
Automated Program Debugging for Multiple
Bugs Based on Semantic Analysis

Aishan Liu(B), Li Li, and Jie Luo

Department of Computer Science, Beihang University, Beijing 100191, China
{liuaishan,lili,luojie}@nlsde.buaa.edu.cn

Abstract. Fault locating is a time-consuming process. In a previous
paper, Liu proposed an algorithm named bounded debugging via multi-
ple predicate switching (BMPS)[1], which try to find a successful execu-
tion trace by switching outcomes of multiple predicates. Substantively,
BMPS focuses on the program faults which are caused by control flow.
However, this kind of faults represent only a small fraction. In this paper,
we present an algorithm combining BMPS with a semantic based debug-
ging method, which is aimed at locating more than control flow related
faults. The semantic based debugging algorithm generates a sequence of
equations from the execution trace of a failed test case, and give a min-
imum faulty program segment according to solutions of the equations.
Our algorithm can locate multiple faults in the program one by one
through an iterative and interactive process. Moreover, an optimization
based on use-define chain is applied to BMPS for improving efficiency of
the algorithm, as well as some other methods. To evaluate out approach,
we conduct experiment on Siemens suite. The result indicates that our
method has significant improvement on both accuracy and efficiency.

Keywords: Automated debugging · Predicate switch · Semantic
analysis

1 Introduction

Traditional program debugging is an arduous and manual process that requires
a large number of time, effort, and a well comprehension of the code. Generally,
traditional debugging consists of two steps: (1) program turns out an unexpected
result or behavior; (2) developer re-executes the failed test case step by step and
inspects the program state to find out the cause of the problem. Such process
can be apparently time consuming, tedious and sometimes error-prone.

Researchers were more interested in utilizing computer power for program
debugging since the processing power of machines has drastically increased.
Therefore automated debugging techniques are being explored by researchers.
Automated debugging basically consists of program slice based model, program
state based model, statistical model and program spectrum based model [2,3].

In a previous paper [4], Zhang proposed an algorithm which switches the
outcome of an instance of a single predicate and then inspect the so called
c© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2015, LNCS 9559, pp. 86–100, 2016.
DOI: 10.1007/978-3-319-31220-0 7

Automated Program Debugging for Multiple Bugs 87

switched predicate to find out the cause of the fault. After experiment evaluation,
the author found their approach to be effective and practical. However, switching
a single predicate could not be sufficient and useful in some situation. In 2010,
Liu proposed the bounded debugging via multiple predicate witching algorithm
(BMPS) which is to switch the outcome of instances of multiple predicates to
locate bugs. However, both the algorithms are basically aimed at control flow
related program bugs, and cost much time especially when the program contains
amounts of predicates (e.g. conditional statements).

In this paper, we propose a method combining BMPS with Intra-function
debugging algorithm (Sect. 2.2), which is aimed at locating multiple bugs includ-
ing not only control flow related faults. We present an iterative and interactive
approach for programmer to locate program bugs, which would provide devel-
oper with a minimum program segment containing faulty code. Some program
would contain a lot of predicates, and many of them could be unrelated to the
results or the variables with unexpected value. If we treat every predicate to be
switchable, it would be really time consuming and redundant. So, we optimize
the algorithm by applying use-define chain to reduce the number of predicates
to be switched. Since our algorithm is interactive, programmer could mark some
statements as errorless such that workload of predicate switching will be reduced.

2 Technical Background

2.1 BMPS

Bounded debugging via multiple predicate switching algorithm (BMPS) locates
faults through switching the outcomes of instances of multiple predicates to get a
successful execution where each loop is executed for a bounded number of times.
The most important concept is critical predicate set. It is a set of predicates
which could be switched to get the right execution or result of the program.
Obviously, BMPS concentrated on the control flow related bugs in the program.
By switching the outcomes of predicates, which could be the branch statements,
the execution trace would go to another path leading to a right output under
specified test case.

Figure 1 below depicts a small program example. In this program, inputs
variables are a and b. However, the conditional statement in line 4 is faulty. Test

Fig. 1. Example of a Program.

88 A. Liu et al.

case of < a = 2, b = 3, x = 6 > is failed. As for this test case, the expected output
is x=6, yet x is 5 after execution. If we switched the outcome of the predicate
i < a + b to !(i < a + b), the execution trace could change from (1,2,3,7) to
(1,2,3,5) which would lead to the right result. Thus, predicate i < a + b is a
critical predicate by which we could switch to get the right result.

For iterative programs, critical predicate set should be uncomputable. So
the author considered depth k critical predicate set which is deduced from an
execution path where each loop is executed at most k times.

For each predicate p in the program, we introduce a Boolean variable swp,
and replace p with ¬swp∧p∨swp∧¬p. Given a program, we define the formula
as below:

Φ = IN ∧ S1 ∧ ... ∧ (¬swp ∧ p ∨ swp ∧ ¬p) ∧ ... ∧ Sn ∧ OUT

IN is the input of the test case, Si denotes the statements in the program
and OUT means the assertion of the test case (usually the output or the result of
the test case). After that, we convert Φ to conjunctive normal form (CNF) and
feed it a SAT solver (e.g., z3, minisat, etc.) to solve the satisfiability problem.
If the CNF is satisfiable, and the value of swp is true, which means the value of
p is false, the execution trace goes to another path leading to the right result.
Thus, the assertion holds and p could be a critical predicate to reveal the bugs.

Obviously, it is more convenient to switch the outcomes of some predicates if
whole program is transferred to CNF [5]. Then, we resort to a SAT solver (e.g.,
z3, minisat, etc.) to solve the satisfiability problem.

2.2 Intra-function Debugging Algorithm

First of all, we give some brief definition to help depict our algorithm.

Definition 1 (State). A state σ is defined as a k-tuple.

σ : (x1 → n1, ..., xk → nk)

xi→ni means the value of xi is ni, and denoted as σ(xi) = ni

Definition 2 (Environment). Assume S is the head of a conditional statement,
and σ is the state when executing S. 〈S, σ〉 is called an Environment.

Definition 3 (Structure-S). Assume σ is a state, S is the statement executed
under the state σ, and ε is the stack of Environment. Thus, the triple below is a
Structure-S:

〈S, σ, ε〉
Definition 4 (Trace Stack). A stack is called a Trace Stack iff every element
in the stack has the type of Structure-S.

Definition 5 (Structure-T). Assume 〈S, σ, ε〉 is a Structure-S, π is the corre-
sponding trace stack. A structure-T is denoted as below:

π|〈S, σ, ε〉

Automated Program Debugging for Multiple Bugs 89

Fig. 2. Flow Diagram of Intra-function Debugging Algorithm.

Intra-function debugging algorithm uses semantic analysis to give developer
a minimal faulty program segment. When a test case failed, the algorithm com-
putes a minimal inconsistent program segment according to the input and output
of the test case. Programmers are able to mark some statements to be errorless
iteratively to reduce the scale of faulty program segment.

Figure 2 is the flow diagram of Intra-function debugging algorithm, which
simply shows the flow and main steps of the method.

The algorithm includes four main steps:
(1) Symbolic Execution. Execute and trace the program by symbolic repre-

sentation according to the input of the failed test case. Record the execution
trace and program states.

The execution of program could be treated as many steps of compute. And
every step is similar to a transition from a Structure-T to another.

-Assignment

π|〈l : x = e, σ, ε〉 → push(〈l : x = e, σ, ε〉)|〈skip, σ[[e]σ/x], ε〉
[e]σ is the value of expression e under state σ.

-Sequence of Statemtents

π|〈S1, σ, ε〉 → π′|〈S′
1, σ

′, ε′〉
π|〈S1;S2, σ, ε〉 → π′|〈S′

1;S2, σ′, ε′〉

π|〈skip;S, σ, ε〉 → π|〈S, σ, ε〉

90 A. Liu et al.

-Conditionals
If [b]σ = true

π|〈l : if(b){S1; }else{S2}, σ, ε〉 →
push(〈l : if(b), σ, ε〉, π)|〈{S1; }, σ, push(〈l : if(b), σ〉, ε)〉

If [b]σ = false
π|〈l : if(b){S1; }else{S2}, σ, ε〉 →

push(〈l : if(b), σ, ε〉, π)|〈{S2; }, σ, push(〈l : if(b), σ〉, ε)〉
-Loops
If [b]σ = true

π|〈l : while(b){S; }, σ, ε〉 → push(〈l : while(b), σ, ε〉, π)

|〈{S; }l : while(b)S;, σ, push()〈l : while(b), σ〉, ε)〉
If [b]σ = false

π|〈l : while(b){S; }, σ, ε〉 →
push(〈l : while(b){S; }, σ, ε〉, π)|〈skip, σ, ε〉

(2) Locating-Equation Generation. Generate a set of locating equations for
every statement backwards from the beginning of breakpoint - a statement in
which the value of specified variable is not expected.

In the second step of the algorithm, we generate locating-equation for every
Structure-S in Trace Stack π. Thus we can specify the transition of Structure-S
by solving equation set. Besides, the locating-equation sets are stored in a list,
in which every element has a form of (eq, 〈S, σ, ε〉). Among them, eq denotes an
equation set while 〈S, σ, ε〉 is a Structure-S.

-Initial State
π|ρ

-Assignments

top(π) = {l : x = e, σ, ε}last(ρ) = (eq, {S, σ′, ε′})x ∈ FV (eq)
π|ρ → pop(π)|append((eq[e/x], {l : x = e, σ, ε}), ρ)

top(π) = {l : x = e, σ, ε}last(ρ) = (eq, {S, σ′, ε′})x /∈ FV (eq)
π|ρ → pop(π)|ρ

Given a Structure-S containing statement l : x = e at the top of trace stack.
If x appears in equation set eq, all the variable x in eq corresponding current
Structure-S can be replaced with e. On the contrary, skip it.

-Conditionals

top(π) = {l : if(b), σ, ε}last(ρ) = (eq, {S, σ′, ε′})
π|ρ → pop(π)|append((eq ∪ {b = [b]σ}, {l : if(b), σ, ε}), ρ)

Automated Program Debugging for Multiple Bugs 91

Given a Structure-S containing head part if(b) of the conditional statement,
equation b = [b]σ is added to the equation set corresponding with the current
Structure-S.

-Loops

top(π) = {l : while(b), σ, ε}last(ρ) = (eq, {S, σ′, ε′})
π|ρ → pop(π)|append((eq ∪ {b = [b]σ}, {l : while(b), σ, ε}), ρ)

The rule is the same as the former.
(3) Equation Solver. Find the first equation set ρ[m] in the equation set list

that has no solution. The statement block corresponded to the equation set is
crucial. Statements from the corresponding statement block in ρ[m] to ρ[1] could
be a minimal faulty program segment.

The equation set with no solution implies that under no state σ could the
statements in [m] be executed to get the expected result.

(4) Iteratively Minimize Segment. The first-time locating segment might be
too large for programmer to find out the real place of the faults. An iterative
process need to be performed to make it easier for the programmer to locate
faults. Programmer needs to give an expected value of a variable in the segment,
and repeat from step 1 to minimize the faulty segment until code fragment is
considered small enough for programmer to locate the cause of fault.

3 Bug Localization Framework

Intra-function debugging algorithm generates the locating equation for every
statement in the program and then solve the equation set to get a faulty pro-
gram segment. The algorithm performs better on computational faults than
other kinds of faults (especially the control flow related faults). When the exe-
cution trace goes to a wrong path caused by some faulty predicates (branches in
program), the algorithm may give an irrelevant program segment which could
lead to a bad localization. It is obvious that BMPS could solve the control flow
related fault, while Intra-function debugging algorithm is opposite. We propose
an algorithm combined with the two methods, therefore it can deal with both
the control flow related and compute related faults.

Firstly, we use Intra-function algorithm to give a coarse-grained faulty pro-
gram segment according to the expected variable value given by programmer. It
definitely reduce the space and the number of predicates need to be switched.
Then we call BMPS to switch the outcomes of the predicates contained in the
program segment. Also, programmer needs to check the limited number of state-
ments in the segment to eliminate the compute related fault. One pass may solve
one single bug. An iterative process need to be done if the program consists of
multiple bugs. Programmer needs to give another expected value of a variable
in the segment, and repeat the steps above to minimize the faulty segment step
by step.

If the locating result turns out unsatisfiable, we may use BMPS for the whole
program. As we said before, if the problem is caused by control flow faults

92 A. Liu et al.

and the execution trace goes to the wrong path, the Intra-function debugging
algorithm would give an irrelevant program segment leading to a bad localization
result. This pass is aimed to deal with the program under such a situation. The
disadvantage is that the full scale switch would consume much more time and
space. More variables and paths would increase the number of variables and
clauses in the SAT problem (satisfiability problem), which would make it more
difficult and complex to solve the problem.

The overview of our algorithm is given in Fig. 3. The algorithm has 5 main
steps.

Step 1: Find Faulty Value
When facing a failed run, inspect the input and output of test case
to identify a proper variable with unexpected value.

Step 2: Reduce Faulty Program Segment
Run Intra-function debugging algorithm to get a minimal faulty
program segment.

Step 3: Small Scale Predicate Switch
Run BMPS in the small segment of faulty program. Only the predicates
in the segment is switchable, which means they are the candidates
to be switched.

Step 4: Iterative Debugging and Locating
Repeatedly run step2 and step3 to get a more precise result in order
to fix multiple bugs.

Step 5(Additional): Full Scale Predicate Switch
Run BMPS for the whole program if the results above seems to be
unsatisfiable.

Fig. 3. Algorithm Overview.

4 Optimization

In the previous paper, the author proposed the prototype of bounded debugging
via multiple predicate switching algorithm. It is an excellent algorithm, however,
optimization could be made somewhere.

4.1 Use-Definition Chain

A Use-Definition Chain (UD Chain) is a sparse representation of data-flow infor-
mation about variables [6]. A UD chain connects a use to all the definitions
that may flow to it. Abstractly a UD chain is a function from a variable and a
basic-block-position pair to sets of basic-block-position pairs, one for each use or
definition, respectively. Concretely, they are generally represented by linked lists.
They can be constructed by solving the reaching definitions data-flow problem
for a procedure and then using the resulting information to build the linked list.

Automated Program Debugging for Multiple Bugs 93

Making the UD chain is a step in liveness analysis, so that logical representations
of all the variables can be identified and tracked through the code.

- Use of Variable. If variable, v, is on the RHS of statement s(j), there is a
statement s(i) with i < j and min(j − i), that it is a definition of v and it has a
use at s(j) (or, in short, when a variable, v, is on the RHS of a statement s(j),
then v has a use at statement s(j)).

- Definition of Variable. When a variable, v, is on the LHS of an assignment
statement, such as s(j), then s(j) is a definition of v. Every variable has at least
one definition by its declaration (or initialization).

Fig. 4. Use-Definition Chain.

In out algorithm, we use UD chain to eliminate the redundant predicates
need to be switched. When a test case failed, it means the result turned out
wrong and the values of some variables were different from the expectation.
When we get the UD chain of a variable, the statements which use the variable
or related variable would be gathered. Of course, we can acquire the predicates in
the statement sets. We treat these predicates as switchable and more suspicious
ones than that are not in the sets.

As it is showed in Fig. 4, BMPS treats every predicate to be switchable.
There are at least n predicates treated as candidates in the program. Then,
BMPS may switch any of them to find out an execution path to get the right
result. However, after the process of UD chain, we get a chain of predicates
which is related to the variable with unexpected value. In another words, these
predicates may influence the value of the variable with wrong value, and the
faults may lie in these predicates. On the contrary, the other predicates may be
unrelated to the variable and would not be needed to be switched so that we
can save more time and space.

4.2 Predicate Switch Strategy

As we have already stated, in order to get the right results we have to switch
conditional branch outcomes till we find some predicates which could be switched

94 A. Liu et al.

to make the program produce the correct output. It is our goal to develop a
switching strategy to make the algorithm more practical and effective.

- Manually set limits. Although we have implemented UD chain to the algo-
rithm, some predicates could also be eliminated from the switchable predicate
set. Programmer could mark some predicates to be not switched to make it more
effective.

if(Predicate-1)

{

...

if(Predicate-m)

...

}

else

{

...

if(Predicate-n)

...

}

Fig. 5. Example of a Program.

The example in Fig. 5 is a small program. It contains an if-else block with var-
ious conditional branch in each sub-block. They are all predicates in switchable
predicate set and may be switched to get right result. However, if it is certain
that the execution path go into if part of the very first predicates (Predicate-1),
it can be eliminated from the switchable predicate set. As for this case, it would
at least reduce a half of the total spend in space and time. This action would
make the algorithm more smart.

- Increasingly number of predicates to be switched at a time. Although we are
aiming at the program with multiple bugs, sometimes only one predicate switch
could lead to the right result and this may always happen in fact. Thus, we limit
the number of predicates to be switched from one to all. After experiment, we
found that most test case with control flow related bugs could be solved by only
switching a small amount of predicates. Firstly, we only switch one predicate at
a time, if we cannot get to the right result or the programmer are not satisfied
with it, we increase the number of predicates to be switched at a time. Every
time, we add the number by one. But, this may spend more time than the normal
algorithm.

- Last executed first switched ordering. In the previous paper, Zhang and
Gupta have presented that execution of faulty code (i.e. root cause of a failed run)
is often not far away from the point at which the program fails (e.g., program
crashes or it produces a wrong output value). Therefore, we can switch the
predicates in reverse order. That is to say, the predicate that is closer to the
faulty results (i.e. the end of the program in some situation) is earlier to be
switched.

Automated Program Debugging for Multiple Bugs 95

4.3 Upper Bound for Loops

In the previous paper, Liu proposed to set an upper bound for the iterative
programs manually. That is to say, when programmer face with a program with
loops (e.g., while, for statements), he must give BMPS a number to describe
the times the loop circulates. Like the usual model checker methodology, we
unwind the loop by duplicate the loop body n times, where n is the unwinding
limit. However, it is difficult for programmer to give an accurate number for the
iteration times. So we use Loopus [7] , a tool that automatically compute loop
bounds for C programs, to give the upper bound of loop time.

5 Experiment and Evaluation

We implement BMPS by using CBMC, a bounded model checker for ANSI C
programs (Clarke, Kroening, and Lerda 2004) [8,9]. For the implementation of
Intra-function debugging algorithm, we use LLVM to parse the input program
and generate the symbolic execution trace. We solve the CNF and equation set
by implementing the Z3 (a SAT solver). All of our experiments are performed
on a 3.10 GHZ Intel Core 2 Duo CPU with 4 GB RAM.

- CBMC. The tool produces a Boolean formula for a C program. We add
assume and assert statements to give program specification. Then we use z3
(a SAT solver) [10] to check the formula generated by CBMC. If the formula
is satisfiable, it means we generate a counter-example that meet the expected
result. Let pi be a predicate in the program, we replace pi with the expression
swi?nondet bool(): pi. In the expression, swi is a Boolean variable and the func-
tion nondet bool() returns a non-deterministic Boolean value. The expression
controls the execution to go pi or ¬pi. Finally, We add assume() to give the
expected results of the variable; and assert(0) to make the program stoppable.

- Static Program Slice. We use static data and control flow analysis to acquire
a set of program statements related to the specified variable [11,12]. After pred-
icate switch, we get an execution path where some predicate have already been
switched. It is not apparent for the programmers to find out the localization of
faults if we just show these switched predicate statement to them. Thus, we use
static program slice to give programmer a set of statements that influence the
switched predicates which may help to reveal the bugs.

5.1 Experiment Result

We use Siemens suite for experiment and evaluation. It consists of 7 base
programs. Each of them have a number of faulty versions and test case. All
the programs (implemented in C language), test cases and defect data can be
downloaded from the website http://www-static.cc.gatech.edu/aristotle/Tools/
subjects at Georgia Tech. We used TCAS program and REPLACE program in
the Siemens suite. The TCAS program constitutes an aircraft collision avoidance
system with 173 lines of code and 41 faulty versions.

http://www-static.cc.gatech.edu/aristotle/Tools/subjects
http://www-static.cc.gatech.edu/aristotle/Tools/subjects

96 A. Liu et al.

Table 1. Results of running our algorithm on TCAS

Version #ErrNum DetectReduce RunTime ErrorType

v1 1 96 0.26 Control Flow

V2 1 95 0.24 Control Flow

V3 1 98 0.28 Control Flow

V4 1 96 0.29 Control Flow

V5 1 72 0.55 Compute

V6 1 97 0.31 Control Flow

V7 1 78 0.56 Compute

V8 1 79 0.49 Compute

V9 1 96 0.31 Control Flow

V10 2 98 0.29 Control Flow

V11 2 98 0.28 Control Flow

V12 1 97 0.25 Control Flow

V13 1 71 0.47 Compute

V14 1 75 0.44 Compute

V15 3 69 0.45 Compute

V16 1 72 0.49 Compute

V17 1 75 0.50 Compute

V18 1 77 0.41 Compute

V19 1 78 0.47 Compute

V20 1 95 0.26 Control Flow

V21 1 96 0.28 Control Flow

V22 1 98 0.25 Control Flow

V23 1 96 0.29 Control Flow

V24 1 97 0.26 Control Flow

V25 1 97 0.30 Control Flow

V26 1 79 0.50 Add Code

V27 1 74 0.52 Add Code

V28 1 95 0.30 Control Flow

V29 1 96 0.28 Control Flow

V30 1 95 0.29 Control Flow

V31 2 70 0.51 Add Code

V32 2 71 0.52 Add Code

V33 4 – – Crash

V34 1 97 0.31 Control Flow

V35 1 98 0.27 Control Flow

V36 1 78 0.47 Compute

V37 1 97 0.29 Control Flow

V38 1 – – Crash

V39 1 98 0.29 Control Flow

V40 2 97 0.31 Control Flow

V41 1 96 0.28 Control Flow

Automated Program Debugging for Multiple Bugs 97

Table 1 below shows the result of running our algorithm on TCAS.
#ErrNum is the total number of bugs in program, DetectReduce means the
reduction of code needs to be checked after running our algorithm, RunTime
is the running time of algorithm, ErrorType is the type of error in a program.
Among the 41 versions, 4 versions add some codes to the original version, 2
versions crash, 11 versions are compute related bugs, the others are control flow
related bugs. The experiment result shows that our approach deals well with
the versions containing control flow related bugs. It reduces at least 95 % of the
detection scope, because we use modified BMPS. For the general control flow
related bugs, it can figure out a set of predicates which could be switched to
get to the expected result. The number of predicates in the set is not more
than 10 as usual. After examining the predicates, the exact localizations of bugs
are detected. As for the compute related bugs, our approach gives a minimal
suspicious program segment. It reduces 75 % of the detection scope averagely.
Furthermore, these program segments are context-sensitive which could help the
programmer to understand the cause of bugs.

As for the run time of the algorithm, it runs about 0.3 s for the program with
control flow related bugs averagely and 0.51 s for those with compute related
bugs. The run time of the former ones are more than the latter ones, because we
run an additional full scale predicate switch if the small scale predicate switch
cannot find a critical predicate set.

Obviously, our approach is better than BMPS. Firstly, it cannot deal with the
compute related bugs. Secondly, BMPS may give the programmer an irrelevant
predicate to reveal the bugs. For example, Fig. 6 below is a segment of TCAS.
The output of TCAS is the variable alt sep, and a conditional statement is
placed at the end of the program, which means after executing this conditional
statements the execution of TCAS is over. Suppose that alt sep is expected to
be UNRESOLV ED, but the value is UPWARD RA for some reason. Thus,
there are some bugs in program. But, when using BMPS, we could always switch
the predicates in this conditional statement to get the right result which would
absolutely conceal the real bugs. In our approach, programmer can mark this
conditional statement to be errorless manually, then the algorithm would find
out the real locations of bugs.

if (need_upward_RA && need_downward_RA)

alt_sep = UNRESOLVED;

else if (need_upward_RA)

alt_sep = UPWARD_RA;

else if(need_downaward_RA)

alt_sep = DOWNWARD_RA;

return alt_sep;

Fig. 6. Example of TCAS.

98 A. Liu et al.

As for the REPLACE program, it has 564 lines of code, and 32 faulty versions.
Among the 32 versions, 2 versions miss code, 2 versions add code, 19 versions
are control flow related faults. It has many loops, our algorithm could effectively
reduce the number of candidate switchable predicates, which could apparently
reduce the total running time. But we cannot deal with the situation that code
are missing.

Also, we intentionally combine the control flow bug related version with the
other version to form some new versions with multiple bugs for TCAS program.
Our approach could deal with these situation in about 4 iterative processes
averagely. The run time could not be counted, for the process is an iterative
subprocedures with programmer.

6 Related Work

In a previous paper, the author (Zhang, Gupta and Gupta) firstly proposed an
algorithm to locate faults through automated predicate switch. They demon-
strated that by forcibly switching the outcome of a predicate at runtime the
program state can be modified. But they only switch one single predicate at a
time. In 2010, Liu and Li presented a first step towards a theoretical exploration
of program debugging algorithm (BMPS). They switch multiple predicates at a
time in order to get a successful execution result.

Griesmayer et al. [13] gives a fault localization algorithm for C programs
by constructing a modified program that allows a given number of expressions
to be changed arbitrarily. They use the counterexample trace from a Model
Checker (CBMC). Because every expression could be modified, the search space
is extremely large. Like what we did in our approach, for an expression e, they
introduce a Boolean variable sw and replace e with sw?nondet() : e. But, our
search space is smaller than theirs for control flow related problem.

BugAssist [14] minimizes a given error trace obtained from bounded model
checking using a Max-SAT algorithm. When a test case failed, BugAssist gener-
ates an execution trace and transfers it into an unsatisfiable formula combined
with the input and the assertion. Thus, it has an apparent limitation that only
executable statements can be part of the minimized error trace, which means
only the bugs in the executable statements could be revealed. They treat bug
locating problem as a partial maximum satisfiability problem which asks what is
the maximum number of clauses that can be satisfied by any assignment. How-
ever, bug locating is a SAT problem in our paper. Also, we can locate bugs in
the statement that is not executed under specified test case.

Many bug locating work uses the difference and comparison between the error
trace and successful trace. Groces approach [15] calls CBMC to get a failing
run firstly, then computes the difference between a failing run and a closest
correct run. Ball et al. [16] call a model checker several times and compares the
counterexamples to a successful trace. They believe that the faults are those
transitions that do not appear in a correct trace. Our approach does not need to
compare the successful trace and the error trace, thus we need less information.

Automated Program Debugging for Multiple Bugs 99

For the control flow related bug, our approach gives an exact location of the bug
instead of a code fragment.

7 Conclusion

In this paper, based on Liu et al.’s work on automated debugging via multi-
ple predicate switching, we proposed an algorithm combined BMPS with Intra-
function debugging method. So it would not only deal with the control flow
related bugs, but also the compute related bugs. We optimize the algorithm by
Use-Define chain, strategy for predicate switching and automated upper bound
for loops. The search space for our approach is much reduced compared with the
former algorithm. The results turned out that it is promising and more efficient.

8 Future Work

In the furture, we would like to extend the algorithm to fit pointer better.
Moreover, a full implementation should be developed, and sufficient experiments
should be made.

References

1. Liu, Y., Li, B.: Automated program debugging via multiple predicate switching.
In: AAAI (2010)

2. Wong, W.E., Debroy, V.: A survey of software fault localization. Department of
Computer Science, University of Texas at Dallas, Technical report UTDCS-45 9
(2009)

3. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, pp. 342–351. ACM (2005)

4. Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate
switching. In: Proceedings of the 28th International Conference on Software Engi-
neering, pp. 272–281. ACM (2006)

5. Challenge, D.: Satisfiability: Suggested format. DIMACS Challenge, DIMACS
(1993)

6. Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan Kaufmann,
San Francisco (1997)

7. Sinn, M., Zuleger, F.: Loopus-a tool for computing loop bounds for c programs.
In: WING@ ETAPS/IJCAR, Citeseer, pp. 185–186 (2010)

8. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

9. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of c and verilog pro-
grams using bounded model checking. In: Design Automation Conference, Pro-
ceedings, pp. 368–371. IEEE (2003)

10. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

100 A. Liu et al.

11. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

12. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: ACM SIGPLAN Notices,
vol. 25, 246–256. ACM (1990)

13. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Electron. Notes Theoret. Comput. Sci. 174, 95–111 (2007)

14. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Notices 46, 437–446 (2011)

15. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Soft. Tools Technol. Transf. 8, 229–247 (2006)

16. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN Notices. vol. 38, pp. 97–105. ACM
(2003)

	Automated Program Debugging for Multiple Bugs Based on Semantic Analysis
	1 Introduction
	2 Technical Background
	2.1 BMPS
	2.2 Intra-function Debugging Algorithm

	3 Bug Localization Framework
	4 Optimization
	4.1 Use-Definition Chain
	4.2 Predicate Switch Strategy
	4.3 Upper Bound for Loops

	5 Experiment and Evaluation
	5.1 Experiment Result

	6 Related Work
	7 Conclusion
	8 Future Work
	References

