
On Reachability Analysis of Updatable Timed
Automata with One Updatable Clock

Yunqing Wen1, Guoqiang Li1(B), and Shoji Yuen2

1 School of Software, Shanghai Jiao Tong University, Shanghai, China
{wyqwyq,li.g}@sjtu.edu.cn

2 Graduate School of Information Science, Nagoya University, Nagoya, Japan
yuen@is.nagoya-u.ac.jp

Abstract. As an extension of Timed Automata (TAs), Updatable Timed
Automata (UTAs) proposed by Bouyer et al. have the ability to update
clocks in a more elaborate way than simply reset them to zero. The reach-
ability of general UTAs is undecidable, by regarding a pair of updatable
clocks as counters updatable with incrementation and decrementation
operations. This paper investigates the model of subclass of UTAs by
restricting the number of updateable clocks. It is shown that the reach-
ability of UTAs with one updatable clock (UTA1s) under diagonal-free
constraints is decidable. The decidability is proved by treating a region
of a UTA1 as an unbounded digiword, and encoding sets of digiwords
that are accepted by a pushdown system where regions are generated
on-the-fly on the stack.

1 Introduction

Timed Automata(TAs), introduced by Alur and Dill [1], are one of the most-
studied and most-established models for real-time systems. Lots of work has
been devoted to extensions of timed automata, with much interest for classes
whose emptiness problem remains decidable.

Updatable Timed Automata(UTAs) [2,3] are extensions of timed automata,
based on the possibility to update the clocks in an elaborate way such as incre-
ment and decrement operations and assignments to arbitrary values. Their decid-
ability have been investigated in [4], and also a quite precise way the thin fron-
tier between decidable and undecidable classes of updatable timed automata has
been described. The undecidability is technically shown to simulate the Minsky
machine in general, while the decidability is shown by the fact that the con-
structed regions are finitely many. Our motivation is to investigate an interesting
subclass of UTAs existing between them.

This paper gives a positive answer for the reachability of UTAs with one
updatable clock (UTA1s) with diagonal-free time constraints by constructing
regions on-the-fly over the stack of pushdown systems (PDSs). Our result
expands the thin frontier between decidable and undecidable classes of updatable
timed automata. The model can be effectively used into soft real-time system
modelling and analysis, where the updatable clock is used to depict relative
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deadline, which can be flexibly modified according to different conditions and
environments.

The rest of the paper is organized as follows. Section 2 gives an introduc-
tion of UTAs and PDSs. Section 3 introduces UTAs with one updatable clock.
Section 4 introduces the notion of digiwords, which is equivalent to region [1],
but provides us a more concise description. Section 5 shows the decidable reach-
ability of UTA1s by encoding them to PDSs, based on the notion of digiwords.
The related work is presented in Sects. 6 and 7 concludes the paper.

2 Preliminaries

For finite words w = γ1γ2 . . . γn, we denote γi ∈ w for 0 ≤ i ≤ n.
Let R

≥0 and N denote the sets of non-negative real numbers and natural
numbers respectively. Let N

ω = N ∪ {ω}, where ω is the first limit ordinal. Let
I denote the set of intervals over N

ω. An interval can be written as a pair of
a lower limit and an upper limit in the form of either (a, b), [a, b), [a, c], (a, c],
where a, c ∈ N, b ∈ N

ω,‘(’ and ‘)’ denote open limits, and ‘[’ and ‘]’ denote closed
limits. For a number r ∈ R

≥0 and an interval I ∈ I, we use r ∈ I to denote that
r belongs to I. Let I \ I ′ = {r | r ∈ I ∧ r /∈ I ′}.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if
x = y, and ν(x) otherwise. V al(X) is used to denote the set of clock valuations
of X.

Definition 1 (Clock Constraint). Given a finite set of clocks X, we define
diagonal-free constraints condf and diagonal constraints con, respectively as fol-
lows:

condf ::=x ∈ I?
con ::=x ∈ I? | x − y ∈ I?

where x, y ∈ X and I ∈ I.

2.1 Updatable Timed Automata

Updatable Timed Automata (UTAs) [2–4], extended from TAs, provide a more
flexible way to adjust the value of clock during location switches.

Definition 2 (Updatable Timed Automata). A UTA is a tuple A =
〈Q, q0, F,X,Δ〉, where
– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X is a finite set of clocks,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition (q1, φ, q2) ∈ Δ

is written as q1
φ−→ q2, in which φ is either
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Local ε, an empty operation,
Test x ∈ I? or x − y ∈ I?, where x, y ∈ X and I ∈ I,
Assignment x ← I, where x ∈ X and I ∈ I,
Increment x := x + 1, where x ∈ X or
Decrement x := x − 1, where x ∈ X.

Given a UTA A, we use Q(A), q0(A), F (A), X(A) and Δ(A) to represent its
set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Definition 3 (Semantics of UTAs). Given a UTA A = 〈Q, q0, F,X,Δ〉, a
configuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν
on X. The transition relation of the UTA is represented as follows,

– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I? or φ = x − x′ ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds or

respectively ν2(x) − ν2(x′) ∈ I holds.
• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I.
• Increment φ = x := x + 1, ν2 = ν1[x ← ν1(x) + 1].
• Decrement φ = x := x − 1, ν2 = ν1[x ← ν1(x) − 1] and ν1(x) ≥ 1 holds.

The initial configuration is (q0, ν0). The transition relation is → and we

define →= t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure
of →. Without confusion, we will later leave out the subscript A .

If only diagonal-free constraints appear in test transitions, the corresponding
UTAs are called diagonal-free UTAs. Different from TAs, diagonal or diagonal-
free constraints heavily affect decidability results of UTAs. We list a few unde-
cidable subclasses of UTAs.

Proposition 1. (Proposition 2 in [2]) UTAs without increment rules under
diagonal-free constraints are undecidable.

Proposition 2. (Proposition 3 in [2]) UTAs without decrement rules under
diagonal constraints are undecidable.

2.2 Pushdown Systems

A pushdown system [5] is a transition system equipped with a finite set of control
locations and a stack. The stack contains a word over some finite stack alphabet,
whose length is unbounded. Hence, a pushdown system may have infinitely many
reachable states.

Definition 4 (Pushdown Systems). A pushdown system(PDS) is a quadru-
ple 〈P, Γ,Δ〉 where
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– P is a finite set of states,
– Γ is finite stack alphabet,
– Δ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ Δ is

denoted by 〈p, v〉 ↪→ 〈q, w〉, and
We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗.

A configuration of P is a pair 〈q, w〉, where q ∈ Q and w ∈ Γ ∗. A transition
relation =⇒ between configurations of P is defined by

〈q, γw′〉 ⇒ 〈q′, ww′〉 if 〈q, γ〉 ↪→ 〈q′, w〉

The reflective and transitive closure of ⇒ is denoted by ⇒∗, and we write c
σ⇒n

c′

if c
r1⇒ c1

r2⇒ . . . cn
rn⇒ c′ for any n ∈ N and c, c′, ci ∈ Q × Γ ∗ with 1 ≤ i ≤ n and

σ = [r1, r2, . . . , rn].

3 Updatable Timed Automata with One Updatable
Clock

We propose a subclass of UTAs in a different facet by restricting the number of
updatable clocks to be one, rather than restricting the ability of updates.

Definition 5 (Updatable Timed Automata with One Updatable
Clock). A UTA with one updatable clock (UTA1) is a tuple A =
〈Q, q0, F,X, c,Δ〉, where
– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X = {x1, . . . , xk} is a finite set of clocks, and c is the singleton updatable

clock,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition (q1, φ, q2) ∈ Δ

is written as q1
φ−→ q2, in which φ is either

Local ε, an empty operation,
Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
Assignment x ← I, where x ∈ X ∪ {c} and I ∈ I, or
Increment c := c + 1, or
Decrement c := c − 1.

Remark 1. UTA1s defined in Definition 5 are diagonal-free. We do not discuss
diagonal constraints between clocks, and our following proofs cannot be naturally
extended to cover them.

Definition 6 (Semantics of UTA1s). Given a UTA1 A = 〈Q, q0, F,X, c,Δ〉,
a configuration(state) is a pair (q, ν) of a control location q ∈ Q, and a clock
valuation ν on X ∪ {c}. The transition relation of the UTA1 is represented as
follows,

– Progress transition: (q, ν) t−→ (q, ν + t), where t ∈ R
≥0.
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– Discrete transition: (q1, ν1)
φ−→ (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the follow-
ing holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I.
• Increment φ = c := c + 1, ν2 = ν1[c ← ν1(c) + 1].
• Decrement φ = c := c − 1, ν2 = ν1[c ← ν1(c) − 1] and ν1(c) ≥ 1 holds.

The initial configuration is (q0, ν0).

Remark 2. Although only increment (c := c + 1) and decrement (c := c − 1) are
considered in the Definition 5, arbitrary decrement operation can also be easily
encoded by some adjustment to the UTA1s we defined. For example, p

c:=c−d−−−−−→ q,
where d is some fixed positive integer, can be encoded in the following way, by

introducing an extra clock x′ and more locations p1, p2, . . . , pd, pd+1: p
x′←[0,0]−−−−−→

p1
c:=c−1−−−−→ p2

c:=c−1−−−−→ p3 · · · pd
c:=c−1−−−−→ pd+1

x′∈[0,0]?−−−−−→ q.

Example 1. The UTA1 illustrated in Fig. 1 has three clocks, c, x1 and x2, among
which c is the singleton updatable clock allowed to update in a different way.

q0 q1 q2 qf
x1 ∈ (2,+∞)? c := c − 1 x2 ← (1, 6)

Fig. 1. An Example for UTA1s

One run of the UTA1 is as follows: (q0, ν0)
2.5−−→ (q0, ν1)

x1∈(2,+∞)?−−−−−−−−→
(q1, ν2)

c:=c−1−−−−→ (q2, ν3)
x2←(1,6)−−−−−−→ (qf , ν4)

5−→ (qf , ν5), where

– ν0 = {ν0(c) = ν0(x1) = ν0(x2) = 0},
– ν1 = ν2 = {ν1(c) = ν1(x1) = ν1(x2) = 2.5},
– ν3 = {ν3(c) = 1.5, ν3(x1) = ν3(x2) = 2.5},
– ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) = 5.7}, and
– ν5 = {ν5(c) = 6.5, ν5(x1) = 7.5, ν5(x2) = 10.7}.

The first transition is a progress transition which elapses 2.5 time units, and
each clock grows older for 2.5. The second transition tests whether the value of
clock x1 is greater than 2, and since it is so, a move from location q0 to location
q1 happens. The sequent transition updates the particular clock c by decreasing
one time unit and make a move from location q1 to location q2. The last but
one transition randomly picks a value(in this run, 5.7 is picked) from the range
(1, 6) and assigns it to the clock x2. The last transition is a progress transition
which elapses 5 time units.

Definition 7 (Reachability Problem). GivenaUTA1A = 〈Q, q0, F,X, c,Δ〉
and a state q, decide whether there exists a path from the initial configuration such
as (q0, ν0) →∗ (q, ν), for some ν.
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4 Digiword and Its Operations

We denote the powerset of D by P(D). Let A = (Q, q0, F,X, c,Δ) be a UTA1,
and let n be the largest integer appearing in Δ. For v ∈ R

≥0, proj(v) = ri if
v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

The idea of the following digitization is inspired by [6–10].

Definition 8. Let frac(x, t) = t−floor(t) for (x, t) ∈ ((X∪{c})×R
≥0), where t

is clock x’s value. A digitization digi : V al(X∪{c}) → (P((X∪{c})×Intv(n)))∗

is as follows. For ν ∈ V al(X ∪ {c}), let Y0, Y1, · · · , Ym be sets that collect
(x, proj(t))’s having the same frac(x, t) for (x, t) ∈ (X ∪ {c}) × R

≥0. Among
them, Y0 (which is possibly empty) is reserved for the collection of (x, proj(t))
with frac(t) = 0. We assume Yi’s except for Y0 is non-empty, and Yi’s are
sorted by the increasing order of frac(x, t) (i.e., frac(x, t) < frac(x′, t′) for
(x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈ Yj, where 0 ≤ i < j ≤ m).

Example 2. In example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the clockvaluationν4 inExample 1,digi(ν4) is{(c, r3), (x1, r5)}{(x2, r11)}.
Note that, for convenience we do not show the empty set Y0 in digi(ν4).

A word in (P((X ∪ {c}) × Intv(n)))∗ is called digiword. If for a digiword Ȳ
there exists an clock valuation ν ∈ V al(X ∪ {c}) such that digi(ν) = Ȳ , we call
the word well-formed digiword.

Remark 3. For a finite set of clocks X ∪ {c}, the set of well-formed digiword is
finite. This is obvious, since there are a fixed number of clocks, which leads to
a fixed number of combinations of digiword. This play an essential role in our
encoding, ensuring the PDS has finite states.

Definition 9. Let Ȳ = Y0 · · · Ym ∈ (P((X ∪ {c}) × Intv(n)))∗. We define digi-
word operations as follows.

– InsertI insert(Ȳ , (x, ri)) for x ∈ X ∪ {c} inserts (x, ri) to Ȳ at
⎧
⎨

⎩

either put into Yj for j > 0, or
put the singleton set {(x, ri)} at any place after Y0 if i is odd

put into Y0 ifi is even

– Delete delete(Ȳ , x) for x ∈ X∪{c} is obtained from Ȳ by deleting the element
(x, r) indexed by x.

– Increase increase(Ȳ , c) is obtained from Ȳ by replacing the element (c, ri)
indexed by c with element (c, rmin{i+2,2n+1}).
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– Decrease decrease(Ȳ , c, d) and d ∈ N is obtained from Ȳ by replacing the
element (c, ri) indexed by c with element (c, rmax{i−d,0}).

– Shift. Let j ∈ [0..m] and 0 ≤ i ≤ 2n + 1. A shift Ȳ = Y0Y1 · · · Ym ⇒ Ȳ ′ =
Y ′
0Y

′
1 · · · Y ′

m′ is defined as follows.
⎧
⎪⎪⎨

⎪⎪⎩

either Ȳ ′ = Y ′
0 , Y

′
1 , · · · , Y ′

m+1 if Y0 �= ∅, Y ′
0 = ∅, Y ′

1 = {(x, rmin{i+1,2n+1})
| (x, ri) ∈ Y0} and Y ′

j = Yj−1 for j ∈ [2..m+ 1].

or Ȳ ′ = Y ′
0 , Y

′
1 , · · · , Y ′

m−1 otherwise, Y ′
0 = {(x, rmin{i+1,2n+1}) | (x, ri) ∈ Ym},

and Y ′
j = Yj for j ∈ [1..m − 1].

As convention, we define ⇒∗ as reflexive transitive closure of ⇒.

Example 3. Consider the digiword in Example 1, digi(ν0) = {(c, r0), (x1, r0),
(x2, r0)}.

– after finite times shifts,
digi(ν1) = digi(ν2) = {(c, r5), (x1, r5), (x2, r5)}

– after decrease(digi(ν2), c, 2)
digi(ν3) = {(c, r3), (x1, r5), (x2, r5)}

– after insert(delete(digi(ν3), x2), (x2, r11))
digi(ν4) = {(c, r3), (x1, r5)}{(x2, r11)}

– after finite times shifts,
digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}

Equivalent to the regions [1] in nature, well formed digiwords are bisimilar
to the clock valuations in the following sense:

Ȳ1 ⇒∗ Ȳ2 if and only if ∀ν ∈ [Ȳ1],∃t ∈ R
≥0 s.t. ν + t ∈ [Ȳ2]

where, [Ȳ ] = {ν | Ȳ = digi(ν)}.

5 Reachability for UTA1s

In this section, we show that the reachability problem of UTA1s is decidable.
discretePDSs, which nicely enjoy decidable property of configuration reachabil-
ity. The key idea is that when the updatable clock’s value exceeds the maximum
integer n, we push a special symbol into the stack to record the updates.

Definition 10. For a UTA1 A = 〈Q, q0, F,X, c,Δ〉, there is a PDS P = 〈P ×
(P((X ∪ {c}) × Intv(n)))∗, {•,⊥},Δd〉, where the set of states P = Q ∪ {p′ |
p ∈ Q} and the initial configuration κ0 = 〈(q0, {(x, r0)|x ∈ X ∪ {c}}),⊥〉. Δd

consists of:

– Time Progress
1. 〈(p, Ȳ ),⊥〉 ↪→ 〈(p, Z̄),⊥〉, where Ȳ ⇒ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and i ≤

2n − 1.
2. 〈(p, Ȳ ), ε〉 ↪→ 〈(p, Z̄), •〉, where Ȳ ⇒ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and 2n ≤ i ≤

2n + 1.



154 Y. Wen et al.

– Local (p ε−→ q ∈ Δ)
〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉.

– Test (p x∈I?−−−→ q ∈ Δ)
〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉 if ri ⊆ I for (x, ri) ∈ Yj ∈ Ȳ .

– Assignment (p c←I−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), •〉 ↪→ 〈(p, Ȳ ), ε〉.
2. 〈(p, Ȳ ),⊥〉 ↪→ 〈(p′, Ȳ ),⊥〉.
3. ∀ri ⊆ I \ r2n+1, 〈(p′, Ȳ ),⊥〉 ↪→ 〈(q, insert(delete(Ȳ , c), (c, ri))),⊥〉.
4. 〈(p′, Ȳ ), ε〉 ↪→ 〈(p′, Ȳ ), •〉, if r2n+1 ⊆ I.
5. 〈(p′, Ȳ ), •〉 ↪→ 〈(q, insert(delete(Ȳ , c), (c, r2n+1))), •〉, if r2n+1 ⊆ I.

– Assignment (p x←I−−−→ q ∈ Δ, where x ∈ X)
∀ri ⊆ I, 〈(p, Ȳ ), ε〉 ↪→ 〈(q, insert(delete(Ȳ , x), (x, ri))), ε〉.

– Increment (p c:=c+1−−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), ε〉, for (c, ri) ∈ Yj ∈ Ȳ and i ≤ 2n − 2.
2. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), •〉, for (c, r2n−1) ∈ Yj ∈ Ȳ .
3. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), ••〉, for (c, ri) ∈ Yj ∈ Ȳ and i ≥ 2n.

– Decrement (p c:=c−1−−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), • • •〉 ↪→ 〈(q, Ȳ ), •〉.
2. 〈(p, Ȳ ), •• ⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 1)),⊥〉.
3. 〈(p, Ȳ ), • ⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 2)),⊥〉.
4. 〈(p, Ȳ ),⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 2)),⊥〉 for (c, ri) ∈ Yj ∈ Ȳ and i ≥ 2.

In our encoding, we abuse the symbol ε in the left hand of the transition
rule of PDS P to indicate that whatever the topmost symbol in the stack is,
the transition can occur. This leads to a concise description for our encoding,
which is equivalent to its counterpart with only standard transition rules. For
example, 〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉 can be replaced with two transition rules since
there are only 2 symbols in the alphabet: (1) 〈(p, Ȳ ),⊥〉 ↪→ 〈(q, Ȳ ),⊥〉 and (2)
〈(p, Ȳ ), •〉 ↪→ 〈(q, Ȳ ), •〉.

Given a UTA1 A, for each kind of its transitions, we have its counterpart in
the Δd(P). Some transitions of P, at the first look, may seem hard to under-
stand. The following give a simple explanation for simulating assignment and
decrement.

For an assignment of the form x ← I, PDS P proceed with two different
cases: (1) x = c; (2) x �= c. For the first case, P first need to pop all symbol
• out of stack, then push a certain number of symbols • if needed, and finally
perform delete and insert operations. For the latter case, much simpler, just
directly perform delete and insert operations.

For a decrement of the form c := c − 1, PDS P proceed with four different
cases: (1) ν(c) > n + 1; (2) ν(c) = n + 1; (3)n < ν(c) < n + 1; (4) 1 ≤ ν(c) ≤ n.
For the first case, P merely pops out two symbols of •. For the second and third
cases, P pops out one or two symbol(s) of • and performs decrease operation.
The difference between them is how much it decreases. For the last case, P
merely performs decrease operation.

The following example shows the discretization of assignment transitions,
decrement transitions.
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Example 4. Consider the run in the Example 1.

– (q1, ν2)
c:=c−1−−−−→ (q2, ν3), where ν2 = {ν2(c) = ν2(x1) = ν2(x2) = 2.5}

and ν3 = {ν3(c) = 1.5, ν3(x1) = ν3(x2) = 2.5}. Corresponding simulation:
〈(q1, digi(ν2)),⊥〉 ↪→ 〈(q2, decrease(digi(ν2), c, 2)),⊥〉.

– (q2, ν3)
x2←(1,6)−−−−−−→ (qf , ν4), where ν3 is defined above and

ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) = 5.7}. Corresponding simulation:
〈(q2, digi(ν3)),⊥〉 ↪→ 〈(qf , insert(delete(digi(ν3), x2), (x2, r11))),⊥〉.

Definition 11. Let � be any configuration of a UTA1 such that �0 = (q0, ν0) ↪→∗

� = (q, ν). Define ��� to be 〈(q, digi(ν)), •k ⊥〉, where k = 2 × floor(ν(c) − n) +
ceiling(frac(ν(c))) if ν(c) > n otherwise k = 0. A configuration κ of PDS P
with some � and κ = ��� is called an encoded configuration.

Example 5. Consider the configuration (qf , ν5) in Example 1, where ν5 = {c =
6.5, x1 = 7.5, x2 = 10.7}. By Definition 11, �(qf , ν5)� = 〈(qf , digi(ν5)), • ⊥〉,
where digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}.

Remark 4. For a UTA1’s time progress transition (p, ν) t−→ (q, ν′), where t ∈ R
≥0,

there has a transition sequence of �(p, ν)� ↪→ 〈(p, Z̄1), w1〉 ↪→ 〈(p, Z̄2), w2〉 · · · ↪→
�(q, ν′)� to simulate it, which consists of finite many time time progress transi-
tions of PDS.

Lemma 1. Given a UTA1 A, its associated PDS P, and any configuration �,
�′ of A.

(Preservation) If � → �′ then ��� ↪→∗ ��′�.
(Reflection) If ��� ↪→∗ κ,

1. there exists �′ such that κ = ��′� and � →∗ �′, or
2. κ is not an encoded configuration, and there exists �′ such that κ ↪→∗ ��′�

by transitions (of P) and � →∗ �′.

With Lemma 1, we have the following theorem.

Theorem 1. The reachability of a UTA1 is decidable.

The proof is given in Appendix A.

6 Related Work

After timed automata(TAs) [1] had been proposed by Alur and Dill, a lot of
work has been devoted to extensions of TAs.

The extension that allows to compare the sum of two clocks with a constant
has also been investigated in [1]. It leads to an undecidable class of automata.
Periodic clock constraints defined in [11], can express properties like “the value
of a clock is even” or “the value of a clock is of the form 0.5 + 3n where n
is some integer. The corresponding class of automata is strictly more powerful
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than TAs if silent transitions are not allowed but otherwise coincides with the
original model.

Controlled real-time automata, a parameterized family of TAs with some
additional features like clock stopping, variable clock velocities and periodic
tests has been proposed in [12]. Due to carefully chosen restrictions, controlled
real-time automata remains decidable.

Recursive timed automata(RTAs) [13] is an extension of TAs with recursive
structure. It has clocks by the mechanism of “pass-by-value”. When the con-
dition of “glitch-freeness”,i.e. all the clocks of components are uniformly either
by “pass-by-value” or by “pass-by-reference”, the reachability is shown to be
decidable.

Nested timed automata (NeTAs) [9,10,14] extend TAs with recursive struc-
ture in another way, which allow clocks of some TAs in the stack elapse simulta-
neously with the current running clocks during time passage. Those clocks are
named local clocks, while clocks in other TAs kept unaltered clocks during time
passage are named frozen clocks. It is proved that the reachability of NeTAs with
both types of clocks and a singleton global clock that can be observed by all TAs
is decidable, while that with two or more global clocks is undecidable [10].

The updatable timed automata (UTAs) [4] is a natural syntactic extension of
TA. It enjoyed the possibility of updating the clocks in a more elaborate way
than just simple reset in TA. The value of a clock could be reassigned to a
basic arithmetic computation result of values of other clocks. The paper gave
undecidability and decidability results for several specific cases. The decidability
results were obtained through a generalization of the region graph proposed by
Alur and Dill, while the undecidability results were obtained by reducing an
undecidable problem on Minsky Machine [15] to the emptiness problem for a
subclass of UTAs. The expressiveness of the UTAs was also investigated in the
paper. Our model UTA1s, is actually a specific subclass of general UTAs by
restricting the number of updatable clock to one.

A forward analysis of UTAs has been proposed in [16] for specific subclass of
UTAs that do not use comparisons between clocks. Recently, a refined algorithm
for specific subclass of UTAs with diagonal constraints has been proposed in [17].

7 Conclusion

This paper has investigated the reachability of UTA1s, UTAs with one updatable
clock. By restricting the number of updatable clocks to one, the reachability
of UTA1s is decidable, under the diagonal-free constraints. The decidability is
proved by encoding the clock behavior of UTA1s to PDSs based on the notion
of digiword. The key idea is to use a stack to record the time interval exceeding
the maximum constant integer. As a result, the transitions in pushdown systems
are finer than that of UTA1s.

UTA1s defined in Definition 5 only allow diagonal-free clock constraints. Our
proof can not be extended to cover the UTA1s with diagonal clock constraints.
We will further investigate the reachability for the UTA1s with diagonal clock
constraints as a future work.
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A A Proof of Lemma 1

Proof. Let � = (q, ν). Then ��� = 〈(q, digi(ν)), w〉, where w = •k ⊥ for some k.
For preservation part, By case analysis of � → �′.

1. Time Progress:� t−→ �′. By the digiword’s region-like property, we have
digi(ν) ⇒∗ digi(ν + t). Proceed with two subcases:
(a) If no stack operations involved (i.e. ν(c) + t ≤ n), then we have ��� =

〈(q, digi(ν)), w〉 ↪→∗ ��′� = 〈(q, digi(ν + t)), w〉 by applying the first tran-
sition rule of time progress rules finite times. Note that in this subcase,
w =⊥.

(b) If ν(c)+t > n, then we have ��� = 〈(q, digi(ν)), w〉 ↪→∗ ��′� = 〈(q, digi(ν+
t)), w′〉 by applying the first time progress rule finite times (maybe zero
times if ν(c) ≥ n) and then applying the second time progress rule finite
times.

2. Local:� = (p, ν) ε−→ �′ = (q, ν). Then with the Local transition of PDS,
��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν)), w〉.

3. Test: � = (p, ν) x∈I?−−−→ �′ = (q, ν). Then with the Test transition of PDS,
��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν)), w〉, since ∃(x, ri) ∈ Yj ∈ digi(ν)
such that ri ⊆ I, where digi(ν) = Y1Y2 · · · Yj · · · Ym.

4. Assignment: � = (p, ν) x←I−−−→ �′ = (q, ν[x ← d]), where d ∈ I. We proceed
with 2 cases:
(a) If x �= c, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν[x ←

d])), w〉 by applying the first assignment rule of PDS P: 〈(p, Ȳ ), ε〉 ↪→
〈(q, insert(delete(Ȳ , x), (x, ri))), ε〉, where Ȳ = digi(ν) and d ∈ ri.

(b) Otherwise, x = c, proceed with two subcases, d <= n and d > n.
– d <= n: If w = •k ⊥ for k > 0, we first need to pop all sym-

bols of • out of stack, by repeatedly applying the second assign-
ment rule of PDS k times, having ��� = 〈(p, digi(ν)), •k ⊥〉 ↪→∗ κ =
〈(p, digi(ν)),⊥〉, otherwise define κ = ��� since the stack already has
no symbols of •. Then by applying the third and fourth assignment
rule, we have κ ↪→ κ′ = 〈(p′, digi(ν)),⊥〉 ↪→ ��′� = 〈(q, digi(ν[x ←
d])),⊥〉.

– d > n: If w = •k ⊥ for k > 0, we first need to pop all symbols of • out
of stack, by repeatedly applying the second assignment rule of PDS
k times, having ��� = 〈(p, digi(ν)), •k ⊥〉 ↪→∗ κ = 〈(p, digi(ν)),⊥〉,
otherwise define κ = ���, since the stack already has no symbols of
•. Next, we have κ ↪→ κ′ = 〈(p′, digi(ν)),⊥〉 by the third assignment
rule. Then, by repeatedly applying the fifth assignment rule of P until
we have k = 2×floor(d−n)+ceiling(frac(d)) symbols of • in stack,
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we have κ′ ↪→∗ κ′′ = 〈(p′, digi(ν)), •k ⊥〉. Finally, by applying the last
assignment rule of mathcalP , we have κ′′ ↪→ ��′� = 〈(q, digi(ν[c ←
d]), •k ⊥)〉.

5. Increment: � = (p, ν) c:=c+1−−−−→ �′ = (q, ν[c ← ν(c) + 1]). We proceed with 3
subcases:
(a) If ν(c) ≤ n − 1, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =

〈(q, increase(digi(ν), c)), w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), w〉 by apply-
ing the first transition increment rule of PDS P.

(b) If n − 1 < ν(c) < n, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =
〈(q, increase(digi(ν), c)), •w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), •w〉 by apply-
ing the second transition increment rule of PDS P.

(c) If ν(c) ≥ n, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =
〈(q, increase(digi(ν), c)), • • w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), • • w〉 by
applying the third transition increment rule of PDS P.

6. Decrement: � = (p, ν) c:=c−1−−−−→ �′ = (q, ν[c ← ν(c) − 1]). Note that only
when ν(c) ≥ 1, can this transition happen. We proceed with 4 subcases:
(a) If ν(c) > n + 1, then we have ��� = 〈(p, digi(ν)), • • •w′〉 ↪→ ��′� =

〈(q, digi(ν)), •w′〉 = 〈(q, digi(ν[c ← ν(c) − 1])), •w′〉 by applying the first
transition decrement rule of PDS P.

(b) If ν(c) = n + 1, then we have ��� = 〈(p, digi(ν)), •• ⊥〉 ↪→ ��′� =
〈(q, decrease(digi(ν), c, 1)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the second transition decrement rule of PDS P.

(c) If n < ν(c) < n + 1, then we have ��� = 〈(p, digi(ν)), • ⊥〉 ↪→ ��′� =
〈(q, increase(digi(ν), c, 2)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the third transition decrement rule of PDS P.

(d) If 1 ≤ ν(c) ≤ n, then we have ��� = 〈(p, digi(ν)),⊥〉 ↪→ ��′� =
〈(q, increase(digi(ν), c, 2)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the fourth transition decrement rule of PDS P.

For reflection part, by induction on the steps of ↪→∗.
Base step: Consider the case of ��� ↪→ κ:

1. Time Progress. Obviously, ��� ↪→ κ by one of two time progress rules of
PDS P. Since digiwords have the region-like property, digi(ν) ⇒ Ȳ implies
that there exists a clock valuation ν′ ∈ V al(X ∪ {c}) such that ν′ = ν + t
and ν′ ∈ [Ȳ ] for a real number t(more precisely, 0 < t < 1). Proceed with two
cases:
(a) If ν(c) < n, then ��� ↪→ κ by using the first time progress rule of PDS P. In

such case, we have κ = 〈(p, Ȳ ,⊥)〉 = ��′�, where � = (p, ν) t−→ �′ = (p, ν′).
(b) If ν(c) ≥ n, then ��� ↪→ κ by using the second time progress rule of PDS

P. In such case, we have κ = 〈(p, Ȳ ), •w〉 = ��′�, where � = (p, ν) t−→ �′ =
(p, ν′).

2. Local. If ��� ↪→ κ for p
ε−→ q being a transition in A, then κ =

〈(q, digi(ν)), w〉 = ��′�, where �′ = (q, ν).
3. Test. Similar with the case for Local.
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4. Assignment. We only need to proceed with the first three cases, the other
cases can not happen since the configuration is a encoded configuration(i.e.
���).
(a) If ��� ↪→ κ by applying the first assignment transition rule of PDS P, then

κ is a encoded configuration, since we have ��� = 〈(p, digi(ν)), w〉 ↪→ κ =
��′� = 〈(q, insert(delete(digi(ν), x), (x, ri))), w〉, where � = (p, ν) x←I−−−→
�′ = (q, ν[x ← d]) for d ∈ ri ∈ I.

(b) If ��� ↪→ κ by applying the second assignment transition rule of
PDS P, then the clock involved is c and κ may not be a encoded
configuration. However, by applying the same rules finite times and
then third assignment rule, κ ↪→∗ κ1 = 〈(p, digi(ν)),⊥〉 ↪→ κ2 =
〈(p′, digi(ν)),⊥〉, and then if ri ∈ I for i ≤ 2n, we have κ2 ↪→ ��′� =
〈(q, insert(delete(digi(ν), c), (c, ri)),⊥〉, by applying the fourth assign-
ment rule, otherwise, we have κ2 ↪→∗ κ3 = 〈(p′, digi(ν)), •k ⊥〉 ↪→ ��′� =
〈(q, insert(delete(digi(ν), c), (c, ri)), •k ⊥〉 by applying finite times of fifth
assignment rule first and then the last assignment rule.

(c) If ��� ↪→ κ by applying the second assignment transition rule of PDS P,
the proof is similar to the above case.

5. Increment. We proceed with three cases:
(a) If it takes the first increment transition rule, then we can infer that

ν(c) <= n − 1. Thus we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), w〉 =
��′�, where �

c:=c+1−−−−→ �′.
(b) If it takes the second increment transition rule, then we can infer that n−

1 < ν(c) < n. Then we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), •w〉 =
��′�, where �

c:=c+1−−−−→ �′.
(c) If it takes the third increment transition rule, then we can infer that

ν(c) ≥ n. Then we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), ••w〉 = ��′�,
where �

c:=c+1−−−−→ �′.
6. Decrement. We proceed with four cases:

(a) If it takes the first decrement transition rule, then we can infer that
ν(c) > n + 1. Then we have ��� = 〈(q, digi(ν)), • • •w′〉 ↪→ κ =
〈(q, digi(ν)), •w′〉 = ��′�, where �

c:=c−1−−−−→ �′. Note that digi(ν) =
digi(ν[ν(c) ← ν(c) − 1]), since ν(c) > n + 1.

(b) If it takes the second decrement transition rule, then we can infer
that ν(c) = n + 1. Then we have ��� = 〈(q, digi(ν)), •• ⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 1)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′) and
ν′(c) = n.

(c) If it takes the third decrement transition rule, then we can infer that
n < ν(c) < n + 1. Then we have ��� = 〈(q, digi(ν)), • ⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 2)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′) and
n − 1 < ν′(c) < n.

(d) If it takes the fourth decrement transition rule, then we can infer that
1 <= ν(c) <= n. Then we have ��� = 〈(q, digi(ν)),⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 2)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′).
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Induction step: Assume ��� ↪→∗ κ′ ↪→ κ. We proceed with two cases:

1. κ′ is an encoded configuration, and by induction hypothesis ��� ↪→∗ κ′ = ��′�.
Then the proof is similar to the base step.

2. κ′ is not an encoded configuration. Note that for our encoding, we have
encoded configurations except for the second, third and fifth assignment rule.
Here, we give a proof for the fifth assignment rule. The other cases are sim-
ilar. Assume κ′ = 〈(p′, Ȳ ), w〉 is obtained by applying the fifth assignment
rule, we have κ′ ↪→ κ = 〈(q, digi(ν′)), w〉 = ��′� = �(q, ν′)� by applying the
last assignment rule, where ∃ν ∈ [Ȳ ] such that ν′ = ν[c ← d] for d ∈ r2n+1.
Finally, put together � →∗ �′.
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