

A Knowledge Management Approach for Software
Engineering Projects Development

Paulo Carreteiro1, José Braga de Vasconcelos1, Alexandre Barão1, Álvaro Rocha2

1 Knowledge Management and Software Engineering Research Group
Universidade Atlântica

Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
{pcarreteiro, jose.braga.vasconcelos, abarao}@uatlantica.pt

2 Department of Informatics Engineering

Universidade de Coimbra
Pólo II - Pinhal de Marrocos, 3030-290 Coimbra, Portugal

amrocha@dei.uc.pt

Abstract. Aiming to emphasize the effect of knowledge management practices
during software development projects, this research paper presents a first
approach to cope with knowledge management and engineering practices across
software development projects. The main goal is to define a roadmap for
representative software development life cycle tasks during a typical software
project development. The research introduces an ongoing architectural case
study using software maintenance tasks as a means to enhance the knowledge
flows within the organization. Software maintainers validate, correct and update
knowledge from previous phases of software development life cycle through
the application of back flushing technique at the software data warehouse.
Further research developments will present a detailed guidance model for both
research areas: knowledge management for software engineering combining
insights across corporate software projects as a means of evaluating the effects
on people and organization, technology, workflows and processes.

Keywords: Software Engineering; Knowledge Management; Knowledge Life
Cycle; Software Maintenance; Software Development Life Cycle; KM
Processes.

1 Introduction

In an organization individuals create documents, deal with software legacy
applications, emails and many other tools where their everyday work is documented.
Additionally, there’s an informal or formal exchange of ideas with their peers to
clarify doubts or discuss certain topics. All of these are contents for the three levels of
refinement to knowledge, which are: data; information; and knowledge [1], [2].
Organizational knowledge resides in individuals or in a group, it can be explicit or
tacit, regarding if it is documented or in the minds of individuals and having as scope
the way it is applied, who accesses it and what activities it supports. Explicit
knowledge can easily be shared, accessed and used. On the other hand, tacit

 � Springer International Publishing Switzerland 2016
Á. Rocha et al. (eds.), New Advances in Information Systems and Technologies,
Advances in Intelligent Systems and Computing 444,
DOI 10.1007/978-3-319-31232-3_6

59

knowledge cannot, and it is acquired along the years by individuals, leaving the
organization at the end of the day.
Knowledge Management (KM) aims at the individuals, their knowledge and the flows
between them. Knowledge life cycle, defines the phases of organizational knowledge
[2]. These phases are: (1) Creation, the origin of the cycle, occurs by informal or
formal exchange of ideas and information either from internal or external sources; (2)
Capturing, follows creation, it is the moment when it becomes explicit/documented;
and (3) Transforming knowledge, which means organizing, mapping and converting it
into an interpreted form. After it has been documented and organized, it can be
deployed, meaning it can be accessed. Accessibility does not mean it reaches
individuals, therefore sharing is when knowledge is used. The last phase is the goal of
KM, which is the usage, allowing individuals to create more knowledge and therefore
closing the cycle.

Although every project is unique and each model for software development has its
specific methodology, all of them bare in common a complex set of tasks to achieve
the final goal. According to the SWEBOK1, Software Engineering (SE) is “the
application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software”. The aim of SE is the improvement
organization productivity and quality by applying technologies and project
management practices in activities related to the software development. Individuals
that work in software development projects, also known as “knowledge workers” [1]
must be able to interpret the sponsor’s needs and transform them into coded language,
thus SE is a discipline where one has to master both social and technical skills [4].

There are several models like cascade, agile, v-model, spiral, etc. for the Software
Development Life Cycle (SDLC), these are approaches that determine the tasks and
deliverables for software creation. In general, they are composed by six phases,
allowing knowledge workers to specify and change software requirements into the
final product or deliverable [5]. Requirements specification and Analysis, to interpret
and explicit the client’s needs; design, to transform requirements (business
knowledge) into a plan (technical knowledge); coding, where the plan is
implemented; testing, a proof of concept that the software meets the requirements;
software deployment, when it is shared and implemented and finally maintenance, to
support the software usage. Sponsors, who have the business know-how, interact with
the knowledge workers to whom they transfer the aforesaid business knowledge, so
that they can design models to transfer it into technical knowledge, meaning models
that describe the software [6]. Combining distinct approaches, such as KM and SE,
the key challenge of our research is to answer the following question: “What kind of
KM framework is needed to help Software Maintenance knowledge workers?”. In
section 2, we present an overview of KM for SE, identifying the challenges
organizations face to apply knowledge management practices. With the aim of
answering our research question, in section 3, the MIMIR Framework is presented,
namely: (A) The MIMIR Model Overview; and (B) The MIMIR Methodology.

1 Software Engineering Body Of Knowledge

60 P. Carreteiro et al.

Finally, in section 4, we present our preliminary conclusion regarding our research’s
key challenge.

2 Knowledge Management for Software Engineering

Dependency on technology grows each day, increasing the costs for developing
software, making it a larger piece of the “companies cake” called budget as well as
boosting the amount and diversity of information that organizations must deal with
[2], [7]. The ability to become leaner without losing efficiency and quality are
challenges that these knowledge intensive companies must overcome and the trigger
for a KM approach to the SDLC. Some of the challenges that organizations must deal
with are presented next, as well as a KM approach regarding the SDLC phases.
Knowledge is not a recipe, it is a set of procedures for dealing with a concrete
situation, a routine. Knowledge should allow organizations to cope with different
situations, anticipate implications and assess its effects [3].

2.1 Organizational Challenges

There is a significant amount of documents and artifacts produced during the phases
of the SDLC, recording knowledge gathered along each sprint or project. Dealing
with their usage is a challenge for the organizations. How to access it, along with
ways to research what is really needed in a particular context, makes all this
documentation unusable and difficult to share. Moreover these knowledge so
dispersed that makes it hard to update [2], [7]. While some knowledge is recorded,
some still remains in the individuals’ mind [7], meaning that at the end of the day
knowledge leaves the organization. Heuristics that individuals attain over several
years cannot be transmitted within months to others and when they leave the company
a knowledge gap is create, sometimes with complex and serious consequences for the
organization. To manage knowledge and it is flows is of the utmost relevance.
However, KM is not a product that the company can acquire, KM must be
implemented in time [6] and involves processes, technology but above all individuals
and organizations to enable a sharing culture, where the first ones must participate
and the second ones must encourage, KM = People + Process + Technology [8].

2.2 KM/SE Approach

The SDLC is a knowledge-intensive environment where KM processes fit like a
glove. It can function as a complement to support individuals during the SDLC phases
to enhance productivity and quality [7]. The map we present in fig. 1 evidences the
proximity between the Knowledge Life Cycle processes and SDLC activities. SDLC
activities transform tacit knowledge into explicit [9], and when properly documented,
they are organizational knowledge reification activities.

A Knowledge Management Approach … 61

Fig. 1. Mapping KLC processes versus SDLC activities.

Knowledge in software development projects is diverse and growing in proportions.
Organizations have problems identifying the contents, location and the best way to
make use of it [2]. An important step towards a knowledge management project is the
characterization of the knowledge assets. The domain knowledge includes business
processes, decision-making, entrepreneurial, declarative and procedural knowledge,
heuristics and informal knowledge [10]. For this paper, the activities of SDLC were
segmented in three major process areas derived from fig. 1, regarding their outputs
combined with their needs. They are Requirements Definition (RD), Software
Development (SD) and Software Maintenance (SM), as seen in fig. 2. With this it is
possible to identify all the documents created during the SDLC and determine within
each one the more significant information.

Fig. 2. SDLC segmentation accordingly to their outputs and needs

Our main focus is the SM area, since in general KM processes have been less
explored [2], [4], [5], [7], [10], [11]. It turns out that the documents produced in

62 P. Carreteiro et al.

previous phases of SDLC are rarely used to aid in solving maintenance problems.
Maintainers end up mainly resorting to read the legacy software code or to an
informal exchange of ideas with their peers; 40% to 60% of the effort made in SM is
spent understanding the software that is being maintained [12]. SM deals with real
problems and its activity can be used to evaluate knowledge documented in the
previous phases.

2.3 Research Methodology

Methodology is the study of methods, the set of techniques and processes used for
research and development of a scientific work. Due to the nature of this research, of
the various existing methodologies, the choice fell on the Design Science Research
(DSR).
This is fundamentally a methodology for problem solving in order to create
innovations that define the ideas, practices, technical capabilities or products that can
be made more effective and efficient through analysis, design, implementation,
management and the use of information technologies [16].

As well as the SDLC activities, which are widely discussed in this paper, so the DSR
has its cycle of research, making it for this reason a methodology course used in
conducting research related to information systems. There are seven guidelines in
DSR aimed to assist researchers, reviewers, editors and readers to understand the
requirements, namely: Design as an Artifact, Problem Relevance, Design Evaluation,
Research Contributions, Research Rigor, Design as a Search Process and
Communication of Research [16].

Design as an artifact aims at problem solving and problem knowledge, their
understanding and resolution are solved with the creation and implementation of an
artifact, hence our model overview in fig.3 and fig. 4. For an activity that is intended
to be efficient and objective, as is the case of SM, it is a subject of relevant
importance to the organization that up 60% of the time spent in maintenance is trying
to understand the software itself. DSR is inherently iterative [16] therefore our Design
as Search Process is based on literature revision, for reference to our work and with
which we have a comparison table on section 3.3, but also provided from personal
experience on a large software development organization.

DSR is essentially a search process to discover an effective solution to a problem
[16], future work will continue to be developed for this research using the guidelines
and the research life cycle from DSR.

3 MIMIR Framework

SM is a demanding and complex activity. Software maintainers need to master
programming languages, the system architecture, understand data models, have

A Knowledge Management Approach … 63

procedural knowledge, software updates and their impacts and often this is done for
several applications. Experienced individuals are chosen for these tasks, seniority and
heuristics makes them the manager’s top choice, thus highlighting that these are tasks
that require a high level of organizational knowledge, sensibility and experience, due
to their criticality and urgency. The MIMIR Model presented next, named after the
Norse mythology god who guards the "Well of the Highest Wisdom", is an approach
to a framework mapping information based on documents created in the SDLC phases
to retrieve from them the utmost relevant knowledge for SM.

3.1 MIMIR Model Overview

This model was driven by the fact that maintainers deal with problems, therefore
accessing relevant knowledge to aid them in the research is extremely important.
Additionally, they can validate, correct or update the accessed knowledge, for which
back flushing is applied, a technique used to correct data in the origin during the
Extract, Transform and Load (ETL) process in Data Warehousing.

Fig. 3. MIMIR Model Overview

MIMIR Model performs a preliminary approach to the SDLC phases in organizations
based in three segmentation areas as shown in fig. 2. Thus, as shown in fig. 3, several
roles were defined as Unified Modeling Language (UML) stereotypes for participants,
namely: Sponsor, Analyst, Development Team and Maintainer. Sponsor role is to
define the needs for project and validator for the requirements quality, they can be

64 P. Carreteiro et al.

external or internal to the organization. Analyst is the expert for the model, providing
the requirements elicitation, application analysis and main source of knowledge in the
project area. Development Team involves the individuals that participate in the
project mainly in the coding phase. In smaller projects the Analyst can participate in
the development team. Maintainer is the individual that provides support for the usage
of the system, if the analyst has exclusive business knowledge he does not play the
maintainer role, on other hand, if he is an Application Analyst he will surely be a
Maintainer. RD Knowledge will retain all significant information regarding
requirements elicitation. SD Knowledge will gather information from development
phases of the project like technical plans or software design specification. SM
Knowledge gathers maintainers’ most frequently problem solutions, batch processing
sequences, or application navigational sequences. Quality Control Knowledge is
where the corrections and updates to previous knowledge remain until approval from
experts like analysts to initiate the back flushing process.

3.2 MIMIR Requirements Capture Model

MIMIR is centered in the extraction of knowledge created in documents produced by
the knowledge workers throughout the SDLC phases using the CMMI-DEV2 model
base. In this paper, in fig. 4 we only present the main concepts of the RD Knowledge
Base feed in the requirements phase.
The elicitation of Sponsor needs from the Analyst will first produce the Business
Requirements Specifications (BRS) document, a high-level business needs document
and kick-off for the SDLC phases. The project ID goals and scope are important
information that the MIMIR-Extractor module will acquire from the document. These
will permit to create the project in the MIMIR RD Database as well as the first tags
will be added to help in the search queries and the knowledge flow for the individuals,
specially maintainers.
Also produced by the Analyst is the Project Requirements Specifications (PRS), in
which the requisites for the development team will be described, each one with a
specific ID, type and description and all referring to a functional area of the
application or system. This information will be added to the RD Database project
created previously. The requirement description will provide important knowledge in
a natural language, easy and quick to interpret by the individuals specially
Maintainers. Using the requirement ID as a key, MIMIR will map these descriptions
to the list of artifacts that are affected in the project, registered later in the SD
Knowledge Database.
The Project Requirements Specifications Check-List (PRS-CK) will close the
requirements phase and consolidate the RD Database information from this document,
and MIMIR-Extractor will retrieve information regarding the Analyst involved in the
requirements elicitation, for previous expertise referral. The last step of the

2 Capability Maturity Model Integration for Development – A model that provides guidance for

improving organization's capability to develop quality products and services that meet the
needs of customers and end users.

A Knowledge Management Approach … 65

requirements phase is determined by requirements acceptance from the Sponsor,
which will provide the trigger for the Requirements Close and Dissemination module
(MIMIR-RCD) to make the knowledge from the MIMIR RD Database visible and
distribute it to individuals in the Development Team.

Fig. 4. MIMIR Requirements Capture Model

3.3 A Comparison with Related Work

We review other authors researches in KM for SE and especially through the SM
approach as means of reference and guidance to our work, in which we have resumed
in fig. 5 each one regarding their focus in the KM, SDLC and Quality dimensions.
For the P1 [13] the main focus is essentially on knowledge capture in the software
requirements phase, enhancing the corporate memory as the main area of intervention,
and it has left out the SM phase and the related problems. P2 [14] and P3 [15] have
the main focus on the SM phase and its problems for the SDLC dimension, and for
the KM dimension emphasize the knowledge share and the reuse of lessons learned.
The previous phases of SDLC were left aside.
P4 [12] is the most in-depth research paper in this area, however, has no focus on
quality control and knowledge correction. Although the primary focus is the SM

66 P. Carreteiro et al.

phase, it does not neglect the previous phases in the SDLC framework. Knowledge
sharing has a minor attention and knowledge capture has a mild focus.
P4 is definitely a reference and guidance for the future of our research work because it
has a well-defined ontology based on the maintenance problems to support other
dimensions. On the other hand, P4 has reached the perception that the application of
KM in SM phase promotes the creation of knowledge management culture (and
approach) within the organization.

P1 P2 P3 P4 MIMIR

Knowledge Capture ��� � � �� ��

Knowledge Sharing � ��� ��� � ��

Knowledge Usage � ��� ��� ��� ���

Quality
Knowledge Quality

Control & Correction
� � � � ���

Requirements
Definitions

��� � � �� ���

Software
Development

� � � �� ���

Software
Maintenance

� ��� ��� ��� ���

Legend: � No Focus
� Little Focus
�� Mild Focus
��� Large Focus

Knowledge
Management

Software
Development

Life Cycle

Projects
Dimensions

Fig. 5. Analogous Projects Review

4 Conclusion

Software development projects are knowledge-intensive and SDLC activities are the
reification of the organizational knowledge. A lot of knowledge is documented but a
lot still remains in the individuals’ mind, therefore creating a potential
(organisational) knowledge gap.
How to use documented knowledge and how to document the one that is not, are
challenges for the organizations. SDLC proximity to KM can work as a facilitator to
implement a KM project. However KM approaches to SE are mainly connected to the
early phases of SDLC and especially in the requirements specification, leaving the
software maintenance activities to a second plan. Up to 60% of the time spent in
maintenance activities is re-acquiring knowledge and this is the main driver for our
KM approach to SDLC, along with the fact that accessing knowledge maintainers can
became validators for information created previously.
MIMIR approach applies documents provided from previous software engineering
phases to capture knowledge from each software project and has a particular concern
to use the maintainers as a means to validate and adjust the knowledge gradually
inferred. The result is a KM software project charter combining a set of knowledge
acquisition tasks across the SDLC framework.
As future work, regarding our research question, our aim is to present a detailed
MIMIR model, methodology and tool, based on software development organization,

A Knowledge Management Approach … 67

combining insights across corporate software projects as a means of evaluating effects
on people and organization, technology, workflows and processes.

Acknowledgements

We acknowledge the financial support of the Iberian Association for Information
Systems and Technologies (AISTI), which permitted the registration in the
WorldCIST'16 (4th World Conference on Information Systems and Technologies),
held at Recife, Brazil, 22 - 24 March 2016, and consequently this publication.

References

1. Davenport, T. H. (2010). Process Management for Knowledge Work. Handbook on
Business Process Management 1. Springer

2. Rus, I., & Lindvall, M. (2002). Knowledge Management in Software Engineering. IEEE
Software

3. Cascão, F. (2014). Gestão de Competências, do conhecimento e do talento. Lisboa: Edições
Sílabo, Lda

4. Alawneh, A. A., Hattab, E., & Al-Ahmad, W. (2008). An Extended Knowledge
Management Framework during the Software Development Life Cycle. International
Technology Management Review

5. Bourque, P., & Fairley, R. E. (2014). SWEBOK v3.0 - Guide to the Software Engineering
Body of Knowledge. New Jersey: IEEE Computer Society.

6. Camacho, J. J., Sanches-Torres, J. M., & Galvis-Lista, E. (2013). Understanding the Process
of Knowledge Transfer in Software Engineering: A Systematic Literature Review

7. Natali, A. C., & Falbo, R. d. (2005). Knowledge Management in Software Engineering
Environments. Vitoria

8. Leistner, F. (2010). Mastering Organizational Knowledge Flow. New Jersey: John Wiley &
Sons, Inc

9. Aurum, A., & Ward, J. (2004). Knowledge Management in Software Engineering -
Describing the Process. 2004 Australian Software Engineering Conference

10. Vasconcelos, J. B., Kimble, C., Miranda, H., & Henriques, V. (2009). A Knowledge-Engine
Architecture for a Competence Management Information System

11. Isotani, S., Dermeval, D., Bittencourt, I., & Barbosa, E. (2015). Ontology Driven Software
Engineering A Review of Challenges and Opportunities. IEEE Latin America Transactions

12. Anquetil, N., Oliveira, K. M., Sousa, K. D., & Dias, M. G. (2007). Software maintenance
seen as a knowledge management issue. Information and Software Technology

13. Andrade, J., Ares, J., Garcia, R., Rodriguez, S., & Suarez, S. (2006). A Reference Model
for Knowledge Management in Software Engineering.

14. Rodriguez, O. M., Vizcaino, A., Martinez, A. I., Piattini, M., & Favela, J. (s.d.). Applying
Agents to Knowledge Management in Software Maintenance Organizations.

15. Talib, A. M., Abdullah, R., Atan, R., & Murad, M. A. (April de 2010). MASK-SM: Multi-
Agent System Based Knowledge Management System to Support Knowledge Sharing of
Software Maintenance Knowledge Environment. Computer and Information Science.

16. Hevner, A. R., Ram, S., March, S. T., & Park, J. (March de 2004). Design Science in
Information Systems Research. MisQuartely, pp. 75-105.

68 P. Carreteiro et al.

	6 A Knowledge Management Approach for Software Engineering Projects Development
	Abstract.
	Keywords:
	1 Introduction
	2 Knowledge Management for Software Engineering
	2.1 Organizational Challenges
	2.2 KM/SE Approach
	2.3 Research Methodology

	3 MIMIR Framework
	3.1 MIMIR Model Overview
	3.2 MIMIR Requirements Capture Model
	3.3 A Comparison with Related Work

	4 Conclusion
	Acknowledgements
	References

