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Abstract Recent years have seen a growing interest in applying insights from devel-
opmental psychology to build artificial intelligence and robotic systems. This endeav-
our, called developmental robotics, not only is a novel method of creating artificially
intelligent systems, but also offers a new perspective on the development of human
cognition. While once cognition was thought to be the product of the embodied
brain, we now know that natural and artificial cognition results from the interplay
between an adaptive brain, a growing body, the physical environment and a respon-
sive social environment. This chapter gives three examples of how humanoid robots
are used to unveil aspects of development, and how we can use development and
learning to build better robots. We focus on the domains of word-meaning acquisi-
tion, abstract concept acquisition and number acquisition, and show that cognition
needs embodiment and a social environment to develop. In addition, we argue that
Spiking Neural Networks offer great potential for the implementation of artificial
cognition on robots.

Keywords Human-Robot interaction · Social robots · Cognitive systems · Spiking
artificial neural networks

5.1 Introduction

The recent, but fast expanding technological and financial investments in the produc-
tion of intelligent robots rely on the design of robots with effective and believable
sensorimotor, cognitive and social capabilities. For example, robots acting as assis-
tive and social companions for the elderly must be able to autonomously navigate in
the private home (or care home) where the elderly person lives, have fine manipula-
tion skills to handle objects, be capable of understanding and using natural language
for communication, and have believable social skills to enrich the experience of
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its elderly owner. Moreover, robots must be able to adapt to the requirements of
the specific user, to react dynamically to changing environments and to learn new
behavioural and cognitive skills through social interaction with the human user.

Cognitive robotics offers a feasible methodology for the design of robots with
adaptive and learning capabilities, which can develop new skills through social inter-
action and learning. Cognitive robotics is a subfield of robotics in which robots are
built based on insights gleaned from psychology, physiology and neuroscience, with
the goal of replicating human-like performance on artificial systems [20, 78]. Cogni-
tive robots are—as opposed to industrial robots—intended to work in open, unstruc-
tured and dynamic environments, the environments in which people typically feel at
home, but robots do not. If someone asks a child to give a cup of water, the child can
recognise and grasp the intended cup from among other objects, offer it, and do that
while having a conversation. All this seems effortless to the child, but robots are—at
this time—not able to do this in an open and dynamic environment. Robots might be
programmed or trained to hand over a cup in a carefully controlled environment, but
this would not generalise to handing over, say, a towel. As a rule of thumb, anything
that seems effortless to humans is currently very hard for robots. And vice versa,
we can build artificially intelligent systems and robots that can do things—such as
playing chess or welding at a precise rate—that only very few of us ever master.

So why do classical approaches to building artificial intelligence and robots, that
serve well to build chess playing computers and plan assembly tasks, fail to build
AI that deals with unstructured and dynamic problems? The answer might lie in the
study of development: young children seemingly effortlessly pick up skills which
are very hard or impossible for robots to master. The question presents itself: can the
same processes that are so successful in growing children be used to build intelligent
robots? Developmental robotics is the interdisciplinary approach to the autonomous
design of a complex repertoire of sensorimotor and mental capabilities in robots that
takes direct inspiration from the developmental principles and mechanisms observed
in the natural cognitive systems of children [7, 16, 79]. Developmental robotics
relies on a highly interdisciplinary effort of empirical developmental sciences such
as developmental psychology and neuroscience, and computational and engineering
disciplines such as robotics and artificial intelligence. Developmental sciences pro-
vide the empirical bases and data to identify the general developmental and learning
principles, mechanisms, models, and phenomena guiding the incremental acquisi-
tion of cognitive skills. The implementation of these principles and mechanisms into
a robots control architecture and the testing through experiments where the robot
interacts with its physical and social environment simultaneously permits the val-
idation of such principles and the actual design of an increasingly complex set of
complex behavioural and mental capabilities in robots.

Developmental robotics follows a series of general principles that characterise its
approach to the design of intelligent behaviour in robots. Two of the key principles are
the exploitation of embodiment factors in the development of cognitive capabilities
and the focus on social learning.
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Embodiment concerns the fundamental role of the body in cognition and intel-
ligence. As Pfeifer and Scheier [57] claim, “intelligence cannot merely exist in the
form of an abstract algorithm but requires a physical instantiation, a body” (p. 694).
In psychology and cognitive science, the field of embodied cognition (also known
as grounded cognition [10]) demonstrates the important roles of action, perception,
and emotions in the grounding of cognitive functions such as memory and language
[55]. For example, sensorimotor strategies, as postural changes, support the child in
the early acquisition of words [63]. Gestures like pointing and finger counting are
crucial in the acquisition of number knowledge [3]. Such developmental psychology
studies are consistent with neuroscience evidence on embodied cognition, as brain-
imaging studies showing that higher-order functions such as language share neural
substrates normally associated with action processing [59]. The principle of social
learning in developmental psychology is based on child development research on
the role of social learning capabilities (instincts) in the very first days of life. This
is evidenced for example by observations that newborn babies have an instinct to
imitate the behavior of others and can imitate complex facial expressions after just
few hours from birth [51]. Moreover, comparative psychology studies have shown
that 18–24-month-old children have a drive to cooperate altruistically, a capacity
missing in our closest genetic relatives as chimpanzees [80].

This chapter offers a summary of two recent studies on the modelling of embod-
iment and social learning in developmental humanoid robots. Both use the iCub
humanoid platform both to exploit the properties of humanoid body configuration
for embodiment modelling purposes and also for the benefits of using such humanoid
platforms in social robotics scenarios.Wewill also discuss the potential of neuromor-
phic methods and hardware, as a first step for a brain-inspired approach to modelling
the embodied basis of cognitive and communicative skills.

5.2 Why Embodiment Matters

Embodiment matters, not only in the development of natural cognition, but also
in constructing artificial cognition. The brain or, in the case of robots, the control
software cannot be seen as separate from the body in which it operates. Human
cognition is deeply rooted in the shape of our bodies and how our bodies interact
with theworld. Likewise,whenbuilding artificial cognition, it is important to consider
the full package of both the artificial intelligence inside the body interacting with the
physical and social environment [4, 56].

In this chapter we provide an illustration of how an embodied perspective is used
to imbue a robot with human-like skills. This requires a robot: we use the iCub
platform, a child-sized humanoid robot specifically designed and built to facilitate
developmental robotics [52] (see Fig. 5.1). In addition, an artificial cognitive model
is required, which forms the theoretical backbone of the model.
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Fig. 5.1 The iCub robot
learning to map words to
objects. In this experiment,
iCub knows linguistic labels
for three of the four objects.
In response to the question
where is the dax (dax is a
novel word), it points at the
unknown object. With this
iCub demonstrates
“fast-mapping”, which is
also observed in young
children when they learn to
map words to objects relying
on only a few exposures and
certain learning
constraints [77]

5.2.1 The Origins of Abstract Concepts and Number:
A Detailed Study

Recent studies have proposed that multiple representational systems, involving both
sensorimotor as well as linguistic systems, might be playing a primary role in how
children acquire abstract concepts and words (e.g. [48]). Theories such as the LASS
theory [11], according to which both the linguistic system as well as the sensori-
motor system (through simulation) are activated in the processing of word meaning
to different degrees under different task conditions, and the WAT (Words as Tools)
approach proposed by Borghi and Cimatti [13], have suggested and furnished evi-
dence on the synergetic role both language and sensorimotor experience play in the
acquisition of abstract concepts, and on how important the modality by which these
words are learned is.

Finger counting has been shown to be have an important role in the development
of number cognition [3, 30]. Embodied cognition researchers find this innate ability
particularly interesting, because of the sensorimotor contribution that it makes to the
development of numerical cognition, and some consider it as “the most prominent
example of embodied numerical cognition” [9]. Evidence coming from develop-
mental, neurocognitive as well as neuroimaging studies suggest that finger counting
activity helps build motor-based representations of number that continue to influence
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number processing well into adulthood, indicating that abstract cognition is rooted
in bodily experiences [33]. These motor-based representations have been argued to
facilitate the emergence of number concepts through a bottom-up process, starting
from sensorimotor experiences [5].

In our view, finger counting, can also be seen as a means by which direct sensory
experience can serve the purpose of grounding number words as well as numerical
symbols, initially as low level symbols from the combination of already grounded
ones, something known as grounding transfer [15, 40].

A number of connectionist models have simulated different aspects of number
learning. A multi neural net approach was presented in [2] to explore quantification
abilities and how theymight arise in development, using a combination of supervised
and unsupervised networks and learning techniques to simulate subitization (the phe-
nomenon by which subjects appear to produce immediate quantification judgements,
usually involving up to four objects, without the need to count them) and counting.
The authors used a combined and modular approach, providing a simulation of dif-
ferent cognitive abilities that might be involved in the cognition of number (each
of which would have their own evolutionary history in the brain), and is in keeping
with Dehaenes triple codemodel [25]. In [60], using a hybrid artificial vision connec-
tionist architecture, authors targeted aspects of language related to number such as
linguistic quantifiers. They ground linguistic quantifiers such as few, several, many,
in perception, taking into consideration contextual factors. Their model, after being
trained and evaluated with experimental data using a dual-route neural network, is
able to count objects in visual scenes and select the quantifier that best describes the
scene.

Not many robotics studies have attempted to extend this. A cognitive robotics
paradigm was used in [61, 62], where the authors explored embodied aspects of
mathematical cognition such as the interactions between numbers and space, repro-
ducing three psychological phenomena connected with number processing, namely
size and distance effects, the SNARC effect and the Posner-SNARC effect.1 The
focus was on counting and on the contribution of counting gestures such as pointing.
These models, however, did not consider the role of finger counting in numerical
abilities.

Using a cognitive developmental robotics paradigm we explore whether finger
counting and the association of number words (or tags) to the fingers, could serve to
bootstrap the representation of number in a cognitive robot [23, 31, 32]. Our embod-
ied robot experiments indicate that aspects of the development of this knowledge
can be accounted for not only by way of bodily representations, but that a relatively
simple artificial neural network is sufficient to achieve this.

The complete architecture proposed is shown in Fig. 5.2: the lower layer contains
the motor controller/memory, and the auditory and the vision sub-systems. These
are directly connected to the robotic platform. In the upper part there are the units

1SNARC, spatial-numerical association of response codes, is the effect whereby quantities seem
to be spatially organised. People respond faster to small numbers with their left hand, and respond
faster to large numbers with their right hand.
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Fig. 5.2 Schematic of the
robots cognitive system for
number cognition

with abstract functions: the associative network and the competitive layer classifier.
Note that the recurrent system’s external inputs coincide with the outputs, indeed
proprioceptive information from the motor and auditory systems is an input for the
system during the training phase, while it is the control output when the system is
operating.

Inputs are the joint angles, read from the encoders of the iCub hands, the mel-
frequency cepstral coefficients (MFCC) to represent each number word from one
to ten, and digits of 5×2 black and white pixels to represent number symbols. All
numbers are in the range [−1, 1]. For number symbols, each element can be either
−1, when the pixel is white, or +1 when the pixel is black.

The role of the competitive layer classifier is to simulate the final processing
of the numbers, after a number is correctly classified into its class, the appropriate
action can be started, e.g. the production of the corresponding word, of a symbol, the
manipulation of an object and so on. The competitive layer classifier is implemented
using the softmax transfer function that gives as output the probability/likelihood of
each classification. We ensure that all of the output values are between 0 and 1, and
that their sum is 1. The Switch/Associative Layer operates as a feedback systemwith
the possibility to start and reset themotor/auditory layers and to derive the activations
of one layer from the ones of the other.

Several experiments are run with the above architecture using the iCub robotic
platform. In the first experiment [23], the main goal is to test the ability of the pro-
posed cognitive system to learn numbers by comparing the performance of different



5 Social Development of Artificial Cognition 59

ways of training the number knowledge of the robot with: (1) the internal representa-
tion (hidden units activation) of a given finger sequence; (2) the MFCC coefficients
of number words out of sequence; (3) the internal representation of the number
words sequence; (4) the internal representation of finger sequences plus the MFCC
of number words out of sequence (i.e. learning words while counting); (5) internal
representations of the sequences of both fingers and number words together (i.e.
learning to count with fingers and words).

Looking at the developmental results, we again see that number words learnt out
of sequence are the least efficient to learn. Conversely, if number words are learnt
in sequence and internal representations are used as inputs, the learning is faster in
terms of precision of classification, but is not as strong as when the learning involves
also the use of fingers. Indeed, best results are obtained when internal representation
of words and fingers are used together as input (Figs. 5.3 and 5.4).

A second experiment [31] focuses on learning associations between the internal
representations (i.e. hidden unit activations) of number digits and the number words.
Abstract concepts like the written representation of numbers is an important mile-
stone in the childs unfolding cognitive development [81]. The young math learner
must make the transition from a concrete number situation, in which the counting of
objects (with fingers often being the first), to that of using a written form to stand for
the quantities the sets of objects come to represent. This already challenging process

Fig. 5.3 Average likelihood with number classes with varying epochs

Fig. 5.4 Developmental learningof the association betweennumberwords anddigits. Four different
weight training methods are compared
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is often coupled to that of learning a verbal number system, which depending on the
particular language being used is not always transparent to children.

In this experiment four training strategies are considered:Batch, network weights
are updated at the end of an entire pass through the input data; Incremental (3 strate-
gies), network weights are learned with incremental updates after each presentation
of an input order. Inputs are presented in sequential (i.e. from 1 to 10 each epoch),
random (the order is randomly shuffled at each epoch), or cyclic order (the order
is shifted after each epoch). Hidden unit activations are evaluated from the network
with the best (lowest value of) performance function.

From this study we can conclude that the batch learning and the sequential strate-
gies are less effective compared to others. They are slower to learn (i.e. they need
more epochs) the final error (measured as sum of squared errors, or SSE) is several
orders of magnitude higher than for random and cyclic order incremental training.

Once the number sequences are learnt, an interesting feature of the proposed
cognitive system is the possibility to easily build up the ability tomanipulate numbers
with the development of the switch-associative network. Indeed, this ability can be
modelled by extending the capabilities of the associative network from the simple
start and stop, to its transferring and mapping to the basic operation of addition. The
operation of addition can be seen as a direct development of the concurrent learning
of the two recurrent units (motor and auditory). Indeed, if one of the two does the
actual counting of the operands, the other can be used as a buffer memory to add
the result, when it is done, the final number can be transferred from the buffer to the
other unit and then inputted to the final processor (the classifier in our system). Here
we want to build on this to show how the proposed architecture can take advantage
of the previously learnt capability.

As an example let us consider 2+2, in this case the following steps will be taken:

1. The first operand is recognised by the visual system and, thanks to the associative
network, the auditory internal representation is activated.

2. Auditory and motor networks will count until the corresponding activation of
number 2 is reached. This step corresponds to the idle, start, counting (cycled
twice) then done statuses of the associative network.

3. The sum operator is recognised so the associative layer resets the auditory net-
work, while the first operand remains stored in the motor memory.

4. The second operand is recognised by the visual system, so the other networks
restart counting as in step 1, until the auditory network reaches the activation
corresponding to the number 2. In the meantime, the motor network reaches the
activation of the number 4.

5. After the auditory network stops, the associative network recognises that the work
is done so the total (4) is incepted from the fingers network to the auditory network
thanks to the associative connection.

6. Finally the output of the resulting number (4) is produced for final processing (in
our case the classifier).

The steps are depicted in Fig. 5.5.
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Fig. 5.5 Example of the execution of the operation of sum

5.3 Learning Through Social Interaction

As argued in the previous section, the seat of cognition is not the brain, but instead
cognition emerges from the interaction between the brain, the body and the physical
environment.While this holds for cognitive development ofmost animals, this picture
is incomplete for some social species, and most significantly it is incomplete for
humans. For human cognition to develop, one last element is required, namely the
social environment. When including the social environment in cognition, this is
sometimes known as “extended cognition”2 [64].

While some elements of human cognition in all likelihood develop without input
from the social environment (grasping and manipulation, for example, most likely
develop without relying on social interaction), human infants grow up in a rich social
environment. In this environment, social input in various shape and form is offered
to the child, impacting on its cognitive development. Children learn from observing
others: mimicry and imitation are potent mechanisms for acquiring cognitive skills
[54] and rely on more skilled others to ostensibly demonstrate a skill, which is then
imitated by the learner. Quite often the demonstration will be tailored as to promote
successful interpretation of the demonstration by the young learner; demonstrating
more slowly or emphasising salient elements of the skill to be acquired. The demon-
strator also is able to provide feedback on the success of the demonstration, and can
actively correct elements of the skill that are not yet fully established. Imitation, in

2Not to be confused with the Extended Mind hypothesis, in which cognition is argued to extend to
the external world. As such external objects, such as canes, notepads and calculators, are seen as
being integral to human cognition [21].
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some form or other, is observed in many animals—primates and birds are known
to imitate extensively—and as such imitation is a form of social learning that is not
uniquely human [41]. However, language is uniquely human. While many species
communicate, no other species has access to the open communication system that
language is.

It has been claimed that language is such a hard problem that is unlearnable,
and can only result from an innate language of thought pre-specified by genetic
evolution [19, 35, 36, 58]. How else could the child, a passive observer viewing
a cluttered scene, know to which feature or collection of features a spoken word
referred? By contrast, embodiment views the learning child as anything but passive
[73]; their attention is clearly focused and they are ‘doing’ (reaching, holding, bang-
ing, manipulating…) sometimes being physically lead by the caregiver [82]. Words
are not merely spoken either, child directed speech is not simply speech directed
at the child, but is manipulated to highlight events, and is just as much directed by
the child’s attention and reaction. Smith et al. [68] go further, highlighting just how
dominant a held object is in the infants’ field of view. From this perspective the lan-
guage learning child is not really aware of all the perceptual clutter (the held object
is simply occluding most of it), and the spoken words often relate to what the child
is currently doing, holding or attending to. As such, the learning of simple concrete
item-based word-object and word-action mappings becomes possible, and we have
demonstrated the basic principles involved on robotic systems [53, 77].

Moving beyond simple word-object mappings, Tomasello [75] further highlights
that from a concrete item-based vocabulary children gradually (over many years)
develop the ability to construct more abstract and adult-like linguistic constructions.
This gradually increasing complexity of language presents a significant challenge
to the hypothesis that language is innate. We therefore suggest that language is
not symbol manipulation in the head but is a sensorimotor process, whereby words
prime or predict associated features (be they combinations of sensory features, motor
actions, or affordances), and likewise these features prime their associated words.

Language has many functions, next to its obvious function as communication
system, it also supports cognition in ways that are not always recognised. One is
that language is used in concept acquisition. Humans are, in the words of Terrence
Deacon, a “symbolic species” [24]. We cut up our perceptual experience in concepts,
and can subsequently order these concepts into hierarchical concepts. Concepts allow
us to reason and are the brain’s way of compressing sensory input into fewer, finite
units. When we assign a linguistic label to a concept (a word, utterance or linguistic
construction), that concept can be communicated to others. Concepts are central to
human cognition, but it is not clear where concepts come from. Are they learnt by
a child when growing up? Are some concepts innate, and some learnt? If so, which
concepts are innate and which are learnt? And, when concepts are acquired, how
exactly are they acquired?

This latter question is important: how can a child acquire concepts? And by
extension, can similar processes be used to let an artificial system, such as a robot,
acquire human-like concepts? Sect. 5.2.1 shows how linguistic labels (i.e. words) can
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be used to bind external perception with internal representations. In this section we
look into the contribution of the social interaction on word-meaning acquisition.

As children develop, there is a rich and frequent interaction between the child
and the environment. Not only the physical environment is explored, but also the
social environment. And while the physical environment does not actively respond
to actions by the child, the social environment (i.e. the child’s siblings, parents or other
carers) do actively respond to the developing child. In language learning, phenomena
such as infant-directed speech—where carers address the child in a simpler and
hyperarticulated language—aids language acquisition. Likewise, when learning the
semantics of language, the carer-child dyad often engages in rich interactions in
which joint attention and deictic pointing is combined with the naming of objects
or actions. Together with a number of learning biases [76], this enables the child to
rapidly acquire a set of words and semantic associations [50].

Inspired by these observations, we explore if similar mechanisms could be used
to accelerate robot learning. In our study, the robot learns from people in a way that
is similar to how children learn from others. In this socially guided machine learning
[47] the machine is not offered a batch of training data to learn from, but instead
engages in a high-resolution interactionwhich a human, whereby themachine invites
the human to offer tailored training data to optimise its learning.

We focus on the task of learning associations betweenwords and referents [12], for
which the learner has to construct internal representations linking linguistic symbols
with external referents. These dynamics of meaning acquisition have been explored
in detail, often using simulations in which agents bootstrap a shared symbol sys-
tem and meanings—e.g. [70–72]. However, in these simulations the agents do not
actively influence the learning process by querying their social environment. Early
simulations have shown that active learning can result in improved performance [29].
When an agent uses strategies to actively elicit better training examples from other
agents, the learner learns faster and better. The strategies consist of active learning
(whereby the learner points out a referent in the world which it would like to know
the linguistic label for, similar to a child pointing out something in the presence of
a carer), knowledge querying (whereby the learner verifies its internal knowledge
by using it and asking the carer for feedback, mimicking the way in which children
name objects in their environment and invite adults to correct them or confirm their
linguistic labels) and contrastive learning (in which an association between a word
and a referent is increased, but association between that word and other referents is
decreased).

While the strategies result in better learning in simulation, we wish to confirm if
this would still hold in the real world: where a social robot is learning from a human
tutor. To this end we design a setup in which a social robot sits across a human tutor
(see Fig. 5.6). Between the robot and human, a touchscreen is placed through which
the interaction takes place. The participants are asked to teach the robot the concepts
of animal classes (mammal, insect, invertebrate, …), using images of animals (e.g.
a bear, an ant, a lizard, …).

The robot uses learning strategies identical to the simulation model [29], the
contribution of the social robot setup is on the one hand the learning from people
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Fig. 5.6 Experimental setup, with the social robot sitting across the participant. The participant is
invited to teach the robot to correctly match images of animals with animal classes

rather than from other simulated agents, and on the other hand the introduction of
additional communication channels, such as eye gaze and affective communication.
To aid social communication and to invite people to help the robot learn, the robot
is deliberately designed to resemble a young child [26].

The experiment uses two conditions: in one condition people interact with a social
robot, using the learning strategies detailed above and using congruent linguistic and
facial expressions to support the active learning, in the second condition, the robot
learns, but does not use any of the above strategies to learn more efficiently; we refer
to this condition as the “non-social robot”. 19 subjects interacted with the social
robot, and 20 with the non-social robot condition. Full details can be found in [28].

Results show that in both conditions, the robot learns to correctly match instances
of animals to animal classes, illustrating that the learning algorithms works as
expected. The social robot learning is faster and slightly better than that of the non-
social robot, as predicted by the simulation results. It is interesting to observe that
there is a marked gender effect in the results: female participants achieve a sig-
nificantly higher learning success when interacting with the social robot, and this
drops significantly for the non-social robot. Male participants achieve similar learn-
ing results for both conditions (see Fig. 5.7). This suggests that female participants
in our study are more sensitive to the social cues expressed by the robot, while this
is not the case for the male participants.

Finally, a careful analysis of the data shows that people readily form a “mental
model” of the robot: both in the social and non-social condition people will offer
training data to the robot that are tailored to the current performance of the robot
[28], thereby showing that people form a model of the robot’s mental state.
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Fig. 5.7 Word-meaning
learning of the social and
non-social robot; note how
the social robot learns more
from female participants in
our experiment, while it
learns significantly less from
male participants. Error bars
are 95% confidence intervals

This experiment convincingly illustrates that social robots can elicit better training
experiences. The careful design of the appearance and the behaviour of the robot can
lead to improved learning on robots, and taps into the human propensity for tutoring.

5.4 Powering Artificial Cognition with Spiking
Neural Networks

The desire to endow robots with sophisticated human-like capabilities raises some
major challenges as traditional computing and engineering approaches can only
achieve so much. They can and have been used to mimic human capabilities to vari-
ous levels of abstraction but it is difficult to make artificial systems that behave in the
same way as natural ones do if we do not fully understand all the neural processing
which generates our own behaviour. It is also often difficult to translate biological
concepts into a traditional computing/engineering framework without making severe
compromises. The sensory pre-processing and higher level cognitive processing that
is required to achieve such human-like learning capabilities in an embodied devel-
opmental robotics scenario likely requires significant computing power which is in
conflict with the limited energy resources available on an autonomous robot. It should
be noted, however, that natural neural systems manage to operate in real time, be
fault tolerant and flexible despite having very low power requirements. Therefore,
it seems logical to explore more in depth bio-inspired approaches to robotics. For
example, where artificial brains and nervous systems are implemented using tech-
niques inspired by greater understanding of how real neurons work. Arbib et al. [6]
defines the field of Neurorobotics as

… the design of computational structures for robots inspired by the study of the nervous
system of humans and other animals.

and suggests that neural models more closely matching the biologymaymore clearly
reveal the computational principles necessary for cognitive robotics while illuminat-
ing human (and animal) brain function.
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In parallel, the field of Computational Neuroscience (the study of brain function
using biologically realisticmodels of neurons overmultiple scales from single neuron
dynamics up to networks of neurons) hasmade considerable progress on spiking neu-
ron based models of sensory and cognitive processes in the mammalian neo-cortex.
Spiking Neural Networks (SNNs) are the “third generation” of Neural Networks [49]
andmimic how real neurons compute: with discrete pulses rather than a continuously
varying activation. The spiking neuron is, of course, still an abstraction from a real
neuron but depending upon the application and required level of biological detail,
there are various types of spiking neuron model to choose from. However, there is
also a trade-off between the level of biological detail and computational overhead
(for a review and discussion see [42]).

In neurobiological experimental studies neuron responses have been predomi-
nantly measured as a spike rate, however there is accumulating evidence that spike
timing is also important. Experimental evidence exists for fast processing (occur-
ring within 100ms of an image presentation) in the human visual system [74] which
implies that spike timing information may be more important than spike rates as
there is not enough time to generate a meaningful spike rate in very short time inter-
vals. Spike timing also seems to be important in learning: Spike Timing Dependent
Plasticity (STDP) is a currently favoured model for learning in real neurons. Experi-
mental and modelling studies have shown that this form of Hebbian plasticity, where
the relative firing times of pre and post-synaptic neurons influence the strengthening
or weakening of connections, is the mechanism that real neurons use [69]. When
firing times are causally related (i.e. the pre-synaptic spike is emitted before the
post-synaptic spike) then the synapse is strengthened (Long Term Potentiation or
LTP). When firing times are not causally related (i.e. the post-synaptic spike occurs
before the pre-synaptic one) then the synapse is weakened (Long Term Depression
or LTD).

Of particular relevance to modelling human cognitive function, some neurobio-
logical experiments have suggested that spike-timing is also directly important at the
cognitive/behavioural level as well as in learning [8, 66].

There have been a few research projects involving robotic implementations based
upon human-like capabilities using spiking neural networks. Three notable examples
are the Darwin series of robots [34, 44], the humanoid CRONOS/SIMNOS project
[38] and the control of an iCub arm with an SNN and STDP [14].

The iSpike API [39] has a lot of promise for facilitating interfacing between
SNNs and humanoid robots but as yet no practical demonstrations exist. Therefore,
it is only relatively recently that works using spiking neural networks for practical
humanoid robotics applications havebegun to emerge.Certainly advances in software
and hardware over the last ten years or so have made SNNs an increasingly feasible
option for robotics applications. On the software side several general purpose spiking
neuron simulators are freely available which means that researchers do not have to
code a modelling framework from scratch, and they also benefit from a community
of users using the same tool. Desktop computing hardware is now available that can
perform parallel processing (e.g. GPU) at an affordable price. But this can only take
us so far. Until now, in practice most Neurorobotic systems, e.g. Chersi [18] have
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simulated the neural component on an external host PC which limits the ability of
the robot to truly perform autonomously in real time.

The emerging field of Neuromorphic Engineering is making it possible to sim-
ulate large neural networks in hardware in real time. Neural chips are massively
parallel arrays of processors that can simulate thousands of neurons simultaneously
in a fast, energy efficient way, thus making it possible to move neural applications
on board robots. This technology is currently being employed in dedicated hardware
devices to perform specific bio-inspired functions, for example, the asynchronous
temporal contrast silicon retina [27] and the silicon cochlea [17]. There have also
been several larger-scale projects for general purpose brain modelling. For exam-
ple, the CAVIAR project; a massively parallel hardware implementation of a spike-
based sensing-processing-learning-actuating system inspired by the physiology of
the nervous system [65], the FACETS project (completed in 2010) delivering both
neuromorphic hardware and software and the NeuroGrid project at Stanford which
has developed a hybrid analogue-digital neuromorphic solution capable ofmodelling
up to 1 million neurons (reviewed in [67]). More recently, the SpiNNaker project has
delivered a state-of-the-art real-time neuromorphic modelling environment that can
be scaled-up to model up to a billion point-neuron models [43].

The parallel advances in computational neuroscience and in the hardware imple-
mentation of large-scale neural networks, provide the opportunity for an accelerated
understanding of brain functions and for the design of interactive robotic systems
based on brain-inspired control systems. However, currently there are very few prac-
tical robotics implementations using neuromorphic systems. Two notable works are
[46] which developed a solution using both a silicon retina, an FPGA and neuro-
morphic hardware to enable a humanoid robot to point in the direction of a moving
object, and, more recently [22] which developed a line following robot using a silicon
retina and a prototype 4-chip SpiNNaker neuromorphic board.

Adams et al. [1] recently introduced a Neurorobotics system integrating the
humanoid iCub robot and a SpiNNaker neuromorphic board to solve a behaviourally
relevant task: goal-directed attentional selection. Using an enhanced version of an
existing SNNmodel with layers inspired by real brain areas in the mammalian visual
system [37], iCub was equipped with the ability to fixate attention upon a selected
stimulus. Although in this particular implementation the selected or “preferred” stim-
ulus was fixed in advance the network has the option to enable STDP learning to
learn the preferred stimulus.

This study demonstrated the first steps in creating a cognitive system incorporating
several important features for prospective Neurorobots:

1. Universally configurable hardware that can run a variety of SNNs.
2. Standard interfacing methods that eliminate difficult low-level issues of connec-

tors, cabling, signal voltages, and protocols.
3. Scalability—the SpiNNaker hardware is designed to be able to run very large

SNNs and the optimal placement of networks onto the hardware is abstracted
away from the user.
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More work needs to be done to develop practical applications that have a solid
biologically-inspired theoretical basis and which can be scaled up and transferred
seamlessly to run on neuromorphic hardware to take advantage of their special-
ist processing capabilities and low power requirements. For realistically large and
effective SNNs to become possible in robotic hardware, ensuring that future neural
models and simulations are actually implementable in neuromorphic hardware is
important. It is also important to develop models which challenge the capabilities of
such hardware and stimulate further developments.

5.5 Conclusion and Outlook

The studies described here illustrate how artificial cognition, just as its natural coun-
terpart, benefits from being grounded and embodied. This occurs at several levels: the
body of the cognitive system shapes its cognition, but so does the physical environ-
ment and the social environment. Human-like cognition results from the tight interac-
tion between these four constituents, see Fig. 5.8. When one of the four constituents
is missing, it is still possible to recreate certain aspects of cognition. For example, the
social component is missing in much of animal cognition and some aspects of human
cognition—such as manipulation or locomotion—can develop in the absence of the
social environment. Or when the body is missing, systems have been shown to still be
able to reach human levels of performance on specific tasks. Latent Semantic Analy-
sis, for example, is able to pass synonymy tests just using statistical co-occurrence
information of words in large text corpora [45]. However, to replicate natural human
cognition in its full scope, we make argue that all four components—body, brain,

Fig. 5.8 The four
constituents of human
cognition: the brain, the
body, and the physical and
social environment. We
argue that no human-like
cognition can develop
without the presence of these
four components
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physical environment and social environment—are required, and that all four cannot
be seen as separate entities, rather they intertwine and operate in close association
with each other. In addition, we believe that a thorough understanding of the neural
processes underpinning natural cognition will aid in the design and implementation
of artificial equivalents; key to this might be spiking neural networks.
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