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Abstract Unlike the estimation for the parameters in a linear longitudinal mixed
model with independent t errors, the estimation of parameters of a generalized linear
longitudinal mixed model (GLLMM) for discrete such as count and binary data with
independent t random effects involved in the linear predictor of the model, may be
challenging. The main difficulty arises in the estimation of the degrees of freedom
parameter of the t distribution of the random effects involved in such models for
discrete data. This is because, when the random effects follow a heavy tailed t-
distribution, one can no longer compute the basic properties analytically, because of
the fact that moment generating function of the t random variable is unknown or can
not be computed, even though characteristic function exists and can be computed. In
this paper, we develop a simulations based numerical approach to resolve this issue.
The parameters involved in the numerically computed unconditional mean, variance
and correlations are estimated by using the well known generalized quasi-likelihood
(GQL) and method of moments approach. It is demonstrated that the marginal
GQL estimator for the regression effects asymptotically follow a multivariate
Gaussian distribution. The asymptotic properties of the estimators for the rest of
the parameters are also indicated.
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1 Introduction

Let .yi1; : : : ; yit; : : : ; yiT/ denote the T repeated count or binary responses for the ith
subject, i D 1; : : : ;K. Also, let xit be the p � 1 vector of covariates corresponding to
yit, and ˇ is the p � 1 regression effects of xit on yit. Next suppose that in addition
to xit, the repeated responses of the ith individual are also influenced by one random
effect ��

i . Conditional on this random effect ��
i , some authors have modeled the

longitudinal correlations of the repeated counts and binary data by using lag 1
dynamic relationships. More specifically, Sutradhar and Bari (2007) have used an
AR(1) (auto-regressive order 1) type dynamic relationship to model the longitudinal
correlations for repeated count data. Similarly, Sutradhar et al. (2008) [see also
Amemiya (1985, p. 353), Manski (1987), and Honore and Kyriazidou (2000, p. 84)]
have used a lag 1 dynamic binary mixed logit (BDML) model to accommodate the
correlations of the repeated binary data. The unconditional correlation structures
in both of these papers have been computed under the normality assumption for

the random effects, specifically correlations are obtained by assuming that ��
i

iid�
N.0; �2� /. For convenience, we provide these correlation structures in brief for count
and binary data as follows.

1.1 Conditional and Unconditional (Normality Based)
Correlation Structures for Repeated Count Data

Suppose that

yi1j��
i � Poi.��

i1/ with ��
i1 D exp.x0

i1ˇ C ��
i /

yitj��
i D � ı Œyi;t�1j��

i �C Œditj��
i �; for t D 2; : : : ;T; (1)

where Poi.��
it/ refers to the Poisson distribution with mean parameter ��

it , and � ı
yi;t�1 D Pyi;t�1

sD1 bs.�/ with PrŒbs.�/ D 1� D �; PrŒbs.�/ D 0� D 1 � �, and
Œditj��

i � � Poi.��
it � ���

i;t�1/; with ��
it D exp.x0

itˇ C ���
�
i /. This model in (1) is

referred to as the Poisson AR(1) model which produces the correlation between yiu

and yit as

corr.Yiu;Yitj��
i / D �jt�uj

�
��

iu

��
it

� 1
2

; (2)

which is free from ��
i , but depends on the time dependent covariates and on �, a

correlation index parameter.
Note that the likelihood inference for the AR(1) model (1) is extremely compli-

cated. This is because under this model, one writes

f ..yi1; : : : ; yit; : : : ; yiT/j��
i / D f .yi1j��

i /˘
T
tD2Œfitjt�1.yitjyi;t�1; ��

i /� (3)
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where the conditional distribution, namely fitjt�1.yitjyi;t�1; ��
i / has a complicated

form given by

fitjt�1.yitjyi;t�1; ��
i / D expŒ�.��

it � ���
i;t�1/�

�
min.yit ;yi;t�1/X

sitD0

yi;t�1Š�sit.1 � �/yit�sit.��
it � ���

i;t�1/yit�sit

sitŠ.yi;t�1 � sit/Š.yit � sit/Š
(4)

(Freeland and McCabe 2004). Furthermore, the integration of the conditional
likelihood function (3) over the Gaussian distribution of the random effects, i.e.,

��
i

iid� N.0; �2� /, is an additional complex problem. As opposed to the generalized
linear longitudinal mixed model (GLLMM) setup, Over the last two decades many
researchers, for example, Breslow and Clayton (1993), Lee and Nelder (1996),
Jiang (1998), Sutradhar (2004), among others have used the normality assumption
for the random effects in a generalized linear mixed model (GLMM) setup, and
discussed the estimation of ˇ and �2� . In the present GLLMM setup (1)–(2), there is
an additional correlation index parameter � to estimate.

When the normality assumption for the random effect ��
i is used in the count

panel data setup, the mean, variance and correlations of the repeated counts contain
three unknown parameters, namely ˇ; �2� ; and �. To be specific, by using the

moment generating function (mgf) of ��
i

iid� N.0; �2� /, that is, E��

i
.exp.a��

i // D
expŒ 1

2
a2�2� �, a being an auxiliary parameter, one obtains the three basic properties

of the count panel data as follows (see Sutradhar 2011, Sect. 8.1.1):

�it D EŒYit� D E��

i
EŒYitj��

i � D exp.x0
itˇ/E��

i
.exp.��

i // D expŒx0
itˇ C 1

2
�2� � (5)

�itt D varŒYit� D E��

i
varŒYitj��

i �C var��

i
EŒYitj��

i � D E��

i
��

it C var��

i
.��

it/

D exp.x0
itˇ/E��

i
exp.��

i /C exp.2x
0

itˇ/var��

i
.exp.��

i //

D �it C exp.2x
0

itˇ/Œexp.2�2� / � exp.�2� /�

D �it C Œexp.�2� / � 1��2it (6)

and for u < t, the unconditional covariance between yiu and yit, is given by

�iut D covŒYiu;Yit� D E��

i
Œcovf.Yiu;Yit/j��

i g�C cov��

i
Œ��

iu; �
�
it �

D �t�u exp.x0
iuˇ/E��

i
Œexp.��

i /�C exp.Œxiu C xit�
0ˇ/var��

i
fexp.��

i /g
D �t�u�iu C Œexp.�2� / � 1��iu�it; (7)
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yielding the lag t � u correlation

corr.Yiu;Yit/ D �t�u�iu C Œexp.�2� / � 1��iu�it

Œf�iu C Œexp.�2� / � 1��2iugf�it C Œexp.�2� / � 1��2itg�
1
2

: (8)

Notice that the unconditional mean (5) and the unconditional variance (6) are func-
tions in ˇ and �2� , whereas the unconditional covariances (7) and correlations (8)
are functions in ˇ; �2� , as well as the dynamic dependence or correlation index
parameter �. Remark that Sutradhar and Bari (2007), among others, have exploited
the aforementioned moments (5)–(8) to develop a four-moments based generalized
quasi-likelihood (GQL) approach for the estimation of these parameters ˇ; �2� ,
and �.

1.2 Conditional and Unconditional (Normality Based)
Correlation Structures for Repeated Binary Data

As indicated earlier, over the last three decades, many econometricians such as
Heckman (1981), Amemiya (1985, p. 353), Manski (1987), and Honore and
Kyriazidou (2000, p. 844) have made attempts to accommodate the dynamic nature
of the repeated binary responses by using a binary dynamic mixed logit (BDML)
model given by

Pr.yit D 1j�i; yi;t�1/ D

8
<̂

:̂

exp.x
0

i1ˇC�� �i/

1Cexp.x
0

i1ˇC�� � i/
for t D 1

exp.x0

itˇC�yi;t�1C�� �i/

1Cexp.x0

itˇC�yi;t�1C�� �i/
for t D 2; : : : ;T;

(9)

where ˇ is the effect of the covariates similar to the Poisson model, � is referred

to as the dynamic dependence parameter, and �i D Œ��
i =�� �

iid� .0; 1/. Note that the
distribution of �i is unknown. Also note that even if it is assumed that �i follows the

Gaussian distribution, that is, �i
iid� N.0; 1/, obtaining the likelihood estimates for

ˇ; � , and �2� is complicated. Honore and Kyriazidou (2000, p. 844) attempted to
avoid the estimation difficulty by estimating the ˇ and � parameters based on the
transformed observations, such as the first differences of the responses yi1�yi0; yi2�
yi1; : : :, which are approximately independent of �i. They have used an approximate
weighted log likelihood estimation approach, which however puts some impractical
restrictions on covariates such as assuming xi3 D xi4, for the T D 4 case.



Longitudinal Mixed Models with t Random Effects for Repeated Count: : : 45

Remark that recently Bartolucci and Nigro (2010, Eq. (5), Sect. 3) have con-
structed a random effects free conditional likelihood for a binary model which is
different from (9). More specifically, they exploited the conditional approach for a
quadratic exponential type model (Cox 1972; Zhao and Prentice 1990) given by

Pr.yi1 : : : ; yiT j��

i ; xi1 : : : ; xiT / D ��1
i expŒy

0

i 	i C �g0

i .yi/1T.T�1/=2 C ci.yi/C �iy
0

i1T �

(10)

where yi D Œyi1; : : : ; yiT �
0

; gi.yi/ D Œyi1yi2; : : : ; yiT�1yiT �
0

; and 	i D Œ	i1; : : : ; 	iT �
0

,
with 	it D x0

itˇ. In (10), 1n, for example, is an n-dimensional unit vector, �i is a
normalizing constant defined as

�i D
X

expŒy
0

i	i C �g0
i.yi/1T.T�1/=2 C ci.yi/C �iy

0

i1T �;

with summation overall 2T possible values of yi. Also in (10), ci.yi/ is referred to as
a shape function that can be expressed as a linear combination of products of three
or more of the elements of yi. By ignoring ci.yi/, i.e., ci.yi/ D 0, it can be shown

that for a given total score
TP

tD1
yit D yiC, the conditional distribution of yi1; : : : ; yiT

may be written as

Pr.yi1; : : : ; yiT jyiC; ��
i ; xi1; : : : ; xiT/ D ��

i
�1 exp

"

y
0

i	i C �

TX

tD2
yi;t�1yit

#

(11)

where ��
i D �i evaluated at

TP

tD1
yit D yiC, i.e., yiT D yiC �

T�1P
tD1

yit. Because the

conditional distribution in (11) is free from �i, Bartolucci and Nigro (2010) used
this conditional distribution to estimate the main parameters ˇ and � .

We now turn back to the desired binary dynamic mixed model (9). It is clear
that even if one is interested to estimate ˇ and � , neither the aforementioned
weighted likelihood approach of Honore and Kyriazidou (2000), nor the conditional
likelihood approach of Bartolucci and Nigro (2010) can be used to remove the
random effects from dynamic mixed model (9) for easier estimation of ˇ and � .
Moreover, for binary panel data analysis following (9), one, in fact, is interested to
understand the mean and variance of the data, which, however, can not be computed
by removing the random effects �i from the model. In stead, the computation of the
moments require averaging over certain functions in �i over its distribution. Thus,
rather than making any attempt to remove �i from (9), many authors such as Breslow
and Clayton (1993), Lee and Nelder (1996), Jiang (1998), and Sutradhar (2004) have

studied the inferences for the model (9) under the assumption that ��
i

iid� N.0; �2� /.
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Under this normality assumption, one may obtain the conditional and uncondi-
tional means, variance and covariances as follows (see Sutradhar 2011, Sect. 9.2.1).
First, conditional on �i, the means of the repeated binary responses under model (9)
are given by


�
it .�i/ D EŒYitj�i� D

8
<

:

exp.x0

i1ˇC�� �i/

1Cexp.x0

i1ˇC�� �i/
; for i D 1; : : : ;KI t D 1

pit0 C 
�
i;t�1.pit1 � pit0/; for i D 1; : : : ; kI t D 2; : : : ;T

(12)

where

pit1 D exp.x0
itˇ C � C ���i/

Œ1C exp.x0
itˇ C � C ���i/�

and pit0 D exp.x0
itˇ C ���i/

Œ1C exp.x0
itˇ C ���i/�

:

Subsequently, one obtains the unconditional means as

�it D E.Yit/ D Pr.yit D 1/

D M�1
MX

wD1

�

it .�iw/

D M�1
MX

wD1
Œpit0 C 
�

i;t�1.pit1 � pit0/�j�iD�iw (13)

(Jiang 1998; Sutradhar 2004) where �iw is the wth .w D 1; : : : ;M/ realized value
of �i generated from the standard normal distribution. Here M is a sufficiently large
number, such as M D 5000. By (12), the pit1;w involved in (13), for example, is
written as

pit1;w D exp.x0
itˇ C � C ���iw/

Œ1C exp.x0
itˇ C � C ���iw/�

:

Next, conditional on �i, for u < t, the second-order expectation may be written as

E.YiuYitj�i/ D ��
iut.�i/ D cov.Yiu;Yitj�i/C 
iu
it D ��

iut C 
�
iu


�
it ; (14)

where the conditional covariance between yiu and yit, conditional on �i, has the
formula

��
iut D cov.Yiu;Yitj�i/ D 
�

iu.�i/.1 � 
�
iu.�i//˘

t
jDuC1.pij1 � pij0/: (15)
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It then follows that the unconditional second-order raw moments have the formula

�iut D E.YiuYit/ D M�1
MX

wD1

�

�

iu.�iw/.1 � 
�
iu.�iw//

� ˘ t
jDuC1.pij1;w � pij0;w/C 
�

iu.�iw/

�
it .�iw/

�
; (16)

yielding the unconditional covariance as

�iut D �iut � �iu�it; (17)

with �it is the unconditional mean given by (13).

1.3 Plan of the Paper Under the Proposed t Random Effects
with Unknown Degrees of Freedom �

In this paper, as opposed to the Gaussian distribution, we consider a wider class of
t distributions for the random effects f��

i g, with mean 0, a scale parameter �2� , and

shape or degrees of freedom parameter 
, i.e, ��
i

iid� t
.0; �2� ; 
/, with its probability
density given by

f .��
i / D 


1
2 � 
C1

2

� 

2

.�2� /
�1
2

"


 C ��
i
2

�2�

#� 
C1
2

: (18)

This t distribution exhibits heavy symmetric tails when 
 is small, and it reduces
to the normal distribution N.0; �2� / for 
 ! 1. Note, however, that one can not
compute the mgf, that is, E��

i
.exp.a��

i // under this t distribution (18). As a remedy,
the moments of this t distribution (18) are computed either from the characteristic
function (cf) (Sutradhar 1986) or by direct integrations over the distribution. For

 > 4, the first four moments, for example, are given by

E.��
i / D 0; var.��

i / D 



 � 2�
2
� D �2�

E.��
i
3
/ D 0; E.��

i
4
/ D 3�4�


2

.
 � 2/.
 � 4/ D 3�4� Œ

 � 2

 � 4 �: (19)

But, it follows from (5)–(8) that in the present longitudinal mixed model setup

for count data with ��
i

iid� t
.0; �2� ; 
/, one requires the result for the mgf
E��

i
.exp.a��

i //, which however can not be computed analytically under the t

distribution (18). A similar but different problem arises in the longitudinal mixed
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model setup for binary data, where for (13)–(15), one needs to generate random
effect values �iw from standard t distribution t.0; 1; 
/ with 
 degrees of freedom
which is however unknown in practice.

As a remedy, in this paper, we offer a simulation-based numerical approach to
compute the mgf, and develop a GQL estimation approach for the estimation of
all parameters of the models including the degrees of freedom parameter 
 > 4.
More specifically, in Sects. 2 and 3, we discuss the Poisson mixed model with t

random effects and the desired inferences. The binary model and the inferences
with t
 random effects are provided in Sects. 4 and 5. Some concluding remarks are
given in Sect. 6.

2 Poisson Mixed Model with t� Random Effects

2.1 Basic Properties of the Poisson Mixed Model:
Unconditional Mean and Variance

In the present setup, ��
i

iid� t
.0; �2� ; 
/. Now because, similar to (5)–(6), the
unconditional mean and variance have the formulas

�it D EŒYit� D E��

i
EŒYitj��

i � D E��

i
��

it D exp.x0

itˇ/E��

i

˚
exp.��

i /
�

(20)

�itt D varŒYit� D E��

i
varŒYitj��

i �C var��

i
EŒYitj��

i � (21)

D exp.x0

itˇ/E��

i

˚
exp.��

i /
�C exp.2x

0

itˇ/

�

E��

i

˚
exp.2��

i /
� �

h
E��

i

˚
exp.��

i /
�i2
�

;

they could be evaluated numerically by simulating �iw; w D 1; : : : ;W, for a large

W such as W D 5000, from �iw
iid� t
.0; 1; 
/, and using

E��

i

˚
exp.a��

i /
� D E�i

˚
exp.a���i/

� � 1

W

WX

wD1

�
exp.a���iw/

�
; (22)

in (20)–(21) for a D 1; 2, provided 
 were known. Note that for known 
, this
simulated approximation in (22) is quite similar to the simulation approximation
used by Sutradhar (2008, Sect. 3) [see also Sutradhar et al. (2008, Eq. (2.6))] for
the binary case with random effects generated from N.0; 1/ distribution. However,
because in the present case, 
 is unknown and requires to be estimated, we resolve
this simulation issue by generating �iw; w D 1; : : : ;W first from a reference
t4.0; 1; 4/ distribution (equivalent to standard normal reference distribution) and
using the transformation from following Lemma 2.3 so that these �iw, w D 1; : : : ;W
subsequently follow the t
.0; 1; 
/ distribution as desired. Lemmas 2.1 and 2.2
below are needed to write the Lemma 2.3.
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Lemma 2.1. Suppose that �
i � Np.0; �

2
� /. Next, suppose that 	�

i
2 a scalar random

variable which follows the well known �2
 distribution with 
 degrees of freedom,

that is, 	�
i
2 � �2
 , and  �

i and 	�
i
2 are independent. Then, for  i D  �

i
��

, the ratio

variable ��
i defined as

��
i D �� i=Œ

p
.	�

i
2
=
/� D ���i (23)

has the t
.0; �2� ; 
/ distribution given by (18).

However, even though  i in (23) is a parameter free normal variable, an
observation ��

iw following the t-distribution (18) for ��
i (20)–(22), can not be drawn

yet, because the distribution of 	�
i
2 is parameter 
 dependent. Because 
 > 4 in (18),

to resolve this issue, we suggest to use a t-distribution with 4 degrees of freedom as
a reference distribution. Suppose that 	2i is generated from this �24 distribution. One
may then generate a 	�

i
2 from �2
 approximately for any 
 > 4, by using the relation

between 	2i and 	�
i
2 as in Lemma 2.2 below.

Lemma 2.2. If 	2i is generated from the �24 distribution, one may then generate 	�
i
2

by using the relationship

	�
i
2 D p

2


�
	2i � 4p

8

�

C 
 D 1

2

p


�
	2i � 4�C 
; (24)

which has the same first two moments as that of �2
 .

One may then generate an observation from a t
 distribution as in Lemma 2.3.

Lemma 2.3. For w D 1; : : : ;W, with W D 5000 .say/, the w-th observation ��
iw

from the t
 distribution may be generated by applying Lemma 2.2 to Lemma 2.1.
That is,

��
iw D ��f2
g 12  iw

�p


�
	2iw � 4�C 2


� 1
2

D ���iw; (25)

where  iw and 	2iw are observations from the standard normal N.0; 1/ and �24
distributions, respectively.

Consequently, by applying (25) under Lemma 2.3, to (22) and (20), one computes
the unconditional mean as

�it.ˇ; �� ; 
/ D EŒYit� D exp.x0
itˇ/E��

i

˚
exp.��

i /
�

D exp.x0
itˇ/E��

i

˚
exp.���i/

�
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D exp.x0
itˇ/

1

W

WX

wD1

˚
exp.���iw/

�

D 1

W
exp.x0

itˇ/

WX

wD1
exp

2

4
�� iw

n
1

2
p
.
/
.	2iw � 4/C 1

o

3

5

D 1

W
exp.x0

itˇ/

WX

wD1
exp

˚
R. iw; 	

2
iwI�� ; 
/

�
; (26)

where for w D 1; : : : ;W,  iw are generated from standard normal N.0; 1/ distri-
bution, and 	2iw are generated from �24 distributions. Furthermore,  iw and 	2iw are
independent.

In order to compute the unconditional variance, use ��
it D E��

i

�
exp.x0

itˇ C ��
i /
�

from (20), and first compute �i;tt D EŒY2it � as follows:

�i;tt.ˇ; �� ; 
/ D EŒY2it � D E��

i

h
��

it C ��
it
2
i

D 1

W

WX

wD1

�
expŒx0

itˇ C ˚
R. iw; 	

2
iwI�� ; 
/

�
�

C expŒ2x0
itˇ C ˚

2R. iw; 	
2
iwI�� ; 
/

�
�
�
; (27)

where R. iw; 	
2
iwI�� ; 
/ is defined in (26). Hence, the unconditional variance has

the formula

�i;tt.ˇ; �� ; 
/ D �i;tt.ˇ; �� ; 
/ � �2it.ˇ; �� ; 
/: (28)

Note that this variance formula can be obtained from (21) as well. We remark
that unlike for the Poisson-normal mixed model, the mean and variance under the
Poisson-t
 mixed model are functions of the regression effects ˇ, and variance
parameter �� and shape parameter 
 of the random effect distribution.

2.2 Correlation Properties of the Poisson Mixed Model:
Unconditional Covariances

To compute the unconditional covariance between yiu and yit .u < t/, we first
observe from (1)–(2) that their covariance conditional on the random effects ��

i
is not zero. Specifically, by (2), the conditional covariance is given by

covŒ.Yiu;Yit/j��
i � D �t�u��

iu; (29)
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implying that

EŒYiuYitj��
i � D �t�u��

iu C ��
iu�

�
it : (30)

Consequently,

ıi;ut.ˇ; �� ; 
; �/ D EŒYiuYit�

D E��

i
EŒYiuYitj��

i �

D E��

i

�
�t�u��

iu C ��
iu�

�
it

�

D �t�u�iu.ˇ; �� ; 
/C E��

i

�
��

iu�
�
it

�
; (31)

where the unconditional mean �iu.ˇ; �� ; 
/ has the formula similar to that of (26).
Next, by similar computation as in (27), one obtains

ıi;ut.ˇ; �� ; 
; �/ D �t�u�iu.ˇ; �� ; 
/C E��

i

�
expfxiu C xitg0ˇ C 2��

i

�

D �t�u�iu.ˇ; �� ; 
/C exp Œfxiu C xitg0ˇ� 1W
PW

wD1 exp
�
2R. iw; 	

2
iwI�� ; 
/

�
:

(32)

Hence, for u < t, the unconditional covariance between yiu and yit is given by

�i;ut.ˇ; �� ; 
; �/ D ıi;ut.ˇ; �� ; 
; �/ � �iu.ˇ; �� ; 
/�it.ˇ; �� ; 
/; (33)

where ıi;ut.ˇ; �� ; 
; �/ has the formula given by (32) and �it.ˇ; �� ; 
/ is given
by (26).

3 GQL Estimation for the Parameters of the Poisson
Mixed Model

The estimation of the parameters of the model will be done in cycle of iterations. In
Sect. 3.1, we discuss a generalized quasi-likelihood (GQL) (Sutradhar 2003, Sect. 3)
estimation approach for the estimation of the main regression parameter ˇ under the
assumption that other parameters .�; �� ; 
/ are known or their consistent estimates
are available. In subsequent sections, we discuss their consistent estimation.
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3.1 GQL Estimation for the Regression Effects ˇ

For ˇ estimation, we exploit the first order responses, namely yi D Œyi1; : : : ; yit;

: : : ; yiT �
0. Suppose that �i D EŒYi�. This mean vector is given by �i.ˇ; �� ; 
/ D

Œ�i1; : : : ; �it; : : : ; �iT �
0, where, by (26), �it.ˇ; �� ; 
/ has the formula

�it.ˇ; �� ; 
/ D exp.x0
itˇ/

1

W

WX

wD1
exp

˚
R. iw; 	

2
iwI�� ; 
/

� W T � 1:

Next by using the formulas for the variances �i;tt.ˇ; �� ; 
/ from (28), and the
covariances �i;ut.ˇ; �� ; 
; �/ from (33), we construct the T � T covariance matrix as

˙i.ˇ; �� ; 
; �/ D .�i;ut.ˇ; �� ; 
; �// W T � T; for u D tI and u ¤ t:

Note that under the present model �i;tt.�/ does not follow from �i;ut.�/ as a special
case. More specifically, �i;ut.�/’s are constructed for u < t. The GQL estimating
equation for ˇ is then given by

KX

iD1

@�0
i.ˇ; �� ; 
/

@ˇ
˙�1

i .ˇ; �� ; 
; �/
�
yi � �i.ˇ; �� ; 
/

� D 0; (34)

(Sutradhar 2003, 2004) where @�0

i .ˇ;�� ;
/

@ˇ
may be computed by using the formula for

@�it.ˇ;�� ;
/

@ˇ
for all t D 1; : : : ;T . This derivative follows from (26), and is given by

@�it.ˇ; �� ; 
/

@ˇ
D �it.ˇ; �� ; 
/xit:

Consequently, the GQL estimating equation in (34) reduces to

KX

iD1
X0

i Ai˙
�1
i .ˇ; �� ; 
; �/

�
yi � �i.ˇ; �� ; 
/

� D 0; (35)

where X0
i D .xi1; : : : ; xit; : : : ; xiT/ is the p � T covariate matrix for the ith individual,

and

Ai D diagŒ�i1.ˇ; �� ; 
/; : : : ; �it.ˇ; �� ; 
/; : : : ; �iT.ˇ; �� ; 
/� W T � T:
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3.1.1 Asymptotic Properties of the GQL Estimator of ˇ

For true ˇ, define

NfK.ˇ/ D 1

K

KX

iD1
fi.ˇ/ D 1

K

KX

iD1

@�0
i.ˇ; �� ; 
/

@ˇ
˙�1

i .ˇ; �� ; 
; �/
�
yi � �i.ˇ; �� ; 
/

�
;

(36)

where y1; : : : ; yi; : : : ; yK are independent to each other as they are collected from K
independent individuals, but they are not identically distributed because

Yi � .�i.ˇ; �� ; 
/;˙i.ˇ; �� ; 
; �//; (37)

where the mean vectors and covariance matrices vary for the individuals
i D 1; : : : ;K. By (37), it follows from (36) that

EŒNfK.ˇ/� D 0

covŒNfK.ˇ/� D 1

K2

KX

iD1
covŒfi.ˇ/�

D 1

K2

KX

iD1

@�0
i.ˇ; �� ; 
/

@ˇ
˙�1

i .ˇ; �� ; 
; �/
@�i.ˇ; �� ; 
/

@ˇ0

D 1

K2

KX

iD1
Vi.ˇ; �� ; 
; �/ D 1

K2
V�

K.ˇ; �� ; 
; �/: (38)

Next if the multivariate version of Lindeberg’s condition holds, that is,

lim
K!1 V��1

K

KX

iD1

X

.f 0

i V�

�1
K fi/>�

fif
0
i g.fi/ D 0 (39)

for all � > 0, g.�/ being the probability distribution of fi, then Lindeberg-
Feller central limit theorem (Amemiya 1985, Theorem 3.3.6; McDonald 2005,
Theorem 2.2) imply that

ZK D KŒV�
K �

� 1
2 NfK.ˇ/ ! Np.0; Ip/: (40)

Next because Ǒ
GQL is a solution of (34), one writes by (36) that

KX

iD1
fi. Ǒ

GQL/ D 0; (41)



54 R. Prabhakar Rao et al.

which by first order Taylor’s series expansion produces

KX

iD1
fi.ˇ/C . Ǒ

GQL � ˇ/
KX

iD1
f 0
i .ˇ/ D 0: (42)

That is,

Ǒ
GQL � ˇ D �

"
KX

iD1
f 0
i .ˇ/

#�1 KX

iD1
fi.ˇ/

D �
"

�
KX

iD1

@�0
i.ˇ; �� ; 
/

@ˇ
˙�1

i .ˇ; �� ; 
; �/
@�i.ˇ; �� ; 
/

@ˇ0

#�1 KX

iD1
fi.ˇ/

D �
V�

K.ˇ; �� ; 
; �/
��1

K Nf .ˇ/

D �
V�

K.ˇ; �� ; 
; �/
�� 1

2 ZK ! N.0;V��1
K .ˇ; �� ; 
; �//; (43)

by (40). It then follows that

lim
K!1

Ǒ
GQL ! N.ˇ;V��1

K .ˇ; �� ; 
; �//: (44)

Also it follows that

jjŒV�
K.ˇ; �� ; 
; �/�

1
2 Œ Ǒ

GQL � ˇ�jj D Op.
p

p/: (45)

3.2 GQL Estimation for the Scale and Shape Parameters

Notice from Sect. 2.1 that all three basic moment properties, namely the mean
function (26), variances in (28), and the covariances given by (33) contain the scale
parameter �� and the shape parameter 
. Thus, it is sensible to exploit all first and
second order responses to estimate these parameters. Note that the second order
responses consist of both squared (ss) and pair-wise products .pp/ of all repeated
observations. Consequently, we consider a vector gi consisting of all first order and
second order responses. In notation, gi has the form

gi D Œy0
i; y0

iss; y0
ipp�

0 W T.T C 3/

2
� 1; (46)

where yi D Œyi1; : : : ; yit; : : : ; yiT �
0 W T � 1; as in (34), and

yiss D Œy2i1; : : : ; y
2
it; : : : ; y

2
iT �

0 W T � 1; and

yipp D Œyi1yi2; : : : ; yiuyit; : : : ; yi;T�1yiT �
0 W T.T � 1/

2
� 1:
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Let

EŒgi� D Œ�0
i.ˇ; �� ; 
/; �

0
i .ˇ; �� ; 
/; ı

0
i.ˇ; �� ; 
; �/�

0

D �i.ˇ; �� ; 
; �/ (say); (47)

where

�i.ˇ; �� ; 
/ D Œ�i1.ˇ; �� ; 
/; : : : ; �it.ˇ; �� ; 
/; : : : ; �iT.ˇ; �� ; 
/�
0

�i.ˇ; �� ; 
/ D Œ�i;11.ˇ; �� ; 
/; : : : ; �i;tt.ˇ; �� ; 
/; : : : ; �i;TT.ˇ; �� ; 
/�
0

ıi.ˇ; �� ; 
; �/ D Œıi;12.ˇ; �� ; 
; �/; : : : ; ıi;ut.ˇ; �� ; 
; �/; : : : ; ıi;T�1;T.ˇ; �� ; 
; �/�0;

with �it.ˇ; �� ; 
/ and �i;tt.ˇ; �� ; 
/ for all t D 1; : : : ;T , are given by (26) and (27),
respectively, and ıi;ut.ˇ; �� ; 
; �/ for u < t, are defined as in (32). Further, let

˝i.ˇ; �� ; 
; �/ D covŒgi�

D

2

6
4

˙i ˝i;ss ˝i;pp

˝ 0
i;ss ˙i;ss ˝i;sp

˝ 0
i;pp ˝

0
i;sp ˙i;pp

3

7
5 ; (48)

where

˙i D covŒYi�; ˙i;ss D covŒYiss�; ˙i;pp D covŒYipp�

˝i;ss D covŒYi;Y
0
iss�; ˝i;pp D covŒYi;Y

0
ipp�; ˝i;sp D covŒYiss;Y

0
ipp�:

Further, let 
 D Œ�� ; 
�
0 W 2� 1, be a vector of the scale and shape parameters of

the random effects distribution. Similar to (34), for known ˇ and �, one may then
estimate the 
 vector by solving the GQL estimation equation given by

KX

iD1

@�0
i.ˇ; �� ; 
; �/

@

˝�1

i .ˇ; �� ; 
; �/
�
gi � �i.ˇ; �� ; 
; �/

� D 0; (49)

where

@�0
i.ˇ; �� ; 
; �/

@

D
 
@�0

i .ˇ;�� ;
;�/

@��
@�0

i .ˇ;�� ;
;�/

@


!

: (50)

Note that the derivatives in (50) may be computed by using the following general
derivatives with respect to �� and 
:
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@�it

@��
D exp.x0

itˇ/
1

W

WX

wD1

@R. iw; 	
2
iwI�� ; 
/

@��
exp

˚
R. iw; 	

2
iwI�� ; 
/

�
;

@�it

@

D exp.x0

itˇ/
1

W

WX

wD1

@R. iw; 	
2
iwI�� ; 
/
@


exp
˚
R. iw; 	

2
iwI�� ; 
/

�
;

@�i;tt

@��
D 1

W

WX

wD1

@R. iw; 	
2
iwI�� ; 
/

@��

�
expŒx0

itˇ C ˚
R. iw; 	

2
iwI�� ; 
/

�
�

C 2
@R. iw; 	

2
iwI�� ; 
/

@��
expŒ2x0

itˇ C ˚
2R. iw; 	

2
iwI�� ; 
/

�
�

�

;

@�i;tt

@

D 1

W

WX

wD1

@R. iw; 	
2
iwI�� ; 
/
@


�
expŒx0

itˇ C ˚
R. iw; 	

2
iwI�� ; 
/

�
�

C 2
@R. iw; 	

2
iwI�� ; 
/
@


expŒ2x0
itˇ C ˚

2R. iw; 	
2
iwI�� ; 
/

�
�

�

;

@ıi;ut

@��
D �t�u @�iu.ˇ; �� ; 
/

@��
C exp

�fxiu C xitg0ˇ
� 1

W

WX

wD1
2
@R. iw; 	

2
iwI�� ; 
/

@��

� exp
�
2R. iw; 	

2
iwI�� ; 
/

� �
	
@�iu.ˇ; �� ; 
/

@��
�it C �iu

@�it.ˇ; �� ; 
/

@��




@ıi;ut

@

D �t�u @�iu.ˇ; �� ; 
/

@

C exp

�fxiu C xitg0ˇ
� 1

W

WX

wD1
2
@R. iw; 	

2
iwI�� ; 
/
@


� exp
�
2R. iw; 	

2
iwI�� ; 
/

� �
	
@�iu.ˇ; �� ; 
/

@

�it C �iu

@�it.ˇ; �� ; 
/

@





;

where

@R. iw; 	
2
iwI�� ; 
/

@��
D
2

4  iw
n

1

2
p
.
/
.	2iw � 4/C 1

o

3

5

@R. iw; 	
2
iwI�� ; 
/
@


D

2

6
4
�� iw

n
1

4fp
.
/g3 .	

2
iw � 4/

o

n
1

2
p
.
/
.	2iw � 4/C 1

o2

3

7
5 : (51)

The construction of the GQL estimating equation (49) still requires the com-
putational formula for the weight matrix ˝i.ˇ; �� ; 
; �/. Now because this weight
matrix requires the computation of second, third and fourth order moments for the
repeated count data, unlike for the Gaussian data the computation of these moments
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are complicated. Some of the fourth order moments may not be computable without
further joint distributional assumption for these repeated counts. Thus, for simplicity
and because the consistent estimation of the parameters in 
 does not require the
use of exact weight matrix, in the next section, we provide an approximation for the
computation of the elements of the weight matrix˝i.ˇ; �� ; 
; �/ by pretending that
the correlation index is zero, that is, � D 0 in (2). This assumption is equivalent to
say that the repeated counts are assumed to conditionally (conditional on the random
effects) independent (CI).

3.2.1 Computation of ˝i.CI/ � ˝�
i .ˇ; ��; �/

Note that as outlined above, the ˝i.ˇ; �� ; 
; �/ D cov.gi/ matrix in (49) will be
replaced by

cov.gij� D 0/ D ˝�
i .ˇ; �� ; 
/; (52)

which contains moments up to order four under conditionally independence (CI)
assumption. More specifically, we compute the ˝i.�/ matrix in (48), but, under the
assumption that � D 0, that is,

˝�
i .ˇ; �� ; 
/ D covŒgij� D 0�

D

2

6
4

˙�
i ˝�

i;ss ˝�
i;pp

˝�0
i;ss ˙�

i;ss ˝�
i;sp

˝�0
i;pp ˝

�0
i;sp ˙

�
i;pp

3

7
5 ; (53)

where

˙�
i D covŒYij� D 0�; ˙�

i;ss D covŒYissj� D 0�; ˙�
i;pp D covŒYippj� D 0�

˝�
i;ss D covŒ.Yi;Y

0
iss/j� D 0�; ˝�

i;pp D covŒ.Yi;Y
0
ipp/j� D 0�;

˝�
i;sp D covŒ.Yiss;Y

0
ipp/j� D 0�:

(a) Computation of the Second Order Moments Matrix ˙�
i W

Because the variances are not affected by the correlation index parameter, their
formulas remain the same as in (28). However, the covariances under � D 0 will be
different than (33). More specifically the formulas for the variances and covariances
under the assumption � D 0 are given by

varŒYitj�� D ��

i;tt.ˇ; �
2
� ; 
/

D �i;tt.ˇ; �� ; 
/ D �i;tt.ˇ; �� ; 
/ � �2it.ˇ; �� ; 
/; by (28)I (54)
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covŒ.Yiu;Yit/j� D 0� D ��

i;ut.ˇ; �
2
� ; 
/ (55)

D exp
�fxiu C xitg0ˇ

� 1

W

WX

wD1

exp
�
2R. iw; 	

2
iwI�� ; 
/

�

��iu.ˇ; �� ; 
/�it.ˇ; �� ; 
/; by (32)–(33):

(b) Computation of the Third Order Moments Matrix ˝�
i;ss W

To compute this matrix ˝�
i;ss D covŒfYi;Y 0

issgj� D 0�, it is sufficient to compute
the elements (i) covŒfYit;Y2itgj� D 0�, and (ii) covŒfYiu;Y2itgj� D 0�, for u < t.

(i) Formula for covŒfYit;Y2itgj� D 0� W
Notice that this formula does not depend on �, and the conditioning on � D 0

is not needed. Thus

covŒfYit;Y
2
itgj� D 0� D EŒY3it � � EŒYit�EŒY

2
it �

D EŒY3it � � �it.ˇ; �� ; 
/�i;tt.ˇ; �� ; 
/; by (54); (56)

where

EŒY3it � D E��

i

h
��

it C 3��
it
2 C ��

it
3
i

D 1

W

WX

wD1

�
expŒx0

itˇ C ˚
R. iw; 	

2
iwI�� ; 
/

�
�

C 3 expŒ2x0
itˇ C ˚

2R. iw; 	
2
iwI�� ; 
/

�
�

C expŒ3x0
itˇ C ˚

3R. iw; 	
2
iwI�� ; 
/

�
�
�
; (57)

with R. iw; 	
2
iwI�� ; 
/ as defined in (26).

(ii) Formula for covŒfYiu;Y2itgj� D 0�, for u < t W
Because u and t denote two different times points, the covariance between

yiu and y2it is a function of the correlation index parameter �. However, we now
simplify this covariance formula as follows under the assumption that � D 0.

covŒfYiu;Y
2
itgj� D 0� D EŒYiuY2it j� D 0� � EŒYiu�EŒY

2
it � (58)

D EŒYiuY2it j� D 0� � �iu.ˇ; �� ; 
/�i;tt.ˇ; �� ; 
/; by (54);

where, by (30) and (26)–(27), one writes

EŒYiuY2it j� D 0� D E��

i
ŒEfYiuj��

i gEfY2it j��
i g�

D E��

i
Œ��

iuf��
it C ��2

itg� (59)
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D 1
W

PW
wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; 	

2
iwI�� ; 
/

�
�

C expŒfxiu C 2xitg0ˇ C 3
˚
R. iw; 	

2
iwI�� ; 
/

�
�
�
: (60)

(c) Computation of the Third Order Moments Matrix ˝�
i;pp W

To compute this matrix ˝�
i;pp D covŒfYi;Y 0

ippgj� D 0�, it is sufficient to
compute the elements (i) covŒfYiu;YiuYitgj� D 0� for u < t or u > t, and (ii)
covŒfYiu;YitYimgj� D 0�, for u ¤ t; u ¤ m; t < m.

(i) Formula for covŒfYiu;YiuYitgj� D 0� W
By similar calculations as in (59)–(60), we write

covŒfYiu;YiuYitgj� D 0� D E��

i
ŒEfY2iuYitgj��

i � � EŒYiu�EŒfYiuYitgj� D 0�

D E��

i
Œf��

iu C ��
iu
2g��

it � � �iu.ˇ; �� ; 
/E��

i
Œ��

iu�
�
it �

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; 	

2
iwI�� ; 
/

�
�

C expŒf2xiu C xitg0ˇ C 3
˚
R. iw; 	

2
iwI�� ; 
/

�
�

� �iu.ˇ; �� ; 
/ expŒfxiu C xitg0ˇ C 2
˚
R. iw; 	

2
iwI�� ; 
/

�
�
�
: (61)

(ii) Formula for covŒfYiu;YitYimgj� D 0� W
By similar calculations as in (i), we write the formula for this covariance as

covŒfYiu;YitYimgj� D 0�

D 1

W

WX

wD1

�
expŒfxiu C xit C ximg0ˇ C 3

˚
R. iw; 	

2
iwI�� ; 
/

�
�

� �iu.ˇ; �� ; 
/ expŒfxit C ximg0ˇ C 2
˚
R. iw; 	

2
iwI�� ; 
/

�
�
�
: (62)

(d) Computation of the Fourth Order Moments Matrix ˙�
i;ss W

To compute this fourth order matrix, one needs the formulas for two general
elements, namely (i) varŒY2it �, and (ii) covŒfY2iu;Y

2
itgj� D 0�. These formulas are

developed as follows:

(i) Recall from (27) that EŒY2it � D �i;tt.ˇ; �� ; 
/. Next because

EŒY4it j��
i � D

h
��

it C 7��
it
2 C 6��

it
3 C ��

it
4
i
;
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it then follows that

var.Yit/
2 D EŒY4it �� ŒEfY2itg�2

D E��

i
EŒY4it j��

i �� Œ�i;tt.ˇ; �� ; 
/�
2

D 1

W

WX

wD1

�
exp

�
x0

itˇ C ˚
R. iw; 	

2
iwI�� ; 
/��C 7 exp

�
2x0

itˇ C ˚
2R. iw; 	

2
iwI�� ; 
/��

C 6 expŒ3x0

itˇ C ˚
3R. iw; 	

2
iwI�� ; 
/��C expŒ4x0

itˇ C ˚
4R. iw; 	

2
iwI�� ; 
/��� ; (63)

with R. iw; 	
2
iwI�� ; 
/ as defined in (26).

(ii) Formula for covŒfY2iu;Y
2
itgj� D 0�, for u < t W

By similar calculations, this covariance has the computing formula given by

covŒfY2iu;Y
2
itgj� D 0� D EŒfY2iuY2itgj� D 0� � �i;uu.ˇ; �� ; 
/�i;tt.ˇ; �� ; 
/;

(64)
where

EŒfY2iuY2itgj� D 0� D E��

i

h
f��

iu C ��
iu
2gf��

it C ��
it
2g
i

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; 	

2
iwI�� ; 
/

�
�

C exp
�fxiu C 2xitg0ˇ C ˚

3R. iw; 	
2
iwI�� ; 
/

��

C exp
�f2xiu C xitg0ˇ C ˚

3R. iw; 	
2
iwI�� ; 
/

��

C expŒ2fxiu C xitg0ˇ C ˚
4R. iw; 	

2
iwI�� ; 
/

��
: (65)

(e) Computation of the Fourth Order Moments Matrix ˝�
i;sp:

To compute this fourth order matrix, one needs the formulas for two
general covariance elements, namely (i) covŒfY2iu;YiuYitgj� D 0�, and (ii)
covŒfY2iu;YitYimgj� D 0�. These formulas are developed as follows:

(i) Formula for covŒfY2iu;YiuYitgj� D 0� W

covŒfY2iu;YiuYitgj� D 0� D EŒfY3iuYitgj� D 0�

��i;uu.ˇ; �� ; 
/
1

W

WX

wD1

�
expŒfxiu C xitg0ˇ

C2 ˚R. iw; 	
2
iwI�� ; 
/

�
�
�
; by (27) and (32); (66)
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where

EŒfY3iuYitgj� D 0� D E��

i

�
EŒY3iuj��

i �EŒYitj��
i �
�

D E��

i

h
f��

iu C 3��
iu
2 C ��

iu
3gf��

itg
i

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; 	

2
iwI�� ; 
/

�
�

C 3 expŒf2xiu C xitg0ˇ C 3
˚
R. iw; 	

2
iwI�� ; 
/

�
�

C expŒf3xiu C xitg0ˇ C 4
˚
R. iw; 	

2
iwI�� ; 
/

�
�
�
: (67)

(ii) covŒfY2iu;YitYimgj� D 0� W

covŒfY2iu;YitYimgj� D 0� D E��

i

h
f��

iu C ��
iu
2gf��

it�
�
img
i

��i;uu.ˇ; �� ; 
/
1

W

WX

wD1

h
expŒfxit C ximg0ˇ C 2

n
R. iw; 	

2
iwI�� ; 
/

o
�
i
; (68)

where the first term in the right hand side of (68) has the formula

E��

i

h
f��

iu C ��
iu
2gf��

it�
�
img
i

D 1

W

WX

wD1

h
expŒfxiu C xit C ximg0ˇ C 3

n
R. iw; 	

2
iwI�� ; 
/

o
�

C expŒf2xiu C xit C ximg0ˇ C 4
n
R. iw; 	

2
iwI�� ; 
/

o
�
i
: (69)

(f) Computation of the Fourth Order Moments Matrix ˝�
i;pp W

The computation for this matrix requires the formulas for (i) covŒfYiuYit;YiuYitgj
� D 0�, (ii) covŒfYiuYit;YiuYimgj� D 0�, (iii) covŒfYiuYit;YivYitgj� D 0�, and (iv)
covŒfYiuYit;YivYimgj� D 0�. The computations for all these four covariances are
similar. We, for example, give the formulas for covariances in (i) and (iv).

(i) Formula for covŒfYiuYit;YiuYitgj� D 0� W

covŒfYiuYit;YiuYitgj� D 0� D EŒfY2iuY2itgj� D 0�

�
"
1

W

WX

wD1

�
expŒfxit C ximg0ˇ C 2

˚
R. iw; 	

2
iwI�� ; 
/

�
�
�
#2

; (70)

where EŒfY2iuY2itgj� D 0� is computed in (65).
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(iv) Formula for covŒfYiuYit;YivYimgj� D 0� W
covŒfYiuYit;YivYimgj� D 0�

D 1

W

WX

wD1

�
expŒfxiu C xit C xiv C ximg0ˇ C 4

˚
R. iw; 	

2
iwI�� ; 
/

�
�
�

��iu.ˇ; �� ; 
/�it.ˇ; �� ; 
/�iv.ˇ; �� ; 
/�im.ˇ; �� ; 
/: (71)

3.2.2 Asymptotic Properties of the GQL Estimator
O�GQL D Œ O��;GQL; O�GQL�0 W 2 � 1

Notice that when ˝�
i .ˇ; �� ; 
/ from Sect. 3.2.1 is used in (49) for ˝i.ˇ; �� ; 
; �/,

one solves the approximate GQL estimating equation

KX

iD1

@�0
i.ˇ; �� ; 
; �/

@

˝�

i
�1
.ˇ; �� ; 
/

�
gi � �i.ˇ; �� ; 
; �/

� D 0; (72)

for 
 D .�� ; 
/
0.

Let O
GQL D Œ O��;GQL; O
GQL�
0 W 2�1 be the solution of (72). By similar calculations

as in Sect. 3.1.1 (see (44)), it can be shown that

lim
K!1 O
GQL ! N.
;Q��1

K .ˇ; �� ; 
; �//; (73)

where

Q�
K D

"
KX

iD1

@�0
i.ˇ; �� ; 
; �/

@

˝�

i
�1
.ˇ; �� ; 
/

@�i.ˇ; �� ; 
; �/

@
 0

#�1

�
KX

iD1

@�0
i.ˇ; �� ; 
; �/

@

˝�

i
�1
.ˇ; �� ; 
/˝i.ˇ; �� ; 
; �/˝

�
i

�1
.ˇ; �� ; 
/

@�i.ˇ; �� ; 
; �/

@
 0

�
"

KX

iD1

@�0
i.ˇ; �� ; 
; �/

@

˝�

i
�1
.ˇ; �� ; 
/

@�i.ˇ; �� ; 
; �/

@
 0

#�1
: (74)

3.3 Moment Estimation of Correlation Index Parameter �

Recall from (33) that

EŒ.Yiu � �iu.�//.Yit � �it.�//� D �t�u�iu.ˇ; �� ; 
/

C exp
�fxiu C xitg0ˇ

� 1

W

WX

wD1

exp
�
2R. iw; 	

2
iwI�� ; 
/�� �iu.ˇ; �� ; 
/�it.ˇ; �� ; 
/:
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Consequently, by using lag 1 based pair-wise product responses, one obtains

E
KX

iD1

T�1X

tD1

f.Yit � �it.�//.Yi;tC1 � �i;tC1.�//g
K.T � 1/ D �

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

C 1

KW

KX

iD1

WX

wD1
fexp

�
2R. iw; 	

2
iwI�� ; 
/

�gfPT�1
tD1 exp Œfxiu C xitg0ˇ�g

T � 1

�
KX

iD1

T�1X

tD1

�it.�/�i;tC1.�/
K.T � 1/ : (75)

Further, one writes

E
KX

iD1

TX

tD1

f.Yit � �it.�//2g
KT

D
KX

iD1

TX

tD1

�i;tt.�/
KT

; (76)

where the variance �i;tt.�/ has the formula given by (28).
Now by dividing (75) by (76), and using first order approximation, one obtains

the unbiased moment estimator O�M for � as

O�M '
"PK

iD1

PT�1
tD1 f.Yit � �it.�//.Yi;tC1 � �i;tC1.�//g=fK.T � 1/g

PK
iD1

PT
tD1f.Yit � �it.�//2g=fKTg

#

�
"PK

iD1

PT�1
tD1 �it.�/=fK.T � 1/g

PK
iD1

PT
tD1 �i;tt.�/=fKTg

#

�
"
1

KW

KX

iD1

WX

wD1

fexp
�
2R. iw; 	

2
iwI�� ; 
/�g fPT�1

tD1 exp Œfxiu C xitg0ˇ�g
T � 1

#

�
"

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

#

C
"

KX

iD1

T�1X

tD1

�it.�/�i;tC1.�/
K.T � 1/

#

�
"

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

#

: (77)

Under some regularity conditions on the covariates so that varŒ O�M� is bounded by
a finite quantity, it follows that the moment estimator O�M is consistent for �. This is
mainly because O�M given by (77) is approximately unbiased for �.
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4 Binary Dynamic Mixed Logit Model with t� Random
Effects

Recall the binary dynamic mixed logit (BDML) model given in (9), that is,

Pr.yit D 1j�i; yi;t�1/ D

8
<̂

:̂

exp.x
0

i1ˇC�� �i/

1Cexp.x
0

i1ˇC�� � i/
for t D 1

exp.x0

itˇC�yi;t�1C�� �i/

1Cexp.x0

itˇC�yi;t�1C�� �i/
for t D 2; : : : ;T;

Under the normality assumption for the random effects, i.e., when �i
iid� N.0; 1/, the

basic properties such as unconditional mean, variance and correlations under such
BDML model is given by (13)–(17). In the following subsection, we provide these
properties for the BDML model under the assumption that the random effects now
follow a t-distribution with 
 degrees of freedom.

4.1 Basic Properties of the Binary Mixed Model:
Unconditional Mean and Variance

By similar calculations as in the normal case (13), one obtains an approximate
unconditional mean based on t
 random effects, as

EŒYit� D �it.ˇ; �; �� ; 
/ D W�1

WX

w


�

it . iw; 	
2
iw/

D W�1

WX

wD1

h
pit0. iw; 	

2
iw/C 
�

i;t�1. iw; 	
2
iw/
˚
pit1. iw; 	

2
iw/� pit0. iw; 	

2
iw/
�i
; (78)

where


�
i1. iw; 	

2
iw/ D pi10. iw; 	

2
iw/ D exp.x

0

i1ˇ C ��
iw/

1C exp.x
0

i1ˇ C ��
iw/
; and

pityi;t�1 . iw; 	
2
iw/ D exp.x0

itˇ C �yi;t�1 C ��
iw/

1C exp.x0
itˇ C �yi;t�1 C ��

iw/
;

with ��
iw as the t
.0; �2� ; 
/ random effect given by (25). Next because yit is a binary

observation, it follows that

varŒYit� D �i;tt.ˇ; �; �� ; 
/ D �it.ˇ; �; �� ; 
/Œ1 � �it.ˇ; �; �� ; 
/�; (79)

where the unconditional mean �it.ˇ; �; �� ; 
/ has the recursive type formula as
in (78).
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4.2 Computation of Unconditional Covariances for BDML
Model with t� Random Effects

To compute the covariance between yiu and yit .u < t/, we note that under the present
dynamic model (9), conditional on the random effects ��

i defined by (25), yiu and yit

are not independent. This is because conditional on ��
i , yit and yi;t�1, for example,

satisfy the dynamic dependence relationship (9). Next because

EŒfYiuYitgj��
i � D covŒfYiu;Yitgj��

i �C EŒYiuj��
i �EŒYiT j��

i �

D ��
i;ut. i; 	

2
i /C 
�

iu. i; 	
2
i /


�
it . i; 	

2
i /;

with

��
i;ut. i; 	

2
i / D 
�

iu. i; 	
2
i /Œ1 � 
�

iu. i; 	
2
i /�˘

t
jDuC1

�
pij1. i; 	

2
i / � pij0. i; 	

2
i /
�
;

(80)
(Sutradhar and Farrell 2007), one may compute the covariance between yiu and yit,
first by computing EŒYiuYit� using

EŒYiuYit� D W�1
WX

wD1

�
��

i;ut. iw; 	
2
iw/C 
�

iu. iw; 	
2
iw/


�
it . iw; 	

2
iw/
� D �i;ut; (say);

(81)
where  iw and 	2iw are generated from N.0; 1/ and �24, respectively, in order to
compute ��

iw by (25), and 
�
it . iw; 	

2
iw/ is computed by (78).

5 GQL Estimation for the Parameters of the BDML Model
with t� Random Effects

It is clear from Sects. 4.1 and 4.2 that the basic properties of the BDML (binary
dynamic mixed logit) model (9), that is, the first and second order moments of the
repeated binary responses contain all four parameters, namely ˇ; �; �� ; and 
,
of the model. Consequently, we exploit all first and second order observations, and
minimize their generalized distance from their corresponding means to construct a
GQL estimating equations [Sutradhar (2010, Sect. 5.4); see also Sutradhar (2011,
Sect. 9.2)] for these desired parameters. Note that for the binary data, y2it � yit. One
may, thus, consider a vector of first and second order responses given by

vi D .yi1; : : : ; yit; : : : ; yiT ; yi1yi2; : : : ; yiuyit; : : : ; yi.T�1/yiT/
0;

for the purpose of constructing the desired estimating equation. Now, denote the
EŒVi� by
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�i D EŒVi� D �i.ˇ; �; �� ; 
/ D Œ�i1; : : : ; �it; : : : ; �iT ; �i;12; : : : ; �i;ut; : : : ; �i;.T�1/T �0

D Œ�0
i; �

0
i �

0; (82)

where the formula for the unconditional mean �it for all t D 1; : : : ;T , is given
by (78), and �i;ut D EŒYiuYit� for all u < t, may be computed by (81). Further let
˛ D .ˇ; �; �� ; 
/

0, and ˝i denote the T.T C 2/=2 � T.T C 1/=2 covariance of
vi. Following Sutradhar (2010) [see also Sutradhar (2004)], one may then write the
GQL estimating equation for ˛ as

KX

iD1

@�0
i

@˛
˝�1

i .vi � �i/ D 0; (83)

which may be solved by using the iterative equation

ǪGQL.r C1/ D ǪGQL.r/C
2

4

(
KX

iD1

@�0
i

@˛
˝�1

i

@�i

@˛0

)�1 KX

iD1

@�0
i

@˛
˝�1

i .vi � �i/

3

5

j˛D ǪGQL.r/

:

(84)
Note that to compute the˝i matrix for (83) and (84) , one needs to compute the fol-
lowing elements: (a) varŒYit�; (b) covŒYiu;Yit�; (c) varŒYiuYit�; (d) covŒYiuYit;Yi`Yim�;
and (e) covŒYiu;YimYit�. However, all these elements through (a)–(e), may be
computed by using the moments up to order four given in Sects. 4.1, 4.2, and 5.1
below. For example,

covŒYiuYit;Yi`Yim� D EŒYiuYitYi`Yim� � EŒYiuYit�EŒYi`Yim�

D Q�i;ut`m � �i;ut�i;`m; (85)

where the formula for Q�i;ut`m is given in (96), and the formula for �i;ut, for example,
is given in (81).

Computation of @�0

i
@˛

for (84):
Because �i D Œ�0

i; �
0
i �

0, the gradients for searching for the estimate of

˛ D .ˇ0; �; �� ; 
/0 can be computed by by using the formulas for @�it
@˛

and @�i;ut
@˛

,
where �it and �i;ut are given by (78) and (81), respectively. For the purpose, we
derive these formulas by using

@�it
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WX

wD1
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iw/
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C f@


�

i;t�1. iw; 	
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2
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2
iw/
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�
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iw/
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2
iw/

@˛
� @pit0. iw; 	

2
iw/

@˛


�

; (86)

@�i;ut

@˛
D W�1

WX

wD1

@
�
��

i;ut. iw; 	
2
iw/C 
�

iu . iw; 	
2
iw/


�

it . iw; 	
2
iw/
�

@˛
; (87)
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where

��
i;ut. iw; 	

2
iw/ D 
�

iu. iw; 	
2
iw/Œ1 � 
�

iu. iw; 	
2
iw/�˘

t
jDuC1

h
pij1. iw; 	

2
iw/ � pij0. iw; 	

2
iw/
i
:

Note that to compute the derivative of the product factor involved in ��
i;ut.�/, one can

use the formula

@˘ t
jDuC1

�
pij1. iw; 	

2
iw/ � pij0. iw; 	

2
iw/
�

@˛

D ˘ t
jDuC1

�
pij1. iw; 	

2
iw/ � pij0. iw; 	

2
iw/
�

�
tX

jDuC1

@log
�
pij1. iw; 	

2
iw/ � pij0. iw; 	

2
iw/
�g

@˛
: (88)

To complete the formulation of the above derivatives, we now give the
derivatives for one term, namely pij1. iw; 	

2
iw/, with respect to each element of

˛ D .ˇ0; �; �� ; 
/0. To be specific,

@pij1. iw; 	
2
iw/

@ˇ
D pij1. iw; 	

2
iw/.1� pij1. iw; 	

2
iw//xijI (89)

@pij1. iw; 	
2
iw/
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D pij1. iw; 	

2
iw/.1� pij1. iw; 	

2
iw//I (90)

@pij1. iw; 	
2
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@��
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2
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�
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 iwf2
g 12 �p
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1
2

�

I and (91)

@pij1. iw; 	
2
iw/

@

D pij1. iw; 	

2
iw/.1� pij1. iw; 	

2
iw//

p
2�  iw

�
�
1

2
f
g�

1
2
�p
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�C 2

�
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1
2

� 1

2
f
g 12 �p


�
	2iw � 4

�C 2

�
�

3
2 Œ
1

2
f
g�

1
2 .	2iw � 4/C 2�

�

: (92)

5.1 Computation Higher Order Moments to Construct
˝i in (84)

Note that when the first and second order responses are used to construct distance
functions for the estimation of the parameters ˇ; �; �� ; and 
, one requires the
third and fourth order moments which are used in the weight matrix to develop the
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estimating equations. The first (mean) and the second order moments are computed
in (78), (79) and (81) using suitable close form expressions. For higher order such
as the third and fourth order moments, it is convenient to compute them numerically
(Sutradhar et al. 2008). To be specific, for the computation of the third order
moments, let

P
.yiu;yi`;yit/3s indicates the summation over all binary variables in the

sample space s that contain T � 3 elements out of T elements except yiu; yil; yit. one
may then compute the third order moments as

EŒYiuYi`Yit� D PŒyiu D 1; yi` D 1; yit D 1� � Qıi;u`t (93)

D W�1
WX

wD1

X

yiu;yil;yit3s

�
f .yi1j��

iw/˘
T
jD2f .yijjyi;j�1; ��

iw/
�

yiuD1;yi`D1;yitD1

where by (78)

f .yi1j��
iw/ D Œpi10.�

�
iw/�

yi1 Œ1 � pi10.�
�
iw/�

1�yi1

f .yijjyi;j�1; ��
iw/ D Œpijyi;j�1 .�

�
iw/�

yij Œ1 � pijyi;j�1 .�
�
iw/�

1�yij : (94)

After an algebra, one may simplify the third order moments in (93) as

Qıi;u`t D W�1
WX

wD1

X

yiu;yi`;yit3s

�Qpi10.yi1; �
�
iw/˘

T
jD2 Qpij1.yij; yi;j�1; ��

iw/
�

yiuD1;yi`D1;yitD1 ;

(95)

with Qpi10.yi1; �
�
iw/ D expfyi1.x

0

i1ˇC��

iw/g
1Cexp.x

0

i1ˇC��

iw/
, and Qpij1.yij; yi;j�1; ��

iw/ D expfyij.x
0

ijˇC�yi;j�1C��

iw/g
1Cexp.x

0

ijˇC�yi;j�1C��

iw/
;

where ��
iw � ��

iw.�� ; 
I iw; 	
2
iw/ as defined by (25).

The computation for the fourth order moments is similar to that of the third order
moments. Let

P
.yiu;yi`;yim;yit/3s�

indicates the summation over all binary variables
in the sample space s� that contain T � 4 elements out of T elements except
yiu; yil; yim; yit. Now by implementing this summation, following (95), one writes
the formula for the fourth order moments as

EŒYiuYi`YimYit� D W�1
WX

wD1

X

yiu;yi`;yim;yit3s�

�Qpi10.yi1; �
�
iw/

� ˘T
jD2 Qpij1.yij; yi;j�1; ��

iw/
�

yiuD1;yi`D1;yimD1;yitD1

D Q�i;u`mt; (say). (96)

This completes the computation of all moments up to order four. These moments
were exploited to construct the GQL estimating Eq. (84) for all parameters involved
in the model, namely ˇ; �; �� ; and 
.
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5.2 Asymptotic Normality and Consistency of Ǫ GQL

Following (83), for true ˛, define

NgK.˛/ D 1

K

KX

iD1
gi.˛/ D 1

K

KX

iD1

@�0
i

@˛
˝�1

i .vi � �i/; (97)

where v1; : : : ; vi; : : : ; vK are independent to each other as they are collected from K
independent individuals, but they are not identically distributed because

vi � .�i.ˇ; �; �� ; 
/;˝i.ˇ; �; �� ; 
//; (98)

where the mean vectors in (82) and also the covariance matrices in (83) are different
for different individuals.

Now one may derive the asymptotic distribution of ǪGQL by using the same
technique as for the derivation of the asymptotic distribution of Ǒ

GQL given in
Sect. 3.1.1 for the Poisson mixed model. Thus, it can be shown that

lim
K!1 ǪGQL ! N.˛; QV�1

K .ˇ; �; �� ; 
//; (99)

or equivalently

jjŒ QVK.ˇ; �; �� ; 
/�
1
2 Œ ǪGQL � ˛�jj D Op.

p
p C 3/; (100)

where

QVK.ˇ; �; �� ; 
/ D
KX

iD1

@.�i/
0

@˛
Œ˝i.ˇ; �; �� ; 
/�

�1 @.�i/

@˛0 :

This establishes the consistency of ǪGQL for ˛.

6 Discussion

It has been assumed in various econometric studies for count and binary panel data
that the distribution of the random effects involved in the model is unknown. This
makes the estimation of the regression effects ˇ and dynamic dependence parameter
� under the Poisson dynamic mixed model, and the estimation of ˇ and the dynamic
dependence parameter � under the binary dynamic mixed model, very difficult. As a
remedy, some authors such as Wooldridge (1999) and Montalvo (1997) developed
certain estimation techniques those automatically remove the random effects from
the model and estimate rest of the parameters, ˇ and � in the Poisson case. However
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as demonstrated by Sutradhar et al. (2014), these estimation approaches have two
drawbacks. First, the conditional maximum likelihood (CML) method used by
Wooldridge (1999) and the instrumental variables based GMM (IVGMM) method
used by Montalvo (1997) become useless for the estimation of the regression effects
ˇ when covariates are stationary (time independent), even though they are able to
remove the random effects. Second, when the random effects �i or ��

i are removed
technically, the estimates of ˇ and the dynamic dependence parameter (�) alone are
not sufficient to compute the mean, variance and correlations of the data, which is a
major drawback from the view point of data understanding/analysis. One encounters
similar problems with the weighted kernel likelihood approach of Honore and
Kyriazidou (2000, p. 84) for the inferences in binary dynamic mixed logit models.

The aforementioned inference issues do not arise when one can assume a suitable
distribution for the random effects. Because the random effects appear in the linear
predictive function of the generalized linear model, many studies mainly in statistics
literature have considered normality as a reasonable assumption for the distribution
of the random effects. Thus, under the assumption that the random effects involved
in the longitudinal mixed models follow N.0; �2� /, the GQL estimation of the
regression effects ˇ and �2� and moment estimation of the longitudinal correlation
index parameter � were developed by Sutradhar and Bari (2007), for example, for
longitudinal count data, and by Sutradhar (2008) for longitudinal binary data. See
also Breslow and Clayton (1993), Breslow and Lin (1995), Lin and Breslow (1996),
Jiang (1998), and Sutradhar and Qu (1998).

However, in this paper we have provided an extension of the normal latent effects
based longitudinal mixed models for count and binary data to the t
 latent effects
based models. The inference for these extended models have been complex not only
because of an additional degrees of freedom parameter but also for the difficulty that
unlike simulation of N.0; 1/ random effects in the Gaussian case, the simulation of
t
.0; 1/ is not possible when 
 is unknown. In this paper we have resolved this
issue through a new transformation which helps to generate data from a t4.0; 1/
distribution for the purpose and then proceed for estimation of the 
 parameter. In
summary, we have developed a GQL estimation technique for the estimation of all
parameters involved in the models including the degrees of freedom parameter.
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