
Augmented ODV: Web-Driven Annotation
and Interactivity Enhancement of 360 Degree

Video in Both 2D and 3D

Maarten Wijnants(B), Kris Van Erum, Peter Quax, and Wim Lamotte

Hasselt University – tUL – iMinds, Expertise Centre for Digital Media,
Wetenschapspark 2, 3590 Diepenbeek, Belgium

maarten.wijnants@uhasselt.be

Abstract. Despite recent technological innovations in the media
authoring ecosystem, one example being the ability to video record
a scene with a 360 degree or so-called omni-directional field of view,
video consumption to date largely remains a lean-back type of endeavor.
This paper fuses the Augmented Video Viewing paradigm with 360
degree video technology to give rise to augmented Omni-Directional
Video (ODV), a novel content format that holds promise to more deeply
engage viewers and that unlocks more active ways of interacting with
omni-directional video footage. The augmented ODV principle is exposed
through a collection of standards-compliant Web interfaces to ease adop-
tion by developers. At the same time, its Web-driven design maximizes
the applicability of the technology, both in terms of consumption plat-
forms and usage domains. Two use case prototypes showcase the artistic
expressiveness of the augmented ODV methodology, while performance
evaluation results establish the modest computational footprint of its
implementation.

Keywords: Augmented Video Viewing (AVV) · Omni-Directional
Video (ODV) · 360 degree video · Interactive video · Augmented video ·
Hypervideo · Web technology · WebGL · JavaScript

1 Introduction

Recent advancements in the capturing and authoring process, both in terms
of hardware and software, have paved the way for technological innovations in
the media landscape. One such innovation is Omni-Directional Video (ODV) or
so-called 360 degree video. As its name implies, ODV content refers to video
footage that is recorded with a 360 degree (i.e., cylindrical or spherical) Field of
View. Typical ODV player implementations allow viewers to freely adapt their
viewing angle inside the omni-directionally captured video scene.

Technical evolutions like the ODV concept unfortunately cannot conceal the
fact that typical media consumption environments continue to deliver largely
passive, static and non-interactive experiences, just like they did upon their
c© Springer International Publishing Switzerland 2016
V. Monfort et al. (Eds.): WEBIST 2015, LNBIP 246, pp. 47–69, 2016.
DOI: 10.1007/978-3-319-30996-5 3

48 M. Wijnants et al.

inception at the beginning of the 20th century. For sure, by affording the ability
to spatially navigate through a 360 degree video scene in real-time and in an
unconstrained fashion, ODV technology holds important promises in terms of
granting viewers an enhanced feeling of belonging and immersion when compared
to traditional video. Unfortunately, besides perspective personalization, no addi-
tional advanced interaction options are scaffolded by typical ODV installations.
Interactivity has nonetheless proven to be a vital tool to attract the attention
of video consumers and to maximize viewer retention (e.g., [1]).

To mitigate the laid-back characteristics of video as a medium, we have pre-
viously proposed the Augmented Video Viewing (AVV) paradigm and its associ-
ated Web-compliant codebase [2]. The AVV mindset aims to factor in interactivity
and dynamism in the core fabric of the video consumption process. In effect, typi-
cal AVV experiences offer users interaction possibilities that go well beyond basic
playback control. This is accomplished in a pragmatic fashion, by embellishing tra-
ditionally produced (passive) video material with interactive constructs that are
exclusively realized using Web technologies. In particular, out-of-the-box HTML5,
CSS and JavaScript features are leveraged to respectively define the structure
and substance of the interactive assets, their styling, and their dynamic behavior
(e.g., their spatio-temporal constraints). The interactive constructs are encoded
as hotspots that are superimposed on top of the video playback in order to closely
integrate the video content with its interaction provisions.

In this article, we give rise to the augmented ODV concept by mapping the
AVV methodology to ODV data, this way effectively converting the latter from
a passive into an interactive content format. All technical measures that had
to be taken to reconcile the two constituting technologies will be described in
detail and, in this process, our solution’s far-reaching integration with contempo-
rary Web standards will be emphasized. At the same time, the computationally
lightweight nature of the augmented ODV paradigm will be underscored by
presenting the outcome of an extensive performance benchmark. These prime
achievements are accompanied by a total of three peripheral scientific contri-
butions. First, through the presentation of two representative prototype real-
izations, we provide a hint of the advantageous traits of augmented ODV with
regards to end-user envelopment, engagement in and participation with (omni-
directional) video content. Secondly, the showcased prototypes offer a glimpse
of the creative and artistic design options that are unlocked by the augmented
ODV concept. In effect, augmented ODV is expected to pave the way for the
delivery of a whole new breed of highly interactive, compelling and engaging
video sensations in a myriad of application domains. As such, the augmented
ODV approach holds important business opportunities for content producers by
allowing them to cater to and capitalize on new consumer profiles. Finally, the
third contribution of this article takes the form of a Web interface that offers
video artists a graphical toolkit to facilitate the authoring and editing of rich
AVV-based interactive (omni-directional) video experiences.

It is explicitly stressed here that the focus of this article is purely on the
technological solutions that substantiate the augmented ODV paradigm and

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 49

that jointly constitute a completely interactive and accessible system for the
consumption and creation of augmented ODV experiences. As such, formal user
experience validation is out of scope with regards to this publication. It is advo-
cated to qualitatively assess user-oriented metrics on a case-by-case basis any-
way, as they tend to depend largely on the content at hand and on the actual
augmented ODV application scenario.

2 Related Work

The elementary notion of extending video content with interactive traits has
already been studied and approached from a number of different perspectives.
Meixner et al. have published an impressive and fairly up-to-date reference work
pertaining to this subject [3]. In particular, they have devised an extensive taxon-
omy of solutions described in the academic literature by classifying them into four
categories: interactive video, annotated video, non-linear video and hypervideo.
Instead of needlessly recapitulating their work here, this section will deliberately
concentrate on a critical selection of the most relevant scientific efforts only.

Given its Web-focus, the AVV paradigm is most akin to the hypervideo cate-
gory of related systems identified in Meixner et al.’s taxonomy. The basic hyper-
video objective consists of translating the hyperlink concept that we have become
familiar with via the Web (mostly in textual form) to the video medium. As such,
a hypervideo can be defined as a video document in which one or more user-
clickable anchors are embedded. Two pioneering contributions in this research
domain were delivered by the HyperCafe [4] and HyperSoap [5] experiments.
Other notable academic hypervideo contributions include Hyper-Hitchcock and
its detail-on-demand video concept [6], the non-linear video approach proposed
by Fraunhofer Institute FOKUS [7], HyLive due to its emphasis on live broad-
cast scenarios [8], SIVA Producer [3], the Component-based Hypervideo Model
(CHM) by Sadallah et al. [9], and the 360◦ hypervideo solution proposed by
Neng and Chambel [10].

Hypervideo-inspired systems have also been developed outside of the acad-
emic world, either in the form of freeware frameworks or commercialized offer-
ings. Examples include cacophony.js (http://www.cacophonyjs.com), Mozilla’s
Popcorn.js HTML5 media framework (http://popcornjs.org), Gravidi (http://
www.gravidi.com), and YouTube Video Annotations (http://www.youtube.
com/t/annotations about).

A somewhat different cluster of related work is that of Web-compliant multi-
media presentation technologies. Systems in this solution category aim to deliver
online interactive experiences involving a mixture of media types (i.e., they are
not necessarily video-centric). A representative example of such a technology is
SMIL State [11]. Unfortunately, native support for SMIL State is still largely
lacking in contemporary Web browsers.

This article describes a pragmatic, Web-compliant approach to attach inter-
active features to ODV content. With the exception of the 360◦ hypervideo solu-
tion by Neng and Chambel, none of the technologies cited above have explicitly

http://www.cacophonyjs.com
http://popcornjs.org
http://www.gravidi.com
http://www.gravidi.com
http://www.youtube.com/t/annotations_about
http://www.youtube.com/t/annotations_about

50 M. Wijnants et al.

considered ODV content. As a result, it is highly questionable whether they will
be directly applicable to ODV contexts.

The proposed augmented ODV methodology and the 360◦ hypervideo system
are similar in the sense that they are both Web-driven. However, it is unclear how
expressive the latter solution is in terms of overlay element specification. Our
approach imposes no creative boundaries whatsoever in this regard. Also, the
solution by Neng and Chambel appears to lack a visual authoring environment.
Finally, the computational overhead imposed by the 360◦ hypervideo system is
unknown. In contrast, the performance analysis presented in Sect. 8 will estab-
lish that augmented ODV applications are readily consumable on commodity
hardware, including tablet devices.

3 ODV Web Player

The prototypes that will be demonstrated later on in this paper have all been
realized on top of an in-house developed ODV player for the Web. Although not
the focus of this work, we will briefly touch on the player’s functionality, design
and implementation in this section to grant readers a comprehensive insight
into our contributions. It is important to note however that the applicability
of the AVV paradigm is by no means confined to this particular ODV player
implementation; instead, the AVV codebase can readily be ingested in any Web-
compliant ODV setup.

3.1 Functionality

The ODV player presents users a spatially restricted viewport into the omni-
directional video scene that is controllable via the Pan-Tilt-Zoom (PTZ) princi-
ple. This implies that viewers are granted directional control in two dimensions
with regard to the positioning of the view window. At the same time, users can
zoom in and out in order to narrow or widen the spatial spread of the viewport,
respectively. On the horizontal axis, the player imposes no navigational restric-
tions. Stated differently, viewers can perform seamless 360 degree panning as
they see fit. In the vertical direction on the other hand, the tilt movement is
confined to 180 degrees in order to reduce the cognitive load on the viewer and
to anticipate potential motion sickness. Intuitively, this means that users can
freely look left and right, but cannot loop in their tilt movement (see Fig. 1).

3.2 Implementation

The ODV player is intended to be embedded in a HTML page. It is completely
Web-compatible in the sense that it exclusively leverages standardized HTML5
technologies instead of resorting to the use of third-party plug-ins like Adobe
Flash or Microsoft SilverLight. Input-wise, the player expects the ODV content
to have undergone an equirectangular projection (see again Fig. 1).

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 51

Fig. 1. Equirectangular projection of a single full frame of example ODV content, with
an indication of the pan and tilt limitations imposed by the ODV player.

Fig. 2. The two instantiations of the employed ODV Web player. The 2D planar imple-
mentation introduces noticeable visual distortions which are induced by the equirec-
tangular representation of the input ODV content.

Two alternative versions of the player exist that differ in the way ODV con-
tent is rendered and presented to the viewer. The first implementation adopts a
two-dimensional (i.e., planar) rendering approach in which the currently active
viewport is directly cropped from the equirectangular projection and subse-
quently rendered inside a standard HTML5 <canvas> element. The second ver-
sion relies on WebGL (Web Graphics Library), a JavaScript API for plug-in-less
rendering of hardware-accelerated 3D graphics inside Web browser instances [12].
Here, the ODV frames are textured onto the interior of a 3D sphere rendered
through WebGL. Users control a virtual camera that is positioned inside this
sphere in order to define their viewport into the ODV footage.

Both instantiations of the ODV player have their merits and shortcomings.
First, as will be examined in Sect. 8, the planar visualization scheme generally has
a lower computational expense compared to the 3D WebGL solution. Secondly,
the 2D implementation only leverages basic HTML5 and JavaScript function-
ality, which maximizes portability. In comparison, its 3D counterpart requires

52 M. Wijnants et al.

WebGL API support, which unfortunately is not yet universally available. As
an example, while the majority of desktop Web browsers were pretty eager to
adopt WebGL, one of the major mobile platforms (i.e., iOS) has only done so
in the latest revision of its operating system (which was released on September
17th, 2014). Third, informally conducted qualitative experiments involving the
ODV player have indicated that viewers generally appreciate the ability to zoom
out the viewport to a global overview level (akin to the full frame visualization
illustrated in Fig. 1). While the 2D instantiation can readily support this kind
of behavior, the WebGL variant cannot (due to the fact that the movement of
the virtual camera in this case is bounded by the interior of a sphere). Finally,
concerning graphical fidelity, the WebGL-based ODV implementation outper-
forms its planar peer. This is evidenced in Fig. 2, which correlates the way the
two player implementations visualize an ODV recording made during a small-
scale concert that took place on a rectangular stage. The 2D planar visualization
causes visual deformations to arise that are not present in the 3D spherical pro-
jection. This is best witnessed in the ill-shaped visualization of the podium in
the 2D implementation.

4 Augmented Video Viewing

The basic premise of the AVV mindset consists of transforming video consump-
tion from a purely passive, laid-back activity into a much more dynamic and
(inter)active pursuit. This philosophy has bearing on a plethora of application
contexts and use cases, including entertainment, online video-driven advertis-
ing and video-assisted remote tutoring. For example, in the video entertainment
industry, the ultimate objective of content authors consists of producing thrilling
and engaging drama that succeeds in not only captivating but also retaining
the attention of the audience over time. However, due to the linear and non-
interactive nature of classic video content, its initial appeal and viewer retention
success largely depends on the skills of the different types of human operators
who are involved in the content production pipeline (e.g., visual designers, cam-
era operators, director). In case the presented content at some point fails to
capture and engage the viewer, the risk arises that the viewer starts multitask-
ing or even completely cancels the playback of the video. From the perspective
of the content producer and distributor, this of course is highly unwanted behav-
ior. Integrating interactive features in the video playback (e.g., in the form of
gamification constructs [13]) holds promise to prevent the consumer from losing
interest in and focus on the content.

As stated in the introduction, the AVV principle and its underlying imple-
mentation has previously been introduced [2]. Since then, the AVV codebase
has been actively maintained and extended with additional functionality. In this
section, the basic concepts of the AVV methodology will first concisely be reca-
pitulated. Next, the newly developed AVV features will be described.

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 53

4.1 Interactive Video Overlays

The AVV framework offers a JavaScript API (the so-called JAVV API [2]) that
facilitates the superimposing of interactive video overlay elements (VOEs) or
so-called hotspots over a HTML5 video player. Overlay elements have spatio-
temporal constraints that respectively define at which location and at what point
during video playback they must be rendered. Spatial constraints are hereby not
expressed as absolute screen coordinates but instead in terms of video coordi-
nates (i.e., relative to the position of the video element in the surrounding HTML
page). Furthermore, both static and animated positioning of video overlay ele-
ments is supported. Finally, overlay elements can have arbitrary programmatic
logic associated with them. Typically, the execution of such logic is triggered by
end-user interaction with the element or is timer-based.

Implementation-wise, each overlay element is represented by a <div> node in
the HTML DOM. By assigning these dedicated nodes an elevated value for their
CSS z-index property, it is guaranteed that they are always visibly overlaid on
top of the video playback elements. HTML is exploited as markup language for
the content that is embedded in overlay elements. This implies that hotspots can
communicate a wide spectrum of information, as semantic information can be
included through the application of appropriate HTML constructs. Analogously,
the visual appearance and styling of overlay elements is controlled through the
CSS standard. Finally, and again in line with the Web-focused design of the AVV
framework, an overlay element’s programmatic logic is expressed in JavaScript,
with JavaScript’s event-driven scripting model being exploited to couple ded-
icated interaction handlers to different types of viewer actions. In a desktop
environment, for example, it will in many cases make sense to respond to click,
mouseover and mouseout interactions that occur on the DOM representations
of video overlay elements.

4.2 Motion-Tracked Video Overlays

The AVV framework comprises animation facilities for overlay elements. Looking
at it from a software engineering perspective, the JAVV API codebase adopts the
strategy design pattern to abstract overlay animation handling, this way intro-
ducing a certain level of flexibility in the animation subsystem. In particular, the
software architecture defines an extensible family of interchangeable animation
engines (each implementing a concrete animation style or technique), any of which
can be attached at run-time to an overlay element in order to determine its spa-
tial behavior over time. The initial version of the framework included only a single
such animation engine, in particular one that implements a keyframing-like solu-
tion by performing linear interpolation between an overlay element’s begin and
end location over the course of the element’s visible state [2]. Basically speaking,
this animation engine causes overlay elements to follow a linear path.

Empirical insights obtained from developing concrete AVV-based test cases
revealed that many scenarios would benefit from the ability to conceptually
attach an overlay element to an in-scene object in the underlying video. In other

54 M. Wijnants et al.

Fig. 3. Illustration of a motion-tracked video overlay. In this specific case, (the head
of) an in-video actor was tracked so that an overlay element could be imposed on top
of it.

words, we identified the need for an animation engine that enables overlay ele-
ments to follow the movement of subjects that appear in the video scene. To
this end, we integrated a motion tracking animation engine in the JAVV API
software architecture. This animation engine needs to be fed with cornerpin-
based 2D tracking data as generated by off-the-shelf video editing software (e.g.,
Adobe After Effects or likewise) and subsequently applies the captured move-
ment information to control both the position and spatial extent of the overlay
element. As can be seen in Fig. 3, this animation engine is ideally suited to render
overlay elements on top of (mobile) in-scene video items. Note that the visual
accuracy of this animation engine largely depends on the performance and effi-
cacy of the external algorithm that is responsible for implementing the motion
tracking. Also note that the 2D motion tracking needs to be performed offline,
as a pre-processing step.

4.3 Reaction Video Overlays

Another desirable feature that emerged from practical experimentation with
the JAVV API, was support for the specification of some form of parent/child
relationship amongst individual overlay elements. Therefore, a specialized type
of overlay element was implemented whose spatial positioning is defined relative
to that of another hotspot (i.e., its parent). Since these types of overlays are
typically visualized in response to some form of user interaction with the parent
hotspot, they will in the remainder of this article be referred to as reaction
overlay elements.

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 55

Three configuration settings control the spatial behavior of reaction overlay
elements. The first configurable parameter is the absolute spacing that needs to
be enforced between the reaction element and its parent. The reaction hotspot
will always be offset the specified amount of pixels against the nearest edge of its
parent. Secondly, experience designers can specify positioning preferences that
define the order in which potential placement locations for the reaction overlay
element are considered. These placement location alternatives are expressed rel-
ative to the parent item, at a high level of abstraction (i.e., to the left or right
of the parent, above or below it, and so on). Reaction overlay elements are only
rendered at a potential placement location in case sufficient screen real estate
is available to host the element there. Since reaction items are never rendered
partially, the following variables play a role in determining the eligibility of a
placement location: the coordinates of the nearest border of the parent, the to-
be-enforced spacing between the parent and the reaction element, the spatial
dimensions of the reaction element and the spatial extent of the video player
(or the view window in case of the ODV player, see Sect. 3.1). The third config-
uration setting is a Boolean flag indicating whether the reaction element must
automatically be repositioned in case a placement location alternative that has
precedence over the currently active one becomes available (e.g., due to changes
to the viewport state in augmented ODV setups).

An advantageous trait of the reaction overlay element technology is that it
interplays well with both animated parent items and viewport modifications in
the augmented ODV player. In effect, reaction elements will follow the motion
of their parent item and, in the course of the parent’s animation, be dynamically
repositioned as needed. This kind of behavior is illustrated in Fig. 4. Equivalent
behavior is exhibited in the augmented ODV player when the user modifies his
viewport into the ODV content.

One example of an interesting application area for the reaction overlay tech-
nology is the implementation of call-out widget-like functionality. As is demon-
strated in Fig. 4, a reaction hotspot could present additional information about
an in-scene object that is marked with a (potentially transparent) overlay ele-
ment. In addition, by attaching some basic programmatic logic to the parent

Fig. 4. Parent object motion causes the relative location of its associated reaction
element to be on-the-fly modified in accordance with the latter’s positioning preferences
(in this example, the preferred positioning order equals: above, right, below, left).

56 M. Wijnants et al.

object, the visibility of the call-out box could dynamically be controlled on the
basis of end-user interaction with the parent. As such, viewers can at run-time
prevent the reaction overlay from cluttering the video playback at times when
it is undesirable to do so. Please note that in this example, some simple HTML
chrome was added to the appearance of the reaction element in order to give it
an archetypical call-out look-and-feel.

5 Augmented ODV

This section will address the fundamental contribution of this article, namely
the coupling of the JAVV API to ODV setups in general and to the ODV Web
player that was introduced in Sect. 3 in particular. The incorporation in both
instantiations of the ODV Web player will be discussed disjointly, due to the
largely divergent technological requirements that were posed by each integration.

5.1 2D Planar Augmented ODV

Like any traditional video player, the 2D planar ODV renderer in essence
presents two-dimensional images to the user. Due to this conceptual analogy,
porting the AVV framework to this ODV setup turned out to be relatively
straightforward. To be more precise, it mostly sufficed to correctly cover a num-
ber of “boundary cases” which all originate from the observation that, in contrast
to a traditional video application, the 2D ODV implementation not necessarily
displays complete video frames. In effect, depending on the ODV player’s zoom
level, the video footage might be cropped to fit the current viewport.

Conceptual sketches of each boundary case that had to be addressed are
shown in Fig. 5. First of all, video overlay elements that integrally fall outside of
the current viewport must be completely excluded from the rendering pipeline.
Secondly, hotspots that are only partially contained in the viewport need to be
clipped appropriately. This is achieved by modifying the value of the CSS clip
property of the DOM representation of the involved overlay element. Finally,
overlay elements with a large horizontal extent might need to be broken up into
two discrete <div> representations for them to be rendered correctly.

Besides the boundary cases, the ODV player’s support for zooming operations
also required special attention. When zooming in or out, care has to be taken
that overlay elements retain their logical positioning in the video scene. On the
other hand, hotspots need to scale proportionally to the applied zoom level (in
both the horizontal and vertical dimension). This latter requirement is fulfilled
by applying the scale function of the CSS transform property to the concerned
DOM element.

5.2 3D Spherical Augmented ODV

Whereas the JAVV API software architecture could quite readily be reconciled
with the 2D ODV player implementation, this was not the case for its WebGL-
based counterpart. In effect, in this latter instantiation, there is no longer a

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 57

Fig. 5. Conceptual drawings of boundary conditions that had to be dealt with when
porting the JAVV API to the 2D planar ODV setup. Dashed lines represent (portions
of) hotspots that are not actually visualized.

notion of a planar presentation of video frames. Instead, the video content is
applied to a curved surface (i.e., a sphere). If one would draw (flat) DOM ele-
ments as an exogenous layer on top of this three-dimensional scene, their graph-
ical appearance would not necessarily blend in nicely with the ODV footage.
Two alternative solutions were developed to remedy this problem.

CSS 3D Transformations. In the first approach, overlays remain to be rep-
resented by traditional DOM items, yet they are manipulated using CSS 3D
transformations in order to correctly position them on top of the WebGL scene.
In short, CSS defines a number of properties that allow DOM elements to be
translated, rotated and scaled in a three-dimensional space [14].

We exploited the three.js JavaScript graphics library (http://threejs.org/), a
convenient wrapper for WebGL, to mix the CSS 3D transformed DOM items with
the WebGL scene. In particular, the three.js library allows for the addition of a
CSS 3D renderer to an HTML page. This renderer is installed in such a manner
that it spatially coincides with the WebGL renderer, yet in a superimposed
manner.

Recall from Sect. 3.2 that the 3D ODV player applies the ODV footage to
a curved surface. This causes the video content to be non-uniformly deformed
(i.e., the deformation increases towards the edges of the viewport). The overlay
elements must undergo an identical distortion for their visualization in the 3D
space to be visually convincing. To this end, the two-dimensional video coordi-
nates of each of the vertices that outline an overlay element, combined with the
element’s depth information (as specified by its CSS z-index value), are first
expressed in a spherical coordinate system. The spherical coordinates (r, θ, φ)

http://threejs.org/

58 M. Wijnants et al.

are subsequently mapped to Cartesian positions (x, y, z) in 3D space [15] and
are then fed to the CSS 3D renderer.

Representing Overlays as WebGL Objects. The second solution embraces
the three-dimensional context not only for the visualization of the ODV mate-
rial, but also for the rendering of the overlay elements. Like in the CSS 3D
transformations scheme, the vertex outline of an overlay element is first spheri-
cally projected. Instead of providing the calculated 3D coordinates to the CSS
3D renderer, they are now directly interconnected in the 3D scene by means
of WebGL-rendered lines. As a next step, the resulting shape is filled with a
low-polygon 3D mesh. This approach enables the 3D representation of video
overlay elements to display a background image (by attaching it as a texture to
the mesh). Finally, the constructed mesh is equipped with a WebGL material so
that, for example, a background color can be set for the overlay element.

The fact that video overlay elements are now rendered as 3D objects in a
WebGL scene, as opposed to being represented as items in the DOM of the encap-
sulating webpage, has two important implications. First, it is no longer feasible
to directly stylize hotspots via CSS. Therefore, CSS properties defining the visual
appearance of overlay elements are parsed and (a subset of them) are translated
to corresponding settings in WebGL. Examples of recognized CSS properties
include border width, border color, background color and transparency level.
A similar remark applies to the use of HTML to define hotspot content (e.g.,
an tag is correctly translated to a WebGL texture, yet plain text in the
HTML markup is simply discarded due to WebGL’s poor text rendering sup-
port). Secondly, it invalidates the approach of handling end-user interaction with
hotspots by listening for DOM events. As a workaround, a raycasting-based pick-
ing solution was adopted to determine which object(s) in the 3D scene the user
is pointing at. In case the casted ray would intersect with multiple overlays, the
one nearest to the virtual camera will be returned.

Comparison. The WebGL-integrated solution exhibits the detrimental charac-
teristic that out-of-the-box support for the complete spectrum of existing CSS
and HTML features is lost. Likewise, this implementation suffers from main-
tainability issues (if a new desirable CSS or HTML feature would be released,
additional code would have to be written to explicitly support it). In contrast,
the CSS 3D transformations-based scheme maximally retains compliance with
the original AVV modus operandi. This implies that it inherits not just all AVV
functionality that has previously been developed for non-ODV setups, but also
all the off-the-shelf HTML and CSS constructs around which the AVV framework
has been designed. For example, the layout and style of overlay elements remain
controllable via CSS, the full HTML syntax remains exploitable to describe their
contents, and interaction handling can still occur on the basis of DOM events. In
terms of visual realism however, the WebGL-integrated approach will typically
intertwine the overlay elements and the 3D scene in a visually somewhat more
convincing fashion than the CSS 3D transformations-powered implementation.

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 59

This is due to the fact that the latter uses dedicated renderers for respectively the
3D scene and the overlay elements, which prohibits them from being tightly inte-
grated. Finally, it is also important to note that the WebGL-integrated solution
outperforms its CSS 3D transformations-based counterpart in terms of compu-
tational complexity (see Sect. 8 for concrete performance figures).

All reaction overlay elements that appear in a 3D ODV player screenshot in
this paper were rendered using CSS 3D transformations (i.e., see Fig. 8). This
is motivated by the fact that this class of hotspots typically relies extensively
on CSS style features and HTML constructs (e.g., to implement the call-out
chrome, see Sect. 4.3). Furthermore, they often carry text-based content. Based
on the just presented comparison, it should be apparent that implementing such
hotspots as WebGL objects would be cumbersome. On the other hand, the
WebGL-integrated approach is the preferred solution for less complex overlay
elements, due to its improved efficacy with regard to visual fidelity as well as
its smaller computational footprint. Consequently, this technique was applied to
visualize the non-reaction overlays in the 3D ODV player screenshots (i.e., see
Figs. 2(b), 3 and 8).

6 Authoring

The targeted authoring audience of the AVV framework encompasses not only
Web developers, but also video enthusiasts (both amateurs and professional prac-
titioners). The technological expertise of these two user categories likely diverges
largely. As an example, it is fairly safe to assume that members of the former
have profound knowledge of prevailing Web practices. As a result, they might be
sufficiently versed to define overlay elements directly in JavaScript. It is however
highly improbable that the same is true for people with a background in visual
design or video production. Such users would therefore benefit from the abil-
ity to construct AVV experiences from a more high-level point of view, using a
graphical user interface. In this section, the alternative authoring solutions that
were developed to cater to the desires and competences of both user bases will
be presented. Of course, AVV experience designers are by no means confined
to a single editing method and are free to fuse the different approaches as they
see fit. For example, it could make perfect sense to draft a rough version of the
envisioned AVV setup using the graphical editor, and then to refine the result
by manually tweaking some settings directly in JavaScript.

6.1 Direct Video Overlay Instantiation

At the lowest end of the abstraction scale, authors can define video overlays
directly in JavaScript, by instantiating their corresponding representation in the
JAVV library. This approach basically boils down to the writing of JavaScript
code, and will therefore probably only be viable for users that exhibit at least
elementary Web development skills.

60 M. Wijnants et al.

6.2 JSON Specification

The JAVV software architecture applies the factory design pattern to allow for
the construction of overlay elements on the basis of JavaScript Object Notation
(JSON) input. The code listing below provides an example of a JSON-encoded
video overlay element representation. Since in this approach it suffices for authors
to draft JSON documents instead of doing actual JavaScript coding, this solution
is situated somewhat higher up the abstraction ladder than the previous one.

{

"id": "MyId", // Unique VOE identifier

"timeStart": 100, // Visibility start time

"timeStop": 200, // Visibility end time

"positionStart": { // 2D position at time "timeStart"

"x": 10,

"y": 10

},

"positionStop": { // 2D position at time "timeStop"

"x": 20,

"y": 30

},

"htmlContent": /* Arbitrary HTML markup content goes here */,

"interactionHandler": {

"click": function(e, overlay) { ... },

"mouseover": function(e, overlay) { ... },

"mouseout": function(e, overlay) { ... }

},

"htmlStyle": /* CSS customization instructions go here */

}

Supporting indirect video overlay element instantiation via an open and
language-independent standard for data interchange like JSON entails clear ben-
efits in terms of flexibility, portability and interoperability. An additional advan-
tage of embracing a widely accepted standard is that it is typically blessed with
a wealth of facilitating tools. As an example, the JAVV library exploits JSON
Schema [16] to validate the syntactical structure and semantics of JSON docu-
ments describing video overlay elements.

6.3 Graphical Editor

The most high-level AVV authoring solution is provided by a graphical editing
interface that is accessible via a standard Web browser. An annotated screenshot
of this Web service is shown in Fig. 6. The editor supports the augmentation of
both ODV and traditional video content.

Without going into too much detail, the editor’s design is centered around
important HCI guidelines such as providing direct feedback (visual or otherwise)
and supporting direct manipulation. The former design principle is, for instance,
applied by ensuring that the actions performed by users are, whenever possible,

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 61

Fig. 6. The graphical interface of the editor Web service: (1) Video content selection;
(2) Overlay element instantiation; (3) Preview widget (visualizes the currently active
video frame and the overlay elements that apply to it); (4) Management form for
overlay element properties; (5) Enumeration of defined overlay elements (i.e., selection
pane); (6) Video playback timeline (including thumbnails of individual video frames to
facilitate temporal navigation); (7) Video playback controls; (8) Export and deployment
options.

directly reflected in the preview widget. Another illustration of the adoption of
this principle is given by the WYSIWYG text editor that is included in the
Web service (not shown in Fig. 6). This tool allows users to specify the textual
contents of overlay elements without mandating them to be familiar with the
HTML syntax. On the other hand, an example of direct manipulation support
can be found in the fact that users are able to apply drag-and-drop interaction
to intuitively reposition already defined overlay elements in the preview window.

The result of the editing process can be exported to an intermediary for-
mat that in turn can be applied by the JAVV API in order to incorporate the
authored AVV experience inside a HTML page. The Web service even includes
the option to publish the editing outcome (i.e., the combination of the involved
video clip and the overlay elements that were defined for it) in a directly con-
sumable manner to an HTTP server.

7 Showcases

In this section, we will present two augmented ODV prototypes. The first pro-
totype chiefly acts as a technological proof-of-concept and is hence intended to
showcase the feasibility as well as the functional features of the proposed tech-
nology. The second demonstrator on the other hand involves a real-life use case
and consequently provides a hint of the valorization potential of our work.

62 M. Wijnants et al.

Fig. 7. Additional screenshots of the augmented concert showcase: (a) Reaction video
overlay carrying image content; (b) Overview of the three non-reaction elements, each
annotated with its respective CSS style string.

7.1 Augmented Concert Capture

The first demonstrator is built around ODV content that was captured during
a small-scale musical performance involving an audience of approximately 150
people. A stationary ODV camera was installed in front of the stage, amidst the
audience, to record the concert. The screenshots that have been included in the
paper up to this point all originate from this demonstrator.

The demonstrator itself is implemented as two distinct HTML pages which
respectively host the 2D planar and the WebGL-based ODV player. Via a HTML
link embedded in the pages, one can switch between the two ODV player instanti-
ations. The video footage is augmented with a total of five overlay elements. Two
of these are statically positioned, one is animated on the basis of motion tracking
data, and the final two are reaction overlays. The statically positioned overlay
elements mark the singer of the band and a segment of a promotional banner,
respectively. Both are rectangularly shaped and their styling respectively con-
sists of a semi-transparent fill color and colored edges (see Fig. 7(b)). Interacting
with the singer’s hotspot causes a short biography of the band to be displayed in
a dedicated portion of the webpage, external to the ODV player. On the other
hand, selecting the overlay element on top of the banner results in a reaction
element popping up which holds an image of the radio station that organized the
concert. This effect is shown in Fig. 7(a). The motion-tracked overlay element

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 63

follows a camera operator as he moves around in front of the stage. Figure 4
illustrates that this particular element is visualized as a semi-transparent image
with a border colored in red and that interacting with it causes a reaction video
overlay acting as a call-out box holding textual information to appear on top of
the video footage.

Please remark that the styling solutions and content presentation methods
that are showcased in this prototype are mere illustrations and are in fact rather
simplistic. For the sake of comprehensiveness, the exact style settings that apply
to the three non-reaction hotspots are communicated in Fig. 7(b). It is explicitly
repeated here that, courtesy of the extensiveness of both the CSS and HTML
specifications, the artistic options for overlay element design available to visual
artists are nearly limitless.

7.2 Virtual Walkthrough

The second demonstrator exerts the JAVV API to incorporate interactive fea-
tures in a practical scenario, namely a virtual walkthrough use case.

Use Case. At Hasselt University, a Web application has been developed that
offers students and employees a virtual walkthrough of the campus grounds in
order to familiarize them with the spatial layout of the site. The application’s
media content consists of ODV recordings of a human guide as he walked around
the campus territory. Along the way, the guide pointed out various salient fea-
tures in his vicinity (e.g., university buildings or services). In a post-production
phase, the ODV footage was temporally segmented on the basis of physical junc-
tion points (e.g., a crossroad) that were encountered during ODV capture.

The prototype can in a sense be regarded as an ODV-powered counterpart
of the Street View functionality included in Google Maps. In effect, the typical
usage scenario involves users virtually moving along the roadways and choosing
their desired traveling direction at subsequent intersections in order to get a feel
of the layout of the university grounds. While navigating the streets, users can
play/pause the video sequences, freely change their viewing angle, and zoom in
and out at their personal discretion. Please note that no specific effort was needed
to realize this functionality, as the prototype directly inherits these functions
from the incorporated ODV Web player. Also note that the Web application is
meant for internal use only and is hence not publicly available.

AVV Integration. The AVV framework was integrated into this Web applica-
tion so that relevant physical elements in the captured scenery could be tagged
by means of interactive overlays. Given the mobility of the capture camera, all
hotspots in this prototype are of the motion-tracked type. When selected, the
hotspots display textual descriptions (encoded as reaction overlays) of the under-
lying object in the video footage. The AVV integration into this use case hence
served a dual purpose: complementarily highlight the real-world items pointed

64 M. Wijnants et al.

Fig. 8. Screenshot of the augmented version of the virtual walkthrough prototype
(visualized using the 3D ODV player).

out by the human guide in the ODV footage, and appropriately present infor-
mative call-outs to users. A screenshot that illustrates the outcome of the AVV
integration can be found in Fig. 8.

8 Performance Evaluation

To analyze the computational complexity of the augmented ODV solution, a per-
formance benchmark was conducted. In particular, the augmented concert show-
case presented in Sect. 7.1 was profiled with regard to computational resource
usage on two distinct platforms: a mid-range desktop PC equipped with GPU
hardware acceleration, and a low-cost laptop. The exact hardware specifications
of the desktop PC were as follows: Intel Xeon W3505 CPU running at 2.53 GHz,
Nvidia GeForce GTX 760 GPU, 4 GB RAM. The laptop was a DELL Latitude
E6510 housing an Intel Core i3 M370 CPU clocked at 2.40 GHz, an Nvidia NVS
3100M graphics card, and 4 GB RAM. Software-wise, the desktop and laptop test
platforms ran Windows 8.1 and Windows 7 SP1, respectively. On both machines,
the audit was executed using Google Chrome version 39.0.2171.95 m (32-bit).

The benchmark test case was encoded as a script and subsequently applied a
number of times under variable configuration settings and conditions. The script
first made sure that the viewport of the ODV Web player was positioned in such
a way that the band and the rectangular stage were in view. From that point
on, no viewport modifications whatsoever occurred during the remainder of the
test scenario. Once the viewport was appropriately positioned, the benchmark

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 65

actually commenced. Approximately 1 second after the start, the overlay element
that is associated with the singer of the band was selected (i.e., clicked on). After
a time interval of about 1 second, the camera operator’s motion-tracked video
overlay was then selected. This action caused the corresponding reaction overlay
element to be rendered in the viewport (see Fig. 4). Finally, again approximately
1 second later, the test case was concluded. Each benchmark run consequently
consumed about 3 seconds in total.

The configuration settings that were varied across tests include (i) the res-
olution of the input ODV material, (ii) the output resolution of the ODV Web
player (i.e., the viewport resolution), and (iii) using the 2D planar versus the 3D
spherical augmented ODV Web player implementation.

The performance results were collected using the Chrome Developer Tools
[17] and are summarized in Tables 1 and 2. In both tables, the figures communi-
cate CPU consumption (i.e., method execution time), expressed as a percentage
of the total running time of the involved benchmark test. As an example, a
value of 5 would indicate that 5 percent of the benchmark’s running time was
spent processing the corresponding JavaScript function. The percentual time

Table 1. Benchmark results (% of total time) on a hardware accelerated desktop;
1920x1080 versus 960x540 video input, static viewport.

Table 2. Benchmark results (% of total time) on a commodity laptop; 1920x1080
versus 960x540 video input, static viewport.

66 M. Wijnants et al.

the CPU was idle during the different audit configurations is likewise included
in the tables. Each reported figure corresponds with the average of the results
from 5 independent runs of the respective test, to moderate the impact of out-
liers. The semantics of the method names appearing in the benchmark results
are as follows:

draw (abbreviation for drawImage) The default HTML5 method to draw to a
<canvas> element; is used to render the currently active ODV viewport to
the screen in the 2D planar ODV player

anim The JAVV API function that implements the positioning, animation and
rendering of overlay elements; is separately implemented for both the 2D
planar and 3D spherical augmented ODV alternatives

clip A subroutine of the 2D planar anim method that is exclusively responsible
for overlay element clipping (see Sect. 5.1)

render The three.js function to render a WebGL scene
uCSS A subroutine of the 3D spherical anim method that manages the animation

of overlay elements using CSS 3D transformations (see Sect. 5.2)
uWGL A subroutine of the 3D spherical anim method that manages the WebGL-

integrated animation of overlay elements (see Sect. 5.2)

Space limitations unfortunately refrain us from delving exhaustively into the
benchmark outcomes. Therefore, we will limit ourselves to enumerating four of
the more salient findings. The first observation is that the 3D spherical aug-
mented ODV renderer is more efficient at drawing and animating the overlay
elements compared to its 2D planar counterpart (see the values of the respec-
tive anim columns in Tables 1 and 2). This finding holds true across all tested
input and output resolutions, on both test platforms. Second, by comparing the
uCSS and uWGL columns, it becomes apparent that updating and rendering video
overlay elements using the CSS 3D transformations scheme is computationally
considerably more expensive than via the WebGL-integrated approach. Recall
from Sect. 5.2 that the former solution is exploited to display reaction hotspots.
Exactly one such element became visible in the course of the benchmark test
scenario. If the test case would not include a reaction hotspot, the difference
in overlay element rendering time between the 2D and 3D implementations (as
identified in the first finding) would be even larger. Thirdly, in the 2D planar aug-
mented ODV implementation, the clipping of overlay elements consumes a con-
siderable slice of the CPU budget (i.e., approximately one third of the animation
processing is devoted to clipping). This is caused by the relatively large number
of position and offset calculations that the clipping operation requires. The per-
formance of this animation phase could potentially be improved by resorting to
a clipping scheme that is based on the CSS overflow property. An overflow-
based solution would transform the clipping from a manual to an automated
process, which is expected to have a positive influence on performance. Investi-
gating the validity of this hypothesis is an important subject of future work. The
final finding pertains to the impact of the input and output video resolutions.
In hardware accelerated settings, the input video resolution does not appear to

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 67

Table 3. Benchmark idle times (% of total time) on a Nexus 7 tablet; 1920x1080 versus
960x540 video input, static viewport.

play an appreciable role with respect to overlay element rendering and anima-
tion performance, for either the 2D or the 3D Web player implementation. In the
absence of decent GPU acceleration, a small impact on performance is however
noticeable (the computational overhead of animating hotspots rises as the input
video resolution increases, see the anim columns in Table 2). The tested ODV
viewport resolutions on the other hand seem to only marginally affect the CPU
workload induced by the JAVV library.

It is important to mention that, under every considered test condition, ample
idle CPU cycles were available (as is evidenced by the “Idle” columns in Tables 1
and 2), which resulted in all experiments running smoothly at comfortable frame
rates. This observation unfortunately only partly holds true on tablet devices. As
an example, Table 3 elaborates the idle times on a Nexus 7 tablet (2012 edition)
running Android 5.0 and Google Chrome 38.0.2125.509 (identical benchmark
configuration permutations and test case as before, idle time expressed as a
percentage of the total running time of the benchmark test, results were aver-
aged out over 5 independent test runs). As can be derived from this table, the
benchmark test conditions that yield the highest visual quality failed to render
smoothly. On the other hand, the tested mid-range and low-end quality settings
produced acceptable frame rates (i.e., above 25 FPS). As an example, when
fed with 960x540 video input and producing 1280x720 video output, the 2D
planar implementation witnessed 9.82 % idle time, which resulted in an average
frame rate of approximately 25 FPS. Please note that, since the augmented ODV
codebase is currently not optimized for mobile platforms, the figures reported in
Table 3 definitely leave room for improvement.

In all, the presented audit findings lead us to conclude that the aug-
mented ODV solution is computationally compatible with commodity hardware,
although deployment on mobile devices might mandate quality sacrifices depend-
ing on terminal capabilities.

9 Conclusions

Over the years, the video medium has witnessed substantial technological inno-
vations. This paper has focused on one such fairly recent innovation, namely the
ability to record scenes with a spherical Field of View. Somewhat surprisingly,

68 M. Wijnants et al.

the medium has not seen the same degree of evolution when it comes to the types
of experiences it is able to deliver to viewers. In particular, video consumption to
date largely remains a passive matter, with little thought for end-user interactiv-
ity. This paper has proposed a pragmatic solution to battle this stagnation in the
form of the augmented Omni-Directional Video concept. The rationale behind
the concept consists of overlaying ODV footage with interactive elements that
are represented and rendered in a Web standards-compliant manner, in this way
effectively “activating” ODV consumption. The various building blocks required
to realize the augmented ODV methodology have all been addressed.

Interactive elements to be integrated into the ODV content can be presented
through divergent mechanisms (each with specific advantages and drawbacks)
depending on imposed technical restrictions and the context of use. Neverthe-
less, all proposed mechanisms build upon well-established Web standards such as
HTML5, CSS, JavaScript and WebGL. This deliberate design decision benefits
the authoring process, as it allows content producers to engineer novel experi-
ences without them facing the steep learning curve that is typically associated
with the adoption of a new technology. To further improve the content creation
workflow, a graphical authoring interface has been proposed that enables point-
and-click interaction for tasks that would otherwise require repetitive (manual)
editing.

The practical applicability and valorization potential of the augmented ODV
concept has been showcased by two representative use case descriptions, which
were implemented using a mixture of technologies presented in this paper.
Finally, performance benchmark figures have revealed our implementation to
be computationally economical.

Acknowledgements. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n◦ 610370, ICoSOLE (“Immersive Coverage of Spatially Outspread
Live Events”, http://www.icosole.eu). The authors would like to explicitly thank Jori
Liesenborgs for developing the ODV Web player, Jeroen Leën for porting the AVV
codebase to the 2D planar ODV implementation, and prof. Philippe Bekaert for the
ODV recording of the concert which served as video material in the technological
demonstrator described in Sect. 7.1.

References

1. Raney, A.A., Arpan, L.M., Pashupati, K., Brill, D.A.: At the movies, on the Web:
An investigation of the effects of entertaining and interactive Web content on site
and brand evaluations. J. Interact. Mark. 17, 38–53 (2003)

2. Wijnants, M., Leën, J., Quax, P., Lamotte, W.: Augmented video viewing: trans-
forming video consumption into an active experience. In: Proceedings of the 5th
Multimedia Systems Conference, MMSys 2014, Singapore, Singapore, pp. 164–167.
ACM (2014)

3. Meixner, B., Matusik, K., Grill, C., Kosch, H.: Towards an easy to use authoring
tool for interactive non-linear video. Multimedia Tools Appl. 70, 1251–1276 (2014)

http://www.icosole.eu

Augmented ODV: Web-Driven Annotation and Interactivity Enhancement 69

4. Sawhney, N., Balcom, D., Smith, I.: Authoring and navigating video in space and
time. IEEE MultiMedia 4, 30–39 (1997)

5. Dakss, J., Agamanolis, S., Chalom, E., Michael Bove Jr., V.: Hyperlinked Video.
In: Proceedings of SPIE Multimedia Systems and Applications, vol. 3528, pp. 2–10
(1999)

6. Shipman, F., Girgensohn, A., Wilcox, L.: Combining spatial and navigational
structure in the hyper-hitchcock hypervideo editor. In: Proceedings of the 14th
Conference on Hypertext and Hypermedia, Hypertext 2003, Nottingham, UK, pp.
124–125. ACM (2003)

7. Seeliger, R., Räck, C., Arbanowski, S.: Non-linear video - A cross-platform interac-
tive video experience. In: Proceedings of the 2nd International Conference on Cre-
ative Content Technologies, CONTENT 2010, Lisbon, Portugal, pp. 34–38 (2010)

8. Hoffmann, P., Kochems, T., Herczeg, M.: HyLive: Hypervideo-Authoring for Live
Television. In: Tscheligi, M., Obrist, M., Lugmayr, A. (eds.) EuroITV 2008. LNCS,
vol. 5066, pp. 51–60. Springer, Heidelberg (2008)

9. Sadallah, M., Aubert, O., Prié, Y.: CHM: an annotation- and component-based
hypervideo model for the web. Multimedia Tools Appl. 70, 1–35 (2012)

10. Neng, L.A.R., Chambel, T.: Get around 360◦ hypervideo. In: Proceedings of the
14th International Academic MindTrek Conference: Envisioning Future Media
Environments, MindTrek 2010, Tampere, Finland, pp. 119–122. ACM (2010)

11. Jansen, J., Bulterman, D.C.: SMIL State: an architecture and implementation for
adaptive time-based web applications. Multimedia Tools Appl. 43, 203–224 (2009)

12. Khronos Group: WebGL Specification Version 1.0.2 (2013). https://www.khronos.
org/registry/webgl/specs/1.0/

13. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work? - A literature review of
empirical studies on gamification. In: Proceedings of the 47th Hawaii International
Conference on System Sciences, HICSS-47, Hawaii, USA, pp. 3025–3034 (2014)

14. W3C: CSS Transforms Module Level 1 (2014). http://dev.w3.org/csswg/
css-transforms/

15. Weisstein, E.W.: Spherical Coordinates. From MathWorld - A Wolfram
Web Resource (2014). http://mathworld.wolfram.com/SphericalCoordinates.html.
Online

16. Galiegue, F., Zyp, K., Court, G.: JSON Schema: interactive and non interactive
validation. Internet-Draft, Internet Engineering Task Force (2013). http://tools.
ietf.org/html/draft-fge-json-schema-validation-00

17. Google: Chrome DevTools Overview (2015). https://developer.chrome.com/
devtools

https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://dev.w3.org/csswg/css-transforms/
http://dev.w3.org/csswg/css-transforms/
http://mathworld.wolfram.com/SphericalCoordinates.html
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

	Augmented ODV: Web-Driven Annotation and Interactivity Enhancement of 360 Degree Video in Both 2D and 3D
	1 Introduction
	2 Related Work
	3 ODV Web Player
	3.1 Functionality
	3.2 Implementation

	4 Augmented Video Viewing
	4.1 Interactive Video Overlays
	4.2 Motion-Tracked Video Overlays
	4.3 Reaction Video Overlays

	5 Augmented ODV
	5.1 2D Planar Augmented ODV
	5.2 3D Spherical Augmented ODV

	6 Authoring
	6.1 Direct Video Overlay Instantiation
	6.2 JSON Specification
	6.3 Graphical Editor

	7 Showcases
	7.1 Augmented Concert Capture
	7.2 Virtual Walkthrough

	8 Performance Evaluation
	9 Conclusions
	References

