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Preface for Volume 1

On April 4, 2014, we celebrated Cora Sadosky’s life with an afternoon in her honor,
preceded by the 13th New Mexico Analysis Seminar1 on April 3–4, 2014, and
followed by the Western Sectional Meeting of the AMS on April 5–6, 2014, all
held in Albuquerque, New Mexico, USA. It was a mathematical feast, gathering
more than a 100 analysts—fledgling, junior, and senior, from all over the USA and
the world such as: Canada, India, Mexico, Sweden, the UK, South Korea, Brazil,
Israel, Hungary, Finland, Australia, and Spain—to remember her outspokenness,
her uncompromising ways, her sharp sense of humor, her erudition, and above all
her profound love for mathematics.

Many speakers talked about how their mathematical lives were influenced by
Cora’s magnetic personality and her mentoring early in their careers and as they
grew into independent mathematicians. Particularly felt was her influence among
young Argentinian and Venezuelan mathematicians. Rodolfo Torres, in a splendid
lecture about Cora and her mathematics, transported us through the years from
Buenos Aires to Chicago and then back to Buenos Aires, from Caracas to the
USA and then back to Buenos Aires, and from Washington, D.C., to California.
He reminded us of Cora always standing up for human rights, Cora as president of
the Association for Women in Mathematics (AWM), and Cora always encouraging
and fighting for what she thought was right.

1The 13th New Mexico Analysis Seminar and An Afternoon in Honor of Cora Sadosky were
sponsored by National Science Foundation (NSF) grant DMS-140042, the Simons Foundation,
and the Efroymson Foundation, and the events were done in cooperation with the Association for
Women in Mathematics (AWM). See the conference’s websites:

www.math.unm.edu/conferences/13thAnalysis
people.math.umass.edu/~nahmod/CoraSadosky.html
An Afternoon in Honor of Cora Sadosky was organized by Andrea Nahmod, Cristina Pereyra,

and Wilfredo Urbina. The 13th New Mexico Analysis Seminar organizers were Matt Blair, Cristina
Pereyra Anna Skripka, Maxim Zinchenko from University of New Mexico, and Nick Michalowsky
from New Mexico State University.

vii
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Cora was born in Buenos Aires, Argentina, on May 23, 1940, and died on
December 3, 2010, in Long Beach, CA. Cora got her PhD in 1965 at the University
of Chicago under the supervision of both Alberto Calderón and Antoni Zygmund,
the grandparents of the now known Calderón-Zygmund school. Shortly after her
return from Chicago, she married Daniel J. Goldstein, her lifelong companion
who sadly passed away on March 13, 2014, a few weeks before the Albuquerque
gathering. Daniel and Cora had a daughter, Cora Sol, who is now a political science
professor at California State University in Long Beach, and a granddaughter, Sasha
Malena, who brightened their last years. During her life, Cora wrote more than 50
research papers, and a graduate textbook on Interpolation of Operators and Singular
Integrals: An Introduction to Harmonic Analysis (Marcel Dekker, 1979), and she
edited two volumes: one celebrating Mischa Cotlar’s 70th birthday (Analysis and
Partial Differential Equations: A Collection of Papers Dedicated to Mischa Cotlar,
CRC Press, 1989) and one celebrating Alberto Calderón 75th birthday (Harmonic
Analysis and Partial Differential Equations: Essays in Honor of Alberto Calderón,
edited with M. Christ and C. Kenig, The University of Chicago Press, 1999). We
have included a list as complete as possible of her scholarly work. Notable are her
contributions to harmonic analysis and operator theory, in particular her lifelong
very fruitful collaboration with Mischa Cotlar.

When news of Cora’s passing spread like wildfire in December 2010, many
people were struck. The mathematical community quickly reacted. The AWM
organized an impromptu memorial at the 2011 Joint Mathematical Meeting (JMM),
as reported by Jill Pipher, at the time the AWM president:

Many people wrote to express their sadness and to send remembrances. The AWM business
meeting on Thursday, January 6 at the 2011 JMM was largely devoted to a remembrance of
Cora.

This appeared in the March–April issue of the AWM Newsletter2 which was entirely
dedicated to the memory of Cora Sadosky.

An obituary by Allyn Jackson for Cora Sadosky appeared in Notices of the
American Mathematical Society in April 2011.3

In June 2011, Cathy O’Neal wrote in her blog mathbabe4 a beautiful remem-
brance for Cora:

[. . . ] Cora, whom I met when I was 21, was the person that made me realize there is a
community of women mathematicians, and that I was also welcome to that world. [. . . ]
And I felt honored to have met Cora, whose obvious passion for mathematics was absolutely
awe-inspiring. She was the person who first explained to me that, as women mathematicians,
we will keep growing, keep writing, and keep getting better at math as we grow older [. . . ].
When I googled her this morning, I found out she’d died about 6 months ago. You can read

2President’s Report, AWM Newsletter, Vol. 41, No. 2, March–April 2011, p. 1. This issue was
dedicated to the memory of Cora Sadosky.
3Notices AMS, Vol. 58, Number 4, April 2011, pp. 613–614.
4http://mathbabe.org/2011/06/29/cora-sadosky/.

http://mathbabe.org/2011/06/29/cora-sadosky/
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about her difficult and inspiring mathematical career in this biography.5 It made me cry and
made me think about how much the world needs role models like Cora.

In 2013, the Association for Women in Mathematics established the biennial
AWM-Sadosky Prize in Analysis,6 to be awarded every other year starting in 2014.
The purpose of the award is to highlight exceptional research in analysis by a woman
early in her career. Svitlana Mayboroda was the first recipient of the AWM-Sadosky
Research Prize in Analysis awarded in January 2014. Mayboroda is contributing a
survey paper joint with Ariel Barton to this volume. We include the press release
issued by the AWM on May 15, 2013, and the citation and Mayboroda’s response
that appeared in the March–April 2014 issue of the AWM Newsletter.7 As this
volume goes into press, the second recipient of the award, the 2016 AWM-Sadosky
Prize, was announced: Daniela da Silva, from Columbia University.

In 2015, Kristin Lauter, president of the AWM, started her report in the May–June
issue of the AWM Newsletter,8 with a couple of paragraphs remembering Cora:

I remember very clearly the day I met Cora Sadosky at an AWM event shortly after I got my
PhD, and, knowing very little about me, she said unabashedly that she didn’t see any reason
that I should not be a professor at Harvard someday. I remember being shocked by this idea,
and pleased that anyone would express such confidence in my potential, and impressed at
the audacity of her ideas and confidence of her convictions.
Now I know how she felt: when I see the incredibly talented and passionate young female
researchers in my field of mathematics, I think to myself that there is no reason on this earth
that some of them should not be professors at Harvard. But we are not there yet . . . and
there still remain many barriers to the advancement and equal treatment of women in our
profession and much work to be done.

In these two volumes, friends, colleagues, and/or mentees have contributed
research papers, surveys, and/or short remembrances about Cora. The remem-
brances were sometimes weaved into the article submitted (either at the begining or
the end), and we have respected the format each author chose. Many of the authors
gave talks in the 13th New Mexico Analysis Seminar, in An Afternoon in Honor of
Cora Sadosky, and/or in the special sessions of the AMS; others could not attend
these events but did not think twice when given the opportunity to contribute to this
homage.

The mathematical contributions naturally align with Cora’s mathematical inter-
ests: harmonic analysis and PDEs, weighted norm inequalities, Banach spaces and
BMO, operator theory, complex analysis, and classical Fourier theory.

Volume 1 contains articles about Cora, her mathematics and mentorship, remem-
brances by colleagues and friends, her bibliography according to MathSciNet, and

5Biographies of Women in Mathematics: Cora Sadosky http://www.agnesscott.edu/lriddle/women/
corasadosky.htm.
6More details in the AWM-Sadosky Research Prize in Analysis webpage: https://sites.google.com/
site/awmmath/programs/sadosky-prize.
7AWM Newsletter, Volume 44, Number 2, March–April 2014.
8President’s Report. AWM Newsletter, Vol. 45, No. 3, May–June, p. 1.

http://www.agnesscott.edu/lriddle/women/corasadosky.htm
http://www.agnesscott.edu/lriddle/women/corasadosky.htm
https://sites.google.com/site/awmmath/programs/sadosky-prize
https://sites.google.com/site/awmmath/programs/sadosky-prize
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survey and research articles on harmonic analysis and partial differential equations,
BMO, Banach and metric spaces, and complex and classical Fourier analysis.

Last year (2014) saw the resolution of the two-weight problem for the Hilbert
transform à la Muckenhoupt by Michael Lacey, Eric Sawyer, Chun-Yen Shen, and
Ignacio Uriarte-Tuero, a problem that had been open for 40 years. This problem
was solved à la Helson-Szegö by Cora Sadosky and Mischa Cotlar in the early
1980s using complex analysis and operator theory methods. In the last 15 years,
a number of techniques have been developed and refined to yield this result,
including stopping time arguments, Bellman functions, Lerner’s median approach,
and bumped approach.

Volume 2 contains survey and research articles on weighted norm inequalities,
operator theory, and dyadic harmonic analysis. The articles illustrate some of
the recent techniques developed to understand weighted inequalities and more,
including a survey of the two-weight problem for the Hilbert transform by Michael
Lacey.

Contents of Volume 1

We now describe in more detail the contents of this first volume. Volume 1 consists
of two parts, the first one devoted to remembering Cora in all her facets, and the
second to mathematics which is, as we well know, a fundamental part of who Cora
was.

Part I of Volume 1 contains articles about Cora, her mathematics and mentorship,
as well as some remembrances by colleagues and friends. Chapter “Cora Sadosky:
Her Mathematics, Mentorship, and Professional Contributions” is a written ren-
dering of Rodolfo Torres’ Albuquerque lecture Cora Sadosky: her mathematics,
mentorship, and professional contributions. This should help us all not to forget
this amazing and strong-willed mathematician and woman and the new generations
to learn about her vibrant personality. Chapter “Cora’s Scholarly Work: Publi-
cations According to MathSciNet” contains Cora’s scholarly work according to
MathSciNet. Chapter “Remembering Cora Sadosky” contains remembrances from
friends and colleagues, such as Steven Krantz, María Dolores (Loló) Morán, Guido
Weiss, and Mike Wilson, and reproduces the article Remembering Cora Sadosky
with contributions from Georgia Benkart, Judy Green, Richard Bourgin, and Daniel
Szyld and a remembrance written collectively by Estela Gavosto, Andrea Nahmod,
Cristina Pereyra, Gustavo Ponce, Rodolfo Torres, and Wilfredo Urbina, published
in the AWM Newsletter Volume 41, Number 2, March–April 2011.

Part II in Volume 1 contains a survey and research articles submitted by an
array of mathematicians representing one or several of the mathematical themes
close to Cora’s heart. In chapter “Higher-Order Elliptic Equations in Non-Smooth
Domains: A Partial Survey”, Ariel Barton and Svitlana Mayboroda present an
extensive survey dealing with the theory of higher-order elliptic operators in non-
smooth settings. The first section of the paper deals with mostly constant coefficient
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operators, in arbitrary domains. It explains the Miranda-Agmon maximum principle
and related regularity estimates, as well as the interesting extension to this setting of
the Wiener test. The results explained are deep and important, and it is very useful
to have the history and development detailed here. The second section deals with Lp

boundary value problems for higher-order elliptic operators on Lipschitz domains.
This is mainly discussed again in the constant coefficient case. This is a very rich
subject, where, in spite of decades of steady progress, important problems remain
open. The final section deals with variable coefficient higher-order operators. Two
natural classes of such operators are discussed, and recent works by the authors are
described. This is a part of the theory that is at its very beginning and where much
remains to be done. The authors’ recent pioneering works are explained, and also
many areas of investigation that remain wide open are discussed.

Chapters “Victor Shapiro and the Theory of Uniqueness for Multiple Trigono-
metric Series”, “A Last Conversation with Cora”, and “Fourier Multipliers of the
Homogeneous Sobolev Space W1;1” are from Cora’s academic sibling Marchall
Ash and dear friend and colleague Aline Bonami. Marshall Ash’s paper focuses on
aspects of Cantor’s uniqueness theorem which states that if a trigonometric series
converges to zero pointless everywhere, then all of its coefficients must be zero. The
paper is written in the form of a survey and contains outlines of proofs, ideas and
discussions, and personal experiences. Aline Bonami starts with a remembrance she
titled A last conversation with Cora, followed by an article that studies the class of
Fourier multipliers on the homogeneous Sobolev space W1;1 which is meant to be
part of this final conversation.

In chapter “A Note on Nonhomogenous Weighted Div-Curl Lemmas”, Galia
Dafni, Der-Chen Chang, and Hong Yue present new results concerning local
versions of the div-curl lemma in R

n in the context of weighted Lebesgue spaces
and weighted localized Hardy spaces. Dafni and Chang were Cora’s coauthors.

In chapter “A Remark on Bilinear Square Functions”, Loukas Grafakos in an
interesting note opens up a discussion regarding a bilinear version of a classical
theorem due to Rubio de Francia on Lp-estimates for square functions based on
disjoint and arbitrary (in particular, not necessarily dyadic) intervals on the real line.

In chapter “Unique Continuation for the Elasticity System and a Counterexample
for Second-Order Elliptic Systems”, Carlos Kenig and Jenn-Nan Wang present an
interesting discussion of unique continuation for second-order elliptic systems in
the plane. They discuss positive results for a class of systems of elasticity where
coefficients are bounded and measurable (both isotropic and anisotropic systems)
and where coefficients are Lipschitz (anisotropic system). They present an example
which shows that unique continuation may fail for elliptic systems with bounded
measurable coefficients in interesting contrast to the case of single equations where
unique continuation results are known to hold.

In chapter “Hardy Spaces of Holomorphic Functions for Domains in C
n with

Minimal Smoothness”, Loredana Lanzani and Eli Stein continue their program
analyzing Hardy spaces on domains in several complex variables with minimal
boundary smoothness. As the reviewer said, “These will be of interest to a broad
cross-section of analysts. And I must note that Cora Sadosky would have been quite
interested in this paper.”
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In chapter “On the Preservation of Eccentricities of Monge–Ampère Sections”,
Diego Maldonado studies how the eccentricity of sections to solutions u to the
Monge-Ampère equation behave when the right-hand side of the equation satisfies
a Dini-type condition on sections. This is applied to obtain estimates of second
derivatives of u in terms of the eccentricity. In addition, he uses these results to show
existence of quasi-conformal solutions to Jacobian equations and also to improve
recent estimates for second derivatives of solutions to the linearized Monge-Ampère
equation.

In chapter “BMO: Oscillations, Self-Improvement, Gagliardo Coordinate
Spaces, and Reverse Hardy Inequalities”, Mario Milman writes about BMO
touching on many topics including oscillations, self improvement, Gagliardo
coordinate spaces, and reverse Hardy inequalities. As the author himself says
about Cora in the last section, “I know that the space BMO had a very special
place in her mathematical interests and, indeed, BMO spaces appear in many
considerations throughout her works. For this very reason, and whatever the merits
of my small contribution, I have chosen to dedicate this note on BMO inequalities
to her memory.”

In chapter “Besov Spaces, Symbolic Calculus, and Boundedness of Bilinear
Pseudodifferential Operators”, Virginia Naibo and Jodi Herbert continue their work
on Lp boundedness properties for bilinear pseudodifferential operators with symbols
in certain Besov spaces of product type. It is useful to notice that the classes of
symbols considered are extensions of some particular instance of the nowadays
well-understood bilinear Hörmander classes of symbols.

In chapter “Metric Characterizations of Some Classes of Banach Spaces”,
Mikhail Ostrowskii writes about metric characterization of some classes of Banach
spaces; this topic is currently central in nonlinear analysis.

In chapter “On the IVP for the k-Generalized Benjamin–Ono Equation”, Gustavo
Ponce surveys recent developments regarding local and global well-posedness
and special properties (such as decay and regularity) of solutions of the initial
value problem (IVP) associated to the Benjamin-Ono equation and k-generalized
Benjamin-Ono equation.

Mayboroda, Ponce, and Torres were invited speakers to “An Afternoon in Honor
of Cora Sadosky.” Dafni and Naibo gave talks in the AMS meeting in Albuquerque
in April and honored there as they are doing here the life and work of Cora Sadosky.
Other authors could not make it to the conference but were more than happy to
contribute to this volume.
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Cora Sadosky: Her Mathematics, Mentorship,
and Professional Contributions

Rodolfo H. Torres

Abstract We present some snapshots of Cora Sadosky’s career focusing on her
intertwined roles as mathematician, mentor, and leader in the profession. We recount
some of her contributions to specific areas of mathematics as well as her broader
impact on the mathematical profession.

Introduction

The content of this article is essentially that of the talk I presented at “An Afternoon
in Honor of Cora Sadosky,” New Mexico Analysis Seminar, Albuquerque, New
Mexico, April 4, 2014. I want to express my gratitude again to the organizers of
the event and the editors of this volume for the opportunity to present that talk and
write this article. In particular, I want to thank Cristina Pereyra for the very nice idea
of having the mini conference to honor Cora and Andrea Nahmod for encouraging
me to give the talk, which I consider a big honor and big responsibility. Special
thanks go to Estela Gavosto too, for the enormous help she gave me preparing the
materials for my presentation. Finally I also want to thank Cora Sol Goldstein for
kindly reading a draft of this article, making some suggestions, and providing some
photographs.

It is difficult to summarize in a few pages Cora’s contributions to mathematics
and the lives of many individuals. Shortly after she passed away on December
3, 2010, we wrote with several colleagues a brief note for the Newsletter of the
Association for Women in Mathematics (AWM) [14]1 and, in doing so, we came
across by chance with the poem by Emma Lazarus “The New Colossus,” which is
engraved on the Statue of Liberty. We used the words from that poem:

“Give me your tired, your poor,

1The article in the AWM Newsletter is reproduced elsewhere in this volume too.

R.H. Torres (�)
Department of Mathematics, University of Kansas, Lawrence, KS 66045-7523, USA
e-mail: torres@ku.edu

© Springer International Publishing Switzerland 2016
M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations,
Complex Analysis, Banach Spaces, and Operator Theory (Volume 1), Association
for Women in Mathematics Series 4, DOI 10.1007/978-3-319-30961-3_1
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4 R.H. Torres

Your huddled masses yearning to breathe free. . . ”

as an opening quote in that note. At a personal level, these words make many of us
who knew Cora think a lot about her. Indeed, as we wrote in the AWM note,

“Cora was a vibrant, strong minded and outspoken woman, who fought all her life for
human rights, who helped uncountable young mathematicians without expecting anything
in return. Cora was a phenomenal mathematician, in a time when it was not easy for women,
and she championed this cause all her life, becoming president of the AWM in the early
90s.”

Cora used to tell us many stories about her time as graduate student in Chicago.
In particular, she told us that

“Antoni Zygmund taught her to judge mathematicians by their theorems; that when
someone spoke highly of a mathematician, Zygmund would always like to see the theorems
such mathematician had proved. She did the same. If you said to her that you like
mathematician X she would ask you to explain his/her mathematics” [14].

So, as we speak highly of her, we will have to remind the reader of some of
her theorems. Unfortunately, we will only cover a small part of her mathematical
accomplishments, but we will also try to provide glimpses of her personality through
quotes of hers. Cora wrote a lot about mathematics and other topics and whenever
possible we will use her own words to describe different aspects of both her work
and professional life. Certainly we will not provide an exhaustive biographical
account, but rather highlight a few aspects of her life, which, in our view, have
left a mark.
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Cora always expressed her views in a very straightforward manner. We remember
her saying, when she did not believe or agree with some statement made by someone
in a “questionable authoritatively way,”

Quién te dijo eso? (Who told you that?) or Y este señor/a quién se cree que es? (Who this
sir/madam thinks he/she is?)

Cora would transparently let you know when she was not in harmony of opinion
with someone. However, as we witnessed many times,

“she [Cora] never let disagreements she may have with a mathematics colleague on other
issues affect her appreciation of his/her mathematics” [14].

It is our hope that she is not looking at us saying: Y este señor quién se cree que
es?. . . as we attempt to write about Cora in the way some of us knew and remember
her. We shall select to present some of her mathematical contributions based in part
on the impact we think they had and our affinity with some areas. In doing so, we
may have unintentionally omitted some other results that some experts may have
found more important to be presented. If so, that is simply the ignorance of this
author.

Some Brief Bibliographical Notes

To put Cora’s life in perspective we need to say a few words about her parents. She
was the daughter of two mathematicians and outstanding individuals, Cora Ratto
de Sadosky (1912–1981) and Manuel Sadosky (1914–2005). Like many others in
Argentina at that time, they were the children of immigrant families. Upon coming
to Argentina, many middle class and even lower income families of immigrants
aspired for their children to get a university education and worked very hard to do
so. They both got PhD’s.

Cora Ratto was from a family of Italian origin. She showed her social com-
mitment from an early age as a student leader at the University of Buenos Aires
(UBA). Over her life she was a tireless activist in several organizations which fought
against racism and discrimination. She was a founder member of the International
Women’s Union. She studied in Paris with M. Frechet but actually got her PhD in
Mathematics in her 40s, back in Buenos Aires working with M. Cotlar. With him,
she authored one of the first modern books in Linear Algebra in Spanish and also
edited a prestigious publication series at the UBA (with authors like L. Schwartz
and A.P. Calderón). She created the Albert Einstein Foundation to provide financial
support to talented students. A prize in her name was established in Vietnam in
1996. It is awarded to young women participating in the math Olympics.2

2Historical information taken in part from: Complexities: Women in Mathematics, edited by B.A.
Case and A.M. Leggett, Princeton University Press, 2005.
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Manuel Sadosky was born in Buenos Aires in a family of Jewish Russian
immigrants. He got his PhD in math and physics at the UBA and then studied in
France and Italy. Back in Buenos Aires, in 1949 he was first denied a position at the
UBA for political reasons, but eventually became professor and later associate dean.
He founded the Computational Institute where he brought to Argentina the first com-
puter for research (Clementina, an eighteen-meter long monster machine with only
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5 KB RAM!3). He and Cora Ratto were instrumental in creating a modern School of
Sciences with a tremendous impact in the scientific landscape of Argentina. But in
1966 the university was taken over by the military (losing its autonomy), causing
the resignation of 400 scientists from their positions, and eventually a life in exile
for Cora’s family in Venezuela, Spain, and the USA. He returned to Argentina in
the 1980s (after Cora Ratto has passed away), in the midst of a new democratic
government and became Secretary of Science and Technology. Manuel was elected
“Illustrious Citizen” of the city of Buenos Aires in 2003.4

Cora (“Corita,” as those who knew her from a young age called her) was born
on May 23, 1940, and was only 6 years old when she moved to France and Italy
with her parents and attended many different schools. She entered college at age 15
and received her Licenciatura in Mathematics in 1960, almost at the same time her
mother got her PhD. She then did her PhD in Chicago working with A.P. Calderón
and A. Zygmund. She graduated in 1965 and after that she returned to Argentina
and married Daniel J. Goldstein, who sadly passed away in 2014 shortly before the
Afternoon in Honor of Cora Sadosky and after a long battle with illness.

Like her mother, Cora resigned in protest from the UBA in 1966 after the military
intervention. After several temporary positions, including one at Johns Hopkins
University, and periods where she had to take on other type of jobs to make a living,
Cora and family had to leave Argentina in 1974 because of political persecution.
They all moved to Venezuela, where Cora continued her lifelong collaboration
with M. Cotlar, which had started in Buenos Aires. In 1980 she moved to Howard
University where she became a full professor in 1985.

Cora returned for a year to Argentina in 1984 and held a position at the UBA.
She conducted then the rest of her mathematical career in the USA but kept her
interest in Argentina and Venezuela where she helped many young mathematicians.
Some of them pursued then, with Cora’s assistance, their mathematical careers in
the USA. After she retired from Howard University, Cora moved to California to
live close to her daughter Cora Sol, son in law Tom, and granddaughter Sasha.5

3Information about Clementina taken from www.sobretiza.com.ar/2013/05/17/clementina-
cumplio-52-anos/#axzz2xO23TGBJ.
4Historical information taken in part from: www.fundacionsadosky.org.ar/en/institucional/
biografia-dr-sadosky.
5Historical information taken in part from Notable Women in Mathematics: A Biographical
Dictionary, edited by Morrow and Perl [19].

www.sobretiza.com.ar/2013/05/17/clementina-cumplio-52-anos/#axzz2xO23TGBJ
www.sobretiza.com.ar/2013/05/17/clementina-cumplio-52-anos/#axzz2xO23TGBJ
www.fundacionsadosky.org.ar/en/institucional/biografia-dr-sadosky
www.fundacionsadosky.org.ar/en/institucional/biografia-dr-sadosky
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In addition to the positions already mentioned, Cora held/received the following
appointments/honors6:

• Member in residence of the Institute of Advanced Studies, Princeton, 1978–1979.
• Visiting Professorship for Women, NSF to spend a year at the Institute of

Advanced Studies, Princeton, 1983–1984.
• Visiting Professor, University of Buenos Aires, 1984–1985.
• Career Advancement Award, NSF to spend a year at the Mathematical Science

Research Institute, Berkeley, 1987–1988.
• Visiting Professorship for Women, NSF to spend a year at the University of

California Berkeley, 1995–1996.
• Fellow of the American Association for the Advancement of Science, 1997.

Research Areas and Collaborators

Cora Sadosky wrote about 60 articles in several areas of Harmonic Analysis and
Operator Theory. According to her MathSciNet author profile7 these were her areas
and coauthors

6Some information taken from the Institute of Advanced Studies, https://www.ias.edu/people/cos/
users/5624.
7http://www.ams.org/mathscinet/search/author.html?mrauthid=199038.

https://www.ias.edu/people/cos/users/5624
https://www.ias.edu/people/cos/users/5624
http://www.ams.org/mathscinet/search/author.html?mrauthid=199038
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The profile clearly shows Cora’s interest in Fourier Analysis and Operator
Theory and Mischa Collar as her main collaborator. A better idea about her specific
research topics is given by the following Wordle cloud of titles of a selected
collection of her articles.

We can see clearly Hankel and Toeplitz operators and the Hilbert transform as
the focus of many of Cora’s works as well as the space BMO, weighted norm
inequalities and other topics related to singular integrals, scattering, and lifting
techniques.

We will present a few samples of her work in three areas: Parabolic Singular
Integrals, The Helson–Szegö theorem (major collaboration with M. Cotlar), and
Multiparameter Analysis, the last two topics being very much interrelated.
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Some Samples of Cora Sadosky’s Mathematics

Parabolic Singular Integral Operators

Cora did her thesis in this subject under the direction of Calderón and Zygmund.
In her own words:

“I was obsessed with parabolic singular integrals, which seemed the natural object to study
after Calderón’s success with elliptic and hyperbolic PDEs. Calderón encouraged me in that
interest, and, as the problem was in the air, very soon afterwards a first paper on the subject
appeared by B. Frank Jones. This did not discourage me, since I came up with a notion
of principal value for the integral through a nonisotropic distance, an idea which Calderón
thought was the right one”’

and she added

“. . . through C-Z correspondence, we found out that Zygmund had assigned one of his
students, Eugene Fabes, a problem close to mine and that we had both proved the pointwise
convergence of parabolic singular integrals (by different methods)! Panic struck; Calderón
defended my priority on the problem, but all was solved amicably, and upon my return Gene
[Fabes] and I wrote our first result as a joint paper” [5].

In 1964, Jones [18] introduced singular integrals of the type

lim
�!0

T�f .x; t/ D lim
�!0

ˆ t��

0

ˆ
Rn

K.x � y; t � s/f .y; s/ dyds

where K.x; t/ D 0 for t < 0,

K.�x; �mt/ D ��n�mK.x; t/

for some m > 0, ˆ
Rn

K.x; 1/ dx D 0

and K has some appropriate smoothness. Typically

K.x; t/ D 1

td=mC1�
� x

t1=m

�
; �.x/ D K.x; 1/

These singular integrals arise in parabolic differential equations of the form

@u

@t
.x; t/ D .�1/mP.D/u.x; t/; .x; t/ 2 R

d � .0;1/;

for P and appropriate homogeneous polynomial of degree m.
If � is the fundamental solution of one such equation, then

u.x; t/ D
ˆ t

0

ˆ
Rd
�.x � y; t � s/f .y; s/ dyds
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solves

@u

@t
� .�1/mP.D/u D f :

Taking ˛ derivatives, with j˛j D m, in the integral representation of u, leads to
the singular integrals considered. For example, if d D 1 and we consider the heat
equation (m=2), taking two derivatives of the fundamental solution leads to integrals
with kernels of the form

K.x; t/ � 1

t3=2

�
x2

8t
� 1

4

�
e

�x2
4t :

Jones proved the convergence in Lp-sense of the principal valued parabolic
singular integrals and posed the question about their almost everywhere convergence
in R

n � .0;1/.
In 1966, Fabes and Sadosky [11] proved such convergence by obtaining the

boundedness of the associated maximal truncated singular integrals; a method which
is nowadays commonly used in proving pointwise convergence results.

Theorem (Fabes–Sadosky). If f 2 Lp for 1 < p < 1 and

T�f .x; t/ D sup
�>0

jT�f .x; t/j;

then

kT�f kp . kf kp:

More generally Sadosky [21] studied operators given by kernels with homo-
geneities of the form

K.�˛1x1; : : : ; �
˛n xn/ D ��.˛1C���C˛n/K.x1; : : : ; xn/

as principal valued singular integrals with respect to a proper pseudodistance �,
which matches the homogeneity of the problem.

For example, for appropriate m,

�.x; y/ D
0
@

nX
jD1

jxj � yjjm=˛j

1
A
1=m

:

Sadosky also considered fractional singular integral versions of the above operators,
and they led to work with Cotlar in 1967, [30], on “quasi-homogeneous” Bessel
potential spaces (which is probably her only work jointly with Cotlar outside
their main area of research in Operator Theory). They extended to the parabolic
setting work of N. Aronszajn, K.T. Smith, A.P. Calderón, and others at a time when
potential spaces where still being properly understood.

All this, of course, preceded the development in the 1970s of the Coifman–Weiss
[6] theory of spaces of homogeneous type; the parabolic setting was one of the
motivating examples for such theory.
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The theory of parabolic singular integrals was then carried out much further by
B.F. Jones; E. Fabes and N. Rivière; and many others; and successfully applied to
parabolic differential equations and boundary value problems. Cora was very fond
of this area of research but, due to isolation, she had to switch to other areas of
mathematics.

The Helson–Szegö Theorem

It is hard to overstate the extent and relevance of the work that Cora did with Mischa
Cotlar; they wrote together more than 30 articles. We cannot talk about Cora’s work
without briefly remembering a few facts about Mischa too.

An incredibly talented mathematician whose only formal education was his PhD
from Chicago, Mischa Cotlar was also a devoted pacifists and, not surprisingly,
a close friend of Cora’s family. The 2007 New Mexico Seminar had a special
afternoon dedicated to Mischa in which Cora also participated. The website of the
conference in his honor portraits Cora’s mathematical partner very well and reads:

“Mischa Cotlar was an exceptional mathematician and human being. Generations of
mathematicians in Venezuela, Argentina, and other Latin American countries grew under
his guidance. He was one of the world experts in harmonic analysis and operator theory.”

Speaking of their joint work, Cora wrote in [28]:

“In Caracas, Mischa and I began to collaborate in earnest and together we established
an ambitious research program. Mathematically, our Caracas exile was extraordinarily
productive. Although Mischa was part of the Zygmund school, he had an astonishing
intellectual affinity with the Ukrainian school of Mathematics lead by Professors Krein and
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Gohberg, the leaders of the extraordinarily original and fertile school of operator theory. In
spite of my analytic upbringing, I could not resist Mischa’s daring approaches to operator
theory.”

Indeed, the ambitious Cotlar–Sadosky program brought to light beautiful connec-
tions between different areas in the study of moments theory and lifting theorems
for measures, Toeplitz forms, Hankel operators, and scattering systems. All this was
done both in a very general setting, but also on concrete applications in harmonic
analysis involving weighted norm inequalities and the ubiquitous role of BMO in
the intersection of many topics in analysis. We will briefly discuss some of their
achievements related to the Helson–Szegö theorem, highlighting only a couple of
remarks about different characterizations as described in their own works.

Helson and Szegö [15] proved in 1960 that for ! � 0 and d� D !dx,
ˆ
T

jHf j2 d� .
ˆ
T

jf j2 d�

if and only if

! D euCHv; u; v 2 L1; kvk1 < �=2: (1)

Here Hf D �if1 C if2, and f1 and f2 are the analytic and anti-analytic parts of f , so
the analytic projector is P D 1=2.I C iH/.

Helson and Szegö were working on prediction theory. According to Cora [27]:

“When A. Zygmund read the manuscript of the paper [by Helson-Szegö] he remarked to the
authors that they had given the necessary and sufficient condition for the boundedness of
the Hilbert transform in L2, solving an important problem. The consequences of this result
continue to be of interest in a variety of analysis settings.”

Of course there is also the Hunt–Muckenhoupt–Wheeden theorem [16] and one
also has that H is bounded if and only if ! 2 A2, i.e.,

sup
I

� 1
jIj

ˆ
I
! dx

� � 1
jIj

ˆ
I
!�1 dx

�
< 1: (2)

The condition in (1) is very useful to construct weights but it is almost useless to
verify that something is a weight; while for the condition in (2) the situation is the
opposite.

Cora was always very much puzzled by the relationship between the two
characterizations. They are, at some level, connected via BMO and together the two
theorems provide a new proof of a characterization of such space. If f 2 BMO, then
by the John–Nirenberg inequality ecf 2 A2 for some appropriate c. It follows from
the Hunt–Muckenhoupt–Wheeden theorem that H is bounded on L2.ecf / and by the
Helson and Szegö theorem

cf D u C Hv;

so that f 2 L1 C HL1, and so BMO � L1 C HL1.
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Since the other inclusion L1CHL1 � BMO is clear, we have another “proof” of

BMO D L1 C HL1:

However, as Cora observed:

“The trick of the proof sketched above is to apply the necessary condition of one theorem
and the sufficient condition of the other. Those happen to be the hard part of both
theorems. . . ” [27].

A moment problem related to the Helson–Szegö theorem is that of characterizing
the Fourier coefficients of the weights !. It is interesting how Cotlar and Sadosky
saw the moment problem and generalized Toeplitz operators as natural substitutes
for Cotlar’s Lemma on almost orthogonality. We can read in [23]:

“Cotlar’s Lemma showed that the Hilbert transform basic property on boundedness on L2

is related to a more general property of operators admitting certain type of decomposition.
Since the Lemma was not suited to characterize the positive measures � such that H is
bounded in L2.�/ it was natural to think that such characterization could also be related to
a general property of certain operators.”
In [23] the moment problem is defined as follows: “to characterize the Fourier transform O�
of such �, i.e. those sequences s W Z ! C such that there exist a measure � 2 R2 with
O� D s.n/.”

Such measures give rise to some building block operators, generalized Toeplitz
kernels (GTK), i.e., K W Z � Z ! C such that for some M > 1,

K.m; n/ D
�
.M � 1/s.m � n/ if sign.m/ D sign.n/
.M C 1/s.m � n/ if sign.m/ ¤ sign.n/

is positive definite. Note that K is not translation invariant but its restriction to each
quadrant of Z � Z is translation invariant or Toeplitz, hence the name. Cora further
wrote in [23],

“Since, by the Bochner theorem, every positive definite Toeplitz kernel is the Fourier
transform of a positive measure, Cotlar and Sadosky set to extend this result to GTKs,
. . . ”

and they used the results then in applications to the estimates for the Hilbert
transform.

The power of these ideas is that they work also for the two-weight problem for the
Hilbert transform by relating matrices of bilinear forms with certain invariances to
“positive” measures. The building blocks of these matrices are the invariant (under
shifts in T) transformations of the form

B.f ; g/ D
ˆ
T

f Ng d�:

Let V be the space of trigonometric polynomials, and write V D W1CW2, where
W1 D P.V/. Consider now the problem of finding a pair of positive measures � and
	 on T such that



Cora Sadosky and Her Contributions 15

ˆ
T

jHf j2 d� � M2

ˆ
T

jf j2 d	:

Writing as before f D f1 C f2 and Hf D �if1 C if2, this is equivalent to

ˆ
T

f1Nf1 d�11 C
ˆ
T

f1Nf2 d�12 C
ˆ
T

f2Nf1 d�21 C
ˆ
T

f2Nf2 d�22 � 0;

where

�11 D �22 D M2	 � � �12 D �21 D M2	 C �:

One can also verify,

ˇ̌
ˇ̌
ˆ
T

f1Nf2 d�12

ˇ̌
ˇ̌ �

�ˆ
jf1j2 d�11

�1=2 �ˆ
jf2j2 d�22

�1=2
: (3)

Cotlar–Sadosky showed that this can be lifted to a (complex) measure � differing
form �12 by an analytic function h 2 H1.T/ so that (3) holds for all .f1; f2/ 2 V � V
and, hence,

j�.D/j � �11.D/
1=2�22.D/

1=2

holds for all Borel sets D. They obtain the following result:

Theorem (Cotlar–Sadosky). A pair of positive measures � and 	 on T satisfy

ˆ
T

jHf j2 d� � M2

ˆ
T

jf j2 d	

if and only if

j.M2	 C � � hdx/.D/j � .M2	 � �/.D/

for some h 2 H1.T/ and all Borel sets D � T.

One can further show that in the case � D 	 one recovers the Helson–Szegö
theorem from the above. Together with R. Arocena, Cotlar and Sadosky also
developed, among other things, a unified approach for the Helson–Szegö theorem
in T and R [1]. In addition, Cotlar–Sadosky gave other characterizations using the
notion of u-bounded operators on Banach lattices and they also obtained versions
of the Helson–Szegö theorem in Lp. We refer the reader to [1, 8, 9, 27], and the
survey article [29] and the reference therein for more details. The characterization of
two-weight norm inequalities for more general singular integrals in R

n has received
tremendous attention in recent years. The progress in the area will be described in
other articles in this volume.



16 R.H. Torres

Cotlar and Sadosky also obtained versions of the Helson–Szegö theorem for the
product Hilbert transform. In the higher dimensional setting the conditions on the
weight are still logarithmic BMO. Here we just state the T

2 case. See [9] and [10].

Theorem (Cotlar–Sadosky). A weight ! on T
2 satisfiesˆ

T2

jHf j2 ! � M2

ˆ
T2

jf j2 !;

where H D H1H2 and Hj is the Hilbert transform in the variable j, if and only if
log! 2 bmo.T2/ with

log! D u1 C H1v1 D u2 C H2v2

for uj; vj real valued in T
2, uj 2 L1 and kvjk1 � �=2 � �M:

The bmo space in the theorem (see [10]) is precisely the space of all functions ˆ
so that for some fj; gj 2 L1.T2/

ˆ D f1 C H1g1 D f2 C H2g2;

with norm given by

kˆkbmo D inffmax
jD1;2fkfjk1; kgjk1g over all decompositionsg:

This space bmo is also characterized by bounded mean oscillations on rectangles,

kˆkbmo D sup
I;J�T

1

jIjjJj
ˆ

I�J
jˆ.x1; x2/ �ˆIJjdx1dx2: (4)

This gives origin to the name “little BMO,” since clearly this space is smaller than
BMO.T2/, which as usual is defined as in (4) but with averages on cubes (squares)
in T

2.

Multiparameter Analysis

Other BMO spaces surfaced in Cotlar–Sadosky’s work on the product Hilbert
transform and the study of Hankel operators, as well as in further collaborations
of Cora with Ferguson [12] and with Pott [20]. All such spaces coincide in 1-d
but they become different substitutes for BMO in product dimensions. Moreover
different characterizations in the one parameter case produce different spaces in the
multiparameter setting.

Another natural BMO-like space is BMOrec. It is defined to be the space of
functions ˆ such that

sup
I;J�T

1

jIjjJj
ˆ

I�J
jˆ.x1; x2/ �ˆI.x2/ �ˆJ.x1/CˆIJjdx1dx2 < 1: (5)
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It was shown by Carleson [2] that the norm defined by (5) does not characterize
the dual of the Hardy space H1

Re.T
2/. On the other hand, such space can be

characterized by an appropriate Carleson measure condition on open sets and not
just rectangles (we will not need such definition here). The space in question is
denoted by BMOprod. One has BMOprod � BMOrec. A detailed survey on the subject
is provided by Chang and Fefferman in [4].

Ferguson and Sadosky characterized the spaces bmo and BMOrec in terms of (big)
Hankel and little Hankel operators [12]. We shall only state the characterization of
bmo.

Let P W L2 ! H2 be the projection operator and P? D I � P. Define the Hankel
operator �ˆ with symbol ˆ, to be �ˆ.f / D P?.ˆf / and let Mˆf D ˆf .

Theorem (Ferguson–Sadosky). The following are equivalent.

• The function ˆ 2 bmo.
• �ˆ and � N̂ are both bounded on H2.
• The commutators ŒMˆ;Hj
 D Mˆ Hj � Hj Mˆ are bounded on L2.
• The commutator ŒMˆ;H1H2
 D Mˆ H1H2 � H1H2 Mˆ is bounded on L2.

Notice that the third condition is a biparameter version of the Coifman–
Rochberg–Weiss theorem [7] about the commutator of the Hilbert transform and
pointwise multiplication. Moreover, it is also shown in [12] that if ˆ 2 BMOprod

then iterated commutator ŒŒMˆ;H1
;H2
 satisfies

kŒŒMˆ;H1
;H2
kL2!L2 . kˆkprod:

The converse was proved by Ferguson–Lacey [13]. This gave a dual formulation
and solution to the so-called weak factorization problem in the context biholomor-
phic Hardy spaces in two variables. That is, the problem of being able to write
h 2 H1

h D
X

j

fjgj

with fj; gj 2 H2 and
X

j

kfjk2kgjk2 � ckhk1:

Cora Sadosky’s Impact on the Profession

According to the Mathematics Genealogy Project, Cora had officially one PhD
student: Sandra Farrier, Howard University, 2005. However, Cora played a tremen-
dously influential role in the life of many young mathematicians (and some not so
young too). We take the following from [14].
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“In particular she [Cora] interacted with many students in Venezuela and in Argentina. In
her years in Caracas, Cora was very influential on a group of Venezuelan mathematicians,
María Dolores Morán, Ramón Bruzual, Ma-risela Domínguez and Stefania Marcantognini,
among others, and a Uru-guayan mathematician, Rodrigo Arocena, that got their PhD
degrees at the Universidad Central de Venezuela (UCV). She also aided others pursue their
doctorates in the US, including Gustavo Ponce who went to Courant Institute in 1978 and
later Cristina Pereyra who went to Yale University in 1987.

Likewise, during her sabbatical year in Buenos Aires in 1984–1985 she helped many
Argentinian mathematicians come to the US for their doctoral degrees; among them, José
Zero who went to University of Pennsylvania, Estela Gavosto and Rodolfo Torres who
went to Washington University, and Andrea Nahmod and Lucas Monzón who went to Yale
University.”

Estela Gavosto (now my wife) and I met Cora at an annual meeting of the
Argentine Mathematical Union when she was temporarily back in the country. We
were introduced to her by two of our professors at the Universidad Nacional de
Rosario, Pedro Aranda and Enrique Cattaneo. They have themselves studied at some
point with Mischa Cotlar in Buenos Aires and they gave us a very strong formation
in analysis in our undergraduate degree in Rosario. Cora was immediately eager to
help us to continue our studies. We visited her many times in Buenos Aires and
in one of those occasions we met also Cotlar. I remember he was giving a talk
about BMO and we were very enthusiast about attending a lecture by such famous
mathematician. It was the first time I heard about “bounded mean oscillations,” and
of course I did not understand anything. However, Cora took us aside after the talk
and explained things again for us. That was our first mathematical interaction. Many
more followed and Cora remained always interested in knowing what we were
working on. She helped us pursue our mathematical dreams and became a great
mentor for us over the years.

Many other students benefited from courses Cora taught in several countries.
These lectures notes gave rise to her monograph Interpolation of Operators and
Singular Integrals: An Introduction to Harmonic Analysis [22]. The book was
conceived as a very accessible introduction for students to materials that were
only covered in textbooks at the time by the famous treatises of E. Stein, Singular
Integrals and Differentiability Properties of Functions [31], and E. Stein and G.
Weiss Introduction to Fourier Analysis on Euclidean Spaces [32], which trained
generations of harmonic analysts. In the preface of her book Cora wrote:

“I hope that the book will be accessible to a wide audience that includes graduate students
first approaching the subject” “The initial inspiration on the treatment of this subject comes
from magnificent courses given by E. M. Stein, G. Weiss, and A. P. Calderón, which I
attended as a graduate student a the University of Chicago and the University of Buenos
Aires. The overall influence is that of Professor A. Zygmund who taught me how beautiful
singular integrals are and induced the will to try to share with others the pleasure of their
beauty.”

Many of us were helped by Cora in other countless ways. In particular Estela
and I benefited, among many other things, from the way she understood the “two-
body problem” (I am referring of course to the couples’ problem not the classical
mechanics one) and brought awareness about this issue in our profession when few
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were paying attention. From the time we applied to graduate school to the last time
we looked for a job, Cora was always advising us and trying to help solving the
two-body problem, which we were extremely fortunate to do several times with her
critical help. She not only mentored us as scientists, but she also gave us advise
about other professional responsibilities and roles we held in our lives. As we wrote
in [14],

“Cora was also concerned with many other aspects of the academic life and she often told
us to learn about them and encouraged us to be proactive. She taught us that for any change
to take place people really need to get involved.”

Guiding with the example, she did get involved. These are some of the many
positions in which she served the profession in the USA.8

• Member of the Human Resources Advisory Committee, Mathematical Sciences
Research Institute, Berkeley, 2002–2005.9

• Member of the Nominating Committee, AMS, 2001–2003.
• Member of the Council of the AMS, 1987–1988 and 1995–1998.
• Member of the Committee on Science Policy, AMS, 1996–1998.
• Member of the Committee on the Profession, ASM, 1995–1996.
• Member of the Committee on Human Rights of Mathematicians, AMS, 1990–

1996.
• President of the AWM, 1993–1995.
• Member of the Committee on Cooperation with Latin American Mathematicians,

AMS, 1990–1992.

As described in [33] some of Cora’s accomplishments as president of the AWM
included:

“. . . the move of AWM headquarters to the University of Maryland and the concurrent
staff changes. She increased AWM’s international connections and involvement in science
policy, in particular initiating (in coordination with other organizations) the first Emmy
Noether Lecture at an ICM in 1994 and representing AWM at the International Congress of
Mathematics Education in 1993.”

We quote again from [14],

“Cora Sadosky fought many battles and in many fronts. She had tremendous convictions
against many injustices, gender inequality, and discrimination in our society. She often took
the flag of the underrepresented, underserved, and underestimated. She chose to fight many
of her battles from within the mathematical community, sometimes even risking her own
mathematical career. She showed a lot of courage in this sense and never worried about the
consequences for her. She was never afraid to express her views.”

. . . and expressing her views indeed she did. She wrote several articles and was often
quoted in others about issues on women and young mathematicians, immigration,
and discrimination. She had a vision of inclusiveness. For example, speaking of
immigration policies and the profession, she once wrote in the Notices [26]

8Some information taken from Cora Sadosky (1940–2010), by Jackson [17].
9Exact dates could not be verified.
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“In the mathematics departments of many U.S. universities a substantial percentage of
professors-in particular, of mathematicians-are foreign born. This would be unthinkable
in Europe! It is a sign of how more socially open this country is with respect to the rest
of the world. We should be collectively proud of the U.S. openness, which underlines
an extraordinary social dynamism. The enlightened acceptance foreigners receive at our
universities ought to be promoted as an example to follow.”

And she pointed out later on the same article to some issues that remain of concern
today:

“Many young mathematicians are trying to develop research careers in difficult cir-
cumstances. Research mathematicians in nonresearch environments, including those at
nondoctoral institutions, need support. For ages many women have faced these difficulties
without help, and some have survived as mathematicians. Their experiences could help oth-
ers, and their losses should not be repeated. Now some see promising young mathematicians
take positions at non-research institutions, and they cry foul. Instead, we should help devise
support systems to make small-college positions compatible with research.”

Finally adding in her presentation:

“Finding ways to support an active research population in the U.S. will become increasingly
difficult in an era of globalization of the world economy, where the competition is fierce and
international.”

A believer in equal opportunity and affirmative action properly done, Cora
organized in 1994 an AWM panel on “Are Women Getting All the Jobs”. She spoke
often to dispel the notion that women were taking a disproportional percentage of
the jobs in the 1990s (which AMS data at the time also showed it was not the case)
with spirited statements like:

“We strongly believe that this is false and dangerous, that pitting one group of
under/unemployed mathematicians against another is just the old tactic of dividing people
with similar interests in order to exploit them all” [33].

In a public lecture at the Meeting of the Canadian Mathematical Society in 1995
Cora stated [25] (quoted also in [3], p. 116–120),

“We have achieved much. But we are striving for nothing less than the right of all people to
do mathematics. For that we have to work together women and men, so that the mathematics
community no longer needs constant reminders of the existence of women in its midst.”

And further reflecting on the AWM, Cora wrote, as quoted in [33]:

“Our Association really makes an impact on the situation of women in mathematics.
. . . Still, women continue to face formidable problems in their development as mathe-
maticians . . . To successfully confront these problems, we need the ideas and the work,
the enthusiasm and the commitment of all–students and teachers and researchers and
industrial mathematicians–of every woman and every man who stands for ‘women’s right
to mathematics’.”

Sometimes Cora preferred instead to rely on irony and humor to convey a similar
message, as in [25] (also quoted in [3], p. 118):

“Years ago, a friendly colleague told me his department was considering hiring a junior
person in our field and asked me for a top candidate. After some thought I mentioned one
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of the best junior researchers in the field. His answer was ‘But we already have a woman!’
and mine to him, ‘So, would you hire a man for the job? I assume your faculty already has
at least one man!’”

Some Final Memories

The two pictures below represent very special moment in my life in relation to Cora.
Although in the first one Cora is not present, it is a picture taken when several of
us met, through Cora, for the first time. These individuals will become some of my
best colleagues and friends in the profession. The second picture is from the last
time I saw Cora and I had a chance to introduce to her several of the young people
with whom I have had the fortune to work.
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At the end of the day, for Cora it was (is) all about Mathematics, as she once
wrote [24]:

“Strange as it may seem at the end of this long report, I started out with the impression I
had little to say. That impression stemmed from my doing something it may be unwise for
a current AWM president to do: I plunged into mathematics head on for three full weeks. I
came out of that stint dazed, vaguely guilty and deeply happy. It is very clear that I enjoy
like crazy doing mathematics! ”
“But what remains with me is the sense of elation. I did not prove the Riemann Conjecture.
My work was modest, but it gave me so much pleasure to do it! Thus I close this
conversation with a wish to each of you for this summer: do some of the mathematics
you want to do and do it with great pleasure!”

I have to say that I feel sort of the same way. When I started first to prepare the
talk about Cora and then this article, I did not know exactly what to say or whether
I will be able to make justice to her memory and contributions. Like Cora in the
above quote, I think my work here has been “modest” but I hope I have accurately
portrayed at least some of her multiple professional facets. But certainly, also like
her, I ended up enjoying this adventure, which gave me “much pleasure” to relate
one more time to Cora through her beloved mathematics. I will definitely continue
to follow her advise for the summer.

We borrow a few more words from [14],

“Cora taught all of us by example how to mentor, how to help younger mathematicians
pursue their dreams. Cora touched our lives in many ways but she never wanted to be
thanked for her good deeds; she believed instead in paying it forward to others. Helping
students reach their potential may be the best way to honor her memory. We will deeply
miss her’.”

I would like to conclude by recognizing Cora Sadosky in another line from the
poem by Emma Lazarus that we quoted at the beginning,

“A mighty woman with a torch, . . . ”
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Pawlikowska-Brożek. Math. Intelligencer 23 (2001), no. 1, 5–6.

• Pott, Sandra; Sadosky, Cora, Bounded mean oscillation on the bidisk and
operator BMO J. Funct. Anal. 189 (2002), no. 2, 475–495.

• Ball, Joseph A.; Sadosky, Cora; Vinnikov, Victor, Conservative linear systems,
unitary colligations and Lax-Phillips scattering: multidimensional generaliza-
tions. Internat. J. Control 77 (2004), no. 9, 802–811.

• Ball, Joseph A.; Sadosky, Cora; Vinnikov, Victor, Conservative input-state-
output systems with evolution on a multidimensional integer lattice. Multidimens.
Syst. Signal Process. 16 (2005), no. 2, 133–198.

• Chang, Der-Chen; Dafni, Galia; Sadosky, Cora, A div-curl lemma in BMO on
a domain. Harmonic analysis, signal processing, and complexity 55–65, Progr.
Math., 238, Birkhäuser Boston, Boston, MA, 2005.

• Ball, Joseph A.; Sadosky, Cora; Vinnikov, Victor, Scattering systems with several
evolutions and multidimensional input/state/output systems. Integral Equations
Operator Theory 52 (2005), no. 3, 323–393.

• Chang, Der-Chen; Sadosky, Cora, Functions of bounded mean oscillation.
Taiwanese J. Math. 10 (2006), no. 3, 573–601.

• Sadosky Cora, The BMO extended family in product spaces. Harmonic analysis,
63–78, Contemp. Math., 411, Amer. Math. Soc., Providence, RI, 2006.

• Sadosky Cora, A unified view of disparate results from scattering systems.
Interpolation theory and applications, 297–311, Contemp. Math., 445, Amer.
Math. Soc., Providence, RI, 2007.

• Christ, Michael; Kenig, Carlos E.; Sadosky, Cora, Alberto P. Calderón the
mathematician, his life and works. Selected papers of Alberto P Calderón, xv–xx,
Amer. Math. Soc., Providence, RI, 2008.

• Sadosky, Cora, On the life and work of Mischa Cotlar. Rev. Un. Mat. Argentina
49 (2008), no. 2, i–iv.

• Sadosky, Cora, The Hilbert transform and scattering. Rev. Un. Mat. Argentina
49 (2009), no. 2, 133–142.



Remembering Cora Sadosky

© Springer International Publishing Switzerland 2016
M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations,
Complex Analysis, Banach Spaces, and Operator Theory (Volume 1), Association
for Women in Mathematics Series 4, DOI 10.1007/978-3-319-30961-3_3

29

The original version of this chapter was revised. An erratum to this chapter can be found at
DOI 10.1007/978-3-319-30961-3_17

http://dx.doi.org/10.1007/978-3-319-30961-3_17


30 Remembering Cora Sadosky



Remembering Cora Sadosky 31



32 Remembering Cora Sadosky



Remembering Cora Sadosky 33



34 Remembering Cora Sadosky



Remembering Cora Sadosky 35



36 Remembering Cora Sadosky



Remembering Cora Sadosky 37



38 Remembering Cora Sadosky



Remembering Cora Sadosky 39



40 Remembering Cora Sadosky

In Memory of Cora Sadosky

Steven Krantz, Washington University in St. Louis

Cora Sadosky was a student of Alberto Calderón and Antoni Zygmund. And she
was very closely associated with Mischa Cotlar. It is easy to see that she inherited
from these wonderful mentors her intense sense of curiosity about everything
mathematical. Apart from her personal charms, Cora was an intense mathematician
who wanted to learn about everything.
This passion also shows in the remarkable array of collaborators that she had. It
is clear that she loved to develop mathematics, to communicate mathematics, and
to write mathematics. She wrote mathematics easily and well, and her publication
record attests to her success at mathematical communication.
I knew Cora Sadosky for almost my entire career. For me she was a friend, a
colleague, and a role model. She was the paradigm of what a mathematician
should be. She was always ready with friendly advice, with sympathy, with ideas,
or whatever the situation called for. I always looked forward to seeing Cora at
conferences or other gatherings.
Cora’s mathematical interests were in harmonic analysis. She kept up with all
the latest developments, and wrote about many aspects of harmonic analysis
on Euclidean space. Her papers covered such diverse topics as singular inte-
grals, moment problems, interpolation of operators Toeplitz operators, weighted
norm inequalities, lifting theorems, HelsonSzego theorems, Hankel forms, matrix
measures, functional analysis, operator theory, conservative systems, BMO, and
scattering theory. Space prevents me from enumerating all the subjects that were
in her arsenal. She was a talented and diverse mathematician with catholic interests.
Cora will be missed by her friends in the American Mathematical Society and
also by her colleagues in the Association for Women in Mathematics. Cora’s
intense feelings for the role of women in mathematics were well known and much
appreciated. She was a mentor for woman mathematicians and a role model for all.

— Steven G. Krantz
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Cora

Maria Dolores (Loló) Morán

There are people that mark the lives of others, Cora definitely influenced mine.
I met Cora in 1975. I had started a computer science major and she taught a pre-

calculus course at the Facultad de Ciencias of the Universidad Central de Venezuela
that I took. Each and every day to my delight, Cora assigned me a problem. At the
end of the course, she said, “ I’m here for you, for math, whenever you want.”

A year later, when I decided to change my major to Mathematics (it was not easy
in my country), she helped me with all the bureaucracy.

Cora also taught my first graduate course, Functional Analysis. She had a job
offer in the US, that fulfilled my dream of working with the first mathematician,
feminist I had ever met, my mentor. Anyhow, she gave me one of my favorites books,
Reed-Simon’s Functional Analysis. Her continued generosity helped me also with
my first publication.

The last time I saw her was at the Albuquerque meeting in honor of Misha
Cotlar, I recognized her weariness. She was about to retire, so she would see her
granddaughter grow.

Cora, Misha and Rodrigo were crazy southern analysts with a dream: a school of
mathematics, they succeeded: Venezuela is now a reference in Operator Theory.
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A Statement About Cora Sadosky

I am very happy to write a short note about Cora Sadosky. She was a close friend an
excellent mathematician who did much to help women mathematicians. I met her
often and discussed many topics Let me give you more information about us two.

In the first semester of 1960,1 I was invited to give a course at the University
of Buenos Aires. During a very long period that included this date Argentina was
“occupied by its own army.” It was badly governed sometimes brutally. There
were a few brief reprieves, including this period in 1960, when there was a better
rule There was a surprisingly good group of mathematicians associated with this
university at this time, including A. P Calderon and Mischa Cotlar This group was
heavily influenced by A. Zygmund Cora Sadosky was a graduate student in the
class I taught. She was an excellent student and she and I became good friends
during this course. The notes I wrote for this course were published in the series
“Cursos y seminarios de matematica” Volume 9 “Analisis Armonico en Varias
Variables, teoria de los Espacios HP” Alberto Calderon who had just accepted a
position at the University of Chicago, worked in an area very close to this one and
I encouraged Cora to pursue a PhD under his direction. At about the same time, I
accepted a position at Washington University in St Louis. I visited the University of
Chicago often and our friendship continued After completing her PhD, Cora made
many attempts to find a position for herself and her husband, Daniel Goldstein, in
Argentina. Unable to do that, Cora ultimately took a faculty position at Howard
University in Washington D.C At that time I had to attend several committee
meetings in Washington and reconnected with her. By then, we had established a
long-lasting friendship which included not only mathematics, but long discussions
about politics and the place of women in mathematics. She became a leading activist
and presided the Association for Women in Mathematics from 1993 to 1995. By this
time she exuded enormous energy, confidence and warmth I was one of her strongest
supporters.

August 28, 2015

Guido L. Weiss
Elinor Anheuser Professor
of Mathematics

1Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, MO
63130-4899 (314) 9356711, Fax: (314) 935-6839, Email: guido@math.wustl.edu.

mailto:guido@math.wustl.edu
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Michael Wilson’s Remembrance

I first met Cora in Montreal in 1987, at a workshop on weighted norm inequalities.
Doug Kurtz had flown in. His luggage didn’t make it.
After the 24 (or 48?) hour period passed and it still hadn’t arrived, he went out to
get new luggage and clothes at the airline’s expense. A bunch of us traipsed along
with him.
“What is it with shopping?” Cora asked “I don’t understand this fascination with
just. . . shopping.”
“Me neither,” I said. “Except for books”
“Oh, books!” she said “Completely different!”
Clearly, she knew what was important.

Mike Wilson
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From left to right: Weissman, Cora, Manuel Sadosky, Rome 1948
Photo Courtesy of Cora Sol Goldstein, photographer unknown

Graduation Photo: Cora
Sadosky, PhD University of
Chicago, 1965
Photo Courtesy of Cora Sol
Goldstein, photographer
unknown
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From left to right: [unknown], Zygmund, Cora Sadosky, Chicago, 1981
Photo Courtesy of Cora Sol Goldstein, photographer unknown
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Group photo, taken in Caracas in January 1994, on the occasion of Mischa Cotlar’s
conference celebrating his 80th birthday.
Front row: Concepción Ballester (in a blue dress); to the right, Laurent Schwartz (in a black tie);
Mischa Cotlar (with a black shirt and beige jacket); Cora Sadosky (in a black dress), her arm on
Stefania Marcantognini’s shoulder. Behind Laurent Schwartz to the left is Steve Hoffman; behind
Schwartz to the right, Eli Stein. Between Stein and Cotlar is Fernando Soria (with a beard).
Photo reproduced with the kind permission of Ramón Bruzual
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Attendees of the Cotlar Conference.
1) Ileana Iribarren, 2) Aline Bonami, 3) Zeljko Cuckovic 5) Concepción Ballester 6) Laurent
Schwartz 7) Mischa Cotlar 8) Stefania Marcantognini 9) Cora Sadosky 10) Damir Arov 11) Ilya
Spitkovskiy 12) Israel Gohberg 13) Marisela Dominguez 14) Alfredo Octavio 16) Richard Gundy
17) Gustavo Ponce 18) Wilfredo Urbina Romero 21) Dmitry Yakubovich 24) Vadim Adamjan 28)
Gerardo Mendoza 29) James Rovnyak 34) Michael Dritschel 37) Steve Hoffman 40) Elias Stein
44) Fernando Soria 56) Mario Milman 59) Javier Duoandikoetxea 63) Norberto Salinas 64) Victor
Vinnikov 67) Vladimir Peller 70) Daniel Alpay 72) Nikolai Vasilevski 75) Gustavo Corach 76)
Pedro Alegría 77) Victor Padrón 80) Lázaro Recht 81) Carlos Segovia 82) Ventura Echandía 84)
José Andrés 87) Cristina Cerruti [unknown attendees unlisted]
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th Birthday: Front
row, seated (left to right): M. Christ, C. Sadosky, A.P. Calderon, M.A. Muschietti. First row,
standing (left to right): C.E. Kenig, J. Alvarez Alonso, C. Gutierrez, E. Berkson, J. Neuwirth.
Second row, standing (left to right): A. Torchinsky, J. Polking, S. Vagi, R.R. Reitano, E. Gatto, R.
Seeley.
(The editors would like to thank Carlos Kenig for help identifying most of the people appearing
in the photo, to Mike Christ who help trying to identify the missing character, and pointed us in
the direction of Cristian Gutierrez, who identified Reitano as well as Jerome Neuwirth. Thanks,
Cristian!) Photo courtesy of Cora Sol Goldstein, photographer unknown

1996 University of Chicago Conference in honor of Alberto Calderón’s 75
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Family photo: From left to right, Daniel Goldstein, Cora Sol Goldstein & Cora Sadosky, on the
day of Cora Sol’s PhD Graduation from University of Chicago in 2002.
Photo reproduced with the kind permission of Thomas Johnson. Photo courtesy of Cora Sol
Goldstein
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The next generation: Cora Sadosky and her newborn granddaughter, Sasha Malena, in 2006.
Photo reproduced with the kind permission of Thomas Johnson. Photo Courtesy of Cora Sol
Goldstein

Photo Courtesy of Cora Sol Goldstein, photographer unknown
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Barry Mazur, Cathy O’Neil and Cora Sadosky: Cathy O’Neil being embraced and supported
by Cora Sadosky on one side and Barry Mazur on the other. This picture was taken in 1993 in
Vancouver, where O’Neil received the Alice T. Schafer prize. In O’Neil’s words, “It was a critical
moment for me, and both of those people have influenced me profoundly. Barry became my thesis
advisor; part of the reason I went into number theory was to become his student Œ: : :
 Cora became
my mathematical role model and spiritual mother. Œ: : :
 Well, Cora, whom I met when I was 21,
was the person that made me realize there is a community of women mathematicians, and that I
was also welcome to that world.” Accessed June 29, 2011 at http://mathbabe.org/2011/06/29/cora-
sadosky/
Photo reproduced with the kind permission of Aaron Abrams (Photo courtesy of Cathy O’Neil)

Author: George Bergman, Source: Archives of the Mathematishes Forchungsinstitute Oberwalfach

http://mathbabe.org/2011/06/29/cora-sadosky/
http://mathbabe.org/2011/06/29/cora-sadosky/
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Mischa Cotlar, Cora
Sadosky’s mentor and long
time friend and collaborator.
Author: Ramón Bruzual.
Photo reproduced with the
kind permission of Ramón
Bruzual
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Higher-Order Elliptic Equations in Non-Smooth
Domains: a Partial Survey

Ariel Barton and Svitlana Mayboroda

Abstract Recent years have brought significant advances in the theory of higher-
order elliptic equations in non-smooth domains. Sharp pointwise estimates on
derivatives of polyharmonic functions in arbitrary domains were established, fol-
lowed by the higher-order Wiener test. Certain boundary value problems for
higher-order operators with variable non-smooth coefficients were addressed, both
in divergence form and in composition form, the latter being adapted to the
context of Lipschitz domains. These developments brought new estimates on the
fundamental solutions and the Green function, allowing for the lack of smoothness
of the boundary or of the coefficients of the equation. Building on our earlier
account of history of the subject (published in Concrete operators, spectral theory,
operators in harmonic analysis and approximation). Operator Theory: Advances
and Applications, vol. 236, Birkhäuser/Springer, Basel, 2014, pp. 53–93), this
survey presents the current state of the art, emphasizing the most recent results and
emerging open problems.
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Introduction

The theory of boundary value problems for second-order elliptic operators on
Lipschitz domains is a well-developed subject. It has received a great deal of study in
the past decades and while some important open questions remain, well-posedness
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of the Dirichlet, Neumann, and regularity problems in Lp and other function spaces
has been extensively studied in the full generality of divergence-form operators
� div Ar with bounded measurable coefficients.

The corresponding theory for elliptic equations of order greater than two is much
less well developed. Such equations are common in physics and in engineering
design, with applications ranging from standard models of elasticity [101] to
cutting-edge research of Bose–Einstein condensation in graphene and similar
materials [124]. They naturally appear in many areas of mathematics too, including
conformal geometry (Paneitz operator and Q-curvature [30, 31]), free boundary
problems [1], and nonlinear elasticity [9, 32, 133].

It was realized very early in the study of higher-order equations that most of the
methods developed for the second-order scenario break down. Further investigation
brought challenging hypotheses and surprising counterexamples, and few general
positive results. For instance, Hadamard’s 1908 conjecture regarding positivity of
the biharmonic Green function [56] was actually refuted in 1949 (see [46, 54, 127]),
and later on the weak maximum principle was proved to fail as well, at least in high
dimensions [96, 119]. Another curious feature is a paradox of passage to the limit
for solutions under approximation of a smooth domain by polygons [19, 92].

For the sake of concreteness, we will mention that the prototypical example of
a higher-order elliptic operator, well known from the theory of elasticity, is the
bilaplacian �2 D �.�/; a more general example is the polyharmonic operator �m,
m � 2. The biharmonic problem in a domain � � R

n with Dirichlet boundary data
consists, roughly speaking, of finding a function u such that for given f , g, h,

�2u D h in �; u
ˇ̌
@�

D f ; @	u
ˇ̌
@�

D g; (1)

subject to appropriate estimates on u in terms of the data. To make it precise, as
usual, one needs to properly interpret restriction of solution to the boundary u

ˇ̌
@�

and its normal derivative @	u
ˇ̌
@�

, as well as specify the desired estimates.
This survey concentrates on three directions in the study of the higher-order

elliptic problems. First, we discuss the fundamental a priori estimates on solutions
to biharmonic and other higher-order differential equations in arbitrary bounded
domains. For the Laplacian, these properties are described by the maximum
principle and by the 1924 Wiener criterion. The case of the polyharmonic operator
has been only settled in 2014–2015 [83, 84], and is one of the main subjects
of the present review. Then we turn to the known well-posedness results for
higher-order boundary problems on Lipschitz domains with data in Lp, still largely
restricted to the constant-coefficient operators and, in particular, to the polyharmonic
case. Finally, we present some advancements of the past several years in the
theory of variable-coefficient higher-order equations. In contrast to the second-
order operators, here the discussion splits according to several forms of underlying
operators. Let us now outline some details.
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On smooth domains the study of higher-order differential equations went hand-
in-hand with the second-order theory; in particular, the weak maximum principle
was established in 1960 ([6]; see also [102, 103]). Roughly speaking, for a solution
u to the equation Lu D 0 in �, where L is a differential operator of order 2m and
� � R

n is smooth, the maximum principle guarantees

max
j˛j�m�1

k@˛ukL1.�/ � C max
jˇj�m�1

k@ˇukL1.@�/; (2)

with the usual convention that the zeroth-order derivative of u is simply u itself.
For the Laplacian (m D 1), this formula is a slightly weakened formulation of the
maximum principle. In striking contrast with the case of harmonic functions, the
maximum principle for an elliptic operator of order 2m � 4 may fail, even in a
Lipschitz domain. To be precise, in general, the derivatives of order .m � 1/ of
a solution to an elliptic equation of order 2m need not be bounded. However, in
the special case of three dimensions, (2) was proven for the m-Laplacian .��/m in
domains with Lipschitz boundary ([117, 119]; see also [38, 116, 128, 130] for related
work), and, by different methods, in three-dimensional domains diffeomorphic to a
polyhedron [72, 96].

Quite recently, in 2014, the boundedness of the .m � 1/st derivatives of a
solution to the polyharmonic equation .��/mu D 0 was established in arbitrary
three-dimensional domains [84]. Moreover, the authors derived sharp bounds on
the k-th derivatives of solutions in higher dimensions, with k strictly less than
m � 1 when the dimension is bigger than 3. These results were accompanied by
pointwise estimates on the polyharmonic Green function, also optimal in the class
of arbitrary domains. Furthermore, introducing the new notion of polyharmonic
capacity, in [83] the authors established an analogue of the Wiener test. In parallel
with the celebrated 1924 Wiener criterion for the Laplacian, the higher-order Wiener
test describes necessary and sufficient capacitory conditions on the geometry of
the domain corresponding to continuity of the derivatives of the solutions. Some
earlier results were also available for boundedness and continuity of the solutions
themselves (see, e.g., [86, 88, 90]).

We shall extensively describe all these developments and their historical context
in section “Boundedness and Continuity of Derivatives of Solutions.”

Going further, in sections “Boundary Value Problems with Constant Coeffi-
cients” and “Boundary Value Problems with Variable Coefficients” we consider
boundary value problems in irregular media. Irregularity can manifest itself through
lack of smoothness of the boundary of the domain and/or lack of smoothness of
the coefficients of the underlying equation. Section “Boundary Value Problems
with Constant Coefficients” largely concentrates on constant-coefficient higher-
order operators, in particular, the polyharmonic equation, in domains with Lipschitz
boundaries. Large parts of this section are taken verbatim from our earlier survey
[24]; we have added some recent results of I. Mitrea and M. Mitrea. We have chosen
to keep our description of the older results, for completeness, and also to provide
background and motivation for study of the boundary problems for operators
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with variable coefficients—the subject of section “Boundary Value Problems with
Variable Coefficients.”

The simplest example is the Lp-Dirichlet problem for the bilaplacian

�2u D 0 in �; u
ˇ̌
@�

D f 2 Wp
1 .@�/; @	u

ˇ̌
@�

D g 2 Lp.@�/; (3)

in which case the expected sharp estimate on the solution is

kN.ru/kLp.@�/ � Ckr� f kLp.@�/ C CkgkLp.@�/; (4)

where N denotes the nontangential maximal function and Wp
1 .@�/ is the Sobolev

space of functions with one tangential derivative in Lp (cf. section “Higher-Order
Operators: Divergence Form and Composition Form” for precise definitions). In
sections “The Dirichlet Problem: Definitions, Layer Potentials, and Some Well–
Posedness Results”–“The Maximum Principle in Lipschitz Domains” we discuss (3)
and (4), and more general higher-order homogeneous Dirichlet and regularity
“Boundary Value Problems with Constant Coefficients” with boundary data in Lp.
Section “Biharmonic Functions in Convex Domains” describes the specific case of
convex domains. The Neumann problem for the bilaplacian is addressed in section
“The Neumann Problem for the Biharmonic Equation.” In section “Inhomogeneous
Problems for the Biharmonic Equation,” we discuss inhomogeneous boundary value
problems (such as problem (1), with h ¤ 0); for such problems it is natural to
consider boundary data f , g in Besov spaces, which, in a sense, are intermediate
between those with Dirichlet and regularity data.

Finally, in section “Boundary Value Problems with Variable Coefficients” we
discuss higher-order operators with non-smooth coefficients. The results are still
very scarce, but the developments of past several years promise to lay a foundation
for a general theory.

To begin, let us mention that contrary to the second-order scenario, there
are several natural generalizations of higher-order differential equations to the
variable-coefficient context. Recall that the prototypical higher-order operator is
the biharmonic operator �2; there are two natural ways of writing the biharmonic
operator, either as a composition �2u D �.�u/ or in higher-order divergence form

�2u D
nX

jD1

nX
kD1

@j@k.@j@ku/ D
X

j˛jD2

2

˛Š
@˛.@˛u/:

If we regard �2 as a composition of two copies of the Laplacian, then one
generalization to variable coefficients is to replace each copy by a more general
second-order variable-coefficient operator L2 D � div Ar for some matrix A; this
yields operators in composition form

Lu.X/ D div B.X/r.a.X/ div A.X/ru.X// (5)
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for some scalar-valued function a and two matrices A and B. Conversely, if we
regard�2 as a divergence-form operator, we may generalize to a variable-coefficient
operator in divergence form

Lu.X/ D .�1/m divm A.X/rmu.X/ D .�1/m
X

j˛jDjˇjDm

@˛.a˛ˇ.X/@
ˇu.X//: (6)

Both classes of operators will be defined more precisely in section “Higher-Order
Operators: Divergence Form and Composition Form”; we will see that the composi-
tion form is closely connected to changes of variables, while operators in divergence
form are directly associated with positive bilinear forms.

Sections “The Kato Problem and the Riesz Transforms” and “The Dirichlet Prob-
lem for Operators in Divergence Form” discuss higher-order operators in divergence
form (6): these sections discuss, respectively, the Kato problem and the known
well-posedness results for higher-order operators, all of which at present require
boundary data in fractional smoothness spaces (cf. section “Inhomogeneous Prob-
lems for the Biharmonic Equation”). Section “The Dirichlet Problem for Operators
in Composition Form” addresses well-posedness of the Dirichlet boundary value
problem for a fourth-order operator in a composition form (5) with data in Lp, p D 2,
in particular, generalizing the corresponding results for the biharmonic problem (3).
To date, this is the only result addressing well-posedness with Lp boundary data
for higher-order elliptic operators with bounded measurable coefficients, and its
extensions to more general operators, other values of p, and other types of boundary
data are still open. Returning to divergence-form operators (6), one is bound to
start with the very foundations of the theory—the estimates on the fundamental
solutions. This is a subject of section “The Fundamental Solution,” and the emerging
results are new even in the second-order case. Having those at hand, and relying on
the Kato problem solution [16], we plan to pass to the study of the corresponding
layer potentials and eventually, to the well-posedness of boundary value problems
with data in Lp. In this context, an interesting new challenge, unparalleled in the
second-order case, is a proper definition of “natural” Neumann boundary data. For
higher-order equations the choice of Neumann data is not unique. Depending on
peculiarities of the Neumann operator, one can be led to well-posed and ill-posed
problems even for the bilaplacian, and more general operators give rise to new
issues related to the coercivity of the underlying form. We extensively discuss these
issues in the body of the paper and present a certain functional analytic approach to
definitions in section “Formulation of Neumann Boundary Data.” Finally, section
“Open Questions and Preliminary Results” lays out open questions and some
preliminary results.

To finish the introduction, let us point out a few directions of analysis of
higher-order operators on non-smooth domains not covered in this survey. First,
an excellent expository paper [89] by Vladimir Maz’ya on the topic of the Wiener
criterion and pointwise estimates details the state of the art near the end of the
previous century and provides a considerably more extended discussion of the
questions we raised in section “Boundedness and Continuity of Derivatives of
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Solutions,” surrounding results and open problems. Here, we have concentrated
on recent developments for the polyharmonic equation and their historical context.
Secondly, we do not touch upon the methods and results of the part of elliptic theory
studying the behavior of solutions in the domains with isolated singularities, conical
points, cuspidal points, etc. For a good first exposure to that theory, one can consult,
e.g., [72] and references therein. Instead, we have intentionally concentrated on
the case of Lipschitz domains, which can display accumulating singularities—a
feature drastically affecting both the available techniques and the actual properties
of solutions.

Higher-Order Operators: Divergence Form
and Composition Form

As we pointed out in the introduction, the prototypical higher-order elliptic equation
is the biharmonic equation�2u D 0, or, more generally, the polyharmonic equation
�mu D 0 for some integer m � 2. It naturally arises in numerous applications in
physics and in engineering, and in mathematics it is a basic model for a higher-order
partial differential equation. For second-order differential equations, the natural
generalization of the Laplacian is a divergence-form elliptic operator. However,
it turns out that even defining a suitable general higher-order elliptic operator
with variable coefficients is already a challenging problem with multiple different
solutions, each of them important in its own right.

Recall that there are two important features possessed by the polyharmonic
operator. First, it is a “divergence form” operator in the sense that there is an
associated positive bilinear form, and this positive bilinear form can be used in a
number of ways; in particular, it allows us to define weak solutions in appropriate
Sobolev space. Secondly, it is a “composition operator,” that is, it is defined
by composition of several copies of the Laplacian. Moreover, if one considers
the differential equation obtained from the polyharmonic equation by change of
variables, the result would again be a composition of second-order operators. Hence,
both generalizations are interesting and important for applications, albeit leading to
different higher-order differential equations.

Let us discuss the details. To start, a general constant-coefficient elliptic operator
is defined as follows.

Definition 2.1. Let L be an operator acting on functions u W R
n 7! C

`. Suppose
that we may write

.Lu/j D
X̀
kD1

X
j˛jDjˇjDm

@˛ajk
˛ˇ@

ˇuk (7)
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for some coefficients ajk
˛ˇ defined for all 1 � j; k � `, and all multiindices ˛, ˇ

of length n with j˛j D jˇj D m. Then we say that L is a differential operator of
order 2m.

Suppose the coefficients ajk
˛ˇ are constant and satisfy the Legendre–Hadamard

ellipticity condition

Re
X̀
j;kD1

X
j˛jDjˇjDm

ajk
˛ˇ


˛
ˇ�j
N�k � �j
j2mj�j2 (8)

for all 
 2 R
n and all � 2 C

`, where � > 0 is a real constant. Then we say that L is
an elliptic operator of order 2m.

If ` D 1, we say that L is a scalar operator and refer to the equation Lu D 0 as
an elliptic equation; if ` > 1, we refer to Lu D 0 as an elliptic system. If ajk D akj,
then we say the operator L is symmetric. If ajk

˛ˇ is real for all ˛, ˇ, j, and k, we say
that L has real coefficients.

Here if ˛ is a multiindex of length n, then @˛ D @˛1x1 : : : @
˛n
xn

.
Now let us discuss the case of variable coefficients. A divergence-form higher-

order elliptic operator is given by

.Lu/j.X/ D
X̀
kD1

X
j˛jDjˇjDm

@˛.ajk
˛ˇ.X/@

ˇuk.X//: (9)

If the coefficients ajk
˛ˇ W R

n ! C are sufficiently smooth, we may rewrite (9) in
nondivergence form

.Lu/j.X/ D
X̀
kD1

X
j˛j�2m

ajk
˛ .X/@

˛uk.X/: (10)

This form is particularly convenient when we allow equations with lower-order
terms [note their appearance in (10)].

A simple criterion for ellipticity of the operators L of (10) is the condition that (8)
holds with ajk

˛ˇ replaced by ajk
˛ .X/ for any X 2 R

n, that is, that

Re
X̀
j;kD1

X
j˛jD2m

ajk
˛ .X/


˛�j
N�k � �j
j2mj�j2 (11)

for any fixed X 2 R
n and for all 
 2 R

n, � 2 C
2. This means in particular that

ellipticity is only a property of the highest-order terms of (10); the value of ajk
˛ , for

j˛j < m, is not considered.
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Returning to divergence-form operators (9), notice that in this case we have a
notion of weak solution; we say that Lu D h weakly if

X̀
jD1

ˆ
�

'j hj D
X

j˛jDjˇjDm

X̀
j;kD1

.�1/m
ˆ
�

@˛'j ajk
˛ˇ @

ˇuk (12)

for any function ' W � 7! C
` smooth and compactly supported. The right-hand

side h';Lui may be regarded as a bilinear form AŒ'; u
. If L satisfies the ellipticity
condition (11), then this bilinear form is positive definite. A more general ellipticity
condition available in the divergence case is simply that h';L'i � �krm'k2L2 for
all appropriate test functions ' (see formula (108) below); this condition is precisely
that the form AŒ'; u
 be positive definite.

As mentioned above, there is another important form of higher-order operators.
Observe that second-order divergence-form equations arise from a change of
variables as follows. If �u D h, and Qu D u ı � for some change of variables �,
then

a div Ar Qu D Qh;

where a.X/ is a real number and A.X/ is a real symmetric matrix (both depending
only on �; see Fig. 1). In particular, if u is harmonic, then Qu satisfies the divergence-
form equation

X
j˛jDjˇjD1

@˛.a˛ˇ.X/ @
ˇ Qu.X// D 0

and so the study of divergence-form equations in simple domains (such as the upper
half-space) encompasses the study of harmonic functions in more complicated, not
necessarily smooth, domains (such as the domain above a Lipschitz graph).

Δu = h

x ρ(x) = x̃

|Jρ| div
1

|Jρ|Jρ J t
ρ ∇ũ = h̃

Fig. 1 The behavior of Laplace’s equation after change of variables. Here Qu D u ı � and J� is the
Jacobean matrix for the change of variables �
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If �2u D 0, however, then after a change of variables Qu does not satisfy a
divergence-form equation [that is, an equation of the form (9)]. Instead, Qu satisfies
an equation of the following composition form:

div Ar.a div Ar Qu/ D 0: (13)

In section “The Dirichlet Problem for Operators in Composition Form” we shall
discuss some new results pertaining to such operators.

Finally, let us mention that throughout we let C and " denote positive constants
whose value may change from line to line. We let

ffl
denote the average integral, that

is,
ffl

E f d� D 1
�.E/

´
E f d�. The only measures we will consider are the Lebesgue

measure dX (on R
n or on domains in R

n) or the surface measure d� (on the
boundaries of domains).

Boundedness and Continuity of Derivatives of Solutions

Miranda–Agmon Maximum Principle and Related Geometric
restrictions on the boundary

The maximum principle for harmonic functions is one of the fundamental results
in the theory of elliptic equations. It holds in arbitrary domains and guarantees that
every solution to the Dirichlet problem for the Laplace equation, with bounded data,
is bounded. Moreover, it remains valid for all second-order divergence-form elliptic
equations with real coefficients.

In the case of equations of higher order, the maximum principle has been
established only in relatively nice domains. It was proven to hold for operators
with smooth coefficients in smooth domains of dimension two in [102, 103], and of
arbitrary dimension in [6]. In the early 1990s, it was extended to three-dimensional
domains diffeomorphic to a polyhedron [72, 96] or having a Lipschitz boundary
[117, 119]. However, in general domains, no direct analog of the maximum principle
exist (see Problem 4.3, p. 275, in Nečas’s book [113]). The increase of the order
leads to the failure of the methods which work for second-order equations, and the
properties of the solutions themselves become more involved.

To be more specific, the following theorem was proved by Agmon.

Theorem 3.1 ([6, Theorem 1]). Let m � 1 be an integer. Suppose that� is domain
with C2m boundary. Let

L D
X

j˛j�2m

a˛.X/@
˛
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be a scalar operator of order 2m, where a˛ 2 Cj˛j.�/. Suppose that L is elliptic in
the sense of (11). Suppose further that solutions to the Dirichlet problem for L are
unique.

Then, for every u 2 Cm�1.�/ \ C2m.�/ that satisfies Lu D 0 in �, we have

max
j˛j�m�1

k@˛ukL1.�/ � C max
jˇj�m�1

k@ˇukL1.@�/: (14)

We remark that the requirement that the Dirichlet problem have unique solutions
is not automatically satisfied for elliptic equations with lower-order terms; for
example, if � is an eigenvalue of the Laplacian, then solutions to the Dirichlet
problem for �u � �u are not unique.

Equation (14) is called the Agmon–Miranda maximum principle. In [123], Šul’ce
generalized this to systems of the form (10), elliptic in the sense of (11), that satisfy
a positivity condition (strong enough to imply Agmon’s requirement that solutions
to the Dirichlet problem be unique).

Thus the Agmon–Miranda maximum principle holds for sufficiently smooth
operators and domains. Moreover, for some operators, the maximum principle is
valid even in domains with Lipschitz boundary, provided the dimension is small
enough. We postpone a more detailed discussion of the Lipschitz case to section
“The Maximum Principle in Lipschitz Domains”; here we simply state the main
results. In [117, 119], Pipher and Verchota showed that the maximum principle
holds for the biharmonic operator �2, and more generally for the polyharmonic
operator �m, in bounded Lipschitz domains in R

2 or R3. In [140, Sect. 8], Verchota
extended this to symmetric, strongly elliptic systems with real constant coefficients
in three-dimensional Lipschitz domains.

For Laplace’s equation and more general second-order elliptic operators, the
maximum principle continues to hold in arbitrary bounded domains. In contrast,
the maximum principle for higher-order operators in rough domains generally fails.

In [98], Maz’ya et al. studied the Dirichlet problem (with zero boundary data) for
constant-coefficient elliptic systems in cones. Counterexamples to (14) for systems
of order 2m in dimension n � 2m C 1 immediately follow from their results.
(See [98, formulas (1.3), (1.18), and (1.28)].) Furthermore, Pipher and Verchota
constructed counterexamples to (14) for the biharmonic operator �2 in dimension
n D 4 in [116, Sect. 10], and for the polyharmonic equation �mu D 0 in dimension
n, 4 � n < 2m C 1, in [119, Theorem 2.1]. Independently Maz’ya and Rossmann
showed that (14) fails in the exterior of a sufficiently thin cone in dimension n,
n � 4, where L is any constant-coefficient elliptic scalar operator of order 2m � 4

(without lower-order terms). See [97, Theorem 8 and Remark 3].
Moreover, with the exception of [97, Theorem 8], the aforementioned counterex-

amples actually provide a stronger negative result than simply the failure of the
maximum principle: they show that the left-hand side of (14) may be infinite even if
the data of the elliptic problem is as nice as possible, that is, smooth and compactly
supported.
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The counterexamples, however, pertain to high dimensions. This phenomenon
raises two fundamental questions: whether the boundedness of the .m � 1/st
derivatives remains valid in dimensions n � 3, and whether there are some other,
possibly lower-order, estimates that characterize the solutions when n � 4. This
issue has been completely settled in [82, 84] for the polyharmonic equation in
arbitrary domains.

Sharp Pointwise Estimates on the Derivatives of Solutions
in Arbitrary Domains

The main results addressing pointwise bounds for solutions to the polyharmonic
equation in arbitrary domains are as follows.

Theorem 3.2 ([84]). Let � be a bounded domain in R
n, 2 � n � 2m C 1, and

.��/mu D f in �; f 2 C1
0 .�/; u 2 VW2

m.�/: (15)

Then the solution to the boundary value problem (15) satisfies

rm�n=2C1=2u 2 L1.�/ when n is odd, rm�n=2u 2 L1.�/ when n is even:
(16)

In particular,

rm�1u 2 L1.�/ when n D 2; 3: (17)

Here the space VW2
m.�/ is, as usual, a completion of C1

0 .�/ in the norm given by

kuk VW2
m.�/

D krmukL2.�/. We note that VW2
m.�/ embeds into Ck.�/ only when k is

strictly smaller than m � n
2
, n < 2m. Thus, whether the dimension is even or odd,

Theorem 3.2 gains one derivative over the outcome of Sobolev embedding.
The results of Theorem 3.2 are sharp, in the sense that the solutions do not exhibit

higher smoothness than warranted by (16)–(17) in general domains. Indeed, assume
that n 2 Œ3; 2m C 1
\ N is odd and let � � R

n be the punctured unit ball B1 n fOg,
where Br D fx 2 R

n W jxj < rg. Consider a function � 2 C1
0 .B1=2/ such that � D 1

on B1=4. Then let

u.x/ WD �.x/ @
m� n

2� 1
2

x .jxj2m�n/; x 2 B1 n fOg; (18)

where @x stands for a derivative in the direction of xi for some i D 1; : : : ; n. It is
straightforward to check that u 2 VW2

m.�/ and .��/mu 2 C1
0 .�/. While rm� n

2C 1
2 u

is bounded, the derivatives of order m � n
2

C 3
2

are not, and moreover, rm� n
2C 1

2 u
is not continuous at the origin. Therefore, the estimates (16)–(17) are optimal in
general domains.
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As for the case when n is even, the results in [72, Sect. 10.4] demonstrate that in
the exterior of a ray there is an m-harmonic function behaving as jxjm� n

2C 1
2 . Thus,

upon truncation by the aforementioned cut-off �, one obtains a solution to (15) in
B1nfx1 D 0; : : : ; xn�1 D 0; 0 � xn < 1g, whose derivatives of order m� n

2
C1 are not

bounded. More delicate examples can be obtained from our results for the Wiener
test to be discussed in section “The Wiener Test: Continuity of Solutions.” Those
show that the derivatives of order m � n

2
need not be continuous in even dimensions.

Therefore, in even dimensions (16) is a sharp property as well.
It is worth noting that the results above address also boundedness of solutions

(rather than their derivatives) corresponding to the case when m � n
2

C 1
2

D 0 in odd
dimensions, or, respectively, m � n

2
D 0 in the even case. In this respect, we would

also like to mention higher dimensional results following from the Green function
estimates in [89]. As will be discussed in the next section, one can show that, in
addition to our results above, if � � R

n is bounded for n � 2m C 2, and if u is a
solution to the polyharmonic equation (15), then u 2 L1.�/. This result also holds
if � � R

7 and m D 2.
If � � R

n is bounded and n � 2m C 3, or if m D 2 and n � 8, then the question
of whether solutions u to (15) are bounded is open. In particular, it is not known
whether solutions u to

�2u D h in �; u 2 VW2
2 .�/

are bounded if� � R
n for n � 8. However, there exist another fourth-order operator

whose solutions are not bounded in higher dimensional domains. In [93], Maz’ya
and Nazarov showed that if n � 8 and if a > 0 is large enough, then there exists an
open cone K � R

n and a function h 2 C1
0 .K n f0g/ such that the solution u to

�2u C a @4nu D h in K; u 2 VW2
2 .K/ (19)

is unbounded near the origin.

Green Function Estimates

Theorem 3.2 has several quantitative manifestations, providing specific estimates
on the solutions to (15). Most importantly, the authors established sharp pointwise
estimates on Green’s function of the polyharmonic operator and its derivatives, once
again without any restrictions on the geometry of the domain.

To start, let us recall the definition of the fundamental solution for the polyhar-
monic equation (see, e.g., [10]). A fundamental solution for the m-Laplacian is a
linear combination of the characteristic singular solution (defined below) and any
m-harmonic function in R

n. The characteristic singular solution is
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Cm;njxj2m�n; if n is odd, or if n is even with n � 2m C 2; (20)

Cm;njxj2m�n log jxj; if n is even with n � 2m: (21)

The exact expressions for constants Cm;n can be found in [10], p. 8. Hereafter we
will use the fundamental solution given by

�.x/ D Cm;n

8
ˆ̂<
ˆ̂:

jxj2m�n; if n is odd;

jxj2m�n log diam�
jxj ; if n is even and n � 2m;

jxj2m�n; if n is even and n � 2m C 2:

(22)

As is customary, we denote the Green’s function for the polyharmonic equation
by G.x; y/, x, y 2 �, and its regular part by S.x; y/, that is, S.x; y/ D G.x; y/ �
�.x � y/. By definition, for every fixed y 2 � the function G. � ; y/ satisfies

.��x/
mG.x; y/ D ı.x � y/; x 2 �; (23)

in the space VW2
m.�/. Here �x stands for the Laplacian in the x variable. Similarly,

we use the notation �y, ry, rx for the Laplacian and gradient in y, and gradient in
x, respectively. By d.x/ we denote the distance from x 2 � to @�.

Theorem 3.3. Let � � R
n be an arbitrary bounded domain, m 2 N, n 2 Œ2; 2m C

1
 \ N, and let

� D
8<
:

m � n=2C 1=2 when n is odd;

m � n=2 when n is even:
(24)

Fix any number N � 25. Then there exist a constant C depending only on m, n, N
such that for every x; y 2 � the following estimates hold.

If n 2 Œ3; 2m C 1
 \ N is odd, then

jr i
xr j

yG.x; y/j � C
d.y/��j

jx � yj�Cn�2mCi
; when jx � yj � N d.y/; 0 � i; j � �;

(25)

and

jr i
xr j

yG.x; y/j � C
d.x/��i

jx � yj�Cn�2mCj
; when jx � yj � N d.x/; 0 � i; j � �:

(26)

Next,

jr i
xr j

yG.x; y/j � C

jx � yjn�2mCiCj
; (27)
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when jx � yj � N�1 maxfd.x/; d.y/g, and i C j � 2m � n, 0 � i; j � m � n=2C 1=2,
and

jr i
xr j

yG.x; y/j � C minfd.x/; d.y/g2m�n�i�j; (28)

when jx � yj � N�1 maxfd.x/; d.y/g, and i C j � 2m � n, 0 � i; j � m � n=2C 1=2.
Finally,

jr i
xr j

yG.x; y/j � C

minfd.x/; d.y/; jx � yjgn�2mCiCj
(29)

� C

maxfd.x/; d.y/; jx � yjgn�2mCiCj
;

when N�1 d.x/ � jx � yj � Nd.x/ and N�1 d.y/ � jx � yj � Nd.y/, 0 � i; j � �.
Furthermore, if n 2 Œ3; 2m C 1
 \ N is odd, the estimates on the regular part of

the Green function S are as follows:

jr i
xr j

yS.x � y/j � C

jx � yjn�2mCiCj
when jx � yj � N minfd.x/; d.y/g; 0 � i; j � �:

(30)
Next,

jr i
xr j

yS.x; y/j � C

maxfd.x/; d.y/gn�2mCiCj
; (31)

when jx � yj � N�1 maxfd.x/; d.y/g, and i C j � 2m � n, 0 � i; j � m � n=2C 1=2,
and

jr i
xr j

yS.x; y/j � C minfd.x/; d.y/g2m�n�i�j; (32)

when jx � yj � N�1 maxfd.x/; d.y/g, and i C j � 2m � n, 0 � i; j � m � n=2C 1=2.
Finally,

jr i
xr j

yS.x; y/j � C

minfd.x/; d.y/; jx � yjgn�2mCiCj
(33)

� C

maxfd.x/; d.y/; jx � yjgn�2mCiCj
;

when N�1 d.x/ � jx � yj � Nd.x/ and N�1 d.y/ � jx � yj � Nd.y/, 0 � i; j �
m � n=2C 1=2.

If n 2 Œ2; 2m
\N is even, then (25)–(26) and (29) are valid with � D m � n
2
, and

jr i
xr j

yG.x; y/j � C minfd.x/; d.y/g2m�n�i�j

�
C0 C log

minfd.x/; d.y/g
jx � yj

�
; (34)

when jx � yj � N�1 maxfd.x/; d.y/g and 0 � i; j � m � n=2.
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Furthermore, if n 2 Œ2; 2m
 \ N is even, the estimates on the regular part of the
Green function S are as follows:

jr i
xr j

yS.x � y/j � C jx � yj�nC2m�i�j

�
C0 C log

diam .�/

jx � yj
�

(35)

when jx � yj � N minfd.x/; d.y/g, 0 � i; j � m � n=2. Next,

jr i
xr j

yS.x; y/j � C minfd.x/; d.y/g2m�n�i�j

�
C0 C log

diam�

maxfd.x/; d.y/g
�
; (36)

when jx � yj � N�1 maxfd.x/; d.y/g, 0 � i; j � m � n=2. Finally,

jr i
xr j

yS.x; y/j � C minfd.x/; d.y/; jx � yjg2m�n�i�j�

�
�

C0 C log
diam�

maxfd.x/; d.y/; jx � yjgn�2mCiCj

�
(37)

when N�1 d.x/ � jx � yj � Nd.x/ and N�1 d.y/ � jx � yj � Nd.y/, 0 � i;
j � m � n=2.

We would like to highlight the most important case of the estimates above,
pertaining to the highest-order derivatives.

Corollary 3.4. Let� � R
n be an arbitrary bounded domain. If n 2 Œ3; 2mC1
\N

is odd, then for all x, y 2 �,

ˇ̌
ˇ̌rm� n

2C 1
2

x rm� n
2C 1

2
y .G.x; y/ � �.x � y//

ˇ̌
ˇ̌ � C

maxfd.x/; d.y/; jx � yjg ; (38)

and, in particular,

ˇ̌
ˇ̌rm� n

2C 1
2

x rm� n
2C 1

2
y G.x; y/

ˇ̌
ˇ̌ � C

jx � yj : (39)

If n 2 Œ2; 2m
 \ N is even, then for all x, y 2 �,

ˇ̌
ˇrm� n

2
x rm� n

2
y .G.x; y/ � �.x � y//

ˇ̌
ˇ

� C log

�
1C diam�

maxfd.x/; d.y/; jx � yjg
�
; (40)

and
ˇ̌
ˇrm� n

2
x rm� n

2
y G.x; y/

ˇ̌
ˇ � C log

�
1C minfd.x/; d.y/g

jx � yj
�
: (41)
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The constant C in (38)–(41) depends on m and n only. In particular, it does not
depend on the size or the geometry of the domain �.

We mention that the pointwise bounds on the absolute value of Green’s function
itself have been treated previously in dimensions 2m C 1 and 2m C 2 for m > 2 and
dimensions 5; 6; 7 for m D 2 in [89, Sect. 10] (see also [86]). In particular, in [89,
Sect. 10], Maz’ya showed that the Green’s function Gm.x; y/ for �m in an arbitrary
bounded domain � � R

n satisfies

jGm.x; y/j � C.n/

jx � yjn�2m (42)

if n D 2m C 1 or n D 2m C 2. If m D 2, then (42) also holds in dimension n D 7 D
2mC3 (cf. [86]). Whether (42) holds in dimension n � 8 (for m D 2) or n � 2mC3
(for m > 2) is an open problem; see [89, Problem 2]. Also, similarly to the case of
general solutions discussed above, there exist results for Green functions in smooth
domains [44, 73, 134, 135], in conical domains [72, 94], and in polyhedra [96].

Furthermore, using standard techniques, the Green’s function estimates can be
employed to establish the bounds on the solution to (15) for general classes of data
f , such as Lp for a certain range of p, Lorentz spaces, etc. A sample statement to this
effect is as follows.

Proposition 3.5. Let � � R
n be an arbitrary bounded domain, m 2 N, n 2

Œ2; 2m C 1
 \ N, and let � retain the significance of (24). Consider the boundary
value problem

.��/mu D
X

j˛j��
c˛@

˛f˛; u 2 VW2
m.�/: (43)

Then the solution satisfies the following estimates.
If n 2 Œ3; 2m C 1
 \ N is odd, then for all x 2 �,

jrm� n
2C 1

2 u.x/j � Cm;n

X

j˛j�m� n
2C 1

2

ˆ
�

d.y/m� n
2C 1

2�j˛j

jx � yj jf˛.y/j dy; (44)

whenever the integrals on the right-hand side of (44) are finite. In particular,

krm� n
2C 1

2 ukL1.�/

� Cm;n;�

X

j˛j�m� n
2C 1

2

kd. � /m� n
2� 1

2�j˛jf˛kLp.�/; p >
n

n � 1 ; (45)

provided that the norms on the right-hand side of (45) are finite.
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If n 2 Œ2; 2m
 \ N is even, then for all x 2 �,

jrm� n
2 u.x/j

� Cm;n

X
j˛j�m� n

2

ˆ
�

d.y/m� n
2�j˛j log

�
1C d.y/

jx � yj
�

jf˛.y/j dy; (46)

whenever the integrals on the right-hand side of (46) are finite. In particular,

krm� n
2 ukL1.�/ � Cm;n;�

X
j˛j�m� n

2

kd.�/m� n
2�j˛jf˛kLp.�/; p > 1; (47)

provided that the norms on the right-hand side of (47) are finite.
The constants Cm;n above depend on m and n only, while the constants denoted

by Cm;n;� depend on m, n, and the diameter of the domain �.

By the same token, if (42) holds, then solutions to (15) satisfy

kukL1.�/ � C.m; n; p/ diam.�/2m�n=pkf kLp.@�/

provided p > n=2m (see, e.g., [89, Sect. 2]). Thus, e.g., if � � R
n is bounded for

n D 2mC2, and if u satisfies (15) for a reasonably nice function f , then u 2 L1.�/.
This result also holds if � � R

7 and m D 2. This complements the results in
Theorem 3.2, as discussed in section “Sharp Pointwise Estimates on the Derivatives
of Solutions in Arbitrary Domains.”

To conclude our discussion of Green’s functions, we mention two results from
[106]; these results are restricted to relatively well-behaved domains. In [106],
D. Mitrea and I. Mitrea showed that, if � is a bounded Lipschitz domain in R

3,
and G denotes the Green’s function for the bilaplacian �2, then the estimates

r2G.x; � / 2 L3.�/; dist. � ; @�/�˛rG.x; � / 2 L3=˛;1

hold, uniformly in x 2 �, for all 0 < ˛ � 1.
Moreover, they considered more general elliptic systems. Suppose that L is an

arbitrary elliptic operator of order 2m with constant coefficients, as defined by
Definition 2.1, and that G denotes the Green’s function for L. Suppose that� � R

n,
for n > m, is a Lipschitz domain, and that the unit outward normal 	 to� lies in the
Sarason space VMO.@�/ of functions of vanishing mean oscillations on @�. Then
the estimates

rmG.x; � / 2 L
n

n�m ;1.�/; (48)

dist. � ; @�/�˛rm�1G.x; � / 2 L
n

n�m�1C˛ ;1.�/

hold, uniformly in x 2 �, for any 0 � ˛ � 1.
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The Wiener Test: Continuity of Solutions

In this section, we discuss conditions that ensure that solutions (or appropriate
gradients of solutions) are continuous up to the boundary. These conditions parallel
the famous result of Wiener, who in 1924 formulated a criterion that ensured
continuity of harmonic functions at boundary points [143]. Wiener’s criterion
has been extended to a variety of second-order elliptic and parabolic equations
([3, 41, 47, 50, 51, 74, 76, 78, 137]; see also the review papers [2, 87]). However,
as with the maximum principle, extending this criterion to higher-order elliptic
equations is a subtle matter, and many open questions remain.

We begin by stating the classical Wiener criterion for the Laplacian. If � � R
n

is a domain and Q 2 @�, then Q is called regular for the Laplacian if every solution
u to

�u D h in �; u 2 VW2
1 .�/

for h 2 C1
0 .�/ satisfies limX!Q u.X/ D 0. According to Wiener’s theorem [143],

the boundary point Q 2 @� is regular if and only if the equation

ˆ 1

0

cap2.B.Q; s/ n�/s1�n ds D 1 (49)

holds, where

cap2.K/ D inf
n
kuk2L2.Rn/ C kruk2L2.Rn/ W u 2 C1

0 .R
n/; u � 1 on K

o
: (50)

For example, suppose � satisfies the exterior cone condition at Q. That is,
suppose there is some open cone K with vertex at Q and some " > 0 such that
K \ B.Q; "/ � �C. It is elementary to show that cap2.B.Q; s/ n �/ � C.K/sn�2
for all 0 < s < ", and so (49) holds and Q is regular. Regularity of such points
was known prior to Wiener (see [75, 120, 144]) and provided inspiration for the
formulation of the Wiener test.

By [76], if L D � div Ar is a second-order divergence-form operator, where the
matrix A.X/ is bounded, measurable, real, symmetric, and elliptic, then Q 2 @� is
regular for L if and only if Q and � satisfy (49). In other words, Q 2 @� is regular
for the Laplacian if and only if it is regular for all such operators. Similar results
hold for some other classes of second-order equations; see, for example, [41, 50], or
[47].

One would like to consider the Wiener criterion for higher-order elliptic equa-
tions, and that immediately gives rise to the question of natural generalization of
the concept of a regular point. The Wiener criterion for the second-order PDEs
ensures, in particular, that weak VW2

1 solutions are classical. That is, the solution
approaches its boundary values in the pointwise sense (continuously). From that
point of view, one would extend the concept of regularity of a boundary point as
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continuity of derivatives of order m � 1 of the solution to an equation of order 2m
up to the boundary. On the other hand, as we discussed in the previous section, even
the boundedness of solutions cannot be guaranteed in general, and thus, in some
dimensions the study of the continuity up to the boundary for solutions themselves
is also very natural. We begin with the latter question, as it is better understood.

Let us first define a regular point for an arbitrary differential operator L of order
2m analogously to the case of the Laplacian, by requiring that every solution u to

Lu D h in �; u 2 VW2
m.�/ (51)

for h 2 C1
0 .�/ satisfies limX!Q u.X/ D 0. Note that by the Sobolev embedding

theorem, if � � R
n for n � 2m � 1, then every u 2 VW2

m.�/ is Hölder continuous
on � and so satisfies limX!Q u.X/ D 0 at every point Q 2 @�. Thus, we are only
interested in continuity of the solutions at the boundary when n � 2m.

In this context, the appropriate concept of capacity is the potential-theoretic Riesz
capacity of order 2m, given by

cap2m.K/ D inf
n X
0�j˛j�m

k@˛uk2L2.Rn/ W u 2 C1
0 .R

n/; u � 1 on K
o
: (52)

The following is known. If m � 3, and if� � R
n for n D 2m, 2mC1, or 2mC2,

or if m D 2 and n D 4, 5, 6, or 7, then Q 2 @� is regular for �m if and only if

ˆ 1

0

cap2m.B.Q; s/ n�/s2m�n�1 ds D 1: (53)

The biharmonic case was treated in [85, 86], and the polyharmonic case for m � 3

in [88, 91].
Let us briefly discuss the method of the proof in order to explain the restrictions

on the dimension. Let L be an arbitrary elliptic operator, and let F be the fundamental
solution for L in R

n with pole at Q. We say that L is positive with weight F if, for
all u 2 C1

0 .R
n n fQg/, we have that

ˆ
Rn

Lu.X/ � u.X/F.X/ dX � c
mX

kD1

ˆ
Rn

jrku.X/j2jXj2k�n dX: (54)

The biharmonic operator is positive with weight F in dimension n if 4 � n � 7,
and the polyharmonic operator �m, m � 3, is positive with weight F in dimension
2m � n � 2m C 2. (The Laplacian � is positive with weight F in any dimension.)
The biharmonic operator �2 is not positive with weight F in dimensions n � 8, and
�m is not positive with weight F in dimension n � 2m C 3. See [88, Propositions 1
and 2].



74 A. Barton and S. Mayboroda

The proof of the Wiener criterion for the polyharmonic operator required
positivity with weight F. In fact, it turns out that positivity with weight F suffices
to provide a Wiener criterion for an arbitrary scalar elliptic operator with constant
coefficients.

Theorem 3.6 ([90, Theorems 1 and 2]). Suppose � � R
n and that L is a

scalar elliptic operator of order 2m with constant real coefficients, as defined by
Definition 2.1.

If n D 2m, then Q 2 @� is regular for L if and only if (53) holds.
If n � 2m C 1, and if the condition (54) holds, then again Q 2 @� is regular for

L if and only if (53) holds.

This theorem is also valid for certain variable-coefficient operators in divergence
form; see the remark at the end of [88, Sect. 5].

Similar results have been proven for some second-order elliptic systems. In
particular, for the Lamé system Lu D �u C ˛ grad div u, ˛ > �1, positivity with
weight F and Wiener criterion have been established for a range of ˛ close to zero,
that is, when the underlying operator is close to the Laplacian [77]. It was also
shown that positivity with weight F may in general fail for the Lamé system. Since
the present review is restricted to the higher-order operators, we shall not elaborate
on this point and instead refer the reader to [77] for more detailed discussion.

In the absence of the positivity condition (54), the situation is much more
involved. Let us point out first that the condition (54) is not necessary for regularity
of a boundary point, that is, the continuity of the solutions. There exist fourth-order
elliptic operators that are not positive with weight F whose solutions exhibit nice
behavior near the boundary; there exist other such operators whose solutions exhibit
very bad behavior near the boundary.

Specifically, recall that (54) fails for L D �2 in dimension n � 8. Nonetheless,
solutions to �2u D h are often well-behaved near the boundary. By [95], the vertex
of a cone is regular for the bilaplacian in any dimension. Furthermore, if the capacity
condition (53) holds with m D 2, then by [90, Sect. 10], any solution u to

�2u D h in �; u 2 VW2
2 .�/

for h 2 C1
0 .�/ satisfies limX!Q u.X/ D 0 provided the limit is taken along a

nontangential direction.
Conversely, if n � 8 and L D �2 C a@4n, then by [93], there exists a cone K and a

function h 2 C1
0 .K n f0g/ such that the solution u to (19) is not only discontinuous

but unbounded near the vertex of the cone. We remark that a careful examination
of the proof in [93] implies that solutions to (19) are unbounded even along some
nontangential directions.

Thus, conical points in dimension eight are regular for the bilaplacian and
irregular for the operator �2 C a @4n. Hence, a relevant Wiener condition must use
different capacities for these two operators. This is a striking contrast with the
second-order case, where the same capacity condition implies regularity for all
divergence-form operators, even with variable coefficients.
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This concludes the discussion of regularity in terms of continuity of the solution.
We now turn to regularity in terms of continuity of the .m � 1/st derivatives.
Unfortunately, much less is known in this case.

The Higher-Order Wiener Test: Continuity of Derivatives
of Polyharmonic Functions

The most natural generalization of the Wiener test to the higher-order scenario
concerns the continuity of the derivatives of the solutions, rather than solutions
themselves, as derivatives constitute part of the boundary data. However, a necessary
prerequisite for such results is boundedness of the corresponding derivatives of
the solutions—an extremely delicate matter in its own right as detailed in section
“Sharp Pointwise Estimates on the Derivatives of Solutions in Arbitrary Domains.”
In the context of the polyharmonic equation, Theorem 3.2 has set the stage for an
extensive investigation of the Wiener criterion and, following earlier results in [81],
the second author of this paper and Maz’ya have recently obtained a full extension of
the Wiener test to the polyharmonic context in [83]. One of the most intricate issues
is the proper definition of the polyharmonic capacity, and we start by addressing it.

At this point Theorem 3.2 finally sets the stage for a discussion of the Wiener test
for continuity of the corresponding derivatives of the solution, which brings us to
the main results of the present paper.

Assume that m 2 N and n 2 Œ2; 2m C 1
 \ N. Let us denote by Z the following
set of indices:

Z Df0; 1; : : : ;m � n=2C 1=2g if n is odd; (55)

Z Df�n=2C 2;�n=2C 4; : : : ;m � n=2 � 2;m � n=2g \ .N [ f0g/ (56)

if n is even, m is even;

Z Df�n=2C 1;�n=2C 3; : : : ;m � n=2 � 2;m � n=2g \ .N [ f0g/ (57)

if n is even, m is odd:

Now let … be the space of linear combinations of spherical harmonics

P.x/ D
X
p2Z

pX
lD�p

bplY
p
l .x=jxj/; bpl 2 R; x 2 R

n n fOg; (58)

with the norm

kPk… WD
0
@X

p2Z

pX
lD�p

b2pl

1
A

1
2

and …1 WD fP 2 … W kPk… D 1g: (59)
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Then, given P 2 …1, an open set D in R
n such that O 2 R

n nD, and a compactum
K in D, we define

CapP .K;D/

WD inf

( ˆ
D

jrmu.x/j2 dx W u 2 VW2
m.D/; uDP in a neighborhood of K

)
; (60)

with

Cap .K;D/ WD inf
P2…1

CapP .K;D/: (61)

In the context of the Wiener test, we will be working extensively with the capacity
of the complement of a domain � � R

n in the balls B2�j , j 2 N, and even more
so, in dyadic annuli, C2�j;2�jC2 , j 2 N, where Cs;as WD fx 2 R

n W s < jxj < asg, s,
a > 0. As is customary, we will drop the reference to the “ambient” set

CapP .C2�j;2�jC2 n�/ WD CapP .C2�j;2�jC2 n�;C2�j�2;2�jC4 /; j 2 N; (62)

and will drop the similar reference for Cap. In fact, it will be proven below that there
are several equivalent definitions of capacity, in particular, for any n 2 Œ2; 2m C 1


and for any s > 0, a > 0, K � Cs;as, we have

CapP.K;Cs=2;2as/

� inf

(
mX

kD0

ˆ
Rn

jrku.x/j2
jxj2m�2k

dx W u 2 VW2
m.R

n n fOg/;

u D P in a neighborhood of K

)
: (63)

In the case when the dimension is odd, also

CapP .Cs;as n�;Cs=2;2as/ � CapP .Cs;as n�;Rn n fOg/:

Thus, either of the above can be used in (62), as convenient.
Let � be a domain in R

n, n � 2. The point Q 2 @� is k-regular with respect
to the domain � and the operator .��/m, m 2 N, if the solution to the boundary
problem

.��/mu D f in �; f 2 C1
0 .�/; u 2 VW2

m.�/; (64)
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satisfies the condition

rku.x/ ! 0 as x ! Q; x 2 �; (65)

that is, all partial derivatives of u of order k are continuous. Otherwise, we say that
Q 2 @� is k-irregular.

Theorem 3.7 ([81, 83]). Let � be an arbitrary open set in R
n, m 2 N, 2 � n �

2m C 1. Let � be given by

� D
8
<
:

m � n=2C 1=2 when n is odd;

m � n=2 when n is even:
(66)

If

1X
jD0

2�j.2m�n/ inf
P2…1

CapP .C2�j;2�jC2 n�/ D C1; when n is odd; (67)

and

1X
jD0

j 2�j.2m�n/ inf
P2…1

CapP .C2�j;2�jC2 n�/ D C1; when n is even; (68)

then the point O is �-regular with respect to the domain� and the operator .��/m.
Conversely, if the point O 2 @� is �-regular with respect to the domain � and

the operator .��/m, then

inf
P2…1

1X
jD0

2�j.2m�n/ CapP .C2�j;2�jC2 n�/ D C1; when n is odd; (69)

and

inf
P2…1

1X
jD0

j 2�j.2m�n/ CapP .C2�j;2�jC2 n�/ D C1; when n is even: (70)

Here, as before, C2�j;2�jC2 is the annulus fx 2 R
n W 2�j < jxj < 2�jC2g, j 2 N[f0g.

Let us now discuss the results of Theorem 3.7 in more detail. This was the first
treatment of the continuity of derivatives of an elliptic equation of order m � 2

at the boundary, and the first time the capacity (60) appeared in the literature.
When applied to the case m D 1, n D 3, it yields the classical Wiener criterion
for continuity of a harmonic function [cf. (49)]. Furthermore, as discussed in the
previous section, continuity of the solution itself (rather than its derivatives) has



78 A. Barton and S. Mayboroda

been previously treated for the polyharmonic equation, and for .��/m the resulting
criterion also follows from Theorem 3.7, in particular, when m D 2n, the new notion
of capacity (55)–(59) coincides with the potential-theoretical Bessel capacity used
in [90]. In the case � D 0, covering both of the above, necessary and sufficient
condition in Theorem 3.7 are trivially the same, as P 	 1 when n D 2m in even
dimensions and n D 2m C 1 in odd ones. For lower dimensions n the discrepancy is
not artificial, for, e.g., (67) may fail to be necessary as was shown in [81].

It is not difficult to verify that we also recover known bounds in Lipschitz
and in smooth domains, as the capacity of a cone, and hence capacity of an
intersection with a complement of a Lipschitz domain, assures divergence of
the series in (67)–(68). On the other hand, given Theorem 3.7 and following
considerations traditional in this context (choosing sufficiently small balls in the
consecutive annuli to constitute a complement of the domain), we can build a set
with a convergent capacitory integral and, respectively, an irregular solution with
discontinuous derivatives of order � at the point O. Note that this yields further
sharpness of the results of Theorem 3.2. In particular, in even dimensions, it is a
stronger counterexample than that of a continuum (not only m � n=2C1 derivatives
are not bounded, but m � n=2 derivatives might be discontinuous). We refer the
reader back to section “Sharp Pointwise Estimates on the Derivatives of Solutions
in Arbitrary Domains” for more details.

One of the most difficult aspects of proof of Theorem 3.7 is finding a correct
notion of polyharmonic capacity and understanding its key properties. A peculiar
choice of linear combinations of spherical harmonics [see (55)–(57) and (58)] is
crucial at several stages of the argument, specific to the problem at hand, and no
alterations would lead to reasonable necessary and sufficient conditions. At the same
time, the new capacity and the notion of higher-order regularity sometimes exhibit
surprising properties, such as sensitivity to the affine changes of coordinates [81],
or the aforementioned fact that in sharp contrast with the second-order case [76],
one does not expect the same geometric conditions to be responsible for regularity
of solutions to all higher-order elliptic equations.

It is interesting to point out that despite fairly involved definitions, capacitory
conditions may reduce to a simple and concise criterion, e.g., in a case of a graph.
To be precise, let� � R

3 be a domain whose boundary is the graph of a function ',
and let ! be its modulus of continuity. If

ˆ 1

0

t dt

!2.t/
D 1; (71)

then every solution to the biharmonic equation satisfies ru 2 C.�/. Conversely,
for every ! such that the integral in (71) is convergent, there exists a C0;! domain
and a solution u of the biharmonic equation such that ru … C.�/. In particular, as
expected, the gradient of a solution to the biharmonic equation is always bounded
in Lipschitz domains and is not necessarily bounded in a Hölder domain. Moreover,
one can deduce from (71) that the gradient of a solution is always bounded, e.g., in a
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domain with !.t/ � t log1=2 t, which is not Lipschitz, and might fail to be bounded
in a domain with !.t/ � t log t. More properties of the new capacity and examples
can be found in [81, 83].

Boundary Value Problems in Lipschitz Domains for Elliptic
Operators with Constant Coefficients

The maximum principle (14) provides estimates on solutions whose boundary data
lies in L1. Recall that for second-order partial differential equations with real
coefficients, the maximum principle is valid in arbitrary bounded domains. The
corresponding sharp estimates for boundary data in Lp, 1 < p < 1, are much
more delicate. They are not valid in arbitrary domains, even for harmonic functions,
and they depend in a delicate way on the geometry of the boundary. At present,
boundary value problems for the Laplacian and for general real symmetric elliptic
operators of the second order are fairly well understood on Lipschitz domains. See,
in particular, [65].

We consider biharmonic functions and more general higher-order elliptic equa-
tions. The question of estimates on biharmonic functions with data in Lp was raised
by Rivière in the 1970s [28], and later Kenig redirected it towards Lipschitz domains
in [64, 65]. The sharp range of well-posedness in Lp, even for biharmonic functions,
remains an open problem (see [65, Problem 3.2.30]). In this section we shall review
the current state of the art in the subject, the main techniques that have been
successfully implemented, and their limitations in the higher-order case.

Most of the results we will discuss are valid in Lipschitz domains, defined as
follows.

Definition 4.1. A domain � � R
n is called a Lipschitz domain if, for every

Q 2 @�, there is a number r > 0, a Lipschitz function ' W R
n�1 7! R with

kr'kL1
� M, and a rectangular coordinate system for Rn such that

B.Q; r/ \� D f.x; s/ W x 2 R
n�1; s 2 R; j.x; s/ � Q/j < r; and s > '.x/g:

If we may take the functions ' to be Ck (that is, to possess k continuous
derivatives), we say that � is a Ck domain.

The outward normal vector to � will be denoted 	. The surface measure will be
denoted � , and the tangential derivative along @� will be denoted r� .

In this paper, we will assume that all domains under consideration have con-
nected boundary. Furthermore, if @� is unbounded, we assume that there is a single
Lipschitz function ' and coordinate system that satisfies the conditions given above;
that is, we assume that� is the domain above (in some coordinate system) the graph
of a Lipschitz function.
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In order to properly state boundary value problems on Lipschitz domains, we will
need the notions of nontangential convergence and nontangential maximal function.

In this and subsequent sections we say that u
ˇ̌
@�

D f if f is the nontangential
limit of u, that is, if

lim
X!Q; X2�.Q/ u.X/ D f .Q/

for almost every (d� ) Q 2 @�, where �.Q/ is the nontangential cone

�.Q/ D fY 2 � W dist.Y; @�/ < .1C a/jX � Yjg: (72)

Here a > 0 is a positive parameter; the exact value of a is usually irrelevant to
applications. The nontangential maximal function is given by

NF.Q/ D supfjF.X/j W X 2 �.Q/g: (73)

The normal derivative of u of order m is defined as

@m
	 u.Q/ D

X
j˛jDm

	.Q/˛
mŠ

˛Š
@˛u.Q/;

where @˛u.Q/ is taken in the sense of nontangential limits as usual.

The Dirichlet Problem: Definitions, Layer Potentials,
and Some Well-Posedness Results

We say that the Lp-Dirichlet problem for the biharmonic operator�2 in a domain�
is well-posed if there exist a constant C > 0 such that, for every f 2 Wp

1 .@�/ and
every g 2 Lp.@�/, there exist a unique function u that satisfies

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

�2u D 0 in �;

u D f on @�;

@	u D g on @�;

kN.ru/kLp.@�/ � CkgkLp.@�/ C Ckr� f kLp.@�/:

(74)

The Lp-Dirichlet problem for the polyharmonic operator �m is somewhat more
involved, because the notion of boundary data is necessarily more subtle. We say
that the Lp-Dirichlet problem for �m in a domain � is well-posed if there exist a
constant C > 0 such that, for every g 2 Lp.@�/ and every Pf in the Whitney–Sobolev
space WAp

m�1.@�/, there exist a unique function u that satisfies



Higher-Order Elliptic Equations 81

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂
:̂

�mu D 0 in �;

@˛u
ˇ̌
@�

D f˛ for all 0 � j˛j � m � 2;
@m�1
	 u D g on @�;

kN.rm�1u/kLp.@�/ � CkgkLp.@� C C
X

j˛jDm�2
kr� f˛kLp.@�/:

(75)

The space WAp
m.@�/ is defined as follows.

Definition 4.2. Suppose that � � R
n is a Lipschitz domain, and consider arrays

of functions Pf D ff˛ W j˛j � m � 1g indexed by multiindices ˛ of length n, where
f˛ W @� 7! C. We let WAp

m.@�/ be the completion of the set of arrays P D f@˛ W
j˛j � m � 1g, for  2 C1

0 .R
n/, under the norm

X
j˛j�m�1

k@˛ kLp.@�/ C
X

j˛jDm�1
kr� @

˛ kLp.@�/: (76)

If we prescribe @˛u D f˛ on @� for some f 2 WAp
m.@�/, then we are prescribing

the values of u, ru; : : : ;rm�1u on @�, and requiring that (the prescribed part of)
rmu

ˇ̌
@�

lie in Lp.@�/.
The study of these problems began with biharmonic functions in C1 domains.

In [125], Selvaggi and Sisto proved that, if � is the domain above the graph of
a compactly supported C1 function ', with kr'kL1

small enough, then solutions
to the Dirichlet problem exist provided 1 < p < 1. Their method used certain
biharmonic layer potentials composed with the Riesz transforms.

In [33], Cohen and Gosselin proved that, if� is a bounded, simply connected C1

domain contained in the plane R2, then the Lp-Dirichlet problem is well-posed in�
for any 1 < p < 1. In [34], they extended this result to the complements of such
domains. Their proof used multiple layer potentials introduced by Agmon in [5] in
order to solve the Dirichlet problem with continuous boundary data. The general
outline of their proof paralleled that of the proof of the corresponding result [49]
for Laplace’s equation. We remark that by [109, Theorem 6.30], we may weaken
the condition that � be C1 to the condition that the unit outward normal 	 to � lies
in VMO.@�/. (Recall that this condition has been used in [106]; see formula (48)
above and preceding remarks. This condition was also used in [100]; see section
“The Dirichlet Problem for Operators in Divergence Form.”)

As in the case of Laplace’s equation, a result in Lipschitz domains soon followed.
In [39], Dahlberg et al. showed that the Lp-Dirichlet problem for the biharmonic
equation is well-posed in any bounded simply connected Lipschitz domain� � R

n,
provided 2 � " < p < 2C " for some " > 0 depending on the domain �.

In [138], Verchota used the construction of [39] to extend Cohen and Gosselin’s
results from planar C1 domains to C1 domains of arbitrary dimension. Thus, the
Lp-Dirichlet problem for the bilaplacian is well-posed for 1 < p < 1 in C1

domains.
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In [139], Verchota showed that the Lp-Dirichlet problem for the polyharmonic
operator�m could be solved for 2� " < p < 2C " in starlike Lipschitz domains by
induction on the exponent m. He simultaneously proved results for the Lp-regularity
problem in the same range; we will thus delay discussion of his methods to section
“The Regularity Problem and the Lp-Dirichlet Problem.”

All three of the papers [33, 39, 125] constructed biharmonic functions as
potentials. However, the potentials used differ. Selvaggi and Sisto [125] constructed
their solutions as

u.X/ D
ˆ
@�

@2nF.X � Y/ f .Y/ d�.Y/C
n�1X
iD1

ˆ
@�

@i@nF.X � Y/Rig.Y/ d�.Y/ (77)

where Ri are the Riesz transforms. Here F.X/ is the fundamental solution to the
biharmonic equation; thus, u is biharmonic in R

n n @�. As in the case of Laplace’s
equation, well-posedness of the Dirichlet problem follows from the boundedness
relation kN.ru/kLp.@�/ � Ckf kLp.@�/ C CkgkLp.@�/ and from invertibility of the
mapping .f ; g/ 7! .u

ˇ̌
@�
; @	u/ on Lp.@�/ � Lp.@�/ 7! Wp

1 .@�/ � Lp.@�/.
The multiple layer potential of [33] is an operator of the form

LPf .P/ D p:v:
ˆ
@�

L.P;Q/Pf .Q/ d�.Q/ (78)

where L.P;Q/ is a 3 � 3 matrix of kernels, also composed of derivatives of the
fundamental solution to the biharmonic equation, and Pf D .f ; fx; fy/ is a “compatible
triple” of boundary data, that is, an element of Wp1 .@�/ � Lp.@�/ � Lp.@�/ that
satisfies @� f D fx�x C fy�y. Thus, the input is essentially a function and its gradient,
rather than two functions, and the Riesz transforms are not involved.

The method of [39] is to compose two potentials. First, the function f 2 L2.@�/
is mapped to its Poisson extension v. Next, u is taken to be the solution of the
inhomogeneous equation �u.Y/ D .n C 2Y � r/v.Y/ with u D 0 on @�. If G.X;Y/
is the Green’s function for � in � and kY is the harmonic measure density at Y , we
may write the map f 7! u as

u.X/ D
ˆ
�

G.X;Y/.n C 2Y � r/
ˆ
@�

kY.Q/ f .Q/ d�.Q/ dY: (79)

Since .n C 2Y � r/v.Y/ is harmonic, u is biharmonic, and so u solves the Dirichlet
problem.



Higher-Order Elliptic Equations 83

The Lp-Dirichlet Problem: The Summary of Known Results
on Well-Posedness and Ill-Posedness

Recall that by [139], the Lp-Dirichlet problem is well-posed in Lipschitz domains
provided 2 � " < p < 2 C ". As in the case of Laplace’s equation (see [48]), the
range p > 2� " is sharp. That is, for any p < 2 and any integers m � 2, n � 2, there
exist a bounded Lipschitz domain � � R

n such that the Lp-Dirichlet problem for
�m is ill-posed in �. See [39, Sect. 5] for the case of the biharmonic operator �2,
and the proof of Theorem 2.1 in [119] for the polyharmonic operator �m.

The range p < 2 C " is not sharp and has been studied extensively. Proving
or disproving well-posedness of the Lp-Dirichlet problem for p > 2 in general
Lipschitz domains has been an open question since [39], and was formally stated
as such in [65, Problem 3.2.30]. (Earlier in [28, Question 7], the authors had posed
the more general question of what classes of boundary data give existence and
uniqueness of solutions.)

In [116, Theorem 10.7], Pipher and Verchota constructed Lipschitz domains
� such that the Lp-Dirichlet problem for �2 was ill-posed in �, for any given
p > 6 (in four dimensions) or any given p > 4 (in five or more dimensions).
Their counterexamples built on the study of solutions near a singular point, in
particular upon [95, 98]. In [119], they provided other counterexamples to show
that the Lp-Dirichlet problem for �m is ill-posed, provided p > 2.n � 1/=.n � 3/

and 4 � n < 2m C 1. They remarked that if n � 2m C 1, then ill-posedness follows
from the results of [98] provided p > 2m=.m � 1/.

The endpoint result at p D 1 is the Agmon–Miranda maximum principle (14)
discussed above. We remark that if 2 < p0 � 1, and the Lp0 -Dirichlet problem is
well-posed (or (14) holds) then by interpolation, the Lp-Dirichlet problem is well-
posed for any 2 < p < p0.

We shall adopt the following definition (justified by the discussion above).

Definition 4.3. Suppose that m � 2 and n � 4. Then pm;n is defined to be the
extended real number that satisfies the following properties. If 2 � p � pm;n, then
the Lp-Dirichlet problem for �m is well-posed in any bounded Lipschitz domain
� � R

n. Conversely, if p > pm;n, then there exist a bounded Lipschitz domain
� � R

n such that the Lp-Dirichlet problem for �m is ill-posed in �. Here, well-
posedness for 1 < p < 1 is meant in the sense of (75), and well-posedness for
p D 1 is meant in the sense of the maximum principle (see (91) below).

As in [39], we expect the range of solvability for any particular Lipschitz domain
� to be 2� " < p < pm;n C " for some " depending on the Lipschitz character of�.

Let us summarize here the results currently known for pm;n. More details will
follow in section “The Regularity Problem and the Lp-Dirichlet Problem.”

For any m � 2, we have that

• If n D 2 or n D 3, then the Lp-Dirichlet problem for �m is well-posed in any
Lipschitz domain � for any 2 � p < 1 [116, 119].

• If 4 � n � 2m C 1, then pm;n D 2.n � 1/=.n � 3/ [119, 130].
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• If n D 2m C 2, then pm;n D 2m=.m � 1/ D 2.n � 2/=.n � 4/ [98, 128].
• If n � 2m C 3, then 2.n � 1/=.n � 3/ � pm;n � 2m=.m � 1/ [98, 130].

The value of pm;n, for n � 2m C 3, is open.
In the special case of biharmonic functions (m D 2), more is known.

• p2;4 D 6, p2;5 D 4, p2;6 D 4, and p2;7 D 4 [128, 130].
• If n � 8, then

2C 4

n � �n
< p2;n � 4

where

�n D n C 10C 2
p
2.n2 � n C 2/

7
:

[129]
• If � is a C1 or convex domain of arbitrary dimension, then the Lp-Dirichlet

problem for �2 is well-posed in � for any 1 < p < 1 [70, 129, 139].

We comment on the nature of ill-posedness. The counterexamples of [39, 119]
for p < 2 are failures of uniqueness. That is, those counterexamples are non-zero
functions u, satisfying �mu D 0 in �, such that @k

	u D 0 on @� for 0 � k � m � 1,
and such that N.rm�1u/ 2 Lp.@�/.

Observe that if � is bounded and p > 2, then Lp.@�/ � L2.@�/. Because the
L2-Dirichlet problem is well-posed, the failure of well-posedness for p > 2 can only
be a failure of the optimal estimate N.rm�1u/ 2 Lp.@�/. That is, if the Lp-Dirichlet
problem for�m is ill-posed in�, then for some Whitney array Pf 2 WAp

m�1.@�/ and
some g 2 Lp.@�/, the unique function u that satisfies �mu D 0 in �, @˛u D f˛ ,
@m�1
	 u D g and N.rm�1u/ 2 L2.@�/ does not satisfy N.rm�1u/ 2 Lp.@�/.

The Regularity Problem and the Lp-Dirichlet Problem

In this section we elaborate on some of the methods used to prove the Dirichlet
well-posedness results listed above, as well as their historical context. This naturally
brings up a consideration of a different boundary value problem, the Lq-regularity
problem for higher-order operators.

Recall that for second-order equations the regularity problem corresponds to
finding a solution with prescribed tangential gradient along the boundary. In
analogy, we say that the Lq-regularity problem for �m is well-posed in � if there
exist a constant C > 0 such that, whenever Pf 2 WAq

m.@�/, there exist a unique
function u that satisfies
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8̂
ˆ̂̂<
ˆ̂̂̂
:

�mu D 0 in �;

@˛u
ˇ̌
@�

D f˛ for all 0 � j˛j � m � 1;
kN.rmu/kLq.@�/ � C

X
j˛jDm�1

kr� f˛kLq.@�/:

(80)

There is an important endpoint formulation at q D 1 for the regularity problem.
We say that the H1-regularity problem is well-posed if there exist a constant C > 0

such that, whenever Pf lies in the Whitney–Hardy space H1
m.@�/, there exist a unique

function u that satisfies
8̂
ˆ̂̂<
ˆ̂̂̂
:

�mu D 0 in �;

@˛u
ˇ̌
@�

D f˛ for all 0 � j˛j � m � 1;
kN.rmu/kL1.@�/ � C

X
j˛jDm�1

kr� f˛kH1.@�/:

The space H1
m.@�/ is defined as follows.

Definition 4.4. We say that Pa 2 WAq
m.@�/ is a H1

m.@�/-L
q atom if Pa is supported

in a ball B.Q; r/ \ @� and if
X

j˛jDm�1
kr�a˛kLq.@�/ � �.B.Q; r/ \ @�/1=q�1:

If Pf 2 WA1m.@�/ and there are H1
m-L2 atoms Pak and constants �k 2 C such that

r� f˛ D
1X

kD1
�kr� .ak/˛ for all j˛j D m � 1

and such that
P j�kj < 1, we say that Pf 2 H1

m.@�/, with kPf kH1
m.@�/

being the
smallest

P j�kj among all such representations.

In [139], Verchota proved well-posedness of the L2-Dirichlet problem and the
L2-regularity problem for the polyharmonic operator �m in any bounded starlike
Lipschitz domain by simultaneous induction.

The base case m D 1 is valid in all bounded Lipschitz domains by [35, 62]. The
inductive step is to show that well-posedness for the Dirichlet problem for�mC1 fol-
lows from well-posedness of the lower-order problems. In particular, solutions with
@˛u D f˛ may be constructed using the regularity problem for�m, and the boundary
term @m

	 uDg, missing from the regularity data, may be attained using the inho-
mogeneous Dirichlet problem for �m. On the other hand, it was shown that the
well-posedness for the regularity problem for�mC1 follows from well-posedness of
the lower-order problems and from the Dirichlet problem for �mC1, in some sense,
by realizing the solution to the regularity problem as an integral of the solution to
the Dirichlet problem.
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As regards a broader range of p and q, Pipher and Verchota showed in [116] that
the Lp-Dirichlet and Lq-regularity problems for �2 are well-posed in all bounded
Lipschitz domains � � R

3, provided 2 � p < 1 and 1 < q � 2. Their method
relied on duality. Using potentials similar to those of [39], they constructed solutions
to the L2-Dirichlet problem in domains above Lipschitz graphs. The core of their
proof was the invertibility on L2.@�/ of a certain potential operator T . They were
able to show that the invertibility of its adjoint T� on L2.@�/ implies that the L2-
regularity problem for �2 is well-posed. Then, using the atomic decomposition of
Hardy spaces, they analyzed the H1-regularity problem. Applying interpolation and
duality for T� once again, now in the reverse regularity-to-Dirichlet direction, the
full range for both regularity and Dirichlet problems was recovered in domains
above graphs. Localization arguments then completed the argument in bounded
Lipschitz domains.

In four or more dimensions, further progress relied on the following theorem of
Shen.

Theorem 4.5 ([128]). Suppose that � � R
n is a Lipschitz domain. The following

conditions are equivalent.

• The Lp-Dirichlet problem for L is well-posed, where L is a symmetric elliptic
system of order 2m with real constant coefficients.

• There exists some constant C > 0 and some p > 2 such that

� 
B.Q;r/\@�

N.rm�1u/p d�

�1=p

� C

� 
B.Q;2r/\@�

N.rm�1u/2 d�

�1=2
(81)

holds whenever u is a solution to the L2-Dirichlet problem for L in �, with
ru 	 0 on B.Q; 3r/ \ @�.

For the polyharmonic operator �m, this theorem was essentially proven in
[130]. Furthermore, the reverse Hölder estimate (81) with p D 2.n � 1/=.n � 3/

was shown to follow from well-posedness of the L2-regularity problem. Thus
the Lp-Dirichlet problem is well-posed in bounded Lipschitz domains in R

n for
p D 2.n � 1/=.n � 3/. By interpolation, and because reverse Hölder estimates have
self-improving properties, well-posedness in the range 2 � p � 2.n�1/=.n�3/C"
for any particular Lipschitz domain follows automatically.

Using regularity estimates and square-function estimates, Shen was able to
further improve this range of p. He showed that with p D 2C4=.n��/, 0 < � < n,
the reverse Hölder estimate (81) is true, provided that

ˆ
B.Q;r/\�

jrm�1uj2 � C
� r

R

�� ˆ
B.Q;R/\�

jrm�1uj2 (82)

holds whenever u is a solution to the L2-Dirichlet problem in � with N.rm�1u/ 2
L2.@�/ and rku

ˇ̌
B.Q;R/\� 	 0 for all 0 � k � m � 1.
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It is illuminating to observe that the estimates arising in connection with the
pointwise bounds on the solutions in arbitrary domains (cf. section “Miranda–Ag-
mon Maximum Principle and Related Geometric restrictions on the boundary”)
and the Wiener test (cf. section “The Wiener Test: Continuity of Solutions”) take
essentially the form (82). Thus, Theorem 4.5 and its relation to (82) provide a direct
way to transform results regarding local boundary regularity of solutions, obtained
via the methods underlined in sections “Miranda–Agmon Maximum Principle and
Related Geometric restrictions on the boundary” and “The Wiener Test: Continuity
of Solutions,” into well-posedness of the Lp-Dirichlet problem.

In particular, consider [90, Lemma 5]. If u is a solution to �mu D 0 in
B.Q;R/ \�, where � is a Lipschitz domain, then by [90, Lemma 5] there is some
constant �0 > 0 such that

sup
B.Q;r/\�

juj2 �
� r

R

��0 C

Rn

ˆ
B.Q;R/\�

ju.X/j2 dX (83)

provided that r=R is small enough, that u has zero boundary data on B.Q;R/ \ @�,
and where� � R

n has dimension n D 2m C 1 or n D 2m C 2, or where m D 2 and
n D 7 D 2m C 3. (The bound on dimension comes from the requirement that �m

be positive with weight F; see Eq. (54).)
It is not difficult to see (cf., e.g., [128, Theorem 2.6]) that (83) implies (82) for

some � > n � 2m C 2, and thus implies well-posedness of the Lp-Dirichlet problem
for a certain range of p. This provides an improvement on the results of [130] in the
case m D 2 and n D 6 or n D 7, and in the case m � 3 and n D 2m C 2. Shen has
stated this improvement in [128, Theorems 1.4 and 1.5]: the Lp-Dirichlet problem
for �2 is well-posed for 2 � p < 4 C " in dimensions n D 6 or n D 7, and the
Lp-Dirichlet problem for�m is well-posed if 2 � p < 2m=.m �1/C " in dimension
n D 2m C 2.

The method of weighted integral identities, related to positivity with weight F
[cf. (54)], can be further finessed in a particular case of the biharmonic equation.
Shen [129] uses this method (extending the ideas from [86]) to show that if n � 8,
then (82) is valid for solutions to �2 with � D �n, where

�n D n C 10C 2
p
2.n2 � n C 2/

7
: (84)

We now return to the Lq-regularity problem. Recall that in [116], Pipher and
Verchota showed that if 2 < p < 1 and 1=p C 1=q < 1, then the Lp-
Dirichlet problem and the Lq-regularity problem for �2 are both well-posed in
three-dimensional Lipschitz domains. They proved this by showing that, in the
special case of a domain above a Lipschitz graph, there is duality between the
Lp-Dirichlet and Lq-regularity problems. Such duality results are common. See
[67, 68, 131] for duality results in the second-order case; although even in that case,
duality is not always guaranteed. (See [79].) Many of the known results concerning
the regularity problem for the polyharmonic operator �m are results relating the
Lp-Dirichlet problem to the Lq-regularity problem.
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In [105], I. Mitrea and M. Mitrea showed that if 1 < p < 1 and 1=p C 1=q D 1,
and if the Lq-regularity problem for �2 and the Lp-regularity problem for �
were both well-posed in a particular bounded Lipschitz domain �, then the
Lp-Dirichlet problem for �2 was also well-posed in �. They proved this result
(in arbitrary dimensions) using layer potentials and a Green representation formula
for biharmonic equations. Observe that the extra requirement of well-posedness for
the Laplacian is extremely unfortunate, since in bad domains it essentially restricts
consideration to p < 2 C " and thus does not shed new light on well-posedness in
the general class of Lipschitz domains. As will be discussed below, later Kilty and
Shen established an optimal duality result for biharmonic Dirichlet and regularity
problems.

Recall that the formula (81) provides a necessary and sufficient condition for
well-posedness of the Lp-Dirichlet problem. In [71], Kilty and Shen provided a
similar condition for the regularity problem. To be precise, they demonstrated that
if q > 2 and L is a symmetric elliptic system of order 2m with real constant
coefficients, then the Lq-regularity problem for L is well-posed if and only if the
estimate

� 
B.Q;r/\�

N.rmu/q d�

�1=q

� C

� 
B.Q;2r/\�

N.rmu/2 d�

�1=2
(85)

holds for all points Q 2 @�, all r > 0 small enough, and all solutions u to the
L2-regularity problem with rku

ˇ̌
B.Q;3r/\@� D 0 for 0 � k � m�1. Observe that (85)

is identical to (81) with p replaced by q and m � 1 replaced by m.
As a consequence, well-posedness of the Lq-regularity problem in � for certain

values of q implies well-posedness of the Lp-Dirichlet problem for some values of p.
Specifically, arguments using interior regularity and fractional integral estimates
(given in [71, Sect. 5]) show that (85) implies (81) with 1=p D 1=q �1=.n �1/. But
recall from [128] that (81) holds if and only if the Lp-Dirichlet problem for L is well-
posed in�. Thus, if 2 < q < n�1, and if the Lq-regularity problem for a symmetric
elliptic system is well-posed in a Lipschitz domain�, then the Lp-Dirichlet problem
for the same system and domain is also well-posed, provided 2 < p < p0 C " where
1=p0 D 1=q � 1=.n � 1/.

For the bilaplacian, a full duality result is known. In [70], Kilty and Shen showed
that, if 1 < p < 1 and 1=p C 1=q D 1, then well-posedness of the Lp-Dirichlet
problem for �2 in a Lipschitz domain � and well-posedness of the Lq-regularity
problem for �2 in � were both equivalent to the bilinear estimate

ˇ̌
ˇ̌
ˆ
�

�u�v

ˇ̌
ˇ̌ � C

�
kr�rf kLpCj@�j�1=.n�1/krf kLpCj@�j�2=.n�1/kf kLp

�
(86)

�
�
krgkLq C j@�j�1=.n�1/kgkLq

�
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for all f , g 2 C1
0 .R

n/, where u and v are solutions of the L2-regularity problem with
boundary data @˛u D @˛f and @˛v D @˛g. Thus, if � � R

n is a bounded Lipschitz
domain, and if 1=p C 1=q D 1, then the Lp-Dirichlet problem is well-posed in � if
and only if the Lq-regularity problem is well-posed in �.

All in all, we see that the Lp-regularity problem for �2 is well-posed in
� � R

n if

• � is C1 or convex, and 1 < p < 1.
• n D 2 or n D 3 and 1 < p < 2C ".
• n D 4 and 6=5 � " < p < 2C ".
• n D 5, 6, or 7, and 4=3 � " < p < 2C ".
• n � 8, and 2� 4

4Cn��n
< p < 2C ", where �n is given by (84). The above ranges

of p are sharp, but this range is still open.

Higher-Order Elliptic Systems

The polyharmonic operator �m is part of a larger class of elliptic higher-order
operators. Some study has been made of boundary value problems for such operators
and systems.

The Lp-Dirichlet problem for a strongly elliptic system L of order 2m, as defined
in Definition 2.1, is well-posed in � if there exist a constant C such that, for every
Pf 2 WAp

m�1.@� 7! C
`/ and every Eg 2 Lp.@� 7! C

`/, there exist a unique vector-
valued function Eu W � 7! C

` such that

8̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
:

.LEu/j D
X̀
kD1

X
j˛jDjˇjDm

@˛ajk
˛ˇ@

ˇuk D 0 in � for each 1 � j � `;

@˛Eu D f˛ on @� for j˛j � m � 2;
@m�1
	 Eu D Eg on @�;

kN.rm�1u/kLq.@�/ � C
X

j˛jDm�2
kr� f˛kLq.@�/ C CkEgkLp.@�/:

(87)

The Lq-regularity problem is well-posed in � if there is some constant C such that,
for every Pf 2 WAp

m.@� 7! C
`/, there exist a unique Eu such that

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂
:̂

.LEu/j D
X̀
kD1

X
j˛jDjˇjDm

@˛ajk
˛ˇ@

ˇuk D 0 in � for each 1 � j � `;

@˛Eu D f˛ on @� for j˛j � m � 1;
kN.rmu/kLq.@�/ � C

X
j˛jDm�1

kr� f˛kLq.@�/:

(88)
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In [118], Pipher and Verchota showed that the Lp-Dirichlet and Lp-regularity
problems were well-posed for 2 � " < p < 2 C ", for any higher-order elliptic
partial differential equation with real constant coefficients, in Lipschitz domains of
arbitrary dimension. This was extended to symmetric elliptic systems in [140]. A
key ingredient of the proof was the boundary Gårding inequality

�

4

ˆ
@�

jrmuj.�	n/ d�

�
X̀
j;kD1

X
j˛jDjˇjDm

ˆ
@�

@˛ajk
˛ˇ@

ˇuk.�	n/ d� C C
ˆ
@�

jrm�1@nuj2 d�

valid if u 2 C1
0 .R

n/`, if L D @˛ajk
˛ˇ@

ˇ is a symmetric elliptic system with real
constant coefficients, and if� is the domain above the graph of a Lipschitz function.
We observe that in this case, .�	n/ is a positive number bounded from below. Pipher
and Verchota then used this Gårding inequality and a Green’s formula to construct
the nontangential maximal estimate. See [119] and [140, Sects. 4 and 6].

As in the case of the polyharmonic operator �m, this first result concerned the
Lp-Dirichlet problem and Lq-regularity problem only for 2� " < p < 2C " and for
2 � " < q < 2C ". The polyharmonic operator �m is an elliptic system, and so we
cannot in general improve upon the requirement that 2 � " < p for well-posedness
of the Lp-Dirichlet problem.

However, we can improve on the requirement p < 2C". Recall that Theorem 4.5
from [128] and its equivalence to (82) were proven in the general case of strongly
elliptic systems with real symmetric constant coefficients. As in the case of the
polyharmonic operator �m, (81) follows from well-posedness of the L2-regularity
problem provided p D 2.n�1/=.n�3/, and so if L is such a system, the Lp-Dirichlet
problem for L is well-posed in � provided 2� " < p < 2.n � 1/=.n � 3/C ". This
is [128, Corollary 1.3]. Again, by the counterexamples of [119], this range cannot
be improved if m � 2 and 4 � n � 2m C 1; the question of whether this range can
be improved for general operators L if n � 2m C 2 is still open.

Little is known concerning the regularity problem in a broader range of p. Recall
that (85) from [71] was proven in the general case of strongly elliptic systems with
real symmetric constant coefficients. Thus, we known that for such systems, well-
posedness of the Lq-regularity problem for 2 < q < n � 1 implies well-posedness
of the Lp-Dirichlet problem for appropriate p. The question of whether the reverse
implication holds, or whether this result can be extended to a broader range of q, is
open.
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The Area Integral

One of major tools in the theory of second-order elliptic differential equations is
the Lusin area integral, defined as follows. If w lies in W2

1;loc.�/ for some domain
� � R

n, then the area integral (or square function) of w is defined for Q 2 @� as

Sw.Q/ D
�ˆ

�.Q/
jrw.X/j2 dist.X; @�/2�ndX

�1=2
:

In [36], Dahlberg showed that if u is harmonic in a bounded Lipschitz domain �, if
P0 2 � and u.P0/ D 0, then for any 0 < p < 1,

1

C

ˆ
@�

.Su/p d� �
ˆ
@�

.Nu/p d� � C
ˆ
@�

.Su/p d� (89)

for some constants C depending only on p, �, and P0. Thus, the Lusin area
integral bears deep connections to the Lp-Dirichlet problem. In [38], Dahlberg
et al. generalized this result to solutions to second-order divergence-form elliptic
equations with real coefficients for which the Lr-Dirichlet problem is well-posed for
at least one r.

If L is an operator of order 2m, then the appropriate estimate is

1

C

ˆ
@�

N.rum�1/p d� �
ˆ
@�

S.rum�1/p d� � C
ˆ
@�

N.rum�1/p d�: (90)

Before discussing their validity for particular operators, let us point out that such
square-function estimates are very useful in the study of higher-order equations. In
[128], Shen used (90) to prove the equivalence of (82) and (81), above. In [70],
Kilty and Shen used (90) to prove that well-posedness of the Lp-Dirichlet problem
for �2 implies the bilinear estimate (86). The proof of the maximum principle (14)
in [140, Sect. 8] (to be discussed in section “The Maximum Principle in Lipschitz
Domains”) also exploited (90). Estimates on square functions can be used to derive
estimates on Besov space norms; see [4, Proposition S].

In [115], Pipher and Verchota proved that (90) (with m D 2) holds for solutions u
to�2u D 0, provided� is a bounded Lipschitz domain, 0 < p < 1, and ru.P0/ D
0 for some fixed P0 2 �. Their proof was an adaptation of Dahlberg’s proof [36]
of the corresponding result for harmonic functions. They used the L2-theory for the
biharmonic operator [39], the representation formula (79), and the L2-theory for
harmonic functions to prove good-� inequalities, which, in turn, imply Lp estimates
for 0 < p < 1.

In [40], Dahlberg et al. proved that (90) held for solutions u to Lu D 0, for a
symmetric elliptic system L of order 2m with real constant coefficients, provided
as usual that � is a bounded Lipschitz domain, 0 < p < 1, and rm�1u.P0/ D 0

for some fixed P0 2 �. The argument is necessarily considerably more involved
than the argument of [115] or [36]. In particular, the bound kS.rm�1u/kL2.@�/ �
CkN.rm�1u/kL2.@�/ was proven in three steps.
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The first step was to reduce from the elliptic system L of order 2m to the scalar
elliptic operator M D det L of order 2`m, where ` is as in formula (7). The second
step was to reduce to elliptic equations of the form

P
j˛jDm a˛@2˛u D 0, where

ja˛j > 0 for all j˛j D m. Finally, it was shown that for operators of this form

X
j˛jDm

ˆ
�

a˛ @
˛u.X/2 dist.X; @�/ dX � C

ˆ
@�

N.rm�1u/2 d�:

The passage to 0 < p < 1 in (90) was done, as usual, using good-� inequalities. We
remark that these arguments used the result of [118] that the L2-Dirichlet problem
is well-posed for such operators L in Lipschitz domains.

It is quite interesting that for second-order elliptic systems, the only currently
known approach to the square-function estimate (89) is this reduction to a higher-
order operator.

The Maximum Principle in Lipschitz Domains

We are now in a position to discuss the maximum principle (14) for higher-order
equations in Lipschitz domains.

We say that the maximum principle for an operator L of order 2m holds in the
bounded Lipschitz domain � if there exist a constant C > 0 such that, whenever
f 2 WA1

m�1.@�/ � WA2m�1.@�/ and g 2 L1.@�/ � L2.@�/, the solution u to the
Dirichlet problem (87) with boundary data f and g satisfies

krm�1ukL1
� CkgkL1.@�/ C C

X
j˛jDm�2

kr� f˛kL1.@�/: (91)

The maximum principle (91) was proven to hold in three-dimensional Lipschitz
domains by Pipher and Verchota in [117] (for biharmonic functions), in [119]
(for polyharmonic functions), and by Verchota in [140, Sect. 8] (for solutions to
symmetric systems with real constant coefficients). Pipher and Verchota also proved
in [117] that the maximum principle was valid for biharmonic functions in C1

domains of arbitrary dimension. In [70, Theorem 1.5], Kilty and Shen observed
that the same technique gives validity of the maximum principle for biharmonic
functions in convex domains of arbitrary dimension.

The proof of [117] uses the L2-regularity problem in the domain � to construct
the Green’s function G.X;Y/ for �2 in �. Then if u is biharmonic in � with
N.ru/ 2 L2.@�/, we have that

u.X/ D
ˆ
@�

u.Q/ @	�G.X;Q/ d�.Q/C
ˆ
@�

@	u.Q/�G.X;Q/ d�.Q/ (92)
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where all derivatives of G are taken in the second variable Q. If the H1-regularity
problem is well-posed in appropriate subdomains of �, then r2rXG.X; � / is in
L1.@�/ with L1 norm independent of X, and so the second integral is at most
Ck@	ukL1.@�/. By taking Riesz transforms, the normal derivative @	�G.X;Q/ may
be transformed to tangential derivatives r��G.X;Q/; integrating by parts transfers
these derivatives to u. The square-function estimate (90) implies that the Riesz
transforms of rX�QG.X;Q/ are bounded on L1.@�/. This completes the proof of
the maximum principle.

Similar arguments show that the maximum principle is valid for more general
operators. See [119] for the polyharmonic operator, or [140, Sect. 8] for arbitrary
symmetric operators with real constant coefficients.

An important transitional step is the well-posedness of the H1-regularity prob-
lem. It was established in three-dimensional (or C1) domains in [117, Theorem 4.2]
and [119, Theorem 1.2] and discussed in [140, Sect. 7]. In each case, well-posedness
was proven by analyzing solutions with atomic data Pf using a technique from [37].
A crucial ingredient in this technique is the well-posedness of the Lp-Dirichlet
problem for some p < .n � 1/=.n � 2/; the latter is valid if n D 3 by [39], and (for
�2) in C1 and convex domains by [70, 139], but fails in general Lipschitz domains
for n � 4.

Biharmonic Functions in Convex Domains

We say that a domain � is convex if, whenever X, Y 2 �, the line segment
connecting X and Y lies in �. Observe that all convex domains are necessarily
Lipschitz domains but the converse does not hold. Moreover, while convex domains
are in general no smoother than Lipschitz domains, the extra geometrical structure
often allows for considerably stronger results.

Recall that in [81], the second author of this paper and Maz’ya showed that
the gradient of a biharmonic function is bounded in a three-dimensional domain.
This is a sharp property in dimension three, and in higher dimensional domains
the solutions can be even less regular (cf. section “Miranda–Agmon Maximum
Principle and Related Geometric restrictions on the boundary”). However, using
some intricate linear combination of weighted integrals, the same authors showed in
[80] that second derivatives to biharmonic functions were locally bounded when the
domain was convex. To be precise, they showed that if� is convex, and u 2 VW2

2 .�/

is a solution to �2u D h for some h 2 C1
0 .� n B.Q; 10R//, R > 0, Q 2 @�, then

sup
B.Q;R=5/\�

jr2uj � C

R2

� 
�\B.Q;5R/nB.Q;R=2/

juj2
�1=2

: (93)

In particular, not only are all boundary points of convex domains 1-regular, but the
gradient ru is Lipschitz continuous near such points.
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Kilty and Shen noted in [70] that (93) implies that (85) holds in convex domains
for any q; thus, the Lq-regularity problem for the bilaplacian is well-posed for any
2 < q < 1 in a convex domain. Well-posedness of the Lp-Dirichlet problem for
2 < p < 1 has been established by Shen in [129]. By the duality result (86),
again from [70], this implies that both the Lp-Dirichlet and Lq-regularity problems
are well-posed, for any 1 < p < 1 and any 1 < q < 1, in a convex domain of
arbitrary dimension. They also observed that, by the techniques of [117] (discussed
in section “The Maximum Principle in Lipschitz Domains” above), the maximum
principle (91) is valid in arbitrary convex domains.

It is interesting to note how, once again, the methods and results related to
pointwise estimates, the Wiener criterion, and local regularity estimates near the
boundary are intertwined with the well-posedness of boundary problems in Lp.

The Neumann Problem for the Biharmonic Equation

So far we have only discussed the Dirichlet and regularity problems for higher-
order operators. Another common and important boundary value problem that arises
in applications is the Neumann problem. Indeed, the principal physical motivation
for the inhomogeneous biharmonic equation �2u D h is that it describes the
equilibrium position of a thin elastic plate subject to a vertical force h. The Dirichlet
problem u

ˇ̌
@�

D f , ru
ˇ̌
@�

D g describes an elastic plate whose edges are clamped,
that is, held at a fixed position in a fixed orientation. The Neumann problem, on the
other hand, corresponds to the case of a free boundary. Guido Sweers has written
an excellent short paper [136] discussing the boundary conditions that correspond
to these and other physical situations.

More precisely, if a thin two-dimensional plate is subject to a force h and the
edges are free to move, then its displacement u satisfies the boundary value problem

8̂
<̂
ˆ̂:

�2u D h in �;

��u C .1 � �/@2	u D 0 on @�;

@	�u C .1 � �/@��	u D 0 on @�:

Here � is a physical constant, called the Poisson ratio. This formulation goes back
to Kirchhoff and is well known in the theory of elasticity; see, for example, Sect. 3.1
and Chap. 8 of the classic engineering text [112]. We remark that by [112, formula
(8–10)],

@	�u C .1 � �/@��	u D @	�u C .1 � �/@� .@	�u/ :

This suggests the following homogeneous boundary value problem in a Lipschitz
domain � of arbitrary dimension. We say that the Lp-Neumann problem is
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well-posed if there exist a constant C > 0 such that, for every f0 2 Lp.@�/ and
ƒ0 2 Wp

�1.@�/, there exist a function u such that

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂
:

�2u D 0 in �;

M�u WD ��u C .1 � �/@2	u D f0 on @�;

K�u WD @	�u C .1 � �/1
2
@�ij

�
@	�ij u

� D ƒ0 on @�;

kN.r2u/kLp.@�/ � Ckf0kW
p
1 .@�/

C Ckƒ0kW
p
�1.@�/

:

(94)

Here �ij D 	iej � 	jei is a vector orthogonal to the outward normal 	 and lying in
the xixj-plane.

In addition to the connection to the theory of elasticity, this problem is of interest
because it is in some sense adjoint to the Dirichlet problem (74). That is, if �2u D
�2w D 0 in �, then

´
@�
@	w M�u � w K�u d� D ´

@�
@	u M�w � u K�w d� , where

M� and K� are as in (94); this follows from the more general formula

ˆ
�

w�2u D
ˆ
�

�
��u�w C .1 � �/@jku @jkw

�C
ˆ
@�

w K�u � @	w M�u d�

(95)

valid for arbitrary smooth functions. This formula is analogous to the classical
Green’s identity for the Laplacian

ˆ
�

w�u D �
ˆ
�

ru � rw C
ˆ
@�

w 	 � ru d�: (96)

Observe that, contrary to the Laplacian or more general second-order operators,
there is a family of relevant Neumann data for the biharmonic equation. Moreover,
different values (or, rather, ranges) of � correspond to different natural physical
situations. We refer the reader to [141] for a detailed discussion.

In [34], Cohen and Gosselin showed that the Lp-Neumann problem (94) was
well-posed in C1 domains contained in R

2 for 1 < p < 1, provided in addition
that � D �1. The method of proof was as follows. Recall from (78) that Cohen
and Gosselin showed that the Lp-Dirichlet problem was well-posed by constructing
a multiple layer potential LPf with boundary values .I C K/Pf , and showing that
I C K is invertible. We remark that because Cohen and Gosselin preferred to work
with Dirichlet boundary data of the form .u; @xu; @yu/

ˇ̌
@�

rather than of the form
.u; @	u/

ˇ̌
@�

, the notation of [34] is somewhat different from that of the present paper.
In the notation of the present paper, the method of proof of [34] was to observe that
.ICK/� P� is equivalent to .K�1v P�;M�1v P�/@�C , where v is another biharmonic layer
potential and .I C K/� is the adjoint to .I C K/. Well-posedness of the Neumann
problem then follows from invertibility of I C K on @�C.
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In [141], Verchota investigated the Neumann problem (94) in full generality. He
considered Lipschitz domains with compact, connected boundary contained in R

n,
n � 2. He showed that if �1=.n � 1/ � � < 1, then the Neumann problem is well-
posed provided 2 � " < p < 2 C ". That is, the solutions exist, satisfy the desired
estimates, and are unique either modulo functions of an appropriate class or (in
the case where � is unbounded) when subject to an appropriate growth condition.
See [141, Theorems 13.2 and 15.4]. Verchota’s proof also used boundedness and
invertibility of certain potentials on Lp.@�/; a crucial step was a coercivity estimate
kr2ukL2.@�/ � CkK�ukW2

�1.@�/
C CkM�ukL2.@�/. (This estimate is valid provided u

is biharmonic and satisfies some mean-value hypotheses; see [141, Theorem 7.6]).
More recently, in [132], Shen improved upon Verchota’s results by extending the

range on p (in bounded simply connected Lipschitz domains) to 2.n � 1/=.n C 1/�
" < p < 2C " if n � 4, and 1 < p < 2C " if n D 2 or n D 3. This result again was
proven by inverting layer potentials. Observe that the Lp-regularity problem is also
known to be well-posed for p in this range, and (if n � 6) in a broader range of p;
see section “The Regularity Problem and the Lp-Dirichlet Problem.” The question of
the sharp range of p for which the Lp-Neumann problem is well-posed in a Lipschitz
domain is still open.

Finally, in [109, Sect. 6.5], I. Mitrea and M. Mitrea showed that if � � R
n is

a simply connected domain whose unit outward normal 	 lies in VMO.@�/ (for
example, if � is a C1 domain), then the acceptable range of p is 1 < p < 1;
this may be seen as a generalization of the result of Cohen and Gosselin to higher
dimensions, to other values of �, and to slightly rougher domains.

It turns out that extending the well-posedness results for the Neumann problem
beyond the case of the bilaplacian is an excruciatingly difficult problem, even if
one considers only fourth-order operators with constant coefficients. Even defining
Neumann boundary values for more general operators is a difficult problem (see
section “Formulation of Neumann Boundary Data”), and while some progress has
been made (see [7, 20, 25, 109], or section “Formulation of Neumann Boundary
Data” below), at present there are no well-posedness results for the Neumann
problem with Lp boundary data.

In analogy to (95) and (96), one can write

ˆ
�

w Lu D AŒu;w
C
ˆ
@�

w KAu � @	w MAu d�; (97)

where AŒu;w
 D P
j˛jDjˇjD2 a˛ˇ

´
�

Dˇu D˛w is an energy form associated with

the operator L D P
j˛jDjˇjD2 a˛ˇD˛Dˇ . Note that in the context of fourth-order

operators, the pair .w; @	w/ constitutes the Dirichlet data for w on the boundary,
and so one can say that the operators KAu and MAu define the Neumann data for u.
One immediately faces the problem that the same higher-order operator L can be
rewritten in many different ways and gives rise to different energy forms. The
corresponding Neumann data will be different. (This is the reason why there is a
family of Neumann data for the biharmonic operator.)
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Furthermore, whatever the choice of the form, in order to establish well-
posedness of the Neumann problem, one needs to be able to estimate all second
derivatives of a solution on the boundary in terms of the Neumann data. In the
analogous second-order case, such an estimate is provided by the Rellich identity,
which shows that the tangential derivatives are equivalent to the normal derivative
in L2 for solutions of elliptic PDEs. In the higher-order scenario, such a result calls
for certain coercivity estimates which are still rather poorly understood. We refer
the reader to [142] for a detailed discussion of related results and problems.

Inhomogeneous Problems and Other Classes of Boundary Data

In [4], Adolfsson and Pipher investigated the inhomogeneous Dirichlet problem
for the biharmonic equation with data in Besov and Sobolev spaces. While
resting on the results for homogeneous boundary value problems discussed in
sections “The Dirichlet Problem: Definitions, Layer Potentials, and Some Well–
Posedness Results” and “The Regularity Problem and the Lp-Dirichlet Problem,”
such a framework presents a completely new setting, allowing for the inhomoge-
neous problem and for consideration of classes of boundary data which are, in some
sense, intermediate between the Dirichlet and the regularity problems.

They showed that if Pf 2 WAp
1Cs.@�/ and h 2 Lp

sC1=p�3.�/, then there exist a
unique function u that satisfies

(
�2u D h in �;

Tr @˛u D f˛; for 0 � j˛j � 1
(98)

subject to the estimate

kukL
p
sC1=pC1

.�/ � CkhkL
p
sC1=p�3

.�/ C CkPf kWA
p
1Cs.@�/

(99)

provided 2 � " < p < 2 C " and 0 < s < 1. Here Tr w denotes the trace of w in
the sense of Sobolev spaces; that these may be extended to functions u 2 Lp

sC1C1=p,
s > 0, was proven in [4, Theorem 1.12].

In Lipschitz domains contained in R
3, they proved these results for a broader

range of p and s, namely for 0 < s < 1 and for

max

�
1;

2

s C 1C "

�
< p <

(
1; s < ";
2

s�" ; " � s < 1:
(100)

Finally, in C1 domains, they proved these results for any p and s with 1 < p < 1
and 0 < s < 1.
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In [107], Mitrea et al. extended the three-dimensional results to p D 1 (for
0 < s < ") or 2=.s C 1C "/ < p � 1 (for 1� " < s < 1). They also extended these
results to data h and Pf in more general Besov or Triebel–Lizorkin spaces.

In [108], I. Mitrea and M. Mitrea extended the results of [4] to higher dimensions.
That is, they showed that if � � R

n is a Lipschitz domain and n � 4, then there
is a unique solution to the problem (98) subject to the estimate (99) provided that
0 < s < 1 and that

max

�
1;

n � 1
s C .n � 1/=2C "

�
< p <

(
1; .n � 3/=2C s < ";

n�1
.n�3/=2Cs�" ; " � s < 1:

As in [107], their results extend to more general function spaces.
I. Mitrea and M. Mitrea also showed that, for the same values of p and s, there

exist unique solutions to the inhomogeneous Neumann problem

8̂
<̂
ˆ̂:

�2u D h in �;

M�u D f on @�;

K�u D ƒ on @�

where M� and K� are as in section “The Neumann Problem for the Biharmonic
Equation,” subject to the estimate

kukL
p
sC1=pC1

.�/ � CkhkL
p
sC1=p�3

.�/ C Ckf kB
p;p
s�1.@�/

C CkƒkB
p;p
s�2.@�/

: (101)

Finally, in [109, Sect. 6.4], I. Mitrea and M. Mitrea proved similar results for
more general constant-coefficient elliptic operators. That is, if L is an operator given
by formula (7) whose coefficients satisfy the ellipticity condition (8), and if� � R

n

is a bounded Lipschitz domain, then there exist a unique solution to the Dirichlet
problem

(
Lu D h in �;

Tr @˛u D f˛; for 0 � j˛j � 1
(102)

subject to the estimate

kukB
p;q
m�1CsC1=p.�/

� CkhkB
p;q
�m�1CsC1=p.�/

C CkPf kWA
p;q
m�1Cs.@�/

(103)

provided 2 � " < p < 2 C ", 2 � " < q < 2 C ", and 1=2 � " < s < 1=2 C ".
Furthermore, with a slightly stronger ellipticity condition

Re
X

j˛jDjˇjDm

X̀
j;kD1

ajk
˛ˇ�

˛
j �

ˇ
k � �j�j2;
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they established well-posedness of the inhomogeneous Neumann problem for
arbitrary constant-coefficient operators. See section “Formulation of Neumann
Boundary Data” below for a formulation of Neumann boundary data in the case of
arbitrary operators. Finally, if L is self-adjoint and n > 2m, and if the unit outward
normal 	 to @� lies in VMO.@�/, then the Dirichlet problem (102) has a unique
solution satisfying the estimate (103) for any 0 < s < 1 and any 1 < p < 1,
1 < q < 1.

Let us define the function spaces appearing above. Lp
˛.R

n/ is defined to be fg W
.I � �/˛=2g 2 Lp.Rn/g; we say g 2 Lp

˛.�/ if g D h
ˇ̌
�

for some h 2 Lp
˛.R

n/. If k
is a nonnegative integer, then Lp

k D Wp
k . If m is an integer and 0 < s < 1, then the

Whitney–Besov space WAp
m�1Cs D WAp;p

m�1Cs or WAp;q
m�1Cs is defined analogously

to WAp
m (see Definition 4.2), except that we take the completion with respect to the

Whitney–Besov norm

X
j˛j�m�1

k@˛ kLp.@�/ C
X

j˛jDm�1
k@˛ kB

p;q
s .@�/ (104)

rather than the Whitney–Sobolev norm

X
j˛j�m�1

k@˛ kLp.@�/ C
X

j˛jDm�1
kr�@

˛ kLp.@�/:

In [4], the general problem (98) for �2 was first reduced to the case h D 0

(that is, to a homogeneous problem) by means of trace/extension theorems, that is,
subtracting w.X/ D ´

Rn F.X;Y/ Qh.Y/ dY , and showing that if h 2 Lp
sC1=p�3.�/

then .Tr w;Tr rw/ 2 WAp
1Cs.@�/. Next, the well-posedness of Dirichlet and

regularity problems discussed in sections “The Dirichlet Problem: Definitions,
Layer Potentials, and Some Well-Posedness Results” and “The Regularity Problem
and the Lp-Dirichlet Problem” provide the endpoint cases s D 0 and s D 1,
respectively. The core of the matter is to show that, if u is biharmonic, k is an integer,
and 0 � ˛ � 1, then u 2 Lp

kC˛.�/ if and only if

ˆ
�

jrkC1u.X/jp dist.X; @�/p�p˛ C jrku.X/jp C ju.X/jp dX < 1; (105)

(cf. [4, Proposition S]). With this at hand, one can use square-function estimates
to justify the aforementioned endpoint results. Indeed, observe that for p D 2

the first integral on the left-hand side of (105) is exactly the L2 norm of S.rku/.
The latter, by [115] (discussed in section “The Area Integral”), is equivalent to
the L2 norm of the corresponding nontangential maximal function, connecting the
estimate (99) to the nontangential estimates in the Dirichlet problem (74) and the
regularity problem (80). Finally, one can build an interpolation-type scheme to pass
to well-posedness in intermediate Besov and Sobolev spaces.
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The solution in [109] to the problem (102), at least in the case of general
Lipschitz domains, was constructed in the opposite way, by first reducing to the
case where the boundary data Pf D 0. Using duality it is straightforward to establish
well-posedness in the case p D q D 2, s D 1=2; perturbative results then suffice to
extend to p, q near 2 and s near 1=2.

Boundary Value Problems with Variable Coefficients

Results for higher-order differential equations with variable coefficients are very
scarce. As we discussed in section “Higher-Order Operators: Divergence Form
and Composition Form,” there are two natural manifestations of higher-order
operators with variable coefficients. Operators in divergence form arise via the weak
formulation framework. Conversely, operators in composition form generalize the
bilaplacian under a pull-back of a Lipschitz domain to the upper half-space.

Both classes of operators have been investigated. However, operators in diver-
gence form have received somewhat more study; thus, we begin this section by
reviewing the definition of divergence-form operator. A divergence-form operator
L, acting on W2

m;loc.� 7! C
`/, may be defined weakly via (12); we say that Lu D h

if

X̀
jD1

ˆ
�

'j hj D .�1/m
X̀
j;kD1

X
j˛jDjˇjDm

ˆ
�

@˛'j ajk
˛ˇ @

ˇuk (106)

for all ' smooth and compactly supported in �.

The Kato Problem and the Riesz Transforms

We begin with the Kato problem and the properties of the Riesz transform; this is an
important topic in elliptic theory, which formally stands somewhat apart from the
well-posedness issues.

Suppose that L is a variable-coefficient operator in divergence form, that is, an
operator defined by (106). Suppose that L satisfies the bound

ˇ̌
ˇ̌ X
j˛jDjˇjDm

X̀
j;kD1

ˆ
Rn

ajk
˛ˇ @

ˇfk @
˛gj

ˇ̌
ˇ̌ � Ckrmf kL2.Rn/krmgkL2.Rn/ (107)
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for all f and g in PW2
m.R

n/, and the ellipticity estimate

Re
X

j˛jDjˇjDm

X̀
j;kD1

ˆ
�

ajk
˛ˇ.X/@

ˇ'k.X/@
˛'j.X/ dX � �

X
j˛jDm

X̀
kD1

ˆ
�

j@˛'kj2 (108)

for all functions ' 2 C1
0 .� 7! C

`/. Notice that this is a weaker requirement than
the pointwise ellipticity condition (11).

Auscher et al. [16] proved that under these conditions, the Kato estimate

1

C
krmf kL2.Rn/ � kp

Lf kL2.Rn/ � Ckrmf kL2.Rn/ (109)

is valid for some constant C. They also proved similar results for operators with
lower-order terms.

It was later observed in [11] that by the methods of [15], if 1 � n � 2m,
then the bound on the Riesz transform rmL�1=2 in Lp [that is, the first inequality
in formula (109)] extends to the range 1 < p < 2 C ", and the reverse Riesz
transform bound [that is, the second inequality in formula (109)] extends to the
range 1 < p < 1. This also holds if the Schwartz kernel Wt.X;Y/ of the operator
e�tL satisfies certain pointwise bounds (e.g., if L is second order and the coefficients
of A are real).

In the case where n > 2m, the inequality krmL�1=2f kLp.Rn/ � Ckf kLp.Rn/ holds
for 2n=.n C 2m/ � " < p � 2; see [11, 26]. The reverse inequality holds for
max.2n=.n C 4m/ � "; 1/ < p < 2 by [11, Theorem 18], and for 2 < p <

2n=.n � 2m/C " by duality (see [12, Sect. 7.2]).
In the case of second-order operators, the Kato estimate implies well-posedness

of boundary value problems with L2 data in the upper half-space for certain
coefficients in a special (“block”) form. We conjecture that the same is true in
the case of higher-order operators; see section “Open Questions and Preliminary
Results.”

The Dirichlet Problem for Operators in Divergence Form

In this section we discuss boundary value problems for divergence-form operators
with variable coefficients. At the moment, well-posedness results for such operators
are restricted in that the boundary problems treated fall strictly between the range
of Lp-Dirichlet and Lp-regularity, in the sense of section “Inhomogeneous Problems
for the Biharmonic Equation.” That is, there are at present no well-posedness results
for the Lp-Dirichlet, regularity, and Neumann problems on Lipschitz domains with
the usual sharp estimates in terms of the nontangential maximal function for these
divergence-form operators. (Such problems are now being considered; see section
“Open Questions and Preliminary Results.”)
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To be more precise, recall from the discussion in section “Inhomogeneous
Problems for the Biharmonic Equation” that the classical Dirichlet and regularity
problems, with boundary data in Lp, can be viewed as the s D 0, 1 endpoints of the
boundary problem studied in [4, 107, 108]

�2u D h in �; @˛u
ˇ̌
@�

D f˛ for all j˛j � 1

with Pf lying in an intermediate smoothness space WAp
1Cs.@�/, 0 � s � 1. In the

context of divergence-form higher-order operators with variable coefficients, essen-
tially the known results pertain only to boundary data of intermediate smoothness.

In [7], Agranovich investigated the inhomogeneous Dirichlet problem, in Lips-
chitz domains, for such operators L that are elliptic [in the pointwise sense of (11),
and not the more general condition (108)] and whose coefficients ajk

˛ˇ are Lipschitz
continuous in �.

He showed that if h 2 Lp
�m�1C1=pCs.�/ and Pf 2 WAp

m�1Cs.@�/, for some
0 < s < 1, and if jp � 2j is small enough, then the Dirichlet problem

(
Lu D h in �;

Tr @˛u D f˛ for all 0 � j˛j � m � 1 (110)

has a unique solution u that satisfies the estimate

kukL
p
m�1CsC1=p.�/

� CkhkL
p
�m�1C1=pCs.@�/

C CkPf kWA
p
m�1Cs.@�/

: (111)

Agranovich also considered the Neumann problem for such operators. As we
discussed in section “The Neumann Problem for the Biharmonic Equation,” defining
the Neumann problem is a delicate matter. In the context of zero boundary data, the
situation is a little simpler as one can take a formal functional analytic point of view
and avoid to some extent the discussion of estimates at the boundary. We say that u
solves the Neumann problem for L, with homogeneous boundary data, if Eq. (106)
in the weak formulation of L is valid for all test functions ' compactly supported
in R

n (but not necessarily in �). Agranovich showed that, if h 2 VLp
�m�1C1=pCs.�/,

then there exist a unique function u 2 Lp
m�1C1=pCs.�/ that solves this Neumann

problem with homogeneous boundary data, under the same conditions on p, s, L

as for his results for the Dirichlet problem. Here h 2 VLp
˛.�/ if h D g

ˇ̌
�

for some
g 2 Lp

˛.R
n/ that in addition is supported in N�.

In [100], Maz’ya et al. considered the Dirichlet problem, again with boundary
data in intermediate Besov spaces, for much rougher coefficients. They showed that
if f 2 WAp

m�1Cs.@�/, for some 0 < s < 1 and some 1 < p < 1, if h lies in an
appropriate space, and if L is a divergence-form operator of order 2m [as defined
by (106)], then under some conditions, there is a unique function u that satisfies the
Dirichlet problem (110) subject to the estimate

kukW
p
m;1�s�1=p

D
�X

j˛j�m

ˆ
�

j@˛u.X/jp dist.X; @�/p�ps�1 dX

�1=p

< 1: (112)
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See [100, Theorem 8.1]. The inhomogeneous data h is required to lie in the space
Vp

�m;1�s�1=p.�/, the dual space to Vq
m;sC1=p�1.�/, where

kwkV
p
m;a

D
�X

j˛j�m

ˆ
�

j@˛u.X/jp dist.X; @�/paCpj˛j�pm dX

�1=p

: (113)

Notice that w 2 Vp
m;a if and only if w 2 Wp

m;a and @˛w D 0 on @� for all
0 � j˛j � m � 1.

The conditions are that the coefficients ajk
˛ˇ satisfy the weak ellipticity condi-

tion (108) considered in the theory of the Kato problem, that � be a Lipschitz
domain whose normal vector 	 lies in VMO.@�/, and that the coefficients aij

˛ˇ

lie in L1.Rn/ and in VMO.Rn/. Recall that this condition on � has also arisen
in [106] [it ensures the validity of formula (48)]. Notice that the L1 bound on the
coefficients is a stronger condition than the bound (107) of [16], and the requirement
that the coefficients lie in VMO.Rn/ is a regularity requirement that is weaker than
the requirement of [7] that the coefficients be Lipschitz continuous.

In fact, [100] provides a more intricate result, allowing one to deduce a
well-posedness range of s and p, given information about the oscillation of the
coefficients ajk

˛ˇ and the normal to the domain 	. In the extreme case, when the
oscillations for both are vanishing, the allowable range expands to 0 < s < 1,
1 < p < 1, as stated above.

The construction of solutions to the Dirichlet problem may be simplified using
trace and extension theorems. In [100, Proposition 7.3], the authors showed that if
Pf 2 WAp

m�1Cs.@�/, then there exist a function F 2 Wp
m;a such that @˛F D f˛ on

@�. It is easy to see that if F 2 Wp
m;a, and the coefficients ajk

˛ˇ of L are bounded
pointwise, then LF 2 V�m;1�s�1=p. Thus, the Dirichlet problem

8̂
ˆ̂<
ˆ̂̂:

Lu D h in �;

@˛u
ˇ̌
@�

D f˛; for all j˛j � m � 1;
kukW

p
m;1�s�1=p

� khkV
p
�m;1�s�1=p

C kPf kWA
p
m�1Cs.@�/

may be solved by solving the Dirichlet problem with homogeneous boundary data

8̂
ˆ̂<
ˆ̂̂:

Lw D h � LF in �;

@˛w
ˇ̌
@�

D 0 for all j˛j � m � 1;
kwkW

p
m;1�s�1=p

� khkV
p
�m;1�s�1=p

C kLFkV
p
�m;1�s�1=p

for some extension F and then letting u D w C F.
We comment on the estimate (112). First, by [4, Proposition S] [listed above

as formula (105)], if u is biharmonic, then the estimate (112) is equivalent to the
estimate (111) of [7]. Second, by (90), if the coefficients ajk

˛ˇ are constant, one
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can draw connections between (112) for s D 0, 1 and the nontangential maximal
estimates of the Dirichlet or regularity problems (87) or (88). However, as we
pointed out earlier, this endpoint case, corresponding to the true Lp-Dirichlet and
regularity problems, has not been achieved.

The Dirichlet Problem for Operators in Composition Form

Let us now discuss variable-coefficient fourth-order operators in composition form.
Recall that this particular form arises naturally when considering the transformation
of the bilaplacian under a pull-back from a Lipschitz domain [cf. (13)]. The
authors of the present paper have shown the well-posedness, for a class of such
operators, of the Dirichlet problem with boundary data in L2, thus establishing
the first results concerning the Lp-Dirichlet problem for variable-coefficient higher-
order operators.

Consider the Dirichlet problem

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

L�.aLu/ D 0 in �;

u D f on @�;

	 � Aru D g on @�;

k QN.ru/kL2.@�/ � Ckrf kL2.@�/ C CkgkL2.@�/:

(114)

Here L is a second-order divergence-form differential operator L D � div A.X/r,
and a is a scalar-valued function. (For rough coefficients A, the exact weak definition
of L�.aLu/ D 0 is somewhat delicate, and so we refer the reader to [23].) The
domain � is taken to be the domain above a Lipschitz graph, that is, � D f.x; t/ W
x 2 R

n�1; t > '.x/g for some function ' with r' 2 L1.Rn�1/. As pointed out
above, the class of equations L�.aLu/ D 0 is preserved by a change of variables,
and so well-posedness of the Dirichlet problem (114) in such domains follows from
well-posedness in upper half-spaces R

nC. Hence, in the remainder of this section,
� D R

nC.
The appropriate ellipticity condition is then

� � a.X/ � ƒ; �j�j2 � Re �tA.X/�; jA.X/j � ƒ (115)

for all X 2 R
n and all � 2 C

n, for some constants ƒ > � > 0. The modified
nontangential maximal function QN.ru/, defined by

QN.ru/.Q/ D sup
X2�.Q/

� 
B.X;dist.X;@�/=2/

jruj2
�1=2

;

is taken from [67] and is fairly common in the study of variable-coefficient elliptic
operators.
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In this case, we say that u
ˇ̌
@�

D f and 	 � Aru D g if

lim
t!0C

ku. � C te/ � f kW2
1 .@�/

D 0;

lim
t!0C

k	 � Aru. � C te/ � gkL2.@�/ D 0

where e D en is the unit vector in the vertical direction. Notice that by the restriction
on the domain �, e is transverse to the boundary at all points. We usually refer to
the vertical direction as the t-direction, and if some function depends only on the
first n � 1 coordinates, we say that function is t-independent.

In [23], the authors of the present paper have shown that if n � 3, and if a
and A satisfy (115) and are t-independent, then for every f 2 W2

1 .@�/ and every
g 2 L2.@�/, there exist a u that satisfies (114), provided that the second-order
operator L D div Ar is good from the point of view of the second-order theory.

Without going into the details, we mention that there are certain restrictions on
the coefficients A necessary to ensure the well-posedness even of the corresponding
second-order boundary value problems; see [27]. The key issues are good behavior
in the direction transverse to the boundary, and symmetry. See [61, 67] for
results for symmetric t-independent coefficients, [58, 59, 68, 69, 122] for well-
posedness results and important counterexamples for non-symmetric coefficients,
and [8, 17, 18] for perturbation results for t-independent coefficients.

In particular, using the results of [8, 17, 18], we have established that the
L2-Dirichlet problem (114) in the upper half-space is well-posed, provided the
coefficients a and A satisfy (115) and are t-independent, if in addition one of
the following conditions holds:

1. The matrix A is real and symmetric,
2. The matrix A is constant,
3. The matrix A is in block form (see section “Open Questions and Preliminary

Results”) and the Schwartz kernel Wt.X;Y/ of the operator e�tL satisfies certain
pointwise bounds, or

4. There is some matrix A0, satisfying (1), (2), or (3), that again satisfies(115) and is
t-independent, such that kA � A0kL1.Rn�1/ is small enough (depending only on
the constants �, ƒ in (115)).

The solutions to (114) take the following form. Inspired by formula (79) (taken
from [39]), and a similar representation in [116], we let

Eh D
ˆ
�

F.X;Y/
1

a.Y/
@2nS�h.Y/ dY (116)

for h defined on @�, where S� is the (second-order) single layer potential associated
with L� and F is the fundamental solution associated with L. Then a.X/L.Eh/.X/ D
@2nS�f .X/ in � (and is zero in its complement); if A� is t-independent, then
L�.@2nS�h/ D @2nL�.S�h/ D 0. Thus u D w C Eh is a solution to (114), for any
solution w to Lw D 0. The estimate k QN.rEh/kL2.@�/ � khkL2.@�/ must then be
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established. In the case of biharmonic functions (considered in [116]), this estimate
follows from the boundedness of the Cauchy integral; in the case of (114), this is
the most delicate part of the construction, as the operators involved are far from
being Calderón–Zygmund kernels. Once this estimate has been established, it can
be shown, by an argument that precisely parallels that of [116], that there exists a w
and h such that Lw D 0 and u D w C Eh solves (114).

The Fundamental Solution

A set of important tools, and interesting objects of study in their own right,
are the fundamental solutions and Green’s functions of differential operators in
various domains. To mention some applications presented in this survey, recall from
sections “Sharp Pointwise Estimates on the Derivatives of Solutions in Arbitrary
Domains” and “Green Function Estimates” that bounds on Green’s functions G
are closely tied to maximum principle estimates, and from sections “The Wiener
Test: Continuity of Solutions” and “The Higher-Order Wiener Test: Continuity of
Derivatives of Polyharmonic Functions” that the fundamental solution F is used
to establish regularity of boundary points (that is, the Wiener criterion). See in
particular Theorem 3.6.

Furthermore, fundamental solutions and Green’s functions are often crucial
elements of the construction of solutions to boundary value problems. In the
case of boundary value problems in divergence form, the fundamental solution or
Green’s function for the corresponding higher-order operators is often useful; see
the constructions in [33, 100, 118, 119, 125, 140], or in formulas (77) and (78)
above. In the case of operators in composition form, it is often more appropriate
to use the fundamental solution for the lower-order components; see, for example,
formulas (79), (92), and (116), or the paper [139], which makes extensive use of the
Green’s function for .��/m to solve boundary value problems for .��/mC1.

We now discuss some constructions of the fundamental solution. In the case of
the biharmonic equation, and more generally in the case of constant-coefficient
equations, the fundamental solution may be found in a fairly straightforward
fashion, for example, by use of the Fourier transform; see, for example, formu-
las (20) and (21) above, [60, 63, 110, 114, 126] (the relevant results of which
are summarized as [109, Theorem 4.2]), or [42, 43]. In the case of variable-
coefficient second-order operators, the fundamental solution has been constructed
in [45, 53, 55, 57, 66, 76, 121] under progressively weaker assumptions on the
operators. The most recent of these papers, [121], constructs the fundamental
solution F for a second-order operator L under the assumption that if Lu D 0 in
some ball B.X; r/, then we have the local boundedness estimate

ju.X/j � C

�
1

rn

ˆ
B.X;r/

juj2
�1=2

(117)
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for some constant C depending only on L and not on u, X, or r. This assumption is
true if L is a scalar second-order operator with real coefficients (see [111]) but is not
necessarily true for more general elliptic operators (see [52]).

If Lu D 0 in B.X; r/ for some elliptic operator of order 2m, where 2m > n,
then the local boundedness estimate (117) follows from the Poincaré inequality, the
Caccioppoli inequality

ˆ
B.X;r=2/

jrmuj2 � C

r2m

ˆ
B.X;r/

juj2 (118)

and Morrey’s inequality

ju.X/j � C
NX

jD0
rj

�
1

rn

ˆ
B.X;r=2/

jr juj2
�1=2

whenever N=2 > n:

Weaker versions of the Caccioppoli inequality (118) (that is, bounds with higher-
order derivatives appearing on the right-hand side) were established in [14, 29].
In [21], the first author of the present paper established the full Caccioppoli
inequality (118), thus establishing that if 2m > n then solutions to Lu D 0 satisfy the
estimate (117). (Compare the results of section “Sharp Pointwise Estimates on the
Derivatives of Solutions in Arbitrary Domains,” in which solutions to .��/mu D f
are shown to be pointwise bounded only if 2m > n � 2; as observed in that section,
Morrey’s inequality yields one fewer degree of smoothness but was still adequate
for the purpose of [21].)

Working much as in the second-order papers listed above, Barton then con-
structed the fundamental solution for divergence-form differential operators L with
order 2m> n and with bounded coefficients satisfying the ellipticity condition (108).
In the case of operators L with 2m � n, she then constructed an auxiliary operator
QL with 2m> n and used the fundamental solution foreL to construct the fundamental
solution for L; this technique was also used in [16] to pass from operators of
high order to operators of arbitrary order, and for similar reasons (i.e., to exploit
pointwise bounds present only in the case of operators of very high order).

This technique allowed the proof of the following theorem, the main result
of [21].

Theorem 5.1. Let L be a divergence-form operator of order 2m, acting on functions
defined on R

n, that satisfies the ellipticity condition (108) and whose coefficients A
are pointwise bounded. Then there exist an array of functions FL

j;k.x; y/ with the
following properties.

Let q and s be two integers that satisfy q C s < n and the bounds 0 � q �
min.m; n=2/, 0 � s � min.m; n=2/.
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Then there is some " > 0 such that if x0 2 R
n, if 0 < 4r < R, if A.x0;R/ D

B.x0; 2R/ n B.x0;R/, and if q < n=2 then

ˆ
y2B.x0;r/

ˆ
x2A.x0;R/

jrm�s
x rm�q

y FL.x; y/j2 dx dy � Cr2qR2s

�
r

R

�"
: (119)

If q D n=2, then we instead have the bound

ˆ
y2B.x0;r/

ˆ
x2A.x0;R/

jrm�s
x rm�q

y FL.x; y/j2 dx dy � C.ı/ r2qR2s

�
R

r

�ı
(120)

for all ı > 0 and some constant C.ı/ depending on ı.
We also have the symmetry property

@�x @
ı
yFL

j;k.x; y/ D @
�
x @ıyFL�

k;j .y; x/ (121)

as locally L2 functions, for all multiindices � , ı with j� j D m � q and jıj D m � s.
If in addition q C s > 0, then for all p with 1 � p � 2 and p < n=.n � .q C s//,

we have that
ˆ

B.x0;r/

ˆ
B.x0;r/

jrm�s
x rm�q

y FL.x; y/jp dx dy � C.p/ r2nCp.sCq�n/ (122)

for all x0 2 R
n and all r > 0.

Finally, there is some " > 0 such that if 2 � " < p < 2C " then rm…L extends
to a bounded operator Lp.Rn/ 7! Lp.Rn/. If � satisfies m � n=p < j� j � m � 1 for
some such p, then

@�x…
L
j
Ph.x/ D

NX
kD1

X
jˇjDm

ˆ
Rn
@�x @

ˇ
y FL

j;k.x; y/ hk;ˇ.y/ dy for a.e. x 2 R
n (123)

for all Ph 2 Lp.Rn/ that are also locally in LP.Rn/, for some P > n=.m � j� j/. In the
case of j˛j D m, we still have that

@˛…L
j
Ph.x/ D

NX
kD1

X
jˇjDm

ˆ
Rn
@˛x @

ˇ
y FL

j;k.x; y/ hk;ˇ.y/ dy for a.e. x … supp Ph (124)

for all Ph 2 L2.Rn/ whose support is not all of Rn.

Here, if Ph 2 L2.Rn/, then …L Ph is the unique function in PW2
m.R

n/ that satisfies

X̀
jD1

X
j˛jDm

ˆ
�

@˛'j hj;˛ D .�1/m
X̀
j;kD1

X
j˛jDjˇjDm

ˆ
�

@˛'j ajk
˛ˇ @

ˇ.…L Ph/k
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for all ' 2 PW2
m.R

n/. That is, u D …L Ph is the solution to Lu D divm Ph. The
formulas (123) and (124) represent the statement that FL is the fundamental solution
for L, that is, that LxFL.x; y/ D ıy.x/ in some sense.

Thus, [21] contains a construction of the fundamental solution for divergence-
form operators L of arbitrary order, with no smoothness assumptions on the
coefficients of L or on solutions to Lu D 0 beyond boundedness, measurability,
and ellipticity. These results are new even in the second-order case, as there exist
second-order operators L D � div Ar whose solutions do not satisfy the local
boundedness estimate (117) (see [52, 99]) and thus whose fundamental solution
cannot be constructed as in [121].

Formulation of Neumann Boundary Data

Recall from section “The Neumann Problem for the Biharmonic Equation” that
even defining the Neumann problem is a delicate matter. In the case of higher-order
divergence-form operators with variable coefficients, the Neumann problem has thus
received little study.

As discussed in section “The Dirichlet Problem for Operators in Divergence
Form,” Agranovich has established some well-posedness results for the inhomo-
geneous problem Lu D h with homogeneous Neumann boundary data. He has
also provided a formulation of inhomogeneous Neumann boundary values; see [7,
Sect. 5.2].

This formulation is as follows. Observe that if the test function ' does not have
zero boundary data, then formula (106) becomes

X̀
jD1

ˆ
�

.Lu/j 'j D .�1/m
X̀
j;kD1

X
j˛jDjˇjDm

ˆ
�

@˛'j.X/ ajk
˛ˇ.X/ @

ˇuk.X/ dX (125)

C
m�1X
iD0

X̀
jD1

ˆ
@�

Bj
m�1�iu @

i
	'j d�

where Biu is an appropriate linear combination of the functions @˛u where j˛j D
m C i. The expressions Biu may then be regarded as the Neumann data for u. Notice
that if L is a fourth-order constant-coefficient scalar operator, then B0 D �MA

and B1 D KA, where KA, MA are given by (97). Agranovich provided some brief
discussion of the conditions needed to resolve the Neumann problem with this
notion of inhomogeneous boundary data. Essentially the same notion of Neumann
boundary data was used in [109] (a book considering only the case of constant
coefficients); an explicit formula for Biu in this case may be found in [109,
Proposition 4.3].
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However, there are several major problems with this notion of Neumann bound-
ary data. These difficulties arise from the fact that the different components Biu may
have different degrees of smoothness. For example, in the case of the biharmonic
Lp-Neumann problem of section “The Neumann Problem for the Biharmonic
Equation,” the term M�u D �B0u is taken in the space Lp.@�/, while the term
K�u D B1u is taken in the negative smoothness space Wp

�1.@�/.
If � is a Lipschitz domain, then the space Wq

1 .@�/ of functions with one degree
of smoothness on the boundary is meaningful, and so we may define Wp

�1.@�/,
1=p C 1=q D 1, as its dual space. However, higher degrees of smoothness on the
boundary and thus more negative smoothness spaces Wp

�k.@�/ are not meaningful,
and so this notion of boundary data is difficult to formulate on Lipschitz domains.
(This difficulty may in some sense be circumvented by viewing the Neumann
boundary data as lying in the dual space to WAp

m�1Cs.@�/; see [108, 109]. However,
this approach has some limits; for example, there is a rich theory of boundary value
problems with boundary data in Hardy or Besov spaces which do not arise as dual
spaces (i.e., with p < 1) and which is thus unavailable in this context.)

Furthermore, observe that as we discussed in section “Boundary Value Problems
with Constant Coefficients,” a core result needed to approach Neumann and
regularity problems is a Rellich identity-type estimate, that is, an equivalence of
norms of the Neumann and regularity boundary data of a solution; in the second-
order case this may be stated as

kr�ukL2.@�/ � k	 � ArukL2.@�/

whenever div Aru D 0 in �, for at least some domains � and classes of
coefficients A. In section “Open Questions and Preliminary Results,” we will
discuss some possible approaches and preliminary results concerning higher-order
boundary value problems, in which a higher-order generalization of the Rellich
identity is crucial; thus, it will be highly convenient to have notions of regularity
and Neumann boundary values that can both be reasonably expected to lie in the
space L2.

Thus, it is often convenient to formulate Neumann boundary values in the
following way. Observe that, if Lu D 0 in �, and @� is connected, then for all
nice test functions ', the quantity

X̀
j;kD1

X
j˛jDjˇjDm

ˆ
�

@˛'j ajk
˛ˇ @

ˇuk

depends only on the values of rm�1' on @�; thus, there exist functions Mj;�
A u such

that

X̀
j;kD1

X
j˛jDjˇjDm

ˆ
�

@˛'j ajk
˛ˇ @

ˇuk D
X

j� jDm�1

X̀
jD1

ˆ
@�

Mj;�
A u @�'j d�: (126)
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We may then consider the array of functions PMAu to be the Neumann boundary val-
ues of u. This formulation only requires dealing with a single order of smoothness,
but is somewhat less intuitive as there is no explicit formula for PMAu.X/ in terms of
the derivatives of u evaluated at X.

Also observe that, if we adopt this notion of Neumann boundary data, it is more
natural to view the Dirichlet boundary values of u as the array f@�u

ˇ̌
@�

W j� j D
m � 1g, and not f@�u

ˇ̌
@�

W j� j � m � 1g, as was done in sections “Boundary Value
Problems with Constant Coefficients” and “The Dirichlet Problem for Operators
in Divergence Form.” The natural notion of regularity boundary values is then
fr� @

�u
ˇ̌
@�

W j� j D m�1g; again, all components conveniently may then be expected
to have the same degree of smoothness.

Open Questions and Preliminary Results

The well-posedness results of section “The Dirichlet Problem for Operators in
Divergence Form” cover only a few classes of elliptic differential operators and
some special boundary value problems; the theory of boundary value problems for
higher-order divergence-form operators currently contains many open questions.

Some efforts are underway to investigate these questions. Using the Lax–
Milgram theorem, it is straightforward to establish that the Poisson problems

Lu D h in �; @˛u
ˇ̌
@�

D 0; kukW
p
m;1�s�1=p

� CkhkV
p
�m;1�s�1=p

(127)

Lu D h in �; PMAu D 0; kukW
p
m;1�s�1=p

� CkhkV
p
�m;1�s�1=p

: (128)

are well-posed for p D 2 and s D 1=2. It is possible to show that these problems
are well-posed whenever jp � 2j and js � 1=2j are small enough; recall from [109]
that if L has constant coefficients then the Dirichlet problem (102) and a similar
Neumann problem are well-posed for this range of p and s.

Turning to a broader range of exponents p and s, we observe that perturbative
results for the Poisson problems (127) and (128) are often fairly straightforward
to establish. That is, with some modifications to the relevant function spaces, it is
possible to show that if (127) or (128) is well-posed in some bounded domain �,
for some operator L0 and for some 1 < p < 1, 0 < s < 1, and certain technical
assumptions are satisfied, then the same problem must also be well-posed for any
operator L1 whose coefficients are sufficiently close to those of L0 (in the L1 norm).

Recall from section “The Dirichlet Problem for Operators in Divergence Form”
that for any 1 < p < 1 and 0 < s < 1, the Dirichlet problem

Lu D 0 in �; @˛u
ˇ̌
@�

D f˛; kukW
p
m;1�s�1=p

� CkPf kWA
p
m�1Cs.@�/

(129)
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for boundary data Pf in the fractional smoothness space WAp
m�1Cs.@�/ can be

reduced to well-posedness of the Poisson problem (127). (Some results are also
available at the endpoint p D 1 and in the case p � 1; the integer smoothness
endpoints s D 0 and s D 1 generally must be studied using entirely different
approaches.) A similar argument shows that well-posedness of the Neumann
problem

Lu D 0 in �; Mj;�
A u D gj;� ; kukW

p
m;1�s�1=p

� CkPgk.WA
q
m�1Cs.@�//

�

(130)

follows from well-posedness of the Poisson problem (128) for 1 < p � 1. (In the
case of the Neumann problem results for p � 1 are somewhat more involved.) A
paper [20] containing these perturbative results was recently submitted by the first
author of the present paper.

A key component in the construction of solutions of [20] are appropriate
layer potentials, specifically, the Newton potential and the double and single layer
potentials given by

.…L Ph/j.x/ D
X̀
kD1

X
j˛jDm

ˆ
Rn
@˛y FL

j;k.x; y/ hk;˛.y/ dy;

.DA
�

Pf /i.x/ D 1 N�C .x/Qfi.x/ �
X

j˛jDjˇjDm

X̀
j;kD1

ˆ
N�C
@˛y FL

i;j.x; y/ ajk
˛ˇ.y/ @

ˇQfk.y/ dy;

.SA
� Pg/j.x/ D

X̀
kD1

X
j� jDm�1

ˆ
@�

@�y FL
j;k.x; y/ gk;� .y/ d�.y/

where FL denotes the fundamental solution discussed in section “The Fundamental
Solution” and where Qf is any function that satisfies @� Qfk D fk;� on @�. We remark
that these are very natural generalizations of layer potentials in the second-order
case, and also of various potential operators used in the theory of constant-
coefficient higher-order differential equations; see in particular [104, 109].

In particular, to solve the Dirichlet or Neumann problems (129) or (130), it was
necessary to establish the bounds on layer potentials

kDA
�

Pf kW
p
m;1�s�1=p

� CkPf kWA
p
m�1Cs.@�/

; kSA
� PgkW

p
m;1�s�1=p

� CkPgkBp;ps�1.@�/

In [20], these bounds are derived from the bound

k…L PhkW
p
m;1�s�1=p

� CkPhkW
p
0;1�s�1=p

:

This bound is the technical assumption mentioned above; we remark that it is stable
under perturbation and is always valid if p D 2 and s D 1=2.
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Analogy with the second-order case suggests that, in order to establish well-
posedness of the L2-Dirichlet, L2-Neumann, and L2-regularity problems, a good first
step would be to establish the estimates

kDA
�

Pf kX � CkPf kL2.@�/; kDA
�

Pf kY � Ckr�
Pf kL2.@�/; kSA

� PgkY � CkPgkL2.@�/

for some spaces X and Y. (We remark that the corresponding bounds for constant-
coefficient operators are Theorem 4.7 and Proposition 5.2 in [109], and therein were
used to establish well-posedness results.) In the paper, the recently submitted paper
[25], Steve Hofmann together with the authors of the present paper has established
the bounds

ˆ
Rn

ˆ 1

0

jrm@tSA Pg.x; t/j2 t dt dx � CkPgk2L2.@�/; (131)

ˆ
Rn

ˆ 1

0

jrm@tDAPf .x; t/j2 t dt dx � CkrxPf k2L2.@�/ (132)

where DA D DA
R

n
C

, SA D SA
R

n
C

, for scalar operators L, provided that the

coefficients a˛ˇ are pointwise bounded, elliptic in the sense of (108), and are
constant in the t-direction, that is, the direction transverse to the boundary of RnC. As
discussed in section “The Dirichlet Problem for Operators in Composition Form,”
this assumption of t-independent coefficients is very common in the theory of
second-order differential equations.

We hope that in a future paper we may be able to extend this result to domains
of the form � D f.x; t/ W t > '.x/g for some Lipschitz function '; in the
second-order case, this generalization may be obtained automatically via a change of
variables, but in the higher-order case this technique is only available for equations
in composition form (section “The Dirichlet Problem for Operators in Composition
Form”) and not in divergence form.

In the case of second-order equations � div Aru D 0, where the matrix A of
coefficients is real (or self-adjoint) and t-independent, a straightforward argument
involving Green’s theorem establishes the Rellich identity

krxu. � ; 0/kL2.@Rn
C

/ � k�Ee � ArukL2.@Rn
C

/

where �Ee is the unit outward normal to R
nC; that is, we have an equivalence of norms

between the regularity and Neumann boundary values of a solution u to div Aru D
0. Together with boundedness and certain other properties of layer potentials, this
estimate leads to well-posedness of the L2-regularity and L2-Neumann problems;
it is then a straightforward argument to derive well-posedness of the Dirichlet
problem. See [8, 13, 22, 59], and others.

We have hopes that a similar argument will yield the higher-order Rellich identity

krxrm�1u. � ; 0/kL2.@Rn
C

/ � k PMAukL2.@Rn
C

/
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where the Neumann boundary values PMAu are as in section “Formulation of
Neumann Boundary Data,” for solutions u to divergence-form equations with
t-independent and self-adjoint coefficients (that is, coefficients that satisfy a˛ˇ D
aˇ˛), and that a similar argument will imply well-posedness of higher-order L2

boundary value problems.
The results of section “The Kato Problem and the Riesz Transforms” may also

lead to well-posedness of L2 boundary value problems for a different class of
operators, namely, operators of block type. Again, this argument would proceed
by establishing a Rellich-type identity.

Let us review the theory of second-order divergence-form operators L D
� divAr in R

nC1, where A is an .n C 1/ � .n C 1/, t-independent matrix in block
form; that is, Aj;nC1 D AnC1;j D 0 for 1 � j � n, and AnC1;nC1 D 1. It is fairly easy
to see that one can formally realize the solution to Lu D 0 in R

nC1
C , u

ˇ̌
Rn D f , as the

Poisson semigroup u.x; t/ D e�t
p

Lf .x/, .x; t/ 2 R
nC1
C . Then the Kato estimate (109)

essentially provides an analogue of the Rellich identity-type estimate for the block
operator L, that is, the L2-equivalence between normal and tangential derivatives of
the solution on the boundary

k@tu. � ; 0/kL2.Rn/ � krxu. � ; 0/kL2.Rn/:

Boundedness of layer potentials for block matrices also follows from the Kato
estimate.

Following the same line of reasoning, one can build a higher-order “block-type”
operator L, for which the Kato estimate (109) of section “The Kato Problem and
the Riesz Transforms” would imply a certain comparison between normal and
tangential derivatives on the boundary

k@m
t u. � ; 0/kL2.Rn/ � krm

x u. � ; 0/kL2.Rn/:

It remains to be seen whether these bounds lead to standard well-posedness results.
However, we would like to emphasize that such a result would be restricted to very
special, block-type, operators.
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Victor Shapiro and the Theory of Uniqueness
for Multiple Trigonometric Series

J. Marshall Ash

Abstract In 1870, Georg Cantor proved that if a trigonometric series converges
to 0 everywhere, then all its coefficients must be 0. In the twentieth century this
result was extended to higher dimensional trigonometric series when the mode of
convergence is taken to be spherical convergence and also when it is taken to be
unrestricted rectangular convergence. We will describe the path to each result. An
important part of the first path was Victor Shapiro’s seminal 1957 paper, Uniqueness
of multiple trigonometric series. This paper also was an unexpected part of the
second path.
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Victor Shapiro was a student of Zygmund, and therefore a fellow “mathematical
sibling” of Cora’s and mine. His death in 2013 was followed later in that year
by a conference to honor him held in Riverside, California. I gave a talk at that
conference. The paper that I present here is based on that talk. I suspect that Cora,
whose first question upon meeting me after the passage of some time was usually
about my mathematics, would have enjoyed seeing this.

Two Theorems and a Conjecture

Let fdng�1<n<1 be a sequence of complex numbers and let x 2 T
1 D Œ0; 2�/.

Suppose a function has a representation of the form

X
dneinx D lim

N!1 d0 C
NX

nD1

�
d�ne�inx C dneinx

�
:

It is natural to combine the nth and �nth terms, for if an and bn are real, dn D
.an C ibn/ =2 and d�n is the complex conjugate of dn, then dneinx C d�ne�inx=
an cos nx C bn sin nx, the “natural” nth term of a real valued trigonometric series.
Is this representation unique? In other words, if

P
dneinx D P

d0
neinx for every x,

does it necessarily follow that dn D d0
n for every n? Subtract and set cn D dn � d0

n to
get a cleaner formulation: Does

P
cneinx D 0 imply that cn D 0 for every n? Here

is Georg Cantor’s answer.

Theorem 2.1. Let
P

cneinx D 0 for every x 2 T
1. Then cn D 0 for every n [9].

He proved this in 1870. Notice that in the statement of his theorem, Cantor
made a choice of what it means for a trigonometric series to represent the
function z .x/ where z has domain T

1 and range f0g, namely that it converges
to that point at every point of T

1. Many other notions of “represent” have been
considered since then; many are discussed in Chap. IX of Antoni Zygmund’s book
Trigonometric Series [16]. We will mostly focus on this pointwise everywhere
notion of representation.

The entire subject of this broad survey concerns attempts to extend this result to
higher dimensions. In all dimensions we will always combine terms whose indices
differ only by signs. This reduction in dimension 1 converts a two-sided numerical
series

P1
nD�1 Cn to the series

P
n2ZC

Tn, where for each n 2 Z
C D f0; 1; 2; : : : g,

Tn D P
f	W jvjDng C	 . Since the nonnegative integers have a natural ordering,

Cantor’s theorem’s hypothesis is unambiguous. When d � 2, the corresponding
reduction of

P
n2Zd Cn to

P
n2.ZC/

d Tn where Tn D P
f	W j	ijDni for 1�i�dg C	 does

not produce a “natural ordering” because
�
Z

C�d
does not have a natural ordering,

so many conjectures arise in each dimension.
Here are three important distinct ways of adding the elements of the numerical

series
P

n2.ZC/
d Tn .



The Theory of Uniqueness for Multiple Trigonometric Series 125

Spherical convergence: The Nth partial sum contains all terms with indices in
the intersection of the sphere of radius

p
N with the positive cone

�
Z

C�d
. The natural

norm on Z
d for spherical convergence will be denoted by j	j and is given by

j	j WD
q
	21 C � � � C 	2d :

The spherical sum is defined to be

SPH
X

n2.ZC/
d

Tn WD lim
N!1

X

f	Wall 	i�0 and 	21C���C	2d �Ng
T	

D lim
N!1

X

f	Wall 	i�0 and j	j�p
Ng

T	:

Square convergence: The Nth partial sum contains all terms with indices in
the rectangular parallelepiped with opposite corners .0; : : : ; 0/ and .N; : : : ;N/. The
natural norm on Z

d for square convergence will be denoted by k	k and is given by

k	k WD max fj	1j ; : : : ; j	djg :

The square sum is defined as

SQ
X

n2.ZC/
d

Tn WD lim
N!1

NX
	1D0

� � �
NX

	dD0
T	 D lim

N!1
X

f	Wall 	i�0 and k	k�Ng
T	:

Unrestricted rectangular convergence: This is no longer a one variable process.
Assign to each point n of

�
Z

C�d
the rectangular partial sum Sn of all terms

whose indices are in the rectangular parallelepiped with corners .0; : : : ; 0/

and .n1; : : : ; nd/. The unrestricted rectangular limit of
P

T	 is a number L
such that for each � > 0, there is a number N .�/ so that for every n with
min fn1; : : : ; ndg > N .�/, jSn � Lj < �. When such an L exists, we call it the
unrestricted rectangular sum of

P
Tn and write

UR
X

n2.ZC/
d

Tn WD lim
min fN1; � � � ;Ndg ! 1

N1X
	1D0

� � �
NdX
	dD0

T	:

It is obvious that if a numerical series is unrestrictedly rectangularly convergent,
then it is square convergent to the same sum; i.e.,

UR
X

n2.ZC/
d

Tn D L implies SQ
X

n2.ZC/
d

Tn D L: (1)
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It is easy to give examples of double series of numbers
P

n2.ZC/
2 Tn which show

that each of the five other possible connections between these three methods of
convergence is, in general, false.

In dimension d � 2, with n D .n1; : : : ; nd/ 2 Z
d, x D .x1; : : : ; xd/ 2 T

d, and
nx D n1x1 C � � � C ndxd, and Tn .x/ D P

f	W j	ijDni for 1�i�dg c	ei	x, there are three
distinct and natural hypotheses for direct generalizations of Cantor’s theorem. Here
is the present state of knowledge.

Theorem 2.2. Let

SPH
X
n2Zd

cneinx D SPH
X

n2.Zd/
C

X
fW jijDni for 1�i�dg

ceix D 0

for every x 2 T
d. Then cn D 0 for every n[8].

Theorem 2.3. Let

UR
X
n2Zd

cneinx D UR
X

n2.Zd/
C

X
fW jijDni for 1�i�dg

ceix D 0

for every x 2 T
d. Then cn D 0 for every n[4, 15].

Conjecture 2.4. Let

SQ
X
n2Zd

cneinx D SQ
X

n2.Zd/
C

X
fW jijDni for 1�i�dg

ceix D 0

for every x 2 T
d. Then cn D 0 for every n.

We will later need to mention one higher dimensional extension of Theorem 2.2
which involves replacing the condition of spherical convergence, namely that
SPH

P
cneinx exists, by the weaker condition of spherical Abel summability:

Theorem 2.5. If for every x 2 T
d, SPH

P
cneinxrjnj exists for all positive r < 1 and

limr!1� SPH
P

cneinxrjnj D 0, and if

X
R�1<jnj�R

jcnj D o .R/ as R ! 1I (2)

then cn D 0 for every n[14].
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History of the Two Theorems

The steps of Cantor’s brilliant proof are well known. Our discussion here will be
informed by drawing comparisons with them. Here are the four major steps of his
proof.

(1) Establish the Cantor–Lebesgue theorem, which implies that everywhere con-
vergence ensures that

� .R/ D
X

knkDR

jcnj2 ! 0 as R ! 1: (3)

In dimension 1,
P

knkDR jcnj2 D jcRj2 C jc�Rj2.
(2) Show that the Riemann function, the formal second integral, F .x/ D c0

x2

2
CP

n¤0
cn

.in/2
einx; is continuous. (Formal means that d2

dx2
x2

2
D 1 and for each n ¤

0; d2

dx2
einx

.in/2
D einx.)

(3) Establish the consistency of Riemann summability, that the Schwarz second
derivative D2 defined by

D2F .x/ D lim
h!0

F .x C h/ � 2F .x/C F .x � h/

h2
(4)

satisfies at every x

D2F .x/ D lim
h!0

c0 C
X
n¤0

cneinx

 
sin n h

2

n h
2

!2
D 0:

(4) Use Schwarz’s theorem, that continuous functions with identically zero
Schwarz second derivative are of the form ax C b.

Step (2), the proof that F is continuous, is immediate from Step (1) and the
Weierstrass M-test.

The Spherical Uniqueness Theorem, Theorem 2.2

The first big step towards Theorem 2.2 was taken in 1957, when Victor Shapiro
proved a powerful d dimensional theorem. Shapiro worked in a more general
context, also considering questions of summability. He did not prove Theorem 2.2
because his proof required an extra assumption on the coefficient size[14]. A corol-
lary of one of Shapiro’s results was a weaker version of Theorem 2.2 which required
the additional hypothesis of condition (2). This condition is quite natural when
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d D 2: since there are O .r/ lattice points being summed over in condition (2),
in dimension 2 this assumption asserts that the cm tend to zero “on the average”
as jmj ! 1. But the assumption becomes much stronger as the dimension
increases; specifically, in dimension d there are O

�
rd�1� terms in the sum, so that

the coefficients are required to be decaying like o
�
r2�d

�
on the average.

Shapiro’s 1957 proof is a direct extension of Cantor’s in the sense that he follows
the same four steps.

(1) He controls the coefficient size by simply adding a second hypothesis, namely
that condition (2) holds is true by assumption.

(2) His Riemann function F.x/ is the formal anti-Laplacian of the seriesP
n2Zd cneinx appearing in the hypothesis of Theorem 2.2,

F .x/ D c0
kxk2
2d

�
X
n¤0

cn
einx

knk2 D lim
t!1�

c0
kxk2
2d

�
X
n¤0

cn

knk2 einx�knkt;

which he proves to be continuous. (Now formal means that � kxk2
2d D 1 and

� einx

knk2 D einx for all non-zero n. For the Laplacian � D Pd
iD1

�
@
@xi

�2
and

kxk2 D Pd
jD1 x2j ; and for each n ¤ 0, �einx D knk2einx.)

(3) He establishes a kind of consistency of Riemann summability by showing that
at every x, the generalized Laplacian of F,

lim
h!0C

8

h2

�
1

�h2

ˆ
k�k<h

F .x C �/ d� � F .x/

	

is zero.
(4) He uses a well-known theorem that continuous functions with identically zero

generalized Laplacian are harmonic.

By far the most delicate and difficult part of his work is Step (2), the proof that F
is continuous.

Because the original series is only required to be Abel summable to 0 every-
where, it is not possible to weaken the hypothesis by replacing o .R/ by O .R/.
For the proposed stronger theorem would be contradicted by the fact that the one-
dimensional series

ı0 .x/ D
X

ineinx D �2
X

n sin nx

has Abel limit 0 everywhere. To my mind, the most beautiful thing about Theo-
rem 2.2 is that there is no hypothesis about coefficient size. In 1971, 14 years after
Shapiro’s theorem was proved, Roger Cooke proved a two-dimensional Cantor–
Lebesgue theorem[12]. An immediate consequence of his result is that everywhere
two-dimensional spherical convergence ensures that condition (3) must hold. But in
dimension 2 (and not in higher dimensions), condition (3) implies condition (2). So
the two-dimensional version of Theorem 2.2 was proved.
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The first precursor to a higher dimensional spherical theory came in 1976, when
Bernard Connes extended the Cantor–Lebesgue result of Cooke, whose proof was
exceedingly two-dimensional, to all dimensions[11]. At this point, we knew that if
we wanted to prove Theorem 2.2, we could use the fact that � .R/ ! 0 without
having to add a second hypothesis involving coefficient size.

But in dimension 3, there is a very large gap between condition (3) and the much
stronger condition (2), and this gap becomes ever larger as the dimension increases.
So it seemed likely that when dimension d � 3, Step (2) of Shapiro’s proof, the
proof that his Riemann function is continuous, would be inaccessible. Shapiro and I
discussed this problem. We agreed that it was totally unclear if there was a proof or
a counterexample ahead for the cases of d � 3, and he speculated that there might
be a century of mathematical analysis development required to bring this question
within reach.

Victor Shapiro had one more major contribution to make towards the solution of
Theorem 2.2. Victor told me that 1 day in the middle 1990s, he and Jean Bourgain
happened to be strolling across the University of California, Riverside campus and
Victor mentioned this problem. Their conversation inspired Bourgain to look at the
problem and solve it! He stayed entirely within the framework established by Cantor
and generalized by Shapiro. Assuming only the everywhere spherical convergence
to zero, and bringing together Connes result, hard analysis, harmonic measure, and
some probability theory (martingales), he was able to prove that Shapiro’s Riemann
function was continuous. In 1996, Bourgain published his proof that the hypothesis
of Theorem 2.2 implies the continuity of Shapiro’s Riemann function[8]. Together,
these two excellent papers, the first by Shapiro and the latter by Bourgain, published
39 years apart, provide the complete proof of Theorem 2.2.

Bourgain’s paper is only 15 pages long. Although it is absolutely correct and
says everything that should be said in just the right order, it is extremely terse. In
fact, Gang Wang and I took 9 months to read it, but once we got it, we were able
to reproduce a lot of the substantial collection of one- dimensional extensions of
Cantor’s theorem that can be found in Chap. IX of Antoni Zygmund’s Trigonometric
Series [5, 6, 16]. To see an expansion of Bourgain’s proof of continuity, see the
22 page version in [5]; and to see his proof expanded to 42 pages while being
specialized down to two dimensions, see [2].

The Unrestricted Rectangular Uniqueness Theorem,
Theorem 2.3

Let M .x/ be a one-dimensional trigonometric series that converges to zero a.e.
and let ı .y/ D P

einy be the trigonometric series associated with the unit mass
at the origin. Because the partial sums of ı .y/ are bounded by csc y, the double
trigonometric series M .x/ ı .y/ is unrestrictedly rectangularly convergent to 0

a.e.[7]. But by Zygmund’s extension of Cooke’s theorem, Mı cannot converge
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circularly on a set of positive measure, since its coefficients do not tend to 0 as
knk ! 1 [17]. So the proof of Theorem 2.3 seems to have nothing to do with
Shapiro’s 1957 theorem. However, by a strange quirk of fate, it does.

Theorem 2.3 was announced in 1919. The announced proof also followed the
model of Cantor’s theorem. It was a very simple induction that seemed to indicate
that there were no interesting things to do in this direction, so for many years
nothing involving uniqueness for unrestricted rectangular convergence appeared in
the literature. Grant Welland and I studied the proof around 1970 and could not
follow the step that generalized Schwarz’s theorem. In fact, some years later Chris
Freiling and Dan Rinne showed me the counterexample function .x C y/ jx C yj.
This function satisfies the hypotheses (being continuous and having a certain
generalized Fxxyy identically 0), but not the conclusion (having the expected form

a .y/ x C b .y/C c .x/ y C d .x/ ;

with a; b; c; d being twice differentiable), of the generalized Schwarz’s theorem
necessary for the 1919 paper’s proof to be valid.

So Grant Welland and I tried to prove Theorem 2.3. We were able to prove a
version of the Cantor–Lebesgue theorem stating that when a multiple trigonometric
series converges unrestrictedly rectangularly a.e., “most” coefficients tend to zero,
while all coefficients are bounded. From this control of the coefficient size, it follows
that Shapiro’s coefficient size condition (2) holds in dimension 2. In view of the Mı
example just mentioned, one cannot expect the hypothesis of

UR
X
n2Zd

cneinx D 0 for all x 2 T
d (5)

to easily imply that SPH
P

n2Zd cneinx D 0 for all x 2 T
d. Nevertheless, it turns

out to be easy to prove that hypothesis (5) does imply spherical Abel summability
to zero everywhere. (This was quite an unexpected and happy surprise for Welland
and me.) Thus Shapiro’s more general Theorem 2.5 does apply here, so that in 1972
the two-dimensional case of Theorem 2.3 was shown to be another consequence of
Shapiro’s 1957 results [7].

After a gap of about 20 years, during which there was no activity at all in
the area of uniqueness for multiple trigonometric series, two completely different
proofs of Theorem 2.3 for all dimensions appeared [4, 15]. The Tetunashvili proof
involves a clever induction. Some ideas from [7, 10] play a role. The Ash–Freiling–
Rinne proof extensively renovates the 1919 attempted proof, and uses a complicated
covering argument. (See [1] to see this covering argument applied in a much simpler
situation.) It is ironical that our very complicated covering proof probably would
not have happened if Tetunashvili’s previously published and more direct proof
had come to our attention before our article had appeared. Only time will tell
if the covering techniques we developed will eventually have useful applications
elsewhere.
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The Conjecture

There is an obvious inclusion. If a multiple numerical series converges Unrestricted
Rectangularly, then it converges Square. So

Hypothesis of UR Theorem H) Hypothesis of Square Conjecture.

This explains how it can be that UR uniqueness can be known while Square
uniqueness remains an open question. One hint of the problems here is that it is
possible for a double trigonometric series to square converge everywhere to a finite
valued function while having coefficients that are not O

�
nJ
�

no matter how large J
may be [6]. I have discussed the square uniqueness conjecture in several places [3].

The first seven references below can be found using links from http://condor.
depaul.edu/mash/realvita.html.
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A Last Conversation with Cora

Aline Bonami

Abstract I cannot contribute to this volume without speaking of Cora and what
her friendship meant to me. But I know that, would she be here, she would ask:
“Raconte-moi tes maths,” that is, “what are you doing right now?” Because, first
of all, she was a mathematician. My mathematical contribution tends to answer her
question.

I probably met Cora for the first time at El Escorial in 1979. We immediately
started a friendly conversation, which went over years. Each time we met again,
at a conference or when she visited Paris area, we continued as if there had been
no interruption. We always spoke French, which she liked. She had no accent at
all, which was at first surprising: it was only from some hesitation in the choice
of words that one understood that French was not her mother language. She had
spent 1 or 2 years in Paris while a very young child, in the immediate after war
period and she liked to remind that time. I remember her, for instance, telling me
that their house caretaker had never crossed the Seine River. I had the impression
she was speaking of some mythic city, where time stays still, even if I was only a few
years younger and lived in Paris area since the early 1950s. During her last stays in
Paris she visited regularly Marie-Hélène Schwartz, whom she knew from her early
childhood. She came back happy, and somehow serene, to have spent some time
with this kind figure of her past, then a very old lady—who finally survived Cora a
couple of years.

The conversation of Cora was brilliant, witty, full of life, sometimes intense. We
spoke of everything: science or careers, politics and history, colleagues and women
in mathematics, and harmonic analysis, of course. She was curious of everything.
“Raconte-moi” (tell me), she would ask. And I went to the blackboard and explained
what I was doing. We passed from one subject to another, leaving maths to come
back 5 min later, as one can do between friends. It is sometimes easier to confide to
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a friend one does not meet on an everyday basis. This is how it was between us: a
real friendship. At times she spoke of the exile, and the injury it causes, the loss one
feels for life. I had only lived it in books. I then lived it through her words. But the
next moment we joked gaily again.

I visited her at Howard University in 1981 and met Daniel for the first time.
I remind the three of us laughing together after a performance of “A Midsummer
Night’s Dream,” the staging of which we had found ridiculous. We met at MSRI in
1988 (I recall the beach, with Cora, Daniel, and Corasol), then in Oberwolfach. I
remember her persuading me to leave for Paris early on Friday afternoon. I had my
car and we drove back with Guy David and Stéphane Jaffard, stopping for a lively
and cheerful dinner. Cora came to my home that night and succeeded immediately
to charm the whole family. In the late 1990s Daniel and Cora spent nearly each
year a few days in Paris and we met regularly. I took them once to a horse show,
which was not that successful and became another source of jokes between us. But
unfortunately illness imperceptibly changed them year after year.

I called her from time to time, not enough, certainly. She replied in her deep,
warm voice. “Comme je suis contente de t’entendre !”1 We met for the last time in
2005, in Washington, where I stopped for half a day on my way back from Buenos
Aires. I called her early in the morning. We met and walked quietly through the city,
chatting happily as ever. It was our last conversation.

1I am so glad to hear you!



Fourier Multipliers of the Homogeneous
Sobolev Space PW1;1

Aline Bonami

In memory of Cora

Abstract We prove that the restriction to an affine subspace of such a Fourier
multiplier is still a Fourier multiplier, generalizing a celebrated theorem of de Leeuw
for Fourier multipliers of Lp. This may be seen as a complement to the spectacular
result that such Fourier multipliers are continuous, which has been recently proved
by Kazaniecki and Wojciechowski.

1991Mathematics Subject Classification: 42B15 42B35

Introduction

Let W1;p.Rd/ be the usual Sobolev space, consisting of functions f 2 Lp.Rd/ such
that f and jrf j are in Lp.Rd/. Here j � j stands for the Euclidean norm of a vector in
R

d. The homogenous Sobolev space PW1;p.Rd/ consists of tempered distributions f
such that jrf j belongs to Lp.Rd/. We define its seminorm by

kf k PW1;p WD krf kp:

The Schwartz class S.Rd/ is dense in PW1;p. Let F be the Fourier transform, defined
on L1.Rd/ by

F f .
/ WD Of .
/ WD
ˆ
Rd

f .x/e�2i�x�
 dx:
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For 1 � p < 1, let X be either the Lebesgue space Lp.Rd/ or the homogeneous
Sobolev space PW1;p.Rd/. A function m 2 L1.Rd/ is said to be a Fourier multiplier
of X if there exists a bounded linear operator T W X 7! X such that bTf D mOf
for all f 2 S.Rd/. The operator T is the convolution operator by some tempered
distribution S. We denote it by Tm in the sequel.

When p > 1, Fourier multipliers of PW1;p.Rd/ coincide with Fourier multipliers
of Lp.Rd/. So we will concentrate on the case when p D 1. Recall that Fourier
multipliers of L1.Rd/ are given by Fourier transforms of bounded measures. While
Fourier multipliers of PW1;1.R/ coincide with those of L1.R/, it was observed by
Poornima [8] that this is not the case in higher dimensions. Indeed, there are
examples of multipliers of PW1;1.Rd/ for d > 1 given by Fourier transforms of
distributions S which are not bounded measures but whose partial derivatives @xj S
may be written as a linear combination of partial derivatives of bounded measures,

@xj S D
dX

kD1
@xk�jk:

Clearly @xj.S 
 f / D P
�jk 
 @xj f ; from which one concludes that FS is a Fourier

multiplier of PW1;1.Rd/. The existence of such distributions relies on a very difficult
example of Ornstein [7]. Such examples have attracted a lot of interest, in particular
in relation with Korn’s inequality. Another proof has been given by Conti, Faraco,
and Maggi in [3] and generalized in [5].

Let us mention that for d > 1 the space PW1;1.Rd/ possesses other unexpected
properties, such as the fact that (up to a constant) it is contained in the Lorentz
space L

d
d�1 ;1 (see [1, 8, 10] and also the recent paper [9]).

At the same time, one may expect that there are not so many Fourier multipliers
of PW1;1.Rd/. This was the object of a joint paper [2] with Poornima, where it was
proved that nonconstant homogeneous functions of degree 0 are not such Fourier
multipliers. Very recently Kazaniecki and Wojciechowski have proved a much
stronger statement in their preprint [4], namely,

Theorem 1.1 (Kazaniecki and Wojciechowski). Fourier multipliers of PW1;1.Rd/

are continuous functions on R
d.

Their proof uses the fact that the continuity is already known for homogeneous
functions of degree 0. It also relies on a tricky construction based on Riesz products,
which gives another family of possible counterexamples. Since the counterexamples
of Ornstein were the basis of Bonami and Poornima [2], two kinds of difficult
constructions are required to prove the continuity.

It may be of independent interest to generalize in this context a well-known
property of the Fourier multipliers. The Lp version is known as the theorem of
de Leeuw (see [6]). It was in particular used by C. Fefferman to prove that the
characteristic function of the unit ball is not a Fourier multiplier of Lp.Rd/ for d � 3

once it is proved for R2. Namely, we prove the following.
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Theorem 1.2. The restriction of a Fourier multiplier of PW1;1.Rd/ to any affine
subspace of dimension k identifies with a Fourier multiplier of PW1;1.Rk/.

The proof does not use Theorem 1.1 but implies the continuity of Fourier
multipliers on all lines.

We list properties of the space of Fourier multipliers of PW1;1.Rd/ in the next
section. We give some proofs, which are not so easily available in [2, 4, 8]. We
prove Theorem 1.2 in the third section.

We end this introduction with a remark. In Dimension 2, the complexification
of the Sobolev space PW1;1.R2/ identifies with the space of functions f such that
@zf and @zf are in L1.R2/. Since one passes from one derivative to the other one
by the Beurling transform B, which is given by the multiplier 
1�i
2


1Ci
2
, it identifies

also with the space of functions f in L1.R2/ such that their Beurling transform Bf
is in L1.R2/. This is reminiscent of the definition of the Hardy space H1, with the
Beurling transform that plays the role of the Hilbert transform. But Theorem 1.1
proves that this space has very few Fourier multipliers, contrarily to the Hardy space.

First Properties of Fourier Multipliers of PW1;1.Rd/

We call S0.Rd/ the space of smooth functions whose Fourier transform is compactly
supported in R

d n f0g. It is proved in [2] that they are dense in PW1;1.Rd/.
Next, it is proved in [4] (by an elementary proof) that Fourier multipliers of

PW1;1.Rd/ are continuous in R
d n f0g and uniformly bounded by the norm of Tm as

a convolution operator, which we simply note jjjmjjj. More precisely, the norm jjjmjjj
is the smallest constant C such that, for all f 2 S0.Rd/, we have

kr.Tmf /k1 � Ckrf k1 (1)

or, equivalently, for h with values in R
d that is bounded and compactly supported,

2�

ˇ̌
ˇ̌
ˆ
Rd

m.
/Of .
/
 � Oh.
/d

ˇ̌
ˇ̌ � Ckrf k1khk1: (2)

Using this characterization and the Lebesgue dominated convergence theorem, we
obtain the next lemma (a weaker version may be found in [4]). The analog for
Fourier multipliers of Lp.Rd/ when p � 1 is well known.

Lemma 2.1. If mn is a sequence of Fourier multipliers of PW1;1.Rd/ which are
bounded in norm and if mn tends to m a.e., then m is a Fourier multiplier of PW1;1.Rd/

and

jjjmjjj � sup
n

jjjmnjjj: (3)
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Next, for all functions � defined on R
d and � > 0, we define the dilated functions

��.�/ by ��.�/.x/ WD �.�x/. We immediately have that

k��.f /k PW1;1.Rd/ D ��dC1kf k PW1;1.Rd/: (4)

Moreover, from the identity

T��.m/f D ���1 .Tm.��.f /// ; (5)

we deduce the invariance of the space of Fourier multipliers by dilation: ��.m/ is a
Fourier multiplier at the same time as m, with norm jjj��.m/jjj D jjjmjjj:

We now state and prove for completeness the characterization of Fourier
multipliers of PW1;1.R/ (it is only proved for the space W1;1.R/ in [8]). The same
kind of proof will be used later on.

Proposition 2.2. Fourier multipliers of PW1;1.R/ are Fourier transforms of bounded
measures and, if m is the Fourier transform of the measure�, then jjjmjjj � k�kM.R/.

Here M.R/ stands for the space of bounded measures on R.

Proof. Since the convolution by bounded measures preserves the space PW1;1.Rd/,
we only have to prove the converse. Assume that m is a Fourier multiplier of
PW1;1.R/. Let ' be a fixed smooth function, which is supported in .�2;C2/ and

equal to 1 in .�1;C1/. Because of the analog of Lemma 2.1 for Fourier transforms
of bounded measures, it is sufficient to prove that .1 � '.n�//m is uniformly the
Fourier transform of a bounded measure. Using invariance by dilation for Fourier
transforms of bounded measures, this is equivalent to the fact that .1� '/�1=n.m/ is
uniformly the Fourier transform of a bounded measure. Again, using invariance by
dilation of the Fourier multipliers of PW1;1.R/, it is sufficient to prove that there exists
some constant C such that, for all Fourier multipliers m, the function .1�'/m is the
Fourier transform of a measure whose norm is bounded by Cjjjmjjj. Let us prove this
inequality when m is a Fourier multiplier of PW1;1.R/ and m vanishes in .�1;C1/. It
is sufficient to prove that m is a multiplier of L1.R/, that is,

2�

ˇ̌
ˇ̌
ˆ
R

m.
/Og.
/Oh.
/d

ˇ̌
ˇ̌ � Cjjjmjjjkgk1khk1 (6)

for all g with compactly supported and smooth Fourier transform, and h bounded
with compact support. This is a consequence of (2), written with f smooth with
compact support outside .�1=2;C1=2/, such that 
 Of .
/ D Og.
/, with kf 0k1 �
Ckgk1: We can take Of .
/ WD .1 � '.2
//

Og.
/


: Indeed the function 1�'.2
/



, which is

in L2.R/ as well as its derivative, is the Fourier transform of an L1 function. ut
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The Restriction Theorem

We now prove Theorem 1.2. Since the space of Fourier multipliers is not invariant
through translation, let us be more explicit. Because of the invariance by rotation, it
is sufficient to consider the following situation: we fix the integer k with 1 � k < d.
For 
 in R

d, we denote by 
 0 its projection on the subspace generated by the k first
coordinates and 
 00 D 
 � 
 0. We then consider the affine subspaces 
 00 D a, for
some a 2 R

d�k. We claim that for m a Fourier multiplier of PW1;1.Rd/, the function

 0 7! m.
 0; a/ is a Fourier multiplier of PW1;1.Rk/. Because of the invariance by
dilation, it is sufficient to prove the theorem in two particular cases, namely a D 0

and a D .0; � � � ; 0; 1/.

Traces of Fourier Multipliers on Subspaces of Rd

In this sub-section we consider the case when a D 0. Recall that we know, by
the theorem of Kazaniecki and Wojciechowski, that m is a continuous function, but
we will only need the continuity outside 0. Without loss of generality we assume
that jjjmjjj D 1. With an obvious change of notations, because of (2), we have to
prove that

2�

ˇ̌
ˇ̌
ˆ
Rk

m.
 0; 0/Of .
 0/
 0 � Oh.
 0/d
 0
ˇ̌
ˇ̌ � Ckrx0 f k1khk1:

Now f and h are defined on R
k. Let ' be a fixed function on R

d�k whose Fourier
transform is smooth and compactly supported, and is equal to 1 at 0. Because of
continuity, the integral on the left-hand side is the limit, for � tending to 0, of

2�

�d�k

ˆ
Rd

m.
 0; 
 00/Of .
 0/
 0 � Of .
 0/'2.
 00=�/d
 0d
 00:

We have used the fact that 1
�d�k '

2.
 00=�/d
 00 tends weakly to the Dirac mass at
0. But it is bounded by krFk1kHk1, with F.x/ D �df .x0/F�1.'/.�x00/ and
H.x/ D h.x0/.F�1'/.�x00/: The norm of H is directly bounded by Ckhk1. For
F, the norm of its gradient in x0 is also directly bounded in terms of krx0 f k1. It
remains to consider the gradient in x00, which is bounded by �kf k1krx00'k1. When
we let � tend to 0, we find the required inequality.

Remark that we deduce from the previous proof that the norm of m.�; 0/ as a
Fourier multiplier of PW1;1.Rk/ is bounded by jjjmjjj:
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Traces of Fourier Multipliers on Other Affine Subspaces of Rd

We have seen that it is sufficient to consider the case when a D .0; � � � ; 0; 1/. We
adapt the previous proof by replacing the function '2.
 00=�/ by '2..
 00 � a/=�/,
so that now 1

�d�k '
2..
 00 � a/=�/d
 00 tends to the Dirac mass at a. The proof goes

the same way, except for a new term that appears in the gradient of the new
function F that we obtain when derivating e�2i�a:x00

: Up to a constant, it is equal
to �d�kf .x0/e�2i�a:x00

.F�1'/.�x00/. This gives another term in kf k1 for the norm
krx00Fk1, with no small constant before. We need to get rid of this term, which we
can do when m.�; a/ is supported outside some ball j
 0j < ˛ because of the following
lemma.

Lemma 3.1. There is a constant C such that, for every f on R
d whose Fourier

transform is smooth and compactly supported, there exists g with the same
properties, such that their Fourier transforms coincide outside the ball j
j < 1

and such that

kgk1 C krgk1 � Ckrf k1:

Proof. The proof is classical. Let us consider a function  , which is smooth and
compactly supported in the ball j
j < 1, and is equal to 1 when j
j < 1=2. We take
g such that

Og.
/ D .1 �  .
//Of .
/ D
X

j

.1 �  .
//
j

j
j2 
jOf .
/:

The inequality krgk1 � Ckrf k1 follows directly from the fact that the Fourier
transform of ' is in L1.Rd/: Let us prove the bound for the norm of g itself. It
is sufficient to prove that for each j the function 	.
/ WD .1� .
//
j

j
j2 is also the

Fourier transform of an L1 function. For this we write 1� .
/ D P
j�1. .
=2j/�

 .
=2j�1//, and see 	 as a sum of functions 	j. It is easily seen that

jD˛	j.
/j � C˛2
�.j˛jC1/j:

So the 	j is the Fourier transform of an L1 function with norm bounded by C2�j.
This finishes the proof. ut

To conclude that the restriction of m to the affine subspace 
 00 D a is a Fourier
multiplier, we write m as the sum of two Fourier multipliers. We take this time
a function � in R

d whose Fourier transform is smooth and supported in the ball
centered at a of radius 1=2. We assume moreover that � D 1 in the ball centered at
a of radius 1=4. Clearly �m and .1��/m are Fourier multipliers of norm bounded by
Cjjjmjjj. Next .1��/m vanishes at points .
 0; a/when j
 0j < 1=4. So we can use for it
our previous argument. It remains to deal with Fourier multipliers that are supported
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in the ball centered at a of radius 1=2. We conclude from the following lemma,
using the fact that the restriction to an affine subspace of the Fourier transform
of a bounded measure is also the Fourier transform of a bounded measure, and in
particular a Fourier multiplier of PW1;1.R/.

Lemma 3.2. There exists a constant C such that every Fourier multiplier of
PW1;1.R/ which is compactly supported in the shell 1=2 � j
j � 3=2 is the Fourier

transform of a measure �, with k�kM.Rd/ � Cjjjmjjj:
Proof. We assume that jjjmjjj D 1: It is sufficient to prove that m is a Fourier
multiplier of L1.Rd/, that is, for Og which is smooth and compactly supported and
k which is bounded and compactly supported,

2�

ˇ̌
ˇ̌
ˆ
Rd

m.
/Og.
/Ok.
/d

ˇ̌
ˇ̌ � Ckgk1kkk1:

This is deduced from (2) once we have found f and hj for j D 1; � � � ; d such that

Og.
/Ok.
/ D Of .
/
X

j


j Ohj.
/:

We fix a function ', which is smooth, equal to 1 in the shell that contains the support
of m and compactly supported in a slightly larger shell, say, 1=2 � j
j � 3=2 . We

choose Of .
/ D '.
/

j
j2 Og.
/, Ohj.
/ D '.
/
j Ok.
/. It remains to prove that krf k1 �
Ckgk1, and also khjk1 � kkk1: This is a direct consequence that all functions

j'.
/

j
j2 and 
j'.
/ are Fourier transforms of L1 functions. The functions hj are not
compactly supported but decrease rapidly, which is sufficient to conclude. ut

The restriction mapping is surjective when k D 0: the Fourier transform of a
bounded measure on R extends into the Fourier transform of a bounded measure on
R

d. When k > 0 and a ¤ 0 it is not surjective: a Fourier multiplier of PW1;1.Rd/

coincides locally with the Fourier transform of a bounded measure outside 0 by
Lemma 3.2, while it is not the case for a Fourier multiplier of PW1;1.Rk/ in a
neighborhood of 0 for k > 0. We do not know whether the restriction mapping
is surjective for a D 0.

Final Remark

The proof of Theorem 1.2 may be considered as very simple compared to the
one of Theorem 1.1. One would like to have a Functional analysis proof for this
last one. Due to Theorem 1.2 and the fact that the class of Fourier multipliers
of PW1;1.R/ coincides with that of L1.R/, the restriction of a Fourier multiplier of
PW1;1.Rd/ to a line in R

d is the Fourier transform of a bounded measure on R. As
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a consequence, multipliers are continuous on rays. This simplifies one step of the
proof of Kazaniecki and Wojciechowski. Remark also that to prove that the limit
at 0 on rays does not depend on the direction it is sufficient to do it in Dimension
2, which is another simplification. Unfortunately we could not go further in the
establishment of a simple proof of Theorem 1.1.
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A Note on Nonhomogenous Weighted Div-Curl
Lemmas

Der-Chen Chang, Galia Dafni, and Hong Yue

Dedicated to the memory of Cora Sadosky

Abstract We prove some nonhomogeneous versions of the div-curl lemma in the
context of weighted spaces. Namely, assume the vector fields V;WW Rn!R

n, along
with their distributional divergence and curl, respectively, lie in Lp

� and Lq
	 , 1p C 1

q D
1, where � and 	 are in certain Muckenhoupt weight classes. Then the resulting

scalar product V � W is in the weighted local Hardy space h1!.R
n/, for ! D �

1
p 	

1
q

in A1C 1
n
.
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Introduction and Background

The following article describes the results presented by the second author at the
Special Session on Harmonic Analysis and Operator Theory (in memory of Cora
Sadosky), the AMS Western Spring Sectional Meeting, Albuquerque, NM, April
2014. All three authors have been influenced by Cora, both personally (the first two
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authors have been her coauthors—see [3, 4]) and through her work. We would like
to dedicate this note to her memory, in recognition of her contributions to harmonic
analysis and to mathematics in general.

Since the work of Coifman, Lions, Meyer, and Semmes [5], there have been
many results by a variety of authors on div-curl lemmas in the context of Hardy
spaces (the article [4] also falls into this body of work). The idea is to show that
certain quantities occurring in nonlinear PDE lie in a better space than expected,
in many cases the Hardy space H1 as opposed to L1, enabling one to prove weak
convergence of these quantities and leading to improved regularity results. Here we
prove analogues of some of these theorems in the case of weighted Hardy spaces
on R

n. Previous work by Tsutsui [17] has already dealt with the homogeneous
case, and we present a nonhomogeneous version, although the proofs can also be
applied to the homogeneous case in order to obtain Tsutsui’s conclusions in a more
straightforward way.

Before stating our results, we review quickly some definitions and theorems
relevant to this work. We do not attempt to give an overview of the subject. To
define real Hardy spaces, we will use the maximal function characterization: for
0 < p � 1, we say a tempered distribution f lies in Hp.Rn/ if the maximal function
M'.f / belongs to Lp.Rn/, where ' is a fixed Schwartz function with

´
' D 1, and

M'.f /.x/ WD sup
t>0

jf 
 't.x/j; 't.�/ D t�n'.t�1�/: (1)

The choice of ' does not affect the space Hp, only the norm, defined by

kf kHp WD kM'.f /kLp :

We will be dealing with the case p D 1, where the Hardy space H1 is a proper
subspace of L1. One of the main results of Coifman et al. [5] can be stated as follows:

Theorem 1.1 ([5]). If n � 2, 1 < p < 1, 1p C 1
q D 1,

V 2 Lp.Rn;Rn/; W 2 Lq.Rn;Rn/

with

div V D 0; curl W D 0

in the sense of distributions, then

V � W 2 H1.Rn/;

with

kV � WkH1 � CkVkLpkWkLq :
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A local, or nonhomogeneous, version of real Hardy spaces, hp.Rn/, 0 < p � 1,
was defined in [8]: a tempered distribution f 2 hp.Rn/ if the localized maximal
function Mloc

' .f / belongs to Lp.Rn/, where ' is fixed as in the definition of M'

in (1), and

Mloc
' .f /.x/ WD sup

0<t<1
jf 
 '.x/j:

Here the choice of the number 1 is arbitrary: any finite number will give an
equivalent norm. The term local is misleading because there is another (truly) local
real Hardy space Hp

loc, consisting of distributions which when multiplied by smooth
functions of compact support become elements of hp (or elements of Hp if an extra
step is included in order to guarantee the moment conditions—see Proposition 1.92
in [14] for the case p D 1). A nonhomogeneous version of the div-curl lemma
for vector fields in Lp

loc, Lq
loc, resulting in a dot product in H1

loc, was given in [5],
assuming some improved “integrability” of the distributional divergence and curl,
respectively, and using the Hodge decomposition.

An analogue of the result of Coifman et al. [5] above for the space h1 was given
in [6], where it was shown that the dot product V �W belongs to h1, assuming certain
conditions on the distributions div V and .curl W/ij. A special case (corresponding
to the hypotheses of the div-curl lemma of Murat [12]) is as follows:

Theorem 1.2 ([6]). For vector fields V 2 Lp.Rn;Rn/, W 2 Lq.Rn;Rn/, if div V is
a function in Lp.Rn/ and .curl W/ij are functions in Lq.Rn/, 1 � i; j � n, we have
V � W 2 h1.Rn/ with

kV � Wkh1.Rn/ � C
h
kVkLp.Rn/kWkLq.Rn/ C kdiv VkLp.Rn/kWkLq.Rn/

CkVkLp.Rn/

X
i;j

k.curl W/ijkLq.Rn/

i
:

Hardy spaces can be defined in much more general settings than R
n, such as

metric measure spaces or spaces of homogeneous type. We will consider the special
case of doubling measures � on R

n for which the Hardy–Littlewood maximal
function is bounded on Lp

�, 1 < p < 1, which are measures of the form d� D !dx,
where ! > 0 satisfies the Muckenhoupt Ap condition

Œ!
Ap WD sup
B

�
�
ˆ

B
!dx

��
�
ˆ

B
!�1=.p�1/dx

�p�1
< 1:

Here we take the supremum over all balls B in R
n and use �́

B !dx to denote the
average of ! over B with respect to Lebesgue measure. When p D 1, the A1
condition becomes

Œ!
A1 WD sup
B

�
�
ˆ

B
!dx

��
ess inf

x2B
!.x/

��1
< 1;
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while for p D 1 it is

Œ!
A
1

WD sup
B

�
�
ˆ

B
!dx

�

exp

�
�
ˆ

B
log!dx

���1
< 1:

Recall that the Ap classes are increasing in p, so that A1 is the smallest and A1 is
the biggest class, which can be written as the union of all the Ap classes for p < 1.
For some recent instructive expositions of weights and related topics see [10, 13].

The theory of weighted Hardy spaces using Ap weights was developed in
[7, 16, 18]. Local weighted Hardy spaces hp

! were studied by Bui [2], who proved
analogues of the results of Goldberg [8] on boundary functions of harmonic
functions on the strip, with the restriction that the weight ! belong to A1.

Starting with ! 2 A1, we will use the conditions

M'.f / 2 Lp
!; resp. Mloc

' .f / 2 Lp
!;

to define Hp
! , resp. hp

! . These correspond to the radial maximal function, while other
equivalent characterizations can be shown using grand and nontangential maximal
functions. For Hp

w, Tsutsui proves the following version of the (homogeneous) div-
curl lemma (Theorem 1.2 in [17]):

Theorem 1.3 ([17]). Let p; q 2 . n
nC1 ;1/ be such that 1r D 1

p C 1
q < 1C 1

n . Suppose

further that � 2 .1; p.1C1=n// and � 2 .1; q.1C1=n// are such that �p C �

q < 1C 1
n .

Then for any weights � 2 A� and 	 2 A� we have

k.u � r/vkHr
!

� ckukH
p
�
krvkH

q
	

when div u D 0 and ! D �r=p	r=q.

Note that ! belongs to Ar. �p C �
q /

by an interpolation result for weights (see Corol-
lary 28 in [10]). The proof of the theorem relies on using the divergence-free
condition on u to express u � rv in terms of some bilinear forms involving
Riesz transforms, and then applying a pointwise estimate of Miyachi [11] and
the boundedness of the Riesz transforms on Hp

�. Tsutsui also proves an endpoint
estimate (p D 1) following the ideas in [1].

Statement and Proof of Results

We now state and prove two nonhomogeneous versions of the div-curl lemma for
weighted local Hardy spaces, corresponding to the irrotational and the incompress-
ible cases, respectively. Here ' is fixed as in definition (1) above, and we may
assume that its support is contained in the ball B.0; 1/.
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Theorem 2.1. Let 1 < p; q < 1 be conjugate exponents, 1
p C 1

q D 1, and let

Qp 2 .1; p/, Qq 2 .max. q
n ; 1/; 1C q

n / such that Qp
p C Qq

q D 1C 1
n . Assume that � and 	

are two weights in AQp and AQq, respectively, and that ! D �
1
p 	

1
q . If the vector fields

V in Lp
�.R

n;Rn/ and W in Lq
	.R

n;Rn/ satisfy

div V 2 Lp
�; curl W D 0

in the sense of distributions, then the scalar product f D V � W satisfies
Mloc

' .f / 2 L1! . Moreover,

kMloc
' .f /kL1!

� C
�
kVkL

p
�

C kdiv VkL
p
�

�
kWkL

q
	
: (2)

Theorem 2.2. Let 1 < p; q < 1 be conjugate exponents, 1
p C 1

q D 1, and let

Qq 2 .1; q/, Qp 2 .max. p
n ; 1/;min.p; 1 C p

n // such that Qp
p C Qq

q D 1 C 1
n . Assume �

and 	 are two weights in AQp and AQq, respectively, and that ! D �
1
p 	

1
q . If the vector

fields V in Lp
�.R

n;Rn/ and W in Lq
	.R

n;Rn/ satisfy

div V D 0; .curl W/ij 2 Lq
	.R

n;Rn/; i; j 2 f1; : : : ; ng;

in the sense of distributions, then the scalar product f D V � W satisfies
Mloc

' .f / 2 L1! . Moreover,

kMloc
' .f /kL1!

� CkVkL
p
�

�
kWkL

q
	

C
X

i;j

k.curl W/ijkL
q
	

�
: (3)

Note that our results correspond roughly to the case r D 1 in Tsutsui’s result,
Theorem 1.3 above. In our case interpolation gives ! 2 A1C 1

n
, but by the self-

improvement property of weights, ! will lie in some class As with s < 1 C 1
n .

Moreover, even if we took Qp and Qq with Qp
p C Qq

q < 1C 1
n we can always increase them

(since the Ap classes are increasing) so without loss of generality we may assume
equality.

Conversely, starting with a weight ! in A1C 1
n
, the factorization of weights (see

[15], V.5.3, Proposition 9 or [10], Theorem 29) allows us to write ! as !1!
�1=n
2

for !1; !2 2 A1. Then !�1=n
2 2 A1C 1

n
by scaling (Corollary 16 in [10]) and setting

�1=p D !�1 !
�.1=n/.1��/
2 and 	1=q D !1��1 !

�.1=n/�
2 , one can again use interpolation

and scaling (Corollary 17 in [10]) for an appropriate � to get � in AQp and 	 in AQq.
When both div V and curl W vanish, as in Tsutsui’s hypotheses, we can use the

theorem with the widest range for Qp and Qq, namely when 1 < p < n
n�1 we can use

Theorem 2.2 which allows for Qq 2 .1; q/ and Qp 2 .max. p
n ; 1/;min.p; 1 C p

n // D
.1; p/ for this range of p. When p � n

n�1 we can use Theorem 2.1 which allows
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for Qp 2 .1; p/, Qq 2 .max. q
n ; 1/; 1 C q

n / D .1; 1 C q
n / since q � n. Note that in

Theorem 1.3, the condition �
p C �

q < 1 C 1
n restricts the ranges of � and � to less

than the ones specified.
A more significant difference with Theorem 1.3 is that the right-hand side

involves the weighted Lp (and Lq), rather than Hp (resp., Hq), norms. For p > 1,
these coincide when the weight is in Ap, but otherwise, depending on the weight,
the Hardy space can contain singular measures and distributions.

When both div V and curl W do not vanish, we can still apply the theorems
above after first applying a Hodge decomposition, as in [5], to get an analogue of
Theorem 1.2.

Proof of Theorem 2.1. Let ˛ D p
Qp and ˇ D q

Qq , then 1
˛

C 1
ˇ

D Qp
p C Qq

q D 1C 1
n . The

key inequality proved in [5] (see (10) after Lemma II.1) is a bound on the maximal
function M'.f / in terms of the Hardy–Littlewood maximal function, denoted by M:

M'.f /.x/ � C .M.jVj˛/.x//1=˛ �M.jWjˇ/.x/�1=ˇ (4)

under the assumption that 1 < ˛ < p, 1 < ˇ < q. By our hypotheses we still
have 1 < ˛ < p but now ˇ lies in the range . qn

qCn ;min.q; n// which means that as q
approaches 1 we may have ˇ < 1.

Fix x 2 R
n; t > 0. From the hypothesis on W we write W D r� and proceed as

in [5]. Since we assume ' is supported in B.0; 1/, we have that 't.x��/ is supported
in B D B.x; t/. Then W D r.� � �B/ and we can write, denoting by g the function
in Lp

� which is the divergence of V in the sense of distributions,

't 
 f .x/ D
ˆ

B
't.x � y/V.y/ � r.� � �B/.y/dy

D �
ˆ

B
div Œ't.x � y/V.y/
.� � �B/.y/dy

D �
ˆ

B
Œry't.x � y/ � V.y//
.� � �B/.y/dy

C
ˆ

B
't.x � y/g.y/.� � �B/.y/dy:

Denote by ˛0 the conjugate exponent of ˛. By Hölder’s inequality, and using the
fact that t � 1, we have that

j't 
 f .x/j

� kr'k1t�n�1
ˆ

B
jVjj� � �Bjdy C k'k1t�n

ˆ
B

jgjj� � �Bjdy

� C'
t

�
�
ˆ

B
j� � �Bj˛0

�1=˛0

(�
�
ˆ

B
jVj˛

�1=˛
C
�

�
ˆ

B
jgj˛

�1=˛)
: (5)
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As pointed out above, n
nC1 <

nq
nCq < ˇ < n, and since ˛0 D ˇn

n�ˇ D ˇ� is the
Sobolev conjugate exponent of ˇ, we have ˇ� � 1 . Thus we can apply the version
of the Sobolev–Poincaré inequality found in [9], Theorem 8.7 and Remark 8.8 (with
the dimension s D n and � > 1) to � :

�
�
ˆ

B
j�.y/ � �Bj˛0

dy

�1=˛0

� Ct

�
�
ˆ
�B

jr�.y/jˇdy

�1=ˇ
: (6)

It is important to note that we are not using here any of the weighted versions of the
Sobolev–Poincaré inequality found in [13], for example. Inserting this in (5) and
taking the supremum over all t � 1 give the analogue of (4):

Mloc
' .f /.x/ � C

�
M.jWjˇ/.x/�1=ˇ

n
.M.jVj˛/.x//1=˛ C .M.jgj˛/.x//1=˛

o
:

We can again use Hölder’s inequality, as well as the boundedness of the Hardy–
Littlewood maximal function M on LQp

�, LQq
	 (see [15] Chap. V, Theorem 1, noting that

Qp D p
˛
> 1 and Qq D q

ˇ
> 1) to conclude:

kMloc
' .f /kL1!

D
ˆ

Mloc
' .f /.x/�

1
p .x/	

1
q .x/dx

� C


ˆ �
M.jWjˇ/.x/�q=ˇ

	.x/dx

�1=q

�
( 
ˆ

.M.jVj˛/.x//p=˛�.x/dx

�1=p

C �
.M.jgj˛/.x//p=˛�.x/dx


1=p

)

� CkM.jWjˇ/kQq=q

L
Qq
	

�
kM.jVj˛/kQp=p

L
Qp
�

C kM.jgj˛/kQp=p

L
Qp
�

	

� CkWkL
q
	

�
kVkL

p
�

C kgkL
p
�

�
:

�

Proof of Theorem 2.2. We will follow the proof of Theorem 4 in [6]. As shown
there, given the hypothesis div V D 0, we can find a matrix A D .aij/ whose

columns EAj satisfy

div EAj D vj; (7)

so that in the sense of distributions

V � W D
nX

jD1
div .EAjwj/C

X
i<j

aij.curl W/ij: (8)
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Denoting B.x; t/ by B and replacing aij by aij � .aij/B in (8), we can proceed, as in
the proof of Theorem 2.1, to write

't 
 .V � W/.x/ D �
X

i;j

ˆ
1

tnC1
@'

@yi
.
x � y

t
/.aij.y/ � .aij/B/ wj.y/ dy

C
X
i<j

ˆ
B
't.x � y/.aij.y/ � .aij/B/.curl W/ij.y/

For ˛; ˇ as in the proof of Theorem 2.1, the assumptions on q force 1 < ˇ < q,
so we can use Hölder’s inequality, and the fact that t � 1, to get

j't 
 f .x/j � kr'k1
tnC1

X
i;j

ˆ
B

jaij � .aij/Bjjwjj dy

Ck'k1
tn

X
i<j

ˆ
B

jaij � .aij/Bjj.curl W/ijjdy

�
X

i;j

C'
t

�
�
ˆ

B
jaij.y/ � .aij/Bjˇ0

dy

�1=ˇ0

�
(�

�
ˆ

B
jWjˇ

�1=ˇ
C
�

�
ˆ

B
j.curl W/ijjˇ

�1=ˇ)
:

For each i; j, we can again apply the Sobolev–Poincaré inequality (with the
ranges for ˛ and ˇ reversed, so that now n

nC1 < ˛ < n and ˇ0 D ˛� � 1) to get

�
�
ˆ

B
jaij.y/ � .aij/B/jˇ0

dy

�1=ˇ0

� Ct

�
�
ˆ
�B

jraij.y/j˛dy

�1=˛
: (9)

The resulting estimate for the maximal function is

jMloc
' .f /.x/j

� C
X

i;j

M.jraijj˛/.x/1=˛
�

M.jwjjˇ/.x/1=ˇ C M.j.curl W/ijjˇ/.x/1=ˇ
�
:

Since the aij were defined (see [6]) in terms of second derivatives of the solution
of Poisson’s equation for the components of V, the boundedness of the Riesz
transforms on Lp

� (see [15] Chap. V, Corollary to Theorem 2), provided� 2 AQp � Ap

(which is why we need to assume Qp < p), gives kraijkL
p
�

� CkVkL
p
�
. This and the

boundedness of the maximal function allow us to conclude the proof:
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kMloc
' .f /kL1!

� C
X

i;j

ˆ �
M.jraijj˛/.x/


 1
˛ �

�
M.jwjjˇ/.x/1=ˇ C M.j.curl W/ijjˇ/.x/1=ˇ



�1=p.x/	1=q.x/dx

� C
X

i;j

kM.jraijj˛/kQp=p

L
Qp
�

n
kM.jWjˇ/kQq=q

L
Qq
	

C M.j.curl W/ijjˇ/kQq=q

L
Qq
	

o

� C
X

i;j

kraijkL
p
�

˚kWkL
q
	

C k.curl W/ijkL
q
	

�

� CkVkL
p
�

�
kWkL

q
	

C
X

i;j

k.curl W/ijkL
q
	

�
:

�
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A Remark on Bilinear Square Functions

Loukas Grafakos

Abstract We provide some remarks concerning a bilinear square function formed
by products of Littlewood–Paley operators over arbitrary intervals. For 1 < p1;
p2 < 1 with 1=p D 1=p1 C 1=p2, we show that this square function is bounded
from Lp1 .R/ � Lp2 .R/ to Lp.R/ when p > 2=3 and unbounded when p < 2=3.

2000Mathematics Subject Classification: 42Bxx

Little work is known in the area of bilinear Littlewood–Paley square functions
besides the articles of Lacey [6], Diestel [3], and Bernicot [1]. In this note, we study
a bilinear square function formed by products of Littlewood–Paley operators over
arbitrary intervals.

Given an interval I D Œa; b/ on R, let �I be the Littlewood–Paley operator
defined by multiplication by the characteristic function of I on the Fourier transform
side. The Fourier transform of an integrable function g on R is defined by

Og.
/ D
ˆ

R
g.x/e�2� ix
 dx

and its inverse Fourier transform is defined by g_.
/ D Og.�
/. In terms of these
operators we have �I.g/ D �Og�I

�_
.

The Littlewood–Paley square function associated with the function f on R is
given by

S.f / D
�X

j2Z

j�Ij.f /j2
� 1
2
; (1)
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where Ij D Œ�2jC1;�2j/ [ Œ2j; 2jC1/ and the classical Littlewood–Paley theorem
says that

��S.f /
��

Lp.R/ � Cpkf kLp.R/

where 1 < p < 1 and Cp is a constant independent of the function f in Lp.R/ (but
depends on p).

In this note, we are interested in estimates for Littlewood–Paley square functions
formed by products of Littlewood–Paley operators acting on two functions. To
be precise, let aj and bj be strictly increasing sequences on the real line with the
properties limj!1 aj D limj!1 bj D 1 and limj!�1 aj D limj!�1 bj D �1
and consider the bilinear square function

S2.f ; g/ D
�X

j2Z

j�Œaj;ajC1/.f /�Œbj;bjC1/.g/j2
� 1
2

defined for suitable functions f ; g on the line. We consider the question whether S2
satisfies the inequality

��S2.f ; g/
��

Lp.R/ � Cp1;p2kf kLp1 .R/kgkLp2 .R/ (2)

for some constant Cp1;p2 independent of f ; g where 1 < p1; p2 < 1 and 1=p D
1=p1 C 1=p2. We have the following result concerning this operator:

Theorem 1. Let 1 < p1; p2 < 1 be given and define p by setting 1=p D 1=p1 C
1=p2. Then if p > 2=3, there is a constant Cp1;p2 such that (2) holds for all functions
f ; g on the line. Conversely, if (2) holds, then we must have p � 2=3.

Proof. Introduce the maximal function

M.f / D sup
�1<a<b<1

j�Œa;b/.f /j

and notice that is pointwise controlled by

2 sup
a2R

j�.�1;a/.f /j

and thus is controlled by the following version of the Carleson operator

C.f /.x/ D sup
N>0

ˇ̌
ˇ̌
ˆ N

�1
Of .
/e2� ix
d


ˇ̌
ˇ̌ :

In view of the Carleson–Hunt theorem [2, 5] we have that C is bounded on Lr.R/
for 1 < r < 1.
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Consider the case where 2 � p1 < 1 and 1 < p2 < 1. Then we have that

S2.f ; g/ �
�X

j2Z

j�Œaj;ajC1/.f /j2
� 1
2

sup
j2Z

j�Œbj;bjC1/.g/j D S.f /M.g/

where S is defined as in (1) with Œaj; ajC1/ in place of Ij. In view of the Rubio de
Francia inequality [7] we have that S is bounded on Lr.R/ for 2 � r < 1. An
application of Hölder’s inequality yields the inequality

��S2.f ; g/
��

Lp.R/ � kS.f /kLp1 .R/kM.g/kLp2 .R/ (3)

and this (2) follows from the preceding inequality combined with the boundedness
of S on Lp1 .R/ and M on Lp2 .R/.

An analogous argument holds with the roles of p1 and p2 are reversed, i.e., when
we have 1 < p1 < 1 and 2 � p2 < 1. Thus boundedness holds for all pairs
.p1; p2/ for which either p1 � 2 or p2 � 2. But there exist points .p1; p2/ with
p D .1=p1 C 1=p2/�1 > 2=3 for which neither p1 nor p2 is at least 2. (For instance,
p1 D p2 D 7=5). To deal with these intermediate points we use interpolation.

Given a pair of points .p1; p2/ with p D .1=p1 C 1=p2/�1 > 2=3

and 1 < p1; p2 < 2, we pick two pairs of points .p11; p
1
2/ and .p21; p

2
2/

with

p > p1 D .1=p11 C 1=p12/
�1 D p2 D .1=p21 C 1=p22/

�1 > 2=3

and 1 < p12 < 2 < p11 < 1, < 2 and 1 < p22 < 2 < p21 < 1. For instance, we take
.p11; p

1
2; p

1/ near .1; 2; 2=3/ and .p21; p
2
2; p

2/ near .2; 1; 2=3/. Then consider the three
points W1 D .1=p11; 1=p12; 1=p1/, W2 D .1=p21; 1=p22; 1=p2/, and W3 D .1=2; 1=2; 1/

and notice that the point .1=p1; 1=p2; 1=p/ lies in the interior of the convex hull of
W1, W2, and W3. We consider the bi-sublinear operator

.f ; g/ 7! S2.f ; g/

which is bounded at the points W1, W2, and W3. Using Corollary 7.2.4 in [4] we
obtain that S2 is bounded from Lp1 .R/ � Lp2 .R/ to Lp.R/. This completes the proof
in the remaining case.

Next, we turn to the converse assertion of the theorem. Suppose that for some
1 < p1; p2 < 1 with 1=p D 1=p1C1=p2 estimate (2) holds for some constant Cp1;p2
and all suitable functions f ; g on the line. Now consider the sequences aj D bj D j
and the functions

fN D gN D �_
Œ0;N/ :

Then we have

fN.x/ D �_
Œ0;N
.x/ D

ˆ N

0

e2� ix
d
 D e2� iNx � 1
2� ix
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and for j D 0; 1; : : : ;N � 1 we have

�Œj;jC1/.fN/.x/ D
ˆ jC1

j
e2� ix
d
 D e2� ixj

ˆ 1

0

e2� ix
d
 D e2� ixj.e2� ix � 1/
2� ix

:

Consequently,

� N�1X
jD0

ˇ̌
�Œj;jC1/.fN/.x/�Œj;jC1/.gN/.x/

ˇ̌2� 1
2 D p

N

ˇ̌
ˇ̌e2� ix � 1
2� ix

ˇ̌
ˇ̌
2

and thus

��S2.fN ; gN/
��

Lp � p
N

����
.e2� ix � 1/2
4�2x2

����
Lp

D c
p

N

as long as p > 1=2. On the other hand we have

kfNkLp1 D N1� 1
p1

����
e2� ix � 1
2� ix

����
Lp1

D cp1 N1� 1
p1

whenever 1 < p1 < 1.
Now suppose that (2) holds. Then we must have

��S2.fN ; gN/
��

Lp.R/ � Cp1;p2kfNkLp1 .R/kgNkLp2 .R/ (4)

and this implies that

c
p

N � Cp1;p2cp1N
1� 1

p1 cp2N
1� 1

p2 D Cp1;p2cp1cp2N
2� 1

p

which forces p � 2=3 by letting N ! 1. ut
It is unclear to us at the moment as to what happens when p D 2=3.

We now discuss a related larger square function. Let 1 < p1; p2 < 1 with
1=p1 C 1=p2 D 1=p. It is not hard to see that the square function

S22.f ; g/ D
�X

j2Z

X
k2Z

j�Œaj;ajC1/.f /�Œbk ;bkC1/.g/j2
� 1
2

is bounded from Lp1 .R/ � Lp2 .R/ to Lp.R/ if and only if p1; p2 � 2. Indeed, one
direction is a trivial consequence of Hölder’s inequality; for the other direction, let

fN.x/ D gN.x/ D �_
Œ0;N
.x/ D

ˆ N

0

e2� ix
 d
 D e2� iNx � 1
2� ix

:
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The preceding argument shows that

��S22.fM; gN/
��

Lp � c2
p

M
p

N

and we also have

kfMkLp1 .R/kgNkLp2 .R/ D cp1cp2M
1� 1

p1 N1� 1
p2 :

Hence, letting M ! 1 with N fixed or N ! 1 with M fixed, we obtain that both
p1 and p2 satisfy p1; p2 � 2.

I would like to end this note by expressing a few feelings about Cora Sadosky.
Although, I have not had a very close personal relationship with her, I have always
admired the great dedication and enthusiasm Cora has displayed in mathematics
and the sincere love and support she has provided to young people who wished to
pursue a research career in harmonic analysis. I warmly recall the personal interest
she showed in my search for a permanent position in the USA. Cora’s untimely
passing away was a big loss for our harmonic analysis community and we are all
proud of the strong legacy she has left behind.

Acknowledgements The author would like to acknowledge the Simons Foundation.
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Unique Continuation for the Elasticity System
and a Counterexample for Second-Order
Elliptic Systems

Carlos Kenig and Jenn-Nan Wang

Dedicated to the memory of Cora Sadosky.

Abstract In this paper we study the global unique continuation property for the
elasticity system and the general second-order elliptic system in two dimensions.
For the isotropic and the anisotropic systems with measurable coefficients, under
certain conditions on coefficients, we show that the global unique continuation
property holds. On the other hand, for the anisotropic system, if the coefficients
are Lipschitz, we can prove that the global unique continuation is satisfied for a
more general class of media. In addition to the positive results, we also present
counterexamples to unique continuation and strong unique continuation for general
second elliptic systems.

Introduction

In this work, we study the unique continuation property for the elasticity system
and the general second-order elliptic system in two dimensions. We begin with the
elasticity system. Let u D .u1; u2/T be a vector-valued function satisfying

@j.aijkl.x/@kul/ D 0 in R
2; (1)

where aijkl.x/ is a rank four tensor satisfying the symmetry properties:

aijkl D aklij D ajikl: (2)
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Throughout, the Latin indices range from 1 to 2. Also, the summation convention is
imposed. For isotropic media, we have that aijkl D �ıijıkl C�.ıikıjl C ıilıjk/, where
� and � are called Lamé coefficients. In this case, (1) is written as

r � .�.ru C .ru/T//C r.�r � u/ D 0 in R
2: (3)

We say that u, a solution of (3), satisfies the global unique continuation property
if whenever u vanishes in the lower half plane, it vanishes identically in R

2. Recall
that any solution u of the partial differential equation defined in an open connected
set � is said to satisfy the unique continuation property if whenever u vanishes in a
non-empty open subset of�, it is zero in�. On the other hand, u satisfies the strong
unique continuation property if whenever u vanishes of infinite order at any point of
�, it vanishes in �.

For the isotropic system (3) with nice Lamé coefficients, there are a lot of results
on the unique continuation property and the strong unique continuation property
(for dimension n � 2). We will not review the detailed development here. To
motivate our study, we only mention the recent result in [10], where the strong
unique continuation property was proved for � 2 W1;1 and � 2 L1, which is
the best known assumption on the coefficients by far. For the scalar second-order
elliptic equation in nondivergence or divergence form

Ar2u D 0 in R
2 (4)

or

r � .A.x/ru/ D 0 in R
2; (5)

the strong unique continuation property is satisfied for A 2 L1 (see, for example,
[1–3, 6, 13]). The proof is based on the intimate connection between (4) or (5) and
quasiregular mappings. Therefore, it is a natural question to ask whether the unique
continuation or the strong unique continuation holds for (3) or even for (1) when all
coefficients are only measurable.

When � of (3) is Lipschitz, it is known that (3) is weakly coupled. Hence, the
usual Carleman method will lead us to the unique continuation properties. However,
if � is only measurable, (3) is strongly coupled. To the best of our knowledge, the
Carleman method has never been successfully applied to strongly coupled systems.
The general elasticity system (1) is always strongly coupled, regardless of the
regularity of coefficients.

In this work we would like to show that solutions u of (1) satisfy the global
unique continuation property under some restrictions on the measurable coefficients
aijkl. Our approach to prove this result relies on the connection between (1) and
the Beltrami system with matrix-valued coefficients (see (22)). When this matrix-
valued coefficient is sufficiently small (which is satisfied when the coefficients
do not deviate too much from a set of constant coefficients), we can follow the
arguments in [9] and use the Lp-norm of the Beurling–Ahlfors transform to conclude
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the result. When the coefficients are only measurable, the set of constant coefficients
is rather restricted, see the conditions in Theorems 0.1 and 0.3. If some coefficients
of the general system (1) are Lipschitz, the global unique continuation is true for
coefficients near a larger set of constant coefficients, see Theorem 0.1.

In addition to the positive results mentioned above, we also present a counterex-
ample to unique continuation for a second-order elliptic system (in the sense of (62))
with measurable coefficients based on the example derived in [9]. The main idea
in the construction of the counterexample is to convert the second-order elliptic
system to a first-order elliptic system and match coefficients of the first-order system
obtained from the example in [9]. Based on the example given in [8] (also see related
article [12]), using the same argument, we can also construct a counterexample
to strong unique continuation for second-order elliptic systems with continuous
coefficients satisfying the Legendre–Hadamard condition (27) or even the strong
convexity condition:

aijkl.x/

l
k


i
j � cj
j2 (6)

for any 2 � 2 matrix 
 D .
 l
k/, where c is a positive constant. Note that (6) implies

the Legendre–Hadamard condition.
We would like to remark that the nontrivial solution u of the counterexample

to unique continuation described above vanishes in the lower half plane. It was
shown in [11] that there exists nontrivial W1;2.R2/ solution u or Lipschitz solution
u whose supports are compact solving second-order elliptic system with mea-
surable coefficients satisfying the Legendre–Hadamard condition. This is another
counterexample to unique continuation for second-order elliptic systems with
measurable coefficients. We want to point out that the examples in [11] do not exist
in second-order elliptic systems satisfying the strong convexity condition (6). This
can be easily seen by the integration by parts. Nonetheless, the strong convexity
condition (6) does not rule out the existence of the counterexample to unique
continuation we constructed in this paper since this nontrivial solution does not
necessarily have compact support.

The paper is organized as follows. In section “Elasticity System with Measurable
Coefficients,” we prove the global unique continuation property for the Lamé and
general anisotropic systems when the measurable elastic coefficients are close to
some constant values. In section “Anisotropic System with Regular Coefficients,”
we expand the set of constant values when the elastic coefficients are Lipschitz.
Finally, in section “Counterexample to Unique Continuation,” we construct coun-
terexamples to unique continuation and strong unique continuation for general
second-order elliptic systems with measurable coefficients and continuous coeffi-
cients, respectively.
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Elasticity System with Measurable Coefficients

It is instructive to begin with the isotropic system, i.e., Lamé system (3). Assume
that �;� 2 L1 satisfy the ellipticity condition

� � ı > 0; �C 2� � ı; 8 x 2 R
2: (7)

The key to proving the global unique continuation property lies in arranging the
coefficients nicely. We write the system (3) componentwise

@1.2�@1u1/C @2.�.@1u2 C @2u1//C @1.�r � u/ D 0 (8)

and

@1.�.@1u2 C @2u1//C @2.2�@2u2/C @2.�r � u/ D 0: (9)

Let v D r � u D @1u1 C @2u2 and w D r � u D @1u2 � @2u1, then (8) is written as

@1.2�@1u1 C �v/C @2.2�@2u1 C �w/ D 0: (10)

Similarly, (9) is equivalent to

@1.2�@1u2 � �w/C @2.2�@2u2 C �v/ D 0: (11)

By taking advantage of the relation

�u1 D @1v � @2w and �u2 D @2v C @1w;

we obtain from (10) that

@1..2� � 1/@1u1 C .�C 1/v/C @2..2� � 1/@2u1 C .� � 1/w/ D 0 (12)

and from (11) that

@1..2� � 1/@1u2 � .� � 1/w/C @2..2� � 1/@2u2 C .�C 1/v/ D 0: (13)

Therefore, there exist u0
1 and u0

2 such that

(
@2u0

1 D .2� � 1/@1u1 C .�C 1/v;

�@1u0
1 D .2� � 1/@2u1 C .� � 1/w; (14)

and

(
@2u0

2 D .2� � 1/@1u2 � .� � 1/w;
�@1u0

2 D .2� � 1/@2u2 C .�C 1/v:
(15)
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Setting f1 D u1 C iu0
1 and f2 D u2 C iu0

2, (14) and (15) become

( N@f1 D �@f1 C h;
N@f2 D �@f2 C ih;

(16)

where

� D 1 � �
�

and h D ��C 1

2�
v � i

� � 1
2�

w:

As usual, we define

N@ D 1

2
.@1 C i@2/; @ D 1

2
.@1 � i@2/:

Using the obvious relations

@1u1 D 1

2
.N@f1 C @f1 C @Nf1 C @f1/; @1u2 D 1

2
.N@f2 C @f2 C @Nf2 C @f2/;

@2u1 D 1

2i
.N@f1 � @f1 � @Nf1 C @f1/; @2u2 D 1

2i
.N@f2 � @f2 � @Nf2 C @f2/;

we can compute

h D ��C 1

2�
v � i

� � 1
2�

w

D ��C 1

4�

�
.N@f1 C @f1 C @Nf1 C @f1/ � i.N@f2 � @f2 � @Nf2 C @f2/

�

� i
� � 1
4�

�
.N@f2 C @f2 C @Nf2 C @f2/C i.N@f1 � @f1 � @Nf1 C @f1/

�

D
�
� � � � 2

4�

�
N@f1 C

��� � �
4�

�
@f1 C

��� � �
4�

�
@Nf1 C

�
� � � � 2

4�

�
@f1

Ci

�
���C2
4�

�
N@f2Ci

��� � �
4�

�
@f2Ci

��� � �
4�

�
@Nf2 C i

�
� � �C 2

4�

�
@f2:

For simplicity, let us denote

˛ D � � � � 2
4�

; ˇ D �� � �
4�

;

then

h D ˛ N@f1 C ˇ@f1 C ˇ@Nf1 C ˛@f1 � i˛ N@f2 C iˇ@f2 C iˇ@Nf2 � i˛@f2
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and

ih D i˛ N@f1 C iˇ@f1 C iˇ@Nf1 C i˛@f1 C ˛ N@f2 � ˇ@f2 � ˇ@Nf2 C ˛@f2:

Therefore, (16) is equivalent to
�

I2 C
��˛ i˛

�i˛ �˛
��

N@
�

f1
f2

�
C
��ˇ �iˇ

�iˇ ˇ

�
@

�Nf1
Nf2
�

D
�
ˇ iˇ
iˇ �ˇ

�
@

�
f1
f2

�
C
�
� C ˛ �i˛

i˛ � C ˛

�
@

�
f1
f2

�
;

(17)

where In denotes the n � n unit matrix. Setting @Nf
N@f

D 0, if N@f D 0 and @f
@f D 0, and if

@f D 0, (17) can be written as

�
I2 C

��˛ i˛
�i˛ �˛

��
N@
�

f1
f2

�
C
��ˇ �iˇ

�iˇ ˇ

�0
@
@Nf1N@f1

0

0 @Nf2N@f2

1
A N@

�
f1
f2

�

D
�
ˇ iˇ
iˇ �ˇ

�
@

�
f1
f2

�
C
�
� C ˛ �i˛

i˛ � C ˛

� @f1
@f1

0

0 @f2
@f2

!
@

�
f1
f2

�
:

(18)

Finally, let U and V be two 2 � 2 matrices

U D I2 C
��˛ i˛

�i˛ �˛
�

C
��ˇ �iˇ

�iˇ ˇ

�0
@
@Nf1N@f1

0

0 @Nf2N@f2

1
A ;

V D
�
ˇ iˇ
iˇ �ˇ

�
C
�
� C ˛ �i˛

i˛ � C ˛

� @f1
@f1

0

0 @f2
@f2

!
;

then (18) can be written as

U N@
�

f1
f2

�
D V @

�
f1
f2

�
: (19)

It is clear that

kU�I2kL1 � C.k˛kL1 CkˇkL1/ and kVkL1 � C.kˇkL1 Ck�kL1 Ck˛kL1/;

(20)

where C is an absolute constant. Hereafter, for any matrix-valued function A.x/ W
C

n ! C
n with x 2 R

2, the norm kAkL1 is defined by

kAkL1 D sup
x2R2

kA.x/k;

where k�k is the usual matrix norm derived by treating C
n as an inner-product space.
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Theorem 0.1. There exists an " > 0 such that if

k� � 1kL1 � " and k�C 1kL1 � "; (21)

then for any Lipschitz solution u of (3) vanishing in the lower half plane, we must
have u 	 0.

Remark 0.2. It is clear that if the Lamé coefficients � and � satisfy (21), then the
ellipticity condition (7) holds.

Proof. Since u is Lipschitz and vanishes in the lower half plane, so does the vector-
valued function

F D
�

f1
f2

�
:

In view of the definitions of � , ˛, ˇ, if " of (21) is sufficiently small, then all of them
are sufficiently small as well. By (20), U is invertible and V is small, consequently,
kU�1VkL1 � "0 � 1. Therefore, from (19) we have

N@F D ‰@F in C; (22)

where‰ D U�1V and we have identified R
2 as the complex plane C. Note that here

F W C ! C
2. Equation (22) is a Beltrami system studied in [9]. It was proved in [9]

that if k‰kL1 is sufficiently small and F vanishes in the lower half plane, then F is
trivial, i.e., u is trivial. For the sake of completeness, we sketch the proof here. We
refer to [9, Sect. 7] for more details. Without loss of generality, we assume that F
vanishes for =z � 1. Define G.z/ D F.

p
z/. Then G satisfies

N@G D z

jzj‰.
p

z/@G: (23)

We can see that the differential of G, DG, lies in Lp.C/ for some p > 4 (see (7.13)
in [9]). In other words, we have

kN@GkLp � "0k@GkLp : (24)

Let S be the Beurling–Ahlfors transform, i.e., SN@ D @. It is known from the
Calderón–Zygmund theory that

kSkLp!Lp � ap (25)

for some constant ap, depending only on p (see [5] for a more precise bound on ap).
Hence, (25) implies

k@GkLp � apkN@GkLp : (26)

Combining (24) and (26), we conclude that kN@GkLp D k@GkLp D 0 provided ap"
0 <

1 for some p > 4. The proof of theorem then follows. ut



166 C. Kenig and J.-N. Wang

Now we turn to the general elasticity system (1). Assume that aijkl 2 L1 satisfies
the ellipticity condition

aijkl.x/
i
l�j�k � ıj
j2j�j2 8 
; � 2 R
2; (27)

i.e., the Legendre–Hadamard condition. Due to the symmetry properties (2), for
simplicity, we denote

8̂
<̂
ˆ̂:

a1111 D a; a2222 D b; a1112 D a1211 D a2111 D a1121 D c;

a1122 D a2211 D d; a1212 D a2112 D a1221 D a2121 D e;

a1222 D a2122 D a2212 D a2221 D g:

Componentwise, (1) is written as

(
@1.a@1u1Cc@1u2Cc@2u1Cd@2u2/C@2.c@1u1 C e@1u2 C e@2u1 C g@2u2/ D 0;

@1.c@1u1Ce@1u2Ce@2u1Cg@2u2/C@2.d@1u1 C g@1u2 C g@2u1 C b@2u2/ D 0:

(28)

For our purpose, we will express (28) as

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

@1..a � d � 1/@1u1 C .d C 1/v C c@1u2 C c@2u1/

C @2..2e � 1/@2u1 C .e � 1/w C c@1u1 C g@2u2/ D 0;

@1..2e � 1/@1u2 � .e � 1/w C c@1u1 C g@2u2/

C @2..b � d � 1/@2u2 C .d C 1/v C g@1u2 C g@2u1/ D 0:

(29)

Comparing (29) with (12) and (13), it is not difficult to see that (29) can be
transformed to (22) with similar smallness condition on ‰ if ja � d � 2j �
1; jb � d � 2j � 1; jd C 1j � 1; je � 1j � 1; jcj � 1; jgj � 1: Therefore,
we can prove that

Theorem 0.3. There exists " > 0 such that if

( ka � d � 2kL1 � "; kb � d � 2kL1 � "; kd C 1kL1 � ";

ke � 1kL1 � "; kckL1 � "; kgkL1 � ";
(30)

then if u is a Lipschitz function solving (1) and vanishes in the lower half plane, then
u vanishes identically.

Remark 0.4. Under the assumptions (30), (1) is a slightly perturbed system of the
Lamé system with �, � satisfying (21). Therefore, the ellipticity condition (27)
holds.



Unique Continuation for the Elasticity System and a Counterexample. . . 167

Anisotropic System with Regular Coefficients

One may wonder if jd C 1j � 1 and je � 1j � 1 in Theorem 0.3 can be replaced
by jd C k0j � 1 and je � k0j � 1 for k0 ¤ 1. For measurable coefficients, it is not
possible since the requirement of je � k0j � 1 and 2e � k0 � 1 will force k0 D 1.
However, if a; b; d; e are Lipschitz, we can extend Theorem 0.3 to a larger class of
system. Let k0 be any fixed constant. Similarly to (29), we obtain that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@1..a � d � k0/@1u1 C .d C k0/v C c@1u2 C c@2u1/

C @2..2e � k0/@2u1 C .e � k0/w C c@1u1 C g@2u2/ D 0;

@1..2e � k0/@1u2 � .e � k0/w C c@1u1 C g@2u2/

C @2..b � d � k0/@2u2 C .d C k0/v C g@1u2 C g@2u1/ D 0:

(31)

Denote Qa D a � d � k0; Qe D 2e � k0; Qb D b � d � k0. Suppose that Qa ¤ 0 and Qb ¤ 0.
Then (31) is equivalent to

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@1.@1.Qau1/ � @1 Qau1 C .d C k0/v C c@1u2 C c@2u1/

C @2.QeQa�1.@2.Qau1/ � @2 Qau1/C .e � k0/w C c@1u1 C g@2u2/ D 0;

@1.QeQb�1.@1.Qbu2/ � @1 Qbu2/ � .e � k0/w C c@1u1 C g@2u2/

C @2.@2.Qbu2/ � @2 Qbu2 C .d C k0/v C g@1u2 C g@2u1/ D 0:

(32)

We set Qu1 D Qau1; Qu2 D Qbu2, then (32) becomes

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@1.@1.Qu1/ � @1 QaQa�1 Qu1 C .d C k0/v C c@1.Qb�1 Qu2/C c@2.Qa�1 Qu1//
C @2.QeQa�1.@2.Qu1/ � @2 QaQa�1 Qu1/C .e � k0/w C c@1.Qa�1 Qu1/C g@2.Qb�1 Qu2// D 0;

@1.QeQb�1.@1.Qu2/ � @1 QbQb�1 Qu2/ � .e � k0/w C c@1.Qa�1 Qu1/C g@2.Qb�1 Qu2//
C @2.@2.Qu2/ � @2 QbQb�1 Qu2 C .d C k0/v C g@1.Qb�1 Qu2/C g@2.Qa�1 Qu1// D 0:

(33)

We then express

(
v D @1u1 C @2u2 D @1 Qa�1 Qu1 C Qa�1@1 Qu1 C @2 Qb�1 Qu2 C Qb�1@2 Qu2
w D @1u2 � @2u1 D @1 Qb�1 Qu2 C Qb�1@1 Qu2 � @2 Qa�1 Qu1 � Qa�1@2 Qu1:

Theorem 0.1. Let k0 > 0. Assume that a; b; d; e are Lipschitz and c; g are
measurable. Moreover, suppose that a; b; d; e are constants in R

2 n K, where K is
compact set. Then there exists an " D ".k0;K/ > 0 such that if
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(
kr.a � d/kL1 � "; kr.b � d/kL1 � "; ka�d�2ekL1 � "; kb�d�2ekL1 � ";

kdCk0kL1 � "; ke�k0kL1 � "; kckL1 � "; kgkL1 � ";

(34)
then if u vanishes in the lower half plane, then u is identically zero.

Proof. We first note that when ", depending on k0, is sufficiently small, Qa and Qb are
strictly positive. Let f1 D Qu1 C Qu0

1 and f2 D Qu2 C iQu0
2, where Qu0

1 and Qu0
2 are conjugate

functions of Qu1 and Qu2 defined as above. In view of (34), (33) is reduced to

N@F D Q‰@F C HF C QH NF; (35)

where k Q‰kL1 � "0, kHkL1 � "0, k QHkL1 � "0, and H, QH are supported in K. Note
that "0 ! 0 as " ! 0. As before, let G.z/ D F.

p
z/, then G satisfies

N@G D z

jzj
Q‰.pz/@G C H.

p
z/G C QH.pz/ NG:

By the Poincaré inequality, we have that

kHGkLp C k QH NGkLp � "0C.kN@GkLp C k@GkLp/ (36)

for p � 2, where C depends on K (and p). Using (36), we have from (35) that

kN@GkLp � "00k@GkLp

with "00 ! 0 as " ! 0. Next, using the same arguments as in the proof of
Theorem 0.1, the result follows. ut
Remark 0.2. From the ellipticity condition (7) for isotropic media, it is readily
seen that if k0 > 0 and " is sufficiently small, then the ellipticity condition (27)
is satisfied.

Counterexample to Unique Continuation

In this section we will construct a counterexample to the unique continuation
property, which vanishes in the lower half plane, for second-order elliptic systems
with measurable coefficients. Precisely, we consider

@j.aijkl.x/@kul/ D 0 in R
2; (37)

where the coefficients aijkl do not necessarily satisfy the symmetry conditions (2).
For simplicity, we use the following short-hand notations:

11 ! 1; 12 ! 2; 21 ! 3; 22 ! 4;
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i.e.,

a1111 D a11; a1112 D a12; a1121 D a13; a1122 D a14; � � � etc:

So, the system (37) is written as

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

@1.a11@1u1 C a12@1u2 C a13@2u1 C a14@2u2/

C @2.a21@1u1 C a22@1u2 C a23@2u1 C a24@2u2/ D 0;

@1.a31@1u1 C a32@1u2 C a33@2u1 C a34@2u2/

C @2.a41@1u1 C a42@1u2 C a43@2u1 C a44@2u2/ D 0:

(38)

As before, we can find v1 and v2 such that

(
@2v1 D a11@1u1 C a13@2u1 C a12@1u2 C a14@2u2;

�@1v1 D a21@1u1 C a23@2u1 C a22@1u2 C a24@2u2;
(39)

and

(
@2v2 D a32@1u2 C a34@2u2 C a31@1u1 C a33@2u1;

�@1v2 D a42@1u2 C a44@2u2 C a41@1u1 C a43@2u1:
(40)

Here we will use a different reduction from the one used in section “Elasticity
System with Measurable Coefficients.” The method is inspired by Bojarski’s
work [7]. Denote

˛1 D .a11 C a23/C i.a21 � a13/

2
; ˇ1 D .a11 � a23/C i.a21 C a13/

2
;

�1 D a12 C ia22; �1 D a14 C ia24:

Let f1 D u1 C iv1 and f2 D u2 C iv2, then we can compute that

0 D .1C ˛1/N@f1 C ˇ1@f1 C ˇ1@f1 � .1 � ˛1/@f1 C �1@1u2 C �1@2u2

D .1C ˛1/N@f1 C ˇ1@f1 C ˇ1@f1 � .1 � ˛1/@f1 C �1

2
.N@f2 C @f2 C @f2 C @f2/

C �1

2i
.N@f2 � @f2 � @f2 C @f2/

D .1C ˛1/N@f1 C ˇ1@f1 C ˇ1@f1 � .1 � ˛1/@f1 C .
�1

2
C �1

2i
/N@f2 C .

�1

2
� �1

2i
/@f2

C .
�1

2
� �1

2i
/@f2 C .

�1

2
C �1

2i
/@f2:

(41)
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Likewise, we denote

˛2 D .a32 C a44/C i.a42 � a34/

2
; ˇ2 D .a32 � a44/C i.a42 C a34/

2
;

�2 D a31 C ia41; �2 D a33 C ia43;

then we obtain

0 D .1C ˛2/N@f2 C ˇ2@f2 C ˇ2@f2 � .1 � ˛2/@f2 C .
�2

2
C �2

2i
/N@f1 C .

�2

2
� �2

2i
/@f1

C .
�2

2
� �2

2i
/@f1 C .

�2

2
C �2

2i
/@f1:

(42)
Putting (41) and (42) in matrix form gives

AN@F C B@F C C@F C D@F D 0 in C; (43)

where F D
�

f1
f2

�
and

A D
 
1C ˛1

�1
2

� i �1
2

�2
2

� i �2
2
1C ˛2

!
; B D

 
ˇ1

�1
2

C i �1
2

�2
2

C i �2
2

ˇ2

!
;

C D
 

ˇ1
�1
2

C i �1
2

�2
2

C i �2
2

ˇ2

!
.D B/; D D

 
�1C ˛1

�1
2

� i �1
2

�2
2

� i �2
2

�1C ˛2

!
:

(44)

Note that D D A � 2I2. Conversely, it is easy to see that, given any 2 � 2 complex-
valued matrices A, B, C, D satisfying B D C and D D A � 2I2 and (43) with

F D
�

u1 C iv1
u2 C iv2

�
, then, writing A, B, C, D as in (44), we can find real numbers

a11; a12; � � � ; a44 such that (39) and (40) hold, and hence (38) is satisfied.
It was proved in [9] that there exists a 2 � 2 complex-valued matrix Q 2 L1.C/

with

kQkL1.C/ � � < 1 (45)

and a nontrivial Lipschitz function QF W C ! C
2 vanishing in the lower half plane of

C such that

N@ QF C Q@ QF D 0 in C: (46)

Adding A�(46) and B � (46), for any A, B, gives

AN@ QF C B@ QF C AQ@ QF C BQ @ QF D 0 in C: (47)
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Comparing (43) with (47), we hope to find A, B, C, D satisfying

B D C D AQ; D D BQ; D D A � 2I2: (48)

To fulfill (48), we begin with

A � 2I2 D D D AQQ;

which implies

A.I2 � QQ/ D 2I2: (49)

In view of (45), we have that kQQkL1.C/ � �2 < 1 and hence I2 � QQ is invertible.
In other words, (49) gives

A D 2.I2 � QQ/�1:

Once A is determined, we can find C and, of course, B. Hence the relations in (48)
hold. Finally, in view of the definitions of ˛j; ˇj; �j; �j; j D 1; 2; there exists a unique
fourth rank-tensor .aijkl.x// producing A, B, C, D which were determined above.

With such A, B, C, D obtained above, there exists a nontrivial solution F W C !
C
2, i.e., F D QF, vanishing in the lower half plane of C and satisfying (43) (and

hence, (47)), i.e.,

AN@F C AQ@F C AQ@F C AQQ @F D 0 in C: (50)

As mentioned above, (50) is equivalent to the second-order system (38) with
corresponding coefficients .aijkl.x//. Now we would like to verify that this second-
order system is elliptic. The meaning of ellipticity will be specified later. We first
show that L0F WD N@F C Q@F is equivalent to a first-order uniformly elliptic system.
Let us denote

F D
�

u1 C iv1
u2 C iv2

�
;

then

2N@F D
�
.@1u1 � @2v1/C i.@1v1 C @2u1/
.@1u2 � @2v2/C i.@1v2 C @2u2/

�

and

2@F D
�
.@1u1 C @2v1/C i.@1v1 � @2u1/
.@1u2 C @2v2/C i.@1v2 � @2u2/

�
:
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Let Q D Qr C iQi, then 2L0F can be put into the following equivalent system

L1

0
BB@

u1
u2
v1
v2

1
CCA WD

�
I2 C Qr �Qi

Qi I2 C Qr

�
@1

0
BB@

u1
u2
v1
v2

1
CCAC

�
Qi �I2 C Qr

I2 � Qr Qi

�
@2

0
BB@

u1
u2
v1
v2

1
CCA ;

(51)

i.e., 2L0F D G D
�

g1
g2

�
D
�

w1 C iz1
w2 C iz2

�
is equivalent to

L1

0
BB@

u1
u2
v1
v2

1
CCA D

0
BB@

w1
w2
z1
z2

1
CCA :

For simplicity, we denote

R D
�

I2 C Qr �Qi

Qi I2 C Qr

�
and S D

�
Qi �I2 C Qr

I2 � Qr Qi

�
:

Now we want to show that (51) is uniformly elliptic, i.e.,

det.˛R C ˇS/ � c.˛2 C ˇ2/2; 8 z 2 C; .˛; ˇ/ 2 R
2 ¤ 0; (52)

where c D c.�/ > 0. To prove (52), we first observe that

S D
�

Qi �I2 C Qr

I2 � Qr Qi

�
D
�

I2 � Qr Qi

�Qi I2 � Qr

�
J

where

J D
�
0 �I2
I2 0

�
:

Therefore, we obtain that

˛R C ˇS D ˛.I4 C E/C ˇ.I4 � E/J D .˛I4 C ˇJ/C E.˛I4 � ˇJ/; (53)

where

E D
�

Qr �Qi

Qi Qr

�
:

From (45), we have that for E W R4 ! R
4

kEkL1.R4/ � �: (54)
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It is easy to see that

k.˛I4 C ˇJ/Zk D k.˛I4 � ˇJ/Zk D
p
˛2 C ˇ2 kZk; 8 Z 2 R

4: (55)

Combining (54) and (55) gives

det.˛R C ˇS/ D det.˛I4 C ˇJ/det.I4 C .˛I4 C ˇJ/�1E.˛I4 � ˇJ// � c.˛2 C ˇ2/2

with c D c.�/ and (52) is proved.
Now we want to consider

2.N@F C Q@F C Q.@F C Q @F// D 2L0F C 2QL0F: (56)

It is easy to see that

2L0F D
�

w1 � iz1
w2 � iz2

�
;

which is equivalent to

OIL1

0
BB@

u1
u2
v1
v2

1
CCA D OI

0
BB@

w1
w2
z1
z2

1
CCA ;

where

OI D
�

I2 0

0 �I2

�
:

Consequently, (56) can be written as

.R C EOIR/@1

0
BB@

u1
u2
v1
v2

1
CCAC .S C EOIS/@2

0
BB@

u1
u2
v1
v2

1
CCA :

It is clear that

det.˛.R C EOIR/C ˇ.S C EOIS// D det.Œ˛R C ˇS
C EOIŒ˛R C ˇS
/

D det.˛R C ˇS/ � det.I4 C EOI/
� c.˛2 C ˇ2/2:
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Finally, let us denote A D Ar C iAi and

OA D
�

Ar �Ai

Ai Ar

�
;

then

AN@F C AQ@F C AQ@F C AQQ @F D 0 (57)

is equivalent to the first-order system

OA.R C EOIR/@1

0
BB@

u1
u2
v1
v2

1
CCAC OA.S C EOIS/@2

0
BB@

u1
u2
v1
v2

1
CCA D 0: (58)

Since det OA � c > 0, we immediately obtain that

det.˛ OA.R C EOIR/C ˇ OA.S C EOIS// � c.˛2 C ˇ2/2: (59)

We would like to remind the reader that (57) is equivalent to (39) and (40) (and (38)).
Now we return to the system (39) and (40), i.e.,

(
@2v1 D a11@1u1 C a13@2u1 C a12@1u2 C a14@2u2;

�@1v1 D a21@1u1 C a23@2u1 C a22@1u2 C a24@2u2;

and

(
@2v2 D a32@1u2 C a34@2u2 C a31@1u1 C a33@2u1;

�@1v2 D a42@1u2 C a44@2u2 C a41@1u1 C a43@2u1:

We put this system as

0
BB@

a11 a12 0 0
a21 a22 1 0
a31 a32 0 0
a41 a42 0 1

1
CCA @1

0
BB@

u1
u2
v1
v2

1
CCAC

0
BB@

a13 a14 �1 0

a23 a24 0 0

a33 a34 0 �1
a43 a44 0 0

1
CCA @2

0
BB@

u1
u2
v1
v2

1
CCA D 0; (60)

which is equivalent to (58). From (59), we have that
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c.˛2 C ˇ2/2

� det.˛ OA.R C EOIR/C ˇ OA.S C EOIS//

D det

0
BB@˛

0
BB@

a11 a12 0 0
a21 a22 1 0
a31 a32 0 0
a41 a42 0 1

1
CCAC ˇ

0
BB@

a13 a14 �1 0

a23 a24 0 0

a33 a34 0 �1
a43 a44 0 0

1
CCA

1
CCA

D �det

0
BB@˛

0
BB@

a11 a12 0 0
a31 a32 0 0
a21 a22 1 0
a41 a42 0 1

1
CCAC ˇ

0
BB@

a13 a14 �1 0

a33 a34 0 �1
a23 a24 0 0

a43 a44 0 0

1
CCA

1
CCA

D det

0
BB@

a12˛ C a14ˇ a11˛ C a13ˇ �ˇ 0

a32˛ C a34ˇ a31˛ C a33ˇ 0 �ˇ
a22˛ C a24ˇ a21˛ C a23ˇ ˛ 0

a42˛ C a44ˇ a41˛ C a43ˇ 0 ˛

1
CCA

D det

�
a12˛2 C a14˛ˇ C a22˛ˇ C a24ˇ2 a11˛2 C a13˛ˇ C a21˛ˇ C a23ˇ2

a32˛2 C a34˛ˇ C a42˛ˇ C a44ˇ2 a31˛2 C a33˛ˇ C a41˛ˇ C a43ˇ2

�
:

(61)

It follows from (61) that for any 
 D .
1; 
2/ ¤ 0, the 2�2matrix .
P

j;k aijkl.z/
j
k/

satisfies

jdet.
X

j;k

aijkl.z/
j
k/j � cj
j4; 8 z 2 C: (62)

In summary, we have shown that

Theorem 0.1. There exists a nontrivial vector-valued function u D .u1; u2/T W
R
2 ! R

2 vanishing in the lower half plane solving a second-order uniformly elliptic
system (37), in the sense of (62), with essentially bounded coefficients.

To prove Theorem 0.1, we used a reduction different from the one given in
section “Elasticity System with Measurable Coefficients.” It is natural to investigate
whether the reduction used here can be applied to prove positive results stated in
section “Elasticity System with Measurable Coefficients.” We only discuss the Lamé
system. Comparing (8), (9), and (38) implies

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

a11 D �C 2�; a12 D a13 D 0; a14 D �;

a21 D a24 D 0; a22 D a23 D �;

a31 D a34 D 0; a32 D a33 D �;

a41 D �; a42 D a43 D 0; a44 D �C 2�:
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By the definitions, we see that

8
ˆ̂<
ˆ̂:

˛1 D �C 3�

2
; ˇ1 D �C �

2
; �1 D i�; �1 D �;

˛2 D �C 3�

2
; ˇ2 D ��C �

2
; �2 D i�; �2 D �;

and thus,

A D
 
1C �C3�

2
i
2
.� � �/

i
2
.� � �/ 1C �C3�

2

!
; B D C D

 
�C�
2

i
2
.�C �/

i
2
.�C �/ ��C�

2

!
;

D D
 

�1C �C3�
2

i
2
.� � �/

i
2
.� � �/ �1C �C3�

2

!
:

Now if � � 1 and � � �1 as in Theorem 0.1, then B � 0, C � 0, but

A �
�
2 i
�i 2

�
; D D

�
0 i
�i 0

�
:

In other words, (43) corresponding to the Lamé system cannot be put into the form

N@F D ‰@F

with k‰kL1 � 1.
On the other hand, if the coefficients .apq/ of (38) satisfy

(
kapq � 1kL1 � " for pq D 11; 23; 32; 44;

kapqkL1 � " for all other pq0s
(63)

with a sufficiently small ", then

kA � 2I2kL1 � c"; kBkL1 D kCkL1 � c"; kDkL1 � c"

for some constant c. For this case, we can prove that the global unique continuation
property holds as in the proof of Theorem 0.3. It is not hard to see that the
second-order system (38) with coefficients satisfying (63) is elliptic in the sense
of (62). In fact, we can even show that .apq/ D .aijkl/ satisfies the strong convexity
condition (6) (and, of course, the Legendre–Hadamard condition (27)) provided "
is small. To see this, it suffices to consider a11 D a1111 D 1, a23 D a1221 D 1,
a32 D a2112 D 1, a44 D a2222 D 1, and all other apq’s are zero. Then we have that
for any 2 � 2 matrix 
 D .
 l

k/

aijkl

l
k


i
j D a1111


1
1 

1
1 C a1221


1
2 

1
2 C a2112


2
1 

2
1 C a2222


2
2 

2
2 D j
j2;
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which implies (6) for small ". The class of second-order elliptic systems (38)
satisfying (63) contains a special class of hyperelastic materials, where only the
major symmetry property aijkl D aklij holds.

A counterexample to the strong unique continuation for (22) was constructed in
[8] (see also related article [12]). The counterexample given in [8] shows that there
exists a nontrivial function F vanishing at 0 to infinite order satisfying

N@F C Q@F D 0;

where Q.x/ 2 C
2�2 is continuous and vanishes at 0 to infinite order as well.

Based on this example, using the same framework as above, we can construct a
counterexample to strong unique continuation for second-order elliptic systems with
continuous coefficients in the plane. Observe that for the extreme case Q D 0, we
have A D 2I and B D C D D D 0. Consequently, we see that

a11 D a23 D a32 D a44 D 1

and all other apq’s are zero. Therefore, when x is near 0, Q is sufficiently small,
which is exactly the case we discussed in (63). In other words, for the second-
order elliptic system with coefficients satisfying (63) and the strong convexity
condition (6), the global unique continuation property holds, in spite of the fact
that there are examples showing that the strong unique continuation property fails.
Furthermore, we want to point out that the counterexample to the strong unique
continuation for (37) we constructed is a small perturbation of the Laplacian� near
the origin. In section “Elasticity System with Measurable Coefficients” we have
shown that the Lamé system with � � �1 and � � 1 can be written as a small
perturbation of the Laplacian. Therefore, this counterexample strongly suggests that
the Lamé system with measurable coefficients, even when � � �1 and � � 1, does
not possess the strong unique continuation property. Moreover, this example or an
earlier example constructed in [4] also suggests that the strong unique continuation
property for the anisotropic elasticity system even with continuous coefficients is
most likely not true.
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5. R. Banũelos, P. Janakiraman, Lp-bounds for the Beurling-Ahlfors transform. Trans. Am. Math.
Soc. 360, 3603–3612 (2008)

6. L. Bers, L. Nirenberg, On a representation theorem for linear elliptic systems with discontinu-
ous coefficients and its applications, in Convegno Internazionale sullen Equazioni Lineari alle
Derivate Parziali, Trieste, 1954 (Edizioni Cremonese, Roma, 1955), pp. 111–140

7. B.V. Bojarski, Generalized solutions of a system of differential equations of first order and of
elliptic type with discontinuous coefficients. Mat. Sb. N.S. 43(85), 451–503 (1957)

8. A. Coffman, Y. Pan, Smooth counterexamples to strong unique continuation for a Beltrami 375
system in C

2. Comm. PDE. 37, 2228–2244 (2012)
9. T. Iwaniec, G.C. Verchota, A.L. Vogel, The failure of rank-one connections. Arch. Ration.

Mech. Anal. 163, 125–169 (2002)
10. C.L. Lin, G. Nakamura, G. Uhlmann, J.N. Wang, Quantitative strong unique continuation for

the Lame system with less regular coefficients. Methods Appl. Anal. 18, 85–92 (2011)
11. S. Müller, V. Šverák, Convex integration for Lipschitz mappings and counterexamples to

regularity. Ann. Math. 157, 715–742 (2003)
12. J.P. Rosay, Uniqueness in rough almost complex structures and differential inequalities. Ann.

Inst. Fourier (Grenoble). 60, 2261–2273 (2010)
13. F. Schulz, On the unique continuation property of elliptic divergence form equations in the

plane. Math. Z. 228, 201–206 (1998)



Hardy Spaces of Holomorphic Functions
for Domains in C

n with Minimal Smoothness
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Abstract We prove various representations and density results for Hardy spaces of
holomorphic functions for two classes of bounded domains in C

n, whose boundaries
satisfy minimal regularity conditions (namely the classes C2 and C1;1, respectively)
together with naturally occurring notions of convexity.
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Introduction

Here we discuss the interplay of the holomorphic Hardy spaces with the Cauchy
integrals, and with the Cauchy–Szegő projection,1 for a broad class of bounded
domains D � C

n when n � 2. We make minimal assumptions on the domains’
boundary regularity. While such interplay is fairly well understood in the context of
one complex variable (that is, for D � C, see [20, 33, 42, 43] and references therein)
the situation in higher dimensions presents further obstacles, both conceptual and
technical in nature, which require a different analysis.

1Also known as the Szegő projection.
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At the root of all these questions are three basic issues.
First, the fact that for any bounded domain D � C

n whose boundary is of class
C2 there are two characterizations of the Hardy space Hp.D/, see [61]:

The holomorphic functions F for which

kN .F/kLp.bD;d�/ < 1 ; (1)

where N .F/ is the so-called nontangential maximal function of F, see (4) below,
and d� is the induced Lebesgue measure on the boundary of D. Alternatively,

sup
0<t<c

ˆ

w2bDt

jF.w/jp d�t.w/ < 1: (2)

where fDtgt is an exhaustion of D by appropriate subdomains Dt. The quantities (1)
and (2) give equivalent norms of the space Hp.D/, which is also known as the
Smirnov class, see [20]. Such F have (nontangential) boundary limits

f D PF :

If Hp.bD; d�/ denotes the space of such functions, then Hp.bD; d�/ is a closed
subspace of Lp.bD; d�/. Moreover the Cauchy–Szegő projection S can then be
defined as the orthogonal projection of L2.bD; d�/ onto H2.bD; d�/.

Second, if in addition the domain D is strongly pseudo-convex, we know
(by [47]) that D supports an appropriate Cauchy integral C and a corresponding
Cauchy transform C, which is a bounded operator on Lp.bD; d�/, 1 < p < 1.

Third, a combination of the above facts leads to the following consequences:

• The approximation theorem (Theorem 10): the class of functions holomorphic in
a neighborhood of D is dense in Hp.D/, 1 < p < 1, and correspondingly their
restrictions to bD are dense in Hp.bD; d�/.

• The fact that when f 2 Lp.bD; d�/ then f 2 Hp.bD; d�/ if and only if f D C.f /
(Corollary 11). Related to this is the conclusion that the image of Lp.bD; d�/
under C is exactly Hp.bD; d�/ (Proposition 8).

• The identities SC D C and CS D S which hold in L2.bD; d�/ (Proposition 12).
These are crucial in the proof (given in [47]) of the Lp.bD; d�/-boundedness of
S , 1 < p < 1.

• A further characterization of Hp.bD; d�/ as the space of those f 2 Lp.bD/ for
which f D S.f / (Proposition 13).

The results given in Proposition 8 and Corollary 11, Theorem 10, Propositions 9
and 12 also hold for C1;1 domains that are strongly C-linearly convex. For these one
uses the Lp estimates of the Cauchy–Leray integral given in [46], together with a
suitable modification of Lemma 14. These will appear in a future publication.

We point out that analogous statements apply to the weighted spaces
Lp.bD; ! d�/ (resp., Hp.bD; ! d�/) whenever ! is a continuous strictly positive
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density on bD: these weighted measures include the so-called Leray–Levi measure
considered in [46, 47]. But note that the space Lp.bD; ! d�/ (resp., Hp.bD; ! d�/)
contains the same elements as Lp.bD; d�/ (resp., Hp.bD; ! d�/) and the two
norms are equivalent, and so we will continue to denote both of these spaces
simply by Lp.bD/ (resp., Hp.bD/). However the distinction between L2.bD; d�/
and L2.bD; ! d�/ becomes relevant when defining the Cauchy–Szegő projections
because these spaces have different inner products that give different notions of
orthogonality, and so we will distinguish between the two orthogonal projections S
and S! .

The structure of this paper is as follows. In section “Preliminaries” we collect the
main definitions along with a few, well-known features of the spaces Hp.bD/ for
any bounded domain D of class C2. In section “The Role of the Cauchy Integral”
we restrict the focus to the strongly pseudo-convex domains and establish various
connections of Hp.bD/ with the holomorphic Cauchy integrals that were studied in
[47]; in particular, we give the proof of Proposition 8 and of Corollary 11, and use
these results to establish an operator identity that directly links our Cauchy integrals
to the Cauchy–Szegő projection (Proposition 12). The approximation theorem for
Hp.bD/ is also proved in section “The Role of the Cauchy Integral” (Theorem 10).
In section “Further Results” we give a further characterization of Hp.bD/ as the
range of the Cauchy–Szegő projection for D, again for D strongly pseudo-convex
and of class C2 (Proposition 13). In the appendix we go over the more technical
tools and results that are needed to prove Theorem 10.

Lastly, in the References we provide a number of papers, including
[1–19, 21–32, 34–41, 48–60, 62, 63], that offer further insight on the vast literature
on Hardy Spaces.

We remark that this paper complements and at the same time is complemented by
the paper [47], in the following sense. Part I of [47] is needed to prove the results in
section “The Role of the Cauchy Integral” of the present paper. On the other hand,
section “The Role of the Cauchy Integral” in this paper (in particular Proposition 12)
is needed in Part II of [47]. There is no circularity in our proofs, as Part I of [47]
is independent from Part II in that same paper. Finally, the results of Part II in [47]
(along with section “The Role of the Cauchy Integral” in this paper) lead to the
proof of Proposition 13 in section “Further Results” of the present paper.

Preliminaries

Here we recall the main definitions and basic features of the theory of the
holomorphic Hardy spaces for a domain D � C

n. While all results are stated for
the induced Lebesgue measure d� , they are in fact valid for any measure that is
equivalent to d� in the sense discussed in the previous section (in particular for the
aforementioned Leray–Levi measure). Thus we will drop explicit reference to the
measure and again write Lp.bD/, Hp.bD/, and so forth.
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Most proofs are deferred to [61, Sects. 1–5 and 9–10] and [20], where references
to the earlier literature can also be found. To simplify the exposition we limit this
review to the case 1 < p < 1, however we point out that what is needed for p D 1
is a trivial consequence of p < 1.

The only assumptions on D that we need to make at this stage are that D
is bounded and it is of class C2. In fact the class C1C� would suffice here; the
requirement that the domain D is of class C2 will be needed in section “The Role of
the Cauchy Integral” and onwards, when we deal with pseudo-convex domains.

Small Perturbations of the Domain

Starting with our original domain D we will need to construct a family of domains
fDtg where t is a small real parameter. We recall that since D is of class C2 it admits
a C2-smooth defining function � W Cn ! R such that

D D f� < 0g; bD D f� D 0g and r� ¤ 0 on bD:

Then for each real t which is small we consider

�t D �C t and Dt D f�t < 0g; so that bDt D f�t D 0g:
Note that with this notation we have D0 D D and furthermore Dt � D0 if t > 0,
whereas D0 � Dt if t < 0. We will also need an appropriate bijection between bD
and bDt. This is given by the exponential map of a normal vector field, which we
denote ˆt W bD ! bDt, and whose properties are detailed in the appendix.

Hardy Spaces

When 1 � p < 1 and c is a small positive constant, the class Hp.D/ is defined as
the space of functions F that are holomorphic in D and for which (2) holds with Dt

as above and t > 0. (Note that therefore Dt � D.) We take the norm kFkHp.D/ to be
the p-th root of the left-hand side of the expression (2).

We recall some basic properties of Hp.D/. First, the space is independent of the
specific choice of defining function that is being used (i.e., another defining function
will give an equivalent norm). Also, one has the following fact about convergence
in Hp.D/:

If a sequence fFkg � Hp.D/ is uniformly bounded in the norm, and Fk ! F
uniformly on compact subsets of D, then F 2 Hp.D/.

A key feature of functions in Hp involves nontangential convergence. To describe
this we fix a convenient nontangential approach region for each point w 2 bD. With
ˇ > 1 fixed throughout, set �.w/ D fz 2 D W jz � wj < ˇ dist.z; bD/g, where
dist.z; bD/ is the usual Euclidean distance of z 2 D from the boundary of D. Then
if F 2 Hp.D/, one knows (see [61, Theorem 10, Sect. 10, and its corollary]):
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lim
z!w

z2�.w/
F.z/ D PF.w/ exists for a.e. w 2 bD : (3)

N .F/.w/ WD sup
z2�.w/

jF.z/j 2 Lp.bD/ (4)

kFkHp.D/ � k PFkLp.bD/ � kN .F/kLp.bD/ (5)

The above allow us to define the Hardy space in terms of the boundary values PF
of F 2 Hp.D/. More precisely, the Hardy space Hp.bD/ consists of those function
f 2 Lp.bD; d�/ which arise as

PF D f ; for some F 2 Hp.D/:

If we take

kf kHp.bD/ WD kf kLp.bD/

then (5) shows that

kf kHp.bD/ � kFkHp.D/ (6)

and in this sense the spaces Hp.D/ and Hp.bD/ are identical with equivalent norms,
and we will henceforth refer to either one of Hp and Hp as “the Hardy space.”
It follows that (1) gives an alternate characterization of Hp.

Connected with this is the fact that whenever F 2 Hp.D/, one has

F.z/ D Pz.f / ; with z 2 D;

where Pz.f / is the Poisson integral of f , that is,

F.z/ D Pz.f /.z/ D
ˆ

w2bD

Pz.w/ f .w/ d�.w/ :

The characteristic property of the Poisson kernel Pz.w/ is that it gives the solution
of the Dirichlet problem for the Laplace operator for D with data f . Namely, if f
is any continuous function on bD, and we set u.z/ D Pz.f /.z/, then u is harmonic
in D, it extends continuously to D and u.w/ D f .w/ whenever w 2 bD. More
generally, if f 2 Lp.bD/, then Pu.w/ D f .w/ for � -a.e. w 2 bD and furthermore,
kN .u/kLp.bD/ . kf kLp.bD/. The fact that

sup
w2bD
z2Dt

Pz.w/ � ct; if t > 0; (7)

implies that a Cauchy sequence fFkgk � Hp.D/ has a subsequence that is uniformly
convergent on any compact subset of D to a function F, which is in fact in
Hp.D/, from which the completeness of Hp.D/ is evident. Thus (6) shows that
Hp.bD/ is a closed subspace of Lp.bD/. Moreover, one has the following simple
characterization.
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Proposition 1. Suppose f 2 Lp.bD/. Then f 2 Hp.bD/ if, and only if, u.z/ D Pz.f /
is holomorphic in D.

Indeed, if f 2 Hp.bD/, then there is F 2 Hp.D/ such that PF D f . But
one also has PPz.f / D f , and we conclude that Pz.f / D F.z/; z 2 D, by the
uniqueness of the solution of the Dirichlet problem for harmonic functions with data
f 2 Lp.bD/. Conversely, if Pz.f / is holomorphic in D, then by the aforementioned
estimates for the solution of the Dirichlet problem with data f 2 Lp.bD/ and by
the equivalence (5), we have that Pz.f / 2 Hp.D/ and furthermore, that PPz.f / D f ,
showing that f 2 Hp.bD/ with F.z/ WD Pz.f /, z 2 D.

Proposition 1 has the following immediate consequence which, of course, is
interesting only when p2 > p1.

Corollary 2. If f 2 Hp1 .bD/ \ Lp2 .bD/, then f 2 Hp2 .bD/.

Indeed, first note that u.z/ D Pz.f / is holomorphic in D by Proposition 1 (because
f 2 Hp1 .bD/). From this we conclude that f 2 Hp2 .bD/ again by Proposition 1
(because f 2 Lp2 .bD/ and Pz.f / is holomorphic in D).

The Role of the Cauchy Integral

In this section we come to terms with the main issue that arises in the context of
several complex variables, namely, the fact that there is no canonical, holomorphic
Cauchy kernel for D � C

n when n � 2. For this reason we need to impose
the additional restriction that our domain be strongly pseudo-convex and of class
C2, so we may apply the results of [47, Part I], where the existence (and explicit
construction) of a family of holomorphic Cauchy kernels is established, along with
Lp- and Hölder-regularity properties of the resulting integral operators.

Holomorphic Cauchy Integrals

The proofs of the statements in this section can be found in Part I of [47]. Here we
briefly recall the main ideas and ingredients in the proofs.

• Taking � W C
n ! R to be a strictly plurisubharmonic defining function of D,

one begins by constructing a family of locally holomorphic kernels, denoted
fC1

� .w; z/g� , by applying the Cauchy–Fantappiè theory, see [45], to a perturbation
of the Levi polynomial of D in which the second derivatives of � (which are only
continuous functions of w 2 D) are replaced by a smooth approximation �� . One
then achieves global holomorphicity by adding to each such kernel the solution
of an ad-hoc @-problem in the z-variable (for fixed w in a neighborhood of bD),
whose data is defined in a (strongly pseudo-convex and smooth) neighborhood
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� of D; we denote such solution C2
� .w; z/. The outcome of this procedure is a

family of globally holomorphic kernels fC�.w; z/g�:

C�.w; z/ D C1
� .w; z/C C2

� .w; z/; 0 < � < �0 (8)

which are holomorphic in z 2 D whenever w is in bD. More precisely, each of
the C�.w; z/’s is defined in terms of a denominator ��n .w; z/, where � .w; z/
is a holomorphic function of z 2 D (and of class C1 in w 2 �) that satisfies the
following inequalities uniformly in 0 < � < �0:

Re � .w; z/ � c0.��.z/C jw � zj2/; for z 2 D; w 2 bD ; (9)

and

Re � .w; z/ � c0.�.w/ � �.z/C jw � zj2/ (10)

for z and w in a neighborhood of bD. We denote the resulting integral operators
by C� , that is,

C�f .z/ D
ˆ

w2bD

f .w/C�.w; z/ ; z 2 D:

From now on we are only interested in the properties of these operators for a fixed
(small) value of �. Thus we will drop explicit reference to � and will write C for C� ,
C.w; z/ for C�.w; z/, g.w; z/ for � .w; z/, and so forth.

The key properties of C are summarized in Propositions 3 and 4 below.

Proposition 3.

(1) Whenever f is integrable, C.f /.z/ is holomorphic for z 2 D.
(2) If F is continuous in D and holomorphic in D and

f D F

ˇ̌
ˇ̌
bD

;

then C.f /.z/ D F.z/; z 2 D:

• An important feature of the Levi polynomial of D is that it determines a
quasi-distance function d.w; z/, defined for w; z 2 bD, that exhibits borderline
integrability:

ˆ

w2Br.z/

d.w; z/�2nCˇd�.w/ � cˇ rˇI
ˆ

w2bDnBr.z/

d.w; z/�2n�ˇd�.w/ � cˇ r�ˇ (11)

for 0 < r < 1 and ˇ > 0, where Br.z/ D fw 2 bD j d.w; z/ < rg.
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Then one has the following extension result (proved in Part I of [47]):

Proposition 4. If f satisfies the Hölder-type condition:

jf .w/ � f .z/j � cd.w; z/˛; w; z 2 bD: (12)

then C.f / extends to a continuous function on D.

It follows from this proposition that one may define the Cauchy transform C as
the restriction of C to the functions on bD that satisfy the Hölder-like condition (12),
that is,

C.f / D C.f /
ˇ̌
bD for f as in (12).

Note that with the notation of section “Small Perturbations of the Domain” we have

C.f / D PC.f / :

The Cauchy transforms have the following regularity properties (proved in Part I
of [47]).

Theorem 5. The operator C initially defined for functions satisfying (12) extends
to a bounded linear transformation on Lp.bD; d�/, for 1 < p < 1.

Proposition 6. For any 0 < ˛ < 1, the transform C W f 7! C.f / preserves the space
of Hölder-like functions satisfying condition (12).

Stability Under Small Perturbations of the Domain

We should note that when jtj is small, the approximating domains Dt that were
defined in section “Small Perturbations of the Domain” are strongly pseudo-convex
as a consequence of the assumption that D is strongly pseudo-convex. It turns out
that the Cauchy kernel C.w; z/ that was introduced in the previous section for the
original domain D works as well, mutatis mutandis, for the domains fDtgt. More
precisely, we have:

Proposition 7. If jtj is sufficiently small, the kernel C.w; z/ given by (8) has a
natural extension to z 2 Dt and � 2 bDt. The corresponding Cauchy integral
operator C.t/ for Dt, defined as

C.t/.Qf /.z/ D
ˆ

�2bDt

Qf .�/C.�; z/; z 2 Dt;
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satisfies the following properties:

(1) Whenever Qf is integrable on bDt, C.t/.Qf /.z/ is holomorphic
for z 2 Dt.

(2) If QF is continuous in Dt and holomorphic in Dt and

Qf D QF
ˇ̌
ˇ̌
bDt

;

then C.t/.Qf /.z/ D QF.z/; z 2 Dt:

We point out that this proposition includes the result for the Cauchy integral of
D (Proposition 3) as the case t D 0.

Proof. To construct the extension of the kernel we begin by noting that g.w; z/ still
satisfies the inequality analogous to (9) for z 2 Dt, � 2 bDt, when � is replaced by
�t D �C t. Namely, we have by (10) that

Re
�
g.�; z/

� � c.��t.z/C j� � zj2/; when z 2 Dt; � 2 bDt :

(Note that using �t in place of � does not change the definition of g.) Hence if we
take

C.t/;1.Qf /.z/ D
ˆ

�2bDt

Qf .�/C1.�; z/ ; z 2 Dt ;

where

C1.�; z/ D G.�; z/^.@G.�; z//n�1

g.�; z/n

then C.t/;1 is a Cauchy–Fantappiè integral for Dt whose kernel is holomorphic for
z 2 Dt close to � 2 bDt. Next, as pointed out in, e.g., [45, Lemma 7] and [44,
Proposition 3.2], there is a smooth, strongly pseudo-convex domain Ø that contains
Dt for jtj sufficiently small, with the property that H.�; z/ WD �@zC1.�; z/ is smooth
when z 2 Ø, and is continuous in � 2 bDt. We may thus consider the correction
operator C2 and its kernel C2.�; z/ as described in [47, Part I] and references therein,
however now for z 2 Ø and � 2 bDt, so that

@zC
2.�; z/ D �C1.�; z/ whenever z 2 Ø ; � 2 bDt ;

and set

C.t/;2.Qf /.z/ D
ˆ

�2bDt

Qf .�/C2.�; z/; for z 2 Dt :
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Then if C.t/.Qf / D C.t/;1.Qf /C C.t/;2.Qf / ; we have

C.t/.Qf /.z/ D
ˆ

bDt

Qf .�/C.�; z/; z 2 Dt

where C.�; z/ D C1.�; z/ C C2.�; z/ is in fact the kernel of C (the Cauchy integral
for the domain D that was defined in section “Holomorphic Cauchy Integrals”) and
so it is independent of t. It should be clear from the above that (1) and (2) hold.
Namely, C.�; z/ is holomorphic in z 2 Dt for any � 2 bDt; and if QF is holomorphic
in Dt and continuous in Dt, we have that

QF.z/ D
ˆ

w2bDt

Qf .�/C.�; z/ ; for z 2 Dt and jtj small; (13)

where

Qf D F
ˇ̌
bDt
:

ut

Hardy Spaces and the Cauchy Integral

The following proposition gives the first link between the Cauchy integral and
Hp.D/.

Proposition 8. Suppose f 2 Lp.bD; d�/, 1 < p < 1, and let F.z/ D Cf .z/, z 2 D.
Then, F 2 Hp.D/ and

kFkHp.D/ . kf kLp.bD;d�/:

Moreover, we have that C.f / 2 Hp.bD; d�/ .

Proof. We let fgkgk be a sequence of smooth (say, C1) functions so that gk ! f in
the Lp.bD; d�/-norm. Let

Fk WD C.gk/ :

Then by Proposition 4, Fk is holomorphic in D and continuous on D, and

PFk D Fk

ˇ̌
bD D C.gk/ ;

by the definition of the transform C. So fFkgk � Hp.D/, and

kFk � FjkHp.D/ . kC.gk � gj/kLp.bD/ . kgk � gjkLp.bD/ ;
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with the first inequality due to (5), and the second due to the Lp-boundedness of
C ([47, Theorem 7]). This shows that fFkgk is a Cauchy sequence in Hp.D/ and it
follows from (7) and the comments thereafter that fFkgk has a subsequence (which
we keep denoting fFkg) that converges uniformly on compact subsets of D and
therefore in Hp.D/ to a limit F which is thus in Hp.D/. Since as we have seen
kFkkHp.D/ . kgkkL.bD/, this yields the first assertion.

The fact that C.gk/ 2 Hp.bD; d�/ (recall that C.gk/ D PFk with Fk 2 Hp.D/), and
the continuity of C in the Lp.bD; d�/-norm ([47, Theorem 7]), then shows that

C.f / D lim
k!1 C.gk/ 2 Hp.bD; d�/ :

This proves the second assertion, completing the proof of the proposition. ut
The operator C.t/ that appeared in Proposition 7 will be used in the proofs of the

next two results. Specifically, the situation when t > 0 (for which Dt � D) arises in
the proof of Proposition 9 below, whereas the case t < 0 (for which D � Dt) will
occur in the proof of Theorem 10 in the next section.

Proposition 9. Suppose F 2 Hp.D/ and f D PF. Then,

F.z/ D C.f /.z/; z 2 D:

The assertion above is an elaboration of [47, Proposition 5], in which F was taken
to be in the subspace of Hp.D/ consisting of the functions that are holomorphic in
D and continuous on D.

Proof. For t > 0 we consider the Cauchy integral C.t/ for the region Dt that was
defined in section “Small Perturbations of the Domain” and then pass to the limit
as t ! 0.

To this end, first note that by (13), for any fixed z 2 D, we have

F.z/ D
ˆ

bDt

F.�/C.�; z/ for t > 0 and sufficiently small

because F is holomorphic in Dt and continuous on Dt. We may now use the bijection
ˆt: bD ! bDt that was described in section “Small Perturbations of the Domain”
to express the identity above in the equivalent form

F.z/ D
ˆ

bD

F.ˆt.w//Jt.w/C.ˆt.w/; z/ (14)

via a corresponding formulation of the change of variables formula (21) (given in
the appendix below). Since Jt ! 1 uniformly on bD, and the coefficients of C.w; z/
are continuous in w in a neighborhood of D, then Jt.w/C.ˆt.w/; z/ converges to
C.w; z/ as t ! 0, uniformly in w 2 bD; moreover, the convergence of ˆt.w/ to w
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is nontangential. Thus (3) and the dominated convergence via the maximal function
N .F/ show that the integral in (14) converges to

ˆ

bD

PF.w/C.w; z/ D C.f /.z/:

The proposition is therefore proved. ut

Density Properties of Hp.bD/

There are two realizations of Hp.bD/ that follow from the previous results for C
and C. The first is in fact a basic approximation of Hp.bD/. We define H#.bD/
to consist of all functions f that arise as restrictions to bD of functions F that are
holomorphic in some neighborhood of D (which need not be fixed and may, in fact,
depend on F).

Theorem 10. For each p, 1 < p < 1, we have that H#.bD/ is dense in Hp.bD/.

In particular, the space of functions that arise as restrictions to bD of functions
that are holomorphic in D and continuous on D is dense in Hp.bD/.

Proof of Theorem 10. We denote by H˛.bD/ the space of functions f on bD that
satisfy the Hölder condition (12) and moreover, arise as

f D PF ;

with F holomorphic in D and continuous in D. Note that H#.bD/ � H˛.bD/.
The proof of the proposition is given in two steps: in the first step we show that

H˛.bD/ is dense in Hp.bD/. Let f 2 Hp.bD/, with PF D f , where F 2 Hp.D/. Note
that by Proposition 9 we have

C.f / D F:

Now let fhng be a sequence of C1-functions on bD (which automatically satisfy (12))
so that

hn ! f

in the Lp.bD/-norm, and set Fn D C.hn/. As in the proof of [47, Proposition 6], we
see that Fn is holomorphic in D and continuous in D. Let

fn D PFn D C.hn/:
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Then by Proposition 6 we have that fn is Hölder continuous in the sense of (12) and
we conclude that

ffngn � H˛.bD/ :

We claim that fn ! f in Hp.bD/. Indeed by the definitions of Fn and of F we
have that

Fn � F D C.hn � f / ;

and Proposition 8 thus grants that

kFn � FkHp.D/ . khn � f kLp.bD/ ! 0:

On the other hand by (6) we also have

kFn � FkHp.D/ � k PFn � PFkLp.bD/ D kfn � f kLp.bD/

from which the desired convergence follows.
In the second step of the proof of Theorem 10 we show that any f 2 H˛.bD/ can

be approximated uniformly on bD by a family fFtgt of functions whose boundary
values are in H#.bD/. To construct such a family we use the Cauchy integrals fC.t/gt

for the domains Dt that were defined in section “Small Perturbations of the Domain”
for negative t (note that then D � Dt), and apply them to a suitable transposition of f
to bDt. More precisely, given f 2 H˛.bD/ we define Qf by requiring that Qf .ˆt.w// D
f .w/ if t is negative and sufficiently small. (Here ˆt W bD ! bDt is again as in
section “Small Perturbations of the Domain.”) Now define

Ft.z/ D C.t/.Qf /.z/; z 2 Dt; t < 0 and small,

where we recall that

C.t/.Qf /.z/ WD
ˆ

w2bDt

Qf .�/C.�; z/ z 2 Dt

is the aforementioned Cauchy integral for Dt. Then by part (1) of Proposition 7
we have that each Ft is holomorphic in Dt and so its restriction to bD belongs to
H#.bD/.

It will suffice to show that

Ft.z/ ! f .z/ uniformly for z 2 bD; as t ! 0:

To this end, note that

Ft.z/ D f .z/C
ˆ

�2bDt

�Qf .�/ � f .z/



C.�; z/ ; z 2 bD (15)
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because
ˆ

�2bDt

C.�; z/ D 1 for z 2 Dt

by conclusion (2) of Proposition 7. By an analogous formulation of the change of
variables formula (21), the identity (15) can be rewritten as

Ft.z/ D f .z/C
ˆ

w2bD

�
f .w/ � f .z/



Jt.w/C.ˆt.w/; z/ ; z 2 bD : (16)

We point out that a corresponding representation for C.f / was given in [47, (3.2)],
namely

C.f /.z/ D f .z/C
ˆ

w2bD

�
f .w/ � f .z/



C.w; z/ ; z 2 bD : (17)

We next remark that whenever f 2 H˛.bD/, one has

C.f / D f : (18)

To see this, we write f as PF, for some F 2 Hp (in fact for F holomorphic in D
and continuous on D). Then it follows by Proposition 9 that Cf D F on D; by
Proposition 4, this identity extends to D, and (18) then follows by the definition
of C. Combining (18) with (17) we obtain

f .z/ D f .z/C
ˆ

w2bD

�
f .w/ � f .z/



C.w; z/ ; z 2 bD :

Subtracting the above from (16) we find

Ft.z/ � f .z/ D It.z/C IIt.z/

where

It.z/ D
ˆ

w2bD

.f .w/ � f .z//
�
C.ˆt.w/; z/ � C.w; z/



;

and

IIt.z/ D
ˆ

w2bD

.f .w/ � f .z//
�
Jt.w/ � 1
C.ˆt.w/; z/;

To treat It.z/, we break the integral on bD into two parts: when d.w; z/ � a and
d.w; z/ � a. To study the integration in w where d.w; z/ � a, we invoke the
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following inequality concerning the denominators � .w; z/ that were described in
section “Holomorphic Cauchy Integrals,” which is a consequence of Lemma 14 in
the appendix below,

jg.ˆt.w/; z/j & jg.w; z/j; for w; z 2 bD: (19)

Assuming for now the truth of this inequality, we see by the Hölder-regularity of f
that the integrand above is bounded by a multiple of

1

d.w; z/2n
d.w; z/˛ :

Thus, by (11) the integral on the set where d.w; z/ � a is majorized by a multiple of
ˆ

d.w;z/�a

d.w; z/�2nC˛ . a˛ :

On the other hand, by the continuity of C.w; z/ where d.w; z/ � a, we see that
integration over this set gives a quantity that tends to 0 uniformly as t ! 0. Since
a can be chosen arbitrarily small, this shows that the first term It.z/ tends to 0 as
t ! 0, uniformly in z 2 bD. The second term IIt.z/ can be treated similarly to
conclude that IIt.z/ ! 0 uniformly in z 2 bD, as well.

Combining all of the above, we conclude that

sup
z2bD

jFt.z/ � f .z/j ! 0 as t ! 0�;

and the proposition is established. ut
Our second characterization of Hp.bD/ is as the range of the Cauchy transform C.

Corollary 11. Suppose h 2 Lp.bD; d�/. Then h 2 Hp.bD; d�/ if, and only if,
h D C.h/.
Proof. Recall that if h 2 Lp.bD; d�/ then C.h/ 2 Hp.bD; d�/, by Proposition 8.
Thus, if h D C.h/, we have that h 2 Hp.bD; d�/. Conversely if h 2 Hp.bD; d�/, by
the density just proved we can approximate it by a sequence ffng with the property
that fn D PFn with Fn holomorphic in D and continuous in D. Hence,

C.fn/ D C. PFn/
ˇ̌
bD D fn

where the last equality is due to the identity C. PFn/.z/ D Fn.z/ for z in D
(Proposition 9), which extends to z in D because of the continuity of Fn on D. Thus

fn D C.fn/ for each n ;

and the conclusion h D C.h/ follows by the continuity of C in the Lp.bD; d�/-norm.
ut
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Comparing the Cauchy–Szegő Projection
with the Cauchy Integral

Proposition 8 and Corollary 11 show that C is a projection: Lp.bD; d�/ !
Hp.bD; d�/. Thus, when p D 2 we may compare C with the Cauchy–Szegő
projection S , which is the orthogonal projection: L2.bD; d�/ ! H2.bD; d�/.

Proposition 12. As operators on L2.bD; d�/ we have

(a) CS D S
(b) SC D C

In fact, whenever f 2 L2.bD/, then g D Sf 2 H2.bD/, by definition of S . If we
apply Corollary 11 (to g D Sf ), we see that C.Sf / D C.g/ D g D Sf , proving (a).
Next, by Proposition 8, C.f / 2 H2.bD/, for f 2 L2.bD/. Thus SC.f / D C.f /, which
shows (b), thus proving the proposition.

We point out that a corresponding version of Proposition 12 holds for the
orthogonal projections: S! W L2.bD; ! d�/ ! H2.bD; ! d�/ for the densities !
discussed in the introduction (so in particular for the Leray–Levi measure).

Further Results

To conclude, we give a further characterization of Hp.bD; d�/ as the range of
the Cauchy–Szegő projection S . This uses the Lp.bD/-regularity of the Cauchy–
Szegő projection S , proven in [47, Theorem 16], and the approximation theorem
just proved (Theorem 10).

Proposition 13. Suppose f 2 Lp.bD/, 1 < p < 1. Then S.f / 2 Hp.bD/.
Furthermore, we have that f 2 Hp.bD/ if, and only if, f D S.f /.
Proof. To prove the first conclusion, we consider first the case when p � 2. Then
S.f / 2 H2.bD/ \ Lp.bD/ (because Lp 
 L2 and S W L2 ! H2.bD/) and thus
S.f / 2 Hp.bD/ by Corollary 2. In the case when p < 2, we take .fn/n � C1.bD/
with kfn � f kp ! 0. Then S.fn/ 2 Hq.bD/ for any q > 2 (by the case just proved,
since fn 2 C1.bD/ � Lq.bD/ and q > 2). But Hq.bD/ � Hp.bD/ (because q >
2 > p) and so fS.fn/gn � Hp.bD/. Furthermore kS.fn � f /kp . kfn � f kp by the
Lp.bD/-regularity of S . We conclude that S.f / 2 Hp.bD/ by the completeness of
Hp.bD/. This proves the first conclusion of the proposition. To prove the second
conclusion, suppose first that f 2 Hp.bD/; then by Theorem 10 there is a sequence
ffng � H#.bD/ such that fn ! f in Lp.bD; d�/. But H#.bD/ � H2.bD/ and thus
Sfn D fn (by the definition of S). On the other hand, Sfn ! Sf in Lp.bD/ by the
regularity of S in Lp.bD/. Thus Sf D f . Conversely, if f 2 Lp.bD/ and f D S.f /,
then f 2 Hp.bD/ by the first conclusion of the proposition. ut
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Appendix

Consider the C1-smooth vector field 	 defined in a neighborhood of bD by

	.h/.x/ D 1

jr�.x/j2
2nX

jD1

@�

@xj
.x/

@h

@xj
.x/ x 2 U; h 2 C1.U/:

Note that 	.�/.x/ 	 1. Let ˆt.x/ D exp.t 	/.x/ be the exponential map associated
with 	, defined on a small neighborhood U0 of bD, for small t. One knows that

x 7! ˆt.x/; x 2 U0

is a C1-smooth mapping when t is small. We recall thatˆt.�/.x/ arises as the solution
of the time-independent differential equation

d

dt
.ˆt.�/.x// D a .ˆt.�/.x// with a.u/ D r�.u/

jr�.u/j2 ; (20)

with initial condition

ˆt.x/
ˇ̌
tD0 D x :

As a result,

d

dt
.�.ˆt.x/// 	 1 ;

and hence �.ˆt.x// D �.x/C t D �t.x/.
The existence, uniqueness, and C1-regularity of the solution to equations like (20)

guarantee the following properties:

• ˆt1 ıˆt2 D ˆt1Ct2 if the t0js are small;
• ˆ0 D Identity.

Note that these properties imply that ˆt is a C1-bijection: bD ! bDt with
inverse ˆ�t. Moreover Jt.x/ (the Jacobian determinant of ˆt) has the following
properties:

• 0 < c1 � Jt.x/ � c2 < 1 uniformly in t and x 2 bD;
• jJt.x/ � 1j ! 0 as t ! 0, uniformly in x 2 bD;
• The following change of variable formula holds:

ˆ

bD

Qf .ˆt.w// Jt.w/ d�.w/ D
ˆ

bDt

Qf .�/ d�t.�/ (21)

whenever Qf is integrable on bDt.
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Proof of Inequality (19)

The proof of this inequality is a consequence of the following lemma.

Lemma 14. For t < 0, t small, we have

jg.ˆt.w/; z/j � jg.w; z/j C jtj ; for w; z 2 bD :

Proof. Without loss of generality we will assume that w is close to z; then, we may
write g.w; z/ D h@�.w/;w � zi C Qw.w � z/, with Qw.u/ a quadratic form in u.

Letting 	w denote the inner unit normal vector at w 2 bD, we claim that

g.w � ı	w; z/ D g.w; z C ı	z/C O.ıjw � zj C ı2/ (22)

when ı > 0 is sufficiently small. To prove this claim, we begin by noting that

h@�.w � ı	w/;w � ı	w � zi D h@�.w/;w � ı	w � zi C O.ıjw � zj C ı2/

D h@�.w/;w � z � ı	zi C O.ıjw � zj C ı2/ :

One similarly has

Qw�ı	w.w � ı	w � z/ D Qw.w � z C ı	z/C O.ıjw � zj C ı2/ ;

which combined with the above proves the claim.
Next, we observe that the first-order Taylor expansion at t D 0 of the bijection

ˆt.w/ (as a function of t, for fixed w 2 bD) is

ˆt.w/ D w C tNw C o.jtj/ as t ! 0

with o.jtj/ uniform as w ranges over bD, where

Nw D dˆt.w/

dt

ˇ̌
tD0 D 	w

jr�.w/j :

As a result we obtain

g.ˆt.w/; z/ D g.w � ı	w; z/C o.ı/ with ı D � t

jr�.w/j > 0 and small:

By (22) we have

jg.w � ı	w; z/j D jg.w; z C ı	z/j C O.ıjw � zj C ı2/C o.ı/:
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And by Lanzani and Stein [47, Corollary 2]

jg.w; z C ı	z/j C O.ıjw � zj C ı2/C o.ı/ �
� jg.w; z/j C ı C o.ı/C O.ıjw � zj C ı2/ � jg.w; z/j C jtj;

since ı � jtj for t, and hence ı, sufficiently small. ut
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38. K. Koenig, L. Lanzani, Bergman vs. Szegő via Conformal Mapping. Indiana Univ. Math. J.
58(2), 969–997 (2009)

39. S. Krantz, Canonical kernels versus constructible kernels. Preprint. ArXiv: 1112.1094
40. S. Krantz, Function Theory of Several Complex Variables, 2nd edn. (American Mathematical

Society, Providence, RI, 2001)
41. S. Krantz, M. Peloso, The Bergman kernel and projection on non-smooth worm domains.

Houst. J. Math. 34, 873–950 (2008)
42. L. Lanzani, Cauchy transform and Hardy spaces for rough planar domains, Analysis, Geometry,

Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998). Contemporary
Mathematics, vol. 251 (American Mathematical Society, Providence, RI, 2000), pp. 409–428

43. L. Lanzani, E.M. Stein, Cauchy-Szegö and Bergman projections on non-smooth planar
domains. J. Geom. Anal. 14, 63–86 (2004)

44. L. Lanzani, E.M. Stein, The Bergman projection in Lp for domains with minimal smoothness.
Ill. J. Math. 56(1), 127–154 (2013)

45. L. Lanzani, E.M. Stein, Cauchy-type integrals in several complex variables. Bull. Math. Sci.
3(2), 241–285 (2013). doi:10.1007/s13373-013-0038-y

http://dx.doi.org/10.1007/s13373-013-0038-y


Hardy Spaces 199

46. L. Lanzani, E.M. Stein, The Cauchy integral in C
n for domains with minimal smoothness. Adv.

Math. 264, 776–830 (2014). doi:10.1016/j.aim.2014.07.016
47. L. Lanzani, E.M. Stein, The Cauchy-Szegő projection for domains in C
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On the Preservation of Eccentricities
of Monge–Ampère Sections

Diego Maldonado

Dedicated to the memory of Cora Sadosky

Abstract A study on the preservation of eccentricities of Monge–Ampère sections
under an integral Dini-type condition on the Monge–Ampère measure is presented.
The approach is based solely on C2;˛-estimates for solutions to the Monge–Ampère
equation. The main results are then related to the local quasi-conformal Jacobian
problem and to a priori estimates for solutions to the linearized Monge–Ampère
equation.

mscdot[2000]Primary 30C65, Secondary 26B25, 31B15

Introduction

The purpose of this article is to present an alternative proof of a regularity result
for solutions to the Monge–Ampère equation due to Jiang and Wang in [17, pp.
611–613]. As a novelty in our proof (which sets it apart from the techniques in
[15–17], for instance), no a priori C3 or C4-estimates are used and instead we rely
on C2;˛-estimates only. In addition, an effort has been made to provide full details
and to quantify the role of the eccentricities of Monge–Ampère sections in each one
of the a priori estimates.

The main results are the following (see Section “Preliminaries" for definitions):

Theorem 1.1. Let� � R
n be an open convex set and suppose that a strictly convex

function u 2 C2.�/ satisfies

0 < � � det D2u DW f � ƒ in �: (1)
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Assume that the section Su.0; 1/ of u satisfies Su.0; 1/ �� � and let E0 denote its
eccentricity. Then, there exists "0 > 0, depending only on �;ƒ, n, and E0, such that
the inequality

1X
kD0

�
1

jSu.0; 4�k/j
ˆ

Su.0;4�k/

jf .x/ 1n � f .0/
1
n jn dx

� 1
n

< "0 (2)

implies the eccentricity estimates

Ecc.Su.0; 4
�k// � C13E0 8k 2 N0; (3)

for a dimensional constant C13 > 0.

Theorem 1.2. Let � � R
n be an open convex set and suppose that a strictly

convex function u 2 C2.�/ satisfies (1). Assume that the section Su.0; 1/ of u
satisfies Su.0; 1/ �� � and let E0 denote its eccentricity. Then, there exists "1 > 0,
depending only on �;ƒ, n, and E0, such that

1X
kD0

�
1

jB.0; 2�k/j
ˆ

B.0;2�k/

jf .x/ 1n � f .0/
1
n jn dx

� 1
n

< "1 (4)

implies

B.0; �3E
�n
0 2

�k/ � Su.0; 4
�k/ � B.0;K3E

n
02

�k/ 8k 2 N0; (5)

for some structural constants �3;K3 > 0.

Corollary 1.3. Under the hypotheses of Theorem 1.2 there is a structural constant
K11 > 0 such that

kD2u.0/k � K11Ecc.Su.0; 1//
2: (6)

The article is organized as follows: in Section “Preliminaries" we introduce
the basic notation and the notion of eccentricity for convex sets that will be used
throughout. In Section “A Priori Estimates" the main a priori estimates are proved.
Built upon the classical Aleksandrov–Bakelman–Pucci and Pogorelov results, such
estimates include an explicit description of the interplay between the size of the
Hessian of a convex solution and the eccentricities of its sections (Lemma 3.5) and
a C2;˛-regularity result (Lemma 3.6). In turn, these results are proved sufficient
for obtaining a comparison principle between two solutions of det D2u D 1

(Lemma 3.7). Sections “Proof of Theorem 1.1”, “Proof of Theorem 1.2” and
“Proof of Corollary 1.3” are devoted to the proofs of Theorem 1.1, Theorem 1.2,
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and Corollary 1.3, respectively. In Section “On the Local Quasi-Conformal Jacobian
Problem" we relate Theorem 1.2 to the local quasi-conformal Jacobian problem and
to a result by H.M. Riemann by means of local quasi-conformal mappings with
convex potentials. In Section “On the Uniform Ellipticity for the Linearized Monge–
Ampère Operator" we apply Corollary 1.3 to show uniform ellipticity for cofactor
matrices of Hessians of solutions in terms of eccentricities of their sections.

Preliminaries

About Notation

jAj as well as det A will denote the determinant of an n � n matrix A while kAk will
denote its matrix norm. Thus, either one of det D2u.x/ or jD2u.x/j will denote the
determinant of the Hessian of a function u at x and kD2u.x/k will denote the matrix
norm of D2u.x/.

B.x; r/ will denote the Euclidean ball centered at x 2 R
n with radius r > 0, jEj

will stand for the Lebesgue measure of a set E � R
n and we put !n WD jB.0; 1/j. jxj

will denote the norm of a vector x 2 R
n, and the dot product between two vectors

x; y 2 R
n will be denoted as hx; yi.

Constants depending only on dimension n will be called dimensional constants
and will be denoted as Cj’s. We will also use Cn to denote a generic dimensional
constant that might change from line to line. Constants depending only on �; ƒ,
and n will be called structural constants and will be denoted as Kj’s and �j’s.

Given ˛ 2 .0; 1/ and scalar and matrix functions w and W defined on an open set
U � R

n, the norms kwk�
2;˛IU and kWk�

0;˛IU are defined as

kwk�
2;˛IU WD kwkL1.U/ C sup

x2U
dxjrw.x/j C sup

x2U
d2

xkD2w.x/k

C sup
x;y2U

x¤y

d2C˛
x;y

kD2w.x/ � D2w.y/k
jx � yj˛ (7)

and

kWk�
0;˛IU WD kWkL1.U/ C sup

x;y2U

x¤y

d˛
x;y

kW.x/ � W.y/k
jx � yj˛ ; (8)

where dx WD dist.x; @U/ and dx;y WD minfdx; dyg.
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Normalization and Eccentricity of Open, Bounded,
and Convex Sets

An (open) ellipsoid E � R
n centered at xc 2 R

n is an open, bounded, and convex
set of the form

E WD fx 2 R
n W hQ.x � xc/; x � xci < 1g (9)

where Q is a symmetric, positive-definite n�n (real) matrix. For ˛ > 0 the ellipsoid
˛E is defined as

˛E WD fx 2 R
n W hQ.x � xc/; x � xci < ˛g: (10)

Given an open, bounded, and convex S � R
n, a seminal result due to F. John

establishes the existence of a unique ellipsoid E of minimum volume circumscribing
S. In addition, the ellipsoid E satisfies

˛nE � S � E

with ˛n WD 1=n. Now, if T W Rn ! R
n is an affine transformation satisfying T.E/ D

B.0; 1/ it follows that

B.0; ˛n/ � T.S/ � B.0; 1/; (11)

and T is of the form Tx D LTxCb for some symmetric, positive-definite n�n matrix
LT and some b 2 R

n. By abusing notation, we will identify T with its matrix LT by
writing jTj for jLT j and T for its Jacobian LT . Also, we will refer to the eigenvalues
of LT as the eigenvalues of T (Fig. 1).

If S � R
n is open, bounded, and convex, the eccentricity of S is defined as

Ecc.S/ WD jTj� 1
n kTk (12)

xc

B(0, αn)

T (S)

B(0, 1)
S

E

αnE
0

T

αn
nωn ≤ |T (S)| = |T ||S| ≤ ωn

Tx = LTx + b

B(0, αn) ⊂ T (S) ⊂ B(0, 1)

Fig. 1 Normalization of an open, bounded, and convex set S � R
n through an affine transforma-

tion T . Among all ellipsoids containing S, the ellipsoid E has minimal volume
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where T normalizes S. That is, Ecc.S/ is comparable, with dimensional constants, to
the ratio between the arithmetic and geometric means of the eigenvalues of T . Notice
that Ecc.S/ is well-defined due to the uniqueness of T . Also, if 0 < �1 � � � � � �n

denote the eigenvalues of T , then kTk D �n, and if H > 0 satisfies jTj� 1
n kTk � H,

then

�n � Hn�1: (13)

If 0 < �1 � � � � � �n denote the radii of an ellipsoid E with ˛nE � S � E and T
normalizes S, then the eigenvalues of T are 0 < 1

�n
� � � � � 1

�1
, so that kTk D 1

�1

and kT�1k D �n D diam.E/=2 and, by (13)

diam.S/ � diam.E/ D 2�n D 2

�1
� 2Ecc.S/n

�n
D 2Ecc.S/n

kTk :

Hence,

kTk � 2Ecc.S/n

diam.S/
: (14)

Monge–Ampère Sections

Given an open convex set � � R
n and a convex function u 2 C2.�/, the section of

u centered at x0 2 � and of height t > 0 is the open convex set defined by

Su.x0; t/ WD fx 2 � W u.x/ < u.x0/C hru.x0/; x � x0i C tg: (15)

We will use the fact that whenever 0 < � � det D2u � ƒ is an open convex set
� � R

n, there exist structural constants K1;K2 > 0 (that is, depending only on �,
ƒ and n) such that

K1t � jSu.x0; t/j 2n � K2t 8Su.x0; t/ �� �; (16)

see, for instance, Corollary 3.2.4 in [12, p. 50].
Notice that if S WD Su.x0; t/ is a fixed section and if E is an ellipsoid with

˛nE � S � E, from (16) we have

diam.S/n � ˛n
n diam.E/n � ˛n

n jEj � ˛n
n jSj � K

n
2

1 t
n
2 ;

so that

K1t � diam.Su.x0; t//
2: (17)
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Now, given 0 < t0 < t, what can be said about the eccentricity of a section
Su.x0; t/ compared to the one of Su.x0; t0/? By Theorem 3.3.8 in [12, p. 57], if u
satisfies 0 < � � det D2u � ƒ (in fact, just a doubling condition suffices) there
exist structural constants �0 > 0 and K0 � 1 such that

Ecc.Su.x0; t
0// � K0

� t

t0
��0

Ecc.Su.x0; t// 8t0 2 .0; t/: (18)

By taking, for instance, t0 WD 2�kt for k 2 N, as we move inwards from Su.x0; t/ to
Su.x0; 2�kt/, eccentricities can be expected to grow exponentially in k.

The main purpose of this article is then the exploration of regularity conditions
on det D2u that guarantee the uniform comparability

Ecc.Su.x0; t
0// . Ecc.Su.x0; t// 8t0 2 .0; t/; (19)

where the implied constants are structural constants.

A Priori Estimates

A Version of the ABP for Open, Bounded, and Convex Sets

A version of the well-known Aleksandrov–Bakelman–Pucci maximum principle
reads as follows (see Lemma 9.3 in [11, p. 222]): let � � R

n be open and bounded
and, for x 2 �, let A.x/ be a symmetric, positive-definite n � n matrix. Then, for
every g 2 C2.�/ \ C.�/ we have

sup
�

g � sup
@�

g C diam.�/

n!1=n
n

����
tr.AD2g/

jAj�
����

Ln.�C/

; (20)

where jAj� WD jAj 1n and �C denotes the upper contact set of g. Notice that A above
need not be uniformly elliptic for (20) to hold. In the case where A is uniformly
elliptic, that is, when there exist constants 0 < c0 � C0 such that the eigenvalues of
A.x/ belong to the interval Œc0;C0
 for every x 2 �, X. Cabré [3] showed that (20)
can be improved as to admit j�j1=n instead of diam.�/, but with the Ln-norm taken
in all of� and not just �C. In this case, the relevant constants depend heavily on c0
and C0.

When A is just symmetric and positive-definite, Lemmas 3.1 and 3.2 below
establish the validity of the ABP maximum principle (20) with j�j1=n in place of
diam.�/ provided that � be an open, bounded, and convex set. These lemmas
appear as Problem 9.3 in [11, p. 255] and their short proofs are included for
completeness’ sake.
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Lemma 3.1 (ABP for Convex Domains). Let � � R
n be open, bounded, and

convex and, for every x 2 �, let A.x/ be a symmetric, positive-definite n � n matrix.
Then, for every g 2 C2.�/ \ C.�/ we have

sup
�

g � sup
@�

g C C0j�j 1n
����

tr.AD2g/

jAj�
����

Ln.�C/

; (21)

where C0 WD 2

n˛n!
2=n
n

, jAj� WD jAj 1n , and �C denotes the upper contact set of g.

Proof. Let T be an affine transformation normalizing � and, for y 2 T.�/,
introduce h.y/ WD g.T�1y/ so that, for x 2 � and y D Tx we have

tr.A.x/D2g.x// D tr.A.x/TtD2h.y/T/ D tr.TA.x/TtD2h.y//

DW tr.AT.y/D
2h.y//;

where AT.y/ WD TtA.T�1y/T is a symmetric, positive-definite n � n matrix with
jAT.y/j D jTj2jA.T�1y/j. Then, from (20) (applied to h and AT on T.�/, and
noticing that the upper contact set of h coincides with T.�C/) we have

sup
T.�/

h � sup
@T.�/

h C diam.T.�//

n!
1
n

n

����
tr.ATD2h/

jAT j�
����

Ln.T.�C//

: (22)

Now, since T normalizes �, from (11) we have diam.T.�// � diam.B.0; 1// � 2

as well as !n˛
n
n D jB.0; ˛n/j � jT.�/j D jTjj�j. Consequently,

ˆ
T.�C/

ˇ̌
ˇ̌ tr.AT.y/D2h.y//

jAT.y/j�
ˇ̌
ˇ̌
n

dy D 1

jTj2
ˆ

T.�C/

ˇ̌
ˇ̌ tr.AT.y/D2h.y//

jA.T�1y/j�
ˇ̌
ˇ̌
n

dy

D 1

jTj
ˆ
�C

ˇ̌
ˇ̌ tr.A.x/D2g.x//

jA.x/j�
ˇ̌
ˇ̌
n

dx � j�j
˛n

n!n

ˆ
�C

ˇ̌
ˇ̌ tr.A.x/D2g.x//

jA.x/j�
ˇ̌
ˇ̌
n

dx;

so that (21) follows from (22). ut
Along the same lines, Theorem 9.1 in [11, p. 220] reads: given � � R

n, open
and bounded; a symmetric, positive-definite n � n matrix A.x/ for x 2 �, and g 2
W2;n

loc .�/ \ C.�/ with tr.A.x/D2g.x// � f .x/ for (Lebesgue)-almost every x 2 �,
we have

sup
�

g � sup
@�

gC C C�
1 diam.�/

����
f

jAj�
����

Ln.�/

; (23)

for some constant C�
1 > 0 depending only on dimension n. Thus, assuming that �

is open, bounded, and convex, we have
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Lemma 3.2. Let � � R
n be open, bounded, and convex and, for every x 2 �, let

A.x/ be a symmetric, positive-definite n � n matrix. Then, for every g 2 W2;n
loc .�/ \

C.�/ with tr.A.x/D2g.x// � f .x/ a.e. x 2 � for some measurable function f , we
have

sup
�

g � sup
@�

gC C C1j�j 1n
����

f

jAj�
����

Ln.�/

; (24)

with C1 WD 2˛�1
n !

� 1
n

n C�
1 .

Proof. The proof is similar to the one for Lemma 3.1 and, in keeping with the
notation from that proof, Lemma 3.2 follows after using that for x 2 � and y D Tx,

f .T�1y/ � tr.A.x/D2g.x// D tr.AT.y/D
2h.y//; a:e: y 2 T.�/;

by applying (23) to h, AT , and f .T�1�/ on T.�/, and by changing variables from y
back to x and recalling that diam.T.�// � 2 and jTj�1 � ˛�n

n !�1
n j�j: ut

A Comparison Principle

In view of Lemma 3.1 above, the next lemma stands as a version of Lemma 3.1 in
[16] and Lemma 4.1 in [17], involving j�j1=n instead of diam.�/.

Lemma 3.3. Let� � R
n be open, bounded, and convex. Let u; v 2 C2.�/\ C.�/

be convex functions with det D2u and det D2v vanishing at most on set of (Lebesgue)
measure zero in �. Then,

sup
�

ju � vj � sup
@�

ju � vj C nC1j�j 1n
���.det D2u/

1
n � .det D2v/

1
n

���
Ln.�/

; (25)

where C1 is the dimensional constant in (24).

Proof. For almost every x 2 �, let us put f .x/ WD det D2u.x/ > 0 and g.x/ WD
det D2v.x/ > 0, and introduce the symmetric, positive-definite n � n matrices

Au.x/ WD 1

n
jD2u.x/j 1n D2u.x/�1 and Av.x/ WD 1

n
jD2v.x/j 1n D2u.v/�1:

Notice that jAu.x/j D jAv.x/j D n�n and

tr.AuD2u/ D det.D2u/
1
n D f

1
n

tr.AvD
2v/ D det.D2v/

1
n D g

1
n :
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Now, by means of the arithmetic-geometric means inequality, we get

tr.AuD2v/ D 1

n
jD2uj 1n tr..D2u/�1D2v/ (26)

� jD2uj 1n .j.D2u/�1jjD2vj/ 1n D jD2vj 1n D g
1
n :

Therefore, almost everywhere in �, we have

tr.AuD2.v � u// D tr.AuD2v/ � tr.AuD2u/ � g
1
n � f

1
n :

Then, by (24) applied to v � u, Au, and g
1
n � f

1
n on �,

sup
�

.v � u/ � sup
@�

.v � u/C C nC1j�j 1n
���g

1
n � f

1
n

���
Ln.�/

: (27)

By interchanging the roles of u and v in (26), it similarly follows that

sup
�

.u � v/ � sup
@�

.u � v/C C nC1j�j 1n
���f

1
n � g

1
n

���
Ln.�/

: (28)

Finally, (27) and (28) yield (25). ut

Pogorelov’s Estimates

The goal of this section is to recast the classical Pogorelov’s estimates in terms
of Monge–Ampère sections and their eccentricities. The following results from
Sect. 4.2 of [12] will be our starting point: let � � R

n be open, bounded, and
convex with B.0; ˛n/ � � � B.0; 1/ and let u 2 C4.�/ with

det D2u D 1 in �

u D 0 on @�:

Then, there exist dimensional constants C3;C4;C5 > 0 such that for every " > 0 we
have (in the sense of positive-definite matrices)

C."/1�nI � D2u.x/ � C."/I 8x 2 �"; (29)

where �" WD fx 2 � W u.x/ < �"g and

C."/ WD C4
"

exp.C5"
�2n/: (30)
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Moreover,

dist.�"; @�/ � C3"
n 8" > 0: (31)

In the next lemma, the role of� in the results above will be played by normalized
Monge–Ampère sections.

Lemma 3.4 (Pogorelov’s Estimates on Sections). Fix a convex domain � � R
n.

Let u 2 C4.�/ be convex with det D2u.x/ D 1 for every x 2 �. Assume that there
exists x0 2 � with ru.x0/ D 0 and given t0 > 0 such that Su.x0; t0/ �� � let
T W Rn ! R

n be an affine transformation normalizing Su.x0; t0/.
Then, for every ı 2 .0; 1/ we have the estimates

dist.Su.x0; ıt0/; @Su.x0; t0// � C11.1 � ı/nkTk�1 (32)

and, in the sense of positive-definite matrices,

F.ı/1�njTj� 2
n TtT � D2u.x/ � F.ı/jTj� 2

n TtT 8x 2 Su.x0; ıt0/; (33)

where

F.ı/ WD C9
.1 � ı/ exp.C10.1 � ı/�2n/; (34)

and C9;C10;C11 > 0 are dimensional constants.

Proof. The contents of this lemma are illustrated in Fig. 2 and its proof follows after
a change of variables based on the normalization technique; however, the behavior
of the relevant constants needs to be tracked closely.

Let T be an affine transformation normalizing Su.x0; t0/. For y 2 T.Su.x0; t0//
define

v.y/ WD jTj 2n .u.T�1y/ � t0 � u.x0//; (35)

so that for every t > 0 with Su.x0; t/ � �, setting y0 WD Tx0 we have

Sv.y0; tjTj 2n / D T.Su.x0; t//: (36)

Clearly, det D2v D 1 in Sv.y0; t0jTj 2n / and, since u.x/ D t0 C u.x0/ for every x 2
@Su.x0; t0/, we also have v D 0 on @Sv.y0; t0jTj 2n /. On the other hand, the fact that
T normalizes Su.x0; t0/ yields

B.0; ˛n/ � T.Su.x0; t0// D Sv.y0; t0jTj 2n / � B.0; 1/

and, for every ı 2 .0; 1/, the facts that v.y0/ D �t0jTj 2n and rv.y0/ D 0 give

fy 2 Sv.y0; t0jTj 2n / W v.y/ < �.1 � ı/t0jTj 2n g D Sv.y0; ıt0jTj 2n /: (37)
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t0

δt0

x0 Su(x0, δt0)
Su(x0, t0) Ω

u ∈ C4(Ω)
det D2u(x) = 1 ∀x ∈ Ω

∇u(x0) = 0
0 < δ < 1

u

Fig. 2 Pogorelov’s estimates on sections: if T normalizes Su.x0; t0/, it follows that D2u.x/ '
jTj� 2

n TtT for every x 2 Su.x0; ıt0/, with constants depending only on ı and n

By applying (29) to v on Sv.y0; t0jTj 2n / with " WD .1 � ı/t0jTj 2n > 0 we get

C."/1�nI � D2v.y/ � C."/I 8y 2 Sv.y0; ıt0jTj 2n /; (38)

which, in terms of u, translates as

C."/1�nI � jTj 2n .T�1/tD2u.x/T�1 � C."/I 8x 2 Su.x0; ıt0/: (39)

Next, we relate the sizes of " and .1 � ı/ in order to control C."/ in terms of ı. For
this we resort to (16) which, used with v, � D ƒ D 1 and Sv.y0; t0jTj 2n /, yields
dimensional constants C6;C7 > 0 such that

C6t0jTj 2n � jSv.y0; t0jTj 2n /j 2n � C7t0jTj 2n : (40)

Along with the fact that, due to normalization,

˛n
n!n � jSv.y0; t0jTj 2n /j � !n;

(40) implies that

˛2n!
2
n

n C�1
7 � t0jTj 2n � !

2
n

n C�1
6 (41)
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and then

˛2n!
2
n

n C�1
7 .1 � ı/ � " WD .1 � ı/t0jTj 2n � !

2
n

n C�1
6 .1 � ı/: (42)

By recalling the definition of C."/ in (30) and setting C8 WD ˛2n!
2
n

n C�1
7 , we get the

bound

C."/ <
C4

C8.1 � ı/ exp.C5.C8.1 � ı//�2n/ DW F.ı/

and (34) follows with C9 WD C�1
8 C4 and C10 WD C5C�2n

8 . By using (31), we can
write

C3C
n
8.1 � ı/n � C3"

n � dist.Sv.y0; ıt0jTj 2n /; @Sv.y0; t0jTj 2n //
D dist.T.Su.x0; ıt0//; @T.Su.x0; t0///

� kTk dist.Su.x0; ıt0/; @Su.x0; t0//;

and (32) follows with C11 WD C3Cn
8. ut

Inequality (33) quantifies the interplay between the eccentricity of a section of u
and the size of its Hessian. Let us explicitly state this interplay as follows:

Lemma 3.5 (The Interplay Between Hessian and Eccentricity). Fix a convex
domain � � R

n. Let u 2 C4.�/ be convex with det D2u.x/ D 1 for every x 2 �.
Assume that there exists x0 2 � with ru.x0/ D 0 and given t0 > 0 such that
Su.x0; t0/ �� � let T be an affine transformation normalizing Su.x0; t0/.

For every ı 2 .0; 1/ and z 2 Su.x0; ıt0/ we have

Ecc.Su.x0; t0//
2 � F.ı/n�1kD2u.z/k (43)

and

F.ı/1�nkD2u.z/k � Ecc.Su.x0; t0//
2 (44)

where F.ı/ is as in (34).

Proof. Since Pogorelov’s estimate (33) gives jTj� 2
n TtT � F.ı/n�1D2u.z/ in the

sense of positive-definite matrices, (43) follows immediately. ut
The next lemma is based on Theorem 4.2.1 in [12, p. 67] and it makes explicit

the role of eccentricities in interior C2;˛-estimates for solutions of det D2u D 1.

Lemma 3.6 (An Interior C2;˛-estimate). Fix a convex domain � � R
n. Let u 2

C4.�/ be convex with det D2u.x/ D 1 for every x 2 �. Assume that there exists
x0 2 � with ru.x0/ D 0 and given t0 > 0 such that Su.x0; t0/ �� � and T be an
affine transformation normalizing Su.x0; t0/.
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For every ı 2 .0; 1/ there exist constants ˛ 2 .0; 1/ and H.ı; n/ > 0, depending
only on ı and n, such that for every x; y 2 Su.x0; ıt0/ with x ¤ y, we have

d˛x;y
kD2u.x/ � D2u.y/k

jx � yj˛ � H.ı; n/Ecc.Su.x0; t0//
n˛: (45)

Consequently, (45) and (44) imply that

��D2u
���
0;˛I.Su.x0;ıt0//

� F.ı/n�1Ecc.Su.x0; t0//
2 C H.ı; n/Ecc.Su.x0; t0//

n˛: (46)

Proof. In keeping with the notation from the proof of Lemma 3.4, let v be defined
as in (35). Thus, v satisfies

det D2v D 1 in Sv.y0; t0jTj 2n /
v D 0 on @Sv.y0; t0jTj 2n /;

with B.0; ˛n/ � Sv.y0; t0jTj 2n / � B.0; 1/ and y0 WD Tx0. Given ı 2 .0; 1/ fix ı0 with
0 < ı < ı0 < 1. Then the inequalities (38) imply that D2v is uniformly elliptic in
Sv.y0; ı0t0jTj 2n / with eigenvalues bounded between F.ı0/1�n and F.ı0/ (here F.ı0/
is as in (34)). Consequently, the nonlinear equation G.D2v/ WD log.det D2v/ D 0 is
uniformly elliptic with

@G

vij
D vij 8i; j D 1; : : : ; n;

where the vij’s denote the entries of the matrix .D2v/�1 whose eigenvalues lie
between F.ı0/�1 and F.ı0/n�1 in Sv.y0; ı0t0jTj 2n /. Also, since G is concave, by L.C.
Evan’s Hölder estimate (see inequality (17.41) in [11, p. 456]) there are constants
C.ı0; n/ > 0 and ˛.ı0; n/ 2 .0; 1/, depending only on n and F.ı0/, such that for
every Euclidean ball BR0 � Sv.y0; ı0t0jTj 2n / and every 0 < R � R0, it holds true that

oscBR D2v � C.ı0; n/
�

R

R0

�˛.ı0;n/

oscBR0
D2v: (47)

By Corollary 3.3.6(i) in [12, p. 55] we have

dist.Su.x0; ıt0/; @Su.x0; ı
0t0/ � C14.1 � ı=ı0/nı0kTk�1; (48)

for some dimensional constant C14 > 0. Define R0
0 WD C14.1�ı=ı0/nı0kTk�1=2 and

given x1; x2 2 Su.x0; ıt0/ with R0 WD jx1 � x2j � R0
0,(48) guarantees that B.x1;R0/ �

B.x1;R0
0/ � Sv.y0; ı0t0jTj 2n /. Let us also define

R WD jTx1 � Tx2j � kTkjx1 � x2j D kTkR0 � kTkR0
0 DW R0;
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so that

kD2u.x1/ � D2u.x2/k � jTj�2=nkTk2kD2v.Tx1/ � D2v.Tx2/k

� oscB.Tx1;R/ D2v � C.ı0; n/
�

R

R0

�˛.ı0;n/

oscB.Tx1;R0/ D2v

� 2F.ı0/C.ı0; n/
�

R

R0

�˛.ı0;n/

� 2F.ı0/C.ı0; n/
� jx1 � x2j

R0
0

�˛.ı0;n/

:

On the other hand, we have

dz WD dist.z; @Su.x0; t0// � 2kTk�1 8z 2 Su.x0; ıt0/;

because for every z0 2 @Su.x0; t0/ we can write

jz � z0j D jT�1.Tz/ � T�1.Tz0/j � kT�1kjTz � Tz0j � 2kT�1k

where we have used that T.Su.x0; t0// � B.0; 1/. Therefore, for every x1; x2 2
Su.x0; ıt0/,

d˛.ı
0;n/

x1;x2 kD2u.x1/ � D2u.x2/k � .2kT�1k/˛.ı0;n/2F.ı0/C.ı0; n/
� jx1 � x2j

R0
0

�˛.ı0;n/

D .2kT�1k/˛.ı0;n/2F.ı0/C.ı0; n/
�

2jx1 � x2j
C14.1 � ı=ı0/nı0kTk�1

�˛.ı0;n/

DW H.ı; ı0; n/.kTkkT�1k/˛.ı0;n/jx1 � x2j˛.ı0;n/

� H.ı; ı0; n/Ecc.Su.x0; t0//
n˛.ı0;n/jx1 � x2j˛.ı0;n/;

after fixing, for instance, ı0 WD .1C ı/=2, (45) follows. ut

A Comparison Between Two Solutions of det D2u D 1

Lemma 3.7. Fix a convex domain � � R
n. Let u; v 2 C4.�/ be convex solutions

of det D2u.x/ D det D2v.x/ D 1 for every x 2 �. Assume that there exists x0 2 �

with ru.x0/ D 0 and given t0 > 0 such that Su.x0; t0/ �� � let T W Rn ! R
n be

an affine transformation normalizing Su.x0; t0/.
Suppose that for some ˛ 2 .0; 1/ and N > 0 we have

kD2uk�
0;˛I.Su.x0;t0// C kD2vk�

0;˛I.Su.x0;t0// � N: (49)
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Then there exists a constant M� > 0, depending only on N; ˛, and n, such that

ku � vk�
2;˛ISu.x0;t0/ � M� ku � vkL1.Su.x0;t0// : (50)

In particular, given ı 2 .0; 1/, there exists a constant M; depending only on N; ˛,
and n (in fact, M is just a dimensional multiple of M�) such that

��D2u � D2v
��

L1.Su.x0;ıt0//
� M

Ecc.Su.x0; t0//2n

.1 � ı/2nt0
ku � vkL1.Su.x0;t0// : (51)

Proof. For t 2 Œ0; 1
, set

At.x/ WD D2u.x/.1 � t/C tD2v.x/ 8x 2 �; (52)

so that At is a symmetric, positive-definite n � n matrix and, by Minkowski’s
inequality,

jAt.x/j1=n � .1 � t/jD2u.x/j1=n C tjD2v.x/j1=n D 1 8x 2 �: (53)

On the other hand,

0 D jD2uj � jD2vj D
ˆ 1

0

djAtj
dt

dt D
ˆ 1

0

jAtj tr.A�1
t D2.u � v// dt

DW tr.AD2.u � v//;

where A.x/ WD ´ 1
0

jAt.x/jAt.x/�1 dt: The point will be to show that A.x/ is uniformly
elliptic in Su.x0; t0/ and that the norm kAk0;˛ISu.x0;t0/ can be controlled in terms of N
and n and then use Schauder’s estimates on u � v.

For each fixed t 2 Œ0; 1
, notice that (49) implies

kAt.x/k � .1 � t/kD2u.x/k C tkD2v.x/k � N 8x 2 Su.x0; t0/ (54)

which then gives

kAkL1.Su.x0;t0// � N: (55)

Next, for a fixed t 2 Œ0; 1
, let 0 < a1.x/ � � � � � an.x/ denote the eigenvalues of
At.x/. From (54) we have an.x/ � N and, from (53),

1 � jAt.x/j D
nY

jD1
aj.x/ � a1.x/N

n�1 8x 2 Su.x0; t0/
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which then yields N1�n � a1.x/ � an.x/ � N and

N�1 � 1

an.x/
� 1

a1.x/
� Nn�1 8x 2 Su.x0; t0/: (56)

Consequently, the eigenvalues of jAt.x/jAt.x/�1 can be bounded as follows:

N�1 � jAt.x/j
an.x/

� jAt.x/j
a1.x/

� N2n�1 8x 2 Su.x0; t0/: (57)

Notice that the definition of At in (52) and (49) implies

kAtk�
0;˛ISu.x0;t0/ � N 8t 2 Œ0; 1
 (58)

and, since the norm k�k0;˛;Su.x0;t0/ is sub-multiplicative and jAtj is a homogeneous
polynomial of degree n in the coefficients of At, we get

kjAtjk�
0;˛;Su.x0;t0/ � CnNn 8t 2 Œ0; 1
: (59)

From (53) it follows that jAtj�1 � 1, so that

jjAt.x/j�1 � jAt.y/j�1j D jAt.x/j�1jAt.y/j�1jjAt.x/j � jAt.y/jj
� jjAt.x/j � jAt.y/jj 8x; y 2 Su.x0; t0/;

and then
��jAtj�1

���
0;˛I.Su.x0;t0/

� CnNn 8t 2 Œ0; 1
: (60)

Now, using the fact that A�1
t D jAtj�1adj.At/, and adj.At/ is a polynomial of degree

n � 1 in the entries of At, it follows that
��A�1

t

���
0;˛ISu.x0;t0/

� CnN2n�1 8t 2 Œ0; 1
: (61)

Consequently, we have obtained that
��jAtjA�1

t

���
0;˛ISu.x0;t0/

� CnN3n�1 8t 2 Œ0; 1
 (62)

so that the matrix A.x/ satisfies

kAk�
0;˛ISu.x0;t0/ � CnN3n�1: (63)

In addition, (57) implies that the ratio between the largest and smallest eigenvalue of
A.x/ is bounded by N2n. Next, Schauder’s estimates (see, for instance, Theorem 6.2
in [11, p. 90]) yield

ku � vk�
2;˛I.Su.x0;t0// � M� ku � vkL1.Su.x0;t0// (64)
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where M� > 0 depends only on the ratio between the largest and smallest eigenvalue
of A.x/ (in our case bounded by N2) and the C˛-norm of A [bounded as in (63)] as
well as on ˛ and n.

Finally, given ı 2 .0; 1/, (64) implies that

sup
x2Su.x0;ıt0/

d2x kD2u.x/ � D2v.x/k � M� ku � vkL1.Su.x0;t0// (65)

and by (32) we get

dist.Su.x0; ıt0/; @Su.x0; t0//
�2 � kTk2

C2
11.1 � ı/2n

;

in turn, by (14),

kTk2 � 4Ecc.Su.x0; t0//2n

diam.Su.x0; t0//2
� 4Ecc.Su.x0; t0//2n

C12t0
;

where for the last inequality we used (17) with the function u, which satisfies
det D2u D 1, hence its corresponding K1, K2 as in (16) are just dimensional
constants. Thus, (50) follows with M WD 4M�.C2

11C12/
�1. ut

Proof of Theorem 1.1

By subtracting a hyperplane we can assume that u.0/ D 0 and ru.0/ D 0 (which
implies u � 0). Suppose first that f .0/ D 1 and for k 2 N0 define uk as the convex
solution to

det D2uk D 1 in Su.0; 4
�k/

uk D 4�k on @Su.0; 4
�k/:

Since u satisfies

det D2u D f in Su.0; 4
�k/

u D 4�k on @Su.0; 4
�k/;

the comparison principle (25) gives

ku � ukkL1.Su.0;4�k// � nC1jSu.0; 4
�k/j 1n

���f
1
n � 1

���
Ln.Su.0;4�k//

D nC1jSu.0; 4
�k/j 2n

�
1

jSu.0; 4�k/j
ˆ

Su.0;4�k/

jf .x/ 1n � 1jn dx

� 1
n
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and, by defining

ˇ.k/ WD nC1K2

�
1

jSu.0; 4�k/j
ˆ

Su.0;4�k/

jf .x/ 1n � 1jn dx

� 1
n

8k 2 N0; (66)

with K2 as in (16), we obtain the bound

ku � ukkL1.Su.0;4�k/ � 4�kˇ.k/ 8k 2 N0: (67)

Next, we relate the sections of uk and u.

Lemma 4.1. For k 2 N0 let xk denote the minimum of uk in Su.0; 4
�k/ and set

tk WD 4�k � uk.xk/. Then, we have that

Su.0; 4
�k/ D Suk.xk; tk/ 8k 2 N0 (68)

and

0 2 Suk.xk; 4
�kC 1

2 ˇ.k// 8k 2 N0: (69)

Moreover, given " > 0 and k 2 N0, we have

4�kC 1
2 ˇ.k/ � "tk; (70)

and then

0 2 Suk.xk; "tk/; (71)

provided that ˇ.k/ < "=.2C "/. Also,

Suk.xk; 4
�.kC1// �� Su.0; 4

�k/ �� Suk.xk;
11
8
4�k/; (72)

provided that ˇ.k/ � 3=8. In addition, given 0 < " < � we have that

"4�k � � tk; (73)

whenever ˇ.k/ � .� � "/=� , and that

"tk � �4�k; (74)

whenever ˇ.k/ � .� � "/=".
Proof. The proof of (68) follows from the facts that u and uk coincide on @Su.0; 4

�k/

and that ruk.xk/ D 0. In particular, (68) implies that 0 2 Suk.xk; tk/ for every
k 2 N0: In order to prove (69) we need to show that

uk.0/ � uk.xk/C 4�kC 1
2 ˇ.k/ 8k 2 N0; (75)
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which follows from the inequalities

uk.0/ � uk.xk/ D uk.0/ � u.0/C u.xk/ � uk.xk/ � u.xk/

� uk.0/ � u.0/C u.xk/ � uk.xk/ � 4�kˇ.k/C 4�kˇ.k/;

where we have used that u.0/ D 0, u � 0, and (67).
Notice that (70) means

"uk.xk/C 4�kC 1
2 ˇ.k/ � "4�k:

Since xk is the minimum of uk over Suk.xk; tk/ and 0 2 Suk.xk; tk/, by (67) and the
fact that u.0/ D 0, we have

uk.xk/ � uk.0/ D uk.0/ � u.0/ � 4�kˇ.k/:

Hence,

"uk.xk/C 4�kC 1
2 ˇ.k/ � "4�kˇ.k/C 4�kC 1

2 ˇ.k/ � "

"C 2
4�k."C 2/ D "4�k;

which proves (70) [and then (71)]. In order to prove the first inclusion in (72), given
y 2 Suk.xk; 4

�.kC1//, which means uk.y/ < uk.xk/ C 4�.kC1/, we need to show that
u.y/ < 4�k. For this we write

u.y/ D u.y/ � uk.y/C uk.y/ � uk.xk/C uk.xk/

< u.y/ � uk.y/C 4�.kC1/ C uk.0/

D u.y/ � uk.y/C 4�.kC1/ C uk.0/ � u.0/

� 4�kˇ.k/C 4�.kC1/ C 4�kˇ.k/ � 4�k;

where we used that uk.xk/ � uk.0/, u.0/ D 0, (67), and ˇ.k/ � 3=8. By virtue
of (68) the second inclusion in (72) amounts to showing that

tk WD 4�k � uk.xk/ <
11
8
4�k: (76)

But, since u � 0 and ˇ.k/ � 3=8, (67) yields

4�k � uk.xk/ D 4�k � uk.xk/C u.xk/ � u.xk/

� 4�k � uk.xk/C u.xk/ � 4�k.1C ˇ.k// < 11
8
4�k;

and (76) follows. In order to prove (73), which means

�uk.xk/ � .� � "/4�k;
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we just use (67) and the fact that uk.xk/ � uk.0/. Indeed,

�uk.xk/ � �uk.0/ D �.uk.0/ � u.0// � �4�kˇ.k/ � .� � "/4�k:

The proof of (74) follows from the fact that u � 0 and (67)

tk WD 4�k � uk.xk/ � 4�k � uk.xk/C u.xk/ � 4�k C 4�kˇ.k/ � �

"
4�k:

ut
Now we relate the section Suk.xk; tk/ to contractions of SukC1

.xkC1; tkC1/.

Lemma 4.2. Given 1=4 < � � 1 and k 2 N0, then

SukC1
.xkC1; tkC1/ � Suk.xk; � tk/; (77)

provided that

ˇ.k/; ˇ.k C 1/ � 4� � 1
4.1 � �/C 5

: (78)

Proof. For y 2 SukC1
.xkC1; tkC1/, which means

ukC1.y/ < ukC1.xkC1/C tkC1; (79)

and we need to show that

uk.y/ < uk.xk/C � tk: (80)

We start by using (79) and (67) to write

uk.y/ D uk.y/ � ukC1.y/C ukC1.y/ < uk.y/ � ukC1.y/C ukC1.xkC1/C tkC1
D uk.xk/ � uk.xk/C uk.y/ � ukC1.y/C ukC1.xkC1/C tkC1;

and (80) will follow after proving that

� uk.xk/C uk.y/ � ukC1.y/C ukC1.xkC1/C tkC1 � � tk: (81)

By using that tk D 4�k�uk.xk/ and tkC1 D 4�.kC1/�ukC1.xkC1/, (81) is equivalent to

.� � 1/uk.xk/C uk.y/ � ukC1.y/ � .� � 1=4/4�k: (82)

Now, using that u � 0, we get

.� � 1/uk.xk/C uk.y/ � ukC1.y/

� .� � 1/.uk.xk/ � u.xk//C uk.y/ � u.y/C u.y/ � ukC1.y/

� .1 � �/4�kˇ.k/C 4�kˇ.k/C 4�.kC1/ˇ.k C 1/:
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Putting Ǒ
k WD maxfˇ.k/; ˇ.k C 1/g and by means of (78) we then obtain

.� � 1/uk.xk/C uk.y/ � ukC1.y/ � 4�.kC1/Œ4.1 � �/ Ǒ
k C 5 Ǒ

k
 � 4�.kC1/.4� � 1/;

which proves (82). Finally, notice that, from the definition of ˇ.k/ in (66) and (16)
we have

ˇ.k C 1/ � 2.K1=K2/
1
2 ˇ.k/ 8k 2 N0; (83)

so that Ǒ
k � 2.K1=K2/

1
2 ˇ.k/ for every k 2 N0:

Let us introduce

Sˇ WD
1X

kD0
ˇ.k/ (84)

and notice that, by assuming the condition

Sˇ � 1

6

�
K2
K1

�1=2
; (85)

we have ˇ.k C 1/ < 1=3 and ˇ.k/ < 1=6 for every k 2 N0 as well as the following
properties:

t�1k 4�k � 2 8k 2 N0 (86)

after (73) with � D 2 and " D 1,

SukC1
.xkC1; tkC1/ � Suk.xk; 3tk=4/ 8k 2 N0 (87)

after (77) with � D 3=4, and

0 2 Suk.xk; tk=2/ 8k 2 N0 (88)

by (71) with " D 1=2. Now, since the convex function u0 satisfies

det D2u0 D 1 in Su.0; 1/

u0 D 1 on @Su.0; 1/;

by setting

D0 WD kD2u0.0/k (89)
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Pogorelov’s estimate (43) applied to u0 in Su0 .x0; t0/ with ı D 3=4 and 2D0 (instead
of just D0) gives

Ecc.Su.x0; t0//
2 � 2D0F.3=4/

n�1: (90)

On the other hand, due to (68) and the fact that Suk.xk; tk/ D Su.0; 4
�k/ for every

k 2 N0, (18) yields

Ecc.SukC1
.xkC1; tkC1//2 � K8 Ecc.Suk.xk; tk//

2 8k 2 N0; (91)

for some structural constant K8 � 1. Thus, from (90) and (91) applied with k D 0,
we get the following estimate for the eccentricity of Su1 .x1; t1/:

Ecc.Su1 .x1; t1//
2 � K8 Ecc.Su0 .x0; t0//

2 � 2D0K8F.3=4/
n�1:

By the interior C2;˛-estimate (46) applied to u0 and u1, we have

��D2u0
���
0;˛ISu0 .x0;3t0=4/

C ��D2u1
���
0;˛ISu1 .x1;3t1=4/

� N0; (92)

for a constant N0 > 0 depending only on .2D0K8F.3=4/n�1/1=2 (which bounds the
eccentricities of both Su.x0; t0/ and Su1 .x1; t1/) and n. Now, by (67),

ku1 � u0kL1.Su.0;4�1// � ˇ.0/C 4�1ˇ.1/;

and then Lemma 3.7 applied to u1; u0 on Su1 .x1; 3t1=4/ (taking, for instance, that
� WD Su1 .x1; t1/ in Lemma 3.7) gives

��D2u0 � D2u1
��

L1.Su1 .x1;t1=2//
� M0t

�1
1 .ˇ.0/C 4�1ˇ.1// (93)

where M0 depends only on n and Ecc.Su1 .x1; 3t1=4// (and the latter is bounded by
K8.2D0F.3=4/n�1/1=2). In particular,

kD2u0.0/ � D2u1.0/k � M0t
�1
1 .ˇ.0/C 4�1ˇ.1//: (94)

Consequently, by the definition of D0 in (89), by assuming that

Sˇ � D0

10M0

(95)

we get

kD2u1.0/k � M0t
�1
1 .ˇ.0/C 4�1ˇ.1//C kD2u0.0/k

� M0.8ˇ.0/C 2ˇ.1//C D0 � 10M0Sˇ C D0 � 2D0:
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That is, we obtain the same bound (namely, 2D0) for both kD2u0.0/k and kD2u1.0/k,
which [through Pogorelov’s (43)] gives the same bound for the eccentricities of
Su.x0; t0/ and Su1 .x1; t1/, and we are ready to iterate the reasoning above. That is,

Ecc.Su.x1; t1//
2 � 2D0F.3=4/

n�1; (96)

and using (91) with k D 1,

Ecc.Su2 .x2; t2//
2 � K8 Ecc.Su1 .x1; t1//

2 � 2D0K8F.3=4/
n�1;

and for the same N0 as in (92)

ku2kC2;˛.Su2 .x2;3t2=4/ C ku1kC2;˛.Su1 .x1;3t1=4// � N0;

so that, by (67),

ku1 � u2kL1.Su.0;4�2// � ku1 � ukL1.Su.0;4�1// C ku2 � u0kL1.Su.0;4�2//

� 4�1ˇ.1/C 4�2ˇ.2/;

and with the same M0 as in (93),

��D2u2 � D2u1
��

C2;˛.Su2 .x2;t2=2//
� M0t

�1
2 .4

�1ˇ.1/C 4�2ˇ.2//:

In particular, by using (86)

kD2u2.0/ � D2u1.0/k � M0t
�1
2 .4

�1ˇ.1/C 4�2ˇ.2// � M0.8ˇ.1/C 2ˇ.2//;

which yields

kD2u2.0/k � kD2u1.0/ � D2u2.0/k C kD2u0.0/ � D2u1.0/k C kD2u0.0/k
� M0.8ˇ.1/C 2ˇ.2/C 8ˇ.0/C 2ˇ.1//C D0

� 10M0Sˇ C D0 � 2D0:

At the kth step, by (86) we obtain

kD2uk.0/ � D2u0.0/k �
kX

jD1
kD2uj.0/ � D2uj�1.0/k

� M0

kX
jD1

t�1j .4�.j�1/ˇ.j � 1/C 4�jˇ.j//

� M0

kX
jD1
.8ˇ.j � 1/C 2ˇ.j// � 10M0

kX
jD0

ˇ.j/; (97)
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and then

kD2uk.0/k � 10M0Sˇ C D0 � 2D0 8k 2 N0;

which yields the following uniform bound for the eccentricities of Su.0; 4
�k/

Ecc.Su.0; 4
�k//2 � 2D0F.3=4/

n�1 8k 2 N0: (98)

By Pogorelov’s (44) we have that D0 WD kD2u0.0/k � F.3=4/n�1Ecc.Su.0; 1//
2, so

that (98) yields

Ecc.Su.0; 4
�k//2 � 2F.3=4/2.n�1/Ecc.Su.0; 1//

2 8k 2 N0

and (3) follows with C13 WD 2F.3=4/2.n�1/.
In the case when f .0/ ¤ 1 we apply the result to v WD u=f .0/1=n and notice that

Su.0;ƒ
�1=n4�k/ � Sv.0; 4

�k/ D Su.0; 4
�kf .0/�1=n/ � Su.0; �

�1=n4�k/ (99)

and that

j.f .x/=f .0//1=n � 1j D 1

f .0/1=n
jf .x/1=n � f .0/1=nj � 1

�1=n
jf .x/1=n � f .0/1=nj

and, by recalling the definition of ˇ.k/ in (66), the definition of Sˇ in (84) and the
conditions (85), (95) imposed on it, we define the "0 in (2) as

"0 WD �1=n

nC1K2
min

(
D0

10M0

;
1

6

�
K2
K1

�1=2)
(100)

which concludes the proof of Theorem 1.1. ut

Proof of Theorem 1.2

For k 2 N0 let us write Ek WD Ecc.Su.0; 4
�k//. From (18) we have

E21 � K8E
2
0 (101)

and, in order to start the iteration process and obtain a similar estimate for E2, it is
enough to ask for ˇ.0/ < 1=6 and ˇ.1/ < 1=3, with ˇ.k/ as in (66).

Now, if Ellk is an ellipsoid centered at ck with radii 0 < �k;1 � � � � � �k;n such
that ˛nEllk � Su.0; 4

�k/ � Ellk, by (13) and (98) we have

!n˛
n
n�

n
k;1 � j˛nEllkj � jSu.0; 4

�k/j � jEllkj � !n�
n
k;n � !nEn2

k �
n
k;1 (102)
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which, combined with (16), yields

K1=2
1

!
1=n
n

2�k � �k;n � K1=2
2 En

k

!
1=n
n ˛n

2�k 8k 2 N0: (103)

Thus, putting Gk WD 2K
1=2
2 En

k

!
1=n
n ˛n

, we get 2�k;n � Gk2
�k. On the other hand, we also have

B.ck; ˛n�k;1/ � ˛nEllk � Su.0; 4
�k/ � Ellk � B.ck; �k;n/ (104)

and, since 0 2 Su.0; 4
�k/, we get 0 2 B.ck; �k;n/ and then B.ck; �k;n/ � B.0; 2�k;n/.

Therefore,

Su.0; 4
�k/ � B.0; 2�k;n/

and, due to (102)and (103),

jSu.0; 4
�k/j � !n˛

n
n�

n
k;1 � !n˛

n
n�

n
k;nE�n2

k � ˛n
nKn=2

1 E�n2
k 2�kn

D ˛n
nKn=2

1

!nE2n2
k

jB.0;En
k2

�k/j D ˛2n
n 2

�n

�
K1
K2

� n
2

jB.0;Gk2
�k/j

so that

�
1

jSu.0; 4�k/j
ˆ

Su.0;4�k/

jf .x/ 1n � f .0/
1
n jn dx

� 1
n

� 2˛�2
n En

k

�
K2
K1

� 1
2
�

1

jB.0;Gk2�k/j
ˆ

B.0;Gk2�k/

jf .x/ 1n � f .0/
1
n jn dx

� 1
n

and we can take

"1 WD ˛2n
2En

k

�
K1
K2

� 1
2

"0: (105)

Proof of Corollary 1.3

For k 2 N0 let us put �k WD 4�k, Sk WD Su.0; 4
�k/, and let Tk be an affine

transformation normalizing Sk. Then, by estimates on the averages of kD2uk over
its sections (see, for instance, [8, Lemma 3.2] or [19, p. 97]) there exists a structural
constant K9 > 0 such that

1

jSkj
ˆ

Sk

kD2u.x/k dx � K9�kkTkk2 8k 2 N0: (106)
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Since Tk normalizes Sk, by (16) we have

!n � jSkjjTkj � K
n
2

1 �
n
2

k jTkj 8k 2 N0;

and, from the definition of eccentricity, it follows that

1

jSkj
ˆ

Sk

kD2u.x/k dx � K9K
�1
1 !

2
n

n jTkj� 2
n kTkk2 DW K10Ecc.Su.0; 4

�k//2;

for every k 2 N0, where K10 WD K9K�1
1 !

2
n

n . Therefore, (3) yields

1

jSkj
ˆ

Sk

kD2u.x/k dx � K10C
2
13Ecc.Su.0; 1//

2 8k 2 N0: (107)

Finally, the fact that hypothesis (1) guarantees a structure of local quasi-metric space
with the sections of u acting as “quasi-metric balls” (see, for instance, [1, 9, 10]), the
fact that Lebesgue measure is doubling with respect to the sections of every convex
function (see [6, Lemma 5.2]), and Lebesgue’s differentiation theorem applied
to (107) yields (6) with K11 WD K10C2

13: ut

On the Local Quasi-Conformal Jacobian Problem

Fix 0 < � � ƒ < 1 and let f W � ! R be a continuous function with

0 < � � f .x/ � ƒ 8x 2 � (108)

and let !f ;� denote the modulus of continuity of f over �, that is,

!f ;�.t/ WD supfjf .x/ � f .y/j W jx � yj < t; x; y 2 �g:

Burago and Kleiner [2] and McMullen [20] have constructed examples of uniformly
continuous functions f W Œ0; 1
2 ! R

2 satisfying (108) such that there is no
bi-Lipschitz mapping F W Œ0; 1
2 ! R

2 verifying the equality

det DF.x/ D f .x/ (109)

a.e. x 2 Œ0; 1
2. Therefore, the condition !f ;�.t/ ! 0 as t ! 0C is not enough
to locally realize f as the Jacobian of a bi-Lipschitz (or quasi-conformal) map and
some rate of decay for !f ;� should be prescribed towards that end.

In this section we apply Theorem 1.2 to the solvability of the local quasi-
conformal Jacobian problem with convex potentials. That is, in this case the sought
mapping F can be written as F D ru, where u W B.0; 1/ ! R is a strictly convex
function.
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Theorem 7.1. Suppose that f W B.0; 4/ ! R, n � 2, satisfies

0 < � � f .x/ � ƒ; a:e: x 2 B.0; 4/; (110)

with f
1
n satisfying the following uniform Ln-Dini condition:

D0 WD sup
y2B.0;1/

ˆ 1=2

0

���f
1
n .�/ � f .y/

1
n

���
Ln.B.y;r//

dr

r
< 1: (111)

Then, there exists a quasi-conformal mapping F W B.0; 1/ ! R
n such that the

equality

det DF.x/ D f .x/; a:e: x 2 B.0; 1/; (112)

holds true. Moreover, there is a strictly convex, differentiable function u W B.0; 1/ !
R such that F D ru in B.0; 1/.

Remark 7.2. Notice that if F D ru, then (112) becomes the Monge–Ampère
equation det D2u D f . Theorem 7.1 is sharp in the sense that counterexamples
in [22] show that if det D2u.x/ D f .x/, a.e. x 2 B.0; 1/, then condition (110)
alone does not imply, in general, that ru is locally quasi-conformal (see comments
after Corollary 3.8 in [18]). Also, an example in [7, Theorem 1.2] shows that the
condition (111) alone does not guarantee the local quasi-conformality of ru.

Let u be a convex solution, in the Aleksandrov sense, of the boundary value
problem

det D2u D f in B.0; 2/ (113)

u D 1 on @B.0; 2/:

Recall that u being a solution to (113) in the Aleksandrov sense means that for every
Borel set E �� B.0; 1/ we have

j@u.E/j D
ˆ

E
f .x/ dx; (114)

where @u is the normal mapping of u and j � j stands for Lebesgue measure
(see Chap. 1 in [12]). If u is differentiable, then @u.E/ D ru.E/. In our case u
will in fact be differentiable, by virtue of Caffarelli’s C1;˛-regularity theorem (see
[5, Theorem 2], [10, Corollary 13], or [12, Sect. 5.4]). Here ˛ 2 .0; 1/ depends only
on n and ƒ=�. Also, by [4, Corollary 4], u is strictly convex in B.0; 1/.
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The main task is then proving the quasi-conformality (in B.0; 1/) of ru for
solutions u to (114). Once quasi-conformality is established, the change of variables
x 7! ru.x/ (see Theorem 33.3 in [21]) in (114) implies that given any Euclidean
ball B � B.0; 1/, we have

ˆ
B

f .x/ dx D jru.B/j D
ˆ

ru.B/
1 dx D

ˆ
B

det D2u.x/ dx; (115)

and Lebesgue’s differentiation theorem yields det D2u.x/ D f .x/, a.e. x 2 B.0; 1/,
as required in Theorem 7.1.

Following Definition 2.1 in [18], we say that u has has round sections in � if
there is a constant � 2 .0; 1/ (which might depend on �) such that for all x0 2 �

and t > 0 with Su.x0; t/ �� � there exists R > 0 verifying

B.x0; �R/ � Su.x0; t/ � B.x0;R/: (116)

The local quasi-conformality of ru will be a consequence of Theorem 3.1 in [18],
where Kovalev and the author proved the equivalence between ru being quasi-
conformal and u having round sections. This equivalence is quantitative, in the
sense that the constants involved depend only on each other and not on u, see also
Remark 3.4 in [18]. In turn, the roundedness of the sections of u follows by taking
any x0 2 B.0; 1=2/ and applying Theorem 1.2 to the function

ux0 .x/ WD u.x C x0/ 8x 2 B.0; 1=2/;

and considering that, due to [12, Theorem 3.3.4], given x; x0 2 B.0; 1=2/ the eccen-
tricities of Su.x; 1=2/ and Su.x0; 1=2/ are uniformly comparable (with structural
constants) to that of Su.xm; 1 � u.xm//, where xm is the minimum of u on B.0; 2/.
By (5), the roundedness of the sections of u follows with � depending only on
structural constants and Ecc.Su.xm; 1 � u.xm///. ut

On the Uniform Ellipticity for the Linearized
Monge–Ampère Operator

We close this article with a remark on how to use the Ln-Dini condition in (111) to
turn the matrix

Au.x/ WD det D2u.x/D2u.x/�1 8x 2 �;

into a uniformly elliptic matrix on every section S WD Su.x0; t/ � Su.x0; 2t/ �� �,
with ellipticity constants controlled by structural constants and Ecc.S/.



On the Eccentricities of Monge–Ampère Sections 229

Suppose that u 2 C2.�/ is a strictly convex function with

0 < � � det D2u.x/ DW f .x/ � ƒ 8x 2 �: (117)

Given S WD Su.x0; t/ � Su.x0; 2t/ �� �, again by [12, Theorem 3.3.4], for every
x1 2 Su.x0; t=2/ we have that

Ecc.Su.x1; t=2// ' Ecc.Su.x0; t//

with comparability constants depending only on �;ƒ, and n. Now, for each fixed
x1 2 Su.x0; t=2/, an application of Theorem 1.2 to the function

ux1 .x/ WD u.x C x1/ 8x 2 Su.x0; t=2/

yields (as in Corollary 1.3)

kD2u.x1/k . Ecc.Su.x0; t//
2 8x1 2 Su.x0; t=2/;

where the implied constants are structural constants. By means of (117), this implies
that the eigenvalues of D2u.x1/ lie between �Ecc.Su.x0; t//2.1�n/ and Ecc.Su.x0; t//2

for every x1 2 Su.x0; t=2/. Thus making Au uniformly elliptic on Su.x0; t=2/.
The Monge–Ampère operator linearized at a function u 2 C2.�/, denoted by

Lu, acts as follows:

Lu.w/ WD trace.AuD2w/: (118)

Regularity properties of solutions to Lu.w/ D h continue to receive attention and,
for instance, in [13, 14], Gutiérrez and Nguyen established interior estimates for first
and second derivatives of solutions to Lu.w/ D h. As an example of such regularity
results, the main result in [14] (Theorem 1.1) establishes that for every p > 1 and
q > maxfp; ng, solutions to Lu.w/ D h satisfy

��D2w
��

Lp.�0/
� C.kwkL1.�/ C khkLq.�//; (119)

where C > 0 depends only on p, q, �, ƒ, n, dist.�0; @�/, and the modulus of
continuity of f WD det D2u. Furthermore, Theorem 1.1 in [14] is stated with � D
Su.xm; tm/ for some xm 2 R

n and tm > 0 (that is, � in Theorem 1.1 in [14] is a
section of u).

By our comments above, we see that if f
1
n satisfies the Ln-Dini continuity

condition (111), then Lu turns into a uniformly elliptic operator on every section
S � �0 with ellipticity constants depending on structural constants and Ecc.S/.
Also, by [12, Theorem 3.3.4] every chain of sections S1; S2; : : : SN of the same height
and with Sj \ SjC1 ¤ ;, j D 1; : : : ;N � 1, will have comparable eccentricities (with
comparability constants depending on structural constants as well as on N).
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In particular, under the Ln-Dini continuity condition (111) on f
1
n , by the

comments above on the uniform ellipticity of Au and the continuity estimates for
D2u in [17, Theorem 1 and Lemma 4.1], (119) can be improved to

��D2w
��

Lp.�0/
� C.kwkLp.�/ C khkLp.�//; (120)

for every 1 < p < 1, see, for instance, Theorem 9.11 from [11, p. 235].
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BMO: Oscillations, Self-Improvement,
Gagliardo Coordinate Spaces, and Reverse
Hardy Inequalities

Mario Milman

Para Corita

Abstract A new approach to classical self improving results for BMO functions is
presented. “Coordinate Gagliardo spaces” are introduced and a generalized version
of the John-Nirenberg Lemma is proved. Applications are provided.

Introduction and Background

Interpolation theory provides a framework, as well as an arsenal of tools, that can
help in our understanding of the properties of function spaces and the operators
acting on them. Conversely, the interaction of the abstract theory of interpolation
with concrete function spaces can lead to new general methods and results. In this
note we consider some aspects of the interaction between interpolation theory and
BMO; focusing on the self improving properties of BMO functions.

To fix the notation, in this section we shall consider functions defined on a fixed
cube, Q0 � Rn: A prototypical example of the self-improvement exhibited by BMO
functions is the statement that a function in BMO automatically belongs to all Lp

spaces, p < 1;

BMO �
\
p�1

Lp: (1)

In fact, BMO is contained in the Orlicz space eL: This is one of the themes
underlying the John-Nirenberg Lemma [46]. One way to obtain this refinement is to
make explicit the rates of decay of the family of embeddings implied by (1).
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We consider in detail an inequality apparently first shown in [19],

kf kLq � Cnq kf kp=q
Lp kf k1�p=q

BMO ; 1 � p < q < 1: (2)

With (2) at hand we can, for example, extrapolate by the �-method of [44], and the
exponential integrability of BMO functions follows (cf. (33) below)

kf keL � sup
q>1

kf kLq

q
� cn kf kBMO : (3)

More generally, for compatible Banach spaces, interpolation inequalities of the form

kf kX � c.�/ kf k1��X1 kf k�X2 ; � 2 .0; 1/; (4)

where c.�/ are constants that depend only on �; play an important role in analysis.
What is needed to extract information at the end points (e.g., by “extrapolation”
[44]) is to have good estimates of the rate of decay c.�/; as � tends to 0 or to 1:
We give a brief summary of inequalities of the form (4) for the classic methods
of interpolation in section “Interpolation Theory: Some Basic Inequalities” below.
For example, a typical interpolation inequality of the form (4) for the Lions–Peetre
real interpolation spaces can be formulated as follows. Given a compatible pair1 of
Banach spaces EX D .X1;X2/, the “K-functional” (cf. [9], [78])is defined for f 2
†.EX/ D X1 C X2; t > 0; by

K.t; f I EX/ WD K.t; f I X1;X2/ D inf
f Df1Cf2;fi2Xi

fkf1kX1 C t kf2kX2g: (5)

The real interpolation spaces EX�;q can be defined through the use of the K-functional.
Let � 2 .0; 1/; 0 < q � 1; then we let

EX�;q D ff 2 †.EX/ W kf kEX�;q < 1g; (6)

where2

kf kEX�;q D
�ˆ 1

0

h
t��K.t; f I EX/

iq dt

t

	 1=q

:

We have (cf. Lemma 2 below) that, for f 2 X1 \ X2; 0 < � < 1; 1 � q � 1,

Œ.1 � �/�q
1=q kf k.X1;X2/�;q � kf k1��X1 kf k�X2 : (7)

1We refer to section “Interpolation Theory: Some Basic Inequalities” for more details.
2With the usual modification when q D 1:
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We combine (7), the known real interpolation theory of BMO (cf. [10, Theorem 6.1],
[9] and the references therein), sharp reverse Hardy inequalities (cf. [80] and [69]),
and the re-scaling of inequalities via the reiteration method (cf. [12, 39]) to give a
new *interpolation* proof of (2) in Lemma 3 below.

Let us now recall how the study of BMO led to new theoretical developments in
interpolation theory.3

A natural follow-up question to (3) was to obtain the best possible integrability
condition satisfied by BMO functions. The answer was found by Bennett–DeVore–
Sharpley [11]. They showed the inequality4

kf kL.1;1/ WD sup
t

ff ��.t/ � f �.t/g � cn kf kBMO : (8)

The refinement here is that the (nonlinear) function space L.1;1/; defined by the
condition

kf kL.1;1/ < 1;

is strictly contained5 in eL.
In their celebrated work, Bennett–DeVore–Sharpley [11] proposed the following

connection between real interpolation, weak interpolation, and BMO (cf. [9,
p. 384]). The K-functional for the pair .L1;L1/ is given by (cf. [9] and
section “Extrapolation of Inequalities: Burkholder–Gundy–Herz Meet Calderón–
Maz’ya and Cwikel et al.” below)

K.t; f I L1;L1/ D
ˆ t

0

f �.s/ds:

Therefore, dK.t;f IL1;L1/

dt D K0.t; f I L1;L1/ D f �.t/I consequently, we can compute
the “norm” of weak L1 WD L.1;1/, as follows:

kf kL.1;1/ D sup
t>0

tf �.t/

D sup
t>0

tK0.t; f I L1;L1/:

3Paradoxically, except for section “Bilinear Interpolation”, in this paper we do not discuss
interpolation theorems per se. For interpolation theorems involving BMO type of spaces there is a
large literature. For articles that are related to the developments in this note I refer, for example, to
[11, 36, 43, 55, 76, 84].
4Where f � denotes the non-increasing rearrangement of f and f ��.t/ D 1

t

´ t
0 f �.s/ds:

5The smallest rearrangement invariant space that contains BMO is eL as was shown by
Pustylnik [79].
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Then, in analogy with the definition of weak L1; Bennett–DeVore–Sharpley pro-
ceeded to define L.1;1/ using the functional

kf kL.1;1/ WD sup
t>0

tK0.t; f I L1;L1/: (9)

Note that in (9) the order of the spaces is reversed in the computation of the
K-functional. These two different K-functionals are connected by the equation

K.t; f I L1;L1/ D tK.
1

t
; f I L1;L1/: (10)

Inserting (10) in (9) we readily see that

kf kL.1;1/ D sup
t>0

ftK.
1

t
; f I L1;L1/ � K0.

1

t
; f I L1;L1/g

D sup
t>0

fK.t; f I L1;L1/
t

� K0.t; f I L1;L1/g

D sup
t

ff ��.t/ � f �.t/g:

The oscillation operator, f ! f ��.t/ � f �.t/; turns out to play an important role
in other fundamental inequalities in analysis. A recent remarkable application of
the oscillation operator provides the sharp form of the Hardy–Littlewood–Sobolev–
O’Neil inequality up the borderline end point p D n: Indeed, if we let (cf. [15])

kf kL.p;q/ D
( ˚´ 1

0

�
f �.t/t1=p

�q dt
t

�1=q
1 � p < 1; 1 � q � 1

kf kL.1;q/ 1 � q � 1;
(11)

where6

kf kL.1;q/ WD
�ˆ 1

0

.f ��.t/ � f �.t//q
dt

t

	 1=q

; (12)

then it was shown in [7] that

kf kL.Np;q/ � cn krf kL.p;q/ ; 1 � p � n;
1

Np D 1

p
� 1

n
; 1 � q � 1; f 2 C1

0 .R
n/:

(13)

6Apparently the L.1; q/ spaces for q < 1 were first introduced and their usefulness shown in [7].
Note that with the usual definition L.1;1/ would be L1; and L.1; q/ D f0g; for q < 1: The
key point here is that the use of the oscillation operator introduces cancellations that make the
spaces defined in this fashion nontrivial (cf. section “The Rearrangement Invariant Hull of BMO
and Gagliardo Coordinate Spaces”, Example 1).



Oscillations: Self-Improvement 237

The Sobolev inequality (13) is best possible, and for p D q D n it improves on the
endpoint result of Brezis–Wainger–Hanson–Maz’ya7 (cf. [13, 35, 67]) much as the
Bennett–DeVore–Sharpley inequality (8) improves upon (3). The improvement over
*best possible results* is feasible because, once again, the spaces that correspond to
p D n;

L.1; q/ D ff W kf kL.1;q/ < 1g;

are not necessarily linear!8

Moreover, the Sobolev inequality (13) persists up to higher order derivatives,9 as
was shown in [75],

kf kL.Np;q/ � cn

��rkf
��

L.p;q/ ; 1 � p � n

k
;
1

Np D 1

p
� k

n
; 1 � q � 1; f 2 C1

0 .R
n/:

In particular, when p D n
k and q D 1; we have the BMO type result10

kf kL.1;1/ � c
��rkf

��
L. n

k ;1/
; f 2 C1

0 .R
n/:

Using the space L.1;1/ one can improve (2) as follows (cf. [53]):

kf kLq � Cnq kf kp=q
Lp kf k1�p=q

L.1;1/ ; 1 � p < q < 1: (14)

In my work with Jawerth11 (cf. [43]) we give a somewhat different interpretation
of the L.1; q/ spaces using Gagliardo diagrams (cf. [12, 27]); this point of view
turns out to be useful to explain other applications of the oscillation operator f ��.t/�
f �.t/ (cf. [29, 63] and section “Recent Uses of the Oscillation Operator and L.1; q/
Spaces in Analysis”). The idea behind the approach in [43] is that of an “optimal
decomposition,” which also makes it possible to incorporate the L.1; q/ spaces into
the abstract theory of real interpolation, as we shall show below.

Let t > 0; and let f 2 †.EX/ D X1CX2: Out of all the competing decompositions
for the computation of K.t; f I EX/; an optimal decomposition

7Which in turn improves upon the classical exponential integrability result by Trudinger [87].
8Let X be a rearrangement invariant space, Pustylnik [79] has given necessary and sufficient
conditions for spaces of functions defined by conditions of the form

k.f �� � f �/ t��kX < 1
to be linear and normable.
9The improvement is also valid for Besov space inequalities as well (cf. [59]).
10The spaces L.1; q/ allow to interpolate between L1 D L.1; 1/ and L.1;1/ � eL:
11The earlier work of Herz [36] and Holmstedt [38], that precedes [11], should be also mentioned
here.
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f D D1.t/f C D2.t/f ; with Di.t/f 2 Xi; i D 1; 2;

satisfies

K.t; f I EX/ D kD1.t/f kX1 C t kD2.t/f kX2 ; (15)

(resp. a nearly optimal decomposition obtains if in (15) we replace D by �/: For an
optimal decomposition of f we have12 (cf. [38, 43])

kD1.t/f kX1 D K.t; f I EX/ � t
d

dt
K.t; f I EX/I (18)

kD2.t/f kX2 D d

dt
K.t; f I EX/: (19)

In particular, for the pair .L1;L1/; we have (cf. section “Extrapolation of
Inequalities: Burkholder–Gundy–Herz Meet Calderón–Maz’ya and Cwikel et al.”),

kD1.t/f kL1 D K.t; f I L1;L1/ � t
d

dt
K.t; f I L1;L1/

D tf ��.t/ � tf �.t/;

and

kD2.t/f kL1

D d

dt
K.t; f I L1;L1/ D f �.t/:

Thus, reinterpreting optimal decompositions using Gagliardo diagrams (cf. [38, 43]),
one is led to consider spaces, which could be referred to as “Gagliardo coordinate
spaces.” These spaces coincide with the Lions–Peetre real interpolation spaces for
the usual range of the parameters (cf. [38]), but they also make sense at the end
points (cf. [43]), and in this fashion they can be used to complete the Lions–Peetre
scale much as the generalized L.p; q/ spaces defined by (11), complete the classical
scale of Lorentz spaces. The “Gagliardo coordinate spaces” EX.i/�;q; i D 1; 2; are

formally obtained replacing K.t; f I EX/ in the definition of the EX�;q norm of f (cf. (6)

12Interpreting .kD1.t/f kX1 ; kD2.t/f kX2 / as coordinates on the boundary of a Gagliardo diagram
(cf. [12]) it follows readily that, for all " > 0; t > 0; we can find nearly optimal decompositions
x D x".t/C y".t/; such that

.1� "/ŒK.t; f I EX/� t
d

dt
K.t; f I EX/
 � kx".t/kX1 � .1C "/ŒK.t; f I EX/� t

d

dt
K.t; f I EX/
 (16)

.1� "/
d

dt
K.t; f I EX/ � ky".t/kX2 � .1C "/

d

dt
K.t; f I EX/: (17)
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above); by kD1.t/f kX1 (resp. kD2.t/f kX2 / (cf. [38]): In particular, we note that the
EX.2/�;q spaces correspond to the k-spaces studied by Bennett [8].

This point of view led us to formulate and prove the following general version
of (7) (cf. Theorem 1 below):

kf kEX.2/�;q.�/ � cq kf k1��X1 kf k�EX.1/1;1 ; � 2 .0; 1/; 1 � � D 1

q.�/
; (20)

which can be easily seen to imply an abstract extrapolation theorem connected with
the John-Nirenberg inequality.

Underlying these developments is the following computation of the K-functional
for the pair .L1;BMO/ given in [10] (cf. section “Self Improving Properties of BMO
and Interpolation” below):

K.t; f ;L1.Rn/;BMO.Rn// � tf #�.t/; (21)

where f # is the sharp maximal function of Fefferman–Stein [32] (cf. (23) below). In
this calculation BMO.Rn/ is provided with the seminorm13 (cf. section “The John-
Nirenberg Lemma and Rearrangements”)

jf jBMO D ��f #
Rn

��
L1

:

In [19], the authors show that (2) can be used to give a strikingly “easy” proof of an
inequality first proved in [52] using paraproducts,

kfgkLp � c.kf kLp kgkBMO C kgkLp kf kBMO/; 1 < p < 1: (22)

The argument to prove (22) given in [19] has a general character and with suitable
modifications (in particular, using the *reiteration theorem* of interpolation theory)
the idea14 can be combined with (20) to yield a new endpoint result for bilinear
interpolation for generalized product and convolution operators of O’Neil type
acting on interpolation scales (see section “Bilinear Interpolation” below). Further,
in section “Recent Uses of the Oscillation Operator and L.1; q/ Spaces in Analysis”

13BMO.Rn/ can be normed by jf jBMO if we identify functions that differ by a constant.
14We cannot resist but to offer here our slight twist to the argument

kfgkLp � kf kL2p kgkL2p

D kf kŒLp ;BMO
1=2;2p
kgkŒLp ;BMO
1=2;2p

	 kf k1=2Lp kf k1=2BMO kgk1=2Lp kgk1=2BMO

	 kf kLp kgkBMO C kgkLp kf kBMO :
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we collect applications of the methods discussed in the paper, and also offer some
suggestions15 for further research. In particular, in section “On Some Inequalities
for Classical Operators by Bennett–DeVore–Sharpley and Bagby and Kurtz” we
give a new approach to well-known results by Bagby–Kurtz [5], Kurtz [56], on the
linear (in p) rate of growth of Lp estimates for certain singular integrals; in sec-
tion “Good-Lambda Inequalities” we discuss the connection between the classical
good-lambda inequalities (cf. [17, 21]) and the strong good-lambda inequalities of
Bagby–Kurtz (cf. [56]) with inequalities for the oscillation operator f �� � f �; in
section “Extrapolation of Inequalities: Burkholder–Gundy–Herz Meet Calderón–
Maz’ya and Cwikel et al.” we show how oscillation inequalities for Sobolev
functions are connected with the Gagliardo coordinate spaces and the property of
commutation of the gradient with optimal .L1;L1/ decompositions (cf. [29]), we
also discuss briefly the characterization of the isoperimetric inequality in terms of
rearrangement inequalities for Sobolev functions, in a very general context.

The intended audience for this note are, on the one hand, classical analysts
that may be curious on what abstract interpolation constructions could bring to
the table, and on the other hand, functional analysts, specializing in interpolation
theory, that may want to see applications of the abstract theories. To balance these
objectives I have tried to give a presentation full of details in what respects to
interpolation theory, and provide full references to the background material needed
for the applications to classical analysis. In this respect, I have compiled a large set
of references but the reader should be warned that this paper is not intended to be a
survey, and that the list intends only to document the material that is mentioned in
the text and simply reflects my own research interests, point of view, and limitations.
In fact, many important topics dear to me had to be left out, including *Garsia
inequalities* (cf. [33]).

I close the note with some personal reminiscences of my friendship with Cora
Sadosky.

The John-Nirenberg Lemma and Rearrangements

In this section we recall a few basic definitions and results associated with the
self improving properties of BMO functions.16 In particular, we discuss the John-
Nirenberg inequality (cf. [46]). In what follows we always let Q denote a cube with
sides parallel to the coordinate axes.

Let Q0 be a fixed cube in Rn. For x 2 Q0; let

15However, keep in mind the epigraph of [68], originally due Douglas Adams, The Restaurant at
the End of the Universe, Tor Books, 1988 :“For seven and a half million years, Deep Thought
computed and calculated, and in the end announced that the answer was in fact Forty-two—and so
another, even bigger, computer had to be built to find out what the actual question was.”
16For more background information, we refer to [9] and [83].
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f #
Q0 .x/ D sup

xÖQ;Q�Q0

1

jQj
ˆ

Q
jf � fQj dx; where fQ D 1

jQj
ˆ

Q
fdx: (23)

The space of functions of bounded mean oscillation, BMO.Q0/; consists of all the
functions f 2 L1.Q0/ such that f #

Q0
2 L1.Q0/: Generally, we use the seminorm

jf jBMO.Q0/ D ��f #
Q0

��
L1

: (24)

The space BMO.Q0/ becomes a Banach space if we identify functions that differ by
a constant. Sometimes it is preferable for us to use

kf kBMO.Q0/ D jf jBMO.Q0/ C kf kL1.Q0/ :

The classical John-Nirenberg Lemma is reformulated in [9, Corollary 7.7, p. 381]
as follows17: Given a fixed cube Q0 � Rn; there exists a constant c > 0; such that
for all f 2 BMO.Q0/; and for all subcubes Q � Q0;

Œ
�
f � fQ

�
�Q


�.t/ � c jf jBMO.Q0/ logC.
6 jQj

t
/; t > 0: (25)

In particular, BMO has the following self improving property (cf. [9, Corollary 7.8,
p. 381]). Let 1 � p < 1; and let18

f #
Q0;p.x/ D sup

xÖQ;Q�Q0

�
1

jQj
ˆ

Q
jf � fQjp dx

	 1=p

;

and

kf kBMOp.Q0/ D ��f #
Q0;p

��
L1

C kf kLp.Q0/ :

Then, with constants independent of f ;

kf kBMOp.Q0/ � kf kBMO.Q0/ :

It follows that, for all p < 1;

BMO.Q0/ � Lp.Q0/:

17For a recent new approach to the John-Nirenberg Lemma we refer to [31].
18Note that f #

Q0;1 D f #
Q0 :
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Actually, from [44] we have

���f � fQ
�
�Q

��
�.

Lp.Q/
p /

� sup
t

Œ
�
f � fQ

�
�Q


�.t/
logC. 6jQj

t /
� kf � fQkeL.Q/ ;

which combined with (25) gives

kf � fQkeL.Q/ � c jf�QjBMO.Q/ ;

and therefore (cf. [9])

BMO.Q0/ � eL.Q0/:

In other words, the functions in BMO.Q0/ are exponentially integrable.
The previous results admit suitable generalizations to Rn and more general

measure spaces.

Interpolation Theory: Some Basic Inequalities

In this section we review basic definitions, and discuss inequalities of the form (4)
that are associated with the classical methods of interpolation.

The starting objects of interpolation theory are pairs EX D .X1;X2/ of Banach
spaces that are “compatible,” in the sense that both spaces are continuously
embedded in a common Hausdorff topological vector space V .19 In real interpolation
we consider two basic functionals, the K-functional, already introduced in (5),
associated with the construction of the sum space †.EX/ D X1 C X2; and its
counterpart, the J-functional, defined on the intersection space�.EX/ D X1 \ X2; by

J.t; f I EX/ WD J.t; f I X1;X2/ D max
˚kf kX1 ; t kf kX2

�
; t > 0: (26)

The K-functional is used to construct the interpolation spaces .X1;X2/�;q (cf. (6)
above). Likewise, associated with the J-functional we have the .X1;X2/�;qIJ; spaces.

19We shall then call EX D .X0;X1/ a “Banach pair”. In general, the space V plays an auxiliary
role, since once we know that EX is a Banach pair we can use †.EX/ as the ambient space. In
particular, the functional K.t; f I EX/ is in principle only defined on †.EX/: On the other hand, the
functional f ! d

dt K.t; f I EX/; can make sense for a larger class of elements than †.EX/: This occurs
for significant examples: For example, on the interval Œ0; 1
;

L.1;1/ D ff W sup
t

tf �.t/ < 1g ª L1 C L1 D L1:



Oscillations: Self-Improvement 243

Let � 2 .0; 1/; 1 � q � 1I and let U�;q be the class of functions u W .0;1/ !
�.EX/; such that20 kukU�;q D ˚´ 1

0
.t��J.t; u.t/I X1;X2//q

dt
t

�1=q
< 1. The space

.X1;X2/�;qIJ consists of elements f 2 X1 C X2; such that there exists u 2 U�;q; with

f D
ˆ 1

0

u.s/
ds

s
(in X1 C X2/;

provided with the norm

kf k.X1;X2/�;qIJ
D inf

f D´
1

0 u.s/ ds
s

fkukU�;qg:

A basic result in this context is that these two constructions give the same spaces
(*the equivalence theorem*) (cf. [12])

.X1;X2/�;q D .X1;X2/�;qIJ;

where the constants of norm equivalence depend only on � and q:
In practice the J-method is harder to compute, but nevertheless plays an

important theoretical role. In particular, the following interpolation property holds
for the J-method. If X is a Banach space intermediate between X1 and X2; in the
sense that �.EX/ � X � †.EX/; then an inequality of the form

kf kX � kf k1��X1 kf k�X2 ; for some fixed � 2 .0; 1/; and for all f 2 �.EX/; (27)

is equivalent to

kf kX � kf k.X1;X2/�;1IJ
; for all f 2 .X1;X2/�;1IJ : (28)

One way to see this equivalence is to observe that (cf. [9])

Lemma 1. Let � 2 .0; 1/: Then, for all f 2 X1 \ X1;

kf k1��X1 kf k�X2 D inf
t>0

ft��J.t; f I X1;X2/g: (29)

The preceding discussion shows that, in particular,

kf k.X1;X2/�;1;J � kf k1��X1 kf k�X2 ; 0 < � < 1; for f 2 X1 \ X2:

20With the usual modification when q D 1:



244 M. Milman

More generally (cf. [44, 70]) we have21: for all f 2 X1 \ X2;

kf k.X1;X2/�;q;J � �
.1 � �/�q0��1=q0 kf k1��X1 kf k�X2 ; 0 < � < 1; 1 � q � 1; (30)

where 1
q C 1

q0

D 1:

Likewise, for the complex method of interpolation of Calderón, Œ:; :
� ; we have
(cf. [14]),

kf kŒX1;:X2
� � kf k1��X1 kf k�X2 ; 0 < � < 1; for f 2 X1 \ X2:

For the “K” method we also have the following result implicit22 in [44], which we
prove for sake of completeness.

Lemma 2.

Œ.1 � �/�q
1=q kf k.X1;X2/�;q � kf k1��X0 kf k�X1 ; f 2 X1 \ X2; 0 < � < 1: (31)

Proof. Let f 2 X1 \ X2. Using decompositions of the form f D f C 0; or f D 0C f ,
we readily see that

K.f ; tI X1;X2/ � minfkf kX1 ; tkf kX2g:

Therefore,

kf k.X1;X2/�;q D
�ˆ 1

0

Œt��K.f ; tI X1;X2/

q dt

t

�1=q

�
 ˆ kf kX1 =kf kX2

0

Œt��C1kf kX2 

q dt

t
C
ˆ 1

kf kX1 =kf kX2

Œt��kf kX1 

q dt

t

!1=q

D
 

kf kq
X2

�kf kX1

kf kX2

�q.1��/
1

.1 � �/q C kf kq
X1

�kf kX1

kf kX2

���q
1

�q

!1=q

D kf k1��X1 kf k�X2
�

1

.1 � �/q C 1

�q

�1=q

D Œ.1 � �/�q
�1=qkf k1��X1 kf k�X2 :

ut
For more results related to this section we refer to [44, 70] and [49].

21Here and in what follows we use the convention 10 D 1:
22See also [26].
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Self Improving Properties of BMO and Interpolation

The purpose of this section is to provide a new proof of (2) using interpolation tools.
One the first results obtained concerning interpolation properties of BMO is the

following (cf. [9, 32] and the references therein)

�
L1;BMO



�

D Lq; with
1

1 � � D q: (32)

In particular, it follows that

L1 \ BMO � Lq:

Therefore, if we work on a cube Q0, we have

L1.Q0/ \ BMO.Q0/ D BMO.Q0/ � Lq.Q0/:

In other words, the following self-improvement holds:

f 2 BMO.Q0/ ) f 2
\
q�1

Lq.Q0/:

While it is not true that f 2 BMO.Q0/ ) f 2 L1.Q0/; we can quantify precisely
the deterioration of the Lq norms of a function in BMO.Q0/ to be able to conclude
by extrapolation that

f 2 BMO.Q0/ ) f 2 eL.Q0/: (33)

Let us go over the details. First, consider the following inequality attributed to Chen–
Zhu [19]:

Lemma 3. Let f 2 BMO.Q0/; and let 1 � p < 1: Then, there exists an absolute
constant that depends only on n and p; such that for all q > p;

kf kLq � Cnq kf kp=q
Lp kf k1�p=q

BMO : (34)

The point of the result, of course, is the precise dependency of the constants in
terms of q: Before going to the proof let us show how (33) follows from (34).

Proof (of (33)). From (34), applied to the case p D 1; we find that, for all q > 1;

kf kLq � Cnq kf k1=q
L1 kf k1�1=q

BMO

� Cnq kf kBMO :
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Hence, using, for example, the “�” method of extrapolation23 of [44], we get

kf k
�. Lq

q /
D sup

q>1

kf kq

q
� kf keL � cn kf kBMO :

ut
We now give a proof of Lemma 3 using interpolation.

Proof. It will be convenient for us to work on Rn (the same results hold for cubes:
See more details in Remark 1 below). We start by considering the case p D 1, the
general case will follow by a re-scaling argument, which we provide below:

The first step is to make explicit the way we obtain the real interpolation spaces
between L1 and BMO. It is well known (cf. [9, 10], and the references therein) that

.L1;BMO/1�1=q;q D Lq; q > 1: (35)

Here the equality of the norms of the indicated spaces is within constants of
equivalence that depend only on q and n: In particular, we have

kf kLq � c.q; n/ kf k.L1;BMO/1�1=q;q
:

The program now is to give a precise estimate of c.q; n/ in terms of q; and then
apply Lemma 2. We shall work with BMO provided by the seminorm j�jBMO (cf. (24)
above).

The following result was proved in [10, Theorem 6.1]:

K.t; f ;L1.Rn/;BMO.Rn// � tf #�.t/; (36)

with absolute constants of equivalence, and where f # denotes the sharp maximal
operator24 (cf. [9, 32, 83])

f #.x/ WD f #
Rn.x/ D sup

x3Q

1

jQj
ˆ

Q
jf .y/ � fQj dy; and fQ D 1

jQj
ˆ

Q
f .y/dy:

Let f 2 L1 \ BMO; q > 1; and define � by the equation 1
1�� D q: Combining (36)

and (31), we have, with absolute constants that do not depend on q; � , or f ;

Œ.1��/�q
1=q

�ˆ 1

0

Œt�1C1=qtf #�.t/
q
dt

t

	 1=q

� Œ.1��/�q
1=q kf k.L1.Rn/;BMO.Rn//1�1=q;q

� kf k1=q
L1

kf k1�1=q
BMO .

23For more recent developments in extrapolation theory cf. [4].
24For computations of related K-functionals and further references cf. [2, 42].
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Thus,

�ˆ 1

0

f #�.t/qdt

	 1=q

� c.
q

q � 1/
1=qkf k1=q

L1
kf k1�1=q

BMO : (37)

Now, we recall that by [11], as complemented in [85, (3.8), p. 228], we have

f ��.t/ � f �.t/ � cf #�.t/; t > 0: (38)

Combining (38) with (37), yields

�ˆ 1

0

Œf ��.t/ � f �.t/
qdt

	 1=q

� c.
q

q � 1/
1=qkf k1=q

L1
kf k1�1=q

BMO : (39)

Observe that, since Œtf ��.t/
0 D .
´ t
0

f �.s/ds/0 D f �.t/; we have

Œ�f ��.t/
0 D f ��.t/ � f �.t/
t

:

Moreover, since f 2 L1; then f ��.1/ D 0; and it follows from the fundamental
theorem of calculus that we can write

f ��.t/ D
ˆ 1

t
f ��.s/ � f �.s/

ds

s
:

Consequently, by Hardy’s inequality,

�ˆ 1

0

f ��.t/qdt

	 1=q

� q

�ˆ 1

0

Œf ��.t/ � f �.t/
qdt

	 1=q

:

Inserting this information in (39) we arrive at

�ˆ 1

0

f ��.t/qdt

	 1=q

� cq.
q

q � 1/
1=qkf k1=q

L1
kf k1�1=q

BMO : (40)

We now estimate the left-hand side of (40) from below. By the sharp reverse Hardy
inequality for decreasing functions (cf. [80], [69, Lemma 2.1], see also [88]) we can
write

kf kq D
�ˆ 1

0

f �.t/qdt

	 1=q

� .
q � 1

q
/1=q

�ˆ 1

0

f ��.t/qdt

	 1=q

: (41)
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Combining the last inequality with (40) we obtain

kf kq D
�ˆ 1

0

f �.t/qdt

	 1=q

� .
q � 1

q
/1=q

�ˆ 1

0

f ��.t/qdt

	 1=q

� .
q � 1

q
/1=q.

q

q � 1/
1=qcq

�ˆ 1

0

Œf ��.t/ � f �.t/
qdt

	 1=q

� cqkf k1=q
L1

kf k1�1=q
BMO ;

as we wanted to show.
Let us now consider the case p > 1: Let q > p: By Holmstedt’s reiteration

theorem (cf. [12, 38]) we have

.Lp;BMO/1�p=q;q D ..L1;BMO/1�1=p;p;BMO/1�p=q;q ;

and, moreover, with absolute constants that depend only on p;

K.t; f I Lp;BMO/ �
(ˆ tp

0

.s
1
p �1sf #�.s//p

ds

s

) 1=p

D
(ˆ tp

0

f #�.s/pds

) 1=p

:

By Lemma 2 it follows that, with constants independent of q; f ; we have

8
<
:
ˆ 1

0

Œt�.1�p=q/

(ˆ tp

0

f #�.s/pds

) 1=p


q
dt

t

9
=
;

1=q

� kf k.Lp.Rn/;BMO.Rn//1�p=q;q

� p�1=qŒq�p
�1=qq1=qkf kp=q
Lp kf k1�p=q

BMO :

Now,

8<
:
ˆ 1

0

Œt�.1�p=q/q

(ˆ tp

0

f #�.s/pds

) q=p
dt

t

9=
;

1=q

D
8<
:
ˆ 1

0

Œt�.1�p=q/qtq

(
1

tp

ˆ tp

0

f #�.s/pds

) q=p
dt

t

9=
;

1=q

D
8
<
:
ˆ 1

0

tp

(
1

tp

ˆ tp

0

f #�.s/pds

) q=p
dt

t

9
=
;

1=q
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D
�
1

p

�1=q
(ˆ 1

0

u

�
1

u

ˆ u

0

f #�.s/pds

	 q=p du

u

) 1=q

D
�
1

p

�1=q
2
4
(ˆ 1

0

�
1

u

ˆ u

0

f #�.s/pds

	 q=p

du

) p=q
3
5
1=p

�
�
1

p

�1=q
" q

p

q=p � 1

#1=q �ˆ 1

0

f #�.u/qdu

	 1=q

;

where in the last step we have used the reverse sharp Hardy inequality
(cf. [69, Lemma 2.1]). Consequently,

�ˆ 1

0

f #�.u/qdu

	 1=q

� p1=q



q=p � 1

q=p

�1=q

p�1=qŒq � p
�1=qq1=qkf kp=q
Lp kf k1�p=q

BMO

� kf kp=q
Lp kf k1�p=q

BMO :

Hence, by the analysis we already did for the case p D 1; we see that

�ˆ 1

0

f �.t/qdt

	 1=q

� .
q � 1

q
/1=qqkf kp=q

Lp kf k1�p=q
BMO

� qkf kp=q
Lp kf k1�p=q

BMO ;

as we wished to show. ut
Remark 1. If we work on a cube Q0, the replacement of (38) is (cf. [9])

f ��.t/ � f �.t/ � cf #�.t/; 0 < t < jQ0j =3:
In this situation, we have BMO.Q0/ � L1.Q0/; and we readily see thatn´ jQ0j=3
0

Œt�1C1=qtf #�.t/
q dt
t

o1=q
is an equivalent seminorm for .L1.Q0/;BMO

.Q0//1�1=q;q: The rest of the proof now follows mutatis mutandis.

Remark 2. For related Hardy inequalities for one-dimensional oscillation operators
of the form f#.t/ D 1

t

´ t
0

f .s/ds � f .t/; cf. [76] and [54].

The Rearrangement Invariant Hull of BMO and Gagliardo
Coordinate Spaces

In this section we introduce the “Gagliardo coordinate spaces” (cf. [38, 43, 60]) and
we use them to extend (2) to the setting of real interpolation.
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Let � 2 Œ0; 1
; q 2 .0;1
: Following the discussion given in the Introduction,
we define the “Gagliardo coordinate spaces” as follows25:

.X1;X2/
.1/

�;q D
�

f 2 X1 C X2 W kf k
.X1;X2/

.1/

�;q
< 1

	
;

where

kf k
.X1;X2/

.1/

�;q
D
�ˆ 1

0

�
t1��



K.t; f I X1;X2/

t
� K0.t; f I X1;X2/

��q dt

t

	 1=q

;

and

.X1;X2/
.2/

�;q D
�

f 2 X1 C X2 W kf k
.X1;X2/

.2/

�;q
< 1

	
;

kf k
.X1;X2/

.2/

�;q
D
�ˆ 1

0

.t�� tK0.t; f I X1;X2//
q dt

t

	 1=q

;

and we compare them to the classical Lions–Peetre spaces .X1;X2/�;q:
The Gagliardo coordinate spaces in principle are not linear, and the correspond-

ing functionals, kf k
.X1;X2/

.i/
�;q
; i D 1; 2; are not norms. However, it turns out that,

when � 2 .0; 1/; q 2 .0;1
; we have, with *norm* equivalence (cf. [38, 43]),

.X1;X2/
.1/

�;q D .X1;X2/
.2/

�;q D .X1;X2/�;q: (42)

More precisely, the “norm” equivalence depends only on � and q:On the other hand,
at the endpoints, � D 0 or � D 1; the resulting spaces can be very different.

Example 1. Let .X1;X2/ D .L1;L1/: Then, if � D 1; q D 1; we have

kf k
.X1;X2/

.1/
1;1

D kf kL.1;1/ ; (43)

while

kf k.X1;X2/1;1 D kf k
.X1;X2/

.2/
1;1

D kf kL1

:

For � D 1; q < 1;

kf k
.X1;X2/

.1/
1;q

D kf kL.1;q/ :

25Think in terms of a Gagliardo diagram, see, for example, [12, p. 39], [43, 46].
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On the other hand,

kf k
.X1;X2/

.2/
1;q

D
�ˆ 1

0

f �.t/q
dt

t

	 1=q

�
�ˆ 1

0

f ��.t/q
dt

t

	 1=q

D kf k.X1;X2/1;q ;

and

kf k
.X1;X2/

.2/
1;q
< 1 , f D 0:

For � D 0; q D 1;

kf k.X1;X2/0;1 D sup
t

tf ��.t/ D kf kL1 ;

while

kf k
.X1;X2/

.2/
0;1

D sup
t

tf �.t/ D kf kL.1;1/ :

Moreover,

kf k
.X1;X2/

.1/
0;1

D sup
t

t.f ��.t/ � f �.t//

D sup
t

ˆ 1

f �.t/
�f .s/ds:

Therefore, if f �.1/ D 0; then

kf k
.X1;X2/

.1/
0;1

D
ˆ 1

0

�f .s/ds

D kf kL1 :

Also, if f ��.1/ D 0;

kf k
.X1;X2/

.1/
1;1

D
ˆ 1

0

�
f ��.t/ � f �.t/


 dt

t

D lim
r!0

ˆ 1

r

�
f ��.t/ � f �.t/


 dt

t

D lim
r!0

�
f ��.r/ � f ��.1/

�
(since

d

dr
.�f ��.t// D f ��.t/ � f �.t/

t
)

D kf kL1

:
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Theorem 1. Let � 2 Œ0; 1/; and let 1 � q < 1: Then, there exists an absolute
constant c such that

kf kEX.2/�;q � cq
�
1C Œ.1 � �/q
1=q

�1��
Œ.1 � �/q
�� kf k1��X1 kf k�EX.1/1;1 : (44)

In particular, if .1 � �/q D 1;

kf kEX.2/�;q � cq kf k1��X1 kf k�EX.1/1;1 : (45)

Before going to the proof let us argue why such a result could be termed a
generalized John-Nirenberg inequality. Indeed, let Q be a cube in Rn; and consider
the pair EX D .L1.Q/;L1.Q//: As we have seen [cf. (43)]

kf kEX.1/1;1 D kf kL.1;1/ :

By definition, if f 2 L.1;1/.Q/; then f 2 L1.Q/: We now show that, moreover,
kf kL1 � jQj kf kL.1;1/ : Indeed, for all t > 0 we have (cf. [1, Theorem 2.1 (ii)])

ˆ
fjf j>tg

jf .x/j dx �
ˆ 1

f �.�f .t//
�f .r/dr C t�f .t/

D �f .t/Œf
��.�f .t// � f �.�f .t//
C t�f .t/

� �f .t/
�kf kL.1;1/ C t

�

� jQj �kf kL.1;1/ C t
�
; (46)

where in the second step we have used the formula (do a graph!)

s.f ��.s/ � f �.s// D
ˆ 1

f �.s/
�f .u/du:

Let t ! 0 in (46) then, by Fatou’s Lemma, we see that

kf kL1 � jQj kf kL.1;1/ : (47)

Now, let � 2 .0; 1/; and 1
q D 1 � �: Then,

kf kEX.2/�;q D
�ˆ 1

0

.t�� tK0.t; f I L1;L1//q
dt

t

	 1=q

D
�ˆ 1

0

.t�.1�1=q/tf �.t//q
dt

t

	 1=q

D kf kLq :
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Therefore, by (45) and (47),

kf kLq � cq kf k1=q
L1 kf k1=q0

L.1;1/

� cq jQj kf kL.1;1/

� cq kf kL.1;1/ :

Consequently,

kf keL � kf k
�. Lq

q /
D sup

q

kf kLq

q
� c kf kL.1;1/ :

Proof (of Theorem (1)). Let us write

kf kEX.2/�;q D
�ˆ 1

0

.u1��
d

du
K.u; f I EX//q du

u

�1=q

D
�ˆ t

0

.u1��
d

du
K.u; f I EX//q du

u

�1=q

C
�ˆ 1

t
.u1��

d

du
K.u; f I EX//q du

u

�1=q

D .I/C .II/:

We estimate these two terms as follows:

.I/ D
�ˆ t

0

u.1��/q.
d

du
K.u; f I EX//q du

u

�1=q

�
 ˆ t

0

u.1��/q.
K.u; f I EX/

u
/q

du

u

!1=q

(since
d

du
K.u; f I EX/ � K.u; f I EX/

u
/:

On the other hand, since
�

K.u;f IEX/
u

�0
D K0.u;f IEX/u�K.u;f IEX/

u2
;we have that, for 0 < u < t;

K.u; f I EX/
u

D K.t; f I EX/
t

C
 

� K.�; f I EX/
�

ˇ̌
ˇ̌
ˇ
t

u

!

D K.t; f I EX/
t

C
ˆ t

u

 
K.r; f I EX/

r
� K0.r; f I EX/

!
dr

r

� K.t; f I EX/
t

C
�

log
t

u

�
sup
r�t

 
K.r; f I EX/

r
� K0.r; f I EX/

!

� K.t; f I EX/
t

C log
t

u
kf kEX.1/1;1 :
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Therefore, by the triangle inequality,

.I/ �
 ˆ t

0

.u.1��/qfK.t; f I EX/
t

C log
t

u
kf kEX.1/1;1gq du

u

!1=q

� K.t; f I EX/
t

�ˆ t

0

u.1��/q
du

u

�1=q

C kf kEX.1/1;1

�ˆ t

0

u.1��/q
�

log
t

u

�q du

u

�1=q

D K.t; f I EX/
t

t.1��/

Œ.1 � �/q
1=q
C kf kEX.1/1;1

�ˆ t

0

u.1��/q
�

log
t

u

�q du

u

�1=q

D .a/C .b/:

For the term .a/ we have

.a/ � t��

Œ.1 � �/q
1=q
lim

t!1 K.t; f I EX/ (since K.�; f I EX/ increases)

� t��

Œ.1 � �/q
1=q
kf kX1 :

To deal with .b/ we use the asymptotics of the gamma function as follows: let s D
log t

u ; then u D te�s; du D �te�sds; du
u D �ds; u.1��/q D t.1��/qe�s.1��/q; and we

have

.b/ D kf kEX.1/1;1

�ˆ t

0

u.1��/qsq du

u

�1=q

D kf kEX.1/1;1 t1��
�ˆ 1

0

e�s.1��/qsqds

�1=q

D kf kEX.1/1;1 t1��
�ˆ 1

0

e�� �q

Œ.1 � �/q
q
d�

Œ.1 � �/q

�1=q

; (let � D s.1 � �/q/

D
kf kEX.1/1;1
Œ.1 � �/q


1

Œ.1 � �/q
1=q
t1�� .�.q C 1//1=q

�
kf kEX.1/1;1
Œ.1 � �/q


1

Œ.1 � �/q
1=q
t1��q.

Combining inequalities for .a/ and .b/ we have

.I/ � t��

Œ.1 � �/q
1=q
kf kX1 C

kf kEX.1/1;1
Œ.1 � �/q


1

Œ.1 � �/q
1=q
t1��q:
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We now estimate .II/ W

.II/ D
 ˆ 1

t
u.1��/qu�1

�
d

du
K.u; f I EX/

�q�1 �
u

d

du
K.u; f I EX/

�
du

u

!1=q

�
(

sup
u�t
.u

.1��/q�1
q

�
d

du
K.u; f I EX/

� q�1
q

/

) �ˆ 1

t

d

du
K.u; f I EX/du

	 1=q

D .c/.d/:

The factors on the right-hand side can be estimated as follows:

.d/ D
�

lim
u7!1 K.u; f I EX/ � K.t; f I EX/

�1=q

�
�

lim
u7!1 K.u; f I EX/

�1=q

D kf k1=q
X0
:

Also, since K.�; f I EX/ is concave, d
du K.u; f I EX/ � K.u;f IEX/

u ; consequently,

.c/ � kf k1�1=q
X1

sup
u�t

fu
.1��/q�1

q � q�1
q g

� kf k1�1=q
X1

fsup
u�t

u��g

D kf k1�1=q
X1

t�� :

Thus,

.II/ � kf k1=q
X1 kf k1�1=q

X1
t��

D kf kX1 t�� :

Combining the estimates for .I/ and .II/ yields

kf kEX.2/�;q
�
 
1CŒ.1��/q
1=q

Œ.1��/q
1=q

!
t�� kf kX1 C 1

Œ.1��/q

1

Œ.1 � �/q
1=q
qt1�� kf kEX.1/1;1

� cq
1

Œ.1 � �/q
1=q

��
1C Œ.1 � �/q
1=q

�
t�� kf kX1 C 1

Œ.1 � �/q
 t
1�� kf kEX.1/1;1

	
:

(48)
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We balance the terms on the right-hand side by choosing t such that

�
1C Œ.1 � �/q
1=q

�
t�� kf kX1 D 1

Œ.1 � �/q
 t
1�� kf kEX.1/1;1 ;

whence,

t D �
1C Œ.1 � �/q
1=q

�
Œ.1 � �/q
 kf kX1

kf kEX.1/1;1
:

Inserting this value of t in (48) we find

kf kEX.2/�;q � cq
1

Œ.1 � �/q
1=q

��
1C Œ.1 � �/q
1=q

���
Œ.1 � �/q
�� kf k1��X1 kf k�EX.1/1;1

	

� cq

�
1

Œ.1 � �/q
1=q

� �
1C Œ.1 � �/q
1=q

���
Œ.1 � �/q
�� kf k1��X1 kf k�EX.1/1;1 ;

as we wished to show ut
Remark 3. As an easy application of (45), we note that, if X2 � X1; we can write

kf k
�

�
.1��/EX.2/

�; 1
1��

� D sup
�

.1 � �/ kf kEX.2/
�; 1
1��

� c kf kEX.1/1;1 :

We believe that similar arguments would lead to computations with the �p method
of extrapolation (cf. [44, 48]) but this lies outside the scope of this paper so we leave
the issue for another occasion.

Recent Uses of the Oscillation Operator and L.1; q/
Spaces in Analysis

We present several different applications connected with the material developed in
this note. The material is nothing but a sample of results. The results presented are
either new or they provide a new treatment to known results.26 This section differs
from previous ones in that we proceed formally and, whenever possible, we refer
the reader to the literature for background material and complete details. Further
development of materials in this section will appear elsewhere, e.g., in [29, 72, 73].

26See also [82], Lesson #3.
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On Some Inequalities for Classical Operators
by Bennett–DeVore–Sharpley and Bagby and Kurtz

In this section we show how the methods developed in this paper can be applied
to give a new approach to results on singular integrals and maximal operators that
appeared first in [5, 11], and [56] (cf. also the references therein).

Let 6 T and U be operators acting in a sufficiently large class of testing functions,
say the space S of Schwartz testing functions on Rn. Furthermore, suppose that there
exists C > 0; such that for all f 2 S; the following pointwise inequality holds:

.Tf /# .x/ � CUf .x/:

Then, taking rearrangements we have

.Tf /#� .t/ � C.Uf /�.t/; t > 0:

Therefore,

�ˆ 1

0

.Tf /#� .t/pdt

	 1=p

� C

�ˆ 1

0

.Uf /�.t/pdt

	 1=p

:

Now, by (38) above, and the analysis that follows it, we see that

�ˆ 1

0

.Tf /� .t/pdt

	 1=p

�
�

p � 1
p

�1=p

pC

�ˆ 1

0

.Uf /�.t/pdt

	 1=p

� Cp

�ˆ 1

0

.Uf /�.t/pdt

	 1=p

.

In other words,

kTf kp � cp kUf kp ; (49)

and we recover the main result of [56].
We should also point out that the method of proof can be also implemented to

deal with the corresponding more general inequalities for doubling measures on Rn

(cf. [21, 56], and the references therein).

Remark 4. It may be appropriate to mention that once one knows (49) then one
could use the extrapolation theory of [44] to show (cf. [56, Lemma 5]) that there
exist absolute constants C; � > 0; such that,

.Tf /�.t/ � C
ˆ 1

� t
.Uf /� .s/

ds

s
; for all f 2 S: (50)
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Good-Lambda Inequalities

These inequalities apparently originate in the celebrated work of Burkholder–Gundy
[17] (cf. also [16]) on extrapolation of martingale inequalities. They have been used
since then to great effect in probability, and also in classical harmonic analysis,
probably beginning with [18] and Coifman–Fefferman [21]. Inequalities on the
oscillation operator f �� � f � are closely connected with good-lambda inequalities.
This connection was pointed out long ago by Neveu [77], Herz [36], Bagby and
Kurtz (cf. [5, 56]), among others. In this section we formalize some of their ideas.

To fix matters, let � be a measure on Rn; and let T and H be operators acting
on a sufficiently rich class of functions. A prototypical good-lambda inequality has
the following form: for all � > 0; " > 0; there exists c."/ > 0; with c."/ ! 0; as
" ! 0; such that

�fjTf j > 2�; jHf j � "�g � c."/�fjTf j > �g: (51)

The idea here is that if the behavior of H is known on r.i. spaces, say on Lp spaces;
then we can also control the behavior of T: Indeed, the distribution function of Tf
can be controlled by the following elementary argument:

�fjTf j > 2�g � �fjTf j > 2�; jHf j � "�g C �fjTf j > 2�; jHf j > "�g
� c."/�fjTf j > �g C �fjHf j > "�g:

Then, since

kf kp
p D p

ˆ 1

0

�p�1�fjf j > �gd�;

we readily see that we can estimate the norm of kTf kp
p in terms of the norm of kHf kp

p
by means of making " sufficiently small in order to be able to collect the two kTf kp

p
terms on the left-hand side of the inequality.

In [56], the author shows the following stronger good-lambda inequality for f # W
There exists B > 0; such that for all " > 0; � > 0; and all locally integrable f ; we
have

�fjf j > Bf # C �g � "�fjf j > �g:

This inequality is used to show the following oscillation inequality (cf. [56, p. 270]):

f �.t/ � f �.2t/ � Cf #�.
t

2
/; t > 0;

where C is an absolute constant.
More generally, the argument in [56] can be formalized as follows:
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Theorem 2. Suppose that T and H are operators acting on the Schwartz class S;
such that, moreover, for all " > 0; there exists B > 0; such that for all � > 0;

�fjTf j > B jHf j C �g � "�fjTf j > �g: (52)

Then, there exists a constant C > 0 such that for all t > 0; and for all f 2 S;

.Tf /� .t/ � .Tf /� .2t/ � C .Hf /� .
t

2
/: (53)

Proof. Let " D 1
4
; and fix B WD B. 1

4
/ such that (52) holds for all � > 0: Let f 2 S;

and select � D .Tf /� .2t/: Then,

�fjTf j > B jHf j C .Tf /� .2t/g � 1

4
�fjTf j > .Tf /� .2t/g � t

2
:

By definition we have,

�fjHf j > .Hf /� .
t

2
/g � t

2
:

Consider the set A D fjTf j > B.Hf /�. t
2
/ C .Tf /� .2t/g: Then, it is easy to see, by

contradiction, that

A � fjTf j > B jHf j C .Tf /� .2t/g
[

fjHf j > .Hf /� .t=2/g:

Consequently,

�.A/ � t

2
C t

2
:

Now, since

.Tf /� .t/ D inffs W �fjTf j > sg � tg;

it follows that

.Tf /� .t/ � B.Hf /�.
t

2
/C .Tf /� .2t/;

as we wished to show. ut
Remark 5. It is easy to compare the oscillation operators .Tf /� .t/� .Tf /� .2t/ and
.Tf /�� .t/ � .Tf /� .t/: For example, it is shown in [7, Theorem 4.1, p. 1223] that

.Tf /� .
t

2
/ � .Tf /� .t/ � 2

�
.Tf /�� .t/ � .Tf /� .t/

�
;
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and

�
.Tf /�� .t/ � .Tf /� .t/

� � 1

t

ˆ t

0

�
.Tf /� .

s

2
/ � .Tf /� .s/

�
ds

C .Tf /� .
t

2
/ � .Tf /� .t/: (54)

Combining Theorem 2 and the previous remark we have the following:

Theorem 3. Suppose that T and H satisfy the strong good-lambda inequality (52).
Then,

�
.Tf /�� .t/ � .Tf /� .t/

� � 2B.Hf /��.
t

4
/:

Proof. The desired result follows combining (53) with (54). ut
Remark 6. It is easy to convince oneself that the good-lambda inequalities of the
form (52) are, in fact, stronger than the usual good-lambda inequalities, e.g., of the
form (51) (cf. [56]).

Remark 7. Clearly there are many nice results lurking in the background of this
section. For example, a topic that comes to mind is to explore the use of good-
lambda inequalities in the interpolation theory of operator ideals and its applications
(cf. [20, 66], and the references therein). On the classical analysis side it would be
of interest to explore the connections of the interpolation methods with the maximal
inequalities due to Muckenhoupt–Wheeden and Hedberg–Wolff (cf. [3, 40], and the
references therein).

Extrapolation of Inequalities: Burkholder–Gundy–Herz Meet
Calderón–Maz’ya and Cwikel et al.

The leitmotif of [17] is the extrapolation of inequalities for the classical operators
acting on martingales (e.g., martingale transforms, maximal operators, square
functions). There are two main ingredients to the method. First, the authors,
modeling on the classical operators acting on martingales, single out properties
that the operators under consideration will be required to satisfy. Then they usually
assume that an Lp or weak type Lp estimate holds, and from this information they
deduce a full family of Lp or even Orlicz inequalities. The main technical step of the
extrapolation procedure consists of using the assumptions we have just described in
order to prove suitable good-lambda inequalities. The method is thus different from
the usual interpolation theory, which works for all operators that satisfy a pair of
given estimates.

In [29] we have shown how to formulate some of the assumptions of [17] in
terms of optimal decompositions to compute K-functionals. Then, assuming that the
operators to be extrapolated act on interpolation spaces, one can extract oscillation
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inequalities using interpolation theory. In particular, the developments in [29] allow
the extrapolation of operators that do not necessarily act on martingales, but also on
function spaces, e.g., gradients, square functions, Littlewood–Paley functions, etc.
The basic technique involved to achieve the extrapolation is to use the assumptions
to prove an oscillation rearrangement inequality.27

Unfortunately, [29] is still unpublished, although some of the results have been
discussed elsewhere (cf. [63]) or will appear soon (cf. [72]). In keeping with the
theme of this note, in this section I want to present some more details on how one can
extrapolate Sobolev inequalities and encode the information using the oscillation
operator f �� � f �:

Let us take as a starting point the weak type Gagliardo–Nirenberg–Sobolev
inequality in Rn (cf. [58])W

kf kL.n0;1/ D kf k.L1.Rn/;L1.Rn//1=n;1
� cn krf kL1 ; f 2 Lip0.R

n/: (55)

Let f 2 Lip0.Rn/; and assume without loss that f is positive. Let t > 0; then an
optimal decomposition for the computation of

K.t; f / WD K.t; f I L1.Rn/;L1.Rn// D
ˆ t

0

f �.s/ds;

is given by

f D ff �.t/ C .f � ff �.t//; (56)

where

ff �.t/.x/ D
�

f .x/ � f �.t/ if f �.t/ < f .x/
0 if f .x/ � f �.t/ : (57)

By direct computation we have

K.t; f / � ��ff �.t/

��
L1 C t

��f � ff �.t/

��
L1

D
�ˆ t

0

f �.s/ds � tf �.t/
�

C tf �.t/

D
ˆ t

0

f �.s/ds:

On the other hand, if f D f0 C f1; with f0 2 L1; f1 2 L1; then
ˆ t

0

f �.s/ds �
ˆ t

0

f �
0 .s/ds C

ˆ t

0

f �
1 .s/ds

� kf0kL1 C t kf1kL1

:

27Herz [37] also developed a different technique to extrapolate oscillation rearrangement inequali-
ties for martingale operators.
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Therefore,

K.t; f / D ��ff �.t/

��
L1 C t

��f � ff �.t/

��
L1

:

Also note that, confirming (18) and (19) above, by direct computation we have

��ff �.t/

��
L1 D

ˆ t

0

f �.s/ds � tf �.t/

D t
�
f ��.t/ � f �.t/

�
;

��f � ff �.t/

��
L1

D f �.t/:

The commutation of the gradient with truncations28 implies

��rff �.t/

��
L1 �

ˆ
ff>f �.t/g

jrf j dx:

Therefore

��rff �.t/

��
L1 �

ˆ t

0

jrf j� .s/ds:

We apply the inequality (55) to ff �.t/. We find

��ff �.t/

��
.L1.Rn/;L1.Rn//1=n;1

� cn

��rff �.t/

��
L1

� cn

ˆ t

0

jrf j� .s/ds:

We estimate the left-hand side

��ff �.t/

��
.L1.Rn/;L1.Rn//1=n;1

D sup
s>0

s�1=nK.s; ff �.t//

D sup
s>0

s�1=nK.s; f � .f � ff �.t///

� t�1=nK.t; f � .f � ff �.t///

� t�1=nfK.t; f / � K.t; f � ff �.t//g;

where the last inequality follows by the triangle inequality, since K.t; �/ is a norm.
Now,

K.t; f / D tf ��.t/;

28(cf. [6, 34, 65, 67]).
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and

K.t; f � ff �.t// � t
��ff �.t/ � f

��
L1

D tf �.t/:

Thus,
��ff �.t/

��
.L1.Rn/;L1.Rn//1=n;1

� t�1=n
�
tf ��.t/ � tf �.t/

�
:

Combining estimates we find

�
tf ��.t/ � tf �.t/

�
t�1=n � cn

ˆ t

0

jrf j� .s/ds;

which can be written as

f ��.t/ � f �.t/ � cnt1=n jrf j�� .t/: (58)

This inequality had been essentially obtained by Kolyada [50] and is equivalent
(cf. [65]) to earlier inequalities by Talenti [86] but its role in the study of limiting
Sobolev inequalities, and the introduction of the L.1; q/ spaces, was only pointed
out in [7]. In [65] it was shown that (58) is equivalent to the isoperimetric inequality.
More generally, Martin–Milman extended (58) to Gaussian measures [62], and
later29 (cf. [64]) to metric measure spaces, where the inequality takes the following
form:

f ��.t/ � f �.t/ � t

I.t/
jrf j�� .t/; (59)

where I is the isoperimetric profile associated with the underlying geometry. In fact
they show the equivalence of (59) with the corresponding isoperimetric inequality
(for a recent survey cf. [64]).

One can prove the Gaussian Sobolev version of (59) using the same extrapolation
procedure as above, but taking as a starting point Ledoux’s inequality [57] as
a replacement of the Gagliardo–Nirenberg inequality (cf. [63]). Further recent
extensions of the Martin–Milman inequality on Gaussian measure can be found
in [89].

Let us now show another Sobolev rearrangement inequality for oscillations,
apparently first recorded in [65]. We now take as our starting inequality for the
extrapolation procedure the sharp form of the Gagliardo–Nirenberg inequality,
which can be formulated as

kf kL.n0;1/ D kf k.L1.Rn/;L1.Rn//1=n;1
� cn krf kL1 ; f 2 Lip0.R

n/:

29See also [47] for a maximal function approach to oscillation inequalities for the gradient.
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We apply the inequality to ff �.t/: The right-hand side we have already estimated,

��ff �.t/

��
.L1.Rn/;L1.Rn//1=n;1

� cn

ˆ t

0

jrf j� .s/ds:

Now,

��ff �.t/

��
.L1.Rn/;L1.Rn//1=n;1

D
ˆ 1

0

s�1=nK.s; ff �.t//
ds

s

�
ˆ t

0

s�1=nK.s; f � .f � ff �.t///
ds

s

�
ˆ t

0

s�1=nfK.s; f / � K.s; f � ff �.t//gds

s

D
ˆ t

0

s�1=nfsf ��.s/ � K.s; f � ff �.t//gds

s
:

Note that since f � decreases, for s � t; we have

K.s; f � ff �.t// � s
��f � ff �.t/

��
L1

D sf �.t/

� sf �.s/:

Therefore,

kf k.L1.Rn/;L1.Rn//1=n;1
�
ˆ t

0

s�1=nfsf ��.s/ � sf �.s/gds

s

D
ˆ t

0

s1�1=nff ��.s/ � f �.s/gds

s
:

Consequently,

ˆ t

0

s1�1=nff ��.s/ � f �.s/gds

s
� cn

ˆ t

0

jrf j� .s/ds;

an inequality first shown in [65].

Bilinear Interpolation

In this section we show an extension of (22) to a class of bilinear operators that
have a product or convolution like structure. These operators were first introduced
by O’Neil (cf. [12, Exercise 5, p. 76]).
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Let EA; EB; EC; be Banach pairs, and let … be a bilinear bounded operator such that

… W
8<
:

A0 � B0 ! C0
A0 � B1 ! C1
A1 � B0 ! C1

:

For example, the choice A0 D B0 D C0 D L1; and A1 D B1 D C1 D L1;
corresponds to a regular product operator …1.f ; g/ D fg; while the choice A0 D
B0 D C1 D L1; and A1 D B1 D C0 D L1, corresponds to a convolution operator
…2.f ; g/ D f 
 g on Rn; say. The main boundedness result is given by (cf. [12,
Exercise 5, p. 76]):

k….f ; g/kEC�;r � kf kEA�1;q1r
kgkEB�2;q2r

; (60)

where �; �i 2 .0; 1/; � D �1 C �2; q i; r 2 Œ1;1
; i D 1; 2; and 1
r � 1

q1r C 1
q2r :

Example 2. To illustrate the ideas, make it easy to compare results, and to avoid
the tax of lengthy computations with indices, we shall only model an extension
of (22) for …1. Let us thus take EA D EB D EC D .A0;A1/; and let EX D .X0;X1/ D
.A1;A0/: Further, in order to be able to use the quadratic form argument outlined in
the Introduction, we choose q1 D q2 D 2; r D p; �1 D �2 D �

2
: Then, from (60)

we get

k…1.f ; g/kEX1��;p � kf kEX
1� �

2 ;2p
kgkEX

1� �
2 ;2p
: (61)

Since .1 � 1
2
/.1 � �/C 1

2
1 D 1 � �

2
; we can use the reiteration theorem to write

EX1� �
2 ;2p D .EX1��;p;X1/ 1

2 ;2p;

and find that

k…1.f ; g/kEX1��;p � kf k
.EX1��;p;X1/ 1

2 ;2p
kgk

.EX1��;p;X1/ 1
2 ;2p
: (62)

By the equivalence theorem30 (cf. (42) above),

.EX1��;p;X1/ 1
2 ;2p D .EX1��;p;X1/.2/1

2 ;2p
:

30In this example we are not interested on the precise dependence of the constants of equivalence.
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Therefore,

k…1.f ; g/kEX1��;p � kf k
.EX1��;p;X1/.2/1

2 ;2p

kgk
.EX1��;p;X1/.2/1

2 ;2p

� kf k1=2EX1��;p kf k1=2
.EX1��;p;X1/.1/1;1

kgk1=2EX1��;p kgk1=2
.EX1��;p;X1/.1/1;1

;

where in the last step we have used (45) applied to the pair .EX1��;p;X1/: Conse-
quently, by the quadratic formula, we finally obtain

k…1.f ; g/kEX1��;p � kf kEX1��;p kgk
.EX1��;p;X1/.1/1;1

C kf k
.EX1��;p;X1/.1/1;1

kgkEX1��;p :

Remark 8. The method above uses one of the more powerful tools of the real
method: the re-scaling of inequalities. However, in this case there is substantial
difficulty for the implementation of the result since techniques for the actual

computation of the space
�EX1��;p;X1

�.1/
1;1 are not well developed at present time.31

Therefore we avoid the use of (62) and instead prove directly that if32 � D 1
p ; we

have

kf kEX
1� �

2 ;2p
� kf k1=2EX1��;p kf k1=2EX.1/1;1

: (63)

This given, applying (63) to both terms on the right-hand side of (61) and then using
the quadratic form argument we find

k…1.f ; g/kEX1��;p � kf kEX1��;p kgkEX.1/1;1 C kgkEX1��;p kf kEX.1/1;1 : (64)

In the particular case of product operators and Lp spaces, 1 < p < 1; (64) reads

kfgkLp � kf kLp kgkL.1;1/ C kgkLp kf kL.1;1/ ;

which should be compared with (22) recalling that

kf kL.1;1/ � c kf kBMO :

31It is an interesting open problem to modify Holmstedt’s method to be able to keep track, in a
nearly optimal way, both coordinates in the Gagliardo diagram, when doing reiteration. For more
on the computation of Gagliardo coordinate spaces see the forthcoming [74].
32To simplify the computations we model the Lp case here. Another simplification is that in this
argument we don’t need to be fuzzy about constants.
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Proof (of (63)). To simplify the notation we let K.t; f I EX/ D K.t/: Then,

kf kEX
1� �

2 ;2p
D
�ˆ 1

0

�
K.s/s�.1� �

2 /
�2p ds

s

	 1=2p

�
�ˆ t

0

�
K.s/s�.1� �

2 /
�2p ds

s

	 1=2p

C
�ˆ 1

t

�
K.s/s�.1� �

2 /
�2p ds

s

	 1=2p

D .1/C .2/:

We proceed to estimate each of these two terms starting with .2/ W

.2/ D
�ˆ 1

t

�
K.s/s�.1��/�p

s.1��/ps�.1� �
2 /p
�

K.s/s�.1� �
2 /
�p ds

s

	 1=2p

�
�

sup
s�t

s.1��/s�.1� �
2 /
�

K.s/s�.1� �
2 /
�	 1=2 �ˆ 1

t

�
K.s/s�.1��/�p ds

s

	 1=2p

�
�

sup
s�t

K.s/

s

	 1=2
kf k1=2EX1��;p

D
�

K.t/

t

	 1=2
kf k1=2EX1��;p

D t�1=2t.1��/=2
˚
K.t/t�.1��/

�1=2 kf k1=2EX1��;p
� t�1=p2 kf kEX1��;p :

Moreover,

.1/ D
(ˆ t

0

�
K.s/

s
s�.1� �

2 /C1
�2p ds

s

) 1=2p

�
(ˆ t

0

�

K.s/

s
� K.t/

t

�
s�.1� �

2 /C1
�2p ds

s

) 1=2p

C
(ˆ t

0

�
K.t/

t
s�.1� �

2 /C1
�2p ds

s

) 1=2p

D .a/C .b/:

The term .b/ is readily estimated:

.b/ D K.t/

t

�ˆ t

0

s
�
2 2p ds

s

	 1=2p

� K.t/

t
t1=2p
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D K.t/t�.1��/t.1��/t1=2p�1

� kf kEX1��;p t�1=2p:

Next we use the familiar estimate



K.s/

s
� K.t/

t

�
D

ˆ t

s



K.s/

s
� K0.s/

�
ds

s

� kf kEX1;1 log
t

s
;

to see that

.a/ � kf kEX1;1

�ˆ t

0

s
�

log
t

s

�2p ds

s

	 1=2p

� kf kEX.1/1;1 t1=2p:

Collecting estimates, we have

kf kEX
1� �

2 ;2p
� t�1=p2 kf kEX1��;p C kf kEX.1/1;1 t1=2p:

Balancing the two terms on the right-hand side we find

kf kEX
1� �

2 ;2p
� kf k1=2EX1��;p kf k1=2EX.1/1;1

;

as we wished to show. ut
Remark 9. It would be of interest to implement a similar model analysis for
…2.f ; g/ D f 
 g: We claim that it is easy, however, we must leave the task to
the interested reader.

Remark 10. The results of this section are obviously connected with Leibniz rules
in function spaces. This brings to mind the celebrated commutator theorem of
Coifman–Rochberg–Weiss [22] which states that if T is a Calderón–Zygmund
operator (cf. [83]), and b is a BMO function, then ŒT; b
f D bTf � T.bf /; defines a
bounded linear operator33

ŒT; b
 W Lp.Rn/ ! Lp.Rn/; 1 < p < 1:

The result has been extended in many different directions. In particular, an abstract
theory of interpolation of commutators has evolved from it (cf. [28, 81], for recent

33In fact, the boundedness of ŒT; b
 for all CZ operators implies that b 2 BMO (cf. [41])
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surveys). In this theory a crucial role is played by a class of operators � such
that, for bounded operators T on a given interpolation scale, the commutator ŒT; �

is also bounded. The operators � often satisfy some of the functional equations
associated with derivation operators. At present time we know very little about
how this connection comes about or how to exploit it in concrete applications
(cf. [30, 51]). More in keeping with the topic of this paper, and in view of many
possible interesting applications, it would be also of interest to study oscillation
inequalities for commutators ŒT; �
 in the context of interpolation theory. In this
connection we should mention that in [61], the authors formulate a generalized
version of the Coifman–Rochberg–Weiss commutator theorem, valid in the context
of real interpolation, where in a suitable fashion the function space W; introduced
in [76], plays the role of BMO W

W D ff 2 L1loc.0;1/ W sup
t

ˇ̌
ˇ̌1

t

ˆ t

0

f .s/ds � f .t/

ˇ̌
ˇ̌ < 1g:

Obviously, f 2 L.1;1/ iff f � 2 W:

A Brief Personal Note on Cora Sadosky

I still remember well the day (circa March 1977) that I met Mischa Cotlar and Cora
Sadosky at Mischa’s apartment in Caracas (cf. [71]). I was coming from Sydney,
en route to take my new job as a Visiting Professor at Universidad de Los Andes,
in Merida. And while, of course, I had heard a lot about them, I did not know
them personally. Mischa and I had exchanged some correspondence (no e-mail
those days!). I had planned to come to spend an afternoon with the Cotlars, taking
advantage of a 24-h stopover while en route to Merida, a colonial city in the Andes
region of Venezuela. As it turns out, my flight for the next day had been cancelled,
and Mischa and Yani invited me to stay over at their place.

When I came to the Cotlar’s apartment, Corita and Mischa were working in
the dining room. Mischa gave me a brief explanation of what they were doing
mathematically. In fact, he dismissed the whole enterprise.34 I would learn much
later that what they were doing then, would turn out to be very innovative and
influential research.35

Corita, who also knew about my impending arrival, greeted me with something
equivalent to *Oh, so you really do exist*!36 Being a *porteño* myself, I quickly

34I would learn quickly that Mischa’s modesty was legendary.
35From this period I can mention [23–25].
36Existence here to be taken in a non mathematical sense. Of course at point in time I did NOT
*exist* mathematically!
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found Corita’s style quite congenial and the conversation took off. We formed a
friendship that lasted for as long as she lived.

As I later learned, most people called her Cora, but the Cotlars, and a few
other old friends, that knew her from childhood, called her Corita.37 Having been
introduced to her at the Cotlar’s home, I proceeded to call her Corita too. . . and that
was the way it would always be.38

By early 1979 I moved for one semester to Maracaibo and afterwards to Brasilia.
Mischa was very helpful connecting me first with Jorge Lebowitz (Maracaibo), and
then with Djairo Figuereido (Brasilia). In the mean time, Corita herself had moved
to the USA, where we met again, at an AMS Special Session in Harmonic Analysis.

At the time I had a visiting position at UI at Chicago, and was trying to find
a tenure track job. She took an interest in my situation, and gave me very useful
suggestions on the job hunting process. She would remain very helpful throughout
my career. In particular, when she learned,39 on her own, about my application for a
membership at the Institute for Advanced Study in 1984, she supported my case. . . .
I did not know this until she called me to let me know that my application had been
accepted!

Corita and I met again many times over the course of the years. There were
conferences on Interpolation Theory40 in Lund and Haifa, on Harmonic Analysis in
Washington D.C., Madrid and Boca Raton, there were Chicago meets to celebrate
various birthdays of Alberto Calderón, a special session on Harmonic Analysis in
Montreal, etc. Vanda and I went to have dinner with Corita and her family, when
we all coincided during a visit to Buenos Aires in l985. She was instrumental in my
participation at Mischa’s 80 birthday Conference in Caracas, 1994. We wrote papers
for books that each of us edited. At some point in time she and her family came to
visit us in Florida.

A few months before she passed I was helping her via e-mail, with the texting41

of a paper of hers about Mischa Cotlar.
Probably the best way I have to describe Corita is to say that she was a force of

nature. She was a brilliant mathematician, with an intense but charming personality.
Having had to endure herself exile, discrimination, and very difficult working
conditions, she was very sensitive to the plight of others. I am sure many of the
testimonies in this book will describe how much she helped to provide opportunities
for younger mathematicians to develop their careers.

37In Spanish *Corita* means little Cora.
38Many many years later she told me that by then everyone called her Cora, except Mischa and
myself and that she would prefer for me to call her Cora. I said, of course, Corita!
39She had a membership at IAS herself that year.
40Harmonic analysts trained in the 1960s had a special place in their hearts for Interpolation theory.
It was after all a theory to which the great masters of the Chicago school (e.g., Calderón, Stein,
Zygmund) had made fundamental contributions.
41I mean using TeX!
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Some things are hard to change. As much as I could not train myself to call her
*Cora*, in our relationship she was always “big sister.” I will always be grateful to
her, for all her help and her friendship.

I know that the space BMO had a very special place in her mathematical interests
and, indeed, BMO spaces appear in many considerations throughout her works. For
this very reason, and whatever the merits of my small contribution, I have chosen to
dedicate this note on BMO inequalities to her memory.

Acknowledgements The author was partially supported by a grant from the Simons Foundation
(#207929 to Mario Milman). I am grateful to Sergey Astashkin and Michael Cwikel for useful
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Abstract Mapping properties of bilinear pseudodifferential operators with symbols
of limited smoothness in terms of Besov norms are proved in the context of
Lebesgue spaces. Techniques used include the development of a symbolic calculus
for certain classes of symbols considered.
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Introduction and Main Results

In this article we present results concerning boundedness properties in the setting
of Lebesgue spaces of bilinear pseudodifferential operators associated to symbols
of limited smoothness measured in terms of Besov norms. Closely connected to
such symbols are the bilinear Hörmander classes BSm
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; �/; x; 
; � 2 R

n; that
satisfy
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for all N;M 2 N0 and where h
; �i WD 1 C j
j C j�j: Given 1 � p1; p2; p � 1
verifying Hölder’s condition 1

p1
C 1

p2
D 1

p ; it was proved in [3] (see also [10] for
a related result) that T� is bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/ for all
� 2 BSm

0;0 if m < m.p1; p2/; where

m.p1; p2/ WD �n maxf 1
2
; 1p1 ;

1
p2
; 1 � 1

p g:
It was then shown in [11] that such mapping property also holds if m D m.p1; p2/
and 1 < p1; p2; p < 1I in addition, the condition m � m.p1; p2/ is necessary
for every operator with symbol in BSm

0;0 to be bounded from Lp1 .Rn/ � Lp2 .Rn/

into Lp.Rn/:

The results from [3] were improved in [8], where boundedness from Lp1 .Rn/ �
Lp2 .Rn/ into Lp.Rn/; p � 2;was shown to hold for operators with symbols in certain
Besov spaces of product type Bs;m

1;1.R
3n/ (see definitions in section “Preliminaries”)

of which BSm
0;0 are proper subspaces. The index s is a vector that measures regularity

of the symbols in each of the variables; a by-product of the results in [8] is an explicit
bound of the smallest numbers N and M for which condition (1) is sufficient for
boundedness of the associated operator.

We next present the results in this article, which continue the work originated in
[7, 8]. See section “Preliminaries” for notation.

Theorem 1.1. Consider 1 � p1; p2 � 1 and p D 1 such that 1
p1

C 1
p2

D 1
p

or, 2 � p1; p2 � 1 and p satisfying 1
p1

C 1
p2

D 1
p : If m < m.p1; p2/; s.p/ is as

in Definition 2.1 and s is a vector of the same dimension as s.p/; the following
statements hold true:

(a) If 0 < q � 1 and s � s.p/ component-wise, then

kT� .f ; g/kLp . k�kBs;m
1;q

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all x-independent symbols � in Bs;m1;q.R
3n/:

(b) If 1 < q � 1 and s > s.p/ component-wise, then

kT� .f ; g/kLp . k�kBs;m
1;q

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all x-independent symbols � in Bs;m1;q.R
3n/:

If 2 � p1; p2; p � 1 with 1
p1

C 1
p2

D 1
p , the above statements hold for any

� 2 Bs;m1;q.R
3n/:

Theorem 1.2. Consider 1 � p1; p2; p � 1 such that 1
p1

C 1
p2

D 1
p and m <

m.p1; p2/:

(a) If 0 < q � 1; s D .s1; s2;
n
2
/ 2 R

3 or s D .s1; : : : ; s2n;
1
2
; : : : ; 1

2
/ 2 R

3n and
� 2 Bs;m1;q.R

3n/ is such that

O�.y; a; b/ D
ˆ
R3n
�.x; 
; �/ e�2� i.y�xCa�
Cb��/ dx d
 d�; y; a; b 2 R

n
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Fig. 1 Visualization of
m.p1; p2/;

1
p1

C 1
p2

D 1
p

(0, 1)

(0, 12)

(0, 0) (1, 0)

(1, 1)

(12, 0)
1
p1

1
p2

− n
p2

− n
p1

−n
2

−n(1 − 1
p) I

II

III

IV

has compact support in y and a uniformly in b; then T� is bounded from
Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/; where 2 � p1; p2; p � 1 or, 1 � p; p1 � 2

and 2 � p2 � 1: The same conclusion is true for q > 1 and s D .s1; s2; s3/
with s3 >

n
2

or s D .s1; : : : ; s3n/ with sj >
1
2

for j D 2n C 1 : : : ; 3n:
(b) If 0 < q � 1; s D .s1;

n
2
; s3/ 2 R

3 or s D .s1; : : : ; sn;
1
2
; : : : ; 1

2
; s2nC1; : : : s3n/ 2

R
3n and � 2 Bs;m1;q.R

3n/ is such that

O�.y; a; b/ D
ˆ
R3n
�.x; 
; �/ e�2� i.y�xCa�
Cb��/ dx d
 d�; y; a; b 2 R

n

has compact support in y and b uniformly in a; then T� is bounded from
Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/; where 2 � p1; p2; p � 1 or, 1 � p; p2 � 2

and 2 � p1 � 1: The same conclusion is true for q > 1 and s D .s1; s2; s3/
with s2 >

n
2

or s D .s1; : : : ; s3n/ with sj >
1
2

for j D n C 1 : : : ; 2n:

Figure 1 shows the value of m.p1; p2/ according to the region in the square Œ0; 1
�
Œ0; 1
 to which the point . 1p1 ;

1
p2
/ belongs. Theorem 1.1 states, in particular, that

operators with symbols in Bs.p/;m
1;1 .R

3n/ are bounded from Lp1 .Rn/ � Lp2 .Rn/ into
Lp.Rn/ if m < m.p1; p2/ and . 1p1 ;

1
p2
/ belongs to region II, and that operators with

x-independent symbols in Bs.p/;m
1;1 .R

3n/ are bounded from Lp1 .Rn/ � Lp2 .Rn/ into
Lp.Rn/ if m < m.p1; p2/ and . 1p1 ;

1
p2
/ belongs to region I or to the line segment

joining .1; 0/ and .0; 1/: The mapping properties of Theorem 1.2 correspond to
regions II and III for item (a) and to regions II and IV for item (b).
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Corollary 1.3. Consider 1 � p1; p2 � 1 and p D 1 such that 1
p1

C 1
p2

D 1
p

or, 2 � p1; p2 � 1 and p satisfying 1
p1

C 1
p2

D 1
p : If m < m.p1; p2/, then T�

is bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/ for any � satisfying one of the
following conditions:

(a) If 2 � p � 1;

sup
j˛j�Œ n

p 
C1
jˇj;j� j�Œ n

2 
C1

sup
x;
;�2Rn

h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1 (2)

or

sup
˛;ˇ;�2f0;1gn

sup
x;
;�2Rn

h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1: (3)

(b) If 1 � p < 2;

sup
jˇj;j� j�Œ n

p 
C1
sup

;�2Rn

h
; �i�mj@ˇ
 @���.
; �/j < 1 (4)

or

sup
ˇ;�2f0;1gn

sup

;�2Rn

h
; �i�mj@ˇ
 @���.
; �/j < 1; (5)

with f0; 1gn replaced by f0; 1; 2gn if p D 1:

Corollary 1.4. Consider 1 � p1; p2; p � 1 such that 1
p1

C 1
p2

D 1
p and

m < m.p1; p2/:

(a) If � D �.x; 
; �/; x; 
; � 2 R
n; is such that

O�.y; a; b/ D
ˆ
R3n
�.x; 
; �/ e�2� i.y�xCa�
Cb��/ dx d
 d�; y; a; b 2 R

n

has compact support in y and a uniformly in b; and

sup
j˛j�1;jˇj�1
j� j�Œ n

2 
C1
sup

x;
;�2Rn
h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1 (6)

or

sup
˛;ˇ;�2f0;1gn

sup
x;
;�2Rn

h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1; (7)

then T� is bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/; where 2 � p1; p2;
p � 1 or, 1 � p; p1 � 2 and 2 � p2 � 1:
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(b) If � D �.x; 
; �/; x; 
; � 2 R
n; is such that

O�.y; a; b/ D
ˆ
R3n
�.x; 
; �/ e�2� i.y�xCa�
Cb��/ dx d
 d�; y; a; b 2 R

n

has compact support in y and b uniformly in a; and

sup
j˛j�1;j� j�1
jˇj�Œ n

2 
C1
sup

x;
;�2Rn
h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1 (8)

or

sup
˛;ˇ;�2f0;1gn

sup
x;
;�2Rn

h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1; (9)

then T� is bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/; where 2 � p1; p2;
p � 1 or, 1 � p; p2 � 2 and 2 � p1 � 1:

The proofs of Theorem 1.1 for the case 1 � p < 2 and of Theorem 1.2 are based
on results regarding a symbolic calculus for Besov spaces, which we state next. The
notations ��1 and ��2 stand for the symbols of the first and second transposes of the
bilinear operator T� ; respectively.

Theorem 1.5. (a) Let m 2 R; 0 < q � 1; s 2 R
3C or s 2 R

3nC ; and suppose that �
is an x-independent symbol. Then

� 2 Bs;m1;q.R
3n/ ) ��j 2 Bs�j;m1;q .R

3n/; j D 1; 2;

where s�j is as in Definition 2.2. Moreover
����j

��
Bs�j ;m

1;q
. k�kBs;m

1;q
; j D 1; 2; (10)

with the implicit constant independent of �:
(b) Let m 2 R; 0 < q � 1; s 2 R

3C or s 2 R
3nC ; and � 2 Bs;m1;q.R

3n/:

(i) If O�.y; a; b/; y; a; b 2 R
n; has compact support in y and a uniformly in b,

then ��1 2 Bs;m1;q.R
3n/:

(ii) If O�.y; a; b/; y; a; b 2 R
n; has compact support in y and b uniformly in a,

then ��2 2 Bs;m1;q.R
3n/:

The statements of Theorem 1.1 and Corollary 1.3 for the case 1 � p < 2

correspond to operators associated to x-independent symbols, i.e., bilinear multipli-
ers. Additional results concerning minimal smoothness conditions for the symbols
of related bilinear multipliers that are sufficient for boundedness can be found in
[6, 12, 13] and the references therein. In particular, a consequence of the results in
[13] is that bilinear multipliers with symbols � D �.
; �/; 
; � 2 R

n; satisfying

sup
jˇC� j�Œ�m.p1;p2/
C1

sup

;�2Rn

h
; �i�m.p1;p2/j@ˇ
 @���.
; �/j < 1
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are bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/: Restricting our attention to the
line segment corresponding to p D 1 or to region I in Fig. 1, we see that the above
condition is weaker than (4) but does not compare to (5). Finally, we mention that
the class BSm

0;0 is part of the family of bilinear Hörmander classes BSm
�;ı where 0 �

ı � � � 1I for results regarding the Hörmander classes BSm
�;ı and boundedness

properties of the associated bilinear pseudodifferential operators consult [1–3, 8,
10, 11, 14–16].

The organization of the manuscript is as follows. In section “Preliminaries”
we introduce some preliminaries and definitions. Theorem 1.5 is proved in sec-
tion “Symbolic Calculus: Proof of Theorem 1.5”. The proofs of Theorems 1.1
and 1.2 and Corollaries 1.3 and 1.4, along with an improved version of Theorem 1.1,
are presented in section “Proof of Theorems 1.1 and 1.2 and Their Corollaries”.
In section “Complex Interpolation of Besov Spaces of Product Type” we show an
interpolation result for Besov spaces of product type that is useful in the proof
of Theorem 1.1. Section “Boundedness from L1 � L1 into L1 for Bs.1/;m

1;1 .R3n/;

m < m.1;1/ D �n” is devoted to the proof of the L1.Rn/� L1.Rn/ ! L1.Rn/

mapping property for operators associated to symbols in Bs.1/;m
1;1 .Rn/ with m <

m.1;1/:

Preliminaries

The Fourier transform of f 2 S 0.Rn/ will be denoted by Of I in particular,

Of .
/ WD
ˆ
Rn

f .x/e�2� i
�x dx if f 2 S.Rn/;

where S.Rn/ denotes the Schwartz class in R
n.

The notation . means � C, where C is a constant that may only depend on some
of the parameters used and not on the functions or symbols involved.

Given a complex-valued function � D �.x; 
; �/; x; 
; � 2 R
n; the bilinear

pseudodifferential operator associated to the symbol � , denoted by T� , is defined as

T� .f ; g/.x/ WD
ˆ
R2n
�.x; 
; �/Of .
/Og.�/e2� ix�.
C�/d
d� 8x 2 R

n; f ; g 2 S.Rn/:

The conditions imposed on � will be such that the above integral is absolutely
convergent for every f ; g 2 S.Rn/:

In the definition of Besov spaces of product type and throughout the proofs,
we will consider Littlewood–Paley partitions of unity in R

N (for different
dimensions N), fwjgj2N0 ; satisfying the following conditions:
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w0 2 S.RN/; supp.w0/ � f
 2 R
N W j
j � 2g;

w 2 S.RN/; supp.w/ � f
 2 R
N W 1

2
� j
j � 2g; (11)

wj.
/ WD w.2�j
/ for 
 2 R
n and j 2 N;

1X
jD0

wj.
/ D 1 8
 2 R
N :

Given such a Littlewood–Paley partition of unity we set

Qw.
/ WD
2X

lD�2
w.2�l
/ for 
 2 R

N ;

Qwj.
/ WD Qw.2�j
/ D
jC2X

lDj�2
wl.
/ for j � 2 and 
 2 R

N ; (12)

Qwj.
/ WD
jC2X
lD0

wl.
/ for j D 0; 1 and 
 2 R
N :

Note that Qwj.
/ 	 1 for 2j�2 � j
j � 2jC2 and j � 2; and that Qwj.
/ 	 1 for
j
j � 2jC2 and j D 0; 1I therefore wj Qwj D wj for all j 2 N0:

Besov Spaces of Product Type

For m 2 R; 0 < r; q � 1; and s 2 R
3 or s 2 R

3n; the Besov spaces Bs;m
r;q .R

3n/ are
defined as follows:

• Given s D .s1; s2; s3/ 2 R
3 and fwjgj2N0 satisfying (11) with N D n; Bs;m

r;q .R
3n/

denotes the space of complex-valued functions �.x; 
; �/; x; 
; � 2 R
n; such that

k�kBs;m
r;q

WD
0
@X

k2N30

�
2s�k ��h
; �i�mF�1.wk O�/��Lr

�q

1
A

1
q

< 1;

where for k D .k1; k2; k3/; wk.y; a; b/ WD wk1 .y/wk2 .a/wk3 .b/; the inverse Fourier
transform and Fourier transform as well as the Lr norm are taken in R

3n; and with
the corresponding modification for q D 1:

• Given s D .s1; : : : ; s3n/ 2 R
3n and fwjgj2N0 satisfying (11) with N D 1; Bs;m

r;q .R
3n/

denotes the space of complex-valued functions �.x; 
; �/; x; 
; � 2 R
n; such that

k�kBs;m
r;q

WD
0
@X

k2N3n
0

�
2s�k ��h
; �i�mF�1.wk O�/��Lr

�q

1
A

1
q

< 1;
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where for k D .k1; : : : ; k3n/; y D .y1; : : : ; yn/; a D .a1; : : : ; an/ and
b D .b1; : : : ; bn/; wk.y; a; b/ WD wk1 .y1/ � � � wkn.yn/wknC1

.a1/ � � � wk2n.an/wk2nC1

.b1/ � � � wk3n.bn/; the inverse Fourier transform and Fourier transform as well
as the Lr norm are taken in R

3n; and with the corresponding modification for
q D 1:

It can be proved that, for all s;m; r; q as in the definitions above, the space
Bs;m

r;q .R
3n/ is independent of the choice of fwjgj2N0 satisfying (11) and is contained

in S 0.R3n/, that it is a quasi-Banach space (Banach space if 1 � r; q � 1), that it
contains S.R3n/; and that S.R3n/ is dense if 0 < r; q < 1. We refer the reader to
[17], where a variety of Besov spaces of product type are defined and many of their
properties are presented; see also Proposition 2.1 below.

The Classes Cs
m.R

3n/

We next define classes of symbols that are closely connected with both Bs;m
r;q .R

3n/

and the Hörmander classes BSm
0;0. Given s 2 N

3
0 or s 2 N

3n
0 and m 2 R; a

complex-valued functions �.x; 
; �/; x; 
; � 2 R
n; belongs to Cs

m.R
3n/ if it satisfies

the following conditions:

• If s D .s1; s2; s3/ 2 N
3
0 W

@˛x @
ˇ


 @
�
�� 2 C.R3n/ for ˛; ˇ; � 2 N

n
0; j˛j � s1; jˇj � s2; j� j � s3; and

k�kCs
m

WD sup
j˛j�s1

jˇj�s2;j� j�s3

sup
x;
;�2Rn

h
; �i�mj@˛x @ˇ
 @���.x; 
; �/j < 1:

• If s D .s1; : : : ; s3n/ 2 N
3n
0 W

@
.˛1;:::;˛n/
x @

.˛nC1;:::;˛2n/



@
.˛2nC1;:::;˛3n/
� � 2 C.R3n/ for ˛j 2 N0; ˛j � sj; j D 1; : : : ; 3n; and

k�kCs
m

WD sup
˛j�sj

jD1;:::;3n

sup
x;
;�2Rn

h
; �i�mj@.˛1;:::;˛n/
x @

.˛nC1;:::;˛2n/



@
.˛2nC1;:::;˛3n/
� �.x; 
; �/j < 1:

We note that condition (2) corresponds to the norm in Cs
m.R

3n/ with s D .Œ n
p 
C

1; Œ n
2

C 1; Œ n

2

C 1/ and that condition (3) corresponds to the norm in Cs

m.R
3n/ with

s D .1; 1; : : : ; 1/ 2 R
3n: Analogous comments apply to the rest of the conditions

appearing in Corollaries 1.3 and 1.4.
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Connections Between the Spaces

The following chain of continuous proper inclusions shows the relations between
the spaces introduced in this section and the bilinear Hörmander classes:

BSm
0;0 ¤ CŒs
C1m .R3n/ ¤ Bs;m

1;1.R
3n/ ¤ CŒs
m .R

3n/; (13)

where s has positive components, Œs
 denotes the vector of the same dimension as
s and components given by the integer parts of the components of s, and adding
1 to a vector means adding 1 to each component of the vector. The first inclusion
in (13) is straightforward and the rest of the inclusions are a consequence of the
following proposition, which will be useful in the proof of some of our results (see
[17, Theorems 1.3.2, 1.3.5, and 1.3.9 and Corollary 1.3.1] for a proof).

Proposition 2.1. (a) Let 0 < r � 1; s and Qs be vectors of real numbers of
the same dimension (dimension 3 or 3n), and m; Qm 2 R: Then the following
continuous inclusions hold:

(i) Bs;m
r;q .R

3n/ � Bs; Qm
r;Qq .R

3n/; if 0 < q � Qq � 1 and m � QmI
(ii) Bs;m

r;q .R
3n/ � BQs;m

r;Qq .R
3n/; if 0 < q; Qq � 1 and Qs < s component-wise;

(iii) Cs
m.R

3n/ ¤ BQs;m1;q.R
3n/; if 0 < q � 1; 0 < Qs < s component-wise and s

has components in NI
(iv) Bs;m

1;1.R
3n/ � Cs

m.R
3n/; if s has components in N0:

(b) If 1 � r; Qr � 1; 0 < q; Qq � 1; s; Qs are vectors of the same dimension
(dimension 3 or 3n) with positive components, and m 2 R; then Bs;m

r;q .R
3n/ D

BQs;m
Qr;Qq .R

3n/ if and only if r D Qr; q D Qq and s D Qs:
(c) Let 1 � r � 1; 0 < q � 1; m 2 R; s D .s1; : : : ; s3n/ 2 R

3n with sk > 0 for
k D 1; : : : ; 3n; and Qs D .s1C : : :C sn; snC1C : : :C s2n; s2nC1C : : :C s3n/: Then
the following continuous inclusion holds:

BQs;m
r;q .R

3n/ ¤ Bs;m
r;q .R

3n/:

We end this section with the following definitions:

Definition 2.1. Given 1 � p � 1, s.p/ will denote the three-dimensional
vector given by .min. n

2
; n

p /;max. n
2
; n

p /;max. n
2
; n

p // or the 3n-dimensional vector

.s1; : : : ; s3n/ where s1 D � � � D sn D min. 1
2
; 1p / and snC1 D � � � D s3n D max. 1

2
; 1p /.

This is

s.p/ D . n
2
; n

p ;
n
p / or s.p/ D . 1

2
; : : : ; 1

2„ ƒ‚ …
n

; 1p ; : : : ;
1
p„ ƒ‚ …

2n

/; 1 � p < 2;

s.p/ D . n
p ;

n
2
; n
2
/ or s.p/ D . 1p ; : : : ;

1
p„ ƒ‚ …

n

; 1
2
; : : : ; 1

2„ ƒ‚ …
2n

/; 2 � p � 1:

It will be clear from the context which of these definitions of s.p/ is being used in
each case.
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Definition 2.2. If s D .s1; s2; s3/ 2 R
3C, then s�1 WD .s1; s2 � s3; s3/ and

s�2 WD .s1; s2; s3 � s2/: If s D .s1; : : : ; s3n/ 2 R
3nC ; then s�1 WD .s1; : : : ; sn; snC1 �

s2nC1; : : : ; s2n � s3n; s2nC1; : : : ; s3n/ and s�2 WD .s1; : : : ; sn; snC1; : : : ; s2n; s2nC1 �
snC1; : : : ; s3n � s2n/:

Symbolic Calculus: Proof of Theorem 1.5

We start with some preliminaries in relation to the symbols of the transposes of T�
for � 2 Bs;m

1;1.R
3n/; where m 2 R and s is a vector in R

3C or R3nC : For such � let
† 2 S 0.R3n/ be given by

† WD F�1. O�.y;�a; b � a/e2� ia�y/;

where F�1 andOare taken in R
3n and the tempered distribution O�.y;�a; b � a/e2� ia�y

is understood in the usual sense, this is

h O�.y;�a; b � a/e2� ia�y;Fi D h O�;F.y;�a; b � a/e�2� ia�yi; F 2 S.R3n/;

where hT; 'i denotes the action of a tempered distribution T on a Schwartz function
': Assume that † 2 BQs;m

1;1.R
3n/ for some Qs with positive components; let us see that

��1 D †: Indeed, define

V.f ; g; h/.y; a; b/ WD
ˆ
R3n

e2� i.y�xCa�
Cb��/Of .
/Og.�/e2� ix�.
C�/ Nh.x/ dxd
d�

D
ˆ
Rn

e2� iy�x Nh.x/f .x C a/g.x C b/ dx;

which belongs to S.R3n/ for any f ; g; h 2 S.Rn/: Set

QV.f ; g; Nh/.y; a; b/ WD e�2� ia�yV.f ; g; Nh/.y;�a; b � a/ D V.h; g; Nf /.y; a; b/
and note that since � 2 Bs;m

1;1.R
3n/ � CŒs
m .R

3n/ the action of � as a tempered
distribution in R

3n is given through absolutely convergent integrals in R
3n: We then

haveˆ
Rn

T� .h; g/.x/f .x/ dx D
ˆ
R3n
�.x; 
; �/Oh.
/Og.�/e2� ix�.
C�/f .x/ dxd
d�

D hO�;V.h; g; Nf /i D h O�; QV.f ; g; Nh/i D h O†;V.f ; g; Nh/i

D
ˆ
R3n
†.x; 
; �/Of .
/Og.�/e2� ix�.
C�/h.x/ dxd
d�

D
ˆ
Rn

T†.f ; g/.x/h.x/ dx;
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which shows that ��1 D †: In the second to the last equality we have used the fact
that † 2 BQs;m

1;1.R
3n/ � CŒQs
m .R

3n/ and therefore the action of † over the function in

S.R3n/ given by Of .
/Og.�/e2� ix�.
C�/h.x/ is through integration.
An analogous explanation leads to ��2 D F�1. O�.y; a � b;�b/e2� ib�y/: We also

observe that in the particular case when � is x-independent, then ��1.
; �/ D
�.�
 � �; �/ and ��2.
; �/ D �.
;�� � 
/:

We next make a remark about the norm of x-independent symbols belonging to
the Besov spaces Bs;m1;q.R

3n/: Let fwjgj2N0 be as in (11) with N D n; s D .s1; s2; s3/ 2
R
3; m 2 R and 0 < q � 1: If � D �.
; �/; 
; � 2 R

n; is an x-independent symbol
in Bs;m1;q.R

3n/ it easily follows that

k�kBs;m
1;q

Ï

0
@X

k2N20

�
2Ns�k ��h
; �i�mF�1.wk O�/��L1

�q

1
A

1
q

; (14)

where Ns D .s2; s3/; wk.a; b/ D wk1 .a/wk2 .b/ for k D .k1; k2/ 2 N
2
0; F�1 andOdenote

inverse Fourier transform and Fourier transform in R
2n; respectively, and the L1

norm is taken in R
2n: This is, an x-independent symbols � D �.
; �/; 
; � 2 R

n;

belongs to Bs;m
1;1.R

3n/ if and only if � 2 BNs;m
1;1.R

2n/; where BNs;m
1;1.R

2n/ is defined as
the class of symbols � D �.
; �/; 
; � 2 R

n; such that the right-hand side of (14),
with � replacing �; is finite. An analogous remark corresponds to the case s 2 R

3n;

with Ns being the vector in R
2n whose components are the last 2n components of s:

Lemma 3.1 below will be useful in the proof of Theorem 1.5. We state it in
R
2n and R

3n because it is convenient for our settings, but more general versions
also hold (compare with [17] or [18, pp. 25–28]). If h is a function defined in
R

N and d D .d1; : : : ; dN/ 2 R
N ; denote Sd.h/.y1; : : : ; yN/ WD h.d1y1; : : : ; dNyN/

and Sd�1 .h/.y1; : : : ; yN/ WD h.d�1
1 y1; : : : ; d�1

N yN/: In particular, if h.
; �/ D h
; �i
for 
; � 2 R

n and d 2 R
2n; we write h
; �id�1 instead of Sd�1 .h/ and we have

h
; �id�1 WD h.d�1
1 
1; : : : ; d

�1
n 
n/; .d�1

nC1�1; : : : ; d�1
2n �n/i: In Lemma 3.1, integration

is in R
2n in part (a) and in R

3n in part (b); additionally, the inverse Fourier transform
and the Fourier transform are taken in R

2n in part (a) and in R
3n in part (b).

Lemma 3.1. Let 1 � r � 1 and t 2 R:

(a) For every continuous function g.
; �/ defined for 
; � 2 R
n such that

kh
; �itgkLr < 1 and every M 2 S.R2n/;

��h
; �it
d�1F�1M Og��

Lr �
���h
; �ijtj

d�1F�1M
���

L1

��h
; �it
d�1g

��
Lr (15)

for any d 2 R
2n: In particular, if d D .d1; : : : ; d2n/ and di � 1 for i D 1; : : : ; 2n;

��h
; �itF�1M Og��Lr �
���h
; �ijtjF�1Sd.M/

���
L1

��h
; �itg
��

Lr : (16)
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(b) For every continuous function g.x; 
; �/ defined for x; 
; � 2 R
n such that

kh
; �itgkLr < 1 and every M 2 S.R3n/;

���h
; �it
Nd�1F�1M Og

���
Lr

�
���h
; �ijtj

Nd�1F�1M
���

L1

���h
; �it
Nd�1g

���
Lr

(17)

for any d 2 R
3n and where Nd is the vector in R

2n whose components are the
last 2n components of d: In particular, if d D .d1; : : : ; d3n/ and di � 1 for
i D n C 1; : : : ; 3n;

��h
; �itF�1M Og��Lr �
���h
; �ijtjF�1Sd.M/

���
L1

��h
; �itg
��

Lr : (18)

Proof of Lemma 3.1. We prove item (a), with part (b) following analogously. We
have hu C y; v C zit . hu; vijtjhy; zit for all u; v; y; z 2 R

n: Then

jh
; �it
d�1F�1.M Og/.
; �/j .

ˆ
R2n

ha; bijtj
d�1 j LM.a; b/jh
 � a; � � bit

d�1 jg.
 � a; � � b/j da db;

from where (15) follows by Minkowski’s integral inequality. For (16), apply (15)
with M replaced by Sd.M/ and g replaced by Sd�1 .g/ and note that h
; �ijtj

d�1 �
h
; �ijtj since di � 1 for i D 1; : : : ; 2n: ut
Proof of Part (a) of Theorem 1.5. We will prove the result for ��1, with the result
for ��2 following in an analogous way. We will also assume q D 1I the case 0 <
q < 1 can be deduced in the same way. Fix m 2 R and let � be an x-independent
symbol in Bs;m

1;1.R
3n/: We have ��1.
; �/ D �.�
 � �; �/ for 
; � 2 R

n:

Consider first the case when s D .s1; s2; s3/ 2 R
3C; then s�1 D .s1; s2 � s3; s3/:

As already observed, since � is x-independent, s1 does not play any role here.
Let w and w0 be radial functions that satisfy (11) for N D n and let fwjgj2N0 be
the corresponding Littlewood–Paley partition of unity. In view of (14) we have to
prove that

X

k2N20
2.s2�s3;s3/�k

���h
; �i�mF�1.wk
b��1/

���
L1

.
X

k2N20
2.s2;s3/�k

��h
; �i�mF�1.wk O�/��L1

(19)

where wk.a; b/ D wk1 .a/wk2 .b/ for k D .k1; k2/ 2 N
2
0; F�1 and O denote inverse

Fourier transform and Fourier transform in R
2n, respectively, and the L1 norm is

taken in R
2n:

Given k D .k1; k2/ 2 N
2
0 and noting thatb��1.a; b/ D O�.�a; b � a/; a change of

variables gives

F�1.wk
b��1/.
; �/ D F�1.wk1 .a/wk2 .b � a/ O�.a; b//.�� � 
; �/:



Besov Spaces, Symbolic Calculus and Boundedness of Operators 287

Since h
; �i � h
 C �; �i; it then follows that

���h
; �i�mF�1.wk
b��1/

���
L1

� ��h
; �i�mF�1.wk1 .a/wk2 .b � a/ O�.a; b//��L1

:

(20)

We will split the summation in .k1; k2/ 2 N
2
0 according to the following regions:

R D N
2; R1 D f.k1; 0/ W k1 � 3g; R2 D f.0; k2/ W k2 � 3g;

R3 D f.0; 0/; .0; 1/; .0; 2/; .1; 0/; .2; 0/g:

Let f Qwjgj2N0 be as in (12). Recall that Qwj.a/ 	 1 for 2j�2 � jaj � 2jC2 and j � 2;

and that Qwj.a/ 	 1 for jaj � 2jC2 and j D 0; 1I in particular, wj Qwj D wj for all
j 2 N0: For .k1; k2/ 2 N

2
0 and a; b 2 R

n set h.k1;k2/.a; b/ WD wk1 .a/ Qwk2 .b/.

Summation in Region R Consider the following subregions:

RA D f.k1; k2/ 2 N
2 W k1 � k2 > 2g; RB D f.k1; k2/ 2 N

2 W k1 � k2 < �2g;
RC D f.k1; k2/ 2 N

2 W �2 � k1 � k2 � 2g:

We first estimate the summation in region RA: If .k1; k2/ 2 RA;

supp.wk1 .a/wk2 .b‘�a// � f.a; b/ W 2k1�1 � jaj � 2k1C1 and 1
2 2

k1�1 � jbj � 9
8 2

k1C1g

and therefore wk1 .a/wk2 .b�a/ D Qwk1 .a/wk2 .b�a/wk1 .a/ Qwk1 .b/: Then (20) implies

���h
; �i�mF�1.wk
c��1/

���
L1


 ��h
; �i�mF�1ŒQwk1 .a/wk2 .b � a/F.F�1.h.k1;k1/ O�//.a; b/

��

L1

:

By (16) in Lemma 3.1 it follows that,

��h
; �i�mF�1Œ Qwk1 .a/wk2 .b � a/F.F�1.h.k1;k1/ O�//.a; b/

��

L1

.
���h
; �ijmjF�1Œ Qwk1 .2

k2a/wk2 .2
k2 .b � a//


���
L1

��h
; �i�mF�1.h.k1;k1/ O�/
��

L1

:

An elementary computation shows that for 1 � k2 � k1 � 3;
���h
; �ijmjF�1Œ Qwk1 .2

k2a/wk2 .2
k2 .b � a//


���
L1

. 1;

therefore
X

.k1;k2/2RA

2.s2�s3;s3/�.k1;k2/
���h
; �i�mF�1.wk

b��1/
���

L1

.
1X

k1D4

k1�3X
k2D1

2.s2�s3;s3/�.k1;k2/��h
; �i�mF�1.h.k1;k1/ O�/
��

L1

:
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We have then obtained

X
k2RA

2.s2�s3;s3/�k
���h
; �i�mF�1.wk

b��1/
���

L1

.
1X

k1D4
2.s2�s3;s3/�.k1;k1/��h
; �i�mF�1.h.k1;k1/ O�/

��
L1

: (21)

We now look at the summation in the region RB: Note that if .k1; k2/ 2 RB; then

supp.wk1 .a/wk2 .b�a// � f.a; b/ W 2k1�1 � jaj � 2k1C1 and 1
2
2k2�1�jbj � 9

8
2k2C1g:

For 1 � k1 � k2 � 3 we have wk1 .a/wk2 .b � a/ D wk2 .b � a/ Qwk2 .b/wk1 .a/ Qwk2 .b/;
and (20) implies

���h
; �i�mF�1.wk
c��1/

���
L1


 ��h
; �i�mF�1Œwk2 .b � a/Qwk2 .b/F.F�1.h.k1;k2/ O�//.a; b/

��

L1

:

By (16) in Lemma 3.1 and noting that

���h
; �ijmjF�1.wk2 .2
k2 .b � a// Qwk2 .2

k2b//
���

L1
. 1

we obtain

X
k2RB

2.s2�s3;s3/�k
���h
; �i�mF�1.wk

b��1/
���

L1

.
1X

k2D4

k2�3X
k1D1

2.s2�s3;s3/�.k1;k2/��h
; �i�mF�1.h.k1;k2/ O�/
��

L1

: (22)

For .k1; k2/ 2 RC it follows that

supp.wk1 .a/wk2 .b � a// � f.a; b/ W 2k1�1 � jaj � 2k1C1 and jbj � 10 � 2k1g:

Set �k1 WD Pk1C4
jD0 wj for k1 2 N; since �k1 .b/ D 1 for all b in the set fb W jbj �

10 � 2k1g then

wk1 .a/wk2 .b � a/ D
k1C4X
jD0

wk2 .b � a/�k1 .b/wk1 .a/wj.b/:
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From this and (20) it follows that for k1 2 N;

k1C2X
k2Dmax.0;k1�2/

2.s2�s3;s3/�.k1;k2/

����h
; �i�mF�1.w.k1;k2/
c��1/

����
L1

.
k1C4X
jD0

k1C2X
k2Dmax.0;k1�2/

2.s2�s3;s3/�.k1;k2/
��h
; �i�mF�1Œwk2 .b � a/�k1 .b/F.F�1.w.k1;j/ O�//.a; b/


��
L1

:

By (16) in Lemma 3.1 and since

k1C2X
k2Dmax.0;k1�2/

2.s2�s3;s3/�.k1;k2/
���h
; �ijmjF�1.wk2 .2

k1 .b � a//�k1 .2
k1b//

���
L1

. 2.s2�s3;s3/�.k1;k1/;

it follows that

X
k2RC

2.s2�s3;s3/�k

����h
; �i�mF�1.wk
c��1/

����
L1

.
1X

k1D1

k1C4X
jD0

2.s2;0/�.k1;j/
��h
; �i�mF�1.w.k1;j/ O�/

��
L1

:

(23)

Summation in Region R1 In view of (20), we have to estimate

1X
k1D3

2.s2�s3/k1
��h
; �i�mF�1.wk1 .a/w0.b � a/ O�.a; b//��L1

:

For k1 � 3 it holds that

supp.wk1 .a/w0.b � a// � f.a; b/ W 2k1�1 � jaj � 2k1C1 and 2k1�2�jbj � 2k1C2g

and therefore

wk1 .a/w0.b � a/ D w0.b � a/ Qwk1 .b/wk1 .a/ Qwk1 .b/:

It easily follows that

���h
; �ijmjF�1Œw0.b � a/ Qwk1 .b/

���

L1
. 1;

and reasoning as above we obtain

X
k2R1

2.s2�s3;s3/�k

����h
; �i�mF�1.wk
c��1/

����
L1

.
1X

k1D3

2.s2�s3/k1
��h
; �i�mF�1.h.k1;k1/ O�/

��
L1

:

(24)
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Summation in Region R2 In this case we have to estimate, again by (20),

1X
k2D3

2s3k2
��h
; �i�mF�1.w0.a/wk2 .b � a/ O�.a; b//��L1

:

For k2 � 3 it holds that

supp.w0.a/wk2 .b � a// � f.a; b/ W jaj � 2 and 2k2�2�jbj � 2k2C2g

and therefore

w0.a/wk2 .b � a/ D wk2 .b � a/ Qwk2 .b/w0.a/ Qwk2 .b/:

Since
���h
; �ijmjF�1Œwk2 .2

k2 .b � a// Qwk2 .2
k2b/


���
L1

. 1;

by (16) in Lemma 3.1, we get

X
k2R2

2.s2�s3;s3/�k
���h
; �i�mF�1.wk

b��1/
���

L1

.
1X

k2D3
2s3k2

��h
; �i�mF�1.h.0;k2/ O�/
��

L1

:

(25)

Summation in Region R3 We first observe that for .k1; k2/ 2 R3

supp.wk1 .a/wk2 .b � a// � f.a; b/ W jaj � 8 and jbj � 16g:

Therefore, for .k1; k2/ in region R3 it follows that

X
k2R3

2.s2�s3;s3/�k
���h
; �i�mF�1.wk

b��1/
���

L1

.
3X

k1D0

4X
k2D0

2.s2�s3;s3/�.k1;k2/ ��h
; �i�mF�1.w.k1;k2/ O�/
��

L1

: (26)

Inequalities (21)–(26) then lead to the desired estimate (19).
We now briefly describe the proof corresponding to ��1 when s D .s1; : : : ; s3n/ 2

R
3nC in which case s�1 WD .s1; : : : ; sn; snC1 � s2nC1; : : : ; s2n � s3n; s2nC1; : : : ; s3n/:

Let w and w0 be radial functions that satisfy (11) for N D 1 and fwjgj2N0 be the
corresponding Littlewood–Paley partition of unity. It must be proved that

X

k2N2n
0

2s�1�k
���h
; �i�mF�1.wk

b��1/
���

L1

.
X

k2N2n
0

2s�k ��h
; �i�mF�1.wk O�/��L1

;
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where for k D .k1; : : : ; k2n/; a D .a1; : : : ; an/; b D .b1; : : : ; bn/ we have wk.a; b/ D
wk1 .a1/ � � � wkn.an/wknC1

.b1/ � � � wk2n.bn/; s and s�1 are the vectors in R
2n made of

the last 2n components of s and s�1; respectively, F�1 and Odenote inverse Fourier
transform and Fourier transform in R

2n; respectively, and the L1 norm is taken
in R

2n: For such k; we have

���h
; �i�mF�1.wk
b��1/

���
L1

� ��h
; �i�mF�1.wK1 .a/wK2 .b � a/ O�.a; b//��L1

;

where wK1 .a/ D wk1 .a1/ � � � wkn.an/ and wK2 .x/ D wknC1
.b1/ � � � wk2n.bn/: The

process is now similar to the case previously treated but much heavier in notation
and the result follows by splitting the summation in .k1; : : : ; k2n/ 2 N

2n
0 based on

the regions R; R1; R2, and R3 for each pair .kj; knCj/; j D 1; : : : ; n: ut
Proof of Part (b) of Theorem 1.5. We prove item (i), with item (ii) following in an
analogous way. Without loss of generality, we assume q D 1:

Let m 2 R; s D .s1; s2; s3/ 2 R
3C; fwjgj2N0 as in (11) for N D n; f Qwjgj2N0

as in (12) for N D n; wk.x; 
; �/ D wk1 .x/wk2 .
/wk3 .�/ and hk.x; 
; �/ WD
wk1 .x/wk2 .
/ Qwk3 .�/ for k D .k1; k2; k3/ 2 N0; and RA; RB; RC; R1; R2; R3 as in the

proof of part (a) of Theorem 1.5. Consider � 2 Bs;m
1;1.R

3n/I recall thatb��1.y; a; b/ D
O�.y;�a; b � a/e2� ia�y and define � 2 S 0.R3n/ by O�.y; a; b/ D O�.y; a; b/e�2� ia�y: It
then follows that
���h
; �i�mF�1.wkb†/

���
L1

�
���h
; �i�mF�1.wk1 .y/wk2 .a/wk3 .b � a/ O�.y; a; b//

���
L1

;

where k D .k1; k2; k3/ 2 N
3
0: Similar calculations to those in the proof of part (a) of

Theorem 1.5 (using item (b) of Lemma 3.1) give

1X
k1D0

X
.k2;k3/2RA

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1

.
1X

k1D0

1X
k2D4

2.s1;s2;s3/�.k1;k2;k2/
���h
; �i�mF�1.h.k1;k2;k2/ O�/

���
L1

;

1X
k1D0

X
.k2;k3/2RB

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1

.
1X

k1D0

1X
k3D4

k3�3X
k2D1

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.h.k1;k2;k3/ O�/

���
L1

;

1X
k1D0

X
.k2;k3/2RC

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1
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.
1X

k1D0

1X
k2D1

k2C4X
jD0

2.s1;s2Cs3;0/�.k1;k2;j/
���h
; �i�mF�1.w.k1;k2;j/ O�/

���
L1

;

1X
k1D0

X
.k2;k3/2R1

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1

.
1X

k1D0

1X
k2D3

2.s1;s2;0/�.k1;k2;k2/
���h
; �i�mF�1.h.k1;k2;k2/ O�/

���
L1

;

1X
k1D0

X
.k2;k3/2R2

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1

.
1X

k1D0

1X
k3D3

2.s1;s2;s3/�.k1;0;k3/
���h
; �i�mF�1.h.k1;0;k3/ O�/

���
L1

;

1X
k1D0

X
.k2;k3/2R3

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/b��1/

���
L1

.
1X

k1D0

3X
k2D0

4X
k3D0

2.s1;s2;s3/�.k1;k2;k3/
���h
; �i�mF�1.w.k1;k2;k3/ O�/

���
L1

:

The inequalities above imply that

����1��
Bs;m

1;1
. k�k

B
.s1;s2Cs3;s3/;m
1;1

: (27)

We next estimate
���h
; �i�mF�1.wk O�/

���
L1

for k D .k1; k2; k2/ 2 N0 (the

same computations apply to the factors with h instead of w:) Set Qwk.x; 
; �/ WD
Qwk1 .x/ Qwk2 .
/ Qwk3 .�/ and use part (b) of Lemma 3.1 to get

���h
; �i�mF�1.wk O�/
���

L1

�
���h2�k2 
; 2�k3�ijmjF�1.w.y/w.a/w.b/e�2� i2k1Ck2 a�y/

���
L1

��h
; �i�mF�1.Qwk O�/��L1

; (28)

where w should be replaced by w0 in the corresponding cases when k1 D 0 or k2 D 0

or k3 D 0: With � WD 2�.k1Ck2/; it follows that

F�1.w.y/w.a/w.b/e�2� i��1a�y/.x; 
; �/ D Lw.�/�nV Ow.w.��//.x;��
/;

where V Ow.h/.x; 
/ WD ´
Rn h.a/ Ow.a�x/e�2� i
�a da is the short-time Fourier transform

of h using the window Ow: An estimate of the L1 norm in (28) is based on a bound for
the L1 norm with respect to x and 
 of .1C j2�k2
j/jmj�nV Ow.w.��//.x;��
/: After
a change of variables and using that 2k1 � 1 and 0 < � < 1; we obtain
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ˆ
R2n
.1C j2�k2
j/jmj�njV Ow.w.��//.x;��
/j dxd


� 2k1jmj
ˆ
R2n
.1C j
j/jmjjV Ow.w.��//.x; 
/j dxd
 . 2k1jmj��n D 2k1.jmjCn/2k2n:

The last inequality follows from the scaling properties of the modulation spaces
M1;1
�;0 .R

n/ with � 2 R (see [5, Theorem 3.2]).
From (27) and the above computations we then have that

����1��
Bs;m

1;1
. k�k

B
.s1;s2Cs3;s3/;m
1;1

. k�k
B
.s1CjmjCn;s2Cs3Cn;s3/;m
1;1

:

If we now assume the hypothesis that O�.y; a; b/ has compact support in y and a uni-
formly in b, then the summations in k1 and k2 appearing in k�k

B
.s1CjmjCn;s2Cs3Cn;s3/;m
1;1

are finite and therefore k�k
B
.s1CjmjCn;s2Cs3Cn;s3/;m
1;1

. C� k�k
B
.s1;s2;s3/;m
1;1

; where C�

depends on the size of the support of � in the variables y and a:
For the case s 2 R

3n we can proceed in a similar way by splitting the summation
in .k1; : : : ; k3n/ 2 N

3n
0 based on the regions RA; RB; RC; R1; R2; R3 for each pair

.kj; knCj/; j D n C 1; : : : ; 2n: ut

Proof of Theorems 1.1 and 1.2 and Their Corollaries

In this section, we start by explaining how Corollaries 1.3 and 1.4 follow from The-
orems 1.1 and 1.2, respectively. We then continue with the proofs of Theorems 1.1
and 1.2. Finally, we state some improvements of Theorem 1.1 corresponding to the
case 1 � p < 2:

Corollary 1.3 follows directly from Theorem 1.1 in view of the definition of
s.p/ (see Definition 2.1) and the fact that CŒs.p/
C1m .R3n/ is continuously contained in
Bs.p/;m

1;1 .R
3n/ (see (13)). As for Corollary 1.4, the assumptions (6) and (13) imply that

� 2 C.1;1;Œ
n
2 
C1/

m .R3n/ � B
.s1;s2;

n
2 /1;1 .R3n/ for any 0 < s1; s2 < 1I similarly, (7) and (13)

give that � 2 C.1;:::;1/m .R3n/ � Bs;m
1;1.R

3n/ for any s 2 R
3n with components in the

interval .0; 1/: Then part (a) of Corollary 1.4 follows from part (a) of Theorem 1.2.
An analogous reasoning shows that part (b) of Corollary 1.4 follows from part (b)
of Theorem 1.2.

We next proceed to prove Theorem 1.1. Recall that if s D .s1; s2; s3/ 2 R
3 or

s D .s1; : : : ; s2n/ 2 R
3n; s denotes the vector .s2; s3/ 2 R

2 or the vector
.snC1; : : : ; s3n/ 2 R

2n; respectively. Moreover, an x-independent symbol � belongs
to Bs;m1;q.R

3n/ if and only if � 2 Bs;m1;q.R
2n/ (see (14) and the corresponding

discussion).

Proof of Theorem 1.1. The boundedness results from Lp1 .Rn/�Lp2 .Rn/ into Lp.Rn/

for 2 � p1; p2 � 1 and 2 � p < 1 satisfying 1
p1

C 1
p2

D 1
p (region II of Fig. 2) and
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for all symbols in Bs;m1;q.R
3n/ with m < m.p1; p2/ and s and q as in the hypothesis

were proved in [8]. Boundedness corresponding to p1 D p2 D p D 1 follows
with a slight change in the proof of the latter case (see section “Boundedness from

L1 � L1 into L1 for Bs.1/;m
1;1 .R3n/; m < m.1;1/ D �n”).

We next prove the rest of the cases. By parts (a) and (c) of Proposition 2.1, it is
enough to work with the spaces Bs.p/;m

1;1 .R
3n/where s.p/ is in R

3n and m < m.p1; p2/:
If 1 � p1 � 2 and 1

p1
C 1

p2
D 1, then . 1p1 ;

1
p2
/ is in the line segment

joining .1; 0/ and . 1
2
; 1
2
/ in Fig. 2 and m.p1; p2/ D � n

p1
: We have s.1/ D

. 1
2
; : : : ; 1

2
; 1; : : : ; 1; 1; : : : ; 1/ 2 R

3n and Bs.1/;m
1;1 .R

3n/ � Bt;m
1;1.R

3n/ where t 2 R
3n

has its first 2n components equal to those of s.1/ and its last n components equal to
1
2
: Since t�1 D s.p2/ (recall that 2 � p2 � 1), then part (a) of Theorem 1.5 implies

that ��1 2 Bs.p2/;m
1;1 .R3n/ for any x-independent symbols � 2 Bt;m

1;1.R
3n/: Note that

. 11 ;
1
p2
/ is in the segment joining .0; 0/with .0; 1

2
/ of Fig. 2 and m.1; p2/ D � n

p0

2
D

� n
p1

D m.p1; p2/: In view of the results corresponding to region II in Fig. 2, it
follows

kT��1 .f ; g/kLp2 .
����1��

B
s.p2/;m
1;1

kf kL1
kgkLp2

for all f ; g 2 S.Rn/ and all x-independent symbols � 2 Bt;m
1;1.R

3n/ with
m < m.p1; p2/: Duality and (10) imply

kT� .f ; g/kL1 .
����1��

B
s.p2/;m
1;1

kf kLp1 kgkLp2 . k�kBt;m
1;1

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all x-independent symbols � 2 Bt;m
1;1.R

3n/ with m <

m.p1; p2/. This holds in particular for all x-independent symbols in Bs.1/;m
1;1 .R

3n/

and for those symbols we have k�kBt;m
1;1

. k�k
B

s.1/;m
1;1

: If 2 � p1 � 1 and
1
p1

C 1
p2

D 1, then . 1p1 ;
1
p2
/ is in the line segment joining .0; 1/ and . 1

2
; 1
2
/ in Fig. 2

and m.p1; p2/ D � n
p2
: We can proceed in a similar way as above, using ��2 instead

of ��1; to get the desired result.
We next consider 2 � p1; p2 < 1 with 1 < p < 2 given by 1

p1
C 1

p2
D 1

p (region
I in Fig. 2). Let the trilinear operator T be defined as T.�; f ; g/ WD T� .f ; g/: By the
previously treated cases, T satisfies the following boundedness properties:

T is bounded from Bs.2/;m
1;1 .R

2n/ � L2.Rn/ � L1.Rn/ into L2.Rn/ for m < � n
2
;

T is bounded from Bs.2/;m
1;1 .R

2n/ � L1.Rn/ � L2.Rn/ into L2.Rn/ for m < � n
2
;

T is bounded from Bs.1/;m
1;1 .R

2n/ � L2.Rn/ � L2.Rn/ into L1.Rn/ for m < � n
2
:

From the facts shown in section “Complex Interpolation of Besov Spaces of Product
Type”, it follows that

.Bs.2/;m
1;1 .R

2n/;Bs.1/;m
1;1 .R

2n//Œ�
 D Bs.p/;m
1;1 .R

2n/; 1
p D 1��

2
C �; m 2 R:
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Fig. 2 Interpolation
argument in the proof of
Theorem 1.1

(0, 1)

(0, 12)

(0, 0) (1, 0)

(1, 1)

(12, 0)

I
II

(1p, 0)

(0, 1p)

( 1
p1

, 1
p2

)

(1u,
1
2)

(12,
1
v)

Using trilinear complex interpolation (see [4, Theorem 4.4.1]), we conclude that

T is bounded from Bs.p/;m
1;1 .R

2n/ � L2.Rn/ � Lp2 .Rn/ into Lp.Rn/ for m < � n
2

and
p2; p such that 1

2
C 1

p2
D 1

p and . 1
2
; 1p2 / is on the line segment joining . 1

2
; 0/ and

. 1
2
; 1
2
/ in Fig. 2. Similarly, we obtain the desired mapping properties for the indices

corresponding to the segment joining .0; 1
2
/ and . 1

2
; 1
2
/ in Fig. 2. If . 1p1 ;

1
p2
/ is a point

in the interior of region I in Fig. 2, the boundedness result for operators with x-
independent symbols in Bs.p/;m

1;1 .R
3n/; m < m.p1; p2/ D � n

2
; follows by complex

interpolation and the boundedness corresponding to the indices given by the pairs
. 1u ;

1
2
/ and . 1

2
; 1
v
/ that satisfy 1

u C 1
2

D 1
2

C 1
v

D 1
p1

C 1
p2

D 1
p : ut

Proof of Theorem 1.2. In view of Proposition 2.1 it is enough to consider q D 1:

Also, s 2 R
3 will be assumed; a similar argument applies to the case s 2 R

3n:

We first observe that if � 2 Bs;m
1;1.R

3n/ is a symbol as in part (a) of Theorem 1.2,

the assumption on the support of O� allows to conclude that � 2 BQs;m
1;1.R

3n/ for any
Qs D .Qs1; Qs2; n

2
/ 2 R

3: By taking Qs D . n
p ;

n
2
; n
2
/ the boundedness corresponding to

2 � p1; p2; p � 1 is a particular case of Theorem 1.1. The same reasoning is valid
for symbols as in part (b) of Theorem 1.2.

Fix now 1 � p1; p � 2 and 2 � p2 � 1 such that 1
p1

C 1
p2

D 1
p ; s D .s1; s2;

n
2
/ 2

R
3; m < m.p1; p2/ and let � 2 Bs;m

1;1.R
3n/ be a symbol as in part (a) of Theorem 1.2.

From the assumptions on the support of O� it follows that � 2 BQs;m
1;1.R

3n/ for Qs D
. n

p0

1
; n
2
; n
2
/: By item (i) in part (b) of Theorem 1.5 we have that ��1 2 BQs;m

1;1.R
3n/I

applying the mapping properties corresponding to region II in Fig. 2, it follows that
T��1 is bounded from Lp0

.Rn/ � Lp2 .Rn/ into Lp0

1 .Rn/: Duality then implies that T�
is bounded from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/ as desired.

Part (b) of Theorem 1.2 follows analogously through the use of ��2: ut
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An Improved Version of Theorem 1.1 for 1 � p < 2

We present an improvement of Theorem 1.1 in the sense that boundedness into
Lp.Rn/; 1 � p < 2; holds for operators with x-independent symbols belonging to
certain Besov spaces that have regularity index below s.p/:

If s is a vector in R
2 or R2n and � D �.
; �/ is in Bs;m

1;1.R
2n/ for some m 2 R;

we define k�kBs;m
1;1

WD k�kBS;m
1;1

; where S is a vector in R
3 or R3n; respectively, such

that S D s (see (14) and the corresponding discussion).
For 1 � p1; p2 � 1 such that 1

p1
C 1

p2
D 1 define s.p1; p2/ as the vector in R

2

given by

s.p1; p2/ D
�
.n; n

2
/ if 1 � p1 � 2;

. n
2
; n/ if 2 � p1 � 1;

or as the vector in R
2n given by

s.p1; p2/ D

8
ˆ̂̂<
ˆ̂̂
:

.1; : : : ; 1„ ƒ‚ …
n

; 1
2
; : : : ; 1

2„ ƒ‚ …
n

/ if 1 � p1 � 2;

. 1
2
; : : : ; 1

2„ ƒ‚ …
n

; 1; : : : ; 1„ ƒ‚ …
n

/ if 2 � p1 � 1:

Note that s.2; 2/ receives two possible values in each dimension considered. The
proof of Theorem 1.1 and part (c) of Proposition 2.1 give that

kT� .f ; g/kL1 . k�k
B

s.p1;p2/;m
1;1

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all symbols � 2 Bs.p1;p2/;m
1;1 .R2n/ with m < m.p1; p2/ and

where s.p1; p2/ is in R
2 or in R

2n: This is an improvement on the corresponding

result in Theorem 1.1 since Bs.1/;m
1;1 .R

2n/ ¤ Bs.p1;p2/;m
1;1 .R2n/: Recall that s.1/ D .n; n/

or s.1/ D .1; : : : ; 1/ 2 R
2n; then the above states that boundedness still holds even

if the symbol has n
2

fewer derivatives (in the sense of Besov spaces) with respect to
one of its frequency variables.

For 2 � p1; p2 � 1 such that 1
p1

C 1
p2

D 1
p and p1 D 2 or p2 D 2 (segments

joining points . 1
2
; 1
2
/ and . 1

2
; 0/ and points . 1

2
; 1
2
/ and .0; 1

2
/; respectively, in Fig. 2)

define s.p1; p2/ as the vector in R
2 given by

s.p1; p2/ D
(
. n
2
; n

p / if p1 D 2;

. n
p ;

n
2
/ if p2 D 2;

or as the vector in R
2n given by
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s.p1; p2/ D

8̂
ˆ̂<
ˆ̂̂
:

. 1
2
; : : : ; 1

2„ ƒ‚ …
n

; 1p ; : : : ;
1
p„ ƒ‚ …

n

/ if p1 D 2;

. 1p ; : : : ;
1
p„ ƒ‚ …

n

; 1
2
; : : : ; 1

2„ ƒ‚ …
n

/ if p2 D 2:

In this case we also have Bs.p/;m
1;1 .R

2n/ ¤ Bs.p1;p2/;m
1;1 .R2n/; if .p1; p2/ ¤ .2;1/ and

.p1; p2/ ¤ .1; 2/: Symbols in the latter class are allowed to have n
p � n

2
> 0 fewer

derivatives (in the sense of Besov spaces) than those in Bs.p/;m
1;1 .R

2n/:

Finally, if p1; p2 are such that 1
p1

C 1
p2

D 1
p and . 1p1 ;

1
p2
/ is in the interior of region

I of Fig. 2, define s.p1; p2/ WD .1 � �/s.u; 2/ C �s.2; v/ where � 2 .0; 1/ is such
that . 1p1 ;

1
p2
/ D .1 � �/. 1u ;

1
2
/ C �. 1

2
; 1
v
/ and u and v are as in Fig. 2. Once more,

Bs.p/;m
1;1 .R

2n/ ¤ Bs.p1;p2/;m
1;1 .R2n/:

An analogous proof to that of Theorem 1.1 gives then the following:

Theorem 4.1. Consider 1 � p1; p2 � 1 and p D 1 such that 1
p1

C 1
p2

D 1
p or,

2 � p1; p2 � 1 and 1 � p < 2 satisfying 1
p1

C 1
p2

D 1
p : If m < m.p1; p2/; s.p1; p2/

is as defined above and s is a vector of the same dimension as s.p1; p2/; the following
statements hold true:

(a) If 0 < q � 1 and s � s.p1; p2/ component-wise, then

kT� .f ; g/kLp . k�kBs;m
1;q

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all symbols � in Bs;m1;q.R
2n/:

(b) If 1 < q � 1 and s > s.p1; p2/ component-wise, then

kT� .f ; g/kLp . k�kBs;m
1;q

kf kLp1 kgkLp2 ;

for all f ; g 2 S.Rn/ and all symbols � in Bs;m1;q.R
2n/:

Corresponding improvements of (4) and (5) in Corollary 1.3 follow from
Theorem 4.1.

Complex Interpolation of Besov Spaces of Product Type

We refer the reader to [4, Chap. 4] regarding the method of complex interpolation
and some of the notation used in this section. The following theorem is a particular
case of [17, Theorem 1.3.3] (see also [9, Theorem 4]):

Theorem 5.A. Let 1 � r0; r1; q0; q1 � 1 (excluding the cases r0 D r1 D 1 and
q0 D q1 D 1), m0;m1 2 R; s0; s1 both in R

3 or both in R
3n: If 0 < � < 1;
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.Bs0;m0
r0;q0 .R

3n/;Bs1;m1
r1;q1 .R

3n//Œ�
 D Bs;m
r;q .R

3n/; (29)

.Bs0;m0
r0;q0 .R

2n/;Bs1;m1
r1;q1 .R

2n//Œ�
 D Bs;m
r;q .R

2n/; (30)

where 1
r D 1��

r0
C �

r1
; 1q D 1��

q0
C �

q1
; m D .1��/m0C�m1 and s D .1��/s0C�s1:

In this section we will address the case r0 D r1 D 1 and m0 D m1 and show
that (29) and (30) also hold in such situation. This is, with the parameters as in the
statement of Theorem 5.A and m0 D m1 D m,

.Bs0;m1;q0 .R
3n/;Bs1;m1;q1 .R

3n//Œ�
 D Bs;m1;q.R
3n/; (31)

.Bs0;m1;q0 .R
2n/;Bs1;m1;q1 .R

2n//Œ�
 D Bs;m1;q.R
2n/: (32)

For the sake of notation, only (31) will be treated; a completely analogous reasoning
leads to (32).

We start by introducing some definitions and notations. Given a Banach space
X; 1 � q � 1; and s 2 R

L; denote by lqs .X/ the Banach space of all sequences
x D fxkgk2NL

0
in X such that

kxkl
q
s .X/ WD

0
@X

k2NL
0

.2s�k kxkkX/
q

1
A

1
q

< 1;

with the appropriate changes if q D 1: If m 2 R; s 2 R
L with L D 3 or L D 3n;

and 1 � q � 1, then for � 2 Bs;m1;q.R
3n/; we have that

k�kBs;m
1;q

D
���fF�1.wk O�/gk2NL

0

���
l
q
s .C0m.R3n//

;

where fwkgk2NL
0

is as in the definition of Bs;m1;q.R
3n/: (Note that F�1.wk O�/ is a

continuous function in R
3n since it is analytic in C

3n as it is the inverse Fourier
transform of a compactly supported tempered distribution in R

3n).
A Banach space X is said to be a retract of a Banach space Y if there are linear

bounded mappings I W X ! Y and P W Y ! X such that P ı I D Id:

Lemma 5.1. If m 2 R; s 2 R
L with L D 3 or L D 3n; and 1 � q � 1; then

Bs;m1;q.R
3n/ is a retract of lqs .C0m.R3n//:

Proof. Let fwkgk2NL
0

be as in the definition of Bs;m1;q.R
3n/ for s 2 R

L: Define I W
Bs;m1;q.R

3n/ ! lqs .C0m.R3n// as I .�/ WD fF�1.wk O�/gk2NL
0
: Then I is linear and

kI .�/kl
q
s .C0m.R3n// D k�kBs;m

1;q
:

Let f Qwjgj2N0 be as in (12) and set Qwk.x; 
; �/ D Qwk1 .x/ Qwk2 .
/ Qwk3 .�/ for k D
.k1; k2; k3/ 2 N

3
0 if L D 3; or Qwk.x; 
; �/ D Qwk1 .x1/ � � � Qwkn.xn/ QwknC1

.
1/ � � � Qwk3n.�n/
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for k D .k1; : : : ; k3n/ 2 N
3n
0 if L D 3n, then Qwkwk 	 wk for all k 2 N

L
0: Note thatP

jkj�M F�1. Qwk Oxk/ converges in S 0.R3n/ as M ! 1 if fxkgk2NL
0

2 lqs .C0m.R3n//:

Define P W lqs .C0m.R3n// ! Bs;m1;q.R
3n/ as P.fxkgk2NL

0
/ WD P

k2NL
0
F�1. Qwk Oxk/:

The mapping P is bounded. Indeed, for k D .k1; : : : ; kL/ 2 N
L
0 we have

F�1.wkF.P.fx	g	2NL
0
// D

X
jD.j1;:::;jL/2ZL

jj`j�2; k`Cj`�0

F�1.wkCjbxkCj/:

Therefore, by part (b) of Lemma 3.1,

���F�1.wkF.P.fx	g	2NL
0
//
���
C0m

D
X

jD.j1;:::;jL/2NL
0

jj`j�2; k`Cj`�0

��F�1.wkCjbxkCj/
��
C0m

. c.w;w0/
X

jD.j1;:::;jL/2NL
0

jj`j�2; k`Cj`�0

��xkCj

��
C0m ;

which implies that
���P.fxkgk2NL

0
/
���

Bs;m
1;1

.
���fxkgk2NL

0

���
l
q
s .C0m.R3n//

: Moreover, P is

linear and we clearly have P ı I D Id: ut
Lemma 5.2. Let s0; s1 2 R

L; 1 � q0; q1 � 1 and 0 < � < 1: If X0 and X1 are
Banach spaces then, with equal norms,

.lq0s0 .X0/; l
q1
s1 .X1//Œ�
 D lqs .X/;

where s D .1 � �/s0 C �s1;
1
q D 1��

q0
C �

q1
; and X D .X0;X1/Œ�
:

Proof. This is a consequence, for instance, of Bergh and Löfström [4, Theo-
rem 5.6.3], where the case corresponding to L D 1 is proved. ut
Proof of (31). Note that I and P in the proof of Lemma 5.1 are independent of the
parameters of the spaces involved. In particular I and P are linear mappings from
Bs0;m1;q0 .R

3n/CBs1;m1;q1 .R
3n/ into lq0s0 .C0m.R3n//C lq1s1 .C0m.R3n// and from lq0s0 .C0m.R3n//C

lq1s1 .C0m.R3n// into Bs0;m1;q0 .R
3n/C Bs1;m1;q1 .R

3n/; respectively, such that I is linear and
bounded from Bsk ;m1;qk

.R3n/ into lqk
sk
.C0m.R3n// for k D 0; 1;P is linear and bounded

from lqk
sk
.C0m.R3n// into Bsk ;m1;qk

.R3n/ for k D 0; 1; and P.I .�// D � for all � 2
Bs0;m1;q0 .R

3n/CBs1;m1;q1 .R
3n/: By complex interpolation we then conclude that the space

.Bs0;m1;q0 .R
3n/;Bs1;m1;q1 .R

3n//Œ�
 is a retract of .lq0s0 .C0m.R3n//; lq1s1 .C0m.R3n///Œ�
 with the
mappings I and P: This implies that

P..lq0s0 .C0m.R3n//; lq1s1 .C0m.R3n///Œ�
/ D .Bs0;m1;q0 .R
3n/;Bs1;m1;q1 .R

3n//Œ�
:
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By Lemma 5.2 and the fact that .C0m.R3n/; C0m.R3n//Œ�
 D C0m.R3n/; we have

P.lqs .C0m.R3n//Œ�
// D .Bs0;m1;q0 .R
3n/;Bs1;m1;q1 .R

3n//Œ�
:

Since P.lqs .C0m.R3n/// D Bs;m1;q.R
3n/; (31) follows. The equality of the norms

follows from the fact that I is an isometry and from the equality in norms given in
Lemma 5.2. ut
Remark 5.1. The above reasoning in the proof of (31) breaks down when
m0 ¤ m1: Indeed, assume without lost of generality that m0 < m1I then
.C0m0 .R3n/; C0m1 .R3n//Œ�
 ¤ C0m.R3n/ for m D .1 � �/m0 C �m1 since C0m0 .R3n/ \
C0m1 .R3n/ D C0

m0.R3n/
is dense in .C0m0 .R3n/; C0m1 .R3n//Œ�
 while C0m0 .R3n/ is not dense

in C0m.R3n/:

Boundedness from L1 � L1 into L1 for Bs.1/;m
1;1

.R3n/;

m < m.1;1/ D �n

Boundedness from Lp1 .Rn/ � Lp2 .Rn/ into Lp.Rn/ for operators associated to
symbols in Bs.p/;m

1;1 .R
3n/ with m < m.p1; p2/; 2 � p1; p2 � 1; 2 � p < 1 and

1
p1

C 1
p2

D 1
p was shown in [8]. The proof of such result can be adapted to obtain the

corresponding mapping property for p1 D p2 D p D 1 as explained in this section.
Given f ; g; h; ';  ; � 2 S.Rn/; define

V.f ; g; h/.y; a; b/ WD
ˆ
R3n

e2� i.y�xCa�
Cb��/Of .
/Og.�/e2� ix�.
C�/ Nh.x/ dxd
d�

D
ˆ
Rn

e2� ix�y Nh.x/f .x C a/g.x C b/ dx;W.f ; g; h; ';  ; �/.x; 
; �/ W

D
ˆ
R3n

e�2� i.x�yC
�aC��b/'.y/ .a/�.b/V.f ; g; h/.y; a; b/ dydadb:

The following estimate was shown in [8, Theorem 4] for 2 � p1; p2 � 1 and
2 � p < 1 satisfying 1

p1
C 1

p2
D 1

p :

ˆ
R3n

h
; �imjW.f ; g; h; ';  ; �/.x; 
; �/j dxd
d�

.
X

˛;ˇ;�2f0;1;2;3gn

kb@˛ kL2kkb@ˇ�kL2kb@�'kLp0 kf kLp1 kgkLp2 khkLp0 ;

for all functions f ; g; h;  ; � 2 S.Rn/ and ' of the form '.x/ D Qn
jD1 'j.xj/; where

x D .x1; : : : ; xn/ and 'j 2 S.R/; j D 1; : : : ; n:
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We now prove that the above inequality also holds for p D p1 D p2 D 1; this is
ˆ
R3n

h
; �imjW.f ; g; h; ';  ; �/.x; 
; �/j dxd
d� (33)

.
X

˛;ˇ;�2f0;1;2;3gn

kb@˛ kL2kkb@ˇ�kL2kb@�'kL1 kf kL1
kgkL1

khkL1 :

Once (33) is proved, the same ideas used in [8] give that

kT� .f ; g/kL1

. k�k
B

s.1/;m
1;1

kf kL1
kgkL1

for all f ; g 2 S.Rn/ and all � 2 Bs.1/;m
1;1 .R3n/ with m < m.1;1/ D �n and

s.1/ in R
3 or in R

3n. The corresponding statements in Theorem 1.1 for q ¤ 1 and
s � s.1/ follow by the embedding properties of Proposition 2.1.

Proof of (33). Defining

Jk WD fEj D .j1; : : : ; jn/ 2 f1; : : : ; ngn W jl ¤ jQl if l ¤ Ql; j1 < � � � < jk; jkC1 < � � � < jng
for k D 0; : : : ; n; and denoting W.f ; g; h; ';  ; �/ by W; the proof in [8, Theorem 4]
shows that

W.x; 
; �/ D
X

kD0;:::;n
Ej2Jk

ck;Ej Wk;Ej.x; 
; �/;

where for k D 0; : : : ; n and Ej D .j1; : : : ; jn/ 2 Jk;

Wk;Ej.x; 
; �/ WD
ˆ
R3n

e�2� i.x�.�
��C�/C
�aC��b/ NOh.�/f .a/g.b/ Sk;Ej.x; �; 
; �; a; b/ d�dadb;

Sk;Ej.x; �; 
; �; a; b/ WD
ˆ
Rn

e�2� ix�y'k;Ej.� � 
 � �/ˆk;Ej.y; �; 
; �/cAa;b.y/ dy;

Aa;b.t/ WD  .a C t/�.b C t/;

'k;Ej.� � 
 � �/ WD
kY

lD1

'jl .�jl � 
jl � �jl /; .'0;Ej.� � 
 � �/ WD 1/;

ˆk;Ej.y; �; 
; �/ WD
nY

lDkC1

yjl

ˆ 1

0

'
.1/
jl .sjl yjl C �jl � 
jl � �jl / dsjl

D yjkC1
� � � yjn

ˆ
Œ0;1
n�k

nY
lDkC1

'
.1/
jl .sjl yjl C �jl � 
jl � �jl / dsjkC1

: : : dsjn ;

with ˆn;Ej WD 1 and '.1/jl
denoting the first derivative of 'jl : It is then enough to prove

the inequality (33) for each Wk;Ej:
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For the case k D n; define Fx.a/ WD f .a/ .a � x/; Gx.b/ WD g.b/�.b � x/; and
Hx.�/ WD Nh.�/ O'.x � �/; and obtain as in [8, Theorem 4] that

ˆ
R3n

h
; �imjWn;Ej.x; 
; �/j dxd
d�

.
ˆ
Rn

kFxkL2 kGxkL2

�ˆ
R2n

h
; �i2mj LHx.
 C �/j2d
d�

� 1
2

dx:

Then
ˆ
R3n

h
; �imjWn;Ej.x; 
; �/j dxd
d�

. sup
x2Rn

.kFxkL2 kGxkL2 /

�����
�ˆ

R2n
h
; �i2mj LHx.
 C �/j2d
d�

� 1
2

�����
L1

. kf kL1
kgkL1

k O kL2k O�kL2

�����
�ˆ

R2n
h
; �i2mj LHx.
 C �/j2d
d�

� 1
2

�����
L1

:

Since m.1;1/ D �n and m < m.1;1/; we have m D �n�" for some " > 0:
Set m1 D m2 WD � n

2
� "

2
: The change of variable � ! � � 
 and the fact that

h
; � � 
i2m � .1C j
j/2m1 .1C j�j/2m2 imply

�ˆ
R2n

h
; �i2mj LHx.
 C �/j2d
d�

� 1
2

�
�ˆ

Rn
.1C j
j/2m1 d


� 1
2
�ˆ

Rn
.1C j�j/2m2 j LHx.�/j2 d�

� 1
2

:

The integral in 
 is finite and

�ˆ
Rn
.1C j�j/2m2 j LHx.�/j2 d�

� 1
2

D
�ˆ

Rn
.1C j�j/�n�"j LHx.�/j2 d�

� 1
2

.
��� LHx

���
L1

. kHxkL1 D ��Nh.�/ O'.x � �/��L1 ;

which implies

�����
�ˆ

R2n
h
; �i2mj LHx.
 C �/j2d
d�

� 1
2

�����
L1

. khkL1 k O'kL1 :
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We then obtain
ˆ
R3n

h
; �imjWn;Ej.x; 
; �/j dxd
d� . k O kL2k O�kL2 k O'kL1 kf kL1
kgkL1

khkL1 :

For the case k 2 f0; : : : ; n � 1g; set Ft;˛1;�1 .a/ WD f .a/.@˛1C�1 /.a C t/;
Gt;˛2;�2 .b/ WD g.b/.@˛2C�2�/.b C t/ and

Hx;Nsk ;Nyk.�/ WD Nh.� C x/F�1
 
'k;Ej.�/

 
nY

lDkC1
'
.jl/
l .�l/sjl�1

l

!!
.�/ e�2� i

Pn
lDkC1 slyl�l ;

where Nsk WD .skC1; : : : ; sn/ 2 Œ0; 1
n�k; Nyk WD .ykC1; : : : ; yn/ 2 R
n�k; x; � 2 R

n and
'l
.jl/ denotes the jl derivative of 'l with jl � 3: Proceeding as in [8, Theorem 4], it

is enough to analyze

Wk;Ej;2.x; 
; �/ D
ˆ
R2n

ˆ
Œ0;1
n�k

e2� ix�.
C�/e�2� i.xCt/�yH.y/Qn
jD1.1C i.tj C xj//2

� 1Ft;˛1;�1 .
/2Gt;˛2;�2 .�/F�1 �Hx;Nsk ;Nyk

�
.
 C �/ dskC1 : : : dsn dydt;

where H is an appropriate fixed function on L1.Rn/ and ˛i; �i; i D 1; 2; are
multiindices with components at most equal to 3. We have

ˆ
R3n

h
; �imjWk;Ej;2.x; 
; �/j d
d�dx .
ˆ
R3n

jH.y/j
ˆ
Œ0;1
n�k

��Ft;˛1;�1

��
L2

��Gt;˛2;�2

��
L2Qn

jD1.1C jtj C xjj2/

�
�ˆ

R2n
h
; �i2mjF�1 �Hx;Nsk ;Nyk

�
.
 C �/j2 d
d�

� 1
2

dskC1 : : : dsn dy dt dx;

and therefore
ˆ
R3n

h
; �imjWk;Ej;2.x; 
; �/j d
d�dx . sup
t

��Ft;˛1;�1

��
L2
��Gt;˛2;�2

��
L2

ˆ
Rn

jH.y/j (34)

�
ˆ
Œ0;1
n�k

 ˆ
Rn

�ˆ
R2n

h
; �i2mjF�1
�
Hx;Nsk ;Nyk

�
.
 C �/j2 d
d�

� 1
2

dx

!
dskC1 : : : dsn dy:

The first factor in the right-hand side above satisfies

sup
t

��Ft;˛1;�1

��
L2

��Gt;˛2;�2

��
L2 . k 2@˛1C�1 kL2k2@˛2C�2�kL2kf kL1

kgkL1

: (35)
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For the other factor, we proceed as in the case k D n and recalling that sj 2 Œ0; 1
; it
follows that

 ˆ
Rn

�ˆ
R2n

h
; �i2mjF�1 �Hx;Nsk ;Nyk

�
.
 C �/j2 d
d�

� 1
2

dx

!
(36)

.
�ˆ

R2n
jHx;Nsk ;Nyk.�/j d�dx

�
. khkL1

������
c'k;Ej

nY
jDkC1

b

'
.jl/
l

������
L1

:

Putting (34)–(36) together and using that H 2 L1.Rn/; we get

ˆ
R3n

h
; �imjWk;Ej;2.x; 
; �/j d
d�dx

. k 2@˛1C�1 kL2k2@˛2C�2�kL2

������
c'k;Ej

nY
jDkC1

b

'
.jl/
l

������
L1

kf kL1
kgkL1

khkL1 :

ut
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Metric Characterizations of Some Classes
of Banach Spaces

Mikhail Ostrovskii

Dedicated to the Memory of Cora Sadosky.

Abstract The main purpose of the paper is to present some recent results on metric
characterizations of superreflexivity and the Radon–Nikodým property.

2010 Mathematics Subject Classification: Primary: 46B85; Secondary: 05C12,
20F67, 30L05, 46B07, 46B22

Introduction

By a metric characterization of a class of Banach spaces in the most general sense
we mean a characterization which refers only to the metric structure of a Banach
space and does not involve the linear structure. Some origins of the idea of a metric
characterization can be seen in the classical theorem of Mazur and Ulam [75]: Two
Banach spaces (over reals) are isometric as metric spaces if and only if they are
linearly isometric as Banach spaces.

However study of metric characterizations became an active research direc-
tion only in mid-1980s, in the work of Bourgain [13] and Bourgain–Milman–
Wolfson [16]. This study was motivated by the following result of Ribe [106].

Definition 1.1. Let X and Y be two Banach spaces. The space X is said to be finitely
representable in Y if for any " > 0 and any finite-dimensional subspace F � X
there exists a finite-dimensional subspace G � Y such that d.F;G/ < 1C ", where
d.F;G/ is the Banach–Mazur distance.

The space X is said to be crudely finitely representable in Y if there exists
1 � C < 1 such that for any finite-dimensional subspace F � X there exists a
finite-dimensional subspace G � Y such that d.F;G/ � C.
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Theorem 1.2 (Ribe [106]). Let Z and Y be Banach spaces. If Z and Y are uniformly
homeomorphic, then Z and Y are crudely finitely representable in each other.

Three proofs of this theorem are known at the moment:

• The original proof of Ribe [106]. Some versions of it were presented in Enflo’s
survey [39] and the book by Benyamini and Lindenstrauss [11, pp. 222–224].

• The proof of Heinrich–Mankiewicz [52] based on ultraproduct techniques, also
presented in [11].

• The proof of Bourgain [14] containing related quantitative estimates. This paper
is a very difficult reading. The proof has been clarified and simplified by Giladi–
Naor–Schechtman [44] (one of the steps was simplified earlier by Begun [8]).
The presentation of [44] is easy to understand, but some of the "-ı ends in it do
not meet. I tried to fix this when I presented this result in my book [90, Sect. 9.2]
(let me know if you find any problems with "-ı choices there).

These three proofs develop a wide spectrum of methods of the nonlinear Banach
space theory and are well worth studying.

The Ribe theorem implies stability under uniform homeomorphisms of each
class P of Banach spaces satisfying the following condition LHI (local, hereditary,
isomorphic): if X 2 P and Y crudely finitely representable in X, then Y 2 P .

The following well-known classes have the described property:

• superreflexive spaces (see the definition and related results in section “Metric
Characterizations of Superreflexivity” of this paper),

• spaces having cotype q, q 2 Œ2;1/ (the definitions of type and cotype can be
found, for example, in [90, Sect. 2.4]),

• spaces having cotype r for each r > q where q 2 Œ2;1/,
• spaces having type p, p 2 .1; 2
,
• spaces having type r for each r < p where p 2 .1; 2
,
• Banach spaces isomorphic to q-convex spaces q 2 Œ2;1/ (see Definition 2.7

below, more details can be found, for example, in [90, Sect. 8.4]),
• Banach spaces isomorphic to p-smooth spaces p 2 .1; 2
 (see Definition 1.6 and

[90, Sect. 8.4]),
• UMD (unconditional for martingale differences) spaces (recommended source

for information on the UMD property is the forthcoming book [103]),
• Intersections of some collections of classes described above,
• One of such intersections is the class of spaces isomorphic to Hilbert spaces

(by the Kwapień theorem [62], each Banach space having both type 2 and cotype
2 is isomorphic to a Hilbert space),

• Banach spaces isomorphic to subspaces of the space Lp.�;†;�/ for some
measure space .�;†;�/, p ¤ 2;1 (for p D 1 we get the class of all Banach
spaces, for p D 2 we get the class of spaces isomorphic to Hilbert spaces).

Remark 1.3. This list seems to constitute the list of all classes of Banach spaces
satisfying the condition LHI which were systematically studied.
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By the Ribe Theorem (Theorem 1.2), one can expect that each class satisfying the
condition LHI has a metric characterization. At this point metric characterizations
are known for all classes listed above except p-smooth and UMD (and some of the
intersections involving these classes). Here are the references:

• Superreflexivity—see section “Metric Characterizations of Superreflexivity” of
this paper for a detailed account.

• Properties related to type—[76] (see [16, 40, 102] for previous important results
in this direction, and [42] for some improvements).

• Properties related to cotype—[77], see [43] for some improvements.
• q-convexity—[78].
• Spaces isomorphic to subspaces of Lp .p ¤ 2;1/. Rabinovich noticed that

one can generalize results of [71] and characterize the optimal distortion of
embeddings of a finite metric space into Lp-space (see [74, Exercise 4 on p. 383
and comment of p. 380] and a detailed presentation in [90, Sect. 4.3]). Johnson,
Mendel, and Schechtman (unpublished) found another characterization of the
optimal distortion using a modification of the argument of Lindenstrauss and
Pełczyński [70, Theorem 7.3]. These characterizations are very close to each
other. They are not satisfactory in some respects.

Ribe Program

It should be mentioned that some of the metric characterizations (for example of
the class of spaces having some type > 1) can be derived from the known ‘linear’
theory. Substantially nonlinear characterizations started with the paper of Bourgain
[13] in which he characterized superreflexive Banach spaces in terms of binary trees.

This paper of Bourgain and the whole direction of metric characterizations was
inspired by the unpublished paper of Joram Lindenstrauss with the tentative title
“Topics in the geometry of metric spaces.” This paper has never been published
(and apparently has never been written, so it looks like it was just a conversation,
and not a paper), but it had a significant impact on this direction of research.
The unpublished paper of Lindenstrauss and the mentioned paper of Bourgain [13]
initiated what is now known as the Ribe program.

Bourgain [13, p. 222] formulated it as the program of search for equivalent
definitions of different LHI invariants in terms of metric structure with the next
step consisting in studying these metrical concepts in general metric spaces in an
attempt to develop an analogue of the linear theory.

Bourgain himself made several important contributions to the Ribe program, now
it is a very deep and extensive research direction. In words of Ball [3]: “Within a
decade or two the Ribe programme acquired an importance that would have been
hard to predict at the outset.” In this paper I am going to cover only a very small part
of known results on this program. I refer interested people to the surveys of Ball [3]
(short survey) and Naor [81] (extensive survey).
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Many of the known metric characterizations use the following standard
definitions:

Definition 1.4. Let 0 � C < 1. A map f W .A; dA/ ! .Y; dY/ between two metric
spaces is called C-Lipschitz if

8u; v 2 A dY.f .u/; f .v// � CdA.u; v/:

A map f is called Lipschitz if it is C-Lipschitz for some 0 � C < 1.
Let 1 � C < 1. A map f W A ! Y is called a C-bilipschitz embedding if there

exists r > 0 such that

8u; v 2 A rdA.u; v/ � dY.f .u/; f .v// � rCdA.u; v/: (1)

A bilipschitz embedding is an embedding which is C-bilipschitz for some
1 � C < 1. The smallest constant C for which there exist r > 0 such that (1)
is satisfied is called the distortion of f .

There are at least two directions in which we can seek metric characterizations:

(1) We can try to characterize metric spaces which admit bilipschitz embeddings
into some Banach spaces belonging to P .

(2) We can try to find metric structures which are present in each Banach space
X … P .

Characterizations of type (1) would be much more interesting for applications.
However, as far as I know such characterizations were found only in the following
cases: (1) P D fthe class of Banach spaces isomorphic to a Hilbert spaceg
(it is the Linial–London–Rabinovich [71, Corollary 3.5] formula for distortion of
embeddings of a finite metric space into `2). (2) P D fthe class of Banach spaces
isomorphic to a subspace of some Lp-spaceg, p is a fixed number p ¤ 2;1, see the
last paragraph preceding section “Ribe Program.”

Local Properties for Which no Metric Characterization is Known

Problem 1.5. Find a metric characterization of UMD.

Here UMD stays for unconditional for martingale differences. The most compre-
hensive source of information on UMD is the forthcoming book of Pisier [103].

I have not found in the literature any traces of attempts to work on Problem 1.5.

Definition 1.6. A Banach space is called p-smooth if its modulus of smoothness
satisfies �.t/ � Ctp for p 2 .1; 2
.

See [90, Sect. 8.4] for information on p-smooth spaces.
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Problem 1.7. Find a metric characterization of the class of Banach spaces isomor-
phic to p-smooth spaces p 2 .1; 2
.

This problem was posed and discussed in the paper by Mendel and Naor [78],
where a similar problem is solved for q-convex spaces. Mendel and Naor wrote
[78, p. 335]: “Trees are natural candidates for finite metric obstructions to
q-convexity, but it is unclear what would be the possible finite metric witnesses
to the “non-p-smoothness” of a metric space.”

Metric Characterizations of Superreflexivity

Definition 2.1 (James [55, 56]). A Banach space X is called superreflexive if each
Banach space which is finitely representable in X is reflexive.

It might look like a rather peculiar definition, but, as I understand, introducing
it (� 1967) James already had a feeling that it is a very natural and important
definition. This feeling was shown to be completely justified when Enflo [38]
completed the series of results of James by proving that each superreflexive space
has an equivalent uniformly convex norm.

Definition 2.2. A Banach space is called uniformly convex if for every " > 0 there
is some ı > 0 so that for any two vectors with kxk � 1 and kyk � 1, the inequality

1 �
����

x C y

2

���� < ı

implies

kx � yk < ":

Definition 2.3. Two norms jj � jj1 and jj � jj2 on a linear space X are called equivalent
if there are constants 0 < c � C < 1 such that

cjjxjj1 � jjxjj2 � Cjjxjj1
for each x 2 X.

After the pioneering results of James and Enflo numerous equivalent reformula-
tions of superreflexivity were found and superreflexivity was used in many different
contexts.

The metric characterizations of superreflexivity which we are going to present
belong to the class of the so-called test-space characterizations.

Definition 2.4. Let P be a class of Banach spaces and let T D fT˛g˛2A be a set
of metric spaces. We say that T is a set of test-spaces for P if the following two
conditions are equivalent: (1) X … P; (2) The spaces fT˛g˛2A admit bilipschitz
embeddings into X with uniformly bounded distortions.
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Characterization of Superreflexivity in Terms of Binary Trees

Definition 2.5. A binary tree of depth n, denoted Tn, is a finite graph in which each
vertex is represented by a finite (possibly empty) sequence of 0 and 1, of length
at most n. Two vertices in Tn are adjacent if the sequence corresponding to one of
them is obtained from the sequence corresponding to the other by adding one term
on the right. (For example, vertices corresponding to .1; 1; 1; 0/ and .1; 1; 1; 0; 1/
are adjacent.) A vertex corresponding to a sequence of length n in Tn is called a leaf.

An infinite binary tree, denoted T1, is an infinite graph in which each vertex is
represented by a finite (possibly empty) sequence of 0 and 1. Two vertices in T1 are
adjacent if the sequence corresponding to one of them is obtained from the sequence
corresponding to the other by adding one term on the right.

Both for finite and infinite binary trees we use the following terminology. The
vertex corresponding to the empty sequence is called a root. If a sequence � is an
initial segment of the sequence � we say that � is a descendant of � and that � is
an ancestor of � . If a descendant � of � is adjacent to � , we say that � is a child of
� and that � is a parent of � . Two children of the same parent are called siblings.
Child of a child is called a grandchild. (It is clear that each vertex in T1 has exactly
two children, the same is true for all vertices of Tn except leaves.)

Theorem 2.6 (Bourgain [13]). A Banach space X is nonsuperreflexive if and only
if it admits bilipschitz embeddings with uniformly bounded distortions of finite
binary trees fTng1

nD1 of all depths, see Fig. 1.

In Bourgain’s proof the difficult direction is the “if” direction, the “only if” is
an easy consequence of the theory of superreflexive spaces. Recently Kloeckner
[61] found a very simple proof of the “if” direction. I plan to describe the proofs
of Bourgain and Kloeckner after recalling the results on superreflexivity which we
need.

Fig. 1 The binary tree of depth 3, that is, T3
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Definition 2.7. The modulus of (uniform) convexity ıX."/ of a Banach space X
with norm k � k is defined as

inf

�
1 �

����
x C y

2

����
ˇ̌
ˇ̌ kxk D kyk D 1 and kx � yk > "

	

for " 2 .0; 2
. The space X or its norm is said to be q-convex, q 2 Œ2;1/ if ıX."/ >
c"q for some c > 0.

Remark 2.8. It is easy to see that the definition of the uniform convexity given in
Definition 2.2 is equivalent to: X is uniformly convex if and only if ıX."/ > 0 for
each " 2 .0; 2
.
Theorem 2.9 (Pisier [101]). The following properties of a Banach space Y are
equivalent:

1. Y is superreflexive.
2. Y has an equivalent q-convex norm for some q 2 Œ2;1/.

Using Theorem 2.9 we can prove the “if” part of Bourgain’s characterization.
Denote by cX.Tn/ the infimum of distortions of embeddings of the binary tree Tn

into a Banach space X.
By Theorem 2.9, for the “if” part of Bourgain’s theorem it suffices to prove that

if X is q-convex, then for some c1 > 0 we have

cX.Tn/ � c1.log2 n/
1
q :

Proof (Kloeckner [61]). Let F be the four-vertex tree with one root a0 which has
one child a1 and two grandchildren a2, a0

2. Sometimes such tree is called a fork, see
Fig. 2. The following lemma is similar to the corresponding results in [73].

Lemma 2.10. There is a constant K D K.X/ such that if ' W F ! X is D-Lipschitz
and distance non-decreasing, then either

k'.a0/ � '.a2/k 6 2

�
D � K

Dq�1

�

Fig. 2 A fork a0

a1

a2 a′
2
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or

k'.a0/ � '.a0
2/k 6 2

�
D � K

Dq�1

�

First we finish the proof of cX.Tn/ � c1.log2 n/
1
q using Lemma 2.10. So let

' W Tn ! X be a map of distortion D. Since X is a Banach space, we may assume
that ' is D-Lipschitz, distance non-decreasing map, that is

dTn.u; v/ � jj'.u/ � '.v/jj � DdTn.u; v/:

The main idea of the proof is to construct a less-distorted embedding of a
smaller tree.

Given any vertex of Tn which is not a leaf, let us name arbitrarily one of its two
children its daughter, and the other its son. We select two grandchildren of the root
in the following way: we pick the grandchild mapped by ' closest to the root among
its daughter’s children and the grandchild mapped by ' closest to the root among its
son’s children (ties are resolved arbitrarily). Then we select inductively, in the same
way, two grandchildren for all previously selected vertices up to generation n � 2.

The set of selected vertices, endowed with half the distance induced by the tree
metric is isometric to Tb n

2 c, and Lemma 2.10 implies that the restriction of ' to this
set has distortion at most f .D/ D D � K

Dq�1 .
We can iterate such restrictions blog2 nc times to get an embedding of T1 whose

distortion is at most

D � blog2 nc K

Dq�1

since each iteration improves the distortion by at least K=Dq�1. Since the distortion
of any embedding is at least 1, we get the desired inequality. ut
Remark 2.11. Kloeckner borrowed the approach based on “controlled improvement
for embeddings of smaller parts” from the Johnson–Schechtman paper [58] in which
it is used for diamond graphs (Kloeckner calls this approach a self-improvement
argument). Arguments of this type are well known and widely used in the linear
theory, where they go back at least to James [53]; but these two examples (Johnson–
Schechtman [58] and Kloeckner [61]) seem to be the only two known results of
this type in the nonlinear theory. It would be interesting to find further nonlinear
arguments of this type.

Sketch of the Proof of Lemma 2.10. Assume '.a0/ D 0 and let x1 D '.a1/, x2 D
'.a2/ and x0

2 D '.a0
2/. Recall that we assumed

dTn.u; v/ � jj'.u/ � '.v/jj � DdTn.u; v/: (*)
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Consider the (easy) case where kx2k D 2D and kx0
2k D 2D (that is, the distortion

D is attained on these vectors). We claim that this implies that x2 D x0
2. In fact, it

is easy to check that this implies kx1k D D, kx2 � x1k D D, and kx0
2 � x1k D D.

Also
��� x1C.x2�x1/

2

��� D D and
��� x1C.x0

2�x1/
2

��� D D. By the uniform convexity we get

jjx1 � .x2 � x1/jj D 0 and jjx1 � .x0
2 � x1/jj D 0. Hence x2 D x0

2, and we get that the
conditions kx2k D 2D and kx0

2k D 2D cannot be satisfied simultaneously.
The proof of Lemma 2.10 goes as follows. We start by letting kx2k � 2.D � �/

and kx0
2k � 2.D � �/ for some � > 0. Using a perturbed version of the argument

just presented, the definition of the modulus of convexity, and our assumption
ıX."/ � c"p, we get an estimate of jjx2 � x0

2jj from above in terms of �. Comparing
this estimate with the assumption jjx2 � x0

2jj � 2 (which follows from dTn.u; v/ �
jj'.u/ � '.v/jj), we get the desired estimate for � from below, see [61] for details.

ut
Remark 2.12. The approach of Kloeckner can be used for any uniformly convex
space, it is not necessary to combine it with the Pisier Theorem (Theorem 2.9),
see [103].

To prove the “only if” part of Bourgain’s theorem we need the following
characterization of superreflexivity, one of the most suitable sources for this
characterization of superreflexivity is [103].

Theorem 2.13 (James [53, 55, 108]). Let X be a Banach space. The following are
equivalent:

1. X is not superreflexive
2. There exists ˛ 2 .0; 1
 such that for each m 2 N the unit ball of the space

X contains a finite sequence x1; x2; : : : ; xm of vectors satisfying, for any j 2
f1; : : : ;m � 1g and any real coefficients a1; : : : ; am, the condition

�����
mX

iD1
aixi

����� � ˛

0
@
ˇ̌
ˇ̌
ˇ

jX
iD1

ai

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ̌

mX
iDjC1

ai

ˇ̌
ˇ̌
ˇ̌

1
A : (2)

3. For each ˛ 2 .0; 1/ and each m 2 N the unit ball of the space X contains a finite
sequence x1; x2; : : : ; xm of vectors satisfying, for any j 2 f1; : : : ;m � 1g and any
real coefficients a1; : : : ; am, the condition (2).

Remark 2.14. It is worth mentioning that the proof of (1))(3) in the case where
˛ 2 Œ 1

2
; 1/ is much more difficult than in the case ˛ 2 .0; 1

2
/. A relatively easy

proof in the case ˛ 2 Œ 1
2
; 1/ was found by Brunel and Sucheston [20], see also its

presentation in [103].

Remark 2.15. To prove the Bourgain’s theorem it suffices to use (1))(3) in the
‘easy’ case ˛ 2 .0; 1

2
/. The case ˛ 2 Œ 1

2
; 1/ is needed only for “almost-isometric”

embeddings of trees into nonsuperreflexive spaces.
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Remark 2.16. The equivalence of (2),(3) in Theorem 2.13 can be proved using
a “self-improvement argument,” but the proof of James is different. A proof of
(2),(3) using a “self-improvement argument” was obtained by Wenzel [114], it is
based on the Ramsey theorem, so it requires a very lengthy sequence to get a better
˛. In [84] it was proved that to some extent the usage of ‘very lengthy’ sequences is
necessary.

Proof of the “Only If” Part. There is a natural partial order on Tn: we say that s < t
.s; t 2 Tn/ if the sequence corresponding to s is the initial segment of the sequence
corresponding to t.

An important observation of Bourgain is that there is a bijective mapping

' W Tn ! Œ1; : : : ; 2nC1 � 1

such that ' maps two disjoint intervals of the ordering of Tn, starting at the same
vertex and going “down” into disjoint intervals of Œ1; : : : ; 2nC1 � 1
. The existence
of ' can be seen from a suitably drawn picture of Tn (see Fig. 3), or using the
expansion of numbers in base 2. To use the expansion of numbers, we observe
that the map f�ign

iD1 ! f2�i � 1gn
iD1 maps a 0; 1�sequence onto the corresponding

˙1�sequence. Now we introduce a map  W Tn ! Œ�1; 1
 by letting  .;/ D 0 and

 .�1; : : : ; �n/ D
nX

iD1
2�i .2�i � 1/ :

To construct ' we relabel the range of  in the increasing order using numbers
Œ1; : : : ; 2nC1 � 1
.

Let fx1; x2; : : : ; x2nC1�1g be a sequence in a nonsuperreflexive Banach space
X whose existence is guaranteed by Theorem 2.13 ((1))(3)). We introduce an
embedding Fn W Tn ! X by

Fn.t/ D
X
s�t

x'.s/;

0

− 1
2

− 3
4

− 7
8 − 5

8

− 1
4

− 3
8 − 1

8

1
2

1
4

1
8

3
8

3
4

5
8

7
8

Fig. 3 The map of T3 into Œ�1; 1
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t0

t1

t2

Fig. 4 t0 is the closest common ancestor of t1 and t2

where s � t for vertices of a binary tree means that s is the initial segment of
the sequence t. Then Fn.t1/ � Fn.t2/ D P

t0<s�t1
x'.s/ � P

t0<s�t2
x'.s/, where t0 is

the vertex of Tn corresponding to the largest initial common segment of t1 and t2,
see Fig. 4. The condition in (2) and the choice of ' imply that

jjFn.t1/ � Fn.t2/jj � ˛.dT.t1; t0/C dT.t2; t0// D ˛dTn.t1; t2/:

The estimate jjFn.t1/ � Fn.t2/jj from above is straightforward. This completes the
proof of bilipschitz embeddability of fTng into any nonsuperreflexive Banach space
with uniformly bounded distortions. ut

Characterization of Superreflexivity in Terms of Diamond
Graphs

Johnson and Schechtman [58] proved that there are some other sequences of graphs
(with their graph metrics) which also can serve as test-spaces for superreflexivity.
For example, binary trees in Bourgain’s theorem can be replaced by the diamond
graphs or by Laakso graphs.

Definition 2.17. Diamond graphs fDng1
nD0 are defined as follows: The diamond

graph of level 0 is denoted D0. It has two vertices joined by an edge of length 1. The
diamond graph Dn is obtained from Dn�1 as follows. Given an edge uv 2 E.Dn�1/,
it is replaced by a quadrilateral u; a; v; b, with edges ua, av, vb, bu. (See Fig. 5.)

Two different normalizations of the graphs fDng1
nD1 are considered

• Unweighted diamonds: Each edge has length 1.
• Weighted diamonds: Each edge of Dn has length 2�n

In both cases we endow vertex sets of fDng1
nD0 with their shortest path metrics.
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Fig. 5 Diamond D2

In the case of weighted diamonds the identity map Dn�1 7! Dn is an isometry.
In this case the union of Dn, endowed with its the metric induced from fDng1

nD0 is
called the infinite diamond and is denoted D! .

To the best of my knowledge the first paper in which diamond graphs fDng1
nD0

were used in Metric Geometry is [50] (a conference version was published in 1999).

Definition 2.18. Laakso graphs fLng1
nD0 are defined as follows: The Laakso graph

of level 0 is denoted L0. It has two vertices joined by an edge of length 1. The
Laakso graph Ln is obtained from Ln�1 as follows. Given an edge uv 2 E.Ln�1/, it
is replaced by the graph L1 shown in Fig. 6, the vertices u and v are identified with
the vertices of degree 1 of L1.

Two different normalizations of the graphs fLng1
nD1 are considered

• Unweighted Laakso graphs: Each edge has length 1.
• Weighted Laakso graphs: Each edge of Ln has length 4�n

In both cases we endow vertex sets of fLng1
nD0 with their shortest path metrics.

In the case of weighted Laakso graphs the identity map Ln�1 7! Ln is an isometry.
In this case the union of Ln endowed with its the metric induced from fLng1

nD0 is
called the Laakso space and is denoted L! .

The Laakso graphs were introduced in [65], but they were inspired by the
construction of Laakso in [63].

Theorem 2.19 (Johnson–Schechtman [58]). A Banach space X is nonsuperre-
flexive if and only if it admits bilipschitz embeddings with uniformly bounded
distortions of diamonds fDng1

nD1 of all sizes.

Theorem 2.20 (Johnson–Schechtman [58]). A similar result holds for fLng1
nD1.
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Fig. 6 Laakso graph L1

Without Proof. These results, whose original proofs (especially for diamond
graphs) are elegant in both directions, are loved by expositors. Proof of
Theorem 2.19 is presented in the lecture notes of Lancien [64], in the book of
Pisier [103], and in my book [90]. ut
Remark 2.21. In the “if” direction of Theorem 2.19, in addition to the original
(controlled improvement for embeddings of smaller parts) argument of Johnson–
Schechtman [58], there are two other arguments:

(1) The argument based on Markov convexity (see Definition 2.26). It is obtained
by combining results of Lee–Naor–Peres [67] (each superreflexive Banach
space is Markov p-convex for some p 2 Œ2;1/) and Mendel–Naor [78]
(Markov convexity constants of diamond graphs are not uniformly bounded
from below, actually in [78] this statement is proved for Laakso graphs, but
similar argument works for diamond graphs).

(2) The argument of [87, Sect. 3.1] showing that bilipschitz embeddability of
diamond graphs with uniformly bounded distortions implies the finite tree
property of the space, defined as follows:

Definition 2.22 (James [55]). Let ı > 0. A ı-tree in a Banach space X is a subset
fx�g�2T

1

of X labelled by elements of the infinite binary tree T1, such that for each
� 2 T1 we have

x� D 1

2
.x�1 C x�2/ and jjx� � x�1 jj D jjx� � x�2 jj � ı; (3)

where �1 and �2 are the children of � . A Banach space X is said to have the infinite
tree property if it contains a bounded ı-tree.
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A ı-tree of depth n in a Banach space X is a finite subset fx� g�2Tn of X labelled by
the binary tree Tn of depth n, such that the condition (3) is satisfied for each � 2 Tn,
which is not a leaf. A Banach space X has the finite tree property if for some ı > 0
and each n 2 N the unit ball of X contains a ı-tree of depth n.

Remark 2.23. In the “only if” direction of Theorem 2.19 there is a different (and
more complicated) proof in [91, 96], which consists in a combination of the
following two results:

(i) Existence of a bilipschitz embedding of the infinite diamond D! into any non-
separable dual of a separable Banach space (using Stegall’s [111] construction),
see [91].

(ii) Finite subsets of a metric space which admits a bilipschitz embedding into any
nonseparable dual of a separable Banach space, admit embeddings into any
nonsuperreflexive Banach space with uniformly bounded distortions, see [96].
(The proof uses transfinite duals [9, 33, 34] and the results of Brunel–Sucheston
[20, 21] and Perrott [100] on equal-signs-additive sequences.)

I would like to turn your attention to the fact that the Johnson–Schechtman
Theorem 2.19 shows some obstacles on the way to a solution the (mentioned above)
problem for superreflexivity:

Characterize metric spaces which admit bilipschitz embeddings into some
superreflexive Banach spaces.

We need the following definitions and results. Let fMng1
nD1 and fRng1

nD1 be
two sequences of metric spaces. We say that fMng1

nD1 admits uniformly bilipschitz
embeddings into fRng1

nD1 if for each n 2 N there is m.n/ 2 N and a bilipschitz map
fn W Mn ! Rm.n/ such that the distortions of ffng1

nD1 are uniformly bounded.

Theorem 2.24 ([92]). Binary trees fTng1
nD1 do not admit uniformly bilipschitz

embeddings into diamonds fDng1
nD1.

Without Proof. The proof is elementary, but rather lengthy combinatorial argument.
ut

There is also a non-embeddability in the other direction: The fact that diamonds
fDng do not admit uniformly bilipschitz embeddings into binary trees fTng is well
known, it follows immediately from the fact that Dn .n � 1/ contains a cycle
of length 2nC1 isometrically, and the well-known observation of Rabinovich and
Raz [105] stating that the distortion of any embedding of an m-cycle into any tree
is � m

3
� 1.

Remark 2.25. Mutual non-embeddability of Laakso graphs and binary trees is much
simpler: (1) Laakso graphs are non-embeddable into trees because large Laakso
graphs contain large cycles isometrically. (2) Binary trees are not embeddable into
Laakso graphs because the Laakso graphs are uniformly doubling (see [51, p. 81]
for the definition of a doubling metric space), but binary trees are not uniformly
doubling.
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Let us show that these results, in combination with some other known results,
imply that it is impossible to find a sequence fCng1

nD1 of finite metric spaces
which admits uniformly bilipschitz embeddings into a metric space M if and
only if M does not admit a bilipschitz embedding into a superreflexive Banach
space. Assume the contrary: Such sequence fCng1

nD1 exists. Then fCng admits
uniformly bilipschitz embeddings into the infinite binary tree. Therefore, by the
result of Gupta [49], the spaces fCng1

nD1 are uniformly bilipschitz-equivalent to
weighted trees fWng1

nD1 . The trees fWng1
nD1 should admit, by a result Lee–Naor–

Peres [67] uniformly bilipschitz embeddings of increasing binary trees (these
authors proved that fWng1

nD1 would admit uniformly bilipschitz embeddings into `2
otherwise). Therefore, by Theorem 2.24 the spaces fCng1

nD1 cannot be embeddable
into diamonds with uniformly bounded distortion. Therefore they do not admit
uniformly bilipschitz embeddings into D! (since the union of fDig1

iD0 is dense in
D!). On the other hand, Theorem 2.19 implies that D! does not admit a bilipschitz
embedding into a superreflexive space, a contradiction.

One can try to find a characterization of metric spaces which are embeddable
into superreflexive spaces in terms of some inequalities for distances. Some hope for
such characterization was given by the already mentioned Markov convexity intro-
duced by Lee–Naor–Peres [67], because it provides a reason for non-embeddability
into superreflexive Banach spaces of both binary trees and diamonds (and many
other trees and diamond-like spaces).

Definition 2.26 (Lee–Naor–Peres [67]). Let fXtgt2Z be a Markov chain on a state
space �. Given an integer k � 0, we denote by feXt.k/gt2Z the process which equals
Xt for time t � k, and evolves independently (with respect to the same transition
probabilities) for time t > k. Fix p > 0. A metric space .X; dX/ is called Markov
p-convex with constant … if for every Markov chain fXtgt2Z on a state space �, and
every f W � ! X,

1X
kD0

X
t2Z

E
�
dX
�
f .Xt/; f

�eXt
�
t � 2k

���p


2kp
� …p �

X
t2Z

E
�
dX.f .Xt/; f .Xt�1//p



: (4)

The least constant… for which (4) holds for all Markov chains is called the Markov
p-convexity constant of X, and is denoted …p.X/. We say that .X; dX/ is Markov
p-convex if …p.X/ < 1.

Remark 2.27. The choice of the rather complicated left-hand side in (4) is inspired
by the original Bourgain’s proof [13] of the “if” part of Theorem 2.6.

Remark 2.28. It is unknown whether for general metric spaces Markov p-convexity
implies Markov q-convexity for q > p. (This is known to be true for Banach spaces.)

Lee–Naor–Peres [67] showed that Definition 2.26 is important for the theory of
metric embeddings by proving that each superreflexive space X is Markov q-convex
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for sufficiently large q. More precisely, it suffices to pick q such that X has an
equivalent q-convex norm (see Definition 2.7), and by Theorem 2.9 of Pisier, such
q 2 Œ2;1/ exists for each superreflexive space.

On the other hand, Lee–Naor–Peres have shown that for any 0 < p < 1 the
Markov p-convexity constants of binary trees fTng are not uniformly bounded. Later
Mendel and Naor [78] verified that the Markov p-convexity constants of Laakso
graphs are not uniformly bounded. Similar proof works for diamonds fDng. See
Theorem 3.11 and Remark 3.13 for a more general result.

Example 2.29 (Lee–Naor–Peres [67]). For every m 2 N, we have …p.T2m/

� 2
1� 2

p � m
1
p :

Proof. Simplifying the description of the chain somewhat (precise description of�
and the map f requires some formalities), we consider only times t D 1; : : : ; 2m and
let fXtgm

tD0 be the downward random walk on T2m which is at the root at time t D 0

and XtC1 is obtained from Xt by moving down-left or down-right with probability
1
2

each, see Fig. 7. We also assume that Xt is at the root with probability 1 if t < 0

(here more formal description of the chain is needed) and that for t > 2m we have
XtC1 D Xt (this is usually expressed by saying that leaves are absorbing states).
Then

2mX
tD1

E
�
dT2m .Xt;Xt�1/p


 D 2m:

Moreover, in the downward random walk, after splitting at time r � 2m with
probability at least 1

2
two independent walks will accumulate distance which is at

least twice the number of steps (until a leaf is encountered). Thus

r

l l l l l l l l

Fig. 7 T3, with the root (r) and leaves (l) marked
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mX
kD0

2mX
tD1

E
�
dT2m

�
Xt;eXt

�
t � 2k

��p


2kp
�

m�1X
kD0

2mX
tD2k

1

2kp
� 1
2

� 2.kC1/p

� m2m�12p�1

D 2p�2 � m � 2m:

The claim follows. ut
For diamond graphs and Laakso graphs the argument is similar, but more

complicated, because in such graphs the trajectories can come close after separation.
After uniting the reasons for non-embeddability for diamonds and trees one

can hope to show that Markov convexity characterizes metric spaces which are
embeddable into superreflexive spaces. It turns out that this is not the case. It was
shown by Li [68, 69] that the Heisenberg group H.R/ (see Definition 3.9) is Markov
convex. On the other hand, it is known that the Heisenberg group does not admit a
bilipschitz embedding into any superreflexive Banach space [26, 66]. (It is worth
mentioning that in the present context we may consider the discrete Heisenberg
group H.Z/ consisting of the matrices with integer entries of the form shown in
Definition 3.9 endowed with its word distance, see Definition 2.35.)

I suggest the following problem which is open as far as I know:

Problem 2.30. Does there exist a test-space for superreflexivity which is Markov
p-convex for some 0 < p < 1? (Or a sequence of test-spaces with uniformly
bounded Markov p-convexity constants?)

Remark 2.31. The Heisenberg group H.Z/ (with integer entries) has two properties
needed for the test-space in Problem 2.30: it is not embeddable into any super-
reflexive space and is Markov convex. The only needed property which it does not
have is: embeddability into each nonsuperreflexive space. Cheeger and Kleiner [28]
proved that H.Z/ is not embeddable into some nonsuperreflexive Banach spaces,
for example, into L1.0; 1/.

One more problem which I would like to mention here is

Problem 2.32 (Naor, July 2013). Does there exist a sequence of finite metric spa-
ces fMig1

iD1 which is a sequence of test-spaces for superreflexivity with the following
universality property: if fAig1

iD1 is a sequence of test-spaces for superreflexivity, then
there exist uniformly bilipschitz embeddings Ei W Ai ! Mn.i/, where fn.i/g1

iD1 is
some sequence of positive integers?

Characterization of Superreflexivity in Terms of One Test-Space

Baudier [4] strengthened the “only if” direction of Bourgain’s characterization and
proved
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Theorem 2.33 (Baudier [4]). A Banach space X is nonsuperreflexive if and only if
it admits bilipschitz embedding of the infinite binary tree T1.

The following result hinted that possibly the Cayley graph of any nontrivially
complicated hyperbolic group is the test-space for superreflexivity:

Theorem 2.34 (Buyalo–Dranishnikov–Schroeder [22]). Every Gromov hyper-
bolic group admits a quasi-isometric embedding into the product of finitely many
copies of the binary tree.

Let us introduce notions used in this statement.

Definition 2.35. Let G be a group generated by a finite set S.

• The Cayley graph Cay.G; S/ is defined as a graph whose vertex set is G and
whose edge set is the set of all pairs of the form .g; sg/, where g 2 G, s 2 S.

• In this context we consider each edge as a line segment of length 1 and endow
Cay.G; S/ with the shortest path distance. The restriction of this distance to G is
called the word distance.

• Let u and v be two elements in a metric space .M; dM/. A uv-geodesic is
a distance-preserving map g W Œ0; dM.u; v/
 ! M such that g.0/ D u and
g.dM.u; v// D v (where Œ0; dM.u; v/
 is an interval of the real line with the
distance inherited from R).

• A metric space M is geodesic if for any two points u and v in M, there is a
uv-geodesic in M; Cay.G; S/, with edges identified with line segments and with
the shortest path distance is a geodesic metric space.

• A geodesic metric space M is called ı-hyperbolic, if for each triple u; v;w 2 M
and any choice of a uv-geodesic, vw-geodesic, and wu-geodesics, each of these
geodesics is in the ı-neighborhood of the union of the other two.

• A group is word hyperbolic or Gromov hyperbolic if Cay.G; S/ is ı-hyperbolic
for some ı < 1.

Remark 2.36. • It might seem that the definition of hyperbolicity depends on the
choice of the generating set S.

• It turns out that the value of ı depends on S, but its existence does not.
• The theory of hyperbolic groups was created by Gromov [46], although some

related results were known before. The theory of hyperbolic groups plays an
important role in group theory, geometry, and topology.

• Theory of hyperbolic groups is presented in many sources, see [1, 18].

Remark 2.37. It is worth mentioning that the identification of edges of Cay.G; S/
with line segments is useful and important when we study geodesics and introduce
the definition of hyperbolicity. In the theory of embeddings it is much more
convenient to consider Cay.G; S/ as a countable set (it is countable because
we consider groups generated by finite sets), endowed with the shortest path
distance (in the graph-theoretic sense), in this context it is called the word distance.
See [89, 95] for relations between embeddability of graphs as vertex sets and as
geodesic metric spaces.
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It is worth mentioning that although different finite generating sets S1 and S2 in
G lead to different word distances on G, the resulting metric spaces are bilipschitz
equivalent: the identity map .G; dS1 / ! .G; dS2 / is bilipschitz, where dS1 is the word
distance corresponding to S1 and dS2 is the word distance corresponding to S2.

We also need the following definitions used in [22]. A map f W X ! Y between
metric spaces .X; dX/ and .Y; dY/ is called a quasi-isometric embedding if there are
a1; a2 > 0 and b � 0, such that

a1dX.u; v/ � b � dY.f .u/; f .v// � a2dX.u; v/C b (5)

for all u; v 2 X. By a binary tree the authors of [22] mean an infinite tree in which
each vertex has degree 3. By a product of trees, denoted .˚n

iD1T.i//1, we mean their
Cartesian product with the `1-metric, that is,

d.fuig; fvig/ D
nX

iD1
dT.i/.ui; vi/: (6)

Observation 2.38. The binary tree defined as an infinite tree in which each vertex
has degree 3 is isometric to a subset of the product in the sense of (6) of three copies
of T1.

Therefore we may replace the infinite binary tree by T1 in the statement
of Theorem 2.34. Hence the Buyalo–Dranishnikov–Schroeder Theorem 2.34 in
combination with the Baudier Theorem 2.33 implies the existence of a quasi-
isometric embedding of any Gromov hyperbolic group, which is embeddable into
product of n copies of T1, into any Banach space containing an isomorphic copy
of a direct sum of n nonsuperreflexive spaces. The fact that Buyalo–Dranishnikov–
Schroeder consider quasi-isometric embeddings (which are weaker than bilipschitz)
is not a problem. One can easily prove the following lemma. Recall that a metric
space is called locally finite if all balls of finite radius in it have finite cardinality
(a detailed proof of Lemma 2.39 can be found in [92, Lemma 2.3]).

Lemma 2.39. If a locally finite metric space M admits a quasi-isometric embed-
ding into an infinite-dimensional Banach space X, then M admits a bilipschitz
embedding into X.

Remark 2.40. One can easily construct a counterexample to a similar statement for
general metric spaces.

Back to Embeddings However, we know from results of Gowers–Maurey
[45] that there exist nonsuperreflexive spaces which do not contain isomorphically
direct sums of any two infinite-dimensional Banach spaces, so we do not get
immediately bilipschitz embeddability of hyperbolic groups into nonsuperreflexive
Banach spaces.
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Possibly this obstacle can be overcome by modifying Baudier’s proof of Theo-
rem 2.33 for the case of a product of several trees, but at this point a more general
result is available. It can be stated as:

Embeddability of locally finite spaces into Banach spaces is finitely determined.
We need the following version of the result on finite determination (this statement

also explains what we mean by “finite determination”):

Theorem 2.41 ([88]). Let A be a locally finite metric space whose finite subsets
admit bilipschitz embeddings into a Banach space X with uniformly bounded
distortions. Then A admits a bilipschitz embedding into X.

Remark 2.42. This result and its version for coarse embeddings have many prede-
cessors: Baudier [4, 5], Baudier–Lancien [6], Brown–Guentner [19], and Ostrovskii
[85, 86].

Now we return to embeddings of hyperbolic groups into nonsuperreflexive
spaces. Recall that we consider finitely generated groups. It is easy to see that in this
case Cay.G; S/ is a locally finite metric space (recall that we consider Cay.G; S/
as a countable set G with its word distance). By finite determination, it suffices
to show only how to embed products of n finite binary trees into an arbitrary
nonsuperreflexive Banach space with uniformly bounded distortions (the distortions
are allowed to grow if we increase n, since for a fixed hyperbolic group the number
n is fixed). This can be done using the embedding of a finite binary tree suggested
by Bourgain (Theorem 2.6) and the standard techniques for constructions of basic
sequences and finite-dimensional decompositions. These techniques (going back
to Mazur) allow to show that for each n and N there exists a sequence of finite-
dimensional spaces Xi such that Xi contains a 2-bilipschitz image of TN and the
direct sum .˚n

iD1Xi/1 is C.n/-isomorphic to their linear span in X (C.n/ is constant
which depends on n, but not on N). See [92, pp. 157–158] for a detailed argument.

So we have proved that each Gromov hyperbolic group admits a bilipschitz
embedding into any nonsuperreflexive Banach space. This proves the corresponding
part of the following theorem:

Theorem 2.43. Let G be a Gromov hyperbolic group which does not contain
a cyclic group of finite index. Then the Cayley graph of G is a test-space for
superreflexivity.

The other direction follows by a combination of results of Bourgain [13],
Benjamini and Schramm [10], and some basic theory of hyperbolic groups [18, 82],
see [92, Remark 2.5] for details.

I find the following open problem interesting:

Problem 2.44. Characterize finitely generated infinite groups whose Cayley graphs
are test-spaces for superreflexivity.

Possibly Problem 2.44 is very far from its solution and we should rather do the
following. Given a group whose structure is reasonably well understood, check

(1) Whether it admits a bilipschitz embedding into an arbitrary nonsuperreflexive
Banach space?
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(2) Whether it admits bilipschitz embeddings into some superreflexive Banach
spaces?

Remark 2.45. There are groups which do not admit bilipschitz embeddings into
some nonsuperreflexive spaces, such as L1. Examples which I know:

• Heisenberg group (Cheeger–Kleiner [28]).
• Gromov’s random groups [48] containing expanders weakly are not even

coarsely embeddable into L1.
• Recently constructed groups of Osajda [83] with even stronger properties.

Remark 2.46. At the moment the only groups known to admit bilipschitz embed-
dings into superreflexive spaces are groups containing Z

n as a subgroup of finite
index. de Cornulier–Tessera–Valette [35] conjectured that such groups are the only
groups admitting a bilipschitz embedding into `2. This conjecture is still open. I
asked about the superreflexive version of this conjecture on MathOverflow [97]
(August 19, 2014) and de Cornulier commented on it as: “In the main two cases
for which the conjecture is known to hold in the Hilbert case, the same argument
also works for arbitrary uniformly convex Banach spaces.”

Remark 2.47. Groups which are test-spaces for superreflexivity do not have to be
hyperbolic. In fact, one can show that a direct product of finitely many hyperbolic
groups is a test-space for superreflexivity provided at least one of them does not have
a cyclic group as a subgroup of finite index. It is easy to check (using the definition)
that such products are not Gromov hyperbolic unless all-except-one groups in the
product are finite (the reason is that Z2 is not Gromov hyperbolic).

Now I would like to return to the title of this section: “Characterization of
superreflexivity in terms of one test-space.” This can actually be done using
either the Bourgain or the Johnson–Schechtman characterization and the following
elementary proposition (I published it [92], but I am sure that it was known to
interested people):

Proposition 2.48 ([92, Sect. 5]).

(a) Let fSng1
nD1 be a sequence of finite test-spaces for some class P of Banach

spaces containing all finite-dimensional Banach spaces. Then there is a metric
space S which is a test-space for P .

(b) If fSng1
nD1 are

• unweighted graphs,
• trees,
• graphs with uniformly bounded degrees,

then S also can be required to have the same property.

Sketch of the Proof. In all of the cases the constructed space S contains subspaces
isometric to each of fSng1

nD1. Therefore the only implication which is nontrivial is
that the embeddability of fSng1

nD1 implies the embeddability of S.
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Each finite metric space can be considered as a weighted graph with its shortest
path distance. We construct the space S as an infinite graph by joining Sn with SnC1
with a path Pn whose length is � maxfdiamSn; diamSnC1g. To be more specific, we
pick in each Sn a vertex On and let Pn be a path joining On with OnC1. We endow
the infinite graph S with its shortest path distance. It is clear that fSng1

nD1 embed
isometrically into S and all of the conditions in (b) are satisfied. It remains only
to show that each infinite-dimensional Banach space X which admits bilipschitz
embeddings of fSng1

nD1 with uniformly bounded distortions, admits a bilipschitz
embedding of S. This is done by embedding Sn into any hyperplane of X with
uniformly bounded distortions. This is possible because the sets are finite, the space
is infinite-dimensional, and all hyperplanes in a Banach space are isomorphic with
the Banach–Mazur distances being � some universal constant.

Now we consider in X parallel hyperplanes fHng with the distance between Hn

and HnC1 equal to the length of Pn and embed everything in the corresponding way.
All computations are straightforward (see [92] for details). ut

Non-local Properties

One can try to find metric characterizations of classes of Banach spaces which are
not local. (We say that a class P of Banach spaces is not local if the conditions
(1) X 2 P and (2) Y is finitely representable in X, do not necessarily imply that
Y 2 P). Apparently this study should not be considered as a part of the Ribe
program, and this direction has developed much more slowly than the directions
related to the Ribe program. It is clear that even if we restrict our attention to
properties which are hereditary (inherited by closed subspaces) and isomorphic
invariant, the class of non-local properties which have been already studied in the
literature is huge. I found in the literature only four properties for which the problem
of metric characterization was ever considered asymptotic uniform convexity and
smoothness, Radon-Nykodým property, reflexivity, infinite tree property. The goal
of this section is to survey the corresponding results.

Asymptotic Uniform Convexity and Smoothness

One of the first results of the described type is the following result of Baudier–
Kalton–Lancien, where by T11 we denote the tree defined similarly to the tree T1,
but now we consider all possible finite sequences with terms in N, and so degrees of
all vertices of T11 are infinite.
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Theorem 3.1 ([7]). Let X be a reflexive Banach space. The following assertions are
equivalent:

• T11 admits a bilipschitz embedding into X.
• X does not admit any equivalent asymptotically uniformly smooth norm or X

does not admit any equivalent asymptotically uniformly convex norm.
• The Szlenk index of X is > ! or the Szlenk index of X� is > !, where ! is the

first infinite ordinal.

It is worth mentioning that Dilworth et al. [37] found an interesting geometric
description of the class of Banach spaces whose metric characterization is provided
by Theorem 3.1.

Radon–Nikodým Property

The Radon–Nikodým property (RNP) is one of the most important isomorphic
invariants of Banach spaces. This class also plays an important role in the theory
of metric embeddings, this role is partially explained by the fact that for this class
one can use differentiability to prove non-embeddability results.

There are many expository works presenting results on the RNP, we recommend
the readers (depending on the taste and purpose) one of the following sources [11,
Chap. 5], [12, 17, 36, 103, 113].

Equivalent Definitions of RNP

One of the reasons for the importance of the RNP is the possibility to characterize
(define) the RNP in many different ways. I would like to remind some of them:

• Measure-theoretic definition (it gives the name to this property) X 2 RNP ,
The following analogue of the Radon–Nikodým theorem holds for X-valued
measures.

– Let .�;†;�/ be a positive finite real-valued measure, and .�;†; �/ be an
X-valued measure on the same � -algebra which is absolutely continuous with
respect to � (this means �.A/ D 0 ) �.A/ D 0) and satisfies the condition
�.A/=�.A/ is a uniformly bounded set of vectors over all A 2 † with �.A/ ¤
0. Then there is an f 2 L1.�;X/ such that

8A 2 † �.A/ D
ˆ

A
f .!/d�.!/:

• Definition in terms of differentiability (goes back to Clarkson [31] and Gelfand
[41]) X 2 RNP , X-valued Lipschitz functions on R are differentiable almost
everywhere.
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• Probabilistic definition [24] X 2 RNP , Bounded X-valued martingales
converge.

– In more detail: A Banach space X has the RNP if and only if each
X-valued martingale ffng on some probability space .�;†;�/, for which
fjjfn.!/jj W n 2 N; ! 2 �g is a bounded set, converges in L1.�;†;�;X/.

• Geometric definition. X 2 RNP , Each bounded closed convex set in X is
dentable in the following sense:

– A bounded closed convex subset C in a Banach space X is called dentable if
for each " > 0 there is a continuous linear functional f on X and ˛ > 0 such
that the set

fy 2 C W f .y/ � supff .x/ W x 2 Cg � ˛g

has diameter < ".

• Examples (these lists are far from being exhaustive):

– RNP: Reflexive (for example, Lp, 1 < p < 1), separable dual spaces (for
example, `1).

– non-RNP: c0, L1.0; 1/, nonseparable duals of separable Banach spaces.

RNP and Metric Embeddings

Cheeger–Kleiner [26] and Lee–Naor [66] noticed that the observation of Semmes
[109] on the result of Pansu [98] can be generalized to maps of the Heisenberg group
into Banach spaces with the RNP. This implies that Heisenberg group with its sub-
Riemannian metric (see Definition 3.9) does not admit a bilipschitz embedding into
any space with the RNP.

Cheeger–Kleiner [27] generalized some part of differentiability theory of Chee-
ger [25] (see also [59, 60]) to maps of metric spaces into Banach spaces with the
RNP. This theory implies some non-embeddability results, for example, it implies
that the Laakso space does not admit a bilipschitz embedding into a Banach space
with the RNP.

Metric Characterization of RNP

In 2009 Johnson [112, Problem 1.1] suggested the problem: Find a purely metric
characterization of the Radon–Nikodým property (that is, find a characterization of
the RNP which does not refer to the linear structure of the space). The main goal of
the rest of section “Radon–Nikodým Property” is to present such characterization.
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It turns out that the RNP can be characterized in terms of thick families of
geodesics defined as follows (different versions of this definition appeared in
[91, 93, 94], the following seems to be the most suitable definition).

Definition 3.2 ([91, 94]). A family T of uv-geodesics is called thick if there is ˛ >
0 such that for every g 2 T and for every finite collection of points r1; : : : ; rn in the
image of g, there is another uv-geodesic Qg 2 T satisfying the conditions:

(i) The image of Qg also contains r1; : : : ; rn (we call these points control points).
(ii) Possibly there are some more common points of g and Qg.

(iii) There is a sequence 0 D q0 < s1 < q1 < s2 < q2 < � � � < sm < qm D
dM.u; v/, such that g.qi/ D Qg.qi/ (i D 0; : : : ;m) are common points containing
r1; : : : ; rn; and

Pm
iD1 dM.g.si/; Qg.si// � ˛:

(iv) Furthermore, each geodesic which on some intervals between the points 0 D
q0 < q1 < q2 < � � � < qm D dM.u; v/ coincides with g and on others with Qg is
also in T .

Example 3.3. Interesting and important examples of spaces having thick families
of geodesics are the infinite diamond D! and the Laakso space L! , but now we
consider them not as unions of finite sets, but as unions of geodesic metric spaces
obtained from weighted fDng1

nD0 and fLng1
nD0 in which edges are identified with

line segments of lengths f2�ng1
nD0 and f4�ng1

nD0, respectively. Observe that for such
graphs there are also natural (although non-unique) isometric embeddings of Dn into
DnC1 and Ln into LnC1, and therefore the unions are well-defined. It is easy to check
that the families of all geodesics in D! and L! joining the vertices of D0 and L0,
respectively, are thick.

Theorem 3.4 ([91, 94]). A Banach space X does not have the RNP if and only if
there exists a metric space MX containing a thick family TX of geodesics which
admits a bilipschitz embedding into X.

Remark 3.5. Theorem 3.4 implies the result of Cheeger and Kleiner [27] on
nonexistence of bilipschitz embeddings of the Laakso space into Banach spaces
with the RNP.

It turns out that the metric space MX whose existence is established in Theo-
rem 3.4 cannot be chosen independently of X, because the following result holds:

Theorem 3.6 ([91]). For each metric space M containing a thick family of
geodesics there exists a Banach space X which does not have the RNP and does not
admit a bilipschitz embedding of M.

Because of Theorem 3.6 the following is an open problem:

Problem 3.7. Can we characterize the RNP using test-spaces?

Also I would like to mention the problem of the metric characterization of the
RNP can have many different (correct) answers, so it is natural to try to find metric
characterizations of the RNP in some other terms.
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• Proof of Theorem 3.4 (in both directions) is based on the characterization of
the RNP in terms of martingales. It will be presented in section “Proof of
Theorem 3.4”.

• It is not true that each Banach space without RNP contains a thick family of
geodesics, because Banach spaces without RNP can have the uniqueness of
geodesics property (consider a strictly convex renorming of a separable Banach
space without RNP), so the words ‘bilipschitz embedding’ in Theorem 3.4 cannot
be replaced by ‘isometric embedding.’

• Proof of Theorem 3.6 is based on the construction of Bourgain and Rosenthal
[15] of ‘small’ subspaces of L1.0; 1/ which still do not have the Radon–Nikodým
property.

• Studying metric characterizations of the RNP, it would be much more useful
and interesting to get a characterization of all metric spaces which do not admit
bilipschitz embeddings into Banach spaces with the RNP.

• In view of Theorem 3.4 it is natural to ask: whether the presence of bilipschitz
images of thick families of geodesics characterizes metric spaces which do not
admit bilipschitz embeddings into Banach spaces with the RNP?

• It is clear that the answer to this question in full generality is negative: we may
just consider a dense subset of a Banach space without the RNP which does not
contain any continuous curves.

• So we restrict our attention to spaces containing sufficiently large collections
of continuous curves. Our next result is a negative answer even in the case of
geodesic metric spaces. Recall a metric space is called geodesic if any two points
in it are joined by a geodesic.

Theorem 3.8 ([93]). There exist geodesic metric spaces which satisfy the following
two conditions simultaneously:

• Do not contain bilipschitz images of thick families of geodesics.
• Do not admit bilipschitz embeddings into Banach spaces with the Radon–Niko-

dým property.

In [93] it was shown that the Heisenberg group with its sub-Riemannian metric
is an example of such metric space. Let us recall the corresponding definitions.

Definition 3.9. The Heisenberg group H.R/ can be defined as the group of real
upper-triangular matrices with 1’s on the diagonal:

2
4
1 x z
0 1 y
0 0 1

3
5 :

One of the ways to introduce the sub-Riemannian metric on H.R/ is to find the
tangent vectors of the curves produced by left translations in x and in y directions,
that is,
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d

d"

ˇ̌
ˇ̌
"D0

2
4
1 " 0

0 1 0

0 0 1

3
5
2
4
1 x z
0 1 y
0 0 1

3
5 D

2
4
0 1 y
0 0 0

0 0 0

3
5

d

d"

ˇ̌
ˇ̌
"D0

2
4
1 0 0

0 1 "

0 0 1

3
5
2
4
1 x z
0 1 y
0 0 1

3
5 D

2
4
0 0 0

0 0 1

0 0 0

3
5

All elements of H.R/ can be regarded as elements of R3 with coordinates x; y; z.
For u; v 2 H.R/ we consider the set of all differentiable curves joining u and v
with the restriction that the tangent vector at each point of the curve is a linear
combination of the two tangent vectors computed above. Finally we introduce the
distance between u and v as the infimum of lengths (in the usual Euclidean sense)
of projections onto xy-plane of all such curves.

This metric has been systematically studied (see [23, 47, 80]), it has very interest-
ing geometric properties. The Heisenberg group H.R/with its subriemannian metric
is a very important example for Metric Geometry and its applications to Computer
Science. One of the reasons for this is its poor embeddability into many classes
of Banach spaces. As we already mentioned, Cheeger–Kleiner [26] and Lee–Naor
[66] proved that the Heisenberg group does not admit a bilipschitz embedding into
a Banach space with the RNP. It remains to show that it does not admit a bilipschitz
embedding of a thick family of geodesics.

Remark 3.10. It is not needed for our argument, but is worth mentioning that

• Cheeger–Kleiner [28] proved that H.R/ does not admit a bilipschitz embedding
into L1.0; 1/.

• Cheeger–Kleiner–Naor [29] found quantitative versions of the previous result for
embeddings of finite subsets of H.R/ into L1.0; 1/. These quantitative results are
important for Theoretical Computer Science.

We finish the proof of Theorem 3.8 by using the notion of Markov convexity
(Definition 2.26), proving

Theorem 3.11 ([93]). A metric space with a thick family of geodesics is not Markov
p-convex for any p 2 .0;1/.

and combining it with the following result:

Theorem 3.12 ([68, 69]). The Heisenberg group H.R/ is Markov 4-convex.

Remark 3.13. Since the infinite diamond D! and the Laakso space L! contain thick
families of geodesics, they are not Markov p-convex for any p 2 .0;1/. Since the
unions of fDng1

nD0 and fLng1
nD0 (considered as finite sets) are dense in D! and L! ,

respectively; we conclude that Markov p-convexity constants of diamond graphs
and Laakso graphs are not uniformly bounded for any p 2 .0;1/.



334 M. Ostrovskii

Remark 3.14. It is worth mentioning that the discrete Heisenberg group H.Z/

embeds into a Banach space with the RNP. Since H.Z/ is locally finite, this follows
by combining the well-known observation of Fréchet on isometric embeddability
of any n-element set into `n1 (see [90, p. 6]) with the finite determination
(Theorem 2.41, actually the earlier result of [6] suffices here). In fact, these results
imply bilipschitz embeddability of H.Z/ into the direct sum .˚1

nD1`n1/2, which has
the RNP because it is reflexive.

Proof of Theorem 3.4

First we prove: No RNP ) bilipschitz embeddability of a thick family of
geodesics.

We need to define a more general structure than that of a ı-tree (see Defini-
tion 2.22), in which each element is not a midpoint of a line segment, but a convex
combination.

Definition 3.15. Let Z be a Banach space and let ı > 0. A set of vectors
fzn;jg 1 mn

nD0;jD1 in Z is called a ı-bush if m0 D 1 and for every n � 1 there is a partition
fAn

kgmn�1

kD1 of f1; : : : ;mng such that

jjzn;j � zn�1;kjj � ı (7)

for every n � 1 and for every j 2 An
k , and

zn�1;k D
X
j2An

k

�n;jzn;j (8)

for some �n;j � 0,
P

j2An
k
�n;j D 1.

Theorem 3.16. A Banach space Z does not have the RNP if and only if it contains
a bounded ı-bush for some ı > 0.

Remark 3.17. Theorem 3.16 can be derived from Chatterji’s result [24]. Apparently
Theorem 3.16 was first proved by James, possibly even before Chatterji, see [57].

• We construct a suitable thick family of geodesics using a bounded ı-bush in a
Banach space without the RNP.

• It is not difficult to see (for example, using the Clarkson–Gelfand characteriza-
tion) that a subspace of codimension 1 (hyperplane) in a Banach space without
the RNP does not have the RNP.

• Let X be a non-RNP Banach space. We pick a norm-one vector x 2 X, then
a norm-one functional x� on X satisfying x�.x/ D 1. Then (by the previous
remark) we find a bounded ı-bush (for some ı > 0) in the kernel ker x�. We shift
this bush adding x to each of its elements, and get a (still bounded) ı-bush fxi;jg
satisfying the condition x�.xi;j/ D 1 for each i and j.
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• Now we change the norm of X to equivalent. The purpose of this step is to get a
norm for which we are able to construct the thick family of geodesics in X, and
there will be no need in a bilipschitz embedding. (One can easily see that this
would be sufficient to prove the theorem.)

• The unit ball of the norm jj � jj1 is defined as the closed convex hull of the unit
ball in the original norm and the set of vectors f˙xi;jg (recall that fxi;jg form a
bush in the hyperplane fx W x�.x/ D 1g). It is easy to check that in this new norm
the set fxi;jg is a bounded ı-bush (possibly with a somewhat smaller ı > 0, but
we keep the same notation). Also in the new norm we have jjxi;jjj1 D 1 for all i
and j. For simplicity of notation we shall use jj � jj to denote the new norm.

• We are going to use this ı-bush to construct a thick family TX of geodesics in
X joining 0 and x0;1. First we construct a subset of the desired set of geodesics,
this subset will be constructed as the set of limits of certain broken lines in X
joining 0 and x0;1. The constructed broken lines are also geodesics (but they do
not necessarily belong to the family TX).

• The mentioned above broken lines will be constructed using representations of
the form x0;1 D Pm

iD1 zi, where zi are such that jjx0;1jj D Pm
iD1 jjzijj. The broken

line represented by such finite sequence z1; : : : ; zm is obtained by letting z0 D 0

and joining
Pk

iD0 zi with
PkC1

iD0 zi with a line segment for k D 0; 1; : : : ;m � 1.
Vectors

Pk
iD0 zi, k D 0; 1; : : : ;m will be called vertices of the broken line.

• The infinite set of broken lines which we construct is labelled by vertices of the
infinite binary tree T1 in which each vertex is represented by a finite (possibly
empty) sequence of 0 and 1.

• The broken line corresponding to the empty sequence ; is represented by the
one-element sequence x0;1, so it is just a line segment joining 0 and x0;1.

• We have

x0;1 D �1;1x1;1 C � � � C �1;m1x1;m1 ;

where jjx1;j � x0;1jj � ı. We introduce the vectors

y1;j D 1

2
.x1;j C x0;1/:

• For these vectors we have

x0;1 D �1;1y1;1 C � � � C �1;m1y1;m1 ;

jjy1;j � x1;jjj D jjy1;j � x0;1jj � ı
2
, and jjy1;jjj D 1.

• As a preliminary step to the construction of the broken lines corresponding to
one-element sequences .0/ and .1/ we form a broken line represented by the
points

�1;1y1;1; : : : ; �1;m1y1;m1 : (9)

We label the broken line represented by (9) by ;.
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• The broken line corresponding to the one-element sequence .0/ is represented by
the sequence obtained from (9) if we replace each term �1;jy1;j by a two-element
sequence

�1;j

2
x0;1;

�1;j

2
x1;j: (10)

• The broken line corresponding to the one-element sequence .1/ is represented by
the sequence obtained from (9) if we replace each term �1;jy1;j by a two-element
sequence

�1;j

2
x1;j;

�1;j

2
x0;1: (11)

• At this point one can see where are we going to get the thickness property from.
• In fact, one of the inequalities above is jjx1;j � x0;1jj � ı. Therefore

����
�1;j

2
x1;j � �1;j

2
x0;1

���� � �1;j

2
ı:

Summing over all j, we get that the total sum of deviations is � ı
2
.

• In the obtained broken lines each line segment corresponds either to a multiple
of x0;1 or to a multiple of some x1;j. In the next step we replace each such line
segment by a broken line. Now we describe how we do this.

• Broken lines corresponding to 2-element sequences are also formed in two steps.
To get the broken lines labelled by .0; 0/ and .0; 1/ we apply the described
procedure to the geodesic labelled .0/, to get the broken lines labelled by .1; 0/
and .1; 1/ we apply the described procedure to the geodesic labelled .1/.

• In the first step we replace each term of the form �1;k
2

x0;1 by a multiplied by �1;k
2

sequence �1;1y1;1; : : : ; �1;m1y1;m1 , and we replace a term of the form �1;k
2

x1;k by

the multiplied by �1;k
2

sequence

f�2;jy2;jgj2A2k
; (12)

ordered arbitrarily, where y2;j D x1;kCx2;j
2

and �2;j, x2;j, and A2k are as in the
definition of the ı-bush (it is easy to check that in the new norm we have
jjy2;jjj D 1). We label the obtained broken lines by .0/ and .1/, respectively.

• To get the sequence representing the broken line labelled by .0; 0/ we do the
following operation with the preliminary sequence labelled .0/.

– Replace each multiple �y1;j present in the sequence by the two-element
sequence

�
x0;1
2
; �

x1;j
2
: (13)
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– Replace each multiple �y2;j, with j 2 A2k , present in the sequence by the two-
element sequence

�
x1;k
2
; �

x2;j
2
: (14)

• To get the sequence representing the broken line labelled by .0; 1/ we do the
same but changing the order of terms in (13) and (14). To get the sequences
representing the broken lines labelled by .1; 0/ and .1; 1/, we apply the same
procedure to the broken line labelled .1/.

• We continue in an “obvious” way and get broken lines for all vertices of
the infinite binary tree T1. It is not difficult to see that vertices of a broken
line corresponding to some vertex .�1; : : : ; �n/ are contained in the broken line
corresponding to any extension .�1; : : : ; �m/ of .�1; : : : ; �n/ .m > n/.

• This implies that broken lines corresponding to any ray (that is, a path infinite in
one direction) in T1 has a limit (which is not necessarily a broken line, but is a
geodesic), and limits corresponding to two different infinite paths have common
points according to the number of common .�1; : : : ; �n/ in the vertices of those
paths.

• A thick family of geodesics is obtained by pasting pieces of these geodesics in all
“reasonable” ways. All verifications are straightforward; see the details in [94].

It remains to prove:
Bilipschitz embeddability of a thick family of geodesics ) No RNP.

Proof. We assume that a metric space .M; d/with a thick family of geodesics admits
a bilipschitz embedding f W M ! X into a Banach space X and show that there exists
a bounded divergent martingale fMig1

iD0 on .0; 1
 with values in X. We assume that

`d.x; y/ � jjf .x/ � f .y/jjX � d.x; y/ (15)

for some ` > 0. We assume that the thick family consists of uv-geodesics for some
u; v 2 M and that d.u; v/ D 1 (dividing all distances in M by d.u; v/, if necessary).

Each function in the martingale fMig1
iD0 will be obtained in the following way.

We consider some finite sequence V D fvigm
iD0 of points on any uv-geodesic,

satisfying v0 D u, vm D v and d.u; vkC1/ � d.u; vk/. We define MV as the function
on .0; 1
 whose value on the interval .d.u; vk/; d.u; vkC1/
 is equal to

f .vkC1/ � f .vk/

d.vk; vkC1/
:

It is clear that the bilipschitz condition (15) implies that jjMV.t/jj � 1 for any
collection V and any t 2 .0; 1
. Since fvig are on a geodesic, is clear that an infinite
collection of such functions fMV.k/g1

kD0 forms a martingale if for each k 2 N the
sequence V.k/ contains V.k �1/ as a subsequence. So it remains to find a collection
of sequences fV.k/g1

kD0 for which the martingale fMV.k/g1
kD0 diverges. We denote

MV.k/ by Mk.
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Now we describe some of the ideas of the construction.

• It suffices to have differences jjMk � Mk�1jj to be bounded away from zero for
some infinite set of values of k.

• On steps for which we achieve such estimates from below we add exactly one
new point z0

j into V.k/ between any two consequent points wj�1 and wj of V.k�1/.
In such a case it suffices to make the choice of points in such a way that the values
of Mk on the intervals corresponding to pairs .wj�1; z0

j/ and .z0
j;wj/ are ‘far’ from

each other, and thus from the value of Mk�1 corresponding to .wj�1;wj/. Actually
we do not need this condition for each pair .wj�1;wj/, but only “on average.”

• Using the definition of a thick family of geodesics and the bilipschitz condition,
we can achieve this goal. A detailed description follows.

We let V.0/ D fu; vg and so M0 is a constant function on .0; 1
 taking value
f .v/� f .u/. In the next step we apply the condition of the definition of a thick family
to control points fu; vg and any geodesic g of the family. We get another geodesic Qg,
the corresponding sequence of common points fwigm

iD0 and the corresponding pair
of sufficiently well-separated sequences fzi; Qzigm

iD1 on the geodesics g and Qg. The
separation condition is

Pm
iD1 d.zi; Qzi/ � ˛.

We let V.1/ D fwigm
iD0. Observe that in this step we cannot claim any nontrivial

estimates for jjM1 � M0jjL1.X/ from below because we have not made any nontrivial
assumptions on this step of the construction (it can even happen that M1 D M0).
Lower estimates for martingale differences in our argument are obtained only for
differences of the form jjM2k � M2k�1jjL1.X/.

We choose V.2/ to be of the form

w0; z
0
1;w1; z

0
2;wn; : : : ; z

0
m;wm; (16)

where each z0
i is either zi or Qzi depending on the behavior of the mapping f . We

describe this dependence below. Observe that since zi or Qzi are images of the same
point in Œ0; 1
, the corresponding partition of the interval .0; 1
 does not depend on
our choice.

To make the choice of z0
i we consider the quadruple wi�1; zi;wi; Qzi. The bilipschitz

condition (15) implies jjf .zi/ � f .Qzi/jj � `d.zi; Qzi/. Consider two pairs of vectors
corresponding to two different choices of z0

i:
Pair 1: f .wi/ � f .zi/, f .zi/ � f .wi�1/. Pair 2: f .wi/ � f .Qzi/, f .Qzi/ � f .wi�1/.

The inequality jjf .zi/�f .Qzi/jj � `d.zi; Qzi/ implies that at least one of the following
is true:

����
f .wi/ � f .zi/

d.wi; zi/
� f .zi/ � f .wi�1/

d.zi;wi�1/

���� � `

2
d.zi; Qzi/

�
1

d.wi; zi/
C 1

d.zi;wi�1/

�
(17)

or
����

f .wi/ � f .Qzi/

d.wi; Qzi/
� f .Qzi/ � f .wi�1/

d.Qzi;wi�1/

���� � `

2
d.zi; Qzi/

�
1

d.wi; Qzi/
C 1

d.Qzi;wi�1/

�
: (18)

Since in the definition of a thick family of geodesics we have
P

i d.zi; Qzi/ � ˛,
these inequalities show that if we choose z0

i to be the one of zi and Qzi, for which
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f .wi/�f .z0

i /

d.wi;z0

i /
and f .z0

i /�f .wi�1/

d.z0

i ;wi�1/
are more distant from each other, we have a chance to get

the desired condition. (This is what we verify below.)
We pick z0

i to be zi if the left-hand side of (17) is larger than the left-hand side of
(18), and pick z0

i D Qzi otherwise.
Let us estimate jjM2 � M1jj1. First we estimate the part of this difference

corresponding to the interval .d.w0;wi�1/; d.w0;wi/
. Since the restriction of M2

to the interval .d.w0;wi�1/; d.w0;wi/
 is a two-valued function, and M1 is constant
on the interval, the integral

ˆ d.w0;wi/

d.w0;wi�1/

jjM2 � M1jjdt (19)

can be estimated from below in the following way. Denote the value of M2 on the
first part of the interval by x, the value on the second by y, the value of M1 on the
whole interval by z, the length of the first interval by A and of the second by B. We
have: the desired integral is equal to Ajjx � zjj C Bjjy � zjj and therefore can be
estimated in the following way:

Ajjx � zjj C Bjjy � zjj � maxfjjx � zjj; jjy � zjjg � minfA;Bg

� 1

2
jjx � yjj minfA;Bg:

Therefore, assuming without loss of generality that the left-hand side of (17) is
larger than the left-hand side of (18), we can estimate the integral in (19) from below
by

1

2

����
.f .wi/ � f .zi//

d.wi; zi/
� .f .zi/ � f .wi�1//

d.zi;wi�1/

���� � min fd.wi; zi/; d.zi;wi�1/g

� 1

4
` d.zi; Qzi/

�
1

d.wi; zi/
C 1

d.zi;wi�1/

�
� min fd.wi; zi/; d.zi;wi�1/g

� 1

4
` d.zi; Qzi/:

Summing over all intervals and using the condition
Pm

iD1 d.zi; Qzi/ � ˛, we get
jjM2 � M1jj � 1

4
`˛.

Now we recall that the last condition of the definition of a thick family of
geodesics implies that

w0; z
0
1;w1; z

0
2;w2; : : : ; z

0
m;wm; (20)

where each z0
i is either zi or Qzi depending on the choice made above belongs to some

geodesic in the family.
We use all of points in (20) as control points and find new sequence fw2i gm2

iD0 of
common points and a new sequence of pairs fz2i ; Qz2i gm2

iD1 with substantial separation:Pm2
iD1 d.z2i ; Qz2i / � ˛.
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We use fw2i gm2
iD0 to construct M3 and the suitably selected sequence

w20; z
02
1 ;w

2
1; z

02
2 ;w

2
2; : : : ; z

02
m2 ;w

2
m2

to construct M4. We continue in an obvious way. The inequalities jjM2k � M2k�1jj �
1
4
`˛ imply that the martingale is divergent. ut

Reflexivity

Problem 3.18. Is it possible to characterize the class of reflexive spaces using test-
spaces?

Some comments on this problem:

Remark 3.19. It is worth mentioning that a metric space (or spaces) characterizing
in the described sense reflexivity or the Radon–Nikodým property cannot be
uniformly discrete (that is, cannot satisfy infu¤v d.u; v/ > 0). This statement follows
by combining the example of Ribe [107] of Banach spaces belonging to these classes
which are uniformly homeomorphic to Banach spaces which do not belong to the
classes, and the well-known fact (Corson–Klee [32]) that uniformly continuous
maps are Lipschitz for (nontrivially) “large” distances.

I noticed that combining two of the well-known characterizations of reflexiv-
ity (Pták [104]—Singer [110]—Pełczyński [99]—James [54]—Milman and Mil-
man [79]) and some differentiation theory (Mankiewicz [72]—Christensen [30]—
Aronszajn [2], see also presentation in [11]) we get a purely metric characterization
of reflexivity. This characterization can be described as a submetric test-space
characterization of reflexivity:

Definition 3.20. A submetric test-space for a class P of Banach spaces is defined as
a metric space T with a marked subset S � T � T such that the following conditions
are equivalent for a Banach space X:

1. X … P .
2. There exist a constant 0 < C < 1 and an embedding f W T ! X satisfying the

condition

8.x; y/ 2 S dT.x; y/ � jjf .x/ � f .y/jj � CdT.x; y/: (21)

An embedding satisfying (21) is called a partially bilipschitz embedding. Pairs
.x; y/ belonging to S are called active.

Let � � 1. The submetric space X� is the space `1 with its usual metric. The
only thing which makes it different from `1 is the set of active pairs S�: A pair
.x; y/ 2 X� � X� is active if and only if
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jjx � yjj1 � �jjx � yjjs; (22)

where jj � jjs is the summing norm, that is,

jjfaig1
iD1jjs D sup

k

ˇ̌
ˇ̌
ˇ

kX
iD1

ai

ˇ̌
ˇ̌
ˇ :

Theorem 3.21 ([91]). X�, � � 2 is a submetric test-space for reflexivity.

The proof goes as follows. Let Z be a nonreflexive space. If you know the
characterization of reflexivity which I meant, you see immediately that it implies
that the space `1 admits a partially bilipschitz embedding into Z with the set of
active pairs described as above.

The other direction. If `1 admits a partially bilipschitz embedding with the
described set of active pairs, then the embedding is Lipschitz on `1, because each
vector in `1 is a difference of two positive vectors.

Now, if Z does not have the Radon–Nikodým property (RNP), we are done (Z is
nonreflexive). If Z has the RNP, we use the result of Mankiewicz–Christensen–
Aronszajn and find a point of Gâteaux differentiability of this embedding. The
Gâteaux derivative is a bounded linear operator which is “bounded below in
certain directions.” Using this we can get a sequence in Z which, after applica-
tion of the non-reflexivity criterion (due to Pták—Singer—Pełczyński—James—
D.&V. Milman), implies non-reflexivity of Z; see [91] for details.

Infinite Tree Property

See Definition 2.22 for the definition of the infinite tree property. Using a bounded
ı-tree in a Banach space X one can easily construct a bounded divergent X-valued
martingale. Hence the infinite tree property implies non-RNP. For some time
it was an open problem whether the infinite tree property coincides with non-
RNP. A counterexample was constructed by Bourgain and Rosenthal [15] in the
paper mentioned above. The infinite tree property admits the following metric
characterization.

Theorem 3.22 ([91]). The class of Banach spaces with the infinite tree property
admits a submetric characterization in terms of the metric space D! with the set S!
of active pairs defined as follows: a pair is active if and only if it is a pair of vertices
of a quadrilateral introduced in one of the steps.
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It would be interesting to answer the following open problem:

Problem 3.23. Whether the infinite diamond D! is a test-space for the infinite tree
property?

Remark 3.24. It is worth mentioning that if we restrict our attention to dual Banach
spaces, the following three properties are equivalent:

(1) Non-RNP.
(2) Infinite tree property.
(3) Bilipschitz embeddability of D! .

The implication (1) ) (2) is due to Stegall [111]. The implication (2) ) (1)
follows from Chatterji [24]. The equivalence of (1) and (3) was proved in [91].
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Abstract We shall study special properties of solutions to the IVP associated to
the k-generalized Benjamin–Ono equation. We shall compare them with those for
the k-generalized Korteweg-de Vries equation and for the k-generalized dispersive
Benjamin–Ono equation. Also we shall discuss some open questions appearing in
this subject.
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Introduction

This work is concerned with the initial value problem (IVP) associated to the
k-generalized Benjamin–Ono (k-gBO) equation

(
@tu � @2xH u C uk @xu D 0; x; t 2 R; k 2 Z

C;
u.x; 0/ D u0.x/;

(1)

where H denotes the Hilbert transform,

H f .x/ D 1

�
p:v:
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x


 f
�
.x/

D 1
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f .x � y/
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/Of .
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The case k D 1 in (1)

@tu � @2xH u C u @xu D 0; x; t 2 R; (3)

corresponds to the Benjamin–Ono (BO) equation. This was first deduced by
Benjamin [5] and Ono [44] as a model for long internal gravity waves in deep
stratified fluids. Later, it was also shown to be a completely integrable system (see
[2, 11], and the references therein). Thus, the BO equation has followed the same
historical pattern of the celebrated Korteweg-de Vries (KdV) equation

@tu C @3xu C u @xu D 0: (4)

One of our goals here will be to compare the mathematical results for the IVP (1)
with those for the IVP associated to the k-generalized Korteweg-de Vries (k-gKdV)
equation

(
@tu C @3xu C uk@xu D 0; x; t 2 R; k 2 Z

C;
u.x; 0/ D u0.x/:

(5)

In addition, we shall mention some striking differences as well as some open
problems (these will be labelled and numbered with a Q. . . ). Also, we shall discuss
the extension of some known results to the IVP (1) with k D 1 to the case of general
k 2 Z

C.
Another of our goals here will be to illustrate how well-known results in

harmonic analysis have provided the key arguments in the proof of some crucial
results describing the behavior of the solutions to the IVP (1).

To understand the relationship between the dispersion and the nonlinearity it
is convenient to consider the so-called k-generalized dispersive Benjamin–Ono
equation

@tu � D1C˛
x @xu C uk@xu D 0; x; t 2 R; ˛ 2 Œ0; 1
; k 2 Z

C: (6)

We notice that in (6) the case ˛ D 0 corresponds to the k-gBO equation in (1) and
the case ˛ D 1 to the k-gKdV equation in (5).

Well-Posedness Results

We shall say (see [26]) that the IVP (1) is locally well-posed (LWP) in the function
space X if given any datum u0 2 X there exist T > 0 and a unique solution

u 2 C.Œ�T;T
 W X/ \ : : : :
of the IVP (3) with the map data ! solution, u0 7! u, being continuous. If T can be
taken arbitrarily large, one says that the IVP (3) is globally well-posed (GWP) in X.

Well-posedness in Sobolev spaces
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We observe that eij
j
 is not a multiplier in Lp for p ¤ 2 and that the family of
operators fU.t/ W t 2 Rg

U.t/u0.x/ D e@
2
xH tu0.x/ D .e4�

2i tj
j
bu0.
//_.x/; (7)

defines a group of isometries in

Hs.R/ D �
1 � @2x

��s=2
L2.R/; s 2 R: (8)

Therefore these classical Sobolev spaces (8) are the natural functional setting to
study well-posedness of the IVP (1).

The problem of finding the minimal regularity property, measured in the classical
Sobolev scale Hs.R/; s 2 R; required to guarantee that the IVP (1) is LWP or GWP
in Hs.R/ has been extensively studied.

First, one has the following scaling invariant argument : if u.x; t/ is solution of
the IVP (1) in the time interval Œ�T;T
, then for any � > 0

u�.x; t/ D �1=ku.�x; �2t/; (9)

is also solution of the equation in (1) in the time interval Œ���2T; ��2T
 with initial
data

u�.x; 0/ D �1=ku0.�x/;

such that

k u�k PHs D kDs
xu�k2 D �sC1=k�1=2k u0k PHs ; (10)

where Dx D H @x. When

s D sk D 1=2 � 1=k; (11)

one cannot have that T D T.k u0k PHs/ > 0, since by changing � the time interval
of existence expands (or contracts) arbitrarily. Hence, s D sk D 1=2 � 1=k is the
critical exponent for well-posedness suggested by the above scaling argument.

Second, due to the integrability, real solutions of the IVP (1) with k D 1 satisfy
infinitely many conservation laws. These quantities provide an a priori estimate for
the Hn=2-norm, n 2 Z

C, of the solution u D u.x; t/ for (3). Here, we shall only
consider real- valued solutions of the IVP (1). For general k 2 Z

C (real) solutions
of (1) satisfy the following three conservation laws (time invariant quantities):

I1.u/ D
ˆ 1

�1
u.x; t/dx; I2.u/ D

ˆ 1

�1
u2.x; t/dx;

I3.u/ D
ˆ 1

�1

�
jD1=2

x uj1=2 � 2

.k C 1/.k C 2/
ukC2

�
.x; t/dx:

(12)
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Under appropriate assumptions these conservation laws provide an a priori
estimate of the Hs-norm of the solution which combined with a LWP with T D
T.ku0ks/ > 0 yields a GWP result.

Returning to the well-posedness results for the IVP (1) in the classical Sobolev
spaces (8) first we shall concentrate on the case of the BO equation (3). In this
regards, one finds the following string of results : in [1, 22] LWP was obtained for
s > 3=2, in [46] GWP was proven for s � 3=2, LWP was established in [34] for
s > 5=4 and in [28] for s > 9=8, in [51] GWP was shown for s � 1, in [8] LWP was
found to hold for s > 1=4, and in [21] GWP was demonstrated in H0.R/ D L2.R/,
(for further details and results regarding the well-posedness of the IVP associated to
the BO equation (3) in Hs.R/ see [38]).

It is important to mention that all the above results have been obtained by
“compactness methods.” In particular, one can only show that the map data !
solution is just locally continuous.

In fact, in [41] it was established that for any s 2 R the flow map u0 ! u from
Hs.R/ to C.Œ�T;T
 W Hs.R// is not locally of class C2 (see also [35]).

We recall that if LWP in X can be obtained using just the contraction principle
applied to the corresponding integral equation, then the implicit function theorem
guarantees that the flow map u0 ! u from X to C.Œ�T;T
 W X/ is (locally) as
smooth as the nonlinearity, (see, for example, [36]).

For the IVP (1) one has the corresponding integral equation

u.t/ D U.t/u0 �
ˆ t

0

U.t � t0/uk@xu.t0/dt0 (13)

[U.t/ as in (7)] where the nonlinearity is a polynomial (analytic).
Hence, as a consequence of the result in [41] one sees that the contraction

principle cannot be used by itself to established the LWP of the IVP (1) with k D 1.
Next, we consider the IVP (1) with k � 2. In the case k D 2 in [29] LWP has

been proven in Hs.R/; s � 1=2. In [53] LWP was obtained for the IVP (1) for k D 3

in Hs.R/; s > 1=3 and for k � 4 in Hs.R/; s � sk D 1=2 � 1=k, (see also [40]).
These results were also obtained by compactness methods and seem to be

optimal. More precisely : in [29] it was shown that for the case k D 2 the map data
! solution is not uniformly continuous in Hs.R/; s < 1=2 (in [39] it was proven
not to be C3), in [52] it was shown that in the case k D 3 the map data ! solution is
not C4 in Hs.R/; s < 1=3. In [6] it was shown that the map data ! solution is not
uniformly continuous in Hsk.R/; sk D 1=2 � 1=k; k � 1 (and in [39] it was shown
that the map data ! solution is not CkC1 in Hsk.R/; sk D 1=2 � 1=k; k � 4).

We observe that for k � 3 these well-posedness results agree with the values
suggested by the scaling argument sk D 1=2 � 1=k [see (11)], being larger for
k D 1; s � 0 with s1 D �1=2, for k D 2; s � 1=2 with s2 D 0 and for
k D 3; s > 1=3 with s3 > 1=6.

This is somehow similar to the case of the IVP (5) for the k-gKdV for which the
values suggested by the scaling argument Qsk D 1=2�2=k have been achieved for the
LWP results only for the powers k � 3, being larger the case k D 1; s � �3=4 with
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Qs1 D �3=2 and for k D 2; s � 1=4 with Qs2 D �1=2. All these results for the IVP
(5) have been established by an argument based on the contraction principle applied
to the corresponding integral equation. This is the first main difference between the
IVP’s (1) and (5).

Also, one notices that from the well-posedness point of view the worst power is
k D 2 for both IVP’s (1) and (5) at least for 1 � k � 8.

In addition to the above well-posedness and ill-posedness results, one has that
in [33, 39] LWP and GWP have been established for the IVP (1) with k � 2 for
small data in Hs.R/ with s > ˛k solely by a contraction principle argument. So in
this case the map (small) data ! solution is analytic. Since the result for the BO
equation (3) found in [41] does not extend to higher power k � 2 in (1), the next
question presents itself:

Q 1: Given any k 2 Z
C; k � 2 which of following two statements holds:

(i) there exists ak > 0 such that the IVP (1) can be proved to be LWP in the whole
space Hs.R/ with s > ak by using a contraction principle in the corresponding
integral equation (13)

or
(ii) for any s > 0 the map data ! solution for the IVP (1) defined in Hs.R/ is not

(locally) smooth.

It is interesting to notice that the ill-posedness result in [41] applies to all
equations in (6) with k D 1, i.e., in [41] it was shown that for any s 2 R the
map data ! solution associated to the IVP for Eq. (6) with ˛ 2 Œ0; 1/ and k D 1

is not locally of class C2. Thus, only for the KdV, (6) with ˛ D 1 and k D 1, the
dispersive relation (modeled by a third-order operator) is strong enough to allow a
proof based on the contraction principle.

In this regard, one has that the techniques and arguments presented in [32] can
be used to establish LWP for the IVP associated to Eq. (6) with ˛ 2 .0; 1/ and
k � 2 with an argument based on the contraction principle. In the case ˛ 2 .0; 1/

and k D 1 GWP for the IVP (6) in Hs.R/ for s � 0 was obtained in [19] by
compactness methods.

Next, we consider the problem of extending LWP results to global ones. One
sees that due to the infinitely many conservation laws satisfied by solutions of the
BO equation (3) this follows directly. In fact, the GWP results in [21] only requires
the use of I2 in (12). In general, combining the inequality

kukkC2
kC2 � ckkDk=2.kC2/

x ukkC2
2 � ckkD1=2

x ukk
2 kuk22; (14)

and the conservation law I3 in (12)

I3.u/ D I3.u0/ � kD1=2
x u.t/k22 � ckkD1=2

x u.t/kk
2 ku0k22 (15)

one obtains an a priori estimate for the solutions corresponding for small enough
data in L2 in the case k D 2, see [29], and for small enough data in H1=2 in the
case k � 3.
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In fact, the existence of global smooth solutions for the IVP (1) with k � 2 and
data in H1=2.R/ is an open problem, (Q 2).

For the k-gKdV equation [see (5)] one has that for k D 1; 2; 3 local solutions
corresponding to initial data in u0 2 H1.R/ extend globally in time. In [37] it was
shown that there exist data u0 2 H1.R/ for which the corresponding local solution
u D u.x; t/ of the IVP (5) with k D 4 blows-up in finite time, i.e., 9 T > 0 such that

lim
t"T

k@xu.t/k2 D 1:

A similar result for higher powers k � 5 in (5) remains as an open problem, (Q 3).
To complete this section we shall briefly comment some of the techniques used in

the proof of the well-posedness results for the BO equation (3) commented before.
By using the commutator estimate established in [27] (as an application of results

in [10])

kJs.fg/ � fJsgkp � c.k@f k1kJs�1gkp C kJsf kpkgk1/; 1 < p < 1; s > 0;

with J D .1� @2x/1=2, one formally has that solutions of the BO equation (3) satisfy

d

dt
kJsu.t/k2 � ck@xu.t/k1 kJsu.t/k2; s > 0: (16)

Hence, if one controls the quantity

ˆ T

�T
k@xu.t/k1 dt; (17)

then the solution, in the time interval Œ�T;T
, is as regular in Hs.R/ as the data.
Thus, the result in [1, 22] (s > 3=2) follows by using Sobolev embedding in

(16). The result in [46] combined the Strichartz estimates [50] and the Kato local
smoothing effect [26]. In the case of the associated linear problem [see (7)], the
Strichartz estimates are (mainly) given by the inequality:

.

ˆ 1

�1
kU.t/u0kq

pdt/1=q � cku0k2; 2=q D 1=2 � 1=p; 2 � p � 1 (18)

and the Kato local smoothing effect by

.

ˆ 1

�1
jD1=2

x U.t/u0.x/j2 dt/1=2 D
p
2�

2
ku0k2; 8 x 2 R: (19)

and

sup
x2R

k@x

ˆ t

0

U.t � t0/F.�; t0/dt0kL2t
� c

ˆ 1

�1
kF.x; �/kL2t

dx: (20)
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Roughly, by using the estimate (20), established in [30], one gains one derivative
which compensates the loss introduced by the nonlinear term in (13). We observe
that the proof of the identity (19) is a direct consequence of the Plancherel theorem
and a change of variable. However, since we are working with the differential
equation only a weaker form of (19) can be proved, i.e., if the data u0 2 H3=2.R/,
then the corresponding solution of the BO equation (3) satisfies

sup
x0;R

.

ˆ T

�T

ˆ x0CR

x0�R
j@2xu.x; t/j2dx dt/1=2 � c.TI RI ku0k3=2;2/;

and using Stichartz estimate in (18) with .p; q/ D .1; 4/ one gets that

.

ˆ 1

�1
k@xu.�; t/k41dt/1=4 � c.TI RI ku0k3=2;2/;

which basically yields the result in [46]. The above techniques were refined in
[28, 34] to obtain the improvement in the LWP mentioned before.

The ill-posedness result established in [41] is a consequence of the low-high fre-
quency interaction emerging from the nonlinear term. In [51] a gauge transformation
(reminiscence the Cole-Hopf transformation) which involves projection in the high
positive frequency was introduced to obtain the GWP result in H1.R/. In [8, 21]
the previous idea was combined with the so-called Bourgain spaces Xs;b, see [7], to
obtain the improvement mentioned above. In the context of the BO equation (3) the
spaces Xs;b s; b 2 R can be defined as the f 2 S 0.R2/ such that

kf kXs;b D .

ˆ 1

�1

ˆ 1

�1
.1C j� � 
j
j/2b.1C j
j/2sjOf .
; �/j2d
d�/1=2 < 1:

Well-posedness in weighted Sobolev spaces
In [26] it was shown that the solution flow associated to the IVP (5) preserves the

Schwartz class. However, it was first established by Iorio [22, 23] that, in general,
decay of polynomial type is not preserved by the solution flow of the BO equation.
The results in [22, 23] have been extended to fractional order weighted Sobolev
spaces and have shown to be optimal in [15, 16].

This is the second main difference concerning the behavior of solutions of the
IVP’s (1) and (5). This difference in the decay is already reflected in the explicit
form of the traveling wave solutions �f�g of these equations. For the BO equation (3)
one has if

�BO.x/ D 4

1C x2
; (21)

(the unique positive, even, decreasing for x > 0 and tending to zero as x ! ˙1
solution of �' � Dx' C '2=2 D 0, whose uniqueness was proved in [3]), then

u.x; t/ D c�BO.c.x � ct//; c > 0;
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describes the family of traveling wave solution. For the KdV equation (4)

�KdV.x/ D 3

2
sech2

� x

2

�
:

describes the family of traveling wave solutions

u.x; t/ D c�KdV.c
2.x � c2t//; c > 0:

To make the above statements precise, we introduce the weighted Sobolev spaces

Zs;r D Hs.R/ \ L2.jxj2rdx/; s; r 2 R; (22)

and

PZs;r D ff 2 Hs.R/ \ L2.jxj2rdx/ W Of .0/ D 0g; s; r 2 R: (23)

Notice that the conservation law for solutions of (3), see (12),

I1.u0/ D
ˆ 1

�1
u.x; t/dx D

ˆ 1

�1
u0.x/dx;

guarantees that the property Of .0/ D 0 is preserved by the solution flow.
The following well-posedness results for the IVP associated to the BO equation,

(1) with k D 1, in weighted Sobolev spaces Zs;r were found in [15]:

Theorem 2.1.

(i) If s > 9=8 (s � 3=2), r 2 Œ0; s
, and r < 5=2, then IVP associated to the BO
equation (3) is LWP (GWP resp.) in Zs;r.

(ii) If r 2 Œ5=2; 7=2/ and r � s, then the IVP associated to Eq. (3) is GWP in PZs;r.

Theorem 2.2. Let u 2 C.Œ�T;T
 W Z2;2/ be a solution of the IVP for Eq. (3). If there
exist two different times t1; t2 2 Œ�T;T
 such that

u.�; tj/ 2 Z5=2;5=2; j D 1; 2; then Ou0.0/ D 0; .so u.�; t/ 2 PZ5=2;5=2/: (24)

Theorem 2.3. Let u 2 C.Œ�T;T
 W PZ3;3/ be a solution of the IVP for Eq. (3). If there
exist three different times t1; t2; t3 2 Œ�T;T
 such that

u.�; tj/ 2 PZ7=2;7=2; j D 1; 2; 3; then u.x; t/ 	 0: (25)

Remarks.

(a) Iorio’s results [22, 23] correspond to the indexes s � r D 2 in Theorem 2.1 part
(i), s � r D 3 in Theorem 2.1 part (ii) and s � r D 4 in Theorem 2.3.
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(b) Theorem 2.2 shows that the condition Ou0.0/ D 0 is necessary to have persistence
property of the solution in Zs;5=2, with s � 5=2, so in that regard Theorem 2.1
part (i) is sharp.

(c) Theorem 2.3 affirms that there is an upper limit of the spatial L2-decay rate of
the solution (i.e., jxj7=2u.�; t/ … L1.Œ0;T
 W L2.R//, for any T > 0) regardless
of the decay and regularity of the non-zero initial data u0. In particular,
Theorem 2.3 shows that Theorem 2.1 part (ii) is sharp.

From Theorem 2.2 it is natural to ask if the assumption (25) in Theorem 2.3 can
be reduced from three times to a two different times t1 < t2.

Surprisingly, the next result found in [16] shows that this is not the case, the
condition involving three different times in Theorem 2.3 is necessary:

Theorem 2.4. For any u0 2 PZ5;4 such that
ˆ 1

�1
x u0.x/dx ¤ 0; (26)

the corresponding solution u 2 C.R W PZ5;7=2�/ of the IVP for Eq. (3) provided by
Theorem 2.1 part (ii) satisfies that

u.�; t�/ 2 PZ4;4; (27)

with

t� D � 4

ku0k22

ˆ 1

�1
x u0.x/dx: (28)

Remarks.

(a) The result in Theorem 2.4 is due to the inter play between the dispersive relation
and the nonlinearity of the BO equation (3). In particular, one can see that if
u0 2 PZ5;4 verifying (26), then the solution U.t/u0.x/ of the associated linear
IVP

@tu � H @2xu D 0; u.x; 0/ D u0.x/;

satisfies

U.t/u0.x/ D c.e4�
2itj
j
bu0.
//_ 2 L2.jxj7�/ � L2.jxj7/; 8 t ¤ 0:

However, for the same data u0 one has that the solution u.x; t/ of Eq. (3) satisfies

u.�; 0/; u.�; t�/ 2 L2.jxj8dx/; and u.�; t/ 2 L2.jxj7�/ � L2.jxj7/; 8 t … f0; t�g:

(b) The value of t� in (28) can be motivated as follows, the identity

d

dt

ˆ 1

�1
xu.x; t/dx D 1

2
ku.�; t/k22 D 1

2
ku0k22;
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[using the second conservation law I2.u/ in (12)] describes the time evolution
of the first momentum of the solution

ˆ 1

�1
xu.x; t/dx D

ˆ 1

�1
xu0.x/dx C t

2
ku0k22:

So assuming that

ˆ 1

�1
x u0.x/dx ¤ 0; (29)

one looks for the times where the average of the first momentum of the solution
vanishes, i.e., for t such that

ˆ t

0

ˆ 1

�1
x u.x; t/dxdt D

ˆ t

0

.

ˆ 1

�1
x u0.x/dx C t0

2
ku0k22/dt0 D 0;

which under the assumption (29) has a unique solution t D t� given by the
formula in (28).

(c) To prove Theorem 2.4 we shall work with the integral equation version of the
problem (3). Roughly, from the result in [41] one cannot regard the nonlinear
term as a perturbation of the linear one. So one needs to rely on an argument
similar to that in [23]. This is based on the special structure of the equation
and allows us to reduce the contribution of two terms in the integral equation
to just one. Also the use of the integral equation in the proof and the result in
[41] explains our assumption u0 2 PZ5;4 instead of the expected one from the
differential equation point of view u0 2 PZ4;4.

(d) In view of the above results one may ask if it is possible to reduce the
hypothesis in Theorem 2.3 involving three times to one for two different times
by strengthening the hypothesis on the decay. More precisely, (Q 4) can one
find r > 4 such that the following statement holds ? :

if a solution u 2 C.Œ�T;T
 W PZs;7=2�/ s � 1 of the BO equation satisfies that
there exist t1; t2 2 Œ�T;T
; t1 ¤ t2 such that u.tj/ 2 PZs;r; j D 1; 2, then u 	 0.

In [14] it was shown that this is not the case at least for r 2 .4; 11=2/:
Theorem 2.5 ([14]). Given r 2 .4; 11=2/ there exists u0 2 PZ10;r with

ˆ 1

�1
x u0.x/dx ¤ 0; (30)

such that the corresponding solution u 2 C.R W PZ10;7=2�/ of the IVP for Eq. (3)
provided by Theorem 2.1 part (ii) satisfies that

u.�; t�/ 2 PZ10;r; (31)
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with

t� D � 4

ku0k22

ˆ 1

�1
x u0.x/dx: (32)

Thus, question Q 4 remains open for r � 11=2.
One of the main ideas in [14] is the use of the time evolution of the second

moment of the solution
ˆ 1

�1
x2u.x; t/dx D

ˆ 1

�1
x2u0.x/dx C t

ˆ 1

�1
xu20.x/dx C t2I3.u0/:

with I3 as in (12). Notice that Theorem 2.3 suggests that the third moment of the
solution ˆ 1

�1
x3u.x; t/dx;

is not defined.
Next, we discuss the possible extensions of Theorems 2.1–2.4 to higher powers

k � 2 in (1). From the method of proof used in [15] it is clear that similar results
to those in Theorems 2.1 and 2.2 hold, locally in time, for the IVP (1) with k � 2.
Theorem 2.3 extends to all the odd powers k. The issue in this case is the following
(see [16]): let

u 2 C.Œ�T;T
 W PZ10;7=2�/ \ : : : : (33)

be a solution of the IVP (1) with k � 2, then for each t� 2 .�T;T/ such that

ˆ t�

0

�ˆ 1

�1
xu0.x/dx C 1

k C 1

ˆ t

0

ˆ 1

�1
ukC1.x; �/dx d�

�
dt D 0; (34)

one has that

u.�; t�/ 2 PZ10;4: (35)

In the case k D 1, from the conservation law I2 [see (12)] and the fact that the
solution extends globally in time, one has that if

´
xu0.x/dx ¤ 0, then there exists

exactly one time t� ¤ 0, see (32), such that (35) holds.
If k � 3 is odd and

´
xu0.x/dx ¤ 0, then Eq. (34) has at most one solution

t� ¤ 0; however, we do not know (Q 5) if this solution t� exists it belongs to the
time interval of existence Œ�T;T
. Notice that a scaling argument suggests that

T D O.ku0k�k
s;2 /; as ku0ks;2 # 0 s > sk defined in (11):

In this case, k � 3 and odd, Theorem 2.3 holds and Theorem 2.4 also holds in the
conditional manner described before.
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In the case where k is even, we do not know (Q 6) given a solution u as in (33)
how to determinate the exact number of times tj’s solutions of (34).

Above we have worked with the space Zs;r with indices s � r. This is due
to the fact that, in general, for dispersive equations, the solution flow preserves
the L2 polynomial decay only for smooth enough, in Hs, solutions. This has
been established in [24, 43] for solution of the IVP associated to the nonlinear
Schrödinger equation and the k-gKdV, respectively. However, the equivalent result
for solution of the IVP (1) is not available. More precisely, for simplicity let us
consider the case k D 1 in (1): let u 2 C.R W L2.R// \ : : : be a solution of the IVP
for Eq. (3) found in [21] (Q 7). If there exist two different times t1; t2 such that

u.�; tj/ 2 L2.jxj˛dx/; j D 1; 2 ˛ 2 .0; 7=2�/; then u 2 C.R W Z˛;˛/:

Working with the differential equation one may need to assume that u 2
C.Œ�T;T
 W H9=8C.R// \ : : : so that the quantity in (17) is finite, see [28].

It was already mentioned that a result in [41] shows that the IVP associated to
Eq. (6) with ˛ 2 Œ0; 1/ and k D 1 cannot be solved by a contraction principle
argument in Hs.R/ for any s 2 R. For ˛ 2 .0; 1/ and k � 2 this is not the case,
i.e., the IVP associated to Eq. (6) with ˛ 2 .0; 1/ and k � 2 can be solved in Hs.R/

with s � ak for some ak 2 R by the contraction principle. The proof in this case
follows by a simple modification of the arguments given in [32]. Also, one has that
a slight variation of the method found in [31] confirms that the IVP associated to
Eq. (6) with ˛ 2 .0; 1/ and k D 1 can be solved in the weighted Sobolev spaces
Zs;r (22), (for appropriate values of s; r) by an argument based on the contraction
principle. For the remaining case ˛ D 0 and k D 1, i.e., the BO equation, one has
that a similar argument to that given in [31] shows that the contraction principle in
the weighted Sobolev spaces Zs;r (for appropriate values of s; r) works, at least, for
small data. Thus, (Q 8) for the IVP associated to the BO equation (6) with ˛ D 0

and k D 1, can one find s; r 2 R such that the contraction principle provides LWP
in Zs;r or can one extend the result in [41] to show that for any s; r 2 R the map data
! solution from Zs;r to C.Œ�T;T
 W Zs;r/ is not smooth? Next, we briefly discuss
some of the techniques used in the proof of Theorems 2.1–2.4.

Let us first recall the definition of the Ap condition. We shall restrict here to the
cases p 2 .1;1/ and the one-dimensional case R, (see [42]).

Definition 2.6. A nonnegative function w 2 L1loc.R/ satisfies the Ap inequality with
1 < p < 1 if

sup
Q interval

�
1

jQj
ˆ

Q
w

��
1

jQj
ˆ

Q
w1�p0

�p�1
D c.w/ < 1; (36)

where 1=p C 1=p0 D 1.

Theorem 2.7 ([20]). The condition (36) is necessary and sufficient for the bound-
edness of the Hilbert transform H in Lp.w.x/dx/, i.e.,

.

ˆ 1

�1
jH f jpw.x/dx/1=p � c� .

ˆ 1

�1
jf jpw.x/dx/1=p: (37)
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In the case p D 2, a previous characterization of w in (37) was found in [18] (for
further references and comments we refer to [13, 17, 47, 49]). In particular, one has
that in R

jxj˛ 2 Ap , ˛ 2 .�1; p � 1/: (38)

In order to justify some of the arguments in the proof of Theorem 2.1 we need
some further continuity properties of the Hilbert transform. More precisely, our
proof requires the constant c� in (37) to depend only on c.w/ in (36) and on p
(it is only required for the case p D 2). This fact is implicit in the proof given in
[20], see also [13, 17]. However, we recall the following optimal result:

Theorem 2.8 ([45]). For p 2 Œ2;1/ the inequality (37) holds with c� � c.p/c.w/,
with c.p/ depending only on p and c.w/ as in (36). Moreover, for p D 2 this estimate
is sharp.

Next, we define the truncated weights wN.x/ using the notation hxi D .1Cx2/1=2

as

wN.x/ D
(

hxi if jxj � N,

2N if jxj � 3N;
(39)

wN.x/ are smooth and non-decreasing in jxj with w0
N.x/ � 1 for all x � 0.

Proposition 2.9. For any � 2 .�1; 1/ and any N 2 Z
C, w�N.x/ satisfies the A2

inequality (36). Moreover, the Hilbert transform H is bounded in L2.w�N.x/dx/ with
a constant depending on � but independent of N 2 Z

C.

The proof of Proposition 2.9 follows by combining the fact that for a fixed � 2
.�1; 1/ the family of weights w�N.x/; N 2 Z

C satisfies the A2 inequality in (36) with
a constant c independent of N and Theorem 2.8.

Proposition 2.9 is used in weighted energy estimates with a bounded weight
for each N 2 Z

C (so all the quantities involved are finite) and with constants
independent of N. This allows to pass to the limit to get the desired result.

Next, we have the following generalization of the Calderón commutator estimate
given in [4] (for a different proof see [12]):

Theorem 2.10 ([4, 9]). For any p 2 .1;1/ and l; m 2 Z
C [ f0g; l C m � 1 there

exists c D c.pI lI m/ > 0 such that

k@l
xŒH I a
@m

x f kp � ck@lCm
x ak1kf kp: (40)

Calderón’s result [9] corresponds to the case l C m D 1.
We shall also use the pointwise identities

ŒH I x
@xf D ŒH I x2
@2x f D 0;



362 G. Ponce

and more general

ŒH I x
f D 0 if and only if
ˆ

fdx D 0:

We recall the following characterization of the Lp
s .R

n/ D .1��/�s=2Lp.Rn/ spaces
given in [48].

Theorem 2.11 ([48]). Let b 2 .0; 1/ and 2n=.n C 2b/ < p < 1. Then f 2 Lp
b.R

n/

if and only if

.a/ f 2 Lp.Rn/;

.b/ Dbf .x/ D .

ˆ
Rn

jf .x/ � f .y/j2
jx � yjnC2b

dy/1=2 2 Lp.Rn/;

(41)

with

kf kb;p 	 k.1 ��/b=2f kp D kJbf kp ' kf kp C kDbf kp

' kf kp C kDbf kp:
(42)

Above we have used the notation: for s 2 R

Ds D .��/s=2 with Ds D .H @x/
s; if n D 1:

For the proof of this theorem we refer the reader to [48].
We observe that from (41) for p D 2 and b 2 .0; 1/ one has

kDb.fg/k2 � kf Dbgk2 C kgDbf k2; (43)

which is a stronger version of the standard Leibniz rule for fractional derivatives
whose right-hand side involved the product of appropriate norms of f and g. So it is
natural to ask (Q 9) whether or not the inequality (43) holds for p ¤ 2 and with D
instead of D for p D 2 and for p ¤ 2.

These estimates are essential in the proof of Theorem 2.3. In particular, one has
the following applications of Theorem 2.11 given in [43] :

Proposition 2.12. Let b 2 .0; 1/. For any t > 0

Db.e�itxjxj/ � c.jtjb=2 C jtjbjxjb/: (44)

Lemma 2.13. Let a; b > 0. Assume that Jaf D .1 ��/a=2f 2 L2.R/ and hxibf D
.1C jxj2/b=2f 2 L2.R/. Then for any � 2 .0; 1/

kJ�a.hxi.1��/bf /k2 � ckhxibf k1��2 kJaf k�2 : (45)

Moreover, the inequality (45) is still valid with wN.x/ in (39) instead of hxi with a
constant c independent of N.
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Propagation of Regularities

To simplify our exposition we shall restrict ourselves to the case of the BO equation,
i.e., k D 1 in (1). We shall work with the following kind of solutions whose existence
was established in [46] .

Theorem 3.1. If u0 2 Hs.R/ with s � 3=2, then there exists a unique solution
u D u.x; t/ of the IVP for Eq. (3) such that for any T > 0

.i/ u 2 C.R W Hs.R// \ L1.R W Hs.R//;

.ii/ @xu 2 L4.Œ�T;T
 W L1.R//; (Strichartz/;

.iii/

Tˆ

�T

Rˆ

�R

.j@xDuj2 C j@2xuj2/.x; t/j2dxdt � c0;

.iv/

Tˆ

�T

Rˆ

�R

j@xDr�1=2u.x; t/j2dxdt � c1; r 2 Œ1; s
;

(46)

with c0 D c0.R;T; ku0k3=2;2/ and c1 D c1.R;T; ku0ks;2/.

Remark. From our previous comments it is clear that the results in Theorem 3.1
still holds for the IVP (1) locally in time for k � 2. Indeed, one can lower the
requirement s � 3=2 to a value between Œ1; 3=2
, depending on the k considered,
such that well-posedness including the estimate (46) (ii) still holds.

To state the results found in [25] we define a two parameter family a; b with
a < b functions ��;b 2 C1.R/ non-decreasing such that �0

a;b.x/ � 0 with

�a;b.x/ D
(
0; x � a;

1; x � b;
(47)

satisfying some appropriate estimates, see a more precise definition below and
in [25].

Theorem 3.2. Let u0 2 H3=2.R/ and u D u.x; t/ be the solution of the IVP for
Eq. (3) provided by Theorem 3.1. If for some x0 2 R and for some m 2 Z

C, m � 2,

1̂

x0

.@m
x u0/

2.x/ dx < 1; (48)

then for any v > 0, T > 0, a > 0, b > a



364 G. Ponce

sup
0�t�T

ˆ
.@m

x u.x; t//2 �a;b.x C x0 � vt/ dx

C
Tˆ

0

ˆ
.D1=2.@m

x u.x; t//2�0
a;b.x C x0 � vt/ dxdt < c D c.TI aI bI v/:

(49)

If in addition to (48) there exists x0 2 R such that any a > 0, b > a

D1=2.@m
x u0 �a;b.� C x0// 2 L2.R/; (50)

then

sup
0�t�T

ˆ
.D1=2.@m

x u.x; t/ �a;b.x C x0 � vt///2 dx

C
Tˆ

0

ˆ
.@mC1

x u.x; t//2 �0
a;b
�a;b.x C x0 � vt/ dxdt < c;

(51)

with c D c.TI aI bI v/.
Theorem 3.3. With the same hypotheses the results in Theorem 3.2 apply locally in
time to solutions of the IVP (1) with k � 2.

Remark. From our comments above and our proof of Theorem 3.2 it will be clear
that the requirement u0 2 H3=2.R/ in Theorem 3.2 can be lower to u0 2 H9=8C

.R/

by considering the problem in a finite time interval (see [28]).

Next, we discuss some outcome of Theorems 3.2 and 3.3. In order to simplify
the exposition we shall state them only for solutions of the IVP for the BO equation
(3). First, as a direct consequence of Theorem 3.2 and the time reversible character
of Eq. (3) one has

Corollary 3.4. Let u 2 C.R W H3=2.R// be the solution of the IVP for the BO
equation (3) provided by Theorem 3.1. If there exist m 2 Z

C; m � 2; Ot 2 R;

a 2 R such that

@m
x u.�; Ot/ … L2..a;1//;

then for any t 2 .�1; Ot/ and any ˇ 2 R

@m
x u.�; t/ … L2..ˇ;1//:

Next, one has that for an appropriate class of data singularities of the correspond-
ing solutions travel with infinite speed to the left as time evolves.
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Corollary 3.5. Let u 2 C.R W H3=2.R// be the solution of the IVP (3) provided by
Theorem 3.1. If for r 2 Z

C
ˆ 1

x0

j@r
xu0.x/j2dx < 1 but @r

xu0 … L2..x0 � 1;1//;

then for any t 2 .0;1/ and any v > 0 and � > 0
ˆ 1

x0C��vt
j@r

xu.x; t/j2dx < 1;

and for any t 2 .�1; 0/ and any ˛ 2 R

ˆ 1

˛

j@r
xu.x; t/j2dx D 1:

Remark. Notice that (49) implies: for any � > 0, v > 0, T > 0

sup
0�t�T

ˆ 1

x0C��vt
.@r

xu.x; t//2 dx � c D c.�; v;T/: (52)

This tells us that the local regularity of the initial datum u0 described in (48)
propagates with infinite speed to its left as time evolves.

In [24] similar results concerning the IVP for the k-generalized Korteweg-de
Vries equation (5) were obtained. However, the proof for the BO equation is quite
more involved. First, it includes a non-local operator, the Hilbert transform (2).
Second, in the case of the k-gKdV the Kato local smoothing effect produces a gain
of one derivative (see the argument below) which allows to pass to the next step in
the inductive process. However, in the case of the BO equation the gain of the local
smoothing is just 1=2-derivative (see the argument below) so the iterative argument
has to be carried out into two steps, one for positive integers m and another for
m C 1=2. Also the explicit identity obtained in [26] describing the local smoothing
effect in solutions of the KdV equation is not available for the BO equation. In
this case, to establish the local smoothing one has to rely on several commutator
estimates. The main one is the extension of the Calderón first commutator estimate
for the Hilbert transform [9] given in [4], see Theorem 2.10.

As it was already mentioned Theorem 3.2 describes the propagation of regulari-
ties in solutions of the k-gBO equation (˛ D 0 in (6)) and the corresponding result
for the k-gKdV equation (˛ D 1 in (6)) was proved in [24]. However, a similar
result for the equations in (6) with ˛ 2 .0; 1/ is unknown (Q 10).

To illustrate a key argument in these proofs and the difficulties in extending it to
the case ˛ 2 .0; 1/ we consider the linear IVP associated to generalized dispersive
BO equation

(
@tw˛ � D1C˛

x @xw˛ D 0; ˛ 2 Œ0; 1
; x; t 2 R;

w˛.x; 0/ D w 2 L2.R/; wj.0;1/ 2 H1..0;1//:
(53)



366 G. Ponce

We define the following family of functions : for each a; b 2 R; a < b we define
�a;b 2 C1 as in (47) such that if b � a D 4� one has �0

a;b.x/ � 0; x 2 R and
�0

a;b.x/ D .b � a/=2; x 2 Œa C �; b � �
.
First, we consider the case ˛ D 1 in (53). Following the argument in [26] for any

v > 0 one formally has that

1

2

d

dt

ˆ
w21.x; t/�.x C vt/dx C 3

2

ˆ
.@xw1/

2.x; t/�0.x C vt/dx

� 1

2

ˆ
w21.x; t/�

.3/.x C vt/dx � v
ˆ

w21.x; t/�
0.x C vt/dx D 0:

(54)

Thus, integrating in the time interval Œ0;T
 one gets that

sup
0�t�T

ˆ
w21.x; t/�.x C vt/dx C

ˆ T

0

ˆ
.@xw1/

2.x; t/�0.x C vt/dxdt

� c D c.kwk2I TI vI aI b/:

(55)

Taking derivatives in the equation in (53) with ˛ D 1, reapplying the above
argument with a > 0 and using (55) one gets that

sup
0�t�T

ˆ
.@xw1/

2�.x C vt/dx C
ˆ T

0

ˆ
.@2xw1/

2�0.x C vt/dxdt

� c D c.kwk2I k@xwkL2..0;1//I TI vI aI b/;

(56)

which very roughly explains one of the main ideas given in [24] to prove the
propagation of regularities in solutions of the k-gKdV.

Next, we consider the case ˛ D 0 in (53). A similar argument yields the identity

1

2

d

dt

ˆ
w20.x; t/�.x C vt/dx C

ˆ
H @xw0 @xw0�.x C vt/dx

C
ˆ

H @xw0 w0�
0.x C vt/dx � v

ˆ
w20�

0.x C vt/dx D 0:

(57)

We observe that

A.t/ D
ˆ

H @xw0 @xw0�.x C vt/dx

D �
ˆ
@xw0H .@xw0�.x C vt//dx

D �
ˆ
@xw0H @xw0 �.x C vt/dx �

ˆ
@xw0 ŒH I�
@xw0.x; t/dx

D �A.t/C
ˆ

w0 @xŒH I�
@xw0dx:

(58)
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Therefore, combining Theorem 2.10 and the fact that the L2-norm of the solution is
preserved it follows that

A.t/ D 1

2

ˆ
w0 @xŒH I�
@xw0dx D O.kwk22/; t 2 R:

Also, one sees that

B.t/ D
ˆ

H @xw0w0�
0.x C vt/dx D

ˆ
Dxw0w0�

0.x C vt/dx

D �
ˆ

D1=2w0 D1=2
x .w0�

0.x C vt//dx

D
ˆ
.D1=2

x w0/
2 �0.x C vt/dx C

ˆ
D1=2

x w0 ŒD
1=2
x I�0
w0.x; t/dx

D
ˆ
.D1=2

x w0/
2 �0.x C vt/dx C

ˆ
w0 D1=2

x ŒD1=2
x I�0
w0.x; t/dx;

(59)

where the second term in the right-hand side of (59) can be estimated using

kD1=2
x ŒD1=2

x I�0
f k2 � c�kf k2: (60)

Inserting the above estimates in (57) one concludes that

sup
0�t�T

ˆ
.w0.x; t//

2�.x C vt/dx C
ˆ T

0

ˆ
.D1=2

x w0/
2�0.x C vt/dxdt

� c D c.kwk2I TI aI b/:

(61)

Repeating the above argument, after applying the operator D1=2
x to the equation in

(53) with ˛ D 0, one gets

1

2

d

dt

ˆ
.D1=2

x w0/
2�.x C vt/dx

C
ˆ

H @xD1=2
x w0 @xD1=2

x w0�.x C vt/dx

C
ˆ

H @xD1=2
x w0 D1=2

x w0�
0.x C vt/dx

� v
ˆ
.D1=2

x w0/
2�0.x C vt/dx D 0:

(62)

From (61) after integration in time the last term in (62) is bounded. To control
the second term in (62) we write
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A1.t/ 	
ˆ

H @xD1=2
x w0 @xD1=2

x w0�.x C vt/dx

D �
ˆ
@xD1=2

x w0H .@xD1=2
x w0�.x C vt//dx

D �
ˆ
@xD1=2

x w0H @xD1=2
x w0 �.x C vt/dx

�
ˆ
@xD1=2

x w0 ŒH I�
@xD1=2
x w0.x; t/dx

D �A1.t/ �
ˆ

w0 D1=2
x @xŒH I�
@xD1=2

x w0dx:

(63)

Hence, from Theorem 2.10 it follows that

A1.t/ D �1
2

ˆ
w0 D1=2

x @xŒH I�
@xD1=2
x w0dx D O.kwk22/; t 2 R:

Finally, to bound the third term in (62) one defines �.�/ as

�0.x/ D �2.x/;

then

B1.t/ 	
ˆ

H @xD1=2
x w0�.x C vt/D1=2

x w0�.x C vt/dx

D
ˆ

H .@xD1=2w0�.x C vt//D1=2
x w0�.x C vt/dx

�
ˆ
ŒH I �
@xD1=2

x w0 D1=2
x w0�.x C vt/dx

D
ˆ

H @x.D
1=2
x w0�.x C vt//D1=2

x w0�.x C vt/dx

�
ˆ

H .D1=2
x w0�

0.x C vt//D1=2
x w0�.x C vt/dx � B2.t/

D
ˆ
.D1=2

x .D1=2
x w0�.x C vt///2dx � B3.t/ � B2.t/:

(64)

with

B3.t/ D
ˆ

H .D1=2
x w0�

0.x C vt//D1=2
x w0�.x C vt/dx;

which after integration in time is basically bounded by (61), and
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B2.t/ D
ˆ
ŒH I �
@xD1=2

x w0 D1=2
x w0�.x C vt/dx

D
ˆ
ŒH I �
@xD1=2

x w0 D1=2
x .w0�.x C vt//dx

�
ˆ
ŒH I �
@xD1=2

x w0 ŒD
1=2
x I �
w0dx;

(65)

whose boundedness follows by combining Theorem 2.10 and (60). Gathering the
above information one sees that

sup
0�t�T

ˆ
.D1=2

x w0/
2�.x C vt/dx

C
ˆ T

0

ˆ
.D1=2

x .D1=2
x w0�.x C vt///2dxdt

� c D c.kwk2I k@xwkL2..0;1//I TI vI aI b/;

(66)

with �2.x/ D �0.x/.
Reapplying the above argument with the appropriate modifications and using the

estimate (66) one can conclude that

sup
0�t�T

ˆ
.@xw0/

2�.x C vt/dx C
ˆ T

0

ˆ
.D1=2

x .@xw0�.x C vt///2dxdt

� c D c.kwk2I k@xwkL2..0;1//I TI vI aI b/;

(67)

with �2 D �.
As it was mentioned above the result in (56) for ˛ D 1 were extended in [24]

to solutions of the IVP (5) and those in (67) for ˛ D 0 were extended in [25]
to solutions of the IVP (1). As it was mentioned before, a similar result for the
solutions of the IVP associated to the equations in (6) with ˛ 2 .0; 1/ is unknown
(Q 10).
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