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Abstract Supply chain planning includes numerous decision problems over
strategic (i.e. long-term), tactical (i.e. mid-term) and operational (i.e. short-term)
planning horizons in a supply chain. As most of supply chain planning problems
deal with decision making in real world while configuring future situations, rele-
vant data should be predicted and described for multiple time periods in the future.
Such prediction and description involve imprecision and vagueness due to errors
and absence of sharp boundaries in the subjective data and/or insufficient or
unreliable objective data. If the uncertainty in supply chain planning problems is to
be neglected by the decision maker, the plausible performance of supply chain in
future conditions will be in doubt. This is why considerable body of the recent
literature account for uncertainty through applying different uncertainty program-
ming approaches with respect to the nature of uncertainty. This chapter aims to
provide useful and updated information about different sources and types of
uncertainty in supply chain planning problems and the strategies used to confront
with uncertainty in such problems. A hyper methodological framework is proposed
to cope with uncertainty in supply chain planning problems. Also, among the
different uncertainty programming approaches, various fuzzy mathematical pro-
gramming methods extended in the recent literature are introduced and a number of
them are elaborated. Finally, a useful case study is illustrated to present the prac-
ticality of fuzzy programming methods in the area of supply chain planning.
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1 Introduction to Supply Chain Planning Under
Uncertainty

Supply chain planning (SCP) consists of strategic, tactical and operational decision
making problems of a supply chain network. Strategic decisions are related to
supply chain design and configuration over a long term whilst tactical planning is
related to those decisions affecting the efficient usage of the various resources. Also,
operational planning is related to the detailed scheduling, sequencing, assigning
loads, etc., in a short term planning horizon. The same facet of all above-mentioned
problems is the decision making in a real world and with respect to future situation.
In real world, vagueness may be arise with semantic description of events and
phenomena, i.e., planning of supply chains in many cases may require human
descriptions, judgments, statements and evaluations about the future conditions.
These affairs are performed through the natural languages and in respect to this fact
that in natural language the words are mostly appeared vaguely and imprecisely
[98], the supply chain planning input data may be tainted with uncertainty. On the
other hand, with respect to lack of information about the future situations, we need
to predict the future, and in prediction of the future conditions, imprecision may be
arise due to inherent errors and ambiguity. Therefore, supply chain planning
problems are accompanied by imprecision and vagueness due to prediction errors
and imprecise descriptions, respectively. Nevertheless, is it necessary to consider
these uncertainties when planning of supply chains? According to Klibi et al. [32]
any supply chain planning decision model, which is developed based on deter-
ministic conditions has no assurance for acceptable performance in any plausible
future situation. They also mentioned that in some cases it is not sufficient to only
consider business as usual random variables such as demand, prices and exchange
rate but one should include extreme and catastrophe events such as natural disasters
and terrorist attacks. Therefore, it is necessary to have a specific strategy in facing
with uncertainty in supply chain planning.

Accordingly, in this chapter, different types of uncertainty and their associated
sources are first introduced and analyzed. Thereafter, various approaches used to
cope with uncertainty in supply chain planning problems are discussed and a hyper
conceptual framework is proposed for coping with uncertainty in SCP problems.
Since the focus of this chapter is on the application of fuzzy mathematical pro-
gramming in SCP area, the other sections of the chapter are dedicated to classifi-
cation, review and description of fuzzy programming methods developed in the
relevant literature.

1.1 Definition and Scope

According to Rosenhead et al. [71], certainty can be defined as the condition of
decision making in which there is no element of chance intervene between decisions
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and their outcomes. Also, Zimmermann [98] defined the certainty as the situation
that is definitely known, input parameters have predetermined values and there is no
doubt in the occurrence of events. On the contrary, uncertainty is vagueness in
reaching the target values and/or imperfect information about the input parameters or
environmental conditions in which the decisions are made. Galbraith [19] also
mentioned that uncertainty is the difference between the amount of information that
is required to make the decision and the amount of available information. This
definition implicitly unveils one of the important origins of uncertainty that is
‘imperfect information’. There is also a distinction between uncertainty and risk. In
the classical risk management, risk is defined as the product of probability and
severity of an extreme event [23]. According to above-mentioned definitions, it can
be concluded that uncertainty is a value neutral concept (i.e. includes both the chance
for gain and the chance of damage), while risk is a negative concept and worthy of
avoidance. As explained by Stewart [77], uncertainty gives rise to risk and in the
risky situations undesirable outcomes could occur.

In an attempt for choosing an appropriate strategy for uncertainty management in
supply chain planning area, it is necessary to understand the sources of uncertainty
related to supply chain networks. According to Simangunsong et al. [76], identi-
fying a full list of supply chain uncertainty sources is a precursor to develop
appropriate portfolio of uncertainty management strategies.

An early classification was suggested by Davis [10] who mentioned three
sources of uncertainty in the supply chain planning context including the demand,
supply and process uncertainties. Later, this classification was supported by other
researchers including van der Vaart et al. [85] and Gupta and Maranas [22].
Afterwards, Mason-Jones and Towill [49] added a fourth source to those suggested
by Davis [10] called control uncertainty, which is related to the capability of a
supply chain to transform the orders of customers to production flows by means of
information flows. They denominated their model as the circle model which
involves four uncertainty sources: (1) demand side uncertainty, (2) supply side
uncertainty, (3) control uncertainty and (4) process uncertainty. The model advices
that reducing uncertainty in each of these sources can lead to cost reduction.

Another taxonomy is proposed by Christopher and Peck [9], which classifies the
risk sources into three categories as follows: (1) internal risk (process and control),
(2) external risk and (3) network dependent risk (supply and demand). They also
extended a framework for managing and mitigating the risks related to each source.
Klibi et al. [32] identified uncertainty sources from the supply chain perspective and
in a more detailed view. Table 1 integrates different prominent classifications for
sources of uncertainty available in the literature. In the review paper of
Simangunsong et al. [76], fourteen sources of uncertainty extracted from the lit-
erature are introduced. Simangunsong et al. [76] classify uncertainty management
strategies into two broad categories: (1) reducing uncertainty, (2) coping with
uncertainty. Their classification is summarized in Fig. 1. The first strategy (i.e.
reducing uncertainty) disables or reduces uncertainty at its sources such as using the
better forecasting approaches for demand predictions or integrating the organiza-
tions across the supply chain to achieve better collaboration between them. The

Applications of Fuzzy Mathematical Programming Approaches … 371



Table 1 Different classifications for sources of uncertainty

Klibi et al. [32] Ho [26] Davis [10]

Production centers Endogenous assets System Process/manufacturing

Distribution centers

Recovery centers

Service centers

External providers Supply chain
partners

Environment Supply

Demand zones

Nature Exogenous
geographical factors

Demand

Public infrastructures

Socio-economic-political
factors

uncertainty Analytical

Management
approach

Modeling approach

new product design 

Coping with 
uncertainty strategy

Reducing
uncertainty strategy

Artificial
intelligence

Simulations

Lead time 
management

Disruption risk 
management

supply chain 
redesign

Information sharing

collaboration

Fig. 1 Different strategies in facing with uncertainty along with some examples
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latter strategy refers to one which tries to minimize the impact of uncertainty on the
performance of supply chain instead of reducing the sources of uncertainty. Various
analytical approaches (e.g. mathematical methods) are usually used when imple-
menting these strategies. As early as 1993, Davis [10] suggested three strategies to
cope with uncertainty: (1) TQM (total quality control), (2) new product design and
(3) supply chain redesign. The first two strategies participate in reducing the process
uncertainty while supply chain redesign can alleviate the demand and supply side
uncertainties. In addition, van der Vorst and Beulens [85] proposed two other
strategies of reducing the uncertainty: (1) collaboration with key suppliers and
customers (2) reducing the role of human in supply chain processes. The first one
aims to control the demand and supply uncertainties while the latter tries to reduce
process uncertainty. It should be noted that the concept of collaboration has been
studied broadly in supply chain management and one important prerequisite of this
concept is the advanced integration of supply chain members. Furthermore, col-
laboration leads to uncertainty reduction in various uncertainty categories including
demand, supply, process and control uncertainties. Another prerequisite of col-
laboration that is worthy of attention is information sharing alongside the supply
chain. Other strategies such as flexibility in supply side [21, 66, 73], lead time
management [66], insurance against disasters [31, 69, 79] are also suggested in the
relevant literature.

1.2 Different Types of Uncertainty

Different classifications of uncertainty have ever been proposed in the literature
from the different viewpoints. Tang [79] classified supply chain risks into opera-
tional and disruption risks. Operational risks are related to those uncertainties that
intrinsically are involved in supply chain operations such as demand and cost
uncertainty, equipment malfunction, etc. Also, disruption risks are related to those
events with low-likelihood but high-severity impact, caused by natural and
man-made disasters or technological threats like employee strikes. Interested
readers can consult with Torabi et al. [80, 82] for more information. Another
classification was expressed by Klibi et al. [32] where various types of uncertainty
were categorized into three groups: (1) Randomness, (2) Hazard and (3) Deep
uncertainty. They explained that randomness is characterized by random variables
related to business-as-usual events while hazard is characterized by low-likelihood
but high-impact extreme events. Furthermore, deep uncertainty is related to
unavailability of information about likelihood of future plausible events. Mula et al.
[52] classified uncertainty into two main categories: (1) flexibility in constraints and
goals (2) uncertainty in data. The first category is characterized by the flexibility in
satisfying the constraints and/or in target values of goals. Uncertainty in data can be
also classified into two categories: (1) randomness, that stems from the random
nature of some events and parameters and (2) epistemic uncertainty, which is
related to lack of knowledge about the exact value of some ill-defined and imprecise
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data, which are often in the form of linguistic attributes and qualitative/judgmental
data extracted from field experts. According to above-mentioned classification, the
intuitive taxonomy for uncertainty can be presented by considering two dimensions:
(1) the impact of uncertainty and (2) the nature of imprecision. The proposed
taxonomy is illustrated in Fig. 2.

1.3 Overview of Different Approaches Used to Cope
with Uncertainty

Both the qualitative and quantitative approaches are applied by researchers and
practitioners to handle uncertainty in SCP problems. As mentioned by Peidro et al.
[57] quantitative modelling approach includes (1) analytical methods, (2) artificial
intelligence methods, (3) simulation based methods, and (4) hybrid methods. This
classification, along with some examples for each category is shown in Fig. 3.
Since this chapter focuses on fuzzy programming methods, relevant mathematical
models are elaborated in the rest of this chapter. However, it should be noted that
stochastic programming (e.g. [4, 61]) and robust optimization (e.g. [62]) are the
other major methods broadly used in the extant literature. Although there are many
research works in the area of SCP, which focus on developing efficient methods to
cope with uncertainty, there is a need for a general conceptual/methodological
framework which enables the decision makers to systemically confront with
uncertainty in SCP problems.

Figure 4 shows the proposed methodological/conceptual framework for han-
dling the uncertainty in SCP area. The conceptual framework comprises of four
phases: (1) SCN risk analysis: this phase is set out to select important sources of

Epistemic 
uncertainty

Randomness 
uncertainty

Impact on business

Likelihood of occurrence

    Business-as-usual uncertainty     Hazard uncertaintyD
eg

re
e 

of
 im

pe
rc

is
io

n

Fig. 2 Taxonomy of uncertainty
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uncertainty based on the corresponding likelihood and severity which subjectively
or objectively attribute to the concerned sources; (2) Scenario development and
sampling: this phase is intended to provide a plausible portfolio of scenarios or the
possible states for the concerned system in the future. Scenario must be transparent,
probable, relevant and compatible; (3) Solution approach: it means selecting an
analytical method for modeling the uncertainty including the stochastic, fuzzy and
robust programming; (4) Modeling resilience, robustness and responsiveness:
decisions which are obtained from a solution method, must be remain feasible
under almost all future scenarios. In addition, robustness in facing with tensions,
rapidity in returning to the equilibrium state and maintaining a good level of per-
formance in a critical condition are the measures of resilience.

To conclude this section, Fig. 5 classifies different mathematical programming
methods used to deal with uncertainty in SCP problems with respect to the tax-
onomy of uncertainty provided in Fig. 2.

Modeling approach
Coping with 
uncertainty

Artificial intelligence

Simulation

Analytical

Hybrid

Robust optimization

Stochastic
programming

Game theory

Fuzzy mathematical 
programming

Multi-agent system

Discrete event 
simulation

Robust fuzzy 
programming

Fuzzy-stochastic
programming

Simulation-
optimization

Flexible
programming

Possibilistic
programming

System dynamics

Expert system

Fig. 3 Different categories of quantitative modeling approaches along with some examples
(adopted from Peidro et al. [58] with some modifications)
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2 Fuzzy Mathematical Programming Models for Supply
Chain Planning

As it was mentioned in the previous sections, supply chain planning problems’
input data may be subject to uncertainties with different natures and sources.
Imprecision associated with subjective estimations, which are based on human
judgments or preferences, vagueness and flexibility in objectives and constraints,
random nature of some parameters or inexactness in input data, are the examples of
different types of uncertainty. Fuzzy set theory is among the main approaches that
particularly, manipulate the uncertainty which arises from ambiguity in data and/or

Phase1: SCN risk analysis

Source of Uncertainty
Proposed Method: enterprise vulnerability map

Envirnmental uncertainty System uncertainty

Categorize 
uncertainty

Bussiness as usual

hazard

Deep uncertainty

Method: econometrics 

fit the probability distribution from historical data

Method: catastrophe model/ multi hazard model 

Estimate location, severity and frequency 

Method:
Structural brain storming session

Expert interview
Delphi method 

Narrative scenario 

Bussiness impact

pr
ob

ab
ili

ty

    No     Medium    Catastrophic

Very high

Medium

No

Multi criteria filttering 
process

Manageable number

Plausible portfolio of uncertainty

Phase2: Scenario development and sampling

Phase3: solution methods

Phase4: modeling resilience, robustness and responsiveness  

Feasibility robustness :decisions which is obtained from the model ,remain feasible in almost all the future scenarios 
Optimality robustness :solutions which is obtained from the model ,varying  Slightly in all of the future scenarios
Resilience: robustness in confronting the tension ,rapidity in returning to the equilibrium state and maintaining the 
performance in a critical condition through the redundancy and flexibility

Fig. 4 Conceptual/methodological framework for modeling approach in coping with uncertainty
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vagueness of target values of objectives and constraints. The imprecision can be
stemmed from absence of sharp boundaries in definitions, flexibility and vagueness
in objectives and constraints, subjective estimations for values of input data and
lastly when the historical data does not exist sufficiently or the conditions of
problem do not satisfy the presumptions of probability theory.

Fuzzy mathematical programming methods (FMPM) can be classified into two
main categories ([53, 81]; Pishvaee and Torabi [60]): (1) flexible programming and
(2) possibilistic programming. Flexible programming is used to dealwith vagueness in
target values of objectives and/or flexibility of constraint’s satisfaction while possi-
bilistic programming is applied to copewith ambiguous (i.e. imprecise) input data (i.e.,
epistemic uncertainty). Beside the traditional categories of FMPM(i.e. theflexible and
possibilistic programming), two other types of modeling approaches called fuzzy
stochastic programming and robust fuzzy programming have recently been proposed
in the literature. Fuzzy stochastic programming and/or stochastic fuzzy programming,
which are frequently used interchangeably (see for instance [5, 85];Mohammadi et al.
[51]) are able to handle those situations in which there are both probabilistic ran-
domness and possibilistic imprecision in data. Also, robust fuzzy programming (see
[59, 63]) enables the decisionmaker to be benefited from the advantages of both robust
optimization and FMP approaches. To show the applicability of fuzzy mathematical
programming in the context of supply chain planning, Table 2 briefly reviews and
classifies a number of important FMP models developed in the literature.

2.1 Possibilistic Programming

Since the 1950s stochastic programming has been used broadly for the sake of
handling randomness uncertainty in the input parameters. However, stochastic
programming has some limitations in practice: (1) The low level of computational
efficiency, (2) the need for sufficient and reliable historical data and (3) the inability
in modelling subjective parameters and concepts ([41]; Pishvaee and Torabi [60]).

Fuzzy mathematical 
programming
Robust convex 
programming

Epistemic
uncertainty

Randomness
uncertainty

Impact on business

Likelihood of occurrence

    Business-as-usual uncertainty     

Scenario-based and Fuzzy 
mathematical programming

Stochastic programming
Scenario-based stochastic 

programming

D
eg

re
e 

of
 im

pe
rc

is
io

n

Hazard uncertainty

Fig. 5 Classification of analytical methods with respect to the nature of uncertainty
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Table 2 Classification of some important FMPMs developed in the area of SCP

Problem
type

Subject of planning Authors Modeling method

Strategic Vendor selection Kumar et al. [33] Flexible goal programming

Kumar et al. [34] Flexible programming

Supplier selection Amid et al. [1] Multi objective flexible
programming

Torabi and
Baghersad [80]

Possibilistic programming

Network design Selim and
Ozkarahan [74]

Flexible goal programming

Pishvaee and
Torabi [60]

Multi-objective possibilistic
programming

Qin and Ji [67] Possibilistic programming

Pishvaee et al. [63] Robust possibilistic
programming

Pishvaee et al. [64] Robust possibilistic
programming

Paksoy et al. [56] Multi objective possibilistic
programming

Torabi et al. [82] Possibilistic programming

Fallah et al. [17] Competitive possibilistic
programming

Pishvaee and
Khalaf [59]

Robust flexible programming

Tactical Master planning Torabi and Hassini
[81]

Possibilistic programming

Vafa Arani and
Torabi [84]

Stochastic fuzzy programming

Production planning Hsu and Wang [27] Possibilistic programming

Mula et al. [53] Flexible programming

Mula et al. [54] Possibilistic programming

Torabi et al. [84]

Aggregate production
planning

Wang and Liang
[88]

Possibilistic linear
programming

Profit management Sakawa et al. [72] Possibilistic programming

Chen et al. [8] Flexible programming

Production-transportation Liang [40] Flexible programming

Selim et al. [75] Flexible goal programming

Díaz-Madroñero
et al. [11]

Flexible programming

Operational Transportation problem Liu and Kao [41] Possibilistic programming

Liang [39] Multi-objective flexible
programming

Inventory management Giannoccaro et al.
[20]

Possibilistic programming

Hsu and Wang [27] Possibilistic programming

378 M.J. Naderi et al.



It is obvious that in most of real-life problems the aforementioned limitations
become significant drawbacks in the application and usefulness of stochastic pro-
gramming approach.

As a powerful alternative, possibilistic programming (PP) provides a framework
which can appropriately handle the epistemic uncertainty in input parameters.
In PP, a possibilistic distribution is attributed to an uncertain parameter, which

Posibilistic linerar
programming

Imprecise resources 
and technological 

coefficients

Imprecise objective 
function coefficient

Imprecise Objective 
and Technological 

Coefficients

All imprecise 
coefficient

Ramik and Rimanek’s 
(1985)’s approch

 Tanaka et al.
(1986)’s approach

Dubois (1987)’s 
     approach

    Lai and Hwang 
 (1992a)’s approach 

Rommelfanger, 
Hanuscheck and Wolf 
    (1989)’s Approach 

    Lai and Hwang 
(1992b)’s approach 

Buckley (1988)'s
     Approach

     Lai and Hwang
(1992b)’s approach 

Negi (1996)’s
   approach

Fuller (1986)’s 
   approach

   Jimenez et al.
(2007)’s approach

Fig. 6 Classification of various possibilistic programming methods
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shows the degree of possibility of occurrence for each possible value in the related
support. Figure 6 summarizes some of the important and popular PP methods
which are used broadly in the literature.

For confronting the imprecise resources and technological coefficients in opti-
mization models, Ramik [68] supposed that all the technological and resource
coefficients are L-R fuzzy numbers and by the use of self-inclusion concept, they
concluded that the inequalities with imprecise resources and technological coeffi-
cients are fuzzy inequalities. Accordingly, they proposed the use of fuzzy ranking
methods to handle the imprecise parameters in such mathematical programming
problems. Tanaka et al. [78] formulated the uncertain input parameters as sym-
metric triangular fuzzy numbers and based on extension principle they defined
satisfaction level of a for each constraint including imprecise parameters. They
defined a as a priori parameter which is specified by the decision maker. While
most of developed approaches in the literature considered the constraints with
imprecise resources and technological coefficients in the form of inequalities,
Dubois and Prade [14] proposed their approach for different forms of constraints,
especially equality constraints, and introduced two viewpoints in confronting a
possibilistic constraint: (1) soft and (2) hard approach. In the first approach, by the
use of possibility index, they defined the concept of a-weak feasibility and in the
second approach, by the use of necessity index, the concept of a-hard feasibility
was proposed. Notably, the uncertain equality constraints are substituted by two
inequalities.

The imprecision of objective function parameters is a common issue which
should be handled in optimization problems. Lai and Hwang [37] supposed that
these imprecise coefficients in the objective function have triangular possibly dis-
tributions. They proposed the substitution of the main objective function by three
functions which consist of the most possible, the most pessimistic and the most
optimistic value of the main objective function. They stated that for solving the
equivalent multi-objective model it is possible to use every multi criterion decision
making (MODM) techniques. Rommelfanger et al. [70] assumed that the vector of
parameters in objective function is an interval-valued coefficient vector. They
substituted the main imprecise objective function by two deterministic objective
functions. They also proposed a new approach for the models which their objective
function’s coefficients have general convex possibility distribution (i.e., it is not
necessary to have only triangular or trapezoidal shapes).

Using the concept of exceedance and strict exceedance defined by Dubois and
Prade [16], Negi [55] developed an approach which maximizes the minimum
possibility degree of objective function and constraints. Jiménez et al. [29] pro-
posed a new PP approach based on the Jiménez [28] ranking method and the
concepts regarding the expected interval (EI) and expected value (EV) of imprecise
parameters.

According to the approach used for dealing with possibilistic chance constraints,
possibilistic programming approaches can be classified into measure-based possi-
bilistic programming and non-measure-based possibilistic programming methods.
In measure-based possibilistic programming, the crisp counterpart of the original
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problem is constructed based on a fuzzy measure (e.g. necessity measure). However,
a Non-measure based possibilistic programming applies other techniques such as
fuzzy ranking methods to form the crisp equivalent model. According to Pishvaee
et al. [64], there are three main categories in measure-based possibilistic program-
ming as follows: (1) expected value models (2) chance constrained programming
(3) depended chance constrained programming. The first approach uses an expected
value operator for every imprecise parameter in the objective function and con-
straints. It can be applied more conveniently without increasing the computational
complexity of the original model compared to the two other methods but at the same
time it has no control on the confidence level of chance constraints. The second
approach is able to control the satisfaction level of constraints by the use of a-level
concept; but also increases the computational complexity since it adds a new con-
straint for each objective function of the original model. The third approach is
somehow similar to the second one but it provides more conservative decision for the
decision maker since it gives more importance to maximization of satisfaction levels.

Dubois and Prade [16] defined two basic fuzzy measures including the possi-
bility (Poss) and necessity (Nes) measures. While the first is extremely optimistic,
the second is extremely pessimistic. The authors provide definitions for possibility
and necessity measure based expected value operators as well as proposing methods
for measuring the possibility and necessity of a chance constraint. By the use of
these operators different possibilistic programming methods are extended in the
literature. Another measure which is proposed by Liu and Liu [42, 43] is credibility
measure. Credibility measure can be defined as the average of possibility and
necessity measures. Also, Liu and Liu [42, 43] extended an expected value operator
based on credibility measure. They developed both expected value and fuzzy
chance constrained programming frameworks based on credibility measure. More
recently, Xu and Zhou [91] defined Me measure which is an extension to credibility
measure. By means of a parameter, this measure is able to adjust the degree of
optimism or pessimism in measuring the fuzziness. They also proposed a possi-
bilistic chance constrained programming approach based on Me measure, which
was then extended by Torabi et al. [82].

2.1.1 Possibilistic Programming Models for Supply Chain Planning

In this section, firstly, a possibilistic programming model for supply chain network
design problem is introduced. This model is adapted from Pishvaee et al. [63] work.
Secondly, the method applied in this paper to achieve the crisp counterpart is
described. The supply chain under consideration is of a single-product,
three-echelon type, which comprises multiple production centers, distribution
centers and costumer zones. Aiming at completely fulfill the demands of costumer
zones, products are produced in production centers and delivered to customers
through one or more distribution centers. The locations and amounts of demands
are predefined. There are various candidate positions for establishing capacitated
production and distribution centers. In addition, there are various candidate
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production technologies when a new production center is established in a location.
The model must make several decisions regarding the locations and numbers of
production and distribution centers as well as the amount of products which are
transported between every two nodes of the network. Also the production tech-
nology must be specified for every established production center. The indices,
parameters and variables that are used in mathematical formulation are as follows.

Indices:

i index of potential locations for plants i ¼ 1; . . .; I
j index of potential locations for distribution centers j ¼ 1; . . .; J
k index of fixed locations of customers k ¼ 1; . . .; K
m index of different production technologies available for plants m ¼ 1; . . .; M

Parameters:

dk demand of customer zone k
f mi fixed cost of opening plant i with production technology m
gj fixed cost of opening distribution center j
cij shipping cost per product unit from plant i to distribution center j
ajk shipping cost per product unit from distribution center j to customer k
qmi production cost per unit of product at plant i with production technology m
si maximum capacity of plant i
uj maximum capacity of distribution center j

Variables:

umij quantity of products produced at plant i with technology m and shipped to
distribution center j

qjk quantity of products shipped from distribution center j to customer k
xmi ¼ 1 if a plant with technology m is opened at location i

0 otherwise

�

yj ¼ 1 if a distribution center is opened at location j;
0 otherwise

�

By the use of above-mentioned notations, the formulation of the concerned
supply chain network design problem is shown in below.

Min W ¼
X
i

X
m

f mi x
m
i þ

X
j

gjyj þ
X
i

X
j

X
m

ðqmi þ cijÞumij þ
X
j

X
k

ajkqjk

ð1Þ

s:t:
X
j

qjk � dk; 8 k; ð2Þ
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X
i

X
m

umij ¼
X
k

qjk; 8 j; ð3Þ

X
j

umij � xmi si; 8 i; m; ð4Þ

X
k

qjk � yjuj; 8 j; ð5Þ

X
m

xmi � 1 8 i; ð6Þ

xmi ; yj 2 0; 1f g; 8 i; j;m; ð7Þ

umij ; qjk � 0; 8 i; j; m: ð8Þ

Equation (1) is the objective function of the problem which minimizes the total
cost and includes summation of fixed opening costs, variable production costs and
transportation costs. Constraint (2) is related to ensuring the full satisfaction of
demands of all customers. Equation (3) shows material flow balance at each dis-
tribution center. Constraints (4) and (5) enforce capacity restrictions on plants and
distribution centers and additionally ensure that if a facility is not opened, there will
be no shipping from the related location. Equation (6) states that at most one
technology can be attributed to each potential plant. Finally, Eqs. (7) and (8) are
related to binary and non-negatively decision variables respectively.

As it is mentioned in the relevant literature [58, 62] most of the parameters of
supply chain network design problems (e.g. capacities, demand of customers and
transportation costs) contaminated by uncertainty in real-world situations because
of fluctuation of parameters over the long-term horizon. To cope with this issue, a
possibilistic chance constrained programming model is developed here.

For convenience, the supply chain network design model can be summarized in
a compact form as follows:

Min z ¼ fyþ cx
s:t: Ax� d;

Bx ¼ 0;
Sx�Ny;
Tx� 1;
y 2 0; 1f g; x� 0:

ð9Þ

where the vectors f, c, and d are related to fixed-opening costs, variable trans-
portation and production costs and demands, respectively. The matrices A, B, C, N,
S and T are technological coefficient matrices of the constraints. Also, y and x are
the vectors of binary decision variables and continuous decision variables,
respectively.
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The vectors f, c, and d and coefficient matrix N which respectively are related to
fixed opening costs, variable transportation costs, demands and capacity of facilities
are the imprecise parameters in the model. Here, trapezoidal possibility distribution
(see Fig. 7) is attributed to uncertain parameters. Each trapezoidal possibility dis-
tribution can be defined by four prominent points, e.g. ~n ¼ ðnð1Þ; nð2Þ; nð3Þ ; nð4ÞÞ. It
is obvious that if nð2Þ ¼ nð3Þ, the attributed trapezoidal possibility distribution is
reduced into a triangular form. The expected value operator is used to defuzzify the
objective function and the necessity measure is applied to cope with chance con-
straints including imprecise parameters.

Accordingly, the equivalent possibilistic chance constrained programming
model can be formulated as follows:

Min E½z� ¼ E½~f �yþE½~c�x
s:t: Nec Ax� ~d

� �� a;
Bx ¼ 0;
Nec Sx� ~Ny

� �� b;
Tx� 1;
y 2 0; 1f g; x� 0:

ð10Þ

Notably, the expected value used for defuzzification of the objective function
was firstly developed by Yager [92]. Assume that ~n is a fuzzy number and its
membership function is defined as follow:

l~nðxÞ ¼
f~nðxÞ; if nð1Þ � x\nð2Þ
1; if nð2Þ � x� nð3Þ
g~nðxÞ; if nð3Þ\x� nð4Þ
0; if x\nð1Þ or x[ nð4Þ

8>><
>>:

E�ð~nÞ and E�ð~nÞ are the upper and lower expected (mean) values of ~n that can be
defined as follow [15, 24]:

Fig. 7 The trapezoidal
possibility distribution of
fuzzy parameter ~n
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E�ð~nÞ ¼ nð3Þ þ
Znð4Þ

nð3Þ

g~nðxÞ dx ð11Þ

E�ð~nÞ ¼ nð2Þ �
Znð2Þ

nð1Þ

f~nðxÞ dx ð12Þ

The expected interval (EI) and expected value (EV) of ~n based on Eqs. (11) and
(12), can be defined as follow [15, 24]:

EI½~n� ¼ ½E�ð~nÞ; E�ð~nÞ� ð13Þ

EV ½~n� ¼ E�ð~nÞþ E�ð~nÞ
2

ð14Þ

If ~n is a trapezoidal fuzzy number (see Fig. 7), then we have:

EI½~n� ¼ nð1Þ þ nð2Þ
2

;
nð3Þ þ nð4Þ

2

� �
ð15Þ

EV ½~n� ¼ nð1Þ þ nð2Þ þ nð3Þ þ nð4Þ
4

ð16Þ

Let r be a real number. According to Dubois [13], Dubois and Prade [16]
necessity (Nec) of ~n� r can be defined as follows:

Nec ~n� r
n o

¼ 1� sup
x[ r

l~nðxÞ ¼ 1� Pos ~n[ r
n o

ð17Þ

Therefore, the necessity of ~n� r can be stated as follows:

Nec ~n� r
n o

¼
1; nð4Þ � r;
r�nð3Þ

nð4Þ�nð3Þ
; nð3Þ � r� nð4Þ;

0; nð3Þ � r:

8><
>: ð18Þ

Based on Eqs. (17) and (18) and with respect to Dubois and Prade [18] and
Luhandjula [45], it can be proved that:

Nec ~n� r
n o

� a , r�ð1� aÞnð3Þ þ anð4Þ: ð19Þ
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As there is an assumption that all of uncertain parameters in formulation (11)
have trapezoidal possibility distribution, the equivalent crisp model for formulation
(11) can be given as follows:

Min E½z� ¼ fð1Þ þ fð2Þ þ fð3Þ þ fð4Þ
4

� �
yþ cð1Þ þ cð2Þ þ cð3Þ þ cð4Þ

4

� �
x

s:t: Ax�ð1� aÞdð3Þ þ adð4Þ;
Bx ¼ 0;
Sx� ð1� bÞNð2Þ þ bNð1Þ

	 

y;

Tx� 1;
y 2 0; 1f g; x� 0:

ð20Þ

2.2 Flexible Programming

In a fuzzy environment the meaning of objective function and constraints are
somehow different from their classical hard meanings. For example, if a decision
maker decides to “decrease the cost considerably”, he/she may prefer to reach some
aspiration levels (i.e., flexible targets) rather than strictly minimize the cost.
Additionally, “≤”, “=” and “≥” signs in a constraint might not be meant in the strict
mathematical sense and slight violation is allowed. In these cases, the fuzzy dis-
tributions are attributed to these soft constraints and objective functions based on
the preferences of decision makers (DMs). In this framework, the value of attributed
membership function shows the degree of DMs’ satisfaction. Luhandjula [45]
named this sort of fuzzy mathematical programing as ‘Flexible programming’.

Flexible programming models can be categorized into two groups [97]: (1) sym-
metric and (2) non-symmetric. Thefirst one describes themodelswhich both objective
function and constraints have flexibility in reaching the target values. In the second

Symmetric model 

Nonsymmetric 
model

Flexible linear 
programming

Zimmermann (1975)'s 
Approach

Verdegay (1982)'s 
      Approach

Werners (1987)'s  
     Approach

Chanas (1983)'s
    Approach

Fig. 8 Classification of different methods of flexible programming
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category only constraints have fuzzy nature. Figure 8 illustrates some well-known
flexible programming methods according to above-mentioned classification.

Verdegay [87] provided the crisp equivalent parametric programming model for
the flexible programming problem with fuzzy constraints. Werners [89] studied the
non-symmetric flexible programming problem and proposed a method in which two
extreme values of objective function were used to construct a fuzzy membership
function in order to attain the satisfaction degree of objective function.
Zimmermann [96] applied the Zadeh’s max-min operator to solve the symmetric
flexible programming problem model. Chanas [7] argued that due to lack of
knowledge about the fuzzy feasible region, the fuzzy membership function of
objective function cannot be determined from the beginning. He proposed a
framework in which the attributed fuzzy membership is specified using an inter-
active process.

2.2.1 Flexible Programming Models for Supply Chain Planning

Consider the supply chain network design problem described in Sect. 2.1.1. In that
problem it was assumed that capacities, demand of customers, fixed opening costs
and variable transportation costs are imprecise parameters. In this section, it is
assumed that the demand and capacity constraints are flexible (i.e., soft constraints)
and slight violation is allowed. For example, in demand constraints symbol ~� is
regarded as fuzzy version of � which implies that demand of a customer zone
must be essentially less than or somehow similar to the number of products that are
delivered to the customer zone. According to Pishvaee and Khalaf [59] and Torabi
et al. [83], the model can be represented as follows:

Min z ¼ cxþ fy
s:t Ax ~� d

Bx ¼ 0
Sx ~�Ny
Ty� 1
y 2 0; 1f g; x� 0

ð21Þ

Based on Cadenas and Verdegay [3], the violation of soft constraints can be
modeled by the use of fuzzy numbers (in this case by~t and ~r denoting the maximum
allowable tolerances). Therefore, model (21) is rewritten as follows:

Min z ¼ cxþ fy
s:t: Ax� d �~t 1� að Þ

Bx ¼ 0
Sx�Nyþ ~r 1� bð Þ½ �y
Ty� 1
y 2 0; 1f g; x� 0

ð22Þ
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where minimum satisfaction level of flexible constraints are controlled by a and b.
Now, we intended to defuzzify formulation (22) based on the fuzzy ranking method
suggested by Yager [92, 93]. For this, assume that ~t and ~r are triangular fuzzy
numbers and they are represented by their pessimistic, most possible and optimistic
values (i.e., ~t ¼ ðtp; tm; toÞ and ~r ¼ ðrp; rm; roÞ). These fuzzy numbers can be
defuzzified as follows:

tm þ ut � u0
t

3

� �
ð23Þ

rm þ hr � h0r
3

� �
ð24Þ

where parameters ut and u0
t (hr and h0r) are lateral margins of the triangular fuzzy

number ~t (~r) and are defined in Eqs. (25) and (24).

ut ¼ to � tm ð25Þ

u0
t ¼ tm � tp ð26Þ

By the use of Eqs. (23) and (24), the crisp counterpart of model (22) is as
follows.

Min z ¼ cxþ fy

s:t: Ax� d � tm þ ut�u0
t

3

� �
1� að Þ

Bx ¼ 0
Sx�Nyþ rm þ hr�h0r

3

� �
1� bð Þ

h i
y

Ty� 1
y 2 0; 1f g; x� 0

ð27Þ

Notably, the applied method is capable of supporting different kinds of fuzzy
numbers as well as various fuzzy ranking methods when converting the soft con-
straints to their flexible constraints. Also, the minimum satisfaction level for con-
straints should be determined in the range of 0� a; b� 1, subjectively by the
decision maker.

2.3 Robust Fuzzy Mathematical Programming

Robust optimization provides a set of risk-averse approaches in confronting with
uncertainty, which attempts to obtain a robust solution. A solution is robust, if it
has feasibility robustness and optimality robustness, simultaneously [59, 63].
A solution has feasibility robustness if it is feasible under almost all possible
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realization of uncertain parameters and has optimality robustness if the value of
objective function for the obtained solution would remain close to optimal value or
have minimum (undesirable) deviation from the optimal value for (almost) all
possible values of uncertain parameters. Both of feasibility robustness and opti-
mality robustness could be used as two performance indicators, which examine the
validity of a solution for an uncertain problem irrespective of the type of applied
uncertainty programming approach.

Pishvaee et al. [63] classify robust optimization approaches into three main
categories: (1) hard worst case robust optimization (2) soft worst case robust
optimization, and (3) realistic robust optimization. In the first approach, the solution
remains feasible under all possible values of uncertain parameters while the worst
case value of objective function is optimized. This approach is applicable for those
situations in which maximum immunization against uncertainty is needed (e.g.
military cases). The second approach argues that it is very unlikely that all of
uncertain parameters get their extreme worst case values at the same time. In this
approach, similar to the worst case approach, the worst case value of objective
function is optimized; however, the feasibility robustness level is not planned for
the worst case value. Finally, the third approach seeks to attain a trade-off among
the average performance of the objective function, worst case value of the objective
function and feasibility robustness. As mentioned before, feasibility robustness and
optimality robustness can be used in evaluation of a solution for the problems
tainted with uncertainty regardless of the type of uncertainty. Therefore, we can also
look for robustness in fuzzy environment and control the feasibility and optimality
robustness of a solution. As a pioneer work in this field, Pishvaee et al. [63]
proposed three robust possibilistic programming approaches, which are able to
control the feasibility and optimality robustness in different degrees. These include:
(1) hard worst-case robust possibilistic programming (HWRPP), (2) soft worst-
case robust possibilistic programming (SWRPP) and (3) realistic robust possi-
bilistic programming. The first one optimizes the worst possible value of objective
function as well as immunizing the solution against the worst-case values of
uncertain parameters. This method is indifferent to the forms of uncertain param-
eters and only considers their extreme worst values. Therefore, there is no need to
determine the possibility distributions of uncertain parameters and it is sufficient to
only know the support range of each possibility distributions. The second method
optimizes the worst value of objective function while considering the penalty cost
for constraints’ violations. Thus, this approach is more flexible than HWRPP,
because the violation of constraints is permissible to some extent. The third
approach attempts to achieve a reasonable trade-off between the average perfor-
mance, feasibility robustness and optimality robustness. As was mentioned in
Sect. 2, the fuzzy mathematical programming consists of possibilistic programming
and flexible programming. Until now we introduced some approaches that unified
possibilistic programming and robust optimization in the literature. Interested
readers can consult with Pishvaee and Khalaf [59] in which new models called
robust flexible programming and robust mixed flexible-possibilistic programming
have been introduced.
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2.3.1 Robust Fuzzy Programming Models for Supply Chain Planning

Consider the supply chain network design problem discussed in Sect. 2.1.1 where
capacities, demand of customers, fixed opening costs and variable transportation
costs were imprecise parameters formulated by some possibility distributions. Now,
based on Pishvaee et al. [63] and for the sake of considering and controlling
feasibility and optimality robustness in the mentioned problem, it is reformulated by
realistic, hard worst case and soft worst case robust possibilistic programming
methods.

• Realistic robust possibilistic programming model

At first, consider the formulation (20), where vectors f, c, d and coefficient matrix
N denote the imprecise parameters regarding the fixed opening costs, variable
transportation costs, demands and capacities, respectively. Based on formulation
(20), the realistic robust possibilistic formulation of the concerned problem is as
follows:

Min E½z]þ cðzmax � zminÞþ d½dð4Þ � ð1� aÞdð3Þ � adð4Þ�
þ p½bNð1Þ þ ð1� bÞNð2Þ � N1�y

s:t: Ax�ð1� aÞdð3Þ þ adð4Þ;
Bx ¼ 0;
Sx� bNð1Þ þ ð1� bÞNð2Þ

	 

y;

Tx� 1;
y 2 0; 1f g; x� 0; 0:5\a; b� 1:

ð28Þ

The first term of objective function is the expected value of z. By minimization
of the expected value of total cost, the average performance is improved. The
second term, cðzmax � zminÞ, indicates the difference between the best (zmin) and
worst (zmax) possible values of z. Equation (29) defines these two values.

zmax ¼ fð4Þyþ cð4Þx;

zmin ¼ fð1Þyþ cð1Þx;
ð29Þ

Also, c indicates the relative importance of ðzmax � zminÞ compared to the other
terms of objective function. Therefore, cðzmax � zminÞ controls the maximum devi-
ation from the expected optimal value of objective function (i.e. it controls optimality
robustness of the solution). Furthermore, ½dð4Þ � ð1� aÞdð3Þ � adð4Þ� represents the
difference between the worst possible value of imprecise demand and the value that
is used in right hand side of the chance constraint. Also, d is the unit penalty cost for
unsatisfied demand. Therefore, the third term, d½dð4Þ � ð1� aÞdð3Þ � adð4Þ�, indi-
cates the possible violation cost of demand constraint and it is used to control the
feasibility robustness of the solution. Similar discussion can be performed for the
fourth term in the objective function, i.e., p½bNð1Þ þ ð1� bÞNð2Þ � N1�y.
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Based on the above-mentioned definitions and descriptions, we can say that
formulation (22) seeks to reach a reasonable trade-off between the average per-
formance, optimality robustness and feasibility robustness. It should be noted that
when the technological coefficients (i.e., matrix N) is tainted with uncertainty the
model becomes non-linear (because of multiplication of N and b). To escape from
the complexity of such non-linear model, a linearization method is also proposed in
Pishvaee et al. [63].

• Hard worst case robust possibilistic programming model (HWRPP)

In the hard worst case robust programming approach, the solution must be
remain feasible under all possible values of imprecise parameters while the worst
case value of objective function is optimized. The worst case approach provides the
maximum conservation against uncertainty and therefore it is a fully risk-averse
approach. Based on above-mentioned descriptions, we can represent the hard worst
case robust possibilistic version of the concerned supply chain network design
problem (1)–(8) as follows:

Min supðzÞ
s:t: Ax� supð~dÞ;

Bx ¼ 0;
Sx� infð~NÞy;
Tx� 1;
y 2 0; 1f g; x� 0:

ð30Þ

By assuming that the possibility distributions of imprecise parameters are of
trapezoidal shape, model (30) can be rewritten as follows:

Min zmax

s:t: Ax� dð4Þ;

Bx ¼ 0;

Sx�Nð1Þy;

Tx� 1;

y 2 0; 1f g; x� 0:

ð31Þ

Notably, HWRPP model does not rely on the form of possibility distribution and
it is sufficient to only know the worst possible value of imprecise parameters. It is
noteworthy that some other robust possibilistic programming models are also
developed by Pishvaee et al. [63] and applied in the literature for coping with
uncertainty in different supply chain planning problems (e.g. [51, 95]).

• Robust flexible programming model

Based on model (27), the robust flexible programming model proposed by
Pishvaee and Khalaf [59] can be formulated as follows:
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Min E ¼ cxþ fyþ c tm þ ut�u0
t

3

� �
1� að Þ

h i
þ h rm þ hr�h0r

3

� �
1� bð Þ

h i
y

s:t: Ax� d � tm þ ut�u0
t

3

� �
1� að Þ

Bx ¼ 0
Sx�Nyþ rm þ hr�h0r

3

� �
1� bð Þ

h i
y

Ty� 1
y 2 0; 1f g; x� 0; 0� a; b� 1

ð32Þ

The last two terms of objective function calculates the total penalty cost of
possible violation on soft constraints (i.e., feasibility robustness) while the first two
terms are the original objective function of model (27). Indeed, the third and fourth
terms represent the difference between the two extreme values of the right hand side
of flexible constraints which are defined as follows:

tm þ ut � u0
t

3

� �
1� að Þ ¼ d � d � tm þ ut � u0

t

3

� �
1� að Þ

� �
ð33Þ

rm þ hr � h0r
3

� �
1� bð Þ

� �
y ¼ Nyþ rm þ hr � h0r

3

� �
1� bð Þ

� �
y

� �
� Ny ð34Þ

Also, penalty costs are considered for each unit of violation on soft constraints
which are presented via parameters c and h in the proposed model. It should be
noted that the model optimizes the values of satisfaction levels (i.e., a and b) as two
variables. As a result, there is no need for iterative subjective experiments by setting
different values of a and b. The proposed model belongs to the category of realistic
robust programming since it tries to make a reasonable balance between the cost of
robustness (i.e., the third and fourth terms of objective function) and the overall
performance of the concerned problem (i.e., the first and second terms of objective
function). Similar to model (28), the multiplication of N and b results in
non-linearity of model (32) and therefore a linearization method is provided in
Pishvaee and Khalaf [59]. Moreover, some other robust flexible and
possibilistic-flexible programming methods are also proposed in Pishvaee and
Khalaf [59].

2.4 Fuzzy-Stochastic Programming

Generally there are two main types of uncertainty including fuzziness and ran-
domness. However, in some real world situations, fuzziness and randomness maybe
appear simultaneously. We may encounter a random situation whose outcomes are
not crisp numbers but fuzzy elements, i.e., in the form of linguistic descriptions. As
an example, a situation can be considered in which a group of people are randomly
selected and asked about the future weather in a particular day and they response in
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the form of linguistic descriptions such as “hot”, “very hot” “more or less hot”.
Another example of facing with hybrid uncertainty is a model in which a constraint
has a random RHS while technological coefficients of the constraint are imprecise
parameters extracted from expert opinion in the form of fuzzy numbers.

To cope with an uncertain situation in which the fuzziness and randomness
appear simultaneously (i.e., mixed fuzzy-stochastic data), various concepts are
proposed in the literature: (1) fuzzy random variable which is introduced by
Kwakernaak [35, 36] and refers to a random element whose prominent values are
fuzzy; (2) random fuzzy variable which is developed by Liu and Liu [45] and refers
to a fuzzy element taking random values as its prominent values; (3) probability of
a fuzzy event [94]; (4) probabilistic set [25]; (5) linguistic probabilities [12].

As mathematical programming approaches in the form of linear and mixed
integer linear are broadly used in the area of supply chain planning, now we present
a classification of fuzzy-stochastic linear programming problems according to
Luhandjula [47] and thereafter a number of them are introduced. Luhandjula [47]
classified fuzzy stochastic linear programming models as follows:

• Flexible stochastic linear problems
• Inclusive-constrained linear programming with fuzzy random variable

coefficients
• Inequality-constrained linear programming with fuzzy random variable

coefficients
• Linear programming with random variables and fuzzy numbers

Inflexible stochastic linear problems, since coefficients in constraints and objective
functions have randomdistributions, the objective functions and constraintsmight not
be meant in the strict mathematical sense and slight violations for constraints are
permitted. To cope with these problems some symmetric (e.g. [48]; Luhandjula [44]
and non-symmetric (e.g. [5, 6] approaches can be found in the literature. In some
problems, constraints state that the possible region of LHS occurrence including some
ill-defined parameters must be involved in the satisfactory region. In these cases, the
problem is in the form of Inclusive-constrained and if it includes fuzzy random
variables, the methodology proposed by Luhandjula [47] might be useful.

Inequality-constrained model with fuzzy random variable coefficients is a
mathematical programming model in which constraints are in the form of inequality
and all of coefficients are in the form of fuzzy random variables. Katagiri and Ishii
[30] developed an approach for dealing with these problems in the linear form.
Some problems include both random coefficients and fuzzy coefficients simulta-
neously. To cope with these problems, Luhandjula [46] proposed an approach and
applied it in a problem in which the coefficients of the technological matrix are
fuzzy numbers while the coefficients of RHS include gamma random variables.

Last but not the least, a supply chain mater planning problem with random fuzzy
data is addressed by Vafa Arani and Torabi [84]. In the proposed model, market
demand of final products and technical coefficients of the marketable securities are
supposed to be random fuzzy variables.
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2.4.1 Fuzzy Stochastic Programming Model for Supply Chain
Planning

If sufficient and reliable historical data is available for a parameter, a probability
distribution can be plausibly attributed to the parameter. For example, consider the
demand constraint of formulation (21). It is not a far-fetched situation that the
company has recorded its customer orders for a long time and based on this his-
torical data we can attribute a probability distribution to the demands.

Min z ¼ fyþ cx
s:t: Ax ~� d;

Bx ¼ 0;
Sx�Ny;
Tx� 1;
y 2 0; 1f g; x� 0:

ð35Þ

where d is a random variable with cumulative distribution function F and “ ~� ” is
the flexible version of “� ”. Now, in a bid to achieve the crisp counterpart of
demand constraint we refer to Chakraborty [5] who attributed a membership
function to the probability of fuzzy event ð~PðZ ~� zÞÞ as Eq. (36), where Z is a
random variable and we are about to calculate the probability of Z ~� z which “ ~� ”
denotes the fuzzy nature of the inequality:

l~P Z ~� zð Þ rð Þ ¼
1 if F zð Þ ¼ r
F zþDzð Þ�r

F zþDzð Þ�FðzÞ ; if FðzÞ� r�FðzþDzÞ
0 if r[FðzþDzÞ

8<
: ð36Þ

Therefore, firstly we should obtain the membership function of ~Pðd ~�AxÞ where
d (demand) is a random variable with cumulative function F and r is the target value
which determines the satisfaction chance of the concerned constraint. Accordingly,
the membership function is formulated as follows:

l~P d ~�Axð Þ rð Þ ¼
1 if F Axð Þ ¼ r

F AxþDAxð Þ�r
F AxþDAxð Þ�F Axð Þ ; if F Axð Þ� r�F AxþDAxð Þ
0 if r[F AxþDAxð Þ

8<
: ð37Þ

DAx is determined exogenously by decision maker and it is equal to the maximum
allowable amount for violation of the constraint. Now, we can replace the demand
constraint by l~P d ~�Axð Þ rð Þ� a and convert the original model into an equivalent a-

parametric model in which different solutions are obtained for different values of a. It
should be noted that the linearity of the replaced equation depends on the linearity of
cumulative distribution function of the corresponding random variable.
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3 Case Study

As a sample application of fuzzy programming approaches in the context of supply
chain planning, a real medical device industrial case is presented in this section. The
case study is adopted from Pishvaee et al. [65]. The studied case is an Iranian
single-use medical needle and syringe (SMNS) producer entitled AVAPezeshk
(AVAP) (www.avapezeshk.com). AVAP has approximately 70 % of the market in
Iran and has a production plant with about 600 million production capacity per year
for satisfying the customers’ demand. SMNS is a broadly used medical device as
WHO [90] stated, 16 billion injections are carried out annually. On the other hand,
reusing unsterilized needles and syringes leads to 8–16 million hepatitis B, 2.3–4.7
million hepatitis C and 80,000–160,000 human immunodeficiency virus
(HIV) infections per year [90]. Therefore, the efficient management of end-of-life
(EOL) SMNS can diminish its undesirable social and environmental effects. There
are three main options for EOL SMNS as follows: (1) incineration, (2) safe landfill
and (3) recycling by steel and plastic recycling centers. The first method is widely
used due to its cost efficiency despite its significant environmental burden like air
pollution. The second method also has some adverse environmental impacts and the
third is employed rarely due to possibility of infection of end-of-life medical needle.
The underling structure of the concerned supply chain is depicted in Fig. 9. Both
forward and reverse streams involved in this network. Through the forward flow,
new products are transported to customer zones to satisfy demands (unmet demand
is not permitted) while in reverse flow, the EOL products which are returned after
the consumption, are collected and disassembled by collection centers and then are
shipped to recycling, landfill and Incineration centers.

Fig. 9 The structure of AVAP supply chain network
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In Pishvaee et al. [65], a mathematical model is elaborated to address the
problem of AVAP supply chain network redesign. The proposed mathematical
model determines the number, location and technology of production centers, the
number, location and capacity of collection centers as well as the best strategies for
returned EOL products aiming to achieve a reasonable trade-off between three
dimensions of sustainability, i.e., economical, environmental and social aspects.

The input parameters of the problem are tainted with epistemic uncertainty due
to incompleteness and unreliable data. Therefore, it is necessary to refer to an expert
for estimating uncertain parameters. In the view of this fact, a group of experts and
managers has been formed to attribute a trapezoidal fuzzy number to each uncertain
parameter according to their knowledge. The credibility-based chance constrained
programming approach which is proposed by Liu and Liu [45, 46] (an briefly
described in Sect. 2.1.1) is applied to deal with the concerned possibilistic model.
To cope with this multi-objective model a posteriori approach is selected in which
the weights of economic, environment and social objectives must be assigned
before solving the model. By referring to AVAP managers’ opinions, higher weight
is given to economic objective. Particularly, the range 0.8–1 is attributed to the
weight of economic objective while the range of 0–0.15 is selected for environment
and social objectives. The step size is set to 0.05 and the minimum confidence level
of chance constraints is set as 0.9. The above-mentioned model is solved by GAMS
22.9.2 optimization software. As Fig. 10 shows, in the network with objective
function weight of (1, 0, 0), in comparison to the network formed for weight vector
(0.8, 0.15, 0.05) less collection centers are established and their locations are more
centralized. While production centers are located in the same positions for both of
instances, the more cost-oriented network, i.e., (1, 0, 0) prefers using the
cost-efficient production technology type and the other uses the environmental
friendly production technologies. Also, the network with the weight of (0.8, 0.15,
0.05) suggests to open some recycling centers while the network with the weight of
(1, 0, 0) selects safe landfill method as the EOL strategy.

4 Future Research Directions

Given the current state-of-the-art literature in assessing the uncertainty and the
application of fuzzy mathematical programming methods in supply chain planning,
there are various avenues for further research as follows:

• Considering hazard and deep uncertainty in supply chain risk assessment and
imbedding these sorts of uncertainty in decision support models in the context of
supply chain planning.

• Assessing and fostering resilience and robustness in different types of decision
support models, e.g. mathematical programming models.

• Lack of mathematical approaches for hybrid uncertain environments in spite of
the fact that most of uncertain models involve multiple types of uncertainties.
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Fig. 10 The illustration of SC network nodes under different importance weight of OFs (adopted
form [65]). aImportance weight: (1, 0, 0). bImportance weight: (0.8, 0.15, 0.05)
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Therefore, there is a serious need for developing novel methods capable of
dealing with mixed uncertainties.

• Since most of real life problems are of large size, and traditional exact solution
methods can only solve small to moderate-sized problem instances, devising
tailored solution approaches including heuristics, meta-heuristics or
Mat-heuristics (the interoperation of meta-heuristics and mathematical pro-
gramming techniques) would be of particular interest.

• Controlling the robustness in other flexible and possibilistic programming
methods by unifying robust optimization approaches with these methods, can be
regarded as an attractive future research direction.

• Since the robust possibilistic programming and robust flexible programming
models are in their infancy, various future researches can be conducted in this
regard.
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