
Online Evolution for Multi-action Adversarial
Games

Niels Justesen1, Tobias Mahlmann2(B), and Julian Togelius3

1 IT University of Copenhagen, Copenhagen, Denmark
njustesen@gmail.com

2 Lund University, Lund, Sweden
tobias.mahlmann@lucs.lu.se

3 New York University, New York, USA
julian@togelius.com

Abstract. We present Online Evolution, a novel method for playing
turn-based multi-action adversarial games. Such games, which include
most strategy games, have extremely high branching factors due to each
turn having multiple actions. In Online Evolution, an evolutionary algo-
rithm is used to evolve the combination of atomic actions that make
up a single move, with a state evaluation function used for fitness. We
implement Online Evolution for the turn-based multi-action game Hero
Academy and compare it with a standard Monte Carlo Tree Search imple-
mentation as well as two types of greedy algorithms. Online Evolution is
shown to outperform these methods by a large margin. This shows that
evolutionary planning on the level of a single move can be very effective
for this sort of problems.

1 Introduction

Game-playing can fruitfully be seen as search: the search in the space of game
states for desirable states which are reachable from the present state. Thus, many
successful game-playing programs rely on a search algorithm together with a
heuristic function that scores the desirability (usually related to the probability
of winning given that state). In particular many adversarial two-player games
with low branching factors, such as Checkers and Chess, can be played very
well by the Minimax algorithm [15] together with a state evaluation function.
Other games have higher branching factors, which greatly reduces the efficacy of
Minimax search, or make the development of informative heuristic functions very
hard as many game states are deceptive. A classic example is Go, where computer
players for a long time performed poorly. For such games, Monte Carlo Tree
Search (MCTS) [4] tends to work much better; MCTS handles higher branching
factors well by building an unbalanced tree, and performs state estimations by
Monte Carlo simulations until the end of the game. The advent of the MCTS
algorithm caused a qualitative improvement in the performance of Go-playing
programs [2].

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part I, LNCS 9597, pp. 590–603, 2016.
DOI: 10.1007/978-3-319-31204-0 38



Online Evolution for Multi-action Adversarial Games 591

Many games, including all one-player games and many one-and-a-half-player
games (where the player character faces non-player characters), are not adversar-
ial [6]. These include many puzzles and video games. For such games, the game-
playing problem is similar to a classic planning problem, and methods based
on best-first search become applicable and in many cases effective. For exam-
ple, a version of A* plays Super Mario Bros very well given reasonably linear
levels [20]. But MCTS is also useful for many non-adversarial games, in partic-
ular with high branching factors, hidden information and/or non-deterministic
outcomes.

First-Play Urgency (FPU) is one of many enhancements to MCTS for games
with large branching factor [7]. FPU encourages early exploitation by assigning
a fixed score to unvisited nodes. Rapid Action Value Estimation (RAVE) is
another popular enhancement that has been shown to improve MCTS in Go [9].
Script-based approaches such as Portfolio Greedy Search [5] and Script-based
UCT [11] deals with the large branching factor of real-time strategy games by
exploring a search space of scripted behaviors instead of actions.

Recently, a method for playing non-adversarial games called rolling horizon
evolution was introduced [17]. The basic idea is to use an evolutionary algo-
rithm to evolve a sequence of actions to perform and during the execution of
these actions a new action sequence is evolved. This process is continued until
the game is over. This use of evolution differs sharply from how evolutionary
algorithms are commonly used in game-playing and robotics, to evolve a con-
troller that later selects actions [3,21,22]. The fitness function is the desirability
of the final state in the sequence, as estimated by either a heuristic function
or Monte Carlo playouts. This approach was shown to perform well on both
the Physical Travelling Salesman Problem [16] and many games in the General
Video Game Playing benchmark [13]. However, rolling horizon evolution can-
not be straightforwardly applied to adversarial games, as it does not take the
opponent’s actions into account; in a sense, it only considers the best case.

In this paper, we consider a class of problems which has been relatively less
studied, and for which none of the above described methods perform well. This
is the problem of multi-action turn-based adversarial games, where each player
each turn takes multiple separate actions, for example by moving multiple units
or pieces. Games in this class include strategy games played either on tabletops
or using computers, such as Civilization, Warhammer 40k or Total War ; the
class includes games more similar to classic board games, such as Arimaa, and
arguably many real-world problems involving the coordinated action of multiple
units. The problem with this class of games is the branching factor. Whereas
the average branching factor hovers around 30 for Chess and 300 for Go, a
game where you move six units every turn and each unit can do one out of
ten actions has a branching factor of a million. Of course, neither MiniMax nor
MCTS work very well with such a number; the trees become very shallow. The
way such games are often played in practice is by making strongly simplifying.
For example, if you assume independence between units your branching factor
is only 60, but this assumption is typically wrong.



592 N. Justesen et al.

Rolling horizon evolution does not work on the class of games we consider
either for the reason that they are adversarial. However, evolution can still be
useful here, in the context of selecting which actions to take during a single
move. The key observation here is that we are only looking to know which turn
to take next, but finding the right combination of actions to compose that turn
is a formidable search problem in itself. The method we propose here, which we
call online evolution, evolves the actions in a single turn and uses an estimation
of the state at the end of the turn (right before the opponent takes their turn) as
a fitness function. It can be seen as a single iteration of rolling horizon evolution
with a very short horizon (one turn).

In this paper, we apply online evolution to the game Hero Academy. It is
contrasted with several other approaches, including MCTS, random search and
greedy search, and shown to perform very well.

2 Methods

This section presents our testbed game, our methods for reducing the search
space and evaluating game states, and search algorithms we test, including
MCTS and Online Evolution.

2.1 Testbed Game: Hero Academy

Our testbed, a custom-made version1 of Hero Academy2, is a two-player turn-
based tactics game inspired by chess and is very similar to the battles in the
Heroes of Might &Magic series. Figure 1 shows a typical game state. Players
have a pool of combat units and spells at their disposal to deploy and use on a
grid-shaped battle field. Tactical variety is achieved by different unit classes that
fulfil different combat roles (fighter, wizard, etc.) and the mechanic of “action
points”. Each turn, the active player starts with five action points, which can
be freely distributed among units on the map, deploy new units, or cast spells.
Especially noteworthy is that a player may chose to distribute more than one
action point per unit, i.e. let a unit act twice or more times per turn. A turn is
completed once all five action points are used. The game itself has no turn limit
while our experiments did implement a limit of 100 turns per player. The first
player to eliminate the enemy’s units or base crystals wins the game. For more
details on the implementation, rules, and tactics on the game, we kindly ask the
reader to refer to the Master thesis referenced as [10].

The action point mechanic makes Hero Academy very challenging for decision
making algorithms due to the number of possible future game states which is
significantly higher than in other games. Many different action sequences may
however, lead to the same end turn game state as units can be moved freely in
any order. In the following, we present and discuss different methods in regard
to this problem.
1 https://github.com/njustesen/hero-aicademy.
2 http://www.robotentertainment.com/games/heroacademy/.

https://github.com/njustesen/hero-aicademy
http://www.robotentertainment.com/games/heroacademy/


Online Evolution for Multi-action Adversarial Games 593

Fig. 1. A typical game state in Hero Academy. The screenshot is from our own imple-
mentation of the game.

2.2 Action Pruning &Sorting

Our implemented methods used action pruning to reduce the enormous search
space of a turn by removing (pruning) redundant swap actions and sub-optimal
spell actions from the set of available actions in a state. Two swap actions are
redundant if they swap the same kind of item and one can be removed as they
produce the same outcome. A spell action is sub-optimal if another spell action
covers the same or more enemy units. In this way spells that do not target
any enemy units will also be pruned because it is always possible to target the
opponent’s crystals.

For some search methods, it makes sense to investigate the most promising
moves first and thus a method for sorting actions is needed. A simple way would
be to evaluate the resulting game state of each action, but this is usually a slow
method. The method we implemented rates an action by how much damage it
deals or how much health it heals. If an enemy unit is removed from the game,
it is given a large bonus. In the same way, healing actions are awarded a bonus
if they are saving a knocked out unit. In this way, critical attack and healing
actions are rated high and movement actions are rated low.

2.3 State Evaluation

Several of our algorithms require an evaluation of how “good” a certain state
for a player is. For this case, we used a heuristic to evaluate the board in a
given state. This heuristic is based on the difference between the values of both
players’ units, assuming it as the main indicator for which player is winning.
This includes the units on the game board and those which are still at the



594 N. Justesen et al.

players’ disposal. Furthermore, the value of a unit u is calculated using a linear
combination as follows:

v(u) = uhp + umaxhp × up(u)
︸ ︷︷ ︸

standing bonus

+

equipment bonus
︷ ︸︸ ︷

eq(u) × up(u) (1)

+ sq(u) × (up(u) − 1)
︸ ︷︷ ︸

square bonus

whereas uhp is the number of health points u has, sq(u) adds a bonus based
on the type of square u stands on, and eq(u) adds a bonus based on the unit’s
equipment. For brevity, we will not discuss these in detail, but instead list the
exact modifiers in Table 1. Lastly, the modifying term up(u) is defined as:

up(u) =

{

0, if uhp = 0
2, otherwise

(2)

This will make standing units more valuable than knocked out units.

Table 1. For completeness, we list the modifiers used by our game state evaluation
heuristic.

Dragonscale Runemetal Helmet Scroll

Archer 30 40 20 50
Cleric 30 20 20 30
Knight 30 -50 20 -40
Ninja 30 20 10 40
Wizard 20 40 20 50

(a) Bonus added to units with items.

Assault Deploy Defence Power

Archer 40 -75 80 120
Cleric 10 -75 20 40
Knight 120 -75 30 30
Ninja 50 -75 60 70
Wizard 40 -75 70 100

(b) Bonus added to units with items.

2.4 Tree Search

Game-tree based methods have gained much popularity and have been applied
with success to a variety of games. In short, a game tree is a acyclic directed
graph with one source node (the current game state is the root) and several leaf
nodes. Its nodes depict hypothetical future game states and its edges define the
players’ actions that would lead to these states. A node has therefore as many
edges leading from it, as the number of actions available for the active player in
that game state. Additionally, each edge is assigned a value, and the edge leading
from the actual gamestate (the root node of the tree) with the highest value is
considered the best current move. In adversarial games, it is common that players
take turns and hence the active player alternates between plies of the tree. The
well-known Minimax algorithm makes use of this. However, in Hero Academy



Online Evolution for Multi-action Adversarial Games 595

players take several actions before their turn ends. One possibility would be to
encode multiple actions as one multi-action, e.g. as an array of actions, and
assign it to one edge. Due to the number of possible permutations, this would
raise the number of child nodes for a given game state immensely. Therefore, we
decided to model each action as its own node, trading tree breadth for depth.

As the number of possible actions is variable, depending on the current game
state, determining the exact branching factor is hardly possible. To get an esti-
mate, we manually counted the number of possible actions in a recorded game
to be 60 on average. We therefore estimate the average branching factor per
turn to be 605 = 7.78× 108 as each player has five actions. If we further assume
through observation that the average game length is 40 turns and both players
take a turn each round, we can calculate the average game-tree complexity to
((605)2)40 = 1.82 × 10711. As a comparison: Shannon calculated the game-tree
complexity of Chess to be 10120 [19].

In the following, we will present three game-tree based methods, which were
used as a baseline for our online evolution method.

Greedy Search Among Actions. The Greedy Action method is the most
basic method developed. It makes a one-ply search among all possible actions,
and selects the action that leads to the most promising game state based on
our heuristic. It also uses action pruning described earlier. The Greedy Action
search is invoked five times to complete a turn.

Greedy Search Among Turns. Greedy Turn performs a five-ply depth-first
search corresponding to a full turn. Both action pruning and action sorting
are applied at each node. The heuristic described earlier rates all states at leaf
nodes and then chooses the action sequence that leads to the highest-rated state.
A transposition table is used so that already visited game states will not be
visited again. This method is very similar to a Minimax search that is depth-
limited to only search in the first five ply. Except for some early and late game
situations Greedy Turn is not able to make an exhaustive search of the space of
actions, even with a time budget of a minute.

Monte Carlo Tree Search. Monte Carlo Tree Search has successfully been
implemented for games with large branching factors such as the strategy game
Civilization II [1] and it thus seems to be an important algorithm to test in Hero
Academy. Like the two greedy search variants, the Monte Carlo Tree Search
algorithm was implemented with an action based approach, i.e. one ply in the
tree represents an action, not a turn. Hence the search has to reach the depth
of five to reach the beginning of the opponent’s turn. In each exploration phase,
one child is added to the node chosen in the selection phase, and a node will
not be selected unless all of its siblings have been added in previous iterations.
Additionally, we had to modify the standard backpropagation to handle two
players with multiple actions. We solved this with an extension of the Backup-
Negamax [2] algorithm (see Algorithm 1). This backpropagation algorithm uses



596 N. Justesen et al.

a list of edges corresponding to the traversal during the selection phase, a Δ
value corresponding to the result of the simulation phase and a boolean p1 that
is true if player one is the max player and false otherwise.

Algorithm 1. Alteration of the BackupNegamax [2] algorithm for multi-action
games.
1: procedure MultiNegamax(Edge[] T , Double Δ, Boolean p1)
2: for all Edge e in T do
3: e.visits++
4: if e.to �= null then
5: e.to.visits ++

6: if e.from = root then
7: e.from.visits ++

8: if e.p1 = p1 then
9: e.value += Δ

10: else
11: e.value −= Δ

The ε-greedy approach was used in the rollouts that combine random play
with the highest rated action (rated by our actions sorting method). The MCTS
agent was given a budget of b milliseconds. As agents in Hero Academy have to
select not one but five actions, we experimented with two approaches: the first
approach was to request one action from the agent five times each with a time
budget of b

5 . The second approach was to request five actions from the agent
with a time budget of b. The second approach proved to be superior as it gives
the search algorithms more flexibility.

2.5 Online Evolution

Evolutionary algorithms have been used in various ways to evolve controllers
for many games. This is done by what is called Offline Learning where a con-
troller first goes through a training phase in which it learns to play the game.
In this section we will present an evolutionary algorithm that, inspired by the
rolling horizon evolution, evolves strategies while it plays the game. We call this
algorithm Online Evolution. The online evolution was implemented to play Hero
Academy and aims to evolve the best possible action sequence each turn. Each
individual in a population thus represent a sequence of five actions. A brute force
search, like the Greedy Turn search, is not able to explore the entire space of
action sequences within a reasonable time frame and may miss many interesting
choices. An evolutionary algorithm on the other hand can explore the search
space in a very different way and we will show that it works very well for this
game.

An overview of the online evolution algorithm will now be given and is also
presented in pseudocode (see Algorithm 2). The online evolution first creates a



Online Evolution for Multi-action Adversarial Games 597

Algorithm 2. Online Evolution (Procedures Procreate (Crossover and Muta-
tion), Clone and Eval are omitted)
1: procedure OnlineEvolution(State s)
2: Genome[] pop = ∅ � Population
3: Init(pop, s)
4: while time left do
5: for each Genome g in pop do
6: clone = Clone(s)
7: clone.update(g.actions)
8: if g.visits = 0 then
9: g.value = Eval(clone)

10: g.visits++

11: pop.sort() � Descending order after value
12: pop = first half of pop � 50 % Elitism
13: pop = Procreate(pop) � Mutation &Crossover

14: return pop[0].actions � Best action sequence

15:
16: procedure Init(Genome[] pop, State s)
17: for x = 1 to POP SIZE do
18: State clone = clone(s)
19: Genome g = new Genome()
20: g.actions = RandomActions(clone)
21: g.visits = 0
22: pop.add(g)

23:
24: procedure RandomActions(State s)
25: Action[] actions = ∅
26: Boolean p1 = s.p1 � Who’s turn is it?
27: while s is not terminal AND s.p1 = p1 do
28: Action a = random available action in s
29: s.update(a)
30: actions.push(a)

31: return actions

population of random individuals. These are created by repeatedly selecting a
random action in a forward model of the game until no more action points are
left. In our case we were able to use the game implementation itself as a forward
model.

In each generation all individuals are rated using a fitness function which
is based on the hand-written heuristic described in the previous section, where
after the worst individuals are removed from the population. The remaining
individuals are then each paired with another random individual to breed an
offspring through uniform crossover. An example of the crossover mechanism
for two action sequences in Hero Academy can be seen on Fig. 2. The offspring
will the represent an action sequence that is a random combination of its two
parents’. Crossover can however in its simplest form easily produce illegal action



598 N. Justesen et al.

sequences for Hero Academy. E.g. moving a unit from a certain position obviously
requires that there is a unit on that square, which might not be true due to an
earlier action in the sequence. Illegal action sequences could be allowed but we
believe the population would be swarmed with illegal sequences doing so. Instead
actions are only selected from a parent if it is legal and otherwise the action will
be selected from the other parent. If both actions are illegal it will try the same
approach on the next action in the parents sequences and if they are illegal as
well a completely random available action is finally selected.

Some offspring will also be mutated to introduce new actions in the gene
pool. Mutation simply changes one random action to another legal action. Legal
en respect to the previous actions only. In some cases this will still result in
an illegal action sequence. If this happens the following part of the sequence is
changed to random but legal actions as well.

Attempts were made to use rollouts as the heuristic for the online evolution
to incorporate information about possible counter moves. In this variation the
fitness function is altered to perform one rollout with a depth limit of five actions
i.e. one turn. The goal of introducing rollouts is to rate an action sequence by the
outcome of the best possible counter-move. Individuals in the population that

Fig. 2. An example of the uniform crossover used by the online evolution in Hero
Academy. Two parent solutions are shown in the top and the resulting solution after
crossover in the bottom. Each gene (action) are randomly picked from one of the
parents. Colours on genes represent the type of action they represent. Healing actions
are green, move actions are blue, attack actions are red and equip actions are yellow
(Color figure online).



Online Evolution for Multi-action Adversarial Games 599

survive several generations will also be tested several times and in this case only
the lowest found value is used. A good action sequence can thus survive many
generations until a good counter-move is found. To avoid that such a solution
re-enters the population the worst known value for each action sequence is stored
in a table. Despite our efforts of using stochastic rollouts as a fitness function
no significant improvement was observed compared to a static evaluation. The
experiments of this variation are thus not included in this paper.

3 Experiments and Results

In this sections we will describe our experiments and present the results of play-
ing each of the described methods against each other.

3.1 Experimental Setup

Experiments were made using the testbed described earlier. Each method was
played against each other method 100 times, 50 times as the starting player and
50 times as the second player. The map seen on Fig. 1 was used and all methods
played as the Council team. The testbed was configured to be without random-
ness and hidden information to focus further on the challenge of performing
multiple actions. Each method was not allowed to use more than one processor
and had a time budget of six seconds each turn. The winning percentages of each
matchup will be presented where draws counts as half a win for each player. The
rules of Hero Academy does not include draws, but we enforced this when no
winner was found in 100 rounds. The experiments were carried out on a Intel
Core i7-3517U CPU with 4 × 1.90 GHz cores and 8 GB of ram.

3.2 Configuration

The following configurations were used for our MCTS implementation. The tradi-
tional UCT tree policy Xj + 2Cp

√

2 lnn
nj

was used with the exploration constant

Cp = 1√
2
. The default policy is ε-greedy, where ε=0.5. Rollouts were depth-

limited to one turn, using the heuristic state evaluator described above. Action
pruning and sorting are used as described above. A transposition table was used
with the descent-path only backpropagation strategy and thus values and visit
counts are stored in edges. nj in the tree policy is thus in fact extracted from
the child edges instead of the nodes.

Our experiments clearly show that short rollouts are preferred over long
rollouts and that rollouts of just one turn gives the best results. Also by adding
some domain knowledge to the rollouts with the ε-greedy policy the performance
is improved. ε-greedy picks a greedy action equivalent to the highest rated action
by the action sorting method with a probability of ε and otherwise a random
action is picked.

Online evolution used a population size of 100, survival rate 0.5, mutation
probability 0.1 and uniform crossover. The heuristic state evaluator described
earlier is also used by the online evolution.



600 N. Justesen et al.

Table 2. Win percentages of the agents listed in the left-most column in 100 games
against agents listed in the top row. Any win percentage of 62 % or more is calculated
to be significant with a significance level of 0.05 using the Wilcoxon Signed-Rank Test.

Random Greedy Action Greedy Turn MCTS Online Evolution

Greedy Action 100 % - 36 % 51.5 % 10 %

Greedy Turn 100 % 64.0 % - 88.0 % 19.5 %

MCTS 100 % 48.5 % 22.0 % - 2 %

Online Evolution 100 % 90.0 % 80.5 % 98% -

3.3 Performance Comparison

Our results, shown in Table 2, show a clear performance ordering between the
methods. Online evolution was the best performing method with a minimum
winning percentage of 80.5 % against the best of the other methods. GreedyTurn
performs second best. In third place, MCTS plays on the same level as Greedy-
Action, which indicates that it is able to identify the action that gives the best
immediate reward while it is unable to search sufficiently through the space of
possible action sequences. All methods convincingly beat random search.

3.4 Search Characteristic Comparison

To further understand how the methods explores the search space, let us inves-
tigate some of the statistics gathered during the experiments, in particular the
number of different action sequences each method is able to evaluate within the
given time budget. Since many action sequences produce the same outcome, we
have recorded the number of unique outcomes evaluated by each method. The
GreedyTurn search was on average able to evaluate 579,912 unique outcomes
during a turn. Online Evolution evaluated on average 9,344 unique outcomes,
and MCTS only 201. Each node at the fifth ply of the MCTS tree corresponds
to one unique outcome and the search only manages to expand the tree to a
limited number of nodes at this depth. When looking into more statistics from
MCTS, we can see that the average depth of leaf nodes in the final trees is 4.86
plies, while the deepest leaf node of each tree reached an average depth of 6.38
plies. This means that the search tree just barely enters the opponents’ turn even
though it manages to run an average of 258,488 iterations per turn. The Online
Evolution ran an average of 3,693 generations each turn but seems to get stuck
at a local optima very quickly as the number of unique outcomes evaluated is
low. This suggests that it would play almost equally good with a much lower
time budget, but also that the algorithm could be improved.

4 Discussion

The results strongly suggest that online evolution searches the space of plans
more efficiently than any of the other methods. This should perhaps not be too



Online Evolution for Multi-action Adversarial Games 601

surprising, since MCTS was never intended to deal with this type of problem,
where the “turn-level branching factor” is so high that it all possible turns cannot
even be enumerated during the time allocated. MCTS have also failed to work
well in Arimaa which has only four actions each turn [12]. In other words, the
superior performance of evolutionary computation on this problem might be due
more to that very little research has been done on problems of this type. Given
the similarities of Hero Academy to other strategy games, and to that these
games model real-life strategic decision making, this is somewhat surprising.
More research is clearly needed.

One immediately promising avenue for further research is to try using evo-
lutionary algorithms with diversity maintenance methods (such as niching [14]),
given that many strategies in the method used here seems to have been explored
multiple times. Tabu-search could also be effective [8]. Exploration of a larger
number of strategies is likely to lead to better performance.

Finally, it would be very interesting to try and take the opponents’ move(s)
into account as well. Obviously, a full Minimax search will not be possible, given
that the first player’s turn cannot even be explored exhaustively, but it might still
be possible to explore this through competitive coevolution [18]. The idea here
is that one population contains the first player’s turn, and another population
the second player’s turn; the fitness of the second population’s individuals is the
inverse of that of the first population’s individuals. There is a major unsolved
problem here in that the outcome of the first turn decides the starting conditions
for the second turn so that most individuals in the second population would be
incompatible with most individuals in the first population, but it may be possible
to define a repair function that addresses this.

5 Conclusion

This paper describes online evolution, a new method for playing adversarial
games with very large branching factors. This is common in strategy games,
and presumably in the real-world scenarios they model. The core idea is to
use an evolutionary algorithm to search for the next turn, where the turn is
composed of a sequence of actions. We compared this algorithm with several
other algorithms on the game Hero Academy; the comparison set includes a
standard version of Monte Carlo Tree Search. MCTS is the state of the art for
many games with high branching factor. Our results show that online evolution
convincingly outperforms all other methods on this problem. Further analysis
shows that it does this despite considering fewer unique turns than the other
algorithms. It should be noted that other variants of the MCTS algorithm are
likely to perform better on problems of this type, just as other variants of Online
Evolution might; we are not claiming that evolution outperforms all types of tree
search. Future work will go into investigating how well this performance holds
up in related games, and how to improve the evolutionary search. We will also
compare our approach with more sophisticated versions of MCTS, as outlined
in the introduction.



602 N. Justesen et al.

References

1. Branavan, S., Silver, D., Barzilay, R.: Non-linear monte-carlo search in civilization
ii. In: AAAI Press/International Joint Conferences on Artificial Intelligence (2011)

2. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S., et al.: A survey of monte
carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

3. Cardamone, L., Loiacono, D., Lanzi, P.L.: Evolving competitive car controllers for
racing games with neuroevolution. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pp. 1179–1186. ACM (2009)

4. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-carlo tree search: a new
framework for game ai. In: AIIDE (2008)

5. Churchill, D., Buro, M.: Portfolio greedy search and simulation for large-scale
combat in starcraft. In: 2013 IEEE Conference on Computational Intelligence in
Games (CIG), pp. 1–8. IEEE (2013)

6. Elias, G.S., Garfield, R., Gutschera, K.R.: Characteristics of Games. MIT Press,
Cambridge (2012)

7. Gelly, S., Wang, Y.: Exploration exploitation in go: uct for monte-carlo go.
In: NIPS: Neural Information Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop (2006)

8. Glover, F., Laguna, M.: Tabu Search*. Springer, New York (2013)
9. Helmbold, D.P., Parker-Wood, A.: All-moves-as-first heuristics in monte-carlo go.

In: IC-AI, pp. 605–610 (2009)
10. Justesen, N.: Artificial intelligence for hero academy. Master’s thesis, IT University

of Copenhagen (2015)
11. Justesen, N., Tillman, B., Togelius, J., Risi, S.: Script-and cluster-based uct for

starcraft. In: 2014 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 1–8. IEEE (2014)

12. Kozelek, T.: Methods of mcts and the game arimaa. Charles University, Prague,
Faculty of Mathematics and Physics (2009)

13. Levine, J., Congdon, C.B., Ebner, M., Kendall, G., Lucas, S.M., Miikkulainen, R.,
Schaul, T., Thompson, T., Lucas, S.M., Mateas, M., et al.: General video game
playing. Artif. Comput. Intell. Games 6, 77–83 (2013)

14. Mahfoud, S.W.: Niching methods for genetic algorithms. Urbana 51(95001), 62–94
(1995)

15. Neumann, J.V.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100(1), 295–320
(1928)

16. Perez, D., Rohlfshagen, P., Lucas, S.M.: Monte-Carlo tree search for the physical
travelling salesman problem. In: Di Chio, C., et al. (eds.) EvoApplications 2012.
LNCS, vol. 7248, pp. 255–264. Springer, Heidelberg (2012)

17. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution
versus tree search for navigation in single-player real-time games. In: Proceedings
of the 15th Annual Conference on Genetic and Evolutionary Computation, pp.
351–358. ACM (2013)

18. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Com-
put. 5(1), 1–29 (1997)

19. Shannon, C.E.: XXII. programming a computer for playing chess. Lond. Edinb.
Dublin Philos. Mag. J. Sci. 41(314), 256–275 (1950)



Online Evolution for Multi-action Adversarial Games 603

20. Togelius, J., Karakovskiy, S., Baumgarten, R.: The 2009 mario ai competition. In:
2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

21. Togelius, J., Karakovskiy, S., Koutńık, J., Schmidhuber, J.: Super mario evolution.
In: IEEE Symposium on Computational Intelligence and Games, 2009, CIG 2009,
pp. 156–161. IEEE (2009)

22. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput.
1(1), 32–49 (2011)


	Online Evolution for Multi-action Adversarial Games
	1 Introduction
	2 Methods
	2.1 Testbed Game: Hero Academy
	2.2 Action Pruning &Sorting
	2.3 State Evaluation
	2.4 Tree Search
	2.5 Online Evolution

	3 Experiments and Results
	3.1 Experimental Setup
	3.2 Configuration
	3.3 Performance Comparison
	3.4 Search Characteristic Comparison

	4 Discussion
	5 Conclusion
	References


