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Abstract In this chapter, the motivation for using fuzzy systems, the mathematical
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1 Introduction

Fuzzy logic and sets has been proposed by Zadeh [1]. According to Zadeh, fuzzy
logic is a precise logic of imprecision and approximate reasoning. It is used to
reason and make logical decisions in the presence of uncertainty, imprecision, and
imperfect information. In addition, it is capable of modeling problems in case of no
measurements [2]. Since real world problems are mostly involved with uncertainty
and imperfect information, fuzzy logic and fuzzy sets are required to model and
solve those problems.

Therefore, Zadeh [1] introduced the first type of fuzzy logic to be used in the
abovementioned problems. In type-1 fuzzy logic, the traditional view to a set which
believes that membership of an element to a set is either zero or one is relaxed. In
other words, membership of an element to a set is a matter of degree. This mem-
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bership degree is a certain single value for an element. However, there are some
situations in which uncertainty of the data is too high. When the degree of infor-
mation vagueness is too high, membership functions (MFs) are not certain, and they
encounter uncertainty and volatility. Therefore, type-1 fuzzy membership functions
are not applicable in this case since they are a certain value.

In order to model and solve problems with higher degree of vagueness and
uncertain MFs, Zadeh [3] introduced type-2 fuzzy sets as an extension to type-1
fuzzy sets. In type-2 fuzzy sets, each MF is represented by another MF known as
secondary MF. Type-2 fuzzy sets have been proposed by Zadeh [3] to tackle the
drawbacks of type-1 fuzzy sets when uncertainty is too high. Three ways in which
such uncertainty can occur are: (1) the words that are used in antecedents and
consequents of rules can mean different things to different people, (2) consequents
obtained by polling a group of experts will often be different for the same rule
because the experts will not necessarily be in agreement, and (3) noisy training data
(Liang and Mendel [4]). However, due to the various degrees of uncertainty, dif-
ferent kinds of type-2 fuzzy sets are required.

There are two kinds of type-2 fuzzy sets: (I) interval type-2 fuzzy sets (IT2 FSs);
(II) general type-2 fuzzy sets (GT2 FSs). In IT2 FSs, MFs are interval instead of a
single value. They are special type of GT2 FSs whose secondary membership
values for the entire members of the primary domain are one. GT2 FSs are
extensions of IT2 FSs, and they are bivariate interval valued [0, 1] supporting more
degrees of freedom [5]. However, IT2 FSs are less computationally expensive than
GT2 FSs.

In this chapter, fundamental concepts of type-1 fuzzy sets and mathematical
operations on type-1 fuzzy sets are briefly reviewed in Sects. 2 and 3 respectively.
Then fuzzy logic is described in Sect. 4. Thereafter, since approximate reasoning is
required to apply fuzzy set theory in real world problems, it is presented in Sect. 5.
In order to model real world problems, the use of fuzzy systems is inevitable, so
they are illustrated in Sect. 6. Type-2 fuzzy sets and type-2 fuzzy systems are
described in Sects. 7 and 8 respectively. Then, the applications of type-2 fuzzy
systems are reviewed in Sect. 9. Finally, type-n fuzzy systems are presented in
Sect. 10.

2 Type-1 Fuzzy Sets

Type-1 fuzzy logic assigns a membership degree in the interval of [0, 1] to the
objects indicating the degree to which each object belongs to the fuzzy set.
Consider two fuzzy sets X and A, where, X is a universe of discourse whose element
is shown by x. A membership function of element x is denoted by lA xð Þ as it is
stated in (1), the following equations are mostly adapted from Celikyilmaz and
Türksen [6].
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lA xð Þ:X ! ½0; 1� ð1Þ

Fuzzy sets are represented in discrete and continuous forms. If fuzzy set A is
defined on a discrete universe of discourse X, it is represented by (2).

A ¼
X
x2X

lAðxÞ=x ð2Þ

where,
P

x2X is an aggregation operator indicating all membership degrees pertain
to a fuzzy set A and universe of discourse X. If fuzzy set A is defined on a
continuous universe of discourse X, it is defined by (3).

A ¼
Z
x2X

lAðxÞ=x ð3Þ

where,
R
x2X is not an integration operation but an aggregation operation. Other

important operations in fuzzy sets are a-cut (aA) and strong a-cut (aþ
A ) as shown in

the following equations.

aA ¼ fxjlA xð Þ� aga 2 ½0; 1� ð4Þ

aþ
A ¼ fxjlA xð Þ[ aga 2 ½0; 1� ð5Þ

a-cut decomposition of fuzzy set A on U is shown by (6).

lA Uð Þ ¼ sup min a; laA uð Þ� �
; 8u 2 U a 2 ½0; 1�

where, laA uð Þ 2 0; 1f g is a MF of a crisp set.
Another useful definition is the “support” of a fuzzy set. Let X be a universe of

discourse and A be a fuzzy set. “Support” of A shows all the elements of X with
non-zero membership grades in A, as it is indicated in (6).

SuppðAÞ ¼ fx 2 XjlA xð Þ[ 0g ð6Þ

3 Mathematical Operations on Type-1 Fuzzy Sets

In this section, mathematical operations on fuzzy sets are reviewed.
Let A and B be two fuzzy sets; then, the “equality of fuzzy sets” is defined by the

following equation.
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A ¼ B , lA xð Þ ¼ lB xð Þ ð7Þ

Equation (8) shows “inclusion of fuzzy sets” A and B.

A�B , lA xð Þ� lB xð Þ; 8x 2 S ð8Þ

Equation (9) indicates the “union of fuzzy sets” A and B.

A [ B : lA[B xð Þ ¼ max½lA xð Þ; lB xð Þ� ð9Þ

Equation (10) shows the “intersection of fuzzy sets” A and B.

A \ B : lA\B xð Þ ¼ min½lA xð Þ; lB xð Þ� ð10Þ

Equation (11) is the “Complement” of the fuzzy set A (Zadeh [1]).

lAC xð Þ ¼ 1� lA xð Þ ð11Þ

3.1 Fuzzy Intersection (T-norm)

Different types of logical operators other than “min” have been defined in literature
known as “t-norm” operators. The following axioms have been defined by Klir and
Yuan [7] for fuzzy t-norm in which a; b; d 2 ½0; 1�.

(I) i a; 1ð Þ ¼ a (boundary condition)
(II) b� d implies i a; bð Þ� i a; dð Þ (monotonicity).
(III) i a; bð Þ ¼ iðb; aÞ (commutativity)
(IV) i a; iðb; dÞð Þ ¼ iði a; bð Þ; dÞ (associativity)

Sometimes considering other restrictions on defining fuzzy t-norms leads to
better results. Therefore, the following additional axioms should be satisfied
for defining a fuzzy t-norm (Klir and Yuan [7]).

(V) i is a continuous function (continuity).
(VI) i a; bð Þ\a (subidempotency)
(VII) a1\a2 and b1\b2 implies i a1; b1ð Þ\i a2; b2ð Þ (strict monotonicity)

Table 1 shows different classes of t-norms applied in literature, and Fig. 1
depicts some of them.

The boundary condition in axiom (I) means if an argument of a t-norm is 1,
membership degree of the t-norm is equal to the other argument. Commutativity
means the fuzzy t-norm is symmetric. Monotonicity of t-norm indicates that any
decrease in membership degrees in set A or B will not increase the membership
value in t-norm. The axiom (IV) shows that order of numbers in t-norm is not
important.
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Some of the common t-norms applied in literature are as follows:

• Standard t-norms: i a; bð Þ ¼ minða; bÞ
• Algebraic product: i a; bð Þ ¼ ab
• Bounded difference: i a; bð Þ ¼ maxð0; aþ b� 1Þ

• Drastic t-norm: i a; bð Þ ¼
a when b ¼ 1
b when a ¼ 1
0 otherwise

8<
:

3.2 Fuzzy Union (T-conorm)

Different types of logical operators other than “max” have been defined in literature
known as “t-conorm” operators. The following axioms have been defined by Klir
and Yuan [7] for fuzzy t-conorm in which a; b; d 2 ½0; 1�.

(I) u a; 0ð Þ ¼ a (boundary condition).
(II) b� d implies u a; bð Þ� u a; dð Þ (monotonicity).
(III) u a; bð Þ ¼ uðb; aÞ (commutativity).
(IV) u a; uðb; dÞð Þ ¼ uðu a; bð Þ; dÞ (associativity).

There are some additional axioms that must be satisfied to form a t-conorm
as follows. Table 2 shows different types of t-conorms, and Fig. 2 depicts
some of them.

(V) u is a continuous function (continuity).
(VI) u a; að Þ[ a (superidempotency).
(VII) a1\a2 and b1\b2 implies u a1; b1ð Þ\u a2; b2ð Þ (strict monotonicity)

Table 1 Different types of fuzzy t-norms (Klir and Yuan [7])

Authors Reference Year t-norm

Dombi [8] 1982
1
a � 1
� �k þ 1

b � 1
� �kh i1=k� ��1

Frank [9] 1979 log½1þ sa�1ð Þ sb�1ð Þ
s�1 �

Hamacher – 1987 ab
rþð1�rÞðaþ b�abÞ

Schweizer and Sklar [10] 1963 fmaxð0; ap þ bp � 1Þg1
p

Schweizer and Sklar [11] 1� ð1� aÞp þð1� bÞp � ð1� aÞpð1� bÞp½ �1p
Schweizer and Sklar [12] expð�ðjln ajp þ jln bjpÞ1pÞ
Schweizer and Sklar [13] ab

ap þ bp�apbp½ �1p

Yager [14] 1980 1�minf1; ½ 1� að Þx þ 1� bð Þx�1xg
Dubois and Prade [15] 1980 ab

maxða;b;aÞ
Weber [16] 1983 max 0; aþ bþ kab�1

1þ k

� 	
Yu [17] 1985 max 0; 1þ kð Þ aþ b� 1ð Þ � kab½ �
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Some of the common t-conorms applied in literature are as follows:

• Standard t-conorms: u a; bð Þ ¼ maxða; bÞ
• Algebraic sum: u a; bð Þ ¼ aþ b� ab
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Fig. 1 Different types of t-norms
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• Bounded sum: u a; bð Þ ¼ minð1; aþ bÞ

• Drastic t-conorm: u a; bð Þ ¼
a when b ¼ 0
b when a ¼ 0
1 otherwise

8<
:

4 Fuzzy Logic

Fuzzy logic is different from classical logic because the truth or falsity of a
proposition is stated with a degree of truth represented by a number in the interval
[0, 1]. Fuzzy logic was introduced by Zadeh [1] along with fuzzy set theory.
According to Turksen [18], fuzzy logic is an application of fuzzy set theory.
“Degree of membership” used in fuzzy set theory is applied as “degree of truth” in
fuzzy logic. Let A be a fuzzy set. The truth of fuzzy proposition “x is a member of
A” is stated in two different ways Turksen [18]: (I) using classical logic, the degree
of “truth” of proposition ‘x is A’ is a single value: s A xð Þð Þ ¼ 1; (II) using fuzzy
logic, the degree of “truth” is not a single value: s A xð Þð Þ ¼ s½0; 1�. Fuzziness of
propositions, include different combinations of linguistic terms. Fuzzy implications
are used generally which includes fuzzy propositions as antecedent and consequent
as presented in (12).

Table 2 Different types of fuzzy t-conorms (Klir and Yuan [7])

Authors Reference Year

Dombi [8] 1982
1þ 1

a � 1
� �k þ 1

b � 1
� �kh i�1

k

� ��1

Frank [9] 1979
1� logs 1þ s1�a�1ð Þ s1�b�1ð Þ

s�1


 �
Hamacher – 1978 aþ bþ r�2ð Þab

rþ r�1ð Þab
Schweizer and Sklar [10] 1963 1� max 0; 1� að Þp þ 1� bð Þp�1ð Þf g1

p

Schweizer and Sklar [11] ap þ bp � apbp½ �1p
Schweizer and Sklar [12] 1� exp �ð ln 1� að Þj jp þ ln 1� bð Þj jpÞ1p

� 	
Schweizer and Sklar [13] 1� 1�að Þ 1�bð Þ

1�að Þp þ 1�bð Þp� 1�að Þp 1�bð Þp½ �1p

Yager [14] 1980 min 1; ak þ bk
� �1

k

h i
Dubois and Prade [15] 1980 1� 1�að Þ 1�bð Þ

max 1�að Þ; 1�bð Þ;að Þ
Weber [16] 1983 min 1; aþ b� k

1�k ab
� �

Yu [17] 1985 min 1; aþ bþ kabð Þ
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P: IFX isA is true; THENY isB is true ð12Þ

where X and Y are variables that take values x and y from sets X and Y , respec-
tively, A and B are linguistic variables [6]. Implication between AðxÞ and BðxÞ are
represented as follows:
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AðxÞ ) BðxÞ ð13Þ

Using an appropriate function, the degree to which the fuzzy proposition is true
will be calculated. Lukasiewicz implication is generally used in literature and it is
presented in (14).

I Pxy
� � ¼ I A xð Þ;B yð Þ½ � ¼ min½1; 1� A xð ÞþBðxÞ� ð14Þ

Equation (14) indicates that calculating the degree of truth values AðxÞ and BðxÞ
leads to the degree of truth value of (12). I is used to connect fuzzy sets to fuzzy
propositions. The fuzzy truth value is indicated by a value of s 2 ½0; 1� which is
shown in (15).

P:IFX is A is true to the degree s1; THEN Y isB is true to the degree s2 ð15Þ

Two states “X is A” is s1 and “Y is B” is s2 are indicated by ðA xð Þ; s1Þ and
ðB yð Þ; s2Þ and the implication of them is presented by (16).

ðA xð Þ; s1Þ ) ðB yð Þ; s2Þ is true ð16Þ

Using Lukasiewicz implication the following equation is obtaines.

I Pxy
� � ¼ I ðA xð Þ; s1Þ; ðB yð Þ; s2Þ½ � ¼ ½min 1; 1� A xð ÞþB xð Þ½ �;min½1; 1� s1 þ s2��

ð17Þ

5 Approximate Reasoning

In order to apply fuzzy set theory in real world problems, approximate reasoning is
required. One of the most common techniques of reasoning are inference rules in
classical logic which use Modus Ponens for inference process. Generally speaking,
Modus Ponens have been extended to be used in fuzzy logic. Zadeh [19] introduced
Generalized Modus Ponens (GMP) for fuzzy aet and logic theory [6]. Using
Compositional Rule of Inference (CRI) for infering fuzzy consequents with GMP,
he developed fuzzy reseaning from classical reasoning. GMP is presented by the
following equations [6].

Premise 1: A ! B

Premise 2: A0

Deduction: B�
ð18Þ

where A and A′ are two linguistic variableson the universe of discourse of variable
x with membership functions lA xð Þ: x 2 X ! ½0; 1�. Moreover, B and B* are
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linguistic terms on the universe of discourse of consequent variable y with mem-
bership functions lB yð Þ: y 2 Y ! ½0; 1�. Using membership degrees, (18) is cal-
culated by the following equation proposed by Zadeh [1].

lB� yð Þ : supx2XANDðlAðxÞ; lA!Bðx; yÞÞ ð19Þ

Using Zadeh rule base, “AND” operator is used for representing “MIN” and
“MAX” operator is utilized as “sup” [6]. Table 3 shows different types of
implications.

6 Fuzzy Systems

There are two main types of fuzzy systems: (I) Mamdani fuzzy systems;
(II) Takagi-Sugeno-Kang (TSK) fuzzy systems.

6.1 Mamdani Fuzzy System

IFX isr Bi THEN Y isrDi i ¼ 1; . . .;m ð20Þ

Ri ¼ Bi\Di andR ¼
[m
i¼1

Ri ð21Þ

lRi
x; yð Þ ¼ lBi

ðxÞ
^

lDi
ðyÞ ð22Þ

lR x; yð Þ ¼
_m
i¼1

lRi
x; yð Þ ð23Þ

lF yð Þ ¼
_
x

lA xð Þ
^

lR x; yð Þ
� 	

¼
_m
i¼1

_
x

lA xð Þ
^

lBi
ðxÞ

� 	" #^
lDi

ðyÞ ð24Þ

where X and Y are two fuzzy variables; Bi and Di are two linguistic labels; i is the
number of rules.The intersection and union operators are represented by \ and [
respectively in (21). Membership functions for antecedent variable (X) and con-
sequent variable (Y ) are represented by lBi

ðxÞ and lDi
ðyÞ respectively in (22); ^ and

_ are t-norm and t-conorm operators explained in Sects. 3.1 and 3.2 respectively.
lRi

x; yð Þ shows the aggregated MFs of antecedents and consequents in each rule.
lR x; yð Þ indicates the aggregated MFs of all rules, and lF yð Þ represents the final
aggregated MF. Figure 3 depicts Mamdani fuzzy inference system.
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After finding the final aggregated MF as an output of the fuzzy rule based
system, deffuzification is used for obtaining a crisp and single-valued result of the
system. There are several deffuzification methods in literature, and two of them are
listed herein. They are the Center-of-Area (CoA) or Center-of-Gravity method, and
the Middle-of-Maxima (MoM) defuzzification methods. Figures 4 and 5 show CoA
and MoM defuzzification techniques. Equations (25) and (26) indicate CoA method
in discrete and continuous cases [30].

y� ¼
Pl

i¼1 yilY yið ÞPl
i¼1 lY yið Þ ¼

Pl
i¼1 yimaxklCLYðkÞðyiÞPl
i¼1 maxklCLY ðkÞðyiÞ

ð25Þ

u� ¼
R
y ulY yð ÞdyR
y lY yð Þdy ¼

R
y ymaxk lCLYðkÞðyÞdyR
y maxk lCLY ðkÞðyÞdy

ð26Þ

Table 3 Different types of implications (Klir and Yuan [7])

Name References Function I(a, b) Year

Zadeh [20] max½1� a;min a; bð Þ� 1973

Gaines
Rescher

[21] 1 a� b
0 a[ b

�
1969

Godel – 1 a� b
b a[ b

�
1976

Goguen [22] 1 a� b
b=a a[ b

�
1969

Kleene-Dienes – maxð1� a; bÞ 1938–
1949

Lukasiewicz [23] minð1; 1� aþ bÞ 1920

Smets and
Magrez

[24] min½1; 1�aþ 1þ kð Þb
1þ ka � 1987

Smets and
Magrez

[24] min½1; ð1� ax þ bxÞ1
x� 1987

Reichenbach [25, 26] 1� aþ ab 1935–
1949

Willmott [27] min½max 1� a; bð Þ;max a; 1� að Þ;maxðb; 1� bÞ� 1980

Wu [28] 1 a� b
min 1� a; bð Þ a[ b

�
1986

Yager [15] 1 a ¼ b ¼ 0
ba others

�
1980

Klir and Yuan [29] 1� aþ a2b 1994

Klir and Yuan [29] b a ¼ 1
1� a a 6¼ 1; b 6¼ 1
1 a 6¼ 1; b ¼ 1

8<
:

1994
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where lCLY ðkÞ is defined the same as lRi
x; yð Þ in (22), and “

R
” is the classical

integral.
Equation (27) shows MoM defuzzification technique. It determines the first and

the last from of all values where Y has maximal membership degree and then takes
the average of these two values [30].

Fig. 3 Mamdani fuzzy inference system (Klir and Yuan [7])
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y� ¼ inf y2Y y 2 Y jly yð Þ ¼ hgt Yð Þ� �þ supy2Y y 2 Y jly yð Þ ¼ hgt Yð Þ� �
2

ð27Þ

where hgt Yð Þ ¼ supy2XlBðyÞ.

Fig. 4 CoA deffuzification method (Driankov and Saffiotti [30])

Fig. 5 MoM deffuzification method (Driankov and Saffiotti [30])
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6.2 Takagi-Sugeno-Kang (TSK) Fuzzy System

In TSK fuzzy systems, consequent of each rule includes a function instead of the
linguistic variable(s). Equation (28) shows the TS fuzzy model including R rules.

Rule i:if z1 is A
i;k1
1 ; z2 is A

i;k2
2 ; . . .; and zm is Ai;km

m

then yi ¼ ai1x1 þ ai2x2 þ � � � þ aiqxq

i ¼ 1; 2; . . .;R: kj ¼ 1; 2; . . .; rj: ð28Þ

where R is the number of rules in the TS fuzzy model. zj j ¼ 1; 2; . . .;mð Þ is the jth
variable. xl l ¼ 1; 2; . . .; qð Þ is the lth model input. yi is the output of the ith rule. For

the ith rule, Ai;kj
j is the kthj fuzzy subset of zj. ail is the coefficient of the consequent. rj

is the fuzzy partition number of zj.
The output of the TSK model is calculated by taking the weighted-average of

output of each rule as follows:

y ¼
XR
i¼1

liyi
,XR

i¼1

li ð29Þ

where yi is determined by the equation in the consequent of the ith rule. Moreover,
(29) can be restated by (30).

y ¼
XR
i¼1

liai1x1 þ � � � þ
XR
i¼1

liaiqxq

 !,XR
i¼1

li ð30Þ

7 Type-2 Fuzzy Sets

In order to model and solve problems with higher degree of vagueness and
uncertain MFs, Zadeh [3] introduced type-2 fuzzy sets as an extension to type-1
fuzzy sets. In type-2 fuzzy sets, each MF is represented by another MF known as
secondary membership function. Type-2 fuzzy sets have been proposed by Zadeh
[3] to tackle the drawbacks of type-1 fuzzy sets when uncertainty is too high. Three
ways in which such uncertainty can occur are: (1) the words that are used in
antecedents and consequents of rules can mean different things to different people,
(2) consequents obtained by polling a group of experts will often be different for the
same rule because the experts will not necessarily be in agreement, and (3) noisy
training data (Liang and Mendel [4]).

Type-1 fuzzy sets are unable to handle higher degrees of uncertainty. Moreover,
some datasets are very changeable over time. This variability causes MFs to change
and include more than one single-valued membership degree for each point in a
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universe of discourse. Because type-1 MFs assign only one single-valued mem-
bership degree to each point they are incapable of modeling systems using those
kinds of uncertain data sets. Hence, type-2 fuzzy sets which assign another mem-
bership degree to the primary membership values are used in such systems. Figure 6
shows type-1 and type-2 fuzzy MFs (interval type-2 fuzzy MF and general type-2
fuzzy MF). Comparing both MFs in Fig. 6 indicates that type-2 fuzzy MFs are
capable of including more information and handling variable data sets using two
MFs.

A type-2 fuzzy set Ã is represented by a type-2 membership function l~A as
follows.

l�A : X ! 0; 1½ � ð31Þ

Mendel [32] defines the type-2 fuzzy set as it is shown in (32).

~A ¼ x; uð Þ; l�A x; uð Þð Þj8x 2 X; 8u 2 Jx� 0; 1½ �f g ð32Þ

where 0� l~A x; uð Þ� 1, Jx is a primary MF in the interval [0, 1], and u is the
primary membership value. Another form of representing type-2 fuzzy set ~A is as
follows.

~A ¼
Z
x2X

Z
u2Jx

l�A x; uð Þ= x; uð Þ ¼
Z
x2X

Z
u2Jx

fx uð Þ= x; uð Þ ð33Þ

where
RR

shows the union of admissible x and u, fxðuÞ is the secondary MF [6].
Since type-2 fuzzy sets are presented as the union of secondary MFs (fxðuÞ),

type-2 fuzzy MFs are also represented with the secondary MFs for continuous and
discrete universe of discourse as shown in (34) and (35) respectively.

l�A x; uð Þ ¼
Z

u2Jx
fx uð Þ=u ð34Þ

l�A x; uð Þ ¼
X
u2Jx

fx uð Þ=u ð35Þ

However, due to the various degrees of uncertainty, different kinds of type-2
fuzzy sets are required. There are two kinds of type-2 fuzzy sets: (I) interval type-2
fuzzy sets (IT2 FSs); (II) general type-2 fuzzy sets (GT2 FSs). In IT2 FSs, MFs are
interval instead of a single value. They are special type of GT2 FSs whose sec-
ondary membership values for the entire members of the primary domain are one.
GT2 FSs are extensions of IT2 FSs, and they are bivariate interval valued [0,1]
supporting more degrees of freedom [5]. However, IT2 FSs are less computation-
ally expensive than GT2 FSs.
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Fig. 6 Type1 fuzzy MF, interval type-2 fuzzy MF [6], and general type-2 fuzzy MF [31]
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7.1 Interval Type-2 Fuzzy Sets

IT2 FSs have been proposed by Karnik et al. [33]. Since they are less complex and
computationally expensive than GT2 FSs, researchers are most willing to use them
instead of GT2 FSs. However, GT2 FSs are more capable of representing wider
range of information and being used in face of variable data sets. MFs of interval
type-2 fuzzy sets are defined by the following equations.

l�A xð Þ:X ! 1=u; u 2 Jx; Jx � 0; 1½ � ð36Þ

fx uð Þ ¼ 8x 2 X; u 2 Jx; Jx � 0; 1½ � ð37Þ

Equation (37) indicates that at each value of x, all the secondary membership
values are equal to 1 as it is shown in Fig. 6. There is more than one MF for each
value of x. The MFs includes the lower and upper MFs. The upper and lower MFs
of IT2 FSs are defined by (38) and (39).

lU~A Xð Þ ¼ max
u2Jx

uð Þ; 8x 2 X ð38Þ

lU~A Xð Þ ¼ min
u2Jx

uð Þ; 8x 2 X ð39Þ

where lU~A ðxÞ is the upper MF and lL~AðxÞ is the lower MF of the IT2 FS. Therefore,
the IT2 FS is defined using upper and lower MFs by the following equation.

l�A xð Þ:X ! 1=u; u 2 lL�A xð Þ; lU�A xð Þ�  ð40Þ

7.2 General Type-2 Fuzzy Sets

Using a type-2 fuzzy MF (l~Aðx; yÞ), a GT2 FS ~A is represented by the following
equation [32].

~A ¼
Z
x2X

Z
u2Jx

l~A x; uð Þ= x; uð Þ; Jx� 0; 1½ � ð41Þ

where x 2 X is the primary variable, u 2 Jx is the primary MF, Jx indicates an
interval between the lower and upper MFs, and l~Aðx; uÞ is the secondary MF. GT2
FSs are expressed in two different ways: the vertical slice and the wavy slice [34].
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Let x ¼ x0 be a specific point in the universe of discourse X; then, vertical slice
l~Aðx0; uÞ of the fuzzy MF l~Aðx; uÞ is obtained. In other words, a secondary MF
l~Aðx ¼ x0; uÞ is denoted by vertical slices at each point for x0 2 x and 8u 2
Jx0 � ½0; 1� as follows.

l~A x ¼ x0; uð Þ 	
Z

u2Jx0

fx0 uð Þ=u; Jx � 0; 1½ � ð42Þ

where fx0 ðuÞ is the secondary MF and fx0 ðuÞ�½0; 1�. Discretizing the entire universe
of discourse into N samples, then the GT2 FS ~A is denoted by aggregating the
whole vertical slices as it is shown in (43) [35].

~A ¼
XN
i¼1

Z
u2Jxi

fxi uð Þ=u

 ��

xi ð43Þ

~A is also denoted by the union of all its embedded T2 FSs as follows.

~A ¼
[
8~Ae

~Ae ð44Þ

where ~Ae is represented as follows.

~Ae ¼
Z
x2X

u=x; u 2 Jx ð45Þ

The embedded T1 FS ~Ae, corresponding to an embedded T2 FS includes the
primary MF of ~Ae. The centroid of ~Ae, i.e., C~A, is the union of the centroids of its
entire embedded IT2 FSs. Its MF C~AðnÞ (8n 2 X 
 R), is defined as follows [36].

C~A nð Þ ¼
[
8~Ae

min
x;uð Þ2Ae

fx uð Þ
,

n ¼
R þ1
�1 xuAe xð ÞdxR þ1
�1 uAe xð Þdx

( )
ð46Þ

The centroid of the GT2 FS ~A is calculated by aggregating centroids of each a-
plane (C~A) [35]. Hence, the center of the GT2 FS ~A is presented by (47).

C~A nð Þ ¼
[

a2 0;1½ �
a
�
C~Aa nð Þ 8n 2 Xð Þ ð47Þ

where a�
C~AðnÞ is the centroid of ~Aa.
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C~Aa
nð Þ ¼

[
8~AeðaÞ

n ¼
R þ1
�1 xuAe að Þ xð ÞdxR þ1
�1 uAe að Þ xð Þdx

" #
¼ Cl ~Aa

� �
;Cr ~Aa
� ��  ð48Þ

where Clð~AaÞ and Crð~AaÞ are calculated by KM [37] and EKM [38] algorithms.
fxðuÞ is considered as the combination of two increasing and decreasing functions
called gxðuÞ and hxðuÞ.

fx uð Þ ¼
gx uð Þ u 2 SL xj0ð Þ; SL xj1ð Þ½ �
hx uð Þ u 2 SR xj1ð Þ; SR xj0ð Þ½ �
1; u 2 SL xj1ð Þ; SR xj1ð Þ½ �
0; Otherwise

8>><
>>: ð49Þ

The upper and lower MF of GT2 FS with the secondary membership value of a
are defined as SRðxjaÞ and SLðxjaÞ respectively. The slopes of the secondary MFs at
a for gxðuÞ and hxðuÞ are equal to g0xðuÞ and h0xðuÞ. Then in order to calculate upper
and lower MFs at the plane “aþ TS” the following equations are required.

SR xjaþ Tsð Þ ¼ SR xjað Þþ TS
h0x uð Þ

SL xjaþ Tsð Þ ¼ SL xjað Þþ TS
g0x uð Þ

ð50Þ

8 Type-2 Fuzzy Systems

An interval type-2 fuzzy rule based system is presented in the following equation
(Celikyilmaz and Turksen [6]).

~Ri:IF
nv

AND
j ¼ 1

xj 2 Xj isr ~Aij
� �

THEN y 2 Y isr ~Bi ð51Þ

where,

• c is the number of rules in system model,
• xj is jth input variable, j ¼ 1; . . .; nv, “nv” is total number of input variables,
• Xj is the domain of xj,
• ~Aij is the linguistic label associated with jth input variable in the ith rule rep-

resented by a type-2 membership function, ~li xj
� � 2 Xj ! fxj uð Þ=u;

u 2 Jxi ; Jxi � ½0; 1�.
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• y is the output variable,
• Y is the domain of y,
• Bi is the linguistic label associated with output variable in the ith rule with

type-2 membership, ~li yð Þ 2 Y ! fy wð Þ=w;w 2 Jy; Jy � ½0; 1�.
• AND is the logical connective used to aggregate membership values of input

variables for a given observation in order to find the degree of fire of each rule,
• THEN (→, ⇒) is the logical IMPLICATION connective,
• ALSO is the logical connective used to aggregate model outputs of fuzzy rules,

‘isr’ is introduced by Zadeh [1] and it represents that the definition or assign-
ment is not crisp, it is fuzzy.

In order to find the result of the interval type-2 fuzzy rule based system (51), two
inference methods have been proposed in literature. The first one is to con-
siderupper and lower membership functions of interval type-2 fuzzy sets as lower
and upper points of an interval (Liang and Mendel [4]).

Let lU~A ðxÞ be the upper MF, and lL~A xð Þ be the lower MF. Equation (52) shows the
inference mechanism proposed by Liang and Mendel [4].

l~A xð Þ: x ! 1=u; u 2 ½lL~A xð Þ; lU~A xð Þ� ð52Þ

Membership values of antecedents are aggregated for each rule as it is shown in
(53).

~lLi xð Þ ¼ Tnv
j¼1 ~lLi xj

� �� �
; ~lUi xð Þ ¼ Tnv

j¼1 ~lUi xj
� �� � ð53Þ

where, T denotes the T-norm connective. In (10), ~l�Li ðyÞ and ~l�Ui ðyÞ are upper and
lower memberships of output fuzzy set ~l�i yð Þ.

~l�i yð Þ: Y ! 1=w;w 2 ½~l�Li yð Þ; ~l�Ui yð Þ� ð54Þ

The aggregated antecedents and consequents for lower and upper MFs are
presented in (55) and (56).

~l�Li yð Þ ¼ T ~lLi xð Þ; ~lLi yð Þ� � ð55Þ

~l�Ui yð Þ ¼ T ~lUi xð Þ; ~lUi yð Þ� � ð56Þ

Then, all rules are aggregated using (57) and (58).

~l�L yð Þ ¼ Sc
�
i¼1ð~lLi yð ÞÞ ð57Þ

~l�U yð Þ ¼ Sc
�
i¼1ð~lUi yð ÞÞ ð58Þ
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where “S” is a s-norm or t-conorm operator, and “c” is the number of rules. At the
end of the inference process, a crisp output is required. The following equation has
been presented by Liang and Mendel [4] for calculating the crisp output ðy�Þ.

y�ð Þ ¼ y�L þ y�U
� 

=2 ð59Þ

where, y�L and y�U are lower and upper bounds, i.e., y� 2 y�L; y�U½ �.
The second inference method has been proposed by Turksen [39] using fuzzy

disjunctive normal forms (FDNF) and fuzzy conjuctive normal forms (FCNF).
Turksen’s inference process with a rule set is represented as follows [39].

l�B yð Þ ¼ ½
_
x2X

l0A xð ÞT ½lFDNF A! Bð Þ x; yð Þ�
_
x2X

l0A xð ÞT ½lFCNF A! Bð Þ x; yð Þ��;8y 2 Y

ð60Þ

where “T” is used to indicate t-norm between two MFs. lFDNF A ! Bð Þ x; yð Þ and
lFCNF A ! Bð Þ x; yð Þ are two boundaries of type-2 fuzzy systems based on fuzzy
normal forms. l�B yð Þ is an inference result, and l0A xð Þ is the observed membership
value.

A x�D;i;r rð Þ
� 	

¼ lðx�FDNF A i;rð Þð ÞðrÞÞ;
A x�C;i;r rð Þ
� 	

¼ lðx�FCNF A i;rð Þð ÞðrÞÞ

8<
: ð61Þ

Equation (61) is the membership value of the FDNF of the left-hand side of the
ith rule which has “r” input variables evaluated at x�rð Þ ¼ ðx�1; x�2; . . .; x�r ).
AD;i;rðx�ðrÞÞ is the membership value of the FDNF in the left-hand side of the ith

rule which has “r” input variables evaluated at x�rð Þ ¼ ðx�1; x�2; . . .; x�r ). A x�C;i;r rð Þ
� 	

is

the membership value of the FCNF [39].

A x�D;i;r rð Þ
� 	

is computed recursively as:

AD;i;q x� qð Þð Þ ¼ AD;i;q�1 x� q� 1ð Þð ÞTAi;q x�q
� 	h i

S AD;i;q�1 x� q� 1ð Þð ÞTAi;q x�q
� 	h i

For q ¼ 2; 3; 4; . . .; r

(

ð62Þ

Such that X�ð2Þ ¼ ðX�
1 ;X

�
2Þ and Aði; 2Þ ¼ Ai1 ANDAi2. “S” in the definition of

“AD;i;q x� qð Þð Þ” indicates S-norm of two MFs.
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AC;i;r x� rð Þð Þ is computed recursively as [39]:

AC;i;q x� qð Þð Þ ¼ ½Aðx�C;i;q�1 q� 1ð ÞSAiq x�q
� 	

�T ½Aðx�C;i;q�1ðq� 1ÞSAiq x�q
� 	

�

T ½Aðx�C;i;q�1 q� 1ð ÞSnðAiq x�q
� 	

Þ�T ½Aðx�C;i;q�1ðq� 1ÞSnðAiq x�q
� 	

Þ�

T ½nðAðx�C;i;q�1ðq� 1ÞÞSðAiq x�q
� 	

Þ�T ½n A x�C;i;q�1 q� 1ð Þ
� 	

S Aiq x�q
� 	� 	� i

;

q ¼ 2; 3; 4; . . .; r

ð63Þ

In (64), B�ðyÞ is the final output of the model, which is obtained by combining
the final output of FDNF and FCNF.

B� yð Þ ¼ bB�
D yð Þþ 1� bð ÞB�

C yð Þ; 8y 2 Y ; 0� b� 1; ð64Þ

where b�DðyÞ is the final result for FDNF and b�CðyÞ is the final result for FCNF
obtained after completing the inference process.

9 Applications of Type-2 Fuzzy Systems

In this section, some of the applications of type-2 fuzzy systems are briefly
reviewed. These applications include but are not limited to clustering, classification,
pattern recognition, scheduling, forecasting, and supply chain management (SCM).

9.1 Type-2 Fuzzy Systems in Clustering, Classification,
and Pattern Recognition

In this subsection, a brief review on the first categories of type-2 fuzzy applications
including clustering, classification, and pattern recognition techniques is provided.
Type-2 fuzzy systems have been used in clustering and classification models for
managing real world problems which encounter higher degrees of uncertainty.

Data clustering is one of the main methods of structure identification. It is an
unsupervised technique for putting similar data in a cluster [40]. Bezdek presented
fuzzy c-means clustering (FCM) model. For structure identification of type-2 fuzzy
systems different methods have been introduced in the literature. For more infor-
mation please refer to [41–47]. In order to design a rule based system, Aliev et al.
[48] proposed a type-2 FCM clustering model. Rhee and Choi [42] introduced three
methods for interval type-2 fuzzy membership function generation: (I) Histogram
based method; (II) Heuristics methods; (III) Interval type-2 fuzzy C-means (IT2
FCM). Fazel Zarandi, et al. [49] proposed a new interval type-2 fuzzy clustering
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method for functional systems called interval type-2 fuzzy c-regression clustering
model (IT2 FCRM).

Type-2 fuzzy systems are also applied in classification problems. Melin and
Castillo [50] reviewed the literature of clustering, classification, and pattern
recognition. Tables 4 and 5 show the results of their work. Sharma and Bajaj [51,
52] proposed an interval type-2 fuzzy system for vehicle classification. They
assigned each vehicle to its relevant class by investigating its characteristics such as
the wheel base, ground clearance, and body length [50]. Tan et al. [53] proposed a
type-2 fuzzy system for ECG arrhythmic beat classification. Three classes of ECG
signals, called the normal sinusrhythm (NSR), ventricular fibrillation (VF) and
ventricular tachycardia (VT) have been investigated in that research.

9.2 Type-2 Fuzzy Systems in Scheduling,
Forecasting, and SCM

In this subsection, a brief review on the second categories of type-2 fuzzy appli-
cations including scheduling, forecasting, and SCM is provided.

Fazel Zarandi and Gamasaee [82] proposed a type-2 fuzzy hybrid expert system,
which uses a combination of Mamdani and Sugeno methods, for tardiness fore-
casting in scheduling of steel continuous casting process. In that study, tardiness
variables are represented by interval type-2 fuzzy MFs, and interval type-2 FDNF
and FCNF proposed by Turksen [39] are used in the inference engine. The results
of the method proposed by Fazel Zarandi and Gamasaee [82] show that using
type-2 fuzzy system leads to the more accurate forecasted outputs in comparison to
type-1 fuzzy system and other methods in literature.

Karnik and Mendel [83] applied type-2 fuzzy systems for forecasting of
time-series. They showed that noisy data causes type-1 fuzzy system to be inca-
pable of modeling the problem efficiently, so type-2 fuzzy systems are required to
handle noisy data. Fazel Zarandi et al. [84] presented a type-2 fuzzy hybrid expert
system for forecasting the amount of reagents in desulphurization process of a steel
manufacturing company. The results of that model indicate that type-2 fuzzy system
has less forecasting error in comparison to type-1 fuzzy system. Another research
that uses type-2 fuzzy systems in time series prediction has been conducted by
Gaxiola et al. [85]. They presented a generalized type-2 fuzzy weight adjustment
for back propagation neural networks in time series prediction.

Pramanik et al. [86] used type-2 fuzzy systems for modeling and solving a
fixed-charge transportation problem in a two-stage supply chain network. Since unit
transportation costs, fixed charges, availabilities, and demands are imprecise, they
have been indicated by Gaussian type-2 fuzzy numbers. The problem has been
categorized in class of profit maximization problems, and retailers’ demands are
satisfied by selecting distribution centers. For solving the problem, type-2 fuzziness
has been eliminated using generalized credibility measures. Fazel Zarandi and
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Gamasaee [87] proposed a type-2 fuzzy system model for reducing bullwhip effect
in supply chains. They concentrated on demand forecasting techniques where all
demands, lead times, and orders have been represented by type-2 fuzzy sets. Using
interval type-2 fuzzy c-regression clustering technique, demand data have been
assigned to appropriate clusters, and structure of type-2 fuzzy expert system has

Table 4 Type-2 fuzzy systems in clustering and classification [50]

Author(s) (pub.
year)

References Domain of
the problem

Comparison
with type-1

Why type-2 is
required for the
problem?

Sharma and Bajaj
(2009 and 2010)

[51, 52] Vehicle
classification

Yes Uncertainty and
imperfection of data

Pimenta and
Camargo (2010)

[54] Classification Yes Imprecision in
classification

Chumklin et al.
(2010)

[55] Cancer
detection

Yes Uncertainty in
medical classification

Sanz et al. (2010) [56] Classification No Imprecision in
classification

Wu and Mendel
(2010)

[57] Vehicle
classification

Yes Uncertainty in
information

Phong and Thien
(2009)

[58] Arrhythmia
classification

No Uncertainty in
medical classification

Aliev et al. (2011) [48] Clustering Yes Uncertainty in
clustering

Abiyev et al.
(2011)

[59] Clustering No Uncertainty in
clustering

Zheng et al.
(2010)

[60] Classification No Uncertainty in
classification

Abiyev and
Kaynak (2010)

[61] Clustering No Uncertainty in
clustering

Zhengetal. (2010) [62] Clustering No Uncertainty in
clustering

Albarracin and
Melgarejo (2010)

[63] Signal
clustering

Yes Uncertainty in
clustering

Ozkan and
Turksen (2010)

[64] Clustering No Uncertainty in
clustering

Pedrycz (2010) [65] Clustering Yes Uncertainty in
granulation

Juang et al. (2009) [66] Clustering Yes Uncertainty in
clustering

Türkşen (2009) [67] Clustering Yes Uncertainty in
clustering

Ren et al. (2010) [68] Clustering No Uncertainty in
clustering

Qun et al. (2010) [69] Clustering Yes Uncertainty in
clustering
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been identified. Then, an interval type-2 fuzzy hybrid expert system was developed
for demand forecasting. An interval type-2 fuzzy ordering policy was designed to
determine orders in supply chain. Results of that model demonstrated that using
type-2 fuzzy system leads to more bullwhip reduction and better forecasted results
in comparison to type-1 fuzzy systems.

10 Type-n Fuzzy Systems

There are not too much works in the literature in type-3 and higher level fuzzy sets
and systems. Transformation from full type-2 fuzzy sets and systems into higher
level ones has serious modeling, representing, and computational complexity
problems. First, we should find the real cases with for example type-3 fuzzy syntax
and semantic. It is very difficult to show these cases in geometric configuration.
Also, modeling type-n fuzzy needs lots of nonlinear variables, with high correla-
tions with each other. Finally, the computational complexity of type-n fuzzy is too

Table 5 Type-2 fuzzy systems in pattern recognition [50]

Author(s) (pub.
year)

Ref.
no.

Domain of
the problem

Comparison
with type-1

Why type-2 is required for
the problem?

Melin (2010) [70] Edge
detection

Yes Uncertainty in edge
detection

Lopez et al.
(2010)

[71] Finger print
recognition

Yes Uncertainty in finger print
recognition

Li and Zhang
(2010)

[72] Pattern
recognition

No Uncertainty in pattern
recognition

Own (2009) [73] Medical
diagnosis

No Uncertainty in diagnosis

Mendoza et al.
(2009)

[74] Face
recognition

Yes Uncertainty in face
recognition

Kim et al.
(2009)

[75] Pattern
recognition

No Uncertainty in pattern
recognition

Hidalgo et al.
(2009)

[76] Multimodal
recognition

Yes Uncertainty in multimodal
pattern recognition

Lopez et al.
(2008)

[77] Finger print
recognition

Yes Uncertainty in finger print
recognition

Ozkan and
Turksen (2004)

[78] Pattern
recognition

Yes Uncertainty in pattern
recognition

Mitchell (2005) [79] Pattern
recognition

No Uncertainty in pattern
recognition

Madasu et al.
(2008)

[80] Edge
detection

Yes Uncertainty in edge
detection

Tizhoosh
(2005)

[81] Image
thresholding

No Uncertainty in image
thresholding
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much. This fact needs some high level heuristic algorithms to manage it. So, there
are rooms of potential scientific and applied works that should be done in the future
to resolve these serious problems. We started it from three years ago and hope we
can have some preliminary outputs in the near future.

11 Conclusions

In this chapter, the motivation for using fuzzy systems and the mathematical
concepts of type-1 to type-n fuzzy sets, logic, and systems were discussed. This
chapter has reviewed the most useful knowledge for researchers on several areas of
fuzzy logic such as type-1 fuzzy sets, mathematical operations on type-1 fuzzy sets,
fuzzy logic, approximate reasoning, fuzzy systems including mamdani and sugeno
inference systems, interval type-2 fuzzy sets, general type-2 fuzzy sets, and type-2
fuzzy systems. Moreover, applications of those fuzzy approaches in solving real
world problems were reviewed. Thus, this chapter is a reference for researchers to
become more familiar with theory and applications of fuzzy logic.
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