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Abstract In this paper, we provide an overview of recent progress on the interplay
between tropical geometry and non-archimedean analytic geometry in the sense
of Berkovich. After briefly discussing results by Baker et al. (Algebr. Geom.
3, 63–105 (2016); Contemporary Mathematics, vol 605, pp 93–121. American
Mathematical Society, Providence, 2013) in the case of curves, we explain a
result from Cueto et al. (Math. Ann. 360, 391–437 (2014)) comparing the tropical
Grassmannian of planes to the analytic Grassmannian. We also give an overview
of most of the results in Gubler et al. (Adv. Math. 294, 150–215 (2016)), where
a general higher-dimensional theory is developed. In particular, we explain the
construction of generalized skeleta in Gubler et al. (Adv. Math. 294, 150–215
(2016)) which are polyhedral substructures of Berkovich spaces lending themselves
to comparison with tropicalizations. We discuss the slope formula for the valuation
of rational functions and explain two results on the comparison between polyhedral
substructures of Berkovich spaces and tropicalizations.
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1 Introduction

Tropical varieties are polyhedral images of varieties over non-archimedean fields.
They are obtained by applying the valuation map to a set of toric coordinates.
From the very beginning, analytic geometry was present in the systematic study
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of tropical varieties, e.g., in [16] where rigid analytic varieties are used. The theory
of Berkovich spaces which leads to spaces with nicer topological properties than
rigid varieties is even better suited to study tropicalizations.

A result of Payne [24] states that the Berkovich space associated with an
algebraic variety is homeomorphic to the inverse limit of all tropicalizations in
toric varieties. However, individual tropicalizations may fail to capture topological
features of an analytic space. The present paper is an overview of recent results
on the relationship between analytic spaces and tropicalizations. In particular, we
address the question of whether a given tropicalization is contained in a Berkovich
space as a combinatorial substructure.

A novel feature of Berkovich spaces compared to rigid analytic varieties is that
they contain interesting piecewise linear combinatorial structures. In fact, Berkovich
curves are, very roughly speaking, generalized graphs, where infinite ramifications
along a dense set of points are allowed, see [4, Chap. 4], [1], and [3].

In higher dimensions, the structure of Berkovich analytic spaces is more
involved, but still they often contain piecewise linear substructures as deformation
retracts. This was a crucial tool in Berkovich’s proof of local contractibility for
smooth analytic spaces, see [5] and [6]. Berkovich constructs these piecewise
linear substructures as the so-called skeleta of suitable models (or fibration of
models). These skeleta basically capture the incidence structure of the irreducible
components in the special fiber.

In dimension one, Baker, Payne, and Rabinoff studied the relationship between
tropicalizations and subgraphs of Berkovich curves in [2] and [3]. Their results show
that every finite subgraph of a Berkovich curve admits a faithful, i.e., homeomorphic
and isometric tropicalization. They also prove that every tropicalization with tropical
multiplicity one everywhere is isometric to a subgraph of the Berkovich curve.

As a first higher-dimensional example, the Grassmannian of planes was studied
in [12]. The tropical Grassmannian of planes has an interesting combinatorial
structure and is a moduli space for phylogenetic trees. It is shown in [12] that it
is homeomorphic to a closed subset of the Berkovich analytic Grassmannian.

In [22], the higher-dimensional situation is analyzed from a general point of view.
This approach is based on a generalized notion of a Berkovich skeleton which is
associated with the datum of a semistable model plus a horizontal divisor. This
naturally leads to unbounded skeleta and generalizes a well-known construction on
curves, see [28] and [3].

For every rational function f with support in the fixed horizontal divisor it is
shown in [22] that the “tropicalization” log jf j factors through a piecewise linear
function on the generalized skeleton. This function satisfies a slope formula which
is a kind of balancing condition around any one-codimensional polyhedral face.
Moreover, for every generalized skeleton there exists a faithful tropicalization—
where faithful in higher dimension refers to the preservation of the integral affine
structures. In dimension one, this can be expressed via metrics. It is also proven
that tropicalizations with tropical multiplicity one everywhere admit sections of the
tropicalization map, which generalizes the above-mentioned result in [2] on curves.
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The paper is organized as follows. In Sect. 2 we collect basic facts on Berkovich
spaces and tropicalizations, giving references to the literature for proofs and more
details. In Sect. 3 we briefly recall some of the results by Baker et al. [2] on
curves. Section 4 starts with the definition and basic properties of the tropical
Grassmannian. Theorem 4.1 claims the existence of a continuous section to the
tropicalization map on the projective tropical Grassmannian. We give a sketch of the
proof for the dense torus orbit, where some constructions are easier to explain than
in the general case. In Sect. 5 we explain the construction of generalized skeleta
from [22], and in Sect. 6 we investigate log jf j for rational functions f . In particular,
Theorem 6.5 states the slope formula. Section 7 explains the faithful tropicalization
results in higher dimension.

2 Berkovich Spaces and Tropicalizations

2.1 Notation and Conventions

A non-archimedean field is a field with a non-archimedean absolute value. Our
ground field is a non-archimedean field which is complete with respect to its
absolute value. Examples are the field Qp, which is the completion of Q after the
p-adic absolute value, finite extensions of Qp, and also the p-adic cousin Cp of the
complex numbers which is defined as the completion of the algebraic closure of Qp.
The field of formal Laurent series k..t// over an arbitrary base field k is another
example. Besides, we can endow any field k with the trivial absolute value (which
is one on all non-zero elements). A nice feature of Berkovich’s general approach
is that it also gives an interesting theory in the case of a trivially valued field. The
reason behind this is that Berkovich geometry encompasses also points with values
in transcendental field extensions—and those may well carry interesting non-trivial
valuations.

Let K be a complete non-archimedean field. We write Kı D fx 2 K W jxj � 1g
for the ring of integers in K, and Kıı D fx 2 K W jxj < 1g for the valuation ideal.
The quotient QK D Kı=Kıı is the residue field of K. The valuation on K� associated
with the absolute value is given by v.x/ D � log jxj. By � D v.K�/ � R we denote
the value group.

A variety over K is an irreducible, reduced, and separated scheme of finite type
over K.

2.2 Berkovich Spaces

Let us briefly recall some basic results about Berkovich spaces. This theory was
developed in the ground-breaking treatise [4]. The survey papers [11, 15], and [26]
provide additional information. For background information on non-archimedean
fields and Banach algebras and for an account of rigid analytic geometry see [8]
and [7].
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For n 2 N and every n�tuple r D .r1; : : : ; rn/ of positive real numbers we define
the associated Tate algebra as

Kfr�1xg D
( X

ID.i1;:::;in/2Nn
0

aIx
I W jaIjrI ! 0 as jIj ! 1

)
:

Here we put x D .x1; : : : ; xn/, and for I D .i1; : : : ; in/ we write xI D xi1 : : : xin .
Moreover, we define jIj D i1 C : : :C in.

A Banach algebra A is called K-affinoid, if there exists a surjective K-algebra
homomorphism ˛ W Kfr�1xg ! A for some n and r such that the Banach norm on
A is equivalent to the quotient seminorm induced by ˛. If such an epimorphism
can be found with r D .1; : : : ; 1/, then A is called strictly K-affinoid. In rigid
analytic geometry only strictly K-affinoid algebras are considered (and called
affinoid algebras).

The Berkovich spectrum M.A/ of an affinoid algebra A is defined as the set of all
bounded (by the Banach norm), multiplicative seminorms on A. It is endowed with
the coarsest topology such that all evaluation maps on functions in A are continuous.

If x is a seminorm on an algebra A, and f 2 A, we follow the usual notational
convention and write jf .x/j for x.f /, i.e., for the real number which we get by
evaluating the seminorm x on f .

The Shilov boundary of a Berkovich spectrum M.A/ of a K-affinoid algebra
A is the unique minimal subset � (with respect to inclusion) such that for every
f 2 A the evaluation map M.A/ ! R�0 given by x 7! jf .x/j attains its maximum
on � . Hence for every f 2 A there exists a point z in the Shilov boundary such that
jf .z/j � jf .x/j for all x 2 M.A/. The Shilov boundary of M.A/ exists and is a finite
set by Berkovich [4, Corollary 2.4.5].

The Berkovich spectrum of a K-affinoid algebra carries a sheaf of analytic
functions which we will not define here. Some care is needed since, very roughly
speaking, not all coverings are suitable for glueing analytic functions. Analytic
spaces over K are ringed spaces which are locally modelled on Berkovich spectra
of affinoid algebras.

There is a GAGA-functor, associating to every K-scheme X locally of finite type
an analytic space Xan over K. It has the property that X is connected, separated
over K, or proper over K, respectively, if and only if the topological space Xan is
arcwise connected, Hausdorff, or compact, respectively. If X D SpecR is affine, the
topological space Xan can be identified with the set of all multiplicative seminorms
on the coordinate ring R extending the absolute value on K. This space is endowed
with the coarsest topology such that for all f 2 R the evaluation map on f is
continuous.

With the help of the GAGA-functor we associate analytic spaces to algebraic
varieties. Another way of obtaining analytic spaces is via admissible formal
schemes. An admissible formal scheme over Kı is, roughly speaking, a formal
scheme over Kı such that the formal affine building blocks are given by Kı-flat
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algebras of the form Kıfx1; : : : ; xng=a for a finitely generated ideal a in the ring
Kıfx1; : : : ; xng D fPI2Nn

0
aIxI W aI 2 Kı and jaIj ! 0 as jIj ! 1g. For a precise

definition see [7] or [11].
An admissible formal scheme X has a natural analytic generic fiber X�. On the

formal affine building block given by Kıfx1; : : : ; xng=a the analytic generic fiber is
the Berkovich spectrum of Kfx1; : : : ; xng=aKfx1; : : : ; xng.

If we start with a Kı-scheme X , which is separated, flat, and of finite presen-
tation, its completion with respect to any element � 2 Kıınf0g is an admissible
formal scheme X . This has an analytic generic fiber X�. On the other hand, we
can apply the GAGA-functor to the algebraic generic fiber X D X ˝Kı K and get
another analytic space Xan. They are connected by a morphism X� ,! Xan, which
is an isomorphism if X is proper over Kı. In the basic example X D SpecKıŒx�
we get the natural inclusion M.Kfxg/ ,! .A1K/

an, whose image is the set of all
multiplicative seminorms on the polynomial ring KŒx� which extend the absolute
value on K and whose value on x is bounded by 1.

2.3 Tropicalization

We start by considering a split torus T D SpecKŒx˙1
1 ; : : : ; x˙1

n �. Evaluating
seminorms on characters we get a map trop W Tan ! Rn on the associated Berkovich
space, which is given by

trop.p/ D .� log jx1.p/j; : : : ;� log jxn.p/j/:

Here we are using the valuation map to define tropicalizations. In some papers,
tropicalizations are defined via the negative valuation map, i.e., the logarithmic
absolute value of the coordinates.

If X is a variety over K together with a closed embedding ' W X ,! T , we
consider the composition

trop' W Xan 'an

�! Tan trop�! Rn (1)

of the tropicalization map with the embedding '. Note that the map trop' is
continuous. Its image Trop'.X/ D trop'.X

an/ is the support of a polyhedral complex
† in Rn. This complex is integral �-affine in the sense of Sect. 5.1. It has pure
dimension d D dim.X/. For a nice introductory text on tropical geometry see the
textbook [23]. The survey paper [21] is also very useful.

Note that for all ! 2 Trop'.X/ the preimage trop�1
' .f!g/ can be identified with

the Berkovich spectrum of an affinoid algebra, see [20, Proposition 4.1].
For every point ! 2 Trop'.X/ there is an associated initial degeneration, which

is the special fiber of a model of X over the valuation ring in a suitable non-
archimedean extension field of K. The geometric number of irreducible components
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of this special fiber is the tropical multiplicity of !. There is a balancing formula for
tropicalizations involving tropical multiplicities on all maximal-dimensional faces
of Trop'.X/ around a fixed codimension one face, see [23, Chap. 3.4].

Let K be the algebraic closure of K. It can be endowed with an absolute value
extending the one on K. By means of the coordinates x1; : : : ; xn we can identify
T.K/ D K

n
. Then we can define a natural tropicalization map trop W T.K/ ! Rn by

trop.t1; : : : ; tn/ D .� log jt1j; : : : ;� log jtnj/. Note that every point t D .t1; : : : ; tn/
in T.K/ gives rise to the multiplicative seminorm f 7! jf .t/j on the coordinate ring
KŒx˙1

1 ; : : : ; x˙1
n �, which is an element in Tan. Hence the tropicalization map on T.K/

is induced by the map trop on Tan.
We could define the tropicalization Trop'.X/ without recourse to Berkovich

spaces. If the absolute value on K is non-trivial, the tropicalization Trop'.X/ is
equal to the closure of the image of the map

X.K/
'�! T.K/

trop�! Rn:

Considering a tropical variety as the image of an analytic space makes some
topological considerations easier. For example, in this way it is evident that the
tropicalization of a connected variety is connected since it is a continuous image of
a connected space.

Let Y be a toric variety associated with the fan � in NR, where N is the
cocharacter group of the dense torus T . Then � defines a natural partial compact-
ification N�

R
(due to Kajiwara and Payne) of the space NR. Roughly speaking, we

compactify cones by dual spaces. For details see [24], Sect. 3. There is also a natural
tropicalization map

trop W Yan ! N�
R
;

which extends the tropicalization map on the dense torus. As an example, we
consider Y D Pn

K with its dense torus Gn
m;K and N D Zn. Put R D R [ f1g and

endow it with the natural topology such that half-open intervals �a;1� form a basis
of open neighborhoods of 1. Then the associated compactification of NR D Rn is
the tropical projective space

TPn D �
R

nC1 X f.1; : : : ;1/g�=R.1; : : : ; 1/
which is endowed with the product-quotient topology. The Berkovich projective
space .Pn

K/
an can be described as the set of equivalence classes of elements in

.AnC1
K /annf0g with respect to the following equivalence relation: Let x and y be

points in .AnC1
K /annf0g, i.e., multiplicative seminorms on KŒx0; : : : ; xn� extending

the absolute value on K. They are equivalent if and only if there exists a constant
c > 0 such that for every homogeneous polynomial f of degree d we have
jf .y/j D cdjf .x/j.
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We can describe the tropicalization map on the toric variety Pn
K as follows:

trop W .Pn
K/

an ! TPn (2)

maps the class of the seminorm p on KŒx0; : : : ; xn� to the class .� log jx0.p/j; : : :,
� log jxn.p/j/C R.1; : : : ; 1/ in tropical projective space.

An important result about the relation between tropical and analytic geometry
due to Payne says that for every quasi-projective variety X over K the associated
analytic space Xan is homeomorphic to the inverse limit over all Trop'.X/, where the
limit runs over all closed embeddings ' W X ,! Y in a quasi-projective toric variety
Y (see [24, Theorem 4.2]). For a generalization which omits the quasi-projectivity
hypothesis see [17].

Hence tropicalizations are combinatorial images of analytic spaces, which
recover the full analytic space in the projective limit. Individual tropicalizations
however may not faithfully depict all topological features of the analytic space.
We will discuss a basic example at the beginning of the next section.

3 The Case of Curves

Let K be a field which is algebraically closed and complete with respect to a non-
archimedean, non-trivial absolute value, and let X be a smooth curve over K.

As an example, let us consider an elliptic curve E in Weierstrass form y2 D x3 C
axCb over K. The affine curve E has a natural embedding in A2K . The intersection E0
of E with G2

m;K has a natural tropicalization in R2, which is one of the trees depicted
in the next figure.

If however E is a Tate curve, then the analytic space Ean contains a circle, i.e.,
it has topological genus 1. Hence the Weierstrass tropicalization does not faithfully
depict the topology of the analytic space.

As stated before, if X is a smooth curve over K, the Berkovich space Xan is
some kind of generalized graph, allowing infinite ramification along a dense set
of points. In particular, it makes sense to talk about its leaves. The space of non-
leaves H0.Xan/ in the Berkovich analytification Xan admits a natural metric which
is defined via semistable models, see [3, Sect. 5.3]. Any tropicalization of X with
respect to a closed embedding in a torus carries a natural metric which is locally
given by lattice length on each edge (and globally by the shortest paths). Another
problem in the case of the Weierstraß tropicalizations from Fig. 1 is the fact that
tropical multiplicities ¤ 1 are present. This may indicate that the tropicalization
map will not be isometric on a subgraph, see [2, Corollary 5.9].

It is explained in [2, Theorem 6.2], how one can construct better tropicalizations
of the Tate curve.

Based on a detailed study of the structure of analytic curves there are the
following two important comparison theorems in [2].
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Fig. 1 Tropicalization of an elliptic curve in Weierstraß form. The left-hand side shows the case
3v.a/ � 2v.b/ and the right-hand side the case 3v.a/ < 2v.b/. The numbers on the edges indicate
the tropical multiplicities. If no number is given, the multiplicity is one

Theorem 3.1 ([2, Theorem 5.20]). Let � be any finite subgraph of Xan for a
smooth, complete curve X over K. Then there exists a closed immersion ' W X ,! Y
into a toric variety Y with dense torus T such that the restriction '0 W X0 D
X \ '�1.T/ ,! T induces a tropicalization map trop'0 W Xan

0 ! Rn which maps �
homeomorphically and isometrically onto its image.

Theorem 3.2 ([2, Theorem 5.24]). Consider a smooth curve X0 over K and a
closed immersion ' W X0 ,! T into a split torus with associated tropical variety
Trop'0.X0/. If � 0 is a compact connected subset of Trop'0.X0/ which has tropical
multiplicity one everywhere, then there exists a unique closed subset � in H0.Xan

0 /

mapping homeomorphically onto � 0, and this homeomorphism is in fact an isometry.

We will discuss higher-dimensional generalizations of these theorems in Sect. 7.

4 Tropical Grassmannians

4.1 The Setting

In view of the results [2] for curves, it is a natural question whether they can
be generalized to varieties of higher dimensions. As a first example, the tropical
Grassmannian of planes was studied in [12]. In this section we discuss the main
theorem of this paper.

For natural numbers d � n we denote by Gr.d; n/ the Grassmannian of
d-dimensional subspaces of n-space. The tropical Grassmannian is defined
as the tropicalization of Gr.d; n/ with respect to the Plücker embedding
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' W Gr.d; n/ ! P.
n
d/�1. Recall that the Plücker embedding maps the point

corresponding to the d-dimensional subspace W to the line in
�n

d

�
-space given

by the dth exterior power of W.
During this section we will deviate from the exposition in Sect. 2.3 and consider

tropicalizations with respect to the negative valuation map. The choice between
.min;C/ and .max;C/ tropical geometry is always a difficult one.

Hence our tropical projective space is

TP.
n
d/�1 D �

.R [ f�1g/.n
d/ X f.�1; : : : ;�1/g�=R.1; : : : ; 1/;

and the tropical Grassmannian T Gr.d; n/ D Trop'.Gr.d; n// is defined as the image

of trop ı 'an W Gr.d; n/an ! TP.
n
d/�1, where trop is given by the map

p 7! .log jx0.p/j; : : : ; log jx.n
d/
.p/j/C R.1; : : : ; 1/

on the analytic projective space, see (2).
Tropical Grassmannians were first studied by Speyer and Sturmfels [25] who

focused on the toric part Gr0.d; n/ D Gr.d; n/\'�1�G.n
d/�1

m;K

�
which is embedded in

the torus G
.n

d/�1
m;K via '. The tropicalization T Gr0.d; n/ D Trop'.Gr0.d; n// (which

is called G0
d;n in [25]) is a fan of dimension d.n � d/ containing a linear space of

dimension n � 1, see [25, Sect. 3].
Moreover, if d D 2, Speyer and Sturmfels proved that T Gr0.2; n/ can be

identified with the space of phylogenetic trees, see [25, Sect. 4]. For our purposes, a
phylogenetic tree on n leaves is a pair .T; !/, where T is a finite combinatorial tree
with no degree-two vertices together with a labelling of its leaves in bijection with
f1; : : : ; ng, and ! is a real-valued function on the set of edges of T . The tree T is
called the combinatorial type of the phylogenetic tree .T; !/. For every phylogenetic
tree .T; !/ and all i ¤ j in f1; : : : ; ng we denote by xij the sum of the weights
along the uniquely determined path from leaf i to leaf j. This tree-distance function
satisfies the four-point-condition, which states that for all pairwise distinct indices
i; j; k; l in f1; : : : ; ng the maximum among

xij C xkl; xik C xjl; xil C xjk

is attained at least twice.

4.2 A Section of the Tropicalization Map

For the rest of this section we will always consider the case d D 2. In [12], we
investigate the full projective Grassmannian T Gr.2; n/ D Trop'Gr.2; n/ in tropical

projective space TP.
n
2/�1. The main result of this paper is the following theorem:
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Theorem 4.1 ([12, Theorem 1.1]). There exists a continuous section � W TGr.2; n/
! Gr.2; n/an of the tropicalization map trop ı 'anW Gr.2; n/an ! TGr.2; n/. Hence,
the tropical Grassmannian TGr.2; n/ is homeomorphic to a closed subset of the
Berkovich analytic space Gr.2; n/an.

Note that we are not considering semistable models or their Berkovich skeleta in
this approach.

The first idea one might have is to look at the big open cells of the Grassmannians.
Since d D 2, the coordinates of the ambient projective space are indexed by the two
element subsets fi; jg of f1; : : : ; ng. If i < j, we write pij for this coordinate, and
we put pji D �pij. We intersect the Grassmannian with the standard open affine
covering of projective space and get open affine subvarieties

Uij D Gr.2; n/ \ '�1fpij ¤ 0g:

The affine Plücker coordinates are ukl D pkl=pij. Since the Plücker ideal is generated
by the relations pijpkl �pikpjl Cpilpjk D 0 for fi; j; k; lg running over the four-element

subsets of f1; : : : ; ng, the subvariety Uij can be identified with A
n.n�2/
K by means of

the coordinates uik D pik=pij and ujk D pjk=pij for all k different from i and j.

Recall that .An.n�2/
K /an is the set of all multiplicative seminorms on KŒuik; ujk W

k … fi; jg� which extend the absolute value on K. As explained in Sect. 2, the toric
variety A

n.n�2/
K has a natural tropicalization. With the sign conventions in the present

section, it is given by

trop W .An.n�2/
K /an ! .R [ f�1g/2.n�2/

p 7! .log juik.p/j; log jujk.p/j/k…fi;jg

This induces the tropicalization map

trop W Uan
ij �! .R [ f�1g/2.n�2/:

Now the tropicalization map on an affine space .AN
K/

an has a natural section,
which is given by the map ı W .R [ f�1g/N ! .AN

K/
an, mapping a point

r D .r1; : : : ; rN/ 2 .R [ f�1g/N to the seminorm

ı.r/W KŒx1; : : : ; xN � �! R�0 j
X
˛2NN

0

c˛x˛.ı.r//j D max
˛

(
jc˛j

NY
iD1

exp.ri˛i/

)
:

(3)

Here we put exp..�1/˛/ D 0 for all ˛ 2 N. Note that the restriction of ı to RN

is a map from RN to the torus .GN
m/

an. We call the image of ı on .R [ f�1g/N the
standard skeleton of .AN

K/
an, and the image of ıjRN the standard skeleton of the torus

.GN
m/

an.
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However, the map ı for N D n.n � 2/ does not in general provide a section of
the tropicalization map on the whole of Uij. Consider n � 4, and let x D .xkl/kl

be a point in the tropical Grassmannian TGr.2; n/ which lies in the image of Uij

under the tropicalization map. Let ! be the projection to the affine coordinates
! D .xik � xij; xjk � xij/k…fi;jg 2 R2.n�2/. Then ı.!/ is a point in the Berkovich
space Uan

ij with log juik.ı.!//j D xik � xij and log jujk.ı.!//j D xjk � xij. Since
ukl WD pkl=pij D uikujl � uilujk by the Plücker relations, the definition of ı gives us
log jukl.ı.!//j D maxfxik C xjl; xil C xjkg � 2xij. Hence ı can only provide a section
of the tropicalization map if this maximum is equal to xkl C xij. This may fail if the
labelled tree T has the wrong shape, e.g., if it looks like this:

i

k l

j

The strategy for the proof of Theorem 4.1 is to compare the tropical Grassmannian
with a standard skeleton of an affine space on a smaller piece of the tropicalization,
namely, on the part consisting of phylogenetic trees such that the underlying
combinatorial tree has the right shape. If we want to make this precise, the definition
of these smaller pieces is quite involved. A considerable part of the difficulties is
due to the fact that we take into account the boundary strata of the Grassmannian in
projective space. In order to explain the general strategy we will from now on restrict
our attention to the torus part of the tropical Grassmannian. The general case can be
found in [12].

4.3 Sketch of Proof in the Dense Torus Orbit

In this section we explain the proof of Theorem 4.1 for the subset TGr0.2; n/ of the
tropical Grassmannian TGr.2; n/. Recall that TGr0.2; n/ is the tropicalization of the
dense open subset Gr0.2; n/ of the Grassmannian which is mapped to the torus via
the Plücker map.

We fix a pair ij as above and work in the big open cell Uij. The coordinate ring
Rij of Uij is a polynomial ring KŒuik; ujk W k … fi; jg� in 2.n � 2/ variables. The
other Plücker coordinates are expressed as ukl D uikujl � uilujk in Rij. Note that
the affine variety Gr0.2; n/ is contained in Uij. The coordinate ring of Gr0.2; n/ is
equal to the localization of Rij after the multiplicative subset generated by all ukl for
fk; lg ¤ fi; jg.

We also fix a labelled tree T with n leaves 1; : : : ; n, and arrange T as in Fig. 2
with subtrees T1; : : : ;Tr.
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Fig. 2 Arrangement of T

T1 T2 Tr

ji

Fig. 3 Cherry property i m

lk

i l

km

Definition 4.2. Let � be a partial order on the set f1; : : : ; ng X fi; jg. We write k � l
if k � l and k ¤ l. Then � has the cherry property on T (see Fig. 3) with respect to
i and j if the following conditions hold:

(i) Two leaves of different subtrees Ta and Tb for a; b 2 f1; : : : rg as in Fig. 2
cannot be compared by �.

(ii) The partial order � restricts to a total order on the leaf set of each Ta,
a D 1; : : : ; r.

(iii) If k � l � m, then either fk; lg or fl;mg is a cherry of the quartet fi; k; l;mg, i.e.,
the subtree given by this quartet of leaves contains a node which is adjacent to
both elements of the cherry:

An induction argument shows the following lemma:

Lemma 4.3 ([12, Lemma 4.7]). Fix a pair of indices i; j, and let T be a tree on n
labelled leaves. Then, there exists a partial order � on the set fi; : : : ; ng X fi; jg that
has the cherry property on T with respect to i and j.

For an example of the inductive construction of such a partial order see [12], Fig. 3.
The leaves in each subtree Ta are totally ordered, say as s1 � s2 � : : : � sp, if

Ta contains p D p.a/ leaves. We consider the variable set Ia D fuis1 ; : : : ; uispg [
fujs1 ; us1s2 ; : : : usp�1spg. Then I D I1 [ : : : [ Ir is a set of 2.n � 2/ affine Plücker
coordinates of the form ukl 2 Rij.

We can successively reconstruct the variables of the form ujl which are not
contained in I as follows: In the tree Ta with leaves s1 � s2 � : : : � sp, we have
us1s2 D uis1ujs2 � uis2ujs1 , hence

ujs2 D u�1
is1 .us1s2 C uis2ujs1 /:

The right-hand side is an expression in the variables contained in the coordinate set
I with uis1 inverted. Now we use the relation us2s3 D uis2ujs3 � uis3ujs2 to express
ujs3 D u�1

is2
.us2s3 C uis3ujs2 /. Plugging in the expression for ujs2 we can write ujs3 as a

polynomial in the variables in I plus all u�1
ik .

Proceeding by induction, we find for all m ¤ i; j that

ujm 2 KŒukl W ukl 2 I�Œu�1
ik W k ¤ i; j�
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and hence

KŒukl W ukl 2 I� � Rij � KŒukl W ukl 2 I�Œu�1
ik W k ¤ i; j�: (4)

This shows that the variable set I generates the function field Quot.Rij/ of Uij.
Recall that the coordinate ring of Gr0.2; n/ is KŒGr0.2; n/� D S�1Rij, where S is
the multiplicative subset of Rij generated by all ukl for fklg ¤ fijg. By the previous
result, KŒGr0.2; n/� is equal to the localization of the Laurent polynomial ring
KŒuk̇l W ukl 2 I� after the multiplicative subset generated by all ukl expressed as
Laurent polynomials in the coordinates contained in I.

Definition 4.4. Let CT be the cone in TGr0.2; n/ whose interior corresponds to
the phylogenetic trees with underlying tree T . Let x D .xkl/kl C R.1; : : : ; 1/ be a
point in CT � TGr0.2; n/. We associate to it a point � ij

T .x/ in Gr0.2; n/an, i.e., a
multiplicative seminorm on the coordinate ring of Gr0.2; n/, as follows. For every
Laurent polynomial f D P

˛ c˛u˛ 2 KŒuk̇l W ukl 2 I� (where ˛ runs over ZI) we put

jf .� ij
T .x//j D max

˛

˚jc˛j
Y
ukl2I

exp
�
˛kl.xkl � xij/

��
; where ˛ D .˛kl/ukl2I :

This defines a multiplicative norm on KŒuk̇l W fklg 2 I� which has a unique extension
to a multiplicative norm on the localization KŒGr0.2; n/�. Let � ij

T .x/ be the resulting
point in the Berkovich space Gr0.2; n/an.

Since for every f 2 KŒGr0.2; n/� the evaluation map on CT given by

x 7! jf .� ij
T .x//j

is continuous, we have constructed a continuous map

�
ij
T W CT ! Gr0.2; n/

an:

We want to show that it is a section of the tropicalization map trop ı 'an W
Gr0.2; n/an ! TGr0.2; n/ on trop�1.CT/, which amounts to checking that

log jukl.�
ij
T .x//j D xkl � xij for all fklg ¤ fijg and for all x 2 CT :

For variables ukl in I this is clear from the definition of � ij
T . Hence it holds

in particular for all indices of the form fikg for k … fi; jg. In order to check
this fact for the other indices, recall the definition of I after Lemma 4.3. Since
ujs2 D u�1

is1
.us1s2 C uis2ujs1 /, we find

log jujs2 .�
ij
T .x//j D maxf�xis1 C xs1s2 ; �xis1 C xis2 C xjs1 � xijg:
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Since s1 and s2 are in the same subtree (see Fig. 2), we find that xis1 C xjs2 D xis2 C
xjs1 � xij C xs1s2 , which implies log jujs2 .�

ij
T .x//j D xjs2 � xij. Inductively, we can

show in this way our claim for all indices of the form fjkg. If we consider an index
of the form fklg where k; l … fi; jg, we have ukl D uikujl � uilujk. If k is a leaf in the
subtree Ta and l is a leaf in the subtree Tb for a < b, we find xkl C xij D xil C xjk >

xik C xjl. Hence the non-archimedean triangle inequality gives log jukl.�
ij
T .x//j D

log j.uilujk/.�
ij
T .x//j D xkl � xij. If k and l are leaves in the same subtree Ta, we may

assume that k � l. If k is the predecessor of l in the total ordering � restricted to Ta,
we are done, since then ukl is contained in I. If not, we let m be the predecessor of l,
so that k � m � l. The Plücker relations give uimukl D uikuml C uilukm, hence

ukl D u�1
im .uikuml C uilukm/:

Note that all variables on the right-hand side except possibly ukm are contained in I.
Hence we can calculate log jukl.�

ij
T .x//j by developing ukm in a Laurent series in the

variables in I. The resulting Laurent series does not allow any cancellation between
the variables. Now we can apply the cherry property for the ordering �, which says
that fk;mg or fm; lg is a cherry for the quartet fi; k;m; lg. Hence we have

xil C xkm � xim C xkl D xik C xml

or

xik C xml � xim C xkl D xil C xkm:

In both cases, one can check directly that our claim holds.
In fact, the section � ij

T has a more conceptual description. Let  W Gr0.2; n/ !
SpecKŒuk̇l W ukl 2 I� D G

2.n�2/
m be the open embedding induced by (4), and let † be

the standard skeleton of .G2.n�2/
m /an as in (3). It is contained in the open analytic sub-

variety Gr0.2; n/an, since it consists entirely of norms and does therefore not meet a
closed subvariety of strictly lower dimension. Then the map � ij

T is the composition
of the projection from CT to the coordinates .xkl � xij/ukl2I 2 R2.n�2/ D † followed
by the inclusion of † in Gr0.2; n/an.

Recall from Sect. 2.3 that for every x 2 TGr0.2; n/ the preimage trop�1
' .x/ under

the tropicalization map is the Berkovich spectrum M.Ax/ of an affinoid algebra
Ax. It follows from our construction that � ij

T .x/ is the unique Shilov boundary point
of Ax. We can formulate this fact explicitly as follows.

Lemma 4.5 ([12, Lemma 4.17]). For every x 2 CT the seminorm �
ij
T .x/ con-

structed above has the following maximality property: For every f in the coordinate
ring KŒGr0.2; n/� and every seminorm p 2 trop�1

' .x/ � Gr0.2; n/an we have

jf .p/j � jf .� ij
T .x//j:
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As an immediate consequence we see that � ij
T .x/ does not depend on the choice

of the partial ordering � or on the pair ij, and that � ij
T .x/ D �

ij
T0.x/ if x is contained

in the intersection CT \CT0 . Hence we can patch these maps together and get a well-
defined section � W TGr0.2; n/ ! Gr0.2; n/an of the tropicalization map. It follows
from the construction that it is continuous.

This proves Theorem 4.1 on the dense torus orbit Gr0.2; n/. In order to define
a section of the tropicalization map also on the boundary strata of Gr.2; n/, we
follow the same strategy of constructing an index set I such that the associated
Plücker variables generate the function field of the Grassmannian. This construction
is more involved, see [12, Sect. 4] for details. The most important problem here is
to find these local index sets in such a way that the section is also continuous when
passing from one stratum of the Grassmannian to another. This continuity statement
is shown in [12, Theorem 4.19].

Using the index set I, we may also calculate the initial degenerations of all
points in the tropical Grassmannian and deduce that their tropical multiplicity is
one everywhere. We will explain a general argument showing the existence of a
section in this case in Sect. 7.2.

In [14], Draisma and Postinghel give a different proof of Theorem 4.1. They work
with the affine cone over the Grassmannian Gr.2; n/, define the section on a suitable
subset, and use torus actions and tropicalized torus actions to move it around. Also
in this approach a maximality statement such as Lemma 4.5 is used.

5 Skeleta of Semistable Pairs

In the next three sections, we give an overview of the results in [22]. In order to
compare polyhedral substructures of Berkovich spaces with tropicalizations, we
start by generalizing Berkovich’s notion of skeleta. Such skeleta are induced by
the incidence complexes of the special fibers of suitable models. We extend this
notion by adding a horizontal divisor on the model. For the rest of this paper, we
fix an algebraically closed ground field K which is complete with respect to a non-
archimedean, non-trivial absolute value.

5.1 Integral Affine Structures

For curves, metrics play an important role in the comparison results between tropical
and analytic varieties, as we have seen in Sect. 3. The right way to generalize this
to higher dimensions is to consider integral affine structures. Let M be a lattice in
the finite-dimensional real vector space MR D M ˝Z R, and let N D Hom.M;Z/
its dual, which is a lattice in the dual space NR D N ˝Z R of MR. We denote the
associated pairing by h ; i W MR � NR ! R. Recall that � D log jK�j.
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An integral �-affine polyhedron in NR is a subset of NR of the form

� D ˚
v 2 NR j hui; vi C �i � 0 for all i D 1; : : : ; r

�
for some u1; : : : ; ur 2 M and �1; : : : ; �r 2 � . Any face of an integral �-affine
polyhedron� is again integral �-affine. An integral �-affine polyhedral complex in
NR is a polyhedral complex whose faces are integral �-affine.

An integral �-affine function on NR is a function from NR to R which is of
the form

v 7! hu; vi C �

for some u 2 M and � 2 � . More generally, let M0 be a second finitely generated
free abelian group and let N0 D Hom.M0;Z/. An integral �-affine map from NR to
N0
R

is a function of the form F D 	� C v, where 	 W M0 ! M is a homomorphism,
	� W NR ! N0

R
is the dual homomorphism extended to NR, and v 2 N0 ˝Z � .

If N0 D M0 D Zm and F D .F1; : : : ;Fm/ W NR ! Rm is a function, then F is integral
�-affine if and only if each coordinate Fi W NR ! R is integral �-affine.

An integral �-affine map from an integral �-affine polyhedron � � NR to N0
R

is
defined as the restriction to � of an integral �-affine map NR ! N0

R
. If �0 � N0

R

is an integral �-affine polyhedron, then a function F W � ! �0 is integral �-affine
if the composition � ! �0 ,! N0

R
is integral �-affine. We say that an integral

�-affine map F W � ! N0
R

is unimodular if F is injective and if the inverse map
F.�/ ! � is integral �-affine. Note that F.�/ is an integral �-affine polyhedron
in N0

R
.

5.2 Semistable Pairs

Note that since our ground field K is algebraically closed, the ring of integers Kı is
a valuation ring which is not discrete and not noetherian. We begin by describing
the building blocks of the polyhedral substructures of Berkovich spaces which lend
themselves to comparison with tropicalizations.

Let 0 � r � d be natural numbers and consider the Kı-scheme

S D Spec.KıŒx0; : : : ; xd�=.x0 : : : xr � �//

for some � 2 Kı satisfying j�j < 1. Then S is a flat scheme over Kı with smooth
generic fiber. Its special fiber contains rC1 irreducible components whose incidence
complex is an r-dimensional simplex. Now fix a natural number s � 0 such that r C
s � d, and consider the principal Cartier divisor H.s/ D div.xrC1/C : : :Cdiv.xrCs/

on S .
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As explained in Sect. 2.2, the Kı-scheme S gives rise to two analytic spaces
in the following way. On the one hand, we have an associated admissible formal
scheme

S D Spf
�
Kıfx0; : : : ; xdg=.x0 : : : xr � �/� (5)

which we get by completing S with respect to a non-zero element in K of absolute
value < 1. Its analytic generic fiber is M.AS/ for the affinoid algebra

AS D Kfx0; : : : ; xdg=.x0 : : : xr � �/:

It is a subset of the analytification of the generic fiber SK D Spec.KŒx0; : : : ; xd�=

.x0 : : : xr � �// of S .
Now we look at the tropicalization map on M.AS/which only takes into account

the first r C s C 1 coordinates, i.e., the map

Val W M.AS/nH ! RrCsC1
�0

p 7! .� log jx0.p/j; : : : ;� log jxrCs.p/j/;

where H is the support of the Cartier divisor induced by H.s/. Its image is�.r; �/�
Rs�0, where�.r; �/ D f.v0; : : : ; vr/ 2 RrC1

�0 W v0C: : :Cvr D � log j�jg is a simplex
in RrC1.

We define a continuous section �.r; �/ � Rs�0 ! M.AS/ as follows. Note that
the projection .x0; x1; : : : ; xd/ 7! .x1; : : : ; xd/ induces an isomorphism from M.AS/
to the affinoid subdomain B D fp W � log jx1.p/j � : : : � log jxr.p/j � � log j�jg of
M.Kfx1; : : : ; xdg/.

Similarly, the projection .v0; v1; : : : ; vrCs/ 7! .v1; : : : ; vrCs/ induces a homeo-
morphism

�.r; �/ � Rs�0 ! † D f.v1; : : : ; vrCs/ 2 RrCs
�0 W v1 C : : :C vr � � log j�jg

For every v D .v1; : : : ; vrCs/ 2 † there is a bounded multiplicative norm jj jjv
on Kfx1; : : : ; xdg which is defined as follows:

jj
X

ID.i1;:::;id/
aIx

I jjv D max
I

fjaIj exp.�i1v1 � : : : � irCsvrCs/g:

It satisfies � log jjx1jjv � : : : � log jjxrjjv D v1 C : : : C vr � � log j�j. Therefore
the point jj jjv is contained in the affinoid domain B. Hence there is a uniquely
determined continuous map

� W �.r; �/ � Rs�0 ! M.AS/
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making the diagram

commutative. The map � is by construction a section of the map Val. We define
S.S;H.s// � M.AS/ � .SK/

an as the image of � and call it the skeleton of the
pair .S;H.s//.

Now we consider schemes which étale locally look like some S .

Definition 5.1. A strictly semistable pair .X ;H/ consists of an irreducible proper
flat scheme X over the valuation ring Kı and a sum H D H1C	 	 	CHS of effective
Cartier divisors Hi on X such that X is covered by open subsets U which admit
an étale morphism

 W U �! S D Spec.KıŒx0; : : : ; xd�=.x0 	 	 	 xr � �// (6)

for some r � d and � 2 K� with j�j < 1. We assume that each Hi has irreducible
support and that the restriction of Hi to U is either trivial or defined by  �.xj/ for
some j 2 fr C 1; : : : ; dg.

This is a generalization of de Jong’s notion of a strictly semistable pair over a
discrete valuation ring [13], if we add the divisor of the special fiber to the horizontal
divisor H. It is sometimes convenient to include only the horizontal divisor H as part
of the data, since it is a Cartier divisor, whereas the special fiber of X may not be
one. For a more detailed discussion of this issue see [22, Proposition 4.17]. If d D 1,
i.e., in the case of curves, semistable models and therefore nice skeletons are always
available after an extension of the ground field. In higher dimensions, we have to
allow alterations in order to find semistable models, see [13, Theorem 6.5].

5.3 Skeleta

Let .X ;H/ be a semistable pair in the sense of Definition 5.1. The generic fiber X
of X is smooth of dimension d. Hence d is constant in every chart U , whereas
the numbers r and s may vary with U . We denote the special fiber of X by
Xs D X ˝Kı

QK.
Denote by V1; : : : ;VR the irreducible components of the special fiber Xs of

X . The Cartier divisors Hi which are part of our data give rise to horizontal
closed subschemes Hi of X , which are locally cut out by a defining equation
of Hi. Putting Di D Vi for i D 1; : : : ;R and DiCR D Hi, we get a Weil divisor
D D PRCS

iD1 Di on X . This gives rise to a stratification of X , where a stratum is
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defined as an irreducible component of a set of the form
T

i2I Din S
i…I Di for some

I � f1; : : : ;R C Sg. We call any stratum contained in the special fiber Xs a vertical
stratum and denote the set of all vertical strata by str.Xs;H/.

Now we want to glue skeleta of local charts together in such a way that the
faces of the resulting polyhedral complex are in bijective correspondence with the
vertical strata in str.Xs;H/. In order to achieve this, we may have to pass to a smaller
covering in the category of admissible formal schemes.

Let .X ;H/ be a strictly semistable pair with a covering as in Definition 5.1.
We consider the induced formal open covering of the associated admissible formal
scheme X which is defined by completion. Hence X is covered by formal open
subsets U which admit an étale morphism  W U ! S to a formal scheme S as
in (5).

It is shown in [22, Proposition 4.1] that, after passing to a refinement, the formal
étale covering

 W U ! S

has the property that  �1fx0 D : : : D xrCs D 0g is a vertical stratum S in the special
fiber Xs such that for every vertical stratum T the following condition holds: The
closure T of T in Xs meets Us if and only if S � T .

We define the skeleton of .U ;HjU / as the preimage of the skeleton of the standard
pair: S.U ;HjU / D  �1.S.S;H.s//. This is a subset of the analytic generic fiber U�
of U which does not meet the horizontal divisor H.

It follows from results of Berkovich [5] that the étale map  actually induces
a homeomorphism between S.U ;HjU / and S.S;H.s// ' �.�; r/ � Rs�0. Hence
the map

Val ı  W S.U ;HjU / ! �.�; r/ � Rs�0

is a homeomorphism.
It is shown in [22, Sect. 4.5] that the skeleton S.U ;HjU / only depends on the

minimal stratum S contained in the special fiber of U . Therefore we denote it by �S

and call it the canonical polyhedron of S (see Fig. 4). The dimensions of S and of
the canonical polyhedron�S are defined in an obvious way and add up to d, see [22,
Proposition 4.10].

As we have seen, �S is homeomorphic to �.�; r/ � Rs�0 for suitable data r; s,
and � as above. We call �.�; r/ the finite part and Rs�0 the infinite part of �S.

As explained above, S 7! �S is a bijective correspondence between faces �S of
the skeleton S.X ;H/ and vertical strata S induced by the divisor D in the special
fiber Xs. Recall that D is given by the horizontal divisor H plus all irreducible
components of X (which we also call vertical divisors). Note that a vertical stratum
T satisfies S � T if and only if �T is a closed face of �S.
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Fig. 4 The canonical polyhedron �S in the case r D 0 and s D 2, in the case r D s D 1, and in
the case r D 2 and s D 0 (from left to right)

Now we can glue �S and �S0 along the union of all canonical polyhedra
associated with vertical strata R such that R 
 S [ S0. In this way we define the
skeleton of .X ;H/ as the union of all �S for strata S in the special fiber Xs:

S.X ;H/ D
[

S

�S:

We obtain a piecewise linear space S.X ;H/ whose charts are integral �-affine
polyhedra.

The skeleton S.X ;H/ is a closed subset of the analytic space XannHK , where
we write HK for the generic fiber of the support of H on X . Using methods from
[5], one can prove that it is in fact a strong deformation retract of XannHK . In [22,
Theorem 4.13] it is shown that the retraction map can be extended to a retraction
map from Xan to a suitable compactification of the skeleton.

If the horizontal divisor H D 0, then the skeleton S.X ; 0/ is equal to Berkovich’s
skeleton of a semistable scheme, see [5].

6 Functions on the Skeleton

Throughout this section we fix a strictly semistable pair .X ;H/. We use the notation
from the previous sections.

We want to show that for every non-zero rational function f on X such that the
support of the divisor of f is contained in HK , the function � log jf j factors through
a piecewise integral �-affine map on the skeleton. Moreover, we will show a slope
formula for this map.

Theorem 6.1 ([22, Proposition 5.2]). Let f be a non-zero rational function on X
such that the support of div.f / is contained in HK. We put U D XnHK and consider
the function

F D � log jf j W Uan ! R:
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Then F factors through the retraction map 
 W Uan ! S.X ;H/ to the skeleton:

Moreover, the restriction of F to S.X ;H/ is an integral �-affine function on each
canonical polyhedron.

The theorem is proved by considering the formal building blocks with distin-
guished strata and using a result of Gubler [20, Proposition 2.11].

Recall that we denote the dimension of X by d. The slope formula for F
is basically a balancing condition around each .d � 1/-dimensional canonical
polyhedron of the skeleton which involves slopes in the direction of all adjacent
d-dimensional polyhedra.

Let �S be a d-dimensional canonical polyhedron of the skeleton S.X ;H/
containing the .d � 1/-dimensional canonical polyhedron �T . Then the stratum S
in the special fiber Xs is contained in the closure T (which is a curve), and it is
obtained as a component of the intersection of T with one additional irreducible
component of the divisor D.

This component is either vertical, i.e., a component of the special fiber, or
horizontal, i.e., given by some component of H. If it is vertical, then the finite part of
�S ' �.r; �/�Rs�0 (i.e., the simplex�.r; �/) is strictly larger than the finite part of
�T . In this case we say that�S extends�T in a bounded direction. If the component
is horizontal, then the infinite part of�S (i.e., the product Rs�0) is strictly larger than
the infinite part of �T . In this case we say that �S extends �T in an unbounded
direction.

We define the bounded degree degb.�T/ as the number of canonical polyhedral
�S extending�T in a bounded direction. Similarly, we define the unbounded degree
degu.�T/ as the number of canonical polyhedra �S extending �T in an unbounded
direction.

In the case d D 1, i.e., if X is a curve, all �T are vertices. A one-dimensional
canonical polyhedron �S extending �T in a bounded direction is simply an edge of
length v.�/ > 0. In this case, the stratum S is a component of the intersection of
two irreducible components in the special fiber Xs. A one-dimensional canonical
polyhedron �S extending �T in an unbounded direction is a ray of the form R�0.
In this case, the stratum S is a component of the intersection of the irreducible
component of the special fiber given by T with a horizontal component of the
divisor. Hence the degree degb.�T/ is the number of bounded edges in �T , and
degu.�T/ is the number of unbounded rays starting in the vertex �T .
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Now we want to define multiplicities via intersection theory. Since X is not
noetherian, the standard intersection theory tools from algebraic geometry are not
available. However, on admissible formal schemes one can use analytic geometry to
associate Weil divisors to Cartier divisors, and there is a refined intersection product
with Cartier divisors, see [18, 19] and Appendix A in [22].

Definition 6.2. For every vertex u 2 �T we denote by Vu the associated irreducible
component of the special fiber Xs. We define an integer ˛.u; �T/ as follows:

If �T has zero-dimensional finite part fug, we simply put ˛.u; �T/ D degb.�T/.
If not, then T lies in at least two irreducible components of the special fiber Xs,

which means that the finite part of T is a simplex �.r; �/ of dimension at least
one. If U is a suitable formal chart, it is shown in [22, Proposition 4.17] that there
exists a unique effective Cartier divisor Cu on U such that its Weil divisor is equal
to v.�/.Vu \ Us/. We define �˛.u; �T/ as the intersection number .Cu:T/, which
is equal to the degree of the pullback of the line bundle associated with Cu from
U to T .

Note that Cartwright [9] introduced the intersection numbers ˛.u; �T/ in the
(noetherian) situation where Kı is discrete valuation ring. He uses them to endow
the compact skeleton S.X / with the structure of a tropical complex, see [9,
Definition 1.1]. This notion also involves a local Hodge condition which plays no
role in our slope formula. The paper [9] develops a theory of divisors on tropical
complexes and investigates their relation to algebraic divisors.

Here we also need multiplicities for rays in �T , which are defined as one-
dimensional faces of the unbounded part of T .

Definition 6.3. Let Hr be the horizontal component corresponding to the ray r in
�T . We put

˛.r; �T/ D �.Hr:T/;

where we take the intersection product of T with the Cartier divisor Hr on X .

Let F be a function on the skeleton S.X ;H/, which is integral �-affine on each
canonical polyhedron. Now we are ready to define outgoing slopes of F on a .d�1/-
dimensional canonical polyhedron �T along a d-dimensional polyhedron �S.

Definition 6.4. Let �T be a .d � 1/-dimensional canonical polyhedron and let �S

be a d-dimensional canonical polyhedron of S.X ;H/ containing�T . We denote by
�.r; �/ the finite part of �S. Let F W �S ! R be an integral �-affine function.

(i) If �S extends �T in a bounded direction, then there exists a unique vertex w of
�S not contained in �T . We put

slope.FI�T ; �S/ D 1

v.�/

0
@F.w/ � 1

degb.�T/

X
u2�T

˛.u; �T/F.u/

1
A ;

where we sum over all vertices u in �T .



Analytification and Tropicalization Over Non-archimedean Fields 167

(ii) If �S extends �T in an unbounded direction, then there exists a unique ray s in
�S not contained in �T , and we put

slope.FI�T ; �S/ D dsF � 1

degu.�T/

X
r2�T

˛.r; �T/drF;

where we sum over all rays in �T . For any ray r we denote by drF the derivative of
F along the primitive vector in the direction of r.

If X is a curve, �T D u is a vertex and �S is an edge with vertices u and w,
then slope.FI�T ; �S/ D 1

v.�/
.F.w/ � F.u//. If �S is a ray s starting in u, then

we simply have slope.FI�T ; �S/ D dsF. In higher dimensions, the definition is
more involved, since the naive slope 1

v.�/
.F.w/ � F.u// depends on the choice of a

vertex u in�T . Therefore we define a replacement for a weighted midpoint in�T as
1

degb.�T /

P
u2�T

˛.u; �T/u. Note that this point does not necessarily lie in �T , since
˛.u; �T/ may be negative.

We can now formulate the slope formula for skeleta.

Theorem 6.5 ([22, Theorem 6.9]). Let f 2 K.X/� be a non-zero rational function
such that the support of div.f / is contained in HK. Let F W S.X ;H/ ! R be the
restriction of the function � log jf j to the skeleton. Then F is continuous and integral
�-affine on each canonical polyhedron of S.X ;H/, and for all .d �1/-dimensional
canonical polyhedra we haveX

�S��T

slope.FI�T ; �S/ D 0;

where the sum runs over all d-dimensional canonical polyhedra �S containing �T .

If X is a curve, the slope formula basically says that the sum of all outgoing slopes
along edges or rays in a fixed vertex is zero. In this case, the slope formula is shown
in [3, Theorem 5.15]. It is a reformulation of the non-archimedean Poincaré–Lelong
formula proven in Thuillier’s thesis [27, Proposition 3.3.15]. The Poincaré–Lelong
formula is an equation of currents in the form ddc log jf j D ıdiv.f /, where ddc

is a certain distribution-valued operator. This version of the slope formula was
generalized to higher dimensions in the ground-breaking paper [10], where a theory
of differential forms and currents on Berkovich spaces is developed. The approach
of [10] uses tropical charts and does not rely on models or skeleta. In higher
dimensions we see no direct relation to our slope formula.

7 Faithful Tropicalizations

We will now investigate the relation between skeleta, which are polyhedral sub-
structures of analytic varieties, and tropicalizations, which are polyhedral images of
algebraic or analytic varieties.
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7.1 Finding a Faithful Tropicalization for a Skeleton

We start with a strictly semistable pair .X ;H/ with skeleton S.X ;H/ and generic
fiber X. We consider rational maps f W X Ü Gn

m;K from X to a split torus. If U � X
is a Zariski open subvariety where f is defined, then f jU W U ! Gn

m;K induces a
tropicalization Tropf .U/ of U, which is defined as the image of the map trop ı f an W
Uan ! Rn as in Sect. 2.3.

Note that the skeleton is contained in the analytification of every Zariski open
subset of X, since it only contains norms on the function field of X.

Definition 7.1. A rational map f W X Ü Gn
m;K from X to a split torus is called a

faithful tropicalization of the skeleton S.X ;H/ if the following conditions hold:

(i) The map trop ı f an is injective on S.X ;H/.
(ii) Each canonical polyhedron �S of S.X ;H/ can be covered by finitely many

integral �-affine polyhedra such that the restriction of tropı f an to each of those
polyhedra is a unimodular integral �-affine map.

For the definition of unimodular integral affine maps see Sect. 5.1.
It is easy to see that a rational map which is unimodular on the skeleton stays

unimodular if we enlarge it with more rational functions on X, see [22, Lemma 9.3].
If we look at a building block S D SpecKıŒx0; : : : ; xd�=.x1 : : : xr � �/ as

in Definition 5.1 with the local tropicalization �.r; �/ � Rs�0, we find that the
coordinate functions x0; : : : ; xrCs induce a faithful tropicalization. Collecting the
corresponding rational functions on X for all canonical polyhedra of the skeleton,
we get a rational map on X which is locally unimodular on the skeleton. It is shown
in the proof of Theorem 9.5 of [22] how to enlarge this collection of rational function
in order to ensure injectivity of the tropicalization map on the skeleton. In this way
one can show the following result.

Theorem 7.2 ([22, Theorem 9.5]). Let .X ;H/ be a strictly semistable pair. Then
there exists a collection of non-zero rational functions f1; : : : ; fn on X such that the
resulting rational map f D .f1; : : : ; fn/ W X Ü Gn

m;K is a faithful tropicalization of
the skeleton S.X ;H/.

7.2 Finding a Copy of the Tropicalization Inside
the Analytic Space

Let us now start with a given tropicalization of a very affine K-variety U, i.e., with
a closed immersion ' W U ,! Gn

m;K of a variety U in a split torus. As in Sect. 2.3 we
consider the tropicalization map

trop' D trop ı 'an W Uan ! Rn:
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Recall that for every point ! 2 Trop'.U/ the preimage trop�1
' .!/ � Uan of the

tropicalization map is the Berkovich spectrum of an affinoid algebra A! .

Lemma 7.3 ([22, Lemma 10.3]). If the tropical multiplicity of ! is equal to one,
then A! contains a unique Shilov boundary point.

This lemma follows basically from [2], Remark after Proposition 4.17, which
shows how the preimage of tropicalization is related to initial degenerations.

Now we can show that on the locus of tropical multiplicity one there exists a
natural section of the tropicalization map.

Theorem 7.4 ([22, Theorem 10.7]). Let Z � Trop'.U/ be a subset such that the
tropical multiplicity of every point in Z is equal to one. By Lemma 7.3 this implies
that for every ! 2 Z the affinoid space trop�1

' .!/ has a unique Shilov boundary
point which we denote by s.!/.

The map s W Z ! Uan, given by ! ! s.!/, is continuous and a partial section of
the tropicalization map, i.e., on Z we have trop' ı s D idZ. Hence the image s.Z/ is
a subset of Uan which is homeomorphic to Z.

Moreover, if Z is contained in the closure of its interior in Trop'.U/, then s is the
unique continuous section of the tropicalization map on Z.

We give a sketch of the proof. It is enough to show that the section s is continuous
and uniquely determined under our additional assumption. Since everything behaves
nicely under base change we may assume that the valuation map K� ! R>0 is
surjective. Let us first consider the case that U D Gn

m;K and ' the identity map. Then
the section s is the identification of the tropicalization Rn (which has multiplicity one
everywhere) with the skeleton of Gn

m;K as defined in (3). It is clear from the explicit
description of s in (3) that it is continuous in this case.

Moreover, if s0 is a different section of the tropicalization map in the case
U D Gn

m;K which satisfies s.!/ ¤ s0.!/, we find a Laurent polynomial f on
which those two seminorms differ. Since s.!/ is the unique Shilov boundary point
in the fiber of tropicalization, s0.!/ applied to f is strictly smaller than s.!/ applied
to f . Since s.!/ is equal to s0.!/ on all monomials, it follows that the initial
degeneration of f at ! cannot be a monomial. Therefore ! is contained in the
tropical hypersurface Trop.f /. A continuity argument shows that the same argument
works in a small neighborhood of !. This is a contradiction since Trop.f / has
codimension one. Therefore s is indeed uniquely determined if ' is the identity map.

For general ' W U ,! Gn
m;K , where U has dimension d � n, one shows that there

exists a linear map Zn ! Zd with the following property: Let ˛ W Gn
m;K ! Gd

m;K
be the corresponding homomorphism of tori and consider  D ˛ ı ' W U !
Gd

m;K . Let S.Gd
m;K/ be the skeleton of the torus as in (3). Then for all ! 2 Z we

have fs.!/g D trop�1
' .!/ \  �1.S.Gd

m;K//. This implies that s.Z/ D trop�1
' .Z/ \

 �1.S.Gd
m;K// is closed, from which we can deduce continuity of s. Uniqueness

follows from uniqueness in the torus case by composing the sections with  .
Note that the preceding theorem does not make any assumption on the existence

of specific models. If we assume that .X ;H/ is a semistable pair and U D XnHK ,
then the image of the section s defined in Theorem 7.4 is contained in the skeleton
S.X ;H/. This is shown in [22, Proposition 10.9].



170 A. Werner

The preceding theorem treats the case of tropicalizations in tori. Let ' W X ,! Y
be a closed embedding of X in a toric variety Y associated with the fan �. Then
we may consider the associated tropicalization Trop'.X/ of X, i.e., the image of
trop ı 'an W Xan ! Yan ! N�

R
, where N�

R
is the associated partial compactification

of NR, see Sect. 2.3. We can apply Theorem 7.4 to all torus orbits. In this way,
we get a section of the tropicalization map on the locus Z � Trop'.X/ of tropical
multiplicity one which is continuous on the intersection with each toric stratum. It is
a natural question under which conditions this section is continuous on the whole
of Z. This might shed new light on Theorem 4.1 for the tropical Grassmannian.

Acknowledgements The author is very grateful to Walter Gubler for his helpful comments.

References

1. Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line.
In: Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Provi-
dence (2010)

2. Baker, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization and metrics on
curves. Algebr. Geom. 3, 63–105 (2016)

3. Baker, M., Payne, S., Rabinoff, J.: On the structure of non-archimedean analytic curves.
In: Contemporary Mathematics, vol. 605, pp. 93–121. American Mathematical Society,
Providence (2013)

4. Berkovich, V.: Spectral theory and analytic geometry over non-Archimedean fields. In: Mathe-
matical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

5. Berkovich, V.: Smooth p-adic spaces are locally contractible. Invent. Math. 137, 1–84 (1999)
6. Berkovich, V.: Smooth p-adic spaces are locally contractible. II. In: Geometric Aspects of

Dwork Theory, pp. 293–370. De Gruyter, Berlin (2004)
7. Bosch, S.: Lectures on Formal and Rigid Geometry. Lecture Notes in Mathematics, vol. 2105.

Springer, Heidelberg (2014)
8. Bosch, S., Güntzer, S., Remmert, R.: Non-Archimedean Analysis. Springer, Heidelberg (1984)
9. Cartwright, D.: Tropical Complexes. Preprint, http://arxiv.org/abs/1308.3813 (2013)

10. Chambert-Loir, A., Ducros, A.: Formes diffeérentielles réelles et courants sur les espaces de
Berkovich. Preprint, http://arxiv.org/abs/1204.6277 (2012)

11. Conrad, B.: Several approaches to non-archimedean geometry. In: p-Adic Geometry. Univer-
sity Lecture Series, vol. 45, pp. 9–63. American Mathematical Society, Providence (2008)

12. Cueto, M., Häbich, M., Werner, A.: Faithful tropicalization of the Grassmannian of planes.
Math. Ann. 360, 391–437 (2014)

13. de Jong, J.A.: Smoothness, semi-stability and alterations. Publ. Math. IHES 83, 51–93 (1996)
14. Draisma, J., Postinghel, E.: Faithful tropicalization and torus actions. Manuscripta Math. 149,

315–338 (2016)
15. Ducros, A.: Espaces analytiques p-adiques au sens de Berkovich. Séminaire Bourbaki 2005/06.

Astérisque 311, exposé 958 (2007)
16. Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties.

J. Reine Angew. Math. 601, 139–157 (2006)
17. Foster, T., Gross, P., Payne, S.: Limits of tropicalizations. Isr. J. Math. 201, 835–846 (2014)
18. Gubler, W.: Local heights of subvarieties over non-Archimedean fields. J. Reine Angew. Math.

498, 61–113 (1998)

http://arxiv.org/abs/1308.3813
http://arxiv.org/abs/1204.6277


Analytification and Tropicalization Over Non-archimedean Fields 171

19. Gubler, W.: Local and canonical heights of subvarieties. Ann. Scuola Norm. Super. Pisa Cl.
Sci. 2(5), 711–760 (2003)

20. Gubler, W.: Tropical varieties for non-Archimedean analytic spaces. Invent. Math. 169,
321–376 (2007)

21. Gubler, W.: A guide to tropicalizations. In: Algebraic and Combinatorial Aspects of Tropical
Geometry. Contemporary Mathematics, vol. 589, pp. 125–189. American Mathematical
Society, Providence (2013)

22. Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. Adv. Math. 294, 150–215
(2016)

23. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. American Mathematical
Society, Providence (2015)

24. Payne, S.: Analytification is the limit of tropicalization. Math. Res. Lett. 16, 543–556 (2009)
25. Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4, 389–411 (2004)
26. Temkin, M.: Introduction to Berkovich analytic spaces. In: Berkovich Spaces and Applications.

Lecture Notes in Mathematics, vol. 2119, pp. 3–67. Springer, Heidelberg (2015)
27. Thuillier, A.: Théorie du potentiel sur les courbes on géométrie analytique non-archimédienne.

Applications à la théorie d’Arakelov. Thèse Rennes. http://tel.ccsd.cnrs.fr/documents/
archives0/00/01/09/90/index.html (2005)

28. Tyomkin, I.: Tropical geometry and correspondence theorem via toric stacks. Math. Ann. 353,
945–995 (2012)

http://tel.ccsd.cnrs.fr/documents/archives0/00/01/09/90/index.html
http://tel.ccsd.cnrs.fr/documents/archives0/00/01/09/90/index.html

	Analytification and Tropicalization Over Non-archimedean Fields
	1 Introduction
	2 Berkovich Spaces and Tropicalizations
	2.1 Notation and Conventions
	2.2 Berkovich Spaces
	2.3 Tropicalization

	3 The Case of Curves
	4 Tropical Grassmannians
	4.1 The Setting
	4.2 A Section of the Tropicalization Map
	4.3 Sketch of Proof in the Dense Torus Orbit

	5 Skeleta of Semistable Pairs
	5.1 Integral Affine Structures
	5.2 Semistable Pairs
	5.3 Skeleta

	6 Functions on the Skeleton
	7 Faithful Tropicalizations
	7.1 Finding a Faithful Tropicalization for a Skeleton
	7.2 Finding a Copy of the Tropicalization Inside the Analytic Space

	References


