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Abstract High-dimensional longitudinal data with a large number of covariates,
have become increasingly common in many bio-medical applications. The iden-
tification of a sub-model that adequately represents the data is necessary for
easy interpretation. Also, the inclusion of redundant variables may hinder the
accuracy and efficiency of estimation and inference. The joint likelihood function
for longitudinal data is challenging, particularly in correlated discrete data. To
overcome this problem Wang et al. (Biometrics 68:353-360, 2012) introduced
penalized GEEs (PGEEs) with a non-convex penalty function which requires only
the first two marginal moments and a working correlation matrix. This method
works reasonably well in high-dimensional problems; however, there is a risk of
model mis-specification such as variance function and correlation structure and in
such situations, we propose variable selection based on penalized generalized quasi-
likelihood (PGQL). Simulation studies show that when model assumptions are true,
the PGQL method has performance comparable with that of PGEEs. However, when
the model is mis-specified, the PGQL method has clear advantages over the PGEEs
method. We have implemented the proposed method in a real case example.

Keywords GEEs ¢ Generalized quasi-likelihood ¢ Longitudinal data ¢ Variable
selection

1 Introduction

Variable selection is an important topic in statistical modeling, especially for
longitudinal data with high-dimensional covariates, which often arise in large-scale
bio-medical studies. In practice, a large number of covariates, (Xl,Xz, .. ,Xp),
are believed to have an influence on the response variable y of interest. However,
some covariates have no influence or a weak influence, and a regression model that
includes all the covariates is not advisable. Excluding the unimportant covariates
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results in a simpler model with better interpretive and predictive value. The problem
of identifying a sub-model that adequately represents the response is generally
referred to as the variable selection problem. For example, in generalized linear
models, the sub-model that relates to the random variable y with the mean denoted
by u to a subset of components of X in the form

g(x; 1) = X(9)B(s),

where g(x) is the link function, X(s) is a subset of the components of X, B(s) is
a vector of the corresponding regression parameters, and s < (1,2,...,p). The
variable selection problem is to find the best subset s such that the sub-model
is optimal according to some criteria that give a good description of the data-
generating mechanism. Statistically speaking, variable selection is a way to reduce
the complexity of the model, in some cases by accepting a small amount of bias to
improve the precision.

Traditionally, variable selection is achieved by evaluating all possible sub-
models via information criteria such as Akaike’s information criterion (AIC; Akaike
1973, 1974), Bayesian information criterion (BIC; Schwarz 1978), and Empirical-
likelihood-based information-theoretic approaches (EAIC, EBIC; Variyath et al.
2010). The sub-model that minimizes the information criteria is then selected
together with the corresponding covariates. For high dimensional data, which
are often encountered in modern applications, the computational burden makes
the direct application of these information criteria infeasible. To overcome the
computational difficulties as well as to achieve some selection stability, regu-
larization methods have drawn substantial attention. There is a large volume of
literature on the penalized likelihood approach for building such models; for
example, least absolute shrinkage and selection operator (LASSO; Tibshirani 1996)
and the smoothly clipped absolute deviation (SCAD; Fan and Li 2001). Both
approaches have many desirable properties. Other related variable selection methods
include penalized empirical likelihood-based variable selection (Nadarajah 2011;
Variyath 2006), adaptive LASSO (Zhang and Lu 2007; Zou 2006), least-square
approximation (Wang and Leng 2007) and the folded concave penalty method (Lv
and Fan 2009). However, the aforementioned variable selection methods are only
applicable to generalized linear regression models.

Variable selection for longitudinal data is quite challenging due to the high
dimensionality of covariates and the correlation within subject. Pan (2001) devel-
oped a quasi-likelihood information criterion (QIC) under the working indepen-
dence model and the naive and robust covariance estimates of estimated regression
coefficients. Cantoni et al. (2005) proposed a generalized version of Mallows’s
C, suitable for use with both parametric and nonparametric models. This model
selection avoids a stepwise procedure and is based on a measure of predictive error
rather than on significance testing. Wang and Qu (2009) introduced a novel Bayesian
information criterion type model selection procedure based on the quadratic infer-
ence function, which does not require the full likelihood. The implementation of best
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subset type model selection procedures call for the evaluation of all possible sub-
models, which becomes computationally intensive when the number of covariates
is moderately large.

The idea of penalization is very useful in longitudinal modeling, particularly
in high dimensional variable selection. Fan and Li (2004) proposed an innovative
class of variable selection procedures to select significant variables in the semi-
parametric models for continuous responses. Wang et al. (2008) studied regularized
estimation procedures for nonparametric varying coefficient models for continuous
responses that can simultaneously perform variable selection and the estimation
of smooth coefficient functions. Xiao et al. (2009) recently investigated a double-
penalized likelihood approach for selecting important parametric fixed effects
in semiparametric mixed models for continuous responses. Dziak et al. (2009)
discussed the applications of the SCAD-penalized quadratic inference function.
Xu et al. (2010) investigated a GEEs-based shrinkage estimator with an artificial
objective function. Xue et al. (2010) considered the model selection of a generalized
additive model when responses from the same cluster are correlated. However, the
aforementioned methods assume that the dimension of predictors are relatively
small and some of these works are only applicable to continuous responses. The
joint likelihood function for correlated discrete responses does not have a closed
form when the correlations among the repeated measures are taken into account.
To avoid specifying the full joint likelihood for correlated data, Wang et al. (2012)
proposed penalized GEEs with a non-convex penalty function, which requires only
the specification of the first two marginal moments and a working correlation matrix.
This penalized GEEs method is superior to traditional methods because of their
computational efficiency and stability. The true regression coefficients that are zero
are automatically shrunk to zero, and the remaining coefficients are simultaneously
estimated. These methods work reasonably well in high-dimensional problem;
however, the GEEs estimate of § is not necessarily consistent in some situations,
as discussed by Crowder (1995) and Sutradhar and Das (1999). To overcome this
problem, Sutradhar (2003) has proposed a generalization of the quasi-likelihood
(GQL) approach to improve the efficiency of the parameter estimates. Utilizing
this, to avoid the risk of model mis-specifications such as in variance function and
correlation structure, we propose penalized generalized quasi-likelihood (PGQL)
based on stationary lag correlation structure. Our simulation studies show that the
proposed method works well compared to PGEEs.

The remaining part of the paper is organized as follows. In Sect. 2, we discussed
the importance of the GQL approach and compared its performance with the GEEs
approach. In Sect. 3, we introduced PGQL-based variable selection for longitudinal
data. Its theoretical properties and numerical algorithm are also explored in this
section. In Sect. 4, the performance analysis of the proposed method is assessed
based on Monte Carlo simulations. The proposed method is applied to health care
utilization count data in Sect. 5 and our conclusions are given in Sect. 6.
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2 Generalized Quasi-Likelihood

The structure of the longitudinal data-set consists of an outcome random variable y;,

and p-dimensional vector of covariates x;, that are observed for subjectsi = 1,...,k
at a time point #, = 1,...,m;. For the ith subject, let y; = (i1, ..., Yim,)! be the
response vector and let X; = (x;1, Xz, ..., Xim;)? be the m; x p matrix of covariates.

We assume that the k subjects are independent while the repeated measurements
vi: taken on each subject are correlated. The marginal density of y;, is assumed to
follow a canonical exponential family (Liang and Zeger 1986) of the form

J i) = exp [yl — a(6i))$ + b(yir. P)]. (1

where 6;, = g(n;), g is the known injective function with n;, = x;8, B is a
p x 1 vector of the regression effects of x; on y;, a(x), and b(x) are known
functional forms. The mean and the variance of y; as E(y;|xi;) = a’(6;) = i, and
Var(y;;) = a”(6;;) = v(ui)¢, where ¢ is the unknown over-dispersion parameter
for simplicity we assume ¢p = 1 in this study and v () is a known variance function.

Note that when there is a functional relationship between the mean and variance
of the response, Wedderburn (1974) proposed a quasilikelihood (QL) approach
for independence data which utilize both the mean and the variance in estimating
the regression effects. When there is insufficient information about the data for
us to specify a parametric model, quasi-likelihood is often used. The QL optimal
estimating equation for 8 is given by

b & [ (B) (yie — ' (Bi)
ZZ[ B Vartw) }ZO'

i=1 t=1

In a longitudinal setup, the components of the response vector y; are repeated, which
are likely to be correlated. Let C;(p) be the m; x m; true correlation matrix of y;,
i = 1,...,k, which is unknown in practice. Our primary interest is to estimate
after taking the longitudinal correlation C;(p) into account. For known C;(p), the
QL estimator of 8 under (1) is the solution of the score equation

k
g B) =) X[ AZT ()i — ) =0, 2)

i=1

where A; = diag[a”(6y1),...,a"(0x),...,d"(0i,)], and Xi(p) = Ail/ZCi(,o)Ail/2
is the true covariance of y;. In real applications the true correlation structure is
often unknown. Ignoring the correlation among the same individual could lead to an
inefficient estimation of the regression coefficients and underestimation of standard
erTors.

To overcome these problems, in a seminal paper Liang and Zeger (1986) pro-
posed the generalized estimating equations (GEEs) approach. The GEEs approach
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for estimating the parameter vector of the marginal regression model (1) allows
the user to specify any working correlation structure for the correlation matrix of a
subject’s outcomes y;. They developed the joint probability model by introducing

a “working” correlation structure based on a generalized estimating equations
approach to obtain consistent and efficient estimators for the regression parameter

B, given by

k

g(B.a(B)) = Y XIA PR @A i — i) = 0, 3)

i=1

where A; = m; x m; diagonal matrix with Var(u;) as the irh diagonal element, R;(&)
is the “working” correlation matrix of the m; repeated measures used for C;(p) in
equation (2). We can choose the form of the m; x m; “working” correlation matrix
R; for each y;, defined by the (j, j/) element of R; is the known, hypothesized, or
estimated correlation between y; and Vi - The working correlation structure can
depend on an unknown s x 1 correlation parameter vector . The observation times
and correlation matrix can differ from subject to subject, but the correlation matrix
R;(a) of the ith subject is fully specified by «. For a given working correlation
structure, o can be estimated using a residual-based method of moments. The
GEEs estimate of 8 is not necessarily consistent in some situations as discussed by
Crowder (1995) and Sutradhar and Das (1999). Crowder (1995) demonstrated that
there may not be any solutions for & , which misleads the estimation of regression
parameters. Also the GEEs approach gives a consistent estimator of 3, but this
estimator in some situations is less efficient than the independence estimating
equation approach under an arbitrary working correlation structure as shown by
Sutradhar and Das (1999).

In such situations, Sutradhar (2003) has proposed a generalization of the quasi-
likelihood (GQL) approach to improve the efficiency of the parameter estimates.
The estimation for f is obtained by solving the GQL estimating equations given by

k
gB.p) =) _XAZT (D) — ) =0, @)
i=1

where X;(p) = Ail/ 2C;“ (p)Al.l/ ? with C’(p) as the stationary lag-correlation
structure for any of the AR(1), MA(1), or EQC models, and

L pr p2 oo Pt
pr 1 proo. P2

cw=| ®

| Pm—1 Pm=2 Pim—3 - - - 1
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Table 1 A class of stationary correlation models for longitudinal count data
from Sutradhar (2011, Sect. 6.3)
Model | Dynamic relationship Mean, variance
and correlations

AR(l) | yi = p*yi—1 + diy, t=2,3,....m Eb’it] = Wi

yi1 ~ Poi(u; = exp[X;B]) varlyq] = w;

dip ~ Poi(ui(1 — p)), t=2,3,....m | cortlyy,yii+i] = pi = p'
MA(l) |yi=p*diy—1 +dy, t=12,....m E[.Yit] = Wi

dip ~ Poi(u;/(1 + p)) varlyi] = pi
diy ~Poi(u;/(L+p))t =1,2,....,m | corrlyi, yie+1] = o1
= 1+ for I=1
EQC yi =p*y1+dp, t=2,3,....m Elyi] = wi
yin ~ Poi(u;) vary;] = ;i

diy ~Poi(ui(1—=p)), t=2,3,....m |corlyy, i1l = pr =p

The stationary lag-correlations are estimated by the method of moments introduced
by Sutradhar and Kovacevic (2000) and given by

p="—" : (©)

where [ = |r—17|, t Z ¢, t,/ = 1,...,m and y; is the standardized residual,
defined as ; = {yi — pir}/{a" (0;)}"/>. The stationary lag correlation approach
produces consistent as well as more efficient regression estimates as compared to
the independence assumption-based estimating equation approaches (Sutradhar and
Das 1999). We conducted a small simulation study to illustrate the comparison of
GEEs with GQL under a mis-specified correlation structure. A class of stationary
correlation AR(1) model for longitudinal count data are generated as per the
dynamic relationship given in Table 1, which are discussed by McKenzie (1988),
and Sutradhar (2011). The stationary covariates X; = (X;,X;2) are generated from
the normal distribution with mean 0, variance 1, and 8 = (0.3,0.2)”. For a given
Yii—1, P * yi,—1 denotes the commonly called binomial thinning operation discussed
by McKenzie (1988). That is, p * y;,—1 = Z]y’z’l_l bj(p) with Pr[b;j(p) = 1] = p,
Pr[b;(p) = 0] = 1—p. For the simulation’s purpose, we consider the number of time
points m = 5, 10 and number of subjects k = 100. We simulated 1000 data sets with
p = 0.49,0.70 from the above AR(1) stationary dynamic model to generate the data.
Under the working exchangeable and MA(1) correlation structure, the correlation
parameter & can be estimated by using Egs. (2.5) and (2.7) from Sutradhar and
Das (1999). The mean of the estimated values of the regression coefficients and the
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Table 2 Coverage probabilities of regression estimates for a true AR(1) correlation
model data under different “working” correlation models (m=15)

True model | Method Parameters
AR(1) GEEs (AR(1)) | B4
p=0.70

B2

GEEs (EQC) | B

B2

GQL Bi

B>

AR(1) GEEs (AR(1)) | B;
p=0.49

B2

GEEs (EQC) | g

B2

GEEs MA(1)) | B4

B2

GQL Bi

B2

Estimates

0.3000
(0.070)
0.2009
(0.073)
0.2997
(0.073)
0.1956
(0.076)
0.3003
(0.070)
0.2007
(0.073)
0.2989
(0.062)
0.1956
(0.062)
0.2992
(0.061)
0.1986
(0.062)
0.2991
(0.062)
0.1985
(0.062)
0.2989
(0.061)
0.1955
(0.061)

Coverage probabilities

95 % level

0.952
(0.279)
0.950
(0.286)
0.911
(0.247)
0.902
(0.252)
0.952
0.278)
0.950
(0.284)
0.938
(0.237)
0.940
(0.243)
0.899
(0.206)
0.908
0.211)
0.897
(0.205)
0.905
(0.210)
0.931
(0.235)
0.936
(0.241)

99 % level
0.987
(0.367)
0.988
(0.375)
0.973
(0.325)
0.963
(0.332)
0.986
(0.366)
0.988
(0.374)
0.988
(0.319)
0.981
(0.319)
0.968
(0.272)
0.980
(0.278)
0.968
(0.270)
0.981
(0.276)
0.990
(0.309)
0.992
(0.317)

239

corresponding simulated standard errors in parentheses are reported in Tables 2 and
3 for different m = 5, 10 respectively. We also report the coverage probabilities
as well as the width of the confidence interval for 8 and B, in parentheses for
confidence levels 0.95 and 0.99. In this study, we generated the data using the AR(1)
correlation structure even though we used all three working correlation structures:
AR(1), EQC, and MA(1) for parameter estimation under GEEs and the results are

compared with the GQL approach.

We see from Tables 2 and 3 that when we use the true working correlation
structure, coverage probabilities based on the GEEs and GQL approaches are
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Table 3 Coverage probabilities of regression estimates for a true AR(1) correlation
model data under different “working” correlation models (m = 10)

True model | Method Parameters
AR(1) GEEs (AR(1)) | B4
p=0.70

B2

GEEs (EQC) | B

B2

GQL Bi

B>

AR(1) GEEs (AR(1)) | B;
p=0.49

B2

GEEs (EQC) | g

B2

GEEs MA(1)) | B4

B2

GQL Bi

B2

Estimates

0.2961
(0.057)
0.1978
(0.059)
0.3020
(0.059)
0.1993
(0.062)
0.2960
(0.056)
0.1977
(0.057)
0.2977
(0.047)
0.1994
(0.048)
0.2985
(0.046)
0.1975
(0.050)
0.3011
(0.047)
0.1985
(0.048)
0.2981
(0.044)
0.2000
(0.046)

Coverage probabilities

95 % level

0.956
(0.228)
0.951
(0.232)
0.811
(0.159)
0.802
(0.163)
0.955
(0.226)
0.944
(0.231)
0.945
(0.181)
0.937
(0.185)
0.848
(0.135)
0.826
(0.138)
0.842
(0.134)
0.847
(0.137)
0.954
(0.178)
0.949
(0.182)

99 % level
0.992
(0.299)
0.988
(0.306)
0.922
(0.209)
0.919
(0.214)
0.991
(0.231)
0.986
(0.303)
0.990
(0.238)
0.987
(0.243)
0.952
(0.178)
0.930
(0.181)
0.945
0.177)
0.943
(0.180)
0.990
(0.233)
0.988
(0.239)

almost the same. However, under an arbitrary working correlation structure, the
GQL approach performs better than the GEEs approach. This result shows a loss
of efficiency of the GEEs estimators due to mis-specification of the correlation
structures. We also notice that when m increases GQL has better coverage compared
to GEEs based confidence interval. Rather than using any arbitrary “working
correlation”, it seems much better to define a lag-correlation structure for the
longitudinal responses to estimate the parameters. The correlation structure (5) is
quite robust, and it accommodates all three correlation structures: AR(1), EQC, and
MA(1). Note, however, that the correlation structure is unknown in practice and it
makes more sense to use a stationary lag-correlation structure to represent all the
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three correlation structures in a unique way. We did not consider other cases, for
instance in a true EQC and MA(1) correlation models, since under different working
correlation structure the correlation parameter & does not exist.

3 Penalized Generalized Quasi-Likelihood (PGQL)

We use the GQL approach discussed in Sect. 2 and the SCAD penalty function (Fan
and Li 2001), to develop the penalized generalized quasi-likelihood for variable
selection in the context of a longitudinal data analysis. The regression parameters
are estimated by solving the penalized generalized estimating functions

% (B) = g(B. p(B)) — kps(|B])sign(B) @

where g(B.5(B) = iy XIA;2CI N (p)A; (v — ) = 0 be the GQL
estimating equation given in (4), p{(x) is the first derivative of penalty function,
sign(B) = (sign(By), ..., sign(B,))’ with sign(r) = I(t > 0) — I(r < 0), and § is
the tuning parameter. Different penalty functions can be potentially adopted in this
modeling. The HARD thresholding penalty proposed by Fan (1997) and Antoniadis
(1997) is defined as ps (|6]) = 8> — (18] — 8)*1(|0| < §). For alarge value of |6|, the
HARD thresholding penalty does not overpenalize. The LASSO penalty function is
the L;-penalty, ps(|60]|) = §|0|, proposed by Donoho and Johnstone (1994) in the
wavelet setting and extended by Tibshirani (1996) to general likelihood settings.
The penalty function used in ridge regression is the L, penalty, ps(|0|) = 8|6/>.
According to Fan and Li (2001), a good penalty function should result in an
estimator with the following three oracle properties:

1. Unbiasedness: To avoid unnecessary modeling bias, the estimator is nearly
unbiased when the true unknown parameter is large.

2. Sparsity: This is a thresholding rule that automatically sets small estimated
coefficients to zero to reduce the model complexity.

3. Continuity: This property eliminates unnecessary variation in the model predic-
tion.

However, the penalty functions L, L,, and HARD do not satisfy all three oracle
properties. A simple penalty function satisfying all three is the SCAD penalty
proposed by Fan (1997) where the first derivative is

Py(0) =8 1(6 < 8) + %1(9 > §)t for somea>2and 6 > 0. (8)
a_

Necessary conditions for the unbiasedness, sparsity, and continuity of the SCAD
penalty have been given by Antoniadis and Fan (2001). This penalty function
involves two unknown parameters, a and §. As shown in Fig. 1, all the penalty
functions are singular at the origin, satisfying ps(0+) > 0. This is the necessary
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Fig. 1 L,, SCAD, and L, penalties (p=1,2, 0.3)
HARD penalty functions and -
their quadratic approximation

o B
— .

P(B)

HARD and SCAD penalties

P(B)

-10 -5 0 5 10

condition for sparsity in variable selection. As shown in Fig. 1, the HARD and
SCAD penalties are constant when S is large, indicating that there is no excessive
penalization for large regression coefficients. However, SCAD is smoother than
HARD and hence yields a continuous estimator.
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By following Fan and Li (2001), we solve (7) to carry out estimation and variable
selection snnultaneously and arrive the penalized GQL estimates of the regression
parameters, /3 pGor, Which has properties similar to ,8 PGEEs-

3.1 Numerical Algorithm

To implement our method, we need an efficient numerical algorithm. The SCAD
penalty function involves two unknown parameters, § and a. From a Bayesian point
of view, Fan and Li (2001) suggested setting a = 3.7 and using generalized cross-
validation (GCV; Craven and Wahba 1979) to select the best value of §, which is
implemented in our simulation studies. We maximize the PGQL with respect to
given in (7). We used the modified Newton-Raphson algorithm proposed by Fan and
Li (2001), which is numerically stable. At each iteration, we compute the stationary
lag-correlation structure C*(p) given in (5) for an updated value of . A step-by-step
numerical algorithm for estimating ,é pcor for a given value of the tuning parameter
d is given below.

(a) Set B = B% and e = le — 08.
(b) Let C*(p) be the estimated value of C*(p).

(c) The parameter Bpgor, is computed iteratively and the solution at the (2 + 1)th
iteration is given by

’3(;1_;,_1) — 3(/1) 4 {H(léh) + kSg(ﬁh)}_l {U(Bh) _kSS(,éh),gh} (9)
where

k
H(B") = " XTAZ7 (P)AX;. Z;is defined in (4),

(181D pguﬁ,’:n]'

1811 1B
(d) If min ‘ ity — B (")’ < € stop the algorithm and report B*+); otherwise, h =
h + 1 and go to Step 3.

i=1
Ss(B") = diag [

4 Performance Analysis

4.1 Stationary Count Data

A class of stationary correlation models for longitudinal count data are considered
for our simulation studies, which are given in Table 1. For the purpose of the
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simulation, we consider five covariates Xi = (Xj,...,X;), assumed to have
distributions as X;; ~ Bernoulli(0.5), X» to X;5 from the standard normal with
cor(x;, x;) = 0.5/ and B = (0.5,0.5,0.6,0,0)7. The performance analysis is
carried out based on two measures, viz (a) the median of the relative model error
(MRME) and (b) the average number of correct zero and non-zero coefficients.
The estimated values of the nonzero coefficients and the corresponding simulated
standard errors are also reported. The model error (ME) is defined as ME(;@) =

A2
E, {M(X,B) - ,u(Xﬂ)} , where 1(XB) = E(y|X) and computed the relative model

error as RME = ME/MEy,; where MEg,, is the model error calculated by fitting
the data with the full model and ME is the model error of the selected model. For
the purpose of this simulation, we consider the number of time points m = 5, 10 and
number of subjects k = 100. The entire simulation study was repeated 1000 times
for all the three true models and a summary of the performance measures is given
in Tables 4 and 5. From Tables 4 and 5 we see that, when we use the true working
correlation structure, the MRME of PGEEs is very close to the MRME arrived based
on PGQL. The average number of zero coefficients for PGEEs and PGQL are closer
to the target of two and the nonzero regression parameter estimates are close to the
true values in all cases. This shows, the bias of the non-zero parameter estimates are
approximately zero. However, the proposed PGQL approach has smaller MRME
compared to PGEEs under an arbitrary working correlation structure. Also, we
noticed the average number of zero coefficients for PGQL is closer to the target of
two in all cases but not for PGEEs with a wrong correlation structure. We repeated
the simulation with smaller sample sizes, and the overall conclusions were similar,
so they have not been provided here. These simulations studies clearly shows
that PGQL is performing better compared to PGEEs with mis-specified working
approaches. Note that, in practice, it is very difficult to know the true correlation
structure, so the PGQL approach is preferred for the variable selection as well as
estimation of regression parameters.

4.2 Over-Dispersed Stationary Count Data

In this section, we consider the performance of our method when the model is
misspecified in the context of stationary count data. We generate over-dispersed
stationary count data y;; using ft; = u;exp(X; ) on the models which are discussed in
Table 1 with u; a random sample such that E(x;) = 1 and Var(#;) = . Marginally,
we have E(y;) = f; and Var(y;) = fi;(1 + ft;w). The distribution of u is chosen
to be gamma with parameters (@, 1/) with w being the over-dispersion parameter.
For the purpose of the simulation, we consider five covariates 5(,- = iy, ..o, Xis),
assumed to have distributions as x;; ~ Bernoulli(0.5), X;; to X;; are generated
from a multivariate normal distribution with a mean of zero, and the correlation
between x; and x; is 0.5 7, @ = 0.25, and B8 = (0.5,0.5,0.6,0,0). In each
simulation, we generated m = 5 repeated over-dispersed count data for a sample of
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Table 4 Performance measures for count data with stationary covariates (m=5)

True model
AR(1)
p=0.70

AR(1)
p =0.49

EQC
p=10.70

EQC
p=0.49

MA(1)
p = 0.67

Method
PGEEs(IND)

PGEEs(AR(1))

PGEESs(EQC)

PGQL

PGEEs(AR(1))

PGEEs(MA(1))

PGQL

PGEEs(IND)

PGEEs(EQC)

PGEEs(AR(1))

PGQL

PGEEs(EQC)

PGEEs(MA(1))

PGQL

PGEESs(IND)

PGEEs(MA(1))

PGEEs(AR(1))

PGEEs(EQC)

PGQL

MRME%
86.86

65.60

69.76

66.90

63.60

70.57

67.64

77.95

61.43

63.37

62.61

65.39

75.50

66.40

70.29

63.56

69.39

71.37

65.20

Avg. no. of zero

Incorrect

coefficients
Correct

1.25 0.0
1.85 0.0
1.84 0.0
1.85 0.0
1.80 0.0
1.65 0.0
1.79 0.0
1.23 0.0
1.87 0.0
1.70 0.0
1.87 0.0
1.82 0.0
1.59 0.0
1.82 0.0
1.54 0.0
1.72 0.0
1.78 0.0
1.71 0.0
1.75 0.0

245

Estimates of nonzero

coefficients

Bi

0.5002
(0.068)
0.5029
(0.066)
0.5030
(0.066)
0.5034
(0.066)
0.5003
(0.056)
0.5011
(0.060)
0.5014
(0.059)
0.5059
(0.074)
0.5022
(0.073)
0.5025
(0.074)
0.5026
(0.073)
0.5023
(0.062)
0.4996
(0.065)
0.5017
(0.064)
0.5002
(0.052)
0.5004
(0.052)
0.5018
(0.052)
0.5006
(0.052)
0.5005
(0.051)

B2
0.5023
(0.075)
0.5058
(0.073)
0.5047
(0.073)
0.5052
(0.073)
0.5025
(0.056)
0.5021
(0.061)
0.5029
(0.060)
0.5053
(0.076)
0.5066
(0.076)
0.5066
(0.076)
0.5069
(0.076)
0.5057
(0.065)
0.5022
(0.068)
0.5046
(0.068)
0.5006
(0.054)
0.4993
(0.053)
0.5013
(0.056)
0.5008
(0.056)
0.5004
(0.053)

Bs

0.5909
(0.076)
0.5930
(0.071)
0.5935
(0.072)
0.5930
(0.071)
0.5968
(0.057)
0.5986
(0.062)
0.5973
(0.061)
0.5913
(0.080)
0.5921
(0.074)
0.5914
(0.076)
0.5916
(0.073)
0.5922
(0.064)
0.5980
(0.073)
0.5938
(0.069)
0.5994
(0.054)
0.5981
(0.052)
0.5963
(0.054)
0.5974
(0.058)
0.5970
(0.053)
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Table 5 Performance measures for count data with stationary covariates (m=10)

True model
AR(1)
p=20.70

AR(1)
p =049

EQC
p=0.70

MA(1)
p=0.67

Method
PGEE:s (IND)

PGEEs (AR(1))

PGEEs (EQC)

PGQL

PGEEs (AR(1))

PGEEs (MA(1))

PGQL

PGEEs (IND)

PGEEs (EQC)

PGEEs (AR(1))

PGQL

PGEES(IND)

PGEEs (EQC)

PGEEs (AR(1))

PGQL

MRME%
84.21

60.96

60.56

60.32

71.54

81.85

77.21

99.04

63.46

69.42

64.15

83.44

71.85

72.39

71.12

Avg. no. of zero

Incorrect

coefficients
Correct

0.93 0.0
1.76 0.0
1.79 0.0
1.76 0.0
1.69 0.0
1.27 0.0
1.67 0.0
0.743 0.0
1.87 0.0
1.67 0.0
1.86 0.0
1.34 0.0
1.56 0.0
1.62 0.0
1.59 0.0

Estimates of nonzero

coefficients

By

0.5007
(0.052)
0.5000
(0.051)
0.5000
(0.052)
0.5003
(0.051)
0.5010
(0.042)
0.5012
(0.042)
0.5010
(0.041)
0.5009
(0.074)
0.5014
(0.072)
0.5026
(0.072)
0.5010
(0.071)
0.5015
(0.034)
0.5008
(0.033)
0.4998
(0.033)
0.5001
(0.032)

B2
0.5017
(0.056)
0.5022
(0.053)
0.5020
(0.055)
0.5005
(0.053)
0.5002
(0.043)
0.4989
(0.044)
0.5013
(0.043)
0.5041
(0.078)
0.5058
(0.073)
0.5032
(0.076)
0.5050
(0.074)
0.4991
(0.037)
0.5010
(0.036)
0.5005
(0.036)
0.5000
(0.035)

B3

0.5963
(0.063)
0.5967
(0.054)
0.5981
(0.055)
0.5988
(0.053)
0.5996
(0.043)
0.6004
(0.046)
0.5980
(0.044)
0.5935
(0.086)
0.5928
(0.075)
0.5943
(0.076)
0.5945
(0.075)
0.6005
(0.038)
0.5976
(0.038)
0.5974
(0.038)
0.5983
(0.037)

size k = 100 individuals with three different correlation structures and arrived the
parameter estimates for each method. The MRME, the average number of zero and
nonzero coefficients, the estimated values of the nonzero regression coefficients and
the corresponding standard errors over 1000 simulated data sets are summarized in
Table 6. When there is an over-dispersion, as we noticed from Table 6, the proposed
PGQL approach has smaller MRME compared to PGEEs but the average number
of zero coefficients for PGEEs and PGQL are close to each other and the nonzero
regression parameter estimates are close to the true values in all cases. This shows,
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Table 6 Performance measures for over-dispersion count data with stationary covariates (m=>5)

Avg. no. of zero Estimates of nonzero
coefficients coefficients

True model | Method MRME% | Correct | Incorrect 3 1 ,32 33
AR(1) PGEEs(IND) 95.62 0.89 0.0 0.5009 | 0.5077 | 0.5897
o =0.50 (0.089) | (0.106) |(0.118)
PGEEs(AR(1)) | 73.07 1.47 0.0 0.5018 | 0.5121 | 0.5864
(0.088) |(0.102) |(0.108)
PGQL 69.04 1.52 0.0 0.5037 | 0.5110 | 0.5874
(0.086) | (0.102) |(0.108)
EQC PGEEs(IND) 95.91 0.86 0.0 0.4991 | 0.5059 | 0.5910
o =0.50 (0.096) | (0.109) |(0.120)
PGEEsS(EQC) 82.80 1.53 0.0 0.5117 | 0.5075 | 0.5832
(0.092) | (0.106) |(0.116)
PGQL 81.79 1.51 0.0 0.5104 | 0.5082 | 0.5850
(0.091) | (0.106) |(0.116)
MA(1) PGEEs(IND) 85.43 0.95 0.0 0.5004 | 0.5029 | 0.5921
o =0.50 (0.086) | (0.098) |(0.114)
PGEEs(MA(1)) | 73.78 1.31 0.0 0.5059 | 0.5071 | 0.5892
(0.086) | (0.099) |(0.111)
PGQL 68.37 1.46 0.0 0.5054 | 0.5058 | 0.5892

(0.086) | (0.097) | (0.106)

the bias of the non-zero parameter estimates are approximately zero. Again, these
simulation studies clearly show that PGQL is performing better compared to PGEEs
with over-dispersion data. Note that, in practice, it is very difficult to know the
true correlation structure; however, it is reasonable to assume that the correlation
structure remains the same for all individuals.

S Health Care Utilization Data Study

We applied our proposed methodology to a real life data-set on the health care
utilization problem, studied by Sutradhar (2003). This data-set was collected by
the General Hospital of St. Johns, Newfoundland, Canada. These longitudinal
count data contain the complete records for k = 144 individuals for 4 years
(m = 4) from 1985 to 1988. The number of visits to a physician by each
individual during a given year was recorded as the response, and this was repeated
for 4 years. Also, the information on four covariates: gender, number of chronic
conditions, education level, and age were also recorded for each individual. We are
also interested in examining whether there are any interaction effects between the
parametric covariates, so we included some of these interactions in our model. In
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Table 7 Estimates of the regression parameters under PGQL and PGEEs approaches in fitting
health care utilization count data

Penalized estimates

Variable PGEEs (AR(1)) | PGEEs (EQC) | PGEEs (MA(1)) | PGQL
GENDER 0.000 0.000 0.000 0.000
CHRONIC 0.105 0.103 0.104 0.104
EDUCATION —0.492 —0.432 —0.489 —0.443
AGE 0.033 0.032 0.033 0.033
GENDER*CHRONIC 0.143 0.144 0.144 0.143
GENDER*EDUCATION | 0.053 0.000 0.050 0.000
GENDER*AGE —0.009 —0.009 —0.009 —0.009

view of the background information, it is appropriate to assume that the response
variable, marginally, follows the Poisson distribution, and the repeated counts
recorded for 4 years will be longitudinally correlated. We are interested in taking
the longitudinal correlations into account and examining the effects of the above
covariates and their interaction effects on the physician visits. We used PGEEs
under different correlation structure for variable selection and compared the results
with our proposed method, PGQL. A summary of the results is given in Table 7.
From Table 7, we see that all methods identified CHRONIC, EDUCATION, AGE,
GENDER*CHRONIC, and GENDER*AGE are the significant variables and the
covariate GENDER as unimportant. Under PGEEs method with AR(1) & MA(1)
working correlation structure, results indicates that GENDER*EDUCATION also
significant where as it is not significant for other two methods. Parameter estimates
and identified variables are almost similar for PGEEs (EQC) and PGQL. This clearly
indicate that PGEEs based variable selection procedure is sensitive to the choice of
covariance structure, leading to different results for different covariance structures.
Since in practical situations the true correlation structure is often unknown, the
PGQL approach is more appropriate since it can accommodate all three correlation
structures in a unique way.

6 Concluding Remarks

We propose a penalized GQL approach for variable selection in longitudinal data
analysis where both estimation and variable selection are carried out simultaneously.
We used SCAD penalty to achieve oracle properties. Our performance analysis
shows that the PGQL approach produces consistent as well as more efficient
regression estimates as compared to the independence assumption-based PGEEs
approach. The proposed PGQL approach assumes a known longitudinal lag-
correlation structure with unknown correlation parameters. When the correlation
structure is known the PGQL method has similar performance compared to the
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PGEEs approach. However, when the model is mis-specified such as variance
function and correlation structure our proposed PGQL approach outperforms the
PGEEs method. The main advantage of this PGQL approach is that there is unique
way to specify the correlation structure compared to the PGEEs method.
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