
Genetic Programming with Memory
For Financial Trading

Alexandros Agapitos1(B), Anthony Brabazon2, and Michael O’Neill2

1 School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

alexandros.agapitos@ucd.ie
2 School of Business, University College Dublin, Dublin, Ireland

Abstract. A memory-enabled program representation in strongly-typed
Genetic Programming (GP) is compared against the standard representa-
tion in a number of financial time-series modelling tasks. The paper first
presents a survey of GP systems that utilise memory. Thereafter, a number
of simulations show that memory-enabled programs generalise better than
their standard counterparts in most datasets of this problem domain.

1 Introduction

The problem of sequence learning is to discover the underlying function of a
dynamic system, in order to be able either to produce the next step in a sequence
produced by the system (sequence prediction), or correctly classify a sequence
produced by the system (sequence classification). Sequence learning has numer-
ous applications, e.g. stock market time-series prediction, protein structure pre-
diction, speech and handwriting recognition. Genetic Programming (GP) [1]
has been widely applied to sequence learning tasks. The vast majority of sys-
tems employ a sliding time-window of size W , where at each time-step t, values
{st−1, . . . , st−W } from a sequence {si}Ni=1 are used to populate an input vector
of explanatory variables used to predict sequence value st. This input vector con-
figuration biases towards the evolution of some sort of an autoregressive model.

Stateful Genetic Programming (GP) deals with the evolution of computer
programs that utilise memory. Puzzlingly, very little work in sequence learning
by means of stateful GP is found in the literature. The evolution of stateful
sequence-processing programs is closely mirrored by the ongoing investigation of
how to best evolve programs with memory or feedback loops in GP.

Any stateless program is essentially a function that maps input to output
using the sliding time-window described earlier. In general, it is difficult to
decide on the optimal window size. For tasks with long-term dependencies a
large window is necessary. A solution might be to use a combination of sev-
eral different-sized windows, but this is only applicable when the exact time-
dependencies of the task are known a priori. Furthermore, fixed time-windows
are inadequate when a task has variable time-dependencies. In one form or the
other, stateless programs have an important drawback: only a fixed number of
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part I, LNCS 9597, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-31204-0 2



20 A. Agapitos et al.

previous sequence values (the “context-length”) can be taken into account in
prediction/classification tasks. On the other hand, in principle, a stateful pro-
gram can overcome the limited context-length by using memory that enables a
dynamic program behaviour based on memory state.

We present an empirical study of time-series classification using stateful GP;
the classification task is to discriminate between go-long or go-short signals
in a financial trading system. The rest of the paper is structured as follows:
Sect. 2 surveys previous work on the evolution of programs that use memory.
Section 3 states the scope of current research. Section 4 introduces two stateful
GP systems, and presents the experiment design. Section 5 analyses the results,
whereas Sect. 6 concludes and discusses routes for future research.

2 Evolution of Programs with Memory

Previous work confirms that GP can automatically create programs that explic-
itly use memory. This section reviews previous work using a general taxonomy
between scalar memory and indexed memory. In addition, a third subsection
reviews previous work that investigated another form of memory via the concept
of recurrence (i.e. implemented using time-delay feedback loops in a program).

In GP with scalar memory, the program is given access to a number of
variables used as leaves in an expression-tree. In this way the same variable
is accessed irrespective of program input. In GP with indexed memory, special
primitives are available in the function-set which enable a parameterised access
of memory elements based on an index value. Depending on the evaluated index,
different variables can be accessed; thus different program input may trigger the
access/manipulation of different variables. In summary, scalar memory allows for
a “static” access to variables, whereas indexed memory allows for a “dynamic”
access.

2.1 Scalar Memory

The use of memory in evolvable computer programs dates back to the work of
Cramer [2] in 1985. Koza [3] (1992) used global registers that could be manipu-
lated with storage operators. He presented an example where a single variable is
used to maintain a running total during execution of a loop. Additionally, in [4],
Koza used a small number of variables in a protein classification problem. Mon-
tana [5] (1994) presents two examples where GP is provided with local variables.
Huelsbergen [6] (1996) used simple scalar memory in his machine-code GP sys-
tem. Kirshenbaum (2000) presented work on the evolution of programs that use
statically-scoped local variables [7]. Conrads et al. [8] (1998) applied linear GP
with memory registers to speech time-series classification. Agapitos and Lucas [9]
(2007) applied object-oriented GP to the task of evolving statistical operations
on samples of data. Agapitos et al. [10] (2007) additionally evolved stateful con-
trol programs for a simulated car-racing task. They also experimented with the
use of multi-objective optimisation to encourage the effective use of memory vari-
ables in car-racing controllers [11]. Poli et al. [12] (2008) introduced the concept
memory-with-memory based on soft assignments of variables to values.



Genetic Programming with Memory For Financial Trading 21

2.2 Indexed Memory

Teller (1994) introduced indexed memory [13]. Its implementation requires the
use of an indexed array of memory cells, and the operations of read and write to
enable memory access and manipulation. Using indexed memory Teller evolved
programs that solve the problem of pushing blocks up against the boundaries of
a world represented as a toroidal grid [14]. Jannink [15] (1994) studied the evolu-
tion of programs that use indexed memory to generate random numbers. Teller
(1995) evolved programs for image classification [16] and face recognition [17].
In addition, Teller performed acoustic time-series classification [18].

Andre [19] (1994) tackled the problem of controlling an agent whose task is
to collect all of the gold scattered in a five-by-five toroidal grid. Brave [20] (1996)
studied a similar problem of an agent that explores the world and is required to
produce a plan for reaching every arbitrary location in the world from every arbi-
trary starting point. Haynes and Wainwright [21] (1995) applied GP to evolve con-
trol programs for agents which have to survive in a simulated world containing
mines. The agent’s memory is a dynamically allocated linked-list.

The evolution of Abstract Data Types is investigated in the works of
Langdon [22] (1996) and Bruce [23] (1996), who independently evolved stacks,
queues, priority queues and linked-lists. Nordin and Banzhaf [24] (1996) used
linear GP for sound compression. Spector and Luke [25] (1996) used indexed
memory to implement culture in a GP run. Koza [26] (1999) generalised indexed
memory into an Automatically Defined Store. O’Neill [27] (2002) investigated
the use of indexed memory in Grammatical Evolution to evolve agents for the
Tartarus world, and also evolve caching algorithms. Agapitos et al. [28] (2008)
evolved classifiers that use indexed memory for EEG signal classification. Agapi-
tos et al. [29] (2011) used indexed memory to represent models of racing tracks
during the evolution of car-racing controllers. Finally, Agapitos et al. [30] (2011)
used GP with indexed memory to evolve decision-trees for financial time-series
classification.

2.3 Recurrent GP

Another form of memory in GP may be implemented via the notion of recur-
rency in terms of time-delay feedback loops. In sequence processing, time-delay
feedback loops refer to a type of program input in which program outputs issued
at time t − 1 are used as part of the input used in program execution at time
t. In the case of an expression-tree, a feedback loop can be formed using an
edge from a source tree-node to a destination tree-node. Most often, the source
node is the root of the expression-tree (representing program output), which
feeds back to the expression-tree using specially designed terminal or function
nodes. Iba et al. [31] (1995) introduced special terminals which point at any
non-terminal node within the tree. The value given by a terminal is the value
at the indicated point in the tree during previous program execution. Sharman
et al. [32] (1995) similarly used primitives to reference values returned by the
root of an expression-tree or calculated at any of its constituent nodes at a pre-
vious program execution; explicit push functions within the expression-tree save



22 A. Agapitos et al.

the value at that point in the tree by pushing it onto a stack. A feedback loop
that is formed using previously-issued program outputs is presented in the work
of [8], which tackled the problem of sound classification out of raw time-series.
Finally, the most recent study of feedback loops in GP for sequence learning
is presented in the work of [33]. The GP system is allowed access to a vector
composed of a combination of past sequence values and program outputs of
previous executions. Input sequences are serially processed using a single-step
rolling window.

3 Scope of Research

The literature review confirms that the task of sequence classification by means
of GP with memory has received very limited attention [8,18,28,30]. We hypoth-
esise that the use of state variables in sequence learning problems is hindered
when a fixed window of past sequence values is used as input. In such cases the
search quickly converges to areas of the space containing autoregressive models,
and ignores the use of memory. We speculate that autoregressive models form
local optima in the fitness landscape and draw the attention of evolutionary
search early in the process. On average, early-generation memory-enabled indi-
viduals are worse as compared against early-generation autoregressive programs,
especially in cases where the number of previous sequence values form an ade-
quate “context” for prediction/classification. Locating well-functioning stateful
programs requires a more extensive search than in the case of search in spaces
of stateless programs.

There is evidently a research gap between the evolution of sequence process-
ing programs that are based on standard GP using a fixed number of past
sequence value as input, and the evolution of programs with indexed memory. We
believe that a method of serial processing of a sequence using a single sequence
value as input will implicitly bias towards the use of memory. The computations
that can be expressed using memory are likely to perform better than com-
putations that merely represent variations of an autoregressive model of order
one (given a single input value). The aim of this work is to test the efficiency
of combining single-step sequence processing and memory-enabled GP. We will
compare several stateful GP systems against standard stateless GP (no use of
memory). The type of sequence learning problem that we address is that of finan-
cial time-series classification, which is also a novel application in the context of
the proposed method.

4 Methods

4.1 GP Systems with Memory

In this study, program state is based on indexed-memory. Indexed-memory is
implemented as an array of double variables of size M (i.e. double[] Mem).
Operations of read, write and soft-assignment are included in the function-set
to access memory.



Genetic Programming with Memory For Financial Trading 23

Fig. 1. Memory utilisation schemes. (a) Stateful-A. (b) Stateful-B.

Figure 1 (Stateful-A) presents the general case of a stateful sequence-
processing program using a single-step rolling window. Every program in the
population is allocated an individual array of double variables of size M . Vari-
ables are initialised to the value of zero prior to program execution. The sequence
is linearly processed; at each time-step, a single value is fed as input to the
program which outputs a value of type double, subsequently mapped to a trad-
ing signal. During each execution, a program is allowed to access memory. The
method of initialising memory once at the beginning of sequence-processing can
handle an arbitrary context-length for classification.

Figure 1 (Stateful-B) presents a different approach to the use of memory
based on repeated initialisations of memory throughout sequence processing.
Once a subset of sequence values of size K has been processed, memory is
re-initialised to default values. The rest of the procedure is similar to that of
Stateful-A. The aim is to experiment with a stateful system that can handle a
context-length extending to localised parts of the entire sequence. This method
requires the selection of the value for parameter K. For this purpose, one may
adopt a principled approach like cross-validation. Another option is to use an
adaptive value for K in different parts of the sequence. In this study we do
not attempt any kind of optimisation for K, but report results using a range of
values.

4.2 Feature Extraction

Technical Analysis (TA) indicators are used as filters to pre-process a raw
sequence {si}Ni=1 into a feature sequence {fi}Ki=1, with K < N. These indica-
tors are [34,35]: (a) simple moving average (MA), (b) trade break out
(TBO), (c) filter (FIL), (d) volatility (VOL), and momentum (MOM). TA
indicators are parameterised with lag periods of certain time-steps. We used lag



24 A. Agapitos et al.

Table 1. Strongly-typed language.

FUNCTION SET
Argument(s) type Return type

Mathematical
+, -, * double, double double
/ (protected) double, double double
log (protected) double double
sqrt (protected) double double
sin double double
Boolean logic
and, or, nand, nor, xor boolean, boolean boolean
Memory access
read double double
write, softAdd, softMul double, double double
Predicates
≥, < double, double boolean
Conditional
IF-Then-Else boolean, double, double double

TERMINAL SET
Value Type

Constants {−10.0,−9.0,−8.0, . . . , 8.0, 9.0, 10.0} double

Input features

MA(5), MA(10), ..., MA(195), MA(200) double
TBO(5), TBO(10), ..., TBO(195), TBO(200) double
FIL(5), FIL(10), ..., FIL(195), FIL(200) double
MOM(5), MOM(10), ..., MOM(195), MOM(200) double
VOL(5), VOL(10), ..., VOL(195), VOL(200) double

periods ranging from 5 to 200 time-steps, with a step of 5 time-steps. This gen-
erates 40 feature sequences using each indicator. Given 5 indicators, we generate
200 feature sequences in total. In order to synchronise the feature sequences,
all technical indicators are invoked starting on sample s200 of the raw sequence.
Features populate an input vector X ∈ R

200. That is, at each time-step 200
feature-values are extracted, one value from each feature sequence respectively.

4.3 Program Language

Each program is given access to an array of variables Mem. Standard read(i)
and write(i, value) primitives are included in the function-set. They operate
as in [14]. read has one argument, which is evaluated to a memory index; it
returns the value of memory at that index. write has two arguments; the first
is evaluated to a memory index, while the second is evaluated to a value. write
stores the value to the memory location and returns the value that has just
overwritten (i.e. the value prior to the update).

In addition, we use soft-assignment operators; these are softAdd(i, value)
and softMul(i, value). The former performs Mem[i]=Mem[i]*value, whereas
the latter performs Mem[i]=Mem[i]*value. Both operators have two arguments;
the first evaluates to a memory index, and the second evaluates to a soft update
value. Both operators return the value stored in Mem[i] prior to the update. In
order overcome the potential problem of IndexOufOfBounds exceptions in all
four memory access operations above, we apply i modulo M prior to accessing
memory. Here, i is the evaluated index in an operation, and M is the memory
size. M is set to 10 in the experiments.



Genetic Programming with Memory For Financial Trading 25

The GP system evolves programs with real-valued output. Table 1 presents
the strongly-typed function and terminal sets.

4.4 Fitness Function

The fitness function (to be maximised) is the Sharpe ratio. For a benchmark
trading strategy Rb with a constant risk-free return, the Sharpe ratio of trading
strategy Ra is defined as E[Ra]/

√
var[Ra], where E[Ra] is the average daily

return (ADR) and
√
var[Ra] is the standard deviation of daily returns using Ra

over a trading period T . In order to calculate E[Ra] and var[Ra] we need to first
generate the sequence of daily returns. A sequence of daily returns {rt}N−1

t=1 is
produced out of a sequence of closing prices {st}Nt=1 using rt = (st − st−1)/st−1,
where st and st−1 are the sequence values at time t and t−1 respectively. Positive
program output is interpreted as go-long trading signal (b = 1), whereas negative
program output is interpreted as go-short trading signal (b = −1). Let rt be the
daily return at time t, and let bt−1 be the trading signal generated by the program
at time t − 1. Then dt = bt−1rt is the realised return at time t.

E[Ra] and var[Ra] given a program Ra that produces a series of trading
signals {bt}Tt=1 over a sequence of daily returns {rt}Tt=1 are calculated as:

E[Ra] =
1

T

T∑

t=2

bt−1rt (1)

var[Ra] =
1

T − 2

T∑

t=2

(bt−1rt − E[Ra])
2 (2)

4.5 Financial Time-Series Datasets

The datasets used are the foreign exchange rate of EUR/USD, S&P500 and
Nikkei225 daily indices for the period of 01/01/1990 to 31/03/2010. The first
2, 500 trading days are used for training, whereas the remaining 2, 729 are equally
divided into two sets of 1, 364 days respectively. The validation-set is used for
model selection, whereas the test-set is used to assess the generalisation perfor-
mance. N best-of-generation programs are gathered during N generations of an
evolutionary run for purposes of model selection. The output from a run is the
best-of-generation program with the highest ADR on the validation-set.

4.6 Run Parameters

All GP systems are generational and elitist (1 % of population size). They use
tournament selection with a tournament size of 4. The population size is set
to 1, 000 individuals, and evolution proceeds for 50 generations. Ramped-half-
and-half tree creation with a maximum depth of 5 is used to initialise a run.
Throughout evolution, expression-trees are allowed to grow up to a maximum
depth of 10. The evolutionary search is performed using subtree mutation, point
mutation and subtree crossover. In point mutation an inner- or leaf-node is



26 A. Agapitos et al.

replaced random-uniformly from the set of available function and terminal nodes
respectively, under type and arity constraints. The probability of a single node
being mutated in point mutation is 1/size, where size is the number of nodes in
an expression-tree. A probability governs the application between mutation and
crossover, set to 0.7 in favour of mutation. When mutation is selected, subtree
mutation is applied with a probability 0.6 relative to point mutation.

0 10 20 30 40 500

2

4

6

8

10

Generation

N
o.

 o
f f

ee
db

ac
k 

lo
op

s

SP500

(a)

0 10 20 30 40 500

2

4

6

8

10

Generation

N
o.

 o
f f

ee
db

ac
k 

lo
op

s

EUR/USD

(b)

0 10 20 30 40 500

2

4

6

8

10

Generation

N
o.

 o
f f

ee
db

ac
k 

lo
op

s

Nikkei

(c)

0 10 20 30 40 500

20

40

60

80

100

Generation

Pe
rc

en
ta

ge
 o

f s
ta

te
fu

l p
ro

gr
am

s

SP500

(d)

0 10 20 30 40 500

20

40

60

80

100

Generation

Pe
rc

en
ta

ge
 o

f s
ta

te
fu

l p
ro

gr
am

s

EUR/USD

(e)

0 10 20 30 40 500

20

40

60

80

100

Generation

Pe
rc

en
ta

ge
 o

f s
ta

te
fu

l p
ro

gr
am

s

Nikkei

(f)

−0.2 −0.1 0 0.1 0.20

2

4

6

8

10
SP500

Test ADR

N
o.

 o
f f

ee
db

ak
 lo

op
s

(g)

−0.1 −0.05 0 0.05 0.10

2

4

6

8
EUR/USD

Test ADR

N
o.

 o
f f

ee
db

ak
 lo

op
s

(h)

−0.2 −0.1 0 0.1 0.20

1

2

3

4

5

6
Nikkei

Test ADR

N
o.

 o
f f

ee
db

ak
 lo

op
s

(i)

Fig. 2. First row shows the evolution of feedback loops in the best-of-generation indi-
viduals (50 runs, mean in bold). Second row shows the evolution of proportion of
stateful programs in the population (50 runs, mean in bold). Third row presents scat-
ter plots of test ADR versus number of feedback loops is best-of-generation individuals
of 50 runs (2,500 points in total). All graphs are based on simulations using stateful-A.

4.7 Experiment Design

We will compare the generalisation performance of the stateful GP systems
described in Sect. 4.1, and also that of a standard GP system that uses no mem-
ory (stateless). The stateless system does not include memory access primitives



Genetic Programming with Memory For Financial Trading 27

(Table 1) in its function set; otherwise, function and terminal sets are similar
to those of the stateful systems. In addition, we experiment with different time-
steps K for memory re-initialisation in Stateful-B system; those of 20, 40, 60,
80, and 100 time-steps.

5 Results

5.1 Generalisation Performance

We performed 50 independent evolutionary runs for each of the three datasets
using both stateful and standard GP (stateless) systems. Figure 3 shows the
distribution of generalisation performance (measured as ADR over the test-set
period) for the best-of-run selected programs in 50 runs. We performed Mann-
Whitney U tests (included the Bonferroni correction to adjust for multiple com-
parisons) to test the significance on the difference of median test ADR between
different systems. We set the level of significance at p ≤ 0.05.

For the case of S&P500 (Fig. 3(a)), a statistically significant difference
(p = 0.046) was found between stateless and stateful-B-60, with the latter out-
performing the former. Overall, median generalisation performance of stateful
systems is never worse than that of stateless GP, however not always statisti-
cally significant. Also, no statistically significant differences were found between
the performance of stateful systems. Nonetheless, we observe that the median
performance of stateful-B systems that utilise large time-gaps (K of 60, 80,100)
in-between memory re-initialisations performed better than stateful-A.

For the case of EUR/USD (Fig. 3(b)), stateful-B-100 yielded a slightly higher
median performance than stateless GP, however the difference is not statisti-
cally significant. The differences in the median performance of both stateless
and stateful-B-100 against stateful-B-40 and stateful-B-60 are statistically sig-
nificant with p < 0.03 and p < 0.04 respectively; stateless and stateful-B-100
perform better. Also, in all but the case against stateful-B-100, the stateless
system yields higher median generalisation performance that the rest of stateful
systems (although no statistical significance in difference).

For the case of Nikkei (Fig. 3(c)) results suggested that three stateful sys-
tems generalised significantly better than stateless GP. Statistically significant
differences were found between stateless vs. stateful-B-40 (p = 0.006), state-
less vs. stateful-B-60 (p = 0.03), and stateless vs. stateful-B-100 (p = 0.009).
No statistically significant differences were found between stateful systems. How-
ever, stateful-B-100 that allows for a large time-gap in-between memory re-
initialisations (K set to 100) yields a higher median test-set ADR than stateful-A.

5.2 Model Selection

The second column of Fig. 3 shows the distributions of generation numbers for
model selection (generation number in which the best-of-run validation ADR
occurs) in 50 runs for the three problems. We also plotted the evolution of best-
of-generation test ADR in Fig. 4 in order to contrast it against the generations of



28 A. Agapitos et al.

Stateless A B−20 B−40 B−60 B−80 B−100
−0.15

−0.1

−0.05

0

0.05

0.1

T
es

t A
D

R

SP500

(a)

Stateless A B−20 B−40 B−60 B−80 B−100

0

10

20

30

40

50

G
en

er
at

io
n 

of
 s

el
ec

te
d 

m
od

el

SP500

(b)

Stateless A B−20 B−40 B−60 B−80 B−100

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

T
es

t A
D

R

EUR/USD

(c)

Stateless A B−20 B−40 B−60 B−80 B−100

0

10

20

30

40

50

G
en

er
at

io
n 

of
 s

el
ec

te
d 

m
od

el
EUR/USD

(d)

Stateless A B−20 B−40 B−60 B−80 B−100

−0.1

−0.05

0

0.05

0.1

T
es

t A
D

R

Nikkei

(e)

Stateless A B−20 B−40 B−60 B−80 B−100

0

10

20

30

40

50

G
en

er
at

io
n 

of
 s

el
ec

te
d 

m
od

el

Nikkei

(f)

Fig. 3. First column shows the distributions of the test-set ADR (measure of gener-
alisation) for different systems. Second column shows the distributions of generation
numbers in which the validation-set ADR was the highest, and therefore model selec-
tion was performed.



Genetic Programming with Memory For Financial Trading 29

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R
SP500 (Stateless)

(a)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−A)

(b)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−B−20)

(c)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−B−40)

(d)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−B−60)

(e)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−B−80)

(f)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

SP500 (Stateful−B−100)

(g)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateless)

(h)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateful−A)

(i)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R
EUR/USD (Stateful−B−20)

(j)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateful−B−40)

(k)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateful−B−60)

(l)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateful−B−80)

(m)

0 10 20 30 40 50

0

0.02

0.04

Generation

T
es

t A
D

R

EUR/USD (Stateful−B−100)

(n)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateless)

(o)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−A)

(p)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−B−20)

(q)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−B−40)

(r)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−B−60)

(s)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−B−80)

(t)

0 10 20 30 40 50
0

0.02

0.04

0.06

Generation

T
es

t A
D

R

Nikkei (Stateful−B−100)

(u)

Fig. 4. Evolution of best-of-generation test-set ADR. Each graph plots 50 independent
evolutionary runs, and the average is shown in bold. Figure 4(a) to Fig. 4(g) for S&P500.
Figure 4(h) to Fig. 4(n) for EUR/USD. Figure 4(o) to Fig. 4(u) for Nikkei.



30 A. Agapitos et al.

model selection in Fig. 3. This way we can assess the ability of the validation-set
estimate to track the generalisation performance of an evolved solution.

For the case of S&P500 we observe that, on average, generalisation in stateless
GP (Fig. 4(a)) improves approximately up to generation 10; loss of generalisation
is seen after that point. The median generation number for model selection
in stateless (Fig. 3(b)) is similarly found at approximately generation 10. In
addition we observe that model selection is effective in all stateful-A, stateful-
B-60 and stateful-B-80. It is biasing the selection of the model towards the
beginning of the evolutionary runs (median generation of approximately 10).
Indeed, in all three systems, the generalisation curves (Fig. 4) show that loss
of generalisation is realised early in the evolutionary run. There are however
two cases, those of stateful-B-20 and stateful-B-40 in which the generalisation
performance improves on average past generation 30 in Fig. 4(c) and Fig. 4(d)
respectively. In those runs, the median generation number for model selection
is approximately generation 10. The validation-set ADR estimate is therefore
hindering the discovery of better-generalising programs in this cases.

For the case of EUR/USD, Fig. 4 suggests that, on average, generalisation
improves at the very early stages of runs, and then worsens for the systems of
stateless, stateful-A, stateful-B-40, stateful-B-80. The median generation num-
ber for model selection is approximately 10 in Fig. 3(d) for the aforementioned
systems. The curves for stateful-B-20 in Fig. 4(j) show that, on average, the gen-
eralisation performance improves up to approximately generation 20, however
model selection is realised much earlier in the majority of runs (Fig. 3(d)).

Finally, for the case of Nikkei, in the systems of stateless, stateful-A, stateful-
B-40, generalisation as a function of generation number attains a global maxi-
mum at the initial random generation (Fig. 4(p) and (r)). The median genera-
tion number in Fig. 3(f) is well under 10 generations for stateful-A. In the case
of stateful-B-40 the median generation number is set to 10 generations and the
upper-bound of the interquartile range is set to approximately generation 33.
This results in significant loss of generalisation at that point. In the case of
stateless, Fig. 4(o) shows that a drop in generalisation is realised at approxi-
mately generation 6 after which generalisation is shown to improve up to the
final generation. The median generation number in Fig. 3(f) for the stateless sys-
tem is bellow generation 5. Finally, model selection is effective for stateful-B-20,
stateful-B-60 and stateful-B-80; it successfully captures the global maximum of
test-set ADR at approximately after 10 generations.

5.3 Memory Utilisation

The analysis in this section is based on the simulations using stateful-A. The
first row of Fig. 2 shows the evolution of the number of feedback loops in best-of-
generation individuals. The number of feedback loops refer to the count of write,
softAdd and softMul primitives that are found in an expression-tree. We use
the term feedback loop instead of memory access to emphasise the fact that
memory has been written to before it is accessed. We observe that on average



Genetic Programming with Memory For Financial Trading 31

the best-of-generation individuals contain at least one feedback loop, and that
in the case of S&P500 the average feedback loops is set to 2.

The second row of Fig. 2 shows the evolution of the percentage of stateful
programs in the population. A stateful program is one that contains at least
one of the memory manipulation primitives write, softAdd or softMul. First
we note that the initial proportion of stateful individuals is consistently set to
approximately 20% in all problems. Additionally we observe that, on average,
in all three problems the percentage increases with increasing generation num-
ber, indicating that memory-based computations are fitter than stateless ones.
Nonetheless, it is shown that in all problems there exist roughly two categories
of runs. Those in which the population becomes quickly dominated by stateful
programs, and those in which stateful programs are completely eliminated at
the early stages of evolution. One explanation for this is due to the stochastic
effects of selection in the early stages of evolution. It seems that in this prob-
lem domain both kinds of stateful and stateless programs have similar fitness
in early stages of a run, thus selection is unable to discriminate between them.
Subsequent sampling errors focus the search around either stateful of stateless
programs, and evolution is unable to escape these local maxima.

Finally, the last row of Fig. 2 presents scatter plots of test ADR versus the
number of feedback loops in all 2, 500 best-of-generation individuals accumulated
during 50 evolutionary runs of 50 generations each. Our aim is to qualify the rela-
tionship between generalisation performance and memory utilisation. Figure 2(g)
shows that in the case of S&P500 a number of feedback loops greater than 3
is mainly seen with positive test-set ADR. The Pearson correlation coefficient
(PCC) of ADR vs. feedback loops is 0.25, suggesting a weak linear relationship
between the two. In the case of EUR/USD (Fig. 2(h)) we see that a number
of feedback loops greater than 4 is primarily associated with a positive test-
set ADR. In this case PCC is 0.11 suggesting a very weak linear relationship
between feedback loops and generalisation. Finally, Fig. 2(i) shows that positive
test-set ADR is most often obtained from programs with a number of feedback
loops greater than 3. The PCC is this case is -0.03, and suggests no relationship
between feedback loops and generalisation.

6 Conclusion

Stateful GP for sequence processing using a single-step rolling-window approach
was empirically confirmed to generalise similarly well with standard GP in one
problem and outperform it in two other problems. Memory re-initialisation dur-
ing sequence processing was shown to be advantageous and performed better
than the case of no re-initialisation. In addition, it was shown that the frequency
in which memory is re-initialised exerts an effect in generalisation performance;
the less often the better. In practice, principled approaches like cross-validation
should be employed for choosing the optimal frequency. Moreover, an interesting
relationship was discovered between the number of memory accesses and general-
isation performance; a positive out-of-sample ADR was obtained in the majority



32 A. Agapitos et al.

of programs that made use of more than 3 feedback loops in their execution for
all three problems.

Validation-based model selection performs well in the majority of cases, how-
ever, there are cases where it cannot accurately estimate the generalisation per-
formance. We believe that there is an interplay between the modelling technique
used and the sampling bias that can be unintentionally introduced when choosing
the hold-out dataset at random. The issue of sampling bias becomes particularly
important in the case of sequence datasets in which the samples are not inde-
pendently distributed but often exhibit time-dependencies. Furthermore, theory
dictates that reducing the data sample-size during training can exert a nega-
tive impact on the generalisation performance of a learning system. Future work
should focus on analytical methods for model selection. Analytical methods usu-
ally require the optimism of training error to be expressed as a function of the
training sample-size and model complexity. Defining complexity measures for
stateful programs is a promising topic for future work.

Finally, results suggested that there is an inherent difficulty in focusing the
search in parts of the space populated by stateful individuals. Nearly-random
stateless programs tend to perform equally well (if not better) as stateful ones in
the early stages of evolution. Sampling errors in selection may eliminate stateful
programs altogether from the population. Specifically, it was shown that there
are many cases in which the search quickly concentrated solely around stateless
programs. We strongly believe that if stateful programs are to be evolved, the
exploration of “stateful” areas of the search space needs to be emphasised early
in the run, giving more chances of sampling nearby areas of initially-unfit stateful
programs. We are currently experimenting with a new type of dynamic multi-
objective fitness function that introduces a bias towards stateful individuals (i.e.
rewards the presence of memory-based primitives in an expression-tree) in the
early stages of evolution, then gradually reduces this bias focussing solely on
Sharpe ratio.

Acknowledgement. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/SRC/FM1389.

References

1. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer-Verlag,
Heidelberg (2002)

2. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: Grefenstette, J.J. (ed.), Proceedings of an International Conference
on Genetic Algorithms and the Applications, Carnegie-Mellon University, pp. 183–
187. Pittsburgh, PA, USA, 24–26 July 1985

3. Koza, J.: Genetic Programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, MA (1992)

4. Koza, J.: Genetic Programming II: automatic discovery of reusable programs. MIT
Press, Cambridge, MA (1994)



Genetic Programming with Memory For Financial Trading 33

5. Montana, D.J.: Strongly typed genetic programming. BBN Technical Report
#7866, Bolt Beranek and Newman Inc, 10 Moulton Street, Cambridge, MA 02138,
USA, March 1994

6. Huelsbergen, L.: Toward simulated evolution of machine language iteration. In:
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, USA,
pp. 315–320. MIT Press, 28–31 July 1996

7. Kirshenbaum, E.: Genetic programming with statically scoped local variables.
Technical Report HPL-2000-106, Hewlett Packard Laboratories, Palo Alto, 11
August 2000

8. Conrads, M., Nordin, P., Banzhaf, W.: Speech sound discrimination with genetic
programming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.)
EuroGP 1998. LNCS, vol. 1391, p. 113. Springer, Heidelberg (1998)

9. Agapitos, A., Lucas, S.: Evolving a statistics class using object oriented evolution-
ary programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-
Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 291–300. Springer,
Heidelberg (2007)

10. Agapitos, A., Togelius, J., Lucas, S.M.: Evolving controllers for simulated car racing
using object oriented genetic programming. In: Proceedings of the Genetic and
Evolutionay Computation Conference (2007)

11. Agapitos, A., Togelius, J., Lucas, S.M.: Multiobjective techniques for the use of
state in genetic programming applied to simulated car racing. In: Proceedings of
IEEE CEC, pp. 1562–1569 (2007)

12. Poli, R., McPhee, N.F., Citi, L., Crane, E.: Memory with memory in genetic pro-
gramming. J. Artif. Evol. Appl. 2009, 429–433 (2009)

13. Teller, A.: Turing completeness in the language of genetic programming with
indexed memory. In: Proceedings of the IEEE World Congress on Computational
Intelligence. vol. 1, Orlando, Florida, USA, pp. 136–141. IEEE Press (27–29 June
1994) (1994)

14. Teller, A.: The evolution of mental models. In: Kinnear Jr., K.E. (ed.) Advances
in Genetic Programming. MIT Press, Cambridge (1994)

15. Jannink, J.: Cracking and co-evolving randomizers. In: Kinnear Jr., K.E. (ed.)
Advances in Genetic Programming, pp. 425–443. MIT Press, Cambridge (1994)

16. Teller, A., Veloso, M.: A controlled experiment: Evolution for learning difficult
image classification. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) Progress in Arti-
ficial Intelligence. LNCS, vol. 990, pp. 165–176. Springer, Heidelberg (1995)

17. Teller, A., Veloso, M.: Algorithm evolution for face recognition: What makes a
picture difficult. In: International Conference on Evolutionary Computation, Perth,
Australia, pp. 608–613. IEEE Press, 1–3 December 1995

18. Teller, A., Veloso, M.: Program evolution for data mining. Int. J. Expert Syst.
8(3), 216–236 (1995)

19. Andre, D.: Evolution of mapmaking ability: Strategies for the evolution of learning,
planning, and memory using genetic programming. In: Proceedings of the IEEE
WCCI. vol. 1, pp. 250–255. Florida, USA (27–29 June 1994) (1994)

20. Brave, S.: The evolution of memory and mental models using genetic programming.
In Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, USA,
MIT Press (28–31 July 1996) 261–266



34 A. Agapitos et al.

21. Haynes, T.D., Wainwright, R.L.: A simulation of adaptive agents in hostile envi-
ronment. In: George, K.M., Carroll, J.H., Deaton, E., Oppenheim, D., Hightower,
J. (eds.) Proceedings of the 1995 ACM Symposium on Applied Computing, pp.
318–323. USA, ACM Press, Nashville (1995)

22. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming! vol. 1 of Genetic Programming.
Kluwer, Boston, 24 April 1998

23. Bruce, W.S.: Automatic generation of object-oriented programs using genetic pro-
gramming. In: GP 1996: Proceedings of the 1st Annual Conference

24. Nordin, P., Banzhaf, W.: Programmatic compression of images and sound. In:
Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford University, CA, USA,
pp. 345–350. MIT Press, 28–31 July 1996

25. Spector, L., Luke, S.: Cultural transmission of information in genetic programming.
In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Genetic Program-
ming 1996: Proceedings of the First Annual Conference, Stanford University, CA,
USA, pp. 209–214. MIT Press, 28–31 July 1996

26. Koza, J.R., Andre, D., Bennett III., F.H., Keane, M.: Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman

27. O’Neill, M., Ryan, C.: Investigations into memory in grammatical evolution. In:
GECCO 2002, (ed.), pp. 141–144 (2002)

28. Agapitos, A., Dyson, M., Lucas, S.M., Sepulveda, F.: Learning to recognise mental
activities: genetic programming of stateful classifiers for brain-computer interfac-
ing. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and
evolutionary computation (2008)

29. Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Learning environment
models in car racing using stateful genetic programming. In: Proceedings of the
IEEE Conference on Computational Intelligence and Games, Seoul, South Korea,
pp. 219–226. IEEE (31 August - 3 September 2011) (2011)

30. Agapitos, A., O’Neill, M., Brabazon, A.: Stateful program representations for
evolving technical trading rules. In: GECCO 2011: Proceedings of the 13th Annual
Conference Companion on Genetic and Evolutionary Computation (2011)

31. Iba, H., de Garis, H., Sato, T.: Temporal data processing using genetic program-
ming. In: Eshelman, L. (ed.): Genetic Algorithms: Proceedings of the Sixth Inter-
national Conference (ICGA95), pp. 279–286, 15–19 July 1995

32. Sharman, K.C., Esparcia Alcazar, A.I., Li, Y.: Evolving signal processing algo-
rithms by genetic programming. In: Zalzala, A.M.S. (ed.): First International Con-
ference on Genetic Algorithms in Engineering Systems: Innovations and Appli-
cations, GALESIA. vol. 414, pp. 473–480. Sheffield, UK, IEE, 12–14 September
1995

33. Alfaro-Cid, E., Sharman, K., Esparcia-Alcazar, A.I.: Genetic programming and
serial processing for time series classification. Evol. Comput. 22(2), 265–285 (2014)

34. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Mod-
elling. Natural Computing Series. Springer, Heidelberg (2006)

35. Tsang, E.P.K., Li, J., Markose, S., Er, H., Salhi, A., Lori, G.: EDDIE in financial
decision making. J. Manage. Econ. 20, 101–112 (2000)


	Genetic Programming with Memory For Financial Trading
	1 Introduction
	2 Evolution of Programs with Memory
	2.1 Scalar Memory
	2.2 Indexed Memory
	2.3 Recurrent GP

	3 Scope of Research
	4 Methods
	4.1 GP Systems with Memory
	4.2 Feature Extraction
	4.3 Program Language
	4.4 Fitness Function
	4.5 Financial Time-Series Datasets
	4.6 Run Parameters
	4.7 Experiment Design

	5 Results
	5.1 Generalisation Performance
	5.2 Model Selection
	5.3 Memory Utilisation

	6 Conclusion
	References


