
Automatic Transformation from SOFL Module
Specifications to Program Structures

Xiongwen Luo(✉) and Shaoying Liu(✉)

Department of Computer and Information Sciences, Hosei University, Tokyo, Japan
Xiongwen.luo.2b@stu.hosei.ac.jp, sliu@hosei.ac.jp

Abstract. The Structured Object-oriented Formal Language (SOFL) method is
developed to overcome the disadvantages of existing formal methods and provide
effective techniques for writing formal specifications and carrying out verification
and testing. Although it has been applied to system modeling and design in prac‐
tical and research projects, SOFL has not been widely applied to the industrial
software development systems because of the lack of efficient tool support.
Aiming at improving the existing SOFL supporting tool and solving the problem
that the formal specifications cannot be directly executed, this paper firstly
analyzes the relationship between the structures of SOFL formal specifications
and C# programs, and then discusses how module transformation and data type
transformations are implemented. Finally, a testing is performed to ensure the
reliability of the implemented software system.

Keywords: SOFL · Specification transformations · Data type · Programs

1 Introduction

Specification-based testing and inspection for programs are two major techniques in the
SOFL method [1], but they are facing challenges due to possible inconsistency between
SOFL formal specifications and programs in some programming language such as Java
or C#. The inconsistency may exist in process signatures, data types, or the structure of
the documents. A process in SOFL is an operation transforming input to output, but with
multiple input and/or output ports, which differs from an operation in other formal nota‐
tions, such as VDM [2], Z [3], and B-Method [3]. When a process is implemented in a
program, it is usually realized by a method in a class. It is highly possible that the
parameters of the method are inconsistent with those of the process in the specification.
Further, the data types adopted in SOFL, such as set, sequence, map, composite types,
may be easily implemented using similar data types in the programming language, but
the associated operators defined on those types may be represented using the different
syntax in both the specification and the program. Thus, test cases generated based on
the specification may not be directly applicable in executing the program for testing.
This sets a big hurdle for a complete automatic testing technique to be established.

To deal with this problem, in this paper we describe a new approach called signa‐
ture-preserved transformation. The essential points of the approach are threefold.

© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (eds.): SOFL+MSVL 2015, LNCS 9559, pp. 206–218, 2016.
DOI: 10.1007/978-3-319-31220-0_15



Firstly, the signature of each process in the specification is automatically transformed
into a method signature that preserves the number of the parameters and their types
declared in the process specification. The body of the method is left to the programmer
to complete manually based on the pre- and post-conditions of the process specification.
Secondly, all of the SOFL data types and all the associated operators are implemented
in the programming language in the manner their syntax is almost preserved. Thus, once
the package containing the implementation classes of the data types is imported, the
same operators with the same syntax in SOFL can be directly used in the program. This
will facilitate the application of test cases generated from the specification to the program
implementing the specification. Finally, the structure of the entire module structure can
be automatically transformed into a class structure in which all of the related constants,
type declarations, state variable declarations are properly presented.

The rest of this paper is organized as follows. Section 2 briefly describes the structure
of module in SOFL. Section 3 analyzes the principles of transformation. These trans‐
formations are process transformation, module structure transformation, and data type
transformation. Section 4 discusses the design and implementation of transformation.
Section 5 presents the testing of the programming for verifying the validation and reli‐
ability of the programs. The related work is given in Sect. 6. Finally, the last section,
Sect. 7, concludes the work of this paper, and points out the future research directions.

2 The SOFL Module

In this section, we briefly introduce the structure of a SOFL module in order to help the
reader understand our discussions on automatic transformation late in the paper.

A module in SOFL is a textual document defining the semantics of all of the com-
ponents occurring in an associated condition data flow diagram (CDFD) [3]. The most
important part of the module is the process specifications. Each process models a trans‐
formation from input data flows to output data flows and its functionality is specified

Fig. 1. Structure of module

Automatic Transformation from SOFL Module Specifications 207



using pre- and post-conditions. All of the data flows are associated with processes in the
way they are used as either input or output. Each process can also access or update some
data stores where each data store is represented by a variable of some type. For the
purpose of constructing the process specifications, necessary constants identifiers and
type identifiers may need to be declared, and all of the data store variables must be
declared with proper types in the module, as illustrated in Fig. 1. Another important part
is function definitions. Functions can be applied in the pre- or post-conditions of some
process specifications, but for this purpose, they must be defined either explicitly or
implicitly. We omit the details here for the sake of space. The reader who is interested
in the details can refer to the SOFL book [3].

3 Principles of Transformation

In this section, we focus on the principles for process transformation, module struc-ture
transformation, and data type transformation. From the next section, we will extend our
discussion to the implementation of the transformation principles.

3.1 Process Transformation

A process, basically, consists of five parts: process name, input data flow variables,
output data flow variables, pre-condition and post-condition. The process presents an
action or operation that consumes the input data flows and generates the output data
flows. If there are external variables that need to be used in this process, they are stated
after the keyword ext. A complex process may be decomposed into the lower level
CDFD whose associated module is written after the keyword decom. The keyword
comment starts the informal comment section, which is usually written to improve the
readability of the formal specifications (Fig. 2).

Fig. 2. The structure of process

As process is one of the most essential parts in module [4], we firstly transform the
process to the programs. The process has two types: one is the single-port process with
only one input port and one output port, the other is the multiple-port process with
exclusive input or output data flows. When dealing with the transformations of process,
we implement these two types in two different forms.

208 X. Luo and S. Liu



Firstly, the general form of single-port process is presented in the Fig. 3, and
transforming this process into method is shown in Fig. 4.

Then, the general form of multiple-port process is presented in the Fig. 5, and
transforming this process into method is shown in Fig. 6.

Fig. 5. General form of multiple-port process

Fig. 6. Transformation of multiple-port process

3.2 Module Transformation

As illustrated in Fig. 1, the beginning of the module is the keyword module. Module‐
Name is a unique identifier of module in SOFL specifications. The key words const,

Fig. 3. General form of single-port process Fig. 4. Transformation of single-port process

Automatic Transformation from SOFL Module Specifications 209



type and var start the sections for constant declarations, type declarations, and variable
declarations respectively. The key word inv stands for the type and state invariants,
which represents the constraints on the type declarations section and variable declara‐
tions section. The CDFD_no after the key word behav specifies the affiliated CDFD.
The last two parts, beginning with keyword process and function, offers some processes
and functions.

Apparently, a module is similar to a class in C# in structure. Therefore, we take the
straightforward principle to transform a module into a C# class. Specifically, the ideas
of transforming each part of the module are given as follows:

• Transform the constant declaration to the constant in C#, using the keyword const
prior to the constant variables.

• Transform the type declaration to either a basic type or a class, whose form is in
compliance with C# language syntax. However, the data type is written in SOFL
language, so that it needs to be implemented by C# language as I discuss later.

• Transform the variable declarations to the instance variables, stored and accessed in
the external file, but used in this transformation class.

• Transform the processes to the target methods.
• Transform the functions to the target methods, which are similar to that of processes.

3.3 Data Type Transformation

Data types, an essential part for specifications, provide a notation to define data structures
in the SOFL formal specification [5]. Although we can transform a module to a class in
the programming language, only completing data type transformations can the results
of module transformations be used for final automatic specifications testing. Because
the data types in SOFL are not identical with C# language data types both in semantics
and syntax [6], we cannot directly execute the results of module transformations. In
other words, it attaches no significance to the transformations of module without the
data type transformations. Only with the support of data types transformations, results
of module transformations can be used for specifications and program testing.

In SOFL language, the data types are divided into two categories: built-in type and
user-defined types. The built-in types have fourteen kinds of data types, which are further
divided into basic types and compound types. The basic types include nat0 type, nat
type, int type, real type, bool type, char type, string type and Enumeration type, while
the compound types are: set type, sequence type, composite type, map type, product
type and union type. The user-defined types are defined by the specification writers.
They are based on the built-in data types, so the transformation guidelines of built-in
data types also apply to the transformation of user-defined types.

It is worth noting that transformations from data types in SOFL to the data types in
C# language require both semantics preservation and syntactic changes [7]. Firstly, the
syntax of variable declaration in SOFL language is not identical with that of variable
declaration in C#. The former lets the type appear behind the variable with a colon sepa‐
rating them, while the latter makes the type appear prior to the variable with a space
between them. What is more, in the semantics perspective, some of the types are in

210 X. Luo and S. Liu



accordance with that in C#, such as int type, char type, string type, bool type and Enumer‐
ation type. While some of the types are similar to that in C#, for example nat0 type, nat
type and real type. In addition, some of the types are different from that in C#, for
instance, set type, sequence type, composite type, map type, product type and union type.

In general, the choice of the concrete data types in the transformation will affect
somehow the algorithms of the implemented program using the data types [8, 9]. There‐
fore, it is essential to strike a balance between data structures and algorithms. Under this
circumstance, we consider that some of the data types do not need to be transformed, as
they have already existed in the C# and can be executed directly. While some of the data
types need to be implemented by the similar data types available in C#, the transforma‐
tions of which can be quite straightforward owing to the support of.Net platform with
rich data structures and class libraries.

Based on this analysis, we adopt several principles for data type transformation
summarized as follows:

• The int type, char type, string type, bool type, and Enumeration type do not need to
be transformed because they have already existed in C# and can be used directly.

• The nat0 type defines the natural numbers including zero and nat type defines the
natural numbers, so that these two types can be implemented by int type in C#.

• The real type represents the real numbers, which can be implemented by double type
in C#.

• The set type is an unordered collection of distinct objects, which is similar to the
HashSet type in C#, so it is natural to implement it through HashSet type.

• The sequence type is an ordered collection of objects that allows duplications of
objects. Taking this into account, I believe that List type in C# is the best choice to
implement it.

• The map type is a finite set of pairs, the domain and range to the map share the similar
meaning with the key and value to the dictionary type in C#.

• The composite type and product type represent a collection of several data items, so
the abstract classes are used to implement these two types and their inherent func‐
tions.

• The union type is a special type associated with several functions. It can be regarded
as a collection of variables in different types. We consider that we will transform this
type to a class with many fields in C#.

4 Design and Implementation of Transformations

In general, we create three packages to implement the transformations. One is automatic
transformation package, and other two are module transformations package and data
type transformations package as shown in Fig. 7. In the automatic transformation
package, we need to invoke the methods defined in the module transformations package
to complete the module transformations. The results of transformations cannot be
executed without the support of data type transformations which are completed in data
type transformations package.

Automatic Transformation from SOFL Module Specifications 211



Fig. 7. The structure of transformation framework

The AutomaticTransformation package includes the main class of the transforma‐
tions, whose main method is the entry of the automatic transformations. This package
invokes the methods of classes in the ModuleTransformation package and is supported
by the classes in the SOFLDataType package.

4.1 Main Program in AutomaticTransformation

The AutomaticTransformation package includes the main program used to complete the
automatic transformations. The main method in this program is the entry of the automatic
transformations and it invokes the methods of classes in the ModuleTransformation
package.

In this process, firstly, we enter the path of XML file, and then judge whether the
file exists or not. If the XML file exists, we have to enter the output file path and also
make a judgement to ensure that the file name is legal. In the next step, we will make a
choice to decide whether to start the transformations or not. If we choose to start the
transformations, the specifications will be transformed to C# programs. After
completing the transformation, the system will terminate.

4.2 Implementation Classes in ModuleTransformation

Figure 8 shows the classes in ModuleTransformation, the details of each class is intro‐
duced in the following:

• XmlTool class: The objective of this class is to provide a XML file tool used for
extracting the data information of SOFL formal specifications form the XML files.
Before executing the transformations process, we should make formal specifications
generate the corresponding XML files through the existing SOFL supporting tool,
then this class is to parse these XML files to get the data information we need.

• ConstantTransformation class: This class mainly deals with constant declaration in
SOFL formal specifications. It contains two methods, one is to get the constant vari‐
ables and write into the external file, and the other is to judge constant variables types
and invoke the former method to write the corresponding constants.

• TypeTransformation class: This class is used to complete the type declaration trans‐
formations. Because there are many kinds of different data types, we need to invoke

212 X. Luo and S. Liu



different methods to implement the transformations. In other words, each of the
compound type transformation uses one method.

• VariableTransformation class: The purpose for this class is to transform the variable
declaration section to the programing in C#. Since the variables appearing in this
corresponding part are either the local variables or external variables, so we design
two methods to implement this process. One is for writing the local variables into
target files and the other is for writing the external variables.

• FunctionTransformation class: This class is to handle the transformations from func‐
tion declaration to programs. Owing to the similar structure with the method in C#,
we design a method to write these function declarations into the target files.

• ProcessTransformation class: In this class, a method is defined to judge different
cases, and for each case, we invoke the methods of SinglePort class to execute the
single-port process transformations and the methods of MultiplePort class to execute
the multiple-port process transformations.

• ModuleDeclarationTransformation class: This class is to realize the functions of
module transformations by invoking the methods in other classes. It has two methods,
one is to write the first line of module and the other is to complete the transformations
of other parts in module sequentially.

Fig. 8. The implementation classes in ModuleTransformation

Automatic Transformation from SOFL Module Specifications 213



4.3 Implementation Classes in SOFLDataType

There are fourteen kinds of data types in SOFL, but five of them share the same semantics
and syntactic with C# language so that they can be directly executed in the programming.
The rests need to be transformed in the C# to support the results of module transforma‐
tions. In this case, we design nine interfaces to implement the transformations of nine
kinds of data types. The relationship is shown in Table 1.

Table 1. Data types in SOFL and their implementation classes

Key word of data type in SOFL Data type interface Implementation class

nat0 Inat0 nat0

nat Inat nat

real Ireal real

set Iset set

seq Iseq seq

map Imap map

composite Icomposite composite

product Iproduct product

union Iunion union

Note that the naming conventions of class in C# is that the first letter of class name
is capitalized, but we do not observe this rule because we want to make the name of
implementation classes in accordance with the keyword of data type in SOFL, so as to
use the implementation classes efficiently and unambiguously. The more details about
the design of data type interfaces and the implementations of methods in corresponding
classes are presented by the UML class diagram as follows:

We design nine interfaces, which are Inat0, Inat, Ireal, Iset, Iseq, Imap, Icompo‐
site, Iproduct and Iunion, to implement the transformations of these nine kinds of data
types. The methods in each interface are consistent with the operators in the related
SOFL data types. Then, the nine classes, which are nat0, nat, real, set<T>, seq<T>,
map<T, E>, composite, product and union, are created to implement the corresponding
interfaces (Fig. 9).

214 X. Luo and S. Liu



Fig. 9. The implementation classes in SOFLDataType

5 Transformation Results

After the transformation software system is implemented, it is essential to perform a test
to detect faults and ensure the validity and robustness of the system. In order to check
whether each function in the transformations can be used correctly, we adopt the black-
box testing method to test the transformations process. Firstly, unit testing method is
used to test each transformation section, and then the integration testing methods are
adopted to ensure the success of the entire transformations (Fig. 10).

The testing procedures can also be the guidance of how to use these programs to
make the automatic transformation, which are listed as follows:

1. Using the existing SOFL supporting tool to create the formal specifications and draw
the related CDFDs [10].

In the existing SOFL supporting tool, we can use the three-step approach to
constructing the formal specifications. The structure of the components in current
project is displayed in the upper-left corner. In the center, a CDFD related to the
module is drawn. If one item in the CDFD is selected, the attributes of it will be
presented in the lower- left corner. The module in detail is written in the right side.

2. Generating the related XML file through the existing SOFL supporting tool.

Automatic Transformation from SOFL Module Specifications 215



In Fig. 11, the names of labels are related to the corresponding keywords in the
SOFL formal specifications constructed in step 1. For example, the label “module”
is related to the keyword module in the specification.

Fig. 11. XML file of the related SOFL formal specification

3. Using the software system we have developed to parse the XML file and complete
the transformation. A result of the transformation is presented in Fig. 12.

Fig. 10. Snapshot of the SOFL formal specification of a hotel reservation system

216 X. Luo and S. Liu



In Fig. 12, the module name is related to the class name. The constant declarations
in the module are transformed to the constant variables. The type declarations are
transformed to either a basic type or a class. The variable declarations are trans‐
formed to the instance variables. The process and function are implemented by the
target methods.

Fig. 12. Results of transformations

6 Related Work

There exist some tools to support automatic transformation from other formal notation
to programming languages. VDMTools [11] offer the functions of analyzing the system
models expressed in the formal language of VDM, which has been applied to developing
industrial software systems. The VDM specification can be executed directly through
the interpreter inside this tool. ProB [12] is a validation toolset for the B method. In this
tool, a model checker and a refinement checker can be used for executing the B speci‐
fications to detect various errors. UPPAAL [13] is a verification tool for timed automate.
In UPPAAL, there is no textual specification, but user can construct the finite state
machine to module the functions of a system, which can be executed in this tool to detect
faults.

7 Conclusions and Future Work

In this paper, we discuss the principles and implementation of automatic transformations
from SOFL formal specifications to programs. We first analyzed the module structure

Automatic Transformation from SOFL Module Specifications 217



and data type in SOFL formal specifications, which lays the foundation for the trans‐
formations. We then described the design and implementation of transformations. After
completing the transformations, we used a black-box testing method to design test cases
and carry out unit testing, integration testing and system testing methods to verify the
results of transformations.

In the future, we will continue this transformations work and plan to extend to the
CDFD and class in SOFL formal specifications. With the development of automatic
transformations, we would be interesting in the applications of these transformations for
specifications testing and automatic generation of test cases.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 26240008.

References

1. Liu, S., Chen, Y., Nagoya, F., McDermid, J.: Formal specification-based inspection for
verification of programs. IEEE Trans. Softw. Eng. 38(5), 1100–1122 (2012)

2. Mosses, P.D.: VDM semantics of programming language: combinators and monads. Formal
Aspects Comput. 23, 221–238 (2011)

3. Liu, S.: Formal Engineering for Industrial Software Development: Using the SOFL Method.
Springer, Heidelberg (2004). ISBN 3-540-20602-7

4. Liu, S.: An approach to applying SOFL for agile process and its application in developing a
test support tool. Innovations Syst. Softw. Eng. 6(1), 137–143 (2009). Springer

5. Zainuddin, F.B., Liu, S.: An approach to low-fidelity prototyping based on SOFL informal
specification. In: IEEE APSEC (2012), ISSN: 1530-1362/12

6. Miao, W., Liu, S.: Service-oriented modeling using the SOFL formal engineering method.
In: IEEE APSCC (2009), ISBN: 978-1-4244-5336-8/09

7. Liu, S., Xue, X.: Automated software specification and design using the SOFL formal
engineering method. In: IEEE WCSE (2009), ISBN: 978-0-7685-3570-8/09

8. Chen, Y., Liu, S., Nagoya, F.: A Framework for SOFL-based Program Review. In: IEEE
ICECCS (2005), ISBN: 0-7695-2284-X/05

9. Chen, Y.: A case study of using SOFL to specify a concurrent software system. In: IEEE
(2010), ISBN: 978-1-4244-6055-7/10

10. Li, M., Liu, S.: Tool support for rigorous formal specification inspection. In: IEEE CSE 2014
(2014), ISBN: 978-1-4799-7981-3/14

11. Fitzgerald, J., Larsen, P.G., Sahare, S.: VDMTools: advances in support for formal modeling
in VDM. ACM SIGPLAN Not. 43(2), 3–11 (2008)

12. Leuschel, M., Butler, M.: PROB: an automated analysis toolset for the B method. Int. J. Softw.
Tools Technol. Transf. 10, 185–203 (2008)

13. Behrmann, G., David, A., Larsen, K.G.: UPPAAL 4.0. In: IEEE QEST06 (2006), ISBN:
0-7695-2665-9/06

218 X. Luo and S. Liu


	Automatic Transformation from SOFL Module Specifications to Program Structures
	Abstract
	1 Introduction
	2 The SOFL Module
	3 Principles of Transformation
	3.1 Process Transformation
	3.2 Module Transformation
	3.3 Data Type Transformation

	4 Design and Implementation of Transformations
	4.1 Main Program in AutomaticTransformation
	4.2 Implementation Classes in ModuleTransformation
	4.3 Implementation Classes in SOFLDataType

	5 Transformation Results
	6 Related Work
	7 Conclusions and Future Work
	References


