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Introduction

By a metric characterization of a class of Banach spaces in the most general sense
we mean a characterization which refers only to the metric structure of a Banach
space and does not involve the linear structure. Some origins of the idea of a metric
characterization can be seen in the classical theorem of Mazur and Ulam [75]: Two
Banach spaces (over reals) are isometric as metric spaces if and only if they are
linearly isometric as Banach spaces.

However study of metric characterizations became an active research direc-
tion only in mid-1980s, in the work of Bourgain [13] and Bourgain–Milman–
Wolfson [16]. This study was motivated by the following result of Ribe [106].

Definition 1.1. Let X and Y be two Banach spaces. The space X is said to be finitely
representable in Y if for any " > 0 and any finite-dimensional subspace F � X
there exists a finite-dimensional subspace G � Y such that d.F;G/ < 1C ", where
d.F;G/ is the Banach–Mazur distance.

The space X is said to be crudely finitely representable in Y if there exists
1 � C < 1 such that for any finite-dimensional subspace F � X there exists a
finite-dimensional subspace G � Y such that d.F;G/ � C.
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Theorem 1.2 (Ribe [106]). Let Z and Y be Banach spaces. If Z and Y are uniformly
homeomorphic, then Z and Y are crudely finitely representable in each other.

Three proofs of this theorem are known at the moment:

• The original proof of Ribe [106]. Some versions of it were presented in Enflo’s
survey [39] and the book by Benyamini and Lindenstrauss [11, pp. 222–224].

• The proof of Heinrich–Mankiewicz [52] based on ultraproduct techniques, also
presented in [11].

• The proof of Bourgain [14] containing related quantitative estimates. This paper
is a very difficult reading. The proof has been clarified and simplified by Giladi–
Naor–Schechtman [44] (one of the steps was simplified earlier by Begun [8]).
The presentation of [44] is easy to understand, but some of the "-ı ends in it do
not meet. I tried to fix this when I presented this result in my book [90, Sect. 9.2]
(let me know if you find any problems with "-ı choices there).

These three proofs develop a wide spectrum of methods of the nonlinear Banach
space theory and are well worth studying.

The Ribe theorem implies stability under uniform homeomorphisms of each
class P of Banach spaces satisfying the following condition LHI (local, hereditary,
isomorphic): if X 2 P and Y crudely finitely representable in X, then Y 2 P .

The following well-known classes have the described property:

• superreflexive spaces (see the definition and related results in section “Metric
Characterizations of Superreflexivity” of this paper),

• spaces having cotype q, q 2 Œ2;1/ (the definitions of type and cotype can be
found, for example, in [90, Sect. 2.4]),

• spaces having cotype r for each r > q where q 2 Œ2;1/,
• spaces having type p, p 2 .1; 2�,
• spaces having type r for each r < p where p 2 .1; 2�,
• Banach spaces isomorphic to q-convex spaces q 2 Œ2;1/ (see Definition 2.7

below, more details can be found, for example, in [90, Sect. 8.4]),
• Banach spaces isomorphic to p-smooth spaces p 2 .1; 2� (see Definition 1.6 and

[90, Sect. 8.4]),
• UMD (unconditional for martingale differences) spaces (recommended source

for information on the UMD property is the forthcoming book [103]),
• Intersections of some collections of classes described above,
• One of such intersections is the class of spaces isomorphic to Hilbert spaces

(by the Kwapień theorem [62], each Banach space having both type 2 and cotype
2 is isomorphic to a Hilbert space),

• Banach spaces isomorphic to subspaces of the space Lp.�;†;�/ for some
measure space .�;†;�/, p ¤ 2;1 (for p D 1 we get the class of all Banach
spaces, for p D 2 we get the class of spaces isomorphic to Hilbert spaces).

Remark 1.3. This list seems to constitute the list of all classes of Banach spaces
satisfying the condition LHI which were systematically studied.
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By the Ribe Theorem (Theorem 1.2), one can expect that each class satisfying the
condition LHI has a metric characterization. At this point metric characterizations
are known for all classes listed above except p-smooth and UMD (and some of the
intersections involving these classes). Here are the references:

• Superreflexivity—see section “Metric Characterizations of Superreflexivity” of
this paper for a detailed account.

• Properties related to type—[76] (see [16, 40, 102] for previous important results
in this direction, and [42] for some improvements).

• Properties related to cotype—[77], see [43] for some improvements.
• q-convexity—[78].
• Spaces isomorphic to subspaces of Lp .p ¤ 2;1/. Rabinovich noticed that

one can generalize results of [71] and characterize the optimal distortion of
embeddings of a finite metric space into Lp-space (see [74, Exercise 4 on p. 383
and comment of p. 380] and a detailed presentation in [90, Sect. 4.3]). Johnson,
Mendel, and Schechtman (unpublished) found another characterization of the
optimal distortion using a modification of the argument of Lindenstrauss and
Pełczyński [70, Theorem 7.3]. These characterizations are very close to each
other. They are not satisfactory in some respects.

Ribe Program

It should be mentioned that some of the metric characterizations (for example of
the class of spaces having some type > 1) can be derived from the known ‘linear’
theory. Substantially nonlinear characterizations started with the paper of Bourgain
[13] in which he characterized superreflexive Banach spaces in terms of binary trees.

This paper of Bourgain and the whole direction of metric characterizations was
inspired by the unpublished paper of Joram Lindenstrauss with the tentative title
“Topics in the geometry of metric spaces.” This paper has never been published
(and apparently has never been written, so it looks like it was just a conversation,
and not a paper), but it had a significant impact on this direction of research.
The unpublished paper of Lindenstrauss and the mentioned paper of Bourgain [13]
initiated what is now known as the Ribe program.

Bourgain [13, p. 222] formulated it as the program of search for equivalent
definitions of different LHI invariants in terms of metric structure with the next
step consisting in studying these metrical concepts in general metric spaces in an
attempt to develop an analogue of the linear theory.

Bourgain himself made several important contributions to the Ribe program, now
it is a very deep and extensive research direction. In words of Ball [3]: “Within a
decade or two the Ribe programme acquired an importance that would have been
hard to predict at the outset.” In this paper I am going to cover only a very small part
of known results on this program. I refer interested people to the surveys of Ball [3]
(short survey) and Naor [81] (extensive survey).
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Many of the known metric characterizations use the following standard
definitions:

Definition 1.4. Let 0 � C < 1. A map f W .A; dA/ ! .Y; dY/ between two metric
spaces is called C-Lipschitz if

8u; v 2 A dY.f .u/; f .v// � CdA.u; v/:

A map f is called Lipschitz if it is C-Lipschitz for some 0 � C < 1.
Let 1 � C < 1. A map f W A ! Y is called a C-bilipschitz embedding if there

exists r > 0 such that

8u; v 2 A rdA.u; v/ � dY.f .u/; f .v// � rCdA.u; v/: (1)

A bilipschitz embedding is an embedding which is C-bilipschitz for some
1 � C < 1. The smallest constant C for which there exist r > 0 such that (1)
is satisfied is called the distortion of f .

There are at least two directions in which we can seek metric characterizations:

(1) We can try to characterize metric spaces which admit bilipschitz embeddings
into some Banach spaces belonging to P .

(2) We can try to find metric structures which are present in each Banach space
X … P .

Characterizations of type (1) would be much more interesting for applications.
However, as far as I know such characterizations were found only in the following
cases: (1) P D fthe class of Banach spaces isomorphic to a Hilbert spaceg
(it is the Linial–London–Rabinovich [71, Corollary 3.5] formula for distortion of
embeddings of a finite metric space into `2). (2) P D fthe class of Banach spaces
isomorphic to a subspace of some Lp-spaceg, p is a fixed number p ¤ 2;1, see the
last paragraph preceding section “Ribe Program.”

Local Properties for Which no Metric Characterization is Known

Problem 1.5. Find a metric characterization of UMD.

Here UMD stays for unconditional for martingale differences. The most compre-
hensive source of information on UMD is the forthcoming book of Pisier [103].

I have not found in the literature any traces of attempts to work on Problem 1.5.

Definition 1.6. A Banach space is called p-smooth if its modulus of smoothness
satisfies �.t/ � Ctp for p 2 .1; 2�.

See [90, Sect. 8.4] for information on p-smooth spaces.
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Problem 1.7. Find a metric characterization of the class of Banach spaces isomor-
phic to p-smooth spaces p 2 .1; 2�.

This problem was posed and discussed in the paper by Mendel and Naor [78],
where a similar problem is solved for q-convex spaces. Mendel and Naor wrote
[78, p. 335]: “Trees are natural candidates for finite metric obstructions to
q-convexity, but it is unclear what would be the possible finite metric witnesses
to the “non-p-smoothness” of a metric space.”

Metric Characterizations of Superreflexivity

Definition 2.1 (James [55, 56]). A Banach space X is called superreflexive if each
Banach space which is finitely representable in X is reflexive.

It might look like a rather peculiar definition, but, as I understand, introducing
it (� 1967) James already had a feeling that it is a very natural and important
definition. This feeling was shown to be completely justified when Enflo [38]
completed the series of results of James by proving that each superreflexive space
has an equivalent uniformly convex norm.

Definition 2.2. A Banach space is called uniformly convex if for every " > 0 there
is some ı > 0 so that for any two vectors with kxk � 1 and kyk � 1, the inequality

1 �
�
�
�
�

x C y

2

�
�
�
�
< ı

implies

kx � yk < ":

Definition 2.3. Two norms jj � jj1 and jj � jj2 on a linear space X are called equivalent
if there are constants 0 < c � C < 1 such that

cjjxjj1 � jjxjj2 � Cjjxjj1
for each x 2 X.

After the pioneering results of James and Enflo numerous equivalent reformula-
tions of superreflexivity were found and superreflexivity was used in many different
contexts.

The metric characterizations of superreflexivity which we are going to present
belong to the class of the so-called test-space characterizations.

Definition 2.4. Let P be a class of Banach spaces and let T D fT˛g˛2A be a set
of metric spaces. We say that T is a set of test-spaces for P if the following two
conditions are equivalent: (1) X … P; (2) The spaces fT˛g˛2A admit bilipschitz
embeddings into X with uniformly bounded distortions.
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Characterization of Superreflexivity in Terms of Binary Trees

Definition 2.5. A binary tree of depth n, denoted Tn, is a finite graph in which each
vertex is represented by a finite (possibly empty) sequence of 0 and 1, of length
at most n. Two vertices in Tn are adjacent if the sequence corresponding to one of
them is obtained from the sequence corresponding to the other by adding one term
on the right. (For example, vertices corresponding to .1; 1; 1; 0/ and .1; 1; 1; 0; 1/
are adjacent.) A vertex corresponding to a sequence of length n in Tn is called a leaf.

An infinite binary tree, denoted T1, is an infinite graph in which each vertex is
represented by a finite (possibly empty) sequence of 0 and 1. Two vertices in T1 are
adjacent if the sequence corresponding to one of them is obtained from the sequence
corresponding to the other by adding one term on the right.

Both for finite and infinite binary trees we use the following terminology. The
vertex corresponding to the empty sequence is called a root. If a sequence � is an
initial segment of the sequence � we say that � is a descendant of � and that � is
an ancestor of � . If a descendant � of � is adjacent to � , we say that � is a child of
� and that � is a parent of � . Two children of the same parent are called siblings.
Child of a child is called a grandchild. (It is clear that each vertex in T1 has exactly
two children, the same is true for all vertices of Tn except leaves.)

Theorem 2.6 (Bourgain [13]). A Banach space X is nonsuperreflexive if and only
if it admits bilipschitz embeddings with uniformly bounded distortions of finite
binary trees fTng1

nD1 of all depths, see Fig. 1.

In Bourgain’s proof the difficult direction is the “if” direction, the “only if” is
an easy consequence of the theory of superreflexive spaces. Recently Kloeckner
[61] found a very simple proof of the “if” direction. I plan to describe the proofs
of Bourgain and Kloeckner after recalling the results on superreflexivity which we
need.

Fig. 1 The binary tree of depth 3, that is, T3
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Definition 2.7. The modulus of (uniform) convexity ıX."/ of a Banach space X
with norm k � k is defined as

inf

�

1 �
�
�
�
�

x C y

2

�
�
�
�

ˇ
ˇ
ˇ
ˇ
kxk D kyk D 1 and kx � yk > "

�

for " 2 .0; 2�. The space X or its norm is said to be q-convex, q 2 Œ2;1/ if ıX."/ >
c"q for some c > 0.

Remark 2.8. It is easy to see that the definition of the uniform convexity given in
Definition 2.2 is equivalent to: X is uniformly convex if and only if ıX."/ > 0 for
each " 2 .0; 2�.
Theorem 2.9 (Pisier [101]). The following properties of a Banach space Y are
equivalent:

1. Y is superreflexive.
2. Y has an equivalent q-convex norm for some q 2 Œ2;1/.

Using Theorem 2.9 we can prove the “if” part of Bourgain’s characterization.
Denote by cX.Tn/ the infimum of distortions of embeddings of the binary tree Tn

into a Banach space X.
By Theorem 2.9, for the “if” part of Bourgain’s theorem it suffices to prove that

if X is q-convex, then for some c1 > 0 we have

cX.Tn/ � c1.log2 n/
1
q :

Proof (Kloeckner [61]). Let F be the four-vertex tree with one root a0 which has
one child a1 and two grandchildren a2, a0

2. Sometimes such tree is called a fork, see
Fig. 2. The following lemma is similar to the corresponding results in [73].

Lemma 2.10. There is a constant K D K.X/ such that if ' W F ! X is D-Lipschitz
and distance non-decreasing, then either

k'.a0/ � '.a2/k 6 2

�

D � K

Dq�1

�

Fig. 2 A fork a0

a1

a2 a′
2
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or

k'.a0/ � '.a0
2/k 6 2

�

D � K

Dq�1

�

First we finish the proof of cX.Tn/ � c1.log2 n/
1
q using Lemma 2.10. So let

' W Tn ! X be a map of distortion D. Since X is a Banach space, we may assume
that ' is D-Lipschitz, distance non-decreasing map, that is

dTn.u; v/ � jj'.u/ � '.v/jj � DdTn.u; v/:

The main idea of the proof is to construct a less-distorted embedding of a
smaller tree.

Given any vertex of Tn which is not a leaf, let us name arbitrarily one of its two
children its daughter, and the other its son. We select two grandchildren of the root
in the following way: we pick the grandchild mapped by ' closest to the root among
its daughter’s children and the grandchild mapped by ' closest to the root among its
son’s children (ties are resolved arbitrarily). Then we select inductively, in the same
way, two grandchildren for all previously selected vertices up to generation n � 2.

The set of selected vertices, endowed with half the distance induced by the tree
metric is isometric to Tb n

2 c, and Lemma 2.10 implies that the restriction of ' to this
set has distortion at most f .D/ D D � K

Dq�1 .
We can iterate such restrictions blog2 nc times to get an embedding of T1 whose

distortion is at most

D � blog2 nc K

Dq�1

since each iteration improves the distortion by at least K=Dq�1. Since the distortion
of any embedding is at least 1, we get the desired inequality. ut
Remark 2.11. Kloeckner borrowed the approach based on “controlled improvement
for embeddings of smaller parts” from the Johnson–Schechtman paper [58] in which
it is used for diamond graphs (Kloeckner calls this approach a self-improvement
argument). Arguments of this type are well known and widely used in the linear
theory, where they go back at least to James [53]; but these two examples (Johnson–
Schechtman [58] and Kloeckner [61]) seem to be the only two known results of
this type in the nonlinear theory. It would be interesting to find further nonlinear
arguments of this type.

Sketch of the Proof of Lemma 2.10. Assume '.a0/ D 0 and let x1 D '.a1/, x2 D
'.a2/ and x0

2 D '.a0
2/. Recall that we assumed

dTn.u; v/ � jj'.u/ � '.v/jj � DdTn.u; v/: (*)
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Consider the (easy) case where kx2k D 2D and kx0
2k D 2D (that is, the distortion

D is attained on these vectors). We claim that this implies that x2 D x0
2. In fact, it

is easy to check that this implies kx1k D D, kx2 � x1k D D, and kx0
2 � x1k D D.

Also
�
�
�

x1C.x2�x1/
2

�
�
� D D and

�
�
�

x1C.x0

2�x1/
2

�
�
� D D. By the uniform convexity we get

jjx1 � .x2 � x1/jj D 0 and jjx1 � .x0
2 � x1/jj D 0. Hence x2 D x0

2, and we get that the
conditions kx2k D 2D and kx0

2k D 2D cannot be satisfied simultaneously.
The proof of Lemma 2.10 goes as follows. We start by letting kx2k � 2.D � �/

and kx0
2k � 2.D � �/ for some � > 0. Using a perturbed version of the argument

just presented, the definition of the modulus of convexity, and our assumption
ıX."/ � c"p, we get an estimate of jjx2 � x0

2jj from above in terms of �. Comparing
this estimate with the assumption jjx2 � x0

2jj � 2 (which follows from dTn.u; v/ �
jj'.u/ � '.v/jj), we get the desired estimate for � from below, see [61] for details.

ut
Remark 2.12. The approach of Kloeckner can be used for any uniformly convex
space, it is not necessary to combine it with the Pisier Theorem (Theorem 2.9),
see [103].

To prove the “only if” part of Bourgain’s theorem we need the following
characterization of superreflexivity, one of the most suitable sources for this
characterization of superreflexivity is [103].

Theorem 2.13 (James [53, 55, 108]). Let X be a Banach space. The following are
equivalent:

1. X is not superreflexive
2. There exists ˛ 2 .0; 1� such that for each m 2 N the unit ball of the space

X contains a finite sequence x1; x2; : : : ; xm of vectors satisfying, for any j 2
f1; : : : ;m � 1g and any real coefficients a1; : : : ; am, the condition

�
�
�
�
�

mX

iD1
aixi

�
�
�
�
�

� ˛

0

@

ˇ
ˇ
ˇ
ˇ
ˇ

j
X

iD1
ai

ˇ
ˇ
ˇ
ˇ
ˇ
C

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

mX

iDjC1
ai

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

A : (2)

3. For each ˛ 2 .0; 1/ and each m 2 N the unit ball of the space X contains a finite
sequence x1; x2; : : : ; xm of vectors satisfying, for any j 2 f1; : : : ;m � 1g and any
real coefficients a1; : : : ; am, the condition (2).

Remark 2.14. It is worth mentioning that the proof of (1))(3) in the case where
˛ 2 Œ 1

2
; 1/ is much more difficult than in the case ˛ 2 .0; 1

2
/. A relatively easy

proof in the case ˛ 2 Œ 1
2
; 1/ was found by Brunel and Sucheston [20], see also its

presentation in [103].

Remark 2.15. To prove the Bourgain’s theorem it suffices to use (1))(3) in the
‘easy’ case ˛ 2 .0; 1

2
/. The case ˛ 2 Œ 1

2
; 1/ is needed only for “almost-isometric”

embeddings of trees into nonsuperreflexive spaces.
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Remark 2.16. The equivalence of (2),(3) in Theorem 2.13 can be proved using
a “self-improvement argument,” but the proof of James is different. A proof of
(2),(3) using a “self-improvement argument” was obtained by Wenzel [114], it is
based on the Ramsey theorem, so it requires a very lengthy sequence to get a better
˛. In [84] it was proved that to some extent the usage of ‘very lengthy’ sequences is
necessary.

Proof of the “Only If” Part. There is a natural partial order on Tn: we say that s < t
.s; t 2 Tn/ if the sequence corresponding to s is the initial segment of the sequence
corresponding to t.

An important observation of Bourgain is that there is a bijective mapping

' W Tn ! Œ1; : : : ; 2nC1 � 1�
such that ' maps two disjoint intervals of the ordering of Tn, starting at the same
vertex and going “down” into disjoint intervals of Œ1; : : : ; 2nC1 � 1�. The existence
of ' can be seen from a suitably drawn picture of Tn (see Fig. 3), or using the
expansion of numbers in base 2. To use the expansion of numbers, we observe
that the map f	ign

iD1 ! f2	i � 1gn
iD1 maps a 0; 1�sequence onto the corresponding

˙1�sequence. Now we introduce a map  W Tn ! Œ�1; 1� by letting  .;/ D 0 and

 .	1; : : : ; 	n/ D
nX

iD1
2�i .2	i � 1/ :

To construct ' we relabel the range of  in the increasing order using numbers
Œ1; : : : ; 2nC1 � 1�.

Let fx1; x2; : : : ; x2nC1�1g be a sequence in a nonsuperreflexive Banach space
X whose existence is guaranteed by Theorem 2.13 ((1))(3)). We introduce an
embedding Fn W Tn ! X by

Fn.t/ D
X

s�t

x'.s/;

0

− 1
2

− 3
4

− 7
8 − 5

8

− 1
4

− 3
8 − 1

8

1
2

1
4

1
8

3
8

3
4

5
8

7
8

Fig. 3 The map of T3 into Œ�1; 1�
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t0

t1

t2

Fig. 4 t0 is the closest common ancestor of t1 and t2

where s � t for vertices of a binary tree means that s is the initial segment of
the sequence t. Then Fn.t1/ � Fn.t2/ D P

t0<s�t1
x'.s/ � P

t0<s�t2
x'.s/, where t0 is

the vertex of Tn corresponding to the largest initial common segment of t1 and t2,
see Fig. 4. The condition in (2) and the choice of ' imply that

jjFn.t1/ � Fn.t2/jj � ˛.dT.t1; t0/C dT.t2; t0// D ˛dTn.t1; t2/:

The estimate jjFn.t1/ � Fn.t2/jj from above is straightforward. This completes the
proof of bilipschitz embeddability of fTng into any nonsuperreflexive Banach space
with uniformly bounded distortions. ut

Characterization of Superreflexivity in Terms of Diamond
Graphs

Johnson and Schechtman [58] proved that there are some other sequences of graphs
(with their graph metrics) which also can serve as test-spaces for superreflexivity.
For example, binary trees in Bourgain’s theorem can be replaced by the diamond
graphs or by Laakso graphs.

Definition 2.17. Diamond graphs fDng1
nD0 are defined as follows: The diamond

graph of level 0 is denoted D0. It has two vertices joined by an edge of length 1. The
diamond graph Dn is obtained from Dn�1 as follows. Given an edge uv 2 E.Dn�1/,
it is replaced by a quadrilateral u; a; v; b, with edges ua, av, vb, bu. (See Fig. 5.)

Two different normalizations of the graphs fDng1
nD1 are considered

• Unweighted diamonds: Each edge has length 1.
• Weighted diamonds: Each edge of Dn has length 2�n

In both cases we endow vertex sets of fDng1
nD0 with their shortest path metrics.
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Fig. 5 Diamond D2

In the case of weighted diamonds the identity map Dn�1 7! Dn is an isometry.
In this case the union of Dn, endowed with its the metric induced from fDng1

nD0 is
called the infinite diamond and is denoted D! .

To the best of my knowledge the first paper in which diamond graphs fDng1
nD0

were used in Metric Geometry is [50] (a conference version was published in 1999).

Definition 2.18. Laakso graphs fLng1
nD0 are defined as follows: The Laakso graph

of level 0 is denoted L0. It has two vertices joined by an edge of length 1. The
Laakso graph Ln is obtained from Ln�1 as follows. Given an edge uv 2 E.Ln�1/, it
is replaced by the graph L1 shown in Fig. 6, the vertices u and v are identified with
the vertices of degree 1 of L1.

Two different normalizations of the graphs fLng1
nD1 are considered

• Unweighted Laakso graphs: Each edge has length 1.
• Weighted Laakso graphs: Each edge of Ln has length 4�n

In both cases we endow vertex sets of fLng1
nD0 with their shortest path metrics.

In the case of weighted Laakso graphs the identity map Ln�1 7! Ln is an isometry.
In this case the union of Ln endowed with its the metric induced from fLng1

nD0 is
called the Laakso space and is denoted L! .

The Laakso graphs were introduced in [65], but they were inspired by the
construction of Laakso in [63].

Theorem 2.19 (Johnson–Schechtman [58]). A Banach space X is nonsuperre-
flexive if and only if it admits bilipschitz embeddings with uniformly bounded
distortions of diamonds fDng1

nD1 of all sizes.

Theorem 2.20 (Johnson–Schechtman [58]). A similar result holds for fLng1
nD1.
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Fig. 6 Laakso graph L1

Without Proof. These results, whose original proofs (especially for diamond
graphs) are elegant in both directions, are loved by expositors. Proof of
Theorem 2.19 is presented in the lecture notes of Lancien [64], in the book of
Pisier [103], and in my book [90]. ut
Remark 2.21. In the “if” direction of Theorem 2.19, in addition to the original
(controlled improvement for embeddings of smaller parts) argument of Johnson–
Schechtman [58], there are two other arguments:

(1) The argument based on Markov convexity (see Definition 2.26). It is obtained
by combining results of Lee–Naor–Peres [67] (each superreflexive Banach
space is Markov p-convex for some p 2 Œ2;1/) and Mendel–Naor [78]
(Markov convexity constants of diamond graphs are not uniformly bounded
from below, actually in [78] this statement is proved for Laakso graphs, but
similar argument works for diamond graphs).

(2) The argument of [87, Sect. 3.1] showing that bilipschitz embeddability of
diamond graphs with uniformly bounded distortions implies the finite tree
property of the space, defined as follows:

Definition 2.22 (James [55]). Let ı > 0. A ı-tree in a Banach space X is a subset
fx�g�2T

1

of X labelled by elements of the infinite binary tree T1, such that for each
� 2 T1 we have

x� D 1

2
.x�1 C x�2/ and jjx� � x�1 jj D jjx� � x�2 jj � ı; (3)

where �1 and �2 are the children of � . A Banach space X is said to have the infinite
tree property if it contains a bounded ı-tree.
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A ı-tree of depth n in a Banach space X is a finite subset fx� g�2Tn of X labelled by
the binary tree Tn of depth n, such that the condition (3) is satisfied for each � 2 Tn,
which is not a leaf. A Banach space X has the finite tree property if for some ı > 0
and each n 2 N the unit ball of X contains a ı-tree of depth n.

Remark 2.23. In the “only if” direction of Theorem 2.19 there is a different (and
more complicated) proof in [91, 96], which consists in a combination of the
following two results:

(i) Existence of a bilipschitz embedding of the infinite diamond D! into any non-
separable dual of a separable Banach space (using Stegall’s [111] construction),
see [91].

(ii) Finite subsets of a metric space which admits a bilipschitz embedding into any
nonseparable dual of a separable Banach space, admit embeddings into any
nonsuperreflexive Banach space with uniformly bounded distortions, see [96].
(The proof uses transfinite duals [9, 33, 34] and the results of Brunel–Sucheston
[20, 21] and Perrott [100] on equal-signs-additive sequences.)

I would like to turn your attention to the fact that the Johnson–Schechtman
Theorem 2.19 shows some obstacles on the way to a solution the (mentioned above)
problem for superreflexivity:

Characterize metric spaces which admit bilipschitz embeddings into some
superreflexive Banach spaces.

We need the following definitions and results. Let fMng1
nD1 and fRng1

nD1 be
two sequences of metric spaces. We say that fMng1

nD1 admits uniformly bilipschitz
embeddings into fRng1

nD1 if for each n 2 N there is m.n/ 2 N and a bilipschitz map
fn W Mn ! Rm.n/ such that the distortions of ffng1

nD1 are uniformly bounded.

Theorem 2.24 ([92]). Binary trees fTng1
nD1 do not admit uniformly bilipschitz

embeddings into diamonds fDng1
nD1.

Without Proof. The proof is elementary, but rather lengthy combinatorial argument.
ut

There is also a non-embeddability in the other direction: The fact that diamonds
fDng do not admit uniformly bilipschitz embeddings into binary trees fTng is well
known, it follows immediately from the fact that Dn .n � 1/ contains a cycle
of length 2nC1 isometrically, and the well-known observation of Rabinovich and
Raz [105] stating that the distortion of any embedding of an m-cycle into any tree
is � m

3
� 1.

Remark 2.25. Mutual non-embeddability of Laakso graphs and binary trees is much
simpler: (1) Laakso graphs are non-embeddable into trees because large Laakso
graphs contain large cycles isometrically. (2) Binary trees are not embeddable into
Laakso graphs because the Laakso graphs are uniformly doubling (see [51, p. 81]
for the definition of a doubling metric space), but binary trees are not uniformly
doubling.
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Let us show that these results, in combination with some other known results,
imply that it is impossible to find a sequence fCng1

nD1 of finite metric spaces
which admits uniformly bilipschitz embeddings into a metric space M if and
only if M does not admit a bilipschitz embedding into a superreflexive Banach
space. Assume the contrary: Such sequence fCng1

nD1 exists. Then fCng admits
uniformly bilipschitz embeddings into the infinite binary tree. Therefore, by the
result of Gupta [49], the spaces fCng1

nD1 are uniformly bilipschitz-equivalent to
weighted trees fWng1

nD1 . The trees fWng1
nD1 should admit, by a result Lee–Naor–

Peres [67] uniformly bilipschitz embeddings of increasing binary trees (these
authors proved that fWng1

nD1 would admit uniformly bilipschitz embeddings into `2
otherwise). Therefore, by Theorem 2.24 the spaces fCng1

nD1 cannot be embeddable
into diamonds with uniformly bounded distortion. Therefore they do not admit
uniformly bilipschitz embeddings into D! (since the union of fDig1

iD0 is dense in
D!). On the other hand, Theorem 2.19 implies that D! does not admit a bilipschitz
embedding into a superreflexive space, a contradiction.

One can try to find a characterization of metric spaces which are embeddable
into superreflexive spaces in terms of some inequalities for distances. Some hope for
such characterization was given by the already mentioned Markov convexity intro-
duced by Lee–Naor–Peres [67], because it provides a reason for non-embeddability
into superreflexive Banach spaces of both binary trees and diamonds (and many
other trees and diamond-like spaces).

Definition 2.26 (Lee–Naor–Peres [67]). Let fXtgt2Z be a Markov chain on a state
space �. Given an integer k � 0, we denote by feXt.k/gt2Z the process which equals
Xt for time t � k, and evolves independently (with respect to the same transition
probabilities) for time t > k. Fix p > 0. A metric space .X; dX/ is called Markov
p-convex with constant … if for every Markov chain fXtgt2Z on a state space �, and
every f W � ! X,

1X

kD0

X

t2Z

E
�

dX
�

f .Xt/; f
�
eXt

�

t � 2k
			p


2kp
� …p �

X

t2Z
E

�

dX.f .Xt/; f .Xt�1//p



: (4)

The least constant… for which (4) holds for all Markov chains is called the Markov
p-convexity constant of X, and is denoted …p.X/. We say that .X; dX/ is Markov
p-convex if …p.X/ < 1.

Remark 2.27. The choice of the rather complicated left-hand side in (4) is inspired
by the original Bourgain’s proof [13] of the “if” part of Theorem 2.6.

Remark 2.28. It is unknown whether for general metric spaces Markov p-convexity
implies Markov q-convexity for q > p. (This is known to be true for Banach spaces.)

Lee–Naor–Peres [67] showed that Definition 2.26 is important for the theory of
metric embeddings by proving that each superreflexive space X is Markov q-convex
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for sufficiently large q. More precisely, it suffices to pick q such that X has an
equivalent q-convex norm (see Definition 2.7), and by Theorem 2.9 of Pisier, such
q 2 Œ2;1/ exists for each superreflexive space.

On the other hand, Lee–Naor–Peres have shown that for any 0 < p < 1 the
Markov p-convexity constants of binary trees fTng are not uniformly bounded. Later
Mendel and Naor [78] verified that the Markov p-convexity constants of Laakso
graphs are not uniformly bounded. Similar proof works for diamonds fDng. See
Theorem 3.11 and Remark 3.13 for a more general result.

Example 2.29 (Lee–Naor–Peres [67]). For every m 2 N, we have …p.T2m/

� 2
1� 2

p � m
1
p :

Proof. Simplifying the description of the chain somewhat (precise description of�
and the map f requires some formalities), we consider only times t D 1; : : : ; 2m and
let fXtgm

tD0 be the downward random walk on T2m which is at the root at time t D 0

and XtC1 is obtained from Xt by moving down-left or down-right with probability
1
2

each, see Fig. 7. We also assume that Xt is at the root with probability 1 if t < 0

(here more formal description of the chain is needed) and that for t > 2m we have
XtC1 D Xt (this is usually expressed by saying that leaves are absorbing states).
Then

2m
X

tD1
E

�

dT2m .Xt;Xt�1/p

 D 2m:

Moreover, in the downward random walk, after splitting at time r � 2m with
probability at least 1

2
two independent walks will accumulate distance which is at

least twice the number of steps (until a leaf is encountered). Thus

r

l l l l l l l l

Fig. 7 T3, with the root (r) and leaves (l) marked
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mX

kD0

2m
X

tD1

E
�

dT2m

�

Xt;eXt
�

t � 2k
		p


2kp
�

m�1X

kD0

2m
X

tD2k

1

2kp
� 1
2

� 2.kC1/p

� m2m�12p�1

D 2p�2 � m � 2m:

The claim follows. ut
For diamond graphs and Laakso graphs the argument is similar, but more

complicated, because in such graphs the trajectories can come close after separation.
After uniting the reasons for non-embeddability for diamonds and trees one

can hope to show that Markov convexity characterizes metric spaces which are
embeddable into superreflexive spaces. It turns out that this is not the case. It was
shown by Li [68, 69] that the Heisenberg group H.R/ (see Definition 3.9) is Markov
convex. On the other hand, it is known that the Heisenberg group does not admit a
bilipschitz embedding into any superreflexive Banach space [26, 66]. (It is worth
mentioning that in the present context we may consider the discrete Heisenberg
group H.Z/ consisting of the matrices with integer entries of the form shown in
Definition 3.9 endowed with its word distance, see Definition 2.35.)

I suggest the following problem which is open as far as I know:

Problem 2.30. Does there exist a test-space for superreflexivity which is Markov
p-convex for some 0 < p < 1? (Or a sequence of test-spaces with uniformly
bounded Markov p-convexity constants?)

Remark 2.31. The Heisenberg group H.Z/ (with integer entries) has two properties
needed for the test-space in Problem 2.30: it is not embeddable into any super-
reflexive space and is Markov convex. The only needed property which it does not
have is: embeddability into each nonsuperreflexive space. Cheeger and Kleiner [28]
proved that H.Z/ is not embeddable into some nonsuperreflexive Banach spaces,
for example, into L1.0; 1/.

One more problem which I would like to mention here is

Problem 2.32 (Naor, July 2013). Does there exist a sequence of finite metric spa-
ces fMig1

iD1 which is a sequence of test-spaces for superreflexivity with the following
universality property: if fAig1

iD1 is a sequence of test-spaces for superreflexivity, then
there exist uniformly bilipschitz embeddings Ei W Ai ! Mn.i/, where fn.i/g1

iD1 is
some sequence of positive integers?

Characterization of Superreflexivity in Terms of One Test-Space

Baudier [4] strengthened the “only if” direction of Bourgain’s characterization and
proved
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Theorem 2.33 (Baudier [4]). A Banach space X is nonsuperreflexive if and only if
it admits bilipschitz embedding of the infinite binary tree T1.

The following result hinted that possibly the Cayley graph of any nontrivially
complicated hyperbolic group is the test-space for superreflexivity:

Theorem 2.34 (Buyalo–Dranishnikov–Schroeder [22]). Every Gromov hyper-
bolic group admits a quasi-isometric embedding into the product of finitely many
copies of the binary tree.

Let us introduce notions used in this statement.

Definition 2.35. Let G be a group generated by a finite set S.

• The Cayley graph Cay.G; S/ is defined as a graph whose vertex set is G and
whose edge set is the set of all pairs of the form .g; sg/, where g 2 G, s 2 S.

• In this context we consider each edge as a line segment of length 1 and endow
Cay.G; S/ with the shortest path distance. The restriction of this distance to G is
called the word distance.

• Let u and v be two elements in a metric space .M; dM/. A uv-geodesic is
a distance-preserving map g W Œ0; dM.u; v/� ! M such that g.0/ D u and
g.dM.u; v// D v (where Œ0; dM.u; v/� is an interval of the real line with the
distance inherited from R).

• A metric space M is geodesic if for any two points u and v in M, there is a
uv-geodesic in M; Cay.G; S/, with edges identified with line segments and with
the shortest path distance is a geodesic metric space.

• A geodesic metric space M is called ı-hyperbolic, if for each triple u; v;w 2 M
and any choice of a uv-geodesic, vw-geodesic, and wu-geodesics, each of these
geodesics is in the ı-neighborhood of the union of the other two.

• A group is word hyperbolic or Gromov hyperbolic if Cay.G; S/ is ı-hyperbolic
for some ı < 1.

Remark 2.36. • It might seem that the definition of hyperbolicity depends on the
choice of the generating set S.

• It turns out that the value of ı depends on S, but its existence does not.
• The theory of hyperbolic groups was created by Gromov [46], although some

related results were known before. The theory of hyperbolic groups plays an
important role in group theory, geometry, and topology.

• Theory of hyperbolic groups is presented in many sources, see [1, 18].

Remark 2.37. It is worth mentioning that the identification of edges of Cay.G; S/
with line segments is useful and important when we study geodesics and introduce
the definition of hyperbolicity. In the theory of embeddings it is much more
convenient to consider Cay.G; S/ as a countable set (it is countable because
we consider groups generated by finite sets), endowed with the shortest path
distance (in the graph-theoretic sense), in this context it is called the word distance.
See [89, 95] for relations between embeddability of graphs as vertex sets and as
geodesic metric spaces.



Metric Characterizations of Some Classes of Banach Spaces 325

It is worth mentioning that although different finite generating sets S1 and S2 in
G lead to different word distances on G, the resulting metric spaces are bilipschitz
equivalent: the identity map .G; dS1 / ! .G; dS2 / is bilipschitz, where dS1 is the word
distance corresponding to S1 and dS2 is the word distance corresponding to S2.

We also need the following definitions used in [22]. A map f W X ! Y between
metric spaces .X; dX/ and .Y; dY/ is called a quasi-isometric embedding if there are
a1; a2 > 0 and b � 0, such that

a1dX.u; v/ � b � dY.f .u/; f .v// � a2dX.u; v/C b (5)

for all u; v 2 X. By a binary tree the authors of [22] mean an infinite tree in which
each vertex has degree 3. By a product of trees, denoted .˚n

iD1T.i//1, we mean their
Cartesian product with the `1-metric, that is,

d.fuig; fvig/ D
nX

iD1
dT.i/.ui; vi/: (6)

Observation 2.38. The binary tree defined as an infinite tree in which each vertex
has degree 3 is isometric to a subset of the product in the sense of (6) of three copies
of T1.

Therefore we may replace the infinite binary tree by T1 in the statement
of Theorem 2.34. Hence the Buyalo–Dranishnikov–Schroeder Theorem 2.34 in
combination with the Baudier Theorem 2.33 implies the existence of a quasi-
isometric embedding of any Gromov hyperbolic group, which is embeddable into
product of n copies of T1, into any Banach space containing an isomorphic copy
of a direct sum of n nonsuperreflexive spaces. The fact that Buyalo–Dranishnikov–
Schroeder consider quasi-isometric embeddings (which are weaker than bilipschitz)
is not a problem. One can easily prove the following lemma. Recall that a metric
space is called locally finite if all balls of finite radius in it have finite cardinality
(a detailed proof of Lemma 2.39 can be found in [92, Lemma 2.3]).

Lemma 2.39. If a locally finite metric space M admits a quasi-isometric embed-
ding into an infinite-dimensional Banach space X, then M admits a bilipschitz
embedding into X.

Remark 2.40. One can easily construct a counterexample to a similar statement for
general metric spaces.

Back to Embeddings However, we know from results of Gowers–Maurey
[45] that there exist nonsuperreflexive spaces which do not contain isomorphically
direct sums of any two infinite-dimensional Banach spaces, so we do not get
immediately bilipschitz embeddability of hyperbolic groups into nonsuperreflexive
Banach spaces.
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Possibly this obstacle can be overcome by modifying Baudier’s proof of Theo-
rem 2.33 for the case of a product of several trees, but at this point a more general
result is available. It can be stated as:

Embeddability of locally finite spaces into Banach spaces is finitely determined.
We need the following version of the result on finite determination (this statement

also explains what we mean by “finite determination”):

Theorem 2.41 ([88]). Let A be a locally finite metric space whose finite subsets
admit bilipschitz embeddings into a Banach space X with uniformly bounded
distortions. Then A admits a bilipschitz embedding into X.

Remark 2.42. This result and its version for coarse embeddings have many prede-
cessors: Baudier [4, 5], Baudier–Lancien [6], Brown–Guentner [19], and Ostrovskii
[85, 86].

Now we return to embeddings of hyperbolic groups into nonsuperreflexive
spaces. Recall that we consider finitely generated groups. It is easy to see that in this
case Cay.G; S/ is a locally finite metric space (recall that we consider Cay.G; S/
as a countable set G with its word distance). By finite determination, it suffices
to show only how to embed products of n finite binary trees into an arbitrary
nonsuperreflexive Banach space with uniformly bounded distortions (the distortions
are allowed to grow if we increase n, since for a fixed hyperbolic group the number
n is fixed). This can be done using the embedding of a finite binary tree suggested
by Bourgain (Theorem 2.6) and the standard techniques for constructions of basic
sequences and finite-dimensional decompositions. These techniques (going back
to Mazur) allow to show that for each n and N there exists a sequence of finite-
dimensional spaces Xi such that Xi contains a 2-bilipschitz image of TN and the
direct sum .˚n

iD1Xi/1 is C.n/-isomorphic to their linear span in X (C.n/ is constant
which depends on n, but not on N). See [92, pp. 157–158] for a detailed argument.

So we have proved that each Gromov hyperbolic group admits a bilipschitz
embedding into any nonsuperreflexive Banach space. This proves the corresponding
part of the following theorem:

Theorem 2.43. Let G be a Gromov hyperbolic group which does not contain
a cyclic group of finite index. Then the Cayley graph of G is a test-space for
superreflexivity.

The other direction follows by a combination of results of Bourgain [13],
Benjamini and Schramm [10], and some basic theory of hyperbolic groups [18, 82],
see [92, Remark 2.5] for details.

I find the following open problem interesting:

Problem 2.44. Characterize finitely generated infinite groups whose Cayley graphs
are test-spaces for superreflexivity.

Possibly Problem 2.44 is very far from its solution and we should rather do the
following. Given a group whose structure is reasonably well understood, check

(1) Whether it admits a bilipschitz embedding into an arbitrary nonsuperreflexive
Banach space?
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(2) Whether it admits bilipschitz embeddings into some superreflexive Banach
spaces?

Remark 2.45. There are groups which do not admit bilipschitz embeddings into
some nonsuperreflexive spaces, such as L1. Examples which I know:

• Heisenberg group (Cheeger–Kleiner [28]).
• Gromov’s random groups [48] containing expanders weakly are not even

coarsely embeddable into L1.
• Recently constructed groups of Osajda [83] with even stronger properties.

Remark 2.46. At the moment the only groups known to admit bilipschitz embed-
dings into superreflexive spaces are groups containing Z

n as a subgroup of finite
index. de Cornulier–Tessera–Valette [35] conjectured that such groups are the only
groups admitting a bilipschitz embedding into `2. This conjecture is still open. I
asked about the superreflexive version of this conjecture on MathOverflow [97]
(August 19, 2014) and de Cornulier commented on it as: “In the main two cases
for which the conjecture is known to hold in the Hilbert case, the same argument
also works for arbitrary uniformly convex Banach spaces.”

Remark 2.47. Groups which are test-spaces for superreflexivity do not have to be
hyperbolic. In fact, one can show that a direct product of finitely many hyperbolic
groups is a test-space for superreflexivity provided at least one of them does not have
a cyclic group as a subgroup of finite index. It is easy to check (using the definition)
that such products are not Gromov hyperbolic unless all-except-one groups in the
product are finite (the reason is that Z2 is not Gromov hyperbolic).

Now I would like to return to the title of this section: “Characterization of
superreflexivity in terms of one test-space.” This can actually be done using
either the Bourgain or the Johnson–Schechtman characterization and the following
elementary proposition (I published it [92], but I am sure that it was known to
interested people):

Proposition 2.48 ([92, Sect. 5]).

(a) Let fSng1
nD1 be a sequence of finite test-spaces for some class P of Banach

spaces containing all finite-dimensional Banach spaces. Then there is a metric
space S which is a test-space for P .

(b) If fSng1
nD1 are

• unweighted graphs,
• trees,
• graphs with uniformly bounded degrees,

then S also can be required to have the same property.

Sketch of the Proof. In all of the cases the constructed space S contains subspaces
isometric to each of fSng1

nD1. Therefore the only implication which is nontrivial is
that the embeddability of fSng1

nD1 implies the embeddability of S.



328 M. Ostrovskii

Each finite metric space can be considered as a weighted graph with its shortest
path distance. We construct the space S as an infinite graph by joining Sn with SnC1
with a path Pn whose length is � maxfdiamSn; diamSnC1g. To be more specific, we
pick in each Sn a vertex On and let Pn be a path joining On with OnC1. We endow
the infinite graph S with its shortest path distance. It is clear that fSng1

nD1 embed
isometrically into S and all of the conditions in (b) are satisfied. It remains only
to show that each infinite-dimensional Banach space X which admits bilipschitz
embeddings of fSng1

nD1 with uniformly bounded distortions, admits a bilipschitz
embedding of S. This is done by embedding Sn into any hyperplane of X with
uniformly bounded distortions. This is possible because the sets are finite, the space
is infinite-dimensional, and all hyperplanes in a Banach space are isomorphic with
the Banach–Mazur distances being � some universal constant.

Now we consider in X parallel hyperplanes fHng with the distance between Hn

and HnC1 equal to the length of Pn and embed everything in the corresponding way.
All computations are straightforward (see [92] for details). ut

Non-local Properties

One can try to find metric characterizations of classes of Banach spaces which are
not local. (We say that a class P of Banach spaces is not local if the conditions
(1) X 2 P and (2) Y is finitely representable in X, do not necessarily imply that
Y 2 P). Apparently this study should not be considered as a part of the Ribe
program, and this direction has developed much more slowly than the directions
related to the Ribe program. It is clear that even if we restrict our attention to
properties which are hereditary (inherited by closed subspaces) and isomorphic
invariant, the class of non-local properties which have been already studied in the
literature is huge. I found in the literature only four properties for which the problem
of metric characterization was ever considered asymptotic uniform convexity and
smoothness, Radon-Nykodým property, reflexivity, infinite tree property. The goal
of this section is to survey the corresponding results.

Asymptotic Uniform Convexity and Smoothness

One of the first results of the described type is the following result of Baudier–
Kalton–Lancien, where by T11 we denote the tree defined similarly to the tree T1,
but now we consider all possible finite sequences with terms in N, and so degrees of
all vertices of T11 are infinite.
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Theorem 3.1 ([7]). Let X be a reflexive Banach space. The following assertions are
equivalent:

• T11 admits a bilipschitz embedding into X.
• X does not admit any equivalent asymptotically uniformly smooth norm or X

does not admit any equivalent asymptotically uniformly convex norm.
• The Szlenk index of X is > ! or the Szlenk index of X� is > !, where ! is the

first infinite ordinal.

It is worth mentioning that Dilworth et al. [37] found an interesting geometric
description of the class of Banach spaces whose metric characterization is provided
by Theorem 3.1.

Radon–Nikodým Property

The Radon–Nikodým property (RNP) is one of the most important isomorphic
invariants of Banach spaces. This class also plays an important role in the theory
of metric embeddings, this role is partially explained by the fact that for this class
one can use differentiability to prove non-embeddability results.

There are many expository works presenting results on the RNP, we recommend
the readers (depending on the taste and purpose) one of the following sources [11,
Chap. 5], [12, 17, 36, 103, 113].

Equivalent Definitions of RNP

One of the reasons for the importance of the RNP is the possibility to characterize
(define) the RNP in many different ways. I would like to remind some of them:

• Measure-theoretic definition (it gives the name to this property) X 2 RNP ,
The following analogue of the Radon–Nikodým theorem holds for X-valued
measures.

– Let .�;†;�/ be a positive finite real-valued measure, and .�;†; �/ be an
X-valued measure on the same � -algebra which is absolutely continuous with
respect to � (this means �.A/ D 0 ) �.A/ D 0) and satisfies the condition
�.A/=�.A/ is a uniformly bounded set of vectors over all A 2 † with �.A/ ¤
0. Then there is an f 2 L1.�;X/ such that

8A 2 † �.A/ D
ˆ

A
f .!/d�.!/:

• Definition in terms of differentiability (goes back to Clarkson [31] and Gelfand
[41]) X 2 RNP , X-valued Lipschitz functions on R are differentiable almost
everywhere.
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• Probabilistic definition [24] X 2 RNP , Bounded X-valued martingales
converge.

– In more detail: A Banach space X has the RNP if and only if each
X-valued martingale ffng on some probability space .�;†;�/, for which
fjjfn.!/jj W n 2 N; ! 2 �g is a bounded set, converges in L1.�;†;�;X/.

• Geometric definition. X 2 RNP , Each bounded closed convex set in X is
dentable in the following sense:

– A bounded closed convex subset C in a Banach space X is called dentable if
for each " > 0 there is a continuous linear functional f on X and ˛ > 0 such
that the set

fy 2 C W f .y/ � supff .x/ W x 2 Cg � ˛g

has diameter < ".

• Examples (these lists are far from being exhaustive):

– RNP: Reflexive (for example, Lp, 1 < p < 1), separable dual spaces (for
example, `1).

– non-RNP: c0, L1.0; 1/, nonseparable duals of separable Banach spaces.

RNP and Metric Embeddings

Cheeger–Kleiner [26] and Lee–Naor [66] noticed that the observation of Semmes
[109] on the result of Pansu [98] can be generalized to maps of the Heisenberg group
into Banach spaces with the RNP. This implies that Heisenberg group with its sub-
Riemannian metric (see Definition 3.9) does not admit a bilipschitz embedding into
any space with the RNP.

Cheeger–Kleiner [27] generalized some part of differentiability theory of Chee-
ger [25] (see also [59, 60]) to maps of metric spaces into Banach spaces with the
RNP. This theory implies some non-embeddability results, for example, it implies
that the Laakso space does not admit a bilipschitz embedding into a Banach space
with the RNP.

Metric Characterization of RNP

In 2009 Johnson [112, Problem 1.1] suggested the problem: Find a purely metric
characterization of the Radon–Nikodým property (that is, find a characterization of
the RNP which does not refer to the linear structure of the space). The main goal of
the rest of section “Radon–Nikodým Property” is to present such characterization.
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It turns out that the RNP can be characterized in terms of thick families of
geodesics defined as follows (different versions of this definition appeared in
[91, 93, 94], the following seems to be the most suitable definition).

Definition 3.2 ([91, 94]). A family T of uv-geodesics is called thick if there is ˛ >
0 such that for every g 2 T and for every finite collection of points r1; : : : ; rn in the
image of g, there is another uv-geodesic Qg 2 T satisfying the conditions:

(i) The image of Qg also contains r1; : : : ; rn (we call these points control points).
(ii) Possibly there are some more common points of g and Qg.

(iii) There is a sequence 0 D q0 < s1 < q1 < s2 < q2 < � � � < sm < qm D
dM.u; v/, such that g.qi/ D Qg.qi/ (i D 0; : : : ;m) are common points containing
r1; : : : ; rn; and

Pm
iD1 dM.g.si/; Qg.si// � ˛:

(iv) Furthermore, each geodesic which on some intervals between the points 0 D
q0 < q1 < q2 < � � � < qm D dM.u; v/ coincides with g and on others with Qg is
also in T .

Example 3.3. Interesting and important examples of spaces having thick families
of geodesics are the infinite diamond D! and the Laakso space L! , but now we
consider them not as unions of finite sets, but as unions of geodesic metric spaces
obtained from weighted fDng1

nD0 and fLng1
nD0 in which edges are identified with

line segments of lengths f2�ng1
nD0 and f4�ng1

nD0, respectively. Observe that for such
graphs there are also natural (although non-unique) isometric embeddings of Dn into
DnC1 and Ln into LnC1, and therefore the unions are well-defined. It is easy to check
that the families of all geodesics in D! and L! joining the vertices of D0 and L0,
respectively, are thick.

Theorem 3.4 ([91, 94]). A Banach space X does not have the RNP if and only if
there exists a metric space MX containing a thick family TX of geodesics which
admits a bilipschitz embedding into X.

Remark 3.5. Theorem 3.4 implies the result of Cheeger and Kleiner [27] on
nonexistence of bilipschitz embeddings of the Laakso space into Banach spaces
with the RNP.

It turns out that the metric space MX whose existence is established in Theo-
rem 3.4 cannot be chosen independently of X, because the following result holds:

Theorem 3.6 ([91]). For each metric space M containing a thick family of
geodesics there exists a Banach space X which does not have the RNP and does not
admit a bilipschitz embedding of M.

Because of Theorem 3.6 the following is an open problem:

Problem 3.7. Can we characterize the RNP using test-spaces?

Also I would like to mention the problem of the metric characterization of the
RNP can have many different (correct) answers, so it is natural to try to find metric
characterizations of the RNP in some other terms.
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• Proof of Theorem 3.4 (in both directions) is based on the characterization of
the RNP in terms of martingales. It will be presented in section “Proof of
Theorem 3.4”.

• It is not true that each Banach space without RNP contains a thick family of
geodesics, because Banach spaces without RNP can have the uniqueness of
geodesics property (consider a strictly convex renorming of a separable Banach
space without RNP), so the words ‘bilipschitz embedding’ in Theorem 3.4 cannot
be replaced by ‘isometric embedding.’

• Proof of Theorem 3.6 is based on the construction of Bourgain and Rosenthal
[15] of ‘small’ subspaces of L1.0; 1/ which still do not have the Radon–Nikodým
property.

• Studying metric characterizations of the RNP, it would be much more useful
and interesting to get a characterization of all metric spaces which do not admit
bilipschitz embeddings into Banach spaces with the RNP.

• In view of Theorem 3.4 it is natural to ask: whether the presence of bilipschitz
images of thick families of geodesics characterizes metric spaces which do not
admit bilipschitz embeddings into Banach spaces with the RNP?

• It is clear that the answer to this question in full generality is negative: we may
just consider a dense subset of a Banach space without the RNP which does not
contain any continuous curves.

• So we restrict our attention to spaces containing sufficiently large collections
of continuous curves. Our next result is a negative answer even in the case of
geodesic metric spaces. Recall a metric space is called geodesic if any two points
in it are joined by a geodesic.

Theorem 3.8 ([93]). There exist geodesic metric spaces which satisfy the following
two conditions simultaneously:

• Do not contain bilipschitz images of thick families of geodesics.
• Do not admit bilipschitz embeddings into Banach spaces with the Radon–Niko-

dým property.

In [93] it was shown that the Heisenberg group with its sub-Riemannian metric
is an example of such metric space. Let us recall the corresponding definitions.

Definition 3.9. The Heisenberg group H.R/ can be defined as the group of real
upper-triangular matrices with 1’s on the diagonal:

2

4

1 x z
0 1 y
0 0 1

3

5 :

One of the ways to introduce the sub-Riemannian metric on H.R/ is to find the
tangent vectors of the curves produced by left translations in x and in y directions,
that is,
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d

d"

ˇ
ˇ
ˇ
ˇ
"D0

2

4

1 " 0

0 1 0

0 0 1

3

5

2

4

1 x z
0 1 y
0 0 1

3

5 D
2

4

0 1 y
0 0 0

0 0 0

3

5

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

2

4

1 0 0

0 1 "

0 0 1

3

5

2

4

1 x z
0 1 y
0 0 1

3

5 D
2

4

0 0 0

0 0 1

0 0 0

3

5

All elements of H.R/ can be regarded as elements of R3 with coordinates x; y; z.
For u; v 2 H.R/ we consider the set of all differentiable curves joining u and v
with the restriction that the tangent vector at each point of the curve is a linear
combination of the two tangent vectors computed above. Finally we introduce the
distance between u and v as the infimum of lengths (in the usual Euclidean sense)
of projections onto xy-plane of all such curves.

This metric has been systematically studied (see [23, 47, 80]), it has very interest-
ing geometric properties. The Heisenberg group H.R/with its subriemannian metric
is a very important example for Metric Geometry and its applications to Computer
Science. One of the reasons for this is its poor embeddability into many classes
of Banach spaces. As we already mentioned, Cheeger–Kleiner [26] and Lee–Naor
[66] proved that the Heisenberg group does not admit a bilipschitz embedding into
a Banach space with the RNP. It remains to show that it does not admit a bilipschitz
embedding of a thick family of geodesics.

Remark 3.10. It is not needed for our argument, but is worth mentioning that

• Cheeger–Kleiner [28] proved that H.R/ does not admit a bilipschitz embedding
into L1.0; 1/.

• Cheeger–Kleiner–Naor [29] found quantitative versions of the previous result for
embeddings of finite subsets of H.R/ into L1.0; 1/. These quantitative results are
important for Theoretical Computer Science.

We finish the proof of Theorem 3.8 by using the notion of Markov convexity
(Definition 2.26), proving

Theorem 3.11 ([93]). A metric space with a thick family of geodesics is not Markov
p-convex for any p 2 .0;1/.

and combining it with the following result:

Theorem 3.12 ([68, 69]). The Heisenberg group H.R/ is Markov 4-convex.

Remark 3.13. Since the infinite diamond D! and the Laakso space L! contain thick
families of geodesics, they are not Markov p-convex for any p 2 .0;1/. Since the
unions of fDng1

nD0 and fLng1
nD0 (considered as finite sets) are dense in D! and L! ,

respectively; we conclude that Markov p-convexity constants of diamond graphs
and Laakso graphs are not uniformly bounded for any p 2 .0;1/.
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Remark 3.14. It is worth mentioning that the discrete Heisenberg group H.Z/

embeds into a Banach space with the RNP. Since H.Z/ is locally finite, this follows
by combining the well-known observation of Fréchet on isometric embeddability
of any n-element set into `n1 (see [90, p. 6]) with the finite determination
(Theorem 2.41, actually the earlier result of [6] suffices here). In fact, these results
imply bilipschitz embeddability of H.Z/ into the direct sum .˚1

nD1`n1/2, which has
the RNP because it is reflexive.

Proof of Theorem 3.4

First we prove: No RNP ) bilipschitz embeddability of a thick family of
geodesics.

We need to define a more general structure than that of a ı-tree (see Defini-
tion 2.22), in which each element is not a midpoint of a line segment, but a convex
combination.

Definition 3.15. Let Z be a Banach space and let ı > 0. A set of vectors
fzn;jg 1 mn

nD0;jD1 in Z is called a ı-bush if m0 D 1 and for every n � 1 there is a partition
fAn

kgmn�1

kD1 of f1; : : : ;mng such that

jjzn;j � zn�1;kjj � ı (7)

for every n � 1 and for every j 2 An
k , and

zn�1;k D
X

j2An
k


n;jzn;j (8)

for some 
n;j � 0,
P

j2An
k

n;j D 1.

Theorem 3.16. A Banach space Z does not have the RNP if and only if it contains
a bounded ı-bush for some ı > 0.

Remark 3.17. Theorem 3.16 can be derived from Chatterji’s result [24]. Apparently
Theorem 3.16 was first proved by James, possibly even before Chatterji, see [57].

• We construct a suitable thick family of geodesics using a bounded ı-bush in a
Banach space without the RNP.

• It is not difficult to see (for example, using the Clarkson–Gelfand characteriza-
tion) that a subspace of codimension 1 (hyperplane) in a Banach space without
the RNP does not have the RNP.

• Let X be a non-RNP Banach space. We pick a norm-one vector x 2 X, then
a norm-one functional x� on X satisfying x�.x/ D 1. Then (by the previous
remark) we find a bounded ı-bush (for some ı > 0) in the kernel ker x�. We shift
this bush adding x to each of its elements, and get a (still bounded) ı-bush fxi;jg
satisfying the condition x�.xi;j/ D 1 for each i and j.
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• Now we change the norm of X to equivalent. The purpose of this step is to get a
norm for which we are able to construct the thick family of geodesics in X, and
there will be no need in a bilipschitz embedding. (One can easily see that this
would be sufficient to prove the theorem.)

• The unit ball of the norm jj � jj1 is defined as the closed convex hull of the unit
ball in the original norm and the set of vectors f˙xi;jg (recall that fxi;jg form a
bush in the hyperplane fx W x�.x/ D 1g). It is easy to check that in this new norm
the set fxi;jg is a bounded ı-bush (possibly with a somewhat smaller ı > 0, but
we keep the same notation). Also in the new norm we have jjxi;jjj1 D 1 for all i
and j. For simplicity of notation we shall use jj � jj to denote the new norm.

• We are going to use this ı-bush to construct a thick family TX of geodesics in
X joining 0 and x0;1. First we construct a subset of the desired set of geodesics,
this subset will be constructed as the set of limits of certain broken lines in X
joining 0 and x0;1. The constructed broken lines are also geodesics (but they do
not necessarily belong to the family TX).

• The mentioned above broken lines will be constructed using representations of
the form x0;1 D Pm

iD1 zi, where zi are such that jjx0;1jj D Pm
iD1 jjzijj. The broken

line represented by such finite sequence z1; : : : ; zm is obtained by letting z0 D 0

and joining
Pk

iD0 zi with
PkC1

iD0 zi with a line segment for k D 0; 1; : : : ;m � 1.
Vectors

Pk
iD0 zi, k D 0; 1; : : : ;m will be called vertices of the broken line.

• The infinite set of broken lines which we construct is labelled by vertices of the
infinite binary tree T1 in which each vertex is represented by a finite (possibly
empty) sequence of 0 and 1.

• The broken line corresponding to the empty sequence ; is represented by the
one-element sequence x0;1, so it is just a line segment joining 0 and x0;1.

• We have

x0;1 D 
1;1x1;1 C � � � C 
1;m1x1;m1 ;

where jjx1;j � x0;1jj � ı. We introduce the vectors

y1;j D 1

2
.x1;j C x0;1/:

• For these vectors we have

x0;1 D 
1;1y1;1 C � � � C 
1;m1y1;m1 ;

jjy1;j � x1;jjj D jjy1;j � x0;1jj � ı
2
, and jjy1;jjj D 1.

• As a preliminary step to the construction of the broken lines corresponding to
one-element sequences .0/ and .1/ we form a broken line represented by the
points


1;1y1;1; : : : ; 
1;m1y1;m1 : (9)

We label the broken line represented by (9) by ;.
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• The broken line corresponding to the one-element sequence .0/ is represented by
the sequence obtained from (9) if we replace each term 
1;jy1;j by a two-element
sequence


1;j

2
x0;1;


1;j

2
x1;j: (10)

• The broken line corresponding to the one-element sequence .1/ is represented by
the sequence obtained from (9) if we replace each term 
1;jy1;j by a two-element
sequence


1;j

2
x1;j;


1;j

2
x0;1: (11)

• At this point one can see where are we going to get the thickness property from.
• In fact, one of the inequalities above is jjx1;j � x0;1jj � ı. Therefore

�
�
�
�


1;j

2
x1;j � 
1;j

2
x0;1

�
�
�
�

� 
1;j

2
ı:

Summing over all j, we get that the total sum of deviations is � ı
2
.

• In the obtained broken lines each line segment corresponds either to a multiple
of x0;1 or to a multiple of some x1;j. In the next step we replace each such line
segment by a broken line. Now we describe how we do this.

• Broken lines corresponding to 2-element sequences are also formed in two steps.
To get the broken lines labelled by .0; 0/ and .0; 1/ we apply the described
procedure to the geodesic labelled .0/, to get the broken lines labelled by .1; 0/
and .1; 1/ we apply the described procedure to the geodesic labelled .1/.

• In the first step we replace each term of the form 
1;k
2

x0;1 by a multiplied by 
1;k
2

sequence 
1;1y1;1; : : : ; 
1;m1y1;m1 , and we replace a term of the form 
1;k
2

x1;k by

the multiplied by 
1;k
2

sequence

f
2;jy2;jgj2A2k
; (12)

ordered arbitrarily, where y2;j D x1;kCx2;j
2

and 
2;j, x2;j, and A2k are as in the
definition of the ı-bush (it is easy to check that in the new norm we have
jjy2;jjj D 1). We label the obtained broken lines by .0/ and .1/, respectively.

• To get the sequence representing the broken line labelled by .0; 0/ we do the
following operation with the preliminary sequence labelled .0/.

– Replace each multiple 
y1;j present in the sequence by the two-element
sequence



x0;1
2
; 


x1;j
2
: (13)
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– Replace each multiple 
y2;j, with j 2 A2k , present in the sequence by the two-
element sequence



x1;k
2
; 


x2;j
2
: (14)

• To get the sequence representing the broken line labelled by .0; 1/ we do the
same but changing the order of terms in (13) and (14). To get the sequences
representing the broken lines labelled by .1; 0/ and .1; 1/, we apply the same
procedure to the broken line labelled .1/.

• We continue in an “obvious” way and get broken lines for all vertices of
the infinite binary tree T1. It is not difficult to see that vertices of a broken
line corresponding to some vertex .	1; : : : ; 	n/ are contained in the broken line
corresponding to any extension .	1; : : : ; 	m/ of .	1; : : : ; 	n/ .m > n/.

• This implies that broken lines corresponding to any ray (that is, a path infinite in
one direction) in T1 has a limit (which is not necessarily a broken line, but is a
geodesic), and limits corresponding to two different infinite paths have common
points according to the number of common .	1; : : : ; 	n/ in the vertices of those
paths.

• A thick family of geodesics is obtained by pasting pieces of these geodesics in all
“reasonable” ways. All verifications are straightforward; see the details in [94].

It remains to prove:
Bilipschitz embeddability of a thick family of geodesics ) No RNP.

Proof. We assume that a metric space .M; d/with a thick family of geodesics admits
a bilipschitz embedding f W M ! X into a Banach space X and show that there exists
a bounded divergent martingale fMig1

iD0 on .0; 1� with values in X. We assume that

`d.x; y/ � jjf .x/ � f .y/jjX � d.x; y/ (15)

for some ` > 0. We assume that the thick family consists of uv-geodesics for some
u; v 2 M and that d.u; v/ D 1 (dividing all distances in M by d.u; v/, if necessary).

Each function in the martingale fMig1
iD0 will be obtained in the following way.

We consider some finite sequence V D fvigm
iD0 of points on any uv-geodesic,

satisfying v0 D u, vm D v and d.u; vkC1/ � d.u; vk/. We define MV as the function
on .0; 1� whose value on the interval .d.u; vk/; d.u; vkC1/� is equal to

f .vkC1/ � f .vk/

d.vk; vkC1/
:

It is clear that the bilipschitz condition (15) implies that jjMV.t/jj � 1 for any
collection V and any t 2 .0; 1�. Since fvig are on a geodesic, is clear that an infinite
collection of such functions fMV.k/g1

kD0 forms a martingale if for each k 2 N the
sequence V.k/ contains V.k �1/ as a subsequence. So it remains to find a collection
of sequences fV.k/g1

kD0 for which the martingale fMV.k/g1
kD0 diverges. We denote

MV.k/ by Mk.
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Now we describe some of the ideas of the construction.

• It suffices to have differences jjMk � Mk�1jj to be bounded away from zero for
some infinite set of values of k.

• On steps for which we achieve such estimates from below we add exactly one
new point z0

j into V.k/ between any two consequent points wj�1 and wj of V.k�1/.
In such a case it suffices to make the choice of points in such a way that the values
of Mk on the intervals corresponding to pairs .wj�1; z0

j/ and .z0
j;wj/ are ‘far’ from

each other, and thus from the value of Mk�1 corresponding to .wj�1;wj/. Actually
we do not need this condition for each pair .wj�1;wj/, but only “on average.”

• Using the definition of a thick family of geodesics and the bilipschitz condition,
we can achieve this goal. A detailed description follows.

We let V.0/ D fu; vg and so M0 is a constant function on .0; 1� taking value
f .v/� f .u/. In the next step we apply the condition of the definition of a thick family
to control points fu; vg and any geodesic g of the family. We get another geodesic Qg,
the corresponding sequence of common points fwigm

iD0 and the corresponding pair
of sufficiently well-separated sequences fzi; Qzigm

iD1 on the geodesics g and Qg. The
separation condition is

Pm
iD1 d.zi; Qzi/ � ˛.

We let V.1/ D fwigm
iD0. Observe that in this step we cannot claim any nontrivial

estimates for jjM1 � M0jjL1.X/ from below because we have not made any nontrivial
assumptions on this step of the construction (it can even happen that M1 D M0).
Lower estimates for martingale differences in our argument are obtained only for
differences of the form jjM2k � M2k�1jjL1.X/.

We choose V.2/ to be of the form

w0; z
0
1;w1; z

0
2;wn; : : : ; z

0
m;wm; (16)

where each z0
i is either zi or Qzi depending on the behavior of the mapping f . We

describe this dependence below. Observe that since zi or Qzi are images of the same
point in Œ0; 1�, the corresponding partition of the interval .0; 1� does not depend on
our choice.

To make the choice of z0
i we consider the quadruple wi�1; zi;wi; Qzi. The bilipschitz

condition (15) implies jjf .zi/ � f .Qzi/jj � `d.zi; Qzi/. Consider two pairs of vectors
corresponding to two different choices of z0

i:
Pair 1: f .wi/ � f .zi/, f .zi/ � f .wi�1/. Pair 2: f .wi/ � f .Qzi/, f .Qzi/ � f .wi�1/.

The inequality jjf .zi/�f .Qzi/jj � `d.zi; Qzi/ implies that at least one of the following
is true:

�
�
�
�

f .wi/ � f .zi/

d.wi; zi/
� f .zi/ � f .wi�1/

d.zi;wi�1/

�
�
�
�

� `

2
d.zi; Qzi/

�
1

d.wi; zi/
C 1

d.zi;wi�1/

�

(17)

or
�
�
�
�

f .wi/ � f .Qzi/

d.wi; Qzi/
� f .Qzi/ � f .wi�1/

d.Qzi;wi�1/

�
�
�
�

� `

2
d.zi; Qzi/

�
1

d.wi; Qzi/
C 1

d.Qzi;wi�1/

�

: (18)

Since in the definition of a thick family of geodesics we have
P

i d.zi; Qzi/ � ˛,
these inequalities show that if we choose z0

i to be the one of zi and Qzi, for which
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f .wi/�f .z0

i /

d.wi;z0

i /
and f .z0

i /�f .wi�1/

d.z0

i ;wi�1/
are more distant from each other, we have a chance to get

the desired condition. (This is what we verify below.)
We pick z0

i to be zi if the left-hand side of (17) is larger than the left-hand side of
(18), and pick z0

i D Qzi otherwise.
Let us estimate jjM2 � M1jj1. First we estimate the part of this difference

corresponding to the interval .d.w0;wi�1/; d.w0;wi/�. Since the restriction of M2

to the interval .d.w0;wi�1/; d.w0;wi/� is a two-valued function, and M1 is constant
on the interval, the integral

ˆ d.w0;wi/

d.w0;wi�1/

jjM2 � M1jjdt (19)

can be estimated from below in the following way. Denote the value of M2 on the
first part of the interval by x, the value on the second by y, the value of M1 on the
whole interval by z, the length of the first interval by A and of the second by B. We
have: the desired integral is equal to Ajjx � zjj C Bjjy � zjj and therefore can be
estimated in the following way:

Ajjx � zjj C Bjjy � zjj � maxfjjx � zjj; jjy � zjjg � minfA;Bg

� 1

2
jjx � yjj minfA;Bg:

Therefore, assuming without loss of generality that the left-hand side of (17) is
larger than the left-hand side of (18), we can estimate the integral in (19) from below
by

1

2

�
�
�
�

.f .wi/ � f .zi//

d.wi; zi/
� .f .zi/ � f .wi�1//

d.zi;wi�1/

�
�
�
�

� min fd.wi; zi/; d.zi;wi�1/g

� 1

4
` d.zi; Qzi/

�
1

d.wi; zi/
C 1

d.zi;wi�1/

�

� min fd.wi; zi/; d.zi;wi�1/g

� 1

4
` d.zi; Qzi/:

Summing over all intervals and using the condition
Pm

iD1 d.zi; Qzi/ � ˛, we get
jjM2 � M1jj � 1

4
`˛.

Now we recall that the last condition of the definition of a thick family of
geodesics implies that

w0; z
0
1;w1; z

0
2;w2; : : : ; z

0
m;wm; (20)

where each z0
i is either zi or Qzi depending on the choice made above belongs to some

geodesic in the family.
We use all of points in (20) as control points and find new sequence fw2i gm2

iD0 of
common points and a new sequence of pairs fz2i ; Qz2i gm2

iD1 with substantial separation:
Pm2

iD1 d.z2i ; Qz2i / � ˛.
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We use fw2i gm2
iD0 to construct M3 and the suitably selected sequence

w20; z
02
1 ;w

2
1; z

02
2 ;w

2
2; : : : ; z

02
m2 ;w

2
m2

to construct M4. We continue in an obvious way. The inequalities jjM2k � M2k�1jj �
1
4
`˛ imply that the martingale is divergent. ut

Reflexivity

Problem 3.18. Is it possible to characterize the class of reflexive spaces using test-
spaces?

Some comments on this problem:

Remark 3.19. It is worth mentioning that a metric space (or spaces) characterizing
in the described sense reflexivity or the Radon–Nikodým property cannot be
uniformly discrete (that is, cannot satisfy infu¤v d.u; v/ > 0). This statement follows
by combining the example of Ribe [107] of Banach spaces belonging to these classes
which are uniformly homeomorphic to Banach spaces which do not belong to the
classes, and the well-known fact (Corson–Klee [32]) that uniformly continuous
maps are Lipschitz for (nontrivially) “large” distances.

I noticed that combining two of the well-known characterizations of reflexiv-
ity (Pták [104]—Singer [110]—Pełczyński [99]—James [54]—Milman and Mil-
man [79]) and some differentiation theory (Mankiewicz [72]—Christensen [30]—
Aronszajn [2], see also presentation in [11]) we get a purely metric characterization
of reflexivity. This characterization can be described as a submetric test-space
characterization of reflexivity:

Definition 3.20. A submetric test-space for a class P of Banach spaces is defined as
a metric space T with a marked subset S � T � T such that the following conditions
are equivalent for a Banach space X:

1. X … P .
2. There exist a constant 0 < C < 1 and an embedding f W T ! X satisfying the

condition

8.x; y/ 2 S dT.x; y/ � jjf .x/ � f .y/jj � CdT.x; y/: (21)

An embedding satisfying (21) is called a partially bilipschitz embedding. Pairs
.x; y/ belonging to S are called active.

Let � � 1. The submetric space X� is the space `1 with its usual metric. The
only thing which makes it different from `1 is the set of active pairs S�: A pair
.x; y/ 2 X� � X� is active if and only if
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jjx � yjj1 � �jjx � yjjs; (22)

where jj � jjs is the summing norm, that is,

jjfaig1
iD1jjs D sup

k

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
ai

ˇ
ˇ
ˇ
ˇ
ˇ
:

Theorem 3.21 ([91]). X�, � � 2 is a submetric test-space for reflexivity.

The proof goes as follows. Let Z be a nonreflexive space. If you know the
characterization of reflexivity which I meant, you see immediately that it implies
that the space `1 admits a partially bilipschitz embedding into Z with the set of
active pairs described as above.

The other direction. If `1 admits a partially bilipschitz embedding with the
described set of active pairs, then the embedding is Lipschitz on `1, because each
vector in `1 is a difference of two positive vectors.

Now, if Z does not have the Radon–Nikodým property (RNP), we are done (Z is
nonreflexive). If Z has the RNP, we use the result of Mankiewicz–Christensen–
Aronszajn and find a point of Gâteaux differentiability of this embedding. The
Gâteaux derivative is a bounded linear operator which is “bounded below in
certain directions.” Using this we can get a sequence in Z which, after applica-
tion of the non-reflexivity criterion (due to Pták—Singer—Pełczyński—James—
D.&V. Milman), implies non-reflexivity of Z; see [91] for details.

Infinite Tree Property

See Definition 2.22 for the definition of the infinite tree property. Using a bounded
ı-tree in a Banach space X one can easily construct a bounded divergent X-valued
martingale. Hence the infinite tree property implies non-RNP. For some time
it was an open problem whether the infinite tree property coincides with non-
RNP. A counterexample was constructed by Bourgain and Rosenthal [15] in the
paper mentioned above. The infinite tree property admits the following metric
characterization.

Theorem 3.22 ([91]). The class of Banach spaces with the infinite tree property
admits a submetric characterization in terms of the metric space D! with the set S!
of active pairs defined as follows: a pair is active if and only if it is a pair of vertices
of a quadrilateral introduced in one of the steps.
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It would be interesting to answer the following open problem:

Problem 3.23. Whether the infinite diamond D! is a test-space for the infinite tree
property?

Remark 3.24. It is worth mentioning that if we restrict our attention to dual Banach
spaces, the following three properties are equivalent:

(1) Non-RNP.
(2) Infinite tree property.
(3) Bilipschitz embeddability of D! .

The implication (1) ) (2) is due to Stegall [111]. The implication (2) ) (1)
follows from Chatterji [24]. The equivalence of (1) and (3) was proved in [91].
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