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Abstract. Networks representing complex biological interactions are
often very intricate and rely on algorithmic tools for thorough quan-
titative analysis. In bi-layered graphs, identifying subgraphs of potential
biological meaning relies on identifying bicliques between two sets of asso-
ciated nodes, or variables – for example, diseases and genetic variants.
Researchers have developed multiple approaches for forming bicliques
and it is important to understand the features of these models and
their applicability to real-life problems. We introduce a novel algorithm
specifically designed for finding maximal bicliques in large datasets. In
this study, we applied this algorithm to a variety of networks, including
artificially generated networks as well as biological networks based on
phenotype-genotype and phenotype-pathway interactions. We analyzed
performance with respect to network features including density, node
degree distribution, and correlation between nodes, with density being
the major contributor to computational complexity. We also examined
sample bicliques and postulate that these bicliques could be useful in elu-
cidating the genetic and biological underpinnings of shared disease etiolo-
gies and in guiding hypothesis generation. Moving forward, we propose
additional features, such as weighted edges between nodes, that could
enhance our study of biological networks.

1 Introduction

Relationships of many types can be modeled as graphs, where the related entities
are the nodes of the graph and the relationships between them are the edges. In
order to make the model more complete and solutions more realistic, properties
relevant to the specific problem can be associated with the nodes and edges,
transforming the graph into a network [20]. One type of problem which has
received a great deal of interest is to identify sets of nodes which are closely
related, e.g., diseases with common etiologies. In the context of graph theory,
this involves a search for collections of nodes with many connections between
them. In the ideal case, edges between all pairs of nodes in the subset would
exist. Such graphs are called cliques.
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It is often true that the nodes are of two distinct types, say A and B, and
that the edges can be drawn between nodes of one type and the other [19]. For
example, we might be interested in relationships between diseases and genes.
The problem now becomes one of finding a collection of nodes in A that are
all connected to all nodes in B. These nodes form bipartite graphs, or simply
bigraphs, and are known as bicliques [11]. They may represent significant rela-
tionships between the two sets of nodes. A maximal biclique is one that is not
contained in any other one; i.e., at least one of its component sets is not properly
contained in the corresponding set in any other biclique.

We present an algorithm for solving the problem of finding all maximum
bicliques of a bigraph. We discuss the algorithm’s runtime and memory require-
ments as a function not only of the number of nodes and edges in the network,
but also of the density of the graph (fraction of edges present), the distribution
of node degrees, and the correlation among the edges.

We apply our algorithm to the analysis of two Human Phenotype Networks
(HPN) [7], bigraphs models of human phenotype interactions based on shared
biology. The first uses biological pathways, and the second genes, to identify
common etiology in disease phenotypes. Through the use of Genome-Wide Asso-
ciation Study (GWAS), we have amassed a wealth of knowledge linking genetic
variants to human disease phenotypes. However, our understanding remains lim-
ited by the complexity of human disease and by the epistatic, polygenetic and
pleiotropic effects of genotype-phenotype interactions. Bicliques and other phe-
notype networking tools allow for a systematic examination of shared biology
between diseases. These tools can be used to (1) identify diseases previously
believed to be unrelated, (2) pinpoint genetic or biochemical pathway associa-
tions that underlie common disease etiologies and (3) identify therapeutic targets
that may be applicable to multiple diseases.

2 Background

2.1 Bicliques in Research

Due to the large number of applications they model, bigraphs, bicliques, quasi-
bicliques, and maximal bicliques have been studied extensively in the context of
human genotype-to-phenotype relationships. Cheng and Church [4] introduced
the concepts of “biclustering” both genes and conditions and illustrated their
technique by identifying co-regulation patterns in yeast and human gene expres-
sion data. Tanay et al. [26], Wang et al. [27], and Liu et al. [15] address the
same problem using bipartite graphs to model relationships between genes and
conditions and identified bicliques in the bipartite graphs. Sanderson et al. [24]
use bipartite graphs and bicliques in phylogenetics to improve the accuracy of
tree construction. Zhang et al. [28] use maximal bicliques to identify groups of
genes that are associated with related biological functions.

With the generalizability of these tools, many other applications exist both
inside and outside of biology. Bicliques can be applied to the study of other
factors influencing human disease, such as environmental exposures, or to the
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study various other biological networks. For instance, Maulik et al. [18] use
quasi-bicliques to study viral-host protein-protein interaction networks. Liu et al.
[16] use quasi-bicliques to find interacting protein group pairs in protein-protein
interactions. Beyond biology, Sim et al. [25] use quasi-bicliques to cluster groups
of stocks and financial ratios to identify investment opportunities.

2.2 Some Technical Considerations

This range of applications has resulted in significant research to find efficient
algorithms to identify maximal bicliques. Prisner [22] demonstrated that the
number of maximal bicliques in a bipartite graph with n vertices varies according
to the formula 2n/2. Zhang et al. [28] noted that algorithms for finding maximal
bicliques follow one of three approaches: exhaustive search, reduction to the
clique enumeration problem in a general graph, and reduction to the frequent
itemset mining problem in a transaction database. Alexe et al. [1] enumerate all
maximal bicliques using a consensus algorithm similar to the consensus method
for finding prime implicants of a Boolean function. Makino and Uno [17] use the
second approach to convert a bigraph into a general graph by adding all edges
to connect all vertices within the same partition. In this case, algorithms for
enumerating maximal cliques in a general graph can be applied. However, Zhang
et al. [28] noted that this approach is neither practical or scalable. Using the
third approach, the adjacency matrix of a graph can be viewed as a transaction
database, and a biclique corresponds to a pair of frequent closed itemsets in the
transaction database.

Li et al. [14] suggest using frequent itemset mining techniques to mine maxi-
mal bicliques. They show that the problem of enumerating all maximal complete
bipartite subgraphs is equivalent to mining frequent closed itemsets in the adja-
cency matrix. That is, a closed itemset and the set of transactions containing
the closed itemset form a biclique. Liu et al. [25] point out that the large maxi-
mal biclique mining problem has size constraints on both vertex sets, while the
frequent itemset mining problem puts size constraints on only one side of the
transaction set. Their approach uses a divide-and-conquer technique to prune
the search space.

The number of bicliques may be limited based on specific properties of the
nodes and edges. For example, if the maximum node degree can be limited, the
number of bicliques can become a polynomial in the largest node degree. Thus,
the problem of finding all maximal bicliques is intractable for graphs allowing
nodes of very high degree. It is therefore important to better understand the
features that separate tractable instances of the problem from intractable ones
and to better understand which of these factors are intrinsically associated with
real world problems. This knowledge can help determine which types of problems
are approachable by analysis using bicliques and which are not.



Bicliques in Graphs with Correlated Edges 141

2.3 The Human Phenotype Network

Human Phenotype Networks (HPNs) [7,9] are mathematical graph models where
the nodes represent human phenotypic traits. Edges represent genetic connec-
tions between traits, the granularity of which can be modulated from shared
genetic variants (Single Nucleotide Polymorphisms, or SNPs), genes, or path-
ways, to name only a few. Because HPNs rely on Genome-Wide Association
Study (GWAS) data, they incorporate diseases, physical and behavioral traits.
HPNs are bigraphs by nature, before being projected onto the space of pheno-
type nodes only. In their projected form (single set of phenotype nodes), they
have been successfully used to study diverse aspects of human traits and disease
interactions, from pleiotropy and epistasis [8], to Type 2 Diabetes in East Asian
populations [23], to environmental effects [7]. In this work we utilize two different
HPNs in their bigraph (pre-projection) form. The first one is based on shared
pathways between diseases and the second relies on shared genes between the
traits [8].

Biological networks are generally expected to have heterogeneous connectiv-
ity placing them in the scale-free family. This means that the degree distribution
follows a power-law, or exponential decay. Within the network, this translates
into the presence of a minority of highly connected nodes (i.e. hubs). When the
degree distribution of a scale-free network is plotted on a logarithmic scale, the
resulting curve is approximately linear across the top [20].

3 Methods

In the present work, we utilize both pathway and gene-centric HPNs, using data
from the May 2014 version of the NHGRI GWAS catalog [6]. To maximize cov-
erage, HPNs included genotype-phenotype associations found in the database of
Genotypes and Phenotypes (dbGaP). The pathway HPN incorporates genetic
pathways information for Kegg and Reactome to build association between phe-
notypes/traits. The GWAS catalog and dbGaP report 1,252 traits combined,
annotated with 37,681 SNPs in 16,411 loci. Bipartite HPNs rely on almost 1,000
phenotypic traits, and over 10,000 genes and almost 1,500 pathways, respec-
tively. Throughout the analysis HPNs remain bipartite, where phenotypes and
genes/pathways each represent a set of nodes. The resulting bipartite network
can be projected in the space of phenotype vertices to obtain the HPN found in
literature.

3.1 Definition of Terms

A graph G = (N,E) [12] is defined by a set of nodes NN and a set of edges
NE, where

N = {ni|i = 1, 2, ...NN} , E = {ek = (ni, nj)|k = 1, 2, ...NE}



142 A. Kershenbaum et al.

and ni, and nj are contained in N . Graphs are used to model relationships. The
nodes are the objects being related and the edges model the link between them.
In the present work, we will only consider undirected graphs.

A clique, C = (NC,EC) is a subgraph of a graph where NC and EC are
subsets of N and E.

A bigraph (or bipartite network) G = (U, V,E) is a graph whose node set is
partitioned into disjoint sets of nodes, U and V , and edges E connect nodes in
U to nodes in V ; i.e., there are no edges between nodes in U and also no edges
between nodes in V .

E = {ek|k = 1, 2, ...NE}
where ek = (ui, vj) for ui, contained in U and vj contained in V .

A biclique CB = (UC, V C,EC) is a subgraph of a bigraph B = (U, V,E)
where UC, V C, and EC are subsets of U , V and E, respectively and for all ui,
in UC and vj in V C there is an edge ek = (ui, vj) for pairs ui, in UC and vj
in V C. Bicliques model relationships between nodes in U and nodes in V . For
example, U may be a set of diseases, V may be a list of genes and E may be a
set of relationships between the diseases and the genes.

A maximal biclique is one containing nodes that are not proper subsets
of the nodes in any other biclique. Maximal bicliques represent strongly related
groups of nodes in G and represent groupings of the nodes into categories. Note
that maximal bicliques need not be disjoint; nodes may overlap.

Networks are graphs where properties are associated with the nodes and
edges. We therefore use these terms interchangeably. The search for bicliques is
motivated by the desire to find groups of nodes that share one or more prop-
erties. Indeed, the problems we solve are often aimed at identifying relevant
properties relating nodes to one another. In this paper, we restrict the discus-
sion to unweighted (or all edges have the same weight), undirected edges but the
algorithm we present extends naturally to the weighted, directed problems.

3.2 Biclique Detection Algorithm

We present and analyze an algorithm for finding maximal bicliques. A bigraph
is defined as a triple, G = (U, V,E). U and V are disjoint sets, not necessarily of
equal cardinality. We will refer to a typical member of U as ui and to a typical
member of V as vj . The members of E, e = (ui, vj) are undirected edges so that
U and V are interchangeable.

In the algorithm, we represent a biclique as a triple (L,R,A) where L is a
subset of U , R is a subset of V , and A is the set of nodes, um in U that are
adjacent to ui, a given node in L (think of L and R as simply being left and right
sets of nodes, with no particular significance to left and right.) For a biclique,
ci = (Li, Ri, Ai), we refer to Li, Ri, and Ai as the biclique’s L-set, R-set and
A-set, respectively.

We say two nodes, ui and um, in L are adjacent if they share at least one
neighbor, vk, in R; i.e., if there exist one or more pairs of edges (ui, vk) and
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(um, vk) that are members of E in G. We define a singleton biclique, si, as a
biclique where L contains a single node.

As an example, consider Fig. 1. Let the nodes in the top row be U and the
nodes in the bottom row be V . As shown in red, nodes 8, 9, 3 and 4 form a biclique
(which is not a singleton biclique), C, because both 8 and 9 are connected to
both 3 and 4. Note that for nodes to form a biclique all the left nodes have to be
directly connected to (not just adjacent to them by the definition above) all the
right nodes. Nodes 3 and 4 are both directly connected to nodes 0, 5, 8 and 9.

We thus have:

Lc = {8, 9} ; Rc = {3, 4} ; Ac = {0, 5}
Note that we do not include 8 and 9 in AC because they are already in Lc.

A singleton biclique, si, is a biclique where L contains a single node. In green
in Fig. 1, we show an example of a singleton biclique: [{14} ; {7, 10, 12} ; {5, 9,
11, 13, 15, 17, 18}] where the 3 sets inside the square brackets are respectively
Lc, Rc and Ac.

The algorithm maintains a collection of maximal bicliques found so far and
a collection of candidate bicliques to be expanded into larger bicliques. The
expansion of biclique is a set of bicliques formed by adding each member of its
A-set to its L-set.

The collection of maximal bicliques is managed as a map where each key
is the R-set of a biclique and the associated value is the biclique itself. The
candidate collection is managed as a priority queue. In order for this to work,
sets of nodes have to be comparable. Since they are sets, we can test for inclusion
and equality. In addition to this, the algorithm also has to know when two sets
are not comparable. Two sets are said to be not comparable if they are not equal
and neither includes the other. We will refer to the map of bicliques as MB and
the queue of candidate bicliques as QC.

MB contains all bicliques that are currently maximal. As the algorithm pro-
ceeds, new bicliques are added and to MB and bicliques in MB may be replaced
by bicliques that dominate them. A biclique ci = (Li, Ri, Ai) dominates biclique

Fig. 1. Biclique schematic. L nodes 8 and 9 form a biclique with R nodes 3 and 4, with
adjacent nodes 0 and 5. A singleton biclique is formed between L node 14 and R nodes
7, 10, and 12 (Color figure online).
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cj = (Lj , Rj , Aj) if Lj and Rj , are contained in Li ,and Ri. If Li = Lj , and
Ri = Rj , then ci = cj . Note that since the A-sets are derivable from the R-sets,
if Rj is contained in (or equal to) Ri then Aj is contained in (or equal to) Ai.

The algorithm is implemented from the following basic operations.

Merging Two Bicliques: The merger, Mij , of two bicliques, ci and cj is defined
as

Mij = ck = (Lk, Rk, Ak)

where
Lk = Li ∪ Lj ; Rk = Ri ∩ Rj ; Ak = Ai ∩ Aj

Expansion of a Biclique: The expansion, EXPi of a biclique ci is the set of
bicliques Mij formed by merging cisj with each singleton biclique, si, in the
A-set of ci. Thus,

EXPi = {Mik|k ∈ Ai}
In its simplest form, the algorithm begins by putting all the singleton bicliques
into QC and also into MB. It then pops ci from the front of QC and expands
it. Each Mik in EXPi is tested. Specifically, the biclique, cm, (if any) whose key
equals the R-set of Mik is retrieved from MB. If is null, Mik is put into MB. If
is not null, it is merged with Mik, forming Mim , and Mim replaces cm in MB.

As the algorithm proceeds, new biclique are added to MB and previously
found bicliques are replaced by ones that dominated them. As a biclique is
expanded, it is removed from QC. When newly found bicliques (either new ones
or merged ones that dominate previously found ones) are placed in MB they are
also added to QC. The process terminates when QC is empty.

Given the original graph G = (U, V,E), we form a set, T = U ; i.e. ti = ui.
We then order the ti based on their degrees in G, smallest first. Other ordering
are possible; e.g. by degree, largest first. For each ti we will form a graph Gi =
(Ui, Vi, Ei) which we will use to find all the maximal bicliques in Gi.

We form Ui first by removing from U all nodes, uj not adjacent to ti in G,
i.e., where adjacency is defined as above by the existence of a path through some
vj in Vi. We then remove from Ui all tj for j < i. Vi contains all vj in V for
which an edge (ui, vj) exists in G. Ei is the subset of E whose endpoints are in
Ui and Vj .

The algorithm proceeds by processing the Gi in succession as described above,
finding all the bicliques in Gi. Because Ui does not contain any previously
processed Gi removed previously processed tj we will not find any maximal
bicliques previously found when processing Gj . Thus each maximal biclique is
found exactly once.

3.3 Biclique Detection Algorithm Complexity Analysis

Our algorithm, as described above, starts with singleton nodes and expands
each one by adding adjacent nodes to them one at a time via a depth first
search. Its runtime complexity and memory requirements can be modeled as
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O(Ngc × Epc),where Ngc is the number of bicliques generated and Epc is the
effort required to generate a biclique and check it for dominance. Epc can be
seen to be linear in the size of the biclique, specifically the size of the L-set,
R-set and A-set. These are in the worst case linear in the number of nodes in
the network. Ngc on the other hand could grow exponentially with the number
of nodes in the network and is therefore our principal concern. Ngc must grow
at least linearly with Nc, since every maximal clique must be generated and
checked. Ideally, Ngc would grow only linearly with Nc.

4 Results

4.1 Artificial Networks

We ran experiments on artificially generated networks using a desktop computer
with 16 GB of memory and a 2.4 GHz. processor using CentOS Linux. Our prin-
cipal goal was to determine the functional dependence of the complexity on the
size of the network, the average nodal degree, the variation in nodal degree and
the amount of correlation among the edges.

Experiment 1 examined the effect of network density on the number of max-
imal bicliques and the complexity of our algorithm. Figure 2 summarizes the
results of this experiment for 100 and 200 node networks. Within each set of
networks we varied the density between 0.05 and 0.5 for the 100 node network
(Fig. 2a) and between 0.025 and 0.25 for the 200 node network (Fig. 2b). We
recorded the number of maximal bicliques, Nc, in the network, and the algo-
rithm’s running time.

Both time and maximal bicliques increased exponentially with density and at
comparable rate. This indicates that the algorithm is not expanding many nodes
that are not producing maximal bicliques. The number of generated bicliques also
converges to a rate that is roughly the same as that of the maximal bicliques

Fig. 2. Effect of network density on complexity. Time and number of maximal bicliques
as a function of graph density for network sizes (a) N = 100 and (b) N = 200.
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Fig. 3. Effect of correlation on complexity. Time and number of maximal bicliques as
a function of Pg, the probability of an edge between nodes within a group, for network
size N = 400 and groups (a) NG = 4 and (b) NG = 8.

Fig. 4. Effect of node weight distribution on complexity. Time and number of maximal
bicliques as a function of wLo, the minimum node weight in the network, for network
sizes (a) N = 200 and (b) N = 2000. Note that as wLo increases, weight distribution
narrows and degrees of nodes becomes more uniform.

Nc, but its value is approximately N times the number of cliques expanded,
which is approximately twice Nc. This difference is due to the fact that in its
current form, when the algorithm expands a node, n, it generates a new node
corresponding to each node adjacent to n.

Experiment 2 explored the effects of correlation. We divided the nodes into
groups of equal sizes and varied the probabilities of edges between nodes in the
same group and nodes in different groups. We generated random networks with
200 and 400 nodes and in each case divided into groups of nodes of different
sizes (NG = 4, NG = 8). Pg, the probability of an edge existing between two
nodes in the same group was varied from 0.1 to 0.8, while the probability of an
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edge existing between nodes in different groups was set to a value that made the
overall density 0.2.

This simulated the situation where the network contained groups of nodes
with different properties (e.g., different types of diseases) and where the edges
between nodes in the same group were correlated. Figure 3 summarizes the
results of Experiment 2. We see overall complexities similar to those observed in
Experiment 1, and while the correlation does have some effect, we did see some
increase in the rate of maximal clique generation with the smaller sample size
(N = 200). In the larger sample size (N = 400), however, we observed in Fig. 3
an exponential increase in the number of maximal bicliques generated, with the
rate of growth increasingly sharply around Pg = 0.3 (NG = 4, Fig. 3a) and
Pg = 0.5 of 0.5 (NG = 8, Fig. 3b).

Experiment 3 examines the effect of the distribution of node weights varied
linearly between wLo and wHi. We varied wLo from a value of 1 to 50 and varied
wHi to maintain a network density of 0.2 in all cases.

We generated two sets of networks, one with 100 nodes and the other with
200. Figure 4 summarizes the results for N = 200. As the degree distributions
becomes wider, the number of maximal bicliques becomes larger, increasing by
more than a factor of 4. This effect was more pronounced in the larger network
and thus is shown here.

In summary, we found that the density of the network is the factor most seri-
ously affecting complexity and by working with smaller networks we were able to
examine denser networks without consuming an inordinate amount of computer
time and memory. It is our intent to optimize the algorithm implementation and
run it on larger problems in the near future.

4.2 Bicliques and Correlation in the HPNs

We ran our algorithm on both versions of the HPN. The pathways network
containing 807 phenotypes, 1444 pathways and 82,855 edges, with a density of
0.07 and the gene HPN containing 916 phenotypes, 10,011 genes and 55,223
edges, and a density of 0.006. In both cases, the degrees of the nodes vary
widely. However, there are hundreds of phenotypes associated with more than
200 pathways/genes. As discussed in Sect. 4.1, this gives rise to a large number
of maximal bicliques and both the runtime and memory requirements of the
algorithm rise correspondingly.

We ran an experiment in which we trimmed the network by removing all
nodes exceeding a maximum degree. Table 1 and Fig. 5a report results for the
pathways HPN, where the maximum degree varied between 100 and 200. Results
for the gene HPN follow the same trend and are only presented in Fig. 5b, for
which we varied the maximum degree between 100 and 500.

It can be seen in Table 1 that as the maximum degree increases, the fraction
of phenotype nodes retained increases from 73 % to 84 % of the total number
of phenotypes while the number of retained edges increases from 8 % to 28 %.
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Table 1. Effects of varying maximum node degree on HPN pathways network.

Maximum degree 100 125 150 175 200

# of phenotypes 589 593 633 654 676

# of edges 6,259 9,837 14,264 17,820 23,068

# of generated bicliques 96,391 498,802 2,063,365 7,075,168 26,550,050

# of expanded bicliques 5,693 12,690 28,618 63,892 180,303

# of maximum bicliques 2,001 4,944 11,705 27,728 85,481

Running time: 2.845 16.843 90.436 413.109 9,020.638

Fig. 5. Effect of maximum node degree on network complexity in pathway- and gene-
centric HPN. Time and number of maximal bicliques as a function of the networks
maximum allowed degree for (a) HPN pathway network and (b) HPN gene network.

Thus, most of the nodes have degrees less than 100 while most of the edges
are associated with nodes with degree over 200. The number of expanded and
maximal bicliques increases multiplicatively as the maximum degree increases
by a constant. This is exponential behavior.

Note that the number of expanded bicliques and the number of maximal
bicliques as seen in Table 1 grow at the same rate with the number of expanded
bicliques, with their ratio converging towards 2. This shows that the algorithm
expands only about 2 bicliques for every maximal biclique found. Thus, the
complexity of the algorithm in terms of the number of bicliques expanded is linear
in the number of maximal bicliques, but both are exponential in the number of
nodes. The algorithm’s complexity cannot decrease below linear in the number
of maximal bicliques since it generates all of them. Therefore, the algorithm’s
complexity is minimal.

The number of generated bicliques, however, increases at a higher rate than
the expanded or maximal bicliques. This is due to the implementation of the
algorithm, which in expanding bicliques considers all adjacent nodes and elimi-
nates most of the generated bicliques because they are dominated.
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The running time increases even more rapidly than the number of gener-
ated bicliques. This is most probably a consequence of Java’s Virtual Machine
Garbage Collecting technology that automatically releases memory used by the
software. As the number of objects in memory increases, in our case, the number
of bicliques, so is the time necessary to free unused memory blocks. This effect
is most evident for the case where the maximum degree is 200. Thus, to truly
reduce the complexity and make more problems tractable, even after optimizing
the implementation, we must reduce the density of the graph. This is treated in
more detail in the Conclusions section below.

5 Biomedical Insights into Genotype-Phenotype Bicliques

We performed a preliminary biomedical analysis of bicliques from the gene HPN.
Phenotypic data includes disease-specific and non-disease phenotypes, such as
body mass index and blood glucose levels.

Though comprehensive analysis of phenotypes and genes yielded over 80,000
edges, various methods can be used to filter this input in future studies. Trim-
ming nodes with degree 100 or more, for instance, eliminates many non-specific
phenotypes such as body weight and creatinine, which have been included in var-
ious GWAS studies and which may impart little useful information in elucidating
the basis for human disease. On the other hand, trimming these nodes can elim-
inate important diseases such as multiple sclerosis and coronary artery disease,
which have been extensively studied and, due in part to their complex etiologies,
have a large number of genetic and pathway associations. It may therefore be
advantageous to rely upon clinical expertise to eliminate phenotypes extraneous
to a study, or to focus studies on a predetermined subset of phenotypes and
therefore limit the number of nodes analyzed, i.e. knowledge-driven filtering.

5.1 Assessment of the Relevance of Biclique Output

For a large set of data, output can be restricted to bicliques containing a specified
number of phenotype, gene or pathway-specific nodes. For instance, we restricted
output to bicliques containing at least 40 (Table 2a) or 50 (Table 2b) genes and 2
phenotypes to generate 72 and 24 bicliques, respectively. We further trimmed the
output to bicliques containing at least one disease-specific phenotype – i.e. we
eliminated bicliques containing only non-disease phenotypes, such as gambling
and heart rate. We hypothesized that bicliques containing a large number of
genes would match phenotypes with known clinical, biological, or genetic overlap
and examined the bicliques to assess our hypothesis.

To summarize the findings, the phenotypes in each biclique were divided
into three different categories in Table 2: redundant, meaning phenotypes are
clinically equivalent or one is a subtype of another; directly correlated, meaning
phenotypes are pathologically or physiologically linked and thus expected to
occur in the same patient; or distinct phenotypes, meaning phenotypes may



150 A. Kershenbaum et al.

share underlying genetic or molecular pathways but are not expected to occur
in the same patient.

Note that in future studies, disease ontology can be used to filter these redun-
dant or directly correlated phenotypes. In the present study, we chose not to fil-
ter these phenotypes in order to assess the validity of the algorithm in matching
these phenotypes. As such, there are several noted redundancies seen between
matched phenotypes in these analyses.

More interesting for clinical research are connections found between the dis-
tinct phenotypes in Table 2. Most of these phenotypes do in fact have a bio-
chemical, pathological or clinical correlation. For instance, Crohn’s disease and
Ulcerative Colitis are clinical subtypes of inflammatory bowel disease but have
overlapping symptomatology and are often misdiagnosed; genetic markers may
have some diagnostic utility in distinguishing these diseases, and our algorithm
could be useful in identifying markers that are shared versus distinct [5].

Beyond the ability of the algorithm to replicate known clinical and biological
correlation, the algorithm provides an efficient tool for investigating candidate
genes and pathways that underlie phenotypes with shared etiologies. For exam-
ple, the algorithm can be used to identify candidate genes underlying etiological
overlaps between multiple sclerosis (MS) and type I diabetes (TIDM), which
tend to co-occur in families, though their genetic makeup (HLA patterns) are
thought to be mutually exclusive, with some variants being a risk factor for one
disease and protective against the other [3,13]. As shown in Table 3, our algo-
rithm matched MS and TIDM to several genes already known to influence the
risk of both diseases, including HLA DRB1 and HLA DRQ1. Our algorithm also
matched the diseases with nine other HLA loci that could be used as candidates
for future analysis of variants.

5.2 Assessment of a Disease-Limited Data Set and Hypothesis
Generation

In addition to TIDM and MS, there is a high degree of connectivity between
various types of autoimmune disease, as can be seen in Table 2. The development
of autoimmune disease is genetically and environmentally complex and much
is yet unknown. We can use bicliques and past research to draw hypotheses
regarding candidate genes and pathways involved in these diseases.

For instance, recent research has shown that abnormal dopamine levels are
observed within brain cells of mouse models and within tissues of human patients
with autoimmune disease [21]. To identify candidate genes involved in this
dopamine dysregulation, it may be useful to examine bicliques that contain
autoimmune diseases as well as psychiatric disorders, which are largely driven
by dopamine dysregulation.

Examination of several bicliques in Table 3 reveals a gene called NOTCH4
in several bicliques containing autoimmune disease as well as schizophrenia.
As reflected in additional bicliques that are not shown, GWAS has implicated
NOTCH4 in autoimmune diseases including multiple sclerosis, asthma, systemic
sclerosis, lupus, ulcerative colitis and rheumatoid arthritis. In various studies,
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Table 2. Clinical assessment of phenotypes pairs matched by bicliques. Phenotypes
matched in bicliques containing two phenotypes and a large number of genes: a min-
imum of fifty (a) or forty (b). The phenotypes are divided into categories based on
clinical characteristics. Redundancy indicates that the phenotype pair is the same clin-
ical entity or that one phenotype is a subtype of the other. Direct correlation indicates
that the phenotypes are patho-physiologically related and therefore expected to occur
in the same patients. Distinct phenotypes indicates separate clinical entities that may
be biologically or genetically associated and have been paired in bicliques according
to the algorithm. Note: IBD stands for inflammatory bowel disease and MS stands for
multiple sclerosis.

(a) Bicliques,containing 50 or more genes and 2 phenotypes.

Redundancy (4) Direct correlation (3) Distinct phenotypes (4)

IBD - Crohn’s disease Osteoporosis - Bone
density

ADD/ADHD - Gambling

AIDS - HIV-1 Asthma - QT interval Schizophrenia - Gambling

Coronary dx - Restenosis Sudden death -
Resting HR

Breast neoplasms - Breast size

IBD - Urcerative colitis Crohn’s - Ulcerative colitis

(b) Bicliques containing 40 or more genes and 2 phenotypes.

Redundancy (7) Direct correlation (7) Distinct phenotypes (11)

IBD - Crohn’s disease Osteoporosis - Bone
density

ADD/ADHD - Gambling

AIDS - HIV-1 Asthma - Respiratory
function

Schizophrenia - Gambling

Coronary dx - Restenosis Asthma - Heart rate Breast neoplasms - Breast size

IBD - Ulcerative colitis Asthma - QT interval Crohn’s dx - Ulcerative colitis

Cardiac hypertrophy -
Cardiomegaly

Sudden death -
Resting heart rate

Alzheimer’s - IgG glycosylation

Pancreas cancer - Pancreas
neoplasms

Dialysis mortality -
Type 2 Diabetes

Alzheimer’s - lipids

Biliary cirrhosis - Primary
BC

Prostate cancer -
Erectile
dysfunction

Type 1 Diabetes - MS

Behcet Syndrome - MS

Crohn’s disease - MS

Lupus - MS

IBD - MS

NOTCH4 has also been established as a candidate gene for schizophrenia and
bipolar disorder [10], and is thought to influence the age of onset of disease as
well as response to antipsychotic treatment [2]. Drawing on this previous knowl-
edge and the results of our data analysis, we hypothesize that NOTCH4 may
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Table 3. Example maximal bicliques containing two phenotypes and corresponding
genes. Note: maximal bicliques contain variable numbers of phenotypes and genes.

Left nodes
(phenotypes)

Right nodes (genes)

Multiple sclerosis type
I diabetes

HLA-C BAT1 PPIAP9 ZBTB12

HLA-S BTNL2 RPL3P2 RPL32P23

HLA-DQA2 MICA TAP2 FCRL3

HLA-DRB1 NOTCH4 PRM3 SLC44A4

HLA-DRB5 TNXB TNP2 CFB

HLA-DRA CLEC16A BAT3 TYK2

HLA-DRB9 HNRNPA1P2 CLECL1 C2

HLA-DOB IL2RA KIAA0350 C16orf75

HLA-DQB2 BACH2 ZFP36L1 IL7R

HLA-DMB HCG26 BAT2 MICB

Rheumatoid arthritis
schizophrenia

BDP1P GUSBP1 HLA-DRB5 HLA-DRB9

CDH12 HLA-DQA1 LASS6 NOTCH4

DKFZp667F0711 PRKCQ SALL3

Multiple sclerosis lupus BTNL2 RNF39 ZBTB12 MTCO3P1

DDR1 TNXB WASF5P PVT1

DHFRP2 HLA-DRA CBLN2 HLA-DRB1

HLA-B BACH2 HLA-S HLA-DRB9

HLA-X HCG18 RPS2P6 FENDRR

IER3 HLA-DOB FOXF1 HCG26

MICA HLA-L IRF8 TCF19

MICB HLA-DQB2 CLEC16A TNFAIP3

NOTCH4 EHMT2 HLA-DQA2 TRIM26

PSORS1C1 BAT2 HLA-DQB1 AIF1

BAT3 CFB

also play a role in dopaminergic pathway dysregulation underlying autoimmune
etiology. Investigation of genetic and pathway overlap between distinct diseases
can be used in biomedical studies to develop such hypotheses.

6 Conclusions and Future Work

We found that the complexity of our algorithm is the product of the number of
nodes and the number of generated bicliques. As hypothesized, network density
is the major determinant of computational complexity. Node degree distribution
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and correlation among edges are secondary factors, except when resulting in a
significant number of nodes of high degree.

To address complexity in large data sets, it may seem beneficial to trim the
network by removing nodes of high degree. However, it is important to assess
the significance of these nodes in the context of the investigation, in our case
the biological and genetic underpinnings of disease. It may also be beneficial
to partition the network into distinct parts; for instance, to analyze one set of
diseases and their pathway and gene associations.

In phenotype-pathway analysis, we found that few of the bicliques contained
a large number of phenotypes and pathways. Many of the bicliques contained a
small number of phenotypes links to a large number of pathways, or vice versa.
Many bicliques included redundancies between similar phenotypes and pathways,
as expected, and such nodes could be eliminated or combined to reduce the size
and complexity of the problem, if clinically or scientifically appropriate.

In the phenotype-gene analysis, the algorithm linked many phenotypes that
were redundant, closely related, or have been associated in clinical or biological
studies. The algorithm further reveals genes that may underlie these associations
and also provides a tool for genotype-phenotype hypothesis generation.

As we apply the algorithm to additional investigations in biology and medi-
cine, we will evaluate the techniques that can be guided by biological properties.
The maximal biclique problem described above was defined on an unweighted
graph. The problem can be extended naturally to one where an edge is given an
associated weight, indicating the strength of the relationship between nodes or
where a node is given a weight based on its biological significance.

Potentially, these insights can be used to enhance our understanding of the
biochemical basis for disease and to identify useful targets for drug repositioning
between diseases. Besides phenotype-gene interactions, the algorithm can be used
to investigate single nucleotide polymorphisms (SNPs), as well as environmental
and other risk factors associated with disease.
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