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Abstract Fuzzy Linear Programming (FLP), as one of the main branches of
operation research, is concerned with the optimal allocation of limited resources to
several competing activities on the basis of given criteria of optimality in fuzzy
environment. Numerous researchers have studied various properties of FLP prob-
lems and proposed different approaches for solving them. This work presents a
survey on models and methods for solving FLP problems. The solution approaches
are divided into four areas: (1) Linear Programming (LP) problems with fuzzy
inequalities and crisp objective function, (2) LP problems with crisp inequalities
and fuzzy objective function, (3) LP problems with fuzzy inequalities and fuzzy
objective function and (4) LP problems with fuzzy parameters. In the first area, the
imprecise right-hand-side of the constraints is specified with a fuzzy set and a
monotone membership function expressing the individual satisfaction of the deci-
sion maker. In the second area, a fuzzy goal and corresponding tolerance is defined
for each coefficient of decision variables in the objective function. In the third area,
both the coefficients of decision variables in the objective function and the
right-hand-side of the constraints are specified by fuzzy goals and corresponding
tolerances. In the fourth area, some or all parameters of the LP problem are rep-
resented in terms of fuzzy numbers. In this contribution, some of the most common
models and procedures for solving FLP problems are analyzed. The solution
approaches are illustrated with numerical examples.
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1 Introduction

Linear programming (LP) is concerned with the optimal allocation of limited
resources to several competing activities on the basis of given criteria of optimality.
In conventional LP problems the observed data or parameters are usually imprecise
because of incomplete information. Imprecise evaluations are primarily the result of
unquantifiable, incomplete and non-obtainable information. Fuzzy Sets theory
could be used to represent such imprecise data in LP by generalizing the notion of
membership in a set, and a fuzzy LP (FLP) problem appears in a natural way.

In this context, Tanaka et al. [35] first proposed the theory of fuzzy mathematical
programming based on the fuzzy decision framework of Bellman and Zadeh [2].
The first formulation of FLP to address the impreciseness of the parameters in LP
problems with fuzzy constraints and objective functions has been introduced by
Zimmerman [43]. Tanaka and Asai [34] proposed a possibilistic LP formulation
where the coefficients of the decision variables were crisp while the decision
variables were fuzzy numbers. Verdegay [38] presented the concept of a fuzzy
objective based on the fuzzification principle and used this concept to solve FLP
problems. Herrera et al. [17] examined the fuzzified version of the mathematical
problem assuming that the coefficients are represented in terms of fuzzy numbers
and the relations in the definition of the feasible set are also fuzzy. Zhang et al. [42]
proposed an FLP where the coefficients of the objective function are assumed to be
fuzzy. They showed how to convert the FLP problems into multi-objective opti-
mization problems with four objective functions. Gupta and Mehlawat [15] studied
a pair of fuzzy primal-dual LP problems and calculated duality results using an
aspiration level approach. Hatami-Marbini and Tavana [16] proposed a new method
for solving LP problems with fuzzy parameters. Their method provides an optimal
solution that is not subject to specific restrictive conditions and supports the
interactive participation of the decision maker in all steps of the decision-making
process. Kheirfam and Verdegay [20] carried out a sensitivity analysis on the
right-hand-side of the constraints and the coefficients of the objective function for a
fuzzy quadratic programming problem. Wan and Dong [39] developed a new
possibility LP with trapezoidal fuzzy numbers. They proposed the auxiliary
multi-objective programming with four objectives to solve the corresponding
possibility LP.

Numerous researchers have studied various properties of FLP problems and
proposed different approaches for solving them. Because of existing different
assumptions and sources of fuzziness in the parameters, the definition of FLP
problem is not unique. Bector and Chandra [1] have classified FLP problems into
four following Categories:

• Type 1: LP problems with fuzzy inequalities and crisp objective function
• Type 2: LP problems with crisp inequalities and fuzzy objective function
• Type 3: LP problems with fuzzy inequalities and fuzzy objective function
• Type 4: LP problems with fuzzy parameters
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In the FLP problems of Type 1 is assumed that the fuzziness of the available
resources is characterized by the membership function over the tolerance range.
Verdegay [37] proved that the optimal solution of a problem of this type can be
found by use of solving an equivalent crisp parametric LP problem assuming that
the objective function is crisp. Werners [40], on the other hands, considered that the
objective function should be fuzzy because of fuzzy inequality constraints and
proposed a non-symmetric model for solving the FLP problem of Type 1.

In the FLP problems of Type 2 is assumed the coefficient of decision variables in
the objective function cannot be precisely determined. For solving a problem of
Type 2, Verdegay [37] proposed an equivalent cost parametric LP problem. In
addition, Verdegay [38] proved that for a given problem of Type 2 there always
exist a problem of Type 1 and has a same solution.

The FLP problem of Type 3 is a combination of Type 1 and Type 2 problems.
This means that not only a goal and its corresponding tolerance are considered for
the objective function, but also a tolerance for each fuzzy constraint is known. Two
important approaches for solving this kind of FLP problems are Zimmerman’s
approach [44] and Chanas’s approach [3]. In the proposed approach by Zimmerman
is assumed that the goal and its corresponding tolerance of the objective function
are given initially. According to this approach, the optimal solution of such problem
can be found by solving a crisp LP problem. On the other hand, in the proposed
approach by Chanas [3], the goal and its corresponding tolerance are determined by
solving two LP problems. Then based on the obtained results and the optimal
solution of a crisp parametric LP problem, the optimal solution of such FLP
problem is determined.

In the FLP problems of Type 4, the some or all parameters of the problems under
consideration may be fuzzy numbers and the inequalities may be interpreted in
terms of fuzzy rankings. The solution approaches for solving the problems of Type
4 can be classified into two general groups: Simplex based approach and
Non-simplex based approach. In the simplex based approach, the classical simplex
algorithms such as primal simplex algorithm, dual simplex algorithm and
primal-dual simplex algorithm are generalized for solving LP problems with fuzzy
parameters. In this approach, the comparison of fuzzy numbers is done by use of
linear ranking functions. On the other hand, in the non-simplex based approach,
such FLP problems are first converted into equivalent crisp problems, which are
then solved by the standard methods.

Maleki et al. [29] consider a kind of FLP problem in which only the coefficients
of decision variables in the objective function are represented in terms of trape-
zoidal fuzzy numbers. They first proved the fuzzy analogues of some important
theorems of LP and then extended the primal simplex algorithm in fuzzy sense to
obtain the optimal solution of the LP problems with fuzzy cost coefficients. After
that, Nasseri and Ebrahimnejad [30] generalized the dual simplex algorithm in
fuzzy sense for solving the same problem based on duality results developed by
Mahdavi-Amiri and Nasseri [27]. Another approach namely primal-dual simplex
algorithm in fuzzy sense has been proposed by Ebrahimnejad [7] that unlike the
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dual simplex algorithm does not require a dual feasible solution to be basic. Using
these algorithms the sensitivity analysis for the same problem was discussed in [6].

Maleki et al. [29] used the crisp solution of the LP problem with fuzzy cost
coefficients as an auxiliary problem, for finding the fuzzy solution of fuzzy variable
linear programming (FVLP) problems in which the right-hand-side vectors and
decision variables are represented by trapezoidal fuzzy numbers. Mahdavi-Amiri
and Nasseri [28] showed that the auxiliary problem is indeed the dual of the FVLP
problem and proved duality results by a natural extension of the results of crisp
LP. Using these results, Mahdavi-Amiri and Nasseri [28] and Ebrahimnejad et al.
[13] developed two new methods in fuzzy sense, namely the fuzzy dual simplex
algorithm and the fuzzy primal-dual simplex algorithm, respectively, for solving the
FVLP problem directly and without any need of an auxiliary problem.
Ebrahimnejad and Verdegay [12] and Ebrahimnejad [8] generalized the bounded
simplex algorithms in fuzzy sense for solving that kind of FVLP problems in which
some or all variables are restricted to lie within fuzzy lower and fuzzy upper.

Ganesan and Veeramani [14] introduced a type of fuzzy arithmetic for sym-
metric trapezoidal fuzzy numbers and then proposed a primal simplex method for
solving FLP problems in which the coefficients of the constraints are represented by
real numbers and all the other parameters as well as the variables are represented by
symmetric trapezoidal fuzzy numbers. Nasseri et al. [31] discussed a concept of
duality for the same FLP problems and derived the weak and strong duality the-
orems. Based on these duality results, Ebrahimnejad and Nasseri [11] proposed a
duality approach for the same problem for situation in which a fuzzy dual feasible
solution is at hand. Kumar and Kaur [23] proposed an alternative method for
solving the existing symmetric FLP problem. Ebrahimnejad and Tavana [10] pro-
posed a novel method for solving the same FLP problem which is simpler and
computationally more efficient than the above mentioned algorithms.

Kheirfam and Verdegay [19] formulated a new type of FLP problems, namely
symmetric fully fuzzy linear programming (SFFLP) problem in which all param-
eters as well as the decision variables were represented by symmetric trapezoidal
fuzzy numbers. Then they established the duality and complementary slackness for
the same problems and from the obtained results presented a fuzzy dual simplex for
solving SFFLP problems.

For solving the LP problems with fuzzy cost coefficients according to
non-simplex based approach some auxiliary programming problems are first
defined. The three approaches proposed by Lai and Hwang [25], Rommenlfanger
et al. [33] and Delgado et al. [4] are the main approaches for solving this kind of
FLP problems.

The proposed approaches by Ramik and Ramanek [32], Tanaka et al. [36] and
Dubois and Prade [5] belonging to non-simplex based approach can be used to
solve the FLP problems involving fuzzy numbers for the coefficients of the decision
variables in the constraints and the right-hand-side of the constraints. Ramik and
Ramanek [32] first defined the concept of fuzzy inequality and then converted each
fuzzy constraint into three or four crisp constraints depending on triangular and
trapezoidal membership functions, respectively. Tanaka et al. [36], based on the
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concept of a-cut, proposed an auxiliary problem for solving this kind of FLP
problems by assuming symmetric triangular membership functions for the fuzzy
parameters. Dubois and Prade [5] provided two cases of “soft” and “hard” equiv-
alent constraints for the fuzzy constraints of the FLP problem under consideration.
Then they expressed the soft and hard constraints by means of a-weak feasibility
and a-hard feasibility, respectively, leading to two separate auxiliary problems.

The FLP problems involving fuzzy numbers for the decision variables, the
coefficients of the decision variables in the objective function, the coefficients of the
decision variables in the constraints and the right-hand-side of the constraints, is
called fully FLP (FFLP) problems. Hosseinzadeh Lotfi et al. [18] considered the
FFLP problems where all the parameters and variables were triangular fuzzy
numbers. Kumar et al. [24] using arithmetic operations and definition of fuzzy
equality, first converted each fuzzy equality constraint into several crisp constraints
and then optimized the rank of fuzzy objective function over the obtained crisp
feasible space. In contrast to most existing approaches which provide crisp solution,
their method not only gives fuzzy optimal solution but also preserve the form of
non-negative fuzzy optimal solution and optimal objective function.

The purpose of this chapter is to shortly describe models and methods following
the above four types of FLP problems, in order to provide the reader a clear view of
the main results produced along the last 50 years on this key research area.

2 Preliminaries

In this section, some necessary concepts and backgrounds on fuzzy arithmetic are
reviewed [6, 14, 22, 28, 29].

Definition 1 The characteristic function lA of a crisp set A assigns a value of either
one or zero to each individual in the universal set X. This function can be gener-
alized to a function l~A such that the values assigned to the element of the universal
set X fall within a specified range i.e., l~A : X ! ½0; 1�. The assigned value indicates
the membership grade of the element in the set ~A. Larger values denote the higher
degrees of set membership.

The function l~A is called membership function and the set ~A ¼
x; l~AðxÞ
� �

x 2 Xj� �
defined by l~A for each x 2 X is called a fuzzy set.

Definition 2 Given a fuzzy set ~A defined on universal set of real numbers X and
any number a 2 ½0; 1�, the a-cut of is defined as ½~A�a ¼ x 2 X; l~AðxÞ� a

� �
.

Definition 3 A fuzzy set ~A, defined on universal set of real numbers R, is said to be
a fuzzy number if its membership function has the following characteristics:
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• ~A is convex, i.e.

8x; y 2 R; 8k 2 ½0; 1�; l~A kxþð1� kÞyð Þ� min l~AðxÞ; l~AðyÞ
� �

;

• ~A is normal, i.e., 9�x 2 R; l~Að�xÞ ¼ 1;
• l~A is piecewise continues.

Definition 4 A fuzzy number ~A is said to be a positive (negative) fuzzy number if
for each x� 0ðx� 0Þ; l~AðxÞ ¼ 0.

Definition 5 A fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a trapezoidal fuzzy
number if its membership function is given by (see Fig. 1).

l~aðxÞ ¼
x�a1
a2�a1

; a1 � x� a2;
1; a2 � x� a3;

a4�x
a4�a3

; a3 � x� a4:

8<:
Definition 6 A trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a sym-
metric trapezoidal fuzzy number if a2 � a1 ¼ a4 � a3. Assuming
a2 � a1 ¼ a4 � a3 ¼ a, a symmetric trapezoidal fuzzy number is denoted by
~a ¼ ða2 � a; a2; a3; a3 þ aÞ.
Definition 7 Two trapezoidal fuzzy numbers ~a ¼ ða1; a2; a3; a4Þ and ~b ¼
ðb1; b2; b3; b4Þ are said to be equal, i.e. ~a ¼ ~b if and only if a1 ¼ b1; a2 ¼ b2; a3 ¼
b3 and a4 ¼ b4.

Definition 8 A trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a
non-negative trapezoidal fuzzy number if and only if a1 � 0.

Definition 9 A fuzzy number ~a ¼ ða1; a2; a3Þ is said to be a triangular fuzzy
number if its membership function is given by

1a 2a 3a 4a

Fig. 1 A trapezoidal fuzzy
number ~a ¼ ða1; a2; a3; a4Þ

332 A. Ebrahimnejad and J.L. Verdegay



l~aðxÞ ¼
x�a1
a2�a1

; a1 � x� a2;
a3�x
a3�a2

; a2 � x� a3:

�
Definition 10 Let ~a ¼ ða1; a2; a3; a4Þ and ~b ¼ ðb1; b2; b3; b4Þ be two trapezoidal
fuzzy numbers. Then the arithmetic operations on ~a and ~b are given by:

• ~aþ ~b ¼ ða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4Þ
• ~a� ~b ¼ ðm1;m2;m3;m4Þ, where

m1 ¼ min a1b1; a1b4; a4b1; a4b4f g; m2 ¼ min a2b2; a2b3; a3b2; a3b3f g;
m3 ¼ max a1b1; a1b4; a4b1; a4b4f g; m4 ¼ max a2b2; a2b3; a3b2; a3b3f g;

• k[ 0; k~a ¼ ðka1; ka2; ka3; ka4Þ;
• k\0; k~a ¼ ðka4; ka3; ka2; ka1Þ:

Definition 11 For any two fuzzy numbers ~a and ~b, the operations MIN and MAX
are defined as follows:

MIN ~a; ~b
� �ðzÞ ¼ sup

z¼minðx;yÞ
min l~aðxÞ; l~bðyÞ
� �

MAX ~a; ~b
� �ðzÞ ¼ sup

z¼maxðx;yÞ
min l~aðxÞ; l~bðyÞ
� �

Theorem 1 Let MIN and MAX be binary operations on the set of all fuzzy
numbers FðRÞ defined in Definition 11. Then, the triple FðRÞ;MIN;MAXh i is a
distributive lattice.

Remark 1 The lattice FðRÞ;MIN;MAXh i can also be expressed as the pair
FðRÞ; �h i, where � is a partial ordering defined as:

~a � ~b , MIN ~a; ~b
� � ¼ ~a or; alternatively;

~a � ~b , MAX ~a; ~b
� � ¼ ~b:

Remark 2 For any two trapezoidal fuzzy numbers ~a ¼ ða1; a2; a3; a4Þ and
~b ¼ ðb1; b2; b3; b4Þ, MAX ~a; ~b

� � ¼ ~b or ~a � ~b if and only if
a1 � b1; a2 � b2; a3 � b3 and a4 � b4.
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Definition 12 A ranking function is a function< : FðRÞ ! R that maps each fuzzy
number into the real line, where a natural order exists. A ranking function< is said to
be a linear ranking function if <ðk~a1 þ ~a2Þ ¼ k<ð~a1Þþ<ð~a2Þ for any k 2 R.

Remark 3 For a trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ, one of the most
linear ranking functions introduced by Yager [41] is <ð~a1Þ ¼ a1 þ a2 þ a3 þ a4

4 :

Remark 4 For a triangular fuzzy number ~a ¼ ða1; a2; a3Þ, Yager’s linear ranking
function is reduced to <ð~a1Þ ¼ a1 þ 2a2 þ a3

4 :

3 LP with Fuzzy Inequalities and Crisp Objective
Function

The general model of LP problems with fuzzy inequalities and crisp objective
function is formulated as follows:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð1Þ

In model (1), † is called “less than or equal to” and it is assumed that tolerance
pi for each constraint is given. This means that the decision maker can accept a
violation of each constraint up to degree pi. In this case, constraints giðxÞ† bi; are
equivalent to giðxÞ� bi þ hpi; ði ¼ 1; 2; . . .;mÞ, where h 2 ½0; 1�.

Verdegay [37] and Werners [40] considered two solution methods namely
nonsysmmetric method and symmetric method, respectively, for solving the FLP
problem (1). In what follows, theses solution approaches are discussed.

3.1 Verdegay’s Approach

Verdegay [37] proved that the FLP problem (1) is equivalent to crisp parametric LP
problem when the membership functions of the fuzzy constraints are continues and
non-increasing functions. According to his approach, the membership functions of
the fuzzy constraints of problem (1) can be modeled as follows:
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li giðxÞð Þ ¼
1; giðxÞ\bi;
1� giðxÞ�bi

pi
; bi � giðxÞ� bi þ pi;

0; giðxÞ[ bi þ pi:

8<: ð2Þ

In this case, FLP problem (1) is equivalent to:

max z ¼
Xn
j¼1

cjxj

s:t: li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð3Þ

Now, by substituting membership functions (2) into problem (3), the following
crisp parametric LP problem is obtained:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi þð1� aÞpi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð4Þ

It should be note that for each a 2 ½0; 1�, an optimal solution is obtained. This
indicates that the solution with a grade of membership function is actually fuzzy.

Example 1 [26] Consider the following FLP problem:

max z ¼ 4x1 þ 5x2 þ 9x3 þ 11x4
s:t: g1ðxÞ ¼ x1 þ x2 þ x3 þ x4 � 15;

g2ðxÞ ¼ 7x1 þ 5x2 þ 3x3 þ 2x4 � 120;

g3ðxÞ ¼ 3x1 þ 5x2 þ 10x3 þ 15x4 � 100;

x1; x2; x3; x4 � 0:

ð5Þ

Assume that the first and third constrains are imprecise and their maximum
tolerances are 3 and 20, respectively, i.e. p1 ¼ 3 and p3 ¼ 20. Then, according to
(4), the following crisp parametric LP problem is solved:

max z ¼ 4x1 þ 5x2 þ 9x3 þ 11x4
s:t: g1ðxÞ ¼ x1 þ x2 þ x3 þ x4 � 15þ 3ð1� aÞ;

g2ðxÞ ¼ 7x1 þ 5x2 þ 3x3 þ 2x4 � 120;

g3ðxÞ ¼ 3x1 þ 5x2 þ 10x3 þ 15x4 � 100þ 20ð1� aÞ;
x1; x2; x3; x4 � 0:

ð6Þ
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By use of the parametric technique the optimal solution and the optimal
objective value are obtained as follows:

x	 ¼ 7:14þ 1:43ð1� aÞ; 0; 7:86þ 1:57ð1� aÞ; 0ð Þ;
z	 ¼ 99:29þ 19:86ð1� aÞ ð7Þ

3.2 Werners’s Approach

In the symmetric method proposed by Werners [40], it is assumed that the objective
function of problem (1) should be fuzzy because of fuzzy inequality constraints. For
doing this, he calculated the lower and upper bounds of the optimal values by
solving the standard LP problems (8) and (9), respectively, as follows:

zl ¼ max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð8Þ

zu ¼ max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

aijxj � bi þ pi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð9Þ

In this case, the membership function of the objective function is defined as
follows:

l0ðzÞ ¼
1; z[ zu;
1� zu�z

zu�zl ; zl � z� zu;
0; z\zl:

8<: ð10Þ

Now, problem (1) can be solved by solving the following problem, a problem of
finding a solution that satisfies the constraints and goal with the maximum degree:

max z ¼ a

s:t: l0ðzÞ� a;

li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð11Þ
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By substituting the membership functions of the constraints given in (2) and the
membership function of the objective function given in (10) into problem (11), the
following crisp LP problem is obtained:

max a

s:t:
Xn
j¼1

cjxj � zl � ð1� aÞðzu � zlÞ;

giðxÞ ¼
Xn
j¼1

aijxj � bi þð1� aÞpi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð12Þ

Example 2 [22] Consider the following FLP problem:

max z ¼ 0:4x1 þ 0:3x2

s:t: g1ðxÞ ¼ x1 þ x2 � 400



;

g2ðxÞ ¼ 2x1 þ x2 � 500



;

x1; x2 � 0:

ð13Þ

where the membership functions of the fuzzy constraints are defined by:

l1ðxÞ ¼
1; g1ðxÞ\400;
1� g1ðxÞ�400

100 ; 400� g1ðxÞ� 500;
0; g1ðxÞ[ 500:

8<: ð14Þ

l2ðxÞ ¼
1; g2ðxÞ\500;
1� g2ðxÞ�500

100 ; 500� g2ðxÞ� 600;
0; g2ðxÞ[ 600:

8<: ð15Þ

Then, the lower and upper bounds of the objective function are calculated by
solving the following two crisp LP problems (16) and (17), respectively:

zl ¼ max z ¼ 0:4x1 þ 0:3x2
s:t: g1ðxÞ ¼ x1 þ x2 � 400;

g2ðxÞ ¼ 2x1 þ x2 � 500;

x1; x2 � 0:

ð16Þ
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zu ¼ max z ¼ 0:4x1 þ 0:3x2
s:t: g1ðxÞ ¼ x1 þ x2 � 500;

g2ðxÞ ¼ 2x1 þ x2 � 600;

x1; x2 � 0:

ð17Þ

Solving two problems (16) and (17) give zl ¼ 130 and zu ¼ 160, respectively.
Then, the membership function l0 of the objective function is defined as follows:

l0ðzÞ ¼
1; z[ 160;
1� 160�z

30 ; 130� z� 160;
0; z\130:

8<: ð18Þ

Then, according to problem (12), the FLP problem (13) becomes:

max a

s:t: 0:4x1 þ 0:3x2 � 130� 30ð1� aÞ;
g1ðxÞ ¼ x1 þ x2 � 400þ 100ð1� aÞ;
g2ðxÞ ¼ 2x1 þ x2 � 500þ 100ð1� aÞ;
a 2 ½0; 1�; x1; x2 � 0; j ¼ 1; 2; . . .; n:

ð19Þ

The optimal solution of the problem (19) is x	 ¼ x	1; x
	
2

� � ¼ ð100; 350Þ; a	 ¼ 0:5.
The optimal value of the objective function is then calculated by

z	 ¼ 0:4x	1 þ 0:3x	2 ¼ 145:

4 LP with Crisp Inequalities and Fuzzy Objective
Function

The general from of LP problems with crisp inequalities and fuzzy objective
function can be formulated as follows:

max



z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð20Þ
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Assume that the membership function of the fuzzy objective be given by

/ðcÞ ¼ inf /1ðc1Þ;/2ðc2Þ; . . .;/nðcnÞf g ð21Þ

In this case, Verdegay [38] proved that if the membership function
/jðcjÞ : R ! ½0; 1�; ðj ¼ 1; 2; . . .; nÞ, are continues and strictly monotone, then the
fuzzy optimal solution of problem (20) can be obtained by solving the following
parametric LP problem:

max z ¼
Xn
j¼1

/�1
j ð1� aÞxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð22Þ

Example 3 [38] Consider the following FLP problem:

max



z ¼ c1x1 þ 75x2
s:t: g1ðxÞ ¼ 3x1 � x2 � 2;

g2ðxÞ ¼ x1 þ 2x2 � 3;

x1; x2 � 0:

ð23Þ

where the membership function /1 for c1 is given by:

/1ðc1Þ ¼
1; c1 [ 115;
ðc1�40Þ2
5625 ; 40� c1 � 115;

0; c1\40:

8<: ð24Þ

Then, we have /�1
1 ðtÞ ¼ 40þ 75

ffiffi
t

p
. Now, according to model (20) we have to

solve the following problem:

max z ¼ 40þ 75
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
 �
x1 þ 75x2

s:t: g1ðxÞ ¼ 3x1 � x2 � 2;

g2ðxÞ ¼ x1 þ 2x2 � 3;

a 2 ½0; 1�; x1; x2 � 0:

ð25Þ
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By use of the parametric technique, the optimal solution of problem (25) is
x	 ¼ ðx	1; x	2Þ ¼ ð1; 1Þ. The fuzzy set of the objective function values of the
objective function is then obtained as follows:

ð75þ c1Þ; ðc1 � 40Þ2
5625

( )
; 40� c1 � 115:

5 LP with Fuzzy Inequalities and Fuzzy Objective
Function

The general from of LP problems with fuzzy inequalities and fuzzy objective
function can be formulated as follows:

max



z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð26Þ

In what follows, two solution approaches for solving FLP of type (26) are
explored.

5.1 Zimmerman’s Approach [43]

According to this approach, the membership functions liði ¼ 1; 2; . . .;mÞ of the
fuzzy constraints are given by (2). Also, it is required to have an aspiration level z0
for the objective function. In this case, problem (26) can be described as follows:

Find x

s:t: z ¼
Xn
j¼1

cjxj % z0

giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð27Þ
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Assuming p0 be the permissible tolerance for the objective function, the mem-
bership function l0 of the fuzzy objective is given by

l0ðzÞ ¼
1; z[ z0;
1� z0 � z

p0
; z0 � p0 � z� z0;

0; z\z0 � p0:

8><>: ð28Þ

In this case, to solve the fuzzy system of inequalities (27) corresponding to
problem (26), the following crisp LP problem is solved:

max a

s:t: l0ðzÞ� a;

li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð29Þ

By substituting the membership functions of the fuzzy constraints given in (2)
and the membership function of the objective function given in (28) into problem
(29), the following crisp LP problem is obtained:

max a

s:t:
Xn
j¼1

cjxj � z0 � ð1� aÞp0;

Xn
j¼1

aijxj � bi þð1� aÞp0; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð30Þ

It needs to point out that if ðx	; a	Þ is an optimal solution of the crisp LP problem
(30), then it is said to be an optimal solution of the FLP problem (26) with a	 as the
degree up to which the aspiration level z0 of the decision maker is satisfied.

Example 4 [43] Consider the following FLP problem:

max



z ¼ x1 þ x2
s:t: g1ðxÞ ¼ �x1 þ 3x2 † 21;

g2ðxÞ ¼ x1 þ 3x2 † 27;

g3ðxÞ ¼ 4x1 þ 3x2 † 45;

g4ðxÞ ¼ 3x1 þ x2 � 30;

x1; x2 � 0:

ð31Þ
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Assume that z0 ¼ 14:5; p0 ¼ 2; p1 ¼ 3; p2 ¼ 6; and p3 ¼ 6. To obtain the
optimal solution of problem (31), we have to solve the following crisp LP problem
with regard to problem (30):

max a

s:t: z ¼ x1 þ x2 � 14:5� 2ð1� aÞ
g1ðxÞ ¼ �x1 þ 3x2 � 21� 3ð1� aÞ;
g2ðxÞ ¼ x1 þ 3x2 � 27� 6ð1� aÞ;
g3ðxÞ ¼ 4x1 þ 3x2 � 45� 6ð1� aÞ;
g4ðxÞ ¼ 3x1 þ x2 � 30;

x1; x2 � 0:

ð32Þ

The optimal solution of the crisp LP problem (32) is ðx	1; x	2; a	Þ ¼
ð6; 7:75; 0:625Þ with the optimal objective function value z	 ¼ 13:75. Then,
ðx	1; x	2Þ ¼ ð6; 7:75Þ is the optimal solution of the FLP problem (31).

5.2 Chanas’s Approach

In this approach, it is assumed that the decision maker cannot provide initially the
goal and its tolerance for the objective function. Chanas [3] therefore proposed first
to solve the following problem and then present the results to the decision maker to
estimate the goal and the tolerance of the objective function:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð33Þ

In this problem, the membership functions of the fuzzy constraints are assumed
as Eq. (2). Therefore, following the Verdegay’s approach [38] and assuming h ¼
1� a the problem (33) becomes:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi þ hpi; i ¼ 1; 2; . . .;m;

h 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð34Þ
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The optimal solution of the parametric LP problem (34) can be found by use of
the parametric techniques. For a given h, assume that x	ðhÞ and z	ðhÞ are,
respectively an optimal solution and the corresponding optimal objective value of
the parametric LP problem (34). Then, the following constrains are hold:

li giðx	ðhÞÞð Þ� 1� h; i ¼ 1; 2; . . .;m; ð35Þ

On the other hand, in the case of pi [ 0, for every non-zero basic solution, there is
at least one i such that li giðx	ðhÞÞð Þ ¼ 1� h. This follows that the common degree
of the constraints satisfaction is lc gðx	ðhÞÞð Þ ¼ min1� i�m li giðx	ðhÞÞð Þ ¼ 1� h.
This means that for every h, a solution can be obtained which satisfies all the
constraints with degree 1� h. Now, such solution is presented to the decision maker
to determine the goal z0 of the objective function and its tolerance p0. Therefore, the
membership function l0 of the objective function becomes:

l0ðz	ðhÞÞ ¼
1; z	ðhÞ[ z0;
1� z0�z	ðhÞ

p0
; z0 � p0 � z	ðhÞ� z0;

0; z	ðhÞ\z0:

8<: ð36Þ

In this case, the final optimal solution x	ðh	Þ of the FLP problem (26) will exist
at:

lDðh	Þ ¼ max lDðhÞf g ¼ lc gðx	ðhÞÞð Þ ¼ max min loðhÞ; lcðhÞf gf g

This approach can be summarized as follows:
Step 1: Solve the parametric LP problem (34) to determine x	ðhÞ and z	ðhÞ.
Step 2: Determine an appropriate value h to get z0 and choose p0.
Step 3: Obtain the membership function l0ðz	ðhÞÞ as (36).
Step 4: Set lc ¼ l0 ¼ 1� h to find h	.
Step 5: The optimal solution of the FLP problem (26) is x	ðh	Þ with the optimal

objective value z	ðh	Þ.
Example 5 Again, consider the FLP problem (31) with p1 ¼ 3; p2 ¼ 6; and p3 ¼ 6.

The solution procedure is illustrated as follows:
Step 1: According to problem (34), the following parametric LP problem should

be solved:

max z ¼ x1 þ x2
s:t: g1ðxÞ ¼ �x1 þ 3x2 � 21þ 3h;

g2ðxÞ ¼ x1 þ 3x2 � 27þ 6h;

g3ðxÞ ¼ 4x1 þ 3x2 � 45þ 6h;

g4ðxÞ ¼ 3x1 þ x2 � 30;

h 2 ½0; 1�; x1; x2 � 0:

ð37Þ
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The optimal solution is x	ðhÞ ¼ x	1ðhÞ; x	2ðhÞ
� � ¼ 6; 7þ 2hð Þ with

z	ðhÞ ¼ 13þ 2h.
Step 2: Assume z0 ¼ 14 and choose p0 ¼ 1.
Step 3: Now, the membership function l0ðz	ðhÞÞ is then given by

l0ðz	ðhÞÞ ¼
1; 13þ 2h[ 14;
1� 14� 13þ 2hð Þ

1 ¼ 2h; 13� 13þ 2h� 14;
0; 13þ 2h\14:

:

8<: ð38Þ

Step 4: In order to find h	, we set lc ¼ l0 ¼ 1� h. We obtain 2h ¼ 1� h and
then h	 ¼ 1

3.
Step 5: The optimal solution is then x	 1

3

� � ¼ x	1
1
3

� �
; x	2

1
3

� �� � ¼ 6; 233
� �

with
z	 1

3

� � ¼ 13þ 2
3 ¼ 13:667.

6 LP with Fuzzy Parameters

In this section, different solution approaches for solving several kinds of LP
problems with fuzzy parameters are explored.

The solution approaches are classified into two general groups: Simplex based
approach and Non-simplex based approach. In the simplex based approach, the
classical simplex algorithms such as primal simplex algorithm and dual simplex
algorithm are generalized for solving LP problems with fuzzy parameters. In the
non-simplex based approach, such FLP problems are first converted into equivalent
crisp problems, which are then solved by the standard methods. In what follows,
these approaches are explored to find the optimal solution of LP problems with
fuzzy parameters.

6.1 The Simplex Based Approach

In this section, the simplex based approach for solving several kinds of LP prob-
lems with fuzzy parameters is explored. In such approach, the comparison of fuzzy
numbers is done by use of linear ranking functions.

6.1.1 LP with Fuzzy Cost Coefficients

The general from of LP problems with fuzzy cost coefficients can be formulated as
follows:
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max~z �
Xn
j¼1

~cjxj

s:t:
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð39Þ

This problem can be rewritten as follows:

max~z � ~cx

s:t: Ax� b;

x� 0:

ð40Þ

where b ¼ ðb1; b2; . . .; bmÞ 2 Rm; ~c ¼ ð~c1;~c2; . . .;~cnÞ 2 F Rð Þn, A ¼ ðaijÞm�n 2
Rm�n and x ¼ ðx1; x2; . . .; xnÞ 2 Rn.

In what follows, the solution approach proposed by Maleki et al. [29] for solving
the FLP problem (40) is explored. The other approaches can be found in [7, 30].

Consider the system of equality constraints of (40) where A is a matrix of order
ðm� nÞ and rankðAÞ ¼ m. Therefore, A can be partitioned as ½B; N �, where Bm�m

is a nonsingular matrix with rankðBÞ ¼ m. Let yj is the solution of Byj ¼ aj.
Moreover, the basic solution x ¼ ðxB; xNÞ ¼ ðB�1b; 0Þ is a solution of Ax ¼ b. This
basic solution is feasible, whenever xB � 0. Furthermore, the corresponding fuzzy
objective function value is obtained as ~z � ~cBxB;~cB ¼ ð~cB1 ;~cB2 ; . . .;~cBmÞ.

Suppose JN is the set of indices associated with the current non-basic variables.
For each non-basic variable xj; j 2 JN the fuzzy variable ~zj is defined as
~zj � ~cBB�1aj ¼ ~cByj.

Maleki et al. [29] stated the following important results in order to improve a
feasible solution and to provide unbounded criteria and the optimality conditions
for the FLP problem (40) with equality constraints.

Theorem 1 If for a basic feasible solution with basis B and objective value
~z;~zk  ~ck for some non-basic variable xk while yk £ 0, then a new feasible solution
can be obtained as follows with objective value ~znew ¼ ~z� ð~zk � ~~ckÞxk, such that
~z � ~znew.

xBr ¼ xk ¼ h ¼
�br
yrk

¼ min
1� i�m

�bi
yik

yik [ 0j
� �

;

xBi ¼ �bi � yik
�br
yrk

; i ¼ 1; 2; . . .;m; i 6¼ r;

xj ¼ 0; j 2 JN ; j 6¼ k:
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Theorem 2 If for a basic feasible solution with basis B and objective value ~z;~zk 
~ck for some non-basic variable xk while yk � 0, then the optimal solution of the FLP
problem (40) is unbounded.

Theorem 3 The basic solution x ¼ ðxB; xNÞ ¼ ðB�1b; 0Þ is an optimal solution for
the FLP problem (40) if ~zj � ~cj for all j 2 JN .

Now we are in a position to summarize the fuzzy primal simplex algorithm [29]
for solving the FLP problem (40).

Algorithm 1: Fuzzy Primal Simplex Algorithm (Maximization Problem)

Initialization step

Choose a starting feasible basic solution with basis B.
Main steps

1. Solve the system BxB ¼ b. Let xB ¼ B�1b; xN ¼ 0, and ~z ¼ ~cBxB.
2. Solve the system ~wB ¼ ~cB. Let ~w ¼ ~cBB�1.
3. Calculate ~zj ¼ ~cBB�1aj ¼ ~waj for all j 2 JN . Find the rank of ~zj � ~cj for all

j 2 JN based on ranking function < given in Remark 3 and let
<ð~zk � ~ckÞ ¼ minj2JN <ð~zj � ~cjÞ

� �
. If <ð~zk � ~ckÞ� 0, then stop with the current

basic solution as an optimal solution.
4. Solve the system Byk ¼ ak and let yk ¼ B�1ak. If yk � 0 then stop with the

conclusion that the problem is unbounded.
If yk £ 0, then xk enters the basis and xBr leaves the basis providing that

�br
yrk

¼ min
1� i�m

�bi
yik

yrk [ 0j
� �

:

5. Update the basic B where ak replace aBr , update the index set JN and go to (1).

Example 6 [29] Consider the following FLP problem:

Max~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 � 6;

5x1 þ 4x2 � 10;

x1; x2 � 0:

ð41Þ

After introducing the slack variables x3 and x4 we obtain the following FLP
problem:
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Max ~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 þ x3 ¼ 6;

5x1 þ 4x2 þ x4 ¼ 10;

x1; x2; x3; x4 � 0:

ð42Þ

The steps of Algorithm 1 for solving the FLP problem (42) are presented as follows:

Iteration 1

The starting feasible basic is B ¼ ½ a3; a4 � ¼ 1 0
0 1

 �
. Thus, the non-basic matrix

N is N ¼ ½ a1; a2 � ¼ 2 3
5 4

 �
.

Step 1: We find the basic feasible solution by solving the system BxB ¼ b:

1 0
0 1

 �
x3
x4

 �
¼ 6

10

 �
Solving this system leads to xB1 ¼ x3 ¼ 6 and xB2 ¼ x4 ¼ 10. The
non-basic variables are x1 ¼ 0; x2 ¼ 0 and the fuzzy objective value is
~z ¼ ~cBxB ¼ 0.

Step 2: We find ~w by solving the fuzzy system ~wB ¼ ~cB:

ð~w1; ~w2Þ 1 0
0 1

 �
¼ ð0; 0; 0; 0Þ

ð0; 0; 0; 0Þ
 �

) ~w1 ¼ ~w2 ¼ ð0; 0; 0; 0Þ

Step 3: We calculate ~zj � ~cj ¼ ~waj � ~cj for all j 2 JN ¼ 1; 2f g:

~z1 � ~c1 ¼ ~wa1 � ~c1 ¼ ð0; 0; 0; 0Þ; ð0; 0; 0; 0Þð Þ 2

5

 �
� ð5; 8; 2; 5Þ ¼ ð�8;�5; 5; 2Þ

~z2 � ~c2 ¼ ~wa2 � ~c2 ¼ ð0; 0; 0; 0Þ; ð0; 0; 0; 0Þð Þ 3

4

 �
� ð6; 10; 2; 6Þ ¼ ð�10;�6; 6; 2Þ

Computing the rank of ~z1 � ~c1 and ~z2 � ~c2 based on ranking function
given in Remark 3 leads to <ð~z1 � ~c1Þ ¼ � 29

4 and <ð~z2 � ~c2Þ ¼ �9.
Therefore,

min <ð~z1 � ~c1Þ ¼ � 29
2
;<ð~z2 � ~c2Þ ¼ �9

� �
¼ <ð~z2 � ~c2Þ ¼ �9

Step 4: We find y2 by solving the system By2 ¼ a2:

1 0
0 1

 �
y12
y22

 �
¼ 3

4

 �
) y2 ¼ y12

y22

 �
¼ 3

4

 �
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Step 5: The variable xB r leaving the basis is determined by the following test:

min
�b1
y12

;
�b2
y22

� �
¼ min

6
3
;
10
4

� �
¼ 6

3
¼ 2

Hence, xB1 ¼ x3 leaves the basis.
Step 6: We update the basis B where a2 replaces aB1 ¼ a3:

B ¼ ½a2; a4� ¼ 3 0
4 1

 �
Also, we update JN ¼ 1; 2f g as JN ¼ 1; 3f g.
This process is continued and after two more iterations the optimal basis

B ¼ ½a2; a1� ¼ 3 2
4 5

 �
is found. The optimal solution and the optimal

objective function value of the FLP problem (41) are therefore given by:

x	 ¼ x	1; x
	
2; x

	
3; x

	
4

� � ¼ 6
7
;
10
7
; 0; 0

� �
; ~z	 ¼ 90

7
;
148
7

;
32
7
;
96
7

� �
ð43Þ

6.1.2 LP Problem with Fuzzy Decision Variables and Fuzzy
Right-Hand-Side of the Constraints

The LP problem involving fuzzy numbers for the decision variables and the
right-hand-side of the constraints is called fuzzy variables linear programming
problem (FVLP) problem and is formulated as follows:

min~z ¼ c~x

s:t: A~x � ~b;

~x � ~0:

ð44Þ

In what follows, two solution approaches proposed by Maleki et al. [29] and
Mahdavi-Amiri and Nasseri [28] for solving the FVLP problem (44) are explored.
The other approaches can be found in [12, 13].

6.1.3 Maleki et al.’s Approach

Maleki et al. [29] introduced an auxiliary problem, having only fuzzy cost coeffi-
cients, for an FVLP problem and then used its crisp solution for obtaining the fuzzy
solution of the FVLP problem. In order to describe this approach, we reformulate
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the FVLP problem (44), with respect to the change of all the parameters and
variables, as the following FVLP problem:

min ~u ¼ ~wb

s:t: ~wA � ~c;

~w � ~0:

ð45Þ

Maleki et al. [29] considered the FLP problem (40) as the fuzzy auxiliary
problem for the FVLP problem (45) and studied the relation between the FVLP
problem (45) and the fuzzy auxiliary problem (40). In fact, they proved that if
xB ¼ B�1b is an optimal basic feasible solution of the auxiliary problem (40) then
~w ¼ ~cBB�1 is a fuzzy optimal solution of the FVLP problem (45).

Example 7 [28, 29] Consider the following FVLP problem:

Min ~z � 6~x1 þ 10~x2
s:t: 2~x1 þ 5~x2 � ð5; 8; 2; 5Þ;

3~x1 þ 4~x2 � ð6; 10; 2; 6Þ;
~x1;~x2 � ~0:

ð46Þ

Now, we solve this problem using the solution approach proposed by Maleki
et al. [29]. To do this, we rewrite the FVLP problem (46) with respect to the change
of all the parameters and variables as follows:

Min ~u � 6~w1 þ 10~w2

s:t: 2~w1 þ 5~w2 � ð5; 8; 2; 5Þ;
3~w1 þ 4~w2 � ð6; 10; 2; 6Þ;
~w1; ~w2 � ~0

ð47Þ

The fuzzy auxiliary problem corresponding to the FVLP problem (47) is defined
as follows:

Max ~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 � 6;

5x1 þ 4x2 � 10;

x1; x2 � 0:

ð48Þ

The fuzzy auxiliary problem (48) is exactly the LP problem with fuzzy costs
given in (41). Thus, the optimal solution given in (43) is its optimal solution. Now,

since the basis B ¼ ½a2; a1� ¼ 3 2
4 5

 �
is the optimal basis of the fuzzy auxiliary
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problem (48) or (41), the fuzzy optimal solution of the FVLP problem (47) is
obtained as follows based on the formulation ~w ¼ ~cBB�1:

~w	 ¼ ~w	
1; ~w

	
2

� � ¼ ð6; 10; 2; 6Þ; ð5; 8; 2; 5Þð Þ
5
7

�2
7

�4
7

3
7

" #

¼ �2
7

;
30
7
;
30
7
;
38
7

� �
;

�5
7

;
12
7
;
18
7
;
19
7

� �� �
ð49Þ

This means that the optimal solution of FVLP problem (46) is as follows:

~x	 ¼ ~x	1
~x	2

 �
¼

�2
7 ; 307 ;

30
7 ;

38
7

� �
�5
7 ; 127 ;

18
7 ;

19
7

� � �
ð50Þ

Unlike the non-simplex based approach, this approach doesn’t increase the
number of the constraint of the primary FLP problem. Another advantage of this
approach is to produce the fuzzy optimal solution that provides possible outcomes
with certain degree of memberships to the decision maker. However, the fuzzy
optimal solution by use of this approach may be not non-negative. For instance the
value of ~x	1 in the fuzzy optimal solution (50) is non-negative as there is negative
part in this fuzzy number.

Mahdavi-Amiri and Nasseri’s Approach

Mahdavi-Amiri and Nasseri [28] proved that the fuzzy auxiliary problem intro-
duced by Maleki et al. [29] is the dual of the FVLP problem. Hence, they intro-
duced a fuzzy dual simplex algorithm for solving the FVLP problem directly on the
primary problem and without solving any fuzzy auxiliary problem.

Mahdavi-Amiri and Nasseri [28] defined the dual problem of the FVLP problem
(44) as follows:

max ~u ¼ w~b

s:t: wA� c;

w� 0:

ð51Þ

We see that only the coefficients of the objective function of this problem are
fuzzy numbers. Thus, it plays the role of the auxiliary problem for the FVLP
problem (44).

A summary of the fuzzy dual simplex algorithm proposed by Mahdavi-Amiri
and Nasseri [28] for solving FVLP problem (44) is given as follows.
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Algorithm 2: Fuzzy Dual Simplex Algorithm (Minimization Problem)

Initialization step
Choose a starting dual feasible basic solution with basis B.

Main steps

1. Solve the system B~xB ¼ ~b. Let ~xB ¼ B�1~b ¼ ~�b, and ~z � cB~xB.

2. Find the rank of ~�bi for all 1� i�m based on ranking function < given in

Remark 3 and let < ~�bi

 �

¼ min1� i�m < ~�bi

 �n o

. If < ~�br

 �

� 0, then stop with

the current basic solution as an optimal solution.
3. Solve the system Byj ¼ aj for all j 2 JN and let yj ¼ B�1aj. If yrj � 0 for all

j 2 JN then stop with the conclusion that the FVLP problem is infeasible.
4. Solve the system wB ¼ cB. Let w ¼ cBB�1. Calculate zj ¼ waj for all j 2 JN . If

yrj l 0 for all j 2 JN , then ~xBr leaves the basis and ~xk enters the basis providing
that

zk � ck
yrk

¼ min
j2JN

zj � cj
yrk

����yrk\0
� �

:

5. Update the basis B where ak replaces aBr , update the index set JN and go to (1).

Example 8 Again, consider the FVLP problem (46). Now, we solve this problem
using the solution approach proposed by Mahdavi-Amiri and Nasseri [28]. To do
this, we rewrite the FVLP problem (46) as follows in order to obtain a dual feasible
solution with identity basis where ~x3 and ~x4 are fuzzy surplus variables:

Min ~z � 6~x1 þ 10~x2
s:t: �2~x1 � 5~x2 þ~x3 � ð�8;�5; 5; 2Þ;

�3~x1 � 4~x2 þ~x4 � ð�10;�6; 6; 2Þ;
~x1;~x2;~x3;~x4 � ~0:

ð52Þ

The steps of Algorithm 2 for solving the FVLP problem (52) are explored as
follows:

Iteration 1 The starting dual feasible basic is B ¼ ½a3; a4� ¼ 1 0
0 1

 �
. Thus, the

non-basic matrix N is N ¼ ½a1; a2� ¼ �2 �5
�3 �4

 �
.
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Step 1: We find the basic solution by solving the fuzzy system B~xB ¼ ~b:

1 0
0 1

 �
~x3
~x4

 �
¼ ð�8;�5; 5; 2Þ

ð�10;�6; 6; 2Þ
 �

) ~x3
~x4

 �
¼ ð�8;�5; 5; 2Þ

ð�10;�6; 6; 2Þ
 �

¼
~�b1
~�b2

" #

The fuzzy objective function value is obtained based on the formulation
~z � cB~xB:

~z � 0; 0ð Þ ð�8;�5; 5; 2Þ
ð�10;�6; 6; 2Þ
 �

¼ ð0; 0; 0; 0Þ

Step 2: We find the rank of ~�b1 and ~�b2 by use of ranking function < given in

Remark 3. Hence we have < ~�b1

 �

¼ � 29
4 and < ~�b2


 �
¼ �9. Therefore,

min < ~�b1

 �

¼ � 29
4
;< ~�b2

 �

¼ �9
� �

¼ < �b2ð Þ ¼ �9l 0

Step 3: We find yj for all j 2 JN ¼ 1; 2f g by solving the system Byj ¼ aj:

1 0

0 1

 �
y11
y21

 �
¼ �2

�3

 �
) y1 ¼

y11
y21

 �
¼ �2

�3

 �
1 0

0 1

 �
y12
y22

 �
¼ �5

�4

 �
) y2 ¼

y12
y22

 �
¼ �5

�4

 �
Step 4: We find w by solving the system wB ¼ cB:

ðw1;w2Þ 1 0
0 1

 �
¼ 0

0

 �
) w1 ¼ w2 ¼ 0

Now, we calculate zj � cj ¼ waj � cj for all j 2 JN ¼ 1; 2f g:

z1 � c1 ¼ wa1 � c1 ¼ 0; 0ð Þ �2

�3

 �
� 6 ¼ �6

z2 � c2 ¼ wa2 � c2 ¼ 0; 0ð Þ �5

�4

 �
� 10 ¼ �10

The variable ~xB2 ¼ ~x4 leaves the basis and the variable ~xk entering the
basis is determined by the following test:
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min
z1 � c1
y21

;
z2 � c2
y22

� �
¼ min

�6
�3

;
�10
�4

� �
¼ �6

�3
¼ 2

Hence, xk ¼ x1 enters the basis.
Step 5: We update the basis B where a1 replaces aB2 ¼ a4:

B ¼ ½a3; a1� ¼ 1 �2
0 �3

 �
Also, we update JN ¼ 1; 2f g as JN ¼ 2; 4f g.
This process is continued and after two more iterations, the optimal
solution of the FVLP problem (44) is given as follows, which is matched
with that given in (50) obtained by Maleki et al.’s approach [29]:

~x	 ¼ ~x	1
~x	2

 �
¼

�2
7

;
30
7
;
30
7
;
38
7

� �
�5
7

;
12
7
;
18
7
;
19
7

� �
2664

3775
It should be note that the advantages and disadvantages of this approach
are same with the Maleki et al.’s approach [29].

6.1.4 LP Problem with Fuzzy Cost Coefficients, Fuzzy Decision
Variables and Fuzzy Right-Hand-Side of the Constraints

Ganesan and Veeramani [14] formulated a LP problem in which the cots coeffi-
cients, decision variables and the values of the right-hand-side are represented by
symmetric trapezoidal fuzzy numbers while the elements of the coefficient matrix
are represented by real numbers. This problem can be formulated as follows:

max~z � ~c~x

s:t: A~x � ~b;

~x � ~0:

ð54Þ

In what follows, two solution approaches are reviewed for solving FLP problem
(54). The other approaches can be found in [10, 23].

Ganesan and Veeramani’s Approach

Ganesan and Veeramani [14] introduced a new type of fuzzy multiplication and
fuzzy ordering for symmetric trapezoidal fuzzy numbers and then proposed a
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simplex based method for solving SFFLP problem (55) without converting it into
crisp LP problem.

Definition 13 Let ~a ¼ ða2 � a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � b; b2; b3; b3 þ bÞ be
two symmetric trapezoidal fuzzy numbers. The new type of multiplication on ~a and
~b has been defined in [14] as follows:

~a~b � p� w� c; p� w; pþw; pþwþ cð Þ

where

p ¼ a2 þ a3
2


 � b2 þ b3
2

� �
; w ¼ t2 � t1

2
; t1 ¼ min a2b2; a2b3; a3b2; a3b3f g;

t2 ¼ max a2b2; a2b3; a3b2; a3b3f g; c ¼ a3bþ b3aj j:
Definition 14 For any two symmetric trapezoidal fuzzy numbers ~a ¼ ða2 �
a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � a; b2; b3; b3 þ aÞ the relations � and � have been
defined in [14] as follows:

~a � b , a2 þ a3
2

� b2 þ b3
2

~a � b , a2 þ a3
2

� b2 þ b3
2

Remark 5 It should be note that the ordering defined in Definition 14 is same as
with the ordering defined in terms of linear ranking function in Remark 3. This
means that the linear ranking function given in Remark 3 for any symmetric
trapezoidal fuzzy numbers ~a ¼ ða2 � a; a2; a3; a3 þ aÞ is reduced to

<ð~aÞ ¼ a2 � aþ a2 þ a3 þ a3 þ a
4

¼ a2 þ a3
2

Now, consider a system of m simultaneous fuzzy linear equations involving
symmetric trapezoidal fuzzy numbers in n unknowns A~x ¼ ~b. Let B be any matrix
formed by m linear independent of A. In this case, the solution ~x ¼ ð~xB;~xNÞ ¼
ðB�1~b; ~0Þ is a fuzzy basic solution. Let yj and ~w be the solutions to Byj ¼ aj and
~wB ¼ ~cB, respectively. Define ~zj ¼ ~cBB�1aj ¼ ~waj. Based on these results, Ganesan
and Veeramani [14] proved fuzzy analogues of some important theorems of LP
leading to a new method for solving FLP problem (54) without converting it into a
crisp LP problem.
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Algorithm 3: Symmetric fuzzy primal simplex algorithm (Maximization
Problem)

Initialization step
Choose a starting dual feasible basic solution with basis B. Form the initial tableau
as Table 1.

Main steps

1. Calculate ~zj � ~cj for all j 2 JN where JN is the index set of non-basic variables.
Suppose that ~zj � ~cj ¼ ðh2j � aj; h2j ; h

3
j ; h

3
j þ ajÞ. Let

h2k þ h3k ¼ max
j2JN

h2j þ h3j
n o

:

If h2k þ h3k � 0, then stop with the current basic solution as an optimal solution.
2. Solve the system Byk ¼ ak and let yk ¼ B�1ak. If yk � 0 then stop with the

conclusion that the problem is unbounded. Otherwise, suppose
~�bi ¼ �b2i � ai; �b2i ; �b

3
i ;
�b3i þ aj

� �
. In this case, then ~xk enters the basis and ~xBr leaves

the basis providing that

�b2r þ �b3r
yrk

¼ min
1� i�m

�b2i þ �b3i
yik

����yrk [ 0
� �

3. Update the tableau by pivoting on yrk and go to (1).

Example 9 [11] Consider the following FLP problem:

Max ~z � ð11; 13; 15; 17Þ~x1 þð9; 12; 14; 17Þ~x2
s:t: 12~x1 þ 13~x2 � ð469; 475; 505; 511Þ;

12~x1 þ 15~x2 � ð460; 465; 495; 500Þ;
~x1;~x2 � ~0:

ð55Þ

Table 1 The initial simplex tableau

Basis ~x1 . . . ~xr . . . ~xm . . . ~xj . . . ~xk . . . R:H:S <
~z ~0 . . . ~0 . . . ~0 . . . ~zj � ~cj . . . ~zk � ~ck . . . ~z ¼ ~cB~�b –

<ð~zÞ 0 . . . 0 . . . 0 . . . h2j þ h3j . . . h2k þ h3k . . . – z2 þ z3

~x1 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . ~�b1 �b21 þ �b31

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xr ..
. . . . 1 . . . 0 . . . yrj . . . yrk . . . ~�br

�b2r þ �b3r

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xm 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . ~�bm
�b2m þ �b3m
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After introducing the slack variables ~x3 and ~x4 we obtain the initial fuzzy primal
simplex tableau as Table 2.

By considering ~x1 and ~x4 as the entering variable the leaving variable, respec-
tively, and then by pivoting on y21 ¼ 12, we obtain the next tableau as Table 3.

Since h22 þ h32 � 0 and h24 þ h34 � 0, the algorithm stops and Table 3 is the optimal
tableau.

Ebrahimnejad and Nasseri’s Approach

In the proposed approach by Ganesan and Veeramani [14] it is assumed that a fuzzy
primal feasible basic solution of the problem (54) is at hand. For situation in which
a primal fuzzy feasible basic solution is not at hand, but there is a fuzzy dual
feasible basic solution, Ebrahimnejad and Nasseri [9] generalized the fuzzy ana-
logue of the dual simplex algorithm of LP to the FLP problem under consideration.
A summary of their method for a minimization problem in tableau format is given
as follows.

Algorithm 4: Symmetric Fuzzy Dual Simplex Algorithm (Minimization
Problem)

Initialization step
Choose a starting primal feasible basic solution with basis B. Form the initial
tableau as Table 1. Suppose ~zj � ~cj ¼ ðh2j � aj; h2j ; h

3
j ; h

3
j þ ajÞ, so we have

h2j þ h3j � 0 for all j.

Main steps

1. Suppose ~�b ¼ B�1~b. If ~�b ¼ B�1~b then stop; the current fuzzy solution is optimal.

Else, suppose ~�bi ¼ �b2i � ai; �b2i ; �b
3
i ;
�b3i þ aj

� �
and let

Table 2 The initial simplex tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ð�17;�15;�13;�11Þ ð�17;�14;�12;�9Þ ~0 ~0 ~0 –

<ð~zÞ −28 −26 0 0 – 0

~x3 12 13 1 0 ð469; 475; 505; 511Þ 980

~x4 12 15 0 1 ð460; 465; 495; 500Þ 960

Table 3 The optimal tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ~0 �13

4 ; 94 ;
27
4 ;

49
4

� �
~0 11

12 ;
13
12 ;

15
12 ;

17
12

� �
4965
12 ; 10052 ; 12352 ; 847512

� �
–

<ð~zÞ 0 9 0 7
3

– 1120

~x3 0 −2 1 −1 ð�31;�20; 40; 51Þ 20

~x1 1 5
4

0 1
12

460
12 ;

465
12 ;

495
12 ;

500
12

� �
80
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�b2r þ �b3r ¼ min
1� i�m

�b2i þ �b3i
� �

2. If yrj � 0 for all j, then stop; the FLP problem under consideration is infeasible.
Else, ~xBr leaves the basis and ~xk enters to the basis providing that

h2k þ h3k
yrk

¼ min
1� j� n

h2j þ h3j
yrj

�����yrj\0

( )

3. Update the tableau by pivoting on yrk and go to (1).

Example 9 [10] Consider the following FLP problem:

Min ~z � ð1; 4; 8; 13Þ~x1 þð2; 4; 6; 8Þ~x2 þð1; 2; 4; 5Þ~x3
s:t: 3~x1 þ 4~x2 þ 2~x3 � ð3; 6; 10; 13Þ;

4~x1 þ 2~x2 þ~x3 � ð2; 4; 6; 8Þ;
2~x1 þ~x2 þ~x3 � ð1; 2; 6; 7Þ;
~x1;~x2;~x3 � ~0:

ð56Þ

After introducing the surplus variables ~x4;~x5 and ~x6 the initial fuzzy dual simplex
tableau is given as Table 4.

After two iterations of the Algorithm 4, the optimal tableau is obtained as
Table 5.

In contrast to the FVLP problem considered in [28, 29], in the FLP problem
introduced by Ganesan and Veeramini [14], not only the decision variables and the
right-hand-side of the constraints are fuzzy, but also the coefficients of decision
variables in objective function are fuzzy. However, the proposed approaches for
solving FLP problem considered in [14] are valid only for situation in which the
parameters are represented by symmetric trapezoidal fuzzy numbers. But, the
proposed methods [28, 29] for solving FVLP problems are applicable to both
symmetric and non-symmetric trapezoidal fuzzy numbers. Also, unlike the
non-simplex based approach and similar to the existing approaches [28, 29] in
solving FVLP problems, this approach doesn’t increase the number of the

Table 4 The initial tableau of Example 9

Basis ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 R:H:S <
~z ð�13;�8;

�4;�1Þ
ð�8;�6;
�4;�2Þ

ð�5;�4;
�2;�1Þ

~0 ~0 ~0 ~0 –

<ð~zÞ −12 −10 −6 0 0 0 – 0

~x4 −3 −4 −2 1 0 0 ð�13;�10;�6;�3Þ −16

~x5 −4 −2 −1 0 1 0 ð�8;�6;�4;�2Þ −10

~x6 −2 −1 −1 0 0 1 ð�7;�6;�2;�1Þ −8
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constraint of the primary FLP problem. In addition, although these approaches [9,
14] give fuzzy optimal solution, but, the fuzzy optimal solution by use of these
approaches may be not non-negative, too. For instance the value of ~x	3 ¼
ð�31;�20; 40; 51Þ in the fuzzy optimal solution of Example 8 (see Table 3) and
the value of ~x	1 ¼ �9

5 ; �2
5 ; 65 ;

13
5

� �
in the optimal solution of Example 9 (see Table 5)

are non-negative as there are negative parts in these fuzzy solutions.

6.1.5 LP Problem with Fuzzy Cost Coefficients, Fuzzy Decision
Variables, Fuzzy Coefficients Matrix and Fuzzy
Right-Hand-Side of the Constraints

Kheirfam and Verdegay [19] defined a new type of FLP problems in which all
parameters and decision variables were represented by symmetric trapezoidal fuzzy
numbers. This problem, named as symmetric fully fuzzy linear programming
(SFFLP), can be represented with the following model:

max~z ¼ ~c~x

s:t: ~A~x � ~b;

~x � ~0:

ð57Þ

Kheirfam and Verdegay [19] introduced a new type of fuzzy inverse and division
for symmetric trapezoidal fuzzy numbers and then proposed a simplex based
method for solving SFFLP problem (57) without converting it to crisp LP problem.

Definition 15 Let ~a ¼ ða2 � a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � b; b2; b3; b3 þ bÞ be
symmetric trapezoidal fuzzy number and symmetric non zero trapezoidal fuzzy
number, respectively. Two new types of arithmetic operations on ~a and ~b have been
defined in [19] as follows:

Table 5 The optimal tableau of Example 9

Basis ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 R:H:S <
~z ~0 ~0 ~0 ~0 ~0 ~0 ~0 –

<ð~zÞ 0 0 0 �14
5 ; �19

10 ;
�
3
10 ;

11
5 Þ

�22
5 ; �11

5 ; 35 ;
14
5

� � �6
5 ; �4

5 ; 25 ;
4
5

� � �75
5 ; �2

5 ; 1145 ; 1875
� �

112

~x2 1 0 0 �2
5

1
5

1
5

�9
5 ; 0; 145 ;

23
5

� �
14
5

~x1 0 1 0 1
5

�2
5

0 �9
5 ; �2

5 ; 65 ;
13
5

� �
4
5

~x3 0 0 1 0 1
5

�2
5

�11
5 ; �4

5 ; 105 ;
17
5

� �
6
5

358 A. Ebrahimnejad and J.L. Verdegay



d

1
~b
¼ ~b�1

� 2
b2 þ b3

� w

 �
� b;

2
b2 þ b3

� w

 �
;

2
b2 þ b3

þw

 �
;

2
b2 þ b3

þw

 �
þ b

� �
where w ¼ t2�t1

2 ; t2 ¼ max
j¼2;3

1
�bj

n o
; t1 ¼ min

j¼2;3
1
�bj

n o
; 1�bj

¼
1
bj
; bj 6¼ 0;

0; bj ¼ 0:

�

d

~a
~b
� a2 þ a3

b2 þ b3
� w

 �
� c;

a2 þ a3
b2 þ b3

� w

 �
;
a2 þ a3
b2 þ b3

þw

 �
;
a2 þ a3
b2 þ b3

þw

 �
þ c

� �

where w ¼ t2�t1
2 ; t2 ¼ max

i;j¼2;3

ai
�bj

n o
; t1 ¼ min

i;j¼2;3

ai
�bj

n o
; c ¼ a3bþ b3aj j:

A symmetric trapezoidal fuzzy matrix eA ¼ ~aij
� �

m�n is any rectangular array of
symmetric trapezoidal fuzzy numbers. For any values of indices i and j, the ijth
minor of the square matrix ~A ¼ ~aij

� �
n�n, denoted by ~Aij, is the ðn� 1Þ � ðn� 1Þ

sub-matrix of ~A obtained by deleting the ith row and the jth column of ~A. In this
case, determinant ~A, denoted by ~A

�� ��, is computed as follows [19]:

• For n ¼ 1; ~A
�� �� ¼ ~a11.

• For n ¼ 2; ~A
�� �� ¼ ~a11~a22 � ~a12~a21.

• For n[ 2; ~A
�� �� ¼Pn

j¼1
ð�1Þiþ j~aij ~Aij

�� ��, for any value of index i ¼ 1; 2; . . .; n.

A square matrix ~A ¼ ~aij
� �

n�n, is called singular if ~A
�� �� ¼ ~0. In other case, it said

to be non-singular fuzzy matrix and its inverse is calculated by
~A�1 ¼ ð1;1;0;0Þ

~Aj j ð�1Þiþ j ~Aij

�� ��� �
n�n.

Now, we are in a position to summary the proposed method by Kheirfam and
Verdegay [19] solving the SFFLP problem (57).

Suppose a fuzzy basic feasible solution of problem (57) with basis ~B is at hand.
Let ~yj and ~w be the solutions to ~B~yj ¼ ~aj and ~w~B ¼ ~cB, respectively. Define
~zj ¼ ~cB~B�1~aj ¼ ~w~aj. Using these notations, Kheirfam and Verdegay [19] developed
and presented for first time an original dual simplex algorithm for solving the
SFFLP problem (57).

Algorithm 5: Symmetric Fully Fuzzy Dual Simplex Algorithm (Maximization
Problem)

Initialization step

Let ~B be a basis for the SFFLP problem (57) such that ~zj � ~cj ¼ h2j � aj; h2j ; h
3
j ; h

3
j



þ ajÞ � ~0 for all j, i.e. h2j þ h3j � 0. Form the initial tableau as Table 6.
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Main steps

1. Suppose ~�b ¼ ~B�1~b. If ~�b � ~0 then stop; the current fuzzy solution is optimal.

Else, suppose ~�bi ¼ �b2i � ai; �b2i ; �b
3
i ;
�b3i þ aj

� �
and let

�b2r þ �b3r ¼ min
1� i�m

�b2i þ �b3i
� �

2. If ~yrj ¼ y2rj � arj; y2rj; y
3
rj; y

3
rj � arj


 �
� ~0 for all j, i.e. y2rj þ y3rj � 0, then stop; the

SFFLP problem (57) is infeasible.
Else, ~xBr leaves the basis and ~xk enters the basis providing that

h2k þ h3k
y2rk þ y3rk

¼ max
1� j� n

h2j þ h3j
y2rj þ y3rj

�����y2rj þ y3rj\0

( )

3. Update the tableau by pivoting on ~yrk and go to (1).

Example 10 [19] Consider the following SFFLP problem:

Max ~z � ð�4;�2; 2; 5Þ~x1 þð�3;�2; 0; 1Þ~x2
s:t: ð1; 2; 4; 5Þ~x1 þð�5;�3;�1; 1Þ~x2 þð1; 1; 1; 1Þ~x3 � ð�6;�4;�4; 2Þ;

ð�3;�2; 0; 1Þ~x1 þð�4;�2; 4; 6Þ~x2 þð1; 1; 1; 1Þ~x4 � ð�4;�1; 5; 8Þ;
~x1;~x2;~x3;~x4 � ~0:

ð59Þ

The first dual feasible simplex tableau is showed in Table 7.
Since �b21 þ �b31\0, thus ~xB1 ¼ ~x3 leaves the basis and according to test given in

step (2) of Algorithm 5, ~x2 is the entering variable. By pivoting ~y12 ¼
ð�5;�3;�1; 1Þ on the new tableau shown in Table 8 is obtained.

Table 6 Tableau of the SFFLP problem

Basis ~x1 . . . ~xr . . . ~xm . . . ~xj . . . ~xk . . . R:H:S <
~z ~0 . . . ~0 . . . ~0 . . . ~zj � ~cj . . . ~zk � ~ck . . . ~z ¼ ~cB~�b �
<ð~zÞ 0 . . . 0 . . . 0 . . . h2j þ h3j . . . h2k þ h3k . . . � z2 þ z3

~x1 1 . . . 0 . . . 0 . . . ~y1j . . . ~y1k . . . ~�b1
�b21 þ �b31

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xr ..
. . . . 1 . . . 0 . . . ~yrj . . . ~yrk . . . ~�br

�b2r þ �b3r

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xm 0 . . . 0 . . . 1 . . . ~ymj . . . ~ymk . . . ~�bm
�b2m þ �b3m

360 A. Ebrahimnejad and J.L. Verdegay



Since ~�b1 ¼ �28
3 ; 23 ;

10
3 ;

40
3

� � � ~0 and ~�b2 ¼ �308
3 ;�13; 13; 3083

� � � ~0, the current
solution is optimal. Thus, the optimal solution of the problem (59) is

~x	 ¼ ~x	1
~x	2

 �
¼ 0; 0; 0; 0ð Þ

�28
3 ; 23 ;

10
3 ;

40
3

� � �
ð60Þ

In contrast to the FVLP problem considered in [28, 29] and the FLP problem
introduced by Ganesan and Veeramini [14], in the FLP problem considered by
Kheirfam and Verdegay [19] all parameters and decision variable are specified in
terms of fuzzy data. In addition, the solution approach proposed by Kheirfam and
Verdegay [19], not only gives fuzzy optimal solution, but also doesn’t increase the
number of the constraint of the primary FLP problem. However, similar to the
existing approaches in [9, 14, 28, 29], the fuzzy optimal solution given by use of
this approach may be not non-negative. For instance the value of ~x	2 ¼
�28
3 ; 23 ;

10
3 ;

40
3

� �
in the fuzzy optimal solution (60) is non-negative as there is negative

part in this fuzzy solution.

6.2 The Non-simplex Based Approach

In this section, the non-simplex based approach for solving two kinds of LP
problems with fuzzy parameters is explored. In such approach, the fuzzy constraints
are first converted to crisp ones based on arithmetic operations on fuzzy numbers
and then the standard method are used for solving the crisp problem. Such approach
increases the number of functional constraints and thus directly effects the com-
putational time of the simplex method.

Table 7 The initial simplex tableau of Example 10

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ð�4;�2; 2; 5Þ ð�3;�2; 0; 1Þ ~0 ~0 ~0 –

<ð~zÞ 0 −2 0 0 – 0

~x3 ð1; 2; 4; 5Þ ð�5;�3;�1; 1Þ ð1; 1; 1; 1Þ ~0 ð�6;�4;�4; 2Þ −8

~x4 ð�3;�2; 0; 1Þ ð�4;�2; 4; 6Þ ~0 ð1; 1; 1; 1Þ ð�4;�1; 5; 8Þ 4

Table 8 The optimal tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z �20; �23

6 ; 416 ;
138
6

� �
~0 �25

6 ; �1
3 ; 43 ;

31
6

� �
~0 �86

6 ; �16
3 ; 43 ;

74
6

� �
–

<ð~zÞ 3 0 1 0 – −4

~x2 �61
6 ; �19

6 ; 16 ;
43
6

� � ð1; 1; 1; 1Þ �17
6 ; �5

6 ; �1
6 ; 116

� �
~0 �28

3 ; 23 ;
10
3 ;

40
3

� �
4

~x4 �383
12 ; �29

3 ; 323 ;
484
12

� �
~0 ~0 ð1; 1; 1; 1Þ ~0 0
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6.2.1 LP Problem with Fuzzy Coefficients Matrix and Fuzzy
Right-Hand-Side of the Constraints

The general form of LP problems in which the right-hand-side of the constraints
and the coefficients of the constraint matrix are fuzzy numbers, can be formulated as
follows [32]:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

~aijxj � ~bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð61Þ

Let us assume that all fuzzy numbers are triangular. Thus, ~aij and ~bi are repre-
sented as ~aij ¼ ða1;ij; a2;ij; a3;ijÞ and ~bi ¼ ðb1;i; b2;i; b3;iÞ, respectively. Hence, FLP
problem (61) can be reformulated as follows:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

ða1;ij; a2;ij; a3;ijÞxj � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð62Þ

Equivalently, with regard to Remarks 1 and 2, the FLP (62) can be rewritten as
follows:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

a1;ijxj � b1;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

a2;ijxj � b2;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

a3;ijxj � b3;i; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð63Þ

The optimal solution of crisp LP problem (63) can be considered as the solution
of the FLP problem (61) [32].
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Example 11 [26] Consider the following FLP problem:

Max z ¼ 5x1 þ 4x2
s:t: ð2; 4; 5Þx1 þð2; 5; 6Þx2 � ð19; 24; 32Þ;

ð3; 4; 6Þx1 þð4; 5; 6Þx2 � ð6; 12; 19Þ
x1; x2 � 0:

ð64Þ

This problem is converted into the following crisp LP problem with regard to
problem (63):

Max z ¼ 5x1 þ 4x2
s:t: 2x1 þ 2x2 � 19;

4x1 þ 5x2 � 24;

5x1 þ 6x2 � 32;

3x1 þ 4x2 � 6;

4x1 þ 5x2 � 12;

6x1 þ 6x2 � 19;

x1; x2 � 0:

ð65Þ

Solving this problem gives the optimal solution as
x	 ¼ x	1; x

	
1

� � ¼ ð1:5; 3Þ; z	 ¼ 19:5.
The optimal solutions obtained by this approach are real numbers, which rep-

resent a compromise in terms of fuzzy numbers involved. In addition, this approach
increases the number of functional constraints and thus this proposed need more
computation cost than the simplex based approach.

6.2.2 Fully Fuzzy LP Problem [24]

The FLP problem in which all the parameters as well as the decision variables are
represented by fuzzy numbers is called FFLP problem. The general form of FFLP
problem can be formulated as follows:

max~z �
Xn
j¼1

~cj � ~xj

s:t:
Xn
j¼1

~aij � ~xj � ~bi; i ¼ 1; 2; . . .;m;

~xj � ~0; j ¼ 1; 2; . . .; n:

ð66Þ
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Let us assume that all fuzzy numbers are triangular. Thus ~aij;~xij;~cj and ~bi; are
represented as ~aij ¼ ða1;ij; a2;ij; a3;ijÞ ~xj ¼ ðx1;j; x2;j; x3;jÞ ~bi ¼ ðb1;i; b2;i; b3;iÞ and
~bi ¼ ðb1;i; b2;i; b3;iÞ, respectively. Hence, FLP problem (66) can be reformulated as
follows:

max~z �
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ

s:t:
Xn
j¼1

ða1;ij; a2;ij; a3;ijÞ � ðx1;j; x2;j; x3;jÞ � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

ðx1;j; x2;j; x3;jÞ is a non negative trinagular fuzzy number; j ¼ 1; 2; . . .; n:

ð67Þ

Assuming ða1;ij; a2;ij; a3;ijÞ � ðx1;ij; x2;ij; x3;ijÞ ¼ ðm1;ij;m2;ij;m3;ijÞ and using
ranking function given in Remark 4 for the objective function, the FLP (67) can be
rewritten as follows:

max<ð~zÞ ¼ <
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ
 !

s:t:
Xn
j¼1

ðm1;ij;m2;ij;m3;ijÞ � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

ðx1;j; x2;j; x3;jÞ is a non negative trinagular fuzzy number; j ¼ 1; 2; . . .; n:

ð68Þ

Using Definitions 10 and 7, the FLP problem (68) becomes:

max<ð~zÞ ¼ <
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ
 !

s:t:
Xn
j¼1

m1;ij ¼ b1;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

m2;ij ¼ b2;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

m3;ij ¼ b3;i; i ¼ 1; 2; . . .;m;

x1;j � 0; x2;j � x1;j � 0; x3;j � x2;j � 0; j ¼ 1; 2; . . .; n:

ð69Þ

The optimal solution of the crisp LP problem (69) can be considered as the
optimal solution of the FFLP problem (66).
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Example 12 [24] Consider the following FFLP problem:

Max z ¼ ð1; 6; 9Þ � ðx1;1; x1;2; x1;3Þþ ð2; 3; 8Þ � ðx2;1; x2;2; x2;3Þ
s:t: ð2; 3; 4Þðx1;1; x1;2; x1;3Þþ ð1; 2; 3Þðx2;1; x2;2; x2;3Þ ¼ ð6; 16; 30Þ;

ð�1; 1; 2Þðx1;1; x1;2; x1;3Þþ ð1; 3; 4Þðx2;1; x2;2; x2;3Þ ¼ ð1; 17; 30Þ
ðx1;1; x1;2; x1;3Þ and ðx2;1; x2;2; x2;3Þ are non negative fuzzy numbers:

ð70Þ

This problem is converted into the following crisp LP problem with regard to
problem (69):

Max<ð~z Þ ¼ 1
4

x1;1 þ 2x1;2 þ 12x2;1 þ 6x2;2 þ 9x3;1 þ 8x2;3
� �� �

s:t: 2x1;1 þ x2;1 ¼ 6;

� x1;3 þ x2;1 ¼ 1;

3x1;2 þ 2x2;2 ¼ 16;

x1;2 þ 3x2;2 ¼ 17;

4x1;3 þ 3x2;3 ¼ 30;

2x1;3 þ 4x2;3 ¼ 30;

x1;1 � 0; x1;2 � x1;1 � 0; x1;3 � x1;2 � 0;

x2;1 � 0; x2;2 � x2;1 � 0; x2;3 � x2;2 � 0:

ð71Þ

The optimal solution of the crisp LP problem (71) is as follows:

x	1;1 ¼ 1; x	1;2 ¼ 2; x	1;3 ¼ 3; x	2;1 ¼ 4; x	2;2 ¼ 5; x	2;3 ¼ 6 ð72Þ

Hence, the fuzzy optimal solution of the FFLP problem (70) is

~x	 ¼ ~x	1;~x
	
2

� � ¼ x	1;1; x
	
1;2; x

	
1;3


 �
; x	2;1; x

	
2;2; x

	
2;3


 �
 �
¼ 1; 2; 3ð Þ; 4; 5; 6ð Þð Þ ð73Þ

Putting the fuzzy optimal solution (73) in the objective function of the problem
(70) gives ~z	 ¼ ð9; 27; 75Þ.

In contrast to the proposed approaches in [32], Kumar et al.’s method [24] gives
fuzzy optimal solution. In contrast to the simplex based approach [9–11, 14, 19, 21,
28–30], Kumar et al.’s method [24] gives non-negative fuzzy optimal solutions.
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7 Conclusions

In the conventional LP problems it is assumed that the parameters of the problem
are exactly known, but there may be some situations in formulating real-life
problems where the parameters are not known in a precise way. A frequently used
manner to represent the imprecision in parameters is by means of fuzzy numbers
that enlarges the range of applications of LP. Many different techniques have been
used in the literature to solve the LP problems in fuzzy environment. In this
contribution, a taxonomy and review of some of these techniques for solving four
categories of FLP problems was provided. The limitations and advantages of each
category were also pointed out. Moreover, the solution approaches were illustrated
with several numerical examples.
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