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1 Introduction

The purpose of these notes is to discuss the Monge–Ampère equation

MA.�/ D �

in both the complex and non-Archimedean setting. Here � is a positive measure1

on the analytification of a smooth projective variety, � is a semipositive metric on
an ample line bundle on X, and MA is the Monge–Ampère operator. All these terms
will be explained below.

In the non-Archimedean case, our presentation is based on the papers [13, 14]
to which we refer for details. In the complex case, we follow [6] rather closely.
Generally speaking, we avoid technicalities or detailed proofs.

1All measures in this paper will be assumed to be Radon measures.

S. Boucksom • C. Favre
CNRS-CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
e-mail: boucksom@polytechnique.edu; charles.favre@polytechnique.edu

M. Jonsson (�)
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
e-mail: mattiasj@umich.edu

© Springer International Publishing Switzerland 2016
M. Baker, S. Payne (eds.), Nonarchimedean and Tropical Geometry,
Simons Symposia, DOI 10.1007/978-3-319-30945-3_2

31

mailto:boucksom@polytechnique.edu
mailto:charles.favre@polytechnique.edu
mailto:mattiasj@umich.edu


32 S. Boucksom et al.

2 Metrics on Lines Bundles

Let K be a field equipped with a complete multiplicative norm and let X be a smooth
projective variety over K. To this data we can associate an analytification Xan. When
K is the field of complex numbers with its usual norm, Xan is a compact complex
manifold. When the norm is non-Archimedean, Xan is a K-analytic space in the
sense of Berkovich [3]. In either case, it is a compact Hausdorff space.

Let L be a line bundle on X. It also admits an analytification Lan. A metric on Lan

is a rule that to a local section s W U ! Lan, where U � Xan, associates a function
ksk on U, subject to the condition kfsk D jf j � ksk, for any analytic function f on U.
The metric is continuous if ksk is continuous on U for every s.

For our purposes it is convenient to use additive notation for metrics and line
bundles. Given an open cover U˛ of Xan and local trivializations of Lan on each U˛ ,
we can identify a section s of L with a collection .s˛/˛ of analytic functions. A metric
� is then a collection of functions .�˛/˛ in such a way that ksk� D js˛je��˛ on U˛ .
With this convention, if � is a metric on Lan, any other metric is of the form � C f ,
where f is a function on Xan. If �i is a metric on Li, i D 1; 2, then �1C�2 is a metric
on L1 C L2.

Over the complex numbers, smooth metrics � (i.e., each �˛ is smooth) play an
important role. Of similar status, for K non-Archimedean, are model metrics defined
as follows.2 Let R be the valuation ring of K and k the residue field. A model of
X is a normal scheme X , flat and projective over Spec R and with generic fiber
isomorphic to X. A model of L is a Q-line bundle L on X whose restriction to X is
isomorphic to L. It defines a continuous metric �L on L in such a way that any local
nonvanishing section of a multiple of L has norm constantly equal to one. Model
functions, that is, model metrics on OX , are dense in C0.Xan/. We refer to [21]
or [14] for a more thorough discussion.

Over C, a smooth metric � on Lan is semipositive (positive) if its curvature form
ddc� is a semipositive (positive) .1; 1/-form. Here ddc� D ddc�˛ D i

�
@@�˛ for

any ˛. Such metrics only exist when L is nef.
In the non-Archimedean setting we say that a model metric �L on Lan is

semipositive if the line bundle L is relatively nef, that is, its degree is nonnegative
on any proper curve contained in the special fiber X0. This implies that L is nef.

In both the complex and non-Archimedean case we say that a continuous metric
� is semipositive if there exists a sequence .�m/

1
1 of semipositive smooth/model

metrics such that limm!1 supXan j�m � �j D 0. In the non-Archimedean case, this
notion was first introduced by Zhang [51] and Gubler [28]. In the complex case,
it is more natural to say that a continuous metric � is semipositive if its curvature
current ddc� is a positive closed current. At least when L is ample, one can then

2Model metrics are not smooth in the sense of Chambert-Loir and Ducros [22] but nevertheless,
for our purposes, play the same role as smooth metrics in the complex case.
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prove (see Sect. 7 below) that � can be approximated by smooth metrics; such an
approximation is furthermore crucial for many arguments in pluripotential theory.

In the non-Archimedean case, Chambert-Loir and Ducros have introduced a
notion of forms and currents on Berkovich spaces. However, it is not known whether
a continuous metric whose curvature current (in their sense) is semipositive can be
approximated by semipositive model metrics.

In both the complex and non-Archimedean case we denote by PSH0.Lan/

the space of continuous semipositive metrics on Lan. Here the superscript refers
to continuity (C0) whereas “PSH” reflects the fact that in the complex case,
semipositive metrics are global versions of plurisubharmonic functions.

3 The Monge–Ampère Operator

In the complex case, the Monge–Ampère operator is a second order differential
operator: we set MA.�/ D .ddc�/n for a smooth metric �. It is a nonlinear operator
if n > 1. When � is semipositive, MA.�/ is a smooth positive measure on Xan

of mass .Ln/. It is a volume form, that is, equivalent to Lebesgue measure, if � is
positive.

Next we turn to the non-Archimedean setting. From now on we assume that K is
discretely valued. Pick a uniformizer t of the maximal ideal in the valuation ring R
of K.

Consider a model metric �L, associated to a model .X ;L/ of .X;L/ over Spec R.
Write the special fiber as X0 D div.t/ D P

i2I biEi, where Ei are the irreducible
components of X0 and bi 2 Z>0. To each Ei is associated a unique (divisorial) point
xi 2 Xan. We then define

MA.�/ WD
X

i2I

bi.LjEi/
nıxi :

If �L is semipositive, LjEi is nef; hence, .LjEi/
n � 0 and MA.�L/ is a positive

measure. Its total mass is
Z

Xan
1 �MA.�L/ D

X

i2I

bi.LjEi/
n D .Ln � X0/ D .Ln � X�/ D .Ln/:

Here the second to last equality follows from the flatness of X over Spec R, and the
last equality from X� ' X and L� ' L.

From now on assume that L is ample, that is, we have a polarized pair .X;L/. In
both the complex and non-Archimedean case we define MA.�/ for a continuous
semipositive metric by MA.�/ WD limm!1 MA.�m/ for any sequence .�m/

1
1

converging uniformly to �. Of course, it is not obvious that the limit exists or
independent of the sequence .�m/

1
1 . In the complex case this is a very special case

of the Bedford–Taylor theory developed in [8, 9]. The analogous analysis in the
non-Archimedean case is due to Chambert-Loir [20].
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4 The Complex Monge–Ampère Equation

Theorem 4.1. Let .X;L/ be a polarized complex projective variety of dimension n
and let � be a positive measure on Xan of total mass .Ln/.

(i) If � is a volume form, then there exists a smooth positive metric � on Lan such
that MA.�/ D �.

(ii) If � is absolutely continuous with respect to Lebesgue measure, with density
in Lp for some p > 1, then there exists a (Hölder) continuous metric � on Lan

such that MA.�/ D �.
(iii) The metrics in (i) and (ii) are unique up to additive constants.

The uniqueness statement in the setting of (i) is due to Calabi. The much harder
existence part was proved by Yau [48], using PDE techniques. The combined result
is often called the Calabi–Yau theorem.

The general setting of (ii) and (iii) was treated by Kołodziej [37, 38] who used
methods of pluripotential theory together with a nontrivial reduction to Yau’s result.
Guedj and Zeriahi [34] more generally established the existence of solutions of
MA.�/ D � for positive measures � (of mass .Ln/) that do not put mass on
pluripolar sets. In this generality, the metrics � are no longer continuous but rather
lie in a suitable energy class, modeled upon work by Cegrell [19]. Dinew [24],
improving upon an earlier result by Błocki [10], proved the corresponding unique-
ness theorem. All these existence and uniqueness results are furthermore valid (in a
suitable formulation) in the transcendental case, when .X; !/ is a Kähler manifold.

The complex Monge–Ampère equation is of fundamental importance to complex
geometry. For example, it implies that every compact complex manifold with
vanishing first Chern class (such manifolds are now called Calabi–Yau manifolds)
admits a Ricci flat metric in any given Kähler class. The complex Monge–Ampère
equation also plays a key role in recent work on the space of Kähler metrics.

5 The Non-Archimedean Monge–Ampère Equation

As before, suppose K ' k..t// is a discretely valued field with valuation ring
R ' kŒŒt�� and residue field k. We further assume that K has residue characteristic
zero, char k D 0. This implies that R ' kŒŒt�� and K ' k..t//, where k is the residue
field of K. More importantly, X then admits SNC models, that is, regular models
X such that the special fiber X0 has simple normal crossings. The dual complex
�X , encoding intersections between irreducible components of X0, then embeds as
a compact subset of Xan.

Theorem 5.1. Let .X;L/ be a polarized complex projective variety of dimension n
over K. Assume that X is defined over a smooth k-curve. Let � be a positive measure
on Xan of total mass .Ln/, supported on the dual complex of some SNC model.
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(i) There exists a continuous metric � on Lan such that MA.�/ D �.
(ii) The metric in (i) is unique up to an additive constant.

Here the condition on X means that there exists a smooth projective curve C over
k, a smooth projective variety Y over C, and a point p 2 C such that X is isomorphic
to the base change Y �k Spec K, where K is the fraction field of bOC;p. This condition
is presumably redundant, but is used in the proof: see Sect. 9.

To our knowledge, the first to consider the Monge–Ampère equation (or Calabi–
Yau problem) in a non-Archimedean setting were Kontsevich and Tschinkel [40].
They outlined a strategy in the case when � is a point mass.

The case of curves (n D 1) was treated in detail by Thuillier in his thesis [47];
see also [2, 26]. In this case, the Monge–Ampère equation is linear and one can
construct fundamental solutions by exploring the topological structure of Xan.

In higher dimensions, Yuan and Zhang [50] proved the uniqueness statement (ii).
Their proof, based on the method by Błocki, is valid in a more general context
than stated above. The first existence result was obtained by Liu [43], who treated
the case when X is a maximally degenerate abelian variety and � is equivalent to
Lebesgue measure on the skeleton of X. His approach amounts to solving a real
Monge–Ampère equation on the skeleton. The existence result (i) above was proved
by the authors in [13] and the companion paper [14]. We will discuss our approach
below.

The geometric ramifications of the non-Archimedean Monge–Ampère equations
remain to be developed.

6 A Variational Approach

We shall present a unified approach to solving the complex and non-Archimedean
Monge–Ampère equations in any dimension. The method goes back to Alexan-
drov’s work in convex geometry [1]. It was adapted to the complex case in [6] and
to the non-Archimedean analogue in [13].

The general strategy is to construct an energy functional

E W PSH0.Lan/! R

whose derivative is the Monge–Ampère operator, E0 D MA, in the sense that

d

dt
E.� C tf /jtD0 D

Z

Xan
f MA.�/;

for every continuous semipositive metric � 2 PSH0.Lan/ and every smooth/model
function f on Xan.
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Grant the existence of this functional for the moment. Given a measure � on Xan,
consider the functional F� W PSH0.Lan/! R defined by

F�.�/ D E.�/ �
Z

� �:

Suppose we can find � 2 PSH0.Lan/ that maximizes F�. Since the derivative of F�
is equal to F0

� D MA��, we then have 0 D F0
�.�/ D MA.�/ � � as required.

Now, there are at least three problems with this approach:

(1) There is a priori no reason why a maximizer should exist in PSH0.Lan/. We
resolve this by introducing a larger space PSH.Lan/ with suitable compactness
properties and find a maximizer there.

(2) Granted the existence of a maximizer � 2 PSH.Lan/, we are maximizing over
a convex set rather than a vector space, so there is no reason why F0

�.�/ D 0.
Compare maximizing the function f .x/ D x2 on the real interval Œ�1; 1�: the
maximum is not at a critical point.

(3) In the end we want to show that—after all—the maximizer is continuous, that
is, � 2 C0.Lan/.

We shall discuss how to address (1) and (2) in the next two sections. The continuity
result in (3) requires a priori capacity estimates due to Kołodziej, and will not be
discussed in these notes.

7 Singular Semipositive Metrics

Plurisubharmonic (psh) functions are among the objets souples (soft objects) in
complex analysis according to P. Lelong [42]. This is reflected in certain useful
compactness properties. The global analogues of psh functions are semipositive
singular metrics on holomorphic line bundles. Here “singular” means that vectors
may have infinite length.

Theorem 7.1. Let K be either C or a discretely valued field of residue characteris-
tic zero, and let .X;L/ be a smooth projective polarized variety over K. Then there
exists a unique class PSH.Lan/, the set of singular semipositive metrics, with the
following properties:

• PSH.Lan/ is a convex set which is closed under maxima and addition of
constants;

• PSH.Lan/ \ C0.Lan/ D PSH0.Lan/;
• if si, 1 � i � p, are nonzero global sections of mL for some m � 1, then � WD

1
m maxi log jsij 2 PSH.Lan/; further, � is continuous iff the sections si have no
common zero;
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• if .�j/ is an arbitrary family in PSH.Lan/ that is uniformly bounded from above,
then the usc regularization of supj �j belongs to PSH.Lan/;

• if .�j/ is a decreasing net in PSH.Lan/, then either �j ! �1 uniformly on Xan

or �j ! � pointwise on Xan for some � 2 PSH.Lan/;
• Regularization: for every � 2 PSH.Lan/ there exists a decreasing sequence
.�m/

1
mD1 of smooth/model metrics such that �m converges pointwise to � on Xan

as m!1; and
• Compactness: the space PSH.Lan/=R is compact.

To make sense of the compactness statement we need to specify the topology
on PSH.Lan/. In the complex case, one usually fixes a volume form � on Xan and
takes the topology induced by the L1-norm: k� �  k D R

Xan j� �  j�. In the non-
Archimedean case, there is typically no volume form on Xan. Instead, we say that
a net .�j/j in PSH.Lan/ converges to � if limj sup�X j�j � �j D 0 for every SNC
model X . Implicit in this definition is that the restriction to �X of every singular
metric in PSH.Lan/ is continuous: see Theorem 7.2 below.

In the complex case, one typically defines PSH.Lan/ as the set of usc singular
metrics � that are locally represented by L1 functions and whose curvature current
ddc� (computed in the sense of distributions) is a positive closed current. Thus �
is locally given as the sum of a smooth function and a psh function. Most of the
statements above then follow from basic facts about plurisubharmonic functions
in Cn. The regularization result is the most difficult. On Cn it is easy to regularize
using convolutions. With some care, one can in the global (projective) case glue
together local regularizations to obtain a global one. See [23] for a general result
and [11] for a relatively simple argument applicable in our setting.

In the non-Archimedean case, we are not aware of any workable a priori
definition of PSH.Lan/. Chambert-Loir and Ducros [22] have a notion of forms and
currents on Berkovich spaces, but it is unclear if it gives the right objects for the
purposes of the theorem above. Instead, we prove the following result:

Theorem 7.2. For any SNC model X , the restriction of the dual complex�X � Xan

of the set of model metrics on Lan forms an equicontinuous family.

This is proved using a rather subtle argument, involving intersection numbers on
toroidal models dominating X . It would be interesting to have a different proof. At
any rate, Theorem 7.2 allows us to define PSH.Lan/ as the set of usc singular metrics
� satisfying, for every sufficiently large SNC model X ,

(i) .� � �0/ ı rX � � � �0 and
(ii) the restriction of � to �X is a uniform limit of a sequence �mj�X , where each

�m is a semipositive model metric.

Here �0 is a fixed model metric, determined by some model dominated by X . The
map rX W Xan ! �X � Xan is a natural retraction. Since � is usc, condition
(i) implies that � D �0ClimX .���0/ırX , so that � is determined by its restrictions
to all dual complexes.
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With this definition, the compactness of PSH.Lan/=R follows from Theorem 7.2
and Ascoli’s theorem. Regularization, however, is quite difficult to show. We are not
aware of any procedure that would replace convolution in the complex case. Instead
we use algebraic geometry. Here is an outline of the proof.

Fix � 2 PSH.Lan/. For any SNC model X , � naturally induces a model
metric �X . The semipositivity of � implies that the net .�X /X indexed by the
collection of (isomorphism classes of) SNC models decreases to �. Unfortunately,
except in the curve case n D 1, �X has no reason to be semipositive; this reflects
the fact that the pushforward of a nef line bundle may fail to be nef. We address this
by defining  X as the supremum of all semipositive (singular) metrics dominated
by �X . We then show that  X is continuous and can be uniformly approximated by
a sequence . X ;m/1m of semipositive model metrics. From this data it is not hard to
produce a decreasing net of semipositive model metrics converging to �.

Let us say a few words on the construction of the semipositive model metrics
�X ;m since this is a key step in the paper [14]. For simplicity assume that L is base
point free and that �X is associated with a line bundle L (rather than an R-line
bundle) on X . Let am be the base ideal of mL, cut out by the global sections; it
is cosupported on the special fiber X0. The sequence .am/m is a graded sequence
in the sense that al � am � alCm. Each am naturally defines a semipositive model
metric  X ;m on Lan. The fact that  X ;m converges uniformly to  X translates into a
statement that the graded sequence .am/m is “almost” finitely generated. This in turn
is proved using multiplier ideals and ultimately reduces to the Kodaira vanishing
theorem; to apply the latter, it is crucial to work in residue characteristic zero.

The argument above proves that any � 2 PSH.Lan/ is the limit of a decreasing net
of semipositive model metrics. When � is continuous, the convergence is uniform
by Dini’s theorem, and we can use the sup-norm to extract a decreasing sequence
of model metrics converging to �. In the general case, the Monge–Ampère capacity
developed in [13, § 4] (and modeled on [8, 33]) can similarly be used to extract a
convergent sequence from a net.

8 Energy

In the complex case, the (Aubin–Mabuchi) energy functional is defined as follows.
Fix a smooth semipositive reference metric �0 and set

E.�/ WD 1

nC 1
nX

jD0

Z

Xan
.� � �0/.ddc�/j ^ .ddc�0/

n�j: (1)

for any smooth metric �. Here .ddc�/j ^ .ddc�0/
n�j is a mixed Monge–Ampère

measure. It is a positive measure if � is semipositive.
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In the non-Archimedean case, mixed Monge–Ampère measures can be defined
using intersection theory when � and �0 are model metrics, and the energy of � is
then defined exactly as above.

For two smooth/model metrics � and  we have

E.�/ � E. / D 1

nC 1
nX

jD0

Z

Xan
.� �  /.ddc�/j ^ .ddc /n�j: (2)

This is proved using integration by parts in the complex case and follows from basic
intersection theory in the non-Archimedean case.

We can draw two main conclusions from (2). First, the derivative of the energy
functional is the Monge–Ampère operator, in the sense that

d

dt
E.� C tf /

ˇ
ˇ
ˇ
ˇ
tD0
D

Z

Xan
f MA.�/ (3)

for a smooth/model metric � on Lan and a smooth/model function f on Xan.
Second, E. / � E.�/ when  � � are semipositive. It then makes sense to set

E.�/ WD inffE. / j  � �;  a semipositive smooth/model metric on Lang:

for any singular semipositive metric � 2 PSH.Lan/. The resulting functional

E W PSH.Lan/! Œ�1;1/

has many good properties: E is concave, monotonous, and satisfies E.� C c/ D
E.�/C c for c 2 R. Further, E is usc and continuous along decreasing nets.

The energy functional singles out a class E1.Lan/ of metrics with finite energy,
E.�/ > �1. This class has good properties. In particular, one can (with some
effort) define mixed Monge–Ampère measures .ddc�/j ^ .ddc /n�j for �; 2
E1.Lan/, and (1) continues to hold.

Let us now go back to the variational approach to solving the Monge–Ampère
equation. Fix a positive measure � on Xan of mass .Ln/. In the complex case
we assume that � is absolutely continuous with respect to Lebesgue measure,
with density in Lp for some p > 1. In the non-Archimedean case we assume
that � is supported on some dual complex. In both cases, one can show that the
functional � ! R

.� � �0/� is (finite and) continuous on PSH.Lan/, where �0 is
the same reference metric as in (1). Thus the functional F�WPSH.Lan/! Œ�1;1/
defined by

F�.�/ WD E.�/ �
Z

.� � �0/�
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is upper semicontinuous. It follows from (2) that F� does not depend on the choice
of reference metric �0. We also have F�.� C c/ D F�.�/ for � 2 PSH.Lan/,
c 2 R. Thus F� descends to a usc functional on the quotient space PSH.Lan/=R. By
Theorem 7.1, the latter space is compact, so we can find � 2 PSH.Lan/ maximizing
F�. It is clear that � 2 E1.Lan/, so the mixed Monge–Ampère measures of � and
�0 are well defined. However, equation (3) no longer makes sense, since there is no
reason for the metric � C tf to be semipositive for t ¤ 0. Therefore, it is not clear
that MA.�/ D �, as desired. In the next section, we explain how to get around this
problem.

9 Envelopes, Differentiability, and Orthogonality

We define the psh envelope of a (possibly singular) metric  on Lan by

P. / WD supf� 2 PSH.Lan/ j � �  g�:

As before, �� denotes the usc regularization of a singular metric �. In all cases, we
need to consider,  will be the sum of a metric in E1.Lan/ and a continuous function
on Xan. In particular,  is usc, P. / 2 E1.Lan/ and P. / �  .

This envelope construction was in fact already mentioned at the end of Sect. 7 as
it plays a key role in the regularization theorem. The psh envelope is an analogue of
the convex hull; see Fig. 1.

The key fact about the psh envelope is that the composition EıP is differentiable
and that .E ı P/0 D E0 ı P. More precisely, we have

Theorem 9.1. For any � 2 E1.Lan/ and f 2 C0.Xan/, the function t 7! E.P.�Ctf //
is differentiable at t D 0, with derivative d

dt E.� C tf /jtD0 D
R

f MA.�/.

Granted this result, let us show how to solve the Monge–Ampère equation. Pick
� 2 E1.Lan/ that maximizes F�.�/ D E.�/ � R

.� � �0/� and consider any f 2
C0.Xan/. For any t 2 R we have

E.P.� C tf // �
Z

.� C tf � �0/� � E.P.� C tf // �
Z

.P.� C tf / � �0/�

� E.�/ �
Z

.� � �0/�:

Since the left-hand side is differentiable at t D 0, the derivative must be zero, which
amounts to

R
f MA.�/�R f� D 0. Since f 2 C0.Xan/ was arbitrary, this means that

MA.�/ D �, as desired.
The proof of this differentiability results proceeds by first reducing to the case

when � and f are continuous. A key ingredient is then
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Fig. 1 The convex hull P.f /
of a continuous function f of
one variable. Note that P.f /
is affine, i.e., P.f /00 D 0

where P.f / ¤ f

Theorem 9.2. For any continuous metric � on Lan we have

Z

Xan
.� � P.�//MA.P.�// D 0: (4)

In other words, the Monge–Ampère measure MA.P.�// is supported on the locus
P.�/ D �. A version of this for functions of one variable is illustrated in Fig. 1.

To prove this result, we can reduce to the case when � is a smooth/model
metric. In the complex case, Theorem 9.2 was proved by Berman and the first
author in [5] using the pluripotential theoretic technique known as “balayage.” In
the non-Archimedean setting, Theorem 9.2 is deduced in [13] from the asymptotic
orthogonality of Zariski decompositions in [12] and is for this reason called the
orthogonality property. The assumption in Theorem 5.1 that the variety X be defined
over a smooth k-curve is used exactly in order to apply the result from [12].

The solution to the non-Archimedean Monge–Ampère equation MA.�/ D �

can be made slightly more explicit in the case when the support of � is a singleton,
� D dL ıx, where dL WD .Ln/ and x 2 Xan belongs to some dual complex; such
points x are known as quasimonomial or Abhyankar points.

The fiber Lan
x of Lan above x 2 Xan is isomorphic to the Berkovich affine line over

the complete residue field H.x/. Fix any nonzero y 2 Lan
x and set

�x WD supf� 2 PSH.Lan/ j kyk� � 1g:

By Boucksom et al. [13, Proposition 8.6], MA.�x/ is supported on x, so
MA.�x/ D dL ıx. It would be interesting to find an example of a divisorial point
x 2 Xan such that �x is not a model function.

10 Curves

The disadvantage of the variational approach to the Monge–Ampère equation is that
it gives very little control on the solution beyond continuity. Here we shall make
the solution more concrete in the case of curves; the next section deals with toric
varieties.

Thus assume that X is a smooth projective curve over K. In this case, the Monge–
Ampère operator (which one would normally refer to as the Laplacian) is linear: if
�i is a metric on Li, i D 1; 2, then MA.�1C�2/ D MA.�1/CMA.�2/. Furthermore,
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as we shall see, the Monge–Ampère operator is naturally defined on any singular
semipositive metric on Lan, for an ample line bundle L, and we can solve MA.�/ D
� for any positive measure � of mass deg L.

Let us first explain this in the complex case; Xan is then a compact Riemann
surface. Fix a smooth metric �0 on Lan. The curvature form !0 WD ddc�0 is a volume
form of mass deg L. A singular metric � on Lan is then semipositive iff ' WD � � �0
is an !0-psh function, that is, a locally integrable function ' that is locally the sum of
a smooth function and a psh function, and such that !0Cddc' is a positive measure.
We then set MA.�/ WD !0 C ddc�; this definition does not depend on the choice
of �0.

Now we explain how to solve the equation MA.�/ D � for any positive measure
� of mass dL WD deg L. Writing � D �0C' as above, we must solve ddc' D ��!0,
where !0 WD ddc�0. It suffices to do this when � D dLıx for some x 2 Xan: indeed,
if we normalize the solution 'x to ddc'x D � � dLıx by

R
Xan 'x !0 D 0, then the

function '� defined by '�.y/ WD d�1
L

R
Xan 'x.y/ d�.x/ satisfies ddc'� D !0�� and

is normalized by
R

Xan '� !0 D 0.
The function 'x can be “physically” interpreted as the voltage (suitably normal-

ized) when putting a charge of CdL at the point x and a total charge of �dL spread
out according to the measure !0. Mathematically, Perron’s method describes it as
the supremum of all !0-subharmonic functions ' on Xan satisfying

R
Xan ' !0 D 0

and ' � dL log jzj C O.1/, where z is a local coordinate at x.
Now we consider the non-Archimedean case. As before, let us assume that K is

a discretely valued field of residue characteristic zero, even though this is not really
necessary in the one-dimensional case.3

The main point is that any Berkovich curve has the structure of a generalized4

metric graph. We will not describe this in detail, but here is the idea. The dual graph
�X of any SNC model X is a connected, one-dimensional simplicial complex. As
before, we view it as a subset of Xan. It carries a natural integral affine structure,
inducing a metric. If X 0 is an SNC model dominating X (in the sense that the
canonical birational map X Ü X 0 is a morphism), then �X is a subset of �X 0

and the inclusion �X ! �X 0 is an isometry. There is a also a (deformation)
retraction rX W Xan ! �X , and Xan ' lim �X �X . In this way, the metrics on the
dual complexes induce a generalized metric on Xan.

The structure of each �X and of Xan as metric graphs allows us to define a
Laplacian on these spaces, by combining the real Laplacian on segments and the
combinatorial Laplacian at branch points (and endpoints). This Laplacian allows us
to understand both semipositive singular metrics and the Monge–Ampère operator.

Namely, fix a model metric �0 on Lan. It is represented by a Q-line bundle on
some SNC model X .0/. The measure !0 WD ddc�0 is supported on the vertices
of �X .0/ . Now, a singular metric � is semipositive iff for every SNC model X
dominating X .0/, the restriction of the function � � �0 to �X is a !0-subharmonic

3Indeed, Thuillier [47] systematically develops a potential theory on Berkovich curves in a very
general setting.
4This means that some distances may be infinite.
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function in the sense that �..� � �0/j�X / D �X � !0, where �X is a positive
measure on �X of mass dL. In this case, there further exists a unique measure � on
Xan of mass dL such that .rX /�� D �X for all X , and we have MA.�/ D �.

To solve the equation MA.�/ D � for a positive measure� of mass dL, it suffices
by linearity to treat the case � D dLıx for a point x 2 Xan. In this case, the function
' WD � � �0 will be locally constant outside the convex hull of fxg [ �X .0/ . The
latter is essentially a finite metric graph on which we need to find a function whose
Laplacian is equal to dLıx � !0. This can be done in a quite elementary way.

An interesting example of semipositive metrics, both in the complex and non-
Archimedean case, comes from dynamics [51]. Suppose f W .X;L/ � is a polarized
endomorphism of degree � > 1. In other words, f W X ! X is an endomorphism and
f �L is linearly equivalent to �L. Then there exists a unique canonical metric �can on
Lan, satisfying f �� D ��. This metric is continuous and semipositive but usually
not a model metric.

As a special case, suppose X is an elliptic curve and that f is the map given
by multiplication by �. In the complex case, Xan ' C=ƒ is a torus and �can WD
MA.�can/ is given by a multiple of Haar measure on Xan. In the non-Archimedean
case, there are two possibilities. If X has good reduction over Spec R, then �can is
a point mass. Otherwise, �can is proportional to Lebesgue measure on the skeleton
Sk.Xan/, a subset homeomorphic to a circle. A similar description of the measure
�can in the case of higher-dimensional abelian varieties is given in [29].

11 Toric Varieties

For general facts about toric varieties, see [18, 27, 36]. In this section we briefly
describe how the complex and non-Archimedean points of view elegantly come
together in the toric setting and translate into statements about convex functions
and the real Monge–Ampère operator. As before, we only consider the non-
Archimedean field K D k..t// with char k D 0; however, most of what we say
here should be true in a more general context: see [30].

Let M ' Zn be a free abelian group, N its dual, and let T D Spec KŒM� be the
corresponding split K-torus. A polarized toric variety .X;L/ is then determined by
a rational polytope � � MR. The variety X is described by the normal fan to � in
NR and the points of M \ � are in 1–1 correspondence with equivariant sections
of L; we write 	u for the section of L associated with u 2 M. This description is
completely general and holds over any field as well as over Z.

There is also a “tropical” space Xtrop associated with X. As a topological space, it
is compact and contains NR as an open dense subset.5 For any valued field K, there

5In our setting, Xtrop can be identified with the (moment) polytope � in such a way that NR

corresponds to the interior of�, but this identification does not preserve the affine structure on NR.
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is a tropicalization map trop W Xan ! Xtrop, where Xan refers to the analytification
with respect to the norm on K. The inverse image of NR is the torus Tan.

There is a natural correspondence between equivariant metrics on Lan and
functions on NR. Let � is an equivariant metric on Lan. For every u 2 M, 	u is a
nonvanishing section of L on T so � � log j	uj defines a function on Tan that is
constant on the fibers of the tropicalization map. In particular, picking u D 0, we
can write

� � log j	0j D g ı trop (5)

for some function g on NR. Conversely, given a function g on NR, (5) defines an
equivariant metric on the restriction of Lan to Tan.

We now go from the torus T to the polarized variety .X;L/. After replacing L by
a multiple, we may assume that all the vertices of � belong to M. Set

�� WD max
u2� log j	uj:

This is a semipositive, equivariant model metric on Lan. Its restriction to Tan

corresponds to the homogeneous, nonnegative, convex function

g� WD max
u2� u

on NR. In general, an equivariant singular metric � on Lan corresponds to a convex
function g on NR such that g � g� C O.1/. It is bounded iff g � g� is bounded
on NR.

The real Monge–Ampère measure of any convex function g on NR is a well-
defined positive measure MAR.g/ on NR (see, e.g., [46]). When g D g�CO.1/, its
total mass is given by

Z

NR

MAR.g/ D Vol.�/ D .Ln/

nŠ
;

where the last equality follows from [27, p. 111].
We now wish to relate the real Monge–Ampère measure of g and the Monge–

Ampère measure of the corresponding semipositive metric � on Lan.
First consider the non-Archimedean case, in which there is a natural embedding

j W NR ! Tan � Xan given by monomial valuations that sends v 2 NR to the norm

X

u2M

auu 2 KŒM� 7! max
u2M
fjauj exp.�hu; vi/g:

In particular, j.0/ D xG, the Gauss point of the open T-orbit.
If g is a convex function on NR with g D g�CO.1/, and if � is the corresponding

continuous semipositive metric on L, then [18, Theorem 4.7.4] asserts that

MA.�/ D nŠ j� MAR.g/:
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For a compactly supported positive measure 
 on NR of mass .Ln/, solving the
Monge–Ampère equation MA.�/ D j�.
/ therefore amounts to solving the real
Monge–Ampère equation MAR.g/ D 
=nŠ. This can be done explicitly when 
 is a
point mass, say, supported at v0 2 NR. Indeed, the function gv0 W N ! R defined by
g D g�.��v0/ is convex and satisfies g D g�CO.1/. Further, for every point v ¤ v0
there exists a line segment in NR containing v in its interior and on which g is affine.
This implies that MAR.g/ is supported at v0. As a consequence, the corresponding
continuous metric � on Lan satisfies MAR.�/ D .Ln/ıj.u0/.

This solution can be shown to tie in well with the construction at the end
of Sect. 9, but is of course much more explicit. For example, when u0 2 NQ, so
that j.u0/ 2 Xan is divisorial, the function gu0 is Q-piecewise linear so that the
corresponding metric � is a model metric.

Finally we consider the complex case. In this case we cannot embed NR in Tan.
However, the preimage of any point v 2 NR under the tropicalization is a real torus
of dimension n in Tan on which the multiplicative group .S1/n acts transitively. To
any compactly supported positive measure 
 on NR of mass .Ln/=nŠwe can therefore
associate a unique measure � on Tan, still denoted � WD j�
, that is invariant under
the action of .S1/n and satisfies trop� � D 
.

If � is an equivariant semipositive metric on Lan, corresponding to a convex
function g on NR, we then have

MA.�/ D nŠ j� MAR.g/:

For .S1/n-invariant measures � on Lan of mass .Ln/, solving the complex Monge–
Ampère equation MA.�/ D � thus reduces to solving the real Monge–Ampère
equation MAR.g/ D 1

nŠ trop� �.

12 Outlook

In this final section we indicate some possible extensions of our work and make a
few general remarks.

First of all, it would be nice to have a local theory for semipositive singular
metrics. Indeed, while the global approach in [13, 14] works well for the Calabi–Yau
problem, it has some unsatisfactory features. For example, it is not completely trivial
to prove that the Monge–Ampère operator is local in the sense that if �1; �2 are two
(say) continuous semipositive metrics that agree on an open subset U � Xan, then
MA.�1/ D MA.�2/ on U. We prove this in [13] using the Monge–Ampère capacity.
Still, it would be desirable to say that the restriction of a semipositive metric to (say)
an open subset of Xan remains semipositive!

In contrast, in the complex case, the classical approach is local in nature. Namely,
one first defines and studies psh functions on open subsets of Cn and then defines
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singular semipositive metrics as global analogues. By construction, the Monge–
Ampère operator is a local (differential) operator.6

In a general non-Archimedean setting, Chambert-Loir and Ducros [22] (see
also [31, 32]) define psh functions as continuous functions ' such that d0d00' is
a positive closed current (in their sense), for suitable operators d0 and d00 analogous
to their complex counterparts and modeled on notions due to Lagerberg [41]. While
this leads to a very nice theory, that moreover works for general Berkovich spaces,
the crucial compactness and regularization results are so far missing. At any rate,
the tropical charts used in [22] may be a good substitute for dual complexes of SNC
models.

Going back to the projective setting, there are several open questions and
possible extensions, even in the case of a discretely valued ground field of residue
characteristic zero.

First, when solving the Monge–Ampère equation, we needed to assume that
the variety X was obtained by base change from a variety over a k-curve. This
assumption was made in order to use the orthogonality result in [12], but is
presumably redundant.

Second, one should be able to solve the Monge–Ampère equation MA.�/ D
� for more general measures �. In the complex setting, this is done in [24, 34]
for non-pluripolar measures �. The analogous result should be valid in the non-
Archimedean setting, too, although some countability issues seem to require careful
attention. Having such a general result would allow for a nice Legendre duality, as
explored in [4, 6] in the complex case.

Third, one could try to get more specific information about the solution. We
already mentioned at the end of Sect. 9 that we don’t know whether the solution
to the equation MA.�/ D dL �x is a model function for x a divisorial point (and
dL D .Ln/). In a different direction, one could consider the case when X is a
Calabi–Yau variety, in the sense that KX ' OX . Then there exists a canonical
subset Sk.X/ � Xan, the Kontsevich–Soibelman skeleton, see [39, 44, 45]. It is
a subcomplex of the dual complex of any SNC model and comes equipped with
an integral affine structure, inducing a volume form on each face. One can solve
MA.�/ D �, for linear combinations of these volume forms, viewed as measures on
Xan. Can we say anything concrete about the solution �, as in the case of maximally
degenerate abelian varieties considered in [43]?

It would obviously be interesting to work over other types of non-Archimedean
fields, such as Qp. Here there are several challenges. First, we systematically
use SNC models, which are only known to exist in residue characteristic zero
(except in low dimensions). It is possible that the tool of SNC models can,
with some additional effort, be replaced by alterations, tropical charts, or other
methods. However, we also crucially use the assumption of residue characteristic

6However, one also needs to verify that the Monge–Ampère operator is local for the plurifine
topology. This is nontrivial in both the complex and non-Archimedean case.
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zero when applying the vanishing theorems that underlie the regularization theorem
for singular semipositive metrics. Here some new ideas are needed.

A simpler situation to handle is that of a trivially valued field. This is explored
in [17] and can be briefly explained as follows. Let k be any field of characteristic
zero, equipped with the trivial norm. Let .X;L/ be a polarized variety over k. In
this setting, the notion of model metrics and model functions seemingly does not
take us very far, as the only model of X is X itself! Instead, the idea is to use
a non-Archimedean field extension. Set K D k..t//, XK WD X ˝k K, etc. The
multiplicative group G WD Gm;k acts on Xan

K and Xan can be identified with the set
of G-equivariant points in Xan

K . Similarly, singular semipositive metrics on Lan are
defined as G-invariant singular semipositive metrics on Lan

K . In this way, the main
results about PSH.Lan/ follow from the corresponding results about PSH.Lan

K / and
the same is true for the solution of the Monge–Ampère equation.

A primary motivation for studying the trivially valued case, at least in the case
k D C, is that the space of singular semipositive metrics on Lan naturally sits “at
the boundary” of the space of positive (Kähler) metrics on the holomorphic line
bundle L. As such, it can be used to study questions on K-stability and may be
useful for the study of the existence of constant scalar curvature metrics, see [15, 16].
A different scenario where a complex situation degenerates to a non-Archimedean
one occurs in [35].

In yet another direction, one could try to consider line bundles that are not
necessarily ample, but rather big and nef, or simply big. In the complex case this
was done in [7, 25]. One motivation for such a generalization is that it is invariant
under birational maps and would hence allow us to study singular varieties.

Finally, it would be interesting to have transcendental analogues. Indeed, in the
complex case, one often starts with a Kähler manifold X together with a Kähler
class !, rather than a polarized pair .X; !/. A notion of Kähler metric is proposed
in [40, 49], but it is not clear whether or not this plays the role of a (possibly)
transcendental Kähler metric.
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