
Fault Localization of Timed Automata
Using Maximum Satisfiability

Shin Nakajima1,2(B) and Si-Mohamed Lamraoui1,2

1 National Institute of Informatics, Tokyo, Japan
nkjm@nii.ac.jp

2 SOKENDAI, Tokyo, Japan

Abstract. Timed automata are formal models for systems whose real-
time behavior is a major concern, and practical model checking tools are
available for them. Although these tools are effective to detect faulty
behavior, localizing root causes of faulty timed automata requires a
costly manual task of studying counter-examples. This paper presents an
automatic fault localization problem. The proposed approach follows the
Reiter’s model-based diagnosis theory to employ the consistency-based
method, and details the method to show how the Reiter’s general the-
ory is applicable to timed automata. In particular, the proposed method
introduces a modest assumption on the failure. The paper discusses how
the failure model and properties to be checked affect the formula used
in the consistency-based fault localization method.

1 Introduction

Timed or hybrid systems are employed as a modeling tool for a wide variety of
non-functional concerns such as real-time timing properties or energy consump-
tion [16]. Their formal models, especially linear hybrid systems [2] including
timed automata [1], are well studied and industrial-strength verification tools for
the timed automata are developed (e.g. [10]). These tools check the behavioral
aspects automatically, but require a costly manual study of generated counter-
example traces to identify root causes of the failure.

Automatic fault localization methods are successful for the case of VLSI
circuit designs [19,21] or imperative programs [5,7–9]. These consistency-based
approaches adapt the model-based diagnosis (MBD) theory [18] and use Boolean
satisfiablity [4] as in the bounded model checking (BMC) [3], or specifically
the maximum satisfiability (MaxSAT). In the MBD theory, an artifact and its
property or an assertion are encoded in a logic formula. The whole formula is
unsatisfiable if the artifact is faulty in that it violates the property. The fault
localization problem is finding a subset of clauses in the formula to make it
satisfiable if they are removed. This subset of clauses is a minimal correction
subset (MCS) of the unsatisfiable formula [12].

This paper proposes a consistency-based fault localization method for timed
automata using the MaxSAT. The method adopts the Boolean encoding of
timed automata proposed in [20]. The contributions of this paper are as follows.
c© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2015, LNCS 9559, pp. 72–85, 2016.
DOI: 10.1007/978-3-319-31220-0 6

Fault Localization of Timed Automata Using Maximum Satisfiability 73

(1) We introduce a framework of fault localization methods that details the MBD
theory [18], which constitutes the main body of Sect. 4. The framework makes
explicit the relationship between the failuremodel, the trace formula, and the prop-
erty to be checked. (2) For timed automata, an important class of fault localization
problems is reduced to solving a set of clock constraints. Since the constraints are
expressed in linear real arithmetic theory [1], the problem is decidable. (3) This
paper demonstrates the feasibility of the proposed method with experiments on
small example cases using the Yices-1 [6], a partial MaxSAT solver.

Although the work is still at a feasibility study stage, it is, as far as we know,
the first report on the automatic fault localization of timed automata using the
maximum satisfiability.

2 Preliminaries

This section introduces the basic concepts. We use the term SAT to refer to both
pure Boolean satisfiability and satisfiability modulo theories (SMT) methods.

Scope-Bounded Analysis. The SAT method is a basis of various automatic
analysis methods such as bounded model checking (BMC) [3]. Given a system,
we encode potential execution paths of the system in a logic formula ϕTF . We
let ϕAS be a formula of the property to be checked. Because ¬(ϕTF ⇒ ϕAS)=
ϕTF ∧ ¬ϕAS , a BMC problem is to see whether ϕTF ∧ ¬ϕAS is satisfiable. The
formula is satisfied if the system (ϕTF) violates the given property (ϕAS). The
obtained assignments constitute counter-examples to demonstrate this failure.
In the following, ϕCE refers to a formula encoding these counter-example assign-
ments.

Fault Localization Problem. Let a formula ϕFL be ϕEI ∧ ϕTF ∧ ϕAS for the
above mentioned ϕTF and ϕAS , and ϕEI that encodes error-inducing formula;
ϕFL = ϕEI ∧ ϕTF ∧ ϕAS . We construct ϕEI as a sub-formula of ϕCE so that
ϕEI provides necessary comditions for the failing situation. From these, ϕFL is
unsatisfiable.

If the system fails for a particular set of input data values, ϕCE includes
a sub-formula to encode such a set of data values. In this case, ϕEI is simple
enough to represent that the specific variables take particular values that lead
the system to such a failing execution. In the fault localization of an imperative
program [5,7–9], ϕEI encodes a set of input data values that make the program
violating ϕAS . However, ϕEI may have further information that reflects the
characteristics of the target system. Finding appropriate ϕEI for TAs will be
discussed in Sect. 4.2.

The fault localization problem is finding clauses in ϕTF that are responsi-
ble for the unsatisfiability of ϕFL. These clauses, if found, constitute a conflict,
which is an erroneous situation containing root causes of the failure. By defin-
ition, ϕEI and ϕAS are supposed to be satisfiable. Therefore, it is exactly the
problem in which we search for root causes of the faulty system.

74 S. Nakajima and S.-M. Lamraoui

In what follows, C refers to a set of clauses that constitute a given formula ϕ in
conjunctive normal form (CNF). We use C and ϕ interchangeably. For details
about the basic concepts, we refer to the standard literature (e.g. [4]).

Minimal Unsatisfiable Subset. A set of clauses M , M ⊆ C, is a minimal unsat-
isfiable subset (MUS) iff M is unsatisfiable and ∀c∈M :M\{c} is satisfiable.

Maximal Satisfiable Subset. A set of clauses M , M ⊆ C, is a maximal satis-
fiable subset (MSS) iff M is satisfiable and ∀c∈(C\M):M∪{c} is unsatisfiable.

Minimal Correction Subset. A set of clauses M , M ⊆ C, is a minimal correc-
tion subset (MCS) iff C\M is satisfiable and ∀c∈M :(C\M)∪{c} is unsatisfiable.
By definition, an MCS is a complement of an MSS. MCS is sometimes called
coMSS.

Hitting Set. Let Ω be a set of sets from some finite domain D. A hitting set of
Ω, H, is a set of elements from D that covers every set in Ω by having at least
one element in common with it. Formally, H is a hitting set of Ω iff H⊆D and
∀S∈Ω:H∩S 	=∅. A minimal hitting set is a hitting set from which no element can
be removed without losing the hitting set property.

Partial Maximum Satisfiability. A maximum satisfiability (MaxSAT) prob-
lem for a CNF formula is finding an assignment that maximizes the number of
satisfied clauses. Partial MaxSAT (pMaxSAT) is a variant of the MaxSAT, in
which some clauses are marked soft or relaxable, and the others are marked hard
or non-relaxable. A pMaxSAT problem is finding an assignment that satisfies all
the hard clauses and maximizes the number of satisfied soft clauses.

An Example. Here is a simple example to illustrate the basic concepts [11].

C1 C2 C3 C4

ϕ = (a) ∧ (¬a) ∧ (¬a∨b) ∧ (¬b)

Its MUSes, MCSes, and MSSes are the following.

MUSes(ϕ) = { {C1, C2}, {C1, C3, C4} }
MCSes(ϕ) = { {C1}, {C2, C3}, {C2, C4} }
MSSes(ϕ) = { {C2, C3, C4}, {C1, C4}, {C1, C3} }

MUSes(ϕ) and MCSes(ϕ) are related by a hitting set relationship.
Next, if we mark C3 as hard and all the rest to be soft, a set of two MCS

elements, { {C1}, {C2, C4} }, is obtained as MCSes. This illustrates that there
are two possible repairs to make the formula ϕ satisfiable under the assumption
that C3 is believed to be correct. We may remove either C1 or both C2 and C4.
Note that we must decide which candidate we choose to repair. This decision

Fault Localization of Timed Automata Using Maximum Satisfiability 75

requires a piece of information beyond the fault localization method. The repair
is not the focus of this paper.

Model-Based Diagnosis. Fault localization is finding a subset of clauses, called
diagnosis, in the unsatisfiable formula ϕFL to make it satisfiable if they are
removed. The model-based diagnosis framework [18] presents a way to calculate
diagnoses from conflicts. Note that a conflict is an erroneous situation and a
diagnosis refers to root causes. Formally, diagnoses are MCSes, a set of MCS
elements, while conflicts are MUSes, a set of MUS elements. MCSes are cal-
culated from MUSes by a hitting set relationship [12]. The consistency-based
approach [7,8,19], adopted in this paper, calculates an MSS to obtain an MCS
by complementing the MSS, and repeats this process to collect MCSes. Any
solution to MaxSAT problem is also an MSS, although every MSS is not always
a solution to MaxSAT [15]. We use MaxSAT to obtain MCSes (e.g. [13]).

The fault localization problem needs a method to represent the fact that ϕEI

and ϕAS are to be satisfiable and that some clauses in ϕTF are suspicious. The
pMaxSAT approach fits well this requirement [7–9,21]. The clauses in ϕEI and
ϕAS are marked hard. Suspicious clauses in ϕTF are soft. The other clauses in
ϕTF that are assumed to be bug-free are hard. This decision, in which clauses
are marked soft, is dependent on the adopted failure model (see Sect. 4.2).

3 Scope-Bounded Analysis

3.1 Timed Automata

Timed automata are finite state transition systems that have a finite number of
non-negative real-valued clocks [1]. We follow the standard definitions.

Formal Model. A timed automaton A is a tuple 〈 Loc, �0,X,Edg, Inv 〉.
1. Loc is a non-empty finite set of locations.
2. �0 is the initial location, �0∈Loc.
3. X is a finite set of clock variables. For a positive natural number n(∈ N)

and an operator �� ∈ {<,≤,=,≥, >}, constraints of the form x �� n and
x1 − x2 �� n constitute a set of primitive clock constraints. We denote Z(X)
to be a set of formulas constructing from these primitive constraints possibly
using logical connectives of ∧, ∨ and ¬.

4. Edg represents a set of transitions. It is a finite set Loc×Z(X)×2X×Loc. An
element of Edg, (l, g, r, l′), is written as l

g,r−→ l′, where g is a guard condition
in Z(X) and r refers to a set of clock variables (∈ 2X) to reset.

5. Inv is a mapping from Loc to clock constraints, Inv : Loc→Z(X).

Parallel Composition of Timed Automata. We represent a complex system
as a parallel composition of timed automata, where two timed automata are
synchronized on a same event. The definition of timed automata now contains
a finite set of events Σ and an empty symbol ε, 〈 Loc, �0,X,Σ∪{ε}, Edg, Inv 〉.

76 S. Nakajima and S.-M. Lamraoui

Particularly, Edg is Loc×(Σ∪{ε})×Z(X)×2X×Loc, and its element (l, a, g, r, l′)
is written as l

a,g,r−→ l′.
Parallel composition is defined for given two timed automata A(1) and A(2),

where Σ(1)∩Σ(2) 	=∅. Locations of the composed automaton are pairs of loca-
tions, 〈l(1), l(2)〉 ∈ Loc(1)×Loc(2). Its invariant at each location is a conjunction,
Inv(1)(l(1))∧Inv(2)(l(2)). Symbols common to both alphabets (a∈Σ(1)∩Σ(2))
synchronize two automata. A(1) and A(2) take transitions simultaneously. The
parallel composition can be extended to cases where more than two automata
are involved.

3.2 Boolean Encoding

Fault localization as well as bounded model checking needs Boolean encoding of
a trace formula ϕTF . We follow the encoding method presented in [20].

Trace Formula. A state of a timed automaton A is characterized by a location
variable (at) and clock variables (x1, . . . , xn). Below, we use an abbreviation
such as x̂ to refer to a vector of variables (x1, . . . , xn) ∈ Xn. We introduce a set
V ={at, x̂}. A timed automaton A is defined as 〈I, T 〉 over V . We use j-indexed
state variable such that Vj={atj , x̂j}.

1. Initial State : I is defined on V .

I=(at = �0 ∧ x̂ = 0)

2. Discrete Transition Step : T (e) is a relation on V and V ′ where e = l
g,r−→ l′

and zi = 0 if xi ∈ r, zi = xi otherwise.
T (e)=(at = l ∧ at′ = l′ ∧ g ∧ x̂′ = ẑ ∧ Inv(l′)(x̂′))

3. Delay Transition Step :
D is a relation on V and V ′. Inv(S) is the set of locations that have an
invariant different from true. Clock variables are updated by an amount of δ.

D= ∃ δ >0 . ((
∧

l∈Inv(S) (at = l)⇒Inv(l)(x̂′)) ∧ at′ = at ∧ x̂′ = x̂ + δ)

4. Transition Relation : T is a relation on V and V ′. T= (
∨

e∈EdgT (e)) ∨D

5. K-step Unfolding of Timed Automaton : ϕK
TF is a trace formula to encode

potential K-step execution paths. Let Vj be a set of j-indexed variables
{atj , x̂j}. V in I is V0. V and V ′ in Tj are Vj−1 and Vj respectively.

ϕK
TF = I ∧ (

∧
j=1..K Tj)

Now, we consider parallel composition cases. In order to define a delay transition
step, we introduce a special symbol delay to represent that the automaton takes
a delay transition. The input alphabet is Σ∪{ε, delay}. The set V is extended
to include a variable act referring to an input symbol ({at, x̂} ∪ {act}).

Fault Localization of Timed Automata Using Maximum Satisfiability 77

1. Inactivity Transition : F=(at′ = at ∧ (
∧

x∈Xx′ = x) ∧ (
∧

α∈Σ∪{delay}act	=α))

2. Discrete Transition Step for e = l
a,g,r−→ l′ : A discrete transition of a single

timed automaton for e = l
g,r−→ l′ is a special case of a being ε.

T (e) = (at = l ∧ at′ = l′ ∧ act = a ∧ g ∧ x̂′ = ẑ ∧ Inv(l′)(x̂′))

3. Delay Transition Step :
D= ∃ δ >0 .

((
∧

l∈Inv(S) (at = l)⇒Inv(l)(x̂′)) ∧ at′ = at ∧ x̂′ = x̂ + δ ∧ act = delay)

4. Transition Relation : T= (
∨

e∈EdgT (e)) ∨ D ∨ F

5. K-step Unfolding of N number of Timed Automata : There are N number
of timed automata A(1) . . . A(N) composed, where A(i) is 〈I(i), T (i)〉. I(i)

and T (i) are the initial state and transition relation for the i-th automaton
respectively. T

(i)
j is j-th transition of i-th automaton.

ϕK
TF =

∧
i=1..N (I(i) ∧ (

∧
j=1..K T

(i)
j)), which is rewritten as I ∧ (

∧
j=1..K Tj)

where I =
∧

i=1..N I(i) and Tj =
∧

i=1..N T
(i)
j .

Bounded Model Checking. We introduce a labeling function Lab from each
location to a set of atomic propositions, Lab : Loc→2Prop. Prop is defined over
state variables of a timed automaton, {at, x̂}. Lab(�) is a set of propositions
that are true at the location �.

Specifically, p (p∈Prop) takes a form of equality or dis-equality on the loca-
tion variable (at), and of primitive clock constraints for clock variables (xj).
Clock constraints are represented in linear real arithmetic (LRA). We do not
consider propositions involving act (act∈Σ) because the event symbol is con-
cerned with transition synchronization.

Although a BMC problem is usually defined for arbitrary formulas of linear
temporal logic (LTL) [20], we restrict to consider only two cases, safety properties
and guarantee [14]. Let ψ(v̂) be a propositional formula constructed from Prop.
Each v̂j stands for a vector of state variables in Vj . A safety property is expressed
in LTL as �ψ, and a guarantee property is ♦ψ. Recall a BMC problem is checking
the satisfiability of ϕTF ∧ ¬ϕAS . As a negation of �ψ is ♦¬ψ and a negation of
♦ψ is �¬ψ respectively, a whole formula for the K-unfolded case is

ϕsafety = I(v̂0) ∧ (
∧

j=1..K Tj(v̂j−1, v̂j)) ∧ (
∨

j=1..K ¬ψ(v̂j)),
or

ϕguarantee = I(v̂0) ∧ (
∧

j=1..K Tj(v̂j−1, v̂j)) ∧ (
∧

j=1..K ¬ψ(v̂j))
∧ (

∨
j=0..K−1(v̂k = v̂j)).

78 S. Nakajima and S.-M. Lamraoui

The formula ϕguarantee has an auxiliary constraint that we check ¬ψ against the
paths to contain loops [4]. Since the check is done in a bounded scope, �¬ψ can
be satisfied only when loops exist.

4 Fault-Localization of Timed Automata

4.1 The Framework

The problem of fault localization using the pMaxSAT is formulated as finding
MCSes for an unsatisfiable formula ϕFL of the form ϕEI ∧ ϕTF ∧ ϕAS . Recall
that ϕEI expresses a failing situation, ϕTF encodes all potential execution paths,
and ϕAS is a property to be checked. We need to determine the following three
aspects so as to define the fault localization problem precisely.

The first aspect concerns with the property to be checked, which is common
to BMC problems. We, indeed, conduct the BMC to see if the system is correct
or not with respect to a given property. As discussed in Sect. 3.2, we adopt
Prop defined over state variables of a timed automaton, {at, x̂}. Specifically, p
(p∈Prop) takes a form of equality or dis-equality on the location variable (at),
and of primitive clock constraints for clock variables (xj).

The second is the failure model we assume. The formula ϕTF is a Boolean
encoding of operational semantics of timed automata and expresses all potential
execution paths. Although all the elements can, in principle, be suspicious, we
look for some particular clauses in ϕTF to account for the failure. We will intro-
duce a modest assumption on the failure model, which Sect. 4.2 will explain in
detail.

The third aspect is what to encode in ϕEI . Basically, the formula demon-
strates a failing situation. A conjunction ϕEI ∧ ϕTF encodes a subset of all
potential execution paths. ϕEI acts as a filter to extract appropriate paths from
those represented by ϕTF . The encoding of these paths has impact on the effi-
ciency and precision of identifying MCS elements. Therefore, ϕEI is sensitive to
the fault localization problem, and is related to the property formula ϕAS . We
will explain in details in Sect. 4.2.

4.2 Fault Localization Method

Failure Model. Timed automata are finite state transition systems that have
non-negative real-valued clocks. Now we assume that a given set of timed
automata can be composed, which means that they are not deadlocked due to
inappropriate parallel compositions. Then, faulty behavior in timed automata is
originated from some bugs in using clock variables. Since timed automata refer
to clocks in invariants, transition guards, and resets, we consider that potential
root causes are in them; invariants Inv(l), and g and r on an edge of l

a,g,r−→ l.
These are suspicious elements in faulty systems consisting of timed automata.
The fault localization problem is now checking a conjunction of clock constraints
that are collected from a failing trace with respect to a given property ϕAS .

Fault Localization of Timed Automata Using Maximum Satisfiability 79

In the fault localization problem using the pMaxSAT method, those suspi-
cious elements are marked soft or relaxable. Because an initial state is usually
definite, all elements in the formula I are hard or non-relaxable. The inactiv-
ity transition F , for the case of composing automata, is also definite because it
encodes situations that a constituent automaton does not take any transition.

We will look at the discrete transition T (e) and delay transition D in detail.
The elements concerning with invariants, guards and resets are marked soft.
Below pH shows that p is hard while pS is p marked soft.

1. Discrete Transition Step :
T (e) = ((at = l)H ∧ (at′ = l′)H ∧ (act = a)H ∧ (g)S

∧ (x̂′ = ẑ)S ∧ (Inv(l′)(x̂′))S)

2. Delay Transition Step :
D = ∃ δ >0 . ((

∧
l∈Inv(S) at = l⇒(Inv(l)(x̂′))S)

∧ (at′ = at)H ∧ (x̂′ = x̂ + δ)H ∧ (act = delay)H)

In addition, we mark discrete transition steps themselves soft, (T (e))S . Relaxing
a clause that corresponds to a discrete transition step is a situation in which
we identify a particular transition to be a potential root cause. Contrarily, delay
transition steps must be hard (D)H , because the notion of the time elapse is
essential in timed automata. If they are relaxed, the automaton looses time-
dependent behavior.

Multiple Transitions. A timed automaton usually has multiple edges ei that
share a common source location ls; ei = ls

ai,gi,ri−→ li. They include an empty
transition1 as a special case; eε = ls

ε−→ li. Furthermore, a timed automaton has
a delay transition D at the same source location ls. Some of these transitions
are non-deterministic that are competing to fire at the same time. For a given
location ls, we introduce a set E(ls) to include all the edges, either discrete,
delay, or empty transitions, that share the location ls as their source.

Multiple transitions make the fault localization method complicated. The
consistency-based fault localization method relies on the fact that MCSes can
be calculated from the unsatisfiability of ϕFL where ϕEI induces erroneous situa-
tions. However, if a system has multiple transitions, especially non-deterministic
transitions, it can take transitions other than the one in the failing execution,
and some of the paths may be successful. Consequently, ϕFL can be satisfiable
for these alternative transitions. We are unable to calculate MCSes.

The above observation implies that we cannot use full flow-sensitive trace
formula, which is succeeded in the case of imperative programs [8]. Such a trace
formula faithfully represents all potential execution paths and thus contains non-
deterministic transitions if a similar encoding method is used for timed automata.
Note that imperative programs are deterministic, and that this issue does not
appear.
1 An inactivity transition is an empty transition.

80 S. Nakajima and S.-M. Lamraoui

Sliced Transition Sequence. Given a property formula ϕAS , we first con-
duct a K-scoped BMC to obtain a counter-example, c.e. |= ϕTF ∧ ¬ϕAS . The
counter-example2 contains a transition sequence leading to the violation of ϕAS

(〈 I, T (e1), . . . , T (eK) 〉) and the other information involving a set of delay
values (δi = di). T (ej) is a j-th executed instance of a transition e (e∈Edg).

For a safety property (ϕsafety), there is an index L (L≤K) such that L is
a state at which ψ(v̂j) violates for the first time, a minimum of such indices.
For a guarantee property (ϕguarantee), a counter-example takes a form of the
lasso structure [3]. A lasso consists of a prefix sequence followed by a loop. At
all the states on a lasso, the property ¬ψ(v̂j) is true. Therefore, L is chosen
to be the length of the prefix plus the circumference of the loop part. Now,
the transition sequence up to L contains enough information leading to the
violation of the condition. We construct a truncated sequence up to the L state,
I ∧ (

∧
j=1..LT (ej)). This formula faithfully represents an executed path to the

violation, which indeed defines a failing situation.
We encode the situation in the error inducing formula ϕEI as follows. For

a source location ljs of each transition instance T (ej) appearing in a counter-
example trace, we obtain E(ljs) representing a set of transitions that share a
common source location ljs. For each element ei∈E(ljs)/{T (ej)}, we introduce
its Boolean encoding of transition step τ(ei); τ(ei) is either a discrete, delay or
inactivity transition step whose source location is ljs. If we let T (ljs) be a transition
step fired at ljs, then T (ljs) = T (ej)∨(

∨
ei∈E(ljs)

τ(ei)). Since there is exactly one
transition step at each ljs (actually T (ej)), T (ljs) is true and

∨
ei∈E(ljs)

τ(ei) is
false. Therefore, T (ej) being true is equal to

∧
ei∈E(ljs)

¬τ(ei) being true because
¬(

∨
τ(ei)) =

∧¬τ(ei).
We use an abbreviation such that T (ej)co =

∧
ei∈E(ljs)

¬τ(ei) in order to
represent the conjunction mentioned above. T (ej)co is a transition step in the
obtained counter-example path, but is represented in terms of steps that are not
taken. We use T (ej)co to represent ϕEI ;

ϕEI =
∧

j=1..L
T (ej)

co
=

∧

j=1..L

∧

ei∈E(ljs)
¬τ(ei).

Furthermore, a set of delay values in the counter-example is a kind of input
data value to induce a failing situation. We augment ϕEI with

∧
j=1..L(δj = dj).

Therefore, the formula is that

ϕEI = (
∧

j=1..L

∧

ei∈E(ljs)
¬τ(ei)) ∧ (

∧

j=1..L
(δj = dj))

A whole formula ϕEI∧ϕTF encodes the execution paths in the failing situation,
which we call a sliced transition sequence. The sliced transition sequence is
similar to the flow-insensitive trace formula for imperative programs [7]. The
flow-insensitive trace formula is essentially constructed from T (ej), but we use
T (ej)co. We will discuss the difference in Sect. 5 in regard to the second example
case.
2 For simplicity, we assume here a case of a single TA.

Fault Localization of Timed Automata Using Maximum Satisfiability 81

Fault Localization Steps. Below is whole fault localization steps.

1. Execute K-scope bounded model checking of ϕTF ∧¬ϕAS .
2. Decide the minimum index L leading to the violation.
3. Construct ϕEI from the counter-example.
4. Use pMaxSAT for ϕEI∧ϕTF ∧ϕAS to enumerate MCSes.

Recall that ϕEI and ϕAS are hard or non-relaxable by definition, and that some
clauses in ϕTF are soft or relaxable according to the assumed failure model.

5 Example Cases

As initial studies, we conducted experiments, under MacO/S 10.9.5 on 1.3 GHz
Intel Core i5, using the Yices-1 solver [6], a pMaxSAT solver supporting LRA.

Fig. 1. A single timed automaton (reproduced [20])

Single Timed Automaton. Figure 1 is a simple timed automaton presented
in [20]. Although it is not significant, we check a safety property �(y≤2).

1. We execute nine-scoped BMC of ϕTF ∧ ¬�(y≤2). The number of unfolding,
nine, is just an initial guess. Note that ¬�(y≤2) = ♦(y>2). The formula is
I ∧ (

∧
j=1..9 Tj) ∧ (

∨
j=1..9 (yj > 2)).

2. The obtained counter-example contains a transition sequence of its length
five leading to the violation. �0

δ−→�0
x:=0−→�0

δ−→�0
x:=0−→�1

δ−→�1.
3. The property refers to a clock variable y. The formula ϕEI is chosen to include

the encoding of delay values. Since the first, third, and fifth steps are delay
transitions, a formula referring to these three ((δ1 = 1/2)∧(δ3 = 1/2)∧(δ5 =
3/2)) is meaningful. The property ϕAS is violated in that y5 = 5/2, which is
y5>2.

4. We obtain MCSes {{�0
x:=0−→�0}, {�0

x:=0−→�1}}, which shows that there are two
possible root causes, either �0

x:=0−→�0 or �0
x:=0−→�1. By using this information,

we manually add, for example, a reset of clock y to the edge of the second

MCS, �0
x:=0; y:=0−→ �1. The first MCS is considered as a spurious root cause.

Note that the repair is not automatic, but is up to the user.

82 S. Nakajima and S.-M. Lamraoui

a, x := 0
 0 2

x > y

b, x := 0

a, y := 0
 0 2

y > x

b, y := 0A(2)A(1)

Fig. 2. Inconsistent guards

Inconsistent Guards in Two Timed Automata. Our second example, in
Fig. 2, consists of two timed automata. It is easy to see that both automata are
unable to go to the state l2. The system is stuck at the location pair of 〈�1, �1〉
∈ Loc(1)×Loc(2) because two guard conditions are not satisfiable simultaneously.

Imagine a guarantee property that ϕAS = ♦((at(1) = l2) ∨ (at(2) = l2)).

1. We execute nine-scoped BMC of ϕTF ∧¬ϕAS . Since
¬ϕAS = ¬(♦((at(1) = l2) ∨ (at(2) = l2))) = �((at(1) 	=l2) ∧ (at(2) 	=l2)),
the formula is actually

(I(1)∧I(2)) ∧ ∧
j=1..9 (T (1)

j ∧T
(2)
j)

∧ (
∧

j=1..9 ((at
(1)
j 	=l2)∧(at

(2)
j 	=l2))) ∧ (

∨
j=0..8 ((v̂(1)

9 = v̂
(1)
j)∧(v̂(2)

9 = v̂
(2)
j))).

where the equality v̂
(1)
9 = v̂

(1)
j stands for a conjunction of two clauses to

involve the location or clock, (at
(1)
9 = at

(1)
j)∧(x(1)

9 = x
(1)
j), and v̂

(2)
9 = v̂

(2)
j is

defined similarly.
2. The obtained counter-example contains a transition sequence of its length

three leading to the violation. The loop part consists of consecutive occur-
rences of ε on 〈�1, �1〉.
〈�0, �0〉 a−→ 〈�1, �1〉 δ−→〈�1, �1〉 ε−→〈�1, �1〉.

3. The second transition step in the counter-example was delay, and its value was
one. A sub-formula referring to the delay value is that δ2 = 1. The property
to check (ϕAS) is not dependent on clock variables, and thus this sub-formula
(δ2 = 1) is supposed to have no effect on the fault localization method.

4. We obtained MCSes consisting of one MCS element. The element consists of
two transition edges, which shows that two must be repaired together. The
MCSes is {{�

(1)
1

x>y−→ �
(1)
2 , �

(2)
1

y>x−→ �
(2)
2 }}. By using this information, we modify

manually two guards, x > y in the automaton A(1) and y > x in the A(2).
For example, we change the guard x > y in the A(1) to x≥y and the y > x
in the A(2) to y≥x, which is one possible repair.

Discussions. The first example (Fig. 1) illustrates that the fault localization
problem for a timed automaton is essentially solving a set of clock constraints
that are collected from a counter-example trace. Since the constraints are either
invariants at locations, or guards and resets on transition edges, they are
expressed in linear real arithmetic theory [1]. The property ϕAS refers to a clock

Fault Localization of Timed Automata Using Maximum Satisfiability 83

variable y, and thus ϕEI is chosen to include a set of delay values appearing
in the counter-example trace. The example indicates that the proposed repair
is considered by referring to a particular counter-example involving those delay
values. Therefore, it is desirable to execute the BMC again to see whether the
repair works as we intend. Remember that our problem is localizing faults auto-
matically, but is not debugging automatically.

The second example (Fig. 2) involves two timed automata that are deadlocked
at particular intermediate states. The generated counter-example shows that the
automata are stuck at 〈�1, �1〉. Although the reason for the deadlock is attributed
to inconsistent guard conditions referring to clock variables, the property to check
(ϕAS) is ♦((at(1) = l2)∨(at(2) = l2)) and is independent of clocks. The formula
ϕEI needs not include delay values, and thus can use only a counter-example
transition sequence (

∧
j=1..LT (ej)co).

Now, we study the formula ϕEI in detail. If we use the transitions
T (ej) appearing directly in the counter-example such that ϕEI=

∧
jT (ej), then

ϕEI∧ϕAS is inconsistent regardless of ϕTF . Since the counter-example trace ends
with the stuck state 〈�1, �1〉, the formula ϕEI contains a sub-formula, (at

(1)
3 =

�1)∧(at
(2)
3 = �1). On the other hand ϕAS refers to (at

(1)
3 = �2)∧(at

(2)
3 = �2).

Recall that both ϕEI and ϕAS are non-relaxable. The conjunction ϕEI∧ϕAS is
neither satisfiable nor relaxable at all. Alternatively, consider a situation where
ϕEI=

∧
jT (ej)co= (

∧
j

∧
ej∈E(ljs)

¬τ(ej)). While a whole formula ϕEI∧ϕTF ∧ϕAS

is unsatisfiable, some of T (ej) in ϕTF can be relaxed because each T (ej) is itself
marked soft or relaxable in our failure model. Thus, the MCSes mentioned above
were obtained.

Last, enumerating MCSes is time-consuming and a scalability problem
remains. We may use an efficient method implemented in [8], which adopts a
technique for blocking MCSes [15].

6 Related Work

Formula-based or consistency-based fault localization methods are applied to
design debugging of VLSI circuits [19,21] or imperative programs [5,7–9]. The
method combines the model-based diagnosis [18] and Boolean satisfiability [4].
The problem is finding a diagnosis, which is MCSes when the methods use max-
imum satisfiability. Partial maximum satisfiability is often preferred because it
allows us a way of giving a hint for the relaxation by marking clauses as either
soft or hard [7–9,21]. The precision and efficiency of finding potential root causes
are dependent on the encoding of trace formulas [9]. In the application to imper-
ative programs, the flow-insensitive trace formula [7] was proposed first. Since
it is not adequate to deal with control flow bugs, in which branching condi-
tions may be buggy, flow-sensitive trace formula is used [5]. Full flow-sensitive
trace formula is equivalent to a program’s control flow graph and is the most
expressive. It is shown successful in finding multiple faults in a program [8].

84 S. Nakajima and S.-M. Lamraoui

In the applications to VLSI circuits and imperative programs, the trace for-
mulas are deterministic in that an execution path is unique when we determine
the input values completely. Timed automata have non-deterministic transi-
tions [1]. Especially, discrete transitions and a delay transition is taken non-
deterministically. This fact makes the fault localization problem complicated.
Our approach in this paper is to use a sliced transition trace formula. It is simi-
lar to the flow-insensitive trace formula [7], but is different in that we use T (e)co

but not T (e) directly. T (e)co encodes a counter-example transition sequence by
excluding all the transitions that are not taken. This encoding method is essential
in localizing faults for deadlock cases as shown in the second example. Note that
an accompanying paper [17] discusses cases for power consumption automata
(PCAs) [16], in which PCAs are assumed to be deterministic weighted timed
automata, and thus simplifies the fault localization problem.

7 Concluding Remarks

We reported a consitency-based fault localization method for timed automata
using the partial maximum satisfiability. This work is still preliminary in that
further study is needed for large example cases. It calls for an efficient algorithm
to enumerate MCSes to counter the scalability problem (cf. [8,13,15]). There are
also other important directions. First, the properties are extended from safety
and bounded reachability to a wide class of LTL formulas. Second, introducing
the proposed method to industrial strength tools such as UPPAAL [10] would
be interesting in view of practice.

Acknowledgements. This work is partially supported by JSPS KAKENHI Grant
Numbers 24300010 and 26330095.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the EMSOFT

2011, pp. 273–278 (2011)
3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (2009)

5. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 189–208. Springer, Heidelberg (2013)

6. Dutertre, B., de Moura, L.: The Yices SMT Solver. http://yices.csl.sri.com
7. Jose, M., Majumdar, R.: Cause clue clauses : error localization using maximum

satisfiability. In: Proceedings of the PLDI 2011, pp. 437–446 (2011)
8. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault

localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM 2014.
LNCS, vol. 8829, pp. 251–266. Springer, Heidelberg (2014)

http://yices.csl.sri.com

Fault Localization of Timed Automata Using Maximum Satisfiability 85

9. Lamraoui, S.-M., Nakajima, S., Hosobe, H.: A hardened flow-sensitive trace formula
for fault localization. In: Proceedings of the ICECCS 2015 (2015, to appear)

10. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. J. STTT 1(1–2), 134–
152 (1997)

11. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer,
Heidelberg (2005)

12. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Autom. Reasoning 40(1), 1–33 (2008)

13. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013)

14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

15. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer,
Heidelberg (2013)

16. Nakajima, S.: Using real-time maude to model check energy consumption behavior.
In: Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 378–394. Springer,
Heidelberg (2015)

17. Nakajima, S., Lamraoui, S.-M.: Fault localization of energy consumption behav-
ior using maximum satisfiability. In: Mousavi, M.R., Berger, C. (eds.) CyPhy
2015. LNCS, vol. 9361, pp. 99–115. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25141-7 8

18. Reiter, R.: A theory of diagnosis from first principles. Artifi. Intell. 32(1), 57–95
(1987)

19. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Proceedings of the
FMCAD 2007, pp. 13–19 (2007)

20. Sorea, M.: Bounded model checking for timed automata. ENTCS 68(5), 116–134
(2002)

21. Zhu, C.S., Weissenbacher, G., Malik, S.: Post-silicon fault localization using maxi-
mum satisfiability and backbones. In: Proceedings of the FMCAD 2011, pp. 63–66
(2011)

http://dx.doi.org/10.1007/978-3-319-25141-7_8
http://dx.doi.org/10.1007/978-3-319-25141-7_8

	Fault Localization of Timed Automata Using Maximum Satisfiability
	1 Introduction
	2 Preliminaries
	3 Scope-Bounded Analysis
	3.1 Timed Automata
	3.2 Boolean Encoding

	4 Fault-Localization of Timed Automata
	4.1 The Framework
	4.2 Fault Localization Method

	5 Example Cases
	6 Related Work
	7 Concluding Remarks
	References

