Enhanced Multiobjective Population-Based
Incremental Learning with Applications in Risk
Treaty Optimization

Omar Andres Carmona Cortes! ™) and Andrew Rau-Chaplin?

! Informatics Department, Instituto Federal Do Maranh#o, Sdo Luis, MA, Brazil
omar@ifma.edu.br
2 Risk Analytics Lab, Dalhousie University, Halifax, NS, Canada
arc@cs.dal.ca

Abstract. The purpose of this paper is to revisit the Multiobjective
Population-Based Incremental Learning method and show how its perfor-
mance can be improved in the context of a real-world financial optimization
problem. The proposed enhancements lead to both better performance
and improvements in the quality of solutions. Its performance was assessed
in terms of runtime and speedup when parallelized. Also, metrics such as
the average number of solutions, the average hypervolume, and coverage
have been used in order to compare the Pareto frontiers obtained by both
the original and enhanced methods. Results indicated that the proposed
method is 22.1 % faster, present more solutions in the average (better defin-
ing the Pareto frontier) and often generates solutions having larger hyper-
volumes. The enhanced method achieves a speedup of 15.7 on 16 cores of a
dual socket Intel multi-core machine when solving a Reinsurance Contract
Optimization problem involving 15 Layers or sub-contracts.

Keywords: PBIL - Multiobjective optimization - Risk - Reinsurance

1 Introduction

Performance plays an important role in search algorithms because the more
complex the problem, the harder discovering solutions in feasible time. This
assertion is true especially in the industry where timely answers are required
regardless the complexity of the search space. Thus, evolutionary algorithms,
also known as search heuristics, can be a highly effective choice.

There are many heuristics search methods that can be applied to solve real-
world problems, including Particle Swarm Optimization (PSO) [1], Differential
Evolution (DE) [2], Genetic Algorithms (GA) [3], Evolution Strategies (ES) [4]
and Population-Based Incremental Learning (PBIL) [5]. Whereas most heuris-
tics search methods apply their genetic operations on a population of individual
solutions, PBIL executes its operators in a special data structure called prob-
ability matrix that is responsible for creating the population in each iteration.

© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part I, LNCS 9597, pp. 3-18, 2016.
DOI: 10.1007/978-3-319-31204-0-1

4 0.A.C. Cortes and A. Rau-Chaplin

Doing so, PBIL tends to be faster than other heuristic search methods, especially
in discrete search spaces.

The first version of PBIL was introduced in 1994 in [5]. At that time, the
probability matrix was only a vector where each position represented the prob-
ability of having a 0 or 1. The closer the probability to 1, the bigger the chance
of creating this gene, while the opposite meant the chance of having a 0. Since,
extensions have been proposed for continuous and base-n represented search
spaces [6-8]. A version for a discrete space in the range [0, 1] was proposed
in [9] and compared against DE and PSO in [10], showing that PBIL is often a
very attractive heuristic search method. In [11], a multi-objective-based version
of PBIL, called MOPBIL, was designed and applied to problems in reinsurance
analytics.

An important problem in Reinsurance analytics is the Reinsurance Contract
Optimization problem, where given the structure of a multi-layered reinsurance
contract, we need to discover the best trade-offs between expected return and risk
for the primary insurer. Such optimizations are key to developing the reinsurance
risk hedging strategies that are so important in financial risk management [12].

In this paper we propose E-MOPBIL (Enhanced MOPBIL) which contains
important enhancements to MOPBIL and apply it to the Reinsurance Contract
Optimization problem in order to achieve faster and higher quality solutions.
The Reinsurance Contract Optimization problem consists of, given a reinsurance
contract formed by a fixed number of layers (subcontracts) and a simulated set
of expected loss distributions (one per layer), plus a model of reinsurance costs,
identifying optimal combinations of placements (i.e. percentage shares) in order
to maximize the expected return while the associated risk value is minimized [11].

The remainder of this paper is organized as follows: Sect. 2 describes the risk
optimization problem being studied in this work; Sect.3 thoroughly explains
the MOPBIL algorithm and the enhanced E-MOPBIL algorithm; Sect. 4 shows
the comparative experiments; finally, Sect. 5 presents the conclusions and future
work.

2 The RCO Problem

The reinsurance contract optimization problem is a particular kind of treaty
optimization problem, which consists of a fixed number of contractual layers and
a simulated set of expected loss distributions (one per layer), plus a model of
reinsurance market costs [9]. Taking this into consideration, the task is to identify
optimal combinations of shares (also called placements) in order to build a Pareto
frontier that quantifies the best available trade-offs between expected return
and risk [13]. In other words, insurance companies aim hedge their risk against
potentially large claims, or losses [14]. Having these trade-offs the insurance
companies are able to offer them to the reinsurance market.

The final purpose is to maximize the amount of expected return ($) received
from the reinsurance company in case of massive claims and maximize the risk
hedge to the reinsurance company at the same time. Doing so, the insurance
company minimize the loss faced per year due to natural catastrophes.

Enhanced Multiobjective Population-Based Incremental Learning 5

In this context, (1) represents the problem in terms of optimization, where
VaR is a risk metric, R is a function in term of placements (7) and E is the
Expected Value!. For further details about the problems refer to [9] and [14].

mazimize fi1(x) = VaR,(R(m)) (1)
maximize fo(x) = E[R(7)]

3 MOPBIL

In this section we thoroughly describe the algorithm MOPBIL which is presented
in Algorithm 1. The main inputs of the algorithm are the following parameters:
number of iterations (Ng), number of best individuals and the slice size. The
number of iterations is common in evolutionary algorithms, being one of the stop
criteria can be adopted. The second one regards to the number of individuals
who comprises the best population, which will be used to mutate the probability
matrix. The last parameter is important to define the discretization of the search
space. The smaller the slice size, the bigger the search space.

The algorithm starts estimating both the minimum and the maximum of the
mean (expected return) in order to determine the interval of each slab. Actually,
this is done by dividing the search space. One of the consequences of doing so is
the possibility of parallelized the algorithm; however, in the original version the
number of iterations is maintained; therefore, it is difficult to obtain speedup. On
the other hand, the main idea behind this is to enhance the quality of solutions.

Then, when the foreach loop starts each slab produces a new population
according to the probability matrix. The process is similar to the roulette wheel
selection from genetic algorithms which is in essence a Monte Carlo simulation.
For example, if the valid shares belong to the set {0, 0.1, 0.2, ..., 1.0}, a column
will consist of 11 equal probabilities, thus if a contract is formed by 7 layers
the probability matrix will be a matrix consisting of 11 rows and 7 columns
with uniform probability. Each position in the matrix is called bucket and will
be updated later in the algorithm in the mutation part of the algorithm. The
number of buckets varies according to the slice size.

Afterward, new individuals are created according to the probability matrix
and evaluated. The fitness is obtained firstly evaluating the expected return.
If the expected return is outside from its boundaries [min, max] the risk is
automatically set to zero. Given the evaluations, the new population is merged
with the archive in order to identify all non-dominated solutions, rank and cluster
them. All non-dominated individuals within the valid interval are considered
valid and raked as 1. Then, valid dominated solutions are ranked as 2. Finally,
individuals outside the limits are ranked ranging from 3 to pop_size according
to the distance from the valid interval. The clustering is done using the current

! In probability theory, the expected value, usually denoted by E[X], refers to the
value of a random variable X that we would “expect” to find out if we could repeat
the random variable process an infinite number of times and take the average of the
values obtained.

6 0.A.C. Cortes and A. Rau-Chaplin

Input: Ng = number of generations; npest = number of best individuals;
slice_size=discretization;

Estimate the min and the max of the mean;

Divide the interval [min, max] into n slabs;

foreach slab do

while (N¢ not reached) do

Create the population using probability matrix;

Use the mean to determine the risk value;

if (mean of one individual is outside the chunk) then
‘ risk_value = 0;

else
| risk_value = compute(mean)

end

Merge archive and the new population; Determine the non-dominated
set;

Cluster the non-dominated set into k clusters;
Select k representative individuals;

Select worst individuals;

Insert the k individuals into the best population;
Identify the best and worst buckets;

Update and mutate the probability matrix;

end

end

Combine the results of each slab;
Determine the Pareto frontier;

Algorithm 1. MOPBIL (Sketch)

Pareto frontier. If more than one individual belongs to the same cluster then the
best one is selected to the best,, sub-population based on the best risk, i.e., that
one which hedge more risk goes to the best,, sub-population; however, if there
are not enough non-dominated solutions then the best,, set is filled up with valid
dominated solutions (rank = 2) or with the best ranked invalid solutions in the
worst case scenario.

Having identified the best sub-population it is necessary to determine the
best and worse buckets from each individual in order to mutate the probability
matrix. The mutation is done in two steps. Firstly, a probability multiplier is
computed based on both best and worst buckets according to the Algorithm 2,
where roughly speaking if a best bucket coincides with a worst buckets the
multiplier increases at a lower rate; otherwise, the multiplier might be larger
than 1.

After the first step the probability matrix has to be normalized because the
sum of a column can be either larger or lower than 1. Secondly, the probability
matrix is mutated according to the Algorithm 3. Finally, the matrix has to be
normalized again.

Enhanced Multiobjective Population-Based Incremental Learning 7

for (n=1 to rows in prob_matriz) do

prob_multiplier < 0 ;

for (j = 1 to length(best_bucktes)) do

if (worst_buckets == best_buckets;) then

prob_multiplier «— prob.multiplier + (1/length(best.buckets)) *
((1-n.Jearn.rate) + (4 * n.learn.rate)/n.buckets * abs(abs(n -
best.buckets|[j]) - n.buckets/2))

else

prob.multiplier < prob.multiplier + (1/length(best.buckets)) *
((1-n.learn.rate2) + (4 * n.learn.rate2)/n.buckets * abs(abs(n -
best.buckets[j]) - n.buckets/2))

end

end

prob.matrix[n,j] < prob.matrix[n,i]*prob.multiplier
end
Algorithm 2. Computing probability multiplier

for j = 1 to n.par do

fori = 1to I do

mut.dir « 0.0;

if random(0,1) < Mg then
if random(0,1) < 0.5 then
‘ mut.dir « 1.0;

end
pij — pij (1 — mut.shift) + mut.dir « mut.shift
end
end
end

Algorithm 3. Mutation

The mutation process showed in the Algorithms2 and 3 can be represented
by (2), where LF;j is the i'" learning factor, as described in [6], for the k" best
result for the j* variable.

q
LF;;.
Py =Y i (2)
k=1 q

3.1 Ouwur Proposal: EEMOPBIL

Our first modification is to remove slabs. As a result, we do not have to com-
pute boundaries which in fact is not time-consuming; however, now we do not
have to deal with invalid points, i.e., it is not necessary to rank them which
demands to compute the distance between points and boundaries. Moreover,
using boundaries as we increase the number of slabs we also increase the prob-
ability of creating invalid points affecting the quality of solutions in a parallel
execution. The second modification regards to creating the best sub-population

8 0.A.C. Cortes and A. Rau-Chaplin

(best,,). Tests have demonstrated that the Pareto frontier formed by merging the
new population and the archive on each iteration is enough to build the best,,
sub-population. Thirdly, we do not compute the worse buckets because it might
reduce the increment on the probability of a promise bucket if they are the same;
therefore, we use the Algorithm 4 for computing the probability multiplier. So,
the final version is presented in the Algorithm 5.

for (n=1 to rows in prob_matriz) do
prob_multiplier < 0 ;
for (j = 1 to length(best_bucktes)) do
prob_multiplier <« prob_multiplier + (1/length(best.buckets)) *
((1-n.learn.rate2) + (4 * n.learn.rate2)/n.buckets * abs(abs(n -
best.buckets[j]) - n.buckets/2))
end

prob.matrix[n,j] < prob.matrix[n,i]*prob_multiplier
end
Algorithm 4. Computing new probability multiplier

Input: Ng = number of generations; npest = number of best individuals;
while (N¢ not reached) do

Create the population using probability matrix;

Evaluate objective function on each member of the population;
Merge archive and the new population;

Determine the non-dominated set;

Cluster the non-dominated set into k clusters;

Select k representative individuals;

Insert the k individuals into the best population;

Update and mutate the probability matrix;

end
Determine the final Pareto frontier;

Algorithm 5. E-MOPBIL (Sketch based on our proposal)

As previously stated, MOPIBIL was designed for getting the best quality in
terms of solutions dividing the search space into slabs. Doing so, the algorithm
does not lead to an improvement regarding speedup when executed in more
than one core. In our approach, we parallelized the iteration loop as illustrated
in Algorithm 6, which means that the number of iterations is divided between
processor units, thus the process is similar to that one presented in serial E-
MOPBIL (Algorithm 5).

In order to make a fair comparison against our proposal of parallelizing the
code, we also divided the number of iterations between slabs. Thus, the same
number of calls to the evaluation function is done in both algorithms.

Enhanced Multiobjective Population-Based Incremental Learning 9

Input: Ng = number of generations; npest = number of best individuals;
foreach (Ng/#n_threads) do in parallel do

Create the population using probability matrix;

Evaluate objective function on each member of the population;
Merge archive and the new population;

Determine the non-dominated set;

Cluster the non-dominated set into k clusters;

Select k representative individuals;

Insert the k individuals into the best population;

Identify the best buckets;

Update and mutate the probability matrix;

end
Combine the results of each chunk of iterations;
Determine the Pareto frontier;

Algorithm 6. Parallel E-MOPBIL

4 Computational Experiments

4.1 Setup and Metrics

All tests were conducted using R version 3.2.1 on a Red Hat Linux 64-bit Oper-
ating in an Intel Xeon comprising of two Xeon processors E5-2650 running at
2.0 Ghz with 8 cores and hyper threading and 256 GB of memory. Considering
250 and 500 with a population size equals to 50. The following parameters were
used:

— Population size = 50;

— Slice size = 0.05;

— Number of generations = 250, 500
— Best population = 3;

— learn.rate = 0.1,

— neg.learn.rate = 0.075,

— mut.prob = 0.02,

— mut.shift = 0.05,

In order to compare the algorithms we used the following metrics: number of
solutions, hypervolume, coverage and generational distance. In the first one, the
larger the number of solution the better the results tends to be; however, this
metric is not enough to compare Pareto frontiers. All averages are calculated in
30 trials, allowing us to make inferences based on t-test.

The hypervolume depicts the volume of the dominated part of the curve,
therefore, the bigger the hypervolume, the better the Pareto frontier might be.
Mathematically, the hypervolume can be computed by (3).

QI
hv = volume(U v;) (3)

i=1

10 0O.A.C. Cortes and A. Rau-Chaplin

The coverage represents the percentage of solutions which dominate at least
one of the other solutions. Roughly speaking, C(A, B) is the percentage of the
solutions in B that are dominated by at least 1 solution in A [15], therefore, if
C(A, B) = 1 then all solutions in A dominate B, and C(A, B) = 0 means the
opposite. The coverage can be calculates as shown in (4).

C(AB)ZHbEBBaEA'aij @)
|B|

In terms of parallel computing the performance was evaluated using speedup,
particularly we used the weak speedup depicted in (5) and suggested in [16],
where T is the time of the serial version and 7}, is the time for running the code
in p processor units. We used this kind of speedup because T} is the time for
running the code in 1 thread, therefore, we do not need to guarantee that T} is

obtained using the best possible implementation.

T
Speedup = ?1 (5)

p

4.2 Results

Figure 1 shows the final Pareto frontier obtained by E-MOPBIL and MOPBIL
using 250 and 500 iterations in a 7-layered problem, in which the closer to zero
the better the solutions. Visually, E-MOPBIL presents better results in both
configurations which will be confirmed by metrics in Tables 1 and 2.

Table 1 shows metrics for 250 iterations and 7 layers in which we can see
that the new algorithm is faster and presents better number of solutions, hyper-
volume and final number of solutions in the final Pareto frontier. In fact, the
E-MOPBIL is 22.8 % faster than the original algorithm. A two-tailed t-test with
an alpha = 0.05 of significance demonstrated that the differences are signifi-
cant in the metrics number of solutions and time. Moreover, the coverage metric
indicates that E-MOPBIL dominates 83 % of solutions from original MOPBIL
against 3.5 % in the opposite direction.

Results regarding 500 iterations and 7 layers are shown in Table 2 where we
can see that E-MOPBIL achieved better results in all metrics. Actually, the new
algorithm is 21.5% faster than the original MOPBIL, reaching better results
in all metrics as demonstrated by the two-tailed t-test with an alpha = 0.05 of
significance. The coverage indicates that E-MOPBIL dominates 83 % of solutions
from the original algorithm instead of 1.4 % in the way around.

Figure 2 shows the final Pareto frontier for 250 and 500 iterations solving
a 15-layered problem. Clearly, our proposal overcomes the original MOPBIL in
both configurations. Tables 3 and 4 confirm this assertion.

A two-tailed t-test with an alpha = 0.05 of significance demonstrates that
the differences between both algorithms are significant in the metrics number of
solutions and time in both configurations. Actually, using 15 layers our proposal
is 11.5 % faster and discover about twice the number of solutions per trial. In
terms of coverage and 250 iterations, E-MOPBIL dominates 90.4 % of solutions

Enhanced Multiobjective Population-Based Incremental Learning

-29000000

\.

-24000000 -19000000

Risk(5)

Expected Return (S)

#E-MOPBIL o MOPBIL

-15000000

TS

Risk(5)

Expected Return ($)

@ E-MOPBIL » MOPBIL

-14000000

-14000000

11

-1.35E+09
-9000000
-1.4E+09
-1.45E+09
-15E+09
-155E+09

-1.6E+09

-1.65E+09

-1.35E+09
-14E+09
-145E+09
-1.5E+09
-1.55E+09
-1.6E+09

-1.65E+09

Fig. 1. Comparison between E-MOPBIL and MOPBIL for 250 and 500 iterations with

7 layers

Table 1. Metrics for 250 iterations and 7 layers

MOPBIL

#NS HV Time (s) | Final #NS
Avg|63.70 |1.66E+415 |201.45 [114
Std |6.29 1.56E+14 2.43 -
E-MOPBIL

#NS |HV Time (s)|Final #NS
Avg/119.77/1.79E+15/162.53 218
Std 20.24 |2.66E+14 |2.63 -
t -14.48 |-2.19 59.53 |-

from MOPBIL, while in the opposite direction MOPBIL does not domain any
solution from our proposal. Considering 500 iterations, E-MOPBIL dominates

87.2% of solutions against 2.2 % from MOPBIL.

12

0.A.C. Cortes and A. Rau-Chaplin

Table 2. Metrics for 500 iterations and 7 layers

MOPBIL
#NS [HV Time (s)|Final #NS
Avg|75.63 |1.74E+15 406.96 |131
Std [5.33 1.13E+14 2.84 -
E-MOPBIL
#NS |HV Time (s)|Final #NS
Avg|/122.6 |1.90E+15/325.85 (213
Std [16.31 |2.03E+14 |6.55 -
t -14.35-3.96 62.20 -
-1.3E409
-36000000 -31000000 -26000000 -21000000 -16000000 -11000000
-1.35E409
| A J
-1.4E409
& -1.45E+00
g 1.56+09
S 1.55€409
-1.6E+00
1.65€+09
Expected Return (S)
© E-MOPBIL ¢ MOPBIL
-1.38:00
-35000000 -30000000 -25000000 -20000000 -15000000 -10000000
-1.356+09
ere
-1.4E409
= -1.45E+09
= -15E+09
°\ -1.55E+09
N L
-1.656+00

Expected Return ($)

»E-MOPBIL » MOPBIL

Fig. 2. Comparison between E-MOPBIL and MOPBIL for 250 and 500 iterations with
15 layers

4.3 Parallel Experiments

As previously stated, the original MOPBIL does not properly divided the tasks
among workers, which means that all processor elements do the same amount
of job. For instance, if we start an optimization using 250 iterations and 4 slabs

Enhanced Multiobjective Population-Based Incremental Learning

13

Table 3. Metrics for 250 iterations and 15 layers

MOPBIL

#NS |HV Time (s)|Final #NS
Avg|48.30 |2.039E+15(408.96 |74
Std |5.00 2.60E+14 |2.39 -
E-MOPBIL

#NS |HV Time (s)|Final #NS
Avg|100.67|2.12E+15|366.64 178
Std [13.76 |2.58E+414 3.15 -
t -19.59|-1.29 58.61 |-

Table 4. Metrics for 500 iterations and 15 layers

MOPBIL

#NS |HV Time (s) | Final #NS
Avg|52.87 |2.23E+15/823.30 |87
Std |5.53 |2.50E4-14|7.58 -
E-MOPBIL

#NS |HV Time (s) | Final #NS
Avg|100.3 2.07E+15|736.47 (198
Std |19.47 |3.67E+14/26.37 -
t -12.83/1.93 17.34 |-

(consequently 4 threads) the time will be in the average the same if we execute
an optimization with the same number of iterations but using only 1 slab (1
thread). Experiments have demonstrated that time remains about 200 seconds
on each trial regardless the number of slabs for 7 layers and 408 seconds for 15
layers, using 250 iterations in both cases.

The E-MOPBIL divides the number of iterations between threads. Thus, if
we run an optimization with 500 iterations and 4 threads, each one will execute
125 iterations. In this context, Fig. 3 shows the speedup reached as we increase
the thread count up to 16 threads in which we can see the reached speedup is
similar up to 4 threads and from this point on the speedup is better using 500
iterations.

Figure 4 illustrates the speedup reached by the experiment running 250 and
500 iterations in a 15-layered problem, where we can observe that the perfor-
mance is similar until about 8 threads, after that using 500 iterations tends to
present better speedups.

Figure 5 presents the Pareto frontier for 250 and 500 iterations as we increase
the thread count using 7 layers. In this case, we can observe a smooth differ-
ence in some parts of the Pareto frontier when 1, 2 and 16 threads are used.

14 0O.A.C. Cortes and A. Rau-Chaplin

[
o

9 e
8
7
Z s
n
S
o
o 2
v
3
2
1
0
2T ar 8T 16T
Thread Count
e 250 Tt e 500 it

Fig. 3. Speedup achieved by E-MOPBIL for 250 and 500 iterations as we increase the
thread count with 7 layers

=
(=]

9
8
7
L6
]
T 5
8
2 4
3
2
1
0
27T a7 8T 16T
Thread Count
s 250 [t e 500 it

Fig. 4. Speedup achieved by E-MOPBIL for 250 and 500 iterations as we increase the
thread count with 15 layers

This difference is expected because we divided the number of iterations between
processor units. The coverage metric for 250 iterations and 7 layers indicates
that using 1 thread it dominates 51.8 % from the Pareto frontier obtained by 16
threads, and 16.7% on the contrary. On the other hand, the difference is not
meaningful because the variation between these Pareto frontiers, computed by
generational distance, is only 0.0006421748.

In order to make a fairer comparison between MOPBIL and E-MOPBIL, we
divided the iterations that each slab can do based on the number of threads.
Doing so, both algorithms MOPBIL and E-MOPBIL execute the same number
of iterations; consequently, they perform the same number of calls to evaluation
function. Figures 6 and 7 show the speedup reached by MOPBIL using 7 and 15
layers, respectively, where we can observe that dividing the number of iterations
on each slab by the number of processor units almost leads to the ideal speedup.

Even though dividing the number of iteration from MOPBIL into slabs pro-
duces better speedups than E-MOPBIL, the quality of the solutions is affected

Enhanced Multiobjective Population-Based Incremental Learning 15

-29000000 -24000000 -19000000 -14000000 -9000000

T —

-1.45E+08

-1.5E+09

Risk(5)

-155E+09
-1.6E+09

-1.65E+09
Expected Return (S)

oTl T2 T4 o T8 oTl6

-1.35E+09
-29000000 -24000000 -19000000 -14000000 -9000000

-1.4E+09
“onee

-1.45E+09

-15E+09

Risk(5)

-155E+09
-1.6E+09

-1.65E+09
Expected Return (S)

oTl oT2 T4 4T8 oTl6

Fig. 5. Pareto frontier for 250 and 500 iterations as we the thread counting with 7

layers
17

15
13
1

-1 2T 4T 8T 16T

e 250 it e 500 T

Fig. 6. Speedup achieved by MOPBIL for 250 and 500 iterations as we increase the
thread count with 15 layers

as depicted in Fig.8 in which we compare the Pareto frontier of 7 layers, 250
iterations, and 2 threads. In fact, the coverage indicates that E-MOPBIL domi-

16 0.A.C. Cortes and A. Rau-Chaplin

17
15
13
11

-1 27 47 8T 167

s 250 1t e 500 T

Fig. 7. Speedup achieved by MOPBIL for 250 and 500 iterations as we increase the
thread count with 15 layers

-1.35E+09

-29000000 -24000000 -19000000 -14000000 -9000000
-14E+09
-145E+09

-15E+09

Risk (3)

-1.55E+09
\’ -1.6E+09

-1.65E+09
Expected Return ($)

» E-MOPBIL « MOPBIL

Fig. 8. Comparison against Pareto frontiers using 2 threads, 7 layers, and 250 iterations

nates 92.3 % of solutions from MOPBIL, and that MOPBIL does not dominate
any solution from E-MOPBIL.

Although the number of iterations is smaller as we increase the number of
threads, a difference still occurring using 16 thread and 500 iterations in a 15-
layered problem as illustrated in Fig.9. Regarding coverage, E-MOPBIL dom-
inates 88.8% of solutions, while MOBPBIL dominates only 0.6 % of solutions.
In other words, the Pareto frontier of E-MOPBIL overcomes that one from the
original algorithm in this configuration as well.

Table 5 shows metrics for the comparison between both algorithms using 16
threads, 500 iterations and 15 layers. The results validate that even though
this slightly modified version of MOPBIL is faster in terms of execution time,
E-MOPBIL produces more solutions, better hypervolume, and consequently a
better Pareto frontier.

Enhanced Multiobjective Population-Based Incremental Learning 17

-1.3E+09
-35000000 -30000000 -25000000 -20000000 -15000000 -10000000
-1.35E+09
]
®

-1.4E+09

-1.45E+09

Risk(5)

-1.5E+09

%2 -1.55E+09
% Qe -16E:00

-1.65E+09
Expected Return (S)

#E-MOPBIL ¢ MOPBIL
Fig. 9. Comparison against Pareto frontiers using 16 threads, 15 layers, and 500 iter-
ations

Table 5. Metrics for 500 iterations, 15 layers, and 16 threads

MOPBIL
#NS |HV Time (s) | Final #NS
Avg|29.43 |1.61E+15 |52.32 |51

Std [3.90 |2.85E+14 0.95 -
E-MOPBIL
#NS |HV Time (s)|Final #NS
Avg93.93 2.62E+15|78.97 220

Std |8.46 |2.78E+14 [3.83 -
t -37.90|13.86 -36.99 |-

5 Conclusions

This paper presented the Enhanced MOPBIL method, E-MOPBIL, and showed
how it achieves better results than the original method concerning both per-
formance and quality of solution. E-MOPBIL is up to 21.5% faster than the
original method when run sequentially using a single thread.

Furthermore, MOPBIL did not exhibit any speedup when run in a multicore
setting due to its structure and how it executed iterations over distinct segments
(slabs) of the parameter space. In E-MOPBIL the user has more flexibility in that
they can control how iterations are executed and trade-off small quality losses for
up to linear speed-up. This feature is attractive in many settings where timely
results are critical.

Acknowledgment. The authors would like to thank CNPq (Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico) and IFMA (Instituto Federal de Educacao,
Ciéncia e Tecnologia do Maranh&o) for funding this research.

18 0O.A.C. Cortes and A. Rau-Chaplin
References
1. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural

10.

11.

12.

13.

14.

15.

16.

Netw. 4, 1942-1948 (1995)

. Storn, R., Price, K.: Differential evolution: A simple and efficient adaptive scheme

for global optimization over continuous spaces (1995)
Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs. 3rd
edn (1999)

. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.

Evol. Comput. 3(2), 82-102 (1999)

Baluja, S.: Population based incremental learning (1994)

Servais, M., de Jager, G., Greene, J.R.: Function optimisation using multiple-
base population based incremental learning. In: The Eighth Annual South African
Workshop on Pattern Recognition, Rhodes University (1997)

Yuan, B., Gallagher, M.: Playing in continuous spaces: Some analysis and extension
of population-based incremental learning. IEEE Congr. Evol. Comput. IEEE 17,
443-450 (2003)

. Bureerat, S.: Improved population-based incremental learning in continuous spaces.

In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing
in Industrial Applications. AISC, vol. 96, pp. 77-86. Springer, Heidelberg (2011)
Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Cook, I., Gaiser-Porter, J.: Efficient
optimization of reinsurance contracts using discretized PBIL. In: The Third Inter-
national Conference on Data Analytics, pp. 18-24 (2013)

Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Gaiser-Porter, J.: On PBIL, DE
and PSO for optimizationof reinsurance contracts. In: Esparcia-Alcdzar, A.IL,
Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 227-238. Springer,
Heidelberg (2014)

Brown, L., Beria, A.A., Cortes, O., Rau-Chaplin, A., Wilson, D., Burke, N., Gaiser-
Porter, J.: Parallel MO-PBIL: Computing pareto optimal frontiers efficiently with
applications in reinsurance analytics. In: 2014 International Conference on High
Performance Computing Simulation (HPCS), pp. 766-775, July 2014

Wang, H., Cortes, O., Rau-Chaplin, A.: Dynamic optimization of multi-layered
reinsurance treaties. In: The 30th ACM/SIGApp. Symposium On Applied Com-
puting (2015)

Cortes, O., Rau-Chaplin, A., do Prado, P.F.: On VEPSO and VEDE for solving a
treaty optimization problem. In: IEEE International Conference on Systems, Man
and Cybernetics (SMC), pp. 2427-2432, October 2014

Cai, J., Tan, K.S., Weng, C., Zhang, Y.: Optimal reinsurance under VaR and CTE
risk measures. Insurance: Mathematics and Economics, pp. 185-196 (2008)
Zhang, Q.H.: Moea/d: A multiobjective evolutionary algorithm based on decom-
position. IEEE Trans. Evol. Comput. 11(6), 712-731 (2007)

Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance.
Inf. Process. Lett. 82(1), 7-13 (2002)

	Enhanced Multiobjective Population-Based Incremental Learning with Applications in Risk Treaty Optimization
	1 Introduction
	2 The RCO Problem
	3 MOPBIL
	3.1 Our Proposal: E-MOPBIL

	4 Computational Experiments
	4.1 Setup and Metrics
	4.2 Results
	4.3 Parallel Experiments

	5 Conclusions
	References

