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Abstract. The Byte Code Verifier (BCV) is one of the most impor-
tant security element in the Java Card environment. Indeed, embedded
applets must be verified prior installation to prevent ill-formed applet
loading. In this article, we disclose a flaw in the Oracle BCV which affects
the applet linking process and can be exploited on real world Java Card
smartcards. We describe our exploitation of this flaw on a Java Card
implementation that enables injecting and executing arbitrary native
malicious code in the communication buffer from a verified applet. This
native execution allows snapshotting the smart card memory with OS
rights.
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1 Introduction

Developing smart card applications is a long and complex process. Despite exist-
ing standardization efforts, e.g., concerning power supply, input and output
signals, smart card development used to rely on proprietary Application Pro-
gramming Interfaces (APIs) provided by each manufacturer. The main draw-
back of this development approach is that the code of the application can only
be executed on a specific platform, thus lowering interoperability.

To improve the interoperability and the security of embedded softwares, the
Java Card technology was designed in 1997 to allow Java-based applications
for securely running on smart cards and similar footprint devices. Due to the
resources constraints of this device, only a subset of the Java technology was
retained in the Java Card technology. The trade-offs made on the Java archi-
tecture to permit embedding the Java Card Virtual Machine (JCVM) on low
resource devices concern both functional and security aspects.

1.1 The Java Card Security Model

In the Java realm, some aspects of the software security relie on the Byte code
Verifier(BCV). The BCV guarantees type correctness of the code, which in turn
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guarantees the Java properties regarding memory access. For example, it is
impossible in Java to perform arithmetic operations on references. Thus, it must
be proved that the two elements on top of the stack are bytes, shorts or integers
before performing any arithmetic operation. Because Java Card does not sup-
port dynamic class loading, byte code verification is performed at loading time,
i.e. before installing the Converted APplet (CAP) file onto the card. Moreover,
most of Java Card platforms do not embed an on-card BCV as it is expensive
in terms of memory consumption. Thus, bytecode verification is performed off-
card, either directly by the card issuer if he controls the loading chain, or by a
trusted third party that signs the application as a verification proof.

In addition to static off-card verification enforced by the BCV, the Java Card
Firewall performs runtime checks to guarantee applets isolation. The Firewall
partitions Java Card’s platform into separated protected object spaces called
contexts. Each package is associated to a context, thus preventing instances of
a package from accessing (reading or writing) data of other packages, unless it
explicitly exposes functionality through a Shareable Interface Object.

Despite all the security features enforced by the Java Card environment,
several attack paths [1,2,4–6,10,11,13–15,19,22] have been found exploitable
by the Java Card security community.

1.2 State-of-the-Art on Java Card Byte Code Verifier Flaws

The BCV is a key component of the Java Card platform’s security. A single
unchecked element in the CAP file, while apparently insignificant, can introduce
critical security flaws in smart cards as shown in [11].

Although exhaustively testing a piece of software is a complex problem, sev-
eral attempts have been made to characterize the BCV of the Java Standard
Edition from a functional and security point of view. In [24], the authors rely
on automatic test cases generation through code mutation and use a reference
Virtual Machine (VM) implementation including a BCV as oracle. In [8], a for-
mal model of the VM including the BCV is designed, then model-based testing
is used to generate test cases and to assess their conformance to the model.

In the Java Card community, several works aim at providing a reference
implementation of an off-card [16] or an on-card [3,9] Java Card BCV. These
implementations are mainly designed from a formal model and can be used to
test the BCV implementation provided by Oracle. As for the VM, model-based
testing approaches [7,23] were used to assess on Java Card BCV implementa-
tions. As of today, no full reference implementation or model of the Java Card
BCV has been proposed.

The Oracle’s BCV implementation in version 2.2.2 was analyzed by Faugeron
et al. [11]. In this implementation, the authors identified an issue in the branch-
ing instructions interpretation during the type-level abstract interpretation per-
formed by the BCV. The authors exploited this issue to perform a type confusion in
a local variable, undetected by Oracle’s BCV. This issue in the BCV was patched
by Oracle from version 3.0.3.
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Since the version 3.0.3, no security flaw identification or exploitation in the
Java Card BCV has been publicly signaled. In this paper, we present a new flaw
discovered in the Java Card BCV from version 2.2.2 to 3.0.5 and we describe an
exploitation of this flaw.

Section 2 introduces how a missing check in the Oracle’s BCV implementation
may allow an adversary to control a method offset and thus to trigger unverified
bytecode execution. Section 3 shows how to success in exploiting this mechanism
on a real Java Card product to trigger the execution of native code injected
in a communication buffer. Finally, we evaluate our results on other Java Card
products and propose a countermeasure to prevent the attack.

2 A Flaw in the BCV

2.1 The BCV Duty

The BCV enforces various security and consistency checks that guarantee each
embedded application remains confined in its own sandbox. These verifications
are performed on the CAP file, which is the binary representation of the classes
that are loaded on the card. The BCV enforces two main kinds of checks: type
correctness on the code and structure verification on the CAP file. The first
one aims at performing an abstract interpretation of each method code in order
to identify forbidden type conversion. The last one is an analysis of the CAP file
structure to validate its consistency with the Java Card specification [20], and
is detailed in the next section.

2.2 Verification of the CAP File Structure

The CAP file is composed of twelve different components, with internal and
external dependencies, that are checked during the CAP file verification. Inter-
nal dependencies verification aims at validating the component properties as
defined by the Java Card specification. External dependencies checks validate
that redundant information specified in different components are compliant with
each other. For example, each component has a size field that must be compliant
with the component-sizes array contained in the Directory component where
the sizes of every components are specified. An overview of all external depen-
dencies between components in a CAP file are summarized in Fig. 1 borrowed
from [12].

Among the twelve components stored in the CAP file, we will focus on the
following components:

– the Method component stores the code of all methods in the package, con-
catenated as a set of bytes;

– the Constant Pool component contains an entry for each of classes, methods
and fields referenced in the Method component;

– the Class component describes each classes and interfaces defined in the pack-
age, in a way that allows executing operations on that class or interface;



78 J. Lancia and G. Bouffard

Fig. 1. External dependencies between components in a CAP file [12].

– the Descriptor component provides sufficient information to parse and verify
all elements of the CAP file. This component is the main entry point for a
byte code verification.

The Descriptor component is keystone of the BCV operations, but it has little
or no importance for the card’s processing and is therefore optionally provided
during the loading of the applet.

Because of its purpose, the Descriptor component references several elements
in the other components, and even provides redundant information with regards
to these components. On the opposite, no component references the Descriptor
component.

An analysis of the behavior of the BCV regarding the external dependency
checks, and particularly the redundant information between components, brought
us to identify a missing external dependency check between the Class component
and the Descriptor component. We present the details of this BCV flaw and the
resulting exploitation in the next sections.

2.3 Missing Check in the BCV

The missing check we have identified in the BCV involves the token-based linking
scheme. This scheme allows downloaded software to be linked with API already
embedded on the card. Accordingly, each externally visible item in a package
is assigned a public token that can be referenced from another package. There
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are three kinds of items that can be assigned public tokens: classes, fields and
methods. The bytecodes in the Method component refer to the items in the
Constant Pool component, where the tokens required to perform the bytecode
operation (e.g. class and method token for a method invoke) are specified.

When the CAP file is loaded on the card, the tokens are linked with the API
and resolved from token form into the internal representation used by the VM.
The linking process operates on the bytecode and is performed in several steps:

1. each token is an index in the Constant Pool component. The item stored at
the provided index specifies the public tokens of the required items (e.g., class
and method token for a method invoke);

2. the tokens are resolved into the JCVM internal representation. For a method
invoke, the class token identifies a class info element in the Class component;

3. in the class info element, the public virtual method table array stores
the methods internal representation. The method token is an index into the
public virtual method table array;

4. the element in the public virtual method table at the method token index
is an absolute offset in the Method component to the header and the bytecode
of the method to execute.

The Fig. 2 summarizes the linking process for a method call.

Fig. 2. Overview of the linking process for a method call.

The absolute offset in the Method component to the header and the byte-
code of the method to execute is a redundant information in the CAP file as it is
stored both in the public virtual method table elements in the Class compo-
nent and in the method descriptor info elements in the Descriptor component.
The offset information in the Descriptor component is used exclusively by the
BCV before loading, while the offset information in the Class component is used
exclusively by the JCVM linker on card. Thus, any ill-formed offset information
in the Class component remains undetected by the BCV checks, but is still used
by the JCVM linker on card.
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2.4 Exploiting the BCV Flaw

As presented so far, the BCV flaw we expose allows manipulating the method
offset information in the Class component while remaining consistent with the
BCV checks. The exploitation of this flaw consists in deleting an entry in the
public virtual method table of a class info element in the CAP file. The res-
olution of the corresponding method offset during the JCVM linking leads to an
overflow in the Class component, as presented in Fig. 3. This overflow brings the
JCVM to interpret the content of the memory area following the Class component
on card as a method index.

Fig. 3. Overflow in the linking process with for a method call.

The loading order of the CAP components is defined by the Java Card spec-
ification. This order specifies that the Method component is loaded right after
the Class component. It is thus very likely that the Method component is stored
next to the Class component in the card’s memory. As a result, the Class com-
ponent overflow is likely to fall into the Method component. In this eventuality,

Fig. 4. Figure on left shows a successful linking in the Class component. Figure on the
right shows the Class component overflow during linking when grayed out elements are
deleted. Class component overflow falls into the Method component.
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the offset of the method resolved in overflow is the numerical value of a byte-
code in the Method component, that can be controlled by the applet developer.
The Fig. 4 presents an exploitation of the Class component overflow through the
Method component.

3 Code Injection from a Bytecode Verified Applet

In the previous section, we have presented, in the eventuality of a favorable
memory mapping, how an attacker can exploit a BCV flaw to specify an arbi-
trary method offset in a BCV validated applet. In this section, we present the
exploitation of this flaw on a real product that allows us to inject and execute
native code in a communication buffer from a BCV validated applet.

The attack steps necessary to reach arbitrary native code on the Java plat-
form are summed up the next sections. First, we exploit the BCV flaw pre-
sented in Sect. 2 to forge an arbitrary method header in the Method component.
This arbitrary method header is then used to abuse the native method execu-
tion mechanism of the platform and thus create a buffer overflow in the native
method table. Finally, this buffer overflow allows dereferencing the communica-
tion buffer address as a native function. As a consequence, the data sent to our
verified applet through the communication channel are executed as native code
on the JCVM.

This full attack is a proof of concept to demonstrate that the flaw discovered
in the Oracle BCV may jeopardize the security of Java Card smartcards.

3.1 Native Execution in the Virtual Machine

We validate the exploitation of the BCV flaw on an open Java Card platform
embedded on an ARM micro-controller. This Java Card platform was provided in
the context of a security expertise, thus both the code and the memory mapping
of the VM were made available.

The runtime environment of this platform provides a mechanism that allows
switching execution to native implementations of Java Card API methods for
performance reasons. The implementation of this mechanism is similar to the
Java Native Interface (JNI) mechanism provided in classical Java VMs [18].

In the JNI approach, the native methods are identified through a dedicated
flag (ACC NATIVE) in the method header. According to the JCVM specification,
the native header flag is only valid for methods located in the card mask. There-
fore a native method loaded in a CAP file is not compliant with the Java Card
specification, and is thus rejected by the offcard verifier.

The native method resolution in JNI relies on interface pointers. An interface
pointer is a pointer to a pointer. This pointer refers to an array of pointers, each
one itself pointing on to an interface function. Every interface function is stored
at a predefined offset inside the array. Figure 5 illustrates the organization of an
interface pointer. The offset inside the array where the native function pointer
is to be found is provided in the body of the native method.
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Fig. 5. JNI functions and pointers [17].

3.2 Native Execution from a Validated Applet

As presented in Sect. 2 a missing check in the BCV can cause an overflow that
brings the VM to resolve the method offsets outside the Class component. In the
VM implementation we use to exploit our attack, the Class component overflow
falls into the Method component so the value of the method offset can be specified
as the numerical value of a bytecode in the Method component.

According to the JCVM specification [20], the offset of a method must point
to a method header structure in the Method component, followed by the bytecode
of the method. When exploiting the BCV flaw, the offset is controlled by the
developer so it can point to any portion of the Method component. This can
be used to make the method offset pointing on a portion of the bytecode that
can be interpreted as a method header. The iipush bytecode can be used for
this purpose, as its operand is a 4-bytes constant that is not interpreted by the
BCV. This 4-bytes constant is thus used to code a method header containing the
ACC NATIVE flag and the native method index. This iipush bytecode is accepted
by the BCV because it forms a valid bytecode sequence, but when the operand
is interpreted as a native method header (through an overflow on the Class
component), the control flow switches to native execution. Figure 6 shows the
attack path from the Class component overflow to the native execution of a JNI
method.

We were thus able, by specifying the adequate value for the method offset,
to execute any of the native methods provided by the VM in the array of JNI
native function pointers.

3.3 Abusing the Native Execution Mechanism for Code Injection

The attack so far allows calling JNI native methods provided by the platform,
that are stored in an array of JNI native function pointers (or native array).
When a native method call occurs, the switch from the Java runtime environment
to the native execution environment requires an index in the native array to
determine the native function pointer. Experimentation on the target JCVM
allowed us to determine that an overflow on the native array can be achieved
by specifying the relevant index in the native method body. Thus, any memory
content stored next to the native array can be exploited as a native function
pointer.
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Fig. 6. Exploitation of the Class component overflow to execute a native method.

An analysis of the memory mapping of the product shows that a memory
zone next to the native array contains a pointer to the communication buffer
used for Host Controller Protocol (HCP) communications. The HCP protocol
handles the transport layer of the Single Wire Protocol (SWP) protocol, involved
in Near Field Communication (NFC) communications with smart cards. HCP
messages encapsulates ISO7816 Application Protocol Data Unit (APDU) that
are conveyed to the smartcard over SWP.

Using the overflow on the native array, we are able to use the HCP commu-
nication buffer pointer as native function pointer. The execution of this native
function pointer leads to executing the content of the HCP communication buffer
as a native assembly function.

The HCP protocol has several properties that limit the use of the HCP
communication buffer as a native payload injection placeholder:

1. HCP packets are prefixed with a HCP message header and an HCP packet
header. These headers are interpreted as native assembly opcodes.

2. HCP enforces fragmentation of messages, which limits packets size to 27 bytes.
The entire native payload must thus be contained in 27 bytes.

In order to gain more space to inject our attack payload, we inject a minimal
payload in the HCP communication buffer whose only purpose is to redirect
the execution flow to the ISO7816 APDU buffer. This minimal redirection pay-
load is presented in Table 1. Because the HCP communication buffer pointer
is used as a function pointer, all the HCP buffer is interpreted as native code,
including packet header, message header and encapsulated APDU header. These
header bytes produce no side effect as shown in Table 1, which lets the redirection
payload execute properly.
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Table 1. Native payload in the HCP buffer that redirects the execution flow to the
APDU buffer. Relevant payload data is grayed out.

The ISO7816 protocol has broaden fragmentation constraints, which offers
sufficient space for a full native payload injection. We present in Table 2 a full
payload injected in the APDU buffer that branches to a low level read/write OS
function. Because the start address execution is chosen from the HCP message
buffer payload, the header bytes are skipped and the native execution starts at
the push instruction (Table 2, 3rd row).

The payload initializes the source parameter to the first 4 bytes of the payload
(Table 2, 2nd row), such that the reading address can be selected directly in the
APDU. Then, it initializes the destination address (where the read bytes are
copied) to the address of the APDU buffer following the payload, such that
the read bytes are immediately available for sending back through the APDU

Table 2. Native payload in the ISO7816 APDU buffer that calls an OS function to
read an arbitrary memory zone and copies the result to the APDU buffer. Relevant
payload data is grayed out.
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Fig. 7. Exploitation of the native array overflow to execute native code in the APDU
buffer.

buffer. Finally, it branches to the low level OS function that performs the reading
operation. As a result, any physical address of the card can be accessed through
this native payload.

Figure 7 shows the execution flow from the native array overflow to the redi-
rection payload in the HCP message buffer to the final attack payload in the
APDU buffer. We were able to integrally dump the card memory and to reverse
it using commercial reversing tools. The reversed code was identified as the code
of the embedded JCVM.

4 Other Experimental Results

To evaluate the consequence of the BCV flaw on a broader range of virtual
machine implementations, we tested, on different smart cards from different
manufacturers, how much each of them supports the installation of an ill-formed
applet. We evaluated seven cards from three distinct manufacturers (a, b and c).
Each card name is associated with the manufacturer reference and its Java Card
specification [20]. The list of evaluated Java Card smart cards is presented in
Table 3.

None of the evaluated card implements an embedded BCV. On each card,
an ill-formed applet is installed and, if the installation succeeds, the applet is
executed. The ill-formed applet has a dereferenced method in the public virtual
method table. Table 4 sums up the cards reactions.

As shown in Table 4, cards react differently to the ill-formed CAP file instal-
lation and execution. The cards with the symbol (✓) detect the ill-formed CAP
file during the installation and reject it. On the other cards, marked with the
symbol (✗), installation and execution succeed.
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Table 3. Cards used during this evaluation.

Reference Java Card Platform GlobalPlatform Version Details

a-22a 2.2.1 2.1.1 36 EEPROM, RSA

a-22b 2.2.2 2.1.2 80 EEPROM, RSA

a-30c 3.0.4 2.2.1 80 EEPROM, ePassport

b-30a 3.0.1 2.2.1 1 Flash memory, (U)SIM

c-21a 2.1.1 2.0.1 128 EEPROM, SIM

c-21b 2.1.1 2.0.1 64 EEPROM, RSA, AES

c-22c 2.2.2 2.2.2 256 Flash memory, (U)SIM

Table 4. Statuts of each evaluated cards.

Reference Statut

a-22a PCSC error: card mute. ✗

a-22b PCSC error: card mute. ✗

a-30c PCSC error: card mute. ✗

b-30a No error: the card return the value 0x0701. ✗

c-21a Global platform error: error during the loading process (applet rejected). ✓

c-21b Global platform error: error during the loading process (applet rejected). ✓

c-22c Global platform error: error during the loading process (applet rejected). ✓

Successful executions cause either unexpected card response or card mute.
Unexpected card response indicates that unexpected code execution occurred.
Card mute may result from infinite loop or card’s reaction to illegal code, which
also indicates unexpected code execution.

These behaviors proof that the control flow of the JCVM is modified. We
can thus conclude that the BCV flaw presented in this article can be exploited
on a range of different Java Card smartcards.

The full attack path that results in arbitrary native code execution requires
information about the memory mapping and the JCVM implementation that
were not available for these tests. Therefore, we did not attempt to reproduce
the full attack path.

5 Conclusion, Countermeasure and Future Works

We show in this article how a missing check in the Oracle’s BCV implementation
can be exploited on a Java Card. We demonstrated that this BCV issue has a
critical impact on smart cards security through a proof of concept exploitation
on a JCVM implementation. We have successfully managed to inject and exe-
cute native code in a communication buffer, and finally gain full read/write OS
privileges on the whole card memory. Finally, we evaluated on a range of differ-
ent cards from different manufacturers that most of the JCVM implementations
do not protect themselves against the BCV issue exploitation.
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Following our responsible disclosure of the BCV issue to Oracle, we were
allowed to publish this article and a new version of the BCV was released1. This
new BCV version detects the Class component inconsistency and thus mitigate
our attack. A loading process including mandatory bytecode verification step
with the latest Oracle’s BCV provides a valid countermeasure against the attack
presented in this paper.

With the identification of a new flaw in the Oracle’s BCV implementation,
one sees that the BCV must be entirely verified to lower the risks of new vulner-
abilities disclosure. To reach this objective, an effort should be done to specify
the security and functional requirements a BCV must comply with in order to
protect JCVM implementations against software attacks.
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