
Giovanni Squillero
Paolo Burelli et al. (Eds.)

 123

LN
CS

 9
59

8

19th European Conference, EvoApplications 2016
Porto, Portugal, March 30 – April 1, 2016
Proceedings, Part II

Applications of
Evolutionary Computation

Lecture Notes in Computer Science 9598

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Giovanni Squillero
Paolo Burelli et al. (Eds.)

Applications of
Evolutionary Computation
19th European Conference, EvoApplications 2016
Porto, Portugal, March 30 – April 1, 2016
Proceedings, Part II

123

Editors

see next page

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-31152-4 ISBN 978-3-319-31153-1 (eBook)
DOI 10.1007/978-3-319-31153-1

Library of Congress Control Number: 2016933215

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Volume Editors

Giovanni Squillero
Politecnico di Torino, Italy
giovanni.squillero@polito.it

Paolo Burelli
Aalborg University, Copenhagen,

Denmark
pabu@create.aau.dk

Jaume Bacardit
Newcastle University, UK
jaume.bacardit@newcastle.ac.uk

Anthony Brabazon
University College Dublin, Ireland
anthony.brabazon@ucd.ie

Stefano Cagnoni
University of Parma, Italy
cagnoni@ce.unipr.it

Carlos Cotta
Universidad de Málaga, Spain
ccottap@lcc.uma.es

Ivanoe De Falco
ICAR/CNR, Italy
ivanoe.defalco@na.icar.cnr.it

Antonio Della Cioppa
University of Salerno, Italy
adellacioppa@unisa.it

Federico Divina
Universidad Pablo de Olavide, Seville,

Spain
fdivina@upo.es

A.E. Eiben
VU University Amsterdam,

The Netherlands
a.e.eiben@vu.nl

Anna I. Esparcia-Alcàzar
Universitat Politècnica de València,

Spain
aesparcia@pros.upv.es

Francisco Fernàndez de Vega
University of Extremadura, Spain
fcofdez@unex.es

Kyrre Glette
University of Oslo, Norway
kyrrehg@ifi.uio.no

Evert Haasdijk
VU University Amsterdam,

The Netherlands
e.haasdijk@vu.nl

J. Ignacio Hidalgo
Universidad Complutense de Madrid, Spain
hidalgo@ucm.es

Ting Hu
Memorial University, St. John’s, NL, Canada
ting.hu@mun.ca

Michael Kampouridis
University of Kent, UK
m.kampouridis@kent.ac.uk

Paul Kaufmann
University of Paderborn, Germany
paul.kaufmann@gmail.com

Michalis Mavrovouniotis
De Montfort University, UK
mmavrovouniotis@dmu.ac.uk

Antonio M. Mora García
Universidad de Granada, Spain
amorag@geneura.ugr.es

Trung Thanh Nguyen
Liverpool John Moores University, UK
T.T.Nguyen@ljmu.ac.uk

Robert Schaefer
AGH University of Science

and Technology, Poland
schaefer@agh.edu.pl

Kevin Sim
Edinburgh Napier University, UK
k.sim@napier.ac.uk

Ernesto Tarantino
ICAR/CNR, Italy
ernesto.tarantino@na.icar.cnr.it

Neil Urquhart
Edinburgh Napier University, UK
n.urquhart@napier.ac.uk

Mengjie Zhang
Victoria University of Wellington,

New Zealand
mengjie.zhang@ecs.vuw.ac.nz

VI Volume Editors

Preface

This two-volume set contains the proceedings of EvoApplications 2016, the 19th

European Conference on the Applications of Evolutionary Computation, that was held
between March 30 and April 1, 2016, in Porto, Portugal, as a part of EVO*.

Over two decades, EVO* has become Europe’s premier event in the field of evo-
lutionary computing. Under the EVO* umbrella, EvoAPPS aims to show the modern
applications of this research, ranging from proof of concepts to industrial case studies;
EuroGP focuses on genetic programming; EvoCOP targets evolutionary computation
in combinatorial optimization; and EvoMUSART is dedicated to evolved and bio-
inspired music, sound, art, and design. The proceedings for all of these events are
available in the LNCS series.

If EVO* coalesces four different conferences, EvoAPPS exhibits an even higher
granularity: It started in 1998 as a collection of small independent workshops and it
slowly brought together such vibrant and heterogeneous communities into a single
organic event. At the same time, the scientific contributions started to show content
more suited to a conference, and workshops evolved into tracks. The change is not over
yet: As the world of evolutionary computation is in a constant turmoil, EvoAPPS is
mutating to adapt. The scope broadened to include all nature-inspired and bio-inspired
computational techniques and computational intelligence in general. New tracks appear
every year, while others are merged or suspended.

The conference provides a unique opportunity for students, researchers, and pro-
fessionals to meet and discuss the applicative and practical aspects of evolutionary
computation, and to link academia to industry in a variety of domains.

The 2016 edition comprised 13 tracks focusing on different application domains:
EvoBAFIN (business analytics and finance); EvoBIO (computational biology); Evo-
COMNET (communication networks and other parallel and distributed systems);
EvoCOMPLEX (complex systems); EvoENERGY (energy-related optimisation);
EvoGAMES (games and multi-agent systems); EvoIASP (image analysis, signal pro-
cessing, and pattern recognition); EvoINDUSTRY (real-world industrial and com-
mercial environments); EvoNUM (continuous parameter optimization); EvoPAR
(parallel architectures and distributed infrastructures); EvoRISK (risk management,
security, and defence); EvoROBOT (evolutionary robotics); and EvoSTOC (stochastic
and dynamic environments).

This year, we received 115 high-quality submissions, most of them well suited to fit
in more than one track. We selected 58 papers for full oral presentation, while 17 works
were given limited space and were shown as posters. All such contributions, regardless
of the presentation format, appear as full papers in these two volumes (LNCS 9597 and
9598).

Many people contributed to this edition: We express our gratitude to the authors for
submitting their works, and to the members of the Program Committees for devoting
such huge effort to review papers pressed by our tight schedule.

The papers were submitted, reviewed, and selected through the MyReview
conference management system, and we are grateful to Marc Schoenauer (Inria,
Saclay-Île-de-France, France) for providing, hosting, and managing the platform.

We thank the local organizers, Penousal Machado and Ernesto Costa (University of
Coimbra, Portugal), as well as the Câmara Municipal do Porto and Turismo do Porto
for the local assistance.

We thank Pablo García Sánchez (Universidad de Granada, Spain) for maintaining
the EVO* website and handling publicity.

We thank the invited speakers, Richard Forsyth and Kenneth Sörensen, for their
inspiring presentations.

We thank the Institute for Informatics and Digital Innovation at Edinburgh Napier
University, UK, for the coordination and financial administration.

And we express our gratitude to Jennifer Willies for her dedicated and continued
involvement in EVO*. Since 1998, she has been essential for building our unique
atmosphere.

February 2016 Giovanni Squillero
Jaume Bacardit

Stefano Cagnoni
Ivanoe De Falco
Federico Divina

Anna I. Esparcia-Alcázar
Kyrre Glette

J. Ignacio Hidalgo
Michael Kampouridis

Michalis Mavrovouniotis
Trung Thanh Nguyen

Kevin Sim
Neil Urquhart

Paolo Burelli
Anthony Brabazon

Carlos Cotta
Antonio Della Cioppa

A.E. Eiben
Francisco Fernández de Vega

Evert Haasdijk
Ting Hu

Paul Kaufmann
Antonio M. Mora Garcia

Robert Schaefer
Ernesto Tarantino

Mengjie Zhang

VIII Preface

Organization

Organizing Committee

EvoApplications Coordinator

Giovanni Squillero Politecnico di Torino, Italy

EvoApplications Publication Chair

Paolo Burelli Aalborg University, Copenhagen, Denmark

Local Chairs

Penousal Machado University of Coimbra, Portugal
Ernesto Costa University of Coimbra, Portugal

Publicity Chair

Pablo García-Sánchez University of Granada, Spain

Webmaster

Pablo García Sánchez University of Granada, Spain

EvoBAFIN Chairs

Anthony Brabazon University College Dublin, Ireland
Michael Kampouridis University of Kent, UK

EvoBIO Chairs

Jaume Bacardit Newcastle University, UK
Federico Divina Universidad Pablo de Olavide, Seville, Spain
Ting Hu Memorial University, St. John’s, NL, Canada

EvoCOMNET Chairs

Ivanoe De Falco ICAR/CNR, Italy
Antonio Della Cioppa University of Salerno, Italy
Ernesto Tarantino ICAR/CNR, Italy

EvoCOMPLEX Chairs

Carlos Cotta Universidad de Málaga, Spain
Robert Schaefer AGH University of Science and Technology, Poland

EvoENERGY Chairs

Paul Kaufmann University of Paderborn, Germany
Kyrre Glette University of Oslo, Norway

EvoGAMES Chairs

Paolo Burrelli Aalborg University of Copenhagen, Denmark
Antonio M. Mora García Universidad de Granada, Spain

EvoIASP Chairs

Stefano Cagnoni University of Parma, Italy
Mengjie Zhang Victoria University of Wellington, New Zealand

EvoINDUSTRY Chairs

Kevin Sim Edinburgh Napier University, UK
Neil Urquhart Edinburgh Napier University, UK

EvoNUM Chair

Anna I. Esparcia-
Alcázar

Universitat Politècnica de València, Spain

EvoPAR Chairs

Francisco Fernández
de Vega

University of Extremadura, Spain

J. Ignacio Hidalgo Universidad Complutense de Madrid, Spain

EvoRISK Chair

Anna I. Esparcia-
Alcázar

Universitat Politècnica de València, Spain

EvoROBOT Chairs

Evert Haasdijk VU University Amsterdam, The Netherlands
A.E. Eiben VU University Amsterdam, The Netherlands

X Organization

EvoSTOC Chairs

Michalis
Mavrovouniotis

De Montfort University, UK

Trung Thanh Nguyen Liverpool John Moores University, UK

Program Committees

Robert K. Abercrombie Oak Ridge National Laboratory, USA [EvoRISK]
Rami Abielmona University of Ottawa, Canada [EvoRISK]
Eva Alfaro Instituto Tecnológico de Informàtica, Spain [EvoBAFIN]
Jhon E. Amaya UNET, Venezuela [EvoCOMPLEX]
Michele Amoretti University of Parma, Italy [EvoIASP]
Anca Andreica Universitatea Babeş-Bolyai, Romania [EvoCOMPLEX]
Ignacio Arnaldo MIT, USA [EvoPAR]
Maria Arsuaga Rios CERN [EvoINDUSTRY]
Farrukh Aslam Khan National University of Computer and Emerging Sciences,

Pakistan [EvoCOMNET]
Jason Atkin University of Nottingham, UK [EvoINDUSTRY]
Joshua Auerbach Ecole Polytechnique Fédérale de Lausanne, Switzerland

[EvoROBOT]
Lucia Ballerini University of Dundee, UK [EvoIASP]
Tiago Baptista Universidade de Coimbra, Portugal [EvoCOMPLEX]
Bahriye Basturk Akay Erciyes University, Turkey [EvoINDUSTRY]
Hans-Georg Beyer Vorarlberg University of Applied Sciences, Austria

[EvoNUM]
Leonardo Bocchi University of Florence, Italy [EvoIASP]
Anthony Brabazon University College Dublin, Ireland [EvoBAFIN]
Juergen Branke University of Warwick, UK [EvoSTOC]
Nicolas Bredeche Institut des Systémes Intelligents et de Robotique, France

[EvoROBOT]
Paolo Burelli Aalborg University, Denmark [EvoGAMES]
David Camacho Universidad Autónoma de Madrid, Spain [EvoGAMES]
Jose Carlos Ribeiro Politechnique Institute of Leiria, Portugal [EvoPAR]
Nabendu Chaki University of Calcutta, India [EvoRISK]
Ying-ping Chen National Chiao Tung University, Taiwan [EvoNUM]
Kay Chen Tan National University of Singapore [EvoRISK]
Hui Cheng Liverpool John Moores University, UK [EvoSTOC]
Anders Christensen University Institute of Lisbon, ISCTE-IUL, Portugal

[EvoROBOT]
Mario Cococcioni NATO Undersea Research Centre, Italy [EvoRISK]
Jose Manuel Colmenar URJC, Spain [EvoPAR]
Ernesto Costa University of Coimbra, Portugal [EvoSTOC]
Antonio Córdoba Universidad de Sevilla, Spain [EvoCOMPLEX]
Fabio D’Andreagiovanni Zuse Institute Berlin, Germany [EvoCOMNET]
Sergio Damas European Center for Soft Computing, Spain [EvoIASP]

Organization XI

Fabio Daolio Shinshu University, Japan [EvoIASP]
Christian Darabos University of Pennsylvania, USA [EvoBIO]
Ivanoe De Falco ICAR - CNR, Italy [EvoIASP]
Antonio Della Cioppa University of Salerno, Italy [EvoIASP]
Laura Dipietro Cambridge, USA [EvoIASP]
Josep Domingo-Ferrer Rovira i Virgili University, Spain [EvoRISK]
Stephane Doncieux Institut des Systémes Intelligents et de Robotique, France

[EvoROBOT]
Marco Dorigo Université Libre de Bruxelles, Belgium [EvoROBOT]
Jitesh Dundas Edencore Technologies, Indian Institute of Technology,

India [EvoBIO]
Marc Ebner Ernst Moritz Arndt Universität Greifswald, Germany

[EvoIASP, EvoNUM]
Andries P. Engelbrecht University of Pretoria, South Africa [EvoSTOC]
A. Sima Etaner-Uyar Istanbul Technical University, Turkey [EvoSTOC]
Thomas Farrenkopf University of Applied Sciences, Mittelhessen, Germany

[EvoINDUSTRY]
Carlos Fernandes ISR-Lisbon, Portugal [EvoCOMPLEX]
Stenio Fernandes Federal University of Pernambuco, UFPE, Brazil

[EvoRISK]
Florentino Fernández Universidad de Vigo, Spain [EvoBIO]
Antonio J. Fernandez

Leiva
University of Málaga, Spain [EvoGAMES]

Antonio Fernández-Ares Universidad de Granada, Spain [EvoGAMES]
Gianluigi Folino ICAR-CNR, Italy [EvoPAR]
Francesco Fontanella University of Cassino, Italy [EvoIASP]
Alex Freitas University of Kent, UK [EvoBIO]
José E. Gallardo Universidad de Málaga, Spain [EvoCOMPLEX]
Pablo García Sànchez University of Granada, Spain [EvoGAMES]
Antonios Gasteratos Democritus University of Thrace, Greece [EvoCOMNET]
Carlos Gesherson UNAM, Mexico [EvoCOMPLEX]
Mario Giacobini Università di Torino, Italy [EvoBIO]
Raffaele Giancarlo Università degli Studi di Palermo, Italy [EvoBIO]
Rosalba Giugno University of Catania, Italy [EvoBIO]
Antonio Gonzalez Pardo Basque Center for Applied Mathematics, Spain

[EvoGAMES]
Casey Greene Dartmouth College, USA [EvoBIO]
Michael Guckert University of Applied Sciences, Mittelhessen, Germany

[EvoINDUSTRY]
Johan Hagelbäck Blekinge Tekniska Högskola, Sweden [EvoGAMES]
John Hallam University of Southern Denmark, Denmark [EvoGAMES]
Heiko Hamann University of Paderborn, Germany [EvoROBOT]
Jin-Kao Hao University of Angers, France [EvoBIO, EvoCOMNET]
Jacqueline Heinerman VU University Amsterdam, The Netherlands

[EvoROBOT]
Malcom Heywood Dalhousie University, Canada [EvoBAFIN]

XII Organization

Ronald Hochreiter WU Vienna University of Economics and Business,
Austria [EvoBAFIN]

Rolf Hoffmann Technical University of Darmstadt, Germany
[EvoCOMNET]

Joost Huizinga University of Wyoming, USA [EvoROBOT]
Oscar Ibàñez University of Granada, Spain [EvoIASP]
José Ignacio Hidalgo Universidad Complutense de Madrid, Spain [EvoIASP]
Rodica Ioana Lung Babes-Bolyai University, Germany [EvoGAMES]
Juan L. Jiménez Laredo ILNAS/ANEC Normalisation, Luxembourg

[EvoCOMPLEX, EvoPAR]
Michael Kampouridis University of Kent, UK [EvoBAFIN]
Iwona Karcz-Dulęba Politechnika Wrocławska, Poland [EvoCOMPLEX]
Ahmed Kattan EvoSys.biz, Saudi Arabia [EvoBAFIN]
Shayan Kavakeb Liverpool John Moores University, UK [EvoSTOC]
Edward Keedwell University of Exeter, UK [EvoBIO]
Graham Kendall University of Nottingham, UK [EvoCOMNET,

EvoINDUSTRY]
Mario Koeppen Kyushu Institute of Technology, Japan [EvoIASP]
Oliver Kramer University of Oldenburg, Germany [EvoENERGY]
Wacław Kuś Politechnika Śląska, Poland [EvoCOMPLEX]
William Langdon University College London, UK [EvoNUM, EvoPAR]
Kenji Leibnitz National Institute of Information and Communications

Technology, Japan [EvoCOMNET]
Changhe Li China University of Geosciences, China [EvoSTOC]
Antonios Liapis University of Malta, Malta [EvoGAMES]
Federico Liberatore Universidad Rey Juan Carlos, Spain [EvoGAMES]
Piotr Lipinski University of Wroclaw, Poland [EvoBAFIN]
Francisco Luís Gutiérrez

Vela
University of Granada, Spain [EvoGAMES]

Francisco Luna Universidad de Málaga, Spain [EvoPAR]
Gabriel Luque Universidad de Málaga, Spain [EvoCOMPLEX]
Evelyne Lutton INRIA, France [EvoIASP]
Chenjie Ma Fraunhofer Institute for Wind Energy and Energy System

Technology, Germany [EvoENERGY]
Tobias Mahlmann Lund University, Sweden [EvoGAMES]
Domenico Maisto ICAR-CNR, Italy [EvoCOMNET]
Elena Marchiori Radboud Universiteit van Nijmegen, The Netherlands

[EvoBIO]
Davide Marocco University of Naples, Italy [EvoCOMNET]
Ingo Mauser FZI Karlsruhe, Germany [EvoENERGY]
Michalis

Mavrovouniotis
De Montfort University, UK [EvoSTOC]

Michael Mayo University of Waikato, New Zealand [EvoBAFIN]
Jorn Mehnen Cranfield University, UK [EvoSTOC]
Juan J. Merelo Universidad de Granada, Spain [EvoCOMPLEX,

EvoNUM]

Organization XIII

Pablo Mesejo Santiago INRIA, France [EvoIASP]
Salma Mesmoudi Institut des Systémes Complexes, France [EvoNUM]
Krzysztof Michalak Wroclaw University of Economics, Poland [EvoBAFIN]
Martin Middendorf University of Leipzig, Germany [EvoENERGY]
Jose Miguel Holguín S2 Grupo, Spain [EvoRISK]
Maizura Mokhtar Edinburgh Napier University, UK [EvoENERGY]
Jean-Marc Montanier Barcelona Supercomputing Center, Spain [EvoROBOT]
Roberto Montemanni IDSIA, Switzerland [EvoCOMNET]
Javier Montero Universidad Complutense de Madrid, Spain [EvoRISK]
Frank W. Moore University of Alaska Anchorage, USA [EvoRISK]
Antonio M. Mora García University of Granada, Spain [EvoGAMES]
Maite Moreno S2 Grupo, Spain [EvoRISK]
Vincent Moulton University of East Anglia, UK [EvoBIO]
Jean-Baptiste Mouret INRIA Larsen Team, France [EvoROBOT]
Nysret Musliu Vienna University of Technology, Austria

[EvoINDUSTRY]
Antonio Nebro Universidad de Málaga, Spain [EvoCOMPLEX]
Ferrante Neri De Montfort University, UK [EvoIASP, EvoNUM,

EvoSTOC]
Frank Neumann University of Adelaide, Australia [EvoENERGY]
Geoff Nitschke University of Cape Town, South Africa [EvoROBOT]
Stefano Nolfi Institute of Cognitive Sciences and Technologies, Italy

[EvoROBOT]
Michael O’Neill University College Dublin, Ireland [EvoBAFIN]
Una-May O’really MIT, USA [EvoPAR]
Conall O’Sullivan University College Dublin, Ireland [EvoBAFIN]
Kai Olav Ellefsen University of Wyoming, USA [EvoROBOT]
Carlotta Orsenigo Politecnico di Milano, Italy [EvoBIO]
Ender Ozcan University of Nottingham, UK [EvoINDUSTRY]
Patricia Paderewski

Rodríguez
University of Granada, Spain [EvoGAMES]

Peter Palensky Technical University of Delft, The Netherlands
[EvoENERGY]

Anna Paszyńska Uniwersytet Jagielloński, Poland [EvoCOMPLEX]
David Pelta University of Granada, Spain [EvoSTOC]
Sanja Petrovic University of Nottingham, UK [EvoINDUSTRY]
Nelishia Pillay University of KwaZulu-Natal, South Africa

[EvoINDUSTRY]
Clara Pizzuti ICAR CNR, Italy [EvoBIO]
Riccardo Poli University of Essex, UK [EvoIASP]
Petr Pošík Czech Technical University in Prague, Czech Republic

[EvoNUM]
Mike Preuss TU Dortmund, Germany [EvoGAMES, EvoNUM]
Abraham Prieto University of La Coruña, Spain [EvoROBOT]
Jianlong Qi Ancestry.com Inc., USA [EvoBio]
Michael Raymer Wright State University, USA [EvoBIO]

XIV Organization

Hendrik Richter Leipzig University of Applied Sciences, Germany
[EvoSTOC]

Diederik Roijers University of Amsterdam, The Netherlands [EvoROBOT]
Simona Rombo Università degli Studi di Palermo, Italy [EvoBIO]
Claudio Rossi Universidad Politecnica De Madrid, Spain [EvoROBOT]
Guenter Rudolph University of Dortmund, Germany [EvoNUM]
Jose Santos Reyes Universidad de A Coruña, Spain [EvoBIO]
Sanem Sariel Istanbul Technical University, Turkey [EvoINDUSTRY,

EvoROBOT]
Ivo Fabian Sbalzarini Max Planck Institute of Molecular Cell Biology and

Genetics, Germany [EvoNUM]
Robert Schaefer University of Science and Technology, Poland

[EvoCOMNET]
Thomas Schmickl University of Graz, Austria [EvoROBOT]
Marc Schoenauer INRIA, France [EvoNUM]
Sevil Sen Hacettepe University, Turkey [EvoCOMNET]
Noor Shaker Aalborg University, Denmark [EvoGAMES]
Chien-Chung Shen University of Delaware, USA [EvoCOMNET]
Bernhard Sick University of Kassel, Germany [EvoENERGY]
Sara Silva INESC-ID Lisbon, Portugal [EvoIASP]
Anabela Simões Institute Polytechnic of Coimbra, Portugal [EvoSTOC]
Moshe Sipper Ben-Gurion University, Israel [EvoGAMES]
Georgios Sirakoulis Democritus University of Thrace, Greece [EvoCOMNET]
Stephen Smith University of York, UK [EvoIASP]
Maciej Smołka Akademia Górniczo-Hutnicza, Poland [EvoCOMPLEX]
Andy Song RMIT, Australia [EvoIASP]
Stefano Squartini Università Politecnica delle Marche, Italy [EvoENERGY]
Giovanni Squillero Politecnico di Torino, Italy [EvoGAMES, EvoIASP]
Andreas Steyven Edinburgh Napier University, UK [EvoINDUSTRY]
Kasper Stoy IT University of Copenhagen, Denmark [EvoROBOT]
Guillermo Suárez-Tangil Royal Holloway University of London, UK [EvoRISK]
Shamik Sural Indian Institute of Technology, Kharagpur, India

[EvoRISK]
Ernesto Tarantino ICAR/CNR, Italy [EvoCOMNET]
Andrea Tettamanzi University of Nice Sophia Antipolis/I3S, France

[EvoBAFIN]
Olivier Teytaud INRIA, France [EvoNUM]
Trung Thanh Nguyen Liverpool John Moores University, UK [EvoSTOC]
Ruppa Thulasiram University of Manitoba, Cananda [EvoBAFIN]
Jon Timmis University of York, UK [EvoROBOT]
Renato Tinós Universidade de São Paulo, Brazil [EvoSTOC]
Julian Togelius New York University, USA [EvoGAMES]
Marco Tomassini Lausanne University, Switzerland [EvoPAR,

EvoCOMPLEX]

Organization XV

Alberto Tonda Politecnico di Torino, Italy [EvoCOMPLEX, EvoGAMES]
Pawel Topa AGH University of Science and Technology, Poland

[EvoCOMNET]
Vicenç Torra University of Skövde, Sweden [EvoRISK]
Krzysztof Trojanowski Polish Academy of Sciences, Poland [EvoSTOC]
Andy Tyrrell University of York, UK [EvoENERGY]
Roberto Ugolotti Henesis srl, Italy [EvoIASP]
Ryan Urbanowicz University of Pennsylvania, USA [EvoBIO]
Tommaso Urli Csiro Data61, Australia [EvoGAMES]
Andrea Valsecchi European Center of Soft Computing, Spain [EvoIASP]
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal [EvoBIO,

EvoIASP]
Sebastien Varrette Université du Luxemburg, Luxemburg [EvoPAR]
Nadarajen Veerapen University of Stirling, UK [EvoINDUSTRY]
Roby Velez University of Wyoming, USA [EvoROBOT]
Antonio Villalón S2 Grupo, Spain [EvoRISK]
Marco Villani University of Modena and Reggio Emilia, Italy

[EvoCOMNET]
Markus Wagner University of Adelaide, Australia [EvoENERGY]
Jaroslaw Was AGH University of Science and Technology, Poland

[EvoCOMNET]
Tony White Carleton University, Canada [EvoCOMNET]
Alan Winfield University of the West of England, UK [EvoROBOT]
Bing Xue Victoria University of Wellington, New Zealand

[EvoIASP, EvoBIO]
Shengxiang Yang De Monfort University, UK [EvoINDUSTRY, EvoSTOC]
Georgios N. Yannakakis University of Malta, Malta [EvoGAMES]
Xin Yao University of Birmingham, UK [EvoSTOC]
Mengjie Zhang Victoria University of Wellington, New Zealand [EvoBIO]
Nur Zincir-Heywood Dalhousie University, Canada [EvoCOMNET, EvoRISK]

Sponsoring Organizations

Institute for Informatics and Digital Innovation at Edinburgh Napier University, UK
World Federation on Soft Computing (technical sponsor of the EvoCOMNET track)
Câmara Municipal do Porto, Portugal
Turismo do Porto, Portugal
University of Coimbra, Portugal

XVI Organization

Contents – Part II

EvoNUM

Local Fitness Meta-Models with Nearest Neighbor Regression 3
Oliver Kramer

Validating the Grid Diversity Operator: An Infusion Technique for
Diversity Maintenance in Population-Based Optimisation Algorithms. 11

Ahmed Salah, Emma Hart, and Kevin Sim

Benchmarking Languages for Evolutionary Algorithms 27
J.J. Merelo, Pedro Castillo, Israel Blancas, Gustavo Romero,
Pablo García-Sanchez, Antonio Fernández-Ares, Víctor Rivas,
and Mario García-Valdez

On the Closest Averaged Hausdorff Archive for a Circularly Convex Pareto
Front . 42

Günter Rudolph, Oliver Schütze, and Heike Trautmann

Evolving Smoothing Kernels for Global Optimization 56
Paul Manns and Kay Hamacher

EvoPAR

Implementing Parallel Differential Evolution on Spark 75
Diego Teijeiro, Xoán C. Pardo, Patricia González, Julio R. Banga,
and Ramón Doallo

ECJ+HADOOP: An Easy Way to Deploy Massive Runs of Evolutionary
Algorithms . 91

Francisco Chávez, Francisco Fernández, César Benavides,
Daniel Lanza, Juan Villegas, Leonardo Trujillo, Gustavo Olague,
and Graciela Román

Addressing High Dimensional Multi-objective Optimization Problems
by Coevolutionary Islands with Overlapping Search Spaces 107

Pablo García-Sánchez, Julio Ortega, Jesús González, Pedro A. Castillo,
and Juan J. Merelo

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models
in Grammatical Evolution . 118

J. Manuel Colmenar, J. Ignacio Hidalgo, Juan Lanchares,
Oscar Garnica, Jose-L. Risco, Iván Contreras, Almudena Sánchez,
and J. Manuel Velasco

http://dx.doi.org/10.1007/978-3-319-31153-1_1
http://dx.doi.org/10.1007/978-3-319-31153-1_2
http://dx.doi.org/10.1007/978-3-319-31153-1_2
http://dx.doi.org/10.1007/978-3-319-31153-1_3
http://dx.doi.org/10.1007/978-3-319-31153-1_4
http://dx.doi.org/10.1007/978-3-319-31153-1_4
http://dx.doi.org/10.1007/978-3-319-31153-1_5
http://dx.doi.org/10.1007/978-3-319-31153-1_6
http://dx.doi.org/10.1007/978-3-319-31153-1_7
http://dx.doi.org/10.1007/978-3-319-31153-1_7
http://dx.doi.org/10.1007/978-3-319-31153-1_8
http://dx.doi.org/10.1007/978-3-319-31153-1_8
http://dx.doi.org/10.1007/978-3-319-31153-1_9
http://dx.doi.org/10.1007/978-3-319-31153-1_9

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms. . . 134
Serkan Altuntaş, Zeki Bozkus, and Basilio B. Fraguela

EvoRISK

Challenging Anti-virus Through Evolutionary Malware Obfuscation 149
Marco Gaudesi, Andrea Marcelli, Ernesto Sanchez, Giovanni Squillero,
and Alberto Tonda

EvoROBOT

Leveraging Online Racing and Population Cloning in Evolutionary
Multirobot Systems . 165

Fernando Silva, Luís Correia, and Anders Lyhne Christensen

Multi-agent Behavior-Based Policy Transfer . 181
Sabre Didi and Geoff Nitschke

On-line Evolution of Foraging Behaviour in a Population of Real Robots . . . 198
Jacqueline Heinerman, Alessandro Zonta, Evert Haasdijk,
and A.E. Eiben

Hybrid Control for a Real Swarm Robotics System in an Intruder Detection
Task . 213

Miguel Duarte, Jorge Gomes, Vasco Costa, Sancho Moura Oliveira,
and Anders Lyhne Christensen

EvoSTOC

Direct Memory Schemes for Population-Based Incremental Learning
in Cyclically Changing Environments . 233

Michalis Mavrovouniotis and Shengxiang Yang

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem
in a Time-Constrained Setting. 248

Krzysztof Michalak and Joshua D. Knowles

Benchmarking Dynamic Three-Dimensional Bin Packing Problems
Using Discrete-Event Simulation . 266

Ran Wang, Trung Thanh Nguyen, Shayan Kavakeb, Zaili Yang,
and Changhe Li

Genetic Programming Algorithms for Dynamic Environments. 280
João Macedo, Ernesto Costa, and Lino Marques

A Memory-Based NSGA-II Algorithm for Dynamic Multi-objective
Optimization Problems. 296

Shaaban Sahmoud and Haluk Rahmi Topcuoglu

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-31153-1_10
http://dx.doi.org/10.1007/978-3-319-31153-1_11
http://dx.doi.org/10.1007/978-3-319-31153-1_12
http://dx.doi.org/10.1007/978-3-319-31153-1_12
http://dx.doi.org/10.1007/978-3-319-31153-1_13
http://dx.doi.org/10.1007/978-3-319-31153-1_14
http://dx.doi.org/10.1007/978-3-319-31153-1_15
http://dx.doi.org/10.1007/978-3-319-31153-1_15
http://dx.doi.org/10.1007/978-3-319-31153-1_16
http://dx.doi.org/10.1007/978-3-319-31153-1_16
http://dx.doi.org/10.1007/978-3-319-31153-1_17
http://dx.doi.org/10.1007/978-3-319-31153-1_17
http://dx.doi.org/10.1007/978-3-319-31153-1_18
http://dx.doi.org/10.1007/978-3-319-31153-1_18
http://dx.doi.org/10.1007/978-3-319-31153-1_19
http://dx.doi.org/10.1007/978-3-319-31153-1_20
http://dx.doi.org/10.1007/978-3-319-31153-1_20

Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective
Optimization of Invariant-Noise Problems . 311

Florian Siegmund, Amos H.C. Ng, and Kalyanmoy Deb

Author Index . 327

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-319-31153-1_21
http://dx.doi.org/10.1007/978-3-319-31153-1_21

Contents – Part I

EvoBAFIN

Enhanced Multiobjective Population-Based Incremental Learning
with Applications in Risk Treaty Optimization . 3

Omar Andres Carmona Cortes and Andrew Rau-Chaplin

Genetic Programming with Memory For Financial Trading. 19
Alexandros Agapitos, Anthony Brabazon, and Michael O’Neill

Improving Fitness Functions in Genetic Programming for Classification
on Unbalanced Credit Card Data. 35

Van Loi Cao, Nhien-An Le-Khac, Michael O’Neill, Miguel Nicolau,
and James McDermott

Evolving Classification Models for Prediction of Patient Recruitment in
Multicentre Clinical Trials Using Grammatical Evolution 46

Gilyana Borlikova, Michael Phillips, Louis Smith, and Michael O’Neill

Portfolio Optimization, a Decision-Support Methodology for Small
Budgets . 58

Igor Deplano, Giovanni Squillero, and Alberto Tonda

Evolutionary Multiobjective Optimization for Portfolios in Emerging
Markets: Contrasting Higher Moments and Median Models 73

Mai A. Ibrahim, Mohammed El-Beltagy, and Motaz Khorshid

EvoBIO

On Combinatorial Optimisation in Analysis of Protein-Protein Interaction
and Protein Folding Networks . 91

David Chalupa

A Multi-objective Genetic Programming Biomarker Detection Approach
in Mass Spectrometry Data. 106

Soha Ahmed, Mengjie Zhang, Lifeng Peng, and Bing Xue

Automating Biomedical Data Science Through Tree-Based Pipeline
Optimization. 123

Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews,
Nicole A. Lavender, La Creis Kidd, and Jason H. Moore

http://dx.doi.org/10.1007/978-3-319-31204-0_1
http://dx.doi.org/10.1007/978-3-319-31204-0_1
http://dx.doi.org/10.1007/978-3-319-31204-0_2
http://dx.doi.org/10.1007/978-3-319-31204-0_3
http://dx.doi.org/10.1007/978-3-319-31204-0_3
http://dx.doi.org/10.1007/978-3-319-31204-0_4
http://dx.doi.org/10.1007/978-3-319-31204-0_4
http://dx.doi.org/10.1007/978-3-319-31204-0_5
http://dx.doi.org/10.1007/978-3-319-31204-0_5
http://dx.doi.org/10.1007/978-3-319-31204-0_6
http://dx.doi.org/10.1007/978-3-319-31204-0_6
http://dx.doi.org/10.1007/978-3-319-31204-0_7
http://dx.doi.org/10.1007/978-3-319-31204-0_7
http://dx.doi.org/10.1007/978-3-319-31204-0_8
http://dx.doi.org/10.1007/978-3-319-31204-0_8
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://dx.doi.org/10.1007/978-3-319-31204-0_9

Bicliques in Graphs with Correlated Edges: From Artificial to Biological
Networks . 138

Aaron Kershenbaum, Alicia Cutillo, Christian Darabos, Keitha Murray,
Robert Schiaffino, and Jason H. Moore

Hybrid Biclustering Algorithms for Data Mining. 156
Patryk Orzechowski and Krzysztof Boryczko

Discovering Potential Clinical Profiles of Multiple Sclerosis from Clinical
and Pathological Free Text Data with Constrained Non-negative Matrix
Factorization. 169

Jacopo Acquarelli, The Netherlands Brain Bank,
Monica Bianchini, and Elena Marchiori

Application of Evolutionary Algorithms for the Optimization of Genetic
Regulatory Networks . 184

Elise Rosati, Morgan Madec, Abir Rezgui, Quentin Colman,
Nicolas Toussaint, Christophe Lallement, and Pierre Collet

EvoCOMNET

A Hybrid Discrete Artificial Bee Colony Algorithm for the Multicast
Routing Problem. 203

Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas

Evolving Coverage Optimisation Functions for Heterogeneous Networks
Using Grammatical Genetic Programming . 219

Michael Fenton, David Lynch, Stepan Kucera, Holger Claussen,
and Michael O’Neill

Joint Topology Optimization, Power Control and Spectrum Allocation for
Intra-Vehicular Multi-hop Sensor Networks Using Dandelion-Encoded
Heuristics. 235

Javier Del Ser, Miren Nekane Bilbao, Cristina Perfecto,
Antonio Gonzalez-Pardo, and Sergio Campos-Cordobes

A Heuristic Crossover Enhanced Evolutionary Algorithm for Clustering
Wireless Sensor Network . 251

Muyiwa Olakanmi Oladimeji, Mikdam Turkey, and Sandra Dudley

A Variable Local Search Based Memetic Algorithm for the Load Balancing
Problem in Cloud Computing . 267

Nasser R. Sabar, Andy Song, and Mengjie Zhang

An (MI)LP-Based Primal Heuristic for 3-Architecture Connected Facility
Location in Urban Access Network Design . 283

Fabio D’Andreagiovanni, Fabian Mett, and Jonad Pulaj

XXII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-31204-0_10
http://dx.doi.org/10.1007/978-3-319-31204-0_10
http://dx.doi.org/10.1007/978-3-319-31204-0_11
http://dx.doi.org/10.1007/978-3-319-31204-0_12
http://dx.doi.org/10.1007/978-3-319-31204-0_12
http://dx.doi.org/10.1007/978-3-319-31204-0_12
http://dx.doi.org/10.1007/978-3-319-31204-0_13
http://dx.doi.org/10.1007/978-3-319-31204-0_13
http://dx.doi.org/10.1007/978-3-319-31204-0_14
http://dx.doi.org/10.1007/978-3-319-31204-0_14
http://dx.doi.org/10.1007/978-3-319-31204-0_15
http://dx.doi.org/10.1007/978-3-319-31204-0_15
http://dx.doi.org/10.1007/978-3-319-31204-0_16
http://dx.doi.org/10.1007/978-3-319-31204-0_16
http://dx.doi.org/10.1007/978-3-319-31204-0_16
http://dx.doi.org/10.1007/978-3-319-31204-0_17
http://dx.doi.org/10.1007/978-3-319-31204-0_17
http://dx.doi.org/10.1007/978-3-319-31204-0_18
http://dx.doi.org/10.1007/978-3-319-31204-0_18
http://dx.doi.org/10.1007/978-3-319-31204-0_19
http://dx.doi.org/10.1007/978-3-319-31204-0_19

Reducing Efficiency of Connectivity-Splitting Attack on Newscast
via Limited Gossip . 299

Jakub Muszyński, Sébastien Varrette, and Pascal Bouvry

A Distributed Intrusion Detection Framework Based on Evolved
Specialized Ensembles of Classifiers . 315

Gianluigi Folino, Francesco Sergio Pisani, and Pietro Sabatino

UAV Fleet Mobility Model with Multiple Pheromones for Tracking
Moving Observation Targets. 332

Christophe Atten, Loubna Channouf, Grégoire Danoy,
and Pascal Bouvry

EvoCOMPLEX

Towards Intelligent Biological Control: Controlling Boolean Networks
with Boolean Networks . 351

Nadia S. Taou, David W. Corne, and Michael A. Lones

The Emergence of Cooperation in Public Goods Games on Randomly
Growing Dynamic Networks . 363

Steve Miller and Joshua Knowles

Influence Maximization in Social Networks with Genetic Algorithms 379
Doina Bucur and Giovanni Iacca

Measuring Diversity of Socio-Cognitively Inspired ACO Search 393
Ewelina Świderska, Jakub Łasisz, Aleksander Byrski, Tom Lenaerts,
Dana Samson, Bipin Indurkhya, Ann Nowé,
and Marek Kisiel-Dorohinicki

Multiwinner Voting in Genetic Algorithms for Solving Ill-Posed Global
Optimization Problems. 409

Piotr Faliszewski, Jakub Sawicki, Robert Schaefer, and Maciej Smołka

EvoENERGY

A Decentralized PSO with Decoder for Scheduling Distributed Electricity
Generation . 427

Jörg Bremer and Sebastian Lehnhoff

Comparison of Multi-objective Evolutionary Optimization in Smart
Building Scenarios . 443

Marlon Braun, Thomas Dengiz, Ingo Mauser, and Hartmut Schmeck

Contents – Part I XXIII

http://dx.doi.org/10.1007/978-3-319-31204-0_20
http://dx.doi.org/10.1007/978-3-319-31204-0_20
http://dx.doi.org/10.1007/978-3-319-31204-0_21
http://dx.doi.org/10.1007/978-3-319-31204-0_21
http://dx.doi.org/10.1007/978-3-319-31204-0_22
http://dx.doi.org/10.1007/978-3-319-31204-0_22
http://dx.doi.org/10.1007/978-3-319-31204-0_23
http://dx.doi.org/10.1007/978-3-319-31204-0_23
http://dx.doi.org/10.1007/978-3-319-31204-0_24
http://dx.doi.org/10.1007/978-3-319-31204-0_24
http://dx.doi.org/10.1007/978-3-319-31204-0_25
http://dx.doi.org/10.1007/978-3-319-31204-0_26
http://dx.doi.org/10.1007/978-3-319-31204-0_27
http://dx.doi.org/10.1007/978-3-319-31204-0_27
http://dx.doi.org/10.1007/978-3-319-31204-0_28
http://dx.doi.org/10.1007/978-3-319-31204-0_28
http://dx.doi.org/10.1007/978-3-319-31204-0_29
http://dx.doi.org/10.1007/978-3-319-31204-0_29

A Hybrid Genetic Algorithm for the Interaction of Electricity Retailers
with Demand Response . 459

Maria João Alves, Carlos Henggeler Antunes, and Pedro Carrasqueira

Stigmergy-Based Scheduling of Flexible Loads. 475
Fredy H. Rios S., Lukas König, and Hartmut Schmeck

Electrical Load Pattern Shape Clustering Using Ant Colony Optimization . . . 491
Fernando Lezama, Ansel Y. Rodríguez, Enrique Muñoz de Cote,
and Luis Enrique Sucar

Optimization of Operation and Control Strategies for Battery Energy
Storage Systems by Evolutionary Algorithms . 507

Jan Müller, Matthias März, Ingo Mauser, and Hartmut Schmeck

EvoGAMES

Orthogonally Evolved AI to Improve Difficulty Adjustment in Video
Games . 525

Arend Hintze, Randal S. Olson, and Joel Lehman

There Can Be only One: Evolving RTS Bots via Joust Selection 541
A. Fernández-Ares, P. García-Sánchez, A.M. Mora, P.A. Castillo,
and J.J. Merelo

Constrained Level Generation Through Grammar-Based Evolutionary
Algorithms . 558

Jose M. Font, Roberto Izquierdo, Daniel Manrique, and Julian Togelius

Evolving Chess-like Games Using Relative Algorithm Performance Profiles . . . 574
Jakub Kowalski and Marek Szykuła

Online Evolution for Multi-action Adversarial Games 590
Niels Justesen, Tobias Mahlmann, and Julian Togelius

The Story of Their Lives: Massive Procedural Generation of Heroes’
Journeys Using Evolved Agent-Based Models and Logical Reasoning 604

Rubén H. García-Ortega, Pablo García-Sánchez, Juan J. Merelo,
Aránzazu San-Ginés, and Ángel Fernández-Cabezas

Dangerousness Metric for Gene Regulated Car Driving 620
Sylvain Cussat-Blanc, Jean Disset, and Stéphane Sanchez

Using Isovists to Evolve Terrains with Gameplay Elements 636
Andrew Pech, Chiou-Peng Lam, Philip Hingston, and Martin Masek

XXIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-31204-0_30
http://dx.doi.org/10.1007/978-3-319-31204-0_30
http://dx.doi.org/10.1007/978-3-319-31204-0_31
http://dx.doi.org/10.1007/978-3-319-31204-0_32
http://dx.doi.org/10.1007/978-3-319-31204-0_33
http://dx.doi.org/10.1007/978-3-319-31204-0_33
http://dx.doi.org/10.1007/978-3-319-31204-0_34
http://dx.doi.org/10.1007/978-3-319-31204-0_34
http://dx.doi.org/10.1007/978-3-319-31204-0_35
http://dx.doi.org/10.1007/978-3-319-31204-0_36
http://dx.doi.org/10.1007/978-3-319-31204-0_36
http://dx.doi.org/10.1007/978-3-319-31204-0_37
http://dx.doi.org/10.1007/978-3-319-31204-0_38
http://dx.doi.org/10.1007/978-3-319-31204-0_39
http://dx.doi.org/10.1007/978-3-319-31204-0_39
http://dx.doi.org/10.1007/978-3-319-31204-0_40
http://dx.doi.org/10.1007/978-3-319-31204-0_41

A Spatially-Structured PCG Method for Content Diversity
in a Physics-Based Simulation Game . 653

Raúl Lara-Cabrera, Alejandro Gutierrez-Alcoba,
and Antonio J. Fernández-Leiva

Design and Evaluation of an Extended Learning Classifier-Based StarCraft
Micro AI . 669

Stefan Rudolph, Sebastian von Mammen, Johannes Jungbluth,
and Jörg Hähner

EvoIASP

A Wrapper Feature Selection Approach to Classification with Missing Data . . . 685
Cao Truong Tran, Mengjie Zhang, Peter Andreae, and Bing Xue

Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising
and Selecting Features for High-Dimensional Classification 701

Binh Tran, Bing Xue, and Mengjie Zhang

Mutual Information Estimation for Filter Based Feature Selection
Using Particle Swarm Optimization . 719

Hoai Bach Nguyen, Bing Xue, and Peter Andreae

Speaker Verification on Unbalanced Data with Genetic Programming 737
Róisín Loughran, Alexandros Agapitos, Ahmed Kattan,
Anthony Brabazon, and Michael O’Neill

Binary Tomography Reconstruction by Particle Aggregation. 754
Mohammad Majid al-Rifaie and Tim Blackwell

Population Based Ant Colony Optimization for Reconstructing ECG
Signals . 770

Yih-Chun Cheng, Tom Hartmann, Pei-Yun Tsai, and Martin Middendorf

EvoINDUSTRY

Can Evolutionary Algorithms Beat Dynamic Programming for Hybrid Car
Control?. 789

Tobias Rodemann and Ken Nishikawa

NSGA-II Based Auto-Calibration of Automatic Number Plate Recognition
Camera for Vehicle Speed Measurement . 803

Patryk Filipiak, Bartlomiej Golenko, and Cezary Dolega

Contents – Part I XXV

http://dx.doi.org/10.1007/978-3-319-31204-0_42
http://dx.doi.org/10.1007/978-3-319-31204-0_42
http://dx.doi.org/10.1007/978-3-319-31204-0_43
http://dx.doi.org/10.1007/978-3-319-31204-0_43
http://dx.doi.org/10.1007/978-3-319-31204-0_44
http://dx.doi.org/10.1007/978-3-319-31204-0_45
http://dx.doi.org/10.1007/978-3-319-31204-0_45
http://dx.doi.org/10.1007/978-3-319-31204-0_46
http://dx.doi.org/10.1007/978-3-319-31204-0_46
http://dx.doi.org/10.1007/978-3-319-31204-0_47
http://dx.doi.org/10.1007/978-3-319-31204-0_48
http://dx.doi.org/10.1007/978-3-319-31204-0_49
http://dx.doi.org/10.1007/978-3-319-31204-0_49
http://dx.doi.org/10.1007/978-3-319-31204-0_50
http://dx.doi.org/10.1007/978-3-319-31204-0_50
http://dx.doi.org/10.1007/978-3-319-31204-0_51
http://dx.doi.org/10.1007/978-3-319-31204-0_51

Environment-Model Based Testing with Differential Evolution in an
Industrial Setting. 819

Annamária Szenkovits, Noémi Gaskó, and Erwan Jahier

Workforce Scheduling in Inbound Customer Call Centres with a Case
Study. 831

Goran Molnar, Domagoj Jakobović, and Matija Pavelić

Author Index . 847

XXVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-31204-0_52
http://dx.doi.org/10.1007/978-3-319-31204-0_52
http://dx.doi.org/10.1007/978-3-319-31204-0_53
http://dx.doi.org/10.1007/978-3-319-31204-0_53

EvoNUM

Local Fitness Meta-Models with Nearest
Neighbor Regression

Oliver Kramer(B)

Computational Intelligence Group, Department of Computing Science,
University of Oldenburg, Oldenburg, Germany

oliver.kramer@uni-oldenburg.de

Abstract. In blackbox function optimization, the results of fitness func-
tion evaluations can be used to train a regression model. This meta-model
can be used to replace function evaluations and thus reduce the number
of fitness function evaluations in evolution strategies (ES). In this paper,
we show that a reduction of the number of fitness function evaluations of
a (1+1)-ES is possible with a combination of a nearest neighbor regres-
sion model, a local archive of fitness function evaluations, and a com-
paratively simple meta-model management. We analyze the reduction of
fitness function evaluations on set of benchmark functions.

Keywords: (1+1)-ES · Meta-models · Nearest neighbor regression

1 Introduction

In expensive optimization problems, the reduction of the number of fitness func-
tion calls has an important part to play. Evolutionary operators produce can-
didate solutions xi in the solution space that are evaluated on fitness function
f . If a regression method f̂ is trained with the pattern label pairs (xi, f(xi)),
i = 1, . . . , N , the model f̂ can be used to interpolate and extrapolate the fitness
of a novel solution x′ that has been generated by the evolutionary operators.
Model f̂ is also known as meta-model or surrogate in this context. Almost all
kinds of regression methods can be employed for this purpose. An important
question is how to manage the meta-model. Past fitness function evaluations are
stored in an archive. The questions come up, which patterns are used to train the
meta-model, how often the meta-model should be tuned, and when the fitness
function is used or when the meta-model is employed. Some methods take into
account the fitness evaluation of the meta-model. Others use the meta-model for
pre-screening, i.e., each solution is first evaluated on the meta-model. The most
successful ones are evaluated on the real fitness function and then selected for
being parents in the following generation.

In this paper, we analyze nearest neighbor regression when optimizing with a
(1+1)-ES and Rechenberg’s step size control technique. Nearest neighbor regres-
sion is based on the idea that the label of an unknown pattern x′ should get
the label of the k closest pattern in the training set. This method is also known
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-31153-1 1

4 O. Kramer

as instance-based and non-parametric approach. It does not induce a functional
model like linear regression. The objective of this paper is to show that a compar-
atively simple hybridization can result in a very effective optimization strategy.
The paper is structured as follows. Nearest neighbor regression is introduced in
Sect. 2. The integration of the k-nearest neighbors (kNN) meta-model is pre-
sented in Sect. 3. Related work is discussed in Sect. 4. The approach is experi-
mentally analyzed in Sect. 5. Conclusions are drawn in Sect. 6.

2 Nearest Neighbors

Nearest neighbor regression, also known as kNN regression, is based on the idea
that the closest patterns to a target pattern x′, for which we seek the label,
deliver useful label information. Based on this idea, kNN assigns the class label
of the majority of the k-nearest patterns in data space. For this sake, we have
to be able to define a similarity measure in data space. In R

d, it is reasonable to
employ the Minkowski metric (p-norm)

‖x′ − xj‖d =

(
d∑

i=1

|(xi)′ − (xi)j |p
)1/p

, (1)

with parameter p ∈ N. The distance measure corresponds to the Euclidean
distance for p = 2 and the Manhattan distance for p = 1. In other data spaces,
adequate distance functions have to be chosen, e.g., the Hamming distance in B

d.
For regression tasks, kNN can also be applied. For this sake, the task is to learn
a function f̂ : Rd → R known as regression function. For an unknown pattern
x′, kNN regression computes the mean of the function values of its k-nearest
neighbors

f(x′) =
1
K

∑
i∈NK(x′)

yi (2)

with set NK(x′) containing the indices of the k-nearest neighbors of pattern x′

in the training data set {(xi, f(xi))}Ni=1. Standardization of patterns is usually
applied as they can come in different units.

The choice of k defines the locality of kNN. For k = 1, little neighborhoods
arise in regions, where patterns from different classes are scattered. For larger
neighborhood sizes, e.g., k = 20, patterns with labels in the minority are ignored.
Neighborhood size k is usually chosen with the help of cross-validation.

3 Algorithm

In this section, we introduce the meta-model-based ES. The main ingredients
of meta-model approaches are an archive, which stores past fitness function
evaluations, a meta-model maintenance mechanism, e.g., for parameter tuning
and regularization, and the meta-model integration mechanism that defines how

Local Fitness Meta-Models with Nearest Neighbor Regression 5

it is applied to save fitness function evaluations. One possibility is to test each
candidate solution with a certain probability on the meta-model and use the
predicted value instead of the real fitness function evaluations in the course
of the evolutionary optimization process. We employ a different meta-model
management that is tailored to the (1+1)-ES.

Algorithm 1 shows the pseudo-code of the (1+1)-ES with meta-model (MM-
(1+1)-ES) and Rechenberg’s adaptive step size control [15]. If the solution x′

has been evaluated on f , both will be combined to a pattern and as pattern-label
pair (x′, f(x′)) included to the meta-model training set, i.e., an archive A. To
improve the computational complexity with an archive of constant size, the old-
est solutions are removed from the training set, if a defined size is exceeded. After
this step, model f̂ can be re-trained, which means that a novel neighborhood
size k may be chosen with cross-validation.

The meta-model integration we employ is based on the idea that solutions are
only evaluated, if they are promising. Let x be the solution of the last generation
and let x′ be the novel solution generated with the mutation operator. If the
fitness prediction f̂(x′) of the meta-model indicates that x′ employs a better
fitness than the a-th last solution x−a of the archive A, the solution is evaluated
on the real fitness function f . The a-th last solution defines a fitness threshold
that assumes that f̂(x′) may underestimate the fitness of x′. The evaluations of
candidate solutions that are worse than the threshold are saved and may lead
to a decrease of the fitness function evaluations. A tuning of the model, i.e., the
neighborhood size k of kNN, may be reasonable in certain optimization settings.
Last, the question for the proper regression model has to be answered. In our
blackbox optimization scenario, we assume that we do not know anything about
the curvature of the fitness function. Of course, it makes sense to employ a
polynomial model in case of spherical fitness function conditions. But in general,
we cannot assume to have such information.

Algorithm 1. MM-(1+1)-ES
1: initialize x
2: repeat
3: adapt σ with Rechenberg
4: z ∼ σ · N (0, I)
5: x′ = x + z
6: if f̂(x′) ≤ f(x−a) then
7: evaluate f(x′)
8: add (x′, f(x′)) to archive A
9: tune model (e.g., choose best k for kNN)

10: if f(x′) ≤ f(x) then
11: replace x with x′

12: end if
13: end if
14: until termination condition

6 O. Kramer

4 Related Work

Meta-models, also known as surrogates, are prominent approaches to reduce
the number of fitness function evaluations in evolutionary computation. Most
work in meta-modeling concentrates on fitness function surrogates, few also on
reducing constraint functions evaluations. In this line of research early work
concentrated on neural networks [6] and on Kriging [1]. Kriging belongs to the
class of Gaussian process regression models and is an interpolation method. It
uses covariance information and is based on piecewise-polynomial splines. Neural
networks and Kriging meta-models have been compared in [18]. An example for
the recent employment of Kriging models is the differential evolution approach
by Elsayed et al. [5].

Various kinds of ways can be used to process the data for saving fitness
function evaluations. Cruz-Vega et al. [3] employ granular computing to cluster
points and adapt the parameters with a neuro-fuzzy network. Verbeeck et al. [17]
propose a tree-based meta-model and concentrate on multi-objective optimiza-
tion. Mart́ınez and Coello [13] also focus on multi-objective optimization while
employing a support vector regression meta-model. Loshchilov et al. [10] combine
a one-class support vector machine with a regression approach as meta-model
in multi-objective optimization. Ensembles of support vector methods are also
used for in the approach by Rosales-Pérez [16] in multi-objective optimization
settings. Ensembles combine multiple classifiers to reduce the fitness prediction
error.

Kruisselbrink et al. [8] employ the Kriging model in CMA-ES based opti-
mization. The approach puts an emphasis on the generation of archive points of
improving the meta-model. Local meta-models for the CMA-ES are learned in
the approach by Bouzarkouna et al. [2], who train a full quadratic local model
for each sub-function in each generation. Also Liao et al. [9] propose a locally
weighted meta-model, which only evaluates the most promising candidate solu-
tions. The local approach is similar to the nearest neighbor methods we use in
the experimental part, as kNN is a local method.

There exists a line of research that concentrates on surrogate-assisted opti-
mization for the CMA-ES. For example, the approach by Loshchilov et al. [11]
adjusts the life length of the current surrogate model before learning a new sur-
rogate as well as its hyper-parameters. A variant with larger population sizes [12]
leads to a more intensive exploitation of the meta-model.

Preuss et al. [14] propose to use a computationally cheap meta-model of
the fitness function and tune the parameters of the evolutionary optimization
approach on this surrogate. Kramer et al. [7] combine two nearest neighbor meta-
models, one for the fitness function, and one for the constraint function with an
adaptive penalty function in a constrained continuous optimization scenario.

Most of the work sketched here positively reported savings in fitness func-
tion evaluations, although machine learning models and meta-model managing
strategies vary significantly.

Local Fitness Meta-Models with Nearest Neighbor Regression 7

5 Experimental Analysis

In this section, we experimentally analyze the meta-model based ES. Besides the
convergence behavior, we analyze the influence of the neighborhood size k and
the archive design.

5.1 Comparison Between Approaches

Table 1 shows the experimental results of 25 runs of the (1+1)-ES and the
MM-(1+1)-ES on the Sphere function and on Rosenbrock for kNN as meta-
model with k = 1. Both algorithms get a budget of 5000 function evaluations.
The results show the mean values and the corresponding standard deviations. On
the Sphere function, we employ the setting a = 10. We can observe that the ES
with meta-model leads to a significant reduction of fitness function evaluations.
For d = 2, the standard deviation even falls below a value that is measurable due
to a limited machine accuracy. The results are statistically significant, which is
confirmed by the Wilcoxon test. On Rosenbrock, we set a = 50. The MM-(1+1)-
ES significantly outperforms the (1+1)-ES for d = 2, but only in few runs on
Rosenbrock leading to no statistical superiority for d = 10.

Table 1. Experimental comparison of (1+1)-ES and the MM-(1+1)-ES on the Sphere
function and on Rosenbrock.

problem (1+1)-ES MM-(1+1)-ES Wilx.

N mean dev mean dev p-value

Sphere 2 2.067e-173 0.0 2.003e-287 0.0 0.0076

10 1.039e-53 1.800e-53 1.511e-62 2.618e-62 0.0076

Rosenbrock 2 0.260 0.447 8.091e-06 7.809e-06 0.0076

10 0.519 0.301 2.143 2.783 0.313

Figure 1 compares the evolutionary runs of the (1+1)-ES and the MM-(1+1)-
ES on the Sphere function for (a) d = 2 and (b) d = 10. As of the very beginning
of the optimization process, even the worst evolutionary runs with meta-model
are better than the best evolutionary runs of the (1+1)-ES without meta-model.
This effect is even more significant for d = 2.

5.2 Analysis of Archive Size

Now, we analyze the archive size N as it is the basis of the training set and has
an important influence on the regression model quality. In Fig. 2, we compare
the two archive sizes N = 20 and N = 500 on the Sphere function, again with
the same settings, i.e., 5000 fitness function evaluations in each run and for d = 2
and d = 10. The runs show that a too small archive lets the search become less

8 O. Kramer

Fig. 1. Comparison of (1+1)-ES and MM-(1+1)-ES on the Sphere function with (a)
d = 2 and (b) d = 10.

stable in both cases. Some runs may get stuck because of inappropriate fitness
function estimates. Further analyses have shown that an archive size of N = 500
is an appropriate choice.

Fig. 2. Comparison of meta-model size N = 20 and N = 500 on the Sphere function
with (a) d = 2 and (b) d = 10.

Our analysis of the neighborhood size k have shown that the choice k = 1
yields the best results in all cases. Larger choices slow down the optimization
or let the optimization process stagnate, similar to the stagnation we observe
for small archive sizes. Hence, we understand the nearest neighbor regression
meta-models with k = 1 as local meta-models, which also belong to the most
successful ones in literature, see Sect. 4.

6 Conclusions

Meta-modeling in evolutionary optimization is frequent and well-known tech-
nique that allows saving expensive fitness function evaluations. In this paper, we

Local Fitness Meta-Models with Nearest Neighbor Regression 9

applied nearest neighbor regression in a (1+1)-ES with Gaussian mutation and
Rechenberg’s adaptive step size control. Fitness function evaluations are saved,
if the predicted fitness is worse than the a-th best element in the archive. In
particular on the Sphere function, the optimization runs of the (1+1)-ES with
meta-model outperform the native ES. The results have been confirmed with
the Wilcoxon test. It turns out that the small neighborhood size k = 1 is the
best choice. Further, the archive should be large enough to offer diversity that
can be exploited for fitness predictions during the evolutionary optimization
process. However, one has to keep in mind that inexact fitness predictions based
on bad surrogates may disturb the evolutionary process and result in deteriora-
tions instead of improvements. Various other ways to employ a regression model
as meta-model are possible. Pre-selection is only one method.

In the future, we will concentrate on a detailed comparison between vari-
ous regression models and meta-model management strategies, similar to the
rigorous comparison of classifiers on a large benchmark data set by Delgado
et al. [4].

A Benchmark Functions

In this work, we employ the following benchmark problems:

– Sphere f(x) =
∑d

i=1(xi)2

– Rosenbrock f(x) =
∑d−1

i=1

(
100(x2

i − xi+1)2 + (xi − 1)2
)

References

1. Armstrong, M.: Basic Linear Geostatistics. Springer, Heidelberg (1998)
2. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Local-meta-model CMA-ES for par-

tially separable functions. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 869–876 (2011)

3. Cruz-Vega, I., Garcia-Limon, M., Escalante, H.J.: Adaptive-surrogate based on a
neuro-fuzzy network and granular computing. In: Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 761–768 (2014)

4. Delgado, M.F., Cernadas, E., Barro, S., Amorim, D.G.: Do we need hundreds of
classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1),
3133–3181 (2014)

5. Elsayed, S.M., Ray, T., Sarker, R.A.: A surrogate-assisted differential evolution
algorithm with dynamic parameters selection for solving expensive optimization
problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC),
pp. 1062–1068 (2014)

6. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approx-
imate fitness functions. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 786–793 (2000)

7. Kramer, O., Schlachter, U., Spreckels, V.: An adaptive penalty function with meta-
modeling for constrained problems. In: Proceedings of IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1350–1354 (2013)

10 O. Kramer

8. Kruisselbrink, J.W., Emmerich, M.T.M., Deutz, A.H., Bäck, T.: A robust opti-
mization approach using kriging metamodels for robustness approximation in the
CMA-ES. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8 (2010)

9. Liao, Q., Zhou, A., Zhang, G.: A locally weighted metamodel for pre-selection
in evolutionary optimization. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), pp. 2483–2490 (2014)

10. Loshchilov, I., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective
optimization. In: Genetic and Evolutionary Computation Conference (GECCO),
pp. 471–478 (2010)

11. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-adaptive surrogate-assisted covari-
ance matrix adaptation evolution strategy. In: Genetic and Evolutionary Compu-
tation Conference (GECCO), pp. 321–328 (2012)

12. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive surrogate model exploitation
in self-adaptive surrogate-assisted cma-es (saacm-es). In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 439–446 (2013)

13. Mart́ınez, S.Z., Coello, C.A.C.: A multi-objective meta-model assisted memetic
algorithm with non gradient-based local search. In: Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 537–538 (2010)

14. Preuss, M., Rudolph, G., Wessing, S.: Tuning optimization algorithms for real-
world problems by means of surrogate modeling. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 401–408 (2010)

15. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

16. Rosales-Pérez, A., Coello, C.A.C., Gonzalez, J.A., Garćıa, C.A.R., Escalante,
H.J.: A hybrid surrogate-based approach for evolutionary multi-objective opti-
mization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC),
pp. 2548–2555 (2013)

17. Verbeeck, D., Maes, F., Grave, K.D., Blockeel, H.: Multi-objective optimiza-
tion with surrogate trees. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 679–686 (2013)

18. Willmes, L., Bäck, T., Jin, Y., Sendhoff, B.: Comparing neural networks and kriging
for fitness approximation in evolutionary optimization. In: Proceedings of IEEE
Congress on Evolutionary Computation (CEC), pp. 663–670 (2003)

Validating the Grid Diversity Operator:
An Infusion Technique

for Diversity Maintenance
in Population-Based Optimisation Algorithms

Ahmed Salah1(B), Emma Hart2, and Kevin Sim2

1 Faculty of Science, Mansoura University, Mansoura, Egypt
a salah@mans.edu.eg

2 School of Computing, Edinburgh Napier University, Edinburgh, UK
{e.hart,k.sim}@napier.ac.uk

Abstract. We describe a novel diversity method named Grid Diver-
sity Operator (GDO) that can be incorporated into population-based
optimization algorithms that support the use of infusion techniques to
inject new material into a population. By replacing the random infusion
mechanism used in many optimisation algorithms, the GDO guides the
containing algorithm towards creating new individuals in sparsely visited
areas of the search space. Experimental tests were performed on a set of
39 multimodal benchmark problems from the literature using GDO in
conjunction with a popular immune-inspired algorithm (opt-ainet) and
a sawtooth genetic algorithm. The results show that the GDO operator
leads to better quality solutions in all of the benchmark problems as a
result of maintaining higher diversity, and makes more efficient usage
of the allowed number of objective function evaluations. Specifically, we
show that the performance gain from using GDO increases as the dimen-
sionality of the problem instances increases. An exploration of the para-
meter settings for the two main parameters of the new operator enabled
the performance of the operator to be tuned empirically.

Keywords: Grid · Diversity · Optimization · Evolutionary algorithms ·
Artificial immune systems

1 Introduction

Managing the diversity of a population has been recognized as one of the most
influential factors within an Evolutionary Algorithm (EA) right from their incep-
tion. From an exploration and exploitation perspective, an increase in diver-
sity correlates with the exploration phase of an optimization algorithm whilst
a decrease correlates with the exploitation phase. Maintaining a diverse pop-
ulation through the use of exploration operators is key to achieving a balance
between the two phases [1].

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 11–26, 2016.
DOI: 10.1007/978-3-319-31153-1 2

12 A. Salah et al.

The term diversity refers to differences among individuals which can be at
either the genotype or phenotype level. Typically, diversity is classified into three
categories: diversity maintenance, diversity control, and diversity learning. Diver-
sity maintenance encourages exploring multiple promising pathways through the
search space simultaneously in hopes of reaching higher fitness peaks. On the
other hand, diversity control methods use population diversity, individual fit-
ness, and/or fitness improvements as feedback to steer the evolutionary process
towards exploration or exploitation. The main difference between diversity con-
trol and diversity learning methods is that in the former case, the short-term his-
tory (e.g., current population) is often used during diversity computation, whilst
in the latter case, long-term history is used in combination with machine learn-
ing techniques to find (un)explored search areas. More recent research focuses
on diversity learning, using cultural learning or self-organizing maps for example
in order to discover promising locations within the search space.

In this work we extend research within the field of diversity maintenance.
We describe a novel genotypic diversity learning method named Grid-Diversity-
Operator (GDO) that makes use of the long-term history of all populations in
order to suggest a biased distribution for new individuals. GDO is not specific
to any particular algorithm, but can be used with any optimization algorithm
that supports the use of infusion techniques — that is, insertion of new indi-
viduals after a certain number of generations or special initialization techniques.
The new operator is tested within two population-based optimization algorithms
that support infusion techniques, replacing the infusion step that causes random
generation of new individuals. Experiments are conducted on a set of 13 bench-
mark multimodal optimization problems in different search space dimensions.
We proposed an outline of this operator in a recent short paper [2]. Here we pro-
vide a full description of the operator and the motivation behind it. In addition,
we undertake the first thorough evaluation of the operator using a well-known
set of 39 multimodal benchmark problems, ranging in dimensionality from 2 to
30 (in contrast, the earlier work considered a small set of 2-dimensional functions
only as proof-of-concept). Finally, we incorporate the GDO operator into two
different optimisation algorithms to provide evidence that GDO is not tied to
any particular algorithm, but can be used as a generic operator. A comprehen-
sive statistical analysis is conducted to provide a more accurate explanation of
GDO’s performance.

This paper is structured as follows. Section 2 will cover related work in the
literature regarding diversity preserving techniques. The Grid Diversity Operator
(GDO) will be introduced in detail in Sect. 3. Section 4 will briefly introduce the
algorithms that will be used in the experimental analysis. The experimental
protocol followed here with the benchmark problems adopted and the testing
procedure is introduced in Sect. 5. The obtained results and discussion along
with the statistical analysis will be presented in Sect. 6, while the final comments
will be given in Sect. 7.

Validating the Grid Diversity Operator 13

2 Related Work

It is widely accepted that maintaining high levels of diversity within a population
greatly contributes to algorithm performance [3]. Recent and detailed survey of
the area is given in by Črepinšek et al. [4] in which a taxonomy of approaches
for managing exploration and exploitation within a search algorithm is defined.
Three approaches are identified: diversity maintenance, diversity learning and
diversity control.

Of most relevance to our work is the branch of this taxonomy that concerns
methods for diversity maintenance, which the authors divide into two classes:
non-niching and niching. Within the former class, four approaches are defined —
population-based, selection-based, crossover/mutation-based and hybrid. Our
interest lies within population-based methods, which are sub-classified into meth-
ods that vary population size, eliminate duplicates, infusion techniques and
external archives. We provide a short overview of relevant work in the area
of infusion-techniques, given that the GDO operator proposed in this paper is
inspired by this — the reader is referred to the survey article for detailed exam-
ples of each of the other techniques.

Infusion techniques typically involve the insertion of new individuals into the
population after a certain number of generations or managing initialisation of
the population (e.g. [5]). Early approach to this were described by Grefenstette
in [6] in which random immigrants are inserted into the population every gen-
eration, and Koza [7] whose ‘decimation’ algorithm replaced a random fraction
of the population each generation. More recently, Koumousis and Katsaras [8]
proposed a SawTooth GA that utilised a periodic re-initialization step at which
a number of new, random individuals are added to the population. This algo-
rithm introduced an operator that varied the population size over time — the
population size is linearly decreased over a number of generations, then suddenly
increased to its original value through the addition of random immigrants, hence
the sawtooth name. This was shown to achieve both better population diversity
and overall performance on a set of continuous optimization benchmarks com-
pared to a standard GA.

In addition, our proposed approach has some similarities to previous diversity
learning methods. This class of methods is less well-studied than the maintenance
methods — the idea is that the long-term history of the population can be used in
combination with a machine learning techniques to learn which areas of the space
have not been explored. For example, Leung et al. [9] propose a history-driven
evolutionary algorithm (HdEA), in which a binary space-partitioning tree (BSP)
is used to record evaluated individuals and their associated fitness throughout
the evolution process. A guided anisotropic search governs the search direc-
tion based on the history of the BSP tree which results in an individual being
either exploitatively mutated towards the nearest historical optimum or ran-
domly mutated if the individual is already a local optimum. Other learning
methods [10] use self-organising maps (SOMs) to learn about unexplored areas
of the space using information from the whole evolutionary history; this infor-
mation is used to determine novelty and thus encourage exploration.

14 A. Salah et al.

Another class of algorithms that also exploit variable population size with
random immigration are the aiNET series of algorithms, first proposed in [11].
Steps intrinsic to the core algorithm maintain diversity by suppressing individu-
als that are genotypically similar (thus varying population size) while additionally
adding a small number of new, randomly generated individuals to the population
each iteration. Andrews and Timmis [12] further increased the diversity of
aiNET with respect to function optimization through adding an immune-inspired
mutation operator. De França et al. [13] evaluated the diversity mechanisms of
opt-ainet compared to fitness-sharing methods using a set of continuous optimiza-
tion benchmarks, finding that the diversity mechanisms within opt-ainet both
obtained better solutions but also maintained more diverse solutions.

Most infusion techniques described in the literature rely on random initialisa-
tion methods; in contrast, we propose an operator that biases the generation of
new individuals towards areas of the search space that are under-explored by the
current population. The proposed GDO operator shares some similarities with
previous learning approaches in that is exploits the history of the complete evolu-
tionary process, however unlike [9] we focus in its use to guide exploration rather
than exploitation. The operator can be used with any optimization algorithm
that uses an infusion-technique. In this paper, we test its validity by replacing
the random generation step of both Opt-aiNET and SawTooth algorithms which
we will briefly introduce to give better understanding in Sects. 4.1 and 4.2.

3 Grid Diversity Operator (GDO)

The Grid Diversity Operator (GDO) is a novel approach for achieving explo-
ration and exploitation balance through maintaining diversity. It can be defined
as a hybrid, non-niching, population-based, genotype diversity maintaining and
learning technique. Simply put, GDO is a special infusion technique for initializ-
ing new individuals that are inserted into a population after a certain number of
generations. Instead of randomly initializing individuals over the whole domain,
GDO tries to initialize them in unexplored locations. A memory archive is used
to store information collected throughout the run regarding the distribution of
the individuals, and is used to infer rarely visited locations.

The basic idea behind GDO is to split the feasible space (the domain) into
smaller sub-spaces using the grid size parameter Gsz ∈ �n, which defines the
number of intervals per dimension, where n is the number of dimensions for the
problem. This process will form a 2D grid for 2-dimensional problem, 3D grid
for a 3-dimension problem, and so on as demonstrated in Fig. 1. The GDO will
then try to distribute new individuals into the grid slots that have received fewer
visits over time, thus increasing the explorative power of the algorithm.

First, a memory archive is initialized as an empty dictionary that has n
component keys, where each of them matches a single value. The keys refer to
the indices of a slot within the grid, while the value represents the number of
individuals that have previously been placed in this slot. The memory archive
is designed in this manner for efficiency: as most of initialized memory will be

Validating the Grid Diversity Operator 15

Fig. 1. Examples of grid for 2-dimensional and 3-dimensional problems

sparse, by using the dictionary only visited locations are stored, and therefore
the use of memory is efficient regardless of problem dimensionality.

An example of the memory archive is shown in Table 1 that represent a
sample of a memory archive with two entries for a 10-dimensional problem.

Table 1. Example of memory archive for 10-dimensional problem

Slot Dictionary key (dimensions indexes) N (value)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

1 5 2 1 4 3 1 5 2 8 1 7

2 7 3 4 1 3 6 3 2 5 3 4

For the first entry, the slot located at key < 5, 2, 1, 4, 3, 1, 5, 2, 8, 1 > has
been assigned a value of 7, indicating that 7 solutions have appeared in this slot
during the run so far. The slot located at key < 7, 3, 4, 1, 3, 6, 3, 2, 5, 3 > has been
assigned a value of 4 indicating 4 solutions visited this slot. For each iteration in
the containing algorithm, every new individual is processed to identify its slot
to update the memory archive. For each individual being processed, if there is
an entry in the archive with a key that matches the identified slot, the value
corresponding to this entry is increased by one. Otherwise, a new entry is added
to the archive with a value of 1. The process of updating the memory archive is
demonstrated in Listing 1.

After processing all individuals, the updated archive is used to initialize new
individuals. For each new individual required, we pick a slot S(d1,d2,...,dn) at
random and calculate its distribution probability P according to Eq. 1.

P = e(−N) (1)

16 A. Salah et al.

Listing 1. GDO Update Archive Method
Input: MemoryArchive, Individuals, Resolution
Output: MemoryArchive

for Individuali ∈ Individuals do
Key ← FindSlot(Individuali)
if KeyExist(MemoryArchive,Key) then

IncreaseValue(MemoryArchive,Key,1)
else

AddKey(MemoryArchive,Key)
SetValue(MemoryArchive,Key,1)

end if
end for
Return (MemoryArchive)

where N is the value matching the slot key in the archive or zero if the
slot does not yet belong to the archive. Finally, the calculated probability P is
compared to the probability threshold parameter of the algorithm, Pth, and if
P > Pth then a new individual is initialized randomly in this specific slot. If not,
another slot is picked at random, and the steps are repeated until the individual
is initialized successfully. The Grid Diversity Operator, GDO, is described in
Listing 2.

Listing 2. Grid Diversity Operator
Input: MemoryArchive,Nnew,Gsz,Pth
Output: Snew

Snew ← ∅
for i = 1 to Nnew do

distributed ← FALSE
while ¬ distributed do

Key ← PickSlotAtRandom(Gsz)
if KeyExist(MemoryArchive,Key) then

V ← GetValueOfKey(MemoryArchive,Key)

P ← e−V

else
P ← 1

end if
if P > Pth then

Individual ← CreateNewIndividualInSlot(Key)
InsertIndividual(Snew,Individual)
distributed ← TRUE

end if
end while

end for
Return (Snew)

The process of updating the memory archive and distributing new individuals
continues until the algorithm terminates, at which point the final population is
expected to be more diverse than simply using a random initialisation procedure.

4 Selected Infusion-Supported Algorithms for
Experimentation

To assess the performance of the proposed Grid Diversity Operator (GDO), we
incorporate it within two algorithms from the literature that feature a distinct

Validating the Grid Diversity Operator 17

diversity maintenance mechanism. The first of the two is the artificial immune
algorithm opt-ainet [11] and the other one is the sawtooth genetic algorithm [14].

4.1 Opt-aiNET Algorithm

Opt-aiNET, proposed in [11], is a well-known Artificial Immune System opti-
mization algorithm. Opt-aiNET evolves a population that consists of a network
of candidate solutions to the function being optimised known as antibodies.
These undergo a process of evaluation against the objective function, clonal
expansion, mutation, selection and interaction between themselves resulting in a
population of dynamically changing size. Overtime, Opt-aiNET creates a mem-
ory set of antibodies that represent the best candidate solutions to the objective
function. One of the main features of opt-ainet algorithm is that it has a defined,
separated, diversity mechanism that injects a small number of new randomly cre-
ated solutions into the population following each cycle of clonal expansion and
mutation (the AppendNewRandomCells() shown in the bottom of Listing 3). This
diversity-maintaining step makes it an ideal candidate for GDO injection.

Listing 3. Opt-aiNET Algorithm
Input: Initialsize,Nclones, Suppth,Errth,Mutationpar,Divratio
Output: Population

Population ← ∅
AppendNewRandomCells(Population,Initialsize)
while ¬ StopCondition() do

EvaluateCells(Population)
Clones ← CloneCells(Population,Nclones,Errth)
MutatedClones ← HypermutateClones(Clones,Mutationpar)
EvaluateCells(MutatedClones)
for Celli ∈ Population do

BestClone ← GetBestClonePerCell(MutatedClones,i)
if F(BestClone) < F(Population[i]) then

Population[i] ← BestClone
end if

end for
SupressLowAffinityCells(Population, Suppth)
AppendNewRandomCells(Population,Divratio)

end while
Return (Population)

Most of the parameters of opt-ainet were set as suggested by the authors of
the algorithm [11]. We set the number of clones per cell Nclones = 10, suppression
threshold Suppth = 0.2, error threshold Errth = 0.001, mutation parameter μ =
100 and diversity ratio Drate = 40 %. The only change was the value of initial
population size which we set to 50 instead of the suggested value of 20. This
change was important to help the algorithm with high dimensional problems
and has been applied to all opt-ainet versions whether injected with GDO or
not.

18 A. Salah et al.

4.2 SawTooth Algorithm

The SawTooth Genetic Algorithm [14] is an algorithm that follows a sawtooth
scheme defined by population size mean n̄, an amplitude D and period of varia-
tion T in order to balance periods of exploration and exploitation. During every
period, the population size decreases linearly. At the start of the next period, a
population re-initialization occurs by appending randomly generated individuals
to the population as shown in Listing 4. To achieve variable sized population,
the population size is calculated every generation according to Eq. 2 below.

n(t) = int
{

n̄ + D − 2D

T − 1

[
t − T · int(

t − 1
T

) − 1
]}

(2)

where int(·) is the floor function. The authors suggested a range for the
optimum values of the T and D parameters of the sawtooth based on experi-
mentation. The optimum normalized amplitude D/n̄ being from 0.9 to 0.96 and
the optimum normalized period ranging from T/n̄ = 0.5 to 0.7. In this paper,
we choose n̄ = 80, T = 50, D = 75 and these values complies with the ranges
suggested by the algorithm authors. We also set the initial population size to
200, crossover rate to 0.7 and mutation rate to 0.95.

Listing 4. SawTooth Algorithm
Input: Populationsize,CrossOverrate,Mutationrate, n̄,D,T
Output: Population

t ← 0
Population ← InitializePopulation(Populationsize)
EvaluatePopulation(Population)
while ¬ StopCondition() do

t ← t + 1
n(t) ← CalculateNextPopulationSize(n̄,D,T,t)
if mod(t,T) = 0 then

NewIndividuals ← InitializePopulation(2 ∗ D)
InsertIndividuals(Population,NewIndividuals)

end if
NextPopulation ← ∅
for i = 1 to n(t) by 2 do

[P1,P2] ← SelectParents()
[C1,C2] ← CrossOver(P1,P2,CrossOverrate)
Mutate(C1,Mutationrate), Evaluate(C1)
Mutate(C2,Mutationrate), Evaluate(C2)
[B1,B2] ← SelectBestTwoIndividuals([P1,P2,C1,C2])
InsertIndividuals(NextPopulation, [B1,B2])

end for
Population ← NextPopulation

end while
Return (Population)

5 Experimental Protocol

The aim of the experiments is to assess if the performance of both algorithms
introduced above improves when injected with GDO in order to determine
whether GDO can help in achieving better quality solutions.

Validating the Grid Diversity Operator 19

In addition, since GDO introduces two parameters – grid size Gsz and prob-
ability threshold Pth, we investigate settings for each parameter in a brief empir-
ical investigation. For the grid size parameter, Gsz, the chosen values were
(100, 500, 1000) while for the probability threshold Pth the values were (0.01,
0.10, 0.20). Thus, nine configurations of GDO are tested in an attempt to find
the most successful configuration as shown in Table 2.

Table 2. Configuration code names and parameter values

GDO-1 GDO-2 GDO-3 GDO-4 GDO-5 GDO-6 GDO-7 GDO-8 GDO-9 GDO-free

Gsz 100 100 100 500 500 500 1000 1000 1000 N/A

Pth 0.01 0.10 0.20 0.01 0.10 0.20 0.01 0.10 0.20 N/A

The experimental tests are performed using opt-ainet and sawtooth algo-
rithms on a set of benchmark problems from the CEC 2014 benchmark suite
[15]. The selected problems (F4 through F16) are multimodal problems where
many of which have huge numbers of local optima that make the assessment
process challenging. The rest of the problems from the suite (three unimodal
functions F1–F3 and 14 hybrid/composite functions F17–F30) are interesting as
well but have different features and therefore were not selected.

Following the evaluation criteria defined in CEC 2014 benchmark suite [15],
both algorithms with and without GDO (including the nine GDO configurations)
will be tested against the 13 problems in 2, 10 and 30 dimensional space. For
every function, each algorithm/configuration is run 25 times with a maximum
number of function evaluations equal to (MaxFES) of 10, 000 ∗ D where D is the
number of dimensions. Therefore, MaxFES is 20,000 for two dimensions, 100,000
for 10 dimensions and 300,000 for 30 dimensions. The best quality solution is
noted for each run, along with the number of function evaluations at which the
best solution is found: if this is less than MaxFES this indicates stagnation of the
algorithm. A detailed statistical analysis is conducted to assess the results.

6 Results and Discussion

Due to space limitations, it is not possible to provide detailed tables for the
results of all experiments with 39 test cases (13 problems over three different
dimensions) for both algorithms with 10 configurations each — a total of 780
results. In an attempt to summarize the data, we count the number of problem
instances in which a GDO configuration outperforms the corresponding GDO-
free algorithm. Table 3 displays this information for the nine GDO configurations
used within the two algorithms over the three different dimensions for the bench-
mark problems. For instance, the first entry denotes that opt-ainet injected with
GDO-1 outperformed GDO-free opt-ainet in 5 problems out of 13 instances with
respect to solution quality (while in the remaining 8 problems either GDO-free
was better or there were no significant difference). Two observations are clear

20 A. Salah et al.

from Table 3. Firstly, the number of instances in which GDO outperforms GDO-
free increases as the dimensionality of the instances increases, i.e., its benefit
increases with dimensionality. Secondly, the GDO-9 configuration performs best
out of the 9 different parameterisations, when considered across all problem
dimensions.

Table 3. Number of functions (out of 13) where a GDO configuration achieves better
quality solutions than GDO-free

Config. Dimension Dimension

[Opt-aiNET] [SawTooth]

2 10 30 2 10 30

GDO-1 5 8 12 7 7 11

GDO-2 8 8 11 9 8 12

GDO-3 6 8 11 9 9 8

GDO-4 5 6 10 6 10 11

GDO-5 8 7 10 5 10 9

GDO-6 9 8 10 8 9 9

GDO-7 8 5 12 7 9 10

GDO-8 9 6 11 7 5 10

GDO-9 10 9 12 9 9 10

Since the algorithm/configuration that optimises both objectives (minimises
convergence speed and minimises summed fitness) is always considered more
successful, additionally we provide graphs that summarise the results concerning
both solution quality and convergence speed.

Figures (2-7) summarise the results where every graph contains the result of
9 GDO configurations and one without GDO injection (GDO-free) for a specific
algorithm and problem dimensionality. The different configurations are distrib-
uted on the graph’s horizontal axes. The bars on top denote the sum of the
normalized fitness for the configuration over the 13 problem instances; simi-
larly, the bars on the bottom refer to the sum of the normalized of number of
evaluations used before algorithm termination. Error bars are provided as an
indication of difference in means between configurations for both quality (top)
and efficiency (bottom).

Beginning with the optainet algorithm results, we see in Fig. 2 that all GDO-
injected configurations of opt-ainet for two-dimensional problems outperform
the GDO-free version with respect to solution quality. However, all the GDO
configurations use more evaluation cycles than the GDO-free version. For the ten-
dimensional tests, Fig. 3 shows that 7 out of 9 of the GDO configurations of opt-
ainet — all but GDO-7 and GDO-8 — surpasses the GDO-free version in terms
of solution quality. In this case, GDO-4,GDO-5, and GDO-8 configurations used
less number of function evaluations than the GDO-free version while GDO-1,
GDO-3, GDO-6 were similar to GDO-free and the rest were the worst. Figure 4

Validating the Grid Diversity Operator 21

Fig. 2. Opt-aiNET (2 Dimensions) Fig. 3. Opt-aiNET (10 Dimensions)

Fig. 4. Opt-aiNET (30 Dimensions) Fig. 5. Sawtooth (2 Dimensions)

Fig. 6. Sawtooth (10 Dimensions) Fig. 7. Sawtooth (30 Dimensions)

22 A. Salah et al.

shows the results for the 30-dimensional tests where we see that all instances
of GDO configured opt-ainet algorithm were able to achieve better results than
GDO-free opt-ainet, while all GDO configurations have utilised more function
evaluations than GDO-free.

The sawtooth algorithm for two-dimensional problems results (Fig. 5) shows
that only the GDO-5 configuration failed to achieve better quality solutions than
GDO-free sawtooth. In this case, GDO-2, GDO-7 and GDO-9 configurations
shown faster convergence while the rest were the worst with respect to num-
ber of evaluations used. The results of the ten-dimensional sawtooth tests are
shown in Fig. 6 were seven GDO-injected sawtooth algorithm instances outper-
form the GDO-free version for quality. However, all GDO versions utilise more
evaluation cycles in this case. Finally, for the 30-dimensional tests, the results
in Fig. 7 shows that all GDO instances outperformed the GDO-free version with
respect to solution quality while GDO configurations (GDO-1, GDO-3, GDO-5
and GDO-7) shown better utilisation to their allowance of function evaluations
than GDO-free version of sawtooth.

It is interesting to note that some GDO configurations are able to achieve
better results with fewer evaluations than GDO-free, e.g. in Figs 3, 5 and 7.
However, these are exceptions: in general, the GDO configurations utilise more
function evaluations than the GDO-free configurations for both opt-ainet and
sawtooth algorithms due to the additional exploration ability facilitated by the
GDO operator.

In summary, in terms of solution quality, the majority of GDO configu-
rations provide an improvement in all the six experiments defined by (algo-
rithm/dimensionality). Out of them we note GDO-9 which performed better
than the rest of the configurations in three instances as shown in Figs 2, 3 and 5
followed by GDO-2 as a second best beating all configurations in two other
instances as shown in Figs 4 and 7. The benefit increases with dimensionality,
with GDO-9 winning 12/13 instances when used with opt-ainet, and 10/13 cases
when used with the saw-tooth algorithm for 30 dimensions problems according
to Table 3. To further demonstrate the performance of GDO-9 configuration,
Tables 4 and 5 shows the median for all the runs over the 13 functions using
the algorithms opt-ainet and sawtooth respectively. Comparing the results of
GDO-free in both tables we can see that sawtooth capable of achieving better
results than opt-ainet for all problems especially in higher dimensions where
opt-ainet tends to diverge notably with functions 4 and 15. For function 15, and
while GDO-9 helped sawtooth to make significant improvements for the same
function for all dimensions, GDO-9 help for opt-ainet was much more important
and the performance drastically improved over the poor results of GDO-free
opt-ainet especially in 10 and 30 dimensions.

With respect to number of evaluations, it is clear that most GDO-injected
algorithms require more function evaluations to converge than the GDO-free
version of the algorithm. Recall that each algorithm is given a fixed number of
function evaluations (MaxFES), but terminates before this in case of no improve-
ment which in many cases reflect being stuck in a local optima. This is clearly

Validating the Grid Diversity Operator 23

Table 4. Median of Opt-aiNET algorithm results: GDO-free against GDO-9 over the
3 dimensions for the 13 functions

Fn Dimension [GDO-free] Dimension [GDO-9]

2 10 30 2 10 30

4 400.4180170 15076.92619 41522.53368 400.0067050 1382.623949 25880.42417

5 510.1203580 520.2005640 520.6004260 504.8840650 520.0004160 520.2967840

6 601.0638150 617.8945810 650.5898950 600.3518890 611.1999250 643.6837470

7 713.9159790 1404.468688 2867.517032 700.1278140 806.8315380 1676.329282

8 802.0770040 1012.395469 1285.506462 800.3384240 894.4034050 1244.529391

9 901.2102780 1154.560341 1436.587623 901.8637690 1000.095998 1437.381565

10 1092.261931 4307.027543 10982.91621 1014.131418 2713.651994 9295.601940

11 1222.144605 4525.313885 13180.02786 1114.076847 3326.207438 9469.204918

12 1200.005679 1202.956275 1206.578518 1200.004737 1201.733634 1203.362254

13 1301.264216 1307.748503 1309.748985 1300.567841 1303.354419 1308.982133

14 1400.341883 1612.230827 1783.065834 1400.100778 1435.029170 1728.472052

15 1500.167713 3556487.517 98467228.88 1500.048914 4426.678862 7485.869758

16 1600.156432 1604.219537 1614.369001 1600.156378 1603.941531 1613.563775

Table 5. Median of SawTooth algorithm results: GDO-free against GDO-9 over the 3
dimensions for the 13 functions

Fn Dimension [GDO-free] Dimension [GDO-9]

2 10 30 2 10 30

4 400.0142740 727.9746490 9170.752282 400.0065010 651.3681520 8160.968453

5 507.9617110 520.0003550 520.0021610 514.0684370 520.0002660 520.0022920

6 600.1977440 611.0157390 641.2174190 600.1320940 610.4406700 639.3822960

7 700.9761200 759.2174120 1189.677979 700.2440890 769.6810190 1157.155085

8 800.0000000 838.8033260 944.6040920 800.9949590 827.8587750 946.8881300

9 901.9899180 941.7881410 1094.533675 900.9949590 950.7426880 1093.022542

10 1000.312173 1140.325716 4056.051603 1000.312173 1269.169192 3983.343406

11 1218.438335 2277.064899 5145.395051 1218.438335 2454.652439 5542.767461

12 1200.000579 1200.698797 1201.134650 1200.000604 1200.664882 1201.048815

13 1300.062153 1303.208397 1305.765346 1300.018911 1303.365590 1306.059232

14 1400.004992 1404.043086 1570.808730 1400.125393 1405.069313 1567.143899

15 1500.090571 1952.314124 2576.155155 1500.019729 1948.094013 2391.734321

16 1600.356445 1603.382337 1612.343996 1600.074448 1603.331906 1612.063572

observed in Figs 2 and 4 that show that the GDO-free algorithms stagnates
early, therefore recording a low number of function evaluations, but has the
worst solutions from the quality perspective. The larger number of evaluations
used by GDO in the majority of experiments reflects the extra effort used by the
operator to continue searching in novel parts of the solution space, therefore
using the allowed budget of evaluations to avoid convergence to local optima.
Thus in general GDO facilitates longer running times, leading to improved solu-
tion quality, though clearly there is computational cost to this in terms of utilised
CPU time.

24 A. Salah et al.

6.1 Statistical Analysis

Although the graphical summaries given above provide some insight and intu-
ition regarding GDO performance, a proper statistical analysis is required to
justify any claims. The statistical analysis in this section addresses the following
questions:

– Does GDO injection helps improve solution quality when compared to the
equivalent GDO-free algorithm?

– Which GDO configuration (from the proposed nine configurations) shows the
best performance in terms of solution quality?

Since we have two algorithms, each with 10 possible configurations (9 GDO, 1
GDO-free) and each is tested against 13 problems in each of three different
dimensions, there are 780 datasets. Each dataset contains the results of running
a specific algorithm/configuration on a specific problem and specific dimension
25 times.

Before conducting any statistical analysis of the results, we utilise a Shapiro-
Wilk normality test (with a level of significance of α = 0.05) to determine
with the datasets follow a normal distribution in order to identify appropriate
statistical tests. The samples in 194 groups out of 780 were found to appear
normally distributed while 586 groups were not and therefore non-parametric
tests are used.

We used the non-parametric MannWhitney U test (with a level of significance
of α = 0.05) to test for difference in means and Table 6 shows the number
of cases (out of 78) where a GDO configuration outperformed GDO-free and
those where GDO-free dominated. The test shows that if there is a statistically
difference in solution mean between GDO-injected and GDO-free algorithm,
then the probability that the GDO-injected algorithm will lead to better quality
solutions is twice that of the GDO-free one: the final row of Table 6 shows that
GDO configurations are better in 158 cases, as opposed to 75 for the GDO-
free. In addition, the results for the GDO-9 configuration across all experiments
appear to be statistically better with respect to solution quality than any other
GDO configuration when compared to GDO-free algorithms results. As shown
in Table 6, the probability that GDO-9 will likely have better quality solutions
is three times that of the GDO-free algorithm.

Table 6. MannWhitney U test results (aggregated)

Config GDO-1 GDO-2 GDO-3 GDO-4 GDO-5 GDO-6 GDO-7 GDO-8 GDO-9 Total

Better 14 18 15 19 17 22 16 19 18 158

Worse 9 9 9 9 9 9 8 7 6 75

Validating the Grid Diversity Operator 25

7 Conclusion

Diversity control methods for search algorithms fall into three classes: diversity
maintenance, diversity learning and diversity control. We have described a new
operator, GDO, that directs exploration into previously unvisited areas of the
search space. While mainly falling into the class of diversity maintenance algo-
rithms, it also draws inspiration from diversity learning methods in making use
of historical information from the evolution process.

The GDO operator was shown to achieve effective exploration through testing
on the benchmark problems when incorporated within opt-ainet and sawtooth
algorithms. When compared to the GDO-free versions of the algorithms, it was
shown that GDO can significantly help a supported algorithm to achieve better
quality solutions in most cases. Importantly, Table 3 showed that the benefit of
the GDO operator increases as the dimensionality of the problems increases. It
was noticeable however that GDO-injected algorithms tend to use more function
evaluation cycles than the GDO-free versions, i.e. does not stagnate prematurely.
GDO forces the algorithm to explore more of the space thus using more evalu-
ations while exploring but without preventing the algorithm’s internal exploita-
tion method from finding improved solutions. This added exploration ability
helps the injected algorithm to both escape local optima and to achieve better
solutions.

Within the current implementation, the grid size is fixed for all dimensions
such that setting the grid size parameter Gsz = 100 in three-dimensional prob-
lem will correspond to a grid resolution of 100×100×100. There is no obligation
to set the grid resolution equally for all dimensions and in fact, it may be better
to set different values depending on the dimensionality of the problems. In this
paper, we empirically studied the values of grid size and probability threshold
parameters of GDO by selecting three appropriate values for each. Although the
nine proposed configurations of GDO (each with different parameters values)
behaved differently, certain configurations were found able to offer the best pos-
sible performance across the tests, in particular the GDO-9 configuration where
Gsz = 1000 and Pth = 0.20. The GDO-9 configuration was able to outperform
GDO-free in all cases as shown in Figs 2–7 and all other GDO configurations as
well in three cases as shown in Figs 2, 3 and 5. In addition, the statistical analysis
conducted in this paper confirmed GDO-9’s superiority. However, by incorpo-
rating feedback from search process it seems clear that this could be achieved
autonomously, so that both parameters in fact could adapt over a single run to
achieve better performance. We aim to address this issue in future work.

References

1. Soza, C., Becerra, R.L., Riff, M.C., Coello Coello, C.A.: Solving timetabling prob-
lems using a cultural algorithm. Appl. Soft Comput. 11(1), 337–344 (2011)

2. Salah, A., Hart, E.: Grid diversity operator for some population-based optimization
algorithms. In: Proceedings of the Companion Publication of the 2015 on Genetic
and Evolutionary Computation Conference, pp. 1475–1476. ACM (2015)

26 A. Salah et al.

3. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, New York (1996)

4. Črepinšek, M., Liu, S., Mernik, M.: Exploration and exploitation in evolutionary
algorithms. ACM Comput. Surv. 45(3), 1–33 (2013)

5. Li, Z., Wang, X.: Chaotic differential evolution algorithm for solving constrained
optimization problems. Inf. Technol. J. 10, 2378–2384 (2011)

6. Grefenstette, J.J.: Genetic Algorithms for Changing Environments. Elsevier, Ams-
terdam (1992)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the
effects of variable population size and reinitialization to enhance performance.
IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

9. Leung, S.W., Yuen, S.Y., Chow, C.K.: Parameter control by the entire search his-
tory: case study of history-driven evolutionary algorithm. In: 2010 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8, July 2010

10. Amor, H.B., Rettinger, A.: Intelligent exploration for genetic algorithms: using self-
organizing maps in evolutionary computation. In: Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1531–
1538. ACM, New York (2005)

11. de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function
optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation,
2002. CEC 2002, vol. 1, pp. 699–704 (2002)

12. Andrews, P.S., Timmis, J.: On diversity and artificial immune systems: incorpo-
rating a diversity operator into aiNet. In: Apolloni, B., Marinaro, M., Nicosia, G.,
Tagliaferri, R. (eds.) WIRN 2005 and NAIS 2005. LNCS, vol. 3931, pp. 293–306.
Springer, Heidelberg (2006)

13. De França, F.O., Coelho, G.P., Zuben, V., F.J.: On the diversity mechanisms of
opt-aiNet: a comparative study with fitness sharing. In: IEEE World Congress
on Computational Intelligence, WCCI 2010–2010 IEEE Congress on Evolutionary
Computation, CEC 2010 (2010)

14. Koumousis, V., Katsaras, C.: A Saw-tooth genetic algorithm combining the effects
of variable population size and reinitialization to enhance performance. IEEE
Trans. Evol. Comput. 10(1), 19–28 (2006)

15. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria
for the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Technical report, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China, December 2013

Benchmarking Languages for Evolutionary
Algorithms

J.J. Merelo1(B), Pedro Castillo1, Israel Blancas1, Gustavo Romero1,
Pablo Garćıa-Sanchez1, Antonio Fernández-Ares1, Vı́ctor Rivas2,

and Mario Garćıa-Valdez3

1 Department of Computer Architecture and Technlogy and CITIC,
University of Granada, Granada, Spain

jmerelo@geneura.ugr.es
2 Department of Informatics, University of Jaén, Jaén, Spain

3 Instituto Politécnico de Tijuana, Tijuana, Mexico
http://citic.ugr.es

Abstract. Although performance is important, several other issues
should be taken into account when choosing a particular language for
implementing an evolutionary algorithm, such as the fact that the speed
of different languages when carrying out an operation will depend on
several factors, including the size of the operands, the version of the
language and underlying factors such as the operating system. However,
it is usual to rely on compiled languages, namely Java or C/C++, for
carrying out any implementation without considering other languages
or rejecting them outright on the basis of performance. Since there are
a myriad of languages nowadays, it is interesting however to measure
their speed when performing operations that are usual in evolutionary
algorithms. That is why in this paper we have chosen three evolutionary
algorithm operations: bitflip mutation, crossover and the fitness func-
tion OneMax evaluation, and measured the speed for several popular,
and some not so popular, languages. Our measures confirm that, in fact,
Java, C and C++ not only are the fastest, but also have a behaviour
that is independent of the size of the chromosome. However, we have
found other compiled language such as Go or interpreted languages such
as Python to be fast enough for most purposes. Besides, these experi-
ments show which of these measures are, in fact, the best for choosing
an implementation language based on its performance.

1 Introduction

It is usual in soft computing to try and use languages such as C++ or Java with
the rationale that they are the fastest tools available for the kind of algorithms
and problems that are solved by them. However, while there are benchmarks
available for the languages at large and they have been tested in a variety of
environments, it remains to be seen how fast are these languages at the tasks
that are done usually by evolutionary algorithms.

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 27–41, 2016.
DOI: 10.1007/978-3-319-31153-1 3

28 J.J. Merelo et al.

Let us emphasize that running speed is not everything. In many cases, ease of
integration with existing or legacy tools, coding speed or availability of parallel
or distributed frameworks are much more important than how fast a single CPU
program runs. There are also restrictions inherent to the application at hand,
such as embedded or web based systems where certain languages must be used.
However, in some cases, mainly when the size of the problem or the running time
of the algorithm call for the maximum running speed available, it is interesting
at least to know which languages can be used to obtain the best performance.

In this case it is quite clear that efficiency matters, as said in [1]. And, as
a matter of fact, in general and restricting the concept of speed to speed of the
compiled/interpreted application it might be the case that some languages are
faster to others, as evidenced by benchmarks such as [2,3]. Taken in general or
even restricting it to some particular set of problems such as floating point com-
putation, some compiled languages tend to be faster than interpreted languages.

But, in the same spirit of the There is no free lunch theorem [4] we can affirm
there is a no fast lunch theorem for the implementation of evolutionary optimiza-
tion, in the sense that, while there are particular languages that might be the
fastest for particular problem sizes and specially fitness functions, these two con-
straints cannot be disregarded, and, specially, for non-trivial problem sizes and
limiting ourselves to the realm of evolutionary algorithm operators, some inter-
preted and unpopular languages such as awk can be the fastest option available
for evolving particular data structures such as regular expressions [5]. Besides,
benchmarks should include a wide variety of sizes, because the time needed to
perform particular operations does not always depends linearly on size, as per-
formance is also affected by technical details for instance the implementation of
loops and memory management.

For the purposes of this paper, we will try to be more extensive on the
number of languages tested than on the number of operations. In general, evolu-
tionary algorithms use fitness functions that can have any size and shape, so it
is not easy to cover them all and further characterization might be needed. We
are going to focus on combinatorial optimization problems, which are usually
represented using bit strings and the two most characteristics operators: muta-
tion and crossover. Besides, a fitness function usually employed as a baseline for
evolutionary algorithms will be used: OneMax.

In general, programs do not spend the majority of the time applying them;
this place in the ranking rather goes to selection operators and other higher-
level, population-handling ones, as well as usually the fitness function. However,
these functions are well covered by usual benchmarks so you can usually rely on
any of them for choosing a language to implement your evolutionary algorithm.
This makes the scope or interest of this paper certainly restricted to the set of
problems in which classical bit-wise operations are performed and where fitness
does not take most of the time: Testing new operators or implementing parallel
or other kind of algorithms on functions such as HIFF, OneMax or Royal Road.

Finally, our intention is not so much to choose the winner of the compe-
tition of fastest language for evolutionary algorithms as much as to check the

Benchmarking Languages for Evolutionary Algorithms 29

variety of speeds available and to know what order of magnitude these differ-
ences are. This work can be used to aid in making the decision of a language
for implementing an evolutionary algorithm, or at least to justify the choice of
non-mainstream languages such as Python, Lua, JavaScript or Go, which, in
fact, do reach interesting performance marks.

Coming up next, we will present the state of the art of the analysis of evo-
lutionary algorithm implementations. Next we will present in Sect. 3 the tests
we have used for this paper and its rationale along with the languages we have
chosen for carrying them out. Finally, in Sect. 4 we will present the results of
measuring the performance of eleven languages running some widely used evo-
lutionary algorithm operators and functions mutation, crossover and OneMax.
Finally, we will draw the conclusions and present future lines of work.

2 State of the Art

In fact, the examination of the running time of an evolutionary algorithm has
received some attention from early on. Implementation matters [6,7], which
implies that paying attention to the particular way an algorithm is implemented
might result in speed improvements that outclass those achieved by using the a
priori fastest language available. In fact, careful coding and choosing the right
tools [8,9] in interpreted languages can make them as fast, or even faster, than
compiled languages such as Java.

However, most papers devoted to the implementation of evolutionary
algorithms in languages other than C or Java try to prove that, for the par-
ticular type of problems used in scientific computing in general, the running
speed is not as important as coding speed or even learning speed, since most
scientific programs are, in fact, run a few times while a lot of time is spent
on coding them. That is why expressive languages such as Perl, JavaScript or
Python are, in many cases, superior to these fast-to-run languages.

Even so and when speed matters, the benchmarks performed in those papers
were restricted to particular problem sizes and to very specific languages. They
also test a single language for the whole evolutionary algorithm; however, it
might happen that, since different operations are involved, the ranking varies
depending on the operation and on the size. This can be of special interest in
environments such as the Kappa architecture [10] or web-services based frame-
works [11,12] where different parts of an application might be written in dif-
ferent languages. An advantage of these loosely connected systems is that they
might change the language used for a particular operation if they encounter
performance issues, as opposed to monolithic architectures written in a single
language.

This is, as a matter of fact, the state of the art such as we have found them.
That is why we think it is important to take real measures so that decisions on
implementation are based on facts strictly related to evolutionary algorithms,
instead of relying on common lore.

Next we will explain the operations used for the benchmark and how they
have been tested.

30 J.J. Merelo et al.

3 Experimental Setup

First, a particular problem was chosen for testing different languages and also
data representations: performing bit-flip mutation on a binary string. In fact, this
is not usually the part of the program an evolutionary algorithm spends the most
time in [7]. In general, that is the fitness function, and then reproduction-related
functions: chromosome ranking, for instance. However, mutation is an operation
that is performed quite frequently and sometimes once for every newly gener-
ated individual; it is also quintessential to the algorithm itself and one of the
pillars of the canonical genetic algorithm, so it allows the comparison of the dif-
ferent languages in the proper context. Crossover is also part of that canonical
algorithm, and MaxOnes or Count-Ones or OneMax is a fitness function fre-
quently used as baseline for comparison of evolutionary algorithms.

In this section we will outline first the specifics of the implementation and the
rationale behind them in subsection 3.1, to proceed to outline the different data
structures that have been used here in subsection 3.2 to finally present the different
languages that have been tested and the peculiarities of its implementation 3.3.

3.1 Functions and Operators Included in the Benchmark

Essentially, mutation is performed by

1. Generating a random integer from 0 to the length of the chromosome.
2. Choosing the bit in that position and flipping it
3. Building a chromosome with the value of that bit changed.

These operations deal mostly with random number generation and then list,
string or vector processing. In general, copying and creating strings could depend
on the length, but its implementation might vary from one language to another.

The next operation, two-point crossover is performed as follows:

– Generating two random integers with a range from 0 to the length of the
chromosomes.

– Building two new chromosomes including the original from position 0 to the
first point, interchanged bits from the first point to the second, and the original
ones from the second position to the end of the strings.

A priori this operation seems quite similar to the first one. However, it
involves copying of strings, an operation that will scale in a different way than
simply running over a string and modifying one bit.

Finally, OneMax follows this procedure

– Generate a random string.
– Run over the string.
– If the bit is set to one, add one to a counter.
– Return the counter.

Benchmarking Languages for Evolutionary Algorithms 31

Despite its apparent simplicity, counting the number of ones in a string is
an extremely complicated operation, which is in fact used by human resources
teams to examine the prowess of candidates in the creation of algorithms and
in the knowledge of a language. The straightforward way of carrying it out is
using a loop that looks, one by one, at the bits in the string and adds 1 to the
counter. However, in most cases that might not be the fastest way. At any rate,
this fitness function is quite similar to others that decode the bits of a binary
chromosome and, even if it is quite clearly not the only existent fitness function,
it is one that is widely used in evolutionary algorithms and whose speed can be
applied to other similar functions.

Being as it is a loop, we should expect that the time needed would grow
linearly with the chromosome size. We will check whether this is true or not for
the different languages below.

3.2 Available Data Structures

Chromosomes can be represented in several different ways: an array or vector
of Boolean values, or any other scalar value that can be assimilated to it, or as
a bitstring using generally “1” for true values or “0” for false values. Different
data structures will have an impact on the result, since the operations that are
applied to them are, in many cases, completely different and thus the underlying
implementation is more or less efficient. Besides, languages use different native
data structures to represent this information. In general, it can be divided into
three different fields:

– Strings: representing a set bit by 1 and unset by 0, it is a data structure
present in all languages and simple to use in most.

– Vector of Boolean values: not all languages have a specific primitive type for
the Boolean false and true values; for those who have, sometimes they have
specific implementations that make this data structure the most efficient.

– Bitsets: bits are bits, and you can simply use bits packed into bytes for rep-
resenting chromosomes, with 32 bits packed in a single 4 byte data struc-
ture. Memory-wise the most efficient, without low-level access operators it
can indeed be the slowest, and in any case not too efficient for decoding to
function parameters.

The memory and speed efficiency of these data structures is different, and it
is advisable for anyone implementing an evolutionary algorithm to check all pos-
sible data structures before committing, out of inertia, to the easiest one. Once
again, implementation matters [6,7], and differences in evolutionary algorithm
performance for different data structures can be, indeed, quite big.

Not all data structures, however, are easily available for every language, or
easy to deal with. We will check in the next subsection which ones have been
used in every language.

32 J.J. Merelo et al.

3.3 Languages Tested

Eleven languages have been chosen for performing the benchmark. The primary
reason for choosing these languages was the availability of open source imple-
mentations for the authors, but also we have tried to be inclusive in by consid-
ering languages that represent different philosophies in language design and also
languages traditionally used in the implementation of evolutionary algorithms
together with others that are not so popular. These languages are presented in
the next two subsections.

Table 1. Languages used and file written to carry out the benchmark. No special flags
were used for the interpreter or compiler

Language Version URL Data structures

Scala 2.11.7 https://git.io/benchscl String, Bit Vector

Lua 5.2.3 https://github.com/JJ/LunEO String

Perl v5.20.0 https://git.io/bperl String, Bit Vector

JavaScript node.js 5.0.0 https://git.io/bnode String

Python 2.7.3 https://git.io/vBSYb String

Go go1.2.1 https://github.com/JJ/goEO Bit Vector

Julia 0.2.1 https://github.com/iblancasa/JuliEO Bit Vector

C 4.8.2 http://git.io/v8kvU char string

C++ 4.8.4 http://git.io/v8T57 String

Java 1.8.0 66 http://git.io/v8TdR Bitset

PHP 5.5.9 http://git.io/v8k9g String

Compiled Languages. Compiled languages are represented by Scala, Java, Go,
C and C++. Scala and Java both use Java bytecode and run in the Java Virtual
Machine. Go, C and C++ compile to a binary that runs natively on the target
operating system. Also JavaScript is compiled to native machine code when it
runs in the V8 JavaScript Engine used by both Node.js and Google Chrome
web browser. This list of languages is rather comprehensive, including the most
popular compiled languages in scientific computing as well as two languages that
are emerging in popularity: Go and Scala.

Scala [13] is a strongly-typed functional language that compiles to a Java
Virtual Machine bytecode. Scala is in many cases faster than Java [3] due to its
more efficient implementation of type handling. In this paper, two different rep-
resentations were used in Scala: String and Vector[Boolean]. They both have
the same underlying type, IndexedSeq and in fact the overloading of operators
allows us to use the same syntax independently of the type. The benchmark
is available under a GPL license, at the URL shown in Table 1. As far as we

https://git.io/benchscl
https://github.com/JJ/LunEO
https://git.io/bperl
https://git.io/bnode
https://git.io/vBSYb
https://github.com/JJ/goEO
https://github.com/iblancasa/JuliEO
http://git.io/v8kvU
http://git.io/v8T57
http://git.io/v8TdR
http://git.io/v8k9g

Benchmarking Languages for Evolutionary Algorithms 33

know, there are no evolutionary algorithm frameworks published in Scala; how-
ever, its increasing popularity within the programmer, and, over all, data science
community makes it quite likely to find one in the near future.

Java is probably the most popular language within the evolutionary algo-
rithm community, with several well established free software frameworks avail-
able, such as JCLEC [14] or ECJ [15]. It is a multi-platform language, with
compiled bytecode running in any operating system with a native Java virtual
machine (JVM).

C is still one of the most popular languages, despite being free of the par-
adigms that are so popular nowadays: object orientation or concurrency. It is
not so popular within the EA community, who usually opt for its object-oriented
version, C++, that has representatives such as ParadisEO [16] or MALLBA [17].

Go [18] was a language initially introduced by Google, but that has dug into
the niches that were dominated formerly by C. It is also a compiled language
designed for system programming, and is concurrent.

These four languages will be tested against a set of interpreted languages
described below.

Interpreted Languages. Interpreted languages are represented by Lua, PHP,
Julia, Perl, Python and JavaScript. These include three popular languages, Perl,
Python and JavaScript, Python being also the most popular in the scientific
computing environment, and then three other languages seldom seen in the EC
arena, but popular in their particular niches.

Lua [19] is a popular embedded language designed for easy implementation,
including a minimalist grammar so that its interpreter can be reduced to a
few hundreds of Ks. Indeed, it can be lately found in places such as Game
Engines. There are no known frameworks for EAs written in Lua, although an
evolutionary algorithm that runs in a Canon camera has been found in YouTube.

Perl is an interpreted language that has been used extensively for evolution-
ary algorithms [8,20,21] with satisfactory results, although its main emphasis is
not on speed, but on freedom for the programmer to code using any style and
paradigm. The module and tools ecosystem built around it make it extremely
interesting for any kind of programming. Our implementation of Perl uses dif-
ferent open-source libraries and in some cases also different versions of the lan-
guage. Perl produces new even minor versions every spring, with the current
version being 5.22. Odd minor versions such as 5.23 are considered development
versions, with features that are, later on, implemented on the stable versions of
the language.

JavaScript is an interpreted language that follows an ECMA standard and
with many different implementations, including the different ones embedded in
all internet browsers. Node.js is one such implementation of JavaScript with an
asynchronous input/output loop and designed to run standalone in servers or
the command line. Node.js uses a the V8 JIT compiler to create native machine
code when in reads the script, and has been used lately as part the NodEO

34 J.J. Merelo et al.

library [22] and the volunteer computing framework NodIO [23], as well as other
libraries focused on the browser [24].

PHP is a language that is most commonly known for the creation of web
sites. In fact, it is an interpreted and general-purpose language with emphasis on
string processing. There is no known implementation of evolutionary algorithms
in PHP.

Python is probably the most popular scripting language, head to head with
JavaScript. It is directly supported by major corporations such as Google, and its
different implementations (including one for the Java Virtual Machine, Jython)
make it a very strong contender in the evolutionary algorithm arena. In fact,
several evolutionary algorithm frameworks, such as DEAP [25] use it.

Julia [26] is the last language tested. It is a modern, interpreted and dynamic
language used mainly for technical computing. It cannot be called exactly pop-
ular, but we have included it for completeness, mainly.

The interpreter versions and repositories for these languages are shown in
the Table 1.

3.4 Implementation Notes

When available, open source implementations of the operators and OneMax were
used. In all cases except in Scala, implementation took less than one hour and
was inspired by the initial implementation made in Perl. Adequate data and
control structures were used for running the application, which applies mutation
to a single generated chromosome a hundred thousand times. The length of the
mutated string starts at 16 and is doubled until reaching 215, that is, 32768. This
upper length was chosen to have an ample range, but also so small as to be able
to run the benchmarks within one hour. Results are shown next. In some cases
and when the whole test took less than one hour, length was taken up to 216.

In most cases, and specially in the ones where no implementation was read-
ily available, we wrote small programs with very little overhead that called the
functions directly. That means that using classes, function-call chains, and other
artifacts, will add an overhead to the benchmark; besides, this implies that the
implementation is not exactly the same for all languages. However, this inequal-
ity reflects what would be available for anyone implementing an evolutionary
algorithm and, when we think it might have an influence on the final result, we
will note it.

Every program used also provides native capabilities for measuring time,
using system calls to check the time before and after operations were performed.
This might result in a slightly different behavior, but it is the best system avail-
able, so it is what we used.

All programs produced the same output, a comma separated value of lan-
guage, operand length and time. Results were eventually collated and are avail-
able in the same repository than this paper, together with the code in several
languages that was produced also specially for this.

Benchmarking Languages for Evolutionary Algorithms 35

4 Results and Analysis

We will examine first the performance for the bitflip operation, that is graphed
in Fig. 1.

Fig. 1. Plot of the time needed to perform 100 K mutations in strings with lengths
increasing by a factor of two from 16 to 215. Please note that x and y both have a
logarithmic scale.

We can look at this figure in several ways. First, let us look at the flat lines,
which represent those languages whose speed is independent of the length. These
are C and Java, a fact that can be explained by the fact that the PHP imple-
mentation might, in fact, be very close to that of C. The rest of the languages
are affected by operand length one way or another, but it is interesting to note
that Java and Go are, in fact, faster when the length grows. The rest generally
takes longer to process longer strings, although some languages such as Perl

36 J.J. Merelo et al.

(in a simple implementation that uses the Algorithm::Evolutionary::Simple
library), Lua or Node.js have a flat segment that goes up to considerable lengths.

Please note that, although the fastest in this case are always compiled lan-
guages, PHP is faster than C++ and some languages such as Python faster than
Scala. Perl is the slowest, but the simple implementation beats Scala for non-
trivial lengths of the string. This leads to the blurring the clear-cut distinction
between fast compiled languages and slow scripting languages.

Fig. 2. Plot of time needed to perform 100 K crossover operations in strings with
lengths increasing by a factor of two from 16 to 215. Please note that x and y both
have a logarithmic scale.

This scenario is even more blurred if we look at the measures taken for the
crossover operator in Fig. 2. The fastest overall are Go and, once again, Java,
but the slowest is another compiled language, C++, at least for sizes bigger than
64. The scaling of this performance is similar for C, which becomes the second

Benchmarking Languages for Evolutionary Algorithms 37

Fig. 3. Plot of time needed to perform 100 K OneMax evaluations in strings with
lengths increasing by a factor of two from 16 to 215. Please note that x and y both
have a logarithmic scale.

slowest for sizes bigger than 1024. The Node.js JavaScript interpreter performs
quite consistently and independently of the size, but Perl and PHP are also quite
fast for a significant portion of the size range.

Python, on the other hand, shows in this occasion a behavior that degrades
for the high end of the size range, becoming slower than Lua or any Perl imple-
mentation.

In this case, the underlying operation is string or array copy. Languages such
as Node.js, Perl or PHP whose main focus is in data processing are optimized for
that kind of thing. System-oriented languages such as C or C++, on the other
hand, are not so that they fare much worse in this kind of operation.

If we proceed to the last benchmark, the OneMax function, which is shown
in Fig. 3 we see that the behaviour for all languages except Java is essentially

38 J.J. Merelo et al.

the same, scaling linearly with the chromosome size due to the fact that the only
way of counting ones is to loop over the data structure noting them and adding
one to a counter. C is now the fastest, followed by Node.js, and Lua the slowest,
followed by the implementation of Perl that uses Algorithm::Evolutionary.
However, in the Simple implementation of Perl, performance reached is on a par
with Scala and Go, both compiled languages. In this case we extended, for some
languages, chromosome size up to 216. We did not do it for all languages, since it
took them more than one hour to perform the 100 K function calls. Lua was not
even able to complete them for length = 214. Besides, Lua performance increased
with length faster than the rest of the languages, making it the worst of the set.

We should maybe make some kind of explanation for the speed shown for
Java, which is consistent and shows more or less the same measures when we
run the benchmark repeatedly. We should note here that Java uses a built-in
primitive, cardinality, that measures the number of bits of the set that are,
effectively, set. We fail to understand how the speed increases so much in the
high end of the size range, but it might be due to a change to a more efficient
implementation on the Java side. It is quite clear, however, that using this data
structure and associated operators makes Java stand out among the rest.

After this overview of the results, we will proceed to present the conclusions.

5 Conclusions

Our main intention in this paper was to measure the performance of usual func-
tions found in evolutionary algorithm frameworks: mutation, crossover and One-
Max, for several compiled and interpreted languages with a wide range of use
and popularity within the evolutionary computation and scientific community
and programmers at large.

In general, performance results do not place interpreted and compiled lan-
guages in different categories. The performance of the implementation of a whole
algorithm will depend on the times a particular function is called, and of course
the time it takes to evaluate the fitness function, which is usually the bottleneck
in any evolutionary algorithm. However, for these atomic functions interpreted
and compiled languages go on a par, with no category emerging as a clear win-
ner across all three functions tested. However, Java is almost always among
the fastest across all three functions, together with C or Go. And if there is
one loser, we could say it is Lua, whose performance for OneMax and big sizes
is quite disappointing. However, Lua might be the only option for in-game or
in-web server evolution, the same as Perl, which also acts as the slowest in some
benchmarks and sizes, might be a good option to interface with databases or as
a web server back-end.

Go has also emerged as a very interesting contender in the arena, with very
fast performance for all functions and a graceful degradation with size, even if
the implementation is quite novice and can probably be improved with more
experience in that area. Scala, in that sense, is also a fast alternative to the
more mainstream Java. On the other hand, we do not think that Julia will ever

Benchmarking Languages for Evolutionary Algorithms 39

become popular, since its performance is never the worst, but not very good
either.

Among interpreted languages, Python and the Node.js implementation of
JavaScript offer the best results, although the difference to Perl is not too big
in some benchmarks; besides, PHP, largely not considered a general-purpose
language, is indeed the fastest in some of the tests.

All these tests lead us to the conclusion that there is no type of language
that is superior to all others across all sizes and problems considered, although
if you use Java you will be close to the best or reach the best performance; the
performance of other compiled languages will vary wildly across languages and
functions. There is no free lunch also in the implementation in evolutionary algo-
rithms, and the fact that heterogeneous, asynchronous distributed architectures
are now possible leads us to propose them as an alternative to the single-language
frameworks that are the most usual nowadays.

Future lines of work might include a more extensive measurement of other
operators such as tournament selection and other selection algorithms. A priori,
they are essentially CPU integer operations and their behavior might be, in
principle, very similar to the one shown in these operations. This remains to be
proved, however, but it is left as future line of work.

It would also be interesting to mix and match different languages, choosing
every one for its performance, in a hybrid architecture. Communication might
have some overhead, but it might be offset by performance. Combining some
compiled languages such as Go or C with others characterized by its speed in
some string operations, like Perl or programming ease, might result in the best
of both worlds: performance and rapid prototyping. Creating a whole multi-
language framework along these lines is a challenge that might be interesting in
the future.

Focusing only in the part of measuring algorithms and in the interest of
reproductibility, we intend to create a Docker container with all the tests so
that it can be downloaded and run in any machine, checking for differences in
different underlying architectures.

Acknowledgements. This paper is part of the open science effort at the univer-
sity of Granada. It has been written using knitr, and its source as well as the data
used to create it can be downloaded from the GitHub repository https://github.com/
geneura-papers/2015-ea-languages. It has been supported in part by GeNeura Team.

This work has been supported in part by projects TIN2014-56494-C4-3-P (Span-
ish Ministry of Economy and Competitiveness), SPIP2014-01437 (Dirección General
de Tráfico), PRY142/14 (Fundación Pública Andaluza Centro de Estudios Andaluces
en la IX Convocatoria de Proyectos de Investigación), and project V17-2015 of the
Microprojects program 2015 from CEI BioTIC Granada.

https://github.com/geneura-papers/2015-ea-languages
https://github.com/geneura-papers/2015-ea-languages
http://geneura.wordpress.com

40 J.J. Merelo et al.

References

1. Anderson, E., Tucek, J.: Efficiency matters!. ACM SIGOPS Oper. Syst. Rev. 44(1),
40–45 (2010)

2. Prechelt, L.: An empirical comparison of seven programming languages. Computer
33(10), 23–29 (2000)

3. Fulgham, B., Gouy, I.: The computer language benchmarks game (2010)
4. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE

Trans. Evol. Comput. 1(1), 67–82 (1997)
5. Langdon, W.B., Harrison, A.P.: Evolving regular expressions for genechip probe per-

formance prediction. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 1061–1070. Springer, Heidelberg (2008)

6. Merelo, J.J., Romero, G., Arenas, M.G., Castillo, P.A., Mora, A.M., Laredo, J.L.J.:
Implementation matters: programming best practices for evolutionary algorithms.
In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692,
pp. 333–340. Springer, Heidelberg (2011)

7. Grosan, C., Abraham, A.: Evolutionary algorithms. In: Grosan, C., Abraham, A.
(eds.) Intelligent Systems. ISRL, vol. 17, pp. 345–386. Springer, Heidelberg (2011)

8. Merelo-Guervós, J.J., Castillo, P.A., Alba, E.: Algorithm: Evolutionary, a flexible
Perl module for evolutionary computation. Soft Comput. 14(10), 1091–1109 (2010)

9. Lee, W., Kim, H.Y.: Genetic algorithm implementation in Python. In: Fourth
Annual ACIS International Conference on Computer and Information Science,
2005, pp. 8–11 (2005)

10. Erb, B., Kargl, F.: A conceptual model for event-sourced graph computing. In:
Proceedings of the 9th ACM International Conference on Distributed Event-Based
Systems. DEBS 2015, pp. 352–355. ACM, New York (2015)

11. Garćıa-Sánchez, P., González, J., Castillo, P.A., Merelo, J.J., Mora, A.M., Laredo,
J.L.J., Arenas, M.G.: A distributed service oriented framework for metaheuristics
using a public standard. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G.,
Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 211–222. Springer, Heidelberg
(2010)

12. Garćıa-Sánchez, P., González, J., Castillo, P.A., Garćıa-Arenas, M., Merelo-
Guervós, J.J.: Service oriented evolutionary algorithms. Soft. Comput. 17(6),
1059–1075 (2013)

13. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S.,
Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala
programming language. Technical report, EPFL-Lausanne (2004)

14. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a java
framework for evolutionary computation. Soft. Comput. 12(4), 381–392 (2008)

15. Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Bassett, J., Hubley, R.,
Chircop, A.: ECJ: a Java-based evolutionary computation research system. Down-
loadable versions and documentation can be found at the following (2006). http://
cs.gmu.edu/eclab/projects/ecj

16. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a con-
ceptual unified model for evolutionary multiobjective optimization: ParadisEO-
MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)

17. Alba, E., Almeida, F., Blesa, M.J., Cabeza, J., Cotta, C., Dı́az, M., Dorta, I.,
Gabarró, J., León, C., Luna, J.M., Moreno, L., Pablos, C., Petit, J., Rojas, A.,
Xhafa, F.: MALLBA: a library of skeletons for combinatorial optimisation. In:
Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932.
Springer, Heidelberg (2002)

http://cs.gmu.edu/eclab/projects/ecj
http://cs.gmu.edu/eclab/projects/ecj

Benchmarking Languages for Evolutionary Algorithms 41

18. Pike, R.: The go programming language. Talk given at Google’s Tech Talks (2009)
19. Ierusalimschy, R., De Figueiredo, L.H., Celes Filho, W.: Lua-an extensible exten-

sion language. Softw. Pract. Exper. 26(6), 635–652 (1996)
20. Merelo, J.J., Castillo, P.A., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I.,

Cotta, C., Rico, N.: Studying and tackling noisy fitness in evolutionary design of
game characters. In: Rosa, A., Merelo, J.J., Filipe, J., eds.: ECTA 2014 - Proceed-
ings of the International Conference on Evolutionary Computation Theory and
Applications, pp. 76–85 (2014)

21. Merelo-Guervós, J.J., Mora, A.M., Castillo, P.A., Cotta, C., Garćıa-Valdez, M.: A
search for scalable evolutionary solutions to the game of MasterMind. In: IEEE
Congress on Evolutionary Computation, pp. 2298–2305. IEEE (2013)

22. Merelo-Guervós, J.J., Castillo-Valdivieso, P.A., Mora-Garćıa, A., Esparcia-
Alcázar, A., Rivas-Santos, V.M.: NodEO, a multi-paradigm distributed evolution-
ary algorithm platform in JavaScript. In: Genetic and Evolutionary Computation
Conference, GECCO 2014, Vancouver, BC, Canada, July 12–16, 2014, pp. 1155–
1162. ACM, Companion Material Proceedings (2014)

23. Merelo-Guervós, J.J., Garćıa-Sánchez, P.: Modeling browser-based distributed evo-
lutionary computation systems. CoRR abs/1503.06424 (2015)

24. Rivas, V.M., Guervós, J.J.M., López, G.R., Arenas-Garćıa, M., Mora, A.M.: An
object-oriented library in javascriptto build modular and flexiblecross-platform
evolutionary algorithms. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoAppli-
cations 2014. LNCS, vol. 8602, pp. 853–862. Springer, Heidelberg (2014)

25. Fortin, F.A., Rainville, D., Gardner, M.A.G., Parizeau, M., Gagné, C., et al.:
DEAP: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–
2175 (2012)

26. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A fast dynamic lan-
guage for technical computing (2012). arXiv preprint arXiv:1209.5145

http://arxiv.org/abs/1209.5145

On the Closest Averaged Hausdorff Archive
for a Circularly Convex Pareto Front

Günter Rudolph1(B), Oliver Schütze2, and Heike Trautmann3

1 Department of Computer Science, TU Dortmund University, Dortmund, Germany
guenter.rudolph@tu-dortmund.de

2 Department of Computer Science, CINVESTAV, Mexico City, Mexico
schuetze@cs.cinvestav.mx

3 Department of Information Systems, University of Münster, Münster, Germany
trautmann@uni-muenster.de

Abstract. The averaged Hausdorff distance has been proposed as an
indicator for assessing the quality of finitely sized approximations of the
Pareto front of a multiobjective problem. Since many set-based, iterative
optimization algorithms store their currently best approximation in an
internal archive these approximations are also termed archives. In case
of two objectives and continuous variables it is known that the best
approximations in terms of averaged Hausdorff distance are subsets of
the Pareto front if it is concave. If it is linear or circularly concave the
points of the best approximation are equally spaced.

Here, it is proven that the optimal averaged Hausdorff approximation
and the Pareto front have an empty intersection if the Pareto front is
circularly convex. But the points of the best approximation are equally
spaced and they rapidly approach the Pareto front for increasing size of
the approximation.

Keywords: Multi-objective optimization · Averaged hausdorff dis-
tance · Convex front · Optimal archives

1 Introduction

The goal in the a posteriori approach of multiobjective optimization is a finitely
sized approximation of the Pareto front which itself is innumerable for continu-
ous problems in general. The quality of the approximation is typically measured
by scalar-valued quality indicators which are largely based on some notion of dis-
tance between approximation set and Pareto front. Popular indicators in the field
of multiobjective evolutionary algorithms are the dominated hypervolume [1],
generational distance [2], (inverted) generational distance [3], the ε-indicator [4],
the R2-indicator [5] and others. Besides measuring the quality of an approxima-
tion, these indicators can also be used as a selection operator that drives a set-
based optimization algorithm like an evolutionary algorithm towards the Pareto
front (see e.g. [6–8]).

When used as quality indicator for assessing the approximation found by some
set-based algorithm the indicator implicitly determines the characteristics of opti-
mal approximations (like the distribution of solutions on the Pareto front). Since
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 42–55, 2016.
DOI: 10.1007/978-3-319-31153-1 4

On the Closest Averaged Hausdorff Archive 43

the Pareto front is typically known analytically in case of constructed benchmark
problems, it is often possible to calculate the optimal approximation (or optimal
archive of points) for the given indicator. As a consequence, it is then possible to
assess the quality of the approximation during the optimization run by the dif-
ference between optimal approximation and current solution of the evolutionary
algorithm or other set-based metaheuristics. For example, this has been achieved
for the dominated hypervolume indicator in case of two objectives [9].

Here, we consider optimal approximations/archives for the recently proposed
Δp-indicator which is based on the averaged Hausdorff distance between two sets
[10]. In case of two objectives it is known that the optimal archives are subsets
of the Pareto front if it is concave (which includes linear fronts) [11]. In addition,
optimal archives and Δp-indicator values have been determined for linear and cir-
cularly concave Pareto fronts. The appealing feature of optimal Δp-archives is the
uniform spacing between the archive points. Moreover, the Δp-indicator can be
efficiently used for expert knowledge based multiobjective optimization using a
specific archive technique approximating a predefined aspiration set [12].

But numerical experiments have revealed that the optimal Δp-archive for
convex Pareto fronts is not a subset of the Pareto front which questioned the
deployment of the Δp-indicator for quality assessments of multiobjective evo-
lutionary algorithms in case of (at least piecewise) continuous Pareto fronts.
Actually, we prove in case of a circularly convex Pareto front that the optimal
Δp-archive and the Pareto front have an empty intersection. This seemingly dis-
appointing result, however, does not discredit the Δp-indicator as a measuring
device in benchmarks since we prove that the Euclidean distance of each archive
point to the Pareto front decreases rapidly for increasing archive size. As a con-
sequence, already for moderately sized archives the deviation from the Pareto
front is irrelevant from a measuring point of view.

In Sect. 2 we present some mathematical results that exempt the proofs in
subsequent sections from disturbing excursions. Section 3 introduces the aver-
aged Hausdorff inframetric and its properties. The main results regarding opti-
mal Hausdorff archives for circularly convex fronts can be found on Sect. 4.
Finally, we draw conclusions in Sect. 5.

2 Mathematical Preliminaries

Theresultspresented in this sectionwill behelpful inSect. 4.Neither of these results
is new; the proofs are supplied only for making this work more self-contained.

A square matrix A of size n × n is termed positive semidefinite (p.s.d.) if
x′Ax ≥ 0 for all x ∈ R

n and positive definite (p.d.) if x′Ax > 0 for all x ∈
R

n \ {0}. Here, x′ denotes the transpose of vector x.

Lemma 1. If A is a p.d. and B a p.s.d. n × n-matrix then A + B is p.d.

Proof.
∀x ∈ R

n \ {0} : x′(A + B)x = x′Ax︸ ︷︷ ︸
>0

+x′Bx︸ ︷︷ ︸
≥0

> 0.

��

44 G. Rudolph et al.

A function f : D → R with convex domain D ⊆ R
n is said to be convex, if

f(γ x + (1 − γ) y) ≤ γ f(x) + (1 − γ) f(y) for all x, y ∈ D and γ ∈ [0, 1]. If the
inequality is strict the function is termed strictly convex.

Lemma 2. Let f : D → R be an additively decomposable function with D =
D1 × D2 and f(x) = f1(x1) + f2(x2) where the sub-functions f1 : D1 → R and
f2 : D2 → R are convex. Then:

(a) f : D → R is convex.
(b) f : D → R is strictly convex if at least one sub-function is strictly convex.

Proof.

(a) Let γ ∈ [0, 1] and x, y ∈ D. According to the definition of convexity we get

f(γ x + (1 − γ) y) = f1(γ x1 + (1 − γ) y1) + f2(γ x2 + (1 − γ) y2)
≤ γ f1(x1) + (1 − γ) f1(y1) + γ f2(x2) + (1 − γ) f2(y2) (1)
= γ (f1(x1) + f2(x2)) + (1 − γ) (f1(y1) + f2(y2))
= γ f(x) + (1 − γ) f(y).

(b) Inequality (1) is strict if at least one sub-function is strictly convex.

��
Optima of a differentiable function may be determined by inspection of its

gradient and Hessian matrix. Sometimes a monotone transformation of the func-
tion can make the analysis easier.

Lemma 3. Let f : Rn → R and g : R → R be continuously differentiable. Then:

(a) {x ∈ R
n : ∇f(x) = 0} ⊆ {x ∈ R

n : ∇g(f(x)) = 0}.
(b) {x ∈ R

n : ∇f(x) = 0} = {x ∈ R
n : ∇g(f(x)) = 0} if g(·) strictly monotone.

(c) If g(·) is twice differentiable and strictly monotone increasing on the range
of f(·) then the location of the local minima of g(f(x)) are identical to those
of f(x).

Proof.

(a) Since ∇g(f(x)) = ∇f(x) · g′(f(x)) the left hand side of the equation is zero
if ∇f(x) = 0 or the derivative of g(·) has a root in the range of f(·).

(b) Since g(y) is strictly monotone we have either g′(y) > 0 or g′(y) < 0 but
never g′(y) = 0 for all y ∈ f(Rn). Therefore ∇g(f(x)) is zero if and only if
∇f(x) = 0 .

(c) Strictly increasing monotonicity implies g′(y) > 0 for all y ∈ f(Rn). Owing
to part (b) of this Lemma it follows that the set of candidates for local
optima are identical. The Hessian matrix of g(f(x)) is

∇2g(f(x)) = ∇(∇g(f(x))) = ∇(g′(f(x)) · ∇f(x)) =
g′(f(x)) · ∇2f(x) + g′′(f(x)) · ∇f(x) · ∇f(x)T︸ ︷︷ ︸

zero matrix if x=x∗

. (2)

On the Closest Averaged Hausdorff Archive 45

Insertion of a candidate solution x∗ in the Hessian (2) leads to

∇2g(f(x∗)) = g′(f(x∗))︸ ︷︷ ︸
> 0

·∇2f(x∗)

revealing that the Hessian matrix of f(x) is p.d. in x∗ if and only if
∇2g(f(x∗)) is p.d. ��

Finally, we recall the trigonometric identities

sin(α + δ) − sin(α + δ) = 2 cos α sin δ
sin(α + δ) + sin(α + δ) = 2 sinα cos δ
cos(α + δ) − cos(α + δ) = −2 sinα sin δ
cos(α + δ) + cos(α + δ) = 2 cos α cos δ

⎫⎪⎪⎬
⎪⎪⎭ (3)

which follow immediately from entries 4.3.34 to 4.3.37 in [13] whereas

sin(arctan x) =
x√

1 + x2
and cos(arctan x) =

1√
1 + x2

(4)

can be extracted from entry 4.3.45 in [13].

3 Averaged Hausdorff Distance

The Hausdorff distance is a well known distance measure between two sets.
Actually, it can be shown that it is a metric on sets.

Definition 1. The value dH(A,B) := max(d(A,B), d(B,A)) is termed the
Hausdorff distance between two sets A,B ⊂ R

k, where

d(B,A) := sup{d(u,A) : u ∈ B} and d(u,A) := inf{‖u − v‖ : v ∈ A}
for a vector norm ‖ · ‖.

However, the value of the Hausdorff distance is strongly affected by single
outliers which may lead to counter-intuitive assessments of closeness between
sets [10]. Therefore, the indicators GDp and IGDp have been introduced in [10] to
construct a new distance measure between finite sets that shares some properties
with the Hausdorff distance but which is less prone to outliers.

Definition 2. The value Δp(A,B) = max(GDp(A,B), IGDp(A,B)) with

GDp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p

)1/p

and IGDp(A,B) =

(
1

|B|
∑
b∈B

d(b, A)p

)1/p

for p > 0 is termed the averaged Hausdorff distance between sets A and B as
given in Definition 1.

We note that Δp(·, ·) is not a metric but fulfills all axioms of a distance.

46 G. Rudolph et al.

Definition 3. (see [14, p. 1])
A function d : X × X → R is termed a distance on set X if

1. d(x, y) ≥ 0 (nonnegativity)
2. d(x, y) = d(y, x) (symmetry)
3. d(x, x) = 0 (reflexivity)

for all x, y ∈ X. ��
The averaged Hausdorff distance is not a metric (but a nearmetric) only since
the triangle property is not fully valid.

Definition 4. (see [14, p. 7])
A function d : X × X → R is termed a C-nearmetric on set X if

1. it is a distance on X
2. d(x, y) > 0 for x �= y
3. d(x, y) ≤ C (d(x, z) + d(z, y))

for all x, y, z ∈ X and some C ≥ 1. ��
Actually, it can be proven [10] that Δp is a N1/p-nearmetric where N is the
maximum cardinality of the sets.

The purpose of the averaged Hausdorff distance is to assess the quality of
a finitely sized approximation Y of the Pareto front F ∗ by observing the value
Δp(Y, F ∗). In the context of the definitions in [10] the Pareto front F ∗ is assumed
to be discretized appropriately.

Here, we consider only bi-objective problems and assume that the Pareto
front is continuous and expressible in parametric form. Thus, let F ∗ = {ϕ(ω) :
ω ∈ [0, π/2]} ⊂ R

2 be the Pareto front and Y ⊂ R
2 with |Y | = m < ∞ the

approximation.
Two examples are the circularly concave Pareto front defined by ϕ(ω) =

(sin ω, cos ω)′ and the circularly convex Pareto front defined by ϕ(ω) = (1 −
cos ω, 1 − sin ω)′. An illustration of these Pareto fronts is given in Fig. 1.

Since here we deal with continuous Pareto fronts F ∗, we have to adapt Δp

to this context: let Y = {y1, . . . , ym} ⊂ f(X) where y1, . . . , ym are arranged in
lexicographic order. We obtain

GDp(Y, F ∗) =

⎡
⎣ 1

|Y |
∑
y∈Y

d(y, F ∗)p

⎤
⎦

1
p

(5)

and

IGDp(Y, F ∗) =

⎡
⎣ 1

L

b∫
a

d(ϕ(s), Y)p ds

⎤
⎦

1
p

(6)

where L is the length of the curve described by F ∗. In case of the two examples
we have of course L = π/2.

In [11] the optimal Δp-archive has been determined for the circularly concave
front. Here, we consider the determination of the optimal Δp-archive in case of
the circularly convex front.

On the Closest Averaged Hausdorff Archive 47

Fig. 1. Left: circularly convex Pareto front. Right: circularly concave Pareto front.

4 Construction of Optimal Archive

Since the averaged Hausdorff distance Δp between finite archive and innumerable
Pareto front is the maximum of GDp and IGDp between the two sets we can find
the optimal archive as follows: we know that solutions with minimum GDp are
archives with all members on the Pareto front which results in GDp = 0 so that
the corresponding Δp value is just the IGDp value for the optimal GDp archive.
Next, find solutions with minimum IGDp. If such a solution has a larger IGDp

value than the corresponding GDp value then this solution is the minimal Δp

archive. If this inequality is not valid then this approach fails.
Presume that this approach does work. First, we need a method to calcu-

late the GDp value for an arbitrary given archive. This method is developed in
Sect. 4.1. Second, we need a method to determine an archive with minimal IGDp

value. We demonstrate the method in case of a circularly convex Pareto front
in Sect. 4.2. Finally, a comparison with the corresponding GDp value in Sect. 4.3
reveals that this solution is the optimal Δp archive.

4.1 Averaged Generational Distance (GDp)

In the remainder of this work we assume that the vector norm used in Definition 1
is the Euclidean norm and that ϕ(·) is continuously differentiable.

Theorem 1. Let F ∗ = {ϕ(ω) : ω ∈ [0, π]} ⊂ R
2 and Y ⊂ R

2 with |Y | = m <
∞. Then

GDp(Y, F ∗) = GDp({y(1), . . . , y(m)}, F ∗) =

[
1
m

m∑
i=1

d(ϕ(ω∗
i), y(i))p

]1/p

where ω∗
i is an appropriate solution of

∂

∂ωi
d(ϕ(ωi), y(i)) != 0

48 G. Rudolph et al.

for i = 1, . . . , m regardless of p ≥ 1.

Proof. Suppose that Y ∩ F ∗ = ∅ since elements of Y that are on F ∗ do not
contribute to the value of GDp. Let

g(ω) = g(ω1, . . . , ωm) =
1
m

m∑
i=1

d(ϕ(ωi), y(i))p.

Partial derivation leads to

∂

∂ωi
g(ω)1/p =

[
∂

∂ωi
g(ω)

]
· 1
p

· g(ω)︸ ︷︷ ︸
> 0

!= 0 (7)

for i = 1, . . . , m. Therefore, it suffices to look at

∂

∂ωi
g(ω) =

1
m

· ∂

∂ωi
d(ϕ(ωi), y(i))p =

1
m

[
∂

∂ωi
d(ϕ(ωi), y(i))

]
· p · d(ϕ(ωi), y(i))p−1︸ ︷︷ ︸

> 0

!= 0 (8)

for i = 1, . . . , m. Thus, it is sufficient to solve

∂

∂ωi
d(ϕ(ωi), y(i)) != 0

independently for each i = 1, . . . , m and regardless of p ≥ 1 to find the can-
didates for optimal angles ω∗

i . It remains to show that these candidates lead
to a minimum, i.e., that the Hessian matrix of GDp is positive definite (p.d.).
The second partial derivatives of GDp are obtained by partial derivation of (7)
yielding

∂

∂ωj

[
∂

∂ωi
g(ω)

]
· 1
p

· g(ω) =
1
p

(
∂2g(ω)
∂ωi ∂ωj

g(ω) +
∂g(w)
∂ωi

· ∂g(w)
∂ωj

)

which can be expressed in matrix form as

p · ∇2GDp(ω) = g(ω)︸︷︷︸
> 0

·∇2g(ω) + ∇g(ω)∇g(ω)T︸ ︷︷ ︸
p.s.d.

.

The Hessian matrix of GDp is p.d. if ∇2g(ω) is p.d. (Lemma 1). Partial derivation
of the first partial derivatives of g(ω) given in (8) w.r.t. ωj yields

∂2g(ω)
∂ωi∂ωj

=
p

m
· ∂2d(ϕ(ωi), y(i))

∂ωi∂ωj︸ ︷︷ ︸
=0 if i�=j

· d(ϕ(ωi), y(i))p−1

+
p

m
· ∂d(ϕ(ωi), y(i))

∂ωi
· ∂d(ϕ(ωi), y(i))p−1

∂ωj︸ ︷︷ ︸
=0 if i�=j

.

On the Closest Averaged Hausdorff Archive 49

Thus, ∇2g(ω) is a diagonal matrix diag(d1, . . . , dm) that is p.d. if every diagonal
entry di is positive. Since

di =
p

m
· ∂2d(ϕ(ωi), y(i))

∂ω2
i

· d(ϕ(ωi), y(i))p−1︸ ︷︷ ︸
> 0

+
p

m
·
(

∂d(ϕ(ωi), y(i))
∂ωi

)2

︸ ︷︷ ︸
≥ 0

· (p − 1)︸ ︷︷ ︸
≥ 0

· d(ϕ(ωi), y(i))p−2︸ ︷︷ ︸
> 0

the sufficient condition reduces to

∂2d(ϕ(ωi), y(i))
∂ω2

i

!
> 0,

which is always fulfilled since the Euclidean norm is strictly convex. ��
Suppose the Pareto front is given by F ∗ = {ϕ(ω) : ω ∈ [0, π/2]} with ϕ(ω) =

(1− cos ω, 1− sin ω)T and let Y ⊂ [0, 1)2 with |Y | = m < ∞. Owing to Theorem
1 it suffices to solve

∂d(ϕ(ω), y)
∂ω

!= 0

for a single pair (ω, y). Lemma 3(c) asserts that the solution of the squared
problem delivers the desired ω∗. Thus,

∂d(ϕ(ω), y)2

∂ω
=

∂

∂ω
[(1 − cos ω − y1)2 + (1 − sin ω − y2)2]

= 2 (1 − cos ω − y1)(− sin ω) + 2 (1 − sin ω − y2) cos ω
!= 0

which is equivalent to

1 − y2
1 − y1

!=
sin ω

cos ω
= tan ω ⇔ arctan

(
1 − y2
1 − y1

)
!= ω∗.

Insertion of ω∗ and usage of the trigonometric identities (4) leads to

d(ϕ(ω∗(y)), y) =
[
(1 − y1)2 + (1 − y2)2 − 2

√
(1 − y1)2 + (1 − y2)2 + 1

] 1
2

(9)

which can be used as building block to calculate GDp for an arbitrary given set
{y(1), . . . , y(m)} ⊂ [0, 1)2.

4.2 Averaged Inverted Generational Distance (IGDp)

We solve the squared problem. At first the integrals are eliminated before we apply
partial differentiation and proceed in the standard way to identify the optimal
points of set Y analytically. To this end let 0 = α0 ≤ α1 ≤ . . . ≤ αm = π/2.

π

2
IGD2({y(1), . . . , y(m)}, F ∗)2 =

m∑
i=1

∫ αi

αi−1

d(ϕ(ω), y(i))2 dω

50 G. Rudolph et al.

=
m∑

i=1

∫ αi

αi−1

[
(1 − cos ω − y

(i)
1)2 + (1 − sin ω − y

(i)
2)2

]
dω

=
m∑

i=1

αi∫
αi−1

[
(1 − y

(i)
1)2 + (1 − y

(i)
2)2 + 1 − 2 (1 − y

(i)
1) cos ω − (1 − y

(i)
2) sin ω

]
dω

=
m∑

i=1

[
(z(i)1)2 + (z(i)2)2 + 1

]
(αi − αi−1)

− 2
m∑

i=1

z
(i)
1 (sin αi − sin αi−1)

+ 2
m∑

i=1

z
(i)
2 (cos αi − cos αi−1) (10)

where we temporarily made the variable replacement z
(i)
k = 1 − y

(i)
k for k =

1, 2. Partial differentiation of (10) w.r.t. z
(i)
k leads to the first set of necessary

conditions with i = 1, . . . , m:

∂V

∂z
(i)
1

= 2 z
(i)
1 (αi − αi−1) − 2 (sin αi − sin αi−1)

!= 0

∂V

∂z
(i)
2

= 2 z
(i)
2 (αi − αi−1) + 2 (cos αi − cos αi−1)

!= 0

which are equivalent to

z
(i)
1

!=
sin αi − sin αi−1

αi − αi−1
and z

(i)
2

!= −cos αi − cos αi−1

αi − αi−1
. (11)

Thus, conditions (11) tell us how to choose set Y for any given partitioning of
F ∗ with switch points ϕ(α1), . . . , ϕ(αm−1). If m = 1 there is no switch point
since α0 = 0 and α1 = π/2. Therefore

y
(1)
1 = 1 − z

(1)
1 = 1 − 2

π
and y

(1)
2 = 1 − z

(1)
2 = 1 − 2

π

with optimal

IGD2({y(1)}, F ∗) =

√
1 − 8

π2
≈ 0.43524

and associated

GD2({y(1)}, F ∗) = 1 −
√

8
π

≈ 0.09968

On the Closest Averaged Hausdorff Archive 51

after insertion in (10) and (9), respectively. For m > 1 we also need to consider
the optimality conditions for the angles. Partial differentiation of (10) w.r.t. αi

leads to the second set of necessary conditions

∂V

∂αi
= (z(i)1)2 + (z(i)2)2 − z

(i)
1 cos αi − z

(i)
2 sin αi

−
[
(z(i+1)

1)2 + (z(i+1)
2)2 − z

(i+1)
1 cos αi − z

(i+1)
2 sin αi

]
!= 0 (12)

where i = 1, . . . , m − 1. After insertion of (11) in (12) we obtain

2 cos αi

[
cos αi+1

(αi+1 − αi)2
− cos αi−1

(αi − αi−1)2

]
+ 2 sin αi

[
sin αi+1

(αi+1 − αi)2
− sin αi−1

(αi − αi−1)2

]

+ cos αi

[
sin αi+1

αi+1 − αi
+

sin αi−1

αi − αi−1

]
− sin αi

[
cos αi+1

αi+1 − αi
+

cos αi−1

αi − αi−1

]
!
= 0. (13)

If m = 2 conditions (13) reduce to a single equation with a single variable:

2 (1 − cos α1)
α2
1

− 2 (1 − sin α1)
(π/2 − α1)2

− 2 sin α1

α1
+

2 cos α1

π/2 − α1

!= 0. (14)

Evidently, the choice of α∗
1 = π/4 solves the equation. Insertion of α∗

1 = π/4 in
the second derivative (i.e., the derivative of (14) w.r.t. α1) yields a positive value
(> 0.7) revealing that this choice is at least a local minimum. The positions of
the corresponding archive points

y(1) =

⎛
⎜⎜⎜⎝

1 −
√

8
π

1 − 4 − √
8

π

⎞
⎟⎟⎟⎠ and y(2) =

⎛
⎜⎜⎜⎝

1 − 4 − √
8

π

1 −
√

8
π

⎞
⎟⎟⎟⎠ (15)

are obtained after insertion of α∗
1 in (11). These values lead to minimal

IGD2({y(1), y(2)}, F ∗) =

√
1 − 16 (2 − √

2)
π2

≈ 0.22441

with corresponding

GD2({y(1), y(2)}, F ∗) = 1 − 4
√

2 − √
2

π
≈ 0.0255046.

A closer look at the coordinates in (15) discloses a symmetry in the solution.
This observation gives rise to the conjecture that also solutions in the general
case with m > 2 should exhibit this kind of symmetry, namely

y
(i)
1 = y

(m−i+1)
2

52 G. Rudolph et al.

for i = 1, . . . , m. If the conjecture is true then the difference between consecutive
angles must be equal, i.e., α∗

i − α∗
i−1 = δ > 0 for i = 1, . . . , m or, equivalently,

α∗
i = i · δ with δ =

π

2m

for i = 0, 1, . . . ,m. As a consequence, αi−1 = αi−δ and αi+1 = αi+δ. Using this
setting of angles and the trigonometric identities in (3) the necessary conditions
for the angles (13) are fulfilled leading to optimal archive points

y(i) =
(

1 − sin(i · δ) − sin((i − 1) · δ)
δ

, 1 +
cos(i · δ) − cos((i − 1) · δ)

δ

)T

where δ = π/(2m). Figure 2 shows optimal archives of size m = 1, 2, 3, 4, 5
and 10. As can be seen, the archive points move closer to the Pareto front for
increasing cardinality.

Table 1 provides an impression about the minimal IGD2 and corresponding
GD2 values for increasing archive size m ∈ N. The results give rise to the educated
guess that the IGD2 value decreases with order 1/m whereas the GD2 value
decreases even with order 1/m2. A closer inspection provides at least numerical
evidence of the relation

GD2 = 1 −
√

1 − IGD2
2

if IGD2 is the optimal value.
It remains to show that the conjecture of equidistant angles is true. Notice

that equidistant angles fulfill the necessary conditions (13) and (11). If there

Table 1. Minimal IGD2 values and corresponding GD2 values for increasing archive
size m ∈ N.

m IGD2 GD2

1 4.3524 × 10−1 9.96837 × 10−2

2 2.2441 × 10−1 2.55046 × 10−2

3 1.5046 × 10−1 1.13841 × 10−2

4 1.1307 × 10−2 6.41315 × 10−3

5 9.0541 × 10−2 4.10726 × 10−3

6 7.5489 × 10−2 2.85334 × 10−3

7 6.4724 × 10−2 2.09681 × 10−3

8 5.6649 × 10−2 1.60561 × 10−3

9 5.0358 × 10−2 1.26876 × 10−3

10 4.5326 × 10−2 1.02777 × 10−3

100 4.5345 × 10−3 1.02808 × 10−5

1,000 4.5345 × 10−4 1.02808 × 10−7

10,000 4.5345 × 10−5 1.02808 × 10−9

On the Closest Averaged Hausdorff Archive 53

Fig. 2. Optimal archives of size m = 1, 2, 3, 4, 5, 10 for the circularly convex Pareto
front.

54 G. Rudolph et al.

is no other solution that fulfills the necessary conditions then there is no other
candidate solution in the interior of [0, π/2]m with possibly better function value.
Since (10) can be written as a sum of strictly convex sub-functions

fi(z(i)) = δi

(
(z(i)1)2 + (z(i)2)2

)
+ ai z

(i)
1 + bi z

(i)
2 + δi

where δi := αi − αi−1 > 0 and ai, bi ∈ R for i = 1, . . . , m, Lemma 2(b) asserts
that (10) is strictly convex. As a consequence the local minimizer is unique and
also the global solution.

4.3 Optimal Averaged Hausdorff Archive (Δp)

In the introduction to this Sect. 4 it was elaborated that the optimal IGDp-archive
is also the optimal Δp-archive if the associated GDp value for this solution is
smaller than the minimal IGDp value. As seen in the preceding subsection, this
relationship is true for archive sizes m = 1, 2 and it can be assured numerically
exact for larger values of m by the formulas we have proven.

The expression (11) for the coordinates of the optimal archive points reveals
that the archive elements will not be elements of the Pareto front regardless of
the finite archive size m. Only if m → ∞, which in turn implies δ → 0, the
optimal archive points converge to (1 − cos ω, 1 − sin ω)′ for every ω ∈ (0, π/2).

5 Conclusions

The observation that the optimal Δp-approximation does not lie on the convex
part(s) of the Pareto front has questioned the deployment of the Δp-indicator
for the quality assessment of multiobjective evolutionary algorithms. The the-
oretical analysis presented here proves for circular convex fronts (1) that this
observation is actually not a speculation but a fact and (2) that the deviation
from the Pareto front decreases rapidly for increasing size of the approximation
/ population leading to insignificant inaccuracies already for population size
≥ 100. In summary, our results are not in opposition to the deployment of the
Δp-indicator for benchmarking multiobjective evolutionary algorithms.

The results presented in this work can be extended in various ways. The
’numerically exact’ proof that the IGDp value for the optimal archive is larger
than the associated GDp value should be replaced by an analytic version. The
method may be applied and extended, if necessary, to nonsymmetric convex test
functions. Finally, we must admit that the extension of this approach from the
2-dimensional to 3-dimensional case is an open question.

Acknowledgment. Support from CONACYT project no. 207403 and DAAD project
no. 57065955 is gratefully acknowledged. Additionally, Heike Trautmann acknowledges
support by the European Center of Information Systems (ERCIS).

On the Closest Averaged Hausdorff Archive 55

References

1. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms -
A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

2. van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Com-
puter Engineering. Graduate School of Engineering. Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio, May 1999

3. Bosman, P., Thierens, D.: The balance between proximity and diversity in multiob-
jective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

4. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

5. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the
non-dominated set. IMM Technical Report IMM-REP-1998-7, Institute of Mathe-
matical Modeling, Technical University of Denmark, Lyngby, March 1998

6. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

7. Gerstl, K., Rudolph, G., Schütze, O., Trautmann, H.: Finding evenly spaced fronts
for multiobjective control via averaging Hausdorff-measure. In: Proceedings of 8th
International Conference on Electrical Engineering, Computing Science and Auto-
matic Control (CCE), pp. 1–6. IEEE Press (2011)

8. Brockhoff, D., Wagner, T., Trautmann, H.: R2 indicator based multiobjective
search. Evol. Comput. 23(3), 369–395 (2015)

9. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: Optimal μ-distributions and the choice of the reference point. In: Proceedings
of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms FOGA
2009, pp. 87–102. ACM, New York (2009)

10. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

11. Rudolph, G., Schütze, O., Grimme, C., Domı́nguez-Medina, C., Trautmann, H.:
Optimal averaged Hausdorff archives for bi-objective problems: theoretical and
numerical results. Comput. Optim. Appl. (2015). doi:10.1007/s10589-015-9815-8,
online 23 December 2015

12. Rudolph, G., Schütze, O., Grimme, C., Trautmann, H.: An aspiration set EMOA
based on averaged Hausdorff distances. In: Pardalos, P.M., Resende, M.G.C.,
Vogiatzis, C., Walteros, J.L. (eds.) LION 8. LNCS, vol. 8246, pp. 153–156. Springer,
Heidelberg (2014)

13. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Formulas. National
Bureau of Standards, Washington (DC) (1972). 10th printing

14. Deza, M., Deza, E.: Encyclopedia of Distances, 3rd edn. Springer, Heidelberg
(2014)

http://dx.doi.org/10.1007/s10589-015-9815-8

Evolving Smoothing Kernels for Global
Optimization

Paul Manns1 and Kay Hamacher1,2,3(B)

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
2 Department of Biology, TU Darmstadt, Darmstadt, Germany
3 Department of Physics, TU Darmstadt, Darmstadt, Germany

hamacher@bio.tu-darmstadt.de

Abstract. The Diffusion-Equation Method (DEM) – sometimes syn-
onymously called the Continuation Method – is a well-known natural
computation approach in optimization. The DEM continuously trans-
forms the objective function by a (Gaussian) kernel technique to reduce
barriers separating local and global minima. Now, the DEM can suc-
cessfully solve problems of small sizes. Here, we present a generaliza-
tion of the DEM to use convex combinations of smoothing kernels in
Fourier space. We use a genetic algorithm to incrementally optimize the
(meta-)combinatorial problem of finding better performing kernels for
later optimization of an objective function. For two test applications we
derive and show their transferability to larger problems. Most strikingly,
the original DEM failed on a number of the test instances to find the
global optimum while our transferable kernels – obtained via evolution-
ary computations – were able to find the global optimum.

Keywords: Smoothing kernels · Diffusion-equation method · Fourier
space

1 Introduction

Natural systems and the inspired natural computations are frequently converg-
ing to minima or maxima of some objective function, e.g. molecular structures in
their natural state(s) [1,2]. The Diffusion-Equation-Method (DEM) is a global
optimization approach that is inspired by the natural phenomena of diffusion –
an approach also known as the (Gaussian) continuation method [3,4]. The DEM
requires the analytic convolution of the objective function with the Green’s
function of the heat (or diffusion) equation – a Gaussian kernel. Despite some
success stories, the general applicability was questioned due to a few counter-
examples [1,5–7].

The general idea of our contribution is the problem-specific derivation of
adapted and modified DEM kernels to improve both the convergence rate and
the probability to obtain global minima. Note that we use a genetic algorithm
to solve the (meta-)problem of optimized kernels for global optimization of some

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 56–72, 2016.
DOI: 10.1007/978-3-319-31153-1 5

Evolving Smoothing Kernels for Global Optimization 57

underlying objective function. The applicability and transferability of these ker-
nels is based on performance evaluations for smaller and known test instances
and their later evaluation for larger problem sizes.

Our contributions are: (a) we show how to improve DEM convergence for a
given objective function by modifying the convolution kernel in Fourier space
and thus its ability to serve as a “low-pass filter” for structures in the search
space. To this end, a technique that evolves such an adapted kernel for a given
objective function is necessary; (b) we show that genetic algorithms (GA) are an
efficient way to evolve such problem-specific DEM-kernels; (c) we evolve superior
DEM-kernels for the long-range potential of two-body interactions frequently
encountered in molecular physics, namely the Lennard-Jones potential.

2 Related Work on the DEM

2.1 The “Classical” Diffusion Equation Method (DEM)

The idea of using the DEM as an global optimization approach was first proposed
in [1]. The rationale is as follows: consider an objective function f : Rn → R

which is at least twice continuously differentiable. The DEM approach models
f as an initial value problem of a (time-dependent) diffusion process Ft. Then,
f is the initial particle density Ft=0 = f , see [1].

Typically, the diffusion equation models how the density distribution evolves
in time. In real diffusive process, the density minima and the maxima become
shallower and converge to an uniform distribution for t → ∞ [5] while barriers
separating optima are in general reduced in height. Now, in the DEM this process
is simulated “backwards” in time to go from a less structured, smoothed function
to the original objective function. In practice, one can choose a finite diffusion
time t = tEnd that needs to be sufficiently large.

DEM implements an iterative procedure for minimization of the densities “in
reverse order”: we start at the “diffused” density FtEnd , obtain a (possible local)
minimum via local minimization. Then the time t is reduced by a fixed time step
h and the local optimization is executed again with the starting point set to the
result of the previous step. This procedure is repeated while t > 0. Finally, when
t = 0 is reached Ft=0 = f is (locally) minimized with the starting point that
evolved during the diffusion process [1,5].

Algorithm 1 shows the computation in pseudocode. The reverse diffusion
process for a one-dimensional 2π-periodic objective function is depicted in Fig. 1.
In this algorithm localminimizer(f, x) minimizes the function f starting from
x locally. It returns the location of the local minimum xm. We use the conjugate-
gradient method as implemented in the GSL-package [8] in the subsequent parts
of our study.

2.2 DEM in Fourier Space

In the following, ĝ denotes a function in Fourier space, its arguments are fre-
quencies. In particular, ĝ is used to denote the Fourier transform of a function g.

58 P. Manns and K. Hamacher

Algorithm 1. DEM
Require: Diffusion process Ft with F0 = f
Require: Starting point xStart

Require: Start time tEnd (DEM starts at the end time of the diffusion process)
Require: Time stride h

t := tEnd

while t > 0 do
xStart := localminimizer(Ft, xStart)
t := t − h

end while
return localminimizer(f, xStart)

Fig. 1. DEM process for f(x) = 3 cos(2x− 6.19)+4 cos(2x+4.87)+4 cos(2x− 3.02)+
2 cos(2x−4.68)+3 cos(3x+3.64)+6 cos(5x−3.87)+4 cos(x+3.55)+5 cos(5x−0.77).
For each step, the current minimum is marked with a dot. Note, that in the DEM the
time t runs backwards.

F denotes theFourier transform (FT) operator andF−1 the inverse Fourier trans-
form (IFT) operator.

The diffusion process is modeled by the heat equation – a partial differential
equation of the form ∂tF (x, t) = ΔxF (x, t), where Δx is the Laplacian operator.
It has a so-called fundamental solution. If one knows the fundamental solution
Ψ of a partial differential equation (PDE) and an initial value f , then Ψ ∗ f
with the convolution operator ∗ is a solution of the corresponding initial value
problem [9].

Definition 1. The fundamental solution of the heat equation is

Φt(x) =

{
1

(2
√

tπ)n exp
(

−‖x‖2

4t

)
t ≥ 0

0 t < 0
(1)

As described above, the function F = Φt ∗ f is the solution of the following
initial value problem [1,7]:

F (x, 0) = f(x)
∂tF (x, t) = ΔxF (x, t)

The convolution Φt∗f is typically computed by transforming Φt and f into the
Fourier space, executing a multiplication of the Fourier-transformed functions
and perform an inverse Fourier Transform of the result. This is possible due to
the Convolution Theorem.

Evolving Smoothing Kernels for Global Optimization 59

Remark 1. The Convolution Theorem states f ∗g = F−1(f̂ ·ĝ) if the convolution
and all intermediate transforms exist. Proofs and detailed information can be
found in [10, chapter I.2] and [11, p. 19].

2.3 Limitations of the DEM

The DEM is applicable to a large class of objective functions. However, there
is no guarantee that the global minimum of a function is obtained for every
starting point when using the DEM. Hamacher [7] discussed objective functions
for which the DEM returns the global minimum for starting points in only half
of the domain of definition (e.g. the well-known Shubert function [12]) or for
which the DEM never returned a global minimum1.

2.4 Hybrid Metaheuristics and Genetic Algorithms

Metaheuristics are optimization techniques that provide good solutions without
excessive computation demands (compared to deterministic techniques) but do
not offer any guarantees about the optimality or quality of the solution [13]. We
develop a hybrid metaheuristic which consists of three sequential steps:

1. Adaption of kernel functions for small- or mid-size optimization problems
which were solved beforehand (training set).

2. Estimation of a proposed kernel functions for (more complex) objective func-
tions.

3. Application of the modified DEM based on the best kernel to obtain the
global minimum for a challenging, new problem.

Now, genetic algorithms are population-based metaheuristic approaches that can
solve our problem stated above. This approach is especially useful if the problem
setup does not provide any differentiability properties [13]. This is exactly the
case for the combinatorial (meta-)optimization of new, modified DEM kernels
where the goal is to improve upon the probability to obtain a global optimum
for the underlying objective function. While a genetic algorithm mimics an evo-
lutionary process with a set of candidate solutions, our fitness function is evalu-
ated based on the performance of candidate kernel combinations to optimize via
an adapted DEM procedure an underlying test function. We use mutation and
crossover operators – as in standard GA protocols [14–16].

3 Improvements of the DEM

3.1 Starting Idea

The fundamental solution Φt of Eq. 1 is the normal distribution and has a Fourier
transform Φ̂t(ω) ∼ exp(−t‖ω‖2). This is still a Gaussian, but t changed its posi-
tion from the denominator in the real-space Gaussian of Eq. 1 to the numerator
1 For example, the DEM fails to converge to the global optimum of g(x) = cos(x −

3.4) + 6 cos(2x + 1) + 3 cos(3x + 2.5) for all starting points.

60 P. Manns and K. Hamacher

in the frequency ω based Fourier transform. The product of Φ̂t and f̂ imple-
ments a low-pass filter that reduces the contribution of high frequencies. This
motivated us to ask whether one can achieve better performance of a modified
DEM for an objective function f if we use band-pass filters instead of a low-pass
filter as in the classical DEM.

This would translate into: instead of multiplying f̂ with Φ̂t, f̂ is multiplied
with a frequency shifted version Φ̂

(1)
t of Φ̂t. Furthermore, one could possibly also

apply a linear combination of band-pass-filters Φ̂
(i)
t in Fourier space with weights

αi as in
∑n

i=1 αif̂ Φ̂
(i)
t .

Section 3.1 shows that convex combinations of frequency shifted kernel func-
tions Φ̂

(i)
t conserve the necessary property of the original DEM

lim
t→0

F−1

(
n∑

i=1

αiΦ̂
(i)
t f̂

)
= f

for an important class of functions f . This means that the reverse time process
converges to the initial problem as in the classical DEM. The adaption of a ker-
nel function for f is then in itself an (meta-)optimization problem. As it is a
combinatorial one, we leverage the power of genetic algorithms. Here, our popu-
lation P of each step is a set of “chromosomes”, which are convex combinations
of kernel functions and their respective weights

P =
{

(Φ̂(1,1), α1,1, . . . Φ̂
(1,n), α1,n); . . . ; (Φ̂(|P|,1), α|P|,1, . . . Φ̂(|P|,n), α|P|,n)

}
(2)

The fitness of any individual i of dimension n and representation
(Φ̂(i,1), αi,1, . . . Φ̂

(i,n), αi,n) will be set to the fraction of starting points that con-
verge to the (known) global minimum for some test instances (see below).

Definitions. We introduce the following definition to extend the Fourier-
transformed convolution kernel for one-dimensional functions.

Definition 2. A function k̂α,μ,t : R → R is called a Generalized DEM Ker-
nel if it can be written as

k̂α,μ,t(ω) =
n∑

j=1

αj exp(−t(ω − μj)2)

with frequency shifts μ ∈ R
n, μk 	= μl for k 	= l,

∑n
j=1 αj = 1, αj ∈ (0, 1], t > 0.

In a nutshell, a Generalized DEM Kernel is a convex combination of
frequency-shifted Fourier transforms of the fundamental solution in the classical
DEM.
Convergence of Generalized DEM Kernels for t → 0. We show that
F−1(k̂α,μ,tf̂) converges to the objective function f for t → 0. Furthermore –
to simplify computations – it is sufficient to consider the real part of the (in
general) complex term F−1(k̂α,μ,tf̂). Both properties are a direct consequence
of the following theorem.

Evolving Smoothing Kernels for Global Optimization 61

Theorem 1. Consider a Generalized DEM Kernel k̂α,μ,t and an integrable,
twice continuously differentiable objective function f . Then kα,μ,t ∗ f is the solu-
tion of the initial value problem

F (x, 0) = f(x)

∂tF (x, t) = ∂xxF (x, t) −
n∑

k=1

αk

(
i 2μk∂xF (x, t) + μ2

kF (x, t)
)

Proof. Due to length restrictions we can only give a sketch of the proof here.
The idea of the proof is based in operator semigroup theory. The main steps are
as follows. Prove that (T (t))t≥0 with T (t)f := kt ∗f for t > 0 and T (0)f := f for
t = 0 is a C0-semigroup. The Hille-Yosida theorem [17] states that the generator
A of the C0-semigroup (T (t))t≥0 provides a solution for the abstract Cauchy
problem:

∂tF (t) = AF (t)for t ≥ 0 and F (0) = f

The generator A can now be computed as ∂tT (t)f |t=0. Definitions and the-
orems can be found in [17,18]. The objective function is real-valued and the
initial value of the given PDE. The modified DEM process F (t) converges to f
for t → 0. f is real-valued, hence the imaginary part of F (t) during the modified
DEM process can be neglected.

3.2 DEM∗ – an Extended DEM

Based on the idea of problem-specific band-pass filters and the mathematical
rigor from above, we can formulate the extended and improved DEM∗ algorithm
in Algorithm 2. Now, then we have to develop a method of how to obtain suitable
generalized DEM kernels k̂α,μ,t. In the following, we will show that this in itself
poses a combinatorial optimization problem that can be solved by the previously
discussed genetic algorithms.

Algorithm 2. DEM∗

Require: Generalized DEM Kernel k̂α,μ,t

Require: Objective function f and its Fourier transform f̂
Require: A starting point xStart

Require: Start time tEnd

Require: Time stride h
t := tEnd

while t > 0 do
xStart := localminimizer(ReF−1(k̂α,μ,tf̂), xStart)
t := t − h

end while
return localminimizer(f, xStart)

62 P. Manns and K. Hamacher

4 DEM∗ Kernel Optimization via Genetic Algorithms

The task of finding suitable and efficient Generalized DEM Kernels for an objec-
tive function f can be stated as follows:

arg max
k̂

|{x ∈ I : |DEM∗(x, f̂ , k̂) − xmin| ≤ ε}| (3)

with a discretization I of the domain of definition, the global minimum xmin of
f and the acceptable error ε > 0 of the result of DEM∗ from the true xmin. Note,
that for this learning or training phase we need to know location(s) of minima
to derive kernels later to be transferred to new problem instances.

The term to optimize is of the form R
n × [0, 1]n → N plus the convexity

constraint of Definition 2 for a fixed n ∈ N. One easily sees that it is difficult to
map this problem into a typical continuously differentiable parameter optimiza-
tion problem because basic properties like continuous differentiability cannot be
derived easily. Foremost, because the application of DEM∗ is not an analytic
procedure beyond simple cases.

Therefore, we have chosen a genetic algorithm, which is applicable to a wider
class of even discontinuous problems to tackle our combinatorial optimization
problem of well performing Generalized DEM Kernels. Genetic algorithms only
require that deviations in parameter values – in our context α and μ defining a
Generalized DEM Kernel – bound deviations in fitness values – in our context
Eq. 3 [14, p. 158,159]. This is a fair assumption because all of the necessary inter-
mediate computation steps provide good smoothness properties. The following
subsections define the mapping of Eq. 3 onto the genetic algorithm setting.

4.1 Individuals

An individual in the population P is a Generalized DEM Kernel. Its chromo-
somes are implemented as a vector of pairs of weights and frequency shifts as
real variables. Any such pair represents a Gaussian peak within the kernel. The
implementation takes care of the weights fulfilling the convexity constraint of
Definition 2.

4.2 Fitness Function and Selection

As described above the fitness function is evaluated for each individual, i.e.,
each Generalized DEM Kernel. The domain is discretized into a finite set of test
points I to make the definition of convergence operational from a computa-
tional/experimental point of view. DEM∗ is executed for each of these points
using f and f̂ , respectively. Then the fitness is computed as the fraction of the
sampling points that converged to the correct global minimum within the pre-
defined ε-precision over the total number of points (= |I |). The numerator of
this fraction is the term to be maximized in Eq. 3.

We use an adapted classical roulette wheel selection: (a) an individual’s prob-
ability of being selected to advance into the next generation is proportional to

Evolving Smoothing Kernels for Global Optimization 63

its fitness function value p(i) = fitness(i)∑
j∈P fitness(j) . In contrast to Elitism Selection

it allows functions with little fitness to survive and take part in the recombina-
tion which is often necessary to find the optimal solution [14,19]. Furthermore,
(b) the best individual always advances to the next generation to include some
greedy behavior in the Generalized DEM kernel search.

4.3 Crossover

Our crossover operator takes two individuals of the population, cuts both of
them at a randomly selected point k and performs a crossover recombination
of the four partial sequences of the genome. A frequency shift μj and its corre-
sponding weight αj are treated as one unit in the crossover operation. A pair
(αj ;μj) is passed on together because the two of them define one Gaussian of a
Generalized DEM Kernel in Fourier space and thus a particular band-pass filter.
Due to additive commutativity the order of the Gaussians in a Generalized DEM
Kernel is irrelevant for the computation of the fitness function. Consequently,
the sequence of Gaussian kernel elements in the individual is shuffled before the
crossover operation.

The probability for a crossover between any two individuals was set to 75%
(empirically determined, sufficiently well working). To this end, the crossover
routine loops over all individuals in the current population. Now, after a crossover
operation the weights of the frequency shifted Gaussian kernels typically do not
meet the convexity constraint anymore. Therefore, they are also normalized by
α∗

i = αi∑n
j=1 αj

. Note, that this implementation guarantees that now individual is
broken and always an eligible kernel.

4.4 Mutation

The mutation operator is applied on each member of the population after the
crossover operator. Weight and frequency are treated as distinct entries of geno-
types in context of the mutation operator. Both of them are real valued. There-
fore, a Gaussian mutation as proposed in [14, p. 184] is implemented, i.e., a nor-
mally distributed random number is added2. This random number is bounded
in order to avoid negative weights.

The probability for a mutation of an individual was set to 5%. Again, after
mutation the weights of the frequency shifted Gaussian kernels might not meet
the convexity constraint any more. They are again renormalized (see Sect. 4.3).

4.5 Local Minimization

For the local minimization of ReF−1(k̂α,μ,tĝ) we use the Polak-Ribiere version
of the conjugate gradient method. This variant is known to perform superior to
the original Fletcher-Reeves version for non-quadratic functions [20, p. 122].

2 For α’s the width of the normal distribution was set to 0.2 and for the ν’s to 1.0.

64 P. Manns and K. Hamacher

4.6 Genetic Algorithm Kernel Search as Pseudocode

We implemented and used the GA in Algorithm3 to search for suitable and
efficient Generalized DEM kernels.

5 DEM∗ for a Family of Simple Test Functions

First, we applied the DEM∗ algorithm and the GA-based kernel search to a
simple, but tunable set of test functions. We therefore introduce the following
definition:

Definition 3. A function f : R → R is called a Real Cosine Function if
∃β, γ, η ∈ R

m such, that f can be written as:

f(x) =
m∑

j=1

βj cos(γj · x − ηj)

A Real Cosine Function is obviously 2π-periodic if all γj are integers.

Algorithm 3. DEM∗ Adaption
Require: Objective function f and its Fourier transform f̂
Require: Number of samples for the fitness function N
Require: Start time the DEM∗ process T
Require: Time stride of the DEM∗ process h
Require: xmin := GlobalMinimum(f)

� Note: f and its gl. min. are known, f is a training instance
I := Discretization(N)
P := InitialPopulation()
fitness := (0, . . . , 0)
c := 0
pbest := {}
while maxp∈P fitness(p) < 1 and c < 100 do

for p ∈ P do
fitness(p) :=

1
|I | |{x ∈ I : |DEM∗(f, p, x, T, h) − xmin| < ε}|

end for
pbest := argmaxp∈P∪pbest

fitness(p)
P := RouletteWheelSelection(P, fitness)
P := Crossover(P, 0.75)
P := Mutation(P, 0.05)
c := c + 1

end while
return pbest

Evolving Smoothing Kernels for Global Optimization 65

5.1 A DEM Counter Example from the Real Cosine Function Class

Hamacher [7] introduced the test function g(x) = cos(x − 3.4) + 6 cos(2x + 1) +
3 cos(3x+2.5) which falls into the class of Real Cosine Functions. When discretiz-
ing the interval I = [0, 2π] into 100 distinct points, the classical DEM fails to
return the global minimum of g from any starting point.

Now, our GA is able to evolve kernel functions for DEM∗ which yield the
global minimum of g from 50% of the starting points. One evolved kernel func-
tion and the DEM standard kernel are shown in Fig. 2(a).

In Fig. 2(b) we show the counter-example g of [7] and the starting points
from which the classical DEM fails to converge to the global optimum (100 %).

In contrast, Fig. 2(c) shows the points from which an GA-evolved Generalized
DEM kernel for this test function indeed converged to the global optimum.

Fig. 2. Comparing DEM and DEM∗ for a difficult g. (Color figure online)

66 P. Manns and K. Hamacher

5.2 Testing DEM∗ on General Real Cosine Functions

Real Cosine Functions have a clear interpretation in Fourier/frequency space:
they show distinct peaks and identifiable patterns due to their 2π periodicity
and their construction via linear combination of periodic functions. This could
potentially imply a “rule” on what band-pass filters need to be chosen to DEM∗-
optimize General Real Cosine Functions.

In order to evaluate if such a (probabilistic) dependency between the objec-
tive function and the evolved kernel function can be established, 10, 000 Real
Cosine Functions were generated randomly, each containing 10 terms. The βi

and γi were drawn from a Poisson distribution with mean 2.5. The frequency
shift values ηi were drawn from a uniform distribution on [−2π, 2π]. The Poisson
distribution returns integer values for γi which ensures the 2π-periodicity of the
generated functions.

To use the GA to obtain DEM∗ kernels, it is necessary to know the global
minimum of these functions beforehand. The location of the global minimum
is approximated by starting Conjugate Gradient minimizations from 10, 000
equidistant points in [0, 2π]. Then, DEM∗ was used with a start time of 10
and a time window of h = 0.01. Each Generalized DEM Kernel consisted of four
peaks. The population size |P| of the GA was set to 728 as a boundary for
the combinatorics of starting parameters μj , αj . We initialized the population
to Gaussians on a grid of frequency shifts, each of equal weight.

5.3 Results

For all of the 10, 000 test instances, the individuals of the last GA generation
with best fitness were put into a matrix. The result of the adaption was a matrix
with 38 columns, consisting of the 30 independent parameters (βi, γi, ηi with i ∈
[1 . . . 10]) that define one Real Cosine Function and the 8 dependent parameters
that define the adapted Generalized DEM Kernel (αj , μj with j ∈ [1 . . . 4]), and
a total of 1, 655, 128 rows.

We then transfer the “learned” band-pass filter-like Generalized DEM kernels
to new test instances and predict their respective frequency shifts and weights
based solely on the properties of the Real Cosine Functions. To this end, 8
Support Vector Machines (SVMs) were trained with the resulting data, one for
each dependent parameter. 2, 000 additional Real Cosine Functions were used
to test the prediction quality of the trained SVM. The R [21] package e1071 [22]
was used as a freely available SVM implementation.

The fitness of the unmodified DEM Kernel was evaluated for all of the 2, 000
Real Cosine Functions in the test set. DEM finds the global optimum for 68.75%
of these tests. However, the unmodified DEM fails completely for 19.85% of
them – namely, for all starting points. For DEM∗, the number of test Real Cosine
Functions for which the DEM∗ fails completely reduces to 5.35%. However, the
number of functions for which the DEM∗ works perfectly (100 % of starting
points) is reduced to 14.95%.

Evolving Smoothing Kernels for Global Optimization 67

So, we observe a trade-off between general applicability (DEM∗ finds for more
test instances the global minimum) vs. easiness of use (for those tests where DEM
converges at all, one does not need to sample so many starting points).

Therefore, we proceed to combine classical DEM (which fails frequently, but
is successful for more starting points whenever it converges) and DEM∗ (which
is more successful overall, but might fail for a particular starting point). The
combined fitness for an objective function is then computed as the fraction of
starting points for which at least one of the methods obtains the real minimum,
i.e. the synergy effect one obtains when executing both DEM and DEM∗ with the
predicted kernel. One obtains the best possible result for 68.75% and a complete
fail for only 3.25% of the objective functions.

Those few failures could arise basically for three reasons: (a) our Generalized
DEM kernels are not suitable, (b) the GA did not find suitable ones, or (c) the
SVM did not generalize enough and predicted weights and frequency shifts incor-
rectly. Typically, machine learning techniques cannot find “exact” patterns, there-
fore, a failure rate of 3.25% could possibly be attributed to the SVM.

Whatever the source, the improvements by DEM∗ are striking. Therefore,
these results encouraged us to apply DEM∗ to a challenging problem in high-
dimensional search spaces: ground states of atoms and particles that interact via
a Lennard-Jones potential. Our findings are described in the following section.

6 DEM∗ for Potential Energy Surfaces

6.1 Lennard-Jones Potential

The Lennard-Jones potential models the pairwise interactions of atoms and mole-
cules including so-called dispersion effects. The potential function reads

V =
N∑

i<j

4ε

(
σ12

r12ij

− σ6

r6ij

)
(4)

where rij is the euclidean distance between the N interacting molecules i and
j in 3D-space. The minimum potential well that can be reached per interacting
pair is given by the pair equilibrium depth well ε. The length scale is defined
by σ [23,24]. The “surface” in the 3N dimensional space is frequently called
Potential Energy Surface (PES) in the natural sciences.

Now, the ground state of such a collection of N particles (such as noble gases
or the partial charges in atoms of biomolecules) is the global optimum of the
full potential V . Thus, V is our objective function and we eventually predict the
native state of these set of particles.

Without loss of generality we set ε = σ = 1 as in [24]. This allows us to
use known ground states [24] as reference results for the GA-based training of
Generalized DEM kernels in our DEM∗.

The potential consists of N(N−1)
2 ∼ O(N2) terms for N interacting particles.

Furthermore, the number of variables, namely the coordinates of the interacting
atoms, increases linearly with the number of particles (3 · N).

68 P. Manns and K. Hamacher

Our goal is to use derive transferable Generalized DEM Kernels with the
approach laid out above. In particular, it is desirable to derive parameters or
rules for Generalized DEM Kernels for our DEM∗ for just a few particles and
use them in larger problem instances with more particles.

However, the naive approach of using the same kernels is not possible as the
dimensionality of the kernels differ for varying number of particles. Therefore
our DEM∗ is instead applied for one-dimensional kernels (in the respective rij

on each of the terms in Eq. 4.

6.2 Computational Details

We applied the GA learning procedure with a population size of 1, 000 individuals
and 100 starting configurations in the discretization I . We restricted our study
to those Generalized DEM Kernels with just five Gaussians and therefore five
peaks.

The Lennard Jones potential is unbound for r → 0. Now, the limit r → 0
is (a) physically unrealistic and (b) leads to singularities in Eq. 4. We therefore
use a truncated potential: DEM and DEM∗ operate on a function Ṽ that trun-
cates V of Eq. 4 within the interval r ∈ [0, 0.85). For r < 0.85, Ṽ has the form
α exp(−βr2) and for r ≥ 0.85 we use the full Lennard-Jones potential of Eq. 4.
The parameters α, β were chosen to provide for continuity

(
Ṽ (0.85) = V (0.85)

)
and continuous differentiability

(
Ṽ ′(0.85) = V ′(0.85)

)
and thus physically real-

istic, finite forces.
Now, the analytic IFT F−1

(
k̂α,μ,t F

(
Ṽ (r)

))
(r) and its real part cannot be

given in closed form. Due to this and for computational efficiency the FT of the
term and the IFT of the product were approximated by a Radix-2-Fast-Fourier-
Transform (FFT) and used via a lookup table – a traditional memory-CPU
trade-off.

To avoid “exploding” communities of particles, that is solutions that – for
mainly numerical reasons – separate particles by infinite distances, we also added
a confining potential for each of the distances rij . The on-set of such a confine-
ment was chosen to be much larger than the typical size of a cluster of optimized
particles.

6.3 Results

Our performance results for DEM and DEM∗ are summarized in Fig. 3. First,
we found the classical DEM to be able to correctly find the global minima of V
of Eq. 4 from all starting configurations in the respective I for small systems –
namely for 2 ≤ N ≤ 6. Hence, there is no need for the more complex DEM∗ for
such small instances. For N ≥ 7 the performance of DEM deteriorates. Eventu-
ally, the classical DEM found the global optimum only for N = 10 (probability
32 %) and N = 14 (probability 1 %) for the 100 starting points in I . For all
other N ∈ [7, . . . , 30] \ {10} it failed always to find a global optimum.

Evolving Smoothing Kernels for Global Optimization 69

Now, DEM∗ was used to cope with the poor performance of the classical
DEM. To this end, we used the GA procedure laid out above to train Generalized
DEM kernels for instances N = {7, 8, 17} for later usage in DEM∗ in the cases of
N ∈ [2, . . . , 30]. The performance results for those three different DEM∗ trainings
are also shown in Fig. 3. Furthermore, Table 1 gives the exact values for the
instances trained on.

Table 1. Results of the GA trainings. We show the number of particles the respective
Generalized DEM kernel was trained on; the kernels we were able to find with maximal
fitness for those respective cases; and the fitness obtained for the best performing
kernels on the training examples.

particles Kernels with max. fitness Max. fitness

7 21 1.0

8 1 0.56

17 4 0.16

In general and in agreement with intuition, the overall fitness decreases with
an increasing number of particles tested for. But there are also counter-intuitive
improvements, e.g., for N = 12 and N = 13 tests where the performance
increases to some 80 % to 100 % of starting points and thus fitness.

Fig. 3. Performance of the DEM and the DEM∗ for Lennard-Jones potentials of Eq. 4.
“STD” denotes the classical DEM; 7,8 and 17 on the y-axis denote the size of training
examples (number of particles in the Lennard-Jones potential). The x-axis shows the
size of the test examples (the respective number of particles) the evolved kernels are
applied to.

70 P. Manns and K. Hamacher

A remarkable number of the trained kernels in DEM∗ obtain the global min-
imum for even large instances as in the N = 29 case. One kernel, which resulted
from the 17 particle training, is even transferable to the system with 30 particles.

Interestingly the DEM∗ modifications adapted for 7 particles, as well as the
unmodified DEM, fail to obtain the global minimum from any starting config-
uration for 8,17,27 and 30 particles. At present, we have no analytic verifiable
explanation for this empirical finding. The overall pattern of transferability is as
follows: for almost all but some few system sizes N we can use kernels trained
for smaller N and use them in DEM∗ to find with a high likelihood the global
optimum. The two trainings for N = 17 are superior to the ones for N = 7
but do not overall suffer from poor performance on isolated cases. Still, N = 8
trained kernels are not transferable. But N = 8 as a test case is solvable by a
DEM∗ kernel trained upon N = 17.

7 Conclusions and Future Work

We have shown that it is possible to GA-evolve Generalized DEM Kernels that
improve the convergence of the DEM to the global minimum for Real Cosine
Functions. The results show that a regression tool based on standard machine
learning techniques such as SVMs can be found that predicts kernels for previ-
ously not visited Real Cosine Functions for which the classical DEM approach
fails always.

Furthermore, the Genetic Algorithm from Sect. 4 is able to evolve Generalized
DEM Kernels for mid-sized Lennard-Jones-Potential functions that yield the
global minimum for bigger instances.

Both findings taken together suggest that the DEM∗ kernels are transferable
to larger, high-dimensional and thus more challenging optimization problems.
Note, that the overall computational costs need to be investigated in a future
study – our goal here was to derive the conceptual framework of the DEM∗, that
is a proof-of-concept: a genetic algorithm supports the meta-optimization of
approximate optimization procedures such as the DEM. Future developments in
this regard require improved and adapted mutation and recombination operators
to more efficiently diffuse through the space of linear combinations of Gaussians.

In the case of Lennard-Jones potentials, this finding translates into that opti-
mization problems of 15,18 and 45 degrees of freedom can be used to solve opti-
mization problems with 84 degrees of freedom while the unmodified DEM is only
able to obtain the correct minimum for up to 12 degrees of freedom3.

For future research, we note in passing that it is possible for the DEM∗

to omit approximations for functions with a multidimensional domain if the
multidimensional FTs are analytically available. This is the case for separable
objective functions f which are of the form f(x) =

∏N
i=1 fi(xi) as their Fourier

transform reads f̂(ω) =
∏

f̂N
i=1(ωi) [11, p. 331].

3 Here degrees of freedom = 3(N − 2) due to a free choice of the point of origin
and orientation, thus translational and rotational invariance of the potential V . The
prefactor 3 is the relation between no. of particles and no. of Eucledian coordinates.

Evolving Smoothing Kernels for Global Optimization 71

A multidimensional extension of the Generalized DEM Kernel∑n
i=1 αi exp(−t‖ω−µi‖2) with the Euclidean norm (‖y‖2 =

∑N
j=1 |yj |2) is obvi-

ously trivially Fourier transformable as the FT is linear [11, p. 331].
Our DEM∗ idea modifies the Fourier Transform of the fundamental solution

Φt of a linear differential operator while fulfilling the convergence to the original
objective function for t → 0. Hence, the modification is transferable to all diffu-
sion processes of the objective function that are described by a linear differential
operator and have a fundamental solution. The Malgrange-Ehrenpreis theorem
guarantees the existence of fundamental solutions for all linear differential oper-
ators with constant coefficients [25].

Note, that our approach is quite different from previous studies on, e.g.,
evolving kernels for SVMs [26,27] as we evolve and transfer kernels in an opti-
mization procedure called DEM and not a machine learning method like SVMs.
Here, we have merely used SVMs and are not concerned with them beyond their
usefulness to transfer patterns of Generalized DEM Kernels.

Acknowledgements. KH gratefully acknowledges funding by the LOEWE project
compuGene of the Hessen State Ministry of Higher Education, Research and the Arts.

References

1. Piela, L., Kostrowicki, J., Scheraga, H.A.: On the multiple-minima problem in the
conformational analysis of molecules: deformation of the potential energy hyper-
surface by the diffusion equation method. J. Phys. Chem. 93(8), 3339–3346 (1989)

2. Wawak, R.J., Pillardy, J., Liwo, A., Gibson, K.D., Scheraga, H.A.: Diffusion equa-
tion and distance scaling methods of global optimization. J. Phys. Chem. A
102(17), 2904 (1998)

3. Mobahi, H., Fisher III, J.W.: On the link between Gaussian homotopy continuation
and convex envelopes. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.)
EMMCVPR 2015. LNCS, vol. 8932, pp. 43–56. Springer, Heidelberg (2015)

4. Mobahi, H., Fisher III, J.W.: A theoretical analysis of optimization by Gaussian
continuation. In: AAAI 2015: 29th Conference on Artificial Intelligence (2015)

5. Kostrowicki, J., Piela, L., Cherayil, B.J., Scheraga, H.A.: Performance of the dif-
fusion equation method in searches for optimum structures of clusters of Lennard-
Jones atoms. J. Phys. Chem. 95(10), 4113–4119 (1991)

6. Wawak, R., Wimmer, M., Scheraga, H.: Application of the diffusion equation
method of global optimization to water clusters. J. Phys. Chem. 96(12), 5138–
5145 (1992)

7. Hamacher, K.: Optimization of high-dimensional functions with respect to protein-
structure-prediction. Dipl. thesis, Dortmund University (1998)

8. Galassi, M.: GNU Scientific Library Reference Manual. Network Theory Ltd.
(2009)

9. Miklavcic, M.: Applied Functional Analysis and PDEs. World Scientific, Singapore
(1998)

10. Abels, H.: Pseudodifferential and Singular Integral Operators. Walter de Gruyter,
Berlin (2011)

11. Marks, R.J.: Handbook of Fourier Analysis & Its Applications. Oxford University
Press, Oxford (2009)

72 P. Manns and K. Hamacher

12. Aluffi-Pentini, F., Parisi, V., Zirilli, F.: Global optimization and stochastic differ-
ential equations. J. Optim. Theor. Appl. 47(1), 1–16 (1985)

13. Blum, C., Roli, A.: Hybrid metaheuristics: an introduction. In: Blum, C., José
Bleasa Aguilera, M., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, pp. 1–30.
Springer, Heidelberg (2008)

14. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Com-
putational Intelligence: Eine methodische Einführung in Künstliche Neuronale
Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze. Springer,
Heidelberg (2011)

15. Mitchell, M.: An Introduction to Genetic Algorithms. Bradford, Denver (1998)
16. Yu, X., Gen, M.: Decision Engineering. Springer, Heidelberg (2010)
17. Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate

Texts in Mathematics, vol. 194. Springer, Heidelberg (2000)
18. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.

Semi-group Forum, vol. 63. Springer, Heidelberg (2001)
19. Mayer, B.E., Hamacher, K.: Stochastic tunneling transformation during selection

in genetic algorithm. In: Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, GECCO 2014, pp. 801–806. ACM, New York (2014)

20. Nocedal, J., Wright, S.: Numerical Optimization. Operations Research and Finan-
cial Engineering. Springer, New York (2006)

21. R Development Core Team.: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008)

22. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: Misc functions
of the Department of Statistics (e1071), TU Wien. R package 1–5 (2008)

23. Hopfinger, A.: Conformational Properties of Macromolecules. Academic Press,
London (1973)

24. Wales, D.J., Doye, J.P.: Global optimization by basin-hopping and the lowest
energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys.
Chem. A 101(28), 5111–5116 (1997)

25. Wagner, P.: A new constructive proof of the Malgrange-Ehrenpreis theorem. Am.
Math. Month. 116(5), 457–462 (2009)

26. Diosan, L., Rogozan, A., Pecuchet, J.P.: Evolving kernel functions for svms by
genetic programming. In: Sixth International Conference on Machine Learning and
Applications, ICMLA 2007, 19–24 December 2007

27. Sullivan, K.M., Luke, S.: Evolving kernels for support vector machine classifica-
tion. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2007, pp. 1702–1707. ACM, New York (2007)

EvoPAR

Implementing Parallel Differential Evolution
on Spark

Diego Teijeiro1, Xoán C. Pardo1, Patricia González1(B), Julio R. Banga2,
and Ramón Doallo1

1 Grupo de Arquitectura de Computadores, Universidade da Coruña,
A Coruna, Spain

{diego.teijeiro,xoan.pardo,patricia.gonzalez,doallo}@udc.es
2 BioProcess Engineering Group, IIM-CSIC, Pontevedra, Spain

julio@iim.csic.es

Abstract. Metaheuristics are gaining increased attention as an efficient
way of solving hard global optimization problems. Differential Evolution
(DE) is one of the most popular algorithms in that class. However, its
application to realistic problems results in excessive computation times.
Therefore, several parallel DE schemes have been proposed, most of them
focused on traditional parallel programming interfaces and infrastruc-
tures. However, with the emergence of Cloud Computing, new program-
ming models, like Spark, have appeared to suit with large-scale data
processing on clouds. In this paper we investigate the applicability of
Spark to develop parallel DE schemes to be executed in a distributed
environment. Both the master-slave and the island-based DE schemes
usually found in the literature have been implemented using Spark. The
speedup and efficiency of all the implementations were evaluated on the
Amazon Web Services (AWS) public cloud, concluding that the island-
based solution is the best suited to the distributed nature of Spark. It
achieves a good speedup versus the serial implementation, and shows a
decent scalability when the number of nodes grows.

Keywords: Metaheuristics · Differential evolution · Cloud computing ·
Spark · Amazon web services

1 Introduction

Global optimization problems arise in many areas of science and engineering
[1–3]. Most of these problems are NP-hard, so many research efforts have focused
on developing metaheuristic methods which are able to locate the vicinity of the
global solution in reasonable computation times. Moreover, in order to reduce the
computational cost of these methods, a number of researchers have studied parallel
strategies for metaheuristics [4,5]. However, all these efforts are focused on tradi-
tional parallel programming interfaces and traditional parallel infrastructures.

With the advent of Cloud Computing effortless access to large number of dis-
tributed resources has become more feasible. But developing applications that
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 75–90, 2016.
DOI: 10.1007/978-3-319-31153-1 6

76 D. Teijeiro et al.

execute at so big scale is hard. New programming models are being proposed to
deal with large scale computations on commodity clusters and Cloud resources.
Distributed frameworks like MapReduce [6] or Spark [7] provide high-level pro-
gramming abstractions that simplify the development of distributed applications
including implicit support for deployment, data distribution, parallel processing
and run-time features like fault tolerance or load balancing. We wonder how
much benefit can we expect from implementing parallel metaheuristics using
these new programming models because, besides the many advantages, they
also have some shortcomings. Cloud-based distributed frameworks prefer avail-
ability to efficiency, being the speedup and distributed efficiency frequently lower
than in traditional parallel frameworks due to the underlying multitenancy of
virtualized resources.

The aim of this paper is to explore this direction further considering a parallel
implementation of Differential Evolution (DE) [8], probably one of the most pop-
ular heuristics for global optimization, to be executed in the Cloud. The main
contribution of the proposal is an analysis of different alternatives in imple-
menting parallel versions of the DE algorithm using Spark and a thoroughly
evaluation of their feasibility to be executed in the Cloud using a real testbed
on the Amazon Web Services (AWS) public cloud.

The organization of this paper is as follows. Section 2 briefly presents the
background and related work. Some new programing models in the Cloud are
described in Sect. 3. Section 4 describes the proposed implementations of the
Differential Evolution algorithm using Spark. The performance of the proposal
is evaluated in Sect. 5. Finally, Sect. 6 concludes the paper and discusses future
work.

2 Related Work

The parallelization of metaheuristics methods has received much attention to
reduce the run time for solving large-scale problems [9]. Many parallel algorithms
have been proposed in the literature, most of them being parallel implementations
based on traditional parallel programming interfaces such as MPI and OpenMP.
However, research on cloud-oriented parallel metaheuristics based mainly on
the use of MapReduce has also received increasing attention in recent years.
MRPSO [10] uses the MapReduce model to parallelize the Particle Swarm Opti-
mization (PSO). MRPGA [11] attempts at combining MapReduce and genetic
algorithms (GA). They properly claim that GAs cannot be directly expressed in
MapReduce due to their specific characteristics. So they extend the model featur-
ing a hierarchical reduction phase. A different approach is followed in [12], that
tries to hammer the GAs into the MapReduce model. In [13] the applicability of
MapReduce to distributed simulated annealing (SA) was also investigated. They
design different algorithmic patterns of distributed SA with MapReduce and eval-
uate their proposal on the AWS public cloud. Recently, in [14], a practical frame-
work to infer large gene networks through a parallel hybrid GA-PSO optimization
method using MapReduce has also been proposed.

Implementing Parallel Differential Evolution on Spark 77

Some proposals are more specific on studying how to apply MapReduce to
parallelize the DE algorithm to be used in the Cloud. In [15] the fitness evalua-
tion in the DE algorithm is performed in parallel using Hadoop (the well-known
open-source MapReduce framework). However, the experimental results reveal
that the extra cost of Hadoop DFS I/O operations and the system bookkeep-
ing overhead significantly reduces the benefits of the parallelization. In [16], a
concurrent implementation of the DE based on MapReduce is proposed, how-
ever, it is a parallelized version of a neoteric DE based on the steady-state
model instead of on the generation alternation model. While the generational
model holds two populations and generates all individuals for the second popu-
lation from those of the current population, the steady-state model holds only
one population and each individual of the population is updated one by one.
Comparing with the generational model, the parallelization of the steady-state
model is simpler because it does not require synchronization for replacing the
current population by newborn individuals simultaneously. On the other hand,
the experiments reported in that paper were conducted on a multi-core CPU,
thus, their implementation take advantage of the shared-memory architecture,
sharing the population among the different threads, which is not possible in a
distributed cloud environment. In [17] a parallel implementation of DE based
clustering using MapReduce is also proposed. This algorithm was implemented
in three levels, each of which consists of different DE operations.

To the best of our knowledge, there is no previous work that explores the use
of Spark for evolutionary computation. Also, previous works using MapReduce
have rarely evaluated their proposals in a real testbed on a public cloud.

3 New Programming Models in the Cloud

From the new programming models that have been proposed to deal with
large scale computations on cloud systems, MapReduce [6] is the one that has
attracted more attention since its appearance in 2004. In short, MapReduce exe-
cutes in parallel several instances of a pair of user-provided map and reduce func-
tions over a distributed network of worker processes driven by a single master.
Executions in MapReduce are made in batches, using a distributed filesystem
(typically HDFS) to take the input and store the output. MapReduce has been
applied to a wide range of applications, including distributed pattern-based
searching, distributed sorting, graph processing, document clustering or statis-
tical machine translation among others.

When it comes to iterative algorithms as those that are typical in areas like
machine learning or evolutionary computation, MapReduce has shown serious
performance bottlenecks. Computations in MapReduce can be described as a
directed acyclic data flow where a network of stateless mappers and reducers
process data in single batches (see Fig. 1). All input, output and intermediate data
is stored and accessed via the file system and map/reduce tasks are created in
every single batch. Having several of these single batches executed inside a loop
has shown to introduce considerable performance overhead [18] mainly because
there is no way of reusing data or computation from previous iterations efficiently.

78 D. Teijeiro et al.

Fig. 1. MapReduce dataflow.

Although some extensions have been proposed to improve the support to itera-
tive algorithms in MapReduce like Twister [18], iMapReduce [19], or HaLoop [20],
they still perform poorly on the kind of algorithms we are interested in, mainly
due to those systems inability to exploit the (sparse) computational dependen-
cies present in these tasks [21]. New proposals, not based on MapReduce, like
Spark [7] or Fink (which has its roots on Stratosphere [22]), are designed from
the very beginning to provide efficient support for iterative algorithms.

Spark provides a language-integrated programming interface to resilient dis-
tributed datasets (RDDs), a distributed memory abstraction for supporting fault-
tolerant and efficient in-memory computations. According to authors [7] the per-
formance of iterative algorithms can be improved by an order of magnitude when
compared to MapReduce (using Hadoop).

Formally, an RDD is a read–only fault–tolerant partitioned collection of
records. Users can manipulate them using a rich set of operators, control their
partitioning to optimize data placement and explicitly persist intermediate
results (in memory by default but also to disk). RDDs are created from other
RDDs or from data in stable storage by applying coarse-grained transformations
(e.g., map, filter or join) that apply the same operation to many data items.
Once created, RDDs are used in actions (e.g. count, collect or save) which are
operations that return a value to the application or export data to a storage
system.

RDDs are computed lazily the first time they are used in an action, so trans-
formations can be pipelined to form a lineage. By storing enough information
about their lineages, RDDs do not need to be materialized at all times, as every
RDD can recompute its partitions from previously persisted RDDs or data in
stable storage at any time. This feature is the one used to provide fault-tolerance
in case of an RDD partition lost.

Spark runtime is composed of a single driver program and multiple workers
which are long-lived processes launched by the driver. Workers read data blocks
from a distributed file system and persist RDD partitions in RAM across opera-
tions. Developers write the driver program where they define one or more RDDs
and invoke actions on them. Whenever an action is executed on an RDD, the
Spark job scheduler uses its lineage to compute a directed acyclic graph (DAG)

Implementing Parallel Differential Evolution on Spark 79

Algorithm 1. Differential Evolution algorithm (seqDE)

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element x of the P matrix do

−→a ,
−→
b ,−→c ← different random individuals from P matrix

for k ← 0 to D do
if random point is less than CR then−−→

Ind(k) ← −→a (k) + F (
−→
b (k) - −→c (k))

end

end

if Evaluation(
−−→
Ind) is better than Evaluation(

−−−→
P (x)) then

Replace Individual(P ,
−−→
Ind)

end

end

until Stop conditions;

of stages. The scheduler then launches tasks to compute missing partitions from
each stage until it has computed the target RDD. Assignment of tasks to workers
takes into account data locality. Tasks end up being assigned to workers that
already hold the RDD partitions of interest in memory.

An example of how Spark computes job stages is showed in Fig. 2. In the
figure, boxes with solid outlines are RDDs. Partitions are shaded rectangles,
darker if they are persisted in memory. Each stage contains as many pipelined

Fig. 2. Example of how Spark computes job stages.

80 D. Teijeiro et al.

transformations with narrow (one-to-one or one-to-many) dependencies as pos-
sible. The boundaries of the stages (boxes with doted outlines in the figure) are
the shuffle operations required for wide (many-to-one or many-to-many) depen-
dencies or the presence of an already computed RDD in the lineage. In the
example, to run an action on RDD G, as output RDD from stage 1 is already
in RAM only stages 2 and 3 need to be executed.

4 Implementing Differential Evolution on Spark

Differential Evolution is an iterative mutation algorithm where vector differ-
ences are used to create new candidate solutions. Starting from an initial pop-
ulation matrix composed of NP D-dimensional solution vectors (individuals),
DE attempts to achieve the optimal solution iteratively through changes in its
vectors. Algorithm 1 shows the basic pseudocode for the DE algorithm. For each
iteration, new individuals are generated in the population matrix through oper-
ations performed among individuals of the matrix (mutation - F), with old solu-
tions replaced (crossover - CR) only when the fitness value of the objective
function is better than the current one.

A population matrix with optimized individuals is obtained as output of the
algorithm. The best of these individuals are selected as solution close to optimal
for the objective function of the model. However, in some real applications, such
as parameter estimation in dynamic models, the performance of the classical
sequential DE is not acceptable due to the large number of objective function
evaluations needed. As a result, typical runtimes for realistic problems are in the
range from hours to days. Parallelism can help improving both computational
time and number of iterations for convergence. In the literature, different parallel
models can be found [9], being the most popular ones the master-slave model and
the island-based model. In the master-slave model the inner-loop of the algorithm
is parallelized. A master processor distributes computation operations between
the slave processors. Therefore, the parallel algorithm has the same behavior of
the sequential one. In the island-based model the population matrix is divided
in subpopulations (islands) where the algorithm is executed isolated. Sparse
individual exchanges are performed among islands to introduce diversity into
the subpopulations, preventing search from getting stuck in local optima.

With the aim of better understanding Spark intricacies and assess the perfor-
mance of different alternatives when implementing DE, we have developed three
different versions of the algorithm: (1) the classic sequential algorithm (seqDE)
which has been implemented for comparative purposes and it is the only that
does not make use of Spark; (2) three different variants of the master-slave par-
allel implementation (SmsPDE); and (3) an island-based parallel implementation
(SiPDE). All of them have been coded using the Scala language [23] which is
the one used to implement Spark itself although APIs for Python and Java also
exist. The rest of this section features relevant facts about each of the implemen-
tations. As it will be demonstrated, the main conclusion is that the island-based
parallel implementation is the best suited to the distributed nature of Spark and
obtains the best performance results.

Implementing Parallel Differential Evolution on Spark 81

4.1 Master-Slave DE

To implement a master-slave parallel version of the DE algorithm using Spark,
some previous insight into the way data is distributed and processed by Spark is
needed. Spark uses the RDD abstraction to represent fault-tolerant distributed
data. RDDs are inmutable sets of records that optionally can be in the form
of key-value pairs. Spark driver (the master in Spark terminology) partitions
RDDs and distributes the partitions to workers (the slaves in Spark terminology),
which persist and transform them and return results to the driver. There is no
communication among workers. Shuffle operations (i.e. join, groupBy) that need
data movement among workers through the network are expensive and should
be avoided.

Our Spark-based master-slave DE implementation (SmsPDE) follows the
scheme shown in Fig. 3. A key-value pair RDD has been used to represent the
population where each individual is uniquely identified by its key. Some DE algo-
rithm steps have been selected as appropriate to be executed in a distributed
fashion:

– The random generation and initial evaluation of individuals that form the
population, implemented as a Spark map transformation.

– The mutation strategy including random pick of individuals and replacement
of old individuals with new improved ones, implemented using three different
variants that are explained later.

– The checking of the termination criterion, implemented as a Spark reduce
action (a distributed OR operation).

The two last steps are arranged into a loop that is executed until the ter-
mination criterion is met. After that the final selection of the best individual is
also executed as a Spark reduce action (a distributed MIN operation).

The main issue found was the implementation of the mutation strategy
because the population is partitioned and distributed among workers. For the

Fig. 3. Spark-based Master-Slave implementation of the DE algorithm (SmsPDE).

82 D. Teijeiro et al.

mutation of each individual, random different individuals have to be selected
from the whole population. How to access to individuals of other partitions from
a given worker, having the constraint that only the driver has access to the com-
plete population, was the main difficulty to be tackled. Three different variants
have been considered for solving this problem:

– The driver distributes the random generation of keys to the workers, collects
them, selects from the whole population the individuals corresponding to the
generated random keys and distributes selected individuals to the workers that
perform mutations and replacements.

– The driver itself makes the random pick of individuals for each member of the
population and distribute them to the workers that perform mutations and
replacements.

– The driver broadcasts the whole population to every worker using Spark broad-
cast variables. This Spark feature allows workers to have access to a local
memory-cached read-only copy of the complete population. Therefore each
worker can perform mutations picking the needed random individuals from its
local copy of the population.

After benchmarking the performance of the three variants, broadcasting the
population showed to be by far the best option. This is not surprising because
the broadcasting feature of Spark is highly optimized and it is the recommended
method for iterative algorithms to distribute data to workers that has to be
reused by different iterations. Only the size of data to be broadcasted could
discourage its use, but this is not the case with DE where the size of populations
is small (usually in the range of 5D and 10D being D the problem dimension).

4.2 Island-Based DE

When testing each one of the previous approaches, even using the version that
has shown best benchmarking results, the penalty due to broadcast the whole
population to workers in each iteration was unaffordable. For instance, using
one of the benchmark functions used later on in Sect. 5, the f15 function, and
a stopping criterion based on a predefined effort of 800,000 evaluations, the
execution time of seqDE was 30 s, while the execution time of SmsPDE using 4
nodes was 263 s. The main conclusion of our experience with the master-slave
implementation of the DE algorithm was that this approach does not fit well
with the distributed model of Spark. Therefore we decided to implement a new
parallel version of the algorithm using an island-based approach which in advance
seemed to be a more promising one.

Figure 4 shows the scheme of the Spark-based island DE (SiPDE) implemen-
tation. As it can be seen it has some steps in common with the master-slave
implementation: i.e. generation of the population, checking of the termination
criterion and selection of the best individual. The main difference resides in the
way the population evolves. Every partition of the population RDD has been
considered to be an island, all with the same number of individuals. Islands evolve

Implementing Parallel Differential Evolution on Spark 83

isolated during a number of evolutions. This number can be configured and is the
same for all islands. During these evolutions every worker calculates mutations
picking random individuals from its local partition only. To introduce diversity a
migration strategy that exchanges selected individuals among islands is executed
every time the number of evolutions is reached. This evolution-migration loop is
repeated until the termination criterion is met.

Fig. 4. Spark-based island implementation of the DE algorithm (SiPDE).

For implementing the migration strategy a Spark feature known as parti-
tioner has been used. In Spark the partitioner is responsible for assigning key-
value pair RDD elements to partitions based on their keys. Default partitioner
implements a hash-based partitioning using the Java hash code of the key. For
this work we have implemented a custom partitioner that randomly and evenly
shuffles elements among partitions. It must be noted that this partitioner leads
to a migration strategy that randomly shuffles individuals among subpopula-
tions without replacement. This partitioner proposal is intended to evaluate the
migration communications overhead and not to improve the searching quality of
the algorithm. Adding migration strategies with that purpose in mind are left
for future work.

5 Experimental Results

In order to evaluate the efficiency of the Spark-based parallel implementation of
the island DE algorithm (SiPDE), different experiments have been carried out. Its
behavior, in terms of convergence and total execution time, has been compared
with the sequential implementation (seqDE). For the experimental testbed Spark
was deployed with default settings in the AWS public cloud using virtual clusters
formed by 2, 4, 8 and 16 nodes communicated by the AWS standard network
(Ethernet 1 GB). For the nodes the m3.medium instance (1 vCPU, 3.75 GB RAM,

84 D. Teijeiro et al.

4 GB SSD) was used. Each experiment was executed a number of 10 independent
runs on every virtual cluster, and the average and standard deviation of the
execution time are reported in this section. It must be noted that, since Spark
runs on the Java Virtual Machine (JVM), usual precautions (i.e. warm-up phase,
effect of garbage collection) has been taken into account to avoid distortions on
the measures.

The performed experiments used two sets of benchmark problems: a set of
problems out of an algebraic black-box optimization testbed, the Black-Box
Optimization Benchmarking (BBOB) data set [24]; and a challenging parameter
estimation problem in systems biology [25]. On the one hand, the experiments
over the BBOB data set were carried out to evaluate the efficiency of the pro-
posed parallelization in a popular and accessible benchmarking testbed. On the
other hand, the aim of the experiments with the parameter estimation in systems
biology is to demonstrate the potential of the proposed techniques for improving
the convergence and execution time of very hard problems. In these benchmarks,
the execution of seqDE can take hours or even days to complete one only test.
Four well known benchmarks problems from the BBOB data set were evalu-
ated: Rastringin function (f15), Schaffers function (f17), Schwefel function (f20),
and Gallagher’s Gaussian 21-hi Peaks function (f22). The considered benchmark
from the domain of computational system biology was a parameter estimation
problem in a dynamic model of the circadian clock in the plant Arabidopsis
thaliana, as presented in [25]. It must be noted that, as already available imple-
mentations in C/C++ and/or FORTRAN existed for all the benchmarks, we
have wrapped them in our Scala code by using Java/Scala native interfaces (i.e.
JNI, JNA, SNA).

There are many configurable parameters in the classical DE algorithm, such
as the mutation scaling factor (F), the crossover constant (CR) or the mutation
strategy (MSt), whose selection may have a great impact in the algorithm per-
formance. Since the objective of this work is not to evaluate the impact of these
parameters, only results for one configuration are reported here. For the selection
of the settings in these experiments, in general, the suggestions in [8] have been
followed. Previous tests have been done to select those parameters that lead to
reasonable computation times. Table 1 shows the selected configuration for each
benchmark.

Comparing the sequential and the parallel metaheuristics is not an easy task,
therefore, guidance of [24,26] has been followed when analyzing the results of these
experiments. On the one hand, the behavior of the proposed solution was com-
pared with the sequential classic version of DE (seqDE), therefore, speedups cal-
culated as TseqDE/TSiPDE are reported in this section. On the other hand, both
vertical and horizontal views can be used when evaluating a parallel metaheuris-
tic. A vertical view assesses the performance of a fix number of evaluations, i.e., a
pre-defined effort; while an horizontal view assesses the performance by measuring
the time needed to reach a given target value. Thus, two different stopping crite-
ria were considered in these experiments: maximum effort, for the vertical view,

Implementing Parallel Differential Evolution on Spark 85

Table 1. Benchmark functions. Parameters: dimension (D), population size (NP),
crossover constant (CR), mutation factor (F), mutation strategy (MSt), value-to-
reach/ftarget (VTR).

B Function D NP CR F MSt VTR

BBOB benchmarks

f15 Rastrigin Function 5 800 .8 .9 DE/rand/1 1000

f17 Schaffers F7 Function 6 1024 .8 .9 DE/rand/1 −16.94

f20 Schwefel Function 6 1024 .8 .9 DE/rand/1 −546.5

f22 Gallagher’s Gaussian 10 1600 .8 .9 DE/rand/1 −1000

Systems Biology benchmark

circadian Circadian model 13 640 .8 .9 DE/rand/1 1e-5

and solution quality (using as stopping criterion a Value-To-Reach), for the hori-
zontal view.

Results from both views are shown in Table 2. For each experiment, the num-
ber of nodes (#n) used, the mean execution time and the standard deviation
(in seconds) of the 10 independent runs in each experiment, the average num-
ber of migrations (#m) performed in the SiPDE method, and the speedup (sp)
achieved are shown. It should be noted that the stopping criterion is evaluated
during each island evolution but, when it is met by one or more islands, the
algorithm only stops after the reduce operation at the end of the stage (see
Fig. 4). Thus, because no communication among workers is possible in Spark,
the parallel SiPDE implementation cannot stop just right when the stopping
criterion is reached (as the serial one does).

The figures for the vertical view (predefined effort) show that the proposed
SiPDE method accelerates the computation of seqDE by performing the same
number of evaluations in parallel. The figures for the horizontal view (qual-
ity solution) also demonstrate that the proposed SiPDE method reduces the
computation time needed to achieve the VTR of the seqDE by improving the
convergence of the algorithm.

The speedup achieved when using the predefined effort as stopping criterion
deviates from the ideal one because of the overhead introduced by the com-
munications. This fact can be observed in Fig. 5 where both the speedup and
efficiency are shown, the latter calculated as speedup/np. In the experiments with
the BBOB benchmarks, due to their short execution times, only two migrations
were performed among islands before the stopping criterion is met, while for
the circadian 20 migrations were performed. The efficiency results show that the
overhead of the migrations barely affects on the performance when the execution
time between two of them is significant (case of the circadian benchmark, where
the efficiency is above 0.9), but it may greatly impact if it is small (case of BBOB
benchmarks, where the efficiency is below 0.8 and significatively decreases when
the number of nodes grows).

86 D. Teijeiro et al.

Table 2. Execution time in seconds, number of migrations (#m), and speedup (sp)
results for predefined effort (stopping criterion: Nevalsf15 = 1, 000, 000; Nevalsf17 =
1, 048, 576; Nevalsf20 = 1, 040, 000; Nevalsf22 = 3, 200, 000; Nevalscircadian =
1, 280, 000) and for a given solution quality (Value-To-Reach reported in Table 1),
using different number of nodes (#n). Average results from 10 independent runs in
each experiment.

Predefined Effort Quality Solution
method #n time±std #m sp time±std #m sp

f 1
5

seqDE 1 35.71 ± 0.20 - - 47.89 ± 1.67 - -
2 27.86 ± 0.24 2 1.28 34.26 ± 1.47 2 1.40

SiPDE 4 12.34 ± 0.21 2 2.89 15.88 ± 0.45 2 3.02
8 6.39 ± 0.21 2 5.59 9.09 ± 0.25 2 5.27
16 4.40 ± 0.40 2 8.12 3.73 ± 0.52 1.7 12.85

f 1
7

seqDE 1 36.60 ± 0.08 - - 65.42 ± 2.13 - -
2 31.63 ± 0.27 2 1.16 53.74 ± 1.01 2 1.22

SiPDE 4 13.31 ± 0.17 2 2.75 22.72 ± 0.28 2 2.88
8 6.80 ± 0.24 2 5.38 12.79 ± 0.43 2 5.11
16 4.25 ± 0.36 2 8.62 6.11 ± 0.35 2 10.71

f 2
0

seqDE 1 34.48 ± 0.07 - - 55.12 ± 1.86 - -
2 27.00 ± 0.15 2 1.28 45.48 ± 2.19 2 1.21

SiPDE 4 12.64 ± 0.16 2 2.73 17.78 ± 1.02 2 3.10
8 6.47 ± 0.26 2 5.33 9.90 ± 1.05 2 5.57
16 4.16 ± 0.41 2 8.28 4.08 ± 0.54 1.7 13.49

f 2
2

seqDE 1 112.14 ± 0.95 - - 598.38 ± 478.31 - -
2 101.18 ± 0.94 2 1.11 703.97 ± 465.52 12.6 0.85

SiPDE 4 44.03 ± 0.46 2 2.55 155.32 ± 156.19 7.8 3.85
8 19.00 ± 0.40 2 5.90 84.60 ± 74.77 9.4 7.07
16 10.25 ± 0.39 2 10.94 48.07 ± 37.64 11 12.45

ci
rc
a
d
ia
n

seqDE 1 6267.97 ± 76.26 - - 84482.53 ± 2369.75 - -
2 3111.14 ± 33.80 20 2.01 41736.17 ± 2114.45 26.7 2.03

SiPDE 4 1575.26 ± 15.56 20 3.98 19029.74 ± 1042.31 24 4.44
8 799.65 ± 9.23 20 7.84 8247.04 ± 558.07 20.4 10.24
16 412.90 ± 4.93 20 15.18 2799.53 ± 377.43 13.4 30.39

Figure 5 also shows the speedup and efficiency when using the quality of the
solution as stopping criterion. Speedups are larger than the ones obtained for
predefined effort because the cooperation among islands in the parallel searches
modifies the systemic properties of the algorithm, improving its convergence and
outperforming the serial one. In the figures reported in Table 2 it can be seen that
for the f15, f17 and f20 benchmarks, again due to their short execution times,
most of them converged after two migrations. However, when the number of
nodes grew, some benchmarks required only one migration (so giving an average
of 1.7 in some experiments), thus, improving the efficiency obtained for 16 nodes.
The f22 benchmark is a highly multimodal function that frequently fall into an
undesired stagnation condition. Thus, the dispersion of the experimental results

Implementing Parallel Differential Evolution on Spark 87

Fig. 5. Speedup and efficiency for results in Table 2

Fig. 6. Box plot of the execution times and convergence curves for the circadian bench-
mark with quality solution stopping criterion.

is very large (see the standard deviation in Table 2) and the number of migrations
also varies from a minimum of 3 to a maximum of 19 in different runs.

For complex problems, like the circadian benchmark, the number of migra-
tions clearly decreases with the number of nodes, demonstrating the potential
of the parallel algorithm for improving the convergence of the DE method. The
harder the problem is, the most improvement is achieved by the parallel algo-
rithm, since the diversity introduced by the migration phase, although using a
naive strategy as explained in Sect. 4.2, actually improves the effectiveness of
the DE algorithm. Thus, for the circadian benchmark superlinear speedups are
obtained, as well as efficiency above 1.

In this kind of stochastic problems it is also important to evaluate the disper-
sion of the experimental results. Figure 6(a) illustrates how the proposed SiPDE

88 D. Teijeiro et al.

method reduces the variability of the DE execution time. This is an important
feature that can be used to more accurately predict the boundaries in the cost
of resources when using a public cloud like AWS.

Finally, to better illustrate the improvement of the proposed SiPDE method
versus the seqDE method, Fig. 6(a) shows, for the circadian benchmark, the con-
vergence curves for different number of nodes. As expected, convergence time
is considerably reduced by SiPDE with respect to seqDE. It must be noted that
these results could be further improved using more skilled mutation and migra-
tion strategies and adding enhancements, like local search [27], which have not
been considered in this work.

6 Conclusions and Future Work

In order to explore how parallel metaheuristics could take advantage of the
recent advances in Cloud programming models, in this paper Spark-based imple-
mentations of two different parallel schemes of the Differential Evolution (DE)
algorithm, the master-slave and the island-based, are proposed and evaluated.
Early benchmarking results showed that the island-based solution is by far the
best suited to the distributed nature of Spark. Thus a thorough evaluation of
this implementation was conducted on the AWS public cloud using a real testbed
consisting on virtual clusters of different sizes.

Both synthetic and real biology-inspired benchmarks were used for the eval-
uation. The experimental results show that the proposal achieves not only a
competitive speedup against the serial implementation, but also a good scalabil-
ity when the number of nodes grows. The paper can be useful for those interested
in the potential of Spark in computationally intensive nature-inspired methods
in general and DE in particular. To the best of our knowledge, this is the first
work on using Spark to parallelize DE.

Future work will be focus on developing new migration strategies and includ-
ing further optimizations to improve the convergence of the Spark-based island
parallel DE proposed.

Acknowledgements. This research received financial support from the Spanish Min-
isterio de Economı́a y Competitividad (and the FEDER) through the Project SYN-
BIOFACTORY (grant number DPI2014-55276-C5-2-R). It has been also supported
by the Spanish Ministerio de Ciencia e Innovación (and the FEDER) through the
Project TIN2013-42148-P, and by the Galician Government (Xunta de Galicia) under
the Consolidation Program of Competitive Research Units (Network Ref. R2014/041
and Project Ref. GRC2013/055) cofunded by FEDER funds of the EU.

References

1. Floudas, C.A., Pardalos, P.M.: Optimization in Computational Chemistry and
Molecular Biology: Local and Global Approaches, vol. 40. Springer Science and
Business Media, Heidelberg (2013)

Implementing Parallel Differential Evolution on Spark 89

2. Banga, J.R.: Optimization in computational systems biology. BMC Syst. Biol. 2(1),
47 (2008)

3. Grossmann, I.E.: Global Optimization in Engineering Design, vol. 9. Springer Sci-
ence and Business Media, Heidelberg (2013)

4. Crainic, T.G., Toulouse, M.: Parallel Strategies for Meta-Heuristics. Springer, Hei-
delberg (2003)

5. Alba, E.: Parallel Metaheuristics: a New Class of Algorithms. Wiley-Interscience,
New York (2005)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2004 (2004)

7. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2012 (2012)

8. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

9. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

10. McNabb, A.W., Monson, C.K., Seppi, K.D.: Parallel PSO using MapReduce. In:
IEEE Congress on Evolutionary Computation, CEC2007, IEEE, pp. 7–14 (2007)

11. Jin, C., Vecchiola, C., Buyya, R.: MRPGA: an extension of MapReduce for paral-
lelizing genetic algorithms. In: IEEE Fourth International Conference on eScience,
eScience 2008, IEEE, pp. 214–221 2008)

12. Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling genetic algo-
rithms using MapReduce. In: Ninth International Conference on Intelligent Sys-
tems Design and Applications, ISDA 2009, IEEE, pp. 13–18 (2009)

13. Radenski, A.: Distributed simulated annealing with MapReduce. In: Di Chio, C.,
Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler,
R., Ekárt, A., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 466–476.
Springer, Heidelberg (2012)

14. Lee, W.P., Hsiao, Y.T., Hwang, W.C.: Designing a parallel evolutionary algorithm
for inferring gene networks on the cloud computing environment. BMC Syst. Biol.
8(1), 5 (2014)

15. Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce.
In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Com-
putation, ACM, pp. 1113–1114 2010)

16. Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce.
Int. J. Comput. 4(4), 161–168 (2010)

17. Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel differential evo-
lution clustering algorithm based on MapReduce. In: 6th International Conference
of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp. 337–341 (2014)

18. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., hee Bae, S., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: The First International Workshop
on MapReduce and Its Applications (2010)

19. Zhang, Y., Gao, Q., Gao, L., Wang, C.: IMapReduce: a distributed computing
framework for iterative computation. In: Proceedings of the 1st International Work-
shop on Data Intensive Computing in the Clouds (DataCloud), p. 1112 (2011)

20. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: HaLoop: efficient iterative data
processing on large clusters

90 D. Teijeiro et al.

21. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data
flows. CoRR abs/1208.0088 (2012)

22. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax,
M., Schelter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform
for big data analytics. VLDB J. 23(6), 939–964 (2014)

23. Odersky, M., Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.,
et al.: An overview of the Scala programming language. Technical report (2004)

24. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2009: experimental setup. Technical report RR-6828, INRIA (2009)

25. Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and var-
ied experimental data: the circadian clock in arabidopsis thaliana. J. Theor. Biol.
234(3), 383–393 (2005)

26. Alba, E., Luque, G.: Evaluation of parallel metaheuristics. In: PPSN-EMAA 2006,
Reykjavik, Iceland, 9–14 September 2006

27. Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel differential evolu-
tion algorithm for problems in computational systems biology. Appl. Soft Comput.
33, 86–99 (2015)

ECJ+HADOOP: An Easy Way to Deploy
Massive Runs of Evolutionary Algorithms

Francisco Chávez1(B), Francisco Fernández1, César Benavides2, Daniel Lanza3,
Juan Villegas4, Leonardo Trujillo5, Gustavo Olague6, and Graciela Román2

1 Department of Computer Science, University of Extremadura,
C/. Santa Teresa de Jornet, 38, CP 06800 Mérida, Spain

Chavez.fchavez@unex.es
2 Departamento de Ing. Eléctrica, Universidad Autónoma Metropolitana,

Iztapalapa, San Rafael Atlixco 186, Vicentina, CP 09340 Mexico, D.F., Mexico
3 CERN, European Organization for Nuclear Research, Meyrin, Switzerland

4 Departamento de Electrónica, Universidad Autónoma Metropolitana,
Azcapotzalco, Av. San Pablo Xalpa No.180, Col Reynosa Tamaulipas,

CP 02200 Mexico, D.F., Mexico
5 Instituto Tecnológico de Tijuana, Calzada Del Tecnológico S/N,
Fraccionamiento Tomas Aquino, CP 22414 Tijuana, BC, Mexico

6 CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860
Ensenada, BC, Mexico

Abstract. This paper describes initial steps towards allowing Evolu-
tionary Algorithms (EAs) researchers to easily deploy computing inten-
sive runs of EAs on Big Data infrastructures. Although many proposals
have already been described in the literature, and a number of new soft-
ware tools have been implemented embodying parallel versions of EAs, we
present here a different approach. Given traditional resistance to change
when adopting new software, we try instead to endow the well known ECJ
tool with the MapReduce model. By using the Hadoop framework, we
introduce changes in ECJ that allow researchers to launch any EA problem
on a big data infrastructure similarly as when a single computer is used to
run the algorithm. By means of a new parameter, researchers can choose
where the run will be launched, whether in a Hadoop based infrastruc-
ture or in a desktop computer. This paper shows the tests performed, how
the whole system has been tuned to optimize the running time for ECJ
experiments, and finally a realworld problem is shown to describe how the
MapReduce model can automatically deploy the tasks generated by ECJ
without additional intervention.

Keywords: Multi-objective evolutionary algorithm · Face recognition ·
Hadoop · ECJ

1 Introduction

Real life complex optimization problems are perfect candidates for Evolutionary
Algorithms (EA), and new parallel hardware provide the means for addressing
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 91–106, 2016.
DOI: 10.1007/978-3-319-31153-1 7

92 F. Chávez et al.

those problems. Yet, most of researchers still rely on sequential versions of the
algorithms, mainly because of the difficulty of migrating software tools to these
new parallel and distributed environments and also due to the typical resistance to
change when adopting new software [29]. There are available a plethora of paral-
lel programming languages, libraries and even paradigms. Moreover, open source
solutions supporting big data approaches can be easily found, but resistance to
change keep them frequently out of the path followed by researchers, who still
continue relaying on sequential algorithms that are run on desktop computers.

During the last decades a number of new software tools have been devel-
oped embodying latest proposals for distributed EAs, including pool based mod-
els [23], p2p communication protocols allowing new interaction patterns among
individuals within the populations [27], among others. Thus old parallel models
already studied for GAs [19] and GP [20] as well as new ones are available
for researchers, matching any standard parallel or distributed infrastructure
or technology: clusters and message passing libraries, such as PVM and MPI
[11,12], GRID based tools [21], also including Desktop grids [22] and pool based
approaches [23]. Nevertheless, few have considered providing a tool that makes
use of MapReduce models as described first by Google [28].

Cloud models dominate the distributed computing landscape of today, mainly
because of their easy-to-use virtualization based approach: researchers can still
rely in their preferred programming language and operating system while run-
ning the algorithms in third-party hardware infrastructure. Yet, for optimally
profiting from those cloud resources, parallel versions of the algorithms must
be employed. The EA community is aware of that need, and different research
groups continue offering solutions, such as FlexGP [24] or EvoSpace [23] both
providing EAs following the SaaS (Software as a Service) approach that can be
run in Paas (Platform as a Service).

Even though those models and tools are useful, we are still far from the
goal: avoiding steep learning curves for new software tools and infrastructures;
what many would like is to be able to continue using a well known tool that
progressively incorporates the latest technologies. This would allow researchers
to continue using it without changes on any new available hardware, and this is
the goal we pursue here.

ECJ [16] is one of the best known and employed tool for running EAs, and
already offer the possibility of using multicore systems, but still lack the capa-
bility for running on Grids nor new models typically employed when Big Data
applications are addressed. Although some projects have recently tried to include
Desktop Grid Models [25], new trends in Big Data show us the path towards
improving the tool. We think that new solutions that allow users to transparently
launch EA runs with ECJ on Big Data infrastructures will be welcome.

We present below a first proposal for allowing ECJ to deploy massive version
of EAs by means of the MapReduce model, making it transparent for users, who
will simply have to select the way of running the algorithm, sequentially or in
the distributed model, by means of a single parameter. Our proposal relies on
Hadoop [13], which uses the MapReduce parallel paradigm. We include below

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 93

the performance tests that we run, issues found and possible solutions, as well
as a real life problem implemented and run with this improved version of ECJ,
a computationally intensive face recognition problem.

1.1 Evolutionary Approaches to Face Recognition

Although face recognition is an easy task for humans, it becomes very com-
plex when addressed by means of computers. Different approaches have been
already described [5–7], but the algorithms typically incur in a high computa-
tional cost [2]. Algorithms typically explore a big database containing hundreds
of photographs, which are employed for both training and testing the algorithm
capabilities.

Some of the best known approaches to the problem begin with a previously
established set of points located over the human face [8–10]. The computing
intensive task required to address the problem have already led other researchers
to introduce MapReduce methodologies [3,4]. But the difficulty of the problem
increases if we want the algorithm to also decide which are the preferred points in
the face for the training and testing process. This meta-learning process notably
increases the difficulty and the time required for any machine learning algorithm,
although if solved will provide useful information. Given the computing resources
required to address this problem, we decided to use it for testing the scalability
of ECJ+Hadoop. In the work presented below we use the technique based on
Content-Based Image Retrieval (CBIR) [1], and the EA will be in charge of
deciding which are the specific points of interest (POI) that should be employed.

If we use a population size 100 individuals, and given that the algorithm
needs around 4 min per individual -as we will see below-, it will take around
6 h evaluating a single generation. Depending on the number of generations, the
total time will be weeks or months. Thus, this is a perfect problem to be deployed
using ECJ+Hadoop as described below.

The rest of the paper is structured as follows: Sect. 2 describes the tools and
technologies. Section 3 presents the hardware infrastructures employed to test
the system. Results obtained are shown in Sect. 4. Finally, Sect. 5 draws our
conclusions.

2 ECJ and Hadoop

ECJ is one of the best known EA tools, developed in java. ECJ offers a number
parallel models, such as the island model, that can be run on top of desktop
multicore systems and clusters. But when somebody is interested in using a
different infrastructure, a number of changes must be applied to the tool. Such
was the case for the recently published Desktop Grid version of the tool [25].

In this work we follow an alternative path, also trying to improve the ECJ
project: we try to adapt it to the MapReduce model [17,18]. However another
important goal is that internal changes should not affect the way researchers use
the tool, thus avoiding resistance to change that may arise.

94 F. Chávez et al.

MapReduce is a model deriving from the functional programming paradigm,
well known for its inherent parallel way of describing actions to be performed.
MapReduce allows to apply map operations massively in a parallel way to a
big amount of data, and then employ the reduce operation to unify and extract
conclusions.

The interest that this model has arisen, has allowed the development of a
number of software tools and frameworks embodying it. One of the best known
open source initiative has been developed by the Apache foundation, giving rise
to Hadoop [13,14].

Apache Hadoop includes an ecosystem that allows to massively process big
amounts of data by means of a simple programming model. Hadoop easily scales,
and it can be run in a single computer as well as several thousands of processors.
The framework is fault tolerant, thus providing high availability features. Hadoop
provides: (1) a high performance distributed file system, HDFS, so that big
amount of data can be easily shared and accessed by every computer node;
(2) tools for managing and balancing work units, and finally (3) the MapReduce
programming model.

In this work we present a modification on the ECJ tool so that it can run
using MapReduce over clusters, so that the EAs community can profit from that
technology. Although several parallel and distributed models of EAs could be
considered, we focus here on the simplest one, that aims at evaluating simulta-
neously a number of individuals from the population. Therefore, the idea is that
the fitness function can be considered as a Hadoop task, so that every generation
all of the fitness evaluations can be managed by the tool and run by means of
the MapReduce model.

2.1 Modifying ECJ

As described above, we decided to employ an embarrassingly parallel model
when connecting ECJ and Hadoop, so that fitness evaluations are deployed as
working units in the MapReduce model. In order to improve performances, we
consider the possibility of including not just a single individual per working unit
but a number of them, so that latencies related to communication processes can
be reduced. According to the MapReduce model, the fitness function will be
the task to be distributed, so that the main evolutionary loop must be changed
accordingly.

Once we checked ECJ source code, we noticed that several functions were
already available providing check pointing facilities: the population may thus
be stored when required, freezing the process that can continue later by simply
loading the serialized file that was previously saved.

This has thus been the main operation on which we build the new function-
ality, given that the saved file can be accessed on the HDFS by as many mapper
processes as required, and all of them will share the state of the evolutionary
process and know the set of individuals to be evaluated. We must nevertheless
take into account that the serialized information does not include the popula-
tion of individuals, that must also be saved in a different file. Figure 1 graphically

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 95

depicts how Hadoop works with the Master process, in charge of managing the
main loop, and then the slave layer is in charge of launching each of the map
works, known here as TaskTrackers.

Fig. 1. Layers of Hadoop.

Once the check pointing process has saved the required information, a file
containing all of the individuals to be evaluated is also produced, that will be
the input for the first task that hadoop will launch. This first task will then
produce as many new mapper tasks as we require to evaluate all the population.
Every mapper will then read info from the problem previously saved and shared
through the file system and load the set of individuals to be evaluated. We
delegate on Hadoop the load balancing strategy that benefits the way work
units are distributed along the computing nodes. Figure 2 shows the relationship
between map and reduce processes for ECJ.

A map process requires a series of input/output parameters, namely a key-
value pair as input and another one as output. In our specific case the key-
value pair will be the index for the individual to be evaluated and the value
the individual itself. For the output, the value will be thus provided by the
fitness function. Once the work is done, all of the fitness values are gathered
thus finishing the map step, and the algorithm can continue within the master
process.

All of the above described changes have been applied in a new version
we name ECJ+Hadoop, sometimes providing new functions required, such as
ec.hadoop.HadoopEvaluator. This new process will be in charge of computing
fitness values. The code 1 includes the detail for the map process that will be
run simultaneously in every processor.

Any ECJ user knows that for any new problem to be solved by means of the
tool, it is typically enough to implement the fitness function and select parameter
values. For the new model described, and given that we want all the process to
be transparent for users, the idea must be the same: The user will only have
to provide the fitness function, and then to set the eval parameter to the new
available value, ec.hadoop.HadoopEvaluator. Other parameters involved are the
following ones:

96 F. Chávez et al.

Fig. 2. Map and Reduce processes

import java.io.IOException;

import org.apache.hadoop.mapreduce.Mapper;

import ec.EvolutionState;

import ec.Individual;

import ec.hadoop.writables.FitnessWritable;

import ec.hadoop.writables.IndividualWritable;

import ec.hadoop.writables.IndividualIndexWritable;

import ec.simple.SimpleProblemForm;

public class EvaluationMapper extends

Mapper<IndividualIndexWritable,

IndividualWritable, IndividualIndexWritable,

FitnessWritable> {

public static EvolutionState state;

@Override

protected void map(IndividualIndexWritable key,

IndividualWritable value, Context context)

throws IOException, InterruptedException {

state = value.getEvaluationState();

Individual ind = value.getIndividual();

//Evaluate individual

SimpleProblemForm problem =

((SimpleProblemForm) state.evaluator.p_problem);

problem.evaluate(

state,

ind,

key.getSubpopulation(),

0);

//Emit key and value

context.write(

key,

new FitnessWritable(state, ind.fitness));}}

Algorithm 1. EvaluationMapper

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 97

– Main folder for the serialized file. Parameter name: eval.hdfs-prefix, Default
value: ecj work folder hc.

– Address for the JobTracker. Parameter name: eval.jobtracker-address, Default
value: localhost.

– JobTracker port. Parameter name: eval.jobtracker-port, Default value: 8021.
– HDFS address. Parameter name: eval.hdfs-address, Default value: localhost.
– HDFS port. Parameter name eval.hdfs-port, Default value: 8020.

This way, anybody interested can easily implement and deploy an
ECJ+Hadoop based optimizacion problem. Of course, it is desirable to run this
new version of the tool on a cluster of computers. In the experimental stage
described in the next sections, we have employed Cloudera.

3 System Deployment

Among the different possibilities for setting up a Hadoop infrastructure, we
decided to use Cloudera [15]. Cloudera is a single platform for Big Data projects
integrating Hadoop among other tools. It allows to centrally manage and mon-
itor the hardware infrastructure on which it is installed. It allows both to run
parallel processes and also share distributed storage system. Cloudera provides
a quick and easy installation of all the required elements to use Hadoop, and
also includes an entire ecosystem of tools that facilitate managing tasks, schedul-
ing and monitoring jobs. Figure 3 shows the toolkit that accompanies Cloudera
Hadoop when installed.

Fig. 3. Tools integrated in Cloudera

Among the tools included in Cloudera we find:

– Pig: high level data-flow language to facilitate MapReduce programming.
– Hive: provides a SQL interface with data stored in HDFS.
– Oozie: workflow planner to manage Hadoop jobs.

98 F. Chávez et al.

– Hue: Web interface to simplify the use of Hadoop.
– HBase: distributed non-relational database (NoSQL) running on HDFS

(inspired by Google BigTable).
– Sqoop: allows efficient transfer of data between Hadoop and relational data-

bases
– ZooKeeper: centralized configuration, named, distributed and synchronization

services groups for large distributed file systems.
– Flume: collection, aggregation and movement of large log files to HDFS.
– Mahout: Scalable machine learning algorithms and data mining on Hadoop.

We configured Cloudera on a hardware infrastructure consisting of 6 blades
servers, 2 blades with 4 cores each and 4 blades with 8 cores each. The main
features for each of the servers are described in Table 1

Table 1. Cloudera based infrastructure

Node RAM (Gb) HD (Gb) Cores Roles Cloudera

1 16 75.5 8 13

2 16 74.7 4 9

3 16 74.7 4 10

4 16 141.4 8 7

5 16 75.5 8 5

6 16 75.5 8 6

Once Cloudera is deployed on the cluster, a shared cache memory and a
distributed storage through HDFS are shared among all the computing nodes.
This allows us to view the system as a single unit, where data is distributed and
can be accessed by all processes deployed in the cluster.

4 Experiments and Results

As described below, we have performed a series of experiments that have allowed
us to both apply a tuning process to the ECJ+Hadoop tool and also check the
advantages of the approach when it is applied to solve an optimization problem.
Both a benchmark problem and also a real-world problem have been considered.

4.1 Analysing Performance

We have first analyzed the performance of this MapReduce version of ECJ.
The first series of experiments have consisted in running one of the benchmark
problems already available: Even Parity. This problem was presented first by J.
Koza [26] and has since then been considered one of the benchmarks for Genetic
Programming. We have run evenp-12, instead of the more standard five bits
version, with the idea of making it difficult enough to be able to work with large
populations during a number of generations.

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 99

As described above, we are not here mainly interested in the problem itself.
We simply employ it to study how large population sizes might be used consid-
ering the latencies that arise due to the handling of the population during the
process of creating packages of individuals to be distributed, fitness values col-
lection, application of centralized genetic operators, etc. Sumarizing, we analyze
the performance of the approach to identify ideal situations where ECJ+Hadoop
is of interest.

Although many possibilities exist to analyze results, we decided here to com-
pare with the standard ECJ tool which allows us to run the problem using
multithread capabilities. The base case comparison is thus a single computer
with up to 8 threads.

Therefore, we started running the problem with different population sizes:
from 30,000 to 1,500,000 individuals. Larger sizes of the population were only
employed with larger number of cores. Table 2 displays a summary of the exper-
iments run on a single computer.

Table 2. Experiments in a standard PC with 8 threads. Fitness evaluation time in
seconds for a generation

Threads/Individuals 30000 50000 100000 300000 500000 1000000 1500000

1 19 31 65

2 10 16 32

4 5 8 16 47 82

8 3 4 8 25 41 87 130

As we can see, the larger the number of cores, the shorter the time required
to evaluate a single generation.

The idea now is to run similar experiments using EJC+Hadoop and com-
pare results with those shown below for the ECJ tool. When running Hadoop
based processes we have to take into account some parameters that highly influ-
ence performance, and some values whose analysis allow us to understand the
behaviour of the whole system:

– HDFS block size (sz-HDFS) is a configurable parameter that allows us to
manage the number of data blocks in HDFS, allowing greater parallelization
of mappers created by the JobTracker.

– Time to store the population in HDFS (t-wrt): This measure tells how long
it will take to write the population in the distributed file system.

– Average task time (t-task) shows the average execution time for each task.
– Tasks are the number of tasks launched for each job. This number depends

on the workload given by the popultion size and of the used HDFS block size.
– Evaluation time (t-eval) is the total time to evaluate a population.

Table 3 shows an experiment summary with different configurations, where
the parameters and meassures described above are shown.

100 F. Chávez et al.

Table 3. ECJ+Hadoop results with different HDFS blocks and populations sizes, using
40 cores

sz-HDFS sz-Pob t-wrt (s) t-task (s) Tasaks t-eval (s)

14 3,000,000 22 45 55 141

2,500,000 18 44 46 132

2,000,000 14 46 36 123

1,500,000 10 45 27 101

1,000,000 18 40 18 84

10 2,500,000 18 40 64 174

2,000,000 14 38 50 111

1,500,000 11 38 38 94

1,000,000 7 38 25 64

750,000 6 30 19 58

500,000 4 30 12 52

5 2,500,000 18 25 127 132

2,000,000 14 22 101 101

1,500,000 11 22 75 92

1,000,000 8 24 49 73

750,000 6 22 37 60

500,000 4 21 25 40

3 2,500,000 19 20 211 140

2,000,000 14 18 167 109

1,500,000 11 20 124 103

1,000,000 8 17 82 61

500,000 4 17 41 44

1.25 1,000,000 8 11 196 70

500,000 4 11 97 43

300,000 2 11 58 31

100,000 1.5 8 19 24

50,000 1 7 10 19

30,000 0.6 7 6 19

1 30,0000 2 10 72 34

10,0000 1.5 8 24 25

5,0000 1 6 12 19

3,0000 0.6 6 7 19

Considering small number of individuals this first series of experiments using
ECJ+Hadoop were discouraging, providing poor performance when compared
with the standard multicore approach, so we decided to further explore some of
the elements that could influence the computing time.

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 101

We decided thus to avoid storing the whole population within the check-
points. Instead individuals are serialized and directly saved within HDFS. Pre-
viously text format was used but a serialized model saves time and resources
when saving individuals due to the shorter length of the serialized model. The
impact of this improvement is large due to the way the HDFS distributed file sys-
tem must save the information on a number of devices. Moreover, we employed
compression processes to save read/write operation time.

Second, given the big size of the populations we are managing, we decided to
enlarge the buffers employed for transferring information, which also influence
the transfer rates.

We must also take into account that different processes running on nodes
are held in Java virtual machines (JVM), and with each new generation these
Virtual Machines are created and then destroyed again, which is time consuming.
However Hadoop has a parameter to avoid this behaviour and allow the JVM
to be reused, saving time. This feature was enabled and an improvement was
observed in processing times.

All of the above described improvements were applied in the next round
of experiments. Figure 4 shows the time required for different population sizes
when using hadoop versus the standar runs of ECJ using differet number of cores.
Graphs shows computing time in seconds required for evaluating a whole gen-
eration for each of the population sizes tested, while the color refers to different
configurations both of ECJ and ECJ+Hadoop using Hadoop.

Fig. 4. Evaluation times in Hadoop and multithreads (Color figure online).

The red, green, purple and yellow lines show the result of the experiments
on a single computer using 1, 2, 4 and 8 threads respectively, using the standard
ECJ tool. We can see in these results that the time linearly scales with the size
of the population making it easy to predict the behaviour with any number of
individuals. Also, the relationship with the number of cores employed can be
clearly noticed.

102 F. Chávez et al.

On the other hand, different blue lines corresponds with Hadoop-based runs
using up to 40 cores available, configured with different block sizes each, which
affects the total number of individuals that will be included in every working
unit. All of the runs employ the total number of cores available. Although many
operations are performed by Hadoop when launching and running map/reduce
operations, we may clearly notice the difference obtained with ECJ standard
multicore performances.

The most interesting part of the graph is where blue lines overpass the yellow
one, corresponding to ECJ with 8 threads; this is the time when ECJ+Hadoop
begins to provide better performance. Therefore, we could firstly conclude that
with more standard population sizes, which are always below 500,000 individuals,
it is not useful to employ ECJ+Hadoop, particularly in problems whose fitness
evaluation time is short, as was the case for the even parity problem. We must
take into account that for the even parity problem, the computing time is so
short, that only when huge population sizes are required ECJ+Hadoop will be
of interest. On the other hand, if we are addressing a population with large
fitness evaluation time, the critical point when ECJ+Hadoop is of interest will
be reached with much smaller population sizes.

Therefore, in our next experiment we have tried to test performances of the
tool in a specific real life problem that employees a computationally intensive
fitness function.

4.2 A Real Life Problem: Face Recognition

A number of databases are available with images for the learning step. In this
work we have employed BioID, MUCT and MEDS II [30]. Each image from the
database includes meta information, known as POI coordinates that are located
in different locations of the face.

The problem we want to run consists of applying an EA capable of deciding
which are the best POIs for the learning process. Thus, this meta-learning algo-
rithm will employ a Genetic Algorithm (GA) with a binary chromosome: each
of the bits describes whether a given POI will be employed during the train-
ing and testing process of the algorithm. The fitness function will then check
whether the algorithm is capable of learning and then correctly classifying faces
only based on the POIs selected by each of the GA individuals, while the learn-
ing algorithm is CBIR, as described in [31]. Given the training-testing process
each of the individuals must perform for assing its fitness value, the problem is
computationally intensive, and this is precisely the reason for selecting it to test
ECJ+Hadoop. At this stage we are not still trying to solve the proposed prob-
lem, so other GA parameters are not tuned here, and we are only interested in
the size of the population; we simply use the problem as a test for understanding
the performances that may be obtained with the new version of ECJ. We thus
focus on the step that needs more computing power, the individual’s evaluation.
We describe below what is required for a proper evaluation of the individuals in
the population.

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 103

Each of the individuals provide a set of POIs. The learning algorithm must
then employ each of the faces belonging to the training set from the database to
extract the points and train. Then, the images belonging to the test set are used
to check the accuracy of the algorithm. Thus the fitness function must apply
a number of image processing operations to convert images to HSI color space,
compute statistical values and generate a descriptor vector, which will be the
output for the image. Given the way hadoop works, images will be processed
by a different Map operation, and then a final Reduce process will take outputs
produced by every Map process and generate a normalised matrix that is finally
used by a k-Means algorithm to compute the final matrix.

This matrix is then employed by a query job, where the algorithm tries to
recognise the faces. Results obtained are checked with classes stored into image
database, and the true positives percentage is used as the final fitness value,
which is then stored into the HDFS. Once all jobs have finished, the evaluation
phase of the EA concludes, and the algorithm can continue with the next step.

In order to test the advantages of the new ECJ+Hadoop, we launched a series
of experiments trying to analyse when the new implementation outperforms the
results obtained with the sequential approach, and also the results obtained in
a multithread system. The following table shows results obtained with different
population sizes. We must take into account that Hadoop incurs in a computa-
tional overhead due to the extra processes and operations necessary to deploy
and manage a distributed platform.

Table 4. Time (minutes) for evaluating a population of individuals

ECJ tool/Individuals 10 20 30 40 50 60

Standard sequential 44.5 89 133.5 178 222.5 267

Standard multithreading 10.7 21.4 32.1 42.8 53.5 64.2

Hadoop 6.4 12.8 19.2 25.6 32 38.4

Table 4 shows running times obtained experimentally with up to 60 individ-
uals using the standard sequential version of ECJ, the multithreading version
running on a single Pc with 8 cores, and then the Hadoop based model with
up to 40 cores. We see that for this specific problem the new version of the
tool makes sense once we simply reach the population size of 10 individuals.
Given the difficulty of the faced problem, we think that probably a much larger
population will be required in future work. Therefore, we have computed the
running times that may be obtained when enlarging the population with up to
100 individuals. Given that ECJ+Hadoop can make use of as many computer
nodes as required, we understand that the running time can be keep fixed by
simply adding more nodes when required, while the standard ECJ tool cannot
use more than 8 threads available in the multicore desktop PC where it is run.
Figure 5 allows to graphically see that differences increase as we manage larger
populations.

104 F. Chávez et al.

Fig. 5. Comparing ECJ 8 threads vs. ECJ-Hadoop

As we have seen, ECJ+Hadoop is of interest when long computing times are
required for assessing the quality of individuals in the population or when large
populations are required to solve the problem, or both.

5 Conclusions

This preliminary work presents a new version of ECJ tool, which allows to run
EA over BigData infrastructure making use of Map/Reduce model. We provide
an embarrassingly parallel version of the model that allows to run experiments
on Hadoop based cluster of computers.

The implementation makes use of the checkpointing facility already provided
by ECJ. The system has been tuned and some hints for important parameters
affecting running times for the experiments are provided.

We have performed a series of tests considering both traditional benchmark
problems already available within the ECJ tool and also a real life problem.
Results show that the new version of ECJ allows to save computing time when
the fitness function is computationally intensive and or when large population
sizes are required to solve a given problem. Moreover, the implementation and
running of the experiments does not change the way ECJ tool is traditionally
used, and a single parameter allows to specify whether the run will be launch in
a single computer on in the Hadoop based cluster available.

Much work must be done yet: allowing other models to be run within the
map/reduce approach, such as the Island Model, better optimize the launching
time for the tasks, thus allowing to save time even when small population sizes
are considered. Yet, the tests presented show the usefulness of the approach, that
allow researchers to profit from hadoop based infrastructures without changing
their way of working. We also would like to make ECJ automatically decide

ECJ+HADOOP: An Easy Way to Deploy Massive Runs 105

which is the best parameter to be used (traditional or Hadoop based ECJ),
depending on the application characteristics.

Acknowledgements. This work has been supported by FP7-PEOPLE-2013-IRSES,
Grant 612689 ACoBSEC, Spanish Ministry of Economy, Project UEX:EPHEMEC
(TIN2014-56494-C4-2-P); Junta de Extremadura, and FEDER, project GR15068. Also
it has been supported by CONACyT México by the project 155045 – “Evolución de
Cerebros Artificiales en Visión por Computadora” and TESE by the project DIMI-
MCIM-004/08.

References

1. González, A., Prieto, F.: Extracción de puntos caracteŕısticos del rostro para medi-
das antropométricas. Revista Ingenieŕıas Universidad de Medelĺın, 9(17), 139–150
(2010)

2. Jain, A.K.: Automatic face recognition: state of the art, Distinguished Lecture
Series, 0–44, Septiembre (2010)

3. Sun, K., Kang, H., Park, H.-H.: Tagging and classifying facial images in cloud
environments based on KNN using MapReduce. Optik Int. J. Light Electron
Opt. 126(21), 3227–3233 (2015). ISSN 0030–4026. http://dx.doi.org/10.1016/j.
ijleo.2015.07.080

4. Zhang, Z., Li, W., Jia, H.: A fast face recognition algorithm based on MapRe-
duce. In: 2014 Seventh International Symposium on Computational Intelligence
and Design (ISCID), vol. 2, pp. 395–399, 13–14 December 2014. doi:10.1109/ISCID.
2014.195

5. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature
survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

6. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE
Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

7. Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)

8. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization
in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 2879–2886, 16–21 June 2012. doi:10.1109/CVPR.2012.6248014

9. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative represen-
tation: which helps face recognition? In: 2011 IEEE International Conference on
Computer Vision (ICCV), pp. 471–478, 6–13 November 2011. doi:10.1109/ICCV.
2011.6126277

10. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Toward a
practical face recognition system: robust alignment and illumination by sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 372–386 (2012).
doi:10.1109/TPAMI.2011.112

11. Fernández, F., Sánchez, J.M., Tomassini, M., Gómez, J.A.: A parallel genetic pro-
gramming tool based on PVM. In: Margalef, T., Dongarra, J., Luque, E. (eds.)
PVM/MPI 1999. LNCS, vol. 1697, pp. 241–248. Springer, Heidelberg (1999)

12. Tomassini, M., Vanneschi, L., Bucher, L., Fernandez de Vega, F.: An MPI-based
tool for distributed genetic programming. In: IEEE International Conference on
Cluster Computing (CLUSTER 2000) pp. 209–209. IEEE Computer Society (2013)

http://dx.doi.org/10.1016/j.ijleo.2015.07.080
http://dx.doi.org/10.1016/j.ijleo.2015.07.080
http://dx.doi.org/10.1109/ISCID.2014.195
http://dx.doi.org/10.1109/ISCID.2014.195
http://dx.doi.org/10.1109/CVPR.2012.6248014
http://dx.doi.org/10.1109/ICCV.2011.6126277
http://dx.doi.org/10.1109/ICCV.2011.6126277
http://dx.doi.org/10.1109/TPAMI.2011.112

106 F. Chávez et al.

13. Shvachko, K., Hairong, K., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2010)

14. White, T.: Hadoop: the definitive guide (2009)
15. Cloudera. http://www.cloudera.com/
16. ECJ: A Java-based Evolutionary Computation Research System. http://cs.gmu.

edu/eclab/projects/ecj/
17. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.

ACM 53(1), 72–77 (2010)
18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (2008)
19. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Genetic Algo-

rithms and Evolutionary Computation, vol. 1. Springer, New York (2011)
20. Fernandez, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation

genetic programming. Genet. Program. Evolvable Mach. 4(1), 21–51
21. Melab, N., Cahon, S., Talbi, E.G.: Grid computing for parallel bioinspired algo-

rithms. J. Parallel Distrib. Comput. 66(8), 1052–1061
22. Gonzalez, D.L., et al.: Increasing gp computing power for free via desktop grid com-

puting and virtualization. In: 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, pp. 419–423. IEEE (2009)

23. Garćıa-Valdez, M., Trujillo, L., Fernández de Vega, F., Merelo Guervós, J.J.,
Olague, G.: EvoSpace: a distributed evolutionary platform based on the tuple
space model. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol.
7835, pp. 499–508. Springer, Heidelberg (2013)

24. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M.: Flex-GP: genetic
programming on the cloud. In: Di Chio, C., et al. (eds.) EvoApplications 2012.
LNCS, vol. 7248, pp. 477–486. Springer, Heidelberg (2012)

25. Fernndez de Vega, F., Chvez, F., Trujillo, L., Mediero, E., Muoz, L.: A Hybrid
ECJ+Boinc tool for distributed evolutionary algorithms. In: Research in Comput-
ing Science, pp. 120–130 (2014)

26. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

27. Laredo, J.L.J., Eiben, A.E., Steen, M., Merelo, J.J.: Evag: a scalable peer-to-peer
evolutionary algorithm. Genet. Program. Evolvable Mach. 11(2), 227–246 (2010)

28. Du, X., Ni, Y., Yao, Z., Xiao, R., Xie, D.: High Performance parallel evolutionary
algorithm model based on mapreduce framework. Int. J. Comput. Appl. Technol.
46(1), 290–295 (2013)

29. Stelzer, D., Mellis, W.: Success factors of organizational change in software process
improvement. Softw. Process Improv. Pract. 4(4), 227–250 (1998)

30. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cate-
gories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

31. Benavide, C., Villegas, J., Román, G., Avilés, C.: Face recognition using CBIR
techniques (Spanish). In: Proceedings MAEB 2015, pp. 733–740 (2015)

http://www.cloudera.com/
http://cs.gmu.edu/eclab/projects/ecj/
http://cs.gmu.edu/eclab/projects/ecj/

Addressing High Dimensional Multi-objective
Optimization Problems by Coevolutionary
Islands with Overlapping Search Spaces

Pablo Garćıa-Sánchez(B), Julio Ortega, Jesús González, Pedro A. Castillo,
and Juan J. Merelo

Department of Computer Architecture and Technology,
University of Granada, Granada, Spain

pablogarcia@ugr.es

Abstract. Large-scale multi-objective optimization problems with
many decision variables have recently attracted the attention of
researchers as many data mining applications involving high dimensional
patterns can be leveraged using them. Current parallel and distributed
computer architectures can provide the required computing capabilities
to cope with these problems once efficient procedures are available. In
this paper we propose a cooperative coevolutionary island-model pro-
cedure based on the parallel execution of sub-populations, whose indi-
viduals explore different domains of the decision variables space. More
specifically, the individuals belonging to the same sub-population (island)
explore the same subset of decision variables. Two alternatives to dis-
tribute the decision variables among the different sub-populations have
been considered and compared here. In the first approach, individuals
in different sub-population explore disjoint subsets of decision variables
(i.e. the chromosomes are divided into disjoints subsets). Otherwise, in
the second alternative there are some overlapping among the variables
explored by individuals in different sub-populations. The analysis of the
obtained experimental results, by using different metrics, shows that
coevolutionary approaches provide statistically significant improvements
with respect to the base algorithm, being the relation of the number
of islands (subpopulations) to the length of the chromosome (number
of decision variables) a relevant factor to determine the most efficient
alternative to distribute the decision variables.

Keywords: Multi-objective algorithms · NSGA-II · Island model ·
Distributed evolutionary algorithms

1 Introduction

Evolutionary Algorithms (EAs) are inherently parallelizable, as each individual
can be considered as an independent unit [1], and therefore, the computational
performance can be improved over their non-parallel versions. This can also be
applied to Multi-Objective Evolutionary Algorithms (MOEAs). Besides, as this
kind of algorithms may be computationally expensive, several parallelization
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 107–117, 2016.
DOI: 10.1007/978-3-319-31153-1 8

108 P. Garćıa-Sánchez et al.

methods have been proposed [2]. However, as MOEAs deal with whole solution
sets called Pareto Fronts (PFs), different distribution and sharing mechanisms
need to be addressed, as there exist a tension between the speedup achievable
from parallelization and the need to globally recombine results to accurately
identify the PF [3].

Classic approaches, such as the global parallel EAs (Master-Slave), or the
spatially structured algorithms (Island model or Cellular EAs) have been applied
successfully in the past [4,5].

MOEAs have gained attention in the last years, mostly because their applica-
tion in real-world problems [2,6]. Usually these problems require a higher number
of decision variables, and these larger individuals require a significant extra time
for crossover, mutation and transmission. Therefore, dividing the decision space
(that is, the chromosome) may improve high performance and solution quality. In
this aspect, the co-evolution model is a dimension-distributed model where a high-
dimensional problem is divided into lower dimensional problems [7], and evolved
separately. Also, applying parallelism techniques in EAs not only implies a reduc-
tion in the execution time, but developing new and more efficient search models [2].
The idea of dividing the decision space has been studied in [8]. In that work, differ-
ent workers evolve sub-populations created and recombined by a master process,
which performs different recombination alternatives from the parts returned by
worker processes. A high dimensional problem was used to compare these alter-
natives. In [9], a distributed coevolutionary island model was used. In both previ-
ous works significant speedups were attained, although only a low number of nodes
were used (8). However, when increasing the number of islands, the division of each
section of the chromosome becomes smaller, and the scalability may be affected by
obtaining lower quality solutions in the same amount of time.

The hypothesis of this paper is that using overlapped sections of the chro-
mosome in a coevolutionary multi-objective island-based algorithm can improve
the quality of the solutions in the same computing time when the number of
islands increases. To demonstrate this, a new overlapping islands scheme will
be compared with a baseline version of a distributed NSGA-II [10] and with a
coevolutionary disjoint section approach, in different benchmarks problems and
with different large number of islands. Results show that this new technique can
improve different quality indicators in the same amount of time.

The rest of the paper is structured as follows: after a background in par-
allelization in MOEAs, the compared algorithms and the used methodology
(Sect. 3) are presented. Then, the results of the experiments are shown (Sect. 4),
followed by conclusions and suggestions for future work lines.

2 State of the Art

Distributed and parallel Evolutionary Algorithms have been used since the early
2000s [11] to leverage the capabilities of new common parallel computer architec-
tures, such as clusters or grids. However, distributing MOEAs is not as easy as
it is in single-objective EAs, as they have to deal with a whole set of dependent

Addressing High Dimensional Multi-objective 109

solutions, the Pareto Front, that should be managed in several steps of the algo-
rithm. Some authors have focused on Master-Slave approaches to parallelize this
kind of EAs. For example, Nebro and Durillo [12] compared different master-
slave approaches to save time when running the EA. The method proposed by
Hiroyasu et al. [13] generates offspring depending on the computation power.

First approaches for distributed MOEAs (dMOEAs) were studied in [14]. In
that work, the dominance of solutions is divided in the islands using a trans-
formation of coordinates. Authors concluded that dividing the search space is
a good idea, but achieve this is not trivial. Other ideas for dividing the search
space include objective separation in different processors [15], or divide in two
populations: one for elite and other search [16]. Martens, in [17] generated a
Barabasi-Albert network as the island topology, and selection based on migrat-
ing individuals from a not-crowded area and acceptance based on diversity.

More similar approaches to the one presented here were studied in the next
two works, also using cooperative coevolution for high-dimensional problems.
Dorronsoro et al. in [9] obtained super-linear performance in several instances
using cooperative coevolution, focusing each island on a portion of the chromo-
some. However, in some instances the parallel version not always improved the
sequential version. Kimovski et al. [8] proposed a master-slave method that splits
the population into several processors, each one running in parallel a MOEA
that only affects some portion of the individuals. After a certain number of gen-
erations, the master process receives all the sub-populations to be combined.
Different combination alternatives in this step are compared. Up to 8 proces-
sors were used in the experimental setup. Our approach in this paper does not
broadcast all solutions to all islands for recombination, as previous works, but
only one solution to a random island, needing less communication time. Besides,
the maximum number of islands of Dorronsoro or Kimovsky approaches was 8,
while in this paper we have used up to 128 islands.

Lately, some researchers [18] have focused on working on solution space,
dividing the Pareto front in different clusters in order to model it. This divide
and conquer approach is readily paralellizable and, in the sense of giving the
responsibility of different parts of the search space to different modules, is similar
to the one presented in this paper. We will describe how we have tested our
approach in the next Section.

3 Methodology and Experimental Setup

This section describes the quality indicators used and the methods compared.
The chosen quality indicators, are:

– Hypervolume (HV): measures the area formed by all non-dominated solutions
found with, respect to a reference point. Higher values imply better quality
of the PF.

– Inverted Generational distance (IGD): calculates the distance of the obtained
set of solutions to the optimal PF. Therefore, this metric requires the optimal
PF found in the literature, or the theoretical one. In this metric, the lower the
better.

110 P. Garćıa-Sánchez et al.

– Spread (S): Measures the spread between solutions, taking into account the
euclidean distance between consecutive solutions. As in previous metric, the
lower value, the better, as it implies solutions distributed along all the PF.

These metrics have been used extensively, especially in some of the papers
presented previously in Sect. 2.

3.1 Baseline Algorithm

This algorithm is a regular NSGA-II algorithm distributed along a number P
of islands. After a fixed number of generations, one individual is migrated to
another random island. At the end of the run, all PFs of all islands are aggregated
in a new one to compute the quality measures.

3.2 Coevolutionary Algorithms Compared

Two different coevolutionary methods have also been used. In both methods, each
island only performs crossover and mutation in specific sections of the individuals.

Fig. 1. Disjoint algorithm: every island p only modifies the pth components (in grey)
of the individuals.

Addressing High Dimensional Multi-objective 111

As in the baseline, every certain number of generations, an individual is
migrated to another random island. In the new island, this individual will be
considered as one of the others in the island, crossed and mutated in the same
way, depending of the island identifier. Note that, on the contrary of other works
such as the ones described [11] all the islands deal with complete chromosomes
for fitness calculation, so our approach can deal with no decomposable problems.

Coevolution with Disjoint Islands. In this approach, each individual of size
L is split into P chunks of size L/P . Every island p only performs crossover and
mutation on the pth part of the individuals. Figure 1 describes this approach.

Coevolution with Overlapping Islands. This approach is similar to the
previous one, but every island also uses the p+1 and p−1 (module size) chunks of
the individual for crossover and migration. Therefore, some kind of overlapping
of the crossed and mutated parts exists between islands. Figure 2 shows the
affected parts of the individuals in each island.

Fig. 2. Overlapping algorithm: every island p modifies the p + 1, pth and p − 1 com-
ponents (in grey) of the individuals.

112 P. Garćıa-Sánchez et al.

4 Experiments and Results

The three approaches have been run with two different chromosome lengths (L):
512 and 2048. Different number of islands (P) have also been compared: 8, 32
and 128. This maximum number of islands have also been used in previous work
in the literature [17]. The crossover and mutation chosen, SBX and polynomial,
have been used previously by other authors in [12].

ZDT [19] has been chosen as a benchmark, since it is the most widely used
in this area [12,14,16,17]. The optimal PF distribution used for comparison has
1000 solutions1.

The termination criterion used is the execution time: 25 s for dimension 512
and 100 (four times more) for 2048. We have used the time instead the number of
evaluations firstly because our hypothesis argue that the time saved in crossover
in mutation can be spent on improving the sub-populations and more operations
and migrations can be achieved. Also, we are using different number of islands
(with different sub-population sizes) that could lead to different execution times,
so it would be difficult to compare different times and quality solutions at the
same time. A summary of the parameters used in the experiments is shown in
Table 1.

Table 1. Parameters and operators used in the experiments.

Parameter Name Value

Number of islands (P) 8, 32 and 128

Chromosome size (L) 512 and 2048

Execution time (s) 25 (for 512) and 100 (for 2048)

Global population size (N) 1024

Selection type Binary tournament selection

Replacement type Generational

Crossover type SBX

Mutation type Polynomial

Mutation probability 1/L

Generations between migration 5

Individuals per migration 1

Selection for migration Binary Tournament

Runs per configuration 30

The ECJ framework [20] has been used to run the experiments. Specific oper-
ators have been developed as new modules for ECJ, and they can be downloaded

1 Optimal PFs are available at: http://www.tik.ee.ethz.ch/sop/download/supplemen
tary/testproblems/.

http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/

Addressing High Dimensional Multi-objective 113

Table 2. Quality metrics obtained after 30 runs per configuration, for the three meth-
ods compared: Baseline, Disjoint and Overlapping. An asterisk (*) means that there
is not significant difference with respect to Baseline, and a bullet (•) indicates there is
not difference between Disjoint and Overlapping. Best values are marked in bold font.

HV Spread IGD

512 dimensions

#Islands Baseline Disjoint Overlapping Baseline Disjoint Overlapping Baseline Disjoint Overlapping

ZDT1

8 0.870 0.961 0.943 0.775 0.546 0.720 * 0.019 0.0004 0.004

32 0.803 0.887 0.957 0.815 0.837 * 0.621 0.033 0.014 0.001

128 0.744 0.687 0.827 0.850 0.874 * 0.839 * 0.045 0.054 0.024

ZDT2

8 0.787 0.919 0.878 0.913 0.646 0.907 * 0.035 0.001 0.011

32 0.744 0.890 0.917 0.950 0.754 0.627 0.048 0.007 0.002

128 0.693 0.592 0.765 0.971 0.944 0.917 • 0.062 0.089 0.039

ZDT3

8 0.894 0.976 0.965 0.895 0.832 0.922 * 0.012 0.001 0.003

32 0.829 0.902 0.972 0.877 0.851 0.835 0.019 0.011 0.001

128 0.770 0.726 0.865 0.891 0.845 0.845 • 0.026 0.029 0.015

ZDT6

8 0.224 0.503 0.331 0.992 1.008 * 0.993 * • 0.192 0.070 0.145

32 0.192 0.396 0.454 0.998 0.998 * 0.980 * • 0.206 0.118 0.091

128 0.157 0.114 0.214 1.004 0.985 0.979 • 0.221 0.238 0.195

HV Spread IGD

2048 dimensions

#Islands Baseline Disjoint Overlapping Baseline Disjoint Overlapping Baseline Disjoint Overlapping

ZDT1

8 0.754 0.948 0.889 0.844 0.587 0.807 * 0.044 0.003 0.015

32 0.679 0.928 0.942 0.854 0.714 0.646 0.061 0.006 0.004

128 0.660 0.765 0.907 0.865 0.860 * 0.802 0.065 0.036 0.010

ZDT2

8 0.641 0.877 0.794 0.965 0.942 0.969 * • 0.078 0.011 0.033

32 0.605 0.898 0.885• 0.980 0.704 0.755 • 0.088 0.006 0.009 •
128 0.560 0.689 0.830 0.984 0.929 0.870 0.101 0.060 0.021

ZDT3

8 0.773 0.969 0.922 0.910 0.865 0.919 • 0.026 0.002 0.009

32 0.713 0.937 0.966 0.903 0.796 0.839 0.032 0.007 0.002

128 0.691 0.817 0.935 0.902 0.839 0.812 • 0.035 0.020 0.007

ZDT6

8 0.136 0.334 0.231 0.995 1.002 0.996 * • 0.230 0.144 0.189

32 0.113 0.394 0.327 0.996 0.975 0.990 * • 0.240 0.118 0.147

128 0.101 0.165 0.267 0.997 0.985 0.979 • 0.245 0.216 0.172

from our GitHub repository under a LGPL V3 License2. The island model has
been executed synchronously, using the ECJ Internal Island Model, in a Cen-
tOS 5.4 machine with Intel(R) Xeon(R) CPU E5520 @2.27GHz, 16 GB RAM,
with Java Version 1.6.0 16. As in this paper we only focus on the behaviour
of our model in a single machine scenario (the islands share the same memory

2 https://github.com/hpmoon/hpmoon-islands.

https://github.com/hpmoon/hpmoon-islands

114 P. Garćıa-Sánchez et al.

Table 3. Number of generations and average number of solutions per island obtained
after 30 runs per configuration, for the three methods compared: Baseline, Disjoint
and Overlapping. An asterisk (*) means that there is not significant difference with
respect to Baseline, and a bullet (•) indicates there is not difference between Disjoint
and Overlapping.

Generations Avg. solutions per island

512 dimensions

#Islands Baseline Disjoint Overlapping Baseline Disjoint Overlapping

ZDT1

8 112.933 453.333 225.233 118.733 137.000 141.467 •
32 111.333 851.933 561.667 69.433 33.067 73.833 *

128 126.433 607.200 606.533 62.367 18.200 25.567

ZDT2

8 110.333 426.033 222.667 42.233 122.500 101.367

32 113.300 801.800 595.267 28.800 26.600 * 62.367

128 134.300 615.467 595.733 • 20.300 11.433 13.200 •
ZDT3

8 106.967 449.533 227.467 143.933 138.167 * 160.967 *

32 113.500 819.533 554.767 90.033 38.200 69.767

128 122.633 630.533 596.300 70.167 17.933 25.133

ZDT6

8 109.767 435.800 215.833 16.933 35.533 17.367 *

32 113.267 720.233 518.733 15.800 11.233 15.100 * •
128 131.333 597.200 569.500 15.367 8.467 8.533 •

Generations Avg. solutions per island

2048 dimensions

#Islands Baseline Disjoint Overlapping Baseline Disjoint Overlapping

ZDT1

8 118.333 574.100 262.700 136.167 126.267 136.267 * •
32 115.567 1195.800 721.733 103.867 35.000 60.267

128 141.067 1266.700 1170.767 98.000 20.167 30.467

ZDT2

8 111.833 584.233 265.933 32.100 86.600 78.067 •
32 121.367 1278.700 757.667 25.600 41.833 45.133 •
128 143.567 1306.700 1133.367 22.967 12.767 20.800 *

ZDT3

8 111.700 589.800 265.567 167.633 129.333 144.000

32 117.633 1154.133 772.633 129.167 36.667 72.767

128 136.267 1379.067 1128.467 105.767 19.367 29.400

ZDT6

8 116.867 585.333 267.133 22.867 27.267 * 32.600

32 118.533 1082.633 684.500 22.133 12.067 16.633 •
128 162.267 1296.733 1102.867 20.167 7.400 9.267 •

and processor), the migration time will not be as important factor as in a real
distributed system. This task will be addressed in future works.

Addressing High Dimensional Multi-objective 115

Different metrics, explained in the previous section, have been used to calcu-
late the quality of the obtained PFs in each configuration. As some of the metrics
require a reference point to be calculated (such as HV), the point (1,9) has been
chosen as reference, as none of the generated PFs in all runs are dominated by
it. Metrics are then normalized with respect to that point. A Kruskall-Wallis
significance test has been performed to the metrics of all runs of the configura-
tions, as the Kolmogorov-Smirnov test detected non-normal distributions. The
average results for each configuration are shown in Table 2.

At a first glance results show that dividing the chromosome produces an
improvement in all the quality indicators in all the configurations, with respect
to the baseline. Also, results show that all the quality indicators lowers when the
number of islands is increased, as the subpopulations are smaller. This is consis-
tent with the claim by Durillo in [9], who found that cooperative coevolutionary
MOEAs work better on bigger populations (more than 100 individuals). Paying
attention to the disjoint and overlapping methods, only when using 8 islands the
disjoint method always attain better metrics, and even more times with the 2048
chromosome length. This can be explained because only 1/8 of the individual is
changed in each island, while in the overlapping, 3/8 of the island may be more
similar to the baseline configuration. Therefore, there exist some kind of limit
point where one method will be preferable to another, depending the number of
islands, population size and length.

This can be explained also comparing the number of generations and average
solutions per island. Table 3 shows these values obtained in each method. It is
clear that in the same amount of time, the disjoint and overlapping method
needs more generations than the baseline. This is even clearer with L = 2048,
where almost 10 times the number of generations is attained, and therefore, more
migrations and crossovers/mutations can be achieved. Surprisingly, the average
number of solutions of PFs per island in the baseline configuration is significantly
higher in some configurations (mostly with 128 islands), but their combination in
the final PF never attains higher values than Disjoint and Overlapping methods.

5 Conclusions

High-performance problems that require a large number of decision variables
can leverage the division of the decision space that parallel and distributed algo-
rithms imply. This can be done in dMOEAs by dividing the chromosome into
different parts, each one modified by a different island. This paper compares a
baseline distributed NSGA-II with two different strategies to separate the chro-
mosome (disjoint or overlapping parts), using a high number of islands. Results
show that these methods can achieve better quality metrics than the baseline
in the same amount of time. This can be explained because of the time reduc-
tion in crossover and mutation in the chromosomes, producing a higher number
of generations and more modifications of the solutions of the PF in each sub-
population, and therefore improving quality of the global PF.

Results also show that when increasing the number of islands, the overlapping
method significantly improves the results with respect to the disjoint method.

116 P. Garćıa-Sánchez et al.

Therefore, the relation between the number of islands used, the global population
size, and the length of the chromosome may be a key factor to decide if using
the overlapping method or the disjoint one. Studying this factor with more types
of problems, and new configurations of population size and chromosome lengths
will be addressed in the future.

Also, distributed implementations in several systems (such as a GRID or
cluster) with more different quantities of islands/processors, will be used to per-
form a scalability study of the different methods, being the transmission time
between islands a relevant issue to address. New benchmarks and real problems
will also be used to validate our approach.

Acknowledgments. This work has been supported in part by projects TIN2014-
56494-C4-3-P and TIN2012-32039 (Spanish Ministry of Economy and Competitivity),
V17-2015 of the Microprojects program 2015 from CEI BioTIC Granada, PROY-
PP2015-06 (Plan Propio 2015 UGR), PETRA (SPIP2014-01437, funded by Dirección
General de Tráfico), and MSTR (PRY142/14, Fundación Pública Andaluza Centro de
Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación).

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

2. Luna, F., Alba, E.: Parallel multiobjective evolutionary algorithms. In: Kacprzyk,
J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence,
pp. 1017–1031. Springer, Berlin (2015)

3. Branke, J., Schmeck, H., Deb, K., Maheshwar, R.S.: Parallelizing multi-objective
evolutionary algorithms: cone separation. In: Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2004, pp. 1952–1957, Portland, OR, USA. IEEE,
19–23 June 2004

4. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel
genetic programming. IEEE Trans. Evol. Comput. 7(1), 37–53 (2003)

5. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

6. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of
multiobjective evolutionary algorithms for data mining: part I. IEEE Trans. Evol.
Comput. 18(1), 4–19 (2014)

7. Gong, Y., Chen, W., Zhan, Z., Zhang, J., Li, Y., Zhang, Q., Li, J.: Distributed
evolutionary algorithms and their models: a survey of the state-of-the-art. Appl.
Soft Comput. 34, 286–300 (2015)

8. Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Parallel alternatives for evolutionary
multi-objective optimization in unsupervised feature selection. Expert Syst. Appl.
42(9), 4239–4252 (2015)

9. Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P.: Achieving super-linear perfor-
mance in parallel multi-objective evolutionary algorithms by means of cooperative
coevolution. Comput. OR 40(6), 1552–1563 (2013)

10. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

Addressing High Dimensional Multi-objective 117

11. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello,
C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K.,
Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252,
pp. 349–372. Springer, Heidelberg (2008)

12. Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective
metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 303–317. Springer, Heidelberg (2010)

13. Hiroyasu, T., Yoshii, K., Miki, M.: Discussion of parallel model of multi-objective
genetic algorithms on heterogeneous computational resources. In: Lipson, H. (ed.)
Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings,
p. 904, London, England, UK. ACM, 7–11 July 2007

14. Deb, K., Zope, P., Jain, S.: Distributed computing of pareto-optimal
solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J.,
Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 534–549. Springer, Heidelberg (2003)

15. Xiao, N., Armstrong, M.P.: A specialized island model and its application in multi-
objective. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J.,
Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller,
J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1530–1540. Springer,
Heidelberg (2003)

16. Zhi-xin, W., Ju, G.: A parallel genetic algorithm in multi-objective optimization.
In: Control and Decision Conference, CCDC 2009, pp. 3497–3501, Chinese (2009)

17. Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a new
migration operator and its performance. In: Blum, C., Alba, E. (eds.) Genetic and
Evolutionary Computation Conference, GECCO 2013, pp. 1173–1180, Amsterdam,
The Netherlands. ACM, 6–10 July 2013

18. Cheng, R., Jin, Y., Narukawa, K.: Adaptive reference vector generation for inverse
model based evolutionary multiobjective optimization with degenerate and discon-
nected pareto fronts. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C.
(eds.) EMO 2015. LNCS, vol. 9018, pp. 127–140. Springer, Heidelberg (2015)

19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

20. Luke, S., et al.: ECJ: a Java-based Evolutionary Computation and Genetic Pro-
gramming Research System (2009). http://www.cs.umd.edu/projects/plus/ec/ecj

http://www.cs.umd.edu/projects/plus/ec/ecj

Compilable Phenotypes: Speeding-Up
the Evaluation of Glucose Models

in Grammatical Evolution

J. Manuel Colmenar1,2, J. Ignacio Hidalgo1(B), Juan Lanchares1,
Oscar Garnica1, Jose-L. Risco1, Iván Contreras1, Almudena Sánchez1,

and J. Manuel Velasco1

1 Adaptive and Bioinspired Systems Research Group,
Universidad Complutense de Madrid, Madrid, Spain

hidalgo@ucm.es

http://absys.dacya.ucm.es
2 Universidad Rey Juan Carlos, Madrid, Spain

Abstract. This paper presents a method for accelerating the evaluation
of individuals in Grammatical Evolution. The method is applied for iden-
tification and modeling problems, where, in order to obtain the fitness
value of one individual, we need to compute a mathematical expression
for different time events. We propose to evaluate all necessary values of
each individual using only one mathematical Java code. For this pur-
pose we take profit of the flexibility of grammars, which allows us to
generate Java compilable expressions. We test the methodology with a
real problem: modeling glucose level on diabetic patients. Experiments
confirms that our approach (compilable phenotypes) can get up to 300x
reductions in execution time.

Keywords: Grammatical evolution · Model identification · Diabetes
mellitus

1 Introduction

Evolutionary Algorithms (EAs) are search methods which can be applied for
solving a great variety of optimization, engineering, search, machine learning
and identification problems among others. As the reader surely knows, EAs
work with a set of solutions, instead of an unique solution as the vast majority
of optimization algorithms do. Most EAs follow a similar flow for obtaining a
final solution after an iterative process over groups of solutions. This process,
although with a random component, is directed by an evaluation function.

The evaluation of the solutions (individuals) is usually the most costly part
in the execution of an EA, in terms of the computation time. In most of the

J.M. Colmenar—Support from Spanish Government Grant TIN2014-54806-R is
acknowledged by ABSyS group.

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 118–133, 2016.
DOI: 10.1007/978-3-319-31153-1 9

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 119

cases, the evaluation process is complex, since we not only need to compute a
value of a mathematical function but also, to decode the individual in order to
evaluate the solution which it is representing. Hence, the evaluation complexity
depends on (1) the mathematical process for the computation of the fitness and,
(2) the kind of the EA, which determines the decoding degree of complexity.
Standard GAs, for instance, usually have direct representations, while Genetic
Programming (GP) or Grammatical Evolution (GE) need more computational
effort for decoding a solution.

In addition, there exist some kind problems, such as model characterization,
where each individual represents a model through a mathematical expression.
Here, it is necessary to compute the values of the mathematical expression for a
set of time values, to obtain a complete evaluation of one individual. What we
propose here, is to reinterpretate other approaches for Grammatical Evolution
(GE), by reducing the complexity of the evaluation of different models over the
same time series. To this aim, we take profit of the flexibility of grammars, which
allows us to generate compilable expressions, in this case, for Java.

We test the methodology with a real problem which originally motivated our
investigation: modeling the glucose level on diabetic patients. Experiments con-
firm that our approach (compilable phenotypes) can get up to 300x improvement
in execution time for this difficult problem.

The rest of the paper is organized as follows. Some previous approaches
are revised on Sect. 2. A description of the problem is made on Sect. 3. On
Sect. 4 we describe the application of GE to generate models represented by time
dependent expressions. The main proposal to generate compilable phenotypes is
described in Sect. 5. On Sect. 6.1 we validate our proposal measuring the speedup
on a test experiment. Section 6.2 gives the details of the results for the real
problem that motivated our investigation, glucose models in humans. Finally,
Sect. 7 summarizes the conclusions of this work.

2 Related Work

In order to obtain results in affordable times, some parallel solutions have been
proposed in the past for accelerating the execution time of EAs. There are several
ways to parallelize an evolutionary algorithm [1]. The first and more intuitive
consist on parallelizing the evaluation of individuals maintaining a unique pop-
ulation, which is called global parallelization. There is another form of global
parallelization that is to perform a sequential execution of various EAs simul-
taneously. Since robust EAs need several independent executions, we can run
those on a set of processors. The final approach divides the population into
subpopulations, that evolve independently for several generations and exchange
individuals periodically. In this article we will focus on the parallelization of the
evaluation of individuals for GE.

Global parallelization affects only the computational performance and rarely
changes the evolutionary search process, as opposed to approaches with several
populations that tend to produce benefits also in terms of quality of the solu-
tions. We can find in the literature several approximations. For instance, we can

120 J.M. Colmenar et al.

find parallel evaluation approaches which use several processors for evaluating
one generation [2]. In these cases, we can save computing time by simply sending
simultaneously a part of the population, to a set of different processors. Those
processors will return the fitness of the evaluated individuals. By sharing the
workload among N processors we can expect the system to work N times faster
than with a single processor, allowing treatment of large and complicated prob-
lems. Things are not so simple, because there are several factors of overloading,
which decrease the expected performance. The solution proposed in this work
do not need more than one processor.

Recently the use of Graphics Processing Units (GPU) has been also proposed
to accelerate the evaluation of individuals, we refer to the review work made
by Langdon in [3]. Unfortunately, the implementation of GE on GPU is not
efficiently solved up to date [4].

Another idea proposed by Hu et al. [5] is to reduce the number of evaluations,
by using a population that varies its size over generations. They investigated the
effect of variable population size in a parallel algorithm and obtained impor-
tant conclusions about the evolution dynamics, fitness progression and popu-
lation diversity. They observed that dramatic changes in population size allow
the acceleration of the evolution. When working with GE, the reduction of the
population size does not guarantee the reduction in the decoding time.

There also some papers proposing volunteer computing, or collaborative eval-
uations. Arenas et al. [6] for instance released the so called DREAM (Distributed
Resource Evolutionary Algorithm Machine) framework. It allows the automatic
distribution of EA processing through virtual machines connected by standard
Internet protocols. Although sometimes this is a good alternative, it is not the
best option seeking for a high speed-up.

Another option is to convert the population into a single program and compile
it. The complete population program contains the necessary code to run each of
its component individuals and compute their fitness. In [7], the authors showed
that compiled code runs much faster than interpreting it. Following with this
line, in this paper we investigate a particular parallelization of the evaluation
of individuals under a GE paradigm. In particular we study identification of
mathematical expressions. The objective is to produce compilable expressions
from the decoded solutions therefore reducing the evaluation time for the whole
population.

3 Evaluation of Time Dependent Mathematical
Expressions

When using an EA, or other search method, for obtaining a mathematical expres-
sion of a time series, it is necessary to evaluate the solutions several times. Let
us describe the process by an example represented by the information reported
on Table 1. First, look only to the first five columns, labeled as y, t, x1, x2 and
x3 respectively. The problem can be defined as follows: knowing the values of the
output variable y for six different values of the time t and the values of 3 input

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 121

Table 1. An example of the input data of a mathematical time-dependent expression.

t x1 x2 x3 y y1 y2 |y − y1| |y − y2|
0 2 1 1 0 0 3 0 3

1 0 5 1 2 2 7 0 5

2 5 12 2 2 12 5 10 3

3 7 0 2 18 23 23 5 5

4 2 2 3 34 4 41 30 7

5 5 7 4 8 9 3 1 1

Fitness 46 24

variables x1, x2 and x3 at the same time values, find a mathematical expression
which represents the value of y as a function of the 3 input variables.

y(t) = F (x1(t), x2(t), x3(t))

For the values of the table the solution is

y(t) = x1(t − 1) + 2 · x2(t − 2) + 3 · x3(t − 3) (1)

Let us now consider that we want to evaluate the quality of the expression
y1 (a decoded individual):

y1(t) = x1(t − 1) + 2 · x2(t − 2) − x3(t − 3)

For that, we need to compute the values of y1(t) for t = 0 to t = 5. Once
calculated, we compute the differences with y(t) (column |y − y1|). Adding the
values of this column, we obtain the fitness of y1 which is 46. Columns y2 and
|y − y2| contains the values needed for computing the fitness of y2, which is 24

y2(t) = x1(t − 1) + 2 · x2(t − 2) + 3

As seen, for each time value, it is required to recall previous values of the
input variables, which depend on the concrete t we were calculating. Notice that
if a negative index is required for a variable, then we use the value 0.

4 Grammatical Evolution for Mathematical Expressions,
Curve Fitting and Regression

Grammatical Evolution (GE) [8] is a grammar-based form of Genetic Program-
ming (GP) [9]. GE manages a population of individuals that consist of chro-
mosomes of integer values. The phenotype of the individuals are obtained by
applying a grammar in the process of decodification. Hence, a suitable Backus
Naur Form (BNF) grammar definition must initially be defined. In an optimiza-
tion run, GE can theoretically evolve programs in any language described by

122 J.M. Colmenar et al.

a BNF. For the sake of space, we refer the reader to the bibliograpy to obtain
more details of the GE technique. Due to the flexibility of the grammars, one
of the more useful applications of GE is the generation of mathematical expres-
sions. In such a case, it is usually required to evaluate the expression in order to
calculate the fitness value of each individual.

However, the evaluation of a mathematical expression generated by a gram-
mar may be time costly in high-level languages like Java. In the case of recursive
grammars, the length of the expression is not known, as well as the number of
variables involved. Hence, a straightforward approach is to begin with a string
of characters that represents an expression and then try to use an evaluator like
JEval [10] to substitute each variable with its corresponding numerical value
and, after that, compute the result of the mathematical operators. Then, the
evaluation of the expression is completed.

The key point is not the mathematical calculus when all the terms are num-
bers in a given string of characters. There are many fast ways in Java to perform
this task, like JEval or the Apache Java EXpression Language [11]. The problem
arises when the expression represents a time dependent model that depends on
previous data values. The following example will try to clarify this situation.

In the particular case of an algorithm where a model has to be found, the
phenotype of an individual is an expression that must be evaluated in order to
compute the fitness of this individual (the goodness of the model). In a time
dependent model, the evaluation has to be performed for all individuals in all
the generations and also for time t = 0 to t = T . Notice that, in the case of GE,
a grammar may generate heterogeneous individuals. This means that it is not
mandatory that all the variables were present in all the phenotypes.

Now, if we select JEval as the evaluation library, we need to slightly change
the expression to fit its sintax rules regarding arrays as input values. In GE,
this is accomplished by tunning the grammar. In particular, Fig. 1 shows the
grammar that will work with JEval in this example.

Fig. 1. Grammar to be used with JEval.

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 123

Hence, following the rules of the grammar we presented, Expression (1) will
be represented with following code:

#{X1[t 1]} + 2 ∗ #{X2[t 2] + 3 ∗ #{X3[t 3]} (2)

The evaluation process for each time value will take the model expression
and, for each input variable, will substitute the string with the real value of
the input array. That is, #X1[t 1] will be changed by the value of the array x1

(x1[t − 1]), and so on. Algorithm 1 shows the process that evaluates just one
generation considering that the maximum time is T.

Algorithm 1. Evaluation process of one generation using compilation of
the individuals with JEval. Arrays x1, x2 and x3 store real values.

// evaluator is an object of the class net.sourceforge.jeval.Evaluator
for (int indiv = 0; indiv < POPULATION_SIZE; indiv++) {

String ph = obtainPhenotype(indiv).toString();
double res = 0.0;

// Evaluation of one individual (cuadratic complexity):
for (int t=INPUT_SIZE; t<T; t++) {

// Data on the evaluator should be cleared
evaluator.clearVariables();

for (int i=0; i<INPUT_SIZE; i++) {
// Update variables in the evaluator depends on t !!
String si = String.valueOf(i);
evaluator.putVariable("X1[t_"+si+"]", String.valueOf(x1[t-i]));
evaluator.putVariable("X2[t_"+si+"]", String.valueOf(x2[t-i]));
evaluator.putVariable("X3[t_"+si+"]", String.valueOf(x3[t-i]));

}

res += Double.valueOf(evaluator.evaluate(ph));
}

// Store objective function value
setObjective(indiv,res);

}

As seen in the algorithm, there is a constant value named INPUT SIZE which
corresponds to the size of the input arrays. As seen in this case, the model is
evaluated starting in INPUT SIZE because, given that the input variables must
be accessed backwards, t − i will be a non-negative value only if t ≥ i. In other
case, the access to a negative position of an array will generate an error.

So, considering the computational complexity of this algorithm, it is easy
to see that the evaluation of one individual presents a time O(T*INPUT SIZE),
which is almost quadratic. Besides, the inner for loop is repeated for all indi-
viduals on each value for t.

The aim of this work is to present an alternative linear method to evaluate
one individual removing that inner for loop. This method is faster than the
straightforward approach of the evaluation libraries.

124 J.M. Colmenar et al.

5 Compilable Phenotypes

The main problem of the method using an evaluation library, is that an inner loop
is needed to recall the previous values of the input variables because the access
to the input arrays depends on the time variable. We propose the evaluation of
each individual by using mathematical Java code. This is faster than the use of
an external library, and it is possible in GE given that we can define a grammar
to produce model expressions that could be computed in Java. In addition, we
incorporate the input arrays into the evaluation by allowing a direct access to
the input arrays from the compiled model expression.

However, model expressions that correspond to individuals are generated in
run time and must be evaluated on each generation. Therefore, we need to be
able to make this process happen.

In brief, the process we perform conducts the following steps:

1. For a given generation, collect the phenotype of the individuals (model expres-
sion).

2. Generate a Java source code file where each individual is a branch of a case
instruction.

3. Compile the Java file and load it as an evaluator object.
4. Loop to evaluate all the individuals of the generation by calling the evaluator

object.
5. Proceed to the next generation.

In Java it is possible to compile an object in run-time, and dynamically load
this object to the execution thread. Therefore, the only requirement is to define a
Java abstract class to be inherited by the evaluator object. This way, the object
evaluation method will be defined and this process could be completed in run
time. Algorithm 2 shows the Java code of our abstract class. As seen, a method is
defined that receives the identificator of the individual to be evaluated (indiv),
the instant of time for the evaluation (t), and the input arrays (x1, x2 and x3).
Notice that a similar process could be performed by using a Java interface. The
main difference is that an abstract class allows the inclusion of attributes, while
the implementation of a Java interface does not. Instead, the implementation of
a Java interface allows inheritance from a different class.

Algorithm 2. Abstract class for evaluation objects.

public abstract class AbstractPopEvaluator {

public abstract double evaluateExpression(int indiv, int t,

double[] x1, double[] x2, double[] x3);

}

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 125

Figure 1 presented a grammar that produces expressions to be managed with
JEval. With our proposal, the mathematical expressions generated by the gram-
mar are going to be part of a Java file. Hence, they have to be compilable. There-
fore, the grammar must be tunned in order to accomplish this requirement. In
this way, we have to modify the grammar used for JEval into a grammar to pro-
duce compilable expressions. Figure 2 shows this new grammar. It is remarkable
to note the changes we performed in relation to the previous grammar.

We modified the first rule, which now produces an assignation sentence where
variable res takes a value coming from an expression. In addition, the final two
rules have been also modified. The first one of them now manages the input
arrays x1, x2 and x3 (matching the header of the evaluation method), and the
final rule adds the mathematical prefix Math for the mathematical functions.

Fig. 2. Grammar used with the compilation technique.

Let us assume a toy example with 3 individuals. In this case, the first genera-
tion of our experimentation provides 3 different phenotypes. Hence, the grammar
will provide compilable expressions like the following ones:

res = x1[t-5] + Math.sin(x2[t-12]) * x3[t-64];

res = 4.02 * (45.76 + x2[t-23]) - (Math.exp(Math.exp(x1[t-1])) + 5);

res = x2[t-31] / 23.5 - x3[t-2] + Math.cos(x1[t-74]);

Now, the idea is to generate a compilable Java code to include those expres-
sions. For this example, the code is shown in Algorithm 3. Notice that the class
is fully compilable and the method always returns a value as a result. In this
case, we return a positive infinity if the execution does not select any of the case
branches because we assume a minimization problem. The process of evaluation
will follow the same for the rest of the generations in the optimization proce-
dure. That is, for each generation, one Java file is generated including all the
phenotypes of this generation, then it is compiled and loaded into the execution.
Algorithm 4 shows the complete process.

As stated before, the evaluation of one individual is now a process that is
performed in a linear time. Hence, the algorithm should be faster. However, the
generation of the file and the compilation are slow processes compared to regular
Java instructions. Hence, an empirical analysis has to be performed.

6 Experiments

In order to perform the experiments, we have used our own Java implementation
of the Grammatical Evolution, called ABSys JECO [12]. This implementation

126 J.M. Colmenar et al.

Algorithm 3. Class for an evaluator object including the individuals of a
given generation.

public class PopEvaluator extends AbstractPopEvaluator {

public abstract double evaluateExpression(int indiv, int t,
double[] x1, double[] x2, double[] x3) {

double res;

switch(indiv) {
case 0: res = x1[t-5] + Math.sin(x2[t-12]) * x3[t-64];

break;
case 1: res = 4.02 * (45.76 + x2[t-23]) - (Math.exp(Math.exp(x1[t-1])) + 5);

break;
case 2: res = x2[t-31] / 23.5 - x3[t-2] + Math.cos(x1[t-74]);

break;
default:

res = Double.POSITIVE_INFINITY;
}

return res;

}

}

Algorithm 4. Evaluation process of one generation using compilation of
the individuals. Assume x1, x2 and x3 are available in this context.

// Obtain the phenotypes and put them in a list.

ArrayList<String> phens = new ArrayList<>();

for (int indiv = 0; indiv < POPULATION_SIZE; indiv++) {

phens.add(obtainPhenotype(indiv).toString());

}

// Produce the file and compile it.

PopEvaluator evaluator = generateAndCompileFile(phens);

// Evaluate population

for (int indiv = 0; indiv < POPULATION_SIZE; indiv++) {

double res = 0.0;

// Evaluation of one individual (linear complexity):

for (int t=INPUT_SIZE; t<T; t++) {

res += evaluator.evaluateExpression(indiv,t,x1,x2,x3);

}

// Store objective function value

setObjective(indiv,res);

}

is similar to GEVA [13], the original code for GE. However, JECO presents
many modifications that were implemented for solving our research work. We

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 127

can for instance avoid the use of tree objects, which allows an improvement in
the memory footprint of the optimization engine.

All the experiments reported in this paper were run on a computer provided
by an Intel Core2 Quad CPU (Q8300) running at 2.50 GHz, with 6 Gb of RAM,
and using the Java 7u79 JRE.

6.1 Validation of the Proposal

We will conduct a set of experiments that will compare the performance of both
evaluation alternatives. Hence, given that we want to measure the performance of
the evaluation, we have stated a similar scenario for both evaluation alternatives
under the GE optimization technique. This scenario consists on the generation
of a random set of individuals using a grammar, then evaluate all of them,
compute the time required for this evaluation, and repeat the process again. This
loop iterates 30 times, giving us the evaluation time of 30 random populations
of individuals. In order to check how the evaluation scales, we have tested 15
populations with sizes ranging from 100 to 1500 individuals.

In the case of the evaluation with JEval, we have used the grammar described
in Fig. 1, and the evaluation procedure is the one described in Algorithm 1. The
length of the time interval for each expression is T = 1440, which corresponds to
the number of evaluations of each phenotype. We have considered, as described
in the example, three input variables whose size is INPUT SIZE = 100.

Figure 3 shows the execution time of the evaluation of the 15 different popu-
lation sizes through a box-plot. The y-axis indicates the time in seconds, while
the x-axis corresponds to the size of the population being evaluated. As seeing
in the figure, there is a very clear trend towards linear dependence on the size
of the population. In addition, the mean and quartile values are relatively close
to each other on every population size. Hence, the behavior is quite clear.

The same experiment was run for the compiled phenotypes we propose. In
this case, the grammar we used is analogous to the case of JEval, but adjusted
to produce compilable phenotypes. Hence, the grammar for these experiments
is the one shown in Fig. 2, and the evaluation procedure is the one shown in
Algorithm 4. The number of individuals, and the measurement of computation
times is the same than in the previous experiments with JEval.

Figures 4 shows the results for the evaluation of compiled phenotypes. As
seen, there is a huge difference in the computation time, being shorter by far in
this case (lower than 1 s on average, for all the cases). Comparing the average
computation time, the compilation technique is approximately from 210x to 450x
times faster than JEval.

Again, we can see a trend where computation time depends on the size of the
population in the compilation technique. However, the slope is not so high than
in the case of JEval. This fact occurs because the most of the computation time
is due to the compilation process, which is very similar in all the population sizes.
Besides, notice that there are outsider points in the plot. They appear once and
correspond to the first compilation of a population. Given that each population

128 J.M. Colmenar et al.

Fig. 3. Execution time with JEval. Time in y-axis is indicated in seconds; x-axis indi-
cates the size of the evaluated population.

size is repeated 30 times, the compilation environment is loaded in the compila-
tion of the first population and then is cached for the other 29 populations. This
point is interesting because the compilation environment needs to be loaded just
once on an optimization run, while the individuals of a population may change
a lot along the whole optimization process.

Once we saw that the compilation time is important in the compiled pheno-
types, we wonder where is the frontier between JEval and compilation. In this
regard, we run experiments with a population on 100 individuals. However, we
stated T to take values of 2, 5, 10, 25, 50 and 100 evaluations per each individual,
and a size of INPUT SIZE = 1 values for the incoming variables. Therefore,
once an individual is compiled, we try to discover how many evaluations are
required to state that the compilation of the phenotype is better than JEval.

Figure 5 shows the comparison of computation times. Approximately, if more
than 10 evaluations are required per individual, it is better to use compilation
instead of JEval, using a size of only one input data (INPUT SIZE = 1).

Therefore, the compilation of phenotypes has been proven to be a faster
technique in the case that one expression has to be evaluated several times
(more than 10) for different input data. Next, we will show an application of
this idea in a real case of experimentation for glucose model extraction.

6.2 Case Study: Glucose Model Extraction

Diabetes Mellitus is a disease that affects to hundreds of millions of people
worldwide. Maintaining a good control of the disease is critical to avoid severe
long-term complications. In recent years, several artificial pancreas systems have
been proposed and developed, which are increasingly advanced. However there
is still a lot of research to do. One of the main problems that arises in the (semi)

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 129

Fig. 4. Execution time with compilation technique. Time in y-aixs is indicated in
seconds; x-axis indicates the size of the evaluated population.

Fig. 5. Execution time comparison. The number of evaluations per individual (T) is
shown in the x-axis. Time (in seconds) is shown in y-axis. Notice there are only 6 data
values for each technique.

130 J.M. Colmenar et al.

automatic control of diabetes, is to get a model explaining how glycemia (glucose
levels in blood) varies with insulin, food intakes and other factors, fitting the
characteristics of each individual or patient. In [14] we proposed the application
of GE, to obtain customized models of patients. Although we have progressed in
this procedure, the focus of this paper is to evaluate the compilable phenotypes
proposal, and not to compare the model extraction with other techniques.

The glucose model of a patient is an expression that depends on several input
variables. In the case of our research, we consider the previous glucose values
(GL), the carbohydrates ingested in the meals (CH) and the insulin units injected,
which may belong to two different types: short effect (IS) and long effect (IL).
So, there are 4 different variables which, considered along one day of observation,
provided 1440 data values corresponding to each minute of a day.

The idea then, is to find out a mathematical expression that will produce
glucose values as close as possible to the real glucose values of a patient. There-
fore, each model expression will be evaluated for a whole day producing 1440
values of “estimated glucose”, one for each minute of a day. These values will be
compared with the real glucose values we have for this day, and the correspond-
ing root mean square error (RMSE) value will be the fitness of the model. In
this experimentation we will use data from a synthetic patient generated with
the AIDA simulator [15]. The crossover and mutation probabilities were stated
to 0.6 and 0.1 respectively.

Given that we are trying to compare two evaluation techniques, we have
stated an experimentation setup based on Grammatical Evolution where 250
generations were run. For the case of JEval, we will run the experiment 30 times
considering a population of 100 individuals. We have considered the grammar
shown in Fig. 6, which has been adapted to our four input variables: GL, CH,
IS and IL. The size of this input variables is 1440 because their values were
collected along a day. However, we will consider a window of 100 previous values
for each model expression, as stated in the rule which defines idx.

Fig. 6. Grammar for glucose model extraction to be used with JEval.

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 131

In the case of the experiments where we compile the phenotypes, the execu-
tion time will be faster. Hence, with the same number of generations (250), we
will run five different population sizes: 100, 250, 500, 750 and 1000 individuals.
The phenotypes will be generated by a grammar similar to the one presented
before. However, in order to produce compilable phenotypes, the last four rules
of the JEval grammar have to be changed, resulting in those shown in Fig. 7.

Fig. 7. Extract of the grammar for glucose model extraction to be used when compiling
phenotypes.

Firstly, we will compare the execution time between the six sets of experi-
ments. Figure 8 shows the execution time in percentage, where JEval represents
the slowest time (100 %) and the five population sizes of compilable phenotypes
present execution times lower than 2.1 %. Hence, it can be shown that for the
same population, the compilation technique is 300x faster. In addition, consid-
ering the progression followed by the execution time, it can be predicted that
with the same number of generations, a population of 48633 compiled individuals
could be evaluated in the same time spent by JEval evaluating 100 individuals.

Fig. 8. Execution time (%) comparison between JEval execution (100 individuals)
and executions with compilable phenotypes (from 100 individuals to 1000 individuals,
Comp. 100 to Comp. 1000).

132 J.M. Colmenar et al.

In addition to the execution time comparison, we have analyzed the behavior
of the fitness along each execution. Therefore, we plot this evolution (the average
best fitness for the 30 runs of each experiment), in Fig. 9. As seen, the behavior
of JEval and compilation evaluations is similar for the case of 100 individuals.
Hence, the conclusion is that the improved evaluation method does not influence
on the effectiveness of the optimization process. However, the bigger the popu-
lation size, the better the fitness evolution which, in the case of 1000 individuals
presents the best behavior.

Fig. 9. Fitness comparison between JEval execution (100 individuals) and executions
with compilable phenotypes (from 100 to 1000 indivs., Comp. 100 to Comp. 1000).

7 Conclusions and Future Work

In this paper we have presented a method to boost the evaluation process in
Grammatical Evolution. Given the flexibility of the grammar approach, it is pos-
sible to easily produce phenotypes that could be inserted into compilable source
code. In our proposal, we have tested this approach using the Java language,
where the inheritance and the dynamic load of methods allow the compilation
and the use of new objects in run time. Hence, the phenotypes of one generation
can be compiled once as an object, and evaluated many times, as required in the
case of expressions whose input values depend on variables like the time.

We have compared our approach with JEval, a well-known Java library
for expression evaluation. Our compilable phenotypes improve the computa-
tion times up to 450x in the case of one generation of individuals. Besides, we
have proven that if an expression has to be evaluated more than 10 times, the
compilation approach is faster than the JEval library.

In addition, we have tested this approach in a real case of study: the glucose
model extraction. In this scenario, the compilable phenotypes have shown an

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models 133

improvement of 300x in execution time, without influencing the exploration of
the optimization process. In fact, we have shown that the compilable phenotypes
technique allows greater populations which, in this case, are much more conve-
nient to obtain better results and avoid premature convergence and starvation
of the algorithm.

References

1. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Acad-
emic Publishers, Norwell, MA, USA (2000)

2. Hidalgo, J.I., Lanchares, J., Ibarra, A., Hermida, R.: A hybrid evolutionary algo-
rithm for multi-FPGA systems design. In: Proceedings of the Euromicro Sympo-
sium on Digital System Design, pp. 60–67 (2002)

3. Langdon, W.B.: Graphics processing units and genetic programming: an overview.
Soft Comput. 15, 1657–1669 (2011)

4. Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of GE
using GPUs: computational intelligence on consumer games and graphics hardware.
In: Companion Proceedings of the 13th GECCO, pp. 431–438 (2011)

5. Hu, T., Harding, S., Banzhaf, W.: Variable population size and evolution accelera-
tion: a case study with a parallel evolutionary algorithm. Genet. Program Evolvable
Mach. 11(2), 205–225 (2010)

6. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B.,
Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms.
In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L.,
Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer,
Heidelberg (2002)

7. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using
CUDA. In: Workshop on Parallel Architectures and Bioinspired Algorithms,
Raleigh, USA (2009)

8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

9. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic program-
ming (2008). Published via http://lulu.com and freely available at http://www.
gp-field-guide.org.uk

10. Breidecker, R.: JEval. Java library for functional expression parsing and evaluation
(2007). http://sourceforge.net/projects/jeval/

11. JEXL: Java EXpression Language (2015). http://commons.apache.org/proper/
commons-jexl/

12. Adaptive and Bioinspired Systems Group: ABSys JECO (Java Evolutionary COm-
putation) library (2015). https://github.com/ABSysGroup/jeco

13. O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.:
GEVA - Grammatical Evolution in Java. Technical report, Natural Computing
Research and Applications Group - UCD Complex and Adaptive Systems Labo-
ratory, University College Dublin, Ireland (2008)

14. Hidalgo, J.I., Colmenar, J.M., Risco-Martin, J.L., Cuesta-Infante, A., Maqueda, E.,
Botella, M., Rubio, J.A.: Modeling glycemia in humans by means of Grammatical
Evolution. Appl. Soft Comput. 20, 40–53 (2014)

15. AIDA: AIDA diabetic software simulator (2011). http://www.2aida.org/

http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://sourceforge.net/projects/jeval/
http://commons.apache.org/proper/commons-jexl/
http://commons.apache.org/proper/commons-jexl/
https://github.com/ABSysGroup/jeco
http://www.2aida.org/

GPU Accelerated Molecular Docking
Simulation with Genetic Algorithms

Serkan Altuntaş1, Zeki Bozkus1(&), and Basilio B. Fraguela2

1 Department of Computer Engineering,
Kadir Has Üniversitesi, Istanbul, Turkey

serkan.altuntas@stu.khas.edu.tr,

zeki.bozkus@khas.edu.tr
2 Depto. de Electrónica e Sistemas,

Universidade da Coruña, A Coruña, Spain
basilio.fraguela@udc.es

Abstract. Receptor-Ligand Molecular Docking is a very computationally
expensive process used to predict possible drug candidates for many diseases.
A faster docking technique would help life scientists to discover better thera-
peutics with less effort and time. The requirement of long execution times may
mean using a less accurate evaluation of drug candidates potentially increasing
the number of false-positive solutions, which require expensive chemical and
biological procedures to be discarded. Thus the development of fast and accurate
enough docking algorithms greatly reduces wasted drug development resources,
helping life scientists discover better therapeutics with less effort and time.
In this article we present the GPU-based acceleration of our recently devel-

oped molecular docking code. We focus on offloading the most computationally
intensive part of any docking simulation, which is the genetic algorithm, to
accelerators, as it is very well suited to them. We show how the main functions
of the genetic algorithm can be mapped to the GPU. The GPU-accelerated
system achieves a speedup of around * 14x with respect to a single CPU core.
This makes it very productive to use GPU for small molecule docking cases.

Keywords: GPU � OpenCL � Molecular docking � Genetic algorithm �
Parallelization

1 Introduction

The binding of small molecule ligands to large protein targets is central to numerous
biological processes. For example the accurate prediction of the binding modes
between a ligand and a protein, which is known as the docking problem, is of fun-
damental importance in modern structure-based drug design [1]. Docking algorithms
try to generate different poses (binding modes) throughout possible three-dimensional
conformations, which can be seen in Fig. 1, with the purpose of evaluating them so as
to choose the best possible pose.

Molecular dynamic applications use a highly sophisticated force field while
searching only a small portion of the conformational space. This approach uses
physically based energy functions combined with full atomic level simulations to yield

© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 134–146, 2016.
DOI: 10.1007/978-3-319-31153-1_10

accurate estimates of the energetics of molecular processes. However, these methods
are too computationally time consuming to allow blind docking of a ligand to a protein.
On the other hand, molecular docking simulations often use simpler force fields and
explore a wider region of the conformational space [2].
Docking simulations require two basic components:

• A search method for exploring the conformational space available to the system.
• A force field to evaluate the energetics of each conformation (scoring function).

The extensive search performed by docking algorithms involves the sampling of
many high-energy unfavorable states. This can restrict the success of an optimization
algorithm. Therefore the computational expense is limited by applying constraints,
restraints and approximations to sample such a large search space. In practice a limited
search may reduce the dimensionality of the problem in an attempt to locate the global
minimum as efficiently as possible [1].

Stochastic methods such as Monte Carlo (MC) or genetic algorithms (GA) are
general optimization techniques with a limited physical basis, and are able to explore
the search. Evolutionary algorithms are generic iterative stochastic optimization pro-
cedures mimicking the adaptive process of natural evolution, classified as artificial
intelligence techniques [3].

We develop a docking algorithm whose search method is a GA. Based on genotypes
of parents. Each generation has a number of offspring, which replaces the worst solu-
tions of the population since population size is limited. The latter is then exposed again
to the scoring function, and the evolution goes on for the next iteration (generation). As
the number of generations increases, the average fitness of the population of solutions is
supposed to increase, and several highly fit solutions are expected to appear.

The fact that almost all subunits of GAs have an embarrassingly parallel nature
makes these algorithms very suitable for massively parallel accelerators such as
graphics processing units (GPUs). While GPUs were originally designed to process
graphics with a massive number of threads, in recent years, they have evolved to
accelerate broader types of applications. This has been favored by the availability of
new programming models such as Compute Unified Device Architecture (CUDA) [4]

Fig. 1. Molecular docking (receptor - ligand)

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 135

and Open Computing Language (OpenCL) [5], which allow the development of
general purpose, non graphics programs for GPUs. We have implemented our appli-
cation using the Heterogeneous Programming Library (HPL) [6, 7] because it largely
improves the programmability of heterogeneous platforms with respect to CUDA and
OpenCL, while it presents negligible performance overheads. HPL works on top of
OpenCL, the standard for heterogeneous computing, which guarantees that our
application can be used in a wide range of devices.

Our heterogeneous implementation prepares in the host the receptor binding site
and ligand conformation and then it transfers it to the accelerator (the GPU). This
device then creates the first population and starting from this point to the final result, all
the GA operations are computed on the GPU. The design is a very important contri-
bution of our work, as the fact that there is no CPU involvement during the execution
of the GA, so that everything is locally computed in the GPU, avoids costly data
movements between CPU and GPU, which would affect performance negatively.
Following this strategy our implementation achieved in our tests average speedups of
around 14x with respect to a single core CPU. We have also analyzed the reason for the
performance obtained, identifying a several memory optimizations to improve the
performance even further.

2 Docking Algorithm

Small molecule docking is the algorithm to predict the preferred binding pose of a
small molecule to a target molecule (a protein). Small molecules are known as ligands
and they may have different poses, which are different orientations on 3D space of the
same chemical component. These orientations can be stored with the coordinates of an
indicator atom and torsion angles of ligand molecule. Torsion angles represent the
rotation between two imaginary geometric planes of the molecule. The number of
torsions is known as the torsion size and it is fixed on all poses.

The receptor has many atoms that are not related to the docking of the ligand. This
way, only a part of the receptor atoms interact with the ligand, and for the sake of fast
execution docking algorithms target directly to a local site on the molecule. This site
(also called; binding site, binding pocket, binding cavity) is decided by the user and
defined as a sphere by a center point and a radius. If the binding site covers all receptor
(this means that the user does not have information about the specific binding site) the
docking is called blind docking. This kind of docking algorithm should find the pocket
first. As a result blind docking requires more GA runs and uses all the atoms of
receptor.

Molecular Docking consists of three basic steps, which are seeding, selection and
diversity. In general both MC and GA based molecular docking simulations perform
these three basic steps with different styles. We now briefly describe these three steps in
turn:

136 S. Altuntaş et al.

2.1 Seeding

Decoys from the reference coordinates of the ligand populate the first population from
generation zero. These decoys are called as seeds and each one of them is generated by
means of a random rotation and translation beginning from the reference coordinates [3].

2.2 Selection

After the creation of the first generation, the scoring function is applied to all the
individuals. Then, the parents of the next generation and the leaving individuals are
identified based on the rankings obtained.

The scoring function is important for the accuracy of the docking algorithm.
Unfortunately, its complexity can largely increase run-time. If we are doing the virtual
screening of millions of compounds, we can employ a lightweight scoring function for
faster turnaround. On the other hand, some docking algorithm employs adaptive
scoring techniques such as changing the complexity of the functions in the last itera-
tions of the simulation [3].

2.3 Diversity

In order to generate a child, two parents are randomly chosen according to their rank
after the selection step. Although the features of each child come from its parents and yet
this step can also create new features by adjusting valence angles and bond lengths [3].

3 GPU Parallelization: Algorithms and Implementation

Figure 2 describes the docking software architecture, which should be executed for
each receptor ligand complex. The figure is simplified to represent only the single
docking experiment but the actual preparation of the receptor and the ligand requires
some more operations according to the docking software.

3.1 Overview of Data Structure

Our docking simulation is based on a genetic algorithm for its conformational search.
This particular conformational search is the process to find the best possible pose with
respect to the receptor. The pose is the single individual which includes the 3D con-
formation of a molecule. There are different properties of each pose like atom types,
atom coordinates, number of branches, branch values and calculated scores. These
properties are stored inside multiple arrays that are referred as property arrays of
individuals (PAI) in this article.

Algorithms and Memory Access Patterns. Our program has two parts. One part runs on
CPU and we refer to it as the host program. The other part runs on a GPU and we call it
the kernel program, so that our application applies heterogeneous programming.

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 137

ALGORITHM 1: PSEUDO-CODE FOR THE HOST SIDE:

conf = read_conf()
receptor = read_receptor(conf.receptor_path)
ligand = read_ligand(conf.ligand_path)

// trim rest of the receptor,
// only binding site remains
site = prepare_binding_site(conf, receptor)

// move ligand into the center of binding site
initial = move_ligand_into_site(conf, ligand)

// genetic algorithm for conformational search
result = dock(conf, site, initial) // GPU accel.

// create the pdb file of best results
write_pdbs(result)

Algorithm 1 presents the pseudo-code of our host program. The host code first
reads all the required files and prepares with them the required data structures for the
receptor and ligand. Then the unused parts of receptor are trimmed, the binding site is
generated, and the movement of initial pose is carried out in order to make possible the
score calculation.

Fig. 2. Threads & memory access patterns

138 S. Altuntaş et al.

ALGORITHM 2: PSEUDO-CODE FOR THE GA:

// get receptor <receptor>,
// ligand <ligand>,
// configuration parameters <conf>
population = populate(ligand)

// loop: with number of generations
foreach generation from conf {

// energy calculation
score(population, receptor)

// selection
tournament(population)

// mate the winners and
// overwrite 3/4 of population
mate(population)

// mutate
mutate(population)

}

Algorithm 2 presents the kernel portion of our GPU program which is the most
computationally intensive part and which implements the conformational search. This
algorithm consists of five different main subroutines, all of which are offloaded to the
accelerator device. Our GA iterates and terminates according to a predefined number of
generations, which is set by user. Each subroutine of the GA has slightly different
memory access patterns such as map and gather. The map access pattern reads and
writes data following a regular fashion. On the other hand the gather access reads and
writes following an irregular fashion that restricts the memory bandwidth of the GPU.
Figure 2 summarizes these patterns. We now briefly describe in turn the five stages of
the kernel program of our application.

The number of threads used in the kernel executions is relative to the population
size (number of individuals) so the global thread domain size is equal to population
size. Since the algorithm has been optimized the algorithm to take advantage of local
work groups the local domain size is 1.

Populate: The first step of the conformational search is the generation of a population
of a fixed size. Until this point, there is only one pose of the initial ligand, which is
specifically moved into the binding site. It is identified as the 0th element of the
property array of individuals that represents the whole population.

In this kernel, each thread t reads the 0th element of the array as input, creates a
slightly different variation of it and writes the output to the t-th position of the property
arrays. Figure 3 describes the map access type data movement of this step, which is
performed only once, just before the simulation loop.

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 139

Score: The genetic algorithm relies on the fitness function to take its decisions and find
the best fitting individuals. Here the fitness function is the scoring function of the
molecular docking.

The score of each pose is calculated a different thread in a map access fashion, as
shown in Fig. 4, calculates the score of each pose. The scoring function also uses the
binding pocket data, which is the same for all the individuals during the simulation.

Tournament: The tournament selection is designed to terminate the underperforming
individuals in order to create space for new generations. The population is divided into
groups of four individuals. The selection method has two stages: semi-final and final.
The semi-final stage compares the score of two consecutive individuals and eliminates
the worst half. Then, the final competition chooses a single winner for each group after
comparing the results of the semi-final stage. Figure 5 represents this process. As we
can see this method cannot use all the available GPU threads, which is a problem that is
typical of reduction processes. Namely, the semi-final stage uses half of the threads,
while the final stage only uses a quarter of all threads.

Mate: The tournament process eliminates ¾ of all the individuals. The mating stage
should fill the empty spaces because the GA relays on a fixed population size. In this
process, illustrated in Fig. 6, each thread randomly picks two parents among the alive
individuals, produces new offsprings from the chosen parents, and writes them to the
available spaces, marked as empty. The user sets a crossover ratio, which is a
floating-point number between 0 and 1. Based on this ratio some offsprings will have

Fig. 3. Data flow for populate

Fig. 4. Data flow for score

140 S. Altuntaş et al.

parts from both parents and some may be exact copies of one of their parents. Although
mating is the only process that produces newly formed individuals, crossover is applied
by chance.

Mutate: Mutation is a key part of GA because it is the main source of biologically
inspired variation. In this stage of the algorithm each thread gets an individual and
makes variations based on a variation ratio, which is set by user. Figure 7 represents the
map access for mutate function.

Fig. 5. Data flow for tournament

Fig. 6. Data flow for mate

Fig. 7. Data flow for mutate

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 141

4 Performance Results

In this section we show the results of our experiments to compare the performance
results of serial and parallel GA. We used a Tesla C2050/C2070 GPU as experimental
platform. The device has 448 thread processors with a clock rate of 1.15 GHz and 6 GB
of DRAM and it is connected to a host system consisting of 4x Dual-Cores Intel
2.13 GHz Xeon processors. The compiler used for all tests was g ++ 4.7.1 with
optimization level O3. This compiler supports C ++11 standards, which is necessary
for our code.

Figure 8 represents the execution time over a varying number of GA runs for a
single docking performs docking between a ligand of 25 atoms and a large receptor. In
our docking algorithm, we choose a binding site from the receptor with 528 atoms.

Users of docking programs (i.e. AutoDock) prefer at least 10 GA runs to make sure
the results are satisfying. The reason is that although every GA run includes a full
population and iterates for the number of generations specified by the user, a single GA
run is not enough for finding a good enough pose because GAs are easy to stuck on
local solutions.

We have performed our speedup tests using three different compounds (A, B, C).
Each one has a different torsion size (7, 5, 8) and a different number of atoms (25, 19, 28).
As Table 1 and Fig. 9 represent, the compound size (number of atoms and number of
torsions) does not have any important effect on the speedup, but the number of GA runs
makes a difference.

The main reason for the increasing speedup as the number of runs grows is the
initialization cost of the HPL/OpenCL framework. In addition, our program spends a
fixed amount of time for preparing the receptor and the ligand during a single docking
experiment. That is, at the beginning of the first simulation there is a one time cost for
the whole docking simulation, which is the same no matter how many GA runs will be
performed.

Fig. 8. Execution time over number of GA runs

142 S. Altuntaş et al.

We profiled our GPU code for performance bottlenecks. This analysis revealed that
our algorithm is not fully using the memory bandwidth of GPU. We concluded that our
implementation needs two kind different memory optimizations. The first approach is
to use tiling with the shared memory of the GPU streaming multi processors (SM) and
in general reconsider the kind of memory used for our data. For example the receptor
binding site data is currently accessed from global device memory but this data never
changes during the computation, so the memory type for this data should be recon-
sidered. The second important optimization is to transform the data layout in order to
increase the number of coalesced memory access to global memory at the GPU.
Namely our code currently stores its data using arrays of structures (AOS). Changing
this layout to use structures of arrays (SAO) will allow improving the bandwidth of our
accesses to the global memory.

5 Related Work

AutoDock is one of the best-known docking applications. In fact it was the most cited
docking program in the ISI Web of Science database in 2005 [8, 9]. In addition to
single CPU docking implementations, many research groups have created GPU and
FPGA based solutions.

Table 1. SPEEDUP

Speedup
25 GA runs 50 GA runs 100 GA runs

Compound A 11 14 16
Compound B 12 14 16
Compound C 9 14 15

Fig. 9. Speedup on Tesla C2050/C2070 GPU for docking algorithm

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 143

GPU Based Molecular Docking Implementations. Micevski D. et al. [10, 11] profiled
the original AutoDock code and identified two different functions (eintcal and trilin-
interp) that were suitable to be ported to GPU. Each time these functions are called in
their version the corresponding CUDA kernel is executed instead of the original
function. In both cases the number of threads within the kernel equals to the number of
ligand atoms. This gives place to a very low utilization of the GPU device.

Kannan S. et al. [11, 12] reported the migration of AutoDock to NVIDIA CUDA
with the only exception of the local search part, since genetic algorithms are relatively
straightforward to be ported to GPU platforms. Their implementation keeps the storage
of the ligand coordinates in fast shared memory, which makes the score evaluation
faster. For determining the atom-receptor intermolecular energy, each thread first
performs a trilinear interpolation for a different ligand atom, and then each thread
evaluates the scoring function directly for a different ligand-ligand atom pair. Trilinear
interpolation offers a further optimization, since NVIDIA GPUs support the fast access
of 3D data by hardware. As a result of this they end up with * 50x speedup on fitness
function evaluation and 10x to 47x speedup on the core genetic algorithm.

Unfortunately CUDA is a vendor specific model to address parallel execution that
is well suited to NVIDIA GPUs, but it is not portable to other architectures. Our
implementation however is based on the Heterogeneous Programming Library
(HPL) [6, 7], which creates OpenCL code on runtime. Since OpenCL is the portable
standard for heterogeneous computing, we are able to run our code on any OpenCL
enabled CPU/GPU from different vendors, and other co-processors like Xeon Phi.

Local search is an important factor for the accuracy of AutoDock [8], and per-
forming it on the CPU gives place to underutilization of GPU resources. Pechan I. et al.
[11, 13] introduced two different kernels to add local search functionality. Namely one
of them creates and evaluates a whole population and the other one performs the local
search. They share the same scoring function but they differ in the calculation of the
degree of freedom. As a result of that, they achieved speedups of x30 and x64 with
respect to CPU executions, when performing 10 and 100 independent runs, for a large
set of ligands, respectively.

FPGA Based Molecular Docking Implementations. Pechan I. et al. [14] targeted the
parallel execution of distinct docking runs, which is an obvious approach since there is
no relation between different docking runs. Also they evaluated different entities of the
same population simultaneously, which resulted in remarkably high performance. Their
implementation applies pipelines and fine-grained parallelization, and achieves x10–40
speedup over a 3.2 GHz CPU. In addition to this, they manipulated the scoring function
in order to fit it better to FPGA devices. Namely instead of computing the scoring
function with floating point precision, they used fixed-point arithmetic, as it is likely
that the performance of the algorithm does not decrease with this change, while it fits
better the capabilities of an FPGA.

VanCourt T. et al. [15] used a 3D correlation method on FPGA devices. Their
approach, based on direct summation, allows straightforward combination of multiple
forces and enables nonlinear force models. The latter, in particular, are incompatible
with the transform-based techniques typically used.

144 S. Altuntaş et al.

MPI Based Molecular Docking Implementations. Zhang X. et al. [16] created an MPI
and multithreading hybrid which is a task parallel solution of the AutoDock Vina [17].
The aim of their research was to develop having a faster virtual screening result, so they
did not report the improvement of single docking performance.

6 Conclusions and Future Work

We describe a GPU-accelerated molecular docking code with a genetic algorithm. Our
code achieves a speedup of around 14x with respect to a single core. We found that our
code is not fully using the memory bandwidth of GPU system, a critical reason for this
being that our current data layout is not well suited for the GPU and the special kinds of
memories in GPUs, such as local memory, are not fully exploited. Despite this fact, the
speedup achieved indicates that the GPU architecture is one of the best possible
solutions for GA implementations.

An interesting property of our implementation of molecular docking GA is that it is
specifically developed for full GPU-based computation, being the host code just a
wrapper for the I/O requirements of our software.

Our work only includes single device executions of independent GA runs for a
specified number of iterations. This makes the problem very suitable for multi device
implementation, which is part of our future work.

Finally, our GPU implementation of docking makes single docking fast but
designing the algorithm for virtual screening of drug candidates, which is another
important topic for molecular docking, may lead to better results.

Acknowledgment. Sekan Altuntaş and Zeki Bozkus are funded by the Scientific and Tech-
nological Research Council of Turkey (TUBITAK; 112E191). Basilio B. Fraguela is supported
by the Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU
(ref. TIN2013-42148-P) and by the Galician Government under the Consolidation Program of
Competitive Reference Groups (ref. GRC2013-055).

References

1. Taylor, R.D., Jewsbury, P.J., Essex, J.W.: A review of protein-small molecule docking
methods. J. Comput. Aided Mol. Des. 16(3), 151–166 (2002)

2. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: Software news and update a
semiempirical free energy force field with charge-based desolvation (2007)

3. Grosdidier, A.: EADock: design of a new molecular docking algorithm and some of its
applications (2007)

4. Manual, R.: Compute unified device architecture. J. Inst. Image Inf. Telev. Eng. ITE 62, 1–5
(2008)

5. Munshi, A.: OpenCL 1.2 Specification (2012)
6. Bozkus, Z., Fraguela, B.B.: A portable high-productivity approach to program heterogeneous

systems. In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops, IPDPSW 2012, pp. 163–173 (2012)

GPU Accelerated Molecular Docking Simulation with Genetic Algorithms 145

7. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting heterogeneous parallelism with the
heterogeneous programming library. J. Parallel Distrib. Comput. 73(12), 1627–1638 (2013)

8. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.:
Automated docking using a Lamarckian genetic algorithm and an empirical binding free
energy function. J. Comput. Chem. 19, 1639–1662 (1998)

9. Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force field
with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)

10. Kuiper, M., Micevski, D.: Optimizing Autodock with CUDA. In: VPAC Case Study (2009).
http://www.vpac.org/?q=node/290. Accessed 01 January 2012

11. Pechan, I., Fehér, B.: Hardware accelerated molecular docking: a survey (2012)
12. Kannan, S., Ganji, R.: Porting Autodock to CUDA. In: IEEE Congress on Evolutionary

Computation (CEC) (2010)
13. Pechan, I., Feher, B.: Molecular docking on FPGA and GPU platforms. Audio Trans. IRE

Prof. Gr., 474–477 (2011)
14. Pechan, I., Fehér, B., Bérces, A.: FPGA-based acceleration of the AutoDock molecular

docking software, Ph.D. Res. (2010)
15. VanCourt, T., Gu, Y., Mundada, V., Herbordt, M.: Rigid molecule docking: FPGA

reconfiguration for alternative force laws. EURASIP J. Adv. Signal Process. 2006, 1–11
(2006)

16. Zhang, X., Wong, S.E., Lightstone, F.C.: Message passing interface and multithreading
hybrid for parallel molecular docking of large databases on petascale high performance
computing machines. J. Comput. Chem. 34(11), 915–927 (2013)

17. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a
new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2),
455–461 (2010)

146 S. Altuntaş et al.

http://www.vpac.org/?q=node/290

EvoRISK

Challenging Anti-virus Through Evolutionary
Malware Obfuscation

Marco Gaudesi1, Andrea Marcelli1(B), Ernesto Sanchez1, Giovanni Squillero1,
and Alberto Tonda2

1 DAUIN, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
{marco.gaudesi,andrea.marcelli,ernesto.sanchez,

giovanni.squillero}@polito.it
2 INRA, UMR 782 GMPA, 1 Avenue Lucien Brétignières,

78850 Thiverval-Grignon, France
alberto.tonda@grignon.inra.fr

Abstract. The use of anti-virus software has become something of an
act of faith. A recent study showed that more than 80 % of all personal
computers have anti-virus software installed. However, the protection
mechanisms in place are far less effective than users would expect. Mal-
ware analysis is a classical example of cat-and-mouse game: as new anti-
virus techniques are developed, malware authors respond with new ones
to thwart analysis. Every day, anti-virus companies analyze thousands of
malware that has been collected through honeypots, hence they restrict
the research to only already existing viruses. This article describes a novel
method for malware obfuscation based an evolutionary opcode genera-
tor and a special ad-hoc packer. The results can be used by the security
industry to test the ability of their system to react to malware mutations.

Keywords: Security · Malware · Packer · Computational-intelligence ·
Evolutionary algorithms

1 Introduction

Malicious software, malware for short, plays a part in most computer intrusion
and security incidents. The name is used to indicate any software that causes
intentional harm to a user, computer, or network [1] and may be found in dif-
ferent variants: worm, rootkit, trojan, however viruses are the most common.

The term computer virus was coined by Fred Cohen in 1983 [2] to indicate
those programs that are able to replicate themselves and infect various system
files. As many other in computer science, the idea of self-replicating software can
be traced back to John Von Neumann in the late 50s [3], yet the first working
computer viruses are much more recent.

Creeper, developed in 1971 by Bob Thomas, is generally accepted as the first
working self-replicating computer program, but it was not designed with the
intent to create damage. A decade later, Elk Cloner was the first one known to

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 149–162, 2016.
DOI: 10.1007/978-3-319-31153-1 11

150 M. Gaudesi et al.

infect different computers spreading by floppy disks. On the other hand, Brain,
written by two Pakistani brothers and released in January 1986, is widely con-
sidered the first real malware [4]. Since then, malware grows in complexity and
dangerousness. As of 2015, malware analysis and detection is still an impor-
tant field in computer research and computer virus still represents a heavy risk
in computer security. Malware analysis is like a cat-and-mouse game. As new
analysis techniques are developed, malware authors respond with new ones to
thwart analysis.

Fig. 1. Screen shot of malware Ambulance.com after infection.

It is interesting to note that from year 2003 the focus has changed from
“writing for fun” to “writing for profit”. In the early days, viruses were written
by hobbyists mainly for joke or for challenge. They usually played with the user
or print funny messages or graphics on the screen. For instance, Fig. 1 displays
a screen shot of an infection by Ambulance.com, a virus written for DOS. When
the user got infected, an ambulance crossed the screen and a siren started to
sound. Today, when someone is infected by malware does not even know to be
infected. The victim does not see anymore funny images on the screen, nor the
cd rom trail rom will open and close all the time. The malware runs silently in
the background, without crashing the system. In effect, viruses are well tested
and debugged in order to not slowing down the system [5]. Indeed, the hiding
capability of a malware is a crucial aspect. For this reason the vast majority
employs some kind of obfuscation, ranging from simple XOR encryption, to more
sophisticated anti-analysis tricks. However the most common is packing [6,7].

Challenging Anti-virus Through Evolutionary Malware Obfuscation 151

The research presented in this paper aims at developing a new evolutionary
obfuscation mechanism. The results could be used by the security industry to
evaluate the efficiency and effectiveness of their analysis methodologies, as well
as to test the ability of their system to react to new malware mutations. In order
to mimic real malware mutations, the research focused on the development of an
evolutionary opcode generator, which is the foundation of a packer. A mechanism
that is able to automatically generate hard to detect programs, can help the
security research into developing a new proper countermeasure.

The analysis depicted in this paper represents the third chapter of a work
focused on evaluating and testing anti-virus products: in a first paper [8] it
was experimented the application of the μGP toolkit to evolve the infection
mechanisms of a simple DOS virus. Then, a second work tested commercial
products responsiveness to a runtime obfuscated shellcode [9].

The usage of evolutionary computation techniques in the field of malware
mutation is not new. Previous works include [10], where an evolutionary frame-
work that exploits genetic algorithms was proposed to evolve a well-known virus
family, called Bagle. Furthermore, in [11], the authors proposed an artificial arms
race between an automated white-hat attacker and various anomaly detectors
for the purpose of identifying intrusion detection system weaknesses. Eventually,
in [12], it is provided a theoretical proof behind malware implementation that
closely models Darwinian evolution. The malware autonomously incorporates
behaviours by including numerous discoverable APIs. The new behaviour pro-
files would is constantly screened by security software in the same way natural
selection acts on biological organisms.

The rest of the paper is organized as follows: Sect. 2 introduces viruses and
anti-viruses; Sect. 3 illustrates the goal of the research; Sect. 4 reports experi-
mental evaluation; finally, Sect. 5 concludes the paper, outlining future works.

2 Virus and Anti-virus

Since the first days of malware, the security industry developed anti-virus pro-
grams. Their efficiency is evaluated on the base of the detection ratio (that
should be maximum) and false-positive ratio (that should be minimum). How-
ever, there is a common misconception about anti-virus scanners: people often
get the impression that faster is better; hence all the techniques need to target
speed scanning. Commonly used techniques in commercial anti-virus applica-
tions include Signature Scanning, Geometric Detection, Disassembler combined
with a State Machine and Emulators. Signature scanning was the first to be
developed and today it is the most common technique of viruses detection. It
looks for a specific sequence of bytes in the inspected executables. Instead, geo-
metric detection analyses the file structure and identifies a virus if an alteration
has occurred. While a disassembler is used to separate the byte stream into indi-
vidual instructions, when it is combined with a state machine, it can be used

152 M. Gaudesi et al.

to record the order in which “interesting instruction are encountered”. However,
the most advanced and complex solution is the emulator which simulates the
behaviour of a CPU. The code that runs in an emulator is executed within a con-
trolled environment from which it cannot escape. Moreover, it can be examined
periodically or when particular instructions are executed [13].

In the anti-virus field it is often used the term heuristic to indicate all those
technologies that are employed to detect malware, without requiring a specific
detection routine or signature for each known malware. Moreover the usage of
heuristic is has the potential to find out new version of malware, by exploiting simi-
larities with known samples. Thus employing heuristics, is a systems that can only
reduce the problem against masses of viruses and of course, the perfect detection
is more difficult to be done by using pure heuristics without paying some attention
to virus-specific details. Heuristic may target both static and dynamic analysis. A
proposed system to heuristically detect zero-day malware based on static analysis
is PE-Miner, which uses around two hundred features of the Portable Executable
file structure [14]. Plenty of research has been done using n-gram distribution or
opcode frequency of byte sequences to heuristically detect zero-day malware [15].
However, since these methods depend only on the byte sequence, they can be eas-
ily bypassed by obfuscation, code transformation and packing [16]. In the dynamic
analysis the program operations are tracked while a heuristic mechanism tries to
recognize behavioural patterns typical of malware. In any case it is unknown which
is the heuristic technique implemented in anti-virus commercial products, since it
represents the value of the software itself.

The usage of anti-virus software has become something of an act of faith [17].
People seem to feel more safe not with a more secure operating system, or with
the latest patch, but with some anti-virus software installed in their systems. A
recent study [18] showed that over 80 per cent of all personal computers have
anti-virus software installed on their computers. Quite clearly, this is a must-
have for most users. However, this research outcome showed that viruses are a
serious threat and the protection mechanisms in place are less effective than we
would expect.

By analysing the evolution of the malware in the last thirty years, it is clear
that there has been a growth in the complexity of the hiding mechanisms. Anti-
virus software industry historically classifies obfuscating malware in encrypted,
olilgomorphic, polymorphic and metamorphic viruses. The first ones are the sim-
plest and they are characterised by a constant decryptor that is followed by the
encrypted virus body. On the other hand, metamorphics are the most advanced:
they are capable of completely disassemble, regenerate the code and re-compile
it at run time [19].

The analogies between computer malware and biological viruses are more
than obvious. The very idea of an artificial ecosystem where malicious soft-
ware can evolve and autonomously find new, more effective ways of attacking
legitimate programs and damaging sensitive information is both terrifying and
fascinating [8]. In the biological world, every time a new species is discovered,
it’s encountered an adaptation that is not expect. The same is true for malware:

Challenging Anti-virus Through Evolutionary Malware Obfuscation 153

virus analyst needs to train themselves to think like exploratory biologists and
be prepared for things they have never seen.

The research, supported by security experts, identifies the evolutionary mal-
ware as the next possible malware threat. The new category is suggested for
those viruses that will exploit the full power of evolutionary algorithms (EA)
and computational-intelligence techniques in general. This kind of virus will be
able to learn from the surrounding environment, to be trained and to create false
positives.

3 Proposed Evolutionary Malware Obfuscation

The section describes the new malware obfuscation mechanism. The developed
ad-hoc packer is responsible of creating a new working variant of the malicious
executable file. The opcode generator uses an evolutionary algorithm to create
two assembly routines: one is used to obfuscate and the other to de-obfuscate
arbitrary data. Such hiding mechanism is then adopted by the packer to encode
the file content, by obfuscating the malicious code and data embedded in the
file.

3.1 Evolutionary Opcode Generator

An Opcode is the binary representation of an assembly instruction. The opcode
generator creates both an encoding and a decoding function starting from
randomly-generated, variable-length sequence of IA-32 assembly instructions.
Those are directly handled as binary opcodes, so there is no need of a compila-
tion and linking phase.

The generation process exploits a simple evolutionary algorithm with a strat-
egy similar to (1, λ), that is, not using any recombination operators. The encod-
ing and the decoding functions are created at the same time in a process that
requires to find either reversible assembly instructions (or small blocks of code)
and their complementary one. Since even few bytes may represent a signature,
it is also necessary to partially shuffle the instructions, although this has the
drawback of potentially disrupting the encoding/decoding routines.

In order to assess candidate fitness values both the reversibility of the gen-
erated routines and the Jaccard Similarity is evaluated. In favour of efficiently
evaluate a candidate obfuscating routine, the encoding and the decoding routines
are applied subsequently to randomly generated sequence of bytes: if the final
result is different from the original sequence, the candidate is simply discarded.
Then, the encoder is used to obfuscate the malicious code and eventually the
Jaccard Similarity, a statistic coefficient used for comparing the similarity and
diversity of sample sets, is appraised. The Jaccard Index has been chosen for
keeping the evolution mechanism lightweight while gaining effective results.

Aiming to achieve invisibility through diversity, the process is iterated until a
timeout expires, or until the Jaccard coefficient is lower than an experimentally-
defined threshold.

154 M. Gaudesi et al.

The entire process is shown in the following pseudo-code and each phase will
be analysed in details in the following paragraphs.

Initialise population

while (! stopping condition) {

create new lambda individuals by choosing one of the

following methods:

1. append instructions to both

encoder and decoder

2. shuffle decoder instructions

evaluate new individuals

keep the best

}

evaluation:

test reversibility

if (success)

evaluate Jaccard

IA-32 Instruction Set. The assembly language for Intel x86 is a collection
of hundreds of instructions. Each of them is translated in several binary repre-
sentation, called opcodes, according to its usage in combination with register or
memory and its version: 8, 16 or 32 bit.

According to Intel IA-32 manual, instruction can be classified in Data Trans-
fer, Binary Arithmetic, Decimal Arithmetic, Logic, Shift and Rotate, Bit and
Byte, Control Transfer, String, Flag Control, Segment Register, Miscellaneous,
MMX Technology, Floating Point and System instructions.

Only a small subset of the IA-32 instruction set have been employed in the
realisation of the opcode generator, but more can be added in the future: in
the prototype described in this paper no Floating Point, nor MMX Technology
instructions are used. Also Segment Register, Miscellaneous, Bit and Byte, String
and System instructions have been discarded, because their application was not
straightforward.

The other categories represent the most used opcodes, hence the most inter-
esting. Some of them have a direct reversible instruction, which is very useful
when it comes to create two equal, but reverse sequence of operations. Others,
like mov or push and pop, insert some approximation in the reversibility of the
solution. Those who remain are strongly related to carry management or to the
evaluation of a condition.

Among all of them, the most common twenty have been chosen, including
XOR, INC, DEC, NEG, ROL and ROR. Instructions are stored in a small data-
base of opcode ranges, where each one is associated with a data structure with
all the necessary information for the code generation: the opcode length and
range, a pointer to the opposite opcode, the need of a parameter and eventually
the length and range of this one.

Challenging Anti-virus Through Evolutionary Malware Obfuscation 155

Instruction Generation. When the opcode generator is called, the evolution-
ary algorithm starts. An individual is made of a pair of encoding and decoding
routines built from randomly chosen sequence of instructions. Since each opcode
has a pointer to its directly opposite instruction in the database, both the func-
tions are constructed in parallel. Usually instructions are characterised by a base
number, that identifies the specific version of the assembly instruction in use and
an offset, that identifies which register or memory address is being adopted. If
a parameter is required too, the algorithm generates one in the proper range.

In order to assess candidate fitness values both the reversibility of the gener-
ated routines and the Jaccard Similarity of the obfuscated code is evaluated. In
order to increase the strength of the obfuscation, the mutation mechanism par-
tially shuffle the instruction order, although this has the drawback of potentially
disrupting the encoding/decoding routines. Hence, to test the reversibility of the
two just created assembly routines, a randomly sequence of byte is generated and
copied in the processor registers. If the final register values are different from
the original ones, the candidate is simply discarded and the generation restarts
from scratch.

The evolutionary process is iterated until a timeout expires, or until the
Jaccard coefficient is lower than an experimentally-defined threshold.

Evaluating Similarity. The Jaccard index, also known as the Jaccard simi-
larity coefficient, is evaluated to assess candidate fitness values. It measures the
similarity between finite sample sets and it is defined as the size of the intersec-
tion divided by the size of the union of the sample sets:

J(A,B) =
|A ∩ B|
|A ∪ B|

Starting from two variable length byte array of assembly opcodes, the pro-
gram cyclically calculates the Jaccard Coefficient for each pair of bytes.

Fig. 2. Histogram of the Jaccard coefficient distribution of a Malware Sample.

156 M. Gaudesi et al.

The implementation is straightforward: the union is implemented using the
binary operation “AND” and the intersection using “OR”. Then, the sum of the
“1” in each resulting byte is calculated and the result is saved in a temporary
array. In the end each coefficient is normalised on a scale of ten values and it could
be graphically displayed on an histogram. The algorithm has been tested with
different block size and experimental results showed best behaviour considering
a block of one byte. Figure 2 shows the Histogram result from the calculation
between two malware variants that are dissimilar among them. The entire process
is repeated untile the Jaccard coefficient is lower than an experimentally defined
threshold or when the timeout expires.

3.2 Development of an Ad-Hoc Packer

In the proposed approach, the developed packer is responsible of creating new
hiding mechanism strong enough to ensure the survival of future generations of
malware. The suggested hiding mechanism is based on evolutionary computation
and the Evolutionary Opcode Generator is embedded directly in the packer. The
goal is to develop a packer able to thwart analysis, creating each time a new
packing routine exploiting Evolutionary Algorithms. As the decoding routine is
embedded in the executable file, once the new malware is run, it will restore
each part of the program in memory ready for execution. Differently from a
previously published research [9], the packer tackles the entire executable and
not only portions of code.

In detail, the developed packer consists of a stand-alone program, the packer,
that is responsible of creating a new variant of the input program. The research
targets the Portable Executable file, the format of Windows executable [20]. The
file format is logically organised into several sections and the Section Header
keeps track of all of them. The packer encode the code and data sections with a
custom obfuscating routine and the unpacker is directly injected in a new crafted
section.

Packing. In order to inject the packing routine, the file size is increased. For this
purpose, Windows offers two useful API: CreateFileMapping and MapViewOf-
File which allow to map a file in memory and to work on that by simply using
memory addresses. Then the packing function is called.

Firstly the NumberOfSection is increased by one. Then, the Characteristic of
each section is set to read and write. Later, the address of the RelocationTable
in the DataDirectory is set to zero to avoid the Windows Loader to perform
“relocation fixups”. Finally, a cycle loops on each section encoding it using a
previously created obfuscating routine.

A new “.unpack” section is appended at the end of the file, where the
unpacker code, directly written in assembly language, is copied and all the neces-
sary informations are written in the SectionTable. The AddressOfEntryPoint is
updated to point to the corresponding decoding function in the new section and

Challenging Anti-virus Through Evolutionary Malware Obfuscation 157

the SizeOfImage is enlarged to include the new portion of file. Finally the Rel-
ative Virtual Address (RVA) of the “Relocation Table” and the Original Entry
Point are updated in the unpacker code.

Unpacking. The code of the unpacker is the first to be executed when the
program is run. It is mainly responsible of restoring the original sections in
memory, performing the relocation fixups and loading the required libraries.

ImageBaseAddress: The Windows Loader loads the Portable Executable file
starting from an arbitrary ImageBaseAddress1. In the 32bit version of Win-
dows, the FS register points to the Thread Environment Block2, a small data
structure for each thread, which contains information about exception handling,
thread-local variables and other per-thread state. Among the various fields, one
is a pointer to the Process Environment Block3, that contains per process infor-
mation. Those data structure are not well documented by Microsoft, but over the
Internet, it is possible to find a lot of information from independent researchers.
An interesting blog post4 illustrates that the pointer to the ImageBaseAddress is
constant among all the Windows version, hence the following unpacker is multi
version compatible.

PE Parsing and Decoding: The Portable Executable header is parsed, looking
for the address of the SectionTable, where it is possible to retrieve the starting
addresses of the sections to be decoded. Then a loop iterates over each of them
and the unpacker restores the original data in memory.

Relocation Fixups: One of the main drawbacks of encoding the code section is
that it prevents the Windows Loader to perform the correct relocation adjust-
ment. In summary, the complexity of the unpacker is to mimic the operations
typically done by the Windows Loader. The process of relocation is organized
in three phases. Firstly it is necessary to calculate the delta reloc: the differ-
ence between where the executable is actually loaded, from the one the compiler
assumed it would have been loaded. Secondly, it obtains the address of the Relo-
cationTable and thirdly, a loop iterates over each entry of the RelocationTable to
perform all the necessary fixups. At the end, the program execution is reverted
to the OriginalEntryPoint and the original program is run.

4 Experimental Evaluation

Experiments have been performed on Windows 7, 32 bit version, with an Intel
IA-32 architecture. The choice is dictated by the huge availability of anti-virus
1 Note: test have been executed on Windows 7, by default ASLR is enabled.
2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms686708(v=vs.85).

aspx.
3 https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).

aspx.
4 http://blog.rewolf.pl/blog/.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686708(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686708(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
http://blog.rewolf.pl/blog/

158 M. Gaudesi et al.

software for the platform. As a testbed, three well-known online malware scan-
ner have been used: Metascan Online5, VirusTotal6 and Jotty7. On the whole
they make use of tens of different AV products, allowing a direct and simple
comparison of the results. Moreover, in order to confirm the outcome precision,
several of the most effective AV software have been installed on different hosts.

In order to test the effectiveness of the packer, some virus samples have been
chosen among a collection of malware from VX Heaven (http://vxheaven.org).
All of them are characterised by a very high detection rate. Among the ten cho-
sen samples, the packer successfully created a new variant for eight of them. The
other two, Win32.Apparition and Win32.Chiton, make use of anti-dumping and
anti-debugging techniques that suspended the packing process. Each generation
required an average of 60 individuals to find a working obfuscating routine, mak-
ing the packing process almost instantaneous. A prudent resource management
must be always taken into consideration when dealing with anti-virus software
that carefully monitor processes CPU usage.

Table 1 summarises the test results. The first column Original shows the
detection percentages of the original malware samples, while column Packed
illustrates the detection percentages of the packed version of each malware sam-
ple. Each column is further subdivided into three ones: Exact is associated to the
exact detection, Heuristic is related to the percentage of heuristic detection. The
third one, Total, is the sum of the previous two values. Finally, column Wors-
ening highlights the detection worsening between the original and the packed
version of the malware.

Table 1. Comparison of the detection percentages of the Original and Packed version
of the Malware samples.

Original Packed Worsening

Total Exact Heuristic Total Exact Heuristic

Win32.Bee 79 % 74 % 5 % 26 % 18 % 8 % 54 %

Win32.Benny 74 % 64 % 10 % 31 % 23 % 8 % 44 %

Win32.Blackcat 72 % 64 % 8 % 26 % 15 % 10 % 46 %

Win32.Bolzano 64 % 62 % 3 % 28 % 21 % 7 % 36 %

Win32.Crypto 72 % 64 % 8 % 28 % 21 % 7 % 44 %

Win32.Driller 69 % 62 % 8 % 15 % 10 % 5 % 54 %

Win32.Eva 79 % 74 % 5 % 26 % 18 % 8 % 54 %

Win32.Invictus 79 % 67 % 13 % 15 % 0 % 15 % 64 %

Average 74 % 66 % 7 % 24 % 16 % 9 % 49 %

5 https://www.metascan-online.com/.
6 https://www.virustotal.com.
7 https://virusscan.jotti.org.

http://vxheaven.org
https://www.metascan-online.com/
https://www.virustotal.com
https://virusscan.jotti.org

Challenging Anti-virus Through Evolutionary Malware Obfuscation 159

The unencoded version of the malware is characterised by a high detection
rate. It ranges from 64 % to 79 % and in most of the cases it is related to exact
detection. This result is mostly due to virus signature scanning, which is a very
effective technique when a malware is not obfuscated. Detecting a packed version
of a malware, is much more difficult, indeed the detection rate drops down to an
average 24 %, furthermore heuristic is responsible of about half of the uncovering.
On average, as illustrated in Table 1, the packer caused a detection worsening of
the 50 %.

A total of 39 anti-virus have been used during the tests. In the following
dissertation they are identified by the acronym AV1..39. Figure 3 graphically
illustrates the results. Five products were not able to detect even a malware
sample, whereas nineteen detected all the eight original viruses. Among them,
eleven achieved the perfect detection of the original malware version. As previ-
ously stated, heuristic detection plays a small role when the malware is in the
original form. Only AV35 relies more on heuristic than on exact matching.

The most interesting outcomes come from the packed version of the malware.
In fifteen cases, as shown in Fig. 4, the detection rate drop down to an incredible
zero and in other seven cases the match worsening is greater than 70 %. Only one,
AV5 achieves the 100 % of malware uncovering, but it is all related to heuristic,
then it is less trustworthy than exact detection. AV9 increased its detection ratio
of over 130 % when it analysed the obfuscated variant. However, it is safe to be
unconfident of this success: it is likely that the anti-virus detected solely the
presence of a packer and not the existence of a real threat. On the other hand,
AV6, AV15 and AV26 reached a great achievement, by worsening their result of
only 13 % and other four of less than 40 %.

As previously mentioned, when it comes to heuristic detection it is hard to
judge the success and it is important to evaluate the credibility of the results.
For this purpose a further experiment was performed: a simple “Hello World”
program was packed using the same packer of the previous test. Of course the
original program, that quietly prints to the screen the string Hello World was
not detected as a threat, when examined and only four anti-virus identified the

Fig. 3. Comparison of the detection percentage of the original malware samples (on
the left) and the packed ones (on the right).

160 M. Gaudesi et al.

Fig. 4. Detection worsening caused by the packed malware samples.

encoded version as a threat by mean of heuristic detection. Results are quite
interesting, as they can be used to further analyse the outcome of the previous
test. Simply packing an executable makes AV9 revealing a threat: this explains
the incredible improvement (over 130 %) of the previous experiment. Also AV6
suffers from false positive detection and its good achievement in detecting packed
malware looses value. Finally, despite AV38 and AV39 experienced false positive,
they were not able to detect none of the packed malware.

5 Conclusion

The basic idea of the research is to use Evolutionary Computations techniques to
evolve computer viruses to foresee threats of the future. Several proof-of-concept
samples have been developed and then tested against most common commer-
cial anti-virus products. Although the relatively simple evolutionary approach,
experimental results proved that a packing program that is able to evolve, cre-
ating a brand new encoding routine in each infection, may still represent a chal-
lenge for the security community. By the way, a mechanism that is able to
automatically generate hard to detect programs, can help the security research
into developing a new proper countermeasure.

Anti-virus software is one of the most complex application. It has to deal
with hundreds of file types and formats: executables, documents, compressed
archives and media files. However, it has been showed that the user usually
overconfidence anti-virus in their immunity capabilities against all files. Results
demonstrated that todays most effective solution to detect known malware is
signature-based scanning. On average 74 % of the original malware was exactly
spotted, in effect by only precisely identifying a threat it is possible to correctly
repair the system. However, exact identification is a problem, even in human

Challenging Anti-virus Through Evolutionary Malware Obfuscation 161

analysis. How long does it take to be sure if something is really a known variant or
a new one? It is believed that when dealing with an evolutionary malware it is not
feasible to have a custom routine detection for each single sample: the complex
infection mechanism coupled with the powerful evolutionary engine make it very
difficult to reach full accuracy using only empirical evaluation methods and in
depth analysis of the virus code is essential. In the authors’ opinion, the anti-
virus industry must focus on heuristic detection, by increasing the strictness of
results and especially targeting the decrease of false positive. Anyway, the need
to understand evolutionary code in a quicker way must be the subject of further
research.

Malware analysis is like a cat-and-mouse game. As new anti-virus techniques
are developed, malware authors respond with new one to thwart analysis. Any-
way, as long as old tactics continue to remain effective, we will continue to see
them in use: malware needs to propagate, it needs to communicate and it needs
to achieve the goals for which it was designed. These are constants that will be
seen well into the future.

5.1 Future Developments

While this research is far from being concluded, it has already gained a great deal
of insight into the protection provided against viruses. Improvements may con-
cern the developing a more advanced opcode generator and may target analysis
of malicious networking interaction.

Future work will focus on investigate machine learning techniques for mali-
cious pattern behaviour recognition.

Acknowledgments. A special thank to Peter Ferrie, principal anti-virus researcher
at Microsoft, for answering the questions as well as his comments and feedback on
latest malware obfuscation technologies.

References

1. Michael, S., Andrew, H.: Practical Malware Analysis - The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, San Francisco (2012)

2. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35
(1987)

3. Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE
Trans. Neural Netw. 5(1), 3–14 (1966)

4. Chen, T.M., Robert, J.-M.: The evolution of viruses, worms. In: Statistical Methods
in Computer Security, vol. 1 (2004)

5. Szor, P.: The art of computer virus research and defense. Pearson Education, Indi-
anapolis (2005)

6. Yason, M.V.: The art of unpacking, Chicago (2007). Retrieved 12 February 2008
7. Guo, F., Ferrie, P., Chiueh, T.: A study of the packer problem and its solutions.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98–115. Springer, Heidelberg (2008)

162 M. Gaudesi et al.

8. Cani, A., Gaudesi, M., Sanchez, E., Squillero, G., Tonda, A.: Towards automated
malware creation: code generation and code integration. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing pp. 157–160. ACM, March 2014

9. Gaudesi, M., Marcelli, A., Sanchez, E., Squillero, G., Tonda, A.: Malware obfusca-
tion through evolutionary packers. In: Proceedings of the Companion Publication
of the 2015 on Genetic and Evolutionary Computation Conference, pp. 757–758.
ACM, July 2015

10. Noreen, S., Murtaza, S., Shafiq, M.Z., Farooq, M.: Evolvable malware. In: Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary Computation,
pp. 1569–1576. ACM, July 2009

11. Kayack, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Can a good offense be a good
defense? Vulnerability testing of anomaly detectors through an artificial arms race.
Appl. Soft Comput. 11(7), 4366–4383 (2011)

12. Iliopoulos, D., Adami, C., Szor, P.: malware evolution and the consequences for
computer security. arXiv preprint arxiv:1111.2503.Chicago

13. Szr, P., Ferrie, P.: Hunting for metamorphic. In: Virus Bulletin Conference,
September 2001

14. Nachenberg, C.: Computer virus-coevolution. Commun. ACM 50(1), 46–51 (1997)
15. Perriot, F., Ferrie, P., Szor, P.: Striking similarities. Virus Bull., 4–6 (2002)
16. Desai, P.: Towards an undetectable computer virus (Doctoral dissertation, San

Jose State University), Chicago (2008)
17. Xue, F.: Attacking antivirus. In: Black Hat Europe Conference (2008)
18. Microsoft Security Intelligence Report, vol. 18, December 2014
19. Ferrie, P., Szor, P.: Zmist opportunities. Virus Bull. 3(2001), 6–7 (2001)
20. Peering Inside the PE: A Tour of the Win32 Portable Executable File Format.

https://msdn.microsoft.com/en-us/library/ms809762.aspx

http://arxiv.org/abs/1111.2503.Chicago
https://msdn.microsoft.com/en-us/library/ms809762.aspx

EvoROBOT

Leveraging Online Racing and Population
Cloning in Evolutionary Multirobot Systems

Fernando Silva1,2,4(B), Lúıs Correia4, and Anders Lyhne Christensen1,2,3

1 BioMachines Lab, Lisboa, Portugal
fsilva@di.fc.ul.pt, anders.christensen@iscte.pt

2 Instituto de Telecomunicações, Lisboa, Portugal
3 Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

4 BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
luis.correia@ciencias.ulisboa.pt

Abstract. Online evolution of controllers on real robots typically
requires a prohibitively long time to synthesise effective solutions. In
this paper, we introduce two novel approaches to accelerate online evo-
lution in multirobot systems. We introduce a racing technique to cut
short the evaluation of poor controllers based on the task performance
of past controllers, and a population cloning technique that enables indi-
vidual robots to transmit an internal set of high-performing controllers
to robots nearby. We implement our approaches over odNEAT, which
evolves artificial neural network controllers. We assess the performance
of our approaches in three tasks involving groups of e-puck-like robots,
and we show that they facilitate: (i) controllers with higher performance,
(ii) faster evolution in terms of wall-clock time, (iii) more consistent
group-level performance, and (iv) more robust, well-adapted controllers.

Keywords: Online evolution · Multirobot systems · Racing · Popula-
tion cloning

1 Introduction

Online evolution is one of the most open-ended approaches to adaptation and
learning in robotic systems. In online evolution, an evolutionary algorithm is exe-
cuted onboard robots during task execution to continuously optimise behavioural
control. The main components of the evolutionary algorithm, namely evaluation,
selection, and reproduction, are performed by the robots without any external
supervision. In this way, robots may continuously self-adapt and modify their
behaviour in response to changes in the task or in the environmental conditions.

In 1994, Floreano and Mondada [1] conducted the first study on online evo-
lution using a single, mobile robot. In 2002, Watson et al. [2] developed embodied
evolution, an approach in which the evolutionary algorithm is distributed across
a collective of robots. The key objective behind the use of multiple robots was to
enable a speed-up of evolution due to robots that evolve controllers in parallel
and exchange partial solutions to the task. Such approach allows for a form of

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 165–180, 2016.
DOI: 10.1007/978-3-319-31153-1 12

166 F. Silva et al.

knowledge transfer that has been shown to speed up the evolutionary process
and to facilitate more effective collective problem solving [3,4].

Over the past years, research in online evolution lead to the development of
a number of different approaches. Examples include the (μ+1)-online evolution-
ary algorithm by Haasdijk et al. [5], r-ASiCo [6] by Prieto et al., mEDEA by
Bredeche et al. [7], and odNEAT by Silva et al. [3], among others. However, there
are currently a number of key issues that must be addressed before online evolu-
tion becomes a feasible approach to adaptation and learning in real robots. One
major impediment to widespread adoption is the long time that online evolution
requires to synthesise solutions to any but the simplest of tasks (several hours
or days), which currently renders the approach infeasible on real robots [8].

In the vast majority of online evolution algorithms, see [5,7] for examples,
each controller is assessed for a fixed, predefined amount of time. Because the
evaluation of inferior controllers amounts to poor task performance, previous
studies have focused on how to optimise the evaluation period online via: (i) self-
adaptation of the evaluation period [9], (ii) roulette wheel-based selection [10],
(iii) a stochastic heuristic rule that monitors the performance of controllers to
adjust the evaluation period [10], and (iv) a racing technique that runs indepen-
dently on every robot in a group [11]. Despite their potential, such techniques
have a number of inherent limitations, namely: (i) require the experimenter to
decide, for instance, on the maximum evaluation period [9–11], which may be
infeasible in practice, (ii) are significantly sensitive to the parameter settings
[9–12], and (iii) require a controller to be reevaluated multiple times [10].

In this paper, we propose two novel approaches to speed up online evolution of
robotic controllers in multirobot systems. Firstly, we introduce a racing approach
for multirobot systems that relies on the task performance of controllers alone,
and therefore does not require the definition of a maximum evaluation period.
Because the racing approach relies on a modified version of the non-parametric
Hoeffding’s bounds [13], it can be applied to an unrestricted set of tasks and
algorithms. We then extend racing with a population cloning approach, which
enables each individual robot to clone and transmit a set of high-performing
controllers stored in its internal population to other robots nearby. The under-
lying motivation is to effectively leverage the genetic information accumulated
by multiple robots that evolve together.

We implement our approaches over odNEAT [3], which optimises artificial
neural network (ANN) controllers online in a distributed and decentralised man-
ner. One of the main advantages of odNEAT is that it evolves both the weights
and the topology of ANNs, thereby bypassing the inherent limitations of fixed-
topology algorithms [3]. odNEAT is used here as a representative efficient algo-
rithm that has been successfully used in a number of simulation-based studies
related to adaptation and learning in robot systems, see [3,4,14,15] for examples.
We assess the performance of our proposed approaches in three tasks involving
groups of e-puck-like robots [16], namely in two foraging tasks with differing
complexity and in a dynamic phototaxis task. Our results show that racing and
population cloning facilitate: (i) synthesis of controllers with higher performance,

Leveraging Online Racing and Population Cloning 167

(ii) faster evolution in terms of wall-clock time, (iii) more consistent group-level
performance, and (iv) more robust, well-adapted controllers.

2 Related Work

In this section, we review the background on racing approaches in machine
learning and in evolutionary computation, we discuss current approaches to the
exchange of genetic information between robots and the principles behind pop-
ulation cloning, and we describe odNEAT.

2.1 Racing

The general racing framework was originally introduced by Maron and
Moore [17] as a technique for model selection in machine learning. The key
principle behind racing is to iteratively test multiple models in parallel, use the
error values of each model to discard those that are statistically inferior as soon
as there is enough evidence, and then concentrate the computational effort on
the remaining models. In this way, models race against each other.

Given the similarity between model selection in machine learning and para-
meter tuning in meta-heuristics, such as evolutionary algorithms, previous con-
tributions have assessed how evolutionary techniques could benefit from racing
procedures [18–20]. In [11], Haasdijk et al. studied how racing could be used
to cut short the evaluation of poor controllers in online evolution. The authors
used (μ+1)-online [5], an encapsulated algorithm in which there is no exchange
of genetic information among robots. In the native (μ + 1)-online algorithm,
a new controller is produced at regular time intervals, and operates for a fixed
amount of time called the evaluation period. When the evaluation period elapses,
a new controller is synthesised and its evaluation starts. In the racing version of
(μ + 1)-online, the current controller is compared with those previously evalu-
ated as it operates. If the fitness score of the controller is below a lower bound,
the evaluation is aborted. The lower bound is computed based on a modified
version of Hoeffding’s bounds [13] taking into account the fitness score of the
worst controller in the population.

Haasdijk et al. [11]’s study was the first demonstration of how racing tech-
niques could be used to speed up online evolution. There are, however, a number
of disadvantages regarding the authors’ approach. Firstly, algorithms such as
(μ + 1)-online can lead to incongruous group behaviour and poor performance
in collective tasks due to the periodic substitution of controllers [3]. Secondly,
(μ + 1)-online is an encapsulated algorithm, meaning that an isolated instance
runs independently on each robot. In this way, (μ + 1)-online does not benefit
from the parallelism in multirobot systems or from exchange of genetic informa-
tion between robots, which can effectively speed up online evolution [3]. Thirdly,
Haasdijk et al.’s approach was tailored to the elitist dynamics of (μ+1)-online as
the lower bound of performance considers that the worst fitness score in the pop-
ulation does not decrease. Thus, the approach may be subject to backtracking

168 F. Silva et al.

when applied to non-elitist algorithms. Finally, even with the racing technique,
the combined approach still requires the experimenter to decide on the maximum
evaluation period, and is significantly sensitive to such parameter settings [12].

2.2 Exchange of Genetic Information in Online Evolution

The exchange of genetic information between robots is a crucial feature in dis-
tributed, online evolutionary algorithms. This process can be viewed as a set
of inter-robot reproduction events, in which reproduction is implemented using
other robots in the same group [2]. In traditional evolutionary algorithms, selec-
tion precedes reproduction and is accomplished by having [2]: (i) more-fit individ-
uals becoming parents and supplying genes, (ii) less-fit individuals being replaced
by the offspring, or (iii) by a combination of the two. In online evolution, this
amounts to individual robots transmitting to neighbouring robots either part of
a genome [2] or a complete genome [3,7]. That is, the genome is the unit in the
selection process, and the population of robots is a distributed substrate which
genetic information can spread across.

In our population cloning approach, see Sect. 3.2 for a description, we take
on a novel approach to the exchange of genetic information between robots.
We place the selection and reproductive processes at a higher level. That is, we
consider the elements in the selection process to be the internal population of
each robot. A robot can therefore transmit to neighbouring robots a copy of
any part of its population (e.g. a single genome or a set of genomes representing
high-performing controllers) or of the complete population. In this way, robots
have the potential to leverage the genetic information they have accumulated,
and to enable a more effective knowledge transfer to solve the current task.

2.3 Online Evolution with odNEAT

This section provides an overview of odNEAT; a comprehensive description of
odNEAT can be found in [3]. odNEAT is distributed across multiple robots that
exchange candidate solutions to the task. Specifically, the evolutionary process
is implemented according to a physically distributed island model. Each robot
optimises an internal population of genomes (directly encoded artificial neural
networks) through intra-island variation, and genetic information between two
or more robots is exchanged through inter-island migration. In this way, each
robot is potentially self-sufficient and the evolutionary process opportunistically
capitalises on the exchange of genetic information between multiple robots for
collective problem solving [3,4].

One of the key features of odNEAT it that it starts with minimal artificial
neural networks (ANNs) with no hidden neurons, that is, with each input neuron
connected to every output neuron. Throughout evolution, topologies are gradu-
ally complexified by adding new neurons and new connections through mutation.
In addition, the internal population of each robot implements a niching scheme
comprising speciation and fitness sharing, which allows each robot to maintain
a healthy diversity of candidate solutions with differing topologies. In this way,

Leveraging Online Racing and Population Cloning 169

odNEAT is able to evolve a suitable degree of complexity for the current task,
and an appropriate ANN topology is the product of the evolutionary process [3].

During task execution, each robot is controlled by an ANN that represents
a potential solution to the task. Each controller maintains a virtual energy level
reflecting its individual task performance. The fitness score is defined as the mean
energy level, sampled at regular time intervals. When the virtual energy level
reaches a minimum threshold, the current controller is considered unfit for the
task. A new controller is then synthesised via selection of a parent species and
two genomes from that species (the parents), crossover of the parents’ genomes,
and mutation of the offspring. Mutation is both structural and parametric, as
it adds new neurons and new connections, and optimises parameters such as
connection weights and neuron bias values. A new controller is guaranteed a
maturation period during which the controller is not replaced.

odNEAT has been successfully used in a number of simulation-based studies
related to long-term adaptation and learning in robot systems. Previous studies
have shown key features of odNEAT, including: (i) adaptivity, as odNEAT effec-
tively evolves controllers for robots that operate in dynamic environments [15],
(ii) scalability, in the sense that odNEAT allows groups of different size to lever-
age their multiplicity [4], (iii) robustness, as the controllers evolved can often
adapt to changes in environmental conditions without further evolution [3,14],
and (iii) fault tolerance: robots executing odNEAT are able to adapt and learn
new behaviours in the presence of sensor faults [3], and (v) how to incorpo-
rate and optimise behavioural building blocks prespecified by the human exper-
imenter [21]. Given previous results and the ability to efficiently optimise ANN
weights and topology, odNEAT is used in our study as a representative distrib-
uted online evolutionary algorithm.

3 Racing and Cloning in Multirobot Systems

We propose a combined racing and cloning approach to speed up online evo-
lution of robotic controllers in multirobot systems. The objective is to leverage
racing to cut short the evolution of poor controllers, and the genetic information
accumulated by individual robots evolving in parallel.

3.1 Racing

We extended odNEAT with a racing approach based on a modified version of
the non-parametric Hoeffding’s bounds [13]. The major advantage of Hoeffd-
ing’s bounds is that they do not require any assumption regarding the underly-
ing fitness distribution. In our racing approach, an evaluation is aborted if the
controller’s performance Fcurrent is below a lower bound Lb given by:

Lb = Mc(t) − 2 · ξ(t) (1)

ξ(t) =

√
(Fbest − Fworst)2 · log(2/α)

2 · t
(2)

170 F. Silva et al.

where Mc(t) is a dynamic fitness threshold henceforth referred to as minimal
criterion (see below), t is the current control cycle since the controller started
executing, Fworst and Fbest are respectively the fitness scores of the worst and
best controllers in the internal population, and α is the significance level of
the comparison. The minimal criterion is computed based on the fitness of the
internal population. Whenever there is a change to the fitness scores of a given
controller in the population (e.g. a robot receives a new controller or the fitness
score of a controller is updated), Mc(t) is computed based on the value vn, which
corresponds to the P -th percentile of the fitness scores in the population:

Mc(t) = Mc(t − 1) + max(0, (vn − Mc(t − 1)) · W) (3)

where W is a weighting parameter that enables fine-grained control over the
magnitude of the changes to the minimal criterion. Because racing approaches
require a certain number of measurement points to produce reliable results [20],
we take advantage of the maturation period of odNEAT to put a lower boundary
on the sample size for the racing approach. That is, racing can only abort the
evaluation of a controller after the maturation period has expired.

3.2 Population Cloning

To implement our population cloning technique according to the principles
described in Sect. 2.2, we adopt an approach in which internal populations com-
pete when robots meet. Specifically, when two robots are in communication
range, a connection link between the robots is created if none of them has been
involved in a population cloning process within a predefined period of time Pc.
Winner and loser are determined by comparing the Mc(t) value of each robot,
as defined in Eq. 3, which is indicative of the performance of each population.
The robot with the highest Mc(t) value is considered the winner. The genomes
injected in the losing robot are those from the population of the winning robot
that have a fitness score above Mc(t).

We consider two variants of the population cloning approach. In one variant,
genomes are injected from one robot to another as described above. In a second
variant, the internal population of the losing robot is subject to an extinction
event. The genomes in the receiving population that yield a fitness score below
the Mc(t) of the winner robot are removed before the injection of new genomes,
thus potentially pushing evolution towards higher quality solutions.

4 Methods

In this section, we define our experimental methodology1, including the simu-
lation platform and robot model, and we describe the three tasks used in the
study: two foraging tasks with differing complexity and a dynamic phototaxis.

1 The source code of the experiments can be found at: http://fgsilva.com/?
page id=302.

http://fgsilva.com/?page_id=302
http://fgsilva.com/?page_id=302

Leveraging Online Racing and Population Cloning 171

Table 1. Controller details. Light sensors have a range of 50 cm (phototaxis task).
Other sensors have a range of 25 cm.

Foraging tasks – controller details

Input neurons: 25

4 for IR robot detection

4 for IR wall detection

1 for energy level reading

8 for resource A detection

8 for resource B detection

Output neurons: 3

2 for left and right motor speeds

1 for controlling the gripper

Phototaxis task – controller details

Input neurons: 25

8 for IR robot detection

8 for IR wall detection

8 for light source detection

1 for energy level reading

Output neurons: 2

Left and right motor speeds

4.1 Experimental Setup

We use the JBotEvolver platform [22] to conduct our simulation-based exper-
iments. JBotEvolver is an open-source, multirobot simulation platform and
neuroevolution framework. The robots are modelled after the e-puck [16]. The
e-puck is a small circular (7.5 cm in diameter) differential drive robot that can
move at speeds of up to 13 cm/s. Similarly to the e-puck, each simulated robot
is equipped with infrared sensors that multiplex obstacle sensing and communi-
cation between robots at a range of up to 25 cm. The controller details, namely
input and output configurations for the tasks, are listed in Table 1. Each sensor
and each actuator are subject to noise, which is simulated by adding a random
Gaussian component within ± 5 % of the sensor saturation value or of the cur-
rent actuation value. The controllers are discrete-time ANNs with connection
weights in the range [-10,10]. The inputs of the neural network are the readings
from the sensors, normalised to the interval [0,1]. The output layer is composed
of two neurons. The values of the output neurons are linearly scaled from [0,1]
to [-1,1] to set the signed speed of each wheel. In the two foraging tasks, each
robot is also equipped with a gripper that enables the robot to collect the clos-
est resource within a range of 2 cm, if there is any. In these two tasks, a third
output neuron is used to set the state of the gripper. The gripper is activated if
the output value of the neuron is higher than 0.5, otherwise it is deactivated.

172 F. Silva et al.

Foraging Tasks. In the foraging tasks, robots have to search for and collect
objects spread across the environment. Foraging is a canonical task in cooper-
ative robotics, and is evocative of tasks such as search and rescue, harvesting,
and toxic waste clean-up [23].

Similarly to [4], we setup a foraging task with different types of resources that
have to be collected. Robots spend virtual energy at a constant rate, and gain
energy when they collect resources. When a resource is collected by a robot, a new
resource of the same type is placed randomly in the environment in order to keep
the number of resources constant. We conduct experiments with two variants of
a foraging task: (i) in one variant there are only type A resources, henceforth
called standard foraging task, and (ii) in the other variant there are two types
of resources, namely type A and type B resources, henceforth called concurrent
foraging task. In the concurrent foraging task, type A and type B have to be
consumed alternately. In this way, besides having to learn the foraging aspects
of the task, robots need to actively decide which type of resource to collect. The
energy level of each controller is initially set to 100 units, and limited to the
range [0,1000]. At each control cycle, E is updated as follows:

ΔE

Δt
=

⎧⎪⎨
⎪⎩

reward item if right type of resource is collected
penalty item if wrong type of resource is collected
-0.02 if no resource is consumed

(4)

where reward item = 10 and penalty item = -10. The constant decrement of
0.02 means that each controller will execute for a period of 500 s if no resource
is collected since it started operating. Note that the penalty item component
applies only to the concurrent foraging task. The number of resources of each
type is set to the number of robots multiplied by 10.

Phototaxis Task. In the classic phototaxis task, a widely used benchmark in
evolutionary robotics experiments, robots have to find and move towards a light
source. Following previous studies [3,4], we setup a dynamic phototaxis task. In
this task, the light source is periodically moved to a new random location. The
robots thus have to continuously search for and reach the light source, which
eliminates controllers that find the light source by chance. The virtual energy
level is limited to the range [0,1000] units. Each controller is assigned an initial
value of 100 units. At each control cycle, E is updated as follows:

ΔE

Δt
=

⎧⎪⎨
⎪⎩

Sr if Sr > 0.5
0 if 0 < Sr ≤ 0.5
penalty if Sr = 0

(5)

where penalty = -0.01, Sr is the maximum value of the readings from light
sensors, between 0 (no light) and 1 (brightest light). Light sensors have a range
of 50 cm, meaning that robots are only rewarded if they are close to the light
source. The remaining sensors have a range of 25 cm.

Leveraging Online Racing and Population Cloning 173

4.2 Experimental Parameters and Treatments

We assess the performance of four approaches: (i) standard odNEAT, henceforth
called odNEAT, (ii) odNEAT with racing alone, which we simply refer to as
racing, and (iii, iv) racing plus population cloning, with and without extinction
events (racing-ppc-rem and racing-ppc-norem, respectively). For each task
and each algorithm considered, we conduct 30 independent runs. Each run lasts
100 hours of simulated time. Robots operate in a square arena surrounded by
walls. The size of the arena is chosen to be 3 × 3 meters. odNEAT parameters
are set as in previous studies [3], including a population size of 40 genomes per
robot. Each robot executes a control cycle every 100 ms. Regarding the minimal
criterion for racing, we set P to the 50th percentile of the fitness scores found in
the population and W = 1, meaning that Mc(t) amounts to the median fitness
score, and α = 0.95. In the population cloning technique, we set Pc to 100 s of
simulated time. These parameter settings are robust to moderate variation, and
were found to perform effectively in preliminary experiments.

5 Experimental Results

In this section, we present and discuss the experimental results. We use the
two-tailed Mann-Whitney test to compute statistical significance of differences
between sets of results because it is a non-parametric test, and therefore no
strong assumptions need to be made about the underlying distributions.

5.1 Comparison of Performance

Figure 1 shows the mean fitness score of controllers throughout the simulation
trials. In the two foraging tasks, racing-ppc-rem and racing-ppc-norem typ-
ically produce high-performing solutions in the early stages of evolution, which
contributes to their superior performance. These approaches consistently out-
perform racing and odNEAT. In addition, the solution-synthesis process of
racing with and without population cloning contrasts with that of odNEAT,
which synthesises increasingly higher-performing controllers in a more progres-
sive manner. In the dynamic phototaxis task, differences in performance between
the most effective approaches (racing-ppc-rem and racing-ppc-norem) and
the less effective ones further accentuate, which provides additional evidence
regarding the benefits of racing plus population cloning.

Regarding the fitness score of the final controllers, see Fig. 2, racing-ppc-
rem and racing-ppc-norem lead to superior collective performance across the
three tasks, which is validated by the distribution of the mean fitness of each
group of robots (ρ < 0.001 and ρ < 0.05 in the standard foraging task, ρ < 0.01
and ρ < 0.001 in the concurrent foraging task, ρ < 0.0001 and ρ < 0.001 in the
dynamic phototaxis task, respectively). Differences between racing-ppc-rem
and racing-ppc-norem are not statistically significant across all comparisons.

174 F. Silva et al.

0 20 40 60 80 100
Simulation time (hours)

50
60
70
80
90
100
110
120
130

M
ea

n
fit
ne

ss
sc
or
e

Mean fitness score – standard foraging

0 20 40 60 80 100
Simulation time (hours)

60
70
80
90
100
110
120
130
140

M
ea

n
fit
ne

ss
sc
or
e

Mean fitness score – concurrent foraging

0 20 40 60 80 100
Simulation time (hours)

0
100
200
300
400
500
600
700
800

M
ea

n
fit
ne

ss
sc
or
e

Mean fitness score – dynamic phototaxis

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

Fig. 1. Mean fitness score of controllers throughout the simulation trials. Top: standard
foraging and concurrent foraging. Bottom: dynamic phototaxis.

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

60

80

100

120

140

160

180

200

G
ro
up

fit
ne

ss

Distribution of group fitness – standard foraging

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

50

100

150

200

250

300

350

G
ro
up

fit
ne

ss

Distribution of group fitness – concurrent foraging

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

0

200

400

600

800

1000

G
ro
up

fit
ne

ss

Distribution of group fitness – dynamic phototaxis

Fig. 2. Distribution of the mean group fitness of the final controllers. From left to right:
standard foraging, concurrent foraging, and dynamic phototaxis.

Our results show distinct features of racing and population cloning tech-
niques. Comparing with odNEAT alone, the main benefit of racing is a poten-
tial speed up of evolution. The benefits of combining racing with population
cloning, on the other hand, are twofold: racing-ppc-rem and racing-ppc-
norem significantly speed up the evolutionary process and lead to the synthesis
of superior controllers. This result is particularly significant to online evolution
because racing-ppc-rem and racing-ppc-norem effectively minimise the time
spent assessing the quality of poor controllers, which is time spent not perform-
ing adequately at the task to which solutions are sought.

Leveraging Online Racing and Population Cloning 175

5.2 Analysis of the Evolutionary Dynamics

We first analysed how the fitness score of the final controllers vary within
each group to better understand the evolutionary dynamics of the multiple
approaches. To measure the intra-group fitness variation, we computed the rela-
tive standard deviation (RSD) of the fitness scores of each group of robots. Values
close to zero indicate similar fitness values within the group. Higher values, on
the other hand, indicate increasingly larger variation of fitness scores.

The distribution of RSD values is shown in Fig. 3. Across the three tasks,
racing-ppc-rem typically displays the smaller intra-group fitness variation.
odNEAT displays significantly larger variation than racing (ρ < 0.001). In
turn, the variation of racing is also larger than that displayed by both racing-
ppc-rem and racing-ppc-norem (ρ < 0.0001 in the standard foraging and in
the dynamic phototaxis tasks, ρ < 0.01 in the concurrent foraging task, respec-
tively). Population cloning thus leads not only to more capable controllers, but
also to more consistent groups fitness-wise. Overall, the results suggest a boosting
effect on the evolutionary process and an interplay between racing and cloning
towards stable collective performance (hypothesis 1). In addition, the high RSD
values of odNEAT across the three tasks and the relatively higher RSD values
of racing in the dynamic phototaxis task suggest that the performance of such
approaches may be more sensitive to the task requirements and environmen-
tal pressure than the performance of racing-ppc-rem and racing-ppc-norem
(hypothesis 2).

We conducted two sets of complementary experiments using the dynamic
phototaxis task in order to verify the two hypotheses. In the first set of experi-
ments, we removed the racing component of both racing-ppc-rem and racing-
ppc-norem, and we assessed the performance of population cloning in isolation,
henceforth ppc-rem and ppc-norem. In the second set of experiments, we
studied the relation between evolutionary pressure and evolutionary dynamics
by varying the value of the penalty component defined in Eq. 5 when the light
source is not in a robot’s line of sight. The penalty was increased by a factor

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

0.0

0.2

0.4

0.6

0.8

R
S
D

Distribution of RSD – standard foraging

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
S
D

Distribution of RSD – concurrent foraging

od
NE
AT

ra
cin
g

ra
cin
g-
pp
c-
re
m

ra
cin
g-
pp
c-
no
re
m

Evolutionary algorithm

0.0

0.5

1.0

1.5

R
S
D

Distribution of RSD – dynamic phototaxis

Fig. 3. Distribution of the RSD of the final controllers. From left to right: standard
foraging, concurrent foraging, and dynamic phototaxis.

176 F. Silva et al.

0 20 40 60 80 100
Simulation time (hours)

0
100
200
300
400
500
600
700
800

M
ea

n
fit
ne

ss
sc
or
e

Dynamic phototaxis – mean fitness score

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

ppc-rem
ppc-norem

Fig. 4. Mean fitness score of controllers throughout the simulation trials for the first set
of complementary experiments (see text for details). The ppc-rem and ppc-norem
approaches refer to population cloning with and without extinction events, but without
the racing component.

of 2, 5, 8, and 10, that is, to a value of -0.02, -0.05, -0.08, and -0.10 per control
cycle. In this way, each controller unable to find the light source respectively
executes for a period of 500, 200, 125, and 100 s since it started operating. These
experimental setups are henceforth referred to as p2, p5, p8, and p10 setups,
respectively. For each configuration in each set of complementary experiments,
we conducted 30 independent runs.

Isolating the Effects of Population Cloning. Figure 4 shows the mean
fitness score throughout the simulation trials for the first set of complemen-
tary experiments. Overall, the results confirm that adding population cloning
can effectively boost the evolutionary process and push towards higher-quality
solutions. In addition, the median RSD of the final controllers is of 1.158
for odNEAT, 0.708 for racing, 0.375 for ppc-rem, 0.829 for ppc-norem,
4.17 ·10−4 for racing-ppc-rem, and 1.89 ·10−2 for racing-ppc-norem, which
confirms the interplay between racing and cloning in the evolution of controllers
with less disparate performance levels. The key reason for such interplay is that
population cloning typically increases the fitness scores of the receiving robot’s
internal population and therefore the Mc(t) value, which in turn contributes to
further increasing the lower bound of performance of racing.

Modifying the Evolutionary Pressure. In terms of the second set of com-
plementary experiments, as shown in Fig. 5, an analysis of the mean fitness
score throughout evolution shows that both racing-ppc-rem and racing-
ppc-norem achieve qualitatively similar performance levels across the setups
with varying evolutionary pressures. The remaining two approaches, odNEAT
and racing, yield different performance levels as the evolutionary pressure
varies. From p5 onwards, racing is the approach that evolves, on average,

Leveraging Online Racing and Population Cloning 177

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000
M
ea

n
fit
ne

ss
sc
or
e

Dynamic phototaxis p2 – mean fitness score

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit
ne

ss
sc
or
e

Dynamic phototaxis p5 – mean fitness score

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit
ne

ss
sc
or
e

Dynamic phototaxis p8 – mean fitness score

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit
ne

ss
sc
or
e

Dynamic phototaxis p10 – mean fitness score

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

Fig. 5. Mean fitness score of controllers throughout the simulation trials for the second
set of complementary experiments (see text for details).

the controllers with lowest performance. The mean fitness score of the final
controllers is 410.08, 342.16, 371.75, and 265.98, respectively. odNEAT, on the
other hand, synthesises controllers with superior performance levels as the evo-
lutionary pressure is increased. The mean fitness score of the final controllers
varies from 241.64 in the p2 setup to 924.24 in the p10 setup, outperforming
both racing-ppc-rem and racing-ppc-norem in the two most demanding
configurations of the dynamic phototaxis task.

One way to understand the responses of racing and of odNEAT to the
evolutionary pressure is to study: (i) the operation time (age) of the controllers
used by the robots during the experiments, and (ii) the number of controllers
produced. The operation time of controllers relates to the robustness of solutions
evolved and ability to adapt to changes in the position of the light source. Com-
plementarily, the number of controllers produced is an indicator of the difficulty
of the evolutionary process to adapt the behaviour of the robots.

Figure 6 shows the mean operation time of controllers during the experi-
ments. For racing-ppc-rem and racing-ppc-norem, the operation time typ-
ically increases linearly, with a gentle slope, proportionally to the simulation
time, which indicates that new controllers are increasingly rarely synthesised
after the early stages of evolution. In effect, the final solutions synthesised by
racing-ppc-rem and racing-ppc-norem operate, on average, up to 98 consec-
utive hours, which indicates that the controllers are robust and well-adapted to
the task. This result, combined with the number of controllers produced, show-
cases the ability of the algorithms to quickly assess and abort the evaluation of

178 F. Silva et al.

0 20 40 60 80 100
Simulation time (hours)

0

20

40

60

80

100

M
ea

n
op

er
at
io
n
tim

e
Mean operation time – dynamic phototaxis task p2

0 20 40 60 80 100
Simulation time (hours)

0

20

40

60

80

100

M
ea

n
op

er
at
io
n
tim

e

Mean operation time – dynamic phototaxis task p5

0 20 40 60 80 100
Simulation time (hours)

0

20

40

60

80

100

M
ea

n
op

er
at
io
n
tim

e

Mean operation time – dynamic phototaxis task p8

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

0 20 40 60 80 100
Simulation time (hours)

0

20

40

60

80

100

M
ea

n
op

er
at
io
n
tim

e

Mean operation time – dynamic phototaxis task p10

odNEAT
racing

racing-ppc-rem
racing-ppc-norem

Fig. 6. Mean operation time of controllers produced throughout the simulation trials
for the second set of complementary experiments (see text for details)

inefficient controllers. Regarding racing, the algorithm displays a trend to that
of racing-ppc-rem and racing-ppc-norem but yields a relatively lower mean
operation time and higher number of controllers produced, which indicates that
it typically requires more evaluations and therefore more time to evolve stable
solutions to the task. Complementarily, odNEAT substitutes the controller of
each robot more frequently as the evolutionary pressure increases. Specifically,
each robot executing odNEAT produces on average 24 controllers in the p2
setup, 120 controllers in the p5 setup, 420 controllers in the p8 setup, and
920 controllers in the p10 setup. This result confirms that, in this particular
case, odNEAT’s dynamics are more sensitive than the dynamics of the racing
approaches to the magnitude of the evolutionary pressure.

6 Concluding Discussion and Future Work

In this paper, we proposed two novel approaches to speed up online evolution
of controllers in multirobot systems: (i) a racing technique, and (ii) a popu-
lation cloning technique. To implement our approaches, we used odNEAT, a
decentralised online evolution algorithm in which robots optimise controllers in
parallel and exchange candidate solutions to the task. We conducted experiments
with four approaches (odNEAT, racing, racing-ppc-rem, and racing-ppc-
norem) in three tasks: (i, ii) two foraging tasks with differing complexity, and
(iii) dynamic phototaxis.

Leveraging Online Racing and Population Cloning 179

We showed the benefits of our racing approach, and of a population cloning
technique that allows evolution to effectively leverage the genetic information
accumulated by each individual robot. The combined racing plus population
cloning approaches typically yielded: (i) the highest task performance in terms
of the fitness score, (ii) the fastest evolution of effective solutions to the task,
(iii) the most consistent and stable group-level performance, and (iv) the highest
degree of robustness as the evolutionary pressure to solve the task increases.
However, if the evolutionary pressure is set above a certain limit, algorithms
such as odNEAT can, in certain conditions, display superior performance in the
long-term. One key research question is therefore how to enable robots to find
the best evolutionary algorithm to solve a given task during the actual task
execution.

The immediate follow-up work is to investigate the performance of our pro-
posed approaches in real multirobot systems. In this respect, we also intend to
investigate: (i) the effects of heterogeneous racing at the algorithm level, that
is, of allowing multiple robots to race with different configurations of the online
evolutionary algorithm in order to find the most effective one, and (ii) cloning
techniques and their limits, including potential robustness vs. stagnation trade-
offs, and how sensitive is the performance of population cloning to the frequency
of interactions between robots.

Acknowledgements. This work was partly supported by FCT under grants
SFRH/BD/89573/2012, UID/EEA/50008/2013, and UID/Multi/04046/2013.

References

1. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic
evolution of a neural-network driven robot. In: 3rd International Conference on
Simulation of Adaptive Behavior, pp. 421–430. MIT Press, Cambridge (1994)

2. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary
algorithm in a population of robots. Rob. Auton. Syst. 39(1), 1–18 (2002)

3. Silva, F., Urbano, P., Correia, L., Christensen, A.L.: odNEAT: an algorithm for
decentralised online evolution of robotic controllers. Evol. Comput. 23(3), 421–449
(2015)

4. Silva, F., Correia, L., Christensen, A.L.: A case study on the scalability of online
evolution of robotic controllers. In: Pereira, F., Machado, P., Costa, E., Cardoso,
A. (eds.) EPIA 2015. LNCS, vol. 9273, pp. 189–200. Springer, Heidelberg (2015)

5. Haasdijk, E., Eiben, A., Karafotias, G.: On-line evolution of robot controllers by an
encapsulated evolution strategy. In: IEEE Congress on Evolutionary Computation,
pp. 1–7. IEEE Press, Piscataway (2010)

6. Prieto, A., Becerra, J., Bellas, F., Duro, R.J.: Open-ended evolution as a means
to self-organize heterogeneous multi-robot systems in real time. Rob. Auton. Syst.
58(12), 1282–1291 (2010)

7. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.: Environment-driven distrib-
uted evolutionary adaptation in a population of autonomous robotic agents. Math.
Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

180 F. Silva et al.

8. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open
issues in evolutionary robotics. Evol. Comput. In press (2016). http://www.
mitpressjournals.org/doi/pdf/10.1162/EVCO a 00172

9. Dinu, C.M., Dimitrov, P., Weel, B., Eiben, A.: Self-adapting fitness evaluation
times for on-line evolution of simulated robots. In: 15th Genetic and Evolutionary
Computation Conference, pp. 191–198. ACM, New York (2013)

10. Arif, A., Nedev, D., Haasdijk, E.: Controlling maximum evaluation duration in
on-line and on-board evolutionary robotics. Evolving Syst. 5(4), 275–286 (2014)

11. Haasdijk, E., Atta-ul Qayyum, A., Eiben, A.: Racing to improve on-line, on-board
evolutionary robotics. In: 13th Genetic and Evolutionary Computation Conference,
pp. 187–194. ACM, New York (2011)

12. Haasdijk, E., Smit, S.K., Eiben, A.E.: Exploratory analysis of an on-line evolution-
ary algorithm in simulated robots. Evol. Intell. 5(4), 213–230 (2012)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

14. Silva, F., Correia, L., Christensen, A.L.: Dynamics of neuronal models in online
neuroevolution of robotic controllers. In: Correia, L., Reis, L.P., Cascalho, J. (eds.)
EPIA 2013. LNCS, vol. 8154, pp. 90–101. Springer, Heidelberg (2013)

15. Silva, F., Urbano, P., Christensen, A.L.: Online evolution of adaptive robot behav-
iour. Int. J. Nat. Comput. Res. 4(2), 59–77 (2014)

16. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: 9th Conference on Autonomous Robot Systems and
Competitions, IPCB, Castelo Branco, Portugal, pp. 59–65 (2009)

17. Maron, O., Moore, A.W.: The racing algorithm: model selection for lazy learners.
Artif. Intell. Rev. 11(1), 193–225 (1997)

18. Lobo, F.G.: The Parameter-Less Genetic Algorithm: Rational and Automated
Parameter Selection for Simplified Genetic Algorithm Operation. Ph.D. thesis,
Universidade Nova de Lisboa, Lisbon, Portugal (2000)

19. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: 4th Genetic and Evolutionary Computation Con-
ference, pp. 11–18. Morgan Kauffmann, San Francisco (2002)

20. Yuan, B., Gallagher, M.: Combining meta-EAs and racing for difficult EA para-
meter tuning tasks. In: Lob, F.G., Lima, F.C., Michalewicz, Z. (eds.) Parameter
Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54,
pp. 121–142. Springer, Heidelberg (2007)

21. Silva, F., Correia, L., Christensen, A.L.: Speeding up online evolution of robot-
iccontrollers with macro-neurons. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.)
EvoApplications 2014. LNCS, vol. 8602, pp. 765–776. Springer, Heidelberg (2014)

22. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotE-
volver: a versatile simulation platform for evolutionary robotics. In: 14th Interna-
tional Conference on the Synthesis and Simulation of Living Systems, pp. 210–211.
MIT Press, Cambridge (2014)

23. Cao, Y., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: antecedents and
directions. Auton. Rob. 4(1), 1–23 (1997)

http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00172
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00172

Multi-agent Behavior-Based Policy Transfer

Sabre Didi(B) and Geoff Nitschke

Department of Computer Science, University of Cape Town,
Rondebosch, Cape Town 7700, South Africa

sabredd0@gmail.com, gnitschke@cs.uct.ac.za

Abstract. A key objective of transfer learning is to improve and speed-
up learning on a target task after training on a different, but related,
source task. This study presents a neuro-evolution method that transfers
evolved policies within multi-agent tasks of varying degrees of complex-
ity. The method incorporates behavioral diversity (novelty) search as a
means to boost the task performance of transferred policies (multi-agent
behaviors). Results indicate that transferred evolved multi-agent behav-
iors are significantly improved in more complex tasks when adapted using
behavioral diversity. Comparatively, behaviors that do not use behav-
ioral diversity to further adapt transferred behaviors, perform relatively
poorly in terms of adaptation times and quality of solutions in target
tasks. Also, in support of previous work, both policy transfer methods
(with and without behavioral diversity adaptation), out-perform behav-
iors evolved in target tasks without transfer learning.

Keywords: Multi-agent learning · Evolutionary algorithms · Transfer
learning · Behavioural diversity adaptation

1 Introduction

Transfer learning1 is a technique that attempts to improve learning a task by
leveraging knowledge from learning a related but simpler task [1]. Specifically,
transfer learning is the process of reusing learned information across tasks, where
information is shared between a source and target task. Transferring knowledge
that is learned on a source task accelerates learning and increases solution quality
in target tasks by exploiting relevant prior knowledge.

Transfer learning has been widely studied in the context of Reinforcement
Learning (RL) [2], for various single-agent tasks includingpole-balancing [3], game-
playing [4], robot navigation as well as multi-agent tasks including predator-prey
[5]. For such single and multi-agent tasks, policy (behavior) transfer is typically
done within the same task domain for varying task complexity [2]. To facilitate the
learning of generalized problem solving behavior various agent (controller) repre-
sentations have been used including Decision Trees [4], Artificial Neural Networks
(ANNs), Cerebellar Model Arithmetic Computer, and Radial Basis Functions [6].

1 Transfer learning and policy transfer are used interchangeably in this paper.

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 181–197, 2016.
DOI: 10.1007/978-3-319-31153-1 13

182 S. Didi and G. Nitschke

Such representations are typically selected as they are amenable to decomposition
for transfer of partial policies between source and target tasks as well as further
adaptation in target tasks [4]. In multi-agent transfer learning, policies learned
in source tasks are often shared between agents and used as a starting point for
learning new policies in target tasks [5]. A popular multi-agent test-bed is RoboCup
Keep-Away Soccer [7], which has received significant attention in multi-agent
transfer learning research [6].

Recently, in addition to RL, there has been an increasing amount of work
on transfer learning using evolutionary algorithms to adapt policies with various
representations. For example, Doncieux [8] used neuro-evolution [9] to search for
effective ANN controllers in a simulated robot ball collecting task, and inves-
tigated methods for extracting behavioral features shared between versions of
the task. These extracted features were then used as stepping stones to shape
rewards in the evolution of controllers transferred to more complex versions of
the ball collecting task.

In related research, Moshaiov et al. [10] used Multi-Objective Evolutionary
Algorithms [11] to devise a Family Bootstrapping method that evolved groups
of complementary ANN controllers to robot navigation tasks. These controllers
were then used as an evolutionary starting point for controller evolution in robot
navigation tasks with different objectives. Taylor et al. [12] used the NEAT
neuro-evolution method [13] to further evolve a population of ANN controllers
already evolved for a source keep-away soccer task. The authors demonstrated
that biasing and further evolving a fittest population of controllers for more
complex versions of keep-away significantly decreased evolution time.

Verbancsics et al. [14] used an indirect encoding neuro-evolution method
(HyperNEAT [15]) to facilitate evolved solutions encoding the geometry of the
keep-away soccer task. HyperNEAT facilitated the transfer of evolved multi-
agent behaviors between source and target tasks with varying numbers of agents
and soccer field sizes, without the need for any further adaptation. The authors
also used HyperNEAT to demonstrate successful transfer of multi-agent behav-
iors between the Knight’s Joust (a multi-agent predator-prey task variant) [6]
and keep-away soccer tasks. The efficacy of this approach was further supported
by improved task performance on target tasks after further neuro-evolution and
evolved behaviors that were comparable to RL derived policies [16,17]. In sup-
port of this approach, related work [14,18] has also highlighted the effective-
ness of indirectly coded representations for facilitating transfer learning between
multi-agent task variants as well as between different multi-agent tasks.

A key challenge in transfer learning is to ensure that a policy, learned in a
source task can be meaningfully transferred to a policy in a target task, with a
typically more complex representation [6]. Hence a mapping function is required
in order that learned policies are transferable between tasks with different num-
bers of state and action variables. For example, tasks of increasing complexity
or different but related tasks such as keep-away soccer [7] and Knight’s Joust
[6]. To address this, Taylor et al. [6], devised a inter-task mappings for policy
search method to transfer a population of control policies (ANN controllers)

Multi-agent Behavior-Based Policy Transfer 183

between keep-away soccer, knight’s joust and Server Job Scheduling tasks [17].
This method was successfully applied with full (hand-coded) inter-task mapping
functions, where inter-task mapping functions were only partially available or
where inter-task mapping functions had to be learned prior to policy transfer.

This study combines and extends previous work on inter-task mappings for
policy search [6] and facilitating transfer learning with HyperNEAT [14]. Specif-
ically, we investigate the adaptation of multi-agent behaviors in the keep-away
soccer task domain with the Novelty Search [19] behavioral diversity mechanism.
Whilst many studies support the efficacy of objective-based (fitness function)
search approaches in transfer learning [6,14,17,18], the impact of behavioral
diversity maintenance on transfer learning remains unexplored. This study also
investigates the benefits of behavioral diversity and objective based search with
policy transfer using direct (NEAT) and indirect encoding (HyperNEAT) meth-
ods to evolve behaviors in target keep-away tasks.

First, we hypothesize that if behavioral diversity maintenance is used in
multi-agent behavior evolution, this will yield a higher task performance than
objective-based evolution in all tasks tested. Second, we hypothesize that NEAT
and HyperNEAT are appropriate policy (multi-agent behavior) search methods
for enabling policy transfer where transferred behaviors yield a higher task per-
formance and efficiency compared to those without policy transfer. Efficiency
refers to the average number of generations until the average maximum fitness
(for the given method) was attained.

These hypotheses were devised given related research results [20–22], and
were tested by a comparison of keep-away behaviors evolved with NEAT and
HyperNEAT (using either objective-based search or behavioral diversity main-
tenance) in keep-away target tasks with and without policy transfer.

2 Methods

2.1 NEAT: Neuro-Evolution of Augmenting Topologies

This research uses Neuro-Evolution of Augmenting Topologies (NEAT) [13] as
the direct encoding policy search method. NEAT evolves both connection weights
and ANN topologies, and applies three key techniques to maintain a balance
between performance and diversity of solutions. First, it assigns a unique histor-
ical marking to every new gene so as crossover can only be performed between
pairs of matching genes. Second, NEAT speciates the population so as ANNs
(genotypes) compete primarily within their own niches (identified by histori-
cal markings) instead of competing with the population at large. Third, NEAT
begins evolution with a population of simple ANNs with no hidden nodes but
gradually adds new topological structure (nodes and connections) using two spe-
cial mutation operators called add hidden node and add link.

NEAT was selected as this study’s direct encoding method as it has been
successfully used for a broad range of multi-agent control tasks [2,10,12,23,24].
However, there has been relatively little research as to efficacy of NEAT as a
policy search method for multi-agent transfer learning [12].

184 S. Didi and G. Nitschke

2.2 HyperNEAT: Hypercube-Based NEAT

Hypercube-based NEAT (HyperNEAT) [15] is an indirect (generative) encoding
neuro-evolution method that extends NEAT and uses two networks, a Composite
Pattern Producing Network (CPPN) [25] and a substrate (ANN) (Fig. 1). The
CPPN is the generative encoding mechanism that indirectly maps evolved geno-
types to ANNs and encodes pattern regularities, symmetries and smoothness of
the geometry of a given task in the form of the substrate. This mapping func-
tions via having coordinates of each pair of nodes connected in the substrate
fed to the CPPN as inputs. The CPPN outputs a value assigned as the synaptic
weight of that connection and a value indicating whether that connection can be
expressed or not. HyperNEAT uses the evolutionary process of NEAT to evolve
the CPPN and determine ANN fitness values. The main benefit of HyperNEAT
is scalability as it exploits task geometry and thus effectively represents com-
plex solutions with minimal genotype structure [15]. This makes HyperNEAT
an appropriate choice for evolving complex multi-agent solutions [14,26].

HyperNEAT was selected as this study’s indirect encoding neuro-evolution
method since previous research indicated that transferring the connectivity pat-
terns [27] of evolved behaviors is an effective way for facilitating transfer learning
in multi-agent tasks [14,18]. HyperNEAT’s capability to evolve controllers that
account for task geometry also makes HyperNEAT appropriate for deriving con-
trollers that elicit behaviors robust to variations in state and action spaces [28]
as well as noisy, partially observable environments of multi-agent tasks. Also,
it has been demonstrated that HyperNEAT evolved multi-agent policies can
be effectively transferred to increasingly complex versions of keep-away soccer
[7] without further adaptation [14] and that transferred behaviors often yield
comparable task performance to specially designed learning algorithms [16].

2.3 Behavioral Diversity

Encouraging behavioral diversity is a well studied concept in neuro-evolution
and has been used to discover novel solutions, increase solution performance in
a wide range of tasks as well as out-perform controller evolution approaches that
encourage genotypic diversity [20,29–31].

One such approach is Novelty search (NS) [19], that is not driven by a fitness
(objective) function but rather rewards evolved phenotypes (behaviors) based on
their novelty. Thus, a genotype is more likely to be selected for reproduction if its
encoded behavior is sufficiently different from all other behaviors produced thus
far in an evolutionary run. Recent results indicate that controllers evolved with
a NS metric attained some degree of generality. For example, in a maze solving
task, controllers evolved to solve one maze were successfully transferred to solve
different mazes [32]. Also, NS has been demonstrated as yielding solutions that
out-perform objective based search in various tasks [20,22] including complex
multi-agent tasks with large numbers of agents [21]. Hence, NS was selected as
the behavioral diversity mechanism to be applied to our selected policy search
methods (NEAT and HyperNEAT).

Multi-agent Behavior-Based Policy Transfer 185

In this study, the function of NS is to consistently generate novel team (keep-
away) behaviors. Hence, we define team behavior in terms of properties that
potentially influence team behavior but are not directly used for task perfor-
mance evaluation. For the keep-away task, the behavioral properties we use are
the average number of passes, average dispersion of team members, and average
distance of the ball to the center of the field.

In line with previous research on hybrid NS and fitness metrics supporting
performance gains in various tasks [33], including multi-agent tasks [34], we use
a behavioral diversity metric that linearly combines NS with objective-based
search (NEAT and HyperNEAT), in order to improve keep-away policy search.

Several hybrid metrics have been proposed including fitness sharing and lin-
ear combination [21], restarting converged evolutionary runs using NS [33], a
minimal criteria NS (for genotype survival and reproduction) [35], and a pro-
gressive minimal criteria (incrementing reproduction requirements throughout
evolution) [34]. Here we use a linear combination [21] (Eq. 1):

scorei = ρ · fiti + (1 − ρ) · novi (1)

Where, fiti and novi are normalized fitness and novelty of ith genotype
respectively. Then ρ ∈ [0, 1] is a parameter selected by the experimenter (ρ = 0.4,
in this study) to control the relative contribution of each metric to the selection
pressure. To measure novelty we use normalized task specific behavioral vectors:
Average number of passes, Mean team mates dispersion, and Average distance
of ball to the center of the field.

This team level behavioral characterization has been used previously [21] and
out-performs individual behavioral characterizations and fitness based search.
Behavioral distance is computed as a Euclidean distance (Eq. 2):

δ(x, y) = ‖xi − yi‖ (2)

Where, xi and yi are normalized behavioral characterization vectors of geno-
type x and y. The novelty is then quantified by Eq. 3:

novx =
1
3k

k∑
i=1

3∑
j=1

δ(xj , yij) (3)

Where, xj is the jth behavioral property of genotype x, yij is the jth behav-
ioral property of the ith nearest neighbour of genotype x and δ is the behavioral
distance between two genotypes x and y computed in Eq. 2 which is based on
the behavioral characterization vector. The novx is then derived from the mean
of behavioral distance of an individual with k nearest neighbors. The parameter
k is specified by the experimenter to represent the number of nearest neighbors,
where k = 15 has been widely used in NS experiments [22]. A few researchers
have used k = 20 [22,36] and k in the range of [3, 10] though it is unclear if
such k values were derived experimentally. Gomes et al. [22] discovered that the
choice of k value heavily depended on the type of novelty archive used and that

186 S. Didi and G. Nitschke

k = 15 yielded relatively good performance across all tested archive types. Hence
in this study we use k = 15.

2.4 Policy Transfer Method

For both NEAT and HyperNEAT, and their non-objective (novelty) and objec-
tive based search variants, we tested three policy transfer approaches. First, the
entire evolved population was transferred from the source task (at the final gen-
eration of neuro-evolution) and set as the initial population for neuro-evolution
in the target task. Second, target population was seeded with the fittest genotype
in the source task and used as a bias for initialising the remainder of the target
population. Third, the fittest 50 % of the population evolved for the source task
was selected to seed and bias initialization of the rest of the starting population
in the target task. The first approach was found to be the most effective for all
methods and tasks tested in this case study and was thus used in company with
the selected mapping function for policy transfer (Algorithm 1). Algorithm 1
is a transfer mapping function that is an extension of that proposed by Taylor
et al. [6] and used is used in this study’s keep-away policy transfer experiments.

Algorithm 1. Transfer Mapping Function

Generate a network with same number of inputs and outputs as in the
Πsource

Add the same number of hidden nodes to Πtarget as in Πsource

Repeat
For each pair of nodes (ni,nj) in Πtarget do

If ∃ link Li,j ∈ Πsource then
add link Li,j to Πtarget with wt

i,j = ws
i,j in Πsource

Else
If � ∃ nodes(ni,nj) ∈ Πsource

add link Li,j to Πtarget with wt
i,j = random weights

Until all pairs of nodes are visited

3 Experiments

Experiments test this study’s research objectives (Sect. 1). First, to test the
impact of using a non-objective (behavioral diversity) versus objective (fitness)
based search approach for two given policy search methods (NEAT and Hyper-
NEAT). Second, to test the efficacy of NEAT and HyperNEAT as appropriate
methods for yielding task performance and efficiency boosts after policy transfer.

Experiments are run in a source keep-away task (using NEAT or Hyper-
NEAT to evolve multi-agent keep-away behavior), where populations evolved
after 20 generations, are transferred to a target task, and evolved for a further
50 generations (Table 2). Results are compared to those where no policy transfer
takes place, that is where NEAT and HyperNEAT are used to evolve keep-away

Multi-agent Behavior-Based Policy Transfer 187

Table 1. Sensory inputs (13 input nodes) and motor outputs (three outputs) for a
team’s ANN controller in the 3vs2 keep-away task. Keeper 1 is the agent with the ball.

Sensory Inputs Description

dist(Kb, C), dist(Kt1, C), dist(Kt2, C) Distance of each keeper to
field center

dist(T1, C), dist(T2, C) Distance of each taker to field
center

dist(Kb,Kt1), dist(Kb,Kt2) Distance of each taker to
keeper 1

dist(Kb, T1), dist(Kb, T2) Distance of each taker to
keeper 1

minj∈1,2dist(Kt1, Tj), minj∈1,2dist(Kt2, Tj) Distance of closest taker to
keeper 1

minj∈1,2angle(Kt1, Tj), minj∈1,2angle(Kt1, Tj) Angle of closest keeper, taker,
keeper 1

Motor Outputs

Hold Do not pass ball

Pass to Kt1, Pass to Kt2 Pass to keeper 2, keeper 3

behaviors from scratch in the target tasks. For both NEAT and HyperNEAT
experiments, each genotype (agent team) is evaluated over 30 task trials per gen-
eration, where each task trial tests different (random) agent positions. The ball
always starts in the possession of a (randomly selected) keeper. Average fitness
(task performance) per genotype is computed over these 30 task trials. Table 2
specifies the neuro-evolution and simulation parameters for these experiments.

The efficacy of policy transfer was evaluated in terms of time (genotype
evaluations) taken to attain a policy transfer threshold, with and without policy
transfer. The threshold was the average maximum fitness attained after applying
NEAT and HyperNEAT to evolve behaviors from scratch in each target task.
Policy transfer occurs between source and incrementally complex target tasks.
That is, first we evolve keep-away behavior for three keepers versus two takers
(denoted as 3vs2) in a 20×20 virtual field2 (Table 2). Evolved behaviors (policies)
are then transferred (and neuro-evolution continued) in one of three keep-away
target tasks, four keepers versus three takers (4vs3), five keepers versus three
takers (5vs3) or six keepers versus four takers (6vs4).

3.1 NEAT Experiments

Table 1 describes the 13 sensory input nodes in a team’s ANN controller for the
3vs2 keep-away task. The output nodes represent an agent’s decision to hold the
2 All experiments were run in RoboCup Keep-Away version 6 [6]. Source code and

executables can be found at: http://people.cs.uct.ac.za/∼gnitschke/EvoStar2016/.

http://people.cs.uct.ac.za/~{}gnitschke/EvoStar2016/

188 S. Didi and G. Nitschke

Table 2. Left: Neuro-Evolution (NE), Novelty Search (NS) parameters (final three
rows). Right: CPPN (HyperNEAT) activation Functions and simulation parameters.

ball, pass to keeper 2 or pass to keeper 3, where keeper 1 has the ball. At any
task trial iteration, the output with the highest activation is the action selected.

NEAT is direct encoding method, so the genotype representation (encoding
sensory-motor elements of a keep-away team’s controller) needs to change as
task complexity and the number of agents changes. For example, as task com-
plexity increases, from 3vs2 to 4vs3 keep-away, an ANN topology with 19 input
nodes and 4 output nodes is required. The additional output node represents
the decision of keeper 1 to pass to keeper 4. The extra six input nodes represent:
(1) distance of keeper 4 from the field’s center, (2) distance of taker 3 from the
field’s center, (3) distance of keeper 1 from taker 3, (4) distance between keeper 4
and the closest taker, (5) angle formed between keeper 1 and the closest keeper
and taker, and (6) distance of keeper 1 to keeper 4. Similarly, for the 5vs3 task
an ANN with 27 inputs and six outputs is needed.

However, for all keep-away tasks tested (3vs2, 4vs3, and 5vs4) the ANN
sensory-motor layer topology was kept static (13 sensory inputs and three motor
outputs) in order to facilitate transfer across tasks of increasing complexity.
Thus, as the number of agents increased with task complexity, a heuristic selected
which agents in the environment would be processed by the ANN’s 13 sensory
input nodes. At each sensory-motor cycle (task trial iteration), the heuristic
selected the closest two keeper and taker agents to be processed by the ANN,
but had the potential to process any agent as sensory input. In keep-away task
simulation this was tantamount to noise preventing the keeper with the ball from
processing agents too far away and thus accounting for them in action selection.

Multi-agent Behavior-Based Policy Transfer 189

Fig. 1. Left: Substrate encoding the virtual field (20× 20 grid of inputs and outputs).
Connection values ([−1.0, 1.0]) between these input-output nodes represent positions
of agents relative to the keeper with the ball. Right: Connections from pairs of nodes
in the substrate are sampled and the coordinates passed as inputs to the CPPN, which
then outputs the synaptic weight of each sampled connection.

Table 3. Average normalized maximum fitness (over 20 runs) for the three experimen-
tal setups. Values are portions of the maximum possible hold time (possession of the
ball) for the team of keepers. Standard deviations are shown in parentheses.

Experiment 4vs3 5vs3 6vs4

Keep-Away Keep-Away Keep-Away

No Policy Transfer

NEAT 0.438 (0.037) 0.473 (0.052) 0.419 (0.057)

HyperNEAT 0.587 (0.059) 0.765 (0.050) 0.533 (0.044)

Fitness-Based Policy Transfer

NEAT 0.482 (0.059) 0.580 (0.069) 0.464 (0.033)

HyperNEAT 0.729 (0.089) 0.873 (0.089) 0.632 (0.038)

Fitness + NS Policy Transfer

NEAT 0.545 (0.047) 0.638 (0.0048) 0.520 (0.036)

HyperNEAT 0.752 (0.054) 0.943 (0.029) 0.697 (0.032)

3.2 HyperNEAT Experiments

HyperNEAT uses indirect encoding and can thus represent changes in task com-
plexity without changing genotype representation [14]. In this experiment Bird’s
Eye View (BEV) representation [14] is used to encode keep-away’s physical state
(layout of the field and locality of agents) and actions onto a substrate network.
The virtual keep-away soccer field is divided into a 20 × 20 grid world, where
each agent can occupy one grid cell per task trial iteration. The input and out-
put layers of the substrate network are two dimensional, with coordinates in
the x, y plane in the range of [−1.0, 1.0]. Each grid cell in the virtual space is
represented by a node in the substrate network layer, so the 20 × 20 grid world

190 S. Didi and G. Nitschke

is represented by 400 nodes in the substrate network. Hence, the layout of nodes
in the substrate network (network geometry) directly maps to the tasks geom-
etry and this enables HyperNEAT to exploit the task’s geometric regularities
and relationships. The position of each agent is marked on the substrate input
layer, where each position of the keeper is marked by a value 1.0, and takers by
−1.0. Physical paths between agents are drawn. Each direct path from a keeper
with a ball to another keeper is marked by a value 0.3 and to a taker by a value
−0.3. The region to pass the ball to is highlighted on the substrate output by
activating the node with the highest output.

The CPPN queries each connection between input and output layers of the
two dimensional substrate network taking coordinates (x1, y1) and (x2, y2) as
input. The CPPN output represents the weight of that connection and the con-
nection expression value. The connection weights are then produced as a function
of their endpoints. The functions used are listed in Table 2 (right).

4 Results and Discussion

Policy transfer was applied between the source 3vs2 keep-away task and incre-
mentally complex 4vs3, 5vs3 and 6vs4 keep-away tasks (Sect. 3). Keep-away
behaviors were evolved for 20 generations with NEAT or HyperNEAT (using
either the novelty-objective hybrid or objective-based search) in the source task,
transferred to the target task and then further evolved for 50 generations. For
policy transfer, three population initialization methods in the target task were
tested (Sect. 2.4). However, the transfer of the entire population (from genera-
tion 20 in the source task) to target tasks best facilitated policy transfer. Hence
only results for this population initialization method are presented here.

Table 3 presents the average normalized maximum fitness (attained during
each run and averaged over 20 runs) for the three experimental setups. Experi-
ment 1 (No Policy Transfer) presents results from evolving keep-away behaviors
in each of the target tasks from scratch (without policy transfer). Experiment 2
(Fitness-Based Policy Transfer) presents results from evolving keep-away behav-
iors using objective (fitness) based NEAT and HyperNEAT in the source and
then in target tasks (after policy transfer). Experiment 3 (Fitness + NS Policy
Transfer) presents results from evolving keep-away behaviors with NEAT and
HyperNEAT using the novelty-objective hybrid based search. In experiments 2
and 3, NEAT or HyperNEAT is applied in the source task for 20 generations
and thereafter for 50 generations in the target task.

Results data was found to be non-parametric using the Kolmogorov-Smirnov
normality test with Lilliefors correction [37]. The Mann-Whitney U test [38]
was then applied in a series of pair-wise comparisons to gauge if there was a
statistically significant difference between corresponding result sets of the three
experiments (Table 3). Pair-wise comparisons were conducted between average
results data for NEAT or HyperNEAT (for a given experiment). The null hypoth-
esis stated that two comparative data sets were not significantly different, and
α = 0.05 was selected as the significance threshold.

Multi-agent Behavior-Based Policy Transfer 191

4.1 Policy Versus No-Policy Transfer: Performance Comparisons

First, statistical tests indicated that for all policy transfers (from 3vs2 to 4vs3,
5vs3 and 6vs4), there was a statistically significant difference (p-value < 0.05)
between the novelty-objective hybrid and objective-based NEAT. That is, NEAT
with behavioral diversity maintenance yielded a significantly higher average max-
imum task performance for all policy transfer cases (Table 3).

Second, statistical tests indicated that for all policy transfers transfer cases,
both NEAT and HyperNEAT using behavioral diversity maintenance yielded a
higher average maximum task performance compared to objective-based NEAT
and HyperNEAT (Table 3).

This result supports this study’s first hypothesis (Sect. 1), that encouraging
behavioral diversity facilitates the evolution of higher performance keep-away
behaviors in all tasks tested, compared to keep-away behavior adaptation with-
out behavioral diversity maintenance.

Statistical tests also indicated that NEAT (using either the novelty-objective
or objective-based search) yielded a higher average task performance (with sta-
tistical significance) for all policy transfers, compared to objective-based NEAT
without policy transfer. That is, where NEAT was applied to evolve keep-away
behavior (from scratch) in each of the target tasks (4vs3, 5vs3 and 6vs4). Simi-
larly, statistical tests indicated that HyperNEAT (with and without behavioral
diversity maintenance), yielded significantly higher task performances in all tar-
get tasks compared to HyperNEAT without policy transfer (Table 3).

These results partially support this study’s second hypothesis, that NEAT
and HyperNEAT are appropriate as policy search methods where policy transfer
enables the evolution of significantly higher performance keep-away behaviors in
all target tasks tested (compared to keep-away behaviors evolved from scratch).
These results are further supported by previous work demonstrating that transfer
learning enables multi-agent behavior adaptation with significantly higher task
performances compared to adaptation without transfer learning [5,12,14].

4.2 Policy Versus No-Policy Transfer: Efficiency Comparisons

To further support this study’s second hypothesis, the efficiency of NEAT and
HyperNEAT (with and without behavioral diversity maintenance) is compared
in the target tasks where policy transfer was applied versus where keep-away
behaviors were evolved in the target tasks from scratch.

Results (performance threshold) of applying NEAT and HyperNEAT to adapt
keep-away behaviors from scratch (without policy transfer) in the target tasks
(4vs3, 5vs3 and 6vs4) were used as a benchmark for comparisons with the same
methods applied with policy transfer. This threshold was the average maximum
task performance of NEAT and HyperNEAT in the target tasks, where keep-
away behavior was evolved without policy transfer (Table 3).

First, for objective-based NEAT without policy transfer, an average maxi-
mum task performance of 0.443 (as a portion of maximum task performance)

192 S. Didi and G. Nitschke

for all three target tasks was attained after approximately 40 generations3. After
40 generations negligible task performance increases were observed. Additional
experiments that used relatively few runs, but 100 generations of evolution indi-
cated that objective-based NEAT, without policy transfer, gets stuck in a local
optima. However, this is not the case when policy transfer is used (for both
objective and hybrid objective-novelty based variants of NEAT).

Comparatively, results from objective-based NEAT with policy transfer indi-
cated efficiency gains for all target tasks. Objective-based NEAT with policy
transfer yielded an average maximum task performance of 0.482, 0.580 and 0.464
for the 4vs3, 5vs3 and 6vs4 keep-away tasks, respectively. These tasks perfor-
mances were attained after approximately 48 generations. However, additional
experiments using relatively few runs but 100 generations indicated that the task
performances yielded by objective-based NEAT with policy transfer continued
to increase. Also, all task performances yielded by objective-based NEAT with
policy transfer were significantly higher (Mann-Whitney test, p-value < 0.05)
compared to those yielded by NEAT without policy transfer in the same tasks.

Objective-based HyperNEAT with policy transfer also yielded greater effi-
ciency for all target tasks. That is, objective-based HyperNEAT with policy
transfer resulted in an average maximum task performance of 0.632 for 6vs4
keep-away after 38 generations, with policy transfer. This was compared to the
significantly lower 0.533 (Mann-Whitney test, p-value < 0.05) average maxi-
mum performance after 49 generations, without policy transfer in the same 5vs3
keep-away task.

Task performance in 5vs3 keep-away steadily reached an average maximum
of 0.873 after 50 generations, with policy transfer. This was compared to the
significantly lower 0.765 (Mann-Whitney test, p-value < 0.05) average maximum
performance after 48 generations, without policy transfer in the same task.

Task performance in 4vs3 keep-away steadily reached an average maximum
of 0.729 after 47 generations, with policy transfer. This was compared to the
significantly lower 0.587 (Mann-Whitney test, p-value < 0.05) average maximum
performance after 45 generations, without policy transfer in the same task. Also,
additional experiments using relatively few runs but 100 generations indicated
that the task performances yielded by objective-based HyperNEAT with policy
transfer continued to increase.

Second, for novelty-objective based NEAT with policy transfer, average max-
imum task performances of 0.545, 0.638 and 0.520 were attained for tasks 4vs3,
5vs3 and 6vs4, after 48, 49 and 48 generations, respectively. This compared to
the significantly lower task performances (Mann-Whitney test, p-value < 0.05)
of novelty-objective based NEAT without policy transfer for the same tasks. That
is, 0.443, 0.473, and 0.473 for the 4vs3, 5vs3 and 6vs4 tasks, attained after 40,
37 and 43 generations respectively.

Also, novelty-objective based HyperNEAT with policy transfer yielded aver-
age maximum task performances of 0.752, 0.943 and 0.697 for tasks 4vs3, 5vs3
3 NEAT and HyperNEAT average maximum task performance progression graphs can

be found at: http://people.cs.uct.ac.za/∼gnitschke/EvoStar2016/.

http://people.cs.uct.ac.za/~{}gnitschke/EvoStar2016/

Multi-agent Behavior-Based Policy Transfer 193

and 6vs4, after 45, 49 and 48 generations, respectively. This compared to the
significantly lower task performances (Mann-Whitney test, p-value < 0.05) of
objective based HyperNEAT without policy transfer for the same tasks (Table 3),
yielded in a comparable number of generations (45, 48 and 49 generations, for
the 4vs3, 5vs3 and 6vs4 tasks, respectively).

Hence, these results further support this study’s second hypothesis, that
NEAT and HyperNEAT are appropriate policy search methods, where policy
transfer enables a higher efficiency in the target tasks tested. Thus, NEAT and
HyperNEAT with policy transfer (using objective-based search or behavioral
diversity maintenance) converge to a higher task performance faster compared
to the same methods without policy transfer.

4.3 Behavioral Diversity Maintenance and Policy Transfer

The results of this study have important implications for current policy transfer
research, specifically multi-agent policy transfer where neuro-evolution is used
for policy search (agent behavior adaptation).

First, the results indicated significant task performance and efficiency (speed-
up of evolution) benefits of policy transfer in a multi-agent task (Keep-away
RoboCup Soccer) where team behavior was evolved with NEAT or HyperNEAT
in a source task and then further evolved in more complex target tasks. This
was compared to the same methods for evolving keep-away behavior from scratch
in the target tasks. These results are also supported by related policy transfer
research that used neuro-evolution for policy search [8,10,12,14].

Second, results indicated that HyperNEAT with behavioral diversity main-
tenance yielded the greatest benefits for policy transfer overall. These trans-
ferred behaviors leveraged the most benefits of behaviors evolved in the source
task such that further evolution in target tasks yielded the highest overall task
performances. This was compared to NEAT with behavioral diversity mainte-
nance, objective-based NEAT and HyperNEAT and the same methods without
policy transfer. Such benefits of behavioral diversity maintenance coupled with
objective-based search is supported by related work [33–35]. Also, advantages
of indirect encoding neuro-evolution methods such as HyperNEAT have been
highlighted in a broad range of task domains [14,15,26,28].

However, a key contribution of this study is that this is the first time (to the
authors’ knowledge), the benefits of behavioral diversity maintenance coupled
with neuro-evolution, have been demonstrated in multi-agent policy transfer.

The significantly higher performance of HyperNEAT with behavioral diver-
sity maintenance across all tasks is theorized to be a result of beneficial inter-
actions between a more effective search for high performance behaviors (aided
by behavioral diversity maintenance) and HyperNEAT’s indirect encoding of
agent behaviors. Consider that in the source task the novelty-objective hybrid
based search employed by HyperNEAT facilitated an effective exploration versus
exploitation trade-off in the search for high-performance keep-away behaviors.
This is supported by results from previous work [21,33–35] that similarly report

194 S. Didi and G. Nitschke

the benefits of hybrid novelty-objective based search approaches (including task
performance advantages over objective based search approaches).

Also, when effective high-performance behaviors are discovered as solutions
to the source task (3vs2 keep-away), HyperNEAT’s indirect encoding of such
behaviors and the spatial geometry of the keep-away task facilitates more effec-
tive policy transfer to incrementally complex target tasks. That is, HyperNEAT
evolves CPPNs that are able to represent complex ANN controllers with their
own symmetries and regularities and exploit the sensory-motor geometry of
multi-agent tasks [15,26]. This controller representation significantly impacted
the efficacy of evolved keep-away behavior across all tested target tasks.

Thus, we hypothesize that adapting controllers with HyperNEAT in company
with the aid of behavioral diversity maintenance allows first, for the discovery
of novel robust and effective multi-agent behaviors (that might not have oth-
erwise been discovered with pure objective-based search). Second, HyperNEAT
encodes team behaviors that do not rely upon specific sensory-motor mappings
in the agent team controller and thus set task environment configurations (such
as specific agent and ball positions and numbers of agents). That is, HyperNEAT
evolves connectivity patterns [27] that are broadly applicable to tasks of vary-
ing complexity (in keep-away, numbers of agents). This is supported by related
research that similarly demonstrates the robustness of HyperNEAT evolved con-
trollers in tasks of varying complexity [28].

The performance of HyperNEAT evolved teams was contrasted to the signif-
icantly lower task performance of NEAT (with and without behavioral diversity
maintenance). In NEAT, team behaviors were directly encoded with an ANN
with fixed sensory-motor layers (13 sensory inputs and three motor outputs),
where the number of hidden nodes and connections were evolved. This static
sensory-motor layer ANN topology prevented a smooth and effective transfer
from the source task to the more complex target tasks. However, behavioral
diversity maintenance did boost the task performance and efficiency of NEAT
evolved behaviors in all target tasks after policy transfer (Table 3).

The lower performance of both NEAT and HyperNEAT (with and without
behavioral diversity maintenance) in the 6vs4 target task (Table 3) remains the
subject of current research. Though this is hypothesized to be a result of the
increased complexity of four takers on the same sized virtual field, making taker
interception of ball passes more likely. Also this increases the required complexity
of evolved keep-away behaviors, meaning evolved behaviors must effectively scale
to coordinate larger numbers of keepers while accounting for more takers, but
with the same spatial constraints on the virtual field as the 4vs3 and 5vs3 tasks.

5 Conclusion

This study investigated methods for improving the current state of the art in
multi-agent transfer learning. That is, improving task performance and efficiency
(speed of adaptation) of Keep-away RoboCup Soccer behaviors evolved in a
source task but then further evolved on more complex versions of the same task.

Multi-agent Behavior-Based Policy Transfer 195

Experiments compared two neuro-evolution methods, NEAT and HyperNEAT,
applying them to evolve keep-away behaviors. This study’s main contribution
was elucidating that behavioral diversity maintenance coupled with these meth-
ods yielded increased task performance in increasingly complex keep-away tasks.

Results indicated that behavioral diversity maintenance used in company with
NEAT and HyperNEAT is an appropriate approach for increasing task perfor-
mance and efficiency in keep-away tasks of increasing complexity. Using behavioral
diversity maintenance enabled NEAT and HyperNEAT to out-perform objective-
based NEAT and HyperNEAT with and without policy transfer in all tested target
keep-away tasks. Also, results indicated that HyperNEAT using behavioral diver-
sity maintenance yielded the highest overall task performance and efficiency. This
was theorized to be a result ofHyperNEAT’s indirect encoding of keep-awaybehav-
iors, facilitating effective transfer of evolved behaviors between tasks of varying
complexity.

Future work will further investigate the efficacy of indirect encoding methods
for facilitating effective policy transfer between similar but related multi-agent
tasks (for example, keep-away to multi-agent predator-prey [26]), thus address-
ing the larger goal of devising controller design methods capable of producing
generalized problem solving behaviors.

References

1. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

2. Torrey, L., Shavlik, J.: Transfer learning. In: Olivas, E.S. (ed.) Handbook of
Research on Machine Learning Applications, pp. 17–23. IGI Global, Hershey (2009)

3. Ammar, H., Tuyls, K., Taylor, M., Driessens, K., Weiss, G.: Reinforcement learning
transfer via sparse coding. In: Proceedings of the Eleventh International Conference
on Autonomous Agents and Multiagent Systems, Valencia, Spain, pp. 4–8. AAAI
(2012)

4. Ramon, J., Driessens, K., Croonenborghs, T.: Transfer learning in reinforcement
learning problems through partial policy recycling. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007.
LNCS (LNAI), vol. 4701, pp. 699–707. Springer, Heidelberg (2007)

5. Boutsioukis, G., Partalas, I., Vlahavas, I.: Transfer learning in multi-agent rein-
forcement learning domains. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS,
vol. 7188, pp. 249–260. Springer, Heidelberg (2012)

6. Taylor, M., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for tem-
poral difference learning. J. Mach. Learn. 8(1), 2125–2167 (2010)

7. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: from machine
learning testbed to benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi,
Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg
(2006)

8. Doncleux, S.: Knowledge extraction from learning traces in continuous domains.
In: AAAI 2014 Fall Symposium on Knowledge, Skill, and Behavior Transfer in
Autonomous Robots, Arlington, USA, pp. 1–8. AAAI Press (2014)

9. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evol. Intel. 1(1), 47–62 (2008)

196 S. Didi and G. Nitschke

10. Moshaiov, A., Tal, A.: Family bootstrapping: a genetic transfer learning approach
for onsetting the evolution for a set of realated robotic tasks. In: Proceedings of
the Congress on Evolutionary Computation, pp. 2801–2808. IEEE Press (2014)

11. Deb, K.: Pareto Based Multi-objectives Optimization Using Evolutionary Algo-
rithms. Wiley, New York (2001)

12. Taylor, M., Whiteson, S., Stone, P.: Transfer learning for policy search methods. In:
ICML 2006: Proceedings of the Twenty-Third International Conference on Machine
Learning Transfer Learning Workshop, Pittsburgh, USA, pp. 1–4. ACM (2006)

13. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

14. Verbancsics, P., Stanley, K.: Evolving static representations for task transfer. J.
Mach. Learn. Res. 11(1), 1737–1763 (2010)

15. Stanley, K., D’Ambrosio, D., Gauci, J.: A hypercube-based indirect encoding for
evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

16. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup-soccer
keepaway. Adapt. Behav. 13(3), 165–188 (2006)

17. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement
learning. J. Mach. Learn. Res. 7(1), 877–917 (2006)

18. Bahceci, E., Miikkulainen, R.: Transfer of evolved pattern-based heuristics in
games. In: Proceedings of the IEEE Symposium on Computational Intelligence
and Games, Perth, Australia, pp. 220–227. Morgan Kaufmann (2008)

19. Lehman, J., Stanley, K.: Abandoning objectives: evolution through the search for
novelty alone. Evol. Comput. 19(2), 189–223 (2011)

20. Mouret, J., Doncieux, S.: Encouraging behavioral diversity in evolutionary robot-
ics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

21. Gomes, J., Mariano, P., Christensen, A.: Avoiding convergence in cooperative
coevolution with novelty search. In: Proceedings of the International Conference
on Autonomous Agents and Multi-agent Systems, pp. 1149–1156. ACM (2014)

22. Gomes, J., Mariano, P., Christensen, A.: Devising effective novelty search algo-
rithms: a comprehensive empirical study. In: Proceedings of the Genetic Evolu-
tionary Computation Conference, Madrid, Spain, pp. 943–950. ACM (2015)

23. Degrave, J., Burm, M., Kindermans, P., Dambre, J., Wyffels, F.: Transfer learning
of gaits on a quadrupedal robot. Adapt. Behav. 23, 9–19 (2015)

24. Knudson, M., Tumer, K.: Policy transfer in mobile robots using neuro-evolutionary
navigation. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, Philadelphia, USA, pp. 1411–1412. ACM Press (2012)

25. Stanley, K.: Compositional pattern producing networks: a novel abstraction of
development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007)

26. D’Ambrosio, D., Stanley, K.: Scalable multiagent learning through indirect encod-
ing of policy geometry. Evol. Intell. J. 6(1), 1–26 (2013)

27. Gauci, J., Stanley, K.: A case study on the critical role of geometric regularity
in machine learning. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, Menlo Park, USA, pp. 628–633. AAAI Press (2008)

28. Risi, S., Stanley, K.: Confronting the challenge of learning a flexible neural con-
troller for a diversity of morphologies. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 255–261. ACM (2013)

29. Gomes, J., Christensen, A.: Generic behavior similarity measures for evolutionary
swarm robotics. In: Proceedings of the Genetic and Evolutionary Computation
Conference, Amsterdam, The Netherlands, pp. 199–206. ACM Press (2013)

Multi-agent Behavior-Based Policy Transfer 197

30. Urbano, P., Georgiou, L.: Improving grammatical evolution in santa fe trail using
novelty search. In: Proceedings of the 12th European Conference on Artificial Life,
Taormina, Italy, pp. 917–924. MIT Press (2013)

31. Lehman, J., Stanley, K.: Efficiently evolving programs through the search for nov-
elty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, Portland, USA, pp. 837–844. ACM (2010)

32. Velez, R., Clune, J.: Novelty search creates robots with general skills for explo-
ration. In: Proceedings of the Genetic and Evolutionary Computation Conference,
Vancouver, Canada, pp. 737–744. ACM (2014)

33. Cuccu, G., Gomez, F., Glasmachers, T.: Novelty-based restarts for evolution strate-
gies. In: Proceedings of the Congress on Evolutionary Computation, New Orleans,
USA, pp. 158–163. IEEE Press (2011)

34. Gomes, J., Urbano, P., Christensen, A.L.: Progressive minimal criteria nov-
elty search. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.)
IBERAMIA 2012. LNCS, vol. 7637, pp. 281–290. Springer, Heidelberg (2012)

35. Lehman, J., Stanley, K.: Revising the evolutionary computation abstraction: min-
imal criteria novelty search. In: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, pp. 103–110. ACM (2010)

36. Liapis, A., Yannakakis, G., Togelius, J.: Constrained novelty search: a study on
game content generation. Evol. Comput. 23(1), 101–129 (2015)

37. Ghasemi, A., Zahediasl, S.: Normality tests for statistical analysis: a guide for
non-statisticians. Int. J. Endocrinol. Metab. 10(2), 486–489 (2012)

38. Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes. Cambridge Uni-
versity Press, Cambridge (1986)

On-line Evolution of Foraging Behaviour
in a Population of Real Robots

Jacqueline Heinerman1(B), Alessandro Zonta2, Evert Haasdijk1,
and A.E. Eiben1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{j.v.heinerman,e.haasdijk,a.e.eiben}@vu.nl

2 University of Padua, Padua, Italy
alessandro.zonta@outlook.com

Abstract. This paper describes a study in evolutionary robotics con-
ducted completely in hardware without using simulations. The experi-
ments employ on-line evolution, where robot controllers evolve on-the-fly
in the robots’ environment as the robots perform their tasks. The main
issue we consider is the feasibility of tackling a non-trivial task in a real-
istic timeframe. In particular, we investigate whether a population of
six robots can evolve foraging behaviour in one hour. The experiments
demonstrate that this is possible and they also shed light on some of
the important features of our evolutionary system. Further to the spe-
cific results we also advocate the system itself. It provides an example
of a replicable and affordable experimental set-up for other researches to
engage in research into on-line evolution in a population of real robots.

Keywords: Evolutionary robotics · Neural networks · Distributed
on-line learning · Embodied evolution · Foraging

1 Introduction

Evolutionary robotics is a research area that “applies the selection, variation,
and heredity principles of natural evolution to the design of robots with embod-
ied intelligence” [5]. In particular, evolutionary robotics aims to evolve the con-
trollers, the morphologies, or both, for real and simulated autonomous robots
[18]. Considering the complexity of interactions between environment, morphol-
ogy and controller, employing evolution is a very promising approach to designing
intelligent robots for a range of circumstances [1,13]. However, forced by techni-
cal constraints the usual modus operandi in evolutionary robotics is quite limited:
evolve robot controllers in simulation and transfer the outcome to real hardware
afterwards. Thus, even though the final goal is to obtain physical robots with
intelligent behaviour, the evolutionary process is usually digital, which leads to
the notorious reality gap problem [9]. Furthermore, the evolutionary algorithm
is usually (ab)used as an off-line optimizer. It is only employed during the design
stage that ends with finding a good controller that is then deployed on the real
robot and kept fixed during the operational stage.
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 198–212, 2016.
DOI: 10.1007/978-3-319-31153-1 14

On-line Evolution of Foraging Behaviour in a Population of Real Robots 199

This paper describes a study in evolutionary robotics conducted completely
in hardware, without recourse to any simulations. The experiments use Thymio
II robots as hardware platform [14]. These robots – recently on the market–
are quite small, cheap, and easily available. Therefore, setting up a physical
robot population is much less demanding than a few years ago. The experiments
consider on-line evolution, where a collective of robots evolve controllers in the
robots’ task environment as the robots perform their tasks. This results in a
distributed on-line setup where robots learn individually and socially, meaning
the exchange of individually evolved controllers with others. The experiments
are motivated by a long-term vision of an ongoing evolutionary process that
enables adaptation to the environment and the task. This research differs from
most evolutionary robotics that employs evolution as an optimisation procedure
to obtain well-performing controllers before deploying the robots.

There are earlier experiments in distributed on-line evolutionary robotics
that take place exclusively in hardware, e.g., the work of Watson et al. and
Simões et al., both in 1999 [15,19]. Watson et al. coined the phrase “embodied
evolution” for such systems. These experiments consider very straightforward
robot tasks such as phototaxis and obstacle avoidance, and subsequent research
into embodied evolution-like settings has not yet ventured beyond that.

The research in this paper serves as a further stepping stone towards on-
line evolutionary adaptation in complex tasks and complex environments. An
important goal of this paper is, therefore, to provide a replicable, accessible and
affordable experimental set-up for further research into the on-line evolution of
non-trivial behaviour in real robots. This paper investigates the feasibility of
tackling more complex tasks in a realistic timeframe. In particular, it considers
the on-line evolution of foraging behaviour in a population of real robots, with a
fitness function that rewards appropriate behaviours for a number of subgoals.
We try to answer the following research questions:

1. Can a group of robots evolve appropriate controllers for a non-trivial task in
one hour?

2. How important is the feature that the robots share the controllers they evolve
individually (social learning)?

3. How important is the most task-specific part of the compound objective func-
tion?

An evolutionary process implemented in real hardware has the obvious bene-
fit of avoiding the reality gap, and when considering multiple robots with sophis-
ticated sensors such as cameras simulations may actually run slower than real
time, even for groups as small as six robots. An additional benefit is that exper-
imenting with real robots encourages the researcher to review the robots’ actual
behaviour during the experiments rather than allowing only post-facto analy-
sis of the metrics gathered by unattended simulation runs. Thus, experimenting
with real robots enhances the understanding of robot behaviour.

200 J. Heinerman et al.

2 Related Work

In principle, the scope of the related work includes all on-line distributed evolu-
tion in populations of physical robots as well as research where foraging behav-
iour evolves in simulation and is subsequently transferred to hardware. For the
latter category, we restrict the scope of related work to research applying neuro-
evolutionary methods to control differential drive robots.

There are few papers that consider on-line distributed evolution in popu-
lations of physical robots. Pioneering works in this field are those by Watson
et al. and Simões et al., both published in 1999. Watson et al. implemented
“embodied evolution” in a population of six robots [19]. The robot controllers
evolved to tackle a phototaxis task in an on-line fashion by broadcasting parts
of their genome at a rate proportional to their task performance. Simões et al.
evolved morphological features as well as the controllers in the same genome for
collision-free behaviour [15]. These are the first examples of evolutionary algo-
rithms distributed in a population of physical robots where the robots are not
only evaluated, but are also performing real tasks. Since then, four more studies
show on-line distributed evolution in populations of physical robots where the
task to learn is either only obstacle avoidance [7,17], obstacle avoidance, pho-
totaxis and robot seeking [10] or survival without a specified fitness function
[3]. These studies focus on showing that on-line evolution of the controllers for
different tasks is possible and that communication between the robots is always
beneficial. To our knowledge, the current study is the first to consider evolving
foraging behaviour in hardware and in an on-line fashion.

Foraging is often considered as a task in off-line evolution. Here, we consider
research where the controllers evolve in simulation and the best controllers are
transferred onto robotic hardware where they remain fixed. We found no exam-
ples of off-line evolution of foraging behaviour where evaluations were performed
on robotic hardware. The first example is [12], where controllers evolved in simula-
tion to locate, recognise and grasp “garbage” objects and transport them outside
the arena.The platformof choicewas aKhepera robotwith a grippermodule.With
a population size of 100 it took 1,000 generations to generate the desired, complex
behaviour. One controller evaluation took 8 s in simulation (and 300 s in reality).
The number of components in the fitness function (penalties and rewards for differ-
ent observed behaviours) was found to have substantial impact. Transferring the
best evolved controller onto hardware resulted in only a small performance decline.

In [8], the author incorporated dynamic rearrangement of neural networks
with the use of neuromodulators to push a “peg” to a light source. Both peg and
target were arranged in a straight line in front of the robot. A population of 100
controllers evolved for 200 generations, with controllers evaluated by simulating
them for 500 time steps. When transferred to a Khepera robot, the best controller
showed appropriate behaviour.

In [16], the task was limited to box pushing, and this is the only example
where the required behaviour was simple enough that the neural networks did
not require hidden nodes. The authors investigated the difference in performance
with fitness functions that use internal/external and global/local information.

On-line Evolution of Foraging Behaviour in a Population of Real Robots 201

They showed that a global external fitness function (diametrically opposed to the
notion of distributed on-line evolution) performed best for their task. The best
controller was transferred onto a Khepera robot and showed adequate behaviour.
The controller resulted from a (30+1) evolutionary strategy running for 250
generations; controllers were evaluated by simulating them for 100 time steps,
starting from different positions in the arena.

The most recent work that we know of is [4]. Here, multi-objective evolution-
ary algorithms were applied for two conflicting tasks: protecting another robot by
following it closely and collecting objects in the arena. Controllers evolved in an
unknown population size over 100 generations, with each controller evaluated in
simulation for 70 s. Even though the input sensor values for the simulated and real
robot (CRrobot) did not overlapperfectly, the robot showed the desiredbehaviour.

Thus, evolving foraging behaviours in simulation and subsequently transfer-
ring the results to the appropriate hardware platform has been shown to work in
a number of settings. However, once the final controller is transferred, it does not
adapt further and so cannot cope with unforeseen circumstances or changes in
the environment. Our ambition is to develop foraging behaviour through on-line
evolution, with some speed-up afforded by distributing the evolutionary process
across a small number of robots. Given the population sizes and number of gen-
erations used in simulation-based research, this is not a trivial task to accomplish
within a realistic timeframe (i.e., within the robot battery’s operational period).

3 System Description

3.1 Robot

Fig. 1. Thymio II robot, developed by The
École Polytechnique Fédérale de Lausanne
(EPFL) and École Cantonal d’Arts de Lau-
sanne (ÉCAL), with Raspberry Pi 2, Rasp-
berry Pi NoIR camera, WiFi dongle, external
battery and a LEGO gripper.

The Thymio II robot includes seven
Infra-Red (IR) proximity sensors for
obstacle detection; five are arranged
along the front and two along the
back of the robot. The sensors
return values between 0 and circa
4,500, with high values correspond-
ing to close obstacles. The robot
has differential drive with the max-
imum wheel actuators set between
−500 and 500. The operating speed
is set to 30 % of the maximum
speed, which is between −150 and
150, to prevent overheating and to
adapt to the camera’s image process-
ing speed. We extend the standard
Thymio set-up with a more powerful
logic board, a camera, wireless com-
munication, and a high capacity battery. We use a Raspberry Pi 2 that connects
to the Thymio’s sensors and actuators an processes the data from the Raspberry

202 J. Heinerman et al.

Pi NoIR Camera. A WiFi dongle (Edimax 150 Mbps Wireless 802.11b/g/n nano
USB WiFi Adapter model EW-7811Un) attached to the Raspberry Pi enables
inter-robot communication. Battery life is etended through a Verbatim Dual
USB 12,000 mAh battery, allowing for a total experimental time of 10 h. The
extended Thymio II is shown in Fig. 1. The hand made LEGO gripper helps the
robot maintain control of the pucks when manoeuvring.

3.2 Environment

Two robots operate together in a 1×1 meter arena with six pucks and one target
area. This set-up is duplicated three times, facilitating a total population of six
robots, where communication across arena instances is possible. A set-up with
three arenas with two robots each (as opposed to having all six robots in a single
arena) reduces the likelihood that the robots’ grippers become entangled.

Fig. 2. The 1× 1 meter arena with two Thymio
II robots searching for the red pucks. The tar-
get location is indicated by the blue corner. The
arena is duplicated three times to facilitate six
robots while minimising robot collisions (Color
figure online).

The arena size allows the
robot to see the target area
from across the whole arena. The
arenas have a white floor and
white walls for improved obsta-
cle detection. The pucks are red
and the target area, located in a
corner, is blue, with white stripes
added for better colour recogni-
tion when the robot is close to
the target.

A WiFi router placed close
to te arenas facilitates reliable
wireless communication between
all robots in the three arenas. A
motion tracking system monitors
the robots and pucks in one of the
three arenas for post-hoc qualita-
tive analysis of robot traces.

3.3 Task and Objective Function

In the foraging task, the robots must collect items (pucks) and deliver them to a
target location. Although this task may not seem difficult, there is no consensus on
how to define an objective function for this task, and in particular there is no prior
experience with suitable functions for on-line evolution. Our experiments use an
objective function that rewards appropriate behaviour for a number of subgoals to
provide a relatively smooth fitness gradient; only rewarding the successful delivery
of a puck results in a largely featureless fitness landscape. The objective function
assesses robot behaviour over a period of T timesteps as follows:

ftotal =
T∑

t=0

fobs + fpuck + ftarget + fbonus, (1)

On-line Evolution of Foraging Behaviour in a Population of Real Robots 203

where:
fobs = vtrans · (1 − vsens), (2a)

fpuck = bpuck + 2 · bpush, (2b)

ftarget = btar, (2c)

fbonus = bpush × btar, (2d)

and:

– vtrans is the translational speed (normalised between 0 and 1), calculated as
the sum of the absolute speeds assigned to the left and right motor;

– vsens is the value of the proximity sensor closest to an obstacle and normalised
between 0 and 1;

– bpuck is a boolean value indicating whether the camera detects a puck in sight;
– bpush is a boolean value indicating whether the robot is pushing a puck;
– btar is a boolean value indicating whether the camera detects the target area.

Note, that the analyses in Sect. 5 report overall system performance as the
number of pucks collected over a period of time, not as the fitness function as
described above.

3.4 Controller

The controller is a feed forward neural network with 13 input nodes, 5 hidden
nodes and 2 output nodes as depicted in Fig. 3. The nodes have tanh activation
functions. Five input nodes, denoted PS1 to PS5, connect to the proximity
sensors (three in the front and two in the back of the robot). The remaining
seven inputs relate to camera information. To extract the salient information
from the camera image, the image is divided into four parts (left, middle, right
and bottom, or l, r,m and b) as shown in the top left in Fig. 3.

Masking red values to detect pucks in the four areas yields the (Pl, Pm, Pr, Pb)
inputs that denote the size of the largest red area in each sub-image. A further
three inputs denote the total percentage of blue in the three top sub-images
(Tl, Tm, Tr). The input and hidden layer each have an additional bias node.
The output nodes drive the left and right motor actuators. All input nodes are
connected to all hidden nodes (except the bias node) and all hidden nodes are
connected to the output nodes, resulting in a neural network with 62 weights.
The sensor input values are normalised between −1 and 1 and the weights are
between −4 and 4.

3.5 Evolutionary or Learning Mechanisms

The evolutionary process employs the common direct encoding scheme of an
array of neural network weights. In this case, the length of that array is 62.
Controllers evolve on-line and on-board; the robots encapsulate a self-contained
evolutionary algorithm and augment this with a distributed evolutionary system,

204 J. Heinerman et al.

...

...

Pl

Pm

Pr

Pb

Tl

Tm

Tr

PS1

PS5

Bias

H1

H4

Bias

LM

RM

Input
layer

Hidden
layer

Output
layer

Fig. 3. Visualisation of salient information extracted from the camera image (left) and
the neural network controller with 13 input nodes, 5 hidden nodes and 2 output nodes
(right). Input nodes Px detect pucks as the largest area of red pixels in each sub-image
(l,m, r, b denoting the left, middle, right and bottom sun-image), Tx detect the total
amount of blue pixels in each of the three upper sub-images and PSx detect obstacles
(Color figure online).

amounting to what was labelled as a hybrid scheme in [6]. Such a combination
of evolutionary processes can also be cast as a combination of individual learn-
ing (the encapsulated evolutionary process) and social learning (the distributed
evolutionary process). We adopt the individual and social learning terminology
to align with the DREAM project1 of which this research is part.

Individual Learning. The robots implement individual learning through a (1+1)
evolutionary strategy, similar to the approach in [2,7], using the objective func-
tion defined in Eq. 1. The neural network weights are mutated using Gaussian
perturbation with N(0, σ), where the value of σ doubles when the offspring con-
troller (the challenger) does not improve on the current controller (the cham-
pion). When a challenger outperforms the current champion, it replaces the
champion. Each controller is evaluated over a testing epoch of 1,000 time steps,
equating to a period of circa 3.6 s.

1 http://robotsthatdream.eu.

http://robotsthatdream.eu

On-line Evolution of Foraging Behaviour in a Population of Real Robots 205

This is a very short evaluation time, certainly too short to complete one round
of detecting and approaching a puck and then transporting it to the target area.
One could argue that this evaluation time should be longer, but the difficulty of
a longer evaluation time is the need for more controller evaluations because it
will take the robot longer to discover all the subtasks required to perform the
overall task. The short evaluation time results in a quick response to objects of
interest — the pucks and target. To enable robust assessment of controllers, even
though the robot cannot experience all relevant situations during a single evalu-
ation, the robots re-evaluate their champion controllers with a 20 % chance. The
champion’s fitness value is updated upon re-evaluation by taking the weighted
sum of the current and the re-evaluated fitness with a 20–80 weight distribution
(20 % of the re-evaluated and 80 % of the current fitness value).

Social Learning. The robots broadcast their champion genome after every eval-
uation, provided that its fitness exceeds 50 % of the maximum fitness. Robots
cache received genomes in their social learning storage. When a robot embarks
on a round of social learning, it takes the most recently received genome from
the storage and either evaluates it directly as a challenger (in 75 % of the cases)
or creates a challenger through averaging crossover with the current champion.
Directly re-evaluating received controllers rather than copying the sender’s fit-
ness value makes sense because the robot may be in a very different situation
than the sending robot when it evaluated the controller. Just as with individual
learning, the challenger replaces the champion if it outperforms it.

The robots randomly alternate between individual and social learning with
a rate of 70:30.

4 Experimental Set-up

System parameters

Total controller evaluations 1000

Evaluation duration (sec) 3.6

Re-evaluation chance 20 %

Re-evaluation champion weight 80 %

Individual learning chance 70 %

Social learning chance 30 %

Individual learning

Maximum fitness 6000

Weight range 8

σ initial 1

σ maximum 4

σ minimum 0.01

Social learning

Broadcast threshold 50 %

Averaging crossover 25 %

Import 75 %

Social learning storage size 20

The duration of each experiment is one hour,
allowing for 1,000 controller evaluations of
1,000 time steps (ca 3.6 s) each. Unless indi-
cated otherwise, each set-up was repeated 20
times. The table on the right lists the most
important system parameter2.

The robots start every experiment in the
same position, facing the middle of one of
the walls that is not adjacent to the target
area. The robots are not repositioned during
an experiment unless two robots’ grippers or
wiring become entangled or when a robot is
pushing multiple pucks against the wall (in
that case, the pucks prevent the robot from
moving close enough to the wall for obstacle
2 The code for implementation is available on https://github.com/ci-group/

Thymio swarm.

https://github.com/ci-group/Thymio_swarm
https://github.com/ci-group/Thymio_swarm

206 J. Heinerman et al.

sensors to detect it). In case the robot loses its gripper, it is reattached and the
experiment continues. Furthermore, the temperature of the robots is constantly
tracked to prevent the robots from overheating. As a result, no robots broke
during the experiments and all collected data can be used.

The robots are preprogrammed with a threshold for the amount of blue that
needs to be exceeded before we can say that a puck is collected. When a puck
is pushed to the target area, the robot internally registers the time and emits
a sound to alert the experimenter. The puck is then manually replaced in the
centre of the arena and the experimenter records the number of collected pucks.

5 Experimental Results

To quantify the performance of the robots, we consider the number of pucks
collected in ten-minute intervals. The objective function defined in Eq. 1 is not
suitable for this purpose: controller evaluations are so short that a perfectly
good controller scores poorly, e.g., because the robot spends the entire evaluation
period looking for pucks.

Figure 4 compares a baseline experiment with the performance when learning
is enabled. For the baseline experiment, the evolutionary mechanisms are dis-
abled and the robots run with randomly generated weights for every evaluation.

(a) Random controller (b) Evolving controller

Fig. 4. Number of collected pucks per 10 min intervals by the robot population for
random and evolving controllers. The box plots show the median, interquartile range,
min and max values. The evolutionary process was repeated 20 times, the random
baseline was repeated 10 times. Although the increase in pucks collected when learning
increases only marginally, the increase is significant (Mood’s Median test with Fisher’s
Exact Test, p = 0.02).

There is a clear difference in performance between the random and evolving
controllers, so learning definitely improves task performance. If the robots do
learn the foraging task successfully, the number of pucks collected per interval
should increase over the course of an experiment. The performance does indeed
increase over time in Fig. 4(b), but the increase is slight. To ascertain whether
the increase in performance is statistically significant, we use Mood’s Median
test on the median number of pucks collected the first and the second half hour.

On-line Evolution of Foraging Behaviour in a Population of Real Robots 207

Mood’s Median test is calculated as follows: the median number of pucks col-
lected in the first and second half of each experiment is calculated. The data for the
20 repeats is then summarised in a 2× 2 table: each cell in the table contains the
count of repeats in its class. Classes are assigned to the cells according to whether
the performance metric was calculated over the first or the second half hour (first
or second column, respectively) and whether the metric is lower or equal or higher
than the overall median (first and second row, respectively). The standard Mood’s
Median test then calls for a χ2 test, but in this comparison requires a one-tailed
test to establish whether the robots collect significantly more pucks in the seconds
half hour. Therefore, we substitute it with Fisher’s Exact test. For these data, this
yielded p = 0.02 – a significant increase at α = 5%.

Performance is in fact somewhat disappointing and also worse than at least
some behaviour that was observed (one of the benefits of running experiments
in real robots is that the experimenters monitor robot behaviour as a matter
of course and do not rely only on quantitative post-hoc analysis as is often the
case with simulation-based experiments). From observations of the robots during
the experiment, it appeared that the robots do learn appropriate behaviour, but
subsequently revert to much less efficient behaviour.

To investigate whether the robots do indeed learn (and subsequently for-
get) efficient foraging behaviour, we ran ten repeats of an experiment with a
high-fitness controller without further development. This controller was selected
manually from controllers that consistently showed high fitness values, also over
multiple re-evaluations. All six robots were programmed with the neural net-
work weights set according to this individual genome, positioned in the standard
starting position and subsequently ran for one hour, with all other settings as
described for the runs with the learning mechanisms enabled.

Fig. 5. Number of collected pucks
over ten runs per 10 min interval of
one of the better controllers devel-
oped during an evolutionary run.
The box plot shows the median,
interquartile range, min and max
values.

The box plots in Fig. 5 show the perfor-
mance of ten repeats of this experiment in
ten-minute intervals. The first ten minutes
show exceptional performance due to the
convenient starting position of the pucks in
the middle of the arena. But also in the other
intervals, performance beats the on-line per-
formance with an active learning process by
a factor of three (note, that the y-axis in
Fig. 5 had a larger range than that in Fig. 4).

Thus, it appears that the evolutionary
process does discover very good controllers,
but subsequently discards these individuals
because they perform poorly at some point.
We hypothesise that this is a result of the
brief evaluation periods that these experi-
ments require: if, for instance, no pucks are picked up during a re-evaluation
of a controller, its assessment is revised, even if it is actually very relevant. Com-
bating this ‘forgetting’ behaviour is the focus of further research that is now
underway.

208 J. Heinerman et al.

Fig. 6. Traces of one robot showing the
first (red) and last (blue) 100 controller
evaluations. The target location is at
position (800,0). The traces show the
mid-point of each robot, meaning that
the robots learn wall-following behaviours
(Color figure online).

For a qualitative analysis of robot
behaviour and the effect of evolution,
Fig. 6 shows traces of one robots at the
beginning and towards the end of an
experiment (the first and last 100 eval-
uations in red and blue, respectively).
The traces indicate typical behaviour
that was observed in most runs. The
robots learn wall-following behaviour –
the traces show the mid-point of each
robot, its sides are actually very close
to the wall for large parts of the trace.

Because the robots often push
pucks towards the wall in the early
stages of learning, this is quite effi-
cient behaviour to move pucks to the
target area. When the robots deviate
from this behaviour, they often end
up pushing more pucks to the wall to
resume wall-following.

The Need for Social Learning. To investigate the influence of the social learning
mechanisms, another set of 20 experiments was conducted where communication
between robots was disabled, so that they only learn using the encapsulated
1 + 1 evolution strategy. Other than that, all settings are as in the original runs
presented above. Figure 7 compares the results from the experiments with both
social and individual learning with experiments where social learning is disabled.

The plot shows that the social learning mechanisms yields better performance
and is in fact necessary to prevent a decline in performance. Social learning
implements a shared repository of controllers that goes some way to exacerbate
the ‘forgetting’ behaviour.

Objective Function Design. This is known to be a difficult problem in general
[11]. In our case, the observation of robot trajectories (cf. Fig. 6) suggests that
evolution solves the task differently than we, the experimenters, have expected.
In particular it seems that the behaviours are optimsed for grabbing a puck and
carrying it around along the walls.

This raises the question whether rewards ftarget and fbonus that correspond
to the subtask of reaching the target area are important or not. To find out
we ran a series of experiments with a reduced objective function that contains
only the first two terms fobs and fpuck of formula 1. Based on this function the
optimal behavior is continuously pushing a puck without hitting the walls.

The results of these experiments are shown in red in Fig. 8, with the original
results in blue for reference. Using these data we can ask two questions regarding
the role of the target related rewards: (1) Whether the robots are still learning

On-line Evolution of Foraging Behaviour in a Population of Real Robots 209

Fig. 7. Number of collected pucks per 10 min interval by the robot population for
evolving controllers without (red) and with communication (blue). Box plots show
median, interquartile range, min and max values. Both experiments were repeated 20
times. Communication is shown to be necessary to ensure a performance increase for
the foraging task (Color figure online).

the puck collecting task without these rewards? and (2) Whether the omission
of these rewards decreases performance?

Calculating the Mood’s Median test for the increase in performance for first
and second half an hour, gives a value of p = 0.57. In other words, the perfor-
mance in the second half of the experiment is not significantly higher than in
the first half. Thus, with the reduced fitness function the population does not
seem to learn over time.

To answer the second question, Mood’s Median tests are performed
for every ten minutes between the two algorithms. Values of p =
0.62, 0.63, 0.9, 0.5, 0.37, 0.09 indicate that there is no significant decrease in per-
formance when removing the rewards related to the target area – using a signif-
icance level α = 5%.

These results are seemingly contradictory. On the one hand, the system with
the full fitness function (blue) is different from the one with the reduced fitness
function (red), because it does learn over time, while the other one does not. On
the other hand, the system with the full fitness function is not different from
the one with the reduced fitness function, because their performance differences
over the whole experiment are not significant. This “contradiction” is caused
by the statistics and indeed the last 10 min when the red system exhibits poor
performance.

A more interesting conclusion we can draw from these data concerns the
role of the target related fitness rewards. The fact that red and blue do not
differ significantly regarding the number of pucks collected can be explained by

210 J. Heinerman et al.

Fig. 8. Number of collected pucks per 10 min interval by the robot population for
evolving controllers without (red) and with the bonus component of the fitness func-
tion (blue). Box plots show median, interquartile range, min and max values. Both
experiments were repeated 20 times. Although there seems to be an increase in pucks
collected when there is no bonus component, the increase is not significant (Mood’s
Median test with Fisher’s Exact Test, p = 0.57) (Color figure online).

taking a closer look at the environment. The target area is positioned in a corner
and can be reached by wall following. This feature implies that a robot that is
continuously pushing around a puck without hitting the walls will eventually
deliver the puck to the target area. This solution was not intended by us, but it
nicely illustrates how evolution can exploit environmental features to the surprise
of the experimenters.

6 Conclusions and Future Work

In this paper we described an evolutionary robotics study completely conducted
in hardware, without using software simulations up front. An important result
is the experimental evidence that a population of six robots can evolve forag-
ing behaviour in one hour. The significance of this finding is apparent from a
comparison with existing work; on-line evolution embodied in real robots has
previously been only applied to relatively simple tasks, such as obstacle avoid-
ance and phototaxis.

Our results show that the robots do learn foraging behaviour and that per-
formance rises steadily if marginally. The robots learn appropriate control as
shown by an analysis of one of the better controllers considered, but these con-
trollers are lost, presumably when the robots re-evaluate them in inauspicious
circumstances. This is probably linked to the short evaluation times necessary

On-line Evolution of Foraging Behaviour in a Population of Real Robots 211

for our experiments. Further research is required to investigate possibilities to
mitigate this ‘forgetting’ of good controllers.

Experiments disabling certain components of the evolutionary system
revealed the importance of these components. In particular, we observed that
allowing the robots to communicate and cross-fertilise brings significant improve-
ments with respect to a system where each robot is running an isolated internal
evolutionary learning process whose results are not shared with the others. The
robots’ performance increase was found to be only significant when the robots are
able to share information about their controller. Without the sharing of informa-
tion, performance declines, probably because of the short evaluation time where
the robot is not able to experience all subtasks in the arena within an evaluation.
Thus, individual learning augmented with social learning outperforms individual
learning alone. In the terminology of [2] this shows the advantage of a hybrid
(encapsulated plus distributed) system over encapsulated evolution.

We also looked into the composition of the fitness function and learned that
rewarding the subtask of reaching the target area is not necessary to obtain
overall good performance. This is a consequence of a particular feature of the
environment that can be exploited by evolution.

The main ambition of the research in this paper was to push for more com-
plex tasks to be considered in on-line evolutionary robotics outside of simula-
tions. Although the performance achieved by these experiments can be improved
upon, this paper provides an important stepping stone towards this goal by pro-
viding the research community with a well-documented and affordable example
of an experimental set-up to investigate an evolving collective of robots with
rich sensory inputs in a non-trivial task. We hope that this will provide inspira-
tion and opportunity for other researchers to research physical, not simulated,
robot collectives that evolve to tackle tasks beyond the complexity of obstacle
avoidance.

Acknowledgements. This work was made possible by the European Union FET
Proactive Initiative Knowing, Doing, Being: Cognition Beyond Problem Solving, fund-
ing the Deferred Restructuring of Experience in Autonomous Machines (DREAM)
project under grant agreement 640891.

References

1. Bongard, J.: Evolutionary robotics. Comm. ACM 56(8), 74–85 (2013)
2. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-line, on-board evolution of robot con-

trollers. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E.
(eds.) Proceedings of the 9th International Conference on Artificial Evolution, pp.
110–121. Springer, Berlin (2009)

3. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

4. Capi, G.: Multiobjective evolution of neural controllers and task complexity. IEEE
Trans. Robot. 23(6), 1225–1234 (2007)

212 J. Heinerman et al.

5. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.: Evolutionary robotics: what,
why, and where to. Front. Robot. AI 2(4) (2015)

6. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolu-
tion for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-
Robot Organisms: Reliability, Adaptability, Evolution, pp. 361–382. Springer,
Heidelberg (2010). http://www.springer.com/engineering/mathematical/book/
978-3-642-11691-9

7. Heinerman, J., Rango, M., Eiben, A.: Evolution, individual learning, and social
learning in a swarm of real robots. In: Proceedings of the 2015 IEEE International
Conference on Evolvable Systems (ICES). IEEE (2015, to appear)

8. Ishiguro, A., Tokura, S., Kondo, T., Uchikawa, Y., Eggenberger, P.: Reduction
of the gap between simulated and real environments in evolutionary robotics: a
dynamically-rearranging neural network approach. In: IEEE SMC 1999 Conference
Proceedings, IEEE International Conference on Systems, Man, and Cybernetics,
vol. 3, pp. 239–244. IEEE (1999)

9. Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.): ECAL 1995. LNCS, vol.
929. Springer, Heidelberg (1995)

10. Nehmzow, U.: Physically embedded genetic algorithm learning in multi-robot sce-
narios: the pega algorithm. In: Prince, C., Demiris, Y., Marom, Y., Kozima, H.,
Balkenius, C. (eds.) Proceedings of The Second International Workshop on Epi-
genetic Robotics: Modeling Cognitive Development in Robotic Systems, No. 94 in
Lund University Cognitive Studies, LUCS, Edinburgh, UK, August 2002

11. Nelson, A.L., Barlow, G.J., Tsidis, L.: Fitness functions in evolutionary
robotics: a survey and analysis. Robot. Autonom. Syst. 57(4), 345–370
(2009). http://www.sciencedirect.com/science/article/B6V16-4TTMJV3-1/2/
2549524d8e0f3982730659e49ad3fa75

12. Nolfi, S.: Evolving non-trivial behaviors on real robots: a garbage collecting robot.
Robot. Autonom. Syst. 22(3), 187–198 (1997)

13. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge (2000)

14. Riedo, F., Chevalier, M.S.D., Magnenat, S., Mondada, F.: Thymio II, a robot that
grows wiser with children. In: 2013 IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO), pp. 187–193. IEEE (2013)

15. Simoes, E., Dimond, K.R.: An evolutionary controller for autonomous multi-robot
systems. In: 1999 IEEE International Conference on Systems, Man, and Cybernet-
ics, IEEE SMC 1999 Conference Proceedings, vol. 6, pp. 596–601. IEEE (1999)

16. Sprinkhuizen-Kuyper, I.G., Kortmann, R., Postma, E.O.: Fitness functions
for evolving box-pushing behaviour. In: Proceedings of the Twelfth Belgium-
Netherlands Artificial Intelligence Conference, pp. 275–282 (2000)

17. Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary
robotics. In: Proceedings of the 8th International Symposium on Artificial Life
and Robotics, pp. 212–215 (2003)

18. Vargas, P., Paolo, E.D., Harvey, I., Husbands, P. (eds.): The Horizons of Evolu-
tionary Robotics. MIT Press, Cambridge (2014)

19. Watson, R., Ficiei, S., Pollack, J.B., et al.: Embodied evolution: Embodying an evo-
lutionary algorithm in a population of robots. In: Proceedings of the 1999 Congress
on Evolutionary Computation, CEC 99, vol. 1, pp. 335–342. IEEE (1999)

http://www.springer.com/engineering/mathematical/book/978-3-642-11691-9
http://www.springer.com/engineering/mathematical/book/978-3-642-11691-9
http://www.sciencedirect.com/science/article/B6V16-4TTMJV3-1/2/2549524d8e0f3982730659e49ad3fa75
http://www.sciencedirect.com/science/article/B6V16-4TTMJV3-1/2/2549524d8e0f3982730659e49ad3fa75

Hybrid Control for a Real Swarm Robotics
System in an Intruder Detection Task

Miguel Duarte1,2,3(B), Jorge Gomes1,2,4, Vasco Costa1,2,3,
Sancho Moura Oliveira1,2,3, and Anders Lyhne Christensen1,2,3

1 BioMachines Lab, Lisbon, Portugal
2 Instituto de Telecomunicações, Lisbon, Portugal

3 Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
{miguel duarte,vasco craveiro costa,sancho.oliveira,

anders.christensen}@iscte.pt
4 Faculdade de Ciências, BioISI, Lisbon, Portugal

jgomes@di.fc.ul.pt

Abstract. Control design is one of the prominent challenges in the field
of swarm robotics. Evolutionary robotics is a promising approach to the
synthesis of self-organized behaviors for robotic swarms but it has, so
far, only produced been shown in relatively simple collective behaviors.
In this paper, we explore the use of a hybrid control synthesis approach to
produce control for a swarm of aquatic surface robots that must perform
an intruder detection task. The robots have to go to a predefined area,
monitor it, detect and follow intruders, and manage their energy levels
by regularly recharging at a base station. The hybrid controllers used in
our experiments rely on evolved behavior primitives that are combined
through a manually programmed high-level behavior arbitrator. In simu-
lation, we show how simple modifications to the behavior arbitrator can
result in different swarm behaviors that use the same underlying behavior
primitives, and we show that the composed behaviors are scalable with
respect to the swarm size. Finally, we demonstrate the synthesized con-
troller in a real swarm of robots, and show that the behavior successfully
transfers from simulation to reality.

Keywords: Swarm robotics · Evolutionary robotics · Hybrid control ·
Self-organization · Aquatic robots

1 Introduction

Swarm robotics [1] is an approach to multirobot systems that relies on large
numbers of relatively simple robots with decentralized control. While swarm
robotics systems tend to display a number of desirable properties, such as scala-
bility, flexibility, and fault tolerance [1–3], synthesizing controllers for such sys-
tems is still an open challenge, as there is no general way to derive individual
rules that result in the desired swarm behavior [3]. One popular approach used

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 213–230, 2016.
DOI: 10.1007/978-3-319-31153-1 15

214 M. Duarte et al.

to address this challenge is evolutionary robotics (ER) [4], which applies evo-
lutionary techniques to the synthesis of robot controllers. ER has been shown
capable of automatically synthesizing behaviors for robots without the need of
manually programming the individual rules that govern the robots’ behavior,
and of generating self-organized behavior [5].

While ER has the potential to synthesize behaviors for robotic swarms [5],
a number of issues [6] have prevented it from being applied to real-world tasks,
and most successful demonstrations have thus been confined to simple tasks
and either simulation-based studies or real-robot studies in strictly controlled
laboratory conditions [2,3]. An alternative to standard, monolithic evolutionary
techniques is the hierarchical control synthesis approach [7], which consists of
recursively dividing a task into sub-tasks, synthesizing control for each sub-task
individually. The final controller is then obtained by composing the different
sub-controllers hierarchically. The hierarchical control synthesis approach uses
engineering-oriented [8], pragmatic techniques to enable the use of evolution-
based control in scenarios for which it might be difficult to apply standard evo-
lution.

In this paper, we explore how the hierarchical control synthesis approach can
be used in a real-world task to produce swarm behaviors that: (i) are complex,
in the sense that they require multiple sub-behaviors; (ii) are modular and easily
reconfigurable; (iii) can operate under realistic constraints; (iv) scale with the
number of robots in the swarm; and (v) can be successfully transferred from
simulation to reality. Our study focuses on an intruder detection task, where
robots have to first navigate from a base station to an area of interest, monitor
the area, detect and follow intruders that cross the area, and simultaneously
avoid running out of energy by recharging periodically at the base station. Tasks
that take several realistic constraints into account typically require the robots
to exhibit multiple different behaviors, which contrasts with the vast majority
of previous ER studies [6,9].

We demonstrate for the first time that the hierarchical control synthesis app-
roach [7] can be successfully applied to swarms of real robots in a task with real-
istic constraints. First, we demonstrate the flexibility of the approach by showing
how variations of the top-level behavior arbitrator result in different collective
behaviors. We then assess the scalability of the composed controllers in terms of
swarm size and task configuration. Finally, we evaluate the composed controller
in a real swarm of aquatic surface robots, and assess how the hierarchical control
transfers from simulation to reality.

2 Related Work

2.1 Swarm Robotics

The concept of swarm robotics systems (SRS) is inspired by the observation
of social insects, in which large numbers of autonomous and simple units self-
organize to display collectively intelligent behavior [1]. Due to the decentralized
control and self-organization, SRS typically display a number of advantageous

Hybrid Control for a Real Swarm Robotics System 215

properties such as scalability, versatility, parallelism of operation, and robust-
ness to individual faults [1,3]. These properties make SRS especially suited for
tasks that require distributed sensing and/or action. So far, however, SRS have
only been demonstrated in relatively simple collective tasks such as aggregation,
flocking, navigation, path formation, and foraging, among others [2]. Further-
more, demonstrations of self-organized control are typically only carried out in
simulation, and when they are conducted in real robotic hardware, studies are
only performed in strictly controlled laboratory environments [3].

In a recent work, Duarte et al. [10] showed for the first time a swarm robot-
ics system operating in realistic conditions, using evolved controllers exclusively.
This work used a swarm of aquatic surface robots with up to ten robots, and
demonstrated homing, clustering, dispersion, and monitoring behaviors. It was
shown that the evolved behaviors transferred successfully from simulation to real-
ity, and were able to display key swarm properties, such as scalability, robustness,
and flexibility.

2.2 Challenges in Evolutionary Robotics

While it has been shown that evolutionary techniques can produce successful
swarm behaviors, the complexity of such behaviors is still relatively limited [2,3].
Evolving controllers for tasks where the robots have to display a number of differ-
ent behaviors and fulfill multiple objectives poses a number of challenges for the
evolutionary process [6,11]. First, if the task objective is too difficult to achieve,
the initial solutions will tend to drift to uninteresting regions of the search space
and evolution will fail to bootstrap — the bootstrap problem [12]. Second, to
bootstrap the evolutionary process and to express the multiple objectives, the
fitness function typically becomes convoluted [13]. The fitness landscape there-
fore becomes more rugged, which can lead to deception and premature conver-
gence [14], where the evolutionary process is lead towards local optima, instead
of (near-)optimal solutions.

Several approaches have been proposed in order to address the bootstrap
problem and deception [15]. Incremental evolution [12], for instance, allows the
experimenter to decompose and incrementally evolve behavior. It can be applied
by progressively complexifying the task [12,16], or progressively making the
objectives more challenging [15]. An alternative approach is the use of nov-
elty/diversity driven evolution [17,18], in which individuals are rewarded for
displaying novel behaviors instead of their performance with respect to a tradi-
tional fitness function. Novelty search has been demonstrated to find controllers
that can solve deceptive tasks [19,20].

Another limitation commonly associated with ER techniques is that the
evolved behaviors often cannot be modified a posteriori without having to run
the evolutionary process again with the new requirements. This is especially true
if neural network controllers are used (which is the case in the majority of ER
works), as the controller is essentially a black box that receives sensory inputs
and outputs the actuator values.

216 M. Duarte et al.

2.3 Behavioral Composition Schemes

An alternative to attain more complex and reusable behaviors is to divide the
task into sub-tasks that are easier to solve, and then synthesize control for each
sub-task independently. In the past, several approaches have been proposed for
the synthesis of controllers by hierarchical task decomposition, applying dif-
ferent techniques such as genetic programming [21], neuroevolution [22,23], or
fuzzy logic control [24]. In the recently proposed hierarchical control synthesis
approach [7], a complex task is first decomposed in several simpler sub-tasks.
Control is then synthesized for the different sub-tasks, resulting in a number of
behavior primitives, i.e., sub-controllers that have direct control over the robot’s
actuators. These behavior primitives can then be combined using a behavior arbi-
trator, which delegates control to one of it’s sub-controllers. The approach allows
for controller hierarchies of arbitrary depth, where behavior arbitrators can del-
egate control to lower-level arbitrators until a behavior primitive is reached.

One of the advantages of the hierarchical control synthesis approach is that
it allows for hybrid controllers, that is, different types of control synthesis tech-
niques can be used. In this way, it is possible to: (i) apply evolutionary techniques
in order to automatically synthesize control for particular sub-tasks, (ii) compose
increasingly complex controllers that leverage previously synthesized behaviors,
and (iii) enable the transfer of control from simulation to reality, by maintain-
ing the complexity of each behavior low enough to allow for the evolution of
general and robust behaviors. The hierarchical control synthesis approach has
been demonstrated to solve tasks beyond the complexity limits of traditional
ER techniques in real robotic hardware for single-robot systems [7], and it has
also been shown in a proof-of-concept simulation-based study how such scheme
could also be applied to swarms of robots [25].

In [10], it was shown how evolved swarm behaviors can be combined by exe-
cuting them in a fixed sequence to produce a controller for an environmental
monitoring task. Such a simple composition scheme cannot, however, accommo-
date stochastic events in the environment. In this paper, we extend this work by
employing hierarchical control synthesis. Using such an approach allows robots to
switch behaviors based on their current state and sensory inputs, which enables
a broader range of tasks to be addressed.

3 Experimental Setup

In our maritime intruder detection task, the robots are initially located at a
base station, to which they must periodically return in order to recharge their
batteries. The swarm must monitor a previously designated area, delimited by
a geo-fence, and pursue intruders that try to cross the area. Below, we describe
the robotic platform used for our real experiments, and the simulation setup
used to synthesize control.

Hybrid Control for a Real Swarm Robotics System 217

Pursuing Robots Intruder

Fig. 1. A photo of a group of robots in the area where the experiments were performed.

3.1 Robotic Platform

For the experiments, we use an aquatic swarm robotics system, which is com-
posed of small (60 cm in length) and inexpensive (≈300 EUR/unit) differential
drive mono-hull robots [10] (see Fig. 1). The robots can move at speeds of up to
1.7 m/s (3.3 kts) and are equipped with a GPS and a compass for navigation.
The robots broadcast information (such as their position) to their neighbors
using Wi-Fi up to a range of 40 m. The robots are completely autonomous and
each robot is controlled by an onboard single-board computer (Raspberry Pi 2).
The swarm is homogeneous, meaning that all robots are identical both in terms
of morphology and of control. Each behavior primitive receives the sensor values
and has two outputs that control the linear speed and the angular velocity of
the robot. These values are then converted to left and right motor speeds.

We implemented four sensors for the detection of points and objects of inter-
est in the task environment. The sensor values are obtained by calculating the
relative distances and orientations of entities in the environment of which the
robot is currently aware. The following sensors were implemented (see [10] for
details):

Waypoint sensor: Detects waypoints in the environment and returns two val-
ues: (i) the relative angle from the robot to the waypoint, and (ii) the distance
from the robot to the waypoint.

Robot sensor: Measures the distance to nearby robots using four equally-sized
slices around the perimeter of the robot.

Intruder sensor: Measures the distance to nearby intruders using four equally-
sized slices around the perimeter of the robot.

Collective intruder sensor: Measures the distance to nearby intruders based
on information shared by neighboring robots.

Geo-fence sensor: Detects geo-fences in the environment and returns two val-
ues: (i) the distance to the closest edge of a geo-fence using four equally-sized
slices around the perimeter of the robot, and (ii) whether or not the robot
is inside a geo-fence.

The role of the intruder is played by a robot executing a path-following con-
troller. The robots are aware of the intruder’s position up to the range of the

218 M. Duarte et al.

onboard intruder sensors. When a robot detects an intruder using its onboard sen-
sors, it shares the intruder’s position with neighboring robots. Neighboring robots,
in turn, use the received positions to compute the reading for their collective sen-
sors, effectively extending their sensing capabilities [26]. The readings for the col-
lective sensors are calculated by taking into account the robot’s own location and
orientation, as well as the received location. For the robotic controller, the col-
lective sensor is indistinguishable from onboard sensors, since the communication
and integration of received positions is part of the low-level firmware and not of
the controller itself. We used a range of 40 m (equivalent to the communication
range of the robots) for the robot sensors, the collective intruder sensors, and the
geo-fence sensors, and a range of 20 m for the onboard intruder sensors.

3.2 Simulation Model

All controllers were synthesized offline, in simulation, using JBotEvolver, a sim-
ulation platform and neuroevolution framework [27]. We used a two-dimensional
simulation environment, where the robots are abstracted as circular objects with
a certain heading and position. In order to maintain the computational feasibil-
ity of the evolutionary process, we simplified the robot model by not including
complex physics simulation and fluid dynamics. Instead, the robot model was
based on simple measurements of real robots, both in terms of movement, and
in terms of sensing.

The real robots’ sensors and actuators introduce a high degree of stochastic-
ity, such as GPS and compass errors/drifts, or varying motor performance. In
order to facilitate the transfer from simulation to reality, noise was applied to
sensors, actuators, and environmental features during the evolutionary process
(as advocated in [28,29]), based on measurements obtained from real robots.
We used the following different types of noise: (i) water currents that affected
the robots’ position with a random magnitude in the range [0, 1] m/s and a ran-
dom direction, (ii) GPS errors up to 1.8 m and compass errors up to 10◦, and
(iii) motor speed offsets up to 10% of the maximum speed, motor output noise
of up to 5%, and heading offset of up to 5%. A complete description of the robot
model, the evolutionary parameters, and the different types of noise used can be
found in [10].

4 Evolution of Behavior Primitives

Each behavior primitive is an artificial neural network, which is synthesized using
the NEAT [30] evolutionary algorithm. We decomposed the complete intruder
detection task into four different sub-tasks: (i) go to area, (ii) recharge, (iii) area
monitoring, and (iv) pursue intruder. A homing behavior primitive is used as
a general navigation behavior both for the go to area and recharge sub-tasks.
Controllers for the homing and area monitoring behavior primitives were reused
from experiments presented in a previous study [10], and therefore were not
re-evolved for these experiments. The pursue intruder behavior primitive was

Hybrid Control for a Real Swarm Robotics System 219

evolved specifically for the experiments presented in this paper. Each sub-task
was evolved for a total of 100 generations, with a population size of 150 individ-
uals. The behavior primitives were then combined in a hybrid controller using a
manually programmed behavior arbitrator (see Sect. 5). The evolutionary setups
for the individual behavior primitives are summarized below.

Homing: In the homing task, the swarm of robots had to navigate to a given
waypoint while avoiding collisions among the robots. During evolution, the can-
didate solutions were evaluated with different numbers of robots, and waypoints
in different locations. The robots were positioned up to 50 m away from the
waypoint, and were rewarded for minimizing their distance to the waypoint,
according to the following equation:

fhoming =

(
1
T

T∑
t=1

1
R

R∑
r=1

startingDistr − distr,t
startingDistr

)
× S, (1)

where T is the maximum number of time steps, R is the number of robots,
startingDistr is the initial distance from robot r to the waypoint, and distrt is
the distance of robot r to the waypoint at time t.

Collisions between robots are undesirable in any task, as they can damage
the real robots. To avoid collisions, we introduced a safety coefficient (S) when
assessing the fitness in all task setups, which penalized solutions where robots
get too close to one another (less than 3 m). The safety coefficient S is in the
range [0.1,1], and is inversely proportional to the minimum distance between any
two robots in the current simulation trial (minDist):

S = 0.1 + max(0,min(3,minDist))/3 × 0.9. (2)

Area Monitoring: In the area monitoring task, a geo-fence delimits an area of
interest, and the robots should coordinate to continuously cover as much of the
area as possible. During evolution, the controllers were assessed in a variety of
randomly generated areas with different shapes. For the purpose of this task, we
considered that each robot covers a circular area around it with a fixed radius.
The challenge in this task is to find a general movement pattern that takes into
account many different shapes of the monitoring area and varying numbers of
robots.

In order to assess the performance of candidate solutions, we divided the
monitoring area into a grid with a fixed cell size of 1 m2. Each robot could visit
cells within the coverage radius V , setting its value to 1. The value of previously
visited cells decayed linearly over a time frame of 100 s, down to 0. Controllers
were scored based on how much of the grid was covered over time, according to
the following equation:

fmonitor =

(
1
T

T∑
t=1

1
C

C∑
c=1

val(ct)

)
× S, (3)

220 M. Duarte et al.

where T is the maximum number of time steps, C is the number of cells, and
val(ct) is the value of cell c at time t.

Pursue Intruder: To evolve the pursue intruder behavior primitive, we used
an onboard intruder sensor with a range of 20 m, and a collective [26] intruder
sensor with a range of 40 m. During evolution, robots were randomly spread in
a given area, and one intruder traversed the area with a randomly generated
trajectory. When a robot detected an intruder, the robot should attempt to
remain within range of it. In simulation, we rewarded controllers according to
the following equation:

fintruder =

(
1
T

T∑
t=1

1
R

R∑
r=1

found(rt)

)
× S, found(rt) =

{
1, within range
0, else

(4)
where T is the maximum number of time steps, R is the number of robots, and
found(rt) indicates whether or not robot r is detecting the intruder at timestep t.

Evolutionary Results: The results of the evolutionary algorithm for all tasks
can be found in Fig. 2. As it can be seen in the figure, each individual task was
relatively simple to solve and effective solutions for all tasks were found within
100 generations.

5 Top-Level Behavior Arbitrator

In this section, we detail the task setup for the complete intruder detection task
and conduct a series of experiments to: (i) study how changes to the high-level

Best three runs Average of all runs

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100

Pursue Intruder

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100

Generation

Area Monitoring

0.0

0.2

0.4

0.6

0 25 50 75 100

P
os

t−
ev

al
ua

tio
n

fit
ne

ss

Homing

Fig. 2. Fitness plots for the three different behavior primitives. The plots show the
highest fitness scores found so far. The red lines depict the three highest-scoring evolu-
tionary runs, while the blue line depicts the average of the ten runs, with the respective
standard deviation shown in gray (Color figure online).

Hybrid Control for a Real Swarm Robotics System 221

behavior arbitrator impact the overall swarm behavior, (ii) study how the swarm
size and environment’s size affect the performance of system, and (iii) validate
the transferability of the controllers by testing them in a real robotic swarm.

5.1 Task Setup

The intruder detection task is carried out in square-shaped monitoring areas
with different sizes. We evaluated the controllers in six experimental setups with
different numbers of robots and monitoring area sizes, maintaining the number
of robots proportional to the size of the area, see Table 1. The base station, where
the robots start the task, is located 20 m from the monitoring area (see Fig. 3). In
each trial, an intruder makes a total of four crossings of the area, and the robots
should detect and remain within range of their onboard intruder sensors (20 m).
The task terminates after the intruder’s fourth crossing. The onboard battery
allows a robot to operate for 8 min. The battery limitation was imposed to
facilitate real-robot experiments of relatively short duration while still requiring
the use of the recharging behavior. The robots need to return to the base station
in order to recharge the battery when it reaches 10 %. In the beginning of the
task, the battery level of each robot is set to between 50 % and 100 %, and the
robot receives and stores a waypoint and a geo-fence that correspond to the
position of the base station and to the monitoring area, respectively.

5.2 Testing Different Arbitrators

After we evolved the pursue intruder behavior primitive, we combined it with the
two previously evolved [10] homing and area monitoring behavior primitives using

Base
station 1 2 3 4

20m

M
onitoring area

Intruder
path

Fig. 3. Representation of the experimental environment. The robots are deployed from
a base station, to which they must regularly return in order to recharge their batteries.
An intruder makes a total of four crossings (1–4, in red) through the monitoring area
(dashed lines), and the experiment ends after the last crossing (Color figure online).

222 M. Duarte et al.

Go to
area

Recharge

Area
monitoring

Pursue
intruder

Within 10 m
of waypoint

Battery
recharged

Robots
closer to
intruderLow batte

ry

N

N

Intruder
detected

Low battery

No intruder
for 30 sec

Intruder
detected

Random walk;
Monitoring

Pursue All

Pursue N

Top-level arbitrator:

Fig. 4. An FSM representing the preprogrammed top-level arbitrator. The differ-
ently colored states and transitions represent incremental extensions to the arbitrator.
Random walk: the controller will monitor the area individually and manage the bat-
tery level. Monitor: the controller will monitor the area cooperatively and manage
the battery level. Pursue All: the controller will actively pursue a detected intruder.
Pursue N: we limit the number of robots that can actively pursue the intruder. In
this last case, the dashed transition from the “Area Monitoring” state to the “Pursue
Intruder” state is not used (Color figure online).

a simple finite state-machine (FSM) pre-programmed arbitrator. The arbitrator
chooses which behavior should be active at any given time, depending on the cur-
rent state of the robot and the robot’s sensory inputs. We tested different FSMs
to incrementally complexify the collective swarm behavior in order to achieve the
task goal. Four different FSMs were evaluated in simulation, see Fig. 4:

Random walk: Monitor individually and recharge behavior, no intruder pursuit.
Monitor: Monitor cooperatively and recharge behavior, no intruder pursuit.
Pursue All: Pursue intruder with no restrictions (N = ∞).
Pursue 1: Pursue intruder only if there is no one else pursuing (N = 1).
Pursue 3: Pursue intruder if there are less than 3 robots closer to the intruder

(N = 3).

To analyze the collective behaviors obtained with the different FSMs, we
relied on three metrics: (i) observation time: the proportion of time where the
intruder is within the range of at least one robot’s sensors when inside the area,
(ii) near robots: the average number of robots within range of the intruder, and
(iii) coverage: the average distance from each robot to the closest neighbor.

As the results in Fig. 5 show, the Monitor arbitrator performs worse than
the remaining arbitrators regarding observation time and near robots met-
rics (p < 0.001)1, since the robots do not actively pursue the intruder. The
Random walk arbitrator, used as a baseline, performed significantly worse than

1 Unless indicated otherwise, the statistical tests were performed using two-sided
Mann-Whitney U tests, with the p values adjusted using the Holm-Bonferroni
method when multiple comparisons were made.

Hybrid Control for a Real Swarm Robotics System 223

Fig. 5. Three different metrics (observation time, near robots, and coverage) for five
variations of the behavior arbitrator. Each boxplot corresponds to 60 data points (10
samples per experimental setup, see Table 1).

all other arbitrators in these two metrics. The arbitrator with no restrictions
in the number of robots pursuing (Pursue All) achieves the highest number of
near robots. Adding restrictions to the number of pursuing robots (Pursue 1
and Pursue 3) significantly decreases the number of near robots (p < 0.001),
confirming that the value of N has a significant impact in the behavior of the
swarm. Regarding the observation time, all the arbitrators that use the pursue
behavior show no statistically significant differences (p = 0.09, Kruskal-Wallis
H test), indicating that as long as at least a single robot actively pursues an
intruder, the performance of the swarm remained identical.

The coverage metric reveals that there is a trade-off between the number
of pursuing robots and the coverage of the monitoring area. Having only one
robot pursuing the intruder does not negatively impact the coverage of the area,
when compared to the Monitor arbitrator (p = 0.56). Allowing more robots to
pursue the intruder, however, negatively impacts the coverage of the monitor-
ing area (the coverage differences between Pursue 1, Pursue 3, and Pursue All
are statistically significant, p < 0.05). This trade-off is explained by the higher
concentration of robots near the intruder. The lower coverage of the area did
not decrease the performance of the swarm in our setups, since there was only

Table 1. Parameters of each experimental setup.

Experimental setups S1 S2 S3 S4 S5 S6

Monitoring area side-length (m) 100 141 200 245 283 316

Number of robots 5 10 20 30 40 50

Experiment duration (minutes) 8 11 15 19 22 24

224 M. Duarte et al.

one intruder. A higher coverage, however, is advantageous for scenarios where
multiple intruders might cross the monitoring area simultaneously.

These results show how different swarm behaviors can be achieved by mak-
ing simple modifications to the behavior arbitrator, reusing the same behavior
primitives. For the remaining experiments in this paper, we chose the Pursue
3 behavior arbitrator for its higher behavioral complexity, and because of its
potential fault-tolerant characteristics in the case of a failure in one of the pur-
suing robots.

5.3 Scalability

We assessed the scalability of the Pursue 3 controller using different combi-
nations of swarm size and monitoring area size. We computed the observation
time metric in a total of 36 setups, each tested in 100 simulation samples. The
results show that the chosen controller was scalable both across the swarm size,
as well as the monitoring area size (see Fig. 6). There is always a performance
increase as the swarm size increases, or as the monitoring area size decreases.
Although we found no evidence of interference between the robots as the swarm
density increases [31], such a result could be related with the idiosyncrasies of the
task, which benefits from more robots covering the monitoring area. In previous
work [10], we have shown that the area monitoring and the homing behaviors
were scalable with respect to the swarm size. The results presented here suggest
that the combination of multiple scalable swarm behaviors results in a scalable
composed behavior.

Fig. 6. Proportion of time the intruder was detected when inside the area, in different
task setups with varying number of robots and area size. Each setup was repeated in
100 simulations.

Hybrid Control for a Real Swarm Robotics System 225

6 Transferring Control to Real Robots

We performed real-robot experiments at Parque das Nações, Lisbon, Portugal, in
a semi-enclosed area in the margin of the Tagus river. We used experimental setup
S1, a square-shaped monitoring area with a size of 100 m by 100 m (see Fig. 3)
and a swarm composed of five robots. We conducted three repetitions of the task
with the Pursue 3 controller. In order to compare the controller’s performance on
the real robots with its performance in simulation, we ran 100 simulation samples
using the same experimental setup. The results are shown in Fig. 7.

In the experiments with the real robots, the swarm was able to find the
intruder in all crossings, as shown in Fig. 7 (top). The plot shows that up to four
robots followed the intruder simultaneously, and once an intruder was detected,
it was always followed continuously until it left the monitoring area. In five of the
12 crossings, the intruder was seen almost as soon as it entered the monitoring
area, and then followed during the entirety of its crossing (crossings A-3, B-1,
B-3, C-1 and C-2). Figure 8 shows an example of the swarm’s behavior in the
real-robot experiments. The performance of the controller on the real robots was
very similar to the performance in simulation, see Fig. 7 (bottom, observation

Fig. 7. Top: number of robots pursuing the intruder over time for the three real-robot
experiments. The period in which the intruder is traversing the monitoring area is
shown in gray, and the number of robots pursuing at any given instant is shown in
blue. Note that the intruder was detected in all crossings. Bottom: comparison of the
results in simulation and on the real robots, using the metrics presented in Sect. 5.

226 M. Duarte et al.

Fig. 8. Traces of the first 300 s from sample C of the real-robot experiments, taken
at 50 s intervals. The swarm is shown in blue, and the intruder is shown in red. The
labels identify specific events that highlight the behavioral capabilities of the swarm.
A: swarm going to the monitoring area. M: swarm monitoring the area. P: robots
pursuing an intruder. F: temporary motor failure in one of the robots. B: robots aban-
doning the pursuit when the intruder leaves the monitoring area. R: robot returning
to the base station to recharge (Color figure online).

Hybrid Control for a Real Swarm Robotics System 227

time): on average, the intruder was followed during 68 % of the time in the real
scenario, and 66 % in simulation. The average number of pursuing robots is also
close to what was observed in simulation. The coverage was slightly higher in
reality than in simulation, which is consistent with the results reported in [10]
for the evolved monitoring controller. Overall, these results show that the hybrid
controller successfully crossed the reality gap, achieving a similar behavior and
a similar performance on the real robots as in simulation.

7 Conclusions

In this paper, we explored how hybrid control can produce modular and flexible
swarm behaviors, and enable the control of swarm robotics systems in complex
tasks with realistic constraints. We applied the approach to an intruder detection
task, where a swarm of robots had to navigate to a predefined area, monitor the
area, and follow any intruders that crossed it. At the same time, the robots had
to manage their battery level by returning periodically to a base station in order
to recharge.

We reused two evolved behavior primitives from a previous study (homing
and area monitoring), and evolved a behavior primitive for intruder pursuit.
These behaviors were then combined with a behavior arbitrator consisting of
a manually programmed finite state-machine. We first tested multiple variants
of the behavior arbitrator, and showed how simple modifications resulted in
different swarm behaviors, using the same evolved behavior primitives. We then
tested the scalability of the composed behavior, showing that it scales predictably
with the number of robots and the size of the monitoring area. Finally, we tested
the controller in real robots, using a swarm of five aquatic surface robots and
one intruder. The controllers successfully crossed the reality gap by achieving a
similar performance on the real robots as in simulation.

The combination of multiple evolved sub-controllers using a finite state-
machine allowed us to leverage evolution’s automatic synthesis of self-organized
behavior, while at the same time provided high-level control of the swarm behav-
ior through simple manually programmed rules. In summary, our results show
that hybrid control introduces a series of advantages for the synthesis of control
for robotic swarms: (i) the decomposition of the task into simpler sub-tasks facil-
itates the use of evolutionary techniques for the synthesis of behaviors; (ii) mul-
tiple evolved behaviors can be combined to produce control for complex swarm
robotics tasks; (iii) previously evolved control can be reused in different appli-
cations, simplifying the synthesis of control for new tasks, (iv) the flexibility
of manually programmed behavior arbitrators can enable realistic task-specific
constraints to be addressed quickly, without the need to re-evolve control, and
(v) the reality gap can be effectively overcome in complex tasks by relying on
general and robust behavior primitives.

228 M. Duarte et al.

Future Work

We have shown that hybrid control can be used to solve a variety of tasks in
single [7] and multirobot systems. In ongoing work, we are assessing the use of
hybrid control in additional swarm robotics tasks of varying complexity. Partic-
ularly, we are studying when hybrid control should be used instead of monolithic
evolution, and to which degree a task should be decomposed. The hierarchical
control synthesis approach has, so far, only been tested with homogeneous robot
systems. An opportunity for this line of research is related to the extension of the
approach to heterogeneous multirobot systems. Since hybrid controllers simplify
the manual synthesis of high-level control, it becomes possible to have different
sub-sets of robots with specialized behaviors, by varying only the behavior arbi-
trators. In this way, the swarm could benefit from an explicit division of labor
suited to the needs of the task.

Acknowledgements. This work was supported by Fundação para a Ciência e a
Tecnologia (FCT) under the grants, SFRH/BD/76438/2011, SFRH/BD/89095/2012,
PEst-OE/EEI/LA0008/2013, and EXPL/EEI-AUT/0329/2013.

References

1. Şahin, E.: Swarm robotics: from sources of inspiration to domains of applica-
tion. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 10–20. Springer, Heidelberg (2005)

2. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(8), 292–321
(2016)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Nolfi, S., Floreano, D.: Evolutionary Robotics: The biology, Intelligence, and Tech-
nology of Self-organizing Machines. MIT Press, Cambridge (2000)

5. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in
Groups of Autonomous Robots. SCI, vol. 108. Springer, Heidelberg (2008)

6. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. (2016, in press)

7. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hybrid robotic con-
trollers for complex tasks. J. Intell. Robot. Syst. 78(3–4), 463–484 (2015)

8. Silva, F., Duarte, M., Oliveira, S.M., Correia, L., Christensen, A.L.: The case
for engineering the evolution of robot controllers. In: Proceedings of the Inter-
national Conference on the Simulation & Synthesis of Living Systems (ALIFE),
pp. 703–710. MIT Press, Cambridge (2014)

9. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.: Evolutionary robotics: what,
why, and where to. Front. Robot. AI 2(4) (2015)

10. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M.,
Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic
surface robots (2015). Preprint, http://arxiv.org/abs/1511.03154

11. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimi-
sation in evolutionary robotics. PLoS ONE 10(8), e0136406 (2015)

http://arxiv.org/abs/1511.03154

Hybrid Control for a Real Swarm Robotics System 229

12. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adapt. Behav. 5(3–4), 317–342 (1997)

13. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:
a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

14. Whitley, L.D.: Fundamental principles of deception in genetic search. In: Proceed-
ings of the 1st Workshop on Foundations of Genetic Algorithms, pp. 221–241.
Morgan Kaufmann, San Mateo (1991)

15. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intel. 7(2), 71–93 (2014)

16. Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers for a
highly integrated task. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam,
J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS
(LNAI), vol. 4095, pp. 473–484. Springer, Heidelberg (2006)

17. Lehman, J., Stanley, K.: Abandoning objectives: evolution through the search for
novelty alone. Evol. Comput. 19(2), 189–223 (2011)

18. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robot-
ics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

19. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems
with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)

20. Gomes, J., Christensen, A.L.: Generic behaviour similarity measures for evolution-
ary swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation Conference (GECCO), pp. 199–206. ACM, New York
(2013)

21. Lee, W.P.: Evolving complex robot behaviors. Inf. Sci. 121(1–2), 1–25 (1999)
22. Larsen, T., Hansen, S.T.: Evolving composite robot behaviour - a modular architec-

ture. In: Proceedings of the International Workshop on Robot Motion and Control
(RoMoCo), pp. 271–276. IEEE Press, Piscataway (2005)

23. Becerra, J.A., Bellas, F., Santos, J., Duro, R.J.: Complex behaviours through mod-
ulation in autonomous robot control. In: Cabestany, J., Prieto, A.G., Sandoval, F.
(eds.) IWANN 2005. LNCS, vol. 3512, pp. 717–724. Springer, Heidelberg (2005)

24. Tunstel, E.: Mobile robot autonomy via hierarchical fuzzy behavior control. In:
Proceedings of the International Symposium on Robotics and Manufacturing
(WAC), pp. 837–842. ASME Press, New York (1996)

25. Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms
of aquatic drones. In: Proceedings of the 14th International Conference on the
Synthesis & Simulation of Living Systems, pp. 785–792. MIT Press, Cambridge
(2014)

26. Rodrigues, T., Duarte, M., Figueiró, M., Costa, V., Oliveira, S.M., Christensen,
A.L.: Overcoming limited onboard sensing in swarm robotics through local commu-
nication. In: Nguyen, N.T., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau,
S., Filipe, J. (eds.) TCCI XX. LNCS, vol. 9420, pp. 201–223. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-27543-7 10

27. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotE-
volver: a versatile simulation platform for evolutionary robotics. In: Proceedings of
the 14thInternational Conference on the Synthesis & Simulation of Living Systems,
pp. 210–211. MIT Press, Cambridge (2014)

28. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1996)

http://dx.doi.org/10.1007/978-3-319-27543-7_10

230 M. Duarte et al.

29. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325–368 (1997)

30. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

31. Hamann, H.: Towards swarm calculus: universal properties of swarm performance
and collective decisions. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp.
168–179. Springer, Heidelberg (2012)

EvoSTOC

Direct Memory Schemes for Population-Based
Incremental Learning in Cyclically Changing

Environments

Michalis Mavrovouniotis(B) and Shengxiang Yang

School of Computer Science and Informatics, Centre for Computational
Intelligence (CCI), De Montfort University, The Gateway, Leicester LE1 9BH, UK

{mmavrovouniotis,syang}@dmu.ac.uk

Abstract. The population-based incremental learning (PBIL) algo-
rithm is a combination of evolutionary optimization and competitive
learning. The integration of PBIL with associative memory schemes
has been successfully applied to solve dynamic optimization problems
(DOPs). The best sample together with its probability vector are stored
and reused to generate the samples when an environmental change
occurs. It is straight forward that these methods are suitable for dynamic
environments that are guaranteed to reappear, known as cyclic DOPs.
In this paper, direct memory schemes are integrated to the PBIL where
only the sample is stored and reused directly to the current samples.
Based on a series of cyclic dynamic test problems, experiments are con-
ducted to compare PBILs with the two types of memory schemes. The
experimental results show that one specific direct memory scheme, where
memory-based immigrants are generated, always improves the perfor-
mance of PBIL. Finally, the memory-based immigrant PBIL is compared
with other peer algorithms and shows promising performance.

1 Introduction

Population based incremental learning (PBIL) is an abstraction of evolutionary
algorithms (EAs), which combines evolutionary optimization with competitive
learning [1]. More precisely, PBIL explicitly maintains the statistics contained in
an EA’s population. Similarly to EAs, PBIL algorithms have been successfully
applied to different benchmark problems and real-world applications [2–5]. In
most cases, PBILs are applied to stationary optimization problems. However,
many real-world problems have a dynamic environment in which the objective
function, decision variables, problem instance, constraints, and so on, may vary
over time [6]. Dynamic optimization problems (DOPs) are often more challenging
to address because the moving optimum needs to be tracked.

Similarly with EAs, PBIL faces the same serious challenge as EAs when
addressing DOPs, i.e., premature convergence. In fact, it has been confirmed
that PBIL maintains significantly lower diversity than an EA does [3]. Different
strategies taken from EAs have been integrated into PBILs to address DOPs,

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 233–247, 2016.
DOI: 10.1007/978-3-319-31153-1 16

234 M. Mavrovouniotis and S. Yang

including memory schemes [3], hyper-learning scheme [4], multi-population
schemes [7] and immigrants schemes [5,8].

In this paper, we focus on DOPs that are subject to cyclic environments,
where the environments are guaranteed to re-apper in the future. Many real-
world situations have cyclic or approximately cyclic dynamic environments. For
example, the traffic jams in the road system are more likely to re-appear during
the day. Associative memory schemes have been found suitable for cyclic DOPs,
where the best samples associated with environmental information of previously
optimized environments are stored and reused when the relevant environments
re-appear [3,9]. In this paper, we integrate direct memory schemes with PBIL
and investigate their effect. Their difference is that direct memory schemes store
only the best samples and reuse them directly to the samples whereas associative
memory schemes have an indirect impact on the samples generated.

Using the exclusive-or (XOR) DOP generator that constructs cyclic DOPs
proposed in [3], a series of DOPs are systematically constructed as the dynamic
test environments and experiments are carried out to investigate the performance
of PBILs with direct memory schemes. Based on the experimental results, the
effect of direct memory schemes on the performance of PBILs in dynamic envi-
ronments is analyzed. Among the direct memory schemes analyzed in this paper,
the memory-based immigrants scheme has the best performance in almost all
test cases. The specific algorithm is then compared with other peer PBILs and
EAs and shows competitive performance.

The rest of the paper is organized as follows. Section 2 introduces the stan-
dard PBIL algorithm. Section 3 describes the existing PBIL with an associative
memory scheme and the proposed PBILs with direct memory schemes. Section 4
describes the construction of cyclic DOPs used for this study. The experimental
study is presented in Sect. 5. Finally, Sect. 6 concludes this paper with several
observations and discusses relevant future work.

2 Population-Based Incremental Learning

The standard PBIL (SPBIL) algorithm, first proposed by Baluja [1], is a combi-
nation of evolutionary optimization and competitive learning. The aim of SPBIL
is to generate a real-valued probability vector P (t) = {P1, . . . , Pl} (l is the binary
encoding length), at each generation t, which creates high quality solutions with
high probability when sampled. Each element Pi(i = 1, . . . , l) in the probability
vector is the probability of creating an allele “1” in locus i. More precisely, a
solution is sampled from the probability vector P (t) as follows: for each locus i,
if a randomly generated number R ∈ {0, 1} < Pi, it is set to 1; otherwise, it is
set to 0.

SPBIL starts from an initial (central) probability vector P (0) with values
of each entry set to 0.5. This means when sampling by this initial probability
vector random solutions are created because the probability of generating a “1”
or “0” on each locus is equal. However, as the search progresses, the values
in the probability vector are gradually moved towards values representing high
evaluation solutions. The evolution process is described as follows.

Direct Memory Schemes for Population-Based Incremental Learning 235

For every generation t, a set S(t) of n samples (solutions) are created accord-
ing to the current probability vector P (t). The set of samples are evaluated
according to the problem-specific fitness function. Then, the probability vector
is moved towards the best solution xbs(t) of the set S(t) as follows:

Pi(t + 1) ← (1 − α) × Pi(t) + α × xbs(t), i = {1, . . . , l}, (1)

where α is the learning rate, which determines the distance the probability vector
is moved for each generation.

After theprobabilityvector is updated toward thebest sample, in order tomain-
tain the diversity of sampling, it may undergo a bit-wise mutation process [10].
Mutation is applied to the SPBIL studied in this paper since diversity maintenance
is important when addressing DOPs [3]. The mutation operation always changes
the probability vector toward the central probability vector, where values are set to
0.5, to increase exploration. The mutation operation is carried out as follows. The
probability of each locus Pi is mutated, if a random number R ∈ {0, 1} < pm (pm
is the mutation probability), as follows:

P ′
i (t) =

⎧⎪⎨
⎪⎩

Pi(t) × (1 − δm), if Pi(t) > 0.5,

Pi(t) × (1 − δm) + δm, if Pi(t) < 0.5,

Pi(t), otherwise,
(2)

where δm is the mutation shift that controls the amount a mutation operation
alters the value in each bit position. After the mutation operation, a new set of
samples is generated by the new probability vector and this cycle is repeated.

As the search progresses, the entries in the probability vector move away
from their initial settings of 0.5 towards either 0.0 or 1.0. The search progress
stops when some termination condition is satisfied, e.g., the maximum allowable
number of generations is reached or the probability vector is converged to either
0.0 or 1.0 for each bit position.

PBIL has been applied to many optimization problems with promising results
[2]. Most of these applications assume stationary environments, whereas only
a few applications considered dynamic environments. To address DOPs with
PBILs, the algorithm needs to be enhanced to maintain diversity. Existing
strategies, which have been integrated with PBILs and were mainly inspired
by EAs, include associative memory schemes [3], hyper-learning schemes [4],
multi-population schemes [7] and immigrants schemes [5,8]. In this paper, we
integrate direct memory schemes, previously used to genetic algorithms (GAs)
[11], to PBILs to address cyclically changing DOPs.

3 Memory Schemes

3.1 PBIL with Associative Memory

Memory schemes have proved to be useful in dynamic environments, especially
when the environment changes cyclically. The stored information can be reused

236 M. Mavrovouniotis and S. Yang

when the environment cycles to previously optimized environments. An associa-
tive memory scheme was integrated to PBIL in [3] that stores good solutions
associated with environmental information.

Within the memory-enhanced PBIL (MPBIL) a memory of size m = 0.1 × n
(n is the population size) is used to store pairs of a sample with its associated
probability vector. The associative memory is initially empty and stores pairs
until it is full. The update policy of the memory (when it is full) is based on the
closest replacement strategy: the memory point with its sample BM (t) closest
to the best population sample of the current generation B(t) in terms of the
Hamming distance is replaced if it has the worst fitness; otherwise, the memory
remains unchanged. Every time the memory is updated with the sample B(t)
its probability vector P (t) is also stored in the memory. The memory is updated
at a specific random time as follows. At the end of every memory update at
generation t, a random number R ∈ [5, 10] is generated to determine the next
memory update time tM = t + R.

The samples in the memory are re-evaluated every generation. If at least one
sample has a change in its fitness, then a change has occurred to the environment.
Therefore, the best re-evaluated memory sample with its associated probability
vector will replace the current probability vector if the memory sample has
better fitness than the current best sample of the current probability vector. If
no environmental change is detected, MPBIL progresses as the SPBIL does.

3.2 PBIL with Direct Memory

Direct memory schemes have showed promising performance in DOPs when
applied to different GAs [11]. The difference of a direct memory scheme from
the associative memory scheme described previously for the MPBIL is that the
memory point consists of only the solution. In this paper, we integrate a direct
memory scheme into PBIL and introduce three algorithmic variations.

Memory-Enhanced PBIL. The direct memory of the memory-enhanced
PBIL (MEPBIL) is initialized with random points (solutions). Similarly with
MPBIL, the current best sample B(t) replaces the closest memory point BM (t)
(if no randomly initialized point still exists) if its fitness is better; otherwise,
the memory remains unchanged. A memory update occurs based on the sto-
chastic time tM as described previously in the MPBIL. In addition, the memory
is updated whenever a dynamic change occurs. In this way, the most relevant
information for the specific environment will be stored in the memory.

When a dynamic change is detected the current probability vector P (t) is not
replaced by the best memory probability vector as in MPBIL but the samples
stored in the memory are re-evaluated and merged with the current samples of
S(t). The best n − m samples will survive in the current S(t). In this way, the
probability vector will be learned toward B(t) that is most probably provided
by a sample that was stored in the memory. When a dynamic change is not
detected, the proposed MEPBIL progresses as SPBIL does.

Direct Memory Schemes for Population-Based Incremental Learning 237

Memory-Enhanced PBIL+Random Immigrants. Random immigrants
were previously integrated to PBIL to enhance their performance in (especially
severely changing) DOPs [8]. Random immigrants have the ability to maintain
the diversity. Since memory schemes are suitable for slightly or cyclically chang-
ing environments and random immigrants are suitable for severely changing envi-
ronments, a straightforward combination of MEPBIL with random immigrants
may combine the merits of both.

The memory-enhanced random immigrant PBIL (MRIPBIL) differs from
MEPBIL in only the additional immigration process. The immigration process
within MRIPBIL occurs after the probability vector is sampled. More precisely,
in every generation, ri × n immigrants are generated and replace the worst
samples in the current set of samples S(t), where ri is the replacement ratio and
n is the population size. In this way, the generated immigrants will maintain
diversity within the samples generated.

Memory-Based Immigrants PBIL. Based on the above consideration, the
memory-based immigrants scheme, which has been initially proposed for GAs
[11] to address cyclic DOPs, can be integrated with PBILs, denoted as memory-
based immigrants PBIL (MIPBIL) in this paper, to better tackle DOPs with
reappearing environments. A direct memory scheme is maintained and updated
as described previously for the MEPBIL and MRIPBIL algorithms.

Similarly with MRIPBIL above, MIPBIL also includes an immigration
process but generates memory-based immigrants instead of random ones. Differ-
ently from both MRIPBIL and MEPBIL, MIPBIL does not merge the memory
with the current samples but generates memory-based immigrants on every gen-
eration as follows. For each generation t, before the mutation operation described
in Eq. (2), the best memory point BM (t) is retrieved and used as the base to
generate immigrants. In every generation, ri × n memory-based immigrants are
generated by mutating bitwise with a probability pim. The generated immigrants
replace the worst individuals in the current set of samples S(t). In this way, the
samples of the next set S(t + 1) will have more direction toward the best point
retrieved from the memory.

4 Dynamic Test Environments

The XOR DOP generator [3,12] can construct dynamic environments from any
binary-encoded stationary function f(x)(x ∈ {0, 1}l) by a bitwise XOR opera-
tor. Since for the specific experimental study memory schemes are involved cyclic
DOPs are considered. With the XOR DOP, the cyclicity of the changing environ-
ments is controlled as follows. Initially, 2K XOR masks M(0), . . . ,M(2K − 1)
are generated as the base states in the search space randomly. Then, the envi-
ronment can cycle among these base states in a fixed logical ring. Suppose the
environment changes in every τ algorithmic generations, then the individuals at
generation t are evaluated as follows:

f(x, t) = f(x ⊕ M(It)) = f(x ⊕ M(k%(2K))), (3)

238 M. Mavrovouniotis and S. Yang

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0), k = �t/f�
is the index of the current environment, It = k%(2K) is the index of the base
state that the environment is in at generation t and M are the XORing masks.

The 2K XORing masks are generated as follows. First, K binary templates
T (0), . . . ,T (K−1) are constructed with each template containing exactly ρ×n =
l/K ones. Let M(0) = 0 denote the initial state. Then, the other XORing masks
are generated iteratively as follows:

M(i + 1) = M(i) ⊕ T (i%K), i = 0, . . . , 2K − 1. (4)

The templates T (0), . . . ,T (K−1) are first used to create K masks till M(K) = 1
and then orderly reused to construct another K XORing masks till M(2K) =
M(0) = 0. The Hamming distance between two neighbour XOR masks is the
same and equals ρ × n. Here, ρ ∈ [1/l, 1.0] is the distance factor, determining
the number of base states. A higher value of ρ means severer dynamic changes,
whereas a lower value of τ means faster dynamic changes.

In this paper, four 100-bit binary-encoded problems are selected as the sta-
tionary problems to generate DOPs. Each problem consists of 25 copies of 4-bit
building blocks and has an optimum value of 100. The first one is the OneMax
function, which aims to maximize the number of ones in a solution. The second
one is the Plateau function, where each building block contributes four (or two) to
the total fitness if its unitation (i.e., the number of ones inside the building block)
is four (or three); otherwise, it contributes zero. The third one is the RoyalRoad
function, where each building block contributes four to the total fitness if its
unitation is four; otherwise, it contributes zero. The fourth one is the Deceptive
function, where the building block is a fully deceptive sub-function. Generally,
the difficulty of the four functions for optimization algorithms is increasing in
the order from OneMax to Plateau to RoyalRoad to Deceptive.

5 Experimental Study

5.1 Experimental Setup

For each algorithm on a DOP, 30 independent runs were executed on the same
environmental changes and 100 environmental changes were allowed for each
run. The overall performance is calculated as follows:

F̄BOG =
1
G

G∑
i=1

⎛
⎝ 1

N

N∑
j=1

FBOGij

⎞
⎠ , (5)

where G is the number of generations of a run, N is the number of runs and
FBOGij is the best-of-generation fitness of generation i of run j. Moreover, the
diversity of the population was recorded every generation. The overall diversity
of an algorithm on a DOP is defined as:

T̄DIV =
1
G

G∑
i=1

⎛
⎝ 1

N

N∑
j=1

Divij

⎞
⎠ , (6)

Direct Memory Schemes for Population-Based Incremental Learning 239

where G and N are defined as in Eq. (5) and Divij is the diversity at generation
i of run j, which is defined as:

Divij =
1

ln(n − 1)

n∑
p=1

n∑
q �=p

HD(p, q), (7)

where l is the encoding length, n is the population size and HD(p, q) is the
Hamming distance between the p-th sample and q-th sample.

Dynamic test environments are generated from the four aforementioned
binary-encoded functions, described in Sect. 4, using the XOR DOP generator
with τ set to 10 and 50, indicating quickly and slowly changing environments,
respectively, and ρ set to 0.1, 0.2, 0.5 and 1.0, indicating slightly, to medium,
to severely changing environments, respectively. With the specific setting of ρ,
basically the environments cycles among 20, 10, 4, and 2 base states respectively.
As a result, eight cyclic dynamic environments (i.e., 2 values of τ × 4 values of
ρ) from each stationary function are generated to systematically analyze the
algorithms on the DOPs.

In order to have fair comparisons among PBILs, the population size, memory
size and immigrant replacement are set to such that each PBIL has 120 fitness
evaluation per generation. For memory-based algorithms the memory size was
set to m = 0.1×n and for all immigrant-based algorithms the immigrant replace-
ment ratio was set to ri = 0.2 and immigrant mutation probability pim = 0.01.
For all PBILs in the experiments, the parameters were set to typical values [3]
as follows: the learning rate α = 0.25, mutation probability pm = 0.05 with the
mutation shift δm = 0.05, and the elitism of size 1.

5.2 Experimental Study of Memory-Based PBILs

The experimental results of the proposed PBILs with direct memory schemes
(e.g., MEPBIL, MRIPBIL and MIPBIL) compared with the existing PBIL with
associative memory scheme (e.g., MPBIL) are shown in Fig. 1. The correspond-
ing statistical results are presented in Table 1, where Kruskal–Wallis tests were
applied followed by posthoc paired comparisons using Mann–Whitney tests with
the Bonferroni correction. The statistical results are shown as “−”, “+” or “∼”
when the first algorithm is significantly better than the second algorithm, when
the second algorithm is significantly better than the first algorithm, or when the
two algorithms are insignificantly different, respectively. To better understand
the behaviour of the PBILs the population diversity against generations for the
first 500 generations is plotted in Fig. 2 for the DOPs with ρ = 0.2. From Fig. 1
and Table 1, the following observations can be drawn.

First, among the PBILs with direct memory schemes, MIPBIL has the best
performance and outperforms both MEPBIL and MRIPBIL in most DOPs.
When random immigrants are hybridized with memory schemes the performance
is enhanced only in DOPs with ρ = 1.0 but degraded in the remaining DOPs; see
the comparisons of MEPBIL ⇔ MRIPBIL in Table 1. This is normal because
random immigrants generate high levels of diversity that help the adaptation

240 M. Mavrovouniotis and S. Yang

Fig. 1. Experimental results of memory-based PBILs for cyclic DOPs

Direct Memory Schemes for Population-Based Incremental Learning 241

Table 1. Statistical results of comparing memory-based PBILs for cyclic DOPs

τ = 10 τ = 50

DOPs, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Algorithms OneMax

MPBIL ⇔ MEPBIL − ∼ − − + + + −
MPBIL ⇔ MRIPBIL − − − − + ∼ + +

MPBIL ⇔ MIPBIL + + − ∼ + + + +

MIPBIL ⇔ MEPBIL − − − − − − − −
MIPBIL ⇔ MRIPBIL − − − − − − − +

MEPBIL ⇔ MRIPBIL − − ∼ + − − − +

Algorithms Plateau

MPBIL ⇔ MEPBIL − − − − + + + −
MPBIL ⇔ MRIPBIL − − − ∼ + ∼ + +

MPBIL ⇔ MIPBIL + + − + + + + +

MIPBIL ⇔ MEPBIL − − − − − − ∼ −
MIPBIL ⇔ MRIPBIL − − − − − − − +

MEPBIL ⇔ MRIPBIL ∼ − − + − − − +

Algorithms RoyalRoad

MPBIL ⇔ MEPBIL − − − ∼ ∼ + + −
MPBIL ⇔ MRIPBIL − − − + ∼ − − ∼
MPBIL ⇔ MIPBIL + + − + + + + ∼
MIPBIL ⇔ MEPBIL − − − − − − − −
MIPBIL ⇔ MRIPBIL − − − + − − − ∼
MEPBIL ⇔ MRIPBIL + − − + − − − +

Algorithms Deceptive

MPBIL ⇔ MEPBIL − − − ∼ + ∼ ∼ ∼
MPBIL ⇔ MRIPBIL − − − ∼ − − ∼ ∼
MPBIL ⇔ MIPBIL ∼ ∼ − ∼ + ∼ ∼ ∼
MIPBIL ⇔ MEPBIL − − − ∼ ∼ ∼ ∼ ∼
MIPBIL ⇔ MRIPBIL − − − ∼ − − ∼ ∼
MEPBIL ⇔ MRIPBIL − − − ∼ − − ∼ ∼

in severely changing environments but may disturb the optimization process in
slightly changing environments. In contrast, memory-based immigrants in MIP-
BIL generate guided diversity via transferring knowledge from previous environ-
ments. Figure 2 supports our claim since MRIPBIL maintains a higher diversity
level than MIPBIL.

Second, MEPBIL and MRIPBIL outperform MPBIL in most DOPs with
τ = 50 whereas MPBIL outperforms MEPBIL and MRIPBIL in most DOPs
with τ = 10; see the comparisons in Table 1. In contrast, MIPBIL outperforms
MPBIL in most DOPs; see the comparisons of MPBIL ⇔ MIPBIL in Table 1.

242 M. Mavrovouniotis and S. Yang

Fig. 2. Dynamic population diversity of PBILs for the first five hundred generations
on cyclic DOPs with ρ = 0.2

From Fig. 2 it can be observed that MIPBIL maintains higher diversity levels
than MPBIL especially in DOPs with τ = 10. Low diversity indicates that
MPBIL possibly loses its adaptation capabilities and cannot track the changing
environments when they change fast.

Direct Memory Schemes for Population-Based Incremental Learning 243

Since the memory-based immigrants scheme has the best performance over
the other direct memory schemes, we only consider MIPBIL for the remaining
experiments.

5.3 Experimental Study of MIPBIL with Other PBILs

The best performing PBIL with the direct memory scheme, i.e., MIPBIL is
compared with other existing PBILs: SPBIL [2], random immigrants PBIL
(RIPBIL) [3], elitism-based PBIL (EIPBIL) [8] and hybrid immigrants PBIL
(HIPBIL) [8]. The experimental results of the aforementioned algorithms are

Table 2. Experimental results of MIPBIL against other PBILs algorithms for cyclic
DOPs.

τ = 10 τ = 50

DOPs, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Algorithms OneMax

SPBIL 79.6 68.0 59.4 57.1 96.8 92.8 81.8 70.0

RIPBIL 79.3 75.5 74.8 80.7 96.7 92.6 89.0 92.2

EIPBIL 90.1 77.7 65.0 61.2 98.5 96.4 88.9 80.3

HIPBIL 88.1 77.1 75.1 82.9 98.1 95.7 90.7 94.0

MIPBIL 89.0 89.2 90.6 92.5 97.4 97.0 99.3 99.4

Algorithms Plateau

SPBIL 60.5 47.0 43.3 50.5 93.0 84.0 61.4 53.6

RIPBIL 60.7 55.4 55.1 66.5 92.7 83.4 76.3 83.9

EIPBIL 78.0 58.1 47.3 50.7 96.4 91.4 72.7 55.5

HIPBIL 74.2 59.2 56.9 71.4 95.7 89.9 78.4 87.4

MIPBIL 76.9 77.7 79.4 81.3 94.4 93.7 97.5 97.6

Algorithms RoyalRoad

PBIL 42.6 34.4 37.0 50.0 78.6 59.6 43.8 50.3

RIPBIL 45.1 40.5 43.9 59.2 77.7 60.7 59.5 72.7

EIPBIL 56.3 41.0 39.6 50.0 85.8 68.0 47.7 50.4

HIPBIL 52.6 44.3 46.4 64.8 84.3 66.2 60.5 76.6

MIPBIL 57.5 60.7 63.1 51.8 82.5 80.2 90.5 87.6

Algorithms Deceptive

SPBIL 67.1 64.9 69.6 87.5 78.2 75.3 76.9 87.5

RIPBIL 66.7 64.9 70.7 87.5 78.0 75.1 79.2 87.5

EIPBIL 72.6 69.2 72.7 87.5 80.1 78.5 80.7 87.5

HIPBIL 72.6 67.9 76.5 97.2 77.5 74.0 82.9 98.9

MIPBIL 75.2 76.4 81.0 87.5 84.7 86.7 87.4 87.5

244 M. Mavrovouniotis and S. Yang

Table 3. Experimental results of MIPBIL against MIGA for cylic DOPs.

τ = 10 τ = 50

DOPs, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Algorithms OneMax

MIPBIL (vs) 89.0 89.2 90.6 92.5 97.4 97.0 99.3 99.4

MIGA 82.1 83.5 92.7 96.0 95.9 93.6 98.4 99.3

Algorithms Plateau

MIPBIL 76.9 77.7 79.4 81.3 94.4 93.7 97.5 97.6

MIGA 65.4 67.3 82.3 89.7 91.4 86.5 95.3 97.6

Algorithms RoyalRoad

MIPBIL (vs) 57.5 60.7 63.1 51.8 82.5 80.2 90.5 87.6

MIGA 45.2 49.1 61.3 65.4 75.7 69.9 83.7 86.9

Algorithms Deceptive

MIPBIL (vs) 75.2 76.4 81.0 87.5 84.7 86.7 87.4 87.5

MIGA 66.0 73.4 82.5 86.0 81.3 85.2 86.9 87.2

presented in Table 2. Bold values indicate that the algorithm is significantly
better than the other algorithms using the same statistical method described
previously.

From Table 2, it can be observed that MIPBIL outperforms SPBIL in all
DOPs except some cases of the Deceptive function. Also, MIPBIL outperforms
the remaining algorithms in most DOPs. This is because MIPBIL can directly
move the population to the optimum or close to the optimum of previously opti-
mized environments. Specifically, MIPBIL is underperformed by EIPBIL only in
most DOPs with ρ = 0.1. This is because when ρ = 0.1 more base states (i.e.,
20) exist and the memory points stored may not be so accurate to the relevant
base states and may misguide the immigrants. As ρ increases the performance of
MIPBIL improves whereas EIPBIL degrades which further supports our claim.
MIPBIL is underperformed by HIPBIL only in some DOPs with ρ = 1.0. This
is because when ρ = 1.0 the environments switches between two fitness land-
scapes that are complementary to each other. Therefore, the dualism type of
immigrants (e.g., complementary to the best solution) generated in HIPBIL are
suitable to cope with these types of DOPs.

5.4 Experimental Results on Pairwise Comparisons of MIPBIL
with MIGA

Since the direct memory scheme, i.e., memory-based immigrants, integrated to
MIPBIL, was initially introduced and integrated to GAs [11], further pairwise
comparisons are performed in this section. Specifically, MIPBIL is compared
with memory-based immigrants GA (MIGA) [11]. MIGA is executed on the
same DOPs and common parameter settings with MIPBIL above (e.g., ri = 0.2,

Direct Memory Schemes for Population-Based Incremental Learning 245

Fig. 3. Dynamic performance of MIPBIL and MIGA for the first twenty environmental
changes on DOPs with τ = 50 and ρ = 0.2.

pim = 0.01 and m = 0.1 × n). The remaining MIGA parameters were set to
typical values as follows: generational, uniform crossover with pc = 0.6, flip
mutation with pm = 0.01, and fitness proportionate selection with elitism of size
1. The pairwise comparisons regarding the performance are given in Table 3. A
bold value indicates that the algorithm is significantly better than the other
using Mann–Whitney tests. The dynamic performance of the two algorithms
with respect to the best-of-generation fitness against generation on the DOPs
with τ = 50 and ρ = 0.2 is plotted in Fig. 3.

From Table 3, it can be observed that MIPBIL outperforms MIGA on all
DOPs with τ = 50 and on most DOPs with τ = 10 and ρ = 0.1 and ρ = 0.2.
MIGA outperforms MIPBIL in DOPs with τ = 10 and ρ = 0.5 and ρ = 1.0. This
is probably because the mutation operator of MIGA may have a faster effect than
the mutation operator of MIPBIL to the adaptation process of the algorithm.
The difference lies in that the former is direct (applied to the solutions) whereas
the latter is indirect (applied to the probabilistic vector) and may need some
time to express its effect.

246 M. Mavrovouniotis and S. Yang

6 Conclusions

Associative memory schemes have been successfully integrated with PBILs [3].
In this paper, three direct memory schemes are integrated with PBIL and their
performance is investigated on cyclically changing DOPs. The direct memory
scheme in which memory-based immigrants are generated has the best perfor-
mance when integrated with PBIL. Therefore, its performance is further com-
pared against other peer algorithms.

From the experimental results, the following concluding remarks can be
drawn. First, among the direct schemes integrated with PBIL, the memory-
based immigrants scheme has the best performance. Second, although associative
memory schemes contain more environmental information from direct memory
schemes, the latter may provide faster adaptation in PBILs. Third, PBILs may
also benefit when integrated with memory-based immigrants as with GAs [11].
In fact from the experiments it can be observed that MIPBIL outperforms MIGA
in many DOPs.

For future work, it would be interesting to apply PBILs to the Knapsack
problem that has many applications in the real world.

Acknowledgement. This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) of U.K. under Grant EP/K001310/1.

References

1. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, USA (1994)

2. Larrañaga, P., Lozano, J. (eds.): Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer, Norwell (2002)

3. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

4. Yang, S., Richter, H.: Hyper-learning for population-based incremental learning
in dynamic environments. In: IEEE Congress on Evolutionary Computation 2009,
CEC 2009, pp. 682–689 (2009)

5. Yang, S., Yao, X.: Experimental study on population-based incremental learn-
ing algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834
(2005)

6. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

7. Yang, S.: Population-based incremental learning with memory scheme for chang-
ing environments. In: Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation. GECCO 2005, 711–718. ACM, New York (2005)

8. Mavrovouniotis, M., Yang, S.: Population-based incremental learning with immi-
grants schemes for changing environments. In: Proceedings of the 2015 IEEE Sym-
posium on Computational Intelligence in Dynamic and Uncertain Environments
(CIDUE), pp. 1444–1451, December 2015

Direct Memory Schemes for Population-Based Incremental Learning 247

9. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environ-
ments. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler,
R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G.,
Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799. Springer,
Heidelberg (2006)

10. Baluja, S.: An empirical comparison of seven iterative and evolutionary function
optimization heuristics. Technical Report CMU-CS-95-193, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA (1995)

11. Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in
dynamic environments. Evol. Comput. 16(3), 385–416 (2008)

12. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithm. In: The 2003 Congress on Evolutionary Computation CEC 2003. vol. 3,
pp. 2246–2253, December 2003

Simheuristics for the Multiobjective
Nondeterministic Firefighter Problem

in a Time-Constrained Setting

Krzysztof Michalak1(B) and Joshua D. Knowles2

1 Department of Information Technologies, Institute of Business Informatics,
Wroclaw University of Economics, Wroclaw, Poland

krzysztof.michalak@ue.wroc.pl
2 School of Computer Science, University of Birmingham,

Edgbaston, Birmingham, UK
j.knowles.1@cs.bham.ac.uk

Abstract. The firefighter problem (FFP) is a combinatorial problem
requiring the allocation of ‘firefighters’ to nodes in a graph in order to
protect the nodes from fire (or other threat) spreading along the edges.
In the original formulation the problem is deterministic: fire spreads from
burning nodes to adjacent, unprotected nodes with certainty.

In this paper a nondeterministic version of the FFP is introduced
where fire spreads to unprotected nodes with a probability Psp (lower
than 1) per time step. To account for the stochastic nature of the prob-
lem the simheuristic approach is used in which a metaheuristic algorithm
uses simulation to evaluate candidate solutions. Also, it is assumed that
the optimization has to be performed in a limited amount of time avail-
able for computations in each time step.

In this paper online and offline optimization using a multipopula-
tion evolutionary algorithm is performed and the results are compared
to various heuristics that determine how to place firefighters. Given the
time-constrained nature of the problem we also investigate for how long
to simulate the spread of fire when evaluating solutions produced by an
evolutionary algorithm. Results generally indicate that the evolutionary
algorithm proposed is effective for Psp ≥ 0.7, whereas for lower probabil-
ities the heuristics are competitive suggesting that more work on hybrids
is warranted.

Keywords: Graph-based optimization · Nondeterministic firefighter
problem · Simheuristics

1 Introduction

The firefighter problem (FFP) is a discrete-time optimization problem in which
spreading of fire is modelled on a graph and the goal is to select nodes that should
be protected in order to prevent fire from spreading. The same formalism can
be used for analyzing threats in computer networks and a spread of diseases in
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 248–265, 2016.
DOI: 10.1007/978-3-319-31153-1 17

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 249

humans as well as in livestock. There are other similar problems complementary
to the FFP For example, in the area of research on broadcasting and computer
networks a question arises how many edges in the graph (rather than nodes)
should be prevented from transmitting to stop the spread of an infection [2].
The paper [9] studies evolving (i.e. growing) graphs and analyzes their proper-
ties. While the aforementioned paper does not discuss any means of preventing
the growth, some similarities can be seen between the evolving graphs and the
subgraph composed of the nodes on fire in the FFP.

Originally, the firefighter problem was proposed by Hartnell in 1995 [6] as a
single-objective, deterministic problem. Since then the research on the FFP has
followed three main directions. The first area is the analysis of various theoretical
aspects of the problem itself. For example, some researchers analyzed boundary
conditions for which it is possible to save the graph [4]. The second line of work
is the application of classical optimization methods, such as the linear integer
programming [3]. Only recently a third area emerged in which metaheuristic
algorithms are applied to the FFP. The paper [1], presented at the EvoCOP 2014
conference was, according to its authors, the first attempt to use a metaheuristic
approach (ACO) to solving the FFP. In a paper [11] published later the same
year the multiobjective version of the FFP was proposed and solved using and
evolutionary algorithm (EA). Two more papers on the FFP were published at
EvoCOP in 2015: [7] where variable neighborhood search (VNS) approach was
applied to the single-objective FFP and a solution representation suitable for this
algorithm was proposed, and [13] where the multiobjective version of the FFP
was tackled using a multipopulation algorithm Sim-EA with migration based on
similarity between search directions assigned to subpopulations.

All papers mentioned above concerned the deterministic version of the FFP.
In a paper [5] the FFP is studied on randomly constructed graphs with randomly
chosen starting points, but the spreading of fire is deterministic. In this paper
we introduce and study the nondeterministic version of the FFP which involves
uncertainty in the spreading of fire in the graph.

The rest of this paper is structured as follows. Section 2 provides a definition
of both the deterministic and the nondeterministic version of the FFP. In Sect. 3
the optimization method, an EA combined with simulation-based evaluation,
is described. Section 4 presents experiments including comparisons with some
simple but effective heuristics, and discusses the results. Section 5 concludes the
paper.

2 Problem Definition

The deterministic version of the firefighter problem can be formalized in the
following way. Let G = 〈V,E〉 be an undirected graph with Nv vertices. Each
of the nodes of G can be in one of the states from a set L = {′B′, ′D′, ′U′}
with the interpretation ′B′ = burning, ′D′ = defended and ′U′ = untouched.
The state of the graph at time t is denoted St and for any vertex v the state of
this vertex at time t is St[v]. Apart from the graph (stored, for example as an

250 K. Michalak and J.D. Knowles

adjacency matrix ANv×Nv
) the initial state S0 of the graph and the number Nf

of firefighters assigned per a time step are provided in each FFP instance. Most
often the initial state S0 is constructed by setting the state of vertices from a
given non-empty set ∅ �= S ⊂ V to ′B′ and the remaining ones to ′U′. Therefore,
we can consider an FFP instance as an ordered triple 〈G,S0, Nf 〉.

The spread of fire is simulated in discrete time steps t = 0, 1, . . . , with the
graph set to the initial state S0 at t = 0. In each time step t > 0 two events
occur. First, a predefined number Nf of still untouched nodes become defended
by firefighters (i.e. change their state from ′U′ to ′D′). Then the fire spreads along
the edges of the graph G from the nodes labelled ′B′ to the neighbouring nodes
labelled ′U′. Nodes defended by firefighters before fire gets to them (i.e. marked
′D′) remain protected until the end of the simulation. Conversely, nodes that
catch on fire are considered lost and firefighters are not assigned to them. The
simulation ends when fire cannot spread anymore because all nodes adjacent
to the burning ones are defended (we say that fire is contained) or when all
undefended nodes are burning.

A very often used representation of solutions of the FFP is a permutation-
based representation, even though other representations are also considered [7].
In the permutation-based representation an individual solution is encoded as a
permutation π of numbers 1, . . . , Nv. When firefighters are assigned, the first
Nf numbers for which the corresponding vertices are untouched (′U′) are taken
from π and the state of these selected vertices is changed to ′D′. The goal in the
single-objective FFP is to maximize the number of non-burning nodes (’D’
or ’U’) at the simulation end. Note, that we are only interested in the state of
the nodes. Edges in the graph just define the topology and are not themselves
subject to burning nor protecting by firefighters.

In the paper [11] the multiobjective version of the FFP was proposed in
which there are m values vj(v), j = 1, . . . , m assigned to each node v in the graph.
The objectives fj , j = 1, . . . , m attained by a given solution π are calculated
by simulating the spreading of fire from the initial state S0 until the fire stops
spreading. When the final state St is reached the objectives are calculated as:
fj =

∑
v∈V :St[v] �=′B′ vj(v), where vj(v) is the value of the node v according to

the j-th criterion.
In this paper we tackle the multiobjective version of the FFP described above,

but contrary to the paper [11] we introduce the nondeterminism to the problem.

2.1 Nondeterministic FFP as a Dynamic Optimization Problem

The nondeterministic version of the FFP used in this paper can be described
similarly as the deterministic one with one key difference that there is an uncer-
tainty in the way the fire spreads (we assume, however, that the initial set S of
burning nodes is fixed). For describing the nondeterministic spreading of fire a
simple model is used in which, in each time step t, for every edge e = 〈v1, v2〉 ∈ E
such that St[v1] = ′B′ and St[v2] = ′U′ the state of the vertex v2 is set to ′B′ with
a constant probability Psp ≤ 1. Formally, assume that the state of the graph is
represented as a vector of length Nv of states from the set L and the edges are

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 251

represented as an adjacency matrix A = [aij]Nv×Nv
containing {0, 1} elements

with aij = 1 denoting that there exists an edge between vertices vi and vj . Then
a procedure that transforms the current state St at a time step t to the state
St+1 at the next time step can be implemented as shown in Algorithm 1. In this
procedure rand() is a function that returns a value randomly drawn from the
uniform probability distribution on the [0, 1) range.

Algorithm 1. Nondeterministic spreading of fire in the graph (one time step).
IN: St - the state of the graph at a time step t
OUT: St+1 - the state at a time step t + 1 (to be calculated by this procedure)

St+1 := St // Copy the state to the next time step

for i := 1, . . . , Nv do // Allow fire to spread
if St[i] == ′B′ then

for j := 1, . . . , Nv do
if (A[i, j] == 1) and (St[j] == ′U′) and (rand() < Psp) then

St+1[j] := ′B′

end if
end for

end if
end for
return St+1

It is worth noticing that in the deterministic version of the FFP the spread
of fire in the graph is dynamic, but the optimization problem is, in fact, static.
This follows from the fact that once a solution (i.e. a permutation) is selected the
spreading of fire can be exactly simulated from the initial state to the very end.
Therefore, the optimizer can always work with the initial state and can obtain an
exact evaluation regardless if it is a single-objective problem or a multiobjective
one. To the contrary, the nondeterminism makes the problem truly dynamic.
Because it is not possible to predict the spread of fire with certainty, the solution
chosen as the best one may change as time progresses depending on which nodes
actually caught on fire and which did not.

As with any dynamic optimization problem two typical approaches are the
offline and online optimization. In the offline approach we try to find the best
permutation π of firefighters and then, as fire spreads, we assign firefighters using
the same π at each time step. In the online approach the optimizer can take into
consideration how the fire did actually spread and which nodes are burning at
each time step t > 0. Therefore, a different permutation πt can be produced at a
time t step and used for assigning firefighters in this particular time step. In this
paper we assume, that the already assigned firefighters cannot be reallocated, so
the nodes that were defended remain defended and the new permutation πt only
affects the assignment of firefighters done after this permutation was generated.

252 K. Michalak and J.D. Knowles

3 Simheuristics

The prohibitive computational cost of running exact solvers on larger instances
of some combinatorial problems can suggest the use, instead, of heuristics, or
metaheuristics such as EAs. We adopt this approach here and use simulation of
the spreading fire to enable the candidate solutions proposed by the EA to be
evaluated. In previous work on the deterministic version of the FFP the eval-
uation of a permutation π was performed by simulating the spread of fire in
the graph while simultaneously assigning firefighters according to the ordering
determined by the permutation π. This approach can also be used for the non-
deterministic version of the FFP. In fact, the approach called “simheuristics” –
combining simulation with metaheuristic optimization was proposed in a recent
survey [8] as a proper approach to nondeterministic optimization. Of course, in
the case of nondeterministic problems each run of the simulation can yield dif-
ferent values of the optimization criteria. Therefore, in this paper we adopt an
approach in which we perform a number Nsim of simulations for a given solution
(permutation) π and then average the results. In order to speed up computa-
tions, in the experiments described in this paper the simulation routine was
implemented for a GPU massively-parallel architecture using the CUDA tech-
nology. From the Nsim different values of the objectives obtained in these runs
we calculate a mean value for each of the objectives fj , j = 1, . . . , m. Therefore,
the implementation of the optimization algorithm is split into two parts: an EA
that runs on the CPU and a simulation routine that runs on the GPU in Nsim

parallel threads (see Fig. 1).

Fig. 1. Implementation of the simheuristic on a CPU/GPU machine.

Each thread simulates the spreading of fire starting from a given initial state
Sin until a predefined number of time steps Nsteps is completed or until fire
can no longer spread. The working of a single simulation thread is presented in
Algorithm 2.

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 253

Algorithm 2. The working of a single simulation thread.
IN: Sin - an initial state of the graph for the simulation

π - a solution to test

t := 0 // Simulation of the spreading of fire
S0 := Sin

while not SpreadingFinished(St) and t < Nsteps do
St+1 := AssignFirefighters(St, π)
St+1 := SpreadFire(St+1);
t := t + 1

end while

Set fj := 0 for j = 1, . . . , m // Evaluation of the final state
for v ∈ V do

if St[v] �= ′B′ then
for j := 1, . . . , m do

fj := fj + vj(v)
end for

end if
end for

The SpreadingFinished(St) function used in Algorithm 2 checks if the
fire spreading has finished for a given graph state St. The spreading of fire is
considered finished if there are no untouched nodes adjacent to the burning
ones, that is ¬∃i, j : (St[vi] = ′B′ ∧ St[vj] = ′U′ ∧ A[i, j] = 1), where A is the
adjacency matrix of the graph G. The AssignFirefighters procedure assigns
firefighters to those Nf untouched nodes that are placed first in the permutation
π. The SpreadFire procedure performs one time step of the nondeterministic
fire spreading according to Algorithm 1.

In this paper the Sim-EA algorithm [12] is used that was applied to the
multiobjective FFP in a previous paper [13] and was found to outperform a
well-known multiobjective optimization algorithm MOEA/D [10]. The Sim-EA
is a decomposition-based approach in which several populations P1, . . . , PNsub

perform optimization with respect to scalar objectives obtained by aggregating
the original ones using different weight vectors λ(1), . . . , λ(Nsub). In Sim-EA speci-
mens can migrate between populations according to various migration strategies.

In the paper [13] several migration strategies were tested and the “rank”
strategy that worked best is used this paper. For each destination subpopulation
Pd, d = 1, . . . , Nsub all subpopulations Ps, where s �= d are ranked according to
the dot product of weight vectors λ(d) · λ(s). The source population is selected
using the roulette wheel selection with probabilities proportional to the ranks
of the subpopulations. Then, Nimig best specimens from the source population
are taken and merged into the population Pd. In the merge phase each migrated
specimen is matched against the currently weakest specimen in the destination
population Pd. The new specimen replaces the currently weakest specimen in the
destination population Pd if it has a higher value of the objectives aggregated
using the weight vector λ(d). The main loop of the Sim-EA algorithm is presented

254 K. Michalak and J.D. Knowles

in Algorithm 3. It is very similar to the one used in papers [12] and [13], but
a different stopping condition is used in this paper. In the previous works the
optimization was run for a preset number of generations Ngen. In this paper we
use a time limit Tmax in which the main loop of the algorithm has to finish,
because we assume, that decisions have to be made in a given amount of time.
Also, we are interested in how to use the available time effectively, by either
making longer simulation runs (large Nsteps) or making shorter simulation runs
(small Nsteps) allowing more generations for the EA. Because the EA runs on
a regular CPU and simulations are performed in parallel on a GPU it is hard
to find a common measure of the amount of computations done on both devices
other than the running time limit.

Algorithm 3. The main loop of the Sim-EA algorithm (see also [12] and [13])
IN: P1, P2, . . . , PNsub - populations, one for each search direction λ(d)

Sin - state of the graph for which to optimize
OUT: P1, P2, . . . , PNsub - populations after evolution

for d := 1, . . . , Nsub do // Initial evaluation
Evaluate(Sin, Pd, λ

(d))
end for
while not StoppingConditionMet() do

for d := 1, . . . , Nsub do // Genetic operators
P’ := GeneticOperators(Pd)
Evaluate(Sin, P ′, λ(d))
Pd := Pd ∪ P ′

end for

for d := 1, . . . , Nsub do // Source populations
s := SelectSourcePopulation(d)
P ′
d := the Nimig best specimens from Ps

end for
for d := 1, . . . , Nsub do // Migration

for x ∈ P ′
d do

Evaluate(Sin, {x}, λ(d))
w := the weakest specimen in Pd

Pd := Pd − {w}
b := BinaryTournament(w, x, λ(d))
Pd := Pd ∪ {b}

end for
end for

for d := 1, . . . , Nsub do // Elitist selection
e := the best specimen in Pd

Pd := Select(Pd\{e}, Npop − 1)
Pd := Pd ∪ {e}

end for
end while

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 255

The main loop of the Sim-EA uses the following procedures:
StoppingConditionMet() – A function that determines if the stopping

condition is satisfied, such as the number of generations completed, maximum
running time, etc.

GeneticOperators(P) – Applies the crossover and mutation to specimens
in P and returns the new specimens. In papers [11,13] a mechanism for adjust-
ing probabilities of the application of several different crossover and mutation
operators was introduced. The same mechanism is used in this paper. The same
10 crossover and 5 mutation operators were used as in the previous papers.
The crossover operators were: Cycle Crossover (CX), Linear Order Crossover
(LOX), Merging Crossover (MOX), Non-Wrapping Order Crossover (NWOX),
Order Based Crossover (OBX), Order Crossover (OX), Position Based Crossover
(PBX), Partially Mapped Crossover (PMX), Precedence Preservative Crossover
(PPX) and Uniform Partially Mapped Crossover (UPMX). The mutation opera-
tors were: displacement mutation, insertion mutation, inversion mutation, scram-
ble mutation and transpose mutation.

Evaluate(Sin, P, λ) – Evaluates specimens from a given set using Nsim par-
allel simulations performed on a GPU as shown in Fig. 1 starting at the state Sin.
In the simulation estimates of the average values f1, . . . , fm of m objectives are
obtained. The fitness of the specimens is then calculated by aggregating these
objectives using a given weight vector λ.

SelectSourcePopulation(d) – Selects a population Ps to migrate speci-
mens from into Pd. Various strategies can be used for selecting the source popu-
lation Ps. In the paper [13] several strategies were tested and the one that worked
best with the FFP turned out to be to select the source population using the
roulette wheel selection procedure based on ranking calculated using the dot
product of weight vectors λ(d) · λ(s).

BinaryTournament(s1, s2, λ) – compares two specimens s1 and s2 accord-
ing to the fitness calculated by aggregating the m objectives of the specimens
using a given weight vector λ. Returns the winning specimen.

Select(P, n) – selects n specimens from a given population P using the
binary tournament selection method.

Because this paper concerns a dynamic optimization problem, the optimiza-
tion can be performed either in an offline or in an online mode. In the offline
mode one long optimization run is performed based on the initial state of the
graph. The best permutation π is selected and then, as fire spreads, firefighters
are assigned according to this permutation in increments of Nf per a time step.
Because in this paper a multiobjective problem is concerned, we select a different
permutation π(d), d = 1, . . . , Nsub for each optimization direction λ(d). In the
offline mode we simulate the spreading of fire for each optimization direction λ(d)

separately starting from the initial state of the graph and assigning firefighters
using π(d). The final evaluation Ed along each direction λ(d) is equal to the sum
of the values of the non-burning nodes weighted using λ(d) when the simulation
ends. The offline optimization is presented in Algorithm 4.

256 K. Michalak and J.D. Knowles

Algorithm 4. The optimization in the offline mode.

for d := 1, . . . , Nsub do
Pd := InitPopulation(Npop)

end for
Evolve({P1, P2, . . . , PNsub}, S0, Tmax)

for d := 1, . . . , Nsub do
π(d) := SelectBestSolution(Pd)

t := 0 // Simulation of the spreading of fire

S
(d)
t := S0

while not SpreadingFinished(S
(d)
t) do

S
(d)
t+1 := AssignFirefighters(S

(d)
t , π(d))

S
(d)
t+1 := SpreadFire(S

(d)
t+1);

t := t + 1
end while

Ed := 0 // Evaluation of the final state for the d-th subproblem
for v ∈ V do

if S
(d)
t [v] �= ′B′ then
for j := 1, . . . , m do

Ed := Ed + λ
(d)
j vj(v)

end for
end if

end for
end for

In the online mode the optimization is performed at each time step for a
short period of time. The best currently known permutation is selected and
firefighters are assigned using this permutation when fire spreads in the current
time step. For the multiobjective problem a different permutation π

(d)
t is selected

for each optimization direction λ(d) at each time step t. Because of that we have
to keep the current state S

(d)
t of the simulation at the time step t for each search

direction λ(d). The final evaluation Ed along each direction λ(d) is equal to the
sum of the values of the non-burning nodes in the state S

(d)
t weighted using λ(d)

when the simulation ends. The optimization in the online mode is presented in
Algorithm 5.

The Algorithms 4 and 5 use the following procedures:
InitPopulation(n) - Creates a given number n of new specimens initialized

as random permutations.
Evolve({P1, P2, . . . , PNsub

}, St, Tmax) - Runs the main loop of the Sim-EA
algorithm described in Algorithm 3 with the maximum running time Tmax as
the stopping criterion. This run of the algorithm optimizes solutions based on a
given graph state St.

SelectBestSolution(Pd) - Selects the best solution from a given population
Pd with respect to fitness calculated using the weight vector λ(d).

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 257

Algorithm 5. The optimization in the online mode.
t := 0
for d := 1, . . . , Nsub do

Pd := InitPopulation(Npop)

S
(d)
t := S0

end for

while ∃d not SpreadingFinished(S
(d)
t) do

Evolve({P1, P2, . . . , PNsub}, S
(d)
t , Tmax)

for d := 1, . . . , Nsub do
if not SpreadingFinished(S

(d)
t) then

π
(d)
t := SelectBestSolution(Pd)

S
(d)
t+1 := AssignFirefighters(S

(d)
t , π

(d)
t)

S
(d)
t+1 := SpreadFire(S

(d)
t+1)

end if
end for
t := t + 1

end while

for d := 1, . . . , Nsub do
Ed := 0 // Evaluation of the final state for the d-th subproblem
for v ∈ V do

if S
(d)
t [v] �= ′B′ then
for j := 1, . . . , m do

Ed := Ed + λ
(d)
j vj(v)

end for
end if

end for
end for

SpreadingFinished(St) - Checks if the fire spreading has finished for a
given graph state St. The spreading of fire is considered finished if there are no
untouched nodes adjacent to the burning ones, that is ¬∃i, j : St[vi] = ′B′ ∧
St[vj] = ′U′ ∧ A[i, j] = 1, where A is the adjacency matrix of the graph G.

AssignFirefighters(St, π) - Modifies the state St by assigning firefighters
to those Nf untouched nodes that are placed first in the permutation π.

SpreadFire(St) - Performs one time step of the nondeterministic fire spread-
ing according to Algorithm 1.

4 Experiments and Results

The experiments were aimed at investigating three issues: comparing the online
and offline optimization, comparing the two with some simple heuristics that
determine how to place firefighters and determining the influence of the Nsteps

parameter on the quality of the obtained results. The larger the Nsteps parameter
the longer the simulation used for evaluating specimens in the EA. Therefore, we
assumed that the entire main loop of the EA can run for at most Tmax seconds

258 K. Michalak and J.D. Knowles

and when Nsteps is smaller more generations of the EA can fit within the same
time limit.

The time limit for the online optimization was set to Tmax = 60 s per a time
step and to Tmax = 300 s for the offline optimization. The equipment used for
experiments was the Intel Q6600 CPU running at 2.4 GHz with 4 GB of RAM
with a 470 GTX GPU with 1.25 GB of RAM. However, the memory sizes did
not play an important role in the experiments, because the actual memory usage
was far lower than the available maximum. The number of simulations run in
parallel was set to Nsim = 200. It is worth mentioning, that even on moderately
advanced 470 GTX GPUs such number of threads can easily run in parallel, so
the running time of the simulations cannot be significantly decreased by just
lowering the Nsim number.

Data sets used in the experiments were created in the same way as used in a
previous paper on the FFP [13]. In these data sets the graph G was generated
by randomly determining, for each pair of vertices vi, vj , if there exists an edge
〈vi, vj〉. The probability of generating an edge was set to Pedge = 2.5/Nv, where
Nv was the number of vertices. This value was used in order to ensure that the
mean number of edges adjacent to a vertex was similar for all the instances.

Costs vj(v), j = 1, . . . , m assigned to vertices of the graph G were generated
by drawing pairs of random values with the uniform probability on a triangle
formed in R

2 by points [0, 0], [0, 100], [100, 0]. With this method of cost assign-
ment individual costs fall in the range [0, 100] but also the sum of costs associated
with a single vertex cannot exceed 100. Therefore it is not possible to maximize
both objectives at the same time, so the ability of the algorithm to find good
trade-offs can be tested.

The number of initially burning nodes in each graph was set to Ns = 1 and
the number of firefighters to assign in each time step was set to Nf = 2. Because
of the higher computational cost of the experiments involving several values of
the Psp and Nsteps parameters the instances used in this paper were smaller than
in [13] with Nv = 30, 40, 50, 75, 100 and 125. For each graph size Nv, 30 test
instances I

(1)
Nv

, . . . I
(30)
Nv

were prepared following the procedure described above to
allow comparing the algorithms on different, but fixed, test cases.

The nondeterminism is involved in how the fire spreads in the graph, therefore
the same graph structure can be used for different values of Psp. In this paper five
values Psp = 0.3, 0.5, 0.7, 0.9 and 1.0 were used. For the length of the simulation
Nsteps = 2, 4, 6, 8, 10 and ∞ were used. The last value of Nsteps = ∞ causes
the simulation to run until the fire can no longer spread regardless of how many
time steps it takes.

The number of subpopulations was Nsub = 20 with each subpopulation size
Npop = 100. The number of specimens migrating between the populations was
set to Nimig = 0.1 ·Npop = 10. Similarly as in the paper [13] a set of 10 crossover
operators and 5 mutation operators was used in the experiments with an autoad-
aptation mechanism used for adjusting probabilities of the usage of the opera-
tors. The number of new specimens generated by the crossover operator Ncross

was equal to the population size Npop and the probability of mutation was set

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 259

to Pmut = 0.05. The minimum probability of selecting a particular operator
in the auto-adaptation mechanism was set to Pmin = 0.02 for crossover auto-
adaptation and to Pmin = 0.05 for mutation auto-adaptation.

For each mode of optimization (online and offline) and for each Psp, Nsteps

pair 30 repetitions of the optimization were performed. In each repetition the
Ed values, calculated as shown in Algorithms 4 and 5 for d = 1, . . . , Nsub were
stored.

The performance of the optimization algorithms was compared to heuristics
that suggest where to place firefighters. Three different heuristics were tested:

– Max degree - Assign firefighters to those nodes first that have higher degrees
among untouched (’U’) nodes.

– Max degree (adjacent) - Assign firefighters to those nodes first that have
higher degrees among those untouched (’U’) nodes that are adjacent to burning
(’B’) nodes.

– BFS - Perform a breadth-first search (BFS) in the graph starting at the
burning nodes that finds possible paths from the burning (’B’) nodes to the
untouched (’U’) ones. For each untouched node v determine the smallest num-
ber of steps s it takes to get to this node from a burning one. Assign a value
of PBFS = (Psp)s to node v. Assign firefighters to those nodes first that have
higher values of PBFS .

These heuristics were used in each time step to select the best Nf locations
for firefighters. If in one time step more than Nf nodes had the maximum score
according to the selected heuristic, Nf nodes were selected randomly from them.
An evaluation of the performance of the heuristics was done in a similar way to
the evaluation of the offline optimizer (see Algorithm 4). For each optimization
direction λ(d), d = 1, . . . , Nsub, a simulation of fire was performed with a selected
heuristic used for allocating firefighters. When simulation finished, the score Ed

was calculated by adding cost values assigned to non-burning nodes weighted
using λ(d). Similarly as with the optimization algorithms, the tests with the
heuristics were repeated 30 times. In the k-th of the 30 repetitions of the tests the
same test instance I

(k)
Nv

was used with both modes of optimization, all heuristics
and all Psp and Nsteps values. Therefore, a range of methods was tested on a
diversified set of 30 test instances, but each method worked in the same starting
conditions.

Median values of the Ed score (see Algorithms 4 and 5) are presented in
Tables 1, 2, 3, 4, 5 and 6. The best result obtained by a given type of methods
(online, offline, heuristic) for a given Psp is marked by an arrow ’→′. Table 7
shows the results of a statistical comparison of the optimizers performed using
the Wilcoxon test at α = 0.05. This comparison was performed between the 30
measurements obtained for the best value of Nsteps for each of the optimizers. For
smaller instances (N ≤ 50) both optimization approaches are often comparable,
even though the online method was significantly better four times (the offline
one just once). For larger instances (N ≥ 75) the online optimizer outperformed
the offline one 12 times (with 3 cases undecided, none in favour of the offline
optimizer).

260 K. Michalak and J.D. Knowles

Table 1. Median values of the Ed score obtained for 30 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1364.81 1228.16 959.29 703.56 676.03

optimization Nsteps = 4 1386.63 1253.57 → 1096.32 → 914.42 → 855.57

Nsteps = 6 → 1388.47 1254.53 1064.32 889.36 826.10

Nsteps = 8 1382.90 → 1276.79 1081.58 887.28 801.36

Nsteps = 10 1363.90 1241.03 1061.86 871.30 823.18

Nsteps = ∞ 1382.90 1269.30 1088.25 882.06 828.57

Offline Nsteps = 2 1189.17 817.99 653.77 566.83 534.29

optimization Nsteps = 4 1329.74 1156.53 892.96 831.48 791.11

Nsteps = 6 → 1341.22 1176.64 984.11 → 888.73 866.42

Nsteps = 8 1323.47 1160.76 968.56 880.54 → 869.50

Nsteps = 10 1322.26 → 1187.83 → 1010.22 886.86 859.31

Nsteps = ∞ 1330.42 1155.04 965.01 885.53 819.07

Heuristics Max. degree 850.32 676.07 549.14 416.60 385.08

Max. degree → 1352.98 → 1188.69 → 907.59 → 722.75 → 703.93

(adjacent)

BFS 1294.78 768.77 752.02 562.32 488.12

Table 2. Median values of the Ed score obtained for 40 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1795.27 1545.76 903.35 720.89 661.38

optimization Nsteps = 4 1803.58 → 1677.30 → 1294.07 → 1002.20 → 923.94

Nsteps = 6 → 1806.78 1675.89 1114.45 913.54 872.59

Nsteps = 8 1800.09 1541.41 1064.09 895.61 872.05

Nsteps = 10 1795.85 1378.15 1049.11 901.01 877.04

Nsteps = ∞ 1759.37 1420.91 1047.97 896.04 886.23

Offline Nsteps = 2 1470.07 925.41 723.90 617.66 574.65

optimization Nsteps = 4 1762.00 1310.05 975.70 846.58 843.00

Nsteps = 6 → 1765.74 1512.08 → 1101.16 → 968.91 921.43

Nsteps = 8 1764.88 → 1561.17 1051.66 938.20 920.22

Nsteps = 10 1729.15 1373.84 1055.34 948.79 → 939.76

Nsteps = ∞ 1720.21 1418.45 1032.26 951.91 904.45

Heuristics Max. degree 1120.14 724.68 583.10 481.13 442.67

Max. degree 1766.37 → 1771.33 → 1019.21 → 813.96 → 809.71

(adjacent)

BFS → 1848.82 894.25 825.46 552.55 539.19

Another aspect of the optimization is the number of the steps Nsteps for
which the simulation is carried out. The shorter the simulation the more genera-
tions can the EA perform in the same amount of time. Figure 2 shows how many
times the best result was obtained for Nsteps = 2, 4, 6, 8, 10,∞. Clearly, letting

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 261

Table 3. Median values of the Ed score obtained for 50 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1300.12 626.98 503.00 431.68 408.95

optimization Nsteps = 4 → 1386.02 679.02 615.17 → 579.97 562.21

Nsteps = 6 1385.33 → 875.73 → 670.68 567.47 → 563.33

Nsteps = 8 1269.63 795.62 634.16 575.82 556.82

Nsteps = 10 1313.69 784.41 634.71 577.18 553.11

Nsteps = ∞ 1071.02 771.25 640.98 570.84 560.65

Offline Nsteps = 2 850.63 601.22 471.63 412.41 390.39

optimization Nsteps = 4 1081.48 718.70 610.37 572.84 552.81

Nsteps = 6 → 1128.72 → 799.05 → 654.90 601.09 604.99

Nsteps = 8 1093.90 750.79 625.35 598.93 613.88

Nsteps = 10 1029.41 714.61 626.82 → 604.06 611.61

Nsteps = ∞ 921.29 698.84 629.26 601.70 → 614.32

Heuristics Max. degree 716.63 477.24 399.16 336.53 296.22

Max. degree → 1419.40 → 803.09 → 577.10 → 437.66 → 440.70

(adjacent)

BFS 1275.95 581.44 473.22 337.26 342.84

Table 4. Median values of the Ed score obtained for 75 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 956.88 614.59 487.15 415.99 389.99

optimization Nsteps = 4 981.13 620.49 531.32 571.25 550.45

Nsteps = 6 992.92 774.51 → 685.25 → 629.67 → 596.58

Nsteps = 8 959.63 806.06 674.45 612.49 595.02

Nsteps = 10 1090.14 795.37 677.82 608.71 596.54

Nsteps = ∞ → 1092.12 → 807.45 671.97 610.85 593.34

Offline Nsteps = 2 922.30 640.93 522.01 454.48 424.78

optimization Nsteps = 4 → 1042.61 700.90 608.54 567.38 587.20

Nsteps = 6 961.70 → 715.41 → 633.43 → 585.37 600.81

Nsteps = 8 931.17 691.37 602.31 573.06 604.34

Nsteps = 10 895.80 676.03 598.90 579.47 → 606.50

Nsteps = ∞ 868.76 680.01 598.87 569.24 604.17

Heuristics Max. degree 849.68 570.76 440.48 343.04 341.51

Max. degree → 2272.92 → 1114.03 → 617.77 → 526.89 → 485.55

(adjacent)

BFS 2269.66 664.75 491.11 400.65 381.74

the simulation run without limit can deteriorate the results of the optimization.
For larger instances (Nv = 75, 100 and 125) the unlimited simulation length
worked best for Psp = 0.3 and 0.5, but for larger values of Psp limiting the dura-
tion of simulations worked better. Although not conclusive, this observation may

262 K. Michalak and J.D. Knowles

Table 5. Median values of the Ed score obtained for 100 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 908.03 608.99 487.98 422.16 398.28

optimization Nsteps = 4 914.67 599.72 490.98 493.24 518.26

Nsteps = 6 867.02 709.03 694.02 611.86 → 583.91

Nsteps = 8 947.36 840.08 694.69 609.91 581.56

Nsteps = 10 1090.21 839.29 → 699.85 → 613.16 576.68

Nsteps = ∞ → 1154.59 → 843.16 697.52 609.95 577.14

Offline Nsteps = 2 926.14 676.89 545.51 477.67 446.36

optimization Nsteps = 4 → 946.40 665.64 551.58 512.98 500.06

Nsteps = 6 887.11 661.15 → 597.94 → 558.89 563.46

Nsteps = 8 881.87 → 691.41 589.34 535.96 → 564.41

Nsteps = 10 882.68 663.10 583.07 536.55 561.50

Nsteps = ∞ 904.78 669.16 584.03 539.25 562.49

Heuristics Max. degree 871.62 582.74 467.80 379.39 375.07

Max. degree (adjacent) → 3024.79 → 862.67 → 600.93 → 515.56 → 443.76

BFS 974.80 648.55 505.87 419.71 385.88

Table 6. Median values of the Ed score obtained for 125 nodes.

Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 963.07 637.80 519.84 440.04 397.65

optimization Nsteps = 4 868.58 600.06 501.59 461.53 482.77

Nsteps = 6 906.73 692.04 723.36 → 660.97 → 630.15

Nsteps = 8 917.48 893.64 756.26 658.30 625.60

Nsteps = 10 1108.00 907.41 → 766.36 653.44 623.34

Nsteps = ∞ → 1230.37 → 912.10 751.03 656.34 621.58

Offline Nsteps = 2 → 961.28 688.38 571.53 491.56 462.26

optimization Nsteps = 4 953.17 662.25 532.82 483.99 491.69

Nsteps = 6 891.00 653.68 → 601.89 → 566.59 559.24

Nsteps = 8 905.52 701.63 597.22 538.33 559.82

Nsteps = 10 943.15 → 711.44 594.74 536.91 → 563.81

Nsteps = ∞ 936.90 701.85 597.07 539.40 559.68

Heuristics Max. degree 917.63 587.32 500.42 414.06 377.07

Max. degree 3957.17 → 844.74 → 672.27 → 537.26 → 503.02

(adjacent)

BFS → 3975.47 703.07 551.18 444.86 415.94

indicate that for lower values of Psp it is harder to predict the short-time move-
ment of fire and thus averaged behaviour observed in the longer run becomes
more important. The optimization algorithms were also compared with heuris-
tic methods described in Sect. 4. Clearly, the best of the tested heuristics is the
one that considers placing the firefighters adjacently to the burning nodes (see
Fig. 3). Statistical comparison of optimization algorithms with heuristics shown
that the “Max degree (adjacent)” heuristic is a very effective strategy when the

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 263

Table 7. The results of a statistical comparison of the online and offline optimization
modes: ’N’ - online better, ’F’ - offline better, ’=’ - no statistical difference.

Nv Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

30 = N N = =

40 N = = = =

50 = N = = F

75 = N N N =

100 N N N N =

125 N N N N N

probability of the spreading of fire is low (Psp ≤ 0.5). It was significantly better
than the online optimizer in 7 out of 12 cases, significantly worse in 3 cases, with
2 cases undecided (p-value > 0.05). Compared to the offline optimizer it was sig-
nificantly better in 11 cases, with only one case undecided. On the other hand,
in the tests for Psp ≥ 0.7 the heuristic was significantly worse than the online
optimizer 15 times out of 18 (3 cases undecided). Compared to the offline opti-
mizer it was significantly worse 13 times and significantly better once (4 cases
undecided).

Fig. 2. The number of times each value of
Nsteps produced the best result.

Fig. 3. The number of times each heuris-
tic produced the best result.

These results might also indicate the fact that for lower values of Psp it is
harder to predict the short-time movement of fire. In such situation heuristics
may be more effective than trying to assess what location of firefighters will be
best based on simulations with a high level of uncertainty.

5 Conclusion

In this paper the multiobjective nondeterministic firefighter problem is studied.
For solving this problem the Sim-EA multipopulation EA is applied that was
shown in [13] to outperform the MOEA/D algorithm on the FFP. Solving the

264 K. Michalak and J.D. Knowles

nondeterministic FFP requires dynamic optimization and therefore the effective-
ness of the algorithm in the online and offline optimization modes is compared.
For small problem instances both approaches are comparable, but for larger ones
the online approach seems better. Also, it was tested how long to run the simu-
lation that evaluates candidate solutions. Limiting the length of simulation runs
often improves the results, but for low Psp longer simulations may be better.
Evolutionary optimization was compared with several heuristic approaches that
use simple rules for allocating firefighters. The heuristic that selects nodes with a
high degree placed adjacently to the already burning ones worked by far the best.
It significantly outperformed the online optimizer in several cases for Psp ≤ 0.5
and the offline optimizer in all cases except one. For Psp ≥ 0.7, however, the
heuristic approach performed poorly. The observations concerning the length of
simulation runs and comparison of optimization and heuristics seem to indicate
that for low Psp it is hard to obtain good evaluations of solutions using simu-
lations. Because different types of methods work best for different probabilities
of the spreading of fire, further work on the nondeterministic FFP may concern
hybrid methods combining heuristics with online optimization.

References

1. Blum, C., Blesa, M.J., Garćıa-Mart́ınez, C., Rodŕıguez, F.J., Lozano, M.: The
firefighter problem: application of hybrid ant colony optimization algorithms. In:
Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229. Springer,
Heidelberg (2014)

2. Comellas, F., Mitjana, M.: Broadcasting in small-world communication networks.
In: Kaklamanis, C., Kirousis, L. (eds.) 9th International Colloquium on Struc-
tural Information and Communication Complexity, pp. 73–85. Carleton Scientific,
Waterloo (2002)

3. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

4. Feldheim, O.N., Hod, R.: 3/2 firefighters are not enough. Discrete Appl. Math.
161(1–2), 301–306 (2013)

5. Garćıa-Mart́ınez, C., et al.: The firefighter problem: empirical results on random
graphs. Comput. Oper. Res. 60, 55–66 (2015)

6. Hartnell, B.: Firefighter! an application of domination. In: 20th Conference on
Numerical Mathematics and Computing (1995)

7. Hu, B., Windbichler, A., Raidl, G.R.: A new solution representation for the fire-
fighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026,
pp. 25–35. Springer, Heidelberg (2015)

8. Juan, A.A.: A review of simheuristics: extending metaheuristics to deal with sto-
chastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015)

9. Kumar, R., et al.: Stochastic models for the web graph. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000, pp. 57–65.
IEEE Computer Society (2000)

10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evolut. Comput. 13(2), 284–302 (2009)

Simheuristics for the Multiobjective Nondeterministic Firefighter Problem 265

11. Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimiza-
tion in the firefighter problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H.
(eds.) IDEAL 2014. LNCS, vol. 8669, pp. 484–491. Springer, Heidelberg (2014)

12. Michalak, K.: Sim-EA: an evolutionary algorithm based on problem similarity.
In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS,
vol. 8669, pp. 191–198. Springer, Heidelberg (2014)

13. Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the mul-
tiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015.
LNCS, vol. 9026, pp. 184–196. Springer, Heidelberg (2015)

Benchmarking Dynamic Three-Dimensional
Bin Packing Problems Using Discrete-Event

Simulation

Ran Wang1(B), Trung Thanh Nguyen1, Shayan Kavakeb1, Zaili Yang1,
and Changhe Li2

1 Liverpool Logistics Offshore and Marine Research Institute (LOOM),
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, Liverpool L3 3AF, UK

R.Wang@2015.ljmu.ac.uk, {T.T.Nguyen,S.Kavakeb,Z.Yang}@ljmu.ac.uk
2 School of Computer Science, China University of Geosciences, Wuhan, China

Changhe.lw@gmail.com

Abstract. In this paper a framework is developed to generate bench-
mark problems for dynamic three-dimensional (3D) bin packing problems
(BPPs). This framework is able to generate benchmark problems for dif-
ferent variants of BPPs by taking into account potential uncertainty in
real-world BPPs, which are uncertainties in dimensions, costs, weights
of upcoming items. This paper has three main contributions. First, a
benchmark generator framework is developed for the first time using an
open source discrete-event simulation platform. This framework gener-
ates benchmark problems for BPPs by reproducing uncertainty in real-
world BPPs. Second, this framework can be integrated with any dynamic
BPP algorithm so that the optimisation algorithm can be run alongside
the simulation to solve dynamic BPPs. Third, various performance mea-
sures from the literature are included in the framework to evaluate the
optimisation algorithms from different perspectives. Thanks to the 3D
visualisation feature of this framework, the optimisation results can also
be observed visually. Finally, empirical experiments on a real-world BPP
are conducted to verify these contributions.

Keywords: Benchmarking · Bin packing problem · Dynamic
optimisation · Simulation

1 Introduction

Three-dimensional (3D) bin packing problems (BPPs) are NP-hard optimisation
problems in which a number of boxes are packed into one or multiple 3D bins.
Depending on the characteristics of the problem, different objectives can be
defined for BPPs such as input minimisation or output maximisation. Input
minimisation aims to find the minimum total cost or minimum number of bins.
The size of bins can be either identical [1–3] or varied [4–8]. The aim of output

c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 266–279, 2016.
DOI: 10.1007/978-3-319-31153-1 18

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 267

maximisation is maximising the volume or number of packed boxes given the
limited number of bins [9–12]. Some BPPs have multiple objectives: minimising
the cost while packing items with preferences [8]; minimising the cost and also
packing items with the same destinations together [13]. In terms of size, items
may be identical, weakly heterogeneous (i.e. many items but a few item types),
or strongly heterogeneous (i.e. a few items but many item types). Regarding
constraints on BPPs, Bortfeldt [14] introduced various constraints on potential
containers, items, loading and allocation.

In the literature the BPPs are normally considered in an ideal situation with
no uncertainty. In reality, however, uncertainty is a frequent feature of real-world
BPPs. Hence, we need to take uncertainty into account in academic research. To
address uncertainty to a variety of BPPs, it is necessary to have data set for each
problem based on different constraints and features of the problem. In this paper,
we propose a new approach of using discrete-event simulation to generate bench-
mark problems and to evaluate dynamic optimisation algorithms including evo-
lutionary algorithms. To the best of our knowledge this is the first time such an
approach is proposed. It is expected that the new approach will help researchers
generate dynamic problems and evaluate their algorithms easier than before.

This paper is structured as follows. Section 2 reviews benchmark problems
for BPPs, possible uncertainties in BPPs and the performance measures used in
the literature. Section 3 describes the structure and functions of the proposed
framework. It then proposes a group of test cases for BPPs. Section 4 carries out
an experiment for a real-world BPP using the proposed framework including a
dynamic BPP algorithm. The experimental results are then provided. Section 5
concludes this paper.

2 Literature Review

2.1 Benchmarks

Real-world optimisation problems are subject to uncertainty and unknown
changes. To approach these problems, dynamic algorithms have been developed
to the problems as time goes by. As changes occur in an optimisation problem,
the dynamic optimisation algorithm need to react to the changes to produce a
new optimal solution in regards to the changes. Due to the complexity of uncer-
tainty in real-world problems, it is difficult to evaluate dynamic optimisation
algorithms effectively. In academic research on dynamic benchmark problems,
attempts are made to capture changes that reflect different characteristics of real
problems. These benchmarks can then be used as a basis to evaluate algorithms.
However, generating such benchmark problems is not trivial due to difficulty in
capturing and reproducing uncertainty in real-world problems. This difficulty
arises due to the lack of enough knowledge about uncertainty and also due to
the difficulty in formulating/modelling uncertainty.

In general, as in Nguyen et al. [15], a decent benchmark problem for
uncertain optimisation problems should encompass the following characteristics:
(1) the flexibility of setting objectives, problem uncertainties and dimensions;

268 R. Wang et al.

(2) simplicity and efficiency of problem implementation and evaluation; (3) allow-
ing conjectures to real-world problems. In the literature, there have been some
attempts to provide benchmark problems for uncertain optimisation problems.
Nguyen et al. [15] reviewed these benchmark problems based on the following
properties: (1) time-linkage; (2) predictability of changes; (3) objective types
and numbers; (4) constraint types and frequency; (5) factors changing other
parameters. This survey paper reveals that most existing academic benchmark
problems focused only on some of the above-mentioned criteria due to com-
plexity of these problems. Nevertheless, there have been few publications that
attempted to consider some of these criteria by taking into account changeable
constraints or the situation where future events depend on previous solutions [16–
24]. These attempts, however, still have some limitations to capture properly the
uncertainty in real-world problems. Thus, these limitations in benchmark prob-
lems make it very difficult to evaluate robust/dynamic algorithms properly and
hence it is not very clear that the developed robust/dynamic optimisation algo-
rithms in the literature can effectively tackle real-world optimisation problems.
This indicates a gap of knowledge between real-world optimisation problems and
academic research.

2.2 Uncertainty

This section reviews uncertainty in BPPs by introducing a real case from an indus-
trial partner in the first place. In this problem, there is a set of items with differ-
ent sizes to be packed into containers whose sizes (20, 40, 45 feet) and structures
(closed, open or flat rack) depend on the sizes of the items. Items include boxes,
anchors, tubes, and some other odd shape items fixed on a palette. The cost of hir-
ing containers varies depending on their sizes and structures. Assuming the num-
ber of containers is unlimited, our objective is to minimise the total hiring cost of
containers in order to pack all needed items. This problem, similar to other real-
world optimisation problems, is subject to uncertainty. For example, some items
can be tied together into a bundle. How many items, and how they can be tied
together into one bundle, is uncertain. The size of each bundle is also uncertain,
depending on how items are tied together. There is also an uncertainty of the num-
ber of items that arrive at any single time, as detailed below.

One of the most common uncertainties in literature is the uncertain charac-
teristic of upcoming items. It was mentioned in Peng and Zhang [25] that the
volumes of items and the capacities of bins are only approximately known due to
economic restrictions or technical limitations. Also in Perboli et al. [26] the item
profits were considered as random variables because of the handling operations.
Another uncertainty proposed in Crainic [27] is the unknown future demand of
items. It may generate extra cost or loss profit that the planned containers are
insufficient. Thus, due to the variety of uncertainty, it is difficult to generate test
case depending on different problem requirements.

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 269

2.3 Performance Measures

According to the literature, many performance measures used in existing exper-
iments are specific for each algorithm. It means that while tackling the same
problem, it is hard to compare the performance of different algorithms. With
the purpose of providing a framework that different algorithms of BPP can be
compared, common performance measures are essential. The volume utilisation1

is mentioned in several experiments [28–30] which is either total volume utilisa-
tion or the average. In addition, the running time of the algorithm is another
measurement that is commonly referenced [13,31].

3 BPP Framework

In this section we propose a new framework which can be used to generate and
test dynamic instances of the BPPs. This framework is developed based on an
open-source simulation software named JaamSim. To the best of our knowledge
this is the first time a discrete-event simulation framework is used as a platform
for benchmarking dynamic optimisation algorithms. We believe discrete-event
simulation could be a good solution for benchmarking purposes. First, the event-
based nature of discrete-event simulation makes it possible to generate different
problem instances very easily by just creating different events and adjusting how
the system changes its state upon an event. Second, generating dynamics is the
nature of simulation - all simulation software are intrinsically equipped with
some random/uncertainty generator. This makes simulations naturally suitable
for generating dynamic benchmark problems. Third, the visualisation feature of
simulation can help researchers visually observe the behaviour of dynamic prob-
lems as well as algorithms much more easily. Fourth, many simulation software
have drag-and-drop features, which would make the process of creating dynamic
problems more user-friendly. Fifth, discrete-event simulation are naturally suit-
able for complex systems. This makes it suitable for creating more challenging
benchmark problems. Finally, the flexibility of open source makes it possible to
easily integrate different algorithms and extend the framework to other type of
problems.

3.1 Features of the Framework

Objectives and Uncertainty. The framework provides three objectives that
optimisation algorithms can choose to optimise: (1) minimise the number of bins;
(2) minimise the cost of bins; (3) maximise the profit of packed items.

Given the objectives above, the framework can generate uncertainty in: size of
items, weight of items, profit of items, and cost of bins. The uncertain values can
be generated under any distribution (e.g. uniform distribution, normal distribu-
tion). Both two-dimensional (2D) and 3D (cuboid items) BPP can be visualised.
The framework can generate problems with single bin, multiple identical bins,
or multiple bins of different type.
1 The volume utilisation of one bin is the total volume of packed items in this bin

divided by the volume of the bin.

270 R. Wang et al.

Offline BPP Versus Online BPP. The framework supports solving the BPP
in both static (offline) and dynamic (online) ways. In the static case, all items
are available beforehand, and the optimisation algorithm can freely choose any
item to load into a bin. In the dynamic case, the bins need to be packed when
time goes by, and items arrive at different time. Whenever one or some item(s)
arrive, the algorithm needs to find the best way to pack the items to a bin, then
waits for the next set of items to come, and so on.

Algorithms Integration. The framework is developed in Java, therefore any
algorithm that can be executable/called from Java can be simulated and evalu-
ated in this framework. The experimental study carried out in this paper (Sect. 4)
shows an example of integration of the proposed framework with one online
and one static algorithms which were developed in Java and C programming
languages, respectively. To illustrate how the framework can be used to test
algorithms that solve the static BPP, we use a static bin packing algorithm [3]
which solves the BPP in an offline way, assuming that all items are available
beforehand. This algorithm uses heuristic approaches on initially sorted items
by nonincreasing volume. The algorithm also assumes that unlimited identical
bins are given, and bins have fixed orientation. If one bin is full then it is closed, a
new bin is set as open to receive items. The algorithm was written in C, then was
compiled into an executable file, which is then called by the simulation frame-
work. We choose this algorithm because, although it is not the latest method,
it is one of the few available 3D bin packing algorithms whose source code is
accessible and detailed algorithm description is available. Because the purpose
of this paper is to provide a proof of concept, we feel the decision of choosing
this algorithm is justified.

To illustrate how the framework can be used to test dynamic algorithms that
solve the dynamic BPP in an online way, we implement a new online algorithm
(Algorithm 1). It should be noted that the dynamic BPP is very new to the
academic community, and while there has been a few research that proposes
solving algorithms [32–34], these research have not provided any experimental
details to prove that these algorithms work. Because of that, here we just provide
a simple algorithm as a proof of concept. The algorithm is written in Java, and
it works by packing upcoming items layer by layer under the same assumption
as the static algorithm.The algorithm assumes that there is no information of
upcoming items and hence the problem needs to be solved online. At the time an
item comes, the information of the item, the current bin and a packing location
are passed to the algorithm as parameters and the algorithm goes on packing the
new item into the current available bins. Items are packed in a bin in “layers”
(see Figs. 1 and 2).

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 271

Algorithm 1. OnlineBinPacking(ai, b, p)
while(bj){ //if the jth bin exists

if ai,x > bj,x||ai,y > bj,y||ai,z > bj,z {
//if any of the dimensions of the item is larger than the bin
return }//this item can not be packed

if px + ai,x > bj,x {
//if the space through x coordinate is not enough
//move the packing location to the origin of next bin, close the current bin
update p and j to next bin

} else if py + ai,y > bj,y {
//if the space through y coordinate is not enough
//move the packing location to the next layer
update p to next layer through x coordinate

} else if pz + ai,z > bj,z {
//if the space through z coordinate is not enough
//move the packing location to the next column
update p to next layer through y coordinate

} else {
//space is enough, pack the item
pack the item and update p,i and j
return

}
}
return

where px,py,pz are the packing location, ai,x, ai,y, ai,zare the width, height and length
of the ith item in the list of items, bj,x, bj,y, bj,zare the width, height and length of the
jth bin in the list of bins.

The size of each layer is the maximum size of the packed items. The algorithm
will check whether the current vertical layer in a bin has enough space for this item.
If there is enough space on the current layer, the item is packed to the location and

Fig. 1. Example of item, bin, and layer in 3D

272 R. Wang et al.

Fig. 2. Example of packing in a layer in 2D using Algorithm 1. Four items are packed
in the first column. For the newly arrived item 1, the space left in the first column
is not enough, so it is placed to the second column. Because the volume of item 2 is
smaller than the free space, it is placed on the top of those items in the first column.
Item 3 has the same volume as item 2 but with different orientation. It is placed to the
second column since our algorithm is under the assumption of fixed orientation.

return the updated packing location. If there is no enough space on this layer, it
will check the next layer till this bin is full and then open a new one.

The simulation process of online bin packing is outlined as follows. This is
also shown in Fig. 3.

1. Setting up inputs to generate test cases. The format of input for minimising
the number of identical bins is shown in Table 1.

2. Once a test instance is generated, the online algorithm is called while passing
the information of this item as parameters (width, height, length). The test
cases are saved as a text file as well in the format below.

n bx, by, bz
a1,x a1,y a1,z
a2,x a2,y a2,z
...
...
...
an,x an,y an,z

where n is the total number of items, x, y, z are the width, height
and length.

3. Then the packing location is returned by the algorithm so that the framework
could visualise.

4. In the meanwhile, the packing result is exported to a file with a format
as follows: bin type, bin no., item width, item height, item length, packing
position coordinate x, y, z.

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 273

Fig. 3. The process flow of simulation

Table 1. The format of input for bin number minimisation

Parameters Explanation

String file name The output file name of test cases. It should be
the same name read in algorithm

int bin x, int bin y, int bin z The size of bins

int item num The total number of items to be packed

int x dis, int y dis, int z dis The distribution of each dimension (width, height,
length). 1 is normal distribution, the default is
uniform distribution

int x min, int y min, int z min It is the mean for normal distribution or the lower
bound of the range for uniform distribution

int x max, int y max, int z max It is the standard deviation for normal
distribution or the upper bound of the range
for uniform distribution

Performance Measures. As mentioned in Sect. 2.3, performance measures are
necessary to be introduced due to the lack of common measures. To evaluate the
effectiveness of the algorithms comparing to other algorithms, we use the fol-
lowing measures: average utilisation and number of bins. The average utilisation
shows how much the bin capacity is used on average. It provides a reference to
see how close the items are packed in each bin. The average utilisation of the bins
is the total volume of packed items dividing by the total volume of used bins.
Moreover, the number of bins is used as another performance measure regarding
the effectiveness of algorithms. It represents how an algorithm performs with an
objective of input minimisation such as number of bins minimisation or cost of
bins minimisation.

Performance measures regarding efficiency of algorithms generally means the
process time of an algorithm, for example, how fast or slow the algorithm identi-
fied the optimum solution. The criteria at the moment the framework supports

274 R. Wang et al.

is the running time, which is the total process time of an algorithm in our
framework. This criteria can be easily collected and it is valuable in compar-
ing performances of different algorithms on computers of same standard. Other
criteria like CPU usage could be implemented in the future.

3.2 Generating Test Problems

This subsection proposes test cases that we suggest to use as default. However,
our framework is not limited to them. Users can customise test cases based on
their own needs. Here we considered three levels of test cases: easy, medium, and
hard which represent the level of difficulty of packing items. The time that an
algorithm takes normally depends on the difficulty of the problem. Due to the
lack of a proper 3D benchmark, the following instances are extended from Lodi
et al. [35] which provides instances in 2D. Another dimension is added for bins
and items. They are displayed in Table 2 based on following types of cuboids
that are defined in terms of the width W, height H and length L of the bins.

Type 1: wj uniformly random in [23W, W]; hj uniformly random in [1, 1
2H];

lj uniformly random in [1, 1
3L];

Type 2: wj uniformly random in [1, 1
2W]; hj uniformly random in [23H, H];

lj uniformly random in [12L, L];
Type 3: wj uniformly random in [12W, W]; hj uniformly random in [12H, H];

lj uniformly random in [1, 1
2L];

Type 4: wj uniformly random in [1, 1
2W]; hj uniformly random in [1, 1

2H]; lj
uniformly random in [23L, L].

Table 2. Example of the problem instances generated by the framework

Data set No Category Bin size (W*H*L) Total number of items Item (wj*hj*lj)

I 20 Easy 30*30*30 20 Uniformly random in [1, 10]

I 40 Easy 30*30*30 40 Uniformly random in [1, 10]

I 60 Easy 30*30*30 60 Uniformly random in [1, 10]

I 80 Hard 30*30*30 80 Uniformly random in [1, 10]

I 1000 Hard 30*30*30 1000 Uniformly random in [1, 10]

II 20 Easy 100*100*100 20 Uniformly random in [1, 35]

II 40 Medium 100*100*100 40 Uniformly random in [1, 35]

II 60 Medium 100*100*100 60 Uniformly random in [1, 35]

II 80 Hard 100*100*100 80 Uniformly random in [1, 35]

II 1000 Hard 100*100*100 1000 Uniformly random in [1, 35]

III 20 Medium 100*100*100 20 Uniformly random in [1, 100]

III 40 Medium 100*100*100 40 Uniformly random in [1, 100]

III 60 Hard 100*100*100 60 Uniformly random in [1, 100]

III 80 Hard 100*100*100 80 Uniformly random in [1, 100]

III 1000 Hard 100*100*100 1000 Uniformly random in [1, 100]

IV 40 Hard 100*100*100 40 Type 1 with probability 70%,

Type 2, 3, 4 with probability

10% each

IV 1000 Hard 100*100*100 1000 Type 1 with probability 70%,

Type 2, 3, 4 with probability

10% each

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 275

The input used for generating the data set is listed below. The fifth parame-
ter, n is the number of instances which must be an integer. In Java, the specific
function with the same name will be called depending on the number of input
parameters. We have two combinations of parameters below. The first one gen-
erates instances by choosing a specific distribution (data set I, II, III), and the
instances generated by the second one are based on the size of bins (data set
IV). The n below represents the number of items to be generated.

parameters: String file name, int bin x, int bin y, int bin z,
int item num, int x dis, int x min, int x max, int y dis, int
y min, int y max, int z dis, int z min, int z max
OR
String file name, int bin x, int bin y, int bin z, int item num

I: “test cases1.txt”, 30, 30, 30, n, 0, 1, 10, 0, 1, 10, 0, 1, 10
II: “test cases2.txt”, 100, 100, 100, n, 0, 1, 35, 0, 1, 35, 0, 1, 35
III: “test cases3.txt”, 100, 100, 100, n, 0, 1, 100, 0, 1, 100, 0, 1, 100
IV: “test cases4.txt”, 100, 100, 100, n

4 Case Study

4.1 Peer Algorithms

The optimal solution that a dynamic BPP algorithm could find in the online
dynamic case would always be worse than or at best equal to the optimal solution
found in the static case. Due to that, to evaluate the efficiency of a dynamic BPP
algorithm, we can compare its solution with that of an established static BPP
algorithm.

To demonstrate this type of comparison, in this experiment we are going to
compare our online algorithm (Algorithm 1 in Sect. 3.1) with the static algorithm
(Sect. 3.1) to evaluate the effectiveness/efficiency of Algorithm 1.

4.2 Experimental Design

The simulation runs on an Intel Core 2, 3.06 GHz computer with 4.0 GB RAM.
The test set in Table 2 is applied to both algorithms. Different number of items
are set for each group of instances. In each group, we run the algorithm for
ten replications. In order to evaluate the performance of algorithms, we use the
number of bins used, the average utilisation and the running time (see Sect. 3.1).

4.3 Performance Analysis

Table 3 shows the average results of ten replications. The average numbers of
bins determined by the online and static algorithms do not have a significant
difference when the number of items are low or the sizes of items are small in
proportion to bin sizes, i.e. I 20 and II 20. However, for I 40, I 60, II 40, II 60,
III 20 and III 40 the static solution provides a smaller number of bins with

276 R. Wang et al.

Table 3. Bin packing results. N/A represents that an algorithm has not finished the
job by the time of submission.

Data set No. Total No. Online Static

of items

No. of bins Average Running No. of bins Average Running

utilisation time (s) utilisation time (s)

I 20 20 1 11.994% 0.001 1 11.994% 0.129

I 40 40 1.1 24.054% 0.001 1 25.752% 0.136

I 60 60 2 19.037% 0.001 1 38.077% 0.116

I 80 80 5 37.43% 0.001 N/A N/A N/A

I 1000 1000 22.3 29.16% 0.001 N/A N/A N/A

II 20 20 1 11.619% 0.001 1 11.619% 0.226

II 40 40 1.4 17.442% 0.001 1 22.273% 0.146

II 60 60 2 16.92% 0.001 1 33.83% 0.19

II 80 80 3.2 13.71% 0.001 N/A N/A N/A

II 1000 1000 26 22.46% 0.002 N/A N/A N/A

III 20 20 8.8 29.77% 0.001 4.5 58.43% 2.001

III 40 40 15.7 29.633% 0.001 6.6 70.107% 14.214

III 60 60 24.3 32.13% 0.001 N/A N/A N/A

III 80 80 37 33.11% 0.001 N/A N/A N/A

III 1000 1000 382 32.77% 0.001 N/A N/A N/A

IV 40 40 2 25.54% 0.001 N/A N/A N/A

IV 1000 1000 81 42.44% 0.001 N/A N/A N/A

a larger average utilisation rate. This reflects the fact that in most cases the
solution found online would be worse than the solution found offline in a static
way.

In terms of the running time, the online algorithm has significantly shorter
process times in comparison with the static algorithm. According to the results,
the static algorithm takes much longer to achieve a packing plan for hard level
of test cases. By the time we submit this paper it has not even been able to find
a solution for all the large scale cases. The online algorithm, on the contrary,
is much faster and can solve all the problems, including the hard, large-scale
instances. For example, in the results of I 1000, II 1000, III 1000 and IV 1000
shown in Table 3, in the online algorithm it takes only 0.002 s at most. This
solving time includes both computational time of the proposed online algorithm
and the simulation time to visually display the loading process. It means the
simulation is also fast and our framework is capable of handling problems with a
large number of items which is common in the real-world BPPs. Figure 4 shows
an example of how the process of packing bins online is displayed in 3D in our
proposed framework.

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 277

Fig. 4. A 3D view of the online bin packing process, as displayed by our framework.

5 Conclusion

This paper for the first time proposes a framework to generate benchmark
problems for dynamic BPPs using discrete-event simulation. The developed
benchmarks provides a test bed for evaluation of the applicability of dynamic
optimisation algorithms to real-world BPPs. We also developed an online bin
packing algorithm which was integrated in the framework. A set of test cases
were generated using the framework to evaluate the online algorithm. The results
of the online algorithm on these test cases were then compared with those of an
static algorithm from the literature.

The future directions for further improvement of the proposed framework
are as follows. First, in this paper only limited algorithms were evaluated, but
this framework is capable of being integrated with other algorithms such as
evolutionary algorithms. Second, state-of-the-art online bin packing algorithms
from the literature can be reproduced in the framework to achieve competitive
results. Third, the impact of uncertainty on each dimension of items can be inves-
tigated. In addition, currently, we only used this framework for BPPs, however
this framework can be extended to many other optimisation problems e.g. the
travelling salesman problem and job shop scheduling. This can be investigated
in our future study.

Acknowledgement. This work was supported by a Dean’s scholarship from the
Faculty of Engineering and Technology, Liverpool John Moores University, a British
Council UK-ASEAN Knowledge Partnership grant and a British Council Newton Insti-
tutional Links grant.

278 R. Wang et al.

References

1. Crainic, T.G., Perboli, G., Tadei, R.: Ts 2 pack: A two-level tabu search for the
three-dimensional bin packing problem. Eur. J. Oper. Res. 195(3), 744–760 (2009)

2. Feng, X.: Hybrid genetic algorithms for the three-dimensional multiple container
packing problem. Flex. Serv. Manufact. J. 27(2), 451–477 (2013)

3. Martello, S.: Algorithm 864: general and robot-packable variants of the three-
dimensional bin packing problem. ACM Trans. Math. Softw. 33(1), 1–12 (2007)

4. de Almeida, A.: A particular approach for the three-dimensional packing problem
with additional constraints. Comput. Oper. Res. 37, 1968–1976 (2010)

5. Alvarez-Valdes, R.: A grasp/path relinking algorithm for two- and three-
dimensional multiple bin-size bin packing problems. Comput. Oper. Res. 40, 3081–
3090 (2013)

6. Che, C.H.: The multiple container loading cost minimization problem. Eur. J.
Oper. Res. 214, 501–511 (2011)

7. Eley, M.: A bottleneck assignment approach to the multiple container loading
problem. OR Spectr. 25, 54–60 (2003)

8. Tian, T., Zhu, W., Lim, A., Wei, L.: The multiple container loading problem with
preference. Eur. J. Oper. Res. 248, 84–94 (2015)

9. Lim, A.: The single container loading problem with axle weight constraints. Int. J.
Prod. Econ. 144(1), 358–369 (2013)

10. Liu, J.: A novel hybrid tabu search approach to container loading. Comput. Oper.
Res. 38(4), 797–807 (2011)

11. Junqueira, L.: Three-dimensional container loading models with cargo stability and
load bearing constraints. Comput. Oper. Res. 39, 74–85 (2012)

12. Costa, M.G., Captivo, M.E.: Weight distribution in container loading: a case study.
Int. Trans. Oper. Res. (2014)

13. Ceschia, S., Schaerf, A.: Local search for a multi-drop multi-container loading
problem. J. Heuristics 19(2), 275–294 (2013)

14. Bortfeldt, W.: Constraints in container loading - a state-of-the-art review. Eur. J.
Oper. Res. 229, 1–20 (2012)

15. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

16. Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimization - the chal-
lenges. IEEE Trans. Evol. Comput. 16(6), 769–786 (2012)

17. Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the
multi-objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops
2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

18. Richter, H.: Memory Design for Constrained Dynamic Optimization Problems. In:
Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I.,
Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.)
EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg
(2010)

19. Weicker, K., Weicker, N.: Dynamic rotation and partial visibility. In: Proceedings
of the 2000 Congress on Evolutionary Computation, pp. 1125–1131 (2000)

20. Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini,
M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer,
Heidelberg (2009)

21. Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems.
In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 690–697. IEEE
(2009)

Benchmarking Dynamic Three-Dimensional Bin Packing Problems 279

22. Nguyen, T.T.: Continuous dynamic optimisation using evolutionary algorithms.
PhD thesis, University of Birmingham (2011)

23. Nguyen, T.T., Yao, X.: Dynamic time-linkage evolutionary optimization: defini-
tions and potential solutions. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuris-
tics for Dynamic Optimization. SCI, vol. 433, pp. 379–405. Springer, Heidelberg
(2013)

24. Kavakeb, S., Nguyen, T.T., Yang, Z., Jenkinson, I.: Evolutionary fleet sizing in sta-
tic and uncertain environments with shuttle transportation tasks - the case studies
of container terminals. IEEE Computational Intelligence Magazine (in press, 2016)

25. Peng, J., Zhang, B.: Bin packing problem with uncertain volumes and capacities
(2012)

26. Perboli, G., Tadei, R., Baldi, M.M.: The stochastic generalized bin packing prob-
lem. Discrete Appl. Math. 160(7), 1291–1297 (2012)

27. Crainic, T.G.: Bin packing problems with uncertainty on item characteristics: an
application to capacity planning in logistics. Soc. Behav. Sci. 111, 654–662 (2014)

28. Lim, A., Zhang, X.: The container loading problem. In: Proceedings of the 2005
ACM Symposium on Applied Computing, pp. 913–917. ACM (2005)

29. Zhu, W., Lim, A.: A new iterative-doubling greedy-lookahead algorithm for the
single container loading problem. Eur. J. Oper. Res. 222(3), 408–417 (2012)

30. Jiang, J., Cao, L.: A hybrid simulated annealing algorithm for three-dimensional
multi-bin packing problems. In: 2012 International Conference on Systems and
Informatics (ICSAI), pp. 1078–1082. IEEE (2012)

31. Egeblad, J., Pisinger, D.: Heuristic approaches for the two-and three-dimensional
knapsack packing problem. Comput. Oper. Res. 36(4), 1026–1049 (2009)

32. Burcea, M., Wong, P.W.H., Yung, F.C.C.: Online multi-dimensional dynamic bin
packing of unit-fraction items. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013.
LNCS, vol. 7878, pp. 85–96. Springer, Heidelberg (2013)

33. Epstein, L., Levy, M.: Dynamic multi-dimensional bin packing. J. Discrete Algor.
8(4), 356–372 (2010)

34. Wong, P.W.H., Yung, F.C.C.: Competitive multi-dimensional dynamic bin packing
via l-shape bin packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol.
5893, pp. 242–254. Springer, Heidelberg (2010)

35. Lodi, A., Martello, S., Vigo, D.: Heuristic and metaheuristic approaches for a class
of two-dimensional bin packing problems. INFORMS J. Comput. 11(4), 345–357
(1999)

Genetic Programming Algorithms
for Dynamic Environments

João Macedo1(B), Ernesto Costa2, and Lino Marques1

1 Institute of Systems and Robotics, Coimbra, Portugal
{jmacedo,lino}@isr.uc.pt

2 Center of Informatics and Systems of the University of Coimbra,
University of Coimbra, Coimbra, Portugal

ernesto@dei.uc.pt

Abstract. Evolutionary algorithms are a family of stochastic search
heuristics that include Genetic Algorithms (GA) and Genetic Program-
ming (GP). Both GAs and GPs have been successful in many applica-
tions, mainly with static scenarios. However, many real world applica-
tions involve dynamic environments (DE). Many work has been made
to adapt GAs to DEs, but only a few efforts in adapting GPs for this
kind of environments. In this paper we present novel GP algorithms for
dynamic environments and study their performance using three dynamic
benchmark problems, from the areas of Symbolic Regression, Classifica-
tion and Path Planning. Furthermore, we apply the best algorithm we
found in the navigation of an Erratic Robot through a dynamic Santa Fe
Ant Trail and compare its performance to the standard GP algorithm.
The results, statistically validated, are very promising.

Keywords: Evolutionary algorithms · Genetic programing · Dynamic
environments

1 Introduction

Evolutionary Algorithms (EA) are a family of stochastic search heuristics
inspired by the principle of natural selection and genetics that has been suc-
cessfully applied in problems of learning, optimisation and design. Genetic Algo-
rithms (GA) and Genetic Programming (GP) are two subfamilies of EAs. While
GAs evolve solutions for a given problem, the purpose of GPs is to evolve pro-
grams that, when executed, produce solutions for specific problems.

Many of the successful applications of EAs assume that the environments
are static, i.e., environments whose conditions remain constant throughout time.
However in many real world applications, the environment is dynamic, altering
its constraints or the problem itself over time. An example of such situation is the
navigation problem of a mobile robot, where the constraints to the navigation
change both in time and in space.

An EA works by iteratively evolving a population of individuals with oper-
ators that resemble sexual and asexual reproduction. Usually, during evolution,
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 280–295, 2016.
DOI: 10.1007/978-3-319-31153-1 19

Genetic Programming Algorithms for Dynamic Environments 281

the best individuals reproduce more than the worse. This causes a gradual con-
vergence of the entire population to individuals that are similar to its best.
When the environment changes, it is likely that the former best individual does
not perform well anymore. Furthermore, as the population has lost its diversity,
the algorithm will have an added difficulty to evolve solutions that are strongly
different from the existing ones.

Some work was already done in adapting GAs to Dynamic Environments.
However, the same can not be said for GPs. Our goal is to fill that gap, making
GPs capable of working with good performance in such environments.

We start by transposing some of the available techniques for GAs to GPs, and
testing them in three dynamic benchmark problems. We then proceed to create
novel mechanisms, based on the combination of some pre-existing concepts, and
compared their performance to the previous ones. Finally, we apply a standard
GP and the best technique to a real robot and compared their performance in
navigating a dynamic Santa Fe Ant Trail.

The rest of this paper is organised as follows: Sect. 2 presents a brief state of
the art in adapting GAs and GPs for Dynamic Environments, Sect. 3 describes
the proposed GP algorithms for Dynamic Environments, as well as the experi-
ments made to asses their usefulness, Sect. 4 describes the experiments made on
a robotics, Sect. 5 presents the results of those experiments, and Sect. 6 makes
the conclusion remarks and suggests future work.

2 State of the Art

In this section we briefly describe the work that have been done to deal with
dynamic environments for GA’s and GP’s separately. We also present a method
for classifying the different types of dynamic environments, inspired by [17]. For
further information on these topics, in the context of GA’s, the interested reader
may consult Nguyen et al. [12], Yang et al. [16] or Branke [1].

2.1 Genetic Algorithms

Generally, Dynamic Environments are dealt with by either maintaining the pop-
ulation’s diversity or by increasing it as a response to an environmental change.
In Genetic Algorithms, this has been achieved through a number of methods.
For the sake of clarity, we classify such methods into three classes, depending on
their manipulation of the algorithm’s parameters, use of memory or introduction
of immigrants.

Parametric Methods. The Triggered Hypermutation [2,3] is a parametric
method that consists in considerably increasing the base mutation rate of the
algorithm when an environmental change is detected. Another method, know as
Variable Local Search [23] works similarly to the Triggered Hypermutation. How-
ever, when the environment changes, the mutation rate is only slightly increased,
thus favouring exploitation rather than exploration. In [9] is proposed a method

282 J. Macedo et al.

that adapts the crossover and mutation rates depending on the fitness of both
the single individuals and the entire population. Although this method was ini-
tially proposed for avoiding premature convergence, it could also perform well in
dynamic environments, as it leverages exploration and exploitation around good
quality individuals.

Memory Methods. The Memory based algorithms are specially useful in sce-
narios where future environments are similar or equal to those of the past. They
can make use of implicit or explicit memory. The implicit memory methods
are characterised by embedding memory mechanisms within each individual. In
[7,11] this is achieved by means of multiploidy. On the other hand, explicit mem-
ory methods are characterised by having a special location where information
is stored. In [17], four explicit memory based algorithms are compared. In these
algorithms, the memory is used not only for storing good individuals from past
environments, but also for detecting environmental changes. Apart from that,
each algorithm makes use of it differently. The Memory-Enhanced Genetic Algo-
rithm (MEGA) reacts to environmental changes by creating a new population,
containing the best performing individuals from memory and the previous popu-
lation, in the new context. The Memory-Immigrants Genetic Algorithm (MIGA)
uses the best individual from the memory on each generation to create, by means
of mutation, immigrants that are injected into the population. The Associative-
Memory Genetic Algorithm (AMGA) stores in memory information about the
environments along with their best individuals. This algorithm reacts to changes
by using the environmental information associated to the best individual from
memory to create new individuals that are injected into the population. Finally,
the Variable-Size Memory Evolutionary Algorithm (VMEA) works similarly to
MEGA, with the difference that it adapts the size of the memory and population,
while maintaining the total number of individuals constant.

Immigrant Methods. The methods based on immigrants usually aim at main-
taining a reasonable population diversity throughout the generations, rather
than increasing it when the environment changes. A simple method, Random
Immigrants, consists in randomly creating a set of individuals and injecting
them into the population. Yang and Tinós [26] proposed the hybrid immigrants
method, that combines individuals created by mutation of the best from the
population and randomly generated individuals.

Other Methods. Simões and Costa [18], proposed a method that uses Transfor-
mation, a novel variation operator that replaces crossover. This method, inspired
by bacterial processes, consists in the incorporation into the individuals’ genome,
of gene segments present in the environment. In [19], the authors compared two
variants of the transformation method to a triggered hypermutation and a ran-
dom immigrants approach. They concluded that with low severity environmental
changes, the transformation performs better than the others, while in high sever-
ity scenarios, the triggered hypermutation is better.

Genetic Programming Algorithms for Dynamic Environments 283

2.2 Genetic Programming

The majority of work made on Genetic Programming has focused on static envi-
ronments. However, there is a few literature in adapting this family of algorithms
to dynamic environments, that we categorise depending on their manipulation
of the algorithms’ parameters, use of memory or other methods.

Parametric Methods. In [15], Riekert et al. proposed an algorithm that
adapts the size of the elite, the crossover and mutation rates and uses culling.
Their study showed that this algorithm is able to outperform a standard GP and
a neural network in three dynamic classification problems. In [27], the adapta-
tion of the crossover and mutation rates was explored with the goal of preventing
premature convergence by increasing diversity if a new best solution is not found
after a number of generations. Vanneschi and Cuccu [22] explored the adaptation
of the population size in dynamic environments, reducing it when the fitness of
the population is good, in order to save resources. On the other hand, when the
fitness drops, the population grows to increase the exploration capabilities.

Memory Methods. In [24] Wagner et al. proposed an algorithm for time
series forecasting in Dynamics Environments, using a sliding, variable length,
time window and an explicit memory where good individuals from the past are
stored for future use.

Other Methods. O’Neill et al., [13], used Dynamic Environments for speeding
up the convergence of a standard GP algorithm in a symbolic regression problem.
By varying the target polynomial functions, the authors concluded that the use of
Dynamic Environments not only leads to a faster convergence of the individuals
to a good quality area of the search space, but also contributes to the discovery
of higher quality solutions.

2.3 Dynamic Environments

Dynamic environments can be defined according to the time (when) and nature
(how) of the environmental changes. The presentation below follows [17].

When. The success of a GP algorithm depends greatly on the moments when
the environment changes. Not only it is important to know if the changes hap-
pen frequently or rarely, but also if they can be predicted or are completely
unexpected. This time component of the Dynamic Environments can be char-
acterised according to: (a) the frequency of change, i.e., the number of times
the environment changes in a run; (b) the type of change period, i.e., the
way the period between changes varies over time (periodic, patterned, nonlin-
ear, random); and (c) the predictability of the change, i.e., the ability to
predict when the next change will take place.

284 J. Macedo et al.

How. The environmental changes depend on (a) the severity of the change
i.e., how different the new environment is from the previous one; (b) the types of
environmental changes i.e., the way an environment changes (cyclic, cyclic
with noise, probabilistic, random); and (c) the predictability of the new
environment i.e., the ability to predict how the new environment will be, based
on the current and past ones.

Difficulty Scenarios. Based on the characteristics presented above it is pos-
sible to define scenarios with different difficulty levels. An easy scenario would
have changes with low frequency and taking place periodically or in patterned
moments. These modifications would have low severity, altering the environment
cyclically, possibly with noise. A medium scenario would change more frequently,
at periodic, patterned or nonlinear moments. The changes could be cyclic with
noise or probabilistic, having average severity. Finally, in a hard scenario the
changes would take place very frequently, at random or nonlinear moments.
They would provoke random modifications in the scenario, with high severity.

3 Proposed Algorithms

We propose a set of tree based GP algorithms for dealing with Dynamic Environ-
ments which are divided into two categories. They are compared to each other
and to a standard GP (SGP) as described in [8], which is used as baseline.

3.1 Simple Techniques

The first category contains techniques that are a direct adaptation of algorithms
already proposed for genetic algorithms. We implemented this algorithms as it
is our belief that they would also perform better than the SGP in Dynamic
Environments.

Triggered Hypermutation (TH). This algorithm is an adaptation of the
one proposed in [2]. In our implementation, it uses subtree mutation with a base
mutation rate of 10 %. When an environmental change is detected, the mutation
rate is increased to 50 %, staying at that value for a period of 25 generations.

Immigrants (I). The immigrants algorithm we propose is an adaptation of
ERIGA [26]. It combines random and elitist immigrants in adaptive quantities,
with the restriction that the total amount of immigrants is constant.

Fixed Memory (FM). We also propose an algorithm that uses an explicit
memory of fixed length, where the best individual of the population at the time
of the update is stored. When an environmental change is detected, the best
individual from memory replaces the worst from the population, provided that
it is better than it. This mechanism is an adaptation of MEGA, proposed by
Yang [26].

Genetic Programming Algorithms for Dynamic Environments 285

3.2 Hybrid Techniques

In this section we present algorithms that result largely from the combination of
the simple techniques, except for the Transformation, that is an adaptation of
the algorithm proposed in [18], but is presented here for chronological reasons.

Transformation. As we said, this algorithm is a direct adaptation of one
already proposed for preventing premature convergence in GAs. Our belief, is
that as it promotes population diversity, it will be able to handle Dynamic Envi-
ronments better than the SGP.

Combination of Two Techniques. The Transformation Memory combines
Transformation with Memory. It is similar to the Fixed Memory algorithm,
apart from the variation operator. It is our belief that it will combine the better
results of the transformation with the ability to resume evolution provided by
the memory. This reasoning served as inspiration to the following combinations:

– The Hypermutation Memory (HM), which combines the Triggered Hypermu-
tation with Fixed Memory;

– Immigrants Memory (IM), which combines the ERIGA inspired approach with
Fixed Memory;

– Random Immigrants Memory (RIM), which combines the Fixed Memory with
immigrants that are only randomly generated.

Combination of More Techniques. In this section we present a set of algo-
rithms that combine three techniques with multi populations. The first of these
algorithms is the Hypermutation Memory Transformation SGP (HMTS), which
uses three subpopulations, being two of them evolved in isolation. The first
subpopulation is evolved with Triggered Hypermutation Memory, the second
subpopulation is evolved with Transformation and the third subpopulation is
evolved with the standard GP algorithm. For producing each offspring, three
candidate parents are selected by means of tournament, from each of the popu-
lations. The crossover operator is then applied to the best two individuals. On
each generation, the best individual outputted is the best individual from the
entire population. Is also that individual that is introduced into the memory,
thus being an exception to the isolated evolution of the first subpopulation. The
other two variants of this algorithm are the Transformation Memory Hyper-
mutation SGP (TMHS) and the Fixed Memory Transformation Hypermutation
(FMTH), the difference between them being the algorithms that evolve each
subpopulation.

3.3 Experimental Results

These algorithms were applied in three dynamic benchmark problems, a Sym-
bolic Regression, a Classification and the Santa Fe ant Trail, each of them having

286 J. Macedo et al.

three scenarios of increasing difficulty. These benchmark problems were chosen
because they belong to classes relevant to the area [25]. In this Section we briefly
describe the experiments made, directing the interested reader to [10] for further
details.

Symbolic Regression. This benchmark problem consists in using Symbolic
Regression to approximate a set of polynomial functions of the form: x + x2 +
x3 + x4 + x5 + x6 + x7 + x8. In order to make this problem dynamic we modify
a number of addictions to subtractions. The Root Mean Square Error was used
to assess the quality of each individual. For this benchmark problem, we defined
the following scenarios:

– In the Easy scenario, the environmental changes take place periodically, every
200 generations. They are cyclical in nature, and with relatively low severity,
consisting in alternating between two target functions that differ in only one
operator.

– In the Medium scenario, the modifications are more severe and frequent.
The environmental changes take place at pre-determined moments, follow-
ing a pattern of 100 - 120 - 80 - 100 generations and consist in modifying
three operators. Furthermore, the number of possible environments is limited
to 5. On each environmental change, the next environment shall be chosen
probabilistically, depending on the current one.

– In the Hard scenario, the changes will not only be more frequent, as they
will take place at any random moment, with a minimum change period of 50
generations. After that number of generations there will be a 50 % probability
of the environment being modified in the current moment. Furthermore, there
will be no predefined number of environments. Instead, each operator will have
a 50-50 chance of being inverted, i.e. positive members becoming negative and
vice versa, thus causing random modifications to the environment. Initially,
the environment shall be defined by the original function: x+ x2 + x3 + x4 +
x5 + x6 + x7 + x8, as in the other scenarios.

Classification. In this section we describe the binary classification problem
we used as benchmark. In it, each example belongs to one of two classes, that
are separated by a 10-dimensional hyperplane. The task of the classifier is to
attribute a class to each example, and its performance is measured with the
F1-score.

The decision hyperplane is of the form:

H(x) =
∑9

i=1
(ai ∗ xi) + c

This problem was made dynamic by modifying the decision hyperplane, more
specifically, the coefficients ai. We defined three scenarios, with increasing diffi-
culty:

Genetic Programming Algorithms for Dynamic Environments 287

– In the Easy scenario the modifications take place periodically, every 200 gen-
erations, and are cyclical in nature, consisting in alternating between two
environments that only differ in one coefficient.

– In the Medium scenario, the environmental changes take place periodically,
every 100 generations. They are cyclical with noise, consisting in a succession
of 5 environments, that differ from each other in two coefficients, which have
an added noise.

– In the Hard scenario, the environment will be modified at random moments,
provided that there are a minimum of 50 generations between changes. At
each change, 5 coefficients are randomly selected and altered.

Santa Fe Ant Trail. The third benchmark problem is from the class of
path planning. It consists in evolving controllers for navigating an artificial ant
through a two dimensional grid world, with the goal of collecting all existing
food. The original map, depicted in Fig. 1, contains 89 food pellets, disposed in
the filled cells. The quality of a controller can be measured by the percentage of
food pellets collected in at most 400 movements. We chose to use a percentage
to allow a fair comparison between environments, as they change by omitting
food pellets.

Fig. 1. Santa Fe Ant Trail. The filled cells contain food pellets.

This problem can be made dynamic by simply removing some food pellets
from the environment. We proposed three scenarios for making it dynamic, with
increasing difficulty:

– The Easy scenario is modified periodically, every 200 generations. Each
change consists in cyclically alternating between two environments, the origi-
nal and one created by omitting 7 food pellets from it.

– In the Medium scenario, the changes take place in moments that follow a
pattern, taking place between in periods of 100 - 120 - 80 -100 generations.
They are of a probabilistic nature, being possible to go from one environment
to any of the other four, each transition having an associated probability.
The environment set consists of the original environment and four others,
generated by omitting 12 food pellets from the original one.

288 J. Macedo et al.

– In the Hard scenario, there are five possible environments, the original and
four others, created by removing 17 food pellets from the original. The changes
are of a random nature, being possible to choose any next scenario regardless
of the current one. Furthermore, the changes take place at random moments,
provided that there are a minimum of 50 generations between them.

3.4 Experimental Setup

For each benchmark problem and for each scenario we did 30 runs. The fitness
of the best individual from the population at each generation was collected.
Those values were used to compute two metrics, the offline performance and the
best of generation. The offline performance measures the ability of the algorithm
to produce good solutions before the environment changes. More formally, the
offline performance of an algorithm’s run is given by:

OfflinePerformance =
∑nGenerations

t=1 (u∗
e(at))

nGenerations

where nGenerations is the number of generations in a run, and u∗
e(at) is the

fitness of the best individual in the current environment.
The best of generation (BOG) metric measures the average fitness of the best

individual over all generations in a run. More formally, it is defined by:

BOG =

∑nGenerations
g=1 (f(bg))
nGenerations

where f(bg) is the fitness of the best individual from generation g.
In order to assess whether the proposed algorithms were any better than the

existing ones, the simple techniques were compared with the SGP, the hybrid
techniques were compared with the simple techniques that constitute them, and
the transformation was compared with all simple techniques and the SGP. Fur-
thermore, all algorithms were compared with each other in an attempt to find
and overall best. These comparisons were made with statistical tests, specifically
with Friedman’s Anova and the Wilcoxon Signed Ranks test, at a 95 % confi-
dence interval, and using the Bonferroni correction for continuity. Due to space
limitations we do not present all the results here, and we direct the interested
reader to [10]. In Table 1 we present the total number of times an algorithm was
significantly superior, or inferior, to the others, over all scenarios of all bench-
mark problems, at this confidence level.

From this table we conclude that the algorithm HMTS performs very well,
being the one that is more times superior to others, and never inferior. For the
same reasons, we may say that the worst algorithms are the RIM, that is the
most times inferior to others, and the SGP, being the least times superior to
others. In the second part of this paper we apply the HMTS to the evolution
of the controller of a real robot, along with the SGP and a Random Walk for
baseline.

Genetic Programming Algorithms for Dynamic Environments 289

Table 1. Number of times an algorithm is significantly superior or inferior to any
other. The highest values are highlighted

Algorithm Superior Inferior

SGP 6 40

TH 10 19

Immigrants 13 26

FM 15 11

Transformation 9 39

HM 28 3

IM 9 25

RIM 17 50

TM 20 9

HMTS 35 0

TMHS 33 0

FMTH 28 1

4 Experiment in Evolutionary Robotics

In this section we describe the application of two GP algorithms to the navigation
of a real robot.

4.1 Problem

The application problem at hand consists of the adaptation of the Santa Fe
Ant Trail benchmark problem to the real world. Instead of a toroidal grid, the
maze will be delimited by walls. Furthermore, similarly to the Lausanne Trail
[21], there will not be a grid, but the proportions and displacement of the food
pellets will be maintained. Thus, the robot is able to move freely in the world.
A consequence of moving to the real world is the presence of noise, both in the
perceptions, i.e., robot localisation, orientation, distance to walls, and in actions,
i.e., turning and moving. Furthermore, this problem is made dynamic using the
scenarios described in Sect. 3.3. The evolved controllers will have to deal with
both noise and dynamic environments.

The Santa Fe Ant Trail problem is a well known problem within the GP com-
munity. In [4], Doucette and Heywood proposed a novelty-based fitness function
to evaluate GP individuals navigating the Santa Fe trail. They tested two meth-
ods that are based only on novelty, a combination of novelty and quality, i.e.,
amount of food eaten, and quality alone. They found that while the quality-based
and combination functions did not provide significant differences, they performed
significantly better than the ones based on novelty alone. On the other hand,
the introduction of novelty allowed for better generalisation capabilities.

290 J. Macedo et al.

To the best of our knowledge there is only one adaptation of this problem to
robotics. Teuscher et al. [21] used small robots to navigate the Lausanne Trail,
an adaptation of the Santa Fe trail to the real world. The trails were printed
to A0 paper, with black squares indicating the food pellets. The controllers for
those robots were evolved with an EA, with local tournament selection. The
main drawback they found in their system was the robot’s inability to detect
loops, as they did not possess any localisation mechanism and were not able to
delete the discovered food pellets.

Sugawara et al. [20] proposed a framework for simulating the behaviour of
foraging robots based on virtual pheromone. They experimented different com-
binations of number of robots and pheromone evaporation rates in tasks of for-
aging uniformly distributed food, which has some similarities to the Santa Fe
Ant Trail, as well as foraging food that is concentrated in a specific location.

Fioriti et al. [5] addressed the problem of foraging in Dynamic Environments
using Lévy search. They experiment on environments with a single moving tar-
get, positioned accordingly to a radial probability density function, comparing
the Lévy search with the random walk.

4.2 Algorithms

We will compare two tree based GP algorithms, the SGP, as defined by Koza [8]
and the HTMS, presented in Sect. 3.2, which we consider the best approach for
dynamic environments. We also implemented a Random Walk algorithm (RW)
for providing a baseline. This latter algorithm chooses random positions in the
map and navigates to them using the same actions as the controllers evolved by
the GP algorithms.

4.3 Parametrisation

The main parameters are defined in Table 2. Moreover, the variation operators
used are sub-tree crossover, sub-tree mutation and node mutation. All algorithms
will be given 400 steps to solve the trails, and use the same function and terminal
sets:

– Function Set = {IfObstacleAhead, IfTargetAhead, Progn2, Progn3}
– Terminal Set = {Move, Right, Left}
Where IfObstacleAhead and IfTargetAhead are boolean functions that check if
there is an obstacle or target directly ahead of the robot, Progn2 and Progn3
are two progression functions that execute two or three actions in order. Move
is the action of moving the equivalent of one cell forward and Left and Right are
the actions of turning 90 degrees in each direction. The fitness of each individual
will be measured as the percentage of food pellets collected by it. A change in
the environment will be considered to have occurred, when the fitness of the best
individual of the previous generation is now different.

Genetic Programming Algorithms for Dynamic Environments 291

Table 2. GP parameters

Parameter Value

Population Size 400

Number of generations 5000

Crossover probability 80 %

Mutation probability 10 %

Maximum tree depth 7

Elite size 25

Tournament size 50

Population initialisation Ramped half and half

Base mutation probability 10 %

Hypermutation probability 50 %

Hypermutation period 25 generations

Memory size 40

Transformation probability 80 %

Gene pool size 160

Subpopulation size 133

4.4 Resources

To test the algorithms we use an Erratic Robot, having one Hokuyo range finder
with 180◦ aperture angle and 4 m range and a camera on its front facing down-
wards at a 30◦ angle. The robot’s position and orientation are given by its
odometry. Using these sensors we can provide perceptions such as determining
whether there is a target ahead of the robot and if it is safe to move forward or
turn without hitting a wall. The algorithms were tested in Stage [6], a simulator
of the ROS framework [14] known for being realistic enough to allow an almost
direct transition from simulation to real robots.

5 Experimental Results

We measure the quality of the algorithms with two metrics, the offline perfor-
mance and the best of generation, presented in Sect. 3.4. Figures 2, 3 and 4 show
the fitness of the best individual, averaged over 30 runs, for each algorithm. An
analysis of these graphs leads us to the conclusion that the HMTS is always
better than the SGP, being able to gain quality faster, not loosing much fitness
when the environment changes, and achieving overall better results. Further-
more, both GP algorithms clearly outperform the RW. In the next section we
proceed to statistically validate the results of only the GP algorithms, as we feel
that there is not a need to statistically compare them with the Random Walk.

292 J. Macedo et al.

Fig. 2. Performance of the SGP, HMTS and Random Walk algorithms in the easy
scenario of the Santa Fe Ant Trail.

Fig. 3. Performance of the SGP, HMTS and Random Walk algorithms in the medium
scenario of the Santa Fe Ant Trail.

5.1 Statistical Tests

We apply a pairwise test to the distribution of the results of the 30 runs, deter-
mining, at a 95 % confidence interval, which is the best for this application.

For comparing the performances of the algorithms we employed the Wilcoxon
Signed Ranks test. This test was chosen because we only have two algorithms
to compare, the data are dependent and do not follow the same distribution.

The results of the Wilcoxon Signed Ranks test are shown in Table 3. The
test was made in a way that positive ranks favour the HMTS and negative ranks
favour the SGP. From it, we can conclude that the HMTS is an improvement

Genetic Programming Algorithms for Dynamic Environments 293

Fig. 4. Performance of the SGP, HMTS and Random Walk algorithms in the hard
scenario of the Santa Fe Ant Trail.

over the standard algorithm, never being worse than it, and being significantly
better than it in the medium and hard scenarios, regardless of the metric used.

Table 3. Wilcoxon Signed Ranks test

Asymp. Sig Z Sum of positive ranks Sum of negative ranks

BOG Easy 0.318 −0.998 281 184

Medium 0.001 −3.425 399 66

Hard 0.000 −4.782 465 0

Offline P. Easy 0.229 −1.203 291 174

Medium 0.000 −4.103 432 33

Hard 0.000 −4.782 465 0

6 Conclusions and Future Work

In this paper we presented a study where a set of GP algorithms were proposed
for coping with Dynamic Environments. Those algorithms were tested in a set
of dynamic benchmark problems, each having three scenarios of increasing diffi-
culty. Having shown good results in those experiments, we proceeded to employ
the best technique found and compare it with a standard GP and a Random
Walk algorithm in the navigation of a real robot in a dynamic Santa Fe Ant Trail
problem, in different difficulty scenarios. The experimental results showed that
this algorithm is robust and better than the SGP in the two harder scenarios
and not being significantly different from it in the easiest one.

294 J. Macedo et al.

In the future, work has to be done to analyse the characteristics of each algo-
rithm, such as population diversity throughout the generations and exploration
and exploitation capacities. This study would allow for better understanding on
how to combine techniques in order to construct algorithms that excel at both
exploration and exploitation, while reusing past knowledge. Research should
also be made concerning the creation of other memory mechanisms that take
advantage of past knowledge while preventing the convergence to local optima
previously found.

Preliminary testing of the HMTS with a real Erratic Robot already showed
promising results.

Acknowledgements. This work was partially supported by the TIRAMISU
project (www.fp7-tiramisu.eu) under grant agreement FP7/SEC/284747 and the
MassGP project (www.novaims.unl.pt/massgp) under grant agreement PTDC/EEI-
CTP/2975/2012.

References

1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Acad-
emic Publishers, Norwell (2001)

2. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical report, DTIC Document (1990)

3. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environ-
ments. Technical report, DTIC Document (1993)

4. Doucette, J., Heywood, M.I.: Novelty-based fitness: an evaluation under the Santa
Fe Trail. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş.
(eds.) EuroGP 2010. LNCS, vol. 6021, pp. 50–61. Springer, Heidelberg (2010)

5. Fioriti, V., Fratichini, F., Chiesa, S., Moriconi, C.: Lévy foraging in a dynamic
environment-extending the Lévy search. Int. J. Adv. Robot Syst. 12(98) (2015)

6. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-
robot and distributed sensor systems. In: Proceedings of the 11th International
Conference On Advanced Robotics (ICAR), pp. 317–323 (2003)

7. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In: ICGA, pp. 59–68 (1987)

8. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection, vol. 1. MIT press, Cambridge (1992)

9. Liu, C., Liu, H., Yang, J.: A path planning method based on adaptive genetic
algorithm for mobile robot. J. Inf. Comput. Sci. 8(5), 808–814 (2011)

10. Macedo, J.: Genetic programming algorithms for dynamic environments. Master’s
thesis, University of Coimbra, Portugal, September 2015

11. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In: Proceedings of the 6th International
Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc
(1995)

12. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

www.fp7-tiramisu.eu
www.novaims.unl.pt/massgp

Genetic Programming Algorithms for Dynamic Environments 295

13. O’Neill, M., Nicolau, M., Brabazon, A.: Dynamic environments can speed up evo-
lution with genetic programming. In: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, pp. 191–192. ACM (2011)

14. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

15. Riekert, M., Malan, K.M., Engelbrect, A.P.: Adaptive genetic programming for
dynamic classification problems. In: IEEE Congress on Evolutionary Computation,
CEC 2009, pp. 674–681. IEEE (2009)

16. Shengxiang, Y., Yao, X.: Evolutionary Computation for Dynamic Optimization
Problems, vol. 1. Springer, Berlin (2013)

17. Simões, A.: Improving memory-based evolutionary algorithms for dynamic envi-
ronments. Ph.D. thesis, University of Coimbra (2010)

18. Simões, A., Costa, E.: On biologically inspired genetic operators: transformation in
the standard genetic algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 584–591 (2001)

19. Simões, A., Costa, E.: Using genetic algorithms to deal with dynamic environments:
a comparative study of several approaches based on promoting diversity. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference GECCO, vol.
2 (2002)

20. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots
with virtual pheromone. In: Proceedings of 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, (IROS 2004), vol. 3, pp. 3074–3079. IEEE
(2004)

21. Teuscher, C., Sanchez, E., Sipper, M.: Romero’s Odyssey to Santa Fe: from sim-
ulation to real life. Robot. Manufact. Syst. Recent Results Res. Dev. Appl. 10,
262–267 (2000)

22. Vanneschi, L., Cuccu, G.: A study of genetic programming variable population size
for dynamic optimization problems. In: IJCCI, pp. 119–126 (2009)

23. Vavak, F., Fogarty, T.C., Jukes, K.: A genetic algorithm with variable range of
local search for tracking changing environments. In: Ebeling, W., Rechenberg, I.,
Voigt, H.-M., Schwefel, Hans-Paul (eds.) PPSN 1996. LNCS, vol. 1141, pp. 376–
385. Springer, Heidelberg (1996)

24. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting
for dynamic environments: the DyFor genetic program model. IEEE Trans. Evol.
Comput. 11(4), 433–452 (2007)

25. David, R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger,
G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better GP benchmarks: community
survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

26. Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. Autom. Comput. 4(3), 243–254 (2007)

27. Yin, Z., Brabazon, A., O’Sullivan, C., O’Neil, M.: Genetic programming for
dynamic environments. In: Proceedings of the International Multiconference on
Computer Science and Information Technology, pp. 437–446 (2007)

A Memory-Based NSGA-II Algorithm
for Dynamic Multi-objective

Optimization Problems

Shaaban Sahmoud and Haluk Rahmi Topcuoglu(&)

Computer Engineering Department, Marmara University, 34722 Istanbul, Turkey
ssahmoud@marun.edu.tr, haluk@marmara.edu.tr

Abstract. Dynamic multi-objective optimization problems (DMOPs) have
been rapidly attracting the interest of the research community. Although static
multi-objective evolutionary algorithms have been adapted for solving the
DMOPs in the literature, some of those extensions may have high running time
and may be inefficient for the given set of test cases. In this paper, we present a
new hybrid strategy by integrating the memory concept with the NSGA-II
algorithm, called the MNSGA-II algorithm. The proposed algorithm utilizes an
explicit memory to store a number of non-dominated solutions using a new
memory updating technique. The stored solutions are reused in later stages to
reinitialize part of the population when an environment change occurs. The
performance of the MNSGA-II algorithm is validated using three test functions
from a framework proposed in a recent study. The results show that performance
of the MNSGA-II algorithm is competitive with the other state-of-the-art
algorithms in terms of tracking the true Pareto front and maintaining the
diversity.

Keywords: NSGA-II � Dynamic multi-objective optimization problems �
Memory/search algorithms � Hybrid genetic algorithms

1 Introduction

In a multi-objective optimization problem, there is more than one objective where at
least two objectives are in conflict with one another. Multi-objective evolutionary
algorithms (MOEAs) have been applied to solve various multi-objective optimization
problems in different domains during the last twenty years.

MOEAs evolve a population of candidate solutions to find a set of optimal solu-
tions instead of a single optimal solution. This set of optimal solutions is called Pareto
optimal front (POF) in the fitness space, and it is called Pareto optimal set (POS) in the
decision space. The non-dominated sorting strategy was used to determine the best
solutions in the population. The non-dominated solutions can be defined as follows:
each solution is compared with all other solutions in the population, and solutions
which are not dominated by any other solutions are called non dominated solutions.
There are a large number of Multi-objective Evolutionary Algorithms (MOEAs) that
have been proposed to solve MOPs including NSGA [1], NSGA-II [2], SPEA [3],
MOPSO [4–8] where they mainly target for the stationary environments.

© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 296–310, 2016.
DOI: 10.1007/978-3-319-31153-1_20

Although MOEAs work very well when the environment is stationary, most of the
real-world MOPs have parameters that change over time [9, 10]. In a dynamic multi-
objective optimization problem (DMOP), one or more elements including the objective
functions or the problem constraints change in time. According to the classification of
DMOPs presented by Farina et al. [11], the dynamism may become as one or more of
the types listed below:

• The Pareto optimal set (POS) changes over time while the Pareto optimal front
(POF) remains stationary.

• Both the POF and POS change over time.
• The POF changes over time while the POS remains stationary.
• Both the POF and POS remain stationary.

This classification does not take into account the sources of dynamism in the
problem such that if the dynamism happens because of changing in constraints or
changing in objectives. Therefore another classification depending on other criteria
may be found in literature to classify the DMOPs. As in single DOPs in order to solve
DMOPs, we need to track the moving set of optimal solutions once change is detected.
It will be time consuming and inefficient to restart the optimization process with new
population when a new change is detected.

In this paper, we propose a memory-based algorithm to solve DMOPs by
enhancing the well known NSGA-II algorithm. The explicit memory can be very useful
for improving the performance of the NSGA-II to deal with dynamic environments.
The experimental results show that if we design a fair comparison by equalizing the
cost (i.e. the running time) of the algorithms, the memory based NSGA-II algorithm
presented in this study outperforms the state-of-the-art dynamic multi-objective
evolutionary algorithms.

The rest of this paper is organized as follows. Section 2 presents a brief overview
on dynamic multi-objective optimization problem and it provides a classification of
dynamic multi-objective evolutionary algorithms. Section 3 presents our proposed
approach, the MNSGA-II algorithm. A comparative study and related discussions
based on a set of DMOP test instances are given in Sect. 4. Finally Sect. 5 summarizes
the paper.

2 Dynamic Multi-objective Evolutionary Algorithms

In a dynamic multi-objective optimization problem (DMOP), there exist two or more
conflicting objectives, where the objectives, constraints or parameters of the problem
change over time. Whenever a change happens and is detected in the environment of a
DMOP, usually at least the Pareto optimal set (POS) or the Pareto optimal front
(POF) may changed, as shown in previous section. The dynamic POF is the set of
nondominated solutions with respect to the objective space, while the dynamic POS is
the set of nondominated solutions with respect to the decision space, at the given time.
Since a change in the DMOP affects the existing solutions of the DMOP, the goal is to
track the dynamic POF. Therefore the new POF and the new POS must be found as fast
as possible before the next change happening.

A Memory-Based NSGA-II Algorithm 297

There are a number of dynamic multi-objective evolutionary algorithms that con-
sider the diversity in the population in order to track the dynamic POF, which can be
broadly classified into three categories [12]: diversity introduction, diversity mainte-
nance and multiple populations. Prediction-based and memory-based techniques are the
alternatives of the techniques that are based on diversity of the population. In the
following section, we briefly summarize dynamic MOEAs in four categories, which is
adapted from the classification given in [12].

Approaches That Control the Diversity. This category of algorithms either intro-
duces diversity during restart or they preserve diversity throughout the execution of the
algorithm. All population or part of it can be reinitialized randomly whenever a change
is detected in the environment [10]. A more efficient and widely used method is ran-
domly reinitializing a fixed or changed percent of population in each generation
regardless of the detected change in the environment, as in the random immigrants
method [13]. Additionally, the diversity level of a population can be updated when a
change occurs by using the mutation operator. The mutation rate can be increased or
decreased according to the problem changes and the diversity of the population [14, 15].

The non-dominated sorting genetic algorithm (NSGA-II) proposed in [2] is one of
the most efficient algorithms in solving multi-objective optimization problems.
NSGA-II solved the main issues of NSGA [1] and introduced an improved version with
the O(MN2) computational complexity. There are a number of diversity maintenance
based extensions on NSGA-II in order to apply for the DMOPs. The DNSGA-II-A
algorithm [10] replaces fixed percent of the population with randomly created new
solutions whenever there is a change in the problem. This helps the algorithm to
introduce new (random) solutions whenever there is a change in the problem and so the
diversity will be maintained while running. The DNSGA-II-B algorithm [10] replaces
fixed percent of the population with mutated solutions of existing solutions chosen
randomly, where the mutation rate is increased whenever environment change is
detected. In this way, the new solutions that will be introduced in the population are
near the existing population.

In [16], two NSGA-II based algorithms to solve DMOPs are proposed. The first
algorithm DNSGA-II-Rm replaces 20 % of the population in each generation to
maintain the diversity in the population. The second algorithm, the DNSGA-II-HM
algorithm, works by increasing the fixed small mutation rate for one generation after a
change, otherwise the algorithm works with the normal mutation value. Based on the
experimental study, hyper-mutation based algorithm performs better than all other
traditional approaches [16].

Multi-population. A multi-population approach maintains multiple subpopulations
concurrently, where each of them may have a separate task (i.e., searching the global
optimum or tracking any change) and may handle separate area of the search space.
There are multi-population algorithms that use Particle Swarm Optimization (PSO) in
order to solve DMOPs. In [17], the author presents a heuristic algorithm to solve
multi-objective problems using sharing in swarm optimization algorithms and then the
work was extended to solve DMOPs. Helbig and Engelbrecht present DVEPSO

298 S. Sahmoud and H.R. Topcuoglu

algorithm [18] to solve DMOPs. DVEPSO was extended from multi-swarm PSO-based
algorithm, called the vector evaluated particle swarm optimization (VEPSO) algorithm.
There are alternative strategies proposed in the literature to improve the performance of
the DVEPSO algorithm such as managing the archive of the algorithm after a change in
the environment occurred [19], and using suitable boundary constraint management
approach [20].

Another multi-population approach is the Dynamic Competitive-Cooperative
Coevolutionary Algorithm (dCOEA) that combines the competitive and cooperative
techniques of Coevolutionary algorithms together to solve the MOPs and DMOPs [21].
It uses stochastic competitors and a temporal memory to track the Pareto front in
dynamic environments. In the proposed algorithm, individuals from different sub-
populations evolve separately and collaborate with other subpopulations to solve the
problem. The competitive and cooperative processes may be executed iteratively or
with a certain frequency entered to the system. The dCOEA algorithm outperforms
other state-of-the-art algorithms for a set of solving test instances of DMOPs [22].

Memory-Based Approaches. Memory based approach in dynamic optimization uses
implicit or explicit memory schemes to store the detected best solutions and to reuse
this information at a later stage when environment change happens. This approach is
very effective when periodic changes occurred, which is widely used in single objective
problems [23–25]. In another study, an artificial immune system uses a repository in
order to store the generated nondominated solutions [26]. There are only a few
memory-based multi-objective optimization algorithms presented in the literature.

Prediction-Based Approaches. There are prediction based algorithms by exploiting
the past information in order to solve DMOPs [27, 28]. These algorithms try to estimate
the POF or the POS of next change from the history of past sequence locations of the
global optimum using a forecasting method. After applying the prediction methods,
there are many methods that can be used to seed the population when a change in the
objective landscape arrives in order to make the convergence to the new global opti-
mum faster. For example new solutions are created by varying the solution in the last
time window with a “predicted” Gaussian noise, or new solutions are sampled around
the predicted locations using modified mutation, crossover or fitness functions [9]. The
main problem of the algorithms in this category is the highly dependence on the
predictors’ training process. Selecting inconvenient training data or an inconvenient
training method could cause frequent errors in prediction phase.

3 Memory-Based NSGA-II Algorithm (MNSGA-II)

To enhance the ability of NSGA-II algorithm to track the non-dominated solutions in
dynamic environment, we use explicit memory in the algorithm to store the best
solutions in each generation, as in the memory/search algorithm [25]. The
memory/search algorithm is a memory-based algorithm which divides a population of
individuals into two sub-populations: a memory population and a search population.

A Memory-Based NSGA-II Algorithm 299

A separate explicit memory is also considered, where the memory population exploits
the explicit memory by maintaining minimum jumps, and the search population sub-
mits new peaks to the memory.

Our proposed algorithm uses two populations with the NSGA-II which are search
and main populations as shown in Fig. 1. The search population is randomly reini-
tialized whenever an environment change occurs. It is only used to provide the memory
with the best non-dominated solutions, so it should not be updated from memory. On
the other hand, the main population is the population considered in the original
NSGA-II algorithm. Whenever an environment change is detected the main population
updates itself from memory.

The outline of the MNSGA-II algorithm is given in Fig. 2. Instead of using a single
main population as in the memory/search algorithm, we consider parent and child
populations in the MNSGA-II algorithm. The MNSGA-II algorithm starts by initial-
izing the search, parent and child populations randomly, and by using an empty
memory. In each generation the algorithm checks if there is a change in the environ-
ment. If a change occurs, the search population is re-initialized randomly. After that
parents and child populations are merged with memory populations to construct
“population R” with 2N + K elements, where N is the size of the parent or child
population and K is the memory size. If there is no change in the environment, parent
and child populations are merged to construct “population R” with 2N elements.

Updating the Memory. In a memory-based evolutionary algorithm, the memory
updating process is very important and it can directly affect the performance of the
algorithm. For updating the memory, it is required to set how the best solution is
selected and how to replace solutions when the memory is full. For DMOPs, we have a
set of best solutions rather than one best solution as in the single objective problems.

Search
Population

Main
Population

Memory

Update the memory with
new solutions based on
memory update frequency

Update the memory
with new solutions

Support main population
with non-dominated
solutions

Re-initialized when
environment
change happened

Get best solutions
from memory
when environment
change happened

Fig. 1. Scheme of the Memory/Search Algorithm [25]

300 S. Sahmoud and H.R. Topcuoglu

Therefore it may not be appropriate to select only one solution and add it to memory.
We have three options to update the memory:

(a) Add all non-dominated solutions to the memory;
(b) Add the non-dominated solutions that represent the sides of the POF to the

memory, where the number of these solutions will be the same as the number of
objectives in the problem;

(c) Add selected solutions from the set of non-dominated solutions based on other
heuristic methods.

In our proposed algorithm the third option with minimum distance search is used to
select solutions that will be added to memory. Figure 3 shows the steps of updating the
memory.

The size of population R must be reduced to include only N solutions. The
non-domination sorting strategy of NSGA-II is used for this reduction. Firstly, the

begin

InitializeRandomly(S(N), P(N), Q(N)) // Initialize Search, parent and child population

Initialize(Memory(k)) //Initially memory is empty.

while termination condition not satisfied do

If change happened Then

ReinitializeRandomly(S(N)) // Re-initialize randomly all the Search Population

R = Merge(P(N), Q(N),Memory(k)) // Merge memory, parent and child populations (2N+k)

else

R = Merge(P(N), Q(N)) // Merge parent and child populations (2N)

F = FastNonDominatedSort(R) // Sort the population to F = F1,F2 …

P(N) = Φ and j = 1

// while the parent population not filled add population set of rank j to the parent population

while | P | + | Fj | < N do

P = P + Fj

j = j +1

end

DensitySort(Fj) // Sort in descending order according to the density

P = P + Fj[1: (N – | P |)] // Fill the remaining positions in P according to density

Q = NormalGenetic(P) // generate new population using normal Genetic algorithm

if update frequency condition satisfied Then

//Get S Best non-dominated solutions

Best[S] = MergeAndSelectBest(Pmemory(N), PSearch (N))

// Add Best[S] non-dominated solutions to memory

UpdateMemory(Best[S], Memory(k))

end // if end

end // while end

end // Program end

Fig. 2. Memory-based NSGA-II Algorithm for DOPs.

A Memory-Based NSGA-II Algorithm 301

R population is sorted using fast non-dominated sort. Secondly, the next iteration
parent population is constructed from the faces one by one and respectively. The faces
are continuing taken until there is no space for next full face let it Fi. Then Fi is sorted
in descending order according to the density measure proposed in NSGA-II which uses
a crowding distance definition. The remaining positions in the next iteration parent
population are filled respectively from sorted Fi.

The memory in our proposed algorithm starts empty and at every x generation it
will be updated, where x is a predefined value that represents the memory update
frequency [25]. When MNSGA-II is started, the memory will be empty and the
non-dominated individuals will be selected from the current main and search popula-
tions. If the memory is not full, the non-dominated solutions are directly stored in the
memory. But when the memory becomes full, the nearest solution from memory to
each non-dominated individual is searched. If the new non-dominated solution is better
that its nearest solution from memory, the two solutions are replaced; otherwise, the
memory stays without change. To find the nearest solution, the minimum Euclidean
distance in decision space is used. Using this method the memory of the MNSGA-II
algorithm will be able to store the non-dominated solutions of past generations in
different regions in decision space. The memory contents will help the algorithm to find
new solutions very fast, after an environment change occurs. If the environment
changes are cyclic, best performance can be expected from the algorithm. On the other

S = size(Memory) // get memory size

Index = 0 // memory index

P(N) = currentPop() // get current population

SSet = getFaceOne(P(N)) // get the Non-Dominated Solutions

For all SSet elements

If Index < S Then

// if memory is not full add this solution

Memory = Memory + SSet[i]

Index = Index +1

Else

// get nearest solution from memory to SSet[i]

So = getNearestSol(Memory, SSet[i])

// if new solution is better than nearest one to it, replace them

If isBetter(SSet[i], So) Then

Memory = replace(SSet[i],So)

End

End

End

Fig. 3. The steps of the memory updating in MNSGA-II algorithm.

302 S. Sahmoud and H.R. Topcuoglu

hand, if the new POF are not tracked before, it will find it quickly because the algo-
rithm already keeps the best solutions in distributed areas in the decision space.

4 Experimental Study

In this section we present a comprehensive comparison of our MNSGA-II algorithm,
with five multi-objective dynamic evolutionary algorithms by using a set of test
functions from a recently proposed framework. The algorithms in the comparison study
are the random immigrant NSGA-II (NSGA-II-RI) [16], the hyper-mutation NSGA-II
(NSGA-II-HM) [16], DNSGA-II-A [10], DNSGA-II-B [10], and the Competitive-
Cooperative Coevolutionary algorithm (dCOEA) [21].

4.1 Test Problems and Comparison Metrics

Jiang and Yang [22] proposed a framework to construct scalable dynamic test prob-
lems, where dynamism can be easily added and controlled. This framework can be used
to implement dynamic test problems from all the four dynamic problem types as
described in the introduction. In this paper, three dynamic test problems from this
framework will be used, which are the SJY1, the SJY2 and the SJY3 problems. The
time t in each of the three problems is defined as,

t ¼ 1
nt
� s
fr

ð1Þ

Where nt represents the severity of change, τ is the iteration count and fr is the
frequency of change. In the experiments we assume that the change time is known,
therefore there is no change detection phase.

• SJY1 test problem: The POF is linear and it remains stationary over time where
POS changes [22]. This problem can be used to test the tracking ability of dynamic
multi-objective evolutionary algorithms. This problem is defined as:

fi¼1:M x; tð Þ ¼ 1þ S x; tð Þð Þ � xi
x1 þ x2 þ ...þ xM

� �

S x; tð Þ ¼ P
xi2XII

ðxi � GðtÞÞ2

G tð Þ ¼ sinð0:5ptÞ

where xi¼1:M 2 XI ; xi¼Mþ 1:n 2 XII ; the POF of this problem is defined as:
f1 þ f2 þ . . .þ fM ¼ 1:
And the POS of this problem is defined as: xi ¼ G tð Þ 8xi 2 XII

• SJY2 test problem: The POF is a convex hyper-surface and it remains stationary
over time where POS changes [22]. This test problem can be used to test the
diversity and the percent of covering the POF. This problem is defined as:

A Memory-Based NSGA-II Algorithm 303

fi¼1:M x; tð Þ ¼ 1þ S x; tð Þð Þ � xiffiQ
j6¼i;xj2XI

xjM�1
q

0
B@

1
CA

swapt xi 2 XI ; xM�i 2 XIð Þ; i ¼ i : np

S x; tð Þ ¼
X

xi2XII
ðxi �

Pnp
j¼1 xj
np

Þ2

Where np ¼ randð1;M=2Þ and xi¼1:M 2 XI , xi¼Mþ 1:n 2 XII , the POF of this prob-
lem is defined as: f1 � f2 � . . . � fM ¼ 1
And the POS of this problem is defined as:

xi ¼
Pnp

j¼1 xj
np

; 8xj 2 XI ; 8xi 2 XII

• SJY3 test problem: In this problem, both POF and POS change over time. This
problem tests the tracking ability of dynamic multi-objective evolutionary algo-
rithms because it adds some difficulty in relocating the new POS after each change
[22]. It is defined as:

fi¼1:M x; tð Þ ¼ 1þ S x; tð Þð Þ � xiffiQ
j 6¼i;xj2XI

xjM�1
q

0
B@

1
CA

HðtÞ

swapt xi 2 XI ; xM�i 2 XIIð Þ; i ¼ i : np

S x; tð Þ ¼
X

xi2XII
ðxi � 5Þ2

where np ¼ rand 1;M2
� �

; H tð Þ ¼ 0:5þ 2j sin 0:5ptð Þ:
And xi¼1:M 2 XI ; xi¼Mþ 1:n 2 XII ; the POF of this problem is defined as:

f1 � f2 � . . . � fM ¼ 1:

And the POS of this problem is defined as: xi ¼ 5; 8xi 2 XII

Performance Metrics. Two metrics are used in order to measure both the diversity
and convergence of the algorithms:

• The mean inverted generational distance (mIGD): This metric is derived from IGD
as discussed in [29], which can be calculated as:

mIGD ¼ 1
gn

�
Xgn

t¼1
IGDt; ð2Þ

where gn is the number of generations

304 S. Sahmoud and H.R. Topcuoglu

• The mean inverted generational distance just before the change (mIGDB): This
metric is developed to compute the performance of the DMOE algorithms just before
the next change. It is used because mIGD computes the total average generational
distance for all generations together and could not compute the last generational
distance value just before the change. The term mIGDB can be calculated as:

mIGDB ¼ 1
Cn

�
XCn

t¼1
IGDt; ð3Þ

Where Cn is the number of changes and IGDt is calculated just before the next
change

The use of IGD metrics needs the generation of randomly uniformly distributed
solutions on the POF. In this work 500 points on the POF were generated for SYJ1 and
SJY2 test problems. For SJY3, because the POF changes as the t changes, 500 points
were generated for each different t.

4.2 Comparative Study

To implement a fair framework for comparison, the NSGA-II parameters are fixed for
all dynamic algorithms with population size of 200, the crossover probability of 0.7 and
a mutation probability of 1/n (where n is the string length for binary-coded). To confirm
fairness in the experiments, all algorithms variables are represented using binary rep-
resentation. The single-point crossover and bitwise mutation for binary-coded were
used.

For the proposed MNSGA-II algorithm, a memory of size 100 and update fre-
quency of 10 are considered, based on the results of preliminary experiments. Five
different algorithms are used in our comparison study. The first and the second algo-
rithms are DNSGA-II-A and DNSGA-II-B, where a replacement value of 20 % is used
for both algorithms as suggested in [10]. The first algorithm replaces 20 % of the
population randomly whenever a change happens, where the second algorithm mutates
20 % of randomly selected individuals whenever a change happens.

The third and fourth algorithms are the DNSGA-II-RI and the DNSGA-II-HM
algorithms [16]. The third algorithm is a random immigrant algorithm which replaces
20 % of the population randomly in each generation. The fourth algorithm is a
hyper-mutation algorithm which increases the mutation for one generation after envi-
ronment change; and otherwise the mutation remains 1/n, where n is the string length.
For the dCOEA algorithm, the population size set to 200 as the other algorithms. The
subpopulation size was 20 and bit representation with 30 bit was used.

The number of generations is fixed to be 10*fr, where fr is the frequency of change.
This ensures that 10 changes will happen in each experiment. All algorithms are tested
using four different frequencies of changes, which are 10, 20, 30 and 50. The number
of variables is fixed to be 10 and 20 and the number of objectives was set to three for all
experiments conducted.

A Memory-Based NSGA-II Algorithm 305

Tables 1, 2 and 3 show the results of the SYJ1, SJY2 and SJY3 problems
respectively, where bold number represent the best values of each case. The dCOEA
and the MNSGA-II algorithms are the best two algorithms in all experiments except
three cases that NSGA-II-HM got the best result. Based on the results given in Table 1,
the dCOEA algorithm gives the minimum mIGD and mIGDB values in all experi-
ments. On the other hand, the MNSGA-II algorithm is the second best algorithm in
SJY1 problem when comparing it to the other algorithms. The DNSGA-II-Rim also
works well in some cases but it is still not good as the MNSGA-II algorithm.

Based on the results of SJY2 problem given in Table 2, our proposed algorithm, the
MNSGA-II algorithm provides the best values in both metrics when the number of
variables is 10. When the number of variables is 20, the dCOEA algorithm gains the

Table 1. Performance of the six algorithms for the SJY1 problem.

Number
of
variables

Frequency
of change

DNSGA-II-A DNSGA-II-B DNSGA-II-HM DNSGA-II-Rim dCOEA MNSGA-II

mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD

10 10 0.1584 0.2417 0.1575 0.2434 0.1222 0.1349 0.1521 0.2175 0.0657 0.0763 0.1145 0.1264

20 0.0870 0.1608 0.0970 0.1668 0.0721 0.0811 0.0882 0.1541 0.0472 0.0621 0.0633 0.0729

30 0.0679 0.1316 0.0719 0.1326 0.0534 0.0611 0.0642 0.1230 0.0463 0.0559 0.0535 0.0611

50 0.0506 0.1044 0.0523 0.1134 0.0467 0.0513 0.0496 0.0983 0.0416 0.0494 0.0472 0.0520

20 10 0.8700 1.1307 0.8700 1.1307 0.5923 0.6452 0.8976 1.1279 0.1376 0.1328 0.6027 0.6568

20 0.4389 0.7329 0.4389 0.7329 0.2932 0.3377 0.5098 0.7720 0.1043 0.1039 0.2950 0.3366

30 0.2813 0.5517 0.2813 0.5517 0.1643 0.2027 0.3172 0.5659 0.0878 0.0950 0.1499 0.1914

50 0.1550 0.3659 0.1550 0.3659 0.0838 0.1128 0.1813 0.3864 0.0663 0.0806 0.0892 0.1184

Table 2. Performance of the six algorithms for the SJY2 problem.

Number
of
variables

Frequency
of change

DNSGA-II-A DNSGA-II-B DNSGA-II-HM DNSGA-II-Rim dCOEA MNSGA-II

mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD

10 10 1.3748 1.9443 1.2118 1.8443 1.2504 1.9110 2.1213 2.7190 0.9633 0.9753 0.7230 0.8393

20 0.8935 1.3443 0.8945 1.5642 0.7769 1.3447 1.5473 2.0780 0.8641 0.8764 0.5892 0.6236

30 0.7395 1.1393 0.7456 1.1563 0.6167 0.9602 1.3544 1.8475 0.8489 0.8479 0.5762 0.5888

50 0.7943 1.0007 0.7913 1.1127 0.5520 0.7581 1.3002 1.5882 0.6799 0.7547 0.5415 0.5462

20 10 10.0852 15.2759 10.0852 14.5642 4.7281 7.1789 16.0380 20.3555 1.5988 1.5748 4.1459 5.6707

20 3.7515 8.3075 3.1235 8.5494 1.9764 2.9203 5.3453 9.6182 1.2229 1.2466 1.2520 2.0412

30 1.7770 4.9044 1.8150 4.5584 0.8928 1.3431 3.0311 6.5787 0.9811 1.0373 0.8176 1.1098

50 1.3827 3.8694 1.3547 3.1294 0.6968 0.8469 2.0806 4.9672 0.6798 0.7451 0.6915 0.7512

Table 3. Performance of the six algorithms for the SJY3 problem.

Number
of
variables

Frequency
of change

DNSGA-II-A DNSGA-II-B DNSGA-II-HM DNSGA-II-Rim dCOEA MNSGA-II

mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD

10 10 11.783 12.488 11.927 12.543 11.843 12.627 12.398 13.119 11.684 11.851 11.729 12.448

20 11.684 12.212 11.686 12.095 11.503 11.972 12.174 12.779 11.580 11.736 11.442 12.007

30 11.567 11.945 11.563 11.904 11.494 11.857 12.112 12.611 11.486 11.628 11.416 11.811

50 11.401 11.604 11.470 11.707 11.334 11.570 12.118 12.381 11.460 11.587 11.401 11.672

20 10 15.992 22.169 14.717 20.288 15.342 20.871 16.996 22.736 11.756 11.954 15.310 20.880

20 13.241 17.683 12.298 16.010 12.256 16.573 14.046 18.790 11.601 11.775 12.184 16.861

30 11.661 15.210 11.830 14.764 11.443 14.785 13.044 16.852 11.568 11.716 11.223 14.560

50 11.019 13.717 11.628 13.237 10.562 12.679 12.064 14.898 11.538 11.668 10.725 13.047

306 S. Sahmoud and H.R. Topcuoglu

best results in small frequency of change numbers. For higher frequency of change
cases, the MNSGA-II algorithm starts to outperform the dCOEA algorithm. The
DNSGA-II-HM algorithm works well and provides results close the results of the
MNSGA-II algorithm in both metrics and especially in high change frequencies.

The results of the SJY3 problem are similar to the results of the SJY2 problem. For
the mIGDB metric, the MNSGA-II and dCOEA algorithms are the best algorithms
except in two cases where the DNSGA-II-HM algorithm generates better results. The
dCOEA algorithm obtained the best values in most cases for the mIGD metric. Based
on the results of the three problems, the dCOEA is an efficient algorithm and works
better than all the other algorithms in many cases where MNSGA-II algorithm becomes
the second best algorithm. The MNSGA-II algorithm outperforms all other remaining
algorithms in most cases and outperforms the dCOEA algorithm in some cases.

4.2.1 Performance Evaluation of Algorithms by Equalizing
Running Times

For performance evaluation of dynamic optimization algorithms, the number of gen-
erations is the common measure for setting the frequency of change values. During the
execution of previous experiments, although the dCOEA algorithm outperforms the
other algorithms for some of the test cases, it takes significantly longer time than
the other algorithms for all cases. Table 4 provides the running times (in seconds) and
the number of function evaluations of all algorithms in the comparison study. The
average execution times between two consecutive changes in the environment are
computed for all algorithms for each frequency of change value.

The results clearly show that all algorithms except the dCOEA algorithm take
approximately similar amount of time for execution; and the dCOEA algorithm
requires significantly longer time. For example, for the case 20 variables with change
frequency of 50 generations, the dCOEA algorithm takes average of 12.20 s between
two environment changes, where MNSGA-II algorithm can be executed in only 4.15 s.
The MNSGA-II works three times faster than the dCOEA algorithm for the given case.
The longer execution time of the dCOEA algorithm is due to the high computations in
the competitive and cooperative mechanisms in the algorithm.

In this subsection, we repeat the experimental study by setting equal execution time
between two consecutive changes in the environment for the best two algorithms from

Table 4. Time and number of function evaluations of the six algorithms.

Number of
variable

Frequency
of change

DNSGA-II-A DNSGA-II-B DNSGA-II-HM DNSGA-II-Rim dCOEA MNSGA-II

Time
(s)

Func.
Eval.

Time
(s)

Func.
Eval.

Time
(s)

Func.
Eval.

Time
(s)

Func.
Eval.

Time
(s)

Func.
Eval.

Time
(s)

Func.
Eval.

10 10 0.38 2220 0.38 2220 0.38 2020 0.4 4020 1.18 3307 0.61 4200

20 0.73 4220 0.73 4220 0.75 4020 0.73 8020 3.67 7351 1.17 8220

30 1.01 6220 1.01 6220 1.05 6020 1.07 12020 6.51 11409 1.71 12220

50 1.80 10220 1.80 10220 1.84 10020 1.86 20020 10.60 19523 2.92 20220

20 10 0.51 2220 0.51 2220 0.52 2020 0.55 4020 1.27 5071 0.88 4200

20 1.06 4220 1.06 4220 1.06 4020 1.09 8020 3.92 11138 1.75 8220

30 1.51 6220 1.51 6220 1.51 6020 1.51 12020 6.57 17175 2.60 12220

50 2.61 10220 2.61 10220 2.61 10020 2.69 20020 12.20 29245 4.15 20220

A Memory-Based NSGA-II Algorithm 307

the previous section, which are dCOEA and MNSGA-II algorithms. In other words, the
frequency of change will be measured using the time between two changes in seconds
rather than using number of generations.

In order to perform this experiment, the average time needed to execute 10, 20, 30
and 50 generations for dCOEA algorithm is computed. Then, we run the MNSGA-II
for the same amount of time before the next change occurs. When the frequency of
change is equal to 10 generations, the dCOEA takes 1.18 s to execute. So the frequency
of change becomes 1.18 s for the MNSGA-II algorithm rather than 10 generations and
because MNSGA-II is faster than dCOEA, it will run more than 10 generations in this
time period.

Table 5 shows the result of this experiment for the given three test cases. It is clear
that if we do a fair comparison and assign equal running times for the MNSGA-II and
the dCOEA algorithms between two environmental changes, the MNSGA-II algorithm
outperforms dCOEA for most considered cases. For the mIGDB metric, the MNSGA-II
algorithm outperforms the dCOEA algorithm in 22 out of 24 considered cases, where it
outperforms the dCOEA algorithm for 18 out of 24 cases based on the mIGD metric.
The results show that MNSGA-II much better than dCOEA when the number of
variables is 10. When the number of variables becomes 20, dCOEA works better than
MNSGA-II in fast environment changes, where MNSGA-II outperforms dCOEA when
environment changes happen in long periods of time.

This result highlights a very important remark in designing DMOEAs that
researchers must take attention to it; in dynamic environments the execution time of the
algorithm is important exactly as the performance of the algorithm. Finally, the results
show that the proposed MNSGA-II algorithm can be a good alternative to state-of-
the-art algorithms in solving the dynamic multi-objective optimization problems.

5 Conclusion

In this paper, we propose a new memory-based algorithm that uses an explicit memory
to store a number of non-dominated solutions. We adapt a memory/search algorithm to
make the proposed algorithm capable of storing new and distributed solutions. The
stored solutions are reused in later stages to reinitialize part of the population when an

Table 5. Performance of the MNSGA-II and the dCOEA algorithms for SJY1, SJY2 and SJY3
problems.

Number
of
variables

Frequency
of change
(seconds)

SJY1 Problem SJY2 Problem SJY3 Problem

MNSGA-II dCOEA MNSGA-II dCOEA MNSGA-II dCOEA

mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD mIGDB mIGD

10 1.18 0.0596 0.0697 0.0657 0.0763 0.5714 0.6959 0.9633 0.9753 11.442 12.007 11.684 11.851

3.67 0.0468 0.0520 0.0472 0.0621 0.5581 0.6704 0.8641 0.8764 11.401 11.672 11.580 11.736

6.51 0.0458 0.0475 0.0463 0.0559 0.5473 0.6108 0.8489 0.8479 11.325 11.488 11.486 11.628

10.6 0.0388 0.0414 0.0416 0.0494 0.5351 0.5919 0.6799 0.7547 11.403 11.441 11.460 11.587

20 1.27 0.251 0.2157 0.1376 0.1328 1.2520 2.0412 1.5988 1.5748 12.184 16.861 11.756 11.954

3.92 0.0892 0.1184 0.1043 0.1039 0.6915 0.7512 1.2229 1.2466 10.725 13.047 11.601 11.775

6.57 0.0526 0.0635 0.0878 0.0950 0.5462 0.9521 0.9811 1.0373 10.009 11.198 11.568 11.716

12.2 0.0519 0.0606 0.0663 0.0806 0.5125 0.7326 0.6798 0.7451 10.001 10.633 11.538 11.668

308 S. Sahmoud and H.R. Topcuoglu

environment change happens. The proposed algorithm, MNSGA-II algorithm, was
implemented by enhancing the commonly-used NSGA-II algorithm. The MNSGA-II
algorithm performance is validated using three benchmarks, SJY1, SJY2 and SJY3 test
from a framework against five other DMOE algorithms, which are the dCOEA, the
DNSGA-II-HM, the DNSGA-II-Rim, the DNSGA-II-A and the DNSGA-II-B algo-
rithms. The results show that MNSGA-II is competitive with other state-of-the-art
dynamic algorithms in terms of tracking the true Pareto front and maintaining the
diversity.

Acknowledgements. The authors would like to thank Dr. Chi Keong Goh for providing the
source code for the dCOEA algorithm. The authors also would like to thank Prof. Shengxiang
Yang and Shouyong Jiang for the help regarding their Dynamic Test Problems for Dynamic
Multi-objective Optimization.

References

1. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic
algorithms. IEEE Trans. Evol. Comput. 2(3), 221–248 (1994)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

3. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

4. Hu, X., Eberhart, R.C.: Multiobjective optimization using dynamic neighborhood particle
swarm optimization. In: Proceedings of Congress on Evolutionary Computation, Honolulu,
HI, pp. 1677–1681 (2002)

5. Zhang, L.B., Zhou, C.G., Liu, X.H., Ma, Z.Q., Ma, M., Liang Y.C.: Solving multi objective
problems using particle swarm optimization. In: Proceedings of the 2003 Congress on
Evolutionary Computation, Canberra, Australia, pp. 2400–2405 (2003)

6. Hu, X., Eberhart, R.C., Shi, Y.: Particle swarm with extended memory for multiobjective
optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, IN,
pp. 193–197 (2003)

7. Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based on
swarm intelligence for engineering design. Eng. Optim. 39, 49–68 (2007)

8. Coello, C.C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle
swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

9. Rossi, C., Abderrahim, M., Daz, J.C.: Tracking moving optima using kalman-based
predictions. Evol. Comput. 16(1), 1–30 (2008)

10. Deb, K., RaoN., U.B., Karthik, S.: dynamicmulti-objective optimization and decision-making
using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S.,
Deb,K., Poloni, C., Hiroyasu, T.,Murata, T. (eds.) EMO2007. LNCS, vol. 4403, pp. 803–817.
Springer, Heidelberg (2007)

11. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases,
approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

12. Yang, S., Yao, X.: Evolutionary Computation for Dynamic Optimization Problems.
Springer, Heidelberg (2013)

13. Grefenstette, J.: Genetic algorithms for changing environments. In: Proceedings of
International Conference Parallel Problem Solving from Nature, pp. 137–144 (1992)

A Memory-Based NSGA-II Algorithm 309

14. Cobb, H.: An Investigation into the use of hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent nonstationary environments. Technical
Report, Naval Research Laboratory (1990)

15. Vavak, F., Jukes, K., Fogarty, T.: Adaptive combustion balancing in multiple burner boiler
using a genetic algorithm with variable range of local search. In: Proceedings of 7th
International Conference on Genetic Algorithms, pp. 719–726 (1997)

16. Bui, L.T., Nguyen, M.H., Branke, J., Abbass, H.A.: Tackling dynamic problems with
multiobjective evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K., Chair, D.R.
(eds.) Multiobjective Problem Solving from Nature, pp. 77–91. Springer, Heidelberg (2008)

17. Lechuga, M.S.: Multi-objective optimisation using sharing in swarm optimisation
algorithms, Ph.D. Dissertation, University of Birmingham, Birmingham, UK (2009)

18. Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vector
evaluated particle swarm optimisation. In: Proceedings of World Congress on Computational
Intelligence (WCCI): Congress on Evolutionary Computation, Hong Kong, pp. 2917–2924
(2008)

19. Helbig, M., Engelbrecht, A.P.: Archive management for dynamic multi-objective
optimisation problems using vector evaluated particle swarm optimisation. In: Proceedings
of Congress on Evolutionary Computation, New Orleans, USA, pp. 2047–2054 (2011)

20. Helbig, M., Engelbrecht, A.P.: Dynamic multi-objective optimisation using PSO. In: Alba,
E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization. Springer,
Heidelberg (2013)

21. Goh, C., Tan, K.: A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

22. Jiang, S., Yang, S.: A framework of scalable dynamic test problems for dynamic
multi-objective optimization. In: CIDUE, pp. 32–39 (2014)

23. Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithm with
dominance and diploidy. In: Proceedings of 2nd International Conference Genetic
Algorithms and Their Applications, pp. 59–68 (1987)

24. Ramsey, C., Grefenstette, J.: Case-based initialization of genetic algorithms. In: Proceedings
of 5th International Conference Genetic Algorithms, pp. 84–91 (1993)

25. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems.
In: Congress on Evolutionary Computation, CEC 1999, pp. 1875–1882 (1999)

26. Zhang, Z., Qian, S.: Artificial immune system in dynamic environments solving time
varying non-linear constrained multi-objective problems. Soft. Comput. 15(7), 1333–1349
(2011)

27. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.P.: Prediction-based population
re-initialization for evolutionary dynamic multi-objective optimization. In: Obayashi, S., Deb,
K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 832–846.
Springer, Heidelberg (2007)

28. Muruganantham, A., Zhao, Y., Gee, S.B., Qiu, X., Tan, K.: Dynamic multiobjective
optimization using evolutionary algorithm with Kalman filter. In: 17th Asia Pacific
Symposium on IES, pp. 66–75 (2013)

29. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets,
MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

310 S. Sahmoud and H.R. Topcuoglu

Hybrid Dynamic Resampling Algorithms
for Evolutionary Multi-objective Optimization

of Invariant-Noise Problems

Florian Siegmund1(B), Amos H.C. Ng1, and Kalyanmoy Deb2

1 School of Engineering Science, University of Skövde, Skövde, Sweden
{florian.siegmund,amos.ng}@his.se

2 Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, USA

kdeb@egr.msu.edu

Abstract. In Simulation-based Evolutionary Multi-objective Optimiza-
tion (EMO) the available time for optimization usually is limited. Since
many real-world optimization problems are stochastic models, the opti-
mization algorithm has to employ a noise compensation technique for
the objective values. This article analyzes Dynamic Resampling algo-
rithms for handling the objective noise. Dynamic Resampling improves
the objective value accuracy by spending more time to evaluate the solu-
tions multiple times, which tightens the optimization time limit even
more. This circumstance can be used to design Dynamic Resampling
algorithms with a better sampling allocation strategy that uses the time
limit. In our previous work, we investigated Time-based Hybrid Resam-
pling algorithms for Preference-based EMO. In this article, we extend
our studies to general EMO which aims to find a converged and diverse
set of alternative solutions along the whole Pareto-front of the prob-
lem. We focus on problems with an invariant noise level, i.e. a flat noise
landscape.

Keywords: Evolutionary multi-objective optimization · Simulation-
based optimization · Noise · Dynamic resampling · Budget allocation ·
Hybrid

1 Introduction

Simulation-based optimization of real-world optimization problems is usually run
with a limited time budget [13]. The goal of Evolutionary Multi-objective Opti-
mization is to provide the decision maker with a well-converged and diverse set
of alternative solutions close to the true Pareto-front. Covering the whole Pareto-
front is usually hard to achieve within the available time, dependent on the
optimization problem. Besides limited optimization time, Simulation-based Opti-
mization entails the challenge of handling noisy objective functions [2,4,11,22]. To
obtain an as realistic as possible simulation of the system behavior, stochastic sys-
tem characteristics are often built into the simulation models. When running the
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part II, LNCS 9598, pp. 311–326, 2016.
DOI: 10.1007/978-3-319-31153-1 21

312 F. Siegmund et al.

stochastic simulation, this expresses itself in deviating result values. Therefore, if
the simulation is run multiple times for a certain system configuration, the result
value is slightly different for each simulation run.

If an evolutionary optimization algorithm is run without noise handling on
a stochastic simulation optimization problem, the performance will degrade in
comparison with the case if the true mean objective values would be known. The
algorithm will have wrong knowledge about the solutions’ quality. Two cases of
misjudgment will occur. The algorithm will perceive bad solutions as good and
select them into the next generation (Type II error). Good solutions might be
assessed as inferior and might be discarded (Type I error). The performance can
therefore be improved by increasing the knowledge of the algorithm about the
solution quality.

Resampling is a way to reduce the uncertainty about objective values of solu-
tions. Resampling algorithms evaluate solutions several times to obtain an approx-
imation of the expected objective values. This allows EMO algorithms to make
better selection decisions, but it comes with a cost. The additional samples used for
Resampling, are not available for the optimization. Therefore, a resampling strat-
egy which samples the solutions carefully according to their resampling need, can
help an EMO algorithm to achieve better results than a static resampling alloca-
tion. Such a strategy is called Dynamic Resampling, DR. In this paper, we run
Dynamic Resampling strategies for Evolutionary Multi-objective Optimization,
which were proposed for Preference-based EMO in our previous work [17–19], and
which can be used on any EMO algorithm. They are evaluated together with the
EMO algorithms Non-domination Sorting Genetic Algorithm-II (NSGA-II) [7],
and the Hypervolume Estimation algorithm (HypE) [1].

The resampling need varies between solutions and can be calculated in many
different ways [19]. One approach is to assign more samples to solutions close to
the Pareto-front. Since in real-world problems, the Pareto-front is not known,
this can be achieved approximatively by assigning more samples to solutions as
the optimization time progresses. If the Ideal Point can be estimated, fitness-
based Dynamic Resampling algorithms can be used, which can assign higher
samples to solutions with good objective values [8,16]. Another approximation
strategy is to assign more samples to solutions that dominate more other solu-
tions, or are dominated by fewer other solutions, respectively. This is done by,
for example, Confidence-based Dynamic Resampling and the MOPSA-EA algo-
rithm [21], or Rank-based Dynamic Resampling [17–19]. EMO algorithms have
a selection operator which determines if solutions will be part of the next pop-
ulation or be discarded. This approach is used by the MOPSA-EA algorithm
[21] which compares pairs of solutions using Confidence-based DR (CDR) or
the MOCBA and EA approach [5] (Multi-objective Optimal Computing Budget
Allocation), which compares sets of solutions. CDR and MOCBA show promis-
ing results [5,16], but they have the disadvantage of limited applicability to only
special types of Evolutionary Algorithms. CDR is limited to steady state EAs
and MOCBA requires an EA with high elitism. Other examples for DR algo-
rithms which have limited applicability, due to direct integration with a certain

Hybrid Dynamic Resampling Algorithms 313

EA, were proposed [10] and [15]. The mentioned algorithms, except for MOPSA-
EA/CDR, do not consider the limited sampling budget as in our situation. In
this paper, we show how Dynamic Resampling and EMO performance can be
improved by considering a fixed time limit for optimization.

The paper is structured as follows. Section 2 provides background information
to Dynamic Resampling and an introduction to the NSGA-II and HypE Evolu-
tionary Algorithms. Different Resampling Algorithms for time-constrained opti-
mization are explained in Sect. 3. Section 4 describes a stochastic production line
problem. In Sect. 5, numerical experiments of Dynamic Resampling algorithms
on the two Evolutionary Algorithms are performed and evaluated with different
performance metrics for multi-objective optimization. In Sect. 6, conclusions are
drawn and possible future work is pointed out.

2 Background

In this section, background information is provided regarding Resampling as a
noise handling method in Evolutionary Multi-objective Optimization. Also, an
introduction to the multi-objective optimization algorithms NSGA-II [7] and
HypE [1] is given, which are used to evaluate the Dynamic Resampling algo-
rithms in this paper.

2.1 Noise Compensation by Sequential Dynamic Resampling

To be able to assess the quality of a solution according to a stochastic eval-
uation function, statistical measures like sample mean and sample standard
deviation can be used. By executing the simulation model multiple times, a
more accurate value of the solution quality can be obtained. This process is
called resampling. We denote the sample mean value of objective function
Fi and solution s as follows: μn(Fi(s)) = 1

n

∑n
j=1 F j

i (s), i = 1 . . . H, where
F j

i (s) is the j-th sample of s, and the sample variance of objective function i:
σ2

n(Fi(s)) = 1
n−1

∑n
j=1 (F j

i (s) − μn(Fi(s)))2. The performance degradation evo-
lutionary algorithms experience caused by the stochastic evaluation functions
can be compensated partly through resampling.

In many cases, resampling is implemented as a Static Resampling scheme.
This means that all solutions are sampled an equal, fixed number of times. The
need for resampling, however, is often not homogeneously distributed throughout
the search space. Solutions with a smaller variance in their objective values will
require less samples than solutions with a higher objective variance. Solutions
closer to the Pareto-front or preferred areas in the objective space require more
samples. In order to sample each solution the required number of times, Dynamic
Resampling techniques are used, which are described in the following section.

Dynamic Resampling. Dynamic Resampling allocates a different sampling
budget to each solution, based on the evaluation characteristics of the solu-
tion. The general goal of resampling a stochastic objective function is to reduce

314 F. Siegmund et al.

the standard deviation of the mean of an objective value σn(μn(Fi(s))), which
increases the knowledge about the objective value. A required level of knowl-
edge about the solutions can be specified. For each solution a different number
of samples is needed to reach the required knowledge level. Resampling can be
performed dynamically in the way that each solution is allocated exactly the
required number of samples, up to an upper bound. In comparison with Sta-
tic Resampling, Dynamic Resampling can save sampling budget that can be
used to evaluate more solutions and to run more generations of an evolutionary
algorithm instead [17].

With only a limited number of samples available, the standard deviation of
the mean can be estimated by the sample standard deviation of the mean, which
usually is called standard error of the mean. It is calculated as follows [8]:

sen
i (μn(Fi(s))) =

σn(Fi(s))√
n

. (1)

By increasing the number of samples n of Fi(s) the standard deviation of the
mean is reduced. However, for the standard error of the mean this is not guar-
anteed, since the standard deviation estimate σn(Fi(s)) can be corrected to a
higher value by drawing new samples of it. Yet, the probability of reducing the
sample mean by sampling s increases asymptotically as the number of samples
is increased.

Sequential Dynamic Resampling. An intuitive dynamic resampling pro-
cedure would be to reduce the standard error until it drops below a certain
user-defined threshold sen(s) := sen(μn(F (s))) < seth. The required sampling
budget for the reduction can be calculated as in Eq. 2.

n(s) >

(
σn(Fi(s))

seth

)2

. (2)

However, since the sample mean changes as new samples are added, this one-
shot sampling allocation might not be optimal. The number of fitness samples
drawn might be too small for reaching the error threshold, in case the sample
mean has shown to be larger than the initial estimate. On the other hand, a one-
shot strategy might add too many samples, if the initial estimate of the sample
mean was too big. Therefore Dynamic Resampling is often done sequentially. For
Sequential Dynamic Resampling often the shorter term Sequential Sampling is
used. A Sequential Dynamic Resampling algorithm which uses the sen(s) < seth

termination criterion is Standard Error Dynamic Resampling, SEDR proposed
in [8].

Sequential Sampling adds a fixed number of samples at a time. After an initial
estimate of the sample mean and calculation of the required samples it is checked
if the knowledge about the solution is sufficient. If needed, another fixed number
of samples is drawn and the number of required samples is recalculated. This is
repeated as long as no additional sample needs to be added. The basic pattern

Hybrid Dynamic Resampling Algorithms 315

Algorithm 1. Basic sequential sampling algorithm pattern
1: Draw bmin minimum initial samples of the fitness of solution s, F (s).
2: Calculate mean of the available fitness samples for each of the H objectives:

μn(Fi(s)) = 1
n

∑n
j=1 F j

i (s), i = 1, . . . , H.
3: Calculate objective sample standard deviation with available fitness samples:

σn(Fi(s)) =
√

1
n−1

∑n
j=1(F

j
i (s) − μn(Fi(s)))2, i = 1, . . . , H

4: Evaluate termination condition based on μn(Fi(s)) and σn(Fi(s)), i = 1, . . . , H.
5: Stop if termination condition is satisfied or if maximum number of samples bmax

is reached; Otherwise sample the fitness of s another k times and go to step 2.

of a sequential sampling algorithm is described in Algorithm 1. Through this
sequential approach, the number of required samples can be determined more
accurately than with a one-shot approach. It guarantees to sample the solution
sufficiently often, and can reduce the number of excess samples.

Final Samples. After the optimization is finished and the final non-dominated
result set has been identified, a post-optimization resampling process is needed.
For each solution that is presented to the decision maker, we want to be confident
about the objective values. Therefore, we guarantee a high number of samples
bf for each solution (bf ≥ bmax) in the final population after the EA selection
process. Thereby, we can also guarantee that the non-dominated solutions in
the final population have been identified correctly. The total number of extra
samples added to the last population is BF ≤ (bf − 1)|P |, where |P | is the
population size.

2.2 Evolutionary Multi-objective Optimization

In this section, two popular Evolutionary Multi-objective Optimization algo-
rithms are presented. In this article, those algorithms are used for evaluation
with Multi-objective Dynamic Resampling algorithms.

NSGA-II Algorithm. The NSGA-II algorithm was proposed in [7].
NSGA-II is a population-based evolutionary algorithm for optimization problems
with multiple objectives. In the selection step NSGA-II sorts the population and
offspring into multiple fronts and selects front by front into the next population
as long as the fronts can be selected as a whole. If the next front can only be
selected partially NSGA-II uses a clustering method called Crowding Distance to
determine which solutions of the front shall be selected, in a way that increases
population diversity. The parental selection for offspring generation follows this
fitness hierarchy. The NSGA-II selection step is depicted in Fig. 1. The same
fitness hierarchy, i.e., dominance first, then reference point distance, is used for
parental selection.

316 F. Siegmund et al.

HypE Algorithm. The Hypervolume Estimation Algorithm HypE was pro-
posed in [1] and is based on the NSGA-II algorithm [7]. It is designed to optimize
the hypervolume of the final population and can achieve higher hypervolume val-
ues than NSGA-II [1]. It was chosen for evaluation in this paper, since it is a
popular Evolutionary Multi-objective Optimization algorithm its goal is to find
a distribution of solution alternatives which maximizes the hypervolume mea-
sure. This distribution is different that the NSGA-II distribution, and we hope
to see a performance difference even in optimization with noisy objective values.

HypE works according to the same principal structure as NSGA-II. For both
parental selection and environmental selection, first a non-domination sorting is
performed. In the environmental selection step, HypE selects those fronts into
the next population that fit as a whole. If the next front can only be selected
partially, instead of using a clustering method like NSGA-II to maintain popu-
lation diversity, HypE uses a measure called Shared Hypervolume to determine
which solutions of the front shall be selected. This measure indicates how much
a solution contributes to the hypervolume of the whole population. The HypE
selection step is depicted in Fig. 1. The same fitness hierarchy, i.e., dominance
first, then Shared Hypervolume, is used for parental selection.

The Shared Hypervolume is a better indicator of the hypervolume contribu-
tion of a solution marginal hypervolume used in SMS-EMOA [3]. In this paper,
only bi-objective optimization problems are run. For a higher number of objec-
tives, HypE uses a hypervolume estimation algorithm based on Importance Sam-
pling for the Shared Hypervolume, hence the name. This makes HypE suitable
for Many-objective Optimization.

Fig. 1. Environmental selection step. Six out of twelve solutions are selected. The left
figure shows the NSGA-II selection result. The complete first front and the extremal
solutions from the second front are selected. The one remaining solution is selected due
to its highest Crowding Distance value. — The right figure shows the HypE selection
result. The complete first front and the solution set of three solutions with the highest
overall hypervolume contribution are selected from the second front. The rectangles
which are dominated by solution a are marked with a’s hypervolume contribution.

Hybrid Dynamic Resampling Algorithms 317

3 Resampling Algorithms

This section presents the resampling algorithms that are evaluated in this paper.

3.1 Static Resampling

Static Resampling assigns the same fixed number of samples to all solutions
involved in an optimization run. It is popular among optimization practitioners
since it requires a relatively small implementation effort. The disadvantage is
that accurate knowledge of the objective vectors is not needed for all solutions:
Not all solutions have objective values with high variability, and in the beginning
of an optimization the benefit of accurate values often does not justify their cost.

3.2 Time-based Dynamic Resampling

Time-based DR [17] is a generally applicable dynamic resampling algorithm
which can be used on any optimization algorithm. It assumes that the need
for accurate knowledge of objective values increases towards the end of the opti-
mization run. Time-based DR makes only one sampling decision for each solution
(one-shot allocation) according to the elapsed time, the current overall number
of simulation runs Bt. However, if a solution survives into the next generation of
an evolutionary algorithm the decision is made again. The optimization is run
until the total number of solution evaluations B is reached, leavning only BF

samples for the final population. The acceleration parameter a > 0 allows to
speed up or slow down the sampling allocation.

xT
s = min

{
1,

Bt

B − BF

}a

. (3)

3.3 Time-Step Dynamic Resampling

We propose another time-based DR algorithm which uses an allocation func-
tion different from Time-based DR. Instead of gradually increasing the alloca-
tion budget, Time-Step Dynamic Resampling allocates only bmin samples in the
beginning of the optimization runtime, like Static Resampling. At a certain time
threshold Bthr, the allocation is increased to bmax within a short period of time.
This allocation function cannot be created by changing the acceleration para-
meter a in Time-based DR. The sudden raise of the allocation function can be
done with the step function, as in Eq. 4.

xTS
s =

{
0 if Bt < Bthr,

1 otherwise.
(4)

Another, smoother, way to rapidly increase the sampling allocation to bmax

is the Sigmoid function or, more general, the Logistic Growth [17,23]. The
allocation function of Time-Logistic Dynamic Resampling is given in Eq. 5,

318 F. Siegmund et al.

where γ > 0 is the growth rate, Bthr ∈ [0, 1] the point of highest growth, and
ν > 0 determines if the maximum growth occurs close to the lower or the upper
asymptote.

xTS
s =

1
(1 + e−γ(Bt−Bthr)/(B−BF))

1
ν

. (5)

3.4 Rank-based Dynamic Resampling

Rank-based DR [17] is a dynamic resampling algorithm which can be used on any
multi-objective optimization algorithm. It measures the level of non-dominance
of a solution and assigns more samples to solutions with lower Pareto-rank. It
can have a parameter allowing only the solutions with a Pareto-rank of n or less
to be allocated additional samples (RankMaxN-based DR) [18]. Since after each
added sample, the dominance relations in the population of an MOO algorithm
changes Rank-based DR is performed sequentially.

The normalized rank-based resampling need of RankMaxN-based Dynamic
Resampling, xRn

s , is calculated as in Eq. 6, where a > 0 is the acceleration
parameter for the increase of the time-based and rank-based sampling need. n is
the maximum considered Pareto-rank. Only solutions with Pareto-rank n or less
are considered for allocating additional samples. Furthermore, S is the solution
set of current population and offspring, Rs is the Pareto-rank of solution s in S,
and Rmax = maxs∈SRs.

xRn
s = 1 −

(
min{n,Rs} − 1

min{n,Rmax} − 1

)a

. (6)

Rank-Time-based DR. Rank-based DR can be used in a hybrid version as
Rank-Time-based DR [18]. Thereby, it can use the information given by the
limited time budget B. A Rank-Time-based sampling allocation can be achieved
by using the minimum or the product of the Rank-based xR

s or Time-based xT
s

allocation functions (Eq. 7).

xRT
s = min

{
xT

s , xR
s

}
, xRT

s = xT
s xR

s . (7)

3.5 Domination Strength Dynamic Resampling

We proposed Domination Strength Dynamic Resampling in [17], and present
an improved version here. Like for Rank-based DR, we are interested to know
the accurate objective values of Pareto-optimal solutions, or solutions which
are only dominated by a few other solutions. In Domination Strength DR, a
higher sampling budget is added to those solutions, but only if they dominate
many other solutions. The idea behind this is that we need to know the accu-
rate objective values for Pareto-solutions which are surrounded by dominated
solutions, in order to make good selection decisions in the Evolutionary Algo-
rithm. In order to reduce the sampling allocation for dominated solutions which

Hybrid Dynamic Resampling Algorithms 319

themselves dominate many other solutions, we subtract the number of other
solutions by which the solution is dominated. The allocation function is given in
Eq. 8, where dom(s, S) is the number of solutions in the population which are
dominated by solution s, and Dmax = maxs∈P dom(s, P). dom(P, s) is the num-
ber of solutions in the population which dominate solution s, or in other words,
to which solution s is inferior. The maximum count of dominating solutions is
therefore called Infmax = maxs∈P dom(P, s).

Similar to RankMaxN-based DR we introduce an upper limit n for count-
ing the number of dominated or dominating solutions. Equation 8 defines the
allocation function of DSMaxN-based DR.

xDSn
s = max

{
0,

min{n,dom(s, P)}
min {n,Dmax} − min{n,dom(P, s)}

min {n, Infmax}
}a

. (8)

DS-Time-based DR. In the same way as for Rank-Time-based DR, for DS-
based DR we propose to define a hybrid version which gradually increases the
Domination-Strength-based allocation based on the elapsed optimization run-
time. Using the information about the time limit, we are able to define hybrid
Dynamic Resampling algorithms with better performance. A DS-Time-based
sampling allocation can be achieved by using the minimum or the product of the
Domination Strength-based xDS

s or Time-based xT
s allocation functions (Eq. 9).

xDST
s = min

{
xT

s , xDS
s

}
, xDST

s = xT
s xDS

s . (9)

4 Stochastic Production Line Model

The benchmark optimization problem used for evaluation is a stochastic simula-
tion model described in [19], consisting of 6 machines (Cycle time 1 min, σ = 1.5
min, CV = 1.5, lognormal distribution) and 5 buffers with sizes ∈ [1, 50]. The
source distribution is lognormal with μ = 1 min and σ = 1.5 min, if not stated
otherwise. The basic structure is depicted in Fig. 2. The simulated warm-up time
for the production line model is 3 days and total simulated time of operation is
10 days. The conflicting objectives are to maximize the main production output,
measured as Throughput (TH) (parts per hour) and to minimize the sum of the
buffer sizes, TNB = Total number of buffers. This is a generalization of the lean
buffering problem [9] (finding the minimal number of buffers required to obtain
certain level of system throughput). In order to consider the maintenance aspect
the machines are simulated with an Availability of 90 % and a MTTR of 5 min,
leading to a MTBF of 45 min.

Fig. 2. A simplistic production line configuration.

320 F. Siegmund et al.

In this stochastic production line model the cycle time of machine M4 has
a higher standard deviation (σ = 25 min, CV = 25) than the other machines,
causing a high standard deviation of the average throughput objective measured
during the whole simulation time. The CV of TH becomes 0.2089, i.e. around
20 % noise. We call this model PL-NM-20 % in the following. Dynamic Resam-
pling algorithms are required to compensate for the noisy Throughput values.

Automated machine processes are essentially deterministic so that an auto-
mated production line has in principle very low variability. But in practice, a
single, stochastic, manual workstation is enough to add very high variability to
an automated production line [14]. The high variability may be caused by a
manual operator which is needed to start an automated process, e.g. after tool
changes. Or more commonly, the variability may be cause by a manual quality
inspection workstation in which the times for visually checking if there are any
defeats in the work-pieces vary significantly.

5 Numerical Experiments

In this section, the described resampling algorithms are evaluated in combination
with the NSGA-II and HypE algorithms on benchmark functions and a stochastic
production line simulation model.

5.1 Problem Settings

Two function characteristics are important for experimentation. The function
complexity and the noise level. Therefore, we test the DR algorithms on the
ZDT1-5 % function, which has low complexity, and the ZDT4-5 % function with
high complexity. In order to test a high-noise function, we use the stochastic
production line model PL-NM-20 %. We configure it with CV=25 for machine
4, which gives an output noise of around 20 %.

The used benchmark functions ZDT1 and ZDT4 [25] are deterministic in their
original versions. Therefore, zero-mean normal noise has been added to create
noisy optimization problems. For example, the ZDT4 objective functions are
defined as f ′

1(x) = x1 + N (0, σ1) and f ′
2(x) = g(x)

(
1 − √

x1/g(x)
)

+ N (0, σ2),

where g(x) = 1 + 10(n − 1) +
∑n

i=2(x
2
i − 10 cos(4πxi)).

The two objectives of the ZDT functions have different scales. Therefore, the
question arises whether the added noise should be normalized according to the
objective scales. We consider the case of noise strength relative to the objective
scale as realistic which can occur in real-world problems, and therefore this type
of noise is evaluated in this article. For the ZDT functions, the relative added
noise 5 % is (N (0, 0.05),N (0, 5)) (considering the relevant objective ranges of
[0, 1] × [0, 100]). In the following, the ZDT benchmark optimization problems
are called ZDT1-5 % and ZDT4-5 %.

Hybrid Dynamic Resampling Algorithms 321

5.2 Algorithm Parameters

The limited simulation budget is chosen as B = 10, 000 replications for both the
ZDT problems and the production line problem. NSGA-II and HypE are run
with a crossover rate pc = 0.8, SBX crossover operator with ηc = 2, Mutation
probability pm = 0.07 and Polynomial Mutation operator with ηm = 5.

We set the minimum budget to be allocated to bmin = 1 and the maximum
budget to bmax = 15 for all Dynamic Resampling algorithms. Static Resampling
is run in configurations with fixed number of samples per solution between 1 and 5.
Time-based Resampling uses a linear allocation, a = 1. The allocation threshold
of Time-Step DR is set to Bthr = 0.8. The allocation function of Time-Step Logis-
tic DR is configured as xTS

s = 1
(1+e−40(Bt−0.6)/(B−BF))0.5 . Rank-based Resampling

and Rank-Time-based Resampling are run as RankMax5-based Dynamic Resam-
pling and use linear allocation (a = 1) for both the rank-based and time-based cri-
teria. Rank-Time-based Resampling uses the minimum of the Pareto-rank-based
allocation and the time-based allocation: xRT

s = min{xT
s , xR

s }. The same para-
meters are chosen for Domination Strength Dynamic Resampling and DS-Time-
based Dynamic Resampling.

5.3 Performance Measurement

In this paper, the Hypervolume measure (HV) [26] is used for measuring conver-
gence and diversity of the optimization results. For the HV metric, a Hypervolume
reference point HV-R and a Hypervolume base point HV-B for normalization must
be specified. For ZDT1-5 %,weuseHV -R=(1,1) andHV -B=(0,0). For ZDT4-5 %,
we use HV -R=(1,20) and HV -B=(0,0). The HV performance of the PL-NM-20 %
model is measured with HV -R=(100,25) and HV -B=(10,45).

In order to get a second measurement value, the Inverse Generational Dis-
tance Metric (IGD) [6] is used to measure convergence and diversity for problems
where a reference Pareto-front is available. In order to measure convergence sep-
arately, the Generational Distance (GD) [24] is used, for optimization problems
with known true Pareto-front. For measuring the diversity of the population
separately, we use a new metric which is described in the following section.

Population Diversity (PD). In order to measure the diversity of a popu-
lation, we use a metric based on the NSGA-II Crowding Distance [7], which
we proposed in [19]. It measures the diversity of not only the first front, but
also of all other fronts in the population. This is because the diversity of the
fronts 2 . . . n influences the future development of the diversity of the first front.
Another reason for measuring the diversity of all fronts in the population are
the noisy objective vectors. Some solutions that appear to be part of the first
front of the population would be identified as dominated solutions, if the true
objective values were known.

Our goal is to calculate a diversity measure allowing us to compare the diver-
sity of populations, therefore called Population Diversity PD. In order to make

322 F. Siegmund et al.

the value independent of the population size, the diversity measure δ based on
the Crowding Distance is calculated for each solution within the population; all
values are summed up and divided by the population size as in Eq. 10.

PD (P) =
∑
s∈P

δ (s) / |P |. (10)

The formal definition of δ (sk) is given in Eq. 11, where Nj are neighboring
solutions and we write Fi(sk) := μn(Fi(sk)) to simplify the notation.

δ (sk) =
H∑

i=1

{
|Fi(sk) − Fi(sN)| if Fi(sk) extremal,
|Fi(sN1) − Fi(sN2)| otherwise.

(11)

5.4 Results

The measured optimization performance results are shown in Table 1 for the
ZDT1-5 % benchmark problem, in Table 2 for the ZDT4-5 % benchmark problem,
and in Table 3 for the stochastic production line problem PL-NM-20 %.

Table 1. Performance measurement results on the ZDT1-5 % benchmark function for
NSGA-II and HypE with different Dynamic Resampling algorithms. The measurement
is performed on the last population where bf = 25 final samples have been executed.

HV IGD GD PD HV IGD GD PD

NSGA-II HypE

Static1 0.7493 0.3416 0.0558 0.0438 0.4030 0.0780 0.0182 0.0570

Static2 0.7141 0.3365 0.1239 0.0233 0.4658 0.1282 0.0078 0.0693

Static3 0.6225 0.3687 0.1191 0.0183 0.5328 0.0489 0.0090 0.0641

Static4 0.6159 0.3294 0.0678 0.0206 0.5306 0.0369 0.0104 0.0723

Static5 0.5218 0.3719 0.2711 0.0463 0.5977 0.0560 0.0082 0.0446

Time 1–10 0.7178 0.2928 0.2678 0.0538 0.6278 0.0446 0.0076 0.0538

TS 1–10 0.6854 0.2755 0.2279 0.0573 0.4372 0.1108 0.0163 0.0492

TSL 1–10 0.6617 0.3085 0.2162 0.0364 0.5682 0.0513 0.0085 0.0458

Rank 1–10 0.4387 0.4042 0.3887 0.0507 0.5249 0.0644 0.0095 0.0376

RT 1–10 0.7496 0.2861 0.2848 0.0569 0.5927 0.0548 0.0071 0.0382

R5 1–10 0.6677 0.3307 0.2737 0.0553 0.5927 0.0834 0.0129 0.0603

R5T 1–10 0.9100 0.3135 0.1048 0.0228 0.6738 0.0502 0.0133 0.0610

DS 1–10 0.5108 0.3576 0.3225 0.0345 0.4840 0.1602 0.0109 0.0354

DST 1–10 0.7576 0.2937 0.2507 0.0593 0.5437 0.1070 0.0134 0.0416

DS5 1–10 0.7231 0.3305 0.1818 0.0532 0.4585 0.2718 0.0084 0.0247

DS5T 1–10 0.8618 0.3151 0.1973 0.0445 0.6924 0.0517 0.0152 0.0866

Hybrid Dynamic Resampling Algorithms 323

Table 2. Performance measurement results on the ZDT4-5 % benchmark function for
NSGA-II and HypE with different Dynamic Resampling algorithms. The measurement
is performed on the last population where bf = 25 final samples have been executed.

HV IGD GD PD HV IGD GD PD

NSGA-II HypE

Static1 0.5594 0.2825 0.1048 0.0321 0.4304 0.3635 0.0607 0.0177

Static2 0.3014 0.4077 0.1301 0.0398 0.4288 0.4160 0.1598 0.0468

Static3 0.5434 0.3535 0.1075 0.0223 0.2198 0.4255 0.1897 0.0367

Static4 0.0614 0.3596 0.1006 0.0169 0.2433 0.1592 0.0895 0.0485

Static5 0.0000 0.4360 0.1244 0.0105 0.0000 0.2451 0.2649 0.0518

Time 1–10 0.0720 0.1573 0.0903 0.0549 0.2016 0.2458 0.1245 0.0282

TS 1–10 0.6331 0.2406 0.0816 0.0422 0.6981 0.3978 0.0391 0.0087

TSL 1-10 0.2359 0.2248 0.0964 0.0373 0.2963 0.3956 0.1373 0.0436

Rank 1–10 0.0559 0.1879 0.1677 0.0467 0.0000 0.3628 0.1512 0.0270

RT 1–10 0.4020 0.3741 0.1158 0.0249 0.0000 0.4069 0.0958 0.0095

R5 1–10 0.1043 0.4240 0.1209 0.0187 0.0000 0.4259 0.1332 0.0430

R5T 1–10 0.5297 0.4057 0.0961 0.0196 0.3863 0.1284 0.0634 0.0275

DS 1–10 0.4754 0.3450 0.1495 0.0332 0.0567 0.3775 0.1512 0.0225

DST 1–10 0.0022 0.3929 0.1294 0.0236 0.4546 0.3876 0.1157 0.0221

DS5 1–10 0.2885 0.4135 0.0625 0.0080 0.0644 0.4140 0.1367 0.0263

DS5T 1–10 0.6530 0.3802 0.0648 0.0164 0.6983 0.4007 0.0498 0.0153

For the ZDT1-5 % function, it can be seen that considering the elapsed opti-
mization time in sampling allocation increases the performance of both NSGA-II
and HypE, compared with DR algorithms that do not consider time. The R5T
and DS5T DR algorithms, combining dominance and time, show the best perfor-
mance. The highest diversity could be achieved with the Domination Strength
allocation and the HypE algorithm.

Similar observations can be made on more complex ZDT4-5 % problem. How-
ever, not as high diversity values could be achieved. This is due to the fact
that the algorithms are not able to explore the whole Pareto-front within the
B = 10, 000 function evaluations. A final population close to the Ideal Point is
found. Rank-based and Domination Strength-based DR both show good results,
with an advantage for Domination Strength-based DR.

On the stochastic production line model PL-NM-20 %, NSGA-II and HypE
show a similar performance. Time-based DR algorithms show the best results,
whereof Time-based Logistic DR, with an increase of samples around Bt = 0.6
shows the best results. The reason for the superiority of time-based Dynamic
Resampling is shown in the #Sol. column in Table 3. Time-based DR algorithms
save function evaluations in the beginning of the optimization runtime, using less
function evaluations for resampling. These evaluations can be used to explore the

324 F. Siegmund et al.

Table 3. Performance measurement results on the production line model PL-NM-20 %
for NSGA-II and HypE with different Dynamic Resampling algorithms. The measure-
ment is performed on the last population where bf = 25 final samples have been
executed. The #Sol. column shows how many unique solutions have been simulated.

HV PD #Sol HV PD #Sol

NSGA-II HypE

Static1 0.4899 0.0501 8800 0.4728 0.0505 8800

Static2 0.4860 0.0512 4400 0.4888 0.0353 4400

Static3 0.4667 0.0581 2900 0.4638 0.0485 2900

Static4 0.4614 0.0606 2200 0.4661 0.0599 2200

Static5 0.4390 0.0650 1750 0.4735 0.0373 1750

Time 1–10 0.4910 0.0552 2400 0.4602 0.0423 2400

TS 1–10 0.4688 0.0554 6800 0.4891 0.0330 6800

TSL 1–10 0.5079 0.0563 3850 0.5152 0.0334 3850

Rank 1–10 0.4355 0.0530 1150 0.4062 0.0359 1100

RT 1–10 0.4739 0.0718 2500 0.4674 0.0337 2550

R5 1–10 0.4891 0.0480 1900 0.4490 0.0367 1950

R5T 1–10 0.4995 0.0368 3650 0.4851 0.0479 3600

DS 1–10 0.4149 0.0642 2650 0.5110 0.0451 2400

DST 1–10 0.4883 0.0613 4800 0.4744 0.0460 4950

DS5 1–10 0.4824 0.0557 2050 0.4860 0.0445 2100

DS5T 1–10 0.5067 0.0594 4450 0.4817 0.0417 4600

objective space and Pareto-front instead. It can be observed that Domination-
Strength-based DR algorithms allocate less samples and have more unique solu-
tion evaluations available for objective space exploration.

6 Conclusions and Future Work

This paper has provided a number of existing and possible methodologies of
handling noise in multi-objective optimization algorithms. Different possibili-
ties from Static to several Dynamic Resampling strategies have been discussed.
Two stochastic, numerical two-objective problems and an uncertain produc-
tion line optimization problem have been chosen to compare different sampling
methodologies. As a conclusion, we find that in EMO with limited time budget,
Hybrid Time-based Dynamic Resampling algorithms are superior to DR algo-
rithms which do not consider the elapsed optimization runtime. The proposed
Domination Strength Dynamic Resampling variants show comparable results to
Pareto-Rank-based Dynamic Resampling algorithms.

Hybrid Dynamic Resampling Algorithms 325

Future Work. In this paper, we focused on invariant-noise problems. In a
future study, we will evaluate Dynamic Resampling for general EMO with lim-
ited budget on optimization problems with variable output noise. This study
will compare Multi-objective Standard Error Dynamic Resampling [20], which
allocates samples until a certain objective accuracy is reached, with other Multi-
objective Dynamic Resampling algorithms, like the MOCBA algorithm [5] or
Confidence-based Dynamic Resampling [21], on optimization problems with dif-
ferent noise landscapes.

Acknowledgments. This study was partially funded by the Knowledge Foundation,
Sweden, through the BlixtSim and IDSS projects. The authors gratefully acknowledge
their provision of research funding.

References

1. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. In: Computer Engineering and Networks Laboratory
(TIK), ETH Zurich (2008)

2. Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and
sequential sampling in noisy environments. In: Doerner, K.F., Gendreau, M., Greis-
torfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics - Progress
in Complex Systems Optimization. Operations Research/Computer Science Inter-
faces Series, vol. 39, pp. 261–273. Springer, Heidelberg (2007)

3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007).
ISSN 1049–3301

4. Branke, J., Schmidt, C.: Sequential sampling in noisy environments. In: Yao, X.,
Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe,
J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
202–211. Springer, Heidelberg (2004)

5. Chen, C.-H., Lee, L.H.: Stochastic Simulation Optimization - An Optimal Comput-
ing Budget Allocation. World Scientific Publishing Company, Hackensack (2010).
ISBN 978-981-4282-64-2

6. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004)

7. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Di Pietro, A., While, L., Barone, L.: Applying evolutionary algorithms to problems
with noisy, time-consuming fitness functions. In: Proceedings of the Congress on
Evolutionary Computation 2004, vol. 2, pp. 1254–1261 (2004)

9. Enginarlar, E., Li, J., Meerkov, S.M.: How lean can lean buffers be? IIE Trans.
37(5), 333–342 (2005)

10. Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multi-
objective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput.
19(1), 103–117 (2015). ISSN 1089–778X

326 F. Siegmund et al.

11. Goh, C.K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain
Environments: Issues and Algorithms. Springer, Heidelberg (2009). ISBN 978-3-
540-95976-2

12. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005). ISSN 1089–778X

13. Lee, L.H., Chew, E.P.: Design sampling and replication assignment under fixed
computing budget. J. Syst. Sci. Syst. Eng. Syst. Eng. Soc. China 14(3), 289–307
(2005). ISSN 1004–3756

14. Papadopoulos, C.T., O’Kelly, M.E.J., Vidalis, M.J., Spinellis, D.: Analysis and
Design of Discrete Part Production Lines. Springer Optimization and its Applica-
tion Series, vol. 31. Springer, New York (2009). ISBN 978-1-4419-2797-2

15. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective
optimization. In: Proceedings of the Conference on Genetic and Evolutionary Com-
putation, Dublin, Ireland, pp. 793–800, ISBN 978-1-4503-0557-0 (2011)

16. Siegmund, F.: Sequential sampling in noisy multi-objective evolutionary optimiza-
tion. Master thesis, University of Skövde, Sweden and Karlsruhe Institute of Tech-
nology, Germany (2009). http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-3390

17. Siegmund, F., Ng, A.H.C., Deb, K.: A comparative study of dynamic resampling
strategies for guided evolutionary multi-objective optimization. In: Proceedings
of the IEEE Congress on Evolutionary Computation 2013, Cancún, Mexico, pp.
1826–1835. ISBN 978-1-4799-0454-9 (2013)

18. Siegmund, F., Ng, A.H.C., Deb, K.: Hybrid dynamic resampling for guided evo-
lutionary multi-objective optimization. In: Proceedings of the 8th International
Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal,
pp. 366–380. ISBN 978-3-319-15934-8 (2015)

19. Siegmund, F., Ng, A.H.C., Deb, K.: Dynamic resampling for preference-based evo-
lutionary multi-objective optimization of stochastic systems. Submitted to Euro-
pean Journal of Operational Research (2016). http://www.egr.msu.edu/kdeb/
papers/c2015020.pdf

20. Siegmund, F., Ng, A.H.C., Deb, K.: Standard Error Dynamic Resampling for
Preference-based Evolutionary Multi-objective Optimization. Submitted to Com-
puters & Operations Research (2016). http://www.egr.msu.edu/kdeb/papers/
c2015021.pdf

21. Syberfeldt, A., Ng, A.H.C., John, R.I., Moore, P.: Evolutionary optimisation of
noisy multi-objective problems using confidence-based dynamic resampling. Eur.
J. Oper. Res. 204(3), 533–544 (2010). ISSN 0377–2217

22. Tan, K.C., Goh, C.K.: Handling uncertainties in evolutionary multi-objective opti-
mization. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence:
Research Frontiers. LNCS, vol. 5050, pp. 262–292. Springer, Heidelberg (2008)

23. Tsoularis, A.: Analysis of logistic growth models. Res. Lett. Inf. Math. Sci. 2, 23–46
(2001). ISSN 0377–2217

24. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. Ph.D. thesis, Department of Electrical and Com-
puter Engineering, Graduate School of Engineering, Air Force Institute of Tech-
nology, Wright-Patterson AFB, Ohio, USA (1999)

25. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms -
a comparative case study. In: Schoenauer, M., Schwefel, H.-P., Eiben, A.E., Bäck,
T. (eds.) PPSN 1998. LNCS, vol. 1498, p. 292. Springer, Heidelberg (1998)

http://urn.kb.se/resolve?urn=urn: nbn: se: his: diva-3390
http://www.egr.msu.edu/ kdeb/papers/c2015020.pdf
http://www.egr.msu.edu/ kdeb/papers/c2015020.pdf
http://www.egr.msu.edu/ kdeb/papers/c2015021.pdf
http://www.egr.msu.edu/ kdeb/papers/c2015021.pdf

Author Index

Acquarelli, Jacopo I-169
Agapitos, Alexandros I-19, I-737
Ahmed, Soha I-106
al-Rifaie, Mohammad Majid I-754
Altuntaş, Serkan II-134
Alves, Maria João I-459
Andreae, Peter I-685, I-719
Andrews, Peter C. I-123
Antunes, Carlos Henggeler I-459
Atten, Christophe I-332

Banga, Julio R. II-75
Benavides, César II-91
Bianchini, Monica I-169
Bilbao, Miren Nekane I-235
Blackwell, Tim I-754
Blancas, Israel II-27
Borlikova, Gilyana I-46
Boryczko, Krzysztof I-156
Bouvry, Pascal I-299, I-332
Bozkus, Zeki II-134
Brabazon, Anthony I-19, I-737
Braun, Marlon I-443
Bremer, Jörg I-427
Bucur, Doina I-379
Byrski, Aleksander I-393
Campos-Cordobes, Sergio I-235

Cao, Van Loi I-35
Carrasqueira, Pedro I-459
Castillo, Pedro A. I-541, II-27, II-107
Chalupa, David I-91
Channouf, Loubna I-332
Chávez, Francisco II-91
Cheng, Yih-Chun I-770
Christensen, Anders Lyhne II-165, II-213
Claussen, Holger I-219
Collet, Pierre I-184
Colman, Quentin I-184
Colmenar, J. Manuel II-118
Contreras, Iván II-118
Corne, David W. I-351
Correia, Luís II-165
Cortes, Omar Andres Carmona I-3

Costa, Ernesto II-280
Costa, Vasco II-213
Cussat-Blanc, Sylvain I-620
Cutillo, Alicia I-138

D’Andreagiovanni, Fabio I-283
Danoy, Grégoire I-332
Darabos, Christian I-138
de Cote, Enrique Muñoz I-491
Deb, Kalyanmoy II-311
Del Ser, Javier I-235
Dengiz, Thomas I-443
Deplano, Igor I-58
Didi, Sabre II-181
Disset, Jean I-620
Doallo, Ramón II-75
Dolega, Cezary I-803
Duarte, Miguel II-213
Dudley, Sandra I-251

Eiben, A.E. II-198
El-Beltagy, Mohammed I-73

Faliszewski, Piotr I-409
Fenton, Michael I-219
Fernández, Francisco II-91
Fernández-Ares, Antonio I-541, II-27
Fernández-Cabezas, Ángel I-604
Fernández-Leiva, Antonio J. I-653
Filipiak, Patryk I-803
Folino, Gianluigi I-315
Font, Jose M. I-558
Fraguela, Basilio B. II-134

García-Ortega, Rubén H. I-604
García-Sánchez, Pablo I-541, I-604, II-27,

II-107
García-Valdez, Mario II-27
Garnica, Oscar II-118
Gaskó, Noémi I-819
Gaudesi, Marco II-149
Golenko, Bartlomiej I-803
Gomes, Jorge II-213

González, Jesús II-107
González, Patricia II-75
Gonzalez-Pardo, Antonio I-235
Gutierrez-Alcoba, Alejandro I-653

Haasdijk, Evert II-198
Hähner, Jörg I-669
Hamacher, Kay II-56
Hart, Emma II-11
Hartmann, Tom I-770
Heinerman, Jacqueline II-198
Hidalgo, J. Ignacio II-118
Hingston, Philip I-636
Hintze, Arend I-525

Iacca, Giovanni I-379
Ibrahim, Mai A. I-73
Indurkhya, Bipin I-393
Izquierdo, Roberto I-558

Jahier, Erwan I-819
Jakobović, Domagoj I-831
Jungbluth, Johannes I-669
Justesen, Niels I-590

Kattan, Ahmed I-737
Kavakeb, Shayan II-266
Kershenbaum, Aaron I-138
Khorshid, Motaz I-73
Kidd, La Creis I-123
Kisiel-Dorohinicki, Marek I-393
Knowles, Joshua D. I-363, II-248
König, Lukas I-475
Kowalski, Jakub I-574
Kramer, Oliver II-3
Kucera, Stepan I-219

Lallement, Christophe I-184
Lam, Chiou-Peng I-636
Lanchares, Juan II-118
Lanza, Daniel II-91
Lara-Cabrera, Raúl I-653
Łasisz, Jakub I-393
Lavender, Nicole A. I-123
Lehman, Joel I-525
Lehnhoff, Sebastian I-427
Le-Khac, Nhien-An I-35
Lenaerts, Tom I-393
Lezama, Fernando I-491

Li, Changhe II-266
Lones, Michael A. I-351
Loughran, Róisín I-737
Lynch, David I-219

Macedo, João II-280
Madec, Morgan I-184
Mahlmann, Tobias I-590
Manns, Paul II-56
Manrique, Daniel I-558
Marcelli, Andrea II-149
Marchiori, Elena I-169
Marinaki, Magdalene I-203
Marinakis, Yannis I-203
Marques, Lino II-280
März, Matthias I-507
Masek, Martin I-636
Mauser, Ingo I-443, I-507
Mavrovouniotis, Michalis II-233
McDermott, James I-35
Merelo, Juan J. I-541, I-604, II-27, II-107
Mett, Fabian I-283
Michalak, Krzysztof II-248
Middendorf, Martin I-770
Migdalas, Athanasios I-203
Miller, Steve I-363
Molnar, Goran I-831
Moore, Jason H. I-123, I-138
Mora, A.M. I-541
Müller, Jan I-507
Murray, Keitha I-138
Muszyński, Jakub I-299

Ng, Amos H.C. II-311
Nguyen, Hoai Bach I-719
Nguyen, Trung Thanh II-266
Nicolau, Miguel I-35
Nishikawa, Ken I-789
Nitschke, Geoff II-181
Nowé, Ann I-393

O’Neill, Michael I-19, I-35, I-46, I-219,
I-737

Oladimeji, Muyiwa Olakanmi I-251
Olague, Gustavo II-91
Oliveira, Sancho Moura II-213
Olson, Randal S. I-123, I-525
Ortega, Julio II-107
Orzechowski, Patryk I-156

328 Author Index

Pardo, Xoán C. II-75
Pavelić, Matija I-831
Pech, Andrew I-636
Peng, Lifeng I-106
Perfecto, Cristina I-235
Phillips, Michael I-46
Pisani, Francesco Sergio I-315
Pulaj, Jonad I-283
Rau-Chaplin, Andrew I-3

Rezgui, Abir I-184
Rios S., Fredy H. I-475
Risco, Jose-L. II-118
Rivas, Víctor II-27
Rodemann, Tobias I-789
Rodríguez, Ansel Y. I-491
Román, Graciela II-91
Romero, Gustavo II-27
Rosati, Elise I-184
Rudolph, Günter II-42
Rudolph, Stefan I-669

Sabar, Nasser R. I-267
Sabatino, Pietro I-315
Sahmoud, Shaaban II-296
Salah, Ahmed II-11
Samson, Dana I-393
Sánchez, Almudena II-118
Sanchez, Ernesto II-149
Sanchez, Stéphane I-620
San-Ginés, Aránzazu I-604
Sawicki, Jakub I-409
Schaefer, Robert I-409
Schiaffino, Robert I-138
Schmeck, Hartmut I-443, I-475, I-507
Schütze, Oliver II-42
Siegmund, Florian II-311
Silva, Fernando II-165
Sim, Kevin II-11

Smith, Louis I-46
Smołka, Maciej I-409
Song, Andy I-267
Squillero, Giovanni I-58, II-149
Sucar, Luis Enrique I-491
Świderska, Ewelina I-393
Szenkovits, Annamária I-819
Szykuła, Marek I-574

Taou, Nadia S. I-351
Teijeiro, Diego II-75
Togelius, Julian I-558, I-590
Tonda, Alberto I-58, II-149
Topcuoglu, Haluk Rahmi II-296
Toussaint, Nicolas I-184
Tran, Binh I-701
Tran, Cao Truong I-685
Trautmann, Heike II-42
Trujillo, Leonardo II-91
Tsai, Pei-Yun I-770
Turkey, Mikdam I-251

Urbanowicz, Ryan J. I-123

Varrette, Sébastien I-299
Velasco, J. Manuel II-118
Villegas, Juan II-91
von Mammen, Sebastian I-669

Wang, Ran II-266

Xue, Bing I-106, I-685, I-701, I-719

Yang, Shengxiang II-233
Yang, Zaili II-266

Zhang, Mengjie I-106, I-267, I-685, I-701
Zonta, Alessandro II-198

Author Index 329

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	EvoNUM
	Local Fitness Meta-Models with Nearest Neighbor Regression
	1 Introduction
	2 Nearest Neighbors
	3 Algorithm
	4 Related Work
	5 Experimental Analysis
	5.1 Comparison Between Approaches
	5.2 Analysis of Archive Size

	6 Conclusions
	A Benchmark Functions
	References

	Validating the Grid Diversity Operator: An Infusion Technique for Diversity Maintenance in Population-Based Optimisation Algorithms
	1 Introduction
	2 Related Work
	3 Grid Diversity Operator (GDO)
	4 Selected Infusion-Supported Algorithms for Experimentation
	4.1 Opt-aiNET Algorithm
	4.2 SawTooth Algorithm

	5 Experimental Protocol
	6 Results and Discussion
	6.1 Statistical Analysis

	7 Conclusion
	References

	Benchmarking Languages for Evolutionary Algorithms
	1 Introduction
	2 State of the Art
	3 Experimental Setup
	3.1 Functions and Operators Included in the Benchmark
	3.2 Available Data Structures
	3.3 Languages Tested
	3.4 Implementation Notes

	4 Results and Analysis
	5 Conclusions
	References

	On the Closest Averaged Hausdorff Archive for a Circularly Convex Pareto Front
	1 Introduction
	2 Mathematical Preliminaries
	3 Averaged Hausdorff Distance
	4 Construction of Optimal Archive
	4.1 Averaged Generational Distance (GDp)
	4.2 Averaged Inverted Generational Distance (IGDp)
	4.3 Optimal Averaged Hausdorff Archive (p)

	5 Conclusions
	References

	Evolving Smoothing Kernels for Global Optimization
	1 Introduction
	2 Related Work on the DEM
	2.1 The ``Classical'' Diffusion Equation Method (DEM)
	2.2 DEM in Fourier Space
	2.3 Limitations of the DEM
	2.4 Hybrid Metaheuristics and Genetic Algorithms

	3 Improvements of the DEM
	3.1 Starting Idea
	3.2 DEM* -- an Extended DEM

	4 DEM* Kernel Optimization via Genetic Algorithms
	4.1 Individuals
	4.2 Fitness Function and Selection
	4.3 Crossover
	4.4 Mutation
	4.5 Local Minimization
	4.6 Genetic Algorithm Kernel Search as Pseudocode

	5 DEM* for a Family of Simple Test Functions
	5.1 A DEM Counter Example from the Real Cosine Function Class
	5.2 Testing DEM* on General Real Cosine Functions
	5.3 Results

	6 DEM* for Potential Energy Surfaces
	6.1 Lennard-Jones Potential
	6.2 Computational Details
	6.3 Results

	7 Conclusions and Future Work
	References

	EvoPAR
	Implementing Parallel Differential Evolution on Spark
	1 Introduction
	2 Related Work
	3 New Programming Models in the Cloud
	4 Implementing Differential Evolution on Spark
	4.1 Master-Slave DE
	4.2 Island-Based DE

	5 Experimental Results
	6 Conclusions and Future Work
	References

	ECJ+HADOOP: An Easy Way to Deploy Massive Runs of Evolutionary Algorithms
	1 Introduction
	1.1 Evolutionary Approaches to Face Recognition

	2 ECJ and Hadoop
	2.1 Modifying ECJ

	3 System Deployment
	4 Experiments and Results
	4.1 Analysing Performance
	4.2 A Real Life Problem: Face Recognition

	5 Conclusions
	References

	Addressing High Dimensional Multi-objective Optimization Problems by Coevolutionary Islands with Overlapping Search Spaces
	1 Introduction
	2 State of the Art
	3 Methodology and Experimental Setup
	3.1 Baseline Algorithm
	3.2 Coevolutionary Algorithms Compared

	4 Experiments and Results
	5 Conclusions
	References

	Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models in Grammatical Evolution
	1 Introduction
	2 Related Work
	3 Evaluation of Time Dependent Mathematical Expressions
	4 Grammatical Evolution for Mathematical Expressions, Curve Fitting and Regression
	5 Compilable Phenotypes
	6 Experiments
	6.1 Validation of the Proposal
	6.2 Case Study: Glucose Model Extraction

	7 Conclusions and Future Work
	References

	GPU Accelerated Molecular Docking Simulation with Genetic Algorithms
	Abstract
	1 Introduction
	2 Docking Algorithm
	2.1 Seeding
	2.2 Selection
	2.3 Diversity

	3 GPU Parallelization: Algorithms and Implementation
	3.1 Overview of Data Structure

	4 Performance Results
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgment
	References

	EvoRISK
	Challenging Anti-virus Through Evolutionary Malware Obfuscation
	1 Introduction
	2 Virus and Anti-virus
	3 Proposed Evolutionary Malware Obfuscation
	3.1 Evolutionary Opcode Generator
	3.2 Development of an Ad-Hoc Packer

	4 Experimental Evaluation
	5 Conclusion
	5.1 Future Developments

	References

	EvoROBOT
	Leveraging Online Racing and Population Cloning in Evolutionary Multirobot Systems
	1 Introduction
	2 Related Work
	2.1 Racing
	2.2 Exchange of Genetic Information in Online Evolution
	2.3 Online Evolution with odNEAT

	3 Racing and Cloning in Multirobot Systems
	3.1 Racing
	3.2 Population Cloning

	4 Methods
	4.1 Experimental Setup
	4.2 Experimental Parameters and Treatments

	5 Experimental Results
	5.1 Comparison of Performance
	5.2 Analysis of the Evolutionary Dynamics

	6 Concluding Discussion and Future Work
	References

	Multi-agent Behavior-Based Policy Transfer
	1 Introduction
	2 Methods
	2.1 NEAT: Neuro-Evolution of Augmenting Topologies
	2.2 HyperNEAT: Hypercube-Based NEAT
	2.3 Behavioral Diversity
	2.4 Policy Transfer Method

	3 Experiments
	3.1 NEAT Experiments
	3.2 HyperNEAT Experiments

	4 Results and Discussion
	4.1 Policy Versus No-Policy Transfer: Performance Comparisons
	4.2 Policy Versus No-Policy Transfer: Efficiency Comparisons
	4.3 Behavioral Diversity Maintenance and Policy Transfer

	5 Conclusion
	References

	On-line Evolution of Foraging Behaviour in a Population of Real Robots
	1 Introduction
	2 Related Work
	3 System Description
	3.1 Robot
	3.2 Environment
	3.3 Task and Objective Function
	3.4 Controller
	3.5 Evolutionary or Learning Mechanisms

	4 Experimental Set-up
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Hybrid Control for a Real Swarm Robotics System in an Intruder Detection Task
	1 Introduction
	2 Related Work
	2.1 Swarm Robotics
	2.2 Challenges in Evolutionary Robotics
	2.3 Behavioral Composition Schemes

	3 Experimental Setup
	3.1 Robotic Platform
	3.2 Simulation Model

	4 Evolution of Behavior Primitives
	5 Top-Level Behavior Arbitrator
	5.1 Task Setup
	5.2 Testing Different Arbitrators
	5.3 Scalability

	6 Transferring Control to Real Robots
	7 Conclusions
	References

	EvoSTOC
	Direct Memory Schemes for Population-Based Incremental Learning in Cyclically Changing Environments
	1 Introduction
	2 Population-Based Incremental Learning
	3 Memory Schemes
	3.1 PBIL with Associative Memory
	3.2 PBIL with Direct Memory

	4 Dynamic Test Environments
	5 Experimental Study
	5.1 Experimental Setup
	5.2 Experimental Study of Memory-Based PBILs
	5.3 Experimental Study of MIPBIL with Other PBILs
	5.4 Experimental Results on Pairwise Comparisons of MIPBIL with MIGA

	6 Conclusions
	References

	Simheuristics for the Multiobjective Nondeterministic Firefighter Problem in a Time-Constrained Setting
	1 Introduction
	2 Problem Definition
	2.1 Nondeterministic FFP as a Dynamic Optimization Problem

	3 Simheuristics
	4 Experiments and Results
	5 Conclusion
	References

	Benchmarking Dynamic Three-Dimensional Bin Packing Problems Using Discrete-Event Simulation
	1 Introduction
	2 Literature Review
	2.1 Benchmarks
	2.2 Uncertainty
	2.3 Performance Measures

	3 BPP Framework
	3.1 Features of the Framework
	3.2 Generating Test Problems

	4 Case Study
	4.1 Peer Algorithms
	4.2 Experimental Design
	4.3 Performance Analysis

	5 Conclusion
	References

	Genetic Programming Algorithms for Dynamic Environments
	1 Introduction
	2 State of the Art
	2.1 Genetic Algorithms
	2.2 Genetic Programming
	2.3 Dynamic Environments

	3 Proposed Algorithms
	3.1 Simple Techniques
	3.2 Hybrid Techniques
	3.3 Experimental Results
	3.4 Experimental Setup

	4 Experiment in Evolutionary Robotics
	4.1 Problem
	4.2 Algorithms
	4.3 Parametrisation
	4.4 Resources

	5 Experimental Results
	5.1 Statistical Tests

	6 Conclusions and Future Work
	References

	A Memory-Based NSGA-II Algorithm for Dynamic Multi-objective Optimization Problems
	Abstract
	1 Introduction
	2 Dynamic Multi-objective Evolutionary Algorithms
	3 Memory-Based NSGA-II Algorithm (MNSGA-II)
	4 Experimental Study
	4.1 Test Problems and Comparison Metrics
	4.2 Comparative Study
	4.2.1 Performance Evaluation of Algorithms by Equalizing Running Times

	5 Conclusion
	Acknowledgements
	References

	Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems
	1 Introduction
	2 Background
	2.1 Noise Compensation by Sequential Dynamic Resampling
	2.2 Evolutionary Multi-objective Optimization

	3 Resampling Algorithms
	3.1 Static Resampling
	3.2 Time-based Dynamic Resampling
	3.3 Time-Step Dynamic Resampling
	3.4 Rank-based Dynamic Resampling
	3.5 Domination Strength Dynamic Resampling

	4 Stochastic Production Line Model
	5 Numerical Experiments
	5.1 Problem Settings
	5.2 Algorithm Parameters
	5.3 Performance Measurement
	5.4 Results

	6 Conclusions and Future Work
	References

	Author Index

