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and Luis Enrique Sucar(B)

Department of Computer Science, Instituto Nacional de Astrof́ısica,
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Abstract. Electrical Load Pattern Shape (LPS) clustering of customers
is an important part of the tariff formulation process. Nevertheless, the
patterns describing the energy consumption of a customer have some
characteristics (e.g., a high number of features corresponding to time
series reflecting the measurements of a typical day) that make their
analysis different from other pattern recognition applications. In this
paper, we propose a clustering algorithm based on ant colony optimiza-
tion (ACO) to solve the LPS clustering problem. We use four well-known
clustering metrics (i.e., CDI, SI, DEV and CONN), showing that the
selection of a clustering quality metric plays an important role in the
LPS clustering problem. Also, we compare our LPS-ACO algorithm with
traditional algorithms, such as k-means and single-linkage, and a state-
of-the-art Electrical Pattern Ant Colony Clustering (EPACC) algorithm
designed for this task. Our results show that LPS-ACO performs remark-
ably well using any of the metrics presented here.

Keywords: Ant colony optimization · Electrical load patterns · Clus-
tering · Clustering quality metrics

1 Introduction

With the inclusion of energy markets into the smart grid, customer clustering
plays an important role in identifying client niches to assist the tariff formulation
process. To this end, the curves known as load pattern shape (LPS) represent
a customer’s typical energy consumption during a day (24 h periods). LPSs are
key to design effective customer tariffs and can be crucial to take decisions like
promoting strategies for peak load reduction or to exploit the willingness of a
client to accepts price-based demand conditions by demand programs [1].

The formation of customer classes based in LPS is a multi-stage approach
involving the gathering of LPSs curves from customers, and applying “clus-
tering” techniques based on pre-defined features extracted from the gathered
information.

Broadly speaking, clustering is an unsupervised machine learning technique
for partitioning an unlabeled data set into groups, in which the objects that
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belong to each group share some similarity between themselves, and are dissim-
ilar to objects of other groups [2]. However, electrical LPSs have some charac-
teristics that make their analysis different from other pattern recognition appli-
cations. For instance, the number of features (e.g., time series reflecting the
electrical consumption of customer’s typical day) is relatively high. Moreover,
the power of such curves normalized in the [0,1] range and considering the same
period of observation causes the overlapping of the patterns.

For the LPS clustering, some of the most studied algorithms include the
classical k-means, fuzzy k-means and hierarchical clustering [3,4]. More recently,
a clustering algorithm based on a centroid model using some concepts of the
Ant Colony Optimization (ACO) algorithm was proposed for LPS clustering
[1,5]. The algorithm accepts the number of cluster as input and incorporates a
mechanism to guarantee the persistence of the centroids in the iteration process.

The ACO algorithm was first introduced by Dorigo et al. [6]. ACO is a swarm
intelligence technique inspired by the behavior of real ants and targets discrete
combinatorial optimization problems. The ACO algorithm is also a source of
inspiration for the design of novel algorithms for the solution of optimization
and distributed control problems.

In this paper, a modified ACO algorithm is applied to the LPS clustering
problem, considering a specific number of clusters and an initial centroid model.
Our proposed LPS-ACO algorithm implement two traces of pheromone that
allow a more efficient information exchange between ants. We compare our LPS-
ACO implementation against some classical algorithm, such as k-means and
single-linkage, and also against the Electrical Pattern Ant Colony Clustering
(EPACC) which is an heuristic algorithm that uses some ACO principles [1].

2 Related Work

Electrical LPS clustering has particular characteristics concerning other pattern
recognition application. For this reason, new and modified clustering algorithms
have been proposed to date. In [4], a framework for the consumer electricity
characterization based on a combination of unsupervised and supervised learn-
ing techniques, such as k-means or fuzzy k-means, was proposed. Other works,
as in [7], used a probabilistic neural network (PNN) as a method for allocat-
ing consumer’s load profiles. An interesting comparison on the use of various
unsupervised clustering algorithms (e.g., modified follow-the-leader, hierarchical
clustering, K-means, fuzzy K-means) and the self-organizing maps (SOM) can
be found in [3]. Also, LPSs clustering can be used in forecasting household-level
electricity demand to assure balance in low-voltage networks [8].

Different approaches using evolutionary and bio-inspired algorithms have
been proposed in the literature for the general problem of clustering [2,9,10].
More recently, In particular for the LPS problem an algorithm based on a user
centroid model and assisted by ant colony principles was presented in [1,5]. The
authors cleverly shape the information related to the distances of each LPS to the
initial model selected by user. Nevertheless, their approach fails by ignoring use-
ful information that ants could provide for the reinforcement of the pheromone
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trail, making its algorithm less flexible. Moreover, they compare their results
against k-means only and under a criterion of just two quality metrics.

Against this background, here we propose an algorithm inspired by [1,5],
but as opposed to them, our LPS-ACO implement two pheromone trails. One
pheromone trail captures the information on the distance to the initial centroids
defined by the user. The other pheromone trail uses the information related to
the fitness (measured with a quality metric) of the solutions found. In this way,
we allow information exchange between ants in a more efficient way, providing
our algorithm with more flexibility to optimize different metrics.

3 Problem Formulation

A pattern is an object, physical or abstract, that has attributes called features
that make it distinguishable from others [2]. In this paper, each customer is
characterized as an LPS pi ∈ P containing d ∈ R points representing the energy
consumption for a given period of observation. The initial profile data matrix
Pn×d contains the n LPSs corresponding to each customer.

In general, given a set of objects P (customers LPSs in this case), a clustering
algorithm tries to find a partition C = {c1, c2, ..., cK} of K classes such that
the similarity between patterns of each class is maximum, and the patterns of
different classes differ as much as possible. The partition should maintain three
properties [2]: (1) Each cluster should have at least one pattern assigned; (2) Two
different clusters should have no pattern in common; (3) Each pattern should
be attached to a cluster.

The clustering problem can be formally defined as an optimization problem
of finding the clustering partition C∗ for which [9]:

f(C∗) = min
C∈Ω

f(C) (1)

where Ω is the set of feasible clusterings, C is a clustering of a given set of data
P , and f is a statistical-mathematical function (i.e., the objective function)
that quantifies the goodness of a partition by similarity or dissimilarity between
patterns.

3.1 Clustering Quality Metrics

Clustering quality metrics are mathematical functions used to evaluate the accu-
racy of a clustering algorithm. Ideally, a quality metric should take care of two
aspects: Cohesion (i.e., the patterns in one cluster should be as similar as possi-
ble) and separation (i.e., the clusters should be well separated).

Some of the most popular metrics used in the literature are the Dunn’s index
(DI) [11], the Davies-Bouldin index (DB) [12], the Chou-Su (CS) index [13],
among others. Because of their optimizing nature (i.e., the maximum or mini-
mum value indicates a proper partition), these metrics are used in association
with evolutionary algorithms, such as GA, PSO or DE [2]. For the particular
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problem of LPS clustering, in [5], other quality metrics named the Clustering
Dispersion Indicator (CDI) and the Scatter Index (SI), were used to guide the
population and assess the quality of the solutions found.

Despite the effectiveness of such metrics for some applications, it is important
to keep in mind that these metrics by themselves optimize some criterion but
sometimes do not reflect good partitions from a broad perspective.

For that reason, in the next subsection, we explain the use of some other
metrics used as objective functions (i.e., fitness function) in this paper.

3.2 Objective Functions

The selection of a proper metric as an objective function to guide the algorithm
is a key aspect of our LPS-ACO algorithm. In this paper, we analyze two quality
metrics (CDI and SI) defined in [5], and two complementary metrics, one based
on compactness and another based on connectedness, defined in [9]. The analysis
of these metrics gives a broad perspective of the quality of the solutions found.

Before presenting the mathematical definition of the analyzed metrics, some
considerations have to be stated:

– A pattern is a physical or abstract structure of objects distinguish from others
by a set of attributes called features [2]. In the LPS problem, Pn×d is a data
matrix with n (i.e., the number of LPSs) d-dimensional patterns pi. Each
element in pi ∈ P corresponds to the jth real-value (i.e., feature j = 1, 2, ..., d)
of the ith pattern.

– Clustering is a process of grouping patterns based on some similarity mea-
sures. The most used way to evaluate similarity is by using some distance
measure. In this paper, we adopt the use of Euclidean distance as a similarity
measure, since is widely used and is well-known [2].

CDI and SI Metrics. The CDI metric is defined under the principle that better
clustering partitions have relatively low internal variation, and the centroids
(δj ∈ Δ) of each clusters cj ∈ C are as far as possible from each other. CDI is
defined as:

CDI(C) =

√
1
K

∑K
j=1 d2(cj)

d(Δ)
(2)

where d(•) is a function that computes the average distance between patterns
in cluster cj ∈ C, and Δ is the set of centroids belonging to each cluster.

The SI metric is calculated with reference to a pooled scatter p̄ = 1
n

∑n
i pi,

corresponding to the average of the data set P . SI is defined as:

SI(C) =
∑n

i=1 d2(pi, p̄)∑K
j=1 d2(δj , p̄)

(3)
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where δj is the centroid of cluster cj , n is the number of LPS and K is the
number of clusters.

Lower values of CDI and SI indicate better clustering solutions. The main
problem with these two metrics, in the particular problem of the LPS clustering,
is that the optimal value of CDI or SI favors the creation of clusters under the
principle of connectedness. That behavior can be explained observing Eq. (2).
Since all the LPS are normalized in the [0,1] range (i.e., there is a little spatial
separation between them), the distance of an LPS to its centroid is on average
the same. On the other hand, if a cluster is made of just one LPS, the distance
of that LPS to its centroid is 0 (i.e., the LPS pi ∈ cj is its centroid). Due to
this behavior, the metric will be optimized putting many LPSs as single clusters
(i.e., the contribution of the distance to its centroids is 0), and letting a unique
cluster with the rest of the patterns.

For that reason, we also analyze two complementary metrics, overall deviation
(DEV) and Connectivity (CONN), as proposed in [9]. These two metrics are
related to compactness and connectedness. In that way, we can analyze from
a broad perspective which metric suits better for the specific problem of LPS
clustering.

DEV and CONN Metrics. The DEV metric measures the compactness of a
solution and is defined as:

DEV(C) =
∑
cj∈C

∑
pi∈cj

d(pi, δj) (4)

where C is the set of clusters, δj is the centroid of cluster cj and d(•) is a distance
function (e.g., Euclidean distance). This metric computes the overall summed
distances between patterns and their corresponding cluster center. Again, lower
values of DEV indicates better clustering performance.

On the other hand, to compute the CONN metric, first it is necessary to
compute a proximity matrix Proxn×L. Proxn×L will contain the L closer pat-
terns ∀pi ∈ P . A distance function (e.g., Euclidean distance) is used once in
the initialization process to determine the L closer patterns to each pi. Once
Proxn×L is computed, CONN is defined as:

CONN(C) =
n∑

i=1

(
L∑

l=1

xi,nnil

)

where xi,nnil
=

{
1/l, if � ∃ cj : pi ∈ cj ∧ pnnil

∈ cj

0 otherwise
(5)

where nnij is the jth nearest neighbor of pattern pi, n is the number of LPSs,
and L is a parameter determining the number of neighbors that contribute to
the connectivity measure. CONN metric evaluates the degree of neighboring
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data points placed in the same cluster by penalizing neighboring data belonging
to different clusters. As DEV, lower values of CONN indicates better clustering
quality.

4 Ant Colony Optimization and LPS-ACO

ACO algorithm exploits self-organized principles of collaboration between arti-
ficial agents (ants) to converge to a good solution. The artificial ants represent
specific solutions to the problem and share information via pheromone trails to
converge to an optimal solution.

In ACO, iterations involve three main phases: an initialization phase, a solu-
tion construction phase and an updating of the pheromone trail phase. The
algorithm is run until a stop criterion is met.

4.1 Load Pattern Shape Ant Colony Optimization Algorithm

In the initialization phase, the LPS-ACO parameters are set. These parame-
ters include the size of the colony (M), the threshold γ reflecting a number
of iterations without a change in the solutions found and used as a stop crite-
rion, among others specified in Sect. 5.1. After set the parameters, the proximity
matrix Proxn×L (defined in Sect. 3.2) with the L neighbors of each LPS pi is
computed.

The encoding of a solution is crucial in the LPS-ACO algorithm. Each ant
is represented as a vector of size n (i.e., the number of LPSs) such as: am =
[p1→cj , p2→cj , ..., pn→cj ]. The elements of the ant represent the allocation of the
ith pattern pi to a specific class cj ∈ C.

The pheromone trails are also necessary to the success of the algorithm. In
this approach, two pheromone trails that store the information learned from the
ants are modeled as matrixes τ and η of dimension n×K. Both pheromone trails
reflect the desirability of assigning the LPS pi ∈ P to the class cj ∈ C.

The first pheromone trail (also called the fitness-pheromone trail) τi,j is rein-
forced by the contribution of ants based on the quality of the solution found
(measured by a metric). On the other hand, the second pheromone trail (also
called the distance-pheromone trail), ηi,j , contains information related to the
distance of LPSs to the corresponding centroids of the clusters.

In the solution construction phase, each ant am assigns the pattern pi to the
cluster cj based on the next decision rule: if a random number in the range [0, 1]
is less than a probability θ, the ant am assigns the pattern pi to the class cj

that has the major pheromone concentration. Otherwise, the assignation of pi is
determined thorough a stochastic decision policy based on the pheromone levels
with probability:

probm
pi→cj = α ∗ τi,j + (1 − α) ∗ ηi,j (6)

where α is a constant weight that controls the importance of one or another
pheromone matrix.
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After the construction of all the solutions, the pheromone trails are updated
with particular rules as explained next.

First, the fitness-pheromone trail values are increased on the clusters
that ants have selected during their solution construction phase. The fitness-
pheromone trail update is implemented as:

τi,j ← τi,j +
M∑

m=1

Δτm
i,j (7)

where Δτm
i,j is the amount of pheromone ant am deposits on the clusters it has

selected. Δτm
i,j is defined as:

Δτm
i,j =

{
fitm, if pi ∈ cj ∈ am

0 otherwise
(8)

where fitm is the cost of the solution built by am. Moreover, we use the concept of
elitist ant system (EAS) to provide additional reinforcement to the assignations
that belong to abest, which is the best solution found by the algorithm at each
iteration. The additional reinforcement is achieved by adding ew ∗ fitbest to the
assignations done by abest.

On the other hand, the distance-pheromone ηi,j is updated with the informa-
tion of the inverse distance from each LPS to the centroids δbest corresponding
to the solution found by abest.

After the initial calculation and every update of both pheromone matrixes,
using the concept of hyper-cube ACO [14], the values of both trails are normal-
ized. This normalization not only avoids the continuous increase of pheromone
trails during iterations but also eliminates the necessity of an evaporation rate
constant. The normalization is done by dividing each row by its greater value.

A detailed pseudocode of the LPS-ACO is shown in Fig. 1.

5 Results and Discussion

We applied the LPS-ACO algorithm for the clustering of LPSs. The initial data
set Pn×d has been obtained from real measures considering n = 250 customers1.
Each LPS was normalized, in the [0,1] range, and was obtained taking the average
measurements of the five days of a regular week (without weekend days) in 30
minutes intervals (i.e., each LPS is an average of five days with d = 48 points).
Figure 2 shows the set of LPS of each customer.

The numerical results section is divided into two parts. First we present the
parameter tuning of the LPS-ACO algorithm. After that, the performance of
the LPS-ACO algorithm using different metrics and comparing our results with
some classical algorithms for clustering is presented.

1 For simplicity, in this work only the first 250 LPSs were considered from the available
data on-line: http://www.ucd.ie/issda/data/commissionforenergyregulationcer.

http://www.ucd.ie/issda/data/commissionforenergyregulationcer
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Fig. 1. LPS-ACO clustering algorithm.

Fig. 2. 250 normalized load pattern shapes. The black dotted line correspond to the
pooled scatter p̄ used to compute Eq. (3).

5.1 Tuning of the Parameters

It is worth noting that the LPS-ACO algorithm requires the manipulation of
few control parameters. These parameters include: θ controlling whether the
assignation of pi to cj is done based on the major pheromone concentration
or in a probabilistic choice; α controlling whether the ants follow the trace of
fitness-pheromone, the trace of distance-pheromone, or a combination of both;
υ used as stop criterion reflecting the maximum number of iterations without
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change in the value of the objective function; M is the size of the colony (i.e., the
number of ants); and ew which is an Elitism weight used in the EAS to provide
extra pheromone by the best ant.

These parameters have an impact on the quality of the solutions. We per-
formed a parametric analysis using a default value for each parameter. The
default values are set to: θ = 0.95, α = 0.5, υ = 20, M = 20 and ew = 1.
We use a sweeping technique to assess their impact on the solutions, one at a
time. The reported values correspond to the average of 50 independent tests.
The 95 % confidence intervals (CI) and the standard deviation (Std) were also
calculated. The experiments were done optimizing CDI, DEV and CONN met-
rics2. Lower values reflect better clustering performance. The best values found
in each experiment are shown in bold.

The results of the first experiment are present in Table 1. This table shows
the importance of selecting a proper value of the θ parameter. Notice that the
best results with the three metrics were obtained when the θ value is set to 1
(shown in bold). The value of 1 means that the decision on the assignation of
pi to the class cj is always done selecting the cluster with the major pheromone
concentration and letting aside the probabilistic decision rule. Nevertheless, in
Table 2, a more fine tuning is presented in the range of [0.9,1] with steps of
0.01. In this range of analyzed values, the best setting for θ to optimize the CDI
and the DEV metrics were 0.97 and 0.95 respectively. On the other hand, if the
user is interested in optimizing the CONN metric, the results suggest that the
probabilistic choice is not necessary, and we can limit our algorithm to follow
the trace of the major pheromone concentration.

For the second experiment, we analyze the impact of the α parameter used
in Eq. (6). Table 3 shows an interesting behavior related to this parameter. For
instance, if we are interested in optimizing CDI or CONN metrics, the results
suggest that the α parameter should be set to 1. A value of 1 implies that we
neglect the effect of the distance-pheromone matrix η in Eq. (6). In other words,
the ants will take the decision based just on the fitness-pheromone matrix τ .
On the other hand, if the user wants to optimize the DEV metric, the value
of α should be set to 0, which means exactly the opposite (i.e., ants will only
follow the trace of the distance-pheromone matrix η). Even when the best values
for each metric were found activating a single pheromone trace (i.e., either η or
τ), it is important to recall that the real optimal solution might be found in a
trade-off of different metrics (e.g., the complementary metrics DEV and CONN)
[9]. This suggest the possibility of an application of a multi-objective approach,
let it as a further work and out of the scope of this research.

When using heuristic algorithms, it is well-known that setting a maximum
number of iterations as a stop criterion is practically ineffective. A best practice is
the use of a criterion that reflect the evolution and no variations of the solutions
during the iteration process, and the use a maximum number of iterations just
to prevent lack of convergence or an excessive computation time. For this reason,

2 SI metric was not taken into account in the parameter tuning since its behavior is
similar to the results obtained with CDI metric.



500 F. Lezama et al.

the third experiment is related to the γ parameter. This parameter is used as
a stop criterion, reflecting a max number of consecutive iterations without a
change in the best solution found. In this way, the stop criterion reflects the
evolution of the solutions in the iterative process. Table 4 shows variations of
the quality of the solutions when γ vary from 1 to 100. The best values are
presented in bold. However, notice that the difference between the means of the
tested values do not have a high variation (e.g., for the CONN metric, the best
value with γ = 100 is almost equal to that with γ = 70). Moreover, increasing
the value of γ will have an impact on the number of iterations needed before the
algorithm stops. For that reason, a medium value (i.e., in the [20,50] range) is
enough to find acceptable solutions without increase the execution time.

The results of the fourth experiment are related to the size of the colony
M and are presented in Table 5. It can be noticed that the variations of the
quality of the solutions in the range of [10,100] are small. However, more ants
imply a greater number of constructions in the second phase of the algorithm,
taking more time of execution if the ants construct their solutions sequentially
rather than in parallel. Moreover, with the increase in the size of the colony,
more objective functions evaluations are needed to determine the fitness of each
ant slowing the execution of the algorithm. To reduce the number of objective
function evaluations an M value in the range of [10,30] is recommended.

Finally, the fifth experiment is related to the ew parameter used to control an
additional contribution of pheromone by the best ant in the elitist ant system.
Table 6 shows the values of the analyzed metrics varying ew parameter. It can
be noticed that this parameter has a small impact on the CDI metric. However,
when the DEV metric is under optimization, small values of ew are preferred for
the algorithm (i.e. the best value was found when the ew is set to 1). On the
other hand, for the CONN metric an intermediate value of the parameter ew

(e.g., in the range of [20,50]) gives the best results.

Table 1. θ parameter tuning in the range [0, 1] with 0.1 steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CDI Mean 1.7036 1.5728 1.5455 1.3494 1.1804 0.9788 0.8341 0.7268 0.5972 0.4792 0.4378

± CI 95% 0.1002 0.0699 0.0659 0.0420 0.0320 0.0243 0.0187 0.0196 0.0118 0.0070 0.0000

Std 0.3525 0.2460 0.2318 0.1476 0.1127 0.0855 0.0657 0.0688 0.0416 0.0247 0.0000

DEV Mean 331.06 326.24 317.33 307.75 294.42 281.26 265.57 249.89 235.97 224.85 224.54

± CI 95% 0.54 0.40 0.80 1.01 1.32 1.33 1.86 1.81 1.43 1.39 0.00

Std 1.92 1.40 2.80 3.55 4.64 4.69 6.56 6.38 5.04 4.90 0.00

CONN Mean 838.17 835.12 818.29 792.67 760.38 723.36 666.10 612.55 529.97 453.83 366.08

± CI 95% 1.09 2.60 3.97 4.68 5.69 5.97 6.33 7.60 8.12 5.61 0.00

Std 3.84 9.14 13.96 16.48 20.03 21.00 22.27 26.74 28.57 19.72 0.00

As a summary, the recommended values for each metric and each parameter
are presented in Table 7. These values are used in Sect. 5.2 when comparing our
LPS-ACO against other clustering algorithms.



Electrical Load Pattern Shape Clustering Using Ant Colony Optimization 501

Table 2. θ parameter fine tuning in the range [0.9, 1] with 0.01 steps

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

CDI Mean 0.4736 0.4676 0.4556 0.4522 0.4460 0.4419 0.4338 0.4299 0.4311 0.4309 0.4378

± CI 95% 0.0054 0.0087 0.0046 0.0064 0.0066 0.0088 0.0034 0.0022 0.0069 0.0067 0.0000

Std 0.0190 0.0307 0.0163 0.0225 0.0231 0.0310 0.0118 0.0078 0.0244 0.0234 0.0000

DEV Mean 223.74 223.24 223.05 222.23 220.88 220.71 220.91 220.89 222.05 223.15 224.54

± CI 95% 1.25 1.02 0.89 1.22 0.58 0.80 0.72 0.68 0.57 0.20 0.00

Std 4.40 3.59 3.13 4.29 2.06 2.80 2.53 2.40 2.01 0.69 0.00

CONN Mean 447.64 444.90 437.41 427.43 419.02 411.44 398.53 393.24 386.17 376.38 366.08

± CI 95% 5.86 6.42 5.39 5.43 4.59 4.22 3.32 3.66 2.92 2.09 0.00

Std 20.61 22.59 18.97 19.10 16.14 14.86 11.68 12.86 10.29 7.35 0.00

Table 3. α parameter tuning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CDI Mean 0.4228 0.4175 0.4270 0.4436 0.4384 0.4407 0.4376 0.4367 0.4336 0.4296 0.1759

± CI 95% 0.0089 0.0047 0.0057 0.0040 0.0033 0.0056 0.0040 0.0034 0.0026 0.0026 0.0065

Std 0.0314 0.0164 0.0201 0.0139 0.0116 0.0197 0.0139 0.0119 0.0092 0.0092 0.0229

DEV Mean 215.18 215.79 217.02 217.73 219.70 221.38 223.57 225.84 232.29 241.35 311.54

± CI 95% 0.77 0.61 0.82 0.72 0.86 0.71 0.87 0.76 1.13 0.67 0.91

Std 2.69 2.14 2.88 2.53 3.04 2.49 3.06 2.68 3.98 2.37 3.21

CONN Mean 401.83 406.61 406.18 406.12 413.24 408.22 405.98 410.27 409.92 395.71 129.12

± CI 95% 3.98 4.17 4.48 4.57 3.69 3.86 4.57 4.51 4.34 5.35 5.08

Std 14.00 14.67 15.77 16.08 12.99 13.59 16.07 15.87 15.27 18.81 17.86

Table 4. γ parameter tuning

1 10 20 30 40 50 60 70 80 90 100

CDI Mean 0.6429 0.4433 0.4391 0.4356 0.4307 0.4308 0.4305 0.4284 0.4270 0.4241 0.4263

± CI 95% 0.0299 0.0052 0.0043 0.0038 0.0032 0.0034 0.0030 0.0031 0.0046 0.0034 0.0039

Std 0.1051 0.0183 0.0151 0.0135 0.0113 0.0118 0.0104 0.0110 0.0161 0.0118 0.0138

DEV Mean 254.23 221.92 220.65 220.06 219.37 219.43 218.91 218.96 219.15 218.54 219.02

± CI 95% 1.30 0.91 0.76 0.73 0.81 0.71 0.62 0.54 0.76 0.68 0.67

Std 4.57 3.20 2.67 2.56 2.86 2.50 2.16 1.89 2.67 2.41 2.36

CONN Mean 408.69 407.85 411.79 407.36 410.61 406.85 407.93 405.39 410.50 408.08 405.30

± CI 95% 4.45 3.94 4.84 4.87 4.62 4.91 4.20 4.51 4.62 5.02 4.50

Std 15.66 13.85 17.02 17.15 16.26 17.29 14.77 15.85 16.24 17.67 15.84

Table 5. M parameter tuning

1 10 20 30 40 50 60 70 80 90 100

CDI Mean 0.6467 0.4421 0.4413 0.4389 0.4394 0.4336 0.4322 0.4318 0.4355 0.4308 0.4301

± CI 95% 0.0256 0.0049 0.0069 0.0046 0.0063 0.0035 0.0031 0.0038 0.0118 0.0028 0.0031

Std 0.0903 0.0172 0.0242 0.0162 0.0221 0.0122 0.0109 0.0133 0.0415 0.0098 0.0109

DEV Mean 254.01 219.87 220.55 222.47 223.52 224.63 226.12 226.72 228.18 228.74 230.92

± CI 95% 0.93 0.96 0.78 0.62 0.58 0.71 0.61 0.72 0.61 0.68 0.51

Std 3.27 3.37 2.75 2.17 2.04 2.49 2.14 2.53 2.14 2.38 1.81

CONN Mean 412.11 409.20 405.81 412.30 409.56 407.45 403.38 405.00 404.02 405.35 401.71

± CI 95% 3.94 5.60 4.00 4.28 5.22 4.54 5.31 4.94 5.21 5.64 5.46

Std 13.85 19.69 14.06 15.06 18.38 15.98 18.68 17.40 18.33 19.86 19.20
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Table 6. ew parameter tuning

1 10 20 30 40 50 60 70 80 90 100

CDI Mean 0.4391 0.4241 0.4306 0.4444 0.4312 0.4318 0.4389 0.4335 0.4323 0.4353 0.4256

± CI 95% 0.0050 0.0065 0.0089 0.0138 0.0098 0.0090 0.0143 0.0094 0.0107 0.0120 0.0084

Std 0.0175 0.0229 0.0313 0.0486 0.0345 0.0315 0.0502 0.0330 0.0378 0.0421 0.0296

DEV Mean 220.31 221.75 223.69 225.83 227.51 229.67 231.25 229.39 233.84 231.03 235.23

± CI 95% 0.75 0.69 1.32 1.26 1.29 1.67 1.75 1.59 1.98 1.70 1.79

Std 2.63 2.42 4.66 4.44 4.55 5.89 6.14 5.59 6.98 5.98 6.29

CONN Mean 410.78 404.16 380.52 382.48 385.19 383.30 386.55 385.80 390.34 386.74 391.53

± CI 95% 4.74 4.33 3.50 3.99 5.24 4.46 4.13 4.30 5.46 3.62 4.45

Std 16.69 15.22 12.33 14.05 18.45 15.70 14.52 15.12 19.22 12.73 15.65

Table 7. Summary of the parameter tuning.

CDI: θ = 0.97, α = 1, γ = 70, M = 100, ew = 10

DEV: θ = 0.95, α = 0, γ = 60, M = 10, ew = 11

CONN: θ = 1, α = 1, γ = 50, M = 100, ew = 20

5.2 LPS-ACO Algorithm Application

To assess the performance of our LPS-ACO algorithm, we compare our results
with two well-known classical clustering algorithms and two recently developed
heuristic algorithms. The former two algorithms are the classical k-means [15]
algorithm and the hierarchical agglomerative clustering single-linkage [16]. These
two classical algorithms were selected because of their intrinsic nature of optimiz-
ing the DEV (in the case of k-means) and CONN (in the case of single-linkage)
metrics.

The first heuristic algorithm was the Electrical Pattern Ant Colony Cluster-
ing (EPACC) [1]3. This algorithm uses some principles of the ACO algorithm to
guide the construction phase. Nevertheless, the main drawback of this algorithm
is the lack of a pheromone trail that captures the information related to the
metric under optimization. This makes the algorithm less flexible to move from
one metric to another.

The second heuristic used for comparison was created by a slight modifica-
tion of the EPACC algorithm. To explain this, it is important to recall that
the original EPACC algorithm [1] uses a roulette wheel selection process for
each assignation of pi to ci. The roulette wheel selection implies that a random
number is generated in each assignation. In our EPACC modification, we use
a principle called stochastic universal sampling (SUS) for the creation of the
random number. Our algorithm called EPACC-SUS is identical to the original
EPACC, with the only difference that a unique random number is created for all
the assignations of pi to cj , rather that a particular random number for each pi.

3 The set of parameters used for the EPACC algorithm were those reported as the
best set of parameters in [1].



Electrical Load Pattern Shape Clustering Using Ant Colony Optimization 503

Number of clusters
5 10 15 20 25 30 35

C
D

I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
k-means
single-linkage
EPACC
EPACC with SUS
LPS-ACO

(a)

Number of clusters
5 10 15 20 25 30 35

S
I

0

5

10

15

20

25

30

k-means
single-linkage
EPACC
EPACC with SUS
LPS-ACO

(b)

Number of clusters
5 10 15 20 25 30 35

D
E

V

180

200

220

240

260

280

300

320

340
k-means
single-linkage
EPACC
EPACC with SUS
LPS-ACO

(c)

Number of clusters
5 10 15 20 25 30 35

C
O

N
N

0

50

100

150

200

250

300

350

400

450

500
k-means
single-linkage
EPACC
EPACC with SUS
LPS-ACO

(d)

Fig. 3. Comparison of algorithms using different metrics. (a) CDI metric, (b) SI metric,
(c) DEV metric, (d) CONN metric.

This simple modification results in an exceptional performance related to CDI
and CONN metrics as shown in the results.

The algorithms were run 50 times varying the number of clusters K from 10
to 30. The results correspond to the mean value of those 50 test. The 95 % CI
were also calculated and plotted for each point of the results.

Figure 3 shows the comparison of the tested algorithms under different sce-
narios. The first thing to remark is that k-means present a poor performance
related to CDI, SI and CONN metrics (as shown in Fig. 3(a), (b), (d)). This poor
performance could mislead the user to the conclusion that k-means is a bad algo-
rithm for the LPS clustering problem. However, it can be observed in Fig. 3(c)
that k-means present the best performance among all the algorithms. The oppo-
site case occurs with the single-linkage and the EPACC-SUS algorithms. Both
of them present the best performance related to CDI, SI and CONN metrics (as
shown in Fig. 3(a), (b), (d)) but the worse performance related to DEV metric
(shown in Fig. 3(c)).
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This particular behavior when optimizing a single metric open a question on
the validity of the chosen metric to measure the quality of the LPS clustering. For
instance, observing just Fig. 3(a), (d), k-means and EPACC could be considered
as bad algorithms for the LPS clustering problem. That conclusion completely
changes by observing Fig. 3(c), in which those two algorithms present a good
performance (in fact, k-means is the best algorithms when DEV metric is used
to evaluate the performance of the algorithms) related to DEV metric. Overall,
our LPS-ACO algorithm present a good performance for all the analyzed metrics
without being the best in any case.

To go deep in the analysis of a proper LPS clustering, we developed an
experiment using the same data set P but decreasing the number of clusters
to K = 4 for an easy visualization of the patterns in each cluster. Again, each
algorithm was run 50 times, and the mean values were stored. Moreover, EPACC,
EPACC-SUS, and LPS-ACO algorithms were run three times each changing the
optimized metric (i.e., CDI, DEV and CONN). SI metric was not taken into
account since its behavior is similar to CDI.

Figure 4 shows the mean values of the 50 runs of each algorithm related to
DEV and CONN metrics. Also, some graphical clusterings (corresponding to
one of the solutions found) are shown in some areas of the plot to observe the
kind of solutions generated by each algorithm. The first thing to recall is that
single-linkage and k-means are on the opposite sides of the plots and represent
the best solution for CONN and DEV metrics respectively (notice that this is
a minimization problem). Moreover, it can be observed (on the top left of the
figure) that single-linkage generates solutions that classified single patterns as
a group and let one unique cluster with the rest of the patterns. This kind
of classification will optimize CDI, SI or CONN metric, but the validity of such
classification can be questioned when we analyze graphically the formed clusters.
On the opposite side, we can visualize the kind of solutions provided by an
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algorithm like k-means on the bottom right of the figure. These solutions seem
wrong from the perspective of metrics like CDI or CONN, but forms compact
and well-defined clusters optimizing DEV metric. Nevertheless, such algorithms
might fail in the identification of atypical patterns.

After those observations, it is logical to think that the correct solution (from
the perspective of external knowledge) can be situated in the Pareto front
between this two optimal solutions (represented by metrics DEV and CONN).
For that reason, an algorithm that can generate optimal solutions considering
the trade-off between these two metrics, such as our LPS-ACO algorithm, should
be able to access to more proper clusterings solutions for the LPS problem.

6 Conclusion and Future Work

In this paper, we propose the application of Ant Colony Optimization (ACO)
to the electrical LPS clustering problem. We analyze the performance of the
algorithm searching for the optimization of different metrics proposed in the
literature. As in most heuristics, ACO performance depends on good parameter
settings. We present a careful analysis of the impact of ACO parameters in the
quality of the solutions. Additionally, we compare our LPS-ACO algorithm with
some classical clustering algorithms, such as k-means and single-linkage, and
other heuristics, such as EPACC and EPACC-SUS. The results have shown that
the selection of a proper metric to validate the performance of an algorithm plays
a key role determining the effectiveness of a clustering algorithm. For instance,
depending on the chosen metric for evaluating the algorithms, we can wrongly
rank a clustering algorithm as good or bad if the selected metric is not suitable for
the problem under analysis. For that reason, it is important to consider different
metrics to measure the performance of an algorithm. Overall, the results obtained
by our LPS-ACO algorithm are promising and promote further study to improve
the ACO performance. As future work, we will examine the design of a proper
metric that reflects good partitions in the particular domain of the electrical LPS
clustering problem. We are also interested in the design of a multi-objective ACO
approach that allows us to move in all the Pareto front or to determine the proper
number of cluster automatically for the electrical LPS problem.
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