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Preface

This special proceedings volume contains eight selected papers that were presented
in the International Symposium in Statistics (ISS) 2015 on Advances in Parametric
and Semi-parametric Analysis of Multivariate, Time Series, Spatial-Temporal, and
Familial-Longitudinal Data, held in St. John’s, Canada, from July 6 to 8, 2015. The
main objective of the ISS-2015 was the discussion on advances and challenges
in parametric and semi-parametric analysis for correlated data in both continuous
and discrete setups. Thus, as a reflection of the theme of the symposium, the eight
papers of this proceedings volume are presented in four parts: Part I—Elliptical
t Distribution Theory; Part II—Spatial and/or Time Series Volatility Models with
Applications; Part III—Longitudinal Multinomial Models in Parametric and Semi-
parametric Setups; Part IV—An Extension of the GQL Estimation Approach for
Longitudinal Data Analysis. The ISS-2015 was the continuation of ISS-2009
and ISS-2012 held in Memorial University. More specifically, the ISS-2009 was
organized focussing on inferences in generalized linear longitudinal mixed models
(GLLMMs), and a special issue of the Canadian Journal of Statistics (2010, Vol.
38, June issue, John Wiley) was published with seven selected papers from this
symposium. These seven papers from ISS-2009 dealt with progress and challenges
in the areas of longitudinal and/or time series data analysis. As compared to ISS-
2009, the papers in the ISS-2012 proceedings volume dealt with inferences for
longitudinal data with additional practical issues such as measurement errors,
missing values, and/or outliers. This proceedings volume was published as the
Lecture Notes in Statistics (2013, Vol. 211, Springer) with nine selected papers from
the symposium.

It is understood that the elliptical distributions have densities with equiprobable
surfaces constant on homothetic ellipsoids, a property possessed in particular by
the well-known and widely used multivariate normal distribution. Multivariate t
distribution also belongs to this elliptic class of distributions, which however has
symmetric but fatter tails as compared to the multivariate normal distributions.
This additional tail characteristic makes the multivariate t distribution useful to
analyze the heavy tailed such as stock return data one encounters under volatile
financial markets, for example. However, unlike the multivariate normal sampling

vii
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theory, the elliptical t theories are not adequately discussed in the literature. In
fact, unlike the normal sampling theory, the sampling theories for multivariate t
responses can be quite different depending on whether the responses in a sample
are independent or uncorrelated but dependent. The first paper in Part I, by B.C.
Sutradhar, provides an insight on the advances and challenges in inferences for
the heavy-tailed data that follow either independent or uncorrelated multivariate
t distributions. The paper also proposes a clustered regression model where the
multivariate t responses in a cluster are uncorrelated, but such clustered responses
are collected from a large number of independent individuals. In the second paper
in Part I, R. Prabhakar Rao, B.C. Sutradhar, and V.N. Pandit deal with correlated
count and binary data in mixed model setup, where invisible random effects of
the individuals are considered to follow independent t distributions. A part of this
second paper was presented in the symposium by B.C. Sutradhar in his keynote
address because of the common use of t distributions, but the materials of the
paper were not included in the first paper in order to show the difference between
the analysis of continuous t responses and discrete such as count and binary
responses but influenced by continuous t random effects. The main challenge in
the second paper is the estimation of the regression parameters when it is known
that the t random effects with unknown degrees of freedom parameter cannot
be integrated out from the model for any marginal estimation of such regression
effects. In fact this problem is also encountered in binary and count data analysis
with Gaussian random effects where suitable simulation techniques are used by
generating standard Gaussian random effects for the estimation of the parameters
including the variance of the normal Gaussian random effects. In the current paper,
a similar simulation technique is used where t random effects are generated with unit
scale and four degrees of freedom, and a transformation is proposed for the purpose
of estimation of the unknown degrees of freedom parameter along with regression
and other such as correlation parameters.

The Part II of the volume contains two papers on spatial and temporal data
analysis. The first paper by L.M. Ainsworth, C.B. Dean, and R. Joy is an application
paper analyzing spatial counts with a significant portion of responses being zero.
This type of zero-inflated count data can provide important clues to physical
characteristics associated with, for example, habitat suitability or resistance to
disease or pest infestations. However, the probability modeling for this type of
spatial bimodal data especially after accommodating spatial correlations is not
easy. The authors have considered various existing models and used their expert
knowledge to examine what and how these models are doing in order to understand,
for example, the white pine weevil infestations data, where many trees did not
exhibit any weevil attack or infestation. These models can be grouped into two
categories. Some models are appropriate for independent spatial counts with over-
dispersion generated by inflated zeros. The rest of the zero-inflated probability
models accommodate spatial correlations among counts through correlated random
effects. The second paper in Part II contributed by V. Tagore, N. Zheng, and B.C.
Sutradhar deals with a special temporal data where the variance of the response data
appears to change over time. These heteroscedastic variances are then explained
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through a suitable dynamic model, and it is of interest to obtain consistent estimates
of the parameters involved in such a dynamic model along with consistent estimates
for any regression parameters relating time-dependent covariates and the responses.
This type of time series models produces larger kurtosis for the data as compared to
the usual Gaussian time series with constant variance over time. Consequently these
models are found to be suitable to explain the volatility in the data which is, quite
often, exhibited in financial markets such as stock return data. The main contribution
of the paper is the development of a simpler method of moments technique for
consistent estimation of the parameters of the model, as compared to the existing
QML (quasi-maximum likelihood) and the so-called popular but very lengthy and
complex GMM (generalized method of moments) approaches. The authors have
demonstrated the advantage of their estimation technique by reanalyzing the well-
known US dollar and Swiss franc exchange rate data to understand the presence of
any possible volatility.

Binary dynamic mixed logit (BDML) models are used to fit longitudinal binary
data collected from the members of a large number of independent families. In
the first paper of Part III, B.C. Sutradhar, R. Viveros-Aguilera, and T. Mallick
have provided a generalization of the BDML model to the categorical data setup,
binary case being a special case with two categories. Similar to the BDML model,
this MDML (multinomial dynamic mixed logit) model uses parametric correlation
structure for repeated multinomial data. More specifically, the authors have used
dynamic dependence of the current multinomial response on a past response to
model the correlations. The regression and dynamic dependence parameters of
the model have been estimated by using the likelihood estimation approach. The
variance component of the random effects is also estimated by using the likelihood
approach. For the binary case, these three parameters, namely, the regression effects,
dynamic dependence, and variance component parameters, may be estimated con-
veniently by using the GQL (generalized quasi-likelihood) approach. The authors
have conducted an empirical study to examine the relative performance of the
GQL and likelihood estimates for the parameters of a BDML model. The MDL
(multinomial dynamic logit) model has been applied as an illustration to analyze
a real-life longitudinal categorical data with three categories. The second paper in
Part III deals with ordinal categorical data, whereas the first paper was confined
to the nominal categorical/multinomial data. This paper by B.C. Sutradhar and
N. Dasgupta discusses two correlation models for the ordinal multinomial data.
The first model is constructed by cumulating the probabilities for the nominal
repeated multinomial responses. The well-known likelihood estimation approach
is used to compute the estimates of the parameters of the cumulative model.
The second model is constructed in a completely different way than the first
model. This model is developed by assuming that the responses at a given time
point are available in a cumulative form so that they follow a binary distribution
with so-called binary logistic probabilities. To accommodate the correlations for
these repeated cumulative responses, a BDL (a binary dynamic logit) model is
written involving dynamic dependence between two binary responses. Next, the
parameters of this BDL model are estimated by forming a pseudo-likelihood
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for all possible lag 1 transitional binary probabilities. The pseudo-likelihood
estimating equations are provided for all regression and binary dynamic dependence
parameters. In the third paper, B.C. Sutradhar considers nominal multinomial
variables which is similar to that of the first paper. However, unlike the first
paper, this paper developed a semi-parametric probability model for longitudinal
multinomial responses. To be specific, to construct such a semi-parametric model,
first it is assumed that the traditional specified parametric regression function
is not enough to explain the multinomial probabilities. Consequently a non-
parametric function is added to the specified regression function which yields a
semi-parametric regression function for the construction of the desired multinomial
probabilities. The dynamic dependence part remains the same as in the first paper
by Sutradhar, Viveros-Aguilera, and Mallick. This type of longitudinal semi-
parametric model for multinomial responses is not adequately addressed in the
literature. To make this semi-parametric model easily understandable, the author
presents a sequence of longitudinal semi-parametric models for repeated linear
and count data which are already discussed in the literature to a reasonably good
extent. For all these models including the proposed semi-parametric models for
the repeated multinomial data, the paper developed suitable estimating equations
for the non-parametric function and all other parameters, namely, the regression
and the dynamic dependence parameters. These estimation formulas should be
useful for any empirical study to analyze repeated multinomial data in a semi-
parametric setup.

Part IV of the volume contains one paper by T. Nadarajah, A.M. Variyath, and
J.C. Loredo-Osti on the inferences for longitudinal data subject to a challenge of
important covariates selection from a set of large number of covariates available for
the individuals in the study. The inference technique uses an idea of penalization
and estimates the regression parameters corresponding to all covariates involved
in a related penalized generalized estimating function, where this later function
is constructed by modifying a generalized quasi-likelihood (GQL) estimating
function. Any regression parameter estimate close to zero obtained by solving the
penalized GQL (PGQL) estimating equation automatically removes the unimportant
covariates from the model, leading to a reduced model with important covariates for
interpretation. The authors of the paper have verified the performance of this PGQL
inference technique through an intensive simulation study. A data analysis is also
provided justifying the technique.

St. John’s, NL, Canada Brajendra C. Sutradhar
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ISS-2015 welcome address by Brajendra Sutradhar (Organizer)

Further to the welcome by Professor Charmaine Dean [former president of the
SSC (Statistical Society of Canada) and the current dean of science of the University
of Western Ontario] and Dr. Alwell Oyet [deputy head of the Department of
Mathematics and Statistics at Memorial University], once again I welcome all of you
with the name of the Lord to this International Symposium in Statistics 2015 (ISS-
2015) on Advances in Parametric and Semi-parametric Analysis of Multivariate,
Time Series, Spatial-Temporal, and Familial-Longitudinal Data. As noted in the
symposium web site (http://www.iss-2015-stjohns.ca./), the ISS-2015 is the con-
tinuation of ISS-2009 and ISS-2012. Both of the last two symposiums were held in
Memorial University, Canada, and they were devoted to the discussion of progresses
and challenges in the analysis of longitudinal data subject to measurement errors,
missing values, and/or outliers. These two symposiums were highly successful with
two high-quality proceedings volumes, one in the form of a special issue of the
Canadian Journal of Statistics in 2010 and the other as a Springer Lecture Notes
in Statistics in 2013. It is my pleasure to note that we have been able to keep up
the spirit of the last two symposiums in organizing the discussion topics of the
present symposium covering the progress and advances in correlated data analysis in
a variety of setups, such as spatial and/or temporal setup, semi-parametric setup for
discrete longitudinal data, and multivariate setups for discrete familial-longitudinal
and continuous non-Gaussian elliptical data.

I am very grateful to Bhagawan Sri Sathya Sai Baba, my guru, the universal
spiritual master, for his blessings and inspirations in organizing these international
community services. I am also thankful to all of you for your interest and response
to this 2015 symposium that has attempted to attract the noble group of researchers
including graduate students. I hope that you will find the symposium stimulating
and will derive spirits for doing more quality research in these challenging areas as
a service to the society and mankind at large.

As far as the presentation structure of this symposium is concerned, four
keynote speeches are organized in four different areas to be delivered by three

http://www.iss-2015-stjohns.ca./
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speakers. Professor Anthony C. Davison from EPFL, Switzerland, will give his
keynote address on max-stable processes on river networks, under the theme of
spatial-temporal data analysis. Professor Brajendra C. Sutradhar from Memorial
University, Canada, will deliver part 1 of his keynote presentation on advances
and challenges in correlated data analysis in non-Gaussian multivariate setup
and part 2 of the presentation on advances and challenges in analyzing ordinal
categorical data in semi-parametric setup. Part 3 of the keynote address will be
given by Professor Andrew Harvey from Cambridge University, UK, on new
developments in modeling dynamic volatility. Nine special invited talks over 3
days of the symposium will be given by Professors Paul D. Sampson, University of
Washington; Grace Y. Yi, University of Waterloo; Nairanjana Dasgupta, Washington
State University; Roman Viveros-Aguilera, McMaster University; Julio M. Singer,
Universidade de Sao Paulo; David E. Tyler, Rutgers—the State University of New
Jersey; Refiq Soyer, George Washington University, Charmaine Dean; University
of Western Ontario; and Richard J. Cook, University of Waterloo. The symposium
has another two invited speakers, Dr. Alwell Oyet from Memorial University and
Dr. Ashis SenGupta from Indian Statistical Institute. Also, contributed papers will
be presented by seven speakers including four graduate students. Furthermore, it
is planned that a selected number of papers presented in the symposium will be
published in the near future as lecture notes in the Springer’s Lecture Note Series.

It is also a pleasure to note that we have 46 delegates in this specialized
symposium from many countries such as Brazil, France, India, Switzerland, the
USA, and Canada, covering a large part of the globe. The organizing committees
would like to extend a hearty welcome to all of you including all graduate students.

We also welcome you to St. John’s, the oldest city of North America, known as
the City of Legends, where you can view icebergs, watch whales, and experience
Newfoundland and Labrador’s unique culture. It is a progressive city and is the site
of many world-class facilities including an international center in marine science
and technology. A mosaic of fishing villages, cultural festivals, and wildlife tours
bring variety to the city. Also, Cape Spear, the most easterly point of North America,
is not far from the city, where one can experience the unique beauty of sunrise.
We hope that you have planned for an extended stay in St. John’s following the
symposium to enjoy these and other endless options!
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Elliptical t Distribution Theory



Advances and Challenges in Inferences
for Elliptically Contoured t Distributions

Brajendra C. Sutradhar

Abstract When a multivariate elliptical such as t response is taken from each
of n individuals, the inference for the parameters of the t distribution including
the location (or regression effects), scale and degrees of freedom (or shape)
depends on the assumption whether n multi-dimensional responses are independent
or uncorrelated but dependent. In the former case, that is, when responses are
independent, the exact sampling theory based inference is extremely complicated,
whereas in the later case the derivation of the exact sampling distributions for
the standard statistics is manageable but the estimators based on certain standard
statistics such as sample covariance matrix may be inconsistent for the respective
parameters. In this paper we provide a detailed discussion on the advances and
challenges in inferences using uncorrelated but dependent t samples. We then
propose a clustered regression model where the multivariate t responses in the
cluster are uncorrelated but such clustered responses are taken from a large number
of independent individuals. The inference including the consistent estimation of the
parameters of this proposed model is also presented.

Keywords Clustered regression model with uncorrelated t errors • Consistent
estimation • Elliptically contoured distribution • Multivariate t and normal as
special cases • Normality based testing yielding degrees of freedom based power
property • Regression effects • Scale matrix • Shape or degrees of freedom
parameter

B.C. Sutradhar (�)
Department of Mathematics and Statistics, Memorial University,
St. John’s, NL, Canada A1C5S7
e-mail: bsutradh@mun.ca

© Springer International Publishing Switzerland 2016
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1 Introduction

Since its inception in early twentieth century, the so-called univariate t-distribution
proposed by Student (1908) [see also Fisher (1925)] and its multivariate generaliza-
tion, namely multivariate t-distribution (Cornish 1954; Dunnett and Sobel 1954)
have become widely popular tools to make inferences about Gaussian (normal)
means. These t-distributions are derived from the respective normal distributions
as follows. Suppose that Y� D .Y�

1 ; : : : ;Y
�
p /

0 is a p-dimensional normal distribution
with mean vector � D .�1; : : : ; �p/

0 and p � p covariance matrix�, that is

Y� � Np.�;�/; (1)

where � is the fixed p � p positive definite covariance matrix. Next, suppose that
�2 a scalar random variable which follows the well known �2� distribution with �
degrees of freedom, that is, �2 � �2� , and Y� and �2 are independent. Then, for
Z� D �� 1

2 .Y� � �/ � Np.0; I/, the ratio variable Y defined as

Y D 1
p
.�2=�/

�
1
2 Z� (2)

has the multivariate t-distribution given by

f .yj�; �/ D c.�; p/j�j� 1
2

1

Œ� C y0��1y�
�Cp
2

; (3)

yielding the distribution for

Y D �C 1
p
.�2=�/

�
1
2 Z� (4)

as

f .yj�;�; �/ D c.�; p/j�j� 1
2

1

Œ� C .y � �/0��1.y � �/� �Cp
2

; (5)

(Cornish 1954; Dunnett and Sobel 1954) where the normalizing constant c.�; p/ has
the formula

c.�; p/ D ��=2� Œ 1
2
.� C p/�

.
p
	/p� Œ1

2
��

:

This distribution in (5) will be denoted as

Y � tp.�;�; �/: (6)
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For p D 1 with � D �1 and� D 
2, the multivariate t-density in (5) reduces to the
univariate t-density

f .y1j�1; 
2; �/ D c.�; 1/j
2j� 1
2

1

Œ� C .y1��1/2

2

�
�C1
2

; (7)

developed by Student (1908). For details on the applications of univariate (7) and
multivariate (5) t-distributions, one may be referred to Kotz and Nadarajah (2004),
for example.

Note that there has been many applications of t distributions for inferences about
the fitting of a normal distribution to a data set (Cornish 1954; Dunnett and Sobel
1954). But, fitting of a t distribution to a data set with symmetric heavy tails has
not been adequately discussed, especially when the data are independent. In this
setup, the joint distribution of independent t responses does not have a closed
form and hence the theory of inference gets complicated. For some empirical
studies using independent t distributions, one may refer to Chib et al. (1988,
1991). However, as a generalization of joint normal distribution, there exist a
joint multivariate t distribution where the observations are uncorrelated but not
necessarily independent. This class of t distributions was proposed by Sutradhar
and Ali (1986) for multi-dimensional uncorrelated but dependent observations (see
also Sutradhar 1988, 1990, 1993) as a generalization of a multivariate t distribution
for uncorrelated but dependent scalar observations (Zellner 1976). For convenience,
we show below how these three types of t distributions may arise in practice.

Case 1. Inference for Normal Models Using t Distribution

Note that in statistics and econometrics literature, the multivariate t-distribution (5)
has been mainly used to study various inferential issues for multivariate normal data.
For example, consider following case. Suppose that

Yi
iid� Np.�;�/; (8)

implying that

NY D 1

n

nX

iD1
Yi � Np.�;

1

n
�/

�2 D
nX

iD1
.Yi � NY/0��1.Yi � NY/ � �2.n�1/p; (9)
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and NY and �2 are independent. Also,

Z D .
1

n
�/�

1
2 . NY � �/ � Np.0; Ip/:

For known�, it then follows by (2) and (3) that

1
p
�2=.n � 1/p

.
1

n
�/

1
2 Z D 1

p
�2=.n � 1/p

Œ NY � �� � tp.0;�; .n � 1/p/; (10)

which for the univariate case with p D 1 and �2 D Pn
iD1Œ

.yi�Ny/


�2 D .n � 1/ s2


2
,

reduces to

Ny � �
s=

p
n

� t1.0; 

2; n � 1/: (11)

One may then construct confidence interval for � in the multivariate case by
using tp.0;�; .n � 1/p/ distribution from (10), and in the univariate case by using
t1.0; 
2; n � 1/ distribution from (11).

Case 2. Independent t Models

Suppose that Y1; : : : ;Yi; : : : ;Yn, are independently distributed (id) [as opposed to
independently and identically distributed (iid)] as

Yi
id� Np.�; 

2
i �/; (12)

where  1; : : : ;  i; : : : ;  n are random and independent scales each with a one-
parameter .�/ based inverted gamma distribution given as

g. i/ D 2.�=2/�1=2

� .�=2/
exp

�
�1
2
.�= 2i /

� �
�

2 2i

�.�C1/=2
;  i > 0; (13)

yielding the t-distribution for Yi as

f .yi/ D
Z 1

0

1

.
p
2	/pj 2i �j 12

expŒ� 1

2 2i
f.yi � �/0��1.yi � �/g�g. i/d i

D � .�Cp
2
/

	p=2�1=2� . �
2
/
�� 1

2

�
1C f.yi � �/0��1.yi � �/g

�

��.�Cp/=2

; (14)
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[see Sutradhar (1988, p. 176), e.g.] with � > 0 degrees of freedom, for all
i D 1; : : : ; n. This t-distribution in (14) is similar to that of (3). It is then clear

that Yi
iid� tp.�;�; �/, yielding the joint distribution as

f .y1; : : : ; yi; : : : ; yn/ D Œc.�; p/�nj�j� n
2 ˘ n

iD1Œ� C .yi � �/0��1.yi � �/��
�Cp
2 ;

(15)
which is also known as independent t model. Here c.�; p/ is the normalizing
constant as in (3). Note that by maximizing (15), one may obtain the likelihood
estimates of �; �; and �, but studying the finite sample properties of these
estimators is extremely complicated (Walker and Saw 1978).

Case 3. Uncorrelated but Dependent t Models

As opposed to the independent t model (15), Sutradhar and Ali (1986) [see also
Sutradhar (1988, 1990)] have proposed a dependent t model which is obtained as
follows. Assume that Y1; : : : ;Yi; : : : ;Yn are iid normal, that is,

Yi
iid� Np.�; 

2�/;

with  following the same inverted gamma distribution as in (13). It then follows
that

f .y1; : : : ; yi; : : : ; yn/ D
Z 1

0

˘ n
iD1ŒN.yiI�; 2�/�g. /d 

D
Z 1

0

Œ
1

.
p
2	/pj 2�j 12

�n expŒ� 1

2 2

nX

iD1
f.yi � �/0��1.yi � �/g�g. i/d i

D c.�; np/j�j� n
2 Œ� C

nX

iD1
f.yi � �/0��1.yi � �/g�� �Cnp

2 ; (16)

where c.n; np/ is obtained from c.�; p/ in (3) by replacing p with np. Unlike (15),
this joint distribution in (16) has the t distribution form and is denoted by
tnp.�;�; �/. For � > 2, it may be shown under (16) that

EŒYi� D �; for all i D 1; : : : ; nI
varŒYi� D ˙ D �

� � 2�; for all i D 1; : : : ; nI
covŒYi;Yj� D 0; for i ¤ j; i; j D 1; : : : ; n: (17)

Thus, the p-dimensional observations y1; : : : ; yi; : : : ; yn, are pair-wise uncorrelated,
but, it follows from (16) that they are not independent. Sutradhar (1988, 1990, 1993)
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and Sutradhar and Ali (1986, 1989) have exploited this class of uncorrelated but
dependent t-distributions (16) for inferences about � and ˙ , assuming that � is
known. Sutradhar (1994) and Sutradhar (2004) have dealt with estimation of �
as well.

A brief plan of the paper is as follows. The independent t models are discussed in
Sect. 2.1. The exact distribution theory and estimation methods under uncorrelated
but dependent elliptical t models are discussed in details in Sects. 2.2 and 3,
respectively. In Sect. 4, we provide several new familial and longitudinal models
for t data, where, more specifically, each of the independent clusters contain
uncorrelated or correlated multi-dimensional elliptical t responses. Some results on
null and null robust properties for t samples based test statistics are reviewed in
Sect. 5. The paper concludes in Sect. 6.

2 Exact Versus Asymptotic Sampling Distribution Theory

2.1 Distribution Theory for Independent t Sample

When p-dimensional responses fyi; i D 1; : : : ; ng are independent following the
multivariate t distribution (14), their joint distribution is written as (15). In general
it is of interest to estimate �; �; and �. However as � is the scale matrix, it is
convenient to estimate the covariance matrix˙ D �

��2� by using the corresponding
sample moments. For example, the moment estimates for �; ˙; and � can be
obtained as
Moment estimates:

First we write the moment estimates for � and ˙ as

O�M D Ny D 1

n

nX

iD1
yi

ȮM D S D 1

n � 1
nX

iD1
.yi � Ny/.yi � Ny/0; (18)

and then obtain the moment estimate of � by equating the multivariate measure of
kurtosis of the t distribution f .yi/ in (14), namely

ˇ�
2 D

Z
Œ.yi � �/0˙�1.yi � �/�2f .yi/dyi; (19)

(e.g., Mardia 1970) to its sample counterpart

ˇ�
2;M D 1

n

nX

iD1
Œ.yi � Ny/0S�1.yi � Ny/�2:
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Next, for � > 4, it can be shown that ˇ�
2 in (19) has the formula

ˇ�
2 D

�
� � 2
� � 4

�
f �.�/; (20)

where

f �.�/ D
2

43
pX

hD1
.�hh/2.�hh/

2

C
pX

h¤h0

.�h0h0/2f�hh�h0h0 C .�hh0

/2g
3

5 ; (21)

with ˙ D .�hu/; ˙
�1 D .�hu/. Now by using

f �.s/ D f �.�/j�huDshu;�huDshu ; (22)

where S D .shu/; S�1 D .shu/, one obtains the moment estimator of � as

O�M D 2Œ2 Ǒ�
2;M � f �.s/�

Œ Ǒ�
2;M � f .s/�

: (23)

2.1.1 Asymptotic Properties

All three estimators given in (18) and (23) are consistent for their respective

parameter. For example, because Yi
iid� tp.�;�; �/ as in (16), it follows that NY in (18)

has

EŒ NY� D �; Ltn!1varŒ NY� D Ltn!1
1

n
Œ
�

� � 2
�� D Ltn!1

1

n
˙ ! 0; (24)

showing that NY is consistent for �. Further, by standard central limit theorem, it
follows that asymptotically (as n ! 1)

NY � Np.�;
1

n
˙/: (25)

Consequently, one can easily construct the desired confidence interval for �,
provided n is large.
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As far as the as the asymptotic properties of the sample covariance matrix S
in (18) is concerned, one may first show that

EŒS� D 1

n � 1
EŒ

nX

iD1
.yi � Ny/.yi � Ny/0�

D 1

n � 1
EŒ

nX

iD1
.yi � �C � � Ny/.yi � �C � � Ny/0�

D 1

n � 1
Œ

nX

iD1
Ef.yi � �/.yi � �/0g � nEf.Ny � �/.Ny � �/0g�

D 1

n � 1
Œn˙ � n.˙=n/�

D ˙ D .�uv/ D �

� � 2� D �

� � 2
.
uv/: (26)

Next, because S D .suv/ in (18) is the sample covariance matrix constructed from

a sample of n independent and identically distributed vectors fYi
iid� tp.�;�; �/,

i D 1; : : : ; ng, it then follows, for example, from Muirhead (1982, Eq. (3), p. 42;
Exercise 1.33 (b), p. 49) that

covŒsuv; sh`� D 1

n � 1
Œ�f�uv�h` C �uh�v` C �u`�vhg

C f�uh�v` C �u`�vhg� ; (27)

where for the t distribution (14), the kurtosis parameter � D 2
��4 . Consequently,

Ltn!1covŒsuv; sh`� ! 0; (28)

indicating that S is a consistent estimator of˙ . Furthermore, by Corollary 1.2.18 in
Muirhead (1982), it follows that

.n � 1/
1
2 Œvector.S/� vector.˙/� � Nn2 .0;V/; (29)

where V D .covŒsuv; sh`�/ W n2 � n2, by (27).

2.1.2 Exact Sampling Distribution Theory Challenge

The multivariate t distribution (14) provides a useful extension of the normal
distribution for statistical modeling of data with longer than normal tails. Despite
this fact, the use of independently chosen samples from the parent t-distribution
in modeling long tailed symmetric data has been hampered by the complexity of
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the exact sampling distribution theory. For a discussion on this, see for example
Sutradhar (1998, pp. 440–448). To illustrate the complexity with the exact sampling
distribution theory, consider for example the univariate case with p D 1. In this case,
using� D 
2, the joint distribution (15) may be written as

f .y1; : : : ; yi; : : : ; yn/ D Œc.�; 1/�n.
2/�
n
2

�˘ n
iD1Œ� C .yi � �/0f
2g�1.yi � �/�� �C1

2 ; (30)

where c.�; 1/ D���=2� f.� C 1/=2g�=Œ	1=2� .�=2/�. Now finding the distribution of
a linear combination of the form

Pn
jD1 ajyj is very complicated. For n D 2, Ghosh

(1975) gave an explicit formula for the distribution function of U D y1 C y2 (or
V D y1 � y2) in terms of hypergeometric functions for � � 4. For 4 < � < 1,
the author used the numerical integration methods to tabulate several values of its
distribution function. Walker and Saw (1978) have used the characteristic function
of the t-distribution with odd degrees of freedom (Fisher and Healy 1956) to obtain
the distribution of a special linear combination of t random variables, when these
variables are chosen from t-distribution with odd degrees of freedom only. By
exploiting the general characteristic function available in Sutradhar (1986, 1988),
one may similarly obtain the distribution function of a general linear combination
of t random variables with any type of degrees of freedom (odd, even or fraction).
This is, however, still an open problem. Also note that unlike the normal distribution,
the characteristic function of a linear combination of t independent variables does
not have the same form as that of the characteristic function of a single t variable.
This makes the use of the characteristic function of the t distribution difficult to find
the distribution of a linear combination or similar statistics.

Finding the exact sampling distribution of more complex test statistics than the
linear combination will naturally be more complicated. The exact distribution of
the t-statistic, for example, under the parent Student’s t-distribution (7), that is,
using (30), is extremely difficult to obtain analytically except for sample size 2 or
3. For a Monte Carlo method to obtain the percentage points of the distribution
of the t-statistic, see Yuen and Murthy (1974). Similarly, in the multivariate case
Hotelling’s T2 test in the independence setup is not robust against departure from
normality, because it is not only that finding its null and non-null distributions
is extremely difficult but it appears that its null distribution does not follow the
central F-distribution when one tests the equality of the means of two independent
t-distribution.
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2.2 Distribution Theory for Uncorrelated but Dependent t
Sample

2.2.1 Marginal Distribution

Suppose that Yi � tp.�;�; �/, that is, the pdf of yi is given by (5). Next partition
yi as

yi D
�

y1i

y2i

�
; � D

�
�1
�2

�
; � D

�
�11 �12


21 �22

�
; (31)

where y1i W m � 1; �1 W m � 1 and �11 W m � m. Then y1i � tm.�1;�11; �/. That is,

f .y1i/ D c.�;m/j�11j� 1
2

1

Œ� C .y1i � �1/0��1
11 .y1i � �1/� �Cm

2

(32)

[see for example Muirhead (1982, exercise 1.29 (b))]. This marginal distribution
is derived in Raiffa and Schlaifer (1961) (see also Johnson and Kotz 1972) by
using the gamma mixture of the multivariate normal density similar to that of (4).
This marginal distribution also may be verified using the characteristic function
of the t distribution (5) from Sutradhar (1986, Theorem 1, p. 330) denoted by
yi.sI �; �;�/, where s � Œs1; : : : ; sm; : : : ; sp�

0 is a vector of p auxiliary parameters.
Putting smC1; : : : ; sp D 0 in the characteristic function yi.sI �; �;�/, one obtains
the characteristic function of y1i with the same form as that of yi, implying that
y1i � .�1;�11; �/.

A Generalization to the General Elliptical Distribution

For an individual i, the elliptical distribution of yi has the pdf of the form

c�.�0; p/j�j� 1
2 gf�0.yi � �/0��1.yi � �/g; (33)

(Kelker 1970) with g.�/ a known form and c�.�0; p/ as the normalizing constant.
Then for yi partitioned as in (31), y1i has the elliptic distribution given by

f .y1i/ D c�.�0;m/j�11j� 1
2 gmf�0.y1i � �1/

0�11
�1.y1i � �1/g; (34)

(Kariya 1981; Kelker 1970; Sutradhar and Ali 1989) where gm.�/ is determined only
by the form of g in (33) and by the number of components in yi.
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An Application of Marginal Property: t Distribution Case

Suppose that y1; : : : ; yi; : : : ; yn are n p-dimensional uncorrelated responses and they
jointly follow the np-dimensional t distribution as in (16), that is,

f .y1; : : : ; yi; : : : ; yn/ D c.�; np/j�j� n
2 Œ�C

nX

iD1
f.yi��/0��1.yi��/g��

�Cnp
2 : (35)

It then follows from the marginal property (31)–(32) that yi follows the
p-dimensional t distribution as yi � tp.�;�; �/. This is because, by writing a
np-dimensional observation

y� D Œy0
1; : : : ; y

0
i; : : : ; y

0
n�

0;

one can write

nX

iD1
f.yi � �/0��1.yi � �/g D .y� � ��/0ŒIn ˝��.y� � ��/; (36)

where ˝ denotes the Kronecker or direct product, and �� D 1n ˝ �, 1n being the
n-dimensional unit vector. Consequently, the joint pdf (35) may be re-expressed as

f .y�j��; In˝�; �/ D c.�; np/jIn˝�j� 1
2 Œ�Cf.y����/0ŒIn˝���1.y����/g�� �Cnp

2 ;

(37)
which is the same form as that of the t distribution in (5) but it is a np-dimensional
distribution.

An Application of Marginal Property: Elliptical Distribution Case

By similar arguments as for the t distribution case, suppose that y1; : : : ; yi; : : : ; yn are
n p-dimensional uncorrelated responses and they jointly follow the np-dimensional
elliptical distribution given by

f .y1; : : : ; yi; : : : ; yn/ D c�.�0; np/j�j� n
2 g.�0

nX

iD1
f.yi � �/0��1.yi � �/g/: (38)

Because, using the same notation as in (37), this density in (38) may be expressed as

f .y�/ D c�.�0; np/jIn ˝�j� 1
2 g.�0f.y� � ��/0ŒIn ˝���1.y� � ��/g/; (39)

yi involved in y�, by (33)–(34), has the marginal elliptical distribution given by

f .yi/ D c�.�0; p/j�j� 1
2 gpf�0.yi � �/0��1.yi � �/g: (40)
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2.2.2 Distribution of Linear Combination of Elliptical t Variables

We first provide this distribution for general elliptic variables. Let X D DY, where
D is an m � p matrix of rank m; m � p, and Y is a p-dimensional random variable
following the general elliptical distribution (33), that is,

f .y/ D c�.�0; p/j�j� 1
2 gf�0.y � �/0��1.y � �/g:

One may then show that the m-dimensional variable X has the p.d.f. given by

f .x/ D c�.�0;m/jD�D0j� 1
2 gmf�0.x � D�/0.D�D0/�1.x � D�/g: (41)

This p.d.f. in (41) may be derived from the p.d.f. of

U D
�

X
W

�
D
�

D
Q

�
Y D BY;

where B D
�

D
Q

�
is a p � p nonsingular matrix. Because B is a nonsingular matrix,

similar to the multivariate normal case, one may use the aforementioned p.d.f. of Y
and write the p.d.f. of U D BY as

f .u/ D c�.�0; p/jB�B0j� 1
2 gf�0.u � B�/0.B�B0/�1.u � B�/g: (42)

The p.d.f. of X in (41) then follows from (42) by using the marginal distribution
property given in (34).

Distribution of the Sample Mean Vector NY Under Elliptical Distribution

Notice that y1; : : : ; yi; : : : ; yn have the np-dimensional joint distribution given
by (38), yielding the distribution of y� D Œy0

1; : : : ; y
0
i; : : : ; y

0
n�

0 as given by (39). Now
write

Ny D ŒNy1; : : : ; Nyp�
0 D x� D D�y� D 1

n
ŒIp; : : : ; Ip�y

�; (43)

where

D� D 1

n
ŒIp; : : : ; Ip�

is the p � np matrix with rank p, which is similar to the D matrix in (41). Hence,
by (39), the distribution of NY follows from (41) and is given by
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f .Ny/ D c�.�0; p/jD�.In ˝�/D�0j� 1
2 gpf�0.Ny � D���/0.D�.In ˝�/D�0

/�1.Ny � D���/g

D c�.�0; p/j1n�j� 1
2 gpf�0.Ny � �/0. 1

n
�/�1.Ny � �/g (44)

[see also Theorem 2.1 in Sutradhar and Ali (1989)].

Distribution of the Sample Mean Vector NY Under Elliptical t Distribution

Note that the np-dimensional joint t distribution of y1; : : : ; yi; : : : ; yn is given
by (35) which is a special case of the joint elliptical distribution (38). By the
same token, the np-dimensional t distribution of y� D Œy0

1; : : : ; y
0
i; : : : ; y

0
n�

0 given
by (37) is a special case of the elliptical distribution given in (39). Now because the
elliptical distribution of x� D D�y� D Ny in (44) is derived from (39), by similar
calculation, one would obtain the t distribution for x� D Ny from (37). Thus, when
y1; : : : ; yi; : : : ; yn have the joint t distribution as in (35), Ny follows the tp distribution,
namely Ny � tp.�;

1
n�; �/, that is,

f .Ny/ D c�.�0; p/j1
n
�j� 1

2

�
� C f.Ny � �/0.

1

n
�/�1.Ny � �/g

�� �Cp
2

: (45)

2.2.3 Distribution of the Sample Covariance Matrix Under Elliptical
Distribution and Its Special Form Under Elliptical t Distribution

Distribution of A D Pn
jD1.yj � Ny/.yj � Ny/0 Under Joint Elliptical

Distribution (38)

The distribution of this sample sum of products matrix A D Pn
jD1.yj � Ny/.yj � Ny/0

under the general elliptical distribution (38) was derived by Sutradhar and Ali (1986,
Theorem 2.1). This distribution has the form

f .A/ D K.n � 1; p/g.n�1;p/.trace��1A/

� j�j�.n�1/=2jAj..n�1/�p�1/=2; (46)

where K.n � 1; p/ is the normalising constant and g.n�1;p/.�/ is determined by the
form of g in (38) and by the number of components in

Pn
jD1 yjy0

j. For a proof
of this result, we refer to the Theorems 2.2 and 2.3 in Sutradhar and Ali (1989,
pp. 157–159), among others.
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Distribution of A D Pn
jD1.yj � Ny/.yj � Ny/0 Under Joint Elliptical t

Distribution (35)

By matching the form of g.�/ between (35) and (38), and using n1 D n � 1, the pdf
of the elements of A under (35) follows from (46) and it is given by

f .A/ D K.n1; p/j�j� n1
2 jAj� n1�p�1

2 Œ� C tr��1A��
�Cn1p
2 (47)

[see also Sutradhar and Ali (1989, JMVA, Eq. (3.3))] where

K.n1; p/ D Œ�
�
2 � f.� C n1p/=2g�=

h
	

p.p�1/
4 � .�=2/˘

p
iD1� f.n1 � i C 1/=2g

i
:

Further Special Case When Sample Follows Multi-Normal Distribution

When

Yi
iid� Np.�;�/;

the joint distribution of y1; : : : ; yi; : : : ; yn has the form

f .y1; : : : ; yi; : : : ; yn/ D 1p
2	

np j�j� n
2 expf�1

2

nX

iD1
.yi � �/0��1.yi � �/g: (48)

Now either matching the form of the g.�/ function between (48) and (38) or by
taking the limit � ! 1, the distribution of A under normality (48) can be easily
derived from (46) or (47), respectively. The distribution has the form

f .A/ D 1

2
n1p
2 �p.

n1
2
/j�j n1

2

exp.�1
2

trace��1A/jAj n1�p�1
2 ; (49)

[see also Muirhead (1982, Theorem 3.2.1)] where

�p.
n1
2
/ D 	p.p�1/=4˘ p

jD1� Œ
1

2
.n1 C 1 � j/�:
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3 Parameter Estimation Difficulty Using Uncorrelated t
Sample

3.1 Likelihood Estimator of Mean � and Covariance Matrix
˙ Under Elliptical Model (38)

For elliptically contoured distribution (ECD) (38) for n uncorrelated responses,
Anderson et al. (1986, Theorem 1, p. 56) computed the MLE (maximum likelihood
estimator) of � and ˙ D �0� as

O�MLE D NY; ȮMLE D .np=d�/S (50)

where

S D A

n
D

nX

jD1
.Yj � NY/.Yj � NY/0=n;

and d� is a finite positive maximum of d
np
2 g�

np.d/, with g�
np.d/ as the spherical joint

density of y1; : : : ; yj; : : : ; yn. For example,
Normal case: Under normality

g�
np.d/ D .2	/�

np
2 exp.�d=2/;

and t case: Under t model with � d.f.,

g�
np.d/ D

h
�
�
2 � f.� C np/=2g=	 np

2 � .�=2/
i

f� C dg� �Cnp
2 :

3.1.1 O�MLE is Consistent for � Under ECD t Model

Under the ECD t model (35), the distribution of NY is given as

NY � tp.�;�=n; �/:

Thus, the consistency of NY follows from

EŒ NY� D �; Ltn!1varŒ NY� D Ltn!1Œ
�0�

n
� ! 0; (51)

where �0 D �
��2 .
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3.1.2 ȮMLE is Inconsistent for˙ Under ECD t Model

This inconsistency is discussed in details by Sutradhar (2004, Sect. 2). Notice that
under the ECD t model (35), it follows from (50) that Under (9) it follows that

ȮMLE D .np=d�/S D �0S D �

� � 2S;

where S D A
n . However, it follows from Sutradhar and Ali (1989, p. 161) that for

˙
1
2 D .muh/, the variances of the elements of S are given by

var.Suv/ D n�2.� � 2/=.� � 4/
2

4.n � 1/2

 
pX

hD1
muhmvh

!2

C 2.n � 1/

pX

hD1
m2

uhm2
vh C .n � 1/

X

h<`

.muhmv` C mu`mvh/
2

#

�.1 � 1

n
/2

 
pX

hD1
muhmvh

!2
: (52)

It is then clear from (52) that as n ! 1, the variance of the .u; v/th element of the
S matrix approaches to

Ltn!1var.Suv/ D
 

pX

hD1
muhmvh

!2
f.� � 2/=.� � 4/� 1g

D f2=.� � 4/g
 

pX

hD1
muhmvh

!2

D Œ2�2=f.� � 2/2.� � 4/g�
 

pX

hD1

uh
vh

!2
; (53)

where 
uh is the .u; h/th element of the �
1
2 matrix. It is then clear that the limiting

variances (and also covariances) are free from n, and they approach to certain finite
quantities based on the elements of the � matrix and the d.f. of the t-distribution.
Consequently, the ȮMLE derived in Anderson et al. (1986) is not a consistent
estimator for˙ under the elliptic t model (35).

Remark that as the sample covariance matrix S is not consistent for˙ , the James-
Stein and Stein’s orthogonality invariant estimators (of˙) constructed in Kubokawa
and Srivastava (1977) are in fact function of the elements of the inconsistent sample
covariance matrix. The inconsistency of S for ˙ also implies that there may not
exist any consistent estimators for the shape parameter � or the kurtosis parameter
�.�/ under the ECD t distribution (35).
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Understanding Inconsistency of S for Simpler Univariate Case

Consider the univariate response case where p D 1. Also consider a general
regression case with EŒYi� D x0

iˇ where xi is a q � 1 covariate vector and ˇ is
the q-dimensional regression effect, whereas in the joint t model (35) EŒYi� D �

is a constant scalar quantity. Next by using � D 
2 for the univariate case, the
uncorrelated sample based joint pdf (35) reduces to n-dimensional t distribution as

f .y1; : : : ; yn/ D c.�; n/.
2/�
n
2 Œ� C

nX

jD1
f.
2/�1.yj � x0

jˇ/
2g�� �Cn

2 : (54)

The objective of this section is to examine whether s2 D 1
n

Pn
jD1.yj � x0

jˇ/
2 is

consistent estimator for �2 D �
��2


2.
Suppose that dj D .yj � x0

jˇ/. It then follows that dj � t.0;� D 
2; �/.
Consequently,

�2 D Ed2j D EŒYj � x0
jˇ�

2

D �

� � 2

2; (55)

yielding EŒs2� D 1
n Œn�


2=.� � 2/� D �
��2


2. So s2 is unbiased for �2 D �
��2


2.
Next we compute var.s2/ as follows.

varŒs2� D 1

n2

2

4
nX

jD1
varŒd2j �C

nX

j¤k

covŒd2j ; d
2
k �

3

5 (56)

D 1

n2

2

4
nX

jD1
fEd4j � .Ed2j /

2g C
nX

j¤k

fEŒd2j d2k � � Ed2j Ed2kg
3

5 ;

because dj and dk are uncorrelated (d2j and d2k are correlated) but not independent.
Now under t distribution with 
2 D 1, say, one writes

EŒd2j � D �

� � 2
; �4 D EŒd4j � D 3�2

.� � 2/.� � 4/
;

and

EŒd2j d2k � D �2;2 D �2

.� � 2/.� � 4/ :
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It then follows from (56) that

Ltn!1varŒs2� D EŒd2j d2k � � Ed2j Ed2k

D Œ
�2

.� � 2/.� � 4/ � Œ
�

� � 2
�2�

D �2

� � 2
Œ
1

� � 4 � 1

� � 2 �

D 2Œ
�

� � 2
�2

1

� � 4
; (57)

a constant function of �, which is zero under the normal case only. Thus s2 is not
mean squared error consistent for �2 D �

��2

2.

Understanding Inconsistency of s2 in a Simpler Alternative Way

Take 
2 D 1. In the normal case, for known ˇ,

EŒs2� D EŒ
1

n

nX

jD1
.yj � x0

jˇ/
2� D 1

n
EŒ�2n� D 1

n
n D 1

varŒs2� D 1

n2
varŒ�2n� D 1

n2
2n D 2

n
! 0; as n ! 1:

But, if yj � t.x0
jˇ; 1; �/, then .yj � x0

jˇ/
2 � F1;� . It implies that

EŒs2� D EŒ
1

n

nX

jD1
.yj � x0

jˇ/
2� D 1

n
nEŒF1;�� D 1

n
n

�

� � 2
D �

� � 2 :

Hence s2 is an unbiased estimator of �2 D �
��2 .

Next we compute the variance of s2 as follows.

varŒs2� D 1

n2
varŒ

nX

jD1
.yj � x0

jˇ/
2��

D 1

n2
�
nvarf.yj � x0

jˇ/
2g

C n.n � 1/covf.yj � x0
jˇ/

2; .yk � x0
kˇ/

2g	

D 1

n
Œ
2�2.� D 1 � 2/

1.� � 2/2.� � 4/
�C .1 � 1

n
/c.�/
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D c.�/C 1

n
.v.�/ � c.�//

! c.�/; as n ! 1:

Thus, s2 is not consistent for �2 D �
��2 .

3.2 O�MLE Does Not Exist

For convenience, without any loss of generality, consider� D 0 and� D Ip in (35),
and attempt to maximize the likelihood function

L.�/ D c.�; np/

8
<

:
1C

nX

jD1
y0

jyj=�

9
=

;

� �Cnp
2

; (58)

with respect to �. Note that in (58),

c.�; np/ D
h
�
�
2 � f.� C np/=2g=	 np

2 � .�=2/
i
;

which is an increasing function of � for fixed n and p. Furthermore, as
Pn

jD1 y0
jyj and

np are fixed for a given data set, it also follows that the spherical function in (58) is
an increasing function of �. Thus, it is intuitively clear that the joint density function
in (58) is maximized at � D 1. Consequently there does not exist any MLE for �
for the ECD t distribution (35) or spherical t distribution (58), as � D 1 is the
normal case.

3.2.1 Moment Estimator of �; Say O�M Is Not Consistent for �

The moment estimator of � has the same formula (23) as under the independent
case. The estimator is given by

O�M D 2Œ2 Ǒ�
2;M � f �.s/�

Œ Ǒ�
2;M � f .s/�

(59)

where for S D A
n�1 D Pn

jD1.Yj � NY/.Yj � NY/0=.n � 1/,

Ǒ�
2;M D 1

n

nX

jD1
Œ.yj � Ny/0S�1.yj � Ny/�2; (60)
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and for S D .shu/; S�1 D .shu/,

f .s/ D
2

43
pX

hD1
.shh/2.shh/

2

C
pX

h¤h0

.sh0h0/2fshhsh0h0 C .shh0

/2g
3

5 : (61)

Now recall from (19) and (20) that

� D 2Œ2ˇ�
2 � f �.�/�

Œˇ�
2 � f �.�/�

; (62)

where ˇ�
2 and f �.�/ are given by (19) and (21), respectively. Next because under the

ECD t model it is shown in Sect. 3.1.2 that S is inconsistent for ˙ , it then follows
that f �.s/ and Ǒ�

2;M are bound to be inconsistent for f �.�/ and ˇ�
2 , respectively.

Consequently, O�M in (59) would be inconsistent for � defined by (62).

4 Estimation of Parameters for Clustered (Familial
or Longitudinal) Regression Models with t Data

It was demonstrated in Sect. 3 that when n uncorrelated multi-dimensional
(p-dimensional) t responses are collected, they can not be used for consistent
estimation for the scale (covariance matrix) and shape (degrees of freedom)
parameters of the distribution. However, as discussed in Sect. 2.1, this estimation
difficulty does not arise for the cases when the n responses are independent. Now
because there are situations in practice such as in a clustered regression setup where
n uncorrelated or correlated observations (say p-dimensional) are collected from n
members of a large number of independent groups/families (say K clusters), one
may therefore be able to combine the aforementioned two models (uncorrelated
responses from independent clusters) to form a clustered regression model in order
to analyze such clustered t data. The purpose of this section is to deal with three
clustered models (CM), namely,

CM1. Elliptical t model for uncorrelated familial data: Under this model,
multi-dimensional responses (those follow a multi-variate t distribution) along
with a set of multidimensional covariates will be collected from the members of
a large number of independent clusters/groups (such as foot ball teams), where
the responses from the members in a group may be uncorrelated.

CM2. Elliptical t model for correlated familial data: This model is similar to
CM1 but the responses from the members of a family (such as a family with
parents, brother and sister) will be correlated.
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CM3. Elliptical t model for correlated longitudinal data: Under this model, a
univariate or multivariate t responses are repeatedly collected over a small period
of time from a large number of independent individuals.

These three models along with suitable estimation techniques for the consistent
estimation of the parameters of these models are discussed in the following three
subsections.

4.1 Elliptical t Model for Uncorrelated Clustered
(Familial) Responses

Let there be K independent national football teams with n members selected
from each team. Suppose that a p dimensional response from each member is
collected, and yij D Œyij1; : : : ; yiju; : : : ; yijp�

0 denotes this response from the jth
(j D 1; : : : ; n) member of the ith .i D 1; : : : ;K/ team/family/cluster. Also suppose
that a c dimensional covariate vector is collected from each member and xiju D
Œxiju1; : : : ; xijuc�

0 represents this c-dimensional covariate vector. For convenience,
construct the covariate matrix xij W p � pcI and the pc-dimensional vector of
regression effects ˇ D Œˇ0

1; : : : ; ˇ
0
u; : : : ; ˇ

0
p�

0, with ˇu D Œˇu1; : : : ; ˇuc�
0.

We now construct the elliptical t model for the uncorrelated responses from the
members of the ith team/cluster, as

f .y0
i1; : : : ; y

0
ij; : : : ; y

0
in/ D c�.�; n; p/j�j� n

2

�Œ� C
nX

jD1
f.yij � xijˇ/

0��1.yij � xijˇ/g��
�Cnp
2 (63)

� c��.�; n; p/j˙ j� n
2

�
2

41C .� � 2/�1
nX

jD1
f.yij � xijˇ/

0˙�1.yij � xijˇ/g
3

5

� �Cnp
2

; (64)

where covŒYij� D �
��2� D ˙ .

It is of interest to obtain the consistent estimates for the parameters, namely
ˇ; ˙; and �.

4.1.1 Consistent Estimator of˙

In this section, for known ˇ we construct a moment estimator of Sigma and show
that this estimator is consistent.
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Notice from (64) that ˙ is a common covariance matrix for yij for all
i D 1; : : : ;K, and j D 1; : : : ; n. Thus, we construct a moment estimator for
˙ as

ȮM D .s�
uv/ D 1

K

KX

iD1
Si

D 1

K

KX

iD1
Œ

nX

jD1
f.yij � xijˇ/.yij � xijˇ/

0g=n�; (65)

where xij D

2

6
6
6
6
4

x0
ij1 0

0 : : : 00
00 x0

ij2 : : : 0
0

:::
:::

:::

00 00 : : : x0
ijp

3

7
7
7
7
5

0

. Now to show that ȮM , one needs to show that

LtK!1cov.s�
uv; s

�
h`/ D 0: (66)

For the purpose, we consider two general elements of Si as

si;uv D
nX

jD1
f.yiju � x0

ijuˇu/.yijv � x0
ijvˇv/

0g=n (67)

si;h` D
nX

jD1
f.yijh � x0

ijhˇh/.yij` � x0
ij`ˇ`/

0g=n; (68)

Next similar to (27), by using Muirhead (1982, Eq. (3), p. 42; Exercise 1.33(b),
p. 49), and also by using the notation � D 2

��4 as the kurtosis parameter of the t
distribution, and˙ D .�uv/ W p � p, we obtain

covŒsi;uv; si;h`� D 1

n2
Œn.� C 1/f�uv�h` C �uh�v` C �u`�vhg

C n.n � 1/.� C 1/�uv�h`� � �uv�h`; (69)

yielding (for all p2 � p2 elements)

LtK!1cov.s�
uv; s

�
h`/ D LtK!1

1

K2
ŒK��uv�h`

C K.� C 1/f�uh�v` C �u`�vhg=n�

D 0; (70)

which is (66). Thus, ȮM D .s�
uv/ D 1

K

PK
iD1 Si is a consistent estimator of ˙ .
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4.1.2 Consistent Estimator of the Kurtosis Parameter �

It is of interest to obtain a consistent estimator for the kurtosis parameter � D 2=

.� � 4/, where � is the common shape parameter of the distribution of yij for all
i D 1; : : : ;K and j D 1; : : : ; n. We will derive a method of moments estimator to
achieve this goal.

For the purpose, we first compute the formula for a measure of kurtosis, say ˇ�
2i

(Mardia 1970) using the data from the ith cluster/team/group/family. Note that the
responses from the ith cluster is represented by

yi D Œy0
i1; : : : ; y

0
ij; : : : ; y

0
in�

0 W np � 1;
and this response vector has the np-dimensional elliptical t distribution given by

f .yi/ D c��.�; n; p/jIn ˝˙ j� 1
2 (71)

� �1C .� � 2/�1f.yi � Xiˇ/
0ŒIn ˝˙�1�.yi � Xiˇ/g

	� �Cnp
2 ;

where Xi D

2

6
6
6
66
6
4

xi1 W p � pc
:::

xij W p � pc
:::

xin W p � pc

3

7
7
7
77
7
5

0

W np � pc.

Following Mardia (1970) one may then write the formula for the so-called
measure of kurtosis as

ˇ�
2i D EŒ.Yi � Xiˇ/

0.In ˝˙�1/.Yi � Xiˇ/�
2: (72)

Next, using a transformation from the elliptic t to a spherical t, namely

Zi D .In ˝˙� 1
2 /.Yi � Xiˇ/;

ˇ�
2i in (72) reduces to

ˇ�
2i D EŒZ0

i Zi�
2 D EŒ

npX

hD1
Z2ih�

2

D EŒ
npX

hD1
Z4ih C

npX

h¤`
Z2ihZ2i`�: (73)

Now because

EŒZ4ih� D 3.� C 1/ and EŒZ2ih� D 1; (74)
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(Muirhead 1982, p. 41), one obtains ˇ2i by (73) as

ˇ�
2i D 3np.� C 1/C np.np � 1/

D npŒ3� C np C 2� D ˇ�
2 ; say: (75)

Recall that ȮM (65) is a consistent estimator of˙ . Now, as y1; : : : ; yi; : : : ; yK are
independent elliptical observations, it follows that

Ǒ�
2 D 1

K

KX

iD1
Œ.Yi � Xiˇ/

0.In ˝ Ȯ �1
M /.Yi � Xiˇ/�

2 (76)

converges in probability to ˇ�
2 D np.3� C np C 2/ defined in (75), yielding the

unbiased estimator

O� D 1

3np

h Ǒ�
2 � n2p2 � 2np

i
; (77)

for �. This is a consistent estimator under some mild condition on the variance of
the estimator.

4.1.3 Consistent Estimator of the Kurtosis Parameter ˇ

In last two sections, we derived the formulas for the consistent estimators of ˙ and
�, under the assumption that ˇ is known. We now obtain a consistent estimator for
this regression parameter vector.

GLS Estimate of ˇ

The GLS (generalized least squared) estimate of ˇ is obtained by solving the
estimating equation

KX

iD1
X0

i.In ˝˙�1/.yi � Xiˇ/ D 0; (78)

which has the formula given by

Ǒ
GLS D

"
KX

iD1
X0

i.In ˝˙�1/Xi

#�1 KX

iD1
X0

i.In ˝˙�1/yi (79)
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D .

KX

iD1
Pi/

�1
KX

iD1
Qiyi; (say): (80)

By using the Lindeberg-Feller central limit theorem (Amemiya 1985, Theo-
rem 3.3.6), this GLS estimator can be shown consistent for ˇ.

ML (Maximum Likelihood) Estimate of ˇ

The likelihood function by (71) has the form

L.ˇ/ D Qc˘K
iD1

�
1C .� � 2/�1

˚
.yi � Xiˇ/

0ŒIn ˝˙�1�

� .yi � Xiˇ/g��
�Cnp
2

D Qc˘K
iD1

�
q

� �Cnp
2

i

�
; (81)

yielding the log likelihood equation for ˇ as

@logL

@̌
D � C np

2

KX

iD1

@

@̌
logqi D 0: (82)

The ML estimate, the solution of (82), is then given by

Ǒ
ML D

 
KX

iD1
q�1

i Pi

!�1 KX

iD1
q�1

i Qiyi: (83)

An Efficiency Comparison Between the GLS and ML Estimates of ˇ

Both Ǒ
GLS and Ǒ

ML are unbiased for ˇ. However, it can be shown that the asymptotic
relative efficiency of Ǒ

ML to Ǒ
GLS is: �

��2 . This is because,

V2 D covŒ Ǒ
GLS� D

 
KX

iD1
Pi

!�1
; (84)

and

V1 D covŒ Ǒ
ML� D �E

�
@2logL

@̌ @̌ 0

�
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D �.� C np/

.� � 2/.� C np C 2/

KX

iD1
Pi: (85)

Hence for large n so that Œ� C np� � Œ� C np C 2�, V�1
1 V2 D �

��2 Ipc, showing the
aforementioned efficiency.

Thus, for small �, the maximum likelihood estimator of ˇ will be highly more
efficient than the generalized least squared estimate. For large �, Ǒ

GLS and Ǒ
ML are

identical, which is obvious.

4.2 Elliptical t Model for Correlated Clustered (Familial)
Responses

Recall from (64) or more specifically from (71) that the linear regression for the
uncorrelated clustered data has the form

yi D Xiˇ C �i; �i � t.0; In ˝˙; �/:

However it can happen that the multivariate t responses are collected from n
members of a family (household unit) instead of a foot ball team. The n responses
in such cases will be correlated. This type of multivariate familial data may be
modeled as

yi D Xiˇ C 1np�i C �i; (86)

where �i is the ith family effect common to the p-dimensional responses of all n

members. Further assume that �i
iid� .0; �2� / and �i and �i are independent. Then, for

Uk as an k � k unit matrix, one obtains

covŒYi� D �2�Unp C ŒIn ˝˙�

D ˙� (say); (87)

yielding the variance-covariance breakdown for all n members as

covŒYij� D �2�Up C˙; for j D 1; : : : ; n (88)

covŒYij;Yik� D �2�Up; for j ¤ k D 1; : : : ; n: (89)

Thus the pair-wise members are not uncorrelated under the present familial model.
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4.2.1 Estimation of the Regression Effects ˇ

Following (78)–(79), the GLS estimate for ˇ under the present model has the
formula

Ǒ
GLS D

"
KX

iD1
X0

i.˙
��1

/Xi

#�1 KX

iD1
X0

i.˙
��1

/yi (90)

D .

KX

iD1
P�

i /
�1

KX

iD1
Q�

i yi; (say): (91)

Notice that ˙��1 in (90) may be directly computed as

˙��1 D ŒIn ˝˙�1� � �2�
"
ŒIn ˝˙�1�UnpŒIn ˝˙�1�
1C �2� 1

0
npŒIn ˝˙�1�1np

#

: (92)

Also it follows that the GLS estimator in (91) has the covariance matrix given by

covŒ Ǒ
GLS� D .

KX

iD1
P�

i /
�1: (93)

4.2.2 Estimation of the Kurtosis Parameter �

By similar calculations as in Sect. 4.1.2, we obtain the formula for the moment
estimator of � as

O� D 1

3np

h OQ̌
2 � n2p2 � 2np

i
; (94)

where the sample measure of kurtosis OQ̌
2 is computed by

OQ̌
2 D 1

K

KX

iD1
Œ.Yi � Xi

Ǒ/0f Ȯ��1g.Yi � Xi
Ǒ/�2: (95)

Notice that the formula for OQ̌
2 in (95) is similar to that of Ǒ�

2 in (76). They are,
however, different. This is because the var.Yi/ has the form In ˝ ˙ in Ǒ�

2 in (76),
whereas it has a different form, namely ˙� D �2�Unp C ŒIn ˝˙�, in (95).
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4.2.3 Estimation of the Variance Component Parameter � 2�

First we write the moment estimate for �2�Up C˙ as

4�2�Up C˙ D 1

K

KX

iD1
Si

D 1

K

KX

iD1
Œ

nX

jD1
f.yij � xijˇ/.yij � xijˇ/

0g=n�: (96)

where xij is given in (65). However, notice from (88) and (89) that

covŒYij� � covŒYij;Yik� D ˙; and (97)

covŒYij�C covŒYij;Yik� D 2�2�Up C˙: (98)

Hence, one obtains

52�2�Up C˙ D 1

K

KX

iD1
Œ

nX

jD1

nX

kD1
f.yij � xijˇ/.yik � xikˇ/

0g=n2�: (99)

and

Ȯ D 1

K

KX

iD1

2

4
nX

jD1
f.yij � xijˇ/.yij � xijˇ/

0g=n

�
nX

j¤k

f.yij � xijˇ/.yik � xikˇ/
0g=fn.n � 1/g

3

5 : (100)

yielding

12�2�Up D 1

K

KX

iD1
Œ

nX

jD1

nX

kD1
f.yij � xijˇ/.yik � xikˇ/

0g=n2�

� 1

K

KX

iD1

2

4
nX

jD1
f.yij � xijˇ/.yij � xijˇ/

0g=n

�
nX

j¤k

f.yij � xijˇ/.yik � xikˇ/
0g=fn.n � 1/g

3

5 (101)

D QS D .Qsuv/ W p � p: (102)
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It then follows that

O�2� D 1

2p2

pX

uD1

pX

vD1
Qsuv: (103)

4.3 Longitudinal Elliptical t Model with Correlated Repeated
Observations

Suppose that the ith individual provides T repeated multivariate (p-dimensional)
responses. Let

yiu D Œyi1u; : : : ; yitu; : : : ; yiTu�
0

denotes this T-repeated responses for uth variable collected at time t D 1; : : : ;T.
We write the means of yiu as

EŒYiu� D xiuˇu; (104)

where xiu D

2

66
6
4

x0
i1u

x0
i2u
:::

x0
iTu

3

77
7
5

W T � c, and ˇu D Œˇu1; : : : ; ˇuc�
0.

Further suppose that yiu follows a general auto-correlation structure given by

corr.yiu/ D

2

6
6
6
4

1 �1 : : : �T�1
�1 1 : : : �T�2
:::

:::
:::

�T�1 �T�2 : : : 1

3

7
7
7
5

D Ciu.�/; (105)

(Sutradhar 2011, Sect. 2.2) for all u D 1; : : : ; p. It then follows that

covŒYiu� D Q̇uu D �uuCiu.�/; (106)

where �uu is the variance of yitu for all individuals at any time point t. Also
suppose that the structural covariances are the same irrespective of time points.
Thus, we write

covŒYiu;Y
0
iv� D �uvUT

D Q̇uv: (107)
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Next, define Xi D

2

6
66
4

xi1 0 : : : 0

0 xi2 : : : 0
:::
:::

:::

0 0 : : : xip

3

7
77
5

W pT � pc, ˇ D Œˇ0
1; : : : ; ˇ

0
u; : : : ; ˇ

0
p�

0. It then

follows that

Yi D Œy0
i1; : : : ; y

0
iu; : : : ; y

0
ip�

0 � tpT.Xiˇ; Q̇ ; �/; (108)

where Q̇ D

2

6
6
6
4

Q̇
11

Q̇
12 : : : Q̇

1p
Q̇
21

Q̇
22 : : : Q̇

2p
:::

:::
:::

Q̇p1 Q̇p2 : : : Q̇pp

3

7
7
7
5

W Tp � Tp. That is,

Q̇ D

2

6
6
6
4

�11Ci1.�/ �12UT : : : �1pUT

�21UT �22Ci2.�/ : : : �2pUT
:::

:::
:::

�p1UT �p2UT : : : �ppCip.�/

3

7
7
7
5
: (109)

4.3.1 GLS Estimation for ˇ

Using Q̇ from (109) and following (90)–(91), the GLS estimate of ˇ is obtained as

Ǒ
GLS D

"
KX

iD1
X0

i.
Q̇ �1/Xi

#�1 KX

iD1
X0

i.
Q̇ �1/yi (110)

D .

KX

iD1
QPi/

�1
KX

iD1
QQiyi; (say): (111)

4.3.2 Moment Estimation for Kurtosis Parameter �

Under the present longitudinal model, we first obtain a sample measure of kurto-
sis as

Ǒ�
2 D 1

K

KX

iD1
Œ.Yi � Xi

Ǒ/0. OQ̇ �1
/.Yi � Xi

Ǒ/�2 (112)
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which converges in probability to ˇ�2 D np.3� C np C 2/, yielding

O� D 1

3np

h Ǒ�
2 � n2p2 � 2np

i
: (113)

This formula is similar to (94) with a difference in the formula for the sample
measure of kurtosis.

4.3.3 Moment Estimation for Lag ` Autocorrelation

Using EŒYitu� D x0
ituˇu, and varŒYitu� D �uu, the moment estimate of lag ` correlation

may be computed as

O�` D Œ
PK

iD1
Pp

uD1
PT�`

tD1 Qyitu Qyi;tC`;u�=Kp.T � `/
Œ
PK

iD1
Pp

uD1
PT

tD1 Qy2itu�=KpT
; (114)

(Sutradhar 2011, Sect. 2.2.2) where

Qyitu D yitu � x0
ituˇup

�uu
:

4.3.4 Moment Estimation for˙=.�uv/ W p � p

For ˙ estimation, re-organize yi as follows:

yit D Œyit1; : : : ; yitu; : : : ; yitp�
0 ! yi D Œy0

i1; : : : ; y
0
it; : : : ; y

0
iT �

0:

Then Q̇ in (109) takes the form

covŒYi� D ˝ D

2

6
6
6
4

˙ �˙ : : : �T�1˙
�˙ ˙ : : : �T�2˙
:::

:::
:::

�T�1˙ �T�2˙ : : : ˙

3

7
7
7
5

D C.�/˝˙: (115)

Next write

EŒYit� D xitˇ; with ˇ D Œˇ0
1; : : : ; ˇ

0
u; : : : ; ˇ

0
p�

0:
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Also, use xit D

2

66
6
4

x0
it1 0

0 : : : 00
00 x0

it2 : : : 0
0

:::
:::

:::

00 00 : : : x0
itp

3

77
7
5

W p � pc, and

Xi D

2

6
6
66
6
6
4

xi1 W p � pc
:::

xit W p � pc
:::

xiT W p � pc

3

7
7
77
7
7
5

W Tp � pc:

We may then write

EŒYi� D Xiˇ;

and following (65), for example, obtain the moment estimate of ˙ as

Ȯ D 1

K

KX

iD1

"
TX

tD1
f.yit � xitˇ/.yit � xitˇ/

0g=T

#

: (116)

5 Testing for Linear Regression in Uncorrelated t Models

In Sect. 2.2, we have discussed the distribution theory for various familiar statistics
such as marginal properties and linear combination of uncorrelated elliptical t
variables. In this section, we continue discussing the distribution theory for some
other classical statistics which are often used for testing useful hypothesis in linear
regression setup. One of these statistics is the normality based F-test statistic used
for testing linear hypothesis in terms of regression parameters. We remark here that
almost 3 decades ago the null and non-null distributional aspects of the normality
based F-statistic were discussed by Sutradhar (1988). For the sake of completeness,
we discuss below these distribution theories.

5.1 Classical F-Statistic Is Null Robust

Consider the linear regression

Y D Xˇ C �; (117)
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for the purpose of testing the hypothesis

H0 W Cˇ D 0 versus H1 W the negation of H0;

where Y is a n � 1 response variable, X is a known design matrix of order n � m, ˇ
is a m � 1 vector of unknown parameters, � is a n � 1 error variable, and C is a r � m
matrix of known coefficients with rank .C/ D q, say.

Under normality, that is, when � � N.0; �2In/, it is well known that this null
hypothesis may be tested by using the classical F-statistic

F� D .W2 � W1/=W1; (118)

where W1 D Y 0ŒIn � X.X0X/�1X0�Y=�2 is the residual sum of squares of the full
model, and W2 D Y 0ŒIn � Z.Z0Z/�1Z0�Y=�2 is the residual sum of squares of the
reduced model EŒY� D Z˛ under the H0. It is also well known that under H0,
qF�=.n�m/ follows the standard F distribution with degrees of freedom parameters
q and n � m, that is,

qF�=.n � m/ � F.q; n � m/; (119)

whereas under the H1, qF�=.n � m/ follows the non-central F0 distribution, that is,

qF�=.n � m/ � F0.q; n � mI ı�/; (120)

with ı� as the non-centrality parameter defined as

ı� D ˇ0ŒX0X � X0Z.Z0Z/�1Z0X�ˇ=�2:

Now following (16) for p D 1, consider uncorrelated t joint distribution for the
errors in (117), that is,

f .y1; : : : ; yn/ D c.�; n/.
2/�
n
2 (121)

�Œ� C
nX

jD1
f.yj � x0

jˇ/
0.
2/�1.yj � x0

jˇ/g��
�Cn
2 :

It was demonstrated by Sutradhar (1988) that when Y follows this t distribu-
tion (121), the F�-statistic in (118) still follows the F distribution as in (119)
under the H0, but, under the H1, this statistic F� follows a distribution which is
different than the non-central F distribution given by (120). We discuss this non-
null distribution in the next section.
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5.2 Classical F-Statistic Is Not Non-null Robust

To be specific, the distribution of F� under H1 has the form

g.f �/ D 2

� � 2
1X

rD0
ˇ.ı�=.��2//



r C 1;

�

2
� 1

�
ˇf �



r C q

2
;

n � m

2

�
; (122)

(Sutradhar 1988) where

ˇx.`; u/ D � .`C u/x`�1

� .`/� .u/.1C x/`Cu
;

and ı� is the non-centrality parameter given by ı� D ˇ0ŒX0X�X0Z.Z0Z/�1Z0X�ˇ=�2,
with �2 D �

��2

2 D varŒYj� for j D 1; : : : ; n, and Z is the design matrix of the

reduced model.
Note that the distribution of F� in (122) reduces to the non-central F0 distribu-

tion (120) for � ! 1. Thus, in general, the power of the F test for testing the H0

under the t distribution (121) depends on the degrees of freedom. Thus the test is
null robust but not non-null robust.

5.2.1 Power Computation

The power of the F� statistic under the non-null distribution (122) may be
computed as

P.�; ı�; ˛/ D 2

� � 2

1X

rD0
ˇ.ı�=.��2//



r C 1;

�

2
� 1

�

�
Z 1

F0=.2rC1/
g.f �I 2r C 1; n � m/df �; (123)

where

F0 � F.q; n � m; ˛/; and g.f �I 2r C 1; n � m/

is the usual central .n�m/F distribution with d.f. 2rC1; and n�m. Next, substitute
.2r C 1/f �=.n � m/ D x and 1=.1C x/ D u in (123). It then follows that the power
of the test has the formula
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P.�; ı�; ˛/ D 2

� � 2
1X

rD0
ˇ.ı�=.��2//Iu0

�
n � m

2
; r C 1

2

�
; (124)

where u0 D 1=Œ1 C fq=.n � m/gF0� and Iu.a; b/ is the well known Karl Pearson
(1934) incomplete ˇ-function.

For a numerical example on power computation, consider, for example,

ˇ D .ˇ1; ˇ2/
0; C D Œ0; 1�, q D rank.C/ D 1, and m D 2I X D

�
1 1 : : : 1

X1 X2 : : : Xn

�0
.

Then for ı� D ˇ21
Pn

jD1.xj � Nx/2=�2, using  D .ı�=2/ 12 D 3:0, n D 16, one
obtains the powers by (124) for � � 5; 8; 10; 12; 15; 20; 25; and 1 as

0:87; 0:91; 0:92; 0:94; 0:94; 0:95; and 0:97;

respectively. It is clear that the t distribution based powers are smaller than the
normal based power.

6 Concluding Remarks

When a multivariate response follows an elliptic t distribution, the joint distribution
of independent multivariate responses do not, however, follow an elliptic t distribu-
tion. Unlike the normal distribution theory, this difference in distributions between
marginal and joint responses makes the exact distribution theory using independent
t samples extremely complex. This difficulty has been discussed in brief in Sect. 2.1.
However, when multivariate responses are uncorrelated but dependent, one may
construct a joint distribution which has the same form as that of the marginal
elliptical t distribution. This provides closed form exact distribution theories for
many t samples based statistics. The distribution theories for some of these statistics
under uncorrelated elliptical t model are discussed in Sect. 2.2. But, the parameter
estimation under such uncorrelated t model encounters some difficulties (see
Sect. 3), specially for the scale and shape parameters. This difficulty is removed by
proposing several familial longitudinal regression models with t errors, where each
of the independent families may contain uncorrelated or correlated multivariate t
responses. These new models are discussed in details in Sect. 4. It is expected that
the materials of this paper, specially the new models discussed in Sect. 4, would be
useful in fitting heavy tailed data following elliptical t distributions.

Acknowledgements The author thanks the audience for their comments and suggestions.



38 B.C. Sutradhar

References

Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge, MA (1985)
Anderson, T.W., Fang, K.T., Hsu, H.: Maximum likelihood estimates and likelihood ratio criteria

for multivariate elliptically contoured distributions. Can. J. Stat. 14, 55–59 (1986)
Chib, S., Tiwari, R.C., Jammalamadaka, S.R.: Bayes prediction in regressions with elliptical errors.

J. Econ. 38, 349–360 (1988)
Chib, S., Osiewalski, J., Steel, M.F.J.: Posterior inference on the degrees of freedom parameter in

multivariate-t regression model. Econ. Lett. 37, 391–397 (1991)
Cornish, E.A.: The multivariate t distribution associated with a set of normal sample deviates. Aust.

J. Phys. 7, 531–542 (1954)
Dunnett, C.W., Sobel, M.: A bivariate generalization of Student’s t-distribution with tables for

certain special cases. Biometrika 41, 153–169 (1954)
Fisher, R.A.: Applications of “Student’s” distribution. Metron 5, 90–104 (1925)
Fisher, R.A., Healy, M.J.R.: New tables of Behren’s test of significance. J. R. Stat. Soc. B 18,

212–216 (1956)
Ghosh, B.K.: On the distribution of the difference of two t-variables. J. Am. Stat. Assoc. 70,

463–467 (1975)
Johnson, N.L., Kotz, S.: Continuous Multivariate Distributions. Wiley, New York (1972)
Kariya, T.: Robustness of multivariate tests. Ann. Stat. 9, 1267–1275 (1981)
Kelker, D.: Distribution theory of spherical distribution and a location scale parameter generaliza-

tion. Sankhya A 32 , 419–430 (1970)
Kotz, S., Nadarajah, S.: Multivariate T-Distributions and Their Applications. Cambridge University

Press, Cambridge (2004)
Kubokawa, T., Srivastava, M.S.: Robust improvements in estimation of mean and covariance

matrices in elliptically contoured distribution. Technical Report No. 9714. Department of
Statistics, University of Toronto (1977)

Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57,
47–55 (1970)

Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)
Pearson, K.: Tables of the Incomplete ˇ-Function. University Press, London (1934)
Raiffa, H., Schlaifer, R.: Applied Statistical Decision Theory. Harvard University Press,Cambridge,

MA (1961)
Student: Probable error of a correlation coefficient. Biometrika 6, 302–310 (1908)
Sutradhar, B.C.: On the characteristic function of multivariate Student t-distribution. Can. J. Stat.

14, 329–337 (1986)
Sutradhar, B.C.: Testing linear hypothesis with t error variable. Sankhya B 40, 175–180 (1988)
Sutradhar, B.C.: Discrimination of observations into one of two t populations. Biometrics 46,

827–835 (1990)
Sutradhar, B.C.: Score test for the covariance matrix of the elliptical t-distribution. J. Multivar.

Anal. 46, 1–12 (1993)
Sutradhar, B.C.: On cluster regression and factor analysis models with elliptic t errors. In: Ander-

son, T.W., Fang, K.T., Olkin, I. (eds.) IMS Lecture Notes-Monograph Series, Institute of
Mathematical Statistics, Hayward, California, vol. 24, pp. 369–383 (1994)

Sutradhar, B.C.: Multivariate t distribution. In: update volume 2 of Encyclopedia of Statistical
Sciences. Wiley, New York, pp. 440–448 (1998)

Sutradhar, B.C.: On the consistency of the estimators of the parameters of elliptically contoured
distributions. In the special issue of Journal of Statistical Sciences published in honour of
Professor M. S. Haq, U. W. O., ed. B.K. Sinha, Indian Statistical Institute, 3, 91–103 (2004)

Sutradhar, B.C.: Dynamic Mixed Models for Familial Longitudinal Data. Springer Series in
Statistics, 512 pp. Springer, New York (2011)

Sutradhar, B.C., Ali, M.M.: Estimation of the parameters of a regression model with a multivariate
t error variable. Commun. Stat. Theory Methods 15, 429–450 (1986)



Advances and Challenges in Inferences for Elliptically Contoured t Distributions 39

Sutradhar, B.C., Ali, M.M.: A generalization of the Wishart distribution for the elliptical model
and its moments for the multivariate t model. J. Multivar. Anal. 29, 155–162 (1989)

Walker, G.A., Saw, J.G.: The distribution of linear combinations of t variables. J. Am. Stat. Assoc.
73, 876–878 (1978)

Yuen, K.K., Murthy, V.K.: Percentage points of the t-distribution of the t statistic when the parent
is Student’s t. Technometrics 16, 495–497 (1974)

Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate Student-
t error terms. J. Am. Stat. Assoc. 71, 400–405 (1976)



Longitudinal Mixed Models with t Random
Effects for Repeated Count and Binary Data

R. Prabhakar Rao, Brajendra C. Sutradhar, and V.N. Pandit

Abstract Unlike the estimation for the parameters in a linear longitudinal mixed
model with independent t errors, the estimation of parameters of a generalized linear
longitudinal mixed model (GLLMM) for discrete such as count and binary data with
independent t random effects involved in the linear predictor of the model, may be
challenging. The main difficulty arises in the estimation of the degrees of freedom
parameter of the t distribution of the random effects involved in such models for
discrete data. This is because, when the random effects follow a heavy tailed t-
distribution, one can no longer compute the basic properties analytically, because of
the fact that moment generating function of the t random variable is unknown or can
not be computed, even though characteristic function exists and can be computed. In
this paper, we develop a simulations based numerical approach to resolve this issue.
The parameters involved in the numerically computed unconditional mean, variance
and correlations are estimated by using the well known generalized quasi-likelihood
(GQL) and method of moments approach. It is demonstrated that the marginal
GQL estimator for the regression effects asymptotically follow a multivariate
Gaussian distribution. The asymptotic properties of the estimators for the rest of
the parameters are also indicated.

Keywords Asymptotic normal distribution • Consistent estimation • Count and
binary panel data • Generalized quasi-likelihood • Regression effects • t random
effects • Simulating t observations • Stationary and non-stationary covariates
• Unconditional mean • Variance and correlations

R. Prabhakar Rao (�) • V.N. Pandit
Department of Economics, Sri Sathya Sai Institute of Higher Learning,
Prasanthi Nilayam, Andhra Pradesh, India
e-mail: rprabhakarrao@gmail.com; vnpandit@gmail.com

B.C. Sutradhar
Department of Mathematics and Statistics, Memorial University,
St. John’s, NL, Canada A1C5S7
e-mail: bsutradh@mun.ca

© Springer International Publishing Switzerland 2016
B.C. Sutradhar (ed.), Advances and Challenges in Parametric and Semi-parametric
Analysis for Correlated Data, Lecture Notes in Statistics 218,
DOI 10.1007/978-3-319-31260-6_2

41

mailto:rprabhakarrao@gmail.com
mailto:vnpandit@gmail.com
mailto:bsutradh@mun.ca


42 R. Prabhakar Rao et al.

1 Introduction

Let .yi1; : : : ; yit; : : : ; yiT/ denote the T repeated count or binary responses for the ith
subject, i D 1; : : : ;K. Also, let xit be the p � 1 vector of covariates corresponding to
yit, and ˇ is the p � 1 regression effects of xit on yit. Next suppose that in addition
to xit, the repeated responses of the ith individual are also influenced by one random
effect ��

i . Conditional on this random effect ��
i , some authors have modeled the

longitudinal correlations of the repeated counts and binary data by using lag 1
dynamic relationships. More specifically, Sutradhar and Bari (2007) have used an
AR(1) (auto-regressive order 1) type dynamic relationship to model the longitudinal
correlations for repeated count data. Similarly, Sutradhar et al. (2008) [see also
Amemiya (1985, p. 353), Manski (1987), and Honore and Kyriazidou (2000, p. 84)]
have used a lag 1 dynamic binary mixed logit (BDML) model to accommodate the
correlations of the repeated binary data. The unconditional correlation structures
in both of these papers have been computed under the normality assumption for

the random effects, specifically correlations are obtained by assuming that ��
i

iid�
N.0; �2� /. For convenience, we provide these correlation structures in brief for count
and binary data as follows.

1.1 Conditional and Unconditional (Normality Based)
Correlation Structures for Repeated Count Data

Suppose that

yi1j��
i � Poi.��

i1/ with ��
i1 D exp.x0

i1ˇ C ��
i /

yitj��
i D � ı Œyi;t�1j��

i �C Œditj��
i �; for t D 2; : : : ;T; (1)

where Poi.��
it/ refers to the Poisson distribution with mean parameter ��

it , and � ı
yi;t�1 D Pyi;t�1

sD1 bs.�/ with PrŒbs.�/ D 1� D �; PrŒbs.�/ D 0� D 1 � �, and
Œditj��

i � � Poi.��
it � ���

i;t�1/; with ��
it D exp.x0

itˇ C ���
�
i /. This model in (1) is

referred to as the Poisson AR(1) model which produces the correlation between yiu

and yit as

corr.Yiu;Yitj��
i / D �jt�uj

�
��

iu

��
it

� 1
2

; (2)

which is free from ��
i , but depends on the time dependent covariates and on �, a

correlation index parameter.
Note that the likelihood inference for the AR(1) model (1) is extremely compli-

cated. This is because under this model, one writes

f ..yi1; : : : ; yit; : : : ; yiT/j��
i / D f .yi1j��

i /˘
T
tD2Œfitjt�1.yitjyi;t�1; ��

i /� (3)
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where the conditional distribution, namely fitjt�1.yitjyi;t�1; ��
i / has a complicated

form given by

fitjt�1.yitjyi;t�1; ��
i / D expŒ�.��

it � ���
i;t�1/�

�
min.yit;yi;t�1/X

sitD0

yi;t�1Š�sit.1 � �/yit�sit .��
it � ���

i;t�1/yit�sit

sitŠ.yi;t�1 � sit/Š.yit � sit/Š
(4)

(Freeland and McCabe 2004). Furthermore, the integration of the conditional
likelihood function (3) over the Gaussian distribution of the random effects, i.e.,

��
i

iid� N.0; �2� /, is an additional complex problem. As opposed to the generalized
linear longitudinal mixed model (GLLMM) setup, Over the last two decades many
researchers, for example, Breslow and Clayton (1993), Lee and Nelder (1996),
Jiang (1998), Sutradhar (2004), among others have used the normality assumption
for the random effects in a generalized linear mixed model (GLMM) setup, and
discussed the estimation of ˇ and �2� . In the present GLLMM setup (1)–(2), there is
an additional correlation index parameter � to estimate.

When the normality assumption for the random effect ��
i is used in the count

panel data setup, the mean, variance and correlations of the repeated counts contain
three unknown parameters, namely ˇ; �2� ; and �. To be specific, by using the

moment generating function (mgf) of ��
i

iid� N.0; �2� /, that is, E��
i
.exp.a��

i // D
expŒ 1

2
a2�2� �, a being an auxiliary parameter, one obtains the three basic properties

of the count panel data as follows (see Sutradhar 2011, Sect. 8.1.1):

�it D EŒYit� D E��
i

EŒYitj��
i � D exp.x0

itˇ/E��
i
.exp.��

i // D expŒx0
itˇ C 1

2
�2� � (5)

�itt D varŒYit� D E��
i

varŒYitj��
i �C var��

i
EŒYitj��

i � D E��
i
��

it C var��
i
.��

it/

D exp.x0
itˇ/E��

i
exp.��

i /C exp.2x
0

itˇ/var��
i
.exp.��

i //

D �it C exp.2x
0

itˇ/Œexp.2�2� /� exp.�2� /�

D �it C Œexp.�2� / � 1��2it (6)

and for u < t, the unconditional covariance between yiu and yit, is given by

�iut D covŒYiu;Yit� D E��
i
Œcovf.Yiu;Yit/j��

i g�C cov��
i
Œ��

iu; �
�
it �

D �t�u exp.x0
iuˇ/E��

i
Œexp.��

i /�C exp.Œxiu C xit�
0ˇ/var��

i
fexp.��

i /g
D �t�u�iu C Œexp.�2� /� 1��iu�it; (7)
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yielding the lag t � u correlation

corr.Yiu;Yit/ D �t�u�iu C Œexp.�2� /� 1��iu�it

Œf�iu C Œexp.�2� / � 1��2iugf�it C Œexp.�2� / � 1��2itg�
1
2

: (8)

Notice that the unconditional mean (5) and the unconditional variance (6) are func-
tions in ˇ and �2� , whereas the unconditional covariances (7) and correlations (8)
are functions in ˇ; �2� , as well as the dynamic dependence or correlation index
parameter �. Remark that Sutradhar and Bari (2007), among others, have exploited
the aforementioned moments (5)–(8) to develop a four-moments based generalized
quasi-likelihood (GQL) approach for the estimation of these parameters ˇ; �2� ,
and �.

1.2 Conditional and Unconditional (Normality Based)
Correlation Structures for Repeated Binary Data

As indicated earlier, over the last three decades, many econometricians such as
Heckman (1981), Amemiya (1985, p. 353), Manski (1987), and Honore and
Kyriazidou (2000, p. 844) have made attempts to accommodate the dynamic nature
of the repeated binary responses by using a binary dynamic mixed logit (BDML)
model given by

Pr.yit D 1j�i; yi;t�1/ D

8
<̂

:̂

exp.x
0

i1ˇC�� �i/

1Cexp.x
0

i1ˇC�� � i/
for t D 1

exp.x0
itˇC�yi;t�1C�� �i/

1Cexp.x0
itˇC�yi;t�1C�� �i/

for t D 2; : : : ;T;
(9)

where ˇ is the effect of the covariates similar to the Poisson model, � is referred

to as the dynamic dependence parameter, and �i D Œ��
i =�� �

iid� .0; 1/. Note that the
distribution of �i is unknown. Also note that even if it is assumed that �i follows the

Gaussian distribution, that is, �i
iid� N.0; 1/, obtaining the likelihood estimates for

ˇ; � , and �2� is complicated. Honore and Kyriazidou (2000, p. 844) attempted to
avoid the estimation difficulty by estimating the ˇ and � parameters based on the
transformed observations, such as the first differences of the responses yi1�yi0; yi2�
yi1; : : :, which are approximately independent of �i. They have used an approximate
weighted log likelihood estimation approach, which however puts some impractical
restrictions on covariates such as assuming xi3 D xi4, for the T D 4 case.
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Remark that recently Bartolucci and Nigro (2010, Eq. (5), Sect. 3) have con-
structed a random effects free conditional likelihood for a binary model which is
different from (9). More specifically, they exploited the conditional approach for a
quadratic exponential type model (Cox 1972; Zhao and Prentice 1990) given by

Pr.yi1 : : : ; yiT j��
i ; xi1 : : : ; xiT / D ��1

i expŒy
0

i �i C �g0
i.yi/1T.T�1/=2 C ci.yi/C �iy

0

i1T �

(10)

where yi D Œyi1; : : : ; yiT �
0

; gi.yi/ D Œyi1yi2; : : : ; yiT�1yiT �
0

; and �i D Œ�i1; : : : ; �iT �
0

,
with �it D x0

itˇ. In (10), 1n, for example, is an n-dimensional unit vector, �i is a
normalizing constant defined as

�i D
X

expŒy
0

i�i C �g0
i.yi/1T.T�1/=2 C ci.yi/C �iy

0

i1T �;

with summation overall 2T possible values of yi. Also in (10), ci.yi/ is referred to as
a shape function that can be expressed as a linear combination of products of three
or more of the elements of yi. By ignoring ci.yi/, i.e., ci.yi/ D 0, it can be shown

that for a given total score
TP

tD1
yit D yiC, the conditional distribution of yi1; : : : ; yiT

may be written as

Pr.yi1; : : : ; yiT jyiC; ��
i ; xi1; : : : ; xiT/ D ��

i
�1 exp

"

y
0

i�i C �

TX

tD2
yi;t�1yit

#

(11)

where ��
i D �i evaluated at

TP

tD1
yit D yiC, i.e., yiT D yiC �

T�1P
tD1

yit. Because the

conditional distribution in (11) is free from �i, Bartolucci and Nigro (2010) used
this conditional distribution to estimate the main parameters ˇ and � .

We now turn back to the desired binary dynamic mixed model (9). It is clear
that even if one is interested to estimate ˇ and � , neither the aforementioned
weighted likelihood approach of Honore and Kyriazidou (2000), nor the conditional
likelihood approach of Bartolucci and Nigro (2010) can be used to remove the
random effects from dynamic mixed model (9) for easier estimation of ˇ and � .
Moreover, for binary panel data analysis following (9), one, in fact, is interested to
understand the mean and variance of the data, which, however, can not be computed
by removing the random effects �i from the model. In stead, the computation of the
moments require averaging over certain functions in �i over its distribution. Thus,
rather than making any attempt to remove �i from (9), many authors such as Breslow
and Clayton (1993), Lee and Nelder (1996), Jiang (1998), and Sutradhar (2004) have

studied the inferences for the model (9) under the assumption that ��
i

iid� N.0; �2� /.
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Under this normality assumption, one may obtain the conditional and uncondi-
tional means, variance and covariances as follows (see Sutradhar 2011, Sect. 9.2.1).
First, conditional on �i, the means of the repeated binary responses under model (9)
are given by

	�
it .�i/ D EŒYitj�i� D

8
<

:

exp.x0
i1ˇC�� �i/

1Cexp.x0
i1ˇC�� �i/

; for i D 1; : : : ;KI t D 1

pit0 C 	�
i;t�1.pit1 � pit0/; for i D 1; : : : ; kI t D 2; : : : ;T

(12)

where

pit1 D exp.x0
itˇ C � C ���i/

Œ1C exp.x0
itˇ C � C ���i/�

and pit0 D exp.x0
itˇ C ���i/

Œ1C exp.x0
itˇ C ���i/�

:

Subsequently, one obtains the unconditional means as

�it D E.Yit/ D Pr.yit D 1/

D M�1
MX

wD1
	�

it .�iw/

D M�1
MX

wD1
Œpit0 C 	�

i;t�1.pit1 � pit0/�j�iD�iw (13)

(Jiang 1998; Sutradhar 2004) where �iw is the wth .w D 1; : : : ;M/ realized value
of �i generated from the standard normal distribution. Here M is a sufficiently large
number, such as M D 5000. By (12), the pit1;w involved in (13), for example, is
written as

pit1;w D exp.x0
itˇ C � C ���iw/

Œ1C exp.x0
itˇ C � C ���iw/�

:

Next, conditional on �i, for u < t, the second-order expectation may be written as

E.YiuYitj�i/ D 
�
iut.�i/ D cov.Yiu;Yitj�i/C 	iu	it D ��

iut C 	�
iu	

�
it ; (14)

where the conditional covariance between yiu and yit, conditional on �i, has the
formula

��
iut D cov.Yiu;Yitj�i/ D 	�

iu.�i/.1 � 	�
iu.�i//˘

t
jDuC1.pij1 � pij0/: (15)
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It then follows that the unconditional second-order raw moments have the formula

iut D E.YiuYit/ D M�1
MX

wD1

�
	�

iu.�iw/.1 � 	�
iu.�iw//

� ˘ t
jDuC1.pij1;w � pij0;w/C 	�

iu.�iw/	
�
it .�iw/

	
; (16)

yielding the unconditional covariance as

�iut D iut � �iu�it; (17)

with �it is the unconditional mean given by (13).

1.3 Plan of the Paper Under the Proposed t Random Effects
with Unknown Degrees of Freedom �

In this paper, as opposed to the Gaussian distribution, we consider a wider class of
t distributions for the random effects f��

i g, with mean 0, a scale parameter 
2� , and

shape or degrees of freedom parameter �, i.e, ��
i

iid� t�.0; 
2� ; �/, with its probability
density given by

f .��
i / D �

1
2 � �C1

2

� �
2

.
2� /
�1
2

"

� C ��
i
2


2�

#� �C1
2

: (18)

This t distribution exhibits heavy symmetric tails when � is small, and it reduces
to the normal distribution N.0; �2� / for � ! 1. Note, however, that one can not
compute the mgf, that is, E��

i
.exp.a��

i // under this t distribution (18). As a remedy,
the moments of this t distribution (18) are computed either from the characteristic
function (cf) (Sutradhar 1986) or by direct integrations over the distribution. For
� > 4, the first four moments, for example, are given by

E.��
i / D 0; var.��

i / D �

� � 2

2
� D �2�

E.��
i
3
/ D 0; E.��

i
4
/ D 3
4��

2

.� � 2/.� � 4/ D 3�4� Œ
� � 2
� � 4 �: (19)

But, it follows from (5)–(8) that in the present longitudinal mixed model setup

for count data with ��
i

iid� t�.0; 
2� ; �/, one requires the result for the mgf
E��

i
.exp.a��

i //, which however can not be computed analytically under the t�
distribution (18). A similar but different problem arises in the longitudinal mixed
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model setup for binary data, where for (13)–(15), one needs to generate random
effect values �iw from standard t distribution t.0; 1; �/ with � degrees of freedom
which is however unknown in practice.

As a remedy, in this paper, we offer a simulation-based numerical approach to
compute the mgf, and develop a GQL estimation approach for the estimation of
all parameters of the models including the degrees of freedom parameter � > 4.
More specifically, in Sects. 2 and 3, we discuss the Poisson mixed model with t�
random effects and the desired inferences. The binary model and the inferences
with t� random effects are provided in Sects. 4 and 5. Some concluding remarks are
given in Sect. 6.

2 Poisson Mixed Model with t� Random Effects

2.1 Basic Properties of the Poisson Mixed Model:
Unconditional Mean and Variance

In the present setup, ��
i

iid� t�.0; 
2� ; �/. Now because, similar to (5)–(6), the
unconditional mean and variance have the formulas

�it D EŒYit� D E��
i

EŒYitj��
i � D E��

i
��

it D exp.x0
itˇ/E��

i

˚
exp.��

i /
�

(20)

�itt D varŒYit� D E��
i

varŒYitj��
i �C var��

i
EŒYitj��

i � (21)

D exp.x0
itˇ/E��

i

˚
exp.��

i /
�C exp.2x

0

itˇ/

�
E��

i

˚
exp.2��

i /
� �

h
E��

i

˚
exp.��

i /
�i2�

;

they could be evaluated numerically by simulating �iw; w D 1; : : : ;W, for a large

W such as W D 5000, from �iw
iid� t�.0; 1; �/, and using

E��
i

˚
exp.a��

i /
� D E�i

˚
exp.a
��i/

� � 1

W

WX

wD1

�
exp.a
��iw/

	
; (22)

in (20)–(21) for a D 1; 2, provided � were known. Note that for known �, this
simulated approximation in (22) is quite similar to the simulation approximation
used by Sutradhar (2008, Sect. 3) [see also Sutradhar et al. (2008, Eq. (2.6))] for
the binary case with random effects generated from N.0; 1/ distribution. However,
because in the present case, � is unknown and requires to be estimated, we resolve
this simulation issue by generating �iw; w D 1; : : : ;W first from a reference
t4.0; 1; 4/ distribution (equivalent to standard normal reference distribution) and
using the transformation from following Lemma 2.3 so that these �iw, w D 1; : : : ;W
subsequently follow the t�.0; 1; �/ distribution as desired. Lemmas 2.1 and 2.2
below are needed to write the Lemma 2.3.
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Lemma 2.1. Suppose that �
i � Np.0; 


2
�/. Next, suppose that ��

i
2 a scalar random

variable which follows the well known �2� distribution with � degrees of freedom,

that is, ��
i
2 � �2� , and  �

i and ��
i
2 are independent. Then, for  i D  �

i

�

, the ratio

variable ��
i defined as

��
i D 
� i=Œ

p
.��

i
2
=�/� D 
��i (23)

has the t�.0; 
2� ; �/ distribution given by (18).

However, even though  i in (23) is a parameter free normal variable, an
observation ��

iw following the t-distribution (18) for ��
i (20)–(22), can not be drawn

yet, because the distribution of ��
i
2 is parameter � dependent. Because � > 4 in (18),

to resolve this issue, we suggest to use a t-distribution with 4 degrees of freedom as
a reference distribution. Suppose that �2i is generated from this �24 distribution. One
may then generate a ��

i
2 from �2� approximately for any � > 4, by using the relation

between �2i and ��
i
2 as in Lemma 2.2 below.

Lemma 2.2. If �2i is generated from the �24 distribution, one may then generate ��
i
2

by using the relationship

��
i
2 D p

2�

�
�2i � 4p

8

�
C � D 1

2

p
�
�
�2i � 4

	C �; (24)

which has the same first two moments as that of �2� .

One may then generate an observation from a t� distribution as in Lemma 2.3.

Lemma 2.3. For w D 1; : : : ;W, with W D 5000 .say/, the w-th observation ��
iw

from the t� distribution may be generated by applying Lemma 2.2 to Lemma 2.1.
That is,

��
iw D 
�f2�g 12  iw

�p
�

�2iw � 4�C 2�

	 1
2

D 
��iw; (25)

where  iw and �2iw are observations from the standard normal N.0; 1/ and �24
distributions, respectively.

Consequently, by applying (25) under Lemma 2.3, to (22) and (20), one computes
the unconditional mean as

�it.ˇ; 
� ; �/ D EŒYit� D exp.x0
itˇ/E��

i

˚
exp.��

i /
�

D exp.x0
itˇ/E��

i

˚
exp.
��i/

�
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D exp.x0
itˇ/

1

W

WX

wD1

˚
exp.
��iw/

�

D 1

W
exp.x0

itˇ/

WX

wD1
exp

2

4 
� iwn
1

2
p
.�/
.�2iw � 4/C 1

o

3

5

D 1

W
exp.x0

itˇ/

WX

wD1
exp

˚
R. iw; �

2
iwI
� ; �/

�
; (26)

where for w D 1; : : : ;W,  iw are generated from standard normal N.0; 1/ distri-
bution, and �2iw are generated from �24 distributions. Furthermore,  iw and �2iw are
independent.

In order to compute the unconditional variance, use ��
it D E��

i

�
exp.x0

itˇ C ��
i /
	

from (20), and first compute i;tt D EŒY2it � as follows:

i;tt.ˇ; 
� ; �/ D EŒY2it � D E��
i

h
��

it C ��
it
2
i

D 1

W

WX

wD1

�
expŒx0

itˇ C ˚
R. iw; �

2
iwI
� ; �/

�
�

C expŒ2x0
itˇ C ˚

2R. iw; �
2
iwI
� ; �/

�
�
	
; (27)

where R. iw; �
2
iwI
� ; �/ is defined in (26). Hence, the unconditional variance has

the formula

�i;tt.ˇ; 
� ; �/ D i;tt.ˇ; 
� ; �/� �2it.ˇ; 
� ; �/: (28)

Note that this variance formula can be obtained from (21) as well. We remark
that unlike for the Poisson-normal mixed model, the mean and variance under the
Poisson-t� mixed model are functions of the regression effects ˇ, and variance
parameter 
� and shape parameter � of the random effect distribution.

2.2 Correlation Properties of the Poisson Mixed Model:
Unconditional Covariances

To compute the unconditional covariance between yiu and yit .u < t/, we first
observe from (1)–(2) that their covariance conditional on the random effects ��

i
is not zero. Specifically, by (2), the conditional covariance is given by

covŒ.Yiu;Yit/j��
i � D �t�u��

iu; (29)
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implying that

EŒYiuYitj��
i � D �t�u��

iu C ��
iu�

�
it : (30)

Consequently,

ıi;ut.ˇ; 
� ; �; �/ D EŒYiuYit�

D E��
i

EŒYiuYitj��
i �

D E��
i

�
�t�u��

iu C ��
iu�

�
it

	

D �t�u�iu.ˇ; 
� ; �/C E��
i

�
��

iu�
�
it

	
; (31)

where the unconditional mean �iu.ˇ; 
� ; �/ has the formula similar to that of (26).
Next, by similar computation as in (27), one obtains

ıi;ut.ˇ; 
� ; �; �/ D �t�u�iu.ˇ; 
� ; �/C E��
i

�
expfxiu C xitg0ˇ C 2��

i

	

D �t�u�iu.ˇ; 
� ; �/C exp Œfxiu C xitg0ˇ� 1W
PW

wD1 exp
�
2R. iw; �

2
iwI
� ; �/

	
:

(32)

Hence, for u < t, the unconditional covariance between yiu and yit is given by

�i;ut.ˇ; 
� ; �; �/ D ıi;ut.ˇ; 
� ; �; �/ � �iu.ˇ; 
� ; �/�it.ˇ; 
� ; �/; (33)

where ıi;ut.ˇ; 
� ; �; �/ has the formula given by (32) and �it.ˇ; 
� ; �/ is given
by (26).

3 GQL Estimation for the Parameters of the Poisson
Mixed Model

The estimation of the parameters of the model will be done in cycle of iterations. In
Sect. 3.1, we discuss a generalized quasi-likelihood (GQL) (Sutradhar 2003, Sect. 3)
estimation approach for the estimation of the main regression parameter ˇ under the
assumption that other parameters .�; 
� ; �/ are known or their consistent estimates
are available. In subsequent sections, we discuss their consistent estimation.
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3.1 GQL Estimation for the Regression Effects ˇ

For ˇ estimation, we exploit the first order responses, namely yi D Œyi1; : : : ; yit;

: : : ; yiT �
0. Suppose that �i D EŒYi�. This mean vector is given by �i.ˇ; 
� ; �/ D

Œ�i1; : : : ; �it; : : : ; �iT �
0, where, by (26), �it.ˇ; 
� ; �/ has the formula

�it.ˇ; 
� ; �/ D exp.x0
itˇ/

1

W

WX

wD1
exp

˚
R. iw; �

2
iwI
� ; �/

� W T � 1:

Next by using the formulas for the variances �i;tt.ˇ; 
� ; �/ from (28), and the
covariances �i;ut.ˇ; 
� ; �; �/ from (33), we construct the T � T covariance matrix as

˙i.ˇ; 
� ; �; �/ D .�i;ut.ˇ; 
� ; �; �// W T � T; for u D tI and u ¤ t:

Note that under the present model �i;tt.�/ does not follow from �i;ut.�/ as a special
case. More specifically, �i;ut.�/’s are constructed for u < t. The GQL estimating
equation for ˇ is then given by

KX

iD1

@�0
i.ˇ; 
� ; �/

@̌
˙�1

i .ˇ; 
� ; �; �/

yi � �i.ˇ; 
� ; �/

� D 0; (34)

(Sutradhar 2003, 2004) where @�0
i .ˇ;
� ;�/

@ˇ
may be computed by using the formula for

@�it.ˇ;
� ;�/

@ˇ
for all t D 1; : : : ;T. This derivative follows from (26), and is given by

@�it.ˇ; 
� ; �/

@̌
D �it.ˇ; 
� ; �/xit:

Consequently, the GQL estimating equation in (34) reduces to

KX

iD1
X0

i Ai˙
�1
i .ˇ; 
� ; �; �/


yi � �i.ˇ; 
� ; �/

� D 0; (35)

where X0
i D .xi1; : : : ; xit; : : : ; xiT/ is the p � T covariate matrix for the ith individual,

and

Ai D diagŒ�i1.ˇ; 
� ; �/; : : : ; �it.ˇ; 
� ; �/; : : : ; �iT.ˇ; 
� ; �/� W T � T:
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3.1.1 Asymptotic Properties of the GQL Estimator of ˇ

For true ˇ, define

NfK.ˇ/ D 1

K

KX

iD1
fi.ˇ/ D 1

K

KX

iD1

@�0
i.ˇ; 
� ; �/

@̌
˙�1

i .ˇ; 
� ; �; �/

yi � �i.ˇ; 
� ; �/

�
;

(36)

where y1; : : : ; yi; : : : ; yK are independent to each other as they are collected from K
independent individuals, but they are not identically distributed because

Yi � .�i.ˇ; 
� ; �/;˙i.ˇ; 
� ; �; �//; (37)

where the mean vectors and covariance matrices vary for the individuals
i D 1; : : : ;K. By (37), it follows from (36) that

EŒNfK.ˇ/� D 0

covŒNfK.ˇ/� D 1

K2

KX

iD1
covŒfi.ˇ/�

D 1

K2

KX

iD1

@�0
i.ˇ; 
� ; �/

@̌
˙�1

i .ˇ; 
� ; �; �/
@�i.ˇ; 
� ; �/

@̌ 0

D 1

K2

KX

iD1
Vi.ˇ; 
� ; �; �/ D 1

K2
V�

K.ˇ; 
� ; �; �/: (38)

Next if the multivariate version of Lindeberg’s condition holds, that is,

lim
K!1 V��1

K

KX

iD1

X

.f 0
i V��1

K fi/>�

fif
0
i g.fi/ D 0 (39)

for all � > 0, g.�/ being the probability distribution of fi, then Lindeberg-
Feller central limit theorem (Amemiya 1985, Theorem 3.3.6; McDonald 2005,
Theorem 2.2) imply that

ZK D KŒV�
K �

� 1
2 NfK.ˇ/ ! Np.0; Ip/: (40)

Next because Ǒ
GQL is a solution of (34), one writes by (36) that

KX

iD1
fi. Ǒ

GQL/ D 0; (41)
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which by first order Taylor’s series expansion produces

KX

iD1
fi.ˇ/C . Ǒ

GQL � ˇ/

KX

iD1
f 0
i .ˇ/ D 0: (42)

That is,

Ǒ
GQL � ˇ D �

"
KX

iD1
f 0
i .ˇ/

#�1 KX

iD1
fi.ˇ/

D �
"

�
KX

iD1

@�0
i.ˇ; 
� ; �/

@̌
˙�1

i .ˇ; 
� ; �; �/
@�i.ˇ; 
� ; �/

@̌ 0

#�1 KX

iD1
fi.ˇ/

D �
V�

K.ˇ; 
� ; �; �/
	�1

KNf .ˇ/

D �
V�

K.ˇ; 
� ; �; �/
	� 1

2 ZK ! N.0;V��1
K .ˇ; 
� ; �; �//; (43)

by (40). It then follows that

lim
K!1

Ǒ
GQL ! N.ˇ;V��1

K .ˇ; 
� ; �; �//: (44)

Also it follows that

jjŒV�
K.ˇ; 
� ; �; �/�

1
2 Œ Ǒ

GQL � ˇ�jj D Op.
p

p/: (45)

3.2 GQL Estimation for the Scale and Shape Parameters

Notice from Sect. 2.1 that all three basic moment properties, namely the mean
function (26), variances in (28), and the covariances given by (33) contain the scale
parameter 
� and the shape parameter �. Thus, it is sensible to exploit all first and
second order responses to estimate these parameters. Note that the second order
responses consist of both squared (ss) and pair-wise products .pp/ of all repeated
observations. Consequently, we consider a vector gi consisting of all first order and
second order responses. In notation, gi has the form

gi D Œy0
i; y0

iss; y0
ipp�

0 W T.T C 3/

2
� 1; (46)

where yi D Œyi1; : : : ; yit; : : : ; yiT �
0 W T � 1; as in (34), and

yiss D Œy2i1; : : : ; y
2
it; : : : ; y

2
iT �

0 W T � 1; and

yipp D Œyi1yi2; : : : ; yiuyit; : : : ; yi;T�1yiT �
0 W T.T � 1/

2
� 1:
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Let

EŒgi� D Œ�0
i.ˇ; 
� ; �/; 

0
i.ˇ; 
� ; �/; ı

0
i.ˇ; 
� ; �; �/�

0

D �i.ˇ; 
� ; �; �/ (say); (47)

where

�i.ˇ; 
� ; �/ D Œ�i1.ˇ; 
� ; �/; : : : ; �it.ˇ; 
� ; �/; : : : ; �iT.ˇ; 
� ; �/�
0

i.ˇ; 
� ; �/ D Œi;11.ˇ; 
� ; �/; : : : ; i;tt.ˇ; 
� ; �/; : : : ; i;TT .ˇ; 
� ; �/�
0

ıi.ˇ; 
� ; �; �/ D Œıi;12.ˇ; 
� ; �; �/; : : : ; ıi;ut.ˇ; 
� ; �; �/; : : : ; ıi;T�1;T .ˇ; 
� ; �; �/�0;

with �it.ˇ; 
� ; �/ and i;tt.ˇ; 
� ; �/ for all t D 1; : : : ;T, are given by (26) and (27),
respectively, and ıi;ut.ˇ; 
� ; �; �/ for u < t, are defined as in (32). Further, let

˝i.ˇ; 
� ; �; �/ D covŒgi�

D

2

6
4
˙i ˝i;ss ˝i;pp

˝ 0
i;ss ˙i;ss ˝i;sp

˝ 0
i;pp ˝

0
i;sp ˙i;pp

3

7
5 ; (48)

where

˙i D covŒYi�; ˙i;ss D covŒYiss�; ˙i;pp D covŒYipp�

˝i;ss D covŒYi;Y
0
iss�; ˝i;pp D covŒYi;Y

0
ipp�; ˝i;sp D covŒYiss;Y

0
ipp�:

Further, let 	 D Œ
� ; ��
0 W 2 � 1, be a vector of the scale and shape parameters of

the random effects distribution. Similar to (34), for known ˇ and �, one may then
estimate the 	 vector by solving the GQL estimation equation given by

KX

iD1

@�0
i.ˇ; 
� ; �; �/

@	
˝�1

i .ˇ; 
� ; �; �/

gi � �i.ˇ; 
� ; �; �/

� D 0; (49)

where

@�0
i.ˇ; 
� ; �; �/

@	
D
 
@�0

i .ˇ;
� ;�;�/

@
�
@�0

i .ˇ;
� ;�;�/

@�

!

: (50)

Note that the derivatives in (50) may be computed by using the following general
derivatives with respect to 
� and �:
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@�it

@
�
D exp.x0

itˇ/
1

W

WX

wD1

@R. iw; �
2
iwI
� ; �/

@
�
exp

˚
R. iw; �

2
iwI
� ; �/

�
;

@�it

@�
D exp.x0

itˇ/
1

W

WX

wD1

@R. iw; �
2
iwI
� ; �/
@�

exp
˚
R. iw; �

2
iwI
� ; �/

�
;

@i;tt

@
�
D 1

W

WX

wD1

@R. iw; �
2
iwI
� ; �/

@
�

�
expŒx0

itˇ C ˚
R. iw; �

2
iwI
� ; �/

�
�

C 2
@R. iw; �

2
iwI
� ; �/

@
�
expŒ2x0

itˇ C ˚
2R. iw; �

2
iwI
� ; �/

�
�

�
;

@i;tt

@�
D 1

W

WX

wD1

@R. iw; �
2
iwI
� ; �/
@�

�
expŒx0

itˇ C ˚
R. iw; �

2
iwI
� ; �/

�
�

C 2
@R. iw; �

2
iwI
� ; �/
@�

expŒ2x0
itˇ C ˚

2R. iw; �
2
iwI
� ; �/

�
�

�
;

@ıi;ut

@
�
D �t�u @�iu.ˇ; 
� ; �/

@
�
C exp

�fxiu C xitg0ˇ
	 1

W

WX

wD1
2
@R. iw; �

2
iwI
� ; �/

@
�

� exp
�
2R. iw; �

2
iwI
� ; �/

	 �
�
@�iu.ˇ; 
� ; �/

@
�
�it C �iu

@�it.ˇ; 
� ; �/

@
�

�

@ıi;ut

@�
D �t�u @�iu.ˇ; 
� ; �/

@�
C exp

�fxiu C xitg0ˇ
	 1

W

WX

wD1
2
@R. iw; �

2
iwI
� ; �/
@�

� exp
�
2R. iw; �

2
iwI
� ; �/

	 �
�
@�iu.ˇ; 
� ; �/

@�
�it C �iu

@�it.ˇ; 
� ; �/

@�

�
;

where

@R. iw; �
2
iwI
� ; �/

@
�
D
2

4  iwn
1

2
p
.�/
.�2iw � 4/C 1

o

3

5

@R. iw; �
2
iwI
� ; �/
@�

D

2

6
4

� iw

n
1

4fp
.�/g3 .�

2
iw � 4/

o

n
1

2
p
.�/
.�2iw � 4/C 1

o2

3

7
5 : (51)

The construction of the GQL estimating equation (49) still requires the com-
putational formula for the weight matrix ˝i.ˇ; 
� ; �; �/. Now because this weight
matrix requires the computation of second, third and fourth order moments for the
repeated count data, unlike for the Gaussian data the computation of these moments



Longitudinal Mixed Models with t Random Effects for Repeated Count: : : 57

are complicated. Some of the fourth order moments may not be computable without
further joint distributional assumption for these repeated counts. Thus, for simplicity
and because the consistent estimation of the parameters in 	 does not require the
use of exact weight matrix, in the next section, we provide an approximation for the
computation of the elements of the weight matrix˝i.ˇ; 
� ; �; �/ by pretending that
the correlation index is zero, that is, � D 0 in (2). This assumption is equivalent to
say that the repeated counts are assumed to conditionally (conditional on the random
effects) independent (CI).

3.2.1 Computation of˝i.CI/ � ˝�
i .ˇ; ��; �/

Note that as outlined above, the ˝i.ˇ; 
� ; �; �/ D cov.gi/ matrix in (49) will be
replaced by

cov.gij� D 0/ D ˝�
i .ˇ; 
� ; �/; (52)

which contains moments up to order four under conditionally independence (CI)
assumption. More specifically, we compute the ˝i.�/ matrix in (48), but, under the
assumption that � D 0, that is,

˝�
i .ˇ; 
� ; �/ D covŒgij� D 0�

D

2

6
4

˙�
i ˝�

i;ss ˝�
i;pp

˝�0
i;ss ˙�

i;ss ˝�
i;sp

˝�0
i;pp ˝

�0
i;sp ˙

�
i;pp

3

7
5 ; (53)

where

˙�
i D covŒYij� D 0�; ˙�

i;ss D covŒYissj� D 0�; ˙�
i;pp D covŒYippj� D 0�

˝�
i;ss D covŒ.Yi;Y

0
iss/j� D 0�; ˝�

i;pp D covŒ.Yi;Y
0
ipp/j� D 0�;

˝�
i;sp D covŒ.Yiss;Y

0
ipp/j� D 0�:

(a) Computation of the Second Order Moments Matrix ˙�
i W

Because the variances are not affected by the correlation index parameter, their
formulas remain the same as in (28). However, the covariances under � D 0 will be
different than (33). More specifically the formulas for the variances and covariances
under the assumption � D 0 are given by

varŒYitj�� D ��
i;tt.ˇ; �

2
� ; �/

D �i;tt.ˇ; 
� ; �/ D i;tt.ˇ; 
� ; �/ � �2it.ˇ; 
� ; �/; by (28)I (54)
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covŒ.Yiu; Yit/j� D 0� D ��
i;ut.ˇ; �

2
� ; �/ (55)

D exp
�fxiu C xitg0ˇ

	 1
W

WX

wD1

exp
�
2R. iw; �

2
iwI
� ; �/

	

��iu.ˇ; 
� ; �/�it.ˇ; 
� ; �/; by (32)–(33):

(b) Computation of the Third Order Moments Matrix˝�
i;ss W

To compute this matrix ˝�
i;ss D covŒfYi;Y 0

issgj� D 0�, it is sufficient to compute
the elements (i) covŒfYit;Y2itgj� D 0�, and (ii) covŒfYiu;Y2itgj� D 0�, for u < t.

(i) Formula for covŒfYit;Y2itgj� D 0� W
Notice that this formula does not depend on �, and the conditioning on � D 0

is not needed. Thus

covŒfYit;Y
2
itgj� D 0� D EŒY3it � � EŒYit�EŒY

2
it �

D EŒY3it � � �it.ˇ; 
� ; �/i;tt.ˇ; 
� ; �/; by (54); (56)

where

EŒY3it � D E��
i

h
��

it C 3��
it
2 C ��

it
3
i

D 1

W

WX

wD1

�
expŒx0

itˇ C ˚
R. iw; �

2
iwI
� ; �/

�
�

C 3 expŒ2x0
itˇ C ˚

2R. iw; �
2
iwI
� ; �/

�
�

C expŒ3x0
itˇ C ˚

3R. iw; �
2
iwI
� ; �/

�
�
	
; (57)

with R. iw; �
2
iwI
� ; �/ as defined in (26).

(ii) Formula for covŒfYiu;Y2itgj� D 0�, for u < t W
Because u and t denote two different times points, the covariance between

yiu and y2it is a function of the correlation index parameter �. However, we now
simplify this covariance formula as follows under the assumption that � D 0.

covŒfYiu;Y
2
itgj� D 0� D EŒYiuY2it j� D 0� � EŒYiu�EŒY

2
it � (58)

D EŒYiuY2it j� D 0� � �iu.ˇ; 
� ; �/i;tt.ˇ; 
� ; �/; by (54);

where, by (30) and (26)–(27), one writes

EŒYiuY2it j� D 0� D E��
i
ŒEfYiuj��

i gEfY2itj��
i g�

D E��
i
Œ��

iuf��
it C ��2

itg� (59)
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D 1
W

PW
wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; �

2
iwI
� ; �/

�
�

C expŒfxiu C 2xitg0ˇ C 3
˚
R. iw; �

2
iwI
� ; �/

�
�
	
: (60)

(c) Computation of the Third Order Moments Matrix ˝�
i;pp W

To compute this matrix ˝�
i;pp D covŒfYi;Y 0

ippgj� D 0�, it is sufficient to
compute the elements (i) covŒfYiu;YiuYitgj� D 0� for u < t or u > t, and (ii)
covŒfYiu;YitYimgj� D 0�, for u ¤ t; u ¤ m; t < m.

(i) Formula for covŒfYiu;YiuYitgj� D 0� W
By similar calculations as in (59)–(60), we write

covŒfYiu;YiuYitgj� D 0� D E��
i
ŒEfY2iuYitgj��

i � � EŒYiu�EŒfYiuYitgj� D 0�

D E��
i
Œf��

iu C ��
iu
2g��

it �� �iu.ˇ; 
� ; �/E��
i
Œ��

iu�
�
it �

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; �

2
iwI
� ; �/

�
�

C expŒf2xiu C xitg0ˇ C 3
˚
R. iw; �

2
iwI
� ; �/

�
�

� �iu.ˇ; 
� ; �/ expŒfxiu C xitg0ˇ C 2
˚
R. iw; �

2
iwI
� ; �/

�
�
	
: (61)

(ii) Formula for covŒfYiu;YitYimgj� D 0� W
By similar calculations as in (i), we write the formula for this covariance as

covŒfYiu;YitYimgj� D 0�

D 1

W

WX

wD1

�
expŒfxiu C xit C ximg0ˇ C 3

˚
R. iw; �

2
iwI
� ; �/

�
�

� �iu.ˇ; 
� ; �/ expŒfxit C ximg0ˇ C 2
˚
R. iw; �

2
iwI
� ; �/

�
�
	
: (62)

(d) Computation of the Fourth Order Moments Matrix ˙�
i;ss W

To compute this fourth order matrix, one needs the formulas for two general
elements, namely (i) varŒY2it �, and (ii) covŒfY2iu;Y

2
itgj� D 0�. These formulas are

developed as follows:

(i) Recall from (27) that EŒY2it � D i;tt.ˇ; 
� ; �/. Next because

EŒY4it j��
i � D

h
��

it C 7��
it
2 C 6��

it
3 C ��

it
4
i
;
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it then follows that

var.Yit/
2 D EŒY4it�� ŒEfY2itg�2

D E��
i

EŒY4itj��
i �� Œi;tt.ˇ; 
� ; �/�

2

D 1

W

WX

wD1

�
exp

�
x0

itˇ C ˚
R. iw; �

2
iwI
� ; �/�	C 7 exp

�
2x0

itˇ C ˚
2R. iw; �

2
iwI
� ; �/�	

C 6 expŒ3x0
itˇ C ˚

3R. iw; �
2
iwI
� ; �/��C expŒ4x0

itˇ C ˚
4R. iw; �

2
iwI
� ; �/��	 ; (63)

with R. iw; �
2
iwI
� ; �/ as defined in (26).

(ii) Formula for covŒfY2iu;Y
2
itgj� D 0�, for u < t W

By similar calculations, this covariance has the computing formula given by

covŒfY2iu;Y
2
itgj� D 0� D EŒfY2iuY2itgj� D 0� � i;uu.ˇ; 
� ; �/i;tt.ˇ; 
� ; �/;

(64)
where

EŒfY2iuY2itgj� D 0� D E��
i

h
f��

iu C ��
iu
2gf��

it C ��
it
2g
i

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; �

2
iwI
� ; �/

�
�

C exp
�fxiu C 2xitg0ˇ C ˚

3R. iw; �
2
iwI
� ; �/

�	

C exp
�f2xiu C xitg0ˇ C ˚

3R. iw; �
2
iwI
� ; �/

�	

C expŒ2fxiu C xitg0ˇ C ˚
4R. iw; �

2
iwI
� ; �/

�	
: (65)

(e) Computation of the Fourth Order Moments Matrix ˝�
i;sp:

To compute this fourth order matrix, one needs the formulas for two
general covariance elements, namely (i) covŒfY2iu;YiuYitgj� D 0�, and (ii)
covŒfY2iu;YitYimgj� D 0�. These formulas are developed as follows:

(i) Formula for covŒfY2iu;YiuYitgj� D 0� W

covŒfY2iu;YiuYitgj� D 0� D EŒfY3iuYitgj� D 0�

�i;uu.ˇ; 
� ; �/
1

W

WX

wD1

�
expŒfxiu C xitg0ˇ

C2 ˚R. iw; �
2
iwI
� ; �/

�
�
	
; by (27) and (32); (66)
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where

EŒfY3iuYitgj� D 0� D E��
i

�
EŒY3iuj��

i �EŒYitj��
i �
	

D E��
i

h
f��

iu C 3��
iu
2 C ��

iu
3gf��

itg
i

D 1

W

WX

wD1

�
expŒfxiu C xitg0ˇ C 2

˚
R. iw; �

2
iwI
� ; �/

�
�

C 3 expŒf2xiu C xitg0ˇ C 3
˚
R. iw; �

2
iwI
� ; �/

�
�

C expŒf3xiu C xitg0ˇ C 4
˚
R. iw; �

2
iwI
� ; �/

�
�
	
: (67)

(ii) covŒfY2iu;YitYimgj� D 0� W

covŒfY2iu;YitYimgj� D 0� D E��
i

h
f��

iu C ��
iu
2gf��

it�
�
img
i

�i;uu.ˇ; 
� ; �/
1

W

WX

wD1

h
expŒfxit C ximg0ˇ C 2

n
R. iw; �

2
iwI
� ; �/

o
�
i
; (68)

where the first term in the right hand side of (68) has the formula

E��
i

h
f��

iu C ��
iu
2gf��

it�
�
img
i

D 1

W

WX

wD1

h
expŒfxiu C xit C ximg0ˇ C 3

n
R. iw; �

2
iwI
� ; �/

o
�

C expŒf2xiu C xit C ximg0ˇ C 4
n
R. iw; �

2
iwI
� ; �/

o
�
i
: (69)

(f) Computation of the Fourth Order Moments Matrix˝�
i;pp W

The computation for this matrix requires the formulas for (i) covŒfYiuYit;YiuYitgj
� D 0�, (ii) covŒfYiuYit;YiuYimgj� D 0�, (iii) covŒfYiuYit;YivYitgj� D 0�, and (iv)
covŒfYiuYit;YivYimgj� D 0�. The computations for all these four covariances are
similar. We, for example, give the formulas for covariances in (i) and (iv).

(i) Formula for covŒfYiuYit;YiuYitgj� D 0� W

covŒfYiuYit;YiuYitgj� D 0� D EŒfY2iuY2itgj� D 0�

�
"
1

W

WX

wD1


expŒfxit C ximg0ˇ C 2

˚
R. iw; �

2
iwI
� ; �/

�
�
�
#2

; (70)

where EŒfY2iuY2itgj� D 0� is computed in (65).
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(iv) Formula for covŒfYiuYit;YivYimgj� D 0� W
covŒfYiuYit;YivYimgj� D 0�

D 1

W

WX

wD1

�
expŒfxiu C xit C xiv C ximg0ˇ C 4

˚
R. iw; �

2
iwI
� ; �/

�
�
	

��iu.ˇ; 
� ; �/�it.ˇ; 
� ; �/�iv.ˇ; 
� ; �/�im.ˇ; 
� ; �/: (71)

3.2.2 Asymptotic Properties of the GQL Estimator
O�GQL D Œ O��;GQL; O�GQL	

0 W 2 � 1

Notice that when ˝�
i .ˇ; 
� ; �/ from Sect. 3.2.1 is used in (49) for ˝i.ˇ; 
� ; �; �/,

one solves the approximate GQL estimating equation

KX

iD1

@�0
i.ˇ; 
� ; �; �/

@	
˝�

i
�1
.ˇ; 
� ; �/


gi � �i.ˇ; 
� ; �; �/

� D 0; (72)

for 	 D .
� ; �/
0.

Let O	GQL D Œ O
�;GQL; O�GQL�
0 W 2�1 be the solution of (72). By similar calculations

as in Sect. 3.1.1 (see (44)), it can be shown that

lim
K!1 O	GQL ! N.	;Q��1

K .ˇ; 
� ; �; �//; (73)

where
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� ; �; �/
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i
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i
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@	 0

#�1
: (74)

3.3 Moment Estimation of Correlation Index Parameter 


Recall from (33) that

EŒ.Yiu � �iu.�//.Yit � �it.�//� D �t�u�iu.ˇ; 
� ; �/

C exp
�fxiu C xitg0ˇ

	 1
W

WX

wD1

exp
�
2R. iw; �

2
iwI
� ; �/	� �iu.ˇ; 
� ; �/�it.ˇ; 
� ; �/:
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Consequently, by using lag 1 based pair-wise product responses, one obtains

E
KX

iD1

T�1X

tD1

f.Yit � �it.�//.Yi;tC1 � �i;tC1.�//g
K.T � 1/

D �

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

C 1

KW

KX

iD1

WX

wD1
fexp

�
2R. iw; �

2
iwI
� ; �/

	g fPT�1
tD1 exp Œfxiu C xitg0ˇ�g

T � 1

�
KX

iD1

T�1X

tD1

�it.�/�i;tC1.�/
K.T � 1/ : (75)

Further, one writes

E
KX

iD1

TX

tD1

f.Yit � �it.�//2g
KT

D
KX

iD1

TX

tD1

�i;tt.�/
KT

; (76)

where the variance �i;tt.�/ has the formula given by (28).
Now by dividing (75) by (76), and using first order approximation, one obtains

the unbiased moment estimator O�M for � as

O�M '
"PK

iD1

PT�1
tD1 f.Yit � �it.�//.Yi;tC1 � �i;tC1.�//g=fK.T � 1/g

PK
iD1

PT
tD1f.Yit � �it.�//2g=fKTg

#

�
"PK

iD1

PT�1
tD1 �it.�/=fK.T � 1/g

PK
iD1

PT
tD1 �i;tt.�/=fKTg

#

�
"
1

KW

KX

iD1

WX

wD1

fexp
�
2R. iw; �

2
iwI
� ; �/	g fPT�1

tD1 exp Œfxiu C xitg0ˇ�g
T � 1

#

�
"

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

#

C
"

KX

iD1

T�1X

tD1

�it.�/�i;tC1.�/
K.T � 1/

#

�
"

KX

iD1

T�1X

tD1

�it.�/
K.T � 1/

#

: (77)

Under some regularity conditions on the covariates so that varŒ O�M � is bounded by
a finite quantity, it follows that the moment estimator O�M is consistent for �. This is
mainly because O�M given by (77) is approximately unbiased for �.
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4 Binary Dynamic Mixed Logit Model with t� Random
Effects

Recall the binary dynamic mixed logit (BDML) model given in (9), that is,

Pr.yit D 1j�i; yi;t�1/ D

8
<̂

:̂

exp.x
0

i1ˇC�� �i/

1Cexp.x
0

i1ˇC��� i/
for t D 1

exp.x0
itˇC�yi;t�1C�� �i/

1Cexp.x0
itˇC�yi;t�1C�� �i/

for t D 2; : : : ;T;

Under the normality assumption for the random effects, i.e., when �i
iid� N.0; 1/, the

basic properties such as unconditional mean, variance and correlations under such
BDML model is given by (13)–(17). In the following subsection, we provide these
properties for the BDML model under the assumption that the random effects now
follow a t-distribution with � degrees of freedom.

4.1 Basic Properties of the Binary Mixed Model:
Unconditional Mean and Variance

By similar calculations as in the normal case (13), one obtains an approximate
unconditional mean based on t� random effects, as

EŒYit� D �it.ˇ; �; 
� ; �/ D W�1

WX

w

	�
it . iw; �

2
iw/

D W�1

WX

wD1

h
pit0. iw; �

2
iw/C 	�

i;t�1. iw; �
2
iw/
˚
pit1. iw; �

2
iw/� pit0. iw; �

2
iw/
�i
; (78)

where

	�
i1. iw; �

2
iw/ D pi10. iw; �

2
iw/ D exp.x

0

i1ˇ C ��
iw/

1C exp.x
0

i1ˇ C ��
iw/
; and

pityi;t�1. iw; �
2
iw/ D exp.x0

itˇ C �yi;t�1 C ��
iw/

1C exp.x0
itˇ C �yi;t�1 C ��

iw/
;

with ��
iw as the t�.0; 
2� ; �/ random effect given by (25). Next because yit is a binary

observation, it follows that

varŒYit� D �i;tt.ˇ; �; 
� ; �/ D �it.ˇ; �; 
� ; �/Œ1 � �it.ˇ; �; 
� ; �/�; (79)

where the unconditional mean �it.ˇ; �; 
� ; �/ has the recursive type formula as
in (78).
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4.2 Computation of Unconditional Covariances for BDML
Model with t� Random Effects

To compute the covariance between yiu and yit .u < t/, we note that under the present
dynamic model (9), conditional on the random effects ��

i defined by (25), yiu and yit

are not independent. This is because conditional on ��
i , yit and yi;t�1, for example,

satisfy the dynamic dependence relationship (9). Next because

EŒfYiuYitgj��
i � D covŒfYiu;Yitgj��

i �C EŒYiuj��
i �EŒYiT j��

i �

D ��
i;ut. i; �

2
i /C 	�

iu. i; �
2
i /	

�
it . i; �

2
i /;

with

��
i;ut. i; �

2
i / D 	�

iu. i; �
2
i /Œ1 � 	�

iu. i; �
2
i /�˘

t
jDuC1

�
pij1. i; �

2
i / � pij0. i; �

2
i /
	
;

(80)
(Sutradhar and Farrell 2007), one may compute the covariance between yiu and yit,
first by computing EŒYiuYit� using

EŒYiuYit� D W�1
WX

wD1

�
��

i;ut. iw; �
2
iw/C 	�

iu. iw; �
2
iw/	

�
it . iw; �

2
iw/
	 D �i;ut; (say);

(81)
where  iw and �2iw are generated from N.0; 1/ and �24, respectively, in order to
compute ��

iw by (25), and 	�
it . iw; �

2
iw/ is computed by (78).

5 GQL Estimation for the Parameters of the BDML Model
with t� Random Effects

It is clear from Sects. 4.1 and 4.2 that the basic properties of the BDML (binary
dynamic mixed logit) model (9), that is, the first and second order moments of the
repeated binary responses contain all four parameters, namely ˇ; �; 
� ; and �,
of the model. Consequently, we exploit all first and second order observations, and
minimize their generalized distance from their corresponding means to construct a
GQL estimating equations [Sutradhar (2010, Sect. 5.4); see also Sutradhar (2011,
Sect. 9.2)] for these desired parameters. Note that for the binary data, y2it � yit. One
may, thus, consider a vector of first and second order responses given by

vi D .yi1; : : : ; yit; : : : ; yiT ; yi1yi2; : : : ; yiuyit; : : : ; yi.T�1/yiT/
0;

for the purpose of constructing the desired estimating equation. Now, denote the
EŒVi� by
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�i D EŒVi� D �i.ˇ; �; 
� ; �/ D Œ�i1; : : : ; �it; : : : ; �iT ; �i;12; : : : ; �i;ut; : : : ; �i;.T�1/T �0

D Œ�0
i; �

0
i �

0; (82)

where the formula for the unconditional mean �it for all t D 1; : : : ;T, is given
by (78), and �i;ut D EŒYiuYit� for all u < t, may be computed by (81). Further let
˛ D .ˇ; �; 
� ; �/

0, and ˝i denote the T.T C 2/=2 � T.T C 1/=2 covariance of
vi. Following Sutradhar (2010) [see also Sutradhar (2004)], one may then write the
GQL estimating equation for ˛ as

KX

iD1

@� 0
i

@˛
˝�1

i .vi � �i/ D 0; (83)

which may be solved by using the iterative equation

ǪGQL.rC1/ D ǪGQL.r/C
2

4

(
KX

iD1

@� 0
i

@˛
˝�1

i

@�i

@˛0

)�1 KX

iD1

@� 0
i

@˛
˝�1

i .vi � �i/

3

5

j˛D ǪGQL.r/

:

(84)
Note that to compute the˝i matrix for (83) and (84) , one needs to compute the fol-
lowing elements: (a) varŒYit�; (b) covŒYiu;Yit�; (c) varŒYiuYit�; (d) covŒYiuYit;Yi`Yim�;
and (e) covŒYiu;YimYit�. However, all these elements through (a)–(e), may be
computed by using the moments up to order four given in Sects. 4.1, 4.2, and 5.1
below. For example,

covŒYiuYit;Yi`Yim� D EŒYiuYitYi`Yim�� EŒYiuYit�EŒYi`Yim�

D Qi;ut`m � �i;ut�i;`m; (85)

where the formula for Qi;ut`m is given in (96), and the formula for �i;ut, for example,
is given in (81).

Computation of @�0
i

@˛
for (84):

Because �i D Œ�0
i; �

0
i �

0, the gradients for searching for the estimate of

˛ D .ˇ0; �; 
� ; �/0 can be computed by by using the formulas for @�it
@˛

and @�i;ut

@˛
,

where �it and �i;ut are given by (78) and (81), respectively. For the purpose, we
derive these formulas by using
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�
��

i;ut. iw; �
2
iw/C 	�
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2
iw/	

�
it . iw; �

2
iw/
	

@˛
; (87)
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where

��
i;ut. iw; �

2
iw/ D 	�

iu. iw; �
2
iw/Œ1 � 	�

iu. iw; �
2
iw/�˘

t
jDuC1

h
pij1. iw; �

2
iw/� pij0. iw; �

2
iw/
i
:

Note that to compute the derivative of the product factor involved in ��
i;ut.�/, one can

use the formula

@˘ t
jDuC1

�
pij1. iw; �

2
iw/� pij0. iw; �

2
iw/
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2
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tX

jDuC1
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�
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2
iw/
	g

@˛
: (88)

To complete the formulation of the above derivatives, we now give the
derivatives for one term, namely pij1. iw; �

2
iw/, with respect to each element of

˛ D .ˇ0; �; 
� ; �/0. To be specific,
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iw/

@̌
D pij1. iw; �
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2
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iw//
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  iw
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	� 1

2

� 1

2
f�g 12 �p�


�2iw � 4

�C 2�
	� 3

2 Œ
1

2
f�g� 1

2 .�2iw � 4/C 2�

�
: (92)

5.1 Computation Higher Order Moments to Construct
˝i in (84)

Note that when the first and second order responses are used to construct distance
functions for the estimation of the parameters ˇ; �; 
� ; and �, one requires the
third and fourth order moments which are used in the weight matrix to develop the
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estimating equations. The first (mean) and the second order moments are computed
in (78), (79) and (81) using suitable close form expressions. For higher order such
as the third and fourth order moments, it is convenient to compute them numerically
(Sutradhar et al. 2008). To be specific, for the computation of the third order
moments, let

P
.yiu;yi`;yit/3s indicates the summation over all binary variables in the

sample space s that contain T � 3 elements out of T elements except yiu; yil; yit. one
may then compute the third order moments as

EŒYiuYi`Yit� D PŒyiu D 1; yi` D 1; yit D 1� � Qıi;u`t (93)

D W�1
WX

wD1

X

yiu;yil;yit3s

�
f .yi1j��

iw/˘
T
jD2f .yijjyi;j�1; ��

iw/
	

yiuD1;yi`D1;yitD1

where by (78)

f .yi1j��
iw/ D Œpi10.�

�
iw/�

yi1 Œ1 � pi10.�
�
iw/�

1�yi1

f .yijjyi;j�1; ��
iw/ D Œpijyi;j�1 .�

�
iw/�

yij Œ1 � pijyi;j�1.�
�
iw/�

1�yij : (94)

After an algebra, one may simplify the third order moments in (93) as

Qıi;u`t D W�1
WX

wD1

X

yiu;yi`;yit3s

�Qpi10.yi1; �
�
iw/˘

T
jD2 Qpij1.yij; yi;j�1; ��

iw/
	

yiuD1;yi`D1;yitD1 ;

(95)

with Qpi10.yi1; �
�
iw/ D expfyi1.x

0

i1ˇC��
iw/g

1Cexp.x
0

i1ˇC��
iw/

, and Qpij1.yij; yi;j�1; ��
iw/ D expfyij.x

0

ijˇC�yi;j�1C��
iw/g

1Cexp.x
0

ijˇC�yi;j�1C��
iw/
;

where ��
iw � ��

iw.
� ; �I iw; �
2
iw/ as defined by (25).

The computation for the fourth order moments is similar to that of the third order
moments. Let

P
.yiu;yi`;yim;yit/3s� indicates the summation over all binary variables

in the sample space s� that contain T � 4 elements out of T elements except
yiu; yil; yim; yit. Now by implementing this summation, following (95), one writes
the formula for the fourth order moments as

EŒYiuYi`YimYit� D W�1
WX

wD1

X

yiu;yi`;yim;yit3s�

�Qpi10.yi1; �
�
iw/

� ˘T
jD2 Qpij1.yij; yi;j�1; ��

iw/
	

yiuD1;yi`D1;yimD1;yitD1
D Qi;u`mt; (say). (96)

This completes the computation of all moments up to order four. These moments
were exploited to construct the GQL estimating Eq. (84) for all parameters involved
in the model, namely ˇ; �; 
� ; and �.
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5.2 Asymptotic Normality and Consistency of Ǫ GQL

Following (83), for true ˛, define

NgK.˛/ D 1

K

KX

iD1
gi.˛/ D 1

K

KX

iD1

@� 0
i

@˛
˝�1

i .vi � �i/; (97)

where v1; : : : ; vi; : : : ; vK are independent to each other as they are collected from K
independent individuals, but they are not identically distributed because

vi � .�i.ˇ; �; 
� ; �/;˝i.ˇ; �; 
� ; �//; (98)

where the mean vectors in (82) and also the covariance matrices in (83) are different
for different individuals.

Now one may derive the asymptotic distribution of ǪGQL by using the same
technique as for the derivation of the asymptotic distribution of Ǒ

GQL given in
Sect. 3.1.1 for the Poisson mixed model. Thus, it can be shown that

lim
K!1 ǪGQL ! N.˛; QV�1

K .ˇ; �; 
� ; �//; (99)

or equivalently

jjŒ QVK.ˇ; �; 
� ; �/�
1
2 Œ ǪGQL � ˛�jj D Op.

p
p C 3/; (100)

where

QVK.ˇ; �; 
� ; �/ D
KX

iD1

@.�i/
0

@˛
Œ˝i.ˇ; �; 
� ; �/�

�1 @.�i/

@˛0 :

This establishes the consistency of ǪGQL for ˛.

6 Discussion

It has been assumed in various econometric studies for count and binary panel data
that the distribution of the random effects involved in the model is unknown. This
makes the estimation of the regression effects ˇ and dynamic dependence parameter
� under the Poisson dynamic mixed model, and the estimation of ˇ and the dynamic
dependence parameter � under the binary dynamic mixed model, very difficult. As a
remedy, some authors such as Wooldridge (1999) and Montalvo (1997) developed
certain estimation techniques those automatically remove the random effects from
the model and estimate rest of the parameters, ˇ and � in the Poisson case. However
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as demonstrated by Sutradhar et al. (2014), these estimation approaches have two
drawbacks. First, the conditional maximum likelihood (CML) method used by
Wooldridge (1999) and the instrumental variables based GMM (IVGMM) method
used by Montalvo (1997) become useless for the estimation of the regression effects
ˇ when covariates are stationary (time independent), even though they are able to
remove the random effects. Second, when the random effects �i or ��

i are removed
technically, the estimates of ˇ and the dynamic dependence parameter (�) alone are
not sufficient to compute the mean, variance and correlations of the data, which is a
major drawback from the view point of data understanding/analysis. One encounters
similar problems with the weighted kernel likelihood approach of Honore and
Kyriazidou (2000, p. 84) for the inferences in binary dynamic mixed logit models.

The aforementioned inference issues do not arise when one can assume a suitable
distribution for the random effects. Because the random effects appear in the linear
predictive function of the generalized linear model, many studies mainly in statistics
literature have considered normality as a reasonable assumption for the distribution
of the random effects. Thus, under the assumption that the random effects involved
in the longitudinal mixed models follow N.0; �2� /, the GQL estimation of the
regression effects ˇ and �2� and moment estimation of the longitudinal correlation
index parameter � were developed by Sutradhar and Bari (2007), for example, for
longitudinal count data, and by Sutradhar (2008) for longitudinal binary data. See
also Breslow and Clayton (1993), Breslow and Lin (1995), Lin and Breslow (1996),
Jiang (1998), and Sutradhar and Qu (1998).

However, in this paper we have provided an extension of the normal latent effects
based longitudinal mixed models for count and binary data to the t� latent effects
based models. The inference for these extended models have been complex not only
because of an additional degrees of freedom parameter but also for the difficulty that
unlike simulation of N.0; 1/ random effects in the Gaussian case, the simulation of
t�.0; 1/ is not possible when � is unknown. In this paper we have resolved this
issue through a new transformation which helps to generate data from a t4.0; 1/
distribution for the purpose and then proceed for estimation of the � parameter. In
summary, we have developed a GQL estimation technique for the estimation of all
parameters involved in the models including the degrees of freedom parameter.
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Part II
Spatial and/or Time Series Volatility

Models with Applications



Zero-Inflated Spatial Models: Application
and Interpretation

L.M. Ainsworth, C.B. Dean, and R. Joy

Abstract Many environmental applications, such as species abundance studies,
rainfall monitoring or tornado count reports, yield data with a preponderance of
zero counts. Although standard statistical distributions may not fit these data, a
large body of literature has been dedicated to methods for modeling zero-inflated
data. One type of regression model for zero-inflated data is categorized as a mixture
model. Mixture models postulate two types of zeros, represented using a latent
variable, and model their probabilities separately. The latent classification of zeros
may be of particular interest as it can provide important clues to physical char-
acteristics associated with, for example, habitat suitability or resistance to disease
or pest infestations. Different zero-inflated models can be developed depending
on the biological and physical characteristics of the application at hand. Here,
several zero-inflated spatial models are applied to a case study of spruce weevil
(Pissodes strobi) infestations in a Sitka spruce tree plantation. The data illustrate
the unique features distinguished by various models and show the importance of
using expert knowledge to inform model structures that in turn provide insight into
underlying biological processes driving the probability of belonging to the zero,
resistant, component. For instance, one model focuses on individually resistant trees
located among infested trees. Another focuses on clusters of resistant trees which
are likely located in unsuitable habitats. We apply six models: a standard generalized
linear model (GLM); an overdispersion model; a random effects zero-inflated
model; a conditional autoregressive random effects model (CAR); a multivariate
CAR (MCAR) model; and a model developed using discrete random effects to

L.M. Ainsworth (�)
Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive,
Burnaby, BC, Canada V5A 1S6
e-mail: lmainswo@stat.sfu.ca

C.B. Dean
Department of Statistical and Actuarial Science, University of Western Ontario, Western Science
Centre - Room 262, 1151 Richmond Street, London, ON, Canada N6A 5B7
e-mail: cbdean@stats.uwo.ca

R. Joy
SMRU Consulting Ltd., Suite 510, 1529 West 6th Ave., Vancouver, BC, Canada V6J 1R1
e-mail: rj@smruconsulting.com

© Springer International Publishing Switzerland 2016
B.C. Sutradhar (ed.), Advances and Challenges in Parametric and Semi-parametric
Analysis for Correlated Data, Lecture Notes in Statistics 218,
DOI 10.1007/978-3-319-31260-6_3

75

mailto:lmainswo@stat.sfu.ca
mailto:cbdean@stats.uwo.ca
mailto:rj@smruconsulting.com


76 L.M. Ainsworth et al.

accommodate spatial outliers. We discuss the distinct features identified by the zero-
inflated spatial models and make recommendations regarding their application in
general.

Keywords Autocovariate • Discrete mixture model • Hierarchical Bayesian
model • Mixed binomial model • Spatial autocorrelation • Spruce weevil

1 Introduction

Biological phenomena and physical characteristics in the environment often give
rise to ecological and environmental data with a large number of zeros. Thus the
data may not fit standard statistical distributions such as the Poisson or binomial
distribution. Further, the data often exhibit spatial correlation such as with animal
abundance studies carried out over a range of habitat suitability types. Spatial
correlation may arise in the positive counts, in the zero counts, or between the
two. The underlying biology, physical characteristics of the sample space and the
study design will all influence the correlations in the data. For instance, areas of
unsuitable habitat are expected to create spatial clusters of zero counts. On the other
hand, spatial outliers may occur when disease resistance gives rise to zero counts in
the vicinity of very large counts termed spatial outliers (Ainsworth and Dean 2008,
see).

Zero-inflated models were originally developed as a means to address the sta-
tistical problem of overdispersion when it arises from many zero counts. However,
their structure can be utilized to gain biological insight and to address practical
problems that impact parameter estimation. There are a wide variety of zero-inflated
models to choose from. For any given application, expert knowledge is essential to
inform the best model choice. If the spatial correlation is expected to be smooth
over the space, a CAR model may be the most appropriate. On the other hand,
isolated zero counts may create a large negative spike in an otherwise smooth spatial
surface. In this case, adding a discrete random effect can accommodate the spatial
outliers. Identification of potentially unsuitable habitat and spatial outliers is useful
for postulating biological influences on abundance and/or resistance.

Here we briefly review zero-inflation models as they relate to a case study that
is selected to demonstrate how different structures on the zero counts can highlight
distinctive features of the data. The dataset selected for analysis is one of spruce
weevil (Pissodes strobi) infestations monitored over several years in a spruce tree
plantation. The spruce weevil produces one generation of larval offspring per year.
The larvae cause extensive damage by feeding as a group on the tree top, forming a
ring around the principal stem. This feeding action cuts off the water flow, causing
the deformity and death of the stem. Repeated infestations in successive years may
stunt the growth of trees and may also cause deformed or forked trunks, a serious
problem for Christmas tree growers as well as for silvicultural objectives. However,
in a spruce tree plantation not all trees are affected; some trees simply don’t have
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eggs hatch on them and therefore experience no larvae damage, while others exhibit
resistance to larvae infestation. Therefore, trees without infestations are a mixture
of two sorts of trees with zero infestations observed because of either mechanism.

We apply six regression models to the spruce weevil dataset and compare
biological insights and model performance of each. These models are: (1) a
standard generalized linear model (GLM); (2) an overdispersion generalized linear
model (Beta-binomial); (3) a zero-inflated model (ZIB); (4) a spatial zero-inflated
conditional autoregressive random effects model (ZIB-CAR); (5) a zero-inflated
multivariate CAR random effects model (ZIB-MCAR); and (6) a zero-inflated
model with a discrete random effect to accommodate spatial outliers (ZIB-discrete).
A particular focus is to compare methods. This case study provides a focal point
for a discussion of the unique features of the zero-inflated spatial models developed
here, provides a context for recommendations regarding applications, as well as
ideas for future research.

2 Zero-Inflation Models

Overdispersion occurs when the observed variance of a random variable is larger
than the variance of the theoretical distribution used to model the data. It is important
to distinguish between true overdispersion and apparent overdispersion which may
arise when the data contains outliers, the model is misspecified (using a linear
relationship to model curvilinear trends) or the model does not include important
covariates and/or interaction terms (Hardin et al. 2007). Apparent overdispersion
can be handled by addressing the shortcomings in the model. True overdispersion
can be handled in a variety of ways. These include the use of a scale parameter to
inflate standard errors (McCullagh and Nelder 1989) or specialized distributions,
for example the generalized Poisson distribution (Consul and Jain 1973) for the
analysis of count data. Other approaches incorporate random effects (Wang et al.
2002; Breslow and Clayton 1993; Lawless 1987; Williams 1982), such as through
the use of generalized linear mixed models (Breslow and Clayton 1993). However,
these methods are generally only suitable for unimodal data.

When overdispersion is induced by an extra mass at zero, as often arises
in ecological abundance studies which contain unsuitable habitat or survey rare
species, a bimodal distribution may be created. In this situation, traditional methods
for handling overdispersion may not be satisfactory. Martin et al. (2005) discuss
the types of zeros arising in ecological studies and show that failing to account for
zero-inflation may lead to underestimation of variance parameters. It seems prudent
to exploit the special structure of a point mass at zero by modelling it explicitly.
This can be done using a hurdle model or a mixture model. Hurdle models, also
referred to as conditional or two-part models, use a single probability to model all
the zeros. A zero mass is coupled with a truncated form of a standard distribution
such as the binomial, Poisson or negative binomial (Heilbron 1994; Mullahy 1986).
In the ecological setting, one interpretation is that the zeros represent unsuitable
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habitat while the conditional mean represents mean abundance given suitable
habitat. The orthogonality of this parameterization allows for simple computation
and interpretation of covariate effects. However, the hurdle model does not provide
a convenient way to estimate separately the probability of a zero arising from the
zero mass and the probability of the zero arising under the Poisson or binomial rate.
The focus of the discussion herein is on mixture models.

Ridout et al. (1998), Martin et al. (2005) and Kuhnert et al. (2005) make the
distinction between different types of zeros in the ecological setting: structural zeros
which arise due to individual immunity or unsuitable habitat, and random zeros
which arise by chance when populations are small or when sighting probabilities are
low. Thus, mixture models provide a means for exploring the underlying biological
mechanisms associated with the zeros. The zero-inflated mixture model (Lambert
1992), uses a latent indicator variable to mix a zero-mass with a standard distribution
and provides a convenient way to model the two types of zeros separately.

Many authors extend zero-inflated models to account for correlation structures
arising in, for example, longitudinal, clustered or spatial data (Dobbie and Welsh
2001; Hall 2000; Hall and Zhang 2004; Liang and Zeger 1986). In many appli-
cations, zero-inflated count data are spatially oriented. Rathbun and Fei (2006)
develop a zero-inflated Bayesian Poisson model with excess zeros generated by
a spatial probit model. Their model uses a single surface to model the spatially
correlated zero component and the non-zero component of the model. On the other
hand, Lawson and Clark (2002) recognize the limitations of using smooth surfaces
to model spatial correlation. They develop a method that uses spatial mixtures of
components to accommodate discontinuities in the spatial surface.

Agarwal et al. (2002) provide a comprehensive discussion of Bayesian methods
for zero-inflated Poisson regression models. They discuss the issues of posterior
propriety, informative prior specification, well behaved simulation-based model
fitting and handling data with a large proportion of zeros, and devise techniques
for proper prior specification of regression parameters.

3 Case Study: Pine Weevil Infestations

White pine weevil infestations in a 21,960 m2 spruce tree plantation in British
Columbia serve as a case study. The spruce trees in this plantation were part
of an experiment to reduce pine weevil infestations. Therefore investigators were
particularly interested in the areas with the highest resistance and trees that could
remain resistant in highly infested areas. They inspected the N D 2662 susceptible
trees for the presence of a weevil attack annually over 7 years [see Ainsworth and
Dean (2007), for the data]. However, data were not necessarily available for all trees
in all years. The counts have an upper bound of seven and are not rare enough
to justify the Poisson approximation to the binomial distribution. Longitudinal
trends in the infestation data are considered elsewhere (Nathoo and Dean 2007).
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Fig. 1 Histogram of infestation counts in grey. A binomial distribution with mean equal to the
average infestation count is superimposed as clear boxes with diagonal lines (Color figure online)

Here the analysis focuses on the spatial patterns in the binomial data and interpreta-
tions derived from different mechanisms to handle zero-inflation.

The infestation counts are shown in Fig. 1. The data have a unimodal distribution
with many trees having no infestations (715/2662 = 0.269) over the study period.
The mechanisms giving rise to these zeros was of particular interest. Thus, mixture
models were a natural parameterization for exploring the data. The zeros were
modelled as arising from either (a) resistant trees or unsuitable habitat, or (b)
susceptible trees. The first type of zero was assumed to arise from a distinct zero
mass associated with resistance; the second type was assumed to arise from a
binomial distribution. Zero-inflated binomial models developed here were applied
to demonstrate the features distinguished by different models in the context of
this study.

4 Model Specification

Here we investigate six models for count and proportion data: two non-inflated
models, and four zero-inflated models. The GLM model and its basic overdispersed
counterpart, the Beta-binomial model, do not incorporate zero-inflation or spatial
correlation. The ZIB model, incorporates zero inflation but does not accommodate
spatial correlation. The ZIB-CAR, ZIB-MCAR, and ZIB-discrete models are ZI
spatial models that accommodate a variety of local spatial effects through the
addition of random effects. The ZIB-CAR and ZIB-MCAR models assume a
smooth spatial surface while the ZIB-discrete model uses discrete random effects
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to accommodate spatial clustering and isolated spikes on the spatial surface. Below,
we briefly present the six models as they are applied to the case study.

1. Standard Binomial Generalized Linear Model (GLM)

Let mi be the number of years tree i was observed, let yi be the number of years
tree i was infested, and let N be the number of trees in the sample. Let yi; : : : ; yN

denote N independent observations of the random variable Y, the number of years
of larval infestation. The generalized linear model, assumes Yi � Bin.mi; �i/ with
expectation E.Yi/ D mi�i, variance Var.Yi/ D mi�i.1 � �i/ and proportion of
infestations �i.

We further assume that the expected value �i relates to a set of p covariates that
take values x0

i D .xi1; :::; xip/ through a logit link function

g.�i/ D log

�
�i

1 � �i

�
D ˛� C x0

iˇ

where ˇ is a vector of fixed, but unknown, regression parameters.

2. Overdispersed Beta-Binomial Model (Beta-Binomial)

When applying generalized linear models for the binomial distribution as in
model 1, we expect the residual deviance to be approximately the same as the
residual degrees of freedom. When there are many zeros observed, the residual
deviance can be much greater and cause the estimates of ˇ to be less precise than
expected. Thus, when we have overdispersion, reported standard errors may be too
small (Stroup 2013).

To accommodate this extra variability, we allow for general overdispersion.
Models that allow for overdispersion typically replace the mean-variance function
of the original model by a more general form involving additional parameters. One
way to allow for overdispersion, is to adopt a two-stage model as follows.

Assume Yi � Bin.mi;Pi/, where the Pi’s are random variables from a Beta
distribution with mean �i. Then, unconditionally, we have

E.Yi/ D mi�i; and

Var.Yi/ D mi�i.1 � �i/Œ1C .mi � 1/�

where  is an overdispersion parameter. This gives the beta-binomial distribution
which assumes the response to be binomially distributed, and the Pi’s to be from a
Beta.˛�; ˇ�/ distribution with  D ˛� C ˇ�. The expected mean �i of the Beta-
binomial model is related, as in the GLM model, to a set of covariates xi through a
logit link function

g.�i/ D log

�
�i

1 � �i

�
D ˛� C x0

iˇ:
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These models accommodate general overdispersion but do not necessarily fit
overdispersion induced by a point mass.

3. Zero-Inflated Binomial Model (ZIB)

Zero-inflated models explicitly handle overdispersion that arises from a point
mass at zero. Mixture model formulations are useful when zeros arise from two
processes; one binary process that describes a mechanism for observing zeros (e.g.,
resistance or unsuitable habitat), and another process that generates both zero and
non-zero data such as counts, or in this case study, the proportion of years a tree
is observed to have a larval infestation. It is important to realize that this model
formulation mixes two components that represent the separate processes generating
the zeros.

The zero-inflated model formulation is facilitated by the introduction of a latent
variable, Zi, which in the present context, measures resistance. Let Zi D 1 if the
observation arises from the zero mass, a distribution which generates zero with
probability 1, and let Zi D 0 if the observation arises from the alternate count or
proportion distribution f ./. In other words, if Zi D 0, tree i is considered non-
resistant or susceptible and if Zi D 1, tree i is considered to be either individually
resistant or to reside in unsuitable habitat.

A zero-inflated binomial regression model is given by

YijZi D
�

Bin.mi; �i/ if Zi D 0

0 if Zi D 1;

Thus, under this parameterization, Zi models the probability that a tree is resistant or
in unsuitable habitat, and has a Bernoulli distribution Zi � Bern.�i/, and E.Yi j Zi D
0/ D mi�i, and Var.Yi j Zi D 0/ D mi�i.1 � �i/. As in models 1 and 2, we use a
link function, to relate the conditional means of these distributions to linear models
as follows:

logit.�i/ D ˛� C x0
�iˇ�

logit.�i/ D ˛� C x0
� iˇ� ;

where x0
�i, x0

� i are vectors of covariates associated with the fixed effects, and ˇ�,
ˇ� their regression coefficients. This model explicitly accommodates a point mass
at zero, but it does not accommodate spatial correlation amongst observations. The
extensions we consider in the next three models account for spatial correlation and
are implemented through the addition of random effects.

4. Zero-inflated Conditional Autoregressive Model (ZIB-CAR)

The CAR model specifies a set of spatially correlated random effects
b D .b1; : : : ; bN/ where each bi is associated with a particular location (tree) in
R2. A convenient distributional form for the random effects is the multivariate
normal distribution with mean 0, and spatially structured covariance matrix, ˙ .
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The CAR model specifies ˙ indirectly through a set of conditional distributions.
The i D 1; : : : ;N conditional distributions are assumed to be univariate normal

bijbj¤i � N.ui; �
2
i / i; j D 1; : : : ;N;

where �2i > 0 is the conditional variance, ui D P
j2ıi

wijbj, and ıi is a set of
neighbours for location i. The weights, wij 	 0, wii D 0, can be based on the
distance between locations i and j. The unconditional distribution is,

b � N.0; .I � W/�1M/

where W D .wij/ and M D diag.�21 ; : : : ; �
2
N/. In order to ensure symmetry of ˙ ,

we require wij�
2
j D wji�

2
i . Further, (I-W) must be invertible and .I � W/�1M must

be positive definite. Besag et al. (1991) propose an intrinsic CAR model in which
the covariance matrix ˙ is not positive definite. The weighting choice used with
intrinsic autoregression is wij D cij=ci, and �2i D �2=ci where cij are user defined
weights set so that ci D P

j cij with cij D 1 for neighbours, and 0 otherwise. In
this case we can write the variance of the joint distribution of the random effects as
.I � W/�1�2.

The conditional specification of the CAR model facilitates Markov Chain
Monte Carlo (MCMC) estimation. In particular, Gibbs sampling requires sampling
from the full conditional distributions which are obtained from the joint posterior
distribution. Full conditional distributions may not take a standard form, however
log-concave distributions may be sampled via adaptive rejection sampling (Gilks
and Wild 1992).

A zero-inflated spatial model is specified by introducing two independent CAR
random effects into the two components of the ZIB model, i.e.,

logit.�i/ D ˛� C x0
�iˇ� C b�i

logit.�i/ D ˛� C x0
� iˇ� C b� i;

where b�i, b� i are random effects with variance �2b� and �2b� . Note that we use two
sets of random effects; one set is associated with the probability of membership
in the resistant group, �i, the other with the mean proportion for the non-resistant
group �i.

The intrinsic autocorrelation in this model imposes two independent smooth
spatial structures, one for each model component. This model is similar to the model
described in Agarwal et al. (2002). They use a Poisson distribution but provide a
thorough discussion of these types of models and their theoretical properties.

5. Zero-Inflated Multivariate CAR Model (ZIB-MCAR)

An MCAR distribution (Jin et al. 2005) may be used to model the
correlation between the random effects for the two components of the model
(bm
� and bm

� ). This permits correlation between the two spatial processes.
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Let Bi D .bm
�i; b

m
� i/ be a 2-dimensional vector of spatially correlated Gaussian

random effects at site i. Here, the conditional MCAR distribution is:

BijBj¤i � N2. NBi; ˙=ci/ (1)

where N2 denotes the bivariate normal distribution, NBi is the mean of the spatial
random effects corresponding to trees in the neighbourhood of the ith tree, and
˙ is the 2 � 2 positive definite, symmetric matrix that represents the conditional
within-region covariance of the random effects. The diagonal elements of ˙ , �2b�
and �2b� , represent the conditional variance parameters corresponding to bm

� and bm
�

respectively, while the unrestricted off-diagonal elements represent the conditional
correlation.

Similar to the CAR model, the ZIB model components are specified as follows:

logit.�i/ D ˛� C x0
�iˇ� C bm

�i

logit.�i/ D ˛� C x0
� iˇ� C bm

� i;

The MCAR model, like the CAR model imposes a smooth spatial surface.

6. Zero-Inflated Discrete Random Effects Model (ZIB-Discrete)

Discrete random effects allow for discontinuities in the spatial surface and
tend to be more flexible than those constrained to be normally distributed. They
are particularly useful for accommodating spatial outliers (Ainsworth and Dean
2008). Model 6 uses discrete random effects for the zero component of the model
and thus allows individual trees to have excessively elevated or deflated posterior
probabilities of resistance. Let the discrete random effect, di, take one of k values,
log.R1/, log.R2/, : : : , log.Rk/, with probability �1, �2, : : : , � k, respectively, wherePk

jD1 � j D 1; define � D .�1; �2; : : : ; � k/. Define b D .b1; : : : ; bN/ to be CAR
random effects as in model 4 (ZIB-CAR). The ZI-discrete model is specified as:

logit.�i/ D ˛� C x0
�iˇ� C bi

logit.�i/ D ˛� C x0
� iˇ� C di;

Under this model, the random effects associated with resistance are not necessarily
spatially correlated. Rather they classify trees into resistance groups of, say, low,
moderate, and high probability of resistance.

5 Model Implementation

He and Alfaro (1997) discuss neighbourhood definitions in the context of weevil
infestations. These authors found spatial correlations attenuated at different dis-
tances depending on the stage of a weevil infection cycle. Exploratory analysis,
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including variograms for the total number of infestations, the number of infestations
given at least one, and whether or not the tree was ever infested, as well as biological
expertise, led to defining a neighbourhood as all trees within a radius of 6 m. Two
trees were more than 6 m away from any neighbours; the closest neighbour was
located at a distance of 6.1 and 11.3 m for these trees. These nearest neighbours were
defined as the single neighbour for each of these trees. The number of neighbours
ranges from 1 to 37 with a median of 15.

Model specification is completed by assigning prior distributions. A brief
study of sensitivity to priors is discussed at the end of this section. We used
uninformative priors throughout. The intercept terms, ˛� and ˛� were given flat
priors, Uniform(�1;1). For the Beta-binomial model, the parameters of the
beta distribution were given Gamma (1,0.001) priors. Here, Gamma (a; b) denotes
the gamma probability density function with mean a=b and variance a=b2. For
the CAR distribution, the precision parameters 1=�2b� and 1=�2b� were assigned a
conjugate Gamma (0:05; 0:05) prior. The precision matrix for the MCAR distri-
bution was given a Wishart prior with matrix elements .0:001; 0; 0; 0:05/ and 2
degrees of freedom. For a detailed discussion of implementation issues related to
priors, identifiability and convergence for spatial models, see Eberly and Carlin
(2000) and Agarwal et al. (2002). The ZIB-discrete model, � was assigned a
Dirichlet.1; 1; : : : 1/ prior distribution. R1 was assigned a N.1; 10/ prior, suitably
standardized for truncation at zero. For computational stability, we used RjC1 D
RjCıj with ıj, j D 1; 2; : : : ; k�1, having zero truncated N.0; 10/ prior distributions.
Here, k D 3 provided sufficient flexibility, and R1;R2, and R3 reflect low, medium
and high probabilities of resistance. See Chen and Knalili (2008) for a detailed
discussion of the order of finite mixture models.

Posterior distributions were computed using the default Markov chain Monte
Carlo algorithms within WINBUGS 1.4 (Spiegelhalter et al. 2003). All analyses
were run using two parallel Markov chains with dispersed starting values. CAR
prior distributions were fit using the Winbugs function car.nomral, and MCAR
prior distributions were fit using the mv.car function. Due to the large lag in the
autocorrelation of the parameter estimates in these sorts of studies, we thinned the
samples to no less than every 20th sample. We used a burn-in of between 10,000
and 500,000 iterations with more complex models requiring longer burn-in and
thinning. Posterior summaries were based on 2000 iterations, once convergence had
been confirmed. Convergence was assessed via trace plots, Gelman and Rubin plots
(Gelman and Rubin 1992) and Monte Carlo errors.

In order to fit the ZIB-CAR and ZIB-MCAR models we utilized the WinBUGs
zeros trick (Lunn et al. 2012). This trick is useful for specifying specific sampling
distributions and, in our experience, is useful for fitting complex zero-inflated
models. However, it was difficult to obtain convergence for ZIB-MCAR model
parameters. The choice of starting values for the intercept and the choice of priors
placed on the variance components impacted model convergence. Thus, we carried
out a sensitivity analysis to assess the stability of parameter estimates, as discussed
in the following section.
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6 Results

Table 1 presents transformed estimates of the intercept terms associated with the
linear predictors. These yield mean estimates of the proportion of years a tree is
infested and of the probability of resistance. The standard binomial model and the
four models which account for spatial correlation provide very similar estimates of
the proportion of years infested. Standard errors are smaller under the GLM model,
as expected. The ZIB-CAR and ZIB-MCAR models account for spatial correlation
in the zero classification through a CAR distribution; they provide similar estimates
and standard errors of the proportion of zeros arising from the resistant group. Under
the ZIB model, both the estimated proportion of infestations and especially the
estimated proportion of resistant trees are larger than those obtained from other
zero-inflated models. However, as we see later, neither the GLM nor the ZIB model
has sufficient flexibility to fit this data well. Under the ZIB-discrete model, the odds
of resistance takes values (Rj; j D 1; 2; 3), 0.024, 0.76 and 2.22, with probabilities
(� j; j D 1; 2; 3), 0.77, 0.18 and 0.04, respectively. This model allows a few trees
(4%) to have a very large probability (0:69) of resistance (Rj=.1C Rj/; j D 1; 2; 3).

Table 1 also shows that the estimated variance of the random effects associated
with the non-resistant trees, �2b� , is quite similar for the ZIB-CAR and ZIB-MCAR
models. The unique flexibility of the ZIB-discrete model to accommodate isolated
resistant trees by a discrete random effect results in an estimated variability in the
random effects associated with the non-resistant component being much smaller
than that estimated under the ZIB-CAR and ZIB-MCAR models.

The estimates of the variability in the random effects associated with the resistant
component, �2b� , (Table 1) differ across models. The estimated random effects b�i

from the ZIB-CAR and ZIB-MCAR models are highly correlated (r D 0:99).
On the other hand, estimated random effects b� i are only moderately correlated
(r D 0:58) across models. Under the ZIB-CAR model, the estimates of the two sets
of random effects, b�i and b� i, have a moderate, negative correlation (r = �0.48).
The ZIB-MCAR model, imposes strong correlation structure on the two sets of
random effects and they exhibit an almost perfect negative correlation (r = �0.995).

Table 1 Posterior mean estimates of proportion of years infested, e Ǫ�

1Ce Ǫ�
, proportion of resistant

trees, e Ǫ�

1Ce Ǫ�
, and variability of random effects

Model e Ǫ�

1Ce Ǫ�
(95% CI) e Ǫ�

1Ce Ǫ�
(95% CI) O�2b� (95% CI) O�2b� (95% CI)

GLM 0.22 (0.209,0.221) – – –

ZIB 0.26 (0.250,0.265) 0.16 (0.141,0.182) – –

ZIB-CAR 0.22 (0.204,0.231) 0.05 (0.017,0.095) 1.98 (1.28, 2.89) 3.03 (0.18, 9.67)

ZIB-MCAR 0.22 (0.203,0.233) 0.06 (0.019,0.112) 1.95 (1.03, 2.93) 0.43 (0.05, 0.93)

ZIB-discrete 0.21 (0.204,0.226) – 1.46 (1.19, 1.73) –

CI is the credibility interval
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Fig. 2 Correspondence of the posterior probability of resistance among the spatial models

Forcing such a correlation drastically reduces the variability in that component of
the model for which less information is available for estimation. Here, and typically
for zero-inflated models this is the resistant component (as reflected in �2b� ).

Figure 2 highlights the relationship among the estimates of the posterior prob-
abilities of resistance obtained from the ZIB-CAR, ZIB-MCAR and ZIB-discrete
models. The ZIB-discrete model clearly identifies different features of the data.
Further insight into the unique characteristics of ZIB-discrete model is obtained
by considering the relationship between the posterior probability of resistance for
infestation-free trees and two measures on neighbouring trees: mean proportion of
years of infestations observed, and the proportion of trees which were never infested
(Fig. 3). The posterior probability of resistance is weakly associated with these two
measures under the ZIB-CAR model, but strongly associated under the ZIB-MCAR
and ZIB-discrete models. Large posterior probabilities of resistance are associated
with small infestation rates in neighbouring trees and having many non-infested
neighbours under the ZIB-MCAR model.
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Fig. 3 The relationship between the posterior estimate of resistance for trees with no infestations
and measurements on neighbouring trees: mean proportion of infestations observed for neighbour-
ing trees and the proportion of neighbouring trees which were never infested

In contrast, the ZIB-discrete model assigns large posterior probabilities of
resistance to isolated resistant trees; those trees which are surrounded by many
highly infested trees. For this model, spatial correlation in resistance is captured
through the random effects in the non-resistant component, b�i, which permit spatial
clusters with very low means.

Figure 4a and 4b highlight the 100 trees with the largest estimated probabilities
of resistance in light; the remaining non-infested trees are indicated in dark; and
infested trees are indicated in black with larger circles indicating a larger proportion
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Fig. 4 Largest and smallest posterior estimates of the probability of resistance (a and b) and the
random effect associated with the non-resistant component (c and d). Infested trees are indicated in
black with larger circles indicating a larger proportion of years infested. In a and b, trees with the
largest probability of resistance are indicated in yellow; remaining non-infested trees are indicated
in blue. The 100 trees with the largest (red) and smallest (yellow) estimates of the random effect
associated with the non-resistant component are indicated in c and d (Color figure online)

of years infested. The ZIB-CAR model locates spatial clusters of resistant trees in
the south-west corner of the plantation. The ZIB-discrete model identifies isolated
resistant trees which are surrounded by trees with many infestations, especially in
the north. This is seen more clearly by comparison with Fig. 4c (and Fig. 4d). In
Fig. 4c red highlights indicate the 100 trees with the largest posterior estimates of the
random effect associated with the non-resistant component—indicating sites with
the largest estimated probability of infestation. In Fig. 4d yellow highlights indicate
the 100 trees with the smallest estimates. The trees with the largest estimated
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random effects tend to be located in the northern corner of the plantation. Note that
Fig. 4c, d present Ob� from the ZIB-discrete model; those from the ZIB-CAR model
are almost perfectly correlated with the estimates from the ZIB-discrete model and
are not shown here.

Goodness-of-fit is assessed in a variety of ways. Standardized residu-
als (not shown here) for each model, defined as the posterior mean of
ri D .yi � E.y//=

p
V.y/, indicate that the GLM and ZIB models tend to

underestimate the largest infestation rates. Histograms of the posterior predictive
values, P.yi < yi

rep/ (Gelman et al. 1996), for each model (not shown here) reveal
that the Beta-binomial model has very few extreme p-values. However, the p-values
associated with the ZIB-CAR, ZIB-MCAR and ZIB-discrete models show a more
uniform distribution as is expected with a good fit.

Table 2 displays goodness-of-fit measures obtained from posterior predictive
distributions. The first column displays the number of trees observed to have 0,
1, 2, : : : 7, infestations, Oj, j D 0; 1; : : : ; 7. Columns 3–8 display the posterior
median number of trees, Ej, with j infestations, j D 0; 1; : : : ; 7. The bottom of
the table presents the GOF D P7

jD1.Oj � Ej/
2=Ej, the p-value corresponding to

a �2 discrepancy measure based on the statistic, T D .yi � E.yijb//2=Var.yijb/,
(Gelman et al. 1996), and Johnson’s (2004) goodness-of-fit statistic, RB, which has
a �2 distribution if the model is accurate. The posterior mean of RB, as well as the
proportion of times RB exceeds the critical value of the �2 distribution, are reported
in the last two rows of Table 2.

Goodness-of-fit measures indicate that the simplest models, the GLM and
ZIB models, provide poor fits to this data. Although the ZIB model regenerates
approximately the correct number of zeros, it does not provide a good fit to the
non-zero counts. Accounting for overdispersion beyond that arising from zero-
inflation is necessary. The Beta-binomial model, accounts for overdispersion in
general, but does not account for zero-inflation specifically. Surprisingly, it provides
a reasonable fit to the data. This is likely due to the fact that the data are unimodal.
If the mean of the non-zero counts was slightly larger or the proportion of zeros was
slightly greater, the resulting bimodal distribution would not be accommodated by
the Beta-binomial model. All of the spatial models are able to accommodate both
the excess zeros and the overdispersion in the counts; they provide a reasonable fit
to the data. In particular, the ZIB-CAR and ZIB-discrete models provide a good fit.
The best choice amongst these models depends on the focus of the application. The
ZIB-CAR model is well suited to identifying unsuitable habitat which manifests as
clusters of zeros. The ZIB-discrete model is more flexible and can identify isolated
zeros which may represent individual resistance or immunity.

Sensitivity to prior distributions are a key consideration. Gelman (2006) and
Gelman and Hill (2007) note that the prior distribution used for the scale parameter
needs to be selected carefully. A typical choice is an inverse-Gamma(�; �) distri-
bution for the variance parameters. Table 3 displays parameter estimates from a
2 � 2 factorial design used to test sensitivity to variance priors for the ZIB-CAR
and ZIB-discrete models. For the ZIB-CAR model, the precision parameter, ��2

b�
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Fig. 5 Comparison of estimated posterior probability of resistance for various prior specifications;
ZIB-CAR model is in the top panel, and ZIB-discrete model is in the bottom panel

is assigned a Gamma.0:001; 0:001/ or Gamma.0:05; 0:05/ distribution while ��2
b�

is assigned a Gamma.0:05; 0:05/ or Gamma.0:10; 0:10/ distribution. For the ZIB-
discrete model, ��2

b�
is assigned the same priors as above; the priors for R1 and

ıj, j D 1; 2; : : : ; k � 1 are N.1; 5/ and N.0; 5/ or N.1; 10/ and N.0; 10/, suitably
standardized for zero truncation. Estimates are quite stable with those of �2b�
displaying slightly higher variability across priors. As well, goodness of fit measures
were consistent across prior specifications. Figure 5 presents the correspondence of
posterior probabilities of belonging to the resistant group across prior specifications.
Both models exhibit strong correlations.

Although not discussed here, we also conducted a sensitivity analysis for the
ZIB-MCAR model. Currently there is little literature to guide the choice of Dirichlet
priors. We found the choice of starting values for the intercept term, ˛� , and the
random effects, b� , was important for convergence. Regardless of prior choice, with
poor starting values, the intercept term ˛� often drifted toward large negative values.
It was difficult to obtain convergence for MCAR model parameters. We recommend
caution when fitting this model. It is important to do a thorough sensitivity analysis
to determine parameter stability before making inference.
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7 Discussion

This paper considers a rich and flexible class of zero-inflated mixture models which
incorporate random effects for modelling spatial correlation, clusters of resistance
and isolated resistance to weevil infestation. These complementary models provide
a variety of structures for modelling the probability of belonging to a resistant group
and accommodating spatial correlation in both the zero and non-zero components of
the model. The mixture models estimate the probability of belonging to a resistant
group using an unobserved latent variable. Estimation of this latent variable is
sensitive to the structure imposed on the probability of belonging to the zero
component. In order to gain meaningful insight, it is essential to choose the model
structure wisely, based on expert knowledge and the key biological questions at
hand.

For the weevil infestation data, the simple Beta-binomial model, although accom-
modating the zero counts well, did not provide enough flexibility for modelling the
overdispersed counts. Although the Beta-binomial model did not provide insight
regarding resistant trees, it, surprisingly, provided a great deal of flexibility in
modelling zero-inflation relative to the GLM model. In situations where the number
of zeros is not extreme and tree resistance to weevil infestation is not of biological
interest, the GLM may provide a reasonable overall fit to data.

The zero-inflated spatial models (ZIB-CAR and ZIB-discrete) fit the data well.
They also provided insight into possible underlying mixture mechanisms related
to resistance. The ZIB-CAR model specified zeros to be clustered while the ZIB-
discrete model was more flexible and accommodated spatially isolated zeros (spatial
outliers). Both models were relatively robust to choice of priors, especially with
regard to the estimated probability of resistance. The ZIB-MCAR model was quite
constrained, and as implemented here, it was difficult to gain convergence for this
model. For a discussion of alternative formulations of MCAR models see Jin et al.
(2005).

We note that extensions of Rathbun and Fei’s (2006) zero-inflated probit model
to accommodate spatial correlation in the non-resistant group may provide another
competing alternative model. Computational challenges for large datasets arise due
to the size of the covariance matrix. However, this may be handled by using an
approximation to the Matern process, for example using spatial models based on
kernel convolution (Nathoo 2010). A natural extension to the zero-inflated models
outlined here, is to use splines to account for temporal relationships. Splines could
be used to model trends in both the probability of resistance and the mean count. For
binomial spatio-temporal analyses where the upper bound on counts is not too large,
the use of a dynamic state-space structure where certain sites are in an absorbing
state may also provide a useful modelling approach. Although the temporal features
of the case study were not considered here, in other instances, models where a
temporal trend is of key interest may be required. Various models for longitudinal
analysis of ZI data can be found in, for example, Alfo and Maruotti (2010), Hasan
and Sneddon (2009) and Hasan et al. (2009).



94 L.M. Ainsworth et al.

There is also a large body of literature on modelling spatio-temporal trends in
zero-inflated data (Tzala and Best 2008; Velarde et al. 2004; Ver Hoef and Jansen
2007; Wikle and Anderson 2003). For instance, Ver Hoef and Jansen (2007) use
both mixture and hurdle models for zero-inflated seal haul out analyses. More
recent zero-inflation research focuses on the joint modelling of multiple outcomes
(Diao et al. 2013; Feng and Dean 2012; Hatfield et al. 2012; Rodrigues-Motta et al.
2013). For instance Feng and Dean (2012) use a latent random risk term to link
the spatial component across outcomes and Dean and Lundy (pers.comm., Lundy’s
thesis dissertation, in preparation, 2015) model juvenile delinquent behaviour using
a longitudinal joint model.

The weevil infestation case study demonstrates that a variety of models can
accommodate the large number of zeros in this data. However, models with similar
measures of goodness of fit can vary in utility. The Beta-binomial model fit the
data fairly well but did not provide foresters with insight into tree resistance to
weevil infestations. The zero-inflated spatial models provided a good fit with the
advantage of providing biological insight. The ZIB-CAR model provided insight
into the locations with the highest resistance while the ZIB-discrete mixture model
provided a means of identifying the trees with the largest probability of resistance.
This analysis highlights the importance of choosing a statistical model that not
only fits the data, but reflects the underlying biological processes and provides the
investigator with biologically meaningful interpretations and thus insight into key
scientific questions.
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Inferences in Stochastic Volatility Models:
A New Simpler Way

Vickneswary Tagore, Nan Zheng, and Brajendra C. Sutradhar

Abstract Two competitive analytical approaches, namely, the generalized method
of moments (GMM) and quasi-maximum likelihood (QML) are widely used in
statistics and econometrics literature for inferences in stochastic volatility models
(SVMs). Alternative numerical approaches such as monte carlo markov chain
(MCMC), simulated maximum likelihood (SML) and Bayesian approaches are also
available. All these later approaches are, however, based on simulations. In this
paper, we revisit the analytical estimation approaches and briefly demonstrate that
the existing GMM approach is unnecessarily complicated. Also, the asymptotic
properties of the likelihood approximation based QML approach are unknown
and the finite sample based QML estimators can be inefficient. We then develop
a precise set of moment estimating equations and demonstrate that the proposed
method of moments (MM) estimators are easy to compute and they perform well
in estimating the parameters of the SVMs in both small and large time series set
up. A ‘working’ generalized quasi-likelihood (WGQL) estimation approach is also
considered. Estimation methods are illustrated by reanalyzing a part of the Swiss-
Franc and U.S. dollar exchange rates data.

Keywords Correlated squared observations • Consistent estimation • General-
ized method of moments and complexity • Kurtosis estimation • Large sample
properties • Quasi-maximum likelihood estimation • Simpler method of moments
using fewer unbiased estimating equations • Small sample comparison • Time
dependent variances • Volatility parameters

1 Introduction

In economic such as in financial time series, one frequently encounters certain
uncorrelated but dependent responses, for example, stock returns and exchange
rates. Also, the responses may contain more extreme values than usual indicating
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higher kurtosis; and they may exhibit non-stationary variation over time. This type
of data are commonly analyzed by using the so called stochastic volatility (SV)
models, introduced by Taylor (1982), among others. The SV models are developed
such that the responses conditional on their latent heteroscedastic variances behave
like a white noise series, where the variances maintain a dynamic relationship over
time ensuring higher kurtosis than a Gaussian series. In notation, let yt be the
response on a continuous scale recorded at time t (t D 1; : : : ;T) with zero mean
(or shifted to zero) and a time dependent unobservable variance �2t . To reflect the
aforementioned characteristics of the responses fytg; one uses the volatility model

ytj�t D �t �t t D 1; : : : ;T (1)

ln.�2t / � ht D �0 C �1 ht�1 C �tI t D 2; : : : ;T (2)

(Andersen and Sorensen 1996; Harvey et al. 1994; Ruiz 1994;Mills 1999,
pp.127–128), where error variables f�t; t D 1; : : : ;Tg are independently and

identically (iid) distributed with mean zero and variance 1, that is, �t
iid� .0; 1/.

Also, �t and �t are assumed to be independent. In non-stationary variance model
(2), �0 is the intercept parameter, �1 is the volatility persistence parameter and

�t
iid� N.0; �2� / with �2� as the measure of uncertainty about future volatility. One

may then obtain the conditional mean and variance of Yt; and the conditional lag `
auto-covariances between Yt and Yt�` as

E.Ytj�t/ D �t EŒ�t� D 0; var.Ytj�t/ D �2t var.�t/ D �2t ; and

CovŒ.Yt;Yt�`/j�t; : : : ; �t�`� D �t�t�`CovŒ�t; �t�`� D 0; (3)

respectively, yielding further the corresponding unconditional mean, variance and
covariances as

EŒYt� D 0; varŒYt� D EŒ�2t �; and

CovŒYt;Yt�`� D 0: (4)

Note that even though the lag covariances are zero, that is, the responses are
uncorrelated, they are, however, dependent to each other. For example,

CovŒY2t ;Y
2
t�`� D EŒ�2t �

2
t�`� � EŒ�2t �EŒ�

2
t�`� ¤ 0: (5)

This is because in the present set up, heteroscedastic latent variances over time are
not independent, instead they follow, say, the dynamic relationship given in (2). Note
that for model (2), it is necessary to know the initial variance �21 at time t D 1: It is
reasonable to assume that

ln.�21 / D h1
iid� N

�
�0

1 � �1 ;
�2�

1 � �21

�
; (6)
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(Lee and Koopman 2004, Eq. (1.1c)).
As far as the fitting of the volatility model (1)–(2) to the data fytg is concerned,

it is important to estimate the parameters of the model, namely, �0; �1 and �2� ,
consistently and as efficiently as possible. It is also of interest to obtain a consistent
estimate for the kurtosis of the responses, namely

�t.�0; �1; �
2
� / D E.Y4t /

ŒE.Y2t /�
2
: (7)

It can be shown under the model (1)–(2) that this kurtosis is larger than 3, its
counterpart value under the Gaussian responses. Thus this SV model can fit fatter
than normal tailed values which causes volatility in the data. However the estimation
of the parameters �0; �1; and �2� for this SV model is complex because of the
fact that �2t .t D 1; : : : ;T/ in (2) are unobserved and their correlation structure
affect the correlation structure of fy2t g in a complicated way, even though y;ts .t D
1; : : : ;T/ are uncorrelated. Nevertheless, there exist some widely used analytical
estimation approaches, namely, the quasi-maximum likelihood (QML) and the so-
called generalized method of moments (GMM). The advantages and disadvantages
of these estimation methods are reviewed in brief in Sect. 2.

Note that to obtain consistent estimates in a finite sample set up (i.e. for a
time series with moderate length), as opposed to the GMM and QML approaches,
there exists several numerical approaches such as Bayesian approach by Jacquier
et al. (1994) and the simulated ML (SML) approach which is considered to be an
improvement over the so-called monte carlo markov chain (MCMC) approach. For
SML approach, we refer to Danielsson (1994), Shephard and Pitt (1997), Durbin
and Koopman (1997), Liesenfeld and Richard (2003) and Lee and Koopman (2004).
It is, however, recognized that these numerical techniques are computationally
intensive. For this reason, and also because in practice such as in financial or
environmental analysis one may encounter a large time series, similar to Andersen
and Sorensen (1996, 1997), in this paper, we concentrate on the use of the moments
to obtain efficient estimates in a large time series set up. But, in contrary to Andersen
and Sorensen (1996, 1997) who used 24 moment functions for three parameters, we
use only three moments equations for three parameters, and we demonstrate that this
simpler MM surprisingly performs very well in estimating the desired parameters.
The proposed moment equations along with an algorithm for this simpler MM
approach is given in Sect. 3. We discuss the asymptotic properties of the proposed
estimators in Sect. 5. In Sect. 3, we also provide an alternative ‘weighted’ GQL
(WGQL) [or approximate GQL (AGQL)] estimation approach for the estimation
of the same volatility parameters.

To examine the performance of the proposed MM in estimating the volatility
parameters, in Sect. 4, we conduct a finite samples based simulation study. For
the purpose, we consider both small and large time series. Note that as it will
be discussed in Sect. 2, the computation for the existing QML estimators is
manageable, but it is extremely difficult or impossible to compute the exact formulas
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for the asymptotic variances of the existing QML estimators. Thus, to compare the
proposed MM method we have included the QML method in the finite samples
based simulation study. By the same token, as it is also demonstrated in Sect. 2
that the existing GMM approach is unnecessarily complicated and cumbersome,
we do not include this method in the simulation study. Rather, we include the
aforementioned new alternative moments based WGQL approach in the comparison
study.

In Sect. 6, we estimate the kurtosis using the proposed simpler MM approach.
Section 7 presents an empirical example in which the model is fitted to a series of
daily U.S. Dollar and Swiss-Franc exchange rates. The paper concludes in Sect. 8.

2 GMM Versus QML Estimation for Volatility Models

2.1 Existing GMM Estimation and Complexity

In a linear dynamic mixed model set up for panel data, many econometricians such
as Arellano and Bond (1991) and Ahn and Schmidt (1995) [see also Chamberlain
(1992), and Keane and Runkle (1992)] have applied the so-called generalized
method of moments (GMM) (Hansen 1982) to estimate the parameters of the
model. Let ˛ denote the p-dimensional vector of parameters of the model. Let
 i.zi1; : : : ; ziT I˛/ be a p-dimensional unbiased moment function constructed based
on the data zi1; : : : ; ziT from the ith .i D 1; : : : ; I/ individual over T time points, so
that

EŒ i.zi1; : : : ; ziT I˛/� D 0:

In the GMM approach, one then obtains consistent estimate of ˛ by minimizing the
quadratic form

I�1
"

IX

iD1
 i.zi1; : : : ; ziT ; ˛/

#0
C�1

"
IX

iD1
 i.zi1; : : : ; ziT ; ˛/

#

; (8)

(Hansen 1982) for some positive definite p � p symmetric matrix C. The GMM
estimating equation (8) provides optimal estimates when C is chosen as the
covariance matrix of the unbiased function

PI
iD1  i.zi1; : : : ; ziT ; ˛/:

Following the aforementioned GMM approach, Andersen and Sorensen (1996,
pp. 350–351) [see also Andersen and Sorensen (1997, Sect. 3, pp. 399–400)], for
example, have constructed the GMM estimating equations for the parameters of the
volatility model (1)–(2). To be specific, for the estimation of the main parameters,
namely �0; �1; and�2� ; these authors have first chosen 24 moment functions as

gt1 D jytj � Ejytj; gt2 D y2t � EŒy2t �
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gt3 D jytj3 � Ejytj3; gt4 D y4t � EŒy4t �

gt;4Cl D jytyt�lj � Ejytyt�lj l D 1; : : : ; 10

gt;14Cl D y2t y2t�l � EŒy2t y2t�l�; l D 1; : : : ; 10: (9)

Note that these moment functions are unbiased because

EŒgtu� D 0; for u D 1; : : : ; 24:

Next by using these unbiased moment functions, for ˛ D .�0; �1; �
2
� /

0; they have
constructed the 24 � 1 vector of unbiased functions as

g.˛/ D 1

T

TX

tD1
gt.˛/ with gt.˛/ D Œgt1.˛/; : : : ; gtu.˛/; : : : ; gt;24.˛/�

0

: (10)

These unbiased functions are exploited to construct the GMM estimating equation
for ˛ D .�0; �1; �

2
� /

0

as given by

@g
0

.˛/

@˛
��1.˛/g.˛/ D 0; (11)

where �.˛/ D Cov.g.˛// is the covariance matrix of g.˛/ as an optimal choice,

and
@g

0

.˛/

@˛
is the 3 � 24 first derivative matrix.

Note however that the construction of the GMM estimating equation (11) is
quite cumbersome. This is because, it requires the computation of the following
expectations:

Ejytj; EŒy2t �; Ejytj3; EŒy4t �; Ejytyt�lj; EŒy2t y2t�l�; l D 1; : : : ; 10;

and their derivatives with respect to ˛ D .�0; �1; �
2
� /

0

: Also it requires the
computation for the 24 � 24 matrix �.˛/: It is, thus, clear that the over all
computation for the construction of the estimating equation (11) is cumbersome.
In particular, the computation for the �.˛/ matrix is extremely complicated which
requires the formulas for the moments up to order 8. Furthermore, there is no
guidelines available how these 24 functions were chosen, when in fact, one can think
of infinite number of such functions (Melino and Turnbull 1990, p. 250). This raises
a concern about such an estimation procedure where an arbitrary large number of
functions are needed to estimate a small number of parameters. A further drawback
of this GMM procedure is that even if one pursues this algebraically painstaking
procedure, it does not, however, show any substantial efficiency gain in estimation
(Andersen and Sorensen 1997; Ruiz 1997) over other competitive approaches such
as the quasi-maximum likelihood (QML) estimation approach discussed below.
Consequently, we will not follow this GMM estimation approach any more in the
present paper.
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2.2 QML Estimation

Note that the exact likelihood estimation for the volatility parameters �0; �1 and
�2� ; under the volatility model (1)–(2), is extremely complex. To understand this
complexity, we follow (1) and first express log y2t as

zt D log y2t D log �2t C log �2t

D EŒlog �2t �C log �2t C ut

� �1 C log �2t C ut t D 1; : : : ;T; (12)

where �t
iid� N.0; 1/ and �1 D �1:270363. In (12), ut follows the log chi-square

distribution with mean zero and variance �2 D 	2=2 (Abramowitz and Stegun
1970, p. 943). It then follows that the exact likelihood function is given by

L.�0; �1; �
2
� jz1; z2; : : : ; zT / D

Z

�21 ;:::;�
2
T

TY

tD1
f .ztj log �2t /dzt d.log �2t /

D
Z

�21 ;:::;�
2
T

TY

tD1
g�.ut/dut d.log �2t / (13)

where g�.ut/ represents the log�2.0; �2/ distribution. The computation of the
likelihood function (13) is very complicated as it requires the multi-dimensional
integrations of the product chi-square distributions with regard to the random
variances �21 ; : : : ; �

2
T :

To avoid this complex integration problem, some authors have suggested to use
the normal approximation to the log chi-square distribution. See, for example, Ruiz
(1994), Harvey et al. (1994), Koopman et al. (1995, Chap. 7.5) and Mills (1999,
pp. 130–131). This is equivalent to approximate the likelihood function (13) by
pretending that

z D .z1; z2; : : : ; zT/
0

follows a MVN (multivariate normal) distribution with true mean vector and true
covariance matrix under the model. Let m D .m1; : : : ;mt; : : : ;mT/

0 D EŒZ� and the
covariance matrix ˚ D Cov.Z/ D .vut/ of the response vector z. It can be shown
that

mt D
8
<

:

�1 C log �21 for t = 1

�1 C � t�1
1 log�21 C �0.1�� t�1

1 /
1��1 for t=2; : : : ;T

and for u<t,
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vut D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

�2 for u=t=1
0 for u=1,t=2; : : : ;T

�2�
Pt�2

iD0 �2i
1 C �2 for u=t=2; : : : ;T

�2� �
t�u
1

Pu�2
iD0 �2i

1 for u < t u=2 ; : : : ;T

and vtu D vut:

One may then write the normality based pseudo-likelihood, which however has
been referred to as the quasi-likelihood (QL), with log quasi-likelihood function
given by

log L�
Q D c0 � 1

2
log j˚ j � 1

2
Œ.z � m/

0

˚�1 .z � m/�; (14)

(Shephard 1996, Eq. 1.17). It then follows from (14) that for known �0; the quasi
maximum likelihood (QML) estimates for �1 and �2� can be obtained by solving

@ log L�
Q

@�1
D 0 and

@ log L�
Q

@� 2�
D 0 (15)

For stationary case, mt D �1C�0=.1��1/ for t D 2; � � � ;T, then the QML estimator
for �1 C �0=.1 � �1/ is the sample mean of zt, which is used to estimate �0 in Ruiz
(1994) and Harvey et al. (1994). Let the final QML estimates from (15) are denoted

by O�1;QML and b�2� ;QML, respectively, and that for �0 by O�0;QML.
Note that because T is usually large, the computation for the inversion of the

T �T covariance matrix˚ may be time intensive. Nevertheless, this QML approach
is computationally feasible, especially when it is compared to the cumbersome
GMM approach discussed in the last section. For this reason, we include the QML
approach in Sect. 4 in a simulation study to examine its finite sample relative
performance as compared to the proposed simpler MM approach to be discussed
in Sect. 3.

Further note that the approximate QML approach has, however, some analyt-
ical drawbacks. First, because the true distribution of ut, namely g�.ut/ (log�2

distribution) is extremely left skewed, conditional on log �2t , zt follows the log�2

distribution. Consequently, this normality based QML approximation can be ineffi-
cient. Furthermore, it is analytically extremely difficult to compute the asymptotic
properties such as asymptotic variances of the QML estimators. This is because
L�

Q in (14) is the pseudo or quasi-likelihood but the computation of the covariance

matrix of Ǫ�
QML D . O�1;QML; O�2�;QML/

0

requires the expectation of the moments up
to order four over the true model (TM). More specifically, the covariance of Ǫ�

QML
obtained by solving the likelihood equations (15), has the form
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lim
T!1

Cov. Ǫ�
QML/ D lim

T!1
�

0

B
B
BB
@

ETM

"
@2 log L�

Q

@�21

#

ETM

"
@2 log L�

Q

@�1@�2�

#

ETM

"
@2 log L�

Q

@.�2� /
2

#

1

C
C
CC
A

�1

covTM

0

B
@

@ log L�
Q

@�1
@ log L�

Q

@� 2�

1

C
A

�

0

B
B
BB
@

ETM

"
@2 log L�

Q

@�21

#

ETM

"
@2 log L�

Q

@�1@�2�

#

ETM

"
@2 log L�

Q

@.�2� /
2

#

1

C
C
CC
A

�1

: (16)

Note that the score functions in (15) have the formulas

@ log L�
Q

@�1
D �1

2

@ log j˚ j
@�1

� @.Z � m/
0

@�1
˚�1.Z � m/ � 1

2
.Z � m/

0 @˚�1

@�1
.Z � m/

D �1
2

traceŒ˚�1 @˚
@�1

�C @m0

@�1
˚�1 .Z � m/

C1

2
.Z � m/

0

˚�1 @˚
@�1

˚�1 .Z � m/; (17)

and

@ log L�
Q

@�2�
D �1

2

@ log j˚ j
@�2�

� 1

2
.Z � m/

0 @˚�1

@�2�
.Z � m/

D �1
2

traceŒ˚�1 @˚
@�2�

�C 1

2
.Z � m/

0

˚�1 @˚
@�2�

˚�1 .Z � m/; (18)

respectively. Consequently, even though we can compute the expectations for the
second order derivatives over the true model as

ETM

"
@2 log L�

Q

@�21

#

D �1
2

@Œtrace.˚�1 @˚
@�1
/�

@�1
� @m0

@�1
˚�1 @m

@�1
� 1

2
trace

�
@2˚�1

@�21
˚

�

ETM

"
@2 log L�

Q

@�1 @�2�

#

D �1
2

@Œtrace.˚�1 @˚
@�1
/�

@�2�
� 1

2
trace

"
@2˚�1

@�1 @�2�
˚

#

ETM

"
@2 log L�

Q

@.�2� /
2

#

D �1
2

@Œtrace.˚�1 @˚
@�2�
/�

@�2�
� 1

2
trace

"
@2˚�1

@.�2� /
2
˚

#

; (19)

but it is clear from (17) and (18) that the computation of covTM

0

@
@ log L�

Q

@�1
@ log L�

Q

@�2�

1

A for (16)

requires the formulas for the fourth order moments of the elements of Z under the
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true model, which are however not available or extremely difficult to compute. For
this reason one is unable to examine the asymptotic properties of the QML estimator
of ˛: We however include this QML approach in Sect. 4 in a simulation study to
examine its relative finite sample performance as compared to the proposed MM
approach.

3 Proposed Estimation

3.1 Unbiased Moment Equations

We suggest choosing only three moment equations for consistent estimation of three
volatility parameters �0; �1; and �2� : These three equations along with rational
behind their choice are given below. In the next section, we write the computational
steps in an algorithm form.

Because �2� in theory can take any value from 0 to 1; it is understandable from
the volatility model (1)–(2) that a wrong estimate of �2� can more adversely affect
the estimate of �1; than what a wrong estimate of �1 can do to the estimation of �2� :
For this reason, it is important to search for a reliable estimate of �2� ; first.

(a) Unbiased Estimating Equation for �2�

In order to develop an estimating equation for �2� ; we observe from (2) that �2t ’s
maintain a non-stationary dynamic relationship, stationarity being a special case.
Now if �2t were stationary, that is EŒ�2t � D h�.�2� /, a suitable constant function of �2� ,

then one would have estimated h�.�2� / consistently by using S1 D 1

T

TX

tD1
y2t because

of the fact that EŒYtj�2t � D 0. However, in the present case, �2t ’s are unobservable
and their log values satisfy a non stationary Gaussian AR(1) type relationship given

by (2), with errors �t
iid� N.0; �2� /. This leads to the expected value of S1 as

EŒS1� D E�2t EŒ
1

T

TX

tD1
y2t �

D 1

T

�
�21 C

TX

tD2
exp

�
� t�1
1 log �21 C �0

t�2X

iD0
� i
1 C �2�

2

t�2X

rD0
�2r
1

��

D g1.�0; �1; �
2
� ; �

2
1 /; say: (20)

Note that we assume all through that �21 is known and by (6) we replace log �21 with
its mean value �0

1��1 : Thus, for given values of �0 and �1; by (20), one may solve the
unbiased estimating equation

S1 � g1.�0; �1; �
2
� ; �

2
1 / D 0 (21)
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to obtain a consistent estimate for �2� . Further note that the solution of (21), however,
requires a good initial value for �2� , which we suggest to obtain by solving an
asymptotic unbiased estimating equation. It is clear that for a suitable large T0, for
any t > T0; �

t�1
1 ! 0 for j�1j < 1. Further, the expectation of y2t for t > T0 becomes

stationary, producing

lim
t!1 EŒY2t � D exp

�
�0

1 � �1
C �2�

2

�
1

1 � �21

��
(22)

D g10.�0; �1; �
2
� /; say:

Thus, if the series under consideration is large, i.e., T ! 1, replacing the exact
EŒY2t � for t > T0 by lim

t!1 EŒY2t � D g10.�0; �1; �
2
� /, one can consistently estimate

the stationary mean function, namely g10.:/ by using S10 D 1

T � T0

TX

tDT0C1
y2t .

Consequently, for known �0 and �1; we may obtain a very reasonable initial value
for �2� by solving

S10 � g10.�0; �1; �
2
� / D 0 (23)

We denote this initial value of �2� by �2� .0).

(b) Unbiased Estimating Equation for �1

Next, to construct an unbiased estimating equation for �1, we first observe that �1
is the lag 1 dependence parameter in the Gaussian AR(1) model (2). We therefore

choose a lag 1 based function given by S2 D 1

T � 1

TX

tD2
y2t�1y2t to construct the

moment equation for �1: For the purpose, for known �0 and using the estimate of �2�
from (21), we compute the expected value of S2 as

EŒS2� D E�2t EŒ
1

T � 1

TX

tD2
y2t�1y2t �

D e�0

T � 1
�
�21 exp

�
�1 log �21 C �2�

2

�

C
TX

tD3
exp

�
�0.1C �1/

t�3X

lD0
� l
1 C � t�1

1 log �21 C � t�2
1 log �21

C�2�

2

(

.1C �1/
2

t�3X

lD0
�2l
1 C 1

) ��
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D g2.�0; �1; �
2
� ; �

2
1 /; say; (24)

and solve the unbiased estimating equation

S2 � g2.�0; �1; �
2
� ; �

2
1 / D 0; (25)

for �1 iteratively.

(c) Unbiased Estimating Equation for �0

Note that �0 is the intercept in the dynamic function for log�2t with �2t as the
conditional expectation of Y2t :When the regression (slope) parameter �1 is known,�0
may simply be estimated by exploiting the linear relationship (12) for log y2t : Thus,
for known �1; we solve the moment equation

S3 � E.S3/ D 0 (26)

for �0; where

S3 D 1

T

TX

tD1
log


y2t
�
:

This yields a closed form moment estimating equation for �0 given by

�0 D
˚
.S3 � �1/ .1 � �1/ � 1

T log.�21 /

1 � �T

1

��
.1 � �1/

1 � �1 � 1
T


1 � �T

1

� ;

where �1 D EŒlog �2t � D �1:270363 as in (12).

3.1.1 Algorithm

For convenience, we provide an algorithm indicating how to solve the estimating
equations (21) for �2� and (25) for �1; while �0 would be estimated by using the
closed form formula in (27).

Step 1: For small initial values �1 D �10 and �21 D �210; we calculate an initial
value for �0; say �00; by (26) and then choose the initial value of �2� D
�2�0 by solving the asymptotic unbiased estimating equation (23). To be
specific,

�2�0 D 2

�
ln.S10/� �00

1 � �10
�
.1 � �210/: (27)
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Step 2: Once the initial values are chosen or computed as in Step 1, we solve
S2 � g2.�0; �1; �2� ; �

2
1 / D 0 (25) iteratively to obtain an improved value

for �1. The iterative equation has the form

O�1.r C 1/ D O�1.r/C
��
@g2.�0; �1; �2� ; �

2
1 /

@�1

��1�
S2 � g2.�0; �1; �

2
� ; �

2
1 /

��

Œr�
(28)

where b�1.r/ is a value of �1 at rth iteration, and Œ:� O�1.r/ is the value of the
expression in the square bracket evaluated at �1 D O�1.r/. Then by using
log �21 D �0

1� O�1 ; �0 is updated by (3.1).
Step 3: The estimate of �0 and �1 obtained from Step 2 is then used to solve

S1 � g1.�0; �1; �2� ; �
2
1 / D 0 (21) iteratively to obtain an improvement over

�2�0 . The iterative equation has the form

O�2� .r C 1/ D O�2� .r/C
��
@g1.�0; �1; �2� ; �

2
1 /

@�2�

��1�
S1 � g1.�0; �1; �

2
� ; �

2
1 /

��

Œr�
(29)

where b�2� .r/ is the value of �2� at rth iteration, and Œ:� O�2� .r/ is the value of

the expression in the square bracket evaluated at �2� D O�2� .r/.
This three step cycle of iteration continues until convergence. Let the final estimates
obtained from (27), (28) and (29) are denoted by O�0;MM , O�1;MM and O�2�;MM respec-
tively.

3.2 Remarks on Large Sample Moment Estimation

In Sect. 3.1, we have introduced a moment estimation technique for the estimation
of the parameters involved in the volatile time series (1)–(2) with finite length. In
practice such as in financial time series analysis, one may deal with a large time
series such as a series with T D 5000; 10; 000 or more. To analyze this type
of volatile time series with infinite length, one may use the asymptotic moment
properties of the selected moment functions for �1 and �2� and develop much more
simpler moment estimating equations for the desired parameters. The intercept
parameter �0 in the volatility model (2), is still estimated by (26), because it is
already a closed-form solution for �0.

To be specific, for given �0 D �00 and �1 D �10, we solve the asymptotic property
based moment equation S10 � g10.:/ D 0 (27), for �2� .

Note that, to construct an asymptotic moment function based estimating equation

for �1, we use S20 D 1

T � T0 � 1

TX

tDT0C1
y2t�1y2t and similar to (22) compute the

asymptotic expectation of S20 by using
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lim
t!1 EŒy2t�1y2t � D lim

t!1 g2.�0; �1; �
2
� ; �

2
1 / D exp

�
2�0 C �2�

1 � �1

�

D g20.�0; �1; �
2
� /; say; (30)

where the formula for g2.�0; �1; �2� ; �
2
1 / is given in (24). Hence the asymptotic

moment based unbiased estimating equation is written as

S20 � g20.�0; �1; �
2
� / D 0: (31)

which yields a closed-form estimating equation for �1 as

�1 D 1 � 2�0 C �2�

ln.S20/
: (32)

Next, the estimate of �1 obtained from (33) is used in (27) to compute an
improved estimate for �0: This improved value of �0 and the improved value of
�1 from (32), are then used in (27) for improved estimation of �2� . This cycle
of iterations continues until convergence, yielding large sample based moment
estimators for all three parameters.

3.3 A GQL (Generalized Quasi-Likelihood) Approximation

Note that there exists a generalized quasi-likelihood (GQL) approach which always
produces more efficient estimates than the MM and GMM approaches. For example,
one may refer to Rao et al. (2012) for an efficiency comparison between these two
approaches in a linear panel data setup. Following Sutradhar (2004), for known
�0; the GQL estimating equations for the main volatility parameters �1 and �2� ;
may be constructed as follows. The �0 parameter may still be estimated using
the moment equation (27). For the GQL estimation of �2� ; one may minimize a

generalized distance function in y2t (t D 1; : : : ;T), whereas
PT

tD1 y2t was equated to
its expectation to obtain its estimate by the MM approach. Similarly, a generalized
distance function in y2t�1y2t (t D 2; : : : ;T) may be minimized to obtain the GQL
estimate of �1, whereas

PT
tD2 y2t�1y2t was equated to its mean to obtain its MM

estimate. To be specific, for

u D Œy21; : : : ; y
2
t ; : : : ; y

2
T �

0

; and v D Œy21y
2
2; : : : ; y

2
t�1y2t ; : : : ; y2T�1y2T �

0

; (33)

and their corresponding means


 D EŒU� D Œ
1; : : : ; 
t; : : : ; 
T �
0

; and

 D EŒV� D Œ 12; : : : ;  t�1;t; : : : ;  T�1;T �
0

; (34)
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and covariances

and ˙ D Cov.U/; ˝ D Cov.V/; (35)

the GQL estimating equations (Sutradhar 2004) for �2� and �1 have the forms

@

0

@�2�
˙�1.u � 
/ D 0; (36)

and

@ 
0

@�1
˝�1.v �  / D 0; (37)

respectively. For the computation of (37) and (38), the general elements of 
 and  
have the formulas


t D EŒY2t � D E�2t EŒY2t j�2t �

D

8
<̂

:̂

�21 for t D 1

exp

�
�0
1��1 C � t�1

1 .log �21 � �0
1��1 /C �2�

2

t�2X

rD0
�2r
1

�
for t D 2; : : : ;T;

(38)

[see also (20)] and

 t�1;t D EŒY2t�1Y2t � D E�2t�1;�2t EŒY2t�1Y2t j�2t�1�2t �

D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

�21 exp

�
�1 log �21 C �2�

2

�
for t D 2

exp

�
2�0
1��1 C � t�2

1



log �21 � �0

1��1
�

C � t�1
1



log �21 � �0

1��1
�

C�2�

2

 

.1C �1/
2

t�3X

lD0
�2l
1 C 1

!�
for t D 3; : : : ;T;

(39)

respectively.
Note that even though the elements of the covariance matrix ˙ in (37) may

be computed easily, the computation for the elements of ˝ matrix in (38) is,
however, difficult. We therefore propose an approximation to the GQL estimating
equations (37) and (38) by replacing ˙ and ˝ matrices with their corresponding
diagonal forms, namely˙d; and ˝d; and solve the approximate GQL equations
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@

0

@�2�
˙�1

d .u � 
/ D 0; (40)

and

@ 
0

@�1
˝�1

d .v �  / D 0; (41)

for �2� and �1; respectively, where

˙d D diagŒVar.Y21 /; : : : ;Var.Y2t /; : : : ;Var.Y2T/�; (42)

with

�tt D VarŒY2t �

D

8
ˆ̂<

ˆ̂
:

3�41 � 
21 for t D 1

3 exp

�
2�0
1��1

C 2� t�1
1



log �21 � �0

1��1

�
C 2 �2� Œ

Pt�2
rD0 �

2r
1 �

�

�
2t for t D 2; : : : ; TI
(43)

and

˝d D diagŒVar.Y21Y22 /; : : : ;Var.Y2t�1Y2t /; : : : ;Var.Y2T�1Y2T/�; (44)

with

VarŒY2t�1Y
2
t �

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

9 �41 exp

�
2�0
1��1

C 2�1



log �21 � �0

1��1

�
C 2 �2�

�
�  212 for t D 2

9 exp

�
4�0
1��1

C 2

�
� t�2
1



log �21 � �0

1��1

�
C � t�1

1



log �21 � �0

1��1

��

C2 �2�
�
.1C �1/

2
Pt�3

lD0 �
2l
1 C 1

��

� 2t�1;t for t D 3; : : : ;T;

(45)

where  t�1;t is given in (39).
Remark that �0 is still updated by (3.1) after each estimation of �1. Also remark

that the approximate GQL estimating equations for �1 (41) and �2� (40) are similar
to the well known weighted least square (WLS) equations for the corresponding
parameters.

In (41), for t D 2; the first derivative of  t�1;t w.r.t �1 is given by

@ 1;2

@�1
D  1;2 log �21 ;
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and for a general t D 3; : : : ;T, the derivative has the expression as

@ t�1;t

@�1
D  t�1;t

�
�0

.1� �1/2

�
2� .1C �1/�

t�2
1

	� �0

1� �1

�
.t � 2/.1C �1/�

t�3
1 C � t�2

1

	

.t � 2/� t�3
1 log �21 C .t � 1/� t�2

1 log �21

C�2�

2

 

2 .1C �1/

t�3X

lD0

�2l
1 C .1C �1/

2

t�3X

lD0

.2l/ �.2l�1/
1

!�
:

In (40), the derivative of 
t w.r.t �2� has the formula

@
t

@�2�
D
(
0 for t D 1

1
2

t
Pt�2

rD0 �2r
1 for t D 2; : : : ;T:

3.4 A Modified QML Approach

Recall from Sect. 2.2 that for known �0; the QML (quasi maximum likelihood)
estimates for the volatility parameters �1 and �21 are obtained by solving their
quasi score equations given in (15), where ˚ is the covariance matrix of Z D
.Z1; : : : ;Zt; : : : ;ZT/

0; with zt D �1 C log �2t C ut as in (12), where

ut � log�2.0; �2/;

with �2 D 	2=2: Note that the score equations in (15) involves ˚�1: See also (17)
and (18) for the exact formulas of the first order derivatives. Because T is large, even
though the elements �ut of the ˚ matrix are known, the computation of the inverse
matrix, namely ˚�1 is, however, cumbersome and time consuming. We suggest to
approximate the covariance matrix ˚ in (15) by a tridiagonal matrix as

˚ D .�ut/ �

0

BB
B
B
B
BB
B
B
@

˚11 ˚12 0 0 0 � � � 0 0 0

˚12 ˚22 ˚23 0 0 � � � 0 0 0

0 ˚23 ˚33 ˚34 0 � � � 0 0 0

0 0 ˚34 ˚44 ˚45 � � � 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 0 0 � � � ˚T�2;T�1 ˚T�1;T�1 ˚T�1;T
0 0 0 0 0 � � � 0 ˚T�1;T ˚TT

1

CC
C
C
C
CC
C
C
A

: (46)

This makes the computation of ˚�1 and other multiplication of large dimensional
matrices, necessary to compute the first and second order derivatives with respect to
�1 and �2� ; quite manageable. In fact following Usmani (1994), one can analytically
derive the formulas for the determinant and inverse of the tridiagonal matrix ˚ as
follows.
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Note that the tridiagonal matrix ˚ in (47) is symmetric. For k D 1; : : : ;T; let
detŒ˚�f1;��� ;kg denotes the kth principal minor, that is, Œ˚�f1;��� ;kg is the submatrix
formed by the first k rows and columns of ˚ . By using conventional notation
detŒ˚��1 D 0 and detŒ˚�0 D 1, one may compute the determinant of ˚ by using
the recursive formula

detŒ˚�f1;��� ;kg D ˚kk detŒ˚�f1;��� ;k�1g �˚k;k�1˚k�1;k detŒ˚�f1;��� ;k�2g
D ˚kk detŒ˚�f1;��� ;k�1g �˚2

k�1;k detŒ˚�f1;��� ;k�2g: (47)

Now by writing �i D detŒ˚�f1;��� ;ig, i D 1; � � � ;T, and using the sequence fig
defined by the recurrence formula

i D ˚iiiC1�˚i;iC1˚iC1;iiC2; TC1 D 1; TC2 D 0; .i D T;T�1; � � � ; 3; 2; 1/;
(48)

and following Usmani (1994), for example, one derives the inverse of the tridiagonal
matrix ˚ as


˚�1�

ij
D
8
<

:

.�1/iCj˚i;iC1˚iC1;iC2 � � �˚j�1;j�i�1jC1=�T ; i < j;
�i�1iC1=�T ; i D j;
.�1/iCj˚jC1;j˚jC2;jC1 � � �˚i;i�1�j�1iC1=�T ; i > j:

(49)

However, there is still some computational burden with the formula (50) for comput-
ing the inverse. This is because, in financial time series, for a T as large as several
hundred or thousand, the computation of the determinants j˚ j, which appears in
the formula for every element of ˚�1, can be cumbersome and time consuming.
To address this computational difficulty, we make further simplifications as follows.

Using the notation �i; we rewrite the determinant in (48) as

�i D ˚ii�i�1 � ˚i;i�1˚i�1;i�i�2; ��1 D 0; �0 D 1; i D 1; � � � ;T; (50)

which by division of both sides by �i�1, yields

�i

�i�1
D ˚ii �˚i;i�1˚i�1;i

�
�i�1
�i�2

��1
: (51)

For convenience, we use ui D �i
�i�1

and re-express (52) as

ui D ˚ii �˚i;i�1˚i�1;iu�1
i�1; u1 D �1

�0
D �1 D ˚11; i D 2; � � � ;T: (52)

Similarly, dividing both sides of (48) by iC1, we obtain
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i

iC1
D ˚ii �˚i;iC1˚iC1;i

iC2
iC1

) iC1
i

D 1

˚ii � ˚i;iC1˚iC1;i iC2

iC1

; (53)

which by using vi D iC2

iC1
; we re-express as

vi�1 D 1

˚ii � ˚i;iC1˚iC1;ivi
; vT�1 D 1

˚TT
; vT D TC2

TC1
D 0;

for i D 2; � � � ;T � 1:
Note that ui’s are the ratios of the neighbouring principal minors, and vi’s have

similar interpretation for the submatrices starting from the opposite corner of the
matrix ˚ , so they are easy to compute. Next because ˚ is a tridiagonal matrix, its
determinant is the summation of a series of two types of terms, where the first type of
terms will contain ˚j;jC1 and ˚jC1;j [or symmetrically ˚j�1;j and ˚j;j�1] appearing
together, and the second type of terms can not contain ˚j;jC1 and ˚jC1;j together.
Also note that ˚j;j can not appear together with any of ˚j�1;j and ˚j;j�1, or any of
˚j;jC1 and ˚jC1;j: Thus the determinant can be obtained as

j˚ j D summation of terms with ˚j;jC1 and ˚jC1;j
C summation of terms without ˚j;jC1 and ˚jC1;j

D �j�1Œ�˚jC1;j˚j;jC1�jC2 C �jjC1;

yielding

�T D �jjC1 �˚jC1;j˚j;jC1�j�1jC2;

for any j D T;T � 1; � � � ; 2; 1 [ see also Usmani (1994)]. Now by applying (56),
(55), and (53), into (50), one obtains the diagonal elements of the inverse matrix as


˚�1�

ii D �i�1iC1
�iiC1 � ˚iC1;i˚i;iC1�i�1iC2

D 1

�i
�i�1

� ˚iC1;i˚i;iC1 iC2

iC1

D 1

ui �˚iC1;i˚i;iC1vi
; for i < T;

and


˚�1�

TT
D �T�1TC1

�T
D 1

uT

Similarly, the off-diagonal elements are computed as
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˚�1

�
ij D .�1/iCj˚i;iC1˚iC1;iC2 � � �˚j�1;j�i�1jC1

�jjC1 �˚jC1;j˚j;jC1�j�1jC2

D .�1/iCj˚i;iC1˚iC1;iC2 � � �˚j�1;j
�j
�i�1

� ˚jC1;j˚j;jC1
�j�1
�i�1

jC2

jC1

D .�1/iCj˚i;iC1˚iC1;iC2 � � �˚j�1;j

ui � � � uj �˚jC1;j˚j;jC1ui � � � uj�1vj
; for i < j < T;

and


˚�1�

iT
D .�1/iCT˚i;iC1˚iC1;iC2 � � �˚T�1;T

ui � � � uT
:

Because ˚ and ˚�1 are symmetric matrices, the above formulas define the
whole ˚�1.

4 Estimation Performance: A Simulations Based
Empirical Study

Recall from Sect. 2.1 that the existing GMM is a highly cumbersome approach and
it is not practically worth using specially when an alternative simpler approach
becomes available which produces consistent estimates for the parameters of the
stochastic volatility model. Furthermore as discussed in Sect. 2.2 [see also Sect. 3.4],
it is well known that the QML approach provides approximate estimates, but it is
highly competitive to the GMM approach and much simpler technically. For these
reasons in the proposed simulation study, we do not include the GMM approach,
rather make a comparative study between the QML and the proposed MM approach
(Sect. 3.1) for a selected set of parameter values under the SV model. This we do
in Sect. 4.2. The proposed MM approach appears to work better than the QML
approach. We then continue to examine the performance of the MM approach
for more sets of parameter values of the SV model. The results of this intensive
simulation study are reported in Sect. 4.3. In the same simulation study, we also
include the approximate GQL approach discussed in Sect. 3.3. The simulation
design for both of these aforementioned studies is given in Sect. 4.1.

4.1 Simulation Design

(a) We use volatility parameters �0 D 0:05; 0:2I �1 D 0:5I and �2� D 0:25; 1:0 to
generate the data by model (1)–(2) for the comparative study in Sect. 4.2. For
time series length we consider T D 1000 and 3000:

(b) To examine the performance of the MM approach through an additional
intensive simulation study in Sect. 4.3, we consider more sets of parameter
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values as: �0 D 0:05; 0:2I �1 D 0:25; 0:5I and �2� D 0:25; 0:5; and 1:0: For
time series length we consider T D 200; 500; 1000; 3000; 5000; and 10;000:

(c) For both studies we use 500 simulations.

4.2 Relative Performance of the MM and QML Approaches

In a financial time series, T is usually large such as T D 1000 or more. To
examine the relative performance of the existing QML approach with the proposed
MM approach we consider large time series with length T D 1000 and 3000:

Recall that the GMM approach is not included in the simulation because of its
cumbersomeness. Moreover, to obtain reasonably good estimates for the volatility
parameters, the GMM approach requires the time series length infinitely large such
as T D 10;000 or 15;000; which is another major limitation.

To generate the desired time series satisfying the volatility model (1)–(2), one
starts with a value for �21 : Note that as log �21 is assumed to have a normal
distribution with mean �0=.1 � �1/ as shown in (6), we choose the value of
�0=.1 � �1/ for log.�21 / in our simulation study. Now to obtain the MM estimates
for the large sample case (T D 1000 or more), we solve the large sample based
estimating equations (31) and (27) for �1 and �2� ; respectively, and still update �0
by (3.1) after obtaining new �1. For selected values of volatility parameters, namely
for �0 D 0:05; 0:2I �1 D 0:5I and �2� D 0:25 and 1:0; the simulated means (SM),
simulated standard errors (SSE), along with mean squared errors (MSE), for the
MM estimates for these three parameters, based on 500 simulations, are reported in
Table 1.

Next, the QML estimates for �1 and �2� are obtained by solving the two equations
in (15), whereas the QML estimate of �0 is obtained from (27) by using the QML
estimate for �1: The SM, SSE, along with MSE of QML estimates for the same
selected parameter values as in the aforementioned MM approach, based on 500
simulations, are given also in Table 1. The estimation results based on T D 1000

and 3000; are not as good as those from the MM approach. For example, for
�0 D 0:05, �1 D 0:5, �2� D 0:25, and T D 1000 case, the QML estimates give
O�0;QML D 0:0491, O�1;QML D 0:433 and O�2�;QML D 0:324, which are all farther
away from the true parameter values than the MM estimates of O�0;MM D 0:0517,
O�1;MM D 0:441 and O�2�;MM D 0:260, while the simulated MSEs for O�0;QML, O�1;QML

and O�2�;QML in QML approach are respectively 0.0032, 0.1648 and 0.0815, which
are all greater than the corresponding MSEs in MM approach, which are 0.0027,
0.0846 and 0.0183, respectively. Notice that the MSEs for the estimates of �1 and
�2� are almost double under the QML approach as compared to the MM approach.
When �2� gets larger such as �2� D 1:0; the QML approach appears to produce
better estimate for �1 as compared to the small �2� D 0:25 case. For example, when
�2� D 1:0; the QML approach, when T D 1000; gives almost unbiased estimate
for �1 D 0:5 as O�1;QML D 0:493 with MSE as 0:0407, whereas the MM yielded
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Table 1 Comparison of MM and QML estimates for selected parameter values based on 500
simulations

Time series length (T)

�0 �1 �2� Estimate Method Quantity 1000 3000 5000 10,000

0.05 0.5 0.25 O�0 QML SM 0.0491 0.0433
SSE 0.0569 0.0368
MSE 0.0032 0.0014

MM SM 0.0517 0.0495 0.0489 0.0492
SSE 0.0524 0.0281 0.0237 0.0149
MSE 0.0027 0.0008 0.0006 0.0002

O�1 QML SM 0.4329 0.5171
SSE 0.4059 0.3368
MSE 0.1648 0.1134

MM SM 0.4409 0.4826 0.4974 0.5058
SSE 0.2909 0.2055 0.1768 0.1208
MSE 0.0846 0.0422 0.0313 0.0146

O�2� QML SM 0.3239 0.2616

SSE 0.2855 0.2193
MSE 0.0815 0.0481

MM SM 0.2597 0.2456 0.2435 0.2457
SSE 0.1353 0.0926 0.0822 0.0586
MSE 0.0183 0.0086 0.0068 0.0034

1.0 O�0 QML SM 0.0451 0.0508
SSE 0.0504 0.0282
MSE 0.0025 0.0008

MM SM 0.0530 0.0513 0.0538 0.0518
SSE 0.0631 0.0332 0.0265 0.0182
MSE 0.0040 0.0011 0.0007 0.0003

O�1 QML SM 0.4929 0.4689
SSE 0.2018 0.1125
MSE 0.0407 0.0127

MM SM 0.4187 0.4560 0.4705 0.4859
SSE 0.2007 0.1387 0.1371 0.1120
MSE 0.0403 0.0192 0.0188 0.0125

O�2� QML SM 0.9960 1.0318

SSE 0.4845 0.2974
MSE 0.2347 0.0884

MM SM 1.0280 1.0264 1.0088 0.9962
SSE 0.3110 0.2063 0.2176 0.1738
MSE 0.0967 0.0426 0.0473 0.0302

(continued)
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Table 1 (continued)

Time series length (T)

�0 �1 �2� Estimate Method Quantity 1000 3000 5000 10,000

0.20 0.5 0.25 O�0 QML SM 0.2340 0.1979

SSE 0.1629 0.1285

MSE 0.0265 0.0165

MM SM 0.2224 0.2036 0.1978 0.1970

SSE 0.1155 0.0764 0.0681 0.0471

MSE 0.0133 0.0058 0.0046 0.0022

O�1 QML SM 0.3794 0.4911

SSE 0.4094 0.3299

MSE 0.1676 0.1088

MM SM 0.4250 0.4830 0.4994 0.5053

SSE 0.2853 0.1945 0.1760 0.1223

MSE 0.0814 0.0378 0.0310 0.0150

O�2� QML SM 0.3697 0.2756

SSE 0.3046 0.2263

MSE 0.0928 0.0512

MM SM 0.2631 0.2484 0.2452 0.2444

SSE 0.1360 0.0946 0.0830 0.0590

MSE 0.0185 0.0089 0.0069 0.0035

1.0 O�0 QML SM 0.1962 0.2102

SSE 0.0857 0.0455

MSE 0.0073 0.0021

MM SM 0.2241 0.2071 0.2063 0.2044

SSE 0.0942 0.0606 0.0566 0.0458

MSE 0.0089 0.0037 0.0032 0.0021

O�1 QML SM 0.4937 0.4689

SSE 0.2043 0.1123

MSE 0.0417 0.0126

MM SM 0.4253 0.4768 0.4848 0.4907

SSE 0.1997 0.1418 0.1361 0.1102

MSE 0.0399 0.0201 0.0185 0.0121

O�2� QML SM 0.9960 1.0318

SSE 0.4900 0.2972

MSE 0.2401 0.0883

MM SM 1.0334 1.0004 0.9897 0.9945

SSE 0.3054 0.2200 0.2113 0.1779

MSE 0.0933 0.0484 0.0446 0.0316
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O�1;MM D 0:4187 with MSE as 0:0403: But, the QML approach appears to produce
an estimate 0:4689 for �1 with a larger bias when T increased to 3000: This result is
counter intuitive and indicates an convergence problem. This appears to hold for the
�0 D 0:2 case as well. For this reason we did not run the QML approach for larger
T cases such as for T D 5000 and 10;000: However, to examine the continued
performance of the MM approach we have run only the MM approach for the larger
T cases, and the results are reported in the same Table 1. The results of the table
show that as the time series length T increases, the MM approach, unlike the QML
approach, consistently produces better estimates.

4.3 Further Simulations for the MM Versus Approximate
GQL (AGQL) Approach

The results from the simulation study conducted in the last section revealed the
superiority of the proposed MM approach to the QML approach for the estimation
of the parameters of the SV model (1)–(2). Note that this relative performance was
examined based on the time series length T D 1000; 3000; and in addition further
individual performance of the MM approach was studied for much larger time series
with T D 5000; and 10;000: In this section, we carry out another simulation study
mainly by selecting more combinations of parameter values in order to examine
whether the MM approach really produces almost unbiased estimates for a wide
range of parameter values. In this simulation study we also consider small time
series with length T D 200; and 500: Further recall that in Sect. 3.3 we have dis-
cussed an approximation to the so-called GQL approach (AGQL) which is expected
to be highly competitive to the MM approach. For the sake of completeness, we
include this AGQL approach in the present simulation study but examine its relative
performance for time series of length T D 200; 500; 1000; and 3000: This we have
done because similar to the QML approach, the AGQL approach also takes longer
computing times as compared to the MM approach. Under the AGQL approach, the
estimates of �2� and �1 are obtained as the solutions of (41) and (38), respectively,
whereas �0 is still estimated by moment equation (27).

With regard to the performance of the MM approach, the results of Table 2
are similar to those in Table 1, indicating that the MM approach performs well
in large sample case in estimating all parameters of the SV model (1)–(2) for all
reasonable range for parameter values. For example, when �0 D 0:10; �1 D
0:25; �2� D 1:0; the results of Table 2 show that the MM approach provides almost
unbiased estimates O�0 D 0:1067 for �0 D 010 and O�2� D 0:971 for �2� D 1:0 with
time series length T D 1000: These estimates improve significantly when T gets
larger such as when T D 10;000; the estimates are O�0 D 0:1012 and O�2� D 0:9955

which are not so different than the corresponding true values. The estimate of �1
(0:2081) is not so good when T D 1000; but improves highly to 0:2428 for larger
T D 10;000: For small sample cases such as when T D 200; 500; the MM estimates
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are in general slightly biased, as expected. When the MM approach is compared
to the AGQL approach, they appear to be highly competitive to each other, the
AGQL approach is being slightly better as it produces almost the same estimates
as that of the MM approach but with slightly smaller standard errors. For example,
for the above parameter values, the AGQL approach produces O�1 D 0:2309 with
standard error SSE D 0:1190when T D 3000;whereas the MM approach produced
O�1 D 0:2221 with SSE D 0:1207: The AGQL approach is, however, slightly more
involved computationally as compared to the MM approach. Thus, over all the MM
approach performs much better than the existing MQL approach, and it is highly
competitive to the AGQL approach. Also as demonstrated in Sect. 2.1, the existing
GMM approach is extremely cumbersome . This makes the proposed MM approach
as the best possible approach for the estimation of all parameters of the standard
volatility models.

5 Asymptotic Properties of the MM Estimators

Because the MM and AGQL estimators of �0; �1; and �2� are obtained by
solving unbiased moment equations, these estimators are asymptotically unbiased
to their corresponding true parameter values. This property is also evident from
the simulation results in Tables 1 and 2. For example, for T D 10;000; the MM
estimates for all three parameters are very close to the corresponding true parameter
values. The AGQL estimates in Table 2 for T D 3000 also appear to be close to
their true parameter values. For T D 10;000; the estimates will improve naturally
but not shown to save computational time.

In Tables 1 and 2 we have also given the simulated standard errors (SSE) of
the estimators. In practice, one may however need to compute the estimate for
the variance of the estimator, specially for large size financial time series. For
the purpose, we show below how to compute the formulas for the asymptotic
variances of the MM estimators of �1 and �2� ; for example. These variances may
then be estimated simply by replacing the parameters with their corresponding MM
estimates obtained from Sects. 3.1 and 3.2.

5.1 Asymptotic Variance of the Estimator of �1

For known �0; it follows from (32) that the asymptotic variance of the MM estimator
of �1 is given by

lim
T0!1 Var.b�1MM/ D lim

T0!1

��
@g20.�0; �1; �2� /

@�1

��2
Var.S20/

�
; (54)

where
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Table 2 Comparison of MM and AGQL estimates for selected parameter values based on 500
simulations

Time series length (T)

�0 �1 �2� Estimate Method Quantity 200 500 1000 3000 5000 10,000

0.05 0.25 0.50 O�0 AGQL SM 0.0309 0.0454 0.0514 0.0507

SSE 0.1154 0.0846 0.0604 0.0352

MM SM 0.0361 0.0434 0.0486 0.0508 0.0503 0.0498

SSE 0.1201 0.0835 0.0434 0.0351 0.0241 0.0188

O�1 AGQL SM 0.2273 0.2176 0.2240 0.2493

SSE 0.3205 0.2762 0.2347 0.1485

MM SM 0.2180 0.2415 0.2282 0.2505 0.2462 0.2485

SSE 0.3501 0.3133 0.2463 0.1478 0.1288 0.0921

O�2� AGQL SM 0.5285 0.4846 0.4680 0.4813

SSE 0.2849 0.2046 0.1485 0.0883

MM SM 0.5195 0.4706 0.4644 0.4802 0.4880 0.4934

SSE 0.2937 0.2209 0.1552 0.0873 0.0708 0.0493

1.0 O�0 AGQL SM 0.0343 0.0506 0.0495 0.0514

SSE 0.1390 0.0972 0.0660 0.0359

MM SM 0.0425 0.0479 0.0486 0.0508 0.0500 0.0511

SSE 0.1527 0.0989 0.0658 0.0351 0.0278 0.0198

O�1 AGQL SM 0.2273 0.2176 0.2240 0.2493

SSE 0.2878 0.2386 0.2032 0.1245

MM SM 0.1664 0.1978 0.2087 0.2279 0.2376 0.2502

SSE 0.3000 0.2491 0.2067 0.1236 0.1133 0.0996

O�2� AGQL SM 0.9621 0.9607 0.9718 1.0010

SSE 0.3747 0.2769 0.2014 0.1198

MM SM 0.9458 0.9485 0.9676 0.9947 0.9970 0.9841

SSE 0.3770 0.2889 0.2066 0.1186 0.1111 0.1008

0.10 0.25 0.50 O�0 AGQL SM 0.0767 0.0921 0.1006 0.1006

SSE 0.1215 0.0953 0.0693 0.0382

MM SM 0.0911 0.0932 0.0969 0.0995 0.1006 0.1000

SSE 0.1354 0.0979 0.0664 0.0386 0.0293 0.0201

O�1 AGQL SM 0.2345 0.1933 0.2226 0.2395

SSE 0.3205 0.2721 0.2329 0.1461

MM SM 0.2289 0.2117 0.2438 0.2473 0.2438 0.2474

SSE 0.3400 0.3053 0.2455 0.1524 0.1247 0.0859

O�2� AGQL SM 0.5086 0.4919 0.4796 0.4905

SSE 0.2868 0.1997 0.1418 0.0870

MM SM 0.4937 0.4755 0.4726 0.4877 0.4921 0.4964

SSE 0.2903 0.2044 0.1551 0.0903 0.0756 0.0487

(continued)
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Table 2 (continued)

Time series length (T)

�0 �1 �2� Estimate Method Quantity 200 500 1000 3000 5000 10,000

0.10 0.25 1.0 O�0 AGQL SM 0.0883 0.1193 0.1047 0.1031

SSE 0.1442 0.0965 0.0731 0.0398

MM SM 0.0978 0.1219 0.1067 0.1031 0.1007 0.1012

SSE 0.1551 0.1042 0.0729 0.0401 0.0321 0.0232

O�1 AGQL SM 0.1929 0.1726 0.2156 0.2309

SSE 0.2797 0.2306 0.1947 0.1190

MM SM 0.1731 0.1768 0.2081 0.2221 0.2426 0.2428

SSE 0.3031 0.2420 0.1966 0.1207 0.1251 0.0881

O�2� AGQL SM 0.9338 0.9465 0.9635 0.9926

SSE 0.3840 0.2529 0.2081 0.1138

MM SM 0.9223 0.9364 0.9710 0.9946 0.9865 0.9955

SSE 0.3892 0.2716 0.2058 0.1130 0.1221 0.0737

0.20 0.25 0.50 O�0 AGQL SM 0.1656 0.1881 0.2070 0.1983

SSE 0.1344 0.0968 0.0860 0.0491

MM SM 0.1858 0.1988 0.2061 0.2027 0.1979 0.1997

SSE 0.1562 0.1210 0.0879 0.0511 0.0392 0.0289

O�1 AGQL SM 0.2097 0.2221 0.2053 0.2402

SSE 0.3135 0.2614 0.2286 0.1478

MM SM 0.2016 0.2151 0.2184 0.2318 0.2506 0.2513

SSE 0.3433 0.3210 0.2421 0.1489 0.1348 0.0921

O�2� AGQL SM 0.5377 0.4971 0.4907 0.4972

SSE 0.2735 0.1885 0.1536 0.0905

MM SM 0.5092 0.4685 0.4827 0.4953 0.4918 0.4981

SSE 0.2779 0.2138 0.1625 0.0932 0.0791 0.0518

1.0 O�0 AGQL SM 0.1815 0.2108 0.2108 0.2054

SSE 0.1558 0.1090 0.0802 0.0483

MM SM 0.2144 0.2159 0.2072 0.2039 0.2016 0.2037

SSE 0.1882 0.1144 0.0815 0.0476 0.0422 0.0285

O�1 AGQL SM 0.1830 0.1868 0.1908 0.2294

SSE 0.2695 0.2190 0.1796 0.1253

MM SM 0.1635 0.1927 0.1957 0.2354 0.2489 0.2410

SSE 0.3036 0.2322 0.1854 0.1315 0.1189 0.0795

O�2� AGQL SM 0.9768 0.9747 0.9882 0.9921

SSE 0.3823 0.2711 0.1914 0.1273

MM SM 0.9455 0.9599 0.9900 0.9873 0.9746 0.9947

SSE 0.4156 0.2741 0.2000 0.1309 0.1061 0.0708
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it then follows that the asymptotic variance of b�1MM has the formula

lim
T0!1 Var.b�1MM/ D ı20

�
1

T � T0 � 1
�20 C 2.T � T0 � 2/

.T � T0 � 1/2
��
20

�
: (58)

5.2 Asymptotic Variance of the Estimator of � 2�

Recall that for given �0 and �1; one may obtain the asymptotically unbiased
estimator of �2� by solving the unbiased estimating equation (23). For S10 D
PT

tDT0C1 y2t =.T � T0/, (23) implies by (22) that

O�2� D lim
T0!1

�
2

�
ln.S10/� �0

1 � �1
�
.1 � �21 /

�
D f .S10/ (say): (59)

One may then computes the asymptotic variance of the MM estimator of �2� as



124 V. Tagore et al.

lim
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To illustrate the computations of the asymptotic variances of O�1;MM and O�2�;MM ,
we have considered, for example, T0 D 500 when T D 10;000; and computed these
variances for �0 D 0; �1 D 0:50; and �2� D 0:25; by (61) and (63), respectively.
The variances were found to be 0:0136 and 0:0029; which are very close to
the corresponding simulated variances SSE2 D 0:12082 and SSE2 D 0:05862;

respectively, given in Table 1 for �0 D 0:05; �1 D 0:5; and �2� D 0:25; with
T D 10;000:
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6 Understanding Volatility Through Kurtosis of the Data

To understand the volatility, that is, to understand the changes in variance pattern
in the time series, it is recommended to examine the kurtosis of the data over time.
See, for example, Jacquier et al. (1994, p. 387), Shephard (1996, p. 23), Mills (1999,
p. 129) and Tsay (2005, p. 134). First, computing EŒY2t � by (38) and EŒY4t � by (43),
and then using the formula

�t.�0; �1; �
2
� / D E.Y4t /

ŒE.Y2t /�
2
;

from (7), one obtains the kurtosis of the yt variable under the volatility model (1)–
(2), as

�t.�1; �
2
� / D

8
<

:

3 for t D 1

3 exp

�
�2�
Pt�2

rD0 �2r
1

�
for t D 2; : : : ;T

(62)

Note that the kurtosis does not depend on �0 and �21 . Also, in the limiting case, i.e,
when t ! 1, the kurtosis in (62) reduces to

lim
t!1 �t.�1; �

2
� / D 3 exp

(
�2�

1 � �21

)

; (63)

which agrees with the formula for kurtosis studied by Harvey et al. (1994, p. 249),
Mills (1999, p. 249) and Broto and Ruiz (2004, p. 615), among others. Further
note that, the formula for the kurtosis given in (63) is independent of time, whereas
kurtosis at a finite time point given by (62) is dependent on first few times. Now to
understand the effects of the parameters �1 and �2� on the kurtosis, we, for example,
display the true kurtosis computed by (62) in Figs. 1 and 2 for selected values of the
parameters. In the same figures we also display the estimated kurtosis computed by
using O�1;MM and O�2�;MM for �1 and �2� respectively. For the estimation of these two
parameters, without any loss of generality, we have chosen �0 D 0 and �21 D 0:5.

It is clear from Figs. 1 and 2 that the kurtosis under the present volatility model
(1)–(2) is much larger than the Gaussian based kurtosis (D 3). These figures also
exhibit that the kurtosis gets stabilized quickly after an initial short period. To be
specific, Fig. 1 shows that when �1 D 0:5 and �2� D 0:5, the kurtosis gets stabilized
at �t D 5:8432 for any t > 4. Similarly, Fig. 2 shows that when �1 D 0:5 and
�2� D 1:0, the kurtosis gets stabilized at �t D 11:3810 for any t > 4.

Note that in both Figs. 1 and 2, the estimated kurtosis appears to be very close to
the corresponding true value of kurtosis, indicating that the proposed MM technique
performs very well in estimating the parameters of the volatility model.
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Fig. 1 True and estimated kurtosis with volatility parameters �1 D 0:5, �2� D 0:5

7 Volatility in US-Dollar and Swiss-Franc Exchange Rate:
A Numerical Illustration

Ruiz (1994) applied the QML estimation method to fit a stochastic volatility (SV)
model to the log return of Swiss-Franc and US-Dollar exchange rate from 1/10/81
to 28/6/85. By using the QML estimation method, Harvey et al. (1994) illustrated
the fitting of a multivariate stochastic volatility model to the log return of Pound
and Dollar, Deutschmark and Dollar, Yen and Dollar and Swiss-Franc and Dollar
exchange rates from 1/10/81 to 28/6/85. It was however demonstrated in Sects. 2
and 4 that the proposed MM approach performs better than the QML and GMM
estimation approaches. It was also shown in Sect. 4 that the AGQL (approximate
GQL) is a highly competitive approach to the MM approach. Note that the AGQL
approach may also be referred to as the weighted GQL (WGQL) approach. In this
section, we revisit the Swiss-Franc and US-Dollar exchange rate data and apply
the MM, QML, and WGQL estimation approaches in order to fit the SV model to
the log return of the exchange rates. To be specific, we consider a recent series of
T D 1000 observations on daily log returns of Swiss-Franc and US-Dollar from
July 24, 2007 to July 24, 2012. Let Pt denote the exchange rate for a day indexed by
time t: We then consider the response yt as the log return of the exchange rates with
mean subtracted, that is

yt D log PtC1 � log Pt �

X

4 log Pt

�
=T; t D 1; � � � ;T;
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Fig. 2 True and estimated kurtosis with volatility parameters �1 D 0:5, �2� D 1:0

where 4 log Pt D log PtC1�log Pt: To understand the sample data, we computed the
sample means and variances for every group of 50 consecutive y2t values. Thus there
are 20 groups for 1000 observations. These 20 means and variances are displayed
in Figs. 3 and 4, respectively. There appears to be an example of volatile activities
in log returns around at t D 400: It is of interest to see the relative performance of
the aforementioned three methods in fitting this volatile series.

The parameters of the SV model were estimated by the MM, WGQL and QML
approaches presented in Sects. 3.1, 3.3, and 3.4, respectively. These estimates are
given in Table 3, which are then used in the formulas for EŒY2t � and VarŒY2t � given
by (38) [see also (20)] and (43), respectively. Note that the initial variance parameter
�21 was estimated using 100 daily observations recorded just before July 24, 2007.
The estimates for EŒY2t � under three methods are displayed in Fig. 3, and similarly
the estimates for VarŒY2t � are displayed in Fig. 4.

It is observed from Table 3 that the MM and WGQL (AGQL) estimates for �0,
�1 and �2� are quite close to each other, yielding almost the same curves for the
means as shown in Fig. 3 and for the variances as shown in Fig. 4. Note that these
estimation results agree with the simulation results discussed in Sect. 4 that the MM
and WGQL methods produce almost the same estimates for all these three volatility
parameters. In contrast, the QML estimation results are quite different from those
by MM and WGQL approaches. Figures 3 and 4 indicate that the MM and WGQL



128 V. Tagore et al.

0 200 400 600 800 1000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

Time

MM
WGQL
QML
Sample

Y
(t)

2

Fig. 3 The estimated mean of Y2t for the 1000 data from the log return with mean subtracted of
the US-Dollar/Swiss-Franc daily exchange rates from July 24, 2007 to July 24, 2012 (color online)

Table 3 The estimated parameter values for fitting
the stochastic volatility model to the 1000 observa-
tions of the log return of the daily US-Dollar and
Swiss-Franc exchange rates from July 24, 2007 to
July 24, 2012

Method O�0 O�1 O�2�
MM �3:585664 0.6897393 1.191857

WGQL �3:880882 0.6641959 1.269635

QML �10:87192 0.05930448 5.834532

estimates are considerably better than the QML estimates. This is because the MM
and WGQL estimates for means and variances are much closer to the sample means
and variances, as compared to that of the QML approach.

Further note that in Fig. 3, the sample means of y2t show a positive correlation,
that is, the neighboring sample means tend to trace each other. It can be shown that

Cov

Y2t ;Y

2
tCk

� D 
t
tCk

(

exp

"

2� k
1

 
1 � �2.t�1/1

1 � �21

!#

� 1

)

(64)

Since j�1j < 1, it is obvious from (64) that for 0 < �1 < 1, Cov

Y2t ;Y

2
tCk

�
> 0

and ! 0 as �1 ! 0 for all positive integer k. The MM and WGQL approaches
produce �1 estimates of O�1;MM D 0:690 and O�1;WGQL D 0:664, which are all positive
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Fig. 4 The estimated variance of Y2t for the 1000 data from the log return with mean subtracted of
the US-Dollar/Swiss-Franc daily exchange rates from July 24, 2007 to July 24, 2012 (color online)

and can account for the positive correlation in Fig. 3, while the QML estimate of
O�1;QML D 0:0593 can be too small to explain this positive correlation. In addition,
in Fig. 3, the values for sample means oscillate around the curves for the estimated
mean by the MM and WGQL approaches, indicating a reasonable fitting, while
the curve for the estimated mean by the QML method is far above the points of
sample means, implying some inaccuracy in the QML approach, which may be
due to the large standard errors of the QML estimators. In Fig. 4, once again the
curves for the MM and WGQL approaches almost overlap each other, indicating
the similarity of the estimates by the two approaches. Except the first several time
points, the estimated variance of y2t by the QML approach is on the order of 10�5,
which is considerably larger than the sample variances and the estimated values
produced by the MM and WGQL approaches, so the curve for QML estimation is
not shown in Fig. 4.

8 Concluding Remarks

To fit the volatility model, the existing GMM approach uses a large number of
moments (9) to construct the GMM estimating equations (11) for the consistent
estimation of the volatility parameters, whereas the QML approach uses a normal
approximation to a log chi-square distribution that arises in the construction of
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the so-called likelihood estimating equations. In this paper, it is demonstrated that
unlike the GMM approach, the moment estimating equations for three volatility
parameters can be constructed by using only three unbiased moment functions
selected carefully following the nature or definition of the parameters. The later
approach is simply refereed to as the MM (method of moments) approach. As the
GMM approach is complex, it is not included for any comparison in the present
paper. We also provided a modification to the QML approach so that the associated
covariance matrix involved in the QML estimating equation can be computed easily.
The finite sample behavior of the proposed MM estimation approach is studied
intensively, and it is found that the MM approach works very well in estimating
all volatility parameters for time series size as small as 1000. The drawbacks of
the QML approach is discussed. The AGQL (WGQL) approach performs similarly
to the MM approach, however, it is computationally more involved than the MM
approach. The asymptotic variances of the proposed simpler MM, and WGQL
estimators are computed and these variances agree quite well with the large finite
sample based results. Remark that as the QML estimates are not obtained using the
true likelihood of the data, it is not possible to compute the asymptotic variances of
the QML estimators. All three methods, MM. WGQL, and QML were applied to fit
the SV model (1)–(2) to a real life financial time series with length T D 1000; and
it was found that the MM and WGQL approaches provide relatively much better
fitting than the QML approach.
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A Generalization of the Familial Longitudinal
Binary Model to the Multinomial Setup
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Abstract When repeated binary responses along with time dependent covariates
are collected over a short period of time from the members of a large number
of independent families, there exits a well developed binary dynamic mixed logit
(BDML) model to analyze such familial longitudinal binary data. As far as the
inferences are concerned, this BDML model has been fitted by using the generalized
quasi-likelihood (GQL) and the well known maximum likelihood (ML) methods.
There are however situations in practice where categorical/multinomial responses
with more than two categories are repeatedly collected from all members of the
family. However, the analysis for this type of familial longitudinal multinomial data
is not adequately addressed in the literature. We offer two main contributions in this
paper. First, for the analysis of familial longitudinal multinomial data, we propose a
multinomial dynamic mixed logit (MDML) model as a generalization of the BDML
model and derive the basic properties such as non-stationary mean, variance and
correlations for the repeated multinomial responses. Next, to understand these
basic properties, we develop step by step likelihood estimating equations for
the parameters involved in these properties. The relative asymptotic efficiency
performance of the ML and GQL approaches is examined through a simulation
study based on repeated binary responses, for example, from a large number of
independent families each consisting of two members, causing both familial and
longitudinal correlations. Also, a real life example on repeated multinomial data
analysis is considered as an illustration.
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Keywords Categorial responses • Dynamic mixed models • Familial correlations
through random effects • Longitudinal correlations through dynamic relation-
ships • Multinomial logit model

1 Introduction

In practice, there are situations where repeated multinomial responses along with
time dependent covariates may be collected from the members of a large number
of independent families. For example, we first refer to the health care utilization
data discussed by Sutradhar (2011, Sect. 10.3), where number of yearly visits to
the physician were collected for 6 years from the members of 48 families, along
with the covariate information from each member. This familial longitudinal count
data were analyzed by using the so-called GLLMM (generalized linear longitudinal
mixed model). Now suppose that one is not interested to the number of specific
visits, instead, the data in category form such as low, medium and high visits, are
of interest. This will lead to a familial longitudinal multinomial data set. Note that
even though this type of multinomial data can be treated as a generalization of the
familial longitudinal binary data and there exists inferences for such binary data
using BDML (binary dynamic mixed model) [see, for example, Sutradhar (2011,
Chap. 11)], the analysis of familial longitudinal multinomial data is, however, not
adequately addressed in the literature. The purpose of this paper is to develop a
suitable model for such repeated multinomial data and provide inferences for the
proposed model. However, for convenience, we begin the discussion with a review
of the familial longitudinal binary data analysis.

Let yijt denote the binary response collected at t-th .t D 1; : : : ;T/ time point
from the j-th .j D 1; : : : ; ni/ member of the i-th .i D 1; : : : ;K/ family and
xijt D .xijt1; : : : ; xijtu; : : : ; xijtp/

0 be the p � 1 vector of covariates corresponding to
yijt. In this set up, T and ni are considered to be small, whereas K, the number of
independent families, is considered to be quite large. Suppose that irrespective of
the time points, the responses of all members of the ith family are influenced by a
common unobservable family effect ��

i . As far as the time effects on the responses
are concerned, it is sensible to assume that conditional on the common random
family effect ��

i , two responses, say yijt and yijv , for the jth individual of the ith
family collected at any two time points t and v .t ¤ vI t; v D 1; : : : ;T/ will be
longitudinally correlated, whereas the responses of any two members, say yijt and
yikv for the jth and kth members .j ¤ k/ of the ith family will be independent.
This type of familial longitudinal data has recently been analyzed by Sutradhar
(2011, Sect. 11.3.1) using a non-linear binary dynamic mixed logit (BDML) model
given by

Pr.Yij1 D 1jxij1I ��
i / D exp.x0

ij1ˇ C ��
i /

Œ1C exp.x0
ij1ˇ C ��

i /�
; (1)
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Pr.Yijt D 1jxijt; yij;t�1I ��
i / D expfx0

ijtˇ C ��yij;t�1 C ��
i g

Œ1C expfx0
ijtˇ C ��yij;t�1 C ��

i g�
D p�

ijtyij;t�1
.��

i /; (2)

[see also Fienberg et al. (1985)] for t D 2; : : : ;T. In (1)–(2), ˇ is the p-dimensional
vector of regression effects, �� is the lag 1 dynamic dependence parameter, and
��

i is the unobservable random effect for the ith family. As far as the distribution

of ��
i is concerned, we assume that ��

i
iid� N.0; �2� / (Breslow and Clayton 1993;

Sutradhar et al. 2008) so that for �i D ��
i =�� , �i

iid� N.0; 1/. Note that the familial-
longitudinal model defined by (1)–(2) may be treated as a generalization of the
binary longitudinal mixed model for an individual considered by Sutradhar et al.
(2008). Further note that the binary dynamic mixed model defined by (1) and (2)
appears to be quite suitable to interpret the data for many health problems. For
example, this model produces the mean (also the variance) at a given time point
for an individual member of a given family as a function of the covariate history of
the individual up to the present time. This history based mean function appears to be
useful to interpret the current asthma status (yes or no) of an individual as a function
of the related covariates such as smoking habits and cleanliness over a suitable past
period.

As far as the inference for the parameters ˇ; ��; and �� involved in the
dynamic mixed model (1)–(2) is concerned, they may be estimated, for example, by
exploiting the well known likelihood approach. To be specific, because the responses
of any two members of the same family at any two time points, say yiju and yikt,
conditional on the family effect �i, are assumed to be independent, by using (1)–(2),
one may write the likelihood function for ˇ; ��; and �� as

L.ˇ; ��; �� / D ˘K
iD1

Z 1

�1
˘

ni
jD1

h
Qp�

ij10.�i/˘
T
tD2 Qp�

ijtyij;t�1
.�i/

i
fN.�i/d�i; (3)

where fN.�i/ is the standard normal density of �i. Next, by using yij0 D 0 for all j D
1; : : : ; ni, and i D 1; : : : ;K, for technical convenience, and following the likelihood
function (3) one may write the log-likelihood function as

logL.ˇ; ��; �� / D
KX

iD1

niX

jD1

TX

tD1

�
yijtx

0
ijtˇ C ��yijtyij;t�1

	

C
KX

iD1
log

Z 1

�1
exp.disi/�i.�i/d�i; (4)

where si D Pni
jD1

PT
tD1 yijt; di D �� �i, and
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�i D
h
˘

ni
jD1˘

T
tD1f1C exp.x0

ijtˇ C ��yij;t�1 C �� �i/g
i�1

:

This log likelihood function (4) may then be exploited to obtain the likelihood
estimates for all three parameters ˇ; ��; and �� .

There are however situations in practice where a multinomial response
is recorded from the jth member of the ith family at a given time t. We
denote such a multinomial response variable with C > 2 categories as yijt D
.yijt1; : : : ; yijtc; : : : ; yijt;C�1/0, where for c D 1; : : : ;C � 1,

y.c/ijt D .y.c/ijt1; : : : ; y.c/ijtc; : : : ; y
.c/
ijt;C�1/

0 D .010
c�1; 1; 010

C�1�c/
0 � ıijtc (5)

indicates that the multinomial response of jth individual of the ith family belongs to
cth category at time t. For c D C, one writes y.C/ijt D ıijtC D 01C�1. Here 1m,
for example, denotes the m-dimensional unit vector. Similar to the binary case,
further suppose that xijt be the p-dimensional covariate vector recorded at time
t corresponding to yijt. It is of interest to find the effects of xijt on yijt, when
it is known that C � 1 dimensional multinomial responses yij1; : : : ; yijt; : : : ; yijT

will be correlated. The modeling and analysis of this type of familial longitudinal
multinomial data are, however, not adequately addressed in the literature.

For the case when ni D 1, i.e., the ith family refers to the ith .i D 1; : : : ;K/
individual only, there exist some models for the analysis of repeated multinomial
data collected from K independent individuals. For example, Fienberg et al. (1985)
and Conaway (1989) have modeled repeated multinomial such as stress level (Low,
Medium, High) data for 4 years collected from a psychological study of the mental
health effects of the accident at the Three Mile Island nuclear power plant in central
Pennsylvania began on March 28, 1979. The study focuses on the changes in the
post accident stress level of mothers of young children living within 10 miles of
the nuclear plant. Note however that Fienberg et al. (1985) have collapsed the
trinomial (3 category) data into 2 category based dichotomized data and modeled
the correlations among such repeated binary responses through a binary dynamic
logit model [see also Sutradhar and Farrell (2007)]. Thus their model does not deal
with correlations of repeated multinomial (trinomial in this case to be specific)
responses and do not make the desired comparison among three original stress
levels. To remedy this modeling problem, Conaway (1989) has attempted to model
the multinomial correlations but has used a random effect, that is, mixed model
approach to compute the correlations. Note however that the random effects based
correlations are not able to address the dynamic dependence among repeated
responses.

Some authors such as Lipsitz et al. (1994), Williamson et al. (1995), and Chen
et al. (2009) have used the so-called multinomial dynamic fixed logit (MDFL) model
to study the aforementioned longitudinal categorical data. To be specific, their model
for repeated univariate multinomial data has the form

PŒyi1 D y.c/i1 D ıij1c� D 	.i1/c
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D

8
<̂

:̂

exp.x0
i1ˇ

�
c /

1CPC�1
gD1 exp.x0

ij1ˇ
�
g /

for c D 1; : : : ;C � 1

1

1CPC�1
gD1 exp.x0

ij1ˇ
�
g /

for c D C;
(6)

where

ˇ�
c D .ˇc0; ˇ

0
c/

0 D .ˇc0; ˇc1; : : : ; ˇc;p�1/0

is the effect of xij1, leading to the regression parameters set as

ˇ � .ˇ�
1

0
; : : : ; ˇ�

c
0
; : : : ; ˇ�

C�1
0
/0 W .C � 1/p � 1:

Further for t D 2; : : : ;T, the non-linear conditional multinomial dynamic fixed logit
(MDFL) probabilities are given by

�
.c/
itjt�1.g/ D P



Yit D y.c/it

ˇ
ˇ̌ Yi;t�1 D y.g/i;t�1;

�

D

8
ˆ̂
<

ˆ̂
:

exp
h
x0

itˇ
�
c C� 0

cy
.g/
i;t�1

i

1CPC�1
vD1 exp

h
x0

itˇ
�
v C� 0

vy
.g/
i;t�1

i ; for c D 1; : : : ;C � 1

1

1CPC�1
vD1 exp

h
x0

itˇ
�
v C� 0

vy
.g/
i;t�1

i ; for c D C;
(7)

where g D 1; : : : ;C, and �c D .�c1; : : : ; �cv; : : : ; �c;C�1/0 denotes the dynamic
dependence parameters, which may be referred to as the correlation index or a
particular type of odds ratio parameters. More specifically, the correlations of the
repeated multinomial responses will be functions of these �c.c D 1; : : : ;C � 1/

parameters. As far as the estimation of the model parameters is concerned, these
authors first use an arbitrary log-linear model for odds ratios and then use the
estimated odds ratios for the estimation of the regression parameters. This type of
‘working’ odds ratios or correlations approach may, however, fail to produce
consistent estimates for true odds ratios and such inconsistent estimates may lead
to breakdown for the estimation of the regression parameters. See for example,
Crowder (1995) and Sutradhar and Das (1999) for a discussion with regard to such
breakdown difficulties in the context of longitudinal correlation models for repeated
binary data. For an alternative exact likelihood approach for the estimation of the
parameters of the MDFL model (6)–(7), we, for example, refer to Sutradhar (2014,
Chap. 3).

In this paper, we, however, plan to deal with an extension of the longitudi-
nal model (6)–(7) to the familial longitudinal setup involving familial longitudinal
categorical data indicated by (5). To be specific, in Sect. 2, we provide a multinomial
dynamic mixed logit (MDML) model to fit familial longitudinal categorical data.
Basic properties of the proposed multinomial model are derived in the same section.
With regard to estimation of the parameters involved in the model and hence
in basic properties, because the inferences for such complex high dimensional
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data model are naturally complex, in Sect. 3, we provide all necessary likelihood
estimating equations in simpler possible forms, for the benefit of the practitioners.
In Sect. 4, we examine the relative asymptotic efficiency performance of the ML and
GQL approaches through a simulation study based on repeated binary responses,
for example, from a large number of independent families each consisting of
two .ni D 2/ members. In Sect. 5, we provide an example by illustrating the
application of the proposed model to the analysis of the so-called Three Miles Island
Stress Level (TMISL) data containing repeated multinomial responses with three
categories.

2 Proposed Familial Longitudinal Multinomial Model

Refer to the multinomial variable yijt with C 	 2 categories defined by (5) for the jth
individual of the ith family, recorded at time point t. To be specific, yijt is the C � 1-
dimensional multinomial response variable. The repeated multinomial responses of
an individual member are correlated. Also, the two multinomial responses at a given
time collected from two members of the same family are correlated. In this section,
we propose a multinomial dynamic mixed logit (MDML) model that exhibits both
of these familial and longitudinal correlations. More specifically, we generalize the
BDML model (1)–(2) to the multinomial setup, and write the desired MDML model
as follows. First, for t D 1; : : : ;T, let

	�
.ijt/c D

8
<̂

:̂

exp.x0
ijtˇ

�
c C�� �i/

1CPC�1
gD1 exp.x0

ijtˇ
�
g C�� �i/

for c D 1; : : : ;C � 1
1

1CPC�1
gD1 exp.x0

ijtˇ
�
g C�� �i/

for c D C;
(8)

where ˇ�
c D .ˇc0; ˇ

0
c/

0 D .ˇc0; ˇc1; : : : ; ˇc;p�1/0. Now use this form (8) for t D 1

only, and define the marginal probability for the multinomial variable yij1 as

PŒfyij1 D y.c/ij1 D ıij1cgj�i� D 	�
.ij1/c: (9)

Next, for t D 2; : : : ;T, as a generalization of the binary transitional probability (2),
write the multinomial transitional probability as

�
�.c/
ijtjt�1.g/ D P



Yijt D y.c/ijt

ˇ
ˇ
ˇ Yij;t�1 D y.g/ij;t�1; �i

�

D

8
ˆ̂
<

ˆ̂:

exp
h
x0

ijtˇ
�
c C� 0

cy
.g/
ij;t�1C�� �i

i

1CPC�1
vD1 exp

h
x0

ijtˇ
�
v C� 0

vy
.g/
ij;t�1C�� �i

i ; for c D 1; : : : ;C � 1
1

1CPC�1
vD1 exp

h
x0

ijtˇ
�
v C� 0

vy
.g/
ij;t�1C�� �i

i ; for c D C;
(10)
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where for known response category g D 1; : : : ;C, at time t � 1, �c D
.�c1; : : : ; �cv; : : : ; �c;C�1/0, for c D 1; : : : ;C � 1, denotes the dynamic dependence
parameters for the response to be in the cth category at time t. Note that the
marginal and transitional probabilities in (9)–(10) combining together may be
referred to as the multinomial dynamic mixed logit (MDML) model. This MDML
model (9)–(10) may also be treated as a generalization of the MDFL (multinomial
dynamic fixed logit) model (6)–(7) appropriate for the longitudinal setup to
the familial longitudinal setup. It is clear that unlike the fixed model (6)–(7),
the mixed model (9)–(10) is written for all members of the same family by
accommodating the familial correlations through the introduction of the common
random family effect ��

i D �� �i. This additional random effect, however, makes
the inference for the regression effects .ˇ/ and dynamic dependence parameters
�c.c D 1; : : : ;C � 1/ extremely complicated. Furthermore, when in practice,
one is interested to understand the data through computing the mean, variance and
correlations, it becomes necessary to estimate the random effects variance parameter
�� as well.

Now toward the computation of the mean, variance and correlations of
the repeated multinomial responses yijt; t D 1; : : : ;T, under the MDML
model (9)–(10), we first provide their moments conditional on �i, as follows.
Specifically, it follows from (9) and (10) that

EŒYijtj�i� D Q	.ijt/.�i/ (11)

D
(
	�
.ij1/.�i/ for t D 1

	�
.ijt/.�i/C

h
��

ijtjt�1;M � 	�
.ijt/.�i/1

0
C�1

i
Q	.ij;t�1/.�i/ for t D 2; : : : ;T;

where 	�
.ijt/.�i/ and Q	.ijt/.�i/ are .C � 1/-dimensional vectors written as

	�
.ijt/.�i/ D Œ	�

.ijt/1; : : : ; 	
�
.ijt/c; : : : ; 	

�
.ijt/.C�1/�0

Q	.ijt/.�i/ D Œ Q	.ijt/1; : : : ; Q	.ijt/c; : : : ; Q	.ijt/.C�1/�0

and ��
ijtjt�1;M is the .C � 1/ � .C � 1/ matrix of transitional probabilities given by

��
ijtjt�1;M D

0

BB
B
B
B
B
B
@

�
�.1/
ijtjt�1.1/ � � � ��.1/

ijtjt�1.g/ � � � ��.1/
ijtjt�1.C � 1/

:::
:::

:::
:::

:::

�
�.j/
ijtjt�1.1/ � � � ��.j/

ijtjt�1.g/ � � � ��.j/
ijtjt�1.C � 1/

:::
:::

:::
:::

:::

�
�.C�1/
ijtjt�1 .1/ � � � ��.C�1/

ijtjt�1 .g/ � � � ��.C�1/
ijtjt�1 .C � 1/

1

CC
C
C
C
C
C
A

: (12)
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Notice that in (11), 	�
.ijt/.�i/ for t D 2; : : : ;T, is the same as the transitional

probability vector with response transiting from Cth category. That is,

	�
.ijt/.�i/ D Œ	�

.ijt/1; : : : ; 	
�
.ijt/c; : : : ; 	

�
.ijt/.C�1/�0

D Œ�
�.1/
ijtjt�1.C/; : : : ; �

�.c/
ijtjt�1.C/ : : : ; �

�.C�1/
ijtjt�1 .C/�

0

D ��
ijtjt�1.C/: (13)

It then follows that

varŒYijtj�i� D diagŒ Q	.ijt/1; : : : ; Q	.ijt/c; : : : ; Q	.ijt/.C�1/� � Q	.ijt/ Q	 0
.ijt/

D ˙�
.ijj;tt/.�i/

D .covf.Yijtr;Yijtc/j�ig/ D .��
.ijj;tt/rc.�i//; r; c D 1; : : : ;C � 1

covŒ.Yiju;Yijt/j�i� D varŒYijuj�i�Œ�
�
ijtjt�1;M � ��

ijtjt�1.C/1
0
C�1�t�u; for u < t

D ˙�
.ijj;ut/.�i/ D .covf.Yijur;Yijtc/j�ig/

D .��
.ijj;ut/rc.�i//; r; c D 1; : : : ;C � 1; (14)

with Q	.ij1/ D 	�
ij1 W .C � 1/ � 1, and where , for example,

Œ��
ijtjt�1;M � ��

ijtjt�1.C/1
0
C�1�3 D Œ��

ijtjt�1;M � ��
ijtjt�1.C/1

0
C�1�

� Œ��
ijtjt�1;M � ��

ijtjt�1.C/1
0
C�1�Œ��

ijtjt�1;M � ��
ijtjt�1.C/1

0
C�1�:

Further, we assume that irrespective of time points, the responses from two
individuals from the same family, conditional on �i, will be uncorrelated. That is,
for j ¤ k,

covŒfYiju;Yiktgj�i� D 0; for all u; t D 1; : : : ;T: (15)

2.1 Basic Properties of the Model

Similar to the BDML model (1)–(2), we assume that ��
i

iid� N.0; �2� / (Breslow and

Clayton 1993; Sutradhar et al. 2008) so that for �i D ��
i =�� , �i

iid� N.0; 1/. By
averaging over the distribution of �i involved in the conditional expectation in (11),
one obtains the unconditional expectation, i.e., the mean of the responses as
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EŒYijt� D E�i EŒYijtj�i�

D

8
<̂

:̂

R1
�1 	�

.ij1/.�i/fN.�i/d�i for t D 1
R1

�1
h
	�
.ijt/.�i/C

n
��

ijtjt�1;M.�i/ � 	�
.ijt/.�i/1

0
C�1

o

� Q	.ij;t�1/.�i/
	

fN.�i/d�i for t D 2; : : : ;T

D 	.ijt/.ˇ; �; �� /; (say): (16)

where

ˇ D Œˇ�0

1 ; : : : ; ˇ
�0

c ; : : : ; ˇ
�0

C�1�0I � D Œ� 0
1; : : : ; �

0
c; : : : ; �

0
C�1�0;

and fN.�i/ is the standard normal density. Next by using the conditioning and
un-conditioning principle over (11) and (14), one may obtain the unconditional
covariance matrix of yijt W .C � 1/ � 1, as

varŒYijt� D E�i varŒYijtj�i�C var�i EŒYijtj�i�

D
Z 1

�1

n
diagŒ Q	.ijt/1; : : : ; Q	.ijt/c; : : : ; Q	.ijt/.C�1/� � Q	.ijt/ Q	 0

.ijt/

o
fN.�i/d�i

C
Z 1

�1
Œ Q	.ijt/.�i/ Q	 0

.ijt/.�i/�fN.�i/d�i

�f
Z 1

�1
Q	.ijt/.�i/fN.�i/d�igf

Z 1

�1
Q	 0
.ijt/.�i/fN.�i/d�ig

D
Z 1

�1
diagŒ Q	.ijt/1; : : : ; Q	.ijt/c; : : : ; Q	.ijt/.C�1/�fN.�i/d�i

�f
Z 1

�1
Q	.ijt/.�i/fN.�i/d�igf

Z 1

�1
Q	 0
.ijt/.�i/fN.�i/d�ig

D ˙.ijj;tt/.ˇ; �; �� / D .�.ijj;tt/;rc.ˇ; �; �� //; (say); (17)

where, for r; c D 1; : : : ;C � 1; �.ijj;tt/;rc.ˇ; �; �� / is the .r; c/th element of the
.C � 1/ � .C � 1/ covariance matrix ˙.ijj;tt/.ˇ; �; �� /.

Next for the same family member, the covariance of the responses collected from
two different time points, by exploiting (11), (14), and (16), may be computed as

covŒYiju;Yijt� D E�icovŒfYiju;Yijtgj�i�C cov�i ŒEŒYijuj�i;EŒYijtj�i�

D
Z 1

�1
˙�
.ijj;ut/.�i/fN.�i/d�i C

Z 1

�1
Œ Q	.ijt/.�i/ Q	 0

.ijt/.�i/�fN.�i/d�i

�	.iju/.ˇ; �; �� /	 0
.ijt/.ˇ; �; �� /

D ˙.ijj;ut/.ˇ; �; �� / D .�.ijj;ut/;rc.ˇ; �; �� //: (18)
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However, when responses are collected from two different members of the same
family, by (11), (15), and (16), one writes the covariances as

covŒYiju;Yikt� D E�i covŒfYiju;Yiktgj�i�C cov�i ŒEŒYijuj�i;EŒYiktj�i�

D
Z 1

�1
Œ Q	.iju/.�i/ Q	 0

.ikt/.�i/�fN.�i/d�i � 	.iju/.ˇ; �; �� /	 0
.ikt/.ˇ; �; �� /

D ˙.ijk;ut/.ˇ; �; �� / D .�.ijk;ut/;rc.ˇ; �; �� //: (19)

Note that it is of primary objective to understand the multinomial mean
vector (16), variance matrix (17), and the covariance matrices (18)–(19) of
two multinomial response vectors. This analysis requires the estimates for the
parameters involved in all these mean, variance and covariance functions. In the
next section, we develop the likelihood estimating equations for the parameters
involved which provide consistent and highly efficient estimates. We also provide
an outline for the GQL estimating equations for the same parameters.

3 Likelihood Estimation for the MDML Model Parameters

3.1 Construction of the Likelihood Function

Recall that under the MDML model, the jth member of the ith family provides a
multinomial response with C 	 2 categories, with (a) marginal probability given
as in (8)–(9), and (b) the lag 1 type conditional probability as in (10). Further it is
assumed that conditional on the random family effect �i, the multinomial responses
from any two members of the same family will be independent. Consequently, by
using (9), yij1, conditional on �i, has the marginal multinomial distribution given by

f .yij1j�i/ D 1Š

yij11Š : : : yij1cŠ : : : yij1;C�1Šyij1CŠ
˘C

cD1
h
	�
.ij1/c

iyij1c

; (20)

where the formula for the probability 	�
.ij1/c, is given by (8)–(9). Next, for t D

2; : : : ;T, conditional on the random family effect �i and the past response Yij;t�1 D
y.g/ij;t�1, one may write the conditional distribution of yijt as

f .yijtjy.g/ij;t�1; �i/ D 1Š

yijt1Š : : : yijtcŠ : : : yijt;C�1ŠyijtCŠ

�˘C
cD1

h
�

�.c/
ijtjt�1.g/

iyijtc

; g D 1; : : : ;C; (21)
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where ��.c/
ijtjt�1.g/ for c D 1; : : : ;C, are given by (10). In (20)–(21), by convention,

yijtC D 1 �
C�1X

cD1
yijtc; for all i D 1; : : : ;K; j D 1; : : : ; ni; t D 1; : : : ;T:

Let

ˇ � .ˇ�
1

0
; : : : ; ˇ�

c
0
; : : : ; ˇ�

C�1
0
/0 W .C � 1/p � 1;

where ˇ�
c D .ˇc0; ˇ

0
c/

0, with ˇc D Œˇc1; : : : ; ˇcs; : : : ; ˇc;p�1�0, and

�M D

0

B
B
B
BB
B
@

� 0
1
:::

� 0
c
:::

� 0
C�1

1

C
C
C
CC
C
A

W .C � 1/� .C � 1/: (22)

where �c D .�c1; : : : ; �cv; : : : ; �c;C�1/0 denotes the dynamic dependence parameters
relating y.c/ijt with y.g/ij;t�1, for any given category g D 1; : : : ;C. By using (20) and (21),
one may then write the likelihood function for ˇ, �M, and �� , under the present
MDML model (9)–(10), as

L.ˇ; �M; �� / D ˘K
iD1

Z 1

�1
˘

ni
jD1

˚
f .yij1j�i/˘

T
tD2f .yijtjyji;t�1; �i/

�
.�i/d�i

D c�
0˘

K
iD1

Z 1

�1
˘

ni
jD1

hn
˘C

cD1


	�
.ij1/c

�yij1c
o

�
n
˘T

tD2˘C
cD1˘C

gD1


�

�.c/
ijtjt�1.g/

�yijtc
oi

fN.�i/d�i; (23)

where c�
0 is the normalizing constant free from any parameters, 	�

.ij1/c is a marginal

probability at initial time t D 1 as in (9), and �
�.c/
ijtjt�1.g/ are the conditional

probabilities at times t D 2; : : : ;T, defined in (10). For convenience, we now re-
express the likelihood function in (23) as

L.ˇ; �M; �� / D c�
0˘

K
iD1

Z 1

�1
Lif.ˇ; �M; �� /j�igfN.�i/d�i

D c�
0˘

K
iD1Ji.ˇ; �M; �� /; (24)
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where

Lif.ˇ; �M; �� /j�ig D ˘
ni
jD1

hn
˘C

cD1


	�
.ij1/c

�yij1c
o n
˘T

tD2˘C
cD1˘C

gD1


�

�.c/
ijtjt�1.g/

�yijtc
oi
:

It then follows that the log likelihood function is given by

logL.ˇ; �M; �� / D log c�
0 C

KX

iD1
log Ji.ˇ; �M; �� /: (25)

Note that all integrations over the standard normal distribution of the random effects
�i may be computed by using, for example, the so-called Binomial approximation
(Sutradhar 2011, Eqs. (5.24)–(5.27); Ten Have and Morabia 1999, Eq. (7)). Thus, Ji

in (24) or (25) may be computed as

Ji.ˇ; �M; �� / D
Z 1

�1
Li.�i/fN.�i/d�i

D
VX

vD0
Li.�i.v//

�
V
v

�
.1=2/v.1=2/V�v; (26)

where V is a user’s choice large selected number of Bernoulli trials such as V D 10,
and

�i.v/ D v � V. 1
2
/

q
V. 1

2
/. 1
2
/

:

3.2 Likelihood Estimating Equations

Suppose that  represents any one of the three parameters ˇ; �M; or �� . Then in
general the score function for  has the form

@logL.ˇ; �M; �� /

@
D

KX

iD1

1

Ji

@Ji

@
; (27)

where

@Ji

@
D
Z 1

�1
@Lif.ˇ; �M; �� /j�ig

@
fN.�i/d�i

�
Z 1

�1
@Li.�i/

@
fN.�i/d�i; (28)
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with

@Li.�i/

@
D Li.�i/

@log Li.�i/

@

D Li.�i/

2

4 @

@

8
<

:

niX

jD1

CX

cD1
yij1clog 	�

.ij1/c

9
=

;

C @

@

8
<

:

TX

tD2

niX

jD1

CX

cD1

CX

gD1
yijtclog ��.c/

ijtjt�1.g/

9
=

;

3

5 : (29)

Note that similar to the computation of Ji.�/ by (26), the derivative @Ji
@

in (28) may
be computed as

@Ji

@
D
Z 1

�1
@Li.�i/

@
fN.�i/d�i

D
VX

vD0

@Li.�i.v//

@

�
V
v

�
.1=2/v.1=2/V�v: (30)

3.2.1 Likelihood Estimating Equation for ˇ

Recall that

ˇ D Œˇ�0

1 ; : : : ; ˇ
�0

c ; : : : ; ˇ
�0

C�1�0 W .C � 1/p � 1
is a global regression parameter vector, ˇ�

c W p � 1 being the local regression
parameter vector under the c category for c D 1; : : : ;C � 1, and ˇ�

C D 0 for the
reference category. These local regression parameter vectors are involved in the
marginal probabilities at initial time t D 1 and in dynamic relationships, that is, in
conditional probabilities, for t D 2; : : : ;T, as shown by (9) and (10), respectively.
Now to compute the score function in ˇ by (27)–(28), we need to compute @Li.�i/

@ˇ
by

using (29). Thus, we write

@Li.�i/

@̌
D Li.�i/

@Log Li.ˇ; �M; �� /

@̌

D Li.�i/

2

4
niX

jD1

CX

cD1

yij1c

	�
.ij1/c

@	�
.ij1/c

@̌

C
niX

jD1

TX

tD2

CX

cD1

CX

gD1

8
<

:
yijtc

�
�.c/
ijtjt�1.g/

@�
�.c/
ijtjt�1.g/
@̌

9
=

;

3

5 : (31)
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Next, putting this derivative in (28), after some algebras as shown in the Appendix,
one obtains the likelihood estimating equation for ˇ, by (27) as

@log L.ˇ; �M ; �� /

@̌
D

KX

iD1

1

Ji

Z 1

�1
Li.�i/

@log Li.�i/

@̌
fN.�i/d�i

D
KX

iD1

1

Ji

Z 1

�1
Li.�i/

2

4
niX

jD1

CX

cD1

yij1c

	�
.ij1/c

hn
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
o

˝ xij1

i

C
niX

jD1

TX

tD2

CX

cD1

CX

gD1

yijtc

�
�.c/
ijtjt�1.g/

hn
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
o

˝ xijt

i
3

5 fN.�i/d�i

D 0; (32)

where ˝ denotes the Kronecker product, and

ı.ijt/c D
�
Œ010

c�1; 1; 010
C�1�c�

0 for c D 1; : : : ;C � 1
01C�1 for c D C;

for all j D 1; : : : ; ni; t D 1; : : : ;T; i D 1; : : : ;K;

	�
.ij1/ � 	�

.ij1/.�i/ D Œ	�
.ij1/1; : : : ; 	

�
.ij1/c; : : : ; 	

�
.ij1/.C�1/�0 W .C � 1/;

by (11), and

��
ijtjt�1.g/ D Œ�

�.1/
ijtjt�1.g/; : : : ; �

�.c/
ijtjt�1.g/; : : : ; �

�.C�1/
ijtjt�1 .g/�

0:

Now, for given values for �M and �� , the likelihood equations in (32) may be
solved iteratively by using the iterative equations for ˇ given by

Ǒ.rC1/ D Ǒ.r/�
"�
@2log L.ˇ; �M ; �� /

@̌ 0@̌

��1
@log L.ˇ; �M ; �� /

@̌

#

jˇD Ǒ.r/
I .J�1/p�1;

(33)

where the formula for the second order derivative matrix @2log L.ˇ;�M ;�� /

@ˇ0@ˇ
may be

derived by taking the derivative of the .J�1/p�1 vector with respect to ˇ0. The exact
second order derivative has a complicated formula. We provide an approximation for
this second order derivative matrix as follows.
An approximation for @2Log L.ˇ;�M ;�� /

@ˇ0@ˇ
based on iteration principle:

In this approach, one assumes that ˇ in the derivatives in (31), that is, ˇ involved

in
@	�

.ij1/c

@ˇ
and

@�
�.c/
ijtjt�1.g/

@ˇ
are known from a previous iteration, and then take the

derivative of @Log L.ˇ;�M ;�� /

@ˇ
in (31) or (32), with respect to ˇ0. This provides a simpler
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formula for the second order derivative as

@2log L.ˇ; �M; �� /

@̌ 0@̌

D �
KX

iD1

1

Ji

Z 1

�1
Li.�i/

2

4
niX

jD1

CX

cD1

yij1c

Œ	�
.ij1/c�

2

�
hn
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
o

˝ xij1

i hn
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
o

˝ xij1

i0

C
niX

jD1

TX

tD2

CX

cD1

CX

gD1

yijtc

Œ�
�.c/
ijtjt�1.g/�2

hn
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
o

˝ xijt

i

�
hn
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
o

˝ xijt

i0�
fN.�i/d�i

C
KX

iD1

1

Ji

Z 1

�1
Li.�i/

2

4
niX

jD1

CX

cD1

yij1c

	�
.ij1/c

hn
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
o

˝ xij1

i

C
niX

jD1

TX

tD2

CX

cD1

CX

gD1

yijtc

�
�.c/
ijtjt�1.g/

hn
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
o

˝ xijt

i
3

5

� @log L.ˇ; �M ; �� /

@̌ 0 fN.�i/d�i

�
KX

iD1
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J2i
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�1
Li.�i/
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4
niX

jD1

CX

cD1

yij1c

	�
.ij1/c

hn
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
o

˝ xij1

i

C
niX

jD1

TX

tD2

CX

cD1

CX

gD1

yijtc

�
�.c/
ijtjt�1.g/

hn
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
o

˝ xijt

i
3

5 fN.�i/d�i

� @Ji

@̌ 0 ; (34)

where @log L.ˇ;�M ;�� /

@ˇ0 is the transpose of @log L.ˇ;�M ;�� /

@ˇ
easily computed from (32), and

@Ji

@̌ 0 D
Z 1

�1
Li.�i/

@log Li.�i/

@̌ 0 fN.�i/d�i (35)

which also can easily be extracted from (32).
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3.2.2 Likelihood Estimating Equation for �M

The estimation of the .C�1/�.C�1/ matrix �M is equivalent to estimate � in (16),
where

� D .� 0
1; : : : ; �

0
c; : : : ; �

0
C�1/0 W .C � 1/2 � 1I with �c D .�c1; : : : ; �ch; : : : ; �c;C�1/0

(36)

as the .C � 1/ � 1 vector of dynamic dependence parameters involved in the
conditional multinomial logit function in (10). Similar to (32), one writes

@log L.ˇ; �M; �� /

@�
D

KX

iD1

1

Ji

Z 1

�1
Li.�i/

@log Li.�i/

@�
fN.�i/d�i; (37)

where

@log Li.�i/

@�
� @log Li.ˇ; �M; �� /

@�

D
niX

jD1

TX

tD2

CX

cD1

CX

gD1

8
<

:
yijtc

�
�.c/
ijtjt�1.g/

@�
�.c/
ijtjt�1.g/
@�

9
=

;
: (38)

Next, as shown in the Appendix, because

@log Li.�i/

@�c
D

niX

jD1

TX

tD2

CX

gD1
ı.ij;t�1/g

h
yijtc �



�

�.c/
ijtjt�1.g/

�i
; (39)

we obtain the likelihood estimating equation for � as

@log L.ˇ; �M; �� /

@�
D

0

B
B
B
BB
B
B
@

@log L.ˇ;�M ;�� /

@�1
:::

@log L.ˇ;�M ;�� /

@�c
:::

@log L.ˇ;�M ;�� /

@�C�1

1

C
C
C
CC
C
C
A

D 0 W .C � 1/2 � 1; (40)

where

@log L.ˇ; �M; �� /

@�c
D

KX

iD1

1

Ji

Z 1

�1
Li.�i/

@log Li.�i/

@�c
fN.�i/d�i
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D
KX

iD1

1

Ji

Z 1

�1
Li.�i/

niX

jD1

TX

tD2

CX

gD1
ı.ij;t�1/g

�
h
yijtc �



�

�.c/
ijtjt�1.g/

�i
fN.�i/d�i: (41)

One may now solve this likelihood equation (40) for � by using the iterative
equation

O�.r C 1/ D O�.r/ �
"�
@2log L.ˇ; �M; �� /

@�@� 0

��1
@log L.ˇ; �M; �� /

@�

#

j�D O�.r/
; (42)

where the .C � 1/2 � .C � 1/2 second derivative matrix is computed by using the
formula

@2log L.ˇ; �M ; �� /

@�c@�
0
k

D �
KX

iD1

1

Ji

Z 1

�1

Li.�i/

niX

jD1
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tD2
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0
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h
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ck � �
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i
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�

�.c/
ijtjt�1.g/

�i

�
niX

jD1

TX

tD2

CX

gD1

ı0
.ij;t�1/g

h
yijtk �
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�
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�i
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@Ji

@� 0
k
; (43)

where

ı�
ck D

�
1 for c D k; c; k D 1; : : : ;C � 1
0 for c ¤ k; c; k D 1; : : : ;C � 1;

and

@Ji

@� 0
k
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�1
Li.�i/

@log Li.�i/

@� 0
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fN.�i/d�i
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�1
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tD2
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�

�.k/
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�i
fN.�i/d�i: (44)
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3.2.3 Likelihood Estimating Equation for ��

Similar to (37)–(38) [see also (32)], one obtains the score function for �� , as

@log L.ˇ; �M; �� /

@��
D

KX

iD1

1

Ji

Z 1

�1
Li.�i/

@log Li.�i/

@��
fN.�i/d�i; (45)

where

@log Li.�i/

@��
� @log Li.ˇ; �M; �� /
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cD1
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yijtc
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�.c/
ijtjt�1.g/
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ijtjt�1.g/
@��

9
=

;
: (46)

Next, by using the formulas for the derivatives from section “Algebras for the
Likelihood Estimating Equation (47) for ��” in Appendix in (46), the likelihood
estimating equation for �� is obtained by (45) as

@log L.ˇ; �M; �� /
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�
3

5 fN.�i/d�i

D 0; (47)

where

ı�
cC D

�
1 for c D C
0 for c ¤ C; c D 1; : : : ;C � 1:

This likelihood equation (47) for �� may be solved iteratively, by using the formula

b�� .rC1/ D b�� .r/�
"�
@2log L.ˇ; �M; �� /

@�2�

��1
@log L.ˇ; �M; �� /

@��

#

j�D O�.r/
; (48)

where the formula for the second order derivative @2log L.ˇ;�M ;�� /

@�2�
is computed

from (47) as
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with

@Ji

@��
D
Z 1

�1
Li.�i/

@log Li.�i/

@��
fN.�i/d�i:

4 A Remark on Likelihood Versus GQL Estimation
for the Binary Case

An analytical efficiency comparison between the likelihood and the so-called GQL
(generalized quasi-likelihood) estimation approaches is extremely difficult because
these approaches produce complicated formulas for the asymptotic variances. Thus,
to shed some lights on their relative asymptotic efficiency performances, in this
section, we conduct an empirical study. For further convenience, we choose C D 2

categories, that is, the familial longitudinal binary case. The formulas for the
asymptotic variances of the likelihood estimators of ˇ; �; and �� are given in
Sect. 4.1 below. The formulas for the corresponding asymptotic variances of the
GQL estimators are computed in Sect. 4.2. In Sect. 4.3, a numerical efficiency
comparison is given by using the formulas from Sects. 4.2 and 4.3.

4.1 Computation of Asymptotic Variance of the Likelihood
Estimators

For the familial longitudinal binary .C D 2/ case, let ˛ D .ˇ0; �; �2� /0 be the
p C 2-dimensional vector of parameters, and ǪML denote the ML estimator of ˛.
Next suppose that Q is the .p C 2/� .p C 2/ Hessian matrix, which is computed as
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Q D �

2

6
66
6
4

@2log L
@ˇ@ˇ0

@2log L
@ˇ@�

@2log L
@ˇ@��

� @2log L
@�2

@2log L
@�@��

� � @2log L
@�4�

3

7
77
7
5
: (50)

It then follows that as K ! 1, ǪML follows the .p C 2/-dimensional Gaussian
distribution with mean ˛ and covariance matrix

cov. ǪML/ D I�1.˛/ D �ŒEyQ��1; (51)

with its diagonal elements as the asymptotic variances of the ML estimators. The
elements of the expected Hessian matrix, i.e. of EyQ may be computed by taking
expectation numerically over the elements of the Q matrix. For example, to compute

EŒ @
2log L
@ˇ@ˇ0 �, we first re-express the second order derivative matrix from (34) as

@2log L
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Now the expectation is computed by summing (52) over the values 0 and 1, for all
fyijt1g. Thus,
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where, similar to (26), V is a user’s choice large selected number of Bernoulli trials
such as V D 10, and

�iv D v � V. 1
2
/

q
V. 1

2
/. 1
2
/
:

4.2 Computation of Asymptotic Variance of the GQL
Estimators

As shown in Sect. 2.1, the first and all second order moments, namely the squared
and pairwise product moments for all members of a given family contain the
parameters ˇ; � , and �2� . Let the first and second order response vectors under the
ith family .i D 1; : : : ;K/ be written as

yi D Œyi11; : : : ; yijt; : : : ; yiniT �
0 W niT � 1;

s�
i D Œy2i11; : : : ; y

2
ijt; : : : ; y

2
iniT �

0 W niT � 1;

si1 D Œyi11yi12; : : : ; yijuyijt; : : : ; yini.T�1/yiniT �
0 W niT.T � 1/=2 � 1; and

si2 D Œyi11yi21; : : : ; yijuyikt; : : : ; yi.ni�1/TyiniT �
0 W ni.ni � 1/

2
T2 � 1 (54)

Next, consider a vector of distinct first and second order responses, given by

fi D Œy0
i; s

0
i1; s

0
i2�

0: (55)

For ˛ D Œˇ0; �; �2� �, suppose that

EŒfi� D �i.˛/; and covŒfi; f 0
i � D ˝i.˛/: (56)

One may then write a GQL estimating equation for ˛ as

KX

iD1

@� 0
i

@˛
˝�1

i .˛/ .fi � �i.˛// D 0 (57)

(Sutradhar 2003, Sect. 3; Sutradhar 2004; Sutradhar et al. 2008), where @�0
i .˛/

@˛

denotes the matrix of the first derivative of �i.˛/ with respect to the components
of ˛.

Let ǪGQL denote the solution of (57). Since the expectation of the GQL estimating
function in the left hand side of this equation is zero, ǪGQL is consistent for ˛.
The GQL estimator ǪGQL is also expected to be highly efficient because of the fact
that the GQL estimating equation (57) is constructed by using the inverse of the
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covariance matrix˝i as the weight matrix. Furthermore, under some mild regularity
conditions it may be shown that ǪGQL asymptotically (K ! 1) follows a Gaussian
distribution with mean ˛ and covariance matrix

"
KX

iD1

@� 0
i .˛/

@˛
˝�1

i .˛/
@�i.˛/

@˛0

#�1
: (58)

For computational convenience, the mean vector and the covariance matrix used
in the GQL estimating equation (57), may be re-expressed as

�i.˛/ D E.fi/ D ŒE.Y 0
i /;E.S

0
i1/;E.S

0
i2/�

0

D Œ�0
i; 


0
i1; 


0
i2�

0; (say) (59)

˝i.˛/ D cov.fi/ D

2

6
6
6
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cov.Yi/ cov.Yi; S0
i1/ cov.Yi; S0

i2/

� cov.Si1/ cov.Si1; S0
i2/
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3

7
7
7
5
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6
6
6
4

˙i �i11 �i12

� ˝i11 ˝i12

� � ˝i22

3

7
7
7
5
; (say): (60)

All these first and second order moments may be easily computed empirically. We
demonstrate below how the general elements of �i; 
i2; and ˝i, for example, may
be computed. Suppose that for given i and j, s0 � fyij1; : : : ; yijt; : : : ; yijT g be the
whole sample space. Also, for r D 1; : : : ; 4, let Sr denote a fixed set with r selected
binary components. This implies that for given i and j, sr � s0 � Sr denotes the
sample space with T � r binary components. One may then compute the general
element of the �i vector, say �ijt D EŒYijt� by using S1 � yijt and summing the
likelihood function over the ranges of all binary elements contained in s1 D s0 � S1.
Thus,

�ijt D EŒYijt� D
VX

vD1

1X

fs1g

��f.p�
ij10.�iv//

yij1.1 � p�
ij10.�iv//

1�yij1g (61)

� ˘T
hD2f.p�

ijhyij;h�1
.�iv//

yijh.1 � p�
ijhyij;h�1

.�iv//
1�yijhg

i�V
v

�
.1=2/V

�

jyijtD1
;
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where the marginal probability p�
ij10.�iv/ and the conditional probability p�

ijhyij;h�1
.�iv/

are given by (1) and (2), respectively. Similarly, by writing S2 � Œyiju; yikt�, and
s2 D s0 � S2, one may compute the general element of 
i2 as
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1X
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��f.p�
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1�yijhg
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�
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V
v
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.1=2/V

�

jyijuD1;yiktD1
: (62)

Next we show how a general element of the˝i matrix can be calculated. Consider

S4 D ŒYiju;Yij`;Yijm;Yijt�

with four elements for given i and j, and write s4 D s0 � S4. Then a general element
of ˝i matrix, namely, E.YijuYij`YijmYijt/, may be computed as

E.YijuYij`YijmYijt/ D
VX

vD1

1X

fs4g

��f.p�
ij10.�iv//

yij1 .1 � p�
ij10.�iv//

1�yij1g
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V
v

�
.1=2/V

�

jyijuD1;yij`D1;yijmD1;yijtD1
: (63)

4.3 An Empirical Asymptotic Efficiency Comparison
Between GQL and ML Estimates

Notice that both GQL estimating equation (57) and the likelihood estimating
equations in (32), (40), and (47) produce consistent estimators because of the fact
that the GQL estimating function (left hand side of (57)) as well as the likelihood
estimating functions [left hand side of (32), (40), and (47)], are all unbiased
for zero. However, as the analytical efficiency comparison between these GQL
and likelihood estimators, is complicated, to examine the relative performance of
these two competitive approaches, in this section, we make an empirical efficiency
comparison by comparing the asymptotic variances in (58) for the GQL estimators
with those of the ML estimators given in the diagonal elements of (51).

As far as the true parameters are concerned, we choose three sets of
2-dimensional main regression parameters, namely,
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ˇ1 D ˇ2 D 0:0I ˇ1 D ˇ2 D 0:5I and ˇ1 D ˇ2 D 1:0:

For a given set of regression parameters, we then choose three values for the
dynamic dependence parameter, namely, � D �1:0; 0:5; 1:0, covering both
negative and positive dependence, and three values for the variance of the random
family effects, namely, �2� D 0:5; 0:8; 1:2, covering small and large familial
variation. We consider two covariates from ni D 2 members of K D 100 families,
over a period of T D 3 time points. These time dependent covariates were chosen as:

xi1t1 D

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

1=2 for i D 1; : : : ;K=4I t D 1; 2

0 fori D 1; : : : ;K=4I t D 3

�1=2 for i D K=4C 1; : : : ; 3K=4I t D 1

0 for i D K=4C 1; : : : ; 3K=4I t D 2; 3

t=6 for i D 3K=4C 1; : : : ;KI t D 1; : : : ; 3;

;

xi1t2 D

8
ˆ̂̂
<

ˆ̂
:̂

.t � 2:0/=2 for i D 1; : : : ;K=2I t D 1; : : : ; 3

0 for i D K=2C 1; : : : ;KI t D 1; 2

1=2 for i D K=2C 1; : : : ;KI t D 3:

For the second member of the families we consider the first covariate as binary
variable following the distribution

Pr.xi2t1 D 1/ D
�
0:3 for t D 1

0:8 for t D 2; 3;
;

and the second covariate is chosen as:

xi2t2 D
8
<

:

.t � 2:0/=2 for i D 1; : : : ;K=2I t D 1; : : : ; 3

t=2 for i D K=2C 1; : : : ;KI t D 1; : : : ; 3:

The variances for selected parameter values obtained from (51) and (58), are
reported in Tables 1, 2, and 3, for three sets of regression parameter values.

The results of these three tables show that (1) the ML approach always produce
smaller variances than the GQL approach for the estimation of the dynamic
dependence parameter, � , indicating that ML estimator of � is more efficient than
the GQL estimator; (2) the ML estimators of the regression parameters ˇ1 and
ˇ2 have smaller variances than the corresponding GQL estimators when dynamic
dependence between the binary responses is negative, but the pattern reverses when
responses exhibit positive dynamic dependence; (3) and for the estimation of the
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random effects variance �2� , the ML approach appears to be more efficient when true
�2� is small, but, GQL estimator becomes more efficient for true large values of �2� .
Thus, the ML and GQL approaches appears to be highly competitive, ML approach
being slightly better specially for the estimation of the dynamic dependence
parameter. Remark that the aforementioned relative efficiency comparison indicates
that one should be able to use either of the GQL and ML approaches for the
inferences for dynamic mixed models for categorical data, binary models being
special cases with two categories.

In the next section, we consider a real life data analysis illustration for a
categorical data set with C D 3 categories collected longitudinally over a period
of T D 4.

Table 1 Comparison of asymptotic variances (V) of the GQL and ML
estimators for the estimation of the regression parameters (ˇ1 and ˇ2),
lag 1 dynamic dependence parameter (�), and the standard deviation of
random family effects (�� ), of a familial-longitudinal model for binary
data, with K D 100 families of size ni D 2 each, T D 3 time points,
and ˇ1 D ˇ2 D 0

�2�
� Method Variance 0.5 0.8 1.2 1.5 2.0

�1:0 ML V. Ǒ
1/ 0.034 0.037 0.041 0.043 0.046

V. Ǒ
2/ 0.034 0.037 0.040 0.043 0.046

V. O�/ 0.017 0.012 0.009 0.008 0.006

V.b�� / 0.046 0.043 0.046 0.051 0.061

GQL V. Ǒ
1/ 0.123 0.123 0.123 0.123 0.122

V. Ǒ
2/ 0.081 0.077 0.072 0.070 0.067

V. O�/ 0.267 0.248 0.228 0.214 0.193

V.b�� / 0.103 0.070 0.053 0.046 0.039

0:5 ML V. Ǒ
1/ 0.033 0.037 0.042 0.044 0.049

V. Ǒ
2/ 0.034 0.037 0.041 0.044 0.048

V. O�/ 0.002 0.002 0.001 0.001 0.001

V.b�� / 0.024 0.025 0.029 0.033 0.039

GQL V. Ǒ
1/ 0.046 0.047 0.049 0.050 0.053

V. Ǒ
2/ 0.033 0.033 0.034 0.035 0.036

V. O�/ 0.089 0.083 0.075 0.069 0.061

V.b�� / 0.079 0.056 0.043 0.037 0.031

1:0 ML V. Ǒ
1/ 0.035 0.039 0.044 0.047 0.051

V. Ǒ
2/ 0.036 0.040 0.045 0.048 0.052

V. O�/ 0.002 0.002 0.002 0.001 0.001

V.b�� / 0.040 0.039 0.043 0.047 0.056

GQL V. Ǒ
1/ 0.032 0.033 0.035 0.037 0.039

V. Ǒ
2/ 0.026 0.027 0.028 0.029 0.031

V. O�/ 0.052 0.049 0.046 0.043 0.040

V.b�� / 0.061 0.044 0.035 0.030 0.026
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Table 2 Comparison of asymptotic variances (V) of the GQL and ML
estimators for the estimation of the regression parameters (ˇ1 and ˇ2),
lag 1 dynamic dependence parameter (�), and the standard deviation of
random family effects (�� ), of a familial-longitudinal model for binary
data, with K D 100 families of size ni D 2 each, T D 3 time points,
and ˇ1 D ˇ2 D 0:5

�2�
� Method Variance 0.5 0.8 1.2 1.5 2.0

�1:0 ML V. Ǒ
1/ 0.035 0.039 0.042 0.045 0.049

V. Ǒ
2/ 0.035 0.038 0.041 0.044 0.047

V. O�/ 0.005 0.004 0.003 0.003 0.003

V.O�� / 0.030 0.029 0.032 0.036 0.043

GQL V. Ǒ
1/ 0.092 0.094 0.096 0.097 0.099

V. Ǒ
2/ 0.071 0.069 0.067 0.066 0.063

V. O�/ 0.226 0.218 0.202 0.189 0.167

V.O�� / 0.091 0.066 0.052 0.046 0.040

0:5 ML V. Ǒ
1/ 0.043 0.046 0.050 0.053 0.058

V. Ǒ
2/ 0.043 0.046 0.050 0.052 0.056

V. O�/ 0.001 0.001 0.001 0.001 0.001

V.O�� / 0.030 0.030 0.034 0.037 0.044

GQL V. Ǒ
1/ 0.051 0.050 0.050 0.051 0.052

V. Ǒ
2/ 0.055 0.053 0.052 0.051 0.050

V. O�/ 0.076 0.071 0.064 0.060 0.053

V.O�� / 0.072 0.053 0.041 0.036 0.030

1:0 ML V. Ǒ
1/ 0.049 0.052 0.056 0.059 0.064

V. Ǒ
2/ 0.050 0.053 0.057 0.060 0.064

V. O�/ 0.001 0.001 0.001 0.001 0.001

V.O�� / 0.048 0.045 0.049 0.053 0.062

GQL V. Ǒ
1/ 0.040 0.040 0.041 0.042 0.043

V. Ǒ
2/ 0.050 0.049 0.048 0.048 0.047

V. O�/ 0.047 0.046 0.043 0.041 0.038

V.O�� / 0.061 0.045 0.036 0.032 0.027

5 An Illustration: Fitting MDL Model to the TMISL Data

Consider the Three Mile Island Stress-Level (TMISL) data (Conaway 1989; Fien-
berg et al. 1985) collected from a psychological study of the mental health effects
of the accident at the Three Mile Island nuclear power plant in central Pennsylvania
began on March 28, 1979. The study focuses on the changes in the post accident
stress level of mothers of young children living within 10 miles of the nuclear plant.
The accident was followed by four interviews; winter 1979 (wave 1), spring 1980
(wave 2), fall 1981 (wave 3), and fall 1982 (wave 4). The subjects were classified
into one of the three response categories namely, low, medium and high stress level,



A Generalization of the Familial Longitudinal Binary Model... 161

Table 3 Comparison of asymptotic variances (V) of the GQL and ML
estimators for the estimation of the regression parameters (ˇ1 and ˇ2),
lag 1 dynamic dependence parameter (�), and the standard deviation of
random family effects (�� ), of a familial-longitudinal model for binary
data, with K D 100 families of size ni D 2 each, T D 3 time points,
and ˇ1 D ˇ2 D 1:0

�2�
� Method Variance 0.5 0.8 1.2 1.5 2.0

�1:0 ML V. Ǒ
1/ 0.036 0.040 0.043 0.046 0.050

V. Ǒ
2/ 0.038 0.041 0.044 0.046 0.050

V. O�/ 0.003 0.003 0.003 0.002 0.002

V.O�� / 0.029 0.028 0.031 0.034 0.041

GQL V. Ǒ
1/ 0.094 0.096 0.098 0.098 0.099

V. Ǒ
2/ 0.095 0.093 0.089 0.086 0.082

V. O�/ 0.240 0.234 0.219 0.205 0.181

V.O�� / 0.090 0.067 0.054 0.048 0.042

0:5 ML V. Ǒ
1/ 0.045 0.048 0.053 0.056 0.060

V. Ǒ
2/ 0.052 0.055 0.058 0.061 0.065

V. O�/ 0.001 0.001 0.001 0.001 0.000

V.O�� / 0.033 0.033 0.036 0.039 0.046

GQL V. Ǒ
1/ 0.055 0.055 0.054 0.054 0.054

V. Ǒ
2/ 0.089 0.084 0.079 0.076 0.072

V. O�/ 0.092 0.087 0.079 0.073 0.065

V.O�� / 0.079 0.059 0.046 0.041 0.034

1:0 ML V. Ǒ
1/ 0.051 0.054 0.059 0.062 0.066

V. Ǒ
2/ 0.063 0.066 0.070 0.072 0.076

V. O�/ 0.001 0.001 0.001 0.001 0.001

V.O�� / 0.051 0.048 0.051 0.055 0.065

GQL V. Ǒ
1/ 0.046 0.046 0.046 0.046 0.047

V. Ǒ
2/ 0.080 0.077 0.073 0.071 0.067

V. O�/ 0.062 0.060 0.056 0.053 0.049

V.O�� / 0.068 0.051 0.041 0.036 0.031

based on a composite score from a 90-items checklist. There were 267 subjects
who completed all four interviews. Respondents were stratified into two groups,
those living within 5 miles of the plant (LT5) and those lives within 5–10 miles
from the plant (GT5). It was of interest to compare the distribution of individuals
under three stress levels collected over four different time points under both distance
groups. The observed distributions of the individuals under three stress levels in
each distance group at the initial point of time .t D 1/ are shown in Table 4, and
the transitional counts from time t � 1 to t for t D 2; 3; 4, are shown in Tables 5, 6
and 7.

Note that when compared with familial longitudinal multinomial dynamic mixed
logit (MDML) model (8)–(10), in this TMISL data set ni D 1 and i D 1; : : : ;K,
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Table 4 Contingency table for TMISL data with C D 3 categories at initial
time t D 1 for individuals under 2 distance (covariate) groups

t .t D 1/

Stress level (c)

Distance covariate Low (1) Medium (2) High (3) Total subjects

Distance � 5 miles 14 69 32 115

Distance > 5 miles 9 110 33 152

Total 23 179 65 267

Table 5 Transitional counts for the TMISL data from time 1 to 2 for individuals under
both distance groups

Distance � 5 miles

Time t=2

Stress level (c)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 1 Low (1) 7 7 0 14

Medium (2) 11 54 4 69

High (3) 0 12 20 32

Total 18 73 24 115

Distance > 5 miles

Time t=2

Stress level (j)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 1 Low (1) 5 4 0 9

Medium (2) 29 75 6 110

High (3) 1 14 18 33

Total 35 93 24 152

with K D 267. Thus, there will be no family effect �i. Also C D 3 here, because
of 3 stress levels: low, medium and high. Consequently, as opposed to the MDML
model (8)–(10), we fit the MDL model (6)–(7) to this data set with C D 3. As far as
the past studies are concerned, this TMISL data set was analyzed by Fienberg et al.
(1985) and reanalyzed by Conaway (1989), among others. Fienberg et al. (1985)
have collapsed the trinomial (3 category) data into 2 category based dichotomized
data and modeled the correlations among such repeated binary responses through
a binary dynamic logit model [see also Sutradhar and Farrell (2007)]. Thus their
model does not deal with correlations of repeated multinomial (trinomial in this
case to be specific) responses and do not make the desired comparison among
three original stress levels. Conaway (1989) has however attempted to model the
multinomial correlations but has used a random effects, that is, mixed model
approach to compute the correlations. More specifically, Conaway (1989) fitted a
modified shorter version of the MDML model (8)–(10) with �c D 0. Thus, this
author used �i (individual random effect as opposed to random family effect) to
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Table 6 Transitional counts for the TMISL data from time 2 to 3 for individuals under
both distance groups

Distance � 5 miles

Time t=3

Stress level (c)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 2 Low (1) 8 10 0 18

Medium (2) 6 57 10 73

High (3) 0 5 19 24

Total 14 72 29 115

Distance > 5 miles

Time t=3

Stress level (c)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 2 Low (1) 12 23 0 35

Medium (2) 5 82 6 93

High (3) 0 11 13 24

Total 17 116 19 152

Table 7 Transitional counts for the TMISL data from time 3 to 4 for individuals under
both distance groups

Distance � 5 miles

Time t=4

Stress level (c)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 3 Low (1) 10 4 0 14

Medium (2) 8 57 7 72

High (3) 0 9 20 29

Total 18 70 27 115

Distance > 5 miles

Time t=4

Stress level (c)

Time Stress level .g/ Low (1) Medium (2) High (3) Total subjects

Œt � 1� D 3 Low (1) 8 8 1 17

Medium (2) 14 92 10 116

High (3) 0 10 9 19

Total 22 110 20 152

model the correlations of the repeated multinomial responses which is, however,
appropriate only to model equi-correlations among responses.

Recently, this TMISL data was analyzed by Sutradhar (2014, Sect. 3.5.2.2) by
fitting the MDL model (6)–(7), whereas in this paper we have developed the
likelihood estimating equations for ˇ (33), � (42) and �� (48) for the general MDML
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model (8)–(10). Now because when �� D 0, the likelihood equations for ˇ and �
developed in (33) and (42), reduce to the likelihood estimating equations developed
in Sutradhar (2014, Sect. 3.5.2.1) for the parameters corresponding to ˇ and � ,
there is no need of any additional computations. For the sake of completeness, we
provide the following estimates from Sutradhar (2014, Sect. 3.5.2.2). To be specific,
the maximum likelihood (ML) estimates for the category intercept and regression
parameters (see model (8)–(10) with C D 3; p D 2) where found to be

Ǒ
10;ML D �1:6962; Ǒ

11;ML D �0:3745I Ǒ
20;ML D 0:6265; Ǒ

21;ML D �0:5196;

and for the lag 1 dynamic dependence parameters (for c D 1; : : : ;C � 1, with
C D 3), the ML estimates were

O�11;ML D 5:7934; O�12;ML D 2:4007I O�21;ML D 3:6463; O�22;ML D 1:8790:

Next, these regression and dynamic dependence parameter estimates may be used
to compute the recursive means (multinomial probabilities) over time under both
distance groups following (11), that is, using the formula

EŒYijtj�i D 0� D Q	.ijt/.�i D 0/ (64)

D
8
<

:

	�
.ij1/.�i D 0/ for t D 1h
	�
.ijt/.�i/C

n
��

ijtjt�1;M.�i/� 	�
.ijt/.�i/1

0
C�1

o
Q	.ij;t�1/.�i/

i

j�iD0
for t D 2; : : : ;T:

The fitted marginal probabilities (FMP) for all time t D 1; : : : ; 4, and all categories
c D 1; : : : ; 3, under both distance groups are shown in Table 8. Note that the
covariates representing two distance groups was coded as xi1t D .1; 1/0 for the group
with distance � 5 miles and xi1t D .1; 0/0 for the group with distance > 5 miles.

These probabilities clearly reveal differences between the stress levels under two
distance groups. For example, even though the probabilities in the high level stress
group decrease as time progress under both distance groups, these probabilities
remain much higher in the short distance group as expected. As far as the other two
stress levels are concerned, the probabilities increase as time progress under both
distance groups. Furthermore, relatively more workers appear to have medium stress

Table 8 MDL model based fitted marginal probabilities (FMP) by using (64) under all
three stress levels for the TMISL data

FMP at time t [distance � 5 miles] FMP at time t [distance > 5 miles]

Stress level 1 2 3 4 1 2 3 4

Low 0.0563 0.1232 0.1628 0.1826 0.0600 0.1270 0.1612 0.1757

Medium 0.4970 0.6253 0.6587 0.6676 0.6126 0.7252 0.7419 0.7427

High 0.4466 0.2515 0.1785 0.1498 0.3274 0.1478 0.0969 0.0816
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under both distance groups, with smaller proportion in the short distance group as
compared to the long distance group.

Appendix

Algebras for the Likelihood Estimating Equation (32) for ˇ

To obtain the formula for
@	�

.ij1/c

@ˇ
in (31), we first compute the derivatives with respect

to category based location regression parameters. Thus,

@	�
.ij1/c

@̌ �
c

D 	�
.ij1/cŒ1 � 	�

.ij1/c�xij1

@	�
.ij1/c

@̌ �
k

D �Œ	�
.ij1/c	

�
.ij1/k�xij1; (65)

yielding

@	�
.ij1/c

@̌
D

0

BB
B
B
B
B
B
@

�	�
.ij1/1	

�
.ij1/c

:::

	�
.ij1/cŒ1 � 	�

.ij1/c�

:::

�	�
.ij1/.C�1/	�

.ij1/c

1

CC
C
C
C
C
C
A

˝ xij1 W .J � 1/p � 1

D
h
	�
.ij1/c.ı.ij1/c � 	�

.ij1//
i

˝ xij1; (66)

where ˝ stands for the Kronecker product, and the formulas for ı.ij1/c and 	�
.ij1/

vectors are as in (32). Similarly, to compute
@�

�.c/
ijtjt�1.g/

@ˇ
for (31), we first obtain the

local derivatives of the conditional probability function ��.c/
ijtjt�1.g/ given in (10) for

t D 2; : : : ;T, as

@�
�.c/
ijtjt�1.g/
@̌ �

c

D �
�.c/
ijtjt�1.g/Œ1 � ��.c/

ijtjt�1.g/�xijt

@�
�.c/
ijtjt�1.g/
@̌ �

k

D �Œ��.c/
ijtjt�1.g/�

�.k/
ijtjt�1.g/�xijt; (67)

yielding the derivative with respect to the global parameter vector ˇ as



166 B.C. Sutradhar et al.

@�
�.c/
ijtjt�1.g/
@̌

D

0

B
B
B
B
B
BB
@

���.1/
ijtjt�1.g/�

�.c/
ijtjt�1.g/

:::

�
�.c/
ijtjt�1.g/Œ1 � ��.c/

ijtjt�1.g/�
:::

���.C�1/
ijtjt�1 .g/�

�.c/
ijtjt�1.g/

1

C
C
C
C
C
CC
A

˝ xijt W .J � 1/p � 1

D
h
�

�.c/
ijtjt�1.g/.ı.ij;t�1/c � ��

ijtjt�1.g//
i
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where ��
ijtjt�1.g/ is the .C � 1/ � 1 vector of transitional probabilities as in (32).

Algebras for the Likelihood Estimating Equation (39)
for � � �M

To compute the derivative in (37) through (38), it is convenient to find the
derivative with respect to the local dynamic dependence parameter vector �c for
c D 1; : : : ;C � 1. Thus, we write

@�
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ijtjt�1.g/

@�c
D

8
ˆ̂
<

ˆ̂
:

ı.ij;t�1/g�
�.c/
ijtjt�1.g/Œ1� �

�.c/
ijtjt�1.g/� for h D cI h; c D 1; : : : ;C � 1

�ı.ij;t�1/g��.c/
ijtjt�1.g/�

�.h/
ijtjt�1.g/ for h ¤ cI h; c D 1; : : : ;C � 1

nonumber � ı.ij;t�1/g�
�.c/
ijtjt�1.g/�

�.C/
ijtjt�1.g/ for h D CI c D 1; : : : ;C � 1;

(69)

for all g D 1; : : : ;C, with
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for c D 1; : : : ;C � 1.

Algebras for the Likelihood Estimating Equation (47) for ��

The derivative
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Dynamic Models for Longitudinal Ordinal
Non-stationary Categorical Data

Brajendra C. Sutradhar and Nairanjana Dasgupta

Abstract When a nominal categorical response along with a multidimensional
covariate are repeatedly collected over a small period of time from a large number
of independent individuals, it is standard to use the so-called multinomial logits to
model the marginal means or probabilities of such responses in terms of time depen-
dent covariates. However, because of the difficulties in modeling the correlations
of the repeated multinomial responses, some researchers over the last two decades
have analyzed this type of repeated multinomial data by using certain ‘working’
odds ratio, or ‘working’ correlation structures. But, in the context of longitudinal
binary data analysis, these ‘working’ correlations based approaches were shown
to produce inefficient regression estimates as compared to simpler moment and/or
quasi-likelihood approaches. The situation can be worse for longitudinal nominal
multinomial/categorical data. In this paper, following the recent correlation models
proposed by Sutradhar (Longitudinal Categorical Data Analysis. Springer, New
York, 2014, Chap. 3) for the stationary nominal and ordinal categorical data, we
discuss similar correlation models but for non-stationary ordinal categorical data.
More specifically we exploit the multinomial dynamic logits (MDL) in two different
ways to develop correlation models for ordinal categorical data. Under model 1,
the ordinal responses are first treated to be nominal and a multinominal dynamic
logits model is written for correlations between repeated nominal categorical
responses. The regression and correlation parameters involved in the dynamic logits
are, however, computed from an updated cumulative dynamic logits model which
accommodates the actual ordinal nature of the data. Under model 2, a direct dynamic
logits relationship is developed linking the cumulative multinomial responses over
time. A lag 1 conditional likelihood is then exploited to estimate the desired
regression and correlation parameters. Some asymptotic properties of the estimators
under both models are also discussed.
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1 Introduction

There are situations in practice where a univariate multinomial response, for
example, (1) physician visit status of an individual such as none, low, medium, or
high, may be recorded over a small number of years along with known covariates
such as gender, age, education level, and chronic disease status; (2) TMISL (Three
Miles Island Stress Level) data containing stress level such as low, medium or
high, of an individual worker recorded in four waves of time, following the 1979
accident in Three Mile Island nuclear power plant in central Pennsylvania, along
with a living distance (less than or greater than 5 miles from the plant) covariate.
In these examples, it is clear that the multinomial responses are ordinal, and also
it is likely that these repeated categorical responses collected from an individual
over the years will be correlated. Also notice that even though the distance covariate
involved in the TMISL data is time independent, there are other problems similar
to the aforementioned physician visits status study where the covariates can be time
dependent causing non-stationary means, variances and correlations. It is of interest
to know both (1) the effects of the covariates which may be time dependent or
time independent, on the responses, and (2) the dynamic relationship among the
responses over the years. This type of longitudinal multinomial data, in particular
the TMISL data have been analyzed by some authors treating the stress level as
a nominal categorical response variable. See for example, Fienberg et al. (1985),
Conaway (1989) and the recent study by Sutradhar (2014, Sect. 3.5), among others.

Fienberg et al. (1985) have collapsed the multinomial (with more than two cate-
gories) data into two category based dichotomized data and modeled the correlations
among such repeated binary responses through a binary dynamic logit model [see
also Sutradhar and Farrell (2007)]. Thus their model does not deal with correlations
of repeated multinomial responses and do not make the desired comparison among
all categories. Conaway (1989) has however attempted to model the multinomial
correlations but has used a random effects, that is, a mixed model approach to
compute the correlations. There are, however, at least two major drawbacks with
this mixed model approach used in Conaway (1989). First, the random effects based
correlations are not able to address the correlations among repeated responses.
Second, it is difficult to estimate the parameters involved in a multinomial mixed
model. As a remedy, Conaway (1989) has used a conditioning to remove the random
effects from the model and estimated the regression parameters exploiting the so-
called conditional likelihood. But a close look at this conditioning show that there
was a mistake in constructing the conditional likelihood and this approach does not
in fact remove the random effects. Remark that the aforementioned approaches will
encounter further complexity for the repeated ordinal multinomial data. Sutradhar
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(2014, Sect. 3.5) has provided a multinomial dynamic logits (MDL) model based
analysis for this stationary TMISL data which accommodates the longitudinal cor-
relations of the categorical responses, but these categorical responses were treated
to be nominal similar to Fienberg et al. (1985) and Conaway (1989). An analytical
extension of this MDL model to the stationary (time independent covariates based)
ordinal categorical setup is also given in Sutradhar (2014, Sect. 3.6), whereas our
objective in this paper is to exploit this MDL model for the non-stationary (time
dependent covariates based) ordinal categorical data.

Agresti and Natarajan (2001, Sect. 2.2) [see also Agresti (1989)] described
the so-called ‘working’ correlations based GEE (generalized estimating equation)
approach to accommodate the correlations of the repeated multinomial responses.
This marginal approach has some severe drawbacks. First of all, it is not known
which type of ‘working’ correlations can be used for ordinal as opposed to nominal
multinomial responses. Secondly, even if the ordinal nature is compromised, the
use of their time lag free constant correlation (equi-correlations over time) is
hypothetical and may cause inconsistency and lack of efficiency problems (Crowder
1995; Sutradhar and Das 1999) in desired regression estimation. Agresti and
Natarajan (2001, Sect. 3) also have random effects approach to accommodate
correlations among cumulative responses, but this type of individual or cluster
specific random effects do not take care of longitudinal correlations. For details
on this issue in nominal data analysis setup, we refer to Sutradhar (2011, Sect. 1.2,
p. 6; Sect. 2.4), for example.

There exists some studies where an odds ratio approach is used to model the
association of nominal categories in longitudinal setup. For example, one may refer
to Lipsitz et al. (1991, 1994), Williamson et al. (1995), and Yi and Cook (2002).
In this approach, the odds ratios are estimated using a ‘working’ log linear model.
This may produce inconsistent estimates for odds ratios and subsequently regression
estimates may or may not be consistent but will be inefficient. See Sutradhar (2014,
Sect. 4.2.1) for some discussions on this inconsistency issue. The inference would
be more complex in ordinal categorical setup. Instead of using odds ratios, following
Ekholm et al. (2003) [see also Ekholm et al. (2002)], Jokinen (2006) defines
dependence ratios of various order but common for all individuals to understand
the time effects on the longitudinal ordinal responses. That is, the individual joint
probabilities for categorical responses over selected time points are formulated in
terms of common dependence ratios. In the next stage, these dependence ratios
are further formulated in terms of fewer parameters mainly by using a ‘weighting’
technique constructed based on number of repetitions of response categories. Also,
the formulations would vary depending on the situations in the field. For example,
in a situation with longitudinal data, in general, some Markovian type formulas
are used. This ‘working weighting’ technique appears to be arbitrary. Moreover,
this dependence ratio approach still requires the estimation of time dependent
parameters, which is computationally expensive.

In this paper, unlike the existing ‘working’ models, we extend the stationary
covariates based parametric correlation models for repeated ordinal responses sug-
gested by Sutradhar (2014, Sect. 3.6) to the non-stationary covariates setup. These
models are similar to the correlation models considered by Sutradhar and Kovacevic
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(2000), but they are simpler. To be specific, similar to Sutradhar (2014) we show
two ways to develop the correlations for repeated ordinal categorical data by using
the MDL model. In Sect. 2, we present the MDL model which is appropriate for
repeated nominal categorical data. In Sect. 3, we introduce a cumulative multinomial
dynamic logit (MDL) model, where (1) longitudinal correlations are first modeled
for nominal repeated data as in Sect. 2; (2) but then apply the cumulative principle to
reflect the ordinal nature of the correlated data. A cut-points based lag 1 conditional
likelihood function is developed and exploited to obtain likelihood estimates for
both regression and correlation parameters. In Sect. 4, we first write a binary model
for the cumulative of nominal responses at a given time and use a binary dynamic
logits (BDL) model to relate the cumulative of the consecutive (lag 1) responses over
time. This model is also analyzed by using the well known likelihood estimation
approach. The paper concludes in Sect. 5.

2 MDL Model for Repeated Nominal Categorical Data

Suppose that yit D .yit1; : : : ; yitj; : : : ; yit;J�1/0 denotes the .J � 1/-dimensional
multinomial response variable for the ith .i D 1; : : : ;K/ at time t .t D 1; : : : ;T/,
and for j D 1; : : : ; J � 1,

y.j/it D .y.j/it1; : : : ; y.j/itj ; : : : ; y
.j/
it;J�1/

0 D .010
j�1; 1; 010

J�1�j/
0 � ıitj (1)

indicates that the multinomial response from the ith individual recorded at time t
belongs to the jth category. For j D J, one writes y.J/it D ıitJ D 01J�1. Note that
in the non-stationary case, that is, when covariates are time dependent, one uses
the time dependent marginal probabilities. Specifically, suppose that at time point
t (t D 1; : : : ;T), xit D .xit1; : : : ; xit`; : : : ; xit;pC1/0 denotes the .p C 1/-dimensional

covariate vector and ˇj D .ˇj0; ˇj1; : : : ; ˇjp/
0 denotes the effect of xit on y.j/it for

j D 1; : : : ; J � 1, i D 1; : : : ;K, and all t D 1; : : : ;T. In such cases, the multinomial
probability at time t, has the form

PŒyit D y.j/it � D 	.it/j D
8
<

:

exp.x0
itˇj/

1CPJ�1
gD1 exp.x0

itˇg/
for j D 1; : : : ; J � 1I t D 1; : : : ;T

1

1CPJ�1
gD1 exp.x0

itˇg/
for j D JI t D 1; : : : ;T;

(2)

and the elements of yit D .yit1; : : : ; yitj; : : : ; yit;J�1/0 at time t follow the multinomial
probability distribution given by

PŒyit1; : : : ; yitj; : : : ; yit;J�1� D ˘ J
jD1	

yitj

.it/j; (3)

for all t D 1; : : : ;T. In (3), yitJ D 1 �PJ�1
jD1 yitj; and 	itJ D 1 �PJ�1

jD1 	itj.
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Note that the marginal multinomial probability in (2) has the multinomial logit
form. Many existing studies use this multinomial logit model (2) as the marginal
model at a given time t. As far as the correlations between repeated responses
are concerned, some authors such as Agresti (1989), Lipsitz et al. (1994), Agresti
and Natarajan (2001) do not model them, rather they use ‘working’ correlations to
construct the so-called generalized estimating equations and solve them to obtain
the estimates for regression parameters involved in the marginal multinomial logits
model (2). These estimates however may not be reliable as they can be inefficient as
compared to the ‘working’ independence assumption based estimates [see Sutradhar
and Das (1999), Sutradhar (2011, Chap. 7) in the context of binary longitudinal data
analysis]. Some other authors such as Williamson et al. (1995), and Yi and Cook
(2002) use the same marginal model (2) but use odds ratios to model the association
for repeated responses which are, however, estimated using arbitrary log linear type
models for odds ratios. This ‘working’ model based approach for the odds ratios
may not provide consistent estimate for the true odds ratios which subsequently may
lead to convergence problems for the regression parameter estimation. See Sutradhar
(2014, Sect. 4.2) for a discussion on this inconsistency issue.

Further note that unlike the ‘working’ correlations and odds ratios based
correlation models, some authors have used a multinomial dynamic logits (MDL)
model for correlations among repeated nominal multinomial responses. See, for
example, Sutradhar (2014, Sect. 3.4.2). For a similar binary dynamic logit (BDL)
model, one may refer to Fienberg et al. (1985), Conaway (1989), Sutradhar and
Farrell (2007), for example. Following Sutradhar (2014), we now explain the
MDL model below that generates auto-correlations among the repeated nominal
multinominal responses. Remark that this MDL model does not yield the marginal
multinomial logit model as in (2) at times t D 2; : : : ;T. In stead, it provides a
recursive relationship among means over time, indicating that the margin mean at
time t say is a function of all previous means computed over time up to t � 1.

To be specific, for t D 2; : : : ;T, we assume for the ith individual that the
transitional probability from the gth .g D 1; : : : ; J/ category at time t � 1 to the
jth category at time t, has the MDL form given by

�
.j/
itjt�1.g/ D P



Yit D y.j/it

ˇ
ˇ
ˇ Yi;t�1 D y.g/i;t�1

�

D

8
ˆ̂
<

ˆ̂
:

exp
h
x

0

itˇjC� 0
j y
.g/
i;t�1

i

1CPJ�1
vD1 exp

h
x

0

itˇvC� 0
vy
.g/
i;t�1

i ; for j D 1; : : : ; J � 1

1

1CPJ�1
vD1 exp

h
x

0

itˇvC� 0
vy
.g/
i;t�1

i ; for j D J;
(4)

where �j D .�j1; : : : ; �jv; : : : ; �j;J�1/0 denotes the dynamic dependence parameters.
Note that unlike the stationary covariates based MDL model discussed in Sutradhar
(2014, Eq. (3.381), Sect. 3.6.2.2), the MDL model in (4) involves the time depen-
dent, i.e., non-stationary covariate vector xit. As far as the marginal probability at
time t D 1 is concerned, it has the same formula as in (2) for t D 1, that is,
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PŒyi1 D y.j/i1 � D 	.i1/j D
8
<

:

exp.x0
i1ˇj/

1CPJ�1
gD1 exp.x0

i1ˇg/
for j D 1; : : : ; J � 1

1

1CPJ�1
gD1 exp.x0

i1ˇg/
for j D J:

(5)

For further notational convenience, we re-express the conditional probabilities
in (4) as

�
.j/
itjt�1.g/ D

8
ˆ̂
<

ˆ̂
:

exp
h
x

0

itˇjC� 0
j ıi.t�1/g

i

1CPJ�1
vD1 exp

h
x

0

itˇvC� 0
vıi.t�1/g

i ; for j D 1; : : : ; J � 1

1

1CPJ�1
vD1 exp

h
x

0

itˇvC� 0
vıi.t�1/g

i ; for j D J;
(6)

where for t D 2; : : : ;T, ıi.t�1/g, by (1), has the formula

ıi.t�1/g D
(
Œ010

g�1; 1; 010
J�1�g�

0 for g D 1; : : : ; J � 1

01J�1 for g D J:

Let ˇ D .ˇ0
1; : : : ; ˇ

0
j ; : : : ; ˇ

0
J�1/0 W .p C 1/.J � 1/ � 1, and � D

.� 0
1; : : : ; �

0
j ; : : : ; �

0
J�1/0 W .J � 1/2 � 1. These parameters are involved in the

unconditional mean, variance and covariances of the responses. More specifically
one may show (Loredo and Sutradhar 2012) that

EŒYit� D Q	.it/.ˇ; �/ D . Q	.it/1; : : : ; Q	.it/j; : : : ; Q	.it/.J�1//
0 W .J � 1/� 1

D
(
Œ	.i1/1; : : : ; 	.i1/j; : : : ; 	.i1/.J�1/�

0 for t D 1

�.itjt�1/.J/C �
�.itjt�1/;M � �.itjt�1/.J/1

0
J�1

	 Q	i.t�1/ for t D 2; : : : ; T � 1
(7)

varŒYit� D diagŒ Q	.it/1; : : : ; Q	.it/j; : : : ; Q	.it/.J�1/�� Q	.it/ Q	 0
.it/

D .cov.Yitj; Yitk// D .Q�i.tt/jk/; j; k D 1; : : : ; J � 1

D Q̇i.tt/.ˇ; �/; for t D 1; : : : ; T (8)

covŒYiu; Yit� D ˘ t
sDuC1

�
�.isjs�1/;M � �.isjs�1/.J/1

0
J�1

	
varŒYiu�; for u < t; t D 2; : : : ; T

D .cov.Yiuj; Yitk// D .Q�i.ut/jk/; j; k D 1; : : : ; J � 1

D Q̇i.ut/.ˇ; �/; (9)
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where

�.isjs�1/.J/ D Œ�
.1/

isjs�1.J/; : : : ; �
.j/
isjs�1.J/ : : : ; �

.J�1/
isjs�1.J/�

0 D 	.is/ W .J � 1/ � 1

�.isjs�1/;M D

0

B
B
B
B
BB
B
@

�
.1/

isjs�1.1/ � � � �.1/isjs�1.g/ � � � �.1/isjs�1.J � 1/
:::

:::
:::

:::
:::

�
.j/
isjs�1.1/ � � � �.j/isjs�1.g/ � � � �.j/isjs�1.J � 1/
:::

:::
:::

:::
:::

�
.J�1/
isjs�1.1/ � � � �.J�1/

isjs�1.g/ � � � �.J�1/
isjs�1.J � 1/

1

C
C
C
C
CC
C
A

W .J � 1/ � .J � 1/:

It is of importance to estimate ˇ and � parameters mainly to understand the afore-
mentioned basic properties including the pair-wise correlations of the responses.

Note however that the longitudinal multinomial model (4)–(5) and its basic
moment properties shown in (7)–(9) are derived without any order restrictions of the
categories of the responses. The purpose of this paper, however, is the estimation of
the parameters ˇ and � under an ordinal categorical response model. In Sect. 3,
we introduce a cumulative multinomial dynamic logit (MDL) model, where (1)
longitudinal correlations are first modeled for nominal repeated data; (2) and then
apply the cumulative principle to reflect the ordinal nature of the correlated data.
In Sect. 3.3, we demonstrate the application of the well known likelihood approach
for the estimation for the parameters involved in the proposed model including the
correlation index parameters.

3 Cumulative MDL Model for Ordinal Categorical Data

Notice from (1)–(4) that in the nominal setup, ith individual response in the jth
category at time t is denoted by y.j/it D .010

j�1; 1; 010
J�1�j/

0. However, when the
categorical data is of ordinal nature, ith individual’s response belong to, say, in the
low group identified by categories from 1 to j inclusive, or in the high group beyond
category j. Basically, it is a binary type response, which for convenience may be
defined as

b.j/i .t/ D
(
1 for the response of the ith individual in a category cit > j at time t
0 for the response of the ith individual in a category cit � j at time t:

(10)

Here cit D 1; : : : ; J, but j as a cut point has the range j D 1; : : : ; J �1. Consequently,
at t D 1, one needs a probability model for b.j/i .1/, for all j D 1; : : : ; J � 1.
Next suppose that for t D 2; : : : ;T, the ith individual provides the cut point based
transitional responses b.g/i .t � 1/ to b.j/i .t/, from time t � 1 to t. Here g also ranges
from 1 to J � 1. We now exploit the marginal probabilities from (5) for t D 1 to
develop a marginal cumulative model for the ordinal responses b.j/i .1/. Similarly, we
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develop a lag 1 transitional cumulative model for ordinal response b.j/i .t/ conditional

on the past ordinal response b.g/i .t � 1/. These marginal and transitional cumulative
models are presented in next two Sects. 3.1 and 3.2, respectively.

3.1 Marginal Cumulative Model at Time t D 1

In (5), we have assumed that 	.i1/c is the probability that ith individual’s response at
time t D 1 belongs to category c for c D 1; : : : ; J. Because in the ordinal categories
setup, one observes a cut point based binary response such as in (10) by collapsing
the nominal categories into 2 groups. Let g� denote these two groups. To be specific,
suppose that g� D 1 will indicate the lower group with b.j/i .t/ D 0 and g� D
2 will stand for the higher group. This notation g� will be used later on for an
easy construction of the likelihood function. Now, for a selected cut-point j, we can
compute the probability for the binary variable (10) as

PŒb.j/i .1/ D 0� D
jX

vD1
	.i1/v D F.i1/j; equivalently

PŒb.j/i .1/ D 1� D
JX

vDjC1
	.i1/v D 1 � F.i1/j: (11)

It is convenient to put the possible cut points based responses of the ith individual
in a vector form. Let

B�
i .t/ D Œb.1/i .t/; : : : ; b.j/i .t/; : : : ; b

.J�1/
i .t/�0 (12)

denote a vector of responses for the ith individual with all such possibilities. Further
because in practice, the individual provides a single response at a given time t,
assuming that the ith individual at time t provides a cumulative response up to or
beyond the category cit .cit D 1; : : : ; J/, one may write the cut points based observed
vector as

b�
i .t/ D Œb.1/i .t/ D 1; : : : ; b.cit�1/

i .t/ D 1; b.cit/
i .t/ D 0; : : : ; b.J�1/

i .t/ D 0�0; (13)

as the realization of B�
i .t/ in (12).
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3.2 Lag 1 Transitional Cumulative Model at Time
t D 2; : : : ;T

In order to develop a transitional model, suppose that at time t �1, the ith individual
provides a ci;t�1 category based cut points response

b�
i .t � 1/ D Œb.1/i .t � 1/ D 1; : : : ; b.ci;t�1�1/

i .t � 1/ D 1;

b
.ci;t�1/

i .t � 1/ D 0; : : : ; b.J�1/
i .t � 1/ D 0�0; (14)

whereas the similar response for time point t was shown by (13). Notice that these
two responses for the ith individual collected at consecutive time points t � 1 and
t are correlated. For this reason, in general, the jth cut point based response b.j/i .t/

is likely to depend on the gth cut point response b.g/i .t � 1/ at time t � 1. hence
to develop a lag 1 transitional probability model, for a selected bivariate cut point
.g; j/I g; j D 1; : : : ; J � 1, one needs to develop the formulas for the conditional
probability

PŒb.j/i .t/ D 1jb.g/i .t � 1/� or PŒb.j/i .t/ D 0jb.g/i .t � 1/�; (15)

under the assumption that the cut point g at time t � 1 is known. Notice that
the bivariate cut point .g; j/ collapse the .J � 1/2 response cells into four cells.
By comparing with two categories ci;t�1 � c1 (say) and cit � c2 (say), these four
cells created by the joint cut point .g; j/ are:

Œc1 � g; c2 � j� Œc1 � g; c2 > j�

Œc1 > g; c2 � j� Œc1 > g; c2 > j� (16)

where, Œc1 � g; c2 � j�, for example, represents the cell with the past response at
time t � 1 in a category � g and the present response at time t in a category � j. By
using (10) and (15), one may then write the following four conditional probabilities
corresponding to the four cells in (16) as:

PŒb.j/i .t/ D 0jb.g/i .t � 1/ D 0� PŒb.j/i .t/ D 1jb.g/i .t � 1/ D 0�

PŒb.j/i .t/ D 0jb.g/i .t � 1/ D 1� PŒb.j/i .t/ D 1jb.g/i .t � 1/ D 1�: (17)

Now to compute the formulas for the conditional probabilities in (17), we
recall from (4) or (6) that for a given response category g (g D 1; : : : ; J) at
time t � 1, the conditional probabilities �.j/itjt�1.g/ at time t, satisfy the condition
PJ

jD1 �
.j/
itjt�1.g/ D 1. Hence, by using (16), the conditional probabilities (6) from the

nominal categories setup may be collected appropriately to obtain the formulas for
the conditional probabilities in (17) under the desired ordinal categories setup. We
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provide these formulas as follows:

PŒb.j/i .t/ D 1jb.g/i .t � 1/� D 

.2/
i;gj.b

.g/
i .t � 1// D 


.2/
i;gj.g

�/; (say)

D
(


.2/
i;gj.g

� D 1/ for b.g/i .t � 1/ D 0



.2/
i;gj.g

� D 2/ for b.g/i .t � 1/ D 1
(18)

D
(

1
g

Pg
v1D1

PJ
v2DjC1 �

.v2/

itjt�1.v1/
1

J�g

PJ
v1DgC1

PJ
v2DjC1 �

.v2/

itjt�1.v1/;
(19)

where the conditional probability 
.v2/itjt�1.v1/, has the known multinomial dynamic
logit (MDL) form given by (6). For convenience, following (18)–(19), we also write

PŒb.j/i .t/ D 0jb.g/i .t � 1/� D 1 � 
.2/i;gj.b
.g/
i .t � 1//

D
(


.1/
i;gj.g

� D 1/ D 1� 

.2/
i;gj.g

� D 1/ for b.g/i .t � 1/ D 0



.1/
i;gj.g

� D 2/ D 1� 

.2/
i;gj.g

� D 2/ for b.g/i .t � 1/ D 1;
(20)

D
8
<

:

1
g

Pg
v1D1

h
1 �PJ

v2DjC1 �
.v2/

itjt�1.v1/
i

1
J�g

PJ
v1DgC1

h
1 �PJ

v2DjC1 �
.v2/

itjt�1.v1/
i (21)

D
(

1
g

Pg
v1D1

Pj
v2D1 �

.v2/

itjt�1.v1/
1

J�g

PJ
v1DgC1

Pj
v2D1 �

.cv/
itjt�1.v1/:

(22)

The lag 1 transitional models (19) and (22) for t D 2; : : : ;T, along with the
marginal model (11) for t D 1, will be used in the next section to develop a suitable
likelihood function.

3.3 Likelihood Construction and Estimation of Parameters
Under Cumulative MDL Model

Notice that the nominal categories based MDL model (4)–(5) has been transformed
to the bivariate binary model represented by (11), (19) and (22). For t D 1, it
follows from (11) that EŒb.j/i .1/� D 1 � F.i1/j for all j D 1; : : : ; J � 1. As far as

the observed value for b.j/i .1/ is concerned, we find it from (13). Now because at
t D 1, all expected functions involving F.i1/j contain ˇ only, one may write the
partial likelihood for ˇ at t D 1 as

Li1.ˇ/ D ˘ J�1
jD1

h
f1� F.i1/jgb

.j/
i .1/

i h
fF.i1/jg1�b

.j/
i .1/

i



Dynamic Models for Longitudinal Ordinal Non-stationary Categorical Data 179

D ˘ J�1
jD1

2

4f
JX

vDjC1
	.i1/vgb

.j/
i .1/

3

5
"

f
jX

vD1
	.i1/vg1�b

.j/
i .1/

#

; (23)

where the observed values for fb.j/i .1/; j D 1; : : : ; J � 1g are determined as in (13).
More specifically, assuming that the ith individual responded in category ci1 at time
t D 1, the values for fb.j/i .1/ in (23) are given by

b.j/i .1/ D
�
1 for ci1 > j
0 for ci1 � j:

(24)

Next, by (18) it follows that

b.j/i .t/jŒb.g/i .t � 1/� � bin.
.2/i;gj.b
.g/
i .t � 1///; (25)

where the formulas for



.2/
i;gj.b

.g/
i .t � 1/ D 0/ � 


.2/
i;gj.g

� D 1/; and 
.2/i;gj.b
.g/
i .t � 1/ D 1/ � 


.2/
i;gj.g

� D 2/;

are given in (19). Note that these binary probabilities are functions of ˇ and � , where
� is the dynamic dependence parameter as defined in (6). For t D 2; : : : ;T, one may
then exploit (25) and write the likelihood function for ˇ and � as

Litjt�1.ˇ; �/ D ˘ J�1
gD1˘ J�1

jD1
h
f
.2/i;gj.b

.g/
i .t � 1//gb

.j/
i .t/f
.1/i;gj.b

.g/
i .t � 1//g1�b

.j/
i .t/
i
;

(26)

where, for g� D 1; 2, the formulas for 
.1/i;gj.b
.g/
i .t � 1// � 


.1/
i;gj.g

�/ are given

in (22), and the values for fb.j/i .t/g assuming categories were collapsed at cit are
given in (13).

Now by combining (23) and (26), one obtains the likelihood function for ˇ and
� as

L.ˇ; �/ D ˘K
iD1

�
Li1.ˇ/˘

T
tD2Litjt�1.ˇ; �/

	

D ˘K
iD1˘ J�1

jD1
h
fF.i1/jg1�b

.j/
i .1/

i h
f1 � F.i1/jgb

.j/
i .1/

i
(27)

� ˘K
iD1˘T

tD2˘ J�1
gD1˘ J�1

jD1
h
f
.2/i;gj.b

.g/
i .t � 1//gb

.j/
i .t/f
.1/i;gj.b

.g/
i .t � 1//g1�b

.j/
i .t/
i
:

3.3.1 Likelihood Estimating Equation for ˇ

Recall from (6) that ˇ D .ˇ0
1; : : : ; ˇ

0
j ; : : : ; ˇ

0
J�1/0 is a .pC1/.J�1/-dimensional vec-

tor with regression effects, and � D .� 0
1; : : : ; �

0
j ; : : : ; �

0
J�1/0 is a .J�1/2-dimensional
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vector of dynamic dependence parameters. We take a marginal approach to estimate
these parameters. Thus, for known � , say � D 0, we will solve the likelihood
estimating equation for ˇ, and in the second step, this estimate of ˇ will be used in
the likelihood estimating equation for � in order to obtain the first step estimate of � .
The estimate of � will next be used in the likelihood estimating equation for ˇ to
obtain a better estimate. This cycle of iterations will continue until the convergence
for both estimates.

We now develop the log-likelihood estimating equation forˇ. For this we take log
of the likelihood function in (27) and equate the first derivative of this log likelihood
with respect to ˇ, to a zero vector as follows:

@Log L.ˇ; �/

@̌
D

KX

iD1

J�1X

jD1

"
f1 � b.j/i .1/g

F.i1/j
� fb.j/i .1/g

f1� F.i1/jg

#
@F.i1/j
@̌

C
KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

"
b.j/i .t/



.2/
i;gj.b

.g/
i .t � 1//

� f1 � b.j/i .t/g
f1 � 


.2/
i;gj.b

.g/
i .t � 1//g

#
@


.2/
i;gj.b

.g/
i .t � 1//

@̌

D 0; (28)

where

@F.i1/j
@̌

D
jX

vD1

�
	.i1/v.ı.1/v � 	.i1//

	˝ xi1I (29)

and

@

.2/
i;gj.g

�/

@̌
D
8
<

:

1
g

Pg
v1D1

PJ
v2DjC1

h
�
.v2/

itjt�1.v1/.ı.t�1/v2 � �itjt�1.v1//
i

˝ xt for g� D 1

1
J�g

PJ
v1DgC1

PJ
v2DjC1

h
�
.v2/

itjt�1.v1/.ı.t�1/v2 � �itjt�1.v1//
i

˝ xit for g� D 2;

(30)
with

	.i1/ D Œ	.i1/1; : : : ; 	.i1/v; : : : ; 	.i1/.J�1/�0

ı.t�1/v D
�
Œ010

v�1; 1; 010
J�1�v�0 for v D 1; : : : ; J � 1

01J�1 for v D J;

�itjt�1.v1/ D Œ�
.1/

itjt�1.v1/; : : : ; �
.v2/

itjt�1.v1/; : : : ; �
.J�1/
itjt�1 .v1/�

0: (31)

Now, for given � , the likelihood equations in (28) may be solved iteratively by
using the iterative equation for ˇ given by

Ǒ.rC1/ D Ǒ.r/�
"�
@2Log L.ˇ; �/

@̌ 0@̌

��1
@Log L.ˇ; �/

@̌

#

jˇD Ǒ.r/
I .J �1/.pC1/�1;

(32)
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where the formula for the second order derivative matrix @2Log L.ˇ;�
@ˇ0@ˇ

may be derived
by taking the derivative of the .J � 1/.p C 1/ � 1 vector with respect to ˇ0. The
exact second order derivative matrix has a complicated formula. We provide an
approximation as follows.

An approximation to @2Log L.ˇ;�/
@ˇ0@ˇ

W
Re-express the likelihood estimating equation from (28) as

@Log L.ˇ; �/

@̌
D

KX

iD1

J�1X

jD1

@F.i1/j
@̌

f.1� F.i1/j/F.i1/jg�1 hf1� b.j/i .1/g � F.i1/j
i

C
KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

@

.2/
i;gj.b

.g/
i .t � 1//

@̌
f
.2/i;gj.b

.g/
i .t � 1//.1� 


.2/
i;gj.b

.g/
i .t � 1///g�1

�
h
b.j/i .t/ � 


.2/
i;gj.b

.g/
i .t � 1//

i

D 0: (33)

Notice that in the first term in the left hand side of (33), f1 � b.j/i .1/g is, by (11), a
binary variable with

Ef1� b.j/i .1/g D F.i1/j

varf1� b.j/i .1/g D F.i1/jf1� F.i1/jg; (34)

and similarly in the second term, by (25), b.j/i .t/ conditional on b.g/i .t�1/ is a binary
variable with

EŒb.j/i .t/jb.g/i .t � 1/� D 

.2/
i;gj.g

�/

varŒb.j/i .t/jb.g/i .t � 1/� D 

.2/
i;gj.g

�/Œ1 � 

.2/
i;gj.g

�/�; (35)

with g� D 1; 2 for b.g/i .t � 1/ D 0; 1, respectively. Thus, the likelihood estimating
function in the left hand side of (33) is equivalent to a conditional quasi-likelihood
(CQL) function in ˇ for the cut points based binary data [e.g. see Tagore and
Sutradhar (2009, Eq. (27), p. 888)]. Now because the variance of the binary data
is a function of the mean, the variance and gradient functions in the left hand
side of (33) may be treated to be known when mean is known. Thus, when a QL
estimating equation is solved iteratively, the gradient and variance functions use
ˇ from a previous iteration (Wedderburn 1974; McCullagh 1983). Consequently,
by (33), the second derivative matrix required to compute (32) has a simpler
approximate formula
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@2Log L.ˇ; �/

@̌ @̌ 0 D �
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J�1X

jD1

@F.i1/j
@̌
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�
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tD2

J�1X
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@

.2/
i;gj.b

.g/
i .t � 1//
@̌

f
.2/i;gj.b
.g/
i .t � 1//.1 � 
.2/i;gj.b

.g/
i .t � 1///g�1

� @

.2/
i;gj.b

.g/
i .t � 1//

@̌ 0 : (36)

3.3.2 Likelihood Estimating Equation for �

Similar to the estimating equation for ˇ as in (28), the likelihood function (27)
provides the likelihood estimating equation for � as

@Log L.ˇ; �/

@�
D

KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

"
b.j/i .t/
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.2/i;gj.b

.g/
i .t � 1//g

#

�@

.2/
i;gj.b

.g/
i .t � 1//
@�

D 0; (37)

where for b.g/i .t � 1/ D 0; 1, that is, g� D 1; 2,

@

.2/
i;gj.g

�/

@�

D
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<

:

1
g

Pg
v1D1

PJ
v2DjC1

h
�
.v2/

itjt�1.v1/.ı.t�1/v2 � �itjt�1.v1//
i

˝ ı.t�1/v1 for g� D 1

1
J�g

PJ
v1DgC1

PJ
v2DjC1

h
�
.v2/

itjt�1.v1/.ı.t�1/v2 � �itjt�1.v1//
i

˝ ı.t�1/v1 for g� D 2:
(38)

By similar formula as in (32), one may solve the likelihood estimating equation
in (37) for � using the iterative equation

O�.r C 1/ D O�.r/ �
"�
@2Log L.ˇ; �/

@�@� 0

��1
@Log L.ˇ; �/

@�

#

j�D O�.r/
I .J � 1/2 � 1;

(39)

where the second order derivative matrix with respect to � , by using the same
argument for the derivation of (36) for ˇ, has a simple approximate formula
given by
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@2Log L.ˇ; �/

@�@� 0

D �
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iD1

TX

tD2

J�1X

gD1

J�1X

jD1
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.2/
i;gj.b

.g/
i .t � 1//

@�
f
.2/i;gj.b

.g/
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.2/
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.g/
i .t � 1///g�1

�@

.2/
i;gj.b

.g/
i .t � 1//

@� 0 ; (40)

where
@

.2/
i;gj.g

�/

@�
is given in (38).

3.4 Estimation of the Basic Properties of the Model

Note that because in the longitudinal ordinal categorical setup, the longitudinal
data from each individual is available in the cumulative form as in (13), the
ˇ and � parameters involved in the marginal probability (11) and conditional
probabilities (19), were estimated accordingly by solving the likelihood estimating
equations (28) and (37), respectively. These estimates may now be used to under-
stand the mean structure of the data, by computing

EŒB�
i .t/� D EŒb.1/i .t/; : : : ; b

.j/
i .t/; : : : ; b

.J�1/
i .t/�0 (41)

for all t D 1; : : : ;T, where B�
i .t/ is defined in (12). For t D 1, one may compute

EŒb.j/i .1/� easily for all j D 1; : : : ; J � 1, by using Ǒ in (11). For other t, the formula
for the expectation can be computed in a standard way. For example, for t D 2, by
using (25), one writes

EŒb.j/i .2/� D
J�1X

gD1
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D
J�1X

gD1
EtD1Œ
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h
f
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� D 2/.1� F.i1/g/g

i
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D
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where, by (5),

	.i1/v D
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<
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exp.x0
i1ˇv/

1CPJ�1
mD1 exp.x0

i1ˇm/
for j D 1; : : : ; J � 1
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and by (6),
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exp
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1CPJ�1
vD1 exp
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i2ˇvC� 0
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i ; for j D 1; : : : ; J � 1
1

1CPJ�1
vD1 exp

h
x

0

i2ˇvC� 0
vıi.1/v1

i ; for j D J:

This marginal mean in (43) for t D 2 may now be estimated by replacing ˇ and � ,
with their likelihood estimates Ǒ and O� , respectively.

Remark that the likelihood estimates for the parametersˇ and � may also be used
in the basic properties of the repeated nominal categorical data shown in (7)–(9).
However, the interpretation of such results are valid under the assumption that the
even though data were ordinal, responses from an individual are treated to be in the
cut point category only. But if the data were truly nominal, one could easily obtain
the likelihood estimates for the parameters involved in the dynamic model (5)–(6)
for these repeated nominal categorical data. For details on such parameter estimation
under the non-stationary MDL (multinomial dynamic logit) model, one may refer
to Sutradhar (2014, Sect. 4.4).

3.5 Asymptotic Properties of the Regression Estimates

Because the regression parameter ˇ is of main interest, in this section, we study
the asymptotic properties of the likelihood estimate for this parameter obtained by
solving the likelihood estimating equation (28). We treat the dynamic dependence
parameter � to be known for the purpose. The asymptotic results for ˇ estimate
however will still be valid if a consistent estimate is used for � .
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Turning back to the likelihood estimating equation (33) for ˇ, it is convenient
to re-express this equation as a function of suitable vectors as follows. For the first
term in (28) corresponding to time t D 1, construct a .J � 1/ � 1 vector

di.1/ D Œf1� b
.1/
i .1/g � F.i1/1; : : : ; f1� b

.j/
i .1/g � F.i1/j; : : : ; f1� b
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0
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D ŒQb�
i � F�

.i1/�; (44)

and express the first term in (33) without the summation over i, as
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	 W .J � 1/ � .J � 1/;

and di.1/ is the .J � 1/� 1 distance vector defined in (44).
In order to express the second term in (33) in matrix vector notation, we first
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Next, for each t D 2; : : : ;T, write a .J � 1/2 � .J � 1/2 diagonal matrix as

Qi.t/ D diag
h
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and define a 1 � .J � 1/2 conditional mean parameter vector as
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It then follows that the second term in (33) without the sum over i can be
expressed as
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Furthermore, using the notation
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i.T/� W 1 � .T � 1/.J � 1/2

Qi D

0

B
B
B
@

Qi.2/ 0 : : : 0

0 Qi.3/ : : : 0
:::

:::
:::

:::

0 0 : : : Qi.T/

1

C
C
C
A

W .T � 1/.J � 1/2 � .T � 1/.J � 1/2

d�
i D Œd�0

i.2/; : : : ; d
�0

i.t/; : : : ; d
�0

i.T/�
0 W .T � 1/.J � 1/2 � 1; (50)

the quantity in (49) may be expressed as



Dynamic Models for Longitudinal Ordinal Non-stationary Categorical Data 187

TX

tD2

@�0
i.t/

@̌
Q�1

i .t/d�
i .t/ D @�0

i

@̌
Q�1

i d�
i ; (51)

where d�
i can also be written as d�

i D Œb�
i � �i�. Consequently, using (45), (49),

and (51) into the second term in (33), the likelihood estimating function in ˇ can be
re-expressed as

f .ˇ; �/ D
KX

iD1

@F0
.i1/

@̌
P�1

i .1/di.1/C
KX

iD1

@�0
i

@̌
Q�1

i d�
i

D
KX

iD1

@F0
.i1/

@̌
P�1

i .1/fQb�
i � F�

.i1/g C
KX

iD1

@�0
i

@̌
Q�1

i fb�
i ��ig; by (44)–(45) and (51)

D f1.ˇ/C f2.ˇ; �/; (say): (52)

For true ˇ and given � , define

NfK.ˇ/ D 1

K

KX

iD1
Œf1i.ˇ/C f2i.ˇ; �/�

D 1

K

KX

iD1

"
@F0

.i1/

@̌
P�1

i .1/fQb�
i � F�

.i1/g C @�0
i

@̌
Q�1

i fb�
i ��ig

#

; (53)

where Qb�
1 ; : : : ;

Qb�
i ; : : : ;

Qb�
K are independent to each other, and similarly b�

1 ; : : : ; b
�
i ;

: : : ; b�
K , are also independent to each other, as they are collected from K independent

individuals, but they are not identically distributed because

Qb�
i � ŒF�

.i1/;Pi�; and b�
i � Œ�i;Qi� (54)

where the mean vectors and covariance matrices are different for different individu-
als. By (54), it follows from (53) that

EŒNfK.ˇ/� D 0

covŒNfK.ˇ/� D 1

K2

KX

iD1
covŒf1i.ˇ/C f2i.ˇ; �/�

D 1

K2

KX

iD1

"
@F0

.i1/

@̌
P�1

i .1/
@F.i1/
@̌ 0 C @�0

i

@̌
Q�1

i

@�i

@̌ 0

#
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D 1

K2

KX

iD1
QVi.ˇ; �/

D 1

K2
V�

K.ˇ; �/: (55)

Next if the multivariate version of Lindeberg’s condition holds, that is,

lim
K!1 V��1

K

KX

iD1

X

f.f1iCf2i/0V��1
K .f1iCf2i/g>�

f.f1i C f2i/.f1i C f2i/
0gf.f1i C f2i/g D 0 (56)

for all � > 0, g.�/ being the probability distribution of .f1i C f2i/, then Lindeberg-
Feller central limit theorem (Amemiya 1985, Theorem 3.3.6; McDonald 2005,
Theorem 2.2) imply that

ZK D KŒV�
K �

� 1
2 NfK.ˇ/ ! N.pC1/.J�1/.0; I.pC1/.J�1//: (57)

Now because Ǒ
ML obtained by (32) is a solution of f .ˇ; �/ D 0 in (52) [see

also (33)], one writes

KX

iD1
Œf1i. Ǒ

ML/C f2i. Ǒ
ML/� D 0; (58)

which by first order Taylor’s series expansion produces

KX

iD1
ff1i.ˇ/C f2i.ˇ/g C . Ǒ

ML � ˇ/
KX

iD1
ff1i.ˇ/C f2i.ˇ/g0 D 0: (59)

That is,

Ǒ
ML � ˇ D �

"
KX

iD1
ff1i.ˇ/C f2i.ˇ/g0

#�1 KX

iD1
ff1i.ˇ/C f2i.ˇ/g

D �
"

�
KX

iD1
f@F0

.i1/

@̌
P�1

i .1/
@F.i1/
@̌ 0 C @�0

i

@̌
Q�1

i

@�i

@̌ 0 g
#�1 KX

iD1
Œf1i.ˇ/C f2i.ˇ/�

D �
V�

K.ˇ; �/
	�1

KNf .ˇ/

D �
V�

K.ˇ; �/
	� 1

2 ZK ! N.0;V��1
K .ˇ; �//; (60)
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by (57). It then follows that

lim
K!1

Ǒ
ML ! N.ˇ;V��1

K .ˇ; �//: (61)

Also it follows that

jjŒV�
K.ˇ; �/�

1
2 Œ Ǒ

ML � ˇ�jj D Op.
p
.p C 1/.J � 1//: (62)

4 BDL Model for Repeated Ordinal Responses

In Sect. 3, we have introduced a MDL (multinomial dynamic logits) model for
repeated nominal categorical data which was mapped to a bivariate binary (BB)
model to reflect the ordinal nature of the categorical responses. In this section, we
use a direct approach where, to reflect the ordinal nature of the categories, a cut
point based binary response is collected at a given time t for all t D 1; : : : ;T. These
repeated binary responses are then modeled through a BDL (binary dynamic logits)
model. When the associated covariates are time dependent, the BDL model for the
responses is referred to as the non-stationary BDL model, which, may be treated as
a generalization of the stationary BDL model used by Sutradhar (2014, Sect. 3.6.2).

For the purpose, we consider the same binary variable as in (10). That is, for all
t.t D 1; : : : ;T/, the binary variable is defined as

b.j/i .t/ D
�
1 for ith individual’s response beyond category j
0 for ith individual’s response belong to a category � j:

Under the proposed over all BDL model, we need a marginal model for binary
probabilities PŒbj

i.1/ D 1� at time t D 1, and a conditional probability model to

compute the conditional binary probabilities, namely PŒb.j/i .t/ D 1jb.g/i .t � 1/� for
t D 2; : : : ;T. Recall that under the cumulative model proposed in the last section,
these marginal and conditional probabilities were modeled using cumulative of
marginal and conditional probabilities for nominal categories as in (11) and (19),
respectively. As opposed to these cumulative models, we now define them using
binary logits directly. To be specific, for t D 1, we model the binary probability as

PŒbj
i.1/ D 1� D 1 � F.i1/j D exp.˛j0 C x0

i1 Q̨ j/

1C exp.˛j0 C x0
i1 Q̨ j/

: (63)

For example, suppose that x0
i1 D Œxi11; xi12; xi13�, where xi11 represents gender (male

(1) or female (0)); xi12 represents the education with two levels (high (1) or low (0))
for the ith individual at time t D 1; and xi13 represents the gender and education
level interaction. Then ˛0

j D Œ˛j1; ˛j2; ˛j3� indicates the effect of xi1 for putting the
ith individual’s response beyond category j.
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Next for t D 2; : : : ;T, we suppose that the ith individual provided a cumulative
response below or beyond category g, at time t � 1. Notice that g ranges from 1
to J � 1. At time t, the response can be below or beyond category j, for all j D
1; : : : ; J �1. Suppose that the conditional probability for the binary response at time
t, conditional on the binary response from time t � 1, has a binary dynamic logit
(BDL) form

PŒb.j/i .t/ D 1jb.g/i .t � 1/� D exp.˛j0 C x0
it Q̨ j C Q�gjb

g
i .t � 1//

1C exp.˛j0 C x0
it Q̨ j C Q�gjb

g
i .t � 1//

D Q�.2/i;gj.b
.g/
i .t � 1//; (64)

(Sutradhar 2014, Sect. 3.6.2), where Q�gj is the dynamic dependence parameter

relating b.j/i .t/ and b.g/i .t � 1/. This type of BDL function was earlier used by
Sutradhar and Farrell (2007), for example, in the context of a correlation model
for standard longitudinal binary responses, whereas the present BDL function (64)
relates two consecutive cumulative binary responses defined collapsing ordinal
categories into two groups at a selected cut point. Following (64), we will write
the complimentary probabilities as

PŒb.j/i .t/ D 0jb.g/i .t � 1/� D 1 � Q�.2/i;gj.b
.g/
i .t � 1//

D Q�.1/i;gj.b
.g/
i .t � 1//; (65)

where b.g/i .t � 1/ � 1 or 0.
Furthermore, for notational convenience, we re-express the marginal probabili-

ties in (63) and the conditional probabilities in (64) as

PŒb.j/i .1/ D 1� D 1 � F.i1/j D exp.Qx0
i1˛j/

1C exp.Qx0
i1˛j/

; (66)

and

PŒb.j/i .t/ D 1jb.g/i .t � 1/� D exp.Qx0
it˛j C Q�gjb

g
i .t � 1//

1C exp.Qx0
it˛j C Q�gjb

g
i .t � 1//

D Q�.2/i;gj.t; b
.g/
i .t � 1//; (67)

respectively, where

Qxit D Œ1; x0
it�

0; and ˛j D Œ˛j0; Q̨ 0
j �

0: (68)
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4.1 Basic Properties of the BDL Model

4.1.1 Marginal Means and Variances

It is clear from (66) that at time t D 1, the marginal mean and variance are given by

�
.j/
i1 D EŒb.j/i .1/� D 1 � F.i1/j D exp.Qx0

i1˛j/

1C exp.Qx0
i1˛j/

varŒb.j/i .1/� D �
.j/
i1 f1 � �.j/i1 g D F.i1/jf1 � F.i1/jg: (69)

As t increases, computation for the marginal means and variances gets complicated.
For example, for t D 2, the marginal may be computed, following (43), as

EŒb.j/i .2/� D
J�1X

gD1
EtD1EtD2jt�1Œb.j/i .2/jb.g/i .1/�

D
J�1X

gD1
EtD1Œ Q
.2/i;gj.2; b

.g/
i .1//�; by (64)

D
J�1X

gD1

1X

b
.g/
i .1/D0

Q
.2/i;gj.2; b
.g/
i .1//Œ1 � F.i1/g�

b
.g/
i .1/ŒF.i1/g�

1�b
.g/
i .1/ (70)

D
J�1X

gD1

h
f Q
.2/i;gj.2; g

� D 1/ŒF.i1/g�g C fQ
.2/i;gj.2; g
� D 2/.1� F.i1/g/g

i

D
J�1X

gD1

h Q
.2/i;gj.2; g
� D 2/C F.i1/gf Q
.2/i;gj.2; g

� D 1/� Q
.2/i;gj.2; g
� D 2/g

i

D �
.j/
i2 (say); (71)

where

F.i1/g D
gX

vD1
	.i1/v

Q
.2/i;gj.2; g
� D 1/ D exp.Qx0

i2˛j/

1C exp.Qx0
i2˛j/

Q
.2/i;gj.2; g
� D 2/ D exp.Qx0

i2˛j C Q�gj/

1C exp.Qx0
i2˛j C Q�gj/

: (72)
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Similarly,

EŒb.j/i .3/� D
J�1X

gD1
EtD1E2j1E3j2Œb.j/i .3/jb.g/i .2/�

D
J�1X

gD1
E2Œ Q
.2/i;gj.3; b

.g/
i .2//�; by (64)

D
J�1X

gD1

1X

b
.g/
i .2/D0

Q
.2/i;gj.3; b
.g/
i .2//Œ�

.g/
i2 �

b
.g/
i .2/Œ1 � �

.g/
i2 �

1�b
.g/
i .1/

D
J�1X

gD1

h
f Q
.2/i;gj.3; 0/Œ1 � �.g/i2 �g C fQ
.2/i;gj.3; 1/Œ�

.g/
i2 �g

i

D �
.j/
i3 ; (73)

where

Q
.2/i;gj.3; 0/ D exp.Qx0
i3˛j/

1C exp.Qx0
i3˛j/

Q
.2/i;gj.3; 1/ D exp.Qx0
i3˛j C Q�gj/

1C exp.Qx0
i3˛j C Q�gj/

: (74)

In general,

EŒb.j/i .t/� D
J�1X

gD1
Et�1Œ Q
.2/i;gj.t; b

.g/
i .t � 1//

D
J�1X

gD1

h
f Q
.2/i;gj.t; 0/Œ1 � �.g/i;t�1�g C fQ
.2/i;gj.t; 1/Œ�

.g/
i;t�1�g

i

D �
.j/
it ; (75)

where

Q
.2/i;gj.t; 0/ D exp.Qx0
it˛j/

1C exp.Qx0
it˛j/

Q
.2/i;gj.t; 1/ D exp.Qx0
it˛j C Q�gj/

1C exp.Qx0
it˛j C Q�gj/

: (76)
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Therefore, a general formula for the marginal variance may now be written as

varŒb.j/i .t/� D �
.j/
it Œ1 � �

.j/
it �: (77)

where �.j/it is given by (75).
These means (75) and variances (77) are important properties to understand

the nature of ordinal response over time from an individual. For the purpose
of estimating these means and variances, one requires to estimate the ˛ and �
parameters involved in the model. In the next section, we demonstrate how to obtain
the likelihood estimates for these parameters.

4.2 Likelihood Estimation of the Parameters

The ˛ parameters are involved in both marginal and conditional binary probabilities
as shown in (66) and (67). Let

˛ D Œ˛0
1; : : : ; ˛

0
j ; : : : ; ˛

0
J�1�0 W .p C 1/.J � 1/ � 1; with ˛j D Œ˛j0; Q̨ 0

j �
0;

for j D 1; : : : ; J � 1. Similarly, we use the notation Q� for all dynamic dependence
parameters, namely

Q� D Œ Q� 0
1; : : : ; Q� 0

j ; : : : ; Q� 0
J�1�0 W .J � 1/2 � 1; with Q�j D Œ Q�1j; : : : ; Q�gj; : : : ; Q�.J�1/j�0:

Similar to (27), the likelihood function for ˛ and Q� as

L.˛; Q�/ D ˘K
iD1

�
Li1.˛/˘

T
tD2Litjt�1.˛; Q�/	

D ˘K
iD1˘

J�1
jD1

h
fF.i1/jg1�b

.j/
i .1/

i h
f1� F.i1/jgb

.j/
i .1/

i
(78)

� ˘K
iD1˘

T
tD2˘

J�1
gD1˘

J�1
jD1

h
fQ�.2/i;gj.t; b

.g/
i .t � 1//gb

.j/
i .t/fQ�.1/i;gj.t; b

.g/
i .t � 1//g1�b

.j/
i .t/

i
;

where

1 � F.i1/j D exp.Qx0
i1˛j/

1C exp.Qx0
i1˛j/

; and

Q�.2/i;gj.t; b
.g/
i .t � 1// D exp.Qx0

it˛j C Q�gjb
g
i .t � 1//

1C exp.Qx0
it˛j C Q�gjb

g
i .t � 1//

Q�.1/i;gj.t; b
.g/
i .t � 1// D 1 � Q�.2/i;gj.t; b

.g/
i .t � 1//: (79)
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It then follows that the likelihood estimating equations for ˛ and Q� are given by

@Log L.˛; Q�/
@˛

D
KX

iD1

J�1X

jD1

" f1� b.j/i .1/g
F.i1/j

� fb.j/i .1/g
f1� F.i1/jg

#
@F.i1/j
@˛

C
KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

2

4 b
.j/
i .t/

Q�.2/i;gj.t; b
.g/
i .t � 1//

� f1� b
.j/
i .t/g

f1� Q�.2/i;gj.t; b
.g/
i .t � 1//g

3

5
@�
.2/
i;gj.t; b

.g/
i .t � 1//

@˛

D 0; (80)

and

@Log L.˛; Q�/
@ Q� D

KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

"
b.j/i .t/

Q�.2/i;gj.t; b
.g/
i .t � 1//

� f1� b.j/i .t/g
f1� Q�.2/i;gj.t; b

.g/
i .t � 1//g

#

� @ Q�.2/i;gj.t; b
.g/
i .t � 1//
@ Q� D 0; (81)

respectively. In (80),

@F.i1/j
@˛

D

0

B
B
B
B
BB
B
B
B
BB
B
B
@

@F.i1/j
@˛1
:::

@F.i1/j
@˛j�1
@F.i1/j
@˛j
@F.i1/j
@˛jC1

:::
@F.i1/j
@˛J�1

1

C
C
C
C
CC
C
C
C
CC
C
C
A

D

0

B
B
B
BB
B
B
B
BB
B
@

0pC1
:::

0pC1
�F.i1/jŒ1 � F.i1/j�Qxi1

0pC1
:::

0pC1

1

C
C
C
CC
C
C
C
CC
C
A

W .p C 1/.J � 1/ � 1; (82)

and

@�
.2/
i;gj.t; b

.g/
i .t � 1//

@˛
(83)

D

0

B
B
B
B
B
BB
B
B
B
B
B
BB
B
B
B
B
B
@

@�
.2/
i;gj.t;b

.g/
i .t�1//

@˛1
:
:
:

@�
.2/
i;gj.t;b

.g/
i .t�1//

@˛j�1

@�
.2/
i;gj.t;b

.g/
i .t�1//

@˛j

@�
.2/
i;gj.t;b

.g/
i .t�1//

@˛jC1

:
:
:

@�
.2/
i;gj.t;b

.g/
i .t�1//

@˛J�1

1

C
C
C
C
C
CC
C
C
C
C
C
CC
C
C
C
C
C
A

D

0

B
B
BB
B
B
B
B
B
BB
B
B
@

0pC1

:
:
:

0pC1

�
.2/
i;gj.t; b

.g/
i .t � 1//�

.1/
i;gj.t; b

.g/
i .t � 1//Qxit

0pC1

:
:
:

0pC1

1

C
C
CC
C
C
C
C
C
CC
C
C
A

W .p C 1/.J � 1/� 1:
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Similarly, in (81),

@�
.2/
i;gj.t; b

.g/
i .t � 1//

@ Q� (84)

D

0

B
B
B
B
BB
B
B
B
B
BB
B
B
B
B
B
BB
@

@�
.2/
i;gj.t;b

.g/
i .t�1//

@Q�1

:
:
:

@�
.2/
i;gj.t;b

.g/
i .t�1//

@Q�j�1

@�
.2/
i;gj.t;b

.g/
i .t�1//

@Q�j

@�
.2/
i;gj.t;b

.g/
i .t�1//

@Q�jC1

:
:
:

@�
.2/
i;gj.t;b

.g/
i .t�1//

@Q�J�1

1

C
C
C
C
CC
C
C
C
C
CC
C
C
C
C
C
CC
A

D

0

B
BB
B
B
B
B
BB
B
B
B
B
@

0J�1

:
:
:

0J�1

�
.2/
i;gj.t; b

.g/
i .t � 1//�

.1/
i;gj.t; b

.g/
i .t � 1//b�

i .t � 1/

0J�1

:
:
:

0J�1

1

C
CC
C
C
C
C
CC
C
C
C
C
A

W .J � 1/2 � 1;

where b�
i .t � 1/ D Œb.1/i .t � 1/; : : : ; b.g/i .t � 1/; : : : ; b.J�1/

i .t � 1/�0 W .J � 1/ � 1.
The likelihood estimating equation in (80) may be solved iteratively by using the

iterative equation for ˛ given by

Ǫ .rC1/ D Ǫ .r/�
"�
@2Log L.˛; Q�/

@˛0@˛

��1
@Log L.˛; Q�/

@˛

#

j˛D Ǫ .r/
I .J �1/.pC1/�1;

(85)

where the formula for the second order derivative matrix @2Log L.˛;Q�
@˛0@˛

is, similar
to (36), given by

@2Log L.˛; Q�/
@˛@˛0

D �
KX

iD1

J�1X

jD1

@F.i1/j
@˛

f.1� F.i1/j/F.i1/jg�1 @F.i1/j
@˛0

�
KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

@Q�.2/i;gj.t; b
.g/
i .t � 1//

@˛
fQ�.2/i;gj.t; b

.g/
i .t � 1//.1� Q�.2/i;gj.t; b

.g/
i .t � 1///g�1

� @Q�.2/i;gj.t; b
.g/
i .t � 1//

@˛0
: (86)

Similarly, the likelihood estimating equation in (81) may be solved iteratively by
using the iterative equation for Q� given by

OQ�.r C 1/ D OQ�.r/�
"�
@2Log L.˛; Q�/

@ Q�@ Q� 0

��1
@Log L.˛; Q�/

@ Q�

#

j Q�D OQ�.r/
I .J � 1/2 � 1;

(87)
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where the second order derivative matrix with respect to Q� , by using the same
argument for the derivation of (86) [see also (36)] for ˛, has a simple approximate
formula given by

@2Log L.˛; Q�/
@ Q�@ Q� 0

D �
KX

iD1

TX

tD2

J�1X

gD1

J�1X

jD1

@Q�.2/i;gj.t; b
.g/
i .t � 1//

@ Q� fQ�.2/i;gj.t; b
.g/
i .t � 1//.1� Q�.2/i;gj.t; b

.g/
i .t � 1///g�1

� @Q�.2/i;gj.t; b
.g/
i .t � 1//

@ Q� 0
; (88)

where
@Q�.2/i;gj.t;b

.g/
i .t�1//
@Q� is given in (84).

5 Concluding Remarks

Longitudinal categorical data have been modeled using several different techniques
in the past. The real problem is to simplify the complex issue of adding a dependence
structure to categorical data. Common methods are using random effects model, or
using working correlations. Both suffer from serious drawbacks that we indicated
in our paper. For this paper unlike the existing ‘working’ models, we develop
two correlation models for repeated ordinal responses, where we directly put in
a dependence structure for the categorical data.

The models, discussed in this paper, are similar to the correlation models consid-
ered by Sutradhar and Kovacevic (2000), but they are simpler. These are cumulative
multinomial dynamic logit (CMDL) model (where longitudinal correlations are first
modeled for nominal repeated data; and then we apply the cumulative principle to
reflect the ordinal nature of the correlated data by using binary cut-points;) and the
correlated binary dynamic model (CBDM) (where we first look at binary cut-points
then add the correlation directly in the binary model).

Both models are analyzed by using the well known likelihood estimation
approach. We have provided details about the estimation in terms of finding the
Hessian and the Gradient function for the likelihood estimation. The next step would
be to conduct a simulation study to compare and contrast the performance of these
two methods with the existing methods. In the near future we plan to have R code
freely available for practitioners to use.
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Semi-parametric Models for Longitudinal
Count, Binary and Multinomial Data

Brajendra C. Sutradhar

Abstract In a longitudinal setup, the semi-parametric regression model contains
a specified regression function in some suitable time dependent primary covariates
and a non-parametric function in some other time dependent say secondary covari-
ates. However, the functional form for such a semi-parametric regression model
depends on the nature of the repeated responses collected from a large number of
independent individuals. In cross sectional setup, these functional forms represent
the marginal expectations of the responses, whereas in a longitudinal setup, in gen-
eral, they represent the expectation of a response at a given time conditional on past
responses. More specifically, these conditional expectations are modelled through
certain dynamic relationships among the repeated responses which also specify the
longitudinal correlation structure among these repeated responses. In this paper, we
consider a lag 1 dynamic relationship among repeated responses whether they are
linear, count, binary or multinomial, and exploit the underlying correlation structure
for consistent and efficient estimation of the regression parameters involved in the
specified regression function in primary covariates. Because the non-parametric
function in secondary covariates is not of direct interest, for simplicity, we estimate
this function consistently in all cases by using ‘working’ independence assumption
for the repeated responses.
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1 Introduction

In a cross sectional setup, when a discrete such as count or binary or multinomial
response yi along with a p-dimensional covariate vector xi is collected from an
individual i.i D 1; : : : ;K/, the effects of xi on yi, say ˇ D .ˇ1; : : : ; ˇp/

0, is
customarily computed by fitting the so-called mean regression model of the form

EŒYijxi� D mi.ˇ; xi/; (1)

where the specific form of mi.ˇ; xi/ depends on the nature of the response yi. For
example, it is customary to use

mi.ˇ; xi/ D
8
<

:

EŒYi� D exp.x0
iˇ/ for scalar count response yi

PŒyi D 1� D exp.x0
iˇ/

1Cexp.x0
iˇ/

for scalar binary response yi;
(2)

where x0
iˇ is referred to as a linear predictor in a generalized linear model (GLM);

and

m.i/c.ˇ; xi/ D PŒyi D y.c/i � D
8
<

:

exp.x0
iˇc/

1CPC�1
gD1 exp.x0

iˇg/
for c D 1; : : : ;C � 1

1

1CPC�1
gD1 exp.x0

iˇg/
for c D C;

(3)

for a C �1 (C 	 3; C D 2 being the binary case) dimensional multinomial variable
yi D .yi1; : : : ; yic; : : : ; yi;C�1/0 to have its realization in the cth .c D 1; : : : ;C � 1/

category, that is

yi D y.c/i D .y.c/i1 ; : : : ; y.c/ij ; : : : ; y
.c/
i;C�1/

0 D .010
c�1; 1; 010

C�1�c/
0 � ıic; (4)

out of C possible categories. In (3), ˇc D .ˇc1; : : : ; ˇcp/
0 for c D 1; : : : ;C � 1, and

ˇ D .ˇ0
1; : : : ; ˇ

0
c; : : : ; ˇ

0
C�1/0 W .C � 1/p � 1. Notice that fitting these models (2)

and (3) to the corresponding data amounts to estimating the p-dimensional ˇ vector
in (2) and .C � 1/p-dimensional ˇ vector in (3). Note that in (4), we have written
010

c�1 for 0 ˝ 10
c�1 for simplicity. This notation will be followed all through the

paper for convenience.
In practice, there are some situations, where in addition to xi, some other

covariates, say zi, are collected from the same individual i, but the effects of
these additional covariates are not of direct interest. For example, in a health
care utilization data, one may be interested to find the effects of the primary
covariates xi � Œgender, education level, chronic condition�0 of the ith individual on
the number of physician visits yi in a given time, by treating age of the ith individual
.zi/ as a secondary covariate. This type of secondary covariates zi may be fitted
non-parametrically by adding a smooth non-parametric function  .zi/ to the linear
predictor in (2) and .z.j/i / to the linear predictor x0

iˇj in (3). Thus, a semi-parametric
model of the form
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�i.ˇ; xi;  .zi//

D
8
<

:

EŒYijxi; zi� D exp.x0
iˇ C  .zi// for scalar count response yi

	i.ˇ; xi; zi/ D PŒyi D 1jxi; zi� D exp.x0
iˇC .zi//

1Cexp.x0
iˇC .zi//

for scalar binary response yi

(5)

corresponding to (2) (Severini and Staniswallis 1994, Sects. 1–7; Carota and
Parmigiani 2002; Horowitz 2009), or

	.i/c.ˇ; xi; zi/ D PŒyi D y.c/i jxi; zi�

D
8
<

:

exp.x0
iˇcC .c/.zi//

1CPC�1
gD1 exp.x0

iˇgC .g/.zi/
for c D 1; : : : ;C � 1

1

1CPC�1
gD1 exp.x0

iˇgC .c/.zi//
for c D C;

(6)

corresponding to (3), is fitted to the responses fyi; i D 1; : : : ;Kg, but one is still
interested to estimate the main regression parameters ˇ. Remark that when z0

is are
assumed to influence yi through model (5) or (6), any estimate obtained for ˇ by
ignoring  .zi/ (or  .c/.zi/), that is, by fitting (2) or (3), would be biased and hence
mean squared error inconsistent.

Note that as a generalization of the semi-parametric model (6) under the
independence setup, there does not exist any studies for multinomial data in
the longitudinal setup. In fact, semi-parametric model (6) is also not adequately
addressed in the independence setup. A detailed discussion about this model in a
wider longitudinal setup along with inferences for the model parameters is given in
Sect. 5.

Turning back to the semi-parametric models given in (5) for count and binary
data, some authors such as Zeger and Diggle (1994), Severini and Staniswal-
lis (1994, Sect. 8), Lin and Carroll (2001) have extended these models to the
longitudinal setup, where semi-parametric models are constructed to relate the
repeated responses with two types (primary of direct interest and secondary) of
multi-dimensional covariates. Suppose that tij denote the time at which the jth
.j D 1; : : : ; ni/ count response is recorded from the ith .i D 1; : : : ;K/ individual,
and yij denote this count response. Next, unlike the scalar response case explained
through the models (5), suppose that yi D .yi1; : : : ; yij; : : : ; yini/

0 denotes the ni � 1
vector of repeated counts for the ith .i D 1; : : : ;K/ individual. Also suppose that yij

is influenced by a fixed and known p-dimensional time dependent primary covariate
vector xij.tij/ and an additional time dependent scalar secondary covariate zij.tij/.
Note that similar to (5), the primary covariates are included in the regression model
parametrically using linear predictor, whereas the covariate(s) of secondary interest
are included in the model non-parametrically. Further note that in most of the
longitudinal studies, the primary covariates are collected at tij D j, and hence xij.tij/
can be replaced by xij.j/, when convenient. For example, in the aforementioned
health care utilization study, xij.j/ may represent the education level status of the
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ith individual in jth year, where detailed breakdown such as the exact month when
education level is attained may not be more informative. For the same yearly data,
as opposed to the primary covariates, the secondary covariates are usually collected
at time tij. For example, even though the ith individual provides xij.j/ at jth year, the
individual may be asked to provide, say the worst allergy status .zij/ in a given scale,
and its occurrence time tij defined as

tij � .j � 1/C Œnumeric month for the occurrence for individual i�i


 12; j D 1; : : : ; niI i D 1; : : : ;K; (7)

which makes both tij and zij quite dense. Some authors such as Severini and
Staniswallis (1994, Sect. 8) have considered time independent but dense zij, whereas
Lin and Carroll (2001), for example, have considered tij as the secondary covariate,
that is zij.tij/ � tij. In their numerical illustration, Lin and Carroll (2001, Sect. 8)
have considered zij � tij D exact age of the ith child in jth quarter. In general, these
authors have assumed that in a longitudinal setup, in addition to time dependent
primary covariates xij.tij/, the times tij as a fixed secondary covariate also influence
the response yij. Consequently, because of the fact that the repeated responses
fyij; j D 1; : : : ; nig are likely to be correlated, Lin and Carroll (2001, Eq. (10)), for
example, have estimated the regression effects ˇ by solving the so-called ‘working’
correlations based GEE (generalized estimating equation)

KX

iD1

@�0
i.ˇ;Xi; O .ˇ; zi//

@̌
V�1

i .yi � �i.ˇ;Xi; O .ˇ; zi/// D 0; (8)

where X0
i D .xi.ti1/; : : : ; xi.tij/; : : : ; xi.tini// denote the p � ni covariate matrix with

xi.tij/ as the p-dimensional covariate vector for the ith individual at time point
tij, �i.ˇ;Xi; O .ˇ; zi/ is a mean vector as opposed to the scalar mean �i.�/ in (5),
O .ˇ; zi/ is a ni � 1 consistent estimate of the nonparametric vector function for

known ˇ corresponding to j D 1; : : : ; ni, and Vi is a so-called ni � ni ‘working’
correlation matrix representing the correlations of the repeated responses which is
computed by

Vi D A
1
2

i RiA
1
2

i ; (9)

where Ai D diagŒvar.yi1/; : : : ; var.yij/; : : : ; var.yini/� with var.yij/ D �ij.ˇ; xij; O 
.ˇ; zij// for the Poisson panel data, for example; and Ri has been computed by an
unstructured (UNS) common constant correlation matrix .R/ as

R.� Ri/ D K�1
KX

iD1
rir

0
i; where ri D .ri1; : : : ; rij; : : : ; rini /

0; (10)
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with rij D .yij��ij.ˇ;xij; O .ˇ;zij///

Œ�ij.ˇ;xij; O .ˇ;zij//�
1
2

, for count data, for example Severini and Staniswallis

(1994, Sect. 8) have also used this ‘working’ correlation Ri for the estimation of the
correlation matrix for the repeated responses yi1; : : : ; yini . Lin and Carroll (2001,
Eqs. (6)–(7)) also estimate the non-parametric function  .ˇ; zi/ using the working
correlation matrix Ri, whereas Severini and Staniswallis (1994, Sect. 8) (see also
Zeger and Diggle 1994, Sneddon and Sutradhar 2004, and You and Chen 2007)
estimated this function using ‘working’ independence among the repeated data. This
approach of Lin and Carroll (2001) have several drawbacks as follows both for
estimation of ˇ and the non-parametric function.

(1) The common matrix R cannot be computed unless ni D n for all i D 1 D
1; : : : ;K, and it is not true that one can use this R matrix for panel data
especially when ni � ni matrix is needed for the ith individual (see Sutradhar
2010). Furthermore, because covariates .xij/ of an individual i are dependent on
j, it is demonstrated by Sutradhar (2010) that the correlations of the repeated
data following a sensible dynamic model also involve xij [see also Eq. (37) in
Sect. 3]. This, for j < k, for a known function h, produces

EŒrijrik� D h.xij; xik; O .zij/; O .zik// (11)

and hence the average K�1PK
iD1 rijrij obtained from all individuals may be

biased (far away from true correlation) for the true correlation element �i;jk for
the ith individual. This will produce inefficient estimate of ˇ, specially when
the covariates are j dependent.

(2) When secondary covariates are fixed times such as zij � tij, obtaining an
estimate of the nonparametric function  .tij/ at a fixed time point by using
correlation matrix R corresponding to all time points fj; j D 1; : : : ; nig may
be counter productive. In fact, Lin and Carroll (2001, Sect. 7) found that the
‘working’ correlation approach using the Ri matrix for the estimation of  ./
produces less efficient estimate than using the independence assumption, that
is, Ri D Ini . Besides,  ./ is of secondary interest and hence it is sufficient to
estimate this function consistently, whereas more efforts is needed to obtain
consistent and efficient estimate for the main regression parameter ˇ.

Recently, Sutradhar et al. (2015) have studied a semi-parametric dynamic model
for repeated count data. As far as the inference is concerned, these authors,
as opposed to the ‘working’ correlations based semi-parametric GEE (SGEE)
estimation approach, have used a simpler SQL (semi-parametric quasi-likelihood)
approach for consistent estimation of the non-parametric function, and a SGQL
(semi-parametric generalized quasi-likelihood) approach for the estimation of the
regression effects involved in the specified regression function, whereas the longi-
tudinal correlation index parameter involved in the dynamic model was consistently
estimated by using the well known method of moments. This dynamic model and the
estimation approach used by these authors are explained in brief in Sect. 3. A similar
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but different dynamic model, namely multinomial dynamic logit (MDL) model
is discussed in Sect. 4, binary dynamic logit (BDL) model being a special case.
This MDL model produces recursive means and variances, whereas the dynamic
model for the count data to be discussed in Sect. 3 produces fixed marginal means
and variances. The correlation structures produced by these two models (dynamic
models for count data and MDL model) are quite different as well. Hence, the
estimating equations under the MDL or BDL model cannot be obtained from
those under the dynamic model for the count data by any simple substitutions, or
vice versa.

Remark that as opposed to the inferences for the aforementioned semi-parametric
longitudinal models for count, binary and multinomial data, there exist some studies
for the inferences in simpler linear longitudinal models. See, for example, the
studies by Sneddon and Sutradhar (2004), You and Chen (2007), and Warriyar
and Sutradhar (2014). For convenience and simplicity, we therefore provide a brief
discussion in Sect. 2 on the inferences for the semi-parametric linear longitudinal
model following the recent work of Warriyar and Sutradhar (2014).

2 Semi-parametric Linear Longitudinal Models
and Inferences

In a semi-parametric linear model setup, the repeated continuous data measured
from the ith individual at time point tij are usually modeled as

yij D x0
ij.tij/ˇ C  .zij.tij//C �ij.tij/

D �ij.tij/C �ij.tij/; (12)

or equivalently

yi D Xiˇ C  i C �i; (13)

where

 i D . .zi1.ti1//; � � � ;  .zini .tini///
0 and �i D .�i1.ti1/; � � � ; �ij.tij/; � � � ; �ini.tini//

0:

Note that in (13),  i is not a subject specific non-parametric function as its
construction requires only knowing  .zij/ at any time t (see Zeger and Diggle 1994
and Sneddon and Sutradhar 2004, for example). To be specific,  i is used here to
represent ni components, each with the same non-parametric function but evaluated
at ni different values zij for the ith individual. Further note that in this longitudinal
setup, the components of the error vector �i must be correlated. But as the correlation
structure is unknown in practice, many authors such as Zeger and Diggle (1994),
Severini and Staniswallis (1994), and Lin and Carroll (2001) have considered that
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�i � .0; �2Ri.˛//; (14)

where �2 D varŒ�ij.tij/� D �ijj.tij/ D �2.tij/, and Ri.˛/ is a ‘working’ correlation
matrix as in (9). However, Warriyar and Sutradhar (2014) have demonstrated that in
stead of Ri.˛/, one may use a true correlation structure

Ci.�/ D

0

B
BB
@

1 �1 �2 : : : �ni�1
�1 1 �1 : : : �ni�2
::: : : :

:::

�ni�1 �ni�2 : : : 1

1

C
CC
A

for all i D 1; 2; : : : ;KI

˙i.�/ D var.Yi/ D A
1
2

i Ci.�/A
1
2

i ; (15)

where for ` D 1; : : : ; ni � 1, �` denotes the lag ` correlation between �ij.tij/ and
�i;jC`.ti;jC`/, and Ai D �2Ini where �2 is an unknown scalar constant, and Ini is
the ni � ni identity matrix. For example, this correlation structure Ci.�/ in (15) is
appropriate for the ARMA (auto-regressive moving average) type dynamic models
as follows:

(1) AR(1) model:

�ij.tij/ D  �i;j�1.ti;j�1/C aij.tij/; jj < 1;
aij.tij/

iid� N.0; �2a / 8 i D 1; 2; : : : ;KI j D 1; : : : ; ni;

(2) MA(1) model:

�ij.tij/ D � ai;j�1.ti;j�1/C aij.tij/; j� j < 1;
aij.tij/

iid� N.0; �2a / 8 i D 1; 2; : : : ;KI j D 1; : : : ; ni;

and
(3) EQC model :

"ij.tij/ D "i0.ti0/C aij.tij/;

aij.tij/
iid� .0; �2a /; "i0.ti0/ � N.0; Q�2/;

yield �`, the lag ` correlations between �ij.tij/ and �i;jC`.ti;jC`/, as

�` D `I �` D
(

�
1C�2 ; for ` D 1

0; for ` D 2; 3; : : : ; ni � 1;
and �` D � D Q�2

Q�2 C �2a
;

respectively, and they satisfy the auto-correlation structure Ci.�/ in (15).
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2.1 SQL Estimation of the Non-parametric Function  .zij/

Even though the repeated responses yi1; : : : ; yij; : : : ; yini are correlated with correla-
tion structure as in (15), it is, however, simpler to use an ‘working’ independence
assumption and obtain a consistent estimator for the desired non-parametric func-
tion. To be specific, one may solve the SQL (semi-parametric quasi-likelihood)
estimating equation for  .zij/jzijDz0 given by

KX

hD1

nhX

uD1
whu.z0/

@�hu.thu/

@ .z0/

.yhu � �hu.thu//

�2
D 0 (16)

(Carota and Parmigiani 2002) where

whu.z0/ D phu.
z0�zhu

b /
PK

hD1
Pnh

uD1 phu.
z0�zhu

b /
;

phu.:/ being a suitable kernel, for example, we choose

phu.
z0 � zhu

b
/ D 1p

2	b
exp.

�1
2
.
z0 � zhu

b
/2/

with a suitable bandwidth b.
Next, because �ij.tij/ D x0

ij.tij/ˇ C  .zij/ by (12), it is convenient to express the
SQL estimating equation for  .zij/ (16), in terms of known ˇ, as

O .zij/ D Oyij � Ox0
ij.tij/ˇ; (17)

where

Oyij D
KX

hD1

nhX

uD1
whu.zij/yhu and Ox0

ij.tij/ D
KX

hD1

nhX

uD1
whu.zij/x

0
h.thu/

with
PK

hD1
Pnh

uD1 whu.zij/ D 1.

2.2 SGQL Estimation of ˇ

Notice that when the nonparametric function  .zij/ is replaced in the linear
model (12) with its estimate O .zij/ from (17) for known ˇ, one obtains

yij D x0
ij.tij/ˇ C O .zij/C ��

ij .tij/

D x0
ij.tij/ˇ C Oyij � Ox0

ij.tij/ˇ C ��
ij .tij/ (18)
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where ��
ij .tij/ is a new error component different from that of (12). Now for all

elements of the ith individual we use (18) and write

yi � Oyi D .Xi � OXi/ˇ C ��
i ; (19)

where by using the formulas for Oyij and Ox0
ij.tij/ from (17), one writes

Oyi D
KX

hD1
ŒWh.zi1; : : : ; zini/�yh

OXi D
KX

hD1
ŒWh.zi1; : : : ; zini/�Xh (20)

with Wh.zi1; : : : ; zini / as the kernel weights matrix defined as

Wh.zi1; : : : ; zini / D

0

B
B
B
B
BB
@

w0
h.zi1/
:::

w0
h.zij/
:::

w0
h.zini/

1

C
C
C
C
CC
A

W ni � nh (21)

where w0
h.zij/ D Œwh1.zij/; : : : ;whu.zij/; : : : ;whnh.zij/� with whu.z/ at a given value z

as given in (16), and

Xh D

0

B
B
B
BB
B
@

x0
h.th1/
:::

x0
h.thu/
:::

x0
h.thnh/

1

C
C
C
CC
C
A

W nh � p (22)

Notice that ��
i in (19) does not have the same mean vector and covariance matrix

as for �i in (13). Suppose that

��
i D EŒ��

i � and ˙�
i D covŒ��

i �:

It then follows from (19) that

EŒYi � OYi� D ŒXi � OXi�ˇ C ��
i ; covŒYi � OYi� D ˙�

i .�/: (23)

Consequently, following Sutradhar (2003, Sect. 3), Warriyar and Sutradhar (2014)
have suggested to solve the so-called fully standardized SGQL estimating equation
for ˇ given by
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KX

iD1

@Œ.Xi � OXi/ˇ C ��
i �

0

@̌
Œ˙�

i �
�1 f.yi � Oyi/ � .Xi � OXi/ˇ � ��

i g D 0; (24)

which yields a closed form formula for ˇ estimator as

Ǒ
FSSGQL D

"
KX

iD1
.Xi � OXi/

0 .˙�
i /

�1 .Xi � OXi/

#�1

�
KX

iD1
.Xi � OXi/

0 .˙�
i /

�1 .yi � Oyi � O��
i /; (25)

where O��
i is obtained by using O i for i involved in the formula for ��

i given below.
To compute the formula for ��

i , we go back to (23) and write

��
i D EŒYi � OYi� � ŒXi � OXi�ˇ; (26)

where by (20) one writes

EŒ OYi� D
KX

hD1
Wh.zi1; : : : ; zini/EŒYh�

D
KX

hD1
Wh.zi1; : : : ; zini/ŒXhˇ C  h�; by (13)

D OXiˇ C
KX

hD1
Wh.zi1; : : : ; zini/ h; (27)

by (20), where  h D Œ .zh1/; : : : ;  .zhu/; : : : ;  .zhnh/�
0, yielding

EŒYi � OYi� D ŒXi � OXi�ˇ C  i �
KX

hD1
Wh.zi1; : : : ; zini/ h; (28)

that is,

��
i D EŒ��

i � D  i �
KX

hD1
Wh.zi1; : : : ; zini/ h

D Œ��
i1; : : : ; �

�
ij ; : : : ; �

�
ini
�0; (29)
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with

��
ij D  i.zij/�

KX

hD1

nhX

uD1
whu.zij/ h.zhu/; (30)

which is free from ˇ.
As far as the formula for˙�

i D covŒYi � OY� in (25) is concerned, we first observe
from (15) that

cov.Yi/ D ˙i.�/ D A
� 1
2

i Ci.�/A
� 1
2

i :

Next because OYi D PK
hD1ŒWh.zi1; : : : ; zini/�Yh, it then follows that

˙�
i D covŒ��

i �

D cov.Yi � OYi/

D cov.Yi/C cov. OYi/� 2 cov.Yi; OYi/

D ˙i.�/C
"

KX

hD1
Wh.zi1; : : : ; zini /˙h.�/W

0
h.zi1; : : : ; zini /

#

�2Wi.zi1; : : : ; zini /˙i.�/: (31)

2.3 Moment Estimation of 


For n D max1�i�Kni, and

ıiu D
(
1; if u � ni

0; if ni < u � n;

the auto-correlation matrix Ci.�/ (15) is estimated by using the estimates of lag
correlation �` given by

b�` D
PK

iD1
Pn�`

uD1 ıiuıi;uC` Qyiu Qyi;uCl=
PK

iD1
Pn�`

uD1 ıiuıi;uC`
PK

iD1
Pni

uD1 ıiu Qy2iu=
PK

iD1
Pni

uD1 ıiu

; ` D 1; 2; : : : ; n � 1
(32)

(Sutradhar 2011, Sect. 2.2.2) with Qyiu D yiu�x0
iu

Ǒ� O .ziu/

O� , where Ǒ is the SGQL

estimate of ˇ as given in the last section, and O .z/ is the SQL estimate of  .z/
as given in Sect. 2.1, and �2 for the Ai matrix in (15) is estimated as

O�2 D
PK

iD1
Pni

jD1.yij � x0
ij

Ǒ � O .zij//
2

PK
iD1 ni

: (33)
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For detailed finite sample performances of the aforementioned estimators dis-
cussed in Sects. 2.1–2.3, we refer to Warriyar and Sutradhar (2014).

3 Semi-parametric Longitudinal Models for Count Data
and Inferences

It is understood that the Poisson distribution for count data belongs to the exponen-
tial family. Thus, unlike the additive model (12)–(13) in linear model setup, one may
model the means and hence variances of the repeated count data by using the so-
called log linear relationship. Thus, for all j D 1; : : : ; ni, marginally yij is a Poisson
count with mean and variance given by

EŒYijjxij; zij� D �ij.ˇ; xij;  .zij// D exp.x0
ij.tij/ˇ C  .zij//

varŒYijjxij; zij� D �i;jj.ˇ; xij;  .zij// D �ij.ˇ; xij;  .zij//

D exp.x0
ij.tij/ˇ C  .zij//: (34)

As far as the correlation model for the repeated counts is concerned, following
Sutradhar (2010, Eq. (14)) (see also Sutradhar 2011, Chap. 6), we assume that for
j D 2; : : : ; ni, the repeated responses satisfy the lag 1 dynamic model given by

yij D � � yi;j�1 C dij �
yi;j�1X

sD1
bs.�/C dij; (35)

where PrŒbs.�/ D 1� D � and PrŒbs.�/ D 0� D 1 � �, with � as the correlation
index parameter; and yi1 � Poisson Œ�i1.ˇ; xi1;  .zi1//�, and

dij � Poisson
�
�ij.ˇ; xij;  .zij//� ��i;j�1.ˇ; xi;j�1;  .zi;j�1//

	

for j D 2; : : : ; ni. Also, dij and yi;j�1 are assumed to be independent. It then follows
from (35) that for j < k, the covariance between yij and yik has the formula

cov.Yij;Yikjxij; xik;  .zij/;  .zik//

D E.YijYikjxij; xik;  .zij/;  .zik// � E.Yijjxij;  .zij//E.Yikjxik;  .zik//

D EYijYijEYi;jC1
: : :EYi;k�1EŒYikjyi;k�1; yi;k�2; : : : ; yi;jC1�

��ij.ˇ; xij;  .zij//�ik.ˇ; xik;  .zik//

D �i;jk.ˇ; xij; xik;  .zij/;  .zik/; �/

D �k�j�ij.ˇ; xij;  .zij//; (36)
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yielding the correlations between yij and yik as

corr.Yij;Yikjxij; xik;  .zij/;  .zik// D
8
<

:

�k�j
q

�ij.ˇ;xijI .zij//

�ik.ˇ;xikI .zik//
j < k

�j�k
q

�ik.ˇ;xikI .zik//

�ij.ˇ;xijI .zij//
j > k:

(37)

Remark that because the so-called error count dij in model (35) has the Poisson
distribution with mean �ij.�/ � ��i;j�1.�/, it then follows that the correlation index
parameter � must satisfy the restriction

0 < � < min

�
1;

�ij.�/
�i;j�1.�/

�
; for j D 2; : : : ; ni:

Thus, the dynamic model (35) allows only positive correlations between the
repeated responses, and the exact correlation between any two responses can be
computed by using the formula in (37).

Further remark that this formula in (37) demonstrates that the correlation values
for an individual i can be quite different than those of another individual. This makes
the use of the common and constant UNS correlation matrix R in (10) unsuitable for
the ith individual.

As far as the inference is concerned, similar to the SQL and SGQL approaches
discussed in Sects. 2.1 and 2.2, recently Sutradhar et al. (2015) have extended
these estimation approaches to the repeated count data setup, and the authors have
also examined their asymptotic performances analytically and their small sample
performances through an intensive simulation study. In this section, we provide
these estimation approaches in brief as follows.

3.1 SQL Estimation of the Non-parametric Function  .zij/

Similar to (16) under the linear model, one may solve the SQL (semi-parametric
quasi-likelihood) estimating equation for  .zij/jzijDz0 as

KX

iD1

niX

jD1
wij.z0/

@�ij

@ .z0/
.
yij � �ij

�i;jj
/ D 0; (38)

(Carota and Parmigiani 2002) but unlike (16), we now have �ij � �ij.ˇ; xij;
 .zij// D exp.x0

ij.tij/ˇ C  .zij// as in (34), and �i;jj � �i;jj.ˇ; xijI .zij// D �ij.
The formula for the kernel weight is the same as in (16), that is,

wij.z0/ D pij.
z0 � zij

b
/=

KX

iD1

niX

jD1
pij.

z0 � zij

b
/; (39)

with pij as the suitable kernel density.
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Next because for this Poisson case one obtains

@�ij.ˇ; xij;  .z0//

@ .z0/
D
@
h
exp.x0

ij.tij/ˇ C  .z0//
i

@ .z0/
D exp.x0

ij.tij/ˇ C  .z0//;

the SQL estimating equation (38) reduces to

KX

iD1

niX

jD1
wij.z0/Œyij � exp.x0

ij.tij/ˇ C  .z0//� D 0: (40)

Consequently, one obtains

exp. O .ˇ; z0// D
0

@
KX

iD1

niX

jD1
wij.z0/yij

1

A

,2

4
KX

iD1

niX

jD1
wij.z0/ expfx0

ij.tij/ˇg
3

5 ;

(41)
yielding a closed form for the estimate of the non-parametric function given by

O .ˇ; z0/ D log

 PK
iD1

Pni
jD1 wij.z0/yij

PK
iD1
Pni

jD1 wij.z0/expŒx0
ij.tij/ˇ�

!

: (42)

Under some mild conditions on the primary design covariates, Sutradhar et al.
(2015) have shown that

O .ˇ; zij/ D  .zij/C op.1/; (43)

justifying that O .ˇ; zij/ given by (42) is a consistent estimator of  .zij/.

3.2 SGQL Estimation of ˇ

In Sect. 3.1, the non-parametric function  .zij/ was estimated by O .ˇ; zij/ (42) as
a function of ˇ. We may now replace the  .zij/ function involved in the original
mean and variance of the responses given in (34), and in the covariance of the
repeated count responses given in (36), by this estimate O .ˇ; zij/, and re-express
these moments as

Q�ij.ˇ; xij; O .ˇ; zij// D EŒYijjxij; O .�/� D expŒx0
ij.tij/ˇ C O .ˇ; zij/�

Q�i;jj.ˇ; xij; O .ˇ; zij// D Q�ij.ˇ; xij; O .ˇ; zij// D expŒx0
ij.tij/ˇ C O .ˇ; zij/�; and

Q�i;jk.ˇ; �; xij; O .ˇ; zij// D �k�j Q�ij.ˇ; xij; O .ˇ; zij//; for j < k; (44)
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respectively. Now for notational simplicity, in (44), we use Q�ij.ˇ; O .ˇ//
for Q�ij.ˇ; xij; O .ˇ; zij//, and Q�i;jk.ˇ; �; O .ˇ// for Q�i;jk.ˇ; �; xij; O .ˇ; zij//, and
construct the mean vector and covariance matrix of the response vector
yi D .yi1; : : : ; yij; : : : ; yini/

0, as

Q�i.ˇ; O .ˇ// D EŒYi� D Œ Q�i1.ˇ; O .ˇ//; : : : ; Q�ij.ˇ; O .ˇ//; : : : ; Q�ini.ˇ; O .ˇ//�0 W ni � 1

Q̇i.ˇ; �; O .ˇ// D covŒYi� D .Q�i;jk.ˇ; �; O .ˇ/// W ni � ni: (45)

One may then follow Sutradhar (2003, 2010), for example, and construct the GQL
(generalized quasi-likelihood) estimating equation for ˇ as

KX

iD1

@Œ Q�i.ˇ; O .ˇ//�0
@̌

Œ Q̇ i.ˇ; �; O .ˇ//��1 Œyi � Q�i.ˇ; O .ˇ//� D 0; (46)

where

@Œ Q�i.ˇ; O .ˇ//�0
@̌

D @. Q�i1.ˇ; O .ˇ//; : : : ; Q�ij.ˇ; O .ˇ//; : : : ; Q�ini .ˇ;
O .ˇ///

@̌
;

with

@ Q�ij.ˇ; O .ˇ//
@̌

D @

@̌



expŒx0

ij.tij/ˇ C O .ˇ; zij/�
�

D Q�ij.ˇ; O .ˇ//
�

xij.tij/C @

@̌
O .ˇ; zij/

�

D Q�ij.ˇ; O .ˇ//
"

xij.tij/

�
PK

`D1
Pn`

uD1 w`u.zij/ expŒx0̀
u.t`u/ˇ�x`u.t`u/PK

`D1
Pn`

uD1 w`u.zij/ expŒx0̀
u.t`u/ˇ�

#

: (47)

Let Ǒ
SGQL be the SGQL estimator of ˇ obtained as a solution of the SGQL

estimating equation (46). For true ˇ, define

NfK.ˇ/ D 1

K

KX

iD1
fi.ˇ/ D 1

K

KX

iD1

@Œ Q�i.ˇ; O .ˇ//�0
@̌

Œ Q̇ i.ˇ; �; O .ˇ//��1

� Œyi � Q�i.ˇ; O .ˇ//�; (48)

where y1; : : : ; yi; : : : ; yK are independent to each other as they are collected from K
independent individuals, but they are not identically distributed because

Yi � Œ Q�i.ˇ; O .ˇ//; Q̇ i.ˇ; �; O .ˇ//�; (49)
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where the mean vectors and covariance matrices are different for different individu-
als. By (49), it follows from (48) that EŒNfK.ˇ/� D 0. Also it follows that

covŒNfK.ˇ/� D 1

K2

KX

iD1
covŒfi.ˇ/�

D 1

K2

KX

iD1

@Œ Q�i.ˇ; O .ˇ//�0
@̌

Œ Q̇ i.ˇ; �; O .ˇ//��1 @ Q�i.ˇ; O .ˇ//
@̌ 0

D 1

K2

KX

iD1
QVi.ˇ; �/ D 1

K2
V�

K.ˇ; �/: (50)

Next, by applying the Lindeberg-Feller central limit theorem (Amemiya 1985,
Theorem 3.3.6; McDonald 2005, Theorem 2.2), one may show following Sutradhar
et al. (2015) that

lim
K!1

Ǒ
SGQL ! N.ˇ;V��1

K .ˇ; �//; (51)

that is,

jjŒV�
K.ˇ; �/�

1
2 Œ Ǒ

SGQL � ˇ�jj D Op.
p

p/; (52)

where V�
K.ˇ; �/ is given in (50).

3.3 Moment Estimation of Correlation Index Parameter 


Notice from (37) that the lag 1 correlation of the repeated count responses has the
formula

corrŒYi;j�1;Yij� D �

s
�i;j�1.ˇ; xi;j�1;  .zi;j�1//

�ij.ˇ; xij;  .zij//
; (53)

or equivalently,

covŒYi;j�1;Yij� D ��i;j�1.ˇ; xi;j�1;  .zi;j�1//: (54)

Consequently, to develop a moment equation for �, one may construct a moment
estimating equation by equating the average sample covariance with its population
counterpart in (54). Specifically, the moment estimator of � has the formula
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O� D
PK

iD1
Pni

jD2
�
.yij��ij.xij;ˇ; .zij///p

�ij.ˇ;xij; .zij//

� �
.yi;j�1��i;j�1.xi;j�1;ˇ; .zi;j�1///p

�i;j�1.ˇ;xi;j�1; .zi;j�1//

�

PK
iD1.ni � 1/

,PK
iD1

Pni
jD2

�p
�i;j�1.ˇ;xi;j�1; .zi;j�1//p

�ij.ˇ;xi;j; .zi;j//

�

PK
iD1.ni � 1/ : (55)

Next following (44), we replace the  .zij/ function involved in (55) with O .ˇ; zij/

for known ˇ, and re-express the estimator of � from (55) as

OQ� D
PK

iD1
Pni

jD2
�
.yij� Q�ij.xij;ˇ; O .ˇ;zij///p

Q�ij.ˇ;xij; O .ˇ;zij//

� �
.yi;j�1� Q�i;j�1.xi;j�1;ˇ; O .ˇ;zi;j�1///p

Q�i;j�1.ˇ;xi;j�1; O .ˇ;zi;j�1//

�

PK
iD1.ni � 1/

,PK
iD1

Pni
jD2

�p
Q�i;j�1.ˇ;xi;j�1; O .ˇ;zi;j�1//p

Q�ij.ˇ;xi;j; O .zi;j//

�

PK
iD1.ni � 1/ : (56)

Remark that under some mild conditions on the design covariates, one may show
that this OQ� in (56) is consistent (Sutradhar et al. 2015) for �.

4 Semi-parametric Multinomial Dynamic Logit Models
and Inferences

Suppose that yij D .yij1; : : : ; yijc; : : : ; yij;C�1/0 denotes the .C � 1/-dimensional
multinomial response variable (C D 2 being the binary case) for the ith .i D
1; : : : ;K/ at time j .j D 1; : : : ; ni/, and for c D 1; : : : ;C � 1,

y.c/ij D .y.c/ij1 ; : : : ; y.c/ijc ; : : : ; y
.c/
ij;C�1/

0 D .010
c�1; 1; 010

C�1�c/
0 � ıijc (57)

indicates that the multinomial response from the ith individual recorded at time j
belongs to the cth category. For c D C, one writes y.C/ij D ıijC D 01C�1. Note
that in the non-stationary case, that is, when covariates are time dependent, one uses
the time dependent marginal probabilities. Specifically, suppose that at time point
j (j D 1; : : : ; ni), xij D .xij1; : : : ; xij`; : : : ; xij;pC1/0 denotes the .p C 1/-dimensional

covariate vector and ˇc D .ˇc0; ˇc1; : : : ; ˇcp/
0 denotes the effect of xij on y.c/ij for

c D 1; : : : ;C � 1, i D 1; : : : ;K, and all j D 1; : : : ; ni. Further suppose that
zij.j/ is the secondary covariate collected from the ith individual around time j. For
simplicity, we will denote this covariate value by zij. Next, let  .c/.zij/ be a non-
parametric function which influences the jth response of the ith individual to be
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in cth category. In such cases, as an extension of the cross-sectional multinomial
probability model (6) to the longitudinal case, the semi-parametric multinomial
probability at time j D 1, may be expressed as

PŒyi1 D y.c/i1 � D 	.i1/c D
8
<

:

exp.x0
i1ˇcC .c/.zi1//

1CPC�1
gD1 exp.x0

i1ˇgC .g/.zi1//
for c D 1; : : : ;C � 1

1

1CPC�1
gD1 exp.x0

i1ˇgC .g/.zi1//
for c D C;

(58)

and the elements of yi1 D .yi11; : : : ; yi1c; : : : ; yi1;C�1/0 at time j D 1 follow the
multinomial probability distribution given by

PŒyi11; : : : ; yi1c; : : : ; yi1;C�1� D ˘C
cD1	

yi1c
.i1/c: (59)

In (59), yi1C D 1 �PC�1
cD1 yi1c; and 	i1C D 1�PC�1

cD1 	i1c.
Next, for the ith individual, we define the transitional probability from the gth

.g D 1; : : : ;C/ category at time j � 1 to the cth category at time j, given by

�
.c/
ijjj�1.g/ D P



Yij D y.c/ij

ˇ
ˇ
ˇ Yi;j�1 D y.g/i;j�1

�

D

8
ˆ̂<

ˆ̂
:

exp
h
x

0

ijˇcC� 0
cy
.g/
i;j�1C .c/.zij/

i

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vy
.g/
i;j�1C .v/.zij/

i ; for c D 1; : : : ;C � 1

1

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vy
.g/
i;j�1C .v/.zij/

i ; for c D C;
(60)

where �c D .�c1; : : : ; �cv; : : : ; �c;C�1/0 denotes the dynamic dependence parameters.
For further notational convenience, we re-express the conditional probabilities
in (60) as

�
.c/
ijjj�1.g/ D

8
ˆ̂
<

ˆ̂
:

exp
h
x

0

ijˇcC� 0
cıi.j�1/gC .c/.zij/

i

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vıi.j�1/gC .v/.zij/

i ; for c D 1; : : : ;C � 1

1

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vıi.j�1/gC .v/.zij/

i ; for c D C;
(61)

where for j D 2; : : : ; ni, ıi.j�1/g, by (4), has the formula

ıi.j�1/g D
(
Œ010

g�1; 1; 010
C�1�g�

0 for g D 1; : : : ;C � 1
01C�1 for g D C:

Let ˇ D .ˇ0
1; : : : ; ˇ

0
c; : : : ; ˇ

0
C�1/0 W .p C 1/.C � 1/ � 1, and � D .� 0

1; : : : ; �
0
c; : : :,

� 0
C�1/0 W .C � 1/2 � 1. Also let  .z/ D Œ .1/.z/; : : : ;  .c/.z/; : : :,  .C�1/.z/�0

be the .c � 1/ � 1 vector of non-parametric functions. These parameters and the
non-parametric functions are involved in the unconditional mean, variance and
covariances of the responses. More specifically one may show (Loredo-Osti and
Sutradhar 2012) that
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EŒYij� D N	.ij/.ˇ; �/ D . N	.ij/1; : : : ; N	.ij/c; : : : ; N	.ij/.C�1//
0 W .C � 1/ � 1 (62)

D
(
Œ	.i1/1; : : : ; 	.i1/c; : : : ; 	.i1/.C�1/�

0 for j D 1

�.ijjj�1/.C/C �
�.ijjj�1/;M � �.ijjj�1/.C/10

C�1

	 N	i.j�1/ for j D 2; : : : ; ni � 1

varŒYij� D diagŒ N	.ij/1; : : : ; N	.ij/c; : : : ; N	.ij/.C�1/�� N	.ij/ N	 0
.ij/

D .cov.Yijc; Yijk// D .N�i.jj/ck/; c; k D 1; : : : ;C � 1

D Ṅ i.jj/.ˇ; �/; for j D 1; : : : ; ni (63)

covŒYiu; Yij� D ˘
j
sDuC1

�
�.isjs�1/;M � �.isjs�1/.C/1

0
C�1

	
varŒYiu�; for u < j; j D 2; : : : ; ni

D .cov.Yiuc; Yijk// D .N�i.uj/ck/; c; k D 1; : : : ;C � 1

D Ṅ i.uj/.ˇ; �/; (64)

where

�.isjs�1/.C/ D Œ�
.1/

isjs�1.C/; : : : ; �
.c/
isjs�1.C/ : : : ; �

.C�1/
isjs�1.C/�

0 D 	.is/ W .C � 1/ � 1

�.isjs�1/;M D

0

B
BB
B
B
B
B
@

�
.1/

isjs�1.1/ � � � �.1/isjs�1.g/ � � � �.1/isjs�1.C � 1/

:::
:::

:::
:::

:::

�
.c/
isjs�1.1/ � � � �.c/isjs�1.g/ � � � �.c/isjs�1.C � 1/

:::
:::

:::
:::

:::

�
.C�1/
isjs�1.1/ � � � �.C�1/

isjs�1.g/ � � � �.C�1/
isjs�1.C � 1/

1

C
CC
C
C
C
C
A

W .C � 1/ � .C � 1/:

It is of importance to estimate the vector of non-parametric function  .z/ consis-
tently, for the consistent estimation of the main parameters ˇ and � . Note that these
functions and parameter estimates are needed to understand the aforementioned
basic properties including the pair-wise correlations of the multinomial responses
in the present semi-parametric setup. Semi-parametric conditional quasi-likelihood
and semi-parametric likelihood methods are discussed in the following subsections
for the estimation of the desired non-parametric functions and the parameters
involved in the specified regression functions.

4.1 Semi-parametric Weighted Likelihood Estimation of the
Non-parametric Functions .c/.z/ for c D 1; : : : ;C � 1

If the non-parametric functions .c/.z/ in (58) and (61) were known, one would then
write the likelihood function for ˇ and � as

L.ˇ; �/ D ˘K
iD1

h
f .yi1/˘

ni
jD2f .yijjyi;j�1/

i

D �
˘K

iD1f .yi1/
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� ˘K
iD1˘

ni
jD2˘

C
gD1

h
f .yijjy.g/i;j�1/

i

D c�
0

h
˘K

iD1˘C
cD1	

yi1c
.i1/c

i

� ˘K
iD1˘

ni
jD2˘

C
cD1˘C

gD1
n
�
.c/
ijjj�1.g/

oyijc

; (65)

where c�
0 is the normalizing constant free from any parameters, and the formulas

for 	.i1/c and �.c/ijjj�1.g/ are given in (58) and (61), respectively. However, as the non-

parametric functions  .c/.z/ are unknown, in terms of ˇ and � , one may use the
kernel weights based likelihood function for their estimation. For the estimation of
 .c/.z0/ for a selected value z0 for the secondary covariate zij, we first write this
weighted likelihood function as

L. .z0/jˇ; �/ D ˘K
iD1

h
ff .yi1/gwi1.z0/˘

ni
jD2ff .yijjyi;j�1/gwij.z0/

i

D c�
0

h
˘K

iD1˘C
cD1	

wi1.z0/yi1c
.i1/c

i

� ˘K
iD1˘

ni
jD2˘

C
cD1˘C

gD1
n
�
.c/
ijjj�1.g/

owij.z0/yijc

; (66)

where the kernel weights wij.z0/ have the same formula as in (16), that is,

wij.z0/ D pij.
z0�zij

b /
PK

iD1
Pni

jD1 pij.
z0�zij

b /
(67)

with pij as the kernel density, for example,

pij.
z0 � zij

b
/ D 1p

2	b
exp .

�1
2
.
z0 � zij

b
/2/:

It then follows from (66) that the log likelihood function has the form

Log L. .z0/jˇ; �/ D log c�
0 C

KX

iD1

CX

cD1
wi1.z0/yi1clog 	.i1/c

C
KX

iD1

niX

jD2

CX

cD1

CX

gD1
wij.z0/

h
yijclog �.c/ijjj�1.g/

i
; (68)
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yielding the likelihood estimating equation for  .z0/ as

@Log L. .z0/jˇ; �/
@ .z0/

D
KX

iD1

CX

cD1
wi1.z0/

�
yi1c

	.i1/c

@	.i1/c

@ .z0/

�

C
KX

iD1

niX

jD2

CX

cD1

CX

gD1
wij.z0/

2

4 yijc

�
.c/
ijjj�1.g/

@�
.c/
ijjj�1.g/
@ .z0/

3

5 D 0: (69)

We denote the solution of (69) as O .ˇ; � I z0/.
Let

Q	.i1/c D �
	.i1/c

	
 .c/.z0/D O .c/.ˇ;� Iz0/

Q�.c/ijjj�1.g/ D
h
�
.c/
ijjj�1.g/

i

 .c/.z0/D O .c/.ˇ;� Iz0/

	�
.i1/c D

�
@	.i1/c

@ .z0/

�

 .c/.z0/D O .c/.ˇ;� Iz0/

�
�.c/
ijjj�1.g/ D

2

4
@�

.c/
ijjj�1.g/
@ .z0/

3

5

 .c/.z0/D O .c/.ˇ;� Iz0/
; (70)

for all c D 1; : : : ;C � 1. Use them in (69) and write

f . O .ˇ; � I z0// D 0; (71)

which can be exploited to derive

@ O .c/.ˇ; � I z0/

@̌
and

@ O .c/.ˇ; � I z0/

@�
; (72)

for all c D 1; : : : ;C � 1, for the purpose of the construction of the estimating
equations for ˇ and � as shown in the next two sections.

In (69),

@	.i1/c

@ .c/.z0/
D 	.i1/cŒ1 � 	.i1/c�

@	.i1/c

@ .k/.z0/
D �Œ	.i1/c	.i1/k�; (73)
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yielding

@	.i1/c

@ .z0/
D

0

B
B
B
BB
B
@

�	.i1/1	.i1/c
:::

	.i1/cŒ1 � 	.i1/c�
:::

�	.i1/.C�1/	.i1/c

1

C
C
C
CC
C
A

W .C � 1/ � 1

D �
	.i1/c.ıi.1/c � 	.i1//

	
; (74)

with

ıi.1/c D
�
Œ010

c�1; 1; 010
C�1�c�

0 for c D 1; : : : ;C � 1I i D 1; : : : ;K
01C�1 for c D CI i D 1; : : : ;K:

Similarly, for j D 2; : : : ; ni, it follows from (61) that

@�
.c/
ijjj�1.g/

@ .c/.z0/
D �

.c/
ijjj�1.g/Œ1 � �.c/ijjj�1.g/�

@�
.c/
ijjj�1.g/

@ .k/.z0/
D �Œ�.c/ijjj�1.g/�

.k/
ijjj�1.g/�; (75)

yielding

@�
.c/
ijjj�1.g/
@ .z0/

D

0

B
B
B
BB
B
B
@

��.1/ijjj�1.g/�
.c/
ijjj�1.g/

:::

�
.c/
ijjj�1.g/Œ1 � �.c/ijjj�1.g/�

:::

��.C�1/
ijjj�1 .g/�

.c/
ijjj�1.g/

1

C
C
C
CC
C
C
A

W .C � 1/ � 1

D
h
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

i
; (76)

where

�ijjj�1.g/ D Œ�
.1/

ijjj�1.g/; : : : ; �
.c/
ijjj�1.g/; : : : ; �

.C�1/
ijjj�1 .g/�

0:

Thus, the semi-parametric likelihood equation in (69) has the computational formula

@Log L. .z0/jˇ; �/
@ .z0/

D
KX

iD1

CX

cD1
wi1.z0/

yi1c

	.i1/c

�˚
	.i1/c.ıi.1/c � 	.i1//

�	
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C
KX

iD1

niX

jD2

CX

cD1

CX

gD1
wij.z0/

yijc

�
.c/
ijjj�1.g/

hn
�
.c/
ijjj�1.g/.ıi.j�1/c��ijjj�1.g//

oi
D0: (77)

For given ˇ and � , the likelihood equations in (77) may be solved iteratively by
using the iterative equations for  .z0/ given by

O .z0/.r C 1/ D O .z0/.r/ �
"�
@2Log L. .z0/jˇ; �/
@ 0.z0/@ .z0/

��1

� @Log L. .z0/jˇ; �/
@ .z0/

�

j .z0/D O .z0/.r/
I .C � 1/ � 1; (78)

where the formula for the second order derivative matrix @2Log L. .z0/jˇ;�/
@ .z0/

0@ .z0/
may be

derived by taking the derivative of the .C �1/�1 vector with respect to  0.z0/. The
exact derivative has a complicated formula. We provide an approximation first and
then give the exact formula for the sake of completeness.

An approximation for @2Log L. .z0/jˇ;�/
@ .z0/

0@ .z0/
based on iteration principle:

In this approach, one assumes that  .z0/ in the derivatives in (69), that is,  .z0/

involved in @	.i1/c
@ .z0/

and
@�
.c/
ijjj�1.g/

@ .z0/
are known from a previous iteration, and then take

the derivative of @Log L. .z0/jˇ;�/
@ .z0/

in (69) or (77), with respect to  0.z0/. This provides
a simpler formula for the second order derivative as

@2Log L. .z0/jˇ; �/
@ .z0/

0@ .z0/
D �

KX

iD1

CX

cD1

yi1c

Œ	.i1/c�2

�˚
	.i1/c.ıi.1/c � 	.i1//

�	 �˚
	.i1/c.ıi.1/c � 	.i1//

�	0

�
KX

iD1

niX

jD2

CX

cD1

CX

gD1

2

4 yijc

Œ�
.c/
ijjj�1

.g/�2

hn
�
.c/
ijjj�1

.g/.ıi.j�1/c � �ijjj�1.g//
oi

�
hn
�
.c/
ijjj�1

.g/.ıi.j�1/c � �ijjj�1.g//
oi0

3

5 W .C � 1/� .C � 1/: (79)

Exact formula for @2Log L. .z0/jˇ;�/
@ 0.z0/@ .z0/

:
Here it is assumed that  .z0/ in the derivatives in (69), that is,  .z0/ involved in

@	.i1/c
@ .z0/

and
@�
.c/
ijjj�1.g/

@ .z0/
are unknown, implying that the second order derivatives of these

quantities cannot be zero. Hence, in stead of (79), one obtains

@2Log L. .z0/jˇ; �/
@ 0.z0/@ .z0/

D �
KX

iD1

CX

cD1

yi1c

Œ	.i1/c�2

�˚
	.i1/c.ıi.1/c � 	.i1//

�	 �˚
	.i1/c.ıi.1/c � 	.i1//

�	0

C
KX

iD1

CX

cD1

yi1c

	.i1/c

@

@ 0.z0/

�˚
	.i1/c.ıi.1/c � 	.i1//

�	
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�
KX

iD1

niX

jD2

CX

cD1

CX

gD1

2

4 yijc

Œ�
.c/
ijjj�1.g/�

2

hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi

�
hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi0

3

5

C
KX

iD1

niX

jD2

CX

cD1

CX

gD1

yijc

�
.c/
ijjj�1.g/

@

@ 0.z0/

hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi
;

(80)

where @
@ 0.z0/

�˚
	.i1/c.ıi.1/c � 	.i1//

�	
and @

@ 0.z0/

hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi

are computed as follows.

Computation of @
@ 0.z0/

�˚
	.i1/c.ıi.1/c � 	.i1//

�	
:

By (74),

@

@ 0.z0/
�˚
	.i1/c.ıi.1/c � 	.i1//

�	

D @

@ 0.z0/

2

66
6
6
6
6
4

0

BB
B
B
B
B
@

�	.i1/1	.i1/c
:::

	.i1/cŒ1 � 	.i1/c�
:::

�	.i1/.C�1/	.i1/c

1

CC
C
C
C
C
A

3

77
7
7
7
7
5

D

0

B
B
B
B
BB
B
B
B
BB
B
@

h
�	.i1/1	.i1/c

n
ıi.1/c C ıi.1/1 � 2	.i1/

�0oi

h
�	.i1/2	.i1/c

n
ıi.1/c C ıi.1/2 � 2	.i1/

�0oi

:::h
	.i1/c.1 � 2	.i1/c/

n
ıi.1/c � 	.i1/

�0oi

:::h
�	.i1/.C�1/	.i1/c

n
ıi.1/c C ıi.1/.C�1/ � 2	.i1/

�0oi

1

C
C
C
C
CC
C
C
C
CC
C
A

: (81)

Computation of @
@ 0.z0/

hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi
:

By (76),

@

@ 0.z0/

hn
�
.c/
ijjj�1.g/.ıi.j�1/c � �ijjj�1.g//

oi
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D @

@ 0.z0/

2

6
6
6
6
6
66
4

0

B
B
B
B
B
BB
@

��.1/ijjj�1.g/�
.c/
ijjj�1.g/

:::

�
.c/
ijjj�1.g/Œ1 � �.c/ijjj�1.g/�

:::

��.C�1/
ijjj�1 .g/�

.c/
ijjj�1.g/

1

C
C
C
C
C
CC
A

3

7
7
7
7
7
77
5

D

0

B
B
B
BB
B
B
B
BB
B
B
@

h
��.1/ijjj�1.g/�

.c/
ijjj�1.g/

n
ıi.j�1/c C ıi.j�1/1 � 2�ijjj�1.g/

�0oi

h
��.2/ijjj�1.g/�

.c/
ijjj�1.g/

n
ıi.j�1/c C ıi.j�1/2 � 2�ijjj�1.g/

�0oi

:::h
�
.c/
ijjj�1.g/.1� 2�

.c/
ijjj�1.g//

n
ıi.j�1/c � �ijjj�1.g/

�0oi

:::h
��.C�1/

ijjj�1 .g/�
.c/
ijjj�1.g/

n
ıi.j�1/c C ıi.j�1/.C�1/ � 2�ijjj�1.g/

�0oi

1

C
C
C
CC
C
C
C
CC
C
C
A

: (82)

4.2 Likelihood Estimation for the Regression Effects ˇ

Recall from (70) and by (58) write

Q	.i1/c D �
	.i1/c

	
 .c/.zi1/D O .c/.ˇ;� Izi1/

D
8
<

:

exp.x0
i1ˇcC O .c/.ˇ;� Izi1//

1CPC�1
gD1 exp.x0

i1ˇgC O .g/.ˇ;� Izi1//
for c D 1; : : : ;C � 1

1

1CPC�1
gD1 exp.x0

i1ˇgC O .g/.ˇ;� Izi1//
for c D C;

(83)

Similarly, by (70) and (61), one writes

Q�.c/ijjj�1.g/ D
h
�
.c/
ijjj�1.g/

i

 .c/.zij/D O .c/.ˇ;� Izij/

D

8
ˆ̂<

ˆ̂
:

exp
h
x

0

ijˇcC� 0
cıi.j�1/gC O .c/.ˇ;� Izij/

i

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vıi.j�1/gC O .v/.ˇ;� Izij/

i ; for c D 1; : : : ;C � 1

1

1CPC�1
vD1 exp

h
x

0

ijˇvC� 0
vıi.j�1/gC O .v/.ˇ;� Izij/

i ; for c D C;
(84)
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It then follows from (65) that for known O .c/.ˇ; � I zij/, the likelihood function for ˇ
and � has the new formula given by

L.ˇ; �/ D ˘K
iD1

h
f .yi1/˘

ni
jD2f .yijjyi;j�1/

i

D c�
0

h
˘K

iD1˘C
cD1 Q	yi1c

.i1/c

i

� ˘K
iD1˘

ni
jD2˘

C
cD1˘C

gD1
n

Q�.c/ijjj�1.g/
oyijc

; (85)

yielding the likelihood equation for ˇ as

@Log L.ˇ; �/

@̌
D

KX

iD1

CX

cD1

yi1c

Q	.i1/c
@ Q	.i1/c
@̌

C
KX

iD1

niX

jD2

CX

cD1

CX

gD1

2

4 yijc

Q�.c/ijjj�1.g/

@ Q�.c/ijjj�1.g/
@̌

3

5 D 0; (86)

where by (83)

@	.i1/c

@̌ c
D Q	.i1/cŒ1 � Q	.i1/c�

"

xi1 C @ O .c/.ˇ; � I zi1/

@̌ c

#

@ Q	.i1/c
@̌ k

D �Œ Q	.i1/c Q	.i1/k�
"

xi1 C @ O .c/.ˇ; � I zi1/

@̌ k

#

; (87)

yielding

@ Q	.i1/c
@̌

D

0

BB
B
B
B
B
@

� Q	.i1/1 Q	.i1/c
:::

Q	.i1/cŒ1 � Q	.i1/c�
:::

� Q	.i1/.C�1/	.i1/c

1

CC
C
C
C
C
A

˝ xi1

C

0

B
B
B
B
BB
@

� Q	.i1/1 Q	.i1/cdc1.1/
:::

Q	.i1/cŒ1 � Q	.i1/c�dcc.1/
:::

� Q	.i1/.C�1/	.i1/cdc;C�1.1/

1

C
C
C
C
CC
A

W .C � 1/.p C 1/ � 1 (88)

where for a given c, dck.1/ is the .p C 1/� 1 derivative vector defined as @ O .c/.ˇ;� Izi1/

@ˇk
for all k D 1; : : : ; c; : : : ;C � 1. These vectors are derived from (71) to (72). The
computational formulas are skipped for convenience.
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Next, for j D 2; : : : ; ni, it follows from (84) that

@ Q�.c/ijjj�1.g/
@̌ c

D Q�.c/ijjj�1.g/Œ1� Q�.c/ijjj�1.g/�
"

xij C C@ O .c/.ˇ; � I zij/

@̌ c

#

@ Q�.c/ijjj�1.g/
@̌ k

D �Œ Q�.c/ijjj�1.g/ Q�.k/ijjj�1.g/�
"

xij C C@ O .c/.ˇ; � I zij/

@̌ k

#

; (89)

yielding

@ Q�.c/ijjj�1.g/
@̌

D

0

B
BB
B
B
B
B
@

�Q�.1/ijjj�1.g/ Q�.c/ijjj�1.g/
:::

Q�.c/ijjj�1.g/Œ1 � Q�.c/ijjj�1.g/�
:::

�Q�.C�1/
ijjj�1 .g/ Q�.c/ijjj�1.g/

1

C
CC
C
C
C
C
A

˝ xij

C

0

BB
B
B
B
B
B
@

�Q�.1/ijjj�1.g/ Q�.c/ijjj�1.g/dc1.j/
:::

Q�.c/ijjj�1.g/Œ1 � Q�.c/ijjj�1.g/�dcc.j/
:::

�Q�.C�1/
ijjj�1 .g/ Q�.c/ijjj�1.g/dc;C�1.j/

1

CC
C
C
C
C
C
A

W .C � 1/.p C 1/ � 1 (90)

where for a given c, following (71)–(72), dck.j/.j D 2; : : : ; ni/ is the .p C 1/ � 1

derivative vector defined as @ O .c/.ˇ;� Izij/

@ˇk
for all k D 1; : : : ; c; : : : ;C � 1.

By using (90) and (88) into (86), for known � , one may then solve this likelihood
estimating equation (86) for ˇ by applying the iterative equation

Ǒ.rC1/ D Ǒ.r/�
"�
@2Log L.ˇ; �/

@̌ 0@̌

��1
@Log L.ˇ; �M/

@̌

#

jˇD Ǒ.r/
I .C�1/.pC1/�1;

(91)
where the formula for the second order derivative matrix @2Log L.ˇ;�/

@ˇ0@ˇ
may be derived

by taking the derivative of the .C�1/.pC1/�1 vector with respect to ˇ0. The exact
derivative has a complicated formula. Similar to (79), we provide an approximation
as follows.
An approximation for @2Log L.ˇ;�/

@ˇ0@ˇ
based on iteration principle:

In this approach, one assumes that ˇ in the derivatives in (86), that is, ˇ involved

in
@ Q	.i1/c
@ˇ

and
@Q�.c/ijjj�1.g/

@ˇ
are known from a previous iteration, and then take the

derivative of @Log L.ˇ;�/
@ˇ

in (86) or (91), with respect to ˇ0. This provides a simpler
formula for the second order derivative as
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@2Log L.ˇ; �/
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D �
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KX
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niX

jD2
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gD1

2
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4
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@̌

3

5

�
2

4
@ Q�.c/ijjj�1.g/

@̌

3

5

03

5 W .J � 1/.p C 1/ � .C � 1/.p C 1/:(92)

4.3 Likelihood Estimation for the Dynamic Dependence
Parameters �

Consider �� as

�� D .� 0
1; : : : ; �

0
c; : : : ; �

0
C�1/0 W .C � 1/2 � 1I with �c D .�c1; : : : ; �ch; : : : ; �c;C�1/0

(93)
as the .C � 1/ � 1 vector of dynamic dependence parameters involved in the
conditional multinomial logit function in (84). Similar to (89), one obtains

@ Q�.h/ijjj�1.g/
@�c

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂̂
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Q�.c/ijjj�1.g/Œ1 � Q�.c/ijjj�1.g/�
h
ıi.j�1/g C C @ O .c/.ˇ;� Izij/

@�c

i

for h D cI h; c D 1; : : : ;C � 1

�Q�.c/ijjj�1.g/ Q�.h/ijjj�1.g/
h
ıi.j�1/g C C @ O .h/.ˇ;� Izij/

@�c

i

for h ¤ cI h; c D 1; : : : ;C � 1

�Q�.c/ijjj�1.g/ Q�.C/ijjj�1.g/
h
ıi.j�1/g C C @ O .h/.ˇ;� Izij/

@�c

i

for h D CI c D 1; : : : ;C � 1;

(94)

for all g D 1; : : : ; J. Using these derivatives, it follows from the likelihood
function (85) that
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gD1

yijc
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� "
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@�c

#

D 0; (95)

for c D 1; : : : ;C � 1, leading to the estimating equations for the elements of �� D
.� 0
1; : : : ; �

0
c; : : : ; �

0
C�1/0 as

@Log L.ˇ; �/
@�� D

0

B
B
B
B
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B
@

@Log L.ˇ;�/
@�1
:::

@Log L.ˇ;�/
@�c
:::

@Log L.ˇ;�/
@�C�1

1

C
C
C
C
CC
C
A

D 0 W .C � 1/2 � 1: (96)

One may solve this likelihood equation (96) for �� by using the iterative equation

O��.r C 1/ D O��.r/ �
"�
@2Log L.ˇ; �/

@��@��0
��1

@Log L.ˇ; �/

@��

#

j��D O��.r/

; (97)

where the .C � 1/2 � .C � 1/2 second derivative matrix is computed by using the
formulas
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for all c D 1; : : : ;C � 1, and
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(99)

for all c ¤ kI c; k D 1; : : : ;C � 1.

5 Concluding Remarks

The parametric correlation models for repeated binary and count data are dis-
cussed in Sutradhar (2011) and similar parametric correlation models for categor-
ical/multinomial data are provided in Sutradhar (2014). All of these correlation
models are developed based on suitable dynamic relationship among the repeated
responses. In this paper we have extended these correlation models to the longi-
tudinal semi-parametric setup, where the new regression function involved in the
mean and variance of the responses contains a non-parametric function on top
of the traditional pre-specified regression function. This makes the estimation of
the parameters involved in the pre-specified regression function complicated as the
estimate of the non-parametric function contains these parameters. A weighted QL
(WQL) approach is used for the estimation of the non-parametric functions for the
linear and count models, whereas a weighted ML (WML) approach is used for the
multinomial model (binary being the special case). The pre-specified regression
functions involved in the linear and count models are estimated using the GQL
(generalized quasi-likelihood) and MM (method of moments) approaches, whereas
similar parameters involved in the binary and multinomial models are estimated
using the likelihood approach. The estimating equations are developed in details
which may be conveniently used by practitioners to fit longitudinal linear, count,
binary and multinomial data in the semi-parametric setup. The semi-parametric
model developed for the categorical data may also be extended to the ordinal
categorical data setup.
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Penalized Generalized Quasi-Likelihood Based
Variable Selection for Longitudinal Data

Tharshanna Nadarajah, Asokan Mulayath Variyath, and J. Concepción
Loredo-Osti

Abstract High-dimensional longitudinal data with a large number of covariates,
have become increasingly common in many bio-medical applications. The iden-
tification of a sub-model that adequately represents the data is necessary for
easy interpretation. Also, the inclusion of redundant variables may hinder the
accuracy and efficiency of estimation and inference. The joint likelihood function
for longitudinal data is challenging, particularly in correlated discrete data. To
overcome this problem Wang et al. (Biometrics 68:353–360, 2012) introduced
penalized GEEs (PGEEs) with a non-convex penalty function which requires only
the first two marginal moments and a working correlation matrix. This method
works reasonably well in high-dimensional problems; however, there is a risk of
model mis-specification such as variance function and correlation structure and in
such situations, we propose variable selection based on penalized generalized quasi-
likelihood (PGQL). Simulation studies show that when model assumptions are true,
the PGQL method has performance comparable with that of PGEEs. However, when
the model is mis-specified, the PGQL method has clear advantages over the PGEEs
method. We have implemented the proposed method in a real case example.

Keywords GEEs • Generalized quasi-likelihood • Longitudinal data • Variable
selection

1 Introduction

Variable selection is an important topic in statistical modeling, especially for
longitudinal data with high-dimensional covariates, which often arise in large-scale
bio-medical studies. In practice, a large number of covariates,


X1;X2; : : : ;Xp

�
,

are believed to have an influence on the response variable y of interest. However,
some covariates have no influence or a weak influence, and a regression model that
includes all the covariates is not advisable. Excluding the unimportant covariates
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results in a simpler model with better interpretive and predictive value. The problem
of identifying a sub-model that adequately represents the response is generally
referred to as the variable selection problem. For example, in generalized linear
models, the sub-model that relates to the random variable y with the mean denoted
by � to a subset of components of X in the form

g.xI�/ D X.s/ˇ.s/;

where g.�/ is the link function, X.s/ is a subset of the components of X, ˇ.s/ is
a vector of the corresponding regression parameters, and s � .1; 2; : : : ; p/. The
variable selection problem is to find the best subset s such that the sub-model
is optimal according to some criteria that give a good description of the data-
generating mechanism. Statistically speaking, variable selection is a way to reduce
the complexity of the model, in some cases by accepting a small amount of bias to
improve the precision.

Traditionally, variable selection is achieved by evaluating all possible sub-
models via information criteria such as Akaike’s information criterion (AIC; Akaike
1973, 1974), Bayesian information criterion (BIC; Schwarz 1978), and Empirical-
likelihood-based information-theoretic approaches (EAIC, EBIC; Variyath et al.
2010). The sub-model that minimizes the information criteria is then selected
together with the corresponding covariates. For high dimensional data, which
are often encountered in modern applications, the computational burden makes
the direct application of these information criteria infeasible. To overcome the
computational difficulties as well as to achieve some selection stability, regu-
larization methods have drawn substantial attention. There is a large volume of
literature on the penalized likelihood approach for building such models; for
example, least absolute shrinkage and selection operator (LASSO; Tibshirani 1996)
and the smoothly clipped absolute deviation (SCAD; Fan and Li 2001). Both
approaches have many desirable properties. Other related variable selection methods
include penalized empirical likelihood-based variable selection (Nadarajah 2011;
Variyath 2006), adaptive LASSO (Zhang and Lu 2007; Zou 2006), least-square
approximation (Wang and Leng 2007) and the folded concave penalty method (Lv
and Fan 2009). However, the aforementioned variable selection methods are only
applicable to generalized linear regression models.

Variable selection for longitudinal data is quite challenging due to the high
dimensionality of covariates and the correlation within subject. Pan (2001) devel-
oped a quasi-likelihood information criterion (QIC) under the working indepen-
dence model and the naive and robust covariance estimates of estimated regression
coefficients. Cantoni et al. (2005) proposed a generalized version of Mallows’s
Cp suitable for use with both parametric and nonparametric models. This model
selection avoids a stepwise procedure and is based on a measure of predictive error
rather than on significance testing. Wang and Qu (2009) introduced a novel Bayesian
information criterion type model selection procedure based on the quadratic infer-
ence function, which does not require the full likelihood. The implementation of best
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subset type model selection procedures call for the evaluation of all possible sub-
models, which becomes computationally intensive when the number of covariates
is moderately large.

The idea of penalization is very useful in longitudinal modeling, particularly
in high dimensional variable selection. Fan and Li (2004) proposed an innovative
class of variable selection procedures to select significant variables in the semi-
parametric models for continuous responses. Wang et al. (2008) studied regularized
estimation procedures for nonparametric varying coefficient models for continuous
responses that can simultaneously perform variable selection and the estimation
of smooth coefficient functions. Xiao et al. (2009) recently investigated a double-
penalized likelihood approach for selecting important parametric fixed effects
in semiparametric mixed models for continuous responses. Dziak et al. (2009)
discussed the applications of the SCAD-penalized quadratic inference function.
Xu et al. (2010) investigated a GEEs-based shrinkage estimator with an artificial
objective function. Xue et al. (2010) considered the model selection of a generalized
additive model when responses from the same cluster are correlated. However, the
aforementioned methods assume that the dimension of predictors are relatively
small and some of these works are only applicable to continuous responses. The
joint likelihood function for correlated discrete responses does not have a closed
form when the correlations among the repeated measures are taken into account.
To avoid specifying the full joint likelihood for correlated data, Wang et al. (2012)
proposed penalized GEEs with a non-convex penalty function, which requires only
the specification of the first two marginal moments and a working correlation matrix.
This penalized GEEs method is superior to traditional methods because of their
computational efficiency and stability. The true regression coefficients that are zero
are automatically shrunk to zero, and the remaining coefficients are simultaneously
estimated. These methods work reasonably well in high-dimensional problem;
however, the GEEs estimate of ˇ is not necessarily consistent in some situations,
as discussed by Crowder (1995) and Sutradhar and Das (1999). To overcome this
problem, Sutradhar (2003) has proposed a generalization of the quasi-likelihood
(GQL) approach to improve the efficiency of the parameter estimates. Utilizing
this, to avoid the risk of model mis-specifications such as in variance function and
correlation structure, we propose penalized generalized quasi-likelihood (PGQL)
based on stationary lag correlation structure. Our simulation studies show that the
proposed method works well compared to PGEEs.

The remaining part of the paper is organized as follows. In Sect. 2, we discussed
the importance of the GQL approach and compared its performance with the GEEs
approach. In Sect. 3, we introduced PGQL-based variable selection for longitudinal
data. Its theoretical properties and numerical algorithm are also explored in this
section. In Sect. 4, the performance analysis of the proposed method is assessed
based on Monte Carlo simulations. The proposed method is applied to health care
utilization count data in Sect. 5 and our conclusions are given in Sect. 6.
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2 Generalized Quasi-Likelihood

The structure of the longitudinal data-set consists of an outcome random variable yit

and p-dimensional vector of covariates xit that are observed for subjects i D 1; : : : ; k
at a time point t, t D 1; : : : ;mi. For the ith subject, let yi D .yi1; : : : ; yimi/

T be the
response vector and let Xi D .xi1; xi2; : : : ; ximi/

T be the mi � p matrix of covariates.
We assume that the k subjects are independent while the repeated measurements
yit taken on each subject are correlated. The marginal density of yit is assumed to
follow a canonical exponential family (Liang and Zeger 1986) of the form

f .yit/ D exp Œ.yit�it � a.�it// C b.yit; /�; (1)

where �it D g.�it/, g is the known injective function with �it D xitˇ, ˇ is a
p � 1 vector of the regression effects of xit on yit, a.�/, and b.�/ are known
functional forms. The mean and the variance of yit as E.yitjxit/ D a0.�it/ D �it, and
Var.yit/ D a00.�it/ D v.�it/, where  is the unknown over-dispersion parameter
for simplicity we assume  D 1 in this study and v.�/ is a known variance function.

Note that when there is a functional relationship between the mean and variance
of the response, Wedderburn (1974) proposed a quasilikelihood (QL) approach
for independence data which utilize both the mean and the variance in estimating
the regression effects. When there is insufficient information about the data for
us to specify a parametric model, quasi-likelihood is often used. The QL optimal
estimating equation for ˇ is given by

kX

iD1

miX

tD1

�
@a0.�it/

@̌

.yit � a0.�it//

Var.yit/

�
D 0:

In a longitudinal setup, the components of the response vector yi are repeated, which
are likely to be correlated. Let Ci.�/ be the mi � mi true correlation matrix of yi,
i D 1; : : : ; k, which is unknown in practice. Our primary interest is to estimate ˇ
after taking the longitudinal correlation Ci.�/ into account. For known Ci.�/, the
QL estimator of ˇ under (1) is the solution of the score equation

g.yIˇ/ D
kX

iD1
XT

i Ai˙
�1
i .�/.yi � �i/ D 0; (2)

where Ai D diag Œa00.�i1/; : : : ; a00.�it/; : : : ; a00.�imi/�, and ˙i.�/ D A1=2i Ci.�/A
1=2
i

is the true covariance of yi. In real applications the true correlation structure is
often unknown. Ignoring the correlation among the same individual could lead to an
inefficient estimation of the regression coefficients and underestimation of standard
errors.

To overcome these problems, in a seminal paper Liang and Zeger (1986) pro-
posed the generalized estimating equations (GEEs) approach. The GEEs approach
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for estimating the parameter vector of the marginal regression model (1) allows
the user to specify any working correlation structure for the correlation matrix of a
subject’s outcomes yi. They developed the joint probability model by introducing
a “working” correlation structure based on a generalized estimating equations
approach to obtain consistent and efficient estimators for the regression parameter
ˇ, given by

g.ˇ; Ǫ .ˇ// D
kX

iD1
XT

i A1=2i R�1
i . Ǫ /A�1=2

i .yi � �i/ D 0; (3)

where Ai D mi �mi diagonal matrix with Var.�it/ as the ith diagonal element, Ri. Ǫ /
is the “working” correlation matrix of the mi repeated measures used for Ci.�/ in
equation (2). We can choose the form of the mi � mi “working” correlation matrix
Ri for each yi, defined by the .j; j

0

/ element of Ri is the known, hypothesized, or
estimated correlation between yij and yij0 . The working correlation structure can
depend on an unknown s � 1 correlation parameter vector ˛. The observation times
and correlation matrix can differ from subject to subject, but the correlation matrix
Ri.˛/ of the ith subject is fully specified by ˛. For a given working correlation
structure, ˛ can be estimated using a residual-based method of moments. The
GEEs estimate of ˇ is not necessarily consistent in some situations as discussed by
Crowder (1995) and Sutradhar and Das (1999). Crowder (1995) demonstrated that
there may not be any solutions for Ǫ , which misleads the estimation of regression
parameters. Also the GEEs approach gives a consistent estimator of ˇ, but this
estimator in some situations is less efficient than the independence estimating
equation approach under an arbitrary working correlation structure as shown by
Sutradhar and Das (1999).

In such situations, Sutradhar (2003) has proposed a generalization of the quasi-
likelihood (GQL) approach to improve the efficiency of the parameter estimates.
The estimation for ˇ is obtained by solving the GQL estimating equations given by

g.ˇ; �/ D
kX

iD1
XT

i Ai˙
�1
i . O�/.yi � �i/ D 0; (4)

where ˙i. O�/ D A1=2i C�
i .�/A

1=2
i , with C�

i .�/ as the stationary lag-correlation
structure for any of the AR(1), MA(1), or EQC models, and

C�
i .�/ D

2

6
6
66
6
6
6
4

1 �1 �2 : : : �m�1
�1 1 �1 : : : �m�2
: : : : : : :

: : : : : : :

: : : : : : :

�m�1 �m�2 �m�3 : : : 1

3

7
7
77
7
7
7
5

: (5)
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Table 1 A class of stationary correlation models for longitudinal count data
from Sutradhar (2011, Sect. 6.3)

Model Dynamic relationship Mean, variance

and correlations

AR(1) yit D � � yi;t�1 C dit; t D 2; 3; : : : ;m EŒyit� D �i

yi1 � Poi.�i D expŒQXiˇ�/ varŒyit� D �i

dit � Poi.�i.1� �//; t D 2; 3; : : : ;m corrŒyit; yi;tCl� D �l D �l

MA(1) yit D � � di;t�1 C dit; t D 1; 2; : : : ;m EŒyit� D �i

di0 � Poi.�i=.1C �// varŒyit� D �i

dit � Poi.�i=.1C �// t D 1; 2; : : : ;m corrŒyit; yi;tCl� D �l

D �

.1C �/
for l=1

EQC yit D � � yi1 C dit; t D 2; 3; : : : ;m EŒyit� D �i

yi1 � Poi.�i/ varŒyit� D �i

dit � Poi.�i.1� �//; t D 2; 3; : : : ;m corŒyit; yi;tCl� D �l D �

The stationary lag-correlations are estimated by the method of moments introduced
by Sutradhar and Kovacevic (2000) and given by

O�l D

kX

iD1

m�lX

tD1
Qyit Qyi;tCl=k.m � l/

kX

iD1

mX

tD1
Qy2it=km

; (6)

where l D jt � t0j; t ¤ t0; t; t0 D 1; : : : ;m and Qyit is the standardized residual,
defined as Qyit D fyit � �itg=fa00.�it/g1=2. The stationary lag correlation approach
produces consistent as well as more efficient regression estimates as compared to
the independence assumption-based estimating equation approaches (Sutradhar and
Das 1999). We conducted a small simulation study to illustrate the comparison of
GEEs with GQL under a mis-specified correlation structure. A class of stationary
correlation AR(1) model for longitudinal count data are generated as per the
dynamic relationship given in Table 1, which are discussed by McKenzie (1988),
and Sutradhar (2011). The stationary covariates Qxi D .Qxi1; Qxi2/ are generated from
the normal distribution with mean 0, variance 1, and ˇ D .0:3; 0:2/T . For a given
yi;t�1, � � yi;t�1 denotes the commonly called binomial thinning operation discussed
by McKenzie (1988). That is, � � yi;t�1 D Pyi;t�1

jD1 bj.�/ with PrŒbj.�/ D 1� D �,
PrŒbj.�/ D 0� D 1��. For the simulation’s purpose, we consider the number of time
points m D 5; 10 and number of subjects k D 100. We simulated 1000 data sets with
� D 0:49; 0:70 from the above AR(1) stationary dynamic model to generate the data.
Under the working exchangeable and MA(1) correlation structure, the correlation
parameter Ǫ can be estimated by using Eqs. (2.5) and (2.7) from Sutradhar and
Das (1999). The mean of the estimated values of the regression coefficients and the
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Table 2 Coverage probabilities of regression estimates for a true AR(1) correlation
model data under different “working” correlation models (m = 5)

Coverage probabilities
True model Method Parameters Estimates 95 % level 99 % level

AR(1) GEEs (AR(1)) ˇ1 0.3000 0.952 0.987

� D 0:70 (0.070) (0.279) (0.367)

ˇ2 0.2009 0.950 0.988

(0.073) (0.286) (0.375)

GEEs (EQC) ˇ1 0.2997 0.911 0.973

(0.073) (0.247) (0.325)

ˇ2 0.1956 0.902 0.963

(0.076) (0.252) (0.332)

GQL ˇ1 0.3003 0.952 0.986

(0.070) (0.278) (0.366)

ˇ2 0.2007 0.950 0.988

(0.073) (0.284) (0.374)

AR(1) GEEs (AR(1)) ˇ1 0.2989 0.938 0.988

� D 0:49 (0.062) (0.237) (0.319)

ˇ2 0.1956 0.940 0.981

(0.062) (0.243) (0.319)

GEEs (EQC) ˇ1 0.2992 0.899 0.968

(0.061) (0.206) (0.272)

ˇ2 0.1986 0.908 0.980

(0.062) (0.211) (0.278)

GEEs (MA(1)) ˇ1 0.2991 0.897 0.968

(0.062) (0.205) (0.270)

ˇ2 0.1985 0.905 0.981

(0.062) (0.210) (0.276)

GQL ˇ1 0.2989 0.931 0.990

(0.061) (0.235) (0.309)

ˇ2 0.1955 0.936 0.992

(0.061) (0.241) (0.317)

corresponding simulated standard errors in parentheses are reported in Tables 2 and
3 for different m D 5; 10 respectively. We also report the coverage probabilities
as well as the width of the confidence interval for ˇ1 and ˇ2 in parentheses for
confidence levels 0.95 and 0.99. In this study, we generated the data using the AR(1)
correlation structure even though we used all three working correlation structures:
AR(1), EQC, and MA(1) for parameter estimation under GEEs and the results are
compared with the GQL approach.

We see from Tables 2 and 3 that when we use the true working correlation
structure, coverage probabilities based on the GEEs and GQL approaches are
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Table 3 Coverage probabilities of regression estimates for a true AR(1) correlation
model data under different “working” correlation models (m = 10)

Coverage probabilities
True model Method Parameters Estimates 95 % level 99 % level

AR(1) GEEs (AR(1)) ˇ1 0.2961 0.956 0.992

� D 0:70 (0.057) (0.228) (0.299)

ˇ2 0.1978 0.951 0.988

(0.059) (0.232) (0.306)

GEEs (EQC) ˇ1 0.3020 0.811 0.922

(0.059) (0.159) (0.209)

ˇ2 0.1993 0.802 0.919

(0.062) (0.163) (0.214)

GQL ˇ1 0.2960 0.955 0.991

(0.056) (0.226) (0.231)

ˇ2 0.1977 0.944 0.986

(0.057) (0.231) (0.303)

AR(1) GEEs (AR(1)) ˇ1 0.2977 0.945 0.990

� D 0:49 (0.047) (0.181) (0.238)

ˇ2 0.1994 0.937 0.987

(0.048) (0.185) (0.243)

GEEs (EQC) ˇ1 0.2985 0.848 0.952

(0.046) (0.135) (0.178)

ˇ2 0.1975 0.826 0.930

(0.050) (0.138) (0.181)

GEEs (MA(1)) ˇ1 0.3011 0.842 0.945

(0.047) (0.134) (0.177)

ˇ2 0.1985 0.847 0.943

(0.048) (0.137) (0.180)

GQL ˇ1 0.2981 0.954 0.990

(0.044) (0.178) (0.233)

ˇ2 0.2000 0.949 0.988

(0.046) (0.182) (0.239)

almost the same. However, under an arbitrary working correlation structure, the
GQL approach performs better than the GEEs approach. This result shows a loss
of efficiency of the GEEs estimators due to mis-specification of the correlation
structures. We also notice that when m increases GQL has better coverage compared
to GEEs based confidence interval. Rather than using any arbitrary “working
correlation”, it seems much better to define a lag-correlation structure for the
longitudinal responses to estimate the parameters. The correlation structure (5) is
quite robust, and it accommodates all three correlation structures: AR(1), EQC, and
MA(1). Note, however, that the correlation structure is unknown in practice and it
makes more sense to use a stationary lag-correlation structure to represent all the
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three correlation structures in a unique way. We did not consider other cases, for
instance in a true EQC and MA(1) correlation models, since under different working
correlation structure the correlation parameter Ǫ does not exist.

3 Penalized Generalized Quasi-Likelihood (PGQL)

We use the GQL approach discussed in Sect. 2 and the SCAD penalty function (Fan
and Li 2001), to develop the penalized generalized quasi-likelihood for variable
selection in the context of a longitudinal data analysis. The regression parameters
are estimated by solving the penalized generalized estimating functions

U .ˇ/ D g.ˇ; O�.ˇ// � kp0
ı.jˇj/sign.ˇ/ (7)

where g.ˇ; O�.ˇ// D Pk
iD1 XT

i A1=2i C��1
i .�/A�1=2

i .yi � �i/ D 0 be the GQL
estimating equation given in (4), p0

ı.�/ is the first derivative of penalty function,
sign.ˇ/ D .sign.ˇ1/; : : : ; sign.ˇp//

T with sign.t/ D I.t > 0/ � I.t < 0/, and ı is
the tuning parameter. Different penalty functions can be potentially adopted in this
modeling. The HARD thresholding penalty proposed by Fan (1997) and Antoniadis
(1997) is defined as pı.j� j/ D ı2 � .j� j � ı/2 I.j� j < ı/. For a large value of j� j, the
HARD thresholding penalty does not overpenalize. The LASSO penalty function is
the L1-penalty, pı.j� j/ D ıj� j, proposed by Donoho and Johnstone (1994) in the
wavelet setting and extended by Tibshirani (1996) to general likelihood settings.
The penalty function used in ridge regression is the L2 penalty, pı.j� j/ D ıj� j2.
According to Fan and Li (2001), a good penalty function should result in an
estimator with the following three oracle properties:

1. Unbiasedness: To avoid unnecessary modeling bias, the estimator is nearly
unbiased when the true unknown parameter is large.

2. Sparsity: This is a thresholding rule that automatically sets small estimated
coefficients to zero to reduce the model complexity.

3. Continuity: This property eliminates unnecessary variation in the model predic-
tion.

However, the penalty functions L1;L2, and HARD do not satisfy all three oracle
properties. A simple penalty function satisfying all three is the SCAD penalty
proposed by Fan (1997) where the first derivative is

p0
ı.�/ D ı

�
I.� � ı/C .aı � �/C

.a � 1/ı I.� > ı/

�
for some a > 2 and � > 0: (8)

Necessary conditions for the unbiasedness, sparsity, and continuity of the SCAD
penalty have been given by Antoniadis and Fan (2001). This penalty function
involves two unknown parameters, a and ı. As shown in Fig. 1, all the penalty
functions are singular at the origin, satisfying pı.0C/ > 0. This is the necessary
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Fig. 1 Lp, SCAD, and
HARD penalty functions and
their quadratic approximation
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condition for sparsity in variable selection. As shown in Fig. 1, the HARD and
SCAD penalties are constant when ˇ is large, indicating that there is no excessive
penalization for large regression coefficients. However, SCAD is smoother than
HARD and hence yields a continuous estimator.
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By following Fan and Li (2001), we solve (7) to carry out estimation and variable
selection simultaneously and arrive the penalized GQL estimates of the regression
parameters, Ǒ

PGQL, which has properties similar to Ǒ
PGEEs.

3.1 Numerical Algorithm

To implement our method, we need an efficient numerical algorithm. The SCAD
penalty function involves two unknown parameters, ı and a. From a Bayesian point
of view, Fan and Li (2001) suggested setting a D 3:7 and using generalized cross-
validation (GCV; Craven and Wahba 1979) to select the best value of ı, which is
implemented in our simulation studies. We maximize the PGQL with respect to ˇ
given in (7). We used the modified Newton-Raphson algorithm proposed by Fan and
Li (2001), which is numerically stable. At each iteration, we compute the stationary
lag-correlation structure C�.�/ given in (5) for an updated value of ˇ. A step-by-step
numerical algorithm for estimating Ǒ

PGQL for a given value of the tuning parameter
ı is given below.

(a) Set ˇ D ˇ0, and � D 1e � 08.
(b) Let C�.�/ be the estimated value of C�.�/.
(c) The parameter Ǒ

PGQL is computed iteratively and the solution at the .h C 1/th
iteration is given by

Ǒ.hC1/ D Ǒ.h/ C
n
H. Ǒh/C kSı. Ǒh/

o�1 n
U. Ǒh/� kSı. Ǒh/ Ǒh

o
(9)

where

H. Ǒh/ D
kX

iD1
XT

i Ai˙
�1
i . O�/AiXi; ˙i is defined in (4);

Sı. Ǒh/ D diag

"
p0
ı.j Ǒh

1j/
j Ǒh
1 j

; : : : ;
p0
ı.j Ǒh

pj/
j Ǒh

p j

#

:

(d) If min
ˇ
ˇ
ˇ Ǒ.hC1/ � Ǒ.h/ˇˇˇ < � stop the algorithm and report Ǒ.hC1/; otherwise, h D

h C 1 and go to Step 3.

4 Performance Analysis

4.1 Stationary Count Data

A class of stationary correlation models for longitudinal count data are considered
for our simulation studies, which are given in Table 1. For the purpose of the
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simulation, we consider five covariates QXi D .Qxi1 ; : : : ; Qxi5 /, assumed to have
distributions as Qxi1 � Bernoulli(0.5), Qxi2 to Qxi5 from the standard normal with
cor.xi; xj/ D 0:5ji�jj, and ˇ D .0:5; 0:5; 0:6; 0; 0/T . The performance analysis is
carried out based on two measures, viz (a) the median of the relative model error
(MRME) and (b) the average number of correct zero and non-zero coefficients.
The estimated values of the nonzero coefficients and the corresponding simulated
standard errors are also reported. The model error (ME) is defined as ME. Ǒ/ D
Ex

n
�.Xˇ/� �.X Ǒ/

o2
, where �.Xˇ/ D E.yjX/ and computed the relative model

error as RME D ME=MEfull where MEfull is the model error calculated by fitting
the data with the full model and ME is the model error of the selected model. For
the purpose of this simulation, we consider the number of time points m D 5; 10 and
number of subjects k D 100. The entire simulation study was repeated 1000 times
for all the three true models and a summary of the performance measures is given
in Tables 4 and 5. From Tables 4 and 5 we see that, when we use the true working
correlation structure, the MRME of PGEEs is very close to the MRME arrived based
on PGQL. The average number of zero coefficients for PGEEs and PGQL are closer
to the target of two and the nonzero regression parameter estimates are close to the
true values in all cases. This shows, the bias of the non-zero parameter estimates are
approximately zero. However, the proposed PGQL approach has smaller MRME
compared to PGEEs under an arbitrary working correlation structure. Also, we
noticed the average number of zero coefficients for PGQL is closer to the target of
two in all cases but not for PGEEs with a wrong correlation structure. We repeated
the simulation with smaller sample sizes, and the overall conclusions were similar,
so they have not been provided here. These simulations studies clearly shows
that PGQL is performing better compared to PGEEs with mis-specified working
approaches. Note that, in practice, it is very difficult to know the true correlation
structure, so the PGQL approach is preferred for the variable selection as well as
estimation of regression parameters.

4.2 Over-Dispersed Stationary Count Data

In this section, we consider the performance of our method when the model is
misspecified in the context of stationary count data. We generate over-dispersed
stationary count data yit using Q�i D uiexp.Qxiˇ/ on the models which are discussed in
Table 1 with ui a random sample such that E.ui/ D 1 and Var.ui/ D !. Marginally,
we have E.yit/ D Q�i and Var.yit/ D Q�i.1 C Q�i!/. The distribution of u is chosen
to be gamma with parameters .!; 1=!/ with ! being the over-dispersion parameter.
For the purpose of the simulation, we consider five covariates QXi D .Qxi1 ; : : : ; Qxi5 /,
assumed to have distributions as Qxi1 � Bernoulli(0.5), Qxi2 to Qxi5 are generated
from a multivariate normal distribution with a mean of zero, and the correlation
between xi and xj is 0.5ji�jj, ! D 0:25, and ˇ D .0:5; 0:5; 0:6; 0; 0/T. In each
simulation, we generated m D 5 repeated over-dispersed count data for a sample of
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Table 4 Performance measures for count data with stationary covariates (m = 5)

Avg. no. of zero Estimates of nonzero

coefficients coefficients
True model Method MRME% Correct Incorrect Ǒ

1
Ǒ
2

Ǒ
3

AR(1) PGEEs(IND) 86.86 1.25 0.0 0.5002 0.5023 0.5909

� D 0:70 (0.068) (0.075) (0.076)

PGEEs(AR(1)) 65.60 1.85 0.0 0.5029 0.5058 0.5930

(0.066) (0.073) (0.071)

PGEEs(EQC) 69.76 1.84 0.0 0.5030 0.5047 0.5935

(0.066) (0.073) (0.072)

PGQL 66.90 1.85 0.0 0.5034 0.5052 0.5930

(0.066) (0.073) (0.071)

AR(1) PGEEs(AR(1)) 63.60 1.80 0.0 0.5003 0.5025 0.5968

� D 0:49 (0.056) (0.056) (0.057)

PGEEs(MA(1)) 70.57 1.65 0.0 0.5011 0.5021 0.5986

(0.060) (0.061) (0.062)

PGQL 67.64 1.79 0.0 0.5014 0.5029 0.5973

(0.059) (0.060) (0.061)

EQC PGEEs(IND) 77.95 1.23 0.0 0.5059 0.5053 0.5913

� D 0:70 (0.074) (0.076) (0.080)

PGEEs(EQC) 61.43 1.87 0.0 0.5022 0.5066 0.5921

(0.073) (0.076) (0.074)

PGEEs(AR(1)) 63.37 1.70 0.0 0.5025 0.5066 0.5914

(0.074) (0.076) (0.076)

PGQL 62.61 1.87 0.0 0.5026 0.5069 0.5916

(0.073) (0.076) (0.073)

EQC PGEEs(EQC) 65.39 1.82 0.0 0.5023 0.5057 0.5922

� D 0:49 (0.062) (0.065) (0.064)

PGEEs(MA(1)) 75.50 1.59 0.0 0.4996 0.5022 0.5980

(0.065) (0.068) (0.073)

PGQL 66.40 1.82 0.0 0.5017 0.5046 0.5938

(0.064) (0.068) (0.069)

MA(1) PGEEs(IND) 70.29 1.54 0.0 0.5002 0.5006 0.5994

� D 0:67 (0.052) (0.054) (0.054)

PGEEs(MA(1)) 63.56 1.72 0.0 0.5004 0.4993 0.5981

(0.052) (0.053) (0.052)

PGEEs(AR(1)) 69.39 1.78 0.0 0.5018 0.5013 0.5963

(0.052) (0.056) (0.054)

PGEEs(EQC) 71.37 1.71 0.0 0.5006 0.5008 0.5974

(0.052) (0.056) (0.058)

PGQL 65.20 1.75 0.0 0.5005 0.5004 0.5970

(0.051) (0.053) (0.053)
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Table 5 Performance measures for count data with stationary covariates (m = 10)

Avg. no. of zero Estimates of nonzero

coefficients coefficients
True model Method MRME% Correct Incorrect Ǒ

1
Ǒ
2

Ǒ
3

AR(1) PGEEs (IND) 84.21 0.93 0.0 0.5007 0.5017 0.5963

� D 0:70 (0.052) (0.056) (0.063)

PGEEs (AR(1)) 60.96 1.76 0.0 0.5000 0.5022 0.5967

(0.051) (0.053) (0.054)

PGEEs (EQC) 60.56 1.79 0.0 0.5000 0.5020 0.5981

(0.052) (0.055) (0.055)

PGQL 60.32 1.76 0.0 0.5003 0.5005 0.5988

(0.051) (0.053) (0.053)

AR(1) PGEEs (AR(1)) 71.54 1.69 0.0 0.5010 0.5002 0.5996

� D 0:49 (0.042) (0.043) (0.043)

PGEEs (MA(1)) 81.85 1.27 0.0 0.5012 0.4989 0.6004

(0.042) (0.044) (0.046)

PGQL 77.21 1.67 0.0 0.5010 0.5013 0.5980

(0.041) (0.043) (0.044)

EQC PGEEs (IND) 99.04 0.743 0.0 0.5009 0.5041 0.5935

� D 0:70 (0.074) (0.078) (0.086)

PGEEs (EQC) 63.46 1.87 0.0 0.5014 0.5058 0.5928

(0.072) (0.073) (0.075)

PGEEs (AR(1)) 69.42 1.67 0.0 0.5026 0.5032 0.5943

(0.072) (0.076) (0.076)

PGQL 64.15 1.86 0.0 0.5010 0.5050 0.5945

(0.071) (0.074) (0.075)

MA(1) PGEEs(IND) 83.44 1.34 0.0 0.5015 0.4991 0.6005

� D 0:67 (0.034) (0.037) (0.038)

PGEEs (EQC) 71.85 1.56 0.0 0.5008 0.5010 0.5976

(0.033) (0.036) (0.038)

PGEEs (AR(1)) 72.39 1.62 0.0 0.4998 0.5005 0.5974

(0.033) (0.036) (0.038)

PGQL 71.12 1.59 0.0 0.5001 0.5000 0.5983

(0.032) (0.035) (0.037)

size k D 100 individuals with three different correlation structures and arrived the
parameter estimates for each method. The MRME, the average number of zero and
nonzero coefficients, the estimated values of the nonzero regression coefficients and
the corresponding standard errors over 1000 simulated data sets are summarized in
Table 6. When there is an over-dispersion, as we noticed from Table 6, the proposed
PGQL approach has smaller MRME compared to PGEEs but the average number
of zero coefficients for PGEEs and PGQL are close to each other and the nonzero
regression parameter estimates are close to the true values in all cases. This shows,



Penalized Generalized Quasi-Likelihood Based Variable Selection: : : 247

Table 6 Performance measures for over-dispersion count data with stationary covariates (m = 5)

Avg. no. of zero Estimates of nonzero

coefficients coefficients
True model Method MRME% Correct Incorrect Ǒ

1
Ǒ
2

Ǒ
3

AR(1) PGEEs(IND) 95.62 0.89 0.0 0.5009 0.5077 0.5897

� D 0:50 (0.089) (0.106) (0.118)

PGEEs(AR(1)) 73.07 1.47 0.0 0.5018 0.5121 0.5864

(0.088) (0.102) (0.108)

PGQL 69.04 1.52 0.0 0.5037 0.5110 0.5874

(0.086) (0.102) (0.108)

EQC PGEEs(IND) 95.91 0.86 0.0 0.4991 0.5059 0.5910

� D 0:50 (0.096) (0.109) (0.120)

PGEEs(EQC) 82.80 1.53 0.0 0.5117 0.5075 0.5832

(0.092) (0.106) (0.116)

PGQL 81.79 1.51 0.0 0.5104 0.5082 0.5850

(0.091) (0.106) (0.116)

MA(1) PGEEs(IND) 85.43 0.95 0.0 0.5004 0.5029 0.5921

� D 0:50 (0.086) (0.098) (0.114)

PGEEs(MA(1)) 73.78 1.31 0.0 0.5059 0.5071 0.5892

(0.086) (0.099) (0.111)

PGQL 68.37 1.46 0.0 0.5054 0.5058 0.5892

(0.086) (0.097) (0.106)

the bias of the non-zero parameter estimates are approximately zero. Again, these
simulation studies clearly show that PGQL is performing better compared to PGEEs
with over-dispersion data. Note that, in practice, it is very difficult to know the
true correlation structure; however, it is reasonable to assume that the correlation
structure remains the same for all individuals.

5 Health Care Utilization Data Study

We applied our proposed methodology to a real life data-set on the health care
utilization problem, studied by Sutradhar (2003). This data-set was collected by
the General Hospital of St. Johns, Newfoundland, Canada. These longitudinal
count data contain the complete records for k D 144 individuals for 4 years
.m D 4/ from 1985 to 1988. The number of visits to a physician by each
individual during a given year was recorded as the response, and this was repeated
for 4 years. Also, the information on four covariates: gender, number of chronic
conditions, education level, and age were also recorded for each individual. We are
also interested in examining whether there are any interaction effects between the
parametric covariates, so we included some of these interactions in our model. In
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Table 7 Estimates of the regression parameters under PGQL and PGEEs approaches in fitting
health care utilization count data

Penalized estimates
Variable PGEEs (AR(1)) PGEEs (EQC) PGEEs (MA(1)) PGQL

GENDER 0.000 0.000 0.000 0.000

CHRONIC 0.105 0.103 0.104 0.104

EDUCATION �0.492 �0.432 �0.489 �0.443

AGE 0.033 0.032 0.033 0.033

GENDER*CHRONIC 0.143 0.144 0.144 0.143

GENDER*EDUCATION 0.053 0.000 0.050 0.000

GENDER*AGE �0.009 �0.009 �0.009 �0.009

view of the background information, it is appropriate to assume that the response
variable, marginally, follows the Poisson distribution, and the repeated counts
recorded for 4 years will be longitudinally correlated. We are interested in taking
the longitudinal correlations into account and examining the effects of the above
covariates and their interaction effects on the physician visits. We used PGEEs
under different correlation structure for variable selection and compared the results
with our proposed method, PGQL. A summary of the results is given in Table 7.
From Table 7, we see that all methods identified CHRONIC, EDUCATION, AGE,
GENDER*CHRONIC, and GENDER*AGE are the significant variables and the
covariate GENDER as unimportant. Under PGEEs method with AR(1) & MA(1)
working correlation structure, results indicates that GENDER*EDUCATION also
significant where as it is not significant for other two methods. Parameter estimates
and identified variables are almost similar for PGEEs (EQC) and PGQL. This clearly
indicate that PGEEs based variable selection procedure is sensitive to the choice of
covariance structure, leading to different results for different covariance structures.
Since in practical situations the true correlation structure is often unknown, the
PGQL approach is more appropriate since it can accommodate all three correlation
structures in a unique way.

6 Concluding Remarks

We propose a penalized GQL approach for variable selection in longitudinal data
analysis where both estimation and variable selection are carried out simultaneously.
We used SCAD penalty to achieve oracle properties. Our performance analysis
shows that the PGQL approach produces consistent as well as more efficient
regression estimates as compared to the independence assumption-based PGEEs
approach. The proposed PGQL approach assumes a known longitudinal lag-
correlation structure with unknown correlation parameters. When the correlation
structure is known the PGQL method has similar performance compared to the
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PGEEs approach. However, when the model is mis-specified such as variance
function and correlation structure our proposed PGQL approach outperforms the
PGEEs method. The main advantage of this PGQL approach is that there is unique
way to specify the correlation structure compared to the PGEEs method.
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