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Preface

The fuzzy set theory, founded by Lotfi A. Zadeh in 1965, had covered a lot of
ground with excellent successes in almost all branches of science. Especially, fuzzy
control technologies provided definite evidences to prove its power and usability in
the solutions of real-life problems. These evidences caused the harsh criticisms to
lose their value within the 50 years of the fuzzy set theory.

This book aims at presenting the latest position of the fuzzy set theory within the
science branches and drawing the frame of its expansion. In our book, the new
extensions of fuzzy sets are summarized by their pioneers: Intuitionistic fuzzy sets
by Atanassov (Chapter “Mathematics of IntuitionisticFuzzy Sets”), hesitant fuzzy
sets by Torra (Chapter “A Review of Hesitant Fuzzy Sets: Quantitative and
Qualitative Extensions”), etc. Later, the position of the fuzzy set theory within earth
and space sciences, human sciences, etc., is summarized. The last section of the
book includes some applications of the fuzzy set theory.

The first chapter is on the emergence of fuzzy sets from a historical perspective.
It tries to suggest some reasons why the fuzzy set theory came to life 50 years ago
by pointing out the existence of streams of thought in the first half of the twentieth
century in logic, linguistics, and philosophy, which paved way to the idea of
moving away from the Boolean framework, through the proposal of many valued
logics and the study of the vagueness phenomenon in natural languages.

The second chapter is on fuzzy decision-making. The chapter presents the
pioneers of fuzzy decision-making: researchers, universities, and countries, and the
media publishing fuzzy decision-making papers including the journals, books, and
proceedings. It also includes numerical examples of decision-making problems with
their solutions.

The third chapter is on mathematics of Intuitionistic Fuzzy Sets (IFSs). Short
firsthand remarks on the history and theory of IFSs are given. Influences of other
areas of mathematics for development of the IFSs theory are discussed. On the basis
of results in IFSs theory, some ideas for development of other mathematical areas
are offered.
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The fourth chapter presents some comments on ordinary reasoning with fuzzy
sets. It tries to serve as a theoretical support for computing with words, but, and
specially, to motivate young researchers to go further in its extension towards the
different types of commonsense reasoning.

The fifth chapter includes a review of hesitant fuzzy sets. Many researchers have
paid attention to it and have proposed different extensions both in quantitative and
qualitative contexts. Several concepts, basic operations, and its extensions are
revised in this chapter.

The sixth chapter is on type-1 to type-n fuzzy logic and systems. The motivation
for using fuzzy systems, the mathematical concepts of type-1 to type-n fuzzy sets,
logic, and systems as well as their applications in solving real-world problems is
presented.

The seventh chapter is on fuzzy sets in earth and space sciences. It reviews and
analyzes the papers utilizing fuzzy logic in earth and space science problems from
Scopus database. The graphical and tabular illustrations are presented for the
subject areas, publication years, and sources of the papers on earth and space
sciences.

The eighth chapter is on fuzzy sets and fuzzy logic in the human sciences. It
surveys the history of fuzzy set applications in the human sciences, and then
elaborates the possible reasons why fuzzy set concepts have been relatively
under-utilized therein.

The ninth chapter is on fuzzy entropy used for predictive analytics. It develops
models for predictive maintenance in a big data environment. The authors apply
interval-valued fuzzy sets and various entropy measures defined on them to perform
feature selection on process diagnostics. They show how these models can be
utilized as the basis for decision support systems in process industries to aid pre-
dictive maintenance.

The 10th chapter is on fuzzy sets in agriculture. It aims at contributing to a
refinement of review studies by applying fuzzy sets, fuzzy logic, and fuzzy cog-
nitive mapping to the exploration of agriculture modeling and management.

The 11th chapter is on solving a multiobjective truck and trailer routing problem
with fuzzy constraints. The fuzzy model is generalized in this work from a mul-
tiobjective approach by incorporating an objective to minimize the violation of
constraints. We present and discuss the computational experiments carried out to
solve the multiobjective truck and trailer routing problem with fuzzy constraint
using benchmark instances with sizes ranging from 50 to 199 customers.

The 12th chapter is on health service network design under epistemic uncer-
tainty. It provides a comprehensive review of the related literature to the HSND
problem after explaining health, health system, and HSND problem briefly. The
review is followed by a typical mathematical model for the concerned problem.
Finally, a fuzzy programming approach is described in brief and different fuzzy
measures, i.e., possibility, necessity, and credibility measures are applied to the
compact form of the proposed mathematical programming model.

The 13th chapter is on robotics and control systems. It presents fuzzy control
techniques as well as fuzzy mathematical scheduling model for an m machine
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robotic cell with one manipulator robot. Furthermore, it proposes an integrated
fuzzy robotic control system, in which the fuzzy optimization model is solved at
every predetermined period of time such as beginning of shifts or days, etc. Then
based upon on the solutions obtained, input parameters, and unpredictable distur-
bances, the autonomous fuzzy control is executed at each unit of time. These two
modules transfer information and feedback to each other via an intermediate col-
laborative module.

The 14th chapter is on the usage of fuzzy sets in the evaluation of
socio-ecological systems through an interval-valued intuitionistic fuzzy
multi-criteria approach. It demonstrates how to incorporate fuzzy sets theory into
social sciences. An illustrative example which consists of a wide variety of social
actors is used to evaluate sustainable management options based on interval-valued
intuitionistic fuzzy TOPSIS method.

The 15th chapter is on the survey on models and methods for solving fuzzy
linear programming problems. The solution approaches are divided into four areas:
(1) Linear Programming (LP) problems with fuzzy inequalities and crisp objective
function, (2) LP problems with crisp inequalities and fuzzy objective function,
(3) LP problems with fuzzy inequalities and fuzzy objective function, and (4) LP
problems with fuzzy parameters.

The 16th chapter is on applications of fuzzy mathematical programming
approaches in supply chain planning problems. It aims to provide the useful and
updated information about different sources and types of uncertainty in supply
chain planning problems and the strategies used to confront with uncertainty in such
problems. A hyper methodological framework is proposed to cope with uncertainty
in supply chain planning problems.

We hope that this book will provide a useful resource of ideas, techniques, and
methods for the development of the fuzzy set theory. We are grateful to the referees
whose valuable and highly appreciated works contributed to select the high quality
chapters published in this book. We would like to also thank Prof. Janusz
Kacprzyk, the editor of Studies in Fuzziness and Soft Computing at Springer for his
supportive role in this process, and to Assoc. Prof. Sezi Cevik Onar for her help to
accelerate the processes to catch the deadlines.

Cengiz Kahraman
Uzay Kaymak
Adnan Yazıcı
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Part I
Fuzzy Sets Theory: From the Past

to the Future



The Emergence of Fuzzy Sets:
A Historical Perspective

Didier Dubois and Henri Prade

Abstract This paper tries to suggest some reasons why fuzzy set theory came to
life 50 years ago by pointing out the existence of streams of thought in the first half
of the XXth century in logic, linguistics and philosophy, that paved the way to the
idea of moving away from the Boolean framework, through the proposal of
many-valued logics and the study of the vagueness phenomenon in natural lan-
guages. The founding paper in fuzzy set theory can be viewed as the crystallization
of such ideas inside the engineering arena. Then we stress the point that this
publication in 1965 was followed by several other seminal papers in the subsequent
15 years, regarding classification, ordering and similarity, systems science,
decision-making, uncertainty management and approximate reasoning. The con-
tinued effort by Zadeh to apply fuzzy sets to the basic notions of a number of
disciplines in computer and information sciences proved crucial in the diffusion of
this concept from mathematical sciences to industrial applications.

Keywords Fuzzy sets � Many-valued logics � Vagueness � Possibility theory �
Approximate reasoning

1 Introduction

The notion of a fuzzy set stems from the observation made by Zadeh [60] fifty years
ago in his seminal paper that

more often than not, the classes of objects encountered in the real physical world do not
have precisely defined criteria of membership.

By “precisely defined”, Zadeh means all-or-nothing, thus emphasizing the
continuous nature of many categories used in natural language. This observation
emphasizes the gap existing between mental representations of reality and usual
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mathematical representations thereof, which are traditionally based on binary logic,
precise numbers, differential equations and the like. Classes of objects referred to in
Zadeh’s quotation exist only through such mental representations, e.g., through
natural language terms such as high temperature, young man, big size, etc., and also
with nouns such as bird, chair, etc. Classical logic is too rigid to account for such
categories where it appears that membership is a gradual notion rather than an
all-or-nothing matter.

The ambition of representing human knowledge in a human-friendly, yet rig-
orous way might have appeared like a futile exercise not worth spending time on,
and even ridiculous from a scientific standpoint, only one hundred years ago.
However in the meantime the emergence of computers has significantly affected the
landscape of science, and we have now entered the era of information management.
The development of sound theories and efficient technology for knowledge repre-
sentation and automated reasoning has become a major challenge, now that many
people possess computers and communicate with them in order to find information
that helps them when making decisions. An important issue is to store and exploit
human knowledge in various domains where objective and precise data are seldom
available. Fuzzy set theory participates to this trend, and, as such, has close con-
nection with Artificial Intelligence. This chapter is meant to account for the history
of how the notion of fuzzy set could come to light, and what are the main landmark
papers by its founder that stand as noticeable steps towards the construction of the
fuzzy set approach to classification, decision, human knowledge representation and
uncertainty. Besides, the reader is invited to consult a recent personal account,
written by Zadeh [85], of the circumstances in which the founding paper on fuzzy
sets was written.

2 A Prehistory of Fuzzy Sets

This section gives some hints to works what can be considered as forerunners of
fuzzy sets. Some aspects of the early developments are described in more details by
Gottwald [28] and Ostasiewicz [45, 46]. This section freely borrows from [17],
previously written with the later author.

2.1 Graded Membership to Sets Before Zadeh

In spite of the considerable interest for multiple-valued logics raised in the early
1900s by Jan Łukasiewicz and his school who developed logics with intermediary
truth value(s), it was the American philosopher Black [7] who first proposed
so-called “consistency profiles” (the ancestors of fuzzy membership functions) in
order to “characterize vague symbols.”

4 D. Dubois and H. Prade



As early as in 1946, the philosopher Abraham Kaplan argued in favor of the
usefulness of the classical calculus of sets for practical applications. The essential
novelty he introduces with respect to the Boolean calculus consists in entities which
have a degree of vagueness characteristic of actual (empirical) classes (see Kaplan
[33]). The generalization of the traditional characteristic function has been first
considered by Weyl [55] in the same year; he explicitly replaces it by a continuous
characteristic function. They both suggested calculi for generalized characteristic
functions of vague predicates, and the basic fuzzy set connectives already appeared
in these works.

Such calculus has been presented by Kaplan and Schott [34] in more detail, and
has been called the calculus of empirical classes (CEC). Instead of notion of
“property”, Kaplan and Schott prefer to use the term “profile” defined as a type of
quality. This means that a profile could refer to a simple property like red, green,
etc. or to a complex property like red and 20 cm long, green and 2 years old, etc.
They have replaced the classical characteristic function by an indicator which takes
on values in the unit interval. These values are called the weight from a given
profile to a specified class. In the work of Kaplan and Schott, the notion of “em-
pirical class” corresponds to the actual notion of “fuzzy set”, and a value in the
range of the generalized characteristic function (indicator, in their terminology) is
already called by Kaplan and Schott a “degree of membership” (Zadehian grade of
membership). Indicators of profiles are now called membership functions of fuzzy
sets. Strangely enough it is the mathematician of probabilistic metric spaces, Karl
Menger, who, in 1951, was the first to use the term “ensemble flou” (the French
counterpart of “fuzzy set”) in the title of a paper [40] of his.

2.2 Many-Valued Logics

The Polish logician Jan Łukasiewicz (1878–1956) is considered as the main founder
of multi-valued logic. This is an important point as multi-valued logic is to fuzzy set
theory what classical logic is to set theory. The new system he proposed has been
published for the first time in Polish in 1920. However, the meaning of truth-values
other than “true” and “false” remained rather unclear until Zadeh introduced fuzzy
sets. For instance, Łukasiewicz [38] interpreted the third truth-value of his 3-valued
logic as “possible”, which refers to a modality rather than a truth-value. Kleene [35]
suggests that the third truth-value means “unknown” or “undefined”. See Ciucci and
Dubois [9] for a overview of such epistemic interpretations of three-valued logics.
On the contrary, Zadeh [60] considered intermediate truth-degrees of fuzzy propo-
sitions as ontic, that is, being part of the definition of a gradual predicate. Zadeh
observes that the case where the unit interval is used as a membership scale “cor-
responds to a multivalued logic with a continuum of truth values in the interval [0,
1]”, acknowledging the link between fuzzy sets and many-valued logics. Clearly, for
Zadeh, such degrees of truth do not refer to any kind of uncertainty, contrary to what
is often found in more recent texts about fuzzy sets by various authors. Later on,
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Zadeh [70] would not consider fuzzy logic to be another name for many-valued
logic. He soon considered that fuzzy truth-values should be considered as fuzzy sets
of the unit interval, and that fuzzy logic should be viewed as a theory of approximate
reasoning whereby fuzzy truth-values act as modifiers of the fuzzy statement they
apply to.

2.3 The Issue of Vagueness

More than one hundred years ago, the American philosopher Peirce [47] was one of
the first scholars in the modern age to point out, and to regret, that

Logicians have too much neglected the study of vagueness, not suspecting the important
part it plays in mathematical thought.

Some time later, Russell pointed out that the law of excluded middle cannot be
applied to vague predicates [49]. Even Wittgenstein [57] pointed out that concepts
in natural language do not possess a clear collection of properties defining them, but
have extendable boundaries, and that there are central and less central members in a
category.

The claim that fuzzy sets are a basic tool for addressing vagueness of linguistic
terms has been around for a long time. For instance, Novák [44] insists that fuzzy
logic is tailored for vagueness and he opposes vagueness to uncertainty.

Nevertheless, in the last thirty years, the literature dealing with vagueness has
grown significantly, and much of it is far from agreeing on the central role played
by fuzzy sets in this phenomenon. Following Keefe and Smith [53], vague concepts
in natural language display at least one among three features:

• The existence of borderline cases: That is, there are some objects such that
neither a concept nor its negation can be applied to them. For a borderline
object, it is difficult to make a firm decision as to the truth or the falsity of a
proposition containing a vague predicate applied to this object, even if a precise
description of the latter is available. The existence of borderline cases is
sometimes seen as a violation of the law of excluded middle.

• Unsharp boundaries: The extent to which a vague concept applies to an object
is supposed to be a matter of degree, not an all-or-nothing decision. It is relevant
for predicates referring to continuous scales, like tall, old, etc. This idea can be
viewed as a specialization of the former, if we regard as borderline cases objects
for which a proposition is neither totally true nor totally false. In the following
we shall speak of “gradualness” to describe such a feature. Using degrees of
appropriateness of concepts to objects as truth degrees of statements involving
these concepts goes against the Boolean tradition of classical logic.

• Susceptibility to Sorites paradoxes. This is the idea that the presence of vague
propositions make long inference chains inappropriate, yielding debatable
results. The well-known examples deal with heaps of sand (whereby, since
adding a grain of sand to a small heap keeps its small, all heaps of sand should
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be considered small), young persons getting older by one day, bald persons that
are added one hair, etc.

Since their inception, fuzzy sets have been controversial for philosophers, many
of whom are reluctant to consider the possibility of non-Boolean predicates, as it
questions the usual view of truth as an absolute entity. A disagreement opposes
those who, like Williamson, claim a vague predicate has a standard, though
ill-known, extension [56], to those who, like Kit Fine, deny the existence of a
decision threshold and just speak of a truth value gap [24]. However, the two latter
views reject the concept of gradual truth, and concur on the point that fuzzy sets do
not propose a good model for vague predicates. One of the reasons for the
misunderstanding between fuzzy sets and the philosophy of vagueness may lie in
the fact that Zadeh was trained in engineering mathematics, not in the area of
philosophy. In particular, vagueness is often understood as a defect of natural
language (since it is not appropriate for devising formal proofs, it questions usual
rational forms of reasoning). Actually, vagueness of linguistic terms was considered
as a logical nightmare for early 20th century philosophers. In contrast, for Zadeh,
going from Boolean logic to fuzzy logic is viewed as a positive move: it captures
tolerance to errors (softening blunt threshold effects in algorithms) and may account
for the flexible use of words by people [73]. It also allows for information sum-
marization: detailed descriptions are sometimes hard to make sense of, while
summaries, even if imprecise, are easier to grasp [69].

However, the epistemological situation of fuzzy set theory itself may appear kind
of unclear. Fuzzy sets and their extensions have been understood in various ways in
the literature: there are several notions that are appealed to in connection with fuzzy
sets, like similarity, uncertainty and preference [19]. The concept of similarity to
prototypes has been central in the development of fuzzy sets as testified by
numerous works on fuzzy clustering. It is also natural to represent incomplete
knowledge by fuzzy sets (of possible models of a fuzzy knowledge base, or fuzzy
error intervals, for instance), in connection to possibility theory [18, 74]. Utility
functions in decision theory also appear as describing fuzzy sets of good options.
These topics are not really related to the issue of vagueness.

Indeed, in his works, Zadeh insists that, even when applied to natural language,
fuzziness is not vagueness. The term fuzzy is restricted to sets where the transition
between membership and non-membership is gradual rather than abrupt, not when
it is crisp but unknown. Zadeh [73] argues as follows:

Although the terms fuzzy and vague are frequently used interchangeably in the literature,
there is, in fact, a significant difference between them. Specifically, a proposition, p, is
fuzzy if it contains words which are labels of fuzzy sets; and p is vague if it is both fuzzy
and insufficiently specific for a particular purpose. For example, “Bob will be back in a few
minutes” is fuzzy, while “Bob will be back sometime” is vague if it is insufficiently
informative as a basis for a decision. Thus, the vagueness of a proposition is a
decision-dependent characteristic whereas its fuzziness is not.

Of course, the distinction made by Zadeh may not be so strict as he claims.
While “in a few minutes” is more specific than “sometime” and sounds less vague,
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one may argue that there is some residual vagueness in the former, and that the
latter does not sound very crisp after all. Actually, one may argue that the notion of
non-Boolean linguistic categories proposed by Zadeh from 1965 on is capturing the
idea of gradualness, not vagueness in its philosophical understanding. Zadeh
repetitively claims that gradualness is pervasive in the representation of informa-
tion, especially human-originated.

The connection from gradualness to vagueness does exist in the sense that, insofar
as vagueness refers to uncertainty about meaning of natural language categories,
gradual predicates tend to be more often vague than Boolean ones: indeed, it is more
difficult to precisely measure the membership function of a fuzzy set representing a
gradual category than to define the characteristic function of a set representing the
extension of a Boolean predicate [13]. In fact, the power of expressiveness of real
numbers is far beyond the limited level of precision perceived by the human mind.
Humans basically handle meaningful summaries. Analytical representations of
physical phenomena can be faithful as models of reality, but remain esoteric to lay
people; the same may hold for real-valued membership grades. Indeed, mental
representations are tainted with vagueness, which encompasses at the same time the
lack of specificity of linguistic terms, and the lack of well-defined boundaries of the
class of objects they refer to, as much as the lack of precision of membership grades.
So moving from binary membership to continuous is a bold step, and real-valued
membership grades often used in fuzzy sets are just another kind of idealization of
human perception, that leaves vagueness aside.

3 The Development of Fuzzy Sets and Systems

Having discussed the various streams of ideas that led to the invention of fuzzy sets,
we now outline the basic building blocks of fuzzy set theory, as they emerged from
1965 all the way to the early 1980s, under the impulse of the founding father, via
several landmark papers, with no pretense to exhaustiveness. Before discussing the
landmark papers that founded the field, it is of interest to briefly summarize how L.
A. Zadeh apparently came to the idea of developing fuzzy sets and more generally
fuzzy logic. See also [50] for historical details. First, it is worth mentioning that,
already in 1950, after commenting the first steps towards building thinking
machines (a recently hot topic at the time), he indicated in his conclusion [58]:

Through their association with mathematicians, the electronic engineers working on
thinking machines have become familiar with such hitherto remote subjects as Boolean
algebra, multivalued logic, and so forth.

which shows an early concern for logic and many-valued calculi. Twelve years
later, when providing “a brief survey of the evolution of system theory [59] he
wrote (p. 857)

There are some who feel that this gap reflects the fundamental inadequacy of the con-
ventional mathematics - the mathematics of precisely-defined points, functions, sets,
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probability measures, etc. - for coping with the analysis of biological systems, and that to
deal effectively with such systems, which are generally orders of magnitude more complex
than man-made systems, we need a radically different kind of mathematics, the mathe-
matics of fuzzy or cloudy quantities which are not describable in terms of probability
distributions.

This quotation shows that Zadeh was first motivated by an attempt at dealing
with complex systems rather than with man-made systems, in relation with the
current trends of interest in neuro-cybernetics in that time (in that respect, he
pursued the idea of applying fuzzy sets to biological systems at least until 1969
[64]).

3.1 Fuzzy Sets: The Founding Paper and Its Motivations

The introduction of the notion of a fuzzy set by Zadeh [60] was motivated by the
fact that, quoting the founding paper:

imprecisely defined “classes” play an important role in human thinking, particularly in the
domains of pattern recognition, communication of information, and abstraction.

This seems to have been a recurring concern in all of Zadeh’s fuzzy set papers
since the beginning, as well as the need to develop a sound mathematical frame-
work for handling this kind of “classes”. This purpose required an effort to go
beyond classical binary-valued logic, the usual setting for classes. Although
many-valued logics had been around for a while, what is really remarkable is that
due to this concern, Zadeh started to think in terms of sets rather than only in terms
of degrees of truth, in accordance with intuitions formalized by Kaplan but not
pursued further. Since a set is a very basic notion, it was opening the road to the
introduction of the fuzzification of any set-based notions such as relations, events,
or intervals, while sticking to the many-valued logic point of view only does not
lead you to consider such generalized notions. In other words, while Boolean
algebras are underlying both propositional logic and naive set theory, the set point
of view may be found richer in terms of mathematical modeling, and the same thing
takes place when moving from many-valued logics to fuzzy sets.

A fuzzy set can be understood as a class equipped with an ordering of elements
expressing that some objects are more inside the class than others. However, in
order to extend the Boolean connectives, we need more than a mere relation in
order to extend intersection, union and complement of sets, let alone implication.
The set of possible membership grades has to be a complete lattice [27] so as to
capture union and intersection, and either the concept of residuation or an
order-reversing function in order to express some kind of negation and implication.
The study of set operations on fuzzy sets has in return strongly contributed to a
renewal of many-valued logics under the impulse of Hájek [29] (see [14] for an
introductory overview).
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Besides, from the beginning, it was made clear that fuzzy sets were not meant as
probabilities in disguise, since one can read [60] that

the notion of a fuzzy set is completely non-statistical in nature

and that it provides

a natural way of dealing with problems where the source of imprecision is the absence of
sharply defined criteria of membership rather than the presence of random variables.

Presented as such, fuzzy sets are prima facie not related to the notion of
uncertainty. The point that typicality notions underlie the use of gradual member-
ship functions of linguistic terms is more connected to similarity than to uncer-
tainty. As a consequence,

• originally, fuzzy sets were designed to formalize the idea of soft classification,
which is more in agreement with the way people use categories in natural
language.

• fuzziness is just implementing the concept of gradation in all forms of reasoning
and problem-solving, as for Zadeh, everything is a matter of degree.

• a degree of membership is an abstract notion to be interpreted in practice.

Important definitions appear in the founding paper such as cuts (a fuzzy set can
be viewed as a family of nested crisp sets called its cuts), the basic fuzzy
set-theoretic connectives (e.g. minimum and product as candidates for intersection,
inclusion via inequality of membership functions) and the extension principle
whereby the domain of a function is extended to fuzzy set-valued arguments. As
pointed out earlier, according to the area of application, several interpretations can
be found such as degree of similarity (to a prototype in a class), degree of plau-
sibility, or degree of preference [19]. However, in the founding paper, membership
functions are considered in connection with the representation of human categories
only. The three kinds of interpretation would become patent in subsequent papers.

3.2 Fuzzy Sets and Classification

A popular part of the fuzzy set literature deals with fuzzy clustering where gradual
transitions between classes and their use in interpolation are the basic contribution
of fuzzy sets. The idea that fuzzy sets would be instrumental to avoid too rough
classifications was provided very early by Zadeh, along with Bellman and Kalaba
[3]. They outline how to construct membership functions of classes from examples
thereof. Intuitively speaking, a cluster gathers elements that are rather close to each
other (or close to some core element(s)), while they are well-separated from the
elements in the other cluster(s). Thus, the notions of graded proximity, similarity
(dissimilarity) are at work in fuzzy clustering. With gradual clusters, the key issue is
to define fuzzy partitions. The most widely used definition of a fuzzy partition
originally due to Ruspini [48], where the sum of membership grades of one element
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to the various classes is 1. This was enough to trigger the fuzzy clustering literature,
that culminated with the numerous works by Bezdek and colleagues, with appli-
cations to image processing for instance [5].

3.3 Fuzzy Events

The idea of replacing sets by fuzzy sets was quickly applied by Zadeh to the notion
of event in probability theory [63]. The probability of a fuzzy event is just the
expectation of its membership function. Beyond the mathematical exercise, this
definition has the merit of showing the complementarity between fuzzy set theory
and probability theory: while the latter models uncertainty of events, the former
modifies the notion of an event admitting it can occur to some degree when
observing a precise outcome. This membership degree is ontic as it is part of the
definition of the event, as opposed to probability that has an epistemic flavor, a
point made very early by De Finetti [12], commenting Łukasiewicz logic. However,
it took 35 years before a generalization of De Finetti’s theory of subjective prob-
ability to fuzzy events was devised by Mundici [42]. Since then, there is an active
mathematical area studying probability theory on algebras of fuzzy events.

3.4 Decision-Making with Fuzzy Sets

Fuzzy sets can be useful in decision sciences. This is not surprising since decision
analysis is a field where human-originated information is pervasive. While the
suggestion of modelling fuzzy optimization as the (product-based) aggregation of
an objective function with a fuzzy constraint first appeared in the last section of
[61], the full-fledged seminal paper in this area was written by Bellman and Zadeh
[4] in 1970, highlighting the role of fuzzy set connectives in criteria aggregation.
That pioneering paper makes three main points:

1. Membership functions can be viewed as a variant of utility functions or rescaled
objective functions, and optimized as such.

2. Combining membership functions, especially using the minimum, can be one
approach to criteria aggregation.

3. Multiple-stage decision-making problems based on the minimum aggregation
connective can then be stated and solved by means of dynamic programming.

This view was taken over by Tanaka et al. [54] and Zimmermann [86] who
developed popular multicriteria linear optimisation techniques in the seventies. The
idea is that constraints are soft. Their satisfaction is thus a matter of degree. They can
thus be viewed as criteria. The use of the minimum operation instead of the sum for
aggregating partial degrees of satisfaction preserves the semantics of constraints since
it enforces all of them to be satisfied to some degree. Then any multi-objective linear
programming problem becomes a max-min fuzzy linear programming problem.
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3.5 Fuzzy Relations

Relations being subsets of a Cartesian product of sets, it was natural to make them
fuzzy. There are two landmark papers by Zadeh on this topic in the early 1970s. One
published in 1971 [65] makes the notions of equivalence and ordering fuzzy.
A similarity relation extends the notion of equivalence, preserving the properties of
reflexivity and symmetry and turning transitivity into maxmin transitivity. Similarity
relations come close to the notion of ultrametrics and correspond to nested equiv-
alence relations. As to fuzzy counterparts of order relations, Zadeh introduces first
definitions of what will later be mathematical models of a form of fuzzy preference
relations [25]. In his attempt the difficult part is the extension of antisymmetry that
will be shown to be problematic. The notion of fuzzy preorder, involving a similarity
relation turns out to be more natural than the one of a fuzzy order [6].

The other paper on fuzzy relations dates back to 1975 [71] and consists in a
fuzzy generalization of the relational algebra. This seminal paper paved the way to
the application of fuzzy sets to databases (see [8] for a survey), and to flexible
constraint satisfaction in artificial intelligence [16, 41].

3.6 Fuzzy Systems

The application of fuzzy sets to systems was not obvious at all, as traditionally
systems were described by numerical equations. Zadeh seems to have tried several
solutions to come up with a notion of fuzzy system. Fuzzy systems [61] were
initially viewed as systems whose state equations involve fuzzy variables or
parameters, giving birth to fuzzy classes of systems. Another idea, hinted in 1965
[61], was that a system is fuzzy if either its input, its output or its states would range
over a family of fuzzy sets. Later in 1971 [67], he suggested that a fuzzy system
could be a generalisation of a non-deterministic system, that moves from a state to a
fuzzy set of states. So the transition function is a fuzzy mapping, and the transition
equation can be captured by means of fuzzy relations, and the sup-min combination
of fuzzy sets and fuzzy relations. These early attempts were outlined before the
emergence of the idea of fuzzy control [68]. In 1973, though, there was what looks
like a significant move, since for the first time it was suggested that fuzziness lies in
the description of approximate rules to make the system work. That view, devel-
oped first in [69], was the result of a convergence between the idea of system with
the ones of fuzzy algorithms introduced earlier [62], and his increased focus of
attention on the representation of natural language statements via linguistic vari-
ables. In this very seminal paper, systems of fuzzy if-then rules were first described,
which paved the way to fuzzy controllers, built from human information, with the
tremendous success met by such line of research in the early 1980s. To-day, fuzzy
rule-based systems are extracted from data and serve as models of systems more
than as controllers. However the linguistic connection is often lost, and such fuzzy
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systems are rather standard precise systems using membership function for inter-
polation, than approaches to the handling of poor knowledge in system
descriptions.

3.7 Linguistic Variables and Natural Language Issues

When introducing fuzzy sets, Zadeh seems to have been chiefly motivated by the
representation of human information in natural language. This focus explains why
many of Zadeh’s papers concern fuzzy languages and linguistic variables. He tried
to combine results on formal languages and the idea that the term sets that contain
the atoms from which this language was built contain fuzzy sets representing the
meaning of elementary concepts [66]. This is the topic where the most numerous
and extended papers by Zadeh can be found, especially the large treatise devoted to
linguistic variables in 1975 [72] and the papers on the PRUF language [73, 78].
Basically, these papers led to the “computing with words” paradigm, which takes
the opposite view of say, logic-based artificial intelligence, by putting the main
emphasis, including the calculation method, on the semantics rather than the syntax.
Starting with natural language sentences, fuzzy words are precisely modelled by
fuzzy sets, and inference comes down to some form of non-linear optimisation. In a
later step, numerical results are translated into verbal terms, using the so-called
linguistic approximation. While this way of reasoning seems to have been at the
core of Zadeh’s approach, it is clear that most applications of fuzzy sets only use
terms sets and linguistic variables in rather elementary ways. For instance, quite a
number of authors define linguistic terms in the form of trapezoidal fuzzy sets on an
abstract universe which is not measurable and where addition makes no sense, nor
linear membership functions. In [72], Zadeh makes it clear that linguistic variables
refer to objective measurable scales: only the linguistic term has a subjective
meaning, while the universe of discourse contains a measurable quantity like
height, age, etc.

3.8 Fuzzy Intervals

In his longest 3-part paper in 1975 [72], Zadeh points out that a trapezoidal fuzzy set
of the real line can model imprecise quantities. These trapezoidal fuzzy sets, called
fuzzy numbers, generalize intervals on the real line and appear as the mathematical
rendering of fuzzy terms that are the values of linguistic variables on numerical
scales. The systematic use of the extension principle to such fuzzy numbers and the
idea of applying it to basic operations of arithmetics is a key-idea that will also turn
out to be seminal. Since then, numerous papers have developed methods for the
calculation with fuzzy numbers. It has been shown that the extension principle
enable a generalization of interval calculations, hence opening a whole area of fuzzy
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sensitivity analysis that can cope with incomplete information in a gradual way. The
calculus of fuzzy intervals is instrumental in various areas including:

• systems of linear equations with fuzzy coefficients (a critical survey is [36]) and
differential equations with fuzzy initial values, and fuzzy set functions [37];

• fuzzy random variables for the handling of linguistic or imprecise statistical data
[10, 26];

• fuzzy regression methods [43];
• operations research and optimisation under uncertainty [15, 31, 32].

3.9 Fuzzy Sets and Uncertainty: Possibility Theory

Fuzzy sets can represent uncertainty not because they are fuzzy but because crisp
sets are already often used to represent ill-known values or situations, albeit in a
crisp way like in interval analysis or in propositional logic. Viewed as representing
uncertainty, a set just distinguishes between values that are considered possible and
values that are impossible, and fuzzy sets just introduce grades to soften boundaries
of an uncertainty set. So in a fuzzy set it is the set that captures uncertainty [20, 21].
This point of view echoes an important distinction made by Zadeh himself [73, 83]
between

• conjunctive (fuzzy) sets, where the set is viewed as the conjunction of its
elements. This is the case for clusters discussed in the previous section. But also
with set-valued attributes like the languages spoken more or less fluently by an
individual.

• and disjunctive fuzzy sets which corresponds to mutually exclusive possible
values of an ill-known single-valued attribute, like the ill-known birth nation-
ality of an individual.

In the latter case, membership functions of fuzzy sets are called possibility
distributions [74] and act as elastic constraints on a precise value. Possibility dis-
tributions have an epistemic flavor, since they represent the information we have at
our disposal about what values remain more or less possible for the variable under
consideration, and what values are (already) known as impossible. Associated with
a possibility distribution, is a possibility measure [74], which is a
max-decomposable set function. Thus, one can evaluate the possibility of a crisp, or
fuzzy, statement of interest, given the available information supposed to be rep-
resented by a possibility distribution. It is also important to notice that the intro-
duction of possibility theory by Zadeh was part of the modeling of fuzzy
information expressed in natural language [77]. This view contrasts with the
motivations of the English economist Shackle [51, 52], interested in a
non-probabilistic view of expectation, who had already designed a formally similar
theory in the 1940s, but rather based on the idea of degree of impossibility
understood as a degree of surprise (using profiles of the form 1-μ, where μ is a
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membership function). Shackle can also appear as a forerunner of fuzzy sets, of
possibility theory, actually.

Curiously, apart from a brief mention in [76], Zadeh does not explicitly use the
notion of necessity (the natural dual of the modal notion of possibility) in his work
on possibility theory and approximate reasoning. Still, it is important to distinguish
between statements that are necessarily true (to some extent), i.e. whose negation is
almost impossible, from the statements that are only possibly true (to some extent)
depending on the way the fuzzy knowledge would be made precise. The simulta-
neous use of the two notions is often required in applications of possibility theory
[23] and in possibilistic logic [22].

3.10 Approximate Reasoning

The first illustration of the power of possibility theory proposed by Zadeh was an
original theory of approximate reasoning [75, 79, 80], later reworked for empha-
sizing new points [82, 84], where pieces of knowledge are represented by possi-
bility distributions that fuzzily restrict the possible values of variables, or tuples of
variables. These possibility distributions are combined conjunctively, and then
projected in order to compute the fuzzy restrictions acting on the variables of
interest. This view is the one at work in his calculus of fuzzy relations in 1975. One
research direction, quite in the spirit of the objective of “computing with words”
[82], would be to further explore the possibility of a syntactic (or symbolic)
computation of the inference step (at least for some noticeable fragments of this
general approximate reasoning theory), where the obtained results are parameter-
ized by fuzzy set membership functions that would be used only for the final
interpretation of the results. An illustration of this idea is at work in possibilistic
logic [22], a very elementary formalism handling pairs made of a Boolean formula
and a certainty weight, that captures a tractable form of non-monotonic reasoning.
Such pairs syntactically encode simple possibility distributions, combined and
reasoned from in agreement with Zadeh’s theory of approximate reasoning, but
more in the tradition of symbolic artificial intelligence than in conformity with the
semantic-based methodology of computing with words.

4 Conclusion

The seminal paper on fuzzy sets by Lotfi Zadeh spewed out a large literature,
despite its obvious marginality at the time it appeared. There exist many forgotten
original papers without off-springs. Why has Zadeh’s paper encountered an even-
tual dramatic success? One reason is certainly that Zadeh, at the time when the
fuzzy set paper was released, was already a renowned scientist in systems engi-
neering. So, his paper, published in a good journal, was visible. However another
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reason for success lies in the tremendous efforts made by Zadeh in the seventies and
the eighties to develop his intuitions in various directions covering many topics
from theoretical computer sciences to computational linguistics, from system sci-
ences to decision sciences.

It is not clear that the major successes of fuzzy set theory in applications fully
meet the expectations of its founder. Especially there was almost no enduring
impact of fuzzy sets on natural language processing and computational linguistics,
despite the original motivation and continued effort about the computing with
words paradigm. The contribution of fuzzy sets and fuzzy logic was to be found
elsewhere, in systems engineering, data analysis, multifactorial evaluation, uncer-
tainty modeling, operations research and optimisation, and even mathematics. The
notion of fuzzy rule-based system (Takagi-Sugeno form, not Mamdani’s, nor even
the view developed in [81]) has now been integrated in both the neural net literature
and the non-linear control one. These fields, just like in clustering, only use the
notion of fuzzy partition and possibly interpolation between subclasses, and bear
almost no connection to the issue of fuzzy modeling of natural language. These
fields have come of age, and almost no progress can be observed that concern their
fuzzy set ingredients. In optimisation, the fuzzy linear programming method is now
used in applications, with only minor variants (if we set apart the handling of
uncertainty proper, via fuzzy intervals).

However there are some topics where basic research seems to still be active, with
high potential. See [11] for a collection of position papers highlighting various
perspectives for the future of fuzzy sets. Let us cite two such topics. The notion of
fuzzy interval or fuzzy number, introduced in 1975 by Zadeh [72], and considered
with the possibility theory lenses, seems to be more promising in terms of further
developments because of its connection with non-Bayesian statistics and imprecise
probability [39] and its potential for handling uncertainty in risk analysis [1].
Likewise, the study of fuzzy set connectives initiated by Zadeh in 1965, has given
rise to a large literature, and significant developments bridging the gap between
many-valued logics and multicriteria evaluation, with promising applications (for
instance [2]).

Last but not least, we can emphasize the influence of fuzzy sets on some even
more mathematically oriented areas, like the strong impact of fuzzy logic on
many-valued logics (triggered by Hajek [29]) and topological and categorical
studies of lattice-valued sets [30]. There are very few papers in the literature that
could influence such various areas of scientific investigation to that extent.
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Fuzzy Decision Making: Its Pioneers
and Supportive Environment

Cengiz Kahraman, Sezi Çevik Onar and Başar Öztayşi

Abstract Fuzzy decision making is the collection of single or multicriteria tech-
niques aiming at selecting the best alternative in case of imprecise, incomplete, and
vague data. This chapter reviews the fuzzy decision making literature and sum-
marizes the review results by tabular and graphical illustrations. The classification is
based on the new extensions of fuzzy sets: Intuitionistic, hesitant, and type-2 fuzzy
sets. Later, the media publishing fuzzy decision making papers, journals, books,
conferences, and societies are summarized. Finally, fuzzy decision making exam-
ples are given for ordinary, intuitionistic, hesitant, and type-2 fuzzy sets.

Keywords Decision-making � Ordinary fuzzy set � Intuitionistic fuzzy set �
Hesitant fuzzy set � Type-2 fuzzy set

1 Introduction

Decision making is the study of identifying and choosing alternatives based on the
values and preferences of the decision maker [16]. A decision making process can
be divided into the following eight steps Baker et al. [5]:
Step 1. Definition of the problem: This step includes the identification of root

causes, limiting assumptions, system and organizational boundaries and
interfaces, and any stakeholder issues

Step 2. Determination of requirements: This step includes the constraints
describing the set of the feasible solutions of the decision problem

Step 3. Establishment of goals: This step includes the definition of the goals
which are broad statements of intent and desirable programmatic values
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Step 4. Identification of alternatives: This step includes the determination of the
alternatives which offer different approaches for changing the initial
condition into the desired condition

Step 5. Definition of criteria: This step includes the determination of the criteria
which will discriminate among alternatives. The criteria must be based on
the goals

Step 6. Selection of a decision making technique: This step includes the
determination of the analysis technique which will solve the problem

Step 7. Evaluation of alternatives with respect to criteria: This step includes the
application of the determined technique in Step 6

Step 8. Validation of solutions: This step includes the check of the validity of the
solution obtained by the evaluation techniques

Real-world decision-making problems are usually too complex and ill-structured
to be considered by classical decision making techniques. In the classical decision
making techniques, human’s judgments are represented as exact numbers.
However, in many practical cases, the data may be imprecise, or the decision
makers might be unable to assign exact numerical values to the evaluation. Since
some of the evaluation criteria are subjective and qualitative in nature, it is very
difficult for the decision maker to express the preferences using exact numerical
values [35]. Instead, decision makers usually prefer making linguistic evaluations in
the decision matrix. Besides, the conventional decision making approaches tend to
be less effective in dealing with the imprecise or vague nature of the linguistic
assessments [20]. The real case problems including decision making problems are
complex and involve vagueness and fuzziness. This has led to the development of
fuzzy set theory by Zadeh [44], as a means of representing and manipulating data
that were not precise, but rather fuzzy. The theory of fuzzy logic provides a
mathematical strength to capture the uncertainties associated with human cognitive
process, such as thinking and reasoning [32].

The term fuzzy decision making has first been introduced by Bellman and Zadeh
[6]. They defined the fuzzy decision making as follows: The term decision making
in fuzzy environment means a decision making process in which the goals and/or the
constraints, but not necessarily the system under control, are fuzzy in nature. This
means that the goals and/or the constraints constitute classes of alternatives whose
boundaries are not sharply defined [6]. Later, Baas and Kwakernaak [4] applied the
most classic work on the fuzzy decision making and it was used as a benchmark for
other similar fuzzy decision models. Dubois and Prade [15], Zimmermann [47, 48],
Chen and Hwang [14], and Ribeiro [31] differentiated the family of fuzzy decision
making methods into two main phases. The first phase is generally known as the
rating process, dealing with the measurement of performance ratings or the degree
of satisfaction with respect to all attributes of each alternative under fuzziness. The
second phase, the ranking of alternatives that is carried out by ordering the existing
alternatives according to the resulted aggregated performance ratings obtained from
the first phase. Yager [40] presented some ideas on the applications of fuzzy sets to
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multi-objective decision making with particular emphasis on a means of including
differing degrees of importance to different objectives.

After the introduction of fuzzy decision making by these pioneers, the classical
decision making techniques have been transformed to their fuzzy versions within
few years. Classical TOPSIS method was transformed to fuzzy TOPSIS by Chen
[13]; Classical AHP was transformed to fuzzy AHP by Van Laarhoven and Pedrycz
[37], Buckley [7], and Chang [11]. Classical VIKOR was transformed to fuzzy
VIKOR by Opricovic [28].

After the introduction of the extensions of fuzzy sets such as type-2 fuzzy sets,
intuitionistic fuzzy sets, fuzzy multisets, and hesitant fuzzy sets, the ordinary fuzzy
versions of the decision making methods have started to extend to their new ver-
sions such as type-2 fuzzy TOPSIS [12], type-2 fuzzy AHP [19], type-2 fuzzy
VIKOR [42], intuitionistic fuzzy TOPSIS [2], hesitant fuzzy TOPSIS [46], etc.

The rest of this chapter is organized as follows. Section 2 includes a literature
review on fuzzy decision making based on the extensions of fuzzy sets. Section 3
presents the publication media of fuzzy decision making. Section 4 gives some
fuzzy decision making applications. Section 5 concludes the chapter.

2 Literature Review

In the following, a literature review on decision making based oordinary fuzzy sets,
hesitant fuzzy sets, intuitionistic fuzzy sets, and type-2 fuzzy sets, respectively.

2.1 Ordinary Fuzzy Decision-Making (OFDM)

If X is a collection of objects denoted generically by x, then a fuzzy set ~A in X is a
set of ordered pairs:

~A ¼ x; l~A xð Þjx 2 X
� �� � ð1Þ

l~A xð Þ is called the membership function which maps X to the membership space
M. Its range is the subset of nonnegative real numbers whose supremum is finite
[44].

The search for OFDM based on Scopus database in October 2015 yielded 2159
papers. 1281 of them are articles while 775 of them are conference papers. The rest
are review, book chapters, editorial, erratum, article in press, etc.

Figure 1 presents the publication frequencies of the papers on OFDM with
respect to years. As it is clearly seen from the graph, significant increases in the
frequencies of OFDM papers exist after the year 2000.
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Table 1 shows the sources publishing OFDM papers and the frequencies of those
papers. Fuzzy Sets and Systems and Expert Systems with Applications are by far the
leading journals publishing OFDM papers.

Table 2 presents the authors most publishing OFDM papers.
Table 3 gives the affiliations of the authors publishing OFDM papers.
Figure 2 illustrates the source countries publishing OFDM papers. China is by

far the first country publishing OFDM papers.
Figure 3 gives classifies the OFDM papers with respect to their subject areas.

Engineering (55.1 %), computer sciences (52.3 %), mathematics (24.9 %), and
decision sciences (13.7 %) are the first four areas that OFDM papers come from.

2.2 Hesitant Fuzzy Decision-Making (HFDM)

Hesitant fuzzy sets (HFSs), initially developed by Torra [34], are the extensions of
regular fuzzy sets which handle the situations where a set of values are possible for
the membership of a single element.

Torra [34] defines hesitant fuzzy sets (HFSs) as follow: Let X be a fixed set, a
HFS on X is in terms of a function that when applied to X returns a subset of [0, 1].
Mathematical expression for HFS is as follows:

E ¼ x; hE xð Þh ijx 2 Xf g; ð2Þ

where hE xð Þ is a set of some values in [0, 1], denoting the possible membership
degrees of the element x 2 X to the set E.

There are different types of HFSs that define membership degrees in various
formats such as hesitant fuzzy linguistic term sets (HFLTS), interval valued hesitant
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fuzzy sets (IVHFS), triangular hesitant fuzzy sets (THFS), and trapezoidal hesitant
fuzzy sets (TrHFS).

The search for HFDM based on Scopus database in October 2015 yielded 221
papers. 181 of them are articles while 25 of them are conference papers. The rest are
review, editorial, erratum, and article in press.

Figure 4 presents the publication frequencies of the papers on HFDM with
respect to years. As it is clearly seen from the graph, significant increases in the
frequencies of HFDM papers exist after the year 2012.

Table 1 Sources publishing OFDM papers and the frequencies of those papers

Source Number of
documents

Fuzzy Sets and Systems 79

Expert Systems with Applications 65

IEEE International Conference on Fuzzy Systems 53

Information Sciences 30

Xi Tong Gong Cheng Yu Dian Zi Ji Shu Systems Engineering and
Electronics

28

Studies in Fuzziness and Soft Computing 24

European Journal of Operational Research 20

Journal of Intelligent and Fuzzy Systems 18

Computers and Industrial Engineering 17

International Journal of Production Research 17

Annual Conference of the North American Fuzzy Information Processing
Society NAFIPS

16

Applied Mathematical Modelling 16

Cybernetics and Systems 16

Fuzzy Optimization and Decision Making 16

Knowledge Based Systems 16

Proceedings of the IEEE International Conference on Systems Man and
Cybernetics

16

International Journal of Advanced Manufacturing Technology 15

Kongzhi Yu Juece Control and Decision 15

Xitong Gongcheng Lilun Yu Shijian System Engineering Theory and
Practice

14

Advanced Materials Research 13

Applied Mechanics and Materials 13

Computers and Mathematics with Applications 12

International Journal of Information Technology and Decision Making 12

International Journal of Intelligent Systems 12

International Journal of Uncertainty Fuzziness and Knowledge Based
Systems

12

Studies in Computational Intelligence 12

Soft Computing 10
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Table 4 shows the sources publishing hesitant fuzzy decision-making papers and
the frequencies of those papers. Journal of Intelligent and Fuzzy Systems,
Information Sciences and Knowledge Based Systems are by far the leading journals
publishing HFDM papers.

Figure 5 presents the authors most publishing HFDM papers.
Table 5 gives the affiliations of the authors publishing HFDM papers.

Table 2 Authors most publishing OFDM papers

Authors Number of OFDM papers he/she published

Herrera-Viedma, E. 22

Kahraman, C. 21

Yano, H. 20

Sakawa, M. 19

Kacprzyk, J. 18

Ekel, P.Y. 18

Lu, J. 17

Zhang, G. 15

Mousavi, S.M. 13

Chiclana, F. 12

Li, D.F. 12

Ruan, D. 11

Pedrycz, W. 11

Tavakkoli-Moghaddam, R. 11

Chen, S.Y. 11

Lee, H.S. 10

Liu, P. 10

Table 3 Affiliations of the authors publishing OFDM papers and frequencies

Affiliations Number of papers

Islamic Azad University 44

University of Tehran 36

Istanbul Technical University 31

Huazhong University of Science and Technology 28

North China Electric Power University 27

Universidad de Granada 27

Galatasaray University 25

Southeast University 23

Dalian University of Technology 22

National Chiao Tung University Taiwan 21

National Taiwan Ocean University 21

National Taiwan University of Science and Technology 21

University of Technology Sydney 20
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Fig. 2 Source countries publishing OFDM papers
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Figure 6 illustrates the source countries publishing HFDM papers. China is again
by far the first country publishing HFDM papers.

Figure 7 gives classifies the HFDM papers with respect to their subject areas.
Computer sciences (77.2 %), mathematics (55.7 %), engineering (48.9 %), and
decision sciences (17.8 %) are the first four areas that HFDM papers come from.
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Table 4 Sources publishing HFDM papers and the frequencies of those papers

Source Number of
documents

Journal of Intelligent and Fuzzy Systems 39

Information Sciences 16

Knowledge Based Systems 14

Mathematical Problems in Engineering 8

International Journal of Intelligent Systems 8

Journal of Applied Mathematics 6

Soft Computing 5

Computers and Industrial Engineering 4

Applied Mathematical Modelling 4

Journal of Information and Computational Science 4

Journal of Convergence Information Technology 4

International Journal of Uncertainty Fuzziness and Knowledge Based
Systems

4

Expert Systems with Applications 4

International Journal of Computational Intelligence Systems 4

IEEE Transactions on Fuzzy Systems 4

Kongzhi Yu Juece Control and Decision 3

Journal of Computational Information Systems 3

International Journal of Fuzzy Systems 3

International Journal of Systems Science 3

International Journal of Digital Content Technology and Its
Applications

3
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Fig. 5 Authors most publishing HFDM papers

Table 5 Affiliations of the authors publishing HFDM papers and frequencies

Affiliations Number of papers

Central South University China 25

Southeast University 23

Chongqing University 21

Sichuan University 19

Beijing Institute of Technology 14

PLA University of Science and Technology 10

Hebei University 9

Shanghai Jiaotong University 9

Zhejiang University of Finance and Economics 8

Qingdao TechNological University 7

Southwest Jiaotong University 6

Tsinghua University 6

Universidad de Granada 6

Universidad de Jaen 5

Harbin Institute of Technology 5

National Taiwan University of Science and Technology 5

Zaozhuang University 5
(continued)
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2.3 Intuitionistic Fuzzy Decision-Making (IFDM)

Atanassov [3] intuitionistic fuzzy sets (IFSs) include the membership value as well
as the non-membership value for describing any x in X such that the sum of
membership and non-membership is at most equal to 1.

Let X 6¼ ; be a given set. An intuitionistic fuzzy set (IFS) in X is an object A
given by

Table 5 (continued)

Affiliations Number of papers

Iran University of Science and Technology 4

Nanjing University of Finance and Economics 4

Shahed University 4

Kunming University of Science and Technology 4

Harbin University of Science and Technology 4

Hunan University 4

Hebei University of Engineering 4

University of Manchester 3

Yangzhou University 3

Hohai University 3

Beijing Jiaotong Daxue 3

Beijing Normal University 3

Shaoxing University 3

Yunnan University 3

De Lin Institute of Technology 3

Hunan Institute of Science and Technology 3

Jining Medical University 2

Quchan Institute of Engineering and Technology 2

Quchan University of Advanced Technology 2

Hefei University of Technology 2

Zhejiang Normal University 2

Northwestern Polytechnical University 2

Central South University of Forestry and Technology 2

Beijing Forestry University 2

Anhui University of Technology 2

Universidad de Chile 2

Guangxi Normal University 2

Nanjing University of Aeronautics and Astronautics 2

Istanbul Technical University 2

South China University of Technology 2

Qufu Normal University 2
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~A ¼ x; l~A xð Þ; v~A xð Þ; x 2 X
� �

; ð3Þ

where l~A:X ! 0; 1½ � and v~A:X ! 0; 1½ � satisfy the condition

0� l~A xð Þþ v~A xð Þ� 1; ð4Þ

for every x 2 X.
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There are different types of IFSs that define membership and nonmembership
values in various formats such as interval valued intuitionistic fuzzy sets (IVIFS),
triangular intuitionistic fuzzy sets (TIFS), and trapezoidal intuitionistic fuzzy sets
(TrIFS).

The search for IFDM based on Scopus database in October 2015 yielded 994
papers. 719 of them are articles while 236 of them are conference papers. The rest
are review, erratum, book and article in press.

Figure 8 presents the publication frequencies of the papers on IFDM with respect
to years. As it is clearly seen from the graph, significant increases in the frequencies
of IFDM papers exist after the year 2005.

Table 6 shows the sources publishing IFDM papers and the frequencies of those
papers. Journal of Intelligent and Fuzzy Systems, Expert Systems with Applications,
Kongzhi Yu Juece Control and Decision, and Knowledge Based Systems, Applied
Mathematical Modelling are the leading journals publishing IFDM papers.
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Fig. 8 Publication
frequencies of the papers on
IFDM with respect to years

Table 6 Sources publishing IFDM papers and the frequencies of those papers

Source Number of
documents

Journal of Intelligent and Fuzzy Systems 47

Expert Systems with Applications 43

Kongzhi Yu Juece Control and Decision 33

Knowledge Based Systems 30

Applied Mathematical Modelling 27

Information Sciences 22

IEEE International Conference on Fuzzy Systems 21

International Journal of Uncertainty Fuzziness and Knowlege Based
Systems

21

Advances in Information Sciences and Service Sciences 19

International Journal of Digital Content Technology and Its
Applications

18

(continued)
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Figure 9 presents the authors most publishing IFDM papers.
Table 7 gives the affiliations of the authors publishing IFDM papers. Chinese

universities again appear at the top of the table.
Figure 10 illustrates the source countries publishing IFDM papers. China is

again by far the first country publishing IFDM papers.
Figure 11 gives classifies the IFDM papers with respect to their subject areas.

Computer sciences (70.2 %), mathematics (40.3 %), engineering (44.4 %), and
decision sciences (10.4 %) are the first four areas that IFDM papers come from.

2.4 Type-2 Fuzzy Decision-Making (T2FDM)

Zadeh [45] introduced type-2 fuzzy sets in 1975. A type-2 fuzzy set lets us
incorporate uncertainty about the membership function into the fuzzy set theory.
A type-2 fuzzy set ~A in the universe of discourse X can be represented by a type-2
membership function l~~A

shown as follows [27]:

Table 6 (continued)

Source Number of
documents

Mathematical Problems in Engineering 16

International Journal of Intelligent Systems 16

Fuzzy Optimization and Decision Making 16

IEEE Transactions on Fuzzy Systems 15

Journal of Applied Mathematics 13

Applied Mechanics and Materials 13

Journal of Computational Information Systems 12

Soft Computing 12

Journal of Convergence Information Technology 11

Xi Tong Gong Cheng Yu Dian Zi Ji Shu Systems Engineering and
Electronics

11

Xitong Gongcheng Lilun Yu Shijian System Engineering Theory and
Practice

11

International Journal of Computational Intelligence Systems 10

Journal of Information and Computational Science 10

International Journal of Advancements in Computing Technology 10

Communications in Computer and Information Science 10

Group Decision and Negotiation 9

Information Fusion 9

Journal of Systems Science and Systems Engineering 8

Technological and Economic Development of Economy 8
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Fig. 9 Authors most publishing IFDM papers

Table 7 Affiliations of the authors publishing IFDM papers and frequencies

Affiliations Number of papers

Central South University China 51

Chongqing University 51

Southeast University 44

PLA University of Science and Technology 32

Zhejiang University of Finance and Economics 28

Chang Gung University 25

Jiangxi University of Finance and Economics 24

Shanghai Jiaotong University 20

Systems Research Institute of the Polish Academy of Sciences 19

Hohai University 18

Sichuan University 18

Fuzhou University 18

Anhui University 17

Beijing Institute of Technology 17

Nanjing University of Aeronautics and Astronautics 14

Tsinghua University 14

Zhejiang Normal University 13

Beihang University 13

Guangdong University of Foreign Studies 12

Guangdong Ocean University 12

Hebei University 11
(continued)
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~~A ¼ x; uð Þ; l~~A
x; uð Þ

� �
j8x 2 X; 8u 2 Jx � 0; 1½ �; 0� l~~A

x; uð Þ� 1
n o

ð5Þ

where Jx denotes an interval [0, 1]. The type-2 fuzzy set ~~A also can be represented
as follows [27]:

~~A ¼
Z
x2X

Z
u2Jx

l~~A
x; uð Þ= x; uð Þ; ð6Þ

where Jx � 0; 1½ � and RR
denote union over all admissible x and u.

The search for T2FDM based on Scopus database in October 2015 yielded 229
papers. 124 of them are articles while 95 of them are conference papers. The rest are
conference review, erratum, book chapter, book and article in press.
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Fig. 10 Source countries publishing IFDM papers

Table 7 (continued)

Affiliations Number of papers

Xiamen University 11

Harbin Institute of Technology 11

North China Electric Power University 11

Dalian University of Technology 10

Tianjin University 10

PLA Dalian Naval Academy 10

Zaozhuang University 10
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Figure 12 presents the publication frequencies of the papers on T2FDM with
respect to years. As it is clearly seen from the graph, significant increases in the
frequencies of T2FDM papers exist after the year 2007.

Table 8 shows the sources publishing T2FDM papers and the frequencies of
those papers. IEEE International Conference on Fuzzy Systems, Expert Systems
with Applications, Information Sciences, Knowledge Based Systems, Soft
Computing, and IEEE Transactions on Fuzzy Systems are the leading journals
publishing T2FDM papers.
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Fig. 11 IFDM papers with respect to their subject areas and frequencies
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Fig. 12 Publication frequencies of the papers on T2FDM with respect to years
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Figure 13 presents the authors most publishing T2FDM papers.
Table 9 gives the affiliations of the authors publishing T2FDM papers.
Figure 14 illustrates the source countries publishing T2FDM papers. China and

Taiwan are by far the first two countries publishing T2FDM papers.
Figure 15 gives classifies the T2FDM papers with respect to their subject areas.

Computer sciences (78.7 %), engineering (41.7 %), mathematics (34.3 %), and
decision sciences (8.3 %) are the first four areas that T2FDM papers come from.

Table 8 Sources publishing T2FDM papers and the frequencies of those papers

Source Number of
documents

IEEE International Conference on Fuzzy Systems 21

Expert Systems with Applications 8

Information Sciences 7

Knowledge Based Systems 7

Soft Computing 7

IEEE Transactions on Fuzzy Systems 6

Annual Conference of the North American Fuzzy Information Processing
Society NAFIPS

4

Computers and Industrial Engineering 3

International Journal of Computational Intelligence Systems 3

Studies in Computational Intelligence 3

Studies in Fuzziness and Soft Computing 3

Frontiers of Computer Science 2

International Journal of Electrical Power and Energy Systems 2

IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics 2

International Journal of Information Technology and Decision Making 2

International Journal of Uncertainty Fuzziness and Knowledge Based
Systems

2

Journal of Applied Mathematics 2

Journal of Industrial and Production Engineering 2

Journal of the Chinese Institute of Industrial Engineers 2

Advances in Soft Computing 2

Aip Conference Proceedings 2

International Journal of Advanced Manufacturing Technology 2

Engineering Applications of Artificial Intelligence 2

Communications in Computer and Information Science 2

Applied Mathematical Modelling 1

Applied Mathematical Sciences 1

Applied Mechanics and Materials 1

Arpn Journal of Engineering and Applied Sciences 1

Computers in Industry 1
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3 Fuzzy Decision Making Publishing Media

In this section, the journals, books, conferences, and societies, which are interested
in fuzzy decision making are summarized.

In Table 10, you can find the list of journals publishing fuzzy decision making
papers.

In Table 11, you can find the list of fuzzy decision making books.
In Table 12, you can find the list of conferences accepting fuzzy decision making

papers.

4 Fuzzy Decision Making Applications

In this section, the following problem will be solved by ordinary fuzzy sets and
three extensions in order to show how the above types of fuzzy sets can be used.
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Fig. 13 Authors most publishing T2FDM papers
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Table 9 Affiliations of the authors publishing T2FDM papers and frequencies

Affiliations Number of papers

Chang Gung University 14

Universiti Malaysia Terengganu 13

National Taiwan University of Science and Technology 12

University of Essex 9

Istanbul Technical University 9

University of Southern California 9

Hebei University 7

Tijuana Institute of Technology 6

Yildiz Technical University 6

Southeast University 5

Universidad Autonoma de Baja California, Campus Tijuana 5

Central South University China 5

De Montfort University 5

Jinwen University of Science and Technology 5

Amirkabir University of Technology 4

Politechnika Czestochowska 4

Deakin University 4

Hohai University 3

Selcuk University 3
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Electric vehicles have been popular all around the world in recent years. Since
one of the drawbacks of electric vehicles is the charge capacity of cars, locating
charging stations has become a very important problem. Assume there are four
possible locations and five criteria to be used for decision making. The criteria can
be listed as follows:

• Destruction degree on vegetation and water (C1)
• Construction cost (C2)
• Annual operation and maintenance cost (C3)
• Traffic convenience (C4)
• Service capability (C5).

4.1 Charging Station Location Selection Using Ordinary
Fuzzy TOPSIS

In Fuzzy TOPSIS approach the decision maker assigns importance weight for each
criterion and score of each alternative with respect to the criteria. For the given
problem the weights and scores are determined as shown in Table 13 [13].

0

20

40

60

80

100

120

140

160

180

200

Fig. 15 T2FDM papers with respect to their subject areas and frequencies
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Table 10 Journals publishing fuzzy decision making papers

Journal Publisher Number of fuzzy
papers published

Fuzzy Sets and Systems Elsevier 402

Expert Systems with Applications Elsevier 381

IEEE International Conference on Fuzzy
Systems

IEEE 314

Journal of Intelligent and Fuzzy Systems IOS Press 177

Information Sciences Elsevier 160

European Journal of Operational Research Elsevier 130

Knowledge Based Systems Elsevier 98

Applied Mathematical Modelling Elsevier 83

Fuzzy Optimization and Decision Making Springer 83

Computers and Industrial Engineering Elsevier 74

International Journal of Uncertainty
Fuzziness and Knowlege Based Systems

World Scientific 74

International Journal of Production Research Taylor and Francis 71

International Journal of Advanced
Manufacturing Technology

Springer 71

IEEE Transactions on Fuzzy Systems IEEE 70

Soft Computing Springer 64

International Journal of Intelligent Systems John Wiley and Sons 58

Computers and Mathematics with
Applications

Pergamon 52

Mathematical Problems in Engineering Hindawi 51

International Journal of Computational
Intelligence Systems

Atlantis 38

International Journal of Production
Economics

Elsevier 38

Journal of Applied Mathematics Hindawi 35

International Journal of Fuzzy Systems Chinese Fuzzy
Systems Association

35

Journal of Multiple Valued Logic and Soft
Computing

Oldcity 34

International Journal of Approximate
Reasoning

Elsevier 31

International Journal of Information
Technology and Decision Making

World Scientific 30

International Journal of General Systems Taylor and Francis 28

Engineering Applications of Artificial
Intelligence

Elsevier 28

Group Decision and Negotiation Springer 28

Technological and Economic Development of
Economy

Taylor and Francis 27

Fuzzy Decision Making: Its Pioneers and Supportive Environment 41



Table 11 Fuzzy decision making books

Book Editor and
publisher

Tools and techniques

Fuzzy sets, decision making, and
expert systems

Zimmermann
[47, 48],
Springer

Individual decision making in
fuzzy environments, multi-person
decision making in fuzzy
environments, multi-criteria
decision making in ıll-structured
situations

Combining fuzzy imprecision with
probabilistic uncertainty in
decision making

Kacprzyk and
Fedrizzi [17],
Springer

Decision making in a
probabilistic fuzzy environment,
fuzzy statistical decision making,
decision evaluation methods
under uncertainty and imprecision

Multiperson decision making
models using fuzzy sets and
possibility theory

Kacprzyk and
Fedrizzi [18],
Springer

Multiperson decision making
models using fuzzy sets and
possibility theory

Fuzzy multiple objective decision
making: methods and applications

Lai and Hwang
[22], Springer

Multiple objective decision
making, fuzzy multiple objective
decision making, possibilistic
multiple objective decision
making

Fuzzy sets and fuzzy
Decision-Making

Li and Yen [24],
CRC Press

Multifactorial decision-making,
additive standard multifactorial
functions

Fuzzy logic for planning and
decision making

Loostma [25],
Springer

Fuzzy logic in operations
research, fuzzy PERT, fuzzy
SMART, fuzzy multi-objective
optimization, fuzzy AHP

Fuzzy and multi-level decision
making: an interactive
computational approach

Lee and Shih
[23], Springer

Fuzzy ınteractive multi-level
decision making, possibility
programming, aggregation of
fuzzy systems in multi-level
decisions

Dynamical aspects in fuzzy
decision making

Yoshida [43],
Physica-Verlag

Fuzzy dynamic programming,
fuzzy portfolio model, interactive
fuzzy programming, fuzzy
optimization

Fuzzy reasoning in decision
making and optimization

Carlsson and
Fullér [9],
Physica-Verlag

Fuzzy multicriteria decision
making, fuzzy reasoning and
decision making

Fuzzy decision making in
modeling and control

Sousa and
Kaymak [33],
World Scientific

Model-based control with fuzzy
decision functions, fuzzy decision
functions, Fuzzy aggregated
membership control

Multi-objective group decision
making: methods, software and
applications with fuzzy set
techniques

Lu et al. [26],
Imperial College
Press

Fuzzy multi-objective decision
making, fuzzy multi-objective
DSS, fuzzy group decision
making

(continued)
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The scale used in this approach is given in Table 14.
The fuzzy values given in Table 14 are used to transform the linguistic evalu-

ations into fuzzy numbers as given in Table 15.
The scores of the alternatives are then normalized to find the normalized scores

(Table 16).

Table 11 (continued)

Book Editor and
publisher

Tools and techniques

Fuzzy sets and their extensions:
representation, aggregation and
models intelligent systems from
decision making to data mining

Bustince et al.
[8], Springer

Aggregation operators, voting
systems, linguistic decision based
model, group decision making

Fuzzy multi-criteria decision
making: theory and applications
with recent developments

Kahraman [21],
Springer

Fuzzy AHP, fuzzy outranking
methods, fuzzy TOPSIS, fuzzy
multi-objective decision making,
fuzzy geometric programming

Fuzzy multicriteria
decision-making: models, methods
and applications

Pedrycz et al.
[29], John Wiley
& Sons

Discrete models of multicriteria
decision-making, fuzzy group
decision making models

Fuzzy-like multiple objective
decision making

Xu and Zhou
[38], Springer

Fuzzy random multiple objective
decision making, fuzzy-like
multiple objective decision
making, bifuzzy multiple
objective decision making

Decision making in the
manufacturing environment using
graph theory and fuzzy multiple
attribute decision making methods,
vol. 2

Rao [30],
Springer

Fuzzy ELECTRE, fuzzy
PROMETHEE, fuzzy COPRAS,
fuzzy VIKOR, fuzzy AHP

Intuitionistic fuzzy information
aggregation: theory and
applications

Xu and Cai [39],
Springer

Intuitionistic preference relations,
dynamic intuitionistic fuzzy
multi-attribute decision making,
nonlinear optimization models for
multi-attribute group decision
making

Fuzzy multiple objective decision
making

Tzeng and
Huang [36],
Chapman and
Hall/CRC

multi-objective evolutionary
algorithms, network data
envelopment analysis, fuzzy goal
programming, multi-level
multi-objective programming

Decision theory with imperfect
information

Aliev and
Huseynov [1],
World Scientific

Hierarchical models for decision
making, behavioral decision
making with combined states,
decision making under
unprecisiated imperfect
information
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Table 12 Conferences accepting fuzzy decision making papers

Conference Organizing
institutes

Number of decision
making papers
presented

IEEE International Conference on Fuzzy Systems
(FUZZIEEE)

IEEE 423

Annual Conference of the North American Fuzzy
Information Processing Society (NAFIPS)

NAFIPS 136

IEEE International Conference on Systems Man
and Cybernetics

IEEE 91

Conference of the European Society for Fuzzy
Logic and Technology (EUSFLAT)

EUSFLAT 82

International Federation of Automatic Control
Conference (IFAC)

IFAC 68

World Congress of the International Fuzzy
Systems Association (IFSA)

IFSA 61

International Conference on Machine Learning and
Cybernetics (ICMLC)

ICMLC 44

World Congress on Intelligent Control and
Automation (WCICA)

WCICA 43

Computers and Industial Engineering
(CIE) Conference

CIE 34

Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU)

IPMU 33

International Federation for Information
Processing (IFIP) Advances in Information and
Communication Technology

IFIP 25

Joint Conference on Information Sciences INFORMS 24

Fuzzy Logic in Nuclear Science (FLINS) FLINS 22

International Joint Conference on Neural
Networks, International Neural Network Society
(INNS)

INNS 20

Industrial Electronics Conference IEEE 15

Canadian Conference on Electrical and Computer
Engineering

IEEE 14

ASME Design Engineering Technical Conference ASME 13

IEEE International Symposium on
Multiple-Valued Logic

IEEE 13

Annual Meeting of the Decision Sciences Institute
(DSI)

DSI 12

IEEE Conference on Decision and Control IEEE 12

IEEE International Symposium on Intelligent
Control

IEEE 12

International IEEE Conference Intelligent Systems IEEE 12

IEEE International Conference on Neural
Networks Conference

IEEE 11

(continued)
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Table 12 (continued)

Conference Organizing
institutes

Number of decision
making papers
presented

IEEE International Engineering Management
Conference

IEEE 11

IEEE International Conference on Intelligent
Robots and Systems

IEEE 10

IEEE Conference on Intelligent Transportation
Systems Proceedings ITSC

IEEE 9

International Conference on Intelligent Systems
and Knowledge Engineering (ISKE)

ISKE 9

Society of Instrument and Control Engineers
(SICE) Annual Conference

SICE 9

Association for Computing Machinery
(ACM) Symposium on Applied Computing

ACM 8

IEEE International Conference on Industrial
Technology

IEEE 8

Table 13 Importance of each
criterion and scores of each
alternative with respect to the
criteria

Criteria Importance Scores

A1 A2 A3 A4

C1 M MG MG MP G

C2 VH MG P MG G

C3 VH G P VG MP

C4 M F MP MP G

C5 H F MG F MG

Table 14 Linguistic scales used for fuzzy TOPSIS

Linguistic variables for
importance

Fuzzy values Linguistic variables for
evaluations

Fuzzy
values

Very low (VL) (0, 0, 0.1) Very poor (VP) (0, 0, 1)

Low (L) (0, 0.1, 0.3) Poor (P) (0, 1, 3)

Medium low (ML) (0.1, 0.3, 0.5) Medium poor (MP) (1, 3, 5)

Medium (M) (0.3, 0.5, 0.7) Fair (F) (3, 5, 7)

Medium high (MH) (0.5, 0.7, 0.9) Medium good (MG) (5, 7, 9)

High (H) (0.7, 0.9, 1) Good (G) (7, 9, 10)

Very high (VH) (0.9, 1, 1) Very good (VG) (9, 10)
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Then the fuzzy importance weights are multiplied by the normalized scores in
order to find the weighted normalized scores as in Table 17.

Using the values given in Table 17, the positive ideal solution (PIS) and negative
ideal solution (NIS) are determined. Using these values, the distances to PIS and
NIS and closeness coefficients are calculated as shown in Table 18.

Table 15 Triangular fuzzy importance and scores

Criteria Importance Scores

A1 A2 A3 A4

C1 (0.3, 0.5, 0.7) (7, 9, 10) (1, 3, 5) (7, 9, 10) (3, 5, 7)

C2 (0.9, 1, 1) (5, 7, 9) (0,1,3) (5, 7, 9) (7, 9, 10)

C3 (0.9, 1, 1) (7, 9, 10) (3, 5, 7) (9, 10) (5, 7, 9)

C4 (0.3, 0.5, 0.7) (7, 9, 10) (5, 7, 9) (7, 9, 10) (7, 9, 10)

C5 (0.7, 0.9, 1) (3, 5, 7) (5, 7, 9) (3, 5, 7) (3, 5, 7)

Table 16 Normalized scores

A1 A2 A3 A4

C1 (0.7, 0.9, 1) (0.1, 0.3, 0.5) (0.7, 0.9, 1) (0.3, 0.5, 0.7)

C2 (0.5, 0.7, 0.9) (0, 0.1, 0.3) (0.5, 0.7, 0.9) (0.7, 0.9, 1)

C3 (0.7, 0.9, 1) (0.3, 0.5, 0.7) (0.9, 1, 1) (0.5, 0.7, 0.9)

C4 (0.7, 0.9, 1) (0.5, 0.7, 0.9) (0.7, 0.9, 1) (0.7, 0.9, 1)

C5 (0.33, 0.56, 0.78) (0.56, 0.78, 1) (0.33, 0.56, 0.78) (0.33, 0.56, 0.78)

Table 17 Weighted normalized scores

A1 A2 A3 A4

C1 (0.21, 0.45, 0.7) (0.03, 0.15, 0.35) (0.21, 0.45, 0.7) (0.09, 0.25, 0.49)

C2 (0.45, 0.7, 0.9) (0, 0.1, 0.3) (0.45, 0.7, 0.9) (0.63, 0.9, 1)

C3 (0.63, 0.9, 1) (0.27, 0.5, 0.7) (0.81, 1, 1) (0.45, 0.7, 0.9)

C4 (0.21, 0.45, 0.7) (0.15, 0.35, 0.63) (0.21, 0.45, 0.7) (0.21, 0.45, 0.7)

C5 (0.23, 0.5, 0.78) (0.39, 0.7,1) (0.23, 0.5, 0.78) (0.23, 0.5, 0.78)

Table 18 Distance measures
and closeness coefficients

d− d+ CCi Ranking

A1 3.108 2.297 0.575 2

A2 2.089 3.295 0.387 4

A3 3.191 2.185 0.593 1

A4 2.934 2.457 0.544 3
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4.2 Charging Station Location Selection Using HFLTS

When the same problem is handled using HFLTS, the input data contain linguistic
operators such as lower than, between, higher than etc. For this problem, the
pairwise comparison matrices are determined as given in Tables 19, 20, 21, 22, 23
and 24 [41].

Table 19 Pairwise comparison of the criteria using HFLTS

C1 C2 C3 C4 C5

C1 – Lower than
very low

Is low Is medium Between low
and medium

C2 Between high
and absolute

– Is high Greater than
high

Between
medium and
high

C3 Is vh Is low – Between
medium and
high

Is high

C4 Is medium Lower than
low

Between
medium and
low

– Is medium

C5 Between low
and high

At most
high

Is low Is medium –

Table 20 Pairwise comparison of the alternatives with respect to C1

A1 A2 A3 A4

A1 – Is medium Between medium
and vh

Greater than
high

A2 Is medium – Between low and
medium

Between high
and vh

A3 Between very low and
medium

Between medium
and high

– At most high

A4 Lower than low Between low and
very low

At most low –

Table 21 Pairwise comparison of the alternatives with respect to C2

A1 A2 A3 A4

A1 – Between low and
medium

Between low and
medium

Is low

A2 Between very low
and low

– Between very low
and low

Lower than
very low

A3 Between medium
and high

Between high and
vh

– Is low

A4 Is high Greater than vh Is medium –
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Due to the page constraints only sample calculations are provided here. Using
Table 19, the pessimistic and optimistic preference matrices are provided as given
in Table 25.

Using the scale given in Table 26, the linguistic intervals are converted to
numerical intervals.

In order to calculate the linguistic intervals given in Table T9, the mean value of
each row in pessimistic and optimistic preference matrices is calculated. For
example, in the interval value [(l, −0.25), (l, −0.0)], the lower bound is determined

Table 22 Pairwise comparison of the alternatives with respect to C3

A1 A2 A3 A4

A1 – Between high
and vh

Between low and
medium

Greater than
vh

A2 Between very low and
low

– At least vh Is high

A3 Between medium and
high

At most very low – Is absolute

A4 Lower than very low Is low Is none –

Table 23 Pairwise comparison of the alternatives with respect to C4

A1 A2 A3 A4

A1 – Between high
and vh

Is high Between medium
and low

A2 Between very low
and low

– Is medium Is very low

A3 Is low Is medium – Between very low
and low

A4 Between medium
and high

Is vh Between high
and vh

–

Table 24 Pairwise comparison of the alternatives with respect to C5

A1 A2 A3 A4

A1 – Between low and
medium

Is medium Is medium

A2 Between medium
and high

– Between medium
and vh

Between medium
and high

A3 Is medium Between very low
and medium

– Between low and
medium

A4 Is medium Between low and
medium

Between medium
and high

–
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by calculating the mean values of (n, −0.0), (l, −0.0), (m, −0.0), and (l, −0.0). In a
similar way, the upper bound is the mean of the first line of optimistic preference
matrix which is (n, −0.0), (l, −0.0), (m, −0.0), and (m, −0.0). Table 27 shows the
interval utilities, midpoint values and weights of each criterion.

After linguistic intervals are calculated, they are transformed to interval utilities.
By getting the mean of the upper and lower bounds of the interval, the midpoints
are calculated. Finally, the midpoint values are normalized and the weights of each
criterion are determined.

Table 25 Pessimistic and optimistic preference matrices

Pessimistic collective preference
C1 C2 C3 C4 C5

C1 – (n, −0.0) (l, −0.0) (m, −0.0) (l, −0.0)

C2 (h, −0.0) – (h, −0.0) (vh, −0.0) (m, −0.0)

C3 (vh, −0.0) (l, −0.0) – (m, −0.0) (h, −0.0)

C4 (m, −0.0) (n, −0.0) (l, −0.0) – (m, −0.0)

C5 (m, −0.33) (n, −0.0) (l, −0.0) (m, −0.0) –

Optimistic collective preference
C1 C2 C3 C4 C5

C1 – (n, −0.0) (l, −0.0) (m, −0.0) (m, −0.0)

C2 (a, −0.0) – (h, −0.0) (a, −0.0) (h, −0.0)

C3 (vh, −0.0) (l, −0.0) – (h, −0.0) (h, −0.0)

C4 (m, −0.0) (vl, −0.0) (m, −0.0) – (m, −0.0)

C5 (h, −0.0) (h, −0.0) (l, −0.0) (m, −0.0) –

Table 26 The scale for the
linguistic terms

Ni vli li mi hi vhi ai

0 1 2 3 4 5 6

Table 27 Interval utilities, midpoint values and weights of each criterion

Criteria Linguistic intervals Interval utilities Midpoints Weights

C1 [(l, −0.25), (l, −0.0)] [1.75, 2] 1.87 0.13

C2 [(h, −0.0), (vh, −0.0)] [4, 5] 4.5 0.30

C3 [(h, −0.50), (h, −0.25)] [3.5, 3.75] 3.62 0.24

C4 [(l, −0.0), (l, 0.50)] [2, 2.5] 2.25 0.15

C5 [(l, −0.8), (m, 0.25)] [1.92, 3.25] 2.58 0.17
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The process is repeated for the other matrices and the weights of the alternatives
with respect each criterion are determined as shown in Table 28. In order to find the
ranking of the alternatives, the weighted scores are calculated as in Table 28.

4.3 Charging Station Location Selection Using Pairwise
Linguistic Evaluations Using IVIFS

This approach is based on pairwise linguistic comparison of the criteria and
alternatives. As the evaluations are made using linguistic terms, they are trans-
formed to IVIFS and the steps of the methodology are applied. The details of the
methodology we apply can be obtained from Onar et al. [10]. The linguistic terms
and related IVIFS numbers are listed in Table 29.

In accordance with the problem, the pairwise comparison matrices are formed
and filled by the decision maker. Table 30 shows the pairwise comparison of the
criteria and Table 31 shows the pairwise comparison of each alternative with
respect to the criteria.

Due to the page constraints, we only give the details of the calculations for
criteria weights. Table 32 gives the pairwise comparisons of the criteria expressed
as IVIFS.

Table 28 Linguistic intervals and weights of the criteria

Wrt C1 Wrt C2 Wrt C3 Wrt C4 Wrt C5 Weighted score Rank

Weights 0.13 0.30 0.24 0.15 0.17

A1 0.38 0.24 0.36 0.31 0.24 0.297 1

A2 0.30 0.09 0.31 0.15 0.31 0.216 4

A3 0.23 0.29 0.28 0.18 0.21 0.249 2

A4 0.09 0.38 0.06 0.36 0.25 0.238 3

Table 29 Linguistic scale
and its corresponding IVIFS

Linguistic terms Membership

Absolutely low (AL) AL ([0.10, 0.25], [0.65, 0.75])

Very low (VL) VL ([0.15, 0.30], [0.60, 0.70])

Low (L) L ([0.20, 0.35], [0.55, 0.65])

Medium low (ML) ML ([0.25, 0.4]), [0.50, 0.60])

Equal (E) E ([0.45, 0.55], [0.30, 0.45])

Medium high (MH) MH ([0.50, 0.60], [0.25, 0.40])

High (H) H ([0.55,0.65], [0.20, 0.35])

Very high (VH) VH ([0.60,0.70], [0.15,0.30])

Absolutely high (AH) AH ([0.65,0.75], [0.10,0.25])

Exactly equal EE ([0.5,0.5], [0.5,0.5])
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According to the steps given in Onar et al. [10], the scores of the IVIFS values
are calculated using score function, as shown in Table 33.

Then, the interval multiplicative matrix ~A ¼ ~aij
� �

n�n¼ 10
l�gij�vþgij

� �
;

"

10
lþ
gij
�v�gij

� �#
is calculated as given in Table 34.

Table 30 Pairwise
comparison of the criteria

Wrt goal C1 C2 C3 C4 C5

C1 EE AL L EE ML

C2 EE H VH H

C3 EE H H

C4 EE EE

C5 EE

Table 31 Pairwise
comparison of the alternatives
with respect to the criteria

Wrt C1 A1 A2 A3 A4

A1 EE E VH ML

A2 EE VH ML

A3 EE AL

A4 EE

Wrt C2 A1 A2 A3 A4

A1 EE H EE ML

A2 EE VL L

A3 EE MH

A4 EE

Wrt C3 A1 A2 A3 A4

A1 EE VH ML AH

A2 EE AL ML

A3 EE AH

A4 EE

Wrt C4 A1 A2 A3 A4

A1 EE MH MH ML

A2 EE EE VL

A3 EE MH

A4 EE

Wrt C5 A1 A2 A3 A4

A1 EE ML EE ML

A2 EE MH EE

A3 EE MH

A4 EE
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In the next step, the priority vector of each criterion is calculated by using
interval multiplicative matrix as in Table 35.

Possibility degree matrix is formed as given in Table Y8 and the weights of the
criteria are determined.

The same steps are applied to the pairwise comparison matrices given in
Table 36 and weights of the alternatives with respect to the criteria are determined.
In order to find the overall rankings the weighted score of each alternative is
calculated as in Table 37.

Table 32 Pairwise comparisons of the criteria expressed as IVIFS

C1 C2 C3 C4 C5

C1 ([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 1, 0, 25],
[0, 65, 0, 75])

([0, 2, 0, 35],
[0, 55, 0, 65])

([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 25, 0, 4],
[0, 5, 0, 6])

C2 ([0, 65, 0, 75],
[0, 1, 0, 25])

([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 55, 0, 65],
[0, 2, 0, 35])

([0, 6, 0, 7],
[0, 15, 0, 3])

([0, 55, 0, 65],
[0, 2, 0, 35])

C3 ([0, 55, 0, 65],
[0, 2, 0, 35])

([0, 2, 0, 35],
[0, 55, 0, 65])

([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 55, 0, 65],
[0, 2, 0, 35])

([0, 55, 0, 65],
[0, 2, 0, 35])

C4 ([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 15, 0, 3],
[0, 6, 0, 7])

([0, 2, 0, 35],
[0, 55, 0, 65])

([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 5, 0, 5],
[0, 5, 0, 5])

C5 ([0, 5, 0, 6],
[0, 25, 0, 4])

([0, 2, 0, 35],
[0, 55, 0, 65])

([0, 2, 0, 35],
[0, 55, 0, 65])

([0, 5, 0, 5],
[0, 5, 0, 5])

([0, 5, 0, 5],
[0, 5, 0, 5])

Table 33 Score judgement matrix

C1 C2 C3 C4 C5

C1 [0, 0] [−0.65, −0.4] [−0.45, −0.2] [0, 0] [−0.35, −0.1]

C2 [0.4, 0.65] [0, 0] [0.2, 0.45] [0.3, 0.55] [0.2, 0.45]

C3 [0.2, 0.45] [−0.45, −0.2] [0, 0] [0.2, 0.45] [0.2, 0.45]

C4 [0, 0] [−0.55, −0.3] [−0.45, −0.2] [0, 0] [0, 0]

C5 [0.1, 0.35] [−0.45, −0.2] [−0.45, −0.2] [0, 0] [0, 0]

Table 34 Interval multiplicative matrix

C1 C2 C3 C4 C5

C1 [1, 1] [0.22, 0.4] [0.35, 0.63] [1, 1] [0.45, 0.79]

C2 [2.51, 4.47] [1, 1] [1.58, 2.82] [2, 3.55] [1.58, 2.82]

C3 [1.58, 2.82] [0.35, 0.63] [1, 1] [1.58, 2.82] [1.58, 2.82]

C4 [1, 1] [0.28, 0.5] [0.35, 0.63] [1, 1] [1, 1]

C5 [1.26, 2.24] [0.35, 0.63] [0.35, 0.63] [1, 1] [1, 1]
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4.4 Charging Station Location Selection Using Interval
Type-2 Fuzzy AHP

In this section, the same charging station location selection problem is solved by
Interval Type-2 Fuzzy AHP method proposed by Kahraman et al. [19]. The lin-
guistic scale used in this method is given in Table 38.

The evaluations given in Sect. 4.3 can be converted to the scale given in
Table 38. The pairwise comparison matrix for the criteria is given in Table 39. The
other comparison matrices are not given because of space constraints.

According to the steps provided by Kahraman et al. [19], the geometric mean for
each row in Table 39 is calculated. The calculated mean values are given in
Table 40.

Fuzzy weight of each criterion is determined by dividing the means given in
Table 40 to the sum of all means. Interval Type-2 fuzzy weights of each criterion is
given in Table 41. These values are later defuzzified and normalized in order to find
the final crisp weights of the criteria.

Table 35 Priority vectors Criteria Priority vector

C1 [0.079, 0.15]

C2 [0.227, 0.576]

C3 [0.16, 0.397]

C4 [0.095, 0.163]

C5 [0.104, 0.216]

Table 36 Possibility degree
matrix and weights of the
criteria

C1 C2 C3 C4 C5 Weight

C1 0.50 0.00 0.00 0.40 0.25 0.133

C2 1.00 0.50 0.71 1.00 1.00 0.286

C3 1.00 0.29 0.50 0.99 0.84 0.256

C4 0.60 0.00 0.01 0.50 0.33 0.147

C5 0.75 0.00 0.16 0.67 0.50 0.179

Table 37 Weighted scores of the alternatives

Alternatives wrt
C1

wrt
C2

wrt
C3

wrt
C4

wrt
C5

Weighted
Score

Ranking

Weights 0.13 0.29 0.26 0.15 0.18

A1 0.28 0.26 0.32 0.28 0.17 0.266 3

A2 0.28 0.13 0.15 0.15 0.32 0.190 4

A3 0.13 0.32 0.34 0.25 0.26 0.277 1

A4 0.32 0.29 0.19 0.32 0.26 0.268 2
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The same steps are applied to the other matrices for comparing the alternatives
with respect to each criterion. The resulting weights of the alternatives are given in
Table 42. In order to rank the alternatives, the weighted scores are calculated.

Table 38 Linguistic scale used in interval type-2 fuzzy method

Linguistic variables Trapezoidal interval type-2
fuzzy sets

Absolute (A) [(7, 8, 9, 9; 1,1), (7.2, 8.2,
8.8, 8.9; 0.8, 0.8)]

Very strong (VS) [(5, 6, 8, 9; 1, 1), (5.2, 6.2,
7.8, 8.8; 0.8, 0.8)]

Fairly strong (FS) [(3, 4, 6, 7; 1, 1), (3.2, 4.2,
5.8, 6.8; 0.8, 0.8)]

Weak (W) [(1, 2, 4, 5; 1, 1), (1.2, 2.2,
3.8, 4.8; 0.8, 0.8)]

Equal (E) [(1, 1, 1, 1; 1, 1), (1, 1, 1, 1;
1, 1)]

If a factor i has one of the above linguistic variables assigned
to it when compared with factor j. The j has the reciprocal
value when compared with i

Reciprocals of above

Table 39 Pairwise comparisons expressed as type-2 fuzzy sets

C1 C2 C3 C4 C5

C1 [(1, 1, 1, 1;
1, 1), (1, 1,
1, 1; 1, 1)]

[(0.14, 0.16, 0.25,
0.33; 1, 1), (0.14,
0.17, 0.23, 0.31;
0.8, 0.8)]

[(0.2, 0.25, 0.5,
1; 1, 1), (0.20,
0.26, 0.45, 0.83;
0.8, 0.8)]

[(1, 1, 1, 1;
1, 1), (1, 1,
1, 1; 1, 1)]

[(0.2, 0.25, 0.5,
1; 1, 1), (0.20,
0.26, 0.45, 0.83;
0.8, 0.8)]

C2 [(3, 4, 6, 7;
1, 1), (3.2,
4.2, 5.8, 6.8;
0.8, 0.8)]

[(1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1)]

[(3, 4, 6, 7; 1, 1),
(3.2, 4.2, 5.8,
6.8; 0.8, 0.8)]

[(3, 4, 6, 7;
1, 1), (3.2,
4.2, 5.8, 6.8;
0.8, 0.8)]

[(1, 2, 4, 5; 1, 1),
(1.2, 2.2, 3.8,
4.8; 0.8, 0.8)]

C3 [(1, 2, 4, 5;
1, 1), (1.2,
2.2, 3.8, 4.8;
0.8, 0.8)]

[(0.14, 0.16, 0.25,
0.33; 1, 1), (0.14,
0.17, 0.23, 0.31;
0.8, 0.8)]

[(1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1)]

[(1, 2, 4, 5;
1, 1), (1.2,
2.2, 3.8, 4.8;
0.8, 0.8)]

[(1, 2, 4, 5; 1, 1),
(1.2, 2.2, 3.8,
4.8; 0.8, 0.8)9

C4 [(1, 1, 1, 1;
1, 1), (1, 1,
1, 1; 1, 1)]

[(0.14, 0.16, 0.25,
0.33; 1, 1), (0.14,
0.17, 0.23, 0.31;
0.8, 0.8)]

[(0.2, 0.25, 0.5,
1; 1, 1), (0.20,
0.26, 0.45, 0.83;
0.8, 0.8)]

[(1, 1, 1, 1;
1, 1), (1, 1,
1, 1; 1, 1)]

[(1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1)]

C5 [(1, 2, 4, 5;
1, 1), (1.2,
2.2, 3.8, 4.8;
0.8, 0.8)]

[(0.2, 0.25, 0.5, 1;
1, 1), (0.20, 0.26,
0.45, 0.83; 0.8,
0.8)]

[(0.2, 0.25, 0.5,
1; 1, 1), (0.20,
0.26, 0.45, 0.83;
0.8, 0.8)]

[(1, 1, 1, 1;
1, 1), (1, 1,
1, 1; 1, 1)]

[(1, 1, 1, 1; 1, 1),
(1, 1, 1, 1; 1, 1)]
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4.5 Comparison of the Four Fuzzy Methods

Table 43 shows the rankings of alternatives with respect to four methods given in
Sects. 4.1–4.4. The alternative A3 is the best alternative with respect to the other
three methods except HFLTS based method. The IVIFS based and Type-2 Fuzzy
based methods yield the same rankings since these two methods use pairwise
comparison among criteria and alternatives. The alternative A2 is the worst alter-
native with respect to all methods.

Since each method is based on a different definition of fuzzy sets, the observation
of differences in the rankings is quite expected. The methods based on the

Table 40 Geometric mean for each criterion row

Criteria Means

C1 [(0.35, 0.40, 0.57, 0.80; 1, 1), (0.36, 0.41, 0.54, 0.73; 0.8, 0.8)]

C2 [(1.93, 2.63, 3.86, 4.43; 1, 1), (2.08, 2.76, 3.74, 4.32; 0.8, 0.8)]

C3 [(0.67, 1.05, 1.74, 2.10; 1, 1), (0.76, 1.12, 1.67, 2.03; 0.8, 0.8)]

C4 [(0.49, 0.52, 0.65, 0.80; 1, 1), (0.49, 0.53, 0.64, 0.76; 0.8, 0.8)]

C5 [(0.52, 0.65, 1, 1.37; 1, 1), (0.55, 0.68, 0.95, 1.27; 0.8, 0.8)]

Total [(3.98, 5.28, 7.84, 9.52; 1, 1), (4.26, 5.53, 7.56, 9.12; 0.8, 0.8)]

Table 41 Fuzzy, defuzzified and normalized weights of the criteria

Interval type-2 fuzzy weights Defuzzified
weights

Normalized
weights

C1 [(0.037, 0.051, 0.10, 0.20; 1, 1), (0.039, 0.054,
0.098, 0.17; 0.8, 0.8)]

0.0918 0.079

C2 [(0.20, 0.33, 0.73, 1.11; 1,1), (0.22, 0.36, 0.67,
1.01; 0.8, 0.8)]

0.5577 0.482

C3 [(0.07, 0.13, 0.32, 0.52; 1, 1), (0.083, 0.14, 0.30,
0.47; 0.8, 0.8)]

0.2482 0.215

C4 [(0.051, 0.067, 0.12, 0.20; 1, 1), (0.054, 0.07, 0.11,
0.17; 0.8, 0.8)]

0.1036 0.090

C5 [(0.055, 0.084, 0.18, 0.34; 1, 1), (0.060, 0.0907,
0.17, 0.29; 0.8, 0.8)]

0.1555 0.134

Table 42 Weights and ranking of the alternatives using Interval Type-2 Fuzzy sets

wrt
C1

wrt
C2

wrt
C3

wrt
C4

wrt
C5

Weighted
score

Ranking

Weights 0.08 0.48 0.21 0.09 0.13

A1 0.23 0.23 0.34 0.31 0.15 0.249 3

A2 0.23 0.06 0.04 0.10 0.38 0.115 4

A3 0.04 0.40 0.55 0.22 0.24 0.366 1

A4 0.51 0.31 0.07 0.37 0.24 0.271 2
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extensions of ordinary fuzzy sets should be considered as more reliable since they
enable a better and detailed representation of the membership functions.

5 Conclusion

Decision making is an art and a science aiming at maximizing the expected value of
our decision. Almost all of real world decision making problems emerge under risk
and uncertainty conditions. If sufficient data exist to be able to obtain the probability
distribution of decision making parameters, probability based risk models should be
preferred. If uncertainty conditions exist without sufficient data, or if the past data
are not reliable, or if the expert evaluations in the past are linguistic rather than
exact numerical values, then the classical risk and uncertainty models cannot
process these types of data. The fuzzy set theory can capture these uncertainties
since it can work with vague, incomplete and imprecise data.

Fuzzy decision making has covered ground since Bellman and Zadeh [6] first
work. This chapter showed which researchers, universities, and countries most
contributed to it in this period. Besides, we examined the position of decision
making within the extensions of ordinary fuzzy sets. Even the extensions of ordi-
nary fuzzy sets can be divided into interval-valued fuzzy sets, hesitant fuzzy sets,
intuitionistic fuzzy sets, type-2 fuzzy sets, fuzzy multisets, and stationary fuzzy sets,
we illustrated its position in hesitant fuzzy sets, intuitionistic fuzzy sets, and type-2
fuzzy sets since these extensions have been much more used with respect to the
other extensions.

For further research, this work can be expanded by examining the position of
fuzzy decision making in the other extensions of fuzzy sets.

References

1. Aliev, R.A., Huseynov, O.R.: Decision Theory with Imperfect Information. World Scientific
(2014)

2. Ashtiani, B., Haghighirad, F., Makui, A., Montazer, G.A.: Extension of fuzzy TOPSIS method
based on interval-valued fuzzy sets. Appl. Soft Comput. J. 9(2), 457–461 (2009)

3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

Table 43 Rankings of alternatives with respect to four methods

Methods Alternative ranking

Location selection using ordinary fuzzy TOPSIS A3 > A1 > A4 > A2

Location selection using HFLTS A1 > A3 > A4 > A2

Location selection using pairwise evaluations based IVIFS A3 > A4 > A1 > A2

Location selection using interval type-2 fuzzy AHP A3 > A4 > A1 > A2

56 C. Kahraman et al.



4. Baas, S.M., Kwakernaak, H.: Rating and ranking of multiple aspect alternatives using fuzzy
sets. Automatica 13(1), 47–58 (1977)

5. Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J., Sorenson, K.:
Guidebook to Decision-Making Methods, WSRC-IM-2002-00002. Department of Energy,
USA (2002)

6. Bellman, R.E., Zadeh, L.A.: Decision Making is a Fuzzy Environment, managmenet. Science
17(4), 141–164 (1970)

7. Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17(1), 233–247 (1985)
8. Bustince, H., Herrera, F., Montero, J.: Fuzzy Sets and Their Extensions: Representation,

Aggregation and Models Intelligent Systems from Decision Making to Data Mining, Web
Intelligence and Computer Vision. Springer, Berlin (2008)

9. Carlsson, C., Fullér, R.: Fuzzy Reasoning in Decision Making and Optimization.
Physica-Verlag, Heidelberg (2002)

10. Onar, S.C., Oztaysi, B., Otay, I., Kahraman, C.: Multi-expert wind energy technology
selection using interval-valued intuitionistic fuzzy sets. Energy 90(1), 274–285 (2015)

11. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95
(3), 649–655 (1996)

12. Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the interval
type-2 TOPSIS method. Expert Syst. Appl. 37, 2790–2798 (2010)

13. Chen, C.-T.: Extensions of the TOPSIS for group decision-making under fuzzy environment.
Fuzzy Sets Syst. 114, 1–9 (2000)

14. Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision-making, methods and applications.
Lecture Notes in Economics and Mathematical Systems, p 375. Springer, Heidelberg (19920

15. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. AcademicPress,
New York (1980)

16. Harris, R.: Introduction to Decision Making. VirtualSalt (1998). http://www.virtualsalt.com/
crebook5.htm

17. Kacprzyk, J., Fedrizzi, M.: Combining Fuzzy Imprecision with Probabilistic Uncertainty in
Decision Making. Springer (1988)

18. Kacprzyk, J., Fedrizzi, M.: Multiperson Decision Making Models Using Fuzzy Sets and
Possibility Theory. Springer, Netherlands (1990)

19. Kahraman, C., Öztayşi, B., Uçal, Sarı I., Turanoğlu, E.: Fuzzy analytic hierarchy process with
interval type-2 fuzzy sets. Knowl. Based Syst. 59, 48–57 (2014)

20. Kahraman, C., Ruan, D., Doğan, I.: Fuzzy group decision-making for facility location
selection. Inf. Sci. 157, 135–153 (2003)

21. Kahraman, C.: Fuzzy Multi-Criteria Decision Making Theory and Applications wit Recent
Developments. Springer Optimization and Its Applications, vol. 16 (2008)

22. Lai Y.J., Hwang C.L.: Fuzzy Multiple objective decision making: methods and applications.
Lecture Notes in Economics and Mathematical Systems, vol. 404. Springer, Berlin Heidelberg
(1994)

23. Lee, E.S., Shih, H.S.: Fuzzy and Multi-Level Decision Making: An Interactive Computational
Approach. Springer (2001)

24. Li H., Yen V.C.: Fuzzy Sets and Fuzzy Decision-Making. CRC Press (1995)
25. Loostma, F.A.: Fuzzy Logic for Planning and Decision Making. Springer, Dordrecht (1997)
26. Lu, J., Zhang, G., Ruan, D., Wu, F.: Multi-Objective Group Decision Making Methods,

Software and Applications with Fuzzy Set Techniques. Imperial College Press, London (2007)
27. Mendel, J.M.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14

(6), 808–821 (2006)
28. Opricovic, S.: Fuzzy VIKOR with an application to water resources planning. Expert Syst.

Appl. 38, 12983–12990 (2011)
29. Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods

and Applications. Wiley (2011)

Fuzzy Decision Making: Its Pioneers and Supportive Environment 57

http://www.virtualsalt.com/crebook5.htm
http://www.virtualsalt.com/crebook5.htm


30. Rao, R.V.: Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy
Multiple Attribute Decision Making Methods, vol. 2. Springer Series in Advanced
Manufacturing (2013)

31. Ribeiro, R.A.: Fuzzy multiple attribute decision making: a review and new preference
elicitation techniques. Fuzzy Sets Syst. 78(2), 155–181 (1996)

32. Slowinski, R.: Fuzzy sets in decision analysis, operation research and statistics. Kluwer
Academic Publishers, Boston (1998)

33. Sousa, J.M.C., Kaymak, U.: Fuzzy Decision Making in Modeling and Control, World
Scientific Series in Robotics and Intelligent Systems, vol. 27 (2002)

34. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)
35. Tseng, M.L., Lin, Y.H., Chiu, A.S., Chen, C.Y.: Fuzzy AHP-approach to TQM strategy

evaluation. Ind. Eng. Manage. Syst. Int. J. 7(1), 34–43 (2008)
36. Tzeng, G.H., Huang J.J.: Fuzzy Multiple Objective Decision Making. Chapman and Hall/CRC

(2013)
37. Van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets

Syst. 11(1–3), 199–227 (1983)
38. Xu, J., Zhou, X.: Fuzzy-Like Multiple Objective Decision Making, Studies in Fuzziness and

Soft Computing, vol. 263. Springer, Heidelberg (2011)
39. Xu, Z., Cai, X.: Intuitionistic Fuzzy Information Aggregation: Theory and Applications,

Intuitionistic Fuzzy Information Aggregation: Theory and Applications, pp. 1–309 (2013)
40. Yager, R.R.: Fuzzy decision making using unequal objectives. Fuzzy Sets Syst. 1, 87–95

(1978)
41. Yavuz, M., Oztaysi, B., Cevik, Onar S., Kahraman, C.: Multi-criteria evaluation of

alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst.
Appl. 42(5), 2835–2848 (2015)

42. Yazici, I., Kahraman, C.: VIKOR method using interval type two fuzzy sets. J. Intell. Fuzzy
Syst. 29(1), 411–422 (2015)

43. Yoshida, Y.: Dynamical Aspects in Fuzzy Decision Making, Studies in Fuzziness and Soft
Computing, vol. 73. Physica-Verlag, Heidelberg (2001)

44. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
45. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning–

1. Inf. Sci. 8, 199–249 (1975)
46. Xu, Z., Zhang, X.: Hesitant Fuzzy Multi-Attribute Decision Making Based on TOPSIS with

Incomplete Weight Information, Knowledge-Based Systems, vol. 52, pp. 53–64, Nov 2013
47. Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems. Springer, Netherlands

(1987)
48. Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems. Kluwer, Boston

(1987)

58 C. Kahraman et al.



Part II
Mathematics of Fuzzy Sets



Mathematics of Intuitionistic Fuzzy Sets

Krassimir Atanassov

Abstract Short firsthand remarks on the history and theory of Intuitionistic Fuzzy
Sets (IFSs) are given. Influences of other areas of mathematics for development of
the IFSs theory are discussed. On the basis of results in IFSs theory, some ideas for
development of other mathematical areas are offered.

Keywords Intuitionistic fuzzy set � Algebra � Analysis � Artificial intelligence �
Geometry � Number theory � Topology

1 Introduction

In February 1983, to the concept of an Intuitionistic Fuzzy Set (IFS) originated and
in June and August it was presented in two conferences—in Bulgaria, [1], presented
by me, and in Poland [2], where my colleague St. Stoeva presented our joint paper.
The new concept was defined as an extension of Zadeh’s fuzzy sets [3]. The idea for
IFSs occurred to me, while I was reading the first books for fuzzy sets by Kaufmann
[4] and Dubois and Prade [5], that were on sale in Bulgarian bookshops via their
Russian translations. In general, in my research, I have adhered to their notations. In
the next year, it was an object of a lot research from the point of view of different
mathematical areas. Nowadays, it is clear that some of the ideas, related to IFSs, can
be transfered, on their turn, onto other mathematical areas. And this is the theme of
the present paper.
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Let us have a fixed universe E and its subset A. The set

A� ¼ fhx; lAðxÞ; mAðxÞijx 2 Eg;

where

0� lAðxÞþ mAðxÞ� 1

is called IFS and the functions lA : E ! ½0; 1� and mA : E ! ½0; 1� represent degree
of membership (validity, etc.) and degree of non-membership (non-validity, etc.).
Now, we can define also function pA : E ! ½0; 1� as

pðxÞ ¼ 1� lðxÞ � mðxÞ

which corresponds to degree of indeterminacy (uncertainty, etc.).
For brevity, we shall write below A instead of A�, whenever this is possible.

Obviously, for every ordinary fuzzy set A: pAðxÞ ¼ 0 and for each x 2 E these sets
have the form fhx; lAðxÞ; 1� lAðxÞijx 2 Eg. Therefore, all results in the area of
fuzzy sets, can be transformed without changes (only with adding this additional
component) to the case of IFSs theory.

Fuzzy sets theory is related to different mathematical areas, as algebra, analysis,
geometry, etc. Hence, IFSs theory is also related to these areas. In the next section,
we discuss these relationships.

I will discuss here only the ideas realized with my participation and thus, I hope,
to stimulate the rest colleagues to do the same about their results in the area of IFS
theory.

2 Mathematics in Intuitionistic Fuzzy Sets

It is very difficult to estimate how many separate areas of mathematics have con-
tributed to the development of IFSs theory. That is way here we will adopt the
chronological approach when listing and describing the mathematical areas that
have most powerfully influenced the area of IFSs.

2.1 Algebra

Historically, the research over IFSs started with defining algebraic operations,
defined over these sets. Now, there are a lot of different operations:

• first—standard set theoretical operations as “[ ” and “\ ”,
• second—algebraic and probabilistic operations “+” and “.” (practically, my

work over the IFSs theory started with definitions of these four operations);
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• third—the average operation “@” (introduced independently by Buhaescu in [6]
and me),

• fourth—algebraic operations “multiplication of a set with n” and “power of n”
(introduced by…) and their dual operations “multiplication with 1

n” and “ ffi
n
p ”

(introduced by B. Riečan and me),
• fifth—two types of the operation “subtraction” (algebraic and set-theoretical;

introduced again by Riečan and me);
• sixth—the logical operations “negation” (more than 50 different negations),

“implication” (more than 180 different implications) and “subtraction” (about 70
different subtractions).

Some relations have been introduced. The two most important (and standard)
are:

A�B if and only if ðiffÞ ð8x 2 EÞ lAðxÞ� lBðxÞ & mAðxÞ� mBðxÞð Þ;

A 	 B iff B�A;

A ¼ B iff ð8x 2 EÞðlAðxÞ ¼ lBðxÞ & mAðxÞ ¼ mBðxÞÞ:

During the years, the basic properties of all these operations have been
researched.

Let us give some well-known definitions. Let us have a given set M, operation �
and a special unit element e� 2 M. Then, we can formulate the following
well-known definitions:

• hM; �i is a groupoid if and only if (iff) ð8a; b 2 MÞða � b 2 MÞ.
• hM; �i is a semigroup iff hM; �i is a groupoid and

ð8a; b; c 2 MÞðða � bÞ � c ¼ a � ðb � cÞÞ.
• hM; �; e�i is a monoid iff hM; �i is a semigroup and

ð8a 2 MÞða � e� ¼ a ¼ e� � aÞ.
• hM; �; e�i is a commutative monoid iff hM; �; e�i is a monoid and ð8a; b 2 MÞ

ða � b ¼ b � aÞ.
• hM; �; e�i is a group iff hM; �; e�i is a monoid and

ð8a 2 MÞð9b 2 MÞða � b ¼ e� ¼ b � aÞ.
• hM; �; e�i is a commutative group iff hM; �; e�i is a group and ð8a; b 2 MÞ

ða � b ¼ b � aÞ.
Let us define the following special IFSs

E� ¼ fhx; 1; 0ijx 2 Eg;

U� ¼ fhx; 0; 0ijx 2 Eg;
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O� ¼ fhx; 0; 1i x 2 Eg:j

Operation PðXÞ—the set of all subsets of a given set X, now must be modified
so that:

PðE�Þ ¼ fAjA ¼ fhx; lAðxÞ; mAðxÞijx 2 Egg;

PðU�Þ ¼ fBjB ¼ fhx; 0; mBðxÞijx 2 Egg;

PðO�Þ ¼ fO�g:

Therefore,

; 62 PðO�Þ [PðE�Þ [PðU�Þ

and for a fixed universe E, following [7]:

1. hPðE�Þ; \ ;E�i is a commutative monoid;
2. hPðE�Þ; [ ;O�i is a commutative monoid;
3. hPðE�Þ; þ ;O�i is a commutative monoid;
4. hPðE�Þ; :;E�i is a commutative monoid;
5. hPðE�Þ;@i is a groupoid;
6. hPðU�Þ; \ ;U�i is a commutative monoid;
7. hPðU�Þ; [ ;O�i is a commutative monoid;
8. hPðU�Þ; þ ;O�i is a commutative monoid;
9. hPðU�Þ; :;U�i is a commutative monoid;

10. hPðU�Þ;@i is a groupoid;
11. None of these objects is a (commutative) group.

2.2 Set Theory and First Order Logic

The most interesting is the case with the sixth group of operations, discussed in the
previous section. As I mentioned in [8], historically, one of my mistakes was that
for a long time I have been using only the simplest form of negation:

:1A ¼ fhx; mAðxÞ; lAðxÞi x 2 Egj :

In this case the equality

::A ¼ A
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holds, which resembles classical logic. Currently, a series of more than 40 new
negations have been constructed by Atanassova, Dworniczak, Dimitrov and the
author (see, e.g., [7]). The first four of them are:

:2A ¼ hx; 1� sgðlAðxÞÞ; sgðlAðxÞÞijx 2 Ef g;
:3A ¼ fhx; mAðxÞ; lAðxÞmAðxÞþ lAðxÞijx 2 Eg;
:4A ¼ fhx; mAðxÞ; 1� mAðxÞijx 2 Eg;
:5A ¼ fhx; sgð1� mAðxÞÞ; sgð1� mAðxÞÞijx 2 Eg;

where

sgðxÞ ¼ 1 if x [ 0
0 if x � 0

�
sgðxÞ ¼ 0 if x [ 0

1 if x � 0

�

The negations :2;:3;:4;:5 satisfy strongly intuitionistic properties.
In a series of papers co-authored by Trifonov, D. Dimitrov, N. Angelova, I have

studied the properties of these negations. For example, it has been checked that :1

satisfies all three properties below, while the rest negations satisfy only properties
P1 and P3, where

Property P1: A ! ::A,
Property P2: ::A ! A,
Property P3: :::A ¼ :A.
By analogy with [9], we can show that negations :2; . . .;:5 do not satisfy the

Law for Excluded Middle (P _ :P, where P is a propositional form), while they
satisfy some of its modifications (e.g., ::P _ :PÞ. In [10], it is shown that the
same negations do not satisfy De Morgan’s Laws, but they satisfy some of their
modifications.

With respect to some of the negations, or independently, more than 180 different
implications have been introduced. Initially, for basis of this research, the author
used Klir and Bo Yuan’s book [11].

It is well-known that if we have some implication !, then for a variable x we
can define :x ¼ x ! h0; 1i, and after this, we can define for two variables x and y:
x _!;:;1 y ¼ :x ! y; x _!;:;2 y ¼ :x ! ::y; x ^!;:;1 y ¼ :ðx ! :yÞ and
x ^!;:;1 y ¼ :ð::x ! :yÞ. Therefore, each of the implications generate one or
two disjunctions and one or two conjunctions. An open problem is to construct all
conjunctions and disjunctions, that can be generated by the existing already 185
implications. Having in mind that for predicate PðxÞ with variable x, which can
obtain values a1; a2; . . ., it is valid: 8xPðxÞ ¼ Pða1Þ ^ Pða2Þ ^ . . . and
8xQðxÞ ¼ Pða1Þ _ Pða2Þ _ . . .. Hence, we can define as many quantifiers as many
are the conjunctions and disjunctions. Having solved the previous problem, the new
open problem arises: to construct all possible quantifiers on the basis of the
conjunctions and disjunctions.
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2.3 Geometry

The ordinary fuzzy sets have only one geometrical interpretation, while in the
IFS-case, this interpretation has two forms. The standard geometrical interpretation
of the IFSs, proposed as an analogue of the geometrical (or analytical) interpretation
of fuzzy sets, is shown in Fig. 1.

Its modification is given in Fig. 2.
The most important and useful (at least by the moment) geometrical interpre-

tation of the IFSs is given on Fig. 3. Let a universe E be given and let us consider
the figure F in the Euclidean plane with a Cartesian coordinate system. Triangle F
was called “IFS-interpretational triangle” (see, e.g., [7, 12]).

Let A�E be a fixed set. Then we can construct the function fA : E ! F such
that if x 2 E, then

p ¼ fAðxÞ 2 F:

We can also construct the point p with coordinates ha; bi, for which,
0� aþ b� 1 and there hold the equalities a ¼ lAðxÞ; b ¼ mAðxÞ.

Note that if there exist two different elements x; y 2 E, x 6¼ y, for which lAðxÞ ¼
lAðyÞ and mAðxÞ ¼ mAðyÞ with respect to some set A�E, then fAðxÞ ¼ fAðyÞ.

Each of the operations, mentioned in Sect. 2.1, has a geometrical interpretation.
For example, if A and B are two IFSs over E, then the function fA\B assigns

Fig. 1 First (standard)
geometrical interpretation of
an intuitionistic fuzzy set

Fig. 2 First (basic)
geometrical interpretation of
an intuitionistic fuzzy set
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to x 2 E a point fA\BðxÞ 2 F with coordinates hminðlAðxÞ; lBðxÞÞ;
maxðmAðxÞ; mBðyÞÞi:

There exist three geometrical interpretations (see Fig. 4a–c) from which one is
the general case (Fig. 4a) and two are particular cases (Fig. 4b, c).

If A and B are two IFSs over E, then the function fAþB assigns to x 2 E a point
fAþBðxÞ 2 F with coordinates hlAðxÞþ lBðxÞ � lAðxÞ:lBðxÞ; mAðxÞ:mBðxÞi:

There exists only one form of geometrical interpretation of this operation (see
Fig. 5a).

Fig. 3 Second geometrical
interpretation of an
intuitionistic fuzzy set

(a) (b) (c)

Fig. 4 Geometrical interpretations of the operation intersection of intuitionistic fuzzy sets (three cases)

(a)

(b)

(c)

Fig. 5 Geometrical interpretations of the operation sum of intuitionistic fuzzy sets (three cases)
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The construction of lAðxÞ:lBðxÞ and mAðxÞ:mBðxÞ are shown in Fig. 5b and c,
respectively.

The author constructed two other geometrical interpretations (see Figs. 6 and 7,
where a ¼ p:lAðxÞ; b ¼ p:mAðxÞ and here p ¼ 3:14. . .). Two more geometrical
interpretations were proposed by I. Antonov in [13] and by Danchev in [14]: the
first one over a sphere and the second one on the equilateral triangle (see Fig. 8). In
[15], Yang and Chiclana constructed another spherical interpretation.

E. Szmidt and J. Kacprzyk constructed another three-dimensional geometrical
interpretation [16–18] (see Fig. 9).

Fig. 6 Third geometrical
interpretations of an
intuitionistic fuzzy set

Fig. 7 Fourth geometrical
interpretations of an
intuitionistic fuzzy set

Fig. 8 Fifth geometrical
interpretations of an
intuitionistic fuzzy set
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In [19], a geometrical interpretation based on radar charts was proposed by V.
Atanassova. In Fig. 10, the innermost zone corresponds to the membership degree,
the outermost zone to the non-membership degree and the region between both
zones denotes the degree of uncertainty. This IFS-interpretation can be especially
useful for data in time series, multivaried data sets and other data with cyclic trait.

2.4 Modal Logic

In the beginning of March 1983, the idea for introducing of modal type of operators
over IFSs originated. At that moment, I showed the results of my research to my
colleague (and former teacher in Mathematical Faculty of Sofia University) George
Gargov (1947–1996) who named the new sets “Intuitionistic Fuzzy Sets”.

The first two modal operators over IFSs transform an IFS into a fuzzy set (as it
was shown, a fuzzy sets is a particular case of an IFS). These two modal operators
are similar to the operators “necessity” and “possibility” defined in some modal
logics. Their properties resemble these of the modal logic (see e.g. [20]).

Fig. 9 Sixth
(three-dimensional)
geometrical interpretations of
an intuitionistic fuzzy set

Fig. 10 Seventh (radar chart
based) geometrical
interpretations of an
intuitionistic fuzzy set
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Let, for every IFS A,

hA ¼ fhx; lAðxÞ; 1� lAðxÞijx 2 Eg;

}A ¼ fhx; 1� mAðxÞ; mAðxÞijx 2 Eg:

Obviously, if A is an ordinary fuzzy set, then

hA ¼ A ¼ }A: ð3Þ

These equalities show that the modal operators do not have analogues in the case
of fuzzy sets; and therefore, this is a new demonstration of the fact that IFSs are
proper extensions of the ordinary fuzzy sets.

It was checked that for every IFS A and for : ¼ :1, i.e., the standard negation,

(a) :h:A ¼ }A;
(b) :}:A ¼ hA;
(c) hA�A�}A;
(d) h hA ¼ hA;
(e) h}A ¼ }A;
(f) }hA ¼ hA;
(g) }}A ¼ }A;

where : is the first (standard, classical) negation.
It is important to note that for : ¼ :2 equalities (a) and (b) are not valid. Instead

of them, the equalities

:h:A ¼ }::A and :}:A ¼ h::A

hold.
Two different geometrical interpretations of both operators are given in Figs. 11,

12, 13 and 14, respectively.

Fig. 11 First geometrical
interpretations of the operator
necessity
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2.5 Analysis and Topology

Next idea for development of the IFSs theory is related to the topological operators
“closure” and “interior”. They were defined in October 1983 by the author and their
basic properties were studied. Three years later, the relations between the modal and
the topological operators over IFSs were studied, too (see [12]). These first topo-
logical operators are defined for every IFS A by

Fig. 12 Second geometrical
interpretations of the operator
necessity

Fig. 13 First geometrical
interpretations of the operator
possibility

Fig. 14 Second geometrical
interpretations of the operator
possibility
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CðAÞ ¼ fhx; sup
y2E

lAðyÞ; infy2E
mAðyÞijx 2 Eg;

IðAÞ ¼ fhx; inf
y2E

lAðyÞ; sup
y2E

mAðyÞijx 2 Eg:

The geometrical interpretations of both operators are given in Figs. 15 and 16,
respectively.

It is important to mention, that the two operators C and I are analogous to the
intuitionistic fuzzy quantifiers 9 and 8, respectively, from intuitionistic fuzzy
predicative calculus. In [12], a lot of properties of these two operators were
discussed.

2.6 Temporal Logic

Let E be a universe, and T be a non-empty set. We call the elements of T
“time-moments”. Based on the definition of IFS, in [7, 21–23] we defined another
type of an IFSs, called Temporal IFSs (TIFSs) as the following:

Fig. 15 Geometrical
interpretations of the operator
closure

Fig. 16 Geometrical
interpretations of the operator
interior
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AðTÞ ¼ fhx; lAðx; tÞ; mAðx; tÞijhx; ti 2 E 
 Tg;

where

(a) A�E is a fixed set,
(b) lAðx; tÞþ mAðx; tÞ� 1 for every hx; ti 2 E 
 T ,
(c) lAðx; tÞ and mAðx; tÞ are the degrees of membership and non-membership,

respectively, of the element x 2 E at the time-moment t 2 T .

The geometrical interpretation of the TIFSs is shown in Fig. 17.
Obviously, the list of mathematical tools, used for developing the IFS theory is

longer, but above we discussed at least the basic areas. In the next Section, we
discuss the opposite situation: elements of IFS theory that give rise to problems in
different areas of mathematics and can help for their development.

3 Intuitionistic Fuzzy Sets as Tools for Development
of Some Mathematical Areas

Here, we continue to follow the chronological order of events. Probably, the first
case, when I realized that there was a possibility for introducing a new mathe-
matical concept on the basis of an already defined object in IFS theory, was the
operator Da introduced in the next section.

Fig. 17 The geometrical
interpretation of a temporal
intuitionistic fuzzy set

Mathematics of Intuitionistic Fuzzy Sets 73



3.1 Modal Logic

Historically, the first extension of the modal operators □ and ◊ is the operator

DaðAÞ ¼ fhx; lAðxÞþ a:pAðxÞ; mAðxÞþ ð1� aÞ:pAðxÞijx 2 Eg;

where a 2 ½0; 1� is a fixed number (see, e.g. [7, 12]). Obviously,

D0ðAÞ ¼ hA and D1ðAÞ ¼ }A:

Therefore, at least in IFSs theory there is a modal operator that has as boundary
points both standard (IFS) modal operators. Now, the following questions provoke
our interest:

1. Does the operator Da have analogues in ordinary modal logic?
2. What properties would such an operator have?
3. If that operator exists, can the extended modal operator be extended again?

While the reason for the first two questions is seen in the above definition, the
reason for the third question is in the next extended modal operator in IFSs theory:

Fa;bðAÞ ¼ hx; lAðxÞþ a:pAðxÞ; mAðxÞþ b:pAðxÞijx 2 Ef g;

where a; b 2 ½0; 1� and aþ b� 1 (see, e.g. [7, 12]). Obviously,

Fa;1�aðAÞ ¼ DaðAÞ:

Operator Fa;b is the first IFS operator that transforms an IFS to an IFS (rather
than to a fuzzy set). The geometrical interpretations of both new operators are given
in Figs. 18 and 19.

Other five operators were introduced before 1990 (see [7, 12]). Thus, these seven
operators were a basis of the definition of one operator that generalizes all of them.
It has the form

Fig. 18 Geometrical
interpretations of the operator
Da
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Xa;b;c;d;e;f ðAÞ ¼ fhx; a:lAðxÞþ b:ð1� lAðxÞ � c:mAðxÞÞ; d:mAðxÞ
þ e:ð1� f :lAðxÞ � mAðxÞÞijx 2 Eg;

where the constants a; b; c; d; e; f 2 ½0; 1� and

aþ e� e:f � 1;

bþ d � b:c� 1

bþ e� 1:

As it was mentioned in [24], in [7, 12] the third condition was omitted through
my fault.

Since the beginning of the new century, the group of seven operators has been
firstly modified to another analogical group, each operator from which exhibits dual
behaviour to its corresponding operator from the first group. For instance, operator
that corresponds to operator Fa;b from the first group, now has dual operator fa;b in
the form

fa;bðAÞ ¼ hx; mAðxÞþ a � pAðxÞ; lAðxÞþ b � pAðxÞijx 2 Ef g;

where a; b 2 ½0; 1� and aþ b� 1 (see, e.g. [7]). We can notice that f0;0 coincides
with the first negation :1.

The first group with seven operators has also been extended by changing
parameters a and b with elements of whole IFS. For example, operator Fa;b can
obtain the form

FBðAÞ ¼ fhx;lAðxÞþ lBðxÞ:pAðxÞ; mAðxÞþ mBðxÞ:pAðxÞi x 2 Eg;

where A and B are IFSs.

Fig. 19 Geometrical
interpretations of the operator
Fa;b
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A completely different group of operators was introduced by the author (in the
1990s and during the last ten years, see [12]), Dencheva [25], Cuvalcioglu [26–29].
Perhaps, these operators do not have analogues in ordinary modal logic, but it will
be interesting to research if they can obtain such ones.

3.2 Analysis and Topology

The following operators are defined in [7, 30] as extensions of the two topological
operators C and I from Sect. 2.5:

ClðAÞ ¼ fhx; sup
y2E

lAðyÞ;minð1� sup
y2E

lAðyÞ; mAðxÞÞijx 2 Eg;

CmðAÞ ¼ fhx; lAðxÞ; infy2E
mAðyÞijx 2 Eg;

IlðAÞ ¼ fhx; inf
y2E

lAðyÞ; mAðxÞijx 2 Eg;

ImðAÞ ¼ fhx;minð1� sup
y2E

mAðyÞ; lAðxÞÞ; sup
y2E

mAðyÞijx 2 Eg:

In [7, 31], the two new topological operators C�
l and I�

m were introduced as

C�
lðAÞ ¼ fhx;minðsup

y2E
lAðyÞ; 1� mAðxÞÞ;minð1� sup

y2E
lAðyÞ; mAðxÞÞijx 2 Eg;

I�
mðAÞ ¼ fhx;minð1� sup

y2E
mAðyÞ; lAðxÞÞ;minðsup

y2E
mAðyÞ; 1� lAðxÞÞijx 2 Eg:

The geometrical interpretations of these operators, applied to the IFS A in
Fig. 20 are shown in Figs. 21, 22, 23, 24, 25, and 26.

Fig. 20 Geometrical
interpretations of three
elements a, b and c of an
intuitionistic fuzzy set
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Fig. 21 Geometrical
interpretations of the
application of operator Cµ

over the three elements a,
b and c and of an intuitionistic
fuzzy set

Fig. 22 Geometrical
interpretations of the
application of operator Cν

over the three elements a,
b and c of an intuitionistic
fuzzy set

Fig. 23 Geometrical
interpretations of the
application of operator Iµ over
the three elements a, b and
c of an intuitionistic fuzzy set
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Fig. 24 Geometrical
interpretations of the
application of operator Iν over
the three elements a, b and
c of an intuitionistic fuzzy set

Fig. 25 Geometrical
interpretations of the
application of operator C�

l

Fig. 26 Geometrical
interpretations of the
application of operator I�m
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In [7], the following equalities are proved for : ¼ :1 and for each IFS A:

:Cð:AÞ ¼ IðAÞ;

:Ið:AÞ ¼ CðAÞ;

:Clð:AÞ ¼ ImðAÞ;

:Ilð:AÞ ¼ CmðAÞ;

:C�
lð:AÞ ¼ I�

mðAÞ;

:I�
lð:AÞ ¼ C�

mðAÞ:

The following Open question is interesting: Which other negations satisfy the
above equalities and which of them satisfy these equalities in a modified form. For
example, if : ¼ :2, the above equalities obtain the forms:

:Cð:AÞ ¼ ::IðAÞ;

:Ið:AÞ ¼ ::CðAÞ;

:Clð:AÞ ¼ ::ImðAÞ;

:Ilð:AÞ ¼ ::CmðAÞ;

:C�
lð:AÞ ¼ ::I�

mðAÞ;

:I�
lð:AÞ ¼ ::C�

mðAÞ:

It is interesting whether we can define analogues of the above topological
operators in the area of topology.

In [32], a lot of intuitionistic fuzzy norms and metrics are described. A part of
them can be transformed to fuzzy or crisp sets.

Here, following [33], we discuss two non-standard norms, defined on the basis
of one of the most important Georg Cantor’s ideas in set theory and by this reason
below we call them “Cantor’s intuitionistic fuzzy norms”. They are essentially
different from the Euclidean and Hamming norms, existing in fuzzy set theory.

Let x 2 E be a fixed universe and let

lAðxÞ ¼ 0; a1a2. . .;

mAðxÞ ¼ 0; b1b2. . .:

Then, we bijectively construct the numbers

Mathematics of Intuitionistic Fuzzy Sets 79



jjxjjl;m ¼ 0; a1b1a2b2. . .;

and

jjxjjm;l ¼ 0; b1a1b2a2. . .;

for which we see that

1. jjxjjl;m; jjxjjm;l 2 ½0; 1�
2. having both of them, we can directly reconstruct numbers lAðxÞ and mAðxÞ.

Let us call numbers jjxjjl;m and jjxjjm;l Cantor norms of element x 2 E. In some
cases, these norms are denoted by jjxjj2;l;m and jjxjj2;m;l with aim to emphasize that
they are related to the two-dimensional IFS-interpretation. In [7], the
three-dimensional case is discussed, as well.

Following [7], a relation between the geometrical interpretation of the IFSs and
element of complex analysis is discussed hereunder.

Two elements x and y of E are said to be in relation negation if

lAðxÞ ¼ mAðyÞ and mAðxÞ ¼ lAðyÞ:

Their geometrical interpretation in the intuitionistic fuzzy interpretation triangle
is shown in Fig. 27.

It is well-known that numbers aþ ib and a� ib are conjugate in the complex
plane, where i is the imaginary unit. Let a; b 2 ½0; 1� and let the geometrical rep-
resentation of both points is given in Fig. 28. Let sections OA, OB and OC in
Fig. 28 have unit length.

We introduce formulae that transform the points of triangle ABC into triangle
ABO. One of the possible forms of these formulae is:

f ða; bÞ ¼
a
2 ;

a
2 þ b

� �
; if b� 0

a
2 � b; a2
� �

; if b� 0
;

8<
:

where ða; bÞ are the coordinates of the complex number aþ ib and
a 2 ½0; 1�; b 2 ½�1; 1�.

It can immediately be seen, that

Fig. 27 Elements of x and y
are in relation negation
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f ð0; 0Þ ¼ ð0; 0Þ;
f ð0; 1Þ ¼ ð0; 1Þ;

f ð1; 0Þ ¼ 1
2
;
1
2

� �
;

f ð0;�1Þ ¼ ð1; 0Þ:

It can be easily checked that function f is continuous and bijective.
Now, we directly see that

f�1ða; bÞ ¼ ð2a; b� aÞ:

Now, we see that for the arbitrary complex conjugate numbers aþ ib and a� ib
in triangle ABC (here a; b; aþ b 2 ½0; 1�):

f ða; bÞ ¼ a
2
;
a
2
þ b

� 	
;

f ða;�bÞ ¼ a
2
þ b;

a
2

� 	
:

Therefore, if IFS-element x has degrees of membership and non-membership a
2

and a
2 þ b, respectively, then IFS-element y that has degrees of membership and

non-membership a
2 þ b and a

2, respectively, shares with x, a relation negation.
The above construction generates a lot of interesting (and currently open)

problems. Some of them are the following:

• To develop complex analysis for the intuitionistic fuzzy interpretation triangle.
• To find transformations from the complex plane to the intuitionistic fuzzy

interpretation triangle and vice versa in order to acquire more convenient

Fig. 28 a + ib and ai i b are
conjugate in the complex
plane
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methods for studying different properties of given IFSs or of given objects in the
complex plane.

• To find interpretations of the other (not published by the moment) intuitionistic
fuzzy negations in the complex plane and study their behaviour.

• To construct complex analysis interpretations of the IFS-operators from modal,
topological and level types.

3.3 Interval Analysis

When working with interval data, we can transform them to intuitionistic fuzzy
form. Then, we can interpret them as points of the IFS-interpretation triangle. For
example, let us have the set of intervals

½a1; b1�;
½a2; b2�;
. . .

½an; bn�:

Let A ¼ min
1� i� n

ai\ max
1� i� n

bi ¼ B. Of course, A\B, since otherwise for all i:

ai ¼ bi. Now, for the interval ½ai; bi� we can construct the numbers

li ¼
ai � A
B� A

;

mi ¼ B� bi
B� A

which satisfy the condition 0� li þ mi � 1 and have the geometrical interpretation
from Fig. 3. This idea was introduced for the first time in [34] and it has been used
in a series of joint research of Kreinovich, Mukaidono, Nguyen, Wu, Koshelev,
Rachamreddy, Yasemis and the author (see, [8, 35–37]).

3.4 Number Theory

In [7, 38] are given some examples for application of IFSs to representing arith-
metical functions, e.g., the well-known Euler’s totient function and Möbius’s
function. Here, we give one of these examples.

If for a fixed natural number n� 2 we define the set
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FðnÞ ¼ fx j 1� x\n & ðx; nÞ ¼ 1g;

then,

cardðFðnÞÞ ¼ uðnÞ;

where ðp; qÞ is the greatest common divisor of the natural numbers p and q and
cardðXÞ is the cardinality of set X.

Let us define

ulðnÞ ¼ cardðfx j 1\x� n & x=ngÞ;

where x=n denotes that x divides n, and

umðnÞ ¼ uðnÞ:

Then, we can define

upðnÞ ¼ n� ulðnÞ � umðnÞ
¼ n� cardðFðnÞÞ � card fx j1� x� n& x=ngð Þ
¼ card fxj1\x\n & 1\ðx; nÞ\ngð Þ:

Therefore, for the set N of all natural numbers we can construct the following
IFS:

N� ¼ n;
ulðnÞ
n

;
umðnÞ
n


 �
j n 2 N

� �
:

It is an interesting question of future research which other arithmetical functions
can obtain IFS-interpretations.

3.5 Artificial Intelligence and Data Mining

In [39], the author discussed in details the possible applications of the IFSs as tools
for evaluation

• of parameters in pattern recognition procedures,
• of parameters in neural networks and evolutionary algorithms,
• of facts in expert systems, data bases, data warehouses, big data,

OLAP-structures,
• of parameters in decision making procedures,
• of parameters in machine and e-learning,
• of data in clusterisation and classification procedures,
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• of knowledge discovery processes and of processes for imputation (filling in) of
missing data,

• of procedures for inductive reasoning.

3.6 InterCriteria Analysis

During the last year, a new approach for decision support, named InterCriteria
Analysis, has been subject of research and development by the author and his
research team [40]. Under this approach, arrays of data obtained by the measure-
ment of multiple objects against multiple criteria are processed in order to obtain for
each pair of criteria coefficient of correlation (termed here positive consonance,
negative consonance of dissonance) in the form of an intuitionistic fuzzy pair of
values in the [0;1]-interval. The goal is to detect dependences between criteria on
the basis of previous measurement, in order to eliminate some of these criteria in
future measurements.

The InterCriteria Analysis can be successfully applied to problems, where
measuring according to some of the criteria is slower or more expensive, which
results in delaying or raising the cost of the overall process of decision making.
When solving such problems it is necessary to adopt an approach for justified and
reliable elimination of these criteria, in order to achieve economy and efficiency.
The approach has already demonstrated first evidences of its potential, when
applied to economic and industrial data, and represents a viable direction of applied
research using intuitionistic fuzzy sets.

4 Conclusion

Already 32 years, specialists from more than 50 countries have been working in the
area of IFS theory, and each step forward opens new perspectives for theoretical
and applied research, which is the best proof that this extension of the area of fuzzy
sets has promising prospects for the future.
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Some Comments on Ordinary Reasoning
with Fuzzy Sets

Enric Trillas and Adolfo R. de Soto

Abstract The main goal of Computing with Words is essentially a calculation
allowing to automate a part of the reasoning done thanks to the natural language.
Fuzzy Logic is the main tool to perform this calculation because it is be able to
represent the most common kind of predicates in natural language, graded predi-
cates, in terms of functions, and to calculate with them. However there is still not an
adequate framework to perform this task, commonly referred to as commonsense
reasoning. This chapter proposes a general framework to model a part of this type
of reasoning. The fundamental fact of this framework is its ability to adequately
represent noncontradiction, the minimum condition for considering a reasoning as
valid. Initially, the characteristics of the commonsense reasoning are analyzed, and
a model for the crisp case is shown. After that the more general case in which
graded predicates are taken under consideration is studied.

Keywords Fuzzy sets � Computing with words � Conjectures � Commonsense
reasoning

1 Introduction: In the Way Towards Computing
with Words

Fuzzy sets were introduced by Zadeh in 1965 [12] and first related with natural
language, and latter on with commonsense reasoning. Onwards from 1996 the same
Zadeh, once the theoretical armamentarium of fuzzy logic allowed it after more than
thirty years of development, and basing his thinking on the concept of a linguistic
variable previously introduced by himself [13], turned back to his original idea by
introducing the new field of ‘Computing with Words’ (CwW) [11]. This new field
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basically deals with the representation of commonsense reasoning expressed in
Natural Language by fuzzy sets and fuzzy relations, and means a step ahead with
respect to the original fuzzy logic capabilities.

Commonsense, or ordinary, reasoning is scarcely deductive and hence mono-
tonic; it essentially consists in conjecturing and refuting. It is by means of reasoning
that people tries not only to deduce what is implicitly hidden in the premises, but to
enlarge their informational content for either reaching explanations (hypotheses), or
just to lucubrate for going further than what is known (speculations). In addition, in
ordinary situations the laypeople’s “I deduce that” does not exactly mean the same
that when a mathematician states “I deduce that” with the help of a formal proof. In
the second case the proof consists in some argumentation made in a formal
framework, the reasoning can be reduced to a finite chain of elementary steps, each
one following the former by applying a known rule of inference, without hidden
jumps between these steps, and it can be reproduced by someone managing
mathematics and knowing the corresponding subject [5]. Plainly speaking, the
correction of the reasoning can be checked by an expert just using “paper and
pencil”; that possibility shows a great advantage for what concerns the safety of the
reasoning. In the first case, it is difficult to do always it with the help of a formal
framework and by reducing the reasoning to a chain of elementary steps and,
consequently, being sure that there are no jumps; even, it is often the case that some
of the intermediate steps cannot be endowed with the tautological character of those
in a mathematical proof. Additionally, not always the premises of the reasoning are
neither well known, nor its truth is well known; this modality of ordinary deduction
lacks the safe character of formal deduction.

Mathematical modeling is what allows to introduce formal deductive reasoning
in science, and since it just consists in “models”, the Eugene Wigner’s “unrea-
sonable effectiveness of Mathematics in the Natural Sciences” can be appreciated.
Deductive reasoning should be classified in formal and informal, being the first a
strengthening of the second that, hence, lacks a total safety for the validity of its
conclusions. If, usually, mathematical models cannot capture all the nuances of
reality and thinking, they allow to figure out, black over white, their basic concepts;
to clarify complex problems the “exact thinking” advocated by Menger [3] is, at
least, a good and fruitful strategy.

For what concerns hypotheses and speculations, usually they neither can be
directly developed from the premises, that is, no forward deduction can always be
used for reaching them (for instance, to find a hypothesis) although in some cases
backwards deduction can allow it. Both kinds of deduction are monotonic, even if
in the informal case the conclusions are not safe enough to be taken as new
premises. In the case of abductive reasoning (the search for hypotheses) neither the
conclusions, or hypotheses, can generally be taken as new premises, nor the rea-
soning is monotonic but anti-monotonic. In the case of speculative reasoning (the
search for speculations), neither the conclusions, or speculations, can be taken as
new premises, nor it is monotonic but without a fixed law of growing, or
no-monotonic. All reasoning starts from the conjunction, or résumé, of their pre-
mises. In addition, among speculations there are some that can be backwards
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deductively reached from the negation of the résumé, and others that cannot and
that can be called “creative” speculations. It is the reasoning conducting to creative
speculations, as well as some non deductive ones conducting to hypotheses, those
that can be truly called “inductive” reasoning. In any case, and among conjectures,
hypotheses and speculations are those that are non-decidable.

Since ordinary reasoning is basically conducted through words in natural lan-
guage, it is important to open the possibility of its study by modeling the involved
terms by fuzzy sets and not only in classical terms, since much of those words are
imprecise or show non-random uncertainty. This is the goal of this chapter and, as it
will be shown, what will be presented is reducible to the classical but insufficient
case of Boolean algebras that, useful for representing reasoning with precise terms,
enjoys too many laws for modeling the totality of reasoning; for instance, the
commutative law of Boolean conjunction is not generally valid when time inter-
venes as it often the case in ordinary reasoning. To obtain new types of conclusions,
the study of the case in which the conclusions are graded is actually important and,
specially, towards approaching some modalities of informal deduction.

This chapter tries to serve as a theoretical support for CwW, but, and specially,
to motivate young researchers to go further in its extension towards the different
types of commonsense reasoning.

2 Descriptive Aspects of Ordinary Reasoning

Some descriptive aspects that can partially characterize commonsense reasoning
(CR), are the following [8]:

1. Neither CR, nor formal deductive reasoning, is possible without starting from
either some previous information, evidence, suppositions, or axioms.

2. Often the previous information from which CR starts is not only partial, but
partially liable, and expressed in natural language containing ambiguous, pre-
cise and imprecise linguistic terms or also numbers, functions, pictures, etc.

3. Non-deductive CR lacks monotony, that is, when the number of significant
items or premises collecting the previous information increases, then either the
number of conclusion items decreases or there is no law for its variation. That
is, more premises mean less conclusions, or there is no way of knowing what
happens with the variation in the number of conclusions.

4. In CR, people essentially lucubrate to extract as conclusions from the previ-
ously given “knowledge”, “evidence”, or “information”, either consequences,
refutations or explanations of what it is supposed to be known, to follow up
with the safest possible conclusions to get new ideas or to just deploy what is
still hidden in the premises.

5. It is usually accepted in CR that the previous knowledge should be
non-contradictory, that is, without existing self-contradictory premises, and also
without premises contradictory with other premises. Hence, CR is done under
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the minimal limitation of trying to keep some kind of consistency, or
non-contradiction, with the information conveyed by the premises.

6. Typically, in CR there are “jumps” from the premises to some initial, or to the
final, conclusions, and contrarily to formal deduction where the deployment of
conclusions is done in a step-by-step manner and under precisely known rules.
Very often, such jumps cannot be reduced to a chain of elementary steps.

7. In general, CR is done under some not always well-known “rules of thumb”
with which people often lucubrate for extracting either consequences, “new”
ideas, or to reject some “old” ones. Such rules of thumb do not enjoy the
tautological character of the rules of inference typical of formal deduction.

8. More often than not, people uses metaphors or similarities for getting con-
clusions, at the extreme that metaphorical reasoning is considered as a part
of CR.

9. It is typical of CR that the premises, or the conclusions, are taken as graded
statements. That is, there are premises and conclusions that are not universally
valid but only partially liable.

10. Contrarily to what happens in formal deductive reasoning, the conclusions of
CR cannot be taken as new premises. For instance, it is often the case of
counting with two contradictory hypotheses or speculations.

11. Usually, CR cannot guarantee the “safety” of its conclusions, and, in any case,
such safety cannot always follow from that of the premises.

From these characteristics of CR, it follows that the Boolean structure of clas-
sical logic or even, for instance, the weaker one of Quantum logic, are not able to
capture all the nuances presented by the imprecision and uncertainty shown by the
involved statements. In what follows the only that will be not considered is the
presence, sometimes pervasive, of ambiguous linguistic terms. For what concerns
uncertainty, it should be recalled that it mainly belongs to either the random type or
to the non-random or singular type; the first can be dealt with the mathematical
concept of probability, and for the second there are other mathematical concepts
that are more or less useful, like it is the theory of possibility introduced by Zadeh.

3 Imprecision, Uncertainty, Ambiguity, and Analogy

1. The use of most words in dictionaries is not describable by, formal, “if and only
if” definitions, that is, its use cannot be characterized by means of such a
definition. Very few entries are like “even number: integer multiple of two”.
Even the entry “odd” not only refers to numbers, in which case it is charac-
terized by “if and only if, divided by two the rest is one”, but it also can refer to
people and then the only possibility for telling on its use lies in informally
describing it, like it also happens with other uses of “even”. Natural languages
are full of imprecise linguistic terms, that is, terms that can be understood as
those that do not collectivize in the form of a classical set in the universe of
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discourse, but in the form of a cloudy entity like, for instance, the collective of
“young Londoners”, since the word “young” cannot classify the set of London
inhabitants in just two classical sets. The “linguistic” collectives generated by
imprecise words have no a single representation in the universe of discourse,
like it happens with precise words. The collective of the even numbers is
uniquely represented by the classical subset f2; 4; . . .; 2n; . . .g of N, but there is
not any classical set able to represent the collective of young Londoners; there
are only families of fuzzy sets, each one depending on the information available
on the term young in London, and that can be viewed as “states” of the col-
lective. There is just a single state when the predicate is made precise, for
instance, when equating “young” with “less than 30 years old” that, anyway, is
just a possible state of the collective like it is with “less than 31 years old”, etc.
Currently, the only systematic way to deal with the imprecision that, through
words, permeates language is made by fuzzy sets.

2. Almost all statements in natural language show some kind of uncertainty, for
instance, “John is between 30 and 40 years old”, “Rita’s face is beautiful”, “My
neighbor is rich”, “In throwing this dice five points will be obtained”, “In next
election candidate X will not be elected”, “The garden is wide enough”, etc. The
uncertainty of these statements is manifested by questioning if they are “prob-
able”. For instance, “Is it probable that my neighbor is rich?”, “Is it probable to
get five points?”, etc. After accepting such a questioning, it goes the question of
“Up to which extent is it probable?”, whose answer depends on the type of
uncertainty to which the statement can be ascribed. For instance, the one
referring to throwing a dice can be seen as part of an “experiment”, repeatable in
the same, and controlled, conditions and from which, for instance, the succes-
sive results can be annotated, but that referring to candidate X does not admit
this view since the only that can be known is what happened either for X, or for
other candidates, but in past elections. The first type of uncertainty is called
“random uncertainty”, and the second can be called non-random, singular, or
linguistic. Random uncertainty is measurable by means of probabilities, in the
Kolmogorov sense if the “events” of the experiment can be supposed to belong
to a Boolean algebra, or in that of Quantum Probability if the events are in a
weaker structure like it is, for instance, an Orthomodular lattice [1].

For linguistic uncertainty there are, at least, two ways of measuring its extent,
namely the measures of possibility-and-necessity [14], and those of fuzzy proba-
bility [16] that, both introduced by Lotfi A. Zadeh, the last are applicable when the
statement can be represented by a fuzzy set in Rn [9, 16].

3. Usually the meaning of words is not unique but at each context one of them can
be clearly taken, and the problem appears in those cases where the corre-
sponding meaning is not clearly recognizable. Very often either joking, or
confusion, are based on this linguistic ambiguity like, for instance, when
someone says “I am looking for a bank”, and it is understood as a search for a
bank to seat in, instead of searching for a bank’s office.
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If imprecision and uncertainty can be taken into account thanks to fuzzy logic
and probability theory, the formal study of ambiguity is still an open problem.

4. People use analogy, likeness, or similarity, either to explain, or to capture, how
things are, or what can follow from something. That is, for identifying new
things, for conjecturing how they are, or for lucubrating some conclusions from
them. The richness of metaphors in all natural language is due to the usefulness
of comparing things by similarity; the common use in English of the word “like”
as, for instance, in “A dress like that of a cap”, or “A house like that of a
maharaja”, help to have a first, although inexact, comprehension of either a
dress, or a house saving the speaker of a, perhaps, unnecessary and too detailed
precision in the description. Descriptions by similarity just help to acquire a first
idea of what, being new, is tried to be described.

For what concerns reasoning, analogy is also commonly employed in com-
monsense reasoning. If something was successfully conjectured in a given situation,
and the reasoning deals with a similar situation, it is often supposed that something
similar can be conjectured in the new situation. In the field of Artificial Intelligence,
techniques like case-based reasoning are used for doing reasoning by analogy.
Since the similarity of situations is often difficult to be measured, an important
problem in analogical reasoning is the numerical control of the extent up to which
things are similar. For instance, when it was initially considered the atom’s structure
as similar to the solar system, it conducted to misleading conclusions not corre-
sponding with some real atomic phenomena. Nevertheless, such atomic model is
still useful at High Schools for some didactical purposes.

4 Frame of Representation

There is no science without, at least, counting with a process of schematization
followed by abstraction. That is, isolating the essential elements of a given subject,
and the basic relationships between them, allowing for a sufficient identification of
what intervenes in the problem, as well as for the measuring of the main quantities
that, originated by them, are observable. It is through such measuring how a theory
obtained by abstraction can be tested against the reality at which it refers to [10].

For such goal it is relevant and useful to fix, at each case, a frame of formal
representation; for instance, the vector space R3 for the 3-dimensional geometry,
sigma-algebras for the theory of probability, Hilbert spaces for quantum physics,
the real line for the infinitesimal calculus, De Morgan algebras for the theory of
possibility, etc. That is, once a problem is isolated and identified, it is with the help
of a formal frame for representing what intervenes in it, allowing to consider the
problem as one of scientific type, that helps to contrast the theory with the

92 E. Trillas and A.R. de Soto



corresponding reality. It is the establishment of a formal frame what allows the
mathematical modeling of real problems, with these models is which mathematics
gifts science with the possibility of introducing deduction, the safest type of rea-
soning, among its reasoning. It is just in this way that science can differentiate from,
for instance, metaphysics.

Hence and for trying to scientifically study commonsense reasoning, it is
important to initially fix a formal framework in which, avoiding ambiguity,
imprecision, uncertainty and analogy can be represented. That is, doing it by means
of fuzzy sets structured in a form sufficiently weak for not only help to appreciate
very general treats of reasoning, but also to know which properties are suitable for
the verification of some specific laws. For such purpose, the structure of a Basic
Algebra (BA) [5, 8], a partially ordered set endowed with two binary operations,
and a unary one, satisfying a minimal number of properties, seems to be sufficient.
Such structure, is defined in FðXÞ ¼ ½0; 1�X with

• The pointwise ordering, l� r , lðxÞ� rðxÞ for all x in X, with which FðXÞ is
a poset,

• A (binary) conjunction � : ðXÞ � FðXÞ ! FðXÞ, and a (binary) disjunction
þ : FðXÞ � FðXÞ ! FðXÞ,

• A (unary) negation 0 : FðXÞ ! FðXÞ,
where l0ðxÞ ¼ 0 and l1ðxÞ ¼ 1 for all x in X are the minimum and the maximum,
respectively, but in which neither associativity, nor commutativity, nor distribu-
tivity, nor double negation, nor functional expressibility, etc., are previously sup-
posed, just should verify the properties:

1. (a) l0 � l ¼ l � l0 ¼ l0 & l0 þ l ¼ lþ l0 ¼ l
(b) l1 � l ¼ l � l1 ¼ l & l1 þ l ¼ lþ l1 ¼ l1; for all l inFðXÞ:

2. (a) l� r ) r0 � l0

(b) l00 ¼ l1 & l01 ¼ l0

3. If l� r, then

(a) l � c� r � c & c � l� c � r
(b) lþ c� rþ c & cþ l� cþ r; for all c inFðXÞ:

4. The restrictions of �, +, and 0, to {0, 1}X, are � ¼ min, þ ¼ max, and 0 ¼ 1� id.

From these very weak laws of X ¼ ðFðXÞ; �; l0; l1; �; þ ;0 Þ, it easily can be
proven the following few laws,

I. Among conjunctions, the largest is � ¼ min, and the smallest is that given by

l½��r :¼
r if l ¼ l1;
l if r ¼ l1;
l0 otherwise:

8
<

:
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Among disjunctions, the smallest is þ ¼ max, and the largest is that given by

l½ þ �r :¼
r if l ¼ l0;
l if r ¼ l0;
l1 otherwise:

8
<

:

Only with the pair (min, max) is Ω a lattice and, provided the negation is
involutive, or strong, (l00 ¼ l, for all μ in FðXÞ), Ω is a De Morgan algebra
verifying the Kleene Law l � l0 � rþ r0, for all μ and σ.
There is no Ω that, with the full set FðXÞ, can be neither an ortholattice nor, a
fortiori, a Boolean algebra.

II. The definitions l� r ¼ ðl0 � r0Þ0, and l � r ¼ ðl0 þ r0Þ0, give, respectively, a
disjunction, and a conjunction, not always verifying laws of duality, like
l� r ¼ ðl0 � r0Þ0. The corresponding BA is called the “dual” of Ω.

III. Ω0, the BA obtained by restricting the operations of Ω to the subset {0, 1}X, is
a Boolean algebra isomorphic to that of the crisp subsets of X. When Ω is the
De Morgan-Kleene algebra given by min and max, Ω0 consists in its Boolean
elements.

IV. It is always:

(a) l� r & a� b ) l � a� r � b & lþ a� rþ b
(b) l0 � r0 � ðl � rÞ0 & ðlþ rÞ0 � l0 þ r0

(c) If þ ¼ max, and regardless of � and 0;

ðlþ rÞ0 � l0 � r0 & l � ðrþ cÞ ¼ l � rþ l � c:

(d) If� ¼ min; and regardless of + and 0;

ðl � rÞ0 � l0 þ r0 & lþðr � cÞ ¼ ðlþ rÞ � ðlþ cÞ:

V. Characterization of the BAs in which hold the laws of Non-contradiction
(NC) and Excluded-middle (EM), when expressed in the typical form they
take with crisp sets, namely, l � l0 ¼ l0 and lþ l0 ¼ l1, respectively, is not
known. Nevertheless, it can be proven that they hold in the forms [7] l �
l0 � ðl � l0Þ0 for NC—namely, l � l0 is self-contradictory, and ðlþ l0Þ0 �
ððlþ l0Þ0Þ0 for EM—namely, ðlþ l0Þ0 is self-contradictory. Hence, it is not
true that fuzzy sets violate these laws.

VI. When the operations �; þ ; and 0, are functionally expressible, the possible
validity of additional laws to those proper of the BA, can be analyzed through
functional equations. For instance, and for a conjunction that is functionally
expressible by means of a numerical function F, and a negation expressible by
a numerical function N, the validity of the NC’s law l � l0 ¼ l0, strictly
depends on the verification by F of the functional equation Fða;NðaÞÞ ¼ 0,
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for all a in [0, 1]. It should be pointed out that, the continuity of the functions
expressing the three operations, without which solving functional equations is
extremely difficult, is very important for not adding more discontinuities than
those presented by the fuzzy sets being operate with. Since continuity just
appears as a way for translating into fuzzy sets the flexibility usually required
for representing imprecise predicates, or linguistic labels, it is not always
suitable that, for instance, l � r can show more discontinuity points than those
eventually shown by μ or by σ.

A very particular case of functionally expressible BAs is obtained by supposing
that the three operations are of the forms

l � r ¼ T � ðl� rÞ; lþ r ¼ S � ðl� rÞ; and l0 ¼ N � l;

with T a continuous t-norm, S a continuous t-conorm, and N a strong negation
function. Then, the corresponding Ω is called a Standard algebra (SA) of fuzzy sets
that carries, obviously, with the associative and commutative laws not always
present in language. In the setting of Standard algebras, the laws NC and EM can be
characterized in its classical forms; for instance, NC holds with T equal to the
Lukasiewicz t-norm Wða; bÞ ¼ maxð0; aþ b� 1Þ, and with the negation N0ðaÞ ¼
1� a, and EM holds with this same N0 and S equal to the dual t-conorm
W	ða; bÞ ¼ minð1; aþ bÞ. Of course, with the triplet ðW ; W	; N0Þ both laws hold.

Even if SAs do not verify all the laws holding in Boolean algebras, they
verify a sufficient number that make them too strong for constructing a mathe-
matical model of reasoning inside them. In what follows such a model is pre-
sented inside of just a BA Ω, and for both the crisp and the graded reasoning.

5 Modeling Reasoning as Conjecturing and Refuting

This section tries to present a mathematical model for precise or crisp reasoning,
with non-ambiguous and either imprecise, or precise, statements. By “crisp rea-
soning” it is understood the reasoning with fuzzy and/or crisp sets as premises, and
also fuzzy and/or crisp sets as conclusions, but without considering any degree on
their respective validity [5, 9].

1. Basically, reasoning consists in conjecturing and refuting as, for instance, when
after having some information on the way in which John is living, it is either
concluded that he is rich, or that he is not rich. Analogously, when knowing that
someone will win the lottery’s award, a person buys a ticket of it just by saying
himself, “Why not me”, even knowing that the probability of winning is very
low, or when a woman after having acquired some acquaintance with a man
convinces herself that he is not a good candidate to be married with, or when a
young girl decides to study Literature at the university after thinking that her
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ability in writing assures that she will be a famous writer. Most of the people’s
ordinary reasoning just tries to reach conclusions characterized by the following:

(a) What is known, or believed, consists on statements p1; . . .; pn, supposed no
one is self-contradictory (it is not “If pk, then not pk”), and no one is
contradictory with another one (it is not, “If pk, then not pj”). Statements pk
are the premises of the reasoning, and their conjunction, p = p1 and p2
and … and pn, is its résumé.

(b) A statement q is a conclusion of the reasoning if: Either it can be stated “If
p, then not q”, or it can be stated the negation of this conditional statement,
“It is not (If p, then not q)”. In the second case the conclusion is a con-
jecture of the premises, and in the first is a refutation of them.

To formalize these two ideas, in the way of having a first mathematical model of
(non-graded, or crisp) ordinary reasoning, let’s suppose that all the premises, their
résumé and conclusions, belong to FðXÞ, that is do correspond to non-ambiguous
and either imprecise, or precise, statements. Let’s denote P ¼ fp1; . . .; png the set of
premises. Then,

1. p ¼ p1 � ðp2 � ðp3 � � � � ðpn�1 � pnÞÞ � � �Þ
2. q is a conjecture of P , p£ q0

3. q is a refutation of P , p� q0,

with,

Conj P ¼ fq 2 FðXÞ; p£q0g; and Ref P ¼ fq 2 FðXÞ; p� q0g;

the sets of conjectures and refutations of P. These two sets constitute a partition of
FðXÞ since, obviously,

FðXÞ ¼ Conj P[Ref P; and ConjP\Ref P ¼ ;:

It should be pointed out that not having presumed the conjunction � is asso-
ciative, p depends on the numbering, or ordering, of the premises. The parentheses
only can be skipped once � is associative, and then the ordering of the premises is
not important. Because � is a partial ordering, it is clear that conjectures can be
partitioned in the two classes fq 2 ConjP; q0\pg, and {q 2 Conj; q is not ≤-
comparable with p}, of which the second is called the class of speculations and is
denoted by Sp ðPÞ, and the first is, at its turn, classified in the two disjoint
subclasses,

fq 2 FðXÞ; p£ q0 & p� qg; and fq 2 FðXÞ; p£ q0 & l0\ q\pg;

of which the first are the consequences of P, the second the hypotheses of P, and are
respectively denoted by C(P) and Hyp(P). Hence, from the partition, Conj
P ¼ CðPÞ [HypðPÞ [ SpðPÞ, and finally it is obtained the partition,
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FðXÞ ¼ Ref P[ConjP ¼ Ref P[CðPÞ [HypðPÞ [ SpðPÞ;

telling that once P and p are given, there are no other elements in FðXÞ than
refutations, consequences, hypotheses and speculations. Obviously, among them,
the set of the undecidable ones is HypðPÞ [ SpðPÞ.

At its turn, SpðPÞ can be classified in the two classes

Sp1ðPÞ ¼ fq 2 FðXÞ; p nc q & q0\pg;

and,
Sp2ðPÞ ¼ fq 2 FðXÞ; p nc q& p nc q0g;

shortening “not ≤-comparable” by “nc”. Hence, speculations either are of type-one,
or of type-two.

Remarks

(a) The obvious equalities ConjP ¼ Conj fpg, and Ref P ¼ Ref fpg, highlight
the relevance of the résumé p, as well as the model’s dependence on it. Hence,
and provided the conjunction � is non-associative, special care should be
placed to “define” the résumé, i.e., in the ordering of the premises.

(b) Since ≤ is transitive, any consequence q can be reached through forward paths
starting at the résumé: p� q1; q1 � q2; . . .; qn � q. That is, by means deduc-
tive steps that, only in the case of mathematical formal deduction, are chains of
elementary steps in which never can be jumps, in the sense that each qk
follows from qk−1 by applying “Modus Ponens”.

(c) For what concerns hypotheses h, it is possible to reach them by backwards
deductive paths starting at the résumé: p
 h1; h1 
 h2; . . .; hn 
 h, provided
at least one of the ≥ is >. Whenever these paths are chains that is, such that
each hk follows by hk−1 by applying “Modus Tollens”, it can be said that h is
deductively reached. Hence, in principle, only some hypotheses can be
deductively obtained.

(d) Type-one speculations q such that q0 � p, can be deductively reached by
backwards paths starting at the résumé and ending at q0. Nevertheless, no
type-two speculation can be reached through a path and, hence, by a deductive
chain. Hence, very few type-one speculations can be obtained by deduction,
and type-two speculations can be never deductively obtained. Those
hypotheses, type-one speculations that cannot be reached by deductive chains,
as well as type-two speculations, only can be obtained through induction, that
is, in a heuristic form by means of jumps. Actually, only type-two speculations
can be viewed as those that mainly contribute to the reasoning with “new
ideas” and, for this reason, can be called “creative speculations”.

(e) Since it is always l1 2 CðPÞ, it is also l1 2 ConjP, but neither μ1 is in
HypðPÞ, nor in SpðPÞ. For what concerns μ0, it is never in ConjP, but, since its
negation is μ1, it is l0 2 Ref P.
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2. What happens with the growing of the number conclusions when that of pre-
mises grows? It is not difficult to prove what follows. Let’s suppose that P and
Q are sets of premises, and that P�Q, with the corresponding résumés veri-
fying p � q. Then,

(a) ConjQ�ConjP, that is, the operator Conj is anti-monotonic.
(b) Ref P�Ref Q, that is, Ref is monotonic.
(c) CðPÞ�CðQÞ, C is monotonic.
(d) HypðQÞ�HypðPÞ, Hyp is anti-monotonic.
(e) It is neither SpðPÞ� SpðQÞ, nor SpðQÞ� SpðPÞ, that is, Sp is just

non-monotonic, there is not a general law for the growing of speculations.
Anyway, it is Sp1ðQÞ� Sp1ðPÞ, Sp1 is anti-monotonic but it is Sp properly
non-monotonic.

The only of these sets that can be taken as a new set of premises is CðPÞ, since it
neither can contain self-contradictory consequences, nor contradictory pairs of
them. Hence, the only of these operators that can be always re-applied is C: It can
be considered CðCðPÞÞ ¼ C2ðPÞ as a set of premises, and since P�CðPÞ, it fol-
lows CðPÞ�C2ðPÞ, and more concretely CðPÞ ¼ C2ðPÞ. The new set of premises
do not enlarge those consequences obtained from P. C is a closure operator.

From P�CðPÞ, follows P�ConjP, but P is neither contained in HypðPÞ, nor in
SpðPÞ, nor in Ref P. Only consequences are able to “extent” the premises.

Remark Actually, the name “creative” not only can be identified with type-two
speculations. Also those hypotheses and those type-one speculations that cannot be
reached through deductive paths, can be involved in “creative reasoning”.

For what concerns to refutation, it should be pointed out that those refutations
q such that q0 � q, can be also reached by paths starting at the résumé of P, and,
eventually, by deductive chains. Hence, also the refutations that are not deductively
reachable can deserve to be called “creative refutations”.

3. Let’s show a way in which speculations can be very useful. Consider q 2
SpðPÞ:
• From p� pþ q, it follows pþ q 2 CðPÞ.
• Provided p � q 6¼ l0, since p � q� p, it suffices that p � q 6¼ p to obtain

p � q 2 HypðPÞ. Notice that, in the case in which � ¼ min, it were p � q ¼ p, in
this case equivalent to p � q, it will suffice p£ q, for reaching a hypothesis
p � q.

Consequently, the disjunction between the résumé and a speculation is always a
consequence, and a non-empty conjunction of the résumé with a speculation,
provided such conjunction is different from the résumé, is a hypothesis. Speculating
not only serves for creating new ideas, but also for explaining what is known, and
for deploying hidden consequences from it.
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4. A capability the presented model shows is that of proving two well known
criteria for falsifying that a statement h is a hypothesis of P. That is, the falsi-
fication of hypothesis.

• Provided it is presumed that h 2 HypðPÞ, from h\ p, it follows C ðfpgÞ ¼
CðPÞ� CðfhgÞ. Hence, provided it were found a consequence of P that
cannot be a consequence of h, it will be h 62 HypðPÞ: h is deductively fal-
sified as a hypothesis of P.

• Since CðfhgÞ�Conjfhg, for falsifying h it suffices to find a consequence of
P that cannot be conjectured from h.

The first is the falsification used in mathematics, and the second is used in the
experimental sciences.

6 Analogy in Ordinary Reasoning

As it was said before, analogy, likeness, or similarity appears very often in ordinary
reasoning. If a set of premises P can be seen as analogous to another Q, it can be
supposed that their respective résumés p and q are also similar, and a first worry to
be considered is if analogy can be considered as a different kind of reasoning than
conjecturing or refuting. In other words, the question is if the images by analogy
can give, or cannot, a new type of conclusions; if analogy, being very important, is
more than a tool for reasoning.

Provided there is a mapping A: FðXÞ ! FðXÞ, transforming each fuzzy set q in
another fuzzy set A(q), and preserving some features of a given problem, it can be
said that “q and A(q) are analogous” [5]. Then, the set ConjAðPÞ, with AðPÞ ¼
fAðqÞ; q 2 ConjPg, can be seen as analogous to the set Conj P, provided its
résumé is AðpÞ ¼ Aðp1 � ðp2 � ð. . .ðpn�1 � pnÞ. . .Þ, that is, ConjAðPÞ ¼ ConjAðpÞ. At
this respect, provided � is associative and A is a morphism for the conjunction �,
from AðpÞ ¼ Aðp1Þ � Aðp2Þ � � � � � AðpnÞ, it can consistently be taken AðPÞ ¼
fAðp1Þ; . . .;AðpnÞg with résumé A(p).

Defining the function A0, by A0ðqÞ ¼ ðAðqÞÞ0, for all q in FðXÞ, there only exists
the two possibilities of being, either IdFðXÞ � A0, or IdFðXÞ £A0. Thus, and for all
q 2 FðXÞ, it is either q � AðqÞ0 and only refutations can be obtained, or it is
q£AðqÞ0, and only conjectures can be obtained.

In the second case, and since as its turn function A, only can verify:

1. A� idFðXÞ, in which case it is AðqÞ� q, for all q in FðXÞ, and only conse-
quences can be obtained.

2. IdFðXÞ\A, and q\AðqÞ, and only hypotheses can be obtained.
3. IdFðXÞ and A are not comparable, i.e., function IdFðXÞ crosses with function A,

and there are cases in which it is q\AðqÞ, and others in which it is AðqÞ� q. In
this case, only speculations can be obtained.
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It does not seem that analogy can give a different type of reasoning, but that it is
a precious helping methodology for it. For instance, if q is a creative speculation
with which it was found the hypothesis p � q, and it is A\ IdFðXÞ, from Aðp � qÞ\
p � q � p, follows that the fuzzy set Aðp � qÞ, analogous to the old hypothesis p � q,
is a new hypothesis for P.

Metaphors are but statements or, sometimes, images or drawings, reflecting
something analogous to what is being considered, and are not at all avoidable for
ordinary reasoning. Greek philosophy is full of metaphors, and Plato’s dialogs
constitute a paramount example on the use of linguistic metaphorical reasoning. In
the learning of elementary mathematics, for instance, the drawing of a particular
triangle can serve as a metaphor for inspiring how to solve a question on triangles.
Metaphors can be very useful, are used from very old, and their danger just lies in
the “distance” between the metaphor and the current problem, in what was believed
when, a metaphor was created in the past, and what is currently known. The good
use of metaphors lies, at its turn and at the end, in the experience and, especially,
the specific knowledge of who is using them, and there are many examples in the
history of science of metaphors that conducted to new and fruitful knowledge as it
is, for instance, the “ouroboros” metaphor that allowed August Kekulé to find the
benzene’s chemical structure.

Last remark, It should be pointed out that almost all that has been presented can
be done, mutatis mutandis, in a BA different of Ω. Hence, the model can be
exported to different settings than that of fuzzy sets.

7 Graded Ordinary Reasoning with Fuzzy Sets

The modeling of reasoning through the classification and study of statements in
conjectures and refutations, along its subsequent subdivisions in hypothesis, con-
sequences and speculations is a model that accounts for many of the characteristics
of human reasoning. However, the model presented in Sect. 5 does not take into
account that, in common sense reasoning, new sentences are obtained from “pos-
sibilistic” rather than “safe” knowledge. Reasoning has much more of “may” than
“definitively is”. So our knowledge progresses, when using reasoning mechanisms,
incorporating judgments that are possible given our state of knowledge. But there
are many possible sentences and some of them usually contradict each other, at least
with some intensity. We can say that from our current knowledge a tree of diverse
possibilities is open and some branches are clearly contradictory with others.
However, if we want an appropriate reasoning mechanism, choosing any of these
branches should require a minimum of coherence between its elements.

Thus on the one hand, the model should incorporate the ability of deducing with
a graduated measuring of the strength in the reasoning and, on the other hand, it
should be established a principle of “minimum consistency” so the steps of rea-
soning should not include judgments that would lead to absurd. To achieve this, the
framework of representation given in Sect. 4 should be expanded.
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Remark Different models are possible to perform this task. In all of them, it seems
natural to introduce a graded relationship as a way of spreading conclusions.
However the definition of the relevant sets in this new context is difficult to assess.
In what follows, the sets of conjectures and refutations together with their posterior
divisions in consequences, hypotheses and speculations are crisp sets defined from
levels of chaining reasoning but it must be understood that is certainly not the only
possibility, and can not even be the most interesting. Therefore the following should
be considered as provisional, pending of a deeper development and being checked
with various examples.

In the above formulation, a BA uses the pointwise ordering between fuzzy sets,
which of course is a crisp ordering between fuzzy sets. From now, a graded relation
between statements through a more general ordering is defined. So a fuzzy relation
4 : FðXÞ � FðXÞ ! ½0; 1� between fuzzy sets will be adopted.

The relation l4 g represents a conditional fuzzy relation between propositions
l; g from the habitual interpretation in mathematical logic

ðl4 gÞ ¼ r , if l; then g; up to the degree r 2 ½0; 1�:

Natural requirements for relations 4 are the reflexive property and the T-tran-
sitive property:

Tðl4 g; g4 rÞ � l4 r:

Specially last one gives the quite basic requirement of knowing some minimum
level to which a reasoning with several propositions can be chained. A fuzzy
relation with both properties is called a T-preorder.

From the relation 4, classical relations between fuzzy sets can be defined fixing
a threshold r:

l4r r iff ðl4 rÞ 
 r:

In particular, the classical relation 41, called the kernel of 4; is a classical
preorder.

In this new framework, when such a fuzzy relation is used in a Basic Algebra,
we will call this structure a Basic Fuzzy Algebra (BFA). The properties of a Basic
Fuzzy Algebra are the equivalent ones to the properties given in Sect. 4 for BA. In
particular the conjunction and disjunction will be monotonic with respect to the
relation 4 by the left and the right. Important enough is also the behavior of the
negation with this new ordering.

As it is said in point V of Sect. 4, in a Basic Fuzzy Algebra there is a repre-
sentation of contradiction. In the classical sense of the non-contradiction principle in
boolean logic, i.e. that the degree of truth of p ^ pc is always 0, is not valid in general
in standard fuzzy logic algebras [6]. However in any human reasoning the
non-contradiction principle appears as an important principle; the relation of being
contradictory plays a fundamental role. Our reasoning goes well if, at least, there is
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not a contradiction in it. In a BFA, a fuzzy set μ is said contradictory to degree r with
another fuzzy set ρ if ðl4 q0Þ [ r [ 0:1 That means the negation of ρ is derived
from μ in some degree. When ðl4q0Þ ¼ 0; l and ρ are said non-contradictory fuzzy
sets. A fuzzy set μ will be named self-contradictory if it is the case that ðl4 l0Þ[ 0.
The fuzzy set μ0 is self-contradictory because l0 41 l1 � l00. In classical logic, the
empty set is the unique self-contradictory set, but in Fuzzy Logic with a different
negation function can exist many self-contradictory fuzzy sets [7]. In fact, in any
BFA an expression of the principle of Non-contradiction is always valid because
l � l0 is self-contradictory, i.e.

l � l0 41 ðl � l0Þ0 ð1Þ

because from l � l0 41 l it is valid that l0 41 ðl � l0Þ0 and with l � l0 41 l0 results (1).

1. In the context of Basic Fuzzy Algebras, the set of admissible premises are
considered as non-contradictory and hence as a valid set to represent a state of
knowledge. In a BFA Ω, let’s consider those sets P ¼ fq1; . . .; qng�FðXÞ;
such that:

1. for all i; j 2 1; . . .; n : ðqi 4 qjÞ ¼ 0;
2. its résumé, qP � q1 � ðq2 � ð. . .ðqn�1 � qnÞ. . .Þ; verifies ðq4 q0Þ ¼ 0; and

ðq0 4qÞ ¼ 0:2

Last definition tries to fix a kind of minimal precaution on the available infor-
mation from which some conclusions should be extracted based on forbidding
self-contradictory information.3 It can be proven that in a set of admissible pre-
mises, no pair of contradictory premises can exist. It should be recalled that in lack
of associativity, premises must be numerated to properly define p

2. In the crisp case, if ρ represents the résumé, a conjecture is a proposition μ
whose negation l0 is not deduced from the résumé, i.e. q£ l0. This means that a
conjecture is any proposition which is not contradictory with the knowledge
generated by the résumé, or which is compatible with that knowledge. Or put
another way, a conjecture is a candidate to in some way increase consistently the
knowledge. Refutations, on the contrary, are propositions which are in contra-
diction to the current knowledge. In a graded context, it is possible to try to
catch these ideas by means of following definitions.

Conjr P ¼ fl 2 FðXÞ; ðq4l0Þ\ rg ð2Þ

1If the negation is strong, if μ is contradictory with ρ is equivalent to ρ is contradictory with μ
because 0\ r\ l4 q0ð Þ � q00 4 l0ð Þ ¼ q4 l0ð Þ.
2If P is clear from the context we use ρ instead of ρP for the résumé of P.
3Note that in a framework of a graded ordering relation, first condition is a strong one but
necessary to avoid self-contradiction.
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Refr P ¼ fl 2 FðXÞ; ðq4 l0Þ 
 rg; ð3Þ

where r represents a considered acceptable degree of refutation. Observe that when
r ¼ 1, μ is a conjecture if ðq 41 l0Þ. As in the crisp case, both sets constitute a
partition of FðXÞ.

The degree r is, in some sense, a level of admissible contradiction. With these
definitions, a refutation introduces some level of contradiction in the information
given by the résumé, because it is easy to prove that if l 2 Refr ðPÞ; then
r�ðl � q4 ðl � qÞ0Þ. So from 0\r�ðq4 l0Þ we obtain a level r of contradiction
between μ and the résumé, because 0\ðl � q4 ðl � qÞ0Þ: It shows that a refutation
added by the left to the set of premises causes a level of contradiction in our
knowledge.

Operators Refr are not extensive for any r 2 ð0; 1�, and they are monotonic, i.e.
if the set of admissible premises increases, the set of refutations also increases.
However the conjecture operator is anti-monotonic with respect to the set of
admissible premises. Also the behavior of both operators with respect to the grade
r is inverse, the sets of refutations are anti-monotonic with respect to the grades r,
that is if s\ r, then Refr �Refs and the sets of conjectures are monotonic with
respect to the grades.

3. Again, in the framework of BFA, it is possible to consider the set of conse-
quences of a set of admissible premises.

CrðPÞ ¼ fl 2 FðXÞ; ðq4 lÞ 
 rg: ð4Þ

The difference with the crisp case lies in that the set of consequences is not
always a subset of conjectures. It is necessary to establish a couple of extra con-
ditions to that goal: It can be proven that, for any non-nilpotent t-norm T and any
strong negation, any set of admissible premises P and any r 2 ð0; 1�, is CrðPÞ�
Conjr ðPÞ:

The sets of consequences are anti-monotonic with respect to the grade r and they
satisfy two properties of the Tarski’ consequence operators: they are extensible,
P�CrP, and they are monotonic, if P�Q, then CrP�CrQ.

The T-transitivity, together with the two conditions ðq4 q0Þ ¼ 0 and ðq0 4qÞ ¼
0 constitute, in the case of non-nilpotent t-norms, a strong condition. Using the first
one, T-transitivity and the basic property of the operator of negation, the relation

Tðq4 l0; q4 lÞ� Tðq4l0; l0 4 q0Þ � q4 q0 ¼ 0; ð5Þ

is always true for any fuzzy set μ, so either ðq4 lÞ ¼ 0, i.e. μ is not a consequence
of ρ at any level, or ðq4 l0Þ ¼ 0; i.e. ρ is not contradictory with l0. Of course, also
both cases are simultaneously possible.

Analogously, using the condition ðq0 4 qÞ ¼ 0, for any μ, either ρ is not a
consequence of μ, or it is not a consequence of l0: Observe that this is not necessary
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true for nilpotent t-norms. But in some cases a threshold could be establish between
the values of ðl4 qÞ; ðl0 4 qÞ; ðq4 lÞ; and ðq4 q0Þ:

Note that in case of a non-nilpotent t-norm T, a refutation never is a consequence
up to any degree because

Tðq4 l0; q4lÞ� Tðq4 l0; l0 4q0Þ � ðq4 q0Þ;

and it is not possible to have ðq4 l0Þ[ 0 and ðq4 lÞ[ 0; simultaneously.
However with nilpotent t-norms it can be the case that a refutation to some degree
can be a consequence to a non-zero degree. In particular we have for a
non-nilpotent t-norm T, that, if l 2 CrðPÞ; then l0 62 CrðPÞ:
4. Take into consideration the difference-set:

Conjr ðPÞ � CrðPÞ ¼ fl 2 FðXÞ : ðq4 lÞ\r & ðq4 l0Þ\rg ð6Þ

Remember that the set CrðPÞ is not necessarily a subset of Conjr ðPÞ; since in
fact, Conjr ðPÞ can be empty. The set given in (6), if exists, represents the con-
jectures that are not consequences.

Consider next two sets:

HyprðPÞ ¼ fl 2 FðXÞ : q4 l\r & q4 l0\r & l4 q
 rg;
SprðPÞ ¼ fl 2 FðXÞ : q4 l\r & q4 l0\r & l4 q\rg:

With these definitions, if Conjr ðPÞ 6¼ ;, then

Conjr ðPÞ ¼ CrðPÞ [HyprðPÞ [ SprðPÞ:

Newly, the conjectures, if they exist, are classifies in consequences, hypothesis
and speculations.

With respect to the grade r, if r� r0; HyprðPÞ is incomparable with Hypr
0 ðPÞ;

hypotheses can grow or not. Conjectures increase with r consequences decrease,
and speculations increase as it is easy to prove. For the set of hypothesis nothing
can be said.

A natural requirement for a hypothesis is that they explain the consequences, in
particular, any consequence of a premise must be a consequence of a hypothesis. In
our case this depends of the t-norm, because if r 2 HyprðPÞ and l 2 CrðPÞ; then

Tðr; rÞ� Tðr4q; q4 lÞ� r4 l:

So μ is a consequence of σ to level Tðr; rÞ:
It also and newly shows that, for a fixed r, operators Hypr are anti-monotonic,

while operators SprðPÞ are neither monotonic nor anti-monotonic.
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8 Conclusions

It is a strong believing of the authors that CwW [11, 15] can offer more potentiality
than that of being just applied to practical problems, and even if this is of a
paramount importance. As far as CwW deals with reasoning expressed in natural
language, it can count with all the armamentarium either existing, or in course of
development in fuzzy logic, for expanding its possibilities in, at least, two direc-
tions. The first concerns the scientific study of language, and the second the
exploration and modeling of human commonsense reasoning. It should be remarked
that “thinking” is nothing else, but and notwithstanding nothing less, than a natural
phenomenon made inside the brain, and of which the layman is familiar with some
of its external manifestations like, for instance, the most apparent of language and
reasoning. If the study of thinking and speaking do correspond to natural science
and, in particular, to neurobiology, that of representing all the nuances of language
and that of analyzing and modeling reasoning, is a proper subject for not only
Linguistics but also for the Sciences of Computation; it is not to be forgotten that
these two problems are considered in the ‘Gordian Knot’ of Artificial Intelligence.
Thinking is not only done through language; in it, memory of images plays an
important role and, at the end, language is the natural tool the brain developed for
representing what is both internal and external to it.

This chapter deals, indeed, with reasoning and it should be noticed the interest
of, for instance, the proven conclusion that if p is the résumé of a set of premises,
and s a speculation, and provided p � s 6¼ p, then h ¼ p � s is a hypothesis, and that,
analogously, and in any case, pþ s is a consequence of P. Hence, the presented
model allows to show a possible reason for why people speculate on some prob-
lems; speculation helps for both explaining and reaching consequences of P.

Section 5, devoted to crisp reasoning with either imprecise or precise statements,
does not show anything not holding in the classical case of a Boolean algebra.
Nevertheless, all in this section is proven under very weak conditions, and if
speculations only did appear by the first time in weak algebraic structures, like that
of a BA [9], the “creative” ones were not be seen until the classification of con-
jectures was made explicit. It should be noticed that the setting of BAs is so general
that all what is presented holds without most of the laws of classical logic, and is
applicable, in particular, to the so-called case of Quantum Logic, the
non-distributive logic of Quantum Physics [1]. Notice also, that the lack of the
associative and commutative laws force to any process of either conjecturing or
refuting, to previously assigning an ordering to the premises, something that should
be done by considering a suitable, and perhaps external character, concerning how
they were obtained. All that means that nothing actually “fuzzy” can appear in this
crisp reasoning apart of dealing with fuzzy sets and that, at the end, just consists in
seeing ordinary reasoning à la Popper [4], that is, by considering that the reason-
ing’s conclusions are either conjectures or refutations. The deep relationship of the
model with Popper’s thinking is reinforced by the formalization of hypothesis’
falsification, and also, even if done under the perhaps debatable view of analogy
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presented in Sect. 6, by proving that analogical reasoning only can conduct to
conjecture or to refute.

To reach the “fuzzy” singularities reasoning shows, it seems a reasonable way
that of introducing the concept of graded conjectures, and graded refutations. To
such an important goal, and of which only graded consequences were previously
considered [2], it is shown in this chapter what is in Sect. 7 that, nevertheless, is just
nothing else than a first approach still requiring not only a deeper study, but,
specially, a systematic testing against real cases in ordinary reasoning. This last
section only tries to open a window for looking at a possible way for studying the
“fuzzy” reasoning with fuzzy sets.

The study of language and reasoning, once viewed, as they are actually, some
natural phenomena, cannot be pursued by only abstract methods inspired in those of
logic and mathematics. It could remember, indeed, the study of the universe based
on the geometry of spheres and polyhedrons jointly with eye nude’s observations
and the simple Aristotelian syllogism. That study requires of wise observation of
reality, and controlled experimentation against it, as well as of mathematical models
that can supply with numerical ‘parameters’ the measurability of their basic vari-
ables for giving credibility to what could be provisory concluded [10].

It is the evolution of Computing with Words and Perceptions towards a new
experimental science of language and reasoning by specially attending to impre-
cision, uncertainty and ambiguity, something like a “physics” of language and
reasoning, what can be the big jump of Fuzzy Logic in the XXI Century.
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A Review of Hesitant Fuzzy Sets:
Quantitative and Qualitative Extensions

Rosa M. Rodríguez, Luis Martínez, Francisco Herrera
and Vicenç Torra

Abstract Since the concept of fuzzy set was introduced, different extensions and
generalizations have been proposed to manage the uncertainty in different prob-
lems. This chapter is focused in a recent extension so-called hesitant fuzzy set.
Many researchers have paid attention on it and have proposed different extensions
both in quantitative and qualitative contexts. Several concepts, basic operations and
its extensions are revised in this chapter.

Keywords Hesitant fuzzy set � Operations � Extensions

1 Introduction

Fuzzy sets were introduced by Zadeh [69]. Since then theory on fuzzy sets and
fuzzy logic has been developed in parallel with a large number of successful
applications.

Fuzzy sets permit to represent that elements have partial membership to a set,
and they can be modeled to represent graduality between non-membership and
complete membership to a set. A fuzzy set is represented mathematically by means
of membership functions which generalize characteristic functions. While the latter
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are functions that given an element of the reference set return a value that is either 0
or 1, membership functions return a value in the interval [0,1].

Therefore, the definition of a fuzzy set ~A requires the definition of the mem-
bership function of ~A. This implies that we need to assign a number in the interval
[0,1] to all elements of the reference set.

At present there exist several generalizations of fuzzy sets. Some of them have
been introduced in order to ease the definition of fuzzy sets by means of relaxing the
requirement that the membership function needs a value for each element in the
reference set. In particular we can mention type 2 fuzzy sets [27] where the
membership of an element is a fuzzy set instead of a single number. In this way, we
can model the uncertainty on the number we need to assign. Interval valued fuzzy
sets (IFS) [45] and Atanassov’s intuitionistic fuzzy sets (A-IFS) [1] are two other
examples. In this case, the value assigned to an element is an interval. Differences
from the point of view of interpretation and discussion about the terminology
between these two extensions of fuzzy sets can be found in [11]. Then, the concept
of type 2 fuzzy sets can be further generalized into type n fuzzy set. Informally
speaking, a type n fuzzy sets corresponds to a type (n-1) fuzzy set in which the
membership values of the type (n-1) fuzzy sets are a fuzzy set.

Goguen introduced [13] L-fuzzy sets which also generalize fuzzy sets. The idea
is that while in a fuzzy set the membership assigns values in the range [0,1] which is
a total order, we can consider the assignment of membership values in partial orders
(posets).

Recently, hesitant fuzzy sets (HFSs) were introduced in [40]. In this type of
fuzzy sets, the membership value of an element is a subset of [0,1] and typically a
finite set of values in [0,1]. As stated in [43], the motivation for introducing this
type of fuzzy sets “is that when defining the membership of an element, the diffi-
culty of establishing the membership degree is not because we have a margin of
error (as in A-IFS), or some possibility distribution (as in type 2 fuzzy sets) on the
possible values, but because we have a set of possible values”.

In this chapter some of the results found in the literature on HFSs are revised. Its
structure is as follows. Section 2 reviews the concept of HFS, some basic opera-
tions and hesitant fuzzy relations. Sections 3 and 4 revise extensions of HFS in
quantitative and qualitative contexts. Section 5 introduces some discussions and
trends of the hesitant context, and finally some conclusions are pointed out in
Sect. 6.

2 Hesitant Fuzzy Sets

The concept of HFS was recently introduced as an extension of fuzzy sets with the
goal of modeling the uncertainty provoked by the hesitation when it is necessary to
assign the degree of membership of an element to a fuzzy set. This section revises
some basic concepts and operations about HFSs.
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2.1 Concepts of Hesitant Fuzzy Sets

As briefly it is stated in the introduction, a HFS is a generalization of a fuzzy set in
which the membership function returns a subset of values in [0,1]. This is
formalized in the following definition.

Definition 1 [40] Let X be a reference set. Then, a HFS on X is a function h that
returns a subset of [0,1] to elements x 2 X.

h : X ! }ð½0; 1�Þ ð1Þ

Xia and Xu [61] call h(x) a hesitant fuzzy element (HFE). Note that a hesitant
fuzzy element is a set of values in [0,1], and a HFS is a set of HFEs, one for each
element in the reference set. That is, if h(x) is the HFE associated to x then [ x2XhðxÞ
is a HFS.

A typical hesitant fuzzy set [2] is when h(x) is a finite nonempty subset of [0,1]
for all x 2 X, i.e., HFEs are finite nonempty sets.

The literature presents several papers in which operators on HFS are defined (or
can be defined) through operators on HFEs. The extension principle introduced in
[44] is one of them.

Definition 2 Let fH1; . . .;Hng be n HFSs on a reference set X, let / a function on
n HFEs (i.e., / combines n sets into a new set). Then,

/0ðH1; . . .;HnÞðxÞ ¼ /ðH1ðxÞ; . . .;HnðxÞÞ

defines an operation /0 on HFSs.
The extension principle is defined as follows.

Definition 3 Let fH1; . . .;Hng be n HFSs on a reference set X, and let H be a
function H : ½0; 1�n ! ½0; 1�, we export H to HFSs defining the HFS HE as follows

HEðxÞ ¼ [ c2H1ðxÞ�����HnðxÞfHðcÞg:

Note that for a given function H we can define the function,

/ðS1; . . .; SnÞ ¼ [ c2S1�����SnfHðcÞg;

which permits to express the extension principle in terms of Definition 2.
Both Definition 2 and the extension principle cause that the properties of the

operator / and H are inherited by /0 and HE. As reported by Rodríguez et al. [34],
it is trivial to prove the commutativity and associativity of HE from the ones of H.
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The definition of operations for HFS from operations for HFEs (as in Definition
2) is not the only way to do so. There are operations on HFS that cannot be
represented in this way. The following operator is an example that illustrates this
fact.

Definition 4 [34] Let fH1; . . .;Hng be n HFSs on a reference set X, then

/ðH1; . . .;HnÞðxÞ ¼ ðmaximaxðHiÞþminiminðHiÞÞ
2

^ [ iHiðxÞ

where for any a in [0,1], a ^ h corresponds to the set fsjs 2 h; s� ag.
This operation / cannot be represented in terms of another function /0 on HFEs.

2.2 Basic Operations of Hesitant Fuzzy Sets

In [40] were introduced some basic operations to manage HFEs. These definitions
follow the approach of the Definition 2, that is, a function for HFSs defined in terms
of a function for HFEs.

Definition 5 [40] Given a HFE, h, its lower and upper bounds are:

h� ¼ inf fcjc 2 hg ð2Þ

hþ ¼ supfcjc 2 hg ð3Þ
Definition 6 [40] Let h be a HFE, the complement of h is defined as follows:

hc ¼
[
c2h

f1� cg ð4Þ

Definition 7 [40] Let h1 and h2 be two HFEs, the union of two HFEs h1 [ h2, is
defined as:

h1 [ h2 ¼
[

c12h1;c22h2
fmaxfc1; c2gg ð5Þ

Definition 8 [40] Let h1 and h2 be two HFEs, the intersection of two HFEs h1 \ h2
is defined as:

h1 \ h2 ¼
[

c12h1;c22h2
fminfc1; c2gg ð6Þ
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The relation between HFS and A-IFS was discussed in [40]. Let us start recalling
the definition of interval valued fuzzy sets (IFS) and A-IFS. As both are mathe-
matically equivalent, we only give one definition.

Definition 9 Let X be a reference set. Then, an IFS on X is represented by means of
two functions l : X ! ½0; 1� and m : X ! ½0; 1� such that 0� lðxÞþ mðxÞ� 1 for all
x 2 X.

It is easy to prove the following.

Proposition 1 [43] All IFSs are HFS.

Definition 10 [43] Given a HFE h, we define the envelope of h as the IFS rep-
resented by l and m defined by lðxÞ ¼ h�ðxÞ and mðxÞ ¼ 1� hþ ðxÞ, respectively.

It can be proven that this is the smallest IFS that includes the HFE h.

Proposition 2 All HFS are L-fuzzy sets.
This follows from the fact that subsets of [0,1] define a partial order. Note that

IFS and type n fuzzy sets can also be seen as L-fuzzy sets.
Sometimes, it is necessary to compare two HFEs to establish an order between

them. Different proposals have been introduced in the literature to compare HFEs.
Xia and Xu defined a score function to compare HFEs [61], however Farhadinia
pointed out that this score function could not distinguish between two HFEs in
some cases. Thus, a new score function was presented by Farhadinia [12]. Despite
the new score function can compare HFEs when the score function proposed by Xia
and Xu cannot, Rodríguez et al. shown a counterexample [34] in which the new
function cannot either discriminate some HFEs. Recently, Xia and Xu have pre-
sented a variance function [23] to improve the comparison law proposed in [61].

Definition 11 [61] Let h be a HFE, the score function sðhÞ is defined as follows:

sðhÞ ¼ 1
lðhÞ

X
c2h

c; ð7Þ

being l(h) the number of elements in h.

Definition 12 [23] Let h be a HFE, the variance function vðhÞ, is defined as
follows:

vðhÞ ¼ 1
lðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci;cj2h

ðci � cjÞ2
s

: ð8Þ

From the Definitions 11 and 12 of sð�Þ and vð�Þ respectively, the following
comparison law was defined.

Definition 13 Let h1 and h2 be two HFEs,

If sðh1Þ\sðh2Þ, then h1\h2,
If sðh1Þ ¼ sðh2Þ, then
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If vðh1Þ\vðh2Þ, then h1 [ h2,
If vðh1Þ ¼ vðh2Þ, then h1 ¼ h2.

More operations and their properties have been presented in [29].

2.3 Hesitant Fuzzy Relations

Fuzzy relations have been used in several contexts. They generalize crisp relations
permitting fuzzy membership. For example, binary relations on a reference set X are
generalized to fuzzy relations by means of a membership degree of each pair
ðx1; x2Þ 2 X � X. When X is finite, say X ¼ fx1; . . .; xng, a fuzzy relation R is
represented by a matrix R ¼ frijgij where rij is the membership degree of ðxi; xjÞ
into the relationship R. A fuzzy relation can be understood as a weighted graph with
nodes X and weights R.

Literature discusses additive preference relations (APR), which are fuzzy rela-
tions where lðxi; xjÞþ lðxj; xiÞ ¼ 1 for all xi; xj 2 X.

In addition, the literature discusses multiplicative preference relations (MPR).
They diverge from fuzzy relations because they are functions from X � X into
[1/9,9]. They require lðxi; xjÞ � lðxj; xiÞ ¼ 1. The range [1/9,9] is based on Saaty’s
scale for the Analytic Hierarchy Process [35, 36]. In multicriteria decision making
problems, multiplicative preference relations are used to represent users’ prefer-
ences on the criteria from which weights on the criteria are extracted using prior-
itization methods.

Additive and multiplicative relations are isomorphic. Note that given a
MPR R ¼ frijgij, with values in the range [1/9,9], then when R' is defined in terms
of r0ij ¼ 0:5ð1þ log9 rijÞ as R0 ¼ fr0ijgij, we have that R' is an APR, and given an
APR we can define the corresponding MPR using the inverse of the function
f ðxÞ ¼ 0:5ð1þ log9 xÞ (see [8] for details).

Fuzzy preference relations and multiplicative preference relations have been
extended in order to include hesitancy on the value assigned in the matrix.

A hesitant fuzzy relation is defined by means of a function l which assigns a
finite subset of [0,1] to each pair ðxi; xjÞ. Constraints are added on the possible
values of lðxi; xjÞ. Formally, if lðxi; xjÞ is a finite set, we can denote the hesitant
fuzzy relation by a matrix-like structure

Cði; jÞ ¼ fa1ij; . . .; akijij g;

for all i; j ¼ 1; . . .; jXj and where kij is the number of elements in the pair ðxi; xjÞ.
A hesitant fuzzy relation is defined requiring kij ¼ kji, Cði; iÞ ¼ f1=2g and that if
elements of Cði; jÞ and Cðj; iÞ are ordered the first set in increasing order, and the
second one in decreasing order the pairs in the kth positions should sum one. That
is, assume that elements are ordered
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Cði; jÞ ¼ a1ij � � � � � akijij
� �

Cðj; iÞ ¼ a1ji � � � � � akjiji
� �

then, akij þ akji ¼ 1 (see [76] for details).
A hesitant multiplicative preference relation (HMPR) was defined in [62, 71]

requiring that values akij are in the [1/9,9] interval, that Cði; jÞ and Cðj; iÞ have the
same number of elements (i.e., kij ¼ kji), and that the elements in Cði; jÞ and Cðj; iÞ
can be matched, so that the multiplication of any matched pair is one.

In [41, 42] the conditions on the number of elements and pairing elements are
not considered. This definition is isomorphic to the definition of numerical pref-
erence relations introduced in [78].

A consistent hesitant multiplicative matrix is then defined as follows. Here, a
n� n structure is the function Cði; jÞ defined above where Cði; jÞ is a finite set of
values. No constraints are given on the possible values in Cði; jÞ.
Definition 14 Let M be a n� n structure (or hesitant matrix). We say that M is a
consistent hesitant multiplicative preference relation (cHMPR) if it satisfies

C1. Cði; iÞ ¼ f1g for all i,
C2. For all i, j if aij 2 Cði; jÞ then there is 1=aij 2 Cðj; iÞ,
C3. For all i, j if aij 2 Cði; jÞ then there exists k such that aij ¼ aikakj and

aik 2 Cði; kÞ and akj 2 Cðk; jÞ.
Prioritization methods have been obtained to derive weights from hesitant

matrices. See e.g. [41, 42] inspired in the geometric mean approach introduced in [9].
In [42] an algorithm was introduced to build a cHMPR for any given n� n

structure (or hesitant matrix). The algorithm can also be applied to any standard
real-valued matrix which is not consistent (i.e., which is not a multiplicative pref-
erence relation) obtaining a hesitant matrix. Algorithm 1 corresponds to this process.
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3 Extensions of Hesitant Fuzzy Sets
in Quantitative Settings

We have stated in Sect. 2.1 that a typical hesitant fuzzy set [2] is when h(x) is a
finite nonempty subset of [0,1] for all x 2 X. Several extensions and generalizations
of HFS which diverge from this typical type of HFS have been proposed to deal
with the hesitation in quantitative settings. These extensions are introduced in this
section.

3.1 Dual Hesitant Fuzzy Sets

The concept of Dual Hesitant Fuzzy Set (DHFS) [79] is an extension of HFS based
on A-IFS that deals with the hesitation both for the membership and
non-membership degrees. Therefore, a DHFS is defined in terms of two functions
that return two sets of membership and non-membership values respectively for
each element in the domain:

Definition 15 [79] Let X be a set, a DHFS D on X is defined as:

D ¼ fhx; hðxÞ; gðxÞijx 2 Xg ð9Þ

being h(x) and g(x) two sets of values in the interval [0,1], that denote the possible
membership and non-membership degrees of the element x 2 X to the set
D respectively, with the following conditions,

0� c; g� 1; 0� cþ þ gþ � 1

where c 2 hðxÞ, g 2 gðxÞ, cþ ¼ maxc2hðxÞfcg, and gþ ¼ maxg2gðxÞfgg8x 2 X.
The pair dðxÞ ¼ ðhðxÞ; gðxÞÞ is called Dual Hesitant Fuzzy Element (DHFE) and

by simplicity it is noted d ¼ ðh; gÞ.
Example 1 Let X ¼ fx1; x2g be a reference set, a DHFS D, is defined as follows:

D ¼ fhx1; f0:4; 0:5g; f0:3gi; hx2; f0:2; 0:4g; f0:3; 0:5gig

Some basic operations, such as the complement of a DHFE, the union and
intersection of two DHFEs were introduced in [79]. A score function and accuracy
function were also defined with the goal of proposing a comparison law to compare
DHFEs. Recently, different aggregation operators to aggregate DHFEs have been
defined. In [50] it has been introduced Dual Hesitant Fuzzy Weighted Average
(DHFWA), Dual Hesitant Fuzzy Weighted Geometric (DHFWG), Dual Hesitant
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Fuzzy Ordered Weighted Average (DHFOWA), Dual Hesitant Fuzzy Ordered
Weighted Geometric (DHFOWG), Dual Hesitant Fuzzy Hybrid Average (DHFHA)
and Dual Hesitant Fuzzy Hybrid Geometric (DHFHG). These operators have been
used to propose some generalized dual hesitant fuzzy aggregation operators [46, 67,
68]. The Hamacher operations have been extended to propose some aggregation
operators for DHFEs [17, 70]. The Choquet integral has been also used to develop
several aggregation operators for DHFEs [16].

Several approaches to compute the correlation coefficient of DHFEs have been
defined [7, 53, 65] and some properties have been studied.

A similarity measure that considers the membership and non-membership
degrees of DHFEs has been introduced in [39].

3.2 Interval-Valued Hesitant Fuzzy Sets

Sometimes, in real-world decision making problems, it is difficult for experts to
express their assessments by using crisp values, because of the lack of information
about the problem. In these situations, an interval value belonging to [0,1] could be
used. Keeping in mind the concept of HFS, Chen et al. introduced the definition of
Interval-Valued Hesitant Fuzzy Set (IVHFS) [5] where the membership degrees are
given by several possible interval values.

An IVHFS is defined as follows.

Definition 16 [5] Let X be a reference set, and I([0,1]) be a set of all closed
subintervals of [0,1]. An IVHFS on X is,

~A ¼ fhxi; ~hAðxiÞijxi 2 X; i ¼ 1; . . .; ng ð10Þ

where ~hAðxiÞ : X ! }ðIð½0; 1�ÞÞ denotes all possible interval-valued membership
degrees of the element xi 2 X to the set ~A.

~hAðxiÞ is called an Interval-Valued Hesitant Fuzzy Element (IVHFE), where each
~c 2 ~hAðxiÞ is an interval and ~c ¼ ½~cL;~cU �, being ~cL and ~cU the lower and upper limits
of ~c, respectively.

Example 2 Let X ¼ fx1; x2g be a reference set, a IVHFS ~A, could be as follows,

~A ¼ fhx1; f½0:2; 0:3�; ½0:4; 0:5�gi; hx2; f½0:1; 0:4�; ½0:5; 0:6�; ½0:8; 0:9�gig

When the upper and lower limits of all the interval values are equal, the IVHFS
is a HFS.

Some basic operations, such as the union, intersection and complement were
introduced in [5]. A score function to compare two IVHFEs was also defined [5].
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Several aggregation operators for IVHFEs such as, the Interval-Valued Hesitant
Fuzzy Weighted Averaging (IVHFWA), Interval-Valued Hesitant Fuzzy Weighted
Geometric (IVHFWG), Interval-Valued Hesitant Fuzzy Ordered Weighted
Averaging (IVHFOWA), Interval-Valued Hesitant Fuzzy Ordered Weighted
Geometric (IVHFOWG) and their generalizations were defined in [5, 59]. Different
Einstein aggregation operators for IVHFEs have been presented in [58, 80]. In [20]
was studied the Hamacher t-norms to extend and generalize the Hamacher opera-
tions for IVHFEs. Two induced generalized hybrid operators based on Shapley for
IVHFEs have been defined in [28]. A set of continuous aggregation operators for
IVHFEs are introduced in [30]. Some operations for IVHFEs based on
Archimedean t-norms and t-conorms are presented in [4] as well as their properties.

Different correlations coefficient for IVHFEs have been introduced in [60].
In order to calculate the distance between two IVHFEs the Hamming, Euclidean

and Hausdorff distances are extended to propose a variety of distance measures for
IVHFEs [5, 56].

3.3 Generalized Hesitant Fuzzy Sets

Another extension of HFS is the Generalized Hesitant Fuzzy Set (GHFS) [31]
which consists of representing the membership as the union of some A-IFS [1].

Definition 17 [31] Given a set of n membership functions:

M ¼ fai ¼ ðli; tiÞj0� li; ti � 1; 0� li þ ti � 1; i ¼ f1; . . .; ngg; ð11Þ

the GHFS associated to M, hM , is defined as follows:

hMðxÞ ¼ [ ðliðxÞ;tiðxÞÞ2MðliðxÞ; tiðxÞÞ: ð12Þ
Remark 1 Notice that a GHFS extends slightly the concept of DHFS [79] as we can
see in the following example.

Example 3 Let X ¼ fx1g be a reference set, then

hMðx1Þ ¼ fð0:5; 0:3Þ; ð0:6; 0:3Þ; ð0:4; 0:5Þg

is a GHFS.

In this example, cþ ¼ 0:6 and gþ ¼ 0:5, therefore 0:6þ 0:5[ 1, it does not
achieve the restriction to be a DHFS.

The complement, union and intersection of GHFSs, as well as, the envelope of a
GHFS were presented in [31]. Some properties and relationships with HFSs were
also discussed [31]. A comparison law was introduced to compare two GHFSs
according to the score and consistency functions defined for this type of
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information. It was also proposed an extension principle which extends the oper-
ations for A-IFSs to GHFSs.

3.4 Hesitant Triangular Fuzzy Sets

Some authors [57, 66, 74] point out that in many decision making problems due to
the increasing complexity of the socioeconomic environment and the uncertain
information, it is difficult for experts to express the membership degrees of an
element to a given set only by means of crisp values. Therefore, the concept of
Hesitant Triangular Fuzzy Set (HTFS) was introduced as an extension of HFS
where the membership degrees of an element to a fuzzy set are expressed by several
triangular fuzzy numbers [18]. This concept has been proposed by different authors
[57, 66, 74] with different names. Here it will be used HTFS.

Definition 18 [57, 66, 74] Let X be a fixed set, a HTFS ~E on X is defined in terms
of a function ~f~EðxÞ that returns several triangular fuzzy values,

~E ¼ fhx;~f~EðxÞijx 2 Xg ð13Þ

where ~f~EðxÞ is a set of several triangular fuzzy numbers which express the possible
membership degrees of an element x 2 X to a set ~E. ~f~EðxÞ is called Hesitant

Triangular Fuzzy Element (HTFE) and noted ~ðf Þ~EðxiÞ ¼ fð~nL; ~nM ; ~nUÞj~n 2 ~f~EðxiÞg.
Example 4 Let X ¼ fx1; x2g be a reference set, a HTFS ~E, is defined by

~E ¼ fhx1; fð0:1; 0:3; 0:5Þ; ð0:4; 0:6; 0:8Þgi; hx2; fð0:1; 0:2; 0:3Þgig:

Note that if ~nL ¼ ~nM ¼ ~nU , then the HTFS is a HFS.

Some basic operations such as, the addition and multiplication of HTFEs were
defined in [66]. A score function and an accuracy function were defined to propose
a comparison law for HTFEs [57, 66].

Different aggregation operators for HTFEs such as, Hesitant Triangular Fuzzy
Weighted Averaging (HTFWA), Hesitant Triangular Fuzzy Ordered Weighted
Averaging (HTFOWA), Hesitant Triangular Fuzzy Weighted Geometric
(HTFWG), Hesitant Triangular Fuzzy Ordered Weighted Geometric (HTFOWG),
Hesitant Triangular Fuzzy Hybrid Average (HTFHA), Hesitant Triangular Fuzzy
Hybrid Geometric (HTFHG) have been defined [57, 66]. A set of aggregation
operators based on Bonferroni Mean have been introduced in [47]. The Einstein
operation has been extended to propose a family of aggregation operators for
HTFEs [38, 74]. Two different aggregation operators based on Choquet integral
have been also proposed for HTFEs [21, 75].

This type of information has been applied to solve evaluation problems [21, 66].
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4 Extensions of Hesitant Fuzzy Sets in Qualitative Settings

The previous section revises extensions of HFS defined in quantitative contexts, but
the use of numbers to represent uncertain information is not always appropriate, and
usually it is difficult to provide numerical values when the knowledge is vague and
imprecise. Usually, experts involved in this type of problems use linguistic infor-
mation to express their assessments regarding the uncertain knowledge that they
have about the problem [26]. Therefore, different extensions about HFS have been
proposed to model the experts’ hesitancy in qualitative contexts. This section
revises such extensions.

4.1 Hesitant Fuzzy Linguistic Term Sets

Most the linguistic approaches model the information by means of just one lin-
guistic term, but sometimes experts might hesitate among several values to express
their assessments because of the lack of information and knowledge about the
problem. In order to cope with these hesitant situations Rodríguez et al. proposed
the concept of Hesitant Fuzzy Linguistic Term Set (HFLTS) [32].

A HFLTS is defined as follows

Definition 19 [32] Let S ¼ fs0; . . .; sgg be a linguistic term set, a HFLTS Hs, is
defined as an ordered finite subset of consecutive linguistic terms of S:

HS ¼ fsi; siþ 1; . . .; sjg such that sk 2 S; k 2 fi; . . .; jg ð14Þ
Example 5 Let S ¼ fs0 : nothing; s1 : very low; s2 : low; s3 : medium; s4 : high; s5 :
very high; s6 : perfectg be a linguistic term set and # be a linguistic variable, then
HSð#Þ defined by

HSð#Þ ¼ fvery low; low;mediumg

is a HFLTS.

Remark 2 The use of consecutive linguistic terms in HFLTS is because of a
cognitive point of view in which in a discrete domain with a short number of terms
(usually not more than 9) makes not sense to hesitate among arbitrary and total
different linguistic terms, flow; high; very highg, and not hesitate in their middle
terms. The use of comparative linguistic expressions [33] is a clear example of
human beings’ hesitancy. The natural representation of such comparative linguistic
expressions in decision making is HFLTS.

Some basic operations for HFLTS, such as the complement, union and inter-
section and diverse properties were defined in [32]. It was also introduced the
envelope of a HFLTS that was used to propose a comparison law for HFLTSs. Two
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symbolic aggregation operators, min upper and max lower were developed to
aggregate HFLTSs [32].

The concept of HFLTS was introduced as something that can be used directly by
experts to elicit several linguistic terms, but usually human beings do not provide
their assessments in such a way. Therefore, Rodríguez et al. proposed the use of
context-free grammars to generate linguistic expressions close to the natural lan-
guage used by human beings that are easily represented by HFLTS. A context-free
grammar GH, that generates comparative linguistic expressions similar to the
expressions used by experts in decision making problems was proposed in [33].

Definition 20 [33] Let GH be a context-free grammar and S ¼ fs0; . . .; sgg a lin-
guistic term set. The elements of GH ¼ ðVN ;VT ; I;PÞ are defined as follows:

VN ¼ fhprimary termi; hcomposite termi; hunary relationi; hbinary relationi;
hconjunctionig

VT ¼ flower than; greater than; at least; at most; between; and; s0; s1; . . .; sgg
I 2 VN

P ¼ fI ::¼ hprimary termijhcomposite termi
hcomposite termi ::¼ hunary relationihprimary termijhbinary relationi

hprimary termihconjunctionihprimary termi
hprimary termi ::¼ s0js1j. . .jsg
hunary relationi ::¼ lower thanjgreater thanjat leastjat most
hbinary relationi ::¼ between

hconjunctioni ::¼ andg

A transformation function EGH to obtain HFLTS from the comparative linguistic
expressions was defined [32].

Even though the concept of HFLTS is quite novel, it has received a lot of
attention by other researchers and different proposals based on this concept have
been already presented in the literature. Wei et al. [55] have proposed a comparison
method for HFLTS and two aggregation operators, the Hesitant Fuzzy Linguistic
Weighted Averaging (HFLWA) and the Hesitant Fuzzy Linguistic Ordered
Weighted Averaging (HFLOWA). A different comparison method and more
aggregation operators were introduced in [19]. Some authors have studied consis-
tency measures for Hesitant Fuzzy Linguistic Preference Relation (HFLPR) [73,
77]. A variety of distance and similarity measures for HFLTS has been also defined
[14, 15, 22] and applied to multicriteria decision making problems.

Liu and Rodríguez pointed out [25] that the semantics of the comparative lin-
guistic expressions based on a context-free grammar and HFLTSs should be rep-
resented by fuzzy membership functions instead of linguistic intervals [32].
Therefore, a new fuzzy representation for comparative linguistic expressions based
on a fuzzy envelope has been introduced [25]. By using a consensus measure for
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HFLTS, an optimization-based consensus model that minimizes the number of
adjusted single terms in the consensus process has been recently proposed in [10].

Furthermore, different decision making approaches dealing with HFLTS have
been proposed, such as TOPSIS [3], outranking [51], TODIM [54] and so on [6,
33]. And some real applications have been already presented, Sahu et al. [37] used
HFLTS to classify documents and Yavuz et al. [64] presented a hierarchical
multi-criteria decision making approach using HFLTS to manage complex prob-
lems, such as alternative-fuel vehicle selection.

4.2 Extended Hesitant Fuzzy Linguistic Term Sets

Recently, the concept of HFLTS has been generalized to deal with non-consecutive
linguistic terms. This generalization has been presented in [48, 72] with different
names, Extended Hesitant Fuzzy Linguistic Term Set (EHFLTS) and Hesitant
Fuzzy Linguistic Set (HFLS) respectively. Although the names are different its
definition is the same. Here we will use EHFLTS to refer this extension.

An EHFLTS is built by the union of several HFLTS. It is formally defined as
follows.

Definition 21 [48] Let S be a linguistic term set, an ordered subset of linguistic
terms of S, that is,

EHS ¼ fsijsi 2 Sg; ð15Þ

is an EHFLTS.

Example 6 Let S ¼ fs�3 : very poor; s�2 : poor; s�1 : slightly poor; s0 : fair; s1 :
slightly good; s2 : good; s3 : very goodg be a linguistic term set and # be a linguistic
variable, then EHSð#Þ defined by

EHSð#Þ ¼ ffair; good; very goodg

is an EHFLTS.

Some basic operations, such as the union and intersection of EHFLTSs, the
complement of an EHFLTS and its envelope have been defined in [48]. Two
families of aggregation operators to aggregate a set of EHFLTSs where weighting
vectors take the form of real numbers and linguistic terms are also proposed [48].
Wang and Xu have studied the additive and weak consistency of a Extended
Hesitant Fuzzy Linguistic Preference Relation (EHFLPR) [49].

Remark 3 It is worthy to note that the concept of EHFLTS is not used directly by
experts, but experts involved in a decision making problem provide their prefer-
ences by using HFLTS and instead of carrying out an aggregation process, the
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group’s preferences are formed by the union of such HFLTSs obtaining as result a
EHFLTS.

4.3 Other Linguistic Extensions

Recently, different linguistic extensions of HFS, DHFS and IVHFS have been
introduced. Although they are not well known, their concepts and an example to
understand them easily are presented.

In [24] was presented the concept of Hesitant Fuzzy Linguistic Set (HFLS) as
follows.

Definiton 22 Let X be a reference set, a HFLS on X is a function that returns a
subset of values in [0,1]. It is expressed by a mathematical symbol as follows:

A ¼ ðhx; shðxÞ; hAðxÞijx 2 XÞ ð16Þ

where hAðxÞ is a set of some values in [0,1] denoting the possible membership
degrees of the element x 2 X to the linguistic term shðxÞ.

Example 7 Let X ¼ fx1; x2g be a reference set and S ¼ fs0 : nothing; s1 :
very low; s2 : low; s3 : medium; s4 : high; s5 : very high; s6 : perfectg be a linguistic
term set, then A defined by

A ¼ fhx1; s1; f0:3; 0:4; 0:5gi; hx2; s3; f0:3; 0:5gig

is a HFLS.
The concept of Interval-Valued Hesitant Fuzzy Linguistic Set (IVHFLS) has

been proposed as an extension of IVHFS based on linguistic term sets.

Definition 23 [52] Let X be a reference set, a IVHFLS on X is an object:

B ¼ ðhx; shðxÞ;CBðxÞijx 2 XÞ ð17Þ

where CBðxÞ is a set of finite numbers of closed intervals belonging to (0,1] and it
denotes the possible interval-valued membership degrees that x belongs to shðxÞ.

Example 8 Let X ¼ fx1; x2g be a reference set and S ¼ fs0 : nothing; s1 :
very low; s2 : low; s3 : medium; s4 : high; s5 : very high; s6 : perfectg be a linguistic
term set, a IVHFLS might be

B ¼ fhx1; s5; f½0:4; 0:5�; ½0:6; 0:7�; ½0:7; 0:8�gi; hx2; s6; f½0:1; 0:3�; ½0:5; 0:6�gig:

Yang and Ju have extended also the concept DHFS by using linguistic terms.
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Definition 24 [63] Let X be a reference set, a DHFLS on X is described as:

C ¼ ðhx; shðxÞ; hðxÞ; gðxÞijx 2 XÞ ð18Þ

where shðxÞ 2 S, hðxÞ and gðxÞ are two sets of some values in [0,1] denoting the
possible membership degrees and non-membership degrees of the element x 2 X to
the linguistic term shðxÞ with the following conditions:

0� c; g� 1; 0� cþ þ gþ � 1;

where c 2 hðxÞ, g 2 gðxÞ, cþ ¼ maxc2hðxÞfcg, and gþ ¼ maxg2gðxÞfgg8x 2 X.

Example 9 Let X ¼ fx1; x2g be a reference set and S ¼ fs0 : nothing; s1 :
very low; s2 : low; s3 : medium; s4 : high; s5 : very high; s6 : perfectg be a linguistic
term set, a DHFLS might be

C ¼ fhx1; s3; f0:4; 0:5g; f0:3; 0:4gi; hx2; s4; f0:3; 0:5g; f0:2; 0:3ggig:

5 Trends and Discussions

Due to the usefulness of modelling hesitancy uncertainty in real-world problems,
the research of HFS and its extensions have been intensive and extensive researched
in the recent years despite the young of this concept. Because of this interest many
proposals related with its use and extensions have been developed in the literature.
However, some critical points and comments about the new concepts and tools
based on HFS must be pointed out in order to clarify better the trends and future
direction on this topic:

• Any HFS extension should be clearly justified from a theoretical or practical
point of view and solve real-problems with uncertainty. So far, the usefulness of
some extensions of HFS is debatable because it is not clear either why are
necessary? or in what type of real-world problems can be used?

• It is remarkable that the same concepts have been published by different authors
in different papers. Despite the quick growth of research on this topic, it is
necessary to make a deep revision of the related literature in order to avoid
repeating several times the same concepts, operators and so forth.

• As it has been argued in Sect. 2, some operators for HFS defined in a
straightforward way from operators on fuzzy sets inherit their properties. The
study of the properties have to take into account this fact. In addition, it is
possible to define new operators that are not just extensions of operators on
fuzzy sets. This line has not yet been much explored.
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6 Conclusions

The introduction of HFS by Torra (see Sect. 2) has attracted the attention of many
researchers that have found a new way to model the uncertainty related to the
hesitation of human beings in real-world problems when they are not sure about
their knowledge.

This chapter reviews the ground concepts and ideas of HFS, its basic operations
and the most important extensions that have been presented in the literature about it
both quantitative and qualitative way. After such a revision, it points out some
important aspects that must be taken into account when new operators and exten-
sions about HFS are developed in order to avoid some disfunctions that have been
found in some of the current proposals. Eventually some hints about future direc-
tions in HFS research are sketched.
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Type-1 to Type-n Fuzzy Logic
and Systems

M.H. Fazel Zarandi, R. Gamasaee and O. Castillo

Abstract In this chapter, the motivation for using fuzzy systems, the mathematical
concepts of type-1 to type-n fuzzy sets, logic, and systems as well as their appli-
cations in solving real world problems are presented.

Keywords Type-n fuzzy sets � Type-2 fuzzy sets � T-norm � S-norm �
Takagi-Sugeno-Kang (TSK) fuzzy system

1 Introduction

Fuzzy logic and sets has been proposed by Zadeh [1]. According to Zadeh, fuzzy
logic is a precise logic of imprecision and approximate reasoning. It is used to
reason and make logical decisions in the presence of uncertainty, imprecision, and
imperfect information. In addition, it is capable of modeling problems in case of no
measurements [2]. Since real world problems are mostly involved with uncertainty
and imperfect information, fuzzy logic and fuzzy sets are required to model and
solve those problems.

Therefore, Zadeh [1] introduced the first type of fuzzy logic to be used in the
abovementioned problems. In type-1 fuzzy logic, the traditional view to a set which
believes that membership of an element to a set is either zero or one is relaxed. In
other words, membership of an element to a set is a matter of degree. This mem-
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bership degree is a certain single value for an element. However, there are some
situations in which uncertainty of the data is too high. When the degree of infor-
mation vagueness is too high, membership functions (MFs) are not certain, and they
encounter uncertainty and volatility. Therefore, type-1 fuzzy membership functions
are not applicable in this case since they are a certain value.

In order to model and solve problems with higher degree of vagueness and
uncertain MFs, Zadeh [3] introduced type-2 fuzzy sets as an extension to type-1
fuzzy sets. In type-2 fuzzy sets, each MF is represented by another MF known as
secondary MF. Type-2 fuzzy sets have been proposed by Zadeh [3] to tackle the
drawbacks of type-1 fuzzy sets when uncertainty is too high. Three ways in which
such uncertainty can occur are: (1) the words that are used in antecedents and
consequents of rules can mean different things to different people, (2) consequents
obtained by polling a group of experts will often be different for the same rule
because the experts will not necessarily be in agreement, and (3) noisy training data
(Liang and Mendel [4]). However, due to the various degrees of uncertainty, dif-
ferent kinds of type-2 fuzzy sets are required.

There are two kinds of type-2 fuzzy sets: (I) interval type-2 fuzzy sets (IT2 FSs);
(II) general type-2 fuzzy sets (GT2 FSs). In IT2 FSs, MFs are interval instead of a
single value. They are special type of GT2 FSs whose secondary membership
values for the entire members of the primary domain are one. GT2 FSs are
extensions of IT2 FSs, and they are bivariate interval valued [0, 1] supporting more
degrees of freedom [5]. However, IT2 FSs are less computationally expensive than
GT2 FSs.

In this chapter, fundamental concepts of type-1 fuzzy sets and mathematical
operations on type-1 fuzzy sets are briefly reviewed in Sects. 2 and 3 respectively.
Then fuzzy logic is described in Sect. 4. Thereafter, since approximate reasoning is
required to apply fuzzy set theory in real world problems, it is presented in Sect. 5.
In order to model real world problems, the use of fuzzy systems is inevitable, so
they are illustrated in Sect. 6. Type-2 fuzzy sets and type-2 fuzzy systems are
described in Sects. 7 and 8 respectively. Then, the applications of type-2 fuzzy
systems are reviewed in Sect. 9. Finally, type-n fuzzy systems are presented in
Sect. 10.

2 Type-1 Fuzzy Sets

Type-1 fuzzy logic assigns a membership degree in the interval of [0, 1] to the
objects indicating the degree to which each object belongs to the fuzzy set.
Consider two fuzzy sets X and A, where, X is a universe of discourse whose element
is shown by x. A membership function of element x is denoted by lA xð Þ as it is
stated in (1), the following equations are mostly adapted from Celikyilmaz and
Türksen [6].
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lA xð Þ:X ! ½0; 1� ð1Þ

Fuzzy sets are represented in discrete and continuous forms. If fuzzy set A is
defined on a discrete universe of discourse X, it is represented by (2).

A ¼
X
x2X

lAðxÞ=x ð2Þ

where,
P

x2X is an aggregation operator indicating all membership degrees pertain
to a fuzzy set A and universe of discourse X. If fuzzy set A is defined on a
continuous universe of discourse X, it is defined by (3).

A ¼
Z
x2X

lAðxÞ=x ð3Þ

where,
R
x2X is not an integration operation but an aggregation operation. Other

important operations in fuzzy sets are a-cut (aA) and strong a-cut (aþ
A ) as shown in

the following equations.

aA ¼ fxjlA xð Þ� aga 2 ½0; 1� ð4Þ

aþ
A ¼ fxjlA xð Þ[ aga 2 ½0; 1� ð5Þ

a-cut decomposition of fuzzy set A on U is shown by (6).

lA Uð Þ ¼ sup min a; laA uð Þ� �
; 8u 2 U a 2 ½0; 1�

where, laA uð Þ 2 0; 1f g is a MF of a crisp set.
Another useful definition is the “support” of a fuzzy set. Let X be a universe of

discourse and A be a fuzzy set. “Support” of A shows all the elements of X with
non-zero membership grades in A, as it is indicated in (6).

SuppðAÞ ¼ fx 2 XjlA xð Þ[ 0g ð6Þ

3 Mathematical Operations on Type-1 Fuzzy Sets

In this section, mathematical operations on fuzzy sets are reviewed.
Let A and B be two fuzzy sets; then, the “equality of fuzzy sets” is defined by the

following equation.
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A ¼ B , lA xð Þ ¼ lB xð Þ ð7Þ

Equation (8) shows “inclusion of fuzzy sets” A and B.

A�B , lA xð Þ� lB xð Þ; 8x 2 S ð8Þ

Equation (9) indicates the “union of fuzzy sets” A and B.

A [ B : lA[B xð Þ ¼ max½lA xð Þ; lB xð Þ� ð9Þ

Equation (10) shows the “intersection of fuzzy sets” A and B.

A \ B : lA\B xð Þ ¼ min½lA xð Þ; lB xð Þ� ð10Þ

Equation (11) is the “Complement” of the fuzzy set A (Zadeh [1]).

lAC xð Þ ¼ 1� lA xð Þ ð11Þ

3.1 Fuzzy Intersection (T-norm)

Different types of logical operators other than “min” have been defined in literature
known as “t-norm” operators. The following axioms have been defined by Klir and
Yuan [7] for fuzzy t-norm in which a; b; d 2 ½0; 1�.

(I) i a; 1ð Þ ¼ a (boundary condition)
(II) b� d implies i a; bð Þ� i a; dð Þ (monotonicity).
(III) i a; bð Þ ¼ iðb; aÞ (commutativity)
(IV) i a; iðb; dÞð Þ ¼ iði a; bð Þ; dÞ (associativity)

Sometimes considering other restrictions on defining fuzzy t-norms leads to
better results. Therefore, the following additional axioms should be satisfied
for defining a fuzzy t-norm (Klir and Yuan [7]).

(V) i is a continuous function (continuity).
(VI) i a; bð Þ\a (subidempotency)
(VII) a1\a2 and b1\b2 implies i a1; b1ð Þ\i a2; b2ð Þ (strict monotonicity)

Table 1 shows different classes of t-norms applied in literature, and Fig. 1
depicts some of them.

The boundary condition in axiom (I) means if an argument of a t-norm is 1,
membership degree of the t-norm is equal to the other argument. Commutativity
means the fuzzy t-norm is symmetric. Monotonicity of t-norm indicates that any
decrease in membership degrees in set A or B will not increase the membership
value in t-norm. The axiom (IV) shows that order of numbers in t-norm is not
important.
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Some of the common t-norms applied in literature are as follows:

• Standard t-norms: i a; bð Þ ¼ minða; bÞ
• Algebraic product: i a; bð Þ ¼ ab
• Bounded difference: i a; bð Þ ¼ maxð0; aþ b� 1Þ

• Drastic t-norm: i a; bð Þ ¼
a when b ¼ 1
b when a ¼ 1
0 otherwise

8<
:

3.2 Fuzzy Union (T-conorm)

Different types of logical operators other than “max” have been defined in literature
known as “t-conorm” operators. The following axioms have been defined by Klir
and Yuan [7] for fuzzy t-conorm in which a; b; d 2 ½0; 1�.

(I) u a; 0ð Þ ¼ a (boundary condition).
(II) b� d implies u a; bð Þ� u a; dð Þ (monotonicity).
(III) u a; bð Þ ¼ uðb; aÞ (commutativity).
(IV) u a; uðb; dÞð Þ ¼ uðu a; bð Þ; dÞ (associativity).

There are some additional axioms that must be satisfied to form a t-conorm
as follows. Table 2 shows different types of t-conorms, and Fig. 2 depicts
some of them.

(V) u is a continuous function (continuity).
(VI) u a; að Þ[ a (superidempotency).
(VII) a1\a2 and b1\b2 implies u a1; b1ð Þ\u a2; b2ð Þ (strict monotonicity)

Table 1 Different types of fuzzy t-norms (Klir and Yuan [7])

Authors Reference Year t-norm

Dombi [8] 1982
1
a � 1
� �k þ 1

b � 1
� �kh i1=k� ��1

Frank [9] 1979 log½1þ sa�1ð Þ sb�1ð Þ
s�1 �

Hamacher – 1987 ab
rþð1�rÞðaþ b�abÞ

Schweizer and Sklar [10] 1963 fmaxð0; ap þ bp � 1Þg1
p

Schweizer and Sklar [11] 1� ð1� aÞp þð1� bÞp � ð1� aÞpð1� bÞp½ �1p
Schweizer and Sklar [12] expð�ðjln ajp þ jln bjpÞ1pÞ
Schweizer and Sklar [13] ab

ap þ bp�apbp½ �1p

Yager [14] 1980 1�minf1; ½ 1� að Þx þ 1� bð Þx�1xg
Dubois and Prade [15] 1980 ab

maxða;b;aÞ
Weber [16] 1983 max 0; aþ bþ kab�1

1þ k

� 	
Yu [17] 1985 max 0; 1þ kð Þ aþ b� 1ð Þ � kab½ �
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Some of the common t-conorms applied in literature are as follows:

• Standard t-conorms: u a; bð Þ ¼ maxða; bÞ
• Algebraic sum: u a; bð Þ ¼ aþ b� ab
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Fig. 1 Different types of t-norms
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• Bounded sum: u a; bð Þ ¼ minð1; aþ bÞ

• Drastic t-conorm: u a; bð Þ ¼
a when b ¼ 0
b when a ¼ 0
1 otherwise

8<
:

4 Fuzzy Logic

Fuzzy logic is different from classical logic because the truth or falsity of a
proposition is stated with a degree of truth represented by a number in the interval
[0, 1]. Fuzzy logic was introduced by Zadeh [1] along with fuzzy set theory.
According to Turksen [18], fuzzy logic is an application of fuzzy set theory.
“Degree of membership” used in fuzzy set theory is applied as “degree of truth” in
fuzzy logic. Let A be a fuzzy set. The truth of fuzzy proposition “x is a member of
A” is stated in two different ways Turksen [18]: (I) using classical logic, the degree
of “truth” of proposition ‘x is A’ is a single value: s A xð Þð Þ ¼ 1; (II) using fuzzy
logic, the degree of “truth” is not a single value: s A xð Þð Þ ¼ s½0; 1�. Fuzziness of
propositions, include different combinations of linguistic terms. Fuzzy implications
are used generally which includes fuzzy propositions as antecedent and consequent
as presented in (12).

Table 2 Different types of fuzzy t-conorms (Klir and Yuan [7])

Authors Reference Year

Dombi [8] 1982
1þ 1

a � 1
� �k þ 1

b � 1
� �kh i�1

k

� ��1

Frank [9] 1979
1� logs 1þ s1�a�1ð Þ s1�b�1ð Þ

s�1


 �
Hamacher – 1978 aþ bþ r�2ð Þab

rþ r�1ð Þab
Schweizer and Sklar [10] 1963 1� max 0; 1� að Þp þ 1� bð Þp�1ð Þf g1

p

Schweizer and Sklar [11] ap þ bp � apbp½ �1p
Schweizer and Sklar [12] 1� exp �ð ln 1� að Þj jp þ ln 1� bð Þj jpÞ1p

� 	
Schweizer and Sklar [13] 1� 1�að Þ 1�bð Þ

1�að Þp þ 1�bð Þp� 1�að Þp 1�bð Þp½ �1p

Yager [14] 1980 min 1; ak þ bk
� �1

k

h i
Dubois and Prade [15] 1980 1� 1�að Þ 1�bð Þ

max 1�að Þ; 1�bð Þ;að Þ
Weber [16] 1983 min 1; aþ b� k

1�k ab
� �

Yu [17] 1985 min 1; aþ bþ kabð Þ
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P: IFX isA is true; THENY isB is true ð12Þ

where X and Y are variables that take values x and y from sets X and Y , respec-
tively, A and B are linguistic variables [6]. Implication between AðxÞ and BðxÞ are
represented as follows:
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AðxÞ ) BðxÞ ð13Þ

Using an appropriate function, the degree to which the fuzzy proposition is true
will be calculated. Lukasiewicz implication is generally used in literature and it is
presented in (14).

I Pxy
� � ¼ I A xð Þ;B yð Þ½ � ¼ min½1; 1� A xð ÞþBðxÞ� ð14Þ

Equation (14) indicates that calculating the degree of truth values AðxÞ and BðxÞ
leads to the degree of truth value of (12). I is used to connect fuzzy sets to fuzzy
propositions. The fuzzy truth value is indicated by a value of s 2 ½0; 1� which is
shown in (15).

P:IFX is A is true to the degree s1; THEN Y isB is true to the degree s2 ð15Þ

Two states “X is A” is s1 and “Y is B” is s2 are indicated by ðA xð Þ; s1Þ and
ðB yð Þ; s2Þ and the implication of them is presented by (16).

ðA xð Þ; s1Þ ) ðB yð Þ; s2Þ is true ð16Þ

Using Lukasiewicz implication the following equation is obtaines.

I Pxy
� � ¼ I ðA xð Þ; s1Þ; ðB yð Þ; s2Þ½ � ¼ ½min 1; 1� A xð ÞþB xð Þ½ �;min½1; 1� s1 þ s2��

ð17Þ

5 Approximate Reasoning

In order to apply fuzzy set theory in real world problems, approximate reasoning is
required. One of the most common techniques of reasoning are inference rules in
classical logic which use Modus Ponens for inference process. Generally speaking,
Modus Ponens have been extended to be used in fuzzy logic. Zadeh [19] introduced
Generalized Modus Ponens (GMP) for fuzzy aet and logic theory [6]. Using
Compositional Rule of Inference (CRI) for infering fuzzy consequents with GMP,
he developed fuzzy reseaning from classical reasoning. GMP is presented by the
following equations [6].

Premise 1: A ! B

Premise 2: A0

Deduction: B�
ð18Þ

where A and A′ are two linguistic variableson the universe of discourse of variable
x with membership functions lA xð Þ: x 2 X ! ½0; 1�. Moreover, B and B* are
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linguistic terms on the universe of discourse of consequent variable y with mem-
bership functions lB yð Þ: y 2 Y ! ½0; 1�. Using membership degrees, (18) is cal-
culated by the following equation proposed by Zadeh [1].

lB� yð Þ : supx2XANDðlAðxÞ; lA!Bðx; yÞÞ ð19Þ

Using Zadeh rule base, “AND” operator is used for representing “MIN” and
“MAX” operator is utilized as “sup” [6]. Table 3 shows different types of
implications.

6 Fuzzy Systems

There are two main types of fuzzy systems: (I) Mamdani fuzzy systems;
(II) Takagi-Sugeno-Kang (TSK) fuzzy systems.

6.1 Mamdani Fuzzy System

IFX isr Bi THEN Y isrDi i ¼ 1; . . .;m ð20Þ

Ri ¼ Bi\Di andR ¼
[m
i¼1

Ri ð21Þ

lRi
x; yð Þ ¼ lBi

ðxÞ
^

lDi
ðyÞ ð22Þ

lR x; yð Þ ¼
_m
i¼1

lRi
x; yð Þ ð23Þ

lF yð Þ ¼
_
x

lA xð Þ
^

lR x; yð Þ
� 	

¼
_m
i¼1

_
x

lA xð Þ
^

lBi
ðxÞ

� 	" #^
lDi

ðyÞ ð24Þ

where X and Y are two fuzzy variables; Bi and Di are two linguistic labels; i is the
number of rules.The intersection and union operators are represented by \ and [
respectively in (21). Membership functions for antecedent variable (X) and con-
sequent variable (Y ) are represented by lBi

ðxÞ and lDi
ðyÞ respectively in (22); ^ and

_ are t-norm and t-conorm operators explained in Sects. 3.1 and 3.2 respectively.
lRi

x; yð Þ shows the aggregated MFs of antecedents and consequents in each rule.
lR x; yð Þ indicates the aggregated MFs of all rules, and lF yð Þ represents the final
aggregated MF. Figure 3 depicts Mamdani fuzzy inference system.
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After finding the final aggregated MF as an output of the fuzzy rule based
system, deffuzification is used for obtaining a crisp and single-valued result of the
system. There are several deffuzification methods in literature, and two of them are
listed herein. They are the Center-of-Area (CoA) or Center-of-Gravity method, and
the Middle-of-Maxima (MoM) defuzzification methods. Figures 4 and 5 show CoA
and MoM defuzzification techniques. Equations (25) and (26) indicate CoA method
in discrete and continuous cases [30].

y� ¼
Pl

i¼1 yilY yið ÞPl
i¼1 lY yið Þ ¼

Pl
i¼1 yimaxklCLYðkÞðyiÞPl
i¼1 maxklCLY ðkÞðyiÞ

ð25Þ

u� ¼
R
y ulY yð ÞdyR
y lY yð Þdy ¼

R
y ymaxk lCLYðkÞðyÞdyR
y maxk lCLY ðkÞðyÞdy

ð26Þ

Table 3 Different types of implications (Klir and Yuan [7])

Name References Function I(a, b) Year

Zadeh [20] max½1� a;min a; bð Þ� 1973

Gaines
Rescher

[21] 1 a� b
0 a[ b

�
1969

Godel – 1 a� b
b a[ b

�
1976

Goguen [22] 1 a� b
b=a a[ b

�
1969

Kleene-Dienes – maxð1� a; bÞ 1938–
1949

Lukasiewicz [23] minð1; 1� aþ bÞ 1920

Smets and
Magrez

[24] min½1; 1�aþ 1þ kð Þb
1þ ka � 1987

Smets and
Magrez

[24] min½1; ð1� ax þ bxÞ1
x� 1987

Reichenbach [25, 26] 1� aþ ab 1935–
1949

Willmott [27] min½max 1� a; bð Þ;max a; 1� að Þ;maxðb; 1� bÞ� 1980

Wu [28] 1 a� b
min 1� a; bð Þ a[ b

�
1986

Yager [15] 1 a ¼ b ¼ 0
ba others

�
1980

Klir and Yuan [29] 1� aþ a2b 1994

Klir and Yuan [29] b a ¼ 1
1� a a 6¼ 1; b 6¼ 1
1 a 6¼ 1; b ¼ 1

8<
:

1994
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where lCLY ðkÞ is defined the same as lRi
x; yð Þ in (22), and “

R
” is the classical

integral.
Equation (27) shows MoM defuzzification technique. It determines the first and

the last from of all values where Y has maximal membership degree and then takes
the average of these two values [30].

Fig. 3 Mamdani fuzzy inference system (Klir and Yuan [7])
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y� ¼ inf y2Y y 2 Y jly yð Þ ¼ hgt Yð Þ� �þ supy2Y y 2 Y jly yð Þ ¼ hgt Yð Þ� �
2

ð27Þ

where hgt Yð Þ ¼ supy2XlBðyÞ.

Fig. 4 CoA deffuzification method (Driankov and Saffiotti [30])

Fig. 5 MoM deffuzification method (Driankov and Saffiotti [30])
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6.2 Takagi-Sugeno-Kang (TSK) Fuzzy System

In TSK fuzzy systems, consequent of each rule includes a function instead of the
linguistic variable(s). Equation (28) shows the TS fuzzy model including R rules.

Rule i:if z1 is A
i;k1
1 ; z2 is A

i;k2
2 ; . . .; and zm is Ai;km

m

then yi ¼ ai1x1 þ ai2x2 þ � � � þ aiqxq

i ¼ 1; 2; . . .;R: kj ¼ 1; 2; . . .; rj: ð28Þ

where R is the number of rules in the TS fuzzy model. zj j ¼ 1; 2; . . .;mð Þ is the jth
variable. xl l ¼ 1; 2; . . .; qð Þ is the lth model input. yi is the output of the ith rule. For

the ith rule, Ai;kj
j is the kthj fuzzy subset of zj. ail is the coefficient of the consequent. rj

is the fuzzy partition number of zj.
The output of the TSK model is calculated by taking the weighted-average of

output of each rule as follows:

y ¼
XR
i¼1

liyi
,XR

i¼1

li ð29Þ

where yi is determined by the equation in the consequent of the ith rule. Moreover,
(29) can be restated by (30).

y ¼
XR
i¼1

liai1x1 þ � � � þ
XR
i¼1

liaiqxq

 !,XR
i¼1

li ð30Þ

7 Type-2 Fuzzy Sets

In order to model and solve problems with higher degree of vagueness and
uncertain MFs, Zadeh [3] introduced type-2 fuzzy sets as an extension to type-1
fuzzy sets. In type-2 fuzzy sets, each MF is represented by another MF known as
secondary membership function. Type-2 fuzzy sets have been proposed by Zadeh
[3] to tackle the drawbacks of type-1 fuzzy sets when uncertainty is too high. Three
ways in which such uncertainty can occur are: (1) the words that are used in
antecedents and consequents of rules can mean different things to different people,
(2) consequents obtained by polling a group of experts will often be different for the
same rule because the experts will not necessarily be in agreement, and (3) noisy
training data (Liang and Mendel [4]).

Type-1 fuzzy sets are unable to handle higher degrees of uncertainty. Moreover,
some datasets are very changeable over time. This variability causes MFs to change
and include more than one single-valued membership degree for each point in a

142 M.H. Fazel Zarandi et al.



universe of discourse. Because type-1 MFs assign only one single-valued mem-
bership degree to each point they are incapable of modeling systems using those
kinds of uncertain data sets. Hence, type-2 fuzzy sets which assign another mem-
bership degree to the primary membership values are used in such systems. Figure 6
shows type-1 and type-2 fuzzy MFs (interval type-2 fuzzy MF and general type-2
fuzzy MF). Comparing both MFs in Fig. 6 indicates that type-2 fuzzy MFs are
capable of including more information and handling variable data sets using two
MFs.

A type-2 fuzzy set Ã is represented by a type-2 membership function l~A as
follows.

l�A : X ! 0; 1½ � ð31Þ

Mendel [32] defines the type-2 fuzzy set as it is shown in (32).

~A ¼ x; uð Þ; l�A x; uð Þð Þj8x 2 X; 8u 2 Jx� 0; 1½ �f g ð32Þ

where 0� l~A x; uð Þ� 1, Jx is a primary MF in the interval [0, 1], and u is the
primary membership value. Another form of representing type-2 fuzzy set ~A is as
follows.

~A ¼
Z
x2X

Z
u2Jx

l�A x; uð Þ= x; uð Þ ¼
Z
x2X

Z
u2Jx

fx uð Þ= x; uð Þ ð33Þ

where
RR

shows the union of admissible x and u, fxðuÞ is the secondary MF [6].
Since type-2 fuzzy sets are presented as the union of secondary MFs (fxðuÞ),

type-2 fuzzy MFs are also represented with the secondary MFs for continuous and
discrete universe of discourse as shown in (34) and (35) respectively.

l�A x; uð Þ ¼
Z

u2Jx
fx uð Þ=u ð34Þ

l�A x; uð Þ ¼
X
u2Jx

fx uð Þ=u ð35Þ

However, due to the various degrees of uncertainty, different kinds of type-2
fuzzy sets are required. There are two kinds of type-2 fuzzy sets: (I) interval type-2
fuzzy sets (IT2 FSs); (II) general type-2 fuzzy sets (GT2 FSs). In IT2 FSs, MFs are
interval instead of a single value. They are special type of GT2 FSs whose sec-
ondary membership values for the entire members of the primary domain are one.
GT2 FSs are extensions of IT2 FSs, and they are bivariate interval valued [0,1]
supporting more degrees of freedom [5]. However, IT2 FSs are less computation-
ally expensive than GT2 FSs.
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Fig. 6 Type1 fuzzy MF, interval type-2 fuzzy MF [6], and general type-2 fuzzy MF [31]
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7.1 Interval Type-2 Fuzzy Sets

IT2 FSs have been proposed by Karnik et al. [33]. Since they are less complex and
computationally expensive than GT2 FSs, researchers are most willing to use them
instead of GT2 FSs. However, GT2 FSs are more capable of representing wider
range of information and being used in face of variable data sets. MFs of interval
type-2 fuzzy sets are defined by the following equations.

l�A xð Þ:X ! 1=u; u 2 Jx; Jx � 0; 1½ � ð36Þ

fx uð Þ ¼ 8x 2 X; u 2 Jx; Jx � 0; 1½ � ð37Þ

Equation (37) indicates that at each value of x, all the secondary membership
values are equal to 1 as it is shown in Fig. 6. There is more than one MF for each
value of x. The MFs includes the lower and upper MFs. The upper and lower MFs
of IT2 FSs are defined by (38) and (39).

lU~A Xð Þ ¼ max
u2Jx

uð Þ; 8x 2 X ð38Þ

lU~A Xð Þ ¼ min
u2Jx

uð Þ; 8x 2 X ð39Þ

where lU~A ðxÞ is the upper MF and lL~AðxÞ is the lower MF of the IT2 FS. Therefore,
the IT2 FS is defined using upper and lower MFs by the following equation.

l�A xð Þ:X ! 1=u; u 2 lL�A xð Þ; lU�A xð Þ�  ð40Þ

7.2 General Type-2 Fuzzy Sets

Using a type-2 fuzzy MF (l~Aðx; yÞ), a GT2 FS ~A is represented by the following
equation [32].

~A ¼
Z
x2X

Z
u2Jx

l~A x; uð Þ= x; uð Þ; Jx� 0; 1½ � ð41Þ

where x 2 X is the primary variable, u 2 Jx is the primary MF, Jx indicates an
interval between the lower and upper MFs, and l~Aðx; uÞ is the secondary MF. GT2
FSs are expressed in two different ways: the vertical slice and the wavy slice [34].
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Let x ¼ x0 be a specific point in the universe of discourse X; then, vertical slice
l~Aðx0; uÞ of the fuzzy MF l~Aðx; uÞ is obtained. In other words, a secondary MF
l~Aðx ¼ x0; uÞ is denoted by vertical slices at each point for x0 2 x and 8u 2
Jx0 � ½0; 1� as follows.

l~A x ¼ x0; uð Þ 	
Z

u2Jx0

fx0 uð Þ=u; Jx � 0; 1½ � ð42Þ

where fx0 ðuÞ is the secondary MF and fx0 ðuÞ�½0; 1�. Discretizing the entire universe
of discourse into N samples, then the GT2 FS ~A is denoted by aggregating the
whole vertical slices as it is shown in (43) [35].

~A ¼
XN
i¼1

Z
u2Jxi

fxi uð Þ=u

 ��

xi ð43Þ

~A is also denoted by the union of all its embedded T2 FSs as follows.

~A ¼
[
8~Ae

~Ae ð44Þ

where ~Ae is represented as follows.

~Ae ¼
Z
x2X

u=x; u 2 Jx ð45Þ

The embedded T1 FS ~Ae, corresponding to an embedded T2 FS includes the
primary MF of ~Ae. The centroid of ~Ae, i.e., C~A, is the union of the centroids of its
entire embedded IT2 FSs. Its MF C~AðnÞ (8n 2 X 
 R), is defined as follows [36].

C~A nð Þ ¼
[
8~Ae

min
x;uð Þ2Ae

fx uð Þ
,

n ¼
R þ1
�1 xuAe xð ÞdxR þ1
�1 uAe xð Þdx

( )
ð46Þ

The centroid of the GT2 FS ~A is calculated by aggregating centroids of each a-
plane (C~A) [35]. Hence, the center of the GT2 FS ~A is presented by (47).

C~A nð Þ ¼
[

a2 0;1½ �
a
�
C~Aa nð Þ 8n 2 Xð Þ ð47Þ

where a�
C~AðnÞ is the centroid of ~Aa.
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C~Aa
nð Þ ¼

[
8~AeðaÞ

n ¼
R þ1
�1 xuAe að Þ xð ÞdxR þ1
�1 uAe að Þ xð Þdx

" #
¼ Cl ~Aa

� �
;Cr ~Aa
� ��  ð48Þ

where Clð~AaÞ and Crð~AaÞ are calculated by KM [37] and EKM [38] algorithms.
fxðuÞ is considered as the combination of two increasing and decreasing functions
called gxðuÞ and hxðuÞ.

fx uð Þ ¼
gx uð Þ u 2 SL xj0ð Þ; SL xj1ð Þ½ �
hx uð Þ u 2 SR xj1ð Þ; SR xj0ð Þ½ �
1; u 2 SL xj1ð Þ; SR xj1ð Þ½ �
0; Otherwise

8>><
>>: ð49Þ

The upper and lower MF of GT2 FS with the secondary membership value of a
are defined as SRðxjaÞ and SLðxjaÞ respectively. The slopes of the secondary MFs at
a for gxðuÞ and hxðuÞ are equal to g0xðuÞ and h0xðuÞ. Then in order to calculate upper
and lower MFs at the plane “aþ TS” the following equations are required.

SR xjaþ Tsð Þ ¼ SR xjað Þþ TS
h0x uð Þ

SL xjaþ Tsð Þ ¼ SL xjað Þþ TS
g0x uð Þ

ð50Þ

8 Type-2 Fuzzy Systems

An interval type-2 fuzzy rule based system is presented in the following equation
(Celikyilmaz and Turksen [6]).

~Ri:IF
nv

AND
j ¼ 1

xj 2 Xj isr ~Aij
� �

THEN y 2 Y isr ~Bi ð51Þ

where,

• c is the number of rules in system model,
• xj is jth input variable, j ¼ 1; . . .; nv, “nv” is total number of input variables,
• Xj is the domain of xj,
• ~Aij is the linguistic label associated with jth input variable in the ith rule rep-

resented by a type-2 membership function, ~li xj
� � 2 Xj ! fxj uð Þ=u;

u 2 Jxi ; Jxi � ½0; 1�.
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• y is the output variable,
• Y is the domain of y,
• Bi is the linguistic label associated with output variable in the ith rule with

type-2 membership, ~li yð Þ 2 Y ! fy wð Þ=w;w 2 Jy; Jy � ½0; 1�.
• AND is the logical connective used to aggregate membership values of input

variables for a given observation in order to find the degree of fire of each rule,
• THEN (→, ⇒) is the logical IMPLICATION connective,
• ALSO is the logical connective used to aggregate model outputs of fuzzy rules,

‘isr’ is introduced by Zadeh [1] and it represents that the definition or assign-
ment is not crisp, it is fuzzy.

In order to find the result of the interval type-2 fuzzy rule based system (51), two
inference methods have been proposed in literature. The first one is to con-
siderupper and lower membership functions of interval type-2 fuzzy sets as lower
and upper points of an interval (Liang and Mendel [4]).

Let lU~A ðxÞ be the upper MF, and lL~A xð Þ be the lower MF. Equation (52) shows the
inference mechanism proposed by Liang and Mendel [4].

l~A xð Þ: x ! 1=u; u 2 ½lL~A xð Þ; lU~A xð Þ� ð52Þ

Membership values of antecedents are aggregated for each rule as it is shown in
(53).

~lLi xð Þ ¼ Tnv
j¼1 ~lLi xj

� �� �
; ~lUi xð Þ ¼ Tnv

j¼1 ~lUi xj
� �� � ð53Þ

where, T denotes the T-norm connective. In (10), ~l�Li ðyÞ and ~l�Ui ðyÞ are upper and
lower memberships of output fuzzy set ~l�i yð Þ.

~l�i yð Þ: Y ! 1=w;w 2 ½~l�Li yð Þ; ~l�Ui yð Þ� ð54Þ

The aggregated antecedents and consequents for lower and upper MFs are
presented in (55) and (56).

~l�Li yð Þ ¼ T ~lLi xð Þ; ~lLi yð Þ� � ð55Þ

~l�Ui yð Þ ¼ T ~lUi xð Þ; ~lUi yð Þ� � ð56Þ

Then, all rules are aggregated using (57) and (58).

~l�L yð Þ ¼ Sc
�
i¼1ð~lLi yð ÞÞ ð57Þ

~l�U yð Þ ¼ Sc
�
i¼1ð~lUi yð ÞÞ ð58Þ
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where “S” is a s-norm or t-conorm operator, and “c” is the number of rules. At the
end of the inference process, a crisp output is required. The following equation has
been presented by Liang and Mendel [4] for calculating the crisp output ðy�Þ.

y�ð Þ ¼ y�L þ y�U
� 

=2 ð59Þ

where, y�L and y�U are lower and upper bounds, i.e., y� 2 y�L; y�U½ �.
The second inference method has been proposed by Turksen [39] using fuzzy

disjunctive normal forms (FDNF) and fuzzy conjuctive normal forms (FCNF).
Turksen’s inference process with a rule set is represented as follows [39].

l�B yð Þ ¼ ½
_
x2X

l0A xð ÞT ½lFDNF A! Bð Þ x; yð Þ�
_
x2X

l0A xð ÞT ½lFCNF A! Bð Þ x; yð Þ��;8y 2 Y

ð60Þ

where “T” is used to indicate t-norm between two MFs. lFDNF A ! Bð Þ x; yð Þ and
lFCNF A ! Bð Þ x; yð Þ are two boundaries of type-2 fuzzy systems based on fuzzy
normal forms. l�B yð Þ is an inference result, and l0A xð Þ is the observed membership
value.

A x�D;i;r rð Þ
� 	

¼ lðx�FDNF A i;rð Þð ÞðrÞÞ;
A x�C;i;r rð Þ
� 	

¼ lðx�FCNF A i;rð Þð ÞðrÞÞ

8<
: ð61Þ

Equation (61) is the membership value of the FDNF of the left-hand side of the
ith rule which has “r” input variables evaluated at x�rð Þ ¼ ðx�1; x�2; . . .; x�r ).
AD;i;rðx�ðrÞÞ is the membership value of the FDNF in the left-hand side of the ith

rule which has “r” input variables evaluated at x�rð Þ ¼ ðx�1; x�2; . . .; x�r ). A x�C;i;r rð Þ
� 	

is

the membership value of the FCNF [39].

A x�D;i;r rð Þ
� 	

is computed recursively as:

AD;i;q x� qð Þð Þ ¼ AD;i;q�1 x� q� 1ð Þð ÞTAi;q x�q
� 	h i

S AD;i;q�1 x� q� 1ð Þð ÞTAi;q x�q
� 	h i

For q ¼ 2; 3; 4; . . .; r

(

ð62Þ

Such that X�ð2Þ ¼ ðX�
1 ;X

�
2Þ and Aði; 2Þ ¼ Ai1 ANDAi2. “S” in the definition of

“AD;i;q x� qð Þð Þ” indicates S-norm of two MFs.
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AC;i;r x� rð Þð Þ is computed recursively as [39]:

AC;i;q x� qð Þð Þ ¼ ½Aðx�C;i;q�1 q� 1ð ÞSAiq x�q
� 	

�T ½Aðx�C;i;q�1ðq� 1ÞSAiq x�q
� 	

�

T ½Aðx�C;i;q�1 q� 1ð ÞSnðAiq x�q
� 	

Þ�T ½Aðx�C;i;q�1ðq� 1ÞSnðAiq x�q
� 	

Þ�

T ½nðAðx�C;i;q�1ðq� 1ÞÞSðAiq x�q
� 	

Þ�T ½n A x�C;i;q�1 q� 1ð Þ
� 	

S Aiq x�q
� 	� 	� i

;

q ¼ 2; 3; 4; . . .; r

ð63Þ

In (64), B�ðyÞ is the final output of the model, which is obtained by combining
the final output of FDNF and FCNF.

B� yð Þ ¼ bB�
D yð Þþ 1� bð ÞB�

C yð Þ; 8y 2 Y ; 0� b� 1; ð64Þ

where b�DðyÞ is the final result for FDNF and b�CðyÞ is the final result for FCNF
obtained after completing the inference process.

9 Applications of Type-2 Fuzzy Systems

In this section, some of the applications of type-2 fuzzy systems are briefly
reviewed. These applications include but are not limited to clustering, classification,
pattern recognition, scheduling, forecasting, and supply chain management (SCM).

9.1 Type-2 Fuzzy Systems in Clustering, Classification,
and Pattern Recognition

In this subsection, a brief review on the first categories of type-2 fuzzy applications
including clustering, classification, and pattern recognition techniques is provided.
Type-2 fuzzy systems have been used in clustering and classification models for
managing real world problems which encounter higher degrees of uncertainty.

Data clustering is one of the main methods of structure identification. It is an
unsupervised technique for putting similar data in a cluster [40]. Bezdek presented
fuzzy c-means clustering (FCM) model. For structure identification of type-2 fuzzy
systems different methods have been introduced in the literature. For more infor-
mation please refer to [41–47]. In order to design a rule based system, Aliev et al.
[48] proposed a type-2 FCM clustering model. Rhee and Choi [42] introduced three
methods for interval type-2 fuzzy membership function generation: (I) Histogram
based method; (II) Heuristics methods; (III) Interval type-2 fuzzy C-means (IT2
FCM). Fazel Zarandi, et al. [49] proposed a new interval type-2 fuzzy clustering
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method for functional systems called interval type-2 fuzzy c-regression clustering
model (IT2 FCRM).

Type-2 fuzzy systems are also applied in classification problems. Melin and
Castillo [50] reviewed the literature of clustering, classification, and pattern
recognition. Tables 4 and 5 show the results of their work. Sharma and Bajaj [51,
52] proposed an interval type-2 fuzzy system for vehicle classification. They
assigned each vehicle to its relevant class by investigating its characteristics such as
the wheel base, ground clearance, and body length [50]. Tan et al. [53] proposed a
type-2 fuzzy system for ECG arrhythmic beat classification. Three classes of ECG
signals, called the normal sinusrhythm (NSR), ventricular fibrillation (VF) and
ventricular tachycardia (VT) have been investigated in that research.

9.2 Type-2 Fuzzy Systems in Scheduling,
Forecasting, and SCM

In this subsection, a brief review on the second categories of type-2 fuzzy appli-
cations including scheduling, forecasting, and SCM is provided.

Fazel Zarandi and Gamasaee [82] proposed a type-2 fuzzy hybrid expert system,
which uses a combination of Mamdani and Sugeno methods, for tardiness fore-
casting in scheduling of steel continuous casting process. In that study, tardiness
variables are represented by interval type-2 fuzzy MFs, and interval type-2 FDNF
and FCNF proposed by Turksen [39] are used in the inference engine. The results
of the method proposed by Fazel Zarandi and Gamasaee [82] show that using
type-2 fuzzy system leads to the more accurate forecasted outputs in comparison to
type-1 fuzzy system and other methods in literature.

Karnik and Mendel [83] applied type-2 fuzzy systems for forecasting of
time-series. They showed that noisy data causes type-1 fuzzy system to be inca-
pable of modeling the problem efficiently, so type-2 fuzzy systems are required to
handle noisy data. Fazel Zarandi et al. [84] presented a type-2 fuzzy hybrid expert
system for forecasting the amount of reagents in desulphurization process of a steel
manufacturing company. The results of that model indicate that type-2 fuzzy system
has less forecasting error in comparison to type-1 fuzzy system. Another research
that uses type-2 fuzzy systems in time series prediction has been conducted by
Gaxiola et al. [85]. They presented a generalized type-2 fuzzy weight adjustment
for back propagation neural networks in time series prediction.

Pramanik et al. [86] used type-2 fuzzy systems for modeling and solving a
fixed-charge transportation problem in a two-stage supply chain network. Since unit
transportation costs, fixed charges, availabilities, and demands are imprecise, they
have been indicated by Gaussian type-2 fuzzy numbers. The problem has been
categorized in class of profit maximization problems, and retailers’ demands are
satisfied by selecting distribution centers. For solving the problem, type-2 fuzziness
has been eliminated using generalized credibility measures. Fazel Zarandi and
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Gamasaee [87] proposed a type-2 fuzzy system model for reducing bullwhip effect
in supply chains. They concentrated on demand forecasting techniques where all
demands, lead times, and orders have been represented by type-2 fuzzy sets. Using
interval type-2 fuzzy c-regression clustering technique, demand data have been
assigned to appropriate clusters, and structure of type-2 fuzzy expert system has

Table 4 Type-2 fuzzy systems in clustering and classification [50]

Author(s) (pub.
year)

References Domain of
the problem

Comparison
with type-1

Why type-2 is
required for the
problem?

Sharma and Bajaj
(2009 and 2010)

[51, 52] Vehicle
classification

Yes Uncertainty and
imperfection of data

Pimenta and
Camargo (2010)

[54] Classification Yes Imprecision in
classification

Chumklin et al.
(2010)

[55] Cancer
detection

Yes Uncertainty in
medical classification

Sanz et al. (2010) [56] Classification No Imprecision in
classification

Wu and Mendel
(2010)

[57] Vehicle
classification

Yes Uncertainty in
information

Phong and Thien
(2009)

[58] Arrhythmia
classification

No Uncertainty in
medical classification

Aliev et al. (2011) [48] Clustering Yes Uncertainty in
clustering

Abiyev et al.
(2011)

[59] Clustering No Uncertainty in
clustering

Zheng et al.
(2010)

[60] Classification No Uncertainty in
classification

Abiyev and
Kaynak (2010)

[61] Clustering No Uncertainty in
clustering

Zhengetal. (2010) [62] Clustering No Uncertainty in
clustering

Albarracin and
Melgarejo (2010)

[63] Signal
clustering

Yes Uncertainty in
clustering

Ozkan and
Turksen (2010)

[64] Clustering No Uncertainty in
clustering

Pedrycz (2010) [65] Clustering Yes Uncertainty in
granulation

Juang et al. (2009) [66] Clustering Yes Uncertainty in
clustering

Türkşen (2009) [67] Clustering Yes Uncertainty in
clustering

Ren et al. (2010) [68] Clustering No Uncertainty in
clustering

Qun et al. (2010) [69] Clustering Yes Uncertainty in
clustering
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been identified. Then, an interval type-2 fuzzy hybrid expert system was developed
for demand forecasting. An interval type-2 fuzzy ordering policy was designed to
determine orders in supply chain. Results of that model demonstrated that using
type-2 fuzzy system leads to more bullwhip reduction and better forecasted results
in comparison to type-1 fuzzy systems.

10 Type-n Fuzzy Systems

There are not too much works in the literature in type-3 and higher level fuzzy sets
and systems. Transformation from full type-2 fuzzy sets and systems into higher
level ones has serious modeling, representing, and computational complexity
problems. First, we should find the real cases with for example type-3 fuzzy syntax
and semantic. It is very difficult to show these cases in geometric configuration.
Also, modeling type-n fuzzy needs lots of nonlinear variables, with high correla-
tions with each other. Finally, the computational complexity of type-n fuzzy is too

Table 5 Type-2 fuzzy systems in pattern recognition [50]

Author(s) (pub.
year)

Ref.
no.

Domain of
the problem

Comparison
with type-1

Why type-2 is required for
the problem?

Melin (2010) [70] Edge
detection

Yes Uncertainty in edge
detection

Lopez et al.
(2010)

[71] Finger print
recognition

Yes Uncertainty in finger print
recognition

Li and Zhang
(2010)

[72] Pattern
recognition

No Uncertainty in pattern
recognition

Own (2009) [73] Medical
diagnosis

No Uncertainty in diagnosis

Mendoza et al.
(2009)

[74] Face
recognition

Yes Uncertainty in face
recognition

Kim et al.
(2009)

[75] Pattern
recognition

No Uncertainty in pattern
recognition

Hidalgo et al.
(2009)

[76] Multimodal
recognition

Yes Uncertainty in multimodal
pattern recognition

Lopez et al.
(2008)

[77] Finger print
recognition

Yes Uncertainty in finger print
recognition

Ozkan and
Turksen (2004)

[78] Pattern
recognition

Yes Uncertainty in pattern
recognition

Mitchell (2005) [79] Pattern
recognition

No Uncertainty in pattern
recognition

Madasu et al.
(2008)

[80] Edge
detection

Yes Uncertainty in edge
detection

Tizhoosh
(2005)

[81] Image
thresholding

No Uncertainty in image
thresholding
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much. This fact needs some high level heuristic algorithms to manage it. So, there
are rooms of potential scientific and applied works that should be done in the future
to resolve these serious problems. We started it from three years ago and hope we
can have some preliminary outputs in the near future.

11 Conclusions

In this chapter, the motivation for using fuzzy systems and the mathematical
concepts of type-1 to type-n fuzzy sets, logic, and systems were discussed. This
chapter has reviewed the most useful knowledge for researchers on several areas of
fuzzy logic such as type-1 fuzzy sets, mathematical operations on type-1 fuzzy sets,
fuzzy logic, approximate reasoning, fuzzy systems including mamdani and sugeno
inference systems, interval type-2 fuzzy sets, general type-2 fuzzy sets, and type-2
fuzzy systems. Moreover, applications of those fuzzy approaches in solving real
world problems were reviewed. Thus, this chapter is a reference for researchers to
become more familiar with theory and applications of fuzzy logic.
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Part III
Fuzzy Sets in Branches of Science



Fuzzy Sets in Earth and Space Sciences

Irem Otay and Cengiz Kahraman

Abstract Earth science refers to the field of science dealing with planet Earth
while space science pertains several scientific disciplines studying the upper
atmosphere, space, and celestial bodies rather than Earth. The fuzzy set theory is
one of the tools that has been recently used in the earth and space sciences. In this
chapter, we review and analyze the papers utilizing fuzzy logic in earth and space
science problems from Scopus database. The graphical and tabular illustrations are
presented for the subject areas, publication years and sources of the papers on earth
and space sciences.

Keywords Earth science � Space science � Fuzzy set theory � Geology �
Astronomy � Oceanography � Meteorology

1 Introduction

Earth science includes the disciplines atmosphere, hydrosphere, lithosphere, and
biosphere. Earth scientists use tools from physics, chemistry, biology, chronology,
and mathematics to understand how the Earth system works, and how it has
evolved to its current state. The studies on earth science can be classified as follows:
energy and mineral resources, protective activities for the environment of Earth, and
dangerous natural disasters such as volcanoes, earthquakes and hurricanes.

Earth science can be divided into four sub-sciences. Geology handles the
composition of Earth materials, Earth structures, Earth processes, and the organisms
of the planet. Meteorology is the study of the atmosphere and how processes in the

I. Otay (&)
Department of Managemet Engineering, Istanbul Technical University, 34367 Macka,
Istanbul, Turkey
e-mail: iremotay@itu.edu.tr

C. Kahraman
Department of Industrial Engineering, Istanbul Technical University, 34367 Macka, Istanbul,
Turkey

© Springer International Publishing Switzerland 2016
C. Kahraman et al. (eds.), Fuzzy Logic in Its 50th Year,
Studies in Fuzziness and Soft Computing 341,
DOI 10.1007/978-3-319-31093-0_7

161



atmosphere determine Earth’s weather and climate. Oceanography studies the
composition, movement, organisms and processes of oceans since the oceans are
excellent energy sources and may cause climate changes. Astronomy is the study of
the universe, which requires knowledge of Earth materials, processes and history to
understand the planets in the universe. It is a natural science of celestial objects and
the physics, chemistry, and evolution of such objects.

The space science covers the areas of science to which new knowledge can be
contributed by means of space vehicles, i.e., sounding rockets, satellites, and lunar
and planetary probes, either manned or unmanned. Space science makes extensive
contributions to geophysics and astronomy. More accurate mapping of the earth’s
surface may offer a better basis for plotting important information, such as geo-
logical data, geographic locations, crops, forests, water resources, and land-use
patterns. On the other hand, the measurements that make geodesy important to the
scientists are also invaluable to the military navigation satellites. More accurate
geodetic measurements can provide more information on the size and shape of the
earth and give information about the distribution of mass in the earth’s crust and
stresses in the mantle.

The uncertainty, vagueness and lack of data in earth and space sciences com-
plicate the problems that are hard to solve by classical mathematical approaches.
For solving such complex problems, some scientists have intended to use the fuzzy
set theory. Zadeh [39] introduced the fuzzy set theory to deal with the uncertainty
due to imprecision and vagueness. A fuzzy set is a class of objects with a con-
tinuum of grades of membership. Fuzzy logic is a branch of mathematics that
allows a computer to model the real world in the same way that people do. It
provides a simple way to reason with vague, ambiguous, and imprecise input or
knowledge [14]. It does not force the researchers to make sharp definitions about
the membership of an element in a set but allows them to consider a degree of
membership.

The rest of the chapter is organized as follows: In Sects. 2 and 3, earth and space
sciences are briefly introduced. In Sect. 4, some graphical illustrations together with
a literature review on fuzzy sets in earth and space sciences are presented. In
Sect. 5, conclusions and the suggestions for further research are stated.

2 Earth Science

Earth Science is defined as the study of the Earth including its origin, its structure
and all the changes it has gone through by considering the potential results of these
changes to the past and the future [5]. Earth Science aims to understand the changes
on Earth and its consequences on life for the planet. Earth science comprises of
geology, meteorology, oceanography and astronomy [8].

Geology is the study of Earth by focusing on its solid materials and the processes
which create the structure of Earth [42]. Geology is divided into two groups which
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are physical geology (the study of Earth’s surface and materials) and historical
geology (the origin of Earth and changes on it [20]).

Meteorology is basically the study covering all aspects of climate (long-term
weather patterns), weather (short-term patterns) as well as atmosphere [42].

Oceanography, the study of oceans considering both living and non-living
things, is divided into four groups which are physical oceanography, biological
oceanography, chemical oceanography, and geological oceanography [23, 42].

Astronomy is the study of the nature and the movements of galaxies, planets,
and stars. It briefly analyzes all objects and phenomenon outside from the atmo-
sphere of Earth [29].

3 Space Science

Space science is defined as the study of the universe in which Earth moves. In other
words, beyond the planet (galaxies, planets, and stars which are outside atmosphere
of Earth) is studied in this area.

Early societies as Egyptians observed the movement of Sun, Moon and some
of the planets in which only five of them can be seen with a naked eye.
A combination of stargazing, myths, astrology and as well as religion, is called
ancient astronomy [1].

For ages ago, people believed that Earth was located at the center of the universe
(Earth-center cosmology), did not move and it had a shape of flat. But scientific
inventions with the rapid advances in technology released by Galileo Galilei,
Johannes Kepler and Sir Isaac Newton that Earth is not located in the center of the
universe (heliocentric view of solar system) and the orbits of the planet is elliptical
[42, 1].

With the invention of telescope around 16th century, scientist were able to see
far into space. Since 20th century spacecrafts have been sent to many planets
which are in the solar system and the first footprint were left on Moon’s surface.
Especially for two decades, lots of images from the universe have been collected
from the Hubble Space Telescope and Cosmic Background Explorer [11]. There
are a wide range of topics that have been studied in space science such as
astronomy, astrophysics, geophysics, geography, geodesy, biology (molecular
biology, space biology etc.), cosmochemistry, and space vehicles (design, con-
struction a launch).
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4 Fuzzy Sets in Earth and Space Sciences

The fuzzy set theory has been applied to almost all sciences including earth and
space sciences. In the following, the works on earth and space sciences are clas-
sified with respect to the subjects such as geology, astronomy, oceanography,
astrophysics, and meteorology.

By typing “Fuzzy, Earth Science, Space Science, astronomy and astrophysics,
geology, meteorology, oceanography” on Scopus, all types of papers are sorted
whether they include these words in their article title, abstract and keywords. The
summarized data obtained from Scopus are listed in Table 1.

The subjects presented in Table 1 are analyzed in the following.

4.1 Fuzzy Set Theory in Astronomy and Astrophysics

Barry and Gathmann [3] described current space systems autonomy research and
recent IntelliSTARTM advancements at the Space Systems Division in Rockwell
International. The paper focused on the current application of fuzzy logic control,
and an advancement designed to increase responsiveness with the architecture.

Shioiri and Ueno [31] proposed a new collision avoidance control law for air-
crafts. Range of Closest Point of Approach (RCPA), representing risk in the future,
and TCPA (Time to CPA), representing current risk, were used as risk functions.
Fuzzy logic was introduced in order to achieve human maneuvering and to settle
singular point and chattering problems. Avoidance strategy consisted of four main
phases, maintaining course, avoidance, parallel flight and recovery phase, and three
transition phases. The parallel flight phase and three transition phases were intro-
duced to achieve moderate avoidance and smooth phase transition, respectively.

Wang et al. [37] combined the fixed thrust optimal-fuzzy combined formation
control method and time-fuel optimal control method to form the optimal-fuzzy
formation control. Optimal control was adopted when relative position errors reach
a certain threshold, while fuzzy control worked for the small errors lower than that

Table 1 Summarized data obtained from Scopus

Search for 1990–1995 1996–2000 2001–2005 2006–2010 2011–2015 Total

Fuzzy Earth Science 2 11 21 47 53 134

Fuzzy Space Science 1 – 3 6 7 17

Fuzzy astronomy 1 7 7 24 13 52

Fuzzy astrophysics – 4 3 12 4 23

Fuzzy geology 21 37 97 201 187 543

Fuzzy meteorology 5 25 52 109 139 330

Fuzzy oceanography 4 6 17 72 39 138

Total 34 90 200 471 442 1237
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threshold. Valdés and Bonham-Carter [35] used an intelligent approach namely
time dependent neural fuzzy network models to detect internal state changes in
complex processes. The researchers highlighted the effectiveness of the proposed
model applied to earth and planetary sciences using paleoclimate and solar data.
Valdés and Bonham-Carter [35] suggested Grid and high throughput computing
model composed of neuro-fuzzy networks and genetic algorithms for solving earth
sciences and astrophysics problems. In the study, simulation experiments were done
and for the application part paleoclimate and solar data were used. Shamir and
Nemiroff [30] discussed modern astronomical pipelines by taking into account
fuzzy-logic based decision-making. In their study, fuzzy-logic algorithms were
proposed for the first time in the literature for astronomical purposes and tested with
data from Night Sky Live sky survey. Furfaro et al. [9] suggested a fuzzy expert
system acquiring past and present water/energy indicators as well as evaluating
habitability. The proposed system was demonstrated for two hypothesized regions
on Mars. The simulation results of the proposed model were given the same results
provided by the human experts. Omar [24] proposed a systematic and simple
procedure to develop an integrated fuzzy-based guidance law which consisted of
three fuzzy logic controller (FLC). The parameters of all the fuzzy controllers,
which included the distribution of the membership functions and the rules, were
obtained simply by observing the function of each controller. These parameters
were tuned by genetic algorithms by solving an optimization problem to minimize
the interception time, missile acceleration commands, and miss distance. Barua and
Khorasani [4] presented a hierarchical fault diagnosis framework and methodology
that enabled a systematic utilization of fuzzy rule-based reasoning to enhance the
level of autonomy achievable in fault diagnosis at ground stations. Fuzzy rule-based
fault diagnosis schemes for satellite formation flight were developed and investi-
gated at different levels in the hierarchy for a leader-follower architecture.
Effectiveness of their proposed fault diagnosis methodology was demonstrated by
utilizing synthetic formation flying data of five satellites that were configured in the
leader-follower architecture. Moradi et al. [21] presented a method for
three-dimensional attitude stabilization of a satellite. The pitch loop of the satellite
was controlled by a momentum wheel; whereas the roll/yaw loops were stabilized
by using two magnetic torques along their respective axes. An adjustable adaptive
fuzzy system was proposed as the method to design the controller. More specifi-
cally, Glumov and Krutova [10] concentrated using fuzzy logic for designing
control systems of space vehicles. Potyupkin [26] applied fuzzy measure for
monitoring the technical state of space vehicles, realibility and tolerance monitor-
ing. Kim et al. [15] solved the problem of spacecraft attitude control using an
adaptive neuro-fuzzy inference system (ANFIS). ANFIS produced a control signal
for one of the three axes of a spacecraft’s body frame, so in total three ANFISs
were constructed for 3-axis attitude control.

Figure 1 displays the distribution of the papers using the fuzzy set theory on
astronomy with respect to years. It is remarkable that the studies on the fuzzy
astronomy have a peak point in the year 2006.
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Figure 2 shows the journals publishing astronomy papers by using the fuzzy set
theory. According to the figure, most of the papers were published by Proceedings
of SPIE—The International Society for Optical Engineering.

4.2 Fuzzy Set Theory in Geology

Kumar et al. [16] applied a fuzzy-MLP neural network for cross-borehole
soil-geology interpolation offering many advantages in dealing with the nonlin-
earity inherent. The fuzzy-MLP neural network providing interpolation accuracy,

Fig. 1 Distribution of the papers using the fuzzy set theory on astronomy

Fig. 2 Journals publishing fuzzy astronomy papers
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takes advantage of both MLP neural networks and fuzzy set theory. Demicco [6]
made an review on the application of fuzzy logic in geology. Lu et al. [19] con-
centrated on geological background and environmental engineering geology factors
in Lueyang County. The paper proposed the quality assessment index system and
the quality assessment standards. Using geographic information systems
(GIS) technology and multiple stage fuzzy logic, environmental engineering
geology quality of the country was evaluated. Lu et al. [18] used fuzzy mathematics
and grey theory in order to assess and estimate the dangerous rank of mine geology
disasters consisting of mine water, mine solid waste, apron and slide, ground col-
lapse sink and underground fracture for different areas. Li et al. [17] developed an
inference model based on the fuzzy logic technique in order to estimate the gen-
eration possibility of internal waves which has been one of the complex issue. The
model providing satisfactory results highlighted that fuzzy based inference model
was found as a useful tool for estimation of internal waves in ocean engineering.
Sun and Li [33] developed a multidomain clustering inversion algorithm and used
fuzzy c-means clustering technique for converting statistical petrophysical data into
a deterministic geophysical inversion framework. They tested the algorithm with
examples of synthetic and a field data.

In the literature, some of the fuzzy methods used in earthquake prediction are as
fuzzy pattern recognition; fuzzy clustering analysis, fuzzy information retrieval,
fuzzy similarity choice, fuzzy multi-factorial evaluation, fuzzy reasoning, fuzzy
self-similarity analysis and fuzzy fractal dimension, gray fuzzy prediction, fuzzy
neural network,fuzzy analyzing and processing software systems. For instance,
Huang [13] studied on some topics such as fuzzy earthquake research and fuzzy
earthquake engineering. The author also aimed to predict and analyze earthquake
data using Hybrid Fuzzy Neural Networks with Information Diffusion Method.

Figure 3 illustrates the distribution of the papers using the fuzzy set theory on
geology with respect to years. The figure indicates that the studies on the fuzzy
geology have a peak point in the year 2009.

Fig. 3 Distribution of the papers using the fuzzy set theory on geology
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Figure 4 displays the journals publishing geology papers by using the fuzzy set
theory. Most of the papers were published by the proceedings of International
Geoscience and Remote Sensing Symposium (IGARSS).

4.3 Fuzzy Set Theory in Meteorology

Amanullah et al. [2] concentrated on climatological changes, and analyzed statis-
tical records of annual rainfall value from Uthamapalayam station between 1970
and 2000 and used the fuzzy set theory for the solution of the problem. Heidari et al.
[12] employed an adaptive neural fuzzy system and studied climatic parameters for
deriving the amount of monthly rainfall with acceptable accuracy for four cities of
Semnan. In the study, fuzzy logic was used to establish a relationship among the
observed and measured nonlinear meteorological phenomena. Srivastava et al. [32]
aimed to forecast monthly rainfall in India by using Fuzzy-Ranking Algorithm
(FRA) with some ocean-atmospheric predictor variables. Artificial Neural Network
(ANN) technique was also applied for analyzing nonlinear relationship between
inputs of the model and rainfall. In the study, a new approach based on fuzzy
c-mean clustering was suggested. Rahoma et al. [27] proposed Adaptive
Neuro-Fuzzy Inference System (ANFIS) integrating fuzzy logic and neural network
techniques for forecasting meteorological parameters.

Figure 5 shows the distribution of the papers using the fuzzy set theory on
meteorology with respect to years. It is noticeable that the studies on the fuzzy
meteorology show an increasing trend starting from the year 1998.

Fig. 4 Journals publishing fuzzy geology papers
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Figure 6 illustrates the journals publishing meteorology papers by using the
fuzzy set theory. Most of the papers were published by Journal of Hydrology.

4.4 Fuzzy Set Theory in Oceanography

Sylaios et al. [34] applied a Takagi-Sugeno-rule-based Fuzzy Inference System for
forecasting the wind speed and direction as well as the lagged-wave characteristics

Fig. 5 Distribution of the papers using the fuzzy set theory on meteorology

Fig. 6 Journals publishing fuzzy meteorology papers

Fuzzy Sets in Earth and Space Sciences 169



in Operational Oceanography. In the study, the wind and wave dataset recorded in
years 2000–2006 in the Aegean Sea was used and the proposed model performed
good results between the predicted and the observed wave heights. Ding et al. [7]
suggested intelligent data processing methods including fuzzy c-means algorithm
based intelligent data cleaning method and the greedy clustering algorithm based
data filtering and clustering method for the oceanic warning system. Sathiya et al.
[28] employed neural networks and fuzzy logic for assessing the wave heights of
the ocean for the coastal regions of Tamil Nadu. Zhang et al. [41] focused on the
uncertain event detection method based on ontology reasoning and fuzzy logic as
well as the uncertain event recognition method related to Bayesian network. These
methods were used for updating uncertain environment ontology mode.
Piedra-Fernandez et al. [25] studied on the development and validation of a
content-based image retrieval system and used fuzzy logic and neurofuzzy systems.
The researchers aimed to retrieve mesoscale oceanic structures from satellite images
which were derived from the National Oceanic and Atmospheric Administration
satellite. Morello et al. [22] presented a hybrid quality control system including a
series of tests and an experimental fuzzy logic approach to assess data related to
Australia’s coastal ocean ecosystems. Zhang and Cao [40] presented a
non-traditional fuzzy quantification method for modeling wave height. The pro-
posed fuzzy model combining Poisson process and generalized Pareto distribution
(GPD) model was used to identify the wave extremes in the time series data.
Vidal-Fernandez et al. [36] suggested an object-based image analysis system. The
system segmented and classified regions contained in sea-viewing field-of-view
sensor and Moderate Resolution Imaging Spectro-radiometer -Aqua sensor satellite
images into mesoscale oceanic structures. In the study, regions were labeled and
classified by learning algorithms such as decision tree, Bayesian network, artificial
neural network, and genetic algorithm. In addition, fuzzy descriptors were used in
the study and the performance of the proposed system was tested with images from
the Canary Islands and the North West African coast. Zhang and Cao (2015)
suggested a non-traditional fuzzy quantification method integrating Poisson process
and generalized Pareto distribution (GPD) model for modeling wave height. Wang
et al. [38] implemented the fuzzy comprehensive evaluation model for evaluating
operational ocean observing equipment in China.

Figure 7 demonstrates the distribution of the papers using the fuzzy set theory
on oceanography with respect to years. The studies on the fuzzy oceanography have
a peak point in the year 2009.

Figure 8 presents the journals publishing oceanography papers by using the
fuzzy set theory. Most of the papers were published by Proceedings of the
International Conference on Offshore Mechanics and Arctic Engineering—OMAE.
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5 Conclusion Remarks and Future Research Suggestions

Earth and space sciences are one of the sciences that uncertainty and incomplete
information is often faced with. A geologist generally comes across with uncertain
earth structures while an astronomer encounters vehicle control problems. The
uncertainty in these kinds of problems can be captured by the tools of fuzzy set
theory. Fuzzy logic control provides appropriate solutions for the complicated
problems of not only earth sciences but also space sciences.

Fig. 7 Distribution of the papers using the fuzzy set theory on oceanography

Fig. 8 Journals publishing fuzzy oceanography papers
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The literature review has demonstrated that there has been an increasing trend in
the usage of the fuzzy set theory for the studies in earth and space sciences.
Specifically, the year of 2000 is almost the starting point of this trend. It is expected
that this trend will continue with a larger acceleration.

For further research, we suggest that the recently extended fuzzy sets such as
intuitionistic fuzzy sets, hesitant fuzzy sets, type-2 fuzzy sets, fuzzy multisets, and
non-stationary fuzzy sets to be employed in solving the complex problems of
geology, astronomy, oceanography, astrophysics, and meteorology.
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Fuzzy Sets and Fuzzy Logic in the Human
Sciences

Michael Smithson

Abstract The development of fuzzy set theory and fuzzy logic provided an
opportunity for the human sciences to incorporate a mathematical framework with
attractive properties. The potential applications include using fuzzy set theory as a
descriptive model of how people treat categorical concepts, employing it as a
prescriptive framework for “rational” treatment of such concepts, and as a basis for
analysing graded membership response data from experiments and surveys.
However, half a century later this opportunity still has not been fully grasped. This
chapter surveys the history of fuzzy set applications in the human sciences, and then
elaborates the possible reasons why fuzzy set concepts have been relatively
under-utilized therein.

Keywords Human sciences � Fuzzy sets � Fuzzy logic � Grade of membership �
Fuzzy logical model of perception

1 Introduction

The development of fuzzy set theory and fuzzy logic provided an opportunity for
the human sciences to incorporate a mathematical framework with attractive
properties. These attractions have been expressed in largely overlapping ways by
Smithson [42: 3–5], Ragin [35: 6–17], and Smithson and Verkuilen [45: 1–2]. They
include the ability of fuzzy set theory and fuzzy logic to handle vagueness sys-
tematically, the simultaneously dimensional and categorical nature of many con-
structs in the human sciences, and the fact that many human science theories and
hypotheses are expressed in quasi-logical or set-like terms. Given these properties,
there would seem to be strong motivations for researchers in the human sciences to
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apply fuzzy sets and fuzzy logic, and initially there was some optimism both among
fuzzy proponents and “pioneer” human scientists that these frameworks would be
readily adopted throughout the human sciences.

However, half a century later this opportunity still has not been fully grasped.
There are several possible reasons for this, some of which have persisted since the
advent of fuzzy sets and others that have emerged in recent times. We will examine
these reasons later, after a review of the history of fuzzy set applications in the
human sciences. The primary focus of this chapter is on fuzzy sets rather than on
fuzzy logic, chiefly because fuzzy set applications are much more common
throughout the human sciences.

There are three kinds of potential applications of fuzzy sets throughout the
human sciences. We will review these in this chapter, and it is important to dis-
tinguish among them. The first kind employs fuzzy set theory (FST) as a descriptive
framework. Fuzzy set theory therefore is therefore evaluated on how well it cor-
responds to what humans do in dealing with categories and related phenomena. The
second employs FST as prescriptive, i.e., how a “rational” agent would deal with
categories. Human performance then is compared against FST as a “gold standard”
for categorization judgements. The third kind employs FST as a data-analytic
toolbox for testing hypotheses and theories (and thereby implicitly also as a pre-
scriptive framework for dealing with categories). In this vein, researchers apply
FST to operationalizing their concepts, measuring membership in categories, and
testing hypotheses expressed in set-theoretic terms.

2 Fuzzy Set Theory as a Descriptive Framework

Most of these early applications treated FST as a descriptive framework. Early
applications during the 1970s were predominately in psychology, although there
also were applications in economics, anthropology, and medicine. Cognitive psy-
chologists such as Rosch [39], Hersh and Caramazza [10], and Oden [27] con-
ducted experimental studies comparing predictions from FST with human
performance in categorization and related tasks. Oden and Massaro [28] published a
fuzzy set theoretic account of perception. In economics, Ponsard [31, 32] was
among the first to introduce fuzzy set concepts to the discipline in a comprehensive
fashion. Several other papers appeared around this time, such as Biin and Whinston
[2] on social choice and Grandmont [9] on preferences. Social anthropology had at
least two early adopters in research on colour categories [14, 15]. Likewise, clinical
medical research saw the development of a fuzzy set-based “grade of membership”
model of types of disorders [60, 61].

By the early 1980s, several critiques of FST as a descriptive framework had
appeared within psychology and related areas. The FST treatment of linguistic
hedges was found not to always correspond with human intuition or behaviour [10,
15, 30, 42]. Osherson and Smith [29] observed that “guppy” is a better example of a
“pet fish” than it is of a “pet” or a “fish”, thereby contradicting the FST rules for
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membership in the conjunction of fuzzy sets. Researchers were divided on what
could be implied from these differences, and seemed to fall into one of three camps.
Critics of FST such as Osherson and Smith treated the differences as indicative that
FST is both prescriptively and descriptively inadequate, a critique that they
extended to all prototype theories of categorization. A minority of researchers, such
as Hersh and Caramazza or Spies [50], identified some of the violations of FST as
evidence of faulty reasoning or understanding on the part of the participants in the
studies.

Smithson and Oden [48] pointed out a striking contrast between these verdicts
and the nearly universal agreement that human violations of the conjunction rule in
probability [56, 54] reflect inadequacies in human reasoning but do not cast any
doubt on probability theory as a prescriptive framework. More recently, the
quantum probability framework has been applied to account for these violations,
thus potentially achieving both descriptive and prescriptive adequacy. No such
reformation has been forthcoming for FST. Factors that may have produced this
outcome include the facts that for some time FST lacked adequate axiomatic
foundations, and had several alternative (and even competing) versions. Both of
these may have resulted in doubts about the prescriptive adequacy of FST.

The third, and largest, camp of researchers has been prototype theorists such as
Rosch, who may have had sympathy with the ideas behind FST but eschewed it and
other formalisms. Journalists McNeill and Freiberger [25: 89–90] quoted Rosch as
pointing out the parallels between her prototype-based framework and FST, but she
never employed FST in her work. This remains the state of affairs today in most
work on categorization and related topics. One can read this literature and identify
occasional FST-like concepts and insights, but often not expressed in FST lan-
guage. For example, the social psychological literature on social- and
self-categorization has embraced the concept of prototypicality but not FST con-
cepts such as simultaneous membership in multiple social identities. Capozza and
Nanni [5] used FST to motivate theoretical ideas in this domain, and Smithson et al.
[49] investigated factors influencing the extent to which people could allow
simultaneously high membership in two national identities, but these are isolated
instances.

Much the same can be said of other areas in psychology where FST has been
used in nontrivial ways. Researchers of judgement and decision making under
uncertainty might have found a role for FST, and a few did, but in a rather limited
fashion. Early research on how people interpret verbal probability expressions (e.g.,
“likely”, “a small chance”, “improbable”) numerically found evidence of consid-
erable variation among individuals (e.g., [41]) and even disagreements about their
orderings. These findings were initially taken to imply unreliability in such
judgements, but researchers applying FST to modelling these judgements demon-
strated within-individual reliability and accounted for at least some of the
inter-individual differences to fuzziness rather than unreliability (e.g., [37, 59]).

However, this successful application of FST did not generalize into applications
elsewhere in the judgement and decision literature, even in research on decision
making under “ambiguity”, which would have seemed a natural next step. There
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was a time when FST might have contributed to developments in subjective
expected utility theory to account for human departures from it that arguably are not
irrational (e.g., the development of rank-dependent expected utility theory and
reformulation of Prospect Theory; see [33, 55]). In economics particularly, FST was
trumped during the 1980s and 90s by Choquet capacities and related non-additive
probability formalisms (see, e.g., the review by Billot [4]).

Billot’s main point about the applications of FST in micro-economics is that they
focused on extending standard theories to deal with various kinds of imprecision
that heretofore had to be ignored or banished. For instance, FST applications to
theories of preference generalized those theories somewhat but did not solve the
fundamental problem of incomplete preferences. Moreover, they did not convince
many economists that FST could do anything that probability could not.

In contrast to FST, the application of non-additive probabilities to
micro-economics produced progress in areas where the discipline was stuck or in
crisis. The primary problem this approach addressed is the representation of degrees
of belief, and deposing probability as the sole or even best way of doing so. They
also convincingly demonstrated that probability is insufficient to deal with problems
in decision theory. Although there have been several generalizations of FST that
can include these formalisms (and probability) as special cases, there are other
generalized probability theories that can do so too. One has the sense of an
opportunity that passed FST proponents by.

Nevertheless, FST has had some success in particular areas throughout the hu-
man sciences. In the area of organisational psychology, Hesketh and her colleagues
(e.g., [1, 12, 11, 47]) employed FST for theoretical extensions and practical
applications in the areas of work adjustment, personnel selection,
person-environment fit, career choice, and occupational counselling.

Another success-story for FST is in the areas of speech and language perception,
via elaborations and successful applications of the Oden-Massaro “fuzzy logical
model of perception” (FLMP). Oden and Massaro [28] demonstrated that FLMP
provided a good account of phoneme identification, and this initial success spawned
applications in other areas such as letter recognition and lip-reading (e.g., [21]).
FLMP has stood up against competing theories of language perception [24, 22].

3 Fuzzy Set Theory as a Prescriptive Framework
and Data-Analytic Toolkit

Despite the fact that FST was given short shrift as a prescriptive standard for
categorization against which to compare human performance, it has been rather
uncritically adopted by researchers utilizing it to augment the data-analytic toolbox.
Most researchers using FST for data analysis have not called its accounts of set
intersection, union, dilation, or concentration into question and, in fact, have not
even questioned the original Zadehian versions of these operations. Instead, most of
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the debates have centred on issues of measurement, inference, and the links
between FST and traditional methods of data analysis (both quantitative and
qualitative).

Let us begin with measurement. One of the limitations encountered by
researchers across the human sciences is the problem of operationalizing and
quantifying “degree of membership”. As pointed out several times (e.g., [42: 77,
45, 57: 20–30]), this problem was neglected for some time in the FST literature.
Much of the mathematical and engineering literature imposed degrees of mem-
bership “out of thin air”, with little or no attention to grounding them in any
systematic measurement framework. The measurement issue remains problematic,
despite various attempts to remedy it.

Even within the FST community, there are several competing definitions of
degree of membership [3, 45]. These may be translated into four camps. First, there
is a “formalist” tradition that assigns membership via a (usually monotonic)
transformation from a variable into the [0,1] interval. Second, a “probabilistic”
tradition links degree of membership with the probability that a case gets assigned
to the set on the basis of a subjective probability assignment, a poll, or some
analogous sampling device. Third, a “decision-theoretic” camp assigns degrees of
membership on the basis of some utility function describing the payoff of asserting
that a case belongs in the set. Fourth is the “axiomatic measurement theory” camp
(in the sense of the work of Krantz et al. [16]), which grounds membership
assignments in an axiomatically grounded method of establishing that a member-
ship scale behaves as a genuinely quantitative scale.

Even if researchers have agreed on how degree of membership is defined con-
ceptually, what about quantification? Verbal labels, initially, seem straightforward
for the same reason that constructing a Likert (agree-disagree) scale is straight-
forward. All that is required is a collection of verbal expressions for degrees of
membership on which everyone agrees to a complete ordering (e.g., “not in the set”,
“slightly in the set”, …, “fully in the set”). However, aside from assigning 0 to “not
in the set” and 1 to “fully in the set”, it is unclear what numbers should be assigned
to the other verbal expressions. Moreover, quantified degrees of membership lack a
behavioural interpretation analogous to the betting interpretation enjoyed by
probability. Likewise, there is no apparent basis for a scoring rule such as the Brier
score for probability judgements.

Now let us bring inference into the picture, although we will continue to refer to
measurement because of the connections between these two issues. We will begin
with inference in the sense employed by quantitative researchers, which focuses on
statistical inference. An example where both degree of membership and statistical
inference have been successfully dealt with is the “grade of membership”
(GoM) model mentioned earlier, elaborated by Woodbury and colleagues over three
decades. This approach is similar in some respects to latent class models, and
throughout their book Manton et al. [18] compare the GoM and latent class models.
It is among the most statistically sophisticated techniques associated with FST, and
would at first glance appear to link FST with properly constructed statistical
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analyses. Indeed, the statistical methods are sound and the GoM has seen
widespread application in clinical health, population health, and demography.

However, FST itself is not employed other than via the label “fuzzy” for the
grade of membership. Instead, the GoM approach amounts to a hybrid classification
and generalized linear model algorithm, and its machinery would remain undis-
turbed if the label “fuzzy” were dropped altogether. Also, it imposes restrictions on
membership values that FST does not, such as requiring that they sum to 1 across a
so-called “fuzzy” partition of clinical types. Thus, although it has been claimed by
its authors that membership grades are not probabilities, they behave very much like
probabilities in the GoM setup. Moreover, several latent class models have
appeared that also employ grades of membership without reference to FST.

Perhaps most dismaying is the disconnection between virtually all of the FST
discussions of methods for assigning membership and the long-established tradition
of methods for assigning quantitative values to ordinal response scales. Probably
the most widely used are Samejima’s [40] “graded response model” and “partial
credit” item response theory model [23], but numerous extensions and general-
izations of these have been made since then, including variants of graded models
(e.g., [52]), generalized partial credit models [26], and graded unfolding models
[38]. All of these approaches are capable of dealing with degrees of membership,
but of course they do not use FST concepts, and researchers employing FST
concepts have largely ignored these psychometric approaches. A dialog between
FST proponents and the psychometric community has yet to be broached.

In a separate line of work from the GoM, Smithson and Verkuilen [45] also
targeted the integration of FST with statistical methods, oriented towards quanti-
tative social science research. Their monograph includes statistical methods for
assessing fuzziness, modelling fuzzy inclusion relations (see also [43]), and linking
covariance with fuzzy intersection. They also point out the applicability of certain
kinds of probability distribution functions for modelling fuzzy set membership
distributions. Marchant [19, 20] and Verkuilen [57] demonstrated methods for
converting standard measurement tasks including comparisons, subjective ratio
scaling, and pairwise choices into fuzzy membership functions that adhere to
axiomatic measurement theoretic criteria. Earlier, Crowther et al. [8] showed that
the FLMP is equivalent to a Bradley-Terry-Luce model, but one where subjects
provide interval ratings instead of pairwise choices.

In particular, the development of GLMs for doubly-bounded random variables
using beta distributions to model them (e.g., [46, 58]) and the elaboration of GLMs
for doubly- and interval-censored random variables (e.g., [44, Chap. 7]) arguably
have paved the way for the statistical analysis of quantitative membership grades.
However, as with the GoM, this work has not been linked with FST per se. Instead,
it stands on its own as a technique for analysing any kind of doubly-bounded
random variable. Perhaps for this reason, although the Smithson-Verkuilen 2006
paper has been cited more than 250 times in more than a dozen disciplines, it is
largely ignored by researchers in the human sciences applying FST.

We now turn to developments regarding the utilization of FST for data analysis
and inference that are more in the tradition of qualitative research. The early years
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of the 21st century saw a resurgence of interest in FST in sociology and political
science, when Ragin linked it with his qualitative comparative analysis framework
[35, 36]. Ragin’s treatment ignored Smithson’s earlier [42] book and covered far
less material on FST than Smithson’s monograph, but it proved considerably more
popular in the domain of comparative politics. One explanation for this is that
Ragin’s presentation is embedded in a perspective that is more compatible with
qualitative researchers’ traditional assumptions and goals, whereas the treatments
by Smithson [42] and Smithson and Verkuilen [45] are more oriented towards
quantitative research traditions (see [17], for a catalogue of the differences between
these two research traditions in political science).

Ragin’s approach begins with a focus on issues of measurement, i.e., the con-
struction of fuzzy set membership assignments and scales, embedded in his
“qualitative comparative analysis” (QCA) framework [34, 35]. He presents this as a
predominantly interpretive undertaking, with “qualitative anchors” for full set
membership and non-membership, and “cross-over” (i.e., membership equalling
½). Ragin introduces the notion of “calibration” for justifying how these qualitative
anchors are determined (e.g., the fuzzy set of “comfortable room temperature” for
humans would require calibration of, say, the Celsius scale by human ratings of
comfort). One criticism raised against this approach is that while it arguably gen-
erates an ordinal (and categorical) scale, numerical assignments to any of the grades
of membership other than 0 or 1 are arbitrary. While some fuzzy set operations
require only ordinal information (e.g., min and max), others require quantitative
degrees of membership (e.g., concentration and dilation).

Research in the QCA tradition applies FST to what they term “case-based”
analysis, usually on small samples and generally without using statistical inference.
Instead, the focus is on identifying necessary and/or sufficient “causal” relationships
between properties of cases (e.g., is a strong bourgeoisie necessary for a democratic
social order to emerge?). This approach has been applied in numerous papers, in
recent times more than 100 per year [53], and has spawned software resources in R
and Stata. Here, then, is an example of a fairly wholehearted and sustained adoption
of FST in the human sciences. QCA and its FST extension have not been without
their critics, and the debates now span nearly 25 years.

As Thiem et al. [53] point out, these debates are littered with errors on both
sides. Even within the QCA/FST camp, there are frequent lapses in standards of
practice and sophistication of understanding in regard to FST. For example, almost
no such research engages in any form of sensitivity analysis to assess robustness
under variations in membership assignments. Necessary and/or sufficient “causal”
relations without recognizing that skew in two variables can yield the appearance of
an inclusion relation between two statistically independent fuzzy sets (as elaborated
by Smithson and Verkuilen [45], but ignored by QCA/FST researchers). QCA/FST
researchers also are unaware of logical quandaries that can arise in FST, especially
when the data suffer from restricted range of membership in one or more sets [7].
However, to be fair, the same accusations of slipshod practices can be (and has
been) said of researchers using conventional statistical methods in the human
sciences.
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A fundamental point of difference is whether the QCA/FST and traditional
statistical modelling approaches are incommensurable or not. After all, if they are
incommensurable then comparing their merits is largely pointless. On the one hand,
Katz et al. [13] claim that “regression methods and fuzzy-set methods cannot test
the same hypotheses” (p. 541) because they construe causality in different ways,
and Thiem et al. [53] argue that QCA/FST and “regression” are incommensurably
based on different algebras (Boolean vs. linear) and, therefore, FST operations such
as conjunction cannot be duplicated by interaction terms in regression models. On
the other hand, Clark et al. [6] argue that linear models with interaction terms are
able to test hypotheses about necessity and sufficiency. Long before them, Smithson
[42: Chap. 6] presented similar arguments and employed a more extensive variety
of interaction terms than just the conventional product term, and more recently
Smithson and Verkuilen [45: Chap. 6] draw a direct connection between fuzzy set
conjunction and covariance (using the product operator for conjunction in FST).
Nevertheless, the fact that the debates have continued is a sign of health.

4 Conclusion

FST still faces several challenges regarding its ability to contribute to the human
sciences, and it would have to be said that much of its potential has not been
realised even 50 years after its appearance. There are several possible reasons for
this.

1. It was unclear from the start whether FST should play the role of a descriptive
or prescriptive account for dealing with categories with blurry boundaries.
While the basic notion of fuzziness was adopted early in the 1970s by
researchers on categorization, the machinery of FST was ignored, and still is
today. Researchers in categorization and related areas of cognitive psychology
remain unconvinced that FST describes human categorization judgements.
Where researchers have added FST to the methodological toolbox, they often
have accepted its prescriptions uncritically and have employed a stripped-down
version of FST.

2. In its original form, FST neglected the problem of measuring degrees of
membership. That issue still is problematic today. There is no convincing
behavioural interpretation of membership assignments, as in the bet-pricing
interpretation of probability assignments. There is no “Dutch-Book” argument
for identifying “calibrated” membership, nor a scoring-rule method to motivate
judges to assign membership values in an honest fashion. Researchers
employing FST in the human sciences have largely ignored well-established
psychometric principles of measurement. While several well-founded
grade-of-membership measurement techniques have long been available,
these remain unexamined by researchers applying FST.
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3. In its original form, FST was not linked with appropriate statistical techniques.
That still is problematic to some extent, although the development of GLMs for
doubly-bounded random variables has the potential to help.

4. There have been several alternative versions of FST operators (e.g., the
t-norms), and it was not clear which of these should be preferred for which
purposes. This problem has largely been swept under the carpet in most
applications throughout the human sciences.

5. There was resistance to FST in the human sciences for similar reasons to
resistance encountered in other disciplines (e.g., is fuzziness really just
probability?).

6. There also was resistance in some areas of the human sciences because FST
presented itself as forbiddingly mathematical, especially to researchers in the
qualitative research traditions who stood to gain the most from FST. This issue
has recurred even in largely sympathetic research communities such as QCA
(e.g., [35]), and most of the applications therein are relatively unsophisticated
versions of FST.

7. As time went on, various advances enabled the accomplishment of feats by
statistical techniques and alternative generalizations of probability theory that
previously might have been unique to FST. As demonstrated by the debates in
the human sciences, many researchers believe that conventional statistical
modelling techniques can do anything that FST can. Indeed, a stronger case
could be made for such a claim than has been made in the published literature,
e.g., via references to modern psychometric methods for dealing with graded
membership. It is currently more difficult to demonstrate that FST has distinct
advantages than it was in the past.

8. Often FST has been presented as an extension or generalization of an already
established model or framework, rather than offering genuinely new results
(e.g., the [4] article contrasting applications of FST with non-additive proba-
bilities in economics).

9. At present, even where FST is being applied, a combination of conceptual
confusion, lack of mathematical sophistication, and inattentive scholarship
limits its utility. In sociology and political science, for instance, this has been a
common criticism raised by sceptical quantitative researchers.

10. There are many areas in the human sciences where FST clearly could be
helpful, but has never been considered (e.g., the diagnosis of psychological
disorders, or actuarial risk categorizations). Perhaps the saddest evidence for its
overall lack of impact is the recent paper by Stoklasa et al. [51] where the
authors are repeating earlier efforts spanning the past 40 years, yet again
pleading a case for the application of FST to various areas of psychology.

In a review of fuzzy set applications in psychology 16 years ago, Smithson and
Oden [48] predicted that applications of FST might become more common but
decreasingly distinct from other approaches and techniques. With the possible, but
contested, exception of the FST extension of QCA in political science, that pre-
diction seems to have been coming true. The psychometric and applied statistical
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literatures have seen a recent burgeoning of graded-response models, general linear
models for doubly-bounded variables that model both location and dispersion,
ordinal and quantile regression techniques that can deal with asymmetric fuzzy set
inclusion-like relationships, and techniques such as taxometrics for determining
whether to treat a construct as categorical or dimensional (a.k.a. “fuzzy”). This is
not to say that FST has no place in the human sciences or that it has been made
redundant. There are plenty of opportunities for FST to have wider application and
greater impact than it has had thus far. Nonetheless, it is now more likely to assume
the role of one among several alternative tools for a given task, rather than the only
tool that will suffice.
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Fuzzy Entropy Used for Predictive
Analytics

Christer Carlsson, Markku Heikkilä and József Mezei

Abstract Process interruptions in (very) large production systems are difficult to
deal with. Modern processes are highly automated; data is collected with sensor
technology that forms a big data context and offers challenges to identify coming
failures from the very large sets of data. The sensors collect huge amounts of data
but the failure events are few and infrequent and hard to find (and even harder to
predict). In this article, our goal is to develop models for predictive maintenance in
a big data environment. The purpose of feature selection in the context of predictive
maintenance is to identify a small set of process diagnostics that are sufficient to
predict future failures. We apply interval-valued fuzzy sets and various entropy
measures defined on them to perform feature selection on process diagnostics. We
show how these models can be utilized as the basis of decision support systems in
process industries to aid predictive maintenance.
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1 Introduction

The context we are addressing is one where we are required to predict if and when
failures will occur and then to find some optimal set of actions to either prevent the
failure from happening—or if this prevention is not successful, to minimize
the consequences (in terms of time, cost, interruptions, quality problems, etc.) of the
failures. We have quite some history of finding an optimal set of actions, more than
60 years of Operational Research and Management Science (cf. [14]) which now is
more and more referred to as Analytics (cf. [8]). Throughout the history of building
optimal action programs (cf. [4]), we have always come across the availability of
data as one of the crucial requirements (cf. [15]) for building, testing, validating and
implementing optimal action programs. It has been a recurring complaint that the
(mathematical) models would be much more useful if some specific data needed
could be collected and processed (cf. [15]). In the last few years we have got some
new complications—we gather too much data and we cannot find key or relevant
data quickly enough to deal with problems in real time.

Our specific context is the process industry and a Finnish multinational corpo-
ration that is specialized in automation systems for the process industry; we will
work out models for predictive analytics for this context using the data that can be
collected within the processes. In recent years—without going into much detail—it
is often claimed that the task of getting data for optimal action programs is not a
problem anymore; sensor technology has made it possible to fully monitor and
collect data on all aspects of automated processes (cf. [37]). This is probably true,
but what was not foreseen is the fact that we got too much data; we created a “big
data” problem, which is described by the malady that we collect more data with
sensor technology and monitoring computer systems than we can ever process with
a reasonable use of time and resources.

We have to deal with a “big data” feature in our process industry context in order
to predict if and when failures will occur. This added the need to find indications of
a failure starting to shape up—also referred to as “weak signals” among the process
engineers—in often very large data sets, and then to work out predictions of when
the failure may or will occur.

The problem area is the monitoring and control of industrial processes that take
place in a highly automated, technically very advanced centre where experienced
and highly skilled personnel follows the process and is ready for interventions as
soon as the processes start to deviate from predefined and pre-set standards (Fig. 1
shows a sketch of the combined data, information and knowledge elements for
monitoring and control). These interventions are required to be (i) timely, (ii) cor-
rect and (iii) optimal in terms of cost and time so that any failure can be avoided.

The monitoring and control personnel has to deal with the following problems:
to predict possibly coming component failures that build on deciding (i) what
components could fail, (ii) where in the process this may happen and (iii) when a
failure can be expected to happen. Typically this prediction is combined with a risk
assessment of what specific failures will occur; we have previously worked out this

188 C. Carlsson et al.



risk with Bayes predictive probabilities and Bayes predictive possibilities [5].
A different aspect is to work out the criticality of a failure: what is the impact on the
process, what are the cost components and what are the estimated direct and
indirect costs of a failure.

The predictions, the risk assessments and the criticality evaluations of a failure
determine the choice of maintenance strategy: (i) corrective maintenance, or also
known as run-to-failure (RTF) maintenance; (ii) preventive maintenance, that builds
on inspections followed by repair or replacement according to some predetermined
schedule; (iii) predictive maintenance, that is based on condition monitoring to
identify the state of components and to predict possible failures, predict remaining
time to failures and to decide on a maintenance program.

Most of the described situations can be considered as a big data context with all
the challenges big data brings [11]. The big data challenges are (i) to find or develop
algorithms that are fast and effective enough to produce indications in time for
optimal maintenance decisions; (ii) to work out intelligent screening and selection
tools that can offer effective advice to the personnel, and (iii) to work out decision
support over mobile platforms, web-sites and cloud architectures that would be fast
enough to support decisions that have to be made in near real-time.

Predictive modelling is basically to find out what is to happen next. Predictive
models should unveil and measure patterns to identify risks and opportunities using
transactional, demographic, web-based, historical, text, sensor, economic, and
unstructured data. Predictive models typically should consider multiple factors and
predict outcomes with a high level of accuracy.

Fig. 1 Monitoring and control of industrial processes combine human and system intelligence
(partner case description)
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Process interruptions are carried out either automatically by monitoring and
control systems that react to deviations from standards or by operators reacting to
anomalies or incidents. Process interruptions in (very) large production systems are
difficult to trace and to deal with; an extended stop is also very costly and solutions
are sought to find an effective support technology to minimize the number of
involuntary process interruptions.

When large sets of control data (mainly in the form of process diagnostics) are
gathered at a time T (instance), methods are needed to detect relevant knowledge
content from the data (of historical events or incidents) that then can be applied to
knowledge detection in new instances (new, upcoming events). The purpose of
feature selection is to reduce the number of input variables (features) describing the
logic of the incidents. By selecting an appropriate set of features and excluding the
ones that are irrelevant the problem solving process can be improved in terms of
computational complexity, time, cost and the interpretability of the results. In this
paper we have explored the possibilities to develop methods for knowledge
detection by building on fuzzy entropy.

The rest of the paper is structured as follows. Section 2 summarizes the
state-of-the-art on fuzzy entropy, Big Data, and predictive analytics. Section 3
introduces standard concepts in feature selection and describes a model based on
fuzzy entropy. In Sect. 4, we describe how feature selection method can be utilized
as the basis for predictive analytics, with a discussion on a real-world application in
monitoring and control, with recommendations on how to develop the algorithm for
decision support in Sect. 5. Finally, summary and conclusions are provided in
Sect. 6.

2 Fuzzy Entropy, Big Data and Predictive Analytics

In this section, we present preliminary definitions and summarize the relevant
contributions related to our study in the context of (i) fuzzy entropy measures,
(ii) big data and industrial analytics and (iii) predictive analytics.

2.1 Fuzzy Entropy

Zadeh [50] introduced fuzzy set theory and fuzzy logic as a tool to represent and
manipulate imprecise expressions. The concept of fuzzy set extends the idea of a
crisp set as it allows for elements to belong to the fuzzy set to some degree between
0 and 1; this degree is termed the membership value, lðxÞ. In the same article,
Zadeh [50] introduced a generalization of Shannon’s information entropy [41]
using fuzzy membership values. This proposal includes the original definition as a
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special case but at the same time can model imprecision present in different aspects
of the underlying problem:

HðXÞ ¼ �
Xn
i¼1

lAðxiÞpðxiÞ log pðxiÞ;

where A is a fuzzy set, P ¼ p1; p2; . . .; pnf g is a probability distribution and X ¼
x1; x2; . . .; xnf g is the event space. If the membership value in the fuzzy entropy

takes the form

lAðxÞ ¼ 1; if x 2 X
0; otherwise

�

then we obtain the definition of entropy introduced by Shannon [41].
The common basis today for a well-defined entropy measure is the four De

Luca–Termini axioms [29]:

1. HðAÞ ¼ 0 if and only if A 2 X is a crisp set.
2. HðAÞ ¼ 1 if and only if lAðxiÞ ¼ 0:5 for every i.
3. HðAÞ�HðBÞ if A is less fuzzy than B, i.e., if lAðxÞ� lBðxÞ when lBðxÞ� 0:5

and lAðxÞ� lBðxÞ when lBðxÞ� 0:5.
4. HðAÞ ¼ HðACÞ where AC ¼ 1� A denotes the complement of A.

According to these properties, the different fuzzy entropy measures quantify the
“fuzziness” of fuzzy sets [22]. The first condition requires that the concept of
fuzziness (entropy) disappears in the classical case, i.e. crisp sets are not fuzzy to
any degree. According to the second condition, the fuzziness (entropy) takes its
maximum when it is impossible to distinguish between a fuzzy set and its negation,
i.e. every value in the support belongs (and does not belong) to the fuzzy set to the
same degree. The other two axioms strengthen the imposed conditions of the first
two required properties.

There are several existing definitions that satisfy the above axioms, in the fol-
lowing we list the most widely used ones:

• De Luca and Termini [9]:

HLTðAÞ ¼ �
Xn
i¼1

lAðxiÞ logðlAðxiÞÞþ ð1� lAðxiÞÞ logð1� lAðxiÞÞ½ �

• Kosko [23]:

HKðAÞ ¼
Pn

i¼1 minðlAðxiÞ; lACðxiÞÞPn
i¼1 maxðlAðxiÞ; lAC ðxiÞÞ
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• Li and Liu [27] defined entropy using the credibility measure [30]:

HCðAÞ ¼
Xn
i¼1

�CrðxiÞ lnðCrðxiÞ � ð1� CrðxiÞÞ lnð1� CrðxiÞÞÞð Þ

There are several other approaches termed fuzzy entropy that cannot be char-
acterized by the above four conditions but try to capture the fuzziness of sets from
different perspectives. The most widely used definition of this type was proposed by
Yager [48], who argued that the measure of fuzziness should quantify the dis-
tinction between the fuzzy set and its complement.

Fuzzy entropy can be defined for different generalizations of traditional fuzzy
sets, most importantly for interval-valued fuzzy sets.

Definition 1 [16] An interval-valued fuzzy set A defined on X is given by

A ¼ ðx; ½lLAðxÞ; lUA ðxÞ�Þ
� �

; x 2 X;

where lLAðxÞ; lUA ðxÞ : X ! ½0; 1�; 8x 2 X; lLAðxÞ� lUA ðxÞ; and the ordinary fuzzy
sets lLAðxÞ and lUA ðxÞ are called lower fuzzy set and upper fuzzy set about A,
respectively.

As in the case of traditional fuzzy sets, there exist different definitions of entropy
for interval-valued (or in general type-2) fuzzy sets [45]. The most widely used
definitions are the following:

• Szmidt and Kacprzyk [43]:

HSKðAÞ ¼ 1
n

Xn
i¼1

1�max 1� lUA ðxiÞ; lLAðxiÞ
� �

1�min 1� lUA ðxiÞ; lLAðxiÞ
� �

• Burillo and Bustince [3]:

HBBðAÞ ¼
Xn
i¼1

lUA ðxiÞ � lLAðxiÞ
� �

• Zeng and Li [51]:

HZLðAÞ ¼ 1� 1
n

Xn
i¼1

lUA ðxiÞþ lLAðxiÞ � 1
� �

Additionally, in recent years we have seen a large number of articles general-
izing entropy to different families of fuzzy sets: hesitant fuzzy sets [47], intu-
itionistic fuzzy sets [28], vague sets [53] or intuitionistic and interval-valued soft
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sets [21]. While these definitions usually were proposed with descriptions of
hypothetical applications, mainly in decision making problems, we have yet to see a
practical implementation of any of these concepts.

Different fuzzy entropy measures have been applied extensively in the literature
to solve various industrial problems, and several of these focus on fault detection
and risk assessment. Ye [49] defines the fuzzy cross entropy of vague sets and
utilizes it for fault diagnosis of turbines by focusing on identifying fault types and
future trends in the turbine behaviour. Lee et al. [26] applies fuzzy entropy as an
important tool in extracting features for fault detection of an induction motor. Wu
et al. [46] perform risk assessment of engineering projects using fuzzy entropy
weights, and they propose an inspection system to monitor and maintain safety on
engineering projects.

One of the most important applications of fuzzy entropy is feature selection as a
basis for classification and segmentation. Lee et al. [25] make use of fuzzy entropy
to select relevant features with good separability for classification. Tao et al. [44]
define a new fuzzy entropy measure and employ it for image segmentation.
Parthalain et al. [38] combine fuzzy-rough set theory and fuzzy entropy and show
that their procedure results in smaller feature subset sizes than other methods
without significant loss of classification accuracy.

2.2 Big Data and Industrial Analytics

As the price of storage capacity to both store and transfer data have decreased
drastically in recent years, both businesses and individuals are using this opportunity
to store items perceived as valuable. This has led to the daily generation of quin-
tillions of bytes of data [52]. For companies the potential value inherent in the vast
amount of data stored is both an opportunity and a problem. It is an opportunity,
because the data may have hidden, valuable information content. The big problem is
how this hidden value could be uncovered, processed and utilized in daily business.
This calls for new managerial approaches [32] as well as new business models.

For business utilization of big data, or information explosion as Beath et al. [1]
call it, we should put the emphasis on business processes, product development and
customer satisfaction. To do this, companies need, firstly, to identify the most
important data items (about customers, sales orders, inventory items etc.), secondly,
to define the work-flows that will use unstructured data and, thirdly, find potential
business processes that benefit from the information explosion. The problem areas
often identified here are (i) the increasing complexity of growing business into new
areas that utilize data in different ways; (ii) the difficulty to utilize unstructured
“metadata” generated in manual or automated processes, and (iii) the challenge to
commit to an ongoing analysis of the business processes.

The key to utilizing big data is to understand its key features. The most common
aspect is usually attributed to themere volume of both the number of samples (vertical
dimension) and the number of stored items, i.e. the features (horizontal dimension) of
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data sets. This “big dimensionality” [2] is usually called thefirst V (“volume”) of the 5
big data attributes. The two most common attributes, in addition to volume, are
“velocity” and “variety” (see e.g. [39]), but two additional features “value” and
“veracity” have been identified as well [19, 54]. The first three Vs are defined as [39]:

• Constantly growing data that can easily grow into terabytes, or even petabytes
(volume)

• Data used for time-sensitive processes (velocity)
• Data composed of various types of data: structured and unstructured (such as

texts, sensor data, audio, video, log files, and so on) (variety)

The additional two V’s are defined as follows:

• Data relevant for the context and useful for purposes of the user (value)
• Data that is reliable and verifiable (veracity)

As Hitzler and Janowicz [19] point out, the different aspects of big data have
different significance for different areas: supercomputing researchers often find
volume most interesting, social sciences are more interested in veracity and value,
and the Semantic Web community is interested in the variety of data. For the
velocity aspect for which data is used, Hitzler and Janowicz [19] refer to the
development of sensor webs and the Internet of Things.

For the monitoring of pumps and valves (which is the real-world context for our
work on predictive analytics), tagging enables the creation of a web of sensors
which has the features of big data, since the volume is large with up to 500
variables stored n times per minute (where n may be >100). The speed required of
data-driven processes, velocity, is a key issue and the number of pumps of various
types that are used will add to the variety. Additionally the knowledge generated
needs to be correct to build customer value (veracity).

Internet of Things (IoT) [6] is a fast growing area of study that works with ongoing
processes where physical objects (products) are tagged with QR codes, barcodes and
RFID tags that enable location-aware, person-centred and context relevant services.
These objects are common in daily use and they are connected with mobile and
wireless platforms. Such digital connectivity of data between objects, and from
objects to services, is found not only in products but in production facilities as well.
The Industrial Internet (II) works with key functions that enable modern automation
which is used in production, logistics etc. Various sensor devices are used to monitor
the functionality features of production facilities, machines and components.

What is typical for the IoT already today and even more for the II is that the
amount of generated data is so large that it cannot be utilized directly. There are
several reasons for this:

• The pace of development of analytical methods for utilization and opera-
tionalization of data has not been able to match the growth of data. Tools used
for analytical purposes often date back to the 1990s or earlier [6].

• Data is collected in a number of databases that are of different types, they are run
with different database systems and thus apply different logic based on local and
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functional needs. The current data base management systems still in use were
developed to serve the needs of unified corporate databases, mostly relational,
that could retrieve data with SQL queries and get results from readily made
statistical analyses. For data with a large number of locations such queries are a
waste of resources. Instead, methods are needed to move queries to data and run
them as parallel processes [36].

• Business models for the IoT still lag the developed technologies. Since it is
common in the development work to have innovations to create demand both
from existing services to products and from developed products to supporting
services business models cannot be updated fast enough [34]. This means that
the managerial understanding of innovations may exist on the conceptual level
but practical implementations still require learning processes to take place.

There is a growing need for analytical methods, database management systems
and business models to fill the growing gap between what the collected data enables
and what the current production of products and services cannot accomplish. To fill
this gap all of the above aspects need to be assessed. As Nieto-Santisteban et al.
[36] point out: “It is a mistake to move large amounts of data to the query, when
you can move the query to the data and exercise the query in parallel”. Needless to
say, there is not much trace of using fuzzy entropy as a basic principle for the
business utilization of big data as theory and practice have not yet found the
opportunity to form a common platform.

2.3 Predictive Analytics

In a report from the INFORMS 2011 Annual Meeting there was a statement: “There
is no doubt—analytics are here” (as quoted in the OR/MS Today). This was after
the INFORMS tried to ignore the new movement after it got started by Davenport’s
book in 2007. The movement coincides with the increased availability of data we
have seen with advances in information and communication technology; with
increasing data there is an increasing demand for analytic tools to build descriptive,
predictive and prescriptive models. INFORMS now sees tremendous opportunity of
synergy between analytics and Operations Research.

A customary way of building models to predict future failure events in industrial
processes is to describe the logic behind the events in question (e.g. fatigue, decay
or emergence of faults), to build a model to simulate the generation of the event
results and to analyse data based on this model. This type of logic-driven models is
common in industry because they usually generate good quality and verifiable
results and can be shown to produce added value to the process.

The actual context we have worked with—one of pumps and valves in industrial
processes—offered us a number of practical insights. For dynamic processes that
are in constant change and for which several causes either decide or influence
processes data-driven models are often insufficient. In such situations and especially
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if there is an abundance of data (such as hundreds of time series of sensor log data),
it is hard to find a single model that would adjust to and be an adequate repre-
sentation of the changing operational environment and the changing patterns of
collected data. In such an environment advanced data analysis methods are needed
and the process of analysis starts from data that is used to find decision models that
are judged to be best suited for the problems at hand. The problems may change
when the environment changes, for instance if a component in a device is changed,
if a device is moved to another process, if a different maintenance program is
performed, or if the data indicates some process-internal changes or changes of
sub-processes.

Data and business analytics methods are today developed for both logic-driven
and data-driven modelling; however, the importance of data-driven methods has
grown with the growth of data storages and recorded sensor data. The use of
predictive models often requires that data can be applied online for it to be useful.
With the abundance of data collected from sensors it is necessary to pre-process it
and to choose a representative data set with feature selection methods of the type
described in this article. In order to carry out an analysis of a chosen set of features a
number of approaches are possible, such as artificial neural networks, clustering
analysis, decision tree analysis or multinomial statistical models.

Gandomi and Haider [13] point out that much work on big data implicitly
assumes that we can work with predictive analytics and structured data, i.e. the
problems with massive data are understood but it is assumed that analytics will offer
remedies to come to terms with the large data sets; then it is further assumed that we
will have structured data because work with analytics will be easier that way. Then
it is ignored—something we found out in our industrial cases—that the largest
component of big data is unstructured and available as audio, images, video and
unstructured text. Predictive analytics relies on statistical methods and it now starts
to be understood that big data will require new statistical methods. First, statistical
significance which is used to generalize from small samples of a population to the
entire population will not work for big data as very large samples will produce an
abundance of statistically significant relationships that have no practical relevance.
Second, conventional sampling methods for small samples do not scale up to big
data. Third, big data suffers from heterogeneity, noise accumulation, spurious
correlations and incidental endogeneity.

Diamantoulakis et al. [12] have worked out some of the problems encountered
by big data analytics in dynamic energy management, which appear to neatly
summarize some of the problems to be expected when tackling industrial processes.
The first concern is that traditional computer techniques cannot handle fast data
processing, which is required for real-time monitoring, dynamic energy manage-
ment and power flow optimization; the remedy is to employ efficient high perfor-
mance computing techniques (virtualization, in-memory computing). The second
concern is that available communication resources are not enough for data acqui-
sition in a centralized manner; the remedy is distributed data mining and dimen-
sionality reduction to reduce the required resources. The third concern is the need
for significantly increased data storage and computing resources which will require
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investments and generate rapidly increasing operating costs; the remedy is cloud
computing and payment for resources as needed. The fourth concern is the demand
response for which the algorithms rely on sensor data with correlations, trends and
patterns but should include user reactions to real-time prices and stochastic
parameters, everything in a big data setting; the remedy is predictive analytics and
machine learning techniques that can facilitate real-time decision making.

Janke et al. [20] found some surprising benefits of predictive analytics and big
data in emergency care. They note that many large emergency departments have
more than 100,000 patient visits per year that through electronic medical records of
all procedures carried out in modern emergency care will create (very) large
amounts of real-world observational data. Associations in big data can drive
prediction-based, personalized improvements in care quality; large observational
data sets have been found to be very usable for the development of predictive
models, and this is now starting to be used in emergency care as big data analytics
is gaining acceptance. An interesting observation made in the big data environment
is that advances in technology will reduce the need to apply simple decision tools to
patients with complex disease. Parallels are often not well-founded, but we have
come across the same type of observations in the process industry where a lack of
analysis tools has encouraged the operators in the control room to use ad hoc
methods and tacit heuristic rules (also called rules of thumb).

We found out in this section that predictive analytics offers some means to deal
with failure prediction in industrial processes despite the challenges offered by big
data. Our proposal is to work out predictive models that make use of fuzzy entropy,
an approach that has not been much used but which we have found to offer some
benefits.

3 Feature Selection with Fuzzy Entropy

We will now work out how fuzzy entropy measures can be used as a basis for
predictive analytics. The basic data set used as the motivation consists of time series
of several process diagnostic variables measured by a system of sensors. We pro-
pose a two-stage process for failure prediction:

• First, we choose a subset of the recorded diagnostic variables that contain the
information essential to predict a failure

• Second, the identified features are used to predict failures (or in other words,
classify a given state as critical or non-critical)

The main motivation behind this two-step process is the availability of big data
collected on sensor-monitored valves that are key components of industrial pumps.
The number of diagnostic variables can be in the range of hundreds for an indi-
vidual valve, and the failure prediction has to be performed in real time, or with a
few seconds delay in the worst-case scenario. For this reason, we need to identify a
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subset of variables that contain the most information regarding the state of the
system.

An initial observation guided by the requirements of the engineers is that a
decision support system should perform feature selection or extraction, but not
component extraction. An important issue when using feature selection—and
subsequent classification—relates to the interpretability of the results. If for
example, Principal Component Analysis (PCA) is used, original variables are
decomposed into new constructs by a specific combination method, which makes
the results difficult if not impossible to interpret in many cases. A feature selection
method can identify a set of original variables that can represent the whole data set
to an acceptable level. In our context, this can provide important help for the
engineers to identify which part of the process most likely will be responsible for
the potential failure.

3.1 Feature Selection Methods

In real-world problems, a complex process can be described and analyzed through a
large number of variables. Some of these variables contain essential information
about the underlying process while others are irrelevant when we try to understand
the behavior of the process and estimate future events. For this reason, in many
cases it is an essential task to identify the “important” features of the problem. In the
age of big data, this task is even more crucial than before.

In our application case (described in Sect. 4) the feature selection serves as a first
stage of a prediction algorithm to estimate whether the system is in a state that
indicates a high possibility of failure. In other words, the goal is to select a subset of
features such that the prediction based on this smaller subset of features is as close
as possible to a prediction based on the original set of features [31].

According to Dash and Liu [7], there are four main issues to be considered when
choosing the appropriate feature selection method. The generation procedure refers
to the method of selecting the candidate feature subsets. A traditional approach is to
apply a greedy selection procedure [24], which means that we start from an empty
set of features and iteratively add the best candidate from the remaining set of
features.

The second issue is the choice of an evaluation function. The function evaluates
the candidate feature subsets based on different attributes. There are numerous
choices available also for the evaluation function, for example distance measures
[10], or correlation measures [18]. Another important approach makes use of dif-
ferent types of information measures [26], most frequently Shannon’s entropy. In
the different methods based on entropy, a feature is preferred in a given step if the
information gain (i.e. reduction of entropy) is higher by choosing that feature over
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any other. In practice, this translates to reduced uncertainty concerning the outcome
variable; in this paper, fuzzy entropy will be used as the basis for feature selection.

The last two issues concern the stopping criterion of the algorithm and the
validation process [17]. The stopping criterion is usually dependent on the approach
used for determining the evaluation function. In case of an information theory based
evaluation measure, the stopping criterion specifies a critical improvement value:
we select new features until the contribution of a selected new feature to the
information gain is lower than a predefined value. The validation process usually
tests the predictive validity (or classification precision) of the identified feature
subset. In many practical problems, there can be several feature combinations that
provide equally good performance in predicting the outcome; experienced process
managers and engineers can provide additional help in identifying alternative
solutions.

3.2 Fuzzy Entropy for Feature Selection

In this section, we will describe an algorithm for feature selection based on fuzzy
entropy introduced in [33]. An important step in applying entropy is the dis-
cretization of the continuous range of variables. As a consequence, there will
always be numerous observations which lie close to the borders between two
neighbouring intervals; as it was pointed out by Shie and Chen [42], this can result
in situations for which an incorrect choice in the discretization process can decrease
the performance of the chosen feature set. To overcome this problem, fuzzy entropy
can be applied; as a result, observations close to borders between intervals will be
classified as belonging to both intervals to some extent and consequently increasing
the information extracted from the chosen features.

Mezei et al. [33] propose to use type-2 fuzzy sets and fuzzy entropy in the
feature selection process. The approach makes use of the concept of interval-valued
fuzzy numbers. A fuzzy number is a normal, convex fuzzy set with the referential
set X as the set of real numbers [4]. An interval-valued fuzzy number can be
described by two membership functions: upper and lower membership values
representing a second level of imprecision present in the process of defining the
membership values for belonging to the fuzzy sets. By applying this tool, we can
further improve feature selection methods by considering the observations close to
the borders of intervals. We apply trapezoidal-shaped interval-valued fuzzy num-
bers, where the upper and lower fuzzy numbers are ordinary trapezoidal fuzzy
numbers represented by the following membership function:

lAðxÞ ¼
1� a�x

a if a� a� x� a
1� x�b

b if b� x� bþ b
1 if a� x� b
0 otherwise

8>><
>>:
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3.3 Fuzzy Entropy Models

To describe the algorithm, we need the following notations:

• C1; . . .;Cm denote the possible values of the outcome variable. In the simplest
case, we have two classes, which translates to a binary classification problem.

• F1; . . .;Fl are the variables describing the system/object that is modelled, i.e. the
set of possible features. We want to choose a subset that contains sufficient
information to determine the class membership in the outcome variable.

• Ai
j; . . .;A

i
ji are the interval valued fuzzy numbers describing feature i. The

optimal number of fuzzy numbers has to be determined individually for every
feature.

To determine the information contained in a feature concerning the outcome
variable, we use the match degree based on the fuzzy entropy for every outcome
class j as

Dj ¼
Xn
i¼1

1�max 1� lUA ðxiÞ; lLAðxiÞ
� �

1�min 1� lUA ðxiÞ; lLAðxiÞ
� � :

The fuzzy entropy for one fuzzy set describing a feature can be calculated as

HjðAÞ ¼ �Dj logDj

while the fuzzy entropy of the feature with a given set of fuzzy numbers is

HðAÞ ¼
Xm
j¼1

HjðAÞ:

In the feature selection algorithm, we first derive the optimal number of fuzzy
numbers for every feature. Additionally, we also calculate the overall entropy of the
feature with respect to the outcome variable (failure indicator in our case). This
helps us to identify the feature with the optimal entropy value. In the subsequent
steps of the algorithm, new features are added to the feature set by calculating and
minimizing the joint entropy of a subset of features including the already chosen
features and the ones which have not been chosen yet.

The joint entropy can be calculated using the match degree for two fuzzy sets as
in [33]; for higher numbers it can be extended in a similar way:

Dh
j ðs; tÞ ¼

Xm
i¼2

minðA;BÞ
maxðA;BÞ ;
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where

A ¼ 1�max 1� lAU1
s
ðxiÞ; lAL1

s
ðxiÞ

� �
;

B ¼ 1�max 1� lAUh
t
ðxiÞ; lALh

t
ðxiÞ

� �

The entropy of the pair ðA1
s ;A

h
t Þ is

H A1
s ;A

h
t

� � ¼ Xm
j¼1

�D1;h
j ðs; tÞ logD1;h

j ðs; tÞ;

and finally the overall entropy

HðF1;FhÞ ¼
Xk1
s¼1

Xkh
t¼1

H A1
s ;A

h
t

� �
:

We continue to include features as long as the improvement in the gained
information is higher than a predefined value d.

4 Case Study: Failure Prediction Using Fuzzy Entropy

In this section, we will describe an application of the fuzzy entropy-based feature
selection methodology for failure prediction. In the industrial processes we have
been working on, maintaining continuous, uninterrupted operations is of essential
importance; consequently processes are monitored constantly in real-time. The
occurrence of a failure usually implies stopping the operation of the whole process
resulting in significant losses in terms of production output. For this reason, as we
concluded previously, predictive maintenance offers a better strategy to minimize
losses. In the following we specifically focus on the case of data describing the
working behaviour of pumps and valves in the industrial process we have been
working on.

As we learned from expert engineers, the operational states of valves usually can
be classified into three main cases:

• normal: the process is fully operational, there is no need for any type of
intervention

• failure: the process has to be shut down and the cause of the failure identified
• gradual transition from normal operation to failure: the behaviour is still normal,

or almost normal, but there are signs indicating a possible failure

In our analysis, we will consider data generated using a simulation model
developed at our partner company. The model has been improved continuously
based on the understanding of the real behaviour of valves, and provides a means to
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obtain sufficiently detailed data to understand how failures develop and how they
can be predicted. In general, behaviour of different industrial processes can be
predicted and is frequently described using simulation models [35]. Simulation
studies are performed outside the real-world system, but on a model of the system
that is specifically created to obtain an understanding of the relationships among
some system characteristics and the operational behaviour of the system. If the
simulation model resembles the real process to a sufficient degree, we can formulate
conclusions that are valid for the system. The major reasons for developing a
model, as opposed to analysing the real system, include the costs (usually signifi-
cant) of experimenting with the system, unavailability of the “real” system, and the
goal of achieving a deeper understanding of the relationships between the elements
of the system.

In practice, there are hundreds of diagnostic measures to be observed, stored and
analysed. Before predicting the failure of the system, it can be beneficial both from
computational complexity and interpretability perspectives to reduce the number of
measures to be included in the prediction models. This selection is performed using
a fuzzy entropy-based feature selection algorithm. In the simulated data, three
different fault types are present, as it is assumed that different characteristics are
associated and can be used to predict different problems. Additionally, to control for
the type of pump (our partner company manufactures tens of thousands of different
versions of pumps), different valves sizes and different tuning parameters are pre-
sent in the data.

According to the above description of the algorithm, we will use the following
notations:

• C1;C2;C3 denote the 3 possible values of the outcome variable. In our case, as
our main goal is failure prediction of valves, the outcome variable is the actual
state of a valve (or the underlying process). Additionally to the two straight-
forward classes, normal behaviour and failure, we include a transition state as
the third class.

• F1; . . .;F16 are the diagnostic variables describing the valve, i.e. the set of
possible features. We want to choose a subset that contains sufficient informa-
tion to determine the class membership in the outcome variable. The diagnostic
measures include as an example “stiction”, “steady state deviation” or “valve
reversals per hour”.

The simulated data is generated with a simplified model of a pipeline process
that consists of a pump and a control valve that generates a flow through the
pipeline. There are three simulated faults: (i) air leakage; (ii) faulty H-clip;
(iii) friction.

The three faults are simulated for different valve sizes and different controller
tuning parameters. The different combinations resulted in 32 valves in total, with
120 days of each valve simulated. With the associated 16 diagnostic variables, we
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performed the analysis on 61,440 data values. To test the effectiveness of the fuzzy
entropy-based feature selection model, we first identified the optimal feature subset
for the three fault types separately. We evaluated the selected feature subsets by
comparing their prediction performance to the model using all the 16 diagnostic
variables, using a multinomial logistic regression analysis. Additionally, we tested
the three different fuzzy entropy measures discussed in Sect. 2.1.

In the following, we will discuss the results of the feature selection process and
the subsequent classification modelling. Table 1 lists the results of the analysis. The
models were implemented using the R statistical software [40]. The running time of
the models increases with the complexity of the underlying data representation;
transforming the original values into interval-valued fuzzy memberships can be
time consuming compared to type-1 fuzzy sets, or in the crisp case, compared to no
transformation at all. As one can find, the number of selected features can signif-
icantly vary among methods; this behaviour can be explained by the different
structure of the entropy measures and consequently the way in which their value
improves when increasing the number of features in the selected feature sets. In the
analysis, we used the same threshold for limiting the number of selected features (at
least 5 % improvement in the overall entropy); different threshold specifications for
different entropy measures may result in more similar outputs. The predictive
performance in general shows high accuracy with different varying performance
depending on the fault types. We can observe that there is no single approach that
performs better than the others. However there is at least one method for every fault
type with high accuracy. According to this, we can conclude that fuzzy entropy
based feature selection can be a useful alternative to traditional methods, when the
specific attributes of the underlying problem are considered properly and the fuzzy
entropy measure is chosen based on the problem attributes.

In Table 2, the chosen features (process diagnostics) are listed for three entropy
measures. As we can observe, different fault types can be explained with different
sets of diagnostic measures; while some faults are more straightforward to recog-
nize and closely related to a specific feature of the process (Faulty H-clip—Valve
travel), some other fault types are more complex and require combining knowledge
from different diagnostics. From the perspective of the entropy measures, one can
observe that the most important features chosen are always the same independently
from the entropy used. However, there can be differences regarding less important,
but still selected features, and regarding the number of features selected.

Table 1 Comparison of the
results of the different
approaches (number of
selected features/classification
performance)

Entropy/Fault Fault 1 Fault 2 Fault 3

H 3 (90 %) 2 (96 %) 4 (87 %)

HLT 4 (92 %) 1 (93 %) 5 (88 %)

HSK 5 (93 %) 1 (93 %) 6 (85 %)

HBB 2 (88 %) 3 (96 %) 8 (82 %)

HZL 3 (90 %) 3 (96 %) 6 (90 %)
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5 Discussion—Decision Support for Monitoring
and Control

The fuzzy entropy used for feature selection is one of the methods we have devel-
oped and tested as part of a project with the process industry. Our task is to work out
some solutions for predictive maintenance, i.e. we need to identify failures, (i) what
may fail, (ii) where in the process and (iii) when can a failure be expected to happen.
The context is a plant where the process is regulated by hundreds of pumps, some of
which represent a critical path for the working of the plant and have back-up pumps
built for parallel flows to replace the primary flow in case of failures; other pumps are
stand-alone for various reasons—cost-effectiveness, low risk, (assumed) fail-safe
constructs, etc. The pumps have components that determine how well the pump will
carry out the tasks for which it has been constructed; the components are monitored
and controlled by sensors that continuously collect data on the performance of the
components.

The support process we need for the monitor and control personnel builds on
predictive analytics and modelling; the feature selection with fuzzy entropy is only
part of the process as modern analytics offers support in different ways [8]: (i) de-
scriptive techniques and models for reviewing and examining data set(s); (ii) di-
agnostic techniques and models to determine what has happened and why;
(iii) predictive techniques and models that analyze current and historical data to
determine what is most likely to (or not to) happen; (iv) prescriptive techniques and
models for computationally developing and analyzing alternatives that can become
courses of action and that may discover the unexpected; (v) decision techniques and
models for visualizing information to facilitate human decision-making.

The data that is collected from the sensors is first stored in a simple flat file
format; cf. Fig. 2, on which sorting, classifying and clustering operations can be
carried out with tools that scale for big data. This sensor data is collected on a

Table 2 Detailed list of process diagnostics chosen by three different entropy measure for
predicting/explaining the three considered fault types

Fault/Entropy H HLT HSK

Air leakage DZ min
Valve reversals
Setpoint travel

DZ min
Valve reversals
Setpoint travel
DZ max

DZ min
Setpoint travel
DZ max
Setpoint ratio
PWM ratio

Faulty H-clip Valve travel
Setpoint travel

Valve travel Valve travel

Friction Stiction
Setpoint travel
Valve ratio
DZ min

Stiction
Setpoint travel
Valve travel
Valve ratio
PWM ratio

Stiction
Setpoint travel
Valve travel
Valve ratio
DZ min
Travel ratio
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regular basis for every valve and the spreadsheet file contains more than 500
features. Previously, process engineers used this data file by manually highlighting
suspicious cases without the support of any real advanced analytics tools. We use
fuzzy entropy for feature selection in the early stages when we are in the process of
learning about what failures occur in what part of the process and how frequently.
Later, when we have collected a more solid set of observations we can decide on
feature parameters and identify key variables and combine this with some heuristics
to reduce “big data” to some meaningful data sets. The fuzzy entropy measures are
shown in Fig. 3 and demonstrate the type of insight we can get from processing the
large data sets; we can identify the features of failure events and build on that when
predicting future failures. As it is illustrated on this visual representation, we can
identify features (horizontal axis) with improvements in the fuzzy entropy (vertical
axis).

Fig. 2 Data collected on components and pumps

Fig. 3 Entropy measures approximate entropy
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As a result of choosing the optimal number of fuzzy subsets for every feature, we
will also obtain the overall entropy of the features with respect to the outcome
variable. The feature with the optimal entropy value will be selected as the best
describing variable of the model and used in the consequent steps. In the algorithm,
in every step one new feature is added to the set of selected features: the choice is
determined by calculating the joint fuzzy entropy of a subset of features with respect
to the outcome variable.

The feature selection set is used to identify similar incident cases that can be
used in case-based reasoning implementations to significantly speed up the
problem-solving processes. Additionally to this, we can find out how likely the
incidents are to occur at various instances within a certain time frame ðT; T þ tÞ.

We can use Bayesian models for the prediction of future failure events; proba-
bilistic Bayesian modelling when we get robust and large time series; possibilistic
Bayesian modelling for imprecise data and for short and incomplete time series (cf.
[5]). We have found that when (for proper risk assessment and management)
knowledge related to risky events is needed, this knowledge can be derived by
combining probabilistic Bayesian models and feature selection with fuzzy entropy.

The online decision support that is needed for the monitoring and control per-
sonnel is first producing predictions on possible failures with the information of
what, where and when. This is then combined with a “quick fix” support function
that shows how similar problems have been dealt with previously by selecting
similar cases from a knowledge base (cf. [5]).

6 Conclusions

In this chapter, we proposed a systematic approach for applying predictive analytics
for predictive maintenance decision support. In a process industry case we were
able to identify three decisive conditions: (i) we can assume that sensor systems will
produce “big data” that we have to process in order to work out meaningful
strategies for predictive maintenance; (ii) data can be imprecise, have errors, have
missing elements, have outliers, etc.; (iii) processing cannot take much time, it
should be in almost real time and there will be a trade-off between precision and
relevance. A decision rule could be to find sufficiently good precision in such a time
that costly problems can be avoided.

There are further lessons to be learned from the material as it is common
experience in the process industry that if predictive maintenance can be carried out
just-in-time before a failure the maintenance cost is minimized. This is part of
building an optimal maintenance policy for the components, for modules built
around the components, for devices (pumps in our case) and eventually for the
process. Thus the fuzzy entropy, which is part of the process, can have further
importance as a key part of maintenance decisions.

A different extension of the proposed approach would be to work out mainte-
nance as a customer service with its own business models or as a supported
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program carried out by process or equipment owners. The business models build on
finding a good balance between three central factors: the cost of risk, the cost of
maintenance policy and the revenue of an optimal maintenance policy.
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Fuzzy Sets in Agriculture

Elpiniki I. Papageorgiou, Konstantinos Kokkinos
and Zoumpoulia Dikopoulou

Abstract Agricultural modeling and management are complex conceptual pro-
cesses, where a large number of variables are taken into consideration and interact
for system analysis and decision making. Most of the processes in the agricultural
sector include the uncertainty, ambiguity, incomplete information and human
intuition characteristics. These processes are not only constrained by their envi-
ronment (e.g., market, climate, seasons, consumer choices), but they are also highly
influenced by human factors (stakeholders’ perceptions). Fuzzy sets are able to
manage and represent uncertainty, assure that the incomplete information is valued
and provide solutions to issues which are crucial in agriculture like fertilization,
land degradation, soil erosion and climate variability during planting material
selection in physiological analysis. Fuzzy sets have gained constantly increasing
research interest in the last twenty years and have found great applicability in the
agricultural domain, helping farmers to take right decisions for their cultivated.
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1 Introduction

Nowadays, at almost every continent, agriculture is facing new major challenges.
Over the next 50 years, global population is expected to be increased to more than
nine billion people, which indicates that the total food production should be
increased by 70 % to face and prevent massive famine. The arable land will “cover”
only 10 % of this growth, which still remains a limited resource, while the
remaining 90 % should be resulted from the intensification of current production
[1]. The modern agriculture is developing ways to increase the productivity and
efficiency on all kinds of agricultural production. These novel agricultural methods
have developed into a highly competitive and globalized industry to address factors
such as: climate changes, resource depletion, climate intensification (floods and
droughts) and dramatic political shifts, in order to ensure healthy economy and
sustainable production [2].

Based on the literature, new solutions for all aspects of agricultural production
required to resolve problems involving the complexity, uncertainty, ambiguity and
probabilistic in nature. There is a need for some issues to be improved, such as:
better and predictable planning of crops, precision in agriculture, optimized
application of resources, support the effective and collaborative processes by using
modern technology, autonomous solutions (completely or partially) for tedious
work, viable long-term growth of useful knowledge [3]. Fuzzy sets (FS), as an
intelligent methodology to handle ambiguity and fuzziness have already applied in
the agricultural domain too. They have been mainly used to cope with a variety of
complex processes in agriculture, for modeling, management and decision support.
Fuzzy modeling has substituted the analytical approach that has proved inefficient
to develop optimal solutions in a number of agricultural systems [4, 5]. Even
though the application of FS in agriculture has a relatively short life, intensive
research projects based on FS and their extensions which are integrated with
humanity, are ongoing reaching a new phase of evolution.

On the whole, fuzzy information is included in human thinking and reasoning,
which flows from inexact human concepts. FS theory can deal with the vagueness
of qualitative values by the capturing and the reflection of the human knowledge
[6]. With the formation of the theory of fuzzy sets, Lotfi Zadeh introduced the fuzzy
logic (FL) term which copes with the approximate reasoning. FL is an approach to
reasoning that declares that, the variables may have a truth value that ranges in
degree between 0 and 1, instead of having a precise and definite value [6]. The
simulation of human reasoning processes is accomplished in a specific way, using
fuzzy rules, which are performing computations between linguistic variables,
instead of the classical numeric variables [7]. The application of fuzzy if-then rules
also improves the interpretability of the results and provides more insight into the
decision making process [8].

Based on the FS theory and FL, fuzzy inference systems (FIS), can provide
insights into management behavior complex agricultural systems. Imperfect infor-
mation, uncertainty and other issues create conditions where expert knowledge is
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needed and which fuzzy sets and systems can imitate. FS and the inference methods
have found large applicability in agriculture in the recent years [9].

The popularity of FS stems from the fact that they offer a series of advantages
including flexibility and adaptation to practically any problem domain, capabilities
to handle efficiently complex issues in environments full of uncertainty and
ambiguity, ability to execute with incomplete information, relatively simple and
comprehensible modeling philosophy which is very close to human reasoning.

More often, the ambiguity in decision making activities in the agricultural
domain, is compounded by imprecision and intuition. The capabilities of FS on
handling complexity in agricultural processes that include uncertainty and ambi-
guity, can help farmers to take the right decisions for cultivation activities such as:
sowing, fertilizer management, irrigation management, integrated pest manage-
ment, storage etc. to claim higher crop productions [5].

In this line of research, the present chapter aims at contributing to a refinement of
review studies by applying FS, FL and fuzzy cognitive mapping (FCM) to the
exploration of agriculture modeling and management. In the next section we pro-
vide a literature review on the latest related research which is divided into three
subsections namely: (a) FL models, (b) FIS and (c) FCM’s. We only concentrate to
research published since 2011 as the aforementioned methodologies became pop-
ular. In Sect. 3 we describe rigorously the basic mathematical framework that
surrounds the three techniques. Then, two representative case studies on agriculture
are presented. The motivation of these studies emanates from within a wider
research endeavour on the applications of FS and FIS in agriculture. Furthermore,
FCM’s have been explored in this domain to provide better understanding on the
relationships between agricultural factors involving complexity and uncertainty,
and achieve prediction and classification capabilities in crop and yield grading in
some agricultural cases. We finally conclude on the value of concepts and methods
and the applications of FS, FIS and FCM in the field of agricultural engineering.
The future of the development and applications of these methodologies in agri-
cultural engineering is discussed, especially in the soil and crop quality context for
crop management and in decision support in precision agriculture.

2 Literature Review

Modern agriculture faces great challenges due to the fact of the constantly increased
production demand and the competition introduced by its transformation into a
globalized industry. In order for the farmers to meet the production increase or at
least the production sustainability criterion, fuzzy systems unite the accumulated
expertise of individual disciplines such as FL, FIS and FCM to provide innovative
yet near optimal methodologies in various aspects related to agriculture. The vast
majority of this research deals with: (a) the study of soil and water regimes related
to crop growth, (b) the crop simulation models and human decision simulation
models, (c) the irrigation, the water conservation and the drought tolerant models
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and (d) the prediction and the handling of environmental and climate parameters
related to precision agriculture.

The interest for FS in agriculture is manifested by an increasingly active liter-
ature, as reported in Fig. 1. Making a literature review in scopus with keywords
“fuzzy sets” or “fuzzy logic” or “fuzzy inference system” and “agriculture”, a
number of peer reviewed articles were presented.

We categorize the state of the art section into three subsections relatively to the
major FS disciplines and for each one of these, we provide sub-categories of related
works to the aforementioned agricultural studies.

2.1 Fuzzy Logic Models

2.1.1 Crop Simulation Models

Creating Fuzzy Logic Models

Bosma et al. [10] describe a methodology for the development of fuzzy logic
models (FLMs), simulating strategic decision making in which human drivers and
motives are the key variables. They further propose a 10 steps modeling approach
that includes determination of the membership functions and the fuzzy rules. This
methodology is applied on farmers’ choices for components in a hybrid/mixed
agriculture–aquaculture farming system. Their system was tested and evaluated in
the floodplain and in the hills of the Mekong Delta, Vietnam (VMD). The FS has
hierarchical structure composed of five subsets: (a) the primary production factors,
(b) the product opportunities, (c) the product options, (d) the farmers’ reference
frames and (e) the final output layer. This transparent structure allows stakeholders’
participation to strengthen the ability of the modeler to empathize with the experts’
reasoning. Towards the same goal, research in [11, 12] developed a method for
assessing the overall performance of biogas plants focusing on four assessment
aspects: (a) biogas production, (b) biogas utilization, (c) environmental impact and
(d) socioeconomic efficiency. The method involves the use of imprecise and
uncertain data via FS theory and fuzzy mathematics pre-assessing biogas plant
development in their planning phase and proving that biogas utilization is the aspect
with the largest potential for performance improvement, by increasing the external
heat utilization.
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Using FLMs and Image Processing Techniques

An important parameter for planning and management of irrigation is the infor-
mation on the land usage under command. Murmu and Biswas [13] claim that
image classification of satellite data is an excellent technique in creating area crop
thematic maps and thus estimating crop water requirements for irrigation planning.
They used various fuzzy classifiers and found that FL takes advantage of simple
rules resulting in equal or even less time consuming results than the other con-
ventional methods. They also showed that the fuzzy c-means classifier proved to be
a promising tool to build models for multivariate studies by identifying proper
parameters and making use of the interpretation of satellite data. The same tech-
nique is also used in [14] where the FIS coupled with an image processing tech-
nique in order to develop a decision-support system for qualitative grading of
milled rice. The quality indices used were namely, the degree of milling (DOM) and
the percentage of broken kernels (PBK) and they were broken into five classes. The
classifier was fed with images and the two quality indices and produced one output
variable (Quality), all in the form of triangle membership functions. A similar
application of fuzzy classification of remotely sensed data in agriculture is shown in
[15] but on a different aspect. In this work, a subtractive based FIS is implemented
to estimate potato crop parameters like biomass, leaf area index, plant height and
soil moisture. Input to the fuzzy network included the scattering coefficients for
HH- and VV-polarizations using microwave remote sensing. The measurements of
the above parameters were sampled in various growth stages and were used as the
target variables during the training and validation of the network. As for the sub-
tractive clustering and more specifically for the cluster centers, all the data points
were considered as candidates resulting on values of crop/soil parameters to be
much closer to the experimental values.

2.1.2 Estimation and Evaluation of Croplands
in Conjunction to Climate

Emergy is a type of available energy that is consumed in direct and indirect
transformations needed to make a product or a service. Note that agricultural lands
are dynamic systems combining ecology and social economics. For that reason,
assessment of the health of ecosystems is achieved via emergy analysis based on
principles of systems ecology and energy. Li and Yan [16] presented an integrated
evaluation model based on emergy analysis and FL to evaluate the health of
agricultural lands in certain regions of North China. They mapped the emergy index
to a fuzzy index in order to create a composite index for the evaluation analysis.
A similar tool for the mapping and quantification of crops was used in [17] to verify
the accuracies of indicator kriging and fuzzy classification as supervised classifiers
in identifying sugarcane and citrus crops in Brazil. The classification results were
evaluated using the kappa index indicating that the fuzzy classifier performed the
best. Also from the point of view of the soil structure, it has been shown by

Fuzzy Sets in Agriculture 215



Abbaspour-Gilandeh and Sedghi [18] that correct tillage operations lead to pre-
vention from soil degradation and help maintain and improve the physical,
chemical, and biological characteristics. The soil fragmentation during tillage
operation for seedbed preparation was described by a fuzzy model. The model
inputs included soil moisture content, tractor forward speed and soil sampling depth
and consisted of 50 rules. The evaluation of the model was done using the root
mean square error, the relative error, and the coefficient of determination and
proved to be of high accuracy. As for the evaluation of the available water resources
and more specifically for the most influential reference evapotranspiration param-
eters for a land under study, an adaptive neuro-fuzzy inference system (ANFIS) was
used in [19]. The inputs to the model were weather datasets for seven meteoro-
logical parameters and the results obtained indicated that, among the input vari-
ables, sunshine hours, actual vapor pressure and minimum air temperature, are the
most influential parameters for evapotranspiration estimation.

2.2 Fuzzy Inference Systems

2.2.1 Crop Simulation Models

The authors in [20] created a FIS aiming in maximizing the soya-bean production in
India. The system enabled farmers and researchers to benefit from an intelligent
knowledge base created to capture the variety of field conditions. The development
approach used was modular with most important steps to be: (a) the detection of
nutrient levels in soil, (b) the farm size calculation, (c) the sowing period and (d) the
sowing method and rain fall. A similar method was used in [21] for a GIS based
land suitability assessment for tobacco production using an Analytic Hierarchy
Process, (AHP) and FS in Shandong province of China. The assessment used 20
factors as suitability parameters with climatic condition, soil type and nutrient
characters, and topography data to be the most important. This technique succeeded
to integrate the FS model, the AHP method, and the GIS thematic maps to create an
overall land suitability map. The results showed that 29.82 % of the total area was
highly suitable for tobacco production and 17.74 % was unsuitable. Additionally,
the use of a FIS becomes valuable when specific cases under studying suffer from
input data imperfection and incompleteness. Coulon-Leroy et al., in [22] show that,
imperfect knowledge to model complex ergonomic features can be used to develop
a FIS under the condition that all relationships of data are identified. Their aim was
the vine-vigor evaluation and how this process links to the shoot growth and leaf
areas observed on vine plots in order to assess the interactions between environ-
mental factors, agricultural practices and vine growth.
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2.2.2 Irrigation and Drought Evaluation

Since agriculture is the major water consumer, water conservation has become an
increasingly important issue in countries that face changes both in climate and in
the agricultural practices. Most of the solutions to overcome this issue include
statistical DSS’s for water preservation which primarily use complex mathematical
formulations that require large data sets to perform analysis. The introduction of a
fuzzy model into these systems overcomes the above limitations. Such a model was
introduced by [23] for the estimation of reductions in the pollutant loads based on
selected strategies (e.g., storms, water management ponds, vegetated filter strips).
This model employs an export coefficient approach and accounts for the number of
animals to estimate the pollutant loads generated by different land usages (e.g.,
agriculture, forests, highways, livestock, and pasture land). Also, water quality
index is used for the assessment of water quality once these pollutant loads are
discharged into the receiving waters. Several other such systems have been pub-
lished also.

Most of the FS in this category are parts of a bigger DSS aiming in managing
water resources and providing near optimal irrigation schedules [24]. Most recently
Giusti and Marsili-Libelli [25] developed a fuzzy DSS for irrigation and water
conservation in agriculture which is based on the IRRINET model [26], and it is
composed by: (a) a predictive soil moisture model, calibrated with data produced by
the IRRINET model using inputs from its agro-meteorological database, (b) the
irrigation inference system, consisting of a FIS to decide the timing and amount of
irrigation on the basis of the crop phenophase, previous irrigations, and the pre-
scribed soil moisture thresholds and (c) the irrigation performance index, consisting
of the sum of the past irrigations. Similar to this work is the research by Binte
Zinnat and Abdullah [27] with the design of an automated FS for monitoring and
controlling the shading and the irrigation process. This system incorporates an
integrated web system developed by Trono et al. [28] with their FS and provides
information about different rain rates of different rain events. These rainfall data are
considered as input to the FS and using a knowledge base it generates decisions to
maintain the shading and irrigation process in the crop field for different rain events.

All such described above systems can help governments to identify future water
supply problems in order to plan mitigation measures. Water reuse has a potential as
a suggested solution but the major challenge is to identify the variables that
determine the reclamation level. A FIS proposed by Almeida et al. [29] provides a
conceptual approach based on multi-criteria decision making. This approach relates
the water reuse to environmental factors such as drought, water exploitation index,
water use, population density and the wastewater treatment rate resulting warnings
about future water supply.
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2.2.3 Land Evaluation

Most of these systems concentrate on the concepts of precision agriculture and
suitability of lands for specific productions. Such FIS’s usually integrate genetic
algorithms to introduce machine learning into fuzzy evaluation for the suitability of
agricultural lands relatively to the specifics of the agricultural products under study,
and construct the so-called GA-optimized fuzzy inference models [30].
Additionally, these models can adjust the original criteria for land evaluation by
genetic learning and reduce the subjective uncertainty in an ordinary FIS. Related
works include a research by Mawale and Chavan [31] that invented a FIS to predict
soil productivity and soil fertility using expert knowledge under the sustainability
hypothesis and the research by Papadopoulos et al. [32] that provides a FIS for
solving the nitrogen equation under agricultural conditions and is based on
knowledge elicitation and FL methodologies. For the first work, the authors
developed a FLM using a “mamdani”-FIS. The inference rules were framed using
expert knowledge in the form of IF…THEN structures for the prediction of soil
productivity. For the later work, the authors provided a system composed of two
parts; a knowledge base and an analytical modular part which simulates nitrogen
balance. This analytical part is built in a four level structure consisting of eleven
FS’s with the goal to evaluate characteristics such as soil, weather and farming
practices.

2.3 Fuzzy Cognitive Maps

FCMs form a field of intelligent modeling and computing that has gained constantly
increasing research interest in the last ten years. FCMs constitute graphical models
in the form of directed graphs consisting of two basic elements: Nodes, which
correspond to Cognitive Concepts bearing different states of activation depending
on the knowledge they represent; Arrows denoting the causal effects that source
nodes exercise on the receiving concept expressed through weights [33, 34]. It can
be considered as an integration of multifold subjects, including neural network,
graph theory and fuzzy logic. Because of its excellent representation and inference
ability, FCM has spread widely to a variety of fields, including ecosystem mod-
eling, business management, medical diagnosis, strategic planning etc. [35].

In the agricultural context, FCM techniques have been used mainly in man-
agement and decision support. They have been recently applied in precision agri-
culture for providing methods and tools for decision support like predicting yield in
apples [36] and cotton [37, 38]. They have been successfully employed to model
the relationships among the factors influencing the agricultural yield and analyze
their cause effect relationships.

The first work on FCM exploitation in agriculture was accomplished by
Papageorgiou et al. [37], proposing a modeling tool able to help the farmers to take
informed decisions in precision agriculture. The same team of researchers [38], one
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year later, developed an FCM model for decision support in precision agriculture
for cotton yield prediction. The proposed FCM model consists of nodes repre-
senting the main factors in cotton crop production such as soil texture, organic
matter, electrical conductivity, pH level of the soil etc., as well as the level of cotton
yield as the concept to be decided. Afterwards, Papageorgiou et al. [36] proposed a
new FCM model trained using Non Linear Hebbian Learning (NHL) algorithm to
predict apple fruit yield level of Central Greece apple farms. In a recent study [39],
FCM were used to analyze the impact of the climatic variations and the soil
parameters on coconut production and categorize the coconut production level for a
given set of agro climatic conditions.

Halbrendt et al. [40] elaborated the differences in farmer and expert beliefs and
the perceived impacts of conservation agriculture. An agricultural project in Nepal
was used as a case study to show the possible relationships between trends in expert
and rural farmer reasoning and predictions regarding the outcomes associated with
development technology based on these beliefs. The outcome of the results was that
conservation agriculture techniques should not be applied universally, development
practitioners should engage in a two-way learning with local communities to benefit
from locally situated knowledge.

Christen et al. [41] examined the potential of FCM as a tool to overcome the
several barriers considered to the uptake of the prescribed environmentally bene-
ficial farm management practices. The FCM methodology was investigated through
the application in a Scottish case study on how environmental regulation affects
farmers and farming practice and what factors are important for compliance or
non-compliance with this regulation. The study compares the views of two different
stakeholder groups on this matter using FCM network visualizations that were
validated by interviews and a workshop session.

3 Methods

This section describes the basic mathematical framework of FS theory, the method
of FL, the FIS as well its extension, the FCMs.

3.1 Fuzzy Sets

The traditional tools which are using to model, clarify, and compute are usually
crisp, deterministic, and definite. A crisp set is divided only in two groups (referred
also as dual logic), that is, yes-or-no type instead of more-or-less type and the
corresponding statement can be true or false and nothing in between [42]. A FS
deals with the concept of partial truth which is involved in human language, in
human judgment, evaluation, and decisions [6, 7]. FS’s are defined as an important
tool for the representation of conceptual models that meet the needs of the expert
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and designer. Lotfi A. Zadeh, was the “father” of the theory of FS [6], proposing
them as an extension of crisp set theory. The concept of FS theory is a membership
function l~A xð Þ, which represents the relationship of an element in a FS eA. In other
words, element �x is mapping to a “membership degree” which expressed in a
continuous scale from one (full membership) to zero (full non-membership),
l~A xð Þ 2 0; 1½ � and X is a collection of objects which generally denoted by x in
Eq. (1).

eA ¼ x; l~A xð Þ� �jx 2 X
� � ð1Þ

When the universe of discourse, X, is discrete and finite or continuous and
infinite, for the sake of convenience, a fuzzy set A is denoted in Eqs. (2) and (3),
respectively.

eA ¼ l~A x1ð Þ=x1 þ l~A x2ð Þ=x2 þ � � � þ l~A xnð Þ=xn
� � ¼

X
i

l~A xið Þ=xi ð2Þ

~A ¼
Z

l~A xð Þ=x
� �

ð3Þ

In above equations, the division slash, “/”, is not equivalent to the operator of
division but “acts” as a delimiter between the numerator and the denominator. Each
term of the numerator is the membership value in set eA, which is associated with
the element of the universe of the denominator. Furthermore, in Eq. (1), the plus
sign, “+” and the summation symbol “∑”, are not corresponding to the algebraic
“sum” but as an aggregation operator. In Eq. (2), the integral symbol, “∫”, is
corresponding to continuous function-theoretic aggregation operator for continuous
variables and not to an algebraic integral [43].

Moreover, the membership values of a crisp set are a subset of the interval [0, 1],
can be considered as a special case of FS’s. Therefore, the properties of crisp sets
such as: commutativity, associativity, distributivity, idempotency, identity, transi-
tivity and involution, are the same to those for FS’s [43].

3.2 Fuzzy Logic

FL is multi-valued and handles the concept of partial truth. The statements of FL,
can be represented with degrees of truthfulness and falseness. For example, the
statement, “today is a rainy day”, might be 100 % true if it rains all day, 80 % true if
there are many dark clouds, 50 % true if it’s hazy and 0 % true if there are no
clouds. Furthermore, FL allows decision making with estimated values under vague
or insufficient information. According to Zadeh [7], there is a correlation between
complexity and unreliability: “The closer one looks at a real world problem, the
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fuzzier becomes its solution”. FL uses three main operators, which equivalent to the
in Boolean algebra operators: (a) union or OR, (b) intersection or AND, and
(c) negation or NOT. The min and max operators are special cases of t-norms and
t-conorms respectively [44]. Let A and B be fuzzy sets with A, B 2 X and x be an
element in the X universe of discourse.

AND ! A\B ¼ lA\B xð Þ ¼ min lA xð Þ;lB xð Þf g
OR ! A[B ¼ lA[B xð Þ ¼ max lA xð Þ; lB xð Þf g

NOT ! A ¼ lA xð Þ ¼ 1� lA

The membership function of the intersection of two FS’s A and B with mem-
bership functions lA xð Þ and lB xð Þ respectively is defined as the minimum of the
two individual membership functions. This is called the minimum criterion. The
membership function of the Union of two FS’s A and B with membership functions
lA xð Þ and lB xð Þ respectively is defined as the maximum of the two individual
membership functions. This is called the maximum criterion. The membership
function of the complement of a FS A with membership function lA xð Þ is defined as
the negation of the specified membership function. This is called the negation
criterion [6].

The relationships among FS’s are represented with fuzzy rules. Since the
mapping between a number and its classification is crisp and distinct, then the fuzzy
rule set is a representation of a relationship between the real values that can be
classified by the FS in their antecedents and consequents [45]. The most common
and widely used interpretation considers a fuzzy rule in the form “IF x is A THEN y
is B”, where A and B are all sets of X and Y. The general form of fuzzy rule is: IF
(input1 is membership function1) and/or (input2 is membership function2) and/or …
then (outputn is output membership functionn).

3.3 Fuzzy Inference Systems

FIS are one of the most popular applications of FL and FS theory. FIS have been
successfully applied in domains, such as automatic control, data classification,
decision analysis, expert systems, and computer vision. Owing to its interdisci-
plinary nature, FIS are associated with other fuzzy domains, such as
fuzzy-rule-based systems, fuzzy expert systems, fuzzy modeling, fuzzy associative
memory, fuzzy logic controllers, and simply (and ambiguously) FS’s [46]. FIS are
particularly useful for modelling the relationship between variables in complex
environments where human knowledge is available and where there is insufficient
information to supply traditional mathematical models [8].

A FIS implements a nonlinear mapping from a particular input with a particular
output utilizing FL. The process of FIS consists of three main components:
fuzzification, knowledge base and defuzzification shown in Fig. 2, using mem-
bership functions, FL operators, and if-then rules. In the case of crisp inputs, the
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following processes are performed: The fuzzification process is necessary to con-
vert the “crisp” inputs into fuzzy inputs by membership functions and to determine
the FS’s of output variables. Thereafter, the fuzzy inference process is performed
using a reasoning mechanism. The participating knowledge base consists of the rule
base and the database. The database defines the membership functions of the FS’s
used in the fuzzy rules. In this step, the degree is determined to which each part of
the antecedent has been satisfied for each rule. Therefore, in order to capture all of
these combinations, numerous rules are composed and evaluated in parallel, using
fuzzy reasoning “Ιf-Τhen rules” [45, 47].

The rules should be combined in a way to make a decision. This is achieved by
the process of aggregation, whereby the FS’s that represent the outputs of each rule
obtained and combined into a single FS. The aggregation is performed before the
process of defuzzification in each output variable. The last process is the defuzzi-
fication which defuzzifies the aggregated FS of output values into a single output
(crisp) value for decision making. There exist plenty of defuzzification methods.
The most well-known defuzzification method is the CENTROID (center of area or
center of gravity).

3.4 Fuzzy Cognitive Maps

FCM’s consists of nodes, called “concepts” and weighted interconnections among
them, called “weights”. Concepts denote entities, states, variables, or characteristics
of the system under investigation [34]. Using mathematical terms, a FCM can be
defined using a 4-tuple ðC;W;A; fÞ where C ¼ C1;C2; . . .;CMf g is a set of M
graph nodes (the nodes are also called “concepts” in FCM terminology),
W:ðCi;CjÞ ! wij is a function which associates a causal value wij 2 �1; 1½ � to each
pair of nodes ðCi;CjÞ. It denotes the weight of the directed edge from Ci to Cj. Each
connection in the FCM is determined by the experts using the fuzzy linguistics
variables. The linguistics variables suggested by the experts of each interconnection
are aggregated using the sum method and an overall linguistic weight is produced
and then defuzzified using CoG (center of gravity) method [33]. Finally the numeric

Fig. 2 The process of fuzzy inference system
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influence factor wij from concept ‘i’ to concept ‘j’ is obtained. The matrix WM�M

gathers the system causality which could be estimated by experts or automatically
computed from historical data [35, 36].

Equally, A:ðCiÞ ! Ai associates an activation value Ai 2 R to each node Ci at
each time t ðt ¼ 1; 2; . . .;TÞ. The activation values of concepts are updated fol-
lowing the rule given in Eq. (4).

Atþ 1
i ¼ f

XM
j¼1

wjiAt
j ð4Þ

The transformation or threshold function f : R ! ½0; 1� is used to keep the
activation value of concepts in the allowed range. The selection of the transfer
function is crucial for the system behavior, and frequently depends on the problem
requirements. The calculated activation vector through the propagation rule is
iteratively repeated until a hidden pattern is observed (which is an ideal outcome),
or a maximal number of cycles T is reached [36] which means that the map was
unable to converge towards a fixed-point attractor. The transformation allows for
qualitative comparisons between concepts. The most commonly used threshold
functions are: the bivalent function, the trivalent function, and also the sigmoid
variants [36].

An important characteristic of FCM is its learning capabilities. Learning in FCM
involves updating the strengths of causal links between the concept nodes.
A learning strategy is to improve the FCMs by fine-tuning its initial causal links or
edge strengths by applying training algorithms similar to that of artificial neural
networks [48].

4 Two Representative Case Studies in Agriculture

4.1 Case Study on Fuzzy Sets Application in Viticulture

Recently a FS model was proposed to model grape quality based on expert
knowledge, with respect to precision viticulture principles. A set of linguistic rules
were built to explain the relationship between grape total quality and individual
grape variables. Finally a FIS was developed and validated to classify grape quality
based on selected grape attributes in a commercial vineyard in Greece. The pro-
posed FS model consists of four grape attributes as input variables to model grape
quality: total soluble solids (TSS), titratable acidity (TA), total anthocyanins (Anth)
and berry fresh weight (BW), and one output variable representing the Grape Total
Quality (GTQ) [45].

To define the fuzzy sets of each one of the input parameters/grape attributes, the
related literature and the knowledge from vineyard experts used in our study [47]
was embraced. At first it was needed to define the threshold(s) for the four input
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parameters for Agiorgitiko variety belonging to red table wines and next based on
the threshold(s) to determine the grape attributes classes.

Based on the literature for red wines, low sugar (i.e. TSS) is undesirable but
extremely high values lead to excessive alcohol in the wine which can be detri-
mental for wine balance and consumer health [49]. At harvest, the sugar and acid
concentration should be around 150–250 g/L, i.e. approximately 17–25 brix [50],
and 6.5–8.5 g/L respectively [51]. In the case of Agiorgitiko which is a late
maturing variety, a moderate TSS concentration at harvest of 21 brix was consid-
ered for the production of red table wines. This threshold leads to the definition of
two classes of low (<21 brix) and high (>21 brix) sugar content in the must [52].
The two classes for TSS were chosen because sugar content of the must usually
presents the lowest variation among various maturity indices in grapes [53].
For TA, three classes were chosen based on must acidity data reported for this
variety [54]. These classes are low (<5 g/L), medium (5–7 g/L) and high (>7 g/L)
respectively with values superior to 7 g/L generally considered as favourable for
wine ageing.

The role of skin anthocyanins in grape and wine quality is determinant as shown
in [55, 56]. For Agiorgitiko grapes, moderate levels of skin anthocyanins are pre-
sent [54]. Due to the highest, among berry components, range of within-vineyard
variation [55], four quality classes were chosen for this input parameter: low
(<600 mg/L), medium (600–800 mg/L), high (800–1000 mg/L) and very high
(>1000 mg/L). Grape berry weight also shows high diversity among Vitis vinifera
cultivars, ranging for the most part of wine grapes between 1.5 and 3.5 g at harvest.
For Agiorgitiko grapes, berries’ average size is situated between 1.6 and 2.0 g [54].
In this study, three classes were chosen as follows: low (<1.6 g), medium (1.6–
2.0 g) and high (>2.0 g).

The GTC as the output parameter of the system was corresponded to five FSs
determining the grape quality classes with levels: very poor (0–0.28), poor (0.18–
0.47), average (0.38–0.68), good (0.58–0.88) and excellent (0.78–1). Figure 3
shows the membership functions of the inputs and Fig. 4 shows the membership
functions of the GTQ.

To construct the fuzzy model, a set of rules based on vineyard expert knowledge
was provided. As a general guideline, best grape quality was associated with high
values of TSS, TA and Anth and low values of BW, this means that small berries
are associated with higher wine quality. An example of rule definition is: If TSS is
‘high’, TA is ‘high’, Anth is ‘very high’ and BW is ‘low’, then GTQ is ‘Excellent’.
Similarly other rules were developed, for example: If TSS is ‘high’, TA is ‘med-
ium’, Anth is ‘low’ and BW is ‘low’, then GTQ is ‘Average’ or if TSS is ‘low’, TA
is ‘low’, Anth is ‘low’ and BW is ‘high’, then GTQ is ‘Very poor’. Table 1 shows
an example of the fuzzy rules used to elaborate the FIS.

Following the fuzzification, inference and defuzzification process, a numerical
value is calculated as the result of the proposed FIS. This numerical value defining
the score of the grape quality grade (class) is interpreted through its membership
degrees to the five different fuzzy sets (very poor, poor, average, good and
excellent).
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The FIS was implemented using the Mamdani type fuzzy rule-base inference,
and the CENTROID method for defuzzification. The proposed FIS was validated
by 5 vineyard farmers and winemakers of the Greek wine industry with experience
in ‘Agiorgitiko’ variety. These experts also assigned five categories of grape total
quality (GTQ): very poor, poor, average, good, and excellent. The level of agree-
ment between the GTQ proposed by the FIS and expert knowledge was calculated
for three subsequent years. Furthermore, output fuzzy quality values were compared
to soil and yield parameters to verify their spatial relevancy.

Fig. 3 Corresponding membership functions of: a total soluble solids (two FS—Low and High),
b titratable acidity (three FS—Low, Medium and High), c total anthocyanins (Four FS—Low,
Medium, High and Very high) and d berry fresh weight (three FS—Low, Medium and High)

Fig. 4 Grape total quality membership functions corresponding to five FS (very poor, poor,
average, good and excellent) that represent the five different categories of grape total quality
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For the conducted experiments in a number of 48 cells (parts) of the field, the
overall agreement between FIS results and expert evaluation was 77.20 % for 2010,
81.83 % for 2011 and 82.35 % for 2012, which suggests that the FIS was able to
model expert knowledge successfully for this wine grape variety and wine style. In
general, the conducted evaluation process showed high agreement between GTQ
and expert evaluation suggesting that the FIS was able to model expert knowledge
successfully. Moreover, GTQ exhibited higher variability than the individual grape
quality attributes in all years. Concerning the four input grape components,
anthocyanins and berry weight seemed to be more important in determining GTQ
than total soluble solids and titratable acidity [45].

As it can be shown, FIS robustness depends on the number and the quality of the
fuzzy rules established. The adoption of FIS or other FL tools can provide an
alternative way to analyze and combine the available data for more accurate
decision making regarding the definition of optimum harvest time or the application
of differential management strategies such as selective harvesting.

Table 1 Example of fuzzy rules relating grape composition parameters to Grape Total Quality
(GTQ): total soluble solids (TSS, brix), titratable acidity (TA, g/L), total anthocyanin content
(Anth, mg/L) and berry fresh weight (BW, g) [45]

Fuzzy inputs Fuzzy
output

Fuzzy inputs Fuzzy
output

TSS TA Anth BW GTQ TSS TA Anth BW GTQ

H H VH L Excellent L H VH L Good

H H VH M Excellent L H VH M Good

H H VH H Good L H VH H Average

H H H L Excellent L H H L Good

H H H H Good L H H H Average

H H M L Excellent L H M L Good

H H M M Good L H M M Average

H H M H Average L H M H Poor

H H L L Good L H L L Average

H H L M Average L H L M Poor

H H L H Poor L H L H Very poor

H M M H Poor L M M H Very poor

H M L L Average L M L L Poor

H M L M Poor L M L M Very poor

H M L H V.Poor L M L H Very poor

H L L H V.Poor L L L H Very poor
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4.2 Case Study on FCM Application in Precision
Agriculture

Precision agriculture is a methodology to maximize the profit, rationalize agricul-
tural inputs and lower the environmental damage which is related to adjustment of
agricultural practices with the site requirements [57]. Often the uncertainty and
missing information leads to wrong conclusions. Thus, the application of FCMs has
found a great extent because they are able to assure that the incomplete information
is valued and to provide solutions to many management and optimization issues
[58].

The development and design of the appropriate FCM for the modeling of a
system in agriculture requires the contribution of human knowledge. Usually,
knowledgeable experts, who are familiar with the FCM formalism, are required to
develop FCM using an interactive procedure of presenting their knowledge on the
operation and behavior of the system [35]. Experts are usually able to store in their
mind the correlation among different characteristics, states, variables and events of
the system and in this way they encode the dynamics of the system using fuzzy
if-then rules.

We show a case study investigated in [39], where the FCM technique was used
for analyzing the impacts of the climatic variations and the soil parameters on
coconut production and categorize the coconut production level for a given set of
agro climatic conditions. In this case study, experts from the specific agriculture
domain were asked to determine the concepts that best describe the model of the
system, since they know which factors are the key principles and functions of the
system operation and behavior; therefore, they introduced the important concepts.

More explicitly, the experts constructed the FCM model for predicting coconut
production level following the step by step approach described in [36]. In step I,
they determined the concepts and the fuzzy membership functions. For this case
study modeling the productivity level of coconut for yield management, twenty
concepts were identified with the help of three agricultural domain experts repre-
senting various soil conditions as well as the seasonal and weather parameters.
These are: electric conductivity, organic matters, bulk density of the soil, temper-
ature, humidity, pest, age of plant, rainfall (RF), rainfall duration (RFD), soil
moisture (SM), pH, Ca, Mn, Fe, Zn, Mg, Copper level in the soil (Cu), potassium
(K), phosphorous (P), and nitrogen (N). The twentieth first concept is the Yield
(called Decision Concept (DC)) and represents the coconut yield category. The
fuzzy membership functions of each concept were defined by experts following
their experience and the related literature. Based on the literature and the experts’
knowledge, the FSs of the assigned concepts were defined (see Table 2). These FSs
are in accordance with the range of values provided from the respective literature.

In step II, the same experts described the strength of influence of each concept to
the other using fuzzy if-then rules among 20 factor concepts and yield from the term
set T{influence} = {very low, low, medium, high and very high} following the
FCM construction process as suggested in [35]. Each fuzzy rule infers a fuzzy
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weight, which in sequence is translated to a numerical one used in the FCM
reasoning process [35, 36]. The inference of the rule determines the strength of the
connection between the two related concepts.

In the case of fuzzy rules for the specific problem of yield description in coconut,
some examples, as derived from experts, are given:

IF a small change occurs in the value of concept “humidity”, THEN a small
change in the value of “yield” (decision concept) is caused.

This means that: the influence from concept “humidity” to “yield” is low.
IF a medium change occurs in the value of concept “OM”, THEN a high change

in the value of concept “yield” is caused.
This means that: the influence from concept “OM” to “yield” is high.
In step III, the inferred fuzzy linguistic weights (strengths of influences) were

combined using the SUM method described by Zadeh [6]. Then, using the
defuzzification method of centroid [6, 7], the linguistic weights with membership
functions were transformed into a numerical weight wji which lies in the range
[−1, 1].

The produced FCM model for modeling and predicting yield in apples including
the initial calculated values of weights is shown in Fig. 5.

Table 2 Fuzzy sets of each concept and their corresponding numerical ranges

Range Three fuzzy set Range Three fuzzy set Range Three fuzzy set Range Seven fuzzy set Range Six fuzzy set
<15 Low <1.0 Low 0–1.3 Low <18 Very very low <20 Very very low
15–35 Medium 1.0–2.0 Medium 1.3–1.9 Medium 18–22 Very low 20–35 Very low
>35 High >2.0 High >1.9 High 22–26 Low 35–50 Low

26–30 Medium 50–70 Medium
30–34 High 70–85 High
34–38 Very high 85–100 Very high
>38 Very very high

Range Six fuzzy set Range Six fuzzy set Range Five fuzzy set Range Five fuzzy set Range Five fuzzy set
<10 Very very low <10 Very low <500 Very low 0–2 Very low <40 Very low
10–20 Very low 10–20 Low 500–1000 Low 2–4 Low 40–50 Low
20–30 Low 20–35 Medium 1000–2000 Medium 4–8 Medium 50–70 Medium
30–50 Medium 35–50 High 2000–3000 High 8–10 High 70–85 High
50–70 High 50–70 Very high >3000 Very high 10–12 Very high 85–100 Very high
>70 Very high >70 Very very high

Range Five fuzzy set Range Four fuzzy set Range Three fuzzy set Range Three fuzzy set Range Four fuzzy set
<4 Very low <200 Very low <100 Low <10 Low <2 Low
4–6 Low 200–800 Low 100–300 Medium 10–20 Medium 2–6 Medium
6–8 Medium 800–1800 Medium >300 High >20 High 6–10 High
8–10 High >1800 High >10 Very high
>10 Very high

Range Five fuzzy set Range Four fuzzy set Range Five fuzzy set Range Five fuzzy set Range Five fuzzy set
<50 Very low <0.3 Very low <50 Very low               0–5           Very low <3 Very low
50–150 Low 0.3–0.6 Low 50–100 Low 5–15 Low 3–15 Low
150–300 Medium 0.6–1 Medium 100–250 Medium 15–25 Medium 15–30 Medium
300–500 High >1 High 250–400 High 25–40 High 30–45 High
>500 Very high >400 Very high >40 Very high >45 Very high

Pest (%) AoP (years) RF (mm) SM (%)RFD (months)

EC (mS/m) OM (ppm) BD (g/cm³) Temp (  C) Humidity (%)

Mg (ppm) Cu (ppm) K (ppm) P (ppm) N (ppm)

pH Ca (ppm) Mn (ppm) Fe (ppm) Zn (ppm)

°
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After the FCM construction, an efficient classification algorithm for FCMs, the
data driven NHL (DDNHL) [48] was used for training the proposed FCM model
based on the available historic data and then to classify the yield category of the
given cases [39]. Through this training, the initial weights of causal links assigned
by the group of experts were optimized based on the training data set so as to
produce more accurate classification results.

Fifty records were used for training and subsequently for classifying the coconut
production into three classes’ viz. high yield, medium yield and low yield. Forty
nine records of the coconut yield cases were considered to be used for training and
one remaining for testing, with a random selection of these cases for training and
testing at each algorithm performance. During each algorithm run, the classification
accuracy was calculated by the testing cases. The overall classification accuracy
was estimated by the mean value of the calculated classification accuracies pro-
duced after a large number of experiments.

The classification accuracy obtained was 96 % which was indeed very promising
comparing the model with other benchmark machine learning models, like decision
trees, neural networks. Furthermore the FCM model was used for scenario analysis
to study the effects of climate and weather variables on the coconut yield response.
This study was performed to answer several “what-if” scenarios with respect to the
variations in climatic conditions and how they affect the coconut yield.

Furthermore, yield prediction software was developed to provide the agronomists
and farmers with a front-end decision support tool for estimating the yield level of
coconut for the given set of weather and soil parameters. Modeling using the FCM
technique makes it easy to study the effect of the various factors influencing the
agricultural productivity in detail and answer several “what-if” questions more
precisely. The modification of FCM weighted connections through learning

Fig. 5 FCM model for coconut yield management
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algorithms is an efficient technique making the FCM a powerful and efficient tool to
assist farmers in decision making. The dependability of the FCM model is well
proven in literature as it gives better results than most of the other bench mark soft
computing approaches for classification and prediction applications [36].

5 Conclusions

To sum up, agricultural modeling and management is a challenge. It claims the use
of a suitable representation of the object of study, the appropriate characterization of
the decision factors, and the reliable definition of criteria. As fuzzy sets is a method
that embraces a model and an inference engine, their research is growing and
application is spreading to different fields. In this chapter, we presented a short
literature survey with recent papers of fuzzy sets applications in agriculture high-
lighting the way that the fuzzy sets have been applied in this complex domain, as
well as two representative case studies of fuzzy sets and an enhanced methodology
of them, fuzzy cognitive maps for crop management and decision support in pre-
cision agriculture. The main and extremely useful capabilities of fuzzy sets to
manage and represent uncertainty, assure the researchers about the suitability of
them in agricultural problems with inherent uncertainty and fuzziness. Further fuzzy
sets assure that the incomplete information is valued and provide solutions to issues
which are crucial in agriculture.
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Solving a Multiobjective Truck
and Trailer Routing Problem
with Fuzzy Constraints

Isis Torres, Alejandro Rosete, Carlos Cruz and José L. Verdegay

Abstract The Truck and Trailer Routing Problem uses trucks pulling trailers as a
distinctive feature of the Vehicle Routing Problem. Recently, this problem has been
treated considering the capacity constraints as fuzzy. This situation means that the
decision maker admits the violation of these constraints according to a value of
tolerance. This relaxation can generate a set of solutions with very low costs but its
non-fulfillment grade of the capacity constraints can be high and vice versa. This
fuzzy variant is generalized in this work from a multiobjective approach by
incorporating an objective to minimize the violation of constraints. We present and
discuss the computational experiments carried out to solve the multiobjective Truck
and Trailer Routing Problem with fuzzy constraint using benchmark instances with
sizes ranging from 50 to 199 customers.
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1 Introduction

The Truck and Trailer Routing Problem (TTRP) is an extension of the well-known
Vehicle Routing Problem (VRP). In the TTRP a heterogeneous fleet composed of
trucks and trailers is used to serve a set of customers geographically dispersed from
a central depot. Some customers with limited maneuvering space or accessible
through narrow roads must be served only by truck (TC), while others customers
can be served either by truck or by truck with trailer (VC). A solution of the TTRP
is generally composed of different types of routes (see Fig. 1). In particular, we can
distinguish three types of routes: Pure Vehicle Route (PVR) is the tour traveled by a
complete vehicle and contains only vehicle customer. Pure Truck Route (PTR) is
traveled by a truck alone and are visited both customer type and Complete Vehicle
Route (CVR) consisting of a main tour traveled by a complete vehicle, and at least
one sub-tour traveled by the truck alone. A sub-tour has to start and end at the same
parking area (root) belonging to the main tour. In each sub-tour the trailer is
uncoupled from the truck, and, when the sub-tour has been completed, the trailer is
coupled again to the pure truck. On a sub-tour, can be visited both types of cus-
tomers. A route is defined as a vehicle route (Rcv) if the assigned vehicle is a
complete vehicle; otherwise the route is referred to as a truck route (Rpt) since it is
serviced by a truck. Also, each route is limited by capacity of vehicle used. In
general, the goal of the TTRP is to find a set of least cost vehicle routes that start

Fig. 1 Types of routes in the TTRP (reprinted from Torres et al. [23])
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and end at the central depot such that each customer is serviced exactly once; the
total demand of any vehicle route does not exceed the total capacity of the allocated
vehicles used in that route; and the number of required trucks and trailers is not
greater than available vehicles in the fleet.

The term “Truck and Trailer Routing Problem” was coined in 2002 by Chao [4].
Nevertheless, problems with characteristics similar to the TTRP but using other
denominations were modeled in some previous works. For example, Semet and
Taillard [20] in 1993 presented an approach to solve a transportation problem using
a heterogeneous fleet (trucks and trailers) of one of the major chain stores in
Switzerland. Later, Semet in 1995 extended the VRP taking into account the partial
accessibility constraint introduced in their previous work [19]. In 1996 Gerdessen
[13] conducted a study on the vehicle routing problem with trailer and presented two
real world applications. Also, the TTRP has been extended in several ways. Other
problem is proposed by Lin et al. in [16] where the limited-fleet constraint is
dropped, this problem is known as the relaxed TTRP (RTTRP). Derigs et al. [9]
tackled the TTRP with Time Windows (TTRPTW) and also introduced the so-called
TTRP without load transfer. Other related problems are tackled in [11, 17, 26].

An exact algorithm that can optimally solve a large-size TTRP problem is
unlikely. The solution approaches published in the literature about this topic can be
divided into three groups: exact approaches [11], approximated approaches (in-
cluding heuristic and metaheuristics) [4, 9, 15, 18, 27], or a combination of these
approaches (the so-called matheuristics) [28]. An interesting review about models
and solutions for the TTRP appear in [22].

In most papers, the data of the problem are assumed exact; even when the
available information can present a high grade of vagueness or uncertainty.
Generally, these procedures simplify the problem forcing these vague values to be
exact, so obliging us to formulate and to solve a problem with a (precise) nature
different from the (vague) original one. This simplification of the problem causes
that the nature of the model is changed and can produce serious errors for obtaining
the solution [3].

An approach based on Fuzzy Lineal Programming (FLP) was studied by the
authors [21, 23] in recent years. These proposals model and solve the TTRP when
the constraints have a fuzzy nature, and obtain a fuzzy solution, i.e., a set of
solutions that has the same nature that the original problem. Although, these
solutions have low costs, its non-fulfillment grade of the constraints of the problem
can be high and vice versa. Even when the TTRP with fuzzy constraints is treated as
single-objective problem (where the objective is to minimize total distances the
routes); this fuzzy variant can be generalized from a multiobjective approach by
incorporating an objective to minimize the violation of constraints. In consequence,
this chapter presents a multiobjective approach for the TTRP when the constraints
of vehicle capacity are considered fuzzy.
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2 Truck and Trailer Routing Problem
with Fuzzy Constraints

A real-world context of the TTRP is very complex and the information is not
always available with sufficient precision and completeness as desired for adequate
planning and management. For example, it is usual that when we ask for the
customer demand, the expressions are “about 50 units” or “no more than 65 units”
etc. And the same can happen with the rest of the parameters that define the
problem such as the travel times (“around 2–2:30 h”), vehicle capacity (“no less
than 3000 kg”, “about 100 kg extra load”), etc. The application of the Soft
Computing techniques is a recognized way to describe mathematically all these
si-tuations. Thus, a TTRP under fuzzy environments was proposed in [23, 21], in
which a general parametric approach [25] we used for solving the problem.

This parametric approach is composed of two phases: the first one transforms the
fuzzy problem into several parametric problems in which a parameter α-cut (which
belongs to the interval [0, 1]) represents the decision maker’s satisfaction level.
Then, in the second phase each of these α-problems is solved by means of classical
optimization techniques. The obtained results, to the different α-values, generate a
set of solutions and then all of these particular α-solutions are integrated by the
Representation Theorem for fuzzy sets. In this way the solution to a fuzzy problem
has the same nature as the problem at hand, as stated by Delgado et al. [8].

An example of application of this approach is the case in which a decision maker
assumes that he can tolerate violations in the accomplishment of the constraints;
i.e., he permits the constraints to be satisfied “as well as possible”. Then, each
constraint is represented as follows:

aix� f bi i 2 M ¼ 1; . . .;mf g ð1Þ

The symbol ≤f indicates imprecision in the constraints, being measured these
imprecision by means of membership functions μi: ℝ → [0, 1], i = 1, …, m. Each
membership function will give the membership (satisfaction) degree with which
any x 2 ℝ accomplishes the corresponding fuzzy constraint on which it is defined.
This degree is equal to one when the constraint is perfectly accomplished (no
violation), and decreases to zero according to greater violations. Finally for not
admissible violations the accomplishment degree will equal zero in all the cases.
These membership functions can be formulated as follows:

liðxÞ ¼
1 if aix� bi

fi aixð Þ if bi � aix� bi þ si
0 if bi þ si � aix

8<
: ð2Þ

240 I. Torres et al.



These functions express that the decision maker is tolerating violations in each
constraint up to a value of bi + τi (τ is referred to as a violation tolerance level). The
fulfillment of the constraints can be verified using the following auxiliary model:

aix� bi þ si 1� að Þ ð3Þ

3 TTRP with Fuzzy Constraints as Multiobjective
Optimization Problem

This parametric approach described above requires that the decision maker establish
the values of a parameter α-cut. One of the limitations of the fuzzy variant of the
problem is the number of solutions to be obtained, which depends directly on the
total α-values. Also, regarding the quality of the solutions, the tendency is to obtain
solutions with low costs, but its non-fulfillment grade of the constraints of the
problem can be high and vice versa. This fuzzy variant can be generalized from a
multiobjective approach by incorporating an objective to minimize the violation of
constraints. In this manner it seeks a compromise between the cost of the solution
and the non-fulfillment grade of the capacity constraints. With this approach the
decision maker no longer provides the level of satisfaction (α) because this
parameter is part of the solution sought. The decision maker obtains a set of
solutions which cannot be improved in any dimension and correspond to the
non-dominated solutions composing the Pareto Front. In this section a
multi-objective model for TTRP with fuzzy constraints is presented.

The model discussed in this paper is an adaptation of the standard TTRP model
proposed in [4]. This model can be formally defined on an undirected graph
G = (V, A, C), where V = {v0, v1, …, vn} is a set of vertex representing the
customers, except the vertex v0 that be corresponds to central depot. Each vertex
vi 2 V\{0} is associated with a non-negative demand qi and a customer type ti
{0,1}, where ti = 1 indicates that customer i is served by a truck only (TC) while
ti = 0 means customer i can be serviced by a complete vehicle (VC). The access
constraints create a partition of V = Vc U Vt U 0 into two subsets, where Vc \
Vt = . Vc = {v1, v2, …, vp} is the subset of vertex representing the vehicle cus-
tomers and Vt = {vp+1, vp+2, …, vn} is the subset of vertex representing the truck
customers. A = {(vi, vj): vi, vj ϵ V, i ≠ j} is the set of possible travel edges between
customers. And, C = {cij} is a matrix of non-negative cost. Each edge (vi, vj) is
associated with a cost cij that represents the travel distance between vertex vi and
vertex vj. A heterogeneous fleet composed of mc trucks and mr trailers (mc ≥ mr)
serves a set of customers. All trucks and trailers have identical capacity Qc and Qr

respectively. In general there are mr complete vehicles (truck pulling a trailer) and
mc − mr are trucks without trailers. A complete vehicle has a capacity Q = Qc + Qr.
A route is composed of a partition of V: R1, R2, …, Rmc and a permutation of σk
specifying the order of the customers on route. Each route originating from and
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terminating at a central depot: Rk = {v0, v1, v2, …, vn+1}, where v0 = vn+1 denotes
the depot. In the TTRP, a set of routes consisting of mr pure and complete vehicle
routes and mc − mr pure truck routes can be constructed so that the total distance
traveled by the fleet over all three types of routes is minimized and all constraints
are satisfied.

The proposed formulation of the TTRP with fuzzy constraints uses the following
indices, parameters and variables:

• n—the number of customers.
• i, j—customer index which represent the localization of the customer.
• qi—the demand of the customer i.
• cij—the cost of arc (i, j).
• k—vehicle index that represents the vehicle.
• mc—the number of trucks.
• mr—the number of trailers.
• Qc—the capacity of a truck.
• Qc—the capacity of a trailer.
• xij

kl—a binary variable equal to 1 if and only if the vehicle k with (l=0) or
without trailer (l = 1) is used from i to j, and 0 otherwise.

Mathematically, the multiobjective TTRP with fuzzy constraints considered here
is defined in the following way:

min f1; f2; f3ð Þ

f1 ¼
Xm
k¼1

C Rkð Þ

f2 ¼ 1� accvr
f3 ¼ 1� accpr

ð4Þ

where αccvr and αccpr are degrees of relaxation of each capacity constraint. C(Rk)
denotes the cost in distance for the route performed with the vehicle k and may be
formulated by:

C Rkð Þ ¼
Xn
i¼0

Xn
j¼0

Xm
k¼1

X1
l¼0

cijx
kl
ij k ¼ ½1; . . .;mc� ð5Þ

The set of constraints for the TTRP with fuzzy constraints formulation is then
stated as follows:

Xn
i¼0

Xmc

k¼1

xk0ij ¼ 1 j ¼ ½1; . . .; n� ð6Þ
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Xn
i¼0

xk1ij � 1 j ¼ ½1; . . .; n�; k ¼ ½1; . . .;mc� ð7Þ

Xn
i¼0

Xmc

k¼1

xk0ji ¼ 1 j ¼ ½1; . . .; n� ð8Þ

Xn
i¼0

xk1ji � 1 j ¼ ½1; . . .; n�; k ¼ ½1; . . .;mc� ð9Þ

Xn
i¼1

X1
l¼0

xkl0i � 1 k ¼ ½1; . . .;mc� ð10Þ

Xn
i¼1

X1
l¼0

xkli0 � 1 k ¼ ½1; . . .;mc� ð11Þ

Xn
i¼0

X1
l¼0

xklij �
Xn
i¼0

X1
l¼0

xklji ¼ 0 j ¼ ½1; . . .; n�; k ¼ ½1; . . .;mc� ð12Þ

Xn
i¼0

Xn
j¼1

qjx
k1
ij þ

Xn
i¼0

Xn
j¼1

qjx
k0
ij �Qc þQr k ¼ ½1; . . .;mc� ð13Þ

Xn
i¼0

Xn
j¼1

qjx
k1
ij �Qc k ¼ ½1; . . .;mc� ð14Þ

Xn
i¼1

Xmc

k¼1

xk00i �mr ð15Þ

Xn
i¼1

Xmc

k¼1

xk00i þ
Xn
i¼1

Xmc

k¼1

xk10i �mc ð16Þ

xklij 2 f0; 1g ð17Þ

i 2 ½0; . . .; n�j 2 ½1; . . .; n�k 2 ½1; . . .;mc�l 2 f0; 1g ð18Þ

The objective functions of the problem (4) minimize the total cost (not include
any further cost components) (f1) and the nonfulfillment grade of capacity con-
straints for vehicle route (f2) and pure route (f3). Constraints (6-9) guarantee that
only one vehicle enters and leaves from one node or that each customer is served
exactly once. Constraints (10) and (11) ensure that each vehicle leaves the depot
and returns to it, thereby limiting vehicle use to one trip. Constraint (12) establishes
the conditions to maintain continuity of the route. Constraint (13) force the
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maximum demand load of each pure or complete vehicle route to be less than or
equal to the complete vehicle capacity. Constraint (14) force the maximum demand
load of each truck route to be less than or equal to the truck capacity. The con-
straints (15) and (16) ensure that both the number of vehicle and pure routes are not
greater than the number of trailers and trucks respectively. Finally (17) and (18)
establishes the conditions of the variables.

Note that constraints (13) and (14) are considered as fuzzy. Therefore, they can
be replaced by the following constraints:

Xn
i¼0

Xn
j¼1

djx
k0
ij þ

Xn
i¼0

Xn
j¼1

djx
k1
ij �ðQc þQÞr þ sccvr 1� accvrð Þ k ¼ ½1; . . .;mc�

ð19Þ
Xn
i¼0

Xn
j¼1

djx
k1
ij �Qc þ sccpr 1� accpr

� �
k ¼ ½1; . . .;mc� ð20Þ

accvr 2 0; 1½ �

accpr 2 0; 1½ �

where τccvr and τccpr are tolerance levels of each capacity constraint. Also, in the
constraint (19) the tolerance level τccvr incorporates the tolerance level of constraint
(20), because this constraint verifies the truck and trailer capacity.

4 Experiments and Computational Results

In this section, we present and discuss the computational experiments carried out to
solve the multiobjective TTRP with fuzzy constraints. In order to present them, this
section is organized as follows:

1. In Sect. 4.1, we describe the test instances that are used in these experiments.
2. In Sect. 4.2, we explain the solution strategy applied for to solve TTRP with

fuzzy constraints for each α-value.
3. In Sect. 4.3, we introduce a brief description of the algorithms used for com-

parison and we show the configuration of the algorithms (determining all the
parameters used).

4. In Sect. 4.4, we explain the quality indicators used to evaluate the quality of the
output produced by multiobjective algorithms.

5. In Sect. 4.5, we present the configurations of the general approach in these
experiments.

6. In Sect. 4.6, we analyze the solutions obtained and the results of the
non-parametric statistical test.
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4.1 Test Instances

In order to test our model, we used 21 TTRP benchmark problems reported by
Chao [4]. These problems are converted from seven basic VRP test problems given
by Christofides et al. [6]. The authors use the following procedure: for each cus-
tomer i, the distance between i and its nearest neighbor customer is calculated and
denoted by Ai. The generation procedure creates three TTRP instances by defining
in the first problem 25 % of the customers with the smallest Ai values as TC. For
the second and third problem the percentage of the nodes as TC is 50 and 75 %
respectively. Table 1 shows the characteristics of the problems.

4.2 Implementation

The TTRP is a combinatorial optimization problem and is computationally more
difficult to solve compared with the VRP. An exact algorithm that can optimally
solve a large-size TTRP problem is unlikely. Therefore, the main alternative to

Table 1 Chao instances
considered for the
experimental study

Problem VC TC mc qc mr qr
1 38 12 5 100 3 100

2 25 25

3 13 37

4 57 18 9 100 5 100

5 38 37

6 19 56

7 75 25 8 150 4 100

8 50 50

9 25 75

10 113 37 12 150 6 100

11 75 75

12 38 112

13 150 49 17 150 9 100

14 100 99

15 50 149

16 90 30 7 150 4 100

17 60 60

18 30 90

19 75 25 10 150 5 100

20 50 50

21 25 75
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solving this problem is using approximate algorithms. Our implementation of TTRP
is based in the heuristic model proposed by Lin et al. [15]. The proposal was coded
in Java and compiled using Eclipse 4.2.1.

4.2.1 Solution Representation and Initial Solution

A solution is represented by a string of numbers consisting of a permutation of n
customers and Ndummy zeros, followed by the service vehicle types of individual
VCs and α-values of the constraints of capacity (αccpr and αccvr). The Ndummy zeros
(artificial depot) are used to separate routes or terminate a sub-tour. The service
vehicle type of a VC determines the type of the vehicle used to service the VC. If
the VC is serviced by a complete vehicle, its service vehicle type is set to be 0.
Otherwise, it is serviced by a truck alone is set to be 1. The α-values indicate the
degree of relaxation in each capacity constraint.

The initial solution is randomly generated. It is comprised of a randomly ordered
sequence of the customers and the dummy zeros, and randomly set service vehicle
types of VCs and α-values of the constraints of capacity.

4.2.2 Neighborhood Structure

The approach uses a random neighborhood structure that includes insertion, swap,
and change of service vehicle type. Also, we include an operator that inverts a
subset of elements of the solution and other to modify the α-values. We define the
set N(X) to be the set of solutions neighboring a solution X. In each iteration, the
next solution Y is generated from N(X) either by any of the operators mentioned
above as follows.

• Insertion: Position-based operator where an element at one position is removed
and put at another position. Both positions are randomly selected.

• Swap: Order-based operator where arbitrarily is selected two elements and are
swapped.

• Invert: Order-based operator where two elements are randomly selected and the
sequence of elements between these two elements are inverted.

• Change of service vehicle type: This operator is performed by randomly
selecting a VC and changing its service vehicle type from 1 to 0 or vice versa.

• Change of α-value: This operator is performed by randomly selecting a α-value
of the constraints of capacity and generating a new value.

4.2.3 Evaluate Objective Functions

A process of decoding is used for evaluate the first objective function (f1). In this
process has been determined the customers on each route and the service vehicle
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type of each VC. Once this is done, it is easy to calculate the objective value (total
distance traveled) as the sum of the distances of all routes. A penalty strategy was
applied, which involves adding a penalty cost to the objective function for each
extra vehicle requiring the solution. The remaining objective functions (f2 and f3)
are calculated as the difference between the maximum degree (no violation) and the
obtained α-value in each capacity constraints in the solution: Δ = 1 − αi.

4.3 Algorithms Considered for Comparison

In these experiments we compare four multiobjective algorithms: Multiobjective
Stochastic Hill Climbing (MSHC) [10], Multiobjective Hill Climbing with Restart
(MHCR) [10], Multiple Objective Tabu Search (MOTS) [1] and Multi-Case
Multi-Objective Simulated Annealing (MC-MOSA) [14]. The codification of the
algorithms was using the BiCIAM library1 [12], which implements a unified model
of metaheuristics algorithm. A brief description of these algorithms follows and the
parameters of the analyzed algorithms are shown.

• Multiobjective Stochastic Hill Climbing (MSHC): This algorithm follows the
original Stochastic Hill Climbing same principle. To be able to face problems
multiobjective, the algorithm incorporates a list with the non-dominated solu-
tions found in the search process [10].

• Multiobjective Hill Climbing with Restart (MHCR): This method works similar
to the previous one. The main difference consists on the substitution of the
current solution when the candidate solution is not accepted. In this case it is
verified if all the possible solution neighbors have already been generated, then
the current solution is substituted by other obtained randomly [10].

– Neighborhood size: 2

• MOTS algorithm redefines selection and updating stages of classical Tabu
Search (TS) to work with more than one objective [1].

– Tabu list: visited solutions
– Tabu list size: 20 solutions

• Multi-Case MultiObjective Simulated Annealing (MC-MOSA): It is an adap-
tation of a well-known MultiObjective Simulated Annealing (U-MOSA) pro-
posed by Ulungu et al. [24]. This variant uses some basics of U-MOSA and
substitutes others, especially in the acceptance decision criterion [14].

– Maximum allowable number of reductions in temperature (Nnon-improving):
100.0

– Coefficient controlling the cooling scheme (α): 0.9

1BiCIAM library can be downloaded in http://modo.ugr.es/algorithmportfolio/index.html.
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– Final temperature (Tf): 0.0
– Initial temperature (T0): 20.0

The parameters of the MHCR, MC-MOSA and MOTS algorithms were selected
based the opinion of the author.

4.4 Quality Indicators

Taking into account that there are conflicting goals in the objective function, we
conducted an analysis of the results from the multiobjective point of view. For this
analysis, we calculate the Pareto front (PFknown) [5] generated by each algorithm
for each test problem. There are several well-known measures in the literature to
assess the quality of the output produced by multiobjective procedures [7]. The
following four measures are considered in this paper.

• Number of True Non-dominated Solutions (N): N measures the total number of
non-dominated vectors that belong to PFtrue. We define this metric as shown in
Eq. (21):

N, PFknownj j �
XPFknownj j

i¼1

ei ð21Þ

• Error Ratio (ER): This metric reports the proportion of vectors in PFknown that
are not members of PFtrue. Mathematically, this metric is represented in
Eq. (22):

ER,
P PFknownj j

i¼1 ei
PFknownj j ð22Þ

• Generational Distance (GD): This measure is a value representing how far
PFknown is from PFtrue. It is mathematically defined in Eq. (23):

GD,
Pn

i¼1 d
p
i

� �1=p
PFknownj j ð23Þ

• Spacing (S): This metric numerically describes the spread of the vectors in
PFknown. Equation (24) define this metric:

S,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
iþ 1

�d � di
� �2s

ð24Þ
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The first three metrics require use the true Pareto front (PFtrue), but in many
scenarios this front is unknown. For this reason we generate an unified Pareto Front
(PFunified), which is the set of all non-dominated solutions obtained by all meta-
heuristics in all executions.

4.5 Setting Experimental

All computational tests were conducted on an Intel Core Duo running at 2.66 GHz
with 2 GB of RAM processor and operative system Windows 7. Results reported in
the following subsection were obtained with 30 independent runs with 100 000
fitness evaluations for each problem. The tolerance levels (τ) for each capacity
constraint was calculated as 10 % of the capacity of the used vehicle. Lastly, the
penalty cost associated with the number of extra trucks and trailers used is equal to
125. This penalty value reported the best results in [15].

4.6 Result

Tables 2 and 3 show the results obtained by the analyzed algorithms. For each test
problem are presented the number of solution members of PFknown in the PFunified

(N), the best and average value for the metrics: Error Ratio (ER), Generational
Distance (GD) and Spacing (S). We also include the number of solutions in
PFunified and the number of solutions in PFknown for each algorithm. The numbers
set in bold face give the best value achieved for each problem among all
algorithms. Letters i, j, k, and l used in Table 3 represent the best algorithm in each
case. i: MSHC, j: MHCR, k: MC-MOSA, l: MOTS.

We can present the following conclusions based on an analysis of the results
presented in Table 2:

1. MOTS algorithm generates the biggest number of solutions in more problems
than the rest of the algorithms. However, MHCR algorithm has the best average
of generated solutions (142.33).

2. At least an algorithm obtains more solutions in its PFknown than the total of
solutions of the PFunified (this occurs in 71.43 % of the problems). According
with ER values this means that some solutions of these algorithms are domi-
nated by the solutions of the remaining algorithms.

3. In 28.57 % of the problems, the total of generated solutions with MHCR
algorithm are members of PFunified (ER = 0). The remaining cases (with
MHCR) averaged 86.27 % of solutions found. Also, for this algorithm the
results of S metric suggest that the solutions are not spaced evenly.
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4. In 76.19 % of the analyzed cases, the MOTS algorithm did not obtain any
solution members of PFunified. Also, it presents the values of higher GD in 19
test problems.

5. Regarding the S metric the average in the 21 problems for MSHC and
MC-MOSA algorithms is quite similar.

This result is confirmed by Figs. 2, 3, 4 and 5; where you can observe the
behavior of the algorithms in the four metrics.

In order to assess whether significant differences exist among the results, we
adopt statistical analysis and, in particular, nonparametric tests. We decided to
apply the statistical tests to the results obtained for the measures N, ER, GD and S.
We employ Friedman’s test. It is a nonparametric tests for multiple comparisons,
that allow checking if the results obtained by the algorithms present any significant
differences. Then, if there are differences, we use Holm’s method, Rom’s method,
Finner’s method and Li procedure to compare the best ranking algorithm with the
remaining algorithms. The level of confidence is 0.05 in all cases.

Table 2 Summarizes of the results for 21 instances (metric N)

ID PFunified PFMSHC NMSHC PFMHCR NMHCR PFMC-MOSA NMC-MOSA PFMOTS NMOTS

1 663 403 141 478 465 453 54 98 3

2 765 285 74 826a 489 367 200 100 2

3 391 117 25 404a 293 86 73 97 0

4 101 194a 5 122a 82 118a 12 85 2

5 339 333 107 120 119 289 113 98 0

6 258 148 112 182 142 158 4 119 0

7 123 37 5 141a 104 35 14 107 0

8 88 82 1 82 73 41 14 117a 0

9 73 57 3 61 59 26 11 96a 0

10 45 31 12 31 31 29 2 127a 0

11 45 42 7 36 19 19 19 115a 0

12 56 33 12 48 36 10 8 82a 0

13 25 25 6 19 19 18 0 88a 0

14 54 49 1 44 44 14 8 103a 1

15 28 37a 2 26 25 27 1 95a 0

16 44 23 17 21 14 42 13 110a 0

17 103 49 30 73 70 73 3 93 0

18 67 24 7 58 58 32 2 109a 0

19 111 146a 1 103 130 73 7 104 0

20 83 82 4 62 60 60 19 113a 0

21 112 89 49 52 52 50 10 78 1

Avg. 170.19 109 29.57 142.33 112.23 96.19 27.95 101.62 0.43
aCases where the PFknown overcomes the number of solutions of the PFunified
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Table 3 Summarizes of the results for 21 instances (metric ER, GD and S)

ID PFunified ERBest ERAvg GDBest GDAvg SBest SAvg
1 663 0.03j 0.63 0.05i 1.26 33.94k 89.50

2 765 0.41j 0.65 0.03j 1.59 21.72k 92.55

3 391 0.15k 0.55 0.21j 4.28 27.01i 121.81

4 101 0.33j 0.80 0.23j 2.66 54.51i 196.66

5 339 0.01j 0.58 0.01j 5.10 67.99k 185.14

6 258 0.22j 0.61 0.37j 2.64 59.29k 190.97

7 123 0.26j 0.68 0.46j 9.54 66.27k 266.85

8 88 0.11j 0.69 0.13j 4.03 44.24i 228.83

9 73 0.03j 0.54 0.28j 3.50 36.33k 265.87

10 45 0.00j 0.64 0.00j 5.77 98.90i 218.15

11 45 0.00k 0.58 0.00k 36.82 107.19k 201.41

12 56 0.20k 0.52 0.20k 5.09 124.47i 429.62

13 25 0.00j 0.69 0.00j 32.56 145.65k 404.48

14 54 0.00j 0.60 0.00j 3.64 120.10k 556.44

15 28 0.04j 0.74 2.54i 5.34 80.03i 476.22

16 44 0.26i 0.57 6.39i 15.06 75.98i 571.10

17 103 0.04j 0.60 0.62j 6.30 128.92k 506.06

18 67 0.00j 0.66 0.00j 12.58 124.70i 378.47

19 111 0.00j 0.72 0.00j 4.90 40.53i 260.90

20 83 0.03j 0.67 0.33j 3.90 58.11i 280.16

21 112 0.00j 0.56 0.00j 3.30 80.19i 268.89

i MSHC
j MHCR
k MC-MOSA
l MOTS

Fig. 2 Performance of the
metric error ratio (ER) in the
21 problems
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Table 4 shows the results of Friedman test for the four measures. The MHCR
algorithm has achieved the highest rankings for the metrics N, ER and GD, while
that MC-MOSA and MSHC are better in the metric S. In all the cases the p-value
computed through the statistic of the test considered strongly suggest the existence
of significant differences among the algorithms considered.

Fig. 3 Performance of the
metric generational distance
(GD) in the 21 problems

Fig. 4 Performance of the
metric spacing (S) in the 21
problems
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According to used procedures (Rom, Holm, Finner and Li) in the metrics N, ER
and GD the Friedman test shows a significant improvement of MHCR algorithm
over MSHC, MC-MOSA and MOTS for all the post hoc procedures considered.
For S metric, the test does not find any significant difference between the algorithms
MC-MOSA and MSHC, but there are significant difference with MHCR and
MOTS. Also, the last column in Table 4 shows an overall ranking (we considered
the results of all metrics) that indicates the improvement of MHCR over the
remaining algorithms.

5 Conclusions

In this chapter we focus on the TTRP with fuzzy constraints from a multi-objective
viewpoint. In this manner it seeks a compromise between the cost of the solution
and the nonfulfillment grade of the capacity constraints. With this approach the
decision maker no longer provides the level of satisfaction (α) but this parameter is
part of the solution is sought. The decision maker obtains a set of solutions that

Fig. 5 Performance of the
metric number of true
non-dominated solutions
(N) in the 21 problems

Table 4 Average ranking of the multiobjective algorithm

Algorithm N ER GD S Global

MSHC 2.5 2.5238 2.4524 1.5714 2.2619

MHCR 1.0714 1.1905 1.2619 3.619 1.7619
MC-MOSA 2.4762 2.3095 2.3333 1.5714 2.1845

MOTS 3.9524 3.9762 3.9824 3.2381 3.7917
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correspond to the non-dominated solutions composing the Pareto Front. The
experimental study shows of multiobjective algorithms MSCH, MHCR,
MC-MOSA and MOTS. The metrics used indicate that the best performance is the
algorithm MHCR.
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Health Service Network Design Under
Epistemic Uncertainty

Mohammad Mousazadeh, S. Ali Torabi and Mir Saman Pishvaee

Abstract If a health system wants to achieve its strategic goal known as “reducing
health inequalities”, making health services available and accessible to all people is an
essential prerequisite. Health service network design (HSND) is known as one of the
most critical strategic decisions that affects performance of health systems to the great
extent. Important decisions such as location of health service providers (i.e. clinics,
hospitals, etc.), allocation of patient zones to health service providers and optimal
designing of patients flow via the network are some of the main strategic and tactical
decisions that should be made when configuring a health service network. On the other
hand, coping with uncertainty in data is an inseparable part of strategic and tactical
problems.More specifically, the complex structure of health service networks alongside
the volatile environment surrounding the health systems would impose a higher degree
of uncertainty to the decision makers and health network designers. Among different
methods to cope with uncertainty, possibilistic programming approaches are
well-applied methods that can handle epistemic uncertainty in parameters.

Keywords Health care � Service network design � Possibilistic programming �
Fuzzy sets

1 Introduction to Healthcare and Healthcare Systems

The most-frequently quoted definition of health is the one that has been defined by
World Health Organization (WHO) in 1946 as “state of complete physical, mental
and social well-being and not merely the absence of disease or infirmity”.
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Regarding this definition, all the efforts and activities that are directly and/or
indirectly related to maintaining, improving or recovering health status of a society
would be accounted as a part of health services. This organization also defines the
health system as “all the activities whose primary purpose is to promote, restore or
maintain health” [1].

According to Porter and Teisberg [2], the healthcare delivery value chain con-
sists of 6 phases starting with monitoring/preventing, and followed by diagnosing,
preparing, treating, rehabbing/recovering and ends to monitoring/managing. These
phases could be crossed with two types of activities i.e. primary activities and
supportive activities. The primary activities are those that directly address care
delivery to patients including screening, organizing tests and imaging,
pre-intervention preparations, performing procedures, inpatient recovery and
monitoring compliance of patient with therapy. On the other hand, the supportive
activities have a supportive rule for all the primary activities throughout the whole
health value chain. These activities include knowledge development, informing
activities, measuring activities and patient accessing activities. The visual presen-
tation of the adopted health value chain is depicted in Fig. 1.

Healthcare sector has been developed notably in the last 50 years and healthcare
spending keep outpacing economic growth across the world. Let us begin by
reviewing some facts about historical trends in global economy and health sector
economy. The collected data from World Bank and WHO indicates that (1) the
gross world product (GWP) has been increased from 52.2 Trillion Dollars in the
year 2000 to 77.2 Trillion Dollars in 2011, (2) the total expenditure on health as

Fig. 1 The healthcare delivery value chain adopted from Porter and Teisberg [2]

258 M. Mousazadeh et al.



percentage of gross domestic product (GDP) has been increased from 8.2 % in
2000 to 9.1 % in 2011 globally, and (3) the total expenditure on health as per-
centage of gross domestic product (GDP) has been increased from 9.8 % in 2000 to
11.9 % in 2011 in high-income countries, revealing that both the percentage rate
and a rate of increase in high-income countries is higher than global values. Now,
putting these facts together, one can infer that the total health economy has sig-
nificantly been increased from 4.28 Trillion Dollars in 2000 to 7.02 Trillion Dollars
in 2011 which is around 64 % increase.

The reasons for growth in the healthcare industry are numerous. Decreasing
fertility rates and increasing life expectancy could be concerned as major factors
that increase the total spending on healthcare. As an instance, average world-
wide life expectancy was 46 years in 1965, increased to 61 years by 1980, rose to
67 years by 1998 and according to final statistics was around 70 years by 2012 [3].
It is obvious that the aged population not only will put strong demand upon health
systems but also consume more intensive health services. On the other hand,
although technological advancements have improved health sector, they have
increased healthcare costs as well.

This drastic change could be regarded as an opportunity for some of the
healthcare stakeholders and as a threat for other stakeholders. In detail, the growing
market of health has persuaded the private sectors and independent investors to play
a more active role in this section than some years ago. However, if a value of close
and mutual cooperation between private sector and government is not appreciated,
the government will be faced an astronomical expenses in providing health services
to people. In addition, the governments are in charge of cutting unnecessary costs in
this sector while maintaining or improving the quality of health services. Also, they
face different challenges such as improper configuration of the health system,
increased complexity of processes, the need for efficient utilization of resources,
increased pressure to improve the quality of services and the need to control the
workload of healthcare personnel, most of them will be mounted if a systematic
approach could be adopted [4].

Operations research (OR) science can enormously help the health sector in
solving these complex but solvable problems. To do so, according to Brailsford and
Vissers [5], the application of OR in healthcare has been improved not only in the
number of OR applications but also in the scopes of topics covered. As an instance,
problems ranging from strategic level decisions such as location of different health
service providers (e.g. [6–9]) to operational decisions such as
patients/nurse/operating room scheduling (e.g. [10–12]) are among many that are
mathematically modeled and solved. Figure 2 shows a more classified review of
OR applications in the healthcare sector proposed by Rais and Viana [13].

For more information about applications of OR in healthcare, the interested
readers are referred to [3, 5, 13–15].
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2 Health Service Network Design

The importance and drivers of health service network design (HSND) problem is
briefly described in this section, followed by a typical structure of a health service
network.

2.1 Importance and Drivers

As mentioned before, reaching a health system its ultimate goal known as “reducing
health inequalities”, necessitates making health services available and accessible to
all people. An excellent HSND is the first and main step for achieving this goal. In
fact, HSND can be regarded as one of the most critical strategic decisions that its
poor design can completely ruin the functionality of the health system while its
good design can greatly support equality in access to health services, quality of
provided services to people as well as pursuing cost reduction policies of
governments.

According to WHO [16], although health service networks are much more
extensive than 1990s, large group of people are not covered or are partially covered
yet. For example, in some countries, war and civil strife have partly or completely
destroyed healthcare infrastructure, in others, although the health service is avail-
able, unregulated commercialization leads to providing those services that are not
necessarily needed. In addition, supply gaps are still an unpleasant truth in many
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countries; making extension of health service networks a main concern, as was the
case 30 years ago. These facts clearly reflect the immediate but constant need for
optimal health services network design, which can be well responded through
applying OR tools and techniques.

2.2 Definitions and Scope

The application of network design practices in the health care sector not only relates
to the product/non-service problem such as pharmaceuticals [17], blood collection
[18], organ transplant [19], etc., but also is related to the medical and health service
network design [9].

The basic context of health service network design problem is similar to the
problem of supply chain/logistics network design in many assumptions, parameters
and decision variables. In fact, logistics network design addresses the locations,
numbers and capacities of needed facilities in the logistics network alongside
aggregate material flow between the facilities [20]. Similarly, the health service
network design addresses location, number and capacity of different health service
centers (including primary health centers, clinics, hospitals, etc.), allocation of
patient zones to primary health centers, designing referral system throughout the
different layers/levels of the network and finally designing the best flow pattern of
patients via the network.

Most of the network design problems regardless of their concerned sector or
industry, have been mathematically modeled based on the facility location theory.
As an instance, in the field of logistics network design, the basic works start with
classic facility location models (e.g. [21]) which are then followed by more com-
plex models taking into account new set of assumptions such as multiple products
(e.g. [22]), multiple capacities for network facilities (e.g. [23]), direct and indirect
shipments (e.g. [24]) and green aspects (e.g. [25]). Interestingly, a similar trend
could be observed in the field of health service network design.

2.3 Typical Structure of Health Service Networks

Marmot et al. [26] declared that healthcare systems have better health outcomes
when built on primary health centers (PHCs). In fact, if the entrance point of
patients to a health system changes from hospitals and specialists service providers’
levels into PHCs, it would have positive effects on total functionality of the health
system and also will improve performance of health network. Taking this fact into
consideration, many countries have redesigned their current health networks so that
people first visit their family physicians/general practitioners and then, in the case
of need, would be referred to the upper level of health network. Conducted
researches (e.g. [16, 27, 28]) show that success of a health network reconfiguration
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based on the PHCs’ main role, highly depends on three main arrangements i.e.
(i) bringing care closer to people, (ii) giving primary-care providers the responsi-
bility for the health of the assigned population and (iii) strengthening primary-care
providers’ role as coordinators of the inputs of other levels of care. Taking these
main arrangements into account, WHO [16] by inspiring from the work of Criel
et al. [29], proposed a typical structure of health service network in which PHCs are
defined as entering point of patients to health systems in which PHCs are viewed as
coordination hubs in the network. The concerned health service network is depicted
in Fig. 3.

3 Literature Review

In this section, a comprehensive review of related papers to the HSND problem is
provided. To do so, the methodology of selecting the relevant papers is first
described which is followed by a detailed description of the selected papers.

3.1 Selection Methodology

If one wants to translate the three aforementioned arrangements into the location
science keywords, the “approximation of service” could be viewed in the form of

Fig. 3 Typical structure of health service network adopted from WHO [16]
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location problem, the “clear responsibility” would be addressed via
location-allocation problem and “coordination role”, could be translated as a
hierarchical facility location problem. Thus, in order to review the most relevant
papers to the concerned topic of this study, those papers addressing the facility
location/network design and healthcare/medical were first extracted. Then, those
papers dealing with qualitative and simulation aspect of the concerned problem
have been eliminated and finally the papers in which a mathematical programming
model is proposed, are selected for final review. These papers are briefly reviewed
in a chronological order as follows.

3.2 Detailed Review of Related Papers

Among the earlier works on healthcare facility network design, Dökmeci [30]
presents a quantitative model to determine the number, size and locations of
regional health facilities including the medical center, intermediate and local hos-
pitals, and health centers with respect to the minimization of the total transportation
and facility costs. Also, a heuristic model is developed to solve the proposed model
which is then followed by a numerical example in order to illustrate the solution
procedure.

Schweikhart and Smith-Daniels [31] present a nonlinear integer model for
determining the number, location and service offerings of facilities with respect to
maximization of market share subject to a budgetary constraint. In detail, their
model addresses a two-level hierarchical referral delivery network in which, each
opened facility offers primary care services and may offer one or more of the
specialty care services as well. Moreover, specialized healthcare services are pro-
vided by physicians in several fields such as allergy, urology, orthopedics, oto-
laryngology, and dermatology. In order to solve the proposed integrated model,
they proposed an interchange heuristic.

Galvao et al. [32] present a 3-level hierarchical location model for maternal and
perinatal health care facilities in Rio de Janeiro. In addition, flow of mothers from
demand points to facilities and from maternity home to neonatal clinic are two other
decision variables that are taken regarding minimization of total travelled distances.
Also, some relaxations and heuristics are developed to solve the model using a real
data extracted from a case study.

Marianov and Serra [33] propose an extension of their earlier model for the
location of congested facilities Marianov and Serra [34], the former model is
intended for the design of health and emergency medical services (EMS), banking
or distributed ticket-selling services. Their model addresses a set covering problem,
aiming to locate the least number of facilities and assigns the minimum number of
servers to the established centers in order to minimize queuing effects. They also
developed and tested a novel heuristic algorithm which had a good performance on
a 55-node network.
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Verter and Lapierre [35] focus on the Maximal Covering Location Problem
(MCLP) for preventive health carefacilities to maximize participation of inhabitants
to prevention programs. The main decisions in the proposed model are twofold:
(i) location of new facilities and (ii) allocation of population centers to the new
established centers. Performance of the proposed methods is then assessed in a real
case of locating public health centers in Fulton County, Georgia and mammography
screening centers in Montreal, Quebec.

Galvão et al. [36] propose an uncapacitated, three-level hierarchical model for
location of perinatal facilities in the municipality of Rio de Janeiro. The model
incorporates capacity constraints and service referrals in which a fraction of demand
served at a lower-level perinatal facility may be referred directly to a higher-level
facility, while single-assignment is not obliged and split assignments can take place.
Finally, the authors propose a Lagrangian heuristic to solve the proposed model.

Yasenovskiy and Hodgson [37] address the problem of designing optimal
hierarchical facility systems, in which the location of new facilities and allocation of
zones to the facilities are decision variables of the proposed model. Unlike the
classic p-median model in which it is always assumed that people will travel to the
closest facility to be served, the proposed model defines the facility size, distance,
and neighborhood accessibility as the main criteria for travelling preferences of
people. They verified their model for locating healthcare facilities in Suhum
District, Ghana including 150 nodes.

Griffin et al. [38] propose an optimization model for determining the number and
the location of new Community Health Centers (CHCs) in a health network.
Another decision variable in the proposed model that differentiates this model from
other works is that what services each CHC should offer at which capacity level.
These decisions must be made under the budget and capacity constraints with the
aim of maximizing the demand coverage of the population.

Ndiaye and Alfares [39] formulate a binary integer programming model to
determine the optimal number and locations of primary health centers for serving
seasonally moving populations. Objective function of the proposed model consists
of two contradictory terms, (i) opening costs and (ii) total transportation costs
throughout the network. They also applied their model to the populations of 17
nomadic groups in the Oman and UAE which are located in southwestern Asia,
next to the Persian Gulf.

Smith et al. [40] propose a number of hierarchical location-allocation models for
the planning of community health schemes by non-governmental organizations in
rural areas of developing countries. The concerned decisions are taken with respect
to objectives pertaining to both efficiency and equity of provision. They also present
modelling of the location of a maximal number of self-sustainable primary
healthcare workers in a rural region of India as an additional case study.

Zhang et al. [41] incorporate congestion in preventive healthcare facility network
design via a nonlinear programming model. Taking this fact into account that the
level of participation of a given population to preventive healthcare programs is a
critical factor to the effectiveness and efficiency of preventive health network, they
propose a methodology for designing a network of preventive healthcare facilities
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aiming at maximizing the population participation. The number and location of
facilities to be established in the configuration of a healthcare facility network are
the main decision variables in the proposed model. In addition, the proposed model
covers three main characteristics of the concerned problem i.e. (i) elastic demand,
(ii) congestion, and (iii) user-choice environment. Since the proposed model is
highly nonlinear, they provide four heuristic solutions for this problem which are
then compared in terms of accuracy and required computational time. Finally, they
assessed the performance of the model in solving a real case study that involves the
breast cancer screening center network in Montreal.

Syam and Côté [8] develop a location-allocation model for the non-for-profit
organizations that provides specialized health care services such as traumatic brain
injury (TBI) treatment. The model incorporates two primary criteria i.e. (i) a cost
minimization objective that includes establishment costs, variable costs of treatment
(variable labor cost, and patient travel and patient family lodging costs) and penalty
cost for failing to serve patients, and (ii) a minimum service proportion requirement.
In addition, the model is solved using simulated annealing approach for one of the
Department of Veterans Affairs’ integrated service networks.

Mahar et al. [42] propose a mathematical model to determine how many and
which hospitals should be established to deliver a specialized service such as
magnetic resonance imaging (MRI), transplants, or neonatal intensive care.
Moreover, both financial considerations and patient service levels are taken into
account in the model. They used commercial solvers in order to solve the proposed
Mixed Integer Non-Linear Programming model (MINLP) under two different
problem sets i.e. (i) hospital network in eastern Pennsylvania, and (ii) hospital
network in Indiana.

Fo and da Silva Mota [43] propose four mathematical models based on the most
important location models, i.e. P-median model, set and maximal covering models
and P-center model. An experiment was conducted in a real situation, in a Brazilian
city, in order to show differences between the optimal solutions achieved from the
proposed models as well as the current sites configuration with these optimal
configurations.

Mestre et al. [44] propose a hierarchical multiservice model to make decisions
on the location of district hospitals (DHs)/central hospitals (CHs),
ascendant/descendent flow of population in the network and define service capac-
ities in DHs and CHs, with respect to maximization of patients’ geographical access
to a hospital network. They have applied the proposed model in a real life problem
in the South region of the Portuguese NHS, in which three scenarios are generated
to show the usefulness and the behavior of the proposed model.

Syam and Côté [6] develop and apply a location-allocation model for specialized
health careservices, i.e. the treatment and rehabilitation necessary for strokes or
traumatic brain injuries. The model minimizes the total cost of health system and its
patients and also includes many additions to a classic healthcare location-allocation
model including the multiple acuity levels, multiple service level mandates by
acuity, and facility utilization targets by acuity. The applicability of the model and
the impact of several factors, i.e. lost admission cost, service level mandate, target
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utilization percent, and overloading penalty cost on total cost and service level is
investigated using data derived from one of the Department of Veterans Affairs
specialized healthcare services.

Zhang et al. [45] propose two alternative models for the problem of preventive
care facility network design. In the first model entitled as “probabilistic-choice
model”, a client is free to go to one of the established facilities under this
assumption that he/she may go to the nearest facility with the highest probability
but may visit the farthest facility with the least probability. On the other hand, in the
second proposed model entitled as “optimal-choice model”, it is assumed that each
client will patronize only the nearest facility. In addition, they impose an upper
bound on the mean waiting time and lower bound on workload requirement at each
open facility in order to ensure the quality of provided care. The aim of both
proposed models is to maximize the total participation of community to a pre-
ventive care programs while the number of open facilities as well as the location
and the number of servers of each open facility are the main determinants of the
facility network configuration.

Benneyan et al. [46] develop a single and multi-period location-allocation
integer programming models for specialty care facilities that minimize total pro-
cedure, travel, non-coverage, and start-up costs subject to access constraints.
Selecting facilities among the existing centers as provider of sleep apnea services,
allocation of patients’ demand to these facilities and the number of additional sleep
beds to add are main decision variables in the models. These models have been
utilized to aid the Veterans Health Administration (VHA) to find a tradeoff surface
between costs, coverage, service location, and capacity. An application of the
proposed models to planning short and long-term sleep apnea care across the VHA
New England integrated network resulted in around 10–15 % improvements in
each performance measure.

Shariff et al. [7] formulate a location-allocation model for healthcare facility
planning in Malaysia. The proposed model is formulated as Capacitated Maximal
Covering Location Problem (CMCLP) and as the main contribution; the authors
develop an effective genetic algorithm to solve a large network consisting of 809
nodes.

Song et al. [47] address the problem of facility network design for long-term care
services. Optimal location of long-term care facilities as well as the type of new
facility are the main determinants of the proposed integer programming model, with
the objective of minimizing the total construction cost. For the sake of simplicity,
the closest assignment rule is imposed to reflect the preference of patients in
selecting long term care facility. As a solution approach, the authors developed a
branch and bound (B&B) algorithm for exact solution and a genetic algorithm to
solve large-scale problems.

And more recently, Shishebori and Babadi [9] address the problem of robust and
reliable medical services network design in which uncertainty in input parameters,
system disruptions, and investment budget constraints are taken into account in the
proposed Mixed Integer Linear Programming (MILP) model. They applied the
developedmodel for medical network design in one of the deprived provinces in Iran.
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3.3 Literature Analysis

From reviewing 21 papers, the following conclusions could be drawn:

• A wide range of facilities/services are addressed in the literature including
preventive healthcare facilities, primary healthcare facilities, community health
centers, regional health facilities, maternal and perinatal healthcare facilities,
district and central hospitals, specialty healthcare facilities, emergency medical
services, specialized healthcare services and long-term care services. However,
most of the papers have only focused on a single type of facility/service rather
than addressing various facilities belonging to the different levels of the health
system.

• Most of the papers simply assumed that the exact (i.e. crisp) input data are
available, and among the very limited papers considering the data uncertainty,
stochastic programming and robust programming approaches have been applied
to handle uncertainty. Interestingly, none of the papers used fuzzy programming
approaches to handle (epistemic) uncertainty in data where enough historical
data are not available.

• In order to solve the proposed models, usual commercial solvers i.e. CPLEX in
GAMS, LINGO, etc. are mostly applied, however, heuristic methods, genetic
algorithm (GA), and simulated annealing (SA) approach are used in 5, 2 and 1
papers, respectively.

• Interestingly, the proposed models in 15 papers have been applied for a real case
study. It clearly shows applicability of the proposed models in real life situations.

4 Typical HSND Mathematical Models

In this section, inspired from the typical health service network proposed by WHO
[16], a basic mixed-integer linear programming (MILP) model is proposed and
developed gradually by adding new logical assumptions into the problem.

The concerned problem is a multi-level health service network designincluding
patient zones, primary health centers, clinics and hospitals. The entering point of the
patients to the health network is via PHCs, which are responsible for delivering
primary health services to the assigned population. After visiting PHCs, three
alternative scenarios are likely to happen for patients including: (1) they exit the
health network because no further treatment is needed, (2) they will be referred to
the clinics for receiving other non-surgical treatments or for further diagnostic
purposes and (3) they will be referred to the hospitals for receiving surgical
interventions. Several candidate locations are assumed to be available for estab-
lishing PHCs, clinics and hospitals. Hence, the main decisions to be made by the
proposed model are the optimal selection of locations for opening different health
service provider centers. In addition, allocation of patient zones to PHCs and
referral pattern from PHCs to clinics and hospitals must be determined optimally by
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the proposed model. Moreover, capacity of each health center should be determined
regarding the amount of patients’ flow throughout the whole network. All these
decisions are made with respect to minimization of total costs while the complete
fulfillment of demands is guaranteed via a set of hard constraints.

Figure 4 simply illustrates the structure of the discussed problem. It is worth
noting that in real situations, patients will directly refer to clinics or even hospitals
without visiting PHCs when facing immediate problem such as severe dental
problems, episodes of acute illnesses or receiving severe injuries such as road
accidents, different strokes, etc. However, for the sake of simplicity and for edu-
cational purposes, these rather exceptional flows are not considered in the model to
avoid unnecessary complexity.

In abstract, the main assumptions of the proposed problem can be described as
follows:

• There is not any pre-established facility.
• All the demands for all three types of health centers i.e. PHCs, clinics and

hospitals must be fulfilled.
• At most one new center from each type of facilities can be located at each

candidate location.
• All centers are capacitated and each center can be opened in one of the available

capacity levels.
• The maximum demand of each patient zone for PHCs, clinics and hospitals is

equal to or less than the capacity of the largest PHC, clinic and hospital,
respectively.

Fig. 4 The structure of the described health service network
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• Patients will go to the health service providers, so the network will be designed
based on customer-to-service system.

• Each patient zone is free to be served by more than once PHC and each PHC is
free to refer patients to more than one clinic and/or one hospital.

The indices, parameters and variables used to mathematically formulate the basic
health service network design problem are described below.

Indices
i index of candidate location for primary health centers (PHCs)
j index of candidate locations for clinics
l index of candidate locations for hospitals
n; n0 indices of capacity levels
k index of patients zones

Parameters
f ni fixed cost of opening a PHC at candidate location i with capacity level n
gnj fixed cost of opening a clinic at candidate location j with capacity level n
hnl fixed cost of opening a hospital at candidate location k with capacity level n
dk number of visits to PHC in patient zone k
αk fraction of people in patient zone k that are referred to a clinic by PHCs
βk fraction of people in patient zone k that are referred to a hospital by PHCs
caxni capacity of opened PHC with capacity level n at candidate location i
caynj capacity of opened clinic with capacity level n at candidate location j
caznl capacity of opened hospital with capacity level n at candidate location l

Variables
Wn

i 1 if a PHC with capacity level n is opened at candidate location i
0 otherwise

�
Yn
j 1 if a clinic with capacity level n is opened at candidate location j

0 otherwise

�
Zn
l 1 if a hospital with capacity level n is opened at candidate location j

0 otherwise

�
xki flow of patients from patient zone k to PHC i
uij flow of patients from PHC i to RHC j
qil flow of patients from RHC j to DHC k in order to get special service category

m

Using the abovementioned notations, the MILP model of the concerned problem
is as follows:

min
X
i;n

f ni W
n
i þ

X
j;n

onj Y
n
j þ

X
l;n

hnl Z
n
l ð1Þ

Health Service Network Design Under Epistemic Uncertainty 269



s.t: X
k

xk;i �
X
n

cawn
i W

n
i 8i ð2Þ

X
i

ui;j �
X
n

caynj Y
n
j 8j ð3Þ

X
i

qi;l �
X
n

caznl Z
n
l 8l ð4Þ

X
i

xk;i � dk 8k ð5Þ

X
j

ui;j �
X
k

akxk;i 8i ð6Þ

X
l

qi;l �
X
k

bkxk;i 8i ð7Þ

X
n

Wn
i � 1 8i ð8Þ

X
n

Yn
j � 1 8j ð9Þ

X
n

Zn
l � 1 8l ð10Þ

Wn
i ; Y

n
j ; Z

n
l 2 0; 1f g 8i; j; l; n ð11Þ

xk;i; ui;j; qi;l � 0 8i; j; l; k ð12Þ

The objective function (1) tries to minimize the total opening costs of PHCs,
clinics and hospitals. Equations (2)–(4) ensures that the total incoming flow to a
given health center will not exceed the related capacity. Equations (5)–(7) guar-
antee that all the demands must be responded by PHCs, clinics and hospitals,
respectively. Equations (9)–(11) indicate that each health center could be opened in
one of the available capacity levels. Finally, Eqs. (11) and (12) enforce the binary
and non-negativity restrictions on the corresponding decision variables.

The proposed model tends to set up a health network as centralized as possible,
with the least number of established centers, under this condition that all the
incoming demands must be responded by different levels of the network i.e. PHCs,
clinics and hospitals. As a result, accessibility of the network which is among the
main criteria of well-designed health networks is completely neglected in the
model. Hence, in order to satisfy cost and accessibility criteria simultaneously,
some new parameters are defined as follows:
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txki travel cost/time between customer zone k and PHC i
tuij travel cost/time between PHC i and clinic j
tqil travel cost/time between PHC i and hospital l.

Accordingly, the former objective function is replaced by the objective function
(13)

min
X
i;n

f ni W
n
i þ

X
j;n

onj Y
n
j þ

X
l;n

hnl Z
n
l þ

X
k;i

txk;ixk;i þ
X
i;j

tui;jui;j þ
X
i;l

tqi;lqi;l

ð13Þ

Building long-term relationships between patients and care providers can create
more positive interaction and better communication, which also can establish a
feeling of empathy, understanding and trust. This relationship can be realized if the
individual has an access to the same team of health-care providers over time [48,
49]. However, in the proposed model, each patient zone can be assigned partially to
different PHCs and each PHC can deal with different clinics or hospitals. Hence, if
one wants to assign all inhabitants in a given patient zone to exactly one PHC and
also refer patients from a given PHC to only one clinic from opened clinics and just
one hospital from opened hospitals, new set of decision variables must be added to
the basic model as follows:
Xki 1 if customer zone k is assigned to PHC i

0 otherwise

�
Uij 1 if PHC i will be refer patients to clinic j

0 otherwise

�
Qil 1 if PHC i will be refer patients to hospital l

0 otherwise

�

Moreover, while keeping the objective function (13), new complementary
constraints i.e. Eqs. (14)–(19) must be added to the basic set of constraints as
follows:

xk;i �M:Xk;i 8k; i ð14Þ

ui;j �M:Ui;j 8i; j ð15Þ

qi;l �M:Qi;l 8i; l ð16ÞX
i

Xk;i ¼ 1 8k ð17Þ

X
j

Ui;j � 1 8i ð18Þ
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X
l

Qi;l � 1 8i ð19Þ

Equations (14) ensure that only a patients’ flow from patient zone k to PHC
i could occur if and only if this patient zone is assinged to that PHC. Similarly,
Eqs. (15) and (16) guarantee there will be a patients’ flow from PHC i to clinic j and
from PHC i to hospital l if the concerned PHC is assigned to the corresponding
clinic and hospital. In addition, Eq. (17) assures that each patient zone is assigned
to exactly one PHC, while Eqs. (18) and (19) assure that each PHC will refer
patients only to a single clinic and to a single hospital, respectively.

5 Accounting for Data Uncertainty in HSND

Because of the dynamic nature of the concerned health service network
designproblem over the strategic horizon, all of the parameters i.e. demand
parameters for all levels of the health network (PHCs, clinics and hospitals), health
centers opening costs, transportation costs/times and capacities of health centers are
subject to unforeseen fluctuations in the long-term and thus are tainted with a high
degree of uncertainty.

According to Mula et al. [50] and Mousazadeh et al. [51], uncertaintyin data are
twofold: (1) “randomness” that stem from the random nature of parameters and
stochastic programming methods can be applied to handle this type of uncertainty
and (2) “epistemic uncertainty” that deals with ill-known and imprecise parameters
and arises from lack of knowledge about the exact value of uncertain parameters.
Possibilistic programming approaches are the most applied approaches to cope with
this sort of uncertainty. Although the uncertain parameters of the concerned
problem involve deal both sorts of the uncertainties, because this research mainly
concerns about the fuzzy programming approach, different versions of the proposed
model are formulated as fuzzy mathematical models.

5.1 Fuzzy Programming Approach

Fuzzy mathematical programming can be categorized into two main classes [50, 52]
i.e. “flexible programming” and “possibilistic programming”. Flexible program-
ming deals with flexibility in the objectives’ goals and/or elasticity in soft con-
straints. On the other hand, possibilistic programming is used when the parameters
are tainted with epistemic uncertaintyand there is lack of knowledge about exact
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values of input parameters due to unavailability or insufficiency of objective data. In
this approach, one sets a minimum confidence level (α) as safety margin for sat-
isfaction of each possibilistic chance constraint.

Possibility (Pos), necessity (Nec) and credibility (Cr) measures are the most
applied fuzzy measures in possibilistic chance constrained programming models. If
a decision maker (DM) adopts optimistic/pessimistic attitude towards level of
occurrence of possibilistic parameters, using possibility/necessity measure is mainly
suggested. Moreover, if a DMs’ attitude fluctuates between optimistic and pes-
simistic extremes, a credibility measure (Cr) can be well matched for this situation.

Given a trapezoidal fuzzy variable ~n ¼ ðr1; r2; r3; r4Þ, r1 < r2 < r3 < r4 with the
following membership function:

lðxÞ ¼

x� r1
r2 � r1

if r1 � x� r2

1 if r2 � x� r3
r4 � x
r4 � r3

if r3 � x� r4

0 if otherwise

8>>>><
>>>>:

ð20Þ

As stated in Inuiguchi and Ramı ́k [52] and Liu and Iwamura [53], for all con-
fidence levels equal or greater than 0.5 (α ≥ 0.5), the crisp counterpart of the
possibility and necessity measure are as follows:

Pos x� ~n
n o

� a , r4 � x
r4 � r3

� a , x� ar3 þ 1� að Þr4 ð21Þ

Pos x� ~n
n o

� a , x� r1
r2 � r1

� a , x� 1� að Þr1 þ ar2 ð22Þ

Nec x� ~n
n o

� a , r2 � x
r2 � r1

� a , x� ar1 þ 1� að Þr2 ð23Þ

Nec x� ~n
n o

� a , x� r3
r4 � r3

� a , x� 1� að Þr3 þ ar4 ð24Þ

In addition, the expected value of fuzzy variable ~n with the condition that r1 � 0,
would be as follows:

EPos n½ � ¼
Zþ1

0

Pos n� xf gdx�
Z0

�1
Pos n� xf gdx ¼ r3 þ r4

2
ð25Þ

ENec n½ � ¼
Zþ1

0

Nec n� xf gdx�
Z0

�1
Nec n� xf gdx ¼ r1 þ r2

2
ð26Þ
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Thereafter, Liu and Liu [54] introduced the credibility measure in order to
support compromise attitude of a DM over both extremes, such that:

Cr Af g ¼ 1
2

Pos Af gþNec Af gð Þ ð27Þ

Similarly, for all confidence levels equal or greater than 0.5 (α ≥ 0.5), the crisp
counterparts of the credibility measure are as follows:

Cr x� ~n
n o

� a , 2r2 � r1 � x
2 r2 � r1ð Þ � a , x� 2a� 1ð Þr1 þ 2� 2að Þr2 ð28Þ

Cr x� ~n
n o

� a , x� 2r3 þ r4
2 r4 � r3ð Þ � a , x� 2� 2að Þr3 þ 2a� 1ð Þr4 ð29Þ

and for r1 � 0, the expected value of the fuzzy variable ~n using credibility measure
is as follows:

ECr n½ � ¼
Zþ1

0

Cr n� xf gdx�
Z0

�1
Cr n� xf gdx ¼ r1 þ r2 þ r3 þ r4

4
ð30Þ

5.2 Fuzzy Counterparts of the Concerned HSND Problem

The compact form of the concerned HSND problem can be articulated as below:

min z ¼ F:Y þC:X

s:t :

X�N:Y

A:X�D

T :Y � 1

X�M:Y

P:Y � 1

Y 2 0; 1f g;X� 0

ð31Þ

in which the vectors F and C and matrices N and D address fixed opening costs,
travel costs, capacity of centers and demand parameters, respectively. Moreover,
matrices A, T and P are coefficient matrices of the constraints while M is a large
number. Finally, variable Y refers to location decisions and variable X addresses
patients’ flow throughout the whole network.
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Now assume that parameters F, C, N and D are tainted with epistemic uncer-
tainty. Accordingly, the basic possibilistic chance constraint programming
(BPCCP) model is as follows:

min E z½ � ¼ E ~F
� �

:Y þE ~C
� �

:X

s:t :

Ch X � ~N:Y
� �� a

Ch A:X � ~D
� �� b

T :Y � 1

X�M:Y

P:Y � 1

Y 2 0; 1f g;X� 0

ð32Þ

Taking into account the possibility measure as a chance constraint transforma-
tion approach, the crisp counterpart of the BPCCP model can be stated as follows:

min E z½ � ¼ Fð3Þ þFð4Þ
2

� �
:Y þ Cð3Þ þCð4Þ

2

� �
:X

s:t :

x� aNð3Þ þ 1� að ÞNð4Þ
� �

:Y

A:X� 1� að ÞDð1Þ þ aDð2Þ
T :Y � 1

X�M:Y

P:Y � 1

Y 2 0; 1f g;X� 0

ð33Þ

Also, the crisp counterpart of the BPCCP model under the necessity measure is
as follows:

min E z½ � ¼ Fð1Þ þFð2Þ
2

� �
:Y þ Cð1Þ þCð2Þ

2

� �
:X

s:t :

x� aNð1Þ þ 1� að ÞNð2Þ
� �

:Y

A:X� 1� að ÞDð3Þ þ aDð4Þ
T:Y � 1

X�M:Y

P:Y � 1

Y 2 0; 1f g;X � 0

ð34Þ
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And finally, the crisp counterpart of the BPCCP model under the credibility
measure would be as follows:

min E z½ � ¼ Fð1Þ þFð2Þ þFð3Þ þFð4Þ
4

� �
:Y þ Cð1Þ þCð2Þ þCð3Þ þCð4Þ

4

� �
:X

s:t :

x� 2a� 1ð ÞNð1Þ þ 2� 2að ÞNð2Þ
� �

:Y

A:X� 2� 2að ÞDð3Þ þ 2a� 1ð ÞDð4Þ
T :Y � 1

X�M:Y

P:Y � 1

Y 2 0; 1f g;X� 0

ð35Þ

6 Case Studies

As was mentioned in the “literature review” section earlier, there is not any research
focusing on mathematical modeling of HSND problem under epistemic uncer-
taintyof input data. However, the work by Shishebori and Babadi [9] can be
regarded as the closest article to the concerned problem of this paper, in which a
mixed integer programming model (MIP) for a reliable medical service network
designunder uncertainty is proposed. Nevertheless, the main difference is that they
used robust optimization approach to protect the network against uncertainty and
also just focused on medical service rather than the whole health service including
preventive and non-medical centers. Thus, in this part, a proposed case study
provided in Shishebori and Babadi [9] is briefly reviewed to show a practical
application of HSND mathematical modeling under uncertain environment.

The main goal of the proposed model in Shishebori and Babadi [9] is to improve
accessibility of urban residents to MS centers in Chaharmahal-Bakhtiari, one of the
31 provinces in Islamic Republic of Iran. Since, the healthcare system conditions
have a significant effect on promotion of province development indicators and
improvement of public health welfare, the stated aim of the proposed model is to
provide the most robust and reliable medical network design/plan to promote the
medical system of the province regarding to the limited allocated budget.

In order to optimally design the medical service network in this study, four main
decision variables are taken into account i.e. (1) the optimum locations of new MS
centers, (2) the transfer links that should be constructed/improved in the existing
network, (3) the amount of demands of nodes that should be transferred by links,
and (4) the fraction of every demand that should be supplied by new and exciting
medical service (MS) centers (i.e., clinics). These decisions must be made with
respect to minimization of total costs, including fixed facility opening costs, links’
construction/improvement costs and the transfer costs between nodes.
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Figure 5 clearly depicts the geographical map of Chaharmahal-Bakhtiari pro-
vince, which consists of 29 nodes (towns) with a total population of 895,263. Each
town is a client node whose demand equals its patients. They stated that there is two
activeMS centers which are located in the nodes 12 (Farsan) and 27 (Shahrekord), the
latter is known as a reliable MS center. Since other 27 towns (nodes) do not have any
healthcare service centers, they can be considered as potential candidate locations to
open new MS centers. However, because of some reasons ranging from bad weather
conditions, delay in drug supply and lack of specialists to the occurrence of natural
disasters such as floods and earthquakes, all of them are unreliable. Moreover, there
are 29 existing and 22 potential roads which can be classified into four categories in
terms of quality: high, good, medium and low and constructing/improving costs of
these links highly depends on the quality status of the roads.

Fig. 5 Geographical map of the concerned area (adopted from Shishebori and Babadi [9])
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In addition, since the changing conditions (e.g. climate change, fluctuations in
stock market prices, etc.) will lead to uncertainty in input parameters of the medical
service network designproblem, they consider the demands for medical service and
the transfer unit costs as uncertain parameters. They then defined four scenarios
with different probability of occurrence including excellent, good, medium and bad
situations.

They also defined an upper bound for investment in medical service network
construction/expansion activities, due to the budget constraints of Ministry of
Health and Medical Education (MoHME) and Ministry of Road and Transfer
(MoRT), who are in charge of investment in MS centers and road network
construction/improvement, respectively. They also set the predetermined number of
new centers as 3 and solved the model using CPLEX solver in GAMS.

In the optimal solution, new MS centers were established at nodes 2, 8 and 16
and also 6 roads must to be constructed between nodes 15 and 27, nodes 15 and 17,
nodes 2 and 20, nodes 7 and 18, nodes 10 and 11, and also nodes 18 and 19.
Moreover, it has been reported that the quality of 8 “good quality”, 9 “medium
quality” and 8 “low quality” existing roads should be improved from good, medium
and low quality to high quality, respectively.

Noteworthy, they finally declared that, if all the existing MS centers, all can-
didate locations for establishing new MS centers and all transfer links are consid-
ered 100 % reliable and also neglect uncertaintyof the input parameters and solve
the deterministic model with the mean value of uncertain parameters, then, the
optimal value of the objective function will be increased only 3.025 % (from
401,453.231 to 413,598.511 Monetary Unit) which is highly impressive. This fact
emphasizes that taking real practical factors into accounts can substantially improve
the efficiency of the achieved solution but with a modest growth at the total costs.

7 Future Research Directions

Health service network design (HSND) as one of the critical strategic decisions can
affects the performance of health systems to the great extent. The main determinants
of HSND problem are location of different healthcare facilities, allocation of
regions to new established or existing facilities, flow of patients throughout the
network. In this research, after explaining health, health system and HSND problem
briefly, a comprehensive review of the related literature to the HSND problem is
provided, which is followed by a typical mathematical model for the concerned
problem. Finally, fuzzy programming approach is described in brief and different
fuzzy measures i.e. possibility, necessity and credibility measures are applied to the
compact form of the proposed mathematical programming model.

With respect to the current state-of-the-art literature in HSND problem, there are
various avenues for further research i.e. (i) addressing various healthcare
facilities/services via a single HSND problem, (ii) considering input parameters as
uncertain data and using a mixture of uncertaintyprogramming approaches like the
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fuzzy programming, stochastic programming and robust optimization approaches in
order to handle different types of uncertainties in data, (iii) developing heuristic,
metaheuristic and exact algorithms to solve the HSND problem in large-scale
problems.
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Robotics and Control Systems

M.H. Fazel Zarandi and H. Mosadegh

Abstract Robots are of those intelligent systems created to do a wide range of
activities with the aim of human aid and productivity improvement. Besides, many
different fields of studies such as engineering, healthcare, computer science,
mathematics and management are involved in order to increase the efficiency and
effectiveness of robots. Generally speaking, robotics and control systems is a
branch of engineering science that deals with all aspects of robot’s design, operation
and control. More precisely, the concept of control in this paper is knowing the
techniques required for programming robot’s activities such as its physical move-
ments, rotations, decisions and planning. In addition to mathematical modeling
optimization and scheduling, there are a lot of control theory based approaches
dealing with physical movement control of the robot at every moment of time. Due
to the uncertainties, fuzzy set theory, applicable for all control techniques, is
extensively used for robots. The role of fuzzy modeling becomes more evident
when one can include human expertise and knowledge via fuzzy rules in the control
system. Without loss of generality, this paper presents fuzzy control techniques as
well as fuzzy mathematical scheduling model for an m-machine robotic cell with
one manipulator robot. Furthermore, it proposes an integrated fuzzy robotic control
system, in which the fuzzy optimization model is solved at every predetermined
period of time such as beginning of shifts or days, etc. Then, based on the solutions
obtained, input parameters and unpredictable disturbances, the autonomous fuzzy
control is executed continuously. These two modules transfer information and
feedback to each other via an intermediate collaborative module. The explanations
are supported via an example.

Keywords Robotic � Control � Fuzzy � Optimization � Rule-based

M.H. Fazel Zarandi (&) � H. Mosadegh
Department of Industrial Engineering and Management Systems,
Amirkabir University of Technology, 424 Hafez Avenue, 1591634311 Tehran, Iran
e-mail: zarandi@aut.ac.ir

© Springer International Publishing Switzerland 2016
C. Kahraman et al. (eds.), Fuzzy Logic in Its 50th Year,
Studies in Fuzziness and Soft Computing 341,
DOI 10.1007/978-3-319-31093-0_13

283



1 Introduction

Human knowledge is increasingly growing and the details of surrounding envi-
ronment are discovered fast. Robots are of those human-made instruments with the
goal of aiding in a lot of life and working activities. Todays, many types of
robotsare designed and built in different areas like healthcare and surgery, manu-
facturing, human-aid, agriculture, urban search and rescue, research and other
engineering applications [1–7]. One of the most important aspects that robots have
in common is that they are all programmable and can be designed and controlled
according to their capabilities and limitations. Without loss of generality, this paper
will focus on manufacturing manipulator robots, namely robotic cell.

Robots are intelligent agents that are guided by computer programs to do some
activities automatically. As well as electrical circuitry, they are equipped with
mechanical mechanism and facilities. Robotics is a branch of engineering science
that deals with all aspects of any kind of robot including its design, operation and
control. The physical details and kinematics of a robot may be found in [8].
Additionally, all aspects of robot intelligence as well as techniques and features are
described and studied by [9] and [10]. The expansion of robot studies is growing
fast so that for the manipulator of robot, also known as manipulator robot, is
becoming a branch of technology and business [11, 12].

One of the most important areas in the field of robotics is investigating the
approaches for controlling a robot. Autonomous or semi-autonomous control of a
robot has been studied by many researches and engineers, but there are a lot of
problems remained unsolved. As the concept of control can be interpreted as the
decision made for the robot action, there are many books and papers dealing with
robotic control systems. In fact, the control could be categorized into static and
dynamic control. In the static approach, an optimization problem is defined and
solved at the beginning of predetermined periods e.g., shifts, days etc. Many
researchers have focused on optimization and scheduling of robot activities such as
[13–22]. However, to the best of authors’ knowledge, some aspects of real prob-
lems like an m-machine robotic cell have not been considered yet.

On the basis of mechanical and electrical engineering methods, most of dynamic
activities of the robot can be predicted and studied. Therefore, by the means of
control theory [23], robot’s actions are managed and controlled at each unit of time.
However, due to the uncertainties, there might be some uncontrollable parameters
by which disturbances may occur. In this regard, fuzzy set theory is the most
superior technique that is employed to deal with this issue [24–29]. In addition to
coping with uncertainties, fuzzy rules are applicable for those aspects of the robot
which cannot be modeled mathematically. Technically, some problems are not
handled with scientific methods, but human expertise and knowledge will help in
many practical situations. By the use of fuzzy logic, human experience can be
modelled as a knowledge base for controlling issues [30, 31]. This approach is the
basis of the most of conventional fuzzy control techniques.
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The rest of the paper is organized as follows. Section 2 describes the dynamic
and static modelling of a robot on the basis of control theory, mathematical mod-
eling and expert system approaches. The concept of control theory, fuzzy control
theory and one supporting example of robotic system is provided in Sect. 3.
Section 4 proposes a robotic control system including combination of fuzzy opti-
mization models as well as fuzzy controllers. Finally, Sect. 5 concludes the paper.

2 Dynamics and Modeling

2.1 State Space Modeling

Modeling is a systematic process that use some information about the real entity
which is modeled. This information come from many sources of knowledge and
data. In some cases, where data is not available but there is enough knowledge to
describe its features and behavior, the modeling approach is called state space
modeling. Before description of the modeling, a definition of the system is required
which is provided as follows.

2.1.1 System

Understanding of a system is an intuitive concept, but some different definitions are
provided. As a simple statement, a system is a combination of interacting items that
work together to achieve a goal, not reachable by the absence of at least one of
those item. Regarding many system analysis approaches, engineers prefer to
measure quantitative aspects of a system and control assessable outputs as much as
possible. More precisely, three concepts each system should be clearly identified:
boundary of the system, inputs and outputs. As another definition of the system, it
could be stated as an aggregation of components which transfer the inputs to the
outputs.

Figure 1 depicts a system with its model. As the boundary of the model becomes
wider the complexity of the model increases. However, more details of the system
can be considered and hence, the accuracy of the output results will improve.
Normally, the boundary of the model is established with assumptions. As a result,
the more simplifying assumptions the more unreliable output results.

2.1.2 Dynamics of Robot Motions

Using kinematics and energy relations of physical body of the robot, its dynamics
could be formulated, typically as differential equations systems. As a system point
of view, the robot has two parameters, i.e., inputs and outputs as well as one
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variable, namely state. Because they are all measurable, it is convenient to use some
characters for their formulations. For this purpose, let u be the vector of inputs, x be
the state of the system and y be the vector of outputs. Equations (1) and (2)
represent the state space modeling of the robot.

_x ¼ AxþBu ð1Þ

y ¼ CxþDu ð2Þ

where A, B, C and D are coefficient matrices of the model. In fact, the state of the
robot is one or more quantitative variables which continuously changes when the
robot moves. As a simple example, illustrated in Fig. 2, one can assume a robot
with two links for which one is fixed and the other one is oscillating like a pen-
dulum. For simplification, the weight of handing arm is assumed to be negligible,
but it carries a manufacturing part with mass m.

The state variable of the robot is its angle between the oscillating link and the
vertical line, i.e., θ. After some calculations, the differential equations of the state
space modeling of the robot can be written as Eq. (3).

ml2€hþmgl sin h ¼ 0 ð3Þ

Dynamics of a robot with only one oscillating link can be stated as Eq. (3).
However, by simultaneously moving both links, the state and differential equations
of the robot will significantly change and therefore its dynamic formulations
become more complicated. The modeling issue goes worst when the mass of each
link is included. Figure 3 represents a robot for which both links are able to move in
different directions of a plane. In this case, the robot is assumed to be free of load.
m1 and m2 are germs of the main and the handling links of the robot, respectively.

System

Inputs OutputsModel

Fig. 1 A system with boundary, inputs and outputs. The model of the system has much narrower
boundary than the real system. Inputs of the model may differ from the real inputs of the system.
Normally, the boundary and inputs of the model are defined with establishing assumptions about
the systems. Consequently, the outputs of the model may differ from the outputs of the real system.
Each model would be valid for its relative system as much as its outputs approach to the system’s
outputs

286 M.H. Fazel Zarandi and H. Mosadegh



Normally, Lagrange’s equations are applied for developing differential equations
of robots’ movements. For this purpose, assume each link with mass of mi and
inertia tensor moment of z, Izi . Furthermore, let s1 be the applied torque for the
acceleration of the joints and s2 be the applied torque for the Coriolis and cen-
trifugal forces. After some calculations, following results are obtained. For

m

mg

N
l

Fig. 2 A robot with two
arms, say links. The main link
is fixed and the other link with
manipulator can oscillate.
Both links are connected with
joints. The robot movements
is assumed to occur in a
two-dimensional space

1

l1

l2

r1

r2

2

m 1

m2

y

xFig. 3 A two-link planar
robot. Both links can oscillate
independently in different
directions
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convenience, some terms, written in the first three equations, i.e., Eqs. (4)–(6), are
represented as parameters α, β and δ. The last two equations, i.e., Eqs. (7) and (8),
are the resulted differential state space models for the two-link planar robot.

a ¼ Iz1 þ Iz2 þm1r
2
1 þm2 l21 þ r22

� � ð4Þ

b ¼ m2l1r2 ð5Þ

d ¼ Iz2 þm2r
2
2 ð6Þ

aþ 2bc2ð Þ€h1 þ dþ bc2ð Þ€h2 � bs2 _h2 _h1 � bs2 _h1 þ _h2
� �

_h2 ¼ s1 ð7Þ

dþ bc2ð Þ€h1 þ d€h2 þ bs2 _h
2
1 ¼ s2 ð8Þ

By the use of above differential equations, behavior of the robot can be studied
based on the changing parameters. However, in real cases, there are many other
aspects which should be considered in modeling and investigations. The next
section presents dynamics of a general manipulator robot.

2.1.3 Dynamics of a General Manipulator Robot

It is assumed that a general robot has a tree structure containing a fixed base link
(arm), N movable links that are connected with N joints. The robot links are
numbered in sequence from the base to the hand. In other word, the robot link
connected to the base link is numbered as 1, and its immediate next link is num-
bered as 2, etc. Each robot link is considered as the parent of its immediate fol-
lowing link. More precisely, the ith arm is the parent of the (i + 1)th arm.

Unlike aforementioned planar cases, a 3-dimensional state space is considered
here. The state variables of the robot are its angular and linear values of velocity,
acceleration and force. Dynamics of the general robot is written as Eqs. (9)–(11) [32].

vi Velocity of link i

wi The motion freedom matrix of joint i
_ki Velocity of joint i

ai Acceleration of link i
€ki Acceleration of joint i

Ii Inertia of link i

Fi Sum of all forces acting on link i
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vi ¼ vi�1 þwi _ki ð9Þ

ai ¼ ai�1 þ _wi _ki þwi€ki ð10Þ

Fi ¼ Iiai þ vi � Iivi ð11Þ

The state space modeling of the general robot is represented as differential
equations for each moving arm i. For detail information of robot dynamics one can
refer to [33]. In the next sections, it is described that how these equations are used
to achieve control of the robot at each unit of time.

2.2 Mathematical Modeling

Another approach of controlling the robot is developing mathematical optimization
models. In this procedure the nature of modeling completely differs from the one
that considers dynamics of the robot. In fact, the mathematical model is a static
model that is solved in some points of times, e.g. at the beginning of shifts. Figure 4
shows a robotic cell for loading/unloading manufacturing parts on/from m machines
working in the cell. In what follows, a mathematical optimization model for an m-
machine robotic cell scheduling problem with sequence-dependent setup times is
developed. The details of modeling can be found in [20].

M j

M 1

M j-1M j+1

M m

Input
hopper

Output
hopper

2

Fig. 4 An m-machine robotic cell. Manufacturing parts, say jobs, are entered into the cell through
the Input hopper. All of the manufacturing parts are processed from machine M1 to machine Mm

sequentially
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2.2.1 Nomenclature

MPS the minimal part set,
T set of part types to be manufactured,
M set of machines including the Input and Output hoppers with

m ¼ 0; 1; . . .; Mj j,
dt demand of the tth part type with t ¼ 1; 2; . . .; Tj j,
rt minimum ratio of the tth part type with t ¼ 1; 2; . . .; Tj j,
J set of jobs, i.e., the Minimal Part Set (MPS), where

Jj j ¼ MPSj j ¼ r1 þ r2 þ � � � þ r Tj j,
Pm
j processing time of the jth job on the mth machine, where j ¼

1; 2; . . .; Jj j and m ¼ 0; 1; . . .; Mj j,
K set of steps with k ¼ 1; 2; . . .; Jj j � Mj j,
emðlÞij

loading time of part j on machine m, scheduled after part i, where
i ¼ 1; 2; . . .; Jj j, j ¼ 1; 2; . . .; Jj j and m ¼ 0; 1; . . .; Mj j,

emðuÞj
unloading time of part j from machine m, where j ¼ 1; 2; . . .; Jj j,
m ¼ 0; 1; . . .; Mj j,

d traveling time of robot between two consecutive machines,
W a very large positive number.

It should be mentioned that symbol :j j might have two meanings. If it contains a
set like J or M it will return the cardinality of the set. However, containing a
mathematical term stands for the absolute value of that term.

2.3 Mathematical Modeling

2.3.1 Parameters and Variables

Parameters were previously introduced in the nomenclature. The decision variables
of the mathematical model are presented as follows.
xkmj binary variable that equals to 1 if job j at the kth step is loaded on machine

m or 0 otherwise,
yij binary variable that equals to 1 if job j is immediately scheduled after job i or

0 otherwise,
lkmj loading time of the jth job on the mth machine at step k,

ct cycle time, the time between loading a job on a machine and loading that job
again on the machine after on cycle completed,

lmax the maximum loading time before the last loading
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There are some auxiliary variables used for linearizing the model, introduced as
follows. The supportive description about these variables are mentioned later.

rk number of machines between departure and destination of the robot at the kth
step when robot moves forward that means the departure index is fewer than the
destination index

sk number of machines between departure and destination of the robot at the kth
step when robot moves backward in which departure index is larger than the
destination index

The constraint to be formulated for the mathematical model are categorized as
follows.

2.3.2 Initialization

In the cyclic modeling, the starter job should be appeared at the end of the cycle
again, or at the beginning of the next cycle. Without loss of generality and in order
to prevent enlarging the model as much as possible, it is recommended here to fix
some variables, namely initializers. There is no difference in fixing variables, but it
should be noticed that the initializers should be traced for some constraints
explained later. As a general formulation, initialization is done through Eqs. (12)
and (13).

x111 ¼ 1 ð12Þ

l111 ¼ 0 ð13Þ

Equation (12) states that job 1 id the starter of the cycle that is loaded on
machine 1 at the first step. The following sub-sections will declare that l111 could be
fixed at any value, however it has been assigned equal to zero in Eq. (13).

2.3.3 Part Sequence Constraints

The easiest group of constraints are the sequential restrictions in which each job
should be scheduled after and before exactly one job in the MPS.

XJj j

i¼1; i 6¼j

yij ¼ 1 j ¼ 1; 2; . . .; Jj j ð14Þ
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XJj j

j¼1; j 6¼i

yij ¼ 1 i ¼ 1; 2; . . .; Jj j ð15Þ

yij þ yji � 1 i ¼ 1; 2; . . .; Jj j; j ¼ 1; 2; . . .; Jj j ð16Þ

Equation (14) ensures that only one job precedes job j. Similarly, in Eq. (15)
there is exactly one job that follows job i. Inequality (16) indicates that if job
i precedes job j, it cannot appear after it in the cycle and vice versa.

2.3.4 Robot Sequence Constraints

It is obvious that at each step exactly one part should be loaded on a machine. This
restriction is considered in Eq. (17).

XJj j

j¼1

XMj j

m¼1

xkmj ¼ 1 k ¼ 1; 2; . . .; Jj j � Mj j ð17Þ

Each part like j is loaded on each machine like m in only one step. Then the
following equation should be considered.

XJj j� Mj j

k¼1

xkmj ¼ 1 j ¼ 1; 2; . . .; Jj j;m ¼ 1; 2; . . .; Mj j ð18Þ

Since there are no buffers between machines, jobs are blocked on machines if
their processing ends earlier than robot arriving. Moreover, the cell environment
consists of a flow shop with m machines in the cell and the objective is to minimize
the cycle time, i.e., the RFm|block|ct problem [20]. As a result, each part should pass
through all machines according to the sequence that all jobs are entered into the
cell. In order to take this consideration to account, the loading step of each part on
each machine should be greater than the one on the previous machine, i.e., Eq. (19).

XJj j� Mj j

k¼1

kxk;m�1
j �

XJj j� Mj j

k¼1

k xk;mj j ¼ 1; 2; . . .; Jj j; m ¼ 2; 3; . . .; Mj j ð19Þ

2.3.5 Relation Constraints

As the model simultaneously formulates the sequence of parts and the sequence of
robot movements, it is necessary to make connection between corresponding
variables by means of some constraints, namely relation constraints. For this
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purpose, it is ensured that when part j follows part i, it cannot visit a machine before
part i. This consideration is taken into account by means of inequality (20).

XJj j� Mj j

k¼1

k xk;m�1
i �

XJj j� Mj j

k¼1

k xk;mj þ 1� yij
� �

W

i ¼ 1; 2; . . .; Jj j; j ¼ 2; . . .; Jj j; i 6¼ j; m ¼ 2; 3; . . .; Mj j
ð20Þ

Since job 1 is the starter of the cycle, in constraint (20), index j starts from 2,
where the step number, k, of the first job is less than that of other jobs.

If job i precedes job j in the sequence, then job j cannot be loaded on machine
m before unloading job i from that machine. In other words, loading of part j on the
mth machine should be after loading of part i on machine ðmþ 1Þ. This limitation is
modeled as inequality (21).

XJj j� Mj j

k¼1

k xk;mþ 1
i �

XJj j� Mj j

k¼1

k xk;mj þ 1� yij
� �

W

i ¼ 1; 2; . . .; Jj j; j ¼ 2; . . .; Jj j; i 6¼ j; m ¼ 1; 2; . . .; Mj j � 1

ð21Þ

2.3.6 Completion Time Constraints

Referring to the classical scheduling, each loading time can be represented as a
completion time either. In this regard, the loading time of each job on each machine
starts from completion time of that job on the previous machine. More precisely,
two situations are possible. First, the processing has completed and the job is
blocked on the machine until the robot arrives, that is leaving another machine.
Then the loading time should be greater than the loading time of machine which has
been just left as well as traveling time of robot from that machine to the machine on
which the job has been blocked.

In the second case, the robot should wait for the job to be processed and after
that start its loading on the next machine. Therefore, the loading time of job j on
machine m should be greater than its loading time on the previous machine plus its
processing time on that machine. For simplification, temporarily assume that fk is
the traveling time of robot from the machine that has been just loaded at step
k � 1ð Þ to the machine which is going to be loaded at step k. As a result, constraint
(22) formulates the two aforementioned cases.

lkmj ¼ max lk�1;m0
j0 þ fk; l

k0;m�1
j þPm�1

j

n o
þ em�1;2

j þ dþ
XJj j

i¼1

em1ij yij

 !
xkmj

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; . . .; Mj j;m0 ¼ 1; 2; . . .; Mj j;
k ¼ 2; 3; � � � ; Jj j � Mj j; k0 ¼ 1; 2; . . .; Jj j � Mj j

ð22Þ
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Assume that robot has loaded part j0 on machine m0 at the kth step and at step k it
loads part j on machine m, i.e., xk�1;m0

j0 ¼ xkmj ¼ 1. It is possible that j ¼ j0 and
m ¼ m0 as well. But, it is assumed that part j has been loaded on machine m� 1ð Þ at
step k0 so that k 6¼ k0. As a result, the term max lk�1;m0

j0 þ fkd; l
k0;m�1
j þPm�1

j

n o
gives

the time that robot reaches part j, ready for pickup, on machine m� 1ð Þ. In the rest
of actions, robot picks up the part with time of em�1;2

j , carries it toward machine

m with time of d and loads the part with time of
P Jj j

i¼1 e
m1
ij yij. The last term includes

the concept of sequence dependent setup times. In other words, when yij ¼ 1 the
loading time of job j on machine m is affected by its preceding job, i, which is
presented as em1ij .

Now, fk should be computed via the aforementioned parameters and variables.
According to additive-travel metric [20] fk is obtained as follows.

fk ¼
XJj j

j¼1

XMj j

m¼1

mxk�1;m
j �

XJj j

j¼1

XMj j

m¼1

m� 1ð Þ xkmj
�����

�����d k ¼ 2; 3; . . .; Jj j � Mj j ð23Þ

Substituting Eq. (23) in Eq. (22) results the following nonlinear equation.

lkmj ¼ max lk�1;m0
j0 þ

XJj j

j¼1

XMj j

m¼1

mxk�1;m
j �

XJj j

j¼1

XMj j

m¼1

m� 1ð Þxkmj
�����

�����d; lk0;m�1
j þPm�1

j

( ) 

þ em�1;2
j þ dþ

XJj j

i¼1; i 6¼j

em1ij yij

!
xkmj

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; . . .; Mj j;m0 ¼ 1; 2; . . .; Mj j;
k ¼ 2; 3; . . .; Jj j � Mj j; k0 ¼ 1; 2; . . .; Jj j � Mj j

ð24Þ

2.3.7 Linearization of Completion Time Constraints

Equation (24) is nonlinear because of including a max operator, an absolute term
and multiplication of decision variables. To linearize the absolute term, Eq. (25) is
inserted into the model. It is obvious that two variables rk and sk are linearly
dependent that implicitly means rksk ¼ 0.

XJj j

j¼1

XMj j

m¼1

mxk�1;m
j �

XJj j

j¼1

XMj j

m¼1

m� 1ð Þ xkmj
�����

����� ¼ rk � sk k ¼ 2; 3; . . .; Jj j � Mj j ð25Þ

In order to remove the max operator, Eq. (24) is replaced with the two following
inequalities, while the absolute term is substituted by term rk � sk.
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lkmj � lk�1;m0
j0 þ rk � skð Þdþ em�1;2

j þ dþ
XJj j

i¼1; i6¼j

em1ij yij

 !
xkmj

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; . . .; Mj j;
m0 ¼ 1; 2; . . .; Mj j; k ¼ 2; 3; . . .; Jj j � Mj j

ð26Þ

lkmj � lk
0;m�1
j þPm�1

j þ em�1;2
j þ dþ

XJj j

i¼1; i6¼j

em1ij yij

 !
xkmj

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; . . .; Mj j;
¼ 1; 2; . . .; Mj j; k01; 2; . . .; Jj j � Mj j

ð27Þ

Inequalities (26) and (27) are still nonlinear because of variables’ multiplication.
Dealing with this issue, an approach should be applied which activates the
inequalities as one of the aforementioned situations happens. The linearized
inequalities are presented as inequalities (28) and (29).

lkmj � lk�1;m0
j0 þ rk � skð Þdþ em�1;2

j þ dþ
XJj j

i¼1; i6¼j

em1ij yij þ xkmj þ xk�1;m0
j0 � 2

� �
W

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; � � � ; Mj j;
m0 ¼ 1; 2; � � � ; Mj j; k ¼ 2; 3; . . .; Jj j � Mj j

ð28Þ

lkmj � lk
0;m�1
j þPm�1

j þ em�1;2
j þ dþ

XJj j

i¼1; i 6¼j

em1ij yij þ xkmj þ xk
0;m�1
j � 2

� �
W

j ¼ 1; 2; . . .; Jj j;m ¼ 2; 3; � � � ; Mj j; k ¼ 1; 2; . . .; Mj j;
k0 ¼ 1; 2; . . .; Jj j � Mj j

ð29Þ

2.3.8 Cycle Time Constraints

In the final set of constraints, the cycle time is derived via constraints (30) and (31).
A cycle is the time between loading job 1 on machine 1 at the first step and loading
that job again on machine 1 at the Jj j � Mj j þ 1ð Þth step so that all parts have been
processed.

lmax � l Jj j� Mj j; Mj j
j þ x Jj j� Mj j; Mj j

j � 1
� �

W j ¼ 1; 2; . . .; Jj j ð30Þ

ct ¼ lmax þ Mj jdþ e021 þ
XJj j

i¼2

e11i1 yi1 � l111 ð31Þ
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2.3.9 Variables’ Domain Constraints

Constraints (32)–(36) determine domain of the variables.

xkmj 2 0; 1f g j ¼ 1; 2; . . .; Jj j;m ¼ 1; 2; . . .; Mj j; k ¼ 1; 2; . . .; Jj j � Mj j ð32Þ

yij 2 0; 1f g i ¼ 1; 2; . . .; Jj j; j ¼ 1; 2; . . .; Jj j ð33Þ

lkmj � 0 j ¼ 1; 2; . . .; Jj j;m ¼ 1; 2; . . .; Mj j; k ¼ 1; 2; . . .; Jj j � Mj j ð34Þ

rk; sk � 0 k ¼ 1; 2; . . .; Jj j � Mj j ð35Þ

lmax; ct� 0 ð36Þ

Besides all formulation, the value of W also has an incredible effect on the time
consumption of finding solution. It, however, should be determined as small as
possible.

2.3.10 Objective Function

In many traditional scheduling problems, minimizing maximum completion time,
Cmax, is a common objective function. Cmax is not considered in this study, but it can

be easily formulated asmax lkmj þPm
j

n o
, where j ¼ 1; 2; . . .; Jj j,m ¼ 1; 2; . . .; Mj j,

k ¼ 1; 2; . . .; Jj j � Mj j.
In fact, there is a difference between minimizing maximum completion time,

Cmax, maximum loading time, lmax and cycle time, ct. The last objective sometimes
is referred to maximizing the steady state throughput rate of the cell that has a
different nature in comparison with the other criteria, i.e., lmax and Cmax. As a
conclusion, since the cycle is repeated for a long time, this paper considers mini-
mizing ct as the objective function, illustrated in Eq. (37), which incredibly
improves the efficiency of m-machine robotic cell. The problem is now formulated
as a Mixed-Integer Programming (MIP) model as follows.

minimize ct ð37Þ

Subject to: constraints (12)–(21) and (28)–(37).
The above mathematical model can be solved using optimization commercial

solvers such as CPLEX.
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2.4 Expert Systems Modeling

Despite mathematical modeling, some system developers believe in human expe-
rience and expertise. The ability of a human expert in problem solving is modeled
via a computer program, i.e., the expert system (ES). Most expert systems contain
three main modules. The principle module of an ES, obtained from a real expert, is
its knowledge, which is stored in the knowledge base. Another main characteristic
of an ES is the method of reasoning that it has, which is performed by the inference
engine. In order to keep all the information required for problem solving, a working
memory is designed for the ES as its third module [34].

Modeling of the human knowledge is an important issue in all expert systems.
However, rule-base approach is one of the most common techniques, by which one
can represent the knowledge of the system. In fact, a rule-base is a procedural
knowledge.

Basically, a rule consists of two main parts, namely IF part and THEN
part. However, there are some other expressions used for these two parts. For
example, the IF part is also known as the Antecedent, Conditions, Premises and for
the THEN part one may use Consequent, Conclusions and Actions. There are also
some operators that concatenate or relate some IF expressions together, i.e., AND,
OR and ELSE. An example of a rule-base knowledge representation is provided as
follows.

IF the robot is idle AND the processing of all jobs have not finished THEN turn
the robot to standby mode.

In the knowledge base, there are a huge pool of IF-THEN rules representing the
human knowledge, but utilizing these rules to solve a problem is another issue of an
ES. More precisely, there are some techniques for reasoning that search through the
knowledge base to solve the problem. In this regard, forward chaining and back-
ward chaining are of the most popular methods which construct the main structure
of ES’ inference engine.

Rule-base knowledge representation are applicable for every expert system kind
modeling such as fuzzy control systems. In what follows, main framework of fuzzy
controllers are described and as discussed, rule-base approach play a significant role
in modelling the fuzzy parameters and rules.

3 Fuzzy Control Techniques

Using state space modeling and differential equations of the system, it can be
analyzed and studied by which the control is applicable. The input, output and
dynamics of a linear system can be represented as Fig. 5.

Since the movements of a manipulator robot is highly nonlinear, without loss of
generality, in following formulations the state space equations are rewritten as Eqs.
(38) and (39).
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_x ¼ f ðx; uÞ ð38Þ

y ¼ gðx; uÞ ð39Þ

In what follows the concept of control theory and applications of state space
modeling is described.

3.1 Control Theory

The concept of control theory is concerned with how one can feed right input to the
system to achieve desired output. In this regard, a reference signal is defined as a
measure of state control of the system. Figure 6 represents a system with a control
module that justifies the input variables.

In Fig. 6, the control module can adjust the input values at any time, but there is
not any feedback from the system to check how far it is from the desired state. This
type of control is named as open-loop control system. However, the feedback of
system is necessary to evaluate error of the control system comparing system’s state
with the reference signal. Unlike open-loops, closed-loop control systems utilize
feedback of the system at each moment of action. The input is a function of
reference signal and state of the system. In general, when feedback is determined,
the error is computed by subtracting the current state from the desired state. This
error is used for further analysis and investigations. Figure 7 illustrates a
closed-loop control system. Recently, use of Proportional Integral Derivative
(PID) controller as a closed-loop feedback mechanism controller is extensively used
in industrial control systems.

Apparently, the robot with aforementioned dynamic formulations is controllable
using control theory. For this purpose, it should be identified which parameters of
the system can be changed by the controller, e.g., the external forces and tensions.

u
= Cx + Du

y = Cx + Du
System

Fig. 5 The inputs, dynamics
and outputs of a system. The
state space modeling of the
system is linear

u
= f (x , u)

y = g (x , u)

System

Controller

r

Fig. 6 A system with controller. Since there is not any feedback to the system, it is called an
open-loop system
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The aim of the controller is to guide the system to reach its desirable state and
maintaining in that state for some amounts of time. Figure 8 provides the trajectory
of a system under transient and stable periods of time, where x(t) is the state of the
system and r stands for the reference signal or the ideal point. As a predefinition,
the control is the decisions one can take during some periods of time to bring the
system toward its ideal situation as close as possible.

In general, there are other external parameters, some of which are not control-
lable, but influence on the output results, e.g., the inertia effect, maintenance pro-
gram and unknown disturbances. The issue of these non-controllable factors
become worst when uncertainty phenomena presents. Most of imprecise input
parameters are dealt with fuzzy set theory. Hence, the concept of fuzzy control has
been developed in order to include non-predictable factors in the state space
modeling and achieve desirable results [31].

3.2 Fuzzy Controller

Uncertainties can be grouped into structured and unstructured parameters. Unlike
unstructured, the structured parameters are of those that are identified but because

u
= f (x , u)

y = g (x , u)

System

Controller

r

Fig. 7 A closed-loop control system. The feedback of the system is evaluated and analyzed for
improving the control actions

Transient Stable t

x(t)

r

Fig. 8 Trajectory of a system during its transient and stable periods
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of their random nature no mathematical model is available to involve them in
dynamics of the system. For example, unknown loads, unpredictable failures and
processing times may cause an unwanted disturbance. Fortunately, fuzzy set theory
as a model-free approach is applicable to deal with these types of uncertainties.
However, the other unstructured uncertainties remained unsolved for further
investigations and studies.

Fuzzy control is such a technique by which not only many unknown variables
can be captured and investigated, but also it has the ability of including the experts’
knowledge and experience in robotic planning and control. When the mathematical
models and dynamic state space equations cannot handle complicated systems, the
human knowledge and expertise will deal with most of troubles and situations.
Fuzzy logic is the approach of including heuristics and human knowledge in such a
servomechanism system. Figure 9 is a block diagram of a fuzzy control system in
its general form.

As the knowledge of experts are stated linguistically, they are converted into a
rule-based framework with If-Then structure. The rule-based knowledge of the
system is the basis of fuzzy controller, which should be converted to a set of fuzzy
rules. There are many different types of fuzzy rules of which Mamdani is the first
with the linguistic structure, which is widely used in many fuzzy control designs.
For example, one control rule can be stated as follows.

IF “the temperature is very low AND the heater is of ” THEN “turn on the
heater”.

In the above statement temperature and heater are fuzzy variables and very low
and off are fuzzy linguistic values. The IF-part sentences are called antecedent and
the THEN-part sentence is called the consequent. Some rules may have more than
one statement as antecedent which are connected with AND/OR operators. All rules
and reasoning of a fuzzy controller belong to its inference engine.

In general, a fuzzy controller consists of three main modules, namely fuzzifier,
inference engine and defuzzifier. The role of fuzzifier and defuzzifier is to transform
crisp data to fuzzy variable(s) and vice versa, respectively. Inference engine, like
many expert systems with the use of knowledge-based through reasoning procedure
takes the control action.

Including most uncontrollable external factors, say disturbances, is the other
important advantage of fuzzy controllers. Disturbances may not be modelled with
mathematical programming tools, but the knowledge-based can be designed in such
a way that many rules support the system in disturbance situations. Figure 10

u
= f (x , u)

y = g (x , u)

Robot

Fuzzy Controller

r

Fig. 9 A system with fuzzy controller
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illustrates a robot control system with detail modules of its fuzzy controller, where
parameter d stands for the disturbance.

3.2.1 Example

Here, for more understanding of the fuzzy controllers, an example is provided.
Consider the following knowledge base of a robot.

IF processing time of part A is very long THEN remove it from the machine.
IF an unfinished part is chosen to be removed THEN put it part in the rework
station.
IF all machines are processing THEN go to the standby mode.
IF a failure happens AND it is not preventing THEN finish just high priority jobs.

There are also more priority scheduling rules that can be used in the knowledge
base of the controller in order to manage the sequence of all jobs in the
workshop. However, it is important to transform crisp data to fuzzy variables and
vice versa, which is performed via fuzzifier and defuzzifier modules. As an
example, assume that processing time of a job has a fuzzy linear membership
function as follows.

lPðtÞ ¼
1 t� b
t�a
b�a a\t\b
0 t� a

8<
:

Figure 11 illustrates the membership function of the example. A fuzzifier can be
programmed as follows.

= f (x , u)
y

Robot

Inference Engine FuzzificationDefuzzification

Knowledge Base

r

d

u

Fig. 10 A fuzzy control system with fuzzifier, inference engine, knowledge base and defuzzifier
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IF 0� lPðtÞ\0:33 THEN the processing time is short,
IF 0:33� lPðtÞ\0:67 THEN the processing time is normal,
IF 0:67� lPðtÞ� 1 THEN the processing time is long.

When the processing of a job starts, every unit of time, every second for
example, its processing time is checked and it is reported to the controller.
According to the knowledge base and the inference engine, the controller takes a
control action in that time. For the mentioned example, assume that the processing
of a particular job took more than usual. Then, based on the aforementioned rule,
the robot can use preemption and interrupt processing of that job.

There are much more examples of fuzzification, that might be converted to the
other fuzzy variables through reasoning process as the outputs. For example,
consider xi as the position of the ith link of the robot, where i ¼ 1; 2; . . .; I.
Assume that there are R rules in the knowledge base as follows.

If x1 2 Ar
1 And x2 2 Ar

2 … And xI 2 Ar
I Then yr 2 Cr for r ¼ 1; 2; . . .; R.

The membership function of each consequent Cr depends on the inference
engine and the knowledge base. As an example, employing a min-max rule can
conclude another fuzzy output which is required to be defuzzified. One of the most
common defuzzification approach is the center of gravity defuzzifier. However, if
the output is not a fuzzy variable, the defuzzifier may be programmed simpler than
other procedures such as follows.

IF a job have to be removed from a machine, THEN remove the part from the
MPS list.

3.3 Fuzzy Mathematical Optimization and Control

Along with control techniques, the fuzzy logic has been employed to embed
uncertainty in mathematical models as well. The application of fuzzy theory in these
models, especially in optimization models, provide valid and valid solutions. The
general form of a fuzzy mathematical model is provided as follows.

ba

µP (t)

t

1

Fig. 11 The membership
function of the illustrative
example
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min~cx
st :

~Ax� ~b
x 2 X

where the symbol * represents the fuzzy parameters. In the above model, it is not
necessary to consider all parameters as fuzzy variables, but some of them will be
helpful. In the robotic cell scheduling problem, processing times as well as robot

activity times such as loading/unloading may be fuzzified, i.e., ~Pm
j and eemðlÞij =eemðuÞj .

To do so, depending on the expert knowledge the membership function of each
parameter is identified. Figures 12 and 13 show triangular membership functions
for the processing and the loading/unloading times.

Using the mathematical formulation of triangular membership functions, they
could be included in the optimization model. As a general formulation, the mem-
bership functions could be represented as follows.

l j
m P j

m

� � ¼ f jm P j
m

� �
j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j ð40Þ

lmij emðlÞij

� �
¼ gmij emðlÞij

� �
i ¼ 1; 2; . . .; Jj j j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j

ð41Þ

Fig. 12 Membership
function of the processing
times

Fig. 13 Membership functions of loading and unloading times
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lmj emðuÞj

� �
¼ hmj emðuÞj

� �
j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j ð42Þ

In order to include the fuzzy membership functions in the mathematical mod-

eling, the crisp parameters Pj
m, e

mðlÞ
ij and emðuÞj are replaced with their relevant fuzzy

membership functions f jmðPj
mÞ, gmij ðemðlÞij Þ and hmj ðemðuÞj Þ respectively. Hence, one may

want to maximize joint membership function of all fuzzy variable. For this purpose,
the joint membership function could be computed as the minimum value of all
values, i.e., the max-min operator [30].

lctðxÞ ¼ max min
i;j;m

f jm P j
m

� �
; gmij emðlÞij

� �
; hmj emðuÞj

� �n o� �
ð43Þ

For linearization, the above function can be rewritten as follows, where lctðxÞ is
the obtained membership function of the cycle time.

lctðxÞ ¼ maxu ð44Þ

Subject to:

f jmðPj
mÞ�u j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j ð45Þ

gmij ðemðlÞij Þ�u i ¼ 1; 2; . . .; Jj j j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j ð46Þ

hmj ðemðuÞj Þ�u j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j ð47Þ

x 2 X; Pj
m; e

mðlÞ
ij ; emðuÞj � 0 i ¼ 1; 2; . . .; Jj j j ¼ 1; 2; . . .; Jj j m ¼ 1; 2; . . . Mj j

ð48Þ

As a result, one can include the fuzzy constraints in the crisp mathematical
modeling, mentioned in the previous section. However, in the crisp model, the
parameters are replaced with their relative membership functions. It should be
noticed that the objective function of the fuzzy mathematical model is maximization
of membership function of the cycle time, which could be represented as Fig. 14.

4 The Robotic Control System

This paper introduces two control approaches namely, the dynamic and static
technique. In the dynamic approach state space equations are defined and utilized to
present the behavior of the system at each unit of time. On the other hand, the static
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approach uses mathematical formulation in terms of an optimization problem that is
solved periodically. Both approaches work with crisp data and parameters, however
because of uncertainty, fuzzy set theory can be applied for both dynamic and static
models.

Application of each approach individually may have some drawbacks. More
precisely, when one aims to use dynamic equations and simulation, it may fail to
manage jobs entrance to the shop to improve the productivity of the robot. When
the static approach is used individually, one may lose the control of the system
when some disturbances happen during the period. Hence, the combination of these
approach may improve the performance of the system gradually. In what follows,
the combined system is proposed for the robotic fuzzy optimization and control
system. Figure 15 depicts the big picture of the integrated system.

The details of the proposed system is presented in Fig. 16, where j stands for the
set of jobs entering to the shop.

Briefly, the structure of the proposed control system can be described as fol-
lowing steps.

Step 1. Find the optimal schedule of the jobs.
Step 2. Execute the scheduled plan and control the system at each unit of time.
Step 3. If the time of scheduling arrives, update the information and go to Step 1.

Fuzzy Optimization and Scheduling

Supervisory Control and Integration

Fuzzy Dynamic Control

Fig. 15 The main framework
of proposed integrated fuzzy
optimization and control
system

ct2ct1 ct

1

µct(x)Fig. 14 Membership
function of the cycle time
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5 Conclusion

In this paper, the techniques of robotic control systems have been reviewed and
investigated. In this regard, some conventional methods of modeling, namely the
state space modeling, mathematical modeling and expert systems modeling have
been presented specifically for a manipulator robot. The robot’s dynamic formula-
tions extremely depend on the kinematics and mechanical functioning of the robot,
but a general state space modeling has been presented. Furthermore, a general
mathematical scheduling model for an m-machine robotic cell system has been
developed, by which the optimal sequence of jobs entering to the cell is obtained. On
the other side, the concept of control theory and fuzzy control systems have been
studied and explained. Moreover, the framework of fuzzy rules,
knowledge-based approaches and their applications in control systems have been
briefly discussed. Finally, an integrated optimization and control system has been
proposed, in which all the three modelling approaches, i.e., the state space, the
mathematical and the expert system models interact with each other on the basis of
fuzzy logic. The proposed model can consider most aspects of real environment of
every type of robot especially manipulator manufacturing robots. For further
research, one may include stochastic approaches as well as robust control techniques.
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Fuzzy Sets in the Evaluation
of Socio-Ecological Systems:
An Interval-Valued Intuitionistic
Fuzzy Multi-criteria Approach

Beyzanur Çayır Ervural, Bilal Ervural and Cengiz Kahraman

Abstract In recent days, the use of the fuzzy set theory to deal with social com-
plexity has become more attractive as a research area to academics who wish to
contribute to sustainable development. The socio-ecological systems are one of the
well-known sub-disciplines of social science which is very critical issue to maintain
sustainability and this concept basically concerns with the human-environment
interactions. These systems involve various stakeholders with different levels of
knowledge and experience from diverse social platforms. The basic characteristic of
these systems is identified as having high level of uncertainty and incomplete
information. The main purpose of this chapter is to demonstrate how to incorporate
fuzzy sets theory into social sciences. In this chapter, an illustrative example which
consists of a wide variety of social actors is used to evaluate sustainable manage-
ment options utilizing the extended technique for order preference by similarity to
ideal solution (TOPSIS) method for interval valued intuitionistic fuzzy
multi-criteria group decision making.

Keywords Socio-ecological systems � Interval-valued intuitionistic fuzzy sets �
Extended TOPSIS � Multi-criteria decision making

1 Introduction

The complexity of human relations and interactions requires to understand these
systems deeply and to present efficient solutions extensively. It is obvious that the
social complex systems demonstrate an ambiguous and uncertain structure since it
consists of different stakeholders from various disciplines and try to satisfy all
demands under conflicting objectives. At this point, the fuzzy set theory fulfills the
need in an efficient way and overcomes the ambiguous nature of social complex
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systems. Several studies in the literature have examined why the fuzzy sets theory
are needed in the social sciences [14, 47, 52].

The social sciences consist of a variety of disciplines and methods.
Environmental studies are one of the most popular sub-disciplines of social sci-
ences. Scholars have handled the concept of socio-ecological systems to emphasize
that the description between social systems and ecological systems which are
related to each other and these issues couldn’t consider individually [6].
Socio-ecological systems (SES) theory is relatively a new concept. Research in
socio-ecological systems from a complex system perspective is an expanding
interdisciplinary field which can be seen as an attempt to link different disciplines
into a new concept to analyze some of the significant environmental problems [12].
Hence, different stakeholders from social, environmental, technical and economical
platform take part in SES and they try to reach a decision or consensus under
various and conflicting criteria in a multidimensional problem.

Social and ecological systems are not only related but also interconnected and
show a change jointly in the temporal and spatial scales [6]. Ecological system
dynamics is an essential discipline and it is really difficult to service while ignoring
human factor in the system. Concentrating on the ecological aspect only does not
reflect realities as a complete [49]. In order to maintain sustainability in a certain
extent, all aspects of social and ecological systems must be considered, that affect
decision making directly. The main reason of working on resilience is to consider
social-ecological system all together. Investigating on research of these integrated
systems is still proceeding to provide new perspectives for socio-ecological systems
[17].

Due to human-environment interactions, socio-ecological systems are a kind of
complex systems having vague and uncertain conditions. Additionally, these sys-
tems are also known as participatory systems since they involve many participants
with different levels of knowledge and experience [40]. Participatory and social
multi-criteria evaluation frameworks are developed to help this type of
decision-making which consists of multi-dimensional framework [19].

The fuzzy set theory is a powerful tool in order to overcome ambiguous
information. The fuzzy set theory was developed by Zadeh [57] whereas intu-
itionistic fuzzy sets (IFS) have been proposed by Atanassov [4]. IFSs are very
effective to deal with uncertainty and vagueness. Therefore, the decision makers can
utilize intuitionistic fuzzy sets, especially the interval-valued intuitionistic fuzzy
sets (IVIFS) introduced by Atanassov and Gargov [3] to better express the infor-
mation of the candidates under incomplete and uncertain information environment.

Complex socio-ecological systems (SESs) are difficult to analyze and model
because of the nature of the complexity paradigm [27]. Owing to the uncertainty
and vagueness of complex socio-ecological systems, we could not make decisions
easily under such a large number of criteria and stakeholders. Besides, multi-criteria
decision making with interval-valued intuitionistic fuzzy sets has received a great
deal of attention from researchers recently. The aim of this study is to use fuzzy
logic in complex socio-ecological systems. In this study, we have presented an
illustrative example which evaluates the sustainable management options of a
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district by using an extended TOPSIS method with interval-valued intuitionistic
fuzzy sets. The remainder of the study is organized as follows. Section 2 briefly
gives the current literature review about complex socio-ecological systems.
Section 3 reviews the basic concept about interval-valued intuitionistic fuzzy sets.
Section 4 explains the methodology used in this chapter. Section 5 provides an
illustrative example and finally some concluding remarks and future research
directions are given in Sect. 6.

2 Socio-Ecological Systems: A Literature Review

In this section, firstly we give the general socio-ecological studies using multi
criteria decision making and then discuss some specific applications of the fuzzy set
theory in this complex system.

Until recent decades, many social science disciplines had disregarded environ-
ment with limiting their scope to humans and they had not considered humans as a
part of the ecological studies [6]. However there are no natural systems without
people, nor social systems without nature. Social and ecological systems are truly
interdependent and constantly co-evolving [49].

Multi-criteria analysis is a mostly used method in ecological economics and
which provides an option to combine different issues such as economic, ecologic
and social criteria [24]. Multi-criteria analysis has been applied in different domains
with specific focus such as forest management [2], river alteration projects [42], or
bioenergy solutions [8]. Owing to these studies involve case-specific criteria and
objectives, the results obtained solutions couldn’t be adjusted to another cases
easily [18]. Malekmohammadi and Rahimi Blouchi [38] considered a process of
ecological risk assessment to determine stress factors and responses under
ecosystem-based approach. The objective of the study is to provide zoning of
wetland ecosystems and a systematic methodology for risk assessment. According
to experts’ opinions, these risks are determined with a MCDM method. Chen and
Yang [11] proposed information based network environmental analysis for eco-
logical risk assessment in wetland. In the literature, several scholars have developed
a multi-criteria evaluation model based on Geographical Information System
(GIS) in socio-ecological systems [5, 29, 30, 32, 37, 48]. The concept of systematic
regional planning is another approach that can be used to integrate different tools
such as GIS and spatial multi-criteria analyses for an efficient local management
action that maximizes environmental benefits and minimizes economic costs [7].
Ferretti and Pomarico [16] analyzed the development of a Multi-criteria-Spatial
Decision Support Systems (MC-SDSS) approach for studying the ecological con-
nectivity of a region in Italy. The MC-SDSS model takes into account ecological
and environmental spatial indicators which are combined by integrating the
Analytic Network Process (ANP) and the Ordered Weighted Average
(OWA) approach.
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Some studies in the social science systems are discussed in specific applications
of the fuzzy set theory: Castanon-Puga et al. [9] used type-2 fuzzy logic and
multi-agent system to represent social systems since these are constitute of different
parts of elements and these elements seem unrelated when considered individually.
The nature of social systems demonstrates an uncertain behavior so fuzzy logic
provides a good way to represent complex systems. del Acebo and de la Rosa [13]
also considered a fuzzy system based approach to social modeling in multi-agent
systems. The aim of this study is to show the necessity of multi-agent environments
for a social model to determine the trust they can put in the assertions made by the
other agents in the environment. And they have also proposed a mechanism based
on fuzzy systems theory which allows them to satisfy that necessity.

Jeng and Tzeng [28] addressed the use of expert systems from a social science
perspective. Their study investigated if social influence affects medical profes-
sionals’ behavioral intention while introducing a new clinical decision support
system. The fuzzy DEMATEL technique has been applied to address the vagueness
of human judgments and has been used to explore cause and effect relationships
from a top-down approach. Chatterjee et al. [10] applied fuzzy Analytical Network
Process (FANP) for sensitivity level and ecological degradation analysis of the
Keoladeo National Park which falls under the category of risk-prone wetland
ecosystems in India.

Liwu et al. [59] considered the fuzzy decision system for an ecological distri-
bution of area, which was established by using different factors and data. Because
of the complexity of the system, L-R fuzzy numbers have been used in decision
system. Taghizadeh et al. [50] evaluated the social responsibility activities related to
the organizations and they used an expert system based fuzzy logic to measure the
social responsibility activities of organizations. Hence, they evaluated the score of
corporate social responsibility for the part-making companies in Iran. Márquez et al.
[39] proposed a methodology to provide an option for the analysis of social
problems. Owing to many interactions in social systems, modelling and analyzing
them is not easy. The authorities utilized fuzzy logic, data mining theory and
distributed agencies methods to explain these systems in a multidimensional per-
spective. Lin et al. [34] tried to explore the application of fuzzy logic control in the
long term management of an ecological system. The results show that fuzzy logic
control is better than with state feedback control or no control.

In the following works, it is focused on fuzzy cognitive maps (FCMs) as a tool to
model and analyze causality in qualitative systems. Gray et al. [22] constructed a
fuzzy logic cognitive map in order to evaluate differences and similarities in the
structural and functional characteristics of stakeholder groups (managers, scientists,
environmental NGOs) mental models about social–ecological systems. Gray et al.
[21] gave a case study to examine the usefulness of a Fuzzy Cognitive Mapping
(FCM) method to understand social-ecological systems (SESs). Vanwindekens
et al. [53] introduced a fuzzy cognitive mapping approach in order to study the
dynamic behavior of managers’ system of practices. In the case study, they eval-
uated farmers’ systems of practices based on their own conceptions. Ginis [20]
considered a concept of modeling of complex systems. Fuzzy cognitive maps are
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proposed to analyze these complex systems which are difficult to construct and link
between social and economic systems under uncertain environment. Elsawah et al.
[15] proposed a methodology for integrating perceptions of stakeholders (qualita-
tive) into formal simulation models (quantitative). Their methodology combines
cognitive mapping and agent based modelling. The aim of their study is to con-
tribute in order to develop understanding and communication about decision
making in complex socio-ecological systems. Olazabal and Pascual [43] applied a
participatory FCM approach in the context of urban low carbon energy transition
planning for the city of Bilbao, Basque Country. They have drawn from previous
work on fuzzy cognitive modelling applied to the resilience management of social–
ecological systems [31] and on the potential of fuzzy thinking for addressing
complex urban problems [23]. Mago et al. [36] employed a fuzzy cognitive map to
model the interplay between high-level concepts, and cellular automata (CA) to
model the low-level interactions between individual actors in environment which is
characterized as a complex system. A FCM describes different aspects in the
behavior of a complex system in terms of representing features of the system and
interacting with each other.

Wozniak et al. [55] suggested a fuzzy inference system for the best possible
surgical team for managing hospital schedules and surgical teams. The complex
nature of social relationships requires fuzzy logic methods and they also presented a
new usage of fuzzy logic methods in real life applications. Ocampo-Duque et al.
[41] proposed a neuro fuzzy model to assess the ecological hazards in river basins.
The proposed method combines with self-organizing maps and fuzzy inference
system in order to give more reliable and powerful evaluation for aquatic ecosystem
protection. Huang et al. [25] proposed an intelligent system which is an adaptive
fuzzy control approach to investigate Kolmogorov’s ecological system without any
mathematical model. Lee et al. [33] examined the application of the fuzzy inference
mechanism to develop a fuzzy expert system to determine stream water quality
classification from ecological information under fuzziness.

It is evident from the previous studies in the literature, there has been no work
using IVIF model to solve this problem in fuzzy environment. The contribution of
the chapter lies in providing the extended TOPSIS with IVIF numbers to represent
the implicit knowledge about socio-ecological decisions in terms of fuzzy rules
which can be processed quantitatively to make reliable decisions.

3 Preliminaries of Interval-Valued Intuitionistic
Fuzzy Sets

The fuzzy set theory was proposed by Zadeh [57] and has been applied in diverse
fields. In the fuzzy set theory, the membership of an element to a fuzzy set (FS) is
only a single value between zero and one [54]. Intuitionistic fuzzy sets (IFS),
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interval-valued fuzzy sets (IVFS) and interval-valued intuitionistic fuzzy sets
(IVIFS) are extensions of the fuzzy set theory and they tackle with imprecision and
uncertainty in different ways [45]. The concept of IFS has been introduced by
Atanassov [4] as a generalization concept of FS. The theory of intuitionistic fuzzy
sets is characterized by a membership degree, a non-membership degree, and a
hesitation degree [56]. Atanassov and Gargov [3] introduced the concept of IVIFS
as a further generalization of the fuzzy set theory. The basic characteristic of the
IVFS and IVIFS is that the values of its membership and nonmembership functions
are intervals rather than exact numbers [1]. Some basic concepts of fuzzy sets are as
follows.

Definition 3.1. (FS) Let X is a set (space), with generic element of X denoted by x,
that is X ¼ xf g. Then a FS is defined as Eq. (1).

A ¼ x; lAðxÞh ijx 2 Xf g ð1Þ

where lA:X ! 0; 1½ � is the membership function of the FS A, lAðxÞ 2 0; 1½ � is the
degree of membership of the element x to the set A.

Definition 3.2. (IFS) For a set X, an IFS A in the sense of Atanassov is given by
Eq. (2).

A ¼ x; lA xð Þ; vAðxÞh ijx 2 Xf g ð2Þ

where the functions lA:X ! 0; 1½ � and vA:X ! 0; 1½ �, with the condition
0� lA xð Þþ vA xð Þ� 1; 8x 2 X:

The numbers, lAðxÞ 2 0; 1½ � and vAðxÞ 2 0; 1½ �, denote the degree of membership
and the degree of nonmembership of the element x to the set A, respectively. For
each IFS A in X, the amount pA xð Þ ¼ 1� ðlA xð Þþ vAðxÞÞ is called the degree of
indeterminacy (hesitation part) [1].

Definition 3.3. (IVFS) Let I½ � be the set of all closed subintervals of the interval [0,
1] and l ¼ lL; lU½ � 2 I½ �, where lL and lU are the lower extreme and the upper
extreme, respectively. For a set X, an IVFS A is given by Eq. (3).

A ¼ x; lA xð Þh ijx 2 Xf g ð3Þ

where the function lA:X ! I½ � defines the degree of membership of an element x to
A, and lA xð Þ ¼ lAL xð Þ; lAU xð Þ½ � is called an interval-valued fuzzy number.

Definition 3.4. (IVIFS) For a set X, an IVIFS A is an object having the form
Eq. (4).

A ¼ x; lA xð Þ; vA xð Þh ijx 2 Xf g ð4Þ
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where lA:X ! I½ � and NA:X ! I½ � represent the degree of membership and non-
membership, 0� sup lA xð Þð Þþ sup vA xð Þð Þ� 1; 8x 2 X:

lA xð Þ ¼ lAL xð Þ; lAU xð Þ½ � and vA xð Þ ¼ vAL xð Þ; vAU xð Þ½ �so

A ¼ lAL xð Þ; lAU xð Þ½ �; vAL xð Þ; vAU xð Þ½ �ð Þ: And the hesitation degree of an
interval-valued intuitionistic fuzzy number x to set A can be defined as

pA xð Þ ¼ 1� lAU xð Þ � vAU xð Þ; 1� lAL xð Þ � vAL xð Þ½ �:

4 Interval Valued Intuitionistic Fuzzy TOPSIS

Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is one
of the most classical methods developed by Hwang and Yoon [26] for solving
MCDM problems. The underlying logic of TOPSIS method is to define the
positive-ideal solution (PIS) and the negative-ideal solution (NIS). The TOPSIS
was extended to various situations in which the decision data are fuzzy,
interval-valued, or intuitionistic fuzzy sets.

In the literature, a number of fuzzy TOPSIS methods and applications with
interval-valued intuitionistic fuzzy sets have been developed in recent years. The
details of extended TOPSIS methodology can be seen extensively in [35, 46, 51,
56, 58].

The steps of interval-valued intuitionistic fuzzy TOPSIS method are given as
follows [56]:

Step 1: Identify the evaluation attributes and alternatives

X 0 ¼ X 0
i ji ¼ 1; . . .; n

� �
a finite set of possible alternatives and A0 ¼

A0
jjj ¼ 1; . . .;m

n o
a finite set of attributes

Step 2: Construct the decision matrix
The decision makers cannot easily estimate an exact value to alternative with
respect to attribute. Therefore, the decision makers k (k = 1, 2, …, K) utilize an
interval-valued intuitionistic fuzzy number ~akij to estimate their judgment on alter-
native with respect to attribute.

~akij ¼ h akij; b
k
ij

h i
; ckij; d

k
ij

h i
i, where akij; b

k
ij

h i
and ckij; d

k
ij

h i
denote the degree of mem-

bership and the degree of non-membership of the alternative X 0
i with respect to the

attribute A0
i.

Step 3: Determine PIS and NIS for each decision maker
First, we should identify PIS and NIS for each decision maker by using formulas (5)
and (6).
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gRkþ ¼ grkþ1 ; grkþ2 ; . . .; grkþm� �
¼ gakþ1 ; gbkþ1h i

; gckþ1 ; gdkþ1h iD E
; gakþ2 ; gbkþ2h i

; gckþ2 ; gdkþ2h iD E
; . . .;

�
gakþm ; gbkþmh i

; gckþm ; gdkþmh iD E�
ð5Þ

gRk� ¼ frk�1 ; frk�2 ; . . .; frk�m� �
¼ gak�1 ;gbk�1h i

; gck�1 ;gdk�1h iD E gak�2 ;gbk�2h i
; gck�2 ;gdk�2h iD E

; . . .;
�

gak�m ;gbk�mh i
; gck�m ;gdk�mh iD E�

ð6Þ

where

grkþ ¼ gakþj ; gbkþjh i
; gckþj ; gdkþjh iD E

¼ max
i

akij;max
i

bkij

� �
; min

i
ckij;min

i
dkij

� �� 	
;

i ¼ 1; . . .; n; j ¼ 1; . . .;m; k ¼ 1; . . .;K

rk� ¼ gak�j ;gbk�jh i
; gck�j ;gdk�jh iD E

¼ min
i

akij;min
i

bkij

� �
; max

i
ckij;max

i
dkij

� �� 	
;

i ¼ 1; . . .; n; j ¼ 1; . . .;m; k ¼ 1; . . .;K

Step 4: Calculate separation measures
We can define the separation measure degree between alternative X 0

i and the ideal
solutions (PIS /NIS) for each decision maker by using formula (7) and (8).

Dkþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Xm
j¼1

wj akij � gakþj� �2
þ bkij � gbkþj� �2

þ ckij � gckþj� �2
�vuut

þ dkij � gdkþj� �2
þ pkijL � gpkþjL� �2

þ pkijU � gpkþjU� �2
�

ð7Þ

where pkijL ¼ 1� bkij � dkij, pkijU ¼ 1� akij � ckij,
gpkþjL ¼ 1� gbkþj � gdkþj ;gpkþjU ¼ 1� gakþj � gckþj , i = 1, …, n, j = 1, …, m, k = 1,…,K.
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Dk�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Xm
j¼1

wj akij � gak�j� �2
þ bkij � gbk�j� �2

þ ckij �gck�j� �2
�vuut

þ dkij � gdk�j� �2
þ pkijL � gpk�jL� �2

þ pkijU � gpk�jU� �2
�

ð8Þ

where pkijL ¼ 1� bkij � dkij, pkijU ¼ 1� akij � ckij,
gpk�jL ¼ 1� gbk�j � gdk�j , gpk�jU ¼

1� gak�j �gck�j , i = 1, …, n, j = 1, …, m, k = 1, …, K.
Step 5: Aggregate the separation measures
We can aggregate the separation measures for the group by using formulas (9) and
(10).

Dþ
i ¼

XK
k¼1

kkD
kþ
i

 �
for alternative i ð9Þ

D�
i ¼

XK
k¼1

kkD
k�
i

 �
for alternative i ð10Þ

where i = 1, 2, …, n; k = 1, 2, …, K, and kk is the weight of decision maker k.
Step 6: Calculate the closeness coefficients and rank the alternatives
The closeness coefficient of the candidate X

0
i is defined as:

Ui ¼ D�
i

D�
i þDþ

i
; i ¼ 1; 2; . . .; n ð11Þ

Finally we can determine the ranking order of all alternatives, according to close-
ness coefficients. Finally we can select best option.

5 An Illustrative Example

In this section, we consider a multi attribute group decision making problem to
illustrate the use of the fuzzy set theory in social sciences. Illustrative example is
adapted from case study of Garmendia and Gamboa [19].

The illustrative example focuses on the sustainable management of a district,
which is a part of the World Network of Biosphere Reserves by UNESCO owing to
its natural and cultural value. A variety of stakeholders (tourism, fishing, industry,
agriculture etc.) coexist in the district. In complex socio-ecological systems
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incorporating many stakeholders, decision makers are faced with serious difficul-
ties. Coexistence of the various interest groups in the district is not always easy, and
many conflicts have risen in recent years.

Firstly, actors from various social groups which include sociologists, econo-
mists, engineers, ecologists, and local actors are determined to evaluate different
sustainable management options for the district. A committee comprised of five
decision-makers Dk (k = 1, 2, …, 5) which are shipyard labour union (D1); envi-
ronmental organizations (D2); shipyard (D3); local council (D4); fishers (D5),
respectively, from each strategic decision area has been set up to provide assess-
ment information on the criteria.

In order to select the best environment option, a committee is set up to provide
evaluations based on six criteria xiði ¼ 1; 2; . . .; 6Þ. These are summarized as
follows:

1. Employment ðx1Þ—with the revival of trade, local economic activities and
employment are enhanced, job stability is guaranteed.

2. Concord between socio-ecological activities ðx2Þ—compatibility between fish-
ing, tourism, surfing, industry, and conservation should be ensured.

3. Cost of implementation ðx3Þ—budget constraints must be taken into account.
4. Environmental degeneration ðx4Þ—environmental quality of the area should be

conserved.
5. Impact on ecosystem ðx5Þ—impact over habitat and fauna should be reduced.
6. Reversibility ðx6Þ—potential and the dynamics of the area should be maintained

for the future

The criteria are independent and their weights are determined using pairwise
comparisons by social actors. The weights of criteria are shown in Table 1.

In this example, four alternatives that represent sustainable management options
for the district are determinedA ¼ ðA1;A2;A3;A4Þ. These are summarized as follows:

ðA1Þ—do not allow dredging.
ðA2Þ—do not allow dredging and direct all the public resources into conservation
measures for the district.
ðA3Þ—Minimum dredging according to the system’s situation.
ðA4Þ—Satisfy demand from industry (shipyard) with a maximum dredging.

Table 1 Weights of criteria according to social actors’ preferences

Social
actors

Criteria

Employment Socio-ecological
concord

Cost of
implementation

Environmental
degeneration

Impact on
ecosystem

Reversibility

D1 0.32 0.05 0.23 0.23 0.03 0.14

D2 0.20 0.23 0.05 0.22 0.25 0.05

D3 0.27 0.23 0.05 0.18 0.18 0.09

D4 0.13 0.20 0.20 0.13 0.13 0.20

D5 0.18 0.21 0.06 0.15 0.21 0.21
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In this example, in order to evaluate alternatives the scale proposed by Onar
et al. [44] is used. The scale in Table 2 can be used by decision-makers to state their
individual opinions and then, their lingual judgments are transformed into the
corresponding IVIFNs.

The linguistic judgments given by the decision makers to four alternatives are
shown in Table 3. Decision-makers state their individual opinions by using lin-
guistic scale in Table 1. Then their linguistic judgments are transformed into the
corresponding IVIFNs.

By using formulas (5) and (6), we can determine the PIS and NIS for each
decision maker. Table 4 includes the values of PIS and NIS. Then, we can calculate
the separation measure from the positive ideal and the negative ideal solutions, Dkþ

j

and Dk�
j respectively, for each decision maker by using formula (7) and (8).

Calculated separation measure values are shown in Table 5.
By using formulas (9) and (10), separation measures for the group are aggre-

gated. Finally, the aggregated relative closeness coefficients of all alternatives are
calculated by using formula (11). Closeness coefficients and ranking of alternatives
with different DM weights are shown in Table 6.

According to the results, A2 is the best candidate in all of the cases. Moreover,
Table 7 presents the rankings of options of sustainable management according to
the preferences of each social group (DM). As shown in Table 7, Decision Makers
1, 3, 4, and 5, would prefer to restrict dredging activities and enhance conservation
measures through ecosystem recovery plans, while improving the quality of the
environment (alternative A2).

6 Conclusion

Nowadays, the application of the fuzzy sets to social sciences is getting larger
interest since the fuzzy logic is very appropriate to be used in real life problems.
The fuzzy set theory presents an efficient way in order to overcome these complex
systems’ vagueness to determine the human-environment interactions clearly.

Table 2 Linguistic scale Linguistic terms IVIFNs

Absolutely low (AL) ([0.0, 0.2], [0.5, 0.8])

Very low (VL) ([0.1, 0.3], [0.4, 0.7])

Low (L) ([0.2, 0.4], [0.3, 0.6])

Medium low (ML) ([0.3, 0.5], [0.2, 0.5])

Approximately equal (E) ([0.4, 0.6], [0.2, 0.4])

Medium high (MH) ([0.5, 0.7], [0.1, 0.3])

High (H) ([0.6, 0.8], [0.0, 0.2])

Very high (VH) ([0.7, 0.9], [0.0, 0.1])

Absolutely high (AH) ([0.8, 1.0], [0.0, 0.0])
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Table 5 Separation measures

DMs Alt. Separation measures

D1 A1 D1þ
1 ¼ 0:1028 D1�

1 ¼ 0:4195

A2 D1þ
2 ¼ 0:0806 D1�

2 ¼ 0:4142

A3 D1þ
3 ¼ 0:3064 D1�

3 ¼ 0:1837

A4 D1þ
4 ¼ 0:4588 D1�

4 ¼ 0:0000

D2 A1 D2þ
1 ¼ 0:0663 D2�

1 ¼ 0:2882

A2 D2þ
2 ¼ 0:0949 D2�

2 ¼ 0:2335

A3 D2þ
3 ¼ 0:2361 D2�

3 ¼ 0:1141

A4 D2þ
4 ¼ 0.3192 D2�

4 ¼ 0.0314

D3 A1 D3þ
1 ¼ 0:1206 D3�

1 ¼ 0:1652

A2 D3þ
2 ¼ 0:0953 D3�

2 ¼ 0:1596

A3 D3þ
3 ¼ 0:1835 D3�

3 ¼ 0:1381

A4 D3þ
4 ¼ 0:1446 D3�

4 ¼ 0:1679

D4 A1 D4þ
1 ¼ 0:2066 D4�

1 ¼ 0:1632

A2 D4þ
2 ¼ 0:0632 D4�

2 ¼ 0:2781

A3 D4þ
3 ¼ 0:0967 D4�

3 ¼ 0:2542

A4 D4þ
4 ¼ 0:3087 D4�

4 ¼ 0:0000

D5 A1 D5þ
1 ¼ 0:1766 D5�

1 ¼ 0:1260

A2 D5þ
2 ¼ 0:0000 D5�

2 ¼ 0:2364

A3 D5þ
3 ¼ 0:1085 D5�

3 ¼ 0:1831

A4 D5þ
4 ¼ 0:2086 D5�

4 ¼ 0:0641

Table 6 Closeness coefficients and ranking of alternatives with different DM weights

Case Weights Alternatives Aggregated
positive separation
measure

Aggregated
negative separation
measure

Ui Ranking

Case 1 D1 (λ1 = 0.20) A1 0.1346 0.2324 0.6333 2

D2 (λ2 = 0.20) A2 0.0668 0.2722 0.8030 1

D3 (λ3 = 0.20) A3 0.1862 0.1746 0.4839 3

D4 (λ4 = 0.20) A4 0.2880 0.0527 0.1547 4

D5 (λ5 = 0.20)

Case 2 D1 (λ1 = 0.10) A1 0.1575 0.1924 0.5499 3

D2 (λ2 = 0.10) A2 0.0587 0.2570 0.8140 1

D3 (λ3 = 0.20) A3 0.1519 0.1921 0.5585 2

D4 (λ4 = 0.35) A4 0.2669 0.0528 0.1650 4

D5 (λ5 = 0.25)

Case 3 D1 (λ1 = 0.30) A1 0.1413 0.2493 0.6383 2

D2 (λ2 = 0.10) A2 0.0717 0.2905 0.8021 1

D3 (λ3 = 0.20) A3 0.1921 0.1887 0.4956 3

D4 (λ4 = 0.30) A4 0.3119 0.0431 0.1215 4

D5 (λ5 = 0.10)
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Various stakeholders from social, environmental, technical and economical plat-
form take part in socio-ecological systems and they try to reach a decision under
various and conflicting criteria in a multidimensional problem. It is often a chal-
lenge for decision makers to make a decision which will satisfy all interest group
from diverse fields. Multi-criteria decision making tools are very effective to
respond from different dimension demand.

In this chapter the literature on socio-ecological systems has been reviewed and
the lack of socio-ecological studies under fuzziness has been observed. With a case
study, we have demonstrated how to incorporate socio-ecological considerations
into sustainable management options which consist of a wide variety of social
actors from an integrated and inclusive perspective using the interval-valued intu-
itionistic fuzzy TOPSIS method.

For further research, we suggest that other extensions of ordinary fuzzy sets such
as hesitant fuzzy sets or type-2 fuzzy sets to be used in the proposed fuzzy TOPSIS
method. The obtained results through these extensions should be compared with the
ones we obtained in this paper. Besides, the handled problem can be expanded to a
social, economical and ecological problem to consider economical factors as well.
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A Survey on Models and Methods
for Solving Fuzzy Linear Programming
Problems

Ali Ebrahimnejad and José L. Verdegay

Abstract Fuzzy Linear Programming (FLP), as one of the main branches of
operation research, is concerned with the optimal allocation of limited resources to
several competing activities on the basis of given criteria of optimality in fuzzy
environment. Numerous researchers have studied various properties of FLP prob-
lems and proposed different approaches for solving them. This work presents a
survey on models and methods for solving FLP problems. The solution approaches
are divided into four areas: (1) Linear Programming (LP) problems with fuzzy
inequalities and crisp objective function, (2) LP problems with crisp inequalities
and fuzzy objective function, (3) LP problems with fuzzy inequalities and fuzzy
objective function and (4) LP problems with fuzzy parameters. In the first area, the
imprecise right-hand-side of the constraints is specified with a fuzzy set and a
monotone membership function expressing the individual satisfaction of the deci-
sion maker. In the second area, a fuzzy goal and corresponding tolerance is defined
for each coefficient of decision variables in the objective function. In the third area,
both the coefficients of decision variables in the objective function and the
right-hand-side of the constraints are specified by fuzzy goals and corresponding
tolerances. In the fourth area, some or all parameters of the LP problem are rep-
resented in terms of fuzzy numbers. In this contribution, some of the most common
models and procedures for solving FLP problems are analyzed. The solution
approaches are illustrated with numerical examples.
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1 Introduction

Linear programming (LP) is concerned with the optimal allocation of limited
resources to several competing activities on the basis of given criteria of optimality.
In conventional LP problems the observed data or parameters are usually imprecise
because of incomplete information. Imprecise evaluations are primarily the result of
unquantifiable, incomplete and non-obtainable information. Fuzzy Sets theory
could be used to represent such imprecise data in LP by generalizing the notion of
membership in a set, and a fuzzy LP (FLP) problem appears in a natural way.

In this context, Tanaka et al. [35] first proposed the theory of fuzzy mathematical
programming based on the fuzzy decision framework of Bellman and Zadeh [2].
The first formulation of FLP to address the impreciseness of the parameters in LP
problems with fuzzy constraints and objective functions has been introduced by
Zimmerman [43]. Tanaka and Asai [34] proposed a possibilistic LP formulation
where the coefficients of the decision variables were crisp while the decision
variables were fuzzy numbers. Verdegay [38] presented the concept of a fuzzy
objective based on the fuzzification principle and used this concept to solve FLP
problems. Herrera et al. [17] examined the fuzzified version of the mathematical
problem assuming that the coefficients are represented in terms of fuzzy numbers
and the relations in the definition of the feasible set are also fuzzy. Zhang et al. [42]
proposed an FLP where the coefficients of the objective function are assumed to be
fuzzy. They showed how to convert the FLP problems into multi-objective opti-
mization problems with four objective functions. Gupta and Mehlawat [15] studied
a pair of fuzzy primal-dual LP problems and calculated duality results using an
aspiration level approach. Hatami-Marbini and Tavana [16] proposed a new method
for solving LP problems with fuzzy parameters. Their method provides an optimal
solution that is not subject to specific restrictive conditions and supports the
interactive participation of the decision maker in all steps of the decision-making
process. Kheirfam and Verdegay [20] carried out a sensitivity analysis on the
right-hand-side of the constraints and the coefficients of the objective function for a
fuzzy quadratic programming problem. Wan and Dong [39] developed a new
possibility LP with trapezoidal fuzzy numbers. They proposed the auxiliary
multi-objective programming with four objectives to solve the corresponding
possibility LP.

Numerous researchers have studied various properties of FLP problems and
proposed different approaches for solving them. Because of existing different
assumptions and sources of fuzziness in the parameters, the definition of FLP
problem is not unique. Bector and Chandra [1] have classified FLP problems into
four following Categories:

• Type 1: LP problems with fuzzy inequalities and crisp objective function
• Type 2: LP problems with crisp inequalities and fuzzy objective function
• Type 3: LP problems with fuzzy inequalities and fuzzy objective function
• Type 4: LP problems with fuzzy parameters
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In the FLP problems of Type 1 is assumed that the fuzziness of the available
resources is characterized by the membership function over the tolerance range.
Verdegay [37] proved that the optimal solution of a problem of this type can be
found by use of solving an equivalent crisp parametric LP problem assuming that
the objective function is crisp. Werners [40], on the other hands, considered that the
objective function should be fuzzy because of fuzzy inequality constraints and
proposed a non-symmetric model for solving the FLP problem of Type 1.

In the FLP problems of Type 2 is assumed the coefficient of decision variables in
the objective function cannot be precisely determined. For solving a problem of
Type 2, Verdegay [37] proposed an equivalent cost parametric LP problem. In
addition, Verdegay [38] proved that for a given problem of Type 2 there always
exist a problem of Type 1 and has a same solution.

The FLP problem of Type 3 is a combination of Type 1 and Type 2 problems.
This means that not only a goal and its corresponding tolerance are considered for
the objective function, but also a tolerance for each fuzzy constraint is known. Two
important approaches for solving this kind of FLP problems are Zimmerman’s
approach [44] and Chanas’s approach [3]. In the proposed approach by Zimmerman
is assumed that the goal and its corresponding tolerance of the objective function
are given initially. According to this approach, the optimal solution of such problem
can be found by solving a crisp LP problem. On the other hand, in the proposed
approach by Chanas [3], the goal and its corresponding tolerance are determined by
solving two LP problems. Then based on the obtained results and the optimal
solution of a crisp parametric LP problem, the optimal solution of such FLP
problem is determined.

In the FLP problems of Type 4, the some or all parameters of the problems under
consideration may be fuzzy numbers and the inequalities may be interpreted in
terms of fuzzy rankings. The solution approaches for solving the problems of Type
4 can be classified into two general groups: Simplex based approach and
Non-simplex based approach. In the simplex based approach, the classical simplex
algorithms such as primal simplex algorithm, dual simplex algorithm and
primal-dual simplex algorithm are generalized for solving LP problems with fuzzy
parameters. In this approach, the comparison of fuzzy numbers is done by use of
linear ranking functions. On the other hand, in the non-simplex based approach,
such FLP problems are first converted into equivalent crisp problems, which are
then solved by the standard methods.

Maleki et al. [29] consider a kind of FLP problem in which only the coefficients
of decision variables in the objective function are represented in terms of trape-
zoidal fuzzy numbers. They first proved the fuzzy analogues of some important
theorems of LP and then extended the primal simplex algorithm in fuzzy sense to
obtain the optimal solution of the LP problems with fuzzy cost coefficients. After
that, Nasseri and Ebrahimnejad [30] generalized the dual simplex algorithm in
fuzzy sense for solving the same problem based on duality results developed by
Mahdavi-Amiri and Nasseri [27]. Another approach namely primal-dual simplex
algorithm in fuzzy sense has been proposed by Ebrahimnejad [7] that unlike the
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dual simplex algorithm does not require a dual feasible solution to be basic. Using
these algorithms the sensitivity analysis for the same problem was discussed in [6].

Maleki et al. [29] used the crisp solution of the LP problem with fuzzy cost
coefficients as an auxiliary problem, for finding the fuzzy solution of fuzzy variable
linear programming (FVLP) problems in which the right-hand-side vectors and
decision variables are represented by trapezoidal fuzzy numbers. Mahdavi-Amiri
and Nasseri [28] showed that the auxiliary problem is indeed the dual of the FVLP
problem and proved duality results by a natural extension of the results of crisp
LP. Using these results, Mahdavi-Amiri and Nasseri [28] and Ebrahimnejad et al.
[13] developed two new methods in fuzzy sense, namely the fuzzy dual simplex
algorithm and the fuzzy primal-dual simplex algorithm, respectively, for solving the
FVLP problem directly and without any need of an auxiliary problem.
Ebrahimnejad and Verdegay [12] and Ebrahimnejad [8] generalized the bounded
simplex algorithms in fuzzy sense for solving that kind of FVLP problems in which
some or all variables are restricted to lie within fuzzy lower and fuzzy upper.

Ganesan and Veeramani [14] introduced a type of fuzzy arithmetic for sym-
metric trapezoidal fuzzy numbers and then proposed a primal simplex method for
solving FLP problems in which the coefficients of the constraints are represented by
real numbers and all the other parameters as well as the variables are represented by
symmetric trapezoidal fuzzy numbers. Nasseri et al. [31] discussed a concept of
duality for the same FLP problems and derived the weak and strong duality the-
orems. Based on these duality results, Ebrahimnejad and Nasseri [11] proposed a
duality approach for the same problem for situation in which a fuzzy dual feasible
solution is at hand. Kumar and Kaur [23] proposed an alternative method for
solving the existing symmetric FLP problem. Ebrahimnejad and Tavana [10] pro-
posed a novel method for solving the same FLP problem which is simpler and
computationally more efficient than the above mentioned algorithms.

Kheirfam and Verdegay [19] formulated a new type of FLP problems, namely
symmetric fully fuzzy linear programming (SFFLP) problem in which all param-
eters as well as the decision variables were represented by symmetric trapezoidal
fuzzy numbers. Then they established the duality and complementary slackness for
the same problems and from the obtained results presented a fuzzy dual simplex for
solving SFFLP problems.

For solving the LP problems with fuzzy cost coefficients according to
non-simplex based approach some auxiliary programming problems are first
defined. The three approaches proposed by Lai and Hwang [25], Rommenlfanger
et al. [33] and Delgado et al. [4] are the main approaches for solving this kind of
FLP problems.

The proposed approaches by Ramik and Ramanek [32], Tanaka et al. [36] and
Dubois and Prade [5] belonging to non-simplex based approach can be used to
solve the FLP problems involving fuzzy numbers for the coefficients of the decision
variables in the constraints and the right-hand-side of the constraints. Ramik and
Ramanek [32] first defined the concept of fuzzy inequality and then converted each
fuzzy constraint into three or four crisp constraints depending on triangular and
trapezoidal membership functions, respectively. Tanaka et al. [36], based on the
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concept of a-cut, proposed an auxiliary problem for solving this kind of FLP
problems by assuming symmetric triangular membership functions for the fuzzy
parameters. Dubois and Prade [5] provided two cases of “soft” and “hard” equiv-
alent constraints for the fuzzy constraints of the FLP problem under consideration.
Then they expressed the soft and hard constraints by means of a-weak feasibility
and a-hard feasibility, respectively, leading to two separate auxiliary problems.

The FLP problems involving fuzzy numbers for the decision variables, the
coefficients of the decision variables in the objective function, the coefficients of the
decision variables in the constraints and the right-hand-side of the constraints, is
called fully FLP (FFLP) problems. Hosseinzadeh Lotfi et al. [18] considered the
FFLP problems where all the parameters and variables were triangular fuzzy
numbers. Kumar et al. [24] using arithmetic operations and definition of fuzzy
equality, first converted each fuzzy equality constraint into several crisp constraints
and then optimized the rank of fuzzy objective function over the obtained crisp
feasible space. In contrast to most existing approaches which provide crisp solution,
their method not only gives fuzzy optimal solution but also preserve the form of
non-negative fuzzy optimal solution and optimal objective function.

The purpose of this chapter is to shortly describe models and methods following
the above four types of FLP problems, in order to provide the reader a clear view of
the main results produced along the last 50 years on this key research area.

2 Preliminaries

In this section, some necessary concepts and backgrounds on fuzzy arithmetic are
reviewed [6, 14, 22, 28, 29].

Definition 1 The characteristic function lA of a crisp set A assigns a value of either
one or zero to each individual in the universal set X. This function can be gener-
alized to a function l~A such that the values assigned to the element of the universal
set X fall within a specified range i.e., l~A : X ! ½0; 1�. The assigned value indicates
the membership grade of the element in the set ~A. Larger values denote the higher
degrees of set membership.

The function l~A is called membership function and the set ~A ¼
x; l~AðxÞ
� �

x 2 Xj� �
defined by l~A for each x 2 X is called a fuzzy set.

Definition 2 Given a fuzzy set ~A defined on universal set of real numbers X and
any number a 2 ½0; 1�, the a-cut of is defined as ½~A�a ¼ x 2 X; l~AðxÞ� a

� �
.

Definition 3 A fuzzy set ~A, defined on universal set of real numbers R, is said to be
a fuzzy number if its membership function has the following characteristics:
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• ~A is convex, i.e.

8x; y 2 R; 8k 2 ½0; 1�; l~A kxþð1� kÞyð Þ� min l~AðxÞ; l~AðyÞ
� �

;

• ~A is normal, i.e., 9�x 2 R; l~Að�xÞ ¼ 1;
• l~A is piecewise continues.

Definition 4 A fuzzy number ~A is said to be a positive (negative) fuzzy number if
for each x� 0ðx� 0Þ; l~AðxÞ ¼ 0.

Definition 5 A fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a trapezoidal fuzzy
number if its membership function is given by (see Fig. 1).

l~aðxÞ ¼
x�a1
a2�a1

; a1 � x� a2;
1; a2 � x� a3;

a4�x
a4�a3

; a3 � x� a4:

8<
:

Definition 6 A trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a sym-
metric trapezoidal fuzzy number if a2 � a1 ¼ a4 � a3. Assuming
a2 � a1 ¼ a4 � a3 ¼ a, a symmetric trapezoidal fuzzy number is denoted by
~a ¼ ða2 � a; a2; a3; a3 þ aÞ.
Definition 7 Two trapezoidal fuzzy numbers ~a ¼ ða1; a2; a3; a4Þ and ~b ¼
ðb1; b2; b3; b4Þ are said to be equal, i.e. ~a ¼ ~b if and only if a1 ¼ b1; a2 ¼ b2; a3 ¼
b3 and a4 ¼ b4.

Definition 8 A trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ is said to be a
non-negative trapezoidal fuzzy number if and only if a1 � 0.

Definition 9 A fuzzy number ~a ¼ ða1; a2; a3Þ is said to be a triangular fuzzy
number if its membership function is given by

1a 2a 3a 4a

Fig. 1 A trapezoidal fuzzy
number ~a ¼ ða1; a2; a3; a4Þ
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l~aðxÞ ¼
x�a1
a2�a1

; a1 � x� a2;
a3�x
a3�a2

; a2 � x� a3:

�

Definition 10 Let ~a ¼ ða1; a2; a3; a4Þ and ~b ¼ ðb1; b2; b3; b4Þ be two trapezoidal
fuzzy numbers. Then the arithmetic operations on ~a and ~b are given by:

• ~aþ ~b ¼ ða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4Þ
• ~a� ~b ¼ ðm1;m2;m3;m4Þ, where

m1 ¼ min a1b1; a1b4; a4b1; a4b4f g; m2 ¼ min a2b2; a2b3; a3b2; a3b3f g;
m3 ¼ max a1b1; a1b4; a4b1; a4b4f g; m4 ¼ max a2b2; a2b3; a3b2; a3b3f g;

• k[ 0; k~a ¼ ðka1; ka2; ka3; ka4Þ;
• k\0; k~a ¼ ðka4; ka3; ka2; ka1Þ:

Definition 11 For any two fuzzy numbers ~a and ~b, the operations MIN and MAX
are defined as follows:

MIN ~a; ~b
� �ðzÞ ¼ sup

z¼minðx;yÞ
min l~aðxÞ; l~bðyÞ
� �

MAX ~a; ~b
� �ðzÞ ¼ sup

z¼maxðx;yÞ
min l~aðxÞ; l~bðyÞ
� �

Theorem 1 Let MIN and MAX be binary operations on the set of all fuzzy
numbers FðRÞ defined in Definition 11. Then, the triple FðRÞ;MIN;MAXh i is a
distributive lattice.

Remark 1 The lattice FðRÞ;MIN;MAXh i can also be expressed as the pair
FðRÞ; �h i, where � is a partial ordering defined as:

~a � ~b , MIN ~a; ~b
� � ¼ ~a or; alternatively;

~a � ~b , MAX ~a; ~b
� � ¼ ~b:

Remark 2 For any two trapezoidal fuzzy numbers ~a ¼ ða1; a2; a3; a4Þ and
~b ¼ ðb1; b2; b3; b4Þ, MAX ~a; ~b

� � ¼ ~b or ~a � ~b if and only if
a1 � b1; a2 � b2; a3 � b3 and a4 � b4.
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Definition 12 A ranking function is a function< : FðRÞ ! R that maps each fuzzy
number into the real line, where a natural order exists. A ranking function< is said to
be a linear ranking function if <ðk~a1 þ ~a2Þ ¼ k<ð~a1Þþ<ð~a2Þ for any k 2 R.

Remark 3 For a trapezoidal fuzzy number ~a ¼ ða1; a2; a3; a4Þ, one of the most
linear ranking functions introduced by Yager [41] is <ð~a1Þ ¼ a1 þ a2 þ a3 þ a4

4 :

Remark 4 For a triangular fuzzy number ~a ¼ ða1; a2; a3Þ, Yager’s linear ranking
function is reduced to <ð~a1Þ ¼ a1 þ 2a2 þ a3

4 :

3 LP with Fuzzy Inequalities and Crisp Objective
Function

The general model of LP problems with fuzzy inequalities and crisp objective
function is formulated as follows:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð1Þ

In model (1), † is called “less than or equal to” and it is assumed that tolerance
pi for each constraint is given. This means that the decision maker can accept a
violation of each constraint up to degree pi. In this case, constraints giðxÞ† bi; are
equivalent to giðxÞ� bi þ hpi; ði ¼ 1; 2; . . .;mÞ, where h 2 ½0; 1�.

Verdegay [37] and Werners [40] considered two solution methods namely
nonsysmmetric method and symmetric method, respectively, for solving the FLP
problem (1). In what follows, theses solution approaches are discussed.

3.1 Verdegay’s Approach

Verdegay [37] proved that the FLP problem (1) is equivalent to crisp parametric LP
problem when the membership functions of the fuzzy constraints are continues and
non-increasing functions. According to his approach, the membership functions of
the fuzzy constraints of problem (1) can be modeled as follows:
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li giðxÞð Þ ¼
1; giðxÞ\bi;
1� giðxÞ�bi

pi
; bi � giðxÞ� bi þ pi;

0; giðxÞ[ bi þ pi:

8<
: ð2Þ

In this case, FLP problem (1) is equivalent to:

max z ¼
Xn
j¼1

cjxj

s:t: li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð3Þ

Now, by substituting membership functions (2) into problem (3), the following
crisp parametric LP problem is obtained:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi þð1� aÞpi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð4Þ

It should be note that for each a 2 ½0; 1�, an optimal solution is obtained. This
indicates that the solution with a grade of membership function is actually fuzzy.

Example 1 [26] Consider the following FLP problem:

max z ¼ 4x1 þ 5x2 þ 9x3 þ 11x4
s:t: g1ðxÞ ¼ x1 þ x2 þ x3 þ x4 � 15;

g2ðxÞ ¼ 7x1 þ 5x2 þ 3x3 þ 2x4 � 120;

g3ðxÞ ¼ 3x1 þ 5x2 þ 10x3 þ 15x4 � 100;

x1; x2; x3; x4 � 0:

ð5Þ

Assume that the first and third constrains are imprecise and their maximum
tolerances are 3 and 20, respectively, i.e. p1 ¼ 3 and p3 ¼ 20. Then, according to
(4), the following crisp parametric LP problem is solved:

max z ¼ 4x1 þ 5x2 þ 9x3 þ 11x4
s:t: g1ðxÞ ¼ x1 þ x2 þ x3 þ x4 � 15þ 3ð1� aÞ;

g2ðxÞ ¼ 7x1 þ 5x2 þ 3x3 þ 2x4 � 120;

g3ðxÞ ¼ 3x1 þ 5x2 þ 10x3 þ 15x4 � 100þ 20ð1� aÞ;
x1; x2; x3; x4 � 0:

ð6Þ
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By use of the parametric technique the optimal solution and the optimal
objective value are obtained as follows:

x	 ¼ 7:14þ 1:43ð1� aÞ; 0; 7:86þ 1:57ð1� aÞ; 0ð Þ;
z	 ¼ 99:29þ 19:86ð1� aÞ ð7Þ

3.2 Werners’s Approach

In the symmetric method proposed by Werners [40], it is assumed that the objective
function of problem (1) should be fuzzy because of fuzzy inequality constraints. For
doing this, he calculated the lower and upper bounds of the optimal values by
solving the standard LP problems (8) and (9), respectively, as follows:

zl ¼ max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð8Þ

zu ¼ max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

aijxj � bi þ pi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð9Þ

In this case, the membership function of the objective function is defined as
follows:

l0ðzÞ ¼
1; z[ zu;
1� zu�z

zu�zl ; zl � z� zu;
0; z\zl:

8<
: ð10Þ

Now, problem (1) can be solved by solving the following problem, a problem of
finding a solution that satisfies the constraints and goal with the maximum degree:

max z ¼ a

s:t: l0ðzÞ� a;

li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð11Þ
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By substituting the membership functions of the constraints given in (2) and the
membership function of the objective function given in (10) into problem (11), the
following crisp LP problem is obtained:

max a

s:t:
Xn
j¼1

cjxj � zl � ð1� aÞðzu � zlÞ;

giðxÞ ¼
Xn
j¼1

aijxj � bi þð1� aÞpi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð12Þ

Example 2 [22] Consider the following FLP problem:

max z ¼ 0:4x1 þ 0:3x2

s:t: g1ðxÞ ¼ x1 þ x2 � 400



;

g2ðxÞ ¼ 2x1 þ x2 � 500



;

x1; x2 � 0:

ð13Þ

where the membership functions of the fuzzy constraints are defined by:

l1ðxÞ ¼
1; g1ðxÞ\400;
1� g1ðxÞ�400

100 ; 400� g1ðxÞ� 500;
0; g1ðxÞ[ 500:

8<
: ð14Þ

l2ðxÞ ¼
1; g2ðxÞ\500;
1� g2ðxÞ�500

100 ; 500� g2ðxÞ� 600;
0; g2ðxÞ[ 600:

8<
: ð15Þ

Then, the lower and upper bounds of the objective function are calculated by
solving the following two crisp LP problems (16) and (17), respectively:

zl ¼ max z ¼ 0:4x1 þ 0:3x2
s:t: g1ðxÞ ¼ x1 þ x2 � 400;

g2ðxÞ ¼ 2x1 þ x2 � 500;

x1; x2 � 0:

ð16Þ
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zu ¼ max z ¼ 0:4x1 þ 0:3x2
s:t: g1ðxÞ ¼ x1 þ x2 � 500;

g2ðxÞ ¼ 2x1 þ x2 � 600;

x1; x2 � 0:

ð17Þ

Solving two problems (16) and (17) give zl ¼ 130 and zu ¼ 160, respectively.
Then, the membership function l0 of the objective function is defined as follows:

l0ðzÞ ¼
1; z[ 160;
1� 160�z

30 ; 130� z� 160;
0; z\130:

8<
: ð18Þ

Then, according to problem (12), the FLP problem (13) becomes:

max a

s:t: 0:4x1 þ 0:3x2 � 130� 30ð1� aÞ;
g1ðxÞ ¼ x1 þ x2 � 400þ 100ð1� aÞ;
g2ðxÞ ¼ 2x1 þ x2 � 500þ 100ð1� aÞ;
a 2 ½0; 1�; x1; x2 � 0; j ¼ 1; 2; . . .; n:

ð19Þ

The optimal solution of the problem (19) is x	 ¼ x	1; x
	
2

� � ¼ ð100; 350Þ; a	 ¼ 0:5.
The optimal value of the objective function is then calculated by

z	 ¼ 0:4x	1 þ 0:3x	2 ¼ 145:

4 LP with Crisp Inequalities and Fuzzy Objective
Function

The general from of LP problems with crisp inequalities and fuzzy objective
function can be formulated as follows:

max



z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð20Þ
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Assume that the membership function of the fuzzy objective be given by

/ðcÞ ¼ inf /1ðc1Þ;/2ðc2Þ; . . .;/nðcnÞf g ð21Þ

In this case, Verdegay [38] proved that if the membership function
/jðcjÞ : R ! ½0; 1�; ðj ¼ 1; 2; . . .; nÞ, are continues and strictly monotone, then the
fuzzy optimal solution of problem (20) can be obtained by solving the following
parametric LP problem:

max z ¼
Xn
j¼1

/�1
j ð1� aÞxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð22Þ

Example 3 [38] Consider the following FLP problem:

max



z ¼ c1x1 þ 75x2
s:t: g1ðxÞ ¼ 3x1 � x2 � 2;

g2ðxÞ ¼ x1 þ 2x2 � 3;

x1; x2 � 0:

ð23Þ

where the membership function /1 for c1 is given by:

/1ðc1Þ ¼
1; c1 [ 115;
ðc1�40Þ2
5625 ; 40� c1 � 115;

0; c1\40:

8<
: ð24Þ

Then, we have /�1
1 ðtÞ ¼ 40þ 75

ffiffi
t

p
. Now, according to model (20) we have to

solve the following problem:

max z ¼ 40þ 75
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
 �
x1 þ 75x2

s:t: g1ðxÞ ¼ 3x1 � x2 � 2;

g2ðxÞ ¼ x1 þ 2x2 � 3;

a 2 ½0; 1�; x1; x2 � 0:

ð25Þ
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By use of the parametric technique, the optimal solution of problem (25) is
x	 ¼ ðx	1; x	2Þ ¼ ð1; 1Þ. The fuzzy set of the objective function values of the
objective function is then obtained as follows:

ð75þ c1Þ; ðc1 � 40Þ2
5625

( )
; 40� c1 � 115:

5 LP with Fuzzy Inequalities and Fuzzy Objective
Function

The general from of LP problems with fuzzy inequalities and fuzzy objective
function can be formulated as follows:

max



z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð26Þ

In what follows, two solution approaches for solving FLP of type (26) are
explored.

5.1 Zimmerman’s Approach [43]

According to this approach, the membership functions liði ¼ 1; 2; . . .;mÞ of the
fuzzy constraints are given by (2). Also, it is required to have an aspiration level z0
for the objective function. In this case, problem (26) can be described as follows:

Find x

s:t: z ¼
Xn
j¼1

cjxj % z0

giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð27Þ
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Assuming p0 be the permissible tolerance for the objective function, the mem-
bership function l0 of the fuzzy objective is given by

l0ðzÞ ¼
1; z[ z0;
1� z0 � z

p0
; z0 � p0 � z� z0;

0; z\z0 � p0:

8><
>: ð28Þ

In this case, to solve the fuzzy system of inequalities (27) corresponding to
problem (26), the following crisp LP problem is solved:

max a

s:t: l0ðzÞ� a;

li giðxÞð Þ� a; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð29Þ

By substituting the membership functions of the fuzzy constraints given in (2)
and the membership function of the objective function given in (28) into problem
(29), the following crisp LP problem is obtained:

max a

s:t:
Xn
j¼1

cjxj � z0 � ð1� aÞp0;

Xn
j¼1

aijxj � bi þð1� aÞp0; i ¼ 1; 2; . . .;m;

a 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð30Þ

It needs to point out that if ðx	; a	Þ is an optimal solution of the crisp LP problem
(30), then it is said to be an optimal solution of the FLP problem (26) with a	 as the
degree up to which the aspiration level z0 of the decision maker is satisfied.

Example 4 [43] Consider the following FLP problem:

max



z ¼ x1 þ x2
s:t: g1ðxÞ ¼ �x1 þ 3x2 † 21;

g2ðxÞ ¼ x1 þ 3x2 † 27;

g3ðxÞ ¼ 4x1 þ 3x2 † 45;

g4ðxÞ ¼ 3x1 þ x2 � 30;

x1; x2 � 0:

ð31Þ

A Survey on Models and Methods for Solving … 341



Assume that z0 ¼ 14:5; p0 ¼ 2; p1 ¼ 3; p2 ¼ 6; and p3 ¼ 6. To obtain the
optimal solution of problem (31), we have to solve the following crisp LP problem
with regard to problem (30):

max a

s:t: z ¼ x1 þ x2 � 14:5� 2ð1� aÞ
g1ðxÞ ¼ �x1 þ 3x2 � 21� 3ð1� aÞ;
g2ðxÞ ¼ x1 þ 3x2 � 27� 6ð1� aÞ;
g3ðxÞ ¼ 4x1 þ 3x2 � 45� 6ð1� aÞ;
g4ðxÞ ¼ 3x1 þ x2 � 30;

x1; x2 � 0:

ð32Þ

The optimal solution of the crisp LP problem (32) is ðx	1; x	2; a	Þ ¼
ð6; 7:75; 0:625Þ with the optimal objective function value z	 ¼ 13:75. Then,
ðx	1; x	2Þ ¼ ð6; 7:75Þ is the optimal solution of the FLP problem (31).

5.2 Chanas’s Approach

In this approach, it is assumed that the decision maker cannot provide initially the
goal and its tolerance for the objective function. Chanas [3] therefore proposed first
to solve the following problem and then present the results to the decision maker to
estimate the goal and the tolerance of the objective function:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj † bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð33Þ

In this problem, the membership functions of the fuzzy constraints are assumed
as Eq. (2). Therefore, following the Verdegay’s approach [38] and assuming h ¼
1� a the problem (33) becomes:

max z ¼
Xn
j¼1

cjxj

s:t: giðxÞ ¼
Xn
j¼1

aijxj � bi þ hpi; i ¼ 1; 2; . . .;m;

h 2 ½0; 1�; xj � 0; j ¼ 1; 2; . . .; n:

ð34Þ
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The optimal solution of the parametric LP problem (34) can be found by use of
the parametric techniques. For a given h, assume that x	ðhÞ and z	ðhÞ are,
respectively an optimal solution and the corresponding optimal objective value of
the parametric LP problem (34). Then, the following constrains are hold:

li giðx	ðhÞÞð Þ� 1� h; i ¼ 1; 2; . . .;m; ð35Þ

On the other hand, in the case of pi [ 0, for every non-zero basic solution, there is
at least one i such that li giðx	ðhÞÞð Þ ¼ 1� h. This follows that the common degree
of the constraints satisfaction is lc gðx	ðhÞÞð Þ ¼ min1� i�m li giðx	ðhÞÞð Þ ¼ 1� h.
This means that for every h, a solution can be obtained which satisfies all the
constraints with degree 1� h. Now, such solution is presented to the decision maker
to determine the goal z0 of the objective function and its tolerance p0. Therefore, the
membership function l0 of the objective function becomes:

l0ðz	ðhÞÞ ¼
1; z	ðhÞ[ z0;
1� z0�z	ðhÞ

p0
; z0 � p0 � z	ðhÞ� z0;

0; z	ðhÞ\z0:

8<
: ð36Þ

In this case, the final optimal solution x	ðh	Þ of the FLP problem (26) will exist
at:

lDðh	Þ ¼ max lDðhÞf g ¼ lc gðx	ðhÞÞð Þ ¼ max min loðhÞ; lcðhÞf gf g

This approach can be summarized as follows:
Step 1: Solve the parametric LP problem (34) to determine x	ðhÞ and z	ðhÞ.
Step 2: Determine an appropriate value h to get z0 and choose p0.
Step 3: Obtain the membership function l0ðz	ðhÞÞ as (36).
Step 4: Set lc ¼ l0 ¼ 1� h to find h	.
Step 5: The optimal solution of the FLP problem (26) is x	ðh	Þ with the optimal

objective value z	ðh	Þ.
Example 5 Again, consider the FLP problem (31) with p1 ¼ 3; p2 ¼ 6; and p3 ¼ 6.

The solution procedure is illustrated as follows:
Step 1: According to problem (34), the following parametric LP problem should

be solved:

max z ¼ x1 þ x2
s:t: g1ðxÞ ¼ �x1 þ 3x2 � 21þ 3h;

g2ðxÞ ¼ x1 þ 3x2 � 27þ 6h;

g3ðxÞ ¼ 4x1 þ 3x2 � 45þ 6h;

g4ðxÞ ¼ 3x1 þ x2 � 30;

h 2 ½0; 1�; x1; x2 � 0:

ð37Þ
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The optimal solution is x	ðhÞ ¼ x	1ðhÞ; x	2ðhÞ
� � ¼ 6; 7þ 2hð Þ with

z	ðhÞ ¼ 13þ 2h.
Step 2: Assume z0 ¼ 14 and choose p0 ¼ 1.
Step 3: Now, the membership function l0ðz	ðhÞÞ is then given by

l0ðz	ðhÞÞ ¼
1; 13þ 2h[ 14;
1� 14� 13þ 2hð Þ

1 ¼ 2h; 13� 13þ 2h� 14;
0; 13þ 2h\14:

:

8<
: ð38Þ

Step 4: In order to find h	, we set lc ¼ l0 ¼ 1� h. We obtain 2h ¼ 1� h and
then h	 ¼ 1

3.
Step 5: The optimal solution is then x	 1

3

� � ¼ x	1
1
3

� �
; x	2

1
3

� �� � ¼ 6; 233
� �

with
z	 1

3

� � ¼ 13þ 2
3 ¼ 13:667.

6 LP with Fuzzy Parameters

In this section, different solution approaches for solving several kinds of LP
problems with fuzzy parameters are explored.

The solution approaches are classified into two general groups: Simplex based
approach and Non-simplex based approach. In the simplex based approach, the
classical simplex algorithms such as primal simplex algorithm and dual simplex
algorithm are generalized for solving LP problems with fuzzy parameters. In the
non-simplex based approach, such FLP problems are first converted into equivalent
crisp problems, which are then solved by the standard methods. In what follows,
these approaches are explored to find the optimal solution of LP problems with
fuzzy parameters.

6.1 The Simplex Based Approach

In this section, the simplex based approach for solving several kinds of LP prob-
lems with fuzzy parameters is explored. In such approach, the comparison of fuzzy
numbers is done by use of linear ranking functions.

6.1.1 LP with Fuzzy Cost Coefficients

The general from of LP problems with fuzzy cost coefficients can be formulated as
follows:
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max~z �
Xn
j¼1

~cjxj

s:t:
Xn
j¼1

aijxj � bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð39Þ

This problem can be rewritten as follows:

max~z � ~cx

s:t: Ax� b;

x� 0:

ð40Þ

where b ¼ ðb1; b2; . . .; bmÞ 2 Rm; ~c ¼ ð~c1;~c2; . . .;~cnÞ 2 F Rð Þn, A ¼ ðaijÞm�n 2
Rm�n and x ¼ ðx1; x2; . . .; xnÞ 2 Rn.

In what follows, the solution approach proposed by Maleki et al. [29] for solving
the FLP problem (40) is explored. The other approaches can be found in [7, 30].

Consider the system of equality constraints of (40) where A is a matrix of order
ðm� nÞ and rankðAÞ ¼ m. Therefore, A can be partitioned as ½B; N �, where Bm�m

is a nonsingular matrix with rankðBÞ ¼ m. Let yj is the solution of Byj ¼ aj.
Moreover, the basic solution x ¼ ðxB; xNÞ ¼ ðB�1b; 0Þ is a solution of Ax ¼ b. This
basic solution is feasible, whenever xB � 0. Furthermore, the corresponding fuzzy
objective function value is obtained as ~z � ~cBxB;~cB ¼ ð~cB1 ;~cB2 ; . . .;~cBmÞ.

Suppose JN is the set of indices associated with the current non-basic variables.
For each non-basic variable xj; j 2 JN the fuzzy variable ~zj is defined as
~zj � ~cBB�1aj ¼ ~cByj.

Maleki et al. [29] stated the following important results in order to improve a
feasible solution and to provide unbounded criteria and the optimality conditions
for the FLP problem (40) with equality constraints.

Theorem 1 If for a basic feasible solution with basis B and objective value
~z;~zk  ~ck for some non-basic variable xk while yk £ 0, then a new feasible solution
can be obtained as follows with objective value ~znew ¼ ~z� ð~zk � ~~ckÞxk, such that
~z � ~znew.

xBr ¼ xk ¼ h ¼
�br
yrk

¼ min
1� i�m

�bi
yik

yik [ 0j
� �

;

xBi ¼ �bi � yik
�br
yrk

; i ¼ 1; 2; . . .;m; i 6¼ r;

xj ¼ 0; j 2 JN ; j 6¼ k:
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Theorem 2 If for a basic feasible solution with basis B and objective value ~z;~zk 
~ck for some non-basic variable xk while yk � 0, then the optimal solution of the FLP
problem (40) is unbounded.

Theorem 3 The basic solution x ¼ ðxB; xNÞ ¼ ðB�1b; 0Þ is an optimal solution for
the FLP problem (40) if ~zj � ~cj for all j 2 JN .

Now we are in a position to summarize the fuzzy primal simplex algorithm [29]
for solving the FLP problem (40).

Algorithm 1: Fuzzy Primal Simplex Algorithm (Maximization Problem)

Initialization step

Choose a starting feasible basic solution with basis B.
Main steps

1. Solve the system BxB ¼ b. Let xB ¼ B�1b; xN ¼ 0, and ~z ¼ ~cBxB.
2. Solve the system ~wB ¼ ~cB. Let ~w ¼ ~cBB�1.
3. Calculate ~zj ¼ ~cBB�1aj ¼ ~waj for all j 2 JN . Find the rank of ~zj � ~cj for all

j 2 JN based on ranking function < given in Remark 3 and let
<ð~zk � ~ckÞ ¼ minj2JN <ð~zj � ~cjÞ

� �
. If <ð~zk � ~ckÞ� 0, then stop with the current

basic solution as an optimal solution.
4. Solve the system Byk ¼ ak and let yk ¼ B�1ak. If yk � 0 then stop with the

conclusion that the problem is unbounded.
If yk £ 0, then xk enters the basis and xBr leaves the basis providing that

�br
yrk

¼ min
1� i�m

�bi
yik

yrk [ 0j
� �

:

5. Update the basic B where ak replace aBr , update the index set JN and go to (1).

Example 6 [29] Consider the following FLP problem:

Max~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 � 6;

5x1 þ 4x2 � 10;

x1; x2 � 0:

ð41Þ

After introducing the slack variables x3 and x4 we obtain the following FLP
problem:
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Max ~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 þ x3 ¼ 6;

5x1 þ 4x2 þ x4 ¼ 10;

x1; x2; x3; x4 � 0:

ð42Þ

The steps of Algorithm 1 for solving the FLP problem (42) are presented as follows:

Iteration 1

The starting feasible basic is B ¼ ½ a3; a4 � ¼ 1 0
0 1

 �
. Thus, the non-basic matrix

N is N ¼ ½ a1; a2 � ¼ 2 3
5 4

 �
.

Step 1: We find the basic feasible solution by solving the system BxB ¼ b:

1 0
0 1

 �
x3
x4

 �
¼ 6

10

 �

Solving this system leads to xB1 ¼ x3 ¼ 6 and xB2 ¼ x4 ¼ 10. The
non-basic variables are x1 ¼ 0; x2 ¼ 0 and the fuzzy objective value is
~z ¼ ~cBxB ¼ 0.

Step 2: We find ~w by solving the fuzzy system ~wB ¼ ~cB:

ð~w1; ~w2Þ 1 0
0 1

 �
¼ ð0; 0; 0; 0Þ

ð0; 0; 0; 0Þ
 �

) ~w1 ¼ ~w2 ¼ ð0; 0; 0; 0Þ

Step 3: We calculate ~zj � ~cj ¼ ~waj � ~cj for all j 2 JN ¼ 1; 2f g:

~z1 � ~c1 ¼ ~wa1 � ~c1 ¼ ð0; 0; 0; 0Þ; ð0; 0; 0; 0Þð Þ 2

5

 �
� ð5; 8; 2; 5Þ ¼ ð�8;�5; 5; 2Þ

~z2 � ~c2 ¼ ~wa2 � ~c2 ¼ ð0; 0; 0; 0Þ; ð0; 0; 0; 0Þð Þ 3

4

 �
� ð6; 10; 2; 6Þ ¼ ð�10;�6; 6; 2Þ

Computing the rank of ~z1 � ~c1 and ~z2 � ~c2 based on ranking function
given in Remark 3 leads to <ð~z1 � ~c1Þ ¼ � 29

4 and <ð~z2 � ~c2Þ ¼ �9.
Therefore,

min <ð~z1 � ~c1Þ ¼ � 29
2
;<ð~z2 � ~c2Þ ¼ �9

� �
¼ <ð~z2 � ~c2Þ ¼ �9

Step 4: We find y2 by solving the system By2 ¼ a2:

1 0
0 1

 �
y12
y22

 �
¼ 3

4

 �
) y2 ¼ y12

y22

 �
¼ 3

4

 �
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Step 5: The variable xB r leaving the basis is determined by the following test:

min
�b1
y12

;
�b2
y22

� �
¼ min

6
3
;
10
4

� �
¼ 6

3
¼ 2

Hence, xB1 ¼ x3 leaves the basis.
Step 6: We update the basis B where a2 replaces aB1 ¼ a3:

B ¼ ½a2; a4� ¼ 3 0
4 1

 �

Also, we update JN ¼ 1; 2f g as JN ¼ 1; 3f g.
This process is continued and after two more iterations the optimal basis

B ¼ ½a2; a1� ¼ 3 2
4 5

 �
is found. The optimal solution and the optimal

objective function value of the FLP problem (41) are therefore given by:

x	 ¼ x	1; x
	
2; x

	
3; x

	
4

� � ¼ 6
7
;
10
7
; 0; 0

� �
; ~z	 ¼ 90

7
;
148
7

;
32
7
;
96
7

� �
ð43Þ

6.1.2 LP Problem with Fuzzy Decision Variables and Fuzzy
Right-Hand-Side of the Constraints

The LP problem involving fuzzy numbers for the decision variables and the
right-hand-side of the constraints is called fuzzy variables linear programming
problem (FVLP) problem and is formulated as follows:

min~z ¼ c~x

s:t: A~x � ~b;

~x � ~0:

ð44Þ

In what follows, two solution approaches proposed by Maleki et al. [29] and
Mahdavi-Amiri and Nasseri [28] for solving the FVLP problem (44) are explored.
The other approaches can be found in [12, 13].

6.1.3 Maleki et al.’s Approach

Maleki et al. [29] introduced an auxiliary problem, having only fuzzy cost coeffi-
cients, for an FVLP problem and then used its crisp solution for obtaining the fuzzy
solution of the FVLP problem. In order to describe this approach, we reformulate
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the FVLP problem (44), with respect to the change of all the parameters and
variables, as the following FVLP problem:

min ~u ¼ ~wb

s:t: ~wA � ~c;

~w � ~0:

ð45Þ

Maleki et al. [29] considered the FLP problem (40) as the fuzzy auxiliary
problem for the FVLP problem (45) and studied the relation between the FVLP
problem (45) and the fuzzy auxiliary problem (40). In fact, they proved that if
xB ¼ B�1b is an optimal basic feasible solution of the auxiliary problem (40) then
~w ¼ ~cBB�1 is a fuzzy optimal solution of the FVLP problem (45).

Example 7 [28, 29] Consider the following FVLP problem:

Min ~z � 6~x1 þ 10~x2
s:t: 2~x1 þ 5~x2 � ð5; 8; 2; 5Þ;

3~x1 þ 4~x2 � ð6; 10; 2; 6Þ;
~x1;~x2 � ~0:

ð46Þ

Now, we solve this problem using the solution approach proposed by Maleki
et al. [29]. To do this, we rewrite the FVLP problem (46) with respect to the change
of all the parameters and variables as follows:

Min ~u � 6~w1 þ 10~w2

s:t: 2~w1 þ 5~w2 � ð5; 8; 2; 5Þ;
3~w1 þ 4~w2 � ð6; 10; 2; 6Þ;
~w1; ~w2 � ~0

ð47Þ

The fuzzy auxiliary problem corresponding to the FVLP problem (47) is defined
as follows:

Max ~z � ð5; 8; 2; 5Þx1 þð6; 10; 2; 6Þx2
s:t: 2x1 þ 3x2 � 6;

5x1 þ 4x2 � 10;

x1; x2 � 0:

ð48Þ

The fuzzy auxiliary problem (48) is exactly the LP problem with fuzzy costs
given in (41). Thus, the optimal solution given in (43) is its optimal solution. Now,

since the basis B ¼ ½a2; a1� ¼ 3 2
4 5

 �
is the optimal basis of the fuzzy auxiliary
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problem (48) or (41), the fuzzy optimal solution of the FVLP problem (47) is
obtained as follows based on the formulation ~w ¼ ~cBB�1:

~w	 ¼ ~w	
1; ~w

	
2

� � ¼ ð6; 10; 2; 6Þ; ð5; 8; 2; 5Þð Þ
5
7

�2
7

�4
7

3
7

" #

¼ �2
7

;
30
7
;
30
7
;
38
7

� �
;

�5
7

;
12
7
;
18
7
;
19
7

� �� �
ð49Þ

This means that the optimal solution of FVLP problem (46) is as follows:

~x	 ¼ ~x	1
~x	2

 �
¼

�2
7 ; 307 ;

30
7 ;

38
7

� �
�5
7 ; 127 ;

18
7 ;

19
7

� � �
ð50Þ

Unlike the non-simplex based approach, this approach doesn’t increase the
number of the constraint of the primary FLP problem. Another advantage of this
approach is to produce the fuzzy optimal solution that provides possible outcomes
with certain degree of memberships to the decision maker. However, the fuzzy
optimal solution by use of this approach may be not non-negative. For instance the
value of ~x	1 in the fuzzy optimal solution (50) is non-negative as there is negative
part in this fuzzy number.

Mahdavi-Amiri and Nasseri’s Approach

Mahdavi-Amiri and Nasseri [28] proved that the fuzzy auxiliary problem intro-
duced by Maleki et al. [29] is the dual of the FVLP problem. Hence, they intro-
duced a fuzzy dual simplex algorithm for solving the FVLP problem directly on the
primary problem and without solving any fuzzy auxiliary problem.

Mahdavi-Amiri and Nasseri [28] defined the dual problem of the FVLP problem
(44) as follows:

max ~u ¼ w~b

s:t: wA� c;

w� 0:

ð51Þ

We see that only the coefficients of the objective function of this problem are
fuzzy numbers. Thus, it plays the role of the auxiliary problem for the FVLP
problem (44).

A summary of the fuzzy dual simplex algorithm proposed by Mahdavi-Amiri
and Nasseri [28] for solving FVLP problem (44) is given as follows.
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Algorithm 2: Fuzzy Dual Simplex Algorithm (Minimization Problem)

Initialization step
Choose a starting dual feasible basic solution with basis B.

Main steps

1. Solve the system B~xB ¼ ~b. Let ~xB ¼ B�1~b ¼ ~�b, and ~z � cB~xB.

2. Find the rank of ~�bi for all 1� i�m based on ranking function < given in

Remark 3 and let < ~�bi

 �

¼ min1� i�m < ~�bi

 �n o

. If < ~�br

 �

� 0, then stop with

the current basic solution as an optimal solution.
3. Solve the system Byj ¼ aj for all j 2 JN and let yj ¼ B�1aj. If yrj � 0 for all

j 2 JN then stop with the conclusion that the FVLP problem is infeasible.
4. Solve the system wB ¼ cB. Let w ¼ cBB�1. Calculate zj ¼ waj for all j 2 JN . If

yrj l 0 for all j 2 JN , then ~xBr leaves the basis and ~xk enters the basis providing
that

zk � ck
yrk

¼ min
j2JN

zj � cj
yrk

����yrk\0
� �

:

5. Update the basis B where ak replaces aBr , update the index set JN and go to (1).

Example 8 Again, consider the FVLP problem (46). Now, we solve this problem
using the solution approach proposed by Mahdavi-Amiri and Nasseri [28]. To do
this, we rewrite the FVLP problem (46) as follows in order to obtain a dual feasible
solution with identity basis where ~x3 and ~x4 are fuzzy surplus variables:

Min ~z � 6~x1 þ 10~x2
s:t: �2~x1 � 5~x2 þ~x3 � ð�8;�5; 5; 2Þ;

�3~x1 � 4~x2 þ~x4 � ð�10;�6; 6; 2Þ;
~x1;~x2;~x3;~x4 � ~0:

ð52Þ

The steps of Algorithm 2 for solving the FVLP problem (52) are explored as
follows:

Iteration 1 The starting dual feasible basic is B ¼ ½a3; a4� ¼ 1 0
0 1

 �
. Thus, the

non-basic matrix N is N ¼ ½a1; a2� ¼ �2 �5
�3 �4

 �
.
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Step 1: We find the basic solution by solving the fuzzy system B~xB ¼ ~b:

1 0
0 1

 �
~x3
~x4

 �
¼ ð�8;�5; 5; 2Þ

ð�10;�6; 6; 2Þ
 �

) ~x3
~x4

 �
¼ ð�8;�5; 5; 2Þ

ð�10;�6; 6; 2Þ
 �

¼
~�b1
~�b2

" #

The fuzzy objective function value is obtained based on the formulation
~z � cB~xB:

~z � 0; 0ð Þ ð�8;�5; 5; 2Þ
ð�10;�6; 6; 2Þ
 �

¼ ð0; 0; 0; 0Þ

Step 2: We find the rank of ~�b1 and ~�b2 by use of ranking function < given in

Remark 3. Hence we have < ~�b1

 �

¼ � 29
4 and < ~�b2


 �
¼ �9. Therefore,

min < ~�b1

 �

¼ � 29
4
;< ~�b2

 �

¼ �9
� �

¼ < �b2ð Þ ¼ �9l 0

Step 3: We find yj for all j 2 JN ¼ 1; 2f g by solving the system Byj ¼ aj:

1 0

0 1

 �
y11
y21

 �
¼ �2

�3

 �
) y1 ¼

y11
y21

 �
¼ �2

�3

 �
1 0

0 1

 �
y12
y22

 �
¼ �5

�4

 �
) y2 ¼

y12
y22

 �
¼ �5

�4

 �

Step 4: We find w by solving the system wB ¼ cB:

ðw1;w2Þ 1 0
0 1

 �
¼ 0

0

 �
) w1 ¼ w2 ¼ 0

Now, we calculate zj � cj ¼ waj � cj for all j 2 JN ¼ 1; 2f g:

z1 � c1 ¼ wa1 � c1 ¼ 0; 0ð Þ �2

�3

 �
� 6 ¼ �6

z2 � c2 ¼ wa2 � c2 ¼ 0; 0ð Þ �5

�4

 �
� 10 ¼ �10

The variable ~xB2 ¼ ~x4 leaves the basis and the variable ~xk entering the
basis is determined by the following test:
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min
z1 � c1
y21

;
z2 � c2
y22

� �
¼ min

�6
�3

;
�10
�4

� �
¼ �6

�3
¼ 2

Hence, xk ¼ x1 enters the basis.
Step 5: We update the basis B where a1 replaces aB2 ¼ a4:

B ¼ ½a3; a1� ¼ 1 �2
0 �3

 �

Also, we update JN ¼ 1; 2f g as JN ¼ 2; 4f g.
This process is continued and after two more iterations, the optimal
solution of the FVLP problem (44) is given as follows, which is matched
with that given in (50) obtained by Maleki et al.’s approach [29]:

~x	 ¼ ~x	1
~x	2

 �
¼

�2
7

;
30
7
;
30
7
;
38
7

� �
�5
7

;
12
7
;
18
7
;
19
7

� �
2
664

3
775

It should be note that the advantages and disadvantages of this approach
are same with the Maleki et al.’s approach [29].

6.1.4 LP Problem with Fuzzy Cost Coefficients, Fuzzy Decision
Variables and Fuzzy Right-Hand-Side of the Constraints

Ganesan and Veeramani [14] formulated a LP problem in which the cots coeffi-
cients, decision variables and the values of the right-hand-side are represented by
symmetric trapezoidal fuzzy numbers while the elements of the coefficient matrix
are represented by real numbers. This problem can be formulated as follows:

max~z � ~c~x

s:t: A~x � ~b;

~x � ~0:

ð54Þ

In what follows, two solution approaches are reviewed for solving FLP problem
(54). The other approaches can be found in [10, 23].

Ganesan and Veeramani’s Approach

Ganesan and Veeramani [14] introduced a new type of fuzzy multiplication and
fuzzy ordering for symmetric trapezoidal fuzzy numbers and then proposed a
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simplex based method for solving SFFLP problem (55) without converting it into
crisp LP problem.

Definition 13 Let ~a ¼ ða2 � a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � b; b2; b3; b3 þ bÞ be
two symmetric trapezoidal fuzzy numbers. The new type of multiplication on ~a and
~b has been defined in [14] as follows:

~a~b � p� w� c; p� w; pþw; pþwþ cð Þ

where

p ¼ a2 þ a3
2


 � b2 þ b3
2

� �
; w ¼ t2 � t1

2
; t1 ¼ min a2b2; a2b3; a3b2; a3b3f g;

t2 ¼ max a2b2; a2b3; a3b2; a3b3f g; c ¼ a3bþ b3aj j:
Definition 14 For any two symmetric trapezoidal fuzzy numbers ~a ¼ ða2 �
a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � a; b2; b3; b3 þ aÞ the relations � and � have been
defined in [14] as follows:

~a � b , a2 þ a3
2

� b2 þ b3
2

~a � b , a2 þ a3
2

� b2 þ b3
2

Remark 5 It should be note that the ordering defined in Definition 14 is same as
with the ordering defined in terms of linear ranking function in Remark 3. This
means that the linear ranking function given in Remark 3 for any symmetric
trapezoidal fuzzy numbers ~a ¼ ða2 � a; a2; a3; a3 þ aÞ is reduced to

<ð~aÞ ¼ a2 � aþ a2 þ a3 þ a3 þ a
4

¼ a2 þ a3
2

Now, consider a system of m simultaneous fuzzy linear equations involving
symmetric trapezoidal fuzzy numbers in n unknowns A~x ¼ ~b. Let B be any matrix
formed by m linear independent of A. In this case, the solution ~x ¼ ð~xB;~xNÞ ¼
ðB�1~b; ~0Þ is a fuzzy basic solution. Let yj and ~w be the solutions to Byj ¼ aj and
~wB ¼ ~cB, respectively. Define ~zj ¼ ~cBB�1aj ¼ ~waj. Based on these results, Ganesan
and Veeramani [14] proved fuzzy analogues of some important theorems of LP
leading to a new method for solving FLP problem (54) without converting it into a
crisp LP problem.
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Algorithm 3: Symmetric fuzzy primal simplex algorithm (Maximization
Problem)

Initialization step
Choose a starting dual feasible basic solution with basis B. Form the initial tableau
as Table 1.

Main steps

1. Calculate ~zj � ~cj for all j 2 JN where JN is the index set of non-basic variables.
Suppose that ~zj � ~cj ¼ ðh2j � aj; h2j ; h

3
j ; h

3
j þ ajÞ. Let

h2k þ h3k ¼ max
j2JN

h2j þ h3j
n o

:

If h2k þ h3k � 0, then stop with the current basic solution as an optimal solution.
2. Solve the system Byk ¼ ak and let yk ¼ B�1ak. If yk � 0 then stop with the

conclusion that the problem is unbounded. Otherwise, suppose
~�bi ¼ �b2i � ai; �b2i ; �b

3
i ;
�b3i þ aj

� �
. In this case, then ~xk enters the basis and ~xBr leaves

the basis providing that

�b2r þ �b3r
yrk

¼ min
1� i�m

�b2i þ �b3i
yik

����yrk [ 0
� �

3. Update the tableau by pivoting on yrk and go to (1).

Example 9 [11] Consider the following FLP problem:

Max ~z � ð11; 13; 15; 17Þ~x1 þð9; 12; 14; 17Þ~x2
s:t: 12~x1 þ 13~x2 � ð469; 475; 505; 511Þ;

12~x1 þ 15~x2 � ð460; 465; 495; 500Þ;
~x1;~x2 � ~0:

ð55Þ

Table 1 The initial simplex tableau

Basis ~x1 . . . ~xr . . . ~xm . . . ~xj . . . ~xk . . . R:H:S <
~z ~0 . . . ~0 . . . ~0 . . . ~zj � ~cj . . . ~zk � ~ck . . . ~z ¼ ~cB~�b –

<ð~zÞ 0 . . . 0 . . . 0 . . . h2j þ h3j . . . h2k þ h3k . . . – z2 þ z3

~x1 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . ~�b1 �b21 þ �b31

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xr ..
. . . . 1 . . . 0 . . . yrj . . . yrk . . . ~�br

�b2r þ �b3r

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xm 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . ~�bm
�b2m þ �b3m
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After introducing the slack variables ~x3 and ~x4 we obtain the initial fuzzy primal
simplex tableau as Table 2.

By considering ~x1 and ~x4 as the entering variable the leaving variable, respec-
tively, and then by pivoting on y21 ¼ 12, we obtain the next tableau as Table 3.

Since h22 þ h32 � 0 and h24 þ h34 � 0, the algorithm stops and Table 3 is the optimal
tableau.

Ebrahimnejad and Nasseri’s Approach

In the proposed approach by Ganesan and Veeramani [14] it is assumed that a fuzzy
primal feasible basic solution of the problem (54) is at hand. For situation in which
a primal fuzzy feasible basic solution is not at hand, but there is a fuzzy dual
feasible basic solution, Ebrahimnejad and Nasseri [9] generalized the fuzzy ana-
logue of the dual simplex algorithm of LP to the FLP problem under consideration.
A summary of their method for a minimization problem in tableau format is given
as follows.

Algorithm 4: Symmetric Fuzzy Dual Simplex Algorithm (Minimization
Problem)

Initialization step
Choose a starting primal feasible basic solution with basis B. Form the initial
tableau as Table 1. Suppose ~zj � ~cj ¼ ðh2j � aj; h2j ; h

3
j ; h

3
j þ ajÞ, so we have

h2j þ h3j � 0 for all j.

Main steps

1. Suppose ~�b ¼ B�1~b. If ~�b ¼ B�1~b then stop; the current fuzzy solution is optimal.

Else, suppose ~�bi ¼ �b2i � ai; �b2i ; �b
3
i ;
�b3i þ aj

� �
and let

Table 2 The initial simplex tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ð�17;�15;�13;�11Þ ð�17;�14;�12;�9Þ ~0 ~0 ~0 –

<ð~zÞ −28 −26 0 0 – 0

~x3 12 13 1 0 ð469; 475; 505; 511Þ 980

~x4 12 15 0 1 ð460; 465; 495; 500Þ 960

Table 3 The optimal tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ~0 �13

4 ; 94 ;
27
4 ;

49
4

� �
~0 11

12 ;
13
12 ;

15
12 ;

17
12

� �
4965
12 ; 10052 ; 12352 ; 847512

� �
–

<ð~zÞ 0 9 0 7
3

– 1120

~x3 0 −2 1 −1 ð�31;�20; 40; 51Þ 20

~x1 1 5
4

0 1
12

460
12 ;

465
12 ;

495
12 ;

500
12

� �
80

356 A. Ebrahimnejad and J.L. Verdegay



�b2r þ �b3r ¼ min
1� i�m

�b2i þ �b3i
� �

2. If yrj � 0 for all j, then stop; the FLP problem under consideration is infeasible.
Else, ~xBr leaves the basis and ~xk enters to the basis providing that

h2k þ h3k
yrk

¼ min
1� j� n

h2j þ h3j
yrj

�����yrj\0

( )

3. Update the tableau by pivoting on yrk and go to (1).

Example 9 [10] Consider the following FLP problem:

Min ~z � ð1; 4; 8; 13Þ~x1 þð2; 4; 6; 8Þ~x2 þð1; 2; 4; 5Þ~x3
s:t: 3~x1 þ 4~x2 þ 2~x3 � ð3; 6; 10; 13Þ;

4~x1 þ 2~x2 þ~x3 � ð2; 4; 6; 8Þ;
2~x1 þ~x2 þ~x3 � ð1; 2; 6; 7Þ;
~x1;~x2;~x3 � ~0:

ð56Þ

After introducing the surplus variables ~x4;~x5 and ~x6 the initial fuzzy dual simplex
tableau is given as Table 4.

After two iterations of the Algorithm 4, the optimal tableau is obtained as
Table 5.

In contrast to the FVLP problem considered in [28, 29], in the FLP problem
introduced by Ganesan and Veeramini [14], not only the decision variables and the
right-hand-side of the constraints are fuzzy, but also the coefficients of decision
variables in objective function are fuzzy. However, the proposed approaches for
solving FLP problem considered in [14] are valid only for situation in which the
parameters are represented by symmetric trapezoidal fuzzy numbers. But, the
proposed methods [28, 29] for solving FVLP problems are applicable to both
symmetric and non-symmetric trapezoidal fuzzy numbers. Also, unlike the
non-simplex based approach and similar to the existing approaches [28, 29] in
solving FVLP problems, this approach doesn’t increase the number of the

Table 4 The initial tableau of Example 9

Basis ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 R:H:S <
~z ð�13;�8;

�4;�1Þ
ð�8;�6;
�4;�2Þ

ð�5;�4;
�2;�1Þ

~0 ~0 ~0 ~0 –

<ð~zÞ −12 −10 −6 0 0 0 – 0

~x4 −3 −4 −2 1 0 0 ð�13;�10;�6;�3Þ −16

~x5 −4 −2 −1 0 1 0 ð�8;�6;�4;�2Þ −10

~x6 −2 −1 −1 0 0 1 ð�7;�6;�2;�1Þ −8

A Survey on Models and Methods for Solving … 357



constraint of the primary FLP problem. In addition, although these approaches [9,
14] give fuzzy optimal solution, but, the fuzzy optimal solution by use of these
approaches may be not non-negative, too. For instance the value of ~x	3 ¼
ð�31;�20; 40; 51Þ in the fuzzy optimal solution of Example 8 (see Table 3) and
the value of ~x	1 ¼ �9

5 ; �2
5 ; 65 ;

13
5

� �
in the optimal solution of Example 9 (see Table 5)

are non-negative as there are negative parts in these fuzzy solutions.

6.1.5 LP Problem with Fuzzy Cost Coefficients, Fuzzy Decision
Variables, Fuzzy Coefficients Matrix and Fuzzy
Right-Hand-Side of the Constraints

Kheirfam and Verdegay [19] defined a new type of FLP problems in which all
parameters and decision variables were represented by symmetric trapezoidal fuzzy
numbers. This problem, named as symmetric fully fuzzy linear programming
(SFFLP), can be represented with the following model:

max~z ¼ ~c~x

s:t: ~A~x � ~b;

~x � ~0:

ð57Þ

Kheirfam and Verdegay [19] introduced a new type of fuzzy inverse and division
for symmetric trapezoidal fuzzy numbers and then proposed a simplex based
method for solving SFFLP problem (57) without converting it to crisp LP problem.

Definition 15 Let ~a ¼ ða2 � a; a2; a3; a3 þ aÞ and ~b ¼ ðb2 � b; b2; b3; b3 þ bÞ be
symmetric trapezoidal fuzzy number and symmetric non zero trapezoidal fuzzy
number, respectively. Two new types of arithmetic operations on ~a and ~b have been
defined in [19] as follows:

Table 5 The optimal tableau of Example 9

Basis ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 R:H:S <
~z ~0 ~0 ~0 ~0 ~0 ~0 ~0 –

<ð~zÞ 0 0 0 �14
5 ; �19

10 ;
�
3
10 ;

11
5 Þ

�22
5 ; �11

5 ; 35 ;
14
5

� � �6
5 ; �4

5 ; 25 ;
4
5

� � �75
5 ; �2

5 ; 1145 ; 1875
� �

112

~x2 1 0 0 �2
5

1
5

1
5

�9
5 ; 0; 145 ;

23
5

� �
14
5

~x1 0 1 0 1
5

�2
5

0 �9
5 ; �2

5 ; 65 ;
13
5

� �
4
5

~x3 0 0 1 0 1
5

�2
5

�11
5 ; �4

5 ; 105 ;
17
5

� �
6
5
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d

1
~b
¼ ~b�1

� 2
b2 þ b3

� w

 �
� b;

2
b2 þ b3

� w

 �
;

2
b2 þ b3

þw

 �
;

2
b2 þ b3

þw

 �
þ b

� �

where w ¼ t2�t1
2 ; t2 ¼ max

j¼2;3
1
�bj

n o
; t1 ¼ min

j¼2;3
1
�bj

n o
; 1�bj

¼
1
bj
; bj 6¼ 0;

0; bj ¼ 0:

�

d

~a
~b
� a2 þ a3

b2 þ b3
� w

 �
� c;

a2 þ a3
b2 þ b3

� w

 �
;
a2 þ a3
b2 þ b3

þw

 �
;
a2 þ a3
b2 þ b3

þw

 �
þ c

� �

where w ¼ t2�t1
2 ; t2 ¼ max

i;j¼2;3

ai
�bj

n o
; t1 ¼ min

i;j¼2;3

ai
�bj

n o
; c ¼ a3bþ b3aj j:

A symmetric trapezoidal fuzzy matrix eA ¼ ~aij
� �

m�n is any rectangular array of
symmetric trapezoidal fuzzy numbers. For any values of indices i and j, the ijth
minor of the square matrix ~A ¼ ~aij

� �
n�n, denoted by ~Aij, is the ðn� 1Þ � ðn� 1Þ

sub-matrix of ~A obtained by deleting the ith row and the jth column of ~A. In this
case, determinant ~A, denoted by ~A

�� ��, is computed as follows [19]:

• For n ¼ 1; ~A
�� �� ¼ ~a11.

• For n ¼ 2; ~A
�� �� ¼ ~a11~a22 � ~a12~a21.

• For n[ 2; ~A
�� �� ¼Pn

j¼1
ð�1Þiþ j~aij ~Aij

�� ��, for any value of index i ¼ 1; 2; . . .; n.

A square matrix ~A ¼ ~aij
� �

n�n, is called singular if ~A
�� �� ¼ ~0. In other case, it said

to be non-singular fuzzy matrix and its inverse is calculated by
~A�1 ¼ ð1;1;0;0Þ

~Aj j ð�1Þiþ j ~Aij

�� ��� �
n�n.

Now, we are in a position to summary the proposed method by Kheirfam and
Verdegay [19] solving the SFFLP problem (57).

Suppose a fuzzy basic feasible solution of problem (57) with basis ~B is at hand.
Let ~yj and ~w be the solutions to ~B~yj ¼ ~aj and ~w~B ¼ ~cB, respectively. Define
~zj ¼ ~cB~B�1~aj ¼ ~w~aj. Using these notations, Kheirfam and Verdegay [19] developed
and presented for first time an original dual simplex algorithm for solving the
SFFLP problem (57).

Algorithm 5: Symmetric Fully Fuzzy Dual Simplex Algorithm (Maximization
Problem)

Initialization step

Let ~B be a basis for the SFFLP problem (57) such that ~zj � ~cj ¼ h2j � aj; h2j ; h
3
j ; h

3
j



þ ajÞ � ~0 for all j, i.e. h2j þ h3j � 0. Form the initial tableau as Table 6.
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Main steps

1. Suppose ~�b ¼ ~B�1~b. If ~�b � ~0 then stop; the current fuzzy solution is optimal.

Else, suppose ~�bi ¼ �b2i � ai; �b2i ; �b
3
i ;
�b3i þ aj

� �
and let

�b2r þ �b3r ¼ min
1� i�m

�b2i þ �b3i
� �

2. If ~yrj ¼ y2rj � arj; y2rj; y
3
rj; y

3
rj � arj


 �
� ~0 for all j, i.e. y2rj þ y3rj � 0, then stop; the

SFFLP problem (57) is infeasible.
Else, ~xBr leaves the basis and ~xk enters the basis providing that

h2k þ h3k
y2rk þ y3rk

¼ max
1� j� n

h2j þ h3j
y2rj þ y3rj

�����y2rj þ y3rj\0

( )

3. Update the tableau by pivoting on ~yrk and go to (1).

Example 10 [19] Consider the following SFFLP problem:

Max ~z � ð�4;�2; 2; 5Þ~x1 þð�3;�2; 0; 1Þ~x2
s:t: ð1; 2; 4; 5Þ~x1 þð�5;�3;�1; 1Þ~x2 þð1; 1; 1; 1Þ~x3 � ð�6;�4;�4; 2Þ;

ð�3;�2; 0; 1Þ~x1 þð�4;�2; 4; 6Þ~x2 þð1; 1; 1; 1Þ~x4 � ð�4;�1; 5; 8Þ;
~x1;~x2;~x3;~x4 � ~0:

ð59Þ

The first dual feasible simplex tableau is showed in Table 7.
Since �b21 þ �b31\0, thus ~xB1 ¼ ~x3 leaves the basis and according to test given in

step (2) of Algorithm 5, ~x2 is the entering variable. By pivoting ~y12 ¼
ð�5;�3;�1; 1Þ on the new tableau shown in Table 8 is obtained.

Table 6 Tableau of the SFFLP problem

Basis ~x1 . . . ~xr . . . ~xm . . . ~xj . . . ~xk . . . R:H:S <
~z ~0 . . . ~0 . . . ~0 . . . ~zj � ~cj . . . ~zk � ~ck . . . ~z ¼ ~cB~�b �
<ð~zÞ 0 . . . 0 . . . 0 . . . h2j þ h3j . . . h2k þ h3k . . . � z2 þ z3

~x1 1 . . . 0 . . . 0 . . . ~y1j . . . ~y1k . . . ~�b1
�b21 þ �b31

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xr ..
. . . . 1 . . . 0 . . . ~yrj . . . ~yrk . . . ~�br

�b2r þ �b3r

..

. ..
. . . . ..

. . . . ..
. . . . ..

. . . . ..
. . . . ..

.

~xm 0 . . . 0 . . . 1 . . . ~ymj . . . ~ymk . . . ~�bm
�b2m þ �b3m
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Since ~�b1 ¼ �28
3 ; 23 ;

10
3 ;

40
3

� � � ~0 and ~�b2 ¼ �308
3 ;�13; 13; 3083

� � � ~0, the current
solution is optimal. Thus, the optimal solution of the problem (59) is

~x	 ¼ ~x	1
~x	2

 �
¼ 0; 0; 0; 0ð Þ

�28
3 ; 23 ;

10
3 ;

40
3

� � �
ð60Þ

In contrast to the FVLP problem considered in [28, 29] and the FLP problem
introduced by Ganesan and Veeramini [14], in the FLP problem considered by
Kheirfam and Verdegay [19] all parameters and decision variable are specified in
terms of fuzzy data. In addition, the solution approach proposed by Kheirfam and
Verdegay [19], not only gives fuzzy optimal solution, but also doesn’t increase the
number of the constraint of the primary FLP problem. However, similar to the
existing approaches in [9, 14, 28, 29], the fuzzy optimal solution given by use of
this approach may be not non-negative. For instance the value of ~x	2 ¼
�28
3 ; 23 ;

10
3 ;

40
3

� �
in the fuzzy optimal solution (60) is non-negative as there is negative

part in this fuzzy solution.

6.2 The Non-simplex Based Approach

In this section, the non-simplex based approach for solving two kinds of LP
problems with fuzzy parameters is explored. In such approach, the fuzzy constraints
are first converted to crisp ones based on arithmetic operations on fuzzy numbers
and then the standard method are used for solving the crisp problem. Such approach
increases the number of functional constraints and thus directly effects the com-
putational time of the simplex method.

Table 7 The initial simplex tableau of Example 10

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z ð�4;�2; 2; 5Þ ð�3;�2; 0; 1Þ ~0 ~0 ~0 –

<ð~zÞ 0 −2 0 0 – 0

~x3 ð1; 2; 4; 5Þ ð�5;�3;�1; 1Þ ð1; 1; 1; 1Þ ~0 ð�6;�4;�4; 2Þ −8

~x4 ð�3;�2; 0; 1Þ ð�4;�2; 4; 6Þ ~0 ð1; 1; 1; 1Þ ð�4;�1; 5; 8Þ 4

Table 8 The optimal tableau of Example 8

Basis ~x1 ~x2 ~x3 ~x4 R:H:S <
~z �20; �23

6 ; 416 ;
138
6

� �
~0 �25

6 ; �1
3 ; 43 ;

31
6

� �
~0 �86

6 ; �16
3 ; 43 ;

74
6

� �
–

<ð~zÞ 3 0 1 0 – −4

~x2 �61
6 ; �19

6 ; 16 ;
43
6

� � ð1; 1; 1; 1Þ �17
6 ; �5

6 ; �1
6 ; 116

� �
~0 �28

3 ; 23 ;
10
3 ;

40
3

� �
4

~x4 �383
12 ; �29

3 ; 323 ;
484
12

� �
~0 ~0 ð1; 1; 1; 1Þ ~0 0
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6.2.1 LP Problem with Fuzzy Coefficients Matrix and Fuzzy
Right-Hand-Side of the Constraints

The general form of LP problems in which the right-hand-side of the constraints
and the coefficients of the constraint matrix are fuzzy numbers, can be formulated as
follows [32]:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

~aijxj � ~bi; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð61Þ

Let us assume that all fuzzy numbers are triangular. Thus, ~aij and ~bi are repre-
sented as ~aij ¼ ða1;ij; a2;ij; a3;ijÞ and ~bi ¼ ðb1;i; b2;i; b3;iÞ, respectively. Hence, FLP
problem (61) can be reformulated as follows:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

ða1;ij; a2;ij; a3;ijÞxj � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð62Þ

Equivalently, with regard to Remarks 1 and 2, the FLP (62) can be rewritten as
follows:

max z ¼
Xn
j¼1

cjxj

s:t:
Xn
j¼1

a1;ijxj � b1;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

a2;ijxj � b2;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

a3;ijxj � b3;i; i ¼ 1; 2; . . .;m;

xj � 0; j ¼ 1; 2; . . .; n:

ð63Þ

The optimal solution of crisp LP problem (63) can be considered as the solution
of the FLP problem (61) [32].
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Example 11 [26] Consider the following FLP problem:

Max z ¼ 5x1 þ 4x2
s:t: ð2; 4; 5Þx1 þð2; 5; 6Þx2 � ð19; 24; 32Þ;

ð3; 4; 6Þx1 þð4; 5; 6Þx2 � ð6; 12; 19Þ
x1; x2 � 0:

ð64Þ

This problem is converted into the following crisp LP problem with regard to
problem (63):

Max z ¼ 5x1 þ 4x2
s:t: 2x1 þ 2x2 � 19;

4x1 þ 5x2 � 24;

5x1 þ 6x2 � 32;

3x1 þ 4x2 � 6;

4x1 þ 5x2 � 12;

6x1 þ 6x2 � 19;

x1; x2 � 0:

ð65Þ

Solving this problem gives the optimal solution as
x	 ¼ x	1; x

	
1

� � ¼ ð1:5; 3Þ; z	 ¼ 19:5.
The optimal solutions obtained by this approach are real numbers, which rep-

resent a compromise in terms of fuzzy numbers involved. In addition, this approach
increases the number of functional constraints and thus this proposed need more
computation cost than the simplex based approach.

6.2.2 Fully Fuzzy LP Problem [24]

The FLP problem in which all the parameters as well as the decision variables are
represented by fuzzy numbers is called FFLP problem. The general form of FFLP
problem can be formulated as follows:

max~z �
Xn
j¼1

~cj � ~xj

s:t:
Xn
j¼1

~aij � ~xj � ~bi; i ¼ 1; 2; . . .;m;

~xj � ~0; j ¼ 1; 2; . . .; n:

ð66Þ
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Let us assume that all fuzzy numbers are triangular. Thus ~aij;~xij;~cj and ~bi; are
represented as ~aij ¼ ða1;ij; a2;ij; a3;ijÞ ~xj ¼ ðx1;j; x2;j; x3;jÞ ~bi ¼ ðb1;i; b2;i; b3;iÞ and
~bi ¼ ðb1;i; b2;i; b3;iÞ, respectively. Hence, FLP problem (66) can be reformulated as
follows:

max~z �
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ

s:t:
Xn
j¼1

ða1;ij; a2;ij; a3;ijÞ � ðx1;j; x2;j; x3;jÞ � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

ðx1;j; x2;j; x3;jÞ is a non negative trinagular fuzzy number; j ¼ 1; 2; . . .; n:

ð67Þ

Assuming ða1;ij; a2;ij; a3;ijÞ � ðx1;ij; x2;ij; x3;ijÞ ¼ ðm1;ij;m2;ij;m3;ijÞ and using
ranking function given in Remark 4 for the objective function, the FLP (67) can be
rewritten as follows:

max<ð~zÞ ¼ <
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ
 !

s:t:
Xn
j¼1

ðm1;ij;m2;ij;m3;ijÞ � ðb1;i; b2;i; b3;iÞ; i ¼ 1; 2; . . .;m;

ðx1;j; x2;j; x3;jÞ is a non negative trinagular fuzzy number; j ¼ 1; 2; . . .; n:

ð68Þ

Using Definitions 10 and 7, the FLP problem (68) becomes:

max<ð~zÞ ¼ <
Xn
j¼1

ðc1;j; c2;j; c3;jÞ � ðx1;j; x2;j; x3;jÞ
 !

s:t:
Xn
j¼1

m1;ij ¼ b1;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

m2;ij ¼ b2;i; i ¼ 1; 2; . . .;m;

Xn
j¼1

m3;ij ¼ b3;i; i ¼ 1; 2; . . .;m;

x1;j � 0; x2;j � x1;j � 0; x3;j � x2;j � 0; j ¼ 1; 2; . . .; n:

ð69Þ

The optimal solution of the crisp LP problem (69) can be considered as the
optimal solution of the FFLP problem (66).
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Example 12 [24] Consider the following FFLP problem:

Max z ¼ ð1; 6; 9Þ � ðx1;1; x1;2; x1;3Þþ ð2; 3; 8Þ � ðx2;1; x2;2; x2;3Þ
s:t: ð2; 3; 4Þðx1;1; x1;2; x1;3Þþ ð1; 2; 3Þðx2;1; x2;2; x2;3Þ ¼ ð6; 16; 30Þ;

ð�1; 1; 2Þðx1;1; x1;2; x1;3Þþ ð1; 3; 4Þðx2;1; x2;2; x2;3Þ ¼ ð1; 17; 30Þ
ðx1;1; x1;2; x1;3Þ and ðx2;1; x2;2; x2;3Þ are non negative fuzzy numbers:

ð70Þ

This problem is converted into the following crisp LP problem with regard to
problem (69):

Max<ð~z Þ ¼ 1
4

x1;1 þ 2x1;2 þ 12x2;1 þ 6x2;2 þ 9x3;1 þ 8x2;3
� �� �

s:t: 2x1;1 þ x2;1 ¼ 6;

� x1;3 þ x2;1 ¼ 1;

3x1;2 þ 2x2;2 ¼ 16;

x1;2 þ 3x2;2 ¼ 17;

4x1;3 þ 3x2;3 ¼ 30;

2x1;3 þ 4x2;3 ¼ 30;

x1;1 � 0; x1;2 � x1;1 � 0; x1;3 � x1;2 � 0;

x2;1 � 0; x2;2 � x2;1 � 0; x2;3 � x2;2 � 0:

ð71Þ

The optimal solution of the crisp LP problem (71) is as follows:

x	1;1 ¼ 1; x	1;2 ¼ 2; x	1;3 ¼ 3; x	2;1 ¼ 4; x	2;2 ¼ 5; x	2;3 ¼ 6 ð72Þ

Hence, the fuzzy optimal solution of the FFLP problem (70) is

~x	 ¼ ~x	1;~x
	
2

� � ¼ x	1;1; x
	
1;2; x

	
1;3


 �
; x	2;1; x

	
2;2; x

	
2;3


 �
 �
¼ 1; 2; 3ð Þ; 4; 5; 6ð Þð Þ ð73Þ

Putting the fuzzy optimal solution (73) in the objective function of the problem
(70) gives ~z	 ¼ ð9; 27; 75Þ.

In contrast to the proposed approaches in [32], Kumar et al.’s method [24] gives
fuzzy optimal solution. In contrast to the simplex based approach [9–11, 14, 19, 21,
28–30], Kumar et al.’s method [24] gives non-negative fuzzy optimal solutions.
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7 Conclusions

In the conventional LP problems it is assumed that the parameters of the problem
are exactly known, but there may be some situations in formulating real-life
problems where the parameters are not known in a precise way. A frequently used
manner to represent the imprecision in parameters is by means of fuzzy numbers
that enlarges the range of applications of LP. Many different techniques have been
used in the literature to solve the LP problems in fuzzy environment. In this
contribution, a taxonomy and review of some of these techniques for solving four
categories of FLP problems was provided. The limitations and advantages of each
category were also pointed out. Moreover, the solution approaches were illustrated
with several numerical examples.
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Applications of Fuzzy Mathematical
Programming Approaches in Supply
Chain Planning Problems

Mohammad Javad Naderi, Mir Saman Pishvaee and Seyed Ali Torabi

Abstract Supply chain planning includes numerous decision problems over
strategic (i.e. long-term), tactical (i.e. mid-term) and operational (i.e. short-term)
planning horizons in a supply chain. As most of supply chain planning problems
deal with decision making in real world while configuring future situations, rele-
vant data should be predicted and described for multiple time periods in the future.
Such prediction and description involve imprecision and vagueness due to errors
and absence of sharp boundaries in the subjective data and/or insufficient or
unreliable objective data. If the uncertainty in supply chain planning problems is to
be neglected by the decision maker, the plausible performance of supply chain in
future conditions will be in doubt. This is why considerable body of the recent
literature account for uncertainty through applying different uncertainty program-
ming approaches with respect to the nature of uncertainty. This chapter aims to
provide useful and updated information about different sources and types of
uncertainty in supply chain planning problems and the strategies used to confront
with uncertainty in such problems. A hyper methodological framework is proposed
to cope with uncertainty in supply chain planning problems. Also, among the
different uncertainty programming approaches, various fuzzy mathematical pro-
gramming methods extended in the recent literature are introduced and a number of
them are elaborated. Finally, a useful case study is illustrated to present the prac-
ticality of fuzzy programming methods in the area of supply chain planning.
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1 Introduction to Supply Chain Planning Under
Uncertainty

Supply chain planning (SCP) consists of strategic, tactical and operational decision
making problems of a supply chain network. Strategic decisions are related to
supply chain design and configuration over a long term whilst tactical planning is
related to those decisions affecting the efficient usage of the various resources. Also,
operational planning is related to the detailed scheduling, sequencing, assigning
loads, etc., in a short term planning horizon. The same facet of all above-mentioned
problems is the decision making in a real world and with respect to future situation.
In real world, vagueness may be arise with semantic description of events and
phenomena, i.e., planning of supply chains in many cases may require human
descriptions, judgments, statements and evaluations about the future conditions.
These affairs are performed through the natural languages and in respect to this fact
that in natural language the words are mostly appeared vaguely and imprecisely
[98], the supply chain planning input data may be tainted with uncertainty. On the
other hand, with respect to lack of information about the future situations, we need
to predict the future, and in prediction of the future conditions, imprecision may be
arise due to inherent errors and ambiguity. Therefore, supply chain planning
problems are accompanied by imprecision and vagueness due to prediction errors
and imprecise descriptions, respectively. Nevertheless, is it necessary to consider
these uncertainties when planning of supply chains? According to Klibi et al. [32]
any supply chain planning decision model, which is developed based on deter-
ministic conditions has no assurance for acceptable performance in any plausible
future situation. They also mentioned that in some cases it is not sufficient to only
consider business as usual random variables such as demand, prices and exchange
rate but one should include extreme and catastrophe events such as natural disasters
and terrorist attacks. Therefore, it is necessary to have a specific strategy in facing
with uncertainty in supply chain planning.

Accordingly, in this chapter, different types of uncertainty and their associated
sources are first introduced and analyzed. Thereafter, various approaches used to
cope with uncertainty in supply chain planning problems are discussed and a hyper
conceptual framework is proposed for coping with uncertainty in SCP problems.
Since the focus of this chapter is on the application of fuzzy mathematical pro-
gramming in SCP area, the other sections of the chapter are dedicated to classifi-
cation, review and description of fuzzy programming methods developed in the
relevant literature.

1.1 Definition and Scope

According to Rosenhead et al. [71], certainty can be defined as the condition of
decision making in which there is no element of chance intervene between decisions
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and their outcomes. Also, Zimmermann [98] defined the certainty as the situation
that is definitely known, input parameters have predetermined values and there is no
doubt in the occurrence of events. On the contrary, uncertainty is vagueness in
reaching the target values and/or imperfect information about the input parameters or
environmental conditions in which the decisions are made. Galbraith [19] also
mentioned that uncertainty is the difference between the amount of information that
is required to make the decision and the amount of available information. This
definition implicitly unveils one of the important origins of uncertainty that is
‘imperfect information’. There is also a distinction between uncertainty and risk. In
the classical risk management, risk is defined as the product of probability and
severity of an extreme event [23]. According to above-mentioned definitions, it can
be concluded that uncertainty is a value neutral concept (i.e. includes both the chance
for gain and the chance of damage), while risk is a negative concept and worthy of
avoidance. As explained by Stewart [77], uncertainty gives rise to risk and in the
risky situations undesirable outcomes could occur.

In an attempt for choosing an appropriate strategy for uncertainty management in
supply chain planning area, it is necessary to understand the sources of uncertainty
related to supply chain networks. According to Simangunsong et al. [76], identi-
fying a full list of supply chain uncertainty sources is a precursor to develop
appropriate portfolio of uncertainty management strategies.

An early classification was suggested by Davis [10] who mentioned three
sources of uncertainty in the supply chain planning context including the demand,
supply and process uncertainties. Later, this classification was supported by other
researchers including van der Vaart et al. [85] and Gupta and Maranas [22].
Afterwards, Mason-Jones and Towill [49] added a fourth source to those suggested
by Davis [10] called control uncertainty, which is related to the capability of a
supply chain to transform the orders of customers to production flows by means of
information flows. They denominated their model as the circle model which
involves four uncertainty sources: (1) demand side uncertainty, (2) supply side
uncertainty, (3) control uncertainty and (4) process uncertainty. The model advices
that reducing uncertainty in each of these sources can lead to cost reduction.

Another taxonomy is proposed by Christopher and Peck [9], which classifies the
risk sources into three categories as follows: (1) internal risk (process and control),
(2) external risk and (3) network dependent risk (supply and demand). They also
extended a framework for managing and mitigating the risks related to each source.
Klibi et al. [32] identified uncertainty sources from the supply chain perspective and
in a more detailed view. Table 1 integrates different prominent classifications for
sources of uncertainty available in the literature. In the review paper of
Simangunsong et al. [76], fourteen sources of uncertainty extracted from the lit-
erature are introduced. Simangunsong et al. [76] classify uncertainty management
strategies into two broad categories: (1) reducing uncertainty, (2) coping with
uncertainty. Their classification is summarized in Fig. 1. The first strategy (i.e.
reducing uncertainty) disables or reduces uncertainty at its sources such as using the
better forecasting approaches for demand predictions or integrating the organiza-
tions across the supply chain to achieve better collaboration between them. The
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Table 1 Different classifications for sources of uncertainty

Klibi et al. [32] Ho [26] Davis [10]

Production centers Endogenous assets System Process/manufacturing

Distribution centers

Recovery centers

Service centers

External providers Supply chain
partners

Environment Supply

Demand zones

Nature Exogenous
geographical factors

Demand

Public infrastructures

Socio-economic-political
factors

uncertainty Analytical

Management
approach

Modeling approach

new product design 

Coping with 
uncertainty strategy

Reducing
uncertainty strategy

Artificial
intelligence

Simulations

Lead time 
management

Disruption risk 
management

supply chain 
redesign

Information sharing

collaboration

Fig. 1 Different strategies in facing with uncertainty along with some examples
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latter strategy refers to one which tries to minimize the impact of uncertainty on the
performance of supply chain instead of reducing the sources of uncertainty. Various
analytical approaches (e.g. mathematical methods) are usually used when imple-
menting these strategies. As early as 1993, Davis [10] suggested three strategies to
cope with uncertainty: (1) TQM (total quality control), (2) new product design and
(3) supply chain redesign. The first two strategies participate in reducing the process
uncertainty while supply chain redesign can alleviate the demand and supply side
uncertainties. In addition, van der Vorst and Beulens [85] proposed two other
strategies of reducing the uncertainty: (1) collaboration with key suppliers and
customers (2) reducing the role of human in supply chain processes. The first one
aims to control the demand and supply uncertainties while the latter tries to reduce
process uncertainty. It should be noted that the concept of collaboration has been
studied broadly in supply chain management and one important prerequisite of this
concept is the advanced integration of supply chain members. Furthermore, col-
laboration leads to uncertainty reduction in various uncertainty categories including
demand, supply, process and control uncertainties. Another prerequisite of col-
laboration that is worthy of attention is information sharing alongside the supply
chain. Other strategies such as flexibility in supply side [21, 66, 73], lead time
management [66], insurance against disasters [31, 69, 79] are also suggested in the
relevant literature.

1.2 Different Types of Uncertainty

Different classifications of uncertainty have ever been proposed in the literature
from the different viewpoints. Tang [79] classified supply chain risks into opera-
tional and disruption risks. Operational risks are related to those uncertainties that
intrinsically are involved in supply chain operations such as demand and cost
uncertainty, equipment malfunction, etc. Also, disruption risks are related to those
events with low-likelihood but high-severity impact, caused by natural and
man-made disasters or technological threats like employee strikes. Interested
readers can consult with Torabi et al. [80, 82] for more information. Another
classification was expressed by Klibi et al. [32] where various types of uncertainty
were categorized into three groups: (1) Randomness, (2) Hazard and (3) Deep
uncertainty. They explained that randomness is characterized by random variables
related to business-as-usual events while hazard is characterized by low-likelihood
but high-impact extreme events. Furthermore, deep uncertainty is related to
unavailability of information about likelihood of future plausible events. Mula et al.
[52] classified uncertainty into two main categories: (1) flexibility in constraints and
goals (2) uncertainty in data. The first category is characterized by the flexibility in
satisfying the constraints and/or in target values of goals. Uncertainty in data can be
also classified into two categories: (1) randomness, that stems from the random
nature of some events and parameters and (2) epistemic uncertainty, which is
related to lack of knowledge about the exact value of some ill-defined and imprecise
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data, which are often in the form of linguistic attributes and qualitative/judgmental
data extracted from field experts. According to above-mentioned classification, the
intuitive taxonomy for uncertainty can be presented by considering two dimensions:
(1) the impact of uncertainty and (2) the nature of imprecision. The proposed
taxonomy is illustrated in Fig. 2.

1.3 Overview of Different Approaches Used to Cope
with Uncertainty

Both the qualitative and quantitative approaches are applied by researchers and
practitioners to handle uncertainty in SCP problems. As mentioned by Peidro et al.
[57] quantitative modelling approach includes (1) analytical methods, (2) artificial
intelligence methods, (3) simulation based methods, and (4) hybrid methods. This
classification, along with some examples for each category is shown in Fig. 3.
Since this chapter focuses on fuzzy programming methods, relevant mathematical
models are elaborated in the rest of this chapter. However, it should be noted that
stochastic programming (e.g. [4, 61]) and robust optimization (e.g. [62]) are the
other major methods broadly used in the extant literature. Although there are many
research works in the area of SCP, which focus on developing efficient methods to
cope with uncertainty, there is a need for a general conceptual/methodological
framework which enables the decision makers to systemically confront with
uncertainty in SCP problems.

Figure 4 shows the proposed methodological/conceptual framework for han-
dling the uncertainty in SCP area. The conceptual framework comprises of four
phases: (1) SCN risk analysis: this phase is set out to select important sources of

Epistemic 
uncertainty

Randomness 
uncertainty

Impact on business

Likelihood of occurrence

    Business-as-usual uncertainty     Hazard uncertaintyD
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Fig. 2 Taxonomy of uncertainty
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uncertainty based on the corresponding likelihood and severity which subjectively
or objectively attribute to the concerned sources; (2) Scenario development and
sampling: this phase is intended to provide a plausible portfolio of scenarios or the
possible states for the concerned system in the future. Scenario must be transparent,
probable, relevant and compatible; (3) Solution approach: it means selecting an
analytical method for modeling the uncertainty including the stochastic, fuzzy and
robust programming; (4) Modeling resilience, robustness and responsiveness:
decisions which are obtained from a solution method, must be remain feasible
under almost all future scenarios. In addition, robustness in facing with tensions,
rapidity in returning to the equilibrium state and maintaining a good level of per-
formance in a critical condition are the measures of resilience.

To conclude this section, Fig. 5 classifies different mathematical programming
methods used to deal with uncertainty in SCP problems with respect to the tax-
onomy of uncertainty provided in Fig. 2.

Modeling approach
Coping with 
uncertainty

Artificial intelligence

Simulation

Analytical

Hybrid

Robust optimization

Stochastic
programming

Game theory

Fuzzy mathematical 
programming

Multi-agent system

Discrete event 
simulation

Robust fuzzy 
programming

Fuzzy-stochastic
programming

Simulation-
optimization

Flexible
programming

Possibilistic
programming

System dynamics

Expert system

Fig. 3 Different categories of quantitative modeling approaches along with some examples
(adopted from Peidro et al. [58] with some modifications)
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2 Fuzzy Mathematical Programming Models for Supply
Chain Planning

As it was mentioned in the previous sections, supply chain planning problems’
input data may be subject to uncertainties with different natures and sources.
Imprecision associated with subjective estimations, which are based on human
judgments or preferences, vagueness and flexibility in objectives and constraints,
random nature of some parameters or inexactness in input data, are the examples of
different types of uncertainty. Fuzzy set theory is among the main approaches that
particularly, manipulate the uncertainty which arises from ambiguity in data and/or

Phase1: SCN risk analysis

Source of Uncertainty
Proposed Method: enterprise vulnerability map

Envirnmental uncertainty System uncertainty

Categorize 
uncertainty

Bussiness as usual

hazard

Deep uncertainty

Method: econometrics 

fit the probability distribution from historical data

Method: catastrophe model/ multi hazard model 

Estimate location, severity and frequency 

Method:
Structural brain storming session

Expert interview
Delphi method 

Narrative scenario 

Bussiness impact

pr
ob

ab
ili

ty

    No     Medium    Catastrophic

Very high

Medium

No

Multi criteria filttering 
process

Manageable number

Plausible portfolio of uncertainty

Phase2: Scenario development and sampling

Phase3: solution methods

Phase4: modeling resilience, robustness and responsiveness  

Feasibility robustness :decisions which is obtained from the model ,remain feasible in almost all the future scenarios 
Optimality robustness :solutions which is obtained from the model ,varying  Slightly in all of the future scenarios
Resilience: robustness in confronting the tension ,rapidity in returning to the equilibrium state and maintaining the 
performance in a critical condition through the redundancy and flexibility

Fig. 4 Conceptual/methodological framework for modeling approach in coping with uncertainty
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vagueness of target values of objectives and constraints. The imprecision can be
stemmed from absence of sharp boundaries in definitions, flexibility and vagueness
in objectives and constraints, subjective estimations for values of input data and
lastly when the historical data does not exist sufficiently or the conditions of
problem do not satisfy the presumptions of probability theory.

Fuzzy mathematical programming methods (FMPM) can be classified into two
main categories ([53, 81]; Pishvaee and Torabi [60]): (1) flexible programming and
(2) possibilistic programming. Flexible programming is used to dealwith vagueness in
target values of objectives and/or flexibility of constraint’s satisfaction while possi-
bilistic programming is applied to copewith ambiguous (i.e. imprecise) input data (i.e.,
epistemic uncertainty). Beside the traditional categories of FMPM(i.e. theflexible and
possibilistic programming), two other types of modeling approaches called fuzzy
stochastic programming and robust fuzzy programming have recently been proposed
in the literature. Fuzzy stochastic programming and/or stochastic fuzzy programming,
which are frequently used interchangeably (see for instance [5, 85];Mohammadi et al.
[51]) are able to handle those situations in which there are both probabilistic ran-
domness and possibilistic imprecision in data. Also, robust fuzzy programming (see
[59, 63]) enables the decisionmaker to be benefited from the advantages of both robust
optimization and FMP approaches. To show the applicability of fuzzy mathematical
programming in the context of supply chain planning, Table 2 briefly reviews and
classifies a number of important FMP models developed in the literature.

2.1 Possibilistic Programming

Since the 1950s stochastic programming has been used broadly for the sake of
handling randomness uncertainty in the input parameters. However, stochastic
programming has some limitations in practice: (1) The low level of computational
efficiency, (2) the need for sufficient and reliable historical data and (3) the inability
in modelling subjective parameters and concepts ([41]; Pishvaee and Torabi [60]).

Fuzzy mathematical 
programming
Robust convex 
programming

Epistemic
uncertainty

Randomness
uncertainty

Impact on business

Likelihood of occurrence

    Business-as-usual uncertainty     

Scenario-based and Fuzzy 
mathematical programming

Stochastic programming
Scenario-based stochastic 

programming

D
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e 
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Hazard uncertainty

Fig. 5 Classification of analytical methods with respect to the nature of uncertainty
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Table 2 Classification of some important FMPMs developed in the area of SCP

Problem
type

Subject of planning Authors Modeling method

Strategic Vendor selection Kumar et al. [33] Flexible goal programming

Kumar et al. [34] Flexible programming

Supplier selection Amid et al. [1] Multi objective flexible
programming

Torabi and
Baghersad [80]

Possibilistic programming

Network design Selim and
Ozkarahan [74]

Flexible goal programming

Pishvaee and
Torabi [60]

Multi-objective possibilistic
programming

Qin and Ji [67] Possibilistic programming

Pishvaee et al. [63] Robust possibilistic
programming

Pishvaee et al. [64] Robust possibilistic
programming

Paksoy et al. [56] Multi objective possibilistic
programming

Torabi et al. [82] Possibilistic programming

Fallah et al. [17] Competitive possibilistic
programming

Pishvaee and
Khalaf [59]

Robust flexible programming

Tactical Master planning Torabi and Hassini
[81]

Possibilistic programming

Vafa Arani and
Torabi [84]

Stochastic fuzzy programming

Production planning Hsu and Wang [27] Possibilistic programming

Mula et al. [53] Flexible programming

Mula et al. [54] Possibilistic programming

Torabi et al. [84]

Aggregate production
planning

Wang and Liang
[88]

Possibilistic linear
programming

Profit management Sakawa et al. [72] Possibilistic programming

Chen et al. [8] Flexible programming

Production-transportation Liang [40] Flexible programming

Selim et al. [75] Flexible goal programming

Díaz-Madroñero
et al. [11]

Flexible programming

Operational Transportation problem Liu and Kao [41] Possibilistic programming

Liang [39] Multi-objective flexible
programming

Inventory management Giannoccaro et al.
[20]

Possibilistic programming

Hsu and Wang [27] Possibilistic programming
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It is obvious that in most of real-life problems the aforementioned limitations
become significant drawbacks in the application and usefulness of stochastic pro-
gramming approach.

As a powerful alternative, possibilistic programming (PP) provides a framework
which can appropriately handle the epistemic uncertainty in input parameters.
In PP, a possibilistic distribution is attributed to an uncertain parameter, which

Posibilistic linerar
programming

Imprecise resources 
and technological 

coefficients

Imprecise objective 
function coefficient

Imprecise Objective 
and Technological 

Coefficients

All imprecise 
coefficient

Ramik and Rimanek’s 
(1985)’s approch

 Tanaka et al.
(1986)’s approach

Dubois (1987)’s 
     approach

    Lai and Hwang 
 (1992a)’s approach 

Rommelfanger, 
Hanuscheck and Wolf 
    (1989)’s Approach 

    Lai and Hwang 
(1992b)’s approach 

Buckley (1988)'s
     Approach

     Lai and Hwang
(1992b)’s approach 

Negi (1996)’s
   approach

Fuller (1986)’s 
   approach

   Jimenez et al.
(2007)’s approach

Fig. 6 Classification of various possibilistic programming methods
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shows the degree of possibility of occurrence for each possible value in the related
support. Figure 6 summarizes some of the important and popular PP methods
which are used broadly in the literature.

For confronting the imprecise resources and technological coefficients in opti-
mization models, Ramik [68] supposed that all the technological and resource
coefficients are L-R fuzzy numbers and by the use of self-inclusion concept, they
concluded that the inequalities with imprecise resources and technological coeffi-
cients are fuzzy inequalities. Accordingly, they proposed the use of fuzzy ranking
methods to handle the imprecise parameters in such mathematical programming
problems. Tanaka et al. [78] formulated the uncertain input parameters as sym-
metric triangular fuzzy numbers and based on extension principle they defined
satisfaction level of a for each constraint including imprecise parameters. They
defined a as a priori parameter which is specified by the decision maker. While
most of developed approaches in the literature considered the constraints with
imprecise resources and technological coefficients in the form of inequalities,
Dubois and Prade [14] proposed their approach for different forms of constraints,
especially equality constraints, and introduced two viewpoints in confronting a
possibilistic constraint: (1) soft and (2) hard approach. In the first approach, by the
use of possibility index, they defined the concept of a-weak feasibility and in the
second approach, by the use of necessity index, the concept of a-hard feasibility
was proposed. Notably, the uncertain equality constraints are substituted by two
inequalities.

The imprecision of objective function parameters is a common issue which
should be handled in optimization problems. Lai and Hwang [37] supposed that
these imprecise coefficients in the objective function have triangular possibly dis-
tributions. They proposed the substitution of the main objective function by three
functions which consist of the most possible, the most pessimistic and the most
optimistic value of the main objective function. They stated that for solving the
equivalent multi-objective model it is possible to use every multi criterion decision
making (MODM) techniques. Rommelfanger et al. [70] assumed that the vector of
parameters in objective function is an interval-valued coefficient vector. They
substituted the main imprecise objective function by two deterministic objective
functions. They also proposed a new approach for the models which their objective
function’s coefficients have general convex possibility distribution (i.e., it is not
necessary to have only triangular or trapezoidal shapes).

Using the concept of exceedance and strict exceedance defined by Dubois and
Prade [16], Negi [55] developed an approach which maximizes the minimum
possibility degree of objective function and constraints. Jiménez et al. [29] pro-
posed a new PP approach based on the Jiménez [28] ranking method and the
concepts regarding the expected interval (EI) and expected value (EV) of imprecise
parameters.

According to the approach used for dealing with possibilistic chance constraints,
possibilistic programming approaches can be classified into measure-based possi-
bilistic programming and non-measure-based possibilistic programming methods.
In measure-based possibilistic programming, the crisp counterpart of the original
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problem is constructed based on a fuzzy measure (e.g. necessity measure). However,
a Non-measure based possibilistic programming applies other techniques such as
fuzzy ranking methods to form the crisp equivalent model. According to Pishvaee
et al. [64], there are three main categories in measure-based possibilistic program-
ming as follows: (1) expected value models (2) chance constrained programming
(3) depended chance constrained programming. The first approach uses an expected
value operator for every imprecise parameter in the objective function and con-
straints. It can be applied more conveniently without increasing the computational
complexity of the original model compared to the two other methods but at the same
time it has no control on the confidence level of chance constraints. The second
approach is able to control the satisfaction level of constraints by the use of a-level
concept; but also increases the computational complexity since it adds a new con-
straint for each objective function of the original model. The third approach is
somehow similar to the second one but it provides more conservative decision for the
decision maker since it gives more importance to maximization of satisfaction levels.

Dubois and Prade [16] defined two basic fuzzy measures including the possi-
bility (Poss) and necessity (Nes) measures. While the first is extremely optimistic,
the second is extremely pessimistic. The authors provide definitions for possibility
and necessity measure based expected value operators as well as proposing methods
for measuring the possibility and necessity of a chance constraint. By the use of
these operators different possibilistic programming methods are extended in the
literature. Another measure which is proposed by Liu and Liu [42, 43] is credibility
measure. Credibility measure can be defined as the average of possibility and
necessity measures. Also, Liu and Liu [42, 43] extended an expected value operator
based on credibility measure. They developed both expected value and fuzzy
chance constrained programming frameworks based on credibility measure. More
recently, Xu and Zhou [91] defined Me measure which is an extension to credibility
measure. By means of a parameter, this measure is able to adjust the degree of
optimism or pessimism in measuring the fuzziness. They also proposed a possi-
bilistic chance constrained programming approach based on Me measure, which
was then extended by Torabi et al. [82].

2.1.1 Possibilistic Programming Models for Supply Chain Planning

In this section, firstly, a possibilistic programming model for supply chain network
design problem is introduced. This model is adapted from Pishvaee et al. [63] work.
Secondly, the method applied in this paper to achieve the crisp counterpart is
described. The supply chain under consideration is of a single-product,
three-echelon type, which comprises multiple production centers, distribution
centers and costumer zones. Aiming at completely fulfill the demands of costumer
zones, products are produced in production centers and delivered to customers
through one or more distribution centers. The locations and amounts of demands
are predefined. There are various candidate positions for establishing capacitated
production and distribution centers. In addition, there are various candidate
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production technologies when a new production center is established in a location.
The model must make several decisions regarding the locations and numbers of
production and distribution centers as well as the amount of products which are
transported between every two nodes of the network. Also the production tech-
nology must be specified for every established production center. The indices,
parameters and variables that are used in mathematical formulation are as follows.

Indices:

i index of potential locations for plants i ¼ 1; . . .; I
j index of potential locations for distribution centers j ¼ 1; . . .; J
k index of fixed locations of customers k ¼ 1; . . .; K
m index of different production technologies available for plants m ¼ 1; . . .; M

Parameters:

dk demand of customer zone k
f mi fixed cost of opening plant i with production technology m
gj fixed cost of opening distribution center j
cij shipping cost per product unit from plant i to distribution center j
ajk shipping cost per product unit from distribution center j to customer k
qmi production cost per unit of product at plant i with production technology m
si maximum capacity of plant i
uj maximum capacity of distribution center j

Variables:

umij quantity of products produced at plant i with technology m and shipped to
distribution center j

qjk quantity of products shipped from distribution center j to customer k
xmi ¼ 1 if a plant with technology m is opened at location i

0 otherwise

�
yj ¼ 1 if a distribution center is opened at location j;

0 otherwise

�
By the use of above-mentioned notations, the formulation of the concerned

supply chain network design problem is shown in below.

Min W ¼
X
i

X
m

f mi x
m
i þ

X
j

gjyj þ
X
i

X
j

X
m

ðqmi þ cijÞumij þ
X
j

X
k

ajkqjk

ð1Þ

s:t:
X
j

qjk � dk; 8 k; ð2Þ
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X
i

X
m

umij ¼
X
k

qjk; 8 j; ð3Þ

X
j

umij � xmi si; 8 i; m; ð4Þ

X
k

qjk � yjuj; 8 j; ð5Þ

X
m

xmi � 1 8 i; ð6Þ

xmi ; yj 2 0; 1f g; 8 i; j;m; ð7Þ

umij ; qjk � 0; 8 i; j; m: ð8Þ

Equation (1) is the objective function of the problem which minimizes the total
cost and includes summation of fixed opening costs, variable production costs and
transportation costs. Constraint (2) is related to ensuring the full satisfaction of
demands of all customers. Equation (3) shows material flow balance at each dis-
tribution center. Constraints (4) and (5) enforce capacity restrictions on plants and
distribution centers and additionally ensure that if a facility is not opened, there will
be no shipping from the related location. Equation (6) states that at most one
technology can be attributed to each potential plant. Finally, Eqs. (7) and (8) are
related to binary and non-negatively decision variables respectively.

As it is mentioned in the relevant literature [58, 62] most of the parameters of
supply chain network design problems (e.g. capacities, demand of customers and
transportation costs) contaminated by uncertainty in real-world situations because
of fluctuation of parameters over the long-term horizon. To cope with this issue, a
possibilistic chance constrained programming model is developed here.

For convenience, the supply chain network design model can be summarized in
a compact form as follows:

Min z ¼ fyþ cx
s:t: Ax� d;

Bx ¼ 0;
Sx�Ny;
Tx� 1;
y 2 0; 1f g; x� 0:

ð9Þ

where the vectors f, c, and d are related to fixed-opening costs, variable trans-
portation and production costs and demands, respectively. The matrices A, B, C, N,
S and T are technological coefficient matrices of the constraints. Also, y and x are
the vectors of binary decision variables and continuous decision variables,
respectively.
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The vectors f, c, and d and coefficient matrix N which respectively are related to
fixed opening costs, variable transportation costs, demands and capacity of facilities
are the imprecise parameters in the model. Here, trapezoidal possibility distribution
(see Fig. 7) is attributed to uncertain parameters. Each trapezoidal possibility dis-
tribution can be defined by four prominent points, e.g. ~n ¼ ðnð1Þ; nð2Þ; nð3Þ ; nð4ÞÞ. It
is obvious that if nð2Þ ¼ nð3Þ, the attributed trapezoidal possibility distribution is
reduced into a triangular form. The expected value operator is used to defuzzify the
objective function and the necessity measure is applied to cope with chance con-
straints including imprecise parameters.

Accordingly, the equivalent possibilistic chance constrained programming
model can be formulated as follows:

Min E½z� ¼ E½~f �yþE½~c�x
s:t: Nec Ax� ~d

� �� a;
Bx ¼ 0;
Nec Sx� ~Ny

� �� b;
Tx� 1;
y 2 0; 1f g; x� 0:

ð10Þ

Notably, the expected value used for defuzzification of the objective function
was firstly developed by Yager [92]. Assume that ~n is a fuzzy number and its
membership function is defined as follow:

l~nðxÞ ¼
f~nðxÞ; if nð1Þ � x\nð2Þ
1; if nð2Þ � x� nð3Þ
g~nðxÞ; if nð3Þ\x� nð4Þ
0; if x\nð1Þ or x[ nð4Þ

8>><
>>:

E�ð~nÞ and E�ð~nÞ are the upper and lower expected (mean) values of ~n that can be
defined as follow [15, 24]:

Fig. 7 The trapezoidal
possibility distribution of
fuzzy parameter ~n
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E�ð~nÞ ¼ nð3Þ þ
Znð4Þ
nð3Þ

g~nðxÞ dx ð11Þ

E�ð~nÞ ¼ nð2Þ �
Znð2Þ
nð1Þ

f~nðxÞ dx ð12Þ

The expected interval (EI) and expected value (EV) of ~n based on Eqs. (11) and
(12), can be defined as follow [15, 24]:

EI½~n� ¼ ½E�ð~nÞ; E�ð~nÞ� ð13Þ

EV ½~n� ¼ E�ð~nÞþ E�ð~nÞ
2

ð14Þ

If ~n is a trapezoidal fuzzy number (see Fig. 7), then we have:

EI½~n� ¼ nð1Þ þ nð2Þ
2

;
nð3Þ þ nð4Þ

2

� �
ð15Þ

EV ½~n� ¼ nð1Þ þ nð2Þ þ nð3Þ þ nð4Þ
4

ð16Þ

Let r be a real number. According to Dubois [13], Dubois and Prade [16]
necessity (Nec) of ~n� r can be defined as follows:

Nec ~n� r
n o

¼ 1� sup
x[ r

l~nðxÞ ¼ 1� Pos ~n[ r
n o

ð17Þ

Therefore, the necessity of ~n� r can be stated as follows:

Nec ~n� r
n o

¼
1; nð4Þ � r;
r�nð3Þ

nð4Þ�nð3Þ
; nð3Þ � r� nð4Þ;

0; nð3Þ � r:

8><
>: ð18Þ

Based on Eqs. (17) and (18) and with respect to Dubois and Prade [18] and
Luhandjula [45], it can be proved that:

Nec ~n� r
n o

� a , r�ð1� aÞnð3Þ þ anð4Þ: ð19Þ
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As there is an assumption that all of uncertain parameters in formulation (11)
have trapezoidal possibility distribution, the equivalent crisp model for formulation
(11) can be given as follows:

Min E½z� ¼ fð1Þ þ fð2Þ þ fð3Þ þ fð4Þ
4

� �
yþ cð1Þ þ cð2Þ þ cð3Þ þ cð4Þ

4

� �
x

s:t: Ax�ð1� aÞdð3Þ þ adð4Þ;
Bx ¼ 0;
Sx� ð1� bÞNð2Þ þ bNð1Þ

	 

y;

Tx� 1;
y 2 0; 1f g; x� 0:

ð20Þ

2.2 Flexible Programming

In a fuzzy environment the meaning of objective function and constraints are
somehow different from their classical hard meanings. For example, if a decision
maker decides to “decrease the cost considerably”, he/she may prefer to reach some
aspiration levels (i.e., flexible targets) rather than strictly minimize the cost.
Additionally, “≤”, “=” and “≥” signs in a constraint might not be meant in the strict
mathematical sense and slight violation is allowed. In these cases, the fuzzy dis-
tributions are attributed to these soft constraints and objective functions based on
the preferences of decision makers (DMs). In this framework, the value of attributed
membership function shows the degree of DMs’ satisfaction. Luhandjula [45]
named this sort of fuzzy mathematical programing as ‘Flexible programming’.

Flexible programming models can be categorized into two groups [97]: (1) sym-
metric and (2) non-symmetric. Thefirst one describes themodelswhich both objective
function and constraints have flexibility in reaching the target values. In the second

Symmetric model 

Nonsymmetric 
model

Flexible linear 
programming

Zimmermann (1975)'s 
Approach

Verdegay (1982)'s 
      Approach

Werners (1987)'s  
     Approach

Chanas (1983)'s
    Approach

Fig. 8 Classification of different methods of flexible programming

386 M.J. Naderi et al.



category only constraints have fuzzy nature. Figure 8 illustrates some well-known
flexible programming methods according to above-mentioned classification.

Verdegay [87] provided the crisp equivalent parametric programming model for
the flexible programming problem with fuzzy constraints. Werners [89] studied the
non-symmetric flexible programming problem and proposed a method in which two
extreme values of objective function were used to construct a fuzzy membership
function in order to attain the satisfaction degree of objective function.
Zimmermann [96] applied the Zadeh’s max-min operator to solve the symmetric
flexible programming problem model. Chanas [7] argued that due to lack of
knowledge about the fuzzy feasible region, the fuzzy membership function of
objective function cannot be determined from the beginning. He proposed a
framework in which the attributed fuzzy membership is specified using an inter-
active process.

2.2.1 Flexible Programming Models for Supply Chain Planning

Consider the supply chain network design problem described in Sect. 2.1.1. In that
problem it was assumed that capacities, demand of customers, fixed opening costs
and variable transportation costs are imprecise parameters. In this section, it is
assumed that the demand and capacity constraints are flexible (i.e., soft constraints)
and slight violation is allowed. For example, in demand constraints symbol ~� is
regarded as fuzzy version of � which implies that demand of a customer zone
must be essentially less than or somehow similar to the number of products that are
delivered to the customer zone. According to Pishvaee and Khalaf [59] and Torabi
et al. [83], the model can be represented as follows:

Min z ¼ cxþ fy
s:t Ax ~� d

Bx ¼ 0
Sx ~�Ny
Ty� 1
y 2 0; 1f g; x� 0

ð21Þ

Based on Cadenas and Verdegay [3], the violation of soft constraints can be
modeled by the use of fuzzy numbers (in this case by~t and ~r denoting the maximum
allowable tolerances). Therefore, model (21) is rewritten as follows:

Min z ¼ cxþ fy
s:t: Ax� d �~t 1� að Þ

Bx ¼ 0
Sx�Nyþ ~r 1� bð Þ½ �y
Ty� 1
y 2 0; 1f g; x� 0

ð22Þ
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where minimum satisfaction level of flexible constraints are controlled by a and b.
Now, we intended to defuzzify formulation (22) based on the fuzzy ranking method
suggested by Yager [92, 93]. For this, assume that ~t and ~r are triangular fuzzy
numbers and they are represented by their pessimistic, most possible and optimistic
values (i.e., ~t ¼ ðtp; tm; toÞ and ~r ¼ ðrp; rm; roÞ). These fuzzy numbers can be
defuzzified as follows:

tm þ ut � u0
t

3

� �
ð23Þ

rm þ hr � h0r
3

� �
ð24Þ

where parameters ut and u0
t (hr and h0r) are lateral margins of the triangular fuzzy

number ~t (~r) and are defined in Eqs. (25) and (24).

ut ¼ to � tm ð25Þ

u0
t ¼ tm � tp ð26Þ

By the use of Eqs. (23) and (24), the crisp counterpart of model (22) is as
follows.

Min z ¼ cxþ fy

s:t: Ax� d � tm þ ut�u0
t

3

� �
1� að Þ

Bx ¼ 0
Sx�Nyþ rm þ hr�h0r

3

� �
1� bð Þ

h i
y

Ty� 1
y 2 0; 1f g; x� 0

ð27Þ

Notably, the applied method is capable of supporting different kinds of fuzzy
numbers as well as various fuzzy ranking methods when converting the soft con-
straints to their flexible constraints. Also, the minimum satisfaction level for con-
straints should be determined in the range of 0� a; b� 1, subjectively by the
decision maker.

2.3 Robust Fuzzy Mathematical Programming

Robust optimization provides a set of risk-averse approaches in confronting with
uncertainty, which attempts to obtain a robust solution. A solution is robust, if it
has feasibility robustness and optimality robustness, simultaneously [59, 63].
A solution has feasibility robustness if it is feasible under almost all possible
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realization of uncertain parameters and has optimality robustness if the value of
objective function for the obtained solution would remain close to optimal value or
have minimum (undesirable) deviation from the optimal value for (almost) all
possible values of uncertain parameters. Both of feasibility robustness and opti-
mality robustness could be used as two performance indicators, which examine the
validity of a solution for an uncertain problem irrespective of the type of applied
uncertainty programming approach.

Pishvaee et al. [63] classify robust optimization approaches into three main
categories: (1) hard worst case robust optimization (2) soft worst case robust
optimization, and (3) realistic robust optimization. In the first approach, the solution
remains feasible under all possible values of uncertain parameters while the worst
case value of objective function is optimized. This approach is applicable for those
situations in which maximum immunization against uncertainty is needed (e.g.
military cases). The second approach argues that it is very unlikely that all of
uncertain parameters get their extreme worst case values at the same time. In this
approach, similar to the worst case approach, the worst case value of objective
function is optimized; however, the feasibility robustness level is not planned for
the worst case value. Finally, the third approach seeks to attain a trade-off among
the average performance of the objective function, worst case value of the objective
function and feasibility robustness. As mentioned before, feasibility robustness and
optimality robustness can be used in evaluation of a solution for the problems
tainted with uncertainty regardless of the type of uncertainty. Therefore, we can also
look for robustness in fuzzy environment and control the feasibility and optimality
robustness of a solution. As a pioneer work in this field, Pishvaee et al. [63]
proposed three robust possibilistic programming approaches, which are able to
control the feasibility and optimality robustness in different degrees. These include:
(1) hard worst-case robust possibilistic programming (HWRPP), (2) soft worst-
case robust possibilistic programming (SWRPP) and (3) realistic robust possi-
bilistic programming. The first one optimizes the worst possible value of objective
function as well as immunizing the solution against the worst-case values of
uncertain parameters. This method is indifferent to the forms of uncertain param-
eters and only considers their extreme worst values. Therefore, there is no need to
determine the possibility distributions of uncertain parameters and it is sufficient to
only know the support range of each possibility distributions. The second method
optimizes the worst value of objective function while considering the penalty cost
for constraints’ violations. Thus, this approach is more flexible than HWRPP,
because the violation of constraints is permissible to some extent. The third
approach attempts to achieve a reasonable trade-off between the average perfor-
mance, feasibility robustness and optimality robustness. As was mentioned in
Sect. 2, the fuzzy mathematical programming consists of possibilistic programming
and flexible programming. Until now we introduced some approaches that unified
possibilistic programming and robust optimization in the literature. Interested
readers can consult with Pishvaee and Khalaf [59] in which new models called
robust flexible programming and robust mixed flexible-possibilistic programming
have been introduced.
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2.3.1 Robust Fuzzy Programming Models for Supply Chain Planning

Consider the supply chain network design problem discussed in Sect. 2.1.1 where
capacities, demand of customers, fixed opening costs and variable transportation
costs were imprecise parameters formulated by some possibility distributions. Now,
based on Pishvaee et al. [63] and for the sake of considering and controlling
feasibility and optimality robustness in the mentioned problem, it is reformulated by
realistic, hard worst case and soft worst case robust possibilistic programming
methods.

• Realistic robust possibilistic programming model

At first, consider the formulation (20), where vectors f, c, d and coefficient matrix
N denote the imprecise parameters regarding the fixed opening costs, variable
transportation costs, demands and capacities, respectively. Based on formulation
(20), the realistic robust possibilistic formulation of the concerned problem is as
follows:

Min E½z]þ cðzmax � zminÞþ d½dð4Þ � ð1� aÞdð3Þ � adð4Þ�
þ p½bNð1Þ þ ð1� bÞNð2Þ � N1�y

s:t: Ax�ð1� aÞdð3Þ þ adð4Þ;
Bx ¼ 0;
Sx� bNð1Þ þ ð1� bÞNð2Þ

	 

y;

Tx� 1;
y 2 0; 1f g; x� 0; 0:5\a; b� 1:

ð28Þ

The first term of objective function is the expected value of z. By minimization
of the expected value of total cost, the average performance is improved. The
second term, cðzmax � zminÞ, indicates the difference between the best (zmin) and
worst (zmax) possible values of z. Equation (29) defines these two values.

zmax ¼ fð4Þyþ cð4Þx;

zmin ¼ fð1Þyþ cð1Þx;
ð29Þ

Also, c indicates the relative importance of ðzmax � zminÞ compared to the other
terms of objective function. Therefore, cðzmax � zminÞ controls the maximum devi-
ation from the expected optimal value of objective function (i.e. it controls optimality
robustness of the solution). Furthermore, ½dð4Þ � ð1� aÞdð3Þ � adð4Þ� represents the
difference between the worst possible value of imprecise demand and the value that
is used in right hand side of the chance constraint. Also, d is the unit penalty cost for
unsatisfied demand. Therefore, the third term, d½dð4Þ � ð1� aÞdð3Þ � adð4Þ�, indi-
cates the possible violation cost of demand constraint and it is used to control the
feasibility robustness of the solution. Similar discussion can be performed for the
fourth term in the objective function, i.e., p½bNð1Þ þ ð1� bÞNð2Þ � N1�y.
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Based on the above-mentioned definitions and descriptions, we can say that
formulation (22) seeks to reach a reasonable trade-off between the average per-
formance, optimality robustness and feasibility robustness. It should be noted that
when the technological coefficients (i.e., matrix N) is tainted with uncertainty the
model becomes non-linear (because of multiplication of N and b). To escape from
the complexity of such non-linear model, a linearization method is also proposed in
Pishvaee et al. [63].

• Hard worst case robust possibilistic programming model (HWRPP)

In the hard worst case robust programming approach, the solution must be
remain feasible under all possible values of imprecise parameters while the worst
case value of objective function is optimized. The worst case approach provides the
maximum conservation against uncertainty and therefore it is a fully risk-averse
approach. Based on above-mentioned descriptions, we can represent the hard worst
case robust possibilistic version of the concerned supply chain network design
problem (1)–(8) as follows:

Min supðzÞ
s:t: Ax� supð~dÞ;

Bx ¼ 0;
Sx� infð~NÞy;
Tx� 1;
y 2 0; 1f g; x� 0:

ð30Þ

By assuming that the possibility distributions of imprecise parameters are of
trapezoidal shape, model (30) can be rewritten as follows:

Min zmax

s:t: Ax� dð4Þ;

Bx ¼ 0;

Sx�Nð1Þy;

Tx� 1;

y 2 0; 1f g; x� 0:

ð31Þ

Notably, HWRPP model does not rely on the form of possibility distribution and
it is sufficient to only know the worst possible value of imprecise parameters. It is
noteworthy that some other robust possibilistic programming models are also
developed by Pishvaee et al. [63] and applied in the literature for coping with
uncertainty in different supply chain planning problems (e.g. [51, 95]).

• Robust flexible programming model

Based on model (27), the robust flexible programming model proposed by
Pishvaee and Khalaf [59] can be formulated as follows:
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Min E ¼ cxþ fyþ c tm þ ut�u0
t

3

� �
1� að Þ

h i
þ h rm þ hr�h0r

3

� �
1� bð Þ

h i
y

s:t: Ax� d � tm þ ut�u0
t

3

� �
1� að Þ

Bx ¼ 0
Sx�Nyþ rm þ hr�h0r

3

� �
1� bð Þ

h i
y

Ty� 1
y 2 0; 1f g; x� 0; 0� a; b� 1

ð32Þ

The last two terms of objective function calculates the total penalty cost of
possible violation on soft constraints (i.e., feasibility robustness) while the first two
terms are the original objective function of model (27). Indeed, the third and fourth
terms represent the difference between the two extreme values of the right hand side
of flexible constraints which are defined as follows:

tm þ ut � u0
t

3

� �
1� að Þ ¼ d � d � tm þ ut � u0

t

3

� �
1� að Þ

� �
ð33Þ

rm þ hr � h0r
3

� �
1� bð Þ

� �
y ¼ Nyþ rm þ hr � h0r

3

� �
1� bð Þ

� �
y

� �
� Ny ð34Þ

Also, penalty costs are considered for each unit of violation on soft constraints
which are presented via parameters c and h in the proposed model. It should be
noted that the model optimizes the values of satisfaction levels (i.e., a and b) as two
variables. As a result, there is no need for iterative subjective experiments by setting
different values of a and b. The proposed model belongs to the category of realistic
robust programming since it tries to make a reasonable balance between the cost of
robustness (i.e., the third and fourth terms of objective function) and the overall
performance of the concerned problem (i.e., the first and second terms of objective
function). Similar to model (28), the multiplication of N and b results in
non-linearity of model (32) and therefore a linearization method is provided in
Pishvaee and Khalaf [59]. Moreover, some other robust flexible and
possibilistic-flexible programming methods are also proposed in Pishvaee and
Khalaf [59].

2.4 Fuzzy-Stochastic Programming

Generally there are two main types of uncertainty including fuzziness and ran-
domness. However, in some real world situations, fuzziness and randomness maybe
appear simultaneously. We may encounter a random situation whose outcomes are
not crisp numbers but fuzzy elements, i.e., in the form of linguistic descriptions. As
an example, a situation can be considered in which a group of people are randomly
selected and asked about the future weather in a particular day and they response in
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the form of linguistic descriptions such as “hot”, “very hot” “more or less hot”.
Another example of facing with hybrid uncertainty is a model in which a constraint
has a random RHS while technological coefficients of the constraint are imprecise
parameters extracted from expert opinion in the form of fuzzy numbers.

To cope with an uncertain situation in which the fuzziness and randomness
appear simultaneously (i.e., mixed fuzzy-stochastic data), various concepts are
proposed in the literature: (1) fuzzy random variable which is introduced by
Kwakernaak [35, 36] and refers to a random element whose prominent values are
fuzzy; (2) random fuzzy variable which is developed by Liu and Liu [45] and refers
to a fuzzy element taking random values as its prominent values; (3) probability of
a fuzzy event [94]; (4) probabilistic set [25]; (5) linguistic probabilities [12].

As mathematical programming approaches in the form of linear and mixed
integer linear are broadly used in the area of supply chain planning, now we present
a classification of fuzzy-stochastic linear programming problems according to
Luhandjula [47] and thereafter a number of them are introduced. Luhandjula [47]
classified fuzzy stochastic linear programming models as follows:

• Flexible stochastic linear problems
• Inclusive-constrained linear programming with fuzzy random variable

coefficients
• Inequality-constrained linear programming with fuzzy random variable

coefficients
• Linear programming with random variables and fuzzy numbers

Inflexible stochastic linear problems, since coefficients in constraints and objective
functions have randomdistributions, the objective functions and constraintsmight not
be meant in the strict mathematical sense and slight violations for constraints are
permitted. To cope with these problems some symmetric (e.g. [48]; Luhandjula [44]
and non-symmetric (e.g. [5, 6] approaches can be found in the literature. In some
problems, constraints state that the possible region of LHS occurrence including some
ill-defined parameters must be involved in the satisfactory region. In these cases, the
problem is in the form of Inclusive-constrained and if it includes fuzzy random
variables, the methodology proposed by Luhandjula [47] might be useful.

Inequality-constrained model with fuzzy random variable coefficients is a
mathematical programming model in which constraints are in the form of inequality
and all of coefficients are in the form of fuzzy random variables. Katagiri and Ishii
[30] developed an approach for dealing with these problems in the linear form.
Some problems include both random coefficients and fuzzy coefficients simulta-
neously. To cope with these problems, Luhandjula [46] proposed an approach and
applied it in a problem in which the coefficients of the technological matrix are
fuzzy numbers while the coefficients of RHS include gamma random variables.

Last but not the least, a supply chain mater planning problem with random fuzzy
data is addressed by Vafa Arani and Torabi [84]. In the proposed model, market
demand of final products and technical coefficients of the marketable securities are
supposed to be random fuzzy variables.
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2.4.1 Fuzzy Stochastic Programming Model for Supply Chain
Planning

If sufficient and reliable historical data is available for a parameter, a probability
distribution can be plausibly attributed to the parameter. For example, consider the
demand constraint of formulation (21). It is not a far-fetched situation that the
company has recorded its customer orders for a long time and based on this his-
torical data we can attribute a probability distribution to the demands.

Min z ¼ fyþ cx
s:t: Ax ~� d;

Bx ¼ 0;
Sx�Ny;
Tx� 1;
y 2 0; 1f g; x� 0:

ð35Þ

where d is a random variable with cumulative distribution function F and “ ~� ” is
the flexible version of “� ”. Now, in a bid to achieve the crisp counterpart of
demand constraint we refer to Chakraborty [5] who attributed a membership
function to the probability of fuzzy event ð~PðZ ~� zÞÞ as Eq. (36), where Z is a
random variable and we are about to calculate the probability of Z ~� z which “ ~� ”
denotes the fuzzy nature of the inequality:

l~P Z ~� zð Þ rð Þ ¼
1 if F zð Þ ¼ r
F zþDzð Þ�r

F zþDzð Þ�FðzÞ ; if FðzÞ� r�FðzþDzÞ
0 if r[FðzþDzÞ

8<
: ð36Þ

Therefore, firstly we should obtain the membership function of ~Pðd ~�AxÞ where
d (demand) is a random variable with cumulative function F and r is the target value
which determines the satisfaction chance of the concerned constraint. Accordingly,
the membership function is formulated as follows:

l~P d ~�Axð Þ rð Þ ¼
1 if F Axð Þ ¼ r

F AxþDAxð Þ�r
F AxþDAxð Þ�F Axð Þ ; if F Axð Þ� r�F AxþDAxð Þ
0 if r[F AxþDAxð Þ

8<
: ð37Þ

DAx is determined exogenously by decision maker and it is equal to the maximum
allowable amount for violation of the constraint. Now, we can replace the demand
constraint by l~P d ~�Axð Þ rð Þ� a and convert the original model into an equivalent a-

parametric model in which different solutions are obtained for different values of a. It
should be noted that the linearity of the replaced equation depends on the linearity of
cumulative distribution function of the corresponding random variable.
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3 Case Study

As a sample application of fuzzy programming approaches in the context of supply
chain planning, a real medical device industrial case is presented in this section. The
case study is adopted from Pishvaee et al. [65]. The studied case is an Iranian
single-use medical needle and syringe (SMNS) producer entitled AVAPezeshk
(AVAP) (www.avapezeshk.com). AVAP has approximately 70 % of the market in
Iran and has a production plant with about 600 million production capacity per year
for satisfying the customers’ demand. SMNS is a broadly used medical device as
WHO [90] stated, 16 billion injections are carried out annually. On the other hand,
reusing unsterilized needles and syringes leads to 8–16 million hepatitis B, 2.3–4.7
million hepatitis C and 80,000–160,000 human immunodeficiency virus
(HIV) infections per year [90]. Therefore, the efficient management of end-of-life
(EOL) SMNS can diminish its undesirable social and environmental effects. There
are three main options for EOL SMNS as follows: (1) incineration, (2) safe landfill
and (3) recycling by steel and plastic recycling centers. The first method is widely
used due to its cost efficiency despite its significant environmental burden like air
pollution. The second method also has some adverse environmental impacts and the
third is employed rarely due to possibility of infection of end-of-life medical needle.
The underling structure of the concerned supply chain is depicted in Fig. 9. Both
forward and reverse streams involved in this network. Through the forward flow,
new products are transported to customer zones to satisfy demands (unmet demand
is not permitted) while in reverse flow, the EOL products which are returned after
the consumption, are collected and disassembled by collection centers and then are
shipped to recycling, landfill and Incineration centers.

Fig. 9 The structure of AVAP supply chain network
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In Pishvaee et al. [65], a mathematical model is elaborated to address the
problem of AVAP supply chain network redesign. The proposed mathematical
model determines the number, location and technology of production centers, the
number, location and capacity of collection centers as well as the best strategies for
returned EOL products aiming to achieve a reasonable trade-off between three
dimensions of sustainability, i.e., economical, environmental and social aspects.

The input parameters of the problem are tainted with epistemic uncertainty due
to incompleteness and unreliable data. Therefore, it is necessary to refer to an expert
for estimating uncertain parameters. In the view of this fact, a group of experts and
managers has been formed to attribute a trapezoidal fuzzy number to each uncertain
parameter according to their knowledge. The credibility-based chance constrained
programming approach which is proposed by Liu and Liu [45, 46] (an briefly
described in Sect. 2.1.1) is applied to deal with the concerned possibilistic model.
To cope with this multi-objective model a posteriori approach is selected in which
the weights of economic, environment and social objectives must be assigned
before solving the model. By referring to AVAP managers’ opinions, higher weight
is given to economic objective. Particularly, the range 0.8–1 is attributed to the
weight of economic objective while the range of 0–0.15 is selected for environment
and social objectives. The step size is set to 0.05 and the minimum confidence level
of chance constraints is set as 0.9. The above-mentioned model is solved by GAMS
22.9.2 optimization software. As Fig. 10 shows, in the network with objective
function weight of (1, 0, 0), in comparison to the network formed for weight vector
(0.8, 0.15, 0.05) less collection centers are established and their locations are more
centralized. While production centers are located in the same positions for both of
instances, the more cost-oriented network, i.e., (1, 0, 0) prefers using the
cost-efficient production technology type and the other uses the environmental
friendly production technologies. Also, the network with the weight of (0.8, 0.15,
0.05) suggests to open some recycling centers while the network with the weight of
(1, 0, 0) selects safe landfill method as the EOL strategy.

4 Future Research Directions

Given the current state-of-the-art literature in assessing the uncertainty and the
application of fuzzy mathematical programming methods in supply chain planning,
there are various avenues for further research as follows:

• Considering hazard and deep uncertainty in supply chain risk assessment and
imbedding these sorts of uncertainty in decision support models in the context of
supply chain planning.

• Assessing and fostering resilience and robustness in different types of decision
support models, e.g. mathematical programming models.

• Lack of mathematical approaches for hybrid uncertain environments in spite of
the fact that most of uncertain models involve multiple types of uncertainties.
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Fig. 10 The illustration of SC network nodes under different importance weight of OFs (adopted
form [65]). aImportance weight: (1, 0, 0). bImportance weight: (0.8, 0.15, 0.05)
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Therefore, there is a serious need for developing novel methods capable of
dealing with mixed uncertainties.

• Since most of real life problems are of large size, and traditional exact solution
methods can only solve small to moderate-sized problem instances, devising
tailored solution approaches including heuristics, meta-heuristics or
Mat-heuristics (the interoperation of meta-heuristics and mathematical pro-
gramming techniques) would be of particular interest.

• Controlling the robustness in other flexible and possibilistic programming
methods by unifying robust optimization approaches with these methods, can be
regarded as an attractive future research direction.

• Since the robust possibilistic programming and robust flexible programming
models are in their infancy, various future researches can be conducted in this
regard.
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