ 2 Cm such that L	at D 0t. We consider the element
x0 D R	.bA/Gat 2 D.bA/. Since the components of the vector G are
linearly independent elements we have Gat ¤ 0 and therefore x0 ¤ 0.
By substituting in (6) we get

B	x0 D .bA � 	I/x0 � GhFt; bAx0iHm

D .bA � 	I/R	.bA/Gat � GhFt; bAR	.bA/GatiHm

D Gat � GhFt; bAR	.bA/GiHmat

D G
h
Im � hFt; bAR	.bA/GiHm

i
at

D GL	at D G0t D 0: (15)

This means that x0 2 ker B	 and so 	 … .B/, which contradicts the
assumption that 	 2 .B/ \ .bA/. Thus, det L	 ¤ 0 and .B/ \ .bA/ D
f	 2 .bA/ W det L	 ¤ 0g. ut

Remark 1. The linear independence of the components of the vector G is required
to prove the necessary condition of (i). Hence, if the components of the vector G are
not linearly independent, then holds only: 	 2 .B/ if det L	 ¤ 0.

Resolvent of Extensions of the Square of a Minimal Operator

In this section we extend the results of the previous section for the case of the
operator B defined in Eq. (2). This operator has been studied in [22] as an extension
of the minimal operator A20, namely
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A20x DbA2x for x 2 D.A20/ D fx 2 D.bA2/ W hbAx;FtiHm D hbA2x;FtiHm D 0tg:

We find here the resolvent set .B/ \ .bA2/ and a resolvent R	.B/ when the .bA2/
and R	.bA2/ are known.

First, we recall the following proposition from [20, pp. 39]

Proposition 2. If A is a closed operator on a complex Banach space and its
resolvent set .A/ is not empty, then An is closed too for each n 2 N.

We now prove the theorem for the resolvent of the operator B.

Theorem 2. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, .bA/ is not empty, 	 2 .bA2/ and B W H ! H the operator defined by

Bx DbA2x � ShbAx;FtiHm � GhbA2x;FtiHm ; D.B/ D D.bA2/; (16)

where Ft D col.
1; : : : ; 
m/, S D .s1; : : : ; sm/ and G D .g1; : : : ; gm/ 2 Hm, with
the components of the vector .S;G/ being linearly independent elements of H, and
x 2 D.B/. Let the operator

B	x D .B � 	I/x D f ; D.B	/ D D.bA2/; (17)

where I is the identity operator on D.B/ and f 2 H. Then:

(i) 	 2 .B/ if and only if

det W	 D det

 
Im � hFt; bAR	.bA2/SiHm �hFt; bAR	.bA2/GiHm

�hFt; bA2R	.bA2/SiHm Im � hFt; bA2R	.bA2/GiHm

!

¤ 0:

(18)
(ii) .B/ \ .bA2/ D f	 2 .bA2/ W det W	 ¤ 0g.

(iii) For 	 2 .B/ \ .bA2/ the resolvent operator R	.B/ is defined on the whole
space H, is bounded and has the representation

R	.B/f D R	.bA2/f C R	.bA2/.S W�1
	11 C G W�1

	21/hbAR	.bA2/f ;FtiHm

C R	.bA2/.S W�1
	12 C G W�1

	22/hbA2R	.bA2/f ;FtiHm ;

(19)

where W�1
	ij ; i; j D 1; 2 are the m
m submatrices of the partition of the 2m
2m

inverse matrix W�1
	 .

Proof. (i)–(iii)Let us assume that (18) is true, specifically det W	 ¤ 0. Since
D.bA2/ D D.bA2 � 	I/ D D.B � 	I/ then from (17) and for x 2 D.bA2/
we have
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.bA2 � 	I/x � ShbAx;FtiHm � GhbA2x;FtiHm D f : (20)

Proposition 2 states that the operatorbA2 is closed and because 	 2 .bA2/, it
follows from Lemma 1 that the resolvent operator R	.bA2/ is defined and is
bounded on the whole space H. By applying the resolvent operator R	.bA2/
on (20), we get

x � R	.bA2/
h
ShbAx;FtiHm C GhbA2x;FtiHm

i
D R	.bA2/f : (21)

By employing the operatorsbA and bA2, we have

bAx�bAR	.bA2/
h
ShbAx;FtiHmCGhbA2x;FtiHm

i
DbAR	.bA2/f ; (22)

bA2x�bA2R	.bA2/
h
ShbAx;FtiHmCGhbA2x;FtiHm

i
DbA2R	.bA2/f :

(23)

Taking the inner products of (22) and (23) with the components of the
vector Ft, we obtain the system

hFt; bAxiHm � hFt; bAR	.bA2/
h
ShFt; bAxiHm C GhFt; bA2xiHm

i
iHm

D hFt; bAR	.bA2/f iHm ;

(24)

hFt; bA2xiHm � hFt; bA2R	.bA2/
h
ShFt; bAxiHm C GhFt; bA2xiHm

i
iHm

D hFt; bA2R	.bA2/f iHm :

(25)

Exploiting the conjugate linear property of the inner product as in (3), we
get

h
Im � hFt; bAR	.bA2/SiHm

i
hFt; bAxiHm � hFt; bAR	.bA2/GiHm hFt; bA2xiHm

D hFt; bAR	.bA2/f iHm ;

(26)

�hFt; bA2R	.bA2/SiHm hFt; bAxiHm C
h
Im � hFt; bA2R	.bA2/GiHm

i
hFt; bA2xiHm

D hFt; bA2R	.bA2/f iHm :

(27)
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Writing Eqs. (26) and (27) in a matrix form by using the matrix W	 in (18)
and inverting, since det W	 ¤ 0, we have

 
hFt; bAxiHm

hFt; bA2xiHm

!

D
�

W�1
	11 W�1

	12

W�1
	21 W�1

	22

� hFt; bAR	.bA2/f iHm

hFt; bA2R	.bA2/f iHm

!

; (28)

or, by taking the conjugates,

 
hbAx;FtiHm

hbA2x;FtiHm

!

D
�

W�1
	11 W�1

	12

W�1
	21 W�1

	22

� hbAR	.bA2/f ;FtiHm

hbA2R	.bA2/f ;FtiHm

!

: (29)

Substituting (29) into (21) and using x D .B�	I/�1f the resolvent operator
R	.B/ is obtained as in Eq. (19). Since bA2R	.bA2/f D .I C 	R	.bA2//f by
Proposition 1 and R	.bA2/ is defined on the whole space H and is bounded,
it follows that R	.B/ is also defined on the whole space H and is bounded.
Hence 	 2 .B/.

Conversely, let 	 2 .B/ \ .bA2/. We will show that det W	 ¤ 0.
Suppose det W	 D 0 , then det W	 D 0. Hence, there exists a nonzero
vector at D col.a1; a2/ D col.a1; : : : ; am; amC1; : : : ; a2m/ 2 C2m such that
W	at D 0t. We consider the element x0 D R	.bA2/.Sat

1 C Gat
2/ 2 D.bA2/.

The components of the vector .S;G/ are linearly independent and therefore
Sat

1 C Gat
2 ¤ 0 and hence x0 ¤ 0. Substituting into (17), we have

B	x0 D .bA2 � 	I/x0 � ShFt; bAx0iHm � GhFt; bA2x0iHm

D .bA2 � 	I/ŒR	.bA2/.Sat
1 C Gat

2/� � ShFt; bAR	.bA2/.Sat
1 C Gat

2/iHm

� GhFt; bA2R	.bA2/.Sat
1 C Gat

2/iHm

D Sat
1 C Gat

2 � ShFt; bAR	.bA2/SiHmat
1 � ShFt; bAR	.bA2/GiHmat

2

� GhFt; bA2R	.bA2/SiHmat
1 � GhFt; bA2R	.bA2/GiHmat

2

D S
h�

Im � hFt; bAR	.bA2/SiHm

�
at
1 � hFt; bAR	.bA2/GiHmat

2

i

C G
h�

Im � hFt; bA2R	.bA2/GiHm

�
at
2 � hFt; bA2R	.bA2/SiHmat

1

i

D .S;G/W	at D .S;G/0t D 0: (30)

Consequently, x0 2 ker B	 and so 	 … .B/, which is not true since 	 2
.B/ \ .bA2/. Therefore det W	 ¤ 0 and .B/ \ .bA2/ D f	 2 .bA2/ W
det W	 ¤ 0g. ut
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Remark 2. The linear independence of the components of the vector .S;G/ is
required to prove the necessary condition of (i). So, if the components of the vector
.S;G/ are not linearly independent, then holds only: 	 2 .B// if det W	 ¤ 0.

Resolvent of Quadratic Operators

In reference [22, Theorem 4.6] it is stated that for the operator B defined in (16)
holds B D B2, where B is as in (5), if and only if

G 2 D.bA/ and S D BG DbAG � GhFt;bAGiHm : (31)

This is important because it provides the means to construct the resolvent R	2.B
2/

of the quadratic operator B2 from the resolvents R	.bA/ and R�	.bA/ as it is shown
below.

Before we articulate the main theorem we have to prove first the next lemma.

Lemma 2. IfbA W H ! H is a closed linear operator in a complex Hilbert space H
and the resolvent set .bA/ is nonempty, then:

(i) For ˙	 2 .bA/ the resolvent operators R	.bA/ and R�	.bA/ are bounded and
are defined on the whole H and commute.

(ii) The resolvent set .bA2/ D f	2 2 C W ˙	 2 .bA/g, i.e. 	2 2 R	2 .bA2/ if and
only if ˙	 2 .bA/. The resolvent operator R	2.bA2/ is bounded and is defined
on the whole H. Moreover,

R	2 .bA
2/ D R	.bA/R�	.bA/; (32)

bAR	2.bA
2/ D R�	.bA/C 	R	2.bA

2/; (33)

bAR	2.bA
2/ D R	.bA/ � 	R	2.bA

2/: (34)

(iii) If in addition 	 ¤ 0, then

R	2.bA
2/ D 1

2	
ŒR	.bA/ � R�	.bA/�; (35)

bAR	2.bA
2/ D 1

2

h
R	.bA/C R�	.bA/

i
; (36)

bA2R	2.bA
2/ D I C 	

2

h
R	.bA/� R�	.bA/

i
: (37)

Proof. (i) Since bA is a closed linear operator and ˙	 2 .bA/ then the resolvent
operators R�	.bA/ and R	.bA/ are bounded and are defined on the whole H by
Lemma 1. The commuting property R	.bA/R�	.bA/ D R�	.bA/R	.bA/ follows
from the resolvent equation
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R	1 .bA/ � R	2.bA/ D .	1 � 	2/R	1.bA/R	2.bA/ (38)

which holds for every closed operator bA in a complex Banach space and for
every 	1; 	2 2 .bA/, see, e.g., [10].

(ii) Note that for each 	 2 C and D.bA ˙ 	I/ D D.bA/; D.bA2 ˙ 	2I/ D D.bA2/
we have

bA2 � 	2I D .bA C 	I/.bA � 	I/;

.bA2 � 	2I/x D .bA C 	I/.bA � 	I/x D f ; x 2 D.bA2/; f 2 H: (39)

Let ˙	 2 .bA/. Then because of case (i) we get

R�	.bA/.bA C 	I/.bA � 	I/x D R�	.bA/f ;

R	.bA/.bA � 	I/x D R	.bA/R�	.bA/f ;

x D R	.bA/R�	.bA/f : (40)

It follows from (39) that

x D .bA2 � 	2I/�1f D R	.bA/R�	.bA/f (41)

and hence R	2.bA2/ is bounded and is defined on the whole H. Thus, 	2 2 .bA2/.
Conversely, by Proposition 2 the operator bA2 is closed. Let 	2 2 .bA2/.

Then by Lemma 1, the resolvent operator R	2.bA2/ is bounded and defined
on the whole H. From (39) and since ker.bA2 � 	2I/ D f0g and the operators
.bA � 	I/; .bA C 	I/ commute, it follows that ker.bA ˙ 	I/ D f0g and .bA2 �
	2I/�1 D .bA � 	I/�1.bA C 	I/�1. Because R.bA2 � 	2I/ D H it is implied that
R.bA ˙ 	I/ D H. SincebA is closed thenbA ˙ 	I and (bA ˙ 	I/�1 are closed too.
By the Closed Graph theorem the operators (bA ˙ 	I/�1 are bounded. Hence
˙	 2 .bA/.

Furthermore, the identity (32) follows from Eq. (41) while the identities
(33) and (34) are easily proved, viz.

bAR	2.bA
2/ DbAR	.bA/R�	.bA/ D ŒI C 	R	.bA/�R�	.bA/ D R�	.bA/C 	R	2.bA

2/;

bAR	2.bA
2/ DbAR�	.bA/R	.bA/ D ŒI � 	R�	.bA/�R	.bA/ D R	.bA/� 	R	2.bA

2/:

(iii) From (41) and (38) we get

R	2.bA
2/ D R	.bA/R�	.bA/ D 1

2	
ŒR	.bA/� R�	.bA/�:

By actingbA on the last equation we obtain

bAR	2.bA
2/ D 1

2	
ŒbAR	.bA/�bAR�	.bA/�

D 1

2	
fI C 	R	.bA/ � ŒI C .�	/R�	.bA/�g D 1

2

h
R	.bA/C R�	.bA/

i
:
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Finally, operatingbA on this equation we get (37). This completes the proof. ut
Now we present the main theorem for the resolvent of the quadratic operator B.

Theorem 3. Let H be a complex Hilbert space, bA W H ! H a linear closed
operator, ˙	 2 .bA/ and B the operator defined by (16). Suppose the vectors
G; S satisfy (31) and the components of the vector .S;G/ are linearly independent
elements. Let the operator

B	2x D .B � 	2I/x DbA2x � ShbAx;FtiHm � GhbA2x;FtiHm � 	2x D f ;

D.B	2 / D D.bA2/; (42)

where f 2 H. Then:

(i) 	2 2 .B/ if and only if

det L	 D detŒIm � hFt; bAR	.bA/GiHm� ¤ 0; (43)

det L�	 D detŒIm � hFt; bAR�	.bA/GiHm� ¤ 0: (44)

(ii) .B/ \ .bA2/ D f	2 2 .bA2/ W det L	 ¤ 0; det L�	 ¤ 0g.
(iii) If 	 ¤ 0, det L	 ¤ 0 and det L�	 ¤ 0 , then there exists the resolvent operator

R	2.B/ which is defined on the whole space H, is bounded and is given by

R	2.B/f D 1

2	

h
R	.bA/f � R�	.bA/f C R	.bA/GL�1

	 hbAR	.bA/f ; FtiHm

� R�	.bA/GL�1�	hbAR�	.bA/f ; FtiHm

i
: (45)

Proof. Note that here, for brevity and for ease of presentation, we denote the inner
products without their index Hm , e.g. hFt;GiHm D hFt;Gi. Also, we use some others
shorthands which are explained as they appear.

(i) and (ii) Since bA is a closed, so is bA2 by Proposition 2. By hypothesis the
vectors S and G satisfy (31) and hence by [22, Theorem 4.6] the operator
B D B2, where B as in (5). Theorem 2 affirms that 	2 2 .B/ if and only if
det W	2 ¤ 0. By introducing the notations T1 DbAR	2.bA2/ and T2 DbA2R	2.bA2/
for convenience, the det W	2 in Eq. (18) is written as follows:

det W	2 D jW	2 j D
ˇ
ˇ̌
ˇ
Im � hFt; T1Si �hFt; T1Gi

�hFt; T2Si Im � hFt; T2Gi
ˇ
ˇ̌
ˇ : (46)

Substituting S DbAG � GhFt; bAGi and utilizing property (3), we have

jW	2 j D
ˇ
ˇ
ˇ
ˇ
ˇ̌
Im � hFt; T1

h
bAG � GhFt; bAGi

i
i �hFt; T1Gi

�hFt; T2
h
bAG � GhFt; bAGi

i
i Im � hFt; T2Gi

ˇ
ˇ
ˇ
ˇ
ˇ̌
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D
ˇ
ˇ̌
ˇ
Im � hFt; T1bAGi C hFt; T1GihFt; bAGi �hFt; T1Gi

�hFt; T2bAGi C hFt; T2GihFt; bAGi Im � hFt; T2Gi
ˇ
ˇ̌
ˇ : (47)

Multiplying from the right the elements of the second column by hFt; bAGi
and adding to the matching elements of the first column, and replacing T1 D
bAR	2.bA2/ and T2 DbA2R	2.bA2/, we obtain

jW	2 j D
ˇ̌
ˇ
ˇ

Im � hFt; bAR	2.bA2/bAGi �hFt; bAR	2.bA2/Gi
hFt; bAGi � hFt; bA2R	2.bA2/bAGi Im � hFt; bA2R	2.bA2/Gi

ˇ̌
ˇ
ˇ : (48)

Now, by using Proposition 1, Eqs. (33), (34) and the commuting property
R	.bA/bAG D bAR	.bA/G, and denoting R˙	 D R˙	.bA/ and P D R	R�	 for
ease of presentation, we get

jW	2 j D
ˇ
ˇ
ˇ
ˇ

Im � hFt; .I C 	2P/Gi �hFt; .R�	 C 	P/Gi
hFt; bAGi � hFt; bA.I C 	2P/Gi Im � hFt; .I C 	2P/Gi

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

Im � hFt;Gi � 	2hFt;PGi �hFt;R�	Gi � 	hFt;PGi
�	2hFt;R�	Gi � 	3hFt;PGi Im � hFt;Gi � 	2hFt;PGi

ˇ
ˇ
ˇ
ˇ
ˇ
: (49)

Multiplying the elements of the first row by �	 and adding to the correspond-
ing elements of the second row, we obtain

jW	2 j D
ˇ
ˇ̌
ˇ
ˇ

Im � hFt;Gi � 	2hFt;PGi �hFt;R�	Gi � 	hFt;PGi
�	I C 	hFt;Gi � 	2hFt;R�	Gi Im � hFt;Gi C 	hFt;R�	Gi

ˇ
ˇ̌
ˇ
ˇ
:

(50)

Furthermore, multiplying the elements of the second column by 	 and adding
to the matching elements of the first column, and replacing P D R	R�	, we
get

jW	2 j D
ˇ
ˇ
ˇ̌ Im � hFt; .I C 	R�	 C 2	2R	R�	/Gi �hFt; .I C 	R	/R�	Gi

0m Im � hFt; .I � 	R�	/Gi
ˇ
ˇ
ˇ̌ :

(51)

Using Proposition 1 and (32)–(34) we get I � 	R�	 DbAR�	 and

I C 	R�	 C 2	2R	R�	 D I C 	.bAR	R�	 � 	R	R�	/C 2	2R	R�	
D I C 	bAR	R�	 C 	2R	R�	
D I C 	.R	 � 	R�	R	/C 	2R	R�	
D I C 	R	 DbAR	: (52)
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Substituting these results in (51), we acquire

det W	2 D det
h
Im � hFt; bAR	Gi

i
� det

h
Im � hFt; bAR�	Gi

i
; (53)

Hence, 	2 2 .B/ \ .bA2/ if and only if det L˙	 ¤ 0.
(iii) It has been proven that bA2 is a closed operator and 	2 2 .B/ \ .bA2/. Then

˙	 2 .bA/ by Lemma 2 and also ˙	 2 .B/ by Theorem 1. From Lemma 2
for 	 ¤ 0 we find

R	2.B/ D 1

2	
ŒR	.B/� R�	.B/�; (54)

where the resolvent operator R	.B/ is set out in (8) and R�	.B/ is the same as
in (8) except that 	 is replaced by �	. Substituting these formulas into (54) we
obtain (45). The resolvent operators R˙	.B/ are bounded and are defined on
the whole H and so is R	2.B/ by (54). This completes the proof.

Applications

In this section we apply the theory presented in the previous sections to boundary
value problems involving integro-differential equations of the Fredholm type. In
particular, we find the resolvent sets and provide closed form representations for
the resolvent operators. Some auxiliary results needed are quoted in Appendix for
ease of reference. By H1.0; 1/ (resp. H2.0; 1// is denoted the Sobolev space of
all complex functions of L2.0; 1/ which have generalized derivatives up to the first
(resp. second) order that are Lebesgue integrable.

First Order Integro-differential Equation

Consider the following integro-differential boundary value problem

iu0.t/ � iei� t
Z 1

0

xu0.x/dx � 	u.t/ D f .t/;

u.0/C u.1/ D 0; u.t/ 2 H1.0; 1/: (55)

In Problem 1 in the Appendix it is quoted that the operator bA W L2.0; 1/ !
L2.0; 1/ defined by

bAu D iu0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/C u.1/ D 0g; (56)
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is a linear closed operator and that .bA/ D f	 2 C W 	 ¤ .2k C 1/�; k 2 Zg, while
for 	 2 .bA/ the resolvent operator R	.bA/ is defined on the whole space L2.0; 1/, is
bounded and is given explicitly by the formula (98). Let B W L2.0; 1/ ! L2.0; 1/ be
the operator

Bu.t/ D iu0.t/ � iei� t
Z 1

0

xu0.x/dx

D bAu.t/� GhbAu.t/;Fti; D.B/ D D.bA/; (57)

where G D ei� t and F D t. We express the boundary value problem (55) in the
operator form

B	u.t/ D .B � 	I/u.t/ D f .t/; D.B	/ D D.bA/: (58)

In applying Theorem 1 we have first to compute the determinant

det L	 D det
h
Im � hFt; bAR	.bA/GiHm

i
¤ 0: (59)

Acting R	.bA/ on G, operating bybA and taking the inner products, we find

R	.bA/G D ie�i	t


.ei	 C 1/�1

Z 1

0

ei�xei	xdx �
Z t

0

ei�xei	xdx

�
D � ei� t

� C 	
;

bAR	.bA/G D �

� C 	
ei� t;

hFt; bAR	.bA/GiHm D �

� C 	

Z 1

0

xe�i�xdx D � 2C i�

.� C 	/�
: (60)

Substituting Eq. (60) into (59) we have

det L	 D det


1C 2C i�

.� C 	/�

�
D �2 C 	� C i� C 2

.� C 	/�
¤ 0; (61)

which implies that det L	 ¤ 0 if and only if 	 ¤ �.�2 C 2/=� C i. Then from
Theorem 1 it follows that 	 2 .B/ if 	 ¤ .2k C 1/�; k 2 Z and 	 ¤ �.�2 C
2/=� C i. Moreover, the resolvent operator R	.B/ is bounded and defined in all
L2.0; 1/ and is given by

R	.B/f D R	.bA/f C R	.bA/GL�1
	 hbAR	.bA/f ; FtiHm : (62)
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ApplyingbA on Eq. (98) and then forming the inner products we get

bAR	.bA/f D e�i	ti	


.ei	 C 1/�1

Z 1

0

f .x/ei	xdx �
Z t

0

f .x/ei	xdx

�
C f .t/;

hbAR	.bA/f ;FtiHm D
Z 1

0



e�i	ti	


.ei	 C 1/�1

Z 1

0

f .x/ei	xdx

�
Z t

0

f .x/ei	xdx

�
C f .t/

�
tdt

D i	.ei	 C 1/�1
Z 1

0

e�i	ttdt
Z 1

0

f .x/ei	xdx

�i	
Z 1

0

e�i	t

Z t

0

f .x/ei	xdx

�
tdt C

Z 1

0

tf .t/dt: (63)

Exploiting the Fubini theorem we find

hbAR	.bA/f ;FtiHm D i	.ei	 C 1/�1
Z 1

0

f .x/ei	xdx
1

	2

�
e�i	.i	C 1/� 1

�

� i	
Z 1

0

f .x/ei	xdx
Z 1

x
e�i	ttdt C

Z 1

0

f .t/tdt

D i
�
e�i	.i	C 1/� 1�

	.ei	 C 1/

Z 1

0

f .x/ei	xdx

� i.1C i	/

	

Z 1

0

f .x/ei	.x�1/dx

C
Z 1

0

i.i	x C 1/

	
f .x/dx C

Z 1

0

f .x/xdx

D i
�
e�i	.i	C 1/� 1�

	.ei	 C 1/

Z 1

0

f .x/ei	xdx

� i.1C i	/

	

Z 1

0

f .x/ei	.x�1/dx C i

	

Z 1

0

f .x/dx

D i
�
e�i	.i	C 1/� 1�

	.ei	 C 1/

Z 1

0

ei	xf .x/dx

� i
Z 1

0

.1C i	/ei	.x�1/ � 1

	
f .x/dx: (64)

Finally, by substituting (98), (60), (64) and the inverse L�1
	 from (61) into (62), we

get

R	.B/f .t/ D R	.bA/f .t/

� i�ei� t

�2 C 	� � i� C 2



e�i	.i	C 1/� 1

	.ei	 C 1/

Z 1

0

f .x/ei	xdx
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�
Z 1

0

.1C i	/ei	.x�1/ � 1

	
f .x/dx

�

D R	.bA/f .t/

� i�ei� t.ei	 C 1/�1

�2 C .	 � i/� C 2

Z 1

0

ei	 C 1 � .2C i	/ei	x

	
f .x/dx : (65)

Second Order Integro-differential Equation

Consider the following boundary value problem involving a second order Fredholm
integro-differential equation

u00.t/ � t
Z 1

0

u0.x/ cos 2�xdx �
Z 1

0

u00.x/ cos 2�xdx � 	u.t/ D f .t/;

u.0/ D u.1/; u0.0/ D u0.1/; u.t/ 2 H2.0; 1/: (66)

We define the operatorsbA; bA2 W L2.0; 1/ ! L2.0; 1/ as follows:

bAu D u0.t/; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g; (67)

bA2u D u00.t/; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g:
(68)

In Problem 2 in the Appendix it is given that the operatorbA2 is closed and that the
resolvent set is .bA2/ D f	 2 C W 	 ¤ �4k2�2; k 2 Zg, whereas for 	 2 .bA2/ the
resolvent operator R	.bA2/ is defined on the whole space L2.0; 1/, is bounded and is
expressed analytically in (105). Additionally, we define the operator B W L2.0; 1/ !
L2.0; 1/ as

Bu.t/ D u00.t/ � t
Z 1

0

u0.x/ cos 2�xdx �
Z 1

0

u00.x/ cos 2�xdx

D bA2x � ShbAx;FtiHm � GhbA2x;FtiHm ; D.B/ D D.bA2/; (69)

where S D t, G D 1 and F D cos 2�t. We reformulate the integro-differential
equation (66) as

B	u.t/ D .B � 	I/u.t/ D f .t/; D.B	/ D D.bA2/: (70)

According to Theorem 2, any 	 from .bA2/ belongs to .B/ if and only if Eq.
(18) is satisfied, i.e. det W	 ¤ 0. By acting R	.bA2/ from Eq. (105) on S, applyingbA
andbA2 and taking the inner products, we have
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R	.bA2/S D 1

2	

"
et

p
	

e
p
	 � 1

C e.1�t/
p
	

1 � e
p
	

� 2t

#

; (71)

bAR	.bA2/S D 1

2
p
	

"
et

p
	

e
p
	 � 1

C e.1�t/
p
	

e
p
	 � 1

� 2p
	

#

; (72)

bA2R	.bA2/S D et
p
	

2.e
p
	 � 1/ C e.1�t/

p
	

2.1� e
p
	/
; (73)

hFt; bAR	.bA2/SiH D 1

2
p
	

Z 1

0

"
et

p
	

e
p
	 � 1

C e.1�t/
p
	

e
p
	 � 1

� 2
p
	

#

cos 2�tdt

D 1

	C 4�2
; (74)

hFt; bA2R	.bA2/SiH D 0: (75)

Imitating the same procedure for G, we get

R	.bA2/G D � 1
	
; (76)

bAR	.bA2/G DbA2R	.bA2/G D 0; (77)

hFt; bAR	.bA2/GiH D hFt; bA2R	.bA2/GiH D 0: (78)

Substituting Eqs. (74), (75) and (78) into (18), we obtain

det W	 D det

 
1 � 1

.	C4�2/ 0
0 1

!

D 	C 4�2 � 1

	C 4�2
¤ 0: (79)

Hence 	 2 .B/ if 	 ¤ �4k2�2; k 2 Z and 	 ¤ 1 � 4�2. Moreover, Theorem 2
provides the resolvent operator R	.B/ as in formula (19).

The inverse matrix W�1
	 is easily computed as

W�1
	 D

�
W�1
	11 W�1

	12

W�1
	21 W�1

	22

�
D
 N	C4�2

N	C4�2�1 0
0 1

!

: (80)

Using Eqs. (71), (76) and (80) as well as the fact that the operator R	.bA2/ is linear,
we find

R	.bA2/.SW�1
	11 C GW�1

	21/ D 	C 4�2

2	.	C 4�2 � 1/

"
et

p
	

e
p
	 � 1 C e.1�t/

p
	

1 � e
p
	

� 2t

#

;

(81)
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R	.bA2/.SW�1
	12 C GW�1

	22/ D � 1
	
: (82)

Acting bA on (105), taking the inner products and utilizing the Fubini theorem, we
obtain

bAR	.bA2/f .t/ D 1

2.1� e
p
	/

Z 1

0

h
e

p
	.t�xC1/ � e�p

	.t�x/
i

f .x/dx

C1

2

Z t

0

h
e

p
	.t�x/ C e�p

	.t�x/
i

f .x/dx;

hbAR	.bA2/f .t/;FtiH

D 1

2.1� e
p
	/

Z 1

0

cos 2�tdt
Z 1

0

h
e

p
	.t�xC1/ � e�p

	.t�x/
i

f .x/dx

C1

2

Z 1

0

cos 2�tdt
Z t

0

h
e

p
	.t�x/ C e�p

	.t�x/
i

f .x/dx

D 1

2.1� e
p
	/

Z 1

0

f .x/dx
Z 1

0

cos 2�t
h
e

p
	.t�xC1/ � e�p

	.t�x/
i

dt C

C1

2

Z 1

0

f .x/dx
Z 1

x
cos 2�t

h
e

p
	.t�x/ C e�p

	.t�x/
i

dt

D 1

2.1� e
p
	/

Z 1

0

p
	
�

e
p
	.x�1/ � e

p
	x C e

p
	.2�x/ � e

p
	.1�x/

�

	C 4�2
f .x/dx C

C1

2

Z 1

0

�p
	e

p
	.x�1/ C p

	e
p
	.1�x/ � 4� sin 2�x

	C 4�2
f .x/dx

D �2�
	C 4�2

Z 1

0

sin 2�xf .x/dx: (83)

Working in the same way withbA2, we get

bA2R	.bA
2/f .t/ D f .t/C 	R	.bA

2/f .t/;

hbA2R	.bA2/f .t/;FtiH D hf .t/C 	R	.bA2/f .t/;FtiH

D hf .t/;FtiH C 	hR	.bA2/f .t/;FtiH

D hf .t/;FtiH

C
p
	

2.1 � e
p
	/

Z 1

0
cos 2�tdt

Z 1

0

h
e

p
	.t�xC1/ C e

p
	.x�t/

i
f .x/dx
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C
p
	

2

Z 1

0
cos 2�tdt

Z t

0

h
e

p
	.t�x/ � e

p
	.x�t/

i
f .x/dx:

D hf .t/;FtiH

C
p
	

2.1 � e
p
	/

Z 1

0
f .x/dx

Z 1

0

h
e

p
	.t�xC1/ C e

p
	.x�t/

i
cos 2�tdt

C
p
	

2

Z 1

0

f .x/dx
Z 1

x

h
e

p
	.t�x/ � e

p
	.x�t/

i
cos 2�tdt

D hf .t/;FtiH

C 	

2.1 � e
p
	/.	C 4�2/

Z 1

0

h
e

p
	x � e

p
	.x�1/ C e

p
	.2�x/ � e

p
	.1�x/

i
f .x/dx

C 	

2.	C 4�2/

Z 1

0

h
e

p
	.x�1/ C e

p
	.1�x/ � 2 cos 2�x

i
f .x/dx

D
Z 1

0
cos 2�xf .x/dx � 	

	C 4�2

Z 1

0
cos 2�xf .x/dx

D 4�2

	C 4�2

Z 1

0
cos 2�xf .x/dx: (84)

Lastly, by substituting (105) and (81)–(84) into (19) we obtain the resolvent operator
R	.B/ in the following closed form

R	.B/f D R	.bA2/f .t/

� �.e
p
	t � e

p
	.1�t/ C 2t.1 � e

p
	/

	.	C 4�2 � 1/.e
p
	 � 1/

Z 1

0

sin 2�xf .x/dx

� 4�2

	.	C 4�2/

Z 1

0

cos 2�xf .x/dx: (85)

Integro-Differential Equation with a Quadratic Operator

Consider the following boundary value problem which can be expressed in terms of
a quadratic operator

u.t/ D u00.t/ � �.2 cos 2�t � sin 2�t/
Z 1

0

u0.x/ cos 2�xdx

� sin 2�t
Z 1

0

u00.x/ cos 2�xdx � 	2u.t/ D f .t/;

u.0/ D u.1/; u0.0/ D u0.1/; u.t/ 2 H2.0; 1/: (86)
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LetbA; bA2 W L2.0; 1/ ! L2.0; 1/ be the operators

bAu D u0.t/; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g; (87)

bA2u D u00.t/; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g: (88)

Note that, from Problem 2 in the Appendix, 	 2 .bA/ if and only if 	 ¤ 2k�i; k 2
Z. Then 	2 2 .bA2/ iff ˙	 2 .bA/ by Lemma 2. Consequently, 	2 2 .bA2/ if and
only if 	 ¤ ˙2k�i; k 2 Z. In addition, we define the operator B W L2.0; 1/ !
L2.0; 1/ as follows:

Bu.t/ D u00.t/ � �.2 cos 2�t � sin 2�t/
Z 1

0

u0.x/ cos 2�xdx

� sin 2�t
Z 1

0

u00.x/ cos 2�xdx

D bA2u.t/� ShbAu.t/;FtiHm � GhbA2u.t/;FtiHm ; D.B/ D D.bA2/; (89)

where S D �.2 cos 2�t � sin 2�t/, G D sin 2�t and F D cos 2�t. We observe that
the components of the vector (S, G) are linearly independent and most important
S and G satisfy (31). Therefore the operator B is quadratic and hence we apply
Theorem 3. Accordingly, we rewrite the integro-differential equation (86) in the
operator form

B	2u.t/ D .B � 	2I/u.t/ D f .t/; D.B	2 / D D.bA2/: (90)

Theorem 3 claims that the resolvent operator R	2.B/ exists if and only if Eqs.
(43) and (44) are satisfied, namely det L	 ¤ 0 and det L�	 ¤ 0. In computing these
determinants we need the resolvent operators R	.bA/ and R�	.bA/which are set out in
(103) and (104) in the Appendix. By applying R	.bA/ on G, employingbA and taking
the inner products, we obtain

R	.bA/G D 1

1 � e	

Z 1

0

e	.t�xC1/ sin 2�xdx C
Z t

0

e	.t�x/ sin 2�xdx

D �	 sin 2�t � 2� cos 2�t

	2 C 4�2
;

bAR	.bA/G D �2�	 cos 2�t C 4�2 sin 2�t

	2 C 4�2
;

hFt; bAR	.bA/Gi D ��	
	
2 C 4�2

;

L	 D
h
Im � hFt; bAR	.bA/Gi

i
D 	

2 C 4�2 C �	

	
2 C 4�2

: (91)
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Repeating the same sequence of operations for R�	.bA/, we have

R�	.bA/G D 1

1 � e�	

Z 1

0

e�	.t�xC1/ sin 2�xdx C
Z t

0

e�	.t�x/ sin 2�xdx;

bAR�	.bA/G D 2�	 cos 2�t C 4�2 sin 2�t

	2 C 4�2
;

hFt; bAR�	.bA/Gi D �	

	
2 C 4�2

;

L�	 D
h
Im � hFt; bAR�	.bA/Gi

i
D 	

2 C 4�2 � �	

	
2 C 4�2

: (92)

It is evident that det L	 ¤ 0 if and only if 	 ¤ �.�1˙ i
p
15/=2 and det L�	 ¤ 0 if

and only if 	 ¤ �.1˙ i
p
15/=2. From Theorem 3, 	2 2 .B/ if 	 ¤ ˙2k�i; k 2 Z

and 	 ¤ �.˙1 ˙ i
p
15/=2g and the resolvent operator R	2.B/ exists and has the

representation as in (45).
By acting bA on Eq. (103), making use of Proposition 1 and applying the Fubini

theorem, we get

hbAR	.bA/f .t/;Fti D hf C 	R	.bA/f .t/;Fti

D
Z 1

0

cos 2�xf .x/dx

C
Z 1

0

cos 2�t


	

1 � e	

Z 1

0

e	.t�xC1/f .x/dx C 	

Z t

0

e	.t�x/f .x/dx

�
dt

D
Z 1

0

cos 2�xf .x/dx C 	

1 � e	

Z 1

0

cos 2�te	tdt
Z 1

0

e	.�xC1/f .x/dx

C	
Z 1

0

e�	xf .x/dx
Z 1

x
e	t cos 2�tdt

D
Z 1

0

cos 2�xf .x/dx � 	2

	2 C 4�2

Z 1

0

e	.1�x/f .x/dx

C 	

	2 C 4�2

Z 1

0

Œ	e	.1�x/ � .	 cos 2�x C 2� sin 2�x/�f .x/dx

D � 2�	

	2 C 4�2

Z 1

0

sin 2�xf .x/dx C 4�2

	2 C 4�2

Z 1

0

cos 2�xf .x/dx

D 2�

	2 C 4�2

Z 1

0

.2� cos 2�x � 	 sin 2�x/f .x/dx: (93)

By operating alike on (104), we acquire



556 I.N. Parasidis and E. Providas

hbAR�	.bA/f .t/;Fti D 2�

	2 C 4�2

Z 1

0

.2� cos 2�x C 	 sin 2�x/f .x/dx: (94)

Substituting (103), (104), L�1˙	 from (91) and (92), (93) and (94) into (45), we get

R	2.B/f D 1

2	



1

1� e	

Z 1

0

�
e	.t�xC1/ C e�	.t�x/

�
f .x/dx

C
Z t

0

�
e	.t�x/ � e�	.t�x/

�
f .x/dx

� 2�.	 sin 2�t C 2� cos 2�t/

.	2 C 4�2/.	2 C 4�2 C �	/

Z 1

0

.2� cos 2�x � 	 sin 2�x/f .x/dx

� 2�.	 sin 2�t � 2� cos 2�t/

.	2 C 4�2/.	2 C 4�2 � �	/

Z 1

0

.2� cos 2�x C 	 sin 2�x/f .x/dx

�
: (95)

The resolvent operator R	2.B/ for every 	2 2 .B/ is defined on the whole space
L2.0; 1/ and is bounded.

Appendix

Problem 1. Let the operatorbA W L2.0; 1/ ! L2.0; 1/ be defined by

bAu D iu0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/C u.1/ D 0g (96)

Then OA is closed and:

(i) 	 2 .bA/ if and only if 	 ¤ .2k C 1/�; k 2 Z, i.e.

.bA/ D f	 2 C W 	 ¤ .2k C 1/�; k 2 Zg: (97)

(ii) For 	 2 .bA/ the resolvent operator R	.bA/ is bounded and defined on the
whole space L2.0; 1/ by the formula

R	.bA/f .t/ D i
Z 1

0

ei	.x�t/
�
.ei	 C 1/�1 � �.t � x/

�
f .x/dx; (98)

where

�.t � x/ D
8
<

:

1; x � t
is the Heaviside’s function:

0; x > t
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Problem 2. Let the operatorbA W L2.0; 1/ ! L2.0; 1/ be defined by

bAu D u0 D f ; D.bA/ D fu.t/ 2 H1.0; 1/ W u.0/ D u.1/g: (99)

Then the quadratic operatorbA2 W L2.0; 1/ ! L2.0; 1/ is closed and defined by

bA2u D u00 D f ; D.bA2/ D fu.t/ 2 H2.0; 1/ W u.0/ D u.1/; u0.0/ D u0.1/g;
(100)

the resolvent sets ofbA andbA2 are

.bA/ D f	 2 C W 	 ¤ 2k�i; k 2 Zg; (101)

.bA2/ D f	 2 C W 	 ¤ �4k2�2; k 2 Zg (102)

and the resolvent operators R˙	.bA/; R	.bA2/ are bounded and defined on the whole
space L2.0; 1/ by

R	.bA/ f .t/ D 1

1 � e	

Z 1

0

e	.t�xC1/f .x/dx C
Z t

0

e	.t�x/f .x/dx (103)

R�	.bA/f .t/ D 1

1 � e�	

Z 1

0

e�	.t�xC1/f .x/dx C
Z t

0

e�	.t�x/f .x/dx (104)

R	.bA2/f .t/ D 1

2
p
	.1 � e

p
	/

Z 1

0

h
e

p
	.t�xC1/ C e�p

	.t�x/
i

f .x/dx

C 1

2
p
	

Z t

0

h
e

p
	.t�x/ � e�p

	.t�x/
i

f .x/dx: (105)
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Component Matrices of a Square Matrix
and Their Properties

Dorothea Petraki and Nikolaos Samaras

Abstract The definition of the component matrices of a square matrix A is
well-known [Lancaster]. This paper is concerned with all the basic properties of
component matrices of a square matrix A, where A ε M���.K/;K D R, or K D C.
This is very useful for the studies of the spectral resolution of a matrix function f .A/,
the convergence of sequences and series of matrices and also the convergence of
matrix functions. It is also useful to solve differential equations and control system
problems.

Keywords Component matrices • Jordan canonical form • Projection matrices •
Resolvent of a matrix • Hermite interpolation

AMS Classification: 11Cxx, 15Axx, 65H04

Introduction

A brief history of matrix functions, as referred by Nicholas J. Higham, follows.
The British mathematician Arthur Cayley (1821–1895) is the first who began the

study of functions of matrices. The French mathematician Edmond Laguerre (1834–
1886) defined the exponential of a matrix A via its power series. The interpolating
polynomial definition of a matrix function f .A/ was stated by the British mathemati-
cian James Joseph Sylvester (1814–1897) for matrices with distinct eigenvalues.
In 1884 Artur Buchheim gave a derivation of Sylvester polynomial interpolation
formulae for matrix function f .A/ and then generalized it to multiple eigenvalues
using Hermite interpolation. The Austrian mathematician Emil Weyr (1848–1894)
defined f .A/ using a power series of function f and studied the convergence of
the defined series. The French mathematician Augustin-Louis Cauchy (1789–1857)
defined f .A/ as the sum of the residues of .	I � A/�1f .	/ at the eigenvalues of
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A. It is well known that a large number of famous mathematicians such as A.
Poincare, Giorgi, Cipolla, etc. also worked in the area of matrix functions. Another
definition of f .A/ is given by the formulae f .A/ D Ps

iD1
Pdi�1

jD0 f .j/.	i/Zij, where
	1; 	2; � � � ; 	s are the different eigenvalues and Zij are the component matrices of
the matrix A.

Robert F. Rinehart in his 1955 paper “The Equivalence of Definitions of a Matrix
Function” proved that all the above definitions are equivalents.

In this paper we present the definition of component matrices of a matrix A. Then
we give a large number of their properties [4, 6, 8, 11].

Component Matrices

Let A ε C
nxn and 	1; 	2; � � � ; 	s be are different by two eigenvalues of matrix A.

Let ˛1; ˛2; � � � ; ˛s and �1; �2; � � � ; �s be, respectively, the algebraic and geometric
multiplicities of the above eigenvalues. Then the minimal polynomial of the matrix
A is q.x/ D .x�	1/d1 .x�	2/d2 � � � .x�	s/

ds , where di D ˛i ��i C1, i D 1; 2; � � � ; s
are the indices of the eigenvalues 	1; 	2; � � � ; 	s [9, 10, 12, 13].

Definition of the Component Matrices

Case 1.
The matrix A ε Cnxn is simple. Then ˛i D �i, so di D 1, for i D 1; 2; � � � ; s. The

Jordan Form of the matrix A is JA D diagŒ	1I˛1 ; � � � ; 	i�1I˛i�1	i; I˛i ; 	iC1I˛iC1
; � � � ;

	sI˛s �. Let 'i0, i D 1; 2; � � � ; s, be the interpolation polynomials with 'i0.	k/ D ıik,
for i; k D 1; 2; � � � ; s and ıik is the Kronecker Delta. Then it is

A D P � JA � P�1 ) (P ε Cnxn is the transition matrix of A)

i0.A/ D P � 
i0.JA/: P�1 )

i0.A/ D P � diagŒ
i0.	1I˛1/; � � � ; 
i0.	i�1I˛i�1 /; 
i0.	iI˛i/; 
i0.	iC1I˛iC1

/; � � � ;

i0.	sI˛s/�P

�1 )

i0.A/ D P � diagŒO˛1 ; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s/�P
�1, i D 1; 2; :::; s .

Let Zi0 D 'i0.A/, then
Zi0 D P � diagŒO˛1; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s�1 ;O˛s/�P
�1, i D 1; 2; � � � ; s.

Case 2.
The matrix A ε Cnxn is derogatory. Then there exists di > 1, i D 1; 2; � � � ; s.
The Jordan Form of matrix A is not diagonal and has the form

JA D diagŒJ1; � � � ; Ji�1; Ji; JiC1; � � � ; Js�, where Ji D diagŒMdi ; 	iI�i�1�



Component Matrices of a Square Matrix and Their Properties 561

with Mdi D

2

6
6
6
6
6
4

	i 1 0 � � � 0 0

0 	i 1 � � � 0 0

� � � � � � � � � � � � � � �
0 0 0 � � � 	i 1
0 0 0 � � � 0 	i

3

7
7
7
7
7
5

, matrix di 
 di,

for i; k D 1; 2; � � � ; di � 1 [1–3, 5, 7–9].
Let 'ij, i D 1; 2; � � � ; s, and j D 0; 1; � � � ; di � 1 be the interpolation polynomials

with '.r/ij .	k/ D ıikıjr, for i; k D 1; 2; � � � ; s and j; r D 0; 1; 2; � � � ; di � 1.
For i D 1; 2; � � � ; s it is 'i0.Ji/ D I˛i and 'i0.Jk/ D O˛k for i ¤ k.
Applying the polynomial function 'i0 on to the matrix A, we have

A D P � JA � P�1 ) (P ε Cnxn is the transition matrix of A)

i0.A/ D P � 
i0 � .JA/P�1 )

i0.A/ D P � diagŒ
i0.J1/; � � � ; 
i0.Ji�1/; 
i0.Ji/; 
i0.JiC1/; � � � ; 
i0.Js/� � P�1 )

i0.A/ D P � diagŒO˛1 ; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s/� � P�1, i D 1; 2; � � � ; s.
Let Zi0 D 'i0.A/, then
Zi0� D P � diagŒO˛1; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s�1 ;O˛s/�P
�1, i D 1; 2; � � � ; s.

For i D 1; 2; � � � ; s, and j D 1; � � � ; di � 1 it is
'ij.	iI�i�1/ D diagŒ'ij.	i/; 'ij.	i/; � � � ; 'ij.	i/� )
'ij.	iI�i�1/ D diagŒıj0; ıj0; � � � ; ıj0� )
'ij.	iI�i�1/ D diagŒ0; 0; � � � ; 0� D O�i�1.

Also it is

'ij.Mdi / D

2

6
6
6
66
6
6
6
4

'ij.	i/
'
.1/
ij .	i/

1Š

'
.2/
ij .	i/

2Š
� � � '

.di�2/
ij .	i/

.di�2/Š
'
.di�1/
ij .	i/

.di�1/Š
0 'ij.	i/

'
.1/
ij .	i/

1Š
� � � '

.di�3/
ij .	i/

.di�3/Š
'
.di�2/
ij .	i/

.di�2/Š
� � � � � � � � � � � � � � � � � �
0 0 0 � � � 'ij.	i/

'
.1/
ij .	i/

1Š

0 0 0 � � � 0 'ij.	i/

3

7
7
7
77
7
7
7
5

)

'ij.Mdi/ D

2

6
6
6
6
66
4

ıj0
ıj1

1Š

ıj2

2Š
� � � ıj;di�2

.di�2/Š
ıj;di�1

.di�1/Š
0 ıj0

ıj1

1Š
� � � ıj;di�3

.di�3/Š
ıj;di�2

.di�2/Š
� � � � � � � � � � � � � � � � � �
0 0 0 � � � ıj0

ıj1

1Š

0 0 0 � � � 0 ıj0

3

7
7
7
7
77
5

)
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'ij.Mdi/ D

2

66
6
6
6
66
6
6
6
4

0 0 � � � 1
jŠ 0 � � � 0 0

0 0 � � � 0 1
jŠ � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � 0 0 � � � 1

jŠ 0

0 0 � � � 0 0 � � � 0 1
jŠ

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � 0 0 � � � 0 0

3

77
7
7
7
77
7
7
7
5

D Œbmr�;

With bm;jCm D 1
jŠ , for m D 1; 2; � � � ; di � j and bmr D 0 for the other cases.

Let Ndi be the di 
 di matrix with

Ndi D

2

6
6
6
6
6
4

0 1 0 � � � 0

0 0 1 0 � � � 0
� � � � � � � � � � � � � � �
0 0 0 � � � 1

0 0 0 � � � 0

3

7
7
7
7
7
5
; i D 1; 2; � � � ; s;

then 'ij.Mdi/ D 1
jŠN

j
di

and finally 'ij.Ji/ D diagŒ 1jŠN
j
di
;O�i�1� D 1

jŠdiagŒNj
di
;O�i�1�.

It is obvious that 'ij.Jk/ D O˛k , for i ¤ k.
Applying the polynomial function 'ij on the matrix A, we have

A D P � JA � P�1 )

ij.A/ D P � 
ij.JA/ � P�1 )

ij.A/ D P � diagŒ
ij.J1/; � � � ; 
ij.Ji�1/; 
ij.Ji/; 
ij.JiC1/; � � � ; 
ij.Js/� � P�1 )


ij.A/ D P � diagŒO˛1 ; � � � ;O˛i�1 ;
1

jŠ
Nj

di
;O�i�1;O˛iC1

; � � � ;O˛s � � P�1 )


ij.A/ D 1

jŠ
P � diagŒO˛1 ; � � � ;O˛i�1 ;N

j
di
;O�i�1;O˛iC1

; � � � ;O˛s � � P�1:

Let Zij D 'ij.A/, for i D 1; 2; � � � ; s, j D 1; 2; � � � ; di � 1, then


ij.A/ D 1

jŠ
P � diagŒO˛1 ; � � � ;O˛i�1 ;N

j
di
;O�i�1;O˛iC1

; � � � ;O˛s � � P�1:
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Illustrative Examples

Example

We will calculate the component matrices of the square matrix A D

2

6
6
4

1 0 0 1

0 �1 0 0
3 0 2 0

0 �1 0 5

3

7
7
5 :

The characteristic polynomial of matrix A is
p.x/ D .x C 1/.x � 1/.x � 2/.x � 5/:

The eigenvalues of the matrix A are 	1 D 5; 	2 D 2; 	3 D �1; 	4 D 1 with
algebraic multiplicities ˛1 D ˛2 D ˛3 D ˛4 D 1, and indices

d1 D d2 D d3 D d4 D 1, respectively.
So the minimal polynomial of the matrix A is
q.x/ D .x C 1/.x � 1/.x � 2/.x � 5/.

.i/ The interpolating polynomial '10.x/ with '10.	1/ D 1; '10.	i/ D 0, for
i D 2; 3; 4 is '10.x/ D x3

72
� x2

36
� x

72
C 1

36
.

So the corresponding component matrix is

Z10 D '10.A/ D

2

6
6
4

0 � 1
24
0 1
4

0 0 0 0

0 � 1
24
0 1
4

0 � 1
6
0 1

3

7
7
5 :

.ii/ The interpolating polynomial '20.x/ with '20.	2/ D 1; '20.	i/ D 0, for
i D 1; 3; 4 is '20.x/ D � x3

9
C 5x2

9
C x

9
� 5

9
.

So the corresponding component matrix is

Z20 D '20.A/ D

2

6
6
4

0 0 0 0

0 0 0 0

3 1
3
1 �1

0 0 0 0

3

7
7
5 :

.iii/ The interpolating polynomial '30.x/ with '30.	3/ D 1; '30.	i/ D 0, for
i D 1; 2; 4 is '30.x/ D � x3

36
C 2x2

9
� 17x

36
C 5

18
.

So the corresponding component matrix is

Z30 D '30.A/ D

2

6
6
4

0 � 1
12
0 0

0 1 0 0

1 1
12

0 0

0 1
6
0 0

3

7
7
5 :

.iv/ The interpolating polynomial '40.x/ with '40.	4/ D 1; '40.	i/ D 0, for
i D 1; 2; 3 is '40.x/ D � x3

8
� 3x2

4
C 3x

8
C 5

4
.
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So the corresponding component matrix is

Z40 D '40.A/ D

2

6
6
4

1 1
8
0 � 1

4

0 0 0 0

�3 � 3
8
0 3

4

0 0 0 0

3

7
7
5 :

Example

We will calculate the component matrices of the square matrix

A D

2

6
6
4

1 1 1 1

1 { �1 �{
1 �1 1 �1
1 �{ �1 {

3

7
7
5 :

The characteristic polynomial of matrix A is

p.x/ D .x � 2/2.x � 2{/.x C 2/:

The eigenvalues of the matrix A are 	1 D �2; 	2 D 2{; 	3 D 2, with algebraic
multiplicities ˛1 D ˛2 D 1; ˛3 D 2, and indices d1 D d2 D d3 D 1, respectively.

So the minimal polynomial of the matrix A is q.x/ D .x � 2/.x � 2{/.x C 2/.

.i/ The interpolating polynomial '10.x/ with '10.	1/ D 1; '10.	i/ D 0, for
i D 2; 3 is

'10.x/ D .
1

16
� {

16
/x2 � x

4
C .

1

4
C {

4
/:

So the corresponding component matrix is

Z10 D '10.A/ D

2

66
4

1
4

� 1
4

� 1
4

� 1
4

� 1
4

1
4

1
4

1
4

� 1
4

1
4

1
4

1
4

� 1
4

1
4

1
4

1
4

3

77
5 :

.ii/ The interpolating polynomial '20.x/ with '20.	2/ D 1; '20.	i/ D 0, for
i D 1; 3 is '20.x/ D � x2

8
C 1

2
.

So the corresponding component matrix is

Z20 D '20.A/ D

2

6
6
4

0 0 0 0

0 1
2
0 � 1

2

0 0 0 0

0 � 1
2
0 1

2

3

7
7
5 :
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.iii/ The interpolating polynomial '30.x/ with '30.	3/ D 1; '30.	i/ D 0, for i D
1; 2 is '30.x/ D . 1

16
C {

16
/x2 C x

4
C . 1

4
� {

4
/.

So the corresponding component matrix is

Z30 D '30.A/ D

2

6
6
4

3
4

1
4

1
4

1
4

1
4

1
4

� 1
4

1
4

1
4

� 1
4

3
4

� 1
4

1
4

1
4

� 1
4

1
4

3

7
7
5 :

Example

We will calculate the component matrices of the square matrix

A D

2

6
6
4

0 4 1 �2
�1 4 0 �1
0 0 1 0

�1 3 0 0

3

7
7
5 :

The characteristic polynomial of matrix A is p.x/ D .x � 2/.x � 1/3.
The eigenvalues of the matrix A are 	1 D 2; 	2 D 1 with algebraic multiplicities

˛1 D 1; ˛2 D 3, and indices d1 D 1; d2 D 2 respectively.
So the minimal polynomial of the matrix A is q.x/ D .x � 2/.x � 1/2.

.i/ The interpolating polynomial '10.x/ with '10.	1/ D 1; '10.	2/ D 0 and
'
.1/
10 .	2/ D 0 is '10.x/ D x2 � 2x C 1.

So the corresponding component matrix is

Z10 D '10.A/ D

2

6
6
4

�1 2 �1 0
�1 2 �1 0
0 0 0 0

�1 2 �1 0

3

7
7
5 :

.ii/ The interpolating polynomial '20.x/ with '20.	2/ D 1; '
.1/
20 .	2/ D 0 is

'20.x/ D �x2 C 2x.
So the first corresponding component matrix is the matrix:

Z20 D '20.A/ D

2

6
6
4

2 �2 1 0
1 �1 1 0
0 0 1 0

1 �2 1 1

3

7
7
5 :

The interpolating polynomial '21.x/ with '21.	1/ D 0; '21.	2/ D 0 and
'
.1/
21 .	2/ D 1 is '21.x/ D �x2 C 3x � 2.
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So the second corresponding component is the matrix:

Z21 D '21.A/ D

2

6
6
4

0 2 2 �2
0 1 1 �1
0 0 0 0

0 1 1 �1

3

7
7
5 :

Basic Properties

In this section we describe the basic properties related to the component Zij,
i D 1; 2; � � � ; s, j D 0; 1; 2; � � � ; di � 1 of a square matrix A [8].

Property 1. Zi0Zij D Zij, for i D 1; 2; � � � ; s; j D 1; 2; � � � ; di � 1.

Proof. The proof is obvious from the definition of the matrices Zi0;Zij.

Property 2. Zi0Zjk D On, for every i ¤ j.

Proof. The proof is obvious from the definition of the matrices Zi0;Zjk.

Property 3. It is
Ps

iD1 Zi0 D In.

Proof. It is Zi0DP � diagŒO˛1; � � � ; I˛i ; � � � ;O˛s � � P�1, iD1; 2; � � � ; s so
Ps

iD1 Zi0DP �Ps
iD1 diagŒO˛1; � � � ; I˛i ; � � � ;O˛s � � P�1 D P � In � P�1 D In.

Property 4. It is Zi0Zj0 D ıijZi0, for every i; j D 1; 2; � � � ; s.

Proof. It is Zi0 D P � diagŒO˛1 ; � � � ;O˛i�1 ; I˛i ;O˛iC1
; � � � ;O˛s � � P�1 and

Zj0 D P � diagŒO˛1; � � � ;O˛j�1 ; I˛j ;O˛jC1
; � � � ;O˛s � � P�1:

So, if i ¤ j, then
Zi0Zj0 D P � diagŒO˛1 ;O˛2 ; � � � ;O˛i ; � � � ;O˛j ; � � � ;O˛s � � P�1 D On.
If i D j, then
Zi0Zi0 D P � diagŒO˛1 ; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1 D Zi0:

Property 5. .i/ It is Zr
i0 D Zi0, for r D 1; 2; 3; � � � .

.ii/ The matrix Zi0 is a projection matrix.
.iii/ Range.Zi0/ D Kernel.In � Zi0/ and Kernel.Zi0/ D Range.In � Zi0/.
.iv/ Range.Zi0/ D Im.Zi0/ and Range.In � Zi0/ D Im.In � Zi0/.
.v/ Kn D Range.Zi0/˚ Kernel.Zi0/, for i D 1; 2; � � � ; s.

Proof. .i/ It is

Zi0 D P � diagŒO˛1;O˛2 ; � � � ; I˛i ;O˛iC1
; � � � ;O˛j ; � � � ;O˛s � � P�1 )

Zr
i0 D P � diagŒO˛1;O˛2 ; � � � ; Ir

˛i
;O˛iC1

; � � � ;O˛j ; � � � ;O˛s � � P�1 )
Zr

i0 D P � diagŒO˛1 ;O˛2 ; � � � ; I˛i ;O˛iC1
; � � � ;O˛j ; � � � ;O˛s � � P�1Zi0:

.ii/ From the relation Z2i0 D Zi0, we conclude that the matrix Zi0 is a projection
matrix.
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.iii/ It is Range.Zi0/ D fx ε Kn W Zi0x D xg, and
Kernel.In � Zi0/ D x ε Kn W .In � Zi0/x D O so,
Range.Zi0/ D Kernel.In � Zi0/.
It is also Kernel.Zi0/ D fx ε Kn W Zi0x D Og and Range.In � Zi0/ D fx ε Kn W
.In � Zi0/x D xg so Kernel.Zi0/ D Range.In � Zi0/.

.iv/ It is obvious that Range.Zi0/ � Im.Zi0/. Let y ε Im.Zi0/, then there exist x ε Kn:
y D Zi0x ) Zi0y D Z2i0x D Zi0x D y ) Zi0y D y ) y ε Range.Zi0/ )
Im.Zi0/ � Range.Zi0/, so finally Range.Zi0/ D Im.Zi0/. The matrix In � Zi0 is
also a projection matrix so Range.In � Zi0/ D Im.In � Zi0/.

.v/ It is obvious that Range.Zi0/ \ KernelZi0/ D fOg.
Let x ε Kn, then x D .In � Zi0/x C Zi0x, with
Zi0x ε Range.Zi0/ and .In � Zi0/x ε Kernel.Zi0/, so
Kn D Range.Zi0/˚ Kernel.Zi0/.

Property 6. Zi;jC1 D 1
jC1 .A � 	iIn/Zij, i D 1; 2; � � � ; s; j D 1; 2; � � � ; di � 1.

Proof. It is JA � 	iIn D P�1.A � 	iIn/P ) JA � 	iIn D diagŒJd1 � 	iId1 ;

� � � ;Ndi ;O�i�1; � � � ; Jds � 	iIs� ) P�1.A � 	iIn/P D diagŒJd1 � 	iId1 ;

� � � ;Ndi ;O�i�1; � � � ; Jds � 	iIs� ) P�1.A � 	iIn/ZijP D diagŒJd1 � 	iId1 ; � � � ;
Ndi ;O�i�1; � � � ; Jds � 	iIs�P�1ZijP ) P�1.A � 	iIn/ZijP D 1

jŠdiagŒOa1 ; � � � ;NjC1
di
;

O�i�1; � � � ;Oas � ) (because P�1ZijP D 1
jŠdiagŒOa1 ; � � � ;Oas�1;N

j
di
;O�i�1;OaiC1

� � � ;
Oas �) .A � 	iIn/Zij D 1

jŠP � diagŒOa1 ; � � � ;NjC1
di
;O�i�1; � � � ;Oas � � P�1 )

.A � 	iIn/Zij D .j C 1/Zi;jC1 ) Zi;jC1 D 1
jC1.A � 	iIn/Zij.

Property 7. Zij D 1
jŠ .A � 	iIn/

jZi0, i D 1; 2; � � � ; s; j D 1; 2; � � � ; di � 1.

Proof. It is obvious conclusion from Property 6.

Property 8. ZijZik D �jCk
j

�
Zi;jCk.

Proof. It is ZijZik D 1
jŠ .A � 	iIn/

jZi0
1
kŠ .A � 	iIn/

kZi0 )
ZijZik D .jCk/Š

jŠkŠ
1

.jCk/Š .A � 	iIn/
jCkZi0 )

ZijZik D �jCk
j

�
Zi;jCk:

Corollary

Zij1Zij2 � � � Zijk D
 

j1 C j2 C � � � C jk
j1; j2; � � � ; jk

!

Zi;j1Cj2C���Cjk :

Property 9. Zr
ij D .j�r/Š

.jŠ/r Zi;j�r , for j; r D 1; 2; 3; � � � ; di � 1 and Zr
ij D On for j � r D

di; di C 1; � � � .

Proof. For j; r D 1; 2; 3; � � � ; di � 1, it is Zij D 1
jŠ .A � 	iIn/

jZi0 so

Zr
ij D 1

.jŠ/r .A � 	iIn/
j�rZi0 ) Zr

ij D .j�r/Š
.j/Š � 1

.j�r/Š .A � 	iIn/
j�rZi0 )

Zr
ij D .j�r/Š

.jŠ/r Zi;j�r .
For j � r D di; di C 1; � � � it is Zi;j�r D On so and Zr

ij D On.
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Property 10. Zr
ij ¤ Zij, for r D 2; 3; � � � ; di � 1.

Proof. It is Zij D 1
jŠPdiagŒO˛1;O˛2 ; � � � ;O˛i�1 ;N

j
di
;O�i�1;O˛iC1

; � � � ,

O˛s�1 ;O˛s � � P�1 )
Zr

ij D . 1jŠ /
rPdiagŒO˛1 ;O˛2 ; � � � ;O˛i�1 ; .N

j
di
/r;O�i�1;O˛iC1

; � � � ,

O˛s�1 ;O˛s � � P�1 ¤ Zij.

Property 11. The m component matrices Zij are linear independent.

Proof.
Case 1. The matrix A is simple.
In this case the components of the matrix A are defined by
Zi0 D P � diagŒO˛1;O˛2 ; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s�1 ;O˛s � � P�1,
i D 1; 2; � � � ; s.
So,

Ps
iD1 	iZi0 D On , diagŒ	1Ia1 ; � � � ; 	iIai ; � � � ; 	sIas � D On ,

	i D 0, for every i D 1; 2; � � � ; s.

Proof. Case 2. The matrix A is derogatory.
It is,

Ps
iD1

Pdi�1
jD0 	ijZij D On ,Ps

iD1.	i0Zi0 C 	i1Zi1 C � � � C 	idi�1Zidi�1/ D On ,
Ps

iD1 diagŒO˛1 ; � � � ; 	i0I˛i C 	i1
1Š

N1
di

C � � � C 	i;di�1

.di�1/ŠN
di�1
di

; � � � ;O˛s � D On ,
	i0I˛i C 	i1

1Š
N1

di
C � � � C 	i;di�1

.di�1/ŠN
di�1
di

D On, for every i D 1; 2; � � � ; s ,
	ij D 0, for every i D 1; 2; � � � ; s and j D 0; 1; 2; � � � ; di � 1.

Property 12. If the matrix A is simple, then

.i/ A D Ps
iD1 	iZi0.

.ii/ 	In � A D Ps
iD1.	 � 	i/Zi0.

.iii/ If 	 ε C � �.A/, then the matrix 	In � A is invertible with .	In � A/�1 DPs
iD1 1

.	�	i/
Zi0 where �.A/ D f	1; 	2; � � � ; 	sg is the spectrum of matrix A.

Proof. .i/ It is
Ps

iD1 	iZi0 D P � diagŒ	1I˛1 ; 	2I˛2 ; � � � ; 	iI˛i ; � � � ; 	sI˛s � � P�1 D
P � JA � P�1 D A.

.ii/ Also it is 	In � A D 	
Ps

iD1 Zi0 �Ps
iD1 	iZi0 D Ps

iD1.	 � 	i/Zi0.
.iii/ Finally .	In � A/.

Ps
iD1 1

	�	i
Zi0/ D .

Ps
jD1.	 � 	j/Zj0/.

Ps
iD1 1

	�	i
Zj0/ )

.	In � A/.
Ps

iD1 1
	�	i

Zi0/ D .
Ps

i;jD1.	 � 	j/
1

	�	i
Zj0Zi0 )

.	In � A/.
Ps

iD1 1
	�	i

Zi0/ D .
Ps

i;jD1.	 � 	j/
1

	�	i
ıijZi0 )

.	In � A/.
Ps

iD1 1
	�	i

Zi0/ D .
Ps

iD1.	 � 	i/
1

	�	i
Zi0 )

.	In � A/.
Ps

iD1 1
	�	i

Zi0/ D Ps
iD1 Zi0 D In, so

.	In � A/�1 D Ps
iD1 1

	�	i
Zi0.

Property 13. If the matrix A is derogatory, then

.i/ A D Ps
iD1 	iZi0 CPs

iD1 Zi1.
.ii/ 	In � A D Ps

iD1.	 � 	i/Zi0 �Ps
iD1 Zi1.

.iii/ If 	 ε C � �.A/ then the matrix 	In � A is invertible with .	In � A/�1 DPs
iD1.

Pdi�1
jD0

jŠ
.	�	i/jC1 Zij/.
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Proof. .i/ It is
Ps

iD1 	iZi0 C Ps
iD1 D P � diagŒ	1Id1 C Ndi ; 	1I�1�1; � � � ; 	iIdi C

Ndi ; 	iI�i�1; � � � ; 	sIds C Nds ; 	sI�s�1� � P�1 D P � JA � P�1 D A.
.ii/ Also it is 	In �A D 	

Ps
iD1 Zi0�Ps

iD1 	iZi0�Ps
iD1 Zi1 D Ps

iD1.	�	i/Zi0�Ps
iD1 Zi1.

.iii/ Finally if B D .	In � A/
Ps

jD1.
Pdj�1

kD0 kŠ
.	�	j/kC1 Zjk/, then it is B D .

Ps
iD1.	 �

	i/Zi0 �Ps
iD1 Zi1/.

Ps
jD1.

Pdj�1
kD0

kŠ
.	�	j/kC1Zjk// )

B D .
Ps

iD1.	�	i/Zi0/.
Ps

jD1.
Pdj�1

kD0
kŠ

.	�	j/kC1 Zjk//�.Ps
iD1 Zi1/.

Ps
jD1.

Pdj�1
kD0

kŠ
.	�	j/kC1 Zjk// )
B D Ps

iD1.
Pdi�1

jD0
jŠ

.	�	i/j
Zij/�Ps

iD1.
Pdi�1

jD0
jŠ

.	�	j/jC1Zi1Zij/ )
B D Ps

iD1.
Pdi�1

jD0
jŠ

.	�	i/j
Zij/�Ps

iD1.
Pdi�1

jD0
.jC1/Š

.	�	j/jC1Zi;jC1/ )
B D Ps

iD1 Zi0 CPs
iD1.

Pdi�1
jD1

jŠ
.	�	i/j

Zij/�Ps
iD1.

Pdi
jD1

jŠ
.	�	j/j

Zij/ )
B D Ps

iD1 Zi0CPs
iD1.

Pdi�1
jD1

jŠ
.	�	i/j

Zij/�Ps
iD1.

Pdi�1
jD1

jŠ
.	�	j/j

Zij/ ) (because
Zi;di D On)
B D Ps

iD1 Zi0 D In, so
.	In � A/�1 D Ps

iD1.
Pdi�1

jD0
jŠ

.	�	i/jC1 Zij/.

Property 14. If the matrix A is invertible with spectrum �.A/ D f	1; 	2; � � � ; 	sg
then A�1 D Ps

iD1
Pdi�1

jD0
.�1/jjŠ
	

jC1
i

Zij.

Notations Let y D Pn
jD1 yjvj�Kn, Y˛1 D Œy1; y2; � � � ; y˛1 �T , Y˛2 D Œy˛1C1; y˛1C2; � � � ;

y˛1C˛2 �T ; � � � ; Y˛s D Œy˛1C˛2C���˛s�1C1; y˛1C˛2C���˛s�1C2; � � � ; y˛1C˛2C���˛s�1C˛s �
T then

Y D Œy1; y2; � � � ; yn�
T D ŒY˛1 ;Y˛1 ; � � � ;Y˛s �

T

Lemma 1. Let L1 D Im.diagŒO˛1;O˛2 ; � � � ;O˛i�1; I˛i ;O˛iC1; � � � ;O˛s�1;O˛s � �
P�1/ then L1 D fŒO1�˛1 ;O1�˛2 ; � � � ;O1�˛i�1 ;Y˛i ;O1�˛iC1

; � � � ;O1�˛s�1 ;O1�˛s �
T=

Yai�K
˛i g.

Proof. Let be

P�1 D

2

66
6
6
6
4

W˛1˛1 � � � W˛1˛i � � � W˛1˛s

� � � � � � � � � � � � � � �
W˛i˛1 � � � W˛i˛i � � � W˛i˛s

� � � � � � � � � � � � � � �
W˛s˛1 � � � W˛s˛i � � � W˛s˛s

3

77
7
7
7
5

,

then W˛i˛j are ˛i 
 ˛j sub-matrices.
Then it is diagŒO˛1;O˛2 ; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s�1 ;O˛s � � P�1 D
diagŒO˛1;O˛2 ; � � � ;O˛i�1 ;W˛i˛i ;O˛iC1

; � � � ;O˛s�1 ;O˛s �.
So L1 D fdiagŒO˛1; � � � ;O˛i�1 ;W˛i˛i ; � � � ;O˛s �x ε Kng ). L1 D

fŒO1�˛1 ; � � � ;O1�˛i�1 ;W˛i˛i x˛i ;O1�˛iC1
; � � � ;O1�˛s �

T=x˛i ε K˛ig ) L1 D
fŒO1�˛1 ; � � � ;O1�˛i�1 ;Y˛i ;O1�˛iC1

; � � � ;O1�˛s �
T=Y˛i ε K˛ig.

Lemma 2. Let L2 D Ker.JA�	iIn/
di , then L2 D fŒO1�˛1 ; � � � ;O1�˛i�1 ;Y˛i ;O1�˛iC1

;

� � � ;O1�˛s �
T=Yai�K

˛ig.
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Proof. Let y ε L2, then .JA � 	iIn/
di y D 0 and

.JA � 	iIn/
di D diagŒ.	1 � 	i/

di I˛1 ; � � � ; .	˛i�1 � 	i/
di I˛i�1 ;O˛i ; .	˛iC1

�
	i/

di I˛iC1
; � � � ; .	s � 	i/

di I˛s �:

So, diagŒ.	1 �	i/
di I˛1 ; � � � ; .	˛i�1 �	i/

di I˛i�1 ;O˛i ; .	˛iC1
�	i/

di I˛iC1
; � � � ; .	s �

	i/
di I˛s �y D 0 ,
diagŒ.	1 � 	i/

di I˛1 ; � � � ; .	˛i�1 � 	i/
di I˛i�1 ;O˛i ; .	˛iC1

� 	i/
di I˛iC1

; � � � ; .	s �
	i/

di I˛s �ŒY˛1 � � � Y˛i � � � Y˛s �
T D O ,

Y˛j D 0, 8j ¤ i )
y D ŒO1�˛1 ; � � � ;O1�˛i�1 ;Y˛i ; � � � ;O1�˛iC1

; � � � ;O1�˛s �
T so L2 D Ker.JA �

	iIn/
di D fŒO1�˛1 ; � � � ;O1�˛i�1 ;Y˛i ; � � � O1�˛iC1

; � � � ;O1�˛s �
T=Y˛i ε K˛ig.

Corollary Im.diagŒO˛1;O˛2 ; � � � ;O˛i�1 ; I˛i ;O˛iC1
; � � � ;O˛s�1 ;O˛s � � P�1/ D

Ker.JA � 	iIn/
di .

Property 15. Range.Zi0/ D Im.Zi0/ D KernelŒ.A � 	iIn/
di �, i D 1; 2; � � � ; s.

Proof. It is x ε Im.Zi0/ , x D Zi0x ,
x D P � diagŒO˛1 ; � � � ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1x ,
P�1x D .diagŒO˛1 ; � � � ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1/x ,
P�1x ε Im.diagŒO˛1; � � � ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1/ ,
P�1x ε KernelŒ.JA � 	iIn/

di � , .JA � 	iIn/
di � P�1x D O ,

.A � 	iIn/
di x D O , x ε KernelŒ.A � 	iIn/

di �.
So Im.Zi0/ D KernelŒ.A � 	iIn/

di �, is i D 1; 2; � � � ; s.

Property 16. Kernel.Zi0/ D Im.Zi0/˚� � �˚ Im.Zi�1;0/˚ Im.ZiC1;0/˚� � �˚ Im.Zs0/,
i D 1; 2; � � � ; s.

Proof. It is Kernel.Zi0/ D Im.In � Zi0/ D
Im.Zi1 C � � � C Zi�1;0 C ZiC1;0 C � � � C Zs0 D Im.Z10/ ˚ � � � ˚ Im.Zi�1;0/ ˚

Im.ZiC1;0/˚ � � � ˚ Im.Zs0/,
because Im.Zj0/\ Im.Zk0/ D fOg, for j ¤ k.

Property 17. .A � 	iIn/
di/Zi0 D On, i D 1; 2; � � � ; s.

Proof. It is a direct result from the relation
Zi0 D P � diagŒO˛1; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1.

Property 18. Im.Zi0/  Im.Zi1/  � � �  Im.Zi;di�1/, i D 1; 2; � � � ; s.

Proof. It is x ε Im.Zij/ , yג ε Kn W x D Zij , x D 1
j .A � 	iIn/Zi;j�1y.

Let y1 D 1
j .A � 	iIn/y, then

x D Zi;j�1y1 ) x ε Im.Zi;j�1/ ) Im.Zij/ � Im.Zi;j�1/.

Property 19. If the matrix A ε R
n�n is Symmetric then the matrix Zi0 is an

orthogonal projector onto the eigenspace of 	i, i D 1; 2; � � � ; s.

Proof. Let A D P �JA �P�1, where JA is the Jordan form and P is the transition matrix
of the matrix A. The matrix A is Symmetric, so the matrix JA is Symmetric and the
matrix P is Orthogonal. Hence the matrix Zi0 is Symmetric with Z2i0 D Zi0. So the
matrix Zi0 is an orthogonal projector onto the eigenspace of 	i, for i D 1; 2; � � � ; s.
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Property 20. If the matrix A ε C
n�n is Hermitian then the matrix Zi0 is an

orthogonal projector onto the eigenspace of 	i,i D 1; 2; � � � ; s.

Proof. Let A D P � JA � P�1, where JA is the Jordan form and P is the transition
matrix of the matrix A. The matrix A is Hermitian so, the matrix JA is Hermitian and
the matrix P is Unitary. Hence the matrix Zi0 is Hermitian with Z2i0 D Zi0. So the
matrix Zi0 is an orthogonal projector onto the eigenspace of 	i, for i D 1; 2; � � � ; s.

Property 21. Kernel.Zi0/
T

Kernel.Zj0/  f0g.

Proof. It is x ε Kernel.Zi0/ , Zi0x D 0 ,
P � diagŒO˛1; � � � ;O˛i�1 ; I˛i ;O˛iC1

; � � � ;O˛s � � P�1x D O , X˛i D O.

So x ε KernelZ.i0/ , X˛iDO , X D �
X˛1 X˛2 � � � X˛i�1 O˛i X˛iC1

� � � X˛s�1 X˛s

�T
.

It is x ε Kernel.Zj0/ , X˛jDO , XD
h
X˛1 X˛2 � � � X˛j�1 O˛j X˛jC1

� � � X˛s�1 X˛s

iT
.

Finally for i < j it is

Kernel.Zi0/
T

Kernel.Zj0/Df�X˛1 � � � X˛i�1 O˛i � � � X˛j�1 O˛j � � � X˛s

�T
=X˛k ε K˛k g.

Property 22. Kernel.Zi0/C Kernel.Zj0/ D Kn, 8i ¤ j.

Proof. It is dimKernel.Zi0/ D n � ˛i, dimKernel.Zi0/ D n � ˛j and
dimŒKernel.Zi0/

T
Kernel.Zj0/� D n � ˛i � ˛j, so

dimŒKernel.Zi0/C Kernel.Zj0/� D n )
Kernel.Zi0/C Kernel.Zj0/� D Kn, 8i ¤ j.

Conclusions

In this paper the definitions of the component matrices are presented and a main
number of properties are proved. Furthermore some illustrative examples are given.

The results obtained from the work are the necessary and sufficient tools to study
the sequences and series of matrices.
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Solutions of Some Types of Differential
Equations and of Their Associated Physical
Problems by Means of Inverse Differential
Operators

H.M. Srivastava and K.V. Zhukovsky

Abstract We present an operational method, involving an inverse derivative oper-
ator, in order to obtain solutions for differential equations, which describe a broad
range of physical problems. Inverse differential operators are proposed to solve a
variety of differential equations. Integral transforms and the operational exponent
are used to obtain the solutions. Generalized families of orthogonal polynomials and
special functions are also employed with recourse to their operational definitions.
Examples of solutions of physical problems, related to the mass, the heat and
other processes of propagation are demonstrated by the developed operational
technique. In particular, the evolutional type problems, the generalizations of the
Black–Scholes, of the heat, of the Fokker–Plank and of the telegraph equations are
considered as well as equations, involving the Laguerre derivative operator.

Keywords Inverse operator • Inverse derivative • Exponential operator • Differ-
ential equation • Hermite and Laguerre polynomials • Special functions

Introduction

Differential equations play very important rôle in mathematics and their rôle in
the description of physical processes cannot be overestimated. Thus, obtaining
the solutions for differential equations is of paramount importance. Few types
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of differential equations allow explicit and straightforward analytical solutions.
Lately, development of computer methods facilitated equations solving. However,
the understanding of the obtained solutions and their application to description
of physical processes in some cases is still challenging. Despite the revolutionary
breakthrough in computer methods and techniques in the twenty-first century,
analytical studies remain required because, in general, they allow transparent
meaning of the solutions obtained. Indeed, expansion in series of orthogonal
polynomials [1] is useful for solving many physical problems (see, for example,
[17] and [18]). Hermite, Laguerre and other polynomial families are usually defined
by series or sums; for the purpose of differential equations solution and in the
context of the operational approach, they are best defined by operational relations.
These polynomials possess generalized forms with many variables and indices
(see [6] and [8]), which arise naturally in studies of physical problems, related
to propagation and radiation of accelerated charges, heat and mass transfer (see,
for example, [5, 10] and [28, 29, 31]). In what follows, we develop an analytical
method to obtain the solutions for various types of differential equations on the base
of the operational identities, employing special functions, expansions in the series
of Hermite and Laguerre polynomials and their modified forms (see [1] and [15]).
The above-mentioned mathematical instruments are very useful for solution of a
remarkably broad range of physical problems. Recent developments in technique
and technology in synchrotron radiation (SR) and undulator radiation (UR) induced
particular interest to the analysis of the radiation from charged particle beams and
their propagation in accelerators and in insertion devices. Free electron lasers (FEL)
now only open new frontiers for researchers, but they also require high-quality
radiation sources and high precision undulators. This calls for modern mathematical
instruments, suitable for the analysis of the undergoing physical processes and for
the adequate description of the performance of the devices. Analytical solutions
have this value since they usually possess more transparent physical meaning than
numerical solutions and allow deep understanding of the processes. When it comes
to a numerical analysis, there are also practical and theoretical reasons for examining
the process of inverting differential operators. Indeed, the inverse or integral form
of a differential equation displays explicitly the input–output relationship of the
system. Moreover, integral operators are computationally and theoretically less trou-
blesome than differential operators; for example, differentiation emphasizes data
errors, whereas integration averages them. Thus, clearly, it may be advantageous to
apply computational procedures to differential systems, based upon the inverse or
integral description of the system.

The evident concept of an inverse function is a function that undoes another
function: if an input x into the function f produces an output y, then putting y into
the inverse function g produces the output x, and vice versa. That is,

f .x/ D y and g.y/ D x or g
�
f .x/

� D x:

If a function f has an inverse f �1, it is invertible and the inverse function is
then uniquely determined by f . We can develop similar approach with regard to
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differential operators. In what follows, we will further develop this technique and
explore its relation with extended forms of orthogonal polynomials, producing
useful relations for solutions of a variety of differential equations, by means of
inverse derivatives. The relevant physical problems will be considered. Recent
studies of the UR with recourse to the generalized Bessel [9] and Airy type functions
[12, 22, 30, 32] allowed for the analytical description of the influence of additional
non-periodic magnetic components in undulators on the UR properties. For these
studies, the expansion in series of Hermite and Laguerre polynomials [1] were
employed, including those with many indices and variables (see [6] and [8]),
which were earlier used with relations to other physical problems (see [17] and
[18]). In this framework the operational definitions for the polynomials are useful
(see [15]). In what follows, we shall develop the operational approach to obtain
analytical solutions for a broad class of differential equations, including evolution
type equations, generalized forms of heat and mass transfer and Black–Scholes type
equations, involving also the Laguerre derivative operator.

Let us denote a common differential operator D D d
dx . The inverse derivative of

a function f .x/ is another function F.x/:

D�1ff .x/g D F.x/; (1)

whose derivative is given by

F0.x/ D f .x/:

Naturally, we expect the anti-derivative or the inverse derivative D�1 as the inverse
operation of differentiation to be an integral operator. Evidently, the generalized
form of the inverse derivative of f .x/ with respect to x is given by

Z
f .x/ D F.x/C C;

where C is a constant of integration. The action of the inverse derivative operator
D�n

x of the nth order, which is given by

D�n
x f .x/ D 1

.n � 1/Š
Z x

0

.x � �/n�1f .�/d� .n 2 N WD f1; 2; 3; : : :g/; (2)

can be complemented with the definition for its 0th order action as follows:

D0
xf .x/ D f .x/: (3)

Hence, we can write

D�n
x 1 D xn

nŠ
.n 2 N0 WD N [ f0g/: (4)
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For the following general form of a differential equation:

 .D/F.x/ D f .x/; (5)

where  .D/ is a differential operator, the inverse differential operator 1= .D/ or�
 .D/

��1
is such that

 .D/
�
 .D/

��1ff .x/g D f .x/: (6)

By using (5), we obtain the following particular integral:

F.x/ D �
 .D/

��1ff .x/g: (7)

The inverse differential operator . .D//�1 is evidently linear, that is,

1

 .D/
faf .x/C bg.x/g D a

1

 .D/
ff .x/g C b

1

 .D/
fg.x/g ; (8)

where a and b are constants, and f .x/ and g.x/ are some suitable functions of x.
Let us consider an elementary example of the following simple equation:

 .D/F.x/ D e˛s; (9)

where  .D/ consists of derivatives of various orders. The action of  .D/ on
exp.˛x/ results in the following equation:

 .D/ e˛x D .D2 C c1D C c0/ e˛x D  .˛/ e˛x :

By applying the inverse operator
� O .D/��1 to both sides, we obtain

eax D  .˛/
1

 .D/
fe˛xg

or

eax

 .˛/
D 1

 .D/
fe˛xg :

We thus conclude that Eq. (9) possesses the following particular integral:

F.x/ D �
 .D/

��1 fe˛xg D e˛x

 .˛/
: (10)

It can be easily shown by means of the inverse derivative operator that (10), being the
solution of Eq. (9), is true also for the operator  .D/ with higher than the second-
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order derivatives. Moreover, it is easy to prove the following identity:

�
 .D/

��1 fe˛x f .x/g D e˛x
�
 .D C ˛/

��1
f .x/: (11)

Moreover, the action of the inverse operator
�
 .DC˛/��1

on a function f .x/, which

can be expressed via the inverse differential operator
�
 .D/

��1
, reads as follows:

F.x/ D �
 .D C ˛/

��1ff .x/g D e�˛x
�
 .D/

��1 fe˛x f .x/g : (12)

Inverse Differential and Exponential Operators for Solutions
of Some Differential Equations

Let us consider the following equation:

�
ˇ2 � .D C ˛/2

�� fF.x/g D f .x/
�
D C ˛ DW QD� ; (13)

where we denote by QD the operator D C ˛ and the parameters ˛, ˇ and � are
constants. In order to find the particular integral F.x/ given by

F.x/ D �
ˇ2 � QD2

��� ff .x/g; (14)

we shall make use of the following well-known operational identity (see [15] and
[24]), frequently used in fractional derivative calculus:

Oq�� D 1

� .�/

Z 1

0

exp.�Oqt/t��1 dt
�

minf<.q/;<.�/g > 0�; (15)

which reads for the operator Oq D ˇ2 � QD2:

�
ˇ2 � QD2

��� ff .x/g D 1

� .�/

Z 1

0

exp.�ˇ2t/t��1 exp.t QD2/f .x/ dt: (16)

There are several ways to proceed with the solution. One of them consists in the
following. Note that differential operator �t QD2 in the exponential reduces to the
first order derivative with the help of the following integral presentation for the
exponential of a square of an operator Op [7]:

exp
�Op2� D 1p

�

Z 1

�1
exp

���2 C 2� Op� d�; (17)
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where Op D p
t QD in our case. Thus, the above formula reads as follows:

exp.t QD2/f .x/ D 1p
�

Z 1

�1
exp.��2 C 2�

p
t QD/f .x/d�: (18)

Now, if we take into account the action of the operator of translation exp.� QD/ for
QD D D C ˛:

expŒ�.D C ˛/�f .x/ D exp.�˛/f .x C �/; (19)

the above-sketched operational procedure yields the following expression for the
particular integral (14):

F.x/ D 1p
�� .�/

Z 1

0

t��1 exp
�
.˛2 � ˇ2/t

�

�
Z 1

�1
exp

��.� � p
t˛/2

�
f .x C 2�

p
t/ d� dt: (20)

Upon performing the change of variables, given by

� D x C 2�
p

t and t D �2; (21)

we finally obtain the following solution of Eq. (13):

F.x/ D 1p
�� .�/

Z 1

0

�2.��1/ exp
��.ˇ�/2�

�
Z 1

�1
exp


�
�� � x

2�

�2 C ˛.� � x/

�
f .�/ d� d�: (22)

Evidently, for ˛ D 0, the equation reduces to

�
ˇ2 � D2

��
F.x/ D f .x/; (23)

and its solution becomes the particular case of (16) with the substitution QD ! D:

F.x/ D 1

� .�/

Z 1

0

exp.�ˇ2t/t��1 OS f .x/ dt; (24)

where the differential operator OS given by

OS D exp.tD2
x/ � exp.tD2/ (25)

was thoroughly explored by Srivastava and Manocha in [24]. In particular, for

f .x/ D exp.�x2/;
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we can make use of the Gleisher operational rule [24]:

OS f .x/ D exp

�
y
@2

@x2

�
exp.�x2/ D 1p

1C 4y
exp

�
� x2

1C 4y

�
(26)

to obtain the following particular solution:

F.x/ D 1

� .�/

Z 1

0

e�ˇ2 t t��1
p
1C 4t

exp

�
� x2

1C 4t

�
dt: (27)

The other approach to Eq. (13) consists in combining the exponential operator
technique, the inverse derivative formalism and the Gauss transform. Indeed, when
solving equations with D C ˛, we can write the particular integral based upon the
operational rule (12), where

 �1.D/ D �
ˇ2 � D2

���
: (28)

Proceeding with account for (23), (24) and (25), we compute the result of the action
of the operator exp.@2x/ on exp.˛x/g.x/ with the help of the following chain rule:

exp.y@2x/ exp.˛x/g .x/ D exp.˛ x/ exp.˛2y / exp.2˛y@x/ exp.y@2x/g .x/ ; (29)

where y and ˛ are the parameters. It eventually yields the following solution for
Eq. (13):

F.x/ D 1

� .�/

Z 1

0

t��1 exp
˚�.ˇ2 � ˛2/t� O� OSf .x/dt; (30)

where O� is the well-known operator of translation

O� D exp.2˛tDx/ � exp

�
2˛t

@

@x

�
and O�f .x/ D f .x C 2˛t/ (31)

and operator OS is encountered in problems, related to heat propagation and defined
in (25). Its action can be written in integral form by means of common Gauss
transforms:

Fi.x; t/ � OSf .x/ D 1

2
p
�t

Z 1

�1
exp

�
� .x � �/2

4t

�
f .�/ d�: (32)

Thus, we conclude that the integrand of the solution (30) of the Eq. (13), apart from
the phase and the factor, responsible for the equation dimension, �, is a result of
consequent action of operators of heat propagation OS and operator of translation O�
on the function f .x/:
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F.x; t/ � O� OSf .x/ D Fi.x C 2˛t; t/

D 1

2
p
�t

Z 1

�1
exp

�
� .x C 2˛t � �/2

4t

�
f .�/ d�: (33)

With these notations, we can write the solution as follows:

F.x/ D 1

� .�/

Z 1

0

t��1 exp
��.ˇ2 � ˛2/t� F.x; t/ dt: (34)

The solution is best illustrated by the example of a Gaussian function f .x/:

f .x/ D exp.�x2/: (35)

With the help of the above described operational procedure and on account of
Eq. (26) we easily obtain the following solution of Eq. (13) for f .x/ given by a
Gaussian:

F.x/ D 1

� .�/

Z 1

0

t��1 exp
��.ˇ2 � ˛2/t�p
1C 4t

exp

�
� .x C 2˛t/2

1C 4t

�
dt: (36)

So far we have demonstrated on simple examples how the usage of inverse
derivative together with operational formalism and, in particular, with exponential
operator technique provides elegant and easy way to find solutions in some classes
of differential equations. In what follows we will apply the concept of inverse
differential operator to find solutions of more sophisticated problems, expressed by
differential equations.

Inverse Differential Operators and Orthogonal Polynomials

Despite the traditional presentation of many polynomial families as the expansion in
series, they are worth being viewed from operational point of view too. Particularly
interesting appears their relation with the exponential operators of derivatives and
inverse derivatives and also, special functions. Recently, Hermite, Laguerre and
other polynomial families were reconsidered by means of the operational technique
(see [6, 8] and [11]). Hermite polynomials of two variables are explicitly given by
the following operational rule (see [6]) and the series expansion (see [16]):

H.m/
n .x; y/ D exp

�
y
@m

@xm

�
xn D nŠ

Œn=m�X

rD0

xn�mryr

.n � mr/ŠrŠ
: (37)
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We note that

H.1/
n .x; y/ D .x C y/n and H.2/

n .x; y/ D Hn .x; y/ ; (38)

where Hn.x; y/ are more commonly known Hermite polynomials of two variables
defined by

Hn .x; y/ D exp

�
y
@2

@x2

�
xn and Hn .x; y/ D nŠ

Œn=2�X

rD0

xn�2ryr

.n � 2r/ŠrŠ
(39)

with the following generating exponent:

exp
�
xt C yt2

� D
1X

nD0

tn

nŠ
Hn.x; y/: (40)

They can be reduced to the well-known forms of Hermite polynomials of a single
variable:

Hn.x; y/ D .�i/nyn=2Hn

�
ix

2
p

y

�
D in.2y/n=2Hen

�
x

i
p
2y

�
: (41)

We note also the following useful and easy to prove relation (see [16]) for Hermite
polynomials:

znHn.x; y/ D Hn.xz; yz2/: (42)

Laguerre polynomials of two variables can be given by an operational relation
(see [6]) or a sum as follows:

Ln .x; y/ D exp

�
�y

@

@x
x
@

@x

�
.�x/n

nŠ
D nŠ

nX

rD0

.�1/r yn�rxr

.n � r/Š .rŠ/2
: (43)

They also reduce to polynomials of a single variable (see [24]) as follows:

Ln.x; y/ D ynLn.x=y/ and Ln.x/ D y�nLn.xy; y/ D Ln.x; 1/: (44)

The introduction of the second variable in Hermite and Laguerre polynomials allows
us to consider them as solutions of partial differential equations with proper initial
conditions:

@yLn.x; y/ D �.@xx @x/Ln.x; y/ with Ln.x; 0/ D .�x/nnŠ (45)
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for the Laguerre polynomials Ln.x; y/ and

@yHn.x; y/ D @2xHn.x; y/ with Hn.x; 0/ D xn (46)

for the Hermite polynomials Hn .x; y/. It is important that the following differential
operators:

LDx D @

@x
x
@

@x
D � OP and OM D y � D�1

x ; (47)

where

D�1
x ff .x/g D

Z x

0

f .�/d�

are non-commutative:

ŒLDx;D
�1
x � D �1 (48)

with the standard definition for the commutator

ŒA;B� D AB � BA;

and the following operational relation between them (see [11]):

LDx D @

@x
x
@

@x
D @

@D�1
x

: (49)

With the help of this relation, we can extend our approach on differential equations,
including operator @xx@x, sometimes called Laguerre derivative LDx. Then, from
the definition (47), we immediately conclude for Laguerre polynomials Ln.x; y/,
defined in (43) that (in terms of the inverse derivative operator) they are expressed
as follows:

Ln.x; y/ D nŠ
nX

kD0

.�x/kyn�k

.n � k/Š.kŠ/2
D .y � D�1

x /nf1g: (50)

Moreover, from (43) and (50), we conclude that the following operational identity
is true for the Laguerre polynomials:

exp

�
˛

@

@D�1
x

�
Ln.x; y/ D Ln.x; y � ˛/: (51)

Extensive study of the relations between various polynomial families, inverse
derivative operator, exponential operator and realization of operators OM and OP,
which stand, respectively, for multiplicative operator and differential operator for
quasi-monomial polynomials can be found in [7] and [13]. Various polynomial
families, such as Hermite, Laguerre, Legendre, Shaffer and hybrid polynomials were
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discussed there in the context of umbral calculus and of a more general family of
Appell polynomials, which they belong to. Such consideration was possible in the
framework of operational approach, where inverse derivative plays important role
as an instrument for the study of relevant polynomial families, their features and
properties.

Operational Approach and Orthogonal Polynomials
for the Solution of Some Differential Equations

Some Solutions for Laguerre Type Ordinary Differential
Equations

Let us consider the following equation with the Laguerre derivative:

�
ˇ � @

@x
x
@

@x

��
fF.x/g D f .x/: (52)

From the operational point of view, its solution reads as follows:

F.x/ D
�
ˇ � @

@x
x
@

@x

���
ff .x/g

D 1

� .�/

Z 1

0

exp.�ˇt/t��1 exp .tLDx/ f .x/ dt: (53)

We note that, upon the change of variable t ! et, the last integral can be transformed
into the following one:

F.x/ D
�
ˇ � @

@x
x
@

@x

���
ff .x/g D 1

� .�/

Z 1

�1
et� e�ˇ et

eet
LDx f .x/dt: (54)

In the particular case when ˇ D 1 and � D 1, the above integral presentation
reduces to the Laplace transforms for the differential operator LDx, involved in (53),
which is identical (except for the change LDx $ Dx) to the well-known Laplace
transforms for the operator Dx:

1

1 � ODx

D
Z 1

0

expŒ�s.1 � ODx/� ds: (55)

By choosing f .x/ D xn in Eq. (53), we obtain the following result:

.ˇ � LDx/
��fxng D nŠ

� .�/

Z 1

0

exp.�ˇt/tnC��1 Ln

�x

t

�
dt: (56)
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Moreover, we can write a solution of Eq. (52) for an arbitrary function f .x/, if
its expansion into series of the simple Laguerre polynomials Ln.x/ exists. Then,
provided that

f .x/ D
1X

nD0
cnLn.x/; (57)

and taking into account (51), the solution (53) of Eq. (52) can also be written as the
following integral of series of Laguerre polynomials:

F.x/ D 1

� .�/

Z 1

0

exp.�ˇt/t��1
1X

nD0
cnLn.x; 1 � t/dt: (58)

For the exponential function f .x/ D exp.��x/, we can employ the generalized form
of the Glaisher operational rule (see [5]):

exp.�tLDx/ � exp.��x/ D 1

1 � � t
exp

�
� �x

1 � � t

�
; (59)

which immediately yields the following result:

�
ˇ � @

@x
x
@

@x

���
exp.��x/

D 1

� .�

Z 1

0

exp.�ˇt/t��1 1

1C � t
exp

�
� �x

1C � t

�
dt: (60)

Another interesting case arises in the case of the Laguerre derivative LDx instead of
the common derivative @x in Eq. (13). Let us choose the following initial condition
function:

f .x/ D W0.�x2; 2/; (61)

where

Wn.x;m/ D
1X

sD0

xs

sŠ.ms C n/Š
; (62)

where Wn.x;m/ is the particular case of the Bessel–Write function [11]. Then,
following (15), we can write the solution given by

 

ˇ2 �
�
@

@x
x
@

@x

�2!��
W0.�x2; 2/

D 1

� .�/

Z 1

0

exp.�ˇ2t/t��1 exp.tLD2
x/f .x/dt: (63)
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Eventually, basing upon the operational definition of Laguerre polynomials (43)
and exploiting the other generalized form of the Gleisher operational rule [15] in
the form:

exp.tLD2
x/W0.�x2; 2/ D 1p

1C 4t
W0

�
� 1

1C 4t
; 2

�
; (64)

we obtain

 

ˇ2 �
�
@

@x
x
@

@x

�2!��
W0.�x2; 2/

D 1

� .�/

Z 1

0

exp.�ˇ2t/t��1 1p
1C 4t

W0

�
� 1

1C 4t
; 2

�
dt: (65)

Moreover, according to the developed procedure, we can write the solutions for
other types of equations different from those already specified above. For example,
we can take advantage of the following generalization of the Laguerre polynomials
L.˛/n .x; y/:

L.˛/n .x; y/ D exp
�
�y MDx

� 
 .�x/n

nŠ

�
; (66)

where operator MDx is defined as follows:

MDx D x@2x C .˛ C 1/@x: (67)

Inverse operator technique easily allows us to write the solution of the equation

�
x@2x C .˛ C 1/ @x

�
F.x/ D f .x/: (68)

Indeed, by following the operational rule (15), we get

MD��
x f .x/ D 1

� .�/

Z 1

0

exp.�ˇt/t��1 exp
�

t MDx

�
f .x/dt (69)

and for the initial condition function f .x/ D xn, we then write

MD��
x xn D .�1/nnŠ

� .�/

Z 1

0

exp.�ˇt/t��1L.˛/n .x;�t/dt: (70)

Similarly to (56), by taking advantage of the generalized form of the Gleisher
operational rule from [11], we find for the operator MDx and

f .x/ D exp.��x/
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that

MD��
x exp.��x/ D 1

� .�/

Z 1

0

exp.�ˇt/t��1 1

.1C � t/˛C1 exp

�
� �x

1C � t

�
dt: (71)

Orthogonal Polynomials and Special Functions
for the Convolution Forms of Solutions for Ordinary Differential
Equations

In what follows, we will focus on the technique of inverse operator, applied for the
derivation of a general convolution form of solution for Eq. (13). First of all, let us
note that for the particular case of the initial function f .x/ D xk we can make use of
the operational rule (12) and of the identity:

exp.yD2
x/x

k e˛x D e.˛xC˛2y/ Hk.x C 2˛y; y/; (72)

which arises from the operational relation:

exp

�
y
@m

@xm

�
f .x/ D f

�
x C my

@m�1

@xm�1

�
f1g (73)

and from generating function (40). Then, with account for (72), we write the
particular integral (14) for the function

f .x/ D xk

as follows:

F.x/ D .ˇ2 � .Dx C ˛/2/��xk

D 1

� .�/

Z 1

0

e�t.ˇ2�˛2/ t��1Hk.x C 2˛t; t/dt: (74)

The above expression with the shifted argument of the Hermite polynomial can
be derived directly from the general form of the solution (30) and the operational
definition of the Hermite polynomials (39). Particular solutions for (13) with f .x/ D
xk and ˛; ˇ = 0, obviously follow from (74).

Now, let us consider the most general case even without specifying the type of the
function f in the r.h.s. of (13) and the values of � and ˛. We can still disentangle two
integrals in (22) by involving Hermite polynomials of two variables (40) as follows:
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F.x/ D 1p
�� .�/

1X

nD0

Z 1

0

�2.��1/ exp.�ˇ2�2/Hn

�
˛;� 1

4�2

�
d�

� 1
nŠ

Z 1

�1
.� � x/nf .�/d�: (75)

Thus, we obtain the solution of Eq. (13) as the series of the convolution given by


.x/ D ˚.x/ � f .�/

with the kernel

˚.x/ D xn

and the coefficient, given by the Hermite polynomials, as follows:

F.x/ D
1X

nD0

.x/ C.�; ˛; ˇ/; (76)

where


.x/ D
Z 1

�1
˚.x � �/f .�/d� � ˚.x/ � f .�/;

˚ .x � �/ D .� � x/n;

˚.x/ D .�x/n

and

C.�; ˛; ˇ/ D 1p
�� .�/

Z 1

0

�2.��1/ exp.�ˇ2�2/ 1
nŠ

Hn.˛;� 1

4�2
/d�:

Moreover, it follows directly from (22) and from the above convolution with account
for the generating function (40), that the solution of (13) is given by the integral of
the following convolution with the kernel, equal to the Gauss frequency function
˝.x; �/:

F.x/ D 1p
�� .�/

Z 1

0

�2.��1/ e�ˇ2�2 '.x; �/d�; (77)

where

' .x; �/ D
Z 1

�1
˝ .x � �; �/ f .�/d� � ˝ .x; �/ � f .�/ ;

˝ .x � �; �/ D exp

�
˛ .� � x/ � .� � x/2

4�2

�
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and

˝ .x; �/ D exp


�˛x �

� x

2�

�2�
:

Accounting for the integral given by

Z 1

0

�2.��1/ e�.ˇ�/2� .x��/2

4�2 d� D
� jx � �j

2ˇ

���1=2
K�� 1

2
.ˇ jx � �j/;

where Kn .x/ is the modified Bessel (or the Macdonald) function, we conclude that

F.x/ D 1p
�� .�/

Z 1

�1

� jx � �j
2ˇ

���1=2
K�� 1

2
.ˇ jx � �j/ e�˛.x��/ f .�/d�: (78)

Thus, following the general approach of [19], we have obtained the solution

F.x/ D
�
ˇ2 � .D C ˛/2

���
f .x/

for the Eq. (13) in the form of the following convolution:

F.x/ D 1p
�� .�/

Z 1

�1
� .x � �/ f .�/d�; (79)

where

� .x � �/ D
� jx � �j

2ˇ

��� 1
2

K�� 1
2
.ˇ jx � �j/ e�˛.x��/

with the kernel � otherwise written as follows:

F.x/ D 1p
�� .�/

� � f and � D
� jxj
2ˇ

���1=2
K�� 1

2
.ˇ jxj/ e�˛x : (80)

Solutions of Some Partial Differential Equations
by the Operational Technique

The method of the inverse differential operators has multiple applications for solving
mathematical problems, describing wide range of physical processes, such as the
heat transfer, the diffusion, wave propagation, etc. Some of the examples of solution
of the heat equation, of the diffusion equation and of their modified forms, the
Laguerre heat equation and others were considered by the inverse derivative method
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in [5, 15, 21]. In what follows solutions for more complicated generalized forms of
the aforementioned equations will be explored, as well as some second order over
the time variable partial differential equations will be touched upon.

It is worth mentioning that, despite the fact that relation (12) seems trivial to all
appearance, it is very useful for solution of a broad family of differential equations
by operational method. Indeed, for the differential equation:

 .Dx C ˛/F.x; t/ D f .x; t/;

we can rewrite Eq. (12) in the following form:

e˛x F.x; t/ D  �1.Dx/ e˛x f .x; t/

and, for example, for the evolutional type equations, where

f .x; t/ D @tF.x; t/;

we obtain

 .Dx/ e˛x F.x; t/ D @t e˛x F.x; t/:

By writing

e˛x F.x; t/ D G.x; t/;

we have the following equation:

 .Dx/G.x; t/ D @tG.x; t/

with  .Dx/ and with the initial condition given by

g.x/ D G.x; 0/ D e˛x F.x; 0/ D e˛x f .x/:

Thus, in order to obtain the required solution:

F.x; t/ D e�˛x G.x; t/

of the following equation:

 .Dx C ˛/F.x; t/ D f .x; t/

with the initial condition:

F.x; 0/ D f .x/:
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we end up with the necessity to solve the equation with  .Dx/ for the function
G.x; t/ with the initial condition:

g.x/ D e˛x f .x/:

We note that the above-discussed method is applicable not only to the evolutional
type equations with @t in the right-hand side, but also to other operators OD.t/, acting
over the time variable. Indeed, if G.x; t/ is the solution of the equation:

 .Dx/G.x; t/ D OD.t/G.x; t/
with

g.x/ D G.x; 0/ D e˛x F.x; 0/ D e˛x f .x/;

then, following the above-described scheme, it is easy to demonstrate that

F.x; t/ D e�˛x G.x; t/

is the solution of the equation

 .Dx C ˛/F.x; t/ D OD.t/F.x; t/

with

F.x; 0/ D f .x/:

Evidently, in the case of the second-order differential operator OD.t/, the second
boundary or initial condition has to be chosen for the differential equation for F.x; t/
and, accordingly, for G.x; t/. In what follows, we shall apply the above-discussed
method to several examples of equations, common in physics and other applications.

Black–Scholes Type Equations

In order to demonstrate the solution of differential equations by the operational
method, we first consider the following differential equation, which is a generalized
form of a Black–Scholes equation, frequently used in financial models:

1



@

@t
F.x; t/ D

�
x2
@2

@x2
C 2˛x2

@

@x
C 	x

@

@x
C .˛x/2 � �

�
F .x; t/ (81)

with

f .x/ D F .x; 0/ ;
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where ˛, , 	 and � are the constant coefficients and f .x/ is the initial condition
function. Then the apparently complicated equation (81) reduces to the following
form:

l
1



@

@t
G.x; t/ D x2

@2

@x2
G.x; t/C 	x

@

@x
G.x; t/ � �G.x; t/ (82)

with

g.x/ D G.x; 0/;

by the substitution given by

@x ! @x C ˛:

Therefore, according to (12) and to the discussion at the beginning of this section,
the solution of Eq. (81) will be found, if we obtain the solution of the Black–Scholes
equation (82) for G.x; t/ with the initial condition function g.x/ given by

g.x/ D G.x; 0/ D e˛x F.x; 0/:

Then, the solution of (81) reads as follows:

F.x; t/ D e�˛x G.x; t/ with g.x/ D G.x; 0/ D e˛x F.x; 0/: (83)

The Eq. (82) can be easily solved with the help of the operational approach if we
distinguish the perfect square of the operator x@x (see [10]):

G .x; t/ D exp.�"t/p
�

Z 1

�1
exp

�
��2 C ��

	

2

�
g .x e�� / d�; (84)

where

� D �.t/ D 2
p
t and " D �C

�
	

2

�2
:

Let us choose the following initial condition:

f .x/ D e�˛x xn

for the Black–Scholes type equation (81), that is,

g.x/ D xn:
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Then the solution (84) has the simple form (see [10]):

G.x; t/ D xn expŒt.n2 C 	n � �/�
and Eq. (81) has the following solution:

F.x; t/ D e�˛x xn expŒt.n2 C 	n � �/�: (85)

Let us consider another generalization of the Black–Scholes type differential
equation with the Laguerre derivative @xx@x [see Eqs. (43) and (47)] instead of x@x:

1



@

@t
A.x; t/ D .@xx@x/

2A.x; t/C 	.@xx@x/A.x; t/ � �A.x; t/ (86)

with

g.x/ D A.x; 0/;

where , 	 and � are the constant coefficients and g.x/ is the initial condition
function. The Eq. (86) generalizes and unifies equations of Laguerre diffusion of
matter and of heat, considered in [8] and [10]. This equation can also be solved
by the operational method developed above. Indeed, by distinguishing the perfect
square of the Laguerre derivative

LDx D @xx@x

in (86), the solution evidently reads in the form of the exponential:

A .x; t/ D exp

"

t

(�

LDx C 	

2

�2
� "

)#

g.x/;

where

" D �C
�
	

2

�2
:

We now apply the operational identity (17) to exp.aLDx/ to obtain the following
solution for A.x; t/:

A .x; t/ D exp.�"˛2/p
�

Z 1

�1
exp

���2 � �˛	 � 2�˛LDx
�

g.x/ d�; (87)

where

˛ D ˛.t/ D p
t:
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For a given function g .x/, we still have to find the result of the action of the
operational exponent:

exp.�aLDx/g.x/

and to take the integral

Z
.� � � /d�:

Let us choose, for example, the initial condition function given by

g.x/ D .�x/n

nŠ
:

Then, clearly, we can make use of the operational definition of the Laguerre
polynomials (43) and obtain the following integral form for A.x; t/

A .x; t/ D
exp

�
� "˛2

4

�

p
�

Z 1

�1
exp

���2 � �˛	� Ln.x; 2�˛/ d�: (88)

Further integration over d� yields the solution of the Black–Scholes like equation
with the Laguerre derivative in (86) and with the initial condition given by

g.x/ D .�x/n

nŠ

in the following form:

A.x; t/ D exp.�˛2�/p
�

nŠ
nX

rD0

.�x/r.2˛/n�r

.n � r/Š.rŠ/2
I ; (89)

where

I WD ˛	

2

�
ei.n�r/� � 1

�
�
�
1C n � r

2

�
1F1

"
1 � .n � r/

2
I 3
2

I �
�
˛	

2

�2#

C 1

2

�
ei.n�r/� C 1

�
�

�
1C n � r

2

�

1F1

"

�n � r

2
I 1
2

I �
�
˛	

2

�2#

:

(90)

Here � denotes the (Euler’s) gamma function and 1F1 is the familiar confluent
hypergeometric function. Evidently, if the initial condition function can be expanded
in the power series of xn, then the respective solution represents series of the
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already obtained solution (89). Moreover, if the expansion in series of the Laguerre
polynomials for the initial condition function given by

g.x/ D
1X

nD0
anLn.x/

exists, then we can exploit the relationships (51) and (44) to obtain the solution in
the following form:

A .x; t/ D
exp

�
� "˛2

4

�

p
�

1X

nD0
an

Z 1

�1
exp

���2 � �˛	� Ln.x; 2�˛ C 1/ d�: (91)

In the most general case, the solution A .x; t/ can be obtained through the
following procedure: We employ the operational definitions (47) and the definition
of the inverse derivative given by Eq. (2):

D�1
x f .x/ D

Z x

0

f .�/ d�

in order to write A.x; t/ in the form:

A .x; t/ D exp
��"˛2�p
�

Z 1

�1
exp

���2 � �˛	�

� exp

�
�2�˛ @

@D�1
x

�
'.D�1

x / d�; (92)

where

'.D�1
x /f1g D g.x/

and the explicit form of the function ' is given by the following integral:

'.x/ D
Z 1

0

exp.��/g.x�/d�;

provided that this integral converges. We note that exp.�tLDx/g.x/ is the solution
of the Laguerre diffusion equation (see [10]):

@tf .x; t/ D �LDxf .x; t/

with the initial condition given by

f .x; 0/ D g.x/:
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Therefore, the result of the action of the exponential operator in (92) is, in fact, given
by

f .x; t/ D exp

�
�t

@

@D�1
x

�
g.x/ D '

�
D�1

x � t
�f1g;

which is the solution of the above-mentioned Laguerre diffusion equation. Then the
required solution of Eq. (86) takes the following form:

A .x; t/ D exp.�"˛2/p
�

Z 1

�1
exp

���2 � �˛	� g.x; t/d�; (93)

where

g.x; t/ D '.D�1
x � 2�˛/ 1 D exp

�
�2�˛ @

@D�1
x

�
'.D�1

x / 1: (94)

Consider the following initial condition:

g.x/ D W0.�x2; 2/;

where

Wn.x;m/ D
1X

rD0

xr

rŠ.mr C n/Š
.m 2 NI n 2 N0/

is the particular case of the Bessel-Wright function (see [24]). The corresponding
image function is

'.x/ D exp.�x2/:

With account for (17) and (94) we obtain (see also [5])

g.x; t/ D 1p
�

Z 1

�1
exp

���2 C 4i�˛�
�

C0.2i�x/d�; (95)

where Cn.x/ given by

Cn.x/ WD
1X

rD0

.�x/r

rŠ.r C n/Š
.n 2 N0/

is the Bessel-Tricomi function [27], which is related to the Bessel-Wright function:

Cn.x/ D Wn.�x; 1/



596 H.M. Srivastava and K.V. Zhukovsky

and also to the commonly known cylindrical Bessel functions:

Cn.x/ D x�n=2Jn.2
p

x/:

Thus, the solution (86) with the initial condition:

g.x/ D W0.�x2; 2/

is explicitly determined by the formulas (93) and (95).

Heat Diffusion Type Equations

Let us first consider the following form of the Schrödinger equation:

i @��.x; �/ D �@2x�.x; �/C b x�.x; �/: (96)

It can be solved by means of the operational method just as we did for Eq. (13)
with the help of the heat-diffusion operator (25) and of the translation operator
(31). Disentanglement of the operators in the exponential according to the rule (29)
leads to the solution of the Schrödinger equation in the form of the sequence of the

transformations of the initial function f .x/ under the action of the operators ONS and
ON�:

�.x; t/ D expŒ�i˚.x; � I b/� ON� ONSf .x/; (97)

where

ONS D exp
�
i � @2x

�
;

ONSf .x/ D f .x; i�/ ;

ON�D exp.b �2@x/

and

ON�f .x; �/ D f .x C b�2; �/

and ˚ is the phase. The integral presentation of the solution reads as follows:

�.x; t/ D exp.�i˚.x; � I b//
1

2
p

i� �

Z 1

�1
exp

 

�
�
x C b �2 � ��2

4 i �

!

f .�/d�: (98)
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We note that, in the solution (98), as well as in the formula (33), we did not make
any suppositions about the initial function f .x/ and we obtained the solution as
sequential action of the heat diffusion operator OS and the translation operator O� on
f .x/ (see also [22]). In this context OS can be viewed as the evolution operator of a
free particle. The solution given by (see [21])

�.x; �/ D expŒ�i˚.x; � I b/�Ai.x C b �2; i�/

of the Schrödinger equation (96) with the Airy initial condition (see [26]):

f .x/ D Ai
� x

C

�
D 1

�

Z 1

0

cos

�
1

3
�3 C x

C
�

�
d�;

where C D constant, describes the dynamics of the Airy packet in a constant elec-
trostatic field. We remind (see [40]) that the solution is reduced to the translation of
the packet, so that its shape remains unchanged under the action of a constant force,
which subjects the packet to constant acceleration. This apparently contradictory
statement (see [2]) is resolved once we note that the Airy function is not square
integrable and we cannot define its centroid

hxi D
Z 1

�1
xf .x/

R1
�1 f .�/d�

dx:

In the context of physical applications it is important to underline that without the
square integrability we cannot refer to the average of the coordinate and of other
observables, while we can still talk about the dynamics of some abstract points, for
example, about the acceleration of the point, in which the value of the Airy function
equals zero.

The evolution of the Airy and of the Gauss packets, governed by the following
generalized heat type equation with the linear term:

@tF.x; t/ D ˛@2xF.x; t/C ˇxF.x; t/ (99)

with the initial condition

F.x; 0/ D f .x/

and for ˛ D 1, was investigated in [40]. The solution of Eq. (99) goes along the
lines of the solution of the Schrödinger equation and for ˛ D 1 we end up with

F.x; t/ D e˚.x;tIˇ/ O� OSf .x/ D e˚.x;tIˇ/ f
�
x C ˇt2; t

�
; (100)

where

˚.x; tIˇ/ D 1

3
ˇ2t3 C ˇtx;

O� D exp
�
ˇt2@x

�
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and

OS D exp
�
t@2x
�
:

The solution (100) consists in the action of the evolution operator on the initial
condition:

F.x; 0/ D f .x/;

which is transformed by ONS and ON�. For the Airy initial condition given by

f .x/ D Ai
� x

C

�
;

the operational method readily yields

Ai .x; t/ D OSAi
� x

C

�
D exp

�
t@2x
�

Ai
� x

C

�

and the following solution of Eq. (99):

F.x; t/ D e˚.x;t;ˇ/ Ai
�
x C ˇ; t2; t

�

D e˚.x;t;ˇ/
1

�

Z 1

0

cos


1

3

�
�3 C �.x C ˇt2/

C

��
exp

�
��

2t

C2

�
d�: (101)

Without going further into the details (see [40]), we just note here that the
aforementioned solution (101) exhibits distinguished fading of the oscillations
without any spread, while the evolution of the Gauss function lowers the curve and
spreads the packet, too.

Let us choose the initial condition given by

f .x/ D xn

for the heat conduction type equation (99). Then, upon the action of the heat
diffusion operator on it and according to the following operational definition of the
Hermite polynomials (39):

exp
�
a@2x

�
xn D Hn .x; a/ ;

we obtain the solution:

F.x/ / Hn .x C ab; a/ ;

where a D ˛t and b D ˇt, and we end up with

F .x; t/ D e˚ Hn
�
x C ˛ˇt2; ˛t

�
: (102)
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Evidently, if the initial function can be expanded in series as follows:

f .x/ D
1X

nD0
cnxn;

then the solution appears in the form of the series:

F .x; t/ D e˚
1X

nD0
cnHn

�
x C ˛ˇt2; ˛t

�
:

Let us now choose another initial condition such as (for example)

f .x/ D xk eı x :

Then, by virtue of the operational rule (72), we obtain

OSf .x/ D exp Œı .x C ıa/�Hk .x C 2ıa; a/ D f .x; t/ :

The consequent action of the translation operator O� yields the shift along the
argument x and, thus, we obtain the required solution in the following form:

F .x; t/ D e˚C�1 Hk

 

x C ˛ı2

ˇ

 
2tˇ

ı
C t2

�
ˇ

ı

�2!

; ˛t

!

; (103)

where

�1 D ı
�
x C ı˛t C ˛ˇt2

�
:

For ı D 0, it immediately leads us to the result (102). Studying the evolution at
prolonged times, such that t � ı=ˇ, we notice that �1 � ˚ and, provided that
(at so long times) the special condition x � ı2˛=ˇ is also fulfilled, that is the
coordinate travel is limited, we end up with the separation of the dependence of
the solution on time and coordinate. The coordinate dependence is all given by the
exponential factor exp .ˇtx/, while the time is contained in the Hermite polynomial
arguments Hk

�
2ı˛t C ˛ˇt2; ˛t

�
. For the short times of the evolution of the system,

such that t � ı=ˇ the phase approximately reads as follows:

˚ C�1 Š xı C ˛ı2t

and the Hermite polynomials depend on both coordinate and time: Hk .x; ˛t/. Thus,
for relatively short times we have the solution approximated by

F .x; t/jt	ı=ˇ Š exıC˛ı2 t Hk .x; ˛t/
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and for infinitely short times ˛t ! 0 the Hermite polynomials become

Hk .x; 0/ D xk;

which is in perfect agreement with our initial condition:

f .x/ D xk eıx :

Let us now obtain the solution for the following equation:

@tF .x; t/ D @2xF .x; t/C 2ı@xF .x; t/C ˇxF .x; t/C �F .x; t/ (104)

with

F .x; 0/ D f .x/ ;

which can be considered as the generalization of the Eq. (99) upon the substitution
of the derivative @x ! @x C ı, where we set ˛ D 1 without substantial sacrifice of
the generality. Distinguishing the perfect square of the operator @x Cı and following
the general lines for solution of such equations, developed in the beginning of this
chapter, we can search for the desired solution of Eq. (104) in the following form:

F .x; t/ D exp
�
t
�
� � ı2� � ıx

�
G .x; t/ ; (105)

where G .x; t/ satisfies Eq. (99) for G with the initial condition:

G .x; 0/ D g .x/ and g .x/ D exp.ıx/f .x/ :

Let us choose the initial condition for (104), for example, in the form of the powers:

f .x/ D xk:

Then

g .x/ D xk eıx

and the solution of the equation:

@tG D .@2x C ˇx/G

is given by (103) upon the substitution of F ! G. Eventually, we end up with the
desired solution of the Eq. (104), written in terms of the Hermite polynomials as
follows:

F .x; t/ D e˚C�2 Hk.x C 2tı C t2ˇ; t/; (106)

with the additional phase given by
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�2 D t� C t2ıˇ:

We note that the generalization of the above considered equations of the heat
conduction, unifying both the Laguerre diffusion and the Laguerre heat conduction
equations, is, in essence, the Black–Scholes equation with the Laguerre derivative,
which was considered above in the beginning of the present chapter.

Eventually, let us complement the above considered heat diffusion type equations
by the following two-dimensional heat conduction equation with the linear terms:

@tF .x; y; t/ D ˚�
˛@2x C ˇ@x@y C �@2y

�C bx C cy
�

F .x; y; t/ (107)

.min f˛; ˇ; �g > 0/
and the initial condition:

F .x; y; 0/ D f .x; y/ :

It can be solved in the way, similar to that in [31, 40], where one-dimensional case
was studied, or with the help of the famous Baker–Campbell–Hausdorf formula:

exp
� OA C OB

�
D exp

 

� Œ OA; OB�
2

!

exp
� OA
�

exp
� OB
�
:

We apply it to the operators given by

OA D ˛@2x C ˇ@x@y C �@2y

and

OB D bx C cy;

which are distinguished in (107), and we make consequent use of the operational
identities, such as

eˇ@x@y ebxCcy D eˇb@yCˇc@x ebxCcy eˇ@x@y ;

e˛@
2
x eˇx g .x; y/ D eb2˛ ebx e2b˛@x e˛@

2
x

and

e�@x e˛x g .x/ D e˛xC˛� e�@x g .x/ ;

to obtain (after some manipulations with the operators in the exponential) the
following two-dimensional generalization of the solution (100):

F .x; y; t/ D e� O�x O�y OE f .x; y/ ; (108)
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where

� D .˛b2 C �c2 C ˇbc/t3=3C t.bx C cy/

is the phase,

O�x D e t2.˛bCˇc=2/@x

and

O�y D et2.�cCˇb=2/@y

are the diffusion operators for each of the two coordinates and

OE D exp
�
t
�
˛@2x C ˇ@x@y C �@2y

��
(109)

represents the heat diffusion operator for the two-dimensional case, analogous
to OS operator in (25) in the one-dimensional case. These operators consequently
transform the initial function f .x; y/ exactly as in the one-dimensional case:

F.x; t/ / O� OSf .x/ :

The result of the action of the heat diffusion operator OE on the initial condition is
given by

f .x; y; t/ D OEf .x; y/

and, consequently, the commuting diffusion operators O�x and O�y shift the argument
of the function f as follows:

O�x O�yf .x; y; t/ D f

 

x C t2
�
˛b C ˇc

2

�
; y C t2

�
�c C ˇb

2

�
; t

!

:

Thus, in complete analogy with the one-dimensional case, we obtain the solution
of the two-dimensional heat conduction equation with linear terms (107) in the
following form:

F.x; y; t/ D e� O�x O�y OEf .x; y/

/ f

 

x C t2
�
˛b C ˇc

2

�
; y C t2

�
�c C ˇb

2

�
; t

!

: (110)

The explicit double integral form of the operator OE was obtained in [15] and it is
of the Gauss type integral, which we omit here for the sake of conciseness. It is
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easy to demonstrate that in the case of ˇ D 0 the heat diffusion is executed by the
one-dimensional operators (25) OSx OSy instead of the more general operator OE. The
solution in this case reads as follows:

F.x; y; t/ D e� O�x O�y OSx OSyf .x; y/ / f
�
x C t2˛b; y C t2�c; t

�
: (111)

We note that the operational definition (109) allows for the direct computation of
the result in many cases, avoiding the necessity to calculate the double integral for
the operator OE. Let us, for example, choose the initial function in the form of the
powers of x and y:

f .x; y/ D xmyn:

Then, according to the operational definition of the Hermite polynomials of four
variables and two indices Hm;n .x; t˛; y; t� j ˇ/ (see, for example, [11, 15] and [10]),
we obtain

OE fxmyng D Hm;n .x; t˛; y; t� j tˇ/ ; (112)

where Hm;n .x; t˛; y; t� j ˇ/ are the above-mentioned Hermite polynomials with the
following generating exponent:

1X

m;n

umvn

mŠnŠ
Hm;n .x; ˛; y; � jˇ/ D exp

�
xu C ˛u2 C yv C �v2 C ˇuv

�
: (113)

The presentation of Hm;n .x; t˛; y; t� j ˇ/ in the form of sums (see [15]) of the two-
variable Hermite polynomials Hm .x; y/, defined in (39), reads as follows:

Hm;n .x; ˛I y; � j ˇ/ D mŠnŠ
min.m;n/X

sD0

ˇs

sŠ.m � s/Š.n � s/Š
Hm�s .x; ˛/Hn�s .y; �/ :

(114)

The action of the translation operators O�x O�y on the Hermite polynomials

Hm;n .x; t˛; y; t� j ˇ/
yields the solution of the two-dimensional heat type equation, with the linear terms
(107) and with the initial condition in the form of powers given by

f .x; y/ D xmyn;

as follows:

F .x; t/ D e� Hm;n

 

x C t2
�
˛b C ˇc

2

�
; t˛I y C t2

�
�c C ˇb

2

�
; t�

ˇ̌
ˇ
ˇ tˇ

!

: (115)
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It appears evident that the obtained solution (115) of the two-dimensional heat
conduction problem (107) represents a direct generalization of the solution (102)
for the one-dimensional heat conduction analog (99).

Fokker-Planck Type Equations

The equations of the Fokker-Planck type are frequent in many physical problems. It
is enough to mention the propagation of beams of charged particles in accelerators
and in insertion devices, such as undulators, and the relevant problems in FEL
modeling. For example, the following operator:

�
2t

�

� �
�2" @

2
x C @xx

�

appears, when the electron beams in accelerators and in storage rings are modeled
with account for the diffusive and for the damping effects in them, where � is the
typical damping time of the electron beam due to the synchrotron radiation of the
electrons in the bending magnets and �" is their deviation from the so-called uniform
distribution. The diffusion and the damping processes, acting together, equilibrate
each other with time passing, and, thus, the stationary solution eventually appears.
The evolution operator for the above-mentioned problem consists of the operators

OA D
�
2t

�

�
�2" @

2
x

and

OB D
�
2t

�

�
@xx:

Their commutator reads as follows:

h OA; OB
i

D
�
4t

�

�
�2"

OA D m OA

and (upon their ordering in the exponential) we obtain

U.t/ D exp
� OA C OB

�
D exp

�
1 � exp.�m/

m
OA
�

exp. OB/: (116)

After the above-considered examples, the operational solution of the following one-
dimensional Fokker–Plank equation:

@tF.x; t/ D ˛@2xF.x; t/C ˇx@xF.x; t/;F .x; 0/ D f .x/ (117)
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seems elementary. Indeed, we construct

F .x/ D OUf .x/ ; OUf .x/ D exp
�
t˛@2x C tˇx@x

�
f .x/ D exp

�
�@2x

�
f
�
eˇt x

�
; (118)

where

� D �
1 � e�2ˇt

� ˛
ˇ
;

and we proceed along the lines of the solution of Schrödinger equation. Upon the
trivial change of variables, we obtain

OUf .x/ D OSf .y/;

y D x exp.b/

and

OS D exp
�
2
@2y

�
;

where

.t/ D ˛

ˇ

�
e2ˇt �1�

and we end up with the following simple solution of the Eq. (117):

F.x; t/ D 1p
2�

Z 1

�1
exp

 

�
�
eˇt x � �

�2

2

!

f .�/d�: (119)

For example, for the initial Gaussian distribution given by

f .x/ D exp
��x2

�

by means of the Gauss transforms, we obtain the solution in the following form:

F.x; t/jf .x/Dexp.�x2/ D 1
p
1C 2.t/

exp

�
� e2ˇt x2

1C 2.t/

�
; (120)

where

.t/ D ˛

ˇ

�
e2ˇt �1� :

The solution of the following equation very similar to (117):

@tF.x; t/ D ˛@2xF.x; t/C ˇ@xxF.x; t/ (121)
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differs from (120) just by the common phase factor. For the initial Gaussian function

f .x/ D exp
��x2

�
;

common for charged particle beams in accelerators, the solution of the Eq. (121)
reads as follows:

F.x; t/jf .x/Dexp.�x2/ D eˇt

p
1C 2.t/

exp

�
� e2ˇt x2

1C 2.t/

�

D 1
p
�.t/

exp

�
� x2

�.t/

�
; (122)

where

�.t/ D 2˛

ˇ

�
1 � e�2ˇt C ˇ

2˛
e�2ˇt

�
:

Differently from the Schrödinger equation solution, the function f in the Fokker–
Plank type equation solutions is transformed by the sole operator OS [compare
Eqs. (118) and (122) with Eqs. (100) and (97)]. Moreover, the dependence on time
is more complicated in the Fokker–Plank type solutions.

Let us consider the following generalization of the Fokker–Plank type equation:

@tF.x; t/ D �
˛@2x C .ˇx C 2˛ı/@x C ˇıx C �

�
F.x; t/ (123)

with the initial condition of the Gaussian type:

f .x/ D exp
��x2

�
:

By distinguishing the operator @x C ı, we conclude that the solution of the
generalized Fokker–Plank equation (123) reduces to the solution of Eq. (117) for
the function G with the initial condition:

g .x/ D G .x; 0/ D eıx f .x/ D exp
�
ıx � x2

�
:

In its turn, the solution for G .x; t/ can be obtained through the following Gauss
transforms:

G .x; t/ D 1p
2�

Z 1

�1
g .�/ exp

"

�
�

eˇt x � �p
2

�2#

d�:

Then, for

F .x; t/ D e��˛ı2 e�ıx G .x; t/ ;

we readily obtain the solution of Eq. (123) in the following form:
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F.x; t/jf .x/Dexp.�x2/

D
exp

h
� � �

ı
2

�2
.4˛ � 1/� ıx

i

p
1C 2.t/

exp

 

�
�
eˇt x � ı=2�2
1C 2.t/

!

: (124)

Operational Solutions for Some Second Order of Time Partial
Differential Equations

Some Second Order of Time Partial Differential Equations with
Constant Coefficients

The operational method for solution of differential equations can be successfully
applied for the second order of time partial differential equations as well. Let us
consider the equations of the following type:

�
@2

@t2
C "

@

@t

�
F .x; t/ D OD .x/F .x; t/ ; (125)

where OD .x/ is a differential operator, acting over the coordinate, such as, the heat
diffusion operator @2x or the Laguerre derivative LDx or any other. General solution
of Eq. (125) reads as follows:

F .x; t/ D e� t"
2

�
e� t

2

p
"2C4 OD.x/ C1 .x/C e

t
2

p
"2C4 OD.x/ C2 .x/

�
; (126)

where C1;2 .x/ are to be determined from the initial conditions. Suppose that the
initial condition

F .x; 0/ D f .x/

is given and, for example, we can require for the second-order equation (125) that
its solution converges at infinite time t ! 1, which is reasonable for physical
applications. Other initial conditions are, of course, possible, but they will be
considered elsewhere. The above choice sets

C2 .x/ D 0
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and the remaining branch of the solution is subject to the Laplace transforms as
follows:

e�t
p

V D t

2
p
�

Z 1

0

d�

�
p
�

e� t2
4� ��V

; t > 0: (127)

Thus, we obtain for Eq. (125) the following fading at infinite time solution:

F .x; t/ D e� "t
2

t

4
p
�

Z 1

0

d�

�
p
�

e� t2
16� e��"2 e�4� OD.x/ f .x/ ; (128)

provided that the integral converges. The particular form of the solution depends
on the operator OD .x/ and on the initial function f .x/. Let us now consider a few
examples.

Laguerre-Type Diffusion with the Second-Order Time Derivative

We first choose

OD .x/ D @xx @x �L Dx;

so that we seek a solution of the following equation:
�
@2

@t2
C "

@

@t

�
F .x; t/ D @

@x
x
@

@x
F .x; t/ ; (129)

where

F .x; 0/ D f .x/

and

F .x;1/ < 1:

To this end, we have to calculate the result of the action of the exponential
Laguerre derivative operator on the initial function:

e�4�LDx f .x/ :

The simplest example of the initial function, for which the integral surely converges,
is, perhaps, the power function

f .x/ D .�x/n

nŠ
:

Then

e�4�LDx f .x/ D Ln .x; 4�/



Solutions of Some Types of Differential Equations 609

and the fading at t ! 1 solution of the second order of time Laguerre diffusion
equation (129) with the initial condition:

f .x/ D .�x/n

nŠ

reads as follows:

F .x; t/ D e� "t
2

t

4
p
�

Z 1

0

d�

�
p
�

e� t2
16� ��"2 Ln .x; 4�/ : (130)

Further calculations can be done with account for the series presentation (43),
while the machine computations favour the form (44) with one argument of Ln .z/.
Calculation of the integral in

t

4

Z 1

0

.4u/m du

u
p

u
exp

�
� t2

16u
� u"2

�
D p

t"
� t

"

�m

K 1
2�m

� t"

2

�
; (131)

where Kn .y/ are the modified Bessel functions of the second kind, yields the
following solution:

F .x; t/ D e� t"
2

r
t"

�
nŠ

nX

rD0

.�x/r

.n � r/Š .rŠ/2

� t

"

�n�r

K 1
2�.n�r/

� t"

2

�
: (132)

The above sum can be easily computed, since the Bessel functions with half-integer
indices have explicit expression in terms of elementary functions:

K� .z/ D
r
�

2

e�z

p
z

Œj�j�1=2�X

jD0

.j C j�j � 1=2/Š

jŠ.�j C j�j � 1=2/Š
.2z/�j

�
� � 1

2
2 Z

�
: (133)

For example, for the initial function

f .x/ D x2

and for

F .x;1/ < 1;

we obtain the following solution of Eq. (129):

F.x; t/jnD2 D e�t"
�
2t2"C x2"3 C 4t

�
1 � x"2

��
=2"3: (134)



610 H.M. Srivastava and K.V. Zhukovsky

We note that (134) diverges for " ! 0:

lim
"!0

F .x; t/

ˇ
ˇ
ˇ
ˇ
nD2

/ .1=0/:

Evidently, in the case of " D 0, we have the following equation:

@2

@t2
F .x; t/ D OD .x/F .x; t/ (135)

and, for the differential operator OD given by

OD .x/ D LDx;

it reads as follows:

@2

@t2
F .x; t/ D @xx@xF .x; t/ : (136)

In order to solve it, we compute the following integral:

t

2

Z 1

0

umdu

u
p

u
exp

�
� t2

4u

�
D 4�mt2m�

�
1

2
� m

�
;

arising instead of (131). With its help, we obtain the solution of (136) for the initial
function given by

f .x/ D xn

as follows:

F .x; t/ D nŠp
�

nX

rD0

.�x/r 4�.n�r/t2.n�r/� Œ1=2� .n � r/�

.n � r/Š .rŠ/2

D nŠ
.�x/n C.�2n/

2n

�
t

2
p

x

�

� .1C 2n/
; (137)

where Ck
n .x/ is the Gegenbauer polynomial of degree k in x. Formula (137) yields

the following particular result for n D 2:

F .x; t/jnD2 D 1

12

�
t4 C 12t2x C 6x2

�
:

More scrupulous study may consist, for example, in defining a new variable "t and
then seeking a limit of " ! 0 such that

"tjt!1 D constant:
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Black–Scholes Type Second Order of Time Differential Equations

Let us consider the Black–Scholes type differential operator in the right-hand side
of the second-order differential equation, namely

�
@2

@t2
C "

@

@t

�
G.x; t/ D

�
x2
@2

@x2
C 	x

@

@x
� �

�
G.x; t/; (138)

where

G .x; 0/ D g .x/

and

G .x;1/ < 1:

Distinguishing the full square of the operator ND given by

ND D x@x;

we have to compute the result of the action of the exponential operator:

exp

"

�4�
 �

ND C 	

2

�2
� �

!#

g .x/ ;

where

� D �C
�
	

2

�2
:

In order to achieve it, we exploit the operational identity (17), by applying it to the
exponential operator:

exp

"�
ND C 	

2

�2#

:

We thus obtain

e�4�. NDC 	
2 /

2 D
Z 1

�1
exp

�
�u2 C 2iu	

p
� C 4iu

p
� ND

� dup
�
:

Upon the action on g .x/, we get

exp
�
4iu
p
�x@x

�
g .x/ D g

�
e4iu

p
�x
�
;
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which yields the function:

g .x; �/ D e�4�. NDC 	
2 /

2

f .x/ D 1p
�

Z 1

�1
e�u2C2iu	

p
� g
�

e4iu
p
� x
�

du; (139)

and the solution of Eq. (138) now takes the following form:

G .x; t/ D e�t"=2 t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�
� "2� C 4��

�
g .x; �/ : (140)

Eventually, we consider the following rather complicated differential equation of
the second order in time and coordinate:

�
@2

@t2
C "

@

@t

�
F .x; t/

D
�

x2
@2

@x2
C 2˛x2

@

@x
C 	x

@

@x
C .˛x/2 � �

�
F .x; t/ : (141)

With the initial condition:

F .x; 0/ D f .x/ ;

we seek non-diverging at infinite times solution:

F .x;1/ < 1:

The solution arises directly from (140) and (139) and from (138). By noting that
Eq. (141) is, in fact, Eq. (138) with @x C ˛ instead of @x, we write our solution

F.x; t/ D e�˛x G.x; t/;

where G .x; t/ satisfies Eq. (138) with the initial condition:

g.x/ D G.x; 0/ D e˛x F.x; 0/ D e˛x f .x/;

and we demand

F .x;1/ < 1 and G .x;1/ < 1;

respectively. Now the expression (140) for G .x; t/ with account for (139), where

g.x/ D e˛x f .x/;

provides our solution

F.x; t/ D e�˛x G.x; t/:

Consider the simple example of the initial function:
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f .x/ D e�˛x xn;

which illustrates the above-described technique. It returns g .x/ D xn and we easily
obtain upon the integration over du and d� the function G.x; t/ given by

G .x; t/ D xn exp
h
� t

2

�
"C

p
"2 C 4 Œn .n � 1C 	/� � �

�i
: (142)

It, in turn, yields the desired solution:

F .x; t/jt!1 < 1
of (141) with

f .x/ D e�˛x xn

as follows:

F .x; t/ D xn exp
h
�˛x � t

2

�
"C

p
"2 C 4 Œn .n � 1C 	/� � �

�i
: (143)

The solution for the particular case " D 0 reads as follows:

F .x; t/j"D0 D xn e�˛x�t
p

n.n�1C	/��=4 :

Hyperbolic Heat Conduction Equation

Another example of the operator OD .x/ in the right-hand side of the Eq. (125) is given
by the following telegraph type equation with the first order of time derivative term,
known also as a hyperbolic heat conduction equation:

�
@2

@t2
C "

@

@t

�
F .x; t/ D

�
˛
@2

@x2
C �

�
F .x; t/ ; (144)

where

F .x; 0/ D f .x/ and F .x;1/ < 1:

The non-diverging solution for the initial function f .x/ evidently reads as follows:

F .x; t/ D e� "t
2

t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�
� �

�
"2 C 4�

�
�

e�4˛�@2x f .x/ :

(145)
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In this case, we have to compute the result of the action of the operator OS:

e�4˛�@2x f .x/ ;

which can be accomplished with the help of the identity (17), resulting in

F .x; t/ D e� "t
2

t

4
p
�

Z 1

0

du

u
p

u
exp

�
� t2

16u
� u

�
"2 C 4�

��

� 1p
�

Z 1

�1
e�v2 f

�
x C 2iv

p
�
�

dv; (146)

where � D 4u˛. For example, for the initial function:

f .x/ D e�x xn;

we make use of the operational identity (72) to obtain the exact form of the solution:

lF .x; t/ D t e� t"
2 C�x

4
p
�

Z 1

0

Hn .x � 2��;��/
u
p

u
exp

�
� t2

16u
� uı

�
du; (147)

where

ı D "2 C 4
�
� C ˛�2

�
:

The Hermite polynomials possess the sum-presentation (39), which allows the
integration, but the result is rather cumbersome and we omit it for brevity. The
simpler example of

f .x/ D xn

produces more compact Hermite polynomials upon the action of the operator OS on
it according to the operational definition (39). Thus, the solution of the Eq. (144)
reads as follows:

F .x; t/ D e� t"
2

t

4
p
�

Z 1

0

Hn .x;�4˛u/

u
p

u
exp

�
� t2

16u
� u

�
"2 C 4�

��
du

D e� t"
2

s
t
p
"2 C 4�

�
nŠ
Œn=2�X

rD0

.�˛/r .x/n�2r

.n � r/Š rŠ

�
tp

"2 C 4�

�r

� K 1
2�r

� t

2

p
"2 C 4�

�
: (148)

For ˛ D 1, � D 0 and n 2 Nnf0g D f2; 3; 4; � � � g, we obtain the following solutions:
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F .x; t/jnD2 D e�t"
��2t C x2"

�

"
;

F .x; t/jnD3 D e�t" x
��6t C x2"

�

"
;

F .x; t/jnD4 D e�t"
�
12t2"C x4"3 � 12t

��2C x2"2
��

"3
;

and so on.
Eventually, let us choose the initial function:

f .x/ D eix;

which, upon the double integration in (146), produces the following simple solution
for the telegraph equation (144):

F .x; t/ D exp
h
ix � t

2

�
"C p

V
�i
; (149)

where

V D "2 C 4 .� � ˛/ :
We observe that the above solution presents no spread, but just the fading of the
initial function with time. The physical meanings of the above equation and its
solution become transparent upon considering a signal in a section of a transmission
line in terms of voltage and current. We assume that the cable is imperfectly
insulated so that there are both capacitance and current leakage to ground; the
current in the electrical circuit is schematically shown in Fig. 1.

The equation of the voltage u .x; t/ in a cable line at any point and at any time is
given by the following one-dimensional hyperbolic second-order telegraph equation

A
+

-

B

i(x +dx,t)i(x,t)

x +dxx

u(x +dx,t)u(x,t)

Ldx R dx

G dx C dx

-

Fig. 1 Schematic diagram of a telegraphic transmission line with leakage
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(see [25]):

�
@2

@t2
C .a C b/

@

@t

�
u .x; t/ D

�
c2
@2

@x2
� ab

�
u .x; t/ ; (150)

where

a D G

C
; b D R

L
and c2 D 1

LC
:

Evidently, in our notations

˛ D c2; � D �ab; " D .a C b/

and

V D .a � b/2 � .2c/2 ;

and for
�

G

C
� R

L

�2
>

4

LC
;

the solution fades without shift:

u .x; t/ D exp
h
ix � t

2

�
"C p

V
�i

.V > 0/:

In the case when
�

G

C
� R

L

�2
<

4

LC
;

the voltage behaviour in the circuit exhibits the spatial shift and minor fading

u .x; t/ D exp
h
i
�

x � t

2

p
jVj
�

� t

2
"
i

.V < 0/;

which is determined exclusively by ". Thus, we have obtained the exact solution for
the voltage in an imperfect electric cable at any time and any point for the given
initial voltage u.x; t D 0/. The example of u .x; t/ for the values of G D C D R D
L D 1 in the cable line and for the initial voltage distribution given by

u .x; 0/ D cos x

demonstrates the temporal fading and shift in Fig. 2.
In the context of heat conduction, the following equation:
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Fig. 2 Time and space distribution of the voltage u .x; 0/ D cos x in the cable for G D C D R D
L D 1

r2T D 1

DT

@T

@t
C �

DT

@2T

@t2

arises, where DT is the thermal diffusivity. The ratio given by

vt D p
DT=�

is a velocity-like quantity, representing the speed of the heat wave in the medium,
which characterizes the thermal wave propagation the same way as the diffusion
behaviour is characterized by the diffusivity. The material parameter � is an intrinsic
thermal property, representing the build-up period for the initiation of a heat flow
after a temperature gradient was imposed at the boundary of the domain. The heat
flow does not start instantaneously, but rises gradually with a relaxation time �
after the application of the temperature gradient. Thus, there is a phase lag for
the disappearance of the heat flow after removal of the temperature gradient. This
relaxation time is associated with the linkage time of phonon–phonon collision,
necessary for the initiation of a heat flow and is a measure of the thermal inertia
of the medium. The telegraph equation (144) with � D 0 then describes a one-
dimensional case of the above non-Fourier heat conduction. The solution of the
hyperbolic heat equation (144) in three-dimensional case with r2 instead of @2x
assumes the following form:
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F .x; y; z; t/ D e� "t
2

t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�
� �

�
"2 C 4�

�
�

� OSx OSy OSzf .x; y; z/ ; (151)

where

f .x; y; z/ D F.x; y; z; 0/;

and consists in the action of the heat diffusion operators for each coordinate on the
initial function:

OSx OSy OSzf .x; y; z/ ;

OS` D e�4˛�@2` f .`/ .` D x; y; z/:

Their explicit action can be obtained in complete analogy with (146) and contains
multiple integrals of Gauss type. The operational definition (25) is also useful in this
context.

It is now easy to modify the telegraph equation (144) by adding non-commuting
with @2x terms such as x and other, in the right-hand side of (144) and, accounting
for the commutators, arising in the exponential, obtain the solution. The examples
of such generalization will be considered elsewhere.

Some Second Order of Time Partial Differential Equations with
Mixed Derivatives and Non-constant Coefficients

On the way of generalization of the above-developed operational technique for
solution of higher order partial differential equations, let us consider Eq. (125),
where the coefficient " is an operator O" .x/:

�
@2

@t2
C O" .x/ @

@t

�
F .x; t/ D OD .x/F .x; t/ : (152)

Its non-diverging at the t ! 1 solution, developing from

F .x; 0/ D f .x/ ;

follows from (128):

F .x; t/ D e� t
2 O".x/ t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�

�
e��ŒO".x/�2 e�4� OD.x/ f .x/ : (153)

The way we proceed with the calculation of the above integral totally depends on
the explicit form of the operators O" .x/ and OD .x/. Dependently on the value of their
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commutator ŒO"2; OD�, we may apply the appropriate identity to decompose them.
Perhaps, the simplest example is given by the set of the operators:

O" D "@x and OD D @2x C �2;

which yield the following modified hyperbolic heat conduction equation with the
mixed derivative term:

�
@2

@t2
C "

@2

@x@t

�
F .x; t/ D

�
@2

@x2
C �2

�
F .x; t/ ."; � D constant/: (154)

Its non-diverging solution for

F .x; 0/ D f .x/ and F .x;1/ < 1

reads as follows:

F .x; t/ D e� t
2 "@x

t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�
� 4�2�

�
exp

��� �4C "2
�
@2x
�

f .x/

D t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�
� 4�2�

�
O� OSf .x/ : (155)

Hence, the solution consists in the action of the operator OS, given by

OS D exp
��� �4C "2

�
@2x
�

f .x/

and, in the shift along the x-axis, executed by the operator O� given by

O� D e� t
2 "@x

with the consequent integration of the resulting function with the kernel of the
exponential-power product. For example, for the initial power function xn, we
readily obtain the Hermite polynomials according to their operational definition
(39), so that the solution of Eq. (154) reads as follows:

F .x; t/jf .x/Dxn D t

4
p
�

Z 1

0

d�

�
p
�

Hn

�
x � t"

2
;�� �4C "2

��

� exp

�
� t2

16�
� 4�2�

�
: (156)

The integration can be accomplished if we expand Hn .x; y/ in the series in (39),
resulting in
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F .x; t/jf .x/Dxn D nŠ

r
2t�

�

Œn=2�X

rD0

.x � t"=2/n�2r

23r.n � 2r/ŠrŠ

 

� t
�
4C "2

�

�

!r

K 1
2�r .t�/ : (157)

For example, with the initial function:

f .x/ D x2

for (154), its solution (157) reduces to

F .x; t/jnD2 D e�t�

 
4x2� C t

� � 4C "
� � "C � .�4x C t"/

��

4�

!

and for

f .x/ D x3;

we obtain

F .x; t/jnD3 D e�t�

0

B
B
@

.�2x C t"/

�
4x2� C t

� � 12C "
�� 3"C � .�4x C t"/

���

8�

1

C
C
A :

In the particular case when " D 1 and � D 0, we end up with

F .x; t/j"D1;�D0 D nŠ t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�

� Œn=2�X

rD0

.�5�/r �x � t
2

�n�2r

.n � 2r/Š rŠ

D nŠp
�

Œn=2�X

rD0

.x � t=2/n�2r

.n � 2r/Š rŠ

�
� 5

16

�r

t2r�

�
1

2
� r

�
: (158)

Eventually, let us explore the solution of the following differential equation of
the second order:

�
@2

@t2
C "

@2

@x@t

�
F .x; t/ D

�
@2

@x2
C ˇx@x

�
F .x; t/ ."; ˇ D constant/; (159)

where the right-hand side is that of the Fokker–Plank equation with the operator
given by

OD D @2x C ˇx@x

and the left-hand side contains, apart the second order time derivative @2t , the
operator given by
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O" D "@x:

The solution (153) of Eq. (159) involves the operator given by

O"2 D "2@2x ;

commuting with the second-order derivative in OD. Thus, the exponential of (153)
now includes

�� O"2 � 4� OD D �a@2x � bx@x;

where

a D �
�
"2 C 4

�
> 0; b D 4�ˇ > 0 and

a

b
D "2 C 4

4ˇ

and

F .x; t/ D e� t
2 "@x

t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�

�
e�a@2x�bx@x f .x/ : (160)

The exponential in

OU D e�a@2x�bx@x

is not different from that in a common Fokker–Plank equation and we proceed along
the lines, designated in [10] and [31, 35] to obtain

OU D OSf .y/ ;

OS D e� 1
2 @

2
y

and

y D e�b x;

so that the solution of Eq. (159) reads as follows:

F .x; t/ D t

4
p
�

Z 1

0

d�

�
p
�

exp

�
� t2

16�

�
O� OSf .y/ ; (161)

where

O� D e� t
2 "@x :

For the initial Gaussian function given by
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f .x/ D exp
��x2

�
;

we have

OUf .x/ D OSf .y/ D 1p
1 � 2

exp

�
�e�2b x2

1 � 2
�
; (162)

where

 D a

b

�
1 � e�2b

� D "2 C 4

4ˇ

�
1 � e�8ˇ�� :

Thus, for the initial Gaussian function:

f .x/ D exp
��x2

�
;

the limited at infinite times solution (153) of Eq. (159) becomes

F .x; t/jf .x/De�x2 D t

4
p
�

Z 1

0

d�e
� t2
16� � e�8�ˇ.x�t"=2/2

1�2.1�e�8ˇ� .1�2ˇ�"2//=ˇ

�
p
�
p
1 � 2.1� e�8ˇ� .1 � 2ˇ�"2//=ˇ : (163)

Evidently, the integral converges regularly, provided that

ˇ >
"2

2
C 2;

and (for " D 0) it becomes

F .x; tI " D 0/jf .x/De�x2 D t

4
p
�

Z 1

0

exp
�
� t2

16�
� e�8�ˇ.x/2

1�2.1�e�8�ˇ/=ˇ

�

�
p
�
p
1 � 2.1� e�8�ˇ/=ˇ

d�: (164)

The above solution was validated numerically; it satisfies Eq. (159). The function

F .x; t/jf .x/De�x2

for " D 0 and ˇ D 4 is plotted in Fig. 3.
We observe the temporal fading of the Gaussian. Non-zero values of " break the

coordinate symmetry of the solution as seen in Fig. 4 for " D 1:5; ˇ D 4. Observe
the temporal fading, accompanied by the shift of the initial Gaussian in Fig. 4.

The above-developed operational technique can be applied for other equations,
involving more complicated differential operators. The examples will be considered
in the forthcoming publications.
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Fig. 3 Solution of equation�
@2

@t2

�
F .x; t/ D

�
@2

@x2 C ˇx@x

�
F .x; t/ for

f .x/ D exp.�x2/, ˇ D 4

Fig. 4 Solution of equation�
@2

@t2 C " @2

@x@t

�
F .x; t/ D

�
@2

@x2 C ˇx@x

�
F .x; t/ for

f .x/ D exp.�x2/�,
" D 1:5; ˇ D 4

General Families of Special Functions and Orthogonal
Polynomials for the UR Studies

Concluding our survey, we note that many equations in physics and, in particular,
in physics of accelerators, as well as the equations, related to the propagation and
to the radiation of charged particles, assume compact form in operational notations.
For example, the Colson equation, common in the physics of FEL, in the limit of
low FEL gain, has the following integro-differential form (see [13]):

da

d�
D i�g0

Z �

0

� 0a.� � � 0/ exp
��i�� 0� d� 0; (165)

where g0 is the FEL gain in the low gain limit, a is the dimensionless strength of the
Colson’s field. In terms of the inverse derivative operator (2) this equation reads as
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follows:

ei�� D�a.�/ D i�g0D
�2
�

˚
ei�� a.�/

�
: (166)

The above-developed technique, involving exponential operators, can be applied
for modeling the dynamics and the radiation processes in FEL and in UR devices.
With account for inhomogeneous losses, for example, due to the energy spread of
electrons in the beam, the beam divergency etc., the Colson’s equation (165) is
modified accordingly (see [4]):

da

d�
D i�g0

Z �

0

� 0a.� � � 0/ OO exp
��i�� 0� d� 0; (167)

where the operator OO describes the losses. For example, the energy spread is
accounted for by

OO D e
1
2 ��"@

2
� :

The non-periodic constituents in the undulator magnetic field, the energy spread
and the beam divergency can be accurately accounted for by the generalization of
the Airy functions (see [22] and [32]). The solutions obtained in [14, 33, 34, 36, 37]
and [38, 39] analytically describe the spectrum, the intensity and the emission line
shape of the emitted harmonics. The emission line shape differs from the commonly
used function given by

sinc�n � sin �n

�n
;

where

�n D �nN

�
!

!n
� 1

�

is the detuning parameter, describing the deviation of the radiation frequency! from
the central frequencies of each harmonic !n. The accurate account is possible by the
generalized Airy functions, which have the following integral form:

S .˛; ˇ; "/ �
Z 1

0

exp
�
i
�
˛ � C " �2 C ˇ �3

��
d�

D
1X

nD0

in

.n C 1/Š
Hn .˛;�ˇ;�i"/ : (168)

They can also be rewritten as the following series of the generalized Hermite
polynomials of three indices:
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Hn .x; y; z/ D nŠ
Œn=3�X

rD0

zn�3r

.n � 3r/ŠrŠ
Hn .x; y/ ; (169)

where the polynomials Hn .x; y/ are given either by series or by the operational
definition (39) and are reduced to the common Hermite polynomials (41). Although
less useful for practical purposes, this form reveals the link of the generalized Airy
function S.x; y; z/ to the polynomials with the following exponential generating
function:

1X

nD0

tn

nŠ
Hn .x; y; z/ D exp

�
xt C yt2 C zt3

�
: (170)

Considering the fact that the expression for the UR intensity involves series of
generalized Bessel functions, which may have two, and more, arguments and
indices, it is definitely preferable to substitute the second involved series of the
Hermite polynomials by their operational definition for the easy of manipulation.
Indeed, the operational exponential definition given by

Hn.x; y; z/ D exp
�
y @2x C z @3x

� fxng (171)

yields the following operational presentation for the generalized Airy function:

S.x; y; z/ D e�i y @2x�z @3x

Z 1

0

ei x � d�

D e�i y @2x�z @3x



sin x

x
ei x

�
: (172)

It reveals the operational relation between functions S.x; y; z/, which describe the
emission line shape with account for the losses in undulators, and the function sincx,
describing the line of the ideal device without losses. A rather detailed description
of the generalized Airy functions behaviour can be found in [8]. On the undulator
axis, where the radiation is at its maximum, the UR line shape is described by the
two-variable Airy type function

S .˛; ˇ/ D
Z 1

0

ei.˛ �Cˇ �3/ d�

D
1X

mD0

im

.m C 1/Š
Hm .˛;�ˇ/ ; (173)

and (in the ideal undulator) it is reduced to

S .˛; 0; 0/ D ei˛ sinc˛: (174)
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Simplifications follow in the operational presentation (172) of S.x; y; z/ accordingly.
Not going into the details involved (see, for example, [3, 5, 20] and [23]), we just
note that, according to Madey’s theorem (see [21]), the derivative of the UR line
shape given by

�@.sinc2�n/

@�n

describes the FEL gain in the so-called Compton or low gain regime (see Fig. 5).
In the presence of the constant magnetic field it becomes (see Fig. 6)

�@
�
S2.�n/

�

@�n
:

In this case, the dependence on the constant magnetic component is all contained
in the parameter ˇ given by

Fig. 5 Function
�@.sinc2�n/=@�n, which
describes the FEL gain with
an ideal undulator

Fig. 6 Function
�@S2 .�n; ˇ/ =@�n, which
describes the FEL gain with
account for the constant
magnetic field and for the
beam divergency
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ˇ D .2�nN/
.��H/

2

1C k2

2
C .��H/

2
; (175)

where

�H D 2p
3

k

�
�N�1

is the effective bending angle due to the constant magnetic field given by

Hd D H0�1;

H0 is the amplitude value of the strength of the periodic magnetic field, N is the
number of periods in the undulator and n is the radiated harmonic number. It is
evident from the Fig. 6 the constant field (ˇ > 0) lowers the FEL gain and shifts the
spectral maximum of the curve back, respectively, to the common value

�n D �

2
:

The increase of the strength of constant magnetic component indiscriminately
lowers the gain through the whole spectrum range because of the coherence length
is no more maintained for the electrons. The values of the order of

Hd 	 H0 � 10�4

already may cause serious disruption in the coherence of the electrons oscillations
(see [32] and [33]).

Conclusions

We obtained solutions for differential equations by means of operational method.
We demonstrated that the usages of the operational method together with integral
transforms constitute a reasonably simpler approach to a wide spectrum of differ-
ential equations. In our present investigation, not only have we obtained solutions
of relevant physical problems, but we have also demonstrated their transparent
meaning and distinguished effect of each term in the initial equation on the solution.
Moreover, we have obtained some solutions by employing generalized forms of
the Laguerre and Hermite orthogonal polynomials, which give rise to a possibility
to write solutions, in some general cases, in remarkably compact series-forms,
facilitating the analysis considerably. Frequently, they also give links to special
functions, which (on the other hand) can be generated by the operational exponents.
Such operational approaches can be even more advantageous in calculus. We



628 H.M. Srivastava and K.V. Zhukovsky

demonstrated how inverting the derivative operators of various orders and their
combinations could be a viable way to obtain easy and straightforward solutions
of various types of differential equations and mathematical problems, describing
wide range of physical processes as well.

Acknowledgements The authors are grateful to A. Borisov, A. Lobanov and A. Bubnov for
several useful discussions about the subject-matter of this investigation.
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A Modified Pointwise Estimate on Simultaneous
Approximation by Bernstein Polynomials

Gancho Tachev

Abstract We prove pointwise estimate for the approximation of the k-th derivative
of the function f by the k-th derivative of its Bernstein operator Bn. We compare our
result with similar estimates obtained earlier.

Keywords Bernstein polynomials • Simultaneous approximation • Moduli of
smoothness

Introduction

For every function f 2 CŒ0; 1� the Bernstein polynomial operator at the point x 2
Œ0; 1� is given by

Bn.f I x/ D
nX

kD0
f .

k

n
/ �
 

n

k

!

xk.1 � x/n�k: (1)

The k-th derivative of Bn.f ; x/ can be expressed as

B.k/n .f ; x/ D n.n � 1/ : : : .n � k C 1/ �
n�kX

�D0
�kf

��
n

�
�
 

n � k

�

!

� x� � .1� x/n���k (2)

with

�f
��

n

�
D f

�
� C 1

n

�
� f

��
n

�

and the k-th iterate of� is denoted by�k. This formula was established by Lorentz
in [11]. From (2) we can derive the following convergence result (see Lorentz-[11,
12]), formulated in the book of DeVore and Lorentz (see Theorem 2.1 in Chap. 10
in [1]) as:
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Theorem A. (i) If f 2 CŒ0; 1�, then kB.k/n .f / � f .k/k ! 0 if n ! 1. (ii) if f 2
CŒ0; 1�; 0 � x0 � 1 and f is .k � 1/ times continuously differentiable in some
neighborhood of x0, then B.k/n .f ; x0/ ! f .k/.x0/ whenever f .k/.x0/ exists.

The first quantitative form of Theorem A, which gives us the possibility to measure
the rate of uniform convergence kB.k/n .f / � f .k/k ! 0 in terms of the first modulus
of continuity !1.f .r/; �/ was proved by Knoop and Pottinger in [9] in 1976:

Theorem B. Let K D Œa; b� and K0 D Œc; d� be a subinterval of K; r 2 N and
L W Cr.K/ ! Cr.K0/ be almost convex of order r � 1. If L.�r�1/ � �r�1, then for
f 2 Cr.K/; x 2 K0; ı > 0 there holds

jDrf .x/� DrLf .x/j � 1
rŠ jDrf .x/j � jDrer.x/ � DrLer.x/jC

C �
1
rŠD

rLer.x/C ı�2 � ˇ2L.x/
� � !1.f .r/; ı/;

(3)

where

ˇ2L.x/ WD DrL

�
2

.r C 2/Š
� erC2 � 2

.r C 1/Š
� x � erC1 C 1

rŠ
x2 � er

�
.x/:

For more details and denotations see [9]. In his dissertation—[3] H. Gonska
improved the estimate in Theorem B showing the following (see also Theorem 3.1
in [4])

Theorem C. By the same conditions as in Theorem B there holds

jDrf .x/� DrLf .x/j � 3kDrf kK0 � j 1rŠ � DrLer.x/� 1jC

C2�L.x/ � maxf 1
ı
; 1

b�a g � !1.Drf ; ı/C

C �
3
2

� �k 1
rŠD

rLerk C 1
�C ˇ2L.x/ � maxf 1

ı
; 1

b�a g� � !2.Drf ; ı/;

(4)

where ˇ2L is the same quantity as in Theorem B and

�L.x/ D
ˇ
ˇ
ˇ
ˇD

rL

�
1

.r C 1/Š
� erC1 � 1

rŠ
� x � er

�
.x/

ˇ
ˇ
ˇ
ˇ:

Generalizing the ideas from [3, 4] Kacsó proved in [8] the following:

Theorem D. For n sufficiently large one has for r � 0:

jDrBnf .x/� Drf .x/j � r.r�1/
2n � jDrf .x/j C

C r
2
p

n
!1.Drf ; 1p

n
/C 9

8
!2.Drf ; 1p

n
/:

(5)
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Very recently, in order to derive both an error bound and an asymptotic formula for
the derivatives of Bernstein polynomial, M. Floater proved in [2]

Theorem E. If f 2 CkC2Œ0; 1�, for some k � 0, then

ˇ
ˇ.Bnf /.k/.x/� f .k/.x/

ˇ
ˇ � 1

2n

h
k.k � 1/ � kf .k/k C kj1 � 2xj � kf .kC1/kC

Cx.1 � x/ � kf .kC2/k
i
:

(6)

Similar estimate was proved by López-Moreno et al. in [10] using a completely
different approach. We point out that the idea for the proof of Theorem E is quite
different from the methods, used in Theorems B–D—where the emphasis is on the
evaluation of the moments of the operator L and their derivatives. We recall that
ei W x ! xi; x 2 Œ0; 1�; i D 0; 1; : : : are the monomial functions. If we compare
Theorem D with Theorem E by the assumption that f 2 CrC2Œ0; 1� and using the
properties of !1 and !2 we may obtain the same order O. 1n /; n ! 1 of the
convergence for jDrBnf .x/ � Drf .x/j. More detailed analysis shows that none of
the last two upper bounds (5) and (6) can be delivered from the other one, i.e. each
of the both estimates has its advantages and disadvantages. Some recent results for
Bernstein-type operators are listed in [5, 7] and the references therein. Our main
result states the following:

Theorem 1. For f 2 CkŒ0; 1� and k D 1; 2; : : : ; n � 1 one has for x 2 Œ0; 1�
ˇ̌
.Bnf /.k/.x/ � f .k/.x/

ˇ̌ � ˇ̌
f .k/.x/ � .Bn�kf .k//.x/

ˇ̌ � .1 � 1
n /

k�1C

C minf1; k.k�1/
2n g � jf .k/j C !1.f .k/;

k
n / � .1 � 1

n /
k�1:

(7)

The method of the proof is different from all the above-mentioned results and
relies on the representation (2) and some simple calculations. In section “Proof of
Theorem 1” we give the proof of Theorem 1. We end the paper with some remarks
and comparisons of our result with the previous one.

Proof of Theorem 1

We start with the following:

Lemma 1. For k � 2; n � 1 the following

1 �
k�1Y

iD1
.1 � i

n
/ � k.k � 1/

2n
(8)

holds true.
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Proof. We use induction w.r.t. k. For k D 2 (8) is obvious and we have equality.
Suppose (8) holds for k � 1. We calculate

1 �Qk
iD1.1 � i

n / D 1 �
hQk�1

iD1.1 � i
n /
i

� .1 � k
n / D

D 1 �Qk�1
iD1.1� i

n /C k
n �Qk�1

iD1.1 � i
n / � k.k�1/

2n C k
n � 1 D k.kC1/

2n :

The proof is completed.

Remark 1. To obtain an upper bound in (8) we may proceed also as follows:

1 �
k�1Y

iD1
.1 � i

n
/ � 1 �

�
1 � k � 1

n

�k�1
8
<

:

� .k�1/2
n

� 1:

(9)

In the last we have used the Bernoulli inequality. The estimate (9) was used in
Lemma 5 in [6].

Proof of Theorem 1. The formula (2) and the properties of �kf . �n / imply

B.k/n .f ; x/ D
k�1Y

iD1
.1 � i

n
/ �

n�kX

�D0
f .k/

�
�

n
C ��

k

n

�
�
 

n � k

�

!

x�.1 � x/n���k;

where 0 < �� < 1. Therefore,

B.k/n .f ; x/ D Qk�1
iD1.1 � i

n /�
n
Bn�k.f .k/; x/CPn�k

�D0
�
f .k/

�
�
n C ��

k
n

� � f .k/
�
�

n�k

�� �n�k
�

�
x�.1 � x/n�k��

o
:

(10)

Hence

B.k/n .f ; x/ � f .k/.x/ D Qk�1
iD1.1 � i

n / � ˚Bn�k.f .k/; x/� f .k/.x/
��

�
h
1 �Qk�1

iD1.1 � i
n /
i

� f .k/.x/C

CQk�1
iD1.1 � i

n / �Pn�k
�D0

�
f .k/

�
�
n C �� � k

n

� � f .k/
�
�

n�k

�� �n�k
�

�
x�.1 � x/n�k��:

(11)

In the right-hand side of (11) we have three summands. To obtain an upper bound
for the third summand in terms of !1.f .k/; �/ we evaluate the difference

A�;k;n WD .
�

n
C �� � k

n
/� .

�

n � k/
/; 0 < �� < 1; 0 � � � n � k:
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Simple calculations yield

jA�;k;nj D k

n
�
ˇ
ˇ
ˇ
� � ��.n � k/

n � k

ˇ
ˇ
ˇ � k

n
� 1; (12)

for all 0 < �� < 1; 0 � � � n � k. Consequently (10)–(12), and Lemma 1 imply

ˇ
ˇ.Bnf /.k/.x/ � f .k/.x/

ˇ
ˇ � ˇ

ˇf .k/.x/ � .Bn�kf .k//.x/
ˇ
ˇ � .1 � 1

n /
k�1C

C minf1; k.k�1/
2n g � jf .k/j C !1.f .k/; k

n / � .1 � 1
n /

k�1:
(13)

The proof of Theorem 1 is completed.

Corollary 1. For f 2 CkC2Œ0; 1� and k D 1; 2; : : : ; n � 1 one has for x 2 Œ0; 1�
ˇ
ˇ.Bnf /.k/.x/� f .k/.x/

ˇ
ˇ � .1 � 1

n /
k�1 � x.1�x/

2.n�k/ � kf .kC2/kC

C minf1; k.k�1/
2n g � kf .k/k C .1 � 1

n /
k�1 � k

n � kf .kC1/k:
(14)

Proof. With k � k-the max norm on Œ0; 1�, the error bound

jBn.g; x/� g.x/j � 1

2n
x.1 � x/ � kg00k (15)

given in Chap. 10 in [1] holds true for all g 2 C2Œ0; 1�. We apply this estimate for
g D f .k/. Also the following property of !1 is well known

!1.g; ı/ � ıkg0k for all g 2 C1Œ0; 1�: (16)

We apply this estimate for g D f .k/. Last (13), (14), and (16) complete the proof.

Remark 2. If we estimate

minf1; k.k � 1/

2n
g � k.k � 1/

2n

we observe that the second summand in the right hand side of (2.7) is the same as
appearing in Theorems D and E.

Remark 3. The main applications of Theorems D, E and Theorem 1 is for a given
function f 2 CkŒ0; 1� to measure the rate of convergence for jB.k/n .f ; x/� f .k/.x/j. On
the other hand, the estimate (7) in Theorem 1 is valid for all k D 1; 2; : : : ; n � 1.
Therefore if we take k D n

1
2C˛ , for some 0 < ˛ < 1 and again take n ! 1 , then

we obtain

k.k � 1/

2n
! 1; n ! 1
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in Theorems D and E. Instead of this in Theorem 1 we may now evaluate

minf1; k.k � 1/

2n
g � 1

and thus obtain better upper bound for the factor in front of kf .k/k. For example, if
we set f0.x/ D ex, and k0 D n

1
2C˛; ˛ 2 .0; 1/, then Corollary 1 implies

jB.k0/n .f0; x/� f .k0/0 .x/j D O.1/; n ! 1:

The last conclusion is not possible to be obtained neither from Theorem D nor from
Theorem E.

Remark 4. If now we set k1 D n � 1 and compare our main result with
Theorem E, we conclude that the factors in front of kf .kC2/k and kf .kC1/k are better
in Theorem E. But for any function, infinitely differentiable on Œ0; 1� such that
kg.n/k � C for all n D 1; 2; : : : ; (for example g.x/ D ex) according to Corollary 1
we would have

jB.k1/n .g; x/ � g.k1/.x/j D O.1/; n ! 1;

while Theorems E and D would imply

lim
n!1 jB.k1/n .g; x/ � g.k1/.x/j D 1:

To summarize our remarks we may conclude that there are cases, where the
estimates in Theorems E and D are more appropriate than those in Theorem 1 and
vice versa.
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Structural Fixed Point Results in Metric Spaces

Mihai Turinici

Abstract In Part 1, a class of anticipative contractions over quasi-ordered metric
spaces is introduced and a corresponding lot of metrical fixed point theorems is
formulated. The obtained facts include some well-known statements in the area due
to Boyd and Wong or Matkowski, as well as a recent contribution due to Choudhury
and Kundu (Demonstr Math 46:327–334, 2013). Further, in Part 2, a relative type
version is given for the fixed point result in Leader (Math Jpn 24:17–24, 1979).
Finally, in Part 3, an almost metric version is established for the 2008 Jachymski
fixed point result (Proc Am Math Soc 136:1359–1373, 2008) involving Banach
contractions over metric spaces endowed with a graph.

Keywords Quasi-ordered metric space • (Globally strong) Picard operator •
Fixed point • Admissible function • (Anticipative) Meir–Keeler contraction •
Relative Leader contraction • Left-lsc function • Admissible point • Generalized
(almost) metric space • Banach contraction • Equivalence class • Graph • Sepa-
ration • Completeness

Functional Anticipative Contractions in Quasi-Ordered
Metric Spaces

Introduction

Let X be a nonempty set. Call the subset Y 2 2X , almost singleton (in short:
asingleton) provided [y1; y2 2 Y implies y1 D y2]; and singleton if, in addition,
Y 2 .2/X; note that in this case, Y D fyg, for some y 2 X. [As usual, 2X denotes the
class of all subsets in X; and .2/X stands for the subclass of all nonempty members
in 2X]. Further, let d W X 
 X ! RC WD Œ0;1Œ be a metric over it; the couple
.X; d/ will be termed a metric space. Finally, let T 2 F .X/ be a self-map of X.
[Here, for each couple A;B of nonempty sets, F .A;B/ stands for the class of all
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640 M. Turinici

functions from A to B; when A D B, we write F .A/ in place of F .A;A/]. Denote
Fix.T/ D fx 2 XI x D Txg; each point of this set is referred to as fixed under T.
In the metrical fixed point theory, such points are to be determined according to the
context below, comparable with the one in Rus [32, Chap. 2, Sect. 2.2]:

(pic-1) We say that T is a Picard operator (modulo d) if, for each x 2 X, the
iterative sequence .TnxI n � 0/ is d-convergent; and a globally Picard operator
(modulo d) if, in addition, Fix.T/ is an asingleton

(pic-2) We say that T is a strong Picard operator (modulo d) if, for each x 2
X; .TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/; and a globally strong
Picard operator (modulo d) if, in addition, Fix.T/ is an asingleton (hence, a
singleton).

In this perspective, two basic answers to the posed question were obtained. Given
˛; ˇ � 0, let us say that T is Banach .dI˛/-contractive, provided

(a01) d.Tx;Ty/ � ˛d.x; y/, for all x; y 2 X;

and Kannan .dIˇ/-contractive, provided

(a02) d.Tx;Ty/ � ˇŒd.x;Tx/C d.y;Ty/�, for all x; y 2 X.

Theorem 1. Suppose that one of the conditions below is fulfilled:

(i) T is Banach .dI˛/-contractive, for some ˛ 2 Œ0; 1Œ
(ii) T is Kannan .dIˇ/-contractive, for some ˇ 2 Œ0; 1=2Œ.
In addition, let X be d-complete. Then, T is globally strong Picard (modulo d).

The former of these is Banach’s contraction principle [3]; and the latter one is
Kannan’s fixed point statement [17]. These results found a multitude of applications
in operator equations theory; so, they were the subject of many extensions. A natural
way of doing this is by considering (implicit) “functional” contractive conditions

(a03) F.d.Tx;Ty/; d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx// � 0,
for all x; y 2 X with x � y;

where F W R6C ! R is a function and .�/ is a quasi-order on X. When .�/ D X 
 X
(the trivial quasi-order on X), some outstanding results in the area have been
established by Boyd and Wong [6], Matkowski [23], and Leader [21]; for more
details about other possible choices of F, we refer to the 1977 paper by Rhoades
[31]. On the other hand, in the case of .�/ being a (partial) order on X, an
appropriate extension of Matkowski’s result was obtained in the 1986 paper by
Turinici [36]. (Note that, two decades later, these results have been re-discovered—
at the level of Banach contractive maps—by Ran and Reurings [30]; see also Nieto
and Rodriguez-Lopez [28]). Further, an extension—to the same setting—of the
above Leader’s contribution was performed in Agarwal et al. [1]; and, since then,
the number of such papers increased rapidly.

Note that all these conditions are non-anticipative; i.e., the left member of (a03)
does not contain terms like d.Tiu;Tjv/; u; v 2 fx; yg, where i C j � 3; so, the
question arises as to what extent it is possible to have a unitary treatment of such
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requirements so as to include anticipative contractions (in the above sense). It is our
aim in the following to give a partial answer to this, via Meir–Keeler techniques
[25]. Further aspects will be delineated elsewhere.

Preliminaries

In the following, some preliminary facts about convergent/Cauchy sequences in a
metric space and admissible functions are being discussed.

(A) Let .X; d/ be a metric space. By a sequence in X, we mean any mapping x W
N ! X where N WD f0; 1; : : :g is the set of natural numbers. For simplicity
reasons, it will be useful to denote it as .x.n/I n � 0/, or .xnI n � 0/; moreover,
when no confusion can arise, we further simplify this notation as .x.n// or .xn/,
respectively. Also, any sequence .yn WD xi.n/I n � 0/ with .i.n/I n � 0/ being
strictly ascending [hence, i.n/ ! 1 as n ! 1], will be referred to as a
subsequence of .xnI n � 0/.

We say that the sequence .xn/ in X, d-converges to x 2 X (and write: xn
d�! x)

iff [d.xn; x/ ! 0 as n ! 1]; that is

8" > 0; 9p D p."/;8n: (p � n H) d.xn; x/ < ").

The subset limn.xn/ of all such x is an asingleton, because d is triangular and
sufficient; when it is nonempty, .xn/ is called d-convergent. In this case, limn.xn/

is a singleton, fzg; as usual, we write fzg D limn.xn/ as z D limn.xn/. Further, call
.xn/, d-Cauchy provided [d.xm; xn/ ! 0 as m; n ! 1;m < n]; that is

8" > 0; 9q D q."/;8.m; n/: (q � m < n H) d.xm; xn/ < ").

Clearly, any d-convergent sequence is d-Cauchy too; when the reciprocal holds as
well, X is called d-complete. Note that any d-Cauchy sequence .xnI n � 0/ is d-
semi-Cauchy; i.e.,

(b01) d.xn; xnC1/ ! 0, as n ! 1.

Concerning these concepts, the following fact is useful.

Lemma 1. The mapping .x; y/ 7! d.x; y/ is d-Lipschitz, in the sense

jd.x; y/� d.u; v/j � d.x; u/C d.y; v/; 8.x; y/; .u; v/ 2 X 
 X: (1)

As a consequence, this map is d-continuous; i.e.,

xn
d�! x; yn

d�! y imply d.xn; yn/ ! d.x; y/: (2)

The proof is immediate, by the properties of d.:; :/; so, we omit the details.
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(B) Let F .re/.RC/ denote the class of all ' 2 F .RC/with the regressive property:
['.0/ D 0; '.t/ < t;8t > 0]. Call ' 2 F .re/.RC/, Meir–Keeler admissible,
when it satisfies

(b02) 8� > 0, 9ˇ 2�0; �Œ, .8t/: (� < t < � C ˇ H) '.t/ � � );
or, equivalently (by the choice of our function):
8� > 0, 9ˇ 2�0; �Œ, .8t/: (0 � t < � C ˇ H) '.t/ � � ).

This convention is related to the developments in Meir and Keeler [25]. Some
important classes of such functions are given below.

(I) For any ' 2 F .re/.RC/ and any s 2 R0C WD�0;1Œ, put

(b03) �C'.s/ D inf">0 ˚.sC/."/; where ˚.sC/."/ D sup'.�s; s C "Œ/

(b04) �C'.s/ D supf'.s/;�C'.s/g.

By this very definition, we have the representation (for all s 2 R0C)

�C'.s/ D inf">0 ˚ŒsC�."/I where ˚ŒsC�."/ D supf'.Œs; s C "Œ/; " > 0: (3)

From the regressive property of ', these limit quantities are finite; precisely,

0 � '.s/ � �C'.s/ � s; 8s 2 R0C: (4)

The following consequence of this will be useful. Given the sequence .rnI n � 0/ in
R and the point r 2 R, let us write

rn ! rC (respectively, rn ! r C C), if rn ! r and
rn � r (respectively, rn > r), for all n � 0 large enough.

Lemma 2. Let ' 2 F .re/.RC/ and s 2 R0C be arbitrary fixed. Then,

(i) lim supn.'.tn// � �C'.s/, for each sequence .tn/ in R0C with tn ! sC; hence,
in particular, for each sequence .tn/ in R0C with tn ! s C C

(ii) there exists a sequence .rn/ in R0C with rn ! sC and '.rn/ ! �C'.s/.

Proof. (i) Given " > 0, there exists a rank p."/ � 0 such that s � tn < s C ", for
all n � p."/; hence

lim sup
n

.'.tn// � supf'.tn/I n � p."/g � ˚ŒsC�."/:

It suffices taking the infimum over " > 0 in this relation to get the desired fact.
(ii) When �C'.s/ D 0, the written conclusion is clear, with .rn D sI n � 0/; for,

in this case, '.s/ D 0. Suppose now that �C'.s/ > 0. By definition,

8" 2�0;�C'.s/Œ; 9ı 2�0; "ŒW �C'.s/�" < �C'.s/ � ˚ŒsC�.ı/ < �C'.s/C":

This tells us that there must be some r in Œs; s C ıŒ with
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�C'.s/� " < '.r/ < �C'.s/C ":

Taking a sequence ."n/ in �0;�C'.s/Œwith "n ! 0, there exists a corresponding
sequence .rn/ in R0C with rn ! sC and '.rn/ ! �C'.s/.

Call ' 2 F .re/.RC/, Boyd–Wong admissible [6], if

(b05) �C'.s/ < s (or, equivalently:�C'.s/ < s), for all s > 0.

In particular, ' 2 F .re/.RC/ is Boyd–Wong admissible provided it is upper
semicontinuous at the right on R0C:

�C'.s/ D '.s/ (or, equivalently:�C'.s/ � '.s/), 8s 2 R0C.

Note that this is fulfilled when ' is continuous at the right on R0C; for, in such a case,
�C'.s/ D '.s/;8s 2 R0C. Another example is furnished by a preceding auxiliary
fact. Call ' 2 F .re/.RC/, Geraghty admissible [10], provided

(b06) .tnI n � 0/ � R0C and '.tn/=tn ! 1 imply tn ! 0.

Lemma 3. Let ' 2 F .re/.RC/ be Geraghty admissible. Then, ' is necessarily
Boyd–Wong admissible.

Proof. Suppose that ' 2 F .re/.RC/ is not Boyd–Wong admissible. From a previ-
ous relation, there exists s 2 R0C with �C'.s/ D s. Combining with a preceding
fact, there exists a sequence .rn/ in R0C with rn ! sC and '.rn/ ! s; whence
'.rn/=rn ! 1; i.e.: ' is not Geraghty admissible. The obtained contradiction proves
our claim.

The reciprocal of this is not in general true. In fact, the function

(' W RC ! RC): '.t/ D t.1 � e�t/; t � 0

belongs to F .re/.RC/ and is continuous; hence, necessarily, Boyd–Wong admissi-
ble (see above). On the other hand, taking the sequence .tn D n C 1I n � 0/ in R0C,
we have '.tn/=tn ! 1 and tn ! 1; hence, ' is not Geraghty admissible.

(II) Call ' 2 F .re/.RC/, Matkowski admissible [23], provided

(b07) ' is increasing and 'n.t/ ! 0 as n ! 1, for all t > 0.

[Here, 'n stands for the n-th iterate of ']. Note that the obtained class of functions
is distinct from the above introduced one, as simple examples show.

Now, let us say that ' 2 F .re/.RC/ is Boyd–Wong–Matkowski admissible
(abbreviated: BWM-admissible) if it is either Boyd–Wong admissible or Matkowski
admissible. The following auxiliary fact will be useful (cf. Jachymski [13]):

Lemma 4. Let ' 2 F .re/.RC/ be a BWM-admissible function. Then, ' is Meir–
Keeler admissible (see above).

Proof. (i) Suppose that ' 2 F .re/.RC/ is Boyd–Wong admissible; and fix � > 0.
As �C'.�/ < � , we can choose the number � > 0, with �C'.�/ < � < � ;
whence �C'.�/ < � < � . By definition, there exists ˇ D ˇ.�/ > 0 such that
� < t < � C ˇ implies '.t/ < � < � ; and conclusion follows.
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(ii) Assume that ' 2 F .re/.RC/ is Matkowski admissible. If the underlying
property fails, then (for some � > 0):

8ˇ > 0; 9t 2 Œ0; � C ˇŒ, such that '.t/ > � (hence, � < t < � C ˇ).

As ' is increasing, this yields '.t/ > �;8t > � . By induction, we get

'n.t/ > �; for each n; and each t > � I

hence, taking some t > � and passing to limit as n ! 1, one gets 0 � � ;
contradiction. This ends the argument.

Statement of the Problem

Let .X; d/ be a metric space. Further, let .�/ be a quasi-order; i.e.: a reflexive (x �
x;8x 2 X) and transitive (x � y; y � z H) x � z) relation over X; then, .X; d;�/
will be referred to as a quasi-ordered metric space. Call the subset Y of X, .�/-
asingleton, if [y1; y2 2 Y; y1 � y2] imply y1 D y2; and .�/-singleton if, in addition,
Y is nonempty. Clearly, in the amorphous case (characterized as: .�/ D X 
 X),
.�/-asingleton (resp., .�/-singleton) is identical with asingleton (resp., singleton);
but, in general, this cannot be true.

(A) Further, take some T 2 F .X/; supposed to satisfy

(c01) T is semi-progressive: X.T;�/ WD fx 2 XI x � Txg ¤ ;
(c02) T is increasing: x � y implies Tx � Ty.

We have to determine circumstances under which Fix.T/ be nonempty; and, if this
holds, to establish whether T is fix-.�/-asingleton (i.e.: Fix.T/ is .�/-asingleton);
or, equivalently: T is fix-.�/-singleton (in the sense: Fix.T/ is .�/-singleton). The
basic directions under which the investigations be conducted are shown in our list
below, comparable with the one in Turinici [37]:

(opic-1) We say that T is a Picard operator (modulo .d;�/) when, for each point
x 2 X.T;�/; .TnxI n � 0/ is d-convergent; and a globally Picard operator
(modulo .d;�/) if, in addition, T is fix-.�/-asingleton

(opic-2) We say that T is a strong Picard operator (modulo .d;�/) when, for
each point x 2 X.T;�/; .TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/;
and a globally strong Picard operator (modulo .d;�/) if, in addition, T is fix-
.�/-asingleton (hence, fix-.�/-singleton)

(opic-3) We say that T is a Bellman Picard operator (modulo .d;�/) when, for
each point x 2 X.T;�/; .TnxI n � 0/ is d-convergent with Tnx � limn.Tnx/ 2
Fix.T/;8n � 0; and a globally Bellman Picard operator (modulo .d;�/) if, in
addition, T is fix-.�/-asingleton (hence, fix-.�/-singleton).

In particular, when .�/ D X 
 X, the list of such notions is identical with the
standard one in Rus [32, Chap. 2, Sect. 2.2]; because, in this case, X.T;�/ D X.
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The regularity conditions for such properties are being founded on ascending
orbital concepts (in short: (a-o)-concepts). Call the sequence .znI n � 0/ in X,
ascending, if zi � zj for i � j; and T-orbital, when it is a subsequence of
.TnxI n � 0/, for some x 2 X; the intersection of these notions is just the precise
one.

(reg-1) Call X, (a-o,d)-complete, provided (for each (a-o)-sequence) d-Cauchy
H) d-convergent

(reg-2) We say that T is (a-o,d)-continuous, if [.zn/=(a-o)-sequence and zn
d�! z]

imply Tzn
d�! Tz

(reg-3) Call .�/, (a-o,d)-self-closed, when [.zn/=(a-o)-sequence and zn
d�! z]

imply [zn � z;8n]; or, equivalently: the d-limit of each d-convergent (a-o)-
sequence is an upper bound of it.

Finally, when the orbital properties are ignored, all (a-o)-concepts above become
a-concepts; and, if the ascending properties are ignored too, these conventions may
be written in the way encountered at introductory part; we do not give details.

(B) Let .X; d;�/ be a quasi-ordered metric space; and T be a self-map of X;
supposed to be semi-progressive and increasing. The fixed points of T are to
be determined in a setting we just exposed. It remains to discuss the contractive
type conditions to be used. Let .</ stand for the relation

(c03) x < y iff x � y and x ¤ y.

Clearly, .</ is irreflexive [x < x is false, for each x 2 X]; but not transitive, as long
as .�/ is not antisymmetric. Further, denote for each x; y 2 X,

A1.x; y/ D d.x; y/, A2.x; y/ D .1=2/Œd.x;Tx/C d.y;Ty/�,
A3.x; y/ D maxfd.x;Tx/; d.y;Ty/g, A4.x; y/ D .1=2/Œd.x;Ty/C d.Tx; y/�,
A5.x; y/ D maxfd.Tx;T2x/; d.T2x; y/g, A6.x; y/ D .1=2/Œd.x;T2x/Cd.T2x;Ty/�,
A D fA1;A2;A3;A4;A5;A6g.

By taking all possible maxima between these, one gets 26�1 D 63 functions of this
type (including the ones we just listed); these may be written as

max.H/, where H 2 .2/A (=the class of all nonempty subsets in A ).

Note that, as A2 � A3, some of these maxima are identical; precisely,

.8H 2 .2/A ; A2;A3 2 H/ W max.H/ D max.H n fA2g/I

however, this is not important for us.
Having these precise, let P W X 
 X ! RC be a map. [The standard choices for it

are from the described ones; but, some other choices are also possible]. We say that
T is Meir–Keeler contractive (modulo .d;�I P/), if

(c04) x < y;P.x; y/ > 0 imply d.Tx;Ty/ < P.x; y/
(T is strictly nonexpansive (modulo .d;�I P/))
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(c05) 8" > 0; 9ı > 0: [x < y; " < P.x; y/ < "C ı] H) d.Tx;Ty/ � "

(T has the Meir–Keeler property (modulo .d;�I P/)).

Note that, by the former of these, the Meir–Keeler property may be written as

(c06) 8" > 0; 9ı > 0: [x < y; 0 < P.x; y/ < "C ı] H) d.Tx;Ty/ � ".

In particular, when P D A1, this convention is just the one due to Meir and Keeler
[25], under the technical improvements in Matkowski [24]; see also Cirić [9].

In the following, two basic examples of such contractions are to be constructed.

(B-1) Given the map P W X 
 X ! RC and the function ' 2 F .RC/, call T,
.d;�I P; '/-contractive, if

(c07) d.Tx;Ty/ � '.P.x; y//;8x; y 2 X; x < y;P.x; y/ > 0.

Proposition 1. Assume that T is .d;�I P; '/-contractive, where ' 2 F .re/.RC/ is
Meir–Keeler admissible. Then, T is Meir–Keeler contractive (modulo .d;�I P/).

Proof. (i) Let x; y 2 X be such that x < y;P.x; y/ > 0. By the contractive
condition [and '=regressive], one has d.Tx;Ty/ < P.x; y/; so that T is strictly
nonexpansive (modulo .d;�I P/).

(ii) Let " > 0 be arbitrary fixed; and ı > 0 be the number assured by the Meir–
Keeler admissible property of '. Further, let x; y 2 X be such that x < y and
" < P.x; y/ < "C ı. By the contractive condition and admissible property,

d.Tx;Ty/ � '.P.x; y// � "I

so that, T has the Meir–Keeler property (modulo .d;�I P/).

(B-2) Let us say that . ; '/ is a pair of generalized altering functions in the class
F .RC/, provided

(c08)  is increasing, and ' is reflexive sufficient
(in the sense: '.0/ D 0 and '.R0C/ � R0C)

(c09) (8" > 0): there are no sequences .tnI n � 0/ in RC with tn ! "C C, such
that '.tn/ �  .tn/�  ."/, for all n � 0 large enough

(c10) (8" > 0): there are no sequences .tnI n � 0/ in RC with tn ! " � �, such
that '."/ �  ."/ �  .tn/, for all n � 0 large enough.

Here, for each sequence .rnI n � 0/ in R and each r 2 R, we denoted

rn ! r� (respectively, rn ! r � �), if rn ! r and
rn � r (respectively, rn < r), for all n � 0 large enough.

Given the map P W X 
 X ! RC and the couple . ; '/ of functions in F .RC/,
let us say that T is .d;�I P; . ; '//-contractive, provided

(c11)  .d.Tx;Ty// �  .P.x; y// � '.P.x; y//,
for all x; y 2 X with x < y;P.x; y/ > 0.
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Proposition 2. Suppose that T is .d;�I P; . ; '//-contractive, for a pair . ; '/
of generalized altering functions in F .RC/. Then, necessarily, T is Meir–Keeler
contractive (modulo .d;�I P/).

Proof. (i) Let x; y 2 X be such that x < y;P.x; y/ > 0. By the contractive
condition (and the choice of our pair),  .d.Tx;Ty// <  .P.x; y//. This, via
[ =increasing] yields d.Tx;Ty/ < P.x; y/; so that T is strictly nonexpansive
(modulo .d;�I P/).

(ii) Assume by contradiction that T does not have the Meir–Keeler property
(modulo .d;�I P/); i.e., for some " > 0,

8ı > 0; 9.xı; yı/ 2 .</ W Œ" < P.xı; yı/ < "C ı; d.Txı;Tyı/ > "�:

Taking a zero converging sequence .ın/ in R0C, we get a couple of sequences
.xnI n � 0/ and .ynI n � 0/ in X, so as

.8n/ W xn < yn; " < P.xn; yn/ < "C ın; d.Txn;Tyn/ > ": (5)

By the contractive condition (and  =increasing), we get

 ."/ �  .P.xn; yn// � '.P.xn; yn//; 8nI
or, equivalently,

.0 </ '.P.xn; yn// �  .P.xn; yn//�  ."/; 8n: (6)

By (5), the sequence .tn WD P.xn; yn/I n � 0/ fulfills tn ! " C C; so that
the hypothesis about . ; '/ will be contradicted. Hence, T has the Meir–Keeler
property (modulo .d;�I P/); and the proof is complete.

(C) These contractive properties must be accompanied with regularity conditions
involving the mapping P. The basic ones are described as below.

(I) We say that P is .�I T/-inf-bounded, provided

(c12) x < Tx;Tx < T2x; x < y; y ¤ Ty imply P.x; y/ > 0.

This property holds for P D Ai, where i 2 f1; 2; 3; 5g. For, if x; y 2 X are taken as
in the premise above, then

A1.x; y/ D d.x; y/ > 0; A2.x; y/ � minfd.x;Tx/; d.y;Ty/g > 0;
A3.x; y/ � minfd.x;Tx/; d.y;Ty/g > 0; A5.x; y/ � d.Tx;T2x/ > 0:

As a consequence, this property holds for all P D max.H/ where H 2 .2/A fulfills
H \ fA1;A2;A3;A5g ¤ ;.

Further, the mappings P 2 fA4;A6;max.A4;A6/g may be sometimes .�I T/-inf-
bounded. In fact, let x; y 2 X be again taken as in the premise above:

x < Tx;Tx < T2x; x < y; y ¤ Ty.
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If P.x; y/ D 0 (where P is taken as before) we anyway have x D T2x; so, replacing
in the condition above,

x < Tx; and Tx < x.D T2x/: (7)

Now, if .</ is transitive—which, e.g., happens when .�/ is antisymmetric (hence,
a (partial) ordering on X)—the obtained relation is contradictory; wherefrom, any
such mapping P.:; :/ is .�I T/-inf-bounded. But, when .</ is not transitive, a
conclusion like this does not seem to be retainable. So, from our general perspective,
any maximum function P D max.H/ where H 2 .2/A fulfills H � fA4;A6g (hence,
3 such elements) is not endowed with the .�I T/-inf-bounded property; but, the
remaining 63� 3 D 60 maximum functions fulfill the .�I T/-inf-bounded property.
[As precise, some of these are identical; but this is not essential for us].

(II) Let us say that P is .�I T/-orbitally bounded, provided

(c13) x < Tx;Tx < T2x H) P.x;Tx/ � A3.x;Tx/.

For example, any mapping P 2 fA1;A2;A3;A5g fulfills such a condition, as it can be
directly seen. But, the maps P 2 fA4;A6g also fulfill it. Indeed, for each x 2 X,

A4.x;Tx/ D A6.x;Tx/ D .1=2/d.x;T2x/ � maxfd.x;Tx/; d.Tx;T2x/gI

and this proves our claim. Hence, summing up, all functions in A have such a
property; this continues to be valid for each maximum function P D max.H/, where
H is a nonempty subset of A .

(III) Let us introduce the mapping

M.x; y/ D diamfx;Tx;T2x; y;Tyg, x; y 2 X.

Here, diam.Z/ D supfd.x; y/I x; y 2 Zg, is the diameter of the subset Z in X. We say
that P is .�I T/-diametral, provided

(c14) x < Tx;Tx < T2x; x < y; y ¤ Ty H) P.x; y/ � M.x; y/.

Note that all functions P 2 A D fA1;A2;A3;A4;A5;A6g have this property, as it can
be directly seen. This continues to hold for all maximum functions P D max.H/,
where H is a nonempty subset of A .

(IV) Finally, let us say that the map P W X
X ! RC is .�I T/-asymptotic, provided
it fulfills one of the conditions

(c15) P is singular .�I T/-asymptotic:
for each (a-o)-sequence .unI n � 0/ in X, and each z 2 X with

(un
d�! z;Tun

d�! z;T2un
d�! z; d.z;Tz/ > 0),

the relation [P.xn; z/ ! d.z;Tz/] is false
(c16) P is regular .�I T/-asymptotic:

for each (a-o)-sequence .unI n � 0/ in X, and each z 2 X with
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(un
d�! z;Tun

d�! z;T2un
d�! z; d.z;Tz/ > 0;P.un; z/ ! d.z;Tz/),

there exists a subsequence .vnI n � 0/ of .unI n � 0/ such that
(P.vn; z/ D d.z;Tz/, for all n � 0).

Proposition 3. Under these conventions,

(i) each maximum function P D max.H/, where H 2 .2/A fulfills A3 … H is
singular .�I T/-asymptotic

(ii) each maximum function P D max.H/, where H 2 .2/A fulfills A3 2 H is
regular .�I T/-asymptotic.

Proof. (i) Let the (a-o)-sequence .unI n � 0/ in X, and the point z 2 X be such that
the relations below hold

un
d�! z;Tun

d�! z;T2un
d�! z; d.z;Tz/ > 0.

By the triangular inequality and continuity of d.:; :/ (see above), one derives
(under the notation b WD d.z;Tz/)

d.un; z/; d.Tun; z/; d.T2un; z/ ! 0;

d.un;Tun/; d.Tun;T2un/; d.un;T2un/ ! 0;

d.un;Tz/; d.Tun;Tz/; d.T2un;Tz/ ! b:

This, by definition, gives

A1.un; z/ ! 0; A2.un; z/ ! b=2; A3.un; z/ ! b;
A4.un; z/ ! b=2;A5.un; z/ ! 0;A6.un; z/ ! b=2I

whence (as b > 0): each maximum function P D max.H/ where H 2 .2/A

fulfills A3 … H, is singular .�I T/-asymptotic.
(ii) By the same relations we have P.un; z/ ! b, for each maximum function P D

max.H/ where H 2 .2/A fulfills A3 2 H. The above convergence properties of
.unI n � 0/ tell us that, for a certain rank n.z/ � 0, we must have 8n � n.z/

d.un; z/; d.Tun; z/; d.T2un; z/ < b=2;
d.un;Tun/; d.Tun;T2un/; d.un;T2un/ < b=2:

This, by the d-Lipschitz property of d.:; :/, gives [for all n � n.z/]

jd.un;Tz/ � bj � d.un; z/ < b=2;
jd.Tun;Tz/ � bj � d.Tun; z/ < b=2;
jd.T2un;Tz/ � bj � d.T2un; z/ < b=2I

wherefrom (for the same ranks)

b=2 < d.un;Tz/; d.Tun;Tz/; d.T2un;Tz/ < 3b=2:
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Combining these, yields, for all n � n.z/

A1.un; z/ < b=2 < b; A2.un; z/ < 3b=4 < b; A3.un; z/ D b;
A4.un; z/ < b; A5.un; z/ < b=2 < b; A6.un; z/ < bI

whence (for the same ranks)

P.un; z/ D b; whenever the maximum function
P D max.H/ with H 2 .2/A is such that A3 2 H.

This shows that these maps are regular .�I T/-asymptotic; as claimed.

(V) These concepts may be used to solve a structural question concerning our
mapping. Namely, let us say that P W X 
 X ! RC is fix-.�I T/-separated, if

(c17) for each x; y 2 Fix.T/ with x < y, we get P.x; y/ > 0.

The following auxiliary statement is useful in the sequel.

Proposition 4. Assume that T is Meir–Keeler contractive (modulo .d;�I P/),
where P W X 
X ! RC is fix-.�I T/-separated, .�I T/-diametral. Then, necessarily,
T is fix-.�/-asingleton.

Proof. Let z1; z2 2 Fix.T/ be such that z1 � z2; and assume (by contradiction) that
z1 ¤ z2; hence, z1 < z2. As P is fix-.�I T/-separated, we must have P.z1; z2/ > 0.
This, by the Meir–Keeler contractive condition, yields d.z1; z2/ D d.Tz1;Tz2/ <
P.z1; z2/. On the other hand, as P is .�I T/-diametral, we must have P.z1; z2/ �
M.z1; z2/ D d.z1; z2/. The obtained relations are, however, contradictory. As a
consequence, z1 D z2; and our assertion is proved.

For example, P D A1 is fix-.�I T/-separated; because

x; y 2 Fix.T/; x < y H) A1.x; y/ D d.x; y/ > 0:

[This property continues to hold for all maximum functions P D max.H/, where
H 2 .2/A fulfills A1 2 H. The associated Meir–Keeler contractions (based on such
separated maps) will be called separated; for example, this is the case with the
Banach contractions [3].

It remains now to discuss the alternative of [P.:; :/ is fix-.�I T/-separated] being
not accepted. This, technically speaking, amounts to assume that

(c18) P is fix-.�I T/-nonseparated:
for each x; y 2 Fix.T/ with x < y, we get P.x; y/ D 0.

Note that, any P 2 fA2;A3g has such a property; for, evidently,

P.x; y/ D 0; for all x; y 2 Fix.T/, and all such P.:; :/I
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hence the claim. In this case, the only chance to have the required property is to
derive it from contractive type conditions, against the singular property imposed
upon P.:; :/. A possible way of solving this may be described as below. Given P W
X 
 X ! RC, call T, .d;�I P/-compatible when

(c19) (8x; y 2 X; x < y): P.x; y/ D 0 H) (Tx D Ty).

Lemma 5. Suppose that T is .d;�I P/-compatible and P is fix-.�I T/-
nonseparated. Then, T is fix-.�/-asingleton.

Proof. Let z1; z2 2 Fix.T/ be such that z1 � z2; and assume that z1 ¤ z2; hence
z1 < z2. As P is fix-.�I T/-singular, P.z1; z2/ D 0; so, by the compatible condition
Tz1 D Tz2; or, equivalently, z1 D z2; contradiction; hence, the claim.

Concerning the effectiveness of this approach, a direct analysis of the argument
we just exposed tells us that a compatible condition like before is without object
along the points x; y 2 Fix.T/ with x < y; for, in such a case, the fix-.�I T/-
nonseparated property of P gives us x D y; contrary to the choice of our data. In
other words, at the level of fix-.�I T/-nonseparated maps P.:; :/, the compatible type
approach is, practically, against their “natural” property; and must be replaced—as
an extra condition—with the fix-.�/-asingleton property of T. On the other hand,
under (c18), the Meir-Keeler contractive conditions we just exposed are of no use
in deducing the fix-.�/-asingleton property of T; since these are non-applicable
to any pair .x; y/ of points in Fix.T/ with x < y. The associated Meir–Keeler
contractions (based on such nonseparated maps) will be called nonseparated; for
example, this is the case with Kannan’s contraction [17]. Further aspects will be
discussed elsewhere.

Main Result

Let .X; d;�/ be a quasi-ordered metric space. Further, let T be a self-map of X;
supposed to be semi-progressive and increasing. We have to determine whether
Fix.T/ is nonempty; and, if this holds, to establish whether T is fix-.�/-asingleton;
or, equivalently: T is fix-.�/-singleton. The specific directions under which this
problem is to be solved were already listed. Sufficient conditions for getting such
properties are being founded on the ascending orbital concepts (in short: (a-o)-
concepts) we just introduced. Finally, the specific contractive properties to be used
have already been analyzed.

The first main result of this exposition is

Theorem 2. Assume that T is Meir–Keeler contractive (modulo .d;�I P/), for
some mapping P W X 
 X ! RC endowed with the properties: .�I T/-inf-bounded,
.�I T/-orbitally bounded, and .�I T/-diametral. Also, suppose that X is (a-o,d)-
complete, and T is fix-.�/-asingleton. Then,

(I) T is a globally strong Picard operator (modulo .d;�/) when, in addition, T is
(a-o,d)-continuous
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(II) T is a globally Bellman Picard operator (modulo .d;�/) when, in addition,
one of the conditions below holds:

(i) .�/ is (a-o,d)-self-closed and P is singular .�I T/-asymptotic
(ii) .�/ is (a-o,d)-self-closed, P is .�I T/-asymptotic and T is taken as .d;�I P; '/-

contractive, for a certain Meir–Keeler admissible function ' 2 F .re/.RC/
(iii) .�/ is (a-o,d)-self-closed, P is .�I T/-asymptotic, and T is .d;�I P; . ; '//-

contractive, for a certain pair . ; '/ of generalized altering functions in
F .RC/.

Proof. There are several steps to be passed.

Part 1. We claim that, under the conditions in the statement

d.Tx;T2x/ < d.x;Tx/; whenever x < Tx;Tx < T2x: (8)

In fact, let x 2 X be as in the premise above. Then,

x < Tx;Tx < T2x; x < y; y < Ty; where y D Tx:

As P is .�I T/-inf-bounded, this yields P.x;Tx/ > 0; so that, by the Meir–Keeler
contractive property,

d.Tx;T2x/ < P.x;Tx/:

On the other hand, as P is .�I T/-orbitally bounded, we must have

.0 </P.x;Tx/ � A3.x;Tx/ D maxfd.x;Tx/; d.Tx;T2x/g:

Combining with the preceding relation gives

d.Tx;T2x/ < maxfd.x;Tx/; d.Tx;T2x/gI

wherefrom, d.Tx;T2x/ < d.x;Tx/; as claimed.
It remains now to establish the strong/Bellman Picard property (modulo .d;�/).
Take some x0 2 X.T;�/; and put .xn D Tnx0I n � 0/; this is an ascending orbital
sequence. If xn D xnC1 for some n � 0, we are done; so, without loss, one may
assume that, for all n � 0,

(d01) xn ¤ xnC1; hence, xn < xnC1, n WD d.xn; xnC1/ > 0.

Part 2. By the preceding developments, we have

nC1 D d.Txn;TxnC1/ < d.xn; xnC1/ D n; 8nI

so, the sequence .nI n � 0/ is strictly descending in RC. As a consequence,
 WD limn n exists as an element of RC. Assume by contradiction that  > 0;
and let ı > 0 be the number given by the Meir–Keeler contractive condition
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(modulo .d;�I P/) upon T. By definition, there exists a rank n.ı/ � 0, such
that n � n.ı/ implies  < n <  C ı. This, by the .�;T/-inf-bounded and
.�;T/-orbitally bounded properties, yields (for the same ranks)

0 < P.xn; xnC1/ � maxfn; nC1g D nI

wherefrom

(xn < xnC1 and) 0 < P.xn; xnC1/ < C ı; 8n � n.ı/:

Combining with the (variant of) Meir–Keeler property gives

 < nC1 D d.Txn;TxnC1/ � ; 8n � n.ı/I

a contradiction. Hence,  D 0; so that, .xn/ is d-semi-Cauchy; in the sense

n WD d.xn; xnC1/ D d.xn;Txn/ ! 0; as n ! 1: (9)

Part 3. Suppose that

(d02) there exist i; j 2 N such that i < j; xi D xj.

Denoting p D j � i, we thus have p > 0 and xi D xiCp; so that

xi D xiCp; xiC1 D xiCpC1I whence i D iCp:

This is in contradiction with the strict decreasing property of .nI n � 0/. Hence,
our working hypothesis cannot hold; wherefrom

0 � i < j H) xi < xjI so that; d.xi; xj/ > 0: (10)

Note that, as a consequence of this, the map n 7! xn is injective.
Part 4. We now establish that .xnI n � 0/ is a d-Cauchy sequence. Let � > 0

be arbitrary fixed; and ˇ > 0 be the number associated by the Meir–Keeler
contractive property (modulo .d;�I P/); without loss, one may assume that ˇ <
� . As .xnI n � 0/ is d-semi-Cauchy, there exists some rank j.ˇ/ � 0, with

d.xn; xnC1/ < ˇ=4 for all n � j.ˇ/I (11)

whence, by the triangular inequality,

d.xn; xnCi/ < ˇ=2 .< � C ˇ=2/; 8n � j.ˇ/; 8i 2 f1; 2g: (12)

We now claim that

.8p � 1/ W Œd.xn; xnCp/ < � C ˇ=2; 8n � j.ˇ/�I (13)
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wherefrom, the desired property of .xn/ follows. To do this, an induction
argument upon p is applied. The case p 2 f1; 2g is clear. Assume that our
evaluation holds for p 2 f1; : : : ; qg, where q � 2; we show that it holds as
well for p D q C 1. So, let n � j.ˇ/ be arbitrary fixed. Since (cf. a previous
relation)

xn < xnC1; xnC1 < xnC2; xn < xnCq; xnCq < xnCqC1;

we derive (as P is .�I T/-inf-bounded), P.xn; xnCq/ > 0. By the d-semi-Cauchy
property and inductive hypothesis,

d.xnCi; xnCq/ < � C ˇ=2 < � C ˇ; 8i 2 f0; 1; 2g
d.xnCi; xnCqC1/ < � C ˇ=2 < � C ˇ; 8i 2 f1; 2g
d.xn; xnC1/; d.xn; xnC2/; d.xnC1; xnC2/ < ˇ=2 < � C ˇ

d.xnCq; xnCqC1/ < ˇ=2 < � C ˇ:

Moreover, from the triangular inequality,

d.xn; xnCqC1/ � d.xn; xnCq/C d.xnCq; xnCqC1/ < � C ˇI

and this, by the .�I T/-diametral property of P, yields

.0 </P.xn; xnCq/ � diamfxn; xnC1; xnC2; xnCq; xnCqC1g < � C ˇ:

An application of the Meir–Keeler contractive condition to .xn; xnCq/ (possible,
by the above relations) yields

d.xnC1; xnCqC1/ D d.Txn;TxnCq/ � � I

so that, by the triangular inequality,

d.xn; xnCqC1/ � d.xn; xnC1/C d.xnC1; xnCqC1/ < � C ˇ=2I

and the assertion follows.
Part 5. As X is (a-o,d)-complete, xn

d�! z, for some (uniquely determined) z 2 X.
If the alternative below holds

(d03) for each n, there exists m > n, with xm D z,

there must be a strictly ascending sequence of ranks .i.n/I n � 0/ such that xi.n/ D
z (hence, xi.n/C1 D Tz) for all n; and then [as .xi.n/C1I n � 0/ is a subsequence

of .xnI n � 0/], one gets xi.n/C1
d�! z; whence (as d is sufficient), z D Tz. So,

in the following, we may assume that the opposite alternative is true: there exists
h � 0, such that

(d04) n � h H) xn ¤ z; hence 0 < d.xn; z/.
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There are two cases to discuss.

Case A. Suppose that T is (a-o,d)-continuous. Then

yn WD Txn
d�! Tz as n ! 1:

On the other hand, .yn D xnC1I n � 0/ is a subsequence of .xnI n � 0/; whence

yn
d�! z; and this yields (as d is sufficient), z D Tz.

Case B. Now, let us assume that .�/ is (a-o,d)-self-closed. By the convergence
property above, it results (via (d04))

xn � z;8nI hence xn < z; for all n � h: (14)

We now intend to show that the alternative z ¤ Tz (hence b WD d.z;Tz/ > 0)
yields a contradiction. In fact, the imposed conditions give, 8n � h,

xn < xnC1; xnC1 < xnC2; xn < z; z ¤ TzI

so that (as P is .�I T/-inf-bounded),

P.xn; z/ > 0; for all n � h:

The Meir–Keeler contractive condition is therefore applicable to .xn; z/, for each
n � h; and yields (for these ranks)

d.Txn;Tz/ < P.xn; z/ � diamfxn;Txn;T
2xn; z;Tzg: (15)

As .Txn D xnC1I n � 0/ and .T2xn D xnC2I n � 2/ are subsequences of

.xnI n � 0/, we have Txn
d�! z;T2xn

d�! z as n ! 1; so, combining with
triangle inequality and the d-continuous property of distance function,

d.xn;Txn/; d.xn;T2xn/; d.Txn;T2xn/ ! 0;

d.xn; z/; d.Txn; z/; d.T2xn; z/ ! 0;

d.xn;Tz/; d.Txn;Tz/; d.T2xn;Tz/ ! b:
(16)

Note that, as a consequence of this

diamfxn;Txn;T
2xn; z;Tz/ ! b; as n ! 1I (17)

and this yields (via (15) above)

P.xn; x/ ! b; as n ! 1:

Now, two cases are to be discussed.
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Case 1. Suppose that P is singular .�I T/-asymptotic. As a consequence, the
convergence relation we just obtained is false. Hence, b > 0 is impossible;
wherefrom, the conclusion follows.

Case 2. Suppose that T fulfills one of the contractive conditions in the statement.
The case of P being singular .�I T/-asymptotic was already clarified; so, without
loss, one may assume that P is regular .�I T/-asymptotic. By definition, there
must be a subsequence .yn D xi.n/I n � 0/ of .xnI n � 0/ (where .i.n/I n � 0/ is
strictly ascending), such that

P.yn; z/ D b; for all n � 0: (18)

Note that, as i.n/ ! 1 as n ! 1, there is no loss in generality if we suppose
that

(d05) i.n/ � h (hence, yn D xi.n/ < z), 8n � 0.

Two possibilities occur.
Case 2a. Suppose that T is .d;�I P; '/-contractive, for a certain Meir–Keeler

admissible function ' 2 F .re/.RC/. Combining with (18) gives

d.Tyn; z/ � '.b/; 8n � 0:

So, passing to limit as n ! 1, one gets b � '.b/; contradiction. Hence,
necessarily, b D 0; and the claim follows.

Case 2b. Suppose that T is .d;�I P; . ; '//-contractive, for a certain pair . ; '/
of generalized altering functions in F .RC/. Again combining with (18), yields

0 < '.b/ �  .b/ �  .d.Tyn;Tz//; 8n � n.b/: (19)

But then, the sequence .tn WD d.Tyn;Tz/I n � 0/ fulfills tn ! b � �; in
contradiction with the choice of . ; '/. So necessarily, b D 0; and the proof
is complete.

Note that further extensions of these facts to dislocated metric spaces (cf. Hitzler
[11, Chap. I, Sect. 3]) and conical metric spaces taken as in Hyers et al. [12, Chap. 3]
are available; we do not give details.

Particular Aspects

Let .X; d;�/ be a quasi-ordered metric space. Denote by .</ the relation

(e01) x < y iff x � y and x ¤ y;

remember that it is irreflexive but, in general, not transitive. Further, let T be a self-
map of X; supposed to be semi-progressive and increasing. We have to determine
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whether Fix.T/ is nonempty; and, if this holds, to establish whether T is fix-.�/-
asingleton; or, equivalently: T is fix-.�/-singleton. The specific directions under
which this problem is to be solved were already listed. Sufficient conditions for
getting such properties are being founded on the ascending orbital concepts (in
short: (a-o)-concepts) we just introduced. Finally, the specific contractive properties
to be used were already considered. As a by-product of all these, we stated our first
main result in this exposition. It is our aim in the sequel to expose certain particular
cases of it, with a practical relevance.

Remember that, for each x; y 2 X, we denoted

A1.x; y/ D d.x; y/, A2.x; y/ D .1=2/Œd.x;Tx/C d.y;Ty/�,
A3.x; y/ D maxfd.x;Tx/; d.y;Ty/g, A4.x; y/ D .1=2/Œd.x;Ty/C d.Tx; y/�,
A5.x; y/ D maxfd.Tx;T2x/; d.T2x; y/g, A6.x; y/ D .1=2/Œd.x;T2x/Cd.T2x;Ty/�,
A D fA1;A2;A3;A4;A5;A6g.

By taking all possible maxima between these, one gets 26�1 D 63 functions of this
type (including the ones we just listed); these may be written as

P D max.H/, H 2 .2/A (=the class of all nonempty subsets in A ).

[Note that, as A2 � A3, some of these maxima are identical; but, this is not important
for us]. Denote also, for simplicity

(e02) H D fH 2 .2/A I H \ fA1;A2;A3;A5g ¤ ;g;

this according to our previous developments may be viewed as the generating
class of admissible (maximum) functions. Precisely, the maximum functions P D
max.H/ where H 2 H fulfill all regularity conditions appearing in our main result.
Technically speaking, there are two subclasses of H to be discussed further.

(A) Let in the following denote

(e03) H1 D fH 2 H I A1 2 H g;

i.e.: H1 is the subclass of all elements in H that contain A1. As d is sufficient, we
have, for each P D max.H/, with H 2 H1 the sufficiency property

x; y 2 X; x < y H) P.x; y/ � A1.x; y/ > 0:

Given such a mapping P.:; :/, call T, Meir–Keeler contractive (modulo .d;�I P/), if

(e04) x < y implies d.Tx;Ty/ < P.x; y/
(T is strictly nonexpansive (modulo .d;�I P/))

(e05) 8" > 0; 9ı > 0: [x < y; " < P.x; y/ < "C ı] H) d.Tx;Ty/ � "

(T has the Meir–Keeler property (modulo .d;�I P/)).

Note that, by the former of these, the Meir–Keeler property may be written as

(e06) 8" > 0; 9ı > 0: [x < y;P.x; y/ < "C ı] H) d.Tx;Ty/ � ".



658 M. Turinici

Clearly, the conventions above are equivalent with the previous ones, by means
of the sufficiency property we just described. Some basic examples of such
contractions were already given in a previous place; we do not give details.

The second main result of this exposition is

Theorem 3. Assume that T is Meir–Keeler contractive (modulo .d;�I P/), for
some P D max.H/, where H 2 H1. Moreover, let X be (a-o,d)-complete. Then,

(I) T is a globally strong Picard operator (modulo .d;�/) when, in addition, T is
(a-o,d)-continuous

(II) T is a globally Bellman Picard operator (modulo .d;�/) when, in addition,
one of the conditions below holds:

(i) .�/ is (a-o,d)-self-closed and H 2 H1 fulfills A3 … H
(ii) .�/ is (a-o,d)-self-closed, and T is .d;�I P; '/-contractive, for a certain Meir–

Keeler admissible function ' 2 F .re/.RC/
(iii) .�/ is (a-o,d)-self-closed, and T is .d;�I P; . ; '//-contractive, for a certain

pair . ; '/ of generalized altering functions in F .RC/.

Proof. It will suffice verifying that the first main result is applicable, with the choice
P D max.H/, where H 2 H1. There are several steps to be passed.

Step 1. From the sufficiency property, we get that any P D max.H/ with H 2 H1

is fix-.�I T/-separated; this, along with the .�I T/-diametral property, assures us,
by a preceding auxiliary fact, that T is fix-.�/-asingleton.

Step 2. By the same sufficiency property,

x < Tx;Tx < T2x; x < y; y ¤ Ty H) P.x; y/ � A1.x; y/ D d.x; y/ > 0I
so that P is .�I T/-inf-bounded. Moreover, as (for all x 2 X)

A1.x;Tx/;A2.x;Tx/;A5.x;Tx/ � A3.x;Tx/;
A4.x;Tx/ D A6.x;Tx/ D .1=2/d.x;T2x/ � A3.x;Tx/;

we get, for all such P D max.H/ with H 2 H1,

P.x;Tx/ � A3.x;Tx/; 8x 2 XI
whence P is .�I T/-orbitally bounded. Finally, by this very definition, we have
[for the same maximum functions P like before]

P.x; y/ � diamfx;Tx;T2x; y;Tyg; 8x; y 2 XI
and this shows that P is .�I T/-diametral.

Step 3. By a previous auxiliary fact, we have that

(i) the maximum function P D max.H/ where H 2 H1 fulfills A3 … H is
singular .�I T/-asymptotic

(ii) the maximum function P D max.H/ where H 2 H1 fulfills A3 2 H is
regular .�I T/-asymptotic.



Structural Fixed Point Results in Metric Spaces 659

Putting these together, it results that the first main result is indeed applicable to these
data; and, from this, we are done.

In particular, if ' is Matkowski admissible, this result includes the one in
Agarwal et al. [1] for P D max.H/ where H D fA1;A3;A4g; and, respectively,
the one in Turinici [36], in case of P D max.H/, where H D fA1g; i.e.: P D A1. Its
counterpart, obtained upon ' being Boyd–Wong admissible, seems to be new.

(B) Let in the following denote

(e07) H2 D H n H1; i.e.: H2 D fH 2 H I A1 … H g
(H2 is the subclass of all elements of H that do not contain A1). Given P D max.H/
where H 2 H2, call T, Meir–Keeler .d;�I P/-contractive, if

(e08) x < y;P.x; y/ > 0 implies d.Tx;Ty/ < P.x; y/
(T is strictly nonexpansive .modulo .d;�I P//)

(e09) 8" > 0; 9ı > 0: [x < y; " < P.x; y/ < "C ı] H) d.Tx;Ty/ � "

(T has the Meir–Keeler property .modulo .d;�I P//).

Note that, by the former of these, the Meir–Keeler property may be written as

(e10) 8" > 0; 9ı > 0: [x < y; 0 < P.x; y/ < "C ı] H) d.Tx;Ty/ � ".

The proposed conventions are identical with the old ones. As before, some basic
examples of such contractions were given in a previous place.

Our third main result in this exposition is

Theorem 4. Assume that T is Meir–Keeler contractive (modulo .d;�I P/), for
some P D max.H/, where H 2 H2. In addition, let X be (a-o,d)-complete and
T be fix-.�/-asingleton. Then,

(I) T is a globally strong Picard operator (modulo .d;�/) when, in addition, T is
(a-o,d)-continuous

(II) T is a globally Bellman Picard operator (modulo .d;�/) when, in addition,
one of the conditions below holds:

(i) .�/ is (a-o,d)-self-closed and H 2 H2 fulfills A3 … H
(ii) .�/ is (a-o,d)-self-closed, and T is .d;�I P; '/-contractive, for a certain Meir–

Keeler admissible function ' 2 F .re/.RC/
(iii) .�/ is (a-o,d)-self-closed, and T is .d;�I P; . ; '//-contractive, for a certain

pair . ; '/ of generalized altering functions in F .RC/.

Proof. It will suffice verifying that the first main result is applicable, under this
choice of our data. There are two steps to be passed.

Step 1. By definition, any H 2 H fulfills H \ fA1;A2;A3;A5g ¤ ;. On the other
hand, any H 2 H2 fulfills A1 … H; so that H \ fA2;A3;A5g ¤ ;. This tells us
that, whenever x; y 2 X are such that

x < Tx;Tx < T2x; x < y; y ¤ Ty,
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then, any P D min.H/ where H 2 H2, fulfills one of the inequalities below

P.x; y/ � A2.x; y/ � minfd.x;Tx/; d.y;Ty/g > 0
P.x; y/ � A3.x; y/ � minfd.x;Tx/; d.y;Ty/g > 0
P.x; y/ � A5.x; y/ � d.Tx;T2x/ > 0I

wherefrom, P is .�I T/-inf-bounded. Moreover, as (for each x 2 X)

A2.x;Tx/;A5.x;Tx/ � A3.x;Tx/
A4.x;Tx/ D A6.x;Tx/ D .1=2/d.x;T2x/ � A3.x;Tx/;

we derive that each P like before is .�I T/-orbitally bounded. Finally, by the very
definition of the composed functions,

P.x; y/ � diamfx;Tx;T2x; y;Tyg; 8x; y 2 XI

and this shows that all such P are .�I T/-diametral.
Step 2. By a previous auxiliary fact, we have that

(i) the maximum function P D max.H/ where H 2 H2 fulfills A3 … H is
singular .�I T/-asymptotic

(ii) the maximum function P D max.H/ where H 2 H2 fulfills A3 2 H is
regular .�I T/-asymptotic.

Putting these together, the first main result applies in this framework; and the
conclusion follows.

Note that, by the developments in a preceding place, the Boyd–Wong admissible
functions ' are allowed here. In particular, as established there, any Geraghty
admissible function ' is endowed with such a property. In this case, the obtained
result includes the one due to Choudhury and Kundu [8], when P D A2. Further
aspects may be found in Berzig et al. [4]; see also Turinici [39].

Relative Leader Contractions in Metric Spaces

Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short:
asingleton), provided [y1; y2 2 Y implies y1 D y2]; and singleton if, in addition,
Y is nonempty; note that in this case Y D fyg, for some y 2 X. Take a metric
d W X 
 X ! RC WD Œ0;1Œ over it; the couple .X; d/ will be then termed a
metric space. Further, let T 2 F .X/ be a self-map of X. [Here, for each couple
A;B of nonempty sets, F .A;B/ denotes the class of all functions from A to B; when
A D B, we write F .A/ in place of F .A;A/]. Denote Fix.T/ D fx 2 XI x D Txg;
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each point of this set is referred to as fixed under T. Determining of such points is
to be performed in the context below, comparable with the one in Rus [32, Chap. 2,
Sect. 2.2]:

(pic-1) We say that T is a Picard operator (modulo d) if, for each x 2 X, the
iterative sequence .TnxI n � 0/ is d-convergent; and a globally Picard operator
(modulo d) if, in addition, Fix.T/ is an asingleton

(pic-2) We say that T is a strong Picard operator (modulo d) if, for each x 2
X; .TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/; and a globally strong
Picard operator (modulo d) if, in addition, Fix.T/ is an asingleton (hence, a
singleton).

Sufficient metrical conditions for such properties may be given under the lines
below. Let ' 2 F .RC/ be a function; we say that T is .d; '/-contractive, if

(a01) d.Tx;Ty/ � '.d.x; y//, for all x; y 2 X.

The problem to be solved is that of establishing the remaining conditions upon
.X; d/;T and ', so that T be a (globally) strong Picard operator (modulo d). In
this direction, a basic (absolute) result was established in 1968 by Browder [7].

Theorem 5. Suppose that T is .d; '/-contractive, where

(a02) ' is regressive over RC: '.0/ D 0 and ('.t/ < t;8t > 0)
(a03) ' is increasing and right continuous on R0C WD�0;1Œ

(in the sense: '.s/ D '.s C 0/, for all s 2 R0C).

In addition, let X be d-complete. Then, T is globally strong Picard (modulo d).

An outstanding extension of this result is the 1975 one due to Matkowski [23],
based on (a03) being substituted by the weaker condition

(a04) ' is increasing and asymptotic on R0C
('n.s/ ! 0 as n ! 1,for each s 2 R0C).

Further aspects may be found in Rhoades [31] and the references therein.
In the following, we will be interested in relative type versions of Theorem 5.

These start from the observation that our contractive condition (a01) is formulated
in terms of P D fd.x; y/I x; y 2 Xg; and the (sequential) iterative techniques to be
followed involve its closure, Q WD cl.P/. Clearly, the relational chain is available

0 2 P � Q � RCI

but, the alternatives

(alt-1) P0 WD P n f0g is empty (i.e.: P D f0g) or P ¤ RC
(alt-2) Q0 WD Q n f0g is empty (i.e.: Q D f0g) or Q ¤ RC
cannot be avoided, in general. In this perspective, a basic answer to the posed
question was provided in 1969 by Boyd and Wong [6].
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Theorem 6. Suppose that T is .d; '/-contractive, where

(a05) ' is regressive over Q: '.0/ D 0 and ('.t/ < t;8t 2 Q0)
(a06) ' is usc on Q0: lim supt!c '.t/ � '.c/, for all c 2 Q0.

In addition, let X be d-complete. Then, T is globally strong Picard (modulo d).

Note that Theorem 6 is a “relative” type result; because the regularity conditions
upon ' are stated in terms of the “reduced” codomain P (of d.:; :/) and/or its closure,
Q D cl.P/. It is our aim in the following to show (in section “Main Result”) that
a corresponding version of this result is available, by starting from the Leader type
contractions [21]

(a07) T is left .d;  /-contractive:  .d.Tx;Ty// � d.x; y/, x; y 2 X;

where  2 F .RC/ is a function. Further, in section “Implicit Version,” an
implicit version of these techniques is proposed. Finally, section “Preliminaries”
is preliminary. Some other aspects will be considered elsewhere.

Preliminaries

In the following, some preliminary facts about convergent/Cauchy sequences in a
metric space, and admissible functions are being discussed.

(I) Let .X; d/ be a metric space. By a sequence in X, we mean any mapping x W
N ! X; where N WD f0; 1; : : :g is the set of natural numbers. For simplicity
reasons, it will be useful to denote it as .x.n/I n � 0/, or .xnI n � 0/; moreover,
when no confusion can arise, we further simplify this notation as .x.n// or
.xn/, respectively. Also, any sequence .yn WD xi.n/I n � 0/ with .i.n/I n � 0/

being strictly ascending [hence, i.n/ ! 1 as n ! 1] will be referred to as a
subsequence of .xnI n � 0/.

We say that the sequence .xnI n � 0/ in X, d-converges to x 2 X (and write:

xn
d�! x) iff d.xn; x/ ! 0 as n ! 1; that is

(b01) 8" > 0; 9p D p."/;8n: (p � n H) d.xn; x/ < ");
or, equivalently,
8" > 0; 9p D p."/;8n: (p < n H) d.xn; x/ � ").

The subset limn.xn/ of all such x is an asingleton, because d.:; :/ is triangular
and sufficient; when it is nonempty (hence, a singleton), .xnI n � 0/ is called
d-convergent. Then, limn.xn/ D fzg (for some z 2 X); as usual, this relation
writes limn.xn/ D z. Further, let us say that .xnI n � 0/ is d-Cauchy, provided
d.xm; xn/ ! 0 as m; n ! 1;m < n; that is

(b02) 8" > 0; 9q D q."/;8.m; n/: (q � m < n H) d.xm; xn/ < ");
or, equivalently,
8" > 0; 9q D q."/;8.m; n/: (q < m < n H) d.xm; xn/ � ").
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Clearly, any d-convergent sequence is d-Cauchy too; when the reciprocal holds as
well, X is called d-complete. On the other hand, each d-Cauchy sequence .xnI n � 0/

is d-semi-Cauchy; i.e.,

(b03) d.xn; xnC1/ ! 0, as n ! 1;
or, equivalently (as d.:; :/ is triangular):
d.xn; xnCi/ ! 0, as n ! 1, for each i � 1.

The converse implication is not in general true.
In the following, a useful property is deduced for the d-semi-Cauchy sequences

in X which are not d-Cauchy. Let us say that the subset � of R0C is .>/-cofinal in
R0C, when:

for each " 2 R0C, there exists � 2 � with " > � .

Further, given the sequence .rnI n � 0/ in R and the point r 2 R, let us write

rn ! rC (respectively, rn ! r C C), if rn ! r and
rn � r (respectively, rn > r), for all n � 0 large enough.

Proposition 5. Suppose that the sequence .xnI n � 0/ in X with

(b04) .xnI n � 0/ is d-semi-Cauchy (rn WD d.xn; xnC1/ ! 0, as n ! 1)

is not endowed with the d-Cauchy property. Further, let � be a .>/-cofinal part
of R0C. There exist then a number b 2 �, a rank j.b/ � 0, and a couple of rank-
sequences .m.j/I j � 0/; .n.j/I j � 0/, with

.8j � 0/ W j < m.j/ < n.j/; and
˛j WD d.xm.j/; xn.j// > b; ˇj WD d.xm.j/; xn.j/�1/ � b

(20)

.8j � j.b// W n.j/� m.j/ � 2; rm.j/�1; rn.j/�1 < b=3I
hence; sj WD rm.j/�1 C rn.j/�1 < 2b=3

(21)

.8j � j.b// W b < ˛j � ˇj C rn.j/�1 � b C rn.j/�1;
and ˛j � sj � �j WD d.xm.j/�1; xn.j/�1/ � ˛j C sj

(22)

˛j ! b C C; and ˇj; �j ! b; as j ! 1: (23)

Proof. By a previous remark, the d-Cauchy property of our sequence writes:

8" 2 R0C; 9k D k."/: k < m < n H) d.xm; xn/ � ".

As � is .>/-cofinal in R0C, this property may be also written as

8� 2 �; 9k D k.�/: k < m < n H) d.xm; xn/ � � .

The negation of this property means: there exists b 2 � such that

.8j � 0/ W A.j/ WD f.m; n/ 2 N 
 NI j < m < n; d.xm; xn/ > bg ¤ ;:
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Having this precise, denote, for each j � 0,

m.j/ D min Dom.A.j//, n.j/ D min A.j/.m.j//.

The couple of rank-sequences .m.j/I j � 0/; .n.j/I j � 0/ fulfills (20). On the other
hand, letting j.b/ � 0 be such that

ri D d.xi; xiC1/ < b=3; for all i � j.b/I

it is clear that (21) holds too. Moreover, by the triangular inequality, we have for all
j � j.b/

b < ˛j � ˇj C rn.j/�1 � b C rn.j/�1 < 4b=3
j�j � ˛jj � sj D rm.j/�1 C rn.j/�1 < 2b=3I

and this yields (22). Finally, passing to limit as j ! 1 in these relations gives (23).
The proof is complete.

In particular, when � D R0C, this result is, essentially, the one due to Khan et al.
[18]; but, the line of argument goes back to Boyd and Wong [6].

(II) Let F .pro/.RC/ denote the class of all  2 F .RC/, endowed with the
progressive property: [ .0/ D 0;  .t/ > t;8t > 0]. For any  2
F .pro/.RC/ and any s 2 R0C, put

�C .s/ D sup">0 �.sC/."/; where �.sC/."/ D inf .�s; s C "Œ/, " > 0;
�C .s/ D inff .s/;�C .s/g.

By this very definition, we have the representation (for all s 2 R0C)

�C .s/ D sup">0 �ŒsC�."/; where �ŒsC�."/ D inf .Œs; s C "Œ/, " > 0.

From the progressive property of  , these limit quantities are positive; precisely,

s � �C .s/ �  .s/; 8s 2 R0C:

The following consequence of this will be useful.

Proposition 6. Let  2 F .pro/.RC/ and s 2 R0C be arbitrary fixed. Then,

(i) lim infn. .tn// � �C .s/, for each sequence .tn/ in R0C with tn ! sC; hence,
in particular, for each sequence .tn/ in R0C with tn ! s C C

(ii) there exists a sequence .rnI n � 0/ in R0C such that rn ! sC and  .rn/ !
�C .s/ as n ! 1.

Proof. (i) Given " > 0, there exists a rank p."/ � 0 such that s � tn < s C ", for
all n � p."/; hence

lim inf
n

. .tn// � inff .tn/I n � p."/g � �ŒsC�."/:
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It suffices taking the supremum over " > 0 in this relation to get the desired
fact.

(ii) When �C .s/ D  .s/, the written conclusion is clear, with .rn D sI n � 0/.
Suppose now that �C .s/ <  .s/; and let " 2�0;  .s/��C .s/Œ be arbitrary
fixed. By definition,

9ı 2�0; "ŒW �C .s/ � " < �ŒsC�.ı/ � �C .s/ < �C .s/C "I

wherefrom, there must be some r D r."/ in Œs; s C ıŒ, with

�C .s/ � " <  .r/ < �C .s/C ":

Taking a sequence ."nI n � 0/ in �0;  .s/ � �C .s/Œ with "n ! 0, there
exists a corresponding sequence .rn D r."n/I n � 0/ in R0C with rn ! sC and
'.rn/ ! �C .s/; hence, the conclusion.

Call  2 F .pro/.RC/, Leader admissible [21], if

(b05) �C .s/ > s (or, equivalently:�C .s/ > s), for all s > 0.

In particular,  2 F .pro/.RC/ is Leader admissible provided it is lower semicon-
tinuous at the right on R0C:

�C .s/ D  .s/ (or, equivalently:�C .s/ �  .s/), 8s 2 R0C.

This, e.g., is fulfilled when  is continuous at the right on R0C; for, in such a case,

�C .s/ D  .s/, for all s 2 R0C.

A useful property of these functions is contained in

Proposition 7. Assume that  2 F .pro/.RC/ is Leader admissible. Then,

 is compatible: for each sequence .rnI n � 0/ in R0C with
( .rnC1/ � rn;8n), one gets rn ! 0.

Proof. Let .rnI n � 0/ be as in the premise of this assertion. As  is progressive,

rnC1 <  .rnC1/ � rn; for all n:

The sequence .rnI n � 0/ is therefore strictly descending; hence, � WD limn.rn/

exists in RC and rn ! �CC. In addition, by the same double inequality, .rn/ ! �

as n ! 1. Suppose by contradiction that � > 0. From a previous auxiliary fact,

� D lim
n
 .rn/ D lim inf

n
 .rn/ � �C .�/ > �:

The contradiction at which we arrived shows that our working assumption cannot
be accepted; whence, � D 0; and the proof is complete.
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Main Result

Let .X; d/ be a metric space. Denote, for simplicity,

P D fd.x; y/I x; y 2 Xg, Q D cl.P/; P0 D P n f0g, Q0 WD Q n f0g.

Further, take some T 2 F .X/. As precise, the problem to be solved is that of
determining sufficient conditions upon these data so that T be a (globally) strong
Picard operator (modulo d). The basic concept involved here is to be described as
follows. Any (real) sequence .�nI n � 0/ in P, having the form

(c01) (�n D d.Th.n/x;Tk.n/x/; n � 0),

where x 2 X and .h.n/I n � 0/; .k.n/I n � 0/ are rank-sequences with [h.n/ <
k.n/;8n], will be called .d;T/-orbital; the class of all these will be denoted as
!.d;T/.

Having this precise, we may now list the regularity conditions upon our elements
to be used in our investigations. The global one is being founded on orbital concepts
(in short: o-concepts). Namely, call the sequence .znI n � 0/ in X, T-orbital, when
it is a subsequence of .TnxI n � 0/, for some x 2 X.

(reg-1) Call X, (o,d)-complete, provided (for each o-sequence) d-Cauchy H) d-
convergent
The local (specific) regularity conditions to be used are constructed with the aid
of .d;T/-orbital sequences; and write

(reg-2) Call the function  2 F .RC/, compatible over P (modulo .d;T/), if

(c02) for each .d;T/-orbital sequence .�nI n � 0/ in P0 fulfilling
( .�nC1/ � �n;8n) we must have �n ! 0 as n ! 1.

(reg-3) Let� be a .>/-cofinal part in R0C. We say that 2 F .RC/ is sequentially
admissible over P (modulo .d;TI�/), when

(c03) for each .d;T/-orbital sequence .�nI n � 0/ in P0, and each point b 2 Q\�
with �n ! b C C, the relation [lim infn  .�n/ D b] is impossible.

Likewise,  2 F .RC/ is called sequentially admissible over P (modulo .d;T/),
when it satisfies

(c04)  is sequentially admissible over P (modulo .d;TI�/),
for at least one .>/-cofinal part � in R0C.

To get concrete examples of such functions, note that both these properties hold
under the global condition

(c05)  is progressive (on RC/ and Leader admissible (see above).

In fact, the former of these follows by a previous auxiliary fact; and the latter one
holds with respect to each .>/-cofinal subset � of R0. For, let the .d;T/-orbital
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sequence .�nI n � 0/ in P0, and the point b 2 Q\� be such that �n ! bCC. Then,
according to a previous relation

lim inf
n

. .�n// � �C .b/ > bI

and the claim follows.
A local version of these facts is to be given in the class F .in/.RC/ of all

increasing functions belonging to F .RC/. Namely, given  2 F .RC/, let us
consider the couple of (local) conditions

(c06)  is progressive on P:  .0/ D 0 and ( .t/ > t;8 t 2 P0)
(c07)  is progressive on Q:  .0/ D 0 and ( .t/ > t;8 t 2 Q0).

Note that, by the former of these, one derives that

 is weakly progressive over P W  .t/ � t; for all t 2 P: (24)

Similarly, from the latter of these, one gets

 is weakly progressive over Q W  .t/ � t; for all t 2 Q: (25)

We are now in position to state the announced answer to our question.

Proposition 8. Suppose that  2 F .in/.RC/ is progressive on Q. Then,

(i)  is compatible on P (modulo .d;T/)
(ii)  is sequentially admissible over P (modulo .d;T/).

Proof. (i) Let the .d;T/-orbital sequence .�nI n � 0/ in P0 be such that

 .�nC1/ � �n, for all n.

As  is progressive on P; .�nI n � 0/ is strictly descending; hence, � WD limn �n

exists (in Q) and �n > �, for all n. Assume by contradiction that � > 0. Passing
to limit in the above relation gives (via  =increasing and �n ! � C C)

 .� C 0/ D lim
n
 .�n/ � �:

This, along with the property (deductible under  =progressive on Q)

� <  .�/ �  .� C 0/

yields a contradiction. Hence, � D 0; and the claim follows.
(ii) By the increasing property of  2 F .RC/, the subset

� D fs 2 R0CI is (right or left) discontinuous at sg
appears as (at most) countable; cf. Natanson [27, Chap. 8, Sect. 1]; whence,
necessarily,� WD R0C n � is .>/-cofinal in R0C. Let the .d;T/-orbital sequence
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.�n/ in P0 and the point b 2 Q\� be such that �n ! bCC. As  is (bilaterally)
continuous at b, we have (by the regressive on Q assumption)

.lim inf
n

 .�n/ D/ lim
n
 .�n/ D  .b/ > bI

wherefrom,  is sequentially admissible over P (modulo .d;TI�/).
Having these precise, we may now state our first main result. Letting 2 F .RC/

be some function, remember that T is called left .d;  /-contractive, provided

(c08)  .d.Tx;Ty// � d.x; y/, for all x; y 2 X.

Theorem 7. Suppose that T is left .d;  /-contractive, where  2 F .RC/ is
progressive on P and compatible, sequentially admissible over P (modulo .d;T/).
In addition, let X be .o; d/-complete. Then, T is globally strong Picard (modulo d).

Proof. By the contractive property, we have (via  =progressive over P)

d.Tx;Ty/ < d.x; y/; for all x; y 2 X; x ¤ yI (26)

i.e.: T is d-strictly-nonexpansive; and, from this, the asingleton property of Fix.T/
follows. It remains to establish the strong Picard property for T. Fix x0 2 X; and
put .xn D Tnx0I n � 0/. If xn D xnC1, for some n � 0, we are done (in view of
xn 2 Fix.T/); so, it remains to discuss the opposite case

(c09) xn ¤ xnC1 (i.e., �n WD d.xn; xnC1/ > 0), 8n.

There are several parts to be passed.

Part 1. By this very condition, .�nI n � 0/ is a .d;T/-orbital sequence in P0. On
the other hand, from the contractive condition (and  =progressive on P), one
gets (by the working condition above)

.�nC1 </  .�nC1/ � �n; 8n:

As  is compatible over P, it results that

.�n D/d.xn; xnC1/ ! 0; as n ! 1I (27)

i.e.: .xnI n � 0/ is d-semi-Cauchy.
Part 2. By the imposed conditions,  is sequentially admissible over P (modulo
.d;TI�/), for a certain .>/-cofinal subset � in R0C. We now show that
.xnI n � 0/ is d-Cauchy. Suppose by contradiction that this is not true. From
a previous auxiliary fact, there exist then a number b 2 �, a rank j.b/ � 0, and
a couple of rank-sequences .m.j/I j � 0/; .n.j/I j � 0/, with the properties (20)–
(23). In particular, this gives
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.j < m.j/ < n.j/; 8j/; .n.j/� m.j/ � 2; 8j � j.b// (28)

˛j WD d.xm.j/; xn.j// ! b C C; as j ! 1 (29)

�j WD d.xm.j/�1; xn.j/�1/ ! b; as j ! 1: (30)

Note that, by the properties above, .˛jI j � 0/ and .�jI j � 0/ are .d;T/-orbital
sequence in P0 and P, respectively; moreover, by definition, b 2 Q \ �. From
the contractive condition (and  =progressive),

˛j <  .˛j/ � �j; 8j:

So, passing to limit as j ! 1, one gets

b � lim
j
 .˛j/ � bI hence; .lim inf

j
 .˛j/ D/ lim

j
 .˛j/ D bI (31)

in contradiction with  being sequentially admissible over P (modulo .d;TI�/).
Hence, .xnI n � 0/ is a d-Cauchy sequence in X.

Part 3. As X is .o; d/-complete, xn
d�! z for some (uniquely determined) z 2 X.

Since .yn WD xnC1I n � 0/ is a subsequence of .xnI n � 0/, we also have yn
d�! z

as n ! 1. On the other hand, by the d-strict-nonexpansive property of T, we
get

T is d-nonexpansive: d.Tx;Ty/ � d.x; y/, for all x; y 2 X.

A direct application of this to our data yields

d.yn;Tz/ � d.xn; z/; for all n:

Combining with d.xn; z/ ! 0, gives

d.yn;Tz/ ! 0 (whence, yn
d�! Tz), as n ! 1.

Combining these gives (as d=metric) z D Tz. The proof is complete.

Note that, by a preceding discussion, Theorem 7 is just the (orbital) “left” variant
of Theorem 6. This is also true for the related contribution in Akkouchi [2]; as results
from the developments in Jachymski [15]. On the other hand, Theorem 7 includes
as well the (orbital) “left” (global) version of Matkowski’s fixed point result [23].
However, the contractive condition in Meir and Keeler [25] does not seem to be
included here; further aspects will be discussed in a separate paper.
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Implicit Version

A close analysis of the reasoning above shows that, ultimately, the contradictory
character of sequential relations appearing at different stages of the proof is given
by the very existence of admissible sequences constructed there; and not by the
limit properties deduced from them. This remark allows us to establish an implicit
extension of Theorem 7 above.

Let .X; d/ be a metric space; and fix some T 2 F .X/. Denote, as before

P D fd.x; y/I x; y 2 Xg, Q D cl.P/, P0 D Pnf0g;Q0 WD Qnf0g.

Further, let � be a nonempty subset of P 
 P; hence, a relation over P. We say that
T is an implicit �-contraction, if

(d01) .d.Tx;Ty/; d.x; y// 2 �, 8x; y 2 X.

It is our aim in the following to get sufficient regularity conditions under which the
fixed point problem (under the lines we just described) has a positive solution. The
general one writes

(ireg-1) Let us say that (the relation)� is super-diagonal, provided

(d02) .s; t/ 2 � and t > 0 imply s < t.

Note that the case t D 0 is not entering in this convention.
For the local (specific) ones, remember that any (real) sequence .�nI n � 0/ in P,
having the form

(�n D d.Th.n/x;Tk.n/x/; n � 0),

where x 2 X and .h.n/I n � 0/; k.n/I n � 0/ are rank-sequences with [h.n/ <
k.n/;8n], will be called .d;T/-orbital; the class of all these will be denoted as
!.d;T/. Now, the announced regularity conditions upon our data write

(ireg-2) Let us say that (the relation)� is compatible (modulo .d;T/), when

(d03) each .d;T/-orbital sequence .�nI n � 0/ in P0 with
(.�nC1; �n/ 2 �;8n), fulfills �n ! 0 as n ! 1.

(ireg-3) Let � be a .>/-cofinal part in R0C. We say that (the relation) � is
distinguished (modulo .d;TI�/), when

(d04) for each couple .�nI n � 0/; .�nI n � 0/ of .d;T/-orbital sequences in P0
and P respectively, and each b 2 Q \ � with (�n ! b C C; �n ! b), the
property .�n; �n/ 2 � cannot hold for infinitely many n.

Likewise, � will be termed distinguished (modulo .d;T/), when

(d05) � is distinguished (modulo .d;TI�/), for at least one .>/-cofinal subset
� of R0C.

Some concrete examples of relations � for which these conditions hold will be
given a bit further. For the moment, we are interested to state our second main result
of this exposition.
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Theorem 8. Assume that T is an implicit �-contraction, where the relation � �
P 
 P is super-diagonal and compatible, distinguished (modulo .d;T/). In addition,
let X be .o; d/-complete. Then, T is globally strong Picard (modulo d).

Proof. We follow the basic lines of our previous reasoning.
By the contractive condition and super-diagonal property of �, we have that T

is d-strictly-nonexpansive (see above); wherefrom, the singleton property of Fix.T/
follows. It remains then to establish the strong Picard property (modulo d). Fix
x0 2 X; and put .xn D Tnx0I n � 0/. If xn D xnC1, for some n � 0, we are done (in
view of xn 2 Fix.T/); so, it remains to discuss the opposite case

xn ¤ xnC1 (i.e., �n WD d.xn; xnC1/ > 0), 8n.

Three steps must be passed.

Step 1. By this very condition, .�nI n � 0/ is .d;T/-orbital in P0. On the other
hand, by the contractive condition,

.�nC1; �n/ 2 �, for all n.

These, along with � being compatible (modulo .d;T/), give

�n ! 0 as n ! 1; whence, .xnI n � 0/ is d-semi-Cauchy.

Step 2. By the imposed condition, there exists a .>/-cofinal subset� in R0C, such
that � is distinguished (modulo .d;TI�/). We now show that .xnI n � 0/ is
d-Cauchy. Suppose by contradiction that this is not true. From a previous
auxiliary fact, there exist then a number b 2 �, a rank j.b/ � 0, and a couple
of rank-sequences .m.j/I j � 0/; .n.j/I j � 0/, with the properties (20)–(23). In
particular, this gives

.j < m.j/ < n.j/; 8j/; .n.j/� m.j/ � 2; 8j � j.b// (32)

˛j WD d.xm.j/; xn.j// ! b C C; as j ! 1 (33)

�j WD d.xm.j/�1; xn.j/�1/ ! b; as j ! 1: (34)

Note that, by the properties above, .˛jI j � 0/ and .�jI j � 0/ are .d;T/-orbital
sequences in P0 and P, respectively; moreover, by definition, b 2 Q \ �. From
the contractive condition, we have

.˛j; �j/ 2 �; for all j � 0: (35)

This, along with � being distinguished (modulo .d;TI�/), yields a contradic-
tion. Hence, .xnI n � 0/ is d-Cauchy, as claimed.

Step 3. As X is (o,d)-complete, xn
d�! z for some z 2 X. Since .yn WD xnC1I

n � 0/ is a subsequence of .xnI n � 0/, we also have yn
d�! z. On the other hand,
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by the strict d-nonexpansive property of T, we have that T is d-nonexpansive
(see above). A direct application of this to our data yields

d.yn;Tz/ � d.xn; z/; for all n:

Combining with d.xn; z/ ! 0 gives yn
d�! Tz. Putting these convergence

relations together yields (as d=metric) z D Tz. The proof is thereby complete.

In particular, when� � P 
 P is taken as

(d06) .u; v/ 2 � iff  .u/ � v,

where  2 F .RC/ is progressive on P and compatible, sequentially admissible
(modulo .d;T/), this result is nothing else than Theorem 7. Another choice is

(d07) .u; v/ 2 � iff u � '.v/,

where ' 2 F .RC/ fulfills the regularity conditions in Theorem 6. Then, Theorem 8
may be viewed as an orbital extension of the quoted result.

Note, finally, that Theorem 8 may be extended to contractive conditions like

(d08) .d.Tx;Ty/; d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx// 2 �;

where � is a subset of P6, subjected to appropriate conditions. In this case, the
obtained statement includes the related one in Turinici [34]; as well as the fixed
point result (involving altering metrics) due to Khan et al. [18]. Further aspects may
be found in the 2001 survey paper due to Kirk [19].

Banach Contractions in Relational Metric Spaces

Introduction

Let X be a nonempty set. By a sequence in X, we mean any mapping x W N ! X;
where N WD f0; 1; : : :g is the set of natural numbers. For simplicity reasons, it will
be useful to denote it as .x.n/I n � 0/, or .xnI n � 0/; moreover, when no confusion
can arise, we further simplify this notation as .x.n// or .xn/, respectively. Also, any
sequence .yn WD xi.n/I n � 0/ with .i.n/I n � 0/ being strictly ascending [hence,
i.n/ ! 1 as n ! 1] will be referred to as a subsequence of .xnI n � 0/.

Call the subset Y 2 2X, almost singleton (in short: asingleton) provided [y1; y2 2
Y implies y1 D y2]; and singleton if, in addition, Y 2 .2/X; note that, in this case,
Y D fyg, for some y 2 X. (Here, 2X stands for the class of all subsets in X; and .2/X ,
for the subclass of all nonempty members in 2X). Further, let d W X 
 X ! RC WD
Œ0;1Œ be a metric over it (in the usual sense); the couple .X; d/ will be termed a
metric space. Finally, let T 2 F .X/ be a self-map of X. [Here, for each couple A;B
of nonempty sets, F .A;B/ stands for the class of all functions from A to B; when
A D B, we write F .A/ in place of F .A;A/]. Denote Fix.T/ D fx 2 XI x D Txg;
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each point of this set is referred to as fixed under T. In the metrical fixed point theory,
such points are to be determined according to the context below, comparable with
the one in Rus [32, Chap. 2, Sect. 2.2]:

(pic-1) Call x 2 X, a Picard point (modulo .d;T/), provided the iterative sequence
.TnxI n � 0/ is d-convergent; if this holds for all x 2 X, we say that T is a
Picard operator (modulo d); and, if (in addition) Fix.T/ is an asingleton, then T
is referred to as a globally Picard operator (modulo d)

(pic-2) Call x 2 X, a strong Picard point (modulo .d;T/), provided the iterative
sequence .TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/; if this holds
for all x 2 X, we say that T is a strong Picard operator (modulo d); and, if (in
addition) Fix.T/ is an asingleton (hence, a singleton), then T is referred to as a
globally strong Picard operator (modulo d).

In this perspective, a basic answer to the posed question is the 1922 one due to
Banach [3]. Given ˛ > 0, let us say that T is .dI˛/-contractive, provided

(a01) d.Tx;Ty/ � ˛d.x; y/, for all x; y 2 X.

Theorem 9. Suppose that T is Banach .dI˛/-contractive, for some ˛ 2�0; 1Œ. In
addition, let d.:; :/ be complete on X. Then, T is a globally strong Picard operator
(modulo d).

This result (referred to as: Banach’s contraction principle; in short: BCP) found a
multitude of applications in operator equations theory; so, it was the subject of many
extensions. A natural way of doing this is by considering “functional” contractive
conditions like

(a02) d.Tx;Ty/ � F.d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx//,
for all x; y 2 X;

where F W R5C ! RC is an appropriate function; for more details about the possible
choices of F, we refer to the 1977 paper by Rhoades [31]. Another way of extension
is that of conditions imposed upon d being modified; this, technically speaking, is
to be described in a generalized metrical context.

Let again X be a nonempty set. By a generalized metric over X we shall mean
any map e W X 
 X ! RC [ f1g, endowed with the properties: reflexive [e.x; x/ D
0;8x 2 X], triangular [e.x; z/ � e.x; y/ C e.y; z/;8x; y; z 2 X], sufficient [x; y 2
X; e.x; y/ D 0 H) x D y], and symmetric [e.x; y/ D e.y; x/;8x; y 2 X]; the couple
.X; e/will be then referred to as a generalized metric space. Fix such an object e.:; :/
in the sequel. The relation (over X)

(a03) (x; y 2 X); x 	 y iff e.x; y/ < 1
is reflexive, symmetric and transitive; hence, an equivalence. For each a 2 X, let
X.a;	/ WD fx 2 XI a 	 xg stand for the equivalence class of a; note that the
restriction of e to X.a;	/ is a standard metric. Conversely, let .�/ be an equivalence
relation over X; as usual, we identify it with its graph in X
X. Further, let� W .�/ !
RC be a mapping; endowed with the properties: .�/-reflexive [�.x; x/ D 0;8x 2
X], .�/-triangular [�.x; z/ � �.x; y/ C �.y; z/, if x � y; y � z], .�/-sufficient
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[x � y; �.x; y/ D 0 H) x D y], and .�/-symmetric [�.x; y/ D �.y; x/, whenever
x � y]. In this case, the mapping (from X 
 X to RC [ f1g)

(a04) e.x; y/ D �.x; y, if x � y; e.x; y/ D 1, otherwise,

is a generalized metric on X, as it can be directly seen.
Now, given a generalized metric space .X; e/, we may introduce an e-

convergence and e-Cauchy structure on X as follows. For each sequence .xnI n � 0/

in X and x 2 X, put xn
e�! x if e.xn; x/ ! 0 as n ! 1; i.e.:

8ı > 0; 9i D i.ı/: i � n H) e.xn; x/ < ı.

The set limn.xn/ of all such x 2 X is an asingleton, as it can be directly seen; when
it is nonempty—hence, a singleton, fzg—we say that .xn/ is e-convergent; then,
as usual, fzg D limn.xn/ will be written as z D limn.xn/. Likewise, the e-Cauchy
property of .xn/ is depicted as: e.xm; xn/ ! 0 as m; n ! 1;m < n; i.e.:

8ı > 0; 9j D j.ı/: j � m < n H) e.xm; xn/ < ı.

By the properties of e.:; :/, any e-convergent sequence is e-Cauchy too; when the
reciprocal of this holds too, we say that e.:; :/ is complete on X.

The following local result is our starting point. Let Y be a subset of X. We say
that u 2 X is e-adherent to Y, when

(a05) (8ı > 0; 9xı 2 Y: e.xı; u/ < ı); or, equivalently:
u D limn.xn/, for some sequence .xnI n � 0/ in Y.

The set of all such points will be called the e-closure of Y; and denoted as cle.Y/;
when Y D cle.Y/, then Y will be called e-closed.

Proposition 9. Let .X; e/ be a generalized metric space; and a 2 X be arbitrary
fixed. Then,

(i) The equivalence class Xa WD X.a;	/ is e-closed (see above)
(ii) The restriction of e.:; :/ to Xa is a standard metric (on Xa)

(iii) The same restriction is complete on Xa, whenever the initial generalized metric
e.:; :/ is complete on X.

[A direct proof of these assertions is immediately available; so, we do not give
further details].

As a consequence of this statement, it results that a local version of the (global)
Picard conventions above is needed here.

Let .X; e/ be a generalized metric space. Call U 2 2X , e-asingleton provided
[y1; y2 2 U; e.y1; y2/ < 1 imply y1 D y2]; and e-singleton if, in addition, U 2
.2/X. [Note that, in this last case, card.U/ > 1 is not avoidable; for example, the
(nonempty) subset U D fu1; u2g of X where e.u1; u2/ D 1 (hence, u1 ¤ u2) is
an e-singleton with card.U/ D 2]. Further, let T 2 F .X/ be a self-map of X. The
following initial regularity conditions for these data are imposed:

(reg-1) The generalized metric e.:; :/ is called complete, provided: each e-Cauchy
sequence in X is e-convergent. Note that this concept is equivalent with its local
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version. Precisely, call e.:; :/, locally complete when, for each a 2 X, its restric-
tion to the equivalence class X.a;	/ is complete. By the preceding statement, we
have (for the generalized metric e): complete H) locally complete. The converse
inclusion is also true; so that (summing up) we have

(8 generalized metric e): complete () locally complete.

(reg-2) Call T, e-semi-progressive provided

(a06) X.TI e/ WD fx 2 XI e.x;Tx/ < 1g is not empty.

This may be also referred to as

X.TI 	/ WD fx 2 XI x 	 Txg is not empty;

for, evidently, X.T; e/ D X.T;	/.
(reg-3) Call T, e-increasing provided

(a07) e.x; y/ < 1 implies e.Tx;Ty/ < 1.

To explain the terminology, note that it may be also written as

T is .	/-increasing: x 	 y implies Tx 	 Ty.

Fix in the following some Y 2 .2/X; and denote Fix.TI Y/ D Fix.T/ \ Y (the
trace over Y of Fix.T/). In addition, take some W 2 .2/X. Sufficient conditions for
existence of such points involve the local concepts below:

(loc-pic-1) Call x 2 X, a Picard point (modulo .e;T/) relative to Y, provided
.TnxI n � 0/ is e-convergent with limn.Tnx/ 2 Y. If such a property holds for all
x 2 W, we say that T is a Picard operator (modulo e) relative to .W;Y/; and,
if (in addition) Fix.TI Y/ is an e-asingleton, then T is referred to as a globally
Picard operator (modulo e) relative to the couple .W;Y/

(loc-pic-2) Call x 2 X, a strong Picard point (modulo .e;T/), relative to Y,
provided .TnxI n � 0/ is e-convergent with limn.Tnx/ 2 Fix.TI Y/. If this holds
for all x 2 W, we say that T is a strong Picard operator (modulo e) relative to
.W;Y/; and, if (in addition) Fix.TI Y/ is an e-asingleton (hence, an e-singleton),
then T is referred to as a globally strong Picard operator (modulo e) relative to
the couple .W;Y/.

The contractive condition upon our data may be written as:

(con-gm) Given ˛ > 0, let us say that T is .eI˛/-contractive, provided

(a08) e.Tx;Ty/ � ˛e.x; y/, for each x; y 2 X with e.x; y/ < 1.

Note that, as a consequence, T is .	/-increasing; but, this is not important for us.
The following fixed point result due to Luxemburg [22] and Jung [16] (referred

to as: Luxemburg-Jung contraction principle; in short: LJCP) is then available:
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Theorem 10. Assume that the (e-semi-progressive, e-increasing) self-map T 2
F .X/ is .eI˛/-contractive, for some ˛ 2�0; 1Œ. In addition, let e.:; :/ be complete,
and fix some point x0 2 X.T; e/ D X.T;	/. Then, the following conclusions hold:

(Con-1) the equivalence class X.x0;	/ is e-closed, T-invariant, and the general-
ized metric e.:; :/ is complete on X.x0;	/

(Con-2) x0 is a strong Picard point (modulo .e;T/) relative to X.x0;	/
(Con-3) T is a globally strong Picard operator (modulo e), relative to the couple
.X.x0;	/;X.x0;	//.
In particular, when e.:; :/ is a standard metric on X, this result is just the Banach

contraction principle we already stated. Some functional extensions of these facts
may be found in Turinici [35].

Now, further extensions of the Banach contraction principle were obtained by
Nieto and Rodriguez-Lopez [29] (the (partially) ordered case) or Jachymski [14]
(the relational case). So, we may ask of which relationships exist between these and
the Luxemburg-Jung contraction principle above. It is our aim in the following to
establish (in section “Particular Aspects”) that these are reducible to certain “non-
symmetric” versions of LJCP (exposed in section “Main Result”). The specific tools
for deducing these conclusions are described in section “Preliminaries.” Some other
aspects of these developments will be delineated elsewhere.

Preliminaries

Let X be a nonempty set. By a relation over it we mean any (nonempty) part R of
X 
 X; sometimes, we write xRy in place of .x; y/ 2 R, for simplicity. In particular,
I WD f.x; x/I x 2 Xg (the diagonal of X) is such an object, referred to as: the identity
relation. Any relation R with

(b01) I � R (i.e.: xRx;8x 2 X)

is called reflexive; note that, its x-section X.x;R/ D fy 2 XI xRyg is nonempty, for
each x 2 X. Given the reflexive relations A and B, denote their product as

A ı B D f.x; y/ 2 X 
 XI 9z 2 X W .x; z/ 2 A ; .z; y/ 2 Bg;

clearly, A ı B is reflexive too. Finally, for each reflexive relation R, define

R1 D R; RnC1 D Rn ı R; n � 1.

By the reflexive property of R, we have

Rn=reflexive, 8n � 1; hence, Rn � Rm if n � m. (36)

In this case, its associated relation S D [fRnI n � 1g is reflexive too and transitive
(i.e.: S 2 � S ); hence, it is a quasi-order on X.
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(B) Let .?/ be a reflexive relation over X. Denote .�/ D [f?nI n � 1g; as
noticed, this is a quasi-order (reflexive and transitive relation) over X; hence,
the notation is meaningful. A characterization of this object may be given
as follows. Given x; y 2 X, any k-tuple .z1; : : : ; zk/ (for k � 2) in Xk with
z1 D x; zk D y, and [zi ? ziC1, i 2 f1; : : : ; k � 1g] will be referred to as a
.?/-chain between x and y; the class of all these will be denoted as C.x; yI ?/.
In this case,

(x; y 2 X): x � y iff C.x; yI ?/ is nonempty. (37)

A basic construction involving this relation is to be made under the consideration of
an a-metric structure on X. Let d W X 
 X ! RC be a mapping, endowed with the
properties: reflexive, triangular, and sufficient. Note that d.:; :/ has all properties of
a metric, excepting symmetry; it will be referred to as an almost metric (in short:
a-metric) on X; and the couple .X; d/ will be termed an a-metric space. Having this
precise, we may introduce a d-convergence and d-Cauchy structure on X, as follows.

For each sequence .xnI n � 0/ in X and each x 2 X, put xn
d�! x if d.xn; x/ ! 0 as

n ! 1; i.e.:

8" > 0; 9i D i."/: i � n H) d.xn; x/ < ".

The class of all such x will be denoted as limn.xn/; when it is nonempty, we say that
.xn/ is d-convergent. Note that limn.xn/ is not in general asingleton; but, when d is
separated, in the sense

(b02) (8 sequence .xn/ in X): xn
d�! u and xn

d�! v imply u D v,

this property is available. In this case, given a d-convergent sequence .xn/ of X, we
must have fzg D limn.xn/ (for z 2 X); as usual, we write this last relation as z D
limn.xn/. Note that sufficiency of d.:; :/ follows from the separated condition. In fact,
let u; v 2 X be such that d.u; v/ D 0. Then, the constant sequence .xn D uI n � 0/

fulfills xn
d�! u; xn

d�! v; whence (by the separated property) u D v. Likewise,
the d-Cauchy property of a sequence .xn/ in X is depicted as: d.xm; xn/ ! 0 as
m; n ! 1;m < n; or, equivalently:

8" > 0; 9j D j."/: j � m < n H) d.xm; xn/ < ".

It is to be stressed that, by the non-symmetry of d.:; :/, a d-convergent sequence need
not be d-Cauchy; however, when the reciprocal inclusion holds (each d-Cauchy is
d-convergent), we say that d.:; :/ is complete on X.

Now, starting from the couple .�; d/ introduced as before, the following a-
metrical type construction is proposed. Define a mapping � W .�/ ! RC as: for
each x; y 2 X with x � y,

(b03)�.x; y/ D infŒd.z1; z2/C : : :C d.zk�1; zk/�,
where .z1; : : : ; zk/ (for k � 2) is a .?/-chain between x and y.
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The following properties are valid:

(p-1) � is .�/-reflexive [�.x; x/ D 0;8x 2 X],
(p-2) � is .�/-triangular [�.x; z/ � �.x; y/C�.y; z/, if x � y; y � z].

In addition, the triangular property of d gives

(8x; y 2 X; x � y): d.x; y/ � d.z1; z2/C : : :C d.zk�1; zk/,
for any .?/-chain .z1; : : : ; zk/ (where k � 2) between x and y.

So, passing to infimum,

d.x; y/ � �.x; y/, for all x; y 2 X with x � y; (38)

referred to as: d is .�/-subordinated to �. Note that, in such a case

(p-3) � is .�/-sufficient [x � y; �.x; y/ D 0 H) x D y].

Finally, by the very definition of �, we get the reduction formula

d.x; y/ � �.x; y/ (hence d.x; y/ D �.x; y/), whenever x ? y. (39)

Having these precise, define the mapping e W X 
 X ! RC [ f1g, as

(b04) e.x; y/ D �.x; y, if x � y; e.x; y/ D 1, otherwise,

Clearly, e.:; :/ is endowed with the properties: reflexive, triangular, and sufficient.
We then say that e.:; :/ is a generalized almost metric [in short: generalized a-metric]
on X; and the couple .X; e/ will be referred to as a generalized a-metric space.
This convention comes from the fact that the mapping e.:; :/ has all properties of a
generalized metric (over X), excepting symmetry.

Now, as in the generalized metric case, we may introduce an e-convergence and
e-Cauchy structure on X. Namely, for each sequence .xnI n � 0/ in X and each

x 2 X, put xn
e�! x if e.xn; x/ ! 0 as n ! 1; i.e.:

8ı > 0; 9i D i.ı/: i � n H) e.xn; x/ < ı.

The class of all such x will be denoted as limn.xn/; when it is nonempty, we say that
.xn/ is e-convergent. Note that limn.xn/ is not in general asingleton; but, when e.:; :/
is separated, in the sense

(b05) (8 sequence .xn/ in X): xn
e�! u and xn

e�! v imply u D v,

this property is available. Then, for an e-convergent sequence .xn/ of X, we have
fzg D limn.xn/ (where z 2 X/; for simplicity, we write this last relation as z D
limn.xn/. As before, the sufficiency of e.:; :/ follows from this. In fact, let u; v 2 X
be such that e.u; v/ D 0. Then, the constant sequence .xn D uI n � 0/ fulfills

xn
e�! u; xn

e�! v; whence (by the separated property) u D v. Likewise, given the
sequence .xn/ of X, call it e-Cauchy, provided: e.xm; xn/ ! 0 as m; n ! 1;m < n;
or, equivalently:

8ı > 0; 9 j D j.ı/: j � m < n H) e.xm; xn/ < ı.



Structural Fixed Point Results in Metric Spaces 679

Note that, by the non-symmetry of e.:; :/, an e-convergent sequence need not
be e-Cauchy; however, when the reciprocal inclusion holds, (each e-Cauchy is
e-convergent) we say that e.:; :/ is complete on X.

Having these precise, it would be useful for us to establish some basic properties
of e.:; :/, in terms of the couple .?; d/ (or, equivalently: .�; d/).
(A) Concerning the separated property, a simple answer to it is contained in

Proposition 10. Suppose that the a-metric d.:; :/ is separated. Then, the general-
ized a-metric e.:; :/ is separated too.

Proof. Let the sequence .xnI n � 0/ in X and the points u; v 2 X be such that

xn
e�! u; xn

e�! v; i.e.: e.xn; u/ ! 0; e.xn; v/ ! 0. Without loss, one may assume
that xn � u; xn � v, for all n; and then (by definition) we must have �.xn; u/ !
0;�.xn; v/ ! 0. This, according to the subordination property, gives d.xn; u/ !
0; d.xn; v/ ! 0; so that (as d.:; :/ is separated), u D v.

(B) Concerning the completeness question, an appropriate answer to it needs
certain conventions. Call the sequence .xnI n � 0/ in X, .?/-ascending
provided xn ? xnC1;8n. Then, let us say that .?/ is almost-self-closed
(modulo d), when

(b06) if .xnI n � 0/ is .?/-ascending and xn
d�! x,

there exists a subsequence .ynI n � 0/ of it with (yn ? x;8n).

The following auxiliary fact is to be noted.

Proposition 11. Let the e-Cauchy sequence .xnI n � 0/ in X and the point v 2 X
be such that

yn
e�! v, for some subsequence .yn D xk.n/I n � 0/ of .xnI n � 0/.

Then, necessarily xn
e�! v as n ! 1.

Proof. Let ı > 0 be arbitrary fixed. From the e-Cauchy property, there exists
m.ı/ � 0, such that

m.ı/ � i � j H) e.xi; xj/ < ı=2:

On the other hand, by the sub-sequential convergence property, we have that, for the
same ı > 0, there exists some n.ı/ � m.ı/, such that

n.ı/ � n H) e.yn; v/ D e.xk.n/; v/ < ı=2:

Finally, as .k.n/I n � 0/ is strictly ascending, we must have

k.n/ � n, for all n � 0; hence, k.n/ � n.ı/, for all n � n.ı/.
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Combining these we have, for each n � n.ı/.� m.ı//

d.xn; v/ � d.xn; xk.n//C d.xk.n/; v/ < ı=2C ı=2 D ıI

and the conclusion follows.

We are now in a position to state the desired answer.

Proposition 12. Suppose that d.:; :/ is (separated) complete and .?/ is almost-self-
closed (modulo d). Then, e.:; :/ is a (separated and) complete generalized a-metric.

Proof. Let .xnI n � 0/ be an e-Cauchy sequence in X; i.e.:

8ı > 0; 9k.ı/: k.ı/ � n � m H) e.xn; xm/ < ı.

Without loss, one may assume that

xn � xm (i.e.: e.xn; xm/ D �.xn; xm/), whenever n � m;

so that the working hypothesis writes:

8ı > 0; 9k.ı/: k.ı/ � n � m H) �.xn; xm/ < ı.

As a direct consequence of this, there exists a strictly ascending sequence of ranks
.k.n/I n � 0/, in such a way that

.8n/ W k.n/ < m H) �.xk.n/; xm/ < 2
�n:

Denoting .yn WD xk.n/; n � 0/, we therefore have �.yn; ynC1/ < 2�n;8n. Moreover,
by the imposed e-Cauchy property (and a previous auxiliary fact)

.xnI n � 0/ is e-convergent iff .ynI n � 0/ is e-convergent.

To establish this last property, one may proceed as follows. As �.y0; y1/ < 2�0,
there exists (for the starting p.0/ D 0), a .?/-chain .zp.0/; : : : ; zp.1// between y0 and
y1 (hence p.1/� p.0/ � 1; zp.0/ D y0; zp.1/ D y1), such that

d.zp.0/; zp.0/C1/C : : :C d.zp.1/�1; zp.1// < 2
�0:

Further, as �.y1; y2/ < 2�1, there exists a .?/-chain .zp.1/; : : : ; zp.2// between y1
and y2 (hence p.2/� p.1/ � 1; zp.1/ D y1; zp.2/ D y2), such that

d.zp.1/; zp.1/C1/C : : :C d.zp.2/�1; zp.2// < 2
�1I

and so on. The procedure may continue indefinitely; it gives us a .?/-ascending
(hence, .�/-ascending) sequence .znI n � 0/ in X with (cf. the reduction formula)

X

n

�.zn; znC1/ D
X

n

d.zn; znC1/ <
X

n

2�n < 1: (40)
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In particular, .znI n � 0/ is d-Cauchy; wherefrom (as d is separated complete),

zn
d�! z as n ! 1, for some uniquely determined z 2 X. Further, by the choice of

.?/, there must be a subsequence .tn WD zq.n/I n � 0/ of .znI n � 0/, with

tn ? z (hence, tn � z), 8n.

This firstly gives (by the above convergence property), tn
d�! z as n ! 1. Secondly

(again combining with the reduction formula),

�.tn; z/ D d.tn; z/; 8nI

so that (by the above relation),

�.tn; z/ ! 0 (i.e.: tn
e�! z), as n ! 1.

On the other hand, (40) tells us that .znI n � 0/ is�-Cauchy (i.e.: e-Cauchy). Adding

the e-convergence property of .tnI n � 0/, gives zn
e�! z as n ! 1 (see above);

wherefrom [as .ynI n � 0/ is a subsequence of .znI n � 0/], yn
e�! z as n ! 1.

This finally gives xn
e�! z; and concludes the argument.

Main Result

Let X be a nonempty set. By a pseudometric (resp., generalized pseudometric) over
X we shall mean any map .x; y/ 7! e.x; y/ from X 
X to RC (resp., RC [f1g). Any
reflexive, triangular, sufficient (generalized) pseudometric e.:; :/ will be referred
to as a (generalized) a-metric; and the couple .X; e/ will be referred to as a
(generalized) a-metric space. This convention comes from the fact that the mapping
e.:; :/ has all properties of a (generalized) metric (over X), excepting symmetry.

Let .X; e/ be a generalized a-metric space. Denote for simplicity

(c01) (x; y 2 X): x � y iff e.x; y/ < 1.

This relation is reflexive and transitive; hence, a quasi-order on X. Conversely, let
.�/ be a quasi-order on X; and � W .�/ ! RC be a mapping endowed with
the properties: .�/-reflexive, .�/-triangular, and .�/-sufficient. In this case, the
generalized pseudometric (on X)

(c02) e.x; y/ D �.x; y/, if x � y; e.x; y/ D 1, otherwise,

is a generalized a-metric on X, as it can be directly seen.
Now, according to our previous conventions, we may introduce an e-convergence

and e-Cauchy structure on X. This allows us defining an e-closure operator on X as
follows. Let Y be a subset of X. We say that u 2 X is e-adherent to Y, when
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(c03) 8ı > 0; 9xı 2 Y: e.xı; u/ < ı; or, equivalently:
u 2 limn.xn/, for some sequence .xnI n � 0/ in Y.

The set of all such points will be called the e-closure of Y; and denoted as: cle.Y/.
The basic properties of the mapping Y 7! cle.Y/ are contained in

Lemma 6. Under the above conventions, we have

(clo-1) (progressiveness) Y � cle.Y/, 8Y 2 2X,
(clo-2) (identity) ; D cle.;/;X D cle.X/,
(clo-3) (monotonicity) cle.Y1/ � cle.Y2/; if Y1 � Y2,
(clo-4) (additivity) cle.U [ V/ D cle.U/[ cle.V/, 8U;V 2 2X,
(clo-5) (idempotence) cle.cle.Y// D cle.Y/, 8Y 2 2X.

Proof. (clo-1), (clo-2), (clo-3): Evident.

(clo-4) The right to left inclusion is clear, by the monotone property; so, it remains
to verify the left to right inclusion. Let w 2 cle.U [ V/ be arbitrary fixed:

w 2 limn.zn/, for some sequence .znI n � 0/ in U [ V .

If the alternative below holds

for each (index) h, there exists (another index) k > h, with xk 2 U

then, a strictly ascending rank-sequence .i.n/I n � 0/ may be found, such that

w 2 limn.zi.n//, .zi.n/I n � 0/= sequence in U;

wherefrom, w 2 cle.U/. Otherwise (if the opposite alternative holds), we must
have (by the choice of our sequence)

there exists an index h, fulfilling: zk 2 V , for all k > h;

and this tells us that

w 2 limn.zhC1Cn/, .zhC1CnI n � 0/=sequence in V;

whence, w 2 cle.V/.
(clo-5) As before, the right to left inclusion is clear (by progressiveness and

monotone properties); so, it remains to establish the left to right inclusion. Let
w 2 cle.cle.Y// be arbitrary fixed. Given ı > 0, there exists (by definition) some
y 2 cle.Y/ with e.y;w/ < ı. On the other hand, for this y 2 cle.Y/ and the
same ı > 0, there exists x 2 Y with e.x; y/ < ı. Combining these yields (by the
triangular inequality)

e.x;w/ � e.x; y/C e.y;w/ < 2ıI

and since ı > 0 was arbitrarily chosen, w 2 cle.Y/. The proof is complete.
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Note that, as a consequence of this, the mapping Y 7! cle.Y/ is a Kuratowski
closure operator [20, Chap. I, Sect. 4]; so, it induces a topology T .e/ on X,
according to the lines in Bourbaki [5, Chap. I, Sect. 1]. In particular, the T .e/-
closed subsets Y of X are characterized as Y D cle.Y/; then Y is referred to as
e-closed. For example, Y D ; and Y D X have this property; further examples are
to be determined via

Proposition 13. Let .X; e/ be a generalized a-metric space; and .�/ stand for the
associated to e.:; :/ quasi-order (see above). Further, let a 2 X be arbitrary fixed.
Then,

(i) the section X.a;�/ WD fx 2 XI a � xg is e-closed
(ii) the restriction of e.:; :/ to X.a;�/ is complete, whenever e.:; :/ is complete.

Proof. (i) Let .xnI n � 0/ be a sequence in X.a;�/; hence (by hypothesis)

e.a; xn/ < 1, for all n.

In addition, suppose that x 2 X is such that xn
e�! x. Letting ı > 0 be arbitrary

fixed, there must be some rank n.ı/, with

e.xn; x/ < ı < 1, for all n � n.ı/.

Combining with the above relation yields (by the triangular property)

.8n � n.ı// W e.a; x/ � e.a; xn/C e.xn; x/ < 1I

wherefrom x 2 X.a;�/.
(ii) Let .xnI n � 0/ be an e-Cauchy sequence in X.a;�/. By the completeness

hypothesis, xn
e�! z as n ! 1, for some uniquely determined z 2 X. On the

other hand, from the previous part, we must have z 2 X.a;�/; and this ends the
argument.

Remark 1. The property discussed here is referred to as: the associated to e.:; :/
quasi-order .�/ is semi-closed; cf. Nachbin [26, Appendix]. Note that, unlike the
generalized metric setting, the restriction of e.:; :/ to such sections X.a;�/ (with
a 2 X) is no longer a standard a-metric.

As a consequence of this statement, it results—like in the generalized metric
setting—that Picard conventions to be introduced must have a local character; their
precise content is described below.

Let .X; e/ be a generalized a-metric space. Call the subset U of X, e-asingleton
provided [y1; y2 2 U; e.y1; y2/ < 1 imply y1 D y2]; and e-singleton if, in addition,
U is nonempty. (Remember that, in this last case, the alternative card.U/ � 2 is
not avoidable). Further, let T 2 F .X/ be a self-map of X. The following initial
regularity conditions about these data are accepted:

(ureg-1) The generalized a-metric e.:; :/ is separated; i.e.:
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(c04) (8 sequence .xn/ in X): xn
e�! u and xn

e�! v imply u D v.

[Remember that the sufficiency of e.:; :/ follows from this].
(ureg-2) Let us say that e.:; :/ is complete, when

(c05) (for each sequence in X): e-Cauchy implies e-convergent.

Note that—like in the generalized metric setting—this concept is equivalent with
its local version for generalized a-metrics. Precisely, call e.:; :/, locally complete
when, for each a 2 X, its restriction to the section X.a;�/ is complete. By
the preceding statement, we have (for each generalized a-metric): complete H)
locally complete. The converse inclusion is also true; hence

[8 generalized a-metric]: complete () locally complete.

(ureg-3) Call T, e-semi-progressive, provided

(c06) X.TI e/ WD fx 2 XI e.x;Tx/ < 1g is nonempty.

Clearly, according to

e.x;Tx/ < 1 if and only if x � Tx,

this e-semi-progressive condition may be written as:

T is .�/-semi-progressive: X.T;�/ WD fx 2 XI x � Txg ¤ ;.

(ureg-4) Call T, e-increasing provided

(c07) e.x; y/ < 1 implies e.Tx;Ty/ < 1.

This, according to our conventions, may be also referred to as

T is .�/-increasing: x � y implies Tx � Ty.

Fix in the following some Y 2 2X; and denote Fix.TI Y/ D Fix.T/\ Y (the trace
over Y of Fix.T/). Also, take some W 2 .2/X . Sufficient conditions for existence of
such points are to be discussed along the “unilateral” versions of our previous local
concepts.

(uloc-pic-1) Call x 2 X, a Picard point (modulo .e;T/) relative to Y, provided
.TnxI n � 0/ is e-convergent, with limn.Tnx/ 2 Y; if such a property holds for
all x 2 W, we say that T is a Picard operator (modulo e) relative to .W;Y/; and,
if (in addition) Fix.TI Y/ is an e-asingleton, then T is referred to as a globally
Picard operator (modulo e) relative to .W;Y/

(uloc-pic-2) Call x 2 X, a strong Picard point (modulo .e;T/) relative to Y,
provided .TnxI n � 0/ is e-convergent with limn.Tnx/ 2 Fix.TI Y/; if this holds
for all x 2 W, we say that T is a strong Picard operator (modulo e) relative to
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.W;Y/; and, if (in addition) Fix.TI Y/ is an e-asingleton (hence, an e-singleton),
then T is referred to as a globally strong Picard operator (modulo e) relative to
.W;Y/.
Finally, the contractive condition upon our data may be written as:

(con-gam) Given ˛ > 0, let us say that T is .eI˛/-contractive, provided

(c08) e.Tx;Ty/ � ˛e.x; y/, for each x; y 2 X with e.x; y/ < 1.

Note that, as a direct consequence of this, we have

T is .�/-increasing: x � y implies Tx � Ty.

For other consequences of the same, we need a lot of preliminary concepts and
auxiliary facts. Define some other relation .�/ over X, as

(c09) (u; v 2 X): u � v iff e.Tnu;Tnv/ ! 0, as n ! 1.

Clearly, .�/ is reflexive and transitive; hence, it is a quasi-order on X. By
definition, u � v will be read as: the couple .u; v/ is .e;T/-asymptotic.

The following simple property will be useful in the sequel

Lemma 7. Suppose that e.:; :/ is separated; and let the couple .u; v/ in X be .e;T/-
asymptotic (i.e.: u � v). Then,

limn.Tnu/ D limn.Tnv/, provided limn.Tnv/ exists. (41)

Proof. Denote b D limn.Tnv/; hence, e.Tnv; b/ ! 0 as n ! 1. By the triangular
inequality, we derive

e.Tnu; b/ � e.Tnu;Tnv/C e.Tnv; b/; 8n:

Passing to limit as n ! 1 gives Tnu
e�! b; and this, by the separated property,

yields b D limn.Tnu/; hence the conclusion.

We may now pass to the posed problem. Concerning the relationship between
.�/ and the initial quasi-order .�/, the following assertion is available.

Lemma 8. Suppose that T is .eI˛/-contractive, for some ˛ 2�0; 1Œ. Then,

u; v 2 X; u � v H) u � vI (42)

i.e.: .�/ is finer than .�/.
Proof. Let u; v 2 X be such that u � v; i.e.: e.u; v/ < 1. By the contractive
condition, we have

e.Tnu;Tnv/ � ˛ne.u; v/; 8n � 0:

And this, along with the choice of ˛, gives the desired fact.
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Remark 2. The reciprocal inclusion is not in general true. In fact, let the points
u; v 2 X be such that: u � v is false, but Tu � Tv. Then, by the result above
limn e.Tn.Tu/;Tn.Tv// D limn e.TnC1u;TnC1v/ D 0I so that, u � v; but, from this
very choice, u � v is not true.

Finally, as a last auxiliary fact about our data, we get

Lemma 9. Suppose that T is .eI˛/-contractive, for some ˛ 2�0; 1Œ. Then, Fix.T/ is
e-asingleton; hence, Fix.T;Y/ is e-asingleton, for each (nonempty) part Y of X.

Proof. Let z1; z2 2 Fix.T/ be such that e.z1; z2/ < 1. By the contractive condition,

e.z1; z2/ D e.Tz1;Tz2/ � ˛e.z1; z2/I
wherefrom, e.z1; z2/ D 0. This, along with the sufficiency property of e.:; :/, gives
z1 D z2; and concludes the argument.

We are now in position to state the main result of this exposition.

Theorem 11. Assume that T is .eI˛/-contractive, for some ˛ 2�0; 1Œ (hence (see
above): e-increasing). In addition, let e.:; :/ be separated, complete, and T be
e-semi-progressive. Finally, take some point x0 2 X.T; e/ D X.T;�/. Then

(Ko-1) X.x0;�/ is e-closed, T-invariant, and e.:; :/ is complete over X.x0;�/
(Ko-2) x0 is a strong Picard point (modulo .e;T/) relative to X.x0;�/
(Ko-3) T is globally strong Picard (modulo e), relative to .X.x0;�/;X.x0;�//
(Ko-4) T is globally strong Picard (modulo e), relative to .X.x0;�/ \ X.T; e/;

X.x0;�//.
Proof. (I) Evident, by our previous developments.
(II) Denote for simplicity .xn D Tnx0I n � 0/. By definition, we have x0 � x1;

i.e., e.x0; x1/ < 1. This, via T=increasing, tells us that .xnI n � 0/ is
an ascending sequence in X.x0;�/. Moreover, by a repeated application of
contractive condition,

e.xn; xnC1/ � ˛nd.x0; x1/; 8nI
wherefrom, .xnI n � 0/ is e-Cauchy. By completeness, there must be some

z 2 X such that xn
e�! z as n ! 1. This firstly gives z 2 X.x0;�/ [as

X.x0;�/ is e-closed]. Secondly, by the very definition of convergence, there
must be some rank n.z/ � 0, such that

e.xn; z/ < 1 (hence, xn � z), for all n � n.z/.

Combining with the contractive condition yields

e.xnC1;Tz/ � ˛e.xn; z/; 8n � n.z/I

whence (passing to limit as n ! 1), xn
e�! Tz. This, along with the separated

property, gives z D Tz; hence, z 2 Fix.T;X.x0;�//.
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(III) Let u0 2 X.x0;�/ be arbitrary fixed; hence, u0 � x0. By a previous auxiliary
fact, we must have

u0 � x0 [i.e.: d.Tnu0; xn/ ! 0, as n ! 1];

i.e.: the couple .u0; x0/ is .e;T/-asymptotic. Then (see above)

lim
n

Tnu0 D lim
n
.xn/ D zI

whence u0 is strong Picard (modulo .e;T/) relative to X.x0;�/. On the
other hand, by another auxiliary fact, Fix.T/ is e-asingleton; hence, so is
Fix.TI X.x0;�//. Putting these together gives the desired conclusion.

(IV) Let v0 2 X.x0;�/ \ X.T; e/ be arbitrary fixed; hence, x0 � v0 2 X.T; e/.
It will suffice to apply the conclusions (Ko-1)+ (Ko-2) to the starting point
v0 (with the associated section X.v0;�/) and conclusion (Ko-3) to the pair
.x0; v0/ (in place of .u0; x0/) to get the desired assertion. The proof is thereby
complete.

In particular, when e.:; :/ is a generalized metric on X, Theorem 11 is just LJCP.
Further aspects may be found in Turinici [38].

Particular Aspects

Let X be a nonempty set; and .?/ be a reflexive relation over it. Further, let
.�/ WD [f?nI n � 1g stand for the minimal quasi-order that includes .?/.
Remember that a characterization of this object may be obtained as follows. Given
x; y 2 X, any k-tuple .z1; : : : ; zk/ (for k � 2) in Xk with z1 D x; zk D y, and
[zi ? ziC1, i 2 f1; : : : ; k � 1g] will be referred to as a .?/-chain between x and y;
the class of all these will be denoted as C.x; yI ?/. In this case, we have

(x; y 2 X): x � y iff C.x; yI ?/ is nonempty. (43)

(A) Let T 2 F .X/ be a self-map of X. We call it .?/-increasing, provided

(d01) (for all x; y 2 X): x ? y H) Tx ? Ty.

Concerning the corresponding property for associated quasi-order .�/, the follow-
ing simple answer is available:

Lemma 10. Under these conventions, the generic relation holds

.8T 2 F .X/): .?/-increasing H) .�/-increasing. (44)
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Proof. Let x; y 2 X be such that x � y. By a previous characterization, there must
be a .?/-chain .z1; : : : ; zk/ (for k � 2) in Xk, joining x and y. Combining with the
imposed hypothesis, .Tz1; : : : ;Tzk/ (for k � 2) is a .?/-chain in Xk, which connects
Tx and Ty; wherefrom, Tx � Ty.

Remark 3. The converse inclusion is not in general true. In fact, put X D f1; 2; 3g
and take the reflexive relation .?/ D f.1; 1/; .2; 2/; .3; 3/; .1; 3/; .3; 2/g. Its associ-
ated quasi-order is

.�/ D f.1; 1/; .2; 2/; .3; 3/; .1; 2/; .1; 3/; .3; 2/g:

Define T 2 F .X/ as: [T1 D 1;T2 D 2;T3 D 2]. Clearly, T is .�/-increasing,
since .T1;T2/ D .1; 2/; .T1;T3/ D .1; 2/; .T3;T2/ D .2; 2/. On the other hand, T
is not .?/-increasing, because .1; 3/ 2 .?/, but .T1;T3/ D .1; 2/ … .?/.
(B) Further conventions are to be introduced under a (generalized) a-metric

framework. Let d W X 
 X ! RC be a reflexive, triangular, sufficient mapping;
referred to as an a-metric) on X; then, the couple .X; d/ will be termed an a-
metric space. Define a mapping � W .�/ ! RC as: for each x; y 2 X with
x � y,

�.x; y/ D infŒd.z1; z2/C : : :C d.zk�1; zk/�,
where .z1; : : : ; zk/ (for k � 2) is a .?/-chain between x and y.

As precise, this mapping is .�/-reflexive .�/-triangular and .�/-sufficient. Finally,
define the mapping e W X 
 X ! RC [ f1g, as

e.x; y/ D �.x; y, if x � y; e.x; y/ D 1, otherwise,

Clearly, e.:; :/ is reflexive triangular and sufficient. We then say that e.:; :/ is the
generalized a-metric on X induced by�; and the couple .X; e/ will be referred to as
a generalized a-metric space.

Remember that some basic properties of e.:; :/—such as separation and
completeness—may be formulated in terms of corresponding properties for .?; d/.
In the following, a corresponding formulation of e-contractive properties is to be
given. Precisely, call T 2 F .X/, .eI˛/-contractive (for some ˛ > 0), provided

(d02) e.Tx;Ty/ � ˛e.x; y/, whenever e.x; y/ < 1.

The associated property in terms of .?; d/ may be introduced as: we say that T 2
F .X/ is .d;?I˛/-contractive (where ˛ > 0), provided

(d03) x; y 2 X; x ? y implies d.Tx;Ty/ � ˛d.x; y/.

We may now give an appropriate answer to the posed question.

Lemma 11. Let the .?/-increasing map T 2 F .X/ and the number ˛ > 0 be such
that T is .d;?I˛/-contractive. Then, T is .eI˛/-contractive.

Proof. Suppose that x; y 2 X are such that e.x; y/ < 1; i.e.: x � y. For
each .?/-chain .z1; : : : ; zk/ (where k � 2) joining x and y, we have (as T is
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.?/-increasing) that .Tz1; : : : ;Tzk/ is a .?/-chain between Tx and Ty. So, by the
contractive condition, we get

�.Tx;Ty/ �
k�1X

iD1
d.Tzi;TziC1/ � ˛

k�1X

iD1
d.zi; ziC1/;

for all such .?/-chains; wherefrom, passing to infimum (over C.x; yI ?/),

�.Tx;Ty/ � ˛�.x; y/; or, equivalently: e.Tx;Ty/ � ˛e.x; y/.

The proof is complete.

(C) Under these preliminaries, we may now state the announced result. Let X be a
nonempty set; and .?/ be a reflexive relation over X. Further, let .�/ stand for
the minimal quasi-order including .?/ (see above); and d W X 
 X ! RC be an
a-metric over X. Let also � W .�/ ! RC be the associated to .�; d/ mapping;
and e W X 
X ! RC [f1g stand for the attached generalized a-metric. Finally,
let T be a self-map of X; supposed to satisfy

(d04) T is .�/-semi-progressive: X.TI �/ WD fx 2 XI x � Txg ¤ ;.

Our second main result in this exposition is

Theorem 12. Suppose that T is .d;?I˛/-contractive, for some ˛ 2�0; 1Œ. In
addition, let d be separated, complete, .?/ be almost-self-closed (modulo d), and
suppose that T is .?/-increasing, .�/-semi-progressive. Finally, take some point
x0 2 X.T;�/. Then, conclusions of the first main result are being retainable.

Proof. There are several steps to be passed.

Step 1. From a couple of auxiliary statements, e is separated and complete;
because d is separated, complete and .?/ is almost-self-closed (modulo d).

Step 2. According to

x � Tx if and only if e.x;Tx/ < 1,

the .�/-semi-progressive condition may be written as:

(d05) T is e-semi-progressive: X.T; e/ WD fx 2 XI e.x;Tx/ < 1g ¤ ;.

In addition (cf. an auxiliary fact), the .d;?I˛/-contractive and .?/-increasing
conditions upon T assure us that this self-map is .eI˛/-contractive.

Step 3. Summing up, the first main result applies to the generalized a-metric
structure .X; e/, the self-map T and the number ˛ 2�0; 1Œ. In this case, by the
conclusions listed there, we get all desired facts. The proof is complete.

In particular, our progressive condition is fulfilled when

(d06) T is .?/-semi-progressive: X.TI ?/ WD fx 2 XI x ? Txg ¤ ;.
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Then, our second main result above reduces to the statement in Jachymski [14]; but,
the methods used there are quite different from the above ones. Further aspects may
be found in Samet and Turinici [33].
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Models of Fuzzy Linear Regression:
An Application in Engineering

Christos Tzimopoulos, Kyriakos Papadopoulos, and Basil K. Papadopoulos

Abstract The classical Linear Regression is an approximation for the creation
of a model which connects a dependent variable y with one or more independent
variables X, and it is subjected to some assumptions. The violation of these assump-
tions can influence negatively the power of the use of statistical regression and its
quality. Nowadays, to exceed this problem, a new method has been introduced,
and is in use, that is called fuzzy regression. Fuzzy regression is considered to be
possibilistic, with the distribution function of the possibility to be connected with
the membership function of fuzzy numbers. In this article, we examine three models
of fuzzy regression, for confidence level h=0, for the case of crisp input values, fuzzy
output values and fuzzy regression parameters, with an application to Hydrology, in
two rainfall stations in Northern Greece.

Keywords Fuzzy linear regression models • Tanaka model • Savic and Pedrycz
model • Least squares model application

Introduction

In Statistics, Linear Regression is an approximation for the creation of a model
connecting a dependent variable y with one or more independent variables X.
In the case of one independent variable we have simple Linear Regression.
Linear Regression was the first type of analysis of Regression which was studied
knowingly and was used in practical applications. Today, Linear Regression is used
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in many problems of applied science (Geology, Meteorology, Physical Sciences,
Engineering, Medicine, etc.) and most of the applications refer to the following two
categories [24]:

– If the target is the prediction, Linear Regression is used for creating a prediction
model which will simulate a set of observed times y and Xi; i D 1; : : : n. After
creating such a model, if it is given an addition random value Xi, without the
existence of a corresponding value for y, this model is used for giving a prediction
value for y.

– For a given set of values y and variables X1; : : :Xn which are connected with
y, the Linear Regression is applied to quantify the closeness of the relationship
between y and Xi, to evaluate which Xi have no relationship with y, and to identify
which subsets of Xi contain redundant information for y.

The classical model of Linear Regression has the form:

yi D ˇ1xi1 C : : :C ˇnxin C "i; i D 1; : : : ;m

or, in vector form:

�!y D X � �!̌ C �!"

where �!y is a vector that is called dependent variable, X is the matrix of independent

variables,
�!̌

is the vector of the parameters of the regression, and �!" is the vector

of error terms. The estimation of the parameters
�!̌

is being done with the classic
method of the least squares (OLS), which minimizes the sum of squares of the

remainders and leads to the below estimated value for the parameter
�!̌

:

Ǒ D .XT X/�1 XT � �!y

This estimator is unbiased and consistent, since the errors are not dependent
from the independent variables. It should be noted that an application of Linear
Regression requires the following:

1. Linear functional form of the relation, where the linearity refers to the parameters
and not the variables.

2. We suppose that there is no precise linear relation between independent variables.
3. The errors are supposed to have expected value zero, for each observation, i.e.

EŒ"i� D 0, and the violations of the independence EŒ"i; "j� D 0 are considered
very serious.

4. The variance of errors is: VarŒ"i� D �2 for all i D 1; : : : ; n, and the covariance of
the errors is: CovŒ"i; "j� D 0 for all i ¤ j. If the error has constant variance, it is
called homoscedastic.

5. Nonstochastic independent variables
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6. The remainders are distributed normally, with zero mean and constant variance.
The "i are N.0; �2/.

The violation of the above basic assumptions can influence negatively the power
of the use of the linear regression and also its quality. Nowadays, in order to
handle this problem, the fuzzy regression has been introduced and is in use. It was
developed by Tanaka et al. [22], Tanaka [18], Tanaka and Watada [21], Tanaka and
Hayashi [19], Tanaka and Ishibuchi [20] and is considered more effective from the
statistical regression, with respect to the above facts being violated or not being
used properly. For example, when human judgment is involved, fuzzy procedures
are introduced, which should be explained, or when we have a small number
of crisp data or even fuzzy data, the use of statistical regression is excluded. In
addition, the descriptive ability of fuzzy regression sets is better than the statistical
regression when the size of the sample space is small and the ability of statistical
regression is diminished. Thus, fuzzy regression can be a useful tool for the
users and researchers in different areas, when they study the relationship between
variables with fuzzy, deficient, and restricted information. So, while the classical
regression is considered probabilistic, fuzzy regression is considered possibilistic
and the membership function �eF , of a fuzzy numbereF, is linked with the possibility
distribution function. In other words, for a given fuzzy numbereF and membership
function �eF , the possibility distribution function of a possibility is defined as:

�x.x/
�

D �eF.x/

In addition, the fuzzy regression analysis uses fuzzy function for the regression
coefficients, in contrast with the classical regression analysis. The above problem
[16, 19] usually meets the three cases below:

1. Crisp input values xij and output yj, fuzzy estimated valueseYi.
2. Crisp input values xij and fuzzy output values Qyi, fuzzy estimated valueseYi.
3. Fuzzy input values Qxij and output Qyi, fuzzy estimated valueseYi.

In all of the above cases, the parameters of the regression are considered fuzzy.
The symbols .xij; yj; Qxij; Qyi/ refer to the data of the system while eYi refers to the
estimated value.
The adjustment of a model of fuzzy regression is done via two general
methods [9]:

– The possibilistic model ([13, 14, 16, 17, 22], etc.). One minimizes the fuzziness
of the model by taking into account the minimum of the spreads around the center
of the fuzzy parameters, by considering as important to include the experimental
values of every sample within a specific interval of possible data.

– The model of the classic method of least squares [4, 7, 8, 26]. The distance
between the estimated output value of the model eYi and of the observed output
value Qyi is being minimized.
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In the initial model of Tanaka et al. [22], the objective function used as a criterion
is the minimilization of the total fuzziness s, which was determined as the sum of
the individual spreads of the fuzzy variables:

min J.c/ D
X

i

ci

Because of the criticism of the above model .ci D 0; [11]), Tanaka [18], modified
this model by considering the sum of the spreads of the estimated value of the model
eYi:

min J.c/ D
X

i

cT jxij

In addition, in all of his models, the membership functions used were triangular
and in the constraints, the subset-hood of fuzzy numbers with a confidence level h
was used. This subset-hood included three cases:

1. Minimum Problem: The measured values for h degree of confidence should be
included within the estimated values:

ŒQy`j ; Qyr
j �

h � ŒeY`j ;Y
r
j �

h

2. Maximum Problem: The estimated values for h degree of confidence will be
contained within the measured values:

ŒeY`j ;Y
r
j �

h � ŒQy`j ; Qyr
j �

h

3. Dual Problem: The intersection of measured values and estimated values is
considered different from 0:

ŒQy`j ; Qyr
j �

h \ ŒeY`j ;Y
r
j �

h ¤ 0

Tanaka [18] believes that there is always a solution to the minimum problem and
the dual problem. Furthermore, Tanaka and Watada [21] showed that the maximum
problem has a solution if and only if the objective function of the dual problem is
equal to 0. Hereafter, in all problems of possibilistic regression, the first case was
used, namely the case of the minimum problem.

Apart from the above named researchers, the problem of fuzzy linear regression
was studied by Bardossy et al. [3] who applied the theory in hydrology problems
using the minimum problem model, Savic and Pedrycz [17] who used the dual
form of the minimum problem model, Moskowitz and Kim [12] who carried out
a sensitivity analysis of the confidence level h in the minimum problem model,
Redden and Woodall [16] who used fuzzy independent variables and introduced
improvements to similar problems. Chen [6] modified the Tanaka method [18]
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to include measured points with large errors (outliers) and considered that the
difference between the estimated spread and the measurement error should be
less than a certain amount. Hung and Yang [10] improved the method of Chen,
implementing a process for measuring the influence of an observation in the value
of the objective function of Tanaka, when the observation is omitted. We should also
mention Pasha et al. [15] who used the entropy in the objective function with the
same constraints.

Regarding the method of least squares, we must mention Diamond [7, 8] who
first introduced this method and for symmetric fuzzy numbers defined the distance
between two fuzzy numbers ds2 as equal to the sum of squared deviations of
the supports, and proved that it is equivalent to the standard norm that is equal
to the sum of squared deviations of both the supports and also the kernel.Chang
and Lee [4] introduced a generalized weighted least-squares regression algorithm
and used iterative methods to determine the supports and the kernel. Xu and Li [25]
used a balanced norm as distance between two fuzzy numbers and Gauss functions
as membership functions. Subsequently, a system of fuzzy equations was formed
and solved by analytical method. Bargiela et al. [2] proposed a recursive algorithm
for multiple regression by the method of least squares, and they solved the problem
as an optimization problem with steepest descent. Arabpour and Tata [1] used a
least squares model similar to the model of Diamond [7] and generalized the metric
used by Diamond, using it as an optimization criterion for estimating the model
parameters which are the coefficients of the supports and the kernel.

This article examines: (a) a possibilistic model by Tanaka, (b) a possibilistic
model by Savic and Pedrycz, (c) a model of least squares. These models are
tested for a confidence level h=0 and in the case of crisp input values, fuzzy
output values and fuzzy parameters in Hydrology problems. Symmetric triangular
fuzzy numbers are used for the parameters and the measured output values. The
application involves the existing correlation of monthly rainfall average heights for
two rainfall stations in Serres (Greece): Aggistro (X) and Upper Vrontous (Y) for
12 periods.

Mathematical Model

Possibilistic Model of Tanaka

Consider a fuzzy dependent variableeYj and xij the independent variables influencing
the variable eYj. The result of a fuzzy linear regression is an equation of the form
([18–21], etc.):

eYj DeA0 CeA1x1j CeA2x2j C : : :CeAnxnj D
nX

iD0
eAixij; x0j D 1 (1)
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where the measured input values xij are classical crisp numbers and the measured
output values, fuzzy numbers. The parameterseAi D .ri; ci/ are considered symmet-
ric triangular fuzzy numbers, with membership function given as follows:

�eAi
.x/ D

(
0 x < ri � ci or x > ri C ci

1 � jx�rij
ci

ri � ci � x � ri C ci

(2)

The parameters ri; ci are, respectively, the means and spread of the parameter eAi.
The membership functions are normally written using the L;R types as follows:

1. L. ri�x
ci
/, for ri � ci � x � ri and 0 elsewhere

2. R. x�ri
ci
/, for ri � x � ri C ci and 0 elsewhere

Functions L;R have the following properties: L.0/ D R.0/ D 1 , L.1/ D R.1/ D 0

and L�1.h/ D R�1.h/ D 1 � h.
The h-cuts confidence [4] of the parameter eAi are given as follows:

ŒeAi�
h D Œri � L�1.h/ci; ri C L�1.h/ci� (3)

while the h-cuts confidence of the fuzzy dependent variableeYj are given as follows:

ŒeYj�
h D ŒRj � Cj D

nX

iD0
rixij � L�1.h/

nX

iD0
cixij; Rj C Cj (4)

D
nX

iD0
rixij C L�1.h/

nX

iD0
cixij�; x0j D 1:

the mean mi and the spread ci of the fuzzy numbereYj are given as follows:

mi D
nX

iD0
rixij; ci.h/ D L�1.h/

nX

iD0
cixij (5)

In the above equations the mi is called the kernel of the fuzzy number ŒeYj�, while the
cuts ŒeY`j ;Y

r
j �

hD0 are called its supports.
The observed output value Qyi is fuzzy, with mean value yi and spread ei (Fig. 1)

and must be included in the estimated value ŒeYj�
h [5, 12]. Therefore it will hold

that ŒQyj�
h � ŒYh

L ;Y
h
U� and the above problem is formulated as a linear programming

problem:

min.c/ D mc0 C
mX

jD1

nX

iD1
cixij; ci � 0 (6)
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Fig. 1 Case for fuzzy measured output value

s.t.

nX

iD0
rixij CL�1.h/

nX

iD0
cixij � yj C.1�h/ej;! �!r T CL�1.h/�!c T �X � �!y CL�1.h/�!e ;

nX

iD0
rixij�L�1.h/

nX

iD0
cixij � yj�.1�h/ej;! .�!r T �L�1.h/�!c T/�X � �!y �L�1.h/�!e ;

�!r T D Œr0; r1; : : : ; rn�;
�!c T D Œc0; c1; : : : ; cn�;

�!y T D Œy0; y1; : : : ; yn�;
�!e T D Œe0; e1; : : : ; en�; x0j D 1:

(7)

The Possibilistic Model of Savic and Pedrycz

The model of Savic and Pedrycz [17] is known as FLSLR (Fuzzy Least-Squares
Linear Regression). In this model, Savic and Pedrycz used the method of Tanaka in
two phases:

First Phase In the first phase they consider the input values xij and output yj as
crisp values and also that their model is probabilistic. They apply the method of least
squares to estimate the values of parameters �!r . The normal equations are written
as follows:

.XTX/ � �!r D XT � �!y (8)
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and least squares estimators as he solution of (8) are:

�!r � D .XT X/�1 XT � �!y (9)

Second Phase In this step it is again a linear programming problem, like that of
Tanaka, as in Eqs. (6) and (7). The only difference lies in vector �!r that has already
been calculated in the first phase and is now regarded as the known vector �!r �.
The equations are presented with a little modification to the originals of Savic and
Pedrycz. That is, the objective function in the original article of Savic and Pedrycz
had the expression:

min.c/ D
nX

iD0
Ci;

while here it is used with the subsequent expression of Tanaka:

min.c/ D mc0 C
mX

jD1

nX

iD1
cixij; ci � 0:

The problem of Savic and Pedrycz is now defined as follows:

min.c/ D mc0 C
mX

jD1

nX

iD1
cixij; ci � 0: (10)

s.t.

.�!r T� C L�1.j/�!c T/ � X � �!y C L�1.h/�!e ;

.�!r T� � L�1.h/�!c T/ � X � �!y � L�1.h/�!e
(11)

Vector �!r � is now known and is transferred to the right-hand side of the inequalities.

The Least Squares Model

General

Diamond [7] was the first who worked on the model of least squares. For this
purpose he introduces into the space F.R/ of triangular fuzzy numbers:

eXaD0
1 D .�!r 1��!c `

1;
�!r 1;

�!r 1C�!c r
1/ �X;eXaD0

2 D .�!r 2��!c `
2;

�!r 2;
�!r 2C�!c r

2/ �X (12)
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the following metric d:

d.eX1;eX2/2 D ..�!r 2 � �!r 1/ � X/2 C ..�!r 2 � �!c `
2/ � X � .�!r 1 � �!c `

1/ � X/2C
..�!r 2 C �!c `

2/ � X � .�!r 1 C �!c `
1/ � X/2

(13)

and proves that the metric space .F.R/; d/ is complete. When the fuzzy numbers are
symmetric: eX1 D .�!r 1;

�!c 1/ � X;eX2 D .�!r 2;
�!c 2/ � X he introduces a function ds as

follows:

ds.eX1;eX2/2 D .X`2 � X`1/
2 C .Xr

2 � Xr
1/
2 D ..�!r 2 � �!c `

2/ � X � .�!r 1 � �!c `
1/ � X/2C

..�!r 2 C �!c `
2/ � X � .�!r 1 C �!c `

1/ � X/2

(14)

and proves it to be an equivalent metric in the space of compact spaces. Here the
metric of Diamond [7] is selected and the estimate of the symmetric numbereY1 is
examined:

eYi DeA0 CeA1xi;eA0.r0; c0/;eA1 D .r1; c1/

or:

ŒeYiD0�aD0 D Œr0 � c0 C .r1 � c1/xi; r0 C c0 C .r1 C c1/xi�
aD0 (15)

Symmetric Fuzzy Numbers

Now consider the case, where both the fuzzy numbers .eYaD0
l ; QyaD0l/ are symmetric.

Then the minimization problem becomes:

minimizeS D
X

ds.eYaD0
i ; QyaD0

i /2 D

D
nX

iD1
f.y`i � .r0 � c0 C .r1 � c1/xi//

2 C .yr
i � .r0 C c0 C .r1 C c1/xi//

2g
(16)

Minimizing the quantity S is obtained by equating the derivatives of this quantity
with respect to the parameters .r0 � c0/; .r0 C c0/; .r1 � c1/; .r1 C c1/ to 0.

@S

@.r0 � c0/
D 0 ! Ny` � .r0 � c0/� .r1 � c1/Nx D 0;

@S

@.r1 � c1/
D 0 !

nX

iD1
xiy

`
i � nNx.r0 � c0/� .r1 � c1/

nX

iD1
x2i D 0

(17)
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r1 � c1 D

nP

iD1
xiy`i � nxy`

nP

iD1
x2i � nx2

; r0 � c0 D y` � .r1 � c1/x (18)

@S

@.r0 C c0/
D 0 ! yr � .r0 C c0/� .r1 C c1/x D 0;

@S

@.r1 C c1/
D 0 !

nX

iD1
xiy

r
i � nx.r0 C c0/� .r1 C c1/

nX

iD1
x2i D 0

(19)

r1 C c1 D

nP

iD1
xiyr

i � nxyr

nP

iD1
x2i � nx2

; r0 C c0 D yr � .r1 C c1/x (20)

In the above, the quantities y`; x; yr are given as follows:

y` D 1

n

nX

iD1
y`i ; x D 1

n

nX

iD1
xi; y

r D 1

n

nX

iD1
yr

i ; y
`
i D yi � ei; y

r
i D yi C ei (21)

considering that the fuzzy member Qyi D .yi; ei/ is symmetric. From the above
expressions, the quantities r0; c0; r1; c1 are derived and subsequently the values of
the parameterseA0 D .r0; c0/;eA1 D .r1; c1/:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; c1 D

nP

iD1
xiei � nxe

nP

iD1
x2i � nx2

(22)

r0 D y � r1x; c0 D e � c1x; e D 1

n

nX

iD1
ei (23)

In case we have crisp experimental output data, it holds:

r0 D y�2r1x; c0 D 0;eA0 D .r0; 0/;eA1 D .r1; 0/� Qyi � yi; y
`
i D yr

i D yi; ei D 0 (24)

and therefore we get:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; c1 D 0: (25)
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Thus for this case (crisp experimental output) the least squares method gives crisp
numbers for the parameterseA0;eA1 and cannot be applied, whereas the possibilistic
method gives fuzzy numbers and can be applied.

Non-symmetric Triangular Fuzzy Numbers

In this case the triangular fuzzy number estimate and the measured triangular fuzzy
number output are respectively:

ŒeYi�
aD0 D Œr0 � c`0 C .r1 � c`1/xi; r0 C cr

0 C .r1 C cr
1/xi�

aD0;

ŒQyi�
aD0 D Œyi � e`i ; yi C er

i �
aD0 (26)

The problem of minimization for both non-symmetric fuzzy numbers .eYaD0
l ; QyaD0

l /

is written as follows:

minimizeS D d.eYaD0
l ; QyaD0

l /2

D
nX

iD1
f.yi � .r0 C r1xi//

2 C .y`i � .r0 � c`0 C .r1 � c`1/xi//
2

C.yr
i � .r0 C cr

0 C .r1 C cr
1/xi//

2g (27)

Minimizing the quantity S is achieved by equating the derivatives of this quantity
with respect to the parameters r0; r1; .r0 � c0/; .r0 C c0/; .r1 � c1/ and .r1 C c1/ to 0.

@S

@r0
D 0 ! y � r0 � r1x D 0;

@S

@r1
D 0 !

nX

iD1
xiyi � nxr0 � r1

nX

iD1
x2i D 0

(28)

r0 D y � r1x; r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

(29)

@S

@.r0 � c`0/
D 0 ! y` � .r0 � c`0/� .r1 � c`1/x D 0

@S

@.r1 � c`1/
D 0 !

nX

iD1
xiy

`
i � nx.r0 � c`0/� .r1 � c`1/

nX

iD1
x2i D 0

(30)
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r0 � c`0 D y` � .r1 � c`1/x; r1 � c`1 D

nP

iD1
xiy`i � nxy`

nP

iD1
x2i � n.x/2

(31)

c`1 D

nP

iD1
xie`i � nxe`

nP

iD1
x2i � n.x/2

(32)

@S

@.r0 C cr
0/

D 0;! yr � .r0 C cr
0/� .r1 C cr

1/x D 0

@S

@.r1 C cr
1/

D 0;!
nX

iD1
xiy

r
i � nx.r0 C cr

0/� .r1 C cr
1/

nX

iD1
x2i D 0

(33)

r1 C cr
1 D

nP

iD1
xiyr

i � nxyr

nP

iD1
x2i � n.x/2

; r0 C cr
0 D yr � .r1 C cr

1/x (34)

cr
1 D

nP

iD1
xier

i � nxer

nP

iD1
x2i � n.x/2

; cr
0 D er � cr

1x (35)

Compatibility Condition

Diamond [7] defines a compatibility condition for the above model which is defined
as follows:

e
MX

iD1
.xi1 � x/.yi � yi/ � x

MX

iD1
.xi1 � x/.ei � e/ � 0 (36)

The data set is called compatible and means that the trends between the center line
and the spreads are the same, and therefore the values r0; r1; c0; c1 should be positive.
Wang and Tsaur [23] generalized the above compatibility condition as follows:

(a) If r0 > 0; r1 > 0 and c0; c1 unconstrained, then:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; r0 D y � r1x; c1 D

nP

iD1
xiei � nxe

nP

iD1
xi � n.x/2

; c0 D .e � cx/ (37)
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(b) If r0 < 0; r1 > 0; c0 < 0 and c1 unconstrained, then:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; r0 D y � r1x; c1 D

nP

iD1
xiei � nxe

nP

iD1
x2i � n.x/2

; cr
0 D �.e � c1x/ (38)

(c) If r0 > 0; r1 < 0; c0 unconstrained and c1 < 0, then:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; r0 D y� r1x; c1 D �.

nP

iD1
xiei � nxe

nP

iD1
x2i � n.x/2

/; c0 D .e�c1x/ (39)

(d) If r0 < 0; r1 < 0 and c0 < 0; c1 < 0, then:

r1 D

nP

iD1
xiyi � nxy

nP

iD1
x2i � nx2

; r0 D y � r1x; c1 D �.

nP

iD1
xiei � nxe

nP

iD1
x2i � n.x/2

/; c0 D �.e � c1x/

(40)

Moreover, the case (d) is divided into two sub-cases:

(d1) r0 < 0; r1 > 0; c0 < 0 and c1 unconstrained. This is equal to (b).
(d2) r0 > 0; r1 < 0; c0 unconstrained and c1 < 0. This is equal to (c).

The procedure for fuzzy least squares is now defined as follows:

1. Compute the values of r0; r1.
2. If r0 > 0; r1 > 0, then the solution is equal to case (a)
3. If r0 < 0; r1 > 0, then if

MX

iD1
xi1

MX

iD1
xi1ei �

MX

iD1
x2i1

MX

iD1
ei � 0

the solution is (a), otherwise it is equal to (b).
4. If r0 > 0; r1 < 0, then if

MX

iD1
xi1

MX

iD1
xi1ei �

MX

iD1
x2i1

MX

iD1
ei � 0

the solution is (a), otherwise it is equal to (c).
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5. If r0 < 0; r1 < 0, then if

MX

iD1
xi1

MX

iD1
xi1ei �

MX

iD1
x2i1

MX

iD1
ei � 0;

MX

iD1
xi1

MX

iD1
ei � N

MX

iD1
xi1ei � 0

the solution is (a). If all are negative, then it is equal to (d). If it is either:

MX

iD1
xi1

MX

iD1
xi1ei �

MX

iD1
x2i1

MX

iD1
ei < 0

or

MX

iD1
xi1

MX

iD1
ei � N

MX

iD1
xi1ei � 0

it is equal to (b) or (c), respectively.

In the case of multiple regression, according to [23], the method of least squares
is not convenient.

Application

We consider rainfall measurement stations of Aggistro and Upper Vrontou with the
following data:

The Upper Vrontou data is considered a symmetric fuzzy number Qy D .yi; ei/.

Tanaka Model-Minimum Problem

For h D 0, the model is written as follows:

min.12c0 C 606c1/
s.t.
r0 � c0 C 47:6r1 � 47:6c1 � 52:64

: : :

: : :

r0 � c0 C 47:5r1 � 47:5c1 � 62

r0 C c0 C 47:6r1 C 47:6c1 � 78:96
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: : :

: : :

r0 C c0 C 47:5r1 C 47:5c1 � 93

The above is a linear programming problem and its solution is:

eYj D .0; 2:33032/C .1:71463; 0:57915/x1j;

where the supports are given by the equations:

ŒeY`j D �2:33032C 1:135484xj;eYr
j D 2:330323C 2:293778xj�;

while the kernel is given by the equation:

eYm
j D 1:714631xj:

Both parameterseA0 andeA1 are given in Fig. 2 and the model of Tanaka is given
in Fig. 3.

Method of Savic–Pedrycz

For h D 0, the model is written as follows:

First phase: The data are considered crisp and the model crisp. The regression
line is equal to:

y D r0 C r1x; r0 D �11:9413; r1 D 1:818145:

Fig. 2 ParameterseA0 andeA1
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Fig. 3 Tanaka’s model

Second phase: The model is written as follows:

min.12c0 C 606c1/
s.t.
�c0 � 47:6c1 � �21:96
: : :

: : :

�c0 � 47:5c1 � �12:42
c0 C 47:6c1 � 4:36

: : :

: : :

c0 C 47:5c1 � 18:57

The solution is: c0 D 0; c1 D 0:73654

The final regression line will be:

eYj D .r0; 0/C .r1; c1/x D .�11:9413; 0/C .1:818145; 0:73654/x;

where the supports are given by the equations:

ŒeY`j D �11:9413C 1:081604xj;eYr
j D �11:9413C 2:554469xj�;

while the kernel is given by the equation:

eYm
j D �11:9413C 1:818145xj:

ParametereA0 is a crisp number while parametereA1 is given in Fig. 4. The model
of Savic–Pedrycz is shown in Fig. 5.
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Fig. 4 ParametereA1

Fig. 5 Model of Savic–Pedrycz

Method of Least Squares

For h=0, the values of r0; r1; c1 are equal to:

r0 D �11:94113; r1 D 1:818145; c1 D 0:363629
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Fig. 6 The model of least squares

Because we have r0 < 0; r1 > 0; c1 < 0, we belong to the case (b) and we get:
cr
0 D �.er/ � cr

1x/ or c0 D 2:388263. The final regression line will be:

eYj D .r0; c0/C .r1; c1/ D .�11:9413; 2:388263/C .1:818145; 0:363629/;

the supports are given by:

ŒeY`j D �14:329579C 1:45452xj;eYr
j D �9:55305C 2:18177xj�;

while the kernel is given by the equation:

eYm
j D �11:9413C 1:818145xj

The model of least squares is shown in Fig. 6.

Distance Between Measured and Estimated Values

Since both the measured and estimated values are symmetric, the distance between
the two number .eYaD0

i ; QyaD0
1 / is given by Diamond [8] as follows:

ds.eYaD0
i ; QyaD0

i /2 D fy`i � .r0 � c0 C .r1 � c1/xi/g2 C fyr
i � .r0 C c0 C .r1 C c1/xi/g2
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Fig. 7 The distance d2S

This distance is the sum of squared deviations of the supports of the two numbers
.eYaD0i;QyaD0

i /. In Fig. 7 above, the distance d2S is given as a function of x for the cases
of Tanaka, Savic–Pedrycz and the least squares model.

Comments-Conclusions

With regard to the two models of Tanaka we make the following observations:

– These models both belong to the category of possibilistic models. In the case of
the Tanaka model, the kernel is expressed by the equationeYm

j D 1:714631xj and
it is the center line of the two supports, but does not coincide with the kernel of
Savic–Pedrycz which is expressed by the equationeYm

j D �11:9413C1:818145xj.
The kernel of Savic–Pedrycz is also the middle (center) line of the two supports
and it is a result of the linear regression of the mean values of the experimental
output values y.

– In both models, their supports are the envelope of the fuzzy experimental values
Qyj. However, in the case of the Tanaka model, the distances of the supports from
the experimental values (as shown in Fig. 7) are smaller than those of Savic–
Pedrycz. The sum of these distances is:

X
dS.eYaD0

i ; QyaD0
i /2

Tanaka
D 9900 <

X
dS.eYaD0

i ; QyaD0
i /2

Savic��Pedrycz
D 13848
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– The model of least squares shows the smallest distance of the supports from the
experimental values compared to the other two models as shown in Fig. 7. The
sum of these distances is:

X
dS.eYaD0

i ; QyaD0
i /

LeastSquares

2 D 3405

– In the model of least squares, the kernel has the same equation as that of Savic–
Pedrycz, that is, it is also as a result of the linear regression of the mean values
of experimental output values y. But as we observed from Fig. 6, its supports
are not the envelope of the fuzzy experimental values because in this model, the
subset-hood of measured values is not included.

– Also in the case where we have crisp experimental output data, the least squares
method gives crisp numbers for the parameters eA0;eA1 and cannot be applied
while the possibilistic method gives fuzzy numbers and can be applied.

– On the basis of these models, it is possible to predict the values for the station of
Upper Vrontous (Y) when fed with the values of Aggistro station, and therefore
the possibility of replacing the missing values of the station Y.
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Properties of Functions of Generalized
Bounded Variations

Rajendra G. Vyas

Abstract Looking to the features of functions of bounded variation, the notion of
bounded variation is generalized in many ways and different classes of functions of
generalized bounded variations are introduced. In the present chapter introducing
different classes of functions of generalized bounded variations their main interest-
ing properties are discussed. Inter-relations between them and the classes related
to them are given in the next section. Finally we try to present overall picture of
Fourier analysis of these classes.

Keywords Absolutely continuous function • Banach space • Banach Algebra •
Bounded variation • Convolution product • Fourier series • Fourier coefficients •
Module • Ring

Introduction

In 1881, while studying the convergence of Fourier series, Jordan [14] introduced
the concept of bounded variation. This class BV, of functions of bounded variation,
has lots of applications in almost all branches of pure and applied mathematics.
One of the features which distinguished the class BV from other classes is that its
analysis can be carried in most elegant ways. The class has many interesting appli-
cations in theory of functions, harmonic analysis, approximation theory, functional
analysis, measure and integration, partial differential equations, numerical analysis,
special functions,fuzzy theory and digital image processing.

The class BV.Œ0; 2��/ is a Banach algebra with suitable variation norm, Fourier
series of a function of this class converges everywhere pointwise, the class can be
regarded as a module over the ring L1.Œ0; 2��/, the class of all 2�-periodic Lebesgue
integrable functions over Œ0; 2��, with respect to the convolution product. Other
important aspect of functions of BV is that they form an algebra of discontinuous
functions whose first derivative exists almost everywhere; due to this fact, they can
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be frequently used to define generalized solutions of nonlinear problems involving
functionals, ordinary and partial differential equations in mathematics, physics, and
engineering. By suitable choice of functions of the class BV it is possible to obtain
solutions to many integral equations which describe some physical phenomena.
The class BV includes the Sobolev class W1;1 and can be equivalently defined in
terms of measure distributional derivatives or L1-limits of bounded sequences in
W1;1, which has many interesting properties in digital image processing.

Objective of the second section is to recall some basic definitions and important
properties of the class BV and some other standard classes like: AC, the class of
functions of absolutely continuous functions; the class of functions which satisfy
Lipschitz condition etc.

Properties of Functions of Bounded Variation

Definition 1. Given an interval I D Œa; b�, we say that a complex function f defined
on I is said to be of Bounded variations (that is, f 2 BV.I;C/) if

V.f ; I/ D sup

P
fV.P; f ; I/g < 1; where

V.P; f ; I/ D .

nX

mD1
j 4f .Im/ j/; in which

4f .Im/ D f .xm/� f .xm�1/ and P D fa D x0; x1; : : : ; xn D bg is a partition of I.

For real valued functions, the class of functions of bounded variation over Œa; b� is
denoted by BV.I/, that is we omit writing C. Similarly, one can define BV for a
function from a compact subset of R into a Banach space or a metric space.

Some of the well-known properties of functions of bounded variation are as
follows:

(i) Every function of the class BV(I) is bounded but the converse is not true.
(ii) The class BV(I) is a commutative unital Banach algebra with respect to the

pointwise operations and the variation norm jjjf jjj D jjf jj1 C V.f ; I/.
(iii) It is a module over the ring L1.Œ0; 2��/ with respect to the convolution product.
(iv) The class NBV.Œa; b�/ of functions of normalized bounded variation on Œa; b� is

the Dual of the Banach space C.Œa; b�/, of all continuous functions on Œa; b�.

Theorem 1. If f 2 BVŒa; b�, then for any a < c < b;V.f ; Œa; b�/ D V.f ; Œa; c�/ C
V.f ; Œc; b�/.

Proof. Let P� D P [ fcg be the refinement of a partition P of Œa; b�. Then P� D
P1 [ P2, where P1 and P2 are partitions of Œa; c� and Œc; b�, respectively. Then

V.f ;P/ � V.f ;P1/C V.f ;P2/ � V.f ; Œa; c�/C V.f ; Œc; b�/ implies

V.f ; Œa; b�/ � V.f ; Œa; c�/C V.f ; Œc; b�/: (1)
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For any � > 0 there exist partitions P3 and P4 of Œa; c� and Œc; b�, respectively, such
that

V.f ; Œa; c�/ � �

2
< V.f ;P1/ and V.f ; Œc; b�/ � �

2
< V.f ;P2/:

Thus

V.f ; Œa; c�/C V.f ; Œc; b�/ � � < V.f ;P1/C V.f ;P2/

D V.f ;P1 [ P2/ � V.f ; Œa; b�/; 8� > 0:
Hence, the result follows from (1).

Theorem 2. If f 2 BVŒa; b�, then the function g.x/ D V.f ; Œa; x�/; 8x 2 Œa; b�, is
an increasing function. Moreover for any x 2 .a; b/ we have g.x C 0/ � g.x/ D
jf .x C 0/ � f .x/j and g.x/� g.x � 0/ D jf .x/� f .x � 0/j.
Proof. Let S D jf .tC0/�f .t/j for any fixed but arbitrary t 2 .a; b/. Given any ε> 0,
there exist ı > 0 such that t < x < t C ı implies S � ε

2
< jf .t C 0/� f .t/j < S C ε

2
.

Let P D ft D x0; x1; x2; : : : ; xn D bg be a partition of Œt; b� such that V.f ; Œt; b�/�
ε
2
< V.f ;P/. Without the loss of generality we assume that the point x1 can be

treated as arbitrary point satisfying t < x1 < t C ı. For P� D P � ftg a partition of
Œx1; b� we have

V.f ; p/� V.f ;P�/ D V.f ; Œt; x1�/ D jf .x1/� f .t/j � V.f ; Œt; b�/ � V.f ;P�/� ε

2
:

Thus,

S� ε< S � ε

2
< jf .x1/ � f .t/j � g.x1/� g.t/ � jf .x1/� f .t/j C ε

2
< SC ε :

Hence, the result follows.
Thus f is continuous at a point if and only if g is continuous at that point.

Theorem 3 (Jordon Decomposition Theorem). Every function of bounded vari-
ation can be expressed as difference of two monotonic functions.

Proof. For any f 2 BVŒa; b� and for any x; y 2 I; x < y, it is known that

V.f ; Œa; y�/ D V.f ; Œa; x�/C V.f ; Œx; y�/:

Define g.x/ D V.f ; Œa; x�/ and k.x/ D g.x/� f .x/;8x 2 Œa; b�.
Obviously g is monotonically increasing and g.y/� g.x/ D V.f ; Œx; y�/ � jf .y/�

f .x/j � f .y/�f .x/ implies k is also increasing. Thus f can be expressed as difference
of two monotonic functions g and k.

This characterization has lots of applications in Analysis. It’s well known direct
application is: “If f 2 BV.Œa; b�/ then f is differentiable a.e. in Œa; b�”. One of its
important applications is Helly’s theorem which has lots of applications in function
spaces and is generalized in many ways. The following Lemma is used to prove
Helly’s theorem.
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Lemma 1. If an infinite family of functions F D ff .x/g, defined on I, is uniformly
bounded by a constant M that is jjf jj1 � M; 8 f 2 F, then the following hold.

(i) For any countable subset E of I, it is possible to find a sequence ffn.x/g in the
family F which converges pointwise in E.

(ii) Whenever F is an increasing family of functions, there exists a sequence of
functions ffn.x/g in F which converges to an increasing function 
.x/ at every
point of I.

Proof. Let E D fxkg be any countable subset of Œa; b�. Consider a set ff .x1/g of
values taken on by the functions of the family F at the point x1. This set is bounded
and, by Bolzano–Weierstrass Theorem, it has a convergent subsequence:

f .1/1 .x1/; f
.1/
2 .x1/; f

.1/
3 .x1/; � � �I lim

n!1 f .1/n .x1/ D A1:

Similarly, the sequence of functions ff .1/n g gives a convergent subsequence

f .2/1 .x2/; f
.2/
2 .x2/; f

.2/
3 .x2/; � � �I lim

n!1 f .2/n .x2/ D A2:

Continuing this process indefinitely, we construct a countable set of convergent
sequences:

f .k/1 .xk/; f
.k/
2 .xk/; f

.k/
3 .xk/; � � �I lim

n!1 f .k/n .xk/ D Ak; for k D 1; 2; 3 : : : : :

Form the sequence of diagonal elements of the infinite matrix, construct the
sequence ff .n/n .xk/g. This sequence converges at every point of the set E. In fact,
for every fixed k, the sequence ff .n/n .xk/g converges to Ak. Hence, (i) follows.

Taking E as the set consisting all rational of I. In view of (i) of the lemma,
there exist a sequence of functions of the family F, say F0 D ff .n/.x/g such that
limn!1 f .n/.xk/ exists and is finite for all xk in E.

Define .x/ D limn!1 f .n/.xk/; for all xk 2 E. Then, .x/ is increasing function
on E, that is, if xi; xk 2 E and xk � xi, then  .xk/ �  .xi/.

For x 2 Œa; b� � E define  .x/ by  .x/ D supxk<xf .xk/g; for all xk 2 E.
Obviously,  .x/ is an increasing function on Œa; b� and it has at the most countable
simple discontinuity. Show that

lim
n!1 f .n/.x/ D  .x/; at every point x where  .x/ is continuous: (2)

Let " > 0, and let xk and xi be points in E such that xk < x0 < xi;  .xi/� .xk/ <
"
2
.

Fixing the points xk and xi, select the natural number n > n0;

jf .n/.xk/�  .xk/j < "

2
; jf .n/.xi/ �  .xi/j < "

2
:
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It is easy to see that  .x0/ � " < f .n/.xk/ � f .n/.xi/ <  .x0/ C "; for n > n0.
Since f .n/.xk/ � f .n/.x0/ � f .n/.xi/; we have  .x0/ � " < f .n/.x0/ <  .x0/C "; for
n > n0. This proves (2). Thus, the equality (2) can fail only at finite or countable
set Q, where  .x/ is discontinuous.

We now apply Lemma 1(i) to the sequence F0, taking for the set E the set of those
points of Q where (2) does not hold. This yields a subsequence ffn.x/g of F0, which
converges at all points of I. Setting 
.x/ D limn!1 fn.x/; we obtain a function
which is obviously an increasing function. Hence, the Lemma follows.

Theorem 4 (Helly’s First Theorem). Let an infinite family of functions F D
ff .x/g be defined on I such that each member of the family and its total variation are
bounded by one and the same constant M; that is, jf .x/j � M; V.f I I/ � M; 8f 2
F; then, there is a sequence of functions ffn.x/g, in F, converges pointwise, to some
function 
 2 BV.I/, on I.

Proof. For any f 2 F, set h.x/ D V.f I Œa; x�/ and g.x/ D h.x/ � f .x/. Then h.x/
and g.x/ are increasing as well as bounded functions. In view of Lemma 1, the
family fh.x/g has a convergent sequence fhk.x/g. Define ˛.x/ D limk!1 hk.x/.
Similarly, the family fgk.x/g has a convergent subsequence fgki.x/g. Define ˇ.x/ D
limi!1 gki.x/. Then the sequence of functions fki.x/ D hki.x/ � gki.x/; in F,
converges to the function 
.x/ D ˛.x/ � ˇ.x/. This proves the Helly’s theorem.

Definition 2. A complex function f defined on Œa; b� is said to be a regulated
function if it has right-hand and left-hand limit at every point of the interval Œa; b/
and .a; b�, respectively.

Let G.I;C/ be the class of all regulated complex functions, for a real function we
write omitting C. G.I;C/ is a commutative C�-algebra with unity, with respect to
the pointwise operations and the sup norm. Moreover it is closed �-subalgebra of
the commutative C�-algebra of B.I;C/, class of all bounded complex functions on
I. Since, every monotonic function has at the most countable simple discontinuity,
BV.I/ � G.I/ � B.I/.

A complex function on I is called a step function if there exist a partition of I
into finitely many disjoint subintervals on each of which f is constant. Let S.I;C/
be the class of all step functions. Clearly S.I;C/ � BV.I;C/ � G.I;C/ � B.I;C/.
Moreover, S.I;C/n is dense subset of G.I;C/ with respect to the sup-norm. G.I;C/
is the completion of both BV.I;C/ and S.I;C/. Note that BV.I;C/ is not complete
with respect to the sup-norm. Thus, every regulated function can be uniformly
approximated by a step function as well as by a function of bounded variation.

Observe that the class of all real continuous functions, C.Œa; b�/ is a closed
subspace of G.I/. Properties of these classes motivated to introduce the Stieltjes
integral as framework for solving ODEs.

Definition 3 (Stieltjes Integral). For given real functions f and g on Œa; b� and a
partition P D fa D x0; x1; : : : ; xn D bg of Œa; b�.
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The Stieltjes integral is defined as

Z b

a
f .t/dg.t/ D lim

ı ! 0

nX

iD1
f .ci/.g.xi/� g.xi�1//; ci 2 Œxi�1; xi�;

if the limit exists, where ı D Minfjxi � xi�1j W i D 1; 2; : : : ng.

Theorem 5 (Properties of the Stieltjes Integral).

(i) If f 2 G.I/ and g 2 BV.I/, then
R b

a f .t/dg.t/ exist and satisfy

j
Z b

a
f .t/dg.t/j � jjf jj1V.g; I/

(ii) If ffng and fgng are sequences in G.I/ and fn 2 BV.I/, respectively, such that
they converge uniformly to f and g, respectively, and V.gn; ŒI// � M; 8n, then

lim

n ! 1
Z b

a
fn.t/dgn.t/ D

Z b

a
f .t/dg.t/:

Let BVC.I/ D BV.I/ \ C.I/. Obviously BVC.I/ is closed in BV.I/ with respect to
the variation norm. Hence BVC.I/ is a Banach algebra with respect to the variation
norm. It is observed that the variation function inherits smoothness properties of the
function.

Theorem 6. If f 2 BVC.Œa; b�/, then

V.f I Œa; b�/ D lim
h!0C

1

h

Z b�h

a
jf .x/� f .x C h/j dx:

Proof. Since jf .x/ � f .x C h/j � V.f I Œa; x C h�/� V.f I Œa; x�/, it follows that
R b�h

a jf .x/� f .x C h/j dx

� R b�h
a .V.f I Œa; x C h�/ � V.f I Œa; x�// dx

D R b�h
a V.f I Œa; x C h�/ dx � R b�h

a V.f I Œa; x�/ dx

D
Z b

aCh
V.f I Œa; x�/ dx �

Z b�h

a
V.f I Œa; x�/ dx

D
Z b

b�h
V.f I Œa; x�/ dx �

Z aCh

a
V.f I Œa; x�/ dx

� h V.f I I/; 8 h > 0.

Thus, limh!0C
sup 1

h

R b�h
a jf .x/ � f .x C h/j dx � V.f I I/.
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Now let P W a D x0 � x1 � x2 � � � � � xn D b be any partition of I. For any h
small enough to ensure that xn�1 < b � h and for i 2 N such that 0 � i � n � 2 the
following is true.

1

h

Z xiC1

xi

jf .x/ � f .x C h/j dx � j1
h

Z xiC1

xi

.f .x/� f .x C h// dxj

D j1
h

Z xiC1

xi

f .x/ dx � 1

h

Z xiC1Ch

xiCh
f .x/ dxj

D j1
h

Z xiCh

xi

f .x/ dx � 1

h

Z xiC1Ch

xiC1

f .x/ dxj:

The right-hand side tends to jf .xiC1/ � f .xi/j as h ! 0C according to the
fundamental theorem of calculus. So,

lim
h!0C

inf
1

h

Z xiC1

xi

jf .x/� f .x C h/j dx � jf .xiC1/� f .xi/j; for 0 � i � n � 2:

Similarly, one gets limh!0C
inf 1h

R b�h
xn�1

jf .x/ � f .x C h/j dx � jf .b/� f .xn�1/j.
Summing these inequality,

lim
h!0C

inf
1

h

Z b�h

a
jf .x/ � f .x C h/j dx �

n�1X

kD0
jf .xkC1/� f .xk/j D V.f ;P/:

Thus, V.f I I/ � limh!0C

inf 1h
R b�h

a jf .x/ � f .x C h/j dx

� lim
h!0C

sup
1

h

Z b�h

a
jf .x/� f .x C h/j dx � V.f I I/:

This proves the Theorem.

Important subspace of the space BV.Œa; b�/ are the class AC.Œa; b�/, the class of
absolutely continuous functions on Œa; b� and Lip(˛; Œa; b�), the class of functions
satisfying the Lipschitz condition of order ˛, where 0 < ˛ � 1.

Definition 4. A function f W I ! R is said to be absolutely continuous on I if
for each ε> 0 there exists ı > 0 such that

Pn
iD1 jf .di/ � f .ci/j <ε whenever

fŒci; di� W 1 � i � ng is a finite collection of non-overlapping subintervals of I
such that

Pn
iD1.di � ci/ < ı.

It is observed that every absolutely continuous functions is of bounded variation but
the converse is not true. Obviously, an absolutely continuous function is uniformly
continuous but the converse is not true. This can be followed from the following
well-known example of the Cantor function.
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Example 1. Define a sequence of functions ffng from Œ0; 1� in to Œ0; 1� converges
uniformly to the function call Cantor function, which is defined as follows.

Let f0.x/ D x; 8 x 2 Œ0; 1�. Then for every integer n � 0 the next function fnC1
is defined in terms of fn as follows.

fnC1.x/ D
8
<

:

fn.3x/=2; if x2[0,1/3];
1=2; if x2 [1/3,2/3];
1=2C fn.3x � 2/=2; if x2[2/3,1]:

Uniform convergence of the sequence ffng can be followed from the following
inequalities.

jjfnC1 � fnjj1 � 1

2
jjfn � fn�1jj1 � 1

2n
jjf1 � f0jj1 ! 0 as n ! 1:

The Cantor function f is also defined as:
For x 2 Œ0; 1� consider its ternary expansion faig, that is x D P1

iD0
ai
3i ; ai 2

f0; 1; 2g. Then

f .x/ D P1
iD0

ai
2iC1 , if none of the coefficients ai takes the value 1 and

f .x/ D Pn.x/�1
iD0

ai
2iC1 C 1

2n.x/ where n.x/ is the smallest integer n such that an D 1,
otherwise.

Now, we show that the Cantor function is not absolutely continuous:
Consider the set of intervals

fŒ0; 1=3�; Œ2=3; 1�g
fŒ0; 1=9�; Œ2=9; 1=3�; Œ2=3; 7=9�; Œ8=9; 1�g
fŒ0; 1=27�; Œ2=27; 1=9�; Œ2=9; 7=27�; Œ8=27; 1=3�; Œ2=3; 19=27�; Œ20=27; 7=9�;
Œ8=9; 25=27�; Œ26=27; 1�g
Label these intervals by fŒci; di� W 1 � i � ng.
Then f .di/ D f .ciC1/ implies

nX

iD1
jf .di/� f .ci/j D

nX

iD1
f .di/� f .ci/ D 1:

Here, the sum of the length of these intervals is
�
2
3

�n ! 0 as n ! 1.
Form the definition, it follows that f is locally constant on the Ternary set E (that

is complement of the Cantor set) and the measure of E is 1.
Since the Cantor function is continuous and monotonically increasing on Œ0; 1�,

f 2 BV.Œ0; 1�/.
Observe that the derivative of f vanishes almost everywhere and

f .1/� f .0/ ¤
Z 1

0

f 0.t/ dt:
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Obviously, the class of all absolutely continuous functions on I is a Banach
subalgebra of BV(I).

Definition 5. A real or a complex function f defined in I is said to be Lipschitz
function of the order ˛; 0 < ˛ � 1, (that is, f 2 Lip.˛; I/), if

jf .x/� f .y/j D O.jx � yj˛; 8 x; y 2 I:

For ˛ D 1, we omit writing ˛.
Thus, we have

C1.I/ � Lip.I/ � AC.I/ � BV.I/ � Lp.I/ � L1.I/; for p > 1:

Problem 1. A function satisfies Lipschitz condition on Œa; b�, if and only if it is the
integral of a bounded function that is

f .x/ D f .a/C
Z x

a
g.t/ dt; 8x 2 Œa; b�; with g 2 L1Œa; b�:

Problem 2. The vector space Lip.Œa; b�/ is a Banach space with respect to the
pointwise linear operations and the norm jjf jjLip D jf .a/j C M.f /; f 2 Lip.Œa; b�/,
where

M.f / D sup

a � x < y � b


 jf .y/� f .x/j
jy � xj

�
:

Problem 3. The vector space C1.Œa; b�/, of all real valued functions on Œa; b� with
first order continuous derivatives, is a Banach space with respect to the norm

jjjf jjj1 D jjf jj1 C jjf 0jj1:

It is easy to prove that every Lipschitz function is absolutely continuous. But the
converse need not be true.

Example 2. The function f .x/ D p
x; x 2 Œ0; 1�, is absolutely continuous but f …

Lip.Œ0; 1�/.
For any ε> 0 taking fŒai; bi�I 1 � i � ng to be non-overlapping collection of

intervals in [0,1] such that
P

i.bi � ai/ < ı Dε2 =4. Choose A Dε2 =4, break the
sum into two parts over [0,A] and over [A,1]. Without the loss of generality, assume
that A D bm. Then first part

Pm
iD1 jf .bi/ � f .ai/j � p

A Dε =2,
and second part

nX

iDmC1
jf .bi/ � f .ai/j D

nX

iDmC1

bi � aip
bi C p

ai
� 1

2
p

A
.

nX

iDmC1
.bi � ai// <ε :
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Hence, f 2 ACŒ0; 1�.
For any x; y 2 .0; 1�,
jf .x/ � f .y/j D jx�yjp

xCp
y

! 1 as either x, or y, or both x and y tends to 0.

This implies that f … Lip.Œ0; 1�/.
Note that f 2 ACŒ0; 1� has unbounded derivative on (0,1). That is, f … C1Œ0; 1�.

Theorem 7. Let f be a real function on [a,b] and f 0 exists on (a,b). Then f 0 is
bounded on (a,b) if and only if f satisfies Lipschitz condition on [a,b].

f 2 Lip.Œa; b�/ implies its derivative is bounded follows from the definition of
Lipschitz function.

Converse part can be proved by indirect method, using the mean value theorem.
From the last example, we say that a continuous function with an unbounded

derivatives may be absolutely continuous.
It is easy to show that if f is absolutely continuous (or bounded variation) function

then so is jf j.
Composition of two absolutely continuous functions need not be absolutely

continuous can be observed from the following example.

Example 3. Let f .x/ D p
x; x 2 Œ0; 1� and g.x/ D x2cos.�x /; x 2 .0; 1�, and

g.0/ D 0.
Obviously, f 2 ACŒ0; 1�. As g is differentiable and its derivative is bounded on

.0; 1/; g 2 Lip.Œ0; 1�/. Thus, g 2 ACŒ0; 1� implies h D jgj 2 ACŒ0; 1�. it is easy to
show that f composition h that is .foh/.x/ D x

pjcos.�x /j … BVŒ0; 1�.

In the above example g 2 Lip.Œ0; 1�/ but g … C1.Œ0; 1�/.
Looking to the feature of the class BVŒa; b�, the notion of bounded variation

has been generalized in many ways and many generalized bounded variations are
introduced.

Generalized Bounded Variations

A mathematician’s desire for more elegant and/or more generality in treating a
particular problem leads further to interesting generalizations of the concept of
bounded variation in many ways. Consequently, different classes of functions of
generalized bounded variations are introduced.

In 1924, Wiener introduced the class BV.p/.Œa; b�/; p � 1, of functions of p-
bounded variation over Œa; b�. The concept of p-bounded variation was sub-sequently
generalized by Young [37], in 1937, to the class 
 � BV.Œa; b�/ of functions of 
-
bounded variation over Œa; b�. Another class that was directly influenced by the study
of the convergence problems in the theory of Fourier series, namely �� BV.Œa; b�/
of functions of �-bounded variation over Œa; b� appeared in 1972 in Waterman’s
paper. Subsequently in 1980, Shiba [21] introduced the class � � BV.p/.Œa; b�/ of
functions of p-�-bounded variation over Œa; b�. The class 
 � � � BV.Œa; b�/ of
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functions of 
-�-bounded variation over Œa; b� was introduced by Schramm and
Waterman [20] in 1982. . In 1990, Kita and Yoneda [16] defined the class BV.p.n/ "
p; Œa; b�/ .1 � p � 1/ of functions of p.n/-bounded variation over Œa; b�. It was
generalized to the class BV.p.n/ " p; '; Œa; b�/ by Akhobadze [1] in 2000. Finally
in 2011, the class�BV.p.n/ " p; '; Œa; b�/ of functions of p.n/-�-bounded variation
over Œa; b� appeared in [27]. By considering the differences of order r � 2 the class
r � BV.Œa; b�/ of functions of bounded rth-variation over Œa; b� [34] is one of the
important generalizations of the Jordan’s class.

While investigating the convergence of Fourier series in the L1Œ0; 2��-norm, in
1996 Moricz and Siddiqi [17] introduced the class BVM.Œ0; 2��/ of functions of
bounded variation in the mean. The concept of bounded variation in the mean
was subsequently generalized by R. E. Castillo in 2005 and it was to the class
BV.p/M.Œ0; 2��/ of functions of p-bounded variation in the mean.

Notations and Definitions

In the sequel T D Œ0; 2�/ L is a class of non-decreasing sequences� D f	ng1
nD1 of

positive numbers such that
P

n
1
	n

diverges; 
 is an increasing non-negative convex

function defined on Œ0;1/ such that 
.0/ D 0;

.x/

x ! 0 as x ! 0 and 
.x/
x ! 1

as x ! 1; '.n/ is a real sequence such that '.1/ � 2 and '.n/ ! 1 as n ! 1;
and C is a set of complex numbers.

Definition 1. Given sequence� D f	ng1
nD1 2 L and p � 1, a function f defined on

an interval I WD Œa; b� is said to be of p-�-bounded variation .that is, f 2 �BV.p/.I//
if

V�p.f ; I/ D sup
fIig

8
<

:

 
X

i

jf .Ii/jp

	i

! 1
p

9
=

;
< 1;

where fIig D fŒai; bi�g is a finite collection of non-overlapping subintervals in I and
f .Ii/ D f .bi/ � f .ai/.

In the Definition 1, for � D f1g (that is, 	n D 1, for all n) and p D 1 one gets
the class BV.I/; for p D 1 one gets the class �BV.I/; for � D fng (that is, 	n D n,
for all n); and p D 1 one gets the class HBV.I/ (the class of function of Harmonic
bounded variation); and for� D f1g one gets the class BV.p/.I/.

For any � 2 L and p � 1, we have

 
X

i

jf .Ii/jp

	i

! 1
p

�
�
1

	1

� 1
p

 
X

i

jf .Ii/jp

! 1
p

�
�
1

	1

� 1
p X

i

jf .Ii/j:
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This implies

BV.I/ � BV.p/.I/ � �BV.p/.I/:

It is observed that if f 2 �BV.p/.I/ then it is a regulated function over I [23,
Theorem 2, p. 92] (that is, f has right-hand and left-hand limits at every point of
the intervals Œa; b/ and .a; b�, respectively). If f is a regulated function over I, then
f 2 �BV.p/.I/ for some sequence� 2 L [23, Theorem 6, p. 92]. Thus, the union of
�BV.p/.I/ functions over all sequences� is the class of regulated functions over I.

Moreover, if f 2 �BV.p/.I/ for every sequence �, then f 2 BV.p/.I/ [23,
Theorem 3, p. 92]. Thus, the intersection of �BV.p/.I/ functions over all sequences
� is the class BV.p/.I/ (that is,

T
� �BV.p/.I/ D BV.p/.I/).

Therefore, we can say that the class�BV.p/.I/ lies between the class of regulated
functions over I and the class BV.p/.I/.

The following example shows that a continuous function need not be of p-�-
bounded variation.

Example 1. Given a p � 1. Let f W Œ0; 1� ! R be defined as

f .x/ D
(

x
1
p cos

�
�
2x

�
; if x 2 .0; 1�,

0; otherwise:

Obviously, f 2 C.Œ0; 1�/. For any m D 2k, where k 2 N, if we consider the points
x0 D 0 and xi D 1

mC1�i , for i D 1; 2; ���;m, then we have 0 D x0 � x1 � ��� � xm D 1

and

f .xi/ D
(
0; if i is even,

˙.xi/
1
p ; if i is odd:

Therefore,

m�1X

iD0
jf .xiC1/ � f .xi/jp D 1

m
C 1

m
C 1

m � 2 C 1

m � 2
C � � � C 1

2
C 1

2

D
kX

iD1

1

i
! 1 as k ! 1:

Thus, f … BV.p/.Œ0; 1�/. Since
T
� �BV.p/.Œ0; 1�/ D BV.p/.Œ0; 1�/; f … �BV.p/

.Œ0; 1�/ for at lest one sequence� 2 L.
Since f is regulated function over Œ0; 1�; f 2 �0

BV.p/.Œ0; 1�/, for some�
0 2 L (in

view of the result [23, Theorem 6, p. 92]).
Hence, BV.p/.I/ � �

0

BV.p/.I/.
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Definition 2. Given a continuous function 
 defined on Œ0;1/ and strictly increas-
ing from 0 to 1, a function f defined on an interval I is said to be of 
-�-bounded
variation .that is, f 2 
�BV.I// if

V�
 .f ; I/ D sup
fIig

(
X

i


.jf .Ii/j/
	i

)

< 1;

where I; �; fIig, and f .Ii/ are as defined above in the Definition 1.

Here, function 
 is said to have property�2 if there is a constant d � 2 such that

.2x/ � d
.x/, for all x � 0.

In the Definition 2, for 
.x/ D x and � D f1g one gets the class BV.I/; for

.x/ D x, one gets the class �BV.I/; for 
.x/ D xp, one gets the class �BV.p/.I/;
and for � D f1g, one gets the class 
BV.I/.

Definition 3. Given sequence '.n/ and 1� p.n/ " p as n ! 1, where 1 � p � 1,
a function f defined on an interval I is said to be of p.n/-�-bounded variation .that
is, f 2 �BV.p.n/ " p; '; I// if

V�p.n/ .f ; '; I/ D sup
n�1

sup
fIig

8
<

:

 
X

i

jf .Ii/jp.n/

	i

! 1
p.n/

W ıfIig � b � a

'.n/

9
=

;
< 1;

where I; �; fIig, and f .Ii/ are as defined earlier in the Definition 1, and

ıfIig D inf
i

fjai � bijg:

In the Definition 3, for '.n/ D 2n, for all n, and � D f1g, one gets the class
BV.p.n/ " p; I/; for� D f1g one gets the class BV.p.n/ " p; '; I/; for p D 1, one
gets the class �BV.p.n/ " 1; '; I/; for � D f1g, and p D 1 one gets the class
BV.p.n/ " 1; '; I/; and for p.n/ D p, for all n, one gets the class �BV.p/.I/.

It is observed that [28, Lemma 2.7, p. 226], for 1 � p < 1,

BV.p/.I/ � BV.p.n/ " 1; '; I/

and

[

1�q<p

BV.q/.I/ � BV.p.n/ " p; '; I/ � BV.p/.I/:

Definition 4. Given a positive integer r, a function f defined on an interval I is said
to be of bounded rth-variation .that is, f 2 r � BV.I// if

Vr.f ; I/ D sup
P

(
m�rX

iD0
j�rf .xi/j

)

< 1;
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where I is as defined earlier in the Definition 1, P W a D x0 < x1 < � � � < xm D b,

�f .xi/ D f .xiC1/� f .xi/

and

�kf .xi/ D �k�1.�f .xi//; k � 2;

so that

�rf .xi/ D
rX

uD0
.�1/u

 
r

u

!

f .xiCr�u/:

Obviously, BV.I/ � r � BV.I/ � B.I/, where B.I/ is a class of all bounded
functions on I.

The following example shows that BV.I/ ¤ r � BV.I/.

Example 2. Consider everywhere continuous but nowhere differentiable function
of Weierstrass [11], defined as

f .x/ D
1X

nD1
b�n cos.bnx/; b an integer > 1;

satisfies the condition

jf .x C h/C f .x � h/� 2f .x/j D O.jhj/ as h ! 0

uniformly in x in T and, therefore, it is of bounded second variation over T.that is,
f 2 2 � BV.T// [38]. However, f being a nowhere differentiable function, it is not
of bounded variation over T.that is, f … BV.T//.

Definition 5. Given a function f 2 Lp.T/, where p � 1, the p-integral modulus of
continuity of f of higher differences of order r � 1 is defined as

!.p/r .f I ı/ D sup

(�
1

2�

Z

T

j�rf .xI h/jp dx

� 1
p

W 0 < h � ı

)

;

where

�rf .xI h/ D
rX

uD0
.�1/u

 
r

u

!

f .x C .r � u/h/:

In the Definition 5, for r D 1, we omit writing r, one gets!.p/.f I ı/, the p-integral
modulus of continuity of f .
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For p � 1 and ˛ 2 .0; 1�, we say that f 2 Lip.pI˛/.T) if

!.p/.f I ı/ D O.ı˛/:

In the Definition 5, for p D 1 and r D 1, we omit writing p and r, one gets
!.f I ı/, the modulus of continuity of f , and in that case the class Lip.pI˛/.T)
reduces to the Lipschitz class Lip.˛/.T).

Some basic notion as bounded variation, Lipschitz function, absolute continuity
etc., have been generalized to integral settings in the literature to obtain various
classes of functions which are of interest in studying Fourier analysis. Hardy
and Littlewood studied functions which satisfy Lipschitz condition in Lpnorm,
and obtain results about convergence of their Fourier series. While studying the
convergence of a Fourier series in L1 norm, Moricz and Siddiqi [17] introduce the
class bounded variation in mean, which is further generalized to the class p-bounded
variation in mean [4].

For a 2�-periodic function, the notion of p-bounded variation in the sense of
Lp-norm is defined as follows.

Definition 6. Let f 2 Lp.T/ with p � 1. We say f 2 BV.p/M.T/.that is, f is a
function of p-bounded variation in the mean over T/ if

Vm
p .f ;T/ D sup

fIig

(
X

i

Z

T

jf .Iix/jp

jIixjp�1 dx

)

< 1;

where fIig D fŒxi; xiC1�g is a finite collection of non-overlapping subintervals in
T; fIixg D fŒx C xi; x C xiC1�g; f .Iix/ D f .x C xiC1/� f .x C xi/ and jIixj D jxiC1 � xij.

In the Definition 6, for p D 1 one gets the class BVM.T/.
The class of one variable functions of bounded variation as well as the classes

of one variable functions of generalized bounded variations are of great interest
because of their valuable properties like additivity, differentiability, measurability,
integrability, etc. Because of all such properties, functions of these classes owe their
important role in the study of Operator theory, Fourier series, Walsh–Fourier series,
Fourier–Haar series, Fourier–Jacobi series and other orthogonal series, Stieltjes and
other integrals, and the calculus of variations.

Functions of generalized bounded variation play an important role in various
aspects of mathematical analysis. Their main influence is in connection with the
study of Fourier series. Many of these classes are linear spaces and become Banach
spaces when they are equipped with suitable norms involving generalized variations.
In many cases, the norms are also sub-multiplicative, and so the function spaces
carry an additional structure of Banach algebras with respect to the pointwise
operations. In 1976, D. Waterman proved that the class �BV.Œa; b�/ is a Banach
space with respect to the pointwise operations and the �-variation norm. This
result was extended in 2006 by proving that the class �BV.p/.Œa; b�/ is a Banach
space with respect to the pointwise operations and the �p-variation norm, [23,
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Theorem 1, p. 92]. In 2010, Kantrowitz [15, Theorem 1, p. 171] observed that
the �p-variation norm is submultiplicative. Thus, the class �BV.p/.Œa; b�/ carries
an additional structure of Banach algebra with respect to the pointwise operations.
While studying the spectral theory of linear operators on Banach spaces, extending
the usual interval definition of a function of bounded variation to new definition of
a function of bounded variation on a non-empty compact subset � of R, Ashton
and Doust [2] in 2005 generalized the class BV.Œa; b�/ to the class BV.�/. They
observed that the extended class BV.�/ forms a Banach algebra, with respect to the
pointwise operations and the variation norm and it has some interesting applications
to the Operator theory.

The summary of the important similarities and differences between the class
BV.�/ and the class BV.I/ are listed in the paper [2]. Some of the important
properties of the class �BV.p/.I/ are listed in the paper of Vyas [23].

Some basic properties of the class �BV.p/.I/ are as followed.

Theorem 1. If f ; g 2 �BV.p/.I/, then the following hold:

.i/ f and g are bounded.
.ii/ V�p.f C g; I/ � V�p.f ; I/C V�p.g; I/.
.iii/ V�p.˛f ; I/ D j˛jV�p.f ; I/, for any ˛ 2 R.
.iv/ V�p.fg; I/ � kf k1 V�p.g; I/C kgk1 V�p.f ; I/, where kf k1.

Proof of Theorem. Let P D fxigm
iD1 be any partition of I.

For any x 2 I,

jf .x/j � jf .x/ � f .a/j C jf .a/j

D .	1/
1
p

�
.jf .x/ � f .a/j/p

	1

� 1
p

C jf .a/j

� .	1/
1
p V�p.f ; I/C jf .a/j < 1

Thus, the Theorem .i/ follows.

Proof of Theorem .ii/. Since, f ; g 2 �BV.p/.I/, by Minkowski’s inequality we
have�P

i
.j�.f Cg/.xi/j/p

	i

� 1
p D

�P
i
.j�f .xi/C�g.xi/j/p

	i

� 1
p

�
 
X

i

.j�f .xi/j/p
	i

! 1
p

C
 
X

i

.j�g.xi/j/p
	i

! 1
p

� V�p.f ; I/C V�p.g; I/:

Thus, V�p.f C g; I/ � V�p.f ; I/C V�p.g; I/.
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Proof of Theorem .iv/.
�P

i
.j�fg.xi/j/p

	i

� 1
p D

�P
i
.jg.xiC1/�f .xi/Cf .xi/�g.xi/j/p

	i

� 1
p

�
 
X

i

.kgk1/p.j�f .xi/j/p
	i

! 1
p

C
 
X

i

.kf k1/p.j�g.xi/j/p
	i

! 1
p

D kgk1

 
X

i

.j�f .xi/j/p
	i

! 1
p

C kf k1

 
X

i

.j�g.xi/j/p
	i

! 1
p

� kgk1 V�p.f ; I/C kf k1 V�p.g; I/:

Thus,

V�p.fg; I/ � kf k1 V�p.g; I/C kgk1 V�p.f ; I/:

This completes the proof of the theorem.
It is easy to observe that the space �BV.p/.I/ is a normed linear space with

respect to the variation norm k � k�p defined as

kf k�p D kf k1 C V�p.f ; I/; f 2 �BV.p/.I/:

Theorem 2.
�
�BV.p/.I/; k � k�p

�
is a commutative unital Banach algebra with

respect to the pointwise operations.

Proof of the Theorem. Let ffkg1
kD1 be a Cauchy sequence in �BV.p/.I/. Therefore,

it converges uniformly to some function say f on I. For any partition P of I, we get

V�p.fk; I;P/ � V�p.fk � fl; I;P/C V�p.fl; I;P/

� V�p.fk � fl; I/C V�p.fl; I/:

This implies

V�p.fk; I/ � V�p.fk � fl; I/C V�p.fl; I/

and

jV�p.fk; I/ � V�p.fl; I/j � V�p.fk � fl; I/ ! 0 as k; l ! 1:

Hence, fV�p.fk; I/g1
kD1 is a Cauchy sequence in R and it is bounded by some constant

say M > 0. Therefore,

V�p.f ; I;P/ D lim
k!1 V�p.fk; I;P/

� lim
k!1 V�p.fk; I/ � M < 1:

Thus, f 2 �BV.p/.I/.
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Since ffkg1
kD1 is a Cauchy sequence, for any ε> 0 there exists n0 2 N such that

V�p.fk � fl; I;P/ <ε; for all k; l � n0:

Letting l ! 1 and taking supremum on both sides of the above inequality, we get
V�p.fk � f ; I/ <ε; for all k � n0.

Thus, kfk � f k�p ! 0 as k ! 1.
Hence,

�
�BV.p/.I/; k � k�p

�
is a Banach space.

For any g1; g2 2 �BV.p/.I/,
kg1g2k�p D kg1g2k1 C V�p.g1g2; I/

� kg1k1 kg2k1 C kg1k1 V�p.g2; I/C kg2k1 V�p.g1; I/ .by previous Theorem/

� kg1k1.kg2k1 C V�p.g2; I//C kg2k1 V�p.g1; I/C V�p.g1; I/ V�p.g2; I/

D .kg1k1 C V�p.g1; I// .kg2k1 C V�p.g2; I//

D kg1k�p kg2k�p :

This completes the proof of the theorem.
Similarly, it is easy to observe that the space 
��BV.I/ is a normed linear space

with respect to the variation norm k � k
� defined as

kf k
� D kf k1 C V
�.f ; I/; f 2 
 ��BV.I/:

Like previous theorem, one can prove the following theorems.

Theorem 3. The class
�

 ��BV.p/.I/; k � k
�

�
is a commutative unital Banach

space with respect to the pointwise operations.

Theorem 4 ([27]). The class �BV.p.n/ " p; '; I/ .1 � p � 1/ is a commutative
unital Banach algebra with respect to the pointwise operations and the variation
norm defined as

jjf jjvar D jjf jj1 C V�p.n/ .f ; '; I/; f 2 �BV.p.n/; '/:

We need the following property to prove this result.

Lemma 1. Let 1 � p � 1. Then �BV.p.n/ " p; '/ � BŒ0; 2��.

Proof. Let f 2 �BV.p.n/; '/. Suppose f is not bounded. Then for a sequence fMig
increasing to 1, there exists a sequence fxig in Œ0; 2�� such that jf .xi/j � Mi for all
i. Since fxig is bounded, it has a convergent subsequence fxik g converging to some
x0 in Œ0; 2�� and we may assume without loss of generality that jxik � x0j < �

'.1/
for

all ik.
Thus, we do have a sequence fxmg in Œ0; 2�� converging to x0 2 Œ0; 2�� such that

jxm � x0j < �
'.1/

for all m and jf .xm/j ! 1 as m ! 1.
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Consider any xm and put

t0 D x0 � 2�

'.1/
; t1 D xm; t2 D x0 C 2�

'.1/
:

Then for sufficiently large n,

min ft1 � t0; t2 � t1g � �

'.1/
� 2�

'.n/
;

and hence

V�.f ; p.n/; '/ � jf .xm/� f .t0/j
	2

� jf .xm/j � jf .t0/j
	2

:

Since this holds for all xm, we get V�.f ; p.n/; '/ D 1 - a contradiction. Thus the
result follows.

It is known that the space L1Œ0; 2��, the class of all 2�-periodic Lebesgue
integrable functions over Œ0; 2�� is not closed with respect to the pointwise product.

Example 3. Let f Œ0; 2�� ! R be defined as

f .x/ D
(

1p
x
; if x 2 .0; 1�,

0; otherwise:

Then f 2 L1Œ0; 2�� but f 2 … L1Œ0; 2��.
The problem of finding a binary operation on the integrable function that forms

a Banach algebra as well as that would correspond to pointwise multiplications of
their Fourier transforms motivated to introduce the convolution product L1Œ0; 2�� in
Fourier analysis, which is defined as follows.

Definition 7. For any f, g 2 L1[0,2�] their convolution product, denoted by f � g,
is defined as

.f � g/.x/ D 1

2�

Z 2�

0

.f .x � y/g.y//dy; 8x 2 Œ0; 2��:

It is easy to show that the convolution product � W L1Œ0; 2��
L1Œ0; 2�� ! L1Œ0; 2��
is a continuous bilinear map. Moreover L1Œ0; 2�� is a commutative complex Banach
algebra without identity with respect to the convolution product.

Since en � em D 0, if m ¤ n; where em D einx; 8m 2 Z, L1Œ0; 2�� is
a commutative ring without unity but not integral domain with respect to the
convolution product.
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It is well known that

L1 � E D ff � g W f 2 L1; g 2 Eg � E; (3)

for E D LpŒ0; 2��, or E D BV.Œ0; 2��/, or E D AC.Œ0; 2��/, or E D CkŒ0; 2��.
Thus, the convolution product is inheriting the best smoothness (or variation)

property from each parent function. Because of these properties the convolution
product is used in digital image processing for filtering an image, for smoothing an
edge of image as well as for an edge detection of an image.

It is observed that, the classes of functions of generalized bounded variations
share many properties of functions of bounded variation. Therefore it is interesting
to know whether these notions of generalized bounded variations are hereditary
under the convolution or not.

Theorem 5. If f 2 L1Œ0; 2�� and g 2 Lip.˛; p) over Œ0; 2��; 0 � ˛ � 1; p � 1,
then f � g 2 Lip.˛; p/ over Œ0; 2��.

The Theorem can be easily proved from the following lemma.

Lemma 2. If f 2 L1Œ0; 2�� and g 2 LpŒ0; 2�� (p�1), then
k Thf � g � f � g kp;Œ0;2���k f k1 k Thg � g kp;Œ0;2��.

Proof of the Lemma. For any h 2 LqŒ0; 2��, where q satisfies 1
p C 1

q = 1, from
Fubini–Tonelli theorem we get

j
Z 2�

0

ŒThf � g.x/� f � g.x/�h.x/dx j

�
Z 2�

0

j h.x/ j f
Z 2�

0

j f .y/ j j .Thg � g/.x � y/ j dygdx

D
Z 2�

0

j f .y/ j f
Z 2�

0

j h.x/ j j .Thg � g/.x � y/ j dxgdy

�k f k1 k h kq k Thg � g kp; from Holder0s inequality:

Hence the result follows from the converse of the Holder’s inequality [7,
Exercise 3.6, p. 65].

Theorem 6. The class �BV.p.n/ " p; '; Œ0; 2��/ .1 � p � 1/ is a Banach
algebra with respect to the pointwise linear operations and the convolution product.

Proof. We know that the space �BV.p.n/; '/ is a Banach space.
Let fImg be any collection of non-overlapping sequence of subintervals in Œ0; 2��.

For any f ; g 2 �BV.p.n/; '/.

j.f � g/.Im/j � jjf jj1 .
1

2�

Z 2�

0

jg.bm � y/� f .am � y/jdy/:
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Since p.n/ � 1 for all n and  .x/ D xp.n/ is convex for all n. In view of Jensen’s
inequality, one gets

j.f � g/.Im/jp.n/ � jjf jjp.n/1 .
1

2�

Z 2�

0

jg.bm � y/� f .am � y/jp.n/dy/:

Multiplying both the sides of the above inequality by 1
	m

and summing over m, we
haveP

m.
j.f �g/.Im/jp.n/

	m
/

� jjf jjp.n/1 .
1

2�

Z 2�

0

.
X

m

jg.bm � y/� f .am � y/jp.n/

	m
/ dy/:

It follows that

V�.f � g; p.n/; '/ � jjf jj1 V�.g; p.n/; '/;

which together with

jjf � gjj1 � jjf jj1 jjgjj1
implies

jjf � gjj�p.n/ � jjf jj�p.n/ jjgjj�p.n/ :

This completes the proof.

Theorem 7. If f 2 LŒ0; 2�� and g 2 BV.p.n/ " p; '; Œ0; 2��/ .1 � p � 1/, then
f*g2 BV.p.n/ " p; '; Œ0; 2��/.

Proof. If one of f and g is 0, then f � g=0 and the result follows.
We may therefore assume jjf jj1 D 1 without the loss of generality.
Let fImg be any collection of non-overlapping sequence of subintervals in Œ0; 2��,

where Im D Œam; bm�. Then by Holder’s inequality, one gets
.jf � g.Imj/p.n/

� Œ.
1

2�

Z 2�

0

.jf .y/j1=q.n//.jf .y/j1=p.n/ jg.bm � y/� g.am � y/j/dy/�p.n/

� 1

2�

Z 2�

0

jf .y/jjg.bm � y/� g.am � y/jp.n/dy;

where in q.n/ is the index conjugate to p.n/ for each n.
Dividing both the sides of the above inequality by 	m and summing over m, we

have
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P
m

jf �g.Im/jp.n/
	k

� .
1

2�

Z 2�

0

jf .y/j.
X

m

jg.bm � y/� g.am � y/jp.n/

	m
/dy /

� V�.g; p.n/; '/
p.n/I

and hence

V�.f � g; p.n/; '/ � V�.g; p.n/; '/:

This proves the theorem.

Similarly, we can prove the following theorems [24].

Theorem 8. If f 2 L1Œ0; 2�� and g 2 VBVŒ0; 2��, then f � g 2 VBVŒ0; 2��.

Theorem 9. If f 2 L1Œ0; 2�� and g 2 V
BV.p/Œ0; 2��; p � 1, then f � g 2V

BV.p/Œ0; 2��.

Remark: Since L1 is a ring with respect to convolution as a ring product. From
Theorem 9 the class

V
BV.p/ can be regarded as a module over the ring L1.

Theorem 10. If f 2 L1Œ0; 2�� and g 2 r-BV[0,2�], then f � g 2 r-BV[0,2�].

Open Factorization Problems

It is known that [7, Edward, p. 127]

C � AC D C1; L1 � AC D AC and L1 � BV.Œ0; 2��/ D AC.Œ0; 2��/:

So the obvious question is: Can we say that for different class of generalized
bounded variations say E

L1 � E D E or L1 � E D AC‹

Interrelations Between Functions of Generalized Bounded
Variations

Given an arbitrary nondecreasing continuous function # defined on Œ0; 2��; #.0/ D
0 and # subadditive, define

H# D ff 2 C W !.f ; ı/ D O.#.ı// as ı ! 0g:
Note that if #.ı/ D ı˛; 0 < ˛ � 1 then this class is Lip.˛/ class.
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Let h D fhng be a concave sequence of positive numbers converges to 0. The
Chanturiya class VŒh� is defined to be the class of all functions

f W Œ0; 2�� ! R such that �.n; f / D sup
nX

iDk

jf .Ik/j;

the supremum is taken over family fIkgn
kD1 of non-overlapping subintervals of

Œ0; 2��.
Using the simple averaging arguments, the following inclusion relations between

generalized bounded variations are obtained.

Theorem 1 ([10, Theorem 1]). H! � BV.p.n/ " 1/ if and only if

!.t/ D O
�
t1=p.Œlog21=t�/

�
as t ! 0C :

Theorem 2 ([10, Theorem 2]). VŒ�.n/� � BV.p.n/ " 1/ if and only if

lim

n ! 1

 
2nX

kD1
.�.k/� �.k � 1//p.n/

!1=p.n/

< 1:

Theorem 3 ([12, Theorem 3.1]). If f 2 �BV.p/, then

�.n; f / � n VŒ
V.f /

.
Pn

iD1 1
	i
/1=p

�:

Theorem 4 ([3, Theorem 4.1]). 
�BV � VŒn
�1. 1Pn
iD1

1
	i

/�

Relation between�BV.p/ and generalized Wiener class is as follows.

Theorem 5 ([13]). The inclusion�BV.p/ � BV.p.n/ " p/ holds if and only if

lim sup

n ! 1

(
max

1 � k � 2n

k
1

p.n/

Pk
iD1. 1	i

/

)

< 1:

Fourier Coefficients Properties of Functions of Generalized
Bounded Variations

These classes of functions of generalized bounded variation possess many interest-
ing properties in Fourier analysis. In the last couple of decades many mathemati-
cians like Waterman, Schramm, Chanturiya, Miriz [18], Patadia [19, 34] and many
others have studied different Fourier coefficients properties like estimation of the
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order of magnitude Fourier coefficients, conditions for the convergence of Fourier
series, conditions for the absolute convergence of Fourier series, conditions for the
different type of summabilities of Fourier series, conditions for the different type
of absolute summabilities of Fourier series, etc. of functions of these generalized
bounded variations are studied in detail.

For any complex valued, 2�-periodic, function f 2 L1.T/, where T WD Œ��; �/
is the one-dimensional torus, its Fourier series is defined as

f .x/ �
X

m2Z
Of .m/eimx; x 2 T;

where

Of .m/ D
�
1

2�

�Z

T

f .x/e�imx dx

denote the mth Fourier coefficient of f .
Fourier series of a function f is said to be ˇ .0 < ˇ � 2/ absolutely convergent if

X

m2Z
jOf .m/jˇ < 1:

For ˇ D 1, one gets the absolute convergence of a Fourier series.
Some of the interesting properties Fourier coefficients properties of functions of

generalized bounded variations are listed below.

Theorem 1 ([27]). If f 2 �BV.p.n/ " 1; '/, then

Of .m/ D O.1=.
jmjX

iD1

1

	i
/1=p.�.m///;

where

�.m/ D minfk W k 2 N; '.k/ � mg; m � 1: (4)

Theorem 2 ([20]). If f 2 
�BV.p/Œ0; 2��, then

Of .m/ D O

0

@1=.
jmjX

iD1

1

	i
/1=p

1

A :

Theorem 3 ([20]). If f 2 �BV.p/Œ0; 2��, then

Of .m/ D O

0

@
�1
0

@1=.
jmjX

iD1

1

	i
/

1

A

1

A :
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Theorem 4 ([25]). Let f 2 �BV.p/.Œ0; 2��/. If 1 � p < 2r; 1 < r < 1 and

1X

mD1

 
.!..2�p/sCp/.f I �m //2�

p
r

m.
Pm

iD1 1
	i
/
1
r

! ˇ
2

< 1;

then the Fourier series of f is ˇ absolutely convergent.

Theorem 5 ([25]). Let f 2 
�BV.Œ0; 2��/. If 1 � p < 2r; 1 < r < 1 and

1X

mD1

0

B
B
B
@

�

�1

�
.!..2�p/sCp/.f I �m //2r�p

.
Pm

iD1
1
	i
/

��1=r

m

1

C
C
C
A

ˇ
2

< 1;

then the Fourier series of f is ˇ absolutely convergent.

Convergence and uniform convergence of Fourier series of functions generalized
bounded variations are studied in detail by Salem, Chanturiya, Watermans, and
many others. The concept of �-BV (and harmonic variation, in particular) has
originated from Goffman’s and Waterman’s investigation of the conditions under
which a Fourier series converges everywhere for every change variable. Waterman
proved the following result in this direction.

Theorem 6 ([36]). If f 2 HBVŒ0; 2��, then the partial sums of its Fourier series are
uniformly bounded. The series converges everywhere and converges uniformly on
closed intervals of points of continuity. If �BV � HBV, then there is a continuous
f 2 �BV whose Fourier series diverges at a point.

Theorem 7 ([3, Corollary 3, p. 231]). If a continuous function f 2 
�BVŒ0; 2��

and
P1

nD1
�
1
n


�1
�

1Pn
kD1

1
	k

��
< 1; then the Fourier series of f converges

uniformly.

Corollary 7.1. If a continuous function f 2 �BV.p/Œ0; 2�� and

1X

nD1

0

@1
n

 
1

Pn
kD1 1

	k

!1=p
1

A < 1;

then the Fourier series of f converges uniformly.

Chanturiya proved the most general result, in this direction, as follows.
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Theorem 8 ([5]). If f 2 CŒ0; 2��, then

jjf � Sn.f /jj1 � C
min

1 � m � Œ n�1
2
�

0

@!.f ;
1

n
/

mX

kD1

1

k
C

Œ.n�1/=2�X

kDmC1

�.f ; k/

k2

1

A ; n � 3:

Similarly type of results are also studied for Walsh–Fourier series, Fourier–Haar
series, and many other such orthogonal Fourier series in detail.

These notions of generalized bounded variations are extended for higher dimen-
sion spaces as well as for functions of several variables. Recently, some of the
interesting properties of N-variables functions of such generalized classes are
studied in function analysis [2, 6, 8, 9, 26, 29], approximation theory, harmonic
analysis [22, 30–33, 35, 39], digital image processing, and many other branches
of mathematics.
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