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Preface

Practical software development requires effective but simple development methods
with efficient tool support. How to achieve such methods and support still remains a
challenge for the formal methods and software engineering research communities. The
development of the Structured Object-Oriented Formal Language (SOFL) over the last
two decades has shown some possibilities of achieving effective integrations to build
practical formal techniques and tool support for requirements analysis, specification,
design, inspection, review, and testing of software systems. SOFL integrates data flow
diagram, Petri nets, and VDM-SL to offer a graphical and formal notation for writing
specifications; a three-step approach to requirements acquisition and system design;
specification-based inspection and testing methods for detecting errors in both speci-
fications and programs; and a set of tools to support modeling and verification.
Meanwhile, the Modeling, Simulation and Verification Language (MSVL) is a parallel
programming language developed over the last decade. Its supporting tool MSV has
been developed to enable us to model, simulate, and verify a system formally. The two
languages complement each other.

Following the success of the previous SOFL workshops, the 5th International
Workshop on SOFL+MSVL (SOFL+MSVL 2015) was jointly organized in Paris by
Shaoying Liu’s research group at Hosei University, Japan, and Zhenhua Duan’s
research group at Xidian University, China, with the aim of bringing industrial, aca-
demic, and government experts and practitioners of SOFL or MSVL to communicate
and to exchange ideas. The workshop attracted 22 submissions on modeling, specifi-
cation, verification, model checking, testing, debugging, transformation, and algo-
rithms. Each submission was rigorously reviewed by two or three Program Commitee
members on the basis of technical quality, relevance, significance, and clarity, and 15
papers were accepted for publication in the workshop proceedings. The acceptance rate
is approximately 68 %.

We would like to thank ICFEM 2015 for supporting the organization of the
workshop and all of the Program Committee members for their great efforts and
cooperation in reviewing and selecting papers. We would also like to thank all of the
participants for attending presentation sessions and actively joining discussions at the
workshop. Finally, our gratitude goes to Alfred Hofmann and Anna Kramer of Springer
in their continuous support in the publication of the workshop proceedings.

November 2015 Shaoying Liu
Zhenhua Duan
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Genericity in PAR Platform

Jinyun Xue(&)

State International S&T Cooperation Base of Networked Supporting Software,
JiangXi Normal University, Nanchang 330022, China

jinyun@vip.sina.com

Abstract. The main purpose of genericity in high lever programming language
is to increase efficiency of software development and the safety and reusability
of software. Genericity is the useful tool to implement generative software
development and MDA. However, few modelling language has genericity
mechanism and the mechanisms in typical programming language, say C++,
Java, etc., is not sufficiently and is not ease to use. The situation in PAR
platform is quite different. PAR platform supports Model Driven Software
Engineering (MDE) and consists of algorithm modelling language Radl, abstract
program modelling language Apla, a set of rules for the model transformation
and a set of automatic transformation tools of algorithm model and program
model. One of the distinct features of the PAR platform is the agile genericity
mechanisms. In PAR not only a value, a data type and a computing-action
(including operator, method, function and procedure, etc.) can be generic
parameter, an ADT can be generic parameter also. We present new concepts, say
type region, action region and ADT region, which can increase the safety of
generic software obviously. The paper will pay special attention to describe the
syntax and semantics of the ADT parameter. The case study describes the
method to develop generic program with ADT as parameter.

Keywords: PAR method � Platform � Genericity � Generic programming �
Generic parameter

1 Introduction

The main purpose of genericity in high lever programming language is to increase the
safety and reusability of program and efficiency of software development. Genericity is
the important tool to implement generative software development. MDA can be
implemented conveniently based on the genericity. However, the current genericity
mechanism in typical programming language is not sufficiently and is not ease to use
[1–12, 25]. For example, in C++ and Java only type can be as generic parameter; in
Ada although type and subprogram can be parameter but there is no constrain mech-
anism on the parameters that reduces the safety of the corresponding software. This
situation can be improved in PAR platform that support Model Driven Software

This research was supported by the National Natural Science Foundation of China under Grant
No. 61020106009, 61272075, 61472167.

© Springer International Publishing Switzerland 2016
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Engineering (MDE). In Sect. 2. We give a brief description of the PAR Platform. PAR
platform consists of PAR programming methodology, algorithm modelling language
Radl, abstract program modelling language Apla, a set of rules for the model trans-
formation and a set of automatic transformation tools of algorithm model and program
model. Section 3 present some new definition and concepts about generic mechanisms
In PAR not only a value, a data type and a subprogram (including method, function and
procedure, etc.) is as generic parameter, but an ADT can be as generic parameter also.
The instantiation of the generic program unit is described in Sect. 3. Section 4 shows
you a very interesting cases study that related with semiring. The conclusion and future
work are given in final Sect. 5.

2 A Brief Description of the PAR Platform

PAR method given in [14–16] is a formal method. It provides the methodology that
supports formal development of algorithmic programs described using some executable
language, say Ada, Java, C++ and Delphi, from their formal specification. The Forming
of PAR is a long term research plan and been supported by a series of national research
foundations including NNSF and 863 High-Tech program. It containsseveral key
techniques for developing algorithms and programs. The first one is new definition of
loop invariant and two new strategies for developing loop invariant [14]. The second
one is a unified and systematic approach for designing algorithmic program that is
called partition-and-recur [16]. It covers several existed algorithm design techniques
including divide-and-conquer, dynamic programming, greedy, enumeration and some
nameless methods. The designer of algorithms using PAR can partly avoid the diffi-
culty in making choice among various existed design methods. For supporting formal
development of efficient and correct algorithmic programs, we added a lot of formal
stuff to partition-and-recur approach and rename the approach as PAR method [19–21].
Using PAR method, we have formally developed many nontrivial algorithmic pro-
grams, including graph algorithms [15], travel tree algorithms [21], sorting algorithms
[16], array section algorithms and some numeric algorithms [16]. A more convincing
example is formal development of Knuth’s challenging program that converts a binary
fraction to decimal fraction with certain conditions [17, 18]. The PAR method consists
of algorithm design language Radl, rules of specification transformation, abstract
programming language Apla and PAR platform that is a set of automatic program
transformation tools. Recently, we add powerful generic structures to PAR and make it
to support convenient generic programming.

2.1 Modeling Language Radl

Radl was designed for the description of algorithm specifications, transformation rules
for deriving algorithms and algorithms itself. We presented a set of abstract notations
for expressing pre-defined abstract data type, say array, set, sequence, binary tree and
graph, etc. The motivation of developing these mathematics-oriented notations is aimed
at making specification transformation, algorithm derivation and program proof like

4 J. Xue



operating traditional mathematical formula. The most important notion in PAR method
is recurrence relation of problem solving sequence, short for recurrence. Based on the
recurrence the structure of an algorithm is defined as follows:

ALGORITHM:<algorithm name> [<list of type or subroutine parameter 

>]

SPECIFICATION:<algorithm specification>

BEGIN: <initialization of variables and functions in the recurrences>
TERMINATION:<termination condition of recuring>

RECUR < set of recurrences>

END

The Radl expressions have referential transparency that makes the formal derivation
of algorithms possible. Radl was designed for the description of algorithm specifica-
tions, transformation rules for deriving algorithms and algorithms itself. We presented a
set of abstract notations for expressing pre-defined data type, say array, set, list, tree,
graph and database, etc. Radl provides a user-defined mechanism for abstract data type.

2.2 Rules of Specification Transformation

Most of specification transformation rules are quantifier properties and are proved in
[15, 16]. Following are used in this paper. Let θ be an binary operator and big θ be the
quantifier of operator θ, then

ðh i : r(i) : f(i))

means ‘the quantity of f(i) where i range over r(i)’. We write the quantifier of binary
operator +, •, ∧, ∨, ◇(minimum), ◆(maximum), \(intersection), [(union) and ↑ as Σ,
Π, 8, 9, ◇, ◆, \, [ and ↑. Obviously operator +, •, ∧, ∨, ◇, ◆, \, [ are associative
and commutative and their quantifier θ have following properties:

(1) Multi-dummies (θ i, j: r(j) ∧ s(i, j) : f(i,j)) = (θ i: r(i): (θ j: s(i, j): f(i, j)))
(2) Split with no overlap (θ i : r(i) : f(i)) = (θ i: r(i) ∧ b(i) : f(i)) θ (θ i: r(i) ∧ ¬b(i) : f(i))
(3) One point split (θ i : 0 ≤ i<n + 1: E(i)) = (θ i : 0 ≤ i<n: E(i)) θ E(n)
(4) Split with overlap if θ is idempotent then

(θ i : r(i) ∨ s(i) : f(i)) = (θ i : r(i) : f(i)) θ (θ i : s(i) : f(i))
Obviously, binary operator ∧, ∨, ◇, ◆, \, [ are idempotent.

(5) Generalized Split with overlap if θ is idempotent then
(θ i : 9(j: r(j):p(j, i)) : f(i)) = (θ j: r(j) : (θ i : p(j, i) : f(i)))

(6) Generalized Associativity and Commutativity
(θ i : r(i) : s(i) θ f(i)) = (θ i : r(i) : s(i)) θ (θ i : r(i) : f(i))

2.3 Modeling Language Apla

The purpose of developing Apla is to implement functional abstract and data abstract in
program development perfectly so that any Apla program is simple enough and is ease

Genericity in PAR Platform 5



for understanding, formal derivation or proof. It is also ease to transform into some
OOP language programs, say C++, C#, Java, and VB, etc.

Apla is a object-based programming with convenient generics. The purpose of
developing Apla is to implement functional abstract and data abstract in program
development perfectly so that any Apla program is simple enough and is ease for
understanding, formal derivation or proof. It is also ease to transform into some OOP
language programs, say C++, Java, C# etc. Apla and Radl have same standard pro-
cedures and functions. The data types and Predefined ADTs and are also same. We
borrow some control structure from Dijkstra’s Guarded Command Language, but
restrict the nondeterminism.

2.4 Generic Constructions

Generic programming is parameterized programming. Generic programming makes
programming simpler and increases obviously the reusability, security and reliability of
programs. Ada and C++ are two popular programming languages that supporting
generic programming. Types and subroutines can be parameters in ada and only types
can be parameters in C++. However, there is no explicit generic mechanism in Java,
Delphi and VB. It is not convenient to implement generic programming using Java,
Delphi and VB. There are explicit generic mechanism in Apla and Radl [13, 20, 22–24].
It allows data value, data type and subroutine as parameter of procedure, function and
abstract data type. The generic Apla programs can be transformed to generic programs
described in Java, C++ and VB. In PAR, one can implement generic programming using
programming language that has no explicit generic mechanism [24].

2.5 The New Techniques for Generating Database Application Program

In Radl and Apla, accessing to database is an expression of relational algebra rather
than SQL statements. The expression is much simpler and shorter than SQL statement.
It gives us one methodology to develop the database application system with high
reliability and productivity. This makes formal derivation or proof of a database
application program possible.

2.6 Model Automatic Transformation Tools

Radl algorithms and Apla programs are simple enough and ease for formal derivation
and proof. But, it cannot be executed in a computer. Therefore, we developed the PAR
platform that consists of 5 automatic transformation tools of algorithms or programs.
One of them would be able to transform a Radl algorithm into Apla program. Others
may transform Apla programs to the programs of target language, says C++ and Java,
etc. Based on the PAR platform, the efficiency of developing algorithmic program and
reliability of the programs are increased obviously.

6 J. Xue



2.7 The Application of PAR

Using the approach, we have formally developed many nontrivial algorithmic pro-
grams, including graph algorithms [15], travel tree algorithms [21], sorting algorithms
[16], array section algorithms and some numeric algorithms [16]. The Gries’ abstract
notation of binary tree [21] was implemented in PAR platform. The abstract
Hopcroft-Tarjan planarity algorithm was described in Apla. The Apla program was
transformed by PAR platform to C++ code that can correctly test the planarity and
generate planar embedding. We developed a bank account query system based on the
relational algebra in Apla. A more convincing example is formal development of Knuth
¢ s challenging program that converts a binary fraction to decimal fraction with certain
condition [17, 18].

3 Genericity Mechanisms in PAR

Currently, the generic mechanisms in typical programming language, say C++, Java,
etc., is not sufficiently and is not ease to use. In C++ and Java, only data type can be
generic formal parameter. There is no computing- action as generic formal parameter.
Few modelling language has genericity mechanism. PAR platform is an exception.
PAR platform supports Model Driven Software Engineering (MDE). One of the dis-
tinct features of the PAR platform is the agile genericity mechanisms. In PAR not only
a value, a data type and a computing-action (including operator, method, function and
procedure, etc.) can be generic parameter, but an ADT can be as generic parameter
also. We present new concepts of type region, action region and ADT region, which
can increase the safety of generic software obviously.

3.1 Definitions About Genericity

There are many different definitions about genericity. Some definitions is not precise.
According to our research and understanding about genericity, we have following
definitions about genericity:

Definition 1. Generic Programing (GP): GP is a parameterized programming, where
the parameter can be data (value), data type, action (include operator, subprogram,
function, method and procedure), abstract data type (ADT), component, service etc.;
based on the parameters, design the program with versatility. The parameters are called
as generic formal parameters.

GP is a new programming paradigm that is an extension of traditional programming
with one formal parameter, value or data. In PAR, the type, actor and ADT can be
generic formal parameters.

Definition 2. Generic program unit: Suppose class, function, method, procedure and
ADT are the unit of program. The unit that contains generic formal parameters is called
as generic unit. Therefore we have the concept of generic class, generic procedure,
generic function, generic method and generic ADT.

Genericity in PAR Platform 7



Definition 3. Parameter region: The set of generic formal parameters with common
properties is called parameter region. Based on the definition, we have the similar
definition of the type region, actor region and ADT region. Similar to data variable, we
have the concept of type variable, action variable and ADT variable. We use the
keyword somrtype, someaction and someadt denote the type region, action region and
ADT region.

Examples of parameter region:

Type region: sometype = {bool, int, double, char};
Logical operator region: someaction = {∧ ┐ ∨ ≡ =>};
Set operator region:typeaction = {\ [ 2}
Satisfying closed semiring ADT region = {(bool, ∨, ∧), (real, ◇, +), ({real, ◆, +),
(real, ◆, ◇)}

The concept of the parameter region is very useful in describing the common
properties of each category generic formal parameter, which can increase the safety of
generic software obviously.

3.2 Type Region and Type Variable

In Radl and Apla, we define the set of types that satisfy some properties as type region
and a type parameter in a program unit as type variable.The syntax of the type region
declaration is as follows:

sometype = {set of types satisfied some properties};
Following is an example that defines a generic ADT stack with type variable elem:
define ADT stack(sometype elem, [size]);     

function push(x:elem):stack;     

function pop:elem;               

procedure top;                   
function IsEmpty:boolean;        

enddef;
implement ADT Stack(sometype elem, [size]);

……

endimp;
sometype = {integer, char, real|, boolean};
Based on the generic ADT stack, some actual stack type can be produced.

Following are some examples:

Adt stack1: new stack(integer, 100)  // Define a data type stack whose element type 
is integer //and maximal number of stack’s 
elements is 100.

Adt stack2: new stack(char, 100)  // Define a data type stack whose element type is char and 
maximal number of stack’s elements is 100.

8 J. Xue



3.3 Action Region and Action Variable

We define the set of all action that satisfy some properties as action region and an
action parameter in a program unit as action variable. The syntax of the action region
declaration is similar with type region. The action can be the predefined operators of
Apla and defined procedures, functions and services by users.

Action region: someaction = {set of actions satisfied some properties};
Following is an example that defines an action region someaction used in InsertSort

algorithm.

program InsertSort;

procedure sort(someaction comp); 

type list=array[0..n-1,integer];

Var a:list; j, i:integer; t:integer;

someaction ={ };

begin

foreach(i:0≤i≤n:read(a[i]););

i:=1;

do i≤n→ t,j:=a[i],i-1;

do (j≥0) (t comp a[j])→a[j+1],j:=a[j],j-1;od;

a[j+1]:=t;

i:=i+1;

od;

end.

Where comp is action variable
Following is the instantiation statements of the procedure sort which generates sort

ascending and sort descending algorithms.

procedure sortascending: new Sort (≥);
procedure sortdescending: new Sort (≤);

3.4 ADT Region and ADT Variable

The ADT consists of the set of data and the set of operations. The model of ADT can be
a algebra system. We define the set of all ADT that satisfy some properties as ADT
region and an ADT parameter in a program unit as ADT variable. The syntax of the
action region declaration is similar with type region.

ADT region: someadt = {set of ADT satisfied some properties};

Genericity in PAR Platform 9



Example:  

someadt ={ (<, integer), (<, real), ( >, integer) }

program InsertSortProg;

procedure sort(someadt(comp, elem)); 

type list=array[0..n,elem];

var

a:list; j,i:integer; t:elem;

someadt ={ (<, integer), (<, real), ( >, integer) }

begin

foreach(i:0≤i≤n:read(a[i]););

i:=1;

do i≤n→ t,j:=a[i],i-1;

do (j≥0) (t comp a[j])→a[j+1],j:=a[j],j-1;od;

a[j+1]:=t;

i:=i+1;

od;

end.

Where elem is type variable, comp is action variable. Following 3 instantiation state
ments generate 3 different sorting algorithm.

procedure sortascending: new Sort (>, integer);
procedure sortdescending: new Sort (<, integer);
procedure sortdescending: new Sort (<, real);

3.5 Instantiation of the Generic Program Unit

There are 4 generic program units in Apla: that is program, procedure, function and
ADT. Each generic program unit should have instantiation statement. The syntax of the
instantiation statement is:

<name of program unit class> <name of instantiation prgram>: new <name of
generic program unit> (list of actual parameters). Following is the example of
instantiation statements:

procedure sortascending: new Sort (≥);
procedure metrics1: new metrics (real[{+ ∞}, ◇, +, +∞, 0);

During the executing of the instantiation statement, the transformation system will
check the actual parameters of the statement, that is to test whether the actual
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parameters are in the region or not. The system will generate an actual program unit if
the result of test is yes. If not, the error information will be output.

4 Case Study: Matrices Product

Problem: In general case, the product a·b of two n x n matrices a and b can be stored in
matrix c and defined by

c i; j½ � ¼ ðRi; k: 0� i� n and 0� k� n a i; j½ � � b j; k½ �Þ:

Let ⊕ be the quantifier of operation ⊕, ⊙ the quantifier of operation ⊙ and ◇ the
quantifier of operation ◇(min), we have

We need a generic algorithm to compute the product a•b for abstract addition⊕ and
abstract multiplication ⊙, that is to computing

C i; k½ � ¼ ð�i; k: 0� i� n and 0� k� na i; j½ � � b j; k½ �Þ

Then some concrete product can be generated by the generic algorithm.
The concrete product as follows:

c i; j½ � ¼ ðRi; k:0� i� n and 0� k� n a i; j½ � � b j; k½ �Þ ð6:1Þ

c i; j½ � ¼ ðPi; k: 0� i� n and 0� k� n a i; j½ � þ b j; k½ �Þ ð6:2Þ

c i; j½ � ¼ ð} i; k: 0� i� n and 0� k� n a i; j½ � � b j; k½ �Þ ð6:3Þ

For solving the program, following algebra and definitions are needed [26].

Definition 4. A set S with an associative binary operation # is said to be a semigroup.

Definition 5. A semigroup with an identity is called a monoid.

Definition 6. A set S with distinguished elements O and I and binary operations
(abstract) addition ⊕ and (abstract) multiplication ⊙ is a semiring if

(1) (S, ⊕ , O) is a commutative monoid, that is for all a, b, c 2 S
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
a ⊕ b = b ⊕ a
a ⊕ O = O ⊕ a = a [O is the identity under ⊕]

(2) (S, ⊙ , I) is a monoid, that is for all a, b, c 2 S
(a ⊙ b) ⊙ c = a ⊙ (b ⊙ c)
a ⊙ I = I ⊙ a = a [I is the identity under ⊙]

(3) Multiplication ⊙ distributes over addition ⊕ and O is a null-element with respect
to multiplication,
that is for all a, b, c 2 S
(a ⊕ b) ⊙ c = (a ⊙ c) ⊕ (b ⊙ c)
c ⊙ (a ⊕ b) = (c ⊙ a) ⊕ (c ⊙ b)
O ⊙ a = a ⊙ O = O
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A semiring (S, ⊕ , ⊙ , O, I) is commutative if the operation ⊙ is commutative.
Based on the definitions, we get following semirings:

R1 = (R+, +, ·, 0, 1) for Eq. 6.1
R2 = (R+, ·, +, 1, 0) for Eq. 6.2
R3 = (R+ [{+ ∞}, ◇, +, +∞, 0) for Eq. 6.3
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5 Conclusion and Future Work

In this Paper, we proposed a new definition of generic programming that is more
precise and made all generic terms more consistent, two new generic mechanisms:
action and ADT. The definition of parameter region is presented. The new generic
mechanisms and new concept of parameter region made generic programming more
efficiency and more safe.

We are trying to present an algorism to implement generic mechanism that made
the implementation more simple and ease. Then try to implement the proof of generic
program and checking of parameter region using theorem proof tool.

Acknowledgments. Thanks to Xu Wensheng, Zoo Zenkang, Zheng Yujun, Shi Haihe,
Wang CJ, Hu Qimin, Yue Zen and Xie Wuping who attended the previous work of the project
when they studied in JXNU.
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Abstract. Interrupt mechanism is a useful means to ensure timely
response to asynchronous events in real-time systems. Modeling and ver-
ification of the correctness of interrupt systems are important in practice.
This paper proposes an efficient way to formalize the interrupt mecha-
nism in TMSVL. We apply TMSVL to model and verify a timer interrupt
application running under µC/OS-III. To do so, the real-time system is
formalized in TMSVL, and properties to be verified are specified by pro-
jection temporal logic (PTL) formulas or TMSVL statements. Then a
model checker built in the toolkit MSV is employed to check whether or
not the model satisfies the properties automatically.

Keywords: Real-time systems · Interrupt · Schedulability · µC/OS-III ·
Model checking

1 Introduction

μC/OS-III is a widely used open source real-time operating system (OS) [10,13].
It is a portable, ROM-able, scalable, preemptive, and real-time deterministic
multitasking kernel. It has the following features: (1) priority-based preemptive
scheduling; (2) synchronization and communication between tasks, for instance,
mutual exclusion semaphores with built-in priority ceiling protocol to prevent
priority inversions; (3) interrupt and time management. μC/OS-III is used in
a wide variety of industries such as avionics, medical equipments, industrial
controls, and so on.

A real-time system using μC/OS-III which performs reliably and safely is
vital. It is important to ensure the correctness, reliability and safety of such a
system. At present, there are several approaches that can be used to improve
these properties of real-time systems. For instance, (1) simulation and testing
based approaches; (2) verification approaches such as theorem proving and model
checking. However, simulation and testing try to find out bugs of a system
based on enumeration of either simulation environments or test cases [9]. As
Dijkstra pointed out “testing can only find the presence of errors never their
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absence” [5]. Verification is a strict mathematical approach which can be used
to prove whether or not a system satisfies a property by means of theorem prov-
ing or model checking. However, theorem proving needs involvement of manual
efforts while model checking suffers from so called state explosion problem [11].
In addition, the model of a system and the property to be verified are defined
using different notations. This makes the verification process complicated. To
overcome this problem, Timed Modeling, Simulation and Verification Language
(TMSVL) [7] which can be used to model, simulate and verify real-time systems
is introduced.

TMSVL [8] is a timed version of MSVL [7]. A unified model checking approach
has been carried out for TMSVL, that is, a system is modeled as M and the desired
property is specified as φ in the same formalism, thus whether � M → φ can be
checked effectively. A supporting toolkit MSV is developed to model a system in
terms of TMSVL programs, to simulate a system by executing of a path of the
model, and to verify properties of the system by means of the unified model check-
ing. In this paper, we utilize TMSVL to formalize the timer interrupt application
running under μC/OS-III. First, we formalize a general interrupt mechanism in
TMSVL with a derived structure. Then this structure is applied to formalize a
timer interrupt system. At last, the correctness and timeliness properties are spec-
ified in TMSVL and verified with the unified model checker MSV. An advantage of
TMSVL model checking over other model checking approaches is that the model
of the system and the property to be verified are both defined in TMSVL. Further,
the verification process can automatically be performed using MSV.

There are several techniques which are used to verify systems developed under
similar OS. In [4], a method is presented for converting the Trampoline kernel
code into formal models for the model checker SPIN and a series of experiments
using an incremental verification approach has been used to improve the perfor-
mance of the verification. While the formal language PROMELA as an input of
SPIN does not aim at modeling real-time systems. Thus time-dependent proper-
ties may not be verified in SPIN. Timed automata [1] are extended from Büchi
automata by introducing the real-valued clock variables. It is a useful formalism
to model real-time systems. In [15], a distributed fault-tolerant real-time appli-
cation is modeled with timed automata. In [14], timed automata are used to
model a real-time operating system compliant with an OSEK/VDX standard.
Timed automata are also used to model primitives of Ravenscar run-time kernel
for Ada [12]. However, the variable used to measure the execution time of tasks
is an integer. This violates the characteristic of continuous time. A well-known
tool for model checking timed automata is UPPAAL [2]. While systems and
properties are not described in the same formalism. Since the desired property
is usually described in CTL, LTL [11] or TCTL [3].

The paper is organized as follows. The next section introduces TMSVL
language and a formalization of the interrupt mechanism. Section 3 gives an
overview on μC/OS-III. In Sect. 4, we show how a timer interrupt application
running under μC/OS-III can be modeled and verified in TMSVL. Finally, con-
clusion and future work are drawn in Sect. 5.
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2 TMSVL

MSVL is a temporal logic programming language consists of conjunction, selec-
tion, sequence, parallel, branching, loop as well as projection statements [6]. It
is an executable subset of PTL (Projection Temporal Logic) [7], for the MSVL
statements are defined by basic PTL formulas. A toolkit named MSV has been
developed to preform simulation, modeling and verification automatically.

However, MSVL is inefficient to describe time constraints since it abstracts
away from time, retaining only the sequence of states. For instance, a process p
starting at time point t1 and ending at t2 cannot be expressed in MSVL with reals.
It can be expressed by len() statement in MSVL if the time increments of each two
successive states are identical. However, this makes the time increment be the least
one of all the successive states, which unnecessarily increases the number of states
for the model and thus reduces the efficiency for model checking. To avoid this
defect, we extend MSVL by making time explicit and introduce a time constraint
statement in the form of (t1, t2)p to describe the situation where a process p starts
at time point t1 and ends at t2. The extended MSVL is named TMSVL [8] with
variables T and Ts being used to describe time and time increment, respectively.
Meanwhile, we have extended the toolkit MSV with TMSVL thus verification of
real-time systems can automatically be performed using MSV.

2.1 Statements in TMSVL

TMSVL consists of arithmetic expressions, boolean expressions, and basic state-
ments. The arithmetic expression e and boolean expression b are defined by the
following grammar:

e ::= n | x | ©e | -©e | e0 op e1(op ::= +| − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is a constant, x a variable; ©e and -©e denote e at the next state and
previous state over an interval, respectively.

Elementary statements of TMSVL are defined as follows:

1. MSVL statement p
2. Time constraint statment (t1, t2)tp
3. Conjunction statement tp1 ∧ tp2
4. Selection statement tp1 ∨ tp2
5. Sequential statement tp1 ; tp2
6. Parallel statement tp ‖ tq
7. Conditional statement if b then {tp} else {tq}
8. While statement while (b) {tp}
9. Projection statement (tp1, . . . , tpm) prj (tp)

MSVL statements are included first. Suppose t1 and t2 are arithmetic expressions
and tp a TMSVL statement. The time constraint statement (t1, t2)tp means that
tp is executed over the time duration from t1 to t2. tp1∧tp2 means that tp1 and tp2
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Fig. 1. An example of projection structure

are executed concurrently, and terminate at the same time. Selection statement
tp1 ∨ tp2 means tp1 or tp2 is executed. tp1; tp2 means that tp2 is executed after
tp1 finishes. Parallel statement tp ‖ tq means that tp and tq are executed in
parallel, while they are not required to terminate at the same time. Conditional
and while constructs are consistent with that in general programming language
like C and Java.

Projection statement (tp1, . . . , tpm) prj tp means tp is executed in parallel
with tp1; tp2; . . . ; tpm over an interval obtained by taking endpoints of the inter-
vals over which tp1, . . . , tpm are executed. An endpoint denotes the first or the
last state of an interval. Taken (tp1, tp2, tp3) prj tp as an example. We assume tp3
terminates before tp. The construct of (tp1, tp2, tp3) prj tp is depicted in Fig. 1.

If tp1, . . . , tpm are identical, we usually use ((tp1)m) prj (tp) to represent
(tp1, . . . , tpm) prj (tp) for simplicity. ((tp1)�) prj (tp) means m can be any non-
negative integers, and � is named projection-star.

2.2 Interrupt in TMSVL

In real-time embedded applications, interrupt-driven systems are widely adopted
due to strict timing requirements. Interrupt mechanism is an effect way to han-
dle events like a request to an external device or timed detection and control.
When an interrupt is triggered, the processor stops executing the current task
and switches to handle the specified program, namely interrupt service routine
(ISR) or interrupt handler. The process including responding to interrupt and
recovering from interrupt can be modeled by a derived statement q when b do p,
which is defined as follows.

q when b do p
def= ((if b then p else skip)�, r ∧ ε) prj(q ; r ∧ ε) ∧ halt(r)

Here q represents the process which may be interrupted, p is the interrupt
handler and b indicates that the interrupt is triggered and can be processed.
The definition of interrupt is a conjunction of projection and halt statements.
The projection statement describes the relation between the main process q
and the interrupt handler p. When the interrupt is triggered, b becomes true,
p is performed, and only when p is finished, q is resumed. Otherwise, q is exe-
cuted. skip is a MSVL statement which means the length of an interval is one.
An interval is a non-empty (possibly infinite) sequence of states. The length of
an interval is the number of sates minus one. Interrupt is processed only when
q does not terminate. This is realized by introducing the auxiliary proposition r
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Fig. 2. The structure of interrupt in TMSVL

which neither occurs in q nor p. Whenever q is terminated, r ∧ ε is attached to
the end state of the execution of q. This enables statement halt(r) to handle the
termination since halt(r) ensures when r becomes true, q is terminated. Thus,
the execution of whole projection statement ends. An example of the interrupt
structure is illustrated in Fig. 2. In addition, p can also be an interrupt structure
for the case of interrupt nesting.

3 µC/OS-III Overview

3.1 Tasks Management

The functionality of a real-time application is usually achieved by a number of
different priority tasks coordinated by the scheduler of the operating system.
In μC/OS-III, a task has five states: sleeping, ready, running, waiting and sus-
pended. How states of tasks change is shown in Fig. 3. Sleeping state refers to
that a task resides in memory only in the form of code, and is not known by
the operating system. When a task is created by a program, it is registered in
the operating system and turns the sleeping state into ready state. A ready task
can also be deleted by a user program, which will lead the state to change to
sleeping state. If a ready task obtains the processor, it will be executed and in
the running state. A running task may turn into waiting state when it waits for
the occurrence of some events, or turn into ready state when it is preempted
by a higher priority task, or become suspended when an interruption occurs.
A task in waiting state can either become ready when the waited events occur or
turn into sleeping when it is deleted. A task in suspended state turns into ready
state if the interrupt handler makes a higher priority task ready, otherwise, the
interrupted task is resumed.

3.2 Events Management

μC/OS-III provides events management for task synchronization and commu-
nication. An event can be a request for common resource such as hardware
device and buffer, or release of the common resource. The process that a task
requests or releases common resource is managed by the operating system.
Furthermore, the operating system manages these events with appropriate mech-
anisms such as semaphore, mutex semaphores, event flag groups, mailbox and
message queues according to different characteristics of common resources.
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a: a task is created; b: a task is deleted; c: a ready task gets the processor; d: a task is
preempted; e: a task waits for the occurrence of some events; f: the waited events have
occurred; g: a task is interrupted; h: the interrupted task is resumed j: the interrupt
makes a higher priority task ready

Fig. 3. State transition graph of tasks

3.3 Interrupt Management

In μC/OS-III, interrupt has higher priority than tasks. Interrupt mechanism is
adopted to deal with asynchronous events timely. When an interrupt request is
received, if interrupt is not disabled, the OS suspends the current running task
and switches to the corresponding interrupt handler. At the end of the interrupt
handler, the OS scheduler puts the highest priority ready task into running state
instead of just returning to the interrupted task.

Timer interrupt is a fundamental hardware condition for tasks synchroniza-
tion. It is the heart of μC/OS-III. By setting the hardware timer, the interrupt
arrives every 10∼200 ms. The corresponding ISR is timer tick ISR. It does the
following jobs: (1) increasing the timer by one time tick; (2) traversing the task
control block and decreasing the delayed tasks by one time tick. Turning the
waiting tasks with the delay being zero and waiting for no event to ready state;
(3) conducting task scheduling. Interrupt is enabled until the end of a single
execution of the timer tick ISR. Without timer interrupt, multi-task scheduling
operating systems do not exist, neither do real-time systems.

3.4 OS Kernel Service

Kernel is an important part of OS. Its primary function is task scheduling. The
task scheduling function mainly does the following work: (1) finding the highest
priority ready task; (2) if the highest priority ready task is not the current run-
ning task, performing a task switching, namely, making the processor available
for the highest priority ready task and saving the context of the preempted task.
There are two schedulers in μC/OS-III, that is, task level and interrupt level
scheduler. Interrupt level scheduling occurs at the end of interrupt processing,
whereas task level scheduling is triggered in the following conditions: (1) a task
is added or deleted, or the priority of a task is changed; (2) a task delays itself,
or the delay time is decreased to zero; (3) the event a task requests occurs.
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4 Modeling and Verification of a Timer Interrupt
Application

In this section, we utilize TMSVL to verify the correctness and timeliness of an
abstract timer interrupt application running under μC/OS-III.

The application consists of three tasks Task0, Task1, and Task2. We assume
the priority of each task is 5, 10, and 14. The lager value is corresponding to
lower priority. Therefore, Task0 has the highest priority, followed by Task1 and
finally Task2. Task0 and Task2 need to access the mutex semaphore sem when
they are executed. The pseudo-code of the three tasks is given in Fig. 4.

Task0() Task1() Task2()
{ { {

sem=OSMutexCreate(pri, err); while(1) while(1)
while(1) { {
{ Comp1; pend(sem);

pend(sem); OSTimeDly(n1) ; Comp2;
Comp0; } post(sem);
post(sem); } OSTimeDly(n2) ;
OSTimeDly(n0) ; }

} }
}

Fig. 4. Tasks pseudo-code

Task0 creates sem by invoking the system function OSMutexCreate(). The
first parameter namely pri is the priority to use when accessing the mutex
semaphore, the second parameter err indicates the error message, and the return
value is the created semaphore. We should specify pri a priority that is higher
than any of the tasks competing for sem to prevent the priority inversion. This is
the essence of the priority ceiling protocol. Thus the value of pri is lower than 5.
Task0 and Task2 request sem before performing Comp0 or Comp2 and release
sem after finishing Comp0 or Comp2. Then the tasks invoke the system function
OSTimeDly() to cede the processor and turn to the waiting state. The para-
meter of OSTimeDly() is the number of time ticks the tasks block themselves.
The three tasks are loop structures. Each new execution circle of the three tasks
except for the first one is preceded by a delay of ni (i = 0, 1, 2) time ticks.

In order to verify the abstract application, we assume the three tasks are
created at the same time ST . The correctness and timeliness properties depend
both on the design of the application and hardware environment. We assume
the timer interrupt is triggered every 20 ms, and the time it takes to handle the
timer interrupt is 0.2 ms.
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Fig. 5. Data type for tasks

4.1 Modeling of the Application

A new data type m task is defined in Fig. 5 to store task information for the
modeling and verification purpose. In m task, rd, ex, wait, spd are integer vari-
ables. rd = 1 if a delay of a task finishes, rd = 0 otherwise; ex = 1 if a task is
running, ex = 0 otherwise; wait = 1 if a task is at the state of waiting, wait = 0
otherwise; spd = 1 if a task is suspended by interrupt, spd = 0 otherwise.
C,D, ac, acD, dly, d are float variables. C denotes the time it takes to perform
a computation. D is the deadline of each computation of a task. ac stores the
accumulated running time of a task in the current period. acD denotes the accu-
mulated delay time of a task in the current period. dly is the time a task delays
each time.

Task[3] is an array of m task type, and Task[i] is corresponding to Taski.
Other notions and their meanings are given below (i is an integer and i = 0, 1, 2,
N is a constant and N = 2):

– d[i]: a real variable, with a non-negative value denoting the remainder of the
delay time if Taski is delayed; otherwise, d[i] is an infinity.

– d[N + 1]: a real variable, if the interrupt has been triggered at the current
state, d[N + 1] represents the time needed for finishing the interrupt handler;
otherwise, it indicates the time needed for the next arrival of an interrupt.

– d[N +2]: a non-negative real variable indicating the time required for finishing
the remaining part of a running task. If there is no running task at the current
state, it is an infinity.

– inp: a boolean variable. inp = 1 indicates that the current request of the
interrupt is still standing while inp = 0 indicates that the current request of
the interrupt is fulfilled.

– runTaskNum: an integer variable, with a non-negative value indicating the
highest ready task’s subscript. That is, runTaskNum = i if Taski is running,
runTaskNum = −1 otherwise.

– ST and ET : non-negative real variables indicating the start and end time of
the tasks.

The TMSVL model of the above application is defined as follows:

M
def= clock(eT , eTs) ∧ TsSet ∧ (while(T < ET ){Q} ∧ P )when(b)do(ISR)
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Each TMSVL program is a conjunction of clock(eT , eTs) and statements.
clock(eT , eTs) initializes T and Ts, the current time and time increment, with
the evaluations of arithmetic expressions eT and eTs, and enables T to increase
with the increment Ts. Meanwhile, Ts can be set in the TMSVL program.

The module TsSet sets the time step Ts to eliminate states without events
to reduce the state space for model checking. Events including the occurrence
of the interrupt, the start and end of interrupt processing, the completion of a
computation, and the start and finish of a task delay. At every state, the time
needed for the occurrences of those events are calculated and they are stored in
the array d. Ts is always set to the minimum element of d.

(while(T < ET ){Q}∧P )when(b)do(ISR) is the TMSVL interrupt structure.
It is used to describe the relation between the tasks scheduling and the hardware
interrupt. Q denotes a task scheduling. while(T < ET ){Q} means Q is executed
repeatedly and terminated at time point ET . P denotes the tasks module, and
ISR denotes the interrupt handler. The notion b is a boolean condition here,
which means that the timer interrupt is triggered and the system does not disable
the interrupt.

The TMSVL model of the scheduler is shown in Fig. 6. Lines 8 to 11 show the
scheduling of Task2 which has the lowest priority. If Task2 is ready and Task0
and Task1 are not ready or executing, Task2 can be executed and it cannot be
preempted, which is realized by the while statement at Line 10. As long as Task2
does not finish computation, namely Task[2].ac < Task[2].C, the scheduler will
not schedule other tasks. The scheduler makes Task0 be the running task by
setting runTaskNum to 0 if Task0 is ready, which is shown in Lines 2 to 3; if
Task0 is not ready but Task1 is ready, Task1 will be scheduled. When none of
the three tasks is ready, runTaskNum is set to −1.

Q
def
=
1. //Selecting the ready task with the highest priority

2. if(Task[0].rd=1)
3. then{runTaskNum=0}
4. and
5. if(Task[0].rd=0 and Task[1].rd=1)
6. then{ runTaskNum=1}
7. and
8. if(Task[0].rd=0 and Task[1].rd=0 and Task[2].rd=1)
9. then{runTaskNum=2 and skip;
10. while(Task[2].ac<Task[2].C){ runTaskNum=2 and skip }
11. }
12. else { skip }
13. and
14. if( Task[0].rd=0 and Task[1].rd=0 and Task[2].rd=0)
15. then{runTaskNum=-1 }

Fig. 6. TMSVL model of the scheduler
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Pi
def
=
1. while(T<ET)
2. { await(runTaskNum=i);
3. Task[i].ac=0 and
4. while(Task[i].ac<Task[i].C)
5. { if(inp=0 and runTaskNum=i)
6. then{Task[i].ac:=Task[i].ac+Ts and Task[i].ex=1 and Task[i].wait=0}
7. else{ Task[i].ex=0 and skip} };
8. if(Task[i].ac=Task[i].C)
9. then{(T,T+Task[i].dly)keep( next Task[i].acD=Task[i].acD+Ts and
10. Task[i].rd=0 and Task[i].ex=0 and Task[i].wait=1);
11. if(i=2)then{await(runTaskNum!=0)};
12. Task[i].acD=0 and Task[i].rd=1 and empty }
13. }

Fig. 7. TMSVL model of each task

The task module is a parallel of tasks. P can be expressed with the parallel
statement below:

P
def= ||Ni=1Pi

where Pi is the TMSVL model of Taski and it is defined in Fig. 7. The structure
of Pi is a while loop. In the loop body, the task is waiting for its opportunity
to run which is shown in Line 2. If Taski gets the opportunity to run, namely
runTaskNum = i, the await statement terminates and the statement following
starts work, wherein Task[i].ac is set to zero at Line 3. Otherwise, the await
statement will not terminate and the statement after it cannot work. The value of
runTaskNum is determined in the scheduler Q. If Taski runs, the accumulated
execution time of Taski at the next state is the sum of Task[i].ac and Ts at
the current state. When Taski starts a new circle, Task[i].ac is set to zero.
If Taski finishes an execution of a circle, that is, Task[i].ac = Task[i].C, it
will delay Task[i].dly time units, during which the task is at the waiting state.
For Task0 and Task1, they will be ready again and repeat the above steps after
delaying Task[0].dly and Task[1].dly time units. While for Task2, after delaying
Task[2].dly time units, only when sem is released by Task0 can it be in ready
state, which is shown in Line 11.

The TMSVL model of ISR is given in Fig. 8. When the OS begins to
handle interrupt, the running task turns to the suspended state and this is
shown in Lines 1 to 4. The interrupt handler takes 0.0002 s, during this period,
the running task is suspended by setting Task[runTaskNum].ex to 0 and
Task[runTaskNum].spd to 1. When the interrupt processing is finished, the
interrupted task leaves the suspended state and a task scheduling is triggered
which is shown in Lines 5 to 7.
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ISR
def
=
1. (T,T+0.0002) ( temp=runTaskNum and
2. keep( if(temp!=-1)
3. then{ Task[temp].spd=1 and Task[temp].ex=0}
4. ));
5. Q and
6. if(temp!=-1 )
7. then{ Task[temp].spd=0}

Fig. 8. TMSVL model of the ISR

4.2 Verification of the Application

Verification is based on constructing Normal Form Graph (NFG) [6]. Given
a TMSVL program p, we can construct a graph named NFG that explicitly
illustrates the state space of the program. An NFG is a directed graph, denoted
as G=<V, E>, with a node in the set V of nodes representing a program in TMSVL
and an edge in the set E of edges representing a state. In fact, NFG determines
the execution paths of the corresponding TMSVL program.

Suppose the TMSVL model of a system is p and the property to be verified
is φ. To check whether or not φ is valid on p amounts to deciding whether p → φ
is valid. Further, whether p → φ is valid is equivalent to check whether p ∧ ¬φ
is unsatisfiable. This can be achieved by constructing NFG of p ∧ ¬φ and then
checking whether no paths in the NFG are acceptable. Otherwise, an acceptable
path presents a counterexample in the program that violates the property. We
have developed a prototyping tool based on the toolkit MSV for supporting
verification of TMSVL programs. The following properties are verified in MSV.

(1) Safety: when the lowest priority task, namely Task2 is running,
it should not be preempted by Task0 or Task1.

This can be expressed by p1 as follows:

�(Task[2].ac < Task[2].C ∧ Task[2].ac > 0 → (inp = 1 ∨ Task[2].ex = 1))

p1 means that once Task2 starts executing, namely, Task[2].ac > 0 and
Task[2].ac < Task[2].C, it is either suspended by the interrupt (inp = 1) or
at the executing state (Task[2].ex = 1). inp = 1 ∨ Task[2].ex = 1 indicates
that Task0 and Task1 are not executed. Since at each state, at most one task is
executing(�(Task[0].ex + Task[1].ex + Task[2].ex ≤ 1)), which can be verified
first. When interrupt occurs, none of the three tasks can execute, this can be
expressed as �(inp = 1 → Task[0].ex + Task[1].ex + Task[2].ex = 0) and has
been verified using MSV.

(2) Timeliness property: the three tasks can always finish in their
deadline periodically.

This can be expressed by p2 below:

(0, ST )true;∧2
i=0(Task[i].rd = 1 ∧ Task[i].ac = 0 →

{0, Task[i].D}true ; Task[i].ac = Task[i].C)+
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p2 means that from the time point ST , once Taski is ready implies Taski finishes
in Task[i].D time units. {0, Task[i].D} is the delay operation, and is derived from
time constraint statement. {0, Task[i].D}true; p means p holds in Task[i].D time
units from the current time point. + is the chop − plus operator, and is derived
from the sequential operator (;). (p)+ means p repeats for any positive number
of times.

Verification Results and Analysis. In order to verify the two proper-
ties, we set the computation time for the three tasks with Task[0].C = 0.4,
Task[1].C = 0.6 and Task[2].C = 0.8, and the delay time with Task[0].dly = 0.8,
Task[1].dly = 0.6 and Task[2].dly = 0.4. Meanwhile, we set the deadline for the
three tasks with Task[0].D = 1.2, Task[1].D = 1.5 and Task[2].D = 1.8. We
assume the start time of the application is at T = 0, that is, ST = 0.

The verification process with the extended toolkit MSV is conducted. With the
system model and desired properties as input, we can eventually know whether or
not the property is valid on the system model. The correctness property is verified
and there is no path in the NFG, which indicates the property is valid.

Figure 9 is the verification result of the timeliness property. There are 3521
nodes and 3521 edges on the counterexample. Each node represents a program

Fig. 9. Verification result of p2
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while each edge represents a state which shows the executing of the application
at different time. The root node is a double circle, it represents the TMSVL
program of the application. By executing the program that a node represents,
two part can be obtained: the current part and future part where the current
part is an outgoing edge of that node and points to the node which represents
the future part. For example, edge 0 and node 1 are the executing results of
node 0. The edges are state formulas while the nodes are temporal formulas
which need to be further executed. In Fig. 9, we can see that edge 0 represents
the state that T = 0, and all the three tasks are not delayed since rd = 1 for the
three tasks. While Task0 is the ready task with the highest priority, therefore
runTaskNum = 0. inp = 1 indicates that the interrupt request occurs and at
the second state, namely edge 2, the interrupt request is fulfilled. Then Task0
starts executing. We can see that the time interval Ts is changeable and the
time is measured in seconds.

In Fig. 9, edge 18 shows that when T = 1.8 s, the accumulated execution time
of Task2 is not equal to Task[2].C, that is, Task2 does not finish in the given
deadline Task[2].D = 1.8. Thus the timeliness property is violated in this case.

The three tasks start at the same time T = 0. Task0 executes first, which
is finished at T = 0.4042 s. Then it waits 0.8 s, during this duration, Task1 is
executing. It finishes after 0.6006 s, namely at T = 1.0102. Then Task1 waits
0.6 s and Task2 gets the opportunity to run. Once Task2 starts running, it is
suspended by the interrupt but it cannot be preempted, for Task2 needs to
access the mutex semaphore, which makes its priority raise and be higher than
other tasks. After 0.8016 s, it is finished and its priority is recovered. Then it
turns to waiting state at T = 1.8182. Therefore, Task2 finishes after starting for
1.8182 time units, which is greater than the given deadline. This is consistent
with the verification result of our toolkit.

5 Conclusion

We present a unified model checking approach to verify real-time systems run-
ning under μC/OS-III. The timer interrupt mechanism of μCOS-III is formalized
in TMSVL. As a case study, a multi-task application with timer interrupt is pro-
vided and verified in TMSVL. With the toolkit MSV, the TMSVL program can
be executed and the desired property of the system can be verified automati-
cally. The mechanism that time intervals are adjustable for modeling improves
the efficiency of verification. In the near future, we will further investigate mod-
eling and verification techniques of time delay, timeout and other aspects of
μC/OS-III applications on the basis of TMSVL.
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Abstract. Tabular expressions, also called tables, are formal notations
using tables to organize mathematical functions and relations. They have
been widely used in documenting and analyzing software specification.
Different tools are developed to support tabular expressions. To fur-
ther enhance tables’ usage, a convention on storing and parsing tables is
required. This paper presents a canonical interchange format for tabular
expressions based on XML. This format captures four aspects of tables:
the constituent, dynamic, representation and additional information. Our
proposal builds on syntax definition of tables and is tailored to provide
flexibility in manipulation of table content. It is suitable for existing and
emerging kinds of tables. This study facilitates the interchange between
different tools for tabular expressions, which would prevent developer’s
repetitive work.

Keywords: Tabular expressions · Interchange format · Formal meth-
ods · XML

1 Introduction

The failure of safety-critical systems may jeopardize human life, introduce con-
siderable negative financial losses. It is well known that most software errors can
be traced back to the requirement stage, and the cost of fixing is rather expen-
sive. Requirements are often stated informally using natural languages, which
tend to be imprecise and incomplete. Tabular expressions are formal notation
used to organize mathematical expressions based on tabular form. They were
proposed by Parnas in 1970s and successfully used in the requirements of A-7
aircraft’s Operational Flight Program (OFP) [1]. Writing mathematical expres-
sions in tabular form makes specifications more readable, modifiable and no less
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Table 1. Normal function table

x < 0 x = 0 x > 0

y < 0 x2 − y2 x2 + y2 x2 − y2

y = 0 x + y x2 − y2 x2 + y2

y > 0 x2 + y2 x + y x2 + y2

precise. These qualities are of great values for specifiers and facilitate software
testing and verification.

In the early stage of the work on tabular expressions, the tables’ meaning was
intuitive. With tables become more widely used, some complex tables become to
have ambiguous interpretations. Those practical difficulties motivated efforts to
define precise syntax and semantics for tables. Parnas [2] proposed ten kinds of
tables and gave them formal semantics. Furthermore Parnas termed these tables
as tabular expressions. Janicki and Abraham [3,4] proposed a semantics for tab-
ular expressions as J-A Model, which provided a relatively general definition
based on Parnas tables. Different from others, Kahl [5] defined a compositional
syntax and semantics for tabular expressions. Tabular expressions were estab-
lished by combining one table to other tables or adding headers to a existing
table. Because new kinds of tables are continuously emerging, Parnas and Jin [6]
defined a general semantics for tabular expressions. The general semantics has
considerable flexibility to define existing and emerging types of tables.

The following is a traditional mathematical expression that can be repre-
sented as a tabular expression as illustrated in Table 1.

f(x) =

⎧
⎪⎨

⎪⎩

x2 − y2, ((y < 0) ∧ (x < 0)) ∨ ((y < 0) ∧ (x > 0)) ∨ ((y = 0) ∧ (x = 0))

x + y, ((y = 0) ∧ (x < 0)) ∨ ((y = 0) ∧ (x > 0)) ∨ ((y > 0) ∧ (x = 0))

x2 + y2, ((y < 0) ∧ (x = 0)) ∨ ((y > 0) ∧ (x < 0)) ∨ ((y > 0) ∧ (x > 0))

Table 1 is an example of the most commonly used form of tables named nor-
mal function table. Its corresponding traditional expression is difficult to under-
stand for stakeholders and hard to validate its correctness for specifiers. While
the tabular expression makes it very clear what the conditions and cases are,
it also gives all the considered conditions. So it is pretty easy to detect the
completeness and consistency of mathematical expressions using tables. Mathe-
matical relations of industrial specifications could be much more complicated. It
shows more obvious advantages to use tabular expressions to replace traditional
expressions.

The rest of this paper is organized as follows: Section 2 introduces three repre-
sentative tools and theirs’ interchange formats and also analyzes the limitations
of existing formats. Then we represent the features of XML and demonstrate
our contributions compared to previous work. Section 3 describes the structure
of table format from four aspects: constituent, additional information, dynamic
and representation in details. The grammar of this format is defined by Backus-
Naur Form (BNF). Section 4 concludes and gives directions of further work.
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2 Related Work and Motivation

2.1 Previous Work and Limitations

Tabular expressions make significant contributions to software formal specifica-
tions. Many developers made great efforts to develop supporting tools for tabular
expressions. For safety-critical software, tabular expressions have been success-
fully used in the shutdown system of Ontario Power Generation Project (OPG)
[7]. A tool set was developed for the OPG project. Figure 1 provides a overview of
the relationship between the documents and tools employed in the project. The
requirements saved in Doc files are processed by Microsoft Word then stored in
Rich Text Format (RTF) files. The Software Engineering Standards and Meth-
ods (SESM) tool are a macro program based on MS Word. Then the (Systematic
Design Verification) SDV tool imported the processed specification and trans-
formed it to Prototype Verification System (PVS) input files. Thus, the tables
included in the specification could be verified using the theorem prover PVS.
Then they are corrected as needed in a feedback process. Although the method-
ology of OPG is a motivating example, the exchange medium between the tools of
OPG project is based on RTF. The RTF specifications lack some of the semantic
definitions necessary to read, write and modify documents. The tabular expres-
sions included in RTF files are hard to parse, which leads to spending significant
efforts to develop support tools.

Peters et al. [7] proposed to develop an Eclipse plugin to process formal soft-
ware specification including tabular expressions. Then use PVS to verify the
coverage and disjointness of tabular expressions. Figure 2 provides an overview
of the Peters’ tool architecture. This tool was developed as an Eclipse plugin.
A specification was edited by this tool according to the form of OMDoc. Then
XSLT was used to translate the specification to PVS input files and verified it
using PVS. OMDoc is an open markup language for mathematical documents,
which attempts to provide an infrastructure for the communication and stor-
age of mathematical knowledge [8]. OMDoc provides straightforward support
for tabular expressions, which greatly facilitates tool developers to parse tab-
ular expressions. Furthermore, OMDoc is proposed based on XML. It can be
translated to PVS file easily.

SRS.doc
SDD.doc
DVR.doc

Word processor
+

SESM Tools

SRS.rtf
SDD.rtf
DVR.rtf

SESM
SDV
Tool

PVS

boo1.pvs
boo2.pvs

etc...
block
comp
proofs

Document flow

Information flow

Fig. 1. The relationship between the documents and tools employed in OPG project



32 M. Huang et al.

Fig. 2. The process of Peters’ proposal

However, OMDoc is proposed to address the communication of specification
with theories, symbols and diagrams, which is too complex for tabular expres-
sions. Furthermore, OMDoc dose not support the general semantics of tabular
expressions proposed by Jin and Parnas [6].

Wu [9,10] developed a tool to check the inconsistency of requirement speci-
fication expressed by tables called SCENATOR. SCENATOR designed TabML
(Tabular Markup Language) as their interchange format. TabML is a sublan-
guage of XML. von Mohrenschildt [11] proposed a standard for software spec-
ification called OpenSpec, which provided communication format for tabular
expressions. Wu [9] continued von Mohrenschildt’s work and defined complete
grammar for the interchange format of tabular expressions. This format is termed
TabML. The limitation of TabML is that it is proposed according to the early
Parnas tables [2]. It is not appropriate for new kinds of tabular expressions.

Interchange format is very important to develop support tools for tabular
expressions. A suitable interchange format should not only store information cor-
rectly but also ease its writing and parsing. However there is no standard inter-
change format for tabular expressions nowadays. Developers choose or design dif-
ferent storage formats on their own. One tool can hardly integrate with another
tool developed by others, which causes lots of repetitive work for developers. On
the other hand, the existing communication formats have respective limitations.
Since the early tables have no rigorous definition, the existing formats are casual
and have little consideration of the semantics of tabular expressions. This paper
makes efforts to propose a more general interchange format for tabular expres-
sions. The semantics of tabular expressions have been generalized to allow more
precise definition of a broader range of tabular expression types. The generality
and rich features make this format appropriate to store and parse the known
kinds of tables. It also has enough flexibility for emerging new kinds of tables.

2.2 XML

XML is a markup language that structures information to make it easy to receive
and process on the Web, which is relatively new but widely accepted by soft-
ware cooperations [11]. The advantages of XML motivate us to adopt XML
as the interchange format of tabular expressions. Different from other markup
languages, XML allows users to define data type by themselves, which gives
semantic meaning to XML document. The relations of elements with attributes
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in XML can be used to represent the mathematical relations of tables. Thus
tabular expressions can be easily stored into XML. Some advantages of using
XML to exchange tabular expressions between tools:

– XML is a well defined international standard. all programming languages pro-
vide libraries for loading and saving XML files, so multiple-language toolsets
are easier.

– XML has clear syntactic rules. Document Type Definition (DTD) or XML
Schema can be used to define the structure of the interchange format.

– There are many analysis and transformation tools for XML, such as the XSLT
language, which makes it easy to transform XML files into other formats.

2.3 Main Contribution

This paper provides a standard interchange format for tabular expressions. The
aim is to facilitate communicating among different tools as well as storing and
parsing tabular expressions. The objective is to make tabular expressions more
accessible to software specifications. XML is a reasonable choice for transfer
format and has extensive applications in information exchange.This paper makes
four distinct contributions:

– The proposed interchange format for tabular expressions can serve as a stan-
dardized storage exchange format for different tables supporting tools.

– Our interchange format is based on the generalized semantics of tables pro-
posed by Jin and Parnas [6] and considers Kahl’s [5] work, which allows more
precise definition of existing and emerging table types.

– Considering the practical application, our proposed format supports develop-
ers attach additional information to every element and record dynamic infor-
mation of tables,which will be explained in Sects. 3.2 and 3.3, respectively.
Furthermore, visual information is added to describe how tables show and
provides the way to make parts of table special. For example, set colors to
emphasize some cells.

Based on the interchange format proposed by this paper, developers do not need
to develop whole tool set on their own. The universal interchange format can
integrate their single tools as a powerful tool set, which releases lots of work
for developers. Figure 3 shows the interoperability of a set of tools exchanging
information. The editing tool of a developer B can edit tabular expressions then
store them to XML files. The presentation tool of a developer A can import an
XML file and parse it. Because based on the common interchange format, those
tools are compatible with each other, which prevents repetitive work. Choosing
XML as a transfer language makes it convenient to transform tabular expressions
to the language used by PVS or any other theorem provers and verify them.
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Fig. 3. Interoperability of different tools

3 The Components of Tables Format

3.1 Constituents Information

As there are various types of tabular expressions and new types continuously
emerging, Jin and Parnas [6] proposed a general mathematical model for the
syntax and semantics of tabular expressions. Different from the other tables’
semantics, the general mathematical model does not restrict the layout of tables.
Specifiers can choose different representations, according to their own cases. In
addition, the general mathematical model has good flexibility. It is not only
applicable to existing tables but also appropriate for emerging tables. The key
points of the general mathematical model definition of tabular expressions are
the following:

– A tabular expression is defined as an indexed set of grids, which is represented
as a triple (Gs, I, f). Gs denotes the grids, I is a set of indices and f is the
function that maps I with Gs.

– Each grid is defined as an indexed set of expressions. It can also be represented
as a triple (Es, I, g). Es is the set of expressions, I is a set of indices and g is
the function with domain I and range Es.

– The expressions in grids are either traditional expressions or tabular expres-
sions.

– Every tabular expression has a restriction schema to give the condition that
the table must satisfy and an evaluation schema to define the meaning of this
table.

The interchange format based on the general mathematical model is more
flexible than others. We conjecture that it is easier to be accepted by tool devel-
opers and has potential to be a standard interchange format of tabular expres-
sions. Our proposal is based on the definition of general mathematical model
table. In our format we ignore the restriction and evaluation of general model
definition and extract the constituents information as Fig. 4. Each <expression>
could be an embedded tabular expression. That means there are more than one
table. The tag <Table> needs the attribute level to indicate it is a main table or
embedded table. Figure 4 shows a table consisting of indexed grids, where each
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Fig. 4. The constituents of tables

grid consists of indexed cells. The indexes of <Grid> and <Cell> are strings,
we do not restrict them must be numbers. Letters or other symbols can be cho-
sen as index if necessary. The content of a cell can be a traditional expression
or tabular expression already defined. The attribute type indicates what kind
of its content. There are five values for type of <Expressions>: term, predicate,
label, equation, table. The following segment of XML shows the constituents
information of a simple tabular expression with embedded table.

<Document>

<Table level=0 tabType=NorFunTab tabName=MainTable>

<Grid index="0">

...

<Cell index="0">

<Expression exType=term>

x*x

</Expression>

</Cell>

<Cell index="1">

<Expression exType =table>

EmbeddedTable

</Expression>

</Cell>

...

</Grid>

<Grid index="1">

...

</Grid>

...

</Table>
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<Table Table level=1 tabType =NorFunTab tabName =EmbeddedTable>

...

</Table>

</Document>

In the above XML we have two tables, The attribute tabType of <Table> shows
the two tables are both normal function table, which is one of the ten kinds of
Parnas tables. The tabName of <Table> is required to help differentiate tables
when they have same value of level. The level is a nonnegative integer, which
increases from 0. Having a higher value than 0 means it is an embedded table.

3.2 Additional Information

In practice, especially in team work, different parts of a table may be created by
different specifiers at different time. Additional information may be useful for
stakeholders. Our format has attributes author, date for several main elements
to record additional information. Furthermore, we allow users to add any other
information using the tag <Comment>. The corresponding XML code is below.

<Document author=Mao date=2015.5.8>

<Table level=0 tabType=NorFunTab tabName=Table1>

<Grid index=0>

<Cell index=0 author=Doctor Chen>

<Expression exType=term>

x*x

</Expression>

<Comment>

This cell was made by Doctor Chen!

</Comment>

</Cell>

......

</Grid>

......

<Comment>

this is the top level table !

</Comment>

</Table>

<Comment>

this table is used to explain our proposal !

</Comment>

</Document>

The attributes author and date of element may not specify its value. In that case
they have the same values as their father element in default. If all the related
elements in hierarchy do not show those attributes, that means there is no need
to save these information. This example shows the cell with index 0 is create
by another writer. While the rest of the cells are created by the <Document>
author. Both the table and the document have their own comment information.
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Fig. 5. The process of creating tables

3.3 Action Information

As the specification could always be changed, the tables would be frequently
modified. These requirements should be met in interchange format. Kahl [5] pro-
posed a method to create tables by merging tables and adding headers (grids).
The following is the process of creating a table in Kahl’s work. Our method lays
good support for Kahl’s compositional definition of tabular expressions. Detailed
information is given in [5]. The dynamic information can be saved in <Action>.
The order attribute indicates the sequence of modification. There are four values
for behavior attribute: Merge, Split, Add, Remove. The tag <Target> specifies
the objects of operation. It contains at least one <exsitTable> to locate the
element need to be changed. Also <Table>, <Grid> and <Cell> could be
included in <Target> to define new elements. Note that <existTable> denotes
the whole table when it is an empty element. It locates specified grids by con-
taining some empty <existGrid>. Cells can be located by adding <existCell>
to <existGrid>. The following is the corresponding XML representation of the
table shown in Fig. 5:

<Document >

<Table level="0" tabType="NorFunTab" tabName="Table1">

<Grid index="2">

<Cell index="0">

<Expression exType="predicate">

x>=0

</Expression>

</Cell>

<Cell index="1">

<Expression exType="predicate">

x&lt;0

</Expression>
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</Cell>

</Grid>

<Grid index="0">

......

</Grid>

</Table>

<Action order="1" behavior="Add">

<Target>

<existTable tabName="Table1"/>

</Target>

<Target>

<Grid index="1">

<Cell index="0">

<Expression exType="predicate">

y=10

</Expression>

</Cell>

</Grid>

</Target>

</Action>

<Action order="2" behavior="Merge">

<Target>

<existTable tableName="Table1"/>

</Target>

<Target name="Table2">

<Table level="0" tableType="NorFunTab" tabName="Table2">

......

</Table>

</Target>

</Action>

</Document>

This segment of code contains a table and two actions. The first action adds a
new grid to Table 1 making it two-dimensional. Then the second action merges
Table 1 with Table 2. Note that the two actions <existTable> was empty element,
which denotes a whole table. The hierarchy of <exsitTable>, <existGrid> and
<existCell> can easily locate any objects need to operate.

3.4 Visual Information

The visual properties have two functions. The attributes width and length
describe the layout of the table. Writer can set the value to present tables accord-
ing their own way. It is not necessary to set layout information for every grid and
cell. Usually they have default values. In addition, color and hide are introduced
to make special effects. For example, we can set color for a cell to emphasize
its content. The attribute hide can help viewers ignore some unrelated parts
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of table. Especially the table is colossal, it increases lots of conveniences. The
following is the example:

<Document>

<Table level="0" tabType="NorFunTab" TabName="MainTable">

<Grid index="1">

<Cell index="0">

<Expression exType="predicate">

x&lt;0

</Expression>

</Cell>

<Cell index="1" hide="true">

<Expression exType ="predicate">

x=0

</Expression>

</Cell>

......

</Grid>

<Grid index="0">

......

<Cell index="1" color="red" width="1" height="2">

<Expression exType ="table">

EmbeddedTable

</Expression>

</Cell>

......

</Grid>

</Table>

<Table level="1" tabType ="NorFunTab" TabName ="EmbeddedTable" color

="blue">

......

</Table>

</Document>

This code shows two tables, the second one is set as blue to indicate it is an
embedded table. In main table, the cell containing tabular expression is differ-
ent from other cells by changing the value of width and height. The cell with
attribute hide means its content is not relevant and ignored by viewers. One of
the advantages of tabular expressions is its great readability. Our proposal sup-
ports readability very well. The corresponding tables of above code are as Fig. 6.
The cell with index 1 is set to red and its width and height is different from
other cells. The default color is black. Note that the value of width and height
is relative, not the exact size. The default value of width and height is 1, the
cell containing table has twice the height and the same width as the normal cell.
In this case, the unimportant cell’s content is hidden to save readers attention.
And the embedded table is marked as blue, which makes it easy to differentiate
with the main table.
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Fig. 6. Visulization of tables (Color figure online)

4 Structure of Tables Format

This format is constructed from four parts integrated together. The first provides
information on the constituents. The second gives additional information such
as comments to document the table. And the dynamic information of changing
table is recorded in third part. Furthermore the visualization information is
represented in the last part. This section gives the complete structure of the
interchange format. The following is the grammar of this format written by
BNF (Backus-Naur Form). In this grammar, nonterminals are typeset in bold
letters. And the attributes of elements are typeset Italic.

Document ::= < Document[docName ]10[author ]10[date]10 >

[Table]n1 [Action]n0 [Comment]n0

< /Document >

docName ::=String

Table ::= < Table level tabName tabType[author ]10[date]10[color ]10[length ]10

[width ]10 >

[Grid]n1 [Comment]n0

< /Table >

tabName ::=String

level ::= integer

tabType ::=NorFunTab|InvTab|V ecFunTab|CirTab|LocTab|...
Grid ::= < Grid index [author ]10[date]10[hide]10[color ]10[length ]10[width ]10 >

[Cell]n1 [Comment]n0

< /Grid >

Cell ::= < Cell index [author ]10[date]10[hide]10[color ]10[length ]10[width ]10 >

Expression

< /Cell >

index ::=String

author ::=String
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date ::= [0...9]44 − [0...9]22 − [0...9]22

hide ::= true|false
color ::= red|green|blue|yellow|...

length ::= integer

width ::= integer

Expression ::= < Expression exType >

String

< /textExpression

exType ::= term|predicate|lable|equation|table
Action ::= < Action order behavior [author ]10[date]10 >

[Target]n1 [Comment]n0

< /Action >

behavior ::=Merge|Split|Add|Remove

order ::= integer

Target ::= < Target >

[Table]n0 [Grid]n0 [Cell]n0 [existTable]n0

< /Target >

existTable ::= < existTable tabName >

[existGrid]n0

< /existTable >

existGrid ::= < existGrid index >

[existCell]n0

< /existGrid >

existCell ::= < existCell index/ >

Comment ::= < Comment [author ]10[date]10 >

String

< /Comment >

The String and integer have common meanings, they do not need special
definitions. The tabType can be assigned those early table types proposed by
Parnas or the emerging tables such as circle table, locator table. The attribute
color can be assigned common color words or the value of RGB. For the exType,
the value term means polynomial. the predicate and equation are literal sense.
label means markup symbol. table means embedded table. For the behavior, the
Merge and Split are opposite operations. So as the Add and Remove. For detail
procedure of those operations, we refer the reader to [5].

The above shows the grammar of the interchange format. The Fig. 7 repre-
sents the structure of this format. The arrow means the inclusion relationship.
The origination includes the destination. The top of each block diagram is the
element, and below are their attributes. The document contains tables, actions
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Fig. 7. The structure of tables interchange format

and comments. A table consists of grids while grid consists of cells. Every cell has
a specifical expression. Comments can be added to table, grid and cell. Action
contains targets and comments. It could include table, grid and cell to define new
elements and has the hierarchy of <existTable>, <existGrid> and <exsitCell>
to locate the objects need to be changed.

5 Discussion and Conclusion

This paper proposes a standard interchange format for tabular expressions in
order to communicate tabular expressions between different tools. This format
is explained from four points of view: constituents information, additional infor-
mation, action information and visual information. The constituents in this for-
mat is based on the definition of general semantics proposed by Parnas [6]. The
action information can easily describe the process of creating a table in Kahl’s
proposal [5]. The additional information allows writers store some relative infor-
mation. And the visual information provides flexibility to represent different
tables. The existing transfer formats have little consideration of the semantics
of tabular expressions. Their limitations make them hard to be accepted by tool
developers. Our proposed format considers the existing table definitions and has
great flexibility for emerging tables. It has potential to be the universal inter-
change format of tabular expressions, which would expand the more wider usage
of tabular expressions.
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In future, many efforts should be made to develop tools to consolidate our
achievements. Different tools respectively have the function of editing, represen-
tation and verification should be developed. That will show the collaboration
between tools based on our general format.
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Abstract. To facilitate writing formal specifications in practice, we put
forward a new GUI-aided approach to formal specification construction
for software design. By this approach, a GUI prototyping for the sys-
tem is first carried out based on an informal requirements specification
with the aim of improving the informal specification and then a formal
design specification is constructed to precisely define the system architec-
ture and functionality. We describe how a prototype GUI can be derived
systematically based on the informal specification and discuss how the
improved informal specification can be taken into account in constructing
the formal design specification.

1 Introduction

Design for a software system can be carried out by constructing a formal specifi-
cation in which the architecture of the system is represented by diagrams while
the functionality of components are precisely defined using a textual formal nota-
tion [1,2]. However, our experiences in collaboration with industry suggest that
without exploring the structure of the potential graphical user interface (GUI)
for the system before writing the formal specification, the cost-effectiveness of
formal specification techniques can be seriously damaged. Lacking the under-
standing of the GUI usually affects the designer’s decisions on the parameters
for operations to be specified in the formal specification. The user may also feel
difficult to communicate with the designer and to tell his or her precise ideas on
requirements without GUI.

In this paper, we put forward a new GUI-aided approach to constructing
formal specifications for software design. The essential idea of the approach is
first to derive a prototype GUI for the system based on a structured informal
requirements specification and to improve the informal specification by means
of a technique called GUI animation, and then proceed to construct the for-
mal specification for design on the basis of the improved informal specification.
The overall structure of the GUI can be rather systematically derived from the
structure of the informal specification, and the structure of the formal design
specification can benefit from the details of the improved informal specification.
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Note that the proposed approach is in principle applicable universally to all
of the model-based formal notations, although our discussion in this paper uses
the Structured Object-Oriented Formal Language (SOFL) as the specification
language [1,3]. SOFL is one of the practical formal notations with a strong
expressive capability for industrial software development and offers well-defined
guidelines for structuring the informal requirements specification and the formal
design specification [4,5]. A SOFL informal specification consists of three sec-
tions: functions, data resources, and constraints. The section of functions briefly
describes the desired behaviors to be implemented by the system; the section of
data resources presents the data items to be used by the functions in the speci-
fication; and the section of constraints gives possible restrictions on either func-
tions or data resources, such as those on safety, security, availability, efficiency,
or business policies. Our experiences in numerous projects over the last twenty
five years suggest that such an informal specification is necessary in paving the
way for writing a formal specification from the real world. A SOFL formal speci-
fication is a hierarchy of condition data flow diagrams (CDFDs) together with an
associated hierarchy of modules. A CDFD at one level describes how processes
(or operations in general) are connected based on data flows and data stores,
while its associated unique module defines all of the components involved in the
CDFD, such as processes, data flows, and data stores.

The rest of the paper is arranged as follows. Section 2 briefly introduces SOFL
informal specification. Section 3 discusses GUI prototyping. Section 4 describes
how a formal specification is constructed. Section 5 reviews related work. Finally,
in Sect. 6 we conclude the paper and point out future research directions.

2 SOFL Informal Specification

As mentioned above, an informal specification in SOFL consists of three sections:
functions, data resources, and constraints. Figure 1 shows a simplified informal
specification for an ATM software. The section of functions includes six top level
functions, marked by the numbers from 1.1 to 1.6. Each of the top level functions
may be decomposed into several sub-functions. For example, the function 1.2,
withdraw from the bank account, is decomposed into a set of sub-functions marked
by the numbers 1.2.1, 1.2.2, and 1.2.3. The section of data resources contains
three top level data items, which are marked by the numbers 2.1, 2.2, and 2.3.
If necessary, any of them can be decomposed into several sub-data items. For
instance, The first data item 2.1, Bank account, is decomposed into six sub-data
items marked by the numbers from 2.1.2 to 2.1.6. Further, if a data item is used
for a function, a reference from the data item to the function can be written
in a parenthesis after the data item. For instance, (F1.2, F1.3, F1.4, F1.5) after
data item 2.1 indicates that the data item is used by functions 1.2, 1.3, 1.4,
and 1.5. The section of constraints shows four specific constraints, marked by
the numbers 3.1, 3.2, 3.3, and 3.4, and each of them sets a restriction on some
aspect of the system functionality, usually requiring the system cannot carry out
certain actions or violate certain conditions. An example as shown in the figure is
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Fig. 1. Informal specification of a simplified ATM software

constraint 3.1, which requires that each withdrawal from a bank account cannot
be over 200,000 Japanese Yen (JPY).

Since such an informal specification is usually described abstractly and its
meaning is ambiguous, there is a need of an effective technique to help the user
conceive the potential behavior of the desired system. Rapid GUI prototyping,
as advocated in the literature [6,7], is an effective means for this purpose, which
we also adopt in our approach. The problem is how to utilize the informal spec-
ification to systematically carry out the GUI prototyping and to improve the
informal specification. We discuss this issue next.

3 Principle of GUI Prototyping

The essential idea of our technique for GUI prototyping includes three steps. The
first step is to derive the structure of a preliminary GUI based on the informal
specification; the second step is to refine the preliminary GUI into a satisfactory
GUI structure by means of a dynamic technique known as GUI animation;
and the final step is to improve the informal specification by adding necessary
detailed information on input and output data resulted from the GUI animation.

3.1 Step 1: Derivation of Preliminary GUI

The prototype GUI structure can be systematically derived from that of the
informal specification. Specifically, for each function in the informal specification,
we build a button in the GUI to allow the user of the system to choose the
corresponding function for its operational service, as Fig. 2 illustrates. All of the
buttons corresponding to the top level functions in the informal specification
constitute the top level page of the GUI. For each function that is decomposed



A GUI-Aided Approach to Formal Specification Construction 47

Fig. 2. Relation between the function hierarchy in the informal specification and the
derived GUI hierarchy

into several low level functions, we build a low level GUI page with the buttons
corresponding to the decomposed functions and link the button of the high
level function to the low level GUI page. Thus, in a GUI animation (see the
detailed explanation in Step 3), once the high level function button is clicked,
the corresponding low level GUI page is expected to appear. Applying the same
principle to every level function in the function hierarchy, we can systematically
derive a hierarchy of GUI pages consistent with the corresponding hierarchical
structure of the functions in the informal specification.

Consider the informal specification of the simplified ATM software given in
Fig. 1 as example. Applying the GUI derivation principle described above, we
obtain a preliminary GUI hierarchy as shown in Fig. 3. The top level GUI page
contains six buttons corresponding to the six top level functions in the speci-
fication. Since only the second function, 1.2 Withdraw from the bank account,
is decomposed into three sub-functions, the second button in the top level GUI
page is connected to the low level GUI page in the figure.

Note that using button in the GUI to represent the corresponding function
is not necessarily the only choice when building the GUI. Other options, such
as menu bar or menu items, can also be the candidate for the graphical rep-
resentation of the functions for the same purpose. For different applications
in different domains, appropriate GUI items should be considered for effective
human-machine interaction. Specific decisions should be made based on engineer-
ing judgement in practice. The most important thing to bear in mind is that
GUI prototyping is not constructing the very final GUI for the envisaged sys-
tem, but provide a graphical environment to facilitate communication between
the user and the designer. Therefore, the detail of the GUI items should not be
significant for the design of the overall GUI structure at this stage.

3.2 Step 2: Refinement of GUI

The goal of the second step is to obtain a consensus of the GUI structure and
related information between the designer and the user through a comprehensible
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Fig. 3. The derived preliminary GUI hierarchy from the simplified ATM informal spec-
ification

communication. Achieving this goal is relatively more challenging than Step 1
because such a consensus can hardly be precisely defined since the notion of
“satisfactory GUI” is undecidable in practice. We propose to use a technique
called GUI animation to dynamically demonstrate the potential behavior of the
GUI. To this end, the designer needs to work together with the user on the
following three things:

– Designing the input and output data items for each button-related function.
– Animating the GUI to demonstrate dynamically the potential behavior of

each button and its related function.
– Improving the informal specification by updating functions or adding input

and output data details to functions.

We discuss how each of these three tasks can be carried out through combination
of GUI item design and animation below, respectively.

3.2.1 Design of Input and Output
For the design of the input and output data, a GUI page is created to represent
all of the input and output data items for each button-related function. The
focus here should be put on the identification of the input and output data
items only from the user’s point of view, not from the system’s point of view. As
a development strategy, obtaining all of the necessary input and output data for
each function from the system’s point of view will be done during the writing of
the formal specification later.

The study of the input and output data can be realized by means of button
isolation from the current GUI, as Fig. 4 illustrates. That is, each button, such
as 1.2 Withdraw ... in the figure, is examined in isolation, but text fields are
provided to allow the conceivable input and output data items to be represented
properly. For example, the Withdraw function takes amount as input and pro-
duces one of the two possible outputs: withdrawal cash and error message. As a
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Fig. 4. Animation of a successful withdrawal

specific technique, the data items for the button-related function can be derived
by considering the data items in the data resource section in the informal spec-
ification (but not always). Note that the figure only shows an abstract idea of
the potential situation; the real picture or layout of the GUI page can be flexibly
designed in practice to fit the application context.

3.2.2 Animation of Button-Related Functions
To confirm whether the current proposal of the input and output data items are
exactly what the user wants for each button-related function, a GUI animation
can be performed. By animation we mean that potential behavior of the GUI is
only demonstrated or displayed with only a few data items prepared in advance
by human; not by executing the real corresponding program. The purpose of the
animation here is not to explore all of the aspects of the potential behavior of
each function; rather, it aims to help the user learn the intended behavior of the
function by exhibiting what input needs to be taken to produce what output.
This can be easily realized by taking advantage of existing tool support for GUI
prototyping, such as Microsoft Visual Studio or Eclipse.

In fact, the button-related functions with and without a decomposition are
animated slightly differently. Specifically, one conceivable possibility is described
below for the two kinds of functions, respectively.

Function without Decompostion: For each input parameter, at least one spe-
cific value is proposed and prepared in the corresponding GUI event handling
“program” (executable code with artificially arranged content, not the real
program). The same thing should also be done for each designed output para-
meter. Then, compile and execute the “program”, the potential input-output
relation of the corresponding button-related function can be demonstrated.
If necessary, more sample input and output parameters can be proposed and
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Fig. 5. Animation of an unsuccessful withdrawal

prepared for more demonstrations. For instance, Fig. 4 shows one case of ani-
mating the function Withdraw for a successful withdrawal, where the input
parameter amount is assigned the value 100,000 (JPY) and the produced
value for the output parameter withdrawal cash is 100,000, the same as the
input, while Fig. 5 shows an unsuccessful case of withdrawal.

Function with Decomposition: If the function requires specific input data
and produces specific output data, the same strategy for the function without
decomposition must be applied. In addition, we also need to demonstrate the
connection between the current button-related function and the GUI page
for its decomposition. This can also be easily realized by preparing the event
handling “program” properly with the existing supporting tools. Since this is
rather straightforward, we do not continue the discussion here for brevity.

3.2.3 Improvement of Informal Specification
As a result of the GUI animation, the current informal specification may need to be
improved by eliminating existing functions, adding additional functions, or adding
input and output data items to functions. Either eliminating or adding additional
functions can be carried out straightforwardly, but adding input and output data
items usually needs a little more careful arrangement. Each input-output pattern
with multiple input and output parameters can be clearly described with the sam-
ple values used in the GUI animation in the following format:

(Input data: input parameter name11: sample value11,
input parameter name21: sample value21,
...
input parameter namea1 : sample valuea1 ,

Output data: output parameter name11: sample value11,
output parameter name 2

1: sample value21,
...
output parameter name b

1: sample valueb1)
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Fig. 6. An improved ATM informal specification

If there are several different input-output patterns, they must be separated by
a short vertical bar. For example, Fig. 6 shows a simplified improved informal
specification of the ATM system in which the two input-output patterns for the
function 1.2 Withdraw from the bank account are presented and all the rest parts
are omitted for the sake of space.

4 Formal Specification Construction

A formal design specification can be systematically constructed based on the
improved informal specification. Our approach focuses on three aspects of the
specification: (1) hierarchical structure, (2) condition data flow diagram (CDFD)
at each level in the hierarchy, and (3) module for each CDFD.

4.1 Hierarchical Structure

As briefly mentioned in the Introduction section, a SOFL formal specification
is generally organized as a hierarchical structure of CDFDs together with their
associated modules. Such a hierarchy usually results from decomposing high level
processes into low level CDFDs. A process models a transformation from input
to output, possibly including the updating of data stores (which are represented
by external variables). A CDFD describes how processes are connected based on
data flows to form a system. The semantic details of processes in the CDFD are
precisely specified in the associated module.

Basically, the hierarchical structure of the specification is derived from the
hierarchical structure of the function section in the informal specification. Specif-
ically, for each function in the function section, a process is created in the formal
specification. If a function is decomposed into sub-functions, its corresponding
process in the formal specification will also be decomposed into a low level CDFD
including all of the processes modeling the sub-functions. For each CDFD, a mod-
ule for defining the semantics of the CDFD components, such as processes, data
flows, and data stores, will be constructed. All of the top level functions in the
function section will constitute the top level CDFD and its module in the formal
specification. Figure 7 illustrates the relation between the informal specification
and the formal specification at an abstract level, and Fig. 8 shows the resultant
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Fig. 7. Relation between informal and formal specification structures

Fig. 8. The structure of the formal specification of the ATM system

formal specification at an abstract level by applying this relation to the ATM
system introduced in Fig. 1.

4.2 Drawing CDFD

Drawing a CDFD for each module in the formal specification involves the idea of
designing the system architecture, which is absent in the informal specification.
The processes, which correspond to the functions in the informal specification or
additional functions necessary to the system, are connected based on data flows,
focusing on the input and output of each process. Such a CDFD is suitable for
describing what to be done by the system at the architecture level rather than
how it is done as a control flow diagram indicates. A high level process can be
decomposed into low level CDFD, but it is important to retain the consistency
between the high level process and the decomposed CDFD based on the following
rules:

– All of the input, output, and store variables of a high level process must appear
in its decomposed CDFD and used in the same manner (i.e., retaining their
name, type, and the way of being used in the process).
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– For the same inputs and data stores used in the high level process and
the decomposed CDFD, if they satisfy the pre-condition of the high level
process, they must also satisfy the pre-conditions of the related processes in
the decomposed CDFD. For the same outputs and data stores used in the
high level process and the CDFD, if they satisfy the post-conditions of the
related processes in the CDFD, they must also satisfy the post-condition of
the high level process. This rule actually defines a practical refinement rela-
tion between the high level process and its decomposition.

Verifying such a refinement relation can be done by means of existing tech-
niques, such as rigorous inspection [8], specification animation [9], and/or formal
proof (which is rarely used in practice).

4.3 Module Construction

For each CDFD, a module needs to be constructed in which all of the components
of the CDFD must be specified or declared properly. In general, a module consists
of four major parts: data declarations, invariants, process specifications, and
function definitions. The data declarations include constant declarations, type
declarations, and data store variable declarations. The invariants are a list of
predicate expressions each of which defines a property either on some data types
or on some store variables that must be sustained throughout the entire system.
The part of process specifications presents a set of process specifications each
of which is represented using pre- and post-conditions. The function definitions
are a set of mathematical functions defined explicitly or implicitly that may
be applied in some process specifications. The key question here is how the
construction of such a module can benefit from the informal specification.

In our approach, we adopt the following guidelines to complete the module:

– The input and output parameters for each process specification mainly come
from the input-output details of the corresponding function in the informal
specification. However, additional data items to meet the demand of design
may also be used and represented by appropriate variables.

– The pre- and post-conditions for each process specification are usually writ-
ten based on the designer’s understanding of the corresponding requirements
described in the informal specification.

– The mathematical functions are defined whenever they need to be applied in
the process specifications.

– The constant identifier declarations, type declarations, and data store variable
declarations are made based on demands from defining the signature of the
process specifications, but how they should be declared (e.g., format, struc-
ture, and scope of values for basic type variables) need to be determined on
the basis of the data item descriptions given in the section of data resources
of the informal specification. In principle, every data item in the informal
specification must be properly represented or defined in the formal specifica-
tion, but the data items declared in the formal specification are not limited
to representing only the described data items in the informal specification.
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– The invariants are usually defined by considering the constraints described in
the informal specification. In general, a constraint can be formalized by one
or more invariants in the formal specification, but it can also be possible to
be formalized in some process specifications. Therefore, it usually needs the
designer’s engineering judgement in determining whether a constraint should
be formalized by invariants or process specifications.

Let us take the ATM system for example. The module known as With-
draw Decom is presented below. For the sake of the page limit, we only
present the necessary information of the module that helps explain the idea
described above and omit all of the other information.

module Withdraw Decom / SYSTEM ATM ;
const

max withdrawal amount = 200,000;
type

Account = composed of
acc name: string
acc number : nat0
acc password : seq of nat0
acc balance: nat0
end;

var
account file: set of Account ;

inv
forall[acc1, acc2 : account file] |

acc1 < > acc2 = >
acc1.acc number < > acc2.acc number

/*Every account in the data store
account file has a unique account number. */

process Check Amount(customer account: Account,
withdrawal amount: nat0)

cash: nat0, customer account: Account |
err message: string

ext rd account file: set of Account
pre exists[acc: account file] | acc = customer account
post if customer account.balance > = withdrawal amount and

withdrawal amount < = max withdrawal amount
then cash = withdrawal amount and
customer account = ˜customer account

else err message = “The requested amount is over the
200,000 JPY limit.”

end process;

end module
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The module Withdraw Decom is associated with the CDFD resulting from
decomposing the process Withdraw defined in the upper level module called SYS-
TEM ATM. It defines all of the components occurring in the CDFD, including
the three processes Check Amount, Check Card (omitted), and Update Account
(omitted), and the data store account file as well as all of the data flows attached
to the processes.

5 Related Work

The essential idea of our GUI-aided approach is a result of applying the idea of
traditional prototyping for software development [7]. To the best of our knowl-
edge, there is no report of other similar research in the literature. There are
some studies that use formal specifications for prototyping [10] or animation
[11,12], but their purpose is to validate the specification rather than construct
the specification. We can therefore only give a brief review of the studies on GUI
prototyping that have somehow impacted our work.

The paper [13] presents the basic notions behind user interface prototyping,
a review of several tools supporting it, and a case study of nine major indus-
trial projects. The most interesting observation pointed out in the paper is that
none of the nine projects studied applied a traditional life-cycle approach and
user interface prototyping is increasingly used as a vehicle for developing and
demonstrating visions of innovative systems. Smith discussed the language issues
in prototyping user interface and pointed out that a prototype-based language
known as NewtonScript is more suitable for implementing object-oriented user
interface frameworks than a class-based language in [14]. Memmel et al. proposed
ways of agile high-fidelity prototyping as visual specifications for corporate user
interface design to facilitate the collaborative design by the designer and the
stakeholders [15] . Reza describes a GUI driven software development platform
known as CodeMonkey-GA in his thesis [16]. By using CodeMonkey-GA, non-
experts and experts alike can relatively easily turn an evolutionary algorithm
design into a working Java program, with a minimum amount of manual coding.

6 Conclusion

To enhance communication between the designer and the user and therefore
facilitate the construction of formal specifications for software design, we have
put forward a systematic GUI-aided approach to formal specification construc-
tion. The approach offers a precise guideline for deriving a prototype GUI from
an informal requirements specification and a technique known as GUI animation
to help identify input and output data items from the user’s point of view for
functions to improve the original informal specification. The construction of a
formal specification can then be systematically carried out on the basis of the
informal specification. Our future research along this line will focuse on the tool
development for and empirical studies of our approach.
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Abstract. Automatic test pattern generation by applying genetic algo-
rithms in reinforcement learning is proposed and the results of evaluation
with an ATM system which assuming the existence of a bug related to a
global variable are reported. For software development based on formal
specifications, a number of methods for the automatic generation of test
cases have previously been proposed. However, most of those methods are
for testing whether or not the specifications are correctly implemented,
and the problem of automatically generating test cases for which all of
the paths can be traversed, including paths that were not anticipated,
remains unsolved. We have previously demonstrated the feasibility of
using genetic algorithms as an effective approach to that problem by
evaluation with a simple test problem that assumes a single-variable
input and evaluation assuming that the total number of paths is known.
Here, we use a genetic algorithm in which the test cases are used as the
gene locus values in the chromosome with redundant gene length and
the difference vector is used for performing mutation. We compare this
approach to the pairwise method and the vibration method, which are
leading research areas, in a more realistic testing environment such as
evaluation of ATM system programs. We show that the proposed method
can provide higher program path coverage than the previous methods
and effectively generates test cases for a bug related to a global variable.

Keywords: Formal specification · Genetic algorithm · Reinforcement
learning

1 Introduction

Formal specifications eliminate vagueness by using mathematical description,
making it possible to determine strictly whether or not the program runs cor-
rectly according to the specification. It is also possible to detect inconsistencies
when the specifications are being written, thus averting problems due to spec-
ification issues discovered for the first time in later stages of development such
as the implementation process. It is accordingly effective for developing highly
trustful programs in a short time.
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Actually, even programs that have been developed on the basis of formal spec-
ifications and have passed inspection can fail during operation. That is because
formal specifications that abstract actual informal problems in the process of
converting informal required specifications to semi-formal or formal specifica-
tions are not necessarily guaranteed to provide a correct description, there are
multiple possible implementations when the code is actually written according
to formal specifications, and unanticipated paths that may result from bugs, etc.
in the program.

To solve the above problems, a research for the automatic specification-based
testing (ASBT) [13] has begun. The essential idea of ASBT is to generate a test
set that covers every scenario by satisfying its test condition at least once. Gen-
erally, this problem may be handled by generating more test cases, but what test
cases should be generated is still a big challenge. Liu has proposed the “Vibration
method [12]” which tries to change the “distance” between the variables to find
more test cases to cover all corresponding program paths. For example, if there
are two expressions E1 and E2, the “distance” (|E1 − E2|) between E1 and E2
will be changed as the values of variables in two expressions changed. A test case
is created to satisfy the relation when the distance is small; another new test case
will be created when the distance is greater. Repeating this process by increasing
and decreasing the distance between E1 and E2 until the terminated decision is
made. Although this method improved path coverage rate dramatically, however
it still can’t ensure to cover all paths in the representative program. There is also
a large body of research on specification-based testing. Many projects automated
test cases generation from specifications, such as Z specification [1,2], UML state-
charts [3,4], or ADL specifications [5,6]. The Korat which is one of the novel frame-
works for automated testing of Java Programs, is based on Java predicates [7].
Given a predicate and a bound on the size of its inputs, Korat generates all inputs
for which the predicate returns true. Marisa A.S’anchez has examined algebraic-
specification based testing with particular attention to the approach reported by
Gilles Bernot, Marise Claude Gaudel and Bruno Marre [8]. It did not only focus on
the generation of test cases from the initial specification but also the additions and
revisions during the development. D.Marinov and S. Khurshid presented a frame-
work for automated testing of Java programs called TestEra [9]. TestEra uses the
Alloy Analyzer (AA) [10] to automatically generate method inputs and check cor-
rectness of outputs, but it requires programmers to learn a specification language
much different than Java. Cheon and Leavens have proposed an automatic trans-
lation of JML specifications into test oracles for JUnit [11]. But the programmers
have to provide sets of possibilities for all method parameters, which add a burden
of test cases generation for programmers.

In this paper, genetic algorithms (GA) has been used to address the prob-
lem by studying how to ensure the paths in the related program can be traversed
completely [19]. Roy P. Pargas, Mary J. Harrold, and Robert R. Peck [18] have
already applied standard genetic algorithms to generate a test data for a spe-
cific path. On the other hand, we propose improved genetic algorithms to gen-
erate test patterns that traverse all of the paths within the program, including
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unanticipated paths. A large number of test cases are generated as the gene locus
values in the chromosome with redundant gene length, and the appropriate test
cases have been discovered using GA based reinforcement learning to cover all
paths in the related program.

The remainder of this paper is organized as follows. Section 2 gives a
brief introduction to the automatic specification-based test cases generation.
In Sect. 3, we present how to apply GA to solve this issue. Section 4 presents and
discusses the experimental results and is followed by the conclusion.

2 Specification-Based Test Cases Generation
and Reinforcement Learning

In this section, we formalize the problem of automatic generation of test cases
that involve unanticipated paths and propose a method based on reinforcement
learning in which genetic algorithms are used as an efficient stochastic search for
the automatic generation of test cases.

2.1 Formalization of the Problem of Generating Test Patterns
for Traversing Unanticipated Paths

Denoting the number of input variables as m, the input variables as xi(i =
1, ...,m), the test case as t = [x1, x2, ..., xm] the set of test cases as X, the path
(permutation of execution steps in a program from input to output) as y, and
the set of paths in a program as Y , consider a program f for which there is a
one-to-one mapping of any element t of X to element y (path in the program)
of Y . That is to say,

f : X → Y, f(t) = y
Although there is only one y in Y for any t of X, generally, the elements in

X that map to y are not necessarily limited to a single element. Accordingly, y
is surjective but not injective. Thus, for y ∈ Y the inverse image of y from f ,
f−1(y) = {t|f(t) ∈ y}, is the set of test cases in X that transferred to path y
by f .

Then, given
X = X1 ∪ X2 ∪ ... ∪ XN ,Xi ∩ Xj = φ(i �= j)
Xi(Xi ⊂ X)(i = 1, ..., N)
here both of Xi and N are defined as an unknown quantity. the problem of
generating a test pattern that traverses all unknown paths is defined as the
problem of finding
T = [t1, t2, ..., tN ], ti ∈ Xi(i = 1, ..., N)
ti = [xi1, xi2, ..., xim],m : the number of input variables.

2.2 Test Pattern Generation Based on Reinforcement Learning

Because Xi, N , and y are all unknown, it is difficult to solve this problem
analytically. We therefore investigate an approach that uses stochastic search
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Fig. 1. The configuration of a system for generating test patterns by using GA based
reinforcement learning

and reinforcement learning. The configuration of a system for generating test
patterns by using reinforcement learning is illustrated in Fig. 1. In practice, we
do not know how many paths in the target program, but noting that there is
an open source software [17] on the internet which can check out the number
of paths in the program, or there is commercially available software for showing
(identifying) the execution steps in a program and that any path in the program
is a permutation of the execution steps from input to output, the number of
traversed paths within a program can be counted in principle. Here, we consider
reinforcement learning in which the number of types of paths that are traversed
when the set of test patterns is input to the program serves as the reward value.
Also, test patterns composed from a set of test cases can be regarded as one
type of gene, so we propose reinforcement learning that is updated by genetic
calculation of the set of test patterns.

3 Applying GA to Automatic Test Case Generation

In this section, we propose applying GA to automatic test case generation based
on formal specification. By utilizing GA, the process of choosing test cases will be
more effective. Initially, GA generates a population based on the specification,
in which each individual is a set of test cases. The individual who has high
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Fig. 2. Chromosome definition for test cases generation

path coverage rate will be selected to produce next generation. After the GA
manipulation, the population in the next generation will be better and have a
higher path coverage rate. The evolution will continue until all the paths in the
program have been traversed.

3.1 Definition of Chromosome for Automatic Test Case Generation

The first step of GA is to randomly generate population of chromosomes [16].
Each member in the population is called individual. In our work, an individual
is a test set consisting of one or more test cases. The test cases are generated
based on the formal specification. If the chromosome is defined as a test case, it is
difficult to judge whether the chromosome is good enough to be used to generate
next generation. Because every chromosome will be in only two states:one is
covered a path; the other is not cover a path. If the chromosome is defined a
set of test cases, there will be a path coverage rate for every chromosome, and
then we can judge which one is appropriate to be selected to generate the next
generation. Figure 2 shows an example of a chromosome definition for a set of
test cases. Every genetic locus in each chromosome corresponds to a test case,
which satisfies the precondition. For example, the input variables are numeric
type from 1 to 100, and then genetic locus will be defined as a number from
1 to 100 randomly. The length of the chromosomes (how many test cases in a
chromosome) equals to the number of the paths. Thus, in the Fig. 2, ti represents
a test case, and n denotes the number of the paths. By generating a large scale
of chromosomes in a population, we can generate a lot of test cases satisfied the
precondition.

Figure 3 shows an example of the initial population when we don’t have any
previous test patterns or knowledge to generate test patterns from correspond-
ing paths map. In this example, input parameters are generated randomly in
a feasible region. Figure 4 shows an example of the initial population when we
have some previous test patterns or knowledge to generate test patterns from
corresponding paths map. In this example, we use these test patterns as a part
of chromosomes and generate other input parameters randomly.

3.2 Evaluation Function

In a genetic operation, the evaluation function is a fitness function which is
devised for each problem to be solved. Given a particular chromosome, the fit-
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Fig. 3. An example of initial populations when we don’t have any previous test patterns

Fig. 4. An example of initial populations when we have some previous test patterns

ness function returns a single numerical “fitness”, or “figure of merit”, which is
supposed to be proportional to the “utility”or “ability” of the individual which
that chromosome represents. In this case, the fitness function is defined as the
path coverage rate, when the chromosome covered more paths, its evaluation
value will be higher. In this study, we assume that the number of all paths in the
related program is known and define the fitness function in Equation (1) below,
which is normalized to values between 0 to 1.

f =
k

n
(1)

In Equation (1), f is the evaluation function, k is the number of the paths
that chromosome has covered; n is the number of all paths in the corresponding
programs. The individual who achieves an evaluation value f =1 means that the
individual has covered all paths in the corresponding programs, and it is the
optimal solution to the problems.

3.3 Genetic Manipulation

Selection. Selection is the stage in which individual generates for next genera-
tions from a population based on fitness values. There are many kinds of selection
methods in GA, and we apply tournament selection [16] in this study. Tourna-
ment selection has a simple rule and can guarantee that the better one will be
chosen and the worse one will be eliminated. Tournament selection involves ran-
domly picking several individuals from the population and staging a tournament
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to determine which one is finally selected. It generates a random value between
zero and one and comparing it to a pre-determined selection probability. If the
random value is less than or equal to the selection probability, the fitter can-
didates is selected; otherwise, it select other candidates again. The probability
parameter provides a convenient mechanism for adjusting the selection pres-
sure. The tournament size is 3, selecting the highest fitness one to be parent for
next generation by comparing the three individuals. The individuals selected by
tournament selection as parents to do crossover.

Crossover. Crossover is a genetic operator used to vary the programming of
chromosomes from one generation to the next. In this paper we choose uniform
crossover [16]. This operator exchanges approximately half the genes. That is,
at each gene position in parent A and parent B, a random decision is made
whether that gene should go into offspring A or offspring B. Even though the
uniform crossover is a poor method, empirical evidence suggest that it is a more
exploratory approach to crossover than the traditional exploitative approach
that maintains longer schemata. This results in a more complete search of the
design space with maintaining the exchange of good information.

Fig. 5. An example of a simple mutation

Mutation. Mutation is a genetic operator used to maintain genetic diversity.
When a number of the input parameter is 1, we can apply a simple mutation.
An example of a simple mutation is shown in Fig. 5. Mutation is applied to each
child individually after selection and crossover. It randomly alters each gene with
a small probability. If the variable t which is generated randomly is bigger than
mutation rate, the mutation manipulation will be executed. Mutation provides
a small amount of random search, and helps ensure that no point in the search
space has a zero probability of being examined. On the other hand, in many
cases, a test case is consisted of multiple input parameters and we can’t apply
a simple mutation. In this case, we regard a test case t = [x1, x2, ..., xm] as a
m-dimensional vector, and a mutation is defined as a different vector mutation.

−→
t′ =

−→
t + Δ

−→
t (2)

where
−→
t is an original test case vector, Δ

−→
t is different vector and

−→
t ’ is

a vector after mutation. An example for the two input parameters is shown in
Fig. 6.

Repeat the above steps until the individuals whose fitness is 1 have been
found or if the maximum evaluation value is not updated after a certain number
of generations [14–16].



66 Y. Sato and T. Sugihara

Fig. 6. An example of a different vector mutation for the two input parameters

4 Evaluation Tests

To evaluate the proposed method of generating test cases, we performed pre-
liminary tests using a simple program, which demonstrated the validity of the
method [19]. The vibration method and pairwise method that were mentioned
above, on the other hand, used an ATM system that was designed on the basis
of SOFL (Structured Object-oriented Formal Language) for testing, but the pro-
gram was not published, so in the work reported here, we also designed an ATM
system based on SOFL in the same way to use a system that is similar for com-
parative testing with that related research. The evaluation testing environment
specifications are presented in Table 1.

Table 1. Experiment environment

OS Windows 7

Processor Intel Core i7 CPU 3.20 GHz

Memory(RAM) 12 GB

Operating system type 64-bit system

Tools Eclipse Standard / SDK

Version: Kepler Service Release 2

4.1 ATM System Overview

The six main ATM system operations (services) are ‘open account’, ‘withdraw’,
‘transfer’, ‘deposit’, ‘show balance’, and ‘change password’. The registered cus-
tomer information (CustomerAccountInfo) is managed as a map (account file)
with the account number (AccountNo) serving as the key. When the system
accepts an operation, it produces an output according to the input. When the
input is incorrect, such as when the account number or password is invalid, an
error message that explains the problem is output.
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Fig. 7. ATM system CDFD

A condition data flow diagram (CDFD) that shows the overall configuration
of the ATM system is presented in Fig. 7. This system comprises eight processes,
including the six services described above, and one data store. The account file
contains customer information. The Receive Command process accepts the ser-
vice that the user wants to use as input. It determines whether the accepted
service is Open account or another service, and outputs to a different process
accordingly. The Authenticate process verifies the account number and pass-
word. If the input account number and password combination matches what is
stored in account file, it outputs to the service process according to the service
that was received from the Receive Command process. If the input does not
match, an error is output.

4.2 Test Method

We performed two types of tests. Test 1 assumed that the total number of paths
is known and test 2 assumed operation that differs from the specifications or
insertion of a bug that produces operation that differs from the specifications so
that the total number of paths is not known. The bug inserted in test 2 was the
value of a global variable used in the ATM system that resulted in operation not
specified in the specifications. In addition, the gene length of the chromosome in
test 2 is made twice the total number of paths before the bug was introduced,
because the total number of paths is unknown. That the number of unantici-
pated paths can exceed the number of paths from the specifications probably
goes against common sense. Furthermore, because the total number of paths is
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Table 2. Program parameters for test 1 and test 2 program

Test 1 Test 2

Individuals 250 500

Gene length 32 64

Cross-over rate 0.9 0.8

Mutation rate 0.016 0.011

Test cases ti (service,number of suitable input variables for the service)

Selection method Tournament selection

Crossover method Uniform crossover

Total number of paths 32 Unknown

Table 3. Execution time and path coverage for test 1

Generations Time (avg.) Time (max.) Coverage

124.56 0.98 s 1.56 s 100.0 %

Table 4. Execution time and path coverage 2

Generations Time (avg.) Time (max.) Coverage

156.9 4.18 s 6.15 s 100.0 %

unknown in test 2, the number of traversed paths is used as the evaluation value,
and if the maximum evaluation value is not updated after a certain number of
generations, that evaluation value is judged to be the total number of paths
and the processing is ended. The parameters of the test programs are listed in
Table 2.

4.3 Test Results

For both test 1 and test 2, the test was repeated 50 times and the number of
generations, the run time, and the average path coverage were calculated. The
results are presented in Table 3 for test 1 and in Table 4 for test 2. The genetic
algorithm learning curve, with the path coverage on the vertical axis and the
number of generations on the horizontal axis is presented in Fig. 8 for test 1
and in Fig. 9 for test 2. For test 1, which assumes that the total number of
paths is known, test patterns for which all of the 32 paths are traversed were
generated, for the coverage of 100 %. For test 2, which assumes that the total
number of paths is not known, the search was ended when the evaluation values,
which indicate the number of paths traversed, were 40 for all of the 50 trials. The
number of paths for the ATM system after introduction of the bug was confirmed
to be 40, so the generation of test patterns with 100 % coverage succeeded for
test 2 as well.
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Fig. 8. Relationship of number of generations and path coverage for test 1

Fig. 9. Relationship of number of generations and path coverage for test 2

5 Discussion

Test patterns with 100 % coverage were successfully generated for both test 1,
which assumes the total number of paths is known, and test 2, which assumes
the total number of paths is not known. In test 2, however, there were cases in
which test patterns for which the path coverage is 100 % were not discovered
if the values for the number of individuals, the cut-off number of generations,
the crossover rate, and the mutation rate were not suitable. Investigation of the
reason for that result showed that the bug inserted in test 2 was the value of a
global variable that resulted in operation not specified in the specifications and
many generations are needed to discover those paths, and the cut-off number of
generations was reached before the test patterns for which all of the paths are
traversed could be discovered. The proposed method never ensures to discover
all program paths for a bug related to a global variable. But the chromosome
with redundant gene length generates several types of test cases corresponding



70 Y. Sato and T. Sugihara

to a specific path and it is effective to discover the bugs depend on a global
variable.

Although the test data was not entirely the same, path coverage of 53 % by
the pairwise method and 92 % by the vibration method has been reported [13].
Considering a comparison that involves evaluation using a similar system, we
conclude that the proposed method effectively generates test patterns, even
though the basis for comparison is not strict.

With the proposed method, program testing is essentially done in the test
pattern generation process. That is to say, the success in generating test patterns
for which the path coverage is 100 % is the completion of the testing of that
program. Thus, we believe the test patterns generated by our method can be
reused as prior knowledge when the system is revised or upgraded.

Furthermore, because these tests use a program that we wrote, the specifi-
cations are such that the path coverage can be obtained immediately. Actually,
a separate program for determining how many different paths have been tra-
versed is required, so the actual execution time increases greatly. Accordingly,
faster processing through parallel processing with a GPU or other such means
is probably needed for further development.

6 Conclusion

We proposed a method for automatic generation of test cases for which all pro-
gram paths are traversed for application in software development based on formal
specifications. Our method uses a genetic algorithm that uses a chromosome def-
inition that has the test case as the gene locus value, redundant gene length and
uses the difference vector for mutation. We tested the method using an ATM
system designed on the basis of formal specifications, assuming the existence of
a bug related to a global variable. The tests demonstrated the generation of test
patterns that have the coverage 100 %, both in tests that assume the total num-
ber of paths is known and in tests that assume that the number of paths is not
known. That is to say, comparison with previous methods by tests performed
using a similar system showed the possibility of greatly improved path coverage.
The proposed method is also effective to discover the bugs depend on the value
of a global variable.

Acknowledgements. We would like to show my deepest gratitude to Prof. Shaoying
Liu of the Department of Computer and Information Sciences in Hosei University for
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References

1. Horcher, H.-M.: Improving software tests using Z specifications. In: Proceeding 9th
International Conference of Z Users, The Z Formal specification Notation (1995)

2. Spivey, J.M.: The Z notation: A Reference Manual, 2nd edn. Prentice Hall (1992)



Automatic Generation of Specification-Based Test Cases 71

3. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France,
R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

4. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley Object Technology Series (1998)

5. Chang, J., Richardson, D.J.: Structural specification-based testing: automated sup-
port and experimental evaluation. In: Proceeding 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pp. 285–302, September 1999

6. Sanker, S., Hayes, R.: Specifying and testing software components using ADL.
Technical Report SMLI TR-94-23, Cun Microsystems Laboratories, Inc., Mountain
View, CA, April 1994

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automatically testing based on java
predicates. ISSTA 2002 Proceedings of the ACM SIGSOFT International Sympo-
sium on Software testing and analysis, pp. 123–133 (2002)

8. Sánchez, M.A.: Specification-based Testing, pp. 12–47 (1997)
9. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of

Java programs. In: Proceeding 16th IEEE International Conference on Automated
Software Engineering, San Diego, November 2001

10. Jackson, D., Schechter, I., Shlyakhter, I.: ALCOA: the alloy constraint analyzer. In:
Proceeding 22nd international Conference on Software Engineering(ICSE), Limer-
ick, June 2000

11. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the
JML and JUnit way. Technical Report 01–12, Department of Computer Science,
Iowa State University, November 2001

12. Liu, S., Nakajima, S.: A “Vibration” method for automatically generating test
cases based on formal specifications. In: Software Engineering Conference, 2011
18th Asia Pacific, pp. 73–80, 5–8 December 2011

13. Liu, S., Nakajima, S.: A decompositional approach to automatic test cases genera-
tion based on formal specification. In 4th IEEE International Conference on Secure
Software Integration and Reliability Improvement, pp. 147–155. IEEE CS Press,
Singapore, 9–11 June 2010

14. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell
Scientific, Oxford (1993)

15. Beasley, J.E.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.
94, 392–404 (1996)

16. Beasley, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: Part I,
fundamentals. Univ. Comput. 15(2), 58–59 (1993)

17. http://www.kailesoft.cn (cited 7 July 2014)
18. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algo-

rithms. J. Softw. Testing Verification Reliab. 9(4), 263–282 (1999)
19. Zhou, Y., Sugihara, T., Sato, Y.: Applying GA with Tabu list for automatically

generating test cases based on formal specification. In: Liu, S., Duan, Z. (eds.)
SOFL+MSVL 2014. LNCS, vol. 8979, pp. 17–31. Springer, Heidelberg (2015)

http://www.kailesoft.cn


Fault Localization of Timed Automata
Using Maximum Satisfiability

Shin Nakajima1,2(B) and Si-Mohamed Lamraoui1,2

1 National Institute of Informatics, Tokyo, Japan
nkjm@nii.ac.jp

2 SOKENDAI, Tokyo, Japan

Abstract. Timed automata are formal models for systems whose real-
time behavior is a major concern, and practical model checking tools are
available for them. Although these tools are effective to detect faulty
behavior, localizing root causes of faulty timed automata requires a
costly manual task of studying counter-examples. This paper presents an
automatic fault localization problem. The proposed approach follows the
Reiter’s model-based diagnosis theory to employ the consistency-based
method, and details the method to show how the Reiter’s general the-
ory is applicable to timed automata. In particular, the proposed method
introduces a modest assumption on the failure. The paper discusses how
the failure model and properties to be checked affect the formula used
in the consistency-based fault localization method.

1 Introduction

Timed or hybrid systems are employed as a modeling tool for a wide variety of
non-functional concerns such as real-time timing properties or energy consump-
tion [16]. Their formal models, especially linear hybrid systems [2] including
timed automata [1], are well studied and industrial-strength verification tools for
the timed automata are developed (e.g. [10]). These tools check the behavioral
aspects automatically, but require a costly manual study of generated counter-
example traces to identify root causes of the failure.

Automatic fault localization methods are successful for the case of VLSI
circuit designs [19,21] or imperative programs [5,7–9]. These consistency-based
approaches adapt the model-based diagnosis (MBD) theory [18] and use Boolean
satisfiablity [4] as in the bounded model checking (BMC) [3], or specifically
the maximum satisfiability (MaxSAT). In the MBD theory, an artifact and its
property or an assertion are encoded in a logic formula. The whole formula is
unsatisfiable if the artifact is faulty in that it violates the property. The fault
localization problem is finding a subset of clauses in the formula to make it
satisfiable if they are removed. This subset of clauses is a minimal correction
subset (MCS) of the unsatisfiable formula [12].

This paper proposes a consistency-based fault localization method for timed
automata using the MaxSAT. The method adopts the Boolean encoding of
timed automata proposed in [20]. The contributions of this paper are as follows.
c© Springer International Publishing Switzerland 2016
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(1) We introduce a framework of fault localization methods that details the MBD
theory [18], which constitutes the main body of Sect. 4. The framework makes
explicit the relationship between the failuremodel, the trace formula, and the prop-
erty to be checked. (2) For timed automata, an important class of fault localization
problems is reduced to solving a set of clock constraints. Since the constraints are
expressed in linear real arithmetic theory [1], the problem is decidable. (3) This
paper demonstrates the feasibility of the proposed method with experiments on
small example cases using the Yices-1 [6], a partial MaxSAT solver.

Although the work is still at a feasibility study stage, it is, as far as we know,
the first report on the automatic fault localization of timed automata using the
maximum satisfiability.

2 Preliminaries

This section introduces the basic concepts. We use the term SAT to refer to both
pure Boolean satisfiability and satisfiability modulo theories (SMT) methods.

Scope-Bounded Analysis. The SAT method is a basis of various automatic
analysis methods such as bounded model checking (BMC) [3]. Given a system,
we encode potential execution paths of the system in a logic formula ϕTF . We
let ϕAS be a formula of the property to be checked. Because ¬(ϕTF ⇒ ϕAS)=
ϕTF ∧ ¬ϕAS , a BMC problem is to see whether ϕTF ∧ ¬ϕAS is satisfiable. The
formula is satisfied if the system (ϕTF ) violates the given property (ϕAS). The
obtained assignments constitute counter-examples to demonstrate this failure.
In the following, ϕCE refers to a formula encoding these counter-example assign-
ments.

Fault Localization Problem. Let a formula ϕFL be ϕEI ∧ ϕTF ∧ ϕAS for the
above mentioned ϕTF and ϕAS , and ϕEI that encodes error-inducing formula;
ϕFL = ϕEI ∧ ϕTF ∧ ϕAS . We construct ϕEI as a sub-formula of ϕCE so that
ϕEI provides necessary comditions for the failing situation. From these, ϕFL is
unsatisfiable.

If the system fails for a particular set of input data values, ϕCE includes
a sub-formula to encode such a set of data values. In this case, ϕEI is simple
enough to represent that the specific variables take particular values that lead
the system to such a failing execution. In the fault localization of an imperative
program [5,7–9], ϕEI encodes a set of input data values that make the program
violating ϕAS . However, ϕEI may have further information that reflects the
characteristics of the target system. Finding appropriate ϕEI for TAs will be
discussed in Sect. 4.2.

The fault localization problem is finding clauses in ϕTF that are responsi-
ble for the unsatisfiability of ϕFL. These clauses, if found, constitute a conflict,
which is an erroneous situation containing root causes of the failure. By defin-
ition, ϕEI and ϕAS are supposed to be satisfiable. Therefore, it is exactly the
problem in which we search for root causes of the faulty system.
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In what follows, C refers to a set of clauses that constitute a given formula ϕ in
conjunctive normal form (CNF). We use C and ϕ interchangeably. For details
about the basic concepts, we refer to the standard literature (e.g. [4]).

Minimal Unsatisfiable Subset. A set of clauses M , M ⊆ C, is a minimal unsat-
isfiable subset (MUS) iff M is unsatisfiable and ∀c∈M :M\{c} is satisfiable.

Maximal Satisfiable Subset. A set of clauses M , M ⊆ C, is a maximal satis-
fiable subset (MSS) iff M is satisfiable and ∀c∈(C\M):M∪{c} is unsatisfiable.

Minimal Correction Subset. A set of clauses M , M ⊆ C, is a minimal correc-
tion subset (MCS) iff C\M is satisfiable and ∀c∈M :(C\M)∪{c} is unsatisfiable.
By definition, an MCS is a complement of an MSS. MCS is sometimes called
coMSS.

Hitting Set. Let Ω be a set of sets from some finite domain D. A hitting set of
Ω, H, is a set of elements from D that covers every set in Ω by having at least
one element in common with it. Formally, H is a hitting set of Ω iff H⊆D and
∀S∈Ω:H∩S 	=∅. A minimal hitting set is a hitting set from which no element can
be removed without losing the hitting set property.

Partial Maximum Satisfiability. A maximum satisfiability (MaxSAT) prob-
lem for a CNF formula is finding an assignment that maximizes the number of
satisfied clauses. Partial MaxSAT (pMaxSAT) is a variant of the MaxSAT, in
which some clauses are marked soft or relaxable, and the others are marked hard
or non-relaxable. A pMaxSAT problem is finding an assignment that satisfies all
the hard clauses and maximizes the number of satisfied soft clauses.

An Example. Here is a simple example to illustrate the basic concepts [11].

C1 C2 C3 C4

ϕ = (a) ∧ (¬a) ∧ (¬a∨b) ∧ (¬b)

Its MUSes, MCSes, and MSSes are the following.

MUSes(ϕ) = { {C1, C2}, {C1, C3, C4} }
MCSes(ϕ) = { {C1}, {C2, C3}, {C2, C4} }
MSSes(ϕ) = { {C2, C3, C4}, {C1, C4}, {C1, C3} }

MUSes(ϕ) and MCSes(ϕ) are related by a hitting set relationship.
Next, if we mark C3 as hard and all the rest to be soft, a set of two MCS

elements, { {C1}, {C2, C4} }, is obtained as MCSes. This illustrates that there
are two possible repairs to make the formula ϕ satisfiable under the assumption
that C3 is believed to be correct. We may remove either C1 or both C2 and C4.
Note that we must decide which candidate we choose to repair. This decision
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requires a piece of information beyond the fault localization method. The repair
is not the focus of this paper.

Model-Based Diagnosis. Fault localization is finding a subset of clauses, called
diagnosis, in the unsatisfiable formula ϕFL to make it satisfiable if they are
removed. The model-based diagnosis framework [18] presents a way to calculate
diagnoses from conflicts. Note that a conflict is an erroneous situation and a
diagnosis refers to root causes. Formally, diagnoses are MCSes, a set of MCS
elements, while conflicts are MUSes, a set of MUS elements. MCSes are cal-
culated from MUSes by a hitting set relationship [12]. The consistency-based
approach [7,8,19], adopted in this paper, calculates an MSS to obtain an MCS
by complementing the MSS, and repeats this process to collect MCSes. Any
solution to MaxSAT problem is also an MSS, although every MSS is not always
a solution to MaxSAT [15]. We use MaxSAT to obtain MCSes (e.g. [13]).

The fault localization problem needs a method to represent the fact that ϕEI

and ϕAS are to be satisfiable and that some clauses in ϕTF are suspicious. The
pMaxSAT approach fits well this requirement [7–9,21]. The clauses in ϕEI and
ϕAS are marked hard. Suspicious clauses in ϕTF are soft. The other clauses in
ϕTF that are assumed to be bug-free are hard. This decision, in which clauses
are marked soft, is dependent on the adopted failure model (see Sect. 4.2).

3 Scope-Bounded Analysis

3.1 Timed Automata

Timed automata are finite state transition systems that have a finite number of
non-negative real-valued clocks [1]. We follow the standard definitions.

Formal Model. A timed automaton A is a tuple 〈 Loc, �0,X,Edg, Inv 〉.
1. Loc is a non-empty finite set of locations.
2. �0 is the initial location, �0∈Loc.
3. X is a finite set of clock variables. For a positive natural number n(∈ N )

and an operator �� ∈ {<,≤,=,≥, >}, constraints of the form x �� n and
x1 − x2 �� n constitute a set of primitive clock constraints. We denote Z(X)
to be a set of formulas constructing from these primitive constraints possibly
using logical connectives of ∧, ∨ and ¬.

4. Edg represents a set of transitions. It is a finite set Loc×Z(X)×2X×Loc. An
element of Edg, (l, g, r, l′), is written as l

g,r−→ l′, where g is a guard condition
in Z(X) and r refers to a set of clock variables (∈ 2X) to reset.

5. Inv is a mapping from Loc to clock constraints, Inv : Loc→Z(X).

Parallel Composition of Timed Automata. We represent a complex system
as a parallel composition of timed automata, where two timed automata are
synchronized on a same event. The definition of timed automata now contains
a finite set of events Σ and an empty symbol ε, 〈 Loc, �0,X,Σ∪{ε}, Edg, Inv 〉.
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Particularly, Edg is Loc×(Σ∪{ε})×Z(X)×2X×Loc, and its element (l, a, g, r, l′)
is written as l

a,g,r−→ l′.
Parallel composition is defined for given two timed automata A(1) and A(2),

where Σ(1)∩Σ(2) 	=∅. Locations of the composed automaton are pairs of loca-
tions, 〈l(1), l(2)〉 ∈ Loc(1)×Loc(2). Its invariant at each location is a conjunction,
Inv(1)(l(1))∧Inv(2)(l(2)). Symbols common to both alphabets (a∈Σ(1)∩Σ(2))
synchronize two automata. A(1) and A(2) take transitions simultaneously. The
parallel composition can be extended to cases where more than two automata
are involved.

3.2 Boolean Encoding

Fault localization as well as bounded model checking needs Boolean encoding of
a trace formula ϕTF . We follow the encoding method presented in [20].

Trace Formula. A state of a timed automaton A is characterized by a location
variable (at) and clock variables (x1, . . . , xn). Below, we use an abbreviation
such as x̂ to refer to a vector of variables (x1, . . . , xn) ∈ Xn. We introduce a set
V ={at, x̂}. A timed automaton A is defined as 〈I, T 〉 over V . We use j-indexed
state variable such that Vj={atj , x̂j}.

1. Initial State : I is defined on V .

I=(at = �0 ∧ x̂ = 0)

2. Discrete Transition Step : T (e) is a relation on V and V ′ where e = l
g,r−→ l′

and zi = 0 if xi ∈ r, zi = xi otherwise.
T (e)=(at = l ∧ at′ = l′ ∧ g ∧ x̂′ = ẑ ∧ Inv(l′)(x̂′))

3. Delay Transition Step :
D is a relation on V and V ′. Inv(S) is the set of locations that have an
invariant different from true. Clock variables are updated by an amount of δ.

D= ∃ δ >0 . ((
∧

l∈Inv(S) (at = l)⇒Inv(l)(x̂′)) ∧ at′ = at ∧ x̂′ = x̂ + δ)

4. Transition Relation : T is a relation on V and V ′. T= (
∨

e∈EdgT (e)) ∨D

5. K-step Unfolding of Timed Automaton : ϕK
TF is a trace formula to encode

potential K-step execution paths. Let Vj be a set of j-indexed variables
{atj , x̂j}. V in I is V0. V and V ′ in Tj are Vj−1 and Vj respectively.

ϕK
TF = I ∧ (

∧
j=1..K Tj)

Now, we consider parallel composition cases. In order to define a delay transition
step, we introduce a special symbol delay to represent that the automaton takes
a delay transition. The input alphabet is Σ∪{ε, delay}. The set V is extended
to include a variable act referring to an input symbol ({at, x̂} ∪ {act}).
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1. Inactivity Transition : F=(at′ = at ∧ (
∧

x∈Xx′ = x) ∧ (
∧

α∈Σ∪{delay}act	=α))

2. Discrete Transition Step for e = l
a,g,r−→ l′ : A discrete transition of a single

timed automaton for e = l
g,r−→ l′ is a special case of a being ε.

T (e) = (at = l ∧ at′ = l′ ∧ act = a ∧ g ∧ x̂′ = ẑ ∧ Inv(l′)(x̂′))

3. Delay Transition Step :
D= ∃ δ >0 .

((
∧

l∈Inv(S) (at = l)⇒Inv(l)(x̂′)) ∧ at′ = at ∧ x̂′ = x̂ + δ ∧ act = delay)

4. Transition Relation : T= (
∨

e∈EdgT (e)) ∨ D ∨ F

5. K-step Unfolding of N number of Timed Automata : There are N number
of timed automata A(1) . . . A(N) composed, where A(i) is 〈I(i), T (i)〉. I(i)

and T (i) are the initial state and transition relation for the i-th automaton
respectively. T

(i)
j is j-th transition of i-th automaton.

ϕK
TF =

∧
i=1..N (I(i) ∧ (

∧
j=1..K T

(i)
j )), which is rewritten as I ∧ (

∧
j=1..K Tj)

where I =
∧

i=1..N I(i) and Tj =
∧

i=1..N T
(i)
j .

Bounded Model Checking. We introduce a labeling function Lab from each
location to a set of atomic propositions, Lab : Loc→2Prop. Prop is defined over
state variables of a timed automaton, {at, x̂}. Lab(�) is a set of propositions
that are true at the location �.

Specifically, p (p∈Prop) takes a form of equality or dis-equality on the loca-
tion variable (at), and of primitive clock constraints for clock variables (xj).
Clock constraints are represented in linear real arithmetic (LRA). We do not
consider propositions involving act (act∈Σ) because the event symbol is con-
cerned with transition synchronization.

Although a BMC problem is usually defined for arbitrary formulas of linear
temporal logic (LTL) [20], we restrict to consider only two cases, safety properties
and guarantee [14]. Let ψ(v̂) be a propositional formula constructed from Prop.
Each v̂j stands for a vector of state variables in Vj . A safety property is expressed
in LTL as �ψ, and a guarantee property is ♦ψ. Recall a BMC problem is checking
the satisfiability of ϕTF ∧ ¬ϕAS . As a negation of �ψ is ♦¬ψ and a negation of
♦ψ is �¬ψ respectively, a whole formula for the K-unfolded case is

ϕsafety = I(v̂0) ∧ (
∧

j=1..K Tj(v̂j−1, v̂j)) ∧ (
∨

j=1..K ¬ψ(v̂j)),
or

ϕguarantee = I(v̂0) ∧ (
∧

j=1..K Tj(v̂j−1, v̂j)) ∧ (
∧

j=1..K ¬ψ(v̂j))
∧ (

∨
j=0..K−1(v̂k = v̂j)).
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The formula ϕguarantee has an auxiliary constraint that we check ¬ψ against the
paths to contain loops [4]. Since the check is done in a bounded scope, �¬ψ can
be satisfied only when loops exist.

4 Fault-Localization of Timed Automata

4.1 The Framework

The problem of fault localization using the pMaxSAT is formulated as finding
MCSes for an unsatisfiable formula ϕFL of the form ϕEI ∧ ϕTF ∧ ϕAS . Recall
that ϕEI expresses a failing situation, ϕTF encodes all potential execution paths,
and ϕAS is a property to be checked. We need to determine the following three
aspects so as to define the fault localization problem precisely.

The first aspect concerns with the property to be checked, which is common
to BMC problems. We, indeed, conduct the BMC to see if the system is correct
or not with respect to a given property. As discussed in Sect. 3.2, we adopt
Prop defined over state variables of a timed automaton, {at, x̂}. Specifically, p
(p∈Prop) takes a form of equality or dis-equality on the location variable (at),
and of primitive clock constraints for clock variables (xj).

The second is the failure model we assume. The formula ϕTF is a Boolean
encoding of operational semantics of timed automata and expresses all potential
execution paths. Although all the elements can, in principle, be suspicious, we
look for some particular clauses in ϕTF to account for the failure. We will intro-
duce a modest assumption on the failure model, which Sect. 4.2 will explain in
detail.

The third aspect is what to encode in ϕEI . Basically, the formula demon-
strates a failing situation. A conjunction ϕEI ∧ ϕTF encodes a subset of all
potential execution paths. ϕEI acts as a filter to extract appropriate paths from
those represented by ϕTF . The encoding of these paths has impact on the effi-
ciency and precision of identifying MCS elements. Therefore, ϕEI is sensitive to
the fault localization problem, and is related to the property formula ϕAS . We
will explain in details in Sect. 4.2.

4.2 Fault Localization Method

Failure Model. Timed automata are finite state transition systems that have
non-negative real-valued clocks. Now we assume that a given set of timed
automata can be composed, which means that they are not deadlocked due to
inappropriate parallel compositions. Then, faulty behavior in timed automata is
originated from some bugs in using clock variables. Since timed automata refer
to clocks in invariants, transition guards, and resets, we consider that potential
root causes are in them; invariants Inv(l), and g and r on an edge of l

a,g,r−→ l.
These are suspicious elements in faulty systems consisting of timed automata.
The fault localization problem is now checking a conjunction of clock constraints
that are collected from a failing trace with respect to a given property ϕAS .
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In the fault localization problem using the pMaxSAT method, those suspi-
cious elements are marked soft or relaxable. Because an initial state is usually
definite, all elements in the formula I are hard or non-relaxable. The inactiv-
ity transition F , for the case of composing automata, is also definite because it
encodes situations that a constituent automaton does not take any transition.

We will look at the discrete transition T (e) and delay transition D in detail.
The elements concerning with invariants, guards and resets are marked soft.
Below pH shows that p is hard while pS is p marked soft.

1. Discrete Transition Step :
T (e) = ( (at = l)H ∧ (at′ = l′)H ∧ (act = a)H ∧ (g)S

∧ (x̂′ = ẑ)S ∧ (Inv(l′)(x̂′))S )

2. Delay Transition Step :
D = ∃ δ >0 . ((

∧
l∈Inv(S) at = l⇒(Inv(l)(x̂′))S)

∧ (at′ = at)H ∧ (x̂′ = x̂ + δ)H ∧ (act = delay)H)

In addition, we mark discrete transition steps themselves soft, (T (e))S . Relaxing
a clause that corresponds to a discrete transition step is a situation in which
we identify a particular transition to be a potential root cause. Contrarily, delay
transition steps must be hard (D)H , because the notion of the time elapse is
essential in timed automata. If they are relaxed, the automaton looses time-
dependent behavior.

Multiple Transitions. A timed automaton usually has multiple edges ei that
share a common source location ls; ei = ls

ai,gi,ri−→ li. They include an empty
transition1 as a special case; eε = ls

ε−→ li. Furthermore, a timed automaton has
a delay transition D at the same source location ls. Some of these transitions
are non-deterministic that are competing to fire at the same time. For a given
location ls, we introduce a set E(ls) to include all the edges, either discrete,
delay, or empty transitions, that share the location ls as their source.

Multiple transitions make the fault localization method complicated. The
consistency-based fault localization method relies on the fact that MCSes can
be calculated from the unsatisfiability of ϕFL where ϕEI induces erroneous situa-
tions. However, if a system has multiple transitions, especially non-deterministic
transitions, it can take transitions other than the one in the failing execution,
and some of the paths may be successful. Consequently, ϕFL can be satisfiable
for these alternative transitions. We are unable to calculate MCSes.

The above observation implies that we cannot use full flow-sensitive trace
formula, which is succeeded in the case of imperative programs [8]. Such a trace
formula faithfully represents all potential execution paths and thus contains non-
deterministic transitions if a similar encoding method is used for timed automata.
Note that imperative programs are deterministic, and that this issue does not
appear.
1 An inactivity transition is an empty transition.
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Sliced Transition Sequence. Given a property formula ϕAS , we first con-
duct a K-scoped BMC to obtain a counter-example, c.e. |= ϕTF ∧ ¬ϕAS . The
counter-example2 contains a transition sequence leading to the violation of ϕAS

(〈 I, T (e1), . . . , T (eK) 〉) and the other information involving a set of delay
values (δi = di). T (ej) is a j-th executed instance of a transition e (e∈Edg).

For a safety property (ϕsafety), there is an index L (L≤K) such that L is
a state at which ψ(v̂j) violates for the first time, a minimum of such indices.
For a guarantee property (ϕguarantee), a counter-example takes a form of the
lasso structure [3]. A lasso consists of a prefix sequence followed by a loop. At
all the states on a lasso, the property ¬ψ(v̂j) is true. Therefore, L is chosen
to be the length of the prefix plus the circumference of the loop part. Now,
the transition sequence up to L contains enough information leading to the
violation of the condition. We construct a truncated sequence up to the L state,
I ∧ (

∧
j=1..LT (ej)). This formula faithfully represents an executed path to the

violation, which indeed defines a failing situation.
We encode the situation in the error inducing formula ϕEI as follows. For

a source location ljs of each transition instance T (ej) appearing in a counter-
example trace, we obtain E(ljs) representing a set of transitions that share a
common source location ljs. For each element ei∈E(ljs)/{T (ej)}, we introduce
its Boolean encoding of transition step τ(ei); τ(ei) is either a discrete, delay or
inactivity transition step whose source location is ljs. If we let T (ljs) be a transition
step fired at ljs, then T (ljs) = T (ej)∨(

∨
ei∈E(ljs)

τ(ei)). Since there is exactly one
transition step at each ljs (actually T (ej)), T (ljs) is true and

∨
ei∈E(ljs)

τ(ei) is
false. Therefore, T (ej) being true is equal to

∧
ei∈E(ljs)

¬τ(ei) being true because
¬(

∨
τ(ei)) =

∧¬τ(ei).
We use an abbreviation such that T (ej)co =

∧
ei∈E(ljs)

¬τ(ei) in order to
represent the conjunction mentioned above. T (ej)co is a transition step in the
obtained counter-example path, but is represented in terms of steps that are not
taken. We use T (ej)co to represent ϕEI ;

ϕEI =
∧

j=1..L
T (ej)

co
=

∧

j=1..L

∧

ei∈E(ljs)
¬τ(ei).

Furthermore, a set of delay values in the counter-example is a kind of input
data value to induce a failing situation. We augment ϕEI with

∧
j=1..L(δj = dj).

Therefore, the formula is that

ϕEI = (
∧

j=1..L

∧

ei∈E(ljs)
¬τ(ei)) ∧ (

∧

j=1..L
(δj = dj))

A whole formula ϕEI∧ϕTF encodes the execution paths in the failing situation,
which we call a sliced transition sequence. The sliced transition sequence is
similar to the flow-insensitive trace formula for imperative programs [7]. The
flow-insensitive trace formula is essentially constructed from T (ej), but we use
T (ej)co. We will discuss the difference in Sect. 5 in regard to the second example
case.
2 For simplicity, we assume here a case of a single TA.
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Fault Localization Steps. Below is whole fault localization steps.

1. Execute K-scope bounded model checking of ϕTF ∧¬ϕAS .
2. Decide the minimum index L leading to the violation.
3. Construct ϕEI from the counter-example.
4. Use pMaxSAT for ϕEI∧ϕTF ∧ϕAS to enumerate MCSes.

Recall that ϕEI and ϕAS are hard or non-relaxable by definition, and that some
clauses in ϕTF are soft or relaxable according to the assumed failure model.

5 Example Cases

As initial studies, we conducted experiments, under MacO/S 10.9.5 on 1.3 GHz
Intel Core i5, using the Yices-1 solver [6], a pMaxSAT solver supporting LRA.

Fig. 1. A single timed automaton (reproduced [20])

Single Timed Automaton. Figure 1 is a simple timed automaton presented
in [20]. Although it is not significant, we check a safety property �(y≤2).

1. We execute nine-scoped BMC of ϕTF ∧ ¬�(y≤2). The number of unfolding,
nine, is just an initial guess. Note that ¬�(y≤2) = ♦(y>2). The formula is
I ∧ (

∧
j=1..9 Tj) ∧ (

∨
j=1..9 (yj > 2)).

2. The obtained counter-example contains a transition sequence of its length
five leading to the violation. �0

δ−→�0
x:=0−→�0

δ−→�0
x:=0−→�1

δ−→�1.
3. The property refers to a clock variable y. The formula ϕEI is chosen to include

the encoding of delay values. Since the first, third, and fifth steps are delay
transitions, a formula referring to these three ((δ1 = 1/2)∧(δ3 = 1/2)∧(δ5 =
3/2)) is meaningful. The property ϕAS is violated in that y5 = 5/2, which is
y5>2.

4. We obtain MCSes {{�0
x:=0−→�0}, {�0

x:=0−→�1}}, which shows that there are two
possible root causes, either �0

x:=0−→�0 or �0
x:=0−→�1. By using this information,

we manually add, for example, a reset of clock y to the edge of the second

MCS, �0
x:=0; y:=0−→ �1. The first MCS is considered as a spurious root cause.

Note that the repair is not automatic, but is up to the user.
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a, x := 0
 0  2

x > y

b, x := 0

a, y := 0
 0  2

y > x

b, y := 0A(2)A(1)

Fig. 2. Inconsistent guards

Inconsistent Guards in Two Timed Automata. Our second example, in
Fig. 2, consists of two timed automata. It is easy to see that both automata are
unable to go to the state l2. The system is stuck at the location pair of 〈�1, �1〉
∈ Loc(1)×Loc(2) because two guard conditions are not satisfiable simultaneously.

Imagine a guarantee property that ϕAS = ♦((at(1) = l2) ∨ (at(2) = l2)).

1. We execute nine-scoped BMC of ϕTF ∧¬ϕAS . Since
¬ϕAS = ¬(♦((at(1) = l2) ∨ (at(2) = l2))) = �((at(1) 	=l2) ∧ (at(2) 	=l2)),
the formula is actually

(I(1)∧I(2)) ∧ ∧
j=1..9 (T (1)

j ∧T
(2)
j )

∧ (
∧

j=1..9 ((at
(1)
j 	=l2)∧(at

(2)
j 	=l2))) ∧ (

∨
j=0..8 ((v̂(1)

9 = v̂
(1)
j )∧(v̂(2)

9 = v̂
(2)
j ))).

where the equality v̂
(1)
9 = v̂

(1)
j stands for a conjunction of two clauses to

involve the location or clock, (at
(1)
9 = at

(1)
j )∧(x(1)

9 = x
(1)
j ), and v̂

(2)
9 = v̂

(2)
j is

defined similarly.
2. The obtained counter-example contains a transition sequence of its length

three leading to the violation. The loop part consists of consecutive occur-
rences of ε on 〈�1, �1〉.
〈�0, �0〉 a−→ 〈�1, �1〉 δ−→〈�1, �1〉 ε−→〈�1, �1〉.

3. The second transition step in the counter-example was delay, and its value was
one. A sub-formula referring to the delay value is that δ2 = 1. The property
to check (ϕAS) is not dependent on clock variables, and thus this sub-formula
(δ2 = 1) is supposed to have no effect on the fault localization method.

4. We obtained MCSes consisting of one MCS element. The element consists of
two transition edges, which shows that two must be repaired together. The
MCSes is {{�

(1)
1

x>y−→ �
(1)
2 , �

(2)
1

y>x−→ �
(2)
2 }}. By using this information, we modify

manually two guards, x > y in the automaton A(1) and y > x in the A(2).
For example, we change the guard x > y in the A(1) to x≥y and the y > x
in the A(2) to y≥x, which is one possible repair.

Discussions. The first example (Fig. 1) illustrates that the fault localization
problem for a timed automaton is essentially solving a set of clock constraints
that are collected from a counter-example trace. Since the constraints are either
invariants at locations, or guards and resets on transition edges, they are
expressed in linear real arithmetic theory [1]. The property ϕAS refers to a clock
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variable y, and thus ϕEI is chosen to include a set of delay values appearing
in the counter-example trace. The example indicates that the proposed repair
is considered by referring to a particular counter-example involving those delay
values. Therefore, it is desirable to execute the BMC again to see whether the
repair works as we intend. Remember that our problem is localizing faults auto-
matically, but is not debugging automatically.

The second example (Fig. 2) involves two timed automata that are deadlocked
at particular intermediate states. The generated counter-example shows that the
automata are stuck at 〈�1, �1〉. Although the reason for the deadlock is attributed
to inconsistent guard conditions referring to clock variables, the property to check
(ϕAS) is ♦((at(1) = l2)∨(at(2) = l2)) and is independent of clocks. The formula
ϕEI needs not include delay values, and thus can use only a counter-example
transition sequence (

∧
j=1..LT (ej)co).

Now, we study the formula ϕEI in detail. If we use the transitions
T (ej) appearing directly in the counter-example such that ϕEI=

∧
jT (ej), then

ϕEI∧ϕAS is inconsistent regardless of ϕTF . Since the counter-example trace ends
with the stuck state 〈�1, �1〉, the formula ϕEI contains a sub-formula, (at

(1)
3 =

�1)∧(at
(2)
3 = �1). On the other hand ϕAS refers to (at

(1)
3 = �2)∧(at

(2)
3 = �2).

Recall that both ϕEI and ϕAS are non-relaxable. The conjunction ϕEI∧ϕAS is
neither satisfiable nor relaxable at all. Alternatively, consider a situation where
ϕEI=

∧
jT (ej)co= (

∧
j

∧
ej∈E(ljs)

¬τ(ej)). While a whole formula ϕEI∧ϕTF ∧ϕAS

is unsatisfiable, some of T (ej) in ϕTF can be relaxed because each T (ej) is itself
marked soft or relaxable in our failure model. Thus, the MCSes mentioned above
were obtained.

Last, enumerating MCSes is time-consuming and a scalability problem
remains. We may use an efficient method implemented in [8], which adopts a
technique for blocking MCSes [15].

6 Related Work

Formula-based or consistency-based fault localization methods are applied to
design debugging of VLSI circuits [19,21] or imperative programs [5,7–9]. The
method combines the model-based diagnosis [18] and Boolean satisfiability [4].
The problem is finding a diagnosis, which is MCSes when the methods use max-
imum satisfiability. Partial maximum satisfiability is often preferred because it
allows us a way of giving a hint for the relaxation by marking clauses as either
soft or hard [7–9,21]. The precision and efficiency of finding potential root causes
are dependent on the encoding of trace formulas [9]. In the application to imper-
ative programs, the flow-insensitive trace formula [7] was proposed first. Since
it is not adequate to deal with control flow bugs, in which branching condi-
tions may be buggy, flow-sensitive trace formula is used [5]. Full flow-sensitive
trace formula is equivalent to a program’s control flow graph and is the most
expressive. It is shown successful in finding multiple faults in a program [8].
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In the applications to VLSI circuits and imperative programs, the trace for-
mulas are deterministic in that an execution path is unique when we determine
the input values completely. Timed automata have non-deterministic transi-
tions [1]. Especially, discrete transitions and a delay transition is taken non-
deterministically. This fact makes the fault localization problem complicated.
Our approach in this paper is to use a sliced transition trace formula. It is simi-
lar to the flow-insensitive trace formula [7], but is different in that we use T (e)co

but not T (e) directly. T (e)co encodes a counter-example transition sequence by
excluding all the transitions that are not taken. This encoding method is essential
in localizing faults for deadlock cases as shown in the second example. Note that
an accompanying paper [17] discusses cases for power consumption automata
(PCAs) [16], in which PCAs are assumed to be deterministic weighted timed
automata, and thus simplifies the fault localization problem.

7 Concluding Remarks

We reported a consitency-based fault localization method for timed automata
using the partial maximum satisfiability. This work is still preliminary in that
further study is needed for large example cases. It calls for an efficient algorithm
to enumerate MCSes to counter the scalability problem (cf. [8,13,15]). There are
also other important directions. First, the properties are extended from safety
and bounded reachability to a wide class of LTL formulas. Second, introducing
the proposed method to industrial strength tools such as UPPAAL [10] would
be interesting in view of practice.

Acknowledgements. This work is partially supported by JSPS KAKENHI Grant
Numbers 24300010 and 26330095.
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Abstract. Fault locating is a time-consuming process. In a previous
paper, Liu proposed an algorithm named bounded debugging via multi-
ple predicate switching (BMPS)[1], which try to find a successful execu-
tion trace by switching outcomes of multiple predicates. Substantively,
BMPS focuses on the program faults which are caused by control flow.
However, this kind of faults represent only a small fraction. In this paper,
we present an algorithm combining BMPS with a semantic based debug-
ging method, which is aimed at locating more than control flow related
faults. The semantic based debugging algorithm generates a sequence of
equations from the execution trace of a failed test case, and give a min-
imum faulty program segment according to solutions of the equations.
Our algorithm can locate multiple faults in the program one by one
through an iterative and interactive process. Moreover, an optimization
based on use-define chain is applied to BMPS for improving efficiency of
the algorithm, as well as some other methods. To evaluate out approach,
we conduct experiment on Siemens suite. The result indicates that our
method has significant improvement on both accuracy and efficiency.

Keywords: Automated debugging · Predicate switch · Semantic
analysis

1 Introduction

Traditional program debugging is an arduous and manual process that requires
a large number of time, effort, and a well comprehension of the code. Generally,
traditional debugging consists of two steps: (1) program turns out an unexpected
result or behavior; (2) developer re-executes the failed test case step by step and
inspects the program state to find out the cause of the problem. Such process
can be apparently time consuming, tedious and sometimes error-prone.

Researchers were more interested in utilizing computer power for program
debugging since the processing power of machines has drastically increased.
Therefore automated debugging techniques are being explored by researchers.
Automated debugging basically consists of program slice based model, program
state based model, statistical model and program spectrum based model [2,3].

In a previous paper [4], Zhang proposed an algorithm which switches the
outcome of an instance of a single predicate and then inspect the so called
c© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2015, LNCS 9559, pp. 86–100, 2016.
DOI: 10.1007/978-3-319-31220-0 7
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switched predicate to find out the cause of the fault. After experiment evaluation,
the author found their approach to be effective and practical. However, switching
a single predicate could not be sufficient and useful in some situation. In 2010,
Liu proposed the bounded debugging via multiple predicate witching algorithm
(BMPS) which is to switch the outcome of instances of multiple predicates to
locate bugs. However, both the algorithms are basically aimed at control flow
related program bugs, and cost much time especially when the program contains
amounts of predicates (e.g. conditional statements).

In this paper, we propose a method combining BMPS with Intra-function
debugging algorithm (Sect. 2.2), which is aimed at locating multiple bugs includ-
ing not only control flow related faults. We present an iterative and interactive
approach for programmer to locate program bugs, which would provide devel-
oper with a minimum program segment containing faulty code. Some program
would contain a lot of predicates, and many of them could be unrelated to the
results or the variables with unexpected value. If we treat every predicate to be
switchable, it would be really time consuming and redundant. So, we optimize
the algorithm by applying use-define chain to reduce the number of predicates
to be switched. Since our algorithm is interactive, programmer could mark some
statements as errorless such that workload of predicate switching will be reduced.

2 Technical Background

2.1 BMPS

Bounded debugging via multiple predicate switching algorithm (BMPS) locates
faults through switching the outcomes of instances of multiple predicates to get a
successful execution where each loop is executed for a bounded number of times.
The most important concept is critical predicate set. It is a set of predicates
which could be switched to get the right execution or result of the program.
Obviously, BMPS concentrated on the control flow related bugs in the program.
By switching the outcomes of predicates, which could be the branch statements,
the execution trace would go to another path leading to a right output under
specified test case.

Figure 1 below depicts a small program example. In this program, inputs
variables are a and b. However, the conditional statement in line 4 is faulty. Test

Fig. 1. Example of a Program.
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case of < a = 2, b = 3, x = 6 > is failed. As for this test case, the expected output
is x=6, yet x is 5 after execution. If we switched the outcome of the predicate
i < a + b to !(i < a + b), the execution trace could change from (1,2,3,7) to
(1,2,3,5) which would lead to the right result. Thus, predicate i < a + b is a
critical predicate by which we could switch to get the right result.

For iterative programs, critical predicate set should be uncomputable. So
the author considered depth k critical predicate set which is deduced from an
execution path where each loop is executed at most k times.

For each predicate p in the program, we introduce a Boolean variable swp,
and replace p with ¬swp∧p∨swp∧¬p. Given a program, we define the formula
as below:

Φ = IN ∧ S1 ∧ ... ∧ (¬swp ∧ p ∨ swp ∧ ¬p) ∧ ... ∧ Sn ∧ OUT

IN is the input of the test case, Si denotes the statements in the program
and OUT means the assertion of the test case (usually the output or the result of
the test case). After that, we convert Φ to conjunctive normal form (CNF) and
feed it a SAT solver (e.g., z3, minisat, etc.) to solve the satisfiability problem.
If the CNF is satisfiable, and the value of swp is true, which means the value of
p is false, the execution trace goes to another path leading to the right result.
Thus, the assertion holds and p could be a critical predicate to reveal the bugs.

Obviously, it is more convenient to switch the outcomes of some predicates if
whole program is transferred to CNF [5]. Then, we resort to a SAT solver (e.g.,
z3, minisat, etc.) to solve the satisfiability problem.

2.2 Intra-function Debugging Algorithm

First of all, we give some brief definition to help depict our algorithm.

Definition 1 (State). A state σ is defined as a k-tuple.

σ : (x1 → n1, ..., xk → nk)

xi→ni means the value of xi is ni, and denoted as σ(xi) = ni

Definition 2 (Environment). Assume S is the head of a conditional statement,
and σ is the state when executing S. 〈S, σ〉 is called an Environment.

Definition 3 (Structure-S). Assume σ is a state, S is the statement executed
under the state σ, and ε is the stack of Environment. Thus, the triple below is a
Structure-S:

〈S, σ, ε〉
Definition 4 (Trace Stack). A stack is called a Trace Stack iff every element
in the stack has the type of Structure-S.

Definition 5 (Structure-T). Assume 〈S, σ, ε〉 is a Structure-S, π is the corre-
sponding trace stack. A structure-T is denoted as below:

π|〈S, σ, ε〉
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Fig. 2. Flow Diagram of Intra-function Debugging Algorithm.

Intra-function debugging algorithm uses semantic analysis to give developer
a minimal faulty program segment. When a test case failed, the algorithm com-
putes a minimal inconsistent program segment according to the input and output
of the test case. Programmers are able to mark some statements to be errorless
iteratively to reduce the scale of faulty program segment.

Figure 2 is the flow diagram of Intra-function debugging algorithm, which
simply shows the flow and main steps of the method.

The algorithm includes four main steps:
(1) Symbolic Execution. Execute and trace the program by symbolic repre-

sentation according to the input of the failed test case. Record the execution
trace and program states.

The execution of program could be treated as many steps of compute. And
every step is similar to a transition from a Structure-T to another.

-Assignment

π|〈l : x = e, σ, ε〉 → push(〈l : x = e, σ, ε〉)|〈skip, σ[[e]σ/x], ε〉
[e]σ is the value of expression e under state σ.

-Sequence of Statemtents

π|〈S1, σ, ε〉 → π′|〈S′
1, σ

′, ε′〉
π|〈S1;S2, σ, ε〉 → π′|〈S′

1;S2, σ′, ε′〉

π|〈skip;S, σ, ε〉 → π|〈S, σ, ε〉
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-Conditionals
If [b]σ = true

π|〈l : if(b){S1; }else{S2}, σ, ε〉 →
push(〈l : if(b), σ, ε〉, π)|〈{S1; }, σ, push(〈l : if(b), σ〉, ε)〉

If [b]σ = false
π|〈l : if(b){S1; }else{S2}, σ, ε〉 →

push(〈l : if(b), σ, ε〉, π)|〈{S2; }, σ, push(〈l : if(b), σ〉, ε)〉
-Loops
If [b]σ = true

π|〈l : while(b){S; }, σ, ε〉 → push(〈l : while(b), σ, ε〉, π)

|〈{S; }l : while(b)S;, σ, push()〈l : while(b), σ〉, ε)〉
If [b]σ = false

π|〈l : while(b){S; }, σ, ε〉 →
push(〈l : while(b){S; }, σ, ε〉, π)|〈skip, σ, ε〉

(2) Locating-Equation Generation. Generate a set of locating equations for
every statement backwards from the beginning of breakpoint - a statement in
which the value of specified variable is not expected.

In the second step of the algorithm, we generate locating-equation for every
Structure-S in Trace Stack π. Thus we can specify the transition of Structure-S
by solving equation set. Besides, the locating-equation sets are stored in a list,
in which every element has a form of (eq, 〈S, σ, ε〉). Among them, eq denotes an
equation set while 〈S, σ, ε〉 is a Structure-S.

-Initial State
π|ρ

-Assignments

top(π) = {l : x = e, σ, ε}last(ρ) = (eq, {S, σ′, ε′})x ∈ FV (eq)
π|ρ → pop(π)|append((eq[e/x], {l : x = e, σ, ε}), ρ)

top(π) = {l : x = e, σ, ε}last(ρ) = (eq, {S, σ′, ε′})x /∈ FV (eq)
π|ρ → pop(π)|ρ

Given a Structure-S containing statement l : x = e at the top of trace stack.
If x appears in equation set eq, all the variable x in eq corresponding current
Structure-S can be replaced with e. On the contrary, skip it.

-Conditionals

top(π) = {l : if(b), σ, ε}last(ρ) = (eq, {S, σ′, ε′})
π|ρ → pop(π)|append((eq ∪ {b = [b]σ}, {l : if(b), σ, ε}), ρ)
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Given a Structure-S containing head part if(b) of the conditional statement,
equation b = [b]σ is added to the equation set corresponding with the current
Structure-S.

-Loops

top(π) = {l : while(b), σ, ε}last(ρ) = (eq, {S, σ′, ε′})
π|ρ → pop(π)|append((eq ∪ {b = [b]σ}, {l : while(b), σ, ε}), ρ)

The rule is the same as the former.
(3) Equation Solver. Find the first equation set ρ[m] in the equation set list

that has no solution. The statement block corresponded to the equation set is
crucial. Statements from the corresponding statement block in ρ[m] to ρ[1] could
be a minimal faulty program segment.

The equation set with no solution implies that under no state σ could the
statements in [m] be executed to get the expected result.

(4) Iteratively Minimize Segment. The first-time locating segment might be
too large for programmer to find out the real place of the faults. An iterative
process need to be performed to make it easier for the programmer to locate
faults. Programmer needs to give an expected value of a variable in the segment,
and repeat from step 1 to minimize the faulty segment until code fragment is
considered small enough for programmer to locate the cause of fault.

3 Bug Localization Framework

Intra-function debugging algorithm generates the locating equation for every
statement in the program and then solve the equation set to get a faulty pro-
gram segment. The algorithm performs better on computational faults than
other kinds of faults (especially the control flow related faults). When the exe-
cution trace goes to a wrong path caused by some faulty predicates (branches in
program), the algorithm may give an irrelevant program segment which could
lead to a bad localization. It is obvious that BMPS could solve the control flow
related fault, while Intra-function debugging algorithm is opposite. We propose
an algorithm combined with the two methods, therefore it can deal with both
the control flow related and compute related faults.

Firstly, we use Intra-function algorithm to give a coarse-grained faulty pro-
gram segment according to the expected variable value given by programmer. It
definitely reduce the space and the number of predicates need to be switched.
Then we call BMPS to switch the outcomes of the predicates contained in the
program segment. Also, programmer needs to check the limited number of state-
ments in the segment to eliminate the compute related fault. One pass may solve
one single bug. An iterative process need to be done if the program consists of
multiple bugs. Programmer needs to give another expected value of a variable
in the segment, and repeat the steps above to minimize the faulty segment step
by step.

If the locating result turns out unsatisfiable, we may use BMPS for the whole
program. As we said before, if the problem is caused by control flow faults
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and the execution trace goes to the wrong path, the Intra-function debugging
algorithm would give an irrelevant program segment leading to a bad localization
result. This pass is aimed to deal with the program under such a situation. The
disadvantage is that the full scale switch would consume much more time and
space. More variables and paths would increase the number of variables and
clauses in the SAT problem (satisfiability problem), which would make it more
difficult and complex to solve the problem.

The overview of our algorithm is given in Fig. 3. The algorithm has 5 main
steps.

Step 1: Find Faulty Value
When facing a failed run, inspect the input and output of test case
to identify a proper variable with unexpected value.

Step 2: Reduce Faulty Program Segment
Run Intra-function debugging algorithm to get a minimal faulty
program segment.

Step 3: Small Scale Predicate Switch
Run BMPS in the small segment of faulty program. Only the predicates
in the segment is switchable, which means they are the candidates
to be switched.

Step 4: Iterative Debugging and Locating
Repeatedly run step2 and step3 to get a more precise result in order
to fix multiple bugs.

Step 5(Additional): Full Scale Predicate Switch
Run BMPS for the whole program if the results above seems to be
unsatisfiable.

Fig. 3. Algorithm Overview.

4 Optimization

In the previous paper, the author proposed the prototype of bounded debugging
via multiple predicate switching algorithm. It is an excellent algorithm, however,
optimization could be made somewhere.

4.1 Use-Definition Chain

A Use-Definition Chain (UD Chain) is a sparse representation of data-flow infor-
mation about variables [6]. A UD chain connects a use to all the definitions
that may flow to it. Abstractly a UD chain is a function from a variable and a
basic-block-position pair to sets of basic-block-position pairs, one for each use or
definition, respectively. Concretely, they are generally represented by linked lists.
They can be constructed by solving the reaching definitions data-flow problem
for a procedure and then using the resulting information to build the linked list.
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Making the UD chain is a step in liveness analysis, so that logical representations
of all the variables can be identified and tracked through the code.

- Use of Variable. If variable, v, is on the RHS of statement s(j), there is a
statement s(i) with i < j and min(j − i), that it is a definition of v and it has a
use at s(j) (or, in short, when a variable, v, is on the RHS of a statement s(j),
then v has a use at statement s(j)).

- Definition of Variable. When a variable, v, is on the LHS of an assignment
statement, such as s(j), then s(j) is a definition of v. Every variable has at least
one definition by its declaration (or initialization).

Fig. 4. Use-Definition Chain.

In out algorithm, we use UD chain to eliminate the redundant predicates
need to be switched. When a test case failed, it means the result turned out
wrong and the values of some variables were different from the expectation.
When we get the UD chain of a variable, the statements which use the variable
or related variable would be gathered. Of course, we can acquire the predicates in
the statement sets. We treat these predicates as switchable and more suspicious
ones than that are not in the sets.

As it is showed in Fig. 4, BMPS treats every predicate to be switchable.
There are at least n predicates treated as candidates in the program. Then,
BMPS may switch any of them to find out an execution path to get the right
result. However, after the process of UD chain, we get a chain of predicates
which is related to the variable with unexpected value. In another words, these
predicates may influence the value of the variable with wrong value, and the
faults may lie in these predicates. On the contrary, the other predicates may be
unrelated to the variable and would not be needed to be switched so that we
can save more time and space.

4.2 Predicate Switch Strategy

As we have already stated, in order to get the right results we have to switch
conditional branch outcomes till we find some predicates which could be switched
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to make the program produce the correct output. It is our goal to develop a
switching strategy to make the algorithm more practical and effective.

- Manually set limits. Although we have implemented UD chain to the algo-
rithm, some predicates could also be eliminated from the switchable predicate
set. Programmer could mark some predicates to be not switched to make it more
effective.

if(Predicate-1)

{

...

if(Predicate-m)

...

}

else

{

...

if(Predicate-n)

...

}

Fig. 5. Example of a Program.

The example in Fig. 5 is a small program. It contains an if-else block with var-
ious conditional branch in each sub-block. They are all predicates in switchable
predicate set and may be switched to get right result. However, if it is certain
that the execution path go into if part of the very first predicates (Predicate-1),
it can be eliminated from the switchable predicate set. As for this case, it would
at least reduce a half of the total spend in space and time. This action would
make the algorithm more smart.

- Increasingly number of predicates to be switched at a time. Although we are
aiming at the program with multiple bugs, sometimes only one predicate switch
could lead to the right result and this may always happen in fact. Thus, we limit
the number of predicates to be switched from one to all. After experiment, we
found that most test case with control flow related bugs could be solved by only
switching a small amount of predicates. Firstly, we only switch one predicate at
a time, if we cannot get to the right result or the programmer are not satisfied
with it, we increase the number of predicates to be switched at a time. Every
time, we add the number by one. But, this may spend more time than the normal
algorithm.

- Last executed first switched ordering. In the previous paper, Zhang and
Gupta have presented that execution of faulty code (i.e. root cause of a failed run)
is often not far away from the point at which the program fails (e.g., program
crashes or it produces a wrong output value ). Therefore, we can switch the
predicates in reverse order. That is to say, the predicate that is closer to the
faulty results (i.e. the end of the program in some situation) is earlier to be
switched.
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4.3 Upper Bound for Loops

In the previous paper, Liu proposed to set an upper bound for the iterative
programs manually. That is to say, when programmer face with a program with
loops (e.g., while, for statements), he must give BMPS a number to describe
the times the loop circulates. Like the usual model checker methodology, we
unwind the loop by duplicate the loop body n times, where n is the unwinding
limit. However, it is difficult for programmer to give an accurate number for the
iteration times. So we use Loopus [7] , a tool that automatically compute loop
bounds for C programs, to give the upper bound of loop time.

5 Experiment and Evaluation

We implement BMPS by using CBMC, a bounded model checker for ANSI C
programs (Clarke, Kroening, and Lerda 2004) [8,9]. For the implementation of
Intra-function debugging algorithm, we use LLVM to parse the input program
and generate the symbolic execution trace. We solve the CNF and equation set
by implementing the Z3 (a SAT solver). All of our experiments are performed
on a 3.10 GHZ Intel Core 2 Duo CPU with 4 GB RAM.

- CBMC. The tool produces a Boolean formula for a C program. We add
assume and assert statements to give program specification. Then we use z3
(a SAT solver) [10] to check the formula generated by CBMC. If the formula
is satisfiable, it means we generate a counter-example that meet the expected
result. Let pi be a predicate in the program, we replace pi with the expression
swi?nondet bool(): pi. In the expression, swi is a Boolean variable and the func-
tion nondet bool() returns a non-deterministic Boolean value. The expression
controls the execution to go pi or ¬pi. Finally, We add assume() to give the
expected results of the variable; and assert(0) to make the program stoppable.

- Static Program Slice. We use static data and control flow analysis to acquire
a set of program statements related to the specified variable [11,12]. After pred-
icate switch, we get an execution path where some predicate have already been
switched. It is not apparent for the programmers to find out the localization of
faults if we just show these switched predicate statement to them. Thus, we use
static program slice to give programmer a set of statements that influence the
switched predicates which may help to reveal the bugs.

5.1 Experiment Result

We use Siemens suite for experiment and evaluation. It consists of 7 base
programs. Each of them have a number of faulty versions and test case. All
the programs (implemented in C language), test cases and defect data can be
downloaded from the website http://www-static.cc.gatech.edu/aristotle/Tools/
subjects at Georgia Tech. We used TCAS program and REPLACE program in
the Siemens suite. The TCAS program constitutes an aircraft collision avoidance
system with 173 lines of code and 41 faulty versions.

http://www-static.cc.gatech.edu/aristotle/Tools/subjects
http://www-static.cc.gatech.edu/aristotle/Tools/subjects
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Table 1. Results of running our algorithm on TCAS

Version #ErrNum DetectReduce RunTime ErrorType

v1 1 96 0.26 Control Flow

V2 1 95 0.24 Control Flow

V3 1 98 0.28 Control Flow

V4 1 96 0.29 Control Flow

V5 1 72 0.55 Compute

V6 1 97 0.31 Control Flow

V7 1 78 0.56 Compute

V8 1 79 0.49 Compute

V9 1 96 0.31 Control Flow

V10 2 98 0.29 Control Flow

V11 2 98 0.28 Control Flow

V12 1 97 0.25 Control Flow

V13 1 71 0.47 Compute

V14 1 75 0.44 Compute

V15 3 69 0.45 Compute

V16 1 72 0.49 Compute

V17 1 75 0.50 Compute

V18 1 77 0.41 Compute

V19 1 78 0.47 Compute

V20 1 95 0.26 Control Flow

V21 1 96 0.28 Control Flow

V22 1 98 0.25 Control Flow

V23 1 96 0.29 Control Flow

V24 1 97 0.26 Control Flow

V25 1 97 0.30 Control Flow

V26 1 79 0.50 Add Code

V27 1 74 0.52 Add Code

V28 1 95 0.30 Control Flow

V29 1 96 0.28 Control Flow

V30 1 95 0.29 Control Flow

V31 2 70 0.51 Add Code

V32 2 71 0.52 Add Code

V33 4 – – Crash

V34 1 97 0.31 Control Flow

V35 1 98 0.27 Control Flow

V36 1 78 0.47 Compute

V37 1 97 0.29 Control Flow

V38 1 – – Crash

V39 1 98 0.29 Control Flow

V40 2 97 0.31 Control Flow

V41 1 96 0.28 Control Flow
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Table 1 below shows the result of running our algorithm on TCAS.
#ErrNum is the total number of bugs in program, DetectReduce means the
reduction of code needs to be checked after running our algorithm, RunTime
is the running time of algorithm, ErrorType is the type of error in a program.
Among the 41 versions, 4 versions add some codes to the original version, 2
versions crash, 11 versions are compute related bugs, the others are control flow
related bugs. The experiment result shows that our approach deals well with
the versions containing control flow related bugs. It reduces at least 95 % of the
detection scope, because we use modified BMPS. For the general control flow
related bugs, it can figure out a set of predicates which could be switched to
get to the expected result. The number of predicates in the set is not more
than 10 as usual. After examining the predicates, the exact localizations of bugs
are detected. As for the compute related bugs, our approach gives a minimal
suspicious program segment. It reduces 75 % of the detection scope averagely.
Furthermore, these program segments are context-sensitive which could help the
programmer to understand the cause of bugs.

As for the run time of the algorithm, it runs about 0.3 s for the program with
control flow related bugs averagely and 0.51 s for those with compute related
bugs. The run time of the former ones are more than the latter ones, because we
run an additional full scale predicate switch if the small scale predicate switch
cannot find a critical predicate set.

Obviously, our approach is better than BMPS. Firstly, it cannot deal with the
compute related bugs. Secondly, BMPS may give the programmer an irrelevant
predicate to reveal the bugs. For example, Fig. 6 below is a segment of TCAS.
The output of TCAS is the variable alt sep, and a conditional statement is
placed at the end of the program, which means after executing this conditional
statements the execution of TCAS is over. Suppose that alt sep is expected to
be UNRESOLV ED, but the value is UPWARD RA for some reason. Thus,
there are some bugs in program. But, when using BMPS, we could always switch
the predicates in this conditional statement to get the right result which would
absolutely conceal the real bugs. In our approach, programmer can mark this
conditional statement to be errorless manually, then the algorithm would find
out the real locations of bugs.

if (need_upward_RA && need_downward_RA)

alt_sep = UNRESOLVED;

else if (need_upward_RA)

alt_sep = UPWARD_RA;

else if(need_downaward_RA)

alt_sep = DOWNWARD_RA;

return alt_sep;

Fig. 6. Example of TCAS.
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As for the REPLACE program, it has 564 lines of code, and 32 faulty versions.
Among the 32 versions, 2 versions miss code, 2 versions add code, 19 versions
are control flow related faults. It has many loops, our algorithm could effectively
reduce the number of candidate switchable predicates, which could apparently
reduce the total running time. But we cannot deal with the situation that code
are missing.

Also, we intentionally combine the control flow bug related version with the
other version to form some new versions with multiple bugs for TCAS program.
Our approach could deal with these situation in about 4 iterative processes
averagely. The run time could not be counted, for the process is an iterative
subprocedures with programmer.

6 Related Work

In a previous paper, the author (Zhang, Gupta and Gupta) firstly proposed an
algorithm to locate faults through automated predicate switch. They demon-
strated that by forcibly switching the outcome of a predicate at runtime the
program state can be modified. But they only switch one single predicate at a
time. In 2010, Liu and Li presented a first step towards a theoretical exploration
of program debugging algorithm (BMPS). They switch multiple predicates at a
time in order to get a successful execution result.

Griesmayer et al. [13] gives a fault localization algorithm for C programs
by constructing a modified program that allows a given number of expressions
to be changed arbitrarily. They use the counterexample trace from a Model
Checker (CBMC). Because every expression could be modified, the search space
is extremely large. Like what we did in our approach, for an expression e, they
introduce a Boolean variable sw and replace e with sw?nondet() : e. But, our
search space is smaller than theirs for control flow related problem.

BugAssist [14] minimizes a given error trace obtained from bounded model
checking using a Max-SAT algorithm. When a test case failed, BugAssist gener-
ates an execution trace and transfers it into an unsatisfiable formula combined
with the input and the assertion. Thus, it has an apparent limitation that only
executable statements can be part of the minimized error trace, which means
only the bugs in the executable statements could be revealed. They treat bug
locating problem as a partial maximum satisfiability problem which asks what is
the maximum number of clauses that can be satisfied by any assignment. How-
ever, bug locating is a SAT problem in our paper. Also, we can locate bugs in
the statement that is not executed under specified test case.

Many bug locating work uses the difference and comparison between the error
trace and successful trace. Groces approach [15] calls CBMC to get a failing
run firstly, then computes the difference between a failing run and a closest
correct run. Ball et al. [16] call a model checker several times and compares the
counterexamples to a successful trace. They believe that the faults are those
transitions that do not appear in a correct trace. Our approach does not need to
compare the successful trace and the error trace, thus we need less information.
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For the control flow related bug, our approach gives an exact location of the bug
instead of a code fragment.

7 Conclusion

In this paper, based on Liu et al.’s work on automated debugging via multi-
ple predicate switching, we proposed an algorithm combined BMPS with Intra-
function debugging method. So it would not only deal with the control flow
related bugs, but also the compute related bugs. We optimize the algorithm by
Use-Define chain, strategy for predicate switching and automated upper bound
for loops. The search space for our approach is much reduced compared with the
former algorithm. The results turned out that it is promising and more efficient.

8 Future Work

In the furture, we would like to extend the algorithm to fit pointer better.
Moreover, a full implementation should be developed, and sufficient experiments
should be made.
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Abstract. To solve the problem that software testing cannot meet the
verification needs of process scheduling over multi-core computer system,
a model checking approach with MSVL is adapted to verify the cor-
rectness of process scheduling. Firstly, the grammar of MSVL is briefly
introduced; further, a general model supporting the most commonly used
scheduling algorithms for multi-core computer is formalized by MSVL
program; finally, as a case study, the safeness of the processes scheduler
with the earliest deadline first(EDF) scheduling algorithm over a 2-core
CPU is verified with MSV toolkit, which indicates the proposed approach
can effectively solve the verification problems of process scheduling over
multi-core CPU.

Keywords: Process scheduling · System modeling · Verification · Model
checking

1 Introduction

Process scheduler is a critical component of the modern operating system. Its
correctness is one of the most important factors affecting the safety and reliability
of the computer system. How to ensure the correctness of the process scheduling
is of great importance to the system developer. Currently, testing is the most
important means to check the correctness of process scheduling. However, the
method can only show the existence of the errors, but can not prove their absence.
What’s more, the executions of the processes over multi-core CPU become really
parallel, and each process proceeds in a unpredictable speed under the influence
of other processes. Hence, the classical testing method can hardly meet the
verification needs of process scheduling under such circumstance.
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In the past decade, quite some researches have been down in formal specifi-
cation and verification of process scheduling with various approaches. In [1], the
authors employ the μCRL process algebra to model the scheduling and apply the
μCRL model checker toolset to find the near-optimal solutions. In [2], the author
uses Promela to describe a job-shop scheduling problems and adds Branch-and-
Bound techniques to the LTL property to find a solution effectively. In [3], the
real-time system with a preemptive scheduling policy is modeled as a scheduling
time Petri Net and the timed properties are verified using HyTech, an automatic
tool for the analysis of embedded systems.

Projection Temporal Logic (PTL) [4–6] is an interval based first order tem-
poral logic with a key temporal construct, (P1, ..., Pm)prjQ, and supports
both finite and infinite time. Further, Propositional Projection Temporal Logic
(PPTL), the propositional subset of PTL, has the expressiveness power of the
full regular expressions [7], which can be used to specify the properties of the
hardware or software systems to be verified.

The language Modeling, Simulation and Verification Language (MSVL) is an
executable subset of PTL with framing technique [8,9]. It supports the commonly
used data types (e.g., char, integer, pointer, . . .), data structures (e.g., array,
user-defined structure, list, . . .), boolean and arithmetic expressions. Besides,
MSVL provides many powerful programming statements, such as frame, if, while,
parallel (||), . . ., and has ability to model, simulate and verify the concurrent and
reactive systems within a same logical system [10].

In recent years, MSVL has been successfully applied to verify the typical
hardware and software systems such as virtual memory and embedded operat-
ing system [11–15]. This paper extends the application of MSVL based model
checking approach to verify the process scheduling in a multi-core CPU computer
system. To this end, a general system model supporting the typical periodic and
non-periodic processes as well as the most commonly used scheduling algorithms
is formalized by MSVL program. Then, an example is given to illustrate how
this method works.

The rest of paper is organized as follows. In the next section, the language
MSVL is briefly introduced. In Sect. 3, the system model of process scheduling
over multi-core CPU is formalized. In Sect. 4, a case study is given to show how
the proposed method works. Finally, conclusions are drawn in Sect. 5.

2 Modeling, Simulation and Verification Language

The language MSVL is an executable subset of PTL [5]. The grammar of MSVL
consists of expressions and statements, where expressions can be regarded as the
PTL terms, and statements as the PTL formulas [9,11].

Expression. Let D denote the data domain, which includes integers, string,
lists, sets, etc. The expression e and boolean expression b of MSVL are defined
inductively as follows:
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e:: = d | x | ©e | f(e1, . . . , em)
b:: = true | false | e1 = e2 | ρ(e1, ..., em) | ¬b | b1 ∧ b2

where d ∈ D is a constant; x ∈ V is a variable; f is a function and ρ is a predicate
both defined over D.

Statement. The elementary statements in MSVL are defined as follows:

(1) Immediate Assign x ⇐e
(2) Unit Assignment x :=e

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∧ S2

(5) Next next S
def= ©P

(6) Always always S
def= �P

(7) Termination empty
def= ¬©true

(8) Skip skip
def= © ε

(9) Sequential S1 ;S2
def= (S1, S2) prj empty

(10) Local exist x : S
def= ∃ x : S

(11) State Frame lbf(x)
(12) Interval Frame frame(x)
(13) Projection (S1, . . . , Sm) prj S

(14) Condition if b then S1 else S2
def= (b → S1) ∧ (¬b → S2)

(15) While while b do S
def= (b ∧ S)� ∧ �( ε → ¬b)

(16) Await await(b) def=
∧

x∈Vb
frame(x) ∧ �( ε ↔ b)

(17) Parallel S1||S2
def= ((S1 ;true) ∧ S2) ∨ (S1 ∧ (S2 ;true))

∨ (S1 ∧ S2)

where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x ⇐e, unit
assignment x :=e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.

The immediate assignment x ⇐e can be defined as x = e ∧ px, where sub-
formula x = e denotes the value of variable x is equal to that of the arithmetic
expression e, and atomic proposition px is the assignment flag for variable x.
The unit assignment x := e can be defined as ©x = e ∧ ©px, which means the
value of variable x in the next equals to that of e and the assignment flag px

holds in the next state.
The state frame statement lbf(x) means that the value of x in the current

state is equal to that in the previous state if there is no assignment to x, i.e., its
assignment flag px does not hold; and the interval statement frame(x) means
that variable x always keeps its old value in the previous state if variable x is
not assigned with a new value. The means of the left statements can be found
in [10,11] and hence are omitted here.
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To use MSVL to formal verification, a model checking tool named MSV
toolkit has been developed. It has three modes, i.e., modeling, simulation and
verification, where simulation finds a model for the MSVL program, while mod-
eling finds all models, and verification is based on the model checking approach.

3 Modeling of Process Scheduling over Multi-core CPU

Figure 1 gives a sketch of process scheduling in a typical multi-core computer
system. The hardware resource of the system contains a m-core CPU(m ≥ 1),
and n(n ≥ 1) I/O devices of all kinds. The process queues manage all the
processes waiting for the CPU or other I/O device. Whenever a resource is
free, the Process Scheduler will select an appropriate process with a standing
request for the resource and put it to execute. The computer system allows many
processes to execute concurrently, however, a resource can only be occupied by
one process at any time.

Fig. 1. Sketch of process scheduling over Multi-core CPU

3.1 Resource Description

Since one kind of hardware may have many physical devices, e.g., CPU may have
more than 2 cores, we introduce the concept of logical device for the convenience
of resource allocation. The name of the logical device is in fact the kind name
of the corresponding physical device. Moreover, we assign each logical (physical)
device a unique non-negative integer to identify each device. Thus, a process
only needs to apply for logical devices during its execution, and the scheduler
will allocate the specific physical ones to it and enable the process to run.

Let N0 and N1 be the set of non-negative and positive integers respectively.
The logical and physical device can be depicted as follows.
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Definition 1 (Physical Device). A physical device pdev is a tuple defined as

pdev:: = (id, status, ldid, cproc),

where id ∈ N0 is the device identifer; status ∈ {0, 1} is the device status (0
denotes idle, 1 means busy); ldid is the identifier of the corresponding logical
device; cproc is the process currently using the device.

Definition 2 (Logical Device). A logical device ldev is a tuple defined as

ldev:: = (id, type, dlist, pque),

where id ∈ N0 is the device identifer; type ∈ {0, 1} is the device type (0 denotes
exclusive, and 1 means shareable); dlist is the list of the physical devices belong-
ing to the logical device; pque is the queue of the processes standing for the
device.

3.2 Process Description

Intuitively, the execution of a process is in fact alternatively using different
resource for a certain time in sequence according to the process code. Thus,
from the view point of using the resources, the process code can be depicted by a
sequence of resource requirement. To this end, we employe Resource Requirement
List (RRL) to describe the code of a process.

Definition 3 (Resource Requirement List). Let id be the identifier of a
logical device, and t ∈ N1 be the time of the device to use. The resource require-
ment section (RRS) sec, composed resource requirement section (CRRS) cse
and resource requirement list (RRL) rrl are defined inductively as follows:

sec:: = (id, t)
rss:: = sec | rss1, rss2

cse:: = (rss, t)
rrl:: = rss | csen | cseω

where RRS (id, t) denotes needing device id for t units of time; CRRS (rss, t)
(t ≥ ∑

sec∈rss sec.t) is used to describe the resource requirement of a periodic
task, which means the period lasts t units of time and the resource requirement
within a period is rss. csen(n ∈ N1) and cseω are used to describe the finite
and infinite periodic tasks respectively. The former represents the CRRS cse will
be repeat for n times, and the later stands for the CRRS cse will be repeat for
infinitely many times.

Now we give two examples to show how RRL works to describe a process.
Without loss of generality, we suppose the computer is equipped with the devices
as shown in Table 1. If the RRLs of process P1 and P2 are as follows:

rrl1 = (1, 10), (4, 5), (1, 2), (2, 10)
rrl2 = ((1, 1), (3, 2), (1, 2), 10)ω
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then, the rrl1 of process P1 denotes P1 will use the devices CPU, HD, CPU, PRT
with the lasting time 10, 5, 2, 10 in sequence. Further, rrl2 means the process
P2 is a infinite periodic task with time period 10, and moreover, it needs CPU,
NET and HD for 1, 2 and 2 units of time respectively in a task period.

Table 1. Check list between logical devices and physical ones

Logical Device Physical Device

ID Name Type ID Name

1 CPU 1 1 CPU Core 1

2 CPU Core 2

2 PRT 0 3 Laser Printer

3 NET 0 4 Network Card

4 HD 0 5 Hard Disk

In consideration of modeling needs for the typical scheduling algorithms, we
employ a 8-tuple to describe a process defined as follows.

Definition 4 (Process). The process proc is define as:

proc:: = (pid, rrl, ldid, pro, stime, ltime, tslice, dline)

where pid, ldid, pro, stime, ltime, tslice, dline ∈ N0; pid is the identifier of the
process; rrl is the resource requirement list; ldid is the identifier of the logical
device that the process is currently standing for; pro denotes the priority; stime
records the start time when the process begins to apply for the current resource;
ltime stores the left required time for current device; tslice records the time slice
used in a time sharing system; dline keeps the deadline of the current period
and it takes effect only if the process is a periodic task.

3.3 System Modeling

The modeling strategy of process scheduling over multi-core computer system
is depicted in Fig. 2. The system model consists of three parts, i.e., Scheduler,
Physical Devices and System Clock. Each of them will be formalized by a sub-
program with MSVL in the following subsections. For simplicity, we ignore the
execution time of the Scheduler.

Roughly speaking, the task of the Scheduler is to allocate resource for the
waiting process. Firstly, the Scheduler keeps on waiting for the scheduling signal
sigSch, which denotes there exist some processes applying for system resources.
In case of sigSch received, it sets variable cStatus = 0 to pause the System Clock
and allocates needed resources to the standing processes according to scheduling
algorithm. Then, the Scheduler sends signal sigRun to the allocated resources
and enable them to run. Moreover, it set variable cStatus = 1 to resume System
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Scheduler System Clock

allocate resource

T:=T+1

ltime:=ltime-1

sigRun

[cSatus=1]

skip

[cStatus=0]
compute executing

conditon cdt
cStatus=false

cStatus=true

sigSch

sigTime

[sdt=true]

sigTime

sigSch

rearrange
process

sigRun

[sdt=false]

Physical DevicesPhysical DevicesPhysical Devices

Fig. 2. Activity diagram of the system model

Clock again. After that, the Schedule continues to wait for the occurrence of
another scheduling event.

For each physical device, we design a subprogram to describe its running. The
execution of a process on a device is abstracted as the decreasing left required
time of the resource under the driven of the signal sigT ime from the System
Clock. Initially, the physical device keeps idle and waits for the coming of signal
sigRun. When the signal sigRun arrives, the device computes the executing
condition cdt (the details can be found in Subsect. 3.3). If cdt holds, the device
decreases the left required time ltime by 1 on the arriving of signal sigT ime
and continues to run the process; otherwise, it rearranges the process int.o the
waiting process queue according to the left resource requirement and send a
signal sigSch to the Scheduler. Finally, the device goes on waiting for another
execution.

The task of System Clock is to keep the synchronization among physical
devices like a real computer does. It just keeps on increasing the system time T
and sending signal sigT ime to each physical device in case of cStatus = 1.

In the following, we firstly employ MSVL structures to describe the data
structures used in system modeling, and then use MSVL functions to simulate
the running of Physical Device, Scheduler and System Clock.

Data Structures. We use linked list to manage the data of logical devices,
physical devices and processes. According to the Definitions 1 and 2, the types
of list nodes for physical device and logical device are defined respectively with
MSVL as follows.
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struct pdev t // node definition for physical device
{

int id and // physical device id
int status and // device status:0 for free and 1 for busy
int ldid and // corresponding logical device id
process t *cproc and // pointer of the process using the device
pdev t *nexts // pointer of the next node

};

struct ldev t // node definition for logical device
{

int id and // logical device id
int type and // device type:0 for exclusive and 1 for shareable
pdev t *dlist and // physical device list
process t *pque and // queue of processes standing for the device
ldev t *nexts // pointer of the next node

};

According to the Definition 3, the types of list nodes for resource requirement
section and resource requirement list are defined as follows.

struct sec t // node definition for resource requirement section
{

int id and // logical device id
int t and // time required
sec t *nexts // pointer of the next node

};

struct rrl t //node definition for resource requirement list
{

sec t *secs and // pointer of the resource requirement sections
int ptime and // 0 for non periodic task, otherwise the period time
int reptimes and // 0 denotes the task is an infinite periodic task,

// otherwise, the number of periods to be repeated
rrl t *nexts // pointer of the next node

};

The list node type for processes (Definition 4) is defined as follows.

struct process t //node definition for process
{

int pid and // identifier of the process
rrl t *rrl and // resource requirement list
int ldid and // identifier of the logical device
int pro and // priority
int stime and // start time to wait for the device
int ltime and // left required time
int tslice and // time slice
int dline and // deadline of the current period
process t *nexts // pointer of the next node

};
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Table 2. Priority functions of typical scheduling algorithms

Algorithm name Function definition

First Come First Service(FCFS) Hp(Pi, Pj)
def
= Pi.stime < Pj .stime

Shortest Process First(SPF) Hp(Pi, Pj)
def
= Pi.ltime < Pj .ltime

Highest Response Ratio Next Hp(Pi, Pj)
def
= (T − Pi.stime)/Pi.ltime

(HRRN) < (T − Pj .stime)/Pj .ltime

Highest Priority Next(HPN) Hp(Pi, Pj)
def
= Pi.pro < Pj .pro

Round Robin(RR) Hp(Pi, Pj)
def
= Pi.st < Pj .st

Multilevel Feedback Queue Hp(Pi, Pj)
def
= (Pi.pro = Pj .pro

(MFQ) and Pi.pro < Pj .pro)

or (Pi.pro < Pj .pro)

Rate Monotonic(RM) Hp(Pi, Pj)
def
= Pi.ltime < Pj .ltime

Earliest Deadline First(EDF) Hp(Pi, Pj)
def
= Pi.dline < Pj .dline

Scheduler Modeling. The priority of a process to acquire CPU or I/O devices
is decided by the scheduling algorithm. Let Hp(Pi, Pj) be the priority function
between processes Pi and Pj which are both waiting for a same resource. Based
on the data items of the process, it is not hard to write out the priority function
for a commonly used scheduling algorithms. Table 2 gives the definitions of the
priority functions for the typical scheduling algorithms, where variable T records
the current system time. One can chooses the corresponding priority function in
case of scheduling verification.

Let ldSet, sigSch, cStatus be the variables saving the header pointer of the
logical device list, scheduling signal and status of System Clock respectively.
Further, we use the attribute status of physical device to keep its running signal.
Moreover, we employ boolean variable alPrem to denotes whether the shared
resource allows to be preempted according to the scheduling algorithm. Note
that, before calling function Sch, the processes in the waiting queue of a logical
device must be arranged on the descending ordered of priority according to the
scheduling algorithm.

According to the strategy depicted in Fig. 3, the function Sch for the Sched-
uler in MSVL is as follows.

function Sch(ldev t *ldSet, int *sigSch, int alPrem, int *cStatus)
{

frame (pLogDev, pPhyDev, fPhyDev, rtn ) and (
. . . . . .; /* Define and initialize local variables*/
while (true) {

await(*sigSch=1) ; /*Wait for the scheduling signal*/
*sigSch:=0 and *cStatus:=0; /*Pause the system clock */
pLogDev:=ldSet;
while (pLogDev!=NULL) { /*Process each logical device*/

pPhyDev:=pLogDev→dlist;
/*Firstly, allocate the idle physical devices to processes*/
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while( pPhyDev!=NULL and pLogDev→pque!=NULL ) {
. . . . . .; /* allocate the idle device*/

};
/*Then, preempt device from the process with lower priority*/
if(alPrem=1 and pLogDev→type=1) then { /*shareable device*/

fPhyDev:=pLogDev→dlist;
while( fPhyDev !=NULL and pLogDev→pque!=NULL){

pPhyDev:=pLogDev→dlist→nexts;
while (pPhyDev!=NULL){ /* compare the priority*/

rtn:=Hp(pPhyDev, fPhyDev, rtn);
if (0=rtn) then {

fPhyDev:=pPhyDev
}; pPhyDev:=pPhyDev→nexts

};
. . . . . .; /* preempt the device*/

}
};
pLogDev:=pLogDev→nexts;

}
*cStatus:= 1; /* Resume the System Clock */

}
)

};

In function Sch, if the scheduling signal sigSch arrives (i.e., ∗sigSch := 1),
the Scheduler firstly turns off the scheduling signal (i.e., ∗sigSch := 0) and
pauses the System Clock (i.e., ∗cStatus := 0). Then, the Scheduler traverses
each logical device and allocates the corresponding physical devices to the
waiting processes. For a given logical device, the Scheduler firstly allocates its
idle physical devices to the standing processes. After that, if scheduling algo-
rithm allows preemption (i.e., alPrem = 1) and the logical device is shareable
(i.e., pLogDev→type=1) as well as there still exists some waiting processes,
the Scheduler will preempt some physical devices from the process with lower
priority and allocate them to the waiting higher priority processes. Function
Hp(pPhyDev, fPhyDev, rtn) compares the priorities between the two given
processes. If the priority of the former one is above than or equal to that of
the second one, it returns 1, otherwise 0.

Device Modeling. Let dev, ldSet, sigSch, sigT ime be the variables saving
physical device, the header pointer of the logical device list, scheduling signal
and system time signal respectively. The activities of dev given in Fig. 3 are
formalized with a MSVL function PhyDev as follows.

function PhyDev(pdev t *dev, ldev t *ldSet, int *sigSch, int *sigTime)
{

frame( devID, rtn) and (
. . . . . .; /* Define and initialize local variables*/
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while (true) {
await(dev→status=1) ; /*Wait for the running signal*/
while(dev→cproc→ltime> 0 and dev→cproc→tslice> 0) {

await(*sigTime=1); /*Wait for system clock*/
. . . . . .; /*Decrease left required time and time slice by 1*/

};
if(dev→cproc→ltime> 0) then { /*Run out of time slice*/

AddToLogDev(ldSet, dev→cproc, dev→cproc→ldid )
}else {

/* Compute the next resource requirement */
rtn:=NextReqDev(dev→cproc, &devID, rtn);
if(rtn> 0) then {

AddToLogDev(ldSet, dev→cproc, devID)
}

}
dev→status:=0 and *sigSch:=1; /*Set scheduling signal*/

}
)

};

In function PhyDev, if the running signal arrives (i.e., dev→status=1), the
device begins to repeatedly decrease the left required time and time slice of
current process by 1 until either of which equals to 0. Subsequently, if the current
time slice runs out (i.e., dev→cproc→ltime> 0), the process is added back to the
corresponding waiting queue by calling function AddToLogDev. Otherwise, the
device computes the next resource requirement by calling function NextReqDev
and adds the process to the waiting process queue of logical device devID.
Finally, the device sets its status to idle (i.e., dev→status:=0) and sends the
scheduling signal to the Scheduler (i.e., *sigSch:=1).

System Clock Modeling. The task of System Clock is relative simple. It
just keeps on increasing the system time T and generating signal sigT ime to
synchronize physical devices in case of cStatus = 1. Let T, cStatus, sigT ime be
the variables saving the system time, the status of System Clock and system
time signal respectively. Function SysClock formalizing the System Clock is as
follows.

function SysClock(int *T , int *cStatus, int *sigTime)
{

while (true) {
if(*status=1) then { /*Run out of time slice*/

*T:=*T+1 and *sigTime:=1
}else {

*sigTime:=0 and skip
}

}
};
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3.4 Specification of the Whole System

Let sigSch, sigT ime, cStatus, T be the variables saving the scheduling signal,
system time signal, system clock status and system time respectively. Further, let
ldArray, pdArray, prArray, secArray, rrlArray be the arrays keeping the data
of logical devices, physical devices, processes, resource requirement sections as
well as resource requirement lists respectively. Since all the physical devices, the
Scheduler and the System Clock run concurrently in the computer system, the
whole process scheduling over a multi-core computer system can be described
by the following MSVL function.

function System()
{

frame(sigSch, sigTime, T, cStatus, ldArray, pdArray, prArray,
secArray, rrlArray) and (
. . . . . .; //Definitions for local variables
Init(ldArray, pdArray, prArray, secArray, rrlArray);
Sch(ldArray, &sigSch, 1, &sigRun, &cStatus) ||

||pdev∈pdArrayPhyDev(pdev, ldArray, &sigSch, &sigRun, &sigTime)
|| SysClock(&T, &cStatus, &sigTime)

}
)

};

where function Init initiates the sets of logical devices, physical devices as well
as processes. The function will be specified according to the computer system to
be verified.

4 Verification Example

In this section, we employ the system model formalized above to verify the
process scheduling over a multi-core computer system.

4.1 System Description

Without loss of generality, let the hardware of the computer consist of a 2-core
CPU, and 3 different I/O devices named by Laser Printer, Network Card and
Hard Disk which only support exclusive access mode. The check list between
logical devices and physical devices is given in Table 1. Moreover, the sched-
uler of the computer selects the algorithm of Earliest Deadline First (EDF), a
preemptive real-time scheduling algorithm, to select a process.

Suppose 3 processes P1, P2 and P3 are read to run and their original resource
requirement lists are as follows:

P1 : ((4, 3), (1, 5), (2, 3), 12)10

P2 : ((1, 4), (3, 3), (4, 2), 10)ω

P3 : ((3, 4), (1, 8), (2, 5), 18)ω



Model Checking Process Scheduling over Multi-core 115

where P1 is a finite periodic task, P2, P3 are both infinite periodic tasks. After
being loaded into the memory, each process will be assigned to the standing
process queue belonging to the logical device it initially applies for.

Thus, function Init of the system model are defined as follows.

function Init(ldev t ldArray[ ], pdev t pdArray[ ], process t prArray[ ],
sec t secArray[ ], rrl t rrlArray[ ])

{
frame(i) and (

int i and i<==0 and empty;
while (i< 10) {

. . . . . . ; /*Initialize each array into a linked list respectively*/
};
ldArray[0].id<== 1 and ldArray[0].dlist<==&pdArray[0] and

ldArray[0].type<== 1 and pdArray[1].nexts<==NULL and
ldArray[0].pque<==NULL and empty;

. . . . . . ; /*Initialize the other logical devices*/
pdArray[0].id<== 1 and pdArray[0].cproc<==NULL and

pdArray[0].status<== 0 and pdArray[0].ldid<== 1 and empty;
. . . . . . ; /*Initialize the other physical devices*/
prArray[0].pid<== 1 and prArray[0].ldid<== 4 and

prArray[0].stime<== 0 and prArray[0].ltime<== 0 and
prArray[0].rrl<==&rrlArray[0] and rrlArray[1].nexts<==NULL and
prArray[0].tslice<== 0 and prArray[0].dline<== 0 and empty ;

. . . . . . ; /*Initialize other processes and their resource requirements*/
)

};

After completing the modeling program, we execute the modeling program
in the MSV interpreter and analyze the result. The screenshot result of modeling
is given in Fig. 3.

Fig. 3. The result of system modeling

4.2 System Verification

In the following, we use the MSV toolkit to verify the safety property of the
process scheduling over the computer, i.e., the task within a period finish suc-
cessfully before the coming of deadline for each process. It is equivalent to verify
that for any process prc, the left required resource time ltime plus the system
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Fig. 4. The PPTL formula to be verified

Fig. 5. The result of verification

time T must be less than or equal to the deadline dline of current period at any
time. The property is depicted in MSVL as follows:

safeSch
def=

∧

prc∈prArray

always(T + prc.ltime ≤ prc.dline).

The definition of the property in PPTL formula is depicted in Fig. 4. The
result of the verification is given in Fig. 5, which shows property safeSch is not
satisfied at state 403.

5 Conclusion

In this paper, we introduce the MSVL based model checking method to verify the
safeness of process scheduling over multi-core computer system. A general model
for process scheduling is formalized that it can be easily used to verifying all kinds
of commonly used scheduling algorithms and typical periodic/nonperoid tasks,
and the only work need to do is just adjust necessary parameters. However, the
execution time of the process scheduler is ignored. In the future, we will improve
the system model to be more close to a real computer. Besides, we will extend
the application of the method to more area, such as embedded system, operating
system, cloud computing, etc.
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Abstract. A lot of privacy issues exist in the social network for its
data information is excessively public and spreads quickly. This paper
presents a method of modeling the social networking system and verifying
its privacy policy based on the temporal logic programming language
MSVL, which is an executable subset of Projection Temporal Logic. First
of all, select an appropriate social networking system and simplify it.
Then, model the system with an MSVL program and describe its privacy
policy with a Propositional Projection Temporal Logic formula. Next,
execute the program with the formula in the modeling, simulation and
verification platform of MSVL. Finally, we can improve or modify the
verified privacy policy according to the results.

Keywords: MSVL · Social networks · Privacy policy · Verification

1 Introduction

The development of Six Degrees of Separation theory introduces the early con-
cept of the social network into the Internet and creates a Social Networking Site
(SNS) [1]. Currently, SNS has penetrated into every aspects of our lives and
works. Broadly speaking, SNS is an online community which is created by a
group of people with the similar interests and activities. It provides them with a
rapid exchange and approach to share all kinds of information, and brings great
convenience of their lives and works. Typical SNSs include Facebook, Twitter,
YouTube, LinkedIn, etc.

Many privacy problems are found in different SNSs at present [2]. The causes
of these problems are mainly three points. (1) The users’ own negligence leads to
leak of privacy. Such as some users fill in personal privacy of sensitive data when
they register the system, or download the Internet file indiscriminately, these are
likely to bring potential risk of personal privacy data. (2) The SNSs’ unsound
privacy policy mechanisms lead to the leak of privacy. Such as the data storage
of many SNSs are not enough safe, and the access to the privacy information
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of users is not strict, these are likely to be used by hackers. (3) The third-party
applications lead to the leak of privacy. Such as, some SNSs allow the third-party
applications to embed into the sites for their own benefits without checking their
safety. As a result, the criminals will be able to embed malicious code into the
third-party applications to steal users’ personal privacy data.

As we known, a lot of methods are proposed to address privacy problems in
SNS. XBook [3] has been deployed on Facebook as an independent third-party
application and can indeed prevent the other applications deployed on Facebook
from leaking user privacy. Security mechanisms based on third-party applications
are also studied for social networking platform in [4]. An information dissemi-
nation model based on the online social network is proposed in [5], which takes
into account the impact of the node degree and propagation mechanism. A social
networking system model based on Petri nets [6] and an effective algorithm for
friend suggestion are established. In addition, Privacy Policy Framework (PPF)
[7] is invented for social network privacy policy, which includes a formal model, a
knowledge-base logic and a formal privacy policy language. Moreover, the Poporo
tool [8,9] selects an application developed with Java as the social networking sys-
tem to study, and describes the privacy policy set of the system with B method
called Matelas [10]. The main features of some famous online social networking
platforms such as Facebook, Twitter, Google+ and Diaspora are summarized in
[4], then a graph-based modeling method is proposed to describe and measure the
privacy policy and security.

Modeling, Simulation and Verification Language (MSVL) is an executable
subset of Projection Temporal Logic (PTL) and developed as a temporal logic
programming language, by which concurrent systems can be modeled, simulated
and verified [11]. This paper extends the MSVL applications to the social network
privacy policy, and the main contributions are as follows. (1) A novel method for
verification of the social network privacy policy is proposed based on MSVL. (2)
An application is illustrated to show how this method works. With these contri-
butions, the language MSVL can be used to model, simulate and verify the social
network privacy policy in the real world.

The rest of the paper is organized as follows. Section 2 briefly introduces a
unified model checking approach based on MSVL. In Sect. 3, a method based
on MSVL for modeling SNS and verifying the privacy policy is proposed. Then,
Sect. 4 provides a case study to show how to use this method. Finally, conclusions
are drawn in Sect. 5.

2 AUnifiedModel Checking Approach

PTL is a first-order temporal logic which has a key temporal operator prj [12], and
Propositional PTL (PPTL) [13] is a propositional subset of PTL which excludes
variables, quantifiers and predicates. PPTL can be used to describe properties
of concurrent systems, and it has already been proved that the expressiveness of
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PPTL is the same as the full regular expressions [14]. The language MSVL [15]
is a temporal logic programming language which is an executable subset of PTL.
PPTL and MSVL can be used for the purpose of modeling, simulation and verifi-
cation of software and hardware systems [11].

A unified model checking approach with PTL is based on Normal Form Graph
(NFG) [16]. By modeling a system with an MSVL program p, and specifying the
desirable property of the system with a PPTL formula ϕ, whether or not the sys-
tem satisfies the property (whether or not p → ϕ is valid) can equivalently be
checked by evaluating whether or not ¬(p → ϕ) ≡ p ∧¬ ϕ is unsatisfiable. The
satisfiability of a formula in the form of p ∧¬ ϕ is checked by constructing the
NFG of p ∧ ¬ϕ, and then inspecting whether or not there exist paths in the NFG.

As it is shown in Fig. 1, the MSV platform is the tool of executing MSVL pro-
gram, and it has three modes: simulation, modeling and verification. Simulation
is finding a model for the MSVL program, while modeling is finding all models.
Verification is based on the above unified model checking approach.

MSVL Program

MSV 

PPTL property

Lexical Analyzer

Syntax Analyzer

Simulation Modeling Verification Reducer

Text output

NFG(pdf) Counter example 

valid

Call

Syntax
Tree

Syntax
Tree

Syntax
Tree

Fig. 1. The MSV platform
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3 AMethod Based onMSVL for Verification of the Social
Network Privacy Policy

We adopt the unified model checking approach for the verification of the social
network privacy policy. The method is briefly introduced as follows. Firstly, we
select an appropriate social networking system, simplify it and model it with an
MSVL program. Then, we describe some privacy policies with PPTL formulas.
Next, we execute the program with formulas in the MSV platform with modeling,
simulation and verification modes separately. Finally, we can improve or modify
the related privacy policy according to the result. The sketch of this verification
method is shown in Fig. 2.

Model with MSVL program

Describe privacy policy with 
PPTL formula

MSV
Platform

ResultSelect an appropriate SNS
Simulate
Model
Verify

Fig. 2. The sketch of the verification method

3.1 The Specific Process of Modeling

In Fig. 3, at first, we select an appropriate system and simplify it to abstract the
core elements and the main operations, then model with an MSVL program. Sec-
ond, we select some privacy policies to be described with PPTL formulas. Finally,
we can execute the modeling program and PPTL formulas in the MSV platform
with simulation, modeling and verification modes. The specific process is as fol-
lows in details.

Step 1 Select an appropriate system and simplify it. Real SNSs include
complex data structures and cumbersome user operations, so they are very dif-
ficult to model. In order to give an easy understanding of the verification method
and highlight a system feature, firstly we select an appropriate SNS and simplify it.
As is known to all, the core elements of SNSs such as Facebook, Twitter, Google+
and Diaspora are user, content, relationship between users and operations on con-
tent as follows.

1. User: the most main subject of the online social networking system, including
the personal information of the user like ID number, name, sex, age, job, email,
address and hobbies. And most SNSs encourage user fill in real name when the
user creates the personal account, but it is not mandatory. As is known to all,
filling in real name is conducive to realizing the function of SNS searching, that
is Facebook.
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Analyze the feature 
of the system
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MSV Platform
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Text Output

NFG(PDF)

Counter 
ExampleValid

Fig. 3. The specific process of modeling

2. Content: content objects include text, link, image, audio and video, etc. Such
as, Twitter users can publish 140 words or less which is called tweets, and Insta-
gram is an online SNS designed to share pictures.

3. Friendship: it describes the relationship between two users. Generally speak-
ing, there are two main kinds of user relationship, one is the real-name strong
relation like Facebook, the other is non-real-name weak relationship like Twit-
ter.

4. Operation: it includes uploading, commenting, tagging, reminding, sharing and
sending messages to a user or a group, etc.

So, in the verification method we only need to take into account the core elements
and discard the other non-core elements. Then, we use the struct data type in
MSVL as the base data type in the modeling, and use MSVL functions to simulate
the user operations.

Step 2Themodeling process. Firstly, we use MSVL struct type to describe the
user, content, user profile in the SNS, and use a linked list to describe the friends
list and personal timeline of the user.

Struct of User represents the user in the system which includes ID, name, sex,
age, job, email, address, like and friend list.

struct User
{

int ID and
string name and
string sex and
int age and
string job and
string email and
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string address and
string like and
Fri* friends

};

Struct of Content represents the content in the system which includes Id, time
of creation, type of content, substance and belonger.

struct Content
{

int id and
string time and
string type and
string substance and
string belonger

};

Struct of UserPage represents the user profile in the system which includes
belonger, user, current time, current mood and timeline.

struct UserPage
{

string name and
User* u and
string date and
string mood and
Timeline* tl

};

Struct of Fri represents the friend list struct in the system which includes name
of the friend and nexts pointer.

struct Fri
{

string name and
Fri* nexts

};

Struct of Timeline represents the timeline of user profile which includes time,
belonger, shared, substance and nexts pointer.

struct Timeline
{

string time and
string belonger and
int quote and
string substance and
Timeline* nexts

};
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Secondly, we use MSVL functions to simulate the user operations, and they can
be divided into three kinds: the operation of user himself, the operation between
users and the operation of user to content. As they are shown as follows.

1. The operation of user himself:

function Register
function Create_Content
function Page_field
function Show_timeline

2. The operation between users:

function Follow
function Notfollow

3. The operation of user to content:

function Upload
function Delete
function View
function Share

3.2 The Common Privacy Policy

As is known to all, almost all the online SNS has the feature that each object
must be associated at least to one user (i.e., the belonger), and each user must
own at least one object (i.e., the personal user profile). The process of building
and destroying associations is subject to the security policies implemented by the
SNS. Online SNSs provide their privacy policies: such as one option blocks cook-
ies that don’t include a privacy policy, another blocks cookies that can save your
contact information without your approval and user can set stranger can not view
the personal profile of the user. However, such enforcements are seldom sufficient
to avoid misuses. The current privacy and security policies are non-standardized
and user-dependent, so we introduce some common privacy policies in online SNS
as follows. Then we select one or more common privacy policies to describe and
verify in the next section.

1. The permission setting of viewing the user personal information, general
including only me, friends and public;

2. The permission setting of viewing the content which the user uploaded, general
including friends and public;

3. The permission setting of sharing and commenting the content which the user
uploaded, general including friends, public and forbid;

4. Add friend setting, general including question, friend of friend and public;
5. Advertisement pushing setting, general including allow and forbid;
6. Blacklist someone (the user in the blacklist cant make any operation on the

user).



A Method Based on MSVL for Verification of the Social Network 125

3.3 Verification of Privacy Policy

After completing the modeling program with MSVL, we can execute the modeling
program with simulation and modeling in the MSV platform and analyze the
results. And then if the results are reasonable and correct, we select some com-
mon privacy policies in Sect. 3.2 to describe with PPTL formulas. Finally, we can
verify whether these privacy policies are correct or not by executing the model-
ing program together with PPTL formulas in the verification mode of MSV plat-
form. If the verification result is invalid, the MSV platform will return an NFG
of a counter example. We should analyze the exist defect of our model and the
verified privacy policy according to the NFG, and then find the potential privacy
issues in the online SNS and modify them.

4 An Application

4.1 Modeling of SNS

Firstly, we select the most famous SNS Facebook as our model prototype. As is
known to all, the core elements of Facebook are Friendship and Timeline. We dis-
card the other non-core elements and some complex operations of Facebook to
build up a small similar system with MSVL as shown in Fig. 4.

Friendship

View

U1

U3 U4

U2

C4C5C3

C2

C3

View

View

Upload

Friendship

Friendship

Friendship

Share

Upload Upload

Upload

C1

Fig. 4. A small system instance

In the system, there are four users (modeling program initiates three users u1,
u2 and u3, then registers a new user u4 through the function Register in the model-
ing process), five contents (modeling program initiates four contents c1, c2, c3 and
c4, then creates a new content c5 by the user through the function Create Content
in the modeling process). The four users have separate profiles, u1 and u2, u3, u4
are all friends, u3 and u4 are friends too. In the modeling program, the Upload
function means the user uploads a content into the system, the View function
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means two users with friendship can view each other’s contents, the Share func-
tion means the user shares the content belong to his friends and view in his own
timeline once he shares the content successfully.

Then we use an MSVL program to model the system, and the specific process
is following as shown in Fig. 5.

Initialize u1,u2,u3,c1,c2,c3,c4

Follow(u1,u2) Follow(u1,u3) Upload(u1,c1) Upload(u2,c2) Upload(u3,c3)

Page_field(u1,p1) Page_field(u2,p2) Page_field(u3,p3)

u4 Register Create_Content(u4,c5)

Upload(u4,c4) Upload(u4,c5) Follow(u1,u4) Follow(u3,u4)

Page_field(u4,p4)

u4 Share c3 u1 View c2

Fig. 5. The specific process

1. Initializing three Users u1, u2, u3 and four contents c1, c2, c3, c4;
2. Executing Follow function to make friendships between u1 and u2, u1 and

u3; then executing Upload function to let u1, u2 and u3 upload contents c1, c2
and c3 separately;

3. Executing Page field function to create user profiles for u1, u2 and u3;
4. Executing Register function to register a new user u4 and executing the

Create Content function to create a new content c5;
5. Executing Follow function to make friendships between u3 and u4, u1 and

u4; then executing Upload function to let u4 upload contents c4 and c5;
6. Executing Page field function to create user profile for u4;
7. Executing Share function to let u4 share c3 of u3, and executing the View

function to let u1 view c2 of u2.
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The Main Part of Modeling Program Code

Follow(u1,u2,fri1,fri2);
Follow(u1,u3,fri1,fri3);
Upload(u1,c1,p1,tl1);
Upload(u2,c2,p2,tl2);
Upload(u3,c3,p3,tl3);
Page_field(p2,u2,fri2,tl2);
output("Welcome, please register !\n")and skip;
register_flag := Register(u4,RValue);
if(register_flag = 1)
then
{ output("Congratulation, register successfully!
Now you can create a new content. \n") and skip

}else{ skip };
create_flag := Create_Content(c5,RValue);
if(create_flag = 1)
then
{ output("Congratulation, create content successfully!

Now you can upload your content.\n") and skip
}else{ skip };
Upload(u4,c4,p4,tl4);
Upload(u4,c5,p4,tl5);
output("Congratulation, upload content successfully!

Now you can add some friends.\n") and skip;
Follow(u3,u4,fri3,fri4);
Follow(u1,u4,fri1,fri4);
Page_field(p1,u1,fri1,tl1);
Page_field(p3,u3,fri3,tl3);
output("Congratulation, add friends successfully!

Now you can create your user profile.\n") and skip;
Page_field(p4,u4,fri4,tl5);
share_flag := Share(u4,c3,p4,tl6,RValue);
if(share_flag = 1)
then
{ output("Shared successfully,

now you can view it in your timeline.")and skip
}else{ skip };
Show_timeline(p4,tl6);
view_flag := View(u1,u2,fri2,p2,tl2,c2,RValue);
if(view_flag = 1)
then
{ output("View successfully\n")and skip
}
else
{ output("View unsuccessfully\n")and skip
})};
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Fig. 6. The result of simulation

After completing the modeling program, we execute the modeling program in
the MSV platform with simulation and modeling modes, then analyze the results.
The screenshot results of simulation and modeling are in Figs. 6 and 7 separately.

4.2 Verification of Privacy Policy

After simulation and modeling, we select two common privacy policy (2) and (3) in
Sect. 3.2 to verify.

(2) The user can view the content of his friend
a. u2 can view c1 of u1;
b. u2 can view c3 of u3;

In (2), the View function implements traversing the Friend list of u1, if it contains
u2, there would be follow flag = 1. At the same time, the View function imple-
ments traversing the timeline of u1, if it contains c1, therewould be upload flag=1.
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Fig. 7. The result of modeling

That is to say, if it is satisfied with follow flag = 1 and upload flag = 1 at the same
time, there would be view flag = 1, then u2 can view c1 of u1.

PPTL Formula Verification
define p : follow flag = 1;
define q : upload flag = 1;
define s : view flag = 1;

We need verification of p ∧ q → s , and it can be converted to ¬ (p ∧ q) ∨ s, as
it is shown in Fig. 8. The result of the verification shows (2)a is satisfied as shown
in Fig. 9 and (2)b is not satisfied as shown in Fig. 10. The result proves that the
privacy policy (2) is correct.

Fig. 8. The PPTL formula
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(3) The user can share the content of his friend
a. u4 can share c3 of u3;
b. u2 can share c3 of u3;

In (3), the Share function implements traversing the Friend list of u3, if it
contains u4, there would be follow flag = 1. At the same time, the Share func-
tion implements traversing the timeline of u3, if it contains c3, there would be
upload flag = 1. That is to say, if it is satisfied with follow flag = 1 and upload flag
= 1 at the same time, there would be share flag = 1, u4 can share the c3 of u3.

PPTL Formula Verification
define p : follow flag = 1;
define q : upload flag = 1;
define s : share flag = 1;

We need verification of p ∧ q → s, and it can be converted to ¬ (p∧q)∨s. The
result of the verification shows (3)a is satisfied as shown in Fig. 9 and (3)b is not
satisfied as shown in Fig. 10. The above results prove that the privacy policy (3)
is also correct.

0

Fig. 9. The result of verification–satisfied

0 10 21 2 772771 773772 773

Fig. 10. The result of verification–unsatisfied

5 Conclusions

In this paper we propose a method for modeling the SNS and verifying the privacy
policy in the system based on MSVL. The method firstly selects an appropriate
SNS and simplify it to abstract the core elements and the main operations. Then
the method models the simplified system with MSVL program and describes the
privacy policies with PPTL formulas. Next the MSVL program and PPTL formu-
las are together executed in the MSV platform with simulation, modeling and ver-
ification modes separately. Finally, we can improve and modify the related privacy
policies according to the executing results. If the result of verification is invalid,
the MSV platform would return an NFG of a counter example. We should ana-
lyze the exist defect of our model and the verified privacy policies, and then find
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the potential privacy issues in the online SNS and modify it. In the future work
we will improve the MSVL language and MSV platform to make the method can
be applied to more complex SNS. Besides, we will improve the method to make it
verify not only the current common privacy policies, but also the privacy policies
defined by users.
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Abstract. OSEK/VDX, a standard of automobile OS, was proposed to
support the development of high-quality automotive applications. With
its widely adopted, more and more automotive applications have been
developed based on OSEK/VDX OS. As the continuously increasing
complexity in the development of the applications, how to efficiently
develop an application is becoming a challenge. A primary problem is
the requirement specification may not be accurately and easily under-
stood by the developers carrying out different tasks. The major reason is
the usage of informal languages or notations in the specification. To solve
this problem, formal specification provides a feasible solution. However,
some difficulties (e.g., high requirement of significant abstraction and
mathematical skills) has hindered the widely usage of formal methods.
To address these difficulties, SOFL, a formal engineering methodology,
has been proposed. In this paper, in order to investigate and study how
SOFL can be used to help develop an OSEK/VDX application, we con-
duct a case study of cruise control system. Through the case study, we
can see that SOFL specification can effectively help developer to develop
an OSEK/VDX application throughout the development process.

1 Introduction

With consumers’ insatiable appetite to pursue a better driving experience, more
and more automotive applications have been developed. In order to support the
development of high-quality automotive applications and resolve the problem
of increasing software content in automobiles, OSEK/VDX [1,2], a standard of
automobile OS, was proposed in 1994. It has been widely adopted by many auto-
mobile manufacturers to design and develop an automobile OS, such as BMW,
Opel, and Volkswagen. With its widely adopted, a growing number of automo-
tive applications have been developed based on OSEK/VDX OS. However, as
the continuously increasing complexity in the development of applications, how
to efficiently develop an application is becoming a challenge.

A primary problem is the requirement specification may not be accurately and
easily understood by the developers carrying out different tasks. The major rea-
son causing that problem is the notations and languages used in the specification
c© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2015, LNCS 9559, pp. 132–146, 2016.
DOI: 10.1007/978-3-319-31220-0 10
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lack of precise syntax and semantics. These notations and languages inevitably
associate ambiguity and may lead to misunderstanding. To solve this problem,
formal specification gives a feasible solution. With precise constrain of semantics
and syntax, formal specification can precisely define behaviors of the software and
provide a firm basis for next developers to design and verify the program.

However, there exist some difficulties in using formal methods. For example,
it requires significant abstraction and mathematical skills; it usually costs more
in time and human effort for analysis and design [3]. These difficulties have hin-
dered the widely usage of formal methods. To address these difficulties, SOFL, a
formal engineering methodology, has been proposed in [3,4]. It proposes changes
to software process, notation, methodology, and support environments for con-
structing systems, which makes formal methods more practical and acceptable.

In this paper, in order to investigate and study how SOFL can be used to
help develop an OSEK/VDX application, we conduct a case study of cruise
control system. Through the case study, we can see that SOFL specification can
effectively help developer to develop an OSEK/VDX application throughout the
development process.

The remainder of this paper is organized as follows. Section 2 gives an overview
of our developing process. The formal requirement specification of the cruise con-
trol system is shown in Sect. 3. In Sect. 4, the design and implementation of the
system is given. Simulation and verification of the developed application is illus-
trated in Sect. 5. Section 6 concludes the paper and gives future work.

2 Overview

Our developing process is divided into three stages. The first stage is for require-
ment specification. Through a survey of various cruise control systems equipped
in different kinds of automobiles, the primary functions of a cruise control sys-
tem is given. According to the given functions, a formal requirement specification
based on SOFL notations is documented.

According to the specification, the next stage is to design and implement the
cruise control system. As the cruise control system is developed as an application
running on an OSEK/VDX OS, the design and implementation needs to adhere
the OSEK/VDX standard, which means the system should be implemented as
a multi-threaded software. From the SOFL specification, we find the design and
implementation is fairly intuitive. It means SOFL is suitable to construct a
requirement specification for an OSEK/VDX application.

After implementation, the last state is verification. In order to completely
check OSEK/VDX applications, model checking [8,9] as an exhaustive tech-
nique can be applied to verify OSEK/VDX applications. There exist many model
checking methods that have been applied to verify general multi-threaded soft-
ware [10] and sequential software [11]. However, these existing model checking
methods cannot be directly employed to precisely verify OSEK/VDX applica-
tions, since the execution characteristics of OSEK/VDX applications are differ-
ent from sequential software and general multi-threaded software. In order to



134 Z. Cheng et al.

Fig. 1. Function buttons on the control lever of a cruise control system. (The figure is
from the home page of Audi.)

apply existing model checking methods to verify the developed applications, we
translate the cruise control system into a sequential software.

Moreover, based on SOFL specification, we can easily extract checking prop-
erties which are translated as assertions and inserted into the translated sequen-
tial software. After this, existing model checkers can be employed to verify the
cruise control system.

3 Formal Requirement Specification

3.1 Cruise Control System

Cruise control system is a servomechanism that can maintain a constant vehicle
speed as set by the driver. It accomplishes this function by measuring the vehicle
speed, comparing it to the set speed, and automatically adjusting the throttle
according to a control algorithm. It is usually used for long drives across high-
ways. By using the cruise control system, drivers do not need to control the
throttle pedal to maintain the speed of vehicles, which can alleviate the fatigue
of drivers. Meanwhile, it can reduce the unnecessary change of speed, which usu-
ally results in better fuel efficiency. With these advantages, cruise control system
has now been widely equipped in various brands of automobiles, such as BMW,
Audi, and Volkswagen.

Cruise control systems developed by different automobile manufacturers usu-
ally have different auxiliary functions. Figure 1 shows the control lever of a cruise
control system equipped in an Audi automobile. A driver can activate different
functions by pressing the function buttons on the control lever. Button ON and
OFF are to turn on and turn off the system, respectively. After system turns on,
when the button SET is pressed, if the speed of the vehicle is within a specific
speed interval which is supported by the cruise control system, the system will
start to maintain current vehicle speed until the driver presses button OFF, or
CANCEL, or steps on brake. SPEED+ and SPEED- is used to adjust the set speed
when system keeps on maintain current vehicle speed. When SPEED+ is pressed,
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the set speed will be increased, and the system will increase current speed to
the set speed and maintain the speed of vehicle at that level. The button CAN-

CEL can temporarily turn off the system, meanwhile, the button RESUME can
resume the system to the moment at which the system is temporarily turned off.

3.2 Requirement Specification

As our objective is to investigate whether SOFL can be used in developing
an OSEK/VDX application, rather than develop a fully functional system, for
simplicity, we only consider parts of the functions. Moreover, to the consideration
of safety, a new CONFIRM button is provided.

After system turns on, the primarily functions required by a cruise control
system are as follows (as function button SET in Fig. 1 is not considered in our
design, in the following parts of the paper, system turns on means the system
stars to maintain current vehicle speed).

1. Let the driver increase and decrease the value of the set speed. The set speed
is required within a speed interval supported by the cruise control system.
To the consideration of safety, a confirm operation is needed to confirm the
setting.

2. Keep on maintaining the vehicle speed at the set value.

Although above specification is very simple, it still may cause misunderstand-
ing. For example, the sentence “a confirm operation is needed to confirm the
setting” does not clearly describe what will happen if the confirm operation
is not performed. A designer may think that if an operation of increasing or
decreasing is not followed by a confirm operation, the operation will be ignored.
While another designer may think that the confirm operation is needed only
when the driver has finished the setting (maybe after pressing button SPEED+

and SPEED- many times). In order to avoid any potential misunderstanding, as
described above, formal notation can help greatly.

3.3 SOFL Specification

A SOFL specification is a hierarchical condition data flow diagram (CDFD) that
is linked with a hierarchy of specification modules (s-modules) [4]. The CDFD
comprises a set of condition processes and describes data flows between them,
while the linked s-modules precisely defines the functionality of the components
(condition process, data flow, data store) in the CDFD. Each condition process
in the CDFD is linked with a c-process which is defined in the s-modules and
describes functions in terms of pre and post conditions, within the specific
specification context of the module [6]. More details about SOFL specification
can refer [3,4].

The CDFD of the cruise control system is shown in Fig. 2, and the linked
s-model is shown in Fig. 3. In Fig. 2, each box surrounded by narrow borders
denotes a process, such as SET adjust() and CRU control(), which describes
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Fig. 2. Condition data flow diagram (CDFD) for the cruise control system.

an operation. It tasks inputs and produces outputs. Each directed line with a
labeled variable name denotes a data flow. A solid line denotes an active data
flow, while a dotted line denotes a control data flow. The box with a number
and an identifier (e.g., temp speed) is a data store which can be accessed by
processes. A directed line from a data store to a process represents the process
can read the data from the store, while a directed line from a process to a data
store means the process can read, write, and update the data in the store. More
details about the components used in the CDFD can refer [4,7].

The cruise control system comprises two primarily functions: set the desired
vehicle speed (through increasing or decreasing the set speed) and maintain the
vehicle speed at the set value. These two functions are triggered by ECU() (elec-
tronic control unit) process. Processes with names star with SET are for the first
functions, and processes CRU control() is for the second function. When the
system is running, process ECU() keeps on monitoring the inputs of drivers. Dif-
ferent inputs will trigger different processes to achieve different functions. The
selection of speed up, speed down, or confirm denotes the corresponding func-
tion button on the system control lever shown in Fig. 1 is pressed by the driver.

When button speed up or speed down is pressed, process ECU() will generate
a data flow act adjust to indicate which command has actually been selected,
and passes this information to process SET adjust(). Based on the value
of act adjust, process SET adjust() will trigger either processes SET up()
(speed up is selected) or SET down() (speed down is selected). Process SET up()
or SET down() first reads the value of temp speed from the data store, and try to
update temp speed by increasing or decreasing it with a constant value, respec-
tively. As the cruise control system can only run within a designed speed interval,
before updating the data, process SET up() and SET down() will first check if the
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updated value of temp speed is within the interval. If not, an error message will
be issued. Data temp speed is a temporary data can be manipulated by process
SET up() and SET down() and only after process SET update() performs, the
value of temp speed can be assigned to set speed. After process SET up() or
SET down() completes the updates of temp speed, it will sends the comple-
tion information to process SET update(). Process SET update() will assign
data temp speed to set speed only after the confirm button is pressed. After
process SET update() assigns the value of temp speed to set speed, it will trig-
ger process SET control() to control current vehicle speed current speed to
the new set speed set speed.

When no function button is pressed by the driver, it means the driver
does not want to adjust the set speed and wants to maintain current vehi-
cle speed, process CRU control() will be triggered by process ECU(). Process
CRU control() maintains current vehicle speed current speed to the value of
set speed based on a control algorithm.

s-module. Compared with the specification written in natural language given in
Sect. 3.2, the functional abstraction expressed by the CDFD is obviously more
comprehensible, especially, the dependency relations among processes can be
clearly expressed. However, in order to completely define the CDFD, all the
components (conditional process, data flows, data stores) in the CDFD must be
precisely defined. To achieve this, the CDFD is linked with a s-model shown as
in Fig. 3.

In the s-module, part const shows the constant variables used in the module.
All the data flow variables, and data stores in the CDFD are defined in the
var part. Each of them is defined in a specific data type. Keyword inv stands
for invariant and indicates the properties that must be sustained throughout
the entire specification. For example, min sp <= set speed <= max sp in part
inv means the setting value of the cruise control system must be larger than
the maximum value that supported by the system and less than the minimum
value. Function Controller() achieves the function of speed control based on
a control algorithm. At this level of specification, the control algorithm has not
been designed.

Process Init() is the initial process which performs only one time when the
system stars up. We can see that, pre condition defines in the process Init()
requires that current speed should be less than max sp and larger than min sp.
This ensures that the system can star up only when vehicle is running within
the speed interval that supported by the cruise control system.

Each processes in the CDFD is linked with a c-process. It describes functions
of the processes in terms of pre and post conditions in which predicate logic is
adopted. For example, the post condition in c-process SET adjust() means: if
the value of data flow variable act adjust is true, process SET adjust() will
trigger SET up() by generating control signal col up, otherwise act adjust with
a false value will make process SET down() be triggered.
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Fig. 3. s-module for the cruise control system.

4 Design and Implementation

4.1 Running Mechanism

Before starting to design and implement the cruise control system as an
OSEK/VDX application, we should first obtain a preliminary understanding
of the running mechanism of OSEK/VDX OS and its applications.

An OSEK/VDX application is developed as a multi-threaded software run-
ning on an OSEK/VDX OS. Tasks (i.e., threads) within the application are con-
currently executed and can invoke service APIs to interact with OSEK/VDX
OS modules. According to the service APIs invoked by a running task, the cor-
responding OS modules can dynamically change states of tasks.

Module: A general OSEK/VDX OS is composed of scheduler module, event
process module, resource process module, interruption process module, and
alarm process module. For simplicity, the cruise control system only interacts
with the scheduler module of OSEK/VDX OS. Scheduler module in OSEK/VDX
OS adopts static priority scheduling policy. A ready queue, shown in Fig. 4, is
maintained to store identifiers of ready tasks. The ready queue is a composition
of queues with different priorities. Tasks in the ready queue with the highest
priority will be first scheduled to execute. For tasks with the same priorities, the
scheduler module will schedule those tasks based on first in first out (FIFO).
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Fig. 4. Ready queue in an OSEK/VDX OS.

Fig. 5. States switch of the basic tasks.

Task states switching: There are two kinds of tasks, basic task and extended
tasks, that can be proceeded in OSEK/VDX OS. The states of a basic task
consist of running state, suspended state, and ready state. Compared with the
basic tasks, an extended task has an unique state called waiting state which are
used to interact with event process module. As the cruise control system does
not interact with the event process module, tasks in the cruise control system
are all defined as basic tasks. Figure 5 shows the states switch of basic tasks.

Service APIs: Scheduler module can respond to three kinds of API invocation.

– TerminateTask(): a running task is moved to suspended state.
– ActivateTask(tid): task tid is moved from suspended state to ready state.
– ChainTask(tid): equivalent to the execution sequence ActivateTask(tid) +

TerminateTask().

When one of these three service APIs is invoked by a running task, scheduler
module will conduct corresponding operations to respond to the API invocation.
This will change the states of the tasks according to the states switch rules shown
in Fig. 5, and may lead to the context switch of tasks.

4.2 Design and Implementation as an OSEK/VDX Application

From the CDFD of the requirement specification, shown in Fig. 2, each condi-
tional process in the CDFD achieves a specific function which is precisely defined
in the corresponding c-process in the linked s-module shown in Fig. 3. Relations
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Name: SET_adjust

bool act_adjust;

TASK SET_adjust(){
if(act_adjust == true)

ActivateTask(SET_Up);
else

ActivateTask(SET_Down);
TerminateTask();

}

TASK SET_adjust{
TYPE=BASIC;
SCHEDULE=NON;
PRIORITY=2;
AUTOSTART=FALSE;

}

Fig. 6. Task SET adjust().

between these processes are reflected via data flows (active data flow and control
data flow) and data stores. For example, process SET adjust() achieves a selec-
tion function, that is to activate process SET up() or process SET down() based
on the value of input active data flow variable act adjust. The relations between
these three processes are reflected by control data flow col up and col down.

As an OSEK/VDX application is developed as a multi-threaded software,
the intuitive idea is to design each process in the CDFD as a task within the
application. Each active data flow variables can be implemented as a variable
that can be accessed by the related tasks, and each control data flow variable
can be treated as an invocation of service API ActivateTask(tid), where tid is the
identifier of the corresponding activated task. Based on this idea, the example of
task SET adjust() (i.e., the implementation of process SET adjust()) is shown
in Fig. 6. It consists of two files: source code file and configuration file. The source
code file, shown in the left side, is used to present the concrete behaviors of the
application. The configuration file, shown in the right side, is used to indicate
the configuration data of tasks (e.g., priority).

Let’s first focus on the source file of task SET adjust(). As shown in Fig. 6,
the source file is written in C + + programming language. The active data flow
variable act adjust is defined as a bool variable that can be accessed by task
SET adjust(). The control data flow variables col up and col down are treated as
invocation of service APIs ActivateTask(SET up) and ActivateTask(SET down)

respectively, where task SET up() and SET down() are the implementation of
process SET up() and SET down() respectively. According to the post condition
of process SET adjust() in the s-module, when the value of act adjust is true,
process SET up() will be triggered. Reflected in the task SET adjust(), when
the variable act adjust is true, the service API ActivateTask(SET up) will be
invoked, which is to activate task SET up(). The TerminateTask() in the last
line is to move task SET adjust() itself to the suspended state. This service API
is invoked when a task has completed its operation.

For the configuration file of a task, there are four items:

– TYPE: type of tasks (BASIC or EXTENDED).
– AUTOSTART: to indicate the initial states of tasks when system turns on

(TRUE: ready or FALSE: suspended).
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– SCHEDULE: to indicate if the task can be preempted by another ready task
with higher priority (FULL: can or NON: cannot).

– PRIORITY: task priority (e.g., 1, 2 . . . ).

For the type of tasks, as mention in the last subsection, all the tasks in the
cruise control system are defined as basic tasks.

As the setting of AUTOSTART, it depends on if a task needs to be activated by
another task. Only the task that do not need to be activated by another task is
set to has AUTOSTART as TRUE. Thus, according to the CDFD of the specification,
only task ECU() has AUTOSTART as TRUE.

For the setting of property SCHEDULE, it depends on tasks’ specific running
characteristics. For task ECU(), when system is running, it keeps on moni-
toring the input of the driver and activates another task. For example, when
no function button is pressed, task ECU() will activate task CRU control(). It
expects CRU control() can run immediately to achieve its function. When task
CRU control() completes its operation, task ECU() continues to activate another
task according to the input of the driver. If the setting of SCHEDULE is NON, the
activated task CRU control() can only run after task ECU() is terminated. As
task ECU() keeps on running after system turns on, it means task CRU control()

will never run, which is an obviously wrong setting. Thus, the setting of SCHEDULE
for task ECU() should be FULL.

For other tasks, e.g., SET adjust(), it activates task SET up() or SET down(),
and then, it will be terminated by invoking service API TerminateTask(). To
implement this running characteristic, both setting of property SCHEDULE can
achieve. As a FULL setting of SCHEDULE may lead to more frequent context switch,
we set SCHEDULE of all the tasks except task ECU() as NON.

For the setting of PRIORITY, from the running characteristic of task ECU()

described above, we can see when a task is activated, it should preempt task
ECU(). Thus, the priority of task ECU() should be the lowest among all the tasks.
For other tasks, as the setting of SCHEDULE is NON, any settings of PRIORITY that
higher than the setting of ECU() are reasonable.

Applying these ideas, based on the SOFL specification, we can implement
the cruise control system as an OSEK/VDX application. The complete imple-
mentation is shown in Fig. 7.

5 Simulation and Verification

To completely check OSEK/VDX applications, we employ model checking to ver-
ify the developed application. As mentioned in Sect. 2, the existing model check-
ing methods cannot be directly employed to precisely verify the OSEK/VDX
applications, since the execution characteristics of OSEK/VDX applications are
different from sequential software and general multi-threaded software.

As described in Sect. 4, an OSEK/VDX application is developed as a multi-
threaded software. When it runs on OSEK/VDX OS, the executions of tasks
within the application are dispatched by scheduler module, and the running task
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Fig. 7. Implementation of cruise control system as an OSEK/VDX application.

is explicitly determined by the scheduler according to task priorities and configu-
ration data. Moreover, tasks can invoke service APIs supported by OSEK/VDX
OS to dynamically change the states of tasks defined in the application, and the
changed states will affect the scheduling of tasks.

On the one hand, if we directly apply the existing model checking methods
for general multi-threaded software to verify OSEK/VDX applications, it is too
imprecise because a lot of unnecessary interleavings of tasks will be checked
by existing methods, and these unnecessary interleavings may result in spuri-
ous bugs in the verification. This is because, in the existing works for the gen-
eral multi-threaded software (e.g., systemC programs), since the running thread
cannot be explicitly determined, all of the possible interleavings of runnable
threads are taken into account in the verification in order to completely check
the target software. However, in OSEK/VDX applications, the running task is
explicitly determined by OSEK/VDX scheduler. The difference of scheduling
policy between the general multi-threaded software and OSEK/VDX applica-
tions makes it is unsuitable to employ existing model checking methods for the
general multi-threaded software to check OSEK/VDX applications.

On the other hand, if we want to employ the model checking methods for
sequential software to verify OSEK/VDX applications, the developed target
application has to be translated into a sequential software in advance. To achieve
this, a sequentialization approach proposed in [5] can be applied.
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5.1 Sequentialization

The key idea of the sequentialization approach is to use a directed graph to
represent the sequential program of an OSEK/VDX application. To construct the
directed graph, a directed graph constructor as a simulator has been developed.
A simplified OSEK/VDX OS model is included in the constructor to respond to
the invoked service APIs. A tool named autoC has also been developed based
on this approach. More details about the approach can be found in [5].

Through the sequentialization approach, based on the implementation shown
in Fig. 7, the directed graph for the cruise control system is shown in Fig. 8. The
definition of the directed graph is as follows.

DEFINITION: The directed graph is a tuple G = (V, v0, ve, E, L). V is the set
of nodes, and a node v ∈ V is a tuple v = (pcs, osd), pcs = [n1, . . . , nm] is a array
used to record current locations of the tasks t1, . . . , tm (m is the number of the
tasks), osd is a set of values used to store the data within D of the OS model,
where D = {runTask, readyQueue, suspendList} is a set of data structures used
to store the states of the tasks. In the data structure set D, runTask which is a
variable is used to store the tid of the running task (tid is task identifier). The
readyQueue is composed of queues with different priorities and used to store
the tids of tasks in the ready state. The data structures suspendList are used
to store the tids of the tasks in the suspended state. v0 ∈ V is the start node,
ve ∈ V is the end node. E ⊆ V × V is the set of directed edges. L : E → ⋃

Σtid

is the labeling function from an edge (v, v′) ∈ E to a task statement α ∈ ⋃
Σtid,

where tid is task identifier, Σtid is the set of the statements of tasks tid, the
expression of a statement α ∈ Σ is as follow:

α ::= condition | assignment | goto | assertion | API
Note that, the invocation of service APIs are replaced as goto statements in

Fig. 8.

5.2 Verification

Before verifying the program, we should first extract checking properties from
the requirement specification. We can easily extract checking properties from two
parts of the SOFL specification. The first part is the post condition of a c-process
in the s-module. A post condition in a c-process can be interpreted as assertions
and inserted into the directed graph at the locations after the execution of the
corresponding task.

For example, from the post condition of process SET adjust(), we can know
that task SET adjust() will activate task SET up() if the value of act adjust
is true, otherwise, it will activate task SET down(). Because each step of con-
structing the directed graph, the data within D which stores the states of tasks
has been kept in the directed graph. This makes that we can know which task
is running (in running state) and also can check whether a task is activated
(in ready state) or not (in suspended state) at any node of the directed graph.
Through searching the directed graph, we can know that task SET adjust() runs
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Fig. 8. Directed graph for cruise control system.

following nodes 〈v27, v28, v29, v30〉 (when act adjust is true) or 〈v27, v35, v36, v37〉
(when act adjust is false). Thus, we can insert assert(SET up@readyQueue)
after node v30 and assert(SET down@readyQueue) after node v37, where
tid@readyQueue means task tid is in the ready queue.

The second part is the part inv in the s-module. The part inv indicates prop-
erties that must be sustained throughout the entire specification. Thus asser-
tions extracted from this part can be inserted into any locations from node v0
to node ve of the directed graph. Specific to the part inv of the s-module shown
in Fig. 3, from relationship formula min sp <= set speed <= max sp we can get
two assertions: assert(set speed <= max sp) and assert(set speed >= min sp).
Similarly, two assertions assert(temp speed <= max sp) and assert(temp speed
>= min sp) can be extracted from relationship formula min sp <= temp speed
<= max sp. These assertions can be inserted into any locations from node v0 to
ve. Note that, assign a value in interval [min sp, max sp] to current speed is
needed to check these assertions.
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After inserting the assertions, the cruise control system has been translated
into a sequential program. As the output target language of autoC is C pro-
gramming language, in this study, we employ model checker CBMC to verify
the program. The checking results indicate the developed application satisfies
the checking properties discussed above.

6 Concluding Remarks

Through developing the cruise control system, we can see that SOFL speci-
fication can effectively help developer to develop an OSEK/VDX application
throughout the development process. SOFL requirement specification can pre-
cisely define the behaviors of the software. From the specification, the design
and implementation of the cruise control system is straightforward. A developer
can easily develop and implement an OSEK/VDX application based on SOFL
specification. Moreover, checking properties can be easily extracted from SOFL
specification, which helps a lot for employing model checking technique to verify
the developed applications.

For the future work, an important direction is to develop a tool to auto-
matically generate assertions from SOFL specification and insert them into the
translated directed graph.
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Abstract. As an extension of Timed Automata (TAs), Updatable Timed
Automata (UTAs) proposed by Bouyer et al. have the ability to update
clocks in a more elaborate way than simply reset them to zero. The reach-
ability of general UTAs is undecidable, by regarding a pair of updatable
clocks as counters updatable with incrementation and decrementation
operations. This paper investigates the model of subclass of UTAs by
restricting the number of updateable clocks. It is shown that the reach-
ability of UTAs with one updatable clock (UTA1s) under diagonal-free
constraints is decidable. The decidability is proved by treating a region
of a UTA1 as an unbounded digiword, and encoding sets of digiwords
that are accepted by a pushdown system where regions are generated
on-the-fly on the stack.

1 Introduction

Timed Automata(TAs), introduced by Alur and Dill [1], are one of the most-
studied and most-established models for real-time systems. Lots of work has
been devoted to extensions of timed automata, with much interest for classes
whose emptiness problem remains decidable.

Updatable Timed Automata(UTAs) [2,3] are extensions of timed automata,
based on the possibility to update the clocks in an elaborate way such as incre-
ment and decrement operations and assignments to arbitrary values. Their decid-
ability have been investigated in [4], and also a quite precise way the thin fron-
tier between decidable and undecidable classes of updatable timed automata has
been described. The undecidability is technically shown to simulate the Minsky
machine in general, while the decidability is shown by the fact that the con-
structed regions are finitely many. Our motivation is to investigate an interesting
subclass of UTAs existing between them.

This paper gives a positive answer for the reachability of UTAs with one
updatable clock (UTA1s) with diagonal-free time constraints by constructing
regions on-the-fly over the stack of pushdown systems (PDSs). Our result
expands the thin frontier between decidable and undecidable classes of updatable
timed automata. The model can be effectively used into soft real-time system
modelling and analysis, where the updatable clock is used to depict relative
c© Springer International Publishing Switzerland 2016
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deadline, which can be flexibly modified according to different conditions and
environments.

The rest of the paper is organized as follows. Section 2 gives an introduc-
tion of UTAs and PDSs. Section 3 introduces UTAs with one updatable clock.
Section 4 introduces the notion of digiwords, which is equivalent to region [1],
but provides us a more concise description. Section 5 shows the decidable reach-
ability of UTA1s by encoding them to PDSs, based on the notion of digiwords.
The related work is presented in Sects. 6 and 7 concludes the paper.

2 Preliminaries

For finite words w = γ1γ2 . . . γn, we denote γi ∈ w for 0 ≤ i ≤ n.
Let R

≥0 and N denote the sets of non-negative real numbers and natural
numbers respectively. Let N

ω = N ∪ {ω}, where ω is the first limit ordinal. Let
I denote the set of intervals over N

ω. An interval can be written as a pair of
a lower limit and an upper limit in the form of either (a, b), [a, b), [a, c], (a, c],
where a, c ∈ N, b ∈ N

ω,‘(’ and ‘)’ denote open limits, and ‘[’ and ‘]’ denote closed
limits. For a number r ∈ R

≥0 and an interval I ∈ I, we use r ∈ I to denote that
r belongs to I. Let I \ I ′ = {r | r ∈ I ∧ r /∈ I ′}.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if
x = y, and ν(x) otherwise. V al(X) is used to denote the set of clock valuations
of X.

Definition 1 (Clock Constraint). Given a finite set of clocks X, we define
diagonal-free constraints condf and diagonal constraints con, respectively as fol-
lows:

condf ::=x ∈ I?
con ::=x ∈ I? | x − y ∈ I?

where x, y ∈ X and I ∈ I.

2.1 Updatable Timed Automata

Updatable Timed Automata (UTAs) [2–4], extended from TAs, provide a more
flexible way to adjust the value of clock during location switches.

Definition 2 (Updatable Timed Automata). A UTA is a tuple A =
〈Q, q0, F,X,Δ〉, where
– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X is a finite set of clocks,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition (q1, φ, q2) ∈ Δ

is written as q1
φ−→ q2, in which φ is either
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Local ε, an empty operation,
Test x ∈ I? or x − y ∈ I?, where x, y ∈ X and I ∈ I,
Assignment x ← I, where x ∈ X and I ∈ I,
Increment x := x + 1, where x ∈ X or
Decrement x := x − 1, where x ∈ X.

Given a UTA A, we use Q(A), q0(A), F (A), X(A) and Δ(A) to represent its
set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Definition 3 (Semantics of UTAs). Given a UTA A = 〈Q, q0, F,X,Δ〉, a
configuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν
on X. The transition relation of the UTA is represented as follows,

– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I? or φ = x − x′ ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds or

respectively ν2(x) − ν2(x′) ∈ I holds.
• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I.
• Increment φ = x := x + 1, ν2 = ν1[x ← ν1(x) + 1].
• Decrement φ = x := x − 1, ν2 = ν1[x ← ν1(x) − 1] and ν1(x) ≥ 1 holds.

The initial configuration is (q0, ν0). The transition relation is → and we

define →= t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure
of →. Without confusion, we will later leave out the subscript A .

If only diagonal-free constraints appear in test transitions, the corresponding
UTAs are called diagonal-free UTAs. Different from TAs, diagonal or diagonal-
free constraints heavily affect decidability results of UTAs. We list a few unde-
cidable subclasses of UTAs.

Proposition 1. (Proposition 2 in [2]) UTAs without increment rules under
diagonal-free constraints are undecidable.

Proposition 2. (Proposition 3 in [2]) UTAs without decrement rules under
diagonal constraints are undecidable.

2.2 Pushdown Systems

A pushdown system [5] is a transition system equipped with a finite set of control
locations and a stack. The stack contains a word over some finite stack alphabet,
whose length is unbounded. Hence, a pushdown system may have infinitely many
reachable states.

Definition 4 (Pushdown Systems). A pushdown system(PDS) is a quadru-
ple 〈P, Γ,Δ〉 where
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– P is a finite set of states,
– Γ is finite stack alphabet,
– Δ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ Δ is

denoted by 〈p, v〉 ↪→ 〈q, w〉, and
We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗.

A configuration of P is a pair 〈q, w〉, where q ∈ Q and w ∈ Γ ∗. A transition
relation =⇒ between configurations of P is defined by

〈q, γw′〉 ⇒ 〈q′, ww′〉 if 〈q, γ〉 ↪→ 〈q′, w〉

The reflective and transitive closure of ⇒ is denoted by ⇒∗, and we write c
σ⇒n

c′

if c
r1⇒ c1

r2⇒ . . . cn
rn⇒ c′ for any n ∈ N and c, c′, ci ∈ Q × Γ ∗ with 1 ≤ i ≤ n and

σ = [r1, r2, . . . , rn].

3 Updatable Timed Automata with One Updatable
Clock

We propose a subclass of UTAs in a different facet by restricting the number of
updatable clocks to be one, rather than restricting the ability of updates.

Definition 5 (Updatable Timed Automata with One Updatable
Clock). A UTA with one updatable clock (UTA1) is a tuple A =
〈Q, q0, F,X, c,Δ〉, where
– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X = {x1, . . . , xk} is a finite set of clocks, and c is the singleton updatable

clock,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition (q1, φ, q2) ∈ Δ

is written as q1
φ−→ q2, in which φ is either

Local ε, an empty operation,
Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
Assignment x ← I, where x ∈ X ∪ {c} and I ∈ I, or
Increment c := c + 1, or
Decrement c := c − 1.

Remark 1. UTA1s defined in Definition 5 are diagonal-free. We do not discuss
diagonal constraints between clocks, and our following proofs cannot be naturally
extended to cover them.

Definition 6 (Semantics of UTA1s). Given a UTA1 A = 〈Q, q0, F,X, c,Δ〉,
a configuration(state) is a pair (q, ν) of a control location q ∈ Q, and a clock
valuation ν on X ∪ {c}. The transition relation of the UTA1 is represented as
follows,

– Progress transition: (q, ν) t−→ (q, ν + t), where t ∈ R
≥0.
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– Discrete transition: (q1, ν1)
φ−→ (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the follow-
ing holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I.
• Increment φ = c := c + 1, ν2 = ν1[c ← ν1(c) + 1].
• Decrement φ = c := c − 1, ν2 = ν1[c ← ν1(c) − 1] and ν1(c) ≥ 1 holds.

The initial configuration is (q0, ν0).

Remark 2. Although only increment (c := c + 1) and decrement (c := c − 1) are
considered in the Definition 5, arbitrary decrement operation can also be easily
encoded by some adjustment to the UTA1s we defined. For example, p

c:=c−d−−−−−→ q,
where d is some fixed positive integer, can be encoded in the following way, by

introducing an extra clock x′ and more locations p1, p2, . . . , pd, pd+1: p
x′←[0,0]−−−−−→

p1
c:=c−1−−−−→ p2

c:=c−1−−−−→ p3 · · · pd
c:=c−1−−−−→ pd+1

x′∈[0,0]?−−−−−→ q.

Example 1. The UTA1 illustrated in Fig. 1 has three clocks, c, x1 and x2, among
which c is the singleton updatable clock allowed to update in a different way.

q0 q1 q2 qf
x1 ∈ (2,+∞)? c := c − 1 x2 ← (1, 6)

Fig. 1. An Example for UTA1s

One run of the UTA1 is as follows: (q0, ν0)
2.5−−→ (q0, ν1)

x1∈(2,+∞)?−−−−−−−−→
(q1, ν2)

c:=c−1−−−−→ (q2, ν3)
x2←(1,6)−−−−−−→ (qf , ν4)

5−→ (qf , ν5), where

– ν0 = {ν0(c) = ν0(x1) = ν0(x2) = 0},
– ν1 = ν2 = {ν1(c) = ν1(x1) = ν1(x2) = 2.5},
– ν3 = {ν3(c) = 1.5, ν3(x1) = ν3(x2) = 2.5},
– ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) = 5.7}, and
– ν5 = {ν5(c) = 6.5, ν5(x1) = 7.5, ν5(x2) = 10.7}.

The first transition is a progress transition which elapses 2.5 time units, and
each clock grows older for 2.5. The second transition tests whether the value of
clock x1 is greater than 2, and since it is so, a move from location q0 to location
q1 happens. The sequent transition updates the particular clock c by decreasing
one time unit and make a move from location q1 to location q2. The last but
one transition randomly picks a value(in this run, 5.7 is picked) from the range
(1, 6) and assigns it to the clock x2. The last transition is a progress transition
which elapses 5 time units.

Definition 7 (Reachability Problem). GivenaUTA1A = 〈Q, q0, F,X, c,Δ〉
and a state q, decide whether there exists a path from the initial configuration such
as (q0, ν0) →∗ (q, ν), for some ν.
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4 Digiword and Its Operations

We denote the powerset of D by P(D). Let A = (Q, q0, F,X, c,Δ) be a UTA1,
and let n be the largest integer appearing in Δ. For v ∈ R

≥0, proj(v) = ri if
v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

The idea of the following digitization is inspired by [6–10].

Definition 8. Let frac(x, t) = t−floor(t) for (x, t) ∈ ((X∪{c})×R
≥0), where t

is clock x’s value. A digitization digi : V al(X∪{c}) → (P((X∪{c})×Intv(n)))∗

is as follows. For ν ∈ V al(X ∪ {c}), let Y0, Y1, · · · , Ym be sets that collect
(x, proj(t))’s having the same frac(x, t) for (x, t) ∈ (X ∪ {c}) × R

≥0. Among
them, Y0 (which is possibly empty) is reserved for the collection of (x, proj(t))
with frac(t) = 0. We assume Yi’s except for Y0 is non-empty, and Yi’s are
sorted by the increasing order of frac(x, t) (i.e., frac(x, t) < frac(x′, t′) for
(x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈ Yj, where 0 ≤ i < j ≤ m).

Example 2. In example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the clockvaluationν4 inExample 1,digi(ν4) is{(c, r3), (x1, r5)}{(x2, r11)}.
Note that, for convenience we do not show the empty set Y0 in digi(ν4).

A word in (P((X ∪ {c}) × Intv(n)))∗ is called digiword. If for a digiword Ȳ
there exists an clock valuation ν ∈ V al(X ∪ {c}) such that digi(ν) = Ȳ , we call
the word well-formed digiword.

Remark 3. For a finite set of clocks X ∪ {c}, the set of well-formed digiword is
finite. This is obvious, since there are a fixed number of clocks, which leads to
a fixed number of combinations of digiword. This play an essential role in our
encoding, ensuring the PDS has finite states.

Definition 9. Let Ȳ = Y0 · · · Ym ∈ (P((X ∪ {c}) × Intv(n)))∗. We define digi-
word operations as follows.

– InsertI insert(Ȳ , (x, ri)) for x ∈ X ∪ {c} inserts (x, ri) to Ȳ at
⎧
⎨

⎩

either put into Yj for j > 0, or
put the singleton set {(x, ri)} at any place after Y0 if i is odd

put into Y0 ifi is even

– Delete delete(Ȳ , x) for x ∈ X∪{c} is obtained from Ȳ by deleting the element
(x, r) indexed by x.

– Increase increase(Ȳ , c) is obtained from Ȳ by replacing the element (c, ri)
indexed by c with element (c, rmin{i+2,2n+1}).



On Reachability Problem of Updatable Timed Automata 153

– Decrease decrease(Ȳ , c, d) and d ∈ N is obtained from Ȳ by replacing the
element (c, ri) indexed by c with element (c, rmax{i−d,0}).

– Shift. Let j ∈ [0..m] and 0 ≤ i ≤ 2n + 1. A shift Ȳ = Y0Y1 · · · Ym ⇒ Ȳ ′ =
Y ′
0Y

′
1 · · · Y ′

m′ is defined as follows.
⎧
⎪⎪⎨

⎪⎪⎩

either Ȳ ′ = Y ′
0 , Y

′
1 , · · · , Y ′

m+1 if Y0 �= ∅, Y ′
0 = ∅, Y ′

1 = {(x, rmin{i+1,2n+1})
| (x, ri) ∈ Y0} and Y ′

j = Yj−1 for j ∈ [2..m+ 1].

or Ȳ ′ = Y ′
0 , Y

′
1 , · · · , Y ′

m−1 otherwise, Y ′
0 = {(x, rmin{i+1,2n+1}) | (x, ri) ∈ Ym},

and Y ′
j = Yj for j ∈ [1..m − 1].

As convention, we define ⇒∗ as reflexive transitive closure of ⇒.

Example 3. Consider the digiword in Example 1, digi(ν0) = {(c, r0), (x1, r0),
(x2, r0)}.

– after finite times shifts,
digi(ν1) = digi(ν2) = {(c, r5), (x1, r5), (x2, r5)}

– after decrease(digi(ν2), c, 2)
digi(ν3) = {(c, r3), (x1, r5), (x2, r5)}

– after insert(delete(digi(ν3), x2), (x2, r11))
digi(ν4) = {(c, r3), (x1, r5)}{(x2, r11)}

– after finite times shifts,
digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}

Equivalent to the regions [1] in nature, well formed digiwords are bisimilar
to the clock valuations in the following sense:

Ȳ1 ⇒∗ Ȳ2 if and only if ∀ν ∈ [Ȳ1],∃t ∈ R
≥0 s.t. ν + t ∈ [Ȳ2]

where, [Ȳ ] = {ν | Ȳ = digi(ν)}.

5 Reachability for UTA1s

In this section, we show that the reachability problem of UTA1s is decidable.
discretePDSs, which nicely enjoy decidable property of configuration reachabil-
ity. The key idea is that when the updatable clock’s value exceeds the maximum
integer n, we push a special symbol into the stack to record the updates.

Definition 10. For a UTA1 A = 〈Q, q0, F,X, c,Δ〉, there is a PDS P = 〈P ×
(P((X ∪ {c}) × Intv(n)))∗, {•,⊥},Δd〉, where the set of states P = Q ∪ {p′ |
p ∈ Q} and the initial configuration κ0 = 〈(q0, {(x, r0)|x ∈ X ∪ {c}}),⊥〉. Δd

consists of:

– Time Progress
1. 〈(p, Ȳ ),⊥〉 ↪→ 〈(p, Z̄),⊥〉, where Ȳ ⇒ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and i ≤

2n − 1.
2. 〈(p, Ȳ ), ε〉 ↪→ 〈(p, Z̄), •〉, where Ȳ ⇒ Z̄, for (c, ri) ∈ Yj ∈ Ȳ and 2n ≤ i ≤

2n + 1.
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– Local (p ε−→ q ∈ Δ)
〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉.

– Test (p x∈I?−−−→ q ∈ Δ)
〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉 if ri ⊆ I for (x, ri) ∈ Yj ∈ Ȳ .

– Assignment (p c←I−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), •〉 ↪→ 〈(p, Ȳ ), ε〉.
2. 〈(p, Ȳ ),⊥〉 ↪→ 〈(p′, Ȳ ),⊥〉.
3. ∀ri ⊆ I \ r2n+1, 〈(p′, Ȳ ),⊥〉 ↪→ 〈(q, insert(delete(Ȳ , c), (c, ri))),⊥〉.
4. 〈(p′, Ȳ ), ε〉 ↪→ 〈(p′, Ȳ ), •〉, if r2n+1 ⊆ I.
5. 〈(p′, Ȳ ), •〉 ↪→ 〈(q, insert(delete(Ȳ , c), (c, r2n+1))), •〉, if r2n+1 ⊆ I.

– Assignment (p x←I−−−→ q ∈ Δ, where x ∈ X)
∀ri ⊆ I, 〈(p, Ȳ ), ε〉 ↪→ 〈(q, insert(delete(Ȳ , x), (x, ri))), ε〉.

– Increment (p c:=c+1−−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), ε〉, for (c, ri) ∈ Yj ∈ Ȳ and i ≤ 2n − 2.
2. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), •〉, for (c, r2n−1) ∈ Yj ∈ Ȳ .
3. 〈(p, Ȳ ), ε〉 ↪→ 〈(q, increase(Ȳ , c)), ••〉, for (c, ri) ∈ Yj ∈ Ȳ and i ≥ 2n.

– Decrement (p c:=c−1−−−−→ q ∈ Δ)
1. 〈(p, Ȳ ), • • •〉 ↪→ 〈(q, Ȳ ), •〉.
2. 〈(p, Ȳ ), •• ⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 1)),⊥〉.
3. 〈(p, Ȳ ), • ⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 2)),⊥〉.
4. 〈(p, Ȳ ),⊥〉 ↪→ 〈(q, decrease(Ȳ , c, 2)),⊥〉 for (c, ri) ∈ Yj ∈ Ȳ and i ≥ 2.

In our encoding, we abuse the symbol ε in the left hand of the transition
rule of PDS P to indicate that whatever the topmost symbol in the stack is,
the transition can occur. This leads to a concise description for our encoding,
which is equivalent to its counterpart with only standard transition rules. For
example, 〈(p, Ȳ ), ε〉 ↪→ 〈(q, Ȳ ), ε〉 can be replaced with two transition rules since
there are only 2 symbols in the alphabet: (1) 〈(p, Ȳ ),⊥〉 ↪→ 〈(q, Ȳ ),⊥〉 and (2)
〈(p, Ȳ ), •〉 ↪→ 〈(q, Ȳ ), •〉.

Given a UTA1 A, for each kind of its transitions, we have its counterpart in
the Δd(P). Some transitions of P, at the first look, may seem hard to under-
stand. The following give a simple explanation for simulating assignment and
decrement.

For an assignment of the form x ← I, PDS P proceed with two different
cases: (1) x = c; (2) x �= c. For the first case, P first need to pop all symbol
• out of stack, then push a certain number of symbols • if needed, and finally
perform delete and insert operations. For the latter case, much simpler, just
directly perform delete and insert operations.

For a decrement of the form c := c − 1, PDS P proceed with four different
cases: (1) ν(c) > n + 1; (2) ν(c) = n + 1; (3)n < ν(c) < n + 1; (4) 1 ≤ ν(c) ≤ n.
For the first case, P merely pops out two symbols of •. For the second and third
cases, P pops out one or two symbol(s) of • and performs decrease operation.
The difference between them is how much it decreases. For the last case, P
merely performs decrease operation.

The following example shows the discretization of assignment transitions,
decrement transitions.
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Example 4. Consider the run in the Example 1.

– (q1, ν2)
c:=c−1−−−−→ (q2, ν3), where ν2 = {ν2(c) = ν2(x1) = ν2(x2) = 2.5}

and ν3 = {ν3(c) = 1.5, ν3(x1) = ν3(x2) = 2.5}. Corresponding simulation:
〈(q1, digi(ν2)),⊥〉 ↪→ 〈(q2, decrease(digi(ν2), c, 2)),⊥〉.

– (q2, ν3)
x2←(1,6)−−−−−−→ (qf , ν4), where ν3 is defined above and

ν4 = {ν4(c) = 1.5, ν4(x1) = 2.5, ν4(x2) = 5.7}. Corresponding simulation:
〈(q2, digi(ν3)),⊥〉 ↪→ 〈(qf , insert(delete(digi(ν3), x2), (x2, r11))),⊥〉.

Definition 11. Let � be any configuration of a UTA1 such that �0 = (q0, ν0) ↪→∗

� = (q, ν). Define ��� to be 〈(q, digi(ν)), •k ⊥〉, where k = 2 × floor(ν(c) − n) +
ceiling(frac(ν(c))) if ν(c) > n otherwise k = 0. A configuration κ of PDS P
with some � and κ = ��� is called an encoded configuration.

Example 5. Consider the configuration (qf , ν5) in Example 1, where ν5 = {c =
6.5, x1 = 7.5, x2 = 10.7}. By Definition 11, �(qf , ν5)� = 〈(qf , digi(ν5)), • ⊥〉,
where digi(ν5) = {(c, r13), (x1, r13)}{(x2, r13)}.

Remark 4. For a UTA1’s time progress transition (p, ν) t−→ (q, ν′), where t ∈ R
≥0,

there has a transition sequence of �(p, ν)� ↪→ 〈(p, Z̄1), w1〉 ↪→ 〈(p, Z̄2), w2〉 · · · ↪→
�(q, ν′)� to simulate it, which consists of finite many time time progress transi-
tions of PDS.

Lemma 1. Given a UTA1 A, its associated PDS P, and any configuration �,
�′ of A.

(Preservation) If � → �′ then ��� ↪→∗ ��′�.
(Reflection) If ��� ↪→∗ κ,

1. there exists �′ such that κ = ��′� and � →∗ �′, or
2. κ is not an encoded configuration, and there exists �′ such that κ ↪→∗ ��′�

by transitions (of P) and � →∗ �′.

With Lemma 1, we have the following theorem.

Theorem 1. The reachability of a UTA1 is decidable.

The proof is given in Appendix A.

6 Related Work

After timed automata(TAs) [1] had been proposed by Alur and Dill, a lot of
work has been devoted to extensions of TAs.

The extension that allows to compare the sum of two clocks with a constant
has also been investigated in [1]. It leads to an undecidable class of automata.
Periodic clock constraints defined in [11], can express properties like “the value
of a clock is even” or “the value of a clock is of the form 0.5 + 3n where n
is some integer. The corresponding class of automata is strictly more powerful



156 Y. Wen et al.

than TAs if silent transitions are not allowed but otherwise coincides with the
original model.

Controlled real-time automata, a parameterized family of TAs with some
additional features like clock stopping, variable clock velocities and periodic
tests has been proposed in [12]. Due to carefully chosen restrictions, controlled
real-time automata remains decidable.

Recursive timed automata(RTAs) [13] is an extension of TAs with recursive
structure. It has clocks by the mechanism of “pass-by-value”. When the con-
dition of “glitch-freeness”,i.e. all the clocks of components are uniformly either
by “pass-by-value” or by “pass-by-reference”, the reachability is shown to be
decidable.

Nested timed automata (NeTAs) [9,10,14] extend TAs with recursive struc-
ture in another way, which allow clocks of some TAs in the stack elapse simulta-
neously with the current running clocks during time passage. Those clocks are
named local clocks, while clocks in other TAs kept unaltered clocks during time
passage are named frozen clocks. It is proved that the reachability of NeTAs with
both types of clocks and a singleton global clock that can be observed by all TAs
is decidable, while that with two or more global clocks is undecidable [10].

The updatable timed automata (UTAs) [4] is a natural syntactic extension of
TA. It enjoyed the possibility of updating the clocks in a more elaborate way
than just simple reset in TA. The value of a clock could be reassigned to a
basic arithmetic computation result of values of other clocks. The paper gave
undecidability and decidability results for several specific cases. The decidability
results were obtained through a generalization of the region graph proposed by
Alur and Dill, while the undecidability results were obtained by reducing an
undecidable problem on Minsky Machine [15] to the emptiness problem for a
subclass of UTAs. The expressiveness of the UTAs was also investigated in the
paper. Our model UTA1s, is actually a specific subclass of general UTAs by
restricting the number of updatable clock to one.

A forward analysis of UTAs has been proposed in [16] for specific subclass of
UTAs that do not use comparisons between clocks. Recently, a refined algorithm
for specific subclass of UTAs with diagonal constraints has been proposed in [17].

7 Conclusion

This paper has investigated the reachability of UTA1s, UTAs with one updatable
clock. By restricting the number of updatable clocks to one, the reachability
of UTA1s is decidable, under the diagonal-free constraints. The decidability is
proved by encoding the clock behavior of UTA1s to PDSs based on the notion
of digiword. The key idea is to use a stack to record the time interval exceeding
the maximum constant integer. As a result, the transitions in pushdown systems
are finer than that of UTA1s.

UTA1s defined in Definition 5 only allow diagonal-free clock constraints. Our
proof can not be extended to cover the UTA1s with diagonal clock constraints.
We will further investigate the reachability for the UTA1s with diagonal clock
constraints as a future work.
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A A Proof of Lemma 1

Proof. Let � = (q, ν). Then ��� = 〈(q, digi(ν)), w〉, where w = •k ⊥ for some k.
For preservation part, By case analysis of � → �′.

1. Time Progress:� t−→ �′. By the digiword’s region-like property, we have
digi(ν) ⇒∗ digi(ν + t). Proceed with two subcases:
(a) If no stack operations involved (i.e. ν(c) + t ≤ n), then we have ��� =

〈(q, digi(ν)), w〉 ↪→∗ ��′� = 〈(q, digi(ν + t)), w〉 by applying the first tran-
sition rule of time progress rules finite times. Note that in this subcase,
w =⊥.

(b) If ν(c)+t > n, then we have ��� = 〈(q, digi(ν)), w〉 ↪→∗ ��′� = 〈(q, digi(ν+
t)), w′〉 by applying the first time progress rule finite times (maybe zero
times if ν(c) ≥ n) and then applying the second time progress rule finite
times.

2. Local:� = (p, ν) ε−→ �′ = (q, ν). Then with the Local transition of PDS,
��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν)), w〉.

3. Test: � = (p, ν) x∈I?−−−→ �′ = (q, ν). Then with the Test transition of PDS,
��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν)), w〉, since ∃(x, ri) ∈ Yj ∈ digi(ν)
such that ri ⊆ I, where digi(ν) = Y1Y2 · · · Yj · · · Ym.

4. Assignment: � = (p, ν) x←I−−−→ �′ = (q, ν[x ← d]), where d ∈ I. We proceed
with 2 cases:
(a) If x �= c, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� = 〈(q, digi(ν[x ←

d])), w〉 by applying the first assignment rule of PDS P: 〈(p, Ȳ ), ε〉 ↪→
〈(q, insert(delete(Ȳ , x), (x, ri))), ε〉, where Ȳ = digi(ν) and d ∈ ri.

(b) Otherwise, x = c, proceed with two subcases, d <= n and d > n.
– d <= n: If w = •k ⊥ for k > 0, we first need to pop all sym-

bols of • out of stack, by repeatedly applying the second assign-
ment rule of PDS k times, having ��� = 〈(p, digi(ν)), •k ⊥〉 ↪→∗ κ =
〈(p, digi(ν)),⊥〉, otherwise define κ = ��� since the stack already has
no symbols of •. Then by applying the third and fourth assignment
rule, we have κ ↪→ κ′ = 〈(p′, digi(ν)),⊥〉 ↪→ ��′� = 〈(q, digi(ν[x ←
d])),⊥〉.

– d > n: If w = •k ⊥ for k > 0, we first need to pop all symbols of • out
of stack, by repeatedly applying the second assignment rule of PDS
k times, having ��� = 〈(p, digi(ν)), •k ⊥〉 ↪→∗ κ = 〈(p, digi(ν)),⊥〉,
otherwise define κ = ���, since the stack already has no symbols of
•. Next, we have κ ↪→ κ′ = 〈(p′, digi(ν)),⊥〉 by the third assignment
rule. Then, by repeatedly applying the fifth assignment rule of P until
we have k = 2×floor(d−n)+ceiling(frac(d)) symbols of • in stack,
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we have κ′ ↪→∗ κ′′ = 〈(p′, digi(ν)), •k ⊥〉. Finally, by applying the last
assignment rule of mathcalP , we have κ′′ ↪→ ��′� = 〈(q, digi(ν[c ←
d]), •k ⊥)〉.

5. Increment: � = (p, ν) c:=c+1−−−−→ �′ = (q, ν[c ← ν(c) + 1]). We proceed with 3
subcases:
(a) If ν(c) ≤ n − 1, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =

〈(q, increase(digi(ν), c)), w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), w〉 by apply-
ing the first transition increment rule of PDS P.

(b) If n − 1 < ν(c) < n, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =
〈(q, increase(digi(ν), c)), •w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), •w〉 by apply-
ing the second transition increment rule of PDS P.

(c) If ν(c) ≥ n, then we have ��� = 〈(p, digi(ν)), w〉 ↪→ ��′� =
〈(q, increase(digi(ν), c)), • • w〉 = 〈(q, digi(ν[c ← ν(c) + 1])), • • w〉 by
applying the third transition increment rule of PDS P.

6. Decrement: � = (p, ν) c:=c−1−−−−→ �′ = (q, ν[c ← ν(c) − 1]). Note that only
when ν(c) ≥ 1, can this transition happen. We proceed with 4 subcases:
(a) If ν(c) > n + 1, then we have ��� = 〈(p, digi(ν)), • • •w′〉 ↪→ ��′� =

〈(q, digi(ν)), •w′〉 = 〈(q, digi(ν[c ← ν(c) − 1])), •w′〉 by applying the first
transition decrement rule of PDS P.

(b) If ν(c) = n + 1, then we have ��� = 〈(p, digi(ν)), •• ⊥〉 ↪→ ��′� =
〈(q, decrease(digi(ν), c, 1)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the second transition decrement rule of PDS P.

(c) If n < ν(c) < n + 1, then we have ��� = 〈(p, digi(ν)), • ⊥〉 ↪→ ��′� =
〈(q, increase(digi(ν), c, 2)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the third transition decrement rule of PDS P.

(d) If 1 ≤ ν(c) ≤ n, then we have ��� = 〈(p, digi(ν)),⊥〉 ↪→ ��′� =
〈(q, increase(digi(ν), c, 2)),⊥〉 = 〈(q, digi(ν[c ← ν(c) − 1])),⊥〉 by apply-
ing the fourth transition decrement rule of PDS P.

For reflection part, by induction on the steps of ↪→∗.
Base step: Consider the case of ��� ↪→ κ:

1. Time Progress. Obviously, ��� ↪→ κ by one of two time progress rules of
PDS P. Since digiwords have the region-like property, digi(ν) ⇒ Ȳ implies
that there exists a clock valuation ν′ ∈ V al(X ∪ {c}) such that ν′ = ν + t
and ν′ ∈ [Ȳ ] for a real number t(more precisely, 0 < t < 1). Proceed with two
cases:
(a) If ν(c) < n, then ��� ↪→ κ by using the first time progress rule of PDS P. In

such case, we have κ = 〈(p, Ȳ ,⊥)〉 = ��′�, where � = (p, ν) t−→ �′ = (p, ν′).
(b) If ν(c) ≥ n, then ��� ↪→ κ by using the second time progress rule of PDS

P. In such case, we have κ = 〈(p, Ȳ ), •w〉 = ��′�, where � = (p, ν) t−→ �′ =
(p, ν′).

2. Local. If ��� ↪→ κ for p
ε−→ q being a transition in A, then κ =

〈(q, digi(ν)), w〉 = ��′�, where �′ = (q, ν).
3. Test. Similar with the case for Local.
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4. Assignment. We only need to proceed with the first three cases, the other
cases can not happen since the configuration is a encoded configuration(i.e.
���).
(a) If ��� ↪→ κ by applying the first assignment transition rule of PDS P, then

κ is a encoded configuration, since we have ��� = 〈(p, digi(ν)), w〉 ↪→ κ =
��′� = 〈(q, insert(delete(digi(ν), x), (x, ri))), w〉, where � = (p, ν) x←I−−−→
�′ = (q, ν[x ← d]) for d ∈ ri ∈ I.

(b) If ��� ↪→ κ by applying the second assignment transition rule of
PDS P, then the clock involved is c and κ may not be a encoded
configuration. However, by applying the same rules finite times and
then third assignment rule, κ ↪→∗ κ1 = 〈(p, digi(ν)),⊥〉 ↪→ κ2 =
〈(p′, digi(ν)),⊥〉, and then if ri ∈ I for i ≤ 2n, we have κ2 ↪→ ��′� =
〈(q, insert(delete(digi(ν), c), (c, ri)),⊥〉, by applying the fourth assign-
ment rule, otherwise, we have κ2 ↪→∗ κ3 = 〈(p′, digi(ν)), •k ⊥〉 ↪→ ��′� =
〈(q, insert(delete(digi(ν), c), (c, ri)), •k ⊥〉 by applying finite times of fifth
assignment rule first and then the last assignment rule.

(c) If ��� ↪→ κ by applying the second assignment transition rule of PDS P,
the proof is similar to the above case.

5. Increment. We proceed with three cases:
(a) If it takes the first increment transition rule, then we can infer that

ν(c) <= n − 1. Thus we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), w〉 =
��′�, where �

c:=c+1−−−−→ �′.
(b) If it takes the second increment transition rule, then we can infer that n−

1 < ν(c) < n. Then we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), •w〉 =
��′�, where �

c:=c+1−−−−→ �′.
(c) If it takes the third increment transition rule, then we can infer that

ν(c) ≥ n. Then we have ��� ↪→ κ = 〈(q, increase(digi(ν), c)), ••w〉 = ��′�,
where �

c:=c+1−−−−→ �′.
6. Decrement. We proceed with four cases:

(a) If it takes the first decrement transition rule, then we can infer that
ν(c) > n + 1. Then we have ��� = 〈(q, digi(ν)), • • •w′〉 ↪→ κ =
〈(q, digi(ν)), •w′〉 = ��′�, where �

c:=c−1−−−−→ �′. Note that digi(ν) =
digi(ν[ν(c) ← ν(c) − 1]), since ν(c) > n + 1.

(b) If it takes the second decrement transition rule, then we can infer
that ν(c) = n + 1. Then we have ��� = 〈(q, digi(ν)), •• ⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 1)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′) and
ν′(c) = n.

(c) If it takes the third decrement transition rule, then we can infer that
n < ν(c) < n + 1. Then we have ��� = 〈(q, digi(ν)), • ⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 2)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′) and
n − 1 < ν′(c) < n.

(d) If it takes the fourth decrement transition rule, then we can infer that
1 <= ν(c) <= n. Then we have ��� = 〈(q, digi(ν)),⊥〉 ↪→ κ =
〈(q, decrease(digi(ν), c, 2)),⊥〉 = ��′�, where �

c:=c−1−−−−→ �′ = (q, ν′).
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Induction step: Assume ��� ↪→∗ κ′ ↪→ κ. We proceed with two cases:

1. κ′ is an encoded configuration, and by induction hypothesis ��� ↪→∗ κ′ = ��′�.
Then the proof is similar to the base step.

2. κ′ is not an encoded configuration. Note that for our encoding, we have
encoded configurations except for the second, third and fifth assignment rule.
Here, we give a proof for the fifth assignment rule. The other cases are sim-
ilar. Assume κ′ = 〈(p′, Ȳ ), w〉 is obtained by applying the fifth assignment
rule, we have κ′ ↪→ κ = 〈(q, digi(ν′)), w〉 = ��′� = �(q, ν′)� by applying the
last assignment rule, where ∃ν ∈ [Ȳ ] such that ν′ = ν[c ← d] for d ∈ r2n+1.
Finally, put together � →∗ �′.
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Abstract. Formal method is key approach in developing safety criti-
cal systems. Graph search algorithms are very important software com-
ponents. The paper tries to formally develop two non-recursive graph
search algorithms, depth-first search and breadth-first search. This is
a very challenge task because non-recursive graph search algorithms
have low computing complexity with high logic complexity comparing
with recursive graph search algorithms. The formal development of non-
recursive algorithms involves formalization of specification, loop invariant
and proof of the algorithmic programs. In this paper, we introduce PAR
platform that support MDD of software with high reliability and safety.
Specification language Radl of PAR platform was used to describe the
program specification; Software modelling language Apla was used to
describe algorithmic programs; the function of recursive definition was
used to develop and denote the loop invariant, then the algorithmic pro-
grams was formally proofed. Finally, the correct algorithmic programs
denoted by Apla were transformed to the programs of executable lan-
guage; such as C++, Java, VB and C#, etc., based on the program
generating systems in PAR platform. The most important innovation is
defining recursive function to denote the loop invariant that makes the
loop invariant precise and simple.

Keywords: Formal development · Loop invariant · Non-recursive graph
search algorithms · PAR platform · Depth-first search · Breadth-first
search

1 Introduction

A graph-searching algorithm can discover much information about the structure
of a graph. Many algorithms begin by searching their input graph to obtain this
structural information. Other graph algorithms are organized as simple elabora-
tions of basic graph-searching algorithms. Techniques for searching a graph are
at the heart of the field of graph algorithms [2]. The depth-first and breadth-
first based graph searching algorithms have been widely applied in many field
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such as minimum spanning trees, double connected branch and strongly con-
nected components of graphs, graph matching, flows in networks, Hamilton map,
Dijkstra’s shortest paths, graph planarity testing etc. Graph search algorithms
are widely used in industrial areas, such as electronic circuits design, power flow
management in electric networks.

Graph searching algorithms can be implemented with recursive or non-
recursive method. Although recursive graph search algorithms have clear read-
ability and low logic complexity, they have high computing complexity. Recursive
algorithms may exhaust all memory space in case of searching large graph. Some
executable languages do not support recursive mechanism. In the contrary, non-
recursive graph search algorithms have high logic complexity and low computing
complexity. Obviously, non-recursive graph search algorithms have much more
practical value than recursive algorithms in industrial applications.

Non-recursive graph search algorithms are very important. But up to now,
few researchers can give their formal specification, accurate loop invariants and
formal proof. The related books and theses just describe their development in
natural language and implement in executable language.

Existing techniques of developing loop invariant are only suitable for some
simple problems. Complicated algorithmic programs such as graph search algo-
rithms which have non-linear data structure, cannot get satisfiable loop invariant
using these techniques.

The formalization is an challenge for those algorithms. We urgently need a
new style to give formal specification and an innovation to give precise loop
invariants for those algorithms.

In this paper, using specification language Radl to describe the program
specification of depth-first and breadth-first graph searching algorithms. Using
the innovation of defining recursive function to denote the loop invariants. With
the support of executable program generating systems in PAR platform, the
C++, C#, Java executable programs have been generated.

The paper was organized as follows. The Sect. 2 gives the related prelimi-
nary knowledge of PAR platform; The Sect. 3 elaborates formal development of
non-recursive algorithm of depth-first search and breadth-first search of graph;
The Sect. 4 shows the correct graph search executable algorithmic programs be
generated automatically based on the PAR platform; The Sect. 5 described the
related works; Finally a short conclusion was presented.

2 Preliminary

PAR means PAR (Partition-and-Recur) method [18,21,23,25] and its supporting
platform, called PAR platform. PAR is a long-term research projects supported
by a series of research foundations of China. PAR method and PAR platform
consists of specification and algorithm describing language Radl, software mod-
eling language Apla, a set of rules for specification transformation and a set
of automatic generating tools such as Radl to Apla generating system, Apla to
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Java, C++, Cexecutable program generating systems. According to the method-
ology of MDD, PAR has been used in developing software with high reliability
and safety, such as non-trivial algorithm programs [20,24], traffic scheduling
system [17], bank account management system and electric control system.

There are two developing ways in using PAR method and PAR platform to
develop algorithm. One way is writing specification and recurrence relation for
problem solution in Radl language at first, then generating Apla program by
Radl to Apla generating system, then generating executable program by Apla
to executable program generating system. This way can be used to develop
algorithms whose post-condition can be expressed by quantifier. The other way
is writing loop invariant and Apla program at first, then proof the correctness
of Apla program by loop invariant, then generating executable program.

2.1 Specification Language Radl

Radl (Recur-based Algorithm Design Language) used the idiomatic
mathematical symbols and style to describe the algorithm specification, spec-
ification transformation rules and the recurrence relation. Radl is the front lan-
guage of the Apla language, with mathematical referential transparency. Using
the unified format (Qi : r(i) : f(i)) given by Dijkstra to denote quantifiers,
where Q can be ∀ (all quantifier), ∃ (exists quantifier), MIN (minimum quan-
tifier), MAX (maximum quantifier), Σ (summation quantifier), etc., and i is a
bounded variable, r(i) is the variant range of i and f(i) is a function.

2.2 Software Modelling Language Apla

Apla (Abstract Programming Language) is the software modelling language and
the target language of Radl to Apla program generating system, and the source
language of Apla to Java, C++, C, Dephi executable program generating system.

2.3 Predefined Generic Abstract Data Type of Apla

Apla language provides abundant predefine generic abstract data type, such
as set, list, tree, graph, etc. Those ADT realized sufficient data abstraction
and function abstraction. With those Predefined generic ADT supporting, the
abstract program written in Apla language is very short and easy to understand
and prove.

List. Apla language provides predefined generic abstract data type List. The
description of ADT List’s data and operations is given below:

Specify ADT list (sometype data, [size])
//data is called the data type of list elements
//size is called the upper bounds of the number of list elements

type list(sometype data, [size])
var
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h, t: integer; //h and t represent the head and tail
of List;

S, T: list:=[], []; //S and T is List
e: data; i, j: integer; //e is element of List

Operator:
[e] //List which contain just one element
[] //empty List
#S //the number of elements in List S
S[i] //the element in List S, S.h ≤ i ≤ S.t
S[i..j] //one sublist of List S, S.h ≤ i, j ≤ S.t
S ↑T //construct a new List by concatenating List S and T. “↑”

operation can conveniently express insert and delete
operations on the head, tail or central of List

endspec;

Weighted Directed Graph. Apla language provides a weighted directed graph
predefined generic abstract data types. Undirected graph can be view as a
directed graph, where each undirected edge can be seen as two opposite directed
edges. Let digraph be a weighted directed graph, which is defined as:

Type digraph((datatype, [size1]), (datatype, [size2]) = record
V: set(vertex, [size1]); //is called the node set of G
E: set(edge, [size2]); //is called the edge set of G

End;

The definition of vetex and edge:
type vertex = record
d: datatype; //d is the data of node
n: int; //n is the number of node
f:0..1; //f is the sign of whether the node be visited

end;
type edge = record
w: datatype; //w is the weight of edge
h, t: vertex; //h and t is the head node and tail node of the edge
f:0..1; //f is the sign of whether the edge be visited

end;

The description of ADT Graph’s data and operations is given below:

Specify ADT digraph((sometype data, int size1), (sometype data, int size2))
var
v: vertex; //node of graph
e: edge; //edge of graph
Operator:
G+v //add node v into graph G
G+e //add edge e into graph G
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#(G.V) //the amount of nodes in graph G
#(G.E) //the amount of edges in graph G
G.out(u) //the head nodes of edgets whose tail node is u
G.in(u) //the tail nodes of edgets whose head node is u
G.arcvalue(v1, v2) //the weight of the edge which connect node v1, v2

endspec;

3 Formal Development of Non-recursive Algorithm
of Graph Search

There are three popular graph traversal methods: depth-first search (DFS),
breadth-first search (BFS), and topological search. The topological search applies
only to directed acyclic graphs.

Formally develop non-recursive algorithm of depth-first search and bread-
first search of graph. Specification language Radl of PAR method describes the
formal specification. The innovation of defining recursive function denotes the
loop invariant. Then formally prove the correctness of the algorithm programs
denoted by Apla language. Finally, get executable program such as C#, C++,
Java etc. through the PAR platform generating systems.

With G = (V,E) standing for connected graph, V is called all the nodes in
G,E is called all the edges in G, V1 is source node in G.

3.1 Formal Development of Non-recursive Algorithm of Depth-First
Graph Search

Depth-first search traverses a graph following the deepest (forward) direction
possible. The algorithm starts by selecting the lowest numbered node v and
marking it as visited. DFS selects an edge (v, u), where u is still unvisited,
marks u as visited, and starts a new search from node u. After completing the
search along all paths starting at u, DFS returns to v. The process is continued
until all nodes reachable from v have been marked as visited [16].

Depth-first search can be used to compute topological sort of directed acyclic
graphs, strongly connected components of graph and construct the directed-
graph representation in graph planarity testing algorithm.

Developing Non-recursive Algorithm of Depth-First Graph Search.

Construct the problem formal specification:

Using DFS (G.V1) to represent the sequence of nodes of graph G by depth-first
search from source node V1, and Using X to store the sequence of nodes. The
problem specification can be as follows.

Q: given a graph G = (V, E) and the node V1

R: X = DFS (G.V1) ∧ perm (X, G.V), where perm (X, G.V) representing
the nodes in G.V composed X in a certain order.
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G.out (V1) represents the node set adjacent to node V1,
let G.out (V1) = V11, V12, . . . V1n,
DFS (G.V1) = [V1] ↑DFS (V11) ↑DFS (V12) ↑ . . . ↑DFS (V1n)

Further spread DFS (V11) as follows:
Let G.out (V11) = V111, V112, . . . V11n,
DFS (G.V1) = [V1] ↑ [V11] ↑DFS (V111) DFS(V112) ↑ . . . ↑DFS(V11n) ↑
DFS (V12) ↑ . . . ↑DFS (V1n)

Construct the loop invariant with defining recursive function:
Based on the above deduction, we can use the following strategy to get the loop
invariant of non-recursive abstract algorithm of depth-first graph search:

Introduce three variables X, S, q, variable X storage the nodes set which have
been visited; S storage the nodes set which are waiting for visit; q is the node
which is visiting now.

Because graph has non-linear data structure, we need to define recursive
function to determine when the waiting node should be stored into or got out
from S. According to the definition of depth-first graph search, S should be the
First In Last Out stack.

Describe varying law of all the variables in the above strategy, we can con-
stitute the loop invariant as following:

DFS (G.V1) = X ↑ [q] ↑ F[G.out(q) ↑ S]

F[S] should be the list which be constituted by concatenating depth-first
search list of each node in the stack F[S] with recursive definition as formula 1.
G.out(q) in the recursive definition stands for the nodes adjacent to q and are
not visited:
⎧
⎪⎨

⎪⎩

F[S] = []; when S is empty;
F[q ↑ S] = [q] ↑ F[G.out (q) ↑ S] when q is the node which is not visited;
F[q ↑ S] = F[S] when q is the node which is visiting now;

(1)
According to the above loop invariant with defining recursive function, we can
get the following Apla program:

Apla program (omit the input and output statements)
procedure DFS (g: digraph; proc process(q: vertex(integer)));
type st = vertex(integer);
var X, S: list(st); q, v1:st; numv, nume, i:integer;
e1:edge(integer, integer); g: digraph((integer), (integer));
begin
X, q, S:=[], v1, [];
do (q.f = 0) → X:=X ↑ [q];

process(q.d);
foreach (i:0 ≤ i ≤ #(g.out(q))-1:
if g.out(q)(i).f=0 → S:=[g.out(q)(i)] ↑ S;);
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fi;
q.f:=1;

[](q.f = 1) ∧ (¬(S = [])) → q, S:=S[S.h], S[S.h+1..S.t];
od;
foreach(i:0 ≤ i ≤ #(X) -1:write(X[i].n, ‘‘,"););
end.

Procedure process(q.d) in above Apla program is abstract generic procedure
which can be substituted by different concrete procedures to get different graph
algorithms, for example connected components computing algorithm.

Proof of Non-recursive Algorithm of Depth-First Graph Search. In
order to prove this algorithm, We use Dijkstra-Gries standard proof strategy
[3,6]. The proof strategy contains five conditions: (1) Prove that ρ is true before
execution of the loop begins. (2) Prove that {ρ ∧ Bi}Si{ρ}, for 1 ≤ i ≤ n. That is,
execution of each guarded command terminates with ρ true, so that ρ is indeed
an invariant of the loop. (3) Prove that ρ ∧ ¬BB ⇒ R, i.e. upon termination the
desired result is true. (4) Prove that ρ ∧ BB ⇒ (t > 0), so that t is bounded from
below as long as the loop has not terminated. (5) Prove that {ρ ∧ Bi} t1:=t;
Si{t < t1}, for 1 ≤ i ≤ n, so that each loop iteration is guaranteed to decrease
the bound function.

Because each node of graph will be pushed in stack and visited just one time,
the termination of this algorithm is obvious. We just need to prove conditions
(1), (2), (3). In Sect. 3.1, we get the loop invariant ρ is: DFS(V1) = X ↑ [q] ↑
F[G.out(q) ↑S]. The proof steps are as following:

(1) Proof ρ is true when the loop begins

wp(“X, q, S:=[], V1, [];”, ρ)
≡ DFS (G.V1) = [] ↑V1 ↑F[G.out(V1)]
≡ true

(2) Proof ρ is true after each execution of loop

wp(“X, S:=X ↑ [q], G.out(q) ↑S”, ρ)
≡ DFS (G.V1) = X ↑ [q] ↑ [q] ↑F[G.out(q) ↑G.out(q) ↑S]
(from formula 1)
≡ DFS (G.V1) = X ↑ [q] ↑F[q ↑G.out(q) ↑S]
(from formula 1)
≡ DFS (G.V1) = X ↑ [q] ↑F[G.out(q) ↑S]
ρ ∧ (q.f = 0) ⇒ DFS(G.V1) = X ↑ [q] ↑F[G.out(q) ↑S]

at the same time:

wp(“q, S:=S[S.h], S[S.h + 1..S.t];”, ρ)
≡ DFS (G.V1) = X ↑ [S[S.h]] ↑F[G.out(S[S.h]) ↑S[S.h + 1..S.t]]
(from formula 1)
≡ DFS (G.V1) = X ↑F[S[S.h] ↑S[S.h + 1..S.t]]
≡ DFS (V1) = X ↑F[S]
ρ ∧ (q.f = 1) ∧ (¬(S = [])) ⇒ DFS (V1) = X ↑F[S]
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(3) Proof ρ is true when the loop termination

ρ ∧ ¬(((q.f = 0) ∨ (¬(S = []))) ⇒ R
≡ ρ ∧ (q.f = 1) ∧ (S = []) ⇒ R
≡ DFS (G.V1) = X ⇒ R
≡ true

3.2 Formal Development of Non-recursive Algorithm
of Breadth-First Graph Search

Breadth-first search visits all nodes at distance k from the lowest numbered node
v before visiting any nodes at distance k + 1. Breadth-first search constructs a
breadth-first search tree, initially containing only the lowest numbered node.
Whenever an unvisited node w is visited in the course of scanning the adjacency
list of an already visited node u, node w and edge (u,w) are added to the tree.
The traversal terminates when all nodes have been visited [16].

Many graph algorithms such as Prim minimum spanning trees, Dijkstra single
source shortest paths algorithm, adopt the spirit of breadth-first search.

Developing of Non-recursive Algorithm of Breadth-First Graph
Search.

Construct Problem Formal Specification: Using BFS (G.V1) to represent the
sequence of nodes of graph G by breadth-first search from node V1, and Using
X to store the sequence of nodes, the problem specification can be as follows:

Q: given a graph G = (V, E) and the node V1

Definition 1 (Breadth-first Order). Using D(Xi) represents the least num-
ber of edges which be used to connect node V1 and node Xi. For any two node
Xi, Xj in sequence X, if i < j, then D (Xi) ≤ D (Xj).

The post-condition assertion described in natural language is as follows:

R1: X = BFS (V1) ∧ perm (X, G.V), and any two nodes in X
corresponding to the “Breadth-first Order”.

It is far more difficult to spread X = BFS(V1) than X = DFS(V1). So, the
definition of recursive function F[S] need to define in advance as formula 2:

{
F[S] = []; when S = [],
F[S] = [S.h] ↑ F[S[h + 1..t] ↑ G.out (S.h)] when S is not empty

(2)

So we can get formal post-condition assertion as follow:

R2: X = BFS (V1) = [V1] ↑ F(G.out(V1)) ∧ ((S �= [] ∧ F[S] = [S.h]
↑ F[S[h + 1..t] ↑ G.out(S.h)]) ∨ (S = [] ∧ F[S] = []))
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Constructing loop invariant with defining recursive function:
Introduce three variables X, S, Q, variable X storage the nodes set which

have been visited; S storage the nodes set which are waiting for visit; q is the
node which is visiting now.

Describe varying law of all the variables in the above strategy, we can con-
stitute the loop invariant of graph breadth-first search algorithm as following:

BFS (G.V1) = X ↑ [q] ↑ F[S ↑ G.out(q)]

F[S] should be the First In First Out sequence, with the recursive definition
as formula 3. G.out(q) in the recursive function stand for the nodes adjacent to
q and are not visited:
⎧
⎪⎨

⎪⎩

F[S] = []; when S is empty;
F[q ↑ S] = [q] ↑ F[S ↑ G.out (q)]; when q is the node which is not visited,
F[q ↑ S] = F[S]; when q is the node which is visiting now;

(3)
According to the above loop invariant with defining recursive function, we can

get the following Apla program:
Apla program (omit the input and output statements)
Procedure BFS (g: digraph; proc process(q: vertex(integer)));
type st = vertex(integer);
var X, S: list(st); q, v1:st; numv, nume, i: integer;
g: digraph((integer), (integer));
Begin
X, q, S:=[], v1, [];
do (q.f = 0) → X:=X ↑ [q];

process(q.d);
foreach (i:0 ≤ i ≤ #(g.out(q)) -1:
if g.out(q)(i). f = 0 → S:=[S ↑ g.out(q)(i)];); fi;
q.f:=1;

[](q.f = 1) ∧ (¬(S = [])) → q, S:=S[S.h], S[S.h + 1..S.t];
od;
end.

Proof of Non-recursive Algorithm of Breadth-First Graph Search. In
order to prove this algorithm, We use Dijkstra-Gries standard proof strategy as
Sect. 3.1. Because each node of graph will be pushed in sequence and visited just
one time, the termination of this algorithm is obvious. We just need to prove
conditions (1), (2), (3) in proof strategy.

In Sect. 3.2, we get the loop invariant ρ is: BFS(G.V1) = X ↑ [q] ↑F[S ↑
G.out(q)]. The proof steps are as following:

(1) Proof ρ is true when the loop begin

wp(“X, q, S:=[], V1, [];”, ρ)
≡ BFS(G.V1) = [] ↑ [V1] ↑F[G.out(V1)] ↑ []
≡ true
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(2) Proof ρ is true after each execution of loop

wp(“X, S:=X ↑ [q], S ↑G.out(q)”, ρ)
≡ BFS(G.V1) = X ↑ [q] ↑ [q] ↑F[S ↑G.out(q) ↑G.out(q)]
(from formula 3)
≡ BFS(G.V1) = X ↑ [q] ↑F[q ↑S ↑G.out(q)]
(from formula 3)
≡ BFS(G.V1) = X ↑ [q] ↑F[S ↑G.out(q)]
ρ ∧ (q.f = 0) ⇒ BFS(G.V1) = X ↑ [q] ↑F[S ↑G.out(q)]

At the same time:

wp(“q, S:=S[S.h], S[S.h + 1..S.t];”, ρ)
≡ BFS(G.V1) = X ↑ [S[S.h]] ↑F[S[S.h + 1..S.t] ↑G.out(S[S.h])]
(from formula 3)
≡ BFS(G.V1) = X ↑F[S]
ρ ∧ (q.f = 1) ∧ (¬(S = [])) ⇒ BFS(G.V1) = X ↑F[S]

(3) Proof ρ is true when the loop terminate

ρ ∧ ¬((q.f = 0) ∨ (¬(S = []))) ⇒ R
≡ ρ ∧ (q.f = 1) ∧ (S = []) ⇒ R
≡ BFS(G.V1) = X ⇒ R
≡ true

4 Generate Executable Program by Program Generating
System in PAR Platform

The executable program can be generated automatically from the Apla to C++,
JAVA, C#, Vb.net generating system in PAR platform.

The executable program generating system and the predefined abstract data
type, such as “list”, “weighted directed graph” and other library parts have been
strictly tested and analysed. They can ensure semantic consistency between Apla
program and executable program.

4.1 The Generation Steps of Program Generating System

As shown in Fig. 1, we choose the “C# program generating system” to generate
executable C# program.

– Firstly, we click “New Apla” button and input the abstract algorithm
described in Apla language. The algorithm is very short, only 4 lines core
codes, in the left side of Fig. 1.

– Secondly, we click “Generate” button, the corresponding C# program which
has dozens of codes in the right side of Fig. 1 will be generated.

– Thirdly, we click “Run” button, the C# program can run immediately.
– Finally, we can input the edges, nodes and source node of graph and test.
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Fig. 1. Executable program generating system in PAR platform.

Fig. 2. Kuratowski K3, 3 graph. Fig. 3. Kuratowski K5 graph.

4.2 The Results of Executable Programs Generated by Generating
Systems

We input Kuratowski K3, 3 graph as Fig. 2 to test the depth-first graph search
C# program, the result is A1, B1, A2, B2, A3, B3.

We input Kuratowski K5 graph as Fig. 3 to test the breadth-first graph search
C# program, the result is c, b, d, a, e.

With no doubt, the program results are correct. We test the C# programs
with many other test cases, the results are correct also.
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5 Related Works

Up to now, existed related works about the developing non-recursive algorithm
of graph search just describe their informal development process in natural lan-
guage and implement them in executable language by program designer artifi-
cially. Few research about formal development of those algorithms was found in
formal methods such as VDM [8], B [9], Z [1], Designware [15], SOFL [12].

Developing loop invariant is one of the most challenging tasks in the research
field of formal methods. It contains a large amount of creative work. The amount
of research work about the loop invariants is substantial and spread over more
than three decades [7,10,11]. Gries gave four standard loop invariant develop-
ing strategies in [6]. Nguyen et al. in [13] and Rodriguez-Carbonell and Kapur
in [14] generated polynomial loop invariants in simple program. B. Meyer sum-
marized the international research status of loop invariants and gave loop invari-
ants of twenty algorithms [5]. The loop invariant developing strategies proposed
by Meyer mainly adopt the technique of transforming pre-condition and post-
condition assertion [4].

In [2], Cormen gave the loop invariant of breadth-first search with natural
language as ‘At the test in line 10, the queue Q consists of the set of gray vertices
(gray vertices means vertices waiting for visiting)’. This invariant is informal and
can’t describe varying law of all the variables. Through this invariant, we can’t
understand the nature of algorithm and can’t formally prove the correctness
also.

PAR method gave the new definition of loop invariant and two new strate-
gies to develop loop invariants [19]. In [22], according to the character of post-
condition assertion, PAR method classified the loop invariant into two types.
One type is post-condition assertion can be described by quantifier and its loop
invariant can be found by transforming the pre-condition and post-condition,
and the other type can’t. In most case, loop invariants of traversal of non-linear
structure such as tree, graph, can’t be found from transforming post-condition
assertion.

Using the function of recursive definition to develop and denote the loop
invariant, PAR method successfully developed the loop invariants of Pre-order,
In-order, Post-order [26] non-recursive binary tree traversal algorithms and proof
the correctness of them.

6 Conclusion

We formally develop non-recursive algorithms of graph depth-first search and
breadth-first search with PAR method and PAR platform. Formal development
gives us the formal specification, accurate loop invariant and proof of correctness
of those algorithms. The executable programs generated by PAR platform can
run correctly. The merits of this research can be summarized as following:

– The problem specification denoted by Radl language and abstract program
described by software modelling language Apla are simple and accurate. It
gave a simplified way to prove correctness.
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– The formal development by PAR method can greatly improve program reli-
ability. The formal specifications and abstract programs have been proof by
loop invariants, the concrete executable programs are generated with a series
of program generating systems which have been rigorously tested and static
analysed.

– The simple and accurate loop invariants with function of recursive definition
make formal development and proof of non-recursive graph search algorithms
possible. The invariants would be very helpful for understanding the roles of
every loop variable and nature of algorithms. The innovation of loop invariants
developing technique can be used to other complex graph algorithms.

Summarily, the success in this research shows us the promise that PAR
method can formally develop complex non-recursive graph search algorithms.
We will do the research continuously and apply PAR method and PAR platform
to develop more safety critical systems in industrial application.
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Abstract. We improve LTL2BA with a new algorithm for constructing
Büchi automata from LTL formulas. The core of the new algorithm is
a so called CF-normal form which presents an LTL formula in the cur-
rent and future form. With the aid of well developed reduction rules in
LTL2BA and new rules concerning combination of always and eventu-
ally operations, the improved translator named LtlNfBa is competitive
with the current leading tools LTL3BA and SPOT.

Keywords: Linear temporal logic · Büchi automata · Generalized Büchi
automata · Model checking · SPOT

1 Introduction

In model checking, a Linear Temporal Logic (LTL) [1] formula is often used to
describe a desired property of the system to be verified. A model checker trans-
forms the negation of this formula into a Büchi automata, builds the product of
that automata with the system model, and then checks emptiness of the product
automaton. Thus, constructing Büchi automata from LTL formulas is a signifi-
cant process in LTL model checking and a scalable supporting tool is important
in making LTL model checking practical.

The seminal theory of the transformation from LTL formulas to Büchi
automata was worked out in the 80 s and the basic algorithms were developed
during the 90 s in the last century. Originally, the transformation [2,3] was on
mathematical simplicity, it was not appropriate for explicit model checking, since
the automata constructed were always exponential in the size of the formula. On
a demand-driven basis, an optimized translation [4] that avoided the exponen-
tial blow-up in many cases of practical interest was developed and used in the
explicit model checker SPIN. Based on the optimization on the original trans-
formation [5], symbolic model checkers such as NuSMV were developed. Also,
a transformation via alternating automata was described in [6] motivated by
mathematical simplicity [7]. As model-checking pervading into the industrial
applications, efficient and applicable model checking algorithms are appealed.
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Thus, several improvements have been given to get a better translation tool
from an LTL formula to an automaton during the last few years [8–13].

Considering the speed of the translators from LTL formulas to Büchi
automata, LTL3BA [19] (improved version of LTL2BA [18]) and SPOT [21] are
the leading tools. The underlying algorithms adopted by the two tools are differ-
ent. In LTL3BA and LTL2BA, the translation proceeds in three steps: first, the
given LTL formula is translated to a very weak alternating automaton (VWAA);
second, the obtained VWAA is translated to a transition-based generalized Büchi
automaton (TGBA); and third, the TGBA is transformed into a Büchi automa-
ton (BA). Each of the three automata is simplified during the translation. SPOT
translates a given LTL formula to a TGBA first by a tableau method presented
in [22], and then a BA. In [20], experimental results on nine parametric formulas
show that LTL3BA and SPOT are going nearly head-to-head.

In this paper, we improve LTL2BA with a new algorithm for constructing
Büchi automata from LTL formulas. The new algorithm is based on a so called
CF-normal form which presents an LTL formula in the current and future form.
With the aid of well developed reduction rules and the new rules concerning
combination of always and eventually operations, the improved translator named
LtlNfBa is competitive with both LTL3BA and SPOT.

The reminder of the paper is organized as follows. The next section briefly
presents the preliminaries including LTL and Büchi Automata. In Sect. 3,
CF-normal forms are introduced for LTL formulas. Based on it, a transformation
from LTL formulas to BA is presented in Sect. 4. Implementation and experi-
mental results are given in Sect. 5.

2 Preliminaries

This section briefly presents LTL and Büchi automata.

2.1 Linear Temporal Logic

We use the terminology from [15]. Given a nonempty finite set AP of atomic
propositions, the set of all LTL formulas over AP is the set of formulas built
from elements in AP using negation (¬), disjunction (∨), next (©), and until
(U) operators. The syntax is presented as follows:

φ ::= p | ¬φ | φ ∨ φ | © φ | φ U φ

where p ∈ AP and φ is a well-formed LTL formula.
LTL formulas are interpreted in linear-time structures. A linear-time struc-

ture over AP is an infinite sequence x = x(0), x(1), · · · where each x(i) is a
valuation AP → {true, false}. Whether or not a formula φ holds in a linear-
time structure x at a position i, denoted by x, i |= φ is defined by the following
semantics:
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– x, i |= p if x(i)(p) = true, for p ∈ AP,
– x, i |= ¬φ if x, i �|= φ,
– x, i |= ϕ ∨ ψ if x, i |= ϕ or x, i |= ψ,
– x, i |= ©ϕ if x, i + 1 |= ϕ, and
– x, i |= ϕ U ψ if there exists j ≥ i such that x, i′ |= ϕ for i′ ∈ {i, i + 1, ..., j − 1}

and x, j |= ψ

The abbreviations true, false, ∧, → and ↔ are defined as usual. In particular,
true

def= φ ∨ ¬φ and false
def= φ ∧ ¬φ for any formula φ. In addition, eventually

(♦φ) and always (�φ) temporal constructs can be derived by ♦φ
def= true U φ

and �φ
def= ¬♦¬φ, respectively.

It has been proved that any LTL formula can be transformed into a nega-
tion normal form where all negations are adjacent to atomic propositions by
employing an auxiliary temporal operator Ū [17]. Negation normal form of LTL
is presented in Definition 1.

Definition 1 (Negation Normal Form). For any p ∈ AP, the set of LTL
formula in negation normal form is defined by:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | © φ | φ U φ| φ Ū φ

where ¬(φ U φ) ≡ (¬φ Ū ¬φ) and ¬(φ Ū φ) ≡ (¬φU¬φ).

The worst-case time complexity of transforming an LTL formula into negation
normal form is linear in the length of φ, i.e. the number of symbols of φ, denoted
by |φ|. In what follows, useful logic laws for LTL are presented:

2.2 Büchi Automata

We briefly present Büchi Automata (BA) and Transition-based Generalized
Büchi Automata (TGBA) that will be used later in this paper.

Definition 2. A Büchi automaton is a tuple A = (Σ,Q,Q0, δ, F ), where Σ is
a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial states,
F ∈ 2Q is a set of finial states, and δ : Q × Σ → Q is a transition function that
maps a state and an input letter to a state in Q.

A run of a BA on an infinite word w = w0, w1, w2, · · · (wi ∈ Σ for each i ≥ 0)
is an infinite sequence of states ρ = q0, q1, q2, · · · such that q0 ∈ Q0, and for each
qi, i ≥ 0, δ(qi, wi) = qi+i. A run ρ = q0, q1, q2, · · · is accepting if there exists
some state q ∈ F such that qi = q holds for infinitely many i ∈ N0.
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Generalized Büchi automata as well as transition-based generalized Büchi
automata are immediate results of the transformations from temporal logic for-
mulas to Büchi automata [17]. Recently, they are also used directly for model
checking LTL formulas. We present here a minor modified version of the later
and still named transition-based generalized Büchi automata.

Definition 3. A transition-based generalized Büchi automaton is a tuple GA =
(Σ,Q, q0, Fv , δ,G), where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q
is the set of initial state, Fv is a set of final values, δ : Q × Σ × 2Fv → Q is a
transition relation where each transition is labeled by a letter in Σ and a set of final
values, and G = {Ffv | fv ∈ Fv and Ffv is the set of transtions where fv occurs} is
a set of accepting sets.

A run of a TGBA on an infinite word w = w0, w1, w2, · · · (wi ∈ Σ for
each i ≥ 0) is an infinite alternating sequence of states and sets of final values
ρ = q0, f0, q1, f1, q2, f2 · · · such that q0 ∈ Q0, for each qi ∈ Q and fi ∈ 2Fv ,
i ≥ 0, δ(qi, wi, fi) = qi+i. A run ρ = q0, f0, q1, f1, q2, f2 · · · is accepting if for
each acceptance set Ffv ∈ G, fv ∈ fi for infinitely many i ∈ N0.

3 CF-Normal Form for LTL

In what follows, CF-normal form (short for current and future normal form) is
defined for LTL formulas. Originally, this normal form was used in [14,16] for
dealing with Propositional Projection Temporal Logic (PPTL) formulas and in
[23] for achieving stutter invariant LTL formulas. Because of different purpose,
the definition in this paper is slightly different from the ones in [14,16,23]. Note
that in the rest of the paper, when an LTL formula is mentioned, it indicates
one in negation normal form.

Definition 4. CF-normal form of an LTL formula φ is defined as follows,

φ ≡
∨

i

βi ∧ ©φi

where βi is a typical propositional logic formula (called state formula) in disjunc-
tion normal form, and φi an LTL formula without disjunction being the main
operator.

In CF-normal form, each βi ∧ ©φi, is called a literal where βi indicates
the proposition holding at the current state, and φi denotes that at the next
state φi will hold. Thus, CF-normal form splits an LTL formula into the current
and future parts. The following theorem shows that any LTL formula can be
transformed into its CF-normal form.

Theorem 1. Any LTL formula φ can be transformed to CF-normal form.
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Proof: The proof proceeds by induction on the structures of LTL formulas.
Base: If φ ∈ AP, we have φ ≡ φ ∧ ©true; if φ ≡ ¬ϕ, ϕ ∈ AP, we have φ ≡
(¬ϕ) ∧ ©true.
Induction: Suppose ϕ and ψ have been transformed into their CF-normal forms,

ϕ ≡ ∨

i

αi ∧ ©ϕi

ψ ≡ ∨

j

βj ∧ ©ψj

we have,

– if φ ≡ ©ϕ, φ ≡ true ∧ ©ϕ.
– if φ ≡ ϕ ∧ ψ,

ϕ ∧ ψ ≡ (
∨

i

αi ∧ ©ϕi) ∧ (
∨

j

βj ∧ ©ψj)

≡ ∨

i

∨

j

(αi ∧ βj) ∧ ©(ϕi ∧ ψj)

– if φ ≡ ϕ ∨ ψ,
ϕ ∨ ψ ≡

∨

i

αi ∧ ©ϕi ∨
∨

j

βj ∧ ©ψj

– if φ ≡ ϕ U ψ,

ϕ U ψ ≡ ψ ∨ ϕ ∧ ©(ϕ U ψ)
≡ ∨

j

βj ∧ ©ψj ∨ ∨

i

αi ∧ ©ϕi ∧ ©(ϕ U ψ)

≡ ∨

j

βj ∧ ©ψj ∨ ∨

i

αi ∧ ©(
ϕi ∧ (ϕ U ψ)

)

– φ ≡ ϕ Ū ψ,

ϕ Ū ψ ≡ ψ ∧ (
ϕ ∨ ©(ϕ Ū ψ)

)

≡ ψ ∧ ϕ ∨ ψ ∧ ©(ϕ Ū ψ)
≡ ∨

i

∨

j

(αi ∧ βj) ∧ ©(ϕi ∧ ψj) ∨ ∨

j

βj ∧ ©ψj ∧ ©(ϕ Ū ψ)

Therefore, any LTL formula can be equivalently transformed to its CF-normal
form. �

Actually, the above proof provides an approach for transforming LTL formu-
las to CF-normal forms as illustrated in Algorithm 1. Note that in case

NF (P1) ≡ ∨

i

αi ∧ ©ϕi

NF (P2) ≡ ∨

j

βj ∧ ©ψj

we have

NF
(
NF (P1) ∧ NF (P2)

) ≡
∨

i

∨

j

(αi ∧ βj) ∧ ©(ϕi ∧ ψj)

Note also that DNF (P ) denotes the disjunction normal form of a state formula
(typical propositional logic formula) P .



184 C. Tian et al.

Algorithm 1. NF (P )
Input: An LTL formula P in negation normal form
Output: CF-normal form of P

1: case
2: P is a propositional logic formula: return DNF (P ) ∧ ©true;
3: P is P1 ∨ P2: return NF (P1) ∨ NF (P2);
4: P is P1 ∧ P2: return NF

(
NF (P1) ∧ NF (P2)

)
;

5: P is ©P1: return true ∧ ©P1;
6: P is P1UP2: return NF (P2) ∨ NF

(
NF (P1) ∧ NF (©P2)

)
;

7: P is P1ŪP2: return NF
(
NF (P1) ∧ NF (P2)

) ∨ NF
(
NF (P2) ∧ NF (©P1)

)
;

8: end case

4 From LTL Formulas to Büchi Automata

Now we show how LTL formulas can be equivalently transformed to Büchi
automata by utilizing CF-normal form. We first transform an LTL formula to a
TGBA.

φ

φ1 ∧ φ2

p ∧ r,

φ3

φ4 ∧ φ5

p ∧ ¬r

¬p ∧ ¬r p ∧ ¬r

Fig. 1. Constructing graph structure of TGBA

The general idea for constructing TGBA is simple. To construct TGBA of
φ, initially, a root node �φ� is created. Then we transform φ to its CF-normal
form. As an example, suppose

φ ≡ (p ∧ r ∨ ¬p ∧ ¬r) ∧ ©(φ1 ∧ φ2) ∨ p ∧ ¬r ∧ ©φ3 ∨ p ∧ ¬r ∧ ©(φ4 ∧ φ5)

As illustrated in Fig. 1, three child nodes: �φ1 ∧ φ2�, �φ3�, and �φ4 ∧ φ5� of �φ�
are created; and the following relations between the new created nodes and the
old ones are produced:

τ(�φ�, p ∧ r) = �φ1 ∧ φ2�
τ(�φ�, p ∧ ¬r) = �φ4 ∧ φ5�

τ(�φ�,¬p ∧ ¬r) = �φ1 ∧ φ2�
τ(�φ�, p ∧ ¬r) = �φ3�
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To construct the whole graph structure of φ’s TGBA, the procedure should be
applied similarly on the new created nodes repeatedly until no new nodes can
be produced.

There is little subtlety that has to be taken into account when translating
ϕUφ: the formula φ must occur eventually, i.e. it cannot be postponed infinitely.
For convenient, we say φ must be fulfilled as usual. However, whether φ in ϕUφ is
fulfilled is not explicitly presented in the graph structure obtained by repeatedly
decomposing a formula by CF-normal form. For instance, Fig. 2 with out the set
of final values (in red) on the edges shows the graph structure of formula

p ∧ � © p ∧ (
(� © p)Uq

)

constructed by CF-normal form. For the path 〈�p ∧ � © p ∧ (
(� © p)Uq

)�〉ω

that formed by the self-loop on node �p∧�© p∧ (
(�© p)Uq

)�, q in (�© p)Uq
is not fulfilled. Thus, such a path does not depict a model of formula p ∧ � ©
p ∧ (

(� © p)Uq
)
. To precisely present models of a formula, accepting condition

of TGBA are further defined on the graph structures obtained by CF-normal
form. Roughly speaking, we decorate each edge in the graph with a set of final
values indicating the set of until constructs which are involved in the original
formula but not contained in the next state (the node this edge is connecting
to). Intuitively, if ϕUφ is not contained in the next state, ϕUφ can be fulfilled
at the next state. For the example, in Fig. 2, only one until construct � © pUq
denoted by ‘1’ is involved in the formula. Thus, the set of final values on each
edge is:

(�p ∧ � © p ∧ (
(� © p)Uq

)�, p, �p ∧ � © p ∧ (
(� © p)Uq

)�) : ∅
(�p ∧ � © p ∧ (

(� © p)Uq
)�, p ∧ q, �p ∧ � © p�) : {1}

(�p ∧ � © p�, p, �p ∧ � © p�) : {1}
In Fig. 2, the set of final values on each edge is pointed out in red.

The above transformation is formally presented in Algorithm 2. Alphabet Σ
is composed of the set of conjunctions of atomic propositions or the negation of
atomic propositions (line 1). Fv is the set of until constructs ϕUφ appearing in

p ∧ p ∧ ( p)Uq

p ∧ p

p

p ∧ q

p

∅
1 = ( p)Uq

{1}

{1}

Fig. 2. Example TGBA (Color figure online)
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P (line 2). St , a stack for storing the nodes that have not been decomposed, is
initialized as empty (line 3). According to the given formula P ≡ ∨

i

φi, Q0 is

initialized by {�φi� | P ≡ ∨

i

φi} (line 4) and Q is initialized by Q0 (line 5). For

each node in Q, push it in St (lines 6–8). In case stack St is not empty, the top
node �ϕ� is popped and ϕ is transformed to CF-normal form ϕ ≡ ∨

i

βi ∧ ©ϕi

by Algorithm NF (lines 9–11). Subsequently, for each ϕi, if �ϕi� �∈ Q, add
�ϕi� in Q and St (lines 12–15); produce a new transition δ(�ϕ�, βi, Fv \ {ψj |
ϕi ≡ ∧

j

ψj and the main operator of ψj is U}) = �ϕi� (line 16). Finally, in case

stack St is empty, return TGBA GA = (Σ,Q, q0,Fv , δ,G) where G = {Ff =
{δ(q, σ, fv) = q′ | f ∈ fv} | f ∈ Fv} (lines 19–20).

Algorithm 2. TGBA(P )
Input: An LTL formula P in negation normal form.
Output: TGBA GA = (Σ, Q, q0,Fv , δ, G) of P .

1: Σ = {∧
i

ṗi | pi is an atomic proposition appearing in P and ṗi denotes pi or ¬pi}
2: Fv = {ϕUφ | ϕUφ occurs in P};
3: St = ∅; /∗ Stack St is used to store the nodes that have not been decomposed∗/
4: Q0 = {�φi� | P ≡ ∨

i

φi};

5: Q = Q0; /∗ Initialization ∗/
6: for each �ϕ ≡ ∧

j

ϕj� ∈ Q do

7: push(St , �ϕ�);
8: end for
9: while St is not empty do

10: �ϕ� = top(St); pop(St);
11: transform ϕ to CF-normal form ϕ ≡ ∨

i

βi ∧ ©ϕi by Algorithm NF ;

12: for each i do
13: if �ϕi� �∈ Q then
14: Q = Q ∪ {�ϕi�}; push(St , �ϕi�);
15: end if
16: δ(�ϕ�, βi, Fv \ {ψj | ϕi ≡ ∧

j

ψj and the main operator of ψj is U}) = �ϕi�;
17: end for
18: end while
19: G = {Ff = {δ(q, σ, fv) = q′ | f ∈ fv} | f ∈ Fv};
20: return GA = (Σ, Q, q0,Fv , δ, G);

The obtained TGBA can be further transformed to a BA by the same algo-
rithm used in LTL3BA [19]. Correctness of the translation is obvious and we
omit the detailed proof to save space.
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5 Implementation and Experimental Results

We have implemented a translator named LtlNfBa to transform LTL formulas
to TGBA (and BA) based on the syntax and simplification rules in LTL2BA [18].
Besides the changed TGBA creating algorithm, we also add new rules to improve
the transformation.

5.1 Improvements in Implementation

In addition to implement the new translating algorithm in LTL2BA, we inte-
grate new rules to further improve the translation when dealing with formulas
containing combination of always and eventually operators.

Let ‘1’ denote the until construct ♦p ≡ trueUp. To construct TGBA of �♦p,
we first transform �♦p to CF-normal form:

�♦p ≡ ♦p ∧ ©(�♦p)
≡ (

p ∨ ©(♦p)
) ∧ ©(�♦p)

≡ p ∧ ©(�♦p) ∨ ©(
♦p ∧ (�♦p)

)

Thus, as illustrated in Fig. 3(1), there are two edges (drawn in blue) departing
from the initial state ��♦p� that connecting to states ��♦p� and �♦p ∧ �♦p�,
respectively. The final value of the one connecting to ��♦p� is {1} and the other
empty. Next, ♦p ∧ �♦p is transformed to CF-normal form:

♦p ∧ �♦p ≡ p ∧ ©�♦p ∨ ©(♦p ∧ �♦p)

Accordingly, two edges (drawn in red) departing from state �♦p ∧ �♦p� that
connecting to states ��♦p� and �♦p ∧ �♦p� are created, respectively. The final
value of the one connecting to ��♦p� is {1} and the other empty. Consequently,
by the simplification rule in LTL2BA:

p

p ∧ p

p

ptrue

true

1 : p ≡ trueUp1

1

(1)

p

true

1

(2)

Fig. 3. TGBA of �♦p (Color figure online)
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Two different states s1 and s2 in a TGBA can be merged if for each transition
(s1, δ, fv , s) starting from s1, there exist a transition (s2, δ, fv , s) departing from
s2, and vice versa.
The TGBA in Fig. 3(1) is further simplified as shown in Fig. 3(2).

Consider CF-normal form of formula �♦p again:

�♦p ≡ p ∧ ©(�♦p) ∨ ©(
♦p ∧ (�♦p)

)

By the semantics of LTL formulas, �♦p is equivalent to ♦p ∧ (�♦p) in fact.
Thus, we can directly produce TGBA of �♦p in Fig. 3(2) without producing the
TGBA in Fig. 3(1) first.

Further, for a formula in forms of �♦p∧Q (p is a state formula and Q an arbi-
trary LTL formula) e.g. �♦p∧♦q, by CF-normal form, we can obtain the TGBA
as shown in Fig. 4(1) which can be simplified as the TGBA in Fig. 4(2). This sim-
plification procedure can also be avoided by considering: �♦p ≡ true ∧ ©�♦p.
Accordingly, when a formula in form of �♦p ∧ Q occurs, we first equivalently
represent �♦p ∧ Q as true ∧ (�♦p) ∧ Q, and then construct TGBA via CF-
normal forms. For instance, we represent �♦p ∧ ♦q as true ∧ ©(�♦p) ∧ ♦q first.
Since

�♦p ∧ ♦q ≡ true ∧ ©(�♦p) ∧ ♦q
≡ true ∧ ©(�♦p) ∧ (q ∨ ©♦q)
≡ q ∧ ©(�♦p) ∨ true ∧ ©(

(�♦p) ∧ ♦q
)

TGBA shown in Fig. 4(2) can be constructed directly.

p ∧ q

p

p

qp ∧ q

true

1 : p ≡ trueUp1

2

(1)

2 : q ≡ trueUqtrue
1

1, 2

2
p

1, 2

p ∧ q

p

q

true

(2)

true
1

2
p

1, 2

Fig. 4. TGBA of �♦p ∧ ♦q

5.2 Experimental Results

Preliminary version of LtlNfBa without the additional improvement discussed
above outperforms LTL2BA but pales beside LTL3BA. By further implementing
the additional rules for dealing with formulas in the forms of �♦P and �♦P ∧
Q, where P is a state formula and Q an arbitrary LTL formula, LtlNfBa is
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competitive with both LTL3BA and SPOT. The source code of LtlNfBa as
well as formulas involved in experiments presented in this paper can be found
following http://web.xidian.edu.cn/ctian/en/ltlnfba.html. All experiments were
done on a PC with one processor Intel(R) Core(TM) i7 CPU 550 @ 3.20 GHz,
3.24 GB RAM, and Microsoft Windows Xp Professional Version 2002 Service
Pack 3 with VMWare workstation 9 (one core and 2 GB RAM)/32bit version of
Ubuntu 12.04 LTS (gcc 4.6.3).

In the following, we compare the execution time (second) of LtlNfBa,
LTL3BA (v1.0.2)1, and SPOT (v1.2.1)2 on nine parametric formulas from
[18,19]. Note that only the time consumed by the transformation from LTL
formulas to TGBA is considered since LtlNfBa and LTL3BA (v1.0.2) utilized
the same technique for the transformation from TGBA to BA. We gradually
increase the parameter of the formulas until a translator fails to finish the trans-
lation in 24 h limit or runs out of memory. The following are the nine parametric
formulas.

θ(n) = ¬(
(�♦p1 ∧ · · · ∧ �♦pn) → �(q → ♦r)

)

C2(n) =
n∧

i=1

�♦pi

U2(n) = p1U
(
p2U(· · · pn−1Upn) · · · )

U1(n) =
( · · · (p1Up2)U · · · )Upn

Q(n) =
n∧

i=1

(♦pi ∨ �pi+1)

C1(n) =
n∨

i=1

(�♦pi)

S(n) =
n∧

i=1

�pi

R(n) =
n∧

i=1

(�♦pi ∨ ♦�pi+1)

E(n) =
n∧

i=1

♦pi

Experimental results on the above nine formulas are illustrated in Figs. 5
and 6 where the horizontal axis presents the concrete value of n and the vertical
axis shows the time (second) consumed for constructing the TGBA. It shows
that for formulas θ(n), U2(n), S(n), and C2(n), LtlNfBa outperforms both
LTL3BA and SPOT obviously. For the formula C1(n), LtlNfBa works better
than both LTL3BA and SPOT in case n > 2000. For the two formulas E(n) and
R(n) LtlNfBa outperforms SPOT and nearly goes hand in hand with LTL3BA.
Finally, for the last two formulas U1(n) and Q(n), LtlNfBa lists in the middle.

We also compare the size of the TGBA produced by the three tools on the
nine parametric formulas. For the 7 formulas θ(n), U1(N), U2(N), S(n), E(n),
C1(n), and C2(n), the numbers of the states and transitions of the TGBAs
produced by the three tools are completely the same.
1 sourceforge.net/projects/ltl3ba/files/ltl3ba/.
2 spot.lip6.fr/wiki.

http://web.xidian.edu.cn/ctian/en/ltlnfba.html
http://www.sourceforge.net/projects/ltl3ba/files/ltl3ba/
http://spot.lip6.fr/wiki
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Fig. 5. Comparison of LtlNfBa, LTL3BA, and SPOT
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Fig. 6. Comparison of LtlNfBa, LTL3BA, and SPOT on C1(n)

Table 1 presents the size of the TGBAs of formula R(n) produced by the three
tools. It shows that SPOT produces smaller TGBAs than both LTL3BA and
LtlNfBa, and the TGBAs created by LTL3BA and LtlNfBa are completely
the same in size. Recall that in Fig. 5, on this formula, SPOT toke more time
than both LTL3BA and LtlNfBa, and the time consumed by LTL3BA and
LtlNfBa is nearly the same.

Table 1. Size of the TGBAs of formula R(n)

Parameter LTL3BA SPOT LtlNfBa

n States Transitions States Transitions States Transitions

1 3 5 3 6 3 5

2 9 21 4 11 9 21

3 27 83 6 23 27 83

4 81 321 9 50 81 321

Table 2 presents the size of the TGBAs of formula Q(n) produced by the three
tools. It illustrates that LtlNfBa lists in the middle, and SPOT the best. Also,
as shown in Fig. 5, on this formula, LTL3BA toke the least time and LtlNfBa
lists in the middle.

In addition, for the following four parametric formulas presented in [24]:

α(n) = ♦(p ∧ ©(p ∧ ©(p ∧ · · · )) ∧ ♦(q ∧ ©(q ∧ ©(q ∧ · · · ))
(n occurences of p and q)

β(n) = ♦(p1 ∧ ♦(p2 ∧ ♦(· · · ♦pn) ∧ ♦(q1 ∧ ♦(q2 ∧ ♦(· · · ♦qn)
ϕ(n) = �♦p1 ∧ �♦p2 ∧ · · · ∧ �♦pn

ψ(n) = ♦�p1 ∨ ♦�p2 ∨ · · · ∨ ♦�pn
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Table 2. Size of the TGBAs of formula Q(n)

Parameter LTL3BA SPOT LtlNfBa

n States Transitions States Transitions States Transitions

1 3 4 3 6 3 4

2 9 15 8 27 9 16

3 23 50 18 93 27 64

4 59 168 42 330 81 256

5 144 576 100 1209 243 1024

Table 3. Size of the TGBAs produced by LTL3BA and LtlNfBa on formulas α(n),
β(n), ϕ(n), and ψ(n)

Parameter α(n) β(n) ϕ(n) ψ(n)

n LTL3BA LtlNfBa LTL3BA LtlNfBa LTL3BA LtlNfBa LTL3BA LtlNfBa

1 4/9 4/9 4/9 4/9 1/2 1/2 2/3 2/3

2 9/16 9/16 9/36 9/36 1/4 1/4 3/5 3/5

3 16/25 16/25 16/100 16/100 01/8 1/8 4/7 4/7

4 25/36 25/36 25/225 25/225 1/16 1/16 5/9 5/9

...

7 64/81 64/81 64/1296 64/1296 1/128 1/128 8/15 8/15

...

10 121/144 121/144 121/4356 121/4356 1/1024 1/1024 12/21 12/21

it is reported in [20] that both LTL3BA and SPOT can compute the automata
(TGBA) in minimal form and LTL3BA is 8 times faster than SPOT (v0.7.1).

We run both LTL3BA and LtlNfBa on the four parametric formulas. As
shown in Table 3, the size of the TGBAs produced by LTL3BA and LtlNfBa
are completely the same and minimal meanwhile. Note that in Table 3, the size
of each produced TGBA is expressed in the form of Amount of States/Amount
of Transitions.

Further, with n ranging from 1 to 20, experimental results in Table 4 show
that LtlNfBa runs even faster than LTL3BA. Precisely, on α(20), LTL3BA
consumes 0.012000 s whereas LtlNfBa takes nearly no time. The two tools go
nearly head-to-head on β(n). On ϕ(n), LtlNfBa clealy outperforms LTL3BA:
while LTL3BA takes 25.585661 s on ϕ(20), LtlNfBa consumes only 0.612038 s
on the same formula. On the last parametric formula ψ(n), both the two tools
return results immediately for all n ≤ 20.
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Table 4. Running time of LTL3BAandLtlNfBa on formulas α(n) β(n), ϕ(n), and ψ(n)

Parameter α(n) β(n) ϕ(n) ψ(n)

n LTL3BA LtlNfBa LTL3BA LtlNfBa LTL3BA LtlNfBa LTL3BA LtlNfBa

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

7 0.000000 0.000000 0.004000 0.004000 0.000000 0.000000 0.000000 0.000000

8 0.000000 0.000000 0.016001 0.008000 0.004000 0.000000 0.000000 0.000000

9 0.000000 0.000000 0.020001 0.012000 0.004000 0.000000 0.000000 0.000000

10 0.000000 0.000000 0.028001 0.024001 0.008000 0.000000 0.000000 0.000000

11 0.000000 0.000000 0.044003 0.036002 0.016001 0.000000 0.000000 0.000000

12 0.000000 0.000000 0.052003 0.064005 0.048003 0.000000 0.000000 0.000000

13 0.000000 0.000000 0.076005 0.068005 0.060004 0.000000 0.000000 0.000000

14 0.000000 0.000000 0.132008 0.100006 0.132008 0.008000 0.000000 0.000000

15 0.004000 0.000000 0.148009 0.144009 0.224014 0.024001 0.000000 0.000000

16 0.004000 0.000000 0.192012 0.204012 0.536033 0.056003 0.000000 0.000000

17 0.004000 0.000000 0.292018 0.268016 1.280081 0.088005 0.000000 0.000000

18 0.004000 0.000000 0.348022 0.352022 3.144197 0.164010 0.000000 0.000000

19 0.008000 0.000000 0.492030 0.468029 10.036627 0.360022 0.000000 0.000000

20 0.012000 0.000000 0.648040 0.620038 26.585661 0.612038 0.000000 0.000000

6 Conclusions

A simple algorithm for constructing Büchi automata from LTL formulas is pre-
sented in this paper. With the new algorithm, TGBA of a formula is gradually
produced by decomposing the formula to CF-normal form that represents the for-
mula in the current and future forms. We have implemented a translator named
LtlNfBa for constructing Büchi automata from LTL formulas by replacing the
translating algorithm from LTL formulas to TGBA used in LTL2BA with the
new proposed one. Experimental results show that LtlNfBa is competitive with
the current leading tools LTL3BA and SPOT.
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Abstract. This paper introduce a tool named PPTL Spin which sup-
ports the verification of temporal properties specified with Propositional
Projection Temporal Logic (PPTL). To this end, a translator from PPTL
formulas to Büchi automata (PPTL2BA) is implemented and integrated
in SPIN. We evaluate efficiency of the translator by parameter formulas
and show how PPTL SPIN works with a case study.
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1 Introduction

SPIN [7,10] is a famous model checker which uses PROMELA to model the system
to be verified and adopts Linear Temporal Logic (LTL) [12] formula to specify the
desired property. To check whether the system can satisfy the desired property,
both the system model and negation of the LTL formula are transformed to Büchi
automata. Then product of the two automata are constructed and emptiness of
the product automaton is checked. Subsequently, if no words can be accepted by
the product automaton, we can say that the desired property is valid on the sys-
tem model. Otherwise, each accepting run indicates a counterexample where the
system model violates the desired property. However, the expressive power of LTL
is limited which is known as star-free regular. Thus, there are a number of regular
properties that cannot be verified by SPIN directly.

Propositional Projection Temporal Logic (PPTL) [3,5], whose expressive
power is equal to full regular expressions [6], subsumes LTL. It is a useful logic
in the specification and verification of concurrent systems. In the past years,
an Labeled Normal Form Graph (LNFG) based decision procedure is given for
PPTL formulae [1] which is improved in [2,8]. The decision algorithm is actually
to find out a model in the LNFG of a formula. Given a PPTL formula P , to
check whether or not it is satisfiable, we first try to construct its LNFG, then
look for a model in the LNFG of the formula. If a model is found out for P in
its LNFG, P is satisfiable, otherwise, it is unsatisfiable.
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Considering the full regular expressive power of PPTL, we are motivated to
enhance SPIN with the ability of verifying properties specified with PPTL [4,11].
In this way, full regular properties can be verified by SPIN. This paper introduces
the implemented tool named PPTL Spin which strengthens SPIN with PPTL
specifications. To achieve the goal, a translator from PPTL formulas to Büchi
automata (PPTL2BA) is implemented and integrated in SPIN. We evaluate
efficiency of the translator by parameter formulas and show how PPTL SPIN
works with a case study.

The rest of this paper is organized as follows. In the next section, preliminar-
ies including PPTL, Büchi automata, and SPIN are briefly introduced. Subse-
quently, Sect. 3 shows the translating tool PPTL2BA and the relative efficiency
evaluation results. Section 4 studies how SPIN is enhanced with PPTL and the
case study. Finally, in Sect. 5, conclusion and future work are discussed.

2 Preliminaries

This section briefly introduces preliminaries including PPTL, Büchi automata,
and SPIN.

2.1 Propositional Projection Temporal Logic

Syntax. Let Prop be a countable set of atomic propositions. The formula P of
PPTL is given by the following grammar:

P :: = p| © P |¬P |P1 ∨ P2|(P1, ..., Pm) prj P

where p ∈ Prop, P1, ..., Pm, P are well-formed PPTL formulas.

Semantics. We define a state s over Prop to be a mapping from Prop to
B = {true, false}, s : Prop → B. We will use s[p] to denote the valuation
of p at state s. An interval σ is a non-empty sequence of states, which can be
finite or infinite. The length, |σ|, of σ is ω if σ is infinite, and the number of
states minus 1 if σ is finite. We consider the set N0 of non-negative integers
and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤, to Nω

by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define � as
≤ −{(ω, ω)}. To simplify definitions, we will denote σ as < s0, ..., s|σ| >, where
s|σ| is undefined if σ is infinite. With such a notation, σ(i...j)(0 ≤ i � j ≤ |σ|)
denotes the sub-interval < si, ..., sj >. The concatenation of a finite σ with
another interval (or empty string) σ′ is denoted by σ · σ′.

Let σ =< s0, s1, ..., s|σ| > be an interval and r1, ..., rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ ... ≤ rh ≤ |σ|. The projection of σ onto r1, ..., rh is the
interval

σ ↓ (r1, ..., rh) =< st1 , st2 , ..., stl >

where t1, ..., tl are obtained from r1, ..., rh by deleting all duplicates. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >



PPTL SPIN: A SPIN Based Model Checker 197

An interpretation is a quadruple I = (σ, i, k, j), where σ is an interval, i, k
integers, and j an integer or ω such that i ≤ k � j ≤ |σ|. We use the notation
(σ, i, k, j) |= P to mean that some formula P is interpreted and satisfied over the
subinterval < si, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I − prop I |= p iff sk[p] = true, for an atomic propositionp.
I − not I |= ¬P iff I � P.
I − or I |= P ∨ Q iff I |= PorI |= Q.
I − next I |= ©P iff k < j and (σ, i, k + 1, j) |= P.
I − prj I |= (P1, ..., Pm) prj Q iff there exist integers k = r0 ≤ r1 ≤ ... ≤

rm � j such that (σ, i, r0, r1) |= P1, (σ, rl−1, rl−1, rl) |= Pl

(1 < l ≤ m) and (σ′, 0, 0, |σ′|) |= Q for one of the following σ′ :
(a)rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j),
(b)rm = j and σ′ = σ ↓ (r0, ..., rh) for some0 ≤ h ≤ m.

2.2 Büchi Automata

Büchi automata (BA) play a special role in model checking PPTL formulas.
To check whether a system satisfies the given property P , we transform ¬P
to Labeled Normal Form Graph (LNFG) and then BA via Generalized Büchi
Automata (GBA) [9]. Here we give the definitions of GBA and BA.

Definition 1. A generalized Büchi automaton is a five-tuple GA =
(Q,Σ,Δ, I, T ) where:

– Q is a finite, non-empty set of states;
– Σ a finite, non-empty alphabet;
– Δ ⊆ Q × Σ × Q the transition relation;
– I ⊆ Q a non-empty set of initial states;
– T = {T1, ..., Tr}, where Tj ⊆ Δ, the accepting transitions.

An infinite word u over Σ is an infinite sequence u = u0u1, ... where ui ∈ Σ
for each i ≥ 0. A run ρ of GA on a word u = u0u1... is an infinite sequence of
states in Q, q0q1..., such that q0 ∈ I and (qi, ui, qi+1) ∈ Δ holds for all i ≥ 0. The
run ρ is acceptable iff for each j(1 ≤ j ≤ r), it uses infinitely many transitions
in Tj .

Definition 2. A Büchi automaton is a five-tuple B = (Q,Σ,Δ, I, F ) where:

– Q is a finite, non-empty set of states;
– Σ a finite, non-empty alphabet;
– Δ ⊆ Q × Σ × Q a transition relation;
– I ⊆ Q a non-empty set of initial states;
– F ⊆ Q the set of accepting states.

An infinite word u′ over Σ is an infinite sequence u′ = u′
0u

′
1.... A run ρ′ of B

on a word u′ = u′
0u

′
1... is an infinite sequence of states in Q, q′

0q
′
1..., such that

q′
0 ∈ I and (q′

i, u
′
i, q

′
i+1) ∈ Δ holds for all i ∈ N0. The run ρ′ is accepting if there

exists infinitely many states in F .
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2.3 SPIN

SPIN is a general tool for verifying the correctness of distributed software mod-
els in a rigorous and mostly automated fashion. SPIN offers a large number
of options to speed up the model-checking process and save memory, such as
partial order reduction, state compression, bitstate hashing and weak fairness
enforcement. In SPIN, the model of the system sys described by PROMELA is
transformed into a Büchi automaton Asys in which all states are accepting and
the property to be checked is specified in PLTL formula yielding φ, negated,
and subsequently transformed into a second Büchi automaton A¬φ; further the
product of these two automata represents all possible computations that violate
φ is constructed; finally, by checking the emptiness of this automaton, it is thus
determined whether φ is satisfied by the system model sys or not.

3 Transforming PPTL Formulas to Büchi Automata

In this section, we introduce the tool PPTL2BA for transforming PPTL
formulas to BA. PPTL2BA is written in C++. For the convenience of
demonstration and usage, we use MFC to develop interface of the tool.

Fig. 1. The structure of the transformation tool

3.1 Structure

The structure of the
PPTL2BA is depicted in
Fig. 1. PPTL2BA takes a
PPTL formula given by
users. First the formula
is parsed and the syntac-
tic tree is built. Then the
tool constructs LNFG of
the formula and give sat-
isfiability of the input
PPTL formula. Finally,
based on the LNFG, it
gains the equivalent GBA
and BA. The tool consists of three modules: parser, constructing LNFG, and
transforming LNFG to BA module. In the parser module, atomic propositions
and operators contained in the input PPTL formula are identified with the help
of Flex and Bison and the syntax tree is generated eventually.

Constructing LNFG Module. This module contains three functions:
(1) Rewriting a PPTL formula to normal form; (2) Constructing LNFG; and
(3) Deciding whether or not the input PPTL formula is satisfiable. A PPTL for-
mula P is in normal form if P has been rewritten as P ≡ (Pe∧ε)∨∨r

i=1(Pi∧©(P ′
i ))
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where Pe and Pi are state formulae. The algorithms of rewriting PPTL formulae
to normal forms are given in [1].

Based on normal form of PPTL formula, LNFG of the formula can be con-
structed which not only contains nodes and edges but also identifies some nodes
with fin labels. Specifically, if the node is a chop formula, fin label is added on
the node to denote that the chop formula cannot be repeated infinitely many
times. In an LNFG, the initial nodes are denoted by a double circle, ε node by
a black dot, and each of other nodes by a single circle. Each edge is denoted by
a directed arc connecting two nodes. When LNFG is constructed for a formula
P , we can further check the satisfiability of P . If a model is found out for P in
its LNFG, P is satisfiable, otherwise, it is unsatisfiable.

Transforming LNFG to BA Module. Two transformations are included in
this module: (1) transformation from LNFG to GBA; and (2) transformation
from LNFG to BA. As a matter of fact, we can transform an LNFG to a BA
directly if the LNFG does not contain any fin labels. However, if the LNFG
contains fin labels, we cannot transform it to a BA directly because of the dif-
ference between LNFG and BA in accepting conditions. In this case, we need to
transform the LNFG to a GBA first, and then to a BA eventually.

The BA output by the transformation tool are in the following form: the
initial nodes are denoted by a double circle, ε node by a black dot, and each of
other nodes by a single circle. Each edge is denoted by a directed arc connecting
two nodes. Also, the accepting nodes are pointed out.

3.2 Example

In the following, we illustrate the BA constructed by PPTL2BA with an example.

Example 1 Constructing BA of P ≡ (p∧©true; q)∧�© (p; q) by PPTL2BA.
The BA of formula P constructed by PPTL2BA is shown in Fig. 2. Totally, 7

nodes and 13 edges are contained in the generated BA. Among them, two nodes
are accepting.

3.3 Evaluation Results

This section evaluates the efficiency of PPTL2BA. We use PPTL2BA to translate
a group of formulas to BA and compare the time consumed as well as sizes of
the resulting BA with LTL2BA [9] which is a widely used tool for translating
LTL to BA. Note that some PPTL formulas are also LTL formulas. For these
formulas, we directly use both PPTL2BA and LTL2BA to translate them to
BA. While some formulas are not LTL formulas, we slightly revise them as LTL
formulas by replacing chop operators with until operators.

The first group of formulas are θn = ¬((GFp1 ∧ ... ∧ GFpn) → G(q → Fr))
where n is a positive integer. Table 1 shows the number of states and transitions
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Fig. 2. BA of PPTL formula P

generated by the two tools for θn. From Table 1 we can see that the size of BA
produced by PPTL2BA are smaller than the ones constructed by LTL2BA.

Another group of formulas are ϕ′
n = (...(p1; p2); ...); pn. By replacing chop

operators with until operator which can be dealt with LTL2BA, a group of
variations are formed: ϕn = (...(p1Up2)U...)Upn. The experimental results are
shown in Table 2. As we can see, the size of the BA obtained by PPTL2BA are
much more smaller than the ones constructed by LTL2BA.

4 PPTL SPIN and a Case Study

4.1 Structure of PPTL SPIN

Based on the transformation tool given in the previous section, we develop a
translator which further represents a BA as Never Claim which is acceptable
by SPIN. This translator is integrated in SPIN so that PPTL specifications are
supported in SPIN. The structure of PPTL SPIN is shown in Fig. 3.

As shown in Fig. 3, a PPTL parser and translator is integrated in the original
SPIN that forms the enhanced tool PPTL SPIN. With the new tool, first we give
a model that specified in the verification language PROMELA. Then we can
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Table 1. Comparison on formulae θn for 2 ≤ n ≤ 8

Number of states Number of transitions

PPTL2BA LTL2BA PPTL2BA LTL2BA

θ2 4 4 8 10

θ3 4 5 8 15

θ4 4 6 8 21

θ5 4 7 8 28

θ6 4 8 8 36

θ7 4 9 8 45

θ8 4 10 8 55

Average 4 7 8 30

Table 2. Comparison on the formulae ϕ′
n/ϕn for 2 ≤ n ≤ 8

States Transitions

PPTL2BA LTL2BA PPTL2BA LTL2BA

ϕ′
2/ϕ2 5 2 11 3

ϕ′
3/ϕ3 6 6 16 17

ϕ′
4/ϕ4 7 15 22 73

ϕ′
5/ϕ5 8 37 29 311

ϕ′
6/ϕ6 9 89 37 1290

ϕ′
7/ϕ7 10 209 46 5207

ϕ′
8/ϕ8 11 481 56 20548

Average 8 120 31 3921

Fig. 3. Structure of PPTL SPIN
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choose PPTL or LTL to express the property. If we choose PPTL to express the
property, the PPTL parser and translator is invoked to transform the negation
of this formula to a Büchi automaton. Finally we execute the verification. If the
result is not valid, a counterexample will be provided.

4.2 Case Study: Verifying Traffic Light Control System
with PPTL SPIN

Traffic Light Control System (TLCS) is common in our daily life. As we all know,
the duration of the green lights for the main road should be longer than that of
the red lights in the rush hours. Now a simple rule is made for TLCS. We assume
there are two modes in the system. Mode 1 represents the rush hours and mode
0 represents the other time. When the current time is between 7 o’clock and 9
o’clock or between 17 o’clock and 19 o’clock, the system is in mode 1.

Specifically, TLCS works as follows:

(1) The system starts at 0 o’clock.
(2) The mode of the system is set to 0. The green light of the east-west direction

and the red light of the south-north direction are on. This state lasts for 25 s.
(3) The yellow light of the east-west direction flashes and the red light of the

south-north direction is on. This state lasts 5 s.
(4) The red light of the east-west direction and the green light of the south-north

direction are on. This state lasts 25 s.
(5) The red light of the east-west direction is on and the yellow light of the south-

north direction flashes. This state lasts 5 s. If the current time is between 7
o’clock and 9 o’clock or between 17 o’clock and 19 o’clock, the next step is
(6), otherwise the next step is (2).

(6) The mode of the system is set as 1. The green light of the east-west direction
and the red light of the south-north direction are on. This state lasts 30 s.

(7) The yellow light of the east-west direction flashes and the red light of the
south-north direction is on. This state lasts 5 s.

(8) The red light of the east-west direction and the green light of the south-north
direction are on. This state lasts 20 s.

(9) The red light of the east-west direction is on and the yellow light of the south-
north direction flashes. This state lasts 5 s. If the current time is between 7
o’clock and 9 o’clock or between 17 o’clock and 19 o’clock, the next step is
(6), otherwise the next step is (2).

Here we use EW G, EW Y, EW R, SN G, SN Y and SN R to represent the
green light of the east-west, the yellow light of the east-west, the red light of the
east-west, the green light of the south-north, the yellow light of the south-north
or the red light of the south-north direction is on, respectively.

We model the TLCS by PROMELA as shown in appendix. In the pro-
gram, the east-west lights in red, yellow and green are denoted by EW RED,
EW YELLOW, and EW GREEN respectively, and the south-north lights in
red, yellow and green are denoted by SN RED, SN YELLOW, and SN GREEN
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respectively. We use boolean variable sign to denote the mode and int variable
t to denote the time. If the current time is between 7 o’clock and 9 o’clock or
between 17 o’clock and 19 o’clock, the value of sign is true, that is to say it is
in mode 1.

First we consider a safety property. At any state, when the green light of
the east-west direction is on, the yellow light and the red light of the east-west
direction are off. So does the south-north direction. We can specify this property
by the PPTL formula:

P ≡ �((p → (q ∧ r)) ∧ (s → (t ∧ v)))

and we define p, q, r, s, v, t as follows:

#define p EW GREEN==true
#define q EW YELLOW==false
#define r EW RED==false
#define s SN GREEN==true
#define t SN YELLOW==false
#define v SN RED==false

Using the PPTL SPIN, it can be obtained that the property is valid on the
model.

Now we check a periodically repeated property in mode 0. The property is
that in every four states the green light of the east-west direction and the red
light of the south-north direction are on and the mode is 0. This property cannot
be described by an LTL formula. We specify this property by the PPTL formula:

P ≡ (p ∧ q ∧ r); (©4(p ∧ q ∧ r))∗

Fig. 4. An error trail that does not satisfy property P
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The PROMELA model of TLCS

mtype=RED,YELLOW,GREEN
bool EW RED=false,EW YELLOW=false,EW GREEN=true;
bool SN RED=true,SN YELLOW=false,SN GREEN=false;
bool sign=false;
int t=0;
active proctype TrafficLight(){

byte EW state=GREEN;
byte SN state=RED;
do

:: atomic{(sign==false)&&(EW state==GREEN)&&(SN state==RED) ->
t=(t+25)%86400;sign=false;EW state=YELLOW;SN state=RED;
EW RED=false;EW YELLOW=true;EW GREEN=false;SN RED=true;
SN YELLOW=false;SN GREEN=false;}

:: atomic{(sign==false)&&(EW state==YELLOW)&&(SN state==RED) ->
t=(t+5)%86400;sign=false;EW state=RED;SN state=GREEN;
EW RED=true;EW YELLOW=false;EW GREEN=false;SN RED=false;
SN YELLOW=false;SN GREEN=true;}

:: atomic{(sign==false)&&(EW state==RED)&&(SN state==GREEN) ->
t=(t+25)%86400;sign=false;EW state=RED;SN state=YELLOW;
EW RED=true;EW YELLOW=false;EW GREEN=false;SN RED=false;
SN YELLOW=true;SN GREEN=false;}

:: atomic{(sign==false)&&(EW state==RED)&&(SN state==YELLOW) ->
t=(t+5)%86400;sign=(25200<=((t+25)%86400) &&((t+25)%86400)
<=32400|| 61200<=((t+25)%86400) &&((t+25)%86400)<=68400);
EW state=GREEN; SN state=RED;EW RED=false;EW YELLOW=false;
EW GREEN=true;SN RED=true;SN YELLOW=false;SN GREEN=false;}

:: atomic{(sign==true)&&(EW state==GREEN)&&(SN state==RED) ->
t=(t+30)%86400;sign=true;EW state=YELLOW;SN state=RED;
EW RED=false;EW YELLOW=true;EW GREEN=false;SN RED=true;
SN YELLOW=false;SN GREEN=false;}

:: atomic{(sign==true)&&(EW state==YELLOW)&&(SN state==RED) ->
t=(t+5)%86400;sign=true; EW state=RED; SN state=GREEN;
EW RED=true;EW YELLOW=false;EW GREEN=false;SN RED=false;
SN YELLOW=false;SN GREEN=true;}

:: atomic{(sign==true)&&(EW state==RED)&&(SN state==GREEN) ->
t=(t+20)%86400; sign=true;EW state=RED; SN state=YELLOW;
EW RED=true;EW YELLOW=false;EW GREEN=false;SN RED=false;
SN YELLOW=true;SN GREEN=false;}

:: atomic{(sign==true)&&(EW state==RED)&&(SN state==YELLOW) ->
t=(t+5)%86400;sign=(25200<=((t+30)%86400) &&((t+30)%86400)
<=32400 —— 61200<=((t+30)%86400) &&((t+30)%86400)<=68400);
EW state=GREEN; SN state=RED;EW RED=false;EW YELLOW=false;
EW GREEN=true;SN RED=true;SN YELLOW=false;SN GREEN=false;}

od;
}
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where p, q, and r are defined as follows:

#define p sign==false
#define q EW GREEN==true
#define r SN RED==true

With PPTL SPIN, it is obtained that this property is not valid on the model.
Meanwhile, a counterexample which shows how the property is violated is pro-
vided as shown in Fig. 4. Intuitively, this property is not satisfied when the TLCS
turns to rush when the mode is 1 and sign is true.

5 Conclusion

We present a tool PPTL SPIN which enhances SPIN with PPTL specification
and shows how it works with a case study. Experiment shows that the tool works
well in practice. However, the time complexity of constructing LNFGs is high
when full regular properties are given. We will reduce the time of constructing
BAs and the state space of the system model in the future.
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Abstract. The Structured Object-oriented Formal Language (SOFL) method is
developed to overcome the disadvantages of existing formal methods and provide
effective techniques for writing formal specifications and carrying out verification
and testing. Although it has been applied to system modeling and design in prac‐
tical and research projects, SOFL has not been widely applied to the industrial
software development systems because of the lack of efficient tool support.
Aiming at improving the existing SOFL supporting tool and solving the problem
that the formal specifications cannot be directly executed, this paper firstly
analyzes the relationship between the structures of SOFL formal specifications
and C# programs, and then discusses how module transformation and data type
transformations are implemented. Finally, a testing is performed to ensure the
reliability of the implemented software system.

Keywords: SOFL · Specification transformations · Data type · Programs

1 Introduction

Specification-based testing and inspection for programs are two major techniques in the
SOFL method [1], but they are facing challenges due to possible inconsistency between
SOFL formal specifications and programs in some programming language such as Java
or C#. The inconsistency may exist in process signatures, data types, or the structure of
the documents. A process in SOFL is an operation transforming input to output, but with
multiple input and/or output ports, which differs from an operation in other formal nota‐
tions, such as VDM [2], Z [3], and B-Method [3]. When a process is implemented in a
program, it is usually realized by a method in a class. It is highly possible that the
parameters of the method are inconsistent with those of the process in the specification.
Further, the data types adopted in SOFL, such as set, sequence, map, composite types,
may be easily implemented using similar data types in the programming language, but
the associated operators defined on those types may be represented using the different
syntax in both the specification and the program. Thus, test cases generated based on
the specification may not be directly applicable in executing the program for testing.
This sets a big hurdle for a complete automatic testing technique to be established.

To deal with this problem, in this paper we describe a new approach called signa‐
ture-preserved transformation. The essential points of the approach are threefold.
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Firstly, the signature of each process in the specification is automatically transformed
into a method signature that preserves the number of the parameters and their types
declared in the process specification. The body of the method is left to the programmer
to complete manually based on the pre- and post-conditions of the process specification.
Secondly, all of the SOFL data types and all the associated operators are implemented
in the programming language in the manner their syntax is almost preserved. Thus, once
the package containing the implementation classes of the data types is imported, the
same operators with the same syntax in SOFL can be directly used in the program. This
will facilitate the application of test cases generated from the specification to the program
implementing the specification. Finally, the structure of the entire module structure can
be automatically transformed into a class structure in which all of the related constants,
type declarations, state variable declarations are properly presented.

The rest of this paper is organized as follows. Section 2 briefly describes the structure
of module in SOFL. Section 3 analyzes the principles of transformation. These trans‐
formations are process transformation, module structure transformation, and data type
transformation. Section 4 discusses the design and implementation of transformation.
Section 5 presents the testing of the programming for verifying the validation and reli‐
ability of the programs. The related work is given in Sect. 6. Finally, the last section,
Sect. 7, concludes the work of this paper, and points out the future research directions.

2 The SOFL Module

In this section, we briefly introduce the structure of a SOFL module in order to help the
reader understand our discussions on automatic transformation late in the paper.

A module in SOFL is a textual document defining the semantics of all of the com-
ponents occurring in an associated condition data flow diagram (CDFD) [3]. The most
important part of the module is the process specifications. Each process models a trans‐
formation from input data flows to output data flows and its functionality is specified

Fig. 1. Structure of module
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using pre- and post-conditions. All of the data flows are associated with processes in the
way they are used as either input or output. Each process can also access or update some
data stores where each data store is represented by a variable of some type. For the
purpose of constructing the process specifications, necessary constants identifiers and
type identifiers may need to be declared, and all of the data store variables must be
declared with proper types in the module, as illustrated in Fig. 1. Another important part
is function definitions. Functions can be applied in the pre- or post-conditions of some
process specifications, but for this purpose, they must be defined either explicitly or
implicitly. We omit the details here for the sake of space. The reader who is interested
in the details can refer to the SOFL book [3].

3 Principles of Transformation

In this section, we focus on the principles for process transformation, module struc-ture
transformation, and data type transformation. From the next section, we will extend our
discussion to the implementation of the transformation principles.

3.1 Process Transformation

A process, basically, consists of five parts: process name, input data flow variables,
output data flow variables, pre-condition and post-condition. The process presents an
action or operation that consumes the input data flows and generates the output data
flows. If there are external variables that need to be used in this process, they are stated
after the keyword ext. A complex process may be decomposed into the lower level
CDFD whose associated module is written after the keyword decom. The keyword
comment starts the informal comment section, which is usually written to improve the
readability of the formal specifications (Fig. 2).

Fig. 2. The structure of process

As process is one of the most essential parts in module [4], we firstly transform the
process to the programs. The process has two types: one is the single-port process with
only one input port and one output port, the other is the multiple-port process with
exclusive input or output data flows. When dealing with the transformations of process,
we implement these two types in two different forms.
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Firstly, the general form of single-port process is presented in the Fig. 3, and
transforming this process into method is shown in Fig. 4.

Then, the general form of multiple-port process is presented in the Fig. 5, and
transforming this process into method is shown in Fig. 6.

Fig. 5. General form of multiple-port process

Fig. 6. Transformation of multiple-port process

3.2 Module Transformation

As illustrated in Fig. 1, the beginning of the module is the keyword module. Module‐
Name is a unique identifier of module in SOFL specifications. The key words const,

Fig. 3. General form of single-port process Fig. 4. Transformation of single-port process
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type and var start the sections for constant declarations, type declarations, and variable
declarations respectively. The key word inv stands for the type and state invariants,
which represents the constraints on the type declarations section and variable declara‐
tions section. The CDFD_no after the key word behav specifies the affiliated CDFD.
The last two parts, beginning with keyword process and function, offers some processes
and functions.

Apparently, a module is similar to a class in C# in structure. Therefore, we take the
straightforward principle to transform a module into a C# class. Specifically, the ideas
of transforming each part of the module are given as follows:

• Transform the constant declaration to the constant in C#, using the keyword const
prior to the constant variables.

• Transform the type declaration to either a basic type or a class, whose form is in
compliance with C# language syntax. However, the data type is written in SOFL
language, so that it needs to be implemented by C# language as I discuss later.

• Transform the variable declarations to the instance variables, stored and accessed in
the external file, but used in this transformation class.

• Transform the processes to the target methods.
• Transform the functions to the target methods, which are similar to that of processes.

3.3 Data Type Transformation

Data types, an essential part for specifications, provide a notation to define data structures
in the SOFL formal specification [5]. Although we can transform a module to a class in
the programming language, only completing data type transformations can the results
of module transformations be used for final automatic specifications testing. Because
the data types in SOFL are not identical with C# language data types both in semantics
and syntax [6], we cannot directly execute the results of module transformations. In
other words, it attaches no significance to the transformations of module without the
data type transformations. Only with the support of data types transformations, results
of module transformations can be used for specifications and program testing.

In SOFL language, the data types are divided into two categories: built-in type and
user-defined types. The built-in types have fourteen kinds of data types, which are further
divided into basic types and compound types. The basic types include nat0 type, nat
type, int type, real type, bool type, char type, string type and Enumeration type, while
the compound types are: set type, sequence type, composite type, map type, product
type and union type. The user-defined types are defined by the specification writers.
They are based on the built-in data types, so the transformation guidelines of built-in
data types also apply to the transformation of user-defined types.

It is worth noting that transformations from data types in SOFL to the data types in
C# language require both semantics preservation and syntactic changes [7]. Firstly, the
syntax of variable declaration in SOFL language is not identical with that of variable
declaration in C#. The former lets the type appear behind the variable with a colon sepa‐
rating them, while the latter makes the type appear prior to the variable with a space
between them. What is more, in the semantics perspective, some of the types are in
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accordance with that in C#, such as int type, char type, string type, bool type and Enumer‐
ation type. While some of the types are similar to that in C#, for example nat0 type, nat
type and real type. In addition, some of the types are different from that in C#, for
instance, set type, sequence type, composite type, map type, product type and union type.

In general, the choice of the concrete data types in the transformation will affect
somehow the algorithms of the implemented program using the data types [8, 9]. There‐
fore, it is essential to strike a balance between data structures and algorithms. Under this
circumstance, we consider that some of the data types do not need to be transformed, as
they have already existed in the C# and can be executed directly. While some of the data
types need to be implemented by the similar data types available in C#, the transforma‐
tions of which can be quite straightforward owing to the support of.Net platform with
rich data structures and class libraries.

Based on this analysis, we adopt several principles for data type transformation
summarized as follows:

• The int type, char type, string type, bool type, and Enumeration type do not need to
be transformed because they have already existed in C# and can be used directly.

• The nat0 type defines the natural numbers including zero and nat type defines the
natural numbers, so that these two types can be implemented by int type in C#.

• The real type represents the real numbers, which can be implemented by double type
in C#.

• The set type is an unordered collection of distinct objects, which is similar to the
HashSet type in C#, so it is natural to implement it through HashSet type.

• The sequence type is an ordered collection of objects that allows duplications of
objects. Taking this into account, I believe that List type in C# is the best choice to
implement it.

• The map type is a finite set of pairs, the domain and range to the map share the similar
meaning with the key and value to the dictionary type in C#.

• The composite type and product type represent a collection of several data items, so
the abstract classes are used to implement these two types and their inherent func‐
tions.

• The union type is a special type associated with several functions. It can be regarded
as a collection of variables in different types. We consider that we will transform this
type to a class with many fields in C#.

4 Design and Implementation of Transformations

In general, we create three packages to implement the transformations. One is automatic
transformation package, and other two are module transformations package and data
type transformations package as shown in Fig. 7. In the automatic transformation
package, we need to invoke the methods defined in the module transformations package
to complete the module transformations. The results of transformations cannot be
executed without the support of data type transformations which are completed in data
type transformations package.
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Fig. 7. The structure of transformation framework

The AutomaticTransformation package includes the main class of the transforma‐
tions, whose main method is the entry of the automatic transformations. This package
invokes the methods of classes in the ModuleTransformation package and is supported
by the classes in the SOFLDataType package.

4.1 Main Program in AutomaticTransformation

The AutomaticTransformation package includes the main program used to complete the
automatic transformations. The main method in this program is the entry of the automatic
transformations and it invokes the methods of classes in the ModuleTransformation
package.

In this process, firstly, we enter the path of XML file, and then judge whether the
file exists or not. If the XML file exists, we have to enter the output file path and also
make a judgement to ensure that the file name is legal. In the next step, we will make a
choice to decide whether to start the transformations or not. If we choose to start the
transformations, the specifications will be transformed to C# programs. After
completing the transformation, the system will terminate.

4.2 Implementation Classes in ModuleTransformation

Figure 8 shows the classes in ModuleTransformation, the details of each class is intro‐
duced in the following:

• XmlTool class: The objective of this class is to provide a XML file tool used for
extracting the data information of SOFL formal specifications form the XML files.
Before executing the transformations process, we should make formal specifications
generate the corresponding XML files through the existing SOFL supporting tool,
then this class is to parse these XML files to get the data information we need.

• ConstantTransformation class: This class mainly deals with constant declaration in
SOFL formal specifications. It contains two methods, one is to get the constant vari‐
ables and write into the external file, and the other is to judge constant variables types
and invoke the former method to write the corresponding constants.

• TypeTransformation class: This class is used to complete the type declaration trans‐
formations. Because there are many kinds of different data types, we need to invoke
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different methods to implement the transformations. In other words, each of the
compound type transformation uses one method.

• VariableTransformation class: The purpose for this class is to transform the variable
declaration section to the programing in C#. Since the variables appearing in this
corresponding part are either the local variables or external variables, so we design
two methods to implement this process. One is for writing the local variables into
target files and the other is for writing the external variables.

• FunctionTransformation class: This class is to handle the transformations from func‐
tion declaration to programs. Owing to the similar structure with the method in C#,
we design a method to write these function declarations into the target files.

• ProcessTransformation class: In this class, a method is defined to judge different
cases, and for each case, we invoke the methods of SinglePort class to execute the
single-port process transformations and the methods of MultiplePort class to execute
the multiple-port process transformations.

• ModuleDeclarationTransformation class: This class is to realize the functions of
module transformations by invoking the methods in other classes. It has two methods,
one is to write the first line of module and the other is to complete the transformations
of other parts in module sequentially.

Fig. 8. The implementation classes in ModuleTransformation
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4.3 Implementation Classes in SOFLDataType

There are fourteen kinds of data types in SOFL, but five of them share the same semantics
and syntactic with C# language so that they can be directly executed in the programming.
The rests need to be transformed in the C# to support the results of module transforma‐
tions. In this case, we design nine interfaces to implement the transformations of nine
kinds of data types. The relationship is shown in Table 1.

Table 1. Data types in SOFL and their implementation classes

Key word of data type in SOFL Data type interface Implementation class

nat0 Inat0 nat0

nat Inat nat

real Ireal real

set Iset set

seq Iseq seq

map Imap map

composite Icomposite composite

product Iproduct product

union Iunion union

Note that the naming conventions of class in C# is that the first letter of class name
is capitalized, but we do not observe this rule because we want to make the name of
implementation classes in accordance with the keyword of data type in SOFL, so as to
use the implementation classes efficiently and unambiguously. The more details about
the design of data type interfaces and the implementations of methods in corresponding
classes are presented by the UML class diagram as follows:

We design nine interfaces, which are Inat0, Inat, Ireal, Iset, Iseq, Imap, Icompo‐
site, Iproduct and Iunion, to implement the transformations of these nine kinds of data
types. The methods in each interface are consistent with the operators in the related
SOFL data types. Then, the nine classes, which are nat0, nat, real, set<T>, seq<T>,
map<T, E>, composite, product and union, are created to implement the corresponding
interfaces (Fig. 9).
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Fig. 9. The implementation classes in SOFLDataType

5 Transformation Results

After the transformation software system is implemented, it is essential to perform a test
to detect faults and ensure the validity and robustness of the system. In order to check
whether each function in the transformations can be used correctly, we adopt the black-
box testing method to test the transformations process. Firstly, unit testing method is
used to test each transformation section, and then the integration testing methods are
adopted to ensure the success of the entire transformations (Fig. 10).

The testing procedures can also be the guidance of how to use these programs to
make the automatic transformation, which are listed as follows:

1. Using the existing SOFL supporting tool to create the formal specifications and draw
the related CDFDs [10].

In the existing SOFL supporting tool, we can use the three-step approach to
constructing the formal specifications. The structure of the components in current
project is displayed in the upper-left corner. In the center, a CDFD related to the
module is drawn. If one item in the CDFD is selected, the attributes of it will be
presented in the lower- left corner. The module in detail is written in the right side.

2. Generating the related XML file through the existing SOFL supporting tool.
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In Fig. 11, the names of labels are related to the corresponding keywords in the
SOFL formal specifications constructed in step 1. For example, the label “module”
is related to the keyword module in the specification.

Fig. 11. XML file of the related SOFL formal specification

3. Using the software system we have developed to parse the XML file and complete
the transformation. A result of the transformation is presented in Fig. 12.

Fig. 10. Snapshot of the SOFL formal specification of a hotel reservation system
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In Fig. 12, the module name is related to the class name. The constant declarations
in the module are transformed to the constant variables. The type declarations are
transformed to either a basic type or a class. The variable declarations are trans‐
formed to the instance variables. The process and function are implemented by the
target methods.

Fig. 12. Results of transformations

6 Related Work

There exist some tools to support automatic transformation from other formal notation
to programming languages. VDMTools [11] offer the functions of analyzing the system
models expressed in the formal language of VDM, which has been applied to developing
industrial software systems. The VDM specification can be executed directly through
the interpreter inside this tool. ProB [12] is a validation toolset for the B method. In this
tool, a model checker and a refinement checker can be used for executing the B speci‐
fications to detect various errors. UPPAAL [13] is a verification tool for timed automate.
In UPPAAL, there is no textual specification, but user can construct the finite state
machine to module the functions of a system, which can be executed in this tool to detect
faults.

7 Conclusions and Future Work

In this paper, we discuss the principles and implementation of automatic transformations
from SOFL formal specifications to programs. We first analyzed the module structure
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and data type in SOFL formal specifications, which lays the foundation for the trans‐
formations. We then described the design and implementation of transformations. After
completing the transformations, we used a black-box testing method to design test cases
and carry out unit testing, integration testing and system testing methods to verify the
results of transformations.

In the future, we will continue this transformations work and plan to extend to the
CDFD and class in SOFL formal specifications. With the development of automatic
transformations, we would be interesting in the applications of these transformations for
specifications testing and automatic generation of test cases.
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