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Abstract We survey a collection of closely related methods for generalizing fans
of toric varieties, include skeletons, Kato fans, Artin fans, and polyhedral cone
complexes, all of which apply in the wider context of logarithmic geometry.
Under appropriate assumptions these structures are equivalent, but their different
realizations have provided for surprisingly disparate uses. We highlight several
current applications and suggest some future possibilities.
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1 Introduction

1.1 Toric Varieties, Toroidal Embeddings, and Logarithmic
Structures

Toric varieties were introduced in [21] and studied in many sources, see, for
instance, [19, 20, 23, 35, 43, 44]. They are the quintessence of combinatorial
algebraic geometry: there is a category of combinatorial objects called fans, which
is equivalent to the category of toric varieties with torus-equivariant morphisms
between them. Further, classical tropical geometry probes the combinatorial struc-
ture of subvarieties of toric varieties. We review this theory in utmost brevity in
Sect. 2 below.

In [35] some of this picture was generalized to toroidal embeddings, especially
toroidal embeddings without self-intersections, and their corresponding polyhedral
cone complexes (Sect. 2.7). Following Kato [34] we argue that the correct generality
is that of fine and saturated logarithmic structures. Working over perfect fields,
toroidal embeddings can be identified as logarithmically regular varieties. Since
logarithmic structures might not be familiar to the reader, we provide a brief review
of the necessary definitions in Sect. 3. To keep matters as simple as possible, all the
logarithmic structures we use below are fine and saturated (Definition 3.12). These
are the logarithmic structures closest to toroidal embeddings which still allow us to
pass to arbitrary subschemes.

The purpose of this text is to survey a number of ways one can think of
generalizing fans of toric varieties to the realm of logarithmic structures: Kato fans,
Artin fans, polyhedral cone complexes, and skeletons. These are all closely related
and, under appropriate assumptions, equivalent. But the different ways they are
realized provide for entirely different applications. We do not address skeletons
of logarithmic structures over non-trivially valued non-Archimedean fields—see
Werner’s contribution [63]. Nor do we address the general theory of skeletons of
Berkovich spaces and their generalizations [13, 28, 40].

1.2 Kato Fans

In [34], Kato associated a combinatorial structure FX , which has since been called
the Kato fan of X, to a logarithmically regular scheme X (with Zariski-local charts),
see Sect. 4. This is a reformulation of the polyhedral cone complexes of [35]
which realizes them within the category of monoidal spaces. In [59], one further
generalizes the construction of the associated Kato fan to logarithmic structures
without monodromy. As in [35], Kato fans provide a satisfying theory encoding
logarithmically smooth birational modifications in terms of subdivisions of Kato
fans. Procedures for resolution of singularities of polyhedral cone complexes of
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Kato fans are given in [35] and [34]. As an outcome, we obtain a combinatorial pro-
cedure for resolution of singularities of logarithmically smooth structures without
self-intersections.

Kato fans, or generalizations of them, can be constructed for more general
logarithmic structures. We briefly discuss such a construction using sheaves on the
category of Kato fans. A different, and possibly more natural approach, is obtained
using Artin fans.

1.3 Artin Fans and Olsson’s Stack of Logarithmic Structures

In order to import notions and structures from scheme theory to logarithmic
geometry, Olsson [46] showed that a logarithmic structure X on a given underlying
scheme X is equivalent to a morphism X ! Log, where Log is a rather large,
zero-dimensional Artin stack—the moduli stack of logarithmic structures. It carries
a universal logarithmic structure whose associated logarithmic algebraic stack we
denote by Log—providing a universal family of logarithmic structures Log ! Log.

Being universal, the logarithmic stack Log cannot reflect the combinatorics of
X. In Sect. 5 we define, following [3, 8], the notion of Artin fans, and show that the
morphism X ! Log factors through an initial morphism X ! AX , where AX is an
Artin fan and AX ! Log is étale and representable.

We argue that, unlike Log, the Artin fan AX is a combinatorial object which
encodes the combinatorial structure of X. Indeed, when X is without monodromy,
the underlying topological space of AX is simply the Kato fan FX . In other words,
AX combines the advantages of the Kato fan FX , being combinatorial, and of Log,
being algebraic.

In addition AX exists in greater generality, when X is allowed to have self-
intersections and monodromy—even not to be logarithmically smooth; in a round-
about way, it provides a definition of FX in this generality, by taking the underlying
“monoidal space”—or more properly, “monoidal stack”—of AX .

The theory of Artin fans is not perfect. Its current foundations lack full func-
toriality of the construction of X ! AX , just as Olsson’s characteristic morphism
X ! Log is functorial only for strict morphisms Y ! X of logarithmic schemes. In
Sect. 5.4.2 we provide a patch for this problem, again following Olsson’s ideas.

1.4 Artin Fans and Unobstructed Deformations

Artin fans were developed in [3, 8] and the forthcoming [6] in order to study
logarithmic Gromov–Witten theory. The idea is that since an Artin fan A is
logarithmically étale, a map f W C ! AX from a curve to AX is logarithmically
unobstructed. Precursors to this result for specific X were obtained in [4, 5, 7, 16].
In [5] an approach to Jun Li’s expanded degenerations was provided using what
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in hindsight we might call the Artin fan of the affine line A D AA1 . The papers
[4, 7, 16] use this formalism to prove comparison results in relative Gromov–Witten
theory. For logarithmically smooth X, the map X ! AX was used in [3] to prove that
logarithmic Gromov–Witten invariants are invariant under logarithmic blowings up;
in [8], it was used for general X to complete a proof of boundedness of the space of
logarithmic stable maps. We review these results, for which both the combinatorial
and algebraic features of AX are essential, in Sect. 6. They serve as evidence that
the algebraic structure of Artin fans is an advantage over the purely combinatorial
structure of their associated Kato fans.

1.5 Skeletons and Tropicalization

In Sect. 7 we follow Thuillier [58] and associate to a Zariski-logarithmically smooth
scheme X its extended cone complex ˙X . This is a variant of the cone complex ˙X

of [35], and is related to the Kato fan in an intriguing manner:

˙X D FX.R�0 t f1g/:

The complex ˙X is canonically homeomorphic to the skeleton S.X/ of the non-
Archimedean space XÆ associated to the logarithmic scheme X, when viewing the
base field as a valued field with trivial valuation, as developed by Thuillier [58]. In
this case there is a continuous map XÆ ! ˙X , and˙X � XÆ is a strong deformation
retract. Thuillier used this formalism to prove a compelling result independent of
logarithmic or non-Archimedean considerations: the homotopy type of the dual
complex of a logarithmic resolution of singularities does not depend on the choice
of resolution.

For a general fine and saturated logarithmic scheme X, we still have a continuous
mapping XÆ ! ˙X , although we do not have a continuous section ˙X � X. It is
argued in [59] that the image of XÆ ! ˙X can be viewed as the tropicalization
of X.

Note that in this discussion we have limited the base field of X to have a trivial
absolute value. A truly satisfactory theory must apply to subvarieties defined over
valued-field extensions, in particular with nontrivial valuation.

1.6 Analytification of Artin Fans

Artin fans can be tied into the skeleton picture via their analytifications, as we
indicate in Sect. 8. We again consider our base field as a trivially valued field. The
analytification of the morphism �X W X ! AX is a morphism �Æ

X W XÆ ! AÆ
X into

an analytic Artin stack AÆ
X . The whole structure sits in a commutative diagram
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On the left side of the diagram the horizontal arrows remain in their respective
categories—algebraic on the bottom, analytic on top—but discard all geometric
data of X and XÆ except the combinatorics of the logarithmic structure. On the
right side the arrows AÆ

X ! ˙X and AX ! FX discard the analytic and algebraic
data and preserve topological and monoidal structures. In particular AÆ

X ! ˙X

is a homeomorphism, endowing the familiar complex ˙X with an analytic stack
structure.

1.7 Into the Future

While we have provided evidence that the algebraic structure of AX has advantages
over the underlying monoidal structure FX , at this point we can only hope that
the analytic structure AÆ

X would have significant advantages over the underlying
piecewise-linear structure ˙X , as applications are only starting to emerge, see [55].

We discuss some questions that might usher further applications in Sect. 9.

2 Toric Varieties and Toroidal Embeddings

Mostly for convenience, we work here over an algebraically closed field k. We recall,
in briefest terms, the standard setup of toric varieties and toroidal embeddings.

2.1 Toric Varieties

Consider a torus T ' G
n
m and a normal variety X on which T acts with a dense orbit

isomorphic to T—and fix such isomorphism. Write M for the character group of T
and write N for the co-character group. Then M and N are both isomorphic to Z

n

and are canonically dual to each other. We write MR D M ˝ R and NR D N ˝ R

for the associated real vector spaces.

2.2 Affine Toric Varieties and Cones

If X is affine, it is canonically isomorphic to X� D Spec kŒS� �, where � � NR is a
strictly convex rational polyhedral cone, and S� D M \ �_ is the monoid of lattice
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Fig. 1 The fan of P2

points in the n-dimensional cone �_ � MR dual to � . Such affine X� contains a
unique closed orbit O� , which is itself isomorphic to a suitable quotient torus of T .

2.3 Invariant Opens

A nonempty torus-invariant affine open subset of X� is always of the form X� where
� � � is a face of �—either � itself or the intersection of � with a supporting
hyperplane. For instance, the torus T itself corresponds to the vertex f0g of � .

2.4 Fans

Any toric variety X is covered by invariant affine opens of the form X�i , and the
intersection of X�i with X�j is of the form X�ij for a common face �ij D �i \ �j. It
follows that the cones �i form a fan �X in N. This means precisely that �X is a
collection of strictly convex rational polyhedral cones in N, that any face of a cone
in �X is a member of �X , and the intersection of any two cones in �X is a common
face (see Fig. 1).

And vice versa: given a fan � in N one can glue together the associated affine
toric varieties X� along the affine opens X� to form a toric variety X.�/.

2.5 Categorical Equivalence

One defines a morphism from a toric variety T1 � X1 to another T2 � X2 to be an
equivariant morphism X1 ! X2 extending a homomorphism of tori T1 ! T2. On
the other hand one defines a morphism from a fan �1 in .N1/R to a fan �2 in .N2/R
to be a group homomorphism N1 ! N2 sending each cone � 2 �1 into some cone
� 2 �2.
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A fundamental theorem says

Theorem 2.1. The correspondence above extends to an equivalence of categories
between the category of toric varieties over k and the category of fans.

Under this equivalence, toric birational modifications X1 ! X2 of X2 correspond
to subdivisions �X1 ! �X2 of �X2 .

2.6 Extended Fans

The closure O� � X of a T-orbit O� , which is itself a toric variety, is encoded in�X ,
but in a somewhat cryptic manner. Thuillier [58] provided a way to add all the fans
of these loci O� and obtain a compactification�X � �X: instead of gluing together
the cones � along their faces, one replaces � with a natural compactification, the
extended cone

� WD HomMon.S� ;R�0 [ f1g/;

where the notation HomMon stands for the set of monoid homomorphisms. This has
the effect of adding, in one step, lower dimensional cones isomorphic to �=Span �
at infinity corresponding to the closure of O� in X� , for all � � � . We still have that
� ij D � i \� j, and one can glue together these extended cones to obtain the extended
fan �X (Fig. 2).

Fig. 2 The extended fan
of P2
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2.7 Toroidal Embeddings

The theory of toroidal embedding was developed in [35] in order to describe
varieties that look locally like toric varieties. A toroidal embedding U � X is a dense
open subset of a normal variety X such that, for any closed point x, the completion
bUx � bXx is isomorphic to the completion of an affine toric variety Tx � X�x .
Equivalently, each x 2 X should admit an étale neighborhood �x W Vx ! X and
an étale morphism  x W Vx ! X�x such that  �1

x Tx D ��1
x U. Note that the open set

U � X serves as a global structure connecting the local pictures Tx � X�x .

2.8 The Cone Complex of a Toroidal Embedding
Without Self-Intersections

If the morphisms �x W Vx ! X are assumed to be Zariski open embeddings, then the
toroidal embedding is a toroidal embedding without self-intersections. In this case
the book [35] provides a polyhedral cone complex ˙X replacing the fan of a toric
variety. The main difference is that the cones of the complex ˙X do not lie linearly
inside an ambient space of the form NR.

For a toroidal embedding without self-intersections, the strata of X�x glue
together to form a stratification fOig of X. For x 2 Oi the cone �x, along with its
sublattice �x \N, is independent of x. It can be described canonically as follows. Let
Xi be the star of Oi, namely the union of strata containing Oi in their closures. It is an
open subset of X. LetM i be the monoid of effective Cartier divisors on Xi supported
on Xi X U. Let N� D HomMon.M i;N/ be the dual monoid. Then �x D .N� /R is the
associated cone. When one passes to another stratum contained in Xi one obtains a
face � � � , and N� D � \ N� . These cones glue together naturally, in a manner
compatible with the sublattices, to form a cone complex ˙X with integral structure.
Unlike the case of fans, the intersection �i \ �j could be a whole common subfan of
�i and �j, and not necessarily one cone (Fig. 3).

2.9 Extended Complexes

Just as in the case of toric varieties, these complexes canonically admit compactifi-
cations ˙X � ˙X , obtained by replacing each cone �x by the associated extended
cone � x. This structure was introduced in Thuillier’s [58].

Fig. 3 The complex of P2

with the divisor consisting of
a line and a transverse conic:
the cones associated to the
zero-dimensional strata meet
along both their edges
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2.10 Functoriality

Let U1 � X1 and U2 � X2 be toroidal embeddings without self-intersections and f W
X1 ! X2 a dominant morphism such that f .U1/ � U2. Then one canonically obtains
a mapping ˙X1 ! ˙X2 , simply because Cartier divisors supported away from U2

pull back to Cartier divisors supported away from U1. This mapping is continuous,
sends cones into cones linearly, and sends lattice points to lattice points. Declaring
such mappings to be mappings of polyhedral cone complexes with integral structure,
we obtain a functor from toroidal embeddings to polyhedral cone complexes. This
functor is far from being an equivalence.

In [35] one focuses on toroidal modifications f W X1 ! X2, namely those
birational modifications described on charts of X2 by toric modifications of the toric
varieties X�x . Then one shows

Theorem 2.2. The correspondence X1 7! ˙X1 extends to an equivalence of
categories between toroidal modifications of U2 � X2, and subdivisions of ˙X2 .

3 Logarithmic Structures

We briefly review the theory of logarithmic structures [33].

3.1 Notation for Monoids

Definition 3.1. A monoid is a commutative semi-group with a unit. A morphism of
monoids is required to preserve the unit element.

We denote the category of monoids by the symbol Mon.

Given a monoid P, we can associate a group

Pgp WD f.a; b/j.a; b/ � .c; d/ if 9s 2 P such that s C a C d D s C b C cg:

Note that any morphism from P to an abelian group factors through Pgp uniquely.

Definition 3.2. A monoid P is called integral if P ! Pgp is injective. It is called
fine if it is integral and finitely generated.

An integral monoid P is said to be saturated if whenever p 2 Pgp and n is a
positive integer such that np 2 P then p 2 P.

As has become customary, we abbreviate the combined condition “fine and
saturated” to fs.
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3.2 Logarithmic Structures

Definition 3.3. Let X be a scheme. A pre-logarithmic structure on X is a sheaf of
monoids MX on the small étale site Ket.X/ combined with a morphism of sheaves of
monoids: ˛ W MX �! OX , called the structure morphism, where we view OX as
a monoid under multiplication. A pre-logarithmic structure is called a logarithmic
structure if ˛�1.O�

X/ Š O�
X via ˛. The pair .X;MX/ is called a logarithmic scheme,

and will be denoted by X.
The structure morphism ˛ is frequently denoted exp and an inverse O�

X ! MX is
denoted log.

Definition 3.4. Given a logarithmic scheme X, the quotient sheaf M X D MX=O�
X

is called the characteristic monoid, or just the characteristic, of the logarithmic
structure MX .

Definition 3.5. Let M and N be pre-logarithmic structures on X. A morphism
between them is a morphism M ! N of sheaves of monoids which is compatible
with the structure morphisms.

Definition 3.6. Let ˛ W M ! OX be a pre-logarithmic structure on X. We define
the associated logarithmic structure Ma to be the push-out of

in the category of sheaves of monoids on Ket.X/, endowed with

Ma ! OX .a; b/ 7! ˛.a/b .a 2 M; b 2 O�
X/:

The following are two standard examples from [33, (1.5)]:

Example 3.7. Let X be a smooth scheme with an effective divisor D � X. Then we
have a standard logarithmic structure M on X associated to the pair .X;D/, where

MX WD ff 2 OX j f jXnD 2 O�
Xg

with the structure morphism MX ! OX given by the canonical inclusion. This is
already a logarithmic structure, as any section of O�

X is already in MX .

Example 3.8. Let P be an fs monoid, and X D SpecZŒP� be the associated affine
toric scheme. Then we have a standard logarithmic structure MX on X associated to
the pre-logarithmic structure
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P ! ZŒP�

defined by the obvious inclusion.
We denote by Spec.P ! ZŒP�/ the log scheme .X;MX/.

3.3 Inverse Images

Let f W X ! Y be a morphism of schemes. Given a logarithmic structure MY on
Y , we can define a logarithmic structure on X, called the inverse image of MY , to
be the logarithmic structure associated to the pre-logarithmic structure f �1.MY/ !
f �1.OY/ ! OX . This is usually denoted by f �.MY/. Using the inverse image of
logarithmic structures, we can give the following definition.

Definition 3.9. A morphism of logarithmic schemes X ! Y consists of a morphism
of underlying schemes f W X ! Y , and a morphism f [ W f �MY ! MX of logarithmic
structures on X. The morphism is said to be strict if f [ is an isomorphism.

We denote by LogSch the category of logarithmic schemes.

3.4 Charts of Logarithmic Structures

Definition 3.10. Let X be a logarithmic scheme, and P a monoid. A chart for MX

is a morphism P ! �.X;MX/, such that the induced map of logarithmic structures
Pa ! MX is an isomorphism, where Pa is the logarithmic structure associated to the
pre-logarithmic structure given by P ! �.X;MX/ ! �.X;OX/.

In fact, a chart of MX is equivalent to a morphism

f W X ! Spec.P ! ZŒP�/

such that f [ is an isomorphism. In general, we have the following:

Lemma 3.11 ([45, 1.1.9]). The mapping

HomLogSch.X;Spec.P ! ZŒP�// ! HomMon.P; �.X;MX//

associating to f the composition

P ! �.X;PX/
�.f b/���! �.X;MX/

is a bijection.
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We will see in Example 5.2 that Artin cones have a similar universal property on
the level of characteristic monoids.

Definition 3.12. A logarithmic scheme X is said to be fine, if étale locally there is
a chart P ! MX with P a fine monoid. If moreover P can be chosen to be saturated,
then X is called a fine and saturated (or fs) logarithmic structure. Finally, if P can
be chosen isomorphic to N

k, we say that the logarithmic structure is locally free.

Lemma 3.13. Let X be a fine and saturated logarithmic scheme. Then for any
geometric point Nx 2 X, there exists an étale neighborhood U ! X of Nx with a
chart M Nx;X ! MU, such that the composition M Nx;X ! MU ! M Nx;X is the identity.

Proof. This is a special case of [46, Proposition 2.1]. ut

3.5 Logarithmic Differentials

To form sheaves of logarithmic differentials, we add to the sheaf �X=Y symbols of
the form d log.˛.m// for all elements m 2 MX , as follows:

Definition 3.14. Let f W X ! Y be a morphism of fine logarithmic schemes. We
introduce the sheaf of relative logarithmic differentials �1

X=Y given by

�1
X=Y D

�

�X=Y ˚ .OX ˝Z Mgp
X /

�

ıK

where K is the OX-module generated by local sections of the following forms:

(1) .d˛.a/; 0/ � .0; ˛.a/˝ a/ with a 2 MX and
(2) .0; 1˝ a/ with a 2 im.f �1.MY/ ! MX/.

The universal derivation .@;D/ is given by @ W OX
d! �X=Y ! �1

X=Y and D W MX !
OX ˝Z Mgp

X ! �1
X=Y .

Example 3.15. Let h W Q ! P be a morphism of fine monoids. Denote X D
Spec.P ! ZŒP�/ and Y D Spec.Q ! ZŒQ�/. Then we have a morphism f W X ! Y
induced by h. A direct calculation shows that �1

f D OX ˝Z coker.hgp/. The free
generators correspond to the logarithmic differentials d log.˛.p// for p 2 P, which
are regular on the torus SpecZŒPgp�, modulo those coming from Q. This can also be
seen from the universal property of the sheaf of logarithmic differentials.
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3.6 Logarithmic Smoothness

Consider the following commutative diagram of logarithmic schemes illustrated
with solid arrows:

(1)

where j is a strict closed immersion (Definition 3.9) defined by the ideal J with
J2 D 0. We define logarithmic smoothness by the infinitesimal lifting property:

Definition 3.16. A morphism f W X ! Y of fine logarithmic schemes is called
logarithmically smooth (resp., logarithmically étale) if the underlying morphism
X ! Y is locally of finite presentation and for any commutative diagram (1), étale
locally on T1 there exists a (resp., there exists a unique) morphism g W T1 ! X such
that � D g ı j and  D f ı g.

We have the following useful criterion for smoothness from [33, Theorem 3.5].

Theorem 3.17 (K. Kato). Let f W X ! Y be a morphism of fine logarithmic
schemes. Assume we have a chart Q ! MY, where Q is a finitely generated integral
monoid. Then the following are equivalent:

(1) f is logarithmically smooth (resp., logarithmically étale) and
(2) étale locally on X, there exists a chart .PX ! MX;QY ! MY ;Q ! P/

extending the chart QY ! MY, satisfying the following properties:

(a) The kernel and the torsion part of the cokernel (resp., the kernel and the
cokernel) of Qgp ! Pgp are finite groups of orders invertible on X.

(b) The induced morphism from X ! Y �SpecZŒQ�SpecZŒP� is étale in the usual
sense.

Remark 3.18. (1) We can require Qgp ! Pgp in (a) to be injective, and replace the
requirement that X ! Y �SpecZŒQ� SpecZŒP� be étale in (b) by requiring it to be
smooth without changing the conclusion of Theorem 3.17.

(2) In this theorem something wonderful happens, which Kato calls “the magic of
log.” The arrow in (b) shows that a logarithmically smooth morphism is “locally
toric” relative to the base. Consider the case where Y is a logarithmic scheme
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with underlying space given by SpecC with the trivial logarithmic structure,
and X D Spec.P ! CŒP�/ where P is a fine, saturated, and torsion free
monoid. Then X is a toric variety with the action of SpecCŒPgp�. According
to the theorem, X is logarithmically smooth relative to Y , though the underlying
space might be singular. These singularities are called toric singularities in [34].
This is closely related to the classical notion of toroidal embeddings [35].

Logarithmic differentials behave somewhat analogously to differentials:

Proposition 3.19. Let X
f! Y

g! Z be a sequence of morphisms of fine logarithmic
schemes.

(1) There is a natural exact sequence f ��1
g ! �1

fg ! �1
f ! 0.

(2) If f is logarithmically smooth, then�1
f is a locally free OX-module, and we have

the following exact sequence: 0 ! f ��1
g ! �1

gf ! �1
f ! 0.

(3) If gf is logarithmically smooth and the sequence in (2) is exact and splits locally,
then f is logarithmically smooth.

A proof can be found in [45, Chap. IV].

4 Kato Fans and Resolution of Singularities

4.1 The Monoidal Analogues of Schemes

In parallel to the theory of schemes, Kato developed a theory of fans, with the role
of commutative rings played by monoids. As with schemes, the theory begins with
the spectrum of a monoid:

Definition 4.1 ([34, Definition (5.1)]). Let M be a monoid. A subset I � M is
called an ideal of M if M C I � I. If M X I is a submonoid of M, then I is called
a prime ideal of M. The set of prime ideals of M is denoted Spec M and called the
spectrum of M.

If f W M ! N is a homomorphism of monoids and P � N is a prime ideal, then
f �1P � M is a prime ideal as well. Therefore f induces a morphism of spectra:
Spec N ! Spec M.

Definition 4.2 ([34, Definition (5.2)]). Suppose that M is a monoid and S is a
subset of M. We write MŒ�S� for the initial object among the monoids N equipped
a morphism f W M ! N such that f .S/ is invertible. When S consists of a single
element s, we also write MŒ�s� in lieu of MŒ�fsg�.
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Fig. 4 Points and topology
of SpecN2: The big point
corresponds to the ideal ¿,
the intermediate points are
the primes N � N>0 and
N>0 � N, and the small
closed point is the maximal
ideal N2>0. The arrows
indicate specialization, thus
determining the topology ∅ N>0 × N

N × N>0 N
2
>0

It is not difficult to construct MŒ�S� with the familiar Grothendieck group
construction M 7! Mgp of Definition 3.1. Certainly MŒ�S� coincides with MŒ�S0�
where S0 is the submonoid of M generated by S. One may therefore assume that S is
a submonoid of M. Then for MŒ�S� one may take the set of formal differences m� s
with m 2 M and s 2 S, subject to the familiar equivalence relation:

m � s � m0 � s0 ” 9 t 2 S; t C m C s0 D t C m0 C s

If M is integral, then one may construct MŒ�S� as a submonoid of Mgp.
The topology of the spectrum of a monoid is defined exactly as for schemes:

Definition 4.3 ([34, Definition (9.2)]). Let M be a monoid. For any f 2 M, let
D.f / � Spec M be the set of prime ideals P � M such that f 62 P. A subset of
Spec M is called open if it is open in the minimal topology in which the D.f / are
open subsets.

Equivalently D.f / is the image of the map Spec.MŒ�f �/ ! Spec M. The
intersection of D.f / and D.g/ is D.f C g/ so the sets D.f / form a basis for the
topology of Spec M (Fig. 4).

We equip Spec M with a sheaf of monoids MSpec M where

MSpec M.D.f // D MŒ�f �=MŒ�f ��

where MŒ�f �� is the set of invertible elements of M. This is a sharply monoidal
space:

Definition 4.4 ([34, Definition (9.1)]). Recall that a monoid is called sharp if its
only invertible element is the identity element 0. If M and N are sharp monoids,
then a sharp homomorphism f W M ! N is a homomorphism of monoids such that
f �1f0g D f0g.

A sharply monoidal space is a pair .S;MS/, where S is a topological space and
MS is a sheaf of sharp monoids on S. A morphism of sharply monoidal spaces
f W .S;MS/ ! .T;MT/ consists of a continuous function f W S ! T and a sharp
homomorphism of sheaves of sharp monoids f �1MT ! MS.
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A sharply monoidal space is called an affine Kato fan or a Kato cone if it is
isomorphic to .Spec M;MSpec M/. A sharply monoidal space is called a Kato fan if
it admits an open cover by Kato cones.

We call a Kato fan integral or saturated if it admits a cover by the spectra of
monoids with the respective properties (Definition 3.2). A Kato fan is called locally
of finite type if it admits a cover by spectra of finitely generated monoids. We use
fine as a synonym for integral and locally of finite type.

A large collection of examples of Kato fans is obtained from fans of toric varieties
(see Sect. 4.3) or logarithmically smooth schemes (Sect. 4.5). In particular, any toric
singularity is manifested in a Kato fan.

Any Kato cone Spec M of a finitely generated integral monoid M contains
an open point corresponding to the ideal ¿ � M, carrying the trivial stalk
Mgp=Mgp D 0. We can always glue an arbitrary collection of such Kato cones along
their open points. If the collection is infinite, this gives examples of connected Kato
fans which are not quasi-compact.

4.2 Points and Kato Cones

Definition 4.5. Let F0 ! F be a morphism of fine, saturated Kato fans. The
morphism is said to be quasi-compact if the preimage of any open subcone of F
is quasi-compact.

Lemma 4.6. Let F be a Kato fan. There is a bijection between the open Kato
subcones of F and the points of F.

Proof. Suppose that U D Spec M is an open subcone of F. Let P � M be the
complement of 0 2 M. Then P is a prime ideal, hence corresponds to a point of F.

To give the inverse, we show that every point of F has a minimal open affine
neighborhood. Indeed, suppose that U is an open affine neighborhood of p 2 F.
Then the underlying topological space of U is finite, so there is a smallest open
subset of U containing p. Replace U with this open subset. It must be affine, since
affine open subsets form a basis for the topology of U.

It is straightforward to see that these constructions are inverse to one another. ut
Lemma 4.7. A morphism of fine, saturated Kato fans is quasi-compact if and only
if it has finite fibers. In particular, a Kato fan is quasi-compact if and only if its
underlying set is finite.

4.3 From Fans to Kato Fans

If � is a fan in NR in the sense of toric geometry, it gives rise to a Kato fan F�.
The underlying topological space of F� is the set of cones of � and a subset is
open if and only if it contains all the faces of its elements. In particular, if � is one
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of the cones of �, then the set of faces of � is an open subset F� of K and these
open subsets form a basis. We set M.F� / D .M \ �_/=.M \ �_/� where M is
the dual lattice of N and �_ is the dual cone of � . With this sheaf of monoids,
F� ' Spec.M \ �_/=.M \ �_/�, so F� has an open cover by Kato cones, hence is
a Kato fan.

4.4 Resolution of Singularities of Kato Fans

Kato introduced the following monoidal space analogue of subdivisions of fans of
toric varieties, in such a way that a subdivision of a fan˙ gives rise to a subdivision
of the Kato fan F˙ . A morphism of fans ˙1 ! ˙2 is a subdivision if and only if
it induces a bijection on the set of lattice points [�N� . The Kato fan notion is the
direct analogue:

Definition 4.8. A morphism p W F0 ! F of fine, saturated Kato fans is called a
proper subdivision if it is quasi-compact and the morphism

Hom.SpecN;F0/ ! Hom.SpecN;F/

is a bijection.

Remark 4.9. This definition has an appealing resemblance to the valuative criterion
for properness.

Explicitly subdividing Kato fans is necessarily less intuitive than subdividing
fans. The following examples, which are in direct analogy to subdivisions of fans,
may help in developing intuition:

Example 4.10. (i) Suppose that F is a fine, saturated Kato fan and v W SpecN ! F
is a morphism. The star subdivision of F along v is constructed as follows:
If U D Spec M is an open Kato subcone of F not containing v, then U is
included as an open Kato subcone of F0; if U does contain v, then for each
face V D Spec N contained in U that does not contain v, we include the face
v C V D Spec MvCV , where

MvCV D ˚

˛ 2 Mgp W ˛ˇ

ˇ

V 2 N and v�˛ 2 N
�

:

(ii) Let F D Spec M be a fine, saturated Kato cone. There is a canonical morphism
SpecN ! F by regarding Hom.SpecN;F/ D Hom.M;N/ as a monoid and
taking the sum of the generators of the 1-dimensional faces of F. This morphism
is called the barycenter of F.

If F is a fine, saturated Kato fan, we obtain a subdivision F0 ! F by
performing star subdivision of F along the barycenters of its open subcones,
in decreasing order of dimension. A priori this is well defined if cones of F
have bounded dimension, but as the procedure is compatible with restriction to
subfans, this works for arbitrary F. This subdivision is called the barycentric
subdivision.
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Definition 4.11. A fine, saturated Kato fan F is said to be smooth if it has an open
cover by Kato cones U ' SpecNr.

Theorem 4.12 ([35, Theorem I.11], [23, Sect. 2.6], [34, Proposition (9.8)]). Let
F be a fine, saturated Kato fan. Then there is a proper subdivision F0 ! F such that
F0 is smooth.

The classical combinatorial proofs start by first using star or barycentric subdivi-
sions to make the fan simplicial, and then repeatedly reducing the index by further
star subdivisions.

4.5 Logarithmic Regularity and Associated Kato Fans

In this section we will work only with logarithmic structures admitting charts Zariski
locally.

Let X be a logarithmic scheme and x a schematic point of X. Let I.x;MX/ be the
ideal of the local ring OX;x generated by the maximal prime ideal of MX;x.

Definition 4.13 ([34, Definition (2.1)]). A locally noetherian logarithmic scheme
X admitting Zariski-local charts is called logarithmically regular at a schematic
point x if it satisfies the following two conditions:

(i) the local ring OX;x=I.x;MX/ is regular and
(ii) dimOX;x D dimOX;x=I.x;M/C rankM gp

X;x.

Example 4.14 ([34, Example (2.2)]). A toric variety with its toric logarithmic
structure is logarithmically regular.

If X is a logarithmic scheme, then the Zariski topological space of X is
equipped with a sheaf of sharp monoids M X . Thus .X;M X/ is a sharply monoidal
space. Moreover, morphisms of logarithmic schemes induce morphisms of sharply
monoidal spaces. We therefore obtain a functor from the category of logarithmic
schemes to the category of sharply monoidal spaces. We may speak in particular
about morphisms from logarithmic schemes to Kato fans.

Theorem 4.15 (cf. [34, (10.2)]). Let X be a fine, saturated locally noetherian,
logarithmically regular logarithmic scheme that admits charts Zariski locally. Then
there is an initial strict morphism X ! FX to a Kato fan.

We call the Kato fan FX the Kato fan associated to X.
Kato constructs the Kato fan FX as a skeleton of the logarithmic strata of X.

Let FX � X be the set of points x 2 X such that I.x;MX/ coincides with the
maximal ideal of OX;x. As we indicate below these are the generic points of the
logarithmic strata of X. Let MFX be the restriction of M X to FX . We denote the
resulting monoidal space by FX .
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Lemma 4.16 ([34, Proposition (10.1)]). If X is a fine, saturated, locally noethe-
rian, logarithmically regular scheme admitting a chart Zariski locally, then the
sharply monoidal space constructed above is a fine, saturated Kato fan.

Lemma 4.17 ([34, (10.2)]). There is a canonical continuous retraction of X onto
its Kato fan FX.

We briefly summarize the definition of the map and omit the rest of the proof.
Let x be a point of X. The quotient OX;x=I.x;MX/ is regular, hence in particular a
domain, so it has a unique minimal prime corresponding to a point y of FX � X. We
define 	.x/ D y.

Lemma 4.18. The Kato fan of X is the initial Kato fan admitting a morphism
from X.

Proof. Let ' W X ! F be another morphism to a Kato fan. By composition with the
inclusion FX � X we get a map FX ! F. We need to show that ' factors through
	 W X ! FX .

Let x be a point of X and let A be the local ring of x in X. Let P D M X;x.
Let y D 	.x/. Then y is the generic point of the vanishing locus of I.x;MX/. We
would like to show '.y/ D '.x/. We can replace X with Spec A, replace FX with
FX \ Spec A, and replace F with an open Kato cone in F containing '.x/. Then
F D Spec Q for some fine, saturated, sharp monoid Q and we get a map Q ! P.
Since X ! F is a morphism of sharply monoidal spaces, X ! F factors through
the open subset defined by the kernel of Q ! P, so we can replace F by this open
subset and assume that Q ! P is sharp. But then X ! F factors through no smaller
open subset, so '.x/ is the closed point of F. Moreover, we have M X;y D M X;x so
the same reasoning applies to y and shows that '.y/ D '.x/, as desired. ut

This completes the proof of Theorem 4.15.

4.6 Towards the Monoidal Analogues of Algebraic Spaces

4.6.1 The Need for a More General Approach: The Nodal Cubic

Not every logarithmically smooth scheme has a Kato fan. For example, the divisorial
logarithmic structure on A

2 associated to a nodal cubic curve does not have a chart in
any Zariski neighborhood of the node of the cubic. The Kato fan of this logarithmic
structure wants to be the Kato fan of the plane with the open subsets corresponding
to the complements of the axes glued together (Fig. 5).

This cannot be a Kato fan, because there is no open neighborhood of the closed
point that is a Kato cone. Indeed, the closed point has two different generizations to
the codimension 1 point.
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Fig. 5 The fan of the nodal
cubic, drawn as a cone with
the two edges glued to each
other

Clearly, the solution here is to allow more general types of gluing (colimits) into
the definition of a Kato fan. The purpose of this section is to outline what this might
entail. Our favorite solution will only come in the next section, where we discuss
Artin fans.

The theory of algebraic spaces provides a blueprint for how to proceed. The
universal way to add colimits to a category is to pass to its category of presheaves.
In order to retain the Kato fans as colimits of their open Kato subcones, we look
instead at the category of sheaves. Finally, we restrict attention to those sheaves that
resemble Kato cones étale locally.

4.6.2 The Need for a More General Approach: The Whitney Umbrella

These cone spaces are general enough to include a fan for the divisorial logarithmic
structure of the nodal cubic. However, one cannot obtain a fan for the punctured
Whitney umbrella this way:

Working over C, let X D A
2 � Gm with the logarithmic structure pulled back

from the standard logarithmic structure on A
2, associated to the divisor xy D 0 as

in Example 3.7. Let G D Z=2Z act by t:.x; y; z/ D .y; x;�z/. Since the divisor is
G stable, the action lifts to the logarithmic structure, so the logarithmic structure
descends to the quotient Y D X=G.

There is a projection 	 W Y ! Gm, and traversing the nontrivial loop in
Gm results in the automorphism of A2 exchanging the axes. Thus the logarithmic
structure of Y has monodromy.

If there is a map from Y to a cone space Z, then it is not possible for M Y to be
pulled back from MZ . Just as in a Kato fan, the strata of Z on which MZ is locally
constant are discrete and therefore cannot have monodromy.

However, Deligne–Mumford stacks can have monodromy at points. By enlarging
our perspective to include cone stacks, the analogues of Deligne–Mumford stacks
for Kato fans, we are able to construct fans that record the combinatorics of
the logarithmic strata for any locally connected logarithmic scheme (logarithmic
smoothness is not required). The construction proceeds circuitously, by showing
that cone stacks form a full subcategory of Artin fans (defined in Sect. 5) and then
constructing an Artin fan associated to any logarithmically smooth scheme (Fig. 6).
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Fig. 6 The fan of the
Whitney umbrella drawn
as a cone—the first
quadrant—folded over itself
via the involution
.x; y/ 7! .y; x/

5 Artin Fans

In order to simplify the discussion we work over an algebraically closed field k.

5.1 Definition and Basic Properties

Definition 5.1. An Artin fan is a logarithmic algebraic stack that is logarithmically
étale over Spec k. A morphism of Artin fans is a morphism of logarithmic algebraic
stacks. We denote the 2-category of Artin fans by the symbol AF.

Olsson showed that there is an algebraic stack Log over the category of schemes
such that morphisms S ! Log correspond to logarithmic structures S on S [46,
Theorem 1.1].1 Equipping Log with its universal logarithmic structure yields the
logarithmic algebraic stack Log. If X is an Artin fan, then the morphism X ! Log
induced by the logarithmic structure of X is étale, and conversely: any logarithmic
algebraic stack whose structural morphism to Log is étale is an Artin fan.

Example 5.2. Let V be a toric variety with dense torus T . The toric logarithmic
structure of V is T-equivariant, hence descends to a logarithmic structure on ŒV=T�,
making ŒV=T� into an Artin fan.

If V D Spec kŒM� for some fine, saturated, sharp monoid M, then ŒV=T�
represents the following functor on logarithmic schemes [46, Proposition 5.17]:

.X;MX/ 7! Hom
�

M; �.X;M X/
�

:

As M X is an étale sheaf over X, it is immediate that ŒV=T� is logarithmically étale
over a point.

Definition 5.3. An Artin cone is an Artin fan isomorphic to AM D ŒV=T�, where
V D Spec kŒM� and M is a fine, saturated, sharp monoid (Fig. 7).

1Our conventions differ from Olsson’s: in [46], the stack Log parameterizes all fine logarithmic
structures; to conform with our convention that all logarithmic structures are fine and saturated,
we use the symbol Log to refer to the open substack of Olsson’s stack parameterizing fine and
saturated logarithmic structures. This was denoted Tor in [46].



308 D. Abramovich et al.

Fig. 7 AN2 : The small closed
point is BG2

m, the
intermediate points are BGm,
and the big point is just a
point

{∗} BGm

BGm BG
2
m

If X ! Log is étale and representable, then X is determined by its étale stack of
sections over Log. Moreover, any étale stack on Log corresponds to an Artin fan by
passage to the espace (champ) étalé. The following lemma characterizes the étale
site of Log as a category of presheaves:

Lemma 5.4. (i) The Artin cones are an étale cover of Log.
(ii) An Artin cone has no nontrivial representable étale covers.

(iii) If M and N are fine, saturated, sharp monoids, then

HomAF.AM;AN/ D HomMon.N;M/:

Proof. Statement (i) was proved in [46, Corollary 5.25]. It follows from the fact that
every logarithmic scheme admits a chart étale locally.

Statement (ii) follows from [3, Corollary 2.4.3]. Concretely, étale covers of Artin
cones correspond to equivariant étale covers of toric varieties, which restrict to
equivariant étale covers of tori, of which there are none other than the trivial ones
[3, Proposition 2.4.1].

Statement (iii) follows from �.AM;MAM / D M and consideration of the functor
represented by AN (Example 5.2). ut

5.2 Categorical Context

Lemma 5.4 (iii) enables us to relate the 2-category of Artin fans to the notions
surrounding Kato fans. Let us write RPC for the category of rational polyhedral
cones. The category RPC is equivalent to the opposite of the category of fine,
saturated, sharp monoids.2 Therefore RPC is equivalent to the category of Kato
cones and, by Lemma 5.4 (iii), to the category of Artin cones. Furthermore, we
obtain

2In fact, the category of fine, saturated, sharp monoids is equivalent to its own opposite. However,
we find it helpful to maintain a distinction between cones (which we view as spaces) and monoids
(which we view as functions).
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Corollary 5.5. The 2-category of Artin fans with faithful monodromy is fully
faithfully embedded in the 2-category of fibered categories over RPC.

Proof. Lemma 5.4 gives an embedding of AF in the 2-category of fibered categories
on the category of Artin cones and identifies the category of Artin cones with RPC.

ut
This enables us to relate the 2-category AF with the framework proposed in

Sects. 4.6.1 and 4.6.2: the 2-category of cone stacks suggested in Sect. 4.6.2 is
necessarily equivalent to a full subcategory the 2-category AF. The key to proving
this is the fact that the diagonal of an Artin fan is represented by algebraic spaces,
which enables one to relate it to a morphism of “cone spaces” as suggested in
Sect. 4.6.1.

In particular, we have a fully faithful embedding KF ! AF of the category of
Kato fans in the 2-category of Artin fans.

5.3 The Artin Fan of a Logarithmic Scheme

Definition 5.6. A Zariski logarithmic scheme X is said to be small with respect to
a point x 2 X, if the restriction morphism �.X;M/ ! M X;x is an isomorphism and
the closed logarithmic stratum

˚

y 2 X
ˇ

ˇM X;y ' M X;x
�

is connected. We say X is small if it is small with respect to some point.

Let N D �.X;M X/. There is a canonical morphism

X ! AN

corresponding to the morphism N ! �.X;M X/. It is shown in [8] that if X is small
this morphism is initial among all morphisms from X to Artin fans. We therefore
call AN the Artin fan of such small X. By the construction, the Artin fan of X is
functorial with respect to strict morphisms.

Now consider a logarithmic algebraic stack X with a groupoid presentation

V � U ! X

in which U and V are disjoint unions of small Zariski logarithmic schemes. Then
V and U have Artin fans V and U and we obtain strict morphisms of Artin fans
V ! U . Strict morphisms of Artin fans are étale, so this is a diagram of étale spaces
over Log. It therefore has a colimit, also an étale space over Log, which we call the
Artin fan of X.



310 D. Abramovich et al.

5.4 Functoriality of Artin Fans: Problem and Fix

The universal property of the Artin fan implies immediately that Artin fans are
functorial with respect to strict morphisms of logarithmic schemes. They are not
functorial in general, but we will be able to salvage a weak replacement for
functoriality in which morphisms of logarithmic schemes induce correspondences
of Artin fans.

5.4.1 The Failure of Functoriality

We use the notation for the punctured Whitney umbrella introduced in Sect. 4.6.2.
As X has a global chart, its Artin fan X is easily seen to be A2. The Artin fan Y
of Y is the quotient of A2 by the action of Z=2Z exchanging the components, as
a representable étale space over Log. In other words, the group action induces an
étale equivalence relative to Log by taking the image of the action map

Z=2Z � A2 ! A2 �
Log

A2:

A logarithmic morphism from a logarithmic scheme S into A2 �Log A2 consists of
two maps N2 ! �.S;M S/ and an isomorphism between the induced logarithmic
structures M1 and M2 commuting with the projection to MS. This implies that

A2 �
Log

A2 D A2 q
A0

A2

where by A0 we mean the open point of A2. The nontrivial projection in

A2 q
A0

A2 D A2 �
Log

A2 � A2

is given by the identity map on one component and the exchange of coordinates on
the other component. (The trivial projection is the identity on both components.)

It is now easy to see that Z=2Z�A2 surjects onto A2 qA0 A2, so the Artin fan of
Y is the image of A2 in Log. We will write AŒ2� for this open substack and observe
that it represents the functor sending a logarithmic scheme S to the category of pairs
.M; '/ where M is an étale sheaf of monoids on S and ' W M ! M S is a strict
morphism that can be presented étale locally by a map N2 ! M S. Equivalently, it
is a logarithmic structure over MS that has étale-local charts by N2.

Of course, there is a map X ! Y consistent with the maps X ! Y: it is the
canonical projection A2 ! AŒ2�. However, we take eX to be the logarithmic blowup
of X at f0g �Gm and let eY be the logarithmic blowup of Y at the image of this locus.
Then we have a Cartesian diagram, since X is flat over Y:
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We will compute the Artin fans of eX and eY .
Since X and Y are flat over their Artin fans, the blowups eX and eY are pulled back

from the blowups eX and eY of X and Y . Furthermore, the square in the diagram
below is Cartesian:

We have written Z for the Artin fan of eY . Since eY ! eY is strict and smooth with
connected fibers, the map eY ! Z factors through eY . We will see in a moment that
there is no dashed arrow making the triangle on the right above commutative, thus
witnessing the failure of the functoriality of the Artin fan construction with respect
to the morphism eY ! Y .3

The reason no map Z ! Y can exist making the diagram above commutative
is that eY has monodromy at the generic point of its exceptional divisor, pulled back
from the monodromy at the closed point of Y . However, the image of the exceptional
divisor of eY in Z is a divisor, and Z ! Log is representable by algebraic spaces.
No rank 1 logarithmic structure can have monodromy, so there is no monodromy at
the image of the exceptional divisor in Z .

A variant of the last paragraph shows that there is no commutative diagram

We can find a loop 
 in the exceptional divisor E of eY that projects to a nontrivial
loop in Y , around which the logarithmic structure of Y has nontrivial monodromy.
Even though the logarithmic structure of eY has no monodromy around 
 , the image

3More specifically, there is no way to make the Artin fan functorial while also making the maps
Y ! Y natural in Y .
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of 
 in Y is nontrivial. But all of the exceptional divisor E is collapsed to a point in
Z , so the image of 
 in Y must act trivially.4

5.4.2 The Patch

There seem to be two ways to get around this failure of functoriality. The first is to
allow the Artin fan to include more information about the fundamental group of the
original logarithmic scheme X. However, the most naive application of this principle
would introduce the entire étale homotopy type of X into the Artin fan, sacrificing
Artin fans’ essentially combinatorial nature.

Another approach draws inspiration from Olsson’s stacks of diagrams of loga-
rithmic structures [47]. Let LogŒ1� be the stack whose S-points are morphisms of
logarithmic structures M1 ! M2 on S. A morphism of logarithmic schemes X ! Y
induces a commutative diagram

where LogŒ1� ! Log sends M1 ! M2 to M1. If LogŒ1� is given M2 as its
logarithmic structure, this is a commutative diagram of logarithmic algebraic stacks.
The construction of the Artin fan works in a relative situation, and we take Y D
	0.Y=Log/ and X D 	0.X=LogŒ1�/. Note that Y �Log LogŒ1� is étale over LogŒ1�, so
we get a map

X ! Y �
Log

LogŒ1� ! Y

salvaging a commutative diagram:

Theorem 5.7 ([3, Corollary 3.3.5]). For any morphism of logarithmic schemes
X ! Y with étale-locally connected logarithmic strata there is an initial commuta-
tive diagram

4Here is a rigorous version of the above argument. Observe that Y is the quotient of R � X ,
where X ' A2 and R is two copies of X joined along their open point. Pulling X back to the
center of the blowup Y0 ' Gm inside Y yields the cover by Gm�f0g � X. This cover has nontrivial
monodromy. On the other hand, Z ' A2 has no nontrivial étale covers. Therefore the pullback of
X �

eY
Z viaeY ! Z yields a trivial étale cover of Y0.
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in which the horizontal arrows are strict and both X and Y are Artin fans
representable by algebraic spaces relative to LogŒ1� and Log, respectively.

6 Algebraic Applications of Artin Fans

6.1 Gromov–Witten Theory and Relative
Gromov–Witten Theory

Algebraic Gromov–Witten theory is the study of the virtually enumerative invari-
ants, known as Gromov–Witten invariants, of algebraic curves on a smooth target
variety X. In Gromov–Witten theory one integrates cohomology classes on X against
the virtual fundamental class ŒM�.X/�vir of the moduli space M�.X/ of stable maps
with target X. The subscript � indicates fixed numerical invariants, including the
genus of the domain curve, the number of marked points on it, and the homology
class of its image.

Relative Gromov–Witten theory comes from efforts to define Gromov–Witten
invariants for degenerations of complicated targets that, while singular, are still
geometrically simple. In the mild setting of two smooth varieties meeting along
a smooth divisor, such a theory has been developed by Li [37, 38], following work
in symplectic geometry by Li–Ruan [39] and Ionel–Parker [30, 31].

Working over C, one considers a degeneration

(2)

where 	 W X ! B is a flat, projective morphism from a smooth variety to a smooth
curve, and where the singular fiber X0 D Y1 tD Y2 consists of two smooth varieties
meeting along a smooth divisor.

Jun Li proved an algebro-geometric degeneration formula through which one can
recover Gromov–Witten invariants of the possibly complicated but smooth general
fiber of X from relative Gromov–Witten invariants determined by a space M�i.Yi/

of relative stable maps to each of the two smooth components Yi of X0. Here, in
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addition to the genus, the number of markings, and homology class, one must fix
the contact orders of the curve with the given divisor.

6.1.1 Expanded Degenerations and Pairs

In order to define Gromov–Witten invariants of the singular degenerate fiber X0, Jun
Li constructed a whole family of expansions X0

0 ! X0, where

X0
0 D Y1 tD P tD � � � tD P tD Y2:

Here P is the projective completion of ND=Y1 ' N_
D=Y2

(explicitly, it is P.O˚ND=Y1 /)
and the gluing over D attaches 0-sections to 1-sections.

Similarly, in order to guarantee that contact orders of maps in each Yi are
maintained, Jun Li constructed a family of expansions Y 0

i ! Yi where

Y 0
i D Yi tD P tD � � � tD P:

Here is the first point where Artin fans, in their simplest form and even without
logarithmic structures, become of use:

In Jun Li’s construction, not every deformation of an expansion Y 0
i ! Yi is itself

an expansion. For instance, the expansion Yi tD P can deform to Yi tD P0, where
P00 D P.O ˚ N00/ with N00 a deformation of ND=Y1 . Precisely the same problem
occurs with deformation of an expansion X0

0 ! X0.

6.1.2 The Artin Fan as the Universal Target, and Its Expansions

In [5], following ideas in [14], it was noted that the Yi has a canonical map Yi !
A WD ŒA1=Gm�. From the point of view of the present text, A D AYi , the Artin fan
associated to the divisorial logarithmic structure .Yi;D/, and its divisor D D BGm �
A is the universal divisor. Next, if A0 ! A is an expansion, then all deformations
of A0 ! A are expansions of A in the sense of Jun Li. And finally, any expansion
Y 0

i ! Yi is obtained as the pullback Y 0
i D A0 �A Yi of some expansion A0 ! A.

This means that the moduli space of expansions of any pair .Yi;D/ is identical
to the moduli space of expansions of .A;D/, and the expansions themselves are
obtained by pullback.

A similar picture occurs for degenerations: the Artin fan of X ! B is the
morphism A � A ! A induced by the multiplication morphism A

2 ! A
1:
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There is again a stack of universal expansions of A � A ! A, and every expansion
X0
0 ! X0 is the pullback of a fiber of the universal expansion:

From the point of view of logarithmic geometry this is not surprising: expansions
are always stable under logarithmic deformations. But the approach through Artin
fans provides us with further results, which we outline below.

6.1.3 Redefining Obstructions

Using expanded degenerations and expanded pairs, Jun Li defined moduli spaces
of degenerate stable maps M�.X=B/ and of relative stable maps M�i.Yi;D/.
Jun Li had an additional challenge in defining the virtual fundamental classes of
these spaces, which he constructed by bare hands. With a little bit of hindsight,
we now know that Li’s virtual fundamental classes are associated to the natural
relative obstruction theories of the morphisms M�.X=B/ ! M�.A2=A/ and
M�i.Yi;D/ ! M�i.A;D/, where M�.A2=A/ and M�i.A;D/ are the associated
moduli spaces of prestable maps. Moreover, the virtual fundamental classes can
be understood with machinery available off the shelf of any deformation theory
emporium. This observation from [7] made it possible to prove a number of
comparison results, including those described below.

6.1.4 Other Approaches and Comparison Theorems

Denote by .Y;D/ a smooth pair, consisting of a smooth projective variety Y with a
smooth and irreducible divisor D. Jun Li’s moduli space M�.Y;D/ of relative stable
maps to .Y;D/ provides an algebraic setting for relative Gromov–Witten theory.
Only recently have efforts to generalize the theory to more complicated singular
targets come to fruition [1, 24, 29, 48, 49]. Because of the technical difficulty of Jun
Li’s approach, several alternate approaches to the relative Gromov–Witten invariants
of .Y;D/ have been developed:

• Listab
� .Y;D/ W Li’s original moduli space of relative stable maps;

• AFstab
� .Y;D/ W Abramovich–Fantechi’s stable orbifold maps with expansions [2];

• Kimstab
� .Y;D/ W Kim’s stable logarithmic maps with expansions [36]; and

• ACGSstab
� .Y;D/ W Abramovich–Chen and Gross–Siebert’s stable logarithmic

maps without expansions [1, 17, 24].
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There are analogous constructions

Listab
� .X=B/ AFstab

� .X=B/ Kimstab
� .X=B/ ACGSstab

� .X=B/

for a degeneration.
This poses a new conundrum: how do these approaches compare? The answer,

which depends on the Artin fan A, is as follows:

Theorem 6.1 ([7, Theorem 1.1]). There are maps

such that

‰�ŒAF�vir D ŒLi�vir ‚�ŒKim�vir D ŒLi�vir ‡�ŒKim�vir D ŒACGS�vir:

In particular, the Gromov–Witten invariants associated to these four theories
coincide.

The principle behind this comparison for each of the three maps ‰;‚, and ‡
is the same, and we illustrate it on ‰: there are algebraic stacks parametrizing
orbifold and relative stable maps to the Artin fan .A;D/, which we denote here
by AF�.A;D/ and Li�.A;D/. These stacks sit in a Cartesian diagram

such that

(1) The virtual fundamental classes of the spaces AFstab
� .Y;D/ and Listab

� .Y;D/may
be computed using the natural obstruction theory relative to the vertical arrows
	AF and 	Li.

(2) The obstruction theory for 	AF is the pullback of the obstruction theory of 	Li.
(3) The morphism ‰A is birational.

One then applies a general comparison result of Costello [18, Theorem 5.0.1] to
obtain the theorem.

What makes all this possible is the fact that the virtual fundamental classes
of AF�.A;D/ and Li�.A;D/ agree with their fundamental classes. This in turn
results from the fact that the Artin fan .A;D/ of .X;D/ discards all the complicated
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geometry of .X;D/, retaining just enough algebraic structure to afford stacks of
maps such as AF�.A;D/ and Li�.A;D/. In effect, the virtual birationality of ‰ is
due to the genuine birationality of ‰A.

Similar results were obtained by similar methods in [16] and [4].

6.2 Birational Invariance for Logarithmic Stable Maps

More general Artin fans have found applications in the logarithmic approach to
Gromov–Witten theory.

Let X be a projective logarithmically smooth variety over C, and denote by M.X/
the moduli space of logarithmic stable maps to X, as defined in [1, 17, 24]. Fix a
logarithmically étale morphism h W Y ! X of projective logarithmically smooth
varieties. There is a natural morphism M.h/ W M.Y/ ! M.X/ induced by h, and
the central result of [3] is the following pushforward statement for virtual classes.

Theorem 6.2. M.h/�
�

ŒM.Y/�vir
� D ŒM.X/�vir: In particular the logarithmic

Gromov–Witten invariants of X and Y coincide.

This theorem is proven by working relative to the underlying morphism of Artin
fans Y ! X provided by Theorem 5.7. This morphism and h fit into a Cartesian
diagram

(3)

One carefully constructs a Cartesian diagram of moduli spaces

(4)

to which principles (1), (2), and (3) in the proof of Theorem 6.1 apply. Costello’s
comparison theorem [18, Theorem 5.0.1] again gives the result.
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6.3 Boundedness of Logarithmic Stable Maps

A recent application of both Theorem 6.2 and the theory of Artin fans can be found
in [8], where a general statement for the boundedness of logarithmic stable maps to
projective logarithmic schemes is proven.

Theorem 6.3 ([8, Theorem 1.1.1]). Let X be a projective logarithmic scheme.
Then the stack M�.X/ of stable logarithmic maps to X with discrete data � is
of finite type.

The boundedness of M�.X/ has been established when the characteristic monoid
M X is globally generated in [1, 17], and more generally when the associated group
M

gp
X is globally generated in [24]. The strategy used in [8] for the general setting

is to reduce to the case of a globally generated sheaf of monoids M X by studying
the behavior of stable logarithmic maps under an appropriate modification of X.
This is accomplished by modifying the Artin fan X D AX constructed in Sect. 5.3,
lifting this modification to the level of logarithmic schemes, and applying a virtual
birationality result refining Theorem 6.2.

A key step is the modification of X :

Proposition 6.4 ([8, Proposition 1.3.1]). Let X be an Artin fan. Then there exists
a projective, birational, and logarithmically étale morphism Y ! X such that Y
is a smooth Artin fan, and the characteristic sheaf MY is globally generated and
locally free.

The proof of this Proposition is analogous to [35, I.11]: successive star subdi-
visions are applied until each cone is smooth (see Example 4.10), and barycentric
subdivisions guarantee that the resulting logarithmic structure has no monodromy.

7 Skeletons and Tropicalization

7.1 Berkovich Spaces

Ever since [56] it has been known that affinoid algebras are the correct coordinate
rings for defining non-Archimedean analogues of complex analytic spaces. Working
just with affinoid algebras as coordinate rings, we have enough information to build
an intricate theory with many applications. The work of Berkovich [11] and [12]
beautifully enriches this theory by providing us with an alternative definition of non-
Archimedean analytic spaces, which naturally come with underlying topological
spaces that have many of the favorable properties of complex analytic spaces, such
as being locally path-connected and locally compact.

Let k be a non-Archimedean field, i.e., suppose that k is complete with respect
to a non-Archimedean absolute value j:j. We explicitly allow k to carry the trivial
absolute value. If U D Spec A is an affine scheme of finite type over k, as a set the
analytic space Uan associated to U is equal to the set of multiplicative seminorms on
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A that restrict to the given absolute value on k. We usually write x for a point in Uan

and j:jx, if we want to emphasize that x is thought of as a multiplicative seminorm
on A. The topology on Uan is the coarsest that makes the maps

Uan �! R

x 7�! jf jx
continuous for all f 2 A. There is a natural continuous structure morphism � W
Uan ! U given by sending x 2 Uan to the preimage of zero

˚

f 2 A
ˇ

ˇjf jx D 0
�

.
A morphism f W U ! V between affine schemes U D Spec A and V D Spec B
of finite type over k, given by a k-algebra homomorphism f # W B ! A, induces a
natural continuous map f an W Uan ! Van given by associating to x 2 Uan the point
f .x/ 2 Van given as the multiplicative seminorm

j:jf .x/ D j:jx ı f #

on B. The association f 7! f an is functorial in f .
Let X be a scheme that is locally of finite type over k. Choose a covering Ui D

Spec Ai of X by open affines. Then the analytic space Xan associated to X is defined
by glueing the Uan

i over the open subsets ��1.Ui \ Uj/. It is easy to see that this
construction does not depend on the choice of a covering and that it is functorial with
respect to morphisms of schemes over k. We refrain from describing the structure
sheaf on Xan, since we are only going to be interested in the topological properties
of Xan, and refer the reader to [11, 12, 57] for further details.

Example 7.1. Suppose that k is algebraically closed and endowed with the trivial
absolute value. Let t be a coordinate on the affine line A

1 D Spec kŒt�. One can
classify the points in .A1/an as follows:

• For every a 2 k and r 2 Œ0; 1/ we have the seminorm j:ja;r on kŒt� that is uniquely
determined by

jt � aja;r D r;

and
• for r 2 Œ1;1/ we have the seminorm j:j1;r that is uniquely determined by

jt � aj1;r D r

for all a 2 k.

Noting that

lim
r!1

j:ja;r D j:j1;1
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for all a 2 k we can visualize .A1/an as follows:

In particular, we can embed the closed points of A
1.k/ into .A1/an by the

association a 7! j:ja;0 for a 2 k.

One can give an alternative description of Xan as the set of equivalence classes of
non-Archimedean points of X. A non-Archimedean point of X consists of a pair
.K; �/ where K is a non-Archimedean extension of k and � W Spec K ! X. Two
non-Archimedean points .K; �/ and .L;  / of X are equivalent, if there is a common
non-Archimedean extension � of both K and L such that the diagram commutes.

Proposition 7.2. The analytic space Xan is equal to the set of non-Archimedean
points modulo equivalence.

Proof. We may assume that X D Spec A is affine. A non-Archimedean point .K; �/
of X naturally induces a multiplicative seminorm

A
�#

�! K
j:j�! R

on A. Conversely, given x 2 Xan, we can consider the integral domain A= ker j:jx
and form the completion H.x/ of its field of fractions. The natural homomorphism
A ! H.x/ defines a non-Archimedean point on X and these two constructions are
inverse up to equivalence. ut

Now suppose that k is endowed with the trivial absolute value. In [58, Sect. 1]
Thuillier introduces a slight variant of the analytification functor that functorially
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associates to a scheme locally of finite type over k a non-Archimedean analytic
space XÆ. Its points are pairs .R; �/ consisting of a valuation ring R extending k
together with a morphism � W Spec R ! X modulo an equivalence relation as
above: two pairs .R; �/ and .S;  / are equivalent, if there is a common valuation
ring O extending both R and S such that the diagram commutes.

So, if U D Spec A is affine, then UÆ is nothing but the set of multiplicative
seminorms j:jx on A that are bounded, i.e., that fulfill jf jx � 1 for all f 2 A. The
topology on UÆ is the one induced from Uan and there is a natural anti-continuous
reduction map r W UÆ ! U that sends x 2 UÆ to the prime ideal

˚

f 2 A
ˇ

ˇjf jx < 1
�

.
For a general scheme X locally of finite type over k, we again choose a covering Ui

by open affine subsets, and now glue the UÆ
i over the closed subsets r�1.Ui \ Uj/ in

order to obtain XÆ.
As an immediate application of the valuative criteria for separatedness and

properness, we obtain that, if X is separated, then XÆ is naturally a locally closed
subspace of Xan, and, if X is complete, then XÆ D Xan.

Example 7.3. The space .A1/Æ is precisely the subspace of .A1/an consisting of the
points j:ja;r for a 2 k and r 2 Œ0; 1/ as well as the Gauss point j:j1;1.

7.2 The Case of Toric Varieties

Let k be a non-Archimedean field. As observed in [10, 22, 25, 26], there is an
intricate relationship between non-Archimedean analytic geometry and tropical
geometry. In particular, in many interesting situations the tropicalization of an
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algebraic variety X over k can be regarded as a natural deformation retract of Xan, a
so-called skeleton of Xan. In this section we are going to give a detailed explanation
of this relationship in the simplest possible case, that of toric varieties.

Let T be a split algebraic torus with character lattice M and co-character lattice
N, and X D X.�/ a T-toric variety that is defined by a rational polyhedral fan � in
NR. We refer the reader to Sect. 2 for a brief summary of this beautiful theory, and
to [23] and [19] for a more thorough account.

In [32] and [50] Kajiwara and Payne independently construct a tropicalization
map

trop� W Xan �! NR.�/

associated to X, whose codomain is a partial compactification of NR, uniquely
determined by � (also see [51, Sect. 4] and [53, Sect. 3]).

For a cone � in � set NR.�/ D Hom.S� ;R/, where S� denotes the toric monoid
�_ \ M and write R for the additive monoid .R t f1g;C/. Endow NR.�/ with the
topology of pointwise convergence.

Lemma 7.4 ([53, Proposition 3.4]).

(i) The space NR.�/ has a stratification by locally closed subsets isomorphic to
the vector spaces NR=Span.�/ for all faces � of � .

(ii) For a face � of � the natural map S� ! S� induces the open embedding

NR.�/ ,�! NR.�/

that identifies NR.�/ with the union of strata in NR.�/ corresponding to faces
of � in NR.�/.

So one can think of NR.�/ as a partial compactification of NR given by adding
a vector space NR=Span.�/ at infinity for every face � ¤ 0 of � . The partial
compactification NR.�/ of NR is defined to be the colimit of the NR.�/ for all cones
� in �. Since the stratifications on the NR.�/ are compatible, the space NR.�/ is a
partial compactification of NR that carries a stratification by locally closed subsets
isomorphic to NR=Span.�/ for every cone � in �.

On the T-invariant open affine subset X� D Spec kŒS� � the tropicalization map

trop� W Xan
� �! NR.�/

is defined by associating to an element x 2 Xan the homomorphism s 7! � log j�sjx
in NR.�/ D Hom.S� ;R/.

Lemma 7.5. The tropicalization map trop� is continuous and, for a face � of � , the
natural diagram
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commutes and is Cartesian.

Therefore we can glue the trop� on local T-invariant patches X� and obtain a
global continuous tropicalization map

trop� W Xan �! NR.�/

that restricts to trop� on T-invariant open affine subsets X� . Its restriction to T-orbits
is the usual tropicalization map in the sense of [26, Sect. 3].

The following Proposition 7.6 is well-known among experts and can be found in
[58, Sect. 2] in the constant coefficient case, i.e., the case that k is trivially valued.

Proposition 7.6. The tropicalization map trop� W Xan ! NR.�/ has a continuous
section J� and the composition

p� D J� ı trop� W Xan ! Xan

defines a strong deformation retraction.

The deformation retract

S.X/ D J�
�

NR.�/
� D p�.Xan/

is said to be the non-Archimedean skeleton of Xan.

Proof Sketch of Proposition 7.6. Consider a T-invariant open affine subset X� D
Spec kŒS� �. We may construct the section J� W NR.�/ ! Xan

� by associating to
u 2 NR.�/ D Hom.S� ;R/ the seminorm J� .u/ defined by

J� .u/.f / D max
s2S�

n

jasj exp
��u.s/

�

o

for f D P

s as�
s 2 kŒS� �. A direct verification shows that J� is continuous and

fulfills trop� ıJ� D idNR.�/.
The construction of J� is compatible with restrictions to T-invariant affine open

subsets and we obtain a global section J� W NR.�/ ! Xan of the tropicalization
map trop� W Xan ! NR.�/.

Since J� is a section of trop�, the continuous map

p� D J� ı trop� W Xan �! Xan
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is a retraction map. On X� the image p� .x/ of x 2 Xan
� is the seminorm given by

p� .x/.f / D max
s2S�

˚jasj j�sjx
�

for f D P

s as�
s 2 kŒS� �. The arguments in [58, Sect. 2.2] generalize to this situation

and show that p� is, in fact, a strong deformation retraction (see in particular [58,
Lemma 2.8(1)]). ut
Example 7.7. The skeleton of A1 is given by the half open line connecting 0 to 1,
i.e., for trivially valued k we have

S.X/ D
n

j � j0;r
ˇ

ˇ

ˇ r 2 Œ0; 1/
o

[
n

j � j1;r

ˇ

ˇ

ˇ r 2 Œ1;1/
o

in the notation of Example 7.1.

Let k now be endowed with the trivial absolute value. As seen in [58, Sect. 2.1]
the deformation retraction p� W Xan ! Xan restricts to a deformation retraction
pX W XÆ ! XÆ, whose image is homeomorphic to the closure� of� in NR.�/. On
T-invariant open affine subsets X� D Spec kŒS� � this homeomorphism is induced by
the tropicalization map

tropX W XÆ �! Hom.S� ;R�0/

x �! �

s 7! � log j�sjx
�

into the extended cone � D Hom.S� ;R�0/.

7.3 The Case of Logarithmic Schemes

7.3.1 Zariski Logarithmic Schemes

Suppose that k is endowed with the trivial absolute value and let X be logarithmi-
cally smooth over k. In [58] Thuillier constructs a strong deformation retraction
pX W XÆ ! XÆ onto a closed subset S.X/ of XÆ, the skeleton of XÆ. We summarize
the basic properties of this construction in the following Proposition 7.8. We refer
to Definition 5.6 for the notion of small Zariski logarithmic schemes.

Proposition 7.8. (i) The construction of pX is functorial with respect to logarith-
mic morphisms, i.e., given a logarithmic morphism f W X ! Y, there is a
continuous map fS W S.X/ ! S.Y/ that makes the diagram
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commute. Moreover, if f is logarithmically smooth, then fS is the restriction of
f Æ to S.X/.

(ii) For every strict étale neighborhood U ! X that is small with respect to x 2 U
and for every strict étale morphism 
 W U ! Z into a 
.x/-small toric variety

Z the analytic map 
Æ induces a homeomorphism 
S W S.U/ ��! S.Z/ that
makes the diagram commute.

(iii) The skeleton S.X/ is the colimit of all skeletons S.U/ associated to strict étale
morphisms U ! X from a Zariski logarithmic scheme U that is small and the
deformation retraction pX W XÆ ! XÆ is induced by the universal property of
colimits.

Suppose now that the logarithmic structure on X is defined in the Zariski
topology. In this case, following [59], one can use the theory of Kato fans in order
to define a tropicalization map tropX W XÆ ! ˙X generalizing the map defined for
toric varieties.

Let F be a fine and saturated Kato fan and consider the cone complex

˙F D F.R�0/ D Hom
�

SpecR�0;F
�

and the extended cone complex

˙F D F.R�0/ D Hom
�

SpecR�0;F
� 	 ˙F

associated to F. In order to describe the structure of ˙F and ˙F one can use the
structure map

� W ˙F �! F

u 7�! u
�f1g�

and the reduction map
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r W ˙F �! F

u 7�! u.R>0/ :

Proposition 7.9 ([61] Proposition 3.1). The inverse image r�1.U/ of an open
affine subset U D Spec P in ˙F is the canonical compactification �U D
Hom.P;R�0/ of a rational polyhedral cone �U D Hom.P;R�0/ and its relative
interior V�U is given by r�1.x/ for the unique closed point x in U.

(i) If V 
 U for open affine subsets U;V 
 F, then �V is a face of �U.
(ii) For two open affine subsets U and V of F the intersection �U \ �V is a union of

finitely many common faces.

So the cone complex ˙F is a rational polyhedral cone complex in the sense of
[35]. It naturally carries the weak topology, in which a subset A 
 ˙F is closed
if and only if the intersections A \ �U for all open affine subsets U D Spec P of
F are closed. The extended cone complex ˙F is a canonical compactification of
˙F, carrying the weak topology with the topology of pointwise convergence on
�U D Hom.P;R�0/ as local models.

Proposition 7.10. (i) The reduction map r W ˙F ! F is anti-continuous.
(ii) The structure map � W ˙F ! F is continuous.

(iii) There is a natural stratification

G

x2Spec F

��1.x/ ' ˙F

of ˙F by locally closed subsets.

Let X be a Zariski logarithmic scheme that is logarithmically smooth over k and
denote by �X W .X;OX/ ! FX the characteristic morphism into its Kato fan FX .
We write ˙X and ˙X for the cone complex and the extended cone complex of FX ,
respectively.

Following [59, Sect. 6.1] one can define the tropicalization map tropX ! ˙X as
follows: a point x 2 XÆ can be represented by a morphism x W Spec R ! .X;OX/

for a valuation ring R extending k. Its image tropX.x/ in˙X D Hom.SpecR�0;FX/

is defined to be the composition

SpecR�0
val#���! Spec R

x�! .X;OX/
�X��! FX;

where val# is the morphism SpecR�0 ! Spec R induced by the valuation val W R !
R�0 on R.
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Proposition 7.11 ([59] Proposition 6.2).

(i) The tropicalization map is well-defined and continuous. It makes the diagrams

commute.
(ii) A morphism f W X ! X0 of Zariski logarithmic schemes, both logarithmically

smooth and of finite type over k, induces a continuous map ˙.f / W ˙X ! ˙X0

such that the diagram commutes. The association f 7! ˙.f / is functorial in f .

Corollary 7.12 (Strata-Cone Correspondence, [61] Corollary 3.5). There is an
order-reversing one-to-one correspondence between the cones in ˙X and the strata
of X. Explicitly it is given by

V� 7�! r
�

trop�1
X . V�/�

for a relatively open cone V� 
 ˙X and

E 7�! tropX

�

r�1.E/ \ Xan
0

�

for a stratum E of X.

Proof. This is an immediate consequence of the commutativity of

from Propositions 7.11, 7.9, and the fact that �X sends every point in a stratum
E D E./ to its generic point  . ut
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Corollary 7.13 ([61] Corollary 3.6). The tropicalization map induces a continu-
ous map XÆ \ Xan

0 ! ˙F.

Proof. This follows from the commutativity of

and the observations that ��1.X0/ D XÆ \ Xan as well as ��1.X0 \ FX/ D ˙F. ut

7.3.2 Étale Logarithmic Schemes

Let X be an étale logarithmic scheme that is logarithmically smooth over k. We can
define the generalized extended cone complex associated to X as the colimit of all
˙X0 taken over all strict étale morphisms X0 ! X from a Zariski logarithmic scheme
X0. The tropicalization map tropX W XÆ ! ˙X is induced by the universal property
of colimits.

In analogy with Proposition 7.6 we have the following compatibility result stating
that pX and tropX are equal up to a natural homeomorphism.

Theorem 7.14 ([59] Theorem 1.2). Suppose that X is logarithmically smooth

over k. There is a natural homeomorphism JX W ˙X
��! S.X/ making the diagram

commute.

Moreover, we obtain the following Corollary of Proposition 7.11 (ii).

Corollary 7.15 ([59] Theorem 1.1). A morphism f W X ! X0 of logarithmic
schemes, logarithmically smooth and of finite type over k, induces a continuous
map ˙.f / W ˙X ! ˙X0 such that the natural diagram
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is commutative. The association f 7! ˙.f / is functorial in f .

8 Non-Archimedean Geometry of Artin Fans

8.1 Analytification of Artin Fans

In Sect. 7.3 we have seen that the extended cone complex ˙F associated to a
Kato fan F has topological properties analogous to the non-Archimedean analytic
space XÆ associated to a scheme X of finite type over k. Moreover, if X is a
Zariski logarithmic scheme that is logarithmically smooth over k, the tropicalization
map tropX W XÆ ! ˙X is the “analytification” of the characteristic morphism
�X W .X;OX/ ! FX . Using the theory of Artin fans we can make this analogy more
precise, and even generalize the construction of tropX to all logarithmic schemes.

Let k be endowed with the trivial absolute value. As explained in [62, Sect. V.3]
the .:/Æ-functor, originally constructed in [58], generalizes to a pseudofunctor from
the 2-category of algebraic stacks locally of finite type over k into the category of
non-Archimedean analytic stacks, such that whenever ŒU=R� ' X is a groupoid
presentation of an algebraic stack X we have a natural equivalence ŒUÆ=RÆ� ' XÆ.
We refer the reader to [52, 60], and [64, Sect. 6] for background on the theory of
non-Archimedean analytic stacks.

Let X be an algebraic stack locally of finite type over k. Then the underlying
topological space jXÆj of the analytic stack X can be identified with the set of
equivalence classes of pairs .R; �/ consisting of a valuation ring R extending k
and a morphism � W Spec R ! X . Two such pairs .�;R/ and . ; S/ are said to
be equivalent, if there is a valuation ring O extending both R and S such that the
diagram
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is 2-commutative. The topology on jXÆj is the coarsest making all maps jUÆj !
jXÆj induced by surjective flat morphisms U ! X from a scheme U locally of
finite type over k onto X into a topological quotient map.

Suppose that X is a logarithmic scheme that is logarithmically smooth and of
finite type over k. Consider the natural strict morphism X ! AX into the Artin fan
associated to X as constructed in Sect. 5.

Theorem 8.1 ([62]). There is a natural homeomorphism

�X W ˇ

ˇAÆ
X

ˇ

ˇ

��! ˙X

that makes the diagram

commute.

So, by applying the functor .:/Æ to the morphism X ! AX we obtain the
tropicalization map on the underlying topological spaces. Note that this construction
also works for étale logarithmic schemes and we do not have to take colimits as
in Sect. 7.3.2 (they are already taken in the construction of AX). Theorem 7.14
immediately yields the following Corollary.

Corollary 8.2. There is a natural homeomorphism

Q�X W ˇ

ˇAÆ
X

ˇ

ˇ

��! S.X/

that makes the diagram

commute.
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8.2 Stack Quotients and Tropicalization

Let X be a T-toric variety over k. In this case, Theorem 8.1 precisely says that on
the underlying topological spaces the tropicalization map tropX W XÆ ! ˙X is
nothing but the analytic stack quotient map XÆ ! ŒXÆ=TÆ�. Due to the favorable
algebro-geometric properties of toric varieties we can generalize this interpretation
to general ground fields.

Let k be any non-Archimedean field, and suppose that X is a T-toric variety
defined by a rational polyhedral fan � 
 NR as in Sect. 7.2. Denote by Tı the
non-Archimedean analytic subgroup

˚

x 2 Tan
ˇ

ˇ j�mjx D 1 for all m 2 M
�

of the analytic torus Tan. Note that, if k is endowed with the trivial absolute value,
then Tı D TÆ. In general, we can think of Tı as a non-Archimedean analogue of the
real n-torus NS1 D N ˝Z S1 naturally sitting in NC� D N ˝Z C

�. The T-operation
on X induces an operation of Tı on Xan.

Theorem 8.3 ([60] Theorem 1.1). There is a natural homeomorphism

�� W ˇ

ˇŒXan=Tı�
ˇ

ˇ

��! NR.�/

that makes the diagram

Xan

[Xan/T ◦] NR(Δ)

tropΔ

µΔ

∼

commute.

The proof Theorem 8.3 is based on establishing that the skeleton S.X/ of X is
equal to the set of Tı-invariant points of Xan. Then the statement follows, since by
Ulirsch [60, Proposition 5.4 (ii)] the topological space

ˇ

ˇŒXan=Tı�
ˇ

ˇ is the colimit of
the maps (Fig. 8)

Tı � Xan � Xan :
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0

∞

η

(A1)an

0

∞

η

G
◦
m

η

[
(A1)an

/
G

◦
m

]
0

∞

Fig. 8 Consider the affine line A1 over a trivially valued field k. The non-Archimedean unit circle
G

ı

m is given as the subset of elements in x 2 .A1/an with jtjx D 1, where t denotes a coordinate
on A

1. The skeleton S.A1/ of .A1/an is the line connecting 0 to 1. It is precisely the set of
“Gı

m-invariant” points in .A1/an, and therefore naturally homeomorphic to the topological space
underlying

�

.A1/an
ı

G
ı

m

�

(see [60, Example 6.2])

9 Where We Are, Where We Want to Go

9.1 Skeletons Fans and Tropicalization Over Non-Trivially
Valued Fields

In almost all of our discussion, we have constructed Kato fans, Artin fans, and
skeletons for a logarithmic variety over a trivially valued field k. One exception is the
discussion of toric varieties in Sect. 7.2. This is quite useful and important: given a
subvariety Y of a toric variety X, over a non-trivially valued field, the tropicalization
trop.Y/ of Y is a polyhedral subcomplex of NR.�/ which is not itself a fan. Much of
the impact of tropical geometry relies on the way trop.Y/ reflects on the geometry
of Y . So even though the toric variety X itself can be defined over a field with trivial
valuation, the fact that Y—whose field of definition is non-trivially valued—has a
combinatorial shadow is fundamental.

Can we define Artin fans over non-trivially valued fields? What should their
structure be? In what generality can we canonically associate a skeleton with a
logarithmic structure?

Some results in these directions are available in the recent paper of Gubler,
Rabinoff, and Werner [27]. See also Werner’s contribution to this volume [63].
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9.2 Improved Fans and Moduli Spaces

One of the primary applications of tropical geometry, and therefore of fans, is
through moduli spaces. Mikhalkin’s correspondence theorem [41], Nishinou and
Siebert’s vast extension [42], the work [15] of Cavalieri, Markwig, and Ran-
ganathan, and the manuscript [6], all show that tropical moduli spaces Mtrop.Xtrop/

of tropical curves in tropical varieties serve as good approximations of the tropical-
ization trop.M.X// of moduli spaces M.X/ of algebraic curves in algebraic varieties.
But the picture is not perfect:

1. Apart from very basic cases of the moduli space of curves itself [9] and genus-0
maps with toric targets [54] the tropical moduli space does not coincide with
the tropicalization of the algebraic moduli space

Mtrop.Xtrop/ ¤ trop.M.X//:

2. Even when it does, it is always a coarse moduli space, lacking the full power of
universal families.

These seem to be two distinct challenges, but experience shows that they are
closely intertwined. It also seems that the following problem is part of the puzzle:

3. The construction to the Artin fan AX of a logarithmic scheme X is not functorial
for all morphisms of logarithmic schemes.

The following program might inspire one to go some distance towards these
challenges:

1. Good combinatorial moduli:

(a) Construct a satisfactory monoidal theory of cone spaces and cone stacks as
described in Sects. 4.6.1 and 4.6.2.

(b) Construct a corresponding enhancement of Mtrop
g;n which is a fine moduli

stack of tropical curves, with a universal family.

This is part of current work of Cavalieri, Chan, Ulirsch, and Wise.
2. Stacky Artin fans:

(a) Find a way to relax the representability condition in the definition of AX

so that the enhanced moduli spaces above are canonically associated to the
moduli stacks Mg;n

(b) Try to extend all of the above to moduli of maps.

Acknowledgements Research by Abramovich and Ulirsch is supported in part by NSF grant
DMS-1162367 and BSF grant 2010255; Chen is supported in part by NSF grant DMS-1403271;
Wise is supported by an NSA Young Investigator’s Grant, Award #H98230-14-1-0107.



334 D. Abramovich et al.

References

1. Abramovich, D., Chen, Q.: Stable logarithmic maps to Deligne-Faltings pairs II. Asian J. Math.
18(3), 465–488 (2014). MR 3257836

2. Abramovich, D., Fantechi, B.: Orbifold techniques in degeneration formulas. Ann. Scuola
Norm. Sup. arXiv:1103.5132 (to appear)

3. Abramovich, D., Wise, J.: Invariance in logarithmic Gromov-Witten theory (2013).
arXiv:1306.1222

4. Abramovich, D., Cadman, C., Wise, J.: Relative and orbifold Gromov-Witten invariants (2010).
arXiv:1004.0981

5. Abramovich, D., Cadman, C., Fantechi, B., Wise, J.: Expanded degenerations and pairs.
Commun. Algebra 41(6), 2346–2386 (2013). MR 3225278

6. Abramovich, D., Chen, Q., Gross, M., Siebert, B.: Decomposition of degenerate Gromov–
Witten invariants (2013, in preparation)

7. Abramovich, D., Marcus, S., Wise, J.: Comparison theorems for Gromov-Witten invariants of
smooth pairs and of degenerations. Ann. l’Institut Fourier 64(4), 1611–1667 (2014)

8. Abramovich, D., Chen, Q., Marcus, S., Wise, J.: Boundedness of the space of stable logarithmic
maps. J. Eur. Math. Soc. arXiv:1408.0869 (to appear)

9. Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves.
Annales de l’École Normale Supérieure (4) 48(4), 765–809 (2015)

10. Baker, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization, and metrics on
curves. Algebr. Geom. 3(1), 63–105 (2016)

11. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields.
Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence
(1990). MR 1070709 (91k:32038)

12. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études
Sci. Publ. Math. 78, 5–161 (1993/1994). MR 1259429 (95c:14017)

13. Berkovich, V.: Smooth p-adic analytic spaces are locally contractible. Invent. Math. 137(1),
1–84 (1999). MR 1702143 (2000i:14028)

14. Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–
427 (2007). MR MR2306040 (2008g:14016)

15. Cavalieri, R., Markwig, H., Ranganathan, D.: Tropicalizing the Space of Admissible Covers.
Math. Ann. arXiv:1401.4626 (to appear)

16. Cavalieri, R, Marcus, S., Wise, J.: Polynomial families of tautological classes on Mrt
g;n. J. Pure

Appl. Algebra 216(4), 950–981 (2012)
17. Chen, Q.: Stable logarithmic maps to Deligne-Faltings pairs I. Ann. Math. (2) 180(2), 455–521

(2014). MR 3224717
18. Costello, K.: Higher genus Gromov-Witten invariants as genus zero invariants of symmetric

products. Ann. Math. (2) 164(2), 561–601 (2006)
19. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. In: Graduate Studies in Mathematics,

vol. 124. American Mathematical Society, Providence (2011). MR 2810322 (2012g:14094)
20. Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33(2)(200), 85–134, 247

(1978). MR 495499 (80g:14001)
21. Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci.

École Norm. Sup. (4) 3(4), 507–588 (1970). MR 0284446 (44 #1672)
22. Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties.

J. Reine Angew. Math. 601, 139–157 (2006). MR 2289207 (2007k:14038)
23. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton

University Press, Princeton (1993); The William H. Roever Lectures in Geometry. MR
1234037 (94g:14028)

24. Gross, M., Siebert, B.: Logarithmic Gromov-Witten invariants. J. Am. Math. Soc. 26(2),
451–510 (2013). MR 3011419



Skeletons and Fans of Logarithmic Structures 335

25. Gubler, W.: Tropical varieties for non-Archimedean analytic spaces. Invent. Math. 169(2),
321–376 (2007). MR 2318559 (2008k:14085)

26. Gubler, W.: A guide to tropicalizations. In: Algebraic and Combinatorial Aspects of Tropical
Geometry. Contemporary Mathematics, vol. 589, pp. 125–189. American Mathematical
Society, Providence (2013). MR 3088913

27. Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalization. Adv. Math. (to appear)
28. Hrushovski, E., Loeser, F.: Non-archimedean Tame Topology and Stably Dominated Types.

Annals of Mathematics Studies, vol. 192. Princeton University Press, Princeton (2016)
29. Ionel, E.-N.: GW invariants relative to normal crossing divisors. Adv. Math. 281, 40–141

(2015)
30. Ionel, E.-N., Parker, T.H.: Relative Gromov-Witten invariants. Ann. Math. (2) 157(1), 45–96

(2003). MR 1954264 (2004a:53112)
31. Ionel, E.-N., Parker, T.H.: The symplectic sum formula for Gromov-Witten invariants. Ann.

Math. (2) 159(3), 935–1025 (2004). MR 2113018 (2006b:53110)
32. Kajiwara, T.: Tropical toric geometry. In: Toric Topology. Contemporary Mathematics,

vol. 460, pp. 197–207. American Mathematical Society, Providence (2008). MR 2428356
(2010c:14078)

33. Kato, K: Logarithmic structures of Fontaine-Illusie. In: Algebraic Analysis, Geometry, and
Number Theory (Baltimore, MD, 1988), pp. 191–224. Johns Hopkins University Press,
Baltimore (1989). MR 1463703 (99b:14020)

34. Kato, K: Toric singularities. Am. J. Math. 116(5), 1073–1099 (1994). MR 1296725
(95g:14056)

35. Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings. I. Lecture
Notes in Mathematics, vol. 339. Springer, Berlin (1973). MR 0335518 (49 #299)

36. Kim, B.: Logarithmic stable maps. In: New Developments in Algebraic Geometry, Integrable
Systems and Mirror Symmetry (RIMS, Kyoto, 2008). Advanced Studies in Pure Mathematics,
vol. 59, pp. 167–200. The Mathematical Society of Japan, Tokyo (2010). MR 2683209
(2011m:14019)

37. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differ. Geom.
57(3), 509–578 (2001). MR MR1882667 (2003d:14066)

38. Li, J.: A degeneration formula of GW-invariants. J. Differ. Geom. 60(2), 199–293 (2002). MR
MR1938113 (2004k:14096)

39. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds.
Invent. Math. 145(1), 151–218 (2001). MR 1839289 (2002g:53158)

40. Macpherson, A.W.: Skeleta in non-Archimedean and tropical geometry (2013).
arXiv:1311.0502

41. Mikhalkin, G.: Enumerative tropical algebraic geometry in R
2. J. Am. Math. Soc. 18(2),

313–377 (2005). MR 2137980 (2006b:14097)
42. Nishinou, T., Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke Math.

J. 135(1), 1–51 (2006). MR 2259922 (2007h:14083)
43. Oda, T.: Torus embeddings and applications. Tata Institute of Fundamental Research Lectures

on Mathematics and Physics, vol. 57. Tata Institute of Fundamental Research/Springer,
Bombay/Berlin/New York (1978); Based on joint work with Katsuya Miyake. MR 546291
(81e:14001)

44. Oda, T.: Convex bodies and algebraic geometry. Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15. Springer, Berlin
(1988); An introduction to the theory of toric varieties, Translated from the Japanese. MR
922894 (88m:14038)

45. Ogus, A.: Lectures on logarithmic algebraic geometry (2006)
46. Olsson, M.C.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4)

36(5), 747–791 (2003)
47. Olsson, M.C.: The logarithmic cotangent complex. Math. Ann. 333(4), 859–931 (2005). MR

2195148 (2006j:14017)
48. Parker, B.: Gromov Witten invariants of exploded manifolds (2011). arXiv:1102.0158



336 D. Abramovich et al.

49. Parker, B.: Exploded manifolds. Adv. Math. 229(6), 3256–3319 (2012). MR 2900440
50. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556

(2009). MR 2511632 (2010j:14104)
51. Popescu-Pampu, P., Stepanov, D.: Local tropicalization. In: Algebraic and Combinatorial

Aspects of Tropical Geometry. Contemporary Mathematics, vol. 589. American Mathematical
Society, Providence (2013)

52. Porta, M., Yu, T.Y.: Higher analytic stacks and GAGA theorems (2014). arXiv:1412.5166
53. Rabinoff, J.: Tropical analytic geometry, Newton polygons, and tropical intersections. Adv.

Math. 229(6), 3192–3255 (2012). MR 2900439
54. Ranganathan, D.: Moduli of rational curves in toric varieties and non-Archimedean geometry

(2015). arXiv:1506.03754
55. Ranganathan, D.: Superabundant curves and the Artin fan. IMRN (to appear)
56. Tate, J.: Rigid analytic spaces. Invent. Math. 12, 257–289 (1971). MR 0306196 (46 #5323)
57. Temkin, M.: Introduction to Berkovich analytic spaces. In: Ducros, A., Favre, C., Nicaise, J.

(eds.) Berkovich Spaces and Applications. Lecture Notes in Mathematics, vol. 2119, pp. 3–66.
Springer International Publishing, Cham (2015)

58. Thuillier, A.: Géométrie toroïdale et géométrie analytique non archimédienne. Application au
type d’homotopie de certains schémas formels. Manuscripta Math. 123(4), 381–451 (2007).
MR 2320738 (2008g:14038)

59. Ulirsch, M.: Functorial tropicalization of logarithmic schemes: the case of constant coefficients
(2013). arXiv:1310.6269

60. Ulirsch, M.: A geometric theory of non-Archimedean analytic stacks (2014). arXiv:1410.2216
61. Ulirsch, M.: Tropical compactification in log-regular varieties. Math. Z. 280(1–2), 195–210

(2015). MR 3343903
62. Ulirsch, M.: Tropical geometry of logarithmic schemes, pp. viii+160. Ph.D. Thesis, Brown

University, 2015
63. Werner, A.: Analytification and tropicalization over non-archimedean fields. In: Proceedings

of the 2013 and 2015 Simons Symposia on Nonarchimedean and Tropical Geometry (2015, to
appear). arXiv:1506.04846

64. Yu, T.Y.: Gromov compactness in non-archimedean analytic geometry. J. Reine Angew. Math.
(to appear)


	Skeletons and Fans of Logarithmic Structures
	1 Introduction
	1.1 Toric Varieties, Toroidal Embeddings, and Logarithmic Structures
	1.2 Kato Fans
	1.3 Artin Fans and Olsson's Stack of Logarithmic Structures
	1.4 Artin Fans and Unobstructed Deformations
	1.5 Skeletons and Tropicalization
	1.6 Analytification of Artin Fans
	1.7 Into the Future

	2 Toric Varieties and Toroidal Embeddings
	2.1 Toric Varieties
	2.2 Affine Toric Varieties and Cones
	2.3 Invariant Opens
	2.4 Fans
	2.5 Categorical Equivalence
	2.6 Extended Fans
	2.7 Toroidal Embeddings
	2.8 The Cone Complex of a Toroidal Embedding Without Self-Intersections
	2.9 Extended Complexes
	2.10 Functoriality

	3 Logarithmic Structures
	3.1 Notation for Monoids
	3.2 Logarithmic Structures
	3.3 Inverse Images
	3.4 Charts of Logarithmic Structures
	3.5 Logarithmic Differentials
	3.6 Logarithmic Smoothness

	4 Kato Fans and Resolution of Singularities
	4.1 The Monoidal Analogues of Schemes
	4.2 Points and Kato Cones
	4.3 From Fans to Kato Fans
	4.4 Resolution of Singularities of Kato Fans
	4.5 Logarithmic Regularity and Associated Kato Fans
	4.6 Towards the Monoidal Analogues of Algebraic Spaces
	4.6.1 The Need for a More General Approach: The Nodal Cubic
	4.6.2 The Need for a More General Approach: The Whitney Umbrella


	5 Artin Fans
	5.1 Definition and Basic Properties
	5.2 Categorical Context
	5.3 The Artin Fan of a Logarithmic Scheme
	5.4 Functoriality of Artin Fans: Problem and Fix
	5.4.1 The Failure of Functoriality
	5.4.2 The Patch


	6 Algebraic Applications of Artin Fans
	6.1 Gromov–Witten Theory and Relative Gromov–Witten Theory
	6.1.1 Expanded Degenerations and Pairs
	6.1.2 The Artin Fan as the Universal Target, and Its Expansions
	6.1.3 Redefining Obstructions
	6.1.4 Other Approaches and Comparison Theorems

	6.2 Birational Invariance for Logarithmic Stable Maps
	6.3 Boundedness of Logarithmic Stable Maps

	7 Skeletons and Tropicalization
	7.1 Berkovich Spaces
	7.2 The Case of Toric Varieties
	7.3 The Case of Logarithmic Schemes
	7.3.1 Zariski Logarithmic Schemes
	7.3.2 Étale Logarithmic Schemes


	8 Non-Archimedean Geometry of Artin Fans
	8.1 Analytification of Artin Fans
	8.2 Stack Quotients and Tropicalization

	9 Where We Are, Where We Want to Go
	9.1 Skeletons Fans and Tropicalization Over Non-Trivially Valued Fields
	9.2 Improved Fans and Moduli Spaces

	References


