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Preface

This volume is a compilation of research and survey papers in number theory,
written by members of the Women in Numbers (WIN) network, principally by the
collaborative research groups formed at Women in Numbers 3, a conference at the
Banff International Research Station in Banff, Alberta, on April 21–25, 2014.

The WIN conference series began in 2008, with the aim of strengthening the
research careers of female number theorists. The series introduced a novel research-
mentorship model: women at all career stages, from graduate students to senior
members of the community, joined forces to work in focused research groups on
cutting-edge projects designed and led by experienced researchers. This model had
tremendous success, branching out not only to WINE (Women in Numbers Europe)
but also to Algebraic Combinatorixx, WIT (Women in Topology), and others. The
Association for Women in Mathematics (AWM), funded by the National Science
Foundation, is now supporting this research-mentorship model under the umbrella
of the Research Collaboration Conferences for Women initiative.

The goals for Women In Numbers 3 were to establish ambitious new collabo-
rations between women in number theory, to train junior participants about topics
of current importance, and to continue to build a vibrant community of women
in number theory. The majority of the week was devoted to research activities.
Before the conference, the participants were organized into nine project groups by
research interest and asked to learn background for their project topics. This led
to more productive on-site research conversations and the groups were able to share
preliminary results on the last day. The workshop also included a lecture series about
arithmetic of curves, including elliptic curves, modular curves, and Shimura curves.

Forty-two women attended the WIN3 workshop, which was organized by the
last three editors of this volume. This included 15 senior and mid-level faculty, 15
junior faculty and postdocs, and 12 graduate students. This volume is the fourth
proceedings to come out of the WIN conference series. It is also the first in the
series published by Springer for AWM.

The editors invited WIN3 research groups and members of the larger WIN3
community to submit articles in 2014. After a thorough referee process by external
experts, we accepted 10 papers for the volume. One interesting attribute of the
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vi Preface

collection is the interplay between deep theory and intricate computation. The
papers span a wide range of research areas: arithmetic geometry, analytic number
theory, algebraic number theory, and applications to coding and cryptography. In
this preface, we point out a few connections between the papers.

A major theme of the volume is the study of rational points on varieties via
cohomological methods. Three papers on this theme are about rational points over
number fields. The paper Insufficiency of the Brauer-Manin obstruction for rational
points on Enriques surfaces (Balestrieri et al.) is about the failure of the Hasse
principle for surfaces. In the paper Shadow lines in the arithmetic of elliptic curves
(Balakrishnan et al.), the authors use information about analytic ranks and Tate-
Shafarevich groups to develop an algorithm for computing anticyclotomic p-adic
heights and shadow lines cast by rational points on elliptic curves over imaginary
quadratic fields. In the paper Galois action on the homology of Fermat curves
(Davis et al.), the authors use topology and the étale fundamental group to study
obstructions for points on Fermat curves defined over cyclotomic fields.

The paper Zeta functions of a class of Artin-Schreier curves with many automor-
phisms over finite fields (Bouw et al.) is a bridge between several of the disparate
topics. It fits in the vein of studying rational points via cohomological methods,
because the `-adic cohomology provides information about points on curves defined
over finite fields. It connects to the topic of applications to coding theory and
cryptography, because the class of Artin-Schreier curves produces large families
of supersingular curves useful for error-correcting codes. Similarly, the paper
Hypergeometric series, truncated hypergeometric series, and Gaussian hypergeo-
metric functions (Deines et al.) draws together several topics. The hypergeometric
varieties are higher-dimensional analogues of Legendre curves and the authors
obtain information about the number of points on these varieties defined over finite
fields. This paper also connects to the more analytic papers in the volume.

There are two other papers with an analytic and geometric focus. The paper A
generalization of S. Zhang’s local Gross-Zagier formula for GL2 (Maurischat) is
about Hecke operators and contains a fundamental lemma for some relative trace
formulae. The paper p-adic q-expansion principles on unitary Shimura varieties
(Caraiani et al.) has results about vanishing theorems for p-adic automorphic forms
on unitary groups of arbitrary signature.

The final three papers are about applications of algebraic number theory. The
paper Kneser-Hecke-operators for codes over finite chain rings (Feaver et al.) is
about theta series for lattices for codes over finite fields and an analogue for Hecke
operators in this context. In Ring-LWE cryptography for the number theorist (Elias
et al.), the authors give a survey about attacks on the ring and polynomial learning
with errors problems and discuss connections with open problems about algebraic
number fields. Finally, the volume ends with a survey about arithmetic statistics in
algebraic number theory, Asymptotics for number fields and class groups (Wood).
This survey is an extended version of Wood’s lecture notes for the Arizona Winter
School in 2014, on the topic of counting number fields and the distribution of class
groups.
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Insufficiency of the Brauer–Manin Obstruction
for Rational Points on Enriques Surfaces

Francesca Balestrieri, Jennifer Berg, Michelle Manes, Jennifer Park,
and Bianca Viray

Abstract In Várilly-Alvarado and Viray (Adv. Math. 226(6):4884–4901, 2011), the
authors constructed an Enriques surface X over Q with an étale-Brauer obstruction
to the Hasse principle and no algebraic Brauer–Manin obstruction. In this paper, we
show that the nontrivial Brauer class of XQ does not descend to Q. Together with
the results of Várilly-Alvarado and Viray (Adv. Math. 226(6):4884–4901, 2011),
this proves that the Brauer–Manin obstruction is insufficient to explain all failures
of the Hasse principle on Enriques surfaces.

The methods of this paper build on the ideas in Creutz and Viray (Math. Ann.
362(3–4):1169–1200, 2015; Manuscripta Math. 147(1–2): 139–167, 2015) and
Ingalls et al., (Unramified Brauer classes on cyclic covers of the projective plane,
Preprint): we study geometrically unramified Brauer classes on X via pullback of
ramified Brauer classes on a rational surface. Notably, we develop techniques which
work over fields which are not necessarily separably closed, in particular, over
number fields.
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Mall Keller 401A, Honolulu, HI 96822, USA
e-mail: mmanes@math.hawaii.edu URL http://math.hawaii.edu/~mmanes

J. Park
Department of Mathematics, University of Michigan, 530 Church Street,
Ann Arbor, MI 48109, USA
e-mail: jmypark@umich.edu URL http://math.mcgill.ca/jpark/

B. Viray
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA
e-mail: bviray@math.washington.edu URL http://math.washington.edu/~bviray

© Springer International Publishing Switzerland 2016
E.E. Eischen et al. (eds.), Directions in Number Theory, Association
for Women in Mathematics Series 3, DOI 10.1007/978-3-319-30976-7_1

1

mailto:balestrieri@maths.ox.ac.uk
http://people.maths.ox.ac.uk/~balestrieri/
mailto:jberg@math.utexas.edu
http://ma.utexas.edu/users/jberg
mailto:mmanes@math.hawaii.edu
http://math.hawaii.edu/~{}mmanes
mailto:jmypark@umich.edu
http://math.mcgill.ca/jpark/
mailto:bviray@math.washington.edu
http://math.washington.edu/~{}bviray


2 F. Balestrieri et al.

Keywords Hasse principle • K3 surface • Enriques surface • Brauer–Manin
obstruction

2010 Mathematics Subject Classification. 14F22 (Primary), 14J28 (Secondary),
14G05

1 Introduction

Given a smooth, projective, geometrically integral variety X over a global field k,
one may ask whether X has a k-rational point, that is, whether X.k/ ¤ ;. Since
k embeds into each of its completions, a necessary condition for X.k/ ¤ ; is
that X.Ak/ ¤ ;. However, this condition is often not sufficient; varieties X with
X.Ak/ ¤ ; and X.k/ D ; exist, and these are said to fail the Hasse principle.

In 1970, Manin [12] significantly advanced the study of failures of the Hasse
principle by use of the Brauer group and class field theory. More precisely, he
defined a subset X.Ak/

Br of X.Ak/, now known as the Brauer–Manin set, with
the property that

X.k/ � X.Ak/
Br � X.Ak/:

Thus, we may think of an empty Brauer–Manin set as an obstruction to the
existence of rational points.

In 1999, Skorobogatov [14] defined a refinement of the Brauer–Manin set, the
étale-Brauer set X.Ak/

ét;Br, which still contains X.k/. He proved that this new
obstruction can be stronger than the Brauer–Manin obstruction, by constructing a
bielliptic surface X=Q such that X.AQ/

ét;Br D ; and X.AQ/
Br ¤ ;.

Bielliptic surfaces have a number of geometric properties in common with
Enriques surfaces: both have Kodaira dimension 0 and nontrivial étale covers. This
raises the natural question of whether the étale-Brauer obstruction is stronger than
the Brauer–Manin obstruction for Enriques surfaces. Harari and Skorobogatov took
up this question in 2005; they constructed an Enriques surface X=Q whose étale-
Brauer set was strictly smaller than the Brauer–Manin set [9], thereby showing
that the Brauer–Manin obstruction is insufficient to explain all failures of weak
approximation1 on Enriques surfaces. Their surface, however, had a Q-rational
point, so it did not fail the Hasse principle.

The main result of this paper is the analogue of Harari and Skorobogatov’s result
for the Hasse principle. Precisely, we prove

Theorem 1.1. The Brauer–Manin obstruction is insufficient to explain all failures
of the Hasse principle on Enriques surfaces.

1A smooth projective variety X satisfies weak approximation if X.k/ is dense in X.Ak/ in the
adelic topology.
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This theorem builds on work by Várilly-Alvarado and Viray. To explain the
connection, we must first provide more information about the Brauer group. For
any variety X=k, we have the following filtration of the Brauer group:

Br0 X WD im.Br k! Br X/ � Br1 X WD ker.Br X ! Br Xksep/ � Br X D H2
ét.X;Gm/:

Elements in Br0 X are said to be constant, elements in Br1 X are said to be
algebraic, and the remaining elements are said to be transcendental. The Brauer–
Manin set X.Ak/

Br depends only on the quotient Br X=Br0 X (this follows from
the fundamental exact sequence of class field theory, see [15, Sect. 5.2] for more
details). As transcendental Brauer elements have historically been difficult to study,
one sometimes instead considers the (possibly larger) algebraic Brauer–Manin
set X.Ak/

Br1 , defined in terms of the subquotient Br1 X=Br0 X.
We now recall the main result of [16].

Theorem ([16, Theorem 1.1]). There exists an Enriques surface X=Q such that

X.AQ/
ét;Br D ; and X.AQ/

Br1 ¤ ;:

The proof of [16, Theorem 1.1] is constructive. Precisely, for any a D
.a; b; c/ 2 Z3 with

abc.5aC5bCc/.20aC5bC2c/.4a2Cb2/.c2�100ab/.c2C5bcC10acC25ab/ ¤ 0;
(1)

the authors consider Ya � P5, the smooth degree-8 K3 surface given by

v0v1 C 5v22 D w20;

.v0 C v1/.v0 C 2v1/ D w20 � 5w21;

av20 C bv21 C cv22 D w22:

The involution � WP5 ! P5; .v0 W v1 W v2 W w0 W w1 W w2/ 7! .�v0 W �v1 W �v2 W
w0 W w1 W w2/ has no fixed points on Ya so the quotient Xa WD Ya=� is an Enriques
surface.

Theorem ([16, Theorem 1.2]). Let a D .a; b; c/ 2 Z3>0 satisfy the following
conditions:

(1) for all prime numbers p j .5aC 5bC c/, 5 is not a square modulo p,
(2) for all prime numbers p j .20aC 5bC 2c/, 10 is not a square modulo p,
(3) the quadratic form av20 C bv21 C cv22 C w22 is anisotropic over Q3,
(4) the integer �bc is not a square modulo 5,
(5) the triplet .a; b; c/ is congruent to .5; 6; 6/ modulo 7,
(6) the triplet .a; b; c/ is congruent to .1; 1; 2/ modulo 11,
(7) Ya.AQ/ ¤ ;,
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(8) the triplet .a; b; c/ is Galois general (meaning that a certain number field
defined in terms of a, b, c is as large as possible).

Then

Xa.AQ/
ét;Br D ; and Xa.AQ/

Br1 ¤ ;:

Várilly-Alvarado and Viray deduce [16, Theorem 1.1] from [16, Theorem 1.2] by
showing that the triplet a D .12; 111; 13/ satisfies conditions (1)–(8). Henceforth,
when we refer to “conditions” by number, we mean the conditions given in the
theorem above.

In [16], the authors left open the question of a transcendental obstruction to the
Hasse principle for the surfaces Xa, due to the “difficulty [. . . ] in finding an explicit
representative for [the nontrivial] Brauer class of ŒXa�.” Recent work of Creutz and
Viray [4, 5], and Ingalls et al. [10] makes this problem more tractable. Building on
techniques from [4, 5, 10], we prove

Theorem 1.2. If a D .a; b; c/ 2 Z3>0 satisfies conditions .5/, .6/, and .8/, then
Br Xa D Br1 Xa. In particular, if a satisfies conditions .1/–.8/, then

Xa.AQ/
ét;Br D ; and Xa.AQ/

Br ¤ ;:

1.1 Strategy and Outline

Theorem 1.1 and the second statement of Theorem 1.2 both follow immediately
from the first statement of Theorem 1.2 and [16], since the triplet a D .12; 111; 13/
satisfies conditions (1)–(8) [16, Lemma 6.1 and Proof of Theorem 1.1]. Thus, we
reduce to proving the first statement of Theorem 1.2.

For any variety X over a field k, the quotient Br X=Br1 X injects into
.Br Xksep/Gal.ksep=k/. In Skorobogatov’s pioneering paper [14], his construction X=Q
had the additional property that .Br XQ/

Gal.Q=Q/ D 0, so Br X D Br1 X. Unfortu-
nately, this strategy cannot be applied to an Enriques surface X, as Br Xksep Š Z=2Z

[9, p. 3223] and hence the unique nontrivial element is always fixed by the Galois
action.

Instead, we will find a Galois extension K1=Q and an open set U0 � Xa such
that

(1) the geometrically unramified subgroup Brg.unr. U0
K1
� Br U0

K1
(i.e., the

subgroup of elements in Br U0
K1

which are contained in Br Xa � Br U0 upon

base change to Q) surjects onto Br Xa, and
(2) .Brg.unr. U0

K1
=Br K1/Gal.K1=Q/ is contained in Br1 U0

K1
=Br K1.

The key step is proving .2/ without necessarily having central simple
k.U0

K1
/-algebra representatives for all of the elements of Brg.unr. U0

K1
=Br K1.
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Our approach follows the philosophy laid out in [4, 5, 10]: we study geometrically
unramified Brauer classes on U0

K1
via pullback of ramified Brauer classes on a

simpler surface S0, of which U0 is a double cover. However, in contrast to the work
of [4, 5, 10], we carry this out over a field that is not necessarily separably closed.
In particular, our methods can be carried out over a number field. As we expect this
approach to be of independent interest, we build up some general results in Sect. 2
which can be applied to a double cover of a rational ruled surface, assuming mild
conditions on the branch locus.

Remark 1.3. For convenience, we carry out the above strategy on the K3 surface Ya

instead of on the Enriques surface Xa. We then descend the results to Xa.

Starting in Sect. 3, we restrict our attention to the specific varieties Xa and Ya.
After recalling relevant results from [16], we construct double cover maps � WYa !
S and Q� WXa ! eS, where S andeS are ruled surfaces, and we study the geometry of
these morphisms. These maps allow us to apply the results of [4] to construct, in
Sect. 4, an explicit central simple k.Xa/-algebra representative A of the nontrivial
Brauer class of Xa. This representative A will necessarily be defined over a number
field K1, be unramified over an open set U0

K1
, and be geometrically unramified.

Furthermore, the number field K1 and the open set U0 can be explicitly computed
from the representative A.

Section 5 uses the results from Sect. 2 to study the action of Gal.Q=K1/ on
Brg.unr. U0

K1
=Br K1 and hence prove Theorem 1.2. Namely, by repeated application

of the commutative diagram in Theorem 2.2, we demonstrate that no � -invariant
transcendental Brauer class can exist for Ya. Indeed, if such a class existed, the
explicit central simple algebra from Sect. 4 would relate it to a function Q̀ fixed by
the Galois action. However a direct computation (given in the Appendix) shows that
Q̀must be moved by some Galois action, providing the required contradiction.

1.2 General Notation

Throughout, k will be a field with characteristic not equal to 2, with fixed separable
closure Nk. For any k-scheme X and field extension k0=k, we write Xk0 for the base
change X �Spec k Spec k0 and X for the base change X �Spec k Spec k. If X is integral,
we write k.X/ for the function field of X. We also denote the absolute Galois group
of k by Gk D Gal.Nk=k/. For any k-variety W, we use the term splitting field (of W) to
mean the smallest Galois extension of k over which every geometrically irreducible
component of W is defined.

The Picard group of X is Pic X WD Div X=Princ X, where Div X is the group of
Weil divisors on X and Princ X is the group of principal divisors on X; when X is
projective, Pic X is representable by a scheme, called the Picard scheme [7, Cor.
6.6, p. 232–17]. If X is projective, let Pic X denote the subgroup of Pic X that maps
to the connected component of the identity in the Picard scheme of X then; the
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Néron–Severi group of X is NS X WD Pic X=Pic0 X. For a divisor D 2 Div X, we
write ŒD� for its equivalence class in Pic X. When X is a curve, the Jacobian of X
satisfies Jac X D Pic0 X.

For a k-scheme Y , we write Br Y for the étale cohomology group Br Y WD
H2

ét.Y;Gm/. If Y is projective, we additionally consider the geometrically unramified
subgroup Brg.unr. k.Y/ � Br k.Y/ consisting of those Brauer classes which are
contained in Br Y upon base change to k. For an open subscheme U � Y , we
have Brg.unr. U WD Br U \ Brg.unr. k.Y/. If A is an étale k-algebra, then we write
Br A for Br.Spec A/. Given invertible elements a and b in such an A, we define the
quaternion algebra .a; b/ WD AŒi; j�=hi2 D a; j2 D b; ij D �jii. We will identify the
algebra .a; b/ with its class in Br A.

Now assume that Y is smooth and quasi-projective. Then the following sequence
is exact:

0! Br YŒ2�! Br k.Y/Œ2�
˚y@y���!

M

y

H1.k.y/;Z=2Z/; (2)

where the sum is taken over the set of all codimension-1 points y on Y [8, Theorem
6.1]. As Br k.Y/Œ2� is generated by quaternion algebras, we will only describe the
residue map @y on quaternion algebras: for any a; b 2 k.Y/�, we have

@y ..a; b// D .�1/vy.a/vy.b/avy.b/b�vy.a/ 2 k.y/�=k.y/�2 Š H1 .k.y/;Z=2Z/ ;

where vy denotes the valuation corresponding to y; as k.y/�=k.y/�2 Š H1

.k.y/;Z=2Z/, we move freely between additive and multiplicative notation when
computing residues, depending on the context.

2 Brauer Classes on Double Covers Arising Via Pullback

Let �0WY0 ! S0 be a double cover of a smooth, projective, rational, geometrically
ruled surface $ W S0 ! P1t defined over k and let B0 � S0 denote the branch locus
of �0. (Throughout, P1t is shorthand for P1Œt0Wt1�, with t WD t0=t1.) We assume that

B0 is reduced, geometrically irreducible, and has at worst ADE singularities. The
canonical resolution [1, Theorem 7.2] �WY ! Y0 of �0WY0 ! S0 has a 2-to-1
k-morphism � WY ! S to a smooth rational generically ruled surface S; the branch
curve B � S of � is a smooth proper model of B0. In summary, we have the
following diagram:

Y S ⊃ B

Y 0 S0⊃ B0

π

ν νS

π0

Since B0 is geometrically irreducible, Pic0 Y is trivial by [4, Corollary 6.3] and so
we may conflate Pic Y and NS Y .
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The generic fiber of $ ı �0 is a double cover C! P1k.t/ ! Spec k.t/. Since k.t/
is infinite, by changing coordinates if necessary, we may assume that the double
cover is unramified above1 2 S0k.t/. Then C has a model

y2 D c0h.x/;

for some c0 2 k.t/ and h 2 k.t/Œx� square-free, monic, and with deg.h/ D 2g.C/C2,
where g.C/ denotes the genus of C. Note that k.B/ D k.B0/ Š k.t/Œ��=.h.�//; we
write ˛ for the image of � in k.B/.

As S0 is rational and geometrically ruled, Pic S0 Š Z2 and is generated by a
fiber S01 and a section S, which we may take to be the closure of x D 1. Since
�SW S ! S0 is a birational map, Pic S is generated by the strict transforms of S and
S01, and the curves E1; : : : ;En that are contracted by the map S! S0. We will often
abuse notation and conflate S and S01 with their strict transforms. In any case, by
S, B, Ei, or S01, we always mean the actual divisors and not the divisor classes in
the Picard group.

Let

E D ˚S; S01;E1; : : : ;En
�

denote the aforementioned set of nC 2 generators and define

V WD S n
 

B [
[

E2E
E

!

� S:

Possibly after replacing k with a finite extension, we may assume that all elements
of E are defined over k and, in particular, that Pic S D Pic S. Since �S is defined over
k, we additionally have that S is k-rational and so Br S D Br S0 D Br k.

For any ` 2 k.B/�, we define

A` WD Cork.B/.x/=k.t;x/ ..`; x � ˛// 2 Br k.S/:

We will be particularly concerned with A` when ` is contained in the subgroup

k.B/�E WD
˚

` 2 k.B/� W div.`/ 2 im.ZE ! Div.S/! Div.B/˝ Z=2Z/
�

D ˚` 2 k.B/� W �� div.`/ 2 hS; S01i � Div.B0/˝ Z=2Z
�

:

By [4, Proof of Theorem 5.2], this subgroup is exactly the set of functions ` such
that ��A` is geometrically unramified. Note that k.B/�E contains k�k.B/�2:

Let

U WD Y n
 

[

E2E
��1.E/

!

� Y:
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The goal of this section is to prove the following two theorems:

Theorem 2.1. Let k0 be any Galois extension of k. Then we have the following exact
sequence of Gal.k0=k/-modules:

0! Pic Yk0

�� Pic SC 2Pic Yk0

j�! k.Bk0/�E
k0�k.Bk0/�2

ˇ�!
�

Brg. unr. Uk0

Br k0

�

Œ2�; (3)

where j is as in Sect. 2.3 and ˇ is as in Sect. 2.2. Furthermore, if k0 is separably
closed, then the last map surjects onto Br YŒ2�.

Theorem 2.2. We retain the notation from Theorem 2.1. If Br k0 ! Br k.Sk0/ is
injective and Pic UŒ2� D 0, then there is a commutative diagram of Gal.k0=k/-
modules with exact rows and columns:

PicYk′
π∗ PicS+2PicYk′

j
j(PicYk′)

0
(

PicY
π∗ PicS+2PicY

)Gk′ j

β◦j

k(Bk′ )E
k′×k(Bk′ )×2

β

β

Brg.unr. Uk′
Br1 Uk′

0 Br1 Uk′
Br k′

Brg.unr. Uk′
Br k′

Brg.unr. Uk′
Br1 Uk′ 0.

The structure of the section is as follows. In Sect. 2.1, we prove some preliminary
results about the residues of A`; these are used in Sect. 2.2 to define the map ˇ. Next,
in Sect. 2.3, we define j and prove that it is injective. In Sect. 2.4, we characterize
the elements of Br V that pull back to constant algebras under ��. In Sect. 2.5, we
combine the results from the earlier sections to prove Theorem 2.1, and, finally, in
Sect. 2.6, we prove Theorem 2.2.

2.1 Residues of A`

In order to define the homomorphism ˇ, we will need to know certain properties
about the residues of A` at various divisors of S0. We first compute residues
associated to horizontal divisors.

Lemma 2.3. Let ` 2 k.B/�, and let F be an irreducible horizontal curve in S0, i.e.,
a curve that maps dominantly onto P1t .

(1) If F ¤ B;S, then @F.A`/ D 1 2 k.F/�=k.F/�2.
(2) @B.A`/ D Œ`� 2 k.B/�=k.B/�2.
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Proof. The arguments in this proof follow those in [5, Proofs of Theorem 1.1 and
Prop. 2.3]; as the situation is not identical, we restate the arguments here for the
reader’s convenience.

Let v be the valuation on k.S0/ associated to F. By [5, Lemma 2.1], we have

@F.A`/ D
Y

wjv
Normk.w/=k.v/

�

.�1/w.`/w.x�˛/`w.x�˛/.x � ˛/�w.`/
�

; (4)

where w runs over all valuations on k.B �P1t S0/ extending v. As F is a horizontal
divisor, vjk.t/ is trivial and hence wjk.B/ is trivial for all wjv. Therefore, (4) simplifies
to
Q

wjv Normk.w/=k.v/.`
w.x�˛//.

By definition of ˛, Normk.B/.x/=k.t/.x/.x � ˛/ D h.x/. Thus, w.x � ˛/ D 0 for all
wjv if v.h.x// D 0, or equivalently, if F ¤ B;S. This completes the proof of .1/.

Now assume that F D B. We know that h.x/ factors as .x�˛/h1.x/ over k.B/.x/,
where h1 2 k.t/Œx� is possibly reducible. Hence, x � ˛ determines a valuation wx�˛
on k.B/.x/ lying over v; similarly, the other irreducible factors of h1 also determine
valuations lying over v. Notice that since h.x/ is separable (as B is reduced), we
have that h1.˛/ ¤ 0, and hence that w.x � ˛/ D 0 for any valuation w over v
corresponding to the irreducible factors of h1.x/. Thus, (4) simplifies to

Y

wjv
Normk.w/=k.v/.`

w.x�˛// D Normk.wx�˛/=k.v/.`/ D `;

as required. ut
Now we compute the residues associated to vertical divisors.

Lemma 2.4. Let ` 2 k.B/�E , t0 2 A1t � P1t be a closed point, and F D S0t0 . Then,

@F.A`/ 2 im

�

k.t0/�

k.t0/�2
! k.F/�

k.F/�2

�

:

Remark 2.5. If k is separably closed, then k.t0/�2 D k.t0/� and the result follows
from [5, Prop. 3.1].

Proof. It suffices to show that @F.A`/ 2 k.F/�2k.t0/�. We repeat [4, Proof of Prop.
3.1] while keeping track of scalars to accommodate the fact that k is not necessarily
separably closed.

By [5, Lemma 2.1], we have

@F.A`/ D
Y

F0�S0�
P
1
t

B

F0 7!F dominantly

Normk.F0/=k.F/..�1/w0.x�˛/w0.`/`w0.x�˛/.x � ˛/�w0.`//;

(5)

where F0 is an irreducible curve and w0 denotes the valuation associated to F0.
The surface S0 �P1t B is a geometrically ruled surface over B, so the irreducible
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curves F0 are in one-to-one correspondence with points b0 2 B mapping to t0.
Furthermore, k.F0/ D k.b0/.x/ and k.F/ D k.t0/.x/, so Normk.F0/=k.F/ is induced
from Normk.b0/=k.t0/ : Thus, we may rewrite (5) as

@F.A`/ D
Y

b02B;b0 7!t0

Normk.b0/=k.t0/..�1/w
0.x�˛/w0.`/`w0.x�˛/.x � ˛/�w0.`//: (6)

By [4, Lemma 3.3], there exists an open set W � A1 containing t0 and constants
d 2 k.t/�, e 2 k.t/ such that

S0W ! P1k �W; s 7! .dx.s/C e;$.s//

is an isomorphism. In particular, dxC e is a horizontal function on S0W . Consider the
following equality:

Cork.B/.x/=k.S0/ ..dxC e � .d˛ C e/; `// D A` C Cork.B/.x/=k.S0/..d; `//

D A` C .d;Norm.`//:

Since .d;Norm.`// 2 $� Br k.t/, we have

@F.A`/ 2 @F
�

Cork.B/.x/=k.S0/ ..dxC e � .d˛ C e/; `//
�

k.t0/�:

Thus, we may assume that x is a horizontal function, in particular, that x has no
zeros or poles along F, and that it restricts to a non-constant function along F. It is
then immediate that w0.x � ˛/ � 0, and that the inequality is strict if and only if
w0.˛/ < 0, which in turn happens if and only if b0 lies over B0t0 \S.

We first consider the factor of (6) that corresponds to points that do not lie over
B0t0 \S. If b0 does not lie over B0t0 \S, then (as stated above) w0.x�˛/ D 0, where
w0 denotes the valuation associated to b0. Therefore, the corresponding factor of (6)
simplifies to

Y

b02Bn��1.B0\S/;b0 7!t0

Normk.b0/=k.t0/

�

.x � ˛.b0//�w0.`/
�

:

By definition, ` 2 k.B/�E implies that for all b00 2 B0 n .B0 \ S/,
P

b02B;b0 7!b00

w0.`/ � 0 mod 2. Since ˛.b0/ depends only on the image of b0 in B0, this shows
that the above factor is contained in k.F/�2.

Now consider the case that b0 lies over B0t0 \S. We claim that, since w0.x/ D 0,

Normk.F0/=k.F/

�

.�1/w0.x�˛/w0.`/`w0.x�˛/.x � ˛/�w0.`/
�

(7)

reduces to a constant in k.F/. Indeed, if w0.`/ D 0, then we obtain `w0.x�˛/, which
reduces (after taking Normk.F0/=k.F/) to an element of k.t0/�. If w0.`/ ¤ 0, let �F0

be a uniformizer for F0. Since w0.x/ D 0 > w0.˛/, we have



Insufficiency of the Brauer–Manin Obstruction for Rational Points on Enriques Surfaces 11

 

`

�
w0.`/

F0

!w0.x�˛/  
x � ˛
�

w0.x�˛/
F0

!�w.`/

D
 

`

�
w0.`/

F0

!w0.x�˛/  �˛
�

w0.x�˛/
F0

!�w.`/

mod �F0

and so (7) reduces (again, after taking Normk.F0/=k.F/) to an element in k.t0/�. Thus,
every factor of (6) corresponding to points b0 lying over B0t0 \ S is contained
in k.t0/�, and every other factor is an element of k.F/�2. This completes the
proof. ut

2.2 The Morphism ˇ

Proposition 2.6. Let ` 2 k.B/�. There exists an element A0 D A0.`/ 2 Br k.t/,
unique modulo Br k, such that

A` C$�A0 2 Br V:

This induces a well-defined homomorphism

ˇW k.B/�E
k�k.B/�2

! Brg.unr. U

Br k
Œ2�; ` 7! �� �A` C$�A0� ;

which is surjective if k is separably closed.

Proof. Recall that V D S n �B [SE2E E
� � S: Therefore, as a subgroup of

Br k.S/ D Br k.S0/, Br V is equal to Br
�

S0 n .S [ S01 [ B/
�

, since the Brauer
group of a surface is unchanged under removal of a codimension 2 closed
subscheme [8, Theorem 6.1]. Thus, to prove the first statement, it suffices to show
that there exists an element A0 2 Br k.t/, unique up to constant algebras, such that
@F.A`/ D @F.$

�A0/ for all irreducible curves F � S0 with F ¤ S; S01;B:
If F is any horizontal curve, i.e., F maps dominantly to P1t , then @F.$

�A0/ D 1
for all A0 2 Br k.t/. If we further assume that F ¤ S;B, then Lemma 2.3 gives
@F.A`/ D 1. Thus, for all A0 2 Br k.t/, we have @F.A`/ D @F.$

�A0/ for all
horizontal curves F ¤ S;B.

Now we turn our attention to the vertical curves. Recall Faddeev’s exact
sequence [6, Corollary 6.4.6]:

0! Br k! Br k.t/
˚@t0���!

M

t02P1t
H1.Gk.t0/;Q=Z/

P

t0
Cork.t0/=k��������! H1.Gk;Q=Z/! 0:

(8)

Since the residue field at t0 D 1 is equal to k, this sequence implies that
for any element .rt0 / 2 ˚t02A1k.t0/�=k.t0/�2, there exists a Brauer class in
A0 2 Br k.t/, unique modulo elements of Br k, such that @t0 .A0/ D rt0 for all
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closed points t0 2 A1. By Lemma 2.4, for all t0 2 A1, we have @F.A`/ 2
im
�

k.t0/�=k.t0/�2 ! k.F/�=k.F/�2
�

, where F D S0t0 . Hence, there exists an A0 2
Br k.t/, unique modulo Br k, such that @F.$

�A0/ D @F.A`/ for all F ¤ S;B; S01,
as desired.

It remains to prove the second statement. The first statement immediately implies
the existence of a well-defined homomorphism

k.B/�E
k.B/�2

! Br��1.V/
Br k

Œ2�; ` 7! �� �A` C$�A0� :

In order to complete the proof, we must prove that

(1) �� .Ad C$�A0/ 2 Br k if d 2 k�,
(2) the image lands in Brg.unr. U=Br k, and
(3) the image is equal to Br YŒ2� if k is separably closed.

We begin with (1). Let d 2 k�. Then

Ad D Cork.B/.x/=k.t;x/.d; x � ˛/ D .d;Normk.B/.x/=k.t;x/.x � ˛//
D .d; h.x// D .d; c0h.x//C .d; c0/:

Since
p

c0h.x/ generates k.Y0/=k.S0/, div.c0h.x// D BC 2Z for some divisor Z on
S0. Thus, .d; c0h.x// is unramified away from B; in particular, .d; c0h.x// 2 Br V .
Since A0 is the unique element in Br k.t/=Br k such that Ad C $�A0, then A0 D
.d; c0/C B for some B 2 Br k. Hence,

�� �Ad C$�A0� D �� �.d; c0h.x//C .d; c0/C$�.d; c0/C$�B
�

;

D ��.d; c0h.x//C ��$�B:

Furthermore, since c0h.x/ is a square in k.Y0/, then �� .Ad C$�A0/ D ��$�
B 2 Br k, as desired.

Now we turn to (2) and (3). Since B is the branch locus of � and � is 2-to-1, any
2-torsion Brauer class in im .��WBr k.S/! Br k.Y// is unramified at ��1.B/red.
Thus, the image is contained in Br U=Br k. To prove that it is contained in Brg.unr. U,
we must show that �� .A` C$�A0/k is contained in Br Y . By Tsen’s theorem,
�� .A` C$�A0/k D .��A`/k. This element is contained in Br Y by [4, Theorem
I], which yields (2). In fact, [4, Theorem I] shows that Br YŒ2� is generated by ��A`

where ` runs over the elements in k.Bk/E , which proves (3). ut

2.3 The Morphism j

In this section, we define the map j and prove that it is injective. The map j will be
induced by the following homomorphism:

j0WDiv.Y n ��1.B//! k.B/�=k�

D 7! `jB
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where ` 2 k.S/� is such that divS.`/ D ��D � m1E1 � � � � � mnEn � dS � eS01:
(Recall that E1; : : : ;En;S, and S01 form an integral basis for Pic S D Pic S.)

Lemma 2.7. The homomorphism j0 induces a well-defined injective homomorphism

j W Pic Y

�� Pic SC 2Pic Y
! k.B/�E

k�k.B/�2
:

Proof. For any divisor D 2 Div Y n ��1.B/, the projection formula [11, p.399]
yields

2��.D \ ��1.B/red/ D ��.D \ 2��1.B/red/ D ��.D \ ��.B// D .��D/ \ B:

Thus, for any divisor D 2 Div Y n ��1.B/, we have that ŒD \ ��1.B/red� 2
�

Pic B
im Pic S!Pic B

�

Œ2�. By the same argument as in proof of [10, Lemma 4.8], this induces
a well-defined injective homomorphism

Pic Y

�� Pic SC 2Pic Y
!
�

Pic B

im Pic S! Pic B

�

Œ2�; ŒD� 7! ŒD \ ��1.B/red�: (9)

One can also check that there is a well-defined injective homomorphism
�

Pic B

im Pic S! Pic B

�

Œ2�! k.B/�E
k�k.B/�2

(10)

that sends a divisor D which represents a class in
�

Pic B
im Pic S!Pic B

�

Œ2� to a function `
such that div.`/ D 2DCPC2Pic S nCC\B. Since j is the composition of (9) and (10),
this completes the proof that j is well-defined and injective. ut

2.4 Brauer Classes on V That Become Constant Under ��

Proposition 2.8. If A 2 Br V is such that ��A 2 Br k � Br k.Y/, then there exists
a divisor D 2 Div Y such that j.ŒD�/ D @B.A/ in k.B/�=k�k.B/�2:

Proof. Recall that k.Yk/ D k.Sk/.
p

c0h.x//. Thus, if ��A 2 Br k, then

A D .c0h.x/;G/C B (11)

for some G 2 k.Sk/
� and some B 2 Br k. Since B is the branch locus of � ,

vB.c0h.x// must be odd. Therefore, without loss of generality, we may assume that
B is not contained in the support of G; write

div.G/ D
X

i

niCi C d.S/C e.S01/C m1E1 C � � � C mnEn;

where Ci are k-irreducible curves of S distinct from S; S01, and E1; : : : ;En.
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Now we consider the residue of A at Ci. By (11), the residue of A at Ci

is Œc0h.x/� 2 k.Ci/
�=k.Ci/

�2. On the other hand, A 2 Br V , so the residue
is trivial at Ci. Together, these statements imply that ��1.Ci/ consists of two
irreducible components C0

i and C00
i . As this is true for all Ci, we have that div.G/ D

��.
P

i niC0
i/ C m.S/ C m0.S01/ C m1E1 C � � � C mnEn, and so j0.

P

niC0
i/ D GjB

modulo k�. Since the residue of A at B is equal to GjB, this completes the proof. ut

2.5 Proof of Theorem 2.1

We note that much of this proof is very similar to proofs in [10, Lemmas 4.4
and 4.8].

We will first prove the sequence is exact, and then show that the maps are
compatible with the Galois action. Since all assumed properties of k are preserved
under field extension, we may, for the moment, assume that k D k0. Then Lemma 2.7
yields an injective homomorphism

jW Pic Yk0

�� Pic SC 2Pic Yk0

�! k.Bk0/�E
k0�k.Bk0/�2

;

and Proposition 2.6 yields a homomorphism

ˇW k.Bk0/�E
k0�k.Bk0/�2

�!
�

Brg. unr. Uk0

Br k0

�

Œ2�;

which is surjective if k0 is separably closed. We now show that im.j/ D ker.ˇ/.
Let ` 2 k.Bk0/�E be such that ˇ.`/ 2 Br k0. Recall that ˇ factors through

Br V=Br k by the map

` 7! A WD A` C$�A0
„ ƒ‚ …

2Br V=Br k

7! ��A;

where A0 2 Br k0.t/ is as in Proposition 2.6. By assumption, ��A 2 Br k, thus,
by Proposition 2.8, there is some D 2 Div Yk such that j.ŒD�/ D @B.A/ D
@B.A`/@B.$

�A0/ mod k�. However, @B.$
�A0/ D 1 since B is a horizontal divisor,

and @B.A`/ D Œ`� by Lemma 2.3. Hence, ` 2 im.j/, and so im.j/ � ker.ˇ/.
For the opposite inclusion, it suffices to prove that ˇ.j.ŒD�// 2 Br k0 for any prime

divisor D 2 Div.Yk0 n ��1.B//. Let ` D j0.D/; recall that ` is the restriction to B of
a function `S 2 k.Sk0/ such that div.`S/ D ��D�m1E1 � � � � �mnEn � dS� eS01.
As above, let A WD A` C$�A0. We claim that

A D .c0h.x/; `S/C B 2 Br k.Sk0/ D Br k.S0k0/

for some B 2 Br k0. Since c0h.x/ 2 k.Yk0/�2, this equality implies that ��.A/ D
��B 2 Br k0. To prove the claim, we will compare residues of A and .c0h.x/; `S/

on S0. Repeated application of Faddeev’s exact sequence [6, Corollary 6.4.6] shows
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that BrAn
k0 is trivial; in particular, the Brauer group of S0 n .S01 [ S/, which is

isomorphic to A2, consists only of constant algebras. Hence, if A � .c0h.x/; `S/ is
unramified everywhere on S0n.S[S01/, then it must be constant. By Lemma 2.3(2)
and the assumption that A 2 Br V , it suffices to show that @B..c0h.x/; `S// D Œ`� and
that .c0h.x/; `S/ is unramified along all other curves irreducible curves contained
in V .

Let R be a prime divisor of S0 different from S01;S, and B. Since B is the
branch locus of � , we may assume that vR.c0h.x// D 0: Hence, @R..c0h.x/; `S// D
.c0h.x//vR.`S/. Now, we know that

divS.`S/ D ��D � m1E1 � � � � � mnEn � dS � eS01:

Thus, if R ¤ �.D/, then vR.`S/ D 0 and hence @R..c0h.x/; `S// is trivial. It remains
to consider the case R D �.D/. Note that ��.D/ is equal to �.D/ if � maps D
isomorphically to its image, and is equal to 2�.D/ otherwise. In the latter case, we
must have that v�.D/.`S/ is even, meaning that @�.D/..c0h.x/; `S// is trivial (up to
squares). On the other hand, if ��.D/ D �.D/, then c0h.x/ must be a square in
k.�.D//, and hence @�.D/..c0h.x/; `S// is again trivial (up to squares).

Finally, @B..c0h.x/; `S// D Œ`SjB� D Œ`�. Indeed, since we know that

div.`S/ D ��D � m1E1 � � � � � mnEn � dS � eS01

for some D 2 Div.Y n��1.B//, we see that B is not in the support of div.`S/. Hence
vB.`S/ D 0. Moreover, since vB.c0h.x// is odd, the usual residue formula allows us
to deduce that @B..c0h.x/; `S// D Œ`� modulo squares. Hence, A D .c0h.x/; `S/C B
and the sequence is exact, as desired.

Now we consider the Galois action. That j respects the Galois action is clear
from the definition. To see that ˇ is a homomorphism of Galois modules, we note
that every geometrically irreducible curve outside of V is irreducible over k. Thus,
the residue maps @F for F outside of V are defined over k, which shows that ˇ is a
homomorphism of Galois modules. This completes the proof. ut

2.6 Proof of Theorem 2.2

Applying Theorem 2.1 to k0 D k and k D k0 and taking the subgroups of Galois
invariant elements gives an exact sequence

0 �!
 

Pic Y

�� Pic SC 2Pic Y

!Gk0

jk�!
 

k.B/�E
k.B/�2

!Gk0

ˇk�! .Br Y/Gk0 : (12)

Recall that jk factors through k.S/=k.S/�2, so the middle term may be replaced with
�

k.B/E=k.B/�2
�Gk0 \ im.k.S/=k.S/�2/Gk0 .
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To determine .k.S/=k.S/�2/Gk0 , we consider the exact sequence

0 �! k
� �! k.S/� �! k.S/�=k

� �! 0:

After taking the cohomological long exact sequence, applying inflation-restriction
and Hilbert’s Theorem 90 (twice), and applying the assumption that Br k0 �!
Br k.Sk0/ is injective, we obtain

H0
�

Gk0 ;k.S/�=k
�� D k.Sk0/�=k0�; and H1

�

Gk0 ;k.S/�=k
�� D 0:

Then the cohomological long exact sequence associated to

0 �! k.S/�=k
� �2�! k.S/�=k

� �! k.S/�=k.S/�2 �! 0

yields
�

k.S/�=k.S/�2
�Gk0 D k.Sk0/=.k0�k.Sk0/�2/. Thus, we may replace (12) with

0 �!
 

Pic Y

�� Pic SC 2Pic Y

!Gk0

jk�! k.Bk0/E
k0�k.Bk0/�2

ˇk�! .Br Y/Gk0 :

Note that by Proposition 2.6 ˇkjk.Bk0 /E factors through Brg.unr. Uk0=Br k0. Hence, we
obtain the following commutative diagram:

PicYk′
π∗ PicS+2PicYk′

j
j(PicYk′)

0
(

PicY
π∗ PicS+2PicY

)Gk′ j

β◦j

k(Bk′ )E
k′×k(Bk′ )×2

β

β

Brg.unr. Uk′
Br1 Uk′

0 Br1 Uk′
Br k′

Brg.unr. Uk′
Br k′

Brg.unr. Uk′
Br1 Uk′ 0.

To complete the proof of the theorem, it remains to prove that the rows and columns
are exact and that the leftmost bottom vertical arrow is surjective. The exactness of
the middle row follows from the above discussion and the exactness of the bottom
row follows from the definitions. The middle column is exact by Theorem 2.1;
Theorem 2.1 and Proposition 2.8 together imply that the leftmost column is exact.

Consider the map induced by ˇ ı j

�

Pic Y=.�� Pic SC 2Pic Y/
�Gk0

Pic Yk0=.�� Pic SC 2Pic Yk0/
,! Br1 Uk0

Br k0 Œ2�I
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we would like to show that it is surjective. Since U D Y n SE2E ��1.E/ and
the elements of E form an integral basis for Pic S D Pic S, we have that Pic U Š
Pic Y=�� Pic S and Pic Uk0 Š Pic Yk0=�� Pic S. In particular,

Pic Y

�� Pic SC 2Pic Y

�! Pic U

2Pic U
and

Pic Yk0

�� Pic SC 2Pic Yk0

�! Pic Uk0

2Pic Uk0

:

Furthermore, since Pic UŒ2� D 0, the cohomological long exact sequence associated
to the multiplication by 2 map yields the isomorphism

.Pic U=2Pic U/Gk0

.Pic U/Gk0 =.2Pic U/Gk0

Š H1.Gk0 ;Pic U/Œ2�:

In addition, since H0.U;Gm/ D k
�

, the long exact sequence of low degree
terms from the Hochschild–Serre spectral sequence [13, Theorem 2.20] gives the
isomorphism

Br1 Uk0

Br k0
�! H1.Gk0 ;Pic U/:

Since all groups in question are finite, a cardinality argument completes the proof
of surjectivity, and hence the proof of the theorem. ut

3 Geometry of Xa and Ya

3.1 Review of [16, Sect. 4]

The K3 surface Ya is defined as the base locus of a net of quadrics. As explained
in [2, Example IX.4.5] and [16, Sect. 4.1], each isolated singular point in the
degeneracy locus of the net gives rise to two genus 1 fibrations on Ya. As the
degeneracy locus of the net has 14 singular points, we obtain 28 classes of curves
in Pic Ya, which we denote F1;G1; : : : ;F14;G14; for all i; j we have the relation
Fi C Gi D Fj C Gj.

Nine of these singular points define fibrations which descend to Xa. On Xa, these
fibrations have exactly two nonreduced fibers. For a fixed point Pi in the degeneracy
locus, we let Ci;eCi;Di; and eDi denote the reduced subschemes of the nonreduced
fibers of the corresponding fibrations. After possibly relabeling, we may assume that
we have the following relations in Pic Xa:

Ci C Di D eCj CeDj; 2.Ci �eCi/ D 2.Di �eDi/ D 0;
f �Ci D f �

eCi D Fi; f �Di D f �
eDi D Gi:
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Defining equations for curves representing each of these classes is given in
Table A.4. The intersection numbers of these curves are as follows:

F2i D G2
i D 0; Fi � Gi D 4; Fi � Gj D Fi � Fj D Gi � Gj D 2 for all i ¤ j;

C2
i D D2

i D 0; Ci � Di D 2; Ci � Dj D Ci � Cj D Di � Dj D 1 for all i ¤ j:

Proposition 3.1 ([16, Corollary 4.3]). Let a 2 Z3>0 satisfy conditions .5/, .6/, and
.8/. Then Pic Ya Š Z15 and is generated by G1;F1; : : : ;F14 and

Z1 WD 1

2
.F1 C F2 C F3 C F10 C F12/ ;

Z2 WD 1

2
.F1 C G1 C F4 C F5 C F6 C F10 C F11/ ;

Z3 WD 1

2
.F1 C F4 C F7 C F13 C F14/ ;

Z4 WD 1

2
.F1 C G1 C F7 C F8 C F9 C F11 C F12/ :

As in [16], we let K=Q denote the splitting field of the curves Fi;Gi. We will be
concerned with two particular subfields K0 � K1 � K; we give generators for these
fields in Appendix and describe their defining properties in Sects. 3.2 and 3.3.

3.2 Double Cover Morphisms

In order to apply the results of Sect. 2, we must realize Ya as a double cover of a
rational ruled surface. We will be able to do so over the Galois extension K0 WD
Q.i;
p
2;
p
5;
p

�2C 2p2/; throughout this section, we work over K0.
Consider the morphism

�WYa ! S0 WD P1x � P1t ;

which sends a point Œv0 W v1 W v2 W w0 W w1 W w2� to

�

h

w0 � p
5w1 W v0 C 2v1

i

;

	q

�2C 2
p
2w0 � p

5w1; v0 C p
2v1 C p

5.1� p
2/v2


�

:

(13)

For any P 2 Ya, we have �.�.P// D Œ�1�.�.P//, where Œ�1� denotes the
automorphism of S0 that sends .x; t/ to .�x;�t/. Thus, we have an induced
morphism

Q�WXa !
�

S0
�

=Œ�1�;
obtained by quotienting Ya by � and S0 by Œ�1�.

The morphism � factors through a double cover morphism � WYa ! S; where
S WD Ya=.w2 7! �w2/. The quotient S is a smooth del Pezzo surface of degree 4
given by
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˚

v0v1 C 5v22 � w20 D v20 C 3v0v1 C 2v21 � w20 C 5w21 D 0
� � P4.v0Wv1Wv2Ww0Ww1/:

Using (13), one can check that � induces a birational map �SW S ! S0 which
contracts four .�1/-curves; we denote these curves by E1;E2;E3; and E4. (Defining
equations for the curves are given in Table A.3.)

The preimages of the Ei under � are irreducible .�2/-curves in Ya. Thus, we may
also factor � by first blowing-down these four .�2/-curves to obtain a (singular)
surface Y0a and then quotienting by an involution to obtain a double cover morphism.
Hence, we have the following commutative diagram:

Ya

ν

π

φ

S

νS

Y a
0 π0

S0

where the vertical maps are birational and the horizontal maps are 2-to-1. Note that
over k D K0, these varieties and morphisms satisfy all assumptions from Sect. 2. In
particular, all morphisms are defined over K0 and Pic SK0 D Pic S:

Since � induces an involution on Y0a , S, and S0 which is compatible with the
morphisms, the above commutative diagram descends to the following commutative
diagram involving the Enriques surface:

Xa

ν̃

π̃

φ̃

S̃

ν̃S

Xa
0 π̃0

(S0)/[−1]

3.3 Branch Loci of the Double Covers

Let B;B0;eB;eB
0

denote the branch loci of �; �0; Q� , and Q�0, respectively.

Proposition 3.2.

(1) B D V.w2/ � P4 is a smooth genus 5 curve,
(2) eB is a smooth genus 3 curve,
(3) B0 is an arithmetic genus 9 curve with four nodal singularities, and

(4) eB
0

is an arithmetic genus 5 curve with two nodal singularities.

Furthermore, the projection morphismeB! V.av20 C bv21 C cv22/ � P2 is a double
cover map, soeB is geometrically hyperelliptic.

Proof. From the definition of � , one can immediately see that B is the image
of V.w2/ \ Ya, so B is given by an intersection of three quadrics in P4:
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Since condition (1) holds, B is smooth by the Jacobian criterion. Therefore, B
is a smooth genus 5 curve.

As B=� DeB and � jB has no fixed points, the Riemann–Hurwitz formula implies
thateB is a smooth genus 3 curve. Furthermore, the curve B has a 4-to-1 projection
map to the plane conic

˚

av20 C bv21 C cv22 D 0
� � P2. This induces a double cover

map fromeB to the same conic, soeB is (geometrically) hyperelliptic.
Using the equations given in Table A.3 and computer algebra software, one can

check that each .�1/-curve Ei intersects B transversely in two distinct points. Thus,
the curve B0 has four nodal singularities, and so has arithmetic genus 9. As B0 !eB

0

is an étale double cover, B0 has two nodal singularities and the Riemann–Hurwitz
formula implies thateB

0
has arithmetic genus 5. ut

SinceeB is geometrically hyperelliptic, we may identify Jac.eBQ/Œ2� with subsets
of the Weierstrass points of eB of even order, modulo identifying complementary
subsets. Under this identification, the group operation is given by the symmetric
difference, i.e., AC B D .A[ B/ n .A\ B/. One can easily see that the ramification
locus of the projection morphism B ! V.av20 C bv21 C cv22/ � P2 is given by
V.w0/ [ V.w1/ � B. Since this projection morphism factors as

B �!eB �! V.av20 C bv21 C cv22/ � P2;

where the first morphism is étale, the Weierstrass points of eB are f .V.w0// [
f .V.w1//. There are four points in f .V.w0// � eB, which we denote by P1;P2;P3,
and P4, and four points in f .V.w1// � eB, which we denote by Q1;Q2;Q3; and Q4:

We let

K1=K0 WD the splitting field of the Weierstrass points.

Proposition 3.3.

(1) The kernel of f �W Jac.eBQ/Œ2� ! Jac.BQ/Œ2� is isomorphic to Z=2Z, and the
unique nontrivial element is fP1;P2;P3;P4g.

(2) The image of f � fits in the following non-split exact sequence of GK0-modules:

0! IndK0
K0.�0/

.Z=2Z/ � IndK0
K0.

p
ab/
.Z=2Z/! im f � ! Z=2Z! 0:

Proof. (1) Let P0
i and P00

i be the inverse image of Pi under the map B ! eB. The
vanishing locus V.w0/ on B consists of P0

i;P
00
i for i D 1; : : : ; 4. For any distinct

pair of numbers i0; i1 2 f1; 2; 3; 4g, there exists a linear form L D L.v0; v1; v2/
such that V.L/ � P2 contains the images of Pi0 and Pi1 . Since the points Pi are
Weierstrass points ofeB and the map B!eB is étale, this implies that

divB.w0=L/ D
4
X

iD1
.Pi C P0

i/ � 2.P0
i0 C P00

i0 C P0
i1 C P00

i1 /:

Thus f �fP1;P2;P3;P4g is principal on B.
Now let D be a divisor such that ŒD� 2 JaceBŒ2� is a nontrivial element

of ker f �. Then f �1.D/ D divB.g0/, for some function g0 2 k.B/. On the
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other hand, 2D D div
eB.g1/ for some function g1 2 k.eB/. Thus, g1 D g20 in

k.B/�=k�. Since k.B/ is a quadratic extension of k.eB/ generated by w0=L for
L D L.v0; v1; v2/ a linear form, this implies that g0 D h � .w0=L/ in k.B/ for
some h 2 k.eB/�2. (Note that w0=L … k.eB/.) Hence D D fP1;P2;P3;P4g in
JaceB:

(2) By .1/ and the description of JaceBŒ2� in terms of Weierstrass points, we see that
the image of f � is isomorphic to .Z=2Z/5 (as a group) and is generated by

fP1;P3g; fP1;P4g; fQ1;Q3g; fQ1;Q4g; and fP1;Q1g:

Using Table A.5, one can check that (as GK0-modules) we have

hfP1;P3g; fP1;P4gi Š IndK0
K0.

p
ab/
.Z=2Z/; and

hfQ1;Q3g; fQ1;Q4gi Š IndK0
K0.�0/

.Z=2Z/;

thus proving the existence of the exact sequence. Since Gal.K1=K0/ acts
transitively on fP1;P2;P3;P4g, no element of the form fPi;Qjg is fixed by GK0
and so the exact sequence does not split. ut

3.4 The Quotient Group Pic Ya=
�

�� Pic S C 2 Pic Ya

�

The following lemma about the structure of Pic Ya=
�

�� Pic SC 2Pic Ya
�

as a
Galois module will be useful in later sections:

Lemma 3.4. We have an isomorphism of Gal.K1=K0/-modules

 

Pic Ya

�� Pic SC 2Pic Ya

!GK1 ��! Z=2Z � IndK0
K0.�0/

.Z=2Z/ � IndK0
K0.

p
ab/
.Z=2Z/:

Proof. By computing intersection numbers, we find that �� Pic S is generated by

G1; F1�F2; Z1�F2�F10�F12; Z1�F1�F2; �Z1CF1CF12; and �Z1CF1CF10:

Therefore, Pic Ya=
�

�� Pic SC 2Pic Ya
�

is a 9-dimensional F2 vector space with
basis

F5; F6; F8; F9; F11; F13; Z2; Z3; and Z4:

In this quotient we have the relations Gi D Fi, F1 D F2 D F10 D F12 D Z1 D
G1 D F3 D 0,
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F4 D F5CF6CF11; F7 D F8CF9CF11; and F14 D F5CF6CF8CF9CF13:

Using this basis and Table A.5, we compute that .Pic Ya=
�

�� Pic SC 2Pic Ya
�

/GK1

is a 5-dimensional F2-vector space with basis F5;F6;F8;F9; and F11. The isomor-
phism then follows after noting that in the quotient F11 is fixed by Gal.K1=K0/, F5
and F6 are interchanged by Gal.K0.

p
ab/=K0/ and fixed by all other elements, and

similarly for F8 and F9 and Gal.K0.�0/=K0/. ut

4 A Representative of the Nontrivial Brauer Class on Xa

As mentioned in the introduction, Br Xa Š Z=2Z. Therefore, there is at most one
nontrivial class in Br Xa=Br1 Xa. To determine the existence of such a class, we must
first obtain an explicit representative for the unique Brauer class in Br Xa. Using
Beauville’s criterion [3, Corollary 5.7], Várilly-Alvarado and the last author showed
that if a satisfies conditions .5/; .6/ and .8/, then

ker
�

f �WBr Xa ! Br Ya
� D 0: [16, Proof of Prop. 5.2]

Let D be a divisor oneBQ such that ŒD� 2 Jac.eB/Œ2� and such that ŒD� corresponds
to a subset of the Weierstrass points containing an odd number of the points
fPigiD1;:::;4. Let Q̀ 2 k.eBQ/ be such that div. Q̀/ D 2D.

Proposition 4.1. Assume that a satisfies conditions .5/; .6/, and .8/. Then the
Brauer class

��A Q̀ D �� Cork.B/.x/=Q.t;x/

�

. Q̀; x � ˛/Q
�

defines an element of Br Ya and generates the order 2 subgroup f � Br Xa.

Proof. By [4, Theorem 7.2], the subgroup f � Br XaŒ2� � Br Ya is generated by
A Q̀0 , where Q̀0 2 k.eBQ/ is such that ��.div. Q̀0// 2 2Div.eB

0
/: Furthermore, by

Theorem 2.1 applied to k0 D k we have the following exact sequence:

0 → PicY a
π∗ PicS+2PicY

k(B
Q
)×E

k(B
Q
)×2 BrY a[2] 0.

j

Thus, to prove the proposition, it remains to prove that Œ Q̀� is not in the image of j.
For convenience, we set

QG WD f` 2 k.eBQ/
� W �� div.`/ 2 2Div.eB

0

Q/g:

We have the following commutative diagram with exact rows [4, Proposition 4.5],
where Sing.BQ/ and Sing. QBQ/ denote the set of singular points of BQ and eBQ,
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respectively, and the last vertical map is the diagonal embedding on the first factor,
i.e., .m; n/ 7! .m;m; n; n; 0; 0/.

0 Jac B̃Q[2]
G̃

k( ˜B
Q
)×2 (Z/2Z)Sing( ˜B

Q
) 0

0 JacBQ[2]
k(B

Q
)E

k(B
Q
)×2 (Z/2Z)Sing(BQ

) × (Z/2Z)2 0.

f∗ f∗

In the rest of this section, we will view elements of JaceBQŒ2� and Jac BQŒ2� as
elements of QG=k.eBQ/

�2 and k.BQ/E=k.BQ/
�2, respectively.

Lemma 4.2. Assume that a satisfies conditions .5/, .6/, and .8/. Then the group
im j \ f �.JaceBQŒ2�/ is an index 2 Gal.Q=K0/-invariant subgroup of f �.JaceBQŒ2�/.

Proof. Since Br Xa Š Z=2Z, the subgroup im j \ f �. QG/ has index 2 in f �. QG/.
Therefore, the subgroup im j \ f �.JaceBQŒ2�/ has index at most 2 in f �.JaceBQŒ2�/.

Recall that K1 is splitting field of the Weierstrass points over K0. Thus Gal.Q=K1/
fixes f �.JaceBQ/ and hence im j \ f �.JaceBQŒ2�/ D .im j/GK1 \ f �.JaceBQŒ2�/. Since
j and f � are GK0-equivariant homomorphisms, the intersection is GK0-invariant
and the elements in the intersection must have compatible GK0 action. Then
Proposition 3.3 and Lemma 3.4 together imply that the intersection is a submodule
of IndK0

K0.�0/
.Z=2Z/� IndK0

K0.
p

ab/
.Z=2Z/ and hence a proper subgroup of f �.JaceBŒ2�/

with index equal to 2. ut
Now we resume the proof of Proposition 4.1. Assume that Q̀ is contained in

the image of j and hence in im j \ f �.JaceBŒ2�/. From Tables A.1 and A.5, we
see that Gal.Q=K0/ acts transitively on the Weierstrass points of eB. Therefore, the
subgroup of k.BQ/E generated by Q̀ and all of its Gal.Q=K0/ conjugates contains all

of f �.JaceBQŒ2�/. Since im j \ f �.JaceBŒ2�/ is Gal.Q=K0/-invariant, this implies that

im j \ f �.JaceBQŒ2�/ D f �.JaceBQŒ2�/

which contradicts Lemma 4.2. ut

5 Proof of Theorem 1.2

Assume that a 2 Z3>0 satisfies conditions .5/; .6/; and .8/. The last statement
of the theorem follows immediately from the first statement together with [16,
Theorem 1.2]. Thus our goal is to prove that Br Xa D Br1 Xa. Since Br Xa ! Br Xa

factors through .Br Xa;K1 /
Gal.K1=K0/, it suffices to prove that .Br Xa;K1 /

Gal.K1=K0/ D
.Br1 Xa;K1 /

Gal.K1=K0/.
Recall from Sect. 4 that f � Br Xa is a nontrivial subgroup of Br Ya. So if

.Br Xa;K1 /
Gal.K1=K0/ is strictly larger than .Br1 Xa;K1 /

Gal.K1=K0/, then there exists an
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element B 2 .Br Ya;K1 /
Gal.K1=K0/ such that BQ is the unique nontrivial element

in f � Br Xa. Let Q̀ 2 k.eBQ/ be such that div. Q̀/ D 2D where ŒD� 2 Jac.eB/Œ2�
corresponds to a subset of the Weierstrass points containing an odd number of the
points fPig4iD1. Note that we may choose Q̀ so that it is contained in k.eBK1 /

�. In what
follows, we will view Q̀ as a function on B under the natural inclusion k.eB/ � k.B/:
We remark that, under this inclusion, Q̀ 2 k.BK1 /

�
E .

By Proposition 4.1, f � Br Xa is generated by .��A Q̀/Q, so BQ D .��A Q̀/Q. Let

A0 WD A0. Q̀/ be as in Proposition 2.6. Then an application of Tsen’s theorem shows
.��.$�A0//Q D 0. Hence, ˇ. Q̀/Q D .��A Q̀/Q D BQ. Also, since ˇ. Q̀/ 2 Br UK1 ,
we must have that

B � ˇ. Q̀/ 2 Br1 UK1 :

By Theorem 2.2, Br1 UK1=Br K1 is contained in ˇ.k.BK1 /
�
E /, meaning that

B � ˇ. Q̀/ D ˇ.`0/ for some `0 2 k.BK1 /
�
E . Since both `0 and Q̀ are in k.BK1 /

�
E ,

we then have B D ˇ. Q̀`0/ DW ˇ.`B/ for some `B 2 k.BK1 /E . Furthermore, since B
is Gal.K1=K0/-invariant and is equal to ˇ. Q̀/ modulo Br1 UK1 , Theorem 2.2 implies
that

(a) the class of `B in k.BK1 /=j.Pic Ya;K1 /K
�
1 k.BK1 /

�2 must be Gal.K1=K0/-
invariant, and

(b) `B Q̀�1 2 j
�

.Pic Ya=.�
� Pic SC 2Pic Ya//

GK1
�

K�
1 k.BK1 /

�2.

An inspection of Table A.5 reveals that Pic Ya;K1 D Pic SK1 , so j.Pic Ya;K1 / �
K�
1 k.BK1 /

�2. In addition, Lemma 3.4 shows that every element of
j
�

.Pic Ya=.�
� Pic SC 2Pic Ya//

GK1
�

is Gal.K0.�0;
p

ab/=K0/-invariant. Thus,
conditions .a/ and .b/ imply that

Q̀ 2
�

k.BK1 /
�

K�
1 k.BK1 /

�2

�Gal.K0.�0;
p

ab/=K0/

:

Given our assumption on Q̀, this results in a contradiction, as demonstrated in
Table A.5. ut

Appendix: Fields, Defining Equations, and Galois Actions

The splitting field K of the genus 1 curves Ci;eCi;eDi;Fi;Gi is generated by

i;
p
2;
p
5;
p

a;
p

c; �0 WD
p

c2 � 100ab; 	0 WD
p
�c2 � 5bc � 10ac � 25ab;

4
p

ab;

q

�2C 2p2;
q

�c � 10pab;
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�0 WD
p

4a2 C b2; 
0 WD
p

aC bC c=5; 
 0
0 WD

p

aC b=4C c=10;

�C
1 WD

p

20a2 � 10ab � 2bcC .10aC 2c/�0; �
C
2 WD

p

�5a � 5=2b � 5=2�0;


C
1 WD

q

20aC 10bC 3cC 20
0
 0
0; 


C
2 WD

q

4aC 2bC 2=5cC 4
0
 0
0:

Define

�C
1 WD c��0C10

p
ab

10
p

a
p

�c�10pab
	C
1 WD .�C

1 /
�1 �10a2 � 5ab � bcC 2a	0 C .cC 5a/�0

�

��
1 WD cC�0C10

p
ab

10
p

a
p

�c�10pab
	�
1 WD .�C

1 /
�1 �10a2 � 5ab � bc � 2a	0 C .cC 5a/�0

�

:

The following subfields of K are of particular interest:

Q � K0 W DQ
�

i;
p
2;
p
5;

q

�2C2p2
�

� K1 W DK0
�

�0;
p

ab; �C
1 ; 	

C
1

�

� K:

The field extensions K=Q and K1=Q are Galois, as the following relations show:

q

�2 � 2p2 D 2i
p

�2C 2p2
;

q

�cC 10pab D �0
p

�c � 10pab
;

��
1 WD

p

20a2 � 10ab � 2bcC .10aC 2c/�0 D 4a	0
�C
1

;

��
2 WD

p

�5a � 5=2bC 5=2�0 D 5
p

ab

�C
2

;


�
1 WD

q

20aC 10bC 3c � 20
0
 0
0 D

�0


C
1

;


�
2 WD

q

4aC 2bC 2=5c � 4
0
 0
0 D

2	0

5
C
2

;

.	C
1 /

2 D 10a2 � 5ab � bcC 2a	0; .�C
1 /

2 D �cC �0
50a

;

.	�
1 /

2 D 10a2 � 5ab � bc � 2a	0; .��
1 /
2 D �c � �0

50a
;

	C
1 	

�
1 D .5aC c/�0; �C

1 �
�
1 D

�1
5a

p
ab:

Tables A.1 and A.4 show that these fields have the properties claimed in Sect. 3.
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Table A.1 Defining equations for the Weierstrass points on QB
QB Defining equations QB Defining equations

P1 10av0 � .c � �0/v1, v2 � �
C

1 v1 Q1 .c C 5a/v0 C .c � 	0/v1, .c C 5a/v2 � 	
C

1 v1

P2 10av0 � .c � �0/v1, v2 C �
C

1 v1 Q2 .c C 5a/v0 C .c � 	0/v1, .c C 5a/v2 C 	
C

1 v1

P3 10av0 � .c C �0/v1, v2 � ��

1 v1 Q3 .c C 5a/v0 C .c C 	0/v1, .c C 5a/v2 � 	�

1 v1

P4 10av0 � .c C �0/v1, v2 C ��

1 v1 Q4 .c C 5a/v0 C .c C 	0/v1, .c C 5a/v2 C 	�

1 v1

Table A.2 Defining equation for the exceptional curves on S

�S.E1/

	

1� p
2� i

q

�2C 2
p
2 W 1




,

	

.i � 1C i
p
2/

q

�2C 2
p
2 W 2p2




�S.E2/

	

�1C p
2C i

q

�2C 2
p
2 W 1




,

	

.1� i � i
p
2/

q

�2C 2
p
2 W 2p2




�S.E3/

	

1� p
2C i

q

�2C 2
p
2 W 1




,

	

�.i C 1C i
p
2/

q

�2C 2
p
2 W 2p2




�S.E4/

	

�1C p
2� i

q

�2C 2
p
2 W 1




,

	

.i C 1C i
p
2/

q

�2C 2
p
2 W 2p2




Table A.3 Pullbacks of
exceptional curves in terms
of Fi;Gi

2��E1 F1 C 2G1 � F2 C F3 � F10 � F12
2��E2 �F1 � F2 C F3 C F10 C F12
2��E3 F1 C 2G1 � F2 � F3 � F10 C F12
2��E4 F1 C 2G1 � F2 � F3 C F10 � F12

Remark 1. Tables A.1 and A.4 list defining equations of a subvariety of the Ya. The
image of this subvariety gives the corresponding object in Xa (Table A.5).
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Shadow Lines in the Arithmetic
of Elliptic Curves

J.S. Balakrishnan, M. Çiperiani, J. Lang, B. Mirza, and R. Newton

Abstract Let E=Q be an elliptic curve and p a rational prime of good ordinary
reduction. For every imaginary quadratic field K=Q satisfying the Heegner hypoth-
esis for E we have a corresponding line in E.K/ ˝ Qp, known as a shadow line.
When E=Q has analytic rank 2 and E=K has analytic rank 3, shadow lines are
expected to lie in E.Q/ ˝ Qp. If, in addition, p splits in K=Q, then shadow lines
can be determined using the anticyclotomic p-adic height pairing. We develop an
algorithm to compute anticyclotomic p-adic heights which we then use to provide
an algorithm to compute shadow lines. We conclude by illustrating these algorithms
in a collection of examples.
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1 Introduction

Fix an elliptic curve E=Q of analytic rank 2 and an odd prime p of good ordinary
reduction. Assume that the p-primary part of the Tate–Shafarevich group of E=Q
is finite. Let K be an imaginary quadratic field such that the analytic rank of E=K
is 3 and the Heegner hypothesis holds for E, i.e., all primes dividing the conductor
of E=Q split in K. We are interested in computing the subspace of E.K/ ˝ Qp

generated by the anticyclotomic universal norms. To define this space, let K1 be the
anticyclotomic Zp-extension of K and Kn denote the subfield of K1 whose Galois
group over K is isomorphic to Z=pnZ. The module of universal norms is defined by

U D
\

n�0
NKn=K.E.Kn/˝ Zp/;

where NKn=K is the norm map induced by the map E.Kn/ ! E.K/ given by
P 7! P

�2Gal.Kn=K/
P� .

Consider

LK WD U ˝Qp 	 E.K/˝Qp:

By work of Cornut [6] and Vatsal [18], our assumptions on the analytic ranks
of E=Q and E=K together with the assumed finiteness of the p-primary part of the
Tate–Shafarevich group of E=Q imply that dim LK 
 1. Bertolini [2] showed that
dim LK D 1 under certain conditions on the prime p. Wiles and Çiperiani [4, 5]
have shown that Bertolini’s result is valid whenever Gal.Q.Ep/=Q/ is not solvable;
here Ep denotes the full p-torsion of E and Q.Ep/ is its field of definition. The
1-dimensional Qp-vector space LK is known as the shadow line associated to the
triple .E;K; p/.

Complex conjugation acts on E.K/ ˝ Qp, and we consider its two eigenspaces
E.K/C˝Qp and E.K/�˝Qp. Observe that E.K/C˝Qp D E.Q/˝Qp. By work of
Skinner–Urban [15], Nekovář [14], Gross–Zagier [8], and Kolyvagin [10] we know
that

dim E.K/C ˝Qp 
 2 and dim E.K/� ˝Qp D 1:

Then by the Sign Conjecture [11] we expect that

LK 	 E.Q/˝Qp:

Our main motivating question is the following:

Question (Mazur and Rubin). As K varies, we presumably get different shadow
lines LK – what are these lines, and how are they distributed in E.Q/˝Qp ?
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In order to gather data about this question one can add the assumption that p
splits in K=Q and then make use of the anticyclotomic p-adic height pairing on
E.K/ ˝ Qp. It is known that U is contained in the kernel of this pairing [12]. In
fact, in our situation we expect that U equals the kernel of the anticyclotomic p-adic
height pairing. Indeed we have dim E.K/� ˝ Qp D 1 and the weak Birch and
Swinnerton–Dyer Conjecture for E=Q predicts that dim E.Q/˝Qp D 2, from which
the statement about U follows by the properties of the anticyclotomic p-adic height
pairing and its expected non-triviality. (This is discussed in Sect. 4 in further detail.)
Thus computing the anticyclotomic p-adic height pairing allows us to determine the
shadow line LK .

Let �.K/ be the Galois group of the maximal Zp-power extension of K, and let
I.K/ D �.K/ ˝Zp Qp. Identifying �.K/ with an appropriate quotient of the idele
class group of K, Mazur et al. [13, §2.6] gave an explicit description of the universal
p-adic height pairing

. ; / W E.K/ � E.K/! I.K/:

One obtains various Qp-valued height pairings on E by composing this universal
pairing with Qp-linear maps I.K/! Qp. The kernel of such a (non-zero) Qp-linear
map corresponds to a Zp-extension of K.

In particular, the anticyclotomic Zp-extension of K corresponds to a Qp-linear
map � W I.K/ ! Qp such that � ı c D ��, where c denotes complex conjugation.
The resulting anticyclotomic p-adic height pairing is denoted by . ; /�. One key step
of our work is an explicit description of the map �, see Sect. 2. As in [13], for
P 2 E.K/ we define the anticyclotomic p-adic height of P to be h�.P/ D � 12 .P;P/�.
Mazur et al. [13, §2.9] provide the following formula1 for the anticyclotomic p-adic
height of a point P 2 E.K/:

h�.P/ D ��.��.P// � ��.��.Pc//C
X

w−p1
�w.dw.P//;

where � is one of the prime divisors of p in K and the remaining notation is defined
in Sect. 3. An algorithm for computing �� was given in [13]. Using our explicit
description of �, in Sect. 3 we find a computationally feasible way of determining
the contribution of finite primes w which do not divide p. This enables us to compute
anticyclotomic p-adic height pairings.

We then proceed with a general discussion of shadow lines and their identifi-
cation in E.Q/ ˝ Qp, see Sect. 4. In Sect. 5 we present the algorithms that we
use to compute anticyclotomic p-adic heights and shadow lines. We conclude by
displaying in Sect. 6 two examples of the computation of shadow lines LK on the
elliptic curve “389.a1” with the prime p D 5 and listing the results of several
additional shadow line computations.

1The formula appearing in [13, §2.9] contains a sign error which is corrected here.



36 J.S. Balakrishnan et al.

2 Anticyclotomic Character

Let K be an imaginary quadratic field with ring of integers OK in which p splits
as pOK D ��c, where c denotes complex conjugation on K. Let A� be the group
of ideles of K. We also use c to denote the involution of A� induced by complex
conjugation on K. For any finite place v of K, denote by Kv the completion of K
at v, Ov the ring of integers of Kv , and v the group of roots of unity in Ov . Let
�.K/ be the Galois group of the maximal Zp-power extension of K. As in [13], we
consider the idele class Qp-vector space I.K/ D �.K/˝Zp Qp. By class field theory

�.K/ is a quotient of J0 WD A�=K�C�Q
w−p O�

w by its finite torsion subgroup T ,
see the proof of Theorem 13.4 in [19]. The bar in the definition of J0 denotes closure
in the idelic topology, and the subgroup T is the kernel of the Nth power map on J0
where N is the order of the finite group

A�=K�C�Y

w−p

O�
w .1C �O�/.1C �cO�c/:

Thus we have

I.K/ D J0=T ˝Zp Qp: (1)

We shall use this idelic description of �.K/ in what follows.

Definition 2.1 (Anticyclotomic p-adic Idele Class Character). An anticyclo-
tomic p-adic idele class character is a continuous homomorphism

� W A�=K� ! Zp

such that � ı c D ��.

Lemma 2.2. Every p-adic idele class character

� W A�=K� ! Zp

factors via the natural projection

A�=K� � A�=
�

K�C�Y

w−p

O�
w

Y

vjp
v

�

:

Proof. This is an immediate consequence of the fact that Zp is a torsion-free pro-p
group. ut

The aim of this section is to define a non-trivial anticyclotomic p-adic idele class
character. By the identification (1), such a character will give rise to a Qp-linear map
I.K/! Qp which cuts out the anticyclotomic Zp-extension of K.
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2.1 The Class Number One Case

We now explicitly construct an anticyclotomic p-adic idele class character � in the
case when the class number of K is 1.

Recall our assumption that p splits in K=Q as pOK D ��c and let

U� D 1C �O� and U�c D 1C �cO�c :

Define a continuous homomorphism

' W A� ! U� � U�c

as follows. Let .xv/v 2 A�. Under our assumption that K has class number 1, we
can find ˛ 2 K� such that

˛xv 2 O�
v for all finite v:

Indeed, the ideal av corresponding to the place v is principal, say generated by
$v 2 OK . Then take ˛ D Q

v $
�ordv.xv/
v , where the product is taken over all finite

places v of K. We define

'..xv/v/ D ..˛x�/
p�1; .˛x�c/p�1/: (2)

Note that since p is split in K we have O�
� Š Z�

p Š p�1 � U� , and similarly
for �c. To see that ' is independent of the choice of ˛, we note that any other choice
˛0 2 K� differs from ˛ by an element of O�

K . Since K is an imaginary quadratic field,
O�

K consists entirely of roots of unity. In particular, under the embedding K ,! K�
we see that O�

K ,! p�1. Thus, any ambiguity about ˛ is killed when we raise
˛ to the .p � 1/-power. Therefore, ' is well-defined. The continuity of ' is easily
verified.

Proposition 2.3. Suppose that K has class number 1. Then the map ' defined in
(2) induces an isomorphism of topological groups

A�=
�

K�C�Y

w−p

O�
w

Y

vjp
v

�

! U� � U�c :

Proof. For v 2 f�; �cg, the p-adic logarithm gives an isomorphism
Uv Š 1C pZp ! pZp. Hence, raising to the power .p � 1/ is an automorphism
on Uv for v 2 f�; �cg and consequently ' is surjective. It is easy to see
that K�C�Q

w−p O�
w � ker'. Since v Š F�

p for v 2 f�; �cg, we have
Q

vjp v � ker'. We claim that ker' D K�C�Q
w−p O�

w

Q

vjp v . Let .xv/v 2 ker'
and let ˛ 2 K� be such that ˛xv 2 O�

v for all finite v. It suffices to show
that .˛xv/v 2 C�Q

w−p O�
w

Q

vjp v . This is clear: since .xv/v 2 ker', we have
˛xv 2 v for v 2 f�; �cg.
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Finally, since ' is a continuous open map, it follows that ' induces the desired
homeomorphism. ut

By Lemma 2.2 we have reduced the problem of constructing an anticyclotomic
p-adic idele class character to the problem of constructing a character

� W U� � U�c ! Zp (3)

satisfying �ıc D ��. Note that this last condition implies that �.x; y/ D �.x=yc; 1/.
Explicitly:

�.x; y/ D �� ı c.x; y/ D ��.yc; xc/ D ��.yc; 1/ � �.1; xc/

D ��.yc; 1/C �.x; 1/ D �.x=yc; 1/: (4)

In other words, � factors via the surjection

f� W U� � U�c � U�

.x; y/ 7! x=yc:

Therefore, it is enough to define a character U� ! Zp. Fixing an isomorphism
of valued fields  W K� ! Qp gives an identification U� Š 1 C pZp. Now, up
to scaling, there is only one choice of character, namely logp W 1 C pZp ! pZp.
We write logp for the unique group homomorphism logp W Q�

p ! .Qp;C/ with
logp.p/ D 0 extending logp W 1C pZp ! pZp. The extension to Z�

p of the map logp
is explicitly given by

logp.u/ D
1

p � 1 logp.u
p�1/:

We choose the normalization � D 1
p.p�1/ logp ı ı f� ı '. We summarize our

construction of the anticyclotomic p-adic idele class character � in the following
proposition:

Proposition 2.4. Suppose that K has class number 1. Fix a choice of isomorphism
 W K� ! Qp. Consider the map � W A�=K� ! Zp such that

�..xv/v/ D 1

p
logp ı 

�

˛x�
˛cxc

�c

�

where ˛ 2 K� is such that ˛xv 2 O�
v for all finite v. Then � is the unique (up to

scaling) non-trivial anticyclotomic p-adic idele class character.

Proof. Let ˛ 2 K� be such that ˛xv 2 O�
v for all finite v. By our earlier discussion

and the definition of the extension of logp to Z�
p , we have
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�..xv/v/ D 1

p.p � 1/ logp ı 
�

.˛x�/p�1

.˛cxc
�c/p�1

�

D 1

p
logp ı 

�

˛x�
˛cxc

�c

�

:

ut

2.2 The General Case

There is a simple generalization of the construction of � to the case when the class
number of K may be greater than one. Let h be the class number of K. We can no
longer define the homomorphism ' of (2) on the whole of A� because OK is no
longer assumed to be a principal ideal domain. However, we can define

'h W .A�/h ! U� � U�c

in a similar way, as follows. Let av be the ideal of K corresponding to the place v.
Then ah

v is principal, say generated by $v 2 OK . For .xv/v 2 A� we set ˛.v/ D
$v

�ordv.xv/. Then ˛.v/xh
v 2 O�

v and ˛.v/ 2 O�
w for all w ¤ v. Note that ˛.v/ D 1

for all but finitely many v. Set ˛ D Q

v ˛.v/ and observe that ˛xh
v 2 O�

v for all v.
Then we define 'h by

'h..xv/
h
v/ D ..˛xh

�/
p�1; .˛xh

�c/
p�1/: (5)

Fix an isomorphism  W K� ! Qp. As before, we can now use the p-adic logarithm
to define an anticyclotomic character � W .A�/h ! Zp by setting

� D 1

p.p � 1/ logp ı ı f� ı 'h:

We extend the definition of � to the whole of A� by setting �..xv/v/ D 1
h�..xv/

h
v/.

As in Proposition 2.4, we now summarize our construction of the anticyclotomic
p-adic idele class character in this more general setting.

Proposition 2.5. Let h be the class number of K, and fix a choice of isomorphism
 W K� ! Qp. Consider the map � W A�=K� ! 1

hZp such that

�..xv/v/ D 1

hp
logp ı 

�

˛xh
�

˛cxch
�c

�

where ˛ 2 K� is such that ˛xh
v 2 O�

v for all finite v. Then � is the unique (up to
scaling) non-trivial anticyclotomic p-adic idele class character.
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Remark 2.6. Note that � W A�=K� ! 1
hZp, so if p j h, then � is not strictly an

anticyclotomic idele class character in the sense of Definition 2.1. However, the
choice of scaling of � is of no great importance since our purpose is to use � to
define an anticyclotomic height pairing on E.K/ and compute the kernel of this
pairing.

Remark 2.7. The ideal
Q

v a
�h ordv.xv/
v is principal and a generator of this ideal

is the element ˛ 2 K that we use when evaluating the character � defined in
Proposition 2.5.

3 Anticyclotomic p-adic Height Pairing

We wish to compute the anticyclotomic p-adic height h� using our explicit descrip-
tion of the anticyclotomic idele class character � given in Proposition 2.5. For any
finite prime w of K, the natural inclusion K�

w ,! A� induces a map �w W K�
w ! I.K/,

and we write �w D � ı �w. For every finite place w of K and every non-zero point
P 2 E.K/ we can find dw.P/ 2 Ow and aw.P/; bw.P/ 2 Ow, each relatively prime to
dw.P/, such that

.�w.x.P//; �w.y.P/// D
�

aw.P/

dw.P/2
;

bw.P/

dw.P/3

�

: (6)

We refer to dw.P/ as a local denominator of P at w. The existence of dw.P/ follows
from the Weierstrass equation for E and the fact that Ow is a principal ideal domain.
Finally, we let �� denote the �-adic � -function of E.

Given a non-torsion point P 2 E.K/ such that

• P reduces to 0 modulo primes dividing p, and
• P reduces to the connected component of all special fibers of the Neron model

of E,

we can compute its anticyclotomic p-adic height using the following formula2

[13, §2.9]:

h�.P/ D ��.��.P// � ��.��.Pc//C
X

w−p1
�w.dw.P//: (7)

In the following lemmas, we make some observations which simplify the
computation of h�.P/.

Lemma 3.1. Let w be a finite prime such that w − p. Let xw 2 K�
w . Then �w.xw/

only depends on ordw.xw/. In particular, if xw 2 O�
w , then �w.xw/ D 0.

2The formula appearing in [13, §2.9] contains a sign error which is corrected here.
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Proof. This follows immediately from Lemma 2.2. Alternatively, note that the
auxiliary element ˛ used in the definition of � only depends on the valuation
of xw. ut
Lemma 3.2. Let w be a finite prime of K. Then �wc D ��w ı c. In particular, if
w D wc, then �w D 0.

Proof. This is an immediate consequence of the relations � ı c D �� and
c ı ��c D �� ı c. ut

Lemma 3.2 allows us to write the formula (7) for the anticyclotomic p-adic height
as follows:

h�.P/ D ��
�

��.P/

��.Pc/

�

C
X

`D��c

`¤p

��

�

d�.P/

d�c.P/c

�

: (8)

Remark 3.3. In order to implement an algorithm for calculating the anticyclotomic
p-adic height h�, we must determine a finite set of primes which includes all the split

primes ` D ��c − p for which ��
�

d�.P/
d�c .P/c

�

¤ 0. Let k� be the residue field of K

at � and set D.P/ D Q

�−p1.#k�/ord�.d�.P//: It turns out that D.P/ can be computed
easily from the leading coefficient of the minimal polynomial of the x-coordinate of

P [1, Proposition 4.2]. Observe that ��
�

d�.P/
d�c .P/c

�

¤ 0 implies that ord�.d�.P// ¤ 0

or ord�c.d�c.P// ¤ 0. Hence, the only primes ` ¤ p which contribute to the sum in
(8) are those that are split in K=Q and divide D.P/. However, in the examples that
we have attempted, factoring D.P/ is difficult due to its size.

We now package together the contribution to the anticyclotomic p-adic height
coming from primes not dividing p. Consider the ideal x.P/OK and denote by
ı.P/ � OK its denominator ideal. Observe that by (6) we know that all prime factors
of ı.P/ appear with even powers. Fix dh.P/ 2 OK as follows:

dh.P/OK D
Y

q

qh ordq.ı.P//=2 (9)

where h is the class number of K, and the product is over all prime ideals q in OK .

Proposition 3.4. Let P 2 E.K/ be a non-torsion point which reduces to 0 modulo
primes dividing p, and to the connected component of all special fibers of the Neron
model of E. Then the anticyclotomic p-adic height of P is

h�.P/ D 1

p
logp

�

 

�

��.P/

��.Pc/

��

C 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

;

where  W K� ! Qp is the fixed automorphism.
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Proof. By (7) we have

h�.P/ D ��
�

��.P/

��.Pc/

�

C
X

w−p1
�w.dw.P//: (10)

Let P D .x; y/ 2 E.K/. Since P reduces to the identity modulo � and �c, we have

ord�.x/ D �2e� ; ord�.y/ D �3e� ;

ord�c.x/ D �2e�c ; ord�c.y/ D �3e�c ;

for positive integers e� and e�c . Since the p-adic � function has the form
�.t/ D tC � � � 2 tZpŒŒt��, we see that

ord�.��.P// D ord�

�

��

��x

y

��

D ord�

��x

y

�

D e�

and similarly

ord�.��.P
c// D ord�

��xc

yc

�

D ord�c

��x

y

�

D e�c :

Thus,

ord�

�

��.P/

��.Pc/

�

D e� � e�c : (11)

Let ˛ 2 K� generate the principal ideal �h. By (11) and the definition of the
anticyclotomic p-adic idele class character, we have

��

�

��.P/

��.Pc/

�

D 1

hp
logp ı 

�

˛e�c �e� ��.P/h

.˛c/e�c �e� ��.Pc/h

�

D 1

p
logp

�

 

�

��.P/

��.Pc/

��

C 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

:

Now it remains to show that

X

w−p1
�w.dw.P// D 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

� 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

: (12)

By the definition of �, we have

X

w−p1
�w.dw.P// D 1

h

X

w−p1
�w.dw.P/

h/: (13)
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Since ordw.dw.P/h/ D ordw.dh.P//, Lemma 3.1 gives �w.dw.P/h/ D �w.dh.P// for
every w − p1. Substituting this into (13) gives

X

w−p1
�w.dw.P// D 1

h

X

w−p1
�w.dh.P//

D 1

h

X

w−p1
� ı �w.dh.P//

D 1

h
�
�
Y

w−p1
�w.dh.P//

�

:

Now
Q

w−p1 �w.dh.P// is the idele with entry dh.P/ at every place w − p1 and
entry 1 at all other places. Define ˇ 2 OK by dh.P/ D ˛e� .˛c/e�cˇ. Thus, by
Proposition 2.5 and Remark 2.7, we get

1

h
�
�
Y

w−p1
�w.dh.P//

�

D 1

hp
logp

�

 

�

ˇc

ˇ

��

D 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

� 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

as required. This concludes the proof. ut
In [13], the authors describe the “universal” p-adic height pairing .P;Q/ 2 I.K/

of two points P;Q 2 E.K/. Composition of the universal height pairing with any
Qp-linear map � W I.K/! Qp gives rise to a canonical symmetric bilinear pairing

. ; /� W E.K/ � E.K/! Qp

called the �-height pairing. The �-height of a point P 2 E.K/ is defined to be
� 1
2
.P;P/�.
Henceforth, we fix � to be the anticyclotomic p-adic idele class character defined

in Sect. 2. The corresponding �-height pairing is referred to as the anticyclotomic
p-adic height pairing, and it is denoted as follows:

h ; i D . ; /� W E.K/ � E.K/! Qp

Observe that

hP;Qi D h�.P/C h�.Q/ � h�.PC Q/:

Let E.K/C and E.K/� denote the C1-eigenspace and the �1-eigenspace,
respectively, for the action of complex conjugation on E.K/. Since �� is an odd
function, using (8) we see that the anticyclotomic height satisfies

h�.P/ D 0 for all P 2 E.K/C [ E.K/�:
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Therefore, the anticyclotomic p-adic height pairing satisfies

hE.K/C;E.K/Ci D hE.K/�;E.K/�i D 0: (14)

Consequently, if P 2 E.K/C and Q 2 E.K/�, then

hP;Qi D h�.P/C h�.Q/ � h�.PC Q/ (15)

D �1
2
hP;Pi � 1

2
hQ;Qi � h�.PC Q/

D �h�.PC Q/:

4 The Shadow Line

Let E be an elliptic curve defined over Q and p an odd prime of good ordinary
reduction. Fix an imaginary quadratic extension K=Q satisfying the Heegner
hypothesis for E=Q (i.e., all primes dividing the conductor of E=Q split in K).
Consider the anticyclotomic Zp-extension K1 of K. Let Kn denote the subfield of
K1 whose Galois group over K is isomorphic to Z=pnZ. The module of universal
norms for this Zp-extension is defined as follows:

U WD
\

n�0
NKn=K.E.Kn/˝ Zp/ 	 E.K/˝ Zp;

where NKn=K is the norm map induced by the map E.Kn/ ! E.K/ given by
P 7! P

�2Gal.Kn=K/
P� .

By work of Cornut [6] and Vatsal [18] we know that for n large enough, we have
a non-torsion Heegner point in E.Kn/. Since p is a prime of good ordinary reduction,
the trace down to Kn�1 of the Heegner points defined over Kn is related to Heegner
points defined over Kn�1, see [1, §2] for further details. Due to this relation among
Heegner points defined over the different layers of K1, if the p-primary part of the
Tate–Shafarevich group of E=K is finite, then these points give rise to non-trivial
universal norms. Hence, if the p-primary part of the Tate–Shafarevich group of E=K
is finite, then U is non-trivial whenever the Heegner hypothesis holds. By Bertolini
[2], Ciperiani and Wiles [5], and Ciperiani [4] we know that if Gal.Q.Ep/=Q/ is not
solvable, then U ' Zp.

Consider

LK WD U ˝Qp:

If the p-primary part of the Tate–Shafarevich group of E=K is finite, then LK is a
line in the vector space E.K/˝Qp known as the shadow line associated to the triple
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.E;K; p/. The space E.K/ ˝ Qp splits as the direct sum of two eigenspaces under
the action of complex conjugation

E.K/˝Qp D E.K/C ˝Qp ˚ E.K/� ˝Qp:

Observe that

E.K/C ˝Qp D E.Q/˝Qp and E.K/� ˝Qp ' EK.Q/˝Qp;

where EK denotes the quadratic twist of E with respect to K. Since the module U is
fixed by complex conjugation, the shadow line LK lies in one of the eigenspaces:

LK 	 E.Q/˝Qp or LK 	 E.K/� ˝Qp:

The assumption of the Heegner hypothesis forces the analytic rank of E=K to be
odd, and hence the dimension of E.K/ ˝ Qp is odd by the Parity Conjecture [14]
and our assumption of the finiteness of the p-primary part of the Tate–Shafarevich
group of E=K. Hence, dim E.K/� ˝ Qp ¤ dim E.Q/ ˝ Qp. The Sign Conjecture
states that LK is expected to lie in the eigenspace of higher dimension [11].

Our main motivating question is the following:

Question 4.1 (Mazur and Rubin). Consider an elliptic curve E=Q of positive
even analytic rank r, an imaginary quadratic field K such that E=K has analytic
rank r C 1, and a prime p of good ordinary reduction such that the p-primary part
of the Tate–Shafarevich group of E=Q is finite. By the Sign Conjecture, we expect
LK to lie in E.Q/˝ Qp. As K varies, we presumably get different shadow lines LK.
What are these lines and how are they distributed in E.Q/˝Qp?

Note that in the statement of the above question we make use of the following
results:

1. Since E=Q has positive even analytic rank we know that dim E.Q/˝Qp 
 2 by
work of Skinner–Urban [15, Theorem 2] and work of Nekovar [14] on the Parity
Conjecture.

2. Since our assumptions on the analytic ranks of E=Q and E=K imply that the
analytic rank of EK=Q is 1, by work of Gross–Zagier [8] and Kolyvagin [10] we
know that

(a) dim E.K/� ˝Qp D 1;
(b) the p-primary part of the Tate–Shafarevich group of EK=Q is finite, and

hence the finiteness of the p-primary part of the Tate–Shafarevich group
of E=K follows from the finiteness of the p-primary part of the Tate–
Shafarevich group of E=Q.

Thus by (2b) we know that LK 	 E.K/˝Qp, while (1) and (2a) are the input to the
Sign Conjecture.
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It is natural to start the study of Question 4.1 by considering elliptic curves E=Q
of analytic rank 2. In this case, assuming that

rankZE.Q/ D 2; (16)

we identify LK in E.Q/ ˝ Qp by making use of the anticyclotomic p-adic height
pairing, viewing it as a pairing on E.K/ ˝ Zp. This method forces us to restrict
our attention to quadratic fields K where p splits. It is known that U is contained
in the kernel of the anticyclotomic p-adic height pairing [12, Proposition 4.5.2]. In
fact, in our situation, the properties of this pairing and (16) together with the fact
that dim E.K/� ˝ Qp D 1 imply that either U is the kernel of the pairing or the
pairing is trivial. Thus computing the anticyclotomic p-adic height pairing allows us
to verify the Sign Conjecture and determine the shadow line LK .

In order to describe the lines LK for multiple quadratic fields K, we fix two
independent generators P1;P2 of E.Q/˝ Qp (with E given by its reduced minimal
model) and compute the slope of LK ˝Qp in the corresponding coordinate system.
For each quadratic field K we compute a non-torsion point R 2 E.K/� (on the
reduced minimal model of E). The kernel of the anticyclotomic p-adic height
pairing on E.K/ ˝ Zp is generated by aP1 C bP2 for a; b 2 Zp such that
haP1CbP2;Ri D 0. Then by (15) the shadow line LK˝Qp in E.Q/˝Qp is generated
by h�.P2CR/P1�h�.P1CR/P2 and its slope with respect to the coordinate system
induced by fP1;P2g equals

�h�.P1 C R/=h�.P2 C R/:

5 Algorithms

Let E=Q be an elliptic curve of analytic rank 2; see [3, Chap. 4] for an algorithm
that can provably verify the non-triviality of the second derivative of the L-function.
Our aim is to compute shadow lines on the elliptic curve E. In order to do this using
the method described in Sect. 4 we need to

• verify that rankZE.Q/ D 2, and
• compute two Z-independent points P1;P2 2 E.Q/.

By work of Kato [9, Theorem 17.4], computing the `-adic analytic rank of E=Q
for any prime ` of good ordinary reduction gives an upper bound on rankZE.Q/
(see [16, Proposition 10.1]). Using the techniques in [16, §3], which have been
implemented in Sage, one can compute an upper bound on the `-adic analytic rank
using an approximation of the `-adic L-series, thereby obtaining an upper bound
on rankZE.Q/. Since the analytic rank of E=Q is 2, barring the failure of standard
conjectures we find that rankZE.Q/ � 2. Then using work of Cremona [7, Sect. 3.5]
implemented in Sage, we search for points of bounded height, increasing the height
until we find two Z-independent points P1;P2 2 E.Q/. We have thus computed a
basis of E.Q/˝Qp.
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We will now proceed to describe the algorithms that allow us to compute shadow
lines on the elliptic curve E=Q.

Algorithm 5.1. Generator of E.K/� ˝Qp.

Input:

• an elliptic curve E=Q (given by its reduced minimal model) of analytic rank 2;
• an odd prime p of good ordinary reduction;
• an imaginary quadratic field K such that

– the analytic rank of E=K equals 3, and
– all rational primes dividing the conductor of E=Q split in K.

Output: A generator of E.K/� ˝ Qp (given as a point on the reduced minimal
model of E=Q).

(1) Let d 2 Z such that K D Q.
p

d/. Compute a short model of EK, of the form
y2 D x3 C ad2xC bd3.

(2) Our assumption on the analytic ranks of E=Q and E=K implies that the
analytic rank of EK=Q is 1. Compute a non-torsion point3 of EK.Q/ and

denote it .x0; y0/. Then . x0
d ;

y0
p

d
d2
/ is an element of E.K/ on the model

y2 D x3 C axC b.

(3) Output the image of . x0
d ;

y0
p

d
d2
/ on the reduced minimal model of E.

Algorithm 5.2. Computing the anticyclotomic p-adic height associated to
.E;K; p/.

Input:

• elliptic curve E=Q (given by its reduced minimal model);
• an odd prime p of good ordinary reduction;
• an imaginary quadratic field K such that p splits in K=Q;
• a non-torsion point P 2 E.K/.

Output: The anticyclotomic p-adic height of P.

(1) Let pOK D ��c. Fix an identification  W K� ' Qp. In particular,
vp. .�// D 1.

(2) Let m0 D lcmfc`g, where ` runs through the primes of bad reduction for
E=Q and c` is the Tamagawa number at `. Compute4 R D m0P.

3Note that by Gross and Zagier [8] and Kolyvagin [10] the analytic rank of EK=Q being 1 implies
that the algebraic rank of EK=Q is 1 and the Tate–Shafarevich group of EK=Q is finite. Furthermore,
in this case, computing a non-torsion point in EK.Q/ can be done by choosing an auxiliary
imaginary quadratic field F satisfying the Heegner hypothesis for EK=Q such that the analytic
rank of EK=F is 1 and computing the corresponding basic Heegner point in EK.F/.
4Note that Steps 2 and 3 are needed to ensure that the point whose anticyclotomic p-adic height we
will compute using formula (7) satisfies the required conditions.
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(3) Determine the smallest positive integer n such that nR and nRc reduce to
0 2 E.Fp/ modulo � . Note that n is a divisor of #E.Fp/. Compute T D nR:

(4) Compute dh.R/ 2 OK defined in (9) as a generator of the ideal
Y

q

qh ordq.ı.R//=2

where h is the class number of K, the product is over all prime ideals q of
OK, and ı.R/ is the denominator ideal of x.R/OK.

(5) Let fn denote the nth division polynomial associated to E. Compute dh.T/ D
dh.nR/ D fn.R/hdh.R/n

2
. Note that by Step (2) and Proposition 1 of Wuthrich

[20] we see that fn.R/hdh.R/n
2 2 OK since dh.T/ is an element of K that is

integral at every finite prime.
(6) Compute ��.t/ WD �p.t/ as a formal power series in tZpŒŒt�� with sufficient

precision. This equality holds since our elliptic curve E is defined over Q.
(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of T:

compute

h�.T/ D 1

p
logp

�

 

�

��.T/

��.Tc/

��

C 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@ 

0

@

�p

��x.T/
y.T/

�

�p

��x.T/c

y.T/c

�

1

A

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@

�p

�

 
��x.T/

y.T/

��

�p

�

 
��x.T/c

y.T/c

��

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

:

(8) Output the anticyclotomic p-adic height of P: compute5

h�.P/ D 1

n2m2
0

h�.T/:

Algorithm 5.3. Shadow line attached to .E;K; p/.

Input:

• an elliptic curve E=Q (given by its reduced minimal model) of analytic rank 2
such that rankZE.Q/ D 2;

• an odd prime p of good ordinary reduction such that the p-primary part of the
Tate–Shafarevich group of E=Q is finite;

• two Z-independent points P1;P2 2 E.Q/;

5As a consistency check we compute the height of nP and verify that h�.nP/ D 1
n2 h�.P/ for

positive integers n � 5.
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• an imaginary quadratic field K such that

– the analytic rank of E=K equals 3, and
– p and all rational primes dividing the conductor of E=Q split in K.

Output: The slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the
coordinate system induced by fP1;P2g.
(1) Use Algorithm 5.1 to compute a non-torsion point S 2 E.K/�. We then have

generators P1;P2; S of E.K/˝Qp such that P1;P2 2 E.Q/ and S 2 E.K/�
(given as points on the reduced minimal model of E=Q) .

(2) Compute P1 C S and P2 C S.
(3) Use Algorithm 5.2 to compute6 the anticyclotomic p-adic heights:

h�.P1 C S/ and h�.P2 C S/. Finding that at least one of these heights
is non-trivial implies that the shadow line associated to .E;K; p/ lies in
E.Q/˝Qp, i.e., the Sign Conjecture holds for .E;K; p/.

(4) The point h�.P2 C S/P1 � h�.P1 C S/P2 is a generator of the shadow line
associated to .E;K; p/. Output the slope of the shadow line LK 	 E.Q/˝Qp

with respect to the coordinate system induced by fP1;P2g: compute

�h�.P1 C S/=h�.P2 C S/ 2 Qp:

6 Examples

Let E be the elliptic curve “389:a1” [17, Elliptic Curve 389.a1] given by the model

y2 C y D x3 C x2 � 2x:

We know that the analytic rank of E=Q equals 2 [3, §6.1] and
rankZE.Q/ D 2, see [7]. In addition, 5 and 7 are good ordinary primes for E.
We find two Z-independent points

P1 D .�1; 1/;P2 D .0; 0/ 2 E.Q/:

We will now use the algorithms described in Sect. 5 to compute the slopes of two
shadow lines on E.Q/ ˝ Q5 with respect to the coordinate system induced by
fP1;P2g.

6.1 Shadow Line Attached to
�
“389:a1”;Q.

p�11/; 5
�

The imaginary quadratic field K D Q.
p�11/ satisfies the Heegner hypothesis for

E and the quadratic twist EK has analytic rank 1. Moreover, the prime 5 splits in K.

6We compute the height of P1 C P2 C S as a consistency check.

http://www.lmfdb.org/EllipticCurve/Q/389.a1
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We use Algorithm 5.1 to find a non-torsion point S D . 1
4
; 1
8

p�11� 1
2
/ 2 E.K/�.

We now proceed to compute the anticyclotomic p-adic heights of P1C S and P2C S
which are needed to determine the slope of the shadow line associated to the triple
�

“389:a1”;Q.
p�11/; 5�. We begin by computing

A1 WD P1 C S D
�

� 6
25

p�11C 27

25
;� 62
125

p�11C 29

125

�

;

A2 WD P2 C S D .�2p�11;�4p�11 � 12/:

We carry out the steps of Algorithm 5.2 to compute h�.A1/:

(1) Let 5OK D ��c, where � D . 1
2

p�11C 3
2
/ and �c D .� 1

2

p�11C 3
2
/. This

allows us to fix an identification

 W K� ! Q5

that sends

1

2

p�11C 3
2
7! 2 � 5C 52C 3 � 53C 4 � 54C 4 � 55C 3 � 57C 58C 59CO.510/:

(2) Since the Tamagawa number at 389 is trivial, i.e., c389 D 1, we have m0 D 1.
Thus R D A1.

(3) We find that n D 9 is the smallest multiple of R and Rc such that both points
reduce to 0 in E.OK=�/. Set T D 9R.

(4) Note that the class number of K is h D 1. We find dh.R/ D 1
2

p�11 � 3
2
.

(5) Let f9 denote the 9th division polynomial associated to E. We compute

dh.T/ D dh.9R/

D f9.R/dh.R/
92

D 24227041862247516754088925710922259344570p�11
� 147355399895912034115896942557395263175125:

(6) We compute

��.t/ W D �5.t/
D tC �4C 5C 3 � 52 C 53 C 2 � 54 C 3 � 55 C 2 � 56 C O.58/

�

t3

C �3C 2 � 5C 2 � 52 C 2 � 53 C 2 � 54 C 2 � 55 C 2 � 56 C O.57/
�

t4

C �1C 5C 52 C 53 C 3 � 54 C 3 � 55 C O.56/
�

t5

C �4C 2 � 5C 2 � 52 C 2 � 53 C 3 � 54 C O.55/
�

t6

C �4C 3 � 5C 4 � 52 C O.54/
�

t7 C �3C 3 � 52 C O.53/
�

t8

C �3 � 5C O.52/
�

t9 C .2C O.5// t10 C O.t11/:



Shadow Lines in the Arithmetic of Elliptic Curves 51

(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of T: we
compute

h�.T/ D 1

p
logp

�

 

�

��.T/

��.Tc/

��

C 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@

�p

�

 
��x.T/

y.T/

��

�p

�

 
��x.T/c

y.T/c

��

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 3C 5C 52 C 4 � 54 C 3 � 55 C 4 � 57 C 3 � 58 C 59 C O.510/:

(8) We output the anticyclotomic p-adic height of A1:

h�.A1/ D 1

92
h�.T/

D 3C 3 � 5C 3 � 52 C 2 � 54 C 4 � 55 C 4 � 56 C 3 � 58 C O.510/:

Repeating Steps (1)–(8) for A2 yields

h�.A2/ D 3C 2 � 5C 4 � 52 C 2 � 55 C 56 C 4 � 57 C 4 � 59 C O.510/:

As a consistency check, we also compute

h�.P1CP2C S/ D 1C 5C 3 � 52C 53C 2 � 54C 55C 56C 4 � 58C 4 � 59CO.510/:

Observe that, numerically, we have

h�.P1 C P2 C S/ D h�.P1 C S/C h�.P2 C S/:

The slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the coordinate
system induced by fP1;P2g is thus

�h�.P1 C S/

h�.P2 C S/
D 4C 2 � 5C 52 C 3 � 53 C 54 C 56 C 57 C O.510/:

6.2 Shadow Line Attached to
�
“389:a1”;Q.

p�24/; 5
�

Consider the imaginary quadratic field K D Q.
p�24/. Note that K satisfies the

Heegner hypothesis for E, the twist EK has analytic rank 1, and the prime 5 splits
in K.
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Using Algorithm 5.1 we find a non-torsion point

S D
�

1

2
;
1

8

p�24 � 1
2

�

2 E.K/�:

We then compute

P1 C S D
�

�1
6

p�24C 1

3
;� 5
18

p�24 � 1
�

P2 C S D
�

�1
2

p�24 � 2;�6
�

:

Many of the steps taken to compute h�.P1 C S/ and h�.P2 C S/ are quite similar
to those in Sect. 6.1. One notable difference is that in this example the class number
h of K is equal to 2. We find that

h�.P1 C S/ D 4C 2 � 5C 3 � 54 C 2 � 55 C 4 � 56 C 2 � 57 C 58 C 2 � 59 C O.510/;

h�.P2 C S/ D 1C 5C 53 C 55 C 2 � 56 C 4 � 57 C 2 � 58 C 3 � 59 C O.510/:

In addition, we compute h�.P1 C P2 C S/ and verify that

h�.P1 C P2 C S/ D 4 � 5C 53 C 3 � 54 C 3 � 55 C 56 C 2 � 57 C 4 � 58 C O.510/

D h�.P1 C S/C h�.P2 C S/:

This gives that the slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the
coordinate system induced by fP1;P2g is

�h�.P1 C S/

h�.P2 C S/
D 1C 5C 3 � 52 C 3 � 55 C 3 � 56 C 3 � 57 C 2 � 58 C 59 C O.510/:

6.3 Summary of Results of Additional Computations
of Shadow Lines

The algorithms developed in Sect. 5 enable us to compute shadow lines in many
examples which is what is needed to initiate a study of Question 4.1. We will now
list some results of additional computations of slopes of shadow lines on the elliptic
curve “389:a1”. In Tables 1 and 2 we fix the prime p D 5; 7, respectively, and vary
the quadratic field.
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the homology of the degree n Fermat curve as a Galois module for the action of the
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1 Introduction

The Galois actions on the étale homology, cohomology, and homotopy groups of
varieties carry information about rational points. We revisit results of Anderson
[2] on a relative homology group of the Fermat curve of prime exponent to
make his results amenable to computations of groups such as H1.GS; �

ab
1 / and

H2.GS; �
ab
1 ^ �ab

1 / where GS denotes a Galois group of a maximal extension of a
number field with restricted ramification and �ab

1 denotes the abelianized geometric
fundamental group of the Fermat curve, or of an open subset. These groups arise in
obstructions of Ellenberg to rational points [8] as well as in McCallum’s application
of the method of Coleman and Chabauty to Fermat curves [13].

Let k be a number field. The Fermat curve of exponent n is the smooth projective
curve X � P2k of genus g D .n � 1/.n � 2/=2 given by the equation

xn C yn D zn:

The affine open U � X given by z 6D 0 has affine equation xn C yn D 1. The closed
subscheme Y � X defined by xy D 0 consists of 2n points. Let H1.U;YIZ=n/
denote the étale homology group of the pair .U ˝ k;Y ˝ k/, which is a continuous
module over the absolute Galois group Gk of k. The n � n action on X given by

.� i; � j/ � Œx; y; z� D Œ� ix; � jy; z�; .� i; � j/ 2 n � n

determines an action on U and Y . These actions give H1.U;YIZ=n/ the structure
of a .Z=n/Œn � n� module. As a .Z=n/Œn � n� module, H1.U;YIZ=n/ is free
of rank one [2, Theorem 6], with generator denoted by ˇ. It follows that the Galois
action of � 2 Gk is determined by �ˇ D B�ˇ for some B� 2 .Z=n/Œn � n�.

Anderson shows that B� is determined by an analogue of the classical gamma
function �� 2 Z=nshŒn�, where Z=nsh denotes the strict Henselization of Z=n. In
particular, there is a formula [2, Theorems 9 and 7] recalled in (2) as the equation
d0sh.��/ D B� with d0sh defined in (1) and immediately below. The canonical
derivation d W Z=nshŒn� ! ˝Z=nshŒn� from the ring Z=nshŒn� to its module
of Kähler differentials allows one to take the logarithmic derivative dlog�� of �� ,
which is convenient to view as an element of a particular quotient of ˝Z=nshŒn�.
See Sect. 2. For n prime, dlog�� determines B� uniquely [2, 10.5.2,10.5.3]. The
function � 7! dlog�� is in turn determined by a relative homology group
of the punctured affine line H1.A

1 � V.
Pn�1

iD0 xi/; f0; 1gIZ=n/ [2, Theorem 10].
Putting this together, Anderson shows that, for n D p a prime, the GQ.�p/ action
on H1.U;YIZ=p/ factors through Gal.L=Q.�p// where L is the splitting field of
1 � .1 � xp/p. Ihara [11] and Coleman [6] obtain similar results from different
viewpoints.

Let K denote the cyclotomic field K D Q.�n/, where �n denotes a primitive nth
root of unity, and let GK be its absolute Galois group. When the exponent is clear, let
� denote �n or �p for a prime p. Let � denote the classical Kummer map; for � 2 K�,
let �.�/ W GK ! n be defined by
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�.�/.�/ D �
n
p
�

n
p
�
:

In Proposition 2, we determine dlog�� in terms of the classical Kummer map for
all n 
 3, modulo indeterminacy which does not affect B� , with the answer being
dlog�� DPn�1

iD1 �.1 � ��i/.�/� i dlog �.
Recall that Vandiver’s conjecture for a prime p is that p does not divide hC, where

hC is the order of the class group of Q.�p C ��1
p /. It has been verified for all p less

than 163 million. For n D p a prime satisfying Vandiver’s conjecture, we give a
proof that Gal.L=K/ is isomorphic to .Z=p/r with r D .pC 1/=2 in Proposition 1.
This is false for p not satisfying Vandiver’s conjecture as seen in Remark 4. There
are a couple of natural choices for such an isomorphism. In Corollary 1, we show
that the following map gives an isomorphism:

˚ D �.�/ �
p�1
2
Y

iD1
�.1 � ��i/ W Gal.L=K/! .p/

pC1
2 :

For p D 3, we use the formula for dlog�� to compute B� explicitly in Lemma 6.
It is possible to extend this calculation to compute B� for all primes p and we will
make this computation available in a forthcoming paper. (As seen in Remark 6,
the element dlog�� and [2, 10.5.2] do not determine B� when n is not prime
so the calculation of B� when n is not prime will require further input.) Combining
the above, we obtain:

Theorem 1. Let p D 3 and K D Q.�p/. The GK-action on H1.U;YIZ=p/ factors
through GK ! Gal.L=K/, where L denotes the splitting field of 1 � .1 � xp/p (or
equivalently of x6�3x3C3). Write H1.U;YIZ=p/ Š ZpŒ�0; �1�=h�p

0 �1; �p
1 �1i and

Gal.L=K/ Š Z=p�Z=p. Then .c0; c1/ 2 Z=p�Z=p acts on ZpŒ�0; �1�=h�p
0�1; �p

1�1i
by multiplication by B� DPp�1

i;jD0 bi;j�
i
0�

j
1 where

b0;0 D 1C c0 � c20

b0;1 D c1 � c20

b1;1 D �c1 � c20:

and where the rest of the coefficients bi;j are determined by bi;j D bj;i, and the fact
that b0;0 C b0;1 C b0;2 D 1, b1;0 C b1;1 C b1;2 D 0, and b2;0 C b2;1 C b2;2 D 0.

We have an analogous calculation of H1.U;YIZ=p/ for all primes p satisfying
Vandiver’s conjecture, which we will make available shortly.

Given the Galois action on H1.U;YIZ=n/, we compute the Galois actions on
H1.UIZ=n/ and H1.XIZ=n/ for all n 
 3 in Sect. 6.

These computations can be used to study rational points on varieties in the
following way. Let Z be a scheme over k, and for simplicity assume that Z has a
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rational point b. (This assumption is unnecessary, but it is satisfied in the situations
encountered in this paper and it simplifies the exposition.) Choose a geometric point
of Z with image b and let � D �1.Zk; b/ denote the geometric étale fundamental
group of Z based at the chosen geometric point. The generalized Kummer map
associated with Z and b is the map � W Z.k/! H1.Gk; �/ defined by

�.x/ D Œ� 7! 	�1�	�

where 	 is an étale path from b to a geometric point above x. Before returning to the
potential application to rational points, we remark that the map � is functorial and
the computation of dlog�� in Proposition 2 is obtained by applying � to the K-map
A1 � V.

Pn�1
iD0 xi/! Gn�1

m .
From �, we also obtain a map �ab;p W Z.k/ ! H1.Gk; �

ab ˝ Zp/ defined to be
the composition of � with the map H1.Gk; �/! H1.Gk; �

ab ˝ Zp/ induced by the
quotient map � ! �ab˝Zp, where Zp denotes the p-adic integers. For Z a curve or
abelian variety over a number field, �ab;p is well-known to be injective. Let S denote
a set of places of k including the infinite places, all the primes of bad reduction
of Z and a place above p. Let GS D �1.OkŒ1=S�/ denote the Galois group of the
maximal extension of k ramified only over S. Assume that Z is proper to simplify
exposition. Then �ab;p factors through a map �ab;p W Z.k/! H1.GS; �

ab ˝ Zp/. Let
� D Œ��1 � Œ��2 � : : : denote the lower central series of the profinite group � ,
where Œ��m is the closure of the subgroup ŒŒ��m�1; �� generated by commutators of
elements of � with elements of Œ��m�1. Using work of Schmidt and Wingberg [17],
Ellenberg [8] defines a series of obstructions to a point of the Jacobian of a curve
Z lying in the image of the Abel–Jacobi map associated with b. The first of these
obstructions is defined using a map

ı2 W H1.GS; �
ab ˝ Zp/! H2.GS; .Œ��2=Œ��3/˝ Zp/

such that Ker ı2 � Z.k/. Zarkhin defines a similar map [21]. The group
.Œ��2=Œ��3/˝ Zp fits into a short exact sequence

0! Zp.1/! .�ab ^ �ab/˝ Zp ! .Œ��2=Œ��3/˝ Zp ! 0:

There are mod p versions of ı2 and the generalized Kummer maps. A more detailed
account of Ellenberg’s obstructions is in [20].

Thus computations of H1.GS; �
ab ˝ Z=p/ and H2.GS; .�

ab ^ �ab/˝ Z=p/ give
information about rational points. Groups closely related to H1.GS; �

ab˝Z=p/ also
appear in [5, 13].

The final section of this paper includes calculations of H1.Gal.L=K/;M/ and
H2.Gal.L=K/;M/ for M each of H1.U;YIZ=n/, H1.UIZ=n/, H1.XIZ=n/, and

H1.U;Z=n/ ^ H1.U;Z=n/:

These can be inserted into the Hochschild–Serre spectral sequence

Hi.Gal.L=K/;Hj.GS;L;M//) HiCj.GS;K ;M/;
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where GS;L denotes the Galois group of the maximal extension of L only ramified at
places above S, and GS;K D GS. Since H1.U;YIZ=n/, H1.UIZ=n/, and H1.XIZ=n/
are �ab ˝ Z=n for Z D U=Y , Z D U, and Z D X, respectively, these are groups
mentioned above, and appear in Ellenberg’s obstructions. This is the subject of
on-going work.

1.1 Notation

Let n 
 3 be an integer; often n will be a prime p. Let � be a fixed primitive nth
root of unity and K D Q.�/. For brevity, let A D Z=n, and let Ash denote the strict
Henselization of A. If n D p is prime, then the field A is a Henselian local ring and
its strict Henselization is the separable closure Ash ' NFp.

If k is any number field, Gk denotes the absolute Galois group of k.

Definition 1. Given a primitive nth root n
p
� of � 2 k and � 2 Gk, then �.�/� is

the element of A such that

�
n
p
� D ��.�/� n

p
�:

Remark 1. The map � W k� ! H1.Gk;Z=n.1// defined by letting �.�/ be
represented by the twisted homomorphism � 7! �.�/� is the generalized Kummer
map of Gm;k with base point 1 2 Gm;k.k/. Here Z=n.1/ is the Galois module with
underlying group Z=n and Galois action given by the cyclotomic character. See, for
example, [20, 12.2.1, Example 1].

For � 2 K� and n D p, the map �.�/ W GK ! Z=p is a homomorphism and is
independent of the choice of pth root of � because p � K.

2 Anderson’s Results, Revisited

In this section, we recall results from [2] that are relevant for this paper. Recall that
K D Q.�/, that U � A2K denotes the affine Fermat curve over K with equation
xnC yn D 1, and that Y � U is the divisor defined by xy D 0. The path ˇ W Œ0; 1�!
U.C/ given by t 7! . n

p
t; n
p
1 � t/, where n

p� denotes the real nth root, determines
a singular 1-simplex in the homology of U relative to Y whose class we denote by
the same name.

For m 2 N, let �m denote the group ring over A of the finite group n.C/
�.mC1/.

Then �m has a natural GK-action. For 0 � i � m, let �i denote a primitive nth root
of unity in the ith copy of n.C/. Then

�m D AŒ�0; : : : ; �m�=.�
n
0 � 1; : : : ; �n

m � 1/:
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There is an action of �1 on U given by � i
0 � � j

1 W .x; y/ 7! .� i
0x; �

j
1y/. This action

stabilizes Y . Thus the relative homology group H1.U;YIA/ is a �1-module. Note
that H1.U;YIA/ has rank n2 over A.

Anderson describes the GK-action on H1.U;YIA/. First, [2, Theorem 6] states
that H1.U;YIA/ is a free rank one module over �1 generated by the class ˇ.

Specifically, � 2 GK acts A-linearly, and

� � .� i
0�

j
1ˇ/ D .� � � i

0/.� � � j
1/B�ˇ;

where B� is a unit in �1 defined by

� � ˇ D B�ˇ:

Thus to describe the GK-action on H1.U;YIA/, it is necessary and sufficient to
describe the action on the element ˇ.

Anderson also proves that the action of the absolute Galois group GQ on
H1.U;YIA/ factors through a finite quotient. This result is a consequence of the
analysis in the rest of the section. In particular, if n is a prime p, then � 2 GK acts
trivially on H1.U;YIA/ if and only if � fixes the splitting field L of the polynomial
fp D 1�.1�xp/p [2, Sect. 10.5]. In Sect. 3, we prove that Gal.L=K/ is an elementary
abelian p-group of rank at most .pC 1/=2.

Anderson highlights the following application of this result. By [2, Lemma, page
558], there is a connection between the action of � 2 GQ on H1.U;YIA/ and the
action of � on the fields of definition of points of a generalized Jacobian of X.

Theorem 2 ([2], Theorem 0). Let S be the generalized Jacobian of X with
conductor1. Let b denote the Q-rational point of S corresponding to the difference
of the points .0; 1/ and .1; 0/. The number field generated by the coordinates of the
nth roots of b in S.Q/ contains the splitting field L of the polynomial 1 � .1 � xn/n,
with equality if n is prime.

Information on fields generated by points of the Jacobian of quotients of Fermat
curves is also contained in [5, 7, 10, 18].

In the remainder of this section, we describe Anderson’s method for determin-
ing B� . Let bi;j denote the coefficients of B� , so that

B� D
X

0�i;j<n

bi;j�
i
0�

j
1:

It will often be convenient to arrange the coefficients of B� in an n � n matrix.
Let w W �1 ! �1 be the map induced by swapping the two copies of n.C/,

i.e., by swapping �0 and �1. Then w preserves the units in �1. Let .��
1 /

w denote the
symmetric units, i.e., the units fixed by w. If ai;j 2 A, then an element

X

0�i;j<n

ai;j�
i
0�

j
1 2 ��

1

is in .��
1 /

w precisely when ai;j D aj;i for all i; j.
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Fact 3 ([2, Theorem 7]). If � 2 GQ, then B� 2 .��
1 /

w. In other words, the
coefficients of B� are symmetric; bi;j D bj;i for any 0 � i; j < n.

Next, consider the map d00 W .��
1 /

w ! ��
2 given by

X

ai;j�
i
0�

j
1 7!

�

P

ai;j�
j
0�

i
1�

j
2

� �

P

ai;j�
i
0�

j
2

�

�

P

ai;j�
i
0�

j
1�

j
2

� �

P

ai;j�
i
1�

j
2

� :

By [2, Theorem 7], B� is in the kernel of d00. In particular, there is an equality in
��
2 , given by

�
X

bi;j�
j
0�

i
1�

j
2

� �
X

bi;j�
i
0�

j
2

�

D
�
X

bi;j�
i
0�

j
1�

j
2

� �
X

bi;j�
i
1�

j
2

�

:

This gives, via the map ��
2 ! ��

1 sending �2 7! 1, the equality

�
X

bi;j�
j
0�

i
1

� �
X

bi;j�
i
0

�

D
�
X

bi;j�
i
0�

j
1

� �
X

bi;j�
i
1

�

:

By Fact 3, the first terms on each side cancel giving

X

bi;j�
i
0 D

X

bi;j�
j
1:

This is only possible if the following is true.

Fact 4 ([2, 10.5.4]). If 1 � i � n, then
P

0�j<n bi;j D 0.

In other words, the entries of each column of the matrix B� sum up to zero, for
all but the zeroth column. By Fact 3, the entries of each row of the matrix B� also
sum up to zero, for all but the zeroth row.

Furthermore, consider the map d0 W ��
0 ! .��

1 /
w given by

X

ai�
i
0 7!

�P

ai�
i
0

� �P

ai�
i
1

�

�P

ai�
i
0�

i
1

� ; (1)

as well as its extension d0sh W N��
0 ! . N��

1 /
w, where N�i D �i ˝A Ash. The kernel

Ker.d0sh/ is determined in [2, Proposition 8.3.1]; when n D p is prime, it is the
cyclic subgroup of order p multiplicatively generated by �0.

Fact 5 ([2, Theorem 9]). Let n 
 3 and let Ker.d0sh/ denote the kernel of d0sh. In
N��
0 =Ker.d0sh/, there exists a unique element �� which maps to B� under d0sh.

In the sequel, the notation �� will also be used to denote an element of N��
0

representing this coset in N��
0 =Ker.d0sh/.
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Fact 6 ([2, 9.6 and 10.5.2]). The difference B� � 1 lies in the augmentation ideal
.1 � �0/.1 � �1/�1.

Consider the element �� such that

d0sh.��/ D B� : (2)

By Fact 5, in order to determine B� , it suffices to find the preimage �� . To
accomplish this, Anderson looks at the logarithmic derivative homomorphisms from
the groups of units ��

k to the Kähler differentials ˝.�k/. This has the geometric
meaning of comparing with “the circular motive,” where the Galois action is more
transparent.

There is a commutative square

L̄×
0

d′

dlog

(L̄×
1 )w

dlog

W (L̄0) W (L̄1)w,

where the bottom horizontal map is defined analogously to d0. Note that for each m,
the N�m-module ˝. N�m/ is free on generators fdlog �ig0�i�m.

Here is some notation needed to describe dlog�� . Let QV D A1 � n and
let V D QV [ f1g. Let �0 be a small counterclockwise loop around 1. Choose the
isomorphism

H1. QVIA/ D AŒn��0 ' ˝AŒ�0�;

where �0 7! d�0
�0

.
Consider the exact sequence from [2, §9]

0! A�0 ! H1. QVIA/! H1.VIA/! 0;

or

0! A
d�0
�0
! ˝AŒ�0�! H1.VIA/! 0; (3)

which identifies H1.VIA/ as a quotient of ˝.�0/.
Let Z denote the subscheme of V defined by the vanishing of x0.1� x0/, i.e., the

points 0 and 1 in V . Let  2 H1.V;ZIA/ denote the homology class represented
by the cycle given by the interval Œ0; 1�. Let .� � 1/ denote the cycle given by
concatenating the path � and the path  traveled in reverse. Since GK fixes the
endpoints of  , the cycle .� � 1/ represents a class in H1.VIA/ D H1.V;;IA/.

Let �� denote the coset in ˝.�0/=A dlog �0 which corresponds to the homology
class of .� � 1/ under (3). The following theorem computes dlog�� to be �� .
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Theorem 7 ([2, Theorem 10]). dlog�� 2 ˝. N�0/ represents the Ash dlog
�0-coset �� .

For this paper, the importance of Theorem 7 lies in the geometric description
of �� . This description shows that � 7! �� is the image of a rational point under a
generalized Kummer map of the sort which arises in the section conjecture. We use
this observation to compute �� in Sect. 4. By Theorem 7, we have therefore also
computed dlog�� .

To give a complete description of H1.U;YIA/ as a Galois module, it thus suffices
to achieve the following goal, which we complete in Sect. 5 for the case n D 3 and
in future work for n an odd prime.

Goal: reconstruct B� from �� .

3 Galois Group of the Splitting Field of 1 � .1 � xp/p over K

Let n D p be an odd prime and let � be a primitive pth root of unity. The choice of
� fixes an identification Z=p! p by sending i to � i. Let K D Q.�/.

Let L be the splitting field of the polynomial fp.x/ D 1 � .1 � xp/p. In
Proposition 1, we determine the structure of the Galois group G D Gal.L=K/ for
primes p satisfying Vandiver’s conjecture. The techniques in this section are well-
known to experts but we could not find an off-the-shelf reference for this result.
Before starting the proof, we describe some motivation for it in the next remark.

Remark 2.

1. As seen in Theorem 2, L is the field of definition of the pth roots of a point b in
a certain generalized Jacobian. By [2, Sect. 10.5], an automorphism � 2 GK acts
trivially on H1.U;YIA/ if and only if � 2 GL. In view of this result, to determine
the action of GK on H1.U;YIA/, it remains to determine the action of the finite
Galois group Gal.L=K/.

2. We would like to thank the referee for pointing out related work in [10]. Recall
that the Jacobian of the Fermat curve X of exponent p is isogenous to J D
Qp�2

aD1 Ja where Ja is the Jacobian of the curve yp D xa.1 � x/. Consider the field
extension LJ of Q generated by the points of order p on J. In [10, Theorem 4],
Greenberg proves that LJ is the field K.f p

p
� j � 2 CC/ generated over K by the

pth roots of the real cyclotomic units. (Note that Lemma 2 below implies that
LJ � L.) He remarks that Gal.LJ=K/ ' .Z=p/t with t � .p � 3/=2 and that
t D .p � 3/=2 when p satisfies Vandiver’s conjecture.

3. We would like to thank Sharifi for pointing out similar work in [1, Sect. 2.8],
where the authors determine the Galois group of the Galois closure of

p
q

1 � p
p

1 � � over K. That extension is non-abelian over Q.p2 /, in contrast
with the extension in this paper which is abelian even over K.
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3.1 The Splitting Field of 1 � .1 � xp/p

The prime p is totally ramified in K with p D h1 � �ip�1 [19, Lemma 1.4]. Thus
there is a unique place � D h1 � �i above p in K. Also, p D Qp�1

iD1 .1 � � i/ and
.1 � � i/=.1 � �/ is a unit of OK by [19, Lemma 1.3]. Thus � D h1 � � ii for all
i D 1; 2; : : : ; p�1. Since 1 D v�.p/ D .p�1/v�.1��/, it follows that v�.1�� i/ D
1=.p � 1/ for 1 � i � p � 1.

Let L0 be the maximal elementary abelian p-group extension of K unramified
except over � D h1 � �i.
Lemma 1.

1. L D K. p
p

1 � � i; 1 � i � p � 1/.
2. L � L0 and Gal.L=K/ is an elementary abelian p-group.

Proof.

1. Let z D 1 � xp where x is a root of 1 � .1 � xp/p. The equality zp D 1 implies
that K � L. The p2 � p non-zero roots of fp.x/ are the pth roots of 1 � � i for
1 � i � p � 1. Thus L D K. p

p

1 � � i; 1 � i � p � 1/.
2. The field L is the compositum of the fields K. p

p

1 � � i/. For each i, the extension
K. p
p

1 � � i/=K is a Galois degree p extension ramified only above 1� � i and1.
This proves both statements.

Lemma 2. The field L is the same as the fields L2 and L3 where

L2 D K. p
p

1 � � i; 1 � i � p � 1
2

; p
p

p/I

L3 D K. p
p

1 � � i; 1 � i � p � 1
2

; p
p

�/:

Proof. The idea of the proof is to show L 	 L3 	 L2 	 L.
L 	 L3: For p�1

2
< i � p � 1, write j D �i. Then

p
p

1 � � j D p
p

1 � ��i D p
p

��i � 1 � p
p�1:

Since p is odd, p
p�1 2 K. So

p
p

1 � � j D p
p

��i.1 � � i/ � p
p�1 D p

p

1 � � i � . p
p

�/�i � p
p�1 2 L3:

L3 	 L2:
Let �p2 denote a pth root of �. It suffices to show that �p2 2 L2. Write p D bc with

b D
p�1
2
Y

iD1
.1 � � i/; c D

p�1
Y

iD pC1
2

.1 � � i/:
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Note that .1 � � i/=.1 � ��i/ D �� i. Thus, b
c D .�1/

p�1
2 �

.p�1/.pC1/
8 and

b2 D b

c
� bc D .�1/ p�1

2 �
. p�1/. pC1/

8 � p:

Then

�
. p�1/. pC1/

8 D .�1/ p�1
2 p�1

p�1
2
Y

iD1
.1 � � i/2:

Let J D .p�1/2.pC1/=16 and note that p − J. Raising both sides of the previous
equation to the power p�1

2
1
p shows that

�J
p2 D �0. p

p�1/ . p�1/2

4 . p
p

p/
1�p
2

p�1
2
Y

iD1

�

p
p

.1 � � i/2
�

p�1
2
;

for some pth root of unity �0. Thus �J
p2
2 L2 and �p2 2 L2.

L2 	 L: This follows from the equality p
p

p DQp�1
iD1

p
p

1 � � i.

3.2 Background on Units in Cyclotomic Fields

Let K D Q.�/ and let KC D Q.� C ��1/. Let E D O�
K (resp., EC D O�

KC
) denote

the group of units in OK (resp., OKC). Let V denote the subgroup of K� generated
by f˙�; 1 � � i W i D 1; 2; : : : ; p � 1g. Let W be the group of roots of unity in K.

Consider the cyclotomic units C D V \O� of K and the cyclotomic units CC D
C\ .OC/� of KC [19, page 143]. By [19, Lemma 8.1], C is generated by � and CC;
and CC is generated by �1 and the units

�a D �.1�a/=2.1 � �a/=.1 � �/;

for 1 < a < p=2. By [19, Theorem 4.12], the index of WEC in E is 1 or 2. Let hC
denote the order of the class group of KC.

Theorem 8 ([19, Theorem 8.2]). The index of the cyclotomic units CC in EC is
the class number hC of KC. Thus if Vandiver’s conjecture is true for the prime p,
then E=Ep is generated by C.

Remark 3. Vandiver’s conjecture (first conjectured by Kummer in 1849) states that
p does not divide the class number hC. It has been verified for all p less than 163
million [4]. It is also true for all regular primes.
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3.3 The Galois Group of 1 � .1 � xp/p

Proposition 1. If Vandiver’s conjecture is true for the prime p, then the Galois
group of L=K is an elementary abelian p-group of rank .pC 1/=2.

Proof. By Lemma 1, Gal.L=K/ is an elementary abelian p-group. Let r be the
integer such that Gal.L=K/ ' .Z=p/r. The field L is obtained by adjoining pth roots
of elements in some subgroup B � K�=.K�/p, and by Kummer theory B ' .Z=p/r.
By Lemma 2, B is generated by � and 1 � � i for 1 � i � .p � 1/=2. Thus
r � .pC 1/=2. Thus it suffices to show that r 
 .pC 1/=2.

Note that B is generated by � and 1 � � i for 1 � i � .p � 1/=2. Thus B is
also generated by �, 1 � �, and �a for 1 < a < p=2. Consider the subgroup B0 of
K�=.K�/p generated by � and �a for 1 < a < p=2. Let r0 be the rank of B0 over Z=p.
Since � and �a are units, and 1 � � has positive valuation at the prime above p, it
suffices to show that r0 
 .p � 1/=2.

Since�1 is a pth power, B0 is also the subgroup generated by the cyclotomic units
C. By hypothesis, p satisfies Vandiver’s conjecture and so Theorem 8 implies that

B0 ' E=Ep. By Dirichlet’s unit theorem, E ' Z
p�1
2 �1�p. Thus r0 D p�1

2
�1C1 D

.p � 1/=2:
We now describe an explicit set of generators for Gal.L=K/. Given a primitive

pth root p
p
� of � 2 K and � 2 GK , recall from Definition 1 that �.�/� is the

element of Z=p such that

�
p
p
� D ��.�/� p

p
�:

Corollary 1. Let p be an odd prime such that p − hC. Then the following map is an
isomorphism:

˚ D �.�/ �
p�1
2
Y

iD1
�.1 � ��i/ W Gal.L=K/! .Z=p/

pC1
2 :

Proof. By Lemma 2, L D K. p
p

�; p
p

1 � ��i W i D 1; 2; : : : ; p�1
2
/. Let G 	

K�=.K�/p denote the subgroup generated by S D f�; 1 � ��i W i D 1; 2; : : : ; p�1
2
g.

By Kummer theory, it suffices to show that S is a Z=p-basis for the Z=p-vector space
Gal.L=K/, which follows from Proposition 1.

Remark 4. If p j hC, then p divides ŒEC W CC� by [19, Theorem 8.2]. Since EC does
not contain the pth roots of unity, EC has no p-torsion, and it follows that there is
an element c of CC which is a pth power of an element in EC, but not a pth power
of any element of CC. Since �1 is a pth power and CC is generated by �1 and
f�a W 1 < i < p=2g, c may be taken to be c D Q.p�1/=2

aD2 �ea
a with 0 � ea � p � 1.

Since B0 in the previous proof is generated by C, it follows that B0 is generated by
f�; �a W 1 < i < p=2g. Since c maps to 0 in E=Ep, this implies that the rank r0 of B0 is
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less than the cardinality of f�; �a W 1 < i < p=2g. Thus r D r0C1 < .pC1/=2. Thus
if Vandiver’s conjecture is not true for the prime p, then the rank of the elementary
abelian p-group Gal.L=K/ is strictly less than .pC 1/=2.

4 Comparison with an .n � 1/-Torus

Recall the notation from Sect. 2 that QV D A1 � n, V D QV [ f1g, and Z consists
of the points 0 and 1 in V . Recall that  2 H1.V;ZIA/ denotes the homology class
represented by the path from 0 to 1 along the real axis, and that �� is defined to be
the element of ˝.�0/=A dlog �0 determined by .� � 1/ and the exact sequence

0! A dlog �0 ! ˝.�0/! H1.VIA/! 0;

where the quotient map ˝.�0/ ! H1.VIA/ is the map of �0 modules mapping
�0 dlog �0 to a small counterclockwise loop around �.

Note that there is a map from V to a torus which induces a Galois equivariant
isomorphism on H1.�IA/. For example, this map could be the Abel–Jacobi map
to the generalized Jacobian. Furthermore, over K, this torus splits, and it is easy to
write down a map to a split torus inducing an isomorphism on H1.�IA/. Namely,
the map

f W VK ! .Gm;K/
�n�1;

given by z 7! .z� �; z� �2; : : : ; z� �n�1/ induces a Galois equivariant isomorphism
on H1.�IA/.

In this section, we use the isomorphism H1. f IA/ to compute �� in terms of the
classical Kummer map, relying on the facts that H1..Gm;K/

�.n�1/IA/ Š An�1 and
that the map � for Gm can be identified with the classical Kummer map. We will
furthermore see in Sect. 4.2 that this computation is compatible with Sect. 3.

4.1 Computation of ��

Fix the isomorphism I W ˝.�0/=A dlog �0 ! An�1 given by

n�1
X

iD1
ai�

i
0 dlog �0 7! .a1; a2; : : : ; an�1/:

This isomorphism I can also be obtained by composing the isomorphism described
above ˝.�0/=A dlog �0 Š H1.VIA/ with H1. f IA/ and an obvious isomorphism
H1..Gm;K/

�.n�1/IA/ Š An�1.
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Proposition 2. With notation as above,

�� D .�.1 � ��1/.�/; : : : ; �.1 � ��.n�1//.�//:

Proof. Consider the maps �ab
V;b W V.K/! H1.GK ;H1.V//, defined so that �ab

V;b.x/ is
represented by the cocycle

� 7! 	�1�	

where 	 is a path from b to x, and composition of paths is written from right to left,
so 	�1�	 is a loop based at b. As in [20, p. 8], the dependency on the choice of base
point b in V is

�b0.x/ D �b.x/ � �b.b
0/: (4)

By definition, �� is the element of H1.VIA/ determined by .� � 1/ . Note that
.� � 1/ D �ab

V;0.1/.�/.
Since � is functorial, one sees that H1. f /.� � 1/ D �ab

T;f .0/. f .1//.�/, where T

is the torus T D .Gm;K/
�.n�1/ and f is the map VK ! T defined above.

Since the geometric fundamental group respects products over algebraically
closed fields of characteristic 0 [16, XIII Proposition 4.6], the map �T D �ab

T for
T decomposes as the product of the maps � for Gm;K which are each given by
�Gm;K ;1.�/.�/ D �.�/� as in Definition 1 and Remark 1. Thus �ab

T;f .0/. f .1//.�/ is

identified with
Qn�1

iD1 �Gm;K ;��i.1 � � i/.�/ when, via the projection maps, �1.Tk; 1/

is identified with
Qn�1

iD1 �1.Gm;k; 1/.
Applying (4) with b D 1, using the fact that � from Definition 1 is a

homomorphism, yields that
Qn

iD1 �Gm;K ;��i.1 � � i/.�/ D Qn
iD1 �.

1��i

��i /.�/. The

proposition follows from the above, since .1 � � i/=.�� i/ D 1 � ��i.

Combining with Theorem 7 (c.f. [2, Theorem 10]), we obtain:

Corollary 2. Modulo a term of the form ˛ dlog �, with ˛ 2 Ash,

dlog.��/ D
n�1
X

iD1
ci�

i dlog �; with ci D �.1 � ��i/.�/:

4.2 Compatibility with Sect. 3

Remark 5. In computing �.1 � ��i/.�/ for k D K, one can restrict to the image
� 2 Gal.L=K/.
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Corollary 3. Suppose n D p is a prime satisfying Vandiver’s conjecture. With

respect to the isomorphism ˚ W Gal.L=K/ ! A
pC1
2 from Corollary 1 and the

isomorphism I W ˝.�0/=A dlog �0 ! Ap�1 from Sect. 4.1, the map

Gal.L=K/! ˝.�0/=A dlog �0; � 7! ��

is the explicit A-linear map

.c0; c1; : : : ; c p�1
2
/ 7! .c1; c2; : : : ; c p�1

2
; c p�1

2
C p�1

2 c0; : : : ; c2 C 2c0; c1 C c0/:

Proof. By Proposition 2, �� is computed

�� D .�.1 � ��1/.�/; : : : ; �.1 � ��. p�1//.�//

with respect to the isomorphism I. For i D 1; 2; : : : ; p�1
2

, then �.1���i/ is identified

with the projection onto ci, the .i C 1/st coordinate of .Z=p/
pC1
2 Š Gal.L=K/ via

the isomorphism ˚ . Recall that .1 � � i/=.1 � ��i/ D �� i and �1 is a pth power
since p is odd. Thus

�.1 � � i/ � �.1 � ��i/ D i�.�/ D ic0:

Rearranging terms yields that �.1� ��i/ D �.1� � i/� ic0. Applying this equation
when i D p�1

2
C1; : : : ; p�1 shows that �.1���i/ D �.1���.p�i//�ic0 D cp�i�ic0.

This implies that �.1 � ��i/ is the projection onto the .p � iC 1/st coordinate cp�i

plus p � i times the projection onto the first coordinate c0.

4.3 Coordinate Sum of ��

We include the following result for its own interest; it is not needed in the
computation of H1.U;YIA/, H1.UIA/, or H1.XIA/ as Galois modules, and it is not
needed in the computations of Sect. 7. For � 2 Gal.L=K/, write�� D .c1; : : : ; cp�1/
as in Corollary 3.

Lemma 3. If � 2 GM, with M D Q. p
p

p/, then
Pp�1

iD1 ci � 0 mod p. More
generally, if M1 D Q.�p; p

p
p/ and if � 2 Gal.M1;Q.�p// is such that �. p

p
p/ D

� j
p

p
p

p, then
Pp�1

iD1 ci � j mod p.

Proof. Write �i D 1 � ��i
p and note that

Qp�1
iD1 �i D p. Thus

Qp�1
iD1

p
p
�i D p

p
p 2 M

is fixed by � 2 GM . So
Qp�1

iD1 �.
p
p
�i/ D p

p
p. By definition, �. p

p
�i/ D ��p.�i/�

p
p
p
�i.

By Proposition 2, ci D �p.�i/� . Thus,

p
p

p D
p�1
Y

iD1
�ci

p
p
p

�i D �
Pp�1

iD1 ci
p

p
p

p:

It follows that
Pp�1

iD1 ci � 0 mod p.
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Similarly,

� j
p

p
p

p D �. p
p

p/ D
p�1
Y

iD1
�ci;�

p
p
p

�i D �
Pp�1

iD1 ci;�
p

p
p

p;

so
Pp�1

iD1 ci;� � j mod p.

5 Explicit Computation of B�

5.1 Determining B� from ��

Recall from Fact 5 that �� is an element of N��
0 , unique modulo the kernel of d0sh W

N��
0 ! ��

1 , such that

d0sh.��/ D B� :

Corollary 2 determines the coefficients of the logarithmic derivative dlog�� ; they
are the ones appearing in �� , and explicitly described in Proposition 2.

When n is prime, the kernel of dlog is easy to manage and thus �� determines
the action of GK on H1.U;YIA/ as seen in the next result. This result is implicit in
[2, 10.5].

Proposition 3. Let n D p be a prime. Then �� uniquely determines B� .

The following lemmas will be useful for the proof of Proposition 3.

Lemma 4. The kernel of dlog W N��
0 ! ˝. N�0/ consists of elements x D

P

0�i<n ai�
i
0 such that iai D 0 2 A for all 0 � i < n. In particular, when n

is prime, the kernel of dlog consists of the constant (in �0) invertible polynomials
.Ash/� � N��

0 .

Remark 6. On the contrary, when n is not prime, this kernel can be significantly
larger. For example, when n D 6, it contains elements such as 3�20 C 2�30 .

The following characterization of �� will be used to pinpoint the exact element
in a coset that �� represents.

Lemma 5. Write �� D P

0�i<n di�
i
0, with di 2 Ash, for an element in N��

0 which is
a d0sh-preimage of B� . Then d˙ WDP0�i<n di D 1.

Proof. By Fact 6, B� � 1 is in the augmentation ideal .1 � �0/.1 � �1/�1. Since

B� � 1 D
�P

di�
i
0

� �P

di�
i
1

�

�P

di�
i
0�

i
1

� � 1;
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it lies in the augmentation ideal if and only if the difference
�
X

di�
i
0

� �
X

di�
i
1

�

�
�
X

di�
i
0�

i
1

�

does. But the augmentation of the latter is precisely .d2˙ � d˙/ D d˙.d˙ � 1/. As
�� is invertible, d˙ must also be invertible, hence d˙ D 1.

We are now ready to prove Proposition 3.

Proof. Consider �� D P

0�i<n ci�
i
0 dlog �0, with ci 2 Ash. By Fact 5, [2,

Theorem 9], B� is uniquely determined by �� in an explicit way, as B� D d0sh.��/.
Hence it suffices to show that �� is determined by �� in a way unique modulo the
kernel of d0sh.

Corollary 2 gives that

dlog�� D ˛ dlog �0 C
X

0�i<n

ci�
i
0 dlog �0;

for some ˛ 2 Ash. Note that the kernel Ker.d0sh/ (cf. Fact 5) of d0sh W N��
0 ! N��

1

maps under dlog to the kernel Ker.d0sh
˝ / of the map

d0sh
˝ W ˝. N�0/! ˝. N�1/;

which is given by dlog.d0sh/, i.e.,

d0sh
˝ .
X

ai�
i
0 dlog �0/ D

X

ai�
i
0.1 � � i

1/ dlog �0 C
X

ai�
i
1.1 � � i

0/ dlog �1:

By Anderson [2, 8.5.1], Ker.d0sh
˝ / is precisely Ash dlog �0. When n is prime, dlog W

Ker.d0sh/! Ker.d0sh
˝ / is an isomorphism by Anderson [2, 8.3.1], which determines

Ker.d0sh/. Hence the ambiguity that ˛ introduces is irrelevant for the computation
of B� .

The remaining obstruction to reconstructing �� , and therefore B� , is the kernel
of dlog W N��

0 ! ˝. N�0/.
By Lemma 4, when n is prime, the kernel of dlog is Ash ' NF�

p � ��
0 . Suppose

a lies in this kernel; this means that dlog.a��/ D dlog.��/. On the other hand,
d0sh.a��/ D ad0sh.��/ D aB� , thus a could introduce an ambiguity.

Nonetheless, this ambiguity can be eliminated using Lemma 5, which asserts
that the sum of the coefficients of �� is fixed and equals one. Hence the sum of the
coefficients of a�� , for a 2 NF�

p , must be a. By Lemma 5, this implies that a�� is not
a preimage of B� unless a D 1.

In conclusion, when n is prime, dlog�� uniquely determines �� and therefore B� .

In theory, by Proposition 3, the coefficients ci of �� studied in Sect. 4 uniquely
and explicitly determine the coefficients of B� , and thus the action of GK on
H1.U;YIA/. We carry out this computation explicitly when n D 3 in the following
subsection.
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5.2 The Case n D 3

Consider the smallest example, i.e., that of n D 3. Write

�� D .c1�0 C c2�
2
0 / dlog �0;

for c1; c2 2 NFp ' Ash. Write

�� D d0 C d1�0 C d2�
2
0 ;

with di 2 NFp such that d0 C d1 C d2 D 1. To determine the di’s in terms of the ci’s,
it is easier to work with the nilpotent variable y D �0 � 1 instead of �0 and use the
basis dy D �0 dlog �0 of ˝.�0/.

Indeed, �� D 1C .d1 � d2/yC d2y2, and

�� D .c1 C c2 C c2y/dy:

By Fact 7, dlog�� agrees with �� modulo terms in NF3 dlog �0 D NF3.yC 1/2dy.
Therefore, for some ˛ 2 NF3, one sees that

dlog�� D �� C ˛. yC 1/2dy;

which yields the equalities

d2 � d1 D cC ˛
�d2 D .cC ˛/2 C c2 � ˛
0 D d2.cC ˛/C .cC ˛/.c2 � ˛/C ˛;

where c D c1 C c2. In particular, ˛ must be a solution of the polynomial equation

˛3 � ˛ C c3 D 0:
For an arbitrary choice of solution ˛, the coefficients of �� are

d1 D c1 � ˛ � .cC ˛/2;
d2 D �c2 C ˛ � .cC ˛/2:

Note that the inverse of �� expressed in the original �0-basis is

� �1
� D .1C d1 C d2 C .d2 � d1/

2/C ..d2 � d1/
2 � d1/�0 C ..d2 � d1/

2 � d2/�
2
0 :

In terms of the c’s and ˛, this becomes

� �1
� D .1C c1 � c2 � .cC ˛/2/C .c2 C c� .cC ˛/2/�0 C .c2 � ˛ � .cC ˛/2/�20 :

Now B� D d0sh.��/ can be computed.
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Lemma 6. Suppose �� D .c1�0 C c2�20/ dlog �0, and let bi;j be the coefficient of
� i
0�

j
1 in B� . Then

b0;0 D 1C c2 � c1 � .c2 � c1/
2

b0;1 D c1 � .c2 � c1/
2

b1;1 D �c1 � .c2 � c1/
2:

(5)

The rest of the coefficients are determined by symmetry bi;j D bj;i and the fact that
b0;0 C b0;1 C b0;2 D 1, b1;0 C b1;1 C b1;2 D 0, and b2;0 C b2;1 C b2;2 D 0.

Remark 7. From the proof of Corollary 3, if i D 1; : : : ; p�1
2

, then �.1 � ��i/ D
cp�i� ic0. By Proposition 2, c2 D �.1���2/. Rearranging terms gives c0 D c2�c1,
and it follows that Lemma 6 completes the proof of Theorem 1.

6 Homology of the Affine and Projective Fermat Curve

In this section, we determine the Galois module structure of the homology of the
projective Fermat curve X and its affine open U D X � Y with coefficients in A D
Z=n for all n 
 3.

6.1 Homology of the Affine Curve

We first determine the Galois module structure of H1.U/, where Hi.U/ abbreviates
Hi.UIA/, and more generally, all homology groups will be taken with coefficients
in A.

The closed subset Y � U given by xy D 0 consists of the 2n points

Ri D Œ� i W 0 W 1�; Qi D Œ0 W � i W 1�:
Thus, H0.Y/ ' �0˚�0 is generated by �0˚0 and 0˚�1. The first copy indexes the
points Ri and the second copy indexes the points Qi. The homomorphism H0.Y/!
H0.U/ ' A sends both �0 ˚ 0 and 0˚ �1 to 1.

Note that H0.Y/ is a�1-module via �0 7! �0˚1 and �1 7! 1˚ �1. The boundary
map ı W H1.U;Y/! H0.Y/ is a �1-module map given by

ˇ 7! 1˚ 0 � 0˚ 1: (6)

Lemma 7. There is an exact sequence of Galois modules

0! H1.U/! H1.U;Y/
ı! H0.Y/! H0.U/! 0: (7)

The first Betti number of U is .n � 1/2.
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Proof. This follows from the long exact sequence for relative homology, using the
facts that H1.Y/ D 0 and H0.U;Y/ D 0. The Betti number is the A-rank of H1.U/;
note that H1.U;Y/, H0.Y/, and H0.U/ are all free A-modules, hence

rank.H1.U// D rank.H1.U;Y// � rank.H0.Y//C rank.H0.U//:

So, the rank of H1.U/ is n2 � 2nC 1 D .n � 1/2:
An element W 2 �1 will be written as W DP0�i;j�n�1 aij�

i
0�

j
1.

Proposition 4. Let W D P

0�i;j�n�1 aij�
i
0�

j
1 be an element of �1, and consider the

corresponding element Wˇ of H1.U;Y/. Then Wˇ restricts to H1.U/ if and only if
for each 0 � j � n � 1,

Pn�1
iD0 aij D 0, and for each 0 � i � n � 1,

Pn�1
jD0 aij D 0.

Proof. By Lemma 7, Wˇ 2 H1.U/ if and only if Wˇ 2 ker.ı/. Note that, by (6),

ı.�0ˇ/ D .�0 ˚ 1/.1˚ 0 � 0˚ 1/ D �0 ˚ 0 � 0˚ 1;
and similarly,

ı.�1ˇ/ D .1˚ �1/.1˚ 0 � 0˚ 1/ D 1˚ 0 � 0˚ �1:
Thus

ı.Wˇ/ D
X

0�i;j�n�1
aijı.�

i
0�

j
1ˇ/

D
X

aij.�
i
0 ˚ 1/.1˚ � j

1/.1˚ 0 � 0˚ 1/

D
X

aij.�
i
0 ˚ 0 � 0˚ � j

1/:

So Wˇ 2 ker.ı/ if and only if the rows and columns of W sum to zero.

6.2 Homology of the Projective Curve

We next determine the Galois module structure of H1.X/, which has rank 2g D
n2 � 3nC 2.

Proposition 5.

1. There is an exact sequence of Galois modules and A-modules:

0! H2.X/! H2.X;U/
D! H1.U/! H1.X/! 0:

2. The image of D is Stab.�0�1/ where Stab.�0�1/ consists of Wˇ 2 H1.U/ which
are invariant under �0�1, i.e., for which aiC1;jC1 D aij, where indices are taken
modulo n when necessary.

3. As a Galois module and A-module, H1.X/ D H1.U/=Stab.�0�1/.
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Proof.

(1) The long exact sequence in homology of the pair .X;U/ implies that the
sequence

� � � ! H2.U/! H2.X/! H2.X;U/
D! H1.U/! H1.X/! H1.X;U/! � � �

is exact. Since U is affine, H2.U/ D 0. It thus suffices to show H1.X;U/ D 0.
This follows from the fact that H1.X;U/ is isomorphic as an abelian group to
the singular homology of .X.C/;U.C//, where X.C/ and U.C/ are given the
analytic topology.

Here is an alternative proof that H1.X;U/ D 0 which does not use the analytic
topology and which will be useful for part (2). It follows from [2, §4 Theorem 1] that
Anderson’s étale homology with coefficients in A [2, §2] is naturally isomorphic to
the homology of the étale homotopy type in the sense of Friedlander [9]. It follows
from Voevodsky’s purity theorem [15, Theorem 2.23] and the factorization of the
étale homotopy type through A1 algebraic topology [12] that there is a natural
isomorphism Hi.X;U/ Š QHi._.X�U/.K/P

1
K
/, where QHi denotes reduced homology.

(For this, it is necessary to observe that the proof of [15, Theorem 2.23] goes through
with the étale topology replacing the Nisnevich topology.) Thus

QHi.P
1
K
IA/ D

(

A.1/ if i D 2
0 otherwise,

where A.1/ denotes the module A D Z=n with action given by the cyclotomic
character. Over K, A.1/ D A. It follows that

H1.X;U/ D QH1._.X�U/.K/P
1
K
IA/ D ˚.X�U/.K/

QHi.P
1
K
IA/ D 0:

As a third alternative, one can see that H1.X;U/ D 0 using [14, VI Theorem 5.1]
and universal coefficients argument to change information about cohomology to
information about homology.

(2) As above,

H2.X;U/ Š QH1._.X�U/.K/P
1
K
/ D ˚.X�U/.K/

QHi.P
1
K
/ D ˚.X�U/.K/A.1/:

For � 2 .X � U/.K/, let � also represent the corresponding basis element of
˚.X�U/.K/A.1/. Then D.�/ is represented by a small loop around �.

Note that the coordinates of � are Œ� W �� W 0� for some nth root of unity �. In
particular, � is fixed by �0�1. The loop D.�/ is therefore also fixed by �0�1 because
�0�1 preserves orientation.
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Consider the subset Stab.�0�1/ of elements of H1.U/ fixed by �0�1. Then
Stab.�0�1/ contains the image of D. In fact, Stab.�0�1/ D Image.D/. To see this,
it suffices to show that both Stab.�0�1/ and Image.D/ are isomorphic to An�1.

By (1), one sees that Image.D/ is isomorphic to the quotient of H2.X;U/ by the
image of H2.X/ ! H2.X;U/. Since X is a smooth proper curve, H2.X/ Š A.1/
and H2.X;U/ Š ˚.X�U/.K/A.1/. The map H2.X/ ! H2.X;U/ can be described as
the map that sends the basis element of A.1/ to the diagonal element ˚.X�U/.K/1. It
follows that Image.D/ ' An�1 as claimed.

Now �0 and �1 act on H1.U;Y/ via multiplication. Note that these actions have the
effect of shifting the columns or rows of W and thus stabilize H1.U/. The stabilizer
of �0�1 is isomorphic to An�1 because an element of the stabilizer is uniquely
determined by an arbitrary choice of a01; a02; : : : ; a0n.

(3) is immediate from (1) and (2).

7 Computing Galois Cohomology When p D 3

In this section, we explicitly compute several cohomology groups when p D 3. Let
e D �0 and f D �1.

7.1 Computation of B�

Let � and � denote the generators of G D Gal.L=K/ ' .Z=3/2 such that

� W 3
p

� 7! � 3
p

�; � W 3
p

� 7! 3
p

�

3
p

1 � ��1 7! 3
p

1 � ��1 3
p

1 � ��1 7! �
3
p

1 � ��1:

The equality ��.1 � ��1/ D 1 � � shows that .c1/� D 0, .c2/� D 1 and .c1/� D 1,
.c2/� D 1. By Lemma 6, this implies that

B� D 1 � .eC f /C .e2 � ef C f 2/ � .e2f C ef 2/

D 1 � .eC f /.1 � e/.1 � f /;

B� D 1C .eC f / � .e2 C ef C f 2/C e2f 2:

(8)

7.1.1 The Kernel and Image of B

Let G D h�; �i. Consider the map

B W F3ŒG�! �1; B.�/ D B� :
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When p D 3, the domain and range of B both have dimension 9. Of course, B is not
surjective since its image is contained in the 6-dimensional subspace of symmetric
elements.

Lemma 8. When p D 3, the image of B has dimension 4 and the kernel of B has
dimension 5. In particular, Im.B/ consists of symmetric elements whose 2nd and 3rd
rows sum to 0, i.e., elements of the form

a00Ca01.eCf /Ca02.e
2Cf 2/Ca11ef�.a01Ca11/.e

2fCef 2/C.a01Ca11�a02/e
2f 2I

and Ker.B/ is determined by the relations:

B�2 C B� C B1 D 0;
B�2� � B�2 � B� C B1 D 0;
B�� � B� � B� C B1 D 0;

B�2�2 � B�2 � B�2 C B1 D 0;
B��2 � B� � B�2 C B1 D 0:

Proof. Magma computation using (8).

7.2 Cohomology of Gal.L=K/

Since � has order 3, by Brown [3, Example 1.1.4, Exercise 1.2.2], the projective
resolution of Z as a ZŒh�i�-module is

ZŒG�
1�� ZŒG�

1C�C�2 ZŒG�
1�� � � �

where G D Gal.L=K/ D h�; � j �3 D �3 D Œ�; �� D 1i ' .Z=3/2. By Brown
[3, Proposition V.1.1], the total complex associated with the following double
complex is a projective resolution of Z as a ZŒG�-module:

Z[G]

1+τ+τ2

Z[G]
1−σ

1+τ+τ2

Z[G]
1+σ+σ2

1+τ+τ2

1−σ

Z[G]

1−τ

Z[G]
(1−σ)

1−τ

Z[G]
−(1+σ+σ2)

1−τ

1−σ

Z[G] Z[G]
1−σ

Z[G]
1+σ+σ2 1−σ

Therefore, to compute H1.G;M/, one can compute the cohomology of the complex
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M
M

1+σ+σ2

1−τ ⊕
M

1−σ

1−τ

⊕ M
M

−(1−σ)

1+τ+τ2
⊕
M.

Given h 2 F3ŒG�, let AnnM.h/ D fm 2 M j hm D 0g. Let M D �1.

Lemma 9. Let M D �1 with e D �0 and f D �1.
1. AnnM.1C � C �2/ D M.
2. AnnM.1 C � C �2/ D .1 � e; 1 � f / consists of all m D P

mijeif j such that
P

mij D 0.
3. AnnM.1 � �/ D .1C eC e2; 1C f C f 2/.
4. AnnM.1 � �/ D .e � f ; 1C f C f 2/.

Proof.

1. Every m 2 M is in the annihilator of 1C � C �2 because 1C B� C B�2 equals

.eC f / � .e2 C ef C f 2/C e2f 2 C .eC f /2 C .e2 C ef C f 2/2 C ef

C.eC f /.e2 C ef C f 2/ � .eC f /e2f 2 C .e2 C ef C f 2/e2f 2;

which is zero.
2. Note that B� D 1 � .eC f /.1 � e/.1 � f /, which gives that

1C B� C B�2 D .e2 � ef C f 2/.1C eC e2/.1C f C f 2/

D .1C eC e2/.1C f C f 2/:

Note that .1C B� C B�2/e
if j D .1C B� C B�2/; so for m DPi;j mi;jeif j,

.1C B� C B�2/m D .1C B� C B�2/.
X

i;j

mi;j/:

Thus AnnM.1C B� C B�2/ consists of m 2 M whose entries sum to 0.
3. Note that .1 � �/m D 0 if and only if �m D m which in turn simplifies to
.eC f /.1 � e/.1 � f /m D 0. Thus AnnM.1 � �/ is generated by the annihilators
of 1 � e and 1 � f and eC f , which are 1C eC e2 and 1C f C f 2 and 0.

4. A Magma calculation using that 1 � B� D �.eC f /C .e2 C f 2/C ef � e2f 2.

7.3 Preliminary Calculations

Consider the maps X W M ! M2, Y W M2 ! M3, and Z W M3 ! M4. The goal is to
compute ker.Y/= im.X/ and ker.Z/= im.Y/.
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After choosing a basis for M, the maps X, Y , and Z can be written in matrix form.
The basis of M chosen here is

1; f ; f 2; e; ef ; ef 2; e2; e2f ; e2f 2:

By Lemma 9, all of the entries of the matrix V for the map Nm.�/ W M ! M
are 0. All of the entries of the matrix U for the map Nm.�/ W M ! M are 1 since
Nm.�/ acts on each element of M by summing its coefficients.

Let S be the matrix for the map 1 � B� W M ! M. Let T be the matrix for the
map 1 � B� W M ! M. Here are the matrices S and T:

S D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 2 1 1 1 2 1 0

2 0 1 1 1 1 0 2 1

1 2 0 1 1 1 1 0 2

2 1 0 0 1 2 1 1 1

0 2 1 2 0 1 1 1 1

1 0 2 1 2 0 1 1 1

1 1 1 2 1 0 0 1 2

1 1 1 0 2 1 2 0 1

1 1 1 1 0 2 1 2 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

I

and

T D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 2 1 2 1 0 1 0 2

1 0 2 0 2 1 2 1 0

2 1 0 1 0 2 0 2 1

1 0 2 0 2 1 2 1 0

2 1 0 1 0 2 0 2 1

0 2 1 2 1 0 1 0 2

2 1 0 1 0 2 0 2 1

0 2 1 2 1 0 1 0 2

1 0 2 0 2 1 2 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The block matrices for X, Y , and Z are given as follows:

X D �S T
� I

Y D
	

U T 0

0 �S V D 0



I

Z D
2

4

S T 0 0

0 �U V D 0 0
0 0 S T

3

5 :
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7.4 Calculation of H1.Gal.L=K/; M/

The plan is to compute the cohomology of the complex:

M
M

1+σ+σ2

1−τ ⊕
M

1−σ

1−τ

⊕ M
M

−(1−σ)

1+τ+τ2
⊕
M.

Lemma 10. The kernel of Y W M2 ! M3 has dimension 13 and a basis is

. f � e2f 2/˚ 0;
.e � e2f 2/˚ 0;
.1 � e2f 2/˚ .ef � ef 2 � e2f C e2f 2/;

. f 2 � e2f 2/˚ .�ef C ef 2 C e2f � e2f 2/;

.ef � e2f 2/˚ .�ef C ef 2 C e2f � e2f 2/;

.ef 2 � e2f 2/˚ .ef � ef 2 � e2f C e2f 2/;

.e2 � e2f 2/˚ .�ef C ef 2 C e2f � e2f 2/;

.e2f � e2f 2/˚ .ef � ef 2 � e2f C e2f 2/;

0˚ .1 � ef � ef 2 � e2f � e2f 2/;

0˚ . f C ef C e2f /;

0˚ . f 2 C ef 2 C e2f 2/;

0˚ .eC ef C ef 2/;

0˚ .e2 C e2f C e2f 2/:

Proof. Magma calculation.

Lemma 11. The image of X W M ! M2 has dimension 4 and a basis is

.1 � f 2 � e2 C e2f 2/˚ .1 � f 2 � ef C ef 2 � e2 C e2f /;

. f � f 2 � e2 C e2f /˚ .1 � f C f 2 � e � ef 2 � e2 C e2f 2/;

.e � ef 2 � e2 C e2f 2/˚ . f � f 2 C e � ef � e2 C e2f 2/;

.ef � ef 2 � e2f C e2f 2/˚ .�1C f C e � ef 2 � e2f C e2f 2/:
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Proof. Magma calculation.

Note that the image of X is contained in the kernel of Y .

Proposition 6. The dimension of H1.Gal.L=K/;M/ is 9 and a basis is

. f 2 � e2/˚ 0;
.ef 2 � fe2/˚ 0;

.e2 C e2f C e2f 2/˚ 0;
.e2f � e2f 2/˚ .ef � ef 2 � e2f C e2f 2/;

0˚ .1 � ef � ef 2 � e2f � e2f 2/;

0˚ . f C ef C e2f /;

0˚ . f 2 C ef 2 C e2f 2/;

0˚ .eC ef C ef 2/;

0˚ .e2 C e2f C e2f 2/:

Proof. The quotient H1.Gal.L=K/;M/ D ker.Y/=im.X/ can be computed using the
complement function in Magma.

7.5 Calculation of H2.Gal.L=K/; M/

In this section, we compute the kernel of Z W M3 ! M4 modulo the image of
Y W M2 ! M3.

Proposition 7. The dimension of H2.Gal.L=K/;M/ is 13 and a basis is

. f C ef C e2f / ˚ 0 ˚ 0;
. f 2 C ef 2 C e2f 2/ ˚ 0 ˚ 0;
.eC ef C ef 2/ ˚ 0 ˚ 0;

.e2 C e2f C e2f 2/ ˚ 0 ˚ 0;
0 ˚ . f 2 � e2f 2/ ˚ 0;
0 ˚ .ef 2 � e2f 2/ ˚ 0;
0 ˚ .e2 � e2f 2/ ˚ 0;
0 ˚ .e2f � e2f 2/ ˚ 0;
0 ˚ 0 ˚ .1 � ef � ef 2 � e2f � e2f 2/;
0 ˚ 0 ˚ . f C ef C e2f /;
0 ˚ 0 ˚ . f 2 C ef 2 C e2f 2/;
0 ˚ 0 ˚ .eC ef C ef 2/;
0 ˚ 0 ˚ .e2 C e2f C e2f 2/:
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7.6 First and Second Cohomology with Coefficients in H1.U/

Recall that V D H1.U/ has dimension .p� 1/2. If p D 3, then V is a 4-dimensional
subspace of M and a basis for V is

v1 D
2

4

1 0 �1
0 0 0

�1 0 1

3

5 I

v2 D
2

4

0 0 0

1 0 �1
�1 0 1

3

5 I

v3 D
2

4

0 1 �1
0 0 0

0 �1 1

3

5 I

v4 D
2

4

0 0 0

0 1 �1
0 �1 1

3

5 :

Let X1, Y1, and Z1 be the restriction of X, Y , and Z, respectively. Similarly, let
S1 D 1� B� , T1 D 1� B� , U1 D Nm.�/, and V1 D Nm.�/ be the restrictions of S,
T , U, and V , respectively. Then T1, U1, and V1 are each the 4 � 4 zero matrix and

S1 D

2

6

6

4

�1 �1 �1 �1
1 1 1 1

1 1 1 1

�1 �1 �1 �1

3

7

7

5

:

Then

X1 D
�

S1 T1 D 0
� I

Y1 D
	

U1 D 0 T1 D 0 0

0 �S1 V1 D 0



I

Z1 D
2

4

S1 T1 D 0 0 0

0 �U1 D 0 V1 D 0 0

0 0 S1 T1 D 0

3

5 :

Proposition 8. The dimension of H1.G;H1.U// is 6 and a basis is

v2 ˚ 0; v3 ˚ 0; v4 ˚ 0; 0˚ .v1 � v4/; 0˚ .v2 � v4/; 0˚ .v3 � v4/:
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The dimension of H2.G;H1.U// is 9 and a basis is

.v1 � v4/ ˚ 0 ˚ 0;
.v2 C v4/ ˚ 0 ˚ 0;
.v3 C v4/ ˚ 0 ˚ 0;

0 ˚ v2 ˚ 0;
0 ˚ v3 ˚ 0;
0 ˚ v4 ˚ 0;
0 ˚ 0 ˚ .v1 � v4/;
0 ˚ 0 ˚ .v2 C v4/;
0 ˚ 0 ˚ .v3 C v4/:

7.7 First and Second Cohomology with Coefficients
in H1.U/ ^ H1.U/

The vector space W D H1.U/ ^ H1.U/ has dimension
�

.p�1/2
2

� D 6.

Proposition 9. Let W D H1.U/ ^ H1.U/. Then H1.G;W/ D W2 (with dimension
12) and H2.G;W/ D W3 (with dimension 18).

Proof. The map S^ W V^V ! V^V induced by S D .1�B� / is the exterior square
of S1. One computes that S^ is the 6� 6 zero matrix. Similarly the matrices for T^,
U^ and V^ are zero. Then H1.G;W/ D W2 since Im.X^/ D 0 and Ker.Y/ D W2.
Also H2.G;W/ D W3 since Im.Y^/ D 0 and Ker.Z/ D W3.
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Abstract This paper describes a class of Artin–Schreier curves, generalizing
results of Van der Geer and Van der Vlugt to odd characteristic. The automorphism
group of these curves contains a large extraspecial group as a subgroup. Precise
knowledge of this subgroup makes it possible to compute the zeta function of the
curves in this class over the field of definition of all automorphisms in the subgroup.
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1 Introduction

In [24], Van der Geer and Van der Vlugt introduced a class of Artin–Schreier curves
over a finite field with a highly rich structure. For example, these curves have a very
large automorphism group that contains a large extraspecial p-group as a subgroup.
Results of Lehr–Matignon [15] show that the automorphism groups of these curves
are “maximal” in a precise sense. (Lehr–Matignon call this a big action.) A further
remarkable property is that all these curves are supersingular. This yields an easy
way of producing large families of supersingular curves.

In [24], the authors explore these curves and their Jacobians over fields of
characteristic 2. In this case, there is an intriguing connection between the curves in
this class and the weight enumerator of Reed–Müller codes, which was their original
motivation for investigating this family of curves. In Sect. 13 of [24], they sketched
extensions of some of their results to odd characteristic, but few details are given.
The present paper extends the main results and strategy of [24] to the corresponding
class of curves in odd characteristic, providing full details and proofs.

The main difference between the two cases is that the aforementioned extraspe-
cial group of automorphisms has exponent p in the case of odd characteristic p,
whereas the exponent is 4 in characteristic 2. As a result, some of the arguments in
the odd characteristic case are more involved than those of [24]. Moreover, we have
streamlined the reasoning of [24] and combined it with ideas from [15] to describe
the automorphism group of the curves under investigation.

Arguably the most important object associated to an algebraic curve is its zeta
function since it encodes a large amount of information about the curve, including
point counts. Our main result is Theorem 8.4 which computes the zeta function of
the members of the family of curves under consideration over a sufficiently large
field. This not only generalizes the corresponding result in [24] for characteristic 2,
but we also note that the authors of [24] do not offer an odd-characteristic analogue
in their paper.

The most prominent member of the family of curves considered in this paper is
the Hermite curve Hp (Example 9.5), which is well known to be a maximal curve
over fields of square cardinality. We discuss other members of the family that are
maximal in Sect. 9. More examples along the same lines have also been found by
Çakçak and Özbudak in [3].

We now describe the contents of this paper in more detail. Let p be an odd prime
and R.X/ 2 FpŒX� be an additive polynomial of degree ph, i.e., for indeterminates X
and Y we have R.X C Y/ D R.X/C R.Y/. We denote by CR the smooth projective
curve given by the Artin–Schreier equation

Yp � Y D XR.X/:

The key to the structure of the curve CR is the bilinear form Tr.XR.Y/ C YR.X//,
introduced in Sect. 2, whose kernel W is characterized in Proposition 2.1, Part 2.
We obtain an expression for the number of points of CR over a finite field in
terms of W. Over a sufficiently large field Fq of square cardinality, we conclude that
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the curve CR is either maximal or minimal, i.e., either the upper or lower Hasse–Weil
bound is attained (Theorem 2.5 and Part 2 of Remark 8.2). To determine which of
these cases applies, we use the automorphisms of CR.

In Sects. 3 and 4, we show that W also determines a large p-subgroup P of
the group of automorphisms (Theorem 4.3). With few exceptions, P is the Sylow
p-subgroup of Aut.CR/ (Theorem 4.4). It is an extraspecial group of exponent p and
order p2hC1, where deg.R/ D ph (Theorem 5.3).

In general, the size of the automorphism group restricts the possibilities for the
number of rational points of a curve. In our situation, there is a concrete relationship,
since both the automorphisms and the rational points of CR may be described in
terms of the space W. We establish a point-counting result that applies to the smallest
field Fq over which all automorphisms in P are defined.

The determination of the zeta function of CR over Fq (Theorem 8.4) relies on
a decomposition result for the Jacobian J.CR/ of CR (Proposition 6.3) that is an
application of a result of Kani–Rosen [12]. More precisely, we show that J.CR/

is isogenous over Fq to the product of Jacobians of quotients of CR by suitable
subgroups of P over Fq (Proposition 6.3). These quotient curves are twists of the
curve CR0 with R0.X/ D X (Theorem 7.4) for which we may determine the zeta
function by explicit point counting. Putting everything together yields a precise
expression for the zeta function of CR.

Our results also yield explicit examples of maximal curves (Sect. 9). The main
technical difficulty here is determining the field Fq over which all automorphisms
in P are defined.

1.1 Notation

Let p denote an odd prime, Fp be the finite field of order p, and k D Fp be the
algebraic closure of Fp. All curves under consideration are assumed to be smooth,
projective, and absolutely irreducible. Consider the curve CR defined by the affine
equation

Yp � Y D XR.X/; (1)

where

R.X/ D
h
X

iD0
aiX

pi 2 Fpr ŒX�

is a fixed additive polynomial of degree ph with h 
 0 and whose coefficient field is
denoted Fpr . Note that R is additive, i.e., R.XC Y/ D R.X/C R.Y/ in Fpr ŒX�. Thus,
CR is defined over Fpr and has genus

g.CR/ D ph.p � 1/
2

:
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Of interest will be the polynomial E.X/ derived from R.X/ via

E.X/ D .R.X//ph C
h
X

iD0
.aiX/

ph�i 2 Fpr ŒX� (2)

with zero locus

W D fc 2 k W E.c/ D 0g: (3)

Note that the formal derivative of E.X/ with respect to X is the constant nonzero
polynomial ah, so E.X/ is a separable additive polynomial of degree p2h with
coefficients in Fpr . It follows that W is an Fp-vector space of dimension 2h. When
h D 0, i.e., R.X/ D a0X, we have W D f0g.

We denote by Fq the splitting field of E.X/, so W � Fq. In Sect. 4 of this paper
we will define and investigate a subgroup P of the group of automorphisms of CR,
and the automorphisms contained in P will be defined over this field Fq.

For convenience, we summarize the most frequently used notation in Table 1.

2 The Kernel of the Bilinear Form Associated to CR

Let Fps be any extension of Fpr . For each s a multiple of r, we associate to the curve
CR the s-ary quadratic form

x 7! TrFps=Fp.xR.x//

on Fps , where TrFps=Fp WFps ! Fp is the trace from the s-dimensional vector space
Fps down to Fp. The associated symmetric bilinear form on Fps � Fps is

.x; y/ 7! 1

2
TrFps=Fp.xR.y/C yR.x//; (4)

with kernel

W.Fps/ D fc 2 Fps W TrFps=Fp.cR.y/C yR.c// D 0 for all y 2 Fpsg: (5)

Note that W.Fps/ is a vector space over Fp. The following characterizations and
properties of W.Fps/ will turn out to be useful:

Proposition 2.1. Let c 2 Fps . Then the following hold:

1. If c 2 W.Fps/, then TrFps=Fp.cR.c// D 0.
2. We have c 2 W.Fps/ if and only if there exists a polynomial B.X/ 2 Fps ŒX� with

B.X/p � B.X/ D cR.X/C R.c/X: (6)
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Table 1 Frequently used notation

Symbol Meaning and place of definition

p An odd prime

Fpr Field of definition of R.X/ and of CR (Sect. 1.1)

Fps An arbitrary extension of Fpr (Sect. 2)

Fq Fq 
 Fpr splitting field of E.X/ (Sect. 1.1)

k D Fp Algebraic closure of Fp (Sect. 1.1)

CR The curve CR W Yp � Y D XR.X/ over Fpr (Eq. 1)

CA Quotient curve CR=A (Theorem 7.4)

R.X/ R.X/ D Ph
iD0 aiXpi 2 Fpr ŒX� an additive polynomial (Eq. 1)

E.X/ E.X/ D .R.X//p
h CPh

iD0.aiX/p
h�i 2 Fpr ŒX� (Eq. 2)

b; c Elements in k with bp � b D cR.c/ (Remark 3.3)

Bc.X/ D B.X/ Polynomial s.t. B.X/p � B.X/ D cR.X/C R.c/X (Eqs. 6 and 11)

W.Fps / W.Fps / D fc 2 Fps W TrFps =Fp .cR.y/C y.R.c// D 0 for all y 2 Fps g (Eq. 5)

W W D W.Fq/, space of zeros of E.X/ (Eq. 3)

S.f / S.f / D f.a; c; d/ 2 k� � k � F�

p : there is g 2 kŒX� s. t.
f .aX C c/� df .X/ D g.X/p � g.X/g (Eq. 10)

Aut0.CR/ Group of automorphisms of CR that fix 1 (Sect. 4)

�a;b;c;d Automorphism in Aut0.CR/ (Eq. 15)

�b;c �b;c D �1;b;c;1 (Sect. 5)

� Artin–Schreier automorphism, � D �1;1;0;1 (following Eq. 15)

P Sylow p-subgroup of Aut0.CR/ (Theorem 4.3)

H H D Aut0.CR/=P (Theorem 4.3)

Z.G/ Center of a group G

E.p3/ Extraspecial group of order p3 and exponent p (Corollary 5.4)

A A maximal abelian subgroup of P (Proposition 5.5)

JR JR D Jac.CR/, the Jacobian variety of CR

J �F J0 The ab. var. J and J0 are isogenous over the field F (Sect. 6).

LC;F.T/ Numerator of the zeta function of the curve C over the field F (Sect. 8)

Moreover, there is a unique solution Bc.X/ 2 XFps ŒX� to Eq. (6), and

a. The polynomial Bc.X/ is additive.
b. Every solution B.X/ of (6) is of the form B.X/ D Bc.X/C ˇ for some ˇ 2 Fp.
c. If c1; c2 2 W.Fps/, then Bc1Cc2 .X/ D Bc1 .X/C Bc2 .X/.

3. We have c 2 W.Fps/ if and only if E.c/ D 0, where E.X/ is the polynomial of (2)
with zero locus W as defined in (3). In other words, W.Fps/ D W \ Fps .

Proof.

1. Let c 2 W.Fps/. Then substituting y D c into (5) yields TrFps=Fp.2cR.c// D 0.
Since TrFps=Fp.X/ is Fp-linear and p is odd, this forces TrFps=Fp.cR.c// D 0.
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2. The proof of Part 2 is analogous to that of Proposition 3.2 of [24]. Assume
that c 2 W.Fps/. We show the existence of a solution B of (6), and show that
statements 2a–2c hold.

We first recursively define numbers bi using the following formulas:

b0 D �ca0 � R.c/; (7)

bi D �cai C bp
i�1 for 1 � i � h � 1; (8)

and set Bc.X/ D Ph�1
iD0 biXpi

. Then Bc.X/ 2 XFps ŒX�, Bc.X/ is additive, and
Bc1Cc2 .X/ D Bc1 .X/ C Bc2 .X/ for all c1; c2 2 W.Fps/. Furthermore, a simple
calculation reveals that

Bp
c.X/ � Bc.X/ D cR.X/C R.c/X C �Xph

with � D bp
h�1� cah 2 Fps . Note that TrFps=Fp.Bc.y/p�Bc.y// D 0 for all y 2 Fps

by the additive version of Hilbert’s Theorem 90.
If c 2 W.Fps/, then TrFps=Fp.cR.y/ C yR.c// D 0 for all y 2 Fps , therefore

TrFps=Fp.�y
ph
/ D 0, which forces � D 0. Hence Bc.X/ satisfies (6), and

bp
h�1 D cah: (9)

Moreover, if B.X/ is any solution to (6), then .B.X/� Bc.X//p D B.X/� Bc.X/,
so B.X/ � Bc.X/ 2 Fp.

Conversely, if (6) has a solution B.X/ 2 Fps ŒX�, then

0 D TrFps=Fp.B.y/
p � B.y// D TrFps=Fp.cR.y/C R.c/y/

for all y 2 Fps , so c 2 W.Fps/.
3. This result is stated for p odd in Proposition 13.1 and proved for p D 2 in

Proposition 3.1 of [24]. It is also addressed in Remark 4.15 of the preprint [14]
(the explicit statement is not included in [15], but can readily be deduced from
the results therein).

ut
Remark 2.2. The characteristic-2 analogue of Part 2 of Proposition 2.1 can be found
in Sect. 3 of [24]. We also note that Part 1 of Proposition 2.1 does not hold in
characteristic p D 2 in general (see Sect. 5 of [24]).

Part 3 of Proposition 2.1 immediately establishes the following corollary:

Corollary 2.3. W.Fps/ 	 W, with equality for any extension Fps of the splitting
field Fq of E.

We conclude this section with a connection between the Fp-dimension of the
space Vs D Fps=W.Fps/ and the number of Fps -rational points on the curve CR.
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This is obtained by projecting the bilinear form (4) onto Vs. We write x D xCW.Fps/

for the elements in Vs. Proposition 2.6 below is one of the key ingredients in the
determination of the zeta function of CR over Fq (Theorem 8.4).

Proposition 2.4. Define a map Qs on Vs � Vs via

Qs.x; y/ D 1

2
TrFps=Fp.xR.y/C yR.x//:

Then Qs is a non-degenerate bilinear form on Vs � Vs.

Proof. We begin by showing that Qs is well-defined. Let x1; x2 2 Fps . Then

x1 D x2” x1 � x2 2 W.Fps/

” TrFps=Fp..x1 � x2/R.y/C yR.x1 � x2// D 0 for all y 2 Fps

” TrFps=Fp.x1R.y/CyR.x1// D TrFps=Fp.x2R.y/CyR.x2// for all y 2 Fps

” Qs.x1; y/ D Qs.x2; y/ for all y 2 Vs:

Similarly, one obtains that y1 D y2 if and only if Qs.x; y1/ D Qs.x; y2/ for all x 2 Vs.
So if .x1; y1/ D .x2; y2/, then Qs.x1; y1/ D Qs.x1; y2/ D Qs.x2; y2/.

It is obvious that Qs is bilinear. To establish non-degeneracy, let x 2 Vs with
Qs.x; y/ D 0 for all y 2 Vs. Then TrFps=Fp.xR.y/ C yR.x// D 0 for all y 2 Fps , so
x 2 W.Fps/, and hence x D 0. ut

It follows that the quadratic form x 7! Qs.x; x/ on Vs is non-degenerate.
Therefore, its zero locus

fx 2 Vs W TrFps=Fp.xR.x// D 0g
defines a smooth quadric over Fp.

In [11], Joly provides a formula for the cardinality of the zero locus of a non-
degenerate quadratic form, which we reproduce here for the convenience of the
reader. The case of n odd is treated in Chap. 6, Sect. 3, Proposition 2.7, and the case
of n even is Proposition 2.9 of Chap. 6, Sect. 3. Note that in [11], the result is proved
for forms over an arbitrary finite field, but we restrict to Fp here which is sufficient
for our purpose.

Theorem 2.5 (Joly [11]). Let a1X21 C � � � C anX2n be a non-degenerate quadric in n
variables with coefficients in Fp, and N be the cardinality of its zero locus. Then

N D

8

ˆ

ˆ

<

ˆ

ˆ

:

pn�1 if n is odd;

pn�1 C .pn=2 � pn=2�1/ if n is even and .�1/n=2a1 � � � an 2 .F�
p /
2;

pn�1 � .pn=2 � pn=2�1/ if n is even and .�1/n=2a1 � � � an … .F�
p /
2:

Applying this result to the quadric x 7! TrFps=Fp.xR.x// on the space Fps=W.Fps/,
we obtain the following point count for the curve CR. This result is already presented
in [24], but we include it here to provide a proof.
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Proposition 2.6 (Proposition 13.4 of [24]). Let ws D dimFp.W.Fps// and ns D
s � ws. Then the number of Fps -rational points on CR is

#CR.Fps/ D
(

ps C 1 for ns odd;

ps C 1˙ .p � 1/ppsCws for ns even;

with the sign depending on the coefficients of the quadratic form Qs.

Proof. We have Vs D Fps=W.Fps/ ' Fns
p , where ns D s�ws. Therefore, for Nx 2 Vs,

we may write Nx D .x1; : : : ; xns/, with each xi 2 Fp. In this way, Qs.x; x/ on the space
Vs is a non-degenerate quadric in ns variables with coefficients in Fp. Furthermore,
it is diagonalizable by Chap. 8, Theorem 3.1 of [5] since p is odd, and therefore can
be written in the form

Pns
iD1 aiX2i with ai 2 Fp for 1 � i � ns. As a consequence we

may apply Theorem 2.5 to obtain the cardinality of the set

fx 2 Vs ' Fns
p W Qs.x; x/ D 0g D fx 2 Vs W TrFps=Fp.xR.x// D 0g:

Each x 2 Vs with Qs.x; x/ D 0 gives rise to pws distinct values x 2 Fps such that
TrFps=Fp.xR.x// D 0. For each of these x 2 Fps , we have p solutions y to the equation
yp � y D xR.x/. In addition to these points, CR has one point at infinity which is
defined over any extension of Fpr . Hence #CR.Fps/ D pwsC1N C 1 with N given as
in Theorem 2.5 (with n D ns/. ut

Note that a more general version of Proposition 2.6 can be found in Theorem 4.1
of [4].

3 Connection to Automorphisms of CR

In this section, we generalize the results of Proposition 2.1 to lay the groundwork for
our investigation of the k-automorphisms of CR that stabilize 1, the unique point
at infinity on CR. We follow Sect. 3 of [15], but our notation is slightly different.
Similar results may also be found in [7].

We define for any polynomial f .X/ 2 kŒX� the set

S.f .X// D f.a; c; d/ 2 k� � k � F�
p W there exists g.X/ 2 XkŒX� such that

f .aX C c/ � df .X/ D g.X/p � g.X/g: (10)

In our situation we take f .X/ D XR.X/, where R.X/ is an additive polynomial of
degree ph. It is easy to verify that if .a; c; d/ 2 S.XR.X// then the map .x; y/ 7!
.axCc; dyCg.x// is an automorphism of CR that fixes1. In fact, in Lemma 4.1 we
will see that every automorphism of CR that fixes1 is of this form. The elements
in S.XR.X//, along with the polynomial g.X/, can be characterized explicitly as
follows:
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Proposition 3.1. If h D 0, then S.XR.X// D f.a; 0; a2/ W a2 2 F�
p g.

Proof. If h D 0, then R.X/ D a0X, so

.aX C c/R.aX C c/ � dXR.X/ D a0
�

.a2 � d/X2 C 2acX C c2
�

:

This polynomial is of the form g.X/p � g.X/ if and only if g.X/p � g.X/ D 0, or
equivalently, a2 D d, c D 0 and g.X/ 2 Fp. ut
Proposition 3.2.

1. Assume that h 
 1 and let a 2 k�, c 2 k and d 2 F�
p . Then .a; c; d/ 2 S.XR.X//

if and only if there exists B.X/ 2 XkŒX� such that

cR.X/C R.c/X D B.X/p � B.X/; (11)

and

aR.aX/ D dR.X/: (12)

2. If the equivalent conditions of Part 1 are fulfilled, then c and B.X/ satisfy the
following conditions:

a. We have that c 2 W.
b. The polynomial B.X/ D Bc.X/ only depends on c and is uniquely determined

by (11) and the condition that Bc.X/ 2 XkŒX�. It is an additive polynomial
with coefficients in Fpr .c/ 	 Fq.

c. The polynomial Bc.X/ is identically zero if and only if c D 0, and has degree
ph�1 otherwise.

3. For a triple .a; c; d/ 2 S.XR.X//, all polynomials g.X/ as given in (10) are of the
form

g.X/ D Bc.aX/C Bc.c/

2
C i;

as i ranges over Fp. In particular, each of these polynomials g.X/ has coefficients
in Fq.a/.

Proof.

1. Let .a; c; d/ 2 k� � k � F�
p . Suppose first that there exists B.X/ 2 XkŒX�

satisfying (11), and that a and d satisfy (12). Then for any b 2 k such that
bp � b D cR.c/, we have

.aX C c/R.aX C c/ � dXR.X/ D X.aR.aX/ � dR.X//C cR.aX/C aXR.c/C cR.c/

D B.aX/p � B.aX/C bp � b;

and so we may take g.X/ D B.aX/C b to show that .a; c; d/ 2 S.XR.X//.
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Conversely, suppose that .a; c; d/ 2 S.XR.X//. Then there exists a polynomial
g.X/ 2 kŒX� such that

X.aR.aX/ � dR.X//C cR.aX/C aR.c/X C cR.c/ D g.X/p � g.X/:

Writing g.X/ D b CeB.X/ with eB.X/ 2 XkŒX�, we see that this is equivalent to
the existence of a polynomialeB.X/ 2 XkŒX� such that

eB.X/p �eB.X/ D XF.X/C G.X/ (13)

where F.X/ D aR.aX/� dR.X/ and G.X/ D cR.aX/C aR.c/X are both additive
polynomials. We note for future reference during the proof of Part 3 that this also
implies bp � b D cR.c/.

Note that (12) holds if and only if F.X/ D 0, in which case B.X/ DeB.X=a/ 2
XkŒX� satisfies (11). Thus, it suffices to show that .a; c; d/ 2 S.XR.X// implies
F.X/ D 0 to complete the proof of Part 1.

To this end, we note that all the monomials in XF.X/ and G.X/ are of the
form XpiC1 and Xpi

for 0 � i � h. If eB.X/ D 0, then this immediately forces
F.X/ D G.X/ D 0, so assume thateB.X/ ¤ 0.

Comparing degrees in (13) shows that deg.eB/ � ph�1. Put

eB.X/ D
ph�1
X

jD1
QbjX

j; Qbj 2 k for 1 � j � ph�1;

and consider the polynomialeB.X/p �eB.X/. In this polynomial, the coefficient of
Xj for 1 � j � ph is

8

ˆ

ˆ

<

ˆ

ˆ

:

�Qbj when p − j;
Qbp

j=p � Qbj when p j j and j � ph�1;
Qbp

ph�1 when j D ph:

All coefficients of Xj for j ¤ pi; pi C 1 must vanish. We conclude that the
coefficients Qbj of eB.X/ are zero for all j ¤ pi; pi C 1, so we may write
eB.X/ D XU.X/ C V.X/ where U.X/;V.X/ 2 kŒX� are additive polynomials.
Then (13) yields

XpU.X/p C V.X/p � XU.X/ � V.X/ D XF.X/C G.X/:

Except for the monomials in XpU.X/p, this polynomial identity only contains
monomials of the form Xpi

and XpiC1; the monomials in XpU.X/p all take the
form XpCpiC1

. This forces U.X/ D 0. Thus, XF.X/ D V.X/p � V.X/ � G.X/ is
additive, which is only possible if F.X/ D 0.
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2. The proof of Part 2 is now straightforward. We remark that Eq. (11) is identical to
Eq. (6). Therefore 2a follows from Part 2 of Proposition 2.1, and B.X/ is identical
to the polynomial Bc.X/ defined in that proposition since B.X/ 2 XkŒX�. Thus,
B.X/ only depends on c and is unique, and we write Bc.X/ for this polynomial
from now on. The additivity of Bc.X/ was already established in the proof of
Part 1, since Bc.X/ D eB.X=a/, and QB.X/ D V.X/ is additive; note that it
also follows from Part 2a of Proposition 2.1. Moreover, the coefficients of Bc

satisfy (7)–(9) and thus belong to Fpr .c/. Part 1 and Corollary 2.3 imply that
Fpr .c/ 	 Fq. This proves 2b.

If c D 0, then Bc.X/ D 0. If c ¤ 0, the polynomial Bc.X/ is obviously nonzero
and (9) shows that Bc.X/ has degree ph�1. This proves 2c.

3. Writing g.X/ D b C eB.X/ with eB.X/ 2 XkŒX� as in the proof of Part 1, we
have already seen that Bc.X/ D eB.X=a/, and b is any solution to the equation
bp � b D cR.c/. Any two such solutions differ by addition of an element in
Fp. Furthermore, since 2 2 F�

p , it follows from (11) that b D Bc.c/=2 satisfies
bp � b D cR.c/, and the first statement of Part 3 follows. The second statement
of Part 3 follows from Part 2b.

ut
Remark 3.3. We repeat here a remark made in the proof since we will use this
throughout the paper. For a triple .a; c; d/ 2 S.XR.X//, all polynomials g.X/ as
given in (10) can be written as

g.X/ D Bc.aX/C b;

where Bc.aX/ 2 Fq.a/Œx�, and b 2 k is a solution of the equation

bp � b D cR.c/: (14)

Part 3 of Proposition 3.2 implies that every solution b of this equation is of the form
b D Bc.c/=2C i with i 2 Fp.

4 Automorphism Group of CR

In this section we apply the results of the previous section to study the group
Aut.CR/ of k-automorphisms of the curve CR, and more particularly the subgroup
Aut0.CR/ of automorphisms of CR that fix the unique point at infinity, i.e., the unique
point of CR which does not belong to the affine curve defined by (1). The main result
is Theorem 4.3, which describes Aut0.CR/.

Recall from Sect. 3 that to a triple .a; c; d/ 2 S.XR.X// we associate the k-auto-
morphism

�a;b;c;dWCR ! CR

.x; y/ 7! .axC c; dyC bC Bc.ax//
(15)
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of CR. Here b is a solution of the equation bp � b D cR.c/ (see Remark 3.3) and Bc

is as in Proposition 3.2. Note that �a;b;c;d fixes the point1. In the rest of the paper,
we denote by

�.x; y/ D �1;1;0;1.x; y/ D .x; yC 1/

the Artin–Schreier automorphism of the curve CR.
The following lemma summarizes some properties of the automorphisms �a;b;c;d:

Lemma 4.1. With the above notation and assumptions, we have

1. Every element of the stabilizer Aut0.CR/ of the point1 is of the form �a;b;c;d as
in (15).

2. The automorphisms �1;b;c;1 with .b; c/ ¤ .0; 0/ have order p. For .a; d/ ¤ .1; 1/
the order of �a;b;c;d is not a p-power.

Proof. The lemma follows from Corollaries 3.4 and 3.5 in [15]. We recall the
proof.

1. Part 1 follows from Proposition 3.3 of [15] in the case that g.CR/ 
 2. (Since p is
odd in our set-up and the genus of CR is ph.p� 1/=2, this only excludes the case
that h D 0 and p D 3. This case is treated in the proof of Corollary 3.4 of [15].)
Namely, let ' 2 Aut0.CR/ be an automorphism of CR fixing1. Then the proof
of Proposition 3.3 of [15] shows that there exists an isomorphism Q'WP1 ! P1

together with a commutative diagram

CR

'
��

��

CR

��

P1
Q'

�� P1;

where the vertical maps are .x; y/ 7! x.
The morphism Q' fixes1 2 P1, hence it is an affine linear transformation and

we may write it as Q'.x/ D ax C c with a 2 k� and c 2 k. The commutative
diagram above implies that '.x; y/ D .axC c; dyC g.x// for some g.X/ 2 k.X/
and d 2 k�. The assumption that ' fixes the point1 implies that g.X/ 2 kŒX� is
a polynomial. The statement that ' D �a;b;c;d follows since ' is assumed to be an
automorphism of CR.

2. To prove Part 2 we first remark that if �a;b;c;d has p-power order, then a D
d D 1, since 1 is the only pth root of unity in k. We show that every nontrivial
automorphism �1;b;c;1 has order p.

We compute that

�
p
1;b;c;1.x; y/ D .xC pc; yC pbC Bc.x/C Bc.xC c/C � � � C Bc.xC .p � 1/c//:
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Recall from Proposition 3.2 that Bc is an additive polynomial; in particular, its
constant term vanishes. Hence

Bc.X/C Bc.X C c/C � � � C Bc.X C .p � 1/c/ D
p�1
X

iD0
Bc.ic/ D

p�1
X

iD0
iBc.c/ D 0:

This implies that �p
1;b;c;1 D 1.

ut
Remark 4.2. Part 2 of Lemma 4.1 does not hold for p D 2. In [24], Theorem 4.1
it is shown that Aut0.CR/ always contains automorphisms of order 4 for h 
 1 and
p D 2. See also [15], Sect. 7.2 for a concrete example. In Remark 7.3 we give a few
more details on the differences between the cases p D 2 and p odd.

The following result is Theorem 13.3 of [24], and describes the group Aut0.CR/.
The structure of the Sylow p-subgroup P of Aut0.CR/ will be described in more
detail in Sect. 5 below. Again, we include this result here to provide a proof.

Theorem 4.3 (Theorem 13.3 of [24]).

1. The group Aut0.CR/ has a unique Sylow p-subgroup, which we denote by P. It is
the subgroup consisting of all automorphisms �1;b;c;1 and has cardinality p2hC1.

2. The automorphisms �a;0;0;d form a cyclic subgroup H � Aut0.CR/ of order

e.p � 1/
2

gcd
i�0

ai¤0
.pi C 1/;

where e D 2 if all of the indices i such that ai ¤ 0 have the same parity, and
e D 1 otherwise.

3. The group Aut0.CR/ is the semi-direct product of the normal subgroup P and the
subgroup H.

Proof.

1. To prove Part 1, one easily checks that f�1;b;c;1 W �1;b;c;1 2 Aut0.CR/g is a
subgroup of Aut0.CR/. (This is similar to the proof of Lemma 5.2 below.)
The statements on the order of �a;b;c;d in Part 2 of Lemma 4.1 imply that P is
the unique Sylow p-subgroup of Aut0.CR/, which implies that P is a normal
subgroup.

Parts 2a and 3 of Proposition 3.2 imply that the cardinality of P is equal to
p #W. The last statement of Part 1 therefore follows from Part 3 of Proposi-
tion 2.1, since E is a separable polynomial of degree p2h.

2. To prove Part 2, we consider all elements .a; 0; d/ 2 S.XR.X//. Part 2c of
Proposition 3.2 implies that the polynomial B0 corresponding to this tuple is zero.
Part 2 of Proposition 3.2 therefore implies that .a; 0; d/ 2 S.XR.X// if and only
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if aR.aX/ D dR.X/. This condition is equivalent to d D apiC1 for all 0 � i � h
with ai ¤ 0, as can be readily seen by comparing coefficients in aR.aX/ and
dR.X/. Part 2 now follows immediately.

3. Note that the order of H is prime to p. In particular, we have H \P D f1g. Part 3
follows since Aut0.CR/ is generated by H and P.

ut
For completeness we state the following theorem, which follows from [19], Satz

6 and Satz 7. (See also Theorem 3.1 of [15].) Since we study the automorphism
group of CR over the algebraically closed field k here, it is no restriction to assume
that R.X/ is monic.

Theorem 4.4. Let R be monic.

1. Assume that R.X/ … fX;Xpg: Then Aut.CR/ D Aut0.CR/.
2. If R.X/ D Xp, then Aut.CR/ Š PGU3.p/.
3. If R.X/ D X, then Aut.CR/ ' SL2.p/.

For future reference we note the following result on the higher ramification
groups of the point1 2 CR in the cover CR ! CR=Aut0.CR/. For the definition of
the higher ramification groups and their basic properties we refer to [18], Chap. 4 or
[20], Chap. 3.

Lemma 4.5. Let R be an additive polynomial of degree h 
 1, and CR as given
in (1).

1. The filtration of higher ramification groups in the lower numbering of
Aut0.CR/ is

G D G0 D Aut0.CR/ © P D G1 © G2 D � � � D G1Cph D h�i © f1g:

2. Let H � Aut.CR/ be any subgroup which contains �. Then g.CR=H/ D 0.

Proof. To prove Part 1, write �1 for the valuation at the unique point1 at infinity
and choose a uniformizing parameter t at1. One easily computes that

�1
�

�.t/ � t

t

�

D
(

1C ph if � 2 h�i n f1g;
1 if � 2 P n h�i:

This may also be deduced from the fact that the quotient of CR by the subgroup
generated by the Artin–Schreier automorphism �.x; y/ D .x; y C 1/ has genus 0
([16], Lemma 2.4).

Part 2 follows immediately from the fact that the function field of the curve
CR=h�i is k.X/. This can also be deduced from Part 1. ut
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5 Extraspecial Groups and the Structure of P

We now focus again on the subgroup P described in Part 1 of Theorem 4.3. Part 2 of
Lemma 4.1 implies that the Sylow p-subgroup P of Aut0.CR/ consists precisely of
the automorphisms �1;b;c;1.x; y/ D .xC c; yC bC Bc.x//. For brevity, we simplify
their notation to

�b;c D �1;b;c;1:
The main result of the section, Theorem 5.3, states that P is an extraspecial

group. For more details on extraspecial groups we refer the reader to Chap. III.13
of [9] and [22]. Recall that we assume that p is an odd prime. The classification of
extraspecial 2-groups is different from that for odd primes.

Definition 5.1. A noncommutative p-group G is extraspecial if its center Z.G/ has
order p and the quotient G=Z.G/ is elementary abelian.

We denote by E.p3/ the unique nonabelian group of cardinality p3 and exponent
p. It can be given by generators and relations as follows:

E.p3/ D hx; y j xp D yp D Œx; y�p D 1; Œx; y� 2 Z.E.p3//i:

This group obviously is an extraspecial group.
The following lemma describes the commutation relation in P. The lemma

contains the key steps to prove that P is an extraspecial group.

Lemma 5.2. Assume that h 
 1.

1. We have Œ�b1;c1 ; �b2;c2 � D ���.c1;c2/, where

�.c1; c2/ D Bc1 .c2/ � Bc2 .c1/:

2. We have Z.P/ D ŒP;P� D h�i. The quotient group P=Z.P/ is isomorphic to the
space W defined in equation (3), where the isomorphism is induced by �b;c 7! c.

3. Any two non-commuting elements �; � 0 of P generate a normal subgroup E�;� 0 WD
h�; � 0i of P which is isomorphic to E.p3/.

Proof.

1. To prove Part 1, we compute that

��1
b;c .x; y/ D .x � c; y � b � Bc.x � c//:

We therefore have

�b1;c1�b2;c2�
�1
b1;c1�

�1
b2;c2 .x; y/ D �b1;c1�b2;c2�

�1
b1;c1 .x � c2; y � b2 � Bc2 .x � c2//

D �b1;c1�b2;c2 .x � c2 � c1; y � b2 � Bc2 .x � c2/ � b1 � Bc1 .x � c2 � c1//

D �b1;c1 .x � c1; y � Bc2 .x � c2/�b1 � Bc1 .x � c2 � c1/CBc2 .x � c2 � c1//
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D �b1;c1 .x � c1; y � b1 � Bc1 .x � c2 � c1/ � Bc2 .c1//

D .x; y � Bc1 .x � c2 � c1/ � Bc2 .c1/C Bc1 .x � c1//

D .x; yC Bc2 .c1/ � Bc1 .c2//:

Since �b1;c1�b2;c2�
�1
b1;c1

��1
b2;c2

certainly belongs to Aut0.CR/, Part 1 of
Lemma 4.1 implies that �b1;c1�b2;c2�

�1
b1;c1

��1
b2;c2
D �a;b;c;d for some a, b, c, and d.

From our computation above, a D d D 1 and c D 0. Since c D 0, by Part 2c of
Proposition 3.2, Bc.X/ D 0, which implies that b D Bc2 .c1/ � Bc1 .c2/ 2 Fp.

2. Part 1 shows that ŒP;P� � h�i. Since P is noncommutative, we have equality.
Because � D �1;0 and B0.X/ D 0 by Part 2c of Proposition 3.2, we have that for
any �b;c,

�b;c��
�1
b;c �

�1 D �Bc.0/ D 1;
since Bc.X/ is an additive polynomial and therefore has no constant term. Thus
� commutes with every element of P, and ŒP;P� D h�i 	 Z.P/.

To finish the proof of the first statement of Part 2, we now show that if c1 ¤ 0,
then for each automorphism �b1;c1 there exists an automorphism �b2;c2 such that
�b1;c1 and �b2;c2 do not commute. This shows that in fact h�i D Z.P/.

Let c1 2 W n f0g. By Part 2 of Proposition 2.1 and Part 1 of Proposition 3.2,
.1; c1; 1/ 2 S.XR.X// and by Part 2c of Proposition 3.2, Bc1 .X/ has degree
ph�1. Considering c2 DW C as a variable, the recursive formulas (7) and (8) for
the coefficients bi of BC show that degC.bi/ � phCi. We conclude that the degree
of �.c1;C/, when considered as polynomial in C, is at most p2h�1. Since the
cardinality of W is p2h, it follows that there exists a c2 2 W, and therefore
�b2;c2 2 P, such that �.c1; c2/ ¤ 0. We conclude that Z.P/ D h�i.

Since ��b;c D �bC1;c, it follows from Part 3 of Proposition 3.2 that the map

P! W; �b;c 7! c

is a surjective group homomorphism with kernel h�i.
3. Let � WD �b1;c1 ; �

0 WD �b2;c2 2 P be two non-commuting elements, and write
� D �.c1; c2/. Part 1 implies that �� 0 D ���� 0� . Since �; � 0, and � have order p
(Part 2 of Lemma 4.1), it follows that � and � 0 generate a subgroup E.�; � 0/ of
order p3 of P, which contains Z.P/ D h�i. Since the exponent of this subgroup
is p, it is isomorphic to E.p3/.

For an arbitrary element �b;c 2 P, Part 1 implies that �b;c��
�1
b;c 2 h�; �i �

E.�; � 0/, and similarly for � 0 replacing � . Thus E.�; � 0/ is a normal subgroup,
proving Part 3.

ut
Theorem 5.3. Assume that h 
 1. Then the group P is an extraspecial group of
exponent p.

Proof. Since h 
 1, Part 2 of Lemma 5.2 shows that P is an extraspecial group.
Part 2 of Lemma 4.1 yields that P has exponent p. ut
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We now show that P is a central product of h copies of E.p3/, i.e., P is isomorphic
to the quotient of the direct product of h copies of E.p3/, where the centers of each
copy have been identified. These subgroups of P of order p3 have been described in
Part 3 of Lemma 5.2.

Corollary 5.4. Assume that h 
 1. Then P is a central product of h copies of E.p3/.

Proof. Theorem III.13.7.(c) of [9] states that P is the central product of h extraspe-
cial groups Pi of order p3. Since P has exponent p, it follows that the groups Pi have
exponent p as well. Therefore Pi ' E.p3/. ut

We describe the decomposition of P as a central product from Corollary 5.4
explicitly; this description is in fact the proof given in Theorem III.13.7.(c) of [9].
The proof of Part 2 of Lemma 5.2 shows that �.c1; c2/ defines a non-degenerate
symplectic pairing

W �W ! Fp; .c1; c2/ 7! �.c1; c2/:

We may choose a basis .c1; : : : ; ch; c0
1; : : : ; c

0
h/ of W such that

�.ci; c
0
j/ D ıi;j;

where ıi;j is the Kronecker function. In particular, it follows that hc1; : : : ; chi � W
is a maximal isotropic subspace of the bilinear form �.

For every i, choose elements �i; �
0
i 2 P which map to ci; c0

i, respectively, under
the quotient map from Part 2 of Lemma 5.2. This corresponds to choosing an
element bi as in Part 3 of Proposition 3.2 for each i. Part 1 of Lemma 5.2 implies that
�i does not commute with � 0

i , but commutes with �j; �
0
j for every j ¤ i. Therefore

Ei D h�i; �
0
i i is isomorphic to E.p3/ (Part 3 of Lemma 5.2). It follows that P is the

central product of the subgroups Ei.
We finish this section with a description of the maximal abelian subgroups of P.

This will be used in Sect. 6 to obtain a decomposition of the Jacobian of CR.

Proposition 5.5. Let h 
 1.

1. Every maximal abelian subgroup A of P is an elementary abelian group of order
phC1, and is normal in P.

2. Let A ' .Z=pZ/hC1 be a maximal abelian subgroup of P. For any subgroup
A D Ap ' .Z=pZ/h � A with Ap \ Z.P/ D f1g there exist subgroups
A1; : : : ;Ap�1 of A such that

A D Z.P/ [ A1 [ � � � [ Ap;

Ai ' .Z=pZ/h; Ai \ Z.P/ D f1g; Ai \ Aj D f1g if i ¤ j:

3. Any two subgroups A of A of order ph which trivially intersect the center of P
are conjugate inside P.



104 I. Bouw et al.

Proof.

1. The statement that the maximal abelian subgroups A of P have order phC1 is
Theorem III.13.7.(e) of [9].

2. A maximal abelian subgroup A is the inverse image of a maximal isotropic
subspace of W. Since P has exponent p, we conclude that A ' .Z=pZ/hC1 is
elementary abelian. Part 1 of Lemma 5.2 and the fact that A is the inverse image
of a maximal isotropic subspace of W imply that A is a normal subgroup of P.
This proves Part 1.

Let A � P be a maximal abelian subgroup. Without loss of generality, we
may assume that A corresponds to the maximal isotropic subspace generated by
the basis elements c1; : : : ; ch of W as described above. In this case we have A D
h�; �1; : : : ; �hi where �i maps to ci under the map from Part 2 of Lemma 5.2.
Define

Ap WD h�1; : : : �hi:

This is a subgroup of A of order ph such that Ap \ Z.P/ D f1g.
We define � D �b;c0

1C			Cc0

h
, where b is some solution of the equation

bp � b D .c0
1 C � � � C c0

h/R.c
0
1 C � � � C c0

h/

as specified in Remark 3.3. Let

Ai D � iAp�
�i; i D 1; : : : ; p � 1:

By Part 2a of Proposition 2.1, Bc.X/ is additive in c. This implies that

Bc0

1C			Cc0

h
.X/ D

h
X

iD1
Bc0

i
.X/:

The choice of the basis ci; c0
i of W, together with Part 1 of Lemma 5.2 implies

therefore that

��i�
�1 D ���.c0

i ;ci/�i D ��.ci;c0

i /�i D ��i:

It follows that Ai \ Z.P/ D f1g and Ai \ Aj D f1g if i ¤ j. By counting, we see
that each non-identity element of A is contained in exactly one Ai.

3. Let A;A0 be two subgroups of A as in the statement of Part 3. Without loss of
generality, we may assume that A D Ap D h�1; : : : �hi, as in the proof of Part 2.
Then A0 D h�j1�1 : : : ; �

jh�hi for suitable ji 2 Fp. Define c DPh
iD1 jici 2 W and

choose b with bp�b D Bc.c/=2. As in the proof of Part 2 it follows that � WD �b;c

satisfies �A��1 D A0.

ut
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6 Decomposition of the Jacobian of CR

In this section we decompose the Jacobian of CR over the splitting field Fq of the
polynomial E. This decomposition allows us to reduce the calculation of the zeta
function of CR over Fq to that of a certain quotient curve. This quotient curve is
computed in Sect. 7, and Sect. 8 combines these results to compute the zeta function
of CR over Fq.

The decomposition result (Proposition 6.3) we prove below is based on the
following general result of Kani–Rosen, Theorem B of [12]:

Theorem 6.1 (Kani-Rosen [12]). Let C be a smooth projective curve defined over
an algebraically closed field k, and G a (finite) subgroup of Autk.C/ such that
G D H1 [ H2 [ : : : [ Ht, where the subgroups Hi � G satisfy Hi \ Hj D f1g
for i ¤ j. Then we have the isogeny relation

Jac.C/t�1 � Jac.C=G/g � Jac.C=H1/
h1 � � � � � Jac.C=Ht/

ht ;

where g D #G, hi D #Hi, and Jacn D Jac� � � � � Jac (n times).

We apply Theorem 6.1 to a maximal abelian subgroup A � P. Recall from
Part 1 of Proposition 5.5 that A is an elementary abelian p-group of order phC1
which contains the center Z.P/ D h�i of P. Part 3 of Proposition 3.2 implies that all
automorphisms in A are defined over Fq.

Recall from Part 2 of Proposition 5.5 the existence of a decomposition

A D A0 [ A1 [ � � � [ Ap; (16)

where A0 D h�i is the center of P and for i ¤ 0 the Ai are elementary abelian
p-groups of order ph.

Each group Ai defines a quotient curve CAi WD CR=Ai: Since all automorphisms
in Ai are defined over Fq, it follows that the quotient curve CAi together with the
natural map �Ai WCR ! CAi may also be defined over Fq. The following lemma
implies that all curves CAi are isomorphic over Fq:

Lemma 6.2. Let A be a maximal abelian subgroup of P, and let A and A0 be two
subgroups of A of order ph which have trivial intersection with the center of P.
Then the curves CR=A and CR=A0 are isomorphic over Fq.

Proof. Part 3 of Proposition 5.5 states that the subgroups A and A0 are conjugate
inside P. Namely, we have A0 D �A��1 for an explicit element � 2 P. The
automorphism � of CR induces an isomorphism

� WCR=A! CR=A0:

Since � is defined over Fq, this isomorphism is defined over Fq as well. ut
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We write JR WD Jac.CR/ for the Jacobian variety of CR. Since CR is defined over
Fq and has an Fq-rational point, the Jacobian variety JR is also defined over Fq. The
map �Ai induces Fq-rational isogenies

�Ai;�W JR ! Jac.CAi/; ��
Ai
W Jac.CAi/! JR: (17)

The element

"Ai D
1

ph
��

Ai
ı �Ai;� 2 End0.JR/ WD End.JR/˝Q

is an idempotent (Sect. 2 of [12]) and satisfies the property that "Ai.JR/ is isogenous
to Jac.CAi/. Note that ph is the degree of the map �Ai .

In the following result we use these idempotents to decompose JR. The same
strategy was also used in Sect. 10 of [24] in the case that p D 2. In that source,
Van der Geer and Van der Vlugt give a direct proof in their situation of the result of
Kani–Rosen (Theorem 6.1) that we apply here.

Proposition 6.3. There exists an Fq-isogeny

JR �Fq Jac.CAp/
ph
:

Proof. We apply Theorem 6.1 to the decomposition (16) of a maximal abelian
subgroup A of P. This result shows the existence of a k-isogeny

Jp
R � Jac.CR=A /p

hC1 �k Jac.CA0 /
p �

p
Y

iD1
Jac.CAi/

ph
: (18)

The groups A and A0 contain the Artin–Schreier element �; hence the curves
CR=A and CA0 have genus zero (Part 2 of Lemma 4.5). Therefore the Jacobians of
these curves are trivial and may be omitted from (18).

As before, let "Ai 2 End.JR/ denote the idempotent corresponding to Ai.
Theorem 2 of [12] states that the isogeny relation from (18) is equivalent to the
relation

p Id � ph.

p
X

iD1
"Ai/ 2 End0.JR/:

Here, as defined on p. 312 of [12], the notation a � b means that �.a/ D �.b/ for
all virtual characters of End0.JR/. Since End0.JR/ is a Q-algebra, we may divide by
p on both sides of this relation. Applying Theorem 2 of [12] once more yields the
isogeny relation

JR �k

p
Y

iD1
Jac.CAi/

ph�1

: (19)
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We have already seen that the isogenies ��
Ai

and �Ai;� are defined over Fq. It follows
that the isogeny (19) is defined over Fq as well (see also Remark 6 in Sect. 3 of [12]).
Since the curves CAi , and hence also their Jacobians, are isomorphic (Lemma 6.2),
the statement of the proposition follows. ut

7 Quotients of CR by Elementary Abelian p-Groups

We consider again a maximal abelian subgroup A ' .Z=pZ/hC1 of P and choose
A � A with A ' .Z=pZ/h and A \ Z.P/ D f1g. In this section we compute
an Fq-model of the quotient curve CA D CR=A. Lemma 6.2 implies that the
Fq-isomorphism class of the quotient curve does not depend on the choice of
the subgroup A.

Since A \ Z.P/ D f1g, Part 1 of Lemma 4.5 implies that the filtration of higher
ramification groups in the lower numbering of A is

A D G0 D G1 © G2 D f1g;

so the Riemann–Hurwitz formula yields

2g.CR/ � 2 D ph.p � 1/ � 2 D .2g.CA/ � 2/ph C 2.ph � 1/:

We conclude that g.CA/ D .p � 1/=2.
Proposition 5.5 implies that the elements of A commute with �, since � 2 Z.P/.

It follows that CA is an Artin–Schreier cover of the projective line branched at one
point. Artin–Schreier theory implies therefore that CA may be given by an Artin–
Schreier equation

Yp � Y D fA.X/;

where fA.X/ is a polynomial of degree 2. Theorem 7.4 below implies that this
polynomial fA.X/ is in fact of the form fA.X/ D aAX2 for an explicit constant aA.
These curves are all isomorphic over the algebraically closed field k, but not over Fq.
The following lemma describes the different Fq-models of the curves Yp�Y D eX2

for e 2 Fq.

Lemma 7.1. For e 2 Fq, define the curve De by the affine equation

Yp � Y D eX2: (20)

Two curves De1 and De2 as in (20) are isomorphic over Fq if and only if e1=e2 is the
product of a square in F�

q with an element of F�
p . In particular, over Fq, any two of

these curves are isomorphic.
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Proof. Let De1 and De2 be curves of the form (20). Suppose there exists an Fq-
isomorphism 'WDe1 ! De2 . We claim that there exists an Fq-isomorphism which
sends1 2 De1 to1 2 De2 .

We first consider the case that p > 3, i.e., g.Dei/ 
 2. In this case, Proposition 3.3
of [15] states that there exists an automorphism � of De1 over Fq such that ' ı �
sends the point 1 2 De1 to the point 1 2 De2 . To prove the claim it suffices to
show that � may be defined over Fq.

To prove this, we follow the proof of Proposition 3.3 of [15] and use the fact
that ' maps every point of De1 to a point of De2 with the same polar semigroup.
Theorem 3.1.(a) of [15] implies that the only points of De1 with the same polar
semigroup as 1 are the points Qi WD .0; i/ with i 2 Fp. It follows that '�1.1/
is either1 or Qi for some i 2 Fp. In the former case, there is nothing to show. If
'�1.1/ D Qi, we may choose

�.x; y/ D
�

x

y.pC1/=2 ;
iy � 1

y

�

:

Note that this is an automorphism of De1 which maps 1 to Qi. Moreover, � is
defined over the field of definition of De1 , and we are done.

We now prove the claim in the case that p D 3. In this case the curves Dei are
elliptic curves. The inverse '�1WDe2 ! De1 of ' is also defined over Fq. It follows
that Q WD '�1.1/ 2 De1 .Fq/ is Fq-rational. Then the translation �Q�1WP 7! PC
Q �1 is defined over Fq and sends the unique point1 2 De1 to Q. Precomposing
' with �Q�1 gives an Fq-isomorphism which sends1 2 De1 to1 2 De2 .

Therefore, without loss of generality we let 'WDe1 ! De2 be an Fq-isomorphism
which sends the unique point of De1 at1 to the unique point of De2 at1. Any such
automorphism can be written as '.x; y/ D .�0x C �1; �2y C �3/ with �i 2 Fq and
�2�0 ¤ 0. The condition that ' maps De1 to De2 is equivalent to

�
p
2 D �2; �2e1 D e2�

2
0 ; (21)

0 D 2e2�0�1; �
p
3 � �3 D e2�

2
1 : (22)

It follows that �1 D 0 and �2; �3 2 Fp. The coefficient e2 is given by

e2 D �2e1
�20

:

This proves the first assertion of the lemma. The second assertion is clear since any
element of F

�
q is a square in F

�
q . ut

We now compute an Fq-model of the curve CR=A for A � P an elementary
abelian subgroup of cardinality ph with A\Z.P/ D f1g. We prove this by induction
on h, following Sect. 13 of [24]. The following proposition is the key step in the
inductive argument. It is a corrected version of Proposition 13.5 of [24], which
extends to odd p Proposition 9.1 of [24] and is presented without proof. Indeed,
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the formula for the coordinate V of the quotient curve given in Proposition 13.5 of
[24] contains an error that has been corrected here. We recall that R.X/ is an additive
polynomial of degree ph with leading coefficient ah 2 Fpr 	 Fq.

Proposition 7.2. Assume that h 
 1, and let

�.x; y/ WD �b;c.x; y/ D .xC c; yC bC Bc.x//

be an automorphism of CR with c ¤ 0 and b D Bc.c/=2. Then the quotient curve
CR=h�i is isomorphic over Fq to the smooth projective curve given by an affine
equation

Vp � V D Qf .U/ D U QR.U/; (23)

where QR.U/ 2 FqŒU� is an additive polynomial of degree ph�1 with leading
coefficient

Qa D
(

ah
cp�1 if h ¤ 1;

ah
2cp�1 if h D 1:

Proof. In the proof c is fixed, therefore we write B.X/ for Bc.X/. We define new
coordinates

U D Xp � cp�1X; V D �Y C �.X/ D �Y C 	X2 C X

c
B.X/; (24)

where 	 is defined by

	 D �B.c/

2c2
:

One easily checks that U and V are invariant under � . The invariance of V under �
is equivalent to the property

�.X C c/ � �.X/ D B.X/C b:

Here we use the definition of b as b D B.c/=2. Since U and V generate a degree-p
subfield of the function field of CR and the automorphism � has order p, U and V
generate the function field of the quotient curve CR=h�i.

From the definition of U and V above, one can see that the Artin–Schreier
automorphism � induces an automorphism Q�.U;V/ D .U;V � 1/ on the quotient
curve CR=h�i. It follows that the quotient curve is also given by an Artin–Schreier
equation, which we may write as

Vp � V D �Yp C Y C � p.X/ � �.X/ D �XR.X/C � p.X/ � �.X/: (25)
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It is clear that the right-hand side of (25) can be written as a polynomial Qf .U/ in U,
since it is invariant under � by construction. Since the constant term of � is zero,
the right-hand side has a zero at X D 0, so Qf .U/ 2 UFqŒU�.

Recall that Part 1 of Proposition 3.2 established

B.X/p � B.X/ D cR.X/C XR.c/: (26)

This implies

XR.X/ D X.B.X/p � B.X//

c
� X2R.c/

c
:

It follows that

� XR.X/C � p.X/ � �.X/ D B.X/p

cp
U C 	pX2p C X2

�

R.c/

c
� 	

�

: (27)

Using (26) one computes

	pX2p C X2
�

R.c/

c
� 	

�

D 	pU2 � B.c/p

cpC1 XU:

Define

�.X/ D B.X/p

cp
� B.c/p

cpC1 X:

Since � is invariant under � , we may write �.X/ D �.U/ as a polynomial in U.
Note that �.0/ D 0 since�.0/ D 0. The additivity of the polynomials B and U in the
variable X implies that the polynomial � is additive in the variable U. It follows that
we may write �.U/ DPh�1

iD0 iUpi
. From (9), we deduce that the leading coefficient

of � is

h�1 D bp
h�1
cp
D ah

cp�1 :

Altogether, we find

Vp � V D Qf .U/ D U .�.U/C 	pU/ :

Setting QR.U/ WD �.U/ C 	pU, we see that QR.U/ is an additive polynomial in U.
The statement about the leading coefficient of QR.U/ follows from the definitions of
� and 	 . ut
Remark 7.3. We discuss a crucial difference between even and odd characteristic:
Proposition 7.2 is a statement about the automorphisms �b;c of order p which
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are not contained in the center of P. For p odd all elements of P n Z.P/ have
order p. This is not true for p D 2, as we already noted in Remark 4.2. Indeed
all extraspecial 2-groups contain elements of order 4. The precise structure of the
extraspecial group P in the case that p D 2 can be found in Theorem 4.1 of [24].
The automorphisms �b;c 2 P n Z.P/ of order 2 are easily recognized: they satisfy
c ¤ 0 but Bc.c/ D 0. This observation considerably simplifies the computation in
the proof of Proposition 7.2.

The distinction between elements of order 2 and 4 in P n Z.G/ in characteristic
2 yields a decomposition of the polynomial E (Theorem 3.4 of [24]). There is no
analogous result in odd characteristic.

Recall from Sect. 5 that every maximal abelian subgroup A of P is the inverse
image of a maximal isotropic subspace A of W. For any such A , let fc1; : : : ; chg
be a basis of A as described prior to Proposition 5.5. Then every subgroup of A
of order ph that intersects Z.P/ trivially is generated by automorphisms of the form
f�b1;c1 ; : : : ; �bh;chg where bp

i � bi D ciR.ci/ for 1 � i � h. In fact, there is a one-to-
one correspondence between such subgroups of A and sets of elements fb1; : : : ; bhg
satisfying bp

i � bi D ciR.ci/. By Remark 3.3 the elements in all these sets are of the
form bi D Bci.ci/=2C i with i 2 Fp.

Theorem 7.4. Assume h 
 0. Let A be a maximal abelian subgroup of P. Any
subgroup A � A of order ph that intersects the center Z.P/ of P trivially gives rise
to an Fq-isomorphism of the quotient curve CA onto the smooth projective curve
given by the affine equation

Yp � Y D aA X2:

Here

aA D ah

2

Y

c2Anf0g
c;

for h 
 1, where we recall that ah is the leading coefficient of R and A is the maximal
isotropic subspace of W that is the image of A under the quotient map P! W. For
h D 0, we let

aA D a0:

Proof. We prove by induction on h that there exists a subgroup A � A with
A ' .Z=pZ/h and Z.P/ \ A D f1g such that the quotient curve CA D CR=A is
given over Fq by the equation stated in the theorem. The statement of the theorem
follows from this using Lemma 6.2.

For h D 0 the statement is true by definition.
Assume that h 
 1 and that the statement of the theorem holds for all additive

polynomials R.X/ of degree ph�1. Fix a basis fc1; c2; : : : ; chg for the image of
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A in W. We may choose bh D Bch.ch/=2. As in Sect. 5, we write �h.x; y/ D
�bh;ch.x; y/ D .x C ch; y C bh C Bch.x//: Proposition 7.2 implies that the quotient
curve Ch�1 WD CR=h�hi is given by an Artin–Schreier equation

Yp
h�1 � Yh�1 D Xh�1Rh�1.Xh�1/;

where Rh�1 is an additive polynomial of degree ph�1.
Since A is an abelian group, it follows that Ah�1 WD A =h�hi ' .Z=pZ/h is

a maximal abelian subgroup of the Sylow p-subgroup Ph�1 of Aut0.Ch�1/. The
definition of the coordinate Xh�1 as Xp � cp�1

h X in the proof of Proposition 7.2
implies that Ah�1 corresponds to the maximal isotropic subspace hc1; : : : ; ch�1i of
Wh�1 WD W=hch; c0

hi, where ci D cp
i � cp�1

h ci and c0
h 2 W is an element with

�.ci; c0
h/ D ıi;h as in Sect. 5.

The induction hypothesis implies that there exists a subgroup Ah�1 � Ah�1 with
Ah�1 ' .Z=pZ/h�1 and Ah�1 \ Z.Ph�1/ D f1g such that the quotient Ch�1=Ah�1 is
given by

Yp
0 � Y0 D aAh�1X

2
0 :

We may choose bi satisfying bp
i � bi D ciR.ci/ for i D 1; : : : ; h � 1 such that the

images of �b1;c1 ; : : : ; �bh�1;ch�1 in Ah�1 generate Ah�1 (Remark 3.3). Put �i D �bi;ci

for i D 1; : : : ; h � 1. Then A WD h�1; : : : ; �hi satisfies

CR=A 'Fq Ch�1=Ah�1:

This concludes the induction proof.
The statement about aA follows immediately from the formula for the leading

coefficient of the quotient curve given in Proposition 7.2. ut

8 The Zeta Function of the Curve CR

In this section, we describe the zeta function of the curve CR over the splitting field
Fq of the polynomial E.X/ defined in (2).

Let C be a curve defined over a finite field Fps , and write Nn D #C.Fpsn/ for the
number of points on C over any extension Fpsn of Fps . Recall that the zeta function
of C, defined as

ZC.T/ D exp

0

@

X

n�1

NnTn

n

1

A ;

is a rational function with the following properties:
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1. The zeta function may be written as

ZC.T/ D
LC;Fps .T/

.1 � T/.1 � psT/
;

where LC;Fps .T/ 2 ZŒT� is a polynomial of degree 2g.C/ with constant term 1.

2. Write LC;Fps .T/ D Q2g
iD1.1 � ˛iT/ with ˛i 2 C. After suitably ordering the ˛i,

we have

˛2g�i D ps

˛i
; j˛ij D ps=2:

3. For each n, we have

Nn D #C.Fpsn/ D 1C psn �
2g
X

iD1
˛n

i :

4. If

LC;Fps .T/ D
2g
Y

iD1
.1 � ˛iT/

as above, then for any r 
 0, we have

LC;Fprs .T/ D
2g
Y

iD1
.1 � ˛r

i T/:

The numerator LC;Fps .T/ of the zeta function ZC.T/ over Fps is called the
L-polynomial of C=Fps . If the field is clear from the context, we sometimes omit it
from the notation and simply write LC.T/.

Recall that the Hasse–Weil bound asserts that

j#C.Fps/ � .ps C 1/j � 2ps=2g.C/:

A curve C=Fps is called maximal if #C.Fps/ D ps C 1C 2ps=2g.C/ and minimal if
#C.Fps/ D ps C 1 � 2ps=2g.C/. Since the number of points on a curve must be an
integer, if C is a maximal curve, then s must be even. Furthermore, using properties 2
and 3 above, it is clear that C is maximal if ˛j D �ps=2 for each 1 � j � 2g.C/, and
C is minimal if ˛j D ps=2 for each 1 � j � 2g.C/.

Assume that s is even and that Fps is an extension of Fq. In the notation of
Proposition 2.6, we have ws D dimFp W D 2h (Corollary 2.3). Since the curve
CR has genus ph.p � 1/=2, Proposition 2.6 implies that CR is either maximal or
minimal in this case. Moreover, one easily sees that if either s is odd or Fps does
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not contain Fq, then CR is neither maximal nor minimal. The following proposition
asserts that this almost determines the zeta function of CR over Fq. The statement is
an extension to odd characteristic of Theorems 10.1 and 10.2 of [24]. Note that the
statement for odd characteristic is simpler than that for characteristic 2.

Proposition 8.1. Let Fps be an extension of Fq, the splitting field of E.X/. Write
g D ph.p � 1/=2 for the genus of CR.

1. If s is even, the L-polynomial of CR is

LCR.T/ D .1˙ ps=2T/2g:

2. If s is odd, the L-polynomial of CR is

LCR.T/ D .1˙ psT2/g:

Proof.

1. Let ˛1; : : : ; ˛2g be the reciprocal zeros of the L-polynomial of C over Fps , where
we order the ˛i such that ˛i˛2g�i D ps.

We first assume that s is even. Since Fps is an extension of Fq, we have

N1 D #CR.Fps/ D 1C ps ˙ 2gps=2 D 1C ps �
2g
X

iD1
˛i:

Since j˛ij D ps=2 we conclude that

˛1 D � � � D ˛2g D ˙ps=2:

This proves Part 1.
2. We now assume that s is odd. Proposition 2.6 implies that

N1 D #CR.Fps/ D 1C ps D 1C ps �
2g
X

iD1
˛i: (28)

Since the reciprocal roots of the L-polynomial of C over Fp2s are ˛2j , we conclude
from Part 1 that either ˛2j D ps or ˛2j D �ps for all j.

If ˛2j D �ps for all j, then ˛j D ˙ips=2, where i is a primitive 4th root of unity.
It follows that ˛2g�j D ps=˛j D �˛j. Hence

.1 � ˛jT/.1 � ˛2g�jT/ D 1C psT2:

Assume now that ˛2j D ps for all j. In this case we have ˛j D ˙ps=2 and
˛2g�j D ps=˛j D ˛j. Let m D #f1 � j � g W ˛j D ps=2g. It follows from (28) that

0 D #CR.Fps/ � .ps C 1/ D ps=2.�2mC 2.g � m//:
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We conclude that 2g D 4m, i.e., m D g=2 (in particular, g is even). For the
L-polynomial of CR over Fps we find

LCR.T/ D .1 � psT2/g;

as claimed in Part 2.

ut
Remark 8.2.

1. The proof of Part 2 of Proposition 8.1 shows that the case LCR.T/ D .1� psT2/g

can only occur when g is even, i.e., if p � 1 .mod4/.
2. Assume that s is even. Then ˛j D ps=2 or ˛j D �ps=2 for all 1 � j � 2g,

and therefore CR is either minimal or maximal. If CR is minimal over Fps , each
˛j D ps=2. The curve CR therefore remains minimal over each extension field
Fpsf . If CR is maximal over Fps , each ˛j D �ps=2. The reciprocal roots of the

L-polynomial over Fpsf are ˛f
j D .�1/f psf=2. We conclude that CR is maximal

over Fpsf if f is odd and minimal if f is even.

To determine the zeta function of CR, it remains to decide when the different
cases occur. The following result, which is an immediate corollary of Proposi-
tion 6.3, reduces this problem to the case h D 0.

Corollary 8.3. Let A ' .Z=pZ/h � P be a subgroup with A \ Z.P/ D f0g. Write
CA D CR=A. Then

LCR;Fq.T/ D LCA;Fq
.T/p

h
:

Proof. This is an immediate consequence of Proposition 6.3, since abelian varieties
which are isogenous over Fq have the same zeta function over Fq. This follows,
for example, from the cohomological description of the zeta function in Sect. 1
of [13]. ut

Recall from Theorem 7.4 that the curve CA from Corollary 8.3 is a curve of genus
.p � 1/=2 given by an affine equation of the form

Yp � Y D aX2;

for some a 2 F�
q . This corresponds to the case h D 0. All curves of this form are

isomorphic over Fq, and the different Fq-models are described in Lemma 7.1. The
next result determines the L-polynomials of the curves CA. In the literature one finds
many papers discussing the zeta function of similar curves using Gauss sums (for
example, [6, 13, 27].) We give a self-contained treatment here based on the results
of Sect. 2.

Theorem 8.4. Consider the curve CR over some extension of Fq and put g D g.CR/.
For h 
 0 we put a D aA with aA as given in Theorem 7.4 for some choice of A .
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1. If p � 1 .mod4/, then the L-polynomial of CR over Fps is given by

LCR;Fps .T/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

.1 � psT2/g if s is odd;

.1 � ps=2T/2g if s is even and a is a square in F�
ps ;

.1C ps=2T/2g if s is even and a is a nonsquare in F�
ps :

2. If p � 3 .mod4/, then the L-polynomial of CR over Fps is given by

LCR;Fps .T/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1C psT2/g if s is odd;

.1 � ps=2T/2g if s � 0 .mod4/ and a is a square in F�
ps ;

.1C ps=2T/2g if s � 0 .mod4/ and a is a nonsquare in F�
ps ;

.1C ps=2T/2g if s � 2 .mod4/ and a is a square in F�
ps ;

.1 � ps=2T/2g if s � 2 .mod4/ and a is a nonsquare in F�
ps :

Proof. Corollary 8.3 implies that it suffices to consider the case h D 0. To prove
the theorem we may therefore assume that R.X/ D aX. We label the corresponding
curve Da as we do in Lemma 7.1.

Case 1: The element a is a square in F�
ps .

Then Lemma 7.1 implies that Da is isomorphic over Fq to the curve D1 given
by the affine equation Yp � Y D X2. Since D1 is defined over Fp, we compute its
L-polynomial over Fp. The argument that we use here proceeds in the same manner
as in the proof of Proposition 2.6. However, since both the polynomial R.X/ and the
field are very simple, we do not need to consider the quadric Q considered in that
proof explicitly.

As in the proof of Proposition 8.1, it suffices to determine the number N2 of Fp2 -
rational points of the curve D1. We have p C 1 points with x 2 f0;1g. As in the
proof of Proposition 2.6, the Fp2 -points with x ¤ 0;1 correspond to squares z D x2

with TrFp2 =Fp.z/ D 0. Every such element z yields exactly 2p rational points. Since
TrFp2 =Fp.z/ D z C zp, the nonzero elements of trace zero are exactly the elements

with zp�1 D �1. Choosing an element � 2 F�
p2

of order 2.p � 1/, we conclude that
the nonzero elements with trace zero are

ker.TrFp2 =Fp/ n f0g D f�2jC1 W j D 0; : : : ; p � 2g:

First suppose that p � 3 .mod4/. Then all the elements of ker.TrFp2 =Fp/ are squares
in Fp2 , so

#D1.Fp2 / D 1C pC .p � 1/2p D 1C p2 C .p � 1/p:
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As in the proof of Proposition 8.1 it follows that ˛j D ˙ip1=2 D �˛2g�j for
1 � j � g after suitable relabeling. If s is even, then ˛s

j D ˛s
2g�j D isps=2 and

.1�˛s
j T/.1�˛s

2g�jT/ D 1� 2isps=2TC psT2 D
(

.1 � ps=2T/2 if s � 0 .mod4/;

.1C ps=2T/2 if s � 2 .mod4/:

If s is odd, then ˛s
j D ˙isps=2 D �˛s

2g�j, and therefore

.1 � ˛s
j T/.1 � ˛s

2g�jT/ D 1C psT2:

Now assume that p � 1 .mod4/. Then none of the elements of ker.TrFp2 =Fp/ are
squares in Fp2 , and we conclude that

#D1.Fp2 / D 1C p D 1C p2 � .p � 1/p:
Again as in the proof of Proposition 8.1 it follows that, up to relabeling, ˛j D ps=2 D
˛2g�j for 1 � j � g=2, and ˛j D �ps=2 D ˛2g�j for g=2 C 1 � j � g. (Note
that g is even since p � 1 .mod4/.) We may therefore relabel again to ensure that
˛j D ps=2 D �˛2g�j, for 1 � j � g. With this new labeling, if s is even, then
˛s

j D ˛s
2g�j D ps=2, and

.1 � ˛s
j T/.1 � ˛s

jCg=2T/ D .1 � ps=2T/2;

and if s is odd, then ˛s
j D ps=2 D �˛2g�j and

.1 � ˛s
j T/.1 � ˛s

jCg=2T/ D .1 � ps=2T/.1C ps=2T/ D .1 � psT2/:

This concludes Case 1.

Case 2: The element a is a nonsquare in F�
ps and s is odd.

Then the set faˇ2 W ˇ 2 F�
psg contains .ps � 1/=2 distinct elements, all of

which are nonsquares. As a consequence, this set contains all nonsquares of Fps .
For s odd, the nonsquares in F�

p are also nonsquares in F�
ps , and therefore the

set faˇ2 W ˇ 2 F�
psg contains an element in F�

p . (In fact, this set contains all the
nonsquares in Fp.) Lemma 7.1 now implies that the curve Da is isomorphic over
Fq to the curve D1, and the desired result follows therefore from Case 1.

Case 3: The element a is a nonsquare in F�
ps and s is even.

Here, we consider M WD ker.TrFps=Fp/ D fz 2 Fps W TrFps=Fp.z/ D 0g: Since the
trace is surjective and Fp-linear, the cardinality of M is ps�1. We may write M as a
disjoint union

M D f0g [Msq [Mnsq;

where Msq (resp. Mnsq) are the elements of M n f0g which are squares (resp.
nonsquares) in F�

ps .
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As in the proof of Case 1 we have

#D1.Fps/ D 1C pC 2p #Msq;

and a similar argument gives

#Da.Fps/ D 1C pC 2p #Mnsq:

From the expression for #D1.Fps/ computed in Case 1, it follows that

#Msq D
(

ps�1�1
2
C .p�1/

2
p.s�2/=2 if p � 3 .mod4/ and s � 2 .mod4/;

ps�1�1
2
� .p�1/

2
p.s�2/=2 if p � 1 .mod4/ or s � 0 .mod4/:

Since #Mnsq D #M � 1 � #Msq D ps�1 � 1 � #Msq, we conclude that

#Da.Fps/ D
(

1C ps � .p � 1/ps=2 if p � 3 .mod4/ and s � 2 .mod4/;

1C ps C .p � 1/ps=2 if p � 1 .mod4/ or s � 0 .mod4/:

The expressions for the L-polynomial now follow as in the previous cases. ut
We finish this section by proving that all curves CR are supersingular. This result

is not new. Our proof just adds some details to Theorem 13.7 in [24]. An alternative
proof is given by Blache, Corollary 3.7(ii) of [2].

Proposition 8.5. The curve CR is supersingular, i.e., its Jacobian is isogenous over
k D Fq to a product of supersingular elliptic curves.

Proof. The curve CR is supersingular if and only if all the slopes of the New-
ton polygon of the L-polynomial are 1=2. (This follows, for example, from
Theorem 2 of [23].) The statement of the proposition follows therefore from The-
orem 8.4 . ut

The reasoning of Van der Geer and Van der Vlugt for Theorem 13.7 of [24] is
slightly different, since they do not compute the L-polynomial of CR over Fq. They
argue that the Jacobian variety JR of CR is isogenous over k to ph copies of the
Jacobian of the curve D1 with equation Yp � Y D X2. (This is a weaker version of
Proposition 6.3.) They then use the fact that the curve D1 is supersingular.

9 Examples

By work of Ihara [10], Stichtenoth and Xing [21], and Fuhrmann and Torres [8], we
know that for q a power of a prime, a curve C which is maximal over Fq2 satisfies

g.C/ 2
	

0;
.q � 1/2
4




[


q.q � 1/
2

�

:
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Moreover, the Hermite curves are the only maximal curves of genus .q.q �
1//=2 [17].

Recall from Sect. 8 that a curve C is maximal over Fp2s if and only if its L-
polynomial satisfies LC;Fp2s D .1Cp2sT/2g.C/. In our setting, Theorem 8.4 shows that
for a curve CR of the type considered in this paper and a defined as in Theorem 8.4,
if Fps contains the splitting field Fq of E.X/, then CR is maximal over Fps if and only
if one of the following holds:

• s is even, a is a nonsquare in F�
q , and p � 1 .mod4/,

• s � 0 .mod4/, a is a nonsquare in F�
q , and p � 3 .mod4/, or

• s � 2 .mod4/, a is a square in F�
q , and p � 3 .mod4/.

In each case the negation of the condition on a guarantees that CR is a minimal curve
over Fps .

In light of these facts, the only difficulty in generating examples of maximal
and minimal curves lies in computing suitable elements a. In this section we present
certain cases in which such a can be computed. We start with a discussion of the case
h D 0, and then turn our attention to R.X/ D Xph

. For more results along the same
lines we refer to [1, 3]. In [4] it is shown that all curves CR that are maximal over the
field Fp2n are quotients of the Hermite curve Hpn with affine equation ypn�y D xpnC1.

At the end of this section we briefly investigate isomorphisms between certain
curves CR and curves with defining equations

Yp C Y D XphC1:

Throughout this section, we let Hp denote the Hermite curve which is defined by the
affine equation

Yp C Y D XpC1: (29)

As mentioned above, this is a maximal curve over Fp2 . The curve Yp C Y D X2 is a
quotient of the Hermite curve Hp, and therefore this curve is maximal over Fp2 . The
following lemma determines when the twists

Yp � Y D aX2

of this curve are maximal. A similar result can also be found in Lemma 4.1 of [3].

Lemma 9.1. Let R.X/ D aX 2 Fp2s ŒX�. Then CR is maximal over Fp2s if and only if
one of the following conditions holds:

1. p � 1 .mod4/ and a 2 F�
p2s is a nonsquare,

2. p � 3 .mod4/, s is even, and a 2 F�
p2s is a nonsquare, or

3. p � 3 .mod4/, s is odd, and a 2 F�
p2s is a square.

Proof. In this case we have E.X/ D 2aX, hence Fp2s automatically contains the
splitting field of E. The lemma therefore follows from Theorem 8.4. ut
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Remark 9.2. The database manYPoints [26] compiles records of curves with many
points. The following two maximal curves fall in the range of genus and cardinality
covered in the database, and have now been included in manYPoints. Previously,
the database did not state any lower bound for the maximum number of points of a
curve of genus 5 over F114 and a curve of genus 9 over F194 .

1. In the case where h D 0, p D 11, and s D 4, let a 2 F�
114

be a nonsquare. Then
the curve

Y11 � Y D aX2

is maximal over F114 and of genus 5.
2. In the case where h D 0, p D 19, and s D 4, let a 2 F194 be a nonsquare. Then

the curve

Y19 � Y D aX2

is maximal over F194 and of genus 9.

The following proposition gives an example of a class of maximal curves with
small genus compared to the size of their field of definition, in contrast to the
Hermite curves which have large genus. A similar result for p D 2 can be found
in Theorem 7.4 of [24]. A similar result with p replaced by an arbitrary prime power
can be found in Proposition 4.6 of [3].

Proposition 9.3. Let h 
 1.

1. Let R.X/ D Xph
. Then E.X/ D Xp2h CX, which has splitting field Fq D Fp4h . The

curve CR is minimal over Fq.

2. Let ah 2 F�
p2h be an element with aph�1

h D �1 and define R.X/ D ahXph
. Then

E.X/ D aph

h .X
p2h � X/, which has splitting field Fq D Fp2h . The curve CR is

maximal over Fq.

Proof. We first prove the statement about the splitting field of E.X/ for both cases.
Consider the additive polynomial R.X/ D ahXph 2 Fps ŒX� with h 
 1. Then (2)
shows that

E.X/ D aph

h Xp2h C ahX:

If ah D 1, then E has splitting field Fq D Fp4h . If ah 2 F�
p2h satisfies aph�1

h D �1,

then E.X/ D aph

h .X
p2h � X/, which has splitting field Fq D Fp2h . In both cases, we

conclude from the explicit expression of E that

W D fc 2 Fp W cp2h D �a1�ph

h cg:
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For every c 2 W, the formulas (7) and (8) imply that

Bc.X/ D �
h�1
X

iD0
api

h cphCi
Xpi
:

We first consider the case where ah D 1. Choose an element c 2 W n f0g, i.e.,
cp2h D �c, and define

A D fc� W � 2 Fphg � W:

For any two �j, �k in Fph , we have

Bc�j.c�k/ D �
h�1
X

iD0
�

phCi

j cphCiCpi
�

pi

k D �
h�1
X

iD0
�

pi

j cphCiCpi
�

phCi

k D Bc�k.c�j/;

since �ph D � for any � 2 Fph . Therefore the pairing from Part 1 of Lemma 5.2
satisfies

�.c�j; c�k/ D Bc�j.c�k/ � Bc�k.c�j/ D 0 for any pair .c�j; c�k/ 2 A
2
:

We conclude that A � W is a maximal isotropic subspace. Write A � P
for the corresponding maximal abelian subgroup of P. Recall the constant from
Theorem 7.4,

aA D ah

2

Y

	2Anf0g
	;

when h 
 1. Here the leading coefficient ah of R.X/ is 1. The definition of A implies
that

Y

	2Anf0g
	 D cph�1 Y

�2F�

ph

� D �cph�1:

We conclude that aA D �cph�1=2 is a square in F�
q , since �1=2 is a square in

F�
p2
� F�

q . Theorem 8.4 now yields

LCR;Fq.T/ D .1 �
p

qT/2g:

It follows that CR is minimal over Fq.

We now assume that ah 2 F�
p2h satisfies aph

h D �ah. In this case the splitting

field of E.X/ is Fq D Fp2h as shown earlier. Choose a primitive .p2h � 1/-st root of
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unity �. Then we may write ah D �.2jC1/.phC1/=2 for some j. It follows that ah 2 F�
q

is a square if and only if .phC1/=2 is even. This is equivalent to p � 3 .mod4/ and
h odd.

We choose A D Fph � W D Fp2h . For every c; c0 2 A, we have

Bc.c
0/ D �

h�1
X

iD0
.ahcc0/pi D Bc0.c/:

As in the proof of Part 1, we conclude that A is a maximal isotropic subspace for the
pairing � from Part 1 of Lemma 5.2. Since

Y

c2Anf0g
c D �1;

we conclude that aA is equivalent to ah modulo squares in F�
q . (The argument is

similar to that in the proof of Part 1.) We conclude that aA is a square in F�
q if and

only if p � 3 .mod 4/ and h is odd. Theorem 8.4 implies that CR is a maximal curve
over Fq in each of these cases. This proves Part 2. ut
Remark 9.4. In their follow-up paper [25] to [24], Van der Geer and Van der Vlugt
constructed further examples of maximal curves as a fiber product of the curves CR.
We have not considered this construction in the case of odd characteristic. We leave
this as a subject for future research.

Example 9.5.

1. We consider the Hermite curve Hp given in (29), and the curve CR given by

Yp � Y D XpC1:

We claim that the curves Hp and CR are not isomorphic over Fp2 . To see this, we
show that #CR.Fp2 / D 1C p ¤ 1C p3 D #Hp.Fp2 /. This clearly implies that the
two curves are not isomorphic over Fp2 .

We note that

 WF�
p2 ! F�

p2 ; x 7! x1Cp

is the restriction of the norm on Fp2=Fp, so the image of  is F�
p . It follows that

TrFp2 =Fp.x
1Cp/ D 2x1Cp ¤ 0 for all x 2 F�

p2 :

We conclude that the Fp2 -rational points of CR are the p points with x D 0

together with the unique point 1. This proves the claim. (Exercise 6.7 in [20]
asks to prove that Hp and CR are isomorphic over Fp2 if p � 1 .mod4/. The
above calculation shows that this does not hold.)
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However, the Hermite curve Hp is isomorphic over Fp2 to the curve given by

CR0 W Yp � Y D a1X
pC1;

where a1 2 Fp2 satisfies ap�1
1 D �1. The isomorphism is given by  WCR0 !

Hp; .x; y/ 7! .x; ap
1y/. This conforms with Part 2 of Proposition 9.3.

2. Let ah 2 F�
p2h be an element with aph

h D �ah as in Part 2 of Proposition 9.3. Write

R.X/ D ahXph
. Then  W .x; y/ 7! .x; ap2h�1

h y/ defines an isomorphism between
CR and the curve given by

Yp C Y D XphC1:

Part 2 of Proposition 9.3 therefore implies that this curve is maximal over Fp2h .
This can also be shown directly, for example, using Proposition 6.4.1 of [20].
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Hypergeometric Series, Truncated
Hypergeometric Series, and Gaussian
Hypergeometric Functions

Alyson Deines, Jenny G. Fuselier, Ling Long, Holly Swisher, and Fang-Ting Tu

Abstract In this paper, we investigate the relationships among hypergeometric
series, truncated hypergeometric series, and Gaussian hypergeometric functions
through some families of “hypergeometric” algebraic varieties that are higher
dimensional analogues of Legendre curves.

Keywords Hypergeometric series • Gaussian hypergeometric functions • Alge-
braic varieties • Galois representations • Supercongruences

1 Introduction

1.1 Motivation

When a prime p satisfies p � 1 .mod 6/, the p-adic gamma value ��p
�

1
3

�3
is

a quadratic algebraic number with absolute value
p

p which can be written as a

Jacobi sum. Thus, �p
�

1
3

�6
is not a conjugate of ��p

�

1
3

�3
in the sense of algebraic
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numbers [13]. However, considering truncated hypergeometric series we have when
p � 1 .mod 6/,

3F2

	

1
3
1
3
1
3

1 1
I 1



p�1
WD

p�1
X

kD0

 

� 1
3

k

!3

� .�1/k � �p

�

1

3

�6

.mod p3/; (1)

which was shown by the third author and Ramakrishna in [31], while numerically
we see that

3F2

	

2
3
2
3
2
3

1 1
I 1



p�1
WD

p�1
X

kD0

 

� 2
3

k

!3

� .�1/k � ��p

�

1

3

�3

.mod p3/; (2)

and we will show this holds modulo p2 in this paper. By Dwork [16],

lim
s!1 3F2
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1
3
1
3

1 1
I 1



ps�1

.

3F2
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1
3
1
3

1 1
I 1



ps�1�1
D �p

�

1

3

�6

;

while

lim
s!1 3F2
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2
3
2
3

1 1
I 1



ps�1

.

3F2

	

2
3
2
3
2
3
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ps�1�1
D ��p

�

1

3

�3

:

When p � 5 .mod 6/, Dwork in [16] showed that there is a similar congruence

that involves both 3F2

"

1
3
1
3
1
3

1 1
I 1
#

ps�1
and 3F2

"

2
3
2
3
2
3

1 1
I 1
#

ps�1�1
. It is tempting to

think of the parameters 1
3

and 2
3

as “conjugates of some sort.” Also, if one considers

the finite field analogue of 3F2

"

1
3
1
3
1
3

1 1
I 1
#

due to Greene, what corresponds to 1
3

is a cubic character, which is determined up to a conjugate. Putting these together, it
appears that �� � 1

3

�3
is some sort of “conjugate” of �

�

1
3

�6
. One motivation of this

paper is to investigate these seemingly contradicting phenomena via the relations
between hypergeometric series, Gaussian hypergeometric functions, and truncated
hypergeometric series. These objects correspond to periods, Galois representations,
and unit roots (in the ordinary case) respectively.

In recent work [15], the authors use the perspective of Wolfart [43] and Archinard
[3] to consider classical 2F1-hypergeometric functions with rational parameters as
periods of explicit generalized Legendre curves

CŒNIi;j;k�
� W yN D xi.1 � x/j.1 � �x/k:

In [15], the main players are hypergeometric series and Gaussian hypergeometric
functions. The authors use Gaussian 2F1-hypergeometric functions to count points
of CŒNIi;j;k�

� over finite fields and hence compute the corresponding Galois represen-
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tations. This arithmetic information together with the periods of CŒNIi;j;k�
� in terms of

hypergeometric values yields information about the decomposition of the Jacobian
variety JŒNIi;j;k�

� constructed from the desingularization of CŒNIi;j;k�
� . When gcd.i; j; k/

is coprime to N and N − iC jCk, then JŒNIi;j;k�
� has a degree 2'.N/ “primitive” factor

Jnew
� , where ' is the Euler phi function. The authors prove the following theorem:

Theorem 1 ([15]). Let N D 3; 4; 6 and 1 � i; j; k < N with gcd.i; j; k/ coprime
to N and N − i C j C k. Then for each � 2 Q, the endomorphism algebra of Jnew

�

contains a four-dimensional algebra over Q if and only if

B

�

N � i

N
;

N � j

N

�

.

B

�

k

N
;
2N � i � j � k

N

�

2 Q;

where B.a; b/ D � .a/� .b/
� .aCb/ , and � .�/ is the Gamma function.

The second motivation for this paper is to explore the following higher dimen-
sional analogues of Legendre curves:

Cn;� W yn D .x1x2 � � � xn�1/n�1.1 � x1/ � � � .1 � xn�1/.x1 � �x2x3 � � � xn�1/:

In particular, the curves C2;� are known as Legendre curves. Up to a scalar multiple,
the hypergeometric series

nFn�1
	 j

n
j
n � � � j

n
1 � � � 1 I �




for any 1 � j � n � 1, when convergent, can be realized as a period of Cn;�.

1.2 Results

Our first theorem shows that the number of rational points on Cn;� over finite fields
Fq can be expressed in terms of Gaussian hypergeometric functions. For a definition

of Gaussian hypergeometric functions please see Sect. 2.3.1 Let cF�
q denote the group

of all multiplicative characters on F�
q .

Theorem 2. Let q D pe � 1 .mod n/ be a prime power. Let �n be a primitive
order n character and " the trivial multiplicative character in cF�

q . Then

1The subscript q for a Gaussian hypergeometric function records the size of the corresponding
finite field and should not be confused with the subscript for truncated hypergeometric series which
records the location of truncation.
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#Cn;�.Fq/ D 1C qn�1 C qn�1
n�1
X

iD1
nFn�1

�

�i
n; �

i
n; � � � ; �i

n;

"; � � � ; "; I�
�

q

:

Meanwhile, we are also interested in knowing how to use information from
truncated hypergeometric series to obtain information about the Galois represen-
tations and hence local zeta functions of Cn;�. For instance, we have the following
conjecture based on numerical evidence for the case � D 1:

Conjecture 3. Let n 
 3 be a positive integer, and p be prime such that p � 1

.mod n/. Then

nFn�1
	 n�1

n
n�1

n : : : n�1
n

1 : : : 1
I 1



p�1
WD

p�1
X

kD0

 

1�n
n

k

!n

.�1/kn � ��p

�

1

n

�n

.mod p3/:

Using the Gross–Koblitz formula [22], recalled in Sect. 2.4, we have for a prime
p � 1 .mod n/,

J.�n; �n/J.�n; �
2
n/ � � � J.�n; �

n�2
n / D .�1/n�2C 1C.n�1/p

n �p

�

1

n

�n

;

where J.�; �/ denotes the standard Jacobi sum. We see that .�1/n�2C 1C.n�1/p
n D 1

when n is odd and �n is an order n character of F�
p such that �n.x/ � x

p�1
n .mod p/

for all x 2 Fp. From the perspective of Grössencharacters (Hecke characters) (see
Weil [40]), this product of Jacobi sums is associated with a linear representation
� of the Galois group Gal.Q=Q.e2� i=n//. We would like to explore whether the
Galois representation arising from Cn;1 contains a factor that is related to �. When
n D 3; 4, the answer is positive. In proving these results the work of Greene [21]
and McCarthy [32] on finite field analogues of classical hypergeometric evaluation
formulas plays an essential role.

Ahlgren and Ono [1] show that for any odd prime p,

p3 � 4F3
�

�24; �
2
4; �

2
4; �

2
4

"; "; "
I 1
�

p

D �a.p/ � p; (3)

where a.p/ is the pth coefficient of the weight 4 Hecke cuspidal eigenform

�.2z/4�.4z/4;

with �.z/ being the Dedekind eta function. Here, we show the following:

Theorem 4. Let �2, �3, �4 denote characters of order 2, 3, 4, respectively, in cF�
q .

1. Let q � 1 .mod 3/ be a prime power. Then
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q2 � 3F2
�

�3; �3; �3
"; "

I 1
�

q

D J.�3; �3/
2 � J.�23; �

2
3/:

2. Let q � 1 .mod 4/ be a prime power. Then

q3 � 4F3
�

�4; �4; �4; �4
"; "; "

I 1
�

q

D J.�4; �2/
3 C qJ.�4; �2/ � J.�4; �2/

2:

Here we observe J.�4; �2/2 D �4.�1/J.�4; �4/J.�4; �42/. To prove Theorem 4 we
use the work of Greene [21] and McCarthy [32], except in case (2) when q � 5

.mod 8/, in which we use Grössencharacters and representation theory. The reason
we do this is because a key ingredient of our proof is Theorem 1.6 of McCarthy
[32], for which we assume �4 is a square, i.e., q � 1 .mod 8/. Combining this
with the theory of Galois representations, we can reach our conclusion when q � 5
.mod 8/. We wish to point out that the above results can be interpreted in terms
of Galois representations.2 Result (1) describes the trace of the Frobenius element
at q in Gal.Q=Q.

p�3// under a two-dimensional Galois representation arising
from the second étale cohomology of C3;1 in terms of Jacobi sums (and hence
Grössencharacters); while (2) describes a three-dimensional Galois representation
of Gal.Q=Q.

p�1// arising from the third étale cohomology of C4;1 in terms of
Jacobi sums. Both cases are exceptional. Consequently we can describe the local
zeta function of C3;1 and C4;1 completely. For instance, when p � 1 .mod 3/ is
prime, by the Hasse–Davenport relation for Jacobi sums (see [23]), the local zeta
function of C3;1 over Fp is

ZC3;1 .T; p/ D
1

.1 � T/.1C .˛p C ˛p/T C pT2/.1 � p2T/.1 � .˛2p C ˛2p/T C p2T2/

where ˛p D J.�3; �3/. Note that the factor .1 C .˛p C ˛p/T C pT2/ appearing
in the denominator has roots of absolute value 1=

p
p; meanwhile following Weil’s

conjecture (see [23]) such a term should appear in the numerator instead. We believe
the discrepancy is due to the fact that we are not computing using the smooth model
of Cn;� as no resolution of singularities is involved so far. Similarly, we have for any
prime p � 1 .mod 4/

2In a different language, our results correspond to the explicit descriptions of some mixed weight
hypergeometric motives arising from exponential sums which are initiated by Katz [24], and are
explicitly formulated and implemented by a group of mathematicians including Beukers, Cohen,
Rodriguez-Villegas and others (from private communication with H. Cohen and F. Rodriguez-
Villegas). Here we can use the explicit algebraic varieties to compute the Galois representations
directly. A different algebraic model for the algebraic varieties is given in the following recent
preprint [9].
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ZC4;1 .T; p/ D
.1C .ˇ3p C ˇ

3

p/T C p3T2/.1C .ˇp C ˇ/pT C p3T2/

� .1 � .ˇ
2
p C ˇ

2

p/T C p2T2/.1 � a.p/T C p3T2/.1 � pT/

.1 � T/.1 � p3T/
;

where a.p/ as in (3) and ˇp D J.�4; �2/. The factor corresponding to

y2 D .x1x2x3/3.1 � x1/.1 � x2/.1 � x3/.x1 � x2x3/

is

ZCold
4;1
.T; p/ D .1 � a.p/T C p3T2/.1 � pT/

.1 � T/.1 � p3T/
;

and new primitive portion is

ZCnew
4;1
.T; p/ D

.1C .ˇ3p C ˇ
3

p/T C p3T2/.1C .ˇp C ˇ/pT C p3T2/.1 � .ˇ2p C ˇ
2

p/T C p2T2/:

Part (1) of Theorem 4 explains why��p.
1
3
/3 appears to be a conjugate of �p.

1
3
/6.

There are two ways to specify a cubic character in cF�
p when p � 1 .mod 3/, i.e.,

�3.x/ � x.p�1/=3 .mod p/ for all x 2 Fp or �3.x/ � x2.p�1/=3 .mod p/. Either way
gives an embedding of

p2 � 3F2
�

�3; �3; �3
"; "

I 1
�

p

to Zp. Then the image of the Gaussian hypergeometric function is congruent to
��p.

1
3
/3 or �p.

1
3
/6, respectively, via the Gross–Koblitz formula [22, 37]. Using this

formula, we also prove the following result which relates Gaussian hypergeometric
functions to truncated hypergeometric series:

Lemma 1. Let r; n; j be positive integers with 1 � j < n. Let p � 1 .mod n/ be
prime and �n 2 cF�

p such that �n.x/ � xj.p�1/=n .mod p/ for each x 2 Fp. Then,

pr�1 � rFr�1
�

�n; �n; � � � ; �n

"; � � � ; " I x
�

p

�

.�1/rC1 � rFr�1
	 n�j

n
n�j

n � � � n�j
n

1 � � � 1 I
1

x




.p�1/
�

n�j
n

�

C .�1/rC1C .p�1/
n jr

�

x.p�1/ n�j
n � x

p�1
n j
�

.mod p/I



Truncated Hypergeometric and Gaussian Hypergeometric Functions 131

pr�1 � rFr�1
�

�n; �n; � � � ; �n

"; � � � ; " I x
�

p

�

.�1/rC1 � pr
rC1Fr

	

1 1 � � � 1
2n�j

n � � � 2n�j
n

I 1
x




p�1
.mod p/:

Thus, (1) and (2) hold modulo p. It is shown in [31] that (1) holds modulo p3.
These kinds of stronger congruences are known as supercongruences as they are
stronger than what the theory of formal groups can predict. We will establish a few
here. In particular, we prove the claim that Conjecture 3 holds modulo p2.

Theorem 5. Conjecture 3 holds modulo p2. Namely, for n 
 3, and p � 1 .mod n/
prime,

nFn�1
	 n�1

n
n�1

n : : : n�1
n

1 : : : 1
I 1
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WD
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X

kD0

 

1�n
n

k

!n

.�1/kn � ��p

�

1

n

�n

.mod p2/:

Remark. Theorem 5 also holds for n D 2, due to Mortenson [35].

We note that in [33, Definition 1.4], McCarthy defines a new function nGnŒ� � � �
in terms of sums and ratios of p-adic Gama functions. Recently, the second author
and McCarthy produced families of congruences between these nGn functions and
truncated hypergeometric series [19]. New identities for these functions have also
recently been obtained by McCarthy et al. [7] and it is possible they could be used
to prove Conjecture 3 in full.

For the truncated hypergeometric series related to C4;1 we have another result.

Theorem 6. For each prime p � 1 .mod 4/,
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.mod p4/:

Corresponding to Ahlgren and Ono’s result (3), Kilbourn [25] shows the
supercongruence

4F3

	

1
2
1
2
1
2
1
2

1 1 1
I 1



p�1
WD

p�1
X

kD0

 

� 1
2

k

!4

� a.p/ .mod p3/;

where a.p/ is defined as in (3).
Supercongruences are not only intellectually appealing, but they are also of

very practical use for our computations. For instance, Theorem 6 corresponds to
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the properties of the third étale cohomology group of C4;1 as mentioned earlier.
By the Hasse-Weil bounds for them, which are constant multiplies of p and
p3=2, respectively, the supercongruence results allowed us to compute the traces
of Frobenius without any ambiguity, from which we were able to nail down
the local zeta functions of C3;1 and C4;1 and discover Theorem 4 numerically
before proving it. There are a variety of different techniques for proving such
results and each has its own strength. See [11] for another Women in Numbers
(WIN) project on supercongruences, which was motivated by the work of Zudilin
[44] and his conjectures. We prove Theorems 5 and 6 by deforming truncated
hypergeometric series using hypergeometric evaluation identities (several of them
are due to Whipple [2, 41]) together with p-adic analysis via harmonic sums and
p-adic Gamma functions. This technique is originated in [10] and is later formulated
explicitly in [31].

1.3 Outline of this Paper

Section 2 contains some background material. In Sect. 3, we consider the familiar
setting of Legendre curves. This section serves as a showcase of our techniques
without getting into too much technicality. We prove Theorem 2 and Lemma 1 in
Sect. 4. Section 5 is devoted to proving the results on Gaussian hypergeometric
functions in Theorem 4. In Sect. 6, we prove Theorem 5, based on an idea of
Zudilin (private communication), and then prove Theorem 6. Sections 4, 5, and 6 are
technical in nature. In Sect. 7 we end with some remarks including a few conjectures
based on our numerical data computed using Sage.

2 Preliminaries

2.1 Generalized Hypergeometric Series and Truncation

For a positive integer r, and ˛i, ˇi 2 C with ˇi 62 f: : : ;�3;�2;�1g, the
(generalized) hypergeometric series rFr�1 is defined by

rFr�1
	

˛1 ˛2 : : : ˛r

ˇ1 : : : ˇr�1
I �



WD
1
X

kD0

.˛1/k.˛2/k : : : .˛r/k

.ˇ1/k : : : .ˇr�1/k
� �

k

kŠ

where .a/0 WD 1 and .a/k WD a.aC 1/ � � � .aC k � 1/ are rising factorials. This
series converges for j�j < 1.



Truncated Hypergeometric and Gaussian Hypergeometric Functions 133

When we truncate the above sum at k D m, we use the subscript notation

rFr�1
	

˛1 ˛2 : : : ˛r

ˇ1 : : : ˇr�1
I �



m

WD
m
X

kD0

.˛1/k.˛2/k : : : .˛r/k

.ˇ1/k : : : .ˇr�1/k
� �

k

kŠ
:

We note that the books by Slater [38], Bailey [5], and Andrews et al. [2] are excellent
sources for information on classical hypergeometric series.

The following gives an alternate truncation for hypergeometric series modulo
powers of primes:

Lemma 2. Let n 
 2 be a positive integer, j an integer 1 � j < n, and p � 1

.mod n/ prime. Then for x 2 Zp,

rFr�1
	 j

n
j
n � � � j

n
1 � � � 1 I x




j
n .p�1/

� rFr�1
	 j

n
j
n � � � j

n
1 � � � 1 I x




p�1
.mod pr/:

Proof. The lemma follows from the fact that when j.p�1/
n C 1 � k � .p � 1/, the

rising factorial
�

j
n

�

k
2 pZp, since it contains the factor p

�

j
n

�

, while .1/k is not

divisible by p. ut

2.2 Euler’s Integral Formula and Higher Generalization

When Re.ˇ1/ > Re.˛2/ > 0, Euler’s integral representation for 2F1 [2] states that

2F1

	

˛1 ˛2
ˇ1
I �



D � .ˇ1/

� .˛2/� .ˇ1 � ˛2/
Z 1

0

x˛2�1.1 � x/ˇ1�˛2�1.1 � �x/�˛1dx:

More generally, one has that when Re .ˇr/ > Re .˛rC1/ > 0 (see [2, (2.2.2)])

rC1Fr

	

˛1 ˛2 : : : ˛rC1
ˇ1 : : : ˇr

I �



D � .ˇr/

� .˛rC1/� .ˇr � ˛rC1/

�
Z 1

0

x˛rC1�1.1 � x/ˇr�˛rC1�1
rFr�1

	

˛1 ˛2 : : : ˛r

ˇ1 : : : ˇr�1
I �x




dx: (4)

From the above two integral formulas, one can derive that for each 1 � j � n � 1
the series nFn�1

"

j
n

j
n � � � j

n

1 � � � 1 I �
#

, with a suitable beta quotient factor, is a period

of Cn;�.
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2.3 Gaussian Hypergeometric Functions

Let p be prime and let q D pe. We extend any character � 2 cF�
q to all of Fq by

setting �.0/ D 0, including the trivial character ", so that ".0/ D 0. For A;B 2 cF�
q ,

let J.A;B/ WDPx2Fq
A.x/B.1 � x/ denote the Jacobi sum and define

 

A

B

!

WD B.�1/
q

J.A;B/ D B.�1/
q

X

x2Fq

A.x/B.1 � x/:

In [21], Greene defines a finite field analogue of hypergeometric series called
Gaussian hypergeometric functions, defined below.

Definition 1 ([21] Definition 3.10). If n is a positive integer, x 2 Fq, and

A0;A1; : : : ;An;B1;B2; : : : ;Bn 2 cF�
q , then

nC1Fn

�

A0; A1; : : : ; An

B1; : : : ; Bn
I x
�

q

WD q

q � 1
X

�2bF�

q

 

A0�

�

! 

A1�

B1�

!

: : :

 

An�

Bn�

!

�.x/:

Greene showcases a variety of identities satisfied by his Gaussian hypergeometric
functions, many of which provide direct analogues for transformations of classical
hypergeometric series. For example, he provides a finite field analogue of (4), shown
below.

Theorem 7 (Greene [21]). For characters A0;A1; : : : ;An;B1; : : : ;Bn in cF�
q , and

x 2 Fq,

nC1Fn

�

A0; A1; : : : ; An

B1; : : : ; Bn
I x
�

q

D

AnBn.�1/
q

�
X

y

nFn�1
�

A0; A1; : : : ; An�1
B1; : : : ; Bn�1

I xy

�

q

� An.y/AnBn.1 � y/:

To extend Greene’s program, McCarthy provides a modification of Greene’s
functions below. We let g.�/ D

X

x2Fq

�.x/�Tr.x/
p denote the Gauss sum of �, and

Tr the usual trace map form Fq to Fp.



Truncated Hypergeometric and Gaussian Hypergeometric Functions 135

Definition 2 ([32]). For characters A0;A1; : : : ;An;B1; : : : ;Bn in cF�
q ,

nC1Fn

�

A0; A1; : : : ; An

B1; : : : ; Bn
I x
��

q

WD

1

q � 1
X

�2bF�

q

n
Y

iD0

g.Ai�/

g.Ai/

n
Y

jD1

g.Bj�/

g.Bj/
g.�/�.�1/nC1�.x/:

McCarthy makes explicit how the two hypergeometric functions are related, via the
following:

Proposition 8 (McCarthy [32]). If A0 ¤ " and Ai ¤ Bi for each 1 � i � n, then

nC1Fn

�

A0; A1; : : : ; An

B1; : : : ; Bn
I x
��

q

D
2

4

n
Y

iD1

 

Ai

Bi

!�13

5 nC1Fn

�

A0; A1; : : : ; An

B1; : : : ; Bn
I x
�

q

:

McCarthy uses this hypergeometric function to provide analogues to classical
formulas of Dixon, Kummer, and Whipple for well-poised classical hypergeometric
series [32]. For example, consider Whipple’s classical transformation below:

Theorem 9 (Whipple [41]). If one of 1C 1
2
a� b, c, d, e is a negative integer, then

5F4

	

a b c d e
1C a � b 1C a � c 1C a � d 1C a � e

I 1



D � .1C a � c/� .1C a � d/� .1C a � e/� .1C a � c � d � e/

� .1C a/� .1C a � d � e/� .1C a � c � d/� .1C a � c � e/

� 4F3
	

1C 1
2
a � b c d e

1C 1
2
a cC dC e � a 1C a � b

I 1



:

McCarthy provides a finite field analogue to this result using his hypergeometric
series.

Theorem 10 (McCarthy, Theorem 1.6 of [32]). Let A;B;C;D;E 2 cF�
q such that,

when A is a square, A ¤ ", B ¤ ", B2 ¤ A, CD ¤ A, CE ¤ A, DE ¤ A, and
CDE ¤ A. Then, if A is not a square,

5F4

�

A; B; C; D; E
AB; AC; AD AE

I 1
��

q

D 0;

and if A is a square,
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5F4

�

A; B; C; D; E
AB; AC; AD AE

I 1
��

q

D

g.A/g.ADE/g.ACD/g.ACE/

g.AC/g.AD/g.AE/g.ACDE/

X

R2DA

4F3

�

RB; C; D; E
R ACDE; AB

I 1
��

q

C g.ADE/g.ACD/g.ACE/q

g.C/g.D/g.E/g.AC/g.AD/g.AE/
2F1

�

A; B
AB
I �1

��

q

:

Gaussian hypergeometric functions have been used to count points on different
types of varieties over Fq and they are related to coefficients of various modular
forms [1, 6, 17, 18, 26, 27, 36, 39]. We use Greene’s hypergeometric functions
to count points on Cn;� in Sect. 4.1. We make use of McCarthy’s hypergeometric
function, as well as the previous theorem, Theorem 10, in the proof of Theorem 4
in Sect. 5. Values of McCarthy’s normalized version of the hypergeometric function
over finite fields have also been shown to be related to eigenvalues of Siegel modular
forms of higher degree [34].

2.4 p-adic Gamma Functions and the Gross–Koblitz Formula

We first recall the p-adic � -function. The p-adic � -function is defined for n 2 N by

�p.n/ WD .�1/n
Y

0<j<n
p−j

j;

and extends to x 2 Zp by defining �p.0/ WD 1, and for x ¤ 0,

�p.x/ WD lim
n!x

�p.n/;

where n runs through any sequence of positive integers p-adically approaching x.
We recall some basic properties for �p.�/ which will be useful later (see Theorem

14 of [31]).

Proposition 11. Let x 2 Zp. We have the following facts about �p:

(a) �p.0/ D 1,
(b) �p.xC1/=�p.x/ D �x unless x 2 pZp in which case the quotient takes value�1,
(c) �p.x/�p.1 � x/ D .�1/a0.x/ where a0.x/ is the least positive residue of x

modulo p,
(d) Given p > 11, there exist G1.x/;G2.x/ 2 Zp such that for any m 2 Zp,

�p.xCmp/ � �p.x/

	

1C G1.x/mpC G2.x/
.mp/2

2
C G3.x/

.mp/3

6




.mod p4/:
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(e) G1.x/ D G1.1 � x/ and G2.x/C G2.1 � x/ D 2G1.x/2,
(f) If x � y .mod pn/, then �p.x/ � �p.y/ .mod pn/.

We note that (c) above implies in particular that for any integer n > 1 and prime
p � 1 .mod n/,

�p

�

1

n

�

�p

�

1 � 1
n

�

D .�1/ 1C.n�1/p
n :

Thus when n is odd, �p.
1
n /�p.1 � 1

n / D �1.
We now recall the Gross–Koblitz formula [22, 37] in the case of Fp. Let

' W F�
p ! Z�

p

be the Teichmüller character such that '.x/ � x .mod p/. The Gross–Koblitz
formula states that the Gauss sum g.'�j/ defined using the Dwork exponential as
the additive character satisfies

g
�

'�j
� D �� j

p�p

�

j

p � 1
�

; (5)

where 0 � j � p � 2; and �p 2 Cp is a root of xp�1 C p D 0.

3 In the Setting of Legendre Curves

We first briefly explain the relationships between Gaussian hypergeometric func-
tions, hypergeometric series, and truncated hypergeometric series using the Legen-
dre curve

C2;� W y2 D x1.1 � x1/.x1 � �/;
which is isomorphic to the more familiar form y2 D x.x� 1/.x� �/ over Q.

p�1/.
It is well known that one period of C2;� is given by

� � 2F1
	

1
2
1
2

1
I �



:

Assume � 2 Q and �2 2 cF�
p is of order 2. It follows from the Taniyama–

Shimura–Wiles theorem [42] that for good primes p,

ap.�/ D pC1�#C2;�.Fp/ D �
X

x12Fp

�2.x1.1� x1/.x1��// D �p �2 F1

�

�2; �2
"
I�
�

p

is the pth coefficient of a weight 2 cuspidal Hecke eigenform that can be computed
from a compatible family of two-dimensional `-adic Galois representations of
GQ WD Gal.Q=Q/ constructed from the Tate module of C2;� via L-series. This
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gives a correspondence between the 2F1 Gaussian hypergeometric functions and
the Galois representations arising from C2;�.

When ap.�/ is not divisible by p, i.e., p is ordinary for C2;�, then a result of
Dwork [16] says that

lim
s!1 2F1

	

1
2
1
2

1
I O�



ps�1

.

2F1

	

1
2
1
2

1
I O�



ps�1�1
(6)

is the unit root of T2 � ap.�/T C p, where O� D '.�/ is the image of � under the
Teichmüller character.

Since � D 1 is a singular case, we study the case when � D �1, for which the
corresponding Legendre curve admits complex multiplication. Let p � 1 .mod 4/
be prime, then by Greene [21, (4.11)],

p � 2F1
�

�2; �2
"
I �1

�

p

D J.�4; �2/C J.�4; �2/;

where �4 is a primitive order 4 character of F�
p .3 In the perspective of Dwork, the

value (6) agrees with the unit root of T2 C .J.�4; �2/ C J.�4; �2//T C p, which is
�p. 12 /�p. 14 /

�p. 34 /
by the Gross–Koblitz formula. Using Lemma 1, we have the following:

Proposition 12. For each prime p � 1 .mod 4/

2F1

	

1
2
1
2

1
I �1




p�1
2

� �p
�

1
2

�

�p
�

1
4

�

�p
�

3
4

� D � �p
�

1
4

�

�p
�

1
2

�

�p
�

3
4

� .mod p/:

Proof. By Lemmas 2 and 1, we obtain that

2F1

	

1
2
1
2

1
I �1




p�1
2

� 2F1

	

1
2
1
2

1
I �1




p�1
� �p � 2F1

�

�2; �2
"
I �1

�

p

.mod p/:

It remains to show

p � 2F1
�

�2; �2
"
I �1

�

p

� ��p
�

1
2

�

�p
�

1
4

�

�p
�

3
4

� .mod p/: (7)

By the relations

p � 2F1
�

�2; �2
"
I �1

�

p

D J.�4; �2/C J.�4; �2/ D
g.�2/

�

g.�4/2 C g.�4/2
�

g.�4/g.�4/
;

3When p � 3 .mod 4/, 2F1

�

�2; �2
"

I �1
�

p

D 0.
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using the Gross–Koblitz formula, we see that

p � 2F1
�

�2; �2
"
I �1

�

p

D ��
p�1
2

p �p
�

1
2

�

.�
3

p�1
2

p �p
�

3
4

�2 C �
p�1
2

p �p
�

1
4

�2
/

�
p�1
p �p

�

1
4

�

�p
�

3
4

�

D ��p
�

1
2

�

.�p�p
�

3
4

�2 C �p
�

1
4

�2
/

�p
�

1
4

�

�p
�

3
4

� ;

which yields the result. ut
Using a different technique via hypergeometric evaluation identities, one can

prove the following stronger result. We will also outline this strategy here (for
details, see [31]). First we deform the truncated hypergeometric series p-adically
so that it becomes a whole family of terminating series that can be written as a
quotient of Pochhammer symbols .a/k via appropriate hypergeometric evaluation
formulas. We further rewrite the quotient of Pochhammer symbols as a quotient of
p-adic Gamma values using the functional equation of p-adic Gamma functions.
Then we use harmonic sums to analyze the terminating series on one side and use
the Taylor expansion of p-adic Gamma functions on the other side. Now picking
suitable members in the deformed family, we compare both sides to get a linear
system which allows us to conclude the desired congruence.

Proposition 13. For any prime p � 1 .mod 4/,

2F1

	

1
2
1
2

1
I �1




p�1
2

� � �p.
1
4
/

�p.
1
2
/�p.

3
4
/
.mod p2/:

Remark 1. Proposition 13 was first obtained by Coster and van Hamme [14] using
a refined version of formal group laws.

Proof. We first recall a theorem of Kummer (see Corollary 3.1.2 of [2]) which says
that whenever b is a negative integer,

2F1

	

a b
a � bC 1 I �1




D � .a � bC 1/� .a=2C 1/
� .aC 1/� .a=2 � bC 1/ D

.aC 1/�b

.a=2C 1/�b
: (8)

We now estimate the left-hand side of the proposition statement, modulo p2. Observe
that for any positive integer 1 � k � p�1

2
, and x; y 2 Zp,

�

1

2
C xp

�

k

�
�

1

2

�

k

.1C 2xpH.odd/
k / .mod p2/;

.1C yp/k � .1/k .1C ypHk/ .mod p2/;
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where H.odd/
k WD

k
X

jD1

1

2j � 1 and Hk WD
k
X

jD1

1

j
are harmonic sums. Thus we have for

any x1; x2; y 2 Zp,

2F1

	

1
2
C x1p

1
2
C x2p
1C yp

I �1



p�1
2

�

2F1

	

1
2
1
2

1
I �1




p�1
2

C .x1 C x2/Ap � yBp .mod p2/; (9)

where A D
p�1
2
X

kD0

 

. 1
2
/2k

kŠ2

!

.�1/k � 2H.odd/
k and B D

p�1
2
X

kD0

 

. 1
2
/2k

kŠ2

!

.�1/kHk.

If b D 1
2
C x2p is a negative integer, then by (8) and the above analysis

2F1

	

1
2
1
2

1
I �1




p�1
2

C.x1Cx2/Ap�.x1�x2/Bp �
�

3
2
C x1p

�

�b
�

5
4
C x1p

2

�

�b

.mod p2/: (10)

We now estimate the right-hand side of the proposition, which can be also written
in terms of the Pochhammer symbols. One can use Lemma 17 of [31] to convert it
to a quotient of p-adic Gamma function values. For example, if we let x1 D 1

2
,

x2 D � 12 in (10) (thus b D 1�p
2

), the right-hand side becomes

�

3Cp
2

�

p�1
2

�

5Cp
4

�

p�1
2

D � �p.p/�p.
1
4
C p

4
/

�p.
1
2
C p

2
/�p.

3
4
C 3p

4
/
:

By Proposition 11,

�p.˛ C mp/ � �p.˛/Œ1C G1.˛/mp� .mod p2/;

and G1.˛/ D G1.1 � ˛/. Thus,

� �p.p/�p.
1
4
C p

4
/

�p.
1
2
C p

2
/�p.

3
4
C 3p

4
/
�

� �p.
1
4
/

�p.
1
2
/�p.

3
4
/

	

1C G1.0/p � G1

�

1

2

�

p

2
� G1

�

1

4

�

p

2




.mod p2/:

Equating both sides in (10) gives that
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2F1

	

1
2
1
2

1
I �1




p�1
2

� Bp �

� �p.
1
4
/

�p.
1
2
/�p.

3
4
/

	

1C G1.0/p � G1

�

1

2

�

p

2
� G1

�

1

4

�

p

2




.mod p2/:

Similarly, letting x1 D �3=2, x2 D �1=2, we get

2F1

	

1
2
1
2

1
I �1




p�1
2

� 2AC Bp �

� �p.
1
4
/

�p.
1
2
/�p.

3
4
/

	

1 � G1.0/pC G1

�

1

2

�

3p

2
� G1

�

1

4

�

p

2




.mod p2/:

Letting x1 D �1=2, x2 D �3=2 (here b D 1�3p
2

but the series terminates at the
p�1
2

th term as a D � p�1
2

),

2F1

	

1
2
1
2

1
I �1




p�1
2

� 2A � Bp �

� �p.
1
4
/

�p.
1
2
/�p.

3
4
/

	

1C G1.0/pC G1

�

1

2

�

p

2
� G1

�

1

4

�

3p

2




.mod p2/:

By summing the first two and last two congruences and comparing, we arrive at the
proposition, in light of Lemma 2. ut

Based on Lemma 1, we observe the following numerically which is a companion
form of the congruence above:

Conjecture 14. For any prime p � 1 .mod 4/,

� �p.
1
4
/

�p.
1
2
/�p.

3
4
/
�

p�1
X

kD0

 

. 1
2
/k

kŠ

!2

.�1/k ‹�

p�1
X

kD0

 

kŠ

. 3
2
/k

!2

p2.�1/k �
p�1
X

kD p�1
2

 

kŠ

. 3
2
/k

!2

p2.�1/k .mod p2/:
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4 Proofs of Theorem 2 and Lemma 1

4.1 Proof of Theorem 2

We first prove Theorem 2 which counts points on Cn;� over finite fields Fq in terms
of Gaussian hypergeometric functions. We begin with a lemma.

Lemma 3. Let n 
 2 be an integer and let q be a prime power with q D pe �
1 .mod n/. Suppose �n 2 cF�

q is a character of order n and " denotes the trivial
character. If k 2 f1; : : : ; n � 1g, then

X

xi2Fq

�k
n..x1 � � � xn�1/n�1.1 � x1/ � � � .1 � xn�1/.x1 � �x2 � � � xn�1//

D qn�1 � nFn�1
�

�n�k
n ; �n�k

n ; : : : ; �n�k
n

"; : : : ; "
I�
�

q

:

Proof. We apply Theorem 7 .n � 3/ times, noting that �n�k
n D �k

n. This gives

nFn�1
�

�n�k
n ; �n�k

n ; : : : ; �n�k
n

"; : : : ; "
I�
�

q

D .�n�k
n .�1//n�3

qn�3
X

x2;:::;xn�22Fq

3F2

�

�n�k
n ; �n�k

n ; �n�k
n

"; "
I�x2 � � � xn�2

�

q

� �n�k
n .x2 � � � xn�2/�k

n..1 � x2/ � � � .1 � xn�2//:

We next apply Corollary 3.14(ii) of [21] to the 3F2 function to obtain

nFn�1
�

�n�k
n ; �n�k

n ; : : : ; �n�k
n

"; : : : ; "
I�
�

q

D .�n�k
n .�1//n�2

qn�1

�
X

x1;:::;xn�12Fq

�n�k
n .x1 � � � xn�1/�k

n..1 � x1/ � � � .1 � xn�1/.x1 � �x2 � � � xn�1//:

Since .�n�k
n .�1//n�2 D �.n�k/.n�2/

n .�1/ D 1 and

�k
n..x1 � � � xn�1/n�1/ D �kn�k

n .x1 � � � xn�1/ D �n�k
n .x1 � � � xn�1/;

we have the result. ut
We are now able to prove Theorem 2.

Proof of Theorem 2. For convenience, we denote
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f .x1; : : : ; xn�1; �/ D .x1 � � � xn�1/n�1.1 � x1/ � � � .1 � xn�1/.x1 � �x2 � � � xn�1/:

Then

#Cn;�.Fq/ D 1C
X

xi2Fq

#fy 2 Fq W yn D f .x1; : : : ; xn�1; �/g

D 1C
X

xi2Fq
f .x1;:::;xn�1;�/¤0

#fy 2 Fq W yn D f .x1; : : : ; xn�1; �/g

C #f.x1; : : : ; xn�1/ 2 Fn�1
q W f .x1; : : : ; xn�1; �/ D 0g:

Using Proposition 8.1.5 in [23], we rewrite the first sum to see

#Cn;�.Fq/ D 1C
X

xi2Fq

n�1
X

iD0
�i

n.f .x1; : : : ; xn�1; �//

C #f.x1; : : : ; xn�1/ 2 Fn�1
q W f .x1; : : : ; xn�1; �/ D 0g

D 1C qn�1 C
X

xi2Fq

n�1
X

iD1
�i

n.f .x1; : : : ; xn�1; �//;

since

".f .x1; : : : ; xn�1; �//C #f.x1; : : : ; xn�1/ 2 Fn�1
q W f .x1; : : : ; xn�1; �/ D 0g D qn�1:

Finally, we have

#Cn;�.Fq/ D 1C qn�1 C
n�1
X

iD1

X

xi2Fq

�i
n.f .x1; : : : ; xn�1; �//

D 1C qn�1 C qn�1
n�1
X

iD1
nFn�1

�

�n�i
n ; �n�i

n ; : : : ; �n�i
n

"; : : : ; "
I�
�

q

by Lemma 3, which gives the result. ut

4.2 Proof of Lemma 1

To prove Lemma 1, which relates certain Gaussian hypergeometric functions to
truncated hypergeometric series, we first give a lemma, which analyzes the Gaussian
hypergeometric functions modulo a power of p.
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Lemma 4. Let n be a positive integer, and p � 1 .mod n/ prime. Let ' denote the

Teichmüller character, and �n a character of order n on Fp corresponding to '
p�1

n j,
for some 0 < j < p � 1. Then

pr�1
rFr�1

�

�n; �n; � � � ; �n

"; � � � ; " I x
�

p

�

1

p � 1

0

B

@

p�2
X

kD.p�1/. n�j
n /

0

@

�p

�

k
p�1 � n�j

n

�

�p

�

k
p�1
�

�p

�

j
n

�

1

A

r

'k.x/C .�1/r
1

C

A
.mod pr/; (11)

pr�1
rFr�1

�

�n; �n; � � � ; �n

"; � � � ; " I x
�

p

�

.�1/r
p � 1

0

B

@

.p�1/. n�j
n /�1

X

kD0

�p

�

k
p�1
�r
�p

�

j
n

�r

�p

�

j
n C k

p�1
�r 'k.x/C �n..�1/rx/

1

C

A
.mod pr/: (12)

Proof. For x 2 F�
p , it follows from the definition that

rFr�1
�

�n; �n; � � � ; �n

"; � � � ; " I x
�

p

D

p

p � 1
X

�2bF�

p

 

�n�

�

!r

�.x/ D p1�r

p � 1
X

�

J.�n�; �/
r�r.�1/�.x/;

and also that

J.�n�; �/ D
(

�.�1/pg.�n�/

g.�n/g.�/
; if � ¤ ";

�1; if � D ";

while, J.�n�; �/ D
(

�.�1/g.�n/g.�/
g.�n�/

; if � ¤ �n;

�1; if � D �n:

Thus, we have that

X

�

J.�n�; �/
r�r.�1/�.x/ D pr

X

�¤"

g.�n�/
r

g.�n/rg.�/r
�.x/C .�1/r
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D pr

.p�1/. n�j
n /�1

X

kD1

g.'
p�1

n jCk/r

g.'
p�1

n j/rg.'k/r
'k.x/

C pr
p�2
X

kD.p�1/. n�j
n /

g.'k�.p�1/ n�j
n /r

g.'
p�1

n j/rg.'k/r
'k.x/C .�1/r

D pr

.p�1/. n�j
n /�1

X

kD1
.�1/r

0

@

�p

�

j
n C k

p�1
�

�p

�

k
p�1
�

�p

�

j
n

�

1

A

r

'k.x/

C
p�2
X

kD.p�1/. n�j
n /

0

@

�p

�

k
p�1 � n�j

n

�

�p

�

k
p�1
�

�p

�

j
n

�

1

A

r

'k.x/C .�1/r:

Similarly,

X

�

J.�n�; �/
r�r.�1/�.x/ D

X

�¤�n

g.�n�/
r

g.�n/rg.�/r
�.x/C .�1/r�n

r.�1/�n.x/

D .�1/r
.p�1/. n�j

n /�1
X

kD0

0

@

�p

�

k
p�1
�

�p

�

j
n

�

�p

�

j
n C k

p�1
�

1

A

r

'k.x/C .�1/r�n
r.�1/�n.x/

C pr
p�2
X

kD.p�1/. n�j
n /C1

0

@

�p

�

k
p�1
�

�p

�

j
n

�

�p

�

k
p�1 � n�j

n

�

1

A

r

'k.x/:

ut
We are now able to prove Lemma 1.

Proof of Lemma 1. For the first congruence, we use (12). By Proposition 11, when
k < p we have that �p.�k/ D �p.�k/=�p.0/ D 1=kŠ and �p.

k
p�1 / � �p.�k/

.mod p/. Similarly,

�p.
j
n /

�p.
j
n C k

p�1 /
� �p.

j
n /

�p.
j
n � k/

.mod p/

and

�p.
j
n /

�p.
j
n � k/

D
�

1 � j

n

�

� � �
�

k � j

n

�

D
�

1 � j

n

�

k

:
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When k D .p � 1/
�

n�j
n

�

, we have �n.˙.�1/r/ � .1� j
n /

r
k

kŠr .˙1/k .mod p/. Thus the

first claim follows.
For the second claim, we consider (11) and use a similar argument. Notice that

�p.
k

p�1 � n�j
n /

�p.
j
n /

� �p.�k � n�j
n /

�p.
j
n /

D �p. n�j
n /

.1 � j
n /.2 � j

n / � � � .k � j
n /
.mod p/;

and there is no �p. n�j
n / in the numerator since for .p � 1/. n�j

n / � k � p � 2 the
denominator, .1� j

n /kC1, will contain a multiple of p, which is p. n�j
n /. This term will

not show up in the quotient of p-adic Gamma values and the corresponding term is
�1 by the functional equation of �p.�/. Thus

�p.
k

p�1 � n�j
n /

�p.
j
n /

� � p

.2 � j
n /k

.mod p/;

which concludes the proof of the second claim. ut

5 The Proof of Theorem 4

The following proposition establishes case (1) of Theorem 4:

Proposition 15. Let q D pe � 1 .mod 3/ be a prime power and let �3 be a
character of order 3 in cF�

q . Then

q2 � 3F2
�

�3; �3; �3
"; "

I 1
�

q

D J.�3; �3/
2 � J.�23; �

2
3/:

Proof. Beginning with Theorem 4.35 in [21], we have

q2 � 3F2
�

�3; �3; �3
"; "

I 1
�

q

D q2�23.�1/
 

�3

�23

! 

�3

�23

!

� q�3.�1/
 

�23
�3

!

Then, since
��3

�23

� D 1
q J.�3; �3/ and

�

�23
�3

� D �3.�1/
q J.�23; �

2
3/; we get the result. ut

We now restate an equivalent form of case (2) of Theorem 4.

Theorem 16. Let q D pe � 1 .mod 4/ be a prime power and let �4 and �2 be
characters of order 4 and 2, respectively, in cF�

q . Then
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X

x;y;z2Fq

�4.x
3y3z3.1�x/.1�y/.1� z/.x�yz// D J.�4; �2/

3CqJ.�4; �2/�J.�4; �2/
2:

Equivalently, we have

q3 � 4F3
�

�4; �4; �4; �4
"; "; "

I 1
�

q

D J.�4; �2/
3 C qJ.�4; �2/ � J.�4; �2/

2:

As mentioned in the introduction, this result says that a three-dimensional Galois
representation of G

Q.
p�1/ WD Gal.Q=Q.

p�1// arising from C4;1 is isomorphic
to a direct sum of three Grössencharacters. The proof contains two steps using
totally different approaches. We first establish the case for q � 1 .mod 8/
using results of Greene and McCarthy. This is equivalent to proving the two
Galois representations are isomorphic when they are restricted to the subgroup
G

Q.
p�1;p2/ WD Gal.Q=Q.

p�1;p2//. In the second part of the proof, we use
representation theory to draw the final conclusion. We now start with the case
when q D pe � 1 .mod 8/ is a prime power, we prove this case via the series of
results below. The lemma below evaluates two modified Gaussian hypergeometric
functions.

Lemma 5. Let q D pe � 1 .mod 8/ be a prime power. Then

4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
��

q

D

1

J.�4; �8
3/

�

J.�8; �4/ � �8.�1/J.�8; �8/J.�2; �4/C
J.�8; �4/

3

q

�

;

4F3

�

�38; �4; �4; �8
�8
3; �38; "

I 1
��

q

D

1

J.�4; �38/

�

J.�38; �4/ � �8.�1/J.�8; �83/J.�2; �4/C
J.�8; �4/J.�4; �

3
8/
2

q

�

:

Proof. Firstly, we obtain that

4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
��

q

D �q

  

�4

�8

! 

�4

�38

!!�1
4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
�

q

:

Using the transformations Theorem 3.15(iv), Theorem 4.35 in [21], and the fact
�4.�1/ D 1 when q � 1 .mod 8/, we have
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4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
�

q

D 4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
�

q

D
 

�4

�8

!

3F2

�

�4; �4; �8
�38; "

I 1
�

q

� �8.�1/
q

 

�8

�4

! 

�4
�8

!

D
 

�4

�8

! 

�8.�1/
 

�8

�8

! 

�4

�2

!

� �8.�1/
q

 

�8

�4

!!

� 1
q

 

�8

�4

!2

:

Therefore, we can conclude that

4F3

�

�8; �4; �4; �8
�8; �

3
8; "
I 1
��

q

D 1

J.�4; �8
3/

�

J.�8; �4/ � �8.�1/J.�8; �8/J.�2; �4/C
J.�8; �4/

3

q

�

:

Likewise, we have the equality

4F3

�

�38; �4; �4; �8
�8
3; �38; "

I 1
��

q

D

1

J.�4; �38/

�

J.�38; �4/ � �8.�1/J.�8; �83/J.�2; �4/C
J.�8; �4/J.�4; �

3
8/
2

q

�

:

ut
Next, we relate our target to a modified Gaussian 5F4 hypergeometric function.

Proposition 17. Let q D pe � 1 .mod 8/ be a prime power, and �8 a character of
order 8 in cF�

q with �28 D �4 . Then

q4 � 4F3
�

�4; �4; �4; �4
"; "; "

I 1
�

q

D J.�8; �8/
4 � q � 5F4

�

�4; �4; �4; �4; �8
"; "; "; �8

I 1
��

q

:

Proof. Comparing the definitions of finite field hypergeometric functions given by
Greene and McCarthy, one can find

5F4

�

�4; �4; �4; �4; �8
"; "; "; �8

I 1
�

q

D 1

q3
5F4

�

�4; �4; �4; �4; �8
"; "; "; �8

I 1
��

q

C
�

1 � 1
q

�

4F3

�

�4; �4; �4; �4
"; "; "

I 1
�

q

:



Truncated Hypergeometric and Gaussian Hypergeometric Functions 149

On the other hand, by [21, Theorem 3.15(ii)], the Greene’s 5F4 function is equal to

�1
q
4F3

�

�4; �4; �4; �4
"; "; "

I 1
�

q

C J.�8; �8/4

q4
:

These lead to the desired result. ut
We now evaluate the 5F4 modified Gaussian hypergeometric function using
Theorem 10 which is due to McCarthy.

Proposition 18. Let q D pe � 1 .mod 8/ be a prime power. Then

5F4

�

�4; �4; �4; �4; �8
"; "; "; �8

I 1
��

q

D J.�8; �8/4

q
� qJ.�4; �2/ � J.�2; �4/

3 C J.�2; �4/
2:

Proof. According to Theorem 10, we can deduce that

5F4

�

�4; �4; �4; �4; �8
"; "; "; �8

I 1
��

q

D q

J.�8; �4/
2F1

�

�4; �4
"
I �1

��

q

C q
J.�8; �8/

J.�38; �8/

 

4F3

�

�8 �4 �4 �8
�8; �

3
8; "
I 1
��

q

C 4F3

�

�38; �4; �4; �8
�8
3; �38; "

I 1
��

q

!

:

We now apply Lemma 5 and the following fact which arises from Theorem 1.9
of [32]:

2F1

�

�4 �4
"
I 1
��

q

D �J.�8; �4/ � J.�4; �
3
8/:

To simplify the formulas, we recall the facts that if q D pe � 1 .mod 8/, we have
�2.2/ D �4.�1/ D 1 and the identities

J.�8; �4/ D �38.�4/J.�2; �4/;
J.�4; �

3
8/ D �8.�1/J.�8; �38/ D �8.�4/J.�2; �4/;

J.�8; �4/ D J.�4; �
3
8/ D �8.�1/J.�38; �38/ D �8.�1/J.�8; �8/:

For more details on Jacobi sums, please see [8, Chap. 3]. ut
We now conclude with the second case using representation theory. We first

describe the Grössencharacters corresponding to the Jacobi sums

� J.�4; �2/
3 � qJ.�4; �2/C J.�4; �2/

2 D
� J.�4; �2/

3 � J.�4; �2/J.�4; �2/
2 C J.�4; �2/

2

and then we use properties of induced representations to draw the final conclusion.
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Proof (The proof of the case when prime powers q � 5 .mod 8/.).
For each prime ideal p prime to .4/ in ZŒ

p�1�, let q be the norm of p. Then q � 1
mod 4, and let  p be a homomorphism of ZŒ

p�1�=p to the order 4 multiplicative

group hp�1i such that  p.x/ � x
q�1
4 mod p for each x 2 ZŒ

p�1�. The map

that assigns �
X

x mod p

 p.x/ 
2
p.1 � x/ D �J. p;  

2
p/ to p extends to a Hecke (or

Grössencharacter) character  of G
Q.

p�1/ (see [40] by Weil). In particular,  is of

conductor
�

.1Cp�1/4
�

D .4/ and infinity-type Œ1; 0�, which is corresponding to

the elliptic curve with complex multiplication which has conductor 64. Explicitly,
for any aC b

p�1 2 ZŒ
p�1�,  .aC b

p�1/ D .�1/b.aC b
p�1/�1.aC b

p�1/,
where

�1.aC b
p�1/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

.�1/ aCb�1
2

p�1; if a � 0 .mod 2/; b � 1 .mod 2/;

.�1/ aCb�1
2 ; if a � 1 .mod 2/; b � 0 .mod 2/;

0; otherwise.

Here, we remark that the unit group of ZŒ
p�1�=.4/ has order 8 and it is generated

by
p�1, �1C 2p�1. The Dirichlet character �1 takes values �1.

p�1/ D p�1,
�1.�1C 2

p�1/ D 1.
By class field theory,  corresponds to a character � of G

Q.
p�1/. Similar to the

discussion in [15], for each Frobenius class Frq 2 G
Q.

p�1;p2/ with q � 1 .mod 4/,

X

x;y;z2Fq

���4
�

x3y3z3.1 � x/.1 � y/.1 � z/.x � yz/
��

�4
�

x3y3z3.1 � x/.1 � y/.1 � z/.x � yz/
��

coincides with the trace of Frp under the six-dimensional semisimple representation

� WD Ind
GQ

G
Q.

p

�1/

�

�3 ˚ .�2 ˝ �/˚ �2� :

Moreover, �jG
Q.

p

�1/
D � ˚ N� , with the restriction � jG

Q.
p

�1;
p

2/
being isomorphic to

the restriction of �3 ˚ .�2 ˝ �/˚ �2 to G
Q.

p�1;p2/. As G
Q.

p�1;p2/ is an index-2
subgroup of G

Q.
p�1/, by Clifford’s result [12], � is also direct sum of the form

.�3 ˝ 'n1 /˚ .�2 ˝ �˝ 'n2 /˚ .�2 ˝ 'n3 /

where ' is the order 2 character of G
Q.

p�1/ with kernel G
Q.

p�1;p2/, n1; n2;
n3 2 f0; 1g. From computing a few primes p � 5 .mod 8/, we determine that
each ni D 0 and the claim for p � 5 .mod 8/ thus follows. ut
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6 Supercongruences

We first prove Theorem 5 using the technique outlined before Proposition 13. The
initial idea of the proof is due to Zudilin, and uses the following particular case
of the Karlsson–Minton formula [20, Eq. (1.9.3)]: for any non-negative integers
m1; : : : ;mn,

nC1Fn

	�.m1 C � � � C mn/ b1 C m1 : : : bn C mn

b1 : : : bn
I 1



D .�1/m1C			Cmn
.m1 C � � � C mn/Š

.b1/m1 � � � .bn/mn

: (13)

Note that when n D 2, we can derive a different proof using a formula of Dixon.
We present the proof below as it applies to all n.

Proof of Theorem 5. Let n 
 3, and p � 1 .mod n/ be prime, which has to be odd.
Set m D p�1

n , and let y be any integer. Letting b1 D 1C yp, b2 D � � � D bn D 1, and
m1 D � � � D mn D m in (13), we get that

nC1Fn

	

1 � p 1C mC yp 1C m � � � 1C m
1C yp 1 � � � 1

I 1



D .�1/p�1.p � 1/Š
.1C yp/m.mŠ/n�1 D

.p � 1/Š
.1C yp/m.mŠ/n�1 : (14)

Now we compare the left-hand side with the right-hand side of Theorem 5. We
observe that

.1 � p/k � .1/k � p
k
X

iD1

.1/k

i
.mod p2/;

.1C yp/k � .1/k C yp
k
X

iD1

.1/k

i
.mod p2/;

and so

.1 � p/k
.1C yp/k

� 1 � .1C y/

"

k
X

iD1
i�1
#

p .mod p2/: (15)

Also,

.1C mC yp/k D
��

1 � 1
n

�

C
�

1

n
C y

�

p

�

k

�
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�

1 � 1
n

�

k

C
�

1

n
C y

�

"

k
X

iD1

.1 � 1
n /k

.i � 1
n /

#

p .mod p2/;

.1Cm/n�1
k �

�

1 � 1
n

�n�1

k

C
�

n � 1
n

��

1 � 1
n

�n�2

k

"

k
X

iD1

.1 � 1
n /k

.i � 1
n /

#

p .mod p2/;

and so

.1C mC yp/k.1C m/n�1
k �

�

1 � 1
n

�n

k

 

1C .1C y/

"

k
X

iD1

�

i � 1
n

��1#
p

!

.mod p2/: (16)

Thus (15) and (16) give that the left-hand side of (14) can be written modulo p2 as

p�1
X

kD0

�

1 � 1
n

�n

k

.1/n�1
k

 

1C .1C y/

"

k
X

iD1

 

�

i � 1
n

��1
� i�1

!#

p

!

.mod p2/:

Using harmonic sums we conclude that there exists A 2 Zp such that

nC1Fn

	

1 � p 1C mC yp 1C m � � � 1C m
1C yp 1 � � � 1

I 1



� nFn�1
	 n�1

n
n�1

n � � � n�1
n

1 � � � 1 I 1



p�1
� .1 � A.yC 1/p/ .mod p2/: (17)

Using part c) of Proposition 11, we see that a0.
1
n / D 1C.n�1/p

n D p � m, and by
part b),

�p.�m/ D 1=mŠ and �p.�p/ D �1=.p � 1/Š:

Also

1

.1C yp/m
D .�1/m�p.1C yp/

�p.1C ypC p�1
n /
D �.�1/m�p.yp/

�p.1 � 1
n C . 1n C yp//

D

�p

�

1

n
�
�

1

n
C y

�

p

�

�p.yp/:

We thus have
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.p � 1/Š
.1C yp/m.mŠ/n�1 D �

�p.
1�p

n /n�1�p.
1
n � . 1n C y/p/�p.yp/

�p.�p/

� ��p

�

1

n

�n �

1C
�

G1.0/ � G1

�

1

n

��

.1C y/p

�

.mod p2/: (18)

Finally, letting y D �1 in (17) and (18), we see the desired congruence
modulo p2. ut
We now prove Theorem 6.

Proof of Theorem 6. Let p be a prime such that p � 1 .mod 4/. We will use the
following formula of Dougall (see Theorem 3.5.1 of [2]) which says that if 2aC1 D
bC cC dC e � m, then

7F6

	

a a=2C 1 b c d e �m
a=2 1C a � b 1C a � c 1C a � d 1C a � e 1C aC m

I 1



D .1C a/m.1C a � b � c/m.1C a � b � d/m.1C a � c � d/m
.1C a � b/m.1C a � c/m.1C a � d/m.1C a � b � c � d/m

: (19)

Letting a D 1=4; b D 5=8; c D 1=8; d D .1C pu/=4; e D .1C .1 � u/p/=4;m D
.p� 1/=4, we have 2aC 1 D bC cC dC e�m and thus we can use (19). We first
observe that the left-hand side reduces to

4F3

"

1
4

1Cpu
4

1C.1�u/p
4

1�p
4

1 � pu
4
1C .u�1/p

4
1C p

4

I 1
#

after deleting three matching pairs of upper and lower parameters corresponding to
a=2C1, b, and c. Writing the right-hand side in terms of Gamma functions, we thus
get that

4F3

"

1
4

1Cpu
4

1C.1�u/p
4

1�p
4

1 � pu
4
1C .u�1/p

4
1C p

4

I 1
#

D � .1C p
4
/� . 1Cp

4
/� . 1

8
C .1�u/p

4
/� . 5

8
C .1�u/p

4
/� . 5

8
/� . 9

8
/� .1 � pu

4
/� . 1�pu

4
/

� . 5
4
/� . 1

2
/� . 3

8
� pu

4
/� . 7

8
� pu

4
/� . 3

8
C p

4
/� . 7

8
C p

4
/� .

3C.1�u/p
4

/� .
.1�u/p
4
/
:

Using the duplication formula � .z/� .zC 1
2
/ D 21�2z� .1

2
/� .2z/, we have

� .1
8
C .1�u/p

4
/� . 5

8
C .1�u/p

4
/� . 5

8
/� . 9

8
/

� . 3
8
� pu

4
/� . 7

8
� pu

4
/� . 3

8
C p

4
/� . 7

8
C p

4
/
D � .1

4
C .1�u/p

2
/� . 5

4
/

� . 3
4
� pu

2
/� . 3

4
C p

2
/
:
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Using Proposition 11, we can thus rewrite the right-hand side as

�p.
p
4
/�p.

1Cp
4
/�p.

1
4
C .1�u/p

2
/�p.� pu

4
/�p.

1�pu
4
/

�p.
1
2
/�p.

3
4
� pu

2
/�p.

3
4
C p

2
/�p.

3C.1�u/p
4

/�p.
.1�u/p
4
/

� .�1/ p�1
4 �p

�

1

2

�

�p

�

1

4

�6

�
 

1 � 5.u
2 � uC 1/.G1.

1
4
/2 � G2.

1
4
//

16
p2

Cu.u � 1/.G1.0/
3 � G3.0/ � 21G2.

1
4
/G1.

1
4
/C 7G3.

1
4
/C 14G1.

1
4
/3/

128
p3
!

:

Meanwhile, we expand the left-hand side using harmonic sums as in Proposition 13.
So there exist ak;i; bk;i 2 Zp such that modulo p4 we have

4F3

"

1
4

1Cpu
4

1C.1�u/p
4

1�p
4

1� pu
4
1C .u�1/p

4
1C p

4

I 1
#

D

p�1
4
X

kD0

 

. 1
4
/4k

kŠ4
	 .1C ak;1

pu
4

C ak;2.
pu
4
/2 C ak;3.

pu
4
/3/

.1C bk;1
�pu
4

C bk;2.
�pu
4
/2 C bk;3.

�pu
4
/3/

	

.1C ak;1
.1�u/p
4

C ak;2.
.1�u/p
4

/2 C ak;3.
.1�u/p
4

/3/.1C ak;1
�p
4

C ak;2.
�p
4
/2 C ak;3.

�p
4
/3/

.1C bk;1
.u�1/p
4

C bk;2.
.u�1/p
4

/2 C bk;3.
.u�1/p
4

/3/.1C bk;1
p
4

C bk;2.
p
4
/2 C bk;3.

p
4
/3/

!

:

Note that if we collect coefficients of p; p2; p3 we get 0,

�.u2 � uC 1/
p�1
4
X

kD0

 

. 1
4
/4k

kŠ4

!

.a2k;1 C 2bk;2 � 2ak;2 � b2k;1/

16
;

and

u.u � 1/
p�1
4
X

kD0

 

. 1
4
/4k

kŠ4

!

.3bk;3 C 3ak;3 C b3k;1 � 3ak;1ak;2 � 3bk;1bk;2 C a3k;1/

64
;

respectively.4

By collecting terms, we see there are Ai;Bi 2 Zp such that for all u 2 Zp

4Comparing both sides, when we pick u D ��3 where �3 be a primitive cubic root, we can derive
that the claim of the theorem holds modulo p3.



Truncated Hypergeometric and Gaussian Hypergeometric Functions 155

4F3

	

1
4
1
4
1
4
1
4

1 1 1
I 1



p�1
4

Œ1C A2.u
2 � uC 1/p2 C A3.u

2 � u/p3�

� .�1/ p�1
4 �p

�

1

2

�

�p

�

1

4

�6

Œ1C B2.u
2 � uC 1/p2 C B3.u

2 � u/p3� .mod p4/:

The fact that this congruence holds for all choices of u 2 Zp gives a lot of
information by comparing coefficients. For example, from considering the cases
when u D 1 and u D �1 we obtain by subtraction the two congruences

4F3

	

1
4
1
4
1
4
1
4

1 1 1
I 1



p�1
4

Œ1C A2p
2� �

.�1/ p�1
4 �p

�

1

2

�

�p

�

1

4

�6

Œ1C B2p
2� .mod p4/; (20)

and

4F3

	

1
4
1
4
1
4
1
4

1 1 1
I 1



p�1
4

ŒA2p
2 C A3p

3� �

.�1/ p�1
4 �p

�

1

2

�

�p

�

1

4

�6

ŒB2p
2 C B3p

3� .mod p4/: (21)

From (20), we see that to establish the claim of the theorem, it suffices to show that

4F3

	

1
4
1
4
1
4
1
4

1 1 1
I 1



p�1
4

� A2 � .�1/
p�1
4 �p

�

1

2

�

�p

�

1

4

�6

� B2 .mod p2/: (22)

We can already see that (22) holds modulo p from considering (21) modulo p3.
To see that we can further refine this equation to obtain the congruence modulo

p2, we argue in a similar way as above by setting up a series of congruences. We
first let a D .1C xp/=4, b D a=2, c D .aC 1/=2, d D 1=4, e D .1C .xC 1/p/=4,
m D .1 � p/=4 in (19). Then we can expand both sides of (19) as we have done
above. Now by comparing the coefficients of 1, x, x2, and x3, respectively, we obtain
four congruences like (20) above, each modulo p4. We then further let a D .1�p/=4,
and since p � 1 .mod 4/, we must have that one of a=2; .a C 1/=2 is a negative
integer. We set this to be �m and then choose b; c; d; e so that the upper parameters
will be, up to permutation, a, 1Ca=2, a=2, .aC1/=2, 1=4, .1C.x�1/p/=4, .1�xp/=4
in (19). This allows us get another three congruences modulo p4 by comparing the
coefficients of 1, x, x2 on both sides of (19). The desired (22) then follows from
these congruences. ut
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7 Remarks

7.1 Truncated Hypergeometric Series and Noncongruence
Modular Forms

We first recall the following hypergeometric series transformation (see [2,
(2.4.12)]):

3F2

	�m a b
d e
I 1



D .e � a/m
.e/m

3F2

	�m a d � b
d aC 1 � m � e

I 1



; (23)

which holds when�m is a negative integer and both sides converge. Given an integer
n 
 2 and a prime p � 1 .mod n/, letting first m D p�1

n , a D n�1Cp
n , b D 1

n ,

d D e D 1, and then m D .n�1/.p�1/
3

, a D 1C.n�1/p
n ; b D 1

n , d D e D 1, respectively,
we derive the following supercongruence:

.�1/ p�1
n 3F2

	 n�1
n

n�1
n

1
n

1 1
I 1



p�1
� 3F2

	

1
n
1
n

n�1
n

1 1
I 1



p�1
.mod p2/: (24)

This was first observed and proved by McCarthy in a private communication via
a different approach using the work of Mortenson [35] for the case of n D 3.
Moreover, we would like to mention the following conjecture to demonstrate that
truncated hypergeometric series arise in many different settings including the theory
of noncongruence modular forms:

Conjecture 19. For any integer n > 1 and prime p � 1 .mod n/,

3F2

	

1
n
1
n

n�1
n

1 1
I 1



p�1
� ap.fn.z// .mod p2/;

where ap.fn.z// is the pth coefficient of fn.z/ D n
p

E1.z/n�1E2.z/ when expanded in
terms of the local uniformizer e2� iz=5n, and E1.z/ and E2.z/ are two explicit level 5
weight 3 Eisenstein series with coefficients in Z (see (17) and (18) of [29] or [28,
§3] for their expansions).

In a series of papers [4, 29, 30], the third author and her collaborators studied the
properties of these functions fn.z/ which are weight 3 cusp forms for some finite
index subgroups of SL2.Z/ that contain no principal congruence subgroups. For
n D 3; 4; 6, the pth coefficients of fn.z/ are shown to be related to the coefficients of
classical Hecke or Hilbert modular forms.

In terms of Gaussian hypergeometric functions, we have when p � 1 .mod n/
and �n any order n character of F�

p then by work of Greene [21]
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3F2

�

�n; �n; �n

"; "
I 1
�

p

D �n.�1/ 3F2
�

�n; �n; �n

"; "
I 1
�

p

: (25)

7.2 Other Observations

We conclude with some patterns observed from numerical data. For each prime
p � 1 .mod 5/, it appears that

5F4

	

2
5
2
5
2
5
2
5
2
5

1 1 1 1
I 1



p�1
‹� ��p

�

1

5

�5

�p

�

2

5

�5

.mod p5/: (26)

Using the strategy of the proof of Theorem 5 and Dougall’s formula (19), one
can obtain (26) modulo p4. By the Gross–Koblitz formula, the p-adic Gamma
value agrees with J.�2n; �

2
n/
3J.�n; �n/ when we choose the right order n character.

Meanwhile, by Conjecture 3, we sense the presence of another Jacobi sum factor
�J.�n; �n/J.�n; �

2
n/J.�n; �

3
n/. It will be interesting to know whether we can recon-

struct the local zeta function of C5;1 as we have done for C3;1 and C4;1. We leave this
task to interested readers.

We conclude with a few more observations. Motivated by Lemma 1, we
numerically observed the following supercongruences. Each corresponds to a
supercongruence mentioned earlier.

1. For any prime p � 1 .mod 3/,
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2. For any prime p � 1 .mod 4/,
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3. For any prime p � 1 .mod 5/,
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4. For an integer n > 2, and any prime p � 1 .mod n/,
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kD0
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A Generalization of S. Zhang’s Local
Gross–Zagier Formula for GL2

Kathrin Maurischat

Abstract S. Zhang’s local Gross–Zagier formulae for GL2 can be interpreted as
a fundamental lemma for some relative trace formulae. From this point of view
we prove the existence of the corresponding local transfer. Further we construct
universally defined geometric operators which realize the behavior of Hecke
operators on the analytic side. We use them to give a proof of the local Gross–Zagier
formula for GL2. We work locally and throughout computationally.

Keywords Local Gross–Zagier formula • Relative trace formula • Hecke
operators
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1 Introduction

The Gross–Zagier formula [4] is a relation between a Heegner point of discriminant
D on the moduli space X0.N/ and the Rankin–Selberg L-function attached to a
newform f of weight 2 and level N and a character � of the class group of
K D Q.

p
D/, in case D is squarefree and prime to N:

L0.f ; �; s D 1

2
/ D const � Oh.c�;f / :

Here Oh is the height function on Jac.X0.N// and c�;f is a component of the Heegner
class depending on � and f . S. Zhang [12, 13] switches the point of view to a local
one. CM-points are studied on the corresponding Shimura curve, modula r forms
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are automorphic representations. The height pairing of CM-cycles is replaced by a
geometric pairing of Schwartz functions �; 2 S.�;G.AF;f //,

< �; >D
X

	

m	 < �; >	 : (1)

Here G is an inner form of PGL2, and T is the maximal subtorus given by the
quadratic extension K=F of the totally real field F. The sum is over double cosets
	 of TnG=T . The multiplicities m	 carry heavy arithmetic input. They are global
data determined by intersection numbers. The coefficients < �; >	 are adèlic
integrals, given by their local components. Here a first parallel with a (relative) trace
formula,

X

	

t	O	 .�/;

becomes visible. The sum is over double cosets 	 again. The Tamagawa numbers t	
are global data, and the orbital integrals O	 .�/ are computed by their local factors.
The local components of the coefficients above are (for nondegenerate 	 ) given by

< �; >	 D
Z

TnG

Z

T
�.t�1	 ty/ dt N .y/ dy : (2)

These expressions are close to orbital integrals on G relative to T (as in Jacquet’s
work on relative trace formula [6]). They can even be read as orbital integrals for
.	; id/ on G � G relative to T � G, the action given by .	; ı/ � .t; g/ D .t�1	 t; ıg/
(for t 2 T , g; 	; ı 2 G), of the function .	; ı/ 7! �.	ı/ .ı/. As this is of no further
use here, we call them local linking numbers according to their origin [12].

S. Zhang [12] invents a kernel function for the L-function which satisfies a
functional equation similar to that for L. The local Fourier coefficients of the kernel
are given by products of Whittaker newforms for the theta series ….�/ and the
Eisenstein series …E occurring in the Rankin convolution. They do not depend on
the cusp form anymore. (See Sect. 2 for concrete definitions.) We generalize these
products to get invariant linear forms on the isobaric sum ….�/ � …E defined by
evaluating functions in the Kirillov models,

.W�;WE/ 7! W�.�/WE.
/ ;

for 
; � D 1� 
 2 F n f0; 1g, W� 2 K.….�//, WE 2 K.…E/. Let W be the space of
distributions on ….�/�…E defined by these evaluations at 
 .

Let � 2 S.�;G/ be essentially the characteristic function of the maximal com-
pact subgroup. Then the local Gross–Zagier formula for GL2 ([12, Lemma 4.3.1],
resp., Theorem 6.4 below) essentially states that for the newforms W�;new, WE;new

we have an equality

Tb
�

W�;new.�/WE;new.
/
� D jbj�1j
�j 12 < QTb�; � >	D	.
/ :



A Generalization of Local Gross–Zagier 163

Here Tb is a Hecke operator indexed by b 2 F�, and QTb� is a special transform
of �. S. Zhang et al. prove local Gross–Zagier formulae with no level constraints
[10] on more general Shimura curves [11].

In the language of trace formula, this is a fundamental lemma for the comparison
of relative trace formulae. W. Zhang [14, 15] gives a general relative trace formula
approach to the Gross–Zagier problem on unitary Shimura varieties. He formulates
an arithmetic fundamental lemma in terms of unitary Rapoport–Zink spaces,
proving it for small degrees. Gross–Zagier fits in the case of degree 2.

We discuss some local aspects in comparing relative trace formulae in the GL2
case. In trace formula theory, it is a nontrivial problem to find enough local test
vectors on each side at almost all places which can be compared. In the first part
of the paper, we solve this problem in the case above, i.e., establish a transfer. We
choose a parametrization of the double cosets 	 D 	.
/ by the projective line,

 2 P1.F/, and characterize the expansion of the local linking numbers with respect
to this variable (Propositions 3.1, 3.2, and 3.5). This is very close to Jacquet’s
characterization of orbital integrals [6]. The space of distributions built by evaluating
local linking numbers at 
 multiplied with the factor j
�j 12 will be denoted by QL. On
the other hand, the expansion in 
 of the space W of distributions on ….�/ � …E

can be described by the theory of automorphic forms (Propositions 2.9 and 2.10).
The transfer result is:

Theorem 1.1. The spaces QL and W have identical 
-expansion.

The second part of the paper is concerned with more quantitative aspects. We
construct operators on the geometric side which realize the behavior of Hecke
operators on the analytic side. The existence of such operators is not surprising
but to have an explicit shape of them is appealing for several aspects. It provides a
tool to produce more identities like the fundamental lemma out of given ones, i.e.,
it is a first step towards a general matching of orbital integrals. Moreover it makes
the behavior around degenerate elements more visible. (Which in general forces a
stabilization process.) Lastly we use these general geometric Hecke operators to
rephrase S. Zhang’s local Gross–Zagier formula for GL2 and give a shorter proof.

On the analytic side, the Hecke operators Tb are essentially given by translations
by b 2 F�. In case of a split torus T they produce logarithmic and, in case of a
quadratic character �, even double logarithmic singularities as b! 0,

Tb
�

W�.�/WE.
/
� D jbj�1j
�j 12 �1.b�/.c1v.b�/C c2/.c3v.b
/C c4/;

if �21 D 1 (Proposition 5.1). The geometric Hecke operators are constructed in a
simple manner to realize this pole behavior. The first natural guess is to translate the
local linking numbers as well,

< �;

�

b 0
0 1

�

 >	.
/ :



164 K. Maurischat

These translations are studied in Sect. 4. It turns out (Theorems 4.1 and 4.3)
that they do not suffice, as they do not produce the double logarithmic term
v.b/2. In Sect. 5 we construct an operator Sb, which essentially is a weighted sum
of translations by elements of valuations at most v.b/. This operator has good
properties (Propositions 5.3 and 5.4), and we get:

Theorem 1.2. The local linking numbers jbj�1j
�j 12 Sb < �; >	.
/ and the
Whittaker products Tb

�

W�.�/WE.
/
�

have the same asymptotics in b.

Accordingly, we formulate and prove the local Gross–Zagier formula in terms of Sb

(Theorem 6.5).
Concerning concrete calculations, the case of a compact torus T is much easier

than that of a noncompact one. This is due to the inner integral of the local linking
numbers having compact support in the first case. In view of the noncompact torus
we have to reduce ourselves to an arbitrary but fixed 
 to describe the asymptotics in
the translation variable b. Anyway the calculations for the translation (Theorem 4.3)
take about one hundred pages of }-adic integration in [9]. We sketch the outline of
the proof in Sect. 4. Due to this difficulty, the results on Hecke operators are of
asymptotic nature.

2 Terminology and Preparation

2.1 Geometry

The geometric setting is that of S. Zhang [12]

2.1.1 Global Data

Let F be a totally real algebraic number field and let K be an imaginary quadratic
extension of F. Further, let D be a division quaternion algebra over F which contains
K and splits at the archimedean places. Let G denote the inner form of the projective
group PGL2 over F which is given by the multiplicative group D�,

G.F/ D F�nD�:

Let T be the maximal torus of G given by K�, i.e., T.F/ D F�nK�. Let AF

(resp., AK) be the adèles of F (resp., K) and let AF;f be the subset of finite adèles.
On T.F/nG.AF;f / there is an action of T.AF;f / from the left and an action of
G.AF;f / from the right. The factor space T.F/nG.AF;f / can be viewed as the set
of CM-points of the Shimura variety defined by the inverse system of

ShK WD G.F/CnHn
1 �G.AF;f /=K ;
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where K runs though sufficiently small compact open subgroups of G.AF;f /, H1 is
the upper halfplane, and n is the number of the infinite places of F. The CM-points
are embedded in ShK by mapping the coset of g 2 G.AF;f / to the coset of .z; g/,
where z 2 Hn

1 is fixed by T.
Let S.T.F/nG.AF;f // be the Schwartz space, i.e., the space of complex valued

functions on T.F/nG.AF;f / which are locally constant and of compact support.
A character of T is a character � of T.F/nT.AF;f /, that is a character of A�

K;f =K
�

trivial on A�
F;f =F

�. Especially, � D Q

�v is the product of its local unitary
components. We have

S.T.F/nG.AF;f // D ˚�S.�;T.F/nG.AF;f //;

where S.�;T.F/nG.AF;f // is the subspace of those functions � transforming under
T.AF;f / by �, i.e., for t 2 T.AF;f / and g 2 G.AF;f /: �.tg/ D �.t/�.g/. Any such
summand is the product of its local components,

S.�;T.F/nG.AF;f // D ˝vS.�v;G.AFv //:

A pairing on S.�;T.F/nG.AF;f // can be defined as follows. For functions �; in
S.�;T.F/nG.AF;f // and a double coset Œ	� 2 T.F/nG.F/=T.F/ define the linking
number

< �; >	 WD
Z

T	 .F/nG.AF;f /

�.	y/ N .y/ dy; (3)

where T	 D 	�1T	 \ T. For 	 normalizing T we have T	 D T. Otherwise T	 is
trivial. We call 	 nondegenerate, if it belongs to the latter case. Here dy denotes the
quotient measure of nontrivial Haar measures on G and T. Further, let

m W T.F/nG.F/=T.F/! C

be a multiplicity function. Then

< �; > WD
X

Œ	�

m.Œ	�/ < �; >	

defines a sesquilinear pairing on S.�;T.F/nG.AF;f //. Determining the multiplicity
function is an essential global problem, which was solved by S. Zhang for (local)
Gross–Zagier in terms of intersection numbers. Concerning the parallels with trace
formula, they take over the role of Tamagawa numbers. The coefficients < �; >	
are the data linking global height pairings on curves and local approaches.
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2.1.2 Local Data

In studying the local components of the linking numbers (3), we restrict to the
nondegenerate case. First notice that

< �; >	 D
Z

T.AF;f /nG.AF;f /

Z

T.AF;f /

�.t�1	 ty/ dt N .y/ dy: (4)

Assume � DQv �v and  DQv  v are products of local components. Then
Z

T.AF;f /

�.t�1	 ty/ dt D
Y

v

Z

T.Fv/
�v.t

�1
v 	vtvyv/ dtv

as well as < �; >	DQv < �; >	;v , where

< �; >	;v WD
Z

T.Fv/nG.Fv/

Z

T.Fv/
�v.t

�1
v 	vtvyv/ dtv N v.yv/ dyv: (5)

Observe that < �; >	;v depends on the choice 	 while < �; >	 does not. An
appropriate local definition is given below (Definition 2.1).

As all the following is local, we simplify notation: Let F denote a localization
of F at a finite place not dividing 2. Let K be the quadratic extension of F given
by localizing K. K is either a field, K D F.

p
A/, or a split algebra K D F ˚ F.

For t 2 K, let Nt denote the Galois conjugate of t (resp., .x; y/ D .y; x/ in the split
case). The local ring of F (resp., K) is oF (resp., oK). It contains the maximal ideal
}F (resp., }K , where in the split case }K WD }F ˚ }F). Let �F be a uniformizer
for oF. If it can’t be mixed up, we write } (resp., �) for }F (resp., �F). The residue
class field of F has characteristic p and q elements. Further, let ! be the quadratic
character of F� given by the extension K=F, that is, !.x/ D �1 if x is not in the
image of the norm of K=F. Let D WD D.F/, T WD T.F/, and G WD G.F/. There
exists � 2 D� such that for all t 2 K we have �t D Nt� and

D D K C �K:
Let c WD �2 2 F�. Let N denote the reduced norm on D. Restricted to K it equals
the norm of K=F. For 	1; 	2 2 K we have

N.	1 C �	2/ D N.	1/ � c N.	2/ :

D splits exactly in case c 2 N.K�/. We parametrize the double cosets Œ	� 2 TnG=T
by the projective line:

Definition 2.1. Let P W TnG=T ! P1.F/ be given by

P.	1 C �	2/ WD c N.	2/

N.	1/

for 	1 C �	2 2 D� as above.
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This is well defined: P.t.	1C�	2/t0/ D P.	1C�	2/ for all t; t0 2 K�. The non-empty
fibers of P not belonging to 0 or1 are exactly the nondegenerate double cosets. In
case that K=F is a field extension, P is injective with range c N.K�/ [ f0;1g. In
case K=F split, the range of P is F�nf1g[f0;1g and the fibers of F�nf1g are single
double cosets [6]. This is one possible parametrization, another is 
 WD P

P�1 .

Lemma 2.2 ([12], Chap. 4). Let 	 2 D�. In the double coset T	T of G there exists
one and only one T-conjugacy class of trace zero.

Now the local components < �; >	 of the linking numbers can be declared
precisely:

Definition 2.3. Let �; 2 S.�;G/. For x 2 F� define the local linking number

< �; >x WD< �; >	.x/

if there is a trace zero preimage 	.x/ 2 D� of x under P. If there is no preimage, let
< �; >xWD 0. Thus, for x 2 c N WD c N.K�/

< �; >x D
Z

TnG

Z

T
�.t�1	.x/ty/ dt N .y/ dy:

By unimodularity of the Haar measure on T , this definition is independent of the
choice of the element 	.x/ of trace zero. In all the following we make a general
natural assumption on the character �:

Hypothesis 2.4. The conductors of � and ! are coprime.

The conductor f .�/ < oK of � may be viewed as an ideal of oF: If K D F˚F, then
� D .�1; ��1

1 / for a character �1 of F� and f .�/ D f .�1/. If K=F is a ramified field
extension, then � is unramified, thus f .�/ \ oF D oF. If K=F is an unramified field
extension, then f .�/ D �c.�/oK , where � is a uniformizing element for K as well
as F. That is, f .�/\oF D �c.�/oF. There are some simple properties of � following
from the Hypothesis 2.4.

Lemma 2.5. Assume 2.4. The following are equivalent:

(a) � is quadratic.
(b) � factorizes via the norm.

Corollary 2.6. Assume 2.4. If K=F is a ramified field extension, then � is a
quadratic character. If K=F is an unramified field extension and � is unramified,
then � D 1.

We use compatible Haar measures: Let da be a nontrivial additive Haar measure
on F. Then the measure d�a of the multiplicative group F� is normalized by

vol�.o�
F / D .1 � q�1/ vol.o�

F / ;

where vol (resp., vol�) is the volume associated with da (resp., d�a). The measure
on TnG is the quotient measure induced of those on G and T .
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2.2 Automorphic Forms

The central object on the analytic side is the Rankin–Selberg convolution of two
automorphic representations. Gross–Zagier formulae describe the central order of
its L-function.

Let …1 be a cuspidal representation of GL2.AF/ with trivial central character
(i.e., an irreducible component of the discrete spectrum of the right translation on
L2.GL2.F/nGL2.AF//; 1// and conductor N. Further, let ….�/ be the irreducible
component belonging to � of the Weil representation of GL2.AF/ for the norm form
of K=F (e.g., [2, Sect. 7]). It has conductor f .�/2f .!/ and central character !. The
Rankin–Selberg convolution of …1 and ….�/ produces [5] the Mellin transform

‰.s;W1;W2; ˆ/ D
Z

Z.F/N.F/n GL2.F/
W1.g/W2.eg/fˆ.s; !; g/ dg

for Whittaker functions W1 of …1 (resp., W2 of ….�/) for an arbitrary nontrivial

character of F. Here e WD
��1 0
0 1

�

. For a function ˆ 2 S.F2/ let

fˆ.s; !; g/ D jdet gjs
Z

F�

ˆ..0; t/g/ jtj2s!.t/ d�t :

fˆ belongs to the principal series ….j�js� 1
2 ; !j�j 12�s/. There is an adèlic analogue.

Analytical continuation of ‰ leads to the L-function, the greatest common divisor
of all ‰. It is defined by newforms � for …1 and �� of ….�/ as well as a special

form E of …E WD ….j�js� 1
2 ; !j�j 12�s/:

L.s;…1 �….�// D
Z

Z.AF/GL2.F/n GL2.AF/

�.g/��.g/E.s; g/ dg

D
Z

Z.AF/GL2.F/n GL2.AF/

W�.g/W��.g/fE.s; !; g/ dg;

where W� , etc., denotes the associated Whittaker function. For places where
c.�/2c.!/ � v.N/, the form E (resp., WE) is the newform of the Eisenstein series.
As …1 and ….�/ are self-dual, the functional equation is

L.s;…1 �….�// D �.s;…1 �….�//L.1 � s;…1 �….�// :

In [12, Chap. 1.4] an integral kernel „.s; g/ is constructed which has a functional
equation analogous to that of L and for which

L.s;…1 �….�// D
Z

Z.AF/GL2.F/n GL2.AF/

�.g/„.s; g/ dg:
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We do not report the construction of this kernel, but we remark that the kernel
depends on the newform of the theta series….�/ as well as the Eisenstein series…E,
but not on the choice of…1. Its local nonconstant Fourier coefficients are defined by

W.s; 
; �; g/ WD W� .

�

� 0

0 1

�

g/WE.s;

�


 0

0 1

�

g/: (6)

Here � WD 1 � 
 . These Fourier coefficients are exactly those analytic functions
which are compared to special local linking numbers in the local Gross–Zagier
formula [12, Lemma 4.3.1]. We get rid of the restriction to newforms in (6) by
reading it in the Kirillov models of the representations: Starting from the Whittaker
model W.…; / of an irreducible admissible representation … for an additive
character  , the Kirillov space K.…/ is given by

W.…; /! K.…/;

W 7! k W .a 7! W

�

a 0
0 1

�

/:

Proposition 2.7 ([3], I.36). Let… be an infinite dimensional irreducible admissible
representation of GL2.F/. The Kirillov space K.…/ is generated by the Schwartz
space S.F�/ along with the following stalks around zero:

(a) If … is supercuspidal, this stalk is zero.
(b) If … D ….1; 2/ is a principle series representation, then it is given by

representatives of the form

•
�

jaj 12 c11.a/C jaj 12 c22.a/
�

1}n.a/, if 1 6D 2,
• jaj 12 1.a/ .c1 C c2v.x// 1}n.a/, if 1 D 2.
Here c1; c2 2 C.

(c) If … D ….1; 2/ is special, it is given by representatives

• jaj 12 1.a/1}n.a/, if 1�1
2 D j�j,

• jaj 12 2.a/1}n.a/, if 1�1
2 D j�j�1.

Definition 2.8. Let ….�/ be the theta series and …E be the Eisenstein series at the
central place s D 1

2
. The products

W.
; �/ D W� .�/WE.
/

of Kirillov functions W� 2 K.….�// and WE 2 K.….1; !// are called Whittaker
products. As � D 1 � 
 , they define linear forms on the isobaric sum ….�/�…E.
We denote the corresponding space of distributions by W .
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Being a component of a Weil representation, the theta series ….�/ is completely
described ([7, Sect. 1], [2, Sect. 7]). Adèlically, it is a Hilbert modular form of
conductor f .�/2f .!/ and of weight .1; : : : ; 1/ at the infinite places. If K D F ˚ F
is split, then � D .�1; ��1

1 / and ….�/ D ….�1; !��1
1 / D ….�1; ��1

1 / is a principle
series representation. If K=F is a field extension and � does not factorize via the
norm, then ….�/ is supercuspidal. While if � D �1 ı N, it is the principle series
representation ….�1; ��1

1 !/ D ….�1; �1!/, as �21 D 1 by Lemma 2.5. Thus, by
Proposition 2.7:

Proposition 2.9. Let ….�/ be the theta series and let K.….�// be its Kirillov
space. It is a function space in one variable � generated by S.F�/ along with the
following stalks around zero:

• The zero function, if K=F is a field extension and � 6D 1.
• j�j 12 �1.�/ .a1 C a2!.�//, if K=F is a field extension and �2 D 1.
• j�j 12 �a1�1.�/C a2��1

1 .�/
�

, if K=F is split and �21 6D 1,

• j�j 12 �1.�/ .a1 C a2v.�//, if K=F is split and �21 D 1.

We collect some properties of principal series. For an automorphic form f 2
….1j�js� 1

2 ; 2j�j 12�s/ there is ˆ 2 S.F2/ such that

f .s; g/ D 1.det g/jdet gjs
Z

F�

ˆ..0; t/g/ .1
�1
2 /.t/jtj2s d�t: (7)

Conversely, any ˆ 2 S.F2/ defines a form fˆ 2 ….j�js� 1
2 ; !j�j 12�s/ in that way

[1, Chap. 3.7]. The Whittaker function belonging to f (in a Whittaker model with
unramified character  ) is given by the first Fourier coefficient

Wf .s; g;  / D
Z

F
f .s;

�

0 �1
1 0

��

1 x
0 1

�

g/ N .x/ dx:

Read off in the Kirillov model, the form for s D 1
2

is given by evaluation at g D
�

a 0
0 1

�

, thus

Wf .a/ WD Wf .
1

2
;

�

a 0
0 1

�

;  /:

For unramified i the newform is obtained by choosing

�.x; y/ D 1oF .x/1oF .y/

in (7). Thus,



A Generalization of Local Gross–Zagier 171

Wnew.a/ D 1.a/jaj 12
Z

F

Z

F�

1oF .at/1oF .xt/1
�1
2 .t/jtj d�t N .x/ dx

D 1.a/jaj 12 1oF .a/ vol.oF/ vol�.o�
F /

0
X

jD�v.a/
1

�1
2 .�

j/

D jaj 12 1oF .a/ vol.oF/ vol�.o�
F /

(

1.a�/�2.a�/
1.�/�2.�/ ; if 1 6D 2

1.a/.v.a/C 1/; if 1 D 2
: (8)

By Proposition 2.7 we have:

Proposition 2.10. At s D 1
2

the Eisenstein series …E is the principle series
representation ….1; !/. Its Kirillov space as a function space in the variable 
 is
generated by S.F�/ along with the following stalks around zero:

• j
j 12 .a1 C a2!.
//, if K=F is a field extension,
• j
j 12 .a1 C a2v.
//, if K=F is split.

For a finite set S of places of F, let OoS
F WD

Q

v…S oFv and AS WD Q

v2S Fv � OoS
F. We

recall a property of Hecke operators.

Proposition 2.11 ([12], Chap. 2.4). Let  be a character of A�=F�. Let � 2
L2.GL2.F/nGL2.A/; /, and let W� be the Whittaker function of � in some
Whittaker model. Let S be the finite set of infinite places and of those finite places v
for which �v is not invariant under the maximal compact subgroup GL2.oFv /. For
b 2 OoS

F \ A� define

H.b/ WD ˚g 2 M2.OoS
F/ j det.g/OoS

F D bOoS
F

�

:

Then the following Hecke operator Tb is well defined for g 2 GL2.AS/:

TbW�.g/ WD
Z

H.b/
W�.gh/ dh:

If y 2 OoS
F and .b; yf / D 1, then

TbW�.g

�

y 0
0 1

�

/ D jbj�1W�.g

�

yb 0
0 1

�

/:

That is, the action of the Hecke operator Tb on some Whittaker product is essentially
translation by b:

TbW.
; �/ D jbj�2W.b
; b�/: (9)
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3 Expansion of Local Linking Numbers

Let L denote the space of distributions defined by the local linking numbers <
�; >x for �; 2 S.�;G/. We describe the expansion in x 2 F� of L. The
characterizing properties are close to those satisfied by the orbital integrals of [6],
and Propositions 3.1 and 3.2 are influenced by the methods there. We distinguish
whether the torus T is compact or not.

Proposition 3.1. Let K D F.
p

A/ be a field extension and let ! be the associated
quadratic character. Let �; 2 S.�;G/. The local linking number < �; >x is a
function of x 2 F� with the following properties:

(a) It is zero on the complement of c N.
(b) It is zero on a neighborhood of 1 2 F�.
(c) There is a locally constant function A1 on a neighborhood U of 0 depending on

� such that for all 0 6D x 2 U: < �; >xD A1.x/.1C !.cx//.
(d) There is an open set V containing zero such that for all x�1 2 V \ c N

< �; >x D ı.�2 D 1/�1.A

c
/�1.x/

Z

TnG
�.�y/ N .y/ dy:

Here the character �1 of F� is given by � D �1 ı N if �2 D 1. Especially, the
local linking number vanishes in a neighborhood of infinity if �2 6D 1.

Proposition 3.2. Let K D F ˚ F be a split algebra. Let � D .�1; �
�1
1 / and let

�; 2 S.�;G/. The local linking number < �; >x is a function of x 2 F� with
the following properties:

(a) It is zero on a neighborhood of 1 2 F�.
(b) It is locally constant on F�.
(c) There is an open set U 3 0 and locally constant functions A1;A2 on U

depending on � and  such that for 0 6D x 2 U: < �; >xD A1.x/ C
A2.x/v.x/.

(d) There is an open set V containing zero and locally constant functions B1;B2 on
V depending on � and  such that for x�1 2 V:

< �; >x D


�1.x/.B1.x�1/C B2.x�1/v.x//; if �21 D 1
�1.x/B1.x�1/C ��1

1 .x/B2.x
�1/; if �21 6D 1

:

For �21 D 1, the function B2 is nonzero only if id 2 supp�.supp /�1.

We need two lemmas.

Lemma 3.3. Let � 2 S.�;G/.
(a) For each y 2 G there is an open set V 3 y such that for all g 2 supp.�/y�1 and

all Qy 2 V

�.gQy/ D �.gy/:
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(b) Let C � G be compact. For each g 2 G there is an open set U 3 g such that for
all Qg 2 U and all y 2 TC

Z

T
�.t�1 Qgty/ dt D

Z

T
�.t�1gty/ dt: (10)

Proof of Lemma 3.3. (a) It is enough to prove the statement for y D id. As � is
locally constant, for every g 2 G there is an open set Ug 3 id with �.gUg/ D
�.g/. Let C � G be compact such that supp� D TC. We cover C by finitely
many gUg and choose U to be the intersection of those Ug. Then �.gU/ D �.g/
for all g 2 TC.

(b) It is enough to prove the statement for y 2 C rather than y 2 TC, as a factor
s 2 T just changes the integral by a factor �.s/. By (a) there is an open set Vy 3 y
such that �.t�1gtQy/ D �.t�1gty/ for Qy 2 Vy and t�1gt 2 supp.�/y�1. Take
finitely many y 2 C such that the Vy cover C. It is enough to find open sets Uy 3
g for these y so that Eq. (10) is fulfilled. Then \Uy is an open set such that (10)
is satisfied for all y 2 TC. Write g D g1 C �g2 and describe a neighborhood Uy

of g by k1; k2 > 0 depending on y and the obstructions jQgi � gij < ki, i D 1; 2,
for Qg lying in Uy. Write t�1 Qgt D g1 C �g2tNt�1 C .Qg1 � g1/C �.Qg2 � g2/tNt�1. As
� is locally constant, we may choose k1; k2 depending on y such that

�.t�1 Qgt/ D �..g1 C �g2tNt�1/y/ D �.t�1gty/:

These constants are independent from t as j.Qg2 � g2/tNt�1j D jQg2 � g2j. ut
Lemma 3.4. Let � 2 S.F ˚ F/.

(a) There are A1;A2 2 S.F/ such that

Z

F�

�.a�1y; a/ d�a D A1.y/C A2.y/v.y/:

(b) Let � be a nontrivial (finite) character of F�. There are B1;B2 2 S.F/ and
m 2 Z such that for 0 6D y 2 }m

Z

F�

�.a�1y; a/�.a/ d�a D B1.y/C B2.y/�.y/:

Proof of Lemma 3.4. (a) Any � 2 S.F˚F/ is a finite linear combination of the fol-
lowing elementary functions: 1}n.a/1}n.b/, 1xC}n.a/1}n.b/, 1}n.a/1zC}n.b/,
1xC}n.a/1zC}n.b/ for suitable n 2 Z and v.x/; v.z/ > n. It is enough to prove
the statement for these functions. We get

Z

F�

1}n.a�1y/1}n.a/ d�a D 1}2n.y/v.y��2nC1/ vol�.o�
F /:
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Thus, if 0 2 supp�, the integral has a pole at y D 0, otherwise it hasn’t:

Z

F�

1xC}n.a�1y/1}n.a/ d�a D 1}v.x/Cn.y/ vol�.1C }n�v.x//;
Z

F�

1}n.a�1y/1zC}n.a/ d�a D 1}v.z/Cn.y/ vol�.1C }n�v.z//

and
Z

F�

1xC}n.a�1y/1zC}n.a/ d�a D 1xz.1C}m/.y/ vol�.1C }m/;

where m WD n �minfv.x/; v.z/g.
(b) Similar computations to those of (a). ut
Proof of Proposition 3.1. (a) is clear by definition.
(b) Assume 1 2 c N, otherwise this property is trivial. We have to show that for all

	 with P.	/ 2 U, where U is a sufficiently small neighborhood of 1,

Z

TnG

Z

T
�.t�1	 ty/ dt N .y/ dy D 0:

We show that the inner integral is zero. Let C � G be compact such that
supp� � TC. Then � vanishes outside of TCT . It is enough to show that there is
k > 0 such that jP.	/�1j > k holds for all 	 2 TCT . Assume there isn’t such k.
Let .	i/i be a sequence such that P.	i/ tends to 1. Multiplying by elements of
T and enlarging C occasionally (this is possible as T is compact), we assume
	i D 1C �ti D zici, where ti 2 T , ci 2 C, zi 2 Z. Then P.	i/ D ctiNti D 1C ai,
where ai ! 0. We have det 	i D 1� ctiNti D �ai as well as det 	i D z2i det ci. As
C is compact, .zi/i is forced to tend to zero. This implies 	i ! 0 contradicting
	i D 1C �ti.

(c) A coset 	 2 F�nD� of trace zero has a representative of the form 	 D pAC�	2
(by abuse of notation). Thus,

< �; >x D
Z

TnG

Z

T
�..
p

AC �	2tNt�1/y/ dt N .y/ dy:

As � 2 S.�;G/, there exists an ideal }m
K of K such that for all y 2 G and all

l 2 }m
K one has �..

p
AC �l/y/ D �.

p
Ay/. Let x D P.	/ be near zero, i.e., x

belongs to an ideal U of F given by the obstruction that clNl
�A 2 U implies l 2 }m

K .
For such x we have

< �; >x D volT.T/�.
p

A/
Z

TnG
�.y/ N .y/ dy:
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So if h�; �i denotes the L2-scalar product, we have

< �; >x D 1

2
volT.T/�.

p
A/h�; i.1C !.cx//:

(d) Let 	 D pAC �	2 denote a trace zero preimage of x under P. Then

Z

T
�.t�1	 ty/ dt D �.	2/

Z

T
�..
p

A	�1
2 C t�1Nt�/y/ dt:

By Lemma 3.3 there exists k > 0 such that for j	2j > k and for y 2 supp we
have �..

p
A	�1

2 C t�1Nt�/y/ D �.t�1Nt�y/. Thus, for jxj > jcA�1jk2,

< �; >x D �.	2/

Z

T
�.t�1Nt/ dt

Z

TnG
�.�y/ N .y/ dy:

As �.t�1Nt/ defines the trivial character of T if and only if �2 D 1, the statement
follows by noticing that in this case �.	2/ D �1.Ax

c /. ut
Proof of Proposition 3.2. There is an isomorphism from D� to GL2.F/ given by

embedding K� diagonally and sending � to

�

0 1

1 0

�

. Then P is given by

P

�

a b
c d

�

D bc

ad
:

The only value not contained in the image of P is 1. A preimage of x 6D 1 of trace
zero is

	.x/ D
��1 x
�1 1

�

:

(a) We show that for � 2 S.�;G/ there is a constant k > 0 such that for all
	 2 supp�: jP.	/ � 1j > k. By Bruhat–Tits decomposition, G D PGL2.F/ D
TNN0 [ TNwN, where N is the group of unipotent upper triangular matrices, N0

its transpose, and w D
�

0 �1
1 0

�

. Thus, there is c > 0 such that

supp� � T

�

1 u
0 1

��

1 0

v 1

�

j juj < c; jvj < c

�

[

T

�

1 u
0 1

�

w

�

1 v

0 1

�

j juj < c; jvj < c

�

:



176 K. Maurischat

On the first set P we have P D uv
1Cuv . On the second one we have P D uv�1

uv .
Thus, for all 	 2 supp� we have jP.	/ � 1j 
 minf1; c�2g. Next we show that
there is a constant k > 0 such that jP.	/ � 1j > k for all 	y 2 supp� for all
y 2 supp . This implies that < �; >xD 0 in the neighborhood jx � 1j < k
of 1. There is such a constant ky for any y 2 supp . By Lemma 3.3(a) this
constant is valid for all Qy in a neighborhood Vy. Modulo T the support of  can
be covered by finitely many Vy. The minimum of the associated ky is the global
constant we claimed.

(b) By Lemma 3.3(b), there is for every x 2 F�nf1g a neighborhood Ux such that
for all y 2 supp the inner integral

Z

T
�.t�1	.Qx/ty/ dt

is constant in Qx 2 Ux. Even more the local linking number is locally constant
on F�nf1g. By (a) it is locally constant in x D 1 as well.

For (c) and (d) we regard the inner integral separately first. For representa-
tives we have

t�1	.x/t D
�

a�1 0
0 1

���1 x
�1 1

��

a 0
0 1

�

D
�

.x � 1/ 0
0 1

�

 

1 x
a.x�1/

0 1

!

�

1 0

�a 1

�

2 K�NN0

D
�

1�x
a 0

0 �a

��

1 a
x�1

0 1

�

w

�

1 �a�1
0 1

�

2 K�NwN:

As supp� is compact modulo T , the intersections supp� \ NN0 and supp� \
NwN are compact. We write �y for the right translation of � by y. Then �y is a
sum �y D �y

1C�y
2, �

y
i 2 S.�;G/, with supp�y

1 � TNN0 and supp�y
2 � TNwN.

Using the transformation under T by �, we can actually regard �y
i , i D 1; 2, as

functions on F ˚ F identifying N with F. Thus, �y
i 2 S.F ˚ F/. Then we get

Z

T
�.t�1	.x/ty/ dt D �1.x � 1/

Z

F�

�
y
1.

x

a.x � 1/ ;�a/ d�a

C �1.1 � x/
Z

F�

�1.a
�2/�y

2.
a

x � 1 ;�a�1/ d�a: (11)

(c) We have �1.x � 1/ D �1.�1/ if x 2 }c.�1/, where c.�1/ is the leader of �1. By
Lemma 3.4, the first integral of (11) for small x equals

A1.
x

x � 1/C A2.
x

x � 1/v.
x

x � 1/;
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where A1;A2 are locally constant functions on a neighborhood of zero depend-
ing on y. Then QAi.x/ WD Ai.

x
x�1 / are locally constant functions on a neigh-

borhood U1 of zero as well. The second integral of (11) is constant on a
neighborhood U2 of x D 0 depending on y, as �y

2 is locally constant for
.x � 1/�1 ! �1. Thus, the complete inner integral can be expressed on
Uy WD }c.�1/ \ U1 \ U2 as

Ay.x/ WD QA1.x/C QA2.x/v.x/C B:

By Lemma 3.3(a), there is a neighborhood Vy of y where the inner integral
is constant. Take Vy that small that  is constant there, too, and cover supp 
modulo T by finitely many such Vy, y 2 I, for some finite set I. The local linking
number for x 2 U D \y2IUy now is computed as

< �; >x D
X

y2I

volTnG.TVy/ N .y/Ay.x/:

That is, there are locally constant functions B1;B2 on U such that for x 2 U

< �; >x D B1.x/C B2.x/v.x/:

(d) Let x�1 2 }c.�1/. Then �1.x � 1/ D �.x/. As �y
1 is locally constant, the first

integral of (11) equals a locally constant function A1.x�1/ for x�1 in a neigh-
borhood U1 of zero depending on y. For the second integral, we distinguish
whether �21 D 1 or not. Let � WD �21 6D 1. Applying Lemma 3.4(b), we get
locally constant functions A2;A3 on a neighborhood U2 of zero depending on y
such that the second integral equals A2.x�1/C �21.x�1/A3.x�1/. Thus, for fixed
y the inner integral for x�1 2 Uy D U1 \ U2 \ }c.�1/ is

Ay.x/ WD
Z

T
�y.t�1	.c/t/ dt D �1.x/

�

A1.x
�1/C A2.x

�1/C A3.x
�1/��1

1 .x/
�

:

Proceeding as in (c), we get the assertion. Let �21 D 1. By Lemma 3.4(a), we
have locally constant functions A2;A3 on a neighborhood U2 of zero such that
for x�1 2 U the second integral of (11) is given by A2.x�1/ C A2.x�1/v.x/.
Thus, for x�1 2 Uy WD U1 \ U2 \ }c.�1/ the inner integral is given by

Ay.x/ WD �1.x/
�

A1.x
�1/C A2.x

�1/C A3.x
�1/v.x/

�

:

The term A3.x�1/v.x/ by Lemma 3.4(a) is obtained from functions �y
2.a; b/

having the shape 1}n.a/1}n.b/ around zero. Those function can only occur if y
is contained in supp�. Again proceeding as in part (c), the local linking number
for x�1 in a sufficiently small neighborhood U of zero is

< �; >x D �1.x/
�

B1.x
�1/C B2.x

�1/v.x/
�

;

where B1;B2 are locally constant on U and B2 doesn’t vanish only if id 2
.supp�/.supp /�1. ut
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The above properties of the local linking numbers describe them completely:

Proposition 3.5. The properties (a) to (d) of Proposition 3.1, resp., 3.2 characterize
L: Given a function H on F� satisfying these properties, there are �; 2 S.�;G/
such that H.x/ D< �; >x.

We first describe the construction in general before going into detail in the case of
a field extension K=F. The case of a split algebra K D F ˚ F will be omitted, as it
is similar and straightforward after the case of a field extension. A complete proof
can be found in [9, Chap. 2]. We choose a description of a function H satisfying the
properties (a) to (d),

H.x/ D 1c N.x/
�

A0.x/1V0 .x/C A1.x/1V1 .x/C
M
X

jD2
H.xj/1Vj.x/

�

;

where Vj D xj.1C }nj

F /, j D 2; : : : ;M, are open sets in F� on which H is constant.
Similarly,

V0 D }n0
F resp. V1 D Fn}�n1

are neighborhoods of 0 (resp., 1) where H is characterized by A0 (resp., A1)
according to property (c) (resp., (d)). We may assume nj > 0 for j D 0; : : : ;M
and Vi \ Vj D ; for i 6D j. Then we construct a function  and functions �j,
j D 0; : : : ;M, in S.�;G/ such that supp�i \ supp�j D ; if i 6D j and such that

< �j;  >xD H.xj/1Vj.x/ resp. < �j;  >xD Aj.x/1Vj.x/:

There is essentially one possibility to construct such functions in S.�;G/: Take a
compact open subset C of G which is fundamental for �, that is, if t 2 T and
c 2 C as well as tc 2 C, then �.t/ D 1. Then the function � D � � 1C given by
�.tg/ D �.t/1C.g/ is well defined in S.�;G/ with support TC. The function  is
then chosen as  D � � 1U , where U is a compact open subgroup of G that small
that for j D 0; : : : ;M

P.P�1.Vj/U/ D Vj \ c N :

For j 
 2 we take Cj compact such that CjU is fundamental and P.CjU/ D Vj and
define �j WD H.xj/ �� �1CjU . The stalks of zero and infinity are constructed similarly.
As the local linking numbers are linear in the first component and as the supports of
the �j are disjoint by construction, we get

H.x/ D<
M
X

jD0
�j;  >x :
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Proof of Proposition 3.5 in the case K a field. Let K D F.
p

A/. Let the function H
satisfying (a) to (d) of Proposition 3.1 be given by

H.x/ D 1c N.x/
�

A0.x/1V0 .x/C A1.x/1V1 .x/C
M
X

jD2
H.xj/1Vj.x/

�

;

where

V0 D }n0 and A0.x/ D a0;

V1 D Fn}�n1 and A1.x/ D


�1.x/a1; if �2 D 1
0; if �2 6D 1 ;

Vj D xj.1C }nj/ for j D 2; : : : ;M;

with a0; a1;H.xj/ 2 C, and nj > 0 for j D 0; : : : ;M. We further assume

n0 � v. c

A
/ > 0; n1 C v. c

A
/ > 0 and both even,

as well as Vi \ Vj D ; for i 6D j. Let

Qn0 D


1
2
.n0 � v. c

A //; if K=F unramified
n0 � v. c

A /; if K=F ramified
;

Qn1 D


1
2
.n1 C v. c

A //; if K=F unramified
n1 C v. c

A /; if K=F ramified
;

as well as for j D 2; : : : ;M

Qnj D


nj; if K=F unramified
2nj; if K=F ramified

:

Then N.1C }Qnj

K / D 1C }nj

F , j 
 2. Here }K is the prime ideal of K. Define

U WD 1C }k
K C �}m

K ;

where k > 0 and m > 0 are chosen such that

k 
 c.�/; m 
 c.�/

k 
 Qnj; m 
 Qnj C 1; for j D 0; : : : ;M;

m 
 c.�/C 1 � 1
2
v.xj/; for j D 2; : : : ;M;

m 
 Qnj C 1C 1

2
jv.xj/j; for j D 2; : : : ;M: (12)



180 K. Maurischat

As k;m > 0 and k;m 
 c.�/, U is fundamental. Define

 WD � � 1U:

To realize the stalks for xj, j 
 2, let
p

AC �	j be a preimage of xj,

P.
p

AC �	j/ D c N.	j/

�A
D xj:

The preimage of Vj is

P�1.Vj/ D T
�
p

AC �	j.1C }Qnj

K /
�

T D T
�
p

AC �	j.1C }Qnj

K /N1
K

�

:

Let Cj WD
p

AC �	j.1C }Qnj

K /N1
K . The compact open set

CjU D
p

A.1C }k
K/C c N	j}

m
K C �

�

	j.1C }k
K C }Qnj

K /N1
K C
p

A}m
K

�

:

is fundamental, due to the choices (12): We have to check that if t 2 T , c 2 Cj, and
tc 2 CjU, then �.t/ D 1 (observe that U is a group). Let

tc D t
p

AC �Nt	j.1C � Qnj

K c1/l 2 CjU:

The first component forces t 2 1C }k
K C c

A N	j}
m
K , for which �.t/ D 1, by (12). For

the image of CjU we find again by (12)

P.CjU/ D
c N.	j/N.1C }k

K C }Qnj

K C }m
K

p
A
	j
/

�A N.1C }k
K C cp

A
N	j}

m
K /

D Vj:

So the functions �j WD � � 1CjU 2 S.�;G/ are well defined. We compute

< �j;  >x D
Z

TnG

Z

T
�j.t

�1	.x/ty/ dt N .y/ dy:

The integrand doesn’t vanish only if there is s 2 K� such that

st�1	.x/t D s
p

AC �Ns	2.x/tNt�1 2 CjU:

The first component implies s 2 1 C }Qnj

K . The second one implies 	2.x/ 2 	j.1 C
}

Qnj

K /N1
K , which is equivalent to x 2 Vj. In this case we take s D 1 and get

< �j;  >x D 1Vj.x/
Z

TnG

Z

T
1 dt N .y/ dy D 1Vj.x/ volT.T/ volG.U/:

Normalizing Q�j WD H.xj/

volT .T/ volG.U/
�j, we get HjVj.x/ D< Q�j;  >x.
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For the stalk at zero, we find P.C0/ D }n0
F \ c N, where C0 WD

p
AC �}Qn0

K . The
preimage P�1.V0/ equals TC0T D TC0. The open and compact set C0U is easily
seen to be fundamental and to satisfy P.C0U/ D V0 \ cN. Define �0 WD � � 1C0U

and compute the local linking number < �0;  >x. It doesn’t vanish only if there is
s 2 K� such that

st�1	.x/t D s
p

AC �Ns	2.x/tNt�1 2 C0U:

This forces 	2.x/ 2 }Qn0
K . Then we take s D 1 and get

< �0;  >x D 1V0\c N.x/ volT.T/ volG.U/:

That is, HjV0 .x/ D a0 D< a0
volT .T/ volG.U/

�0;  >x. It remains to construct the stalk

at infinity in case �2 D 1. Thus, � D �1 ı N. The preimage of V1 D Fn}�n1
F is

given by

P�1.V1/ D T
�
p

AC �.}Qn1
K /

�1�T D T
�
p

A}Qn1
K C �N1

K

�

:

Take C1 D
p

A}Qn1
K C �N1

K to get a fundamental compact open set

C1U D
p

A}Qn1
K C c}m

K C �
�

N1
K.1C }k

K/C
p

A}mCQn1
K

�

;

By the choices (12) we get P.C1U/ D V1\ c N. Taking �1 WD � � 1C1U this time, we
get HjV1 .x/ D a1

volT .T/ volG.U/
< �1;  >x. ut

We use the parametrization 
 D x
x�1 . The properties of the local linking numbers

(Propositions 3.1 and 3.2) transform accordingly. Let QL be the space of distributions
made up by evaluating the multiple j
�j 12 < �; >	.
/ of local linking numbers
at 
 2 F� for �; 2 S.�;G/. This is the space of test vectors of the geometric
side, while the space W of analytic test vectors is given by evaluation of Whittaker
products. We have the following transfer:

Theorem 3.6. Assume !.�
�/ D 1 if D is split, resp., !.�
�/ D �1 if D is a
division algebra. The spaces of test vectors QL and W have identical 
-expansion.

Proof of Theorem 3.6. The space W is characterized by Propositions 2.9 and 2.10.
Comparing it with QL (Propositions 3.1, resp., 3.2) yields the claim. For example,
by Proposition 2.9 for K=F split and �21 6D 1, the Whittaker products for 
 ! 1

(�! 0) are given by

j
�j 12 �a1�1.�/C a2�
�1
1 .�/

�

;

which corresponds to Proposition 3.2(d). For 
 ! 0 (� ! 1) we apply
Proposition 2.10: The Whittaker products have the shape j
�j 12 .a1 C a2v.
//. This
is property (c) of Proposition 3.2. Away from 
 ! 1 and 
 ! 0, the Whittaker
products are locally constant with compact support. This is equivalent to (a) and (b)
of Proposition 3.2. ut
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4 Translated Linking Numbers

In the remaining, the quaternion algebra D is assumed to be split, that is, G D
F�nD� is isomorphic to the projective group PGL2.F/. The aim is to give an
operator on the local linking numbers realizing the Hecke operator on the analytic
side. As the analytic Hecke operator essentially is given by translation by b 2 F�
(Proposition 2.11), the first candidate for this study is the translation by b,

< �;

�

b 0
0 1

�

 >x D
Z

TnG

Z

T
�.t�1	.x/ty/ dt N .y

�

b 0
0 1

�

/ dy:

Let

I�.y/ D
Z

T
�.t�1	.x/ty/ dt (13)

be its inner integral. Here the difference between the case of a compact torus and that
of a noncompact one becomes crucial. Fixing x and viewing the translated linking
number as a function of b alone, we describe the behavior in the compact case
in a few lines. In the noncompact case our computational approach makes up one
hundred pages. Referring to [9], this case is only sketched.

4.1 The Compact Case

Let K D F.
p

A/ be a field extension of F. So T is compact. As functions � 2
S.�;G/ have compact support modulo T , the set T	.x/T � supp� is compact. Left
translation by t0 2 T yields I�.t0y/ D �.t0/I�.y/. Thus, the inner integral I� itself
is an element of S.�;G/. Choose the following isomorphism of D� D .K C �K/�
with GL2.F/:

� 7!
�

0 �A
1 0

�

;

K� 3 t D aC b
p

A 7!
�

a bA
b a

�

:

Let M D
�

y1 y2
0 1

�

j y1 2 F�; y2 2 F

�

be the mirabolic subgroup of the standard

Borel group. It carries the right invariant Haar measure d�y1 dy2. As the map K� �
M ! GL2.F/, .t;m/ 7! t �m, is a homeomorphism [8, Sect. 2.2], we may normalize
the quotient measure dy on TnG such that dy D d�y1 dy2. We identify � 2 S.�;G/
with a function in S.F� � F/,
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�.y1; y2/ WD �
�

y1 y2
0 1

�

:

� being locally constant with compact support, there are finitely many points
.z1; z2/ 2 F� � F and m > 0 such that

�.y1; y2/ D
X

.z1;z2/

�.z1; z2/1z1.1C}m/.y1/1z2C}m.y2/:

Applying this for I� and  ,

I�.y1; y2/ D
X

.z1;z2/

I�.z1; z2/1z1.1C}m/.y1/1z2C}m.y2/;

 .y1; y2/ D
X

.w1;w2/

 .w1;w2/1w1.1C}m/.y1/1w2C}m.y2/;

we compute the translated local linking number

< �;

�

b 0
0 1

�

 >x D
Z

TnG
I�.y/ N .y

�

b 0
0 1

�

/ dy

D
X

.z1;z2/;.w1;w2/

I�.z1; z2/ N .w1;w2/1z2C}m.w2/1 w1
z1
.1C}m/.b/

� vol�.1C }m/ vol.}m/:

We have proved:

Theorem 4.1. Let T be compact. For fixed x, the translated local linking number

< �;

�

b 0
0 1

�

 >x is a locally constant function of b 2 F� with compact support.

We give an explicit example used later on.

Example 4.2 ([9], Bsp. 4.8). Let K=F be an unramified field extension and let
� D 1. Then � D � � 1GL2.oF/ is well defined in S.�;G/ and

< �;

�

b 0
0 1

�

� >x � vol�1 D

1N n.1C}/.x/1o�

F
.b/C 11C}.x/

�

1.1�x/o�

F
.b/C 1.1�x/�1o�

F
.b/
�

q�v.1�x/;

where vol WD volT.T/ vol�.o�
F / vol.oF/.
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4.2 The Noncompact Case

Let K D F ˚ F be a split algebra. The character � is of the form � D .�1; ��1
1 / for

a character �1 of F�. As in the proof of Proposition 3.2, G D TNN0 [ TNwN. Both

of these open subsets are invariant under right translation by

�

b 0
0 1

�

. Choose coset

representatives for TnTNN0 of the form

y D
�

1 y2
0 1

��

1 0

y3 1

�

as well as coset representatives for TnTNwN of the form

y D
�

1 y1
0 1

�

w

�

1 0

y4 1

�

:

Any function  2 S.�;G/ can be split into a sum  D  1 C  2,  i 2 S.�;G/,
with supp 1 � TNN0 (resp., supp 2 � TNwN). The function  1 can be viewed
as an element of S.F2/ in the variable .y2; y3/. Choose the quotient measure dy
on TnTNN0 such that dy D dy2 dy3 for fixed Haar measure dyi on F. Proceed
analogously for  2. For fixed x the inner integral I� (13) is a locally constant
function in y. Its support is not compact anymore, but I� is the locally constant limit
of Schwartz functions. This is the reason for this case being that more elaborate than
the case of a compact torus. The shape of the translated linking numbers is given by
the following theorem.

Theorem 4.3. Let T be a noncompact torus. For fixed x, the translated local linking

number < �;

�

b 0
0 1

�

 >x is a function in b 2 F� of the form

��1
1 .b/

�

1}n.b/jbj.aC;1v.b/C aC;2/C A.b/C 1}n.b�1/jbj�1.a�;1v.b/C a�;2/
�

C �1.b/
�

1}n.b/jbj.cC;1v.b/C cC;2/C C.b/C 1}n.b�1/jbj�1.c�;1v.b/C c�;2/
�

;

with suitable constants a˙;i; c˙;i 2 C, integral n > 0, and functions A;C 2 S.F�/.

Sketch of proof of Theorem 4.3. This is done by brute force computations in [9]
Chapter 8. We will outline the reduction to }-adic integration here. We choose the
functions �; locally as simple as possible: z 2 supp� belongs to TNN0 or TNwN.
We restrict to z 2 TNN0, the other case is done similarly. There is a representative

�

1C z2z3 z2
z3 1

�
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of z modulo T and an open set

Uz D
�

1C z2z3 z2
z3 1

�

C
�

}m }m

}m }m

�

such that �jUz D �.z/. Choosing m that large that Uz is fundamental, � locally has
the shape �z WD � � 1Uz up to some multiplicative constant. For the exterior function
 proceed similarly. It is enough to determine the behavior of the translated local
linking numbers for functions of this type, i.e.,

Z

TnG

Z

T
�z.t

�1	.x/ty/ dt N Qz.y
�

b 0
0 1

�

/ dy:

According to whether z2 or z3 is zero or not, and supp � TNN0 or supp �
TNwN, there are 23 D 8 types of integrals to be done [9, Chaps. 5.2 and 8]. For later
use we include an explicit example.

Example 4.4 ([9], Bsp. 5.2). Let T be noncompact. Let � D .�1; �1/, where �1 is
unramified and quadratic. Then � D � � 1GL2.oF/ is well defined in S.�;G/. The

translated local linking number < �;

�

b 0
0 1

�

� >x is given by

�1.1 � x/�1.b/ vol�.o�
F / vol.oF/

2 �
"

1F�n.1C}/.x/
 

1o�

F
.b/
�jv.x/j C 1�.1C q�1/C 1}.b/jbj

�

4v.b/C 2jv.x/j�

C1}.b�1/jb�1j��4v.b/C 2jv.x/j�
!

C 11C}.x/
 

1}v.1�x/C1 .b/jbj�4v.b/ � 4v.1 � x/
�

C1v.1�x/o�

F
.b/jbj C 1v.1�x/o�

F
.b�1/jb�1j

C1}v.1�x/C1 .b�1/jb�1j��4v.b/ � 4v.1 � x/
�

!#

:

5 A Geometric Hecke Operator

We construct operators on the local linking numbers that realize the asymptotics
(b ! 0) of the Hecke operators on Whittaker products. The asymptotics of the
second is as follows.
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Proposition 5.1. The Whittaker products W.b
; b�/ have the following behavior
for b! 0 and fixed 
 D x

x�1 , � D 1 � 
 .

(a) In case of a compact Torus T and � not factorizing via the norm,

W.b
; b�/ D 0:

In case of a compact Torus T and � D �1 ı N,

W.b
; b�/Djbjj
�j 12 �1.b�/ .c1Cc2!.b
//
�

c31}m
\.1�x/N.b/Cc41}m

\.1�x/z N.b/
�

;

where z 2 F�nN.
(b) In case of a noncompact Torus T,

W.b
; b�/ D
(

jbjj
�j 12 �c1�1.b�/C c2��1
1 .b�/

�

.c3v.b
/C c4// ; if �21 6D 1
jbjj
�j 12 �1.b�/ .c1v.b�/C c2/ .c3v.b
/C c4/ ; if �21 D 1

:

Here, ci 2 C, i D 1; : : : ; 4.

Proof of Proposition 5.1. For b ! 0 both arguments b
 and b� tend to zero. The
stated behaviors are collected from Propositions 2.9 and 2.10. ut
Notice that the translation by b of the local linking numbers underlies this
asymptotics (Theorems 4.1 and 4.3), but it does not realize the leading terms in case
� is quadratic. In case of a noncompact torus T , the leading term is v.b/2, while
translation only produces v.b/. In case of a compact torus, the translated linking
numbers have compact support, while the Hecke operator on Whittaker products has
not. In the following, we make the additional “completely unramified” assumption
which is satisfied at almost all places.

Hypothesis 5.2. D is a split algebra. K=F is an unramified extension (split or
nonsplit) contained in D. The character � is unramified.

For a noncompact torus T the translated local linking numbers (Theorem 4.3) split
into sums of the form

< �;

�

ˇ 0

0 1

�

 >xD< �;
�

ˇ 0

0 1

�

 >C
x C < �;

�

ˇ 0

0 1

�

 >�
x ;

where

< �;

�

ˇ 0

0 1

�

 >ẋ WD �˙1
1 .ˇ/� (14)

�

1}n jˇj.c˙;1v.ˇ/C c˙;2/C C˙.ˇ/C 1}n.ˇ�1/jˇj�1.d˙;1v.ˇ/C d˙;2/
�
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are the summands belonging to �˙1
1 , respectively. In here, the constants c˙;i; d˙;i,

and C˙ 2 S.F�/ as well as n > 0 depend on �; , and x. If �1 is a quadratic
character, these two summands coincide. To give an operator fitting all cases, define
in case of a compact torus

< �;

�

ˇ 0

0 1

�

 >ẋ WD< �;
�

ˇ 0

0 1

�

 >x :

For v.b/ 
 0 define the operator Sb to be

Sb WD 1

4

�

SC
b C S�

b

�

; (15)

where

Sḃ < �; >x WD
X

sD0;1

v.b/
X

iD0

��1
1 .�/i.�1/s!.b.1 � x//iCs

j�v.b/�ij

� < �;
�

�.�1/s.v.b/�i/ 0

0 1

�

 >ẋ :

This “Hecke operator” is not unique. For example, the summand for s D 0 has the
same properties as Sb itself. The crucial point is that an averaging sum occurs. The
operator Sb is chosen such that this sum includes negative exponents �v.b/ C i as
well. This kind of symmetry will make the results on the local Gross–Zagier formula
look smoothly (Sect. 6.2).

Proposition 5.3. Let T be a compact torus. Then the operator Sb reduces to

Sb < �; >x D 1

2

X

sD0;1

v.b/
X

iD0

!.b.1 � x//iCs

j�v.b/�ij < �;

�

�.�1/s.v.b/�i/ 0

0 1

�

 >x :

Let x 2 c N be fixed. For �; 2 S.�;G/ there are constants c1; c2 2 C and n 2 N

such that for v.b/ 
 n

Sb < �; >x D c11}n\.1�x/N.b/C c21}n\.1�x/z N.b/:

Proposition 5.4. Let T be a noncompact torus. The operators Sḃ reduce to

Sḃ < �; >x D
X

sD0;1

v.b/
X

iD0

��1
1 .�/i.�1/s

j�v.b/�ij < �;

�

�.�1/s.v.b/�i/ 0

0 1

�

 >ẋ :
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Let x 2 F� be fixed. For �; 2 S.�;G/ there are constants c0; : : : ; c3 2 C and
n 2 N such that for v.b/ 
 n

Sb < �; >x D


��1
1 .b/

�

c3v.b/C c2
�C �1.b/

�

c1v.b/C c0
�

; if �21 6D 1
�1.b/

�

c2v.b/2 C c1v.b/C c0
�

; if �21 D 1
:

Theorem 5.5. For fixed x, the local linking numbers jbj�1j
�j 12 Sb < �; >x and
the Whittaker products TbW.
; �/ have the same asymptotics in b.

Proof of Theorem 5.5. Recall that TbW.
; �/ D jbj�2W.b
; b�/. In case T compact,
combine Propositions 5.3 and 5.1(a) for � D 1. In case T noncompact, combine
Propositions 5.4 and 5.1(b). ut
Proof of Proposition 5.3. For T compact Assumption 5.2 induces � D 1 by
Corollary 2.6. By Theorem 4.1, the translated linking number can be written as

< �;

�

ˇ 0

0 1

�

 >xD
X

i

dai jaijsign v.ai/1ai.1C}m/.ˇ/;

for finitely many ai 2 F�, dai 2 C, and some m > 0, where the sets ai.1 C }m/

are pairwise disjoint. We may assume that in this sum all � l, �maxijv.ai/j � l �
maxijv.ai/j, occur. Let n WD maxijv.ai/j C 1. Then, for v.b/ 
 n,

Sb < �; >x D 1

2

v.b/
X

iD0

 

!.b.1 � x//i
n�1
X

lD�nC1

d� l j� ljsign.l/

j�v.b/�ij 1� l.1C}m/.�
v.b/�i/

C !.b.1 � x//iC1
n�1
X

lD�nC1

d� l j� ljsign.l/

j�v.b/�ij 1� l.1C}m/.�
i�v.b//

!

D 1

2

n�1
X

lD0
!.b.1 � x//v.b/Cld� l C 1

2

0
X

lD�nC1
!.b.1 � x//v.b/ClC1d� l

D c11}n\.1�x/N.b/C c21}n\.1�x/z N.b/;

where c1 WD 1
2

Pn�1
lD0 .d� l C d��l/ and c2 WD 1

2

Pn�1
lD0 .�1/l.d� l � d��l/. Notice, that

for b.1 � x/ 2 z N one has !.b.1 � x//v.b/ D .�1/v.b/ D �!.1 � x/. ut
Proof of Proposition 5.4. T is noncompact, so ! D 1. First we prove this asymp-
totics for the part T�

b of Sb belonging to S�
b and s D 0,

T�
b < �; >x WD

v.b/
X

iD0

�1.�/
i

j�v.b/�ij < �;
�

�v.b/�i 0

0 1

�

 >�
x :
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Let n > 0 be the integer of (14). Let v.b/ 
 n. In the formula for T�
b , we distinguish

the summands whether v.b/ � i < n or not. If v.b/ � i < n, then

< �;

�

�v.b/�i 0

0 1

�

 >�
x D ��1

1 .�
v.b/�i/C�.�v.b/�i/:

The function QC� defined by

QC�.ˇ/ WD ��2
1 .ˇ/

jˇj C�.ˇ/

belongs to S.F�/. The part of T�
b made up by summands satisfying v.b/ � i < n is

now simplified to

v.b/
X

iDv.b/�nC1

�1.�/
i

j�v.b/�ij < �;
�

�v.b/�i 0

0 1

�

 >�
x

D
v.b/
X

iDv.b/�nC1
�1.b/ QC�.�v.b/�i/ D �1.b/

n�1
X

lD0
QC�.� l/:

In here, the last sum is independent of b. Thus, this part of T�
b satisfies the claim. In

the remaining part

T.i � v.b/ � n/ WD
v.b/�n
X

iD0

�1.�/
i

j�v.b/�ij < �;
�

�v.b/�i 0

0 1

�

 >�
x

all the translated local linking numbers occurring can be written as

< �;

�

�v.b/�i 0

0 1

�

 >�
x D ��1

1 .�
v.b/�i/j�v.b/�ij .c�;1.v.b/ � i/C c�;2/ :

So

T.i � v.b/ � n/ D ��1
1 .b/

v.b/�n
X

iD0
�1.�/

2i .c�;1.v.b/ � i/C c�;2/ :

In case �21 D 1, we have

T.i � v.b/ � n/ D �1.b/.v.b/ � nC 1/
�

c�;2 C 1

2
c�;1.v.b/C n/

�

;
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which owns the claimed asymptotics. If �21 6D 1, enlarge n such that �n
1 D 1. The

remaining part of T�
b then is

T.i � v.b/ � n/ D .c�;1v.b/C c�;2/
�1.b�/ � ��1

1 .b�/

�1.�/ � ��1
1 .�/

� c�;1
�1.b�/.v.b/ � nC 1/
�1.�/ � ��1

1 .�/
C c�;1

�1.b�2/ � 1
.�1.�/ � ��1

1 .�//
2
:

Thus, the claim is satisfied in case �21 6D 1. The other parts of Sb satisfy the claimed
asymptotics as well: If TC

b denotes the part of Sb belonging to SC
b and s D 0, then

the statement for TC
b follows from the proof for T�

b replacing there ��1
1 by �1, C�

by CC, and c�;i by cC;i, where the constants are given by (14). For s D 1 notice that

�1.�/
i.�1/s��1

1 .�
.�1/s.v.b/�i// D �1.b/�1.�/�2i:

So the claim follows from the proof for s D 0 if there we substitute �1 by ��1
1 as

well as c˙;i by d˙;i of (14). ut

6 Local Gross–Zagier Formula

We report on Zhang’s local Gross–Zagier formulae for GL2 [12] using our notations
in order to compare them directly with the results given by the operator Sb. We
include short proofs of S. Zhang’s results.

6.1 S. Zhang’s Local Gross–Zagier Formula

The local Gross–Zagier formula compares the Whittaker products of local newforms
with a local linking number belonging to a very special function � [12, Chap. 4.1],

� D � � 1R� ;

where R� is the unit group of a carefully chosen order R in D. Almost everywhere,
especially under Hypothesis 5.2, R� D GL2.oF/ and the function � is well defined.
The specially chosen local linking number then is

< QTb�; � >x;

where the geometric Hecke operator QTb is defined as follows [12, 4.1.22 et sqq.].
Let

H.b/ WD fg 2 M2.oF/ j v.det g/ D v.b/g:
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Then

QTb�.g/ WD
Z

H.b/
�.hg/ dh:

This operator is well defined on � D � � 1GL2.oF/, but not generally on S.�;G/. In
our construction of the universal operator Sb we followed the idea that QTb reflects
summation over translates by coset representatives, as

H.b/ D
[

�

y1 0
0 y3

��

1 y2
0 1

�

GL2.oF/;

where the union is over representatives .y1; y3/ 2 oF � oF with v.y1y3/ D v.b/ and
y2 2 }�v.y1/noF.

Lemma 6.1 ([12], Lemma 4.2.2). Let K=F be a field extension and assume
Hypothesis 5.2. Let � D � � 1GL2.oF/. Then

< QTb�; � >x D vol.GL2.oF//
2 volT.T/1N.x/1 1�x

x .oF\N/.b/1.1�x/.oF\N/.b/:

Lemma 6.2 ([12], Lemma 4.2.3). Let K=F be split, let � D .�1; �
�1
1 / be an

unramified character, and let � D � � 1GL2.oF/. In case �21 6D 1,

< QTb�; � >x D �1.b.1 � x/�1�/ � ��1
1 .b.1 � x/�1�/

�1.�/ � ��1
1 .�/

vol.GL2.oF//
2 vol�.o�

F /

� 1 1�x
x oF\.1�x/oF

.b/1F�.x/
�

v.b/C v. x

1 � x
/C 1

�

:

In case �21 D 1,

< QTb�; � >x D �1.b.1 � x// vol.GL2.oF//
2 vol�.o�

F /1 1�x
x oF\.1�x/oF

.b/

� 1F�.x/
�

v.b/ � v.1 � x/C 1��v.b/C v. x

1 � x
/C 1�:

For the proofs of Lemmas 6.1 and 6.2 we follow a hint by Uwe Weselmann. Write

�.x/ D
X

�2T.F/=T.oF/

�.�/1� GL2.oF/.x/:

For the Hecke operator we find

QTb1� GL2.oF/.x/ D vol.GL2.oF//1�b�1H.b/.x/;
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as b�1H.b/ D fh 2 GL2.F/ j h�1 2 H.b/g. As the Hecke operator is invariant
under right translations, QTb�.xy/ D QTb�.x/ for y 2 GL2.oF/, we get

< QTb�; � >x D vol.GL2.oF//
2
X

�

�.�/

Z

T
1�b�1H.b/.t

�1	.x/t/ dt: (16)

This formula is evaluated in the different cases for K=F.

Proof of Lemma 6.1. Let K D F.
p

A/, where v.A/ D 0. Choose a trace zero
	.x/ D pA C �.	1 C 	2

p
A/, where N.	1 C 	2

p
A/ D x. The conditions for the

integrands of (16) not to vanish are

��1b
p

A 2 oK

��1bNt�1t.	1 C 	2
p

A/ 2 oK

det.t�1	.x/t/ D A.x � 1/ 2 b�1 N.�/o�
F :

They are equivalent to jN.�/j D jb.1 � x/j and jbj � minfj 1�x
x j; j1 � xjg. There

is at most one coset � 2 T.F/=T.oF/ satisfying this, and this coset exists only if
b 2 .1 � x/N. Thus,

< QTb�; � >x D vol.GL2.oF//
2 volT.T/

� �1N n.1C}/.x/1oF\N.b/C 11C}.x/1.1�x/.oF\N/.b/
�

;

which equals the claimed result. ut

Proof of Lemma 6.2. Choose 	.x/ D
��1 x
�1 1

�

of trace zero, and set � D .�1; �2/ 2
K�=o�

K as well as t D .a; 1/ 2 T . The conditions for an integrand of (16) not to
vanish are

.���1
1 b; ��1

2 b/ 2 oK ;

.���1
1 a�1bx; ��1

2 ab/ 2 oK ;

det.t�1	.x/t/ D x � 1 2 N.�/b�1o�
K :

So only if v.�2/ D �v.�1/C v.b/C v.1� x/ satisfies v.1� x/ � v.�2/ � v.b/, the
integral does not vanish. Then the scope of integration is given by �v.b/C v.�2/ �
v.a/ � v.�2/C v.x/ � v.1 � x/ and the integral equals

vol�.o�
F /
�

v.b/C v.x/ � v.1 � x/C 1�1oF\}v.1�x/�v.x/ .b/:

Evaluating �.�/ we get �.�/ D �1.b.1 � x//��2
1 .�2/, as � is unramified. Summing

up the terms of (16) yields the lemma. ut
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The other constituents of the local Gross–Zagier formulae are the Whittaker
products of newforms for both the theta series ….�/ and the Eisenstein series
….1; !/ at s D 1

2
. By Hypothesis 5.2, the theta series equals ….�1; ��1

1 / if
K=F splits, and it equals ….1; !/ if K=F is a field extension. Thus, all occurring
representations are principal series and the newforms read in the Kirillov model are
given by (8). In case of a field extension we get

W�;new.a/ D WE;new.a/ D vol.oF/ vol�.o�
F / � jaj

1
2 1oF\N.a/ :

In case K=F splits we get

W�;new.a/ D vol.oF/ vol�.o�
F / � jaj

1
2 1oF .a/

(

�1.a�/���1
1 .a�/

�1.�/���1
1 .�/

; if �21 6D 1
�1.a/.v.a/C 1/; if �21 D 1

;

while

WE;new.a/ D vol.oF/ vol�.o�
F / � jaj

1
2 1oF .a/.v.a/C 1/ :

Summing up, we get the following lemma. Recall 
 D x
x�1 and � D 1 � 
 .

Lemma 6.3 ([12], Lemma 3.4.1). Assume Hypothesis 5.2. Then the Whittaker
products for the newforms of theta series and Eisenstein series have the following
form up to the factor vol.oF/

2 vol�.o�
F /
2. If K=F is a field extension, then

W�;new.b�/WE;new.b
/ D j
�j 12 jbj1oF .b
/1oF .b�/

D j
�j 12 jbj1 1�x
x .oF\N/.b/1.1�x/.oF\N/.b/:

If K=F splits and � is quadratic, then

W�;new.b�/WE;new.b
/

D j
�j 12 jbj1oF .b
/1oF .b�/�1.b�/ .v.b
/C 1/ .v.b�/C 1/
D j
�j 12 jbj1 1�x

x oF\.1�x/oF
.b/�1.b.1 � x//

�

v.b/C v. x

1 � x
/C 1� �

��v.b/ � v.1 � x/C 1�:

If K=F splits and � is not quadratic, then

W�;new.b�/WE;new.b
/

D j
�j 12 jbj1oF .b
/1oF .b�/ .v.b
/C 1/
�1.b��/ � ��1

1 .b��/

�1.�/ � ��1
1 .�/
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D j
�j 12 jbj1 1�x
x oF\.1�x/oF

.b/
�

v.b/C v. x

1 � x
/C 1� �

��1.b.1 � x/�1�/ � ��1
1 .b.1 � x/�1�/

�1.�/ � ��1
1 .�/

:

Comparing Lemma 6.1, resp., 6.2 with Lemma 6.3 we get S. Zhang’s local Gross–
Zagier formula:

Theorem 6.4 ([12], Lemma 4.3.1). Assume Hypothesis 5.2. Let W�;new, resp.,
WE;new be the newform for the theta series, resp., Eisenstein series. Let � D
� � 1GL2.oF/. Then up to a factor of volumes,

W�;new.b�/WE;new.b
/ D j
�j 12 jbj < QTb�; � >xD 


�1

:

6.2 Reformulation of Local Gross–Zagier

We re-prove S. Zhang’s local Gross–Zagier formula in terms of Sb:

Theorem 6.5. Assume Hypothesis 5.2 and assume �21 D 1 in case K=F splits. Let
W�;new, resp., WE;new be the newform for the theta series, resp., Eisenstein series. Let
� D � � 1GL2.oF/. Then up to a factor of volumes,

W�;new.b�/WE;new.b
/ D j
�j 12 jbjSb < �; � >x C O.v.b// ;

where in case K=F a field extension the term of O.v.b// is actually zero, while in
case K=F split the term of O.v.b// can be given precisely by collecting terms in the
proof of Example 4.4.

Proof of Theorem 6.5. Compare the Whittaker products for newforms given in
Lemma 6.3 with the action of the operator Sb on the local linking number belonging
to �, given by Lemma 6.6, resp., 6.7 below. ut
Lemma 6.6. Let K=F be a field extension. Assume Hypothesis 5.2. Let � D � �
1GL2.oF/. Then up the factor volT.T/ vol�.o�

F / vol.oF/,

Sb < �; � >x D 1N.x/1 1�x
x .oF\N/.b/1.1�x/.oF\N/.b/:

Proof of Lemma 6.6. The translated local linking number is that of Example 4.2.
We compute the action of Sb given by Proposition 5.3. If x 2 N n.1C }/, then up
to the factor volT.T/ vol�.o�

F / vol.oF/,

Sb < �; � >x D 1

2

�

!.b.1 � x//v.b/ C !.b.1 � x//v.b/C1
� D 1N.b/:
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If x 2 1C }, then again up to the factor of volumes

Sb < �; � >x D 1

2
1}v.1�x/ .b/!.b.1 � x//v.b/�v.1�x/ .1C !.b.1 � x///

D 1}v.1�x/\.1�x/N.b/:

ut
In case K=F we restrict ourselves to the case �21 D 1.

Lemma 6.7. Let K=F be split and assume Hypothesis 5.2 as well as �21 D 1. Let
� D � � 1GL2.oF/. Then up the factor vol�.o�

F / vol.oF/
2,

Sb < �; � >x D �1.b.1 � x//�
h

1F�n.1C}/.x/
�

2v.b/2 C 2.jv.x/j C 1/v.b/C .1C q�1/.jv.x/j C 1/
�

C11C}.x/1}v.1�x/ .b/
�

2
�

v.b/ � v.1 � x/C 1��v.b/ � v.1 � x/
�C 1

�i

:

Proof of Lemma 6.7. The operator Sb is given by Proposition 5.4. The translated
local linking number is given by Example 4.4. As �1 is quadratic, Sb D 1

2
SC

b . For
x 2 1C } we compute

Sb < �; � >x

D �1.b.1 � x//1}v.1�x/ .b/

0

@1C
v.b/�v.1�x/�1

X

iD0
4.v.b/ � i � v.1 � x//

1

A

D �1.b.1 � x//1}v.1�x/ .b/
�

2.v.b/ � v.1 � x/C 1/.v.b/ � v.1 � x//C 1
�

;

while for x 2 F�n.1C }/,

Sb < �; � >x

D �1.b.1 � x//

2

4.jv.x/j C 1/.1C q�1/C
v.b/�1
X

iD0

�

4.v.b/ � i/C 2jv.x/j�
3

5

D �1.b.1 � x//
�

2v.b/2 C .1C jv.x/j/.2v.b/C 1C q�1/
�

:

ut
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p-Adic q-Expansion Principles on Unitary
Shimura Varieties

Ana Caraiani, Ellen Eischen, Jessica Fintzen, Elena Mantovan, and Ila Varma

Abstract We formulate and prove certain vanishing theorems for p-adic auto-
morphic forms on unitary groups of arbitrary signature. The p-adic q-expansion
principle for p-adic modular forms on the Igusa tower says that if the coefficients
of (sufficiently many of) the q-expansions of a p-adic modular form f are zero, then
f vanishes everywhere on the Igusa tower. There is no p-adic q-expansion principle
for unitary groups of arbitrary signature in the literature. By replacing q-expansions
with Serre–Tate expansions (expansions in terms of Serre–Tate deformation coor-
dinates) and replacing modular forms with automorphic forms on unitary groups
of arbitrary signature, we prove an analogue of the p-adic q-expansion principle.
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More precisely, we show that if the coefficients of (sufficiently many of) the Serre–
Tate expansions of a p-adic automorphic form f on the Igusa tower (over a unitary
Shimura variety) are zero, then f vanishes identically on the Igusa tower.

This paper also contains a substantial expository component. In particular, the
expository component serves as a complement to Hida’s extensive work on p-adic
automorphic forms.

1 Introduction

The purpose of this paper is twofold: to provide an expository guide to the theory
of p-adic automorphic forms on unitary groups and to formulate and prove certain
vanishing theorems for these p-adic automorphic forms, which are analogous to the
p-adic q-expansion principle for modular forms.

In the case of modular forms, which are automorphic forms for GL2=Q, the
q-expansion principle is important for constructing families of p-adic modular forms
and for explicitly computing the Hecke operators acting on (p-adic) modular forms.
In turn, the algebraic q-expansion principle relies on the geometric interpretation of
(p-adic) modular forms and on the underlying geometry of the moduli spaces they
live on.

Automorphic forms for GLn, when n > 2, do not have a natural interpretation
in terms of algebraic geometry, because the locally symmetric spaces of GLn do
not have the structure of algebraic varieties. The locally symmetric spaces for
unitary groups, however, do have the structure of Shimura varieties, and their
cohomology realizes systems of Hecke eigenvalues coming from GLn (either
directly since unitary groups are outer forms of GLn or through congruences—via
p-adic interpolation). This is why unitary groups have been key in trying to extend
results in the Langlands program from GL2 to GLn in recent years [13, 29, 32]. This
is also why unitary groups provide a natural context in which to define and study
p-adic automorphic forms geometrically.

The first part of our paper discusses unitary Shimura varieties, their moduli
interpretation, and the geometry of their integral models. This leads to the geometric
definition of p-adic automorphic forms on unitary groups. This is a vast area of
research and many different aspects could be highlighted, but we focus on providing
an expository account of H. Hida’s extensive work in this area, including [14, 15].
In the second part of our paper, we formulate and prove certain analogues of the
q-expansion principle in this context. We expect that these vanishing theorems will
play a key role in constructing families of p-adic automorphic forms on unitary
groups of arbitrary signature. We discuss these types of theorems in more depth
below.
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1.1 Vanishing Theorems

1.1.1 q-Expansion Principles for Modular (And Hilbert Modular) Forms

We start with some overview and motivation. We then review the different incar-
nations of the q-expansion principle for modular forms. (Note that q-expansion
principles—and the Serre–Tate expansion principle discussed later in this paper—
are instances of the principle of analytic continuation, which says that an analytic
function on a connected domain is completely determined by its restriction to any
non-empty open subset and, in particular, is determined by its Taylor expansion
around any point.)

Let H D fz 2 CjIm z > 0g be the complex upper half plane. The upper half
plane can be identified with the symmetric space for the group SL2=Q:

H ' SL2.R/=SO2.R/

and it has a natural action of SL2.Z/ by Möbius transformations, which is equivari-
ant for this identification. Given a congruence subgroup of SL2.Z/, such as

�1.N/ WD


g 2 SL2.Z/jg �
�

1 
0 1

�

.mod N/

�

;

we can form the associated locally symmetric space

Y1.N/ WD H=�1.N/:

This construction generalizes from SL2 to any reductive group over Q, such
as GLn or a unitary group. Moreover, the Betti cohomology of the associated
locally symmetric spaces (thought of simply as real manifolds) can be related to
automorphic representations of the reductive group.

In the case of SL2, something special happens: Y1.N/ is not merely a real
manifold, but it has a natural complex structure, inherited from the complex
structure on H. A modular form of weight k and level N is a holomorphic
function on H satisfying certain symmetries under the action of �1.N/ by Möbius
transformations:

f

�

azC b

czC d

�

D .czC d/kf .z/

and also satisfying a growth condition. Since

�

1 1

0 1

�

2 �1.N/, we have

f .zC 1/ D f .z/;
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which means that f has a Fourier expansion, which ends up looking like

f .z/ D
1
X

nD0
anqn; where q D e2� iz:

We can think of the q-expansion as the Taylor expansion of f around the missing
point z D i1 of Y1.N/. The analytic q-expansion principle says that the Fourier
expansion uniquely determines the modular form f .

There is also an algebraic q-expansion principle, which comes from the fact
that modular forms have an interpretation in terms of algebraic geometry. Again,
this is something special for SL2 (and other groups that admit Shimura varieties):
the Riemann surface Y1.N/ has a natural moduli interpretation (parametrizing
elliptic curves) and therefore comes from an algebraic curve defined over Q. The
symmetries that the holomorphic function f is required to satisfy make f into a
section of a line bundle !k on this curve Y1.N/. This curve is not projective: it will
miss a finite number of cusps, one of which corresponds to the point i1 on the
compactification of H=�1.N/ as a Riemann surface. If we call this cusp 1, then
the coordinate q in the Fourier expansion of f can be identified with a canonical
coordinate in a formal neighborhood of 1. The algebraic q-expansion of f can
be identified with the localization of f at the cusp 1. (The line bundle !k is also
canonically trivialized.) The algebraic q-expansion principle says that a modular
form of weight k is uniquely determined by its q-expansion. This principle follows
from the fact that a section of a line bundle which vanishes in a formal neighborhood
of a point on an irreducible curve must vanish everywhere on that curve.

The p-adic interpolation of modular forms is crucial for understanding their
connection with Galois representations: for example, constructing Galois represen-
tations in weight 1 by congruences and proving modularity via the Taylor–Wiles
patching method. This leads to the natural question of how to formalize the notion
of p-adic interpolation and how to define a p-adic modular form.

One option is geometric: it only works for groups that have Shimura varieties
and uses the geometry of their integral models. In the case of modular forms, this
approach goes back to Katz [19, 20]: p-adic modular forms can be thought of as
sections of the trivial line bundle over the Igusa tower, which can be constructed
over the ordinary locus. The Igusa tower has the property that it simultaneously
trivializes all the line bundles !k, corresponding to different weight modular
forms k. In a very rough sense, this construction can be thought of as a p-adic
analogue of the upper half plane H. The advantage of this approach is that the
underlying geometry provides more tools for studying p-adic modular forms (for
example, the Hasse invariant is such a tool) and answering questions such as when
a p-adic modular form is classical.

The p-adic q-expansion principle says that a p-adic modular form is uniquely
determined by its q-expansion. This principle relies on the irreducibility of the
Igusa tower. This principle has been extremely important for further studying p-adic
modular forms. Applications to the construction of p-adic L-functions are mentioned
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in Sect. 1.2. The p-adic q-expansion principle is also a crucial ingredient in the work
of Buzzard and Taylor on the icosahedral Artin conjecture [5] and in generalizations
of this type of argument to Hilbert modular varieties. A key aspect of this application
is the fact that, for GL2, q-expansions of Hecke eigenforms are closely related to
Hecke eigenvalues and, therefore, to Galois representations. This is a connection
that is not yet understood for other groups, such as unitary groups.

1.1.2 Principles for Other Groups, Including Unitary Groups

In the case of unitary groups or symplectic groups, which admit Shimura varieties,
the story described above largely generalizes. Their locally symmetric spaces have
an algebraic structure, admit a moduli interpretation, and have integral models.
We describe these models in Sect. 2. One can define automorphic forms in a way
similar to how one defines modular forms, and they have an algebro-geometric
interpretation as sections of certain vector bundles. We give more details on this
in Sect. 3. It is also possible to talk about p-adic automorphic forms by constructing
a (higher-dimensional) Igusa tower over the ordinary locus. These notions are made
precise in Sect. 4. However, it is not clear what the best analogue of the p-adic
q-expansion principle would be, in this level of generality.

There are q-expansion principles, or partial results in this direction, in a number
of cases. For Siegel modular forms, i.e., automorphic forms on symplectic groups,
there is an algebraic q-expansion principle in [6]. By [14, Corollary 8.17], there
is a p-adic q-expansion principle for Siegel modular forms. By [23, Proposi-
tion 7.1.2.14], there is an algebraic q-expansion principle for scalar-valued auto-
morphic forms on unitary groups of signature .a; a/ for any positive integer a. As
mentioned in the last paragraph of [14], there is a p-adic q-expansion principle for
automorphic forms on unitary groups of signature .n; n/. The proofs of all of these
q-expansion principles rely on the existence of cusps, whose formal neighborhoods
have canonical coordinates and on the irreducibility of the underlying moduli space
(i.e., a Shimura variety or Igusa tower).

For automorphic forms on unitary groups of signature .a; b/ with a ¤ b,
the underlying geometry of the associated moduli spaces prevents the existence
of a q-expansion principle, because these spaces have no cusps (whose formal
neighborhoods have canonical coordinates). In the case of automorphic forms on
unitary groups of signature .a; b/, when the corresponding Shimura varieties are
non-compact, the usual q-expansion is replaced by a Fourier–Jacobi expansion, a
generalization of the Fourier expansion, in which the coefficients are themselves
functions formed from theta-functions. Nevertheless, there is an algebraic Fourier–
Jacobi principle for unitary groups [23, Proposition 7.1.2.14]. (This Fourier–Jacobi
principle gives the algebraic q-expansion principle for unitary groups of signature
.a; a/.)

While it is natural to ask for a “p-adic Fourier–Jacobi expansion principle”
for unitary groups of arbitrary signature, a slightly different—but analogous—
principle, a “Serre–Tate expansion principle” follows more naturally from the
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existing literature. The main result of this paper is the formulation and proof of
the Serre–Tate expansion principle (in Theorem 5.14). Algebraic q-expansions and
algebraic Fourier–Jacobi expansions are expansions of a modular (or automorphic)
form at the boundary of the Shimura variety. On the other hand, a Serre–Tate
expansion is the expansion of a modular form at an ordinary CM point. There is
a canonical choice of coordinates for the local ring at the ordinary point; these
are called Serre–Tate deformation coordinates. Roughly speaking our main result
(stated precisely in Theorem 5.14) says that given suitable conditions on the prime p
(namely, when p splits completely in the reflex field), if f is an automorphic form on
a unitary group and for each irreducible component C of the associated Igusa tower,
a Serre–Tate expansion of f at some CM point in C is 0, then f vanishes identically
on the Igusa tower. The proof relies on Hida’s description of the geometry of the
Igusa tower. The key point is, again, the irreducibility of the Igusa tower.

1.2 Anticipated Applications

As noted above, the use of q-expansion principles in the construction of p-adic
families of modular forms is well-established. In [20], Katz used the q-expansion
principle for Hilbert modular forms to study congruences between values of
different Hilbert modular forms, which led to the construction of certain p-adic
families of Hilbert modular forms. Similarly, in [9], the second author used the
q-expansion principle to construct p-adic families of automorphic forms on unitary
groups of signature .a; a/ for all positive integers a. Katz’s p-adic families of Hilbert
modular forms are the main ingredient in his construction of p-adic L-functions for
CM fields [20]. Analogously, the second author constructed the p-adic families of
automorphic forms in [9] to complete a step in the construction of p-adic L-functions
(for unitary groups) proposed in [12].

We plan to use the Serre–Tate expansion principle in Theorem 5.14 analogously
to how the q-expansion principle is used in contexts in which q-expansions
exist. More precisely, in a joint paper in preparation, we are using the Serre–
Tate expansion principle introduced in this paper to construct p-adic families of
automorphic forms on unitary groups of signature .a; b/ with a ¤ b. As explained
in [10], the lack of such a principle in the literature was an obstacle faced by the
second author in her effort to extend her results on p-adic families of automorphic
forms to unitary groups of arbitrary signature. This paper eliminates that obstacle
and fills in a hole in the literature. We also are using the expository portion of this
paper as part of the foundation for our construction of these families.

One advantage of expansions around CM points over q-expansions is that they
can be used for compact as well as non-compact Shimura varieties. The Serre–Tate
expansion has been used before by Hida (for example, to define his idempotent
in [14]) and also appears in work of Brooks [3] (for Shimura curves) and Burungale
and Hida [4] (for Hilbert modular varieties) with applications to special values of
p-adic L-functions.
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In a more speculative direction, we note the potential for applications to
homotopy theory. Certain p-adic families of modular forms, studied in terms of their
q-expansions, were used to defined an invariant (the Witten genus) in homotopy
theory [1, 16, 17]. The Witten genus is a p-adic modular form valued invariant
that occurs in the theory of topological modular forms. Recently, there have been
attempts to construct an analogue of the Witten genus in the theory of topological
automorphic forms, where there is conjecturally an invariant taking values in
the space of p-adic automorphic forms on unitary groups of signature .1; n/ [2].
Vanishing theorems analogous to the q-expansion principle will likely play an
analogously important role in this context.

1.3 Structure of the Paper

We now provide a brief overview of the paper. Section 2 introduces Shimura
varieties for unitary groups and the associated moduli problem. We work with
these Shimura varieties throughout most of the paper. Section 3 reviews the
theory of classical automorphic forms on unitary groups, from several perspectives.
Section refpadic-section introduces Hida’s geometric theory of p-adic automorphic
forms (i.e., over the ordinary locus). This section includes details about the Igusa
tower, as well as the space of p-adic automorphic forms (defined as global sections
of the structure sheaf over the Igusa tower). Section 5 covers the main results
of this paper, namely the Serre–Tate expansion principle, an analogue of the
q-expansion principle, for p-adic automorphic forms on unitary groups of arbitrary
signature. We are using this result in a paper in preparation that constructs families
of p-adic automorphic forms on unitary groups of arbitrary signature. Finally,
Sect. 6 discusses how Serre–Tate expansions behave with respect to pullbacks, as
an example of the kind of application we have in mind to computational aspects of
p-adic automorphic forms on unitary groups.

1.4 Notation and Conventions

We now establish some notation and conventions that we will use throughout the
paper.

First, we establish some notation for fields. Fix a totally real number field KC
and an imaginary quadratic extension F of Q. Define K to be the composition of KC
and F. Let c denote complex conjugation on K, i.e., the generator of Gal.K=KC/.
We denote by † the set of complex embeddings of KC, and we denote by †K the
set of complex embeddings of K. We typically use � to denote an element of†, and
for each � 2 †, we fix an extension Q� of � to K, i.e., Q� is an element of †K . A reflex
field will be denoted by E (with subscripts to denote different reflex fields when
there is more than one reflex field appearing in the same context). Given a local or
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global field L, we denote the ring of integers in L by OL. We write A to denote the
adeles over Q, we write A1 to denote the adeles away from the archimedean places,
and we write A1;p to denote the adeles away from the archimedean places and p.

Fix a rational prime p that splits as p D w � wc in the imaginary quadratic
extension F=Q. We make this assumption in order to ensure that our unitary group at
p is a product of (restrictions of scalars of) general linear groups. Instead, we could
assume that every place of KC above p splits in the quadratic extension K=KC and
choose a CM type for K. In addition, we restrict our attention to the case when the
prime p is unramified in K. This ensures that the Shimura varieties we consider have
smooth integral models over OE;.p/ (where OE is the ring of integers in the reflex
field E of these Shimura varieties) when no level structure at p is imposed.

To help the reader keep track of each setting, we adhere to the following con-
ventions for fonts used to denote schemes, integral models, and formal completions
throughout the paper. Schemes over Q are in normal font, their integral models are
in mathcal font, and their formal completions are in mathfrak font.

2 Unitary Shimura Varieties

In this section, we introduce unitary Shimura varieties. In Sect. 2.1, we introduce
PEL data and conventions for unitary groups, with which we work throughout the
paper. Section 2.2 introduces the PEL moduli problem, and Sect. 2.3 specializes to
the setting over C. In our exposition, we follow [22, 23].

2.1 PEL Data and Unitary Groups

The following definition of the PEL datum follows [23, Sect. 1.2], and it is an
integral version of the datum in [22, Sect. 4].

By a PEL datum, we mean a tuple .K; c;L; h; i; h/ consisting of

• the CM field K equipped with the involution c introduced in Sect. 1.4,
• an OK-lattice L, i.e., a finitely generated free Z-module with an action of OK ,
• a non-degenerate Hermitian pairing h�; �i W L � L ! Z satisfying hk � v1; v2i D
hv1; kc � v2i for all v1; v2 2 L and k 2 Ok,

• an R-algebra endomorphism

h W C! EndOK˝ZR.L˝Z R/

such that .v1; v2/ 7! hv1; h.i/ � v2i is symmetric and positive definite and such
that hh.z/v1; v2i D hv1; h.z/v2i.
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Furthermore, for considering the moduli problem over a p-adic ring and for defining
p-adic automorphic forms, we require

• Lp WD L ˝Z Zp is self-dual under the alternating Hermitian pairing h�; �ip on
L˝Z Qp.

To the PEL datum .K; c;L; h; i; h/, we associate algebraic groups GU D
GU .L; h; i/, U D U .L; h; i/, and SU D SU .L; h; i/ defined over Z, whose R-points
(for any Z-algebra R) are given by

GU.R/ WD f.g; �/ 2 EndOK˝ZR.L˝Z R/ � R� j hg � v1; g � v2i D �hv1; v2ig
U.R/ WD fg 2 EndOK˝ZR.L˝Z R/ j hg � v1; g � v2i D hv1; v2ig

SU.R/ WD fg 2 U.R/ j det g D 1g :

Note that � is called a similitude factor. In the following, for R D Q or R, we also
write

GUC.R/ WD f.g; �/ 2 GU.R/ j � > 0g :

Moreover, given a PEL datum .K; c;L; h; i; h/, we define the R-vector space with
an action of K

V WD L˝Z R:

Then hC D h�RC gives rise to a decomposition V˝RC D V1˚V2 (where h.z/�1
acts by z on V1 and by Nz on V2). We have decompositions V1 D ˚�2†K V1;� and
V2 D ˚�2†K V2;� induced from the decomposition of K ˝Q C D ˚�2†KC where
only the � th C acts nontrivially on V1;�˚V2;� , acting via the standard action on V1;� .
As defined in [23, Definition 1.2.5.2], the signature of .V; h; i; h/ is the tuple of pairs
.aC� ; a�� /�2†K

such that aC� D dimC V1;� and a�� D dimC V2;� for all � 2 †K .
Let

n D aC� C a�� :

Note that n is independent of � and furthermore a˙� D a��c .
In order to define automorphic forms of nonscalar weight in Sects. 3 and 4, we

define the algebraic group over Z

H WD
Y

�2†
GLaC Q�

�GLa� Q�
;

where Q� 2 †K is a previously fixed lift of � 2 †. Note that HC can be identified
with the Levi subgroup of U.C/ that preserves the decomposition VC D V1 ˚ V2.
This identification also works over Zp, as we will see in Sect. 4.1.
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Moreover, using the decomposition C˝C D C˚C of R-modules (where z 2 C

acts on the first summand by z and on the second summand by z) we define  W
C! VC by z 7! hC.z; 1/. (Compare [27, Sect. 12].) Then the reflex field is defined
to be the field of definition of the GU.C/-conjugacy class of  (or equivalently as
the conjugacy class of V1). Henceforth, we denote the reflex field by E (note that
E � C).

2.2 PEL Moduli Problem

The goal of this section is to introduce PEL-type unitary Shimura varieties from
a moduli-theoretic perspective. We will restrict our attention to cases where these
Shimura varieties have no level structure and good reduction at p. For more details,
see [22, Sect. 5] or [23, Sect. 1.4].

We now define a moduli problem for abelian varieties equipped with extra
structures (more precisely, polarizations, endomorphisms, and level structure) and
which will be representable by unitary Shimura varieties that have integral models.
For each open compact subgroup U � GU.A1/, consider the moduli problem

.S; s/ 7! f.A; i; �; ˛/g

which assigns to every connected, locally noetherian scheme S over E together with
a geometric point s of S the set of tuples .A; i; �; ˛/, where

• A is an abelian variety over S of dimension g WD ŒKC W Q� � n,
• i W K ,! End0.A/ WD .End.A//˝Z Q is an embedding of Q-algebras,
• � W A ! A_ (where A_ denotes the dual abelian variety) is a polarization

satisfying � ı i.kc/ D i.k/_ ı � for all k 2 K,
• ˛ is a �1.S; s/-invariant U -orbit of K ˝Q A1-equivariant isomorphisms

L˝Z A1 �! Vf As;

which takes the Hermitian pairing h�; �i on L to an .A1/�-multiple of the �-Weil
pairing on the rational (adelic) Tate module Vf As.

Note that Lie A is a locally free OS-module of rank g and has an induced action of
K via i. The tuple .A; i; �; ˛/ must satisfy Kottwitz’s determinant condition:

det.KjV1/ D detOS.KjLie A/:

Here, by det.KjV1/ we denote the element in EŒK_� D Sym.K_/˝Q E, for K_ the
Q-vector space dual to K, defined by k 7! detC.kjV1/, for all k 2 K. By definition
of the reflex field, det.KjV1/ 2 EŒK_� ,! CŒK_�. Similarly, detOS.KjLie A/ denotes
the element in OSŒK_� D Sym.K_/˝Q OS.S/ defined by k 7! detOS.kjLie A/, for
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all k 2 K. The determinant condition is an equality of elements in OSŒK_�, after
taking the image of det.KjV1/ under the structure homomorphism of E to OS.S/.

Two tuples .A; i; �; ˛/ and .A0; i0; �0; ˛0/ are equivalent if there exists an isogeny
A ! A0 taking i to i0, � to a rational multiple of �0, and ˛ to ˛0. We note that the
definition is independent of the choice of geometric point s of S. We can extend
the definition to non-connected schemes by choosing a geometric point for each
connected component.

If the compact open subgroup U is neat (in particular, if it is sufficiently small)
as defined in [23, Definition 1.4.1.8], then this moduli problem is representable by
a smooth, quasi-projective scheme MU=E.

From now on, assume that U D UpUp is neat and that Up � GU
�

Qp
�

is
hyperspecial. We can construct an integral model of MU by considering an integral
version of the above moduli problem. To a pair .S; s/, where S is now a scheme over
OE;.p/, we assign the set of tuples .A; i; �; ˛p/, where

• A is an abelian variety over S of dimension g,
• i W OK;.p/ ,! .End.A//˝Z Z.p/ is an embedding of Z.p/-algebras
• � W A ! A_ is a prime-to-p polarization satisfying � ı i.kc/ D i.k/_ ı � for all

k 2 OK ,
• ˛p is a �1.S; s/-invariant Up-orbit of K ˝Q A1;p-equivariant isomorphisms

L˝Z A1;p �! Vp
f As;

which takes the Hermitian pairing h�; �i on L to an .A1;p/�-multiple of the �-Weil
pairing on Vp

f As (the Tate module away from p).

In addition, the tuple .A; i; �; ˛/ must satisfy Kottwitz’s determinant condition:

det.OK jV1/ D detOS.OK jLieA/:

Here, the determinant condition is an equality of elements in OSŒO_
K �, after taking

the image of det.OK jV1/ 2 .OE;.p//ŒO_
K � under the structure homomorphism of

OE;.p/ to OS, for O_
K the dual Z-module of OK .

Two tuples .A; i; �; ˛/ and .A0; i0; �0; ˛0/ are equivalent if there exists a prime-to-
p isogeny A ! A0 taking i to i0, � to a prime-to-p rational multiple of �0, and ˛
to ˛0.

This moduli problem is representable by a smooth, quasi-projective scheme MU
over OE;.p/. (See, for example, page 391 of [22] for a discussion of representability
and smoothness. The representability is reduced to the Siegel case, proved in [28],
while the smoothness follows from Grothendieck–Messing deformation theory.) We
have a canonical identification

MU DMU �Spec .OE;.p// Spec E;
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which can be checked directly on the level of moduli problems. As the level
Up varies, the inverse system of Shimura varieties MU has a natural action of
GU.A1;p/. (More precisely, g 2 GU.A1;p/ acts by precomposing the level
structure ˛ with it.) Since our interest is in the p-adic theory, we will fix and suppress
the level U starting from Sect. 4.

2.3 Abelian Varieties and Shimura Varieties over C

In this section, we specialize to working over C. Our goal is to sketch how the set
MU .C/ of complex points of MU is naturally identified with the set of points of a
finite union of locally symmetric complex varieties corresponding to .GU; h/. (For
more details, see [22, Sect. 8].)

We remark that what we show is merely a bijection of sets. Proving that the
Shimura varieties corresponding to .GU; h/ are moduli spaces of abelian varieties
over C would also require matching the complex structures on the two sides.

2.3.1 Abelian Varieties over C

Recall that the C-points of an abelian variety A=C are of the form V.A/=ƒ, where
ƒ is a Z-lattice in a complex vector space V.A/. Any abelian variety over C admits
a polarization; since V.A/=ƒ comes from a complex abelian variety A, it is also
polarizable, i.e., there exists a non-degenerate, positive definite Hermitian form

�C W V.A/ � V.A/! C s.t. �C.ƒ;ƒ/ � Z:

We call each such Hermitian form �C a polarization of V.A/=ƒ. It may be better
to think of a polarization as an alternating form �R W V.A/ � V.A/ ! R satisfying
�R.iu; iv/ D �R.u; v/ for all u; v 2 V.A/ and

�C.u; v/ D �R.u; iv/C i�R.u; v/:

It is enough to characterize a pair .A; �C/, where A is an abelian variety of dimension
g, by considering the following triple:

1. the free Z-module ƒ D H1.A;Z/ of rank 2g
2. the R-algebra homomorphism C ! EndR.ƒ ˝ R/ D EndR.H1.A;R// D

EndR.Lie A/ describing the complex structure on Lie A (so V.A/ WD ƒ ˝ R,
endowed with this complex structure)

3. the alternating form on ƒ D H1.A;Z/ induced by �C denoted by h�; �i after
identifying A.C/ Š Lie A.C/=H1.A;Z/
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2.3.2 Shimura Varieties over C

Recall that, associated with the PEL datum, we have the R-vector space V D L˝ZR,
which is endowed with an action of K and the complex structure defined by h. (Note
that the complex structure depends uniquely on h.i/ 2 EndK˝QR.V/.)

Let h denote the set of elements I 2 EndK˝QR.V/ which satisfy

1. I2 D �1
2. Ic D �I
3. .w; v/ 7! hw; Ivi is a positive or negative definite form on V
4. the K ˝Q C-structures on V defined by I and h.i/ are isomorphic.

In [22, Lemmas 4.1 and 4.2], Kottwitz shows that the set h is equal to GU.R/=Ch,
for Ch the stabilizer of h.i/ in GU.R/, and that it can be identified with a finite union
of copies of the symmetric domain for the identity component of GU.R/.

For U � GU.A1/ a neat open compact subgroup, we define the quotient

XU D GU.Q/n.GU.A1/=U � h/: (1)

We sketch how the set of complex points of MU corresponds to a disjoint union of
finitely many copies of XU .

By definition, the set MU .C/ parametrizes equivalence classes of tuples
.A; i; �; ˛/ where

1. A is an abelian variety over C,
2. i W K ,! End0.A/ is an embedding of Q-algebras,
3. � W A! A_ is a polarization satisfying � ı i.bc/ D i.b/_ ı � for all b 2 K,
4. ˛ is a U -orbit of isomorphisms of skew-Hermitian K-vector spaces (in the

sense of Kottwitz, i.e., preserving the pairing only up to scalar) L ˝Z A1 Š
H1.A;A1/.

In addition, the tuple .A; i; �; ˛/ must satisfy the determinant condition.
Every equivalence class of tuples .A; i; �; ˛/ satisfying the above restrictions

gives rise to an element GU.A1/=U�h as follows. The existence of the equivalence
class of isomorphisms ˛ implies that the skew-Hermitian K-vector spaces LQ WD
L ˝Z Q and H D H1.A;Q/ are isomorphic over any finite place of Q. We
conclude in particular that H1.A;Q/ and LQ have the same dimension over K.
By [22, Lemma 4.2], HR and V D LQ ˝Q R are isomorphic as skew-Hermitian
K-vector spaces if and only if they are isomorphic as K˝Q C-modules. The natural
complex structure on HR Š Lie.A/ gives a decomposition of HC as H1 ˚ H2, and
the determinant condition implies that H1 is isomorphic to V1 as K ˝Q C-modules.
Thus, in order to deduce that HR and V are isomorphic as K ˝Q C-modules it
suffices to prove that V2 and H2 are isomorphic as K ˝Q C-modules. Note that
if we denote by W� the C-subspace where K acts via � , for � W K ,! C a complex
embedding (� 2 †K) and W any K ˝Q C-module, then two K ˝Q C-modules
W;W 0 are isomorphic if and only if dimC W� D dimC W 0

� , for all � 2 †K . Let
� 2 †K . The determinant condition implies that dimC V1;� D dimC H1;� , the
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decompositions VC D V1 ˚ V2 and HC D H1 ˚ H2 imply dimC V� C dimC V�c D
1
2
.dimC V1;� C dimC V2;�c C dimC V1;�c C dimC V2;� / D dimC V1;� C dimC V2;� ;

and dimC H� C dimC H�c D dimC H1;� C dimC H2;� ; and the equality dimK LQ D
dimK H implies dimC V� C dimC V�c D dimC H� C dimC H�c . We deduce that
dimC V2;� D dimC H2;� for all � 2 †K , i.e., that H2 and V2 are also isomorphic
as K ˝Q C-modules. We conclude that the skew-Hermitian K-vector spaces H and
LQ are isomorphic over any place v of Q.

When the Hasse principle holds, this implies the existence of an isomorphism of
skew-Hermitian K-vector spaces between H and LQ. In general, there are

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ker1.Q;GU/ WD ker

0

@H1.Q;GU/!
Y

v place of Q

H1.Qv;GU/

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

isomorphism classes L.i/ of skew-Hermitian K-vector spaces isomorphic to LQ at
every place of Q (and let L.1/ D LQ).

Let 1 � i � j ker1.Q;GU/j. We define GU.i/ to be the unitary similitude group
over Q defined by L.i/ (so, in particular, GU.1/ D GU). Choose local isomorphisms
LQv Š L.i/Qv for all places v of Q, and let GU.i/.Q/ act on GU.A1/=U � h via the

induced isomorphisms GU.i/
Qv
Š GUQv . We define X.i/U D GU.i/.Q/n.GU.A1/=

U �h/, and we define M.i/
U .C/ to be the subset of MU .C/ parameterizing tuples such

that H is isomorphic to L.i/. Thus, MU .C/ D `

i M.i/
U .C/. We show that M.i/

U .C/
naturally identifies with X.i/U .

Let i, where 1 � i � j ker1.Q;GU/j, be such that H and L.i/ are isomorphic skew-

Hermitian K-vector spaces, and choose an automorphism ˛Q W H �! L.i/. Then, the
automorphism .˛Q ˝ IA1/ ı ˛ of L.i/ ˝Q A1 defines an element of GU.A1/, but
since ˛ is only well-defined up to its orbit in U , such an isomorphism determines
an element of GU.A1/=U . Under ˛Q, the complex structure on H1.A;R/ defines a
complex structure on V , which is conjugate to h by an element in GU.R/, i.e., an
element in h.

Therefore, each class of tuples .A; i; �; ˛/ along with a choice of isomorphism
˛Q determines an element of GU.A1/=U � h. Forgetting the isomorphism ˛Q is
equivalent to taking the quotient by the left action of GU.i/.Q/. Thus, to each point
of M.i/

U .C/ we associated a point on X.i/U , and this map is in fact a bijection.
Note that in [22, Sects. 7 and 8] Kottwitz shows that under our assumptions (case

A in loc. cit.) if n is even the Hasse principle holds, and if n is odd the natural map
ker1.Q;Z/! ker1.Q;GU/, for Z the center of GU, is a bijection, and furthermore
that the subvarieties M.i/

U .C/ are all isomorphic to M.1/
U .C/ D XU .

For the later sections, we will denote a connected component of MU .C/
(or equivalently, of XU .C/) as SU .C/. Note that any two connected components
are isomorphic as complex manifolds.
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3 Classical Automorphic Forms

In this section we will first recall the classical definition of automorphic forms on
unitary groups over C following [31], and then describe equivalent viewpoints that
let us generalize to work over base rings other than C.

3.1 Classical Definition of Complex Automorphic Forms
on Unitary Groups

For the moment, suppose aCQ�a�Q� ¤ 0 for all � 2 †. Consider the domain H for
GUC.R/ W

H D
Y

�2†
HaC Q��a� Q�

with HaC Q��a� Q�

D fz 2 Mata� Q��aC Q�
.C/ j 1 � tzcz is positive definiteg:

Note that IsomOK˝ZR.L˝ZR/ ' GLn.OK˝R/ ' GLn.
Q

�2† C/ 'Q�2† GLn.C/.

We use this identification to write g 2 GUC.R/ as
�

ag;� bg;�
cg;� dg;�

�

�2† 2 GUC.R/, where

ag;� 2 GLaC Q�
.C/ and dg;� 2 GLa� Q�

.C/. Then the action of g on H is given by

gz D ..ag;� z� C bg;� /.cg;� z� C dg;� /
�1/�2† for z D .z� /�2† 2

Y

�2†
HaC Q��a� Q�

:

By [31, 12.1], H is the irreducible (Hermitian) symmetric domain for SU.R/. By
the classification of Hermitian symmetric domains and [26, Corollary 5.8], H is
uniquely determined by the adjoint group of a connected component of GU.R/.
Recall from Sect. 2.3.2 that we can identify h with a finite union of copies of the
symmetric domains for the identity component of GU.R/. Hence h can be identified
with a finite (disjoint) union of copies of H.

In order to define the desired transformation properties that automorphic forms
should satisfy, we need to introduce a few more definitions. Using the above
notation, for g 2 GUC.R/ and z D .z� /�2† 2 H the factors of automorphy for
each fQ�; Q� cg � †K above � 2 † are defined by

Q� .g; z/ WD cg;� z� C dg;� and Q�c.g; z/ WD bg;�
tz� C ag;� ;

and the scalar factors of automorphy are

j� .g; z/ WD det.� .g; z// for � 2 †K :
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So far, we have considered the case in which aCQ�a�Q� ¤ 0. Now, suppose
aCQ�a�Q� D 0. In this case, HaC Q��a� Q�

is defined to be the element 0, with the group
acting trivially on it. Following [31, Sect. 3.3], if a�Q� D 0, we define

Q�c.g; z/ D g

Q� .g; z/ D 1
j� .g; z/ D 1;

and if aCQ� D 0, we define

Q� .g; z/ D g

Q�c.g; z/ D 1
j� .g; z/ D det.g/:

Remark 3.1. By [30, Eq. (1.19)], for all � 2 † and g 2 GUC.R/,

det.Q�c.g; z// D det .g/�1 � .g/aC;Q� det.Q� .g; z//:

Define

Mg.z/ WD .Q�c.g; z/; Q� .g; z//�2† 2
Y

�2†
MataC Q��aC Q�

�Mata� Q��a� Q�

If � W H.C/ D Q

�2†
GLaC Q�

.C/�GLa� Q�
.C/! GL.X/ is a rational representation into

a finite-dimensional complex vector space X, f W H ! X a map and g 2 GUC.R/,
then denote by f jj�g W H! X and f j�g W H! X the maps given by

.f jj�g/.z/ WD �.Mg.z//
�1f .gz/

f j�g WD f jj�
�

�.g/�1=2g
�

for all z 2 H. Note that for all g 2 U.R/,

f j�g D f jj�g:

Associated with an OF-lattice LF in L˝ZQ and an integral OF-ideal c, we define
the subgroup

�.LF; c/ WD fg 2 GUC.Q/ j tLFg D tLF and tLF.1 � g/ � ctLFg:

Then a congruence subgroup � of GUC.Q/ is a subgroup of GUC.Q/ that contains
�.LF; c/ as subgroup of finite index for some choice of .LF; c/ as above.
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Definition 3.2. Let � be a congruence subgroup of GUC.Q/, X a finite-
dimensional complex vector space, and � W H.C/ ! GL.X/ a rational
representation. A function f W H ! X is called a (holomorphic) automorphic
form of weight � with respect to � if it satisfies the following properties:

(1) f is holomorphic,
(2) f jj�	 D f for every 	 in � ,
(3) if† consists of only one place � and .aCQ� ; a�Q� / D .1; 1/, then f is holomorphic

at every cusp.

We will call a function f W H ! X that satisfies property (2), but not necessarily
(1) and (3), an automorphic function.

Remark 3.3. Note that if we are not in the case in which both † consists of
only one place � and .aCQ� ; a�Q� / D .1; 1/, then Koecher’s principle implies that
an automorphic form is automatically holomorphic at the boundary. (See [25,
Theorem 2.5] for a very general version.)

Remark 3.4. Sometimes, in the definition of an automorphic form, the second
condition of Definition 3.2 is replaced by f j�	 D f for every 	 in � . The condition
that arises from geometry, though, is f jj�	 D f . Since our main results and proofs
are geometric (and since we want this definition of automorphic forms to agree with
the geometric definitions we give later), we require f jj�	 D f instead of f j�	 D f in
this paper.

3.1.1 Weights of an Automorphic Form

The irreducible algebraic representations of H D Q�2† GLaC Q�
�GLa� Q�

over C are
in one-to-one correspondence with dominant weights of a maximal torus T (over
C). More precisely, let T be the product of the diagonal tori TaC Q�

� Ta� Q�
for � 2 †.

For 1 � i � aCQ�Ca�Q� , let "�i in X.T/ WD HomC.T;Gm/ be the character defined by

T.C/ D
Y

�2†
TaC Q�

.C/ � Ta� Q�
.C/ 3 diag.x�1 ; : : : ; x

�
aC Q�Ca� Q�

/�2† 7! x�i 2 Gm.C/:

These characters form a basis of the free Z-module X.T/, and we choose � D
f˛�i WD "�i � "�iC1g�2†;1�i<aC Q�Ca� Q� ;i¤aC Q�

as a basis for the root system of H. Then
the dominant weights of T with respect to � are X.T/C D f� 2 X.T/ j h�; L̨ i 

08˛ 2 �g, and using the above basis of X.T/ they can be identified as follows:

X.T/C Š f.n�1; : : : ; n�aC Q�Ca� Q�
/�2† 2

Y

�2†
ZaC Q�Ca� Q� W n�i 
 n�iC18i ¤ aCQ�g:

For such a dominant weight �, let �� W HC ! M� denote the irreducible algebraic
representation of the highest weight �. (See, for example, [18, Part II. Chap. 2].) We
call f an automorphic form of weight �, where � 2 X.T/C, if f is an automorphic
form of weight �� .
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Remark 3.5. In view of later generalizations, note that �� can be defined as an alge-
braic (i.e., schematic) representation of the algebraic group H over the integers Z.
More precisely, let T be the maximal split torus of H extending the diagonal torus
over C constructed above and note that HomZ.T;Gm/ D HomC.T;Gm/, i.e., we
can view � 2 X.T/C as a character of T defined over Z. Let B be a Borel subgroup
containing T (corresponding to upper triangular matrices in H) and B� the opposite
Borel, and denote by N and N� the unipotent radicals of B and B�, respectively.
Then � can be viewed as a character of B� acting trivially on N� via the quotient
B� � T , and we define the representation �� of highest weight � by

IndH
B�.��/ D ff W H=N� ! A1 j f .ht/ D �.t/�1f .h/; t 2 Tg;

where A1 is the affine line and on which H acts via

H 3 h W f .x/ 7! ��.h/f .x/ D f .h�1x/;

see [18]. This representation is irreducible of the highest weight � over any field of
characteristic zero.

3.1.2 Unitary Domains and Moduli Problems

We will now reformulate Definition 3.2 in order to generalize it in Sect. 3.2. We
quickly recall the correspondence between quadruples described in Sect. 2.3.2 and
points of H.

Fix a PEL datum .K; c;L; h; i; h/ and a neat open compact subgroup U �
GU.A1/; let MU .C/ denote the complex Shimura variety of level U associated with
the PEL datum discussed in Sect. 2.3.2, and let SU .C/ be a connected component
in M.1/

U .C/. Recall that V D L ˝Z R. We now describe the identification between
elements z 2 �nH and abelian varieties A 2 SU .C/ given by [31, Chap. I]. Shimura
defines for z 2 H an R-linear isomorphism pz W V ! Cg which induces a Riemann
form on Cg:

Ez.pz.x/; pz.y// D hx; yi x; y 2 V:

This implies that Az D Cg=pz.L/ is an abelian variety together with a polarization �z

corresponding to Ez. For k 2 K, define iz.k/ to be the element of EndQ.Az/ induced
by the action of h.k� / acting on V� and let ˛z denote the U -orbit of isomorphisms
V ˝ A1 Š H1.Az;A

1/ induced by pz. Altogether, pz gives rise to the Riemann
form Ez, the following commutative diagram:
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0 L V V L 0

0 Λ Cg A 0, (2)

and Az WD .Az; iz; �z; ˛z/. Shimura [31, Theorem 4.8] (together with [27, Proposi-
tion 4.1]) further proves that

Proposition 3.6. For each z 2 H, Az 2 SU .C/ for some neat open U . Conversely,
if A 2 SU .C/ for some U , then there is a z 2 H such that A is equivalent to Az.
Furthermore Az and Aw for z;w 2 H are equivalent if and only if w D 	z for some
	 2 �U WD U \ GUC.Q/:

3.1.3 Second Definition of Classical Automorphic Functions

For A 2 SU .C/.C/, let # D H1.A;Z/ ˝ C which has a decomposition into #˙
depending on the (induced) action of h.i/ on #. Set

EȦ �
D IsomC.C

a
˙ Q� ; #�̇ / and EA D

M

�2†
.EC

A �
˚ E�

A �
/:

The group GLa
˙ Q�
.C/ acts on EȦ �

by

.g:f /.x/ D f .tgx/ for g 2 GLa
˙ Q�
.C/; f 2 EȦ �

; x 2 Ca
˙ Q� ;

which induces a (diagonal) action of H.C/ on EA.
For z 2 H, the map pz induces a choice of basis on H1.Az;Z/ via the identification

with pz.L/, which by duality induces a choice of basis Bz of#. This is equivalent to
giving an element łz of EAz

.

Lemma 3.7. Let � W H.C/ ! GL.X/ be a rational representation. Then there
exists a one-to-one correspondence between automorphic functions of weight � with
respect to �U and the set of functions F from pairs .A; l/, where A 2 SU .C/ and
l 2 EA, to X satisfying

F.A; gl/ D �.tg/�1F.A; l/ for all g 2 H.C/: (3)

The bijection is given by sending a function F to the automorphic function
fF W z 7! F.Az; lz/.

Proof (sketch). We will first show that the map F 7! .fF W z 7! F.Az; lz// is well-
defined and afterwards construct an inverse for it. To do the former, let z 2 H,
	 2 �U . We need to show that F.Az; lz/ D �.M	 .z//�1F.A	z; l	z/. It follows from
[31, p. 27] that tM	 .z/ maps p	z.L/ to pz.L/ and defines an isomorphism between



216 A. Caraiani et al.

A	z and Az. Note that under this isomorphism, l	z of # gets mapped to tM	 .z/
�1lz.

Hence using property (3), we obtain

F.A	z; l	z/ D F.Az;
tM	 .z/

�1lz/ D �.M	 .z//F.Az; lz/

as desired.
We define the inverse of F 7! fF as follows: Let f be an automorphic function

of weight � with respect to �U , and .A; l/ where A 2 SU .C/ and l 2 EA. Then, by
Proposition 3.6, there exists z 2 H such that Az is isomorphic to A, and there exists
a unique g 2 H.C/ such that l D glz. We define Ff .A; l/ D �.tg/�1f .z/. By the
transformation property of automorphic function we obtain analogously to above
that f 7! Ff is well-defined and Ff satisfies (3). Moreover, f 7! Ff is obviously an
inverse of F 7! fF. ut

Automorphic functions of weight � with respect to congruence subgroups � that
strictly contain �U can be characterized in the same style as follows:

Lemma 3.8. Let � W H.C/ ! GL.X/ be a rational representation, and � a
congruence subgroup of GUC.Q/ containing �U D U \ GUC.Q/. Then there
exists a one-to-one correspondence between automorphic functions of weight � with
respect to � and the set of functions F from pairs .A; l/, where A D .A; i; �; ˛/ 2
SU .C/ and l 2 EA, to X satisfying

F.A; gl/ D �.tg/�1F.A; l/ for all g 2 H.C/;

and such that for all 	 2 � and z 2 H, we have

F.Az; lz/ D �.M	 .z//
�1F.A	z; l	z/: (4)

It suffices to check condition (4) for a set of representatives of �=�U .

This lemma follows easily from Lemma 3.7 and Definition 3.2.

3.1.4 Algebraic Definition of Classical Automorphic Functions

Finally, we would like to view automorphic forms as functions on abelian varieties
on SU .C/. For this, we define the contracted product EA;� D EA �� X of EA and
X to be the product EA � X modulo the equivalence relation given by .l; v/ �
�

gl; �.tg/�1v
�

for g 2 H.C/. Note that for g 2 GUC.Q/, the identification
H1.Az;Z/˝C D Cg D H1.Agz;Z/˝C induces an identification �g W EAz

! EAgz
, and

we can define the isomorphism ig W EAz;�
! EAgz;�

by .l; v/ ! .�g.l/; �.Mg.z//v/.
Note that ig is the identity for g 2 �U . It is an easy exercise to see that Lemma 3.8
can be reformulated as follows.
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Lemma 3.9. Let � W H.C/ ! GL.X/ be a rational representation, and � a
congruence subgroup of GUC.Q/ containing �U . Then there exists a one-to-one
correspondence between automorphic functions of weight � and level � and the set
of functionseF from A 2 SU .C/ to EA;� satisfying

i	
�

eF.Az/
� D eF.A	z/ for all z 2 H; 	 2 �: (5)

Remark 3.10. Note that by Proposition 3.6 giving a functioneF from SU .C/ to EA;�

satisfying (5) is the same as giving a global (point-theoretic) section of the vector
bundle EAz;�

over �nH.

3.2 (Classical) Algebraic Automorphic Forms

In Sect. 3.1, we considered automorphic forms over C. Building on the discussion
from Sect. 3.1, we now consider automorphic forms over other base rings. The
approach in this section is similar to the approach in [8, Sect. 2.5] and [20, Sect. 1.2].
Note that [8] only considers the case in which the signature is .aC� ; a�� /�2†K

with aC� D a�� for every � 2 †K , but the definitions from [8, Sect. 2.5] carry
over to the general case with only trivial modifications. In order not to worry
about the holomorphy conditions at cusps, we exclude the case of † D f�g with
.aCQ� ; a�Q� / D .1; 1/ from the discussion in this section, compare Remark 3.3.

For any neat open compact subgroup U , consider the integral model MU=OE;.p/

introduced in Sect. 2.2. For any scheme S over Spec.OE;.p//, we put

MU ;S WDMU �OE;.p/ S:

When S D Spec.R/ for a ring R, we will often write MU ;R instead of MU ;Spec.R/. If
W denotes the ring of Witt vectors associated with Fp, then consider MU ;W (note
that since p splits completely, we can base change to W). In the sequel, we consider
(locally noetherian) schemes S over W. Note that instead of working over W, we
could also work over OE0;.p/ in this section, where E0 is a finite extension of E that
contains �.K/ for all � 2 †K .

For any S-point A D .A; i; �; ˛p/ of MU ;W, let #A=S denote the locally free
W˝OK-module defined as the pullback via the identity section of the relative
differentials. We have a natural decomposition #A=S D

L

�2†.#
C
A=S;Q�

L

#�
A=S;Q� /

where #˙
A=S;Q� is rank aCQ� and a�Q� , respectively. Note that the element x 2 OK acts

on #C
A=S;Q� (resp., #�

A=S;Q� ) via Q�.x/ (resp., Q� c.x/). (Here, we view Q� as an embedding
of K which factors through Frac.W/). Define

EȦ=S WD
M

�2†
IsomOS

�

Oa
˙ Q�

S ; #Ȧ=S;�

�

and EA=S WD EC
A=S ˚ E�

A=S;

respectively. Let R be a W-algebra, and consider an algebraic representation � of
HR into a finite free R-module M�.
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Definition 3.11 (First Equivalent Definition of Algebraic Automorphic Forms).
An automorphic form of weight � and level U defined over R is a function f

.A; `/ 7! f .A; `/ 2 .M�/R0

defined for all R-algebras R0, A 2 MU .R0/, and ` 2 EA=R0 , such that all of the
following hold:

(1) f .A; ˛`/ D �
�

.t˛/
�1� f .A; `/ for all ˛ 2 H .R0/ and all ` 2 EA=R0

(2) The formation of f .A; `/ commutes with extension of scalars R2 ! R1 for any
R-algebras R1 and R2. More precisely, if R2 ! R1 is a ring homomorphism of
R-algebras, then

f .A �R1 R2; `˝R1 1/ D f .A; `/˝R1 1R2 2 .M�/R2

In order to give a different equivalent definition (Definition 3.12 below), we
define for any algebraic representation � of HR into a finite free R-module M� and
R-algebra R0

E.A=R0;�/ D EA=R0 �� .M�/R0 WD �EA=R0 � .M�/R0

�

= .`;m/ � �g`; �.tg�1/m
�

;

where g 2 H.R0/ acts on EA=R0 by precomposing with tg.

Definition 3.12 (Second Equivalent Definition of Algebraic Automorphic
Forms). An automorphic form of weight � and level U defined over a W-algebra
R is a function Qf

A 7! Qf .A/ 2 E.A=R0;�/

defined for all R-algebras R0 and A 2 MU .R0/ such that the formation of Qf .A/
commutes with extension of scalars R2 ! R1 for any R-algebras R1 and R2. More
precisely, if R2 ! R1 is a ring homomorphism of R-algebras, then

Qf .A �R1 R2/ D Qf .A/˝R1 1R2 :

Remark 3.13. The equivalence between Definitions 3.11 and 3.12 is given by

Qf .A/ D .`; f .A; `//

for all abelian varieties A=R (corresponding to M.R/) and ` 2 EA=R.

Finally, we want to view automorphic forms as global sections of a certain sheaf.
In order to do so, let A D .A; i; �; ˛p/univ denote the universal abelian variety over
MU ;W, and define the sheaf
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E D EU WD
M

�2†
IsomOMU ;W

�

OaC Q�

MU ;W ; #
C
A=MU ;�

�

˚
M

�2†
IsomOMU ;W

�

Oa� Q�

MU ;W ; #
�
A=MU ;W;�

�

;

i.e., for every open immersion S ,!MU ;W, we set EU .S/ D EAS=S. Moreover, for
any algebraic representation � of HR over a free finite R-module M�, we define the
sheaf E� D EU ;� WD E �� M�, i.e., for each open immersion Spec R0 ,!MU;W, set
EU ;�.R0/ D E.AR0=R0;�/.

Definition 3.14 (Third Equivalent Definition of Algebraic Automorphic
Forms). An automorphic form of weight � and level U defined over R is a global
section of the sheaf EU ;� on MU ;R.

Remark 3.15. When we are working with a representation � which are uniquely
determined by its highest weight �, we shall sometimes write EU ;� or E� , in place
of EU ;�.
Remark 3.16. Usually automorphic forms are defined over a compactification of
MU ;R, but in our case, i.e., excluding the case of † consisting only of one place �
and .aC� ; a�� / D .1; 1/, both definitions are equivalent by Koecher’s principle.

3.2.1 Comparison with Classical Definition of Complex
Automorphic Forms

Having defined algebraic automorphic forms over general base rings, we will show
that in the special case of the base ring being C the definition coincides with the
classical definition of complex automorphic forms given in Sect. 3.1.

For an integer N, we define UN to be a compact open subgroup of GU.A1/ such
that

GUC.Q/ \ UN D �.N/ WD f.g; �/ 2 GUC.Q/ W g � 1mod Ng:

Proposition 3.17. Let N be a large enough integer so that UN is neat, and let �
be an algebraic representation of H over C. Then there is a bijection between the
(algebraic) automorphic forms of weight � defined in Definition 3.14 as global
sections of E� on MUN .C/ and a finite set of holomorphic automorphic forms of
weight � with respect to �.N/ as defined in Definition 3.2 in Sect. 3.1.

Proof (sketch). From the classification of Hermitian symmetric spaces mentioned
in Sect. 3.1, one can deduce that M.i/

UN
.C/ (as defined in Sect. 2.3.2) is isomorphic

to a finite union of copies of �nH. By GAGA and Lemma 3.9 together with
Remark 3.10, we conclude that the global sections of E� D EU ;� on MUN .C/ are
in one-to-one correspondence with a finite set of holomorphic automorphic forms
of weight � with respect to �.N/, one for each connected component of M.i/

UN
.C/ for

all i. ut
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4 p-Adic Theory

Section 4.1 introduces the Igusa tower, a tower of finite étale Galois coverings of the
ordinary locus of MU , which we denote by M from now on, since we fix the neat
level U throughout the rest of the paper. Section 4.2 introduces p-adic automorphic
forms, which arise as global sections of the structure sheaf of the Igusa tower.

We are mainly following [14, Sect. 8] and [15].

4.1 The Igusa Tower Over the Ordinary Locus

Recall that our Shimura varieties with hyperspecial level at p admit integral models
M over OE;.p/. These Shimura varieties have a neat level away from p, but we
suppress it from the notation since the tame level won’t affect the geometry of our
integral models. As we will see below, the geometry of the integral models M is
governed by the p-divisible group of the universal abelian variety over M.

In order to guarantee that the ordinary locus (defined below) over the special
fiber of M is non-empty, we make the following assumption: the prime p splits
completely in the reflex field E (in [33] Wedhorn proves that such an assumption is
both necessary and sufficient). In this case, the ordinary locus is open and dense
in the special fiber of M. Choose a place P of E above p and let EP be the
corresponding completion of E, with ring of integers OEP and residue field k. By
abuse of notation, we will still denote the base change of M to OEP by M. Let S be
a scheme of characteristic p.

Definition 4.1. An abelian variety A=S of dimension g is ordinary if for all
geometric points s of S, the set AŒp�.s/ has pg elements.

For every abelian variety A=S, the Hasse invariant Hap�1.A=S/ is a global section

of !˝.p�1/
A=S , where !A=S is the top exterior power of the pushforward to S of the sheaf

of invariant differentials on A. It is easy to show that an abelian variety A is ordinary
if and only if Ha.A=S/ is invertible. (We now sketch an argument for this, as in
[29, Lemma III.2.5]: the Hasse invariant, which corresponds to pullback along the
Verschiebung isogeny, is invertible if and only if Verschiebung is an isomorphism on
tangent spaces, which happens if and only if Verschiebung is finite etale. A degree
computation shows that this is equivalent to the condition that A be ordinary.) We
define the ordinary locus

Mord �M WDM �OEP
k

to be the complement of the zero set of the Hasse invariant. Since p splits completely

in E, the nonemptiness of Mord
follows from [33]. In fact, Wedhorn proves

something stronger, namely that Mord
is dense in the special fiber M. We also

define the ordinary locus Mord over OEP to be the complement of the zero set of a
lift of some power of the Hasse invariant.



p-Adic q-Expansion Principles on Unitary Shimura Varieties 221

In addition, we define Sord over W to be a connected component of Mord
W WD

Mord�OEP
W. (Recall that p splits completely in E, so the base change to W makes

sense.) In other words, Sord is the ordinary locus of one connected component S
of MW.

Remark 4.2. We note that we could define the ordinary locus in an alternate way,
using the stratification of M in terms of the isogeny class of the p-divisible group
G WD AMŒp1�, where AM denotes the universal abelian variety over M. The
isogeny class of the p-divisible group G (equipped with all its extra structures)
defines a stratification of M with locally closed strata, which is called the Newton
stratification. The ordinary locus, corresponding to the constant isogeny class
.p1/g � .Qp=Zp/

g, is the unique open stratum.

Let A WD AMord be the universal ordinary abelian variety over Mord. Pick a
W-point x of Sord, with an Fp-point Nx 2 Sord below it. We can identify Lp (defined as
in Sect. 2.1) with the p-adic Tate module of the p-divisible group Gx, i.e., the p-adic
Tate module of Ax. Choose such an identification Lp ' TpAxŒp1�, compatible with
the OK-action and with the Hermitian pairings. The kernel of the reduction map

TpAxŒp
1�! TpANxŒp1�ét

corresponds to an OK-direct summand of L � Lp. Note that the lattice L is
independent of the choice of x inside the connected component Sord, and hence the
different connected components of Mord can be labeled by lattices L. Moreover,
using the self-duality of Lp under the Hermitian pairing h�; �i and the compatibility
with the Weil pairing, we can identify the dual L_ of L with the orthogonal
complement of L inside Lp.

Remark 4.3. By considering the primes in KC above p individually, we can write
down an explicit formula for L, using the fact that each such prime splits from KC to
K. The exact formula for L as an OK-module will depend on the set of signatures of
the unitary similitude group GU.R/. More precisely, recall that for each embedding
� W K ,! C, .aC� ; a�� / is the signature of GU at the infinite place � . Choose an

isomorphism �p W C �! NQp. By composing with �p, each � determines a place of K
above p. Let p D Qr

iD1 pi be the decomposition of p into prime ideals of KC. Each
pi splits in K as pi D PiP

c
i , where Pi lies above the prime w of F. The i-term of

Lp (obtained from the decomposition OK ˝Z Zp D Lr
iD1.OKPi

˚ OKPc
i
/) can be

identified with

On
KPi
˚On

KPc
i
:

Then the determinant condition implies that

L '
r
M

iD1
.O

aC�i
KPi
˚Oa��i

KPc
i
/;
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where �i is a place inducing Pi. Note that there is a natural decomposition
L D LC ˚ L�, coming from the splitting p D w � wc. Also note that

H
�

Zp
� Š Qr

iD1
�

GLaC�i
.OKPi

/ � GLa��i
.OKPc

i
/
�

can be identified with the OK-

linear automorphism group of L, which induces a natural action of H on the dual
L_ of L (by precomposing with the inverse) and on all other spaces defined in terms
of L.

Now, we introduce the Igusa tower over the component Sord. For n 2 N, consider
the functor

Igord
n W

˚

Schemes=Sord
�! fSetsg

that takes an Sord-scheme S to the set of OK-linear closed immersions

L˝Z pn ,! ASŒp
n�; (6)

where AS WD ASord �Sord S. This functor is representable by an Sord-scheme, which
we also denote by Igord

n . Let Wm WDW=pmW, and for each m 2 Z�1, define Sord
m WD

Sord�WWm. Then Igord
n;m WD Igord

n �WWm is a scheme over Wm, whose functor takes
an Sord

m -scheme S to the set of OK-linear closed immersions

L˝Z pn ,! ASŒp
n�:

For each n 
 1, Igord
n;m is a finite étale and Galois covering of Sord

m whose Galois
group is the group of OK-linear automorphisms of L_=pnL_. (See Section 8.1.1
of [14] for a discussion of representability and of the fact that these Igusa varieties
are finite étale covers of Sord

m : the key point is that L_=pnL_ is an étale sheaf.)
We also define the formal scheme Igord

n to be the formal completion of Igord
n along

the special fiber Sord
Fp

, i.e., as a functor from {Sord-schemes on which p is nilpotent}

to {Sets}, we have Igord
n D lim�!m

Igord
n;m.

This formal scheme is a finite étale and Galois cover of Sord, the formal
completion of Sord along its special fiber. As we let n vary, we obtain a tower of
finite étale coverings of Sord, called the Igusa tower. The Galois group of the whole
Igusa tower over Sord can be identified with H.Zp/.

The inverse limit of formal schemes Igord
n also exists as a formal scheme, which

we denote by Igord. The point is that .Igord
n /n2Z�1 is a projective system of formal

schemes, with affine transition maps, so the inverse limit exists in the category of
formal schemes. (See, for example, [11, Proposition D.4.1].) This is a pro-finite
étale cover of Sord, with Galois group H.Zp/.

We now give a different way of thinking about the Igusa tower. Let ASord be
the universal abelian variety over Sord. For p-divisible groups over Sord there is
a connected-étale exact sequence, so it makes sense to define the connected part
ASord Œp1�ı of ASord Œp1�. Then the formal completion Igord

n can be identified with
the formal scheme IsomSord.L˝Zpn ;ASord Œpn�ı/. Using the duality induced by the



p-Adic q-Expansion Principles on Unitary Shimura Varieties 223

Hermitian pairing on Lp and by � on ASord Œp1� (and noting that duality interchanges
the connected and étale parts), we can further identify Igord

n with the formal scheme

IsomSord

�

L_=pnL_;ASord Œpn�ét
�

. This is finite étale over Sord.

4.1.1 Irreducibility

In this section, we show that the Igusa tower fIgord
n gn2N, or equivalently fIgord

n gn2N,
is not irreducible, but we also sketch how one can pass to a partial SU-tower that is
irreducible.

As explained above, Igord
n can be identified with

IsomSord

�

L_=pnL_;ASord Œpn�ét
�

: (7)

Such an isomorphism of sheaves on Sord induces an isomorphism of the top exterior
powers of these sheaves, so there is a morphism

det W IsomSord

�

L_=pnL_;ASord Œpn�ét
�

! IsomSord

�

^top.L_=pnL_/;^top.ASord Œpn�ét/
�

:

Hida [15] shows that the sheaf ^top.ASord Œpn�ét/ on Sord is isomorphic to the
constant sheaf OK=pnOK . This gives an isomorphism

IsomSord

�

^top.L_=pnL_/;^top.ASord Œpn�ét/
� �! .OK=pnOK/

�

and shows that the full Igusa tower fIgord
n gn2N is not irreducible.

As n varies, the determinant morphisms above are compatible. Let Igord;SU be
the inverse image of .1/n2N 2 ..OK=pnOK/

�/n2N under det.

Theorem 4.4. (Hida) Igord;SU is a geometrically irreducible component of Igord.

Proof (sketch). One proof of this statement can be found in [15, Sects. 3.4–3.5]; we
merely sketch the argument here.

It is sufficient to show that Igord;SU
n is irreducible for each n. This is an étale cover

of Sord, the formal completion of the smooth irreducible variety Sord over W along
its special fiber. One of Hida’s strategies (in, for example, [15, Sect. 3.4]) for proving
the irreducibility of the étale cover in this situation is to consider a compatible group
action of a product G1 �G2 on Igord;SU

n and Sord; in such a way that G1 � Aut.Sord/

fixes and G2 � Aut.Igord;SU
n =Sord/ acts transitively on the connected components of

Igord;SU
n . The group G1 can be identified with the finite adelic points SU.A†/ away

from certain bad places † containing p. This group will not have any finite quotient
and therefore will preserve the connected components of the Igusa tower. The group
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G2 can be identified with the Levi subgroup Levi1.Zp/ WD H.Zp/ \ SU.Zp/, where
H.Zp/ is as in Remark 4.3. The action of Levi1.Zp/ on the connected components
is transitive, since Igord;SU

n =Sord is a Levi1.Zp=pnZp/-torsor via the action on the
Igusa level structure.

Following Hida’s argument, we choose a base point x0 on the Igusa tower. Hida
considers the group Tx0 generated by G1 and the stabilizer of x0 in G1 � G2. In [15,
Sect. 3.5], he shows one can choose the point x0 such that Tx0 is dense in G1 � G2,
which amounts to choosing a point whose stabilizer has p-adically dense image in
Levi1.Zp/. This density is obtained as a by-product of the fact that the abelian variety
with structures corresponding to the point x0 has many extra endomorphisms over Q
and the fact that Levi1.Zp/\SU.Q/ is dense in Levi1.Zp/. On one hand, Tx0 is dense
in a group acting transitively on the connected components of Igord;SU

n ; on the other
hand, Tx0 fixes the connected components by definition. This shows that Igord;SU

n has
only one connected component to start with and, therefore, that it is irreducible. In
fact, Hida shows that one can take x0 to be a CM point; this is the entire subject of
[15, Sect. 3.5]. ut

4.2 p-Adic Automorphic Forms

In order to define p-adic automorphic forms, we define the global sections

Vn;m D H0.Igord
n;m;OIgord

n;m
/;

and let V1;m WD lim�!n
Vn;m and V WD V1;1 WD lim �m

V1;m.
The space V is endowed with a left action of H.Zp/, f 7! g � f , induced by the

natural right action of g 2 H.Zp/ on the Igusa tower by g � f WD g�.f / D f ı g. For
any point x D .xn/ 2 .Igord

n .W//n2N, where xnC1 maps to xn under the projection,
if A D Ax denotes the associated abelian scheme over W endowed with additional
structures, and �x W p1 ˝ L ,! AŒp1� denotes the Igusa structure of infinite level
on A, then for any g 2 H.Zp/ the image of x under the morphism g is the point
xg D .xg

n/ 2 .Igord
n .W//n2N corresponding to the data of the abelian scheme A (with

the associated additional structures), together with the Igusa structure of infinite
level �xg D �x ı .1˝ g/.

Definition 4.5. We call VN WD V
N.Zp/1;1 the space of p-adic automorphic forms.

It is worth noting that taking invariants by N.Zp/ commutes with both direct and

inverse limits, thus we could define VN also as lim �m
lim�!n

VN
n;m with VN

n;m WD V
N.Zp/
n;m .

Remark 4.6. In Definition 4.5, we have defined p-adic automorphic forms over the
non-compactified Shimura variety. Typically, p-adic automorphic forms are defined
over the compactified Shimura variety by constructing sheaves on any toroidal
compactification of M which descend to the minimal compactification of M and
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are canonically identified with EU ;� when restricted to M. (See §8.3.5 of [24].)
For the present paper, we are interested in local properties of automorphic forms,
namely their local behavior at ordinary CM points. Thus, compactifications have no
bearing on the main results of this paper. Furthermore, by Koecher’s principle (see
Remark 3.3), so long as we are not in the case in which both † consists of only one
place and the signature is .1; 1/, both definitions agree.

4.2.1 Comparison of Automorphic Forms and p-Adic Automorphic Forms

We now construct an embedding of the global sections of automorphic vector
bundles on the connected component Sord of the ordinary locus into VN , our newly
constructed space of p-adic automorphic forms.

Let n 
 m. Recall that each element f 2 VN
n;m can be viewed as a function

.A; j/ 7! f .A; j/ 2Wm; (8)

where A consists of an abelian variety A=Wm together with a polarization, an

endomorphism, and a level structure, and an OK-linear isomorphism j W AŒpn�ét �!
.Z=pnZ/˝ L_.

Recall that each element g in H.Z=pnZ/ acts on elements f in Vn;m via

.g � f /.A; j/ WD f .A; gj/:

We may view each element f 2 H0
�

Sord
m ; E�

�

as a function

.A; `/ 7! f .A; `/ 2 IndH
B� .��/Wm

;

where A is as in Eq. (8), ` 2 IsomOSord
m
.Z=pnZ˝ L_; #A=Sord

m
/, and A1 is the affine

line, satisfying f .A; g`/ D ��

�

.tg/�1
�

f .A; `/ for all g 2 H .Wm/. (Compare with

Definition 3.11.) Equivalently, we may view f as a function

.A; `/ 7! f .A; `/ 2 IndH
B .�/Wm

D ff W HWm=NWm ! A1Wm
W f .ht/ D �.t/f .h/; t 2 Tg

that satisfies f .A; g`/ D � .g/ f .A; `/ for all g 2 H .Wm/, where the action of H on
IndH

B .�/Wm via � is given by

H 3 h W f .x/ 7! �.h/f .x/ D f .h�1x/:

For n 
 m and A ordinary over Wm, we have

Lie A D Lie AŒpn�ı:
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Thus, for the universal abelian variety A, we have (compare [21, Sect. 3.3–3.4])

#A=Sord
m
D .LieA/_ D .LieAŒpn�ı/_ Š .Tp.AŒpn�ét/_/_ Š AŒpn�ét ˝OSord

m
:

(9)

By Eq. (9), there is a canonical isomorphism

#A=Sord
m

�! AŒpn�ét ˝OSord
m
:

Thus, we may view j W AŒpn�ét �! .Z=pnZ/ ˝ L_ as an element of
IsomOSord

m
.Z=pnZ ˝ L_; #A=Sord

m
/ and each element f 2 H0

�

Sord
m ; E�

�

yields a
function

.A; j/ 7! f .A; j/ 2 IndH
B .�/Wm

;

where A and j are as in Eq. (8), satisfying f .A; gj/ D �
�

.tg/�1
�

f .A; j/ for g 2
H.Z=pnZ/ (due to the action of g on ` by precomposition with tg, as described in
Sect. 3.2).

As explained in [14, Sect. 8.1.2], there is a unique (up to W-unit multiple) N-
invariant element `can 2

�

IndH
B .�/W

�_ D HomW.IndH
B .�/W;W/. The element `can

generates
�

�

IndH
B .�/W

�_�N
. We may normalize `can so that it is evaluation at the

identity in H.
Now, we define a map of functions that turns out to be a map of global sections

‰n;m W H0
�

Sord
m ; E�

� ! VN
n;mŒ��

f 7! Qf W .A; j/ 7! `can.f .A; j//;

where VN
n;mŒ�� denotes the �-eigenspace of the torus. Note that for each b 2

B.Z=pnZ/,

.bQf /.A; j/ D Qf .A; bj/

D `can.f .A; bj//

D f .A; bj/.1/

D � �.tg/�1� f .A; j/.1/

D f .A; j/.tb/

D �.b/f .A; j/.1/ D �.b/`can.f .A; j//;

for all A and j as in Eq. (8). So Qf is indeed in VN
n;mŒ�� � Vn;m.
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We therefore have a map

‰� W H0
�

Sord; E�
�! VN Œ��;

where VN Œ�� denotes the �-eigenspace of the torus, and we define

‰ D ˚�‰� W ˚�H0.Sord; E�/! VN :

This map yields an embedding.

Proposition 4.7 ([14, Sect. 8.1.3, p. 335]). The map ‰ is injective.

Remark 4.8. While it is not the subject of this paper, it is natural to ask about
results on the density of classical automorphic forms within the space of p-adic
automorphic forms. Because our main theorems do not use such density results
in our arguments, we refer the reader to [14, Chap. 8] and [13, Lemma 6.1].
Additionally, it is also true by [29, Theorem IV.3.1] that classes in the completed
cohomology of Shimura varieties are also p-adically interpolated from classical
automorphic forms. This statement is stronger than all previous results, since it also
applies to torsion classes which contribute to completed cohomology.

5 Serre–Tate Expansions

The goal of this section is to establish a p-adic analogue of the q-expansion principle
for automorphic forms as a consequence of Hida’s irreducibility result for the Igusa
tower.

Classically, q-expansions arise by localization at a cusp, i.e., the q-expansion of a
scalar-valued form f is the image of f in the complete local ring at the cusp, regarded
as a power series in q, for q a canonical choice of the local parameter at the cusp. In
these terms, the q-expansion principle states that localization is injective, and it is an
immediate consequence of the fact that the space is connected. Alternatively, when
working over the whole Shimura variety, it becomes necessary to choose a cusp on
each connected component, and consider all localizations at once.

In this paper, we work over a connected component of M, and we replace cusps
with integral ordinary CM points (i.e., points of Sord defined over W corresponding
to abelian varieties with complex multiplication). The crucial observation is that
given an integral ordinary CM point x0, the choice of a lift x of x0 to the Igusa tower
uniquely determines a choice of Serre–Tate local parameters at x0, i.e., x defines an
isomorphism of the p-adic completion of the complete local ring at x0 with a power
series ring over W. We call the power series corresponding to the localization at x of
an automorphic form its t-expansion, for t denoting the Serre–Tate local parameters.

By abuse of notation, we denote by g W Igord ! Igord the action of g 2 H.Zp/ on
the Igusa tower described in Sect. 4.2, and we write˝ in place of˝Zp for the tensor
product over Zp.
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5.1 Localization

Let Nx0 2 Sord.Fp/ be a geometric point, and let x0 2 Sord.W/ be any integral lift
of Nx0. (Without loss of generality, we may chose x0 to be a CM point, or even the
canonical CM lift of Nx0; see Remark 5.9.) We write Sord^

x0 for the formal completion
of Sord at x0. Then

Sord^
x0 D Spf.RSord;x0 /

where RSord;x0 is a p-adically complete local ring.
More explicitly, RSord;x0 can be constructed as follows. For each m 
 1, we write

x0;m for the reduction of x0 modulo pm, regarded as a point of Sord
m WD Sord �W

W=pmW (in particular, Nx0 D x0;1). Let O^
Sord

m ;x0
denote the completed local ring

of Sord
m at x0;m. Then, the local ring RSord;x0 can be identified with lim �m

O^
Sord

m ;x0
.

Alternatively, RSord;x0 can also be identified with O^
Sord;Nx0 , the completed local ring

of Sord at Nx0.
Let x 2 Igord.W/ denote a compatible system of integral points x D .xn/n�0 on

the Igusa tower fIgord
n gn�0 above x0; i.e., for each n 
 0, xn is an integral point in

Igord
n , Igord

0 D Sord, with xn mapping to xn�1 under the natural projections. Given the
point x0 of Sord, the choice of a point x of Igord lying above x0 is equivalent to the
choice of an Igusa structure of infinite level (i.e., of compatible closed immersions
as in Eq. (6) on the corresponding ordinary abelian variety.

For all m, as n varies, the natural finite étale projections j D jn;m W Igord
n;m ! Sord

m
induce a compatible system of isomorphisms

j�x W O^
Sord

m ;x0

�! O^
Igord

n;m;xn

which allow us to canonically identify O^
Igord;x

WD lim �m
lim�!n

O^
Igord

n;m;xn
with RSord;x0 .

Remark 5.1. Given x0 2 Sord.W/, let Nx0 2 Sord.Fp/ denote its reduction modulo p.
We observe that, as a consequence of the fact that the morphisms in the Igusa tower
are étale, the reduction modulo p gives a canonical bijection between the points
on the Igusa tower above x0 and those above Nx0. Moreover, if we denote by Nx 2
Igord.Fp/, Nx D .Nxn/n�0, the reduction of x modulo p, then the previous isomorphisms
agree with the compatible system of isomorphisms j�n;Nxn

W O^
Sord;Nx0 ! O^

Igord
n ;Nxn

.

Definition 5.2. Let x 2 Igord.W/, lying above x0 2 Sord.W/. We define

locx W V ! RSord;x0

as the localization at x composed with j�x
�1.
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By abuse of language, we will still refer to locx.f / 2 RSord;x0 as the localization
of f at x, for all f 2 V . Furthermore, with abuse of notation, we will still denote by
locx the restriction of locx to VN (resp., VN Œ��, for any weight �).

We compare localizations at different points of the Igusa tower. Recall that given
a point x 2 Igord.W/, the set of all points of the Igusa tower above x0 D j.x/ 2
Sord.W/ is a principle homogeneous space for the action of H.Zp/.

Lemma 5.3. Let x 2 Igord.W/. For any g 2 H.Zp/ and f 2 V, we have

locxg.f / D locx .g � f / :

In particular, if g 2 T.Zp/ and f 2 VN Œ��, for a weight �, we have

locxg.f / D �.g/locx .f / :

Proof. For all g 2 H.Zp/ and x 2 Igord.W/, the morphism g W Igord ! Igord induces
an isomorphism of complete local rings g� W O^

Igord;xg ! O^
Igord;x

, � 7! � ı g. Then,

the first statement follows from the definition given the equality j�xg
�1 D j�x

�1 ı g�.
The second statement is an immediate consequence of the first one, given that for
all f 2 VN Œ�� and g 2 T.Zp/ we have g � f D �.g/f . ut
Proposition 5.4. Let x 2 Igord.W/. For any weight �, the map locx W VN Œ�� !
RSord;x0 is injective.

Proof. Were the Igusa covers Igord
n irreducible over Sord, the statement would

immediately follow. As it happens Igord
n is not irreducible, thus a priori the vanishing

under the localization map locx only implies the vanishing on the connected
component containing x. Yet, as the torus T.Zp/ � H.Zp/ acts transitively on the
connected components of Igord over Sord, it suffices to prove that for all f 2 VN Œ��,
the identity locx.f / D 0 implies locxg.f / D 0 for all g 2 T.Zp/. The last statement
follows immediately from the second part of Lemma 5.3. ut

We note that for a general function f 2 V the above statement is false. Yet, by the
same argument, Lemma 5.3 implies the following weaker statement for all f 2 V .

Proposition 5.5. Let x 2 Igord.W/, lying above x0 2 Sord.W/. For any f 2 V, if
locx.g � f / 2 RSord;x0 vanishes for all g 2 T.Zp/, then f D 0.

5.2 Serre–Tate Coordinates

It follows from the smoothness of Sord that for any W-point x0 the ring RSord;x0 is
(non-canonically) isomorphic to a power series ring over W. The goal of this section
is to explain how Serre–Tate theory implies that for x a lift of x0 to Igord, the ring
O^

Igord;x
is canonically isomorphic to a ring of power series over W.
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We recall Serre–Tate theory following [21]. The first theorem describes the
deformation space of an ordinary abelian variety, and the second explains how
to address the lifting of additional structures (such as a polarization and extra
endomorphisms). As an application we deduce a description of the ring RSord;x0 ,
for any x0 2 Sord.W/.

We introduce some notation. Let A be an ordinary abelian variety over Fp, of
dimension g. The physical Tate module of A, TpA.Fp/, is the Tate module of the
maximal étale quotient of AŒp1�, i.e.,

TpA.Fp/ D lim �
n

AŒpn�.Fp/ D lim �
n

AŒpn�ét.Fp/:

As A is ordinary, TpA.Fp/ is a free Zp-module of rank g. Like above, we denote by
A_ the dual abelian variety, and we denote by TpA_.Fp/ the physical Tate module
of A_.

Let R be an Artinian local ring, with residue field Fp. We denote by mR the
maximal ideal of R. A lifting (or deformation) of A over R is a pair .A=R; j/,
consisting of an abelian scheme A over R, together with an isomorphism j W
A˝R Fp ! A. By abuse of notation we sometimes simply write A=R for the pair
.A=R; j/. To each lifting .A=R; j/; as explained in [21, Sect. 2.0, p. 148], Serre and
Tate associated a Zp-bilinear form

qA=R W TpA.Fp/ � TpA_.Fp/! OGm.R/ D 1CmR:

Theorem 5.6 ([21] Theorem 2.1, p. 148). Let the notation be as above.

(1) The map .A=R; j/ 7! qA=R is a bijection from the set of isomorphism classes of
liftings of A over R to the group HomZp.TpA.Fp/˝ TpA_.Fp/; OGm.R//.

(2) The above construction defines an isomorphism of functors between the defor-
mation space MA=Fp

and HomZp.TpA.Fp/˝ TpA_.Fp/; OGm/.

In the following we refer to the above isomorphism as the Serre–Tate isomor-
phism.

Let A and B be ordinary abelian varieties over Fp, and let f W A ! B be an Fp-
isogeny. We write f _ W B_ ! A_ for the dual isogeny. A theorem of Drinfield ([21,
Lemma 1.1.3, p.141]) proves that for any Artinian local ring R, and pair of liftings
.A=R; jA/,.B=R; jB/ of A;B, respectively, if there exists an isogeny � W A ! B
lifting f (i.e., satisfying f D jBı.�˝1Fp

/ıj�1A ), then � is unique. Yet, in general such
a lifting of f will not exist. Theorem 5.7 gives a necessary and sufficient condition
for the existence of � in terms of the Serre–Tate isomorphism.

Theorem 5.7 ([21] Theorem 2.1, Part 4, p.149). Let the notation be as above.
Given A and B lifting A and B, respectively, over an Artinian local ring R. A
morphism f W A ! B lifts to a morphism A ! B if and only if qA=R ı .1 � f _/ D
qB=R ı .f � 1/.
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We apply the above results in our setting, adapting to our context the arguments
in [14, Sects. 8.2.4 and 8.2.5]. (In loc. cit., Hida deals, respectively, with the cases
of Siegel varieties and of the unitary Shimura varieties over a quadratic imaginary
field in which p splits.)

Let OK;p WD OK ˝Z Zp. Recall that under our assumptions p splits completely
in K. That is, we have OK;p D Qr

iD1OKPi
�Qr

iD1OKPc
i
, where OKPi

' Zp and
OKPc

i
' Zp for all i.

Let Nx0 2 Sord.Fp/ be an ordinary point, and A WD ANx0 be the associated abelian
variety over Fp, together with its additional structures. Then, the physical Tate
module TpA.Fp/ of A is a free OK;p-module, and the prime-to-p polarization � of

A induces a conjugate-linear isomorphism Tp.�/ W Tp.A/.Fp/
�! TpA_.Fp/. We

deduce that

TpA.Fp/ D
�

˚r
iD1TPi A.Fp/

�

˚
�

˚r
iD1TPc

i
A.Fp/

�

and that Tp.�/ induces a Zp-linear isomorphism between TPc
i
A.Fp/ and TPi A

_.Fp/.

Finally, we recall that the formal completion Sord^
Nx0 of Sord at Nx0 represents

the deformation problem naturally associated with the moduli problem. This
observation allows us to canonically identify Sord^

Nx0 with the closed subspace of
the deformation space MA=Fp

consisting of all deformations of A which are (can be)
endowed with additional structures (a polarization and an OK-action) lifting those
of A. We deduce the following description of Sord^

Nx0 .

Proposition 5.8. Let the notation be as above.
The map x 7! qx WD .1 � Tp.�// ı qAx , from Sord^

Nx0 to HomZp.TpA.Fp/ ˝
TpA.Fp/; OGm/, induces an isomorphism between Sord^

Nx0 and˚r
iD1HomZp.TPi A.Fp/˝

TPc
i
A.Fp/; OGm/.

Proof. For any local Artinian ring R and x 2 Sord.R/, lifting Nx0, let qx denote the
Zp-bilinear form defined in the statement

qx D .1 � Tp.�// ı qAx W TpA.Fp/ � TpA.Fp/! OGm.R/:

By Theorem 5.7 the additional structures on A (namely, the polarization and the
OK-action, respectively) lift to Ax if and only if qx is symmetric and c-Hermitian.

Indeed, let sw W TpA.Fp/ � TpA.Fp/ ! TpA.Fp/ � TpA.Fp/ denote the map
sw.v;w/ D .w; v/, for all v;w 2 TpA.Fp/. Then, given any abelian variety A lifting
A, qA_ D qA ı sw. Also, note that since the polarization � has degree prime-to-p
then the induced maps on the physical Tate modules satisfy the condition Tp.�

_/ D
Tp.�/

�1. We deduce that the polarization � of A lifts to Ax if and only if qAx ı .1 �
Tp.�

_// D qA_

x
ı .Tp.�/� 1/, or equivalently if and only if qx D qx ı sw. Similarly,

for all b 2 OK , let i.b/ denote the action on A. We deduce that the action of OK on
A lifts to A if and only if qAx ı .1 � i.b/_/ D qAx ı .i.b/ � 1/, for all b 2 OK , or
equivalently if and only if qx.1� i.bc// D qx.i.b/�1/, because �ı i.bc/ D i.b/_ ı�
by definition. (Recall Sect. 2.2.)
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For all i; j D 1; � � � ; r, let the forms qx;i;j W TPi A.Fp/ � TPc
j
A.Fp/ ! OGm.R/

and qx;i;j;c W TPc
i
A.Fp/ � TPj A.Fp/ ! OGm.R/ denote the restrictions of qx. Then,

since qx is symmetric, for all i; j D 1; � � � ; r, we have qx;i;j D qx;j;i;c ı sw; where
with abuse of notation we still write sw for its restriction TPi A.Fp/ � TPc

j
A.Fp/!

TPc
j
A.Fp/ � TPi A.Fp/. Furthermore, since qx is c-Hermitian, we deduce that for all

i ¤ j the forms qx;i;j and qx;i;j;c necessarily vanish. Thus,

qx D .˚r
iD1qx;i;i/˚ .˚r

iD1qx;i;i ı sw/:

In particular, the form qx is uniquely determined by its restrictions

qx;i;i W TPi A.Fp/ � TPc
i
A.Fp/! OGm.R/;

for i D 1; : : : r. To conclude we observe that any collection .qi/iD1;:::;r of Zp-
bilinear morphisms, qi W TPi A.Fp/ � TPc

i
A.Fp/ ! OGm.R/, extends uniquely to a

symmetric c-Hermitian bilinear form q W TpA.Fp/ ˝ TpA.Fp/ ! OGm.R/, namely
q D .˚r

iD1qi/˚ .˚r
iD1qi ı sw/. ut

Remark 5.9. As a consequence of the Serre–Tate theory, we see that any point Nx0 2
Sord.Fp/ always lifts to a point x0 2 Sord.W/. In fact, it even admits a canonical lift
y0, namely the one corresponding to the form q D 0. The abelian variety Ay0 is the
unique deformation of ANx0 to which all endomorphisms lift. Thus, in particular, Ay0
is a CM abelian variety with ordinary reduction. The point y0 is called the canonical
CM lift of Nx0.

We finally describe how the choice of an Igusa structure (of infinite level) on
A D Ax0 determines a choice of local parameters.

We consider the OK;p-modules introduced in Sect. 4.1:

L D LC ˚ L� ' ˚r
iD1.O

a�iC
KPi
˚Oa�i�

KPc
i
/;

where the decomposition comes from the splitting p D w � wc, and for each i D
1; : : : ; r, �i is a place inducing Pi. For each i, we write LC

i � LC for the submodule
corresponding to the place �i, LC

i ' Oa�iC
KPi

. Similarly, we define L�
i � L�, L�

i '
Oa�i�

KPi
. Then, LC D ˚r

iD1LC
i and L�

i D ˚r
iD1L�

i .
We define the OK;p-module

L2 ' ˚r
iD1LC

i ˝ L�
i

naturally regarded as a submodule of L˝ L.

Proposition 5.10. Let x0 2 Sord.W/. Each point x 2 Igord.W/ above x0 determines
a unique isomorphism

ˇx W Sord^
Nx0 ! OGm ˝ L2:
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In particular, for each x we have an isomorphism of local rings

ˇ�
x WWŒŒt��˝ .L2/_

�! RSord;x0 ;

where WŒŒt��˝.L2/_ denotes the complete ring corresponding to the formal scheme
OGm ˝ L2, i.e., a choice of basis of .L2/_ yields an isomorphism WŒŒt��˝ .L2/_ '
WŒŒtj j 1 � j �Pr

iD1 a�iCa�i���.

Proof. The choice of an Igusa structure of infinite level � D �x W p1˝L ,! AŒp1�
is equivalent to the choice of an OK;p-linear isomorphism Tp.�

_/ W TpA.Fp/
�! L_.

We observe that by linearity

Tp.�
_/.TwA.Fp// D .LC/_ and Tp.�

_/.Twc A.Fp// D .L�/_:

More precisely, Tp.�
_/ induces isomorphisms TPi A.Fp/ ' .LC

i /
_ and TPc

i
A.Fp/ '

.L�
i /

_, for all i D 1; : : : ; r. The isomorphism ˇx is defined as the composition of the
Serre–Tate isomorphism in Proposition 5.8 with the inverses of the trivializations
induced by Tp.�

_/, while ˇ�
x is the corresponding ring homomorphism, for t the

canonical parameter on OGm. ut
Let I denote the identity on WŒŒt��. For all g 2 H.Zp/, we write I ˝ g for the

natural left W-linear action on WŒŒt��˝ .L2/_.
As in Lemma 5.3, the action of H.Zp/ on the points of the Igusa tower lying

above x0 allows us to compare the above construction for different points x.

Lemma 5.11. For all x 2 Igord.W/ and g 2 H.Zp/, we have

ˇ�
xg D ˇ�

x ı .I˝ g/:

Proof. The statement follows immediately from the definition since �xg D �xı.1˝g/.
ut

Definition 5.12. Given a point x 2 Igord.W/, for any f 2 V we define the
t-expansion of f at the point x as

fx.t/ WD ˇ�
x

�1
.locx.f //:

Proposition 5.13. Let x 2 Igord.W/. For all g 2 H.Zp/ and f 2 V we have

fxg.t/ D .I˝ g�1/.g � f /x.t/:

Proof. The statement follows from Lemmas 5.3, 5.11 combined. ut
Finally, we can state an appropriate analogue of the q-expansion principle for

p-adic automorphic forms.
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Theorem 5.14 (“t-Expansion Principle” or “Serre–Tate Expansion Principle”).
Let x 2 Igord.W/. For any weight � and any f 2 VN Œ��, the t-expansion fx.t/ vanishes
if and only if f vanishes.

Proof. The statement follows from Propositions 5.4 and 5.10 combined. ut
Furthermore, by combining Propositions 5.5 and 5.10 together we deduce the

following weaker statement for all f 2 V .

Proposition 5.15. Let x 2 Igord.W/. For any f 2 V, if .g � f /x.t/ 2 WŒŒt��˝ .L2/_
vanish for all g 2 T.Zp/, then f D 0.

As an immediate consequence of Proposition 5.15 we obtain the following
corollary.

Corollary 5.16. For each m 2 N, given two p-adic automorphic forms f ; f 0 of any
weight �; �0, respectively, we have that f � f 0.mod pm/ if and only if

�.g/fx.t/ � �0.g/f 0
x.t/ .mod pm/

for all g 2 T.Zp/.

Remark 5.17. A crucial advantage of Hida’s realization of (vector-valued) automor-
phic forms as function on the infinite Igusa tower is that one can define congruences
between forms without any restriction on their weights. The t-expansion principle
as stated above implies that those congruence relations can be detected by the
coefficients of the associated power series, as in the classical setting. Indeed, for f a
vector-valued automorphic form of weight �, one may also consider the localization
of f at a point x0 of Sord. Such a localization is an element in a free module M�

over RSord;x0 , with rank depending on the weight �. Even with canonical choices
of trivializations of the modules M�’s, such an approach only allows to detect
congruences when the two ranks agree, e.g., when the difference among the weights
is parallel, i.e., equals .n� ; : : : ; n� /�2† in the notation of Sect. 3.1.1. This restriction
is not necessary for the above corollary.

6 Restriction of t-Expansions

As an example of how Serre–Tate coordinates may be used to understand certain
operators on p-adic automorphic forms, we consider the case of the restriction map
from our unitary Shimura variety to a lower dimensional unitary Shimura subvariety,
i.e., the pullback map on global sections of the automorphic sheaves.

6.1 Description of the Geometry

We start by introducing the PEL data defining this setting. We maintain the notation
introduced in Sect. 2.1.
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Let L D ˚s
iD1Wi be a self-dual decomposition of the lattice L. We denote by h; ii

the pairing on Wi induced by h; i on L, and define GUi D GU.Wi; h; ii/, a unitary
group of signature

�

aC�;i; a��;i
�

�2†K
. Then, the signatures

�

aC�;i; a��;i
�

iD1;:::;s form
a partition of the signature .aC� ; a�� /.

We define G0 �Qi GUi to be the subgroup of elements with the same similitude
factor; i.e., if �i W GUi ! Gm denote the similitude factors, then G0 D ��1.Gm/,
for � D Q

i �i and Gm � Gs
m embedded diagonally. Then, there is a natural

closed immersion G0 ! GU of algebraic groups which is compatible with the
partition of the signature. That is, the above data defines a morphism of Shimura
data .G0;X0/ ! .GU;X/, for X (resp., X0) the GU.R/- (resp., G0.R/-) conjugacy
class of the homomorphism h W C! EndK˝ZR.L˝Z R/, where the map G0 ! GU
is a closed immersion.

As in Sect. 2.1, let H be
Q

�2†
GLaC Q�

�GLa� Q�
, which can be identified with a Levi

subgroup of U over Zp. Similarly, we define H0 to be
Q

�2†;1�i�s
GLaC Q�;i

�GLa� Q�;i

corresponding to the partition
�

aC�;i; a��;i
�

iD1;:::;s of the signature .aC� ; a�� /, which
can be identified over Zp with a Levi subgroup of G0\U. Note that we have a closed
immersion H0 ! H that comes from the natural inclusion of G0 in GU over Zp. We
let B0 be the intersection of the Borel B � H with H0, and (by abuse of notation) we
denote by N and N0 the Zp-points of the unipotent radicals of the Borel subgroups
B and B0, respectively. Then N0 D N \ H0.Zp/. Furthermore, we may identify the
maximal torus T of H with a maximal torus T 0 in H0. Note that for any character
� of T D T 0, if � is dominant in X�.T/, then it is also dominant in X�.T 0/, but the
converse is false in general.

The morphism of Shimura data .G0;X0/ ! .GU;X/ described above defines
a morphism of Shimura varieties, � W M0 ,! M; from the Shimura variety M0
associated with G0 into the Shimura variety M associated with GU, which is a
closed immersion since G0 ! GU is a closed immersion ([7, Theorem 1.15]). The
morphism � extends to a map between the canonical integral models (which with
abuse of notation we still denote by � )

� WM0 ,!M:

A point x in M is in the image of � if and only if the corresponding abelian variety
Ax decomposes as a Cartesian product of abelian varieties, with dimensions and
additional structures prescribed by the above data.

Remark 6.1. We describe an example. Let K D F be a quadratic imaginary field, Vn

be an n-dimensional OF-lattice equipped with a Hermitian pairing h; i, and assume
that the associated group GUn D GU.Vn; h; i/ has real signature .1; n � 1/. We fix
the partition f.1; n � 2/; .0; 1/g of the signature .1; n � 1/, and we realize Vn�1 as
a direct summand of Vn. We choose a neat level � hyperspecial at p and denote by
Shn the simple Shimura variety of level � associated with GUn. Shn is a classifying
space for polarized abelian varieties of dimension n, equipped with a compatible
action of OF. We write An for the universal abelian scheme on Shn. Then, for
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each elliptic curve E0=Zp with complex multiplication by OF (corresponding to the
choice of a connected component of the 0-dimensional Shimura variety associated
with GU.0; 1/), the morphism � is defined by ��An D An�1 � E0, and its image
�.Shn�1/ is a divisor in Shn.

We now assume that p splits completely in all the reflex fields Ei (and thus
also in E), where Ei is the reflex field for the integral model Mi associated with
the group GUi. Then the ordinary loci Mord

i , M0ord, and Mord are non-empty. In
particular, a split abelian variety A D Q

i Ai is ordinary if and only if each of its
constituents Ai are ordinary.

Each connected component S 0 of M0 can be identified with a product of
connected components Si of Mi. We choose a connected component S 0 of M0,
and identify S 0 D Qs

iD1 Si. Then, there is a unique connected component S of M
such that �.S 0/ � S . We write Sord

i (resp., S 0ord and Sord) for the ordinary locus of
Si (resp., S 0 and S). Thus, �.S 0ord/ � Sord, and we may identify S 0ord D Q

i Sord
i .

Corresponding to our choice of connected components, there are two OF;p-linear
decompositions LC D ˚s

iD1L
C
i and L� D ˚s

iD1L�
i , the ranks of the summands

determined by the partition
�

aCi D
P

�2† aCQ�;i; a�i D
P

�2† a�Q�;i
�

iD1;:::;s of the
signature .aC D P

�2† aCQ� ; a� D P

�2† a�Q� /. For each i D 1; : : : ; s, we write
Li D LC

i ˚ L�
i . Thus, L D ˚s

iD1Li.

Proposition 6.2. For every level n 
 1, the homomorphism � W S 0ord D Qi Sord
i !

Sord lifts canonically to a compatible system of homomorphisms‚ D .‚n/n, among
the Igusa towers,

‚n W Ig0ord
n WD

Y

i

Igord
n;i ! Igord

n ;

where Igord
n;i denotes the nth level of the Igusa tower over Sord

i , for each i D 1; : : : ; s.

Proof. For each i D 1; : : : ; s, let Ai denote the universal abelian scheme over Sord
i ,

and �i W pn ˝Li ,! AiŒpn� denote the universal Igusa structure of level n on Ai. By
the universal property of Igord

n (i.e., using the fact that the Igusa tower represents
the functor classifying ordinary points with additional structure), constructing a
morphism ‚n lifting � is equivalent to defining an Igusa structure of level n on
the abelian scheme ��A D Q

i Ai over S 0ord. We define � W pn ˝ L ,! ��AŒpn� as
� D ˚s

iD1�i. ut
Remark 6.3. For each integer n 
 0, the morphism ‚n defines a closed embedding
of the Igusa covers over S 0ord,

Ig
0ord
n ,! S 0ord �Sord Igord

n :

Indeed, since both projections Ig
0ord
n ! S 0ord and S 0ord �Sord Igord

n ! S 0ord are finite
and étale, it suffices to check that the map is one-to-one on points. Given a point x0
of S 0ord, corresponding to a split ordinary abelian variety A D Q

i Ai. A point x of
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Igord
n , lying above x0, is in the image of ‚n if and only if the corresponding Igusa

structure �x W pn ˝L ,! AŒpn� satisfies the conditions �x.pn ˝Li/ � AiŒpn�, for all
i D 1; : : : ; s. Then, �x D ˚i�x;i, for �x;i W pn ˝Li ! AiŒpn� the restrictions of �x, i.e.,
there is a unique point y 2 Ig

0ord
n such that ‚n.y/ D x.

We observe that, for non-trivial partitions of the signature .aC� ; a�� /�2†K , such
a closed immersion is not an isomorphism. In fact, given a point x in ‚n.Ig

0ord
n / �

S 0ord �Sord Igord
n , for any g 2 H.Zp/, the point xg is in the image of ‚n if and only if

g 2 H0.Zp/.

6.2 Restriction of Automorphic Forms

For � a dominant character of T , let �� denote the irreducible representation of
HZp with the highest weight � described in Sect. 3.1.1. Similarly, for �0 a dominant
character of T 0, let �0

�0 denote the irreducible representation of H0
Zp

with the highest
weight �0.

Assume that the restriction of �� from HZp to H0
Zp

has an irreducible quotient
isomorphic to �0

�0 (e.g., when �0 D �), and fix a projection ��;�0 W �� ! �0
�0 . If

�0 D �� for some � in the Weyl group WH.T/, then we choose ��;�0 to satisfy
the equality `�can D `�

0

can ı ��;�0 ı g� , where g� 2 NH.T/.Zp/ is a lifting of � , and
where we view `�can as a functional on the space of �� by identifying the space of
�� with the space of IndH

B .�/ on which H acts by the usual left translation action
(described in Sect. 3.1.1) precomposed with transpose-inverse. In other words, `�can
is the unique (up to multiple) N�-invariant functional on �� .

Recall that E� D EU ;� denotes the automorphic sheaf of weight � over M, as
defined in Sect. 3.2, and denote by E 0

�0 the automorphic sheaf of weight �0 over M0.
Then, on M0 we have a canonical morphism of sheaves r�;�0 W ��E� ! E 0

�0 .

Definition 6.4. We define

res�;�0 WD r�;�0 ı �� W H0.M; E�/! H0.M0; ��E�/! H0.M0; E 0
�0/:

We call res�;�0 the weight .�; �0/-restriction.

In the following, for �0 D �, we write res� D res�;�0 and call it the weight
�-restriction.

By abuse of notation we still denote by res�;�0 (and res�) the restriction of this
map to the space of sections over the ordinary loci; i.e.,

res�;�0 WD r�;�0 ı �� W H0.Sord; E�/! H0.S 0ord; ��E�/! H0.S 0ord; E 0
�0/:

Let V , V 0 denote the spaces of global functions of the Igusa towers Igord=Sord and
Igord0

=S 0ord, respectively, as introduced in Sect. 4.2. We write ‚� for the pullback
on global functions of the Igusa towers,

‚� W V ! V 0:
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In the following, we refer to ‚� as restriction. Note that ‚ maps VN and VN Œ��, for
any weight �, to V 0N0

and V 0N0

Œ��, respectively. With abuse of notation, we will still
denote by ‚� the restrictions of ‚� to VN and VN Œ��.

Finally, for any �; �0, we write ‰� W H0.Sord; E�/ ! VN and ‰0
�0 W

H0.S 0ord; E 0
�/! V 0N0

for the inclusions defined in Sect. 4.2.1.

Proposition 6.5. For � a dominant character of T, and any f 2 H0.Sord; E�/:

‚�.‰�.f // D ‰0
�.res�.f //:

Proof. The statement follows from the equality‚� ı j� D j� ı ��, together with the
observation that, for any dominant weight � of T , the functional `can appearing in
the definitions of ‰� (in Sect. 4.2.1) factors by our choice via the projection ��;� W
�� ! �0

� . ut
Note that if �0 ¤ �, then the maps ‚� ı ‰� and ‰0

�0 ı res�;�0 do not agree, as a
consequence of Proposition 6.5 and the injectivity of the ‰ (see Proposition 4.7).
Instead, we have the following result.

Proposition 6.6. The notation is as above. Assume the weight �0 is conjugate to �
under the action of the Weil group WH.T/, i.e., �0 D �� for some � 2 WH.T/, and
choose g� 2 NH.T/.Zp/ lifting �:

Then, for all f 2 H0.Sord; E�/, we have

‚�.g� �‰�.f // D ‰0
�0.res�;�0.f //:

Proof. The same argument as in the proof of Proposition 6.5 applies here, because
we chose ��;�0 such that the functional `can appearing in the definition of ‰� factors
via the map ��;�0 ı g� W �� ! �� ! �0

�0 . ut
Our goal is to give a simple description of ‚� in Serre–Tate coordinates, and

deduce an explicit criterion for the vanishing of the restriction of a p-adic automor-
phic form in terms of vanishing of some of the coefficients in its t-expansion.

Let x0 2 S 0ord.W/, x0 D .xi
0/iD1;:::;s where xi

0 2 Sord
i .W/, for each i D 1; : : : ; s.

We write Nx0 and �.Nx0/ for the reductions modulo p of x0 and of �.x0/ 2 Sord.W/,
respectively. Let A D A�.Nx0/ D ANx0 D

Q

i Ai be the corresponding split

ordinary abelian variety over Fp. We deduce that the physical Tate module of A
decomposes as

TpA.Fp/ D ˚iTpAi.Fp/;

and by linearity we also have TPj A.Fp/ D ˚iTPj Ai.Fp/, for each j D 1; : : : ; r.



p-Adic q-Expansion Principles on Unitary Shimura Varieties 239

Proposition 6.7. The notation is the same as above. Under the isomorphism in
Proposition 5.8, x 7! qx, the map �Nx0 W S 0ord^

Nx0 ! Sord^
�.Nx0/ is the closed immersion

corresponding to the collection of the natural inclusions

˚s
iD1HomZp.TPj Ai.Fp/˝ TPc

j
Ai.Fp/; OGm/ � HomZp.TPj A.Fp/˝ TPc

j
A.Fp/; OGm/;

for j D 1; : : : ; r.

Proof. By the definition of � , a point x 2 Sord^
�.Nx0/ is in the image of �Nx0 if and

only if the corresponding abelian variety Ax decomposes as a Cartesian product of
abelian varieties with additional structures, compatibly with the decomposition A D
Q

i Ai. We argue that such a decomposition exists if and only if the endomorphisms
ei W A! Ai ,! A lift to Ax.

Clearly, if the decomposition lifts to Ax so do the endomorphisms ei for all i D
1; : : : ; s. Vice versa, let us assume there exists an endomorphism Qei of Ax lifting
the ei. By Theorem 5.7 the endomorphisms Qei are unique, thus in particular they
are orthogonal idempotents (since the ei are) and the identity of Ax decomposes as
1Ax D

P

i Qei (lifting the equality 1A DPi ei). We deduce that for each i, the image
Ai D Qei.Ax/ is an abelian subvariety of Ax lifting Ai, and Ax DQAi. Furthermore,
for each i, the additional structures on Ax define unique additional structures on Ai

(by the properties of the Cartesian product) which lift those on Ai. To conclude,
we observe that since such lifts are unique, the decomposition of Ax is compatible
with the additional structures, i.e., Ax D

Q

i Ai lifting the decomposition of A.
Furthermore, such lifting is unique.

Finally, by Theorem 5.7, for each i D 1; : : : ; s, the endomorphism ei of A lifts to
Ax if and only if qAx ı .1 � e_

i / D qAx ı .ei � 1/. Equivalently, if and only if

qx ı .1 � ei/ D qx ı .ei � 1/

(recall qx D qAx ı .1 � Tp.�// and under our assumption e_
i ı � D � ı ei). We

deduce that this is the case if and only if for all j D 1; : : : ; r and any i; k D 1; : : : ; s,
the restriction of the bilinear form qx to the subspaces TPj Ai.Fp/ ˝ TPc

j
Ak.Fp/ of

TPj A.Fp/˝ TPc
j
A.Fp/ vanishes unless i D k. ut

For each i D 1; : : : ; s, we define OK;p-modules L2i � L˝2
i similarly to L2 � L˝2

in Sect. 5.2. We consider the OK;p-module L2 D ˚s
iD1L2i . By the definition L2 is a

direct summand of L2, we write � W L2 ! L2 for the natural inclusion.
We choose a point x 2 Igord0

.W/, lying above x0, .xi/i D x. By Proposition 5.10,
associated with the point x on the Igusa tower, we have isomorphisms

ˇx W S 0ord^
Nx

�! OGm ˝ L2 and ˇ‚.x/ W Sord^
�.Nx0/

�! OGm ˝ L2:
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For all i D 1; : : : ; s, we may also consider the isomorphism ˇxi W .Sord
i /^Nxi

0

�!
OGm ˝ L2i . Then, ˇx D ˚s

iD1.ˇxi/iD1;:::;s. As before, we denote, respectively, by ˇ�
x

and ˇ�
‚.x/ the corresponding ring homomorphisms.

Proposition 6.8. The notation is the same as above. The map ˇ‚.x/ ı �Nx0 ı ˇ�1
x

agrees with the inclusion I˝ � W OGm ˝ L2 ! OGm ˝ L2.
Proof. The statement follows from Propositions 6.7 and 5.10 combined. ut

Equivalently, in terms of the local Serre–Tate coordinates, Proposition 6.8 states
that the two homomorphisms

��
x0 W R^

Sord;�.x0/
! R^

S0ord;x0
and I˝ �_ WWŒŒt��˝ .L2/_ �� WŒŒt��˝ .L2/_

satisfy the equality I˝ �_ D ˇ�
x

�1 ı ��
x0 ı ˇ�

‚.x/.

Corollary 6.9. The notation is the same as above. For any f 2 V, we have

.‚�f /x.t/ D .I˝ �_/.f‚.x/.t//:

Proof. By definition .‚�f /x.t/ D ˇ�
x

�1 ı j�x
�1..‚�f /x/, and f‚.x/.t/ D ˇ�

‚.x/
�1 ı

j�‚.x/
�1.f‚.x//. Also by definition, j ı‚ D � ı j and x0 D j.x/. Then, for all f 2 V ,

.‚�f /x.t/Dˇ�
x

�1ıj�x �1
..‚�f /x/Dˇ�

x
�1ıj�x �1ı‚�

x .f‚.x//Dˇ�
x

�1ı��
x0 ıj�‚.x/�1.f‚.x//;

and

.I˝ �_/.f‚.x/.t// D .1˝ �_/ ı ˇ�
‚.x/

�1 ı j�‚.x/
�1
.f‚.x//:

Thus, the equality I˝�_ ıˇ�
‚.x/

�1 D ˇ�
x

�1 ı��
x0 (following Proposition 6.8) suffices

to conclude. ut
We observe that the statement in Corollary 6.9 is equivariant for the action of

H0.Zp/. More precisely, the following equalities hold.

Lemma 6.10. For any g 2 H0.Zp/ � H.Zp/, x 2 Igord0
.W/, and f 2 V, we have

.‚�f /xg.t/ D .I˝ g�1/.‚�.g � f //x.t/ and .I˝ �_/.f‚.xg/.t//

D .I˝ �_ ı g�1/..g � f /‚.x/.t//:

Proof. Recall that � ı g D g ı � and ‚ ı g D g ı ‚, for all g 2 H0.Zp/ � H.Zp/.
Thus, for any x 2 Igord0

.W/, the point xg is another point of Igord0
satisfying‚.x/g D

‚.xg/, and for all f 2 V , we have ‚�.g � f / D g �‚�f . The statement then follows
immediately from Proposition 5.13. ut
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By the t-expansion principle, we deduce the following vanishing criteria.

Corollary 6.11. Let x 2 Igord0
.W/, f 2 H0.Sord; E�/, for any �.

The �-restriction res�.f / of f to the subgroup G0 vanishes if and only if

.I˝ �_/.‰�.f /‚.x/.t// D 0:

Proof. By Theorem 5.14, res�.f / vanishes if and only if ‰0
�.res�.f //x.t/ vanishes.

On the other hand, Proposition 6.5 and Corollary 6.9 combined imply

‰0
�.res�.f //x.t/ D ‚�.‰�.f //x.t/ D .I˝ �_/.‰�.f /‚.x/.t//:

ut
Corollary 6.12. Let x 2 Igord0

.W/, f 2 H0.Sord; E�/, for any �. Let �0 ¤ � be a
dominant weight of T 0.

Assume �0 D �� , for some � 2 WH.T/, and choose g� 2 NH.T/.Zp/ lifting � .
The .�; �0/-restriction res�;�0.f / of f to the subgroup G0 vanishes if and only if

.I˝ .�_ ı g� //.‰�.f /‚.x/g� .t// D 0:

Proof. Theorem 5.14 implies that res�;�0.f / vanishes if and only if‰0
�0.res�;�0.f //x.t/

vanishes. By combining Proposition 6.6 and Corollary 6.9, we have

‰0
�0.res�;�0.f //x.t/ D ‚�.g� �‰�.f //x.t/ D .I � �_/..g� �‰�.f //‚.x/.t//:

Finally, Proposition 5.13 implies

.g� �‰�.f //‚.x/.t/ D .I˝ g� /.‰�.f /‚.x/g� .t//:

ut
Note that, in the above corollary, since �0 ¤ �, g� … H0.W/ and the point‚.x/g�

is not in the image of ‚, for any x 2 Igord0
.W/.

Corollary 6.13. Let x 2 Igord0
.W/. Let f be a global function on the Igusa tower

fIgord
n gn�0, i.e., f 2 V. The restriction ‚�f of f to the subgroup G0 vanishes if and

only if .I˝ �_/..g � f /‚.x/.t// D 0, or equivalently .I˝ �_/.f‚.x/g.t// D 0, for all
g 2 T.Zp/ D T 0.Zp/.

Proof. By Proposition 5.15, ‚�f vanishes if and only if .g � ‚�f /x.t/ vanish for
all g 2 T.Zp/. From Lemma 6.10 and Corollary 6.9, for all g 2 T.Zp/ (recall
T.Zp/ � H0.Zp/), we deduce

.g�‚�f /x.t/ D .I˝g/.‚�f /xg.t/ D .I˝.gı�_//.f‚.xg/.t// D .I˝.gı�_//.f‚.x/g.t//
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On the other hand, we also have

.g �‚�f /x.t/ D .‚�.g � f //x.t/ D .I˝ �_/.g � f /‚.x/.t/:

ut
Corollary 6.14. Let x 2 Igord0

.W/. Let r 2 N, and let f ; f 0 be two p-adic
automorphic forms on GU of weights �; �0, for any �; �0, i.e., f 2 VN Œ��; f 0 2 VN Œ�0�.
We denote by res�.f / and res�0.f 0/ their restrictions to the subgroup G0. Then
res�.f / � res�0.f 0/mod pr if and only if

�.g/.I˝ �_/.f‚.x/.t// � �0.g/.I˝ �_/.f 0
‚.x/.t// mod pr;

for all g 2 T.Zp/:

Proof. The statement is an immediate consequence of the Corollary 6.13. ut
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Abstract In this paper we extend results on Kneser–Hecke-operators for codes over
finite fields, to the setting of codes over finite chain rings. In particular, we consider
chain rings of the form Z=p2Z for p prime. On the set of self-dual codes of length
N, we define a linear operator, T , and characterize its associated eigenspaces.
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1 Introduction

Many of the concepts of lattice theory have analogues in coding theory and vice
versa.

Lattices L are Z-modules generated by a basis of Euclidean space .RN ; .; //. So
they come with a given inner product that is used to define the dual lattice

L# WD fx 2 RN j .x; `/ 2 Z for all ` 2 Lg

which satisfies vol.RN=L/ vol.RN=L#/ D 1. The Euclidean norm enables the count-
ing of lattice points according to their length and therewith defines a holomorphic
function

�L.z/ WD
X

`2L

exp..`; `/� iz/; z 2 C;=.z/ > 0

on the upper half plane, the so-called theta series of the lattice L. From the theta
series, it is possible to read off important invariants of the lattice, such as the density
of the associated sphere packing. Theta series have nice invariance properties, they
are examples of modular forms. In particular for even unimodular lattices (i.e.,
L D L# and .`; `/ 2 2Z for all ` 2 L), this theta series is a modular form for the
full modular group SL2.Z/ ([6, Theorem 2.1]). Good upper bounds on the sphere
packing density of an even unimodular lattice can be found using the theory of
modular forms.

For the purpose of this note, codes C are R-submodules of RN , where R is a finite
commutative ring. Also RN has a standard inner product .; / that is used to define
the dual code

C? D fx 2 RN j .x; c/ D 0 for all c 2 Cg

for which one has jCjjC?j D jRjN . Important invariants of the code C are given in
the complete weight enumerator of C (see Definition 10) which is a homogenous
polynomial of degree N in jRj variables. For self-dual codes (i.e., C D C?) this
complete weight enumerator is invariant under the associated Clifford–Weil group
(as defined in [12]) which is a finite complex matrix group. Again for certain
families of self-dual codes invariant theory of these groups allow to find good upper
bounds on the error correcting properties of the codes.

There is a direct connection relating lattices and codes given by the well-known
Construction A (cf. [4, Sect. 7.2]). This construction associates a lattice L.C/ to a
code C over a finite prime field which inherits certain properties of the code: If C
is self-dual, then so is L.C/, more general L.C/# D L.C?/ and also the theta series
of L.C/ is obtained from the complete weight enumerator of C by inserting certain
well-defined theta functions (see [4, Theorem (7.3)]).
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Also other concepts like Siegel theta series and Siegel’s phi operator have their
coding theory analogues: higher genus complete weight enumerators and Runge’s
phi operator [16]. Also theta series with harmonic coefficients have a counterpart in
coding theory (see [1, 2]). One of the major tools to study modular forms are Hecke-
operators. Certain Hecke operators may be expressed in terms of lattices (see, for
instance, [11]). In [10], Nebe translates the notion of Hecke operators for theta series
to the setting of codes over finite fields, defining the Kneser–Hecke-operator for
codes when R D Fq is a finite field and therewith answers a question raised in 1977
in [3]. The primary goal of this paper is to extend these results to codes over finite
chain rings, beginning with those chain rings of the form R D Z=p2Z.

As in [10], we consider the family F of codes of a certain Type. While [10] deals
with self-dual codes over finite fields, the present note starts the investigation for
self-dual codes over R D Z=p2Z (for a complete discussion of code Types, see [12]).
The general strategy of these papers is the same, namely we define some notion
of equivalence for codes, define a neighboring relation, and then define a linear
operator, T , on the set of equivalence classes of codes in F . This operator maps a
code C to the sum of equivalence classes containing neighboring codes to C. One
new ingredient here is that self-dual codes of the same length need not be isomorphic
as R-modules. This yields a natural partition of the set of equivalence classes
of self-dual codes into module isomorphism classes. We describe the connected
components of the restriction of the neighboring graph to each of these subsets.
It turns out that odd and even primes behave quite differently very likely due to
the fact that we only work with bilinear forms instead of quadratic forms. For the
ring R D Z=4Z we get a very nice description of these connected components in
Theorem 38.

This note reports on research on a WIN project for which time was limited.
As we are just at the starting point, this paper implicitly contains more questions
than answers. Therefore, it should be considered as a motivation to continue and
generalize the research on this topic.

2 Codes Over Z=p2Z

In this note we will discuss codes over base rings R of the form R D Z=p2Z where
p 2 Z is prime. Our computations will be performed for p D 2 as there are programs
available to test equivalence of quaternary codes.

Recall that a code C over a finite ring R is an R-submodule C � RN of the free
R-module of rank N 2 N. The Krull–Schmidt theorem gives us valuable insight
regarding structure of the R-module C. Before stating this result, it is helpful to
recall some facts about the ring R D Z=p2Z:

(a) R is a local ring with maximal ideal pR and unit group R� D R n pR. The ideals
in R are R, pR, and f0g.

(b) There are exactly two indecomposable R-modules,
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(1) the regular R-module R and
(2) the simple R-module S Š R=pR Š pR.

Applying the Krull–Schmidt theorem, we have that every finitely generated
R-module M decomposes as M Š Ra ˚ Sb for unique a; b 2 N0 D f0; 1; 2; : : :g.

2.1 Self-Dual Codes

One class of codes of particular interest is self-dual codes. Here we present the
definition:

Definition 1. The standard inner product is given by b W RN � RN ! R where
b.x; y/ WDPN

iD1 xiyi. For a code C � RN , the dual code is defined as

C? WD fx 2 RN j b.x; c/ D 0 for all c 2 Cg:

C is called self-orthogonal if C 	 C? and C is called self-dual if C D C?.

Let C � RN be a code of length N over the ring R. We write the elements of C as
rows. Let d 2 N be the smallest integer such that there exist r1; : : : ; rd 2 RN which
generate the R-module C. Then a generator matrix of C is a matrix G 2 Rd�N where
the rows of G are d elements r1; : : : ; rd generating C. The isomorphism type of C
as an R-module may be read off from a canonical generator matrix which we will
define below. There is also a more structural way to obtain this information.

Remark 2. As jCjjC?j D jRjN D p2N (see, for instance, [12, Lemma 3.3.4]) any
self-dual code C D C? � RN is isomorphic, as an R-module, to Ra ˚ Sb with
2aC b D N.

We first define families F of self-dual codes. Let F WD ˚

C D C? � RN
�

. For
N D 2aC b with a; b 2 N0 we define the set

Fa;b WD
˚

C � RN j C D C?;C Š Ra ˚ Sb
� 	 F :

Then F is the disjoint union of the sets Fa;b. Let ŒC� denote the permutation
equivalence class of the code C 2 F . Then any of the sets Fa;b is the disjoint union
of finitely many equivalence classes

Fa;b D ŒC1�
	[ : : : 	[ �Ch.a;b/

�

:

We call h.a; b/ the class number of Fa;b. Note that, when a D 0 and b D N we
always have h.0;N/ D 1, as F0;N consists of a single code:

F0;N D
˚

pRN
� D �pRN

�

:
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Let C 2 Fa;b. Then after replacing C by some equivalent code, if necessary, the
code C has a generator matrix

G D
	

Ia X Y
0 pIb pZ




where Ia and Ib denote the unit matrices of size a and b, respectively,
X 2 f0; : : : ; p � 1ga�b, Y 2 Ra�a, and Z 2 f0; : : : ; p � 1gb�a. The self-duality
of C is equivalent to GGtr D 0. Thus XXtr C YYtr D �Ia and YZtr D �X .mod p/.

2.2 Torsion and Residue Codes

To any code C over R we can associate a chain of codes over Fp using the general
constructions for codes over finite chain rings (see [5] or [13]) as follows.

Definition 3. For a vector v 2 RN , let v denote the canonical projection of v to the
vector space .R=pR/N Š FN

p . Then the torsion code is given by

Tor.C/ D fv W pv 2 Cg � .R=pR/N Š FN
p

and Tor.C/ has the generator matrix
	

Ia X Y
0 Ib Z




where X;Y , and Z are given by the generator matrix G of C. The residue code is
given by

Res.C/ D fv W v 2 Cg � .R=pR/N Š FN
p ;

and Res.C/ has the generator matrix
�

Ia X Y
�

:

From this definition, it is clear that Res.C/ 	 Tor.C/. It will be helpful for us to
consider the following equivalent definitions for Tor.C/ and Res.C/. Identifying pR
with Fp by p 7! 1, we have

Tor.C/ D C \ pRN � FN
p

and

Res.C/ D .CC pRN/=pRN � FN
p :

We also note that C is of module isomorphism type Ra ˚ Sb if and only if
dim.Tor.C// D aC b and dim.Res.C// D a.
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The lemma which follows is just [5, Lemma 5.4], but we present a proof here for
the sake of exposition.

Lemma 4. If the code C � RN is self-dual, then Res.C/? D Tor.C/ with respect to
the standard inner product on FN

p .

Proof. Let C D C? Š Ra˚ Sb � RN . Then by Remark 2 we have that 2aC b D N
and hence dim.Tor.C//Cdim.Res.C// D N. Thus it is enough to show that C 	 C?
implies that Tor.C/ 	 Res.C/?.

Let v;w 2 RN such that v 2 Tor.C/ and w 2 Res.C/. Then b.pv;w/ D
pb.v;w/ D 0, since pv;w 2 C and C is self-dual. But then b.v;w/ 2 pR, and
consequently v and w have inner product 0 in FN

p . ut
Corollary 5. Let C D C? � RN. Then C is uniquely determined by any of its
maximal free submodules.

Proof. Assume that C Š Ra˚Sb and let C1 � C be such a maximal free submodule,
so C1 Š Ra. Then Res.C/ D Res.C1/, so given such a C1 it is possible to find
Res.C/. Combining this with Lemma 4, we have

Tor.C/ D Res.C/? D Res.C1/
?

and therefore we can determine C \ pRN . But since C D C1 C .C \ pRN/, we see
that C1 uniquely determines C. ut

Suppose that we have a self-orthogonal code C1 	 C?
1 � RN with C1 Š Ra.

Then we also have that RN=C1 Š HomR.C1;R/ Š Ra and hence C?
1 Š RN�a.

Consequently, we have C1 C pC?
1 Š Ra ˚ SN�2a. Moreover C1 C pC?

1 is self-
orthogonal and hence self-dual, because jC1 C pC?

1 j D pN . Therefore we make the
following remark:

Remark 6. Given any self-orthogonal code C1 	 C?
1 � RN with C1 Š Ra for

some a, there is always a unique self-dual code C Š Ra ˚ SN�2a containing C1 as a
maximal free submodule, namely C D C1 C pC?

1 .

A code C over F2 is called doubly even if the number of nonzero entries in every
codeword in C is divisible by 4. This definition will be illuminated further in the
next section, but a preliminary notion is necessary for the following result.

Corollary 7. If C 	 C? � RN is a self-orthogonal code, then Res.C/ is a self-
orthogonal code of length N over Fp. Moreover if p D 2, then Res.C/ is doubly
even.

A special case is b D 0: here C is a free R-module so Res.C/ D Tor.C/. If we
additionally have that C D C?, then Res.C/ � FN

p is a self-dual code, which is
doubly even if p D 2.

Doubly even self-dual binary codes exist if and only if the length N is a multiple
of 8. For odd primes p self-dual codes over Fp exist if and only if either the length
N is a multiple of 4 or N is even and p � 1 .mod 4/.
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Corollary 8. Let C D C? � RN be a self-dual code that is also a free R-module.
Then C Š RN=2 so N is even. If p D 2, then the length N is a multiple of 8 and if
p � 3 .mod 4/, the length N is a multiple of 4.

We usually get a smoother theory of orthogonal groups (such as Witt’s extension
theorem) if we work with quadratic forms. This is straightforward if p ¤ 2: The
function q W RN ! R given by q.x/ WD 1

2
b.x; x/ is a quadratic form with associated

bilinear form b, as

b.x; y/ D q.xC y/ � q.x/ � q.y/:

Thus the orthogonal groups of b and q coincide and any self-orthogonal code C
satisfies q.C/ D f0g, i.e., C is isotropic.

If p D 2 and R D Z=4Z, the situation is more complicated: There is a well-
defined quadratic form

q W RN ! Z=8Z; q.x/ WD
N
X

iD1
x2i

where x2i D 1 2 Z=8Z if xi D 1 or 3 2 R, x2i D 0 if xi D 0, and x2i D 4 if xi D 2 2 R.
Then b.x; y/ D 1

2
.q.x C y/ � q.x/ � q.y// for all x; y 2 RN . We call C isotropic if

q.C/ D f0g. Clearly isotropic codes are always self-orthogonal. Isotropic self-dual
codes are also called doubly even self-dual codes.

Essentially the same form q may also be obtained as an R-valued quadratic form.
If C � RN is a self-orthogonal code, then b.c; c/ D 0 for all c 2 C, so the number
of odd entries in c is 0 mod 4. Let

X WD fx 2 RN j b.x; 1/ � 0 .mod 2/g

(where 1 is the all ones vector) denote the submodule of all vectors having an even
number of odd entries. Then b.x; x/ is always even for x 2 X , so

q W X ! R; x 7! 1

2
jfi j xi is odd gj C 2jfi j xi D 2gj

is a well-defined R-valued quadratic form with associated bilinear form b. In fact
this quadratic form is obtained from the restriction of the Z=8Z-valued form to X
and then dividing by 2. The radical of X is X? D h2�1i and self-dual isotropic codes
correspond to the maximal isotropic subspaces of the non-degenerate quadratic
module .X=X?; q/.

Note that any self-dual code C contains X? D h2 � 1i as b.x; 2 � 1/ D 2 times
the number of odd entries in x. So the doubly even self-dual codes are in natural
bijection to the maximal isotropic subspaces of X=X?.
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Note that the module structure of X=X? is RN�2˚ S2 if N is even and it is RN�1
if N is odd. A similar situation has been investigated by J.A. Wood [17] for the case
that R D F2 and the quadratic form is Z=4Z valued. The second approach to the
quadratic form clarifies his “obstruction” to the extendability of isometries.

2.3 Weight Enumerators

In this section we will build to the definitions of two different types of weight
enumerators of codes.

Definition 9. Let R be any ring and N 2 N.

(1) For any c WD .c1; : : : ; cN/ 2 RN the Hamming weight of c is

wt.c/ WD jfi; 1 � i � N W ci ¤ 0gj:

(2) For any subset C 	 RN the minimal Hamming weight of C is

wt.C/ D minfwt.c/j0 ¤ c 2 Cg:

More generally, for each c 2 RN we can use the notion of the composition of c
to refine its Hamming weight. For each r 2 R define ar.c/ WD jfi W ci D rgj. The
set far.c/jr 2 Rg is the composition of c and tells us the number of components of
c which are equal to each r 2 R. This is connected to the Hamming weight in that
wt.c/ D N � a0.c/.

For a code C � RN the weight enumerator of C is a polynomial attached to
the code and the associated weight. These may give, for example, the number of
codewords with a given weight or with a given composition.

Definition 10. Let R be a ring and C � RN be a code of length N 2 N.

(1) The Hamming weight enumerator of C is

hwe.C/.x; y/ WD
X

c2C

xN�wt.c/ywt.c/ 2 CŒx; y�

(2) The complete weight enumerator of C is

cwe.C/ WD
X

c2C

N
Y

iD1
xci D

X

c2C

Y

v2V

xav.c/
v 2 CŒxv W v 2 V�:

Note that in the above definition, both weight enumerators are homogeneous
polynomials of degree N.
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Another weight, the Lee weight, is defined on elements of rings of the form
R D Z=mZ for m 2 N which we identify with the set f0; : : : ;m � 1g � Z. The
Lee weight can be thought of as the minimum “distance” of an element of r 2 R to
0 2 R. More precisely:

Definition 11. Let R D Z=mZ for some m 2 N.

(1) The Lee weight of an element r 2 R is Lee.r/ WD minfr;m � rg.
(2) For any N 2 N and any vector c D .c1; : : : ; cN/ 2 RN we define the Lee weight

of c as

Lee.c/ D
N
X

iD1
Lee.ci/:

Note that in the case where m D 2 we find that for any c 2 RN wt.c/ D Lee.c/.
In the case of quaternary codes we have R D f0; 1; 2; 3g and the Lee weights of
these elements are, respectively, 0; 1; 2; 1.

2.4 The Associated Clifford–Weil Groups

One main goal of the book [12] is to develop a general theory of a “Type” T of
a self-dual code over a finite alphabet V . To such a Type one may associate in a
very natural way a finite subgroup C.T / � GLjVj.C/, the associated Clifford–Weil
group, such that the complete weight enumerators of self-dual codes of Type T
are invariant under C.T /. In fact one of the main results of [12] is that for codes
over finite chain rings (or more general matrix rings over finite chain rings) the
complete weight enumerators of self-dual codes of Type T and length N span the
space of degree N homogeneous invariants of C.T /. This section intends to explain
the recipe to compute C.T / for our situation without introducing the general, but
quite heavy, machinery from [12].

In our situation the alphabet V D R D Z=p2Z is the ring itself. As any code
C � RN is an R-module we have C D rC for any r 2 R� and hence also

cwe.C/.x0; x1; : : : ; xp2�1/ D cwe.C/.xr	0; xr	1; : : : ; xr	.p2�1//

so complete weight enumerators of codes are invariant under all variable substitu-
tions

mr W xv 7! xrv;

where r is a unit in R.
There is a famous theorem, proven in the Ph.D. thesis of Jessie MacWilliams, that

relates the weight enumerator of a code over a finite field to the weight enumerator
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of its dual code. This result is proved in greater generality in [12, Sect. 2.2]. In our
situation this reads as follows: Let � WD exp. 2� i

p2
/ 2 C be a primitive p2-th root

of unity. For v 2 Z=p2Z we define h.xv/ WD P

w2Z=p2Z �
vwxw. Then for any code

C � .Z=p2Z/N the complete weight enumerator of the dual code is

cwe.C?/.x0; x1; : : : ; xp2�1/ D
1

jCjcwe.C/.h.x0/; h.x1/; : : : ; h.xp2�1//:

In particular if C D C?, then jCj D pN and cwe.C/ is invariant under

H WD 1

p
h W xv 7! 1

p

X

w2Z=p2Z

�vwxw:

One additional ingredient of a Type are certain quadratic conditions. One of these
conditions comes from the inner product of codewords with themselves: If C � RN

is self-orthogonal, then b.c; c/ D PN
iD1 c2i D 0 for all c 2 C and hence cwe.C/ is

invariant under the variable substitution d with

d.xv/ WD �v2xv
Definition 12. The associated Clifford Weil group of the Type of all self-dual codes
over Z=p2Z is

C.p2/ WD hmr;H; d j r 2 Z=p2Z�i � GLp2 .QŒ��/:

With this notation the main result of [12] implies that

Theorem 13. The invariant ring of C.p2/ is spanned by the complete weight
enumerators of all self-dual codes over Z=p2Z.

As an example we give explicit generators for p D 2 and p D 3:

C.4/ D hm3 D

0

B

B

@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1

C

C

A

;H D 1

2

0

B

B

@

1 1 1 1

1 � �1 ��
1 �1 1 �1
1 �� �1 �

1

C

C

A

; d D diag.1; �; 1; �/i

of order 26 D 64 where � D i is a primitive fourth root of unity and

C.9/ D hm2;H; di

where d D diag.1; �; �4; 1; �7; �7; 1; �4; �/, and � is a primitive ninth root of unity,
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m2 D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; and H D 1

3

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1 1 1 1

1 � �2 �3 �4 �5 �6 �7 �8

1 �2 �4 �6 �8 � �3 �5 �7

1 �3 �6 1 �3 �6 1 �3 �6

1 �4 �8 �3 �7 �2 �6 � �5

1 �5 � �6 �2 �7 �3 �8 �4

1 �6 �3 1 �6 �3 1 �6 �3

1 �7 �5 �3 � �8 �6 �4 �2

1 �8 �7 �6 �5 �4 �3 �2 �

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

We computed that jC.9/j D 2334 D 648.
Adding certain “quadratic” conditions we obtain overgroups of these associated

Clifford Weil groups: For instance, we may consider only those self-dual codes that
contain the all ones vector 1 D .1; : : : ; 1/. We have that 1 2 C? if and only if
b.c; 1/ D PN

iD1 ci D 0 for all c 2 C. Then the weight enumerator of C is invariant
under d1 W xv 7! �vxv and we obtain the associated Clifford Weil groups

C1.p
2/ WD hC.p2/; d1i:

For p D 2 we could also restrict to doubly even self-dual codes which yield an
additional invariance condition of the weight enumerator under the transformation
dq W xv 7! �v

2

8 xv , where �8 is a primitive 8th root of unity. We hence obtain

Cq.4/ WD hC.4/; dqi and C1;q.4/ WD hC.4/; dq; d1i:

The isomorphism type of these Clifford Weil groups may be read off from the
description of the hyperbolic co-unitary groups in [12, Definition 5.2.4]. From this
we obtain the following:

Remark 14. For odd primes p the group C.p2/ is isomorphic to SL2.Z=p2Z/ Š
.Z=pZ/3 W SL2.Z=pZ/. The group C.4/ is isomorphic to an extension of .Z=2Z/2

by a certain Sylow 2-subgroup S of SL2.Z=4Z/, namely

S D
�

a b
c d

�

2 SL2.Z=4Z/ j ac 2 2Z; bd 2 2Z
�

:

2.5 Equivalence of Codes

Definition 15. Let � 2 SN be a permutation of f1; : : : ;Ng and let a1; : : : ; aN 2 R�.
A monomial map is a map ..a1; : : : ; aN/; �/ W RN ! RN given by

..a1; : : : ; aN/; �/.r1; : : : ; rN/ WD
�

a1r�.1/; : : : ; aNr�.N/
�

:
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For the ring R, the set of all monomial maps is a group. We call this the monomial
group and denote it by MonN.R/.

Monomial maps are interesting in this context because of their connection to the
Hamming weight. What follows is the MacWilliams extension theorem which was
originally proved for codes over finite fields, but later extends to the more general
setting of codes over finite rings by Wood in [18].

Theorem 16 (MacWilliams Extension Theorem). Let C � RN and ' W C ! RN

be a homomorphism which preserves the Hamming weight, i.e., wt.c/ D wt.'.c//
for all c 2 C, then there exists a monomial map ..a1; : : : ; aN/; �/ such that

..a1; : : : ; aN/; �/.c/ D '.c/

for all c 2 C.

So if one only considers the Hamming weight, the natural notion of equivalence
for codes is monomial equivalence, where two codes are called monomially
equivalent if they are in the same orbit under the monomial group.

Monomial maps do not preserve the bilinear form b and hence they do not
preserve self-duality. This leads to the notion of strong monomial equivalence: this
is where we restrict the values a1; : : : ; aN to the set f˙1g. In this case, a2i D 1 and
thus the bilinear form b is preserved.

In this paper we consider an even finer equivalence relation, the permutation
equivalence:

Definition 17. Two codes C;D � RN are called (permutation) equivalent, C � D,
if there is a coordinate permutation � 2 SN such that �.C/ D D. Let

ŒC� WD fD j D � Cg

denote the (permutation) equivalence class of the code C and

Aut.C/ WD f� 2 SN j �.C/ D Cg

the automorphism group of C.

Note that permutation equivalent codes have the same complete weight
enumerator.

No matter which type of equivalence we take, equivalent codes are always
isomorphic as modules. However, two codes of the same module type need not
be equivalent as codes. Thus

C � D) C Š D:
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3 The Action of the Orthogonal Group

Definition 18. The orthogonal group ON.R/ is the group of all R-linear maps
preserving the bilinear form b,

ON.R/ WD f' 2 GLN.R/ j b.'.x/; '.y// D b.x; y/ for all x; y 2 RNg:
For R D Z=4Z the theory becomes much smoother if we work with quadratic

forms. Recall that X D fx 2 .Z=4Z/N j b.x; x/ 2 2Zg with radical X? D h2 � 1i.
Then

q W X ! R; x 7! 1

2
jfi j xi is odd gj C 2jfi j xi D 2gj

is a well-defined R-valued quadratic form, and X=X? is a non-degenerate quadratic
space with respect to q. Note that the module structure of X=X? Š RN�2˚ S2 if N
is even and it is RN�1 if N is odd.

For orthogonal groups of quadratic forms over fields, there is a famous theorem
attributed to Ernst Witt, that orthogonal mappings from subspaces extend to
orthogonal mappings of the full space.

Theorem 19 (Witt’s Extension Theorem) (See, for instance, [7] or [17]). Let
.V; q/ be a regular quadratic space over a field K and U � V. For any K-linear
injective map ' W U ! V with q.'.u// D q.u/ for all u 2 U, there is g 2 O.V; q/
such that ' D gjU.

Martin Kneser [7] generalized this theorem to local rings, if U is a free module.
It is easy to see that Witt’s extension theorem is wrong without this assumption

that U be free: In our situation R D Z=p2Z we could choose u WD .p; 0; : : : ; 0/ and
w WD .p; : : : ; p

„ ƒ‚ …

p

; 0; : : : ; 0/. Then b.u; u/ D b.w;w/ D 0 but there is no g 2 ON.R/

with g.u/ D w, because any such g would map Qu WD fx 2 RN j px D ug D
.1; 0; : : : ; 0/CpRN to Qw D .1; : : : ; 1; 0; : : : ; 0/CpRN but the elements x 2 Qu satisfy
b.x; x/ 2 1C pR and the elements y 2 Qw satisfy b.y; y/ 2 pR.

Note that this is also true for odd primes p, so this is not caused by the problem
of working with a bilinear form instead of a quadratic form.

Nevertheless, the following theorem is true:

Theorem 20. Let Fa;b WD fC D C? � RN j C ŠR Ra ˚ Sbg so a; b 2 N0,
2aC b D N. If p ¤ 2, then ON.R/ acts transitively on Fa;b.

Proof. Let C;D 2 Fa;b and choose subcodes C0 � C;D0 � D so that C0 Š Ra,
D0 Š Ra. Then C0 is a free module, any R-isomorphism ' W C0 ! D0 preserves the
bilinear form (as this is 0 on C0 and also on D0), and

HomR.C
0;R/ D fc 7! b.c; x/ j x 2 RNg:

So by [7, Folgerung (4.4)] there is g 2 ON.R/ such that gjC0 D '. Then Corollary 5
implies that g.C/ D D. q.e.d.
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For p D 2 we want to proceed similarly as for odd primes but .C0CX?/=X? �
X=X? does not satisfy the conditions from [7, Folgerung (4.4)], because .C0 C
X?/=X? is usually not free.

Remark 21. If p D 2, then define

F .q/
a;b WD fC D C? � RN j q.C/ D f0g;C Š Ra ˚ Sbg

2aC b D N for a; b 2 N0. For C 2 F .q/
a;b there are two possibilities,

(1) 2 � 1 2 2C and then C=X? Š Ra�1 ˚ SbC1; or,
(2) 2 � 1 62 2C then C=X? Š Ra ˚ Sb.

According to these two possibilities the orthogonal group O.X=X?; q/ has at least
two orbits F .q/

a;b .1/ and F .q/
a;b .2/ on F .q/

a;b .

Remark 22. Keeping the notation of the previous remark, let C0 � C be a subcode
of C that is free of rank a. Then 2C0 D 2C and in the first case X? 	 C0
and C0=X? D C1 ˚ hvi with C1 Š Ra�1 and 2v D 2 � 1. In the second case
X? 6	 C0 and C0 C X?=X? Š C0 Š Ra is free. So here we may directly apply
Witt’s theorem for local rings [7, Folgerung (4.4)] to show that O.X=X?; q/ acts
transitively on F .q/

a;b .2/.

For F .q/
a;b .1/ we can apply [7, Folgerung (4.4)] twice to obtain transitivity:

Lemma 23. Let C;D 2 F .q/
a;b .1/, C0, D0 free submodules of rank a as before, and

C0 D C1 ˚ hvi, D0 D D1 ˚ hwi as in Remark 22. Then there is u 2 O.X=X?; q/
mapping C0=X? onto D0=X?.

Proof. We first want to find reflections in O.X=X?; q/ that map v to w. As both
vectors v;w satisfy 2v D 2 � 1 D 2w, we have v;w 2 f1;�1gN . The element
zi WD 2ei D .0; : : : ; 0; 2; 0; : : : ; 0/, with 2 at the i-th place lives in X . We have
q.zi/ D 2, bq.zi; x/ 2 2R for all x 2 X , so the map

szi W X ! X ; x 7! x � bq.zi; x/ei

is a well-defined orthogonal mapping szi 2 O.X=X?; q/. If x D .x1; : : : ; xN/, then
bq.zi; x/ D 2xi and hence

q.szi.x// D q.x � xizi/ D q.x/C x2i q.zi/ � xibq.x; zi/ D q.x/C 2x2i � 2x2i D q.x/:

Moreover szi multiplies the i-th coordinate of v by �1, so a certain product of these
reflections szi will map v to w. So we may assume without loss of generality that
v D w. We now replace X=X? by the subspace

E WD hvi? D fxC X? j x 2 X ; bq.x; v/ D 0g � X=X?:
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As E? D hvi=X? any g 2 O.E; q/ preserves v. Moreover C1 Š C1CX?=X? � E
and D1 Š D1 C X?=X? � E are both free submodules of E. By Witt’s theorem
for free modules over local rings, there is such a mapping g 2 O.E; q/ with
g.C1/ D D1. q.e.d.

Corollary 24. The orthogonal group O.X=X?; q/ has two orbits on the set F .q/
a;b :

F .q/
a;b .1/ WD fC 2 F .q/

a;b j 2 � 1 2 2Cg
and

F .q/
a;b .2/ WD fC 2 F .q/

a;b j 2 � 1 62 2Cg

One might replace O.X=X?; q/ by the group ON.R; q/ in this corollary, however
we have not yet closed a necessary gap in the proof. It would also be interesting to
have a similar result for p D 2 and ON.Z=4Z/ for the set Fa;b. This might be
obtained along the lines of [15].

4 Hecke Operators

4.1 Survey of the Results Over Fields

The paper [10] defines and analyzes certain linear operators that are shown to be
Hecke operators for the associated Clifford Weil groups in [9]. Let F be a finite
field, N 2 2N, and F be the set of all self-dual codes in FN . Assume that C1; : : : ;Ch

represent the permutation equivalence classes of codes in F . Let V denote the
h-dimensional complex vector space

V WD
(

h
X

iD1
aiŒCi� j ai 2 C

)

;

and define a Hermitian positive definite scalar product by

.ŒC�; ŒD�/ WD jAut.C/j ıŒC�;ŒD�
for all C;D 2 F .

Definition 25. (1) For 0 � k � N=2, two codes C;D 2 F are called k-neighbors,
written as C �k D, if dim.C \ D/ D dim.C/ � k.

(2) Define a linear operator Tk on V by

Tk.ŒC�/ WD
X

D�kC

ŒD�;

where the sum is over all k-neighbors D 2 F of the code C. The operator Tk is
called the k-th Kneser–Hecke-operator for F .
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(3) Let T WD T1 be the Kneser–Hecke-operator and call 1-neighbors simply
neighbors.

The following result and its proof can be found in [10, Theorem 3], but we state
it here in order to illustrate the approach for codes over fields as compared to codes
over finite chain rings.

Theorem 26. For 0 � k � N=2, the operator Tk is a self-adjoint linear operator
on the Hermitian vector space V .

The main result of [10] is an explicit computation of the T-eigenspace decom-
position of V and the corresponding eigenvalues for all classical types of self-dual
codes over finite fields.

In [9] the action of T on the space of genus m-weight enumerators of the codes
in F coincides with the action of a certain linear combination of double cosets of
the associated Clifford Weil groups.

There is also a nice representation theoretic interpretation of T (see [14,
Chap. 5]): Let A denote the adjacency matrix of the neighboring graph whose
vertices are the elements of F and two vertices C and D are connected by an edge,
if and only if C and D are neighbors. The associated orthogonal group O.FN/ acts
on the set F and respects the neighboring relation. In particular, A is an element in
the endomorphism ring of the corresponding permutation representation of O.FN/.
This endomorphism ring is well known and can be described in the framework of
Bruhat–Tits theory using the Weil group of O.FN/. In particular, it is shown in [14,
Sect. 5.3.13] that the action of A coincides with the one of a certain (very natural)
double coset of O.FN/. This implies that A generates the endomorphism ring of this
permutation representation as a C-algebra, and in particular, this endomorphism ring
is commutative and hence the permutation representation is multiplicity free.

The aim of the next section is to generalize some of these aspects to codes over
finite chain rings, where we start with R D Z=p2Z.

4.2 Kneser–Hecke-Operators for R

We now return to the situation where R D Z=p2Z. As before, let F D 	[2aCbDN Fa;b

denote the set of all self-dual codes in RN . Assume that C1; : : : ;Ch represent the
permutation equivalence classes of codes in F . Let V denote the h-dimensional
complex vector space

V WD
(

h
X

iD1
aiŒCi� j ai 2 C

)

;
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and define a Hermitian positive definite scalar product by

.ŒC�; ŒD�/ WD jAut.C/j ıŒC�;ŒD�
for all C;D 2 F . Then, V is the orthogonal sum of all Va;b with 2aC b D N, where
Va;b is the subspace of V generated by all ŒC� with C 2 Fa;b.

Definition 27. (1) Two codes C;D 2 F are called neighbors, denoted C � D, if
C=.C\D/ Š D=.C\D/ Š pR. We call them free neighbors, denoted C �R D,
if C=.C \ D/ Š D=.C \ D/ Š R.

(2) We define a graph � with vertex set F . Two vertices C and D are joined by an
edge in � , if C � D. Similarly we define the graph �a as the restriction of �
to Fa;b.

In the following we will mainly be concerned with the neighboring relation� and
the graphs �a. However �R might be the more suitable generalization of neighbors
over fields, as this relation preserves the module isomorphism type.

Lemma 28. If C �R D, then C Š D as R-modules.

Proof. By definition, we have the exact sequences

0! C \ D! C! R! 0; 0! C \ D! D! R! 0:

As R is a free module, both sequences split and hence C Š C \ D˚ R Š D. ut
Note that this lemma is not true if one replaces free neighbors by neighbors. Now

we define a linear operator T on V by T.ŒC�/ D P

D�CŒD�. By arranging the basis
elements according to module isomorphism type, we have

T D

2

6

6

6

6

4

T0 : : :
::: T1

: : :
:::

: : : Tn

3

7

7

7

7

5

;

where n D bN
2
c and

Ta W Va;b ! Va;b;Ta.ŒC�/ WD
X

D�C;D2Fa;b

ŒD�

can be computed from the adjacency matrix of the neighboring graph �a. We
immediately observe that for any choice of F , T0 D Œ0�, since there is only one
code in F of isomorphism type SN . Note that our notation does not imply that T is
a block diagonal matrix. On the contrary, as we will see below, for odd primes p the
matrices Ta are all 0. So the Ta are only interesting for p D 2 and for odd primes
one should probably consider free neighbors or the matrix T2 to obtain interesting
operators on Va;b.
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Theorem 29. The Kneser–Hecke-operators T (and hence all the Ta) and TR are
self-adjoint linear operators on the Hermitian space V .

Proof. Let us prove the self-adjointness of T , this implies that the Ta as the
summands of Va;b are orthogonal. By definition, T is linear. For basis vectors ŒC�; ŒD�
with C;D 2 F , one has

NŠ
j Aut.D/j jfC0 2 F j C0 � D and C0 � Cgj

DP QD�D jfC0 2 F j C0 � QD and C0 � Cgj

DP QC�C jfD0 2 F j D0 � QC and D0 � Dgj

D NŠ
j Aut.C/j jfD0 2 F j D0 � C and D0 � Dgj:

The middle equality follows since the neighboring relation is symmetric and
invariant under equivalences. Therefore

.T.ŒC�/; ŒD�/ D jAut.D/j jfD0 2 F j D0 � C and D0 � Dgj

D jAut.C/j jfC0 2 F j C0 � D and C0 � Cgj D .ŒC�;T.ŒD�//:
Hence T is self-adjoint. The self-adjointness of TR follows similarly. ut

4.3 Connected Components of �a

Although it is known from [8] that � is a connected graph, it does not follow that the
�a are connected. In fact, it is not difficult to compute explicit examples in which the
�a have multiple connected components; one such example will appear in Sect. 5.
Therefore, it is of interest to understand the size and composition of the connected
components of the �a. To do this, we will begin by studying some of the natural lifts
of neighboring codes over R to codes over Fp, as described in Definition 3.

Lemma 30. Let C;D 2 Fa;b be neighbors, C � D. Then Tor.C/ D Tor.D/ and
Res.C/ D Res.D/.

Proof. Let C � D and put E WD C\D. Then C=E and D=E are two distinct minimal
submodules of E?=E, and hence E?=E Š S˚ S is not cyclic.

It suffices to show that C \ pRN D D \ pRN as this implies Tor.C/ D Tor.D/.
The equality of the residue codes then follows from Lemma 30.

Seeking for a contradiction we suppose that C \ pRN ¤ D \ pRN , we get

C D C \ pRN C E;

so we may choose x D pv 2 C \ pRN such that C D E˚ hxi.
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Next, we will show that for any w 2 E?nC, it follows that pw 62 pE. To show this,
suppose that w 2 E?nC. Then hw; xi ¤ 0, or else it would follow that hw; eCxi D 0
for every e 2 E, and hence w 2 C D C?. Now suppose there is some y 2 E so that
pw D py, then hy; xi D 0, since y 2 E 	 C D C?. But then,

0 D hy; xi D hy; pvi D hpy; vi D hpw; vi D hw; pvi D hw; xi ¤ 0;

a contradiction.
Since C \ pRN ¤ D \ pRN , we may similarly say that D D E ˚ hpwi for some

pw 2 D \ pRN . But then clearly pw 2 E? n C. However,

p � pw D p2w D 0 2 pE

contradicting what was established in the preceding paragraph. Therefore, we may
conclude that C \ pRN D D \ pRN . ut

Now we define the following set,

N.C/ WD fD 2 Fa;b j Tor.D/ D Tor.C/g ;

noting that in view of Lemma 30, N.C/ contains all neighbors of C which are of the
same module isomorphism type. Recalling Definition 2, we have

Res.C/ WD .CC pRN/=pRN � .R=pR/N D FN
p ;

and so from Lemma 30, we also have

N.C/ D fD 2 Fa;b j Res.D/ D Res.C/g :

For any D 2 N.C/ it is clear that N.C/ D N.D/. Furthermore, for D 2 N.C/ we
have DC pRN D CC pRN from Lemma 30. Hence, any such a family N.C/ defines
a unique non-degenerate bilinear Fp-vector space

W WD CC pRN=C \ pRN Š F2a
p ;

with the bilinear form h:; :i W W �W ! Fp given by

˝

cC pxC .C \ pRN/; dC pyC .C \ pRN/
˛ D 1

p
b.cC px; dC py/:

The Fp-bilinearity is clear as b is bilinear over R, and note that this product is well
defined because for all c; d 2 C and x; y 2 RN we have

b.cC px; dC py/ D b.c; d/C p.b.x; d/C b.c; y// D p.b.x; d/C b.c; y//;
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hence

hcC pxC .C \ pRN/; dC pyC .C \ pRN/i D b.x; d/C b.c; y/ .mod p/ 2 Fp;

and since .C \ pRN/ D .C C pRN/?, this value is independent of choice of
representative. Finally, the non-degeneracy follows from the fact that

hcC pxC .C \ pRN/; dC pyC .C \ pRN/i D 0

for all dC py 2 CC pRN , if and only if cC px 2 .CC pRN/? D C\ pRN , and thus
if and only if cC pxC .C \ pRN/ D 0 2 W.

Lemma 31. C=.C \ pRN/ and X WD pRN=.C \ pRN/ are maximal isotropic
subspaces of W with

W D C=.C \ pRN/˚ pRN=.C \ pRN/:

Proof. As C D C? and pRN D .pRN/? are maximal self-dual submodules of
.RN ; b/, their images are maximal self-dual subspaces of W. Note that both Fp-
vector spaces have dimension a and 2a D dim.W/. To see that the sum is direct, it
is enough to show that their intersection is 0, but this is clear, as

C=.C \ pRN/ \ pRN=.C \ pRN/ D .C \ pRN/=.C \ pRN/ D f0g:

ut
Let .e1; : : : ; ea/ be any Fp-basis of C=.C\ pRN/. By the non-degeneracy of h:; :i

there are elements .f1; : : : ; fa/ 2 X WD pRN=.C \ pRN/ such that hei; fji D ıij. Then
.e1; : : : ; ea; f1; : : : ; fa/ is a basis of W.

Let

M.C/ WD fY � W j hY;Yi D f0g;W D Y ˚ Xg

denote the set of all totally isotropic complements of X in W.

Lemma 32. The mapping ' W N.C/! M.C/, D 7! D=.C \ pRN/ is a bijection.

Proof. For any code D 2 N.C/, we have that C \ pRN D D \ pRN and N.D/ D
N.C/. As we have already seen in the previous lemma that C=.C\ pRN/ is a totally
isotropic complement of X in W, the same is true for D=.C \ pRN/. So ' is well
defined.

That the map is a bijection follows from the homomorphism theorem: The map
RN ! RN=.C \ pRN/; x 7! x C .C \ pRN/ is an R-module epimorphism with
kernel C \ pRN , so it defines a bijection between the set of all submodules D of RN

that contain C \ pRN and the submodules of RN=.C \ pRN/. Such a submodule D
lies in N.C/, if and only if dim.D=.C \ pRN// D a, D=.C \ pRN/ is isotropic and
D \ pRN D C \ pRN , and thus if and only if D=.C \ pRN/ lies in M.C/. ut
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Lemma 33. Any Y 2 M.C/ has a unique basis
0

@e1 C
a
X

jD1
S1jfj; : : : ; ea C

a
X

jD1
Sajfj

1

A

for some matrix S 2 Fa�a
p such that SC Str D 0. Call this space Y.S/.

Proof. Let Y 2 M.C/. Then Y is a complement of X D hf1; : : : ; fai, and, in
particular, there are b1; : : : ; ba 2 Y , z1; : : : ; za 2 X, such that ei D bi � zi

for i D 1; : : : ; a. As W D Y ˚ X, these bi and zi are uniquely determined
and .b1; : : : ; ba/ is a basis of Y . Moreover there are unique Sij 2 Fp such that
zi DPa

jD1 Sijfj. That S is skew symmetric follows from the fact that Y is isotropic:

hbi; bki D
*

ei C
a
X

jD1
Sijfj; ek C

a
X

jD1
Skjfj

+

D Sik C Ski D 0:

ut
Combining these two bijections we hence obtain a bijection

skew W N.C/! ˚

S 2 Fa�a
p j SC Str D 0� D Skewa :

We note that then skew.C/ D 0 since C maps to C=.C \ pRN/ which already has
.e1; : : : ; ea/ as a basis and consequently the S from Lemma 33 is the all zeros matrix.

Remark 34. Everything is completely analogous if we work with quadratic forms
for p D 2, but then the image of skew lies in the space of alternating matrices, so
that S D Str 2 Fa�a

2 , Sii D 0 for all i.

Remark 35. Let D 2 N.C/. Then dim.D=.D \ C// D dim.C=.D \ C// D
dim.'.D/=.'.D/ \ '.C/// D dim.'.C/=.'.D/ \ '.C/// D rank.skew.D//.

Because the rank of an alternating matrix is always even, the code C has no
neighbors in N.C/.

Corollary 36. If p is odd or we deal with quadratic forms for p D 2 (i.e., doubly
even quaternary codes), then Ta D 0 for all a.

5 Some Results for Z=4Z

In this section we turn our attention to the special case where p D 2, and R D
Z=4Z. In this case we are able to compute the adjacency matrix, T , associated with
the linear operator on V . With these computations we make observations about the
eigenvalues associated with each orthogonal component, Ta, and eventually describe
the associated eigenspace. Before doing so, we establish the following results.
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Lemma 37. For any doubly even binary code H � FN
2 of dimension a, there exists

a code C 2 Fa;b such that Res.C/ D H. Hence, N.C/ D fD 2 Fa;b j Res.D/ D Hg.
Proof. Suppose that H � FN

2 is a doubly even binary code of dimension a with
generator matrix G 2 Fa�N

2 . Then it is possible to lift G to an a�N matrix A over R.
It is clear that A � Atr D 2Z for some Z 2 Fa�a

2 . Moreover, this matrix is symmetric
with zeroes along the diagonal, since H is doubly even. Now we will show that for a
suitable choice of A, we have Z D 0, and consequently we will have the generating
matrix for a self-dual code in RN . Replacing A with A C 2B for some B 2 Fa�N

2 ,
we obtain .A C 2B/.A C 2B/tr D 2Z C 2.A � Btr C Atr � B/. But since A has rank
a, its columns contain a basis for Fa

2 and it is therefore possible to choose B so that
A �Btr D Œzij� where zij D 0 for i � j, and for i > j, zij is the entry in the ith row and jth

column of Z. From here it is clear that .AC2B/.AC2B/tr D 0, and therefore AC2B
is the generating matrix for a self-orthogonal code, say C1, which is a free R-module
of rank a. By Remark 6, there is a unique self-dual code C D C1C 2C?

1 2 Fa;b that
contains C1 as a maximal free submodule. ut

Combining this lemma with the general discussion in the previous section we
arrive at the following main results.

Theorem 38. For p D 2, the connected components of the graph �a are in bijection
with the binary doubly even codes of length N and dimension a.

Proof. To begin, suppose that C;D 2 Fa;b, with C � D, and let H D Res.C/. From
Lemma 30, it follows that CC2RN D DC2RN , and hence Res.D/ D H. Extending
this argument, we can easily see that for any C;D 2 Fa;b which are connected by
a path of neighbors in Fa;b, all codes in that path will lift to H. This proves one
direction of the claim.

Now, suppose we have two arbitrary codes C;D 2 Fa;b with Res.C/ D
Res.D/ D H where H � FN

2 is a doubly even binary code. From here we know that
C and D are in N.C/, and from the general results in the previous section, including
the bijectivity of the skew map, we can conclude that C and D are connected by a
chain of neighbors. ut

Clearly if H and H0 are equivalent doubly even codes, then the equivalence
between H and H0 (which is just a permutation in SN) gives rise to a simultaneous
equivalence between any codes C and C0 for which Res.C/ D H and Res.C0/ D H0.
Recalling that the nodes of �a are defined as the permutation equivalence classes
of codes in Fa;b, the entire discussion above holds up to permutation equivalence;
that is to say, the equivalence classes of binary doubly even codes of length N and
dimension a precisely described the connected components of � .

Let H1; : : : ;Ht be a system of representatives of equivalence classes of binary
doubly even codes of length N and dimension a. When a D N=2 and N is not
congruent to 0 mod 8, then it is an immediate consequence of Corollary 8 that
t D 0, and therefore the associated eigenspace is trivial.
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Corollary 39. The maximal eigenvalue of Ta is 2a�1. This occurs with multiplicity
t and the eigenspace of Ta to the eigenvalue 2a � 1 has a basis .�1; : : : ; �t/ where

�i D
X

C2��1.Hi/

1

jAut.C/j ŒC�:

Proof. In view of Theorem 38, we know that counting the neighbors of C in Fa;b is
equivalent to counting the number of elements in M.C/, which will be equal to the
number of .a�1/-dimensional subspaces of Fa

2. Consequently, �a is .2a�1/-regular,
and therefore has the all ones eigenvector and 2a � 1 is an eigenvalue. Moreover,
from the Peron–Frobenius theorem we can be guaranteed that this is indeed the
maximal eigenvalue.

Since the neighboring relation is symmetric, the connected components of �a are
strongly connected, therefore the multiplicity of the eigenvalue 2a � 1 is the same
as the number of connected components, namely t. ut

Now we will compute an explicit example when N D 8. Using Magma, we
compute the permutation equivalence classes of the codes. There are 29 distinct
permutation equivalence classes when N D 8, which we will enumerate by module
isomorphism type, where Œ4a2b�n will denote the nth permutation equivalence class
of codes isomorphic to Ra ˚ Sb as R-submodules. Then we have

Œ4028�1

Œ4126�n where 1 � n � 4
Œ4224�n where 1 � n � 8
Œ4322�n where 1 � n � 9
Œ4420�n where 1 � n � 7

Using Magma we compute the adjacency matrix associated with T and its compo-
nent block matrices, the Ta, which we give below.

T0 D
�

0
�

;T1 D

2

6

6

4

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

3

7

7

5

;T2 D

2

6

6

6

6

6

6

6

6

6

6

6

4

2 1 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 1 2 0 0 0

0 0 1 0 0 2 0 0

0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

0 0 0 0 0 2 0 1

0 0 0 0 2 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

5

;
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T3 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

6 1 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

0 0 0 4 0 3 0 0 0

0 0 1 0 3 0 0 3 0

0 0 0 1 2 1 2 0 1

0 0 1 0 4 2 0 0 0

0 0 0 0 4 0 1 1 1

0 0 0 4 0 0 2 0 1

0 0 0 0 4 0 2 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;T4 D

2

6

6

6

6

6

6

6

6

6

4

6 0 6 0 1 1 1

0 0 0 0 8 0 7

8 0 5 1 0 1 0

0 0 6 0 8 1 0

7 1 0 7 0 0 0

8 0 6 1 0 0 0

8 1 0 0 0 0 6

3

7

7

7

7

7

7

7

7

7

5

:

Now we can view the graphs �a associated with each Ta, in particular we take a
closer look at T2. Figure 1 is the graph associated with �2, whose nodes are precisely
the permutation equivalence classes of codes isomorphic to R2 ˚ S4.

Fig. 1 Graph of �2

[4224]3

[4224]1

[4224]4

[4224]5

[4224]6

[4224]2

[4224]7

[4224]8

The two distinct connected components of �2 are determined by the two distinct
permutation equivalence classes of binary doubly even codes of length 8 and
dimension 2, namely those with generator matrices

H D
	

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1




and H0 D
	

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0




:

The equivalence classes Œ4224�1 and Œ4224�2 contain codes with the following
generator matrices,
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G1 D

2

6

6

6

6

6

6

6

4

2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 2

0 0 0 0 2 0 2 2

0 0 0 0 0 2 2 2

3

7

7

7

7

7

7

7

5

and G2 D

2

6

6

6

6

6

6

6

4

2 0 0 0 0 0 0 0

0 1 0 1 0 1 0 3

0 0 1 1 0 0 3 1

0 0 0 2 0 0 0 2

0 0 0 0 2 0 0 0

0 0 0 0 0 2 2 2

3

7

7

7

7

7

7

7

5

;

respectively. Let C1 be the code with generator matrix G1, and C2 the code with
generator matrix G2. Then it’s clear that both C1 and C2 lift to H0. Similarly, it can
be shown each of the codes in the remaining permutation equivalence classes lifts
to H.

Furthermore, for each a we compute the eigenvalues, �, associated with each Ta,
and their multiplicities t, which we give in the table below, noting that in any case
the largest eigenvalue corresponds to 2a � 1.

a h�; ti
0 h0; 1i
1 h1; 2i, h�1; 2i
2 h3; 2i, h1; 2i, h�1; 3i, h�3; 1i
3 h7; 2i, h3; 2i, h�1; 4i, h�5; 1i
4 h15; 1i, h7; 2i, h�1; 3i, h�9; 1i
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1 Introduction

Public key cryptography relies on the existence of hard computational problems in
mathematics: i.e., problems for which there are no known general polynomial-time
algorithms. Hard mathematical problems related to lattices were first suggested as
the basis for cryptography almost two decades ago [1, 2, 24]. While other better-
known problems in public key cryptography such as factoring and the discrete
logarithm problem are closely tied to computational number theory, lattice-based
cryptography has seemed somewhat more distant. Recent developments, including
the introduction of the ring-learning with errors problem instantiated in the ring
of integers of a number field [30], have connected the area to new questions in
computational number theory.

At the same time, lattice-based cryptography has seen a dramatic surge of
activity. Since there are no known polynomial-time algorithms for attacking stan-
dard lattice problems on a quantum computer (in contrast to the case for widely
deployed cryptographic systems such as RSA, discrete log, and elliptic curves),
lattice-based cryptography is considered to be a promising cryptographic solution
in a post-quantum world. One of the most exciting recent developments has been
the construction of fully homomorphic encryption schemes [9–11, 18, 19] which
allow meaningful operations to be performed on data without decrypting it: one
can add and multiply encrypted numbers, returning the encrypted correct result,
without knowledge of the plaintext or private key. The addition and multiplication
of ciphertexts is possible due to the ring structure inherent in polynomial rings:
these translate into AND and OR gates which can be used to build arbitrary circuits.
Exciting applications include privacy problems in the health sector for electronic
medical records, predictive analysis and learning from sensitive private data, and
genomic computations [8, 20, 27, 28].

These new homomorphic encryption solutions are based on versions of hard
“learning problems” with security reductions to and from standard lattice problems
such as the shortest vector problem [36]. The idea behind the whole class of learning
problems is that it is hard to “learn” a secret vector, given only sample inner products
of that vector with other random vectors, provided these products are obscured by
adding a small amount of Gaussian noise (“errors”).

The ring version, which we call Ring-LWE or RLWE, was introduced in [30],
presenting a fundamental hardness result which can be described informally as
follows: for any ring of integers R, any algorithm that solves the (search version
of the) Ring-LWE problem yields a comparably efficient quantum algorithm that
finds approximately shortest vectors in any ideal lattice in R.

Soon after the introduction of Ring-LWE, an efficient cryptosystem allowing for
homomorphic multiplication was proposed in [9] based on a variant of the RLWE
problem, the Polynomial Learning With Errors problem (here denoted PLWE).
Improvements to that cryptosystem (e.g. [11, 19]) have followed in the same vein,
with the same hardness assumption. The reader should note that the terminology of
“Ring-LWE” vs. “Poly-LWE” is not entirely standard, and some authors use “Ring-
LWE” to refer to a larger class of problems including both.
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We focus in this paper on PLWE, specified by the following choices:

(1) a polynomial ring Pq D FqŒx�=.f .x//, with f .x/ a monic irreducible polynomial
of degree n over Z which splits completely over Fq,

(2) a basis for the polynomial ring, which will often be taken to be a power basis
in the monogenic case (in particular, the choice of a basis can be used to endow
the ring with the standard inner product on the ring),

(3) and a parameter specifying the size of the Gaussian noise to be added (the size
of the “error”), spherical with respect to this inner product.

We also focus on RLWE obtained from the same setup, but with the inner
product instead given by the Minkowski embedding of a ring of integers of the
form ZŒx�=.f .x//. More general situations, including the case where the defining
polynomial for the number ring does not split modulo q, or the case where q is
composite, or the distribution is non-spherical or non-Gaussian, are considered in
the cryptographic literature, but the setup above will suffice for our present purpose,
which is to give a number theorist an entrée into the subject.

A key point is that for cryptographic applications, the errors must be chosen to
be relatively small, to allow for correct decryption. For PLWE, “small” refers to
the coefficient size (absolute value of the smallest residue), where the error is a
polynomial, i.e., represented according to a polynomial basis for the ring. But to
relate RLWE to other standard lattice problems, [30] considers the embedding of
the ring ZŒx�=.f .x// into the real vector space Rn under the Minkowski embedding
(before reduction modulo q), and uses a Gaussian in Rn; this induces an entirely
different distribution on the error vectors for general number rings. It was shown
in [12, 30] that in the case of 2-power cyclotomic rings, the distributions are the
same. However, in [15] it was shown that in general rings the distortion of the
distribution is governed by the largest singular value of the change-of-basis matrix
between the Minkowski and the polynomial basis. Thus the RLWE and PLWE
distributions are not equivalent in general rings.

Although RLWE and PLWE for cyclotomic rings, particularly two-power cyclo-
tomic rings, are the current candidates for practical lattice-based homomorphic
encryption with ideal lattices, it will be important for a full study of their security to
consider the RLWE and PLWE problems for general rings. This includes studying
the two problems independently, and analysing their relationships via the distortion
of distributions just mentioned. One lesson from [15] is that deviating from these
recommended candidates can lead to an insecure system.

The RLWE and PLWE problems are formulated as either ‘search’ or ‘decision’
problems (see Sect. 2 below). A security reduction was presented in [30] showing
that, for any cyclotomic ring R, an algorithm for the decision version of the Ring-
LWE problem yields a comparably efficient algorithm for the search version of the
Ring-LWE problem. This search-to-decision reduction was subsequently extended
to apply to any Galois field in [14].

In [14], an attack on PLWE was presented in rings Pq D FqŒx�=.f .x//, where
f .1/ � 0 .mod q/. In addition, [14] gives sufficient conditions on the ring so that
the ‘search-to-decision’ reduction for RLWE holds, and also that RLWE instances
can be translated into PLWE instances, so that the RLWE decision problem can
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be reduced to the PLWE decision problem. Thus, if a number field K satisfies the
following six conditions simultaneously, then the results of [14] give an attack on
the search version of RLWE:

(1) K D Q.ˇ/ is Galois of degree n.
(2) The ideal .q/ splits completely in R D OK , the ring of integers of K, and q −

ŒR W ZŒˇ��.
(3) K is monogenic, i.e., is generated by ˇ over Z.
(4) The transformation between the canonical embedding of K and the power basis

representation of K is given by a scaled orthogonal matrix.
(5) If f is the minimal polynomial of ˇ, then f .1/ � 0 .mod q/.
(6) The prime q can be chosen suitably large.

The first two conditions are sufficient for the RLWE search-to-decision reduction;
the next two conditions are sufficient for the RLWE-to-PLWE reduction; and the last
two conditions are sufficient for the attack on PLWE. Unfortunately, it is difficult
to construct number fields satisfying all six conditions simultaneously. In [14]
examples of number fields were given which are vulnerable to the attack on PLWE.

In [15], the attack on PLWE was extended by weakening the conditions on f .x/
and the reduction from RLWE to PLWE was extended by weakening condition (4).
A large class of fields were constructed where the attack on PLWE holds and RLWE
samples can be converted to PLWE samples, thus providing examples of weak
instances for the RLWE problem.

Exciting number theory problems often arise from cryptographic applications.
In this paper we survey and extend the attacks on the PLWE and RLWE problems
and raise associated number-theoretic questions. In Sect. 2, we recall the PLWE and
RLWE problems. In Sects. 3 and 4 we survey and extend the attacks on PLWE which
were introduced in [14, 15]. In Sect. 5, we explain the reduction between the RLWE
and PLWE problems. Finally in Sect. 6 we raise related questions in number theory;
in particular, we investigate the spectral distortion of an algebraic number and its
relationship to Mahler measure, the monogenic property for the ring of integers of
a number field, and the size of elements of small order modulo q.

2 The Fundamental Hard Problems: PLWE and RLWE

2.1 PLWE

Take f .x/ 2 ZŒx� to be monic and irreducible of degree n. Suppose q is a prime
modulo which f .x/ factors completely (this is not necessary for the definition of the
problem, but we will assume this throughout the paper). Write

P WD ZŒx�=f .x/; Pq WD P=qP Š FqŒx�=f .x/:

Let � 2 R>0. By a Gaussian distribution G� of parameter � , we mean a Gaussian
of mean 0 and variance �2 on P which is spherical with respect to the power basis
1; x; x2; : : : ; xn�1 of P. The prime q is generally assumed to be polynomial in n,
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sometimes as large as 250 but in some applications much smaller (even as small as
212), and � is taken fairly small (perhaps � D 8), so that in practice the tails of
the Gaussian will decay to negligible size well before its variable reaches size q.
Since P has integer coordinates, we must ‘discretize’ the Gaussian in an appropriate
fashion; the result is simply referred to as a discretized Gaussian. We will not go
into the technical details in this paper, but instead refer the reader to [30].

There are two standard PLWE problems, quoted here from [9]. The difficulty
involves determining a secret obscured by a small error drawn from the discretized
Gaussian.

Problem 2.1 (Search PLWE Problem). Let s.x/ 2 Pq be a secret. The search
PLWE problem, is to discover s.x/ given access to arbitrarily many independent
samples of the form .ai.x/; bi.x/ WD ai.x/s.x/C ei.x// 2 Pq � Pq, where for each i,
ei.x/ is drawn from a discretized Gaussian of parameter � , and ai.x/ is uniformly
random.

The polynomial s.x/ is the secret and the polynomials ei.x/ are the errors. There
is a decisional version of this problem:

Problem 2.2 (Decision PLWE Problem). Let s.x/ 2 Pq be a secret. The decision
PLWE problem is to distinguish, with non-negligible advantage, between the same
number of independent samples in two distributions on Pq � Pq. The first consists
of samples of the form .a.x/; b.x/ WD a.x/s.x/ C e.x// where e.x/ is drawn from
a discretized Gaussian distribution of parameter � , and a.x/ is uniformly random.
The second consists of uniformly random and independent samples from Pq � Pq.

Search-to-decision reductions were proved for cyclotomic number fields in [30]
and extended to work for Galois number fields in [14]. Of course, the phrase
‘to distinguish’ must be interpreted to mean that the distinguisher’s acceptance
probabilities, given PLWE samples versus uniform samples, differ by a non-
negligible amount.

2.2 RLWE

The original formulation of the hard learning problem for rings, RLWE, presented
in [30], was based on the ring of integers, R, of a number field. The authors studied
a general class of problems where the error distribution was allowed to vary.

Here we are concerned with only two choices of distributions. The first is to
consider rings, R, which are isomorphic to a polynomial ring P, and study the PLWE
problem (PLWE was stated as a “variant” of RLWE in [9, 30]). The distribution
in this case is with respect to the polynomial basis of one of its polynomial
representations.

The second is to choose the error according to a discretized Gaussian with respect
to a special basis of the ambient space in which R was embedded via the Minkowski
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embedding. We will refer to this as RLWE. Therefore, in our language, when R is
isomorphic to some polynomial ring P, RLWE differs from PLWE only in the error
distribution.

We will state the fundamental RLWE problems and then discuss the relationship
between the RLWE and PLWE problems. Let K be a number field of degree n with
ring of integers R. Let R_ denote the dual of R,

R_ D f˛ 2 K W Tr.˛x/ 2 Z for all x 2 Rg:

Let us write Rq WD R=qR and R_
q D R_=qR_. We will embed K in Cn via the

usual Minkowski embedding. The vector space Cn is endowed with a standard inner
product, and we will use the spherical Gaussian with respect to this inner product,
discretized to R_, as the discretized Gaussian distribution. We will refer to this as
the canonical discretized Gaussian. This will not, in general, coincide with the
discretized Gaussian defined in PLWE for a P Š R, and this is the fundamental
difference between the two problems.

The standard RLWE problems for a canonical discretized Gaussian are as
follows:

Problem 2.3 (Search RLWE Problem [30]). Let s 2 R_
q be a secret. The search

RLWE problem is to discover s given access to arbitrarily many independent
samples of the form .a; b WD asCe/ where e is drawn from the canonical discretized
Gaussian and a is uniformly random.

Problem 2.4 (Decision RLWE Problem [30]). Let s 2 R_
q be a secret. The

decision RLWE problem is to distinguish with non-negligible advantage between
the same number of independent samples in two distributions on Rq � R_

q . The
first consists of samples of the form .a; b WD as C e/ where e is drawn from the
canonical discretized Gaussian and a is uniformly random, and the second consists
of uniformly random and independent samples from Rq � R_

q .

An isomorphism between R and an appropriate polynomial ring P can be used
to relate an instance of the RLWE problem to an instance of the PLWE problem. In
particular, one requires R to be monogenic (having a power basis). Analysing the
relationship between the two problems involves a close look at the change of basis
under an isomorphism from R to the appropriate P. We will take up this issue in
Sect. 5.

3 Summary of Attacks

In practice today, parameters for cryptosystems based on the RLWE and PLWE
problems are set according to two known attacks, the distinguishing attack [31, 37]
and the decoding attack [29]. These attacks work in general for learning-with-error
problems and do not exploit the special structure of the ring versions of the problem.
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In this paper, we will focus solely on the new attacks presented in [14, 15] that
exploit the special number-theoretic structure of the PLWE and RLWE rings.

The attacks presented in [14, 15] can be described in terms of the ring homomor-
phisms from Pq to smaller rings. As Pq Š Fn

q, the only candidates are the projections
to each factor:

�˛ W Pq ! Fq; p.x/ 7! p.˛/

for each root ˛ of f .x/. In Pq, the short vectors sampled by the Gaussian are easy
to recognize since they have small coefficients. But they are hard to tease out of
b.x/ D a.x/s.x/ C e.x/ without knowledge of s.x/, and the possibilities for s.x/
are too many to examine exhaustively. By contrast, in a small ring like Fq, it is
easy to examine the possibilities for s.˛/ exhaustively. And the ring homomorphism
preserves the relationship of the important players: b.˛/ D a.˛/s.˛/C e.˛/. Hence
we can loop through the possibilities for s.˛/, obtaining for each the putative value

e.˛/ D b.˛/ � a.˛/s.˛/:

The Decision Problem for PLWE, then, is solved as soon as we can recognize the
set of e.˛/ that arise from the Gaussian.

Unfortunately (or fortunately), one does not expect to be able to do this in
general. Heuristically, let S � Pq denote the subset of polynomials that are produced
by the Gaussian with non-negligible probability. In Pq, parameters are such that this
is a small set. But Fq is a much smaller ring and one expects that generically, the
image of S will ‘smear’ across all of Fq. Something quite special must happen if
we expect the image of S to remain confined to a small subset of Fq, and hence be
recognizable.

That ‘something special’ is certainly possible, however: suppose that ˛ D 1. The
polynomials g.x/ 2 S have small coefficients, and hence have small images g.1/
in Fq. This is simply because n is much smaller than q, so that the sum of n small
coefficients is still small modulo q. More generally, all of the attacks suggested in
[14, 15] come down to considering ˛ with certain advantageous properties, so that
the image of S can be recognized.

The cyclotomic cases currently under consideration for PLWE and RLWE are
uniquely protected against this occurrence: ˛ D 1 is never a root modulo q of a
cyclotomic polynomial of degree > 1 when q is sufficiently large.

3.1 Attacking ˛ D 1

The approach described above and the ˛ D 1 attack was first presented in [14]. The
details are as follows. Suppose

f .1/ � 0 mod q:
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We are given access to a collection of samples .ai.x/; bi.x//. We wish to determine
if a sample is valid, of the form

bi.x/ D s.x/ai.x/C ei.x/

for ei.x/ produced by a Gaussian, or random (uniformly random). The algorithm is
as follows:

Algorithm 1:

(1) Let the set of valid guesses be S D Fq.
(2) Loop through the available samples. For each sample:

(a) Loop through guesses s 2 S for the value of s.1/. For each s:

(i) Compute ei WD bi.1/ � sai.1/

(ii) If ei is not small in absolute value1 modulo q, then conclude that
the sample cannot be valid for s with non-negligible probability, and
remove s from S.

(3) If S D ;, conclude that the sample was random. If S is non-empty, conclude
that the sample is valid.

If the guess s is correct, then ei D ei.1/ D Pn
jD1 eij where eij are chosen from a

Gaussian G� of parameter � . It follows that ei.1/ are approximately sampled from a
Gaussian Gp

n� of parameter
p

n� where n�2 � q.

3.2 Attacking ˛ of Small Order

The following attack described and developed in [14, 15] requires ˛ to have small
order mod q. The fundamental idea is the same as for the ˛ D 1 attack, except that
to discern whether or not ei.˛/ is a possible image of a Gaussian-sampled error is
more complicated.

1Meaning residue of smallest absolute value.
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Assume that ˛r � 1 mod q, then

e.˛/ D
n
X

iD1
ei˛

i D .er C e2r C � � � /C � � � C ˛r�1.er�1 C e2r�1 C � � � /:

If r is small enough, e.˛/ takes on only a small number of values modulo q. This set
of values may not be easy to describe, but q is small enough that it can be enumerated
and stored. The attack proceeds as for ˛ D 1 except that to determine if a sample
is potentially valid for s in step (2)(a)(ii), we compare to the stored list of possible
values.

4 Attacking ˛ of Small Residue

A third attack described in [15] is based on the size of the residue ei.˛/ mod q. This
is more subtle. Here, the errors e.˛/ may potentially take on all values modulo Fq

with non-negligible probability. But it may be possible to notice if the probability
distribution across Fq is not uniform, given enough samples.

This method of attack differs from the previous ones, but is also applicable to
˛ D 1 and ˛ of small order, so all cases will be treated together.

Assume that

f .˛/ � 0 mod q (1)

for some ˛. Let Ei be the event that

bi.˛/ � gai.˛/ mod q is in the interval Œ�q=4; q=4/

for some sample i and guess g for s.˛/ mod q. We wish to compare the
probabilities

P.Ei j D D U/ and P.Ei j D D G� /:

Here, D D U refers to the situation where bi is uniformly random, while D D G�
refers to the situation where bi is obtained as ais C ei for some secret s, where ei

follows a Gaussian G� truncated at 2� (in practice, the Gaussian is truncated as the
tails decay to negligible values). If D D U , then bi.˛/� gai.˛/ is random modulo q
for all guesses g, that is,

P.Ei j D D U/ D 1

2
:

If D D G� , then bi.˛/ � s.˛/ai.˛/ D ei.˛/ mod q. Indeed, the terms of bi.˛/ �
s.˛/ai.˛/ that are a multiple of f vanish at ˛ modulo q by Assumption (1). We
consider
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ei.˛/ D
n�1
X

jD0
eij˛

j;

where eij is chosen according to the distribution G� and distinguish three cases
corresponding to

(1) ˛ D ˙1
(2) ˛ ¤ ˙1 and ˛ has small order r modulo q
(3) ˛ ¤ ˙1 and ˛ is not of small order r modulo q

We will now drop the subscript i for simplicity. In Case (1), the error e.˛/ is
distributed according to G N� where

N� D �pn:

In Case (2), the error can be written as

e.˛/ D
r�1
X

iD0
ei˛

i D .e0CerC� � � /C˛.e1CerC1C� � � /C� � �C˛r�1.er�1Ce2r�1C� � � /

where we assume that n is divisible by r for simplicity. For j D 0; � � � ; r � 1; we
have that

ej C ejCr C � � � C ejCn�r

is distributed according to GQ� where

Q� D �
r

n

r
:

As a consequence e.˛/ is sampled from G N� where

N�2 D
r�1
X

iD0
Q�2˛2i D

r�1
X

iD0

n

r
�2˛2i D n

r
�2
˛2r � 1
˛2 � 1 :

In Case (3), the error e.˛/ is distributed according to G N� where

N�2 D
n�1
X

iD0
�2˛2i D �2 ˛

2n � 1
˛2 � 1 :

If
q

4

 2 N� , then errors always lie in Œ� q

4
; q
4
/ and

P.Ei j D D G� / D 1:
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Otherwise, assuming for simplicity that N D 2 N� � q=2

q
is an integer, we have

P.Ei j D D G� / D
 

Z 2 N�

0

G N�

!�1  
Z

q
4

0

G N� C
N�1
X

kD0

Z
5q
4 Ckq

3q
4 Ckq

G N�

!

:

In the situation where this value exceeds 1=2, i.e., P.Ei j D D G� / D 1

2
C � with

� > 0, the following algorithm attacks PLWE. Let

N D
�

`qC �`
2

�

where ` is the number of samples observed. For each guess g mod q, we compute
bi � gai mod q for i D 1; � � � ; `. We denote by C the number of elements obtained
in the interval Œ�q=4; q=4/. If C < N, the algorithm outputs

D D U;

otherwise, the algorithm outputs

D D G� :

In the analysis of the probability of success of the algorithm, we denote by B the
binomial distribution and by F the cumulative Binomial distribution. If D D U , the
algorithm is successful with probability

P.C < NjD D U/ D F.N � 1I `q; 1
2
/:

If D D G� , we denote by Cs the number of elements of the form bi � sai mod q in
the interval Œ�q=4; q=4/. In this case, the algorithm is successful with probability

P .C 
 NjD D G� / D
X̀

iD0
P .C � Cs 
 N � i/ � P .Cs D i/

D
X̀

iD0
.1 � F.N � i � 1; `q � `; 1=2// � B.i; `; 1=2C �/

When � > 0, the algorithm is successful since

1

2
.P.C < NjD D U/C P.C 
 NjD D G� //
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D 1

2
.P.C < NjD D U/C 1 � P.C < NjD D G� //

D 1

2
C 1

2
.P.C < NjD D U/ � P.C < NjD D G� // >

1

2

Example 4.1. In Case (1), when n D 210, q � 250, and � D 8, we can compute
� � 0:5. Therefore, the attack is successful for any irreducible polynomial of degree
210 and with a root 1 mod q.

In Case (2), when n D 29, q � 250, � D 8, and ˛ D q � 1, ˛ has order 2 and we
can compute � � 0:002. This is particularly interesting since there is an irreducible
polynomial with these properties that generates a power of 2 cyclotomic number
field [15]; however, it is not the usual cyclotomic polynomial.

In Case (3), when n D 26, q � 260, � D 8, and ˛ D 2, computations show
that � D 0:02. Therefore, this attack is successful for any irreducible polynomial of
degree 26 with a root ˛ D 2 modulo a prime q � 260.

5 RLWE-to-PLWE Reduction

Suppose that K is a number field, and R is its ring of integers. For technical
reasons, we give a slight variant on the Minkowski embedding, which is as follows:
� W K ! Rn

�.r/ WD .�1.r/; : : : ; �s1 .r/;Re.�s1C1.r//; : : : : : :Re.�s1Cs2 .r//;

Im.�s1C1.r//; : : : ; Im.�s1Cs2 .r///:

where the �i are the s1C s2 embeddings of K, ordered so that the s1 real embeddings
are first, and the s2 complex embeddings are paired so that �s1Ck D �s1Cs2Ck.

A spherical Gaussian of parameter � with respect to the usual inner product on
Rn can be discretized to the canonical discretized Gaussian on R or its dual R_.

Suppose R Š P for some polynomial ring P under a map ˛ 7! x for some root
˛ of f .x/. Suppose further that R is monogenic. Then R_ Š P also as R-modules
(as its different ideal is principal). For RLWE, R˝ R_ is equipped with a basis bi,
i D 0; : : : ; n � 1 with respect to which the Gaussian is spherical (the standard basis
of Rn, pulled back by � ). For PLWE, R˝ P is equipped with such a basis also, i.e.,
the standard power basis xi, i D 0; : : : ; n � 1. To relate the two problems, one must
write down the change-of-basis matrix between them. It is the matrix

N˛ WD 	M�1
˛ W R˝ R_ ! R˝ P

where 	 is such that R_ D 	R, and where M˛ is the matrix with columns Œ˛i�b (i.e.,
the i-th column is the element ˛i represented with respect to the basis b D fbig).
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The properties of N˛ determine how much the Gaussian is distorted in moving
from one problem to the other. If it is not very distorted, then solving one problem
may solve the other.

Details are to be found in [15], but in short, the normalized spectral norm gives
a good measure of ‘distortion’. This is defined for an n � n matrix M by

jjMjj2= det.M/1=n:

6 Number-Theoretical Open Problems

In this section we will describe a number of open problems in number theory that are
motivated by attacks to PLWE and RLWE, some very speculative and some more
precise.

6.1 Conditions for Smearing

As described in Sect. 3, we are concerned with the map

� W Pq ! Fq; g.x/ 7! g.˛/:

Question 6.1. For which subsets S � Pq, is the image �.S/ D Fq?

If �.S/ D Fq, we will say that S smears under � .
Partial solutions to this problem may come in a wide variety of shapes. For

example, can one prove that almost all S of a given size smear? Can one characterize
the types of situations that lead to a negative answer (e.g. ˛ D 1 and S consisting of
polynomials of small coefficients)? What if we restrict to the PLWE case, where S
consists of polynomials with small coefficients? Or the RLWE case, where S is the
image of a canonical discretized Gaussian?

6.2 The Spectral Distortion of Algebraic Numbers,
and Mahler Measure

By Sect. 5, the normalized spectral norm of N˛ is a property of any algebraic number
˛ for which ZŒ˛� is a maximal order. We will therefore denote it �˛ , and call it
the spectral distortion of ˛. It measures the extent to which the power basis ˛i

is distorted from the canonical basis of the associated number field. Recall from
Sect. 5 that for number rings with small spectral distortion we expect to have an
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equivalence between the RLWE and PLWE problems. For completeness, we state a
slightly more general definition, separate from its cryptographic origins, as follows:

Definition 6.2. Let ˛ be an algebraic number of degree n and K D Q.˛/. Let M be
the matrix whose columns are given by �.˛i/, where � W K ! Rn,

�.r/ D .�1.r/; : : : ; �s1 .r/;Re.�s1C1.r//; : : :Re.�s1Cs2 .r//;

Im.�s1C1.r//; : : : ; Im.�s1Cs2 .r///

where the �i are the s1 C s2 complex embeddings of K, ordered so that the s1 real
embeddings are first, and the s2 complex embeddings are paired so that �s1Ck D
�s1Cs2Ck. The spectral distortion of ˛ is jjMjj2=.det.M//

1
n .

Question 6.3. What are possible spectral distortions of algebraic numbers?

It follows from the special properties of 2-power roots of unity that they have
spectral distortion equal to 1. However, even other roots of unity do not have spectral
distortion equal to 1 (and this is what necessitates the more elaborate RLWE-to-
PLWE reduction argument given in [12] for cyclotomic rings which are not 2-power
cyclotomics).

Is the spectral distortion a continuum, or is the collection of values discrete in
regions of R? Does this relate to Mahler measure?

The Mahler measure of a polynomial can be defined as the product of the absolute
values of the roots which lie outside the unit circle in the complex plane, times the
absolute value of the leading coefficient. For a polynomial

f .x/ D a.x � ˛1/.x � ˛2/ � � � .x � ˛n/

the Mahler measure is

M.f / WD jaj
Y

j˛ij�1
j˛ij:

The Mahler measure of an algebraic number ˛ is defined as the Mahler measure of
its minimal polynomial.

Interestingly, polynomials which have small Mahler measure (all roots very close
to 1 in absolute value) seem to have small spectral distortion. For example, consider
“Lehmer’s polynomial”, the polynomial with the smallest known Mahler measure
greater than 1:

f .x/ D x10 C x9 � x7 � x6 � x5 � x4 � x3 C xC 1:

The Mahler measure is approximately 1:176, and the spectral distortion for its
roots is approximately 3:214. This spectral distortion is rather small, and compares
favourably, for example, with the spectral distortion for 11th roots of unity, which is
approximately 2:942. Other examples of polynomials with small Mahler measure
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also have small spectral distortion: f .x/ D x3 � x C 1 has Mahler measure
approximately 1:324 and spectral distortion approximately 1:738.

To explain the phenomenon observed for polynomials with small Mahler mea-
sure and to relate the Mahler measure to the spectral norm, we need to have some
estimate on the spectral norm in terms of the entries of the matrix. The entries of the
matrix M are powers of the roots f˛jg of the minimal polynomial. When the Mahler
measure is small, the entries of the matrix M have absolute value close to 1, since
the absolute values of the roots are as close as possible to 1. To make the connection
with the spectral norm more precise, [35] gives an improvement on Schur’s bound
and expresses the bound on the largest singular value in terms of the entries of the
matrix. Thus we can use Schur’s bound or this improvement to see that polynomials
with small Mahler measure must have relatively small spectral norm.

It could also be interesting to look at other properties of M, such as the entire
vector of singular values of M, its conditioning number, etc.

6.3 Galois Versus Monogenic

We say that K is monogenic if the ring of integers R of K is monogenic, i.e., a
simple ring extension ZŒˇ� of Z: In this case, K will have an integral basis of the
form f1; ˇ; ˇ2; : : : ; ˇn�1g which is called a power integral basis. In this section we
will focus on properties (1) and (4) from the introduction.

Example 6.4. The following are examples of number fields that are both Galois and
monogenic:

• Cyclotomic number fields, K D Q.�n/ where �n is a primitive nth root of unity,
• Maximal real subfields of cyclotomic fields, K D Q.�n C ��1

n /,
• Quadratic number fields K D Q.

p
d/.

Question 6.5. Are there fields of cryptographic size which are Galois and mono-
genic, other than the cyclotomic number fields and their maximal real subfields?
How can one construct such fields explicitly?

The problem of characterizing all number fields which are monogenic goes
back to Hasse, however, a complete solution is not known to date. Here we will
summarize some of the known related results.

Proposition 6.6 ([34]). Let p be a prime and K a Galois extension of Q of degree
n. Let e be the ramification index of p and f be the inertia degree of p. If one of the
conditions below is satisfied, then K is not monogenic:

• If f D 1: ep < n
• If f 
 2: epf � nC e � 1
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Let K be a Galois extension of prime degree `. (Such extensions are called cyclic
extensions.) The following result of Gras [23] states that cyclic extensions are often
non-monogenic.

Theorem 6.7 ([23]). Any cyclic extension K of prime degree ` 
 5 is non-
monogenic except for the maximal real subfield of the .2`C 1/-th cyclotomic field
with prime conductor 2`C 1.

Theorem 6.8 ([22]). Let n 
 5 be relatively prime to 2; 3. There are only finitely
many abelian number fields of degree n that are monogenic.

For number fields of smaller degree it may be possible to give a complete char-
acterization. For instance, for cyclic cubic extensions K, Gras [21] and Archinard
[3] gave necessary and sufficient conditions for K to be monogenic.

Even though monogenic fields are rare in the abelian case for large degree,
Dummit and Kisilevsky [13] have shown that there exist infinitely many cyclic
cubic fields which are monogenic. A result of Kedlaya [25] implies that there
are infinitely many monogenic number fields of any given signature. In fact, we
expect monogenicity frequently: if f is an irreducible polynomial with squarefree
discriminant, then the number field K obtained by adjoining a root of f to Q is
monogenic. For polynomials of fixed degree 
 4 whose coefficients are chosen
randomly, it is conjectured that with probability & 0:307, the root will generate the
ring of integers of the associated number field [25]. However, to require K also to be
Galois is much more restrictive. Moreover, for fields of cryptographic size (n � 210),
the discriminant of f is too large to test whether it is squarefree. Therefore testing
whether an arbitrary number field of cryptographic size is monogenic is not known
to be feasible in general.

6.4 Finding Roots of Small Order Mod p

We have seen that a root of small order of f .x/modulo q provides a method of attack
on the PLWE problem in the ring ZqŒx�=.f .x//. The attack is even more effective if,
in addition, this root is small as a minimal residue modulo q (‘minimal’ meaning the
smallest in absolute value). See Example 4.1, Case(3) in Sect. 4. Cyclotomic fields
are protected against this attack by the observation that the roots of a cyclotomic
polynomial modulo q are of full order n. However for ‘random’ polynomials, there
is a priori no particular reason to expect roots of any particular order modulo q, or
to expect the roots to be small. Motivated by these two requirements, it is natural to
ask the following question:

Question 6.9. For random polynomials f .x/ and random primes q for which f .x/
has a root ˛ modulo q, what can one say about the order of ˛ modulo q?

A special case of this question, for f monic of degree one, is to ask, for a fixed a,
how often is a a primitive root modulo p? A famous conjecture of Artin states that
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this should happen for infinitely many p provided a is not a perfect square or�1, and
describes the density of such primes. This has been the subject of much research,
and the question above is a sort of number field analogue. Some investigations in
the direction of a number field analogue of Artin’s conjecture exist; for a gateway to
the literature, see [33, 38].

Computationally, to locate polynomials having a small root of small order, it
is easiest to start with the desired order, find a suitable q, and then build the
polynomial. The algorithm is as follows:

Algorithm 2

Input: Integers r; n; q0 such that r > 2 represents the desired order, n 
 1

represents the desired degree, and q0 > log2.n/ represents the desired bitsize
of q.

(1) Let s be the degree of the cyclotomic polynomial ˆr.x/.
(2) Let a D 1 (our candidate for the element of order r mod q). Test ˆr.a/

for primality. If it is a prime of approximate bitsize q0, let q be this prime.
Otherwise, increment a and try again.

(3) Once a and q are fixed, choose a set S of n elements of Z=qZ that includes a
and the other n� 1 smallest minimal residues (or choose any other subset of
residues).

(4) Choose i D 1 and increment i until the polynomial

f .x/ D
Y

s2S

.x � s/C qi

of degree n is irreducible.

Output: A monic irreducible polynomial f .x/ 2 ZŒx�, a prime q roughly of size
q0, such that f splits modulo q, and a 2 Z=qZ such that f .a/ � 0 .mod q/ and
ar � 1 .mod q/.

Note that if one wishes to relax the condition that f splits modulo q, one could
take f .x/ D .x � a/n C q, which is irreducible, to avoid Step 4.

Using this method, it is easy to find examples of .K; q/ such that f .x/ has a root of
small order modulo q. Among them, an example of cryptographic size is afforded by
n D 210, r D 3, a D 33554450, q D 1125901148356951 and i D 1 (the polynomial
is too unwieldy to print here). Using the last two parts of the method, one can, in
fact, easily construct polynomials having as roots many elements of small order
modulo q.

A simpler starting point is the following second question:

Question 6.10. What is the distribution of elements of small order among residues
modulo q?

There is a significant body of research on the distribution of primitive roots (see
Artin’s conjecture) and quadratic residues. More recently there have been advances
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on the distribution of elements of small order. For example, the number of elements
of bounded size and specified order is bounded above in [7]; see also [5, 6, 26].
More useful in our present context, for the purposes of finding elements of small
order, would be a guarantee that such elements exist in some small interval.

A more precise question is as follows:

Question 6.11. What is the smallest residue modulo a prime q which has order
exactly r ?

Let q be a prime and r > 2. Let nr;q represent the smallest residue modulo q
which has order exactly r. A first observation is the following (which allows us to
choose a more suitable starting point for a in the algorithm above).

Proposition 6.12. Let '.r/ represent the Euler function, giving the number of
positive integers less than and coprime to r. Then, if r has at most two distinct
prime factors, which are odd, then

jnr;qj 
 .q='.r//1='.r/

Proof. The element nr;q is a root of the r-th cyclotomic polynomial, of degree '.r/,
modulo q. Since ˆr.nr;q/ ¤ 0 as an integer relation, it must be that jˆr.nr;q/j 
 q.
It is known that under the given hypotheses on the factorization of r, the coefficients
of ˆr are chosen from f˙1; 0g [32]. Therefore jˆr.nr;q/j � '.r/jn'.r/r;q j from which
the result follows. ut

In general, combining upper and lower bounds on nr;q would limit the search
space for an element of small order.

Remark 6.13. (1) Other restrictions on the coefficients of ˆr give rise to similar
results. To derive an asymptotic statement, one could turn to asymptotic results
such as [17].

(2) The case of r D 3, the study of n3;q gives the full story, as the cube roots of
unity are of the form

1; n3;q;�n3;q � 1:

(3) In general, the primes q such that nr;q D a for a fixed a and r are among those
dividing ˆr.a/, hence there are finitely many.

(4) Elliott has some results on k-th power residues [16].

We will call nr;q minimal if, in addition to being the smallest residue of order r
modulo q, it also satisfies ˆr.nr;q/ D ˙q. For non-minimal nr;q, the lower bound in
Proposition 6.12 increases. A conjecture of Bouniakowski implies that minimality
happens infinitely often.

Conjecture 6.14 (Bouniakowski, [4]). Let f .x/ 2 ZŒx� be a non-constant irre-
ducible polynomial such that f .x/ is not identically zero modulo any prime p. Then
f .n/ is prime for infinitely many n 2 Z.
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Proposition 6.15. Let r > 2. If Bouniakowski’s Conjecture holds, then there are
infinitely many primes q for which nr;q is minimal.

Proof of Proposition 6.15. The cyclotomic polynomials for r > 1 satisfy the
Bouniakowski conditions, as they are irreducible and ˆr.1/ 6� 0 .mod p/ since
1 is not of exact order r modulo any p. Hence ˆr.x/ takes on infinitely many prime
values; for such a prime q, the smallest such x in absolute value is nr;q and this is
minimal. ut

Acknowledgements The authors thank the organizers of the research conference Women in
Numbers 3 (Rachel Pries, Ling Long and the fourth author) and the Banff International Research
Station, for making this collaboration possible. The authors also thank the anonymous referee for
detailed comments and suggestions to improve the paper, and Igor Shparlinski for useful feedback
and references.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Complexity of Computations and
Proofs. Quadeni di Matematica, vol. 13, pp. 1–32 (2004). Preliminary version in STOC 1996

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In:
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 284–
293 (1997)

3. Archinard, G.: Extensions cubiques cycliques de Q dont l’anneau des entiers est monogène.
Enseignement Math. 20(2), 179–203 (1974)

4. Bouniakowski, V.: Sur les diviseurs numériques invariables des fonctions rationelles entières.
Mem. Acad. Sci. St. Petersburg 6, 305–329 (1857)

5. Bourgain, J.: On the distribution of the residues of small multiplicative subgroups of Fp. Israel
J. Math. 172, 61–74 (2009)

6. Bourgain, J., Konyagin, S.V., Shparlinski, I.E.: Product sets of rationals, multiplicative
translates of subgroups in residue rings, and fixed points of the discrete logarithm. Int. Math.
Res. Not. rnn 090 (2008)

7. Bourgain, J., Konyagin, S.V., Shparlinski, I.E.: Distribution of elements of cosets of small
subgroups and applications. Int. Math. Res. Not. 9, 1968–2009 (2012)

8. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data.
J. Biomed. Inform. (2014). doi:10.1016/j.jbi.2014.04.003

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from RLWE and security for
key dependent messages. In: Rogaway, P. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 6841, pp. 505–524. Springer, New York (2011)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. SIAM J. Comput. 43(2), 831–871 (2014)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without boot-
strapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pp. 309–325. Association for Computing Machinery, New York (2011)

12. Ducas, L., Durmus, A.: RLWE in polynomial rings. In: Fischlin, M., Buchmann, J., Manulis,
M. (eds.) 15th International Conference on Practice and Theory in Public Key Cryptography,
PKC 2012. Lecture Notes in Computer Science, vol. 7293 (2012)

13. Dummit, D.S., Kisilevsky, H.: Indices in cyclic cubic fields. In: Number Theory and Algebra,
pp. 29–42. Academic, London (1977)

14. Eisentraeger, K., Hallgren, S., Lauter, K.: Weak Instances of PLWE. In: Proceedings of
Selected Areas of Cryptography 2014. Lecture Notes in Computer Science. Springer, New York
(2014)

http://dx.doi.org/10.1016/j.jbi.2014.04.003


290 Y. Elias et al.

15. Elias, Y., Lauter, K., Ozman, E., Stange, K.: Provably weak instances of ring-LWE. In:
Advances in Cryptology – CRYPTO 2015, pp. 63–92. Springer (2015). doi:10.1007/978-3-
662-47989-6
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Asymptotics for Number Fields
and Class Groups

Melanie Matchett Wood

Abstract This article is an exposition of some of the basic questions of arithmetic
statistics (counting number fields and distribution of class groups) aimed at readers
new to the area. Instead of a thorough treatment of the most general cases, it
treats the simplest cases in detailed way, with an emphasis on connections and
perspectives that are well known to experts but absent from the literature.

Keywords Number fields • Class groups • Density of discriminants • Malle’s
conjecture • Cohen–Lentra Heuristics • Arithmetic statistics

1 Counting Number Fields

We start by giving an introduction to some of the most basic questions of arithmetic
statistics. A number field K is a finite extension of fields K=Q. Associated with
a number field is an integer Disc X, its discriminant. (See your favorite algebraic
number theory text, or, e.g., [51, p. 15].) We have the following classical result.

Theorem 1.1 (Hermite’s theorem, see, e.g., III.2.16 in [51]). Given a positive
real number X, there are finitely many number fields K (up to isomorphism, or in a
fixed algebraic closure NQ of Q) with jDisc Kj < X.

So the most basic question we can ask is how many are there? Let D.X/ be the
set of isomorphism classes of number fields K such that jDisc Kj < X.

Question 1.2. What are the asymptotics in X of

N.X/ WD #D.X/‹
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Remark 1.3. One can ask a version of this question in which Q is replaced by any
global field, as well, and Disc K is replaced by the norm of the discriminant ideal.

It turns out that after seeing the heuristics in these talks and perhaps also looking
at data, one might conjecture

N.X/ D cX C o.X/

for some constant c > 0, but we are a long way from a proof of such a statement.

Notation. Given real-valued functions f .X/, g.X/, and h.X/ on some subset of R
when we write

f .X/ D g.X/C O.h.X//;

we mean that there exists a C such that for every X 
 1 we have

jf .x/ � g.x/j � CX:

Given such functions f .X/, g.X/, and h.X/ when we write

f .X/ D g.X/C o.h.X//;

we mean that for every real number � > 0, there exists an N such that for X > N,
we have

jf .X/ � g.X/j < �h.X/:

When we have f .X/ D g.X/Co.h.X// and also h.X/
g.X/ D O.1/, i.e., limX!1 f .X/

g.X/ D 1,
then we write

f .X/ � g.X/

to denote that f .X/ and g.X/ are asymptotically equivalent.

One can approach Question 1.2 by filtering the number fields by other invariants.

1.1 Galois Group

Given a number field K of degree n—not necessarily Galois—with Galois closure
QK over Q, we define (by a standard abuse of language) the Galois group of K, or
Gal.K/, to be the permutation group given as the image of

Gal. QK=Q/! Sn
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given by the action of the Galois group on the n homomorphisms of K into NQ. For
example, if K D Q.�/, these n homomorphisms are given by mapping � to each
of its n Galois conjugates in NQ. The Galois group is well defined as a permutation
group, i.e., up to relabeling the n homomorphisms, or, equivalently, conjugation
in Sn. Two permutation groups in Sn are isomorphic if they are Sn-conjugate.

Exercise 1.4. Show that the Galois group of a number field is a transitive permuta-
tion group, i.e., it has a single orbit on f1; 2; : : : ; ng.
Exercise 1.5. Show that if K is Galois, then its Galois group as defined above is
isomorphic, as a group, to the usual notation of Galois group.

So given a transitive permutation group � � Sn, (i.e., a conjugacy class of
subgroups of Sn, each with a single orbit), we can ask the following.

Question 1.6. What are the asymptotics in X of

N�.X/ WD #fK 2 D.X/ j Gal.K/ ' �g‹

(where Gal.K/ ' � denotes an isomorphism of permutation groups).

Note that since � determines n, any K with Gal.K/ ' � is necessarily of
degree n. Note also that we count fields up to isomorphism, not as subfields of
NQ, so, e.g., each isomorphism class of non-Galois cubic field is counted once, not
three times.

Remark 1.7. One can of course ask these questions, but it should be clear that in
general these questions are very hard (for example, they contain the inverse Galois
problem). In this article we will discuss what one can do towards solving them in
some cases.

Exercise 1.8. For each permutation group � , determine how N�.X/ differs from the
similar function that counts subfields of NQ with Galois group � .

Exercise 1.9. For each permutation group � , determine how N�.X/ differs from the
similar function that counts elements K of D.X/ with a choice of isomorphism of
Gal.K/ to � .

1.2 Local Behavior

Given a place p of Q and a number field K, we can form Kp WD K ˝Q Qp (where
Q1 D R/.

Exercise 1.10. Prove that Kp is an étale Qp algebra, equivalently a direct sum of
field extensions of Qp.
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In particular, if }i are the places of K dividing p, then Kp DLi K}i : So, in partic-
ular, we see that the algebra Kp contains the information of the splitting/ramification
type of p. The n homomorphisms K ! NQ extend to n homomorphisms Kp ! NQp,
and we have a map then from the decomposition group Gal. NQp=Qp/ � Gal. NQ=Q/
to � given by its actions on the n homomorphisms. Let the image of this map be
H, as a permutation group, we can define it as Gal.Kp/, the Galois group of the
étale algebra (by yet another abuse of language). Note that H is the decomposition
subgroup of Gal. QK=Q/ ' � .

We can also count number fields with a fixed local behavior.

Question 1.11. Let � be a permutation group with sub-permutation group H and
let M be an étale Kp algebra with Gal.M/ ' H. What are the asymptotics in X of

N�;M.X/ WD #fK 2 D.X/ j Gal.K/ ' �;Kp ' M;Gal.Kp/ D Hg‹

Exercise 1.12. I wrote Gal.Kp/ D H to denote that the isomorphism Gal.K/ ' �

should induce an isomorphism of Gal.Kp/ onto the precise subgroup H of � , not
just some other subgroup isomorphic to H. Find a case where this would make a
difference.

Question 1.11 then contains, for example, the question of counting quadratic
number fields that are split completely at 7.

Exercise 1.13. Answer Question 1.11 for the question of counting quadratic num-
ber fields that are split completely at 7. Can you extend your method to count
non-Galois cubic (� D S3) fields split completely at 7? What makes this problem
harder?

We can further refine Question 1.11 to ask for local conditions at a set of primes
(either a finite set of an infinite set).

Exercise 1.14. Answer this refinement for real quadratic fields split completely at 7.
Answer this refinement for real quadratic fields split completely at 7 and ramified
at 3.

1.3 Independence

By dividing the answers to the above questions, we can ask what proportion of
number fields (with some Galois structure) have a certain local behavior. It is natural
to phrase this proportion as a probability and define

PDisc.K with Gal.K/ ' � has some local behavior/

D lim
X!1

#fK 2 D.X/ j Gal.K/ ' �;K has that local behaviorg
#fK 2 D.X/ j Gal.K/ ' �g :
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This might now remind us of the Chebotarev density theorem, which is of similar
flavor. That theorem tells us, for example, that if we fix a quadratic field K, then half
of the primes of Q split completely in K and half are inert. We could phrase that as
above as a question about a fixed field and a random prime. Note that the probability
above is for a fixed prime and a random field. One thing that makes this version
much harder is that it is much harder to enumerate the fields than the primes—with
quadratic fields being an exception.

Imagine we make a big chart, listing all the quadratic fields by (absolute value of
their) discriminant and all the primes, and marking which split (S), ramify (R), or
are inert (I).

:::
:::

:::
:::

::: : :
:

Q.
p�7/ S I I R � � �
Q.
p
5/ I I R I � � �

Q.i/ R I S I � � �
Q.
p�3/ I R I S � � �

quad. fields / primes 2 3 5 7 � � �

Above we defined a notion of probability for a random field. Now we do the same
for a random prime. For a subset S of the primes, let

Pp.p 2 S/ WD lim
P!1

#fp 2 S j p < Pg
#fp prime j p < Pg :

The Chebotarev density theorem (or simply Dirichlet’s theorem on primes in
arithmetic progressions plus quadratic reciprocity) tells us that for each quadratic
field K

Pp.p prime, splits in K/ D 1=2
Pp.p prime, inert in K/ D 1=2

Pp.p prime, ramifies in K/ D 0:
This says, in each row of the chart, if we go out far enough to the right, about

half the entries are S and have are I. If we ask for PDisc.7 splits/, that is asking in the
7th column of the chart, as we look far enough up, what proportion of S’s do we get.
We can do a simple calculation to see that in PDisc there is a positive probability of
ramification, in contrast to the Chebotarev Density Theorem. So, for example, we
have (as the result of a slightly more complicated but classical calculation, like the
exercise above)

PDisc.K with Gal.K/ ' S2 splits completely at 7/ D 7=16
PDisc.K with Gal.K/ ' S2 inert at 7/ D 7=16
PDisc.K with Gal.K/ ' S2 ramified at 7/ D 1=8:
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If we condition on K being unramified, in this case we do obtain the “same
probabilities” as in the Chebotarev Density Theorem. We will see this in other cases
below, and in generality for abelian extensions in Theorem 9.1.

Note that PDisc and Pp are not probability measures in the usual sense (perhaps
more precisely they are “asymptotic probabilities”) because they are not always
countably additive. However, it is a useful piece of language here, because it lets us
phrase the following important question.

Question 1.15. For a finite set of distinct places, are probabilities of local behav-
iors independent at those places?

It is interesting to compare this to the Chebotarev version. Suppose we look in
two rows of the above chart. How often do we see

S vs. S vs. I vs. I

S I S I‹

If the two rows were independent, then we would see each of these possibilities
1=4 of the time, asymptotically. Indeed, we can see that is the case by applying the
Chebotarev density theorem to the composite of the two quadratic fields.

Exercise 1.16. Do that application of the Chebotarev density theorem.

More generally, the Chebotarev density theorem tells us that even if we included
all Galois number fields in our list on the left of our chart, two rows are independent
if they correspond to number fields K;L that do not contain a common subfield
larger than Q. For example, we have the following.

Proposition 1.17. Let K;L � NQ be Galois number fields. Then for a random
rational prime p the events “p splits completely in K” and “p splits completely
in L” are independent, i.e.,

Pp.p splits completely in K/Pp.p splits completely in L/ D
Pp.p splits completely in K and L/;

if and only if K \ L D Q.

Proof. By the Chebotarev Density Theorem, for a Galois number field F we have

Pp.p splits completely in F/ D ŒF W Q��1:

We have, since K is Galois, ŒK W Q�ŒL W Q� D ŒKL W Q� if and only if K\L D Q. ut
Exercise 1.18. Prove the analog of Proposition 1.17 for other local behaviors
besides “splits completely.”

If K and L are not Galois, the question of independence is more subtle (see,
e.g., the notion of Kronecker equivalence in [39, Chap. 2]). If K;L do contain a
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common subfield F larger than Q, then it is easy to understand heuristically that
the rows should not be independent because they both have a dependence on local
behaviors in F. One can moreover see that the common subfield exactly accounts
for the dependence as in the following.

Proposition 1.19. Let K;L � NQ be Galois number fields. Then for a random
rational prime p, conditional on p’s splitting type in K \ L, the events “p splits
completely in K” and “p splits completely in L” are independent, i.e.,

Pp.p splits completely in Kjp splits completely in K \ L/

�Pp.p splits completely in Ljp splits completely in K \ L/

D Pp.p splits completely in K and Ljp splits completely in K \ L/:

Proof. We have

Pp.p splits completely in Kjp splits completely in K \ L/ D ŒK W Q��1ŒK \ L W Q�;

and similarly for the other two conditional probabilities. Since K is Galois, ŒK W
Q��1ŒK \ L W Q�ŒL W Q��1ŒK \ L W Q� D ŒKL W Q��1ŒK \ L W Q�. ut

We can prove the analogous fact for any local behaviors. So the dependence
of two rows for K and L is determined by whether K and L have a subfield in
common. You can try to imagine what the analog should be for primes. What should
be analogous for primes, to two fields containing a common subfield?

Exercise 1.20. What is the probability that a quadratic field is split completely at 3?
at 5? at 3 and 5? is there independence? What more general statement along these
lines can you prove for quadratic fields?

2 Counting Class Groups

Similarly, we can ask what proportion of number fields have a certain class
group behavior. Here, even phrasing the right question in the most general case
is complicated, so we will start with the simplest case.

Question 2.1. Given an odd prime p and a finite abelian p-group G, what propor-
tion of imaginary quadratic number fields K, ordered by discriminant, have Cl.K/p
(denoting the Sylow p-subgroup of the class group) isomorphic to G, i.e., what is the
limit

lim
X!1

#fK 2 D.X/ j K imag quad;Cl.K/p ' Gg
#fK 2 D.X/ j K imag quadg

if it exists?
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The answer to this question is not known for any G.

Exercise 2.2. Let G be a finite abelian group. What are the asymptotics of the
number of imaginary quadratic number fields up to discriminant X with class
group isomorphic to G? Can you see why we restrict to the Sylow p-subgroup in
Question 2.1?

We can also ask for various averages of the class groups of number fields.

Question 2.3. Given an odd prime p, what are the limits, if they exist:

lim
X!1

P

K2D.X/K imag quad jCl.K/=pCl.K/j
#fK 2 D.X/ j K imag quadg ‹ (average size of p-torsion) (1)

lim
X!1

P

K2D.X/K imag quad jCl.K/=pCl.K/jk
#fK 2 D.X/ j K imag quadg ‹ (k-th moment of p-torsion) (2)

lim
X!1

P

K2D.X/K imag quad jSur.Cl.K/;A/j
#fK 2 D.X/ j K imag quadg ‹ (A-th moment); (3)

where A is a finite odd abelian group and Sur denotes surjections.

Note that the denominators here are examples of the kind of counting number
field functions we considered above (but in an example we can answer!).

Exercise 2.4. If p D 2, what is the answer to Eq. (1)? (Hint: learn about genus
theory if you haven’t already.)

Exercise 2.5. Can you relate the case A D .Z=pZ/m of Eq. (3) to Eq. (2)? (Hint:
first try the analog of Eq. (3) for homomorphisms instead of surjections. Can you
say how many homomorphisms a finite abelian group G has to .Z=pZ/m in terms
of the size of the p-torsion of G? Then use the fact that homomorphisms are all
surjections on to their image.)

One might hope that if you knew the answer to Question 2.1 for every G, then you
could average over G to obtain the answers to Question 2.3. However, one cannot
switch the sum over G with the limit in X without an argument, of which none has
been suggested (if you know one, let me know!).

Questions of the form (3) are the most natural to approach from a certain angle,
and in fact the A D Z=3Z case (which is also the p D 3 case of (1)) is a theorem of
Davenport and Heilbronn that we will discuss.

3 Relation Between Counting Number Fields
and Class Groups Statistics

The questions discussed above, of counting number fields and averages for class
groups, are in fact deeply intertwined. We give the first example of their relationship.
Let K be an imaginary quadratic field. Then surjections from Cl.K/ to Z=3Z,
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by class field theory, correspond to unramified Z=3Z-extensions L of K with an
isomorphism Gal.L=K/ ' Z=3Z. Also by class field theory, we can show that such
an L is necessarily Galois over Q, with Galois group S3. So for each imaginary
quadratic K, we have a bijection

Sur.Cl.K/;Z=3Z/$ fL=K unramified, � W Gal.L=K/ ' Z=3Zg
and all L appearing on the right are Galois over Q with Galois group S3.

Exercise 3.1. Show it.

Conversely, let L=Q be an S3 Galois sextic field (so with Galois group S3 � S6
via the regular representation) with quadratic subfield K, such that K is imaginary,
and L=K is unramified. Then we have two corresponding surjections from Cl.K/ to
Z=3Z. So, counting surjections from Cl.K/ to Z=3Z for imaginary quadratic fields
K is the same (up to a multiple of 2) as counting S3 cubic fields that are unramified
over their quadratic subfields (that are also imaginary). And since L=K is unramified
jDisc Lj D jDisc Kj3. The condition that the quadratic subfield of L is imaginary is
a condition on L1, and the condition that L is unramified over its quadratic subfield
is a condition on Lp for every p.

So we see here how the class group average of (3) is related to a question of
counting S3 Galois sextic number fields with local conditions (at all primes). This
was first explained by Hasse [36]. (In particular, we now see the numerator is a
question of this flavor. We already noted the denominator was a question of counting
number fields.) We can further translate the class group average to an even simpler
question of counting number fields. A Galois sextic S3-field corresponds to exactly
one non-Galois cubic field, up to isomorphism (of which it is the Galois closure).
So the question of counting S3 � S6 sextic extensions is equivalent to counting S3
cubic extensions. In general, it is delicate to relate the discriminant of the non-Galois
cubics and the discriminant of their Galois closure (we will discuss this further
below), but in this case, the local conditions we are imposing make the relationship
simple.

Exercise 3.2. What are the different possible ramification types of a prime p in
a non-Galois cubic field K3? Can you tell from the ramification type whether the
Galois closure QK3 is ramified over its quadratic subfield? How? If QK3 is unramified
over its quadratic subfield, how are Disc QK3 and Disc K3 related?

Exercise 3.3. Can you tell from K3 ˝Q R if the quadratic subfield of QK3 is
imaginary? How?

Exercise 3.4. Do the same translation of the class group average question (3) to
a question of counting number fields with local conditions for an arbitrary finite
abelian group A.

This relationship to counting number fields is one reason that the A-moments
of (3) are a particularly nice class group statistic. (We will see another reason
later.) See [41] for a more in-depth discussion and results explaining the connections
between asymptotics of number fields and averages of class groups.
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4 Different Counting Invariants

So far in this entire discussion we have ordered by discriminant, i.e., counted
number fields of discriminant up to X asymptotically in X. We could replace
discriminant by other real-valued invariants and ask the same questions. We will
see below how this can change the answers, both quantitatively and qualitatively.

In fact, some of the questions we have already asked about counting number
fields ordered by discriminant can be seen as a question of counting other number
fields ordered by a different counting invariant. For example, the question of
counting all S3 � S6 sextic extensions by discriminant is equivalent to counting
S3 cubic extensions by the discriminant of their Galois closure, which without the
local conditions imposed in the last chapter is truly a different counting invariant.

5 Cohen–Lenstra Heuristics

We will discuss heuristics (conjectural answers) for the questions we have consid-
ered so far, starting with the class group question. The Cohen–Lenstra heuristics
start from the observation that structures often occur in nature with frequency
inversely proportional to their number of automorphisms.

Exercise 5.1. Consider a graph G on n vertices. Of the 2n graphs on n labeled
vertices (“nature”—you might imagine the vertices are n computers actually out
there in the world, and we are considering all possible network structures between
them) how many are isomorphic to G?

Exercise 5.2. Consider all multiplication tables on n elements a1; : : : ; an that satisfy
the group axioms. How many are isomorphic to a given group G of order n?

Exercise 5.3. Fix a degree n number field K. Consider all subfields of NQ with degree
n over Q—how many of these are isomorphic to K?

Now that you are convinced of this principle, the idea of the Cohen–Lenstra
heuristics is that for odd p, the group Cl.K/p is a finite abelian p-group occurring
in nature, that we know nothing else about, so we will guess it is distributed in
this same way. (For p D 2, when K is imaginary quadratic, genus theory tells us
something about the form of Cl.K/2, or more precisely about Cl.K/2=2Cl.K/2, but
nothing about 2Cl.K/2, so as suggested by Gerth we can make the same guess for
2Cl.K/2.) Let G.n/ be the set of all finite abelian groups of order n.

Conjecture 5.4 (Cohen and Lenstra [18], p D 2 part from [33, 34]). For any
“reasonable” function f on finite abelian groups we have

lim
X!1

P

K2D.X/Kimag quad jf .2Cl.K//j
#fK 2 D.X/ j Kimag quadg D lim

n!1

Pn
iD1

P

G2G.i/
f .G/

# Aut.G/
Pn

iD1
P

G2G.i/
1

# Aut.G/

:
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I expect that we should interpret this as saying not that both limits exist, but that
either both limits do not exist or they both exist and are equal. Of course, everything
hangs on what “reasonable” means. Cohen and Lenstra [18] said that “reasonable”
should probably include all non-negative functions, but Poonen pointed out to me
that it may not make sense to include all non-negative functions as “reasonable.”
See page 22 of [14] for one idea of what one might include as “reasonable.” The
main examples that Cohen and Lenstra in [18] apply their conjecture to are f that
only depend on the Sylow p-subgroups of G for finitely many p (which most people
think should be “reasonable,” [14] agrees), and f the characteristic function of cyclic
groups (which is not in the class of “reasonable” functions considered in [14]).

Notably, Conjecture 5.4 is known for almost no non-trivial f . One exception is
when f D # Sur.�;Z=3Z/, in which case Conjecture 5.4 is known by Davenport
and Heilbronn’s work [25] (discussed in depth below) on counting cubic fields (see
Sect. 3 for the connection to counting cubic fields). This result, of course, predates
the conjecture. The other exception is Fouvry and Klüners results [29, 30] that show
Conjecture 5.4 when f D # Sur.�; .Z=2Z/k/ or f is the indicator function of having
a particular 2-rank, confirming conjectures of Gerth [33, 34].

In order words, the class group average equals the Aut�1 weighted group average.
We define, if it exists,

M.f / WD lim
n!1

Pn
iD1

P

G2G.n/
f .G/

# Aut.G/
Pn

iD1
P

G2G.i/
1

# Aut.G/

(the right-hand side of Conjecture 5.4).
It is useful to know (see exercises above or Sect. 8) that the denominator on the

left-hand side of Conjecture 5.4 is � 6
�2

X.

Exercise 5.5. Show that

lim
n!1

n
X

iD1

X

G2G.n/

1

# Aut.G/
D1:

In particular, then, Conjecture 5.4 implies that each group G appears as a class
group of imaginary quadratic fields asymptotically 0% of the time. In fact, it was
first shown by Heilbronn [37] that each group G appears as a class group of an
imaginary quadratic field only finitely many times.

Cohen and Lenstra in [18] compute the right-hand side of Conjecture 5.4 for
many interesting functions f (which is purely a problem in “finite group theory
statistics” instead of “arithmetic statistics”). If f is the indicator function of cyclic
groups, they show

M.f / � :977575:
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Given an odd prime p, if f is the indicator function for when p j #G; then

M.f / D 1 �
Y

i�1
.1 � p�i/;

and for p D 3 this is � :43987. Perhaps most striking is the following, which
follows from combining lemmas of [18] but is not highlighted by them.

Proposition 5.6. If A is a finite abelian group and f .G/ D # Sur.G;A/, then

M.f / D 1:

So the Cohen–Lenstra heuristics suggest that the expected number of surjections
from an imaginary quadratic class group to A is 1, regardless of the group A. We saw
above, these A-moments were related to questions of counting number fields, and
now we see they have particularly nice predicted values. (See also Ellenberg’s 2014
Arizona Winter School lectures for more on the interpretation of these moments in
the function field analog.)

Note that f .G/ D # Sur.G;A/ only depends on finitely many Sylow p-subgroups
of G. Let P be a finite set of primes, and let GP be the sum of the Sylow p-sub-
groups of G for p 2 P. Let GP.n/ be the set of finite abelian groups G of order n
such that G D GP.

Proposition 5.7 (Cohen and Lenstra [18]). Let P be a finite set of primes. Let f
be a function depending on only the Sylow p-subgroups of G for p 2 P. Then

lim
n!1

n
X

iD1

X

G2GP.i/

1

# Aut.G/
D
Y

p2P

Y

i�1
.1 � p�i/�1 DW cP;

and

M.f / D
P1

iD1
P

G2GP.i/
f .G/

# Aut.G/

cP
:

Exercise 5.8. If F is the indicator function for groups that have cyclic Sylow
3-subgroup and cyclic Sylow 5-subgroup, compute M.f /.

5.1 Further Class Group Heuristics

We have only discussed conjectures for class groups of imaginary quadratic fields.
There are conjectures for much more general situations. Cohen and Lenstra [18] also
formulate precise conjectures for real quadratic class groups, and more generally
for class groups of totally real number fields with some fixed abelian Galois group.
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Cohen and Martinet [19] further extended these conjectures to arbitrary extensions
of an arbitrary global field. It is in general a subtle question for which primes p the
general form of the conjecture can be made for Cl.K/p (e.g., all odd primes in the
imaginary quadratic case). See [1, 20, 31, 48, 49] for work on this question, and
further modifications of the conjecture for p where the base field contains pth roots
of unity. In all of these cases, the conjectures are based on the same sort of principles
as those above, but are modified to take into account further information about the
fields.

6 Galois Permutation Representations

In order to formulate the conjectures for counting number fields, it is useful to trans-
late from the language of number fields to Galois (permutation) representations. For
a field F, let GF WD Gal. NF=F/, the Galois group of a separable closure of F (if
charF D 0, then NF is equivalently an algebraic closure of F). An étale F-algebra
is a direct sum of finitely many finite separable field extensions of F. Two étale
F-algebras are isomorphic if they are isomorphic as algebras. The degree of an étale
algebra is its dimension as an F-vector space, or equivalently the sum of the degrees
of the field extensions. Then given a permutation representation, i.e., a continuous
homomorphism

GF ! Sn;

we can pick representatives ai 2 f1; : : : ; ng of the orbits, and let HiDStab.ai/ � GF.
If Ki is the fixed field of Hi, then we can form an étale F-algebra

L

i Ki.
Conversely, given an étale F-algebra M D L

i Ki, where Ki=F are finite, separable
field extensions whose degrees sum to n, we have an action of GF on the n
homomorphisms M ! NF, which gives a permutation representation of GF. We
say two permutation representations are isomorphic if they differ by relabeling the
n elements, i.e., by conjugacy in Sn.

Proposition 6.1. The above constructions gives a bijection between isomorphism
classes of permutation representations GF ! Sn and isomorphism classes of
degree n étale F-algebras. In this bijection, transitive permutation representations
correspond to field extensions of F.

Exercise 6.2. Prove the above proposition.

Exercise 6.3. If we restrict GQ ! Sn (corresponding to a field extension K=Q) to a
decomposition group GQp ! Sn, show that Kp is the étale algebra corresponding to
GQp ! Sn.

We will now consider the case when F D Q. Fix a transitive permutation
group � � Sn. We will be interested in counting � W GQ ! �; whose
corresponding field extension K has jDisc Kj < X. We define Disc � WD jDisc Kj.
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If we factor jDisc Kj D Q

i pei
i with pi distinct primes, then recall that the ideal

.Disc Kpi=Qpi/ D .pi/
ei : Further, if we write Kpi as a direct sum of field extensions

Kj then .
Q

j Disc Kj=Qpi/ D .Disc Kpi=Qpi/. For an étale Qp-algebra M, we define
d.M/ to be the discriminant exponent so that .Disc M/ D .p/d.M/. If M corresponds
to �p W G NQp

! Sn, we define Disc �p D pd.M/.
For an étale Qp-algebra M associated with � W G NQp

! Sn, recall that d.M/ is the
Artin conductor of the composition of � with the permutation representation Sn !
GLn.C/. This allows us to compute d.M/. For example, we have the following.

Lemma 6.4. If M=Qp is a tame étale extension corresponding to � W G NQp
! Sn,

and y is a generator of tame inertia (i.e., a generator of the quotient of the inertia
subgroup by its unique pro-p-Sylow subgroup) in G NQp

, and c is the number of cycles
in �.y/, then

d.M/ D n � c:

Exercise 6.5. Prove this lemma.

7 Tauberian Theorem

Before we get to the conjectures about counting number fields, we will review an
important tool in asymptotic counting. We give an example of a Tauberian theorem,
which can be found as Corollary p. 121 of [50].

Theorem 7.1. Let f .s/ DP

n�1 ann�s with an 
 0 be convergent for <s > a > 0.
Assume that in the domain of convergence f .s/ D g.s/.s�a/�wCh.s/ holds, where
g.s/; h.s/ are holomorphic functions in the closed half-plane<s 
 a, and g.a/ ¤ 0,
and w > 0. Then

X

1�n�X

an D g.a/

a�.w/
xa.log x/w�1 C o.xa.log x/w�1/:

For example, if f .s/ converges for<.s/ > 1 and has a meromorphic continuation
to <.s/ 
 1 with a simple pole at s D 1 with residue r, then

X

1�n�X

an D rX C o.X/:

Upon seeing Theorem 7.1, you might think whenever you are counting some-
thing asymptotically, you should just make it into a Dirichlet series and study the
pole behavior of the function. However, it should be emphasized that in order to
gain any traction with this method one must produce an analytic continuation of
f .s/ beyond where the Dirichlet series converges. In general, producing such an
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analytic continuation can be as hard as any question in mathematics (e.g., one
defines the L function of an elliptic curve as a Dirichlet series, and the analytic
continuation is a consequence of the modularity theorem, used, for example, in the
proof of Fermat’s Last Theorem—and that’s a case where you have the benefit of
the Langlands program telling you where the analytic continuation should come
from!). Even if you produce an analytic continuation it may be very non-trivial to
understand its rightmost poles (e.g., this is the case when counting quintic number
fields by discriminant). Nonetheless, this is a tool that can help us understand some
asymptotic counting questions, and it gives us a framework for thinking about the
questions that we can’t answer.

8 Counting Abelian Number Fields

We will next apply our Tauberian theorem to count some abelian number fields. The
results in this section will be special cases of more general results which we will
cite more properly in the next section.

Let JQ be the idèle class group of Q, so

JQ D
 

Y

p

0
Q�

p

!

=Q�

where the product is over places p of Q, and the product is restricted so that an
element of JQ must have all but finitely many terms as units Z�

p in the local ring of
integers.

We will first consider quadratic extensions. Though these can be approached
more directly, the advantage of our method is that it, with enough work, will
generalize to any abelian group. Class field theory tells us that the abelianization
Gab

Q is isomorphic, as a topological group to the profinite completion bJQ, and in
particular that continuous homomorphisms

GQ ! Z=2Z

correspond exactly to continuous homomorphisms

JQ ! Z=2Z:

So, we will focus on maps � W JQ ! Z=2Z. Note that � restricts to a map

�0 W
Y

p

Z�
p ! Z=2Z;



306 M.M. Wood

where we use Z1 to denote the positive real numbers. Moreover, we will see that
any such �0 extends to a unique � W JQ ! Z=2Z. Given �0, to define an extension
we must define �.1; : : : ; 1; p; 1; : : : / (where the p is in the p place), and we see that
the quotient by Q� forces

�.1; : : : ; 1; p; 1; : : : /D�.p�1; : : : ; p�1; 1; p�1; : : : /D�0.p�1; : : : ; p�1; 1; p�1; : : : /:

Similarly, for �.1; : : : ;�1/ (with a 1 in every finite place),

�.1; : : : ;�1/ D �.�1; : : : ; 1/ D �0.�1; : : : ; 1/:

So we conclude that � is determined by �0. Moreover, for any �0, we can check that
the above construction gives a well-defined �.

Moreover, we can compute Disc� (defined to be the discriminant of the
corresponding Galois representation to S2) in terms of �0. In our map � W JQ !
Z=2Z, the image of the decomposition group at p is the image of Q�

p and the inertia
group is the image of Z�

p . In particular, since the discriminant (viewed as an Artin
conductor) only depends on the inertia group, we see that we can recover Disc�
from �0.

What are the maps Z�
p ! Z=2Z? Since the kernel of the map Z�

p ! .Z=pZ/� is
pro-p, for p odd, a map Z�

p ! Z=2Z must factor through .Z=pZ/� ! Z=2Z. There
are of course 2 such maps, depending on whether a generator is sent to 1 or 0. When
p D 2, a map Z�

p ! Z=2Z factors through

Z�
2 ! .Z=8Z/� ' Z=2 � Z=2

(to conclude this, one must understand the structure of Z�
2 as a profinite group). In

particular, there are four maps Z�
2 ! Z=2Z:

Given a map Z�
p ! Z=2Z, how do we compute the discriminant? One approach

is to use the conductor-discriminant formula. This requires knowing the conductor
of the map Z�

p ! Z=2Z, which is k where pk is minimal such that the map factors
through .Z=pkZ/�.

Exercise 8.1. Show that Disc � for the � W Q�
p ! Z=2Z restricting to the Z�

p !
Z=2Z discussed above are 1; p for odd p, and 1; 22; 23; 23 for p D 2.

So, if an is the number of continuous homomorphisms � W GQ ! Z=2Z with
Disc � D n, we have

f .s/ D
X

n�1
ann�s D .1C 2�2s C 2 � 2�3s/

Y

p odd prime

.1C p�s/:

We note that

f .s/ D h.s/
�.s/

�.2s/
;
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where h.s/ D .1C 2�2s C 2 � 2�3s/=.1C 2�s/ and �.s/ DP

n�1 n�s. In particular,
we can apply Theorem 7.1. Since the residue of f .s/ at s D 1 is �.2/�1 D 6=�2; we
have that

NS2 .X/ �
6

�2
X:

(There is a single non-surjective � W GQ ! Z=2Z so this doesn’t affect the
asymptotics.) So we have counted, you might say the long way around, quadratic
extensions by discriminant. (Such a result is of course classical.)

An important feature of our approach is that it works more generally. Suppose
we want to count cyclic cubic fields (as was done by Cohn [16] in the same way as
we will do). Each field corresponds to 2 surjective maps GQ ! Z=3Z � S3. Let an

be the number of continuous homomorphisms � W GQ ! Z=3Z with Disc � D n,
then by a similar analysis to the above we have

f .s/ D
X

n�1
ann�s D .1C 2 � 3�4s/

Y

p�1 .mod 3/ prime

.1C 2p�2s/:

We can show that the function f .s/ has rightmost pole at s D 1=2, where it has
a simple pole. Let � be a Dirichlet character modulo 3 such that �.1/ D 1 and
�.2/ D �1. Then note that

Y

p prime, not 3

.1C p�2s/
Y

p prime, not 3

.1C �.p/p�2s/

D
Y

p�1 .mod 3/ prime

.1C 2p�2s C p�4s/
Y

p�2 .mod 3/ prime

.1 � p�4s/:

By comparison to �.2s/ and L.2s; �/, the top has rightmost pole a simple pole at
s D 1=2. We can see that the bottom has the same pole behavior as f .s/ to s D 1=2.
We conclude the result of Cohn [16]

NZ=3�S3 .X/ �
1

2
lim

s7!C1=2
.1C2 �3�4s/

Y

p�1 .mod 3/ prime

.1C2p�2s/�.2s/�1X1=2; (4)

where the limit in s is a constant.
Note here, the main input, after we have applied class field theory in the set-up

above, is to find appropriate L functions to compare our Dirichlet series with so
that we can analyze the pole behavior and get analytic continuation so as to apply
Theorem 7.1. However, so far we are counting all maps GQ ! G, and when G is
not Z=` for some prime `, there will be more than 1 non-surjective map to subtract.
We will come back to this issue.
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8.1 Local Conditions

Let’s go back to considering � W GQ ! Z=2Z. What if we wanted to impose local
conditions † such that 3 was split completely? Taylor [54] attributes the question
of the distribution of splitting types of a given prime in random G-extensions to
Fröhlich, who was motivated by the work of Davenport and Heilbronn [25]. We
discuss work of Taylor [54] and the author [60] on this question below.

Since in the isomorphism Gab
Qp
' cQ�

p of class field theory, we have that
Frobp 7! p, this is equivalent to counting � W JQ ! Z=2 such that �.1; 3; 1; : : : / D 0
(where the 3 is in the Q3 place). Since we have that �.1; 3; 1; : : : / D �.3; 1; 3; : : : /;
we can check this just from the maps from Z�

p . Where does a local map � W Q�
p !

Z=2 send 3 when p is not 3? If � is trivial, then �.3/ D 1. If p is odd and � is not
trivial, then �.p/ D 0 if 3 is a square mod p and �.p/ D 1 if 3 is not a square mod
p. Let ‰ be the Dirichlet character that is 1 on odd primes p such that 3 is a square
mod p and �1 on odd primes p such that 3 is not a square (which exists and is of
modulus 12 by quadratic reciprocity).

Let bn be the number of continuous homomorphisms � W GQ ! Z=2Z with
Disc � D n and sending .1; 3; 1; : : : / to 0. Then

g.s/D
X

n�1
bnn�s

D1
2

0

@.1C2�2sC2 � 2�3s/
Y

p odd prime

.1Cp�s/C.1 � 2�2s/.1C3�s/
Y

p prime>5

.1C‰.p/p�s/

1

A :

The first term counts all � W GQ ! Z=2Z with coefficient 1. The second counts
� W GQ ! Z=2Z that send .3; 1; 3; : : : / 7! 0 with coefficient 1 and those that
send .3; 1; 3; : : : / 7! 1 with coefficient �1. (We have checked at p D 2 that the
discriminant 22 map sends 3 7! 1 and of the two discriminant 23 maps, one sends
3 7! 1 and one 3 7! 0.) We will compare g to the L function

L.s; ‰/ D
Y

p prime

.1 �‰.p/p�s/�1:

We have that

g.s/ D 1

2
h.s/

�.s/

�.2s/
C 1

2
k.s/

L.s; ‰/

L.2s; ‰/
;

where k.s/ is analytic on <s 
 1. Since L.s;‰/
L.2s;‰/ is holomorphic on <s 
 1, we have

NS2;†.X/ �
1

2

6

�2
X:
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We can go about this more systematically. Above, we essentially argued that

.
Y

p finite

Z�
p / � RC ' JQ:

However, let S be a finite set of places, then we also have

0

@

Y

p2S

Q�
p �

Y

p62S

Z�
p

1

A =Z�
S ' JQ

where Z�
S denotes S-units, i.e., integers in Z�

p at all primes p 62 S. (We let
Z�1 D 1:) So we will let S be a finite set of places on which we want to make
local specifications. We will make a Dirichlet series counting maps

Q

p2S Q
�
p �

Q

p62S Z
�
p ! G for abelian G, and then we will use multisection (i.e., use the above

trick with 1 and �1) to pull out the maps that are trivial on Z�
S . First we have

FG.s/ D
Y

p2S

0

@

X

�pWQ�

p !G

p�d.�p/s

1

A

Y

p62S

0

@

X

�pWZ�

p !G

p�d.�p/s

1

A ;

which counts all maps
Q

p2S Q
�
p �

Q

p62S Z
�
p ! G. Now, for simplicity, we will let

G D Z=nZ. Let A be a set of representatives for Z�
S=.Z

�
S /

n. Let � be a primitive nth
root of unity. Note that if � WQp2S Q

�
p �

Q

p62S Z
�
p ! G, then

1

#A

X

a2A

��.a/

is 1 if �.Z�
S / D 0 and is 0 otherwise. So, we have

HG.s/ D 1

#A

X

a2A

0

@

Y

p2S

0

@

X

�pWQ�

p !G

��p.a/p�d.�p/s

1

A

Y

p62S

0

@

X

�pWZ�

p !G

��p.a/p�d.�p/s

1

A

1

A ;

which counts all maps
Q

p2S Q
�
p �

Q

p62S Z
�
p ! G D Z=nZ that are trivial on Z�

S ,
or equivalently, maps JQ ! G D Z=nZ with this property. Now, if we have a local
specific † at places p 2 S, we can form

HG;†.s/ D 1

#A

X

a2A

0

B

B

B

@

Y

p2S

0

B

B

B

@

X

�pWQ�

p !G
�p2†p

��p.a/p�d.�p/s

1

C

C

C

A

Y

p62S

0

@

X

�pWZ�

p !G

��p.a/p�d.�p/s

1

A

1

C

C

C

A

;

(5)
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which counts all maps JQ ! G D Z=nZ satisfying the local conditions †. We see
now the advantage of taking the full map from Q�

p at the places where we want to
specify. Now imposing local conditions is just a matter of taking the terms we want
from those factors.

Exercise 8.2. See that the above gives the same analytic functions for the question
of counting quadratic extensions split completely at 3.

Above we see that HG;†.s/ is a sum of #A Euler products. In an ideal world, (*)
the rightmost pole would occur in exactly 1 of those Euler products (presumably the
a D 1 term, since we could hope the roots of unity help the other terms be smaller),
and we would have an analytic continuation beyond the line of that rightmost pole
so we could apply Theorem 7.1. If this were true, then the discriminant probability
among all maps, not necessarily surjective, JQ ! G of any † with specifications
on a finite set of primes s would be

Q

p2S

P

�pWQ�

p !G
�p2†p

p�d.�p/s

Q

p2S

P

�pWQ�

p !G p�d.�p/s
;

and, in particular, because only one Euler product contributed to the asymptotic
count we would certainly have independence of probabilities of local behaviors at a
finite set of places.

However, the world is not always ideal. It turns out (*) is true when G is abelian
of prime exponent, but is not true in general. Also, there is a distinction between the
question above and the question of counting number fields, which would correspond
to surjective �. One can use inclusion–exclusion to subtract out � with smaller
image. In an ideal world, (**) the Dirichlet series coming from the maps with
smaller images would be holomorphic past the rightmost pole of HG. However, (**)
is only true when G is abelian of prime exponent as well. (See [60] for the proofs of
all of these claims.)

We always consider abelian groups in their regular permutation representation.
When G D .Z=`/k for some prime `, then as we have said (but certainly not
proven!) above, one obtains an asymptotic for NG and for NG;† for each set † of
local specifications with restrictions only at finitely many primes. In particular, the
probabilities of local conditions at distinct primes are independent. The probabilities
are simple values we can read off from above.

Now we consider again an abelian G. If we impose local conditions that only
depend on the restriction �p W Z�

p ! G (for example, whether the map is ramified or
unramified at p), then we can pick out the appropriate terms in the Dirichlet series

Y

p

0

@

X

�pWZ�

p !G

p�d.�p/s

1

A ;
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and again in this case show independence of such local conditions among all (not
necessarily surjective) �p W Z�

p ! G. (Note we have not shown this here, one still has
to do the analysis of the Dirichlet series by comparison to appropriate L functions.)

Exercise 8.3. Let A be an event with positive probability not equal to 1. If E and
F are independent, independent given A and we have that P.EjA/ ¤ P.E/ and
P.FjA/ ¤ P.F/, then, given not-A, the events E and F are not independent.

Using the exercise above, it is shown in [60] that since ramification is indepen-
dent, e.g., in Z=` extensions (for ` prime), and for maps � W GQ ! Z2`, then it cannot
be independent in Z=`2 extensions. (This requires, among other things, knowing that
non-surjective � W GQ ! Z=`2Z occur with positive probability.) For example, we
have the following.

Proposition 8.4 (Proposition 1.4 of [60]). Let p; q1; and q2 be primes with qi � 1
.mod p/ for i D 1; 2. Then q1 ramifying and q2 ramifying in a random Z=p2Z-
extension are not (discriminant) independent.

One might hope to then simplify things by not considering G-extensions but
rather all maps GQ ! G. Then, we wouldn’t have to subtract out non-surjective
maps. In this situation, for local conditions only depending on the map of the inertia
subgroups, we do indeed get independence of local behaviors and easy to read off
probabilities. However, if we consider all local conditions, then the other terms in the
Eq. (5) sum over a 2 A with the same rightmost pole as the a D 1 term necessarily
have an effect on the answer.

8.2 Grunwald–Wang

It follows from Wang’s [57] counterexample to Grunwald’s “Theorem” [35] (this
is a great story to read about if you don’t know it already), that there is no Z=8

extension K of Q for which K2 is an unramified extension of Q2 of degree 8.
However, there is certainly a local Galois representation �2 W Q�

2 ! Z=8 that is
unramified and sends 2 7! 1. This local Galois representation does not come from
a global GQ ! Z=8, and considering all GQ ! Z=8 or just surjective GQ ! Z=8

does not change a thing about this fact. So, we realize that some term in the Eq. (5)
sum over a 2 A with the same pole as the a D 1 term must in fact cancel that pole
entirely.

Exercise 8.5. Show there is no Z=8 extension K of Q for which K2 is an unramified
extension of Q2 of degree 8.

Exercise 8.6. When G D Z=8Z and † is the restriction at 2 that Q�
2 ! G be

unramified and surjective, write out the sum of Euler products for HG;† and see the
cancellation explicitly.
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It can be completely classified when local Galois representations to abelian
groups do not occur as restrictions of global Galois representations (a convenient
reference is [2, Chap. 10]). Over Q, problems only occur at 2. However, the Wang
counterexamples are in fact the nicest possible behavior that occurs when the Eq. (5)
sum over a 2 A has multiple terms with the same pole. In general, say for restrictions
only at odd places, there are still multiple terms that contribute to the sum, and
the result is terrible looking probabilities, and lack of independence, whether one
considers all GQ ! G or just surjective ones.

8.3 Counting by Conductor

One can ask all the same questions for counting abelian extensions, but instead of
counting by discriminant, can count by conductor. The answers to the questions
above are much nicer in this situation. (In fact, in [60] a notion of fair counting
function is introduced which includes conductor, and, e.g., the product of ramified
primes, for which all the same qualitative results hold as for conductor.) When
counting by conductor, as in [60], the terms from subtracting non-surjective maps
do not have any poles in the relevant region, so (**) is not a problem.

However, we know that some of the other terms in the Eq. (5) sum a 2 A
must have the same rightmost pole as the a D 1 term, because counting by a
different invariant is never going to eliminate Wang’s counterexample. Amazingly,
when counting by conductor, while there are indeed multiple terms with the same
rightmost pole, they all differ by simple rational constants and can be combined
simply. In a precise sense (described in [60, Sect. 1]), there are no obstructions to
simple probabilities and independence other than the completely classified Wang
counterexamples. All of the local behaviors that do occur from global extensions
still occur with the same relative probabilities that one would expect from their
contribution to the a D 1 term of the Dirichlet series—just the ones that are
impossible occur with probability 0. When counting abelian extensions of Q, since
2 is the only place that has Wang counterexamples, there is independence of local
behaviors when counting by conductor.

Over other fields with multiple places dividing 2, there are sometimes local
behaviors at two different places that are both possible, but not possible together.
(Again, these belong to the completely classified Wang counterexamples.) So when
Q is replaced one of these fields, using any counting function for that field,
independence has to fail. However, as described explicitly below, when counting
by conductor the simplest possible thing happens given this. We can build a model
from the Dirichlet series, and then restrict to what is possible, and that gives the
answer.
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9 Abelian Results

These asymptotics of NG.X/ for G abelian (G � SjGj in its regular representation)
were determined completely for abelian Galois groups by Mäki [44]. Mäki [45]
also determined the asymptotics of the number of extensions of Q with fixed abelian
Galois group and bounded conductor. Wright [67] proved the analogous asymptotics
for counting G-extensions for a fixed abelian G by discriminant over any number
field or function field (in tame characteristic). Wright also showed that any local
restrictions that occur at all (i.e., are not Wang counter examples) occur with positive
asymptotic probability. Wright, however, noted that the probabilities seem quite
complicated. Before the work of Mäki and Wright, there were many papers that
worked on these questions for specific abelian groups. See [67] for an overview of
this literature.

In [60], we give the asymptotics of the number of G-extensions with bounded
conductor (or any fair counting function) for a finite abelian group G over any
number field. We also give the constant in the asymptotic more explicitly than it
appears in [45]. In [60], we also completely determine the probabilities of local
conditions when counting G-extensions by conductor for some fixed abelian G. We
also more carefully analyze the probabilities when counting by discriminant to prove
that indeed they are as bad as Wright suspected.

9.1 Some Explicit Results

If we count abelian number fields by their conductor (in the sense of class field
theory [51, Chap. VI, 6.4]), we can define Pcond analogously to our definition of
PDisc in Sect. 1 above.

Theorem 9.1 (Wood [60]). Let G be a finite abelian group in its regular permuta-
tion representation, and q be a fixed rational prime (not 2 if jGj is even). Then for
a random L with Galois group G, a fixed K with Galois group G, and a random
rational prime p

Pcond.q splits into r primes in L j q unramified in L/ D
Pp.p splits into r primes in K/:

Taylor [54] first proved the result of Theorem 9.1 in the special case that G D
Z=nZ, and assuming that 4 − n. Wright [67] proves an analog of Theorem 9.1 for
discriminant probability in the case that G D .Z=pZ/b for p prime, and for these G
the discriminant is a fixed power of the conductor, and thus discriminant probability
is the same as conductor probability. Theorem 9.1 relates the row probabilities to
the column probabilities of the sort of big chart we made in Sect. 1. In fact in
[60], the probabilities of all (ramified or unramified) local behaviors are determined.
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Further it is shown jGj is even and p D 2 the probabilities of splitting types that ever
occur in a random G-extension that occur in the same proportions as they occur in
the Chebotarev density theorem for a fixed extension and random prime. Of course,
there will always be the contrast, seen already for quadratic extensions in Sect. 1,
that for a fixed p and a random G-extension L, the prime p will be ramified with
positive probability, while for a fixed number field K a random prime q is ramified
with probability 0.

Further, in [60] it is shown that these local probabilities for splitting in a random
G-extension are independent for different primes.

Theorem 9.2 (Wood [60]). Let G be a finite abelian group in its regular permu-
tation representation. For any finite set S of places of Q and any choice of local
Qv-algebras Tv for v 2 S, for a random L with Galois group G (counted by
conductor), the events L˝Q Qv ' Tv are independent.

Wright [67] showed that all Qv-algebras that ever occur as L˝QQv for a number
field L with Galois group G occur with positive discriminant probability, but noted
that the probabilities are apparently very complicated. The discriminant probability
analog of Theorem 9.1 does not hold. If K is a fixed number field with Galois group
Z=9Z and p a random rational prime, then

Pp.p splits completely in K/ D 1

9
:

However, we have the following.

Proposition 9.3 (Wood [60]). Let q D 2, 3; 5; 7; 11; or 13. Then for a random L
with Galois group Z=9Z,

PDisc.q splits completely in L j q unramified in L/ <
1

9
:

The situation for abelian extensions and their local behaviors is quite interesting
over a base number field K other than Q. Wang counterexamples occur only at
primes dividing 2, but now there can be more than one such prime, and so these
examples affect even independence. Given an abelian G, it is possible that the
Kv-algebra Tv and the Kv0-algebra T 0

v0 both occur from global G-extensions, but
never occur simultaneously. This suggests that we should not expect Tv and T 0

v0

to be independent events. However, given obstructions of this sort, which were
completely determined in [57] (or see [2, Chap. 10]), we have the best possible
behavior of the local probabilities. This is described in detail in [60, Sect. 1], but
roughly if you build a model where local behaviors are predicted to have their
heuristic probabilities (see Sect. 10), and then restrict to the combinations of local
behaviors that ever occur, the model gives the correct predictions.
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10 The Malle–Bhargava Principle

Malle [46, 47] has given a conjecture for Question 1.6 and Bhargava [12] has
given some heuristics (stated as a question—when do these heuristics apply?) for
the more refined Questions 1.11 that extend Malle’s original conjecture. However,
there are counterexamples to both the original conjecture (see Klüners [40]), and
to Bhargava’s more refined heuristics (e.g., some of the abelian counting results of
[60] above), so we will refer to these conjectures/heuristics as a principle. (Though
notably, there are not any known counterexamples to the weaker form of Malle’s
conjecture given in [46] that says K�X1=a.�/ � N�.X/ � K�;�X1=a.�/C� for a
specified constant a.�/ and unspecified constants K�;K�;� .) An important open
question is to even make a good conjecture about when exactly the principle should
apply.

We now explain the principle, following [12] (similar, but not identical, heuristic
reasoning is given by Malle [47]). Let � � Sn be a permutation group. For each
place p of Q, let†p be a set of continuous homomorphisms GQp ! � . Let† be the
collection of these †p. If †p is all the maps GQp ! � for all but finitely many p,
we say † is nice. (We may want to call other † nice as well.) We define a Dirichlet
series as an Euler product over places p

D�;†.s/ WD C�
Y

p

0

@

1

#�

X

�p2†p

.Disc �p/
�s

1

A

for some as yet unspecified constant C� , where the product is over all places p of Q.
Let D�;†.s/ DPn�1 dnn�s.

For nice †, the principle predicts that the asymptotics of

#f� W GQ ! � j � surjective, Disc � < X; �p 2 †p for all pg

in X are the same as the asymptotics of

X
X

nD1
dn

in X. (Equivalently, it predicts that the limit of their ratios is 1.) Perhaps stated
another way, the principle would suggest that D�;†.s/ and a Dirichlet series counting
surjective GQ ! � by discriminant would have the same rightmost pole and residue
at that pole and analytic continuation just beyond the pole, so that the previous
version of the principle would follow from Theorem 7.1.
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10.1 Local Factors

To begin to digest this principle, we will consider a single local factor

1

#�

X

�p2†p

.Disc �p/
�s:

Finitely many factors have pj#� (these are the terms where the local extension might
be wild), but we see that these finitely many factors cannot introduce any poles to
D�;†.s/: So we expect the important analytic behavior of D�;†.s/ to be present in
just the tame factors, and for the rest of this section we assume p − #� .

Let Qt
p be the maximal tame extension of Qp, and Gt

Qp
WD Gal.Qt

p=Qp/ be the
tame quotient of the absolute Galois group of Qp. Let F be the free group on x and
y with the relation

xyx�1 D yp:

Let OF be the profinite completion of F. Then we have an isomorphism

OF ' Gt
Qp
;

where y goes to a topological generator of the inertia subgroup, and x goes to Frob
(see, e.g., [52, Theorem 7.5.2]). Given a y 2 � , let c.y/ be the number of orbits of y
on f1; : : : ; ng, and let d.y/ D n � c.y/. So

X

�p2†p

.Disc �p/
�s D

X

x;y2�
xyx�1Dyp

p�d.y/s:

Given y 2 � , how many x are there in � such that xyx�1 D yp? If y and yp are
conjugate, then there are #�=#fconj. class of yg. If y and yp are not conjugate, then
there are no such x. Let � denote “is conjugate to.” Then we have

X

�p2†p

.Disc �p/
�s D

X

y2�
y�yp

#�

#fconj. class of ygp
�d.y/s:

We can see why we must include the factor 1=#� to get a reasonable principle.
From the y D 1 term, the above sum has constant term #� , and so the 1=#� factor
is necessary so that we could even have a chance of the product over p converging
in some right half-plane. Let �p be the set of conjugacy classes of � of the form Œy�
such that y � yp. So

1

#�

X

�p2†p

.Disc �p/
�s D

X

Œy�2�p

p�d.y/s:
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Note that we always have plenty of primes p � 1 .mod #�/, so that every y � yp,
and �p is simply the set of conjugacy classes of � . A nice special case is when
� D Sn. For p > n, we have y � yp for every y 2 Sn, so for every tame prime p in
this case �p is simply the set of conjugacy classes of � .

Computing these local factors in the wild cases is much more complicated, and
some interesting phenomena arise (see [12, 38, 59, 66]).

10.2 Malle’s Conjecture

This computation of the local factors leads to Malle’s conjecture [46, 47] that

N�.X/ � K�X1=a.�/.log X/b.�/

for some constant K� and a D miny2�nf1g d.y/ and where b.�/ can also be given
explicitly. Klüners [40] has given a counterexample when � D C3 o C2, where
the value of b.�/ is too small, or said another way, there are more extensions than
the conjecture predicts by a log X factor. Turkelli, by analogy with heuristics on the
function field side, has given a “corrected” version of Malle’s conjecture that takes
into account Klüners counterexample [56] to give a different prediction for the log
factor.

The weak conjecture of Malle [46] says K�X1=a.�/ � N�.X/ � K�;�X1=a.�/C� for
some constants K�;K�;� . There are no known counterexamples to this conjecture,
and it is known in a wide variety of cases (see below).

10.3 Independence and Local Behaviors

The principle suggests that when counting extensions with Galois group � , for any
finite set of places, local conditions at those places should be independent. We can
see this from the mechanics of how the Tauberian theorem applies. Changing a finite
number of the factors in the Euler product for D�;† just changes the constant in the
asymptotic by the product of the ratios of the new factors over the old factors, all
evaluated at the rightmost pole.

More precisely, let a.�/ be as above. Recall, the definition of D�;†.s/ above as an
Euler product built as a heuristic model for the Dirichlet series counting extensions
with Galois group � and local behaviors †.

Exercise 10.1. Show that D�;†.s/ converges in <.s/ > 1=a.�/.

Exercise 10.2. Show that D�;†.1=a.�// does not converge.

So, if there is a meromorphic continuation past<.s/ > 1=a.�/, we expect a pole
at 1=a.�/. (To show more precisely that such a pole had to exist, we could find
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lims!C1=a.�/ D�;†.s/.) So, supposing that D�;† has a meromorphic continuation to
<.s/ 
 1=a.�/ (which one can actually show for every �), if D� is the Dirichlet
series where all local behaviors are allowed with coefficients dn, and † makes
specifications at a finite set S of places, and D�;† has coefficients d.†/n, then we
have

lim
X!1

PX
nD1 d.†/n
PX

nD1 dn

D
Y

p2S

1
#�

P

�p2†p
.Disc �p/

�1=a.�/

1
#�

P

�pWGQp !�.Disc �p/�1=a.�/
:

Exercise 10.3. Show this (assuming a continuation to<.s/ 
 1=a.�/ with no other
poles except at 1=a.�/).

So we see the probabilities of local behaviors at different places would be inde-
pendent and given by relatively simple fractions (with all the principles/assumptions
above).

10.4 When the Principle Holds

It is an important open question to even make a good guess as to when the above
principle holds. The work of Mäki [44] (and also Wright [67]) shows that Malle’s
conjecture holds when � is abelian in its regular representation, i.e., the order
of magnitude is right when counting all � extensions. Moreover, Wright shows
that the order of magnitude is right for any local condition that is not a Wang
counterexample (in which case the principle’s prediction must be wrong since the
actual count is 0). However, we saw above that [60] shows that the general principle
fails when � is not abelian with prime exponent because the independence of local
conditions fails. (But all can be recovered if one counts by conductor instead of
discriminant!) Somewhat orthogonal to the focus of the principle above, but also
interesting, is work of Cohen, Diaz y Diaz, and Oliver [22] that finds the constant
K� very explicitly when � is cyclic of prime degree.

For � D S3, it is a theorem of Davenport and Heilbronn [25], that we will discuss
below, that the entire principle holds. Moreover, when � D S3 � S6 via the regular
representation (i.e., counting Galois sextic S3 fields) Bhargava and the author [13]
have shown that the entire principle holds.

For � D S4; S5, theorems of Bhargava [9, 11] show that the entire principle holds.
For � D D4 � S4, Cohen, Diaz y Diaz, and Oliver [21] have shown that Malle’s
conjecture holds, but the evidence suggests that the entire principle does not hold.
(In fact, Cohen [17] counts D4 extensions with local conditions at infinity, from
which it could probably be seen explicitly that the entire principle does not hold.)
Given the above story with abelian � , perhaps the right question is how can we
count extensions so that the principle holds, and in [59] a different way of counting
D4 extensions is suggested for which the principle might hold. Klüners [42] has
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shown that Malle’s conjecture holds for groups C2 o H, under mild assumptions on
the count of H-extensions.

As mentioned above, for some groups even Malle’s conjecture fails. (See [40]
and [56].) However, the weak conjecture of Malle is proven in many cases and has
no known counterexamples. Besides those mentioned above it is also known for
nilpotent groups in their regular representation by Klüners and Malle [43].

10.5 Other Base Fields

Of course, in these questions we could replace Q with any number field or function
field. As suggested by Bhargava [12], the principle above could be formulated over
any global field, and in particular it refines Malle’s conjecture [46, 47] which is
stated over an arbitrary number field. Of the work above, [67] is over any number
field or function field of tame characteristic and [22, 42, 43, 60] are over any number
field. Also when � D Z=`Z and the base field is a rational function field, the
counting has been done in [4], and in particular cases relevant to the application
at hand there it is shown that the full principle with local conditions also holds.
The work [25] has been generalized to any number field or function field of tame
characteristic by Datskovsky and Wright in [23], and the result of [13] is given over
any number field. As far as the current author is aware, the results [9, 11, 21] are
known only over Q.

11 Davenport–Heilbronn

In this section, we will discuss how to answer Question 1.6 for � D S3, i.e., to
count non-Galois cubic number fields. This is originally a result of Davenport and
Heilbronn [25]. Since we know from Cohn [16] (see Eq. (4)) that

NZ=3.X/ � cX1=2

and the results of Davenport and Heilbronn [25] will say that

NS3 .X/ � c0X;

we may equally well consider counting all cubic number fields. We will outline a
modern proof (largely following [15]) of this statement, which has the same main
ideas as the original proof, but with improvements and simplifications. There is
an excellent exposition of such a modern proof in Sects. 2–5 and 8 of the paper
of Bhargava, Shankar, and Tsimerman [15] (which, in the other sections, proves a
secondary term for this asymptotic count—see also [55] where the secondary term
is proven with very different methods). So in these notes we will mostly emphasize
aspects that are complementary to what is given in that exposition, and might be
best read along with [15]. There is also a do-it-yourself exposition of the proof in
the Arizona Winter School 2014 problem set, as a series of problems that should
complement this article nicely.
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11.1 The Parametrization

We begin by considering cubic rings, which are commutative rings whose under-
lying additive groups structure is isomorphic to Z3 (equivalently, locally free rank
3 Z-algebras, or a finite, flat degree 3 cover of SpecZ). We will be able to count
cubic rings, and then we will specialize to cubic rings that are domains and maximal.
The maximal cubic domains correspond exactly to the rings of integers in cubic
number fields. We give a parametrization of cubic rings originally due to Delone
and Faddeev [27] (and refined by Gan, Gross, and Savin [32]).

Let R be a cubic ring.

Exercise 11.1. Show that 1 generates a direct summand of R.

Let 1;W;T be a Z basis of R. Since

WT D qC rW C sT;

for some q; r; s 2 Z, we can take ! D W � s and � D T � r and have 1; !; � a Z

basis of R with !� 2 Z. We call such a basis a normalized basis. Next, we write
down a multiplication table for a normalized basis:

!� D n

!2 D m � b! C a� (6)

�2 D ` � d! C c�;

where n;m; `; a; b; c; d 2 Z. However, not all values of n;m; `; a; b; c; d are possible.

Exercise 11.2. Show that the associative law exactly corresponds to the equations

n D �ad m D ac ` D �bd: (7)

That means that not only is Eq. (7) necessarily true for any cubic ring R with
normalized basis 1; !; � , but also if we have a free rank 3 Z-module with generators
1; !; � , we can put a commutative, associative multiplication structure on the
module using Eqs. (6) and (7). So rank 3 rings with a choice of normalized basis are
parametrized by Z4 using .a; b; c; d/. We can package an element .a; b; c; d/ 2 Z4

as a binary cubic form ax3Cbx2yCcxy2Cdy3, and thereby such forms parametrize
rank 3 rings with a choice of normalized basis. Given a form f , let Rf be the
associated cubic ring with a choice of normalized basis. One important fact is
that the construction above preserves discriminants (see [32] or any of the other
references on this parametrization).

Exercise 11.3. Find a binary cubic form associated with ZŒ
3
p
2�. Find another one

(using a different choice of basis). Find a binary cubic form associated with ZŒi�˚Z

(with component-wise multiplication). Find a binary cubic form associated with
Z˚ Z˚ Z: What cubic ring is associated with the zero form?
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A choice of normalized basis of R is equivalent to a choice of Z basis of R=Z. The
action of GL2.Z/ on bases of R=Z gives a GL2.Z/ action on Z4, such that the orbits
are in bijection with cubic rings as given above. Because of the normalization, this
action is slightly annoying to work out by hand, though perhaps not so bad to at least
see it is linear. The action turns out to be (almost) the 4-dimensional representation
of GL2.Z/ on binary cubic forms. Let f .x; y/ D ax3 C bx2y C cxy2 C dy3. Let
g 2 GL2.Z/. Then we can let GL2.Z/ act on binary cubic forms via

.gf /.x; y/ D 1

det.g/
f ..x; y/g/; (8)

where .x; y/g is the multiplication of a row vector by a matrix on the right. This
action exactly translates into the action on the parameters .a; b; c; d/ of cubic rings
given by action on the choice of basis of R=Z. There are several ways to see this
more intuitively, we will see one later. So, we will face the problem of counting
GL2.Z/ classes of binary cubic forms, with the action given in Eq. (8).

An important feature of the parametrization is that in fact many important
properties of the cubic ring can be read off from the associated binary cubic form.
One way to see this is to understand that the parametrization is more general than
what is written above over Z. We will in fact see that it is far more general.

Let B be a commutative ring (which will replace Z). A cubic B-algebra is a
commutative B-algebra which is locally free rank 3 as a B-module. (There are
two common notions of locally free, an algebraic one where “locally” means at
localizations at prime ideals, and a geometric one where “locally” means in Zariski
opens of Spec B, but the rank 3 condition ensures that these two notions are the
same in this case.) If R is a cubic B-algebra, then Spec R is a finite, flat, degree
3 cover of Spec B, and conversely, every finite, flat degree 3 cover is Spec R for a
cubic algebra R. Similarly, for any scheme S, we can define a cubic cover of S to
be a finite, flat, degree 3 cover of S, or equivalently a locally free rank 3 OS-algebra
(which we call a cubic OS-algebra).

Over a scheme S, we define a binary cubic form to be a locally free rank
2 OS-module V (i.e., a rank 2 vector bundle on S) and a global section f 2
H0.S;Sym3 V ˝ ^2V�/, where all tensors and exterior powers are over OS and for
an OS-module W, we write W� for the dual OS module Hom.W;OS/. (These might
be more properly called “twisted” binary cubic forms because of the twist by the
locally free rank 1 ^2 V�, but they are the only ones we will talk about, so we will
leave out the “twisted.”) Over a ring B then (applying the above definition in the
case S D Spec B), we see that a binary cubic form is a locally free rank 2 B-module
V , and an element f 2 Sym3 V ˝ ^2V�. An isomorphism of binary cubic forms is
given by an isomorphism V ! V 0 that takes f ! f 0.

Given a binary cubic form .V; f / over S, we can construct a cubic cover of S
as follows. This construction is due to Deligne [26] (see [63, Sects. 2.3, 2.4, 3] for
a generalization of this construction from binary cubic forms to binary n-ic forms
for any n). Let P.V/ D Proj Sym V , so � W P.V/ ! S is a P1 bundle over S.
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If f is not a zero-divisor, then f cuts out a codimension 1 subscheme Sf � P.V/.
Then ��.OSf / is a locally free rank 3 Os-algebra. This construction does not work
when f is identically the 0 form.

Let O.k/ denote the usual sheaf of P.V/. We then have a complex of sheaves

Cf W O.�3/˝ �� ^2 V
f! O;

(in degrees �1 and 0). If f is not a zero-divisor, then the map above is injective, so
this complex is quasi-isomorphic to

0!O=f .O.�3/˝ �� ^2 V/;

and the term on the right is just OSf : The hypercohomology

H0R��.Cf /

has a product given by the product on the complex (which is a Koszul complex so
has that natural product) and inherits the structure of a cubic Os-algebra (see [63,
Sects. 2.4, 3] for more details on this structure, and this entire construction). When
f is not a zero-divisor, by the quasi-isomorphism above, we see that this agrees with
��.OSf /.

Theorem 11.4 (Theorem 2.4 of [63]). When V is a free OS-module (e.g.,
this is always the case when B is a P.I.D. and S D Spec B), this geomet-
ric/hypercohomological construction of a cubic OS-algebra from a binary cubic
form .O˚2

S ; f / agrees with Rf constructed from Eqs. (6) and (7) above.

We restrict to V a free OS-module only because that is the case for which the first
construction is defined.

Theorem 11.5 (Corollary 4.7 of [63]). Given a scheme S, the geomet-
ric/hypercohomological construction above gives an isomorphism of categories
between the category of binary cubic forms over S (where the morphisms are
isomorphisms) and the category of cubic OS-algebras (where the morphisms are
isomorphisms). Thus, over a scheme S, the construction gives a bijection between
isomorphism classes of cubic algebras and isomorphism classes of binary cubic
forms. If a cubic algebra R corresponds to a binary cubic form .V; f /, then as
OS-modules, we have R=OS ' V�. The functor described above from binary cubic
forms to cubic Os-algebras commutes with base change in S.

(See also [53] which proves an isomorphism of categories using a rigidification
by a choice of basis and the construction from Eqs. (6) and (7) above.)

We will now unpack some of the features of this result. Let B be a principal
ideal domain. Then the only choice of a locally free rank 2 B-module V is
V D B2, and we will take generators x and y. Let x�; y� be the associated dual
basis of V� D Hom.V;B/. Then Sym3 V is a free rank 4 B-module generated by
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x3; x2y; xy2; y3. The element x� ^ y� gives an isomorphism B ' ^2V�. So then a
binary cubic form over B is a choice a; b; c; d 2 B for

.ax3 C bx2yC cxy2 C dy3/˝ .x� ^ y�/:

However, since we had to pick a basis x; y of B, the choice of a; b; c; d is only well-
defined up to the GL2.B/ action on x; y.

Exercise 11.6. When B is a PID, show that this notion of isomorphism classes of
binary cubic forms over B agrees with the notion of GL2.B/ classes of binary cubic
forms that was given above over Z (but could be just as well interpreted over B).

Exercise 11.7. Suppose B is the ring of integers of a number field but is not a PID.
Show that our notion of isomorphism classes of binary cubic forms over B does not
agree with the notion of GL2.B/ classes of binary cubic forms given that was given
above over Z (but could be just as well interpreted over B).

The twist by ^2V� may look somewhat irrelevant, especially if one is working
only over Z, where the determinant of an element in GL2.Z/ can only be ˙1. Even
over B, for � 2 B� the matrix �I multiplies each of a; b; c; d by �. (In particular,
this remark shows that the GL2.B/ classes of binary cubic forms over B would
be the same even if we didn’t take the twisted action.) However, it is actually
quite important. Without the twist, the GL2 action on the form does not agree with
the GL2 action of the choice of basis of R=B. This agreement is important because
we will need to use the fact that the automorphism groups of corresponding objects
agree, which comes from the equivalence of categories statement above or can be
seen more concretely from the fact that the GL2 actions agree.

For any integer `, over a general base scheme S, for f 2 H0.S;Sym3 V˝ .^2V/`/
one can make a cubic algebra via an analog of the above construction [63, p. 219].
(Note that since .^2V/�1 D .^2V/� the above construction is the case ` D �1.)
This always gives a functor from (`-twisted) binary cubic forms to cubic algebras
over S that commutes with base change [63, p. 219]. However only in the cases
` D �1 and ` D �2 is this functor an isomorphism of categories. For other `, even
over S D P1 one can see that not all cubic algebras arise (see the last paragraph of
page 227 of [63]).

Over a field K, we see that a non-zero binary cubic form f just cuts out a degree 3
subscheme of P1K . If a ¤ 0 (and if the form is non-zero, we can always change basis
so that this is the case unless K D F2), then the cubic K-algebra is KŒ˛�=.a˛3 C
b˛2 C c˛ C d/.

Exercise 11.8. Show that this agrees with each of the above constructions (the con-
struction originally given over Z in terms of the multiplication table, and the
geometric description involving the global functions on the scheme cut out by the
form).

From this, using the base change from Z to Q, it follows, over Z, that the cubic
ring Rf (associated with f ) is a domain if and only if f is irreducible (over Q).
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In this case, we call f irreducible, and otherwise we call it reducible. We have that f
is irreducible if and only if Rf is an order in a cubic number field. The number field
then is given by the dehomogenized version of the binary cubic form.

We can use the base change from Z to Zp to understand which forms associated
with orders in cubic fields are associated with orders maximal at p (meaning they
have index relatively prime to p in the maximal order). In fact, maximality at p is
determined by the class of the form modulo p2. See [15, Lemma 13] for more details
on this.

One can, in fact, see more explicitly what the geometric construction gives over
Z (base change from Z to Zp also simplifies matters in understanding this, see also
[63, Sect. 2]). If f is non-zero, then it cuts out a 1-dimensional subscheme Sf of P1Z.
If for some prime p, we have pja; b; c; d, then Sf has a vertical fiber over p, and,
in particular, Sf is not finite, flat degree 3 over Z. However, the global functions
H0.Sf ;OSf / are still a cubic ring, and this is the associated cubic ring Rf . So Spec Rf

is a finite, flat, degree 3 cover (in particular, we have gotten rid of the vertical fibers).
We have a map Sf ! Spec Rf , in which Spec Rf is the universal affine variety that
Sf maps to. Over p, the scheme Spec Rf has a singularity that cannot be embedded
in P1Z. If .a; b; c; d/ D 1, we call the form primitive, and then in fact Sf is affine and
is the cubic cover of SpecZ associated with f .

We can use base change from Z to Z=pZ to see that Rf =p is the cubic ring given
by reducing f modulo p. Over Z=pZ, there are not so many options for f up to
isomorphism. It either is 0, has three distinct roots over Z=pZ, has 1 single root over
Z=pZ, has 1 double roots, and 1 single root over Z=pZ, or has 1 triple root over
Z=Z, and in each of these cases we can read off the cubic algebra from the analysis
for a general field K above. So in the case when Rf is a maximal order, this lets us
read off Rf =p and thus the splitting type of p in Rf from the splitting of f modulo p.

The parametrization of cubic rings given above seems so simple, that at first
glance one might think that one could parametrize all rank n rings this way.
However, things get much more complicated quickly. As mentioned above, the
construction of a rank n ring from a binary n-ic form works for all n [63], but
for n > 3 not all rings are obtained this way. The paper [63] proves that the
rings obtained this way are the ones with certain special kinds of ideal classes.
For more reading on parametrizations of rings and ideal classes in rings, see
[6–8, 10, 28, 61–65].

11.2 Fundamental Domain

Let VZ be the space of binary cubic forms over Z (in the first sense, so VZ D Z4),
and VR be the space of binary cubic forms over R. Let F be a fundamental domain
for the action of GL2.Z/ on binary cubic forms. Let FX be the intersection of
F with fvjjDisc.v/j < Xg. Given the above parametrization, we would like to
count GL2.Z/ orbits of VZ of discriminant up to X, with additional conditions
we will come back to later. This is the same as counting lattice points of VZ
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in FX , asymptotically in X. To solve this problem, we will use geometry of
numbers techniques. From the beginning, we should note that FX is not expanding
homogeneously in X. The jDisc.v/j < X boundaries are homogeneously expanding,
but the boundaries of F are not expanding as X grows. So the geometry of numbers
is more complicated than the first examples ones sees in number theory.

Davenport [24] writes down explicit equations for a fundamental domain F using
Hermite’s reduction theory of binary cubic forms. Let

A D b2 � 3ac; B D bc � 9ad; and C D c2 � 3bd: (9)

Then the points in F are those satisfying

�A < B � A < C or 0 � B � A D C:

These are fairly simple quadratic inequalities defining F. Davenport uses this
fundamental domain to (successfully) count binary cubic forms, and, eventually,
with Heilbronn [25], to count cubic fields. However, we are going to use the
approach of Bhargava [9] (in his work counting quartic fields) to find a different
fundamental domain.

Let F be Gauss’s fundamental domain for GL2.Z/nGL2.R/. We can write

F D fna0k� j n 2 N0.a0/; a0 2 A0; k 2 K; � 2 ƒg;

where

N0.a0/ D
�

1

n 1

�

W n 2 �.a0/
�

; A0 D
�

t�1
t

�

W t 
 4
p
3=
p
2

�

;

ƒ D
�

�

�

�

W � > 0
�

;

and K is as usual the (compact) real special orthogonal group SO2.R/; here �.a0/ is
the union of either one or two subintervals of Œ� 1

2
; 1
2
� depending only on the value

of a0 2 A0. Furthermore, if a0 is such that t 
 1, then �.a0/ D Œ� 1
2
; 1
2
�. (There is an

unfortunate coincidence that a is the first coefficient of our binary cubic form and
a0 a diagonal matrix. This however is consistent with the literature, except for when
the literature calls them both a.)

To recognize this fundamental domain as something we all know and love (the
fundamental domain for SL2.Z/ on the upper half-plane), consider the action on
shapes of lattices in C, realized as elements of the upper half-plane H. (So � in the
upper half-plane corresponds to the shape of the lattice Z ˚ �Z.) Let GLC

2 .R/ be
the elements of positive discriminant.

Exercise 11.9. Show that a fundamental domain for SL2.Z/nGLC
2 .R/ gives a

fundamental domain for GL2.Z/nGL2.R/. Conversely, show that a fundamental
domain for GL2.Z/nGL2.R/ that is contained in GLC

2 .R/ gives a fundamental
domain for SL2.Z/nGLC

2 .R/.
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So we consider the action of GLC
2 .R/ on the upper half-plane H given by

�

A B
C D

� ı � D D� C C

BC A�

for � 2 H. (This is the conjugate of the usual action by
�

0 1
1 0

�

:) We see that ƒ is in
the kernel of this action. In the quotient GLC

2 .R/=ƒ; the group K is the stabilizer of
i 2 H. (If we consider not just shapes of lattices up to homothety, but actual lattices,
then the lattices are equivalent to binary quadratic forms, and the GLC

2 .R/-action
can be lifted in the obvious way. The binary quadratic form x2Cy2 corresponds to the
square lattice shape, which is represented by the point i 2 H. Then StabGLC

2 .R/
.x2C

y2/ D SO2.R/ D K.) So, we have that F ı i D fna ı i j n 2 N0.a/; a0 2 A0g: This is
the familiar fundamental domain for the action of SL2.Z/ on H.

The matrix a0 2 A0 scales points in the upper half-plane by t2. The group N0.a0/
translates points in the upper half-plane to the left and right by at most 1=2 in each
direction. So na ı i D t2i C n: Now we see that the inequalities defining N0.a0/
and A0 look familiar from our usual fundamental domain for SL2.Z/ on the upper
half-plane.

The action of GL2.R/ on VZ has 2 4-dimensional orbits, corresponding to
the cubic rings R3 and R ˚ C. These cover all the points of VZ with non-zero
discriminant. Let VC be the orbit where the points have positive discriminant (cor-
responding to R3) and V� be the orbit where the points have negative discriminant
(corresponding to R ˚ C). Let v 2 V�. Then, roughly, the idea is that Fv is
a fundamental domain for the action of GL2.Z/ on V�. We can do everything
similarly for VC, so for now we will restrict our attention to V�.

The presence of stabilizers means that Fv is not a fundamental domain, but rather
a “multi-fundamental domain.” More precisely, we consider Fv as the multiset
ffv j f 2 Fg.
Exercise 11.10. For x 2 V�

Z , show that the number of times an element of GL2.Z/x
appears in Fv is

# StabGL2.R/ x

# StabGL2.Z/ x
:

We note that for x 2 V�
Z , we have StabGL2.R/ x D AutR.R˚ C/ D Z=2Z. Also,

StabGL2.Z/ x are the automorphisms of the corresponding cubic ring, which will be
trivial if the ring is a domain (in V� there are no cyclic cubic fields), and will be
Z=2Z if the cubic ring is a subring of K ˚ Q for an imaginary quadratic field Q.
So Fv covers all the points we are interested in twice, which is just as good as a
fundamental domain (as long as we divide by 2 in the end).

Let RX.v/ D Fv \ fw j 1 � jDisc.w/j < Xg:
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11.3 Geometry of Numbers

To count points in this very problem, Davenport [24] proved a general result on
counting points in regions defined by polynomial inequalities. Let R be a region in
Rn and let N.R/ be the number of lattice points in R. We would like to say

N.R/ � Vol.R/;

and the real content of such a statement is an estimate for the error

jN.R/ � Vol.R/j:

We will now imagine what can contribute to such an error. In 2 dimensions,
clearly, the perimeter of R is closely tied to this error. Consider a square that is NC�
by M C �. It may have as many as .N C 1/.M C 1/ or as few as NM lattice points,
compared to its area which is near NM. Considering a 1=N � 1=N box, which may
have 1 or 0 points, we see we need a 1 in the error as well. In fact in two dimensions

jN.R/ � Vol.R/j � 4.LC 1/;

where L is the length of the boundary of R.
In Rn, a similar construction with a box shows that the volumes of the projections

onto Rn�1 by dropping a coordinate are related to the error jN.R/ � Vol.R/j. A box
which is approximately N1 � � � � � Nn will have volume N1 : : :Nn; but could have
N1 � � �Nn points or could have

N1 � � �Nn C N2 � � �Nn

points. However, these n � 1 dimensional projections are not enough. Consider
a 1=N � 1=N � N box. This may have as few as 0 points or as many as N.
However the 2-dimensional projections have size 1; 1; 1=N2, so are not large enough
to account for this discrepancy, even allowing for constant factors. However, there
is a 1-dimensional projection of size N. Davenport shows that these volumes of
projections are indeed enough to bound the error.

Lemma 11.11 (Davenport [24]). Let R be a closed, bounded region in Rn defined
by k polynomials of degree at most d, and let h D kd=2. Then

jN.R/ � Vol.R/j �
n�1
X

mD0
hn�mRm;

where Rm is the sum of the m-dimensional volumes of the projections of R onto any
of the coordinate spaces obtained by forgetting some n�m coordinates, and R0 D 1.
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We also write this as

jN.R/ � Vol.R/j D O.Vol.Proj.R//; 1/;

where the constant in the big O notation depends on the dimension n of R and
the number and maximum degree of the defining inequalities. The notation Proj.R/
is supposed to denote all the projections, and we write the 1 as not to forget the
0-dimensional projection.

11.4 Averaging

One advantage of taking a fundamental domain Fv as we have done above (instead
of Davenport’s explicit F) is that this generalizes more easily to finding fundamental
domains in more complicated situations, such as those Bhargava encounters when
counting quartic and quintic fields [9, 11]. Another advantage is we can use an
averaging technique due to Bhargava (in [9], where he counts quartic fields) which
significantly improves the geometry of numbers results. (Yet another advantage is
that it will be simpler to compute the volume of our fundamental domain.)

The idea of averaging is that Fv is a fundamental domain for any choice of v,
so in fact we have many fundamental domains. Now since they are all fundamental
domains, the number of lattice points in RX.v/ does not depend on v (for v 2 V�).
So we will average over many such v, and obtain the same count as in one Fv.

At first, it might seem counterintuitive that this can help. The key is that the
answer is the same, but we have more tools to estimate the averaged number of
points. It sometimes helps to first think about a discrete averaging scenario. Image
a fundamental domain for the action of Z on R2 by addition in the y coordinate, and
we would like to count lattice points with jxj � X, asymptotically in X (and we are
ignoring constant factors). This is like counting lattice points in a 1 � X box, so the
volume is order X, but there is a projection of size X. We cannot get a useful result
from Davenport’s geometry of numbers Lemma 11.11 in this case, so we have to
use more information. Given the volume of the box and the size of its projections, it
could have as many as 0 points or as many as X (up to constants). Suppose instead
we take X fundamental domains, all stacked on top of each other to form an X � X
box. Now, the fact that they make a nice box exactly (e.g., each was, say, closed on
the bottom and open on the top, and they perfectly fit together) essentially comes
from the fact that they are fundamental domains. So we get X2 C O.X/ points in
our X fundamental domains, and so X C O.1/ in a single fundamental domain. We
could not have gotten an error term this small without using the fact that our region
was a fundamental domain.

Now continuous averaging can be even more powerful. We will average over v in
some bounded compact region B. You should think of B as a ball. So for each v 2 B,
we get some number of lattice points in RX.v/ D Fv \ fw j 1 � jDisc.w/j < Xg:
We could average this over v in B according to any measure we choose on B, and
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the answer would be the same (the same as the number of lattice points in a single
fundamental domain), but the measure we choose will affect whether we can find
said answer.

For each v 2 B, we are counting lattice points in Fv \ fw j 1 � jDisc.w/j < Xg
and then we are adding up (integrating) over v. Intuitively, it is not hard to imagine
this is related to counting lattice points in gB \ fw j 1 � jDisc.w/j < Xg for each
g 2 F . To actually change variables from an integral over v 2 B to an integral over
g 2 F is somewhat delicate (see problem 62 in the 2014 Arizona Winter School
problem set), and in particular in order to end up with a reasonable measure on
g 2 F for integrating with respect to, we need to have carefully chosen our measure
on v 2 B. We will take the measure on v 2 B to be the pushforward of the Haar
measure on GL2.R/, and the result is that we need to average the number of points
in gB over g 2 F with respect to Haar measure on F .

The question that remains is what the gB look like and if they are easy to count
points in. Write g 2 F as g D na0k�. We are interested in na0k�B. First it is useful
to understand what g does to the discriminant, and how X is involved. The matrix �
multiplies each of a; b; c; d by �, and thus scales the discriminant by �4.

Exercise 11.12. Show that the actions of n; a0; k do not change the discriminant of
a binary cubic form.

We can, for example, pick our B so that all the discriminants of points v 2 B
are between 1 and 2. Since we would only like to count lattice points with absolute
discriminant between 1 and X, that means � is ranging between 2�4 and X1=4, or up
to multiplicative constants between 1 and X1=4. Once � 
 X1=4, there are no points
in gB of discriminant < X. This is the main place that X comes in to play.

Now � just scales our ball B, so in particular does not change its shape, so �B
is a good shape for geometry of numbers. We have Vol.�B/ is of order �4 (up to
multiplicative constants, that depend on B) and the largest projection is O.�3/.

Now for k, we can just pick a B that is fixed by K so that kB D B for each k 2 K.
(For this it is important that K is compact. If we had chosen a B that was not fixed
by K, we could just average it over K to obtain a choice that was fixed by K.)

The element a0 2 A0 will stretch our ball B by different amounts in different
directions. We have that

a0 ı .a; b; c; d/ D .t�3a; t�1b; tc; t3d/:

This is exactly the kind of thing that can make a terrible region for geometry of
numbers. Suppose t is some large number Y . Then we have that a0B is a region of
volume Vol.a0B/ D Vol.B/. However, the projection onto the d coordinate is order
of magnitude Y3, which is much bigger than the volume (as, say, we take Y larger
and larger). It turns out that this reflects a reality about the shape of our fundamental
domains Fv that we can’t get around by averaging. They have a long, skinny cusp
around a D 0.

What saves us here is that the forms with a D 0 correspond to cubic rings that
are not domains (as we saw above). So we don’t want to count points with a D 0 in
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the end. So, instead of counting points in RX.v/ D Fv\fw j 1 � jDisc.w/j < Xg;
we will intersect that region with jaj 
 1 and count points there.

Before we keep going with the geometry of numbers, we want to point out an
issue. All of our fundamental domains contained the same number of points, because
they all correspond to orbits of something (counted with 1=# Stab weight). However,
when we add the condition jaj 
 1 this is no longer true. The fundamental domains
intersected with jaj 
 1 may now include different numbers of reducible orbits (we
only got rid of reducible forms when we eliminated the case a D 0). In the end we
will be able to deal with this—we were going to have to get rid of reducible forms
anyway at some point.

Now, let C be the maximum jaj for any form in B. So we have that in a0k�B, the
maximum x3 coefficient is t�3�C.

Exercise 11.13. Show that the action of n does not change the a coordinate.

Thus, we only need to consider g with � � X1=4, and t so that C�=t3 
 1.
This means that t cannot get too large, and so a0 does not make our region too
stretched out.

11.5 Counting Lattice Points After a Lower Triangular
Transformation

Now we come to n. A method of the author [58] allows one to completely generally
ignore lower triangular transformations when applying Davenport’s geometry of
numbers Lemma 11.11 (even if the lower triangular transformations are not
bounded). Let’s first consider a simple example. Suppose you have a roughly X
by X region H (so it has around X2 lattice points, with O.X/ error). Now we apply
a shear mapping s that sends a point with coordinate .x; y/ 7! .x; yC X2x/. So the
sheared region s.H/ has the same volume X2 as H, but now the projection onto the
second coordinate is size X3, so we can’t use Davenport’s geometry of numbers
lemma to count points in this region.

However, since a slice for each x coordinate was just shifted up in the plane, we
can see that each slice of s.H/ has almost the same number of lattice points as H
(differing by at most 1). In fact, if we merely translate a region R in Rn to t.R/ since
we don’t change the volume or the size of the projections, we can only change the
number of lattice points from R to t.R/ by O.Proj.R/C 1/.

More generally we have the following. Recall for a region E in Rn, we let N.E/
be the number of points in Zn \ E.

Theorem 11.14 (Wood [58]). If E is a semi-algebraic region of Rn and T is
an upper (or lower) triangular linear transformation of Rn with ones along the
diagonal, then

jN.E/ � N .T.E// j D O.Vol Proj EC 1/;
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where Vol Proj E denotes the volume of the largest (in volume) projection of E onto
any proper coordinate hyperplane (of any dimension < n). The constant in the O
notation depends only on n and the degree of the semi-algebraic region.

Proof. Write T D tk ı � � � ı t2, where ti is a linear transformation that fixes the value
of xj for j ¤ i, and for a point P we have xi.T.P// D xi C �i�1xi�1 C �i�2xi�2 C
� � � C �1x1.
Lemma 11.15. For any semi-algebraic region E of Rn

jN.E/ � N .T.E// j D O .N Proj E/ ;

where NProj.E/ is the number of Zn points in the projection of E onto a proper
coordinate hyperplane that has the most lattice points. The constant in the O
notation depends on n and the degree of E.

Proof. We induct on the number of terms ti in T . First, we assume T D ti. For a
given set of cj 2 Z, we consider the line L D fxj D cj W j ¤ ig. The region R \ L
is a union of intervals on the line. Since T only affects the coordinate xi, we have
that T preserves L and T.E/ \ L D T.E \ L/. The transformation T just translates
the intervals of R \ L along L. Since an interval of length ` has between ` � 1 and
`C 1 integral points, the difference jN.E \ L/ � N.T.E/ \ L/j is at most twice the
number of intervals of E \ L, which is bounded by the degree of E. It remains to
estimate the number of choices of cj (for all j ¤ i) such that E \ L is non-empty.
This is exactly the number of lattice points in the projection of E onto xi D 0, which
is O .N Proj E/.

Assuming the inductive hypothesis, we write T D tkı� � �ıt2 and T 0 D tk�1ı� � �ıt2.
We have

N.E/ � N.T.E// D N.E/ � N.T 0.E//C N.T 0.E// � N.tk ı T 0.E//;

and by the inductive hypothesis, we have

jN.E/ � N.T 0.E//j � O .N Proj E/ : (10)

By our work above, for the case k D 1 we have

jN.T 0.E// � N.tk ı T 0.E//j � O
�

N
�

T 0.E/k
��

;

where T 0.E/k is the projection of T 0.E/ onto the hyperplane cut out by xk D 0. For
a point P, the values of xi.T 0.P// for i ¤ k do not depend on xk.P/, we have that
T 0.E/k is just T 0 applied to the projection Ek of E onto the hyperplane xk D 0. Thus,

jN.T 0.E// � N.tk ı T 0.E//j � O
�

N
�

T 0.Ek/
��

: (11)
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By the inductive hypothesis, we have

N.T 0.Ek// � N.Ek/ � O .N Proj Ek/ : (12)

Thus combining Equations (10), (11), and (12), we have

jN.E/ � N .T.E// j � O .N Proj EC N.Ek/C N Proj Ek/ ;

proving the lemma. (Though at each step of the induction, the constants in the O
notation might grow, they are bounded in terms of n). Note that if E has infinitely
many lattice points, then so does some projection of E onto a coordinate hyperplane.

ut
The number of points in the projection E0 of E onto some proper coordinate plane

is Vol E0 C O.Proj E0 C 1/. Since every projection of E0 onto a proper coordinate
hyperplane is also a projection of E, we have that jN.E/�N .T.E// jDO.Proj EC1/;
as desired. ut

Though this general result is often quoted, in some cases, including our problem
at hand (counting binary cubic forms), one can use a simpler argument that involves
the specific lower triangular transformation and the shape of the region it is being
applied to (see Exercise 46 in the 2014 Arizona Winter School problem set). In
any case, we conclude that we only need to estimate the size of the projections of
a0k�B in order to bound the error between the number of lattice points in gB and the
volume of gB.

11.6 Estimating the Projections

We have that a0k�B D a0�kB D a0�B: We have

a0� ı .a; b; c; d/ D .�t�3a; �t�1b; �tc; �t3d/;

and �; t are bounded below by constants. Also, recall from the end of Sect. 11.4,
we had � D O.X1=4/ and t D O.�1=3/. So we can bound the volume of each
of the projections of a0k�B, using the fact that B is fixed. For example, the
projection onto the last three coordinates has size O.�t�1 � �t � �t3/ D O.�3t3/:
The projection onto the last coordinate is size O.�t3/, but this is O.�3t3/ since
� is bounded below by a constant. Similarly, we can bound each of the lower
dimensional projections and conclude

Vol Proj.a0k�B/ D O.�3t3/:

We then integrate over the Haar measure dg (see Problem 6.4 on the problem set for
the determination of the Haar measure). We have (where the below ignores constant
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factors in all inequalities)

Z

g2F ;gB\f1�j Disc.�/j<Xg\fjaj�1g¤;

Vol Proj.a0k�B/dg �
Z

g2F ;1���X1=4;1�t��1=3
O.�3t3/��1t�3d�dtdndk

D
Z

g2F ;1���X1=4;1�t��1=3
O.�2/d�dtdndk

D
Z

.n;a0;k;�/2F ;1���X1=4
O.�7=3/d�dndk

D
Z

n2N0;k2K
O.X5=6/dndk:

The final integral is O.X5=6/ because we have that N0 and K are compact and fixed
(where N0 is the union of all the N0.a0/, i.e., N0 D N0.a0/ for a value of a0 with
t 
 1).

11.7 Putting the Count Together

To put all the pieces together, we need to also compute the (average over g) volumes
of our gB’s, which we can do by reversing the change of variables we did above
and instead computing volumes of fundamental domains Fv. For this, we can use a
well-known calculation of the volume of F . The average volume is order of X, and
so the error term O.X5=6/ above is indeed small enough.

Also, our count now includes some reducible binary cubic forms (but not all of
them since we cut out the a D 0 forms in each fundamental domain). First of all,
notice that if we had included all of them, it would have contributed to our main
term. For each quadratic field K with jDisc.K/j < X, we have a cubic ring R which
is the maximal order in K˚Q, and has jDisc.R/j < X. So if we counted all classes
of reducible binary cubic forms, we would be seeing the reducible ones contribute
to our main term (as NS2 .X/ � cX). (This perhaps would not be so bad, because
we have an exact main term for NS2 .X/.) However, it turns out that by discarding
the a D 0 forms, we have thrown out 100% (asymptotically in X) of the reducible
forms (though the precise number we have thrown out in Fv can depend a bit on v).
See Problems 69 and 70 in the problem set or Lemma 21 of [15].
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11.8 Sieving for Maximal Rings

So far, we have outlined the proof of counting classes of binary cubic forms that
correspond to orders in cubic fields. The final step to count cubic fields is to sieve
for maximal orders. We discussed above that maximality at p of the cubic ring can
be given by a condition on the form modulo p2. One can compute [15, Lemma 19]
the proportion .Up/ of binary cubic forms modulo p that correspond to cubic rings
that are maximal at p. One then can do all the above counting, but instead of using
integral binary cubic forms, only using ones with “maximal” reductions modulo p2.
One would get the main term multiplied by .Up/, and the same error term with the
constant in the error term now depending on p. For finitely many primes, one can
sieve like this, but for infinitely many primes, the constant in the error term could in
theory go off to infinity. One needs a uniform error bound to sieve at infinitely many
primes.

This is a sieve in the spirit of the sieve for squarefree integers that is discussed
in Poonen’s Arizona Winter School 2014 lectures and in Problems 53–55 of the
problem set, but the error bounds one needs as input are more sophisticated. (The
sieve itself is carried out in Problem 78 of the problem set, but assuming the required
input bound—see [15, Sect. 8.2] for the required bound.) One can finally obtain the
following result of Davenport and Heilbronn.
Theorem 11.16. We have

NS3 .X/ �
1

3�.3/
X:

If instead, we sieve for cubic rings that are not only maximal at p but also not
totally ramified at p, we are counting 2-torsion in class groups of cubic fields (see
Sect. 3). One final result of Davenport and Heilbronn [25] is

lim
X!1

P

K2D.X/K imag quad jCl.K/=3Cl.K/j
#fK 2 D.X/ j K imag quadg D 2:

We will see a sieve like that is necessary for either of these cases in the next section.

12 Counting Galois S3 Sextics

In this section, we outline a result from [13] giving the asymptotics of NS3�S6 .X/,
where S3 is acting via its regular representation. As discussed above, this gives
another example of counting fields by an invariant other than their discriminant.
It will also show the kind of sieve that is necessary to sieve for even maximal cubic
rings in Davenport and Heilbronn’s result above. We are counting non-Galois cubic
fields by the discriminant of their Galois closure. Degree 6 number fields with Galois
group S3 � S6 are called S3-sextic fields, and they are Galois over Q. We are able to
obtain an exact asymptotic in this case.



Asymptotics for Number Fields and Class Groups 335

Theorem 12.1 (Bhargava and Wood [13]). We have NS3�S6 .X/�
 

1

3

Y

p

cp

!

X1=3,

where the product is over primes, cp D .1C p�1 C p�4=3/.1 � p�1/ for p ¤ 3, and
c3 D . 43 C 1

35=3
C 2

37=3
/.1 � 1

3
/.

Theorem 12.1 was also obtained (independently) by Belabas–Fouvry [3] as
a result of a deeper study of S3-sextic fields. To compare with Davenport and
Heilbronn’s theorem

NS3 .X/ �
1

3�.3/
X;

we may write 1
�.3/
DQp.1C p�1 C p�2/.1 � p�1/.

Any S3-sextic field K6 contains a unique (up to conjugation) non-Galois cubic
subfield K3. Conversely, any non-Galois cubic field K3 has a unique Galois closure
K6, which is an S3-sextic field. Let K3 and K6 be such for the rest of the section. Let
vp.n/ denote the exponent of the largest power of p that divides n. If K3 is nowhere
totally or wildly ramified, then d.K6/ D d.K3/3. If this were always the case, then
the asymptotics of N.X; S3.6// would follow immediately from Theorem 11.16.
However, at a tame rational prime p, the possible ramification types in K3 are
p21p and p3, and vp.d.K3// is 1 and 2 in these cases, respectively. These give,
respectively, splitting types }21}

2
2}

2
3 and }31}

3
2 in K6, and hence vp.d.K6// is 3

and 4 in these cases, respectively. We call primes p of the second type overramified
in K3 (or K6).

If tamely overramified primes exist, then evidently d.K3/3 ¤ d.K6/. To prove
Theorem 12.1, we define transitional discriminants dY.K6/ for K6 that “correct”
d.K3/3 to d.K6/ at the primes less than Y:

Definition. Let dY.K6/ be the positive integer such that

vp.dY.K6// D
(

vp.d.K6// if p is a prime < Y

vp.d.K3/3/ if p is a prime 
 Y
:

In fact, a stronger version of Theorem 11.16 is true, and is proven with essentially
the same methods. For an integer m, let �m be the map that takes binary cubic
forms with integer coefficients to binary cubic forms with coefficients in Z=mZ,
via reduction of the coefficients modulo m. For each of finitely many rational primes
pi, let us specify a set†i of étale cubic Qpi -algebras and let†0

i be the corresponding
set of maximal Zpi -orders. For some m D Q

i pni
i , there are sets U and S of binary

cubic forms with coefficients in Z=mZ such that ��1
m .U/ is the set of forms which

correspond to rings which are maximal at all pi and ��1
m .S/ is the set of forms which

correspond to rings which are maximal at all pi and whose pi-adic completions are
in†0

i. We define the relative density of f†igi to be #S=#U. By the Chinese remainder
theorem, this relative density is simply the product of the relative pi-adic densities
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of the individual †i, defined as above in the case that fpigi has one element. The
strengthened version of Theorem 11.16 we require is that

#fK 2 F.S3/ j d.K/ < X and K ˝ Qpi 2 †i for all ig � .relative density of f†igi/ 	 X

3�.3/
:

(13)

(For further details on this strengthened Theorem 11.16, see [25, Sect. 5] or [15,
Theorem 31].) Since dY.K6/ only differs from d.K3/3 at finitely many primes, we
can compute the asymptotics of NY.X/ WD #fK6 j dY.K6/ < Xg directly from such a
strengthened version of Theorem 11.16.

In [13] we compute these relative densities and obtain

lim
X!1

NY.X/

X1=3
D c2c3
.1 � 2�3/.1 � 3�3/

Y

3<p<Y

1C p�1 C p�4=3

1C p�1 C p�2
1

3�.3/
:

Taking the limit in Y , we obtain

lim
Y!1 lim

X!1
NY.X/

X1=3
D c2c3
3�.3/

Y

p>3

1C p�1 C p�4=3

1C p�1 C p�2 : (14)

12.1 Proof of Theorem 12.1

We now compute the asymptotics of N.X/ WD NS3�S6 .X/. Note that for Y > 3, we
have NY.X/ � N.X/ and thus

lim
Y!1 lim

X!1
NY.X/

X1=3
� lim inf

X!1
N.X/

X1=3
: (15)

To obtain an upper bound, let M.n;X/ D #fK3 overramified at all primes
pjn; d.K3/ < Xg. From [5, Lemma 3.3], we know M.n;X/ D O.n�2C�X/. If K6
is an S3-sextic field with d.K6/ < X, and n is the product of the primes where K6 is
overramified, then d.K3/ < cn2=3X1=3 for some finite absolute constant c given by
the behavior of the finitely many 2-adic and 3-adic cubic algebras (in fact, we may
take c D 36). Thus,

N.X/ � NY.X/C
X

n�Y

M.n; cn2=3X1=3/ � NY.X/C d
X

n�Y

X1=3

n4=3C�

for some constant d. Taking limits in X, we obtain

lim sup
X!1

N.X/

X1=3
� lim

X!1
NY.X/

X1=3
C d

X

n�Y

1

n4=3C�
;
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and then taking limits in Y , we conclude

lim sup
X!1

N.X/

X1=3
� lim

Y!1 lim
X!1

NY.X/

X1=3
: (16)

Equations (15) and (16) combine to prove lim
X!1

N.X/

X1=3
D lim

Y!1 lim
X!1

NY.X/

X1=3
; which

together with Eq. (14) proves Theorem 12.1.
In [13, Sect. 5], we give an interpretation of the constants cp above, which are

exactly as predicted by the Malle–Bhargava principle discussed above. Further the
work in [13] shows that the Malle–Bhargava principle holds in full generality, with
local behaviors, in the case G D S3 � S6.
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