Efficient Subsequence Join Over Time
Series Under Dynamic Time Warping
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Abstract Joining two time series in their similar subsequences of arbitrary length
provides useful information about the synchronization of the time series. In this
work, we present an efficient method to subsequence join over time series based on
segmentation and Dynamic Time Warping (DTW) measure. Our method consists of
two steps: time series segmentation which employs important extreme points and
subsequence matching which is a nested loop using sliding window and DTW
measure to find all the matching subsequences in the two time series. Experimental
results on ten benchmark datasets demonstrate the effectiveness and efficiency of
our proposed method and also show that the method can approximately guarantee
the commutative property of this join operation.

Keywords Time series - Subsequence join - Important extreme points - Nested
loop join « Dynamic time warping

1 Introduction

Time series data occur in so many applications of various domains: from business,
economy, medicine, environment, meteorology to engineering. A problem which
has received a lot of attention in the last decade is the problem of similarity search
in time series databases.

The similarity search problem is classified into two kinds: whole sequence
matching and subsequence matching. In the whole sequence matching, it is supposed
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that the time series to be compared have the same length. In the subsequence
matching, the result of this problem is a consecutive subsequence within the longer
time series data that best matches the query sequence.

Besides the two above-mentioned similarity search problems, we have the
problem of subsequence join over time series. Subsequence join finds pairs of
similar subsequences in two long time series. Two time series can be joined at any
locations and for arbitrary length. Subsequence join is a symmetric operation and
produces many-to-many matches. It is a generalization of both whole sequence
matching and subsequence matching. Subsequence join can bring out useful
information about the synchronization of the time series. For example, in the stock
market, it is crucial to find correlation among two stocks so as to make trading
decision timely. In this case, we can perform subsequence join over price curves of
stocks in order to obtain their common patterns or trends. Figure 1 illustrates the
results of subsequence join on two time series. This join operation is potentially
useful in many other time series data mining tasks such as clustering, motif dis-
covery and anomaly detection.

There have been surprisingly very few works on subsequence join over time
series. Lin et al. in 2010 [5, 6] proposed a method for subsequence join which uses
a non-uniform segmentation and finds joining segments based on a similarity
function over a feature-set. This method is difficult-to-implement and suffers high
computational complexity that makes it unsuitable for working in large time series
data. Mueen et al. [7] proposed a different approach for subsequence join which is
based on correlation among subsequences in two time series. This approach aims to
maximizing the Pearson’s correlation coefficient when finding the most correlated
subsequences in two time series. Due to this specific definition of subsequence join,
their proposed algorithm, Jocor, becomes very expensive computationally. Even
though the authors incorporated several speeding-up techniques, the runtime of
Jocor is still unacceptable even for many time series datasets with moderate size.
These two previous works indicate that subsequence join problem is more chal-
lenging than subsequence matching problem.

In this work, we present an efficient method to subsequence join over time series
based on segmentation and Dynamic Time Warping measure. Our method consists

Fig. 1 Two time series are
joined to reveal some pairs of
matching subsequences
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of two steps: (i) time series segmentation which employs important extreme points
[1, 8] and (ii) subsequence matching which is a nested loop using sliding window
and DTW measure to find all the matching subsequences in the two time series.
DTW distance is used in our proposed method since so far it is the best measure for
various kinds of time series data even though its computational complexity is high.
We tested our method on ten pairs of benchmark datasets. Experimental results
reveal the effectiveness and efficiency of our proposed method and also show that
the method can approximately guarantee the commutative property of this join
operation.

2 Related Work

2.1 Dynamic Time Warping

Euclidean distance is a commonly used measure in time series data mining. But one
problem with time series data is the probable distortion along the time axis, making
Euclidean distance unsuitable. This problem can be effectively handled by Dynamic
Time Warping. This distance measure allows non-linear alignment between two
time series to accommodate series that are similar in shape but out of phase. Given
two time series Q and C, which have length m and length n, respectively, to
compare these two time series using DTW, an n-by-n matrix is constructed, where
the (ith, jth) element of the matrix is the cumulative distance which is defined as

“/(l, .1) = d(qi7 Cj) +1’l’lll’l{’y(l - laj)v V(lm]_ 1)7 '))(l - lvj_ 1)}

That means y(i, j) is the summation between d(i, j) = (q; — ¢;)*, a square dis-
tance of ¢; and c;, and the minimum cumulative distance of the adjacent element to
(@ J)-

A warping path P is a contiguous set of matrix elements that defines a mapping
between Q and C. The rth element of P is defined as p, = (i, j),, so we have:

P:plap2>"'7pta"'7pT max(m,n)§T<m—|—n—1

Next, we choose the optimal warping path which has minimum cumulative
distance defined as

DTW(Q, C) = min

The DTW distance between two time series Q and C is the square root of the
cumulative distance at cell (m, n).
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Fig. 2 (Left) Two time series
Q and C which are similar in \/\/\
shape but out of phase: Using
euclidean distance (fop left) Ox €
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To accelerate the DTW distance calculation, we can constrain the warping path
by limiting how far it may stray from the diagonal. The subset of matrix that the
warping path is allowed to traverse is called warping window. Two of the most
commonly used global constraints in the literature are the Sakoe-Chiba band pro-
posed by Sakoe and Chiba 1978 and Itakura Parallelogram proposed by Itakura
1975 [2]. Sakoe-Chiba band is the area defined by two straight lines in parallel with
the diagonal (see Fig. 2).

In this work, we use the Sakoe-Chiba Band with width R and assume that all the
time series subsequences in subsequence matching under DTW are of the same
length.

2.2 Important Extreme Points

Important extreme points in a time series contain important change points of the
time series. Based on these important extreme points we can segment the time series
into subsequences. The algorithm for identifying important extreme points was first
introduced by Pratt and Fink [8]. Fink and Gandhi [1] proposed the improved
variant of the algorithm for finding important extreme points. In [1] Fink and
Gandhi give the definition of strict, left, right and flat minima as follows.

Definition 1 (Minima) Given a time series fq, ..., t, and ¢; is its point such that
l<i<n

e f;is a strict minimum if t; <t;_1 and t; <t; 1.
e 1 is a left minimum if t;<t;_; and there is an index right > i such that

L=1tit1 = ... = right <lright+1-
e 1 is a right minimum if t;<t; . and there is an index left < i such that
Hefi—1 > legp = ... = li_] = 1.

o 1 is a flat minimum if there are indices left < i and right > i such that

Hefi—1 > liefp = - .. = 1i = ... = Lright <lyight + 1
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Fig. 3 Example of a time series and its extrema. The importance of each extreme point is marked
with an integer greater than 1 [1]
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Fig. 4 Four types of important minima [1]. a Strict minimum. b Left and right minima. ¢ Flat
minimum

The definition for maxima is similar. Figure 3 shows an example of a time series
and its extrema. Figure 4 illustrates the four types of minima.

We can control the compression rate with a positive parameter R; an increase of
R leads to the selection of fewer points. Fink and Gandhi [1] proposed some
functions to compute the distance between two data values a, b, in a time series. In
this work we use the distance dist(a, b) = |a — b|.

For a given distance function dist and a positive value R, Fink and Gandhi [1]
gave the definition of important minimum as follows.

Definition 2 (Important minimum) For a given distance function dist and positive
value R, a point #; of a series ¢, ..., t, iS an important minimum if there are indices
il and ir, where il <i<ir, such that #; is a minimum among t;, ..., t;-, and dist
(t;, t;) > R and dist (t;, t;;) > R.

The definition for important maxima is similar.

Given a time series T of length n, starting at the beginning of the time series, all
important minima and maxima of the time series are identified by using the algo-
rithm given in [1]. The algorithm takes linear computational time and constant
memory. The algorithm requires only one scan through the whole time series and, it
can process new coming points as they arrive one by one, without storing the time
series in memory.

After having all the extrema, we can select only strict, left and right extrema and
discard all flat extrema.

In this work, we apply this algorithm for finding all important extrema from time
series before extracting subsequences on them.



46 V.D. Vinh and D.T. Anh

3 Subsequence Join Over Time Series Based
on Segmentation and Matching

Our proposed method for subsequence join over time series is based on some main
ideas as follows. Given two time series, first a list of subsequences is created for
each time series by applying the algorithm for finding important extreme points in
each time series [1]. Afterwards, we apply a nested loop join approach which uses a
sliding window and DTW distance to find all the matching subsequences in the two
time series. We call our subsequence join method EP-M (Extreme Points and
Matching).

3.1 The Proposed Algorithm

The proposed algorithm EP-M for subsequence join over time series consists of the

following steps.

Step 1: We compute all important extreme points of the two time series 7; and 7>.
The results of this step are two lists of important extreme points EP1 =
(epli,epla,...,epl,) and EP2 = (ep2;,ep2, . .., ep2,,) where ml and
m2 are the numbers of important extreme points in 7; and 7>, respectively.
In the next steps, when creating subsequences from a time series (7; or
T5), we extract the subsequence bounded by the two extreme points ep;
and ep;.>

Step 2: We keep time series T; fixed and for each subsequence s extracted from 7
we find all its matching subsequences in 7, by shifting a sliding window
of the length equal to the length of s along T, one data point at a time. We
store all the resulting subsequences in the result set S,

Step 3: We keep time series 7> fixed and for each subsequence s extracted from 7>
we find all its matching subsequences in 7; by shifting a sliding window
of the length equal to the length of s along T; one data point at a time. We
store all the resulting subsequences in the result set S,

In Step 1, for the algorithm that identifies all the important extreme points in the
time series, we have to determine the parameter R, the compression rate. According
to Pratt and Fink [8], they only suggested that R should be greater than 1. In
this work, we apply the following heuristic for selecting value for R. This heuris-
tic is very intuitive. Let SD be the standard deviation of the time series. We set R to
1.5 * SD.
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The pseudo-code for describing Step 2 and Step 3 in EP-M is given as follows.

Algorithm Subsequence Join (7[1.. n;], T5[1.. ny])
Input: Two time series T; and 7, which have been segmented using important extreme
points
Output: Two result sets S; and S, which store matching pairs of subsequences
1. For each subsequence s extracted from 7 using the list of important extreme
points EP1
Find all the matching subsequences of s in 7, by calling the procedure
Subsequence Matching (s, 75)
Store all the resulting pairs of subsequences in S,
2. For each subsequence s extracted from 7, using the sequence of important
extreme points EP2
Find all the matching subsequences of s in 7 by calling the procedure
Subsequence Matching (s, 7;)
Store all the resulting pairs of subsequences in S,

Procedure Subsequence Matching(s[1.. m], T[1.. n])

// T is a time series and s is a subsequence

1 fori=1ton—m+1do

2 segment_of T=subsequence T; ;1 ;

3 dtw_distance = DTW_EA(s, segment_of T, threshold)

4 if (dtw_distance <= threshold) then

5 Store to the pair <s, segment_of T> to the result set §
6 endfor

end Procedure

Notice that Procedure Subsequence_Matching invokes the procedure DTW_EA
which computes DTW distance. The DTW_EA procedure applies Early
Abandoning technique as mentioned in the following subsection.

3.2 Some Other Issues

e Normalization
In order to make meaningful comparisons between two time series, both must be
normalized. In our subsequence join method, before applying EP-M algorithm
we use min-max normalization to transform the scale of one time series to the
scale of the other time series based on the maximum and minimum values in
each time series.
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Min-max normalization can transform a value v of a numeric variable A to v’ in
the range [min_A, max_A] by computing:

, v — miny . .
VvV = ———————— (new_max, — new_min, ) + new_miny
max, — miny

¢ Speeding-up DTW distance computation

To accelerate the calculation of DTW distance, a number of approaches, such as
using global constraints like Sakoe-Chiba band or Itakura parallelogram and
using some lower bounding techniques have been proposed. Besides, Li and
Wang [4] proposed the method which applies an early abandoning technique to
accelerate the exact calculation of DTW. The main idea of this technique is
described as follows. The method checks if values of the neighboring cells in the
cumulative distance matrix exceed the tolerance, and if so, it will terminate the
calculation of the related cell. Li and Wang 2009, called their proposed method
EA_DTW (Early Abandon DTW). The details of the EA_DTW algorithm are
given in [4].

4 Experimental Evaluation

We implemented all the comparative methods with Microsoft C#. We conducted
the experiments on an Intel(R) Core(TM) 17-4790, 3.6 GHz, 8 GB RAM PC. The
experiments aim to three goals. First, we compare the quality of EP-M algorithm in
the two cases: using Euclid distance and using DTW distance. Second, we test the
accuracy and time efficiency of EP-M algorithm. Finally, we check whether the
EP-M algorithm can approximately guarantee the commutative property of the join
operation. For simplicity, we always use equal size time series (i.e. n; = ny) to join
although our method is not limited to that.

4.1 Datasets

Our experiments were conducted over the datasets from the UCR Time Series Data
Mining archive [3]. There are 10 datasets used in these experiments. The names and
lengths of 10 datasets are as follows: Chromosome-1 (128 data points), Runoff (204
data points), Memory (6874 data points), Power-Demand-Italia (29931 data points),
Power (35450 data points), Koski-ECG (144002 data points), Chromosome
(999541 data points), Stock (2119415 data points), EEG (10957312 data points).
Since the subsequence join has to work on the two time series of some degree of
similarity, we need a method to generate the synthetic dataset 7, (inner time series
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in Step 2) for each test dataset 7, (outer time series in Step 2). The synthetic dataset
is generated by applying the following rule:

21'6:1 Xi
6

Xi =X % |xiog — ¢ where ¢ =

In the above formula, + or — is determined by a random process. The synthetic
dataset is created after the correspondent dataset has been normalized, therefore, the
noisy values does not affect to the generated dataset. Specifically for Runoff dataset
(from The Be River in Southern Vietnam) we use the real datasets (monthly data
from 1977 to 1993) at two measurement stations Phuoc Long and Phuoc Hoa. The
dataset at Phuoc Long Station will play the role of time series 7; and the dataset at
Phuoc Hoa Station will be time series 7.

4.2 DTW Versus Euclidean Distance in EP-M Algorithm

In time series data mining, distance measure is crucial factor which has a huge
impact on the performance of the data mining task. Here we need to know between
DTW and Euclidean distance which measure is more suitable for our proposed
subsequence join method. We conducted the experiment to compare the perfor-
mance of EP-M algorithm using each of the two distance measures in terms of the
number of pairs of matching subsequences found by the algorithm. Table 1 reports
the experimental results over 8 datasets. The experimental results show that with
Euclidean distance, EP-M can miss several pairs of matching subsequences in the
two time series (see the last column). That means EP-M with Euclidean Distance
can not work well in subsequence join as EP-M with DTW. The experiment rec-
ommends that we should use DTW distance in the EP-M algorithm even though
DTW incurs much more computational time than Euclidean distance.

4.3 Accuracy of EP-M Algorithm

Now we turn our discussion to the accuracy of EP-M algorithm. Following the
tradition established in previous works, the accuracy of a similarity search algo-
rithm is basically based on human analysis of the matching subsequences discov-
ered by that algorithm. That means through human inspection we can check if the
matching subsequences of a query in question identified by the proposed algorithm
in a given time series have almost the same shape as the query pattern. If the check
result is positive in most of the test datasets, we can conclude that the proposed
algorithm brings out the accurate similarity search.
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Table 1 ]?,xperimental results  pagaget Length | ED DTW | ED omissions
;’l‘lccl‘i’(';;gf‘(;‘iftﬁzv 0 Chromosome-1 128 180 | 277 | 97
Runoff 204 387 1502 1115
Memory 1000 4040 | 4101 61
Power-Demand-Italia | 1000 5139 | 23289 | 18150
Power 1000 8926 | 10523 6067
Koski-ECG 1000 6562 6562 0
Stock 1000 3236 | 4531 1295
EEG 1000 13550 | 35366 | 21786

Through our experiment, we found out that the result sets provided by our EP-M
algorithm are quite accurate over all the test datasets.

4.4 Time Efficiency of EP-M

The names and runtimes (in minutes) of 9 datasets by EP-M are as follows:
Chromosome-1 (0.003), Runoff (0.007), Memory (3.227), Power-Demand-Italia
(10.8), Power (82), Koski-ECG (106.2), Chromosome (64.4), Stock (34.7), EEG
(30.45).

The maximum length of these datasets is 30000. The execution time of EP-M on
the Koski-ECG dataset with 30,000 data points is about 1 h 46 min. So, the
runtimes reported are acceptable in practice.

4.5 The Commutative Property of Join Operation by EP-M

The reader may wonder if subsequence join achieved by EP-M can satisfy the
commutative property of join operation, i.e. T\><T, = T,><T|. We can check this
theoretic property through experiments over 10 datasets with the maximum length
5000. For T>«T>, time series T} is considered in the outer loop and time series 75 is
considered in the inner loop of Step 2 in EP-M. For T,><T}, the order of compu-
tation is in the opposite. Table 2 reports the experimental results on commutative
property of join operation by EP-M in terms of the number of pairs of matching
subsequences found by the algorithm in two cases T|><7, and T,><T). The
experimental results reveal that the difference between two cases is small enough to
confirm that the EP-M method can approximately guarantee the commutative
property of this join operation.
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Table 2 Expen'mental results Dataset T\><Ty ToodT, Error (%)
?(Enczgg?;zzivgypg}?_ﬁy of Chromosome-1 277 272 2
Runoff 1502 1591 6
Memory 4101 4073 0.007
Power-Demand-Italia 511092 524256 3
Power 309576 287576 7.4
Koski-ECG 6562 6366 3
Chromosome 7376 7766 5
Stock 4531 4817 6
EEG 35336 32072 9.6

5 Conclusions

Subsequence join on time series data can be used as a useful analysis tool in many
domains such as finance, health care monitoring, environment monitoring. In this
paper, we have introduced an efficient and effective algorithm to perform subse-
quence join on two time series based on segmentation and Dynamic Time Warping
measure.

As for future works, we intend to extend our subsequence join method for the
context of streaming time series. Besides, we plan to adapt our EP-M method with
Compression Rate Distance [10], a new distance measure that is better than DTW,
but with O(n) computational complexity. Future work also includes considering the
utility of EP-M algorithm for the problem of time series clustering, classification,
motif discovery and anomaly detection.
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