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Abstract. Synthetic biology aims at reinvesting theoretical knowledge
from various do-mains (biology, engineering, microelectronics) for the
development of new bio-logical functions. Concerning the design of such
functions, the classical trial-error approach is expensive and time con-
suming. Computer-aided design is therefore of key interest in this field.
As for other domains, such as microelectronics or robotics, evolutionary
algo-rithms can be used to this end. This article is a first step in this
direction: it describes the optimization of an existing artificial gene reg-
ulatory network using evolutionary algorithms. Evolutionary algorithms
successfully find a good set of parameters (the simu-lated response of the
system which fits at 99 % the expected response) in about 200 s (corre-
sponding to 5000 generations) on a standard computer. This is the proof
of concept of our approach. Moreover, results analysis allows the biolo-
gist not only to save time during the design process but also to study
the specificity of a system.

Keywords: Synthetic biology · EASEA · Gene regulatory networks ·
Design automation · Biosystems modeling

1 Introduction

Synthetic biology is an emerging field which aims at reinvesting theoretical
knowledge acquired during the past decades in biology and the know-how in the
design of systems, such as large-scale integrated circuits, autonomous embed-
ded systems (e.g. smartphone) or heterogeneous macro-systems (automotive,
robotics, ...). As a consequence, this science is at the interface between biol-
ogy, biotechnologies, microelectronics and computer science. Synthetic biology
is coming of age as it now has many applications in several domains, such as the
manufacturing of new low-cost drugs [1], the implementation of Boolean func-
tions with biological material for cancer detection purpose [2], biological sensing
[3] or the synthesis and the optimization of bio-fuels [4].
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Synthetic biology involves several aspects. One of the most interesting for us
is not what you can do but how you can do it. More specifically, the question
we try to answer is the following: is it possible to switch from trial-error design
process to virtual prototyping. In this context, evolutionary algorithms can play
an important role for design automation and system-level optimization.

In this paper, focus is put on a specific field of synthetic biology which con-
sists in the design of artificial gene regulatory networks that can be integrated
in a living cell (bacteria for instance) so that this network implements a new
functionality. Design automation for gene regulatory networks has been widely
investigated over the past decade [5,6] and remains a hot topic [7]. One of the
most interesting features of such biological systems lies in the fact that they
can be described by Boolean relationships at a high level of abstraction [8].
Thus, design methods and associated tools used for digital electronics can be
directly applied to synthetic biology. GeNeDA (GEne NEtwork Design Automa-
tion) is an example of tools developed upon this principle [9,10]. GeNeDA is
based on a digital synthesizer and a technological mapper, initially developed
for the implementation of digital function in FPGAs (Field-Programmable Gate
Array). These tools have been adapted to the biological context. In the same
vein, several alternative tools have been developed [11,12].

Nevertheless, by opposition to microelectronics, there can be a huge gap
between the Boolean abstraction of a gene regulatory network and its actual
behavior. In particular, connexions between genes (when the protein synthesized
by the expression of a gene #1 regulates the expression of another one, e.g. gene
#2) are not so obvious. For instance, even if gene #1 is active, the amount
of synthesized protein may be not sufficient in order to activate gene #2. In
addition, several other mechanisms or functions can not be described by Boolean
abstraction (e.g. the amplification function described in [2]). Another example is
Basu’s band detector [13] for which the output reporter protein (green fluorescent
protein in this case) is synthesized only for an intermediate concentration of
input protein (acyl-homoserin lactone). For such circuits, two alternatives exist.
Firstly, the development of new tools based on mathematics that provide an
intermediate level of abstraction. Secondly, the adaptation of analog synthesis
methods from microelectronics, that is to say the design automation of analog
circuits that are described by transfer function and Kirchhoff’s networks.

On intermediate levels of abstraction, René Thomas’ investigations deserve
to be highlighted [14]. Indeed, he developed a formalism for the modeling of
dynamical behaviour of biological regulatory network through multivalued logic
variables, rules, graphs and graphical representation of the state space. A cou-
ple of years later, Gilles Bernot extended this approach to include temporal
properties of gene regulatory networks [15]. An alternative has been recently
investigated based on fuzzy logic which is used to describe the rules that gov-
ern the relations between protein concentration and gene states [16]. The main
asset of fuzzy logic in comparison with standard multivalued logic is that the
link between fuzzy value and actual concentration of protein is never lost. Fuzzy
logic can be used to describe systems at an intermediate level of abstraction,
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but also for design purposes, as it has been shown in [16]. In this case, an algo-
rithm iteratively tests several combinations of rule matrices (picked up from a
library) and finds the one that best meets the expected behaviour. Each rules
matrix corresponds to a gene-protein interaction and its content provides the
designer with important clues about the choice of the protein-gene interaction
to implement.

On the other hand, research on analog synthesis started in the beginning
of the 80’s and this topic remains worth investigation in electronics. Several
tools and methods have been demonstrated using specific formalisms and formal
computation [17,18]. Nevertheless, these developments have not led to a generic
tool which would have been widespread in analog designers community. The
main reason is that they were too complex and too specific to be used for a large
range of circuits. In addition, they require libraries and/or artificial learning
methods or the translation of designer experience to formal rules, which is not
straightforward. In a more general way, it was observed that the ratio between
the implementation complexity of such algorithms and complexity of circuits
that can be synthesized were poor in comparison to a hand-made design.

One of the most outstanding breakthrough in the domain of analog synthesis
has been made by Koza in 1997 [19] based on genetic programming algorithms.
He demonstrates the potential of his method on a large set of electronic circuits
(filters, amplifiers, controllers) for which genetic algorithms provided solutions
(circuit topology and component dimensioning) very competitive in comparison
with human intelligence [20]. At the time, the main shortcoming of evolution-
ary algorithms were that they required computing power that could only be
provided by supercomputers. This is no longer true with current technologies:
the exploitation of the parallelized computation over small networks and/or
the exploitation of the performance of the Graphical Processor Units (GPU)
[21] makes it possible to obtain such results with reasonably priced computing
systems.

The topic of this paper is to introduce the basic principles of the use of
genetic algorithms in genetic regulatory networks design automation. Designing
a genetic regulatory network requires a first step of architecture design where
abstract biological parts are assembled together. In a second step, these parts
need to be actuated: modeling and optimization of the parameters of the system
are required to choose which actual parts will be used (for example to choose
between a strong or weak promoter). The next section of this paper describes the
above-mentioned biological system that is used as case study to illustrate these
principles. Then, focus is put on the settings used for the evolutionary algorithm.
Results are given in Sect. 4 and discussed in Sect. 5. In this last section, the
opportunity to use genetic programming, which is the next step toward gene
regulatory network design automation, is also discussed.

2 Description of the Case Study

As a proof of concept, we choose to model and simulate a modified version of
a biological band-pass system developed by Basu et al. [23] (cf. Fig. 1). This



Application of Evolutionary Algorithms 187

system allows the detection of an intermediate concentration of acyl-homoserine
lactone (AHL). It consists in two populations of cells: senders and receivers.
Senders synthesize and emit isotropic AHL (the signal) inside a Petri dish. AHL
is a small molecule able to diffuse in the gelose of the Petri dish and to enter
cells. Receivers react to the concentration of AHL and produce GFP, a Green
Fluorescent Protein (the output in this system) if the concentration in AHL
([AHL]) is comprised within a specific interval (around 5.10−2 µM). In practice,
one or many groups of senders are laid on specific spots on a Petri dish covered
with receiver cells.

Fig. 1. Simplified Basu system

Our focus was put on the biological core that is computing the output, namely
the receiver cells. They are composed of three “operons” (cf. Fig. 1). Operon #1
is positively regulated by AHL (via LuxR, a constitutively expressed protein) and
expresses a modified LacI (LacIM1). LacIM1 inhibits the expression of operon
#3 GFP. Operon #1 also produces CI, which in turn inhibits the expression of
operon #2 LacI. LacI inhibits the epxression of GFP (operon #3). Each gene
transcription into mRNA and subsequent translation into protein can be mod-
eled by differential equations parametrized by the parameters given in Table 1.
These 22 values (that constitute the genome of the individuals to be evolved)
correspond to the different kind of regulators and promoters (regulated part of
the operon). At the steady-state and for given parameters, GFP concentration
only depends on [AHL], as described by Eqs. 1, 2, 3 and 4:

[LacIM1] =
kTL1

dLacIM1

· kTR1

dmRNA1

· 1

1 +
(

KA1
[AHL]

)nA1
(1)

[CI] =
k′

TL1

dCI
· kTR1

dmRNA1

· 1

1 +
(

KA1
[AHL]

)nA1
(2)
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Table 1. Parameters table. The boundaries correspond to the limits in which the
parameters were constrained during initialization (as well as crossover and mutation
if relevant). Dissociation constants are given in μM and transcription constants in
μM · s−1.

algogene Description Boundaries

Min Max

kTR1 Transcription constant of operon #1 10−3 103

KA1 Dissociation constant of AHL 10−4 103

nA1 Hill’s number of AHL 1 4

dmRNA1 Degradation constant of mRNA of operon #1 10−3 10−1

kTL1 Translation constant of LacIM1 (op. #1) 10−7 10−5

dLacIM1 Degradation constant of LacIM1 10−4 10−2

k′
TL1 Translation constant of CI (op. #1) 10−7 10−5

dCI Degradation constant of CI 10−4 10−2

kTR2 Transcription constant of operon #2 10−3 103

KR2 Dissociation constant of CI 10−4 103

nR2 Hill’s number of CI 1 4

dmRNA2 Degradation constant of mRNA of operon #2 10−3 10−1

kTL2 Translation constant of operon #2 10−7 10−5

dLacI Degradation constant of LacI 10−4 10−2

kTR3 Transcription constant of operon #3 10−3 103

KR3 Dissociation constant of LacIM1 10−4 103

nR3 Hill’s number of LacIM1 1 4

K′
R3 ’ Dissociation constant of LacI 10−4 103

n′
R3 Hill’s number of LacI 1 4

dmRNA3 Degradation constant of mRNA of operon #3 10−3 10−1

kTL3 Translation constant of operon #3 10−7 10−5

dGFP Degradation constant of GFP 10−4 10−2

[LacI] =
kTL2

dLacI
· kTR2

dmRNA2

· 1

1 +
(

[cI]
KR2

)nR2
(3)

[GFP ] =
kTL3

dGFP
· kTR3

dmRNA3

· 1

1 +
(

[LacIM1]
KR3

)nR3
+

(
[LacI]
K′

R3

)n′
R′

3

(4)

3 Setup of the Evolutionary Algorithm

This section deals with the settings used for the evolutionary algorithm, i.e.
population size, initialiser, crossover function, mutator function and evaluator.
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In the following, to avoid confusion, algogene refers to the genes in the algorithm
and biogene to the biological genes (composing the Basu system).

Population Size and Genetic Engine — 1000 individuals. At each generation,
1000 offspring were generated but to the difference of a generational engine,
individuals for the next generation were selected via a binary tournament with
weak elitism (the best of parents+offspring survives). Parents selection also uses
a binary tournament.

Initialiser — Each parameter is initialized randomly within its respective range
(see Table 1). For the four Hill’s numbers, a random number is drawn between
1.0 and 4.0. Because we are in a biological system, for all the other parameters,
a random value is drawn between the two logarithmic values of the interval (the
log of min and max values of the “Boundaries” in Table 1); the parameter is then
initialized to the power of this value. For example, for kTR1 a random value x is
drawn between −3 and 3 so that kTR1 = 10x.

Crossover Function — Different crossover functions were tested: a simple
replacement (a tosscoin decides whether the child will be a copy of parent 1
or 2), a barycentric crossover, a BLX-α [22] crossover and an SBX [23] crossover
(cf. Table 2). The crossover function is called for all children creation and involves
2 parents for the creation of 1 child.

Mutation Function — Different mutation functions were tested: a simple random
draw in the previously defined range, relative mutation (addition of a gaussian
noise) and auto-adaptive mutation (from Evolutionary Strategies, see [24]). The
mutation operator is applied to each algogene with a probability of 0.05 %. If
involved, the parameter sigma of the auto-adaptive mutation is mutated when-
ever its corresponding algogene is.

Evaluator— To evaluate the individuals, a first step was to select N absciss points
(spread uniformly in the logarithmic scale) from 10−4 to 101. Then on each of these
points the genome parameters are used to compare the value of the Basu function
(Eqs. 1, 2, 3 and 4) to the target value. To obtain the target values, we approxi-
mated the band-pass system described by Basu et al. by a gaussian curve centered
on 10−1.5, of maximal height 20 and of standard deviation 0.2 as follows:

f (x) = GFPmax · e− (x−μ)2

2·σ2 (5)

The Mean Square Error (MSE) is calculated on all these points. The aim of
the algorithm is to minimize the error. If the operators allowed the parameters
to cross the boundaries used for initialization, an additional limiting step was
used.

Table 2 shows the operators that were used in the results analysis: barycentric
crossover operator, auto-adaptative mutation or gaussian noise, gaussian curve
with 40 points for the evaluator. Stopping criteria was the number of generations.
Analysis of the biological parameters is performed on the genome of the best
individual after 5000 generations.
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Table 2. Summary of the preliminary tests. When not indicated, mutator operator
was applied with a probability of 0.05 %. Each score corresponds to the mean score of
three to six runs after 1000 generations, with their standard deviation value. BLXα-x
(respectively SBXν-x ): x corresponds to the value of α (respectively ν). Evaluation
was performed with 40 samples taken uniformly in the log domain.

Crossover Mutator Bound. Average

time (s)

Average score of the best

Operator Domain

Par.Replacement lin simple bounded No 35.0 0.02 ± 0.007

Par.Replacement lin simple bounded

0.1%

No 34.8 0.04 ± 0.013

Par.Replacement lin relative sig0.2 Yes 30.3 0.012 ± 0.005

Par.Replacement lin relative sig0.1 Yes 32.4 0.006 ± 0.001

Par.Replacement lin relative sig0.3 Yes 30.8 0.011 ± 0.003

Par.Replacement lin mut autoad noise

1.0

Yes 32.5 0.05 ± 0.031

Par.Replacement lin mut autoad noise

sqrt(L)

Yes 28.5 0.02 ± 0.008

Barycentric log simple bounded

0.01%

No 39.9 0.08 ± 0.004

Barycentric log simple bounded No 40.1 0.07 ± 0.002

Barycentric log simple bounded

0.1%

No 40.5 0.10 ± 0.009

Barycentric log simple bounded

0.2%

No 40.6 1.27 ± 0.555

Barycentric log mut autoad noise

sqrt(L)

Yes 41.8 0.04 ± 0.002

BLXα-0.1 lin simple bounded No 36.4 12.23 ± 10.56

BLXα-0.1 log simple bounded No 40.2 0.05 ± 0.005

BLXα-0.1 log simple bounded Yes 40.3 0.05 ± 0.006

BLXα-0.2 log simple bounded No 40.3 0.03 ± 0.001

BLXα-0.2 log simple bounded Yes 40.0 0.04 ± 0.005

SBXν-1 log simple bounded

0.005%

Yes 35.2 4.15 ± 0.057

SBXν-1 log simple bounded Yes 35.3 2.66 ± 0.609

SBXν-2 log simple bounded

0.005%

Yes 38.7 1.00 ± 0.867

SBXν-2 log Relative (sig = 0.1) Yes 39.1 1.19 ± 1.309

4 Results

The evolutionary algorithm has been implemented on the EASEA platform
[25,26]. Computations have been performed on a standard computer without
GPU acceleration. Results are summarized in Table 2 and discussed in the fol-
lowing subsections. The score reflects how far the function fed by the 22 para-
meters found by the algorithm is from the target function (precisions are given
in the previous section).
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Fig. 2. Value of the algogenes for four runs after 5000 generations. The dissociation
constants are given in M , the transcription constants in M · s−1, the translation and
the degradation constants in s−1.

In the following subsections, scores and computing time correspond to the
mean of these values over 30 runs if not indicated otherwise. For clarity, only
the first four runs are shown on Figs. 2 and 3.

4.1 Is Parental Replacement Relevant on a Biological Point
of View?

When using parental replacement as crossover operator, the results are the best
in terms of computing time (158 s) and score of the best individual (9.91 · 10−3

corresponding to a relative error (score of the best individual over the height
h of the peak) of 0.05 %). Out of five runs, four parameters (kTR1 , dCI , KR2 ,
n′

R3
) systematically reached their lower boundary and one (nA1) reached its

upper one. Decreasing the mutator’s gaussian noise (variance is no longer the
range of the interval for the parameter in the log domain but 1.0) did not alter
significantly this tendency (out of four runs, the same parameters but kTR1

reached systematically one of their boundary). A Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [27] algorithm could be tested.

4.2 Validity of the Results

As shown on Fig. 2, the algorithm solutions always requires for KR3 (the repres-
sion constant of LacIM1) to be lower than KR2 by at least one order of magni-
tude. In the original work [13], this is also a requirement, which they solve by
using CI as a strong repressor (to have a low KR2 constant), and LacIM1 as a
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Fig. 3. Values of the auto-adaptive mutator sigma values for four runs after 5000
generations.

weaker repressor. Similarly, we observe that the constants related to LacI and
LacIM1 (KR3 and dLacIM1 and respectively K ′

R3
and dLacI) are close for the two

proteins. This is also the case in the original work. It is to be noted that the degra-
dation constants of the proteins obtained by our algorithm are in accordance with
the parameters used by Basu et al. to represent their actual system. As for the
global synthesis constants (for a given protein, it corresponds to kT R·kT L

dmRNA
), they

are in the range of 0.1µM · min−1 in our results and of 1µM · min−1 in the
original work.

4.3 The Assets of Auto-adaptive Mutation

Auto-adaptive mutation offers the possibility to retrieve information about key
parameters of the system. After the algorithm reached its stopping criteria, we
retrieved the sigma values of the best individual. Out of 30 runs, less than 5 %
algogenes showed a sigma value lower than 0.2 whereas more than 17 % had
sigma values greater than 0.3 (see Fig. 3). We observed that no algogene has a
particularly low value of sigma. On the contrary, parameter k′

TL1 has an average
sigma value of 0.38, showing that it is less sensitive to variation.

4.4 Validation on Different Targeted Response

We tried to see whether the algorithm could solve similar problems with the
same set-up by shifting the target function and increasing its peak (Fig. 4).
Three other gaussian curves were tested: one with μ = 1 and GFPmax = 5µM,
another one with μ = 10−1 and GFPmax = 10µM and a last one with μ = 10−3
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and GFPmax = 40µM. In each case, relative error was under 0.3 %, in 200 s on
average (see Fig. 4). For each peak, we took the average of each parameter out of
three runs. It appears that most parameters are similar. Major differences can
be observed for the dissociation constants of the regulators, namely activation
constant KA1 and repression constants KR2 , KR3 and K ′

R3
. Apart for K ′

R3
where

the tendency is opposed, they decrease with the height of the peak. The same is
observed for nR3 . To observe whether this difference was due to the positional
shift or the height difference, a new set of runs were performed with the same
position for each peak (10−1 µM). The results showed that the tendency observed
previously is absent. Moreover, the differences between the dissociation constants
of each setup are negligible (they are non-existent or spread over less than one
order of magnitude). No difference could be observed for the values of kTL3 , the
translation constant of GFP. Only minor differences could be observed (when
observed).

Fig. 4. Representation of the best individual’s GFP response in function of [AHL] for
different targets. The continuous lines show the targets and the points the correspond-
ing results for three runs. “Target x” corresponds to a gaussian curve with height h = x
and “Peak x exp” the cognate results. For h = 40 (resp. 10, 5), the gaussian is centered
on μ = 10−3 (resp. 10−1, 100). “Target step” corresponds to a step function centered
on 10−2 with a plateau value of 20µM. The algorithm was run for 5000 generations
with barycentric crossover and gaussian noise mutator.

We also wanted to see whether this biological function was able to return a
step-shaped response. The target function was changed to a step function with
a value of 20µM between 10−2.5 µM and 10−1.5 µM and 0µM everywhere else.
The algorithm found decent solutions (average relative error inferior to 2 %) in
200 s on average (see Fig. 4).
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4.5 Grouped Evolution of algogenes

In nature, some biogenes coevolve: they are constrained by the same rules during
evolution [28,29]. We tried to reproduce this phenomenon by allowing the algo-
rithm to divide the genome in n groups of algogenes (n varying from 1 to 22). In
a group, the algogenes are crossed with the same parameters. From two to five
groups, the scores are higher than the one group-algorithm. The algorithm is con-
verging prematurely. Above five groups, compared to the one group-algorithm
the scores are similar. However, the algorithm requires 1.15 more time when
using groups.

We also tried to run the algorithm with autoadaptive groups. Each individual
had a random number of groups, composed of algogenes randomly picked. Group
setup of each individual was allowed to mutate. Crossover of two individual
creates a child with a number of groups of one of his two parents. Results were
not conclusive in terms of score, nor in terms of biological interest: it was not
observed that specific algogenes had a higher tendency to form a group together.

4.6 Results Obtained on an Alternative Biological System

To see whether this approach could be generalized to other types of genetic
networks, we tried to optimize a bio-logic XOR gate. The complete description
of the biological system can be found here [30]. A simplified illustration is given
on Fig. 5. In the presence of both Phloretin (Ph) and Erythromycin (Er), mRNA

Fig. 5. Simplified XOR bio-logic gate. Barred red lines indicate a repression on the
operon coding for the corresponding mRNA; red dashed arrows indicate a binding
reaction; black heavy arrows indicate production. Ph: Phloretin. Er: Erythromycin.
YFP: Yellow Fluorescent Protein (Color figure online).
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Fig. 6. [YFP] in function of [Er] and [Ph] for three different targets. B (resp. D and
F) shows the target function for a XOR (resp. OR and INH) gate. A (resp. C and E)
corresponds to the results for the target B (resp. D and F). Score corresponds to the
fitness score of the best individual for each target.

are not synthesized. Thus Yellow Fluorescent Protein (YFP) is not produced.
If there is no Ph nor Er, both mRNA are synthesized but inhibited because
they are bound with L7 (for mRNA1) and MS2 (for mRNA2). Finally, when Ph
(resp. Er) is present alone, mRNA2 (resp. mRNA1) is produced but not MS2
(resp. L7). As a consequence, mRNA2 or mRNA1 can be translated and YFP is
synthesized.

The equation set that models this system is composed of 15 parameters
(2 transcription rates, 1 translation rate, 2 dissociation constant and 2 Hill’s
numbers for Ph and Er repression, 2 dissociation constants for MS2-mRNA2
and L7-mRNA1 binding reaction and 3 translation rate and 4 decay rates).

Evaluation is performed by taking the MSE between the value of this function
and the target function on 10 values of [Ph] times 10 values of [Er], spread
uniformly on the log domain between 10−9 and 10−3 µM. The target function is
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a classic binary XOR, with low plateaus being set at 10−12 µM and high plateaus
at 10−8 µM. Threshold value is set at 10−6 µM for both inputs (namely Er and
Ph). The algorithm was able to produce a set of parameter with a score around
10−17 (Fig. 6). We also tried several variations of the XOR gate, namely an OR
gate (no YFP when both Er and Ph are present) and an INH gate (YFP is
produced when Er is present and pH is absent).

5 Discussion

5.1 Results Obtained with Evolutionary Algorithms

The obtained results show that the algorithm can find coherent solutions to
a biological problem. Indeed, the original work emphasizes some specificity of
their system (significant differences in the repressor constants) which the algo-
rithm successfully shows. As the process contains modifying operators (crossover,
mutation), the parameters could have virtually taken any value in their respec-
tive allowed range. Interestingly enough, all the values obtained were biologically
relevant and consistent with the original paper.

Auto-adaptive mutation was expected to be an additional hint towards which
elements of the system are of key importance in the correct realization of the
expected function. However, no algogene showed a particular constraint (low
sigma value). The general tendency for sigma values to be rather above average
than below is due to the way the sigma is mutated. Indeed, its value is multiplied
by the exponential of a random number drawn from a Gaussian distribution cen-
tered on 0.0 with a variance of 1.0. The high value of k′

TL1
(translation of CI)

sigma suggests that this parameter is allowed to vary from the returned opti-
mized value. This would give the biologist more freedom regarding the promoter
he needs to use.

Running the algorithm with other targets revealed key parameters to set
the desired position of the peak. These parameters are dissociation constants of
regulators, which makes sense since these parameters control the sensitivity of a
promoter towards its regulator. Two groups can be distinguished. KA1 and KR2

allow to shift the peak, and KR3 and K(R3 to sharpen it. Indeed, a decrease on
KA1 will lead to a higher sensitivity of operon #1 promoters towards AHL, so
that a lower [AHL] will be required to initiate LacIM1 and CI expression. This
leads to an increase of GFP at lower [AHL], namely a shift of the rising edge of
the peak to the lower concentrations. Similarly, a decrease on KR2 will increase
the sensitivity of operon #2 towards CI, resulting in a stronger repression of LacI
by CI: the falling edge of the peak will shift to lower [AHL]. Finally, KR3 and
KR3′ control directly GFP expression and therefore act on the thinness of the
peak. Indeed an increase on KR3′ decreases the sensitivity of GFP’s promoter
towards CI. The rising edge of the peak will therefore be shifted towards lower
[AHL]. Seemingly, a decrease on KR3 will result in a shift of the falling edge of
the peak towards lower [AHL] as well. This can be verified by simulating GFP
levels in function of [AHL] while varying the above mentionned constants (data
not shown).
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We can expect that a change in GFP peak height only would involve a sim-
ilar change in GFP translating constant. As it is not the case, we investigated
the product kT L3 ·kT R3

dmRNA3 ·dGF P
(see Eq. 4), which indeed grows proportionally to the

height of the peak. The algorithm is therefore capable of finding non trivial
solutions regarding this biological problem.

With the possibility for the algogenes to evolve in groups, we expected to
observe the appearance of groups of linked parameters. Indeed, as described
above, the maximal [GFP] depends of the constants kTL3 , kTR3 , dGFP and
dmRNA3 . When the algorithm found a good individual, if kTL3 and kTR3 (respec-
tively dGFP and dmRNA3) evolve in the same direction (or not at all), the indi-
vidual should keep its good score. We therefore expected for such parameters to
tend to gather in the same group. This tendency was not observed.

To further validate the strength of this approach, a comparison with other
methods (such as particle swarm or simulated annealing) could be carried on.

5.2 From an Evolution Strategy to Genetic Programming

The algorithm used to obtain the presented results is close to an Evolution
Strategy to optimize a highly dimensional biological system (22 parameters).
What would be a following step is to create an algorithm able to find a relevant
biological system to answer the biologists’ needs. Indeed, a typical approach in
synthetic biology begins with the specifications describing a given problem. The
solution is often a biological system, that fulfills the specification requirements.
The next step for the biologist is to design the said biological system, and finally
optimize its components. The last step is realized by optimizing the constants, as
shown above. A still missing link is to find, in a library (typically the Biobricks
library [31]), the closest components to the returned parameters. However, the
biologist still has to imagine the biological system’s architecture before ’feeding’
it to the algorithm. That is why an algorithm able to create a biological function
fulfilling a biological set of requirements is needed.

Genetic Programming could be used for this. As a biological system can
be abstracted in a biological function as seen above, we first tried to evolve a
function with the same evaluation as previously. Preliminary results showed that
the returned equations were too complicated in order to find the biological system
associated to the obtained equation. In synthetic biology, systems are made of so
called parts, DNA sequences coding for promoters, proteins, terminators, among
others. A good idea would be to use the standard decomposition of systems into
blocks to evolve a graph, composed of such elements. A new formalism must
be imagined for mutation, crossover and evaluation. To what corresponds the
nodes and edges is still unclear. Ideally, the algorithm would be able to build the
most compact biological system which, given the right constants, would fulfill the
requirements. This hints towards an evaluation process taking into account the
size of the system (it is easier to produce a promoter sensitive towards one or two
regulators than towards four or five). Because some systems’ behavior depends
heavily on their parameters (e.g. the system presented here) the graph should not
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only produce an architecture (which product regulates the expression of which
other product) but also include quantitative or semi-quantitative elements. Of
course, as an optimization step is included afterwards, this step should be quite
quick. Taking inspiration from fuzzy logic which introduces an intermediate level
between binary and continuous elements, a further step would be to introduce
parts with three different level of sensitivity, expression, etc.

6 Conclusion and Future Work

This work demonstrates the relevance of evolutionary algorithms in synthetic
biology, in particular in the field of biological networks. Being able to optimize
the parameters of a defined system before going to the bench is an important
speedup in the process of biological networks design. Indeed, biologists typically
have to test various sets of components before finding the most suitable. Such
an algorithm gives hints on which parameters are of key importance and which
kind of components should be used (e.g. a strong or weak repressor). Moreover,
as this tool is capable of generating sets of parameters realizing a large variety
of functions, it can also help to understand the specifics of a system, by varying
the target function used in evaluation and analyzing the returned parameters.
This modularity enlarges designers’ horizon by giving them the possibility to
preliminary test in silico any (crazy) idea they might have.

This optimizing step is to be preceded by a network conception step, also
ideally automated. Genetic programming is a promising field in this regard.
Formalism of the networks components, the operators to use and the evaluator
is what comes next.
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