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Preface

1 Introduction

This volume grew out of two Simons Symposia on “Nonarchimedean and tropical
geometry” which took place on the island of St. John in April 2013 and in Puerto
Rico in February 2015. Each meeting gathered a small group of experts working
near the interface between tropical geometry and nonarchimedean analytic spaces
for a series of inspiring and provocative lectures on cutting edge research, inter-
spersed with lively discussions and collaborative work in small groups. Although
the participants were few in number, they brought widely ranging expertise, a high
level of energy, and focused engagement. The articles collected here, which include
high-level surveys as well as original research, give a fairly accurate portrait of the
main themes running through the lectures and the mathematical discussions of these
two symposia.

Both tropical geometry and nonarchimedean analytic geometry in the sense of
Berkovich produce “nice” (e.g., Hausdorff, path connected, locally contractible)
topological spaces associated to varieties over valued fields. These topological
spaces are the main feature which distinguishes tropical geometry and Berkovich
theory from other approaches to studying varieties over valued fields, such as rigid
analytic geometry, the geometry of formal schemes, or Huber’s theory of adic
spaces. All of these approaches are interrelated, however, and the papers in the
present volume touch on all of them. The topological spaces produced by tropical
geometry and Berkovich’s theory are also linked to one another; in many contexts,
nonarchimedean analytic spaces are limits of tropical varieties, and tropical varieties
are often best understood as finite polyhedral approximations to Berkovich spaces.

Topics of active research near the interface between tropical and nonarchimedean
geometry include:

• Differential forms, currents, and solutions of differential equations on Berkovich
spaces and their skeletons

• The homotopy types of nonarchimedean analytifications

v
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• The existence of “faithful tropicalizations” which encode the topology and
geometry of analytifications

• Relations between nonarchimedean analytic spaces and algebraic geometry,
including logarithmic schemes, birational geometry, and linear series on alge-
braic curves

• Adic tropical varieties relate to Huber’s theory of adic spaces analogously to the
way that usual tropical varieties relate to Berkovich spaces

• Relations between non-archimedean geometry and combinatorics, including
deep and fascinating connections between matroid theory, tropical geometry, and
Hodge theory

2 Contents

The survey paper of Gubler presents a streamlined version of the theory of
differential forms and currents on nonarchimedean analytic spaces due to Antoine
Chambert-Loir and Antoine Ducros, in the important special case of analytifications
of algebraic varieties. Starting with the formalism of superforms due to Lagerberg,
Gubler establishes or outlines the key results in the theory, including nonar-
chimedean analogs of Stokes’ formula, the projection formula, and the Poincaré–
Lelong formula. Gubler also proves that these formulas are compatible with
well-known results from tropical algebraic geometry, such as the Sturmfels–Tevelev
multiplicity formula, and indicates how the results generalize from analytifications
of algebraic varieties to more general analytic spaces.

The theory of differential forms and currents on analytifications of algebraic
varieties was developed in parallel, using rather different methods, by Boucksom,
Favre, and Jonsson, who provide a survey of their work in this volume. Using
their foundational work, they are able to investigate a nonarchimedean analog of
the Monge–Ampère equation on complex varieties. The uniqueness and existence
of solutions in the complex setting are famous theorems of Calabi and Yau,
respectively. The nonarchimedean analog of the Monge–Ampère equation was
first considered by Kontsevich and Tschinkel, and the uniqueness of solutions
(analogous to Calabi’s theorem) was established by Yuan and Zhang. The article
of Boucksom, Favre, and Jonsson outlines the authors’ proof of existence in a wide
range of cases and concludes with a treatment of the special case of toric varieties.

The survey paper by Kedlaya is devoted to another topic of much recent research
activity, the radii of convergence of solutions for p-adic differential equations on
curves. A number of classical results, starting with the work of Dwork and Robba
in the 1970s, have recently been improved using a fruitful new point of view,
introduced by Baldassarri, based on Berkovich spaces. One studies the radius of
convergence as a function on the Berkovich analytification and proves that the
behavior of this function is governed by its retraction to a suitable skeleton. Kedlaya
discusses the state of the art in this active field, including the recent joint papers of
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Poineau and Pulita and the forthcoming work of Baldassari and Kedlaya. He also
discusses applications to ramification theory, Artin–Schreier theory, and the Oort
conjecture.

The survey paper by Ducros gives an introduction to the fundamental recent
work of Hrushovski and Loeser on tameness properties of the topological spaces
underlying Berkovich analytifications. Using model theory, and in particular the
theory of stably dominated types, Hrushovski and Loeser prove that Berkovich
analytifications of algebraic varieties and semi-algebraic sets are locally contractible
and have the homotopy type of finite simplicial complexes. (Related results, but with
different hypotheses, were proven earlier by Berkovich using completely different
methods.) Ducros provides the reader with a gentle introduction to the model theory
needed to understand the work of Hrushovski and Loeser.

The research article by Cartwright pertains to the general question “What are the
possible homotopy types of a Berkovich analytic space?” One way of determining
the homotopy type of a Berkovich space is to find a deformation retract onto a
skeleton, such as the dual complex of the special fiber in a regular semi-stable
model. Cartwright has developed a theory of tropical complexes, decorating these
dual complexes with additional numerical data that makes them behave locally like
tropicalizations (so that one can make sense, e.g., of chip-firing moves on divisors
in higher dimensions). It is well known that any finite graph can be realized as the
dual complex of the special fiber in a regular semi-stable degeneration of curves.
Cartwright’s article uses his theory of tropical complexes to prove that a wide range
of two-dimensional simplicial complexes, including triangulations of orientable
surfaces of genus at least 2, cannot be realized as dual complexes of special fibers
of regular semi-stable degenerations.

Tropicalizations of embeddings of algebraic varieties in toric varieties depend
on the choice of an embedding. Unless an embedding is chosen carefully, the
homotopy type of the analytification might be quite different from that of a given
tropicalization. For this reason, one often hunts for faithful tropicalizations, in
which a fixed skeleton maps homeomorphically onto its image in a manner which
preserves the integer affine structure. The article by Werner in this volume surveys
the state of the art in the hunt for faithful tropicalizations, including Werner’s
work with Gubler and Rabinoff generalizing the earlier work of Baker, Payne,
and Rabinoff, as well as her work with Häbich and Cueto showing that the
tropicalization of the Plücker embedding of the Grassmannian G.2; n/ is faithful.

Curves of genus at least 1 over C..t// have canonical minimal skeletons, obtained
by taking a minimal regular model over the valuation ring and taking the dual
complex of the special fiber. For higher-dimensional varieties, there is no longer
a unique minimal regular model. Nevertheless, canonical skeletons do exist in many
cases, including for varieties of log-general type (varieties having “sufficiently
many pluricanonical forms”). The survey paper by Nicaise presents two elegant
constructions of this essential skeleton, based respectively on Nicaise’s joint work
with Mustaţă and Xu. This work relies crucially on deep facts from the minimal
model program and suggests the existence of further relations between birational
geometry and the topology of Berkovich spaces yet to be discovered.
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The essential skeleton of the analytification of a variety X=K, where K is a
discretely valued field, is defined using a certain weight function attached to pluri-
canonical forms. The definition of the weight function uses arithmetic intersection
theory and only makes sense over a discretely valued field. The research article
by Temkin gives a new construction of the essential skeleton which makes sense
when K is an arbitrary nonarchimedean field and which agrees with the Mustaţă–
Nicaise construction when K is discretely valued of residue characteristic zero. The
new construction of Temkin is based on the so-called Kähler seminorm on sheaves
of relative differential pluriforms. Temkin carefully lays the foundations for the
theory of seminorms on sheaves of rings or modules and, as an application, proves
generalizations of the main theorems of Mustaţă and Nicaise.

Both Berkovich’s theory and tropical geometry work equally well over trivially
valued fields, but in these cases, one does not have an interesting theory of degen-
erations to produce skeletons from dual complexes of special fibers. The article by
Abramovich, Chen, Marcus, Ulirsch, and Wise explains how logarithmic structures
on varieties over valued fields produce skeletons of Berkovich analytifications and,
moreover, how these skeletons can be endowed with the structure of an Artin fan.
The authors explain how, following Ulirsch, an Artin fan can be thought of as the
nonarchimedean analytification of an Artin stack that locally looks like the quotient
of a toric variety by its dense torus. The final section presents a series of intriguing
questions for future research.

As mentioned above, in many cases, Berkovich spaces can be understood as
limits of tropicalizations. The article by Foster gives an expository treatment of
recent progress in this direction, presenting joint work with Payne in which the
adic analytifications of Huber are realized as limits of adic tropicalizations. The
underlying topological space of an adic tropicalization is the disjoint union of all
initial degenerations. Just as Berkovich spaces are maximal Hausdorff quotients of
Huber adic spaces, ordinary tropicalizations are maximal Hausdorff quotients of
adic tropicalizations. One technical advantage of adic tropicalizations is that they are
locally ringed spaces (ordinary tropicalizations do carry a natural structure sheaf,
the push-forward of the structure sheaf on the Berkovich analytic space, but the
stalks of this sheaf are not local rings).

The wide-ranging survey article of Baker and Jensen covers the tropical approach
to degenerations of linear series, along with applications to Brill and Noether theory
and other problems in algebraic and arithmetic geometry. Starting from Jacobians of
graphs, component groups of Néron models, the combinatorics of chip-firing, and
tropical geometry of Riemann–Roch, the paper makes connections to Berkovich
spaces and their skeletons and also with the classical theory of limit linear series
due to Eisenbud and Harris. The concluding sections give overviews of several
applications, including the tropical proofs of the Brill–Noether theorem, Gieseker–
Petri theorem, and maximal rank conjecture for quadrics, as well as the recent work
of Katz, Rabinoff, Zureick, and Brown on uniform bounds for the number of rational
points on curves of small Mordell–Weil rank.

The volume ends with the encyclopedic survey article by Katz, which provides
an introduction to matroid theory aimed at an audience of algebraic geometers.
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Highlights of the survey include equivalent descriptions of matroids in terms of
matroid polytopes and cohomology classes on the permutahedral toric variety, as
well as a discussion of realization spaces and connections to tropical geometry. The
article concludes with an exposition of the Huh–Katz proof of Rota’s log-concavity
conjecture for characteristic polynomials of matroids in the representable case.1

Atlanta, GA, USA Matthew Baker
New Haven, CT, USA Sam Payne

1While this book was in press, Adiprasito, Huh, and Katz announced a proof of the full Rota
conjecture.
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Forms and Currents on the Analytification
of an Algebraic Variety (After Chambert-Loir
and Ducros)

Walter Gubler

Abstract Chambert-Loir and Ducros have recently introduced real differential
forms and currents on Berkovich spaces. In these notes, we survey this new theory
and we will compare it with tropical algebraic geometry.

Keywords Arakelov theory • Non-Archimedean geometry • Tropical geometry

MSC2010: 14G22, 14T05

1 Introduction

Antoine Chambert-Loir and Antoine Ducros have recently written the preprint
“Formes différentielles réelles et courants sur les espaces de Berkovich” (see [11]).
This opens the door for applying methods from differential geometry also at non-
Archimedean places. We may think of possible applications for Arakelov theory
or for non-Archimedean dynamics. In the Arakelov theory developed by Gillet and
Soulé [16], contributions of the p-adic places are described in terms of algebraic
intersection theory on regular models over the valuation ring. The existence of such
models usually requires the existence of resolution of singularities which is not
known in general. Another disadvantage is that canonical metrics of line bundles
on Abelian varieties with bad reduction cannot be described in terms of models.
In the case of curves, there is an analytic description of Arakelov theory also at
finite places due to Chinburgh–Rumely [12], Thuillier [24] and Zhang [26]. Now
the paper of Chambert-Loir and Ducros provides us with an analytic formalism
including .p; q/-forms, currents and differential operators d0; d00 such that the crucial
Poincaré–Lelong equation holds. This makes hope that we get also an analytic
description of the p-adic contributions in Arakelov theory. In Amaury Thuillier’s
thesis [24], he has given a non-Archimedean potential theory on curves. For the case

W. Gubler (�)
Universität Regensburg, Fakultät für Mathematik, Universitätsstrasse 31,
93040 Regensburg, Germany
e-mail: walter.gubler@mathematik.uni-regensburg.de

© Springer International Publishing Switzerland 2016
M. Baker, S. Payne (eds.), Nonarchimedean and Tropical Geometry,
Simons Symposia, DOI 10.1007/978-3-319-30945-3_1
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2 W. Gubler

of the projective line, we refer to the book of Baker and Rumely [2] with various
applications to non-Archimedean dynamics. Again, we may hope to use the paper
of Chambert-Loir and Ducros to give generalizations to higher dimensions.

The purpose of the present paper is to summarize the preprint [11] and
to compare it with tropical algebraic geometry. We will assume that K is an
algebraically closed field endowed with a (nontrivial) complete non-Archimedean
absolute value j j. Let v WD � log j j be the corresponding valuation and let
� WD v.K�/ be the value group. Note that the residue field QK is also algebraically
closed. For the sake of simplicity, we will restrict mostly to the case of an algebraic
variety X over K. In this case, there is quite an easy description of the associated
analytic space Xan and so we require less knowledge about the theory of Berkovich
analytic spaces than in [11]. The main idea is quite simple: Suppose that X is an
n-dimensional closed subvariety of the split multiplicative torus T D G

r
m. Then there

is a tropicalization map trop W Tan ! R
r. Roughly speaking, the map is given by

applying the valuation v to the coordinates of the points. Tropical geometry says that
the tropical variety Trop.X/ WD trop.Xan/ is a weighted polyhedral complex of pure
dimension n satisfying a certain balancing condition. The thesis of Lagerberg [20]
gives a formalism of .p; q/-superforms on R

r together with differential operators
d0; d00 similar to @; N@ in complex analytic geometry. Using the tropicalization map,
we have a pull-back of these forms and differential operators to Xan. In general,
we may cover an arbitrary algebraic variety X of pure dimension n by very affine
open charts U which means that U has a closed immersion to G

r
m and we may

apply the above to define .p; q/-forms and currents on Xan. Chambert-Loir and
Ducros prove that there is an integration of compactly supported .n; n/-forms on
Xan with the formula of Stokes and the Poincaré–Lelong formula. The main result
of the paper [11] is that the non-Archimedean Monge–Ampère measures, which
were introduced by Chambert-Loir [10] directly as Radon measures on Xan, may
be written as an n-fold wedge product of first Chern currents. We will focus in this
paper on the basics and so we will omit a description of this important result here.

Terminology
In A � B, A may be equal to B. The complement of A in B is denoted by B nA as

we reserve � for algebraic purposes. The zero is included in N and in RC.
All occurring rings and algebras are with 1. If A is such a ring, then the group

of multiplicative units is denoted by A�. A variety over a field is an irreducible
separated reduced scheme of finite type. We denote by F an algebraic closure of the
field F.

The terminology from convex geometry is introduced in Sects. 2 and 3. Note that
polytopes and polyhedra are assumed to be convex.

This paper was written as a backup for my survey talk at the Simons Symposium
on “Non-Archimedean and Tropical Geometry” in St. John from 1.4.2013–5.4.2013.
Many thanks to the organizers Matt Baker and Sam Payne for the invitation and
the Simons Foundation for the support. The author thanks Antoine Chambert-Loir,
Julius Hertel, Klaus Künnemann, Hartwig Mayer, Jascha Smacka and Alejandro
Soto for helpful comments. I am very grateful to the referee for his careful reading
and his suggestions.
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2 Superforms and Supercurrents on R
r

In this section, we recall the construction of superforms and supercurrents intro-
duced by Lagerberg (see [20, Sect. 2]). They are real analogues of complex
.p; q/-forms or currents on C

r. So let us first recall briefly the definitions in
complex analytic geometry. On C

r, we have the holomorphic coordinates z1; : : : ; zr.
A .p; q/-form ˛ is given by

˛ D
X

I;J

˛IJdzI ^ dzJ;

where I (resp., J) ranges over all subsets of f1; : : : ; rg of cardinality p (resp., q)
and where the ˛IJ are smooth functions. Here, use the convenient notation dzI WD
dzi1 ^ � � � ^ dzip and dzJ WD dzj1 ^ � � � ^ dzjq for the elements i1 < � � � < ip of I and
j1 < � � � < jq of J. We have linear differential operators d0, d00 and d D d0 C d00 on
differential forms which are determined by the rules

d0f D
rX

iD1

@f

@zi
dzi; d00f D

rX

jD1

@f

@zj
dzj

for smooth complex functions f on C
r. Very often, these differential operators are

denoted by @ WD d0 and N@ WD d00. A current is a continuous linear functional
on the space of differential forms on C

r. Continuity is with respect to uniform
convergence of finitely many derivatives on compact subsets. Differential forms may
be viewed as currents using integration and the differential operators d; d0; d00 extend
to currents. For details, we refer to [14, Chap. I] or to [17].

The goal of this section is to give a real analogue in the following setting: Let
N be a free abelian group of rank r with dual abelian group M WD Hom.N;Z/.
For convenience, we choose a basis e1; : : : ; er of N leading to coordinates x1; : : : ; xr

on NR. Our constructions will depend only on the underlying real affine structure
and the integration at the end will depend on the underlying integral R-affine
structure, but not on the choice of the coordinates. Here, an integral R-affine space is
a real affine space whose underlying real vector space has an integral structure, i.e.
it comes with a complete lattice. The definition of the integrals in [11] does use
calibrations which makes the integrals in some sense unnatural. In the case of an
underlying canonical integral structure (which is the case for tropicalizations), there
is a canonical calibration (as in [11, Sect. 3.5]) and both definitions of the integrals
are the same.

2.1. Let Ak.U;R/ be the space of smooth real differential forms of degree k on an
open subset U of NR, then a superform of bidegree .p; q/ on U is an element of

Ap;q.U/ WD Ap.U;R/˝C1.U/ Aq.U;R/ D C1.U/˝Z ƒ
pM ˝Z ƒ

qM:
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Formally, such a superform ˛ may be written as

˛ D
X

jIjDp;jJjDq

˛IJd0xI ^ d00xJ

where I (resp., J) consists of i1 < � � � < ip (resp., j1 < � � � < jq), ˛IJ 2 C1.U/ and

d0xI ^ d00xJ WD .dxi1 ^ � � � ^ dxip/˝ .dxj1 ^ � � � ^ dxjq/:

The wedge product is defined in the usual way on the space of superforms A.U/ WDL
p;q�n Ap;q.U/ which means that d0xi and d0xj anticommute. There is a canonical

C1.U/-linear isomorphism Jp;q W Ap;q.U/! Aq;p.U/ obtained by switching factors
in the tensor product. The inverse of Jp;q is Jq;p. We call ˛ 2 Ap;p.U/ symmetric if
Jp;p˛ D .�1/p˛.

2.2. There is a differential operator d0 W Ap;q.U/! ApC1;q.U/ given by

d0˛ WD
X

jIjDp;jJjDq

rX

iD1

@˛IJ

@xi
d0xi ^ d0xI ^ d00xJ :

This does not depend on the choice of coordinates as d0 D d ˝ id on Ap;q.U/ D
Ap.U;R/ ˝Z ƒ

qM is an intrinsic characterization using the classical differential d
on the space Ap.U;R/ of real smooth p-forms. Similarly, we define a differential
operator d00 W Ap;q.U/! Ap;qC1.U/ by

d00˛ WD
X

jIjDp;jJjDq

rX

jD1

@˛IJ

@xj
d00xj ^ d0xI ^ d00xJ :

By linearity, we extend these differential operators to A.U/. Moreover, we set
d WD d0 C d00.

2.3. If N0 is a free abelian group of rank r0 and if F W N0
R
! NR is an affine map

with F.V/ � U for an open subset V of N0
R

, then we have a well-defined pull-
back F� W Ap;q.U/ ! Ap;q.V/ given as usual. The affine pull-back commutes with
the differential operators d, d0 and d00. The pull-back is defined more generally for
smooth maps, but then it does not necessarily commute with d, d0 and d00.

2.4. Let Ac.U/ denote the space of superforms on U with compact support in U.
Recall that r is the rank of M. For ˛ 2 Ac.U/, we define

Z

U
˛ WD .�1/ r.r�1/

2

Z

U
˛LLdx1 ^ � � � ^ dxr

with L D f1; : : : ; rg and the usual integration of r-forms with respect to the
orientation induced by the choice of coordinates on the right-hand side. If F is an
affine map as in 2.3 and if r D r0, then we have the transformation formula
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Z

V
F�.˛/ D j det.F/j

Z

V
˛ (1)

(see [20, Eq. (2.3)]). We conclude that the definition of the integral depends only on
the underlying integral R-affine structure of NR.

The sign .�1/ r.r�1/
2 is explained by the fact that we want d0x1^d00x1^� � �^d0xr^

d00xr to be a positive .r; r/-superform and hence
Z

U
fd0x1 ^ d00x1 ^ � � � ^ d0xr ^ d00xr D

Z

U
fdx1 ^ � � � ^ dxr

for any f 2 C1
c .U/ (see [11] for more details about positive forms).

2.5. Now let � be a polyhedron of dimension n in NR. By definition, � is the
intersection of finitely many halfspaces Hi WD f! 2 NR j hui; !i � cig with
ui 2 MR and ci 2 R. A polytope is a bounded polyhedron. We say that � is an
integral G-affine polyhedron for a subgroup G of R if we may choose all ui 2 M
and all ci 2 G. In this case, we have a canonical integral R-affine structure on the
affine space A� generated by � . If L� is the underlying real vector space of A� ,
then this integral structure is given by the lattice N� WD L� \ N. Using 2.3 and the
above, we get a well-defined integral

R
�
˛ for any ˛ 2 An;n

c .U/, where U is an open
neighbourhood of � .

2.6. In [11], integration is described in terms of a contraction: Similarly as in
differential geometry, we may view a superform ˛ 2 Ap;q.U/ as a multilinear map

NpCq
R
�! C1.U/; .n1; : : : ; npCq/ 7! ˛.n1; : : : ; npCq/

which is alternating in the variables .n1; : : : ; np/ and also in .npC1; : : : ; npCq/. Let
I � f1; : : : ; p C qg be a subset of cardinality s with s0 elements contained in
f1; : : : ; pg and hence s00 D s � s0 elements in fp C 1; : : : ; p C qg. Given vectors
v1; : : : ; vs 2 NR, the contraction h˛I v1; : : : ; vsiI 2 Ap�s0;q�s00.U/ is given by
inserting v1; : : : ; vs for the variables .ni/i2I of the above multilinear function.

Using the basis e1; : : : ; er of N and assuming ˛ 2 Ar;r
c .U/, the contraction

h˛I e1; : : : ; erifrC1;:::;2rg is a .r; 0/-superform which may be viewed as a classical
r-form on U. Then it is immediately clear from the definitions that we have

Z

U
˛ D .�1/ r.r�1/

2

Z

U
h˛I e1; : : : ; erifrC1;:::;2rg

where we use the usual integration of r-forms on the right. Of course, there is no
preference to contract with respect to the last r variables. Similarly, we may view
h˛I e1; : : : ; erif1;:::;rg 2 A0;rc .U/ as a classical r-form and we have

Z

U
˛ D .�1/ r.r�1/

2

Z

U
h˛I e1; : : : ; erif1;:::;rg:

Next, we are looking for an analogue of Stokes’ theorem for superforms.
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2.7. Let H be an integral R-affine halfspace in NR. This means that H D f! 2 NR j
hu; !i � cg for some u 2 M and c 2 R. Using a translation, we may assume that
c D 0 and hence the boundary @H is a linear subspace of NR. Let Œ!@H;H� be the
generator of N=.N \ @H/ Š Z which points outwards, i.e. there is u@H;H 2 M such
that u@H;H.H/ � 0 and u@H;H.!@H;H/ D 1. We choose a representative !@H;H 2 N
and we note also that u@H;H is uniquely determined by the above properties.

2.8. Let U be an open subset of NR and let � be an r-dimensional integral R-affine
polyhedron contained in U. For any closed face � of codimension 1, let !�;� WD
!@H;H using 2.7 for the affine hyperplane @H generated by � and the corresponding
halfspace containing � . We note that !�;� 2 N is determined up to addition with
elements in N� D N \ L�, where L� is the linear hyperplane parallel to �.

For � 2 Ar�1;r
c .U/, we have introduced the contraction h�I!�;� if2r�1g as an

element of Ar�1;r�1
c .U/ which is obtained by inserting the vector !�;� for the

.2r � 1/-th argument of the corresponding multilinear function (see 2.6). Note
that the restriction of this contraction to � does not depend on the choice of
the representative !�;� . Then we define

Z

@�

� WD
X

�

Z

�

h�I!�;� if2r�1g;

where � ranges over all closed faces of � of codimension 1. On the right, we use
the integrals of .r � 1; r � 1/-superforms from 2.4. For � 2 Ar;r�1

c .U/, we define
similarly

Z

@�

� WD
X

�

Z

�

h�I!�;� ifrg:

Note that the integrals do depend only on the integral R-affine structure of NR but
do not depend on the choice of the orientation of NR.

If � is an integral R-affine polyhedron of any dimension n and if � 2 An�1;n
c .U/

for an open subset U of NR containing � , then we define
R
@�
� by applying the above

to the affine space A� generated by � and to the pull-back of � to A� . We give now
a concrete description of

R
@�
� in terms of integrals over classical .n�1/-forms. For

every closed face � of � , let N� D L� \N be the canonical integral structure on the
affine space generated by � . If e�1; : : : ; e

�
n�1 is a basis of N�, then !�;� ; e

�
1; : : : ; e

�
n�1

is a basis of N� . We note that the contraction h�I!�;� ; e�1; : : : ; e�n�1ifn;:::;2n�1g may be
viewed as a classical .n � 1/-form on U and hence we get

Z

@�

� D
X

�

Z

�

h�I!�;� if2n�1g D .�1/
n.n�1/
2

X

�

Z

�

h�I!�;� ; e�1; : : : ; e�n�1ifn;:::;2n�1g:

Proposition 2.9 (Stokes’ Formula). Let � be an n-dimensional integral R-affine
polyhedron contained in the open subset U of NR. For any �0 2 An�1;n

c .U/ and any
�00 2 An;n�1

c .U/, we have
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Z

�

d0�0 D
Z

@�

�0;
Z

�

d00�00 D
Z

@�

�00:

Proof. This is just a reformulation of Lagerberg [20, Proposition 2.3], in the case
of a polyhedron using the formalism introduced above. In the quoted result, the
boundary was assumed to be smooth, but as the classical Stokes’ formula holds also
for polyhedra (see [25, 4.7]), this applies here as well. ut
Proposition 2.10 (Green’s Formula). We consider an n-dimensional integral
R-affine polyhedron � contained in the open subset U of NR. Assume that
˛ 2 Ap;p.U/ and ˇ 2 Aq;q.U/ are symmetric with p C q D n � 1 and that the
intersection of the supports of ˛ and ˇ is compact. Then we have

Z

�

˛ ^ d0d00ˇ � ˇ ^ d0d00˛ D
Z

@�

˛ ^ d00ˇ � ˇ ^ d00˛:

Proof. This follows from Stokes’ formula as in [11, Lemma 1.3.8]. ut
2.11. A supercurrent on U is a continuous linear functional on Ap;q

c .U/ where the
latter is a locally convex vector space in a similar way as in the classical case. We
denote the space of such supercurrents by Dp;q.U/. As usual , we define the linear
differential operators d, d0 and d00 on D.U/ WD L

p;q Dp;q.U/ by using .�1/pCqC1
times the dual of the corresponding differential operator on Ap;q

c .U/. The sign is
chosen in such a way that the canonical embedding Ap;q.U/ ! Dr�p;r�q.U/ is
compatible with the operators d, d0 and d00. Here, ˛ 2 Ap;q.U/ is mapped to
Œ˛� 2 Dr�p;r�q.U/ given by Œ˛�.ˇ/ D RNR

˛ ^ ˇ for any ˇ 2 Ar�p;r�q
c .U/.

3 Superforms on Polyhedral Complexes

We keep the notions from the previous section and we will extend them to the setting
of polyhedral complexes. We will introduce tropical cycles and we will characterize
them as closed currents of integrations over weighted integral R-affine polyhedral
complexes.

3.1. A polyhedral complex C in NR is a finite set of polyhedra with the following
two properties: Every polyhedron in C has all its closed faces in C . If �; � 2 C ,
then � \ � is a closed face of � and � . Note here that the empty set and also � are
allowed as closed faces of a polyhedron � (see [19, Appendix A], for details).

A polyhedral complex C is called integral G-affine for a subgroup G of R if
every polyhedron of C is integral G-affine. The support jC j of C is the union of all
polyhedra in C . The polyhedral complex C is called pure dimensional of dimension
n if every maximal polyhedron in C has dimension n. We will often use the notation
Ck WD f� 2 C j dim.�/ D kg for k 2 N.
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3.2. Let C be a polyhedral complex in NR. A superform on C is the restriction
of a superform on (an open subset of) NR to jC j. This means that two superforms
agree if their restrictions to any polyhedron of jC j agree. Let A.C / be the space
of superforms on C . It is an alternating algebra with respect to the induced
wedge product. We have also differential operators d, d0 and d00 on A.C / given
by restriction of the corresponding operators on A.NR/. Let Ap;q.C / be the space
of .p; q/-superforms on C . The support of ˛ 2 A.C / is the complement of
f! 2 jC j j ˛ vanishes identically in a neighbourhood of !g in jC j. We denote by
Ap;q

c .C / the subspace of Ap;q.C / of superforms of compact support.
Let N0 be a free abelian group of rank r0 and let F W N0

R
! NR be an affine

map. Suppose that C 0 is a polyhedral complex of N0
R

with F.jC 0j/ � jC j, then the
pull-back in 2.3 induces a pull-back F� W Ap;q.C /! Ap;q.C 0/.

3.3. A polyhedral complex D subdivides the polyhedral complex C if they have the
same support and if every polyhedron � of D is contained in a polyhedron of C .
In this case, we say that D is a subdivision of C . All our constructions here will be
compatible with subdivisions. This is not a problem for the definition of superforms
on C as they depend only on the support jC j.

A weight on a pure dimensional polyhedral complex C is a function m which
assigns to every maximal polyhedron � 2 C a number m� 2 Z. Then we get a
canonical weight on every subdivision of C . For a weighted polyhedral complex
.C ;m/, only the polyhedra � 2 C which are contained in a maximal dimensional
� 2 C with m� ¤ 0 are of interest. They form a subcomplex D of C and we define
the support of .C ;m/ as the support of D . The polyhedra of C n D will usually be
neglected.

3.4. Let .C ;m/ be a weighted integral R-affine polyhedral complex of pure
dimension n. For ˛ 2 An;n

c .C /, we set

Z

.C ;m/
˛ WD

X

�2Cn

m�

Z

�

˛;

where we use integration from 2.4 on the right. We define integrals over the
boundary of C for a superform ˇ in An�1;n

c .C / or in An;n�1
c .C / by

Z

@.C ;m/
ˇ D

X

�2Cn

m�

Z

@�

ˇ;

where we use the boundary integrals from 2.8 on the right. Note that the boundary
@C may be defined as the subcomplex consisting of the polyhedra of dimension at
most n � 1, but there is no canonical weight on @C . Indeed, the boundary integralR
@.C ;m/ ˇ depends on the relative situation @C � C because of the weight m� and the

contraction with respect to the vectors !�;� used in the definitions. This is similar
to the situation in real analysis where boundary integrals depend on the relative
orientation. These classical boundary integrals do depend only on the restriction
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of the differential form to the boundary which is clearly wrong for our boundary
integrals. However, it is still true that

R
@.C ;m/ ˇ D 0 if the support of ˇ is disjoint

from @C .

Proposition 3.5 (Stokes’ Formula). Let .C ;m/ be a weighted integral R-affine
polyhedral complex of pure dimension n. For any �0 2 An�1;n

c .C / and any
�00 2 An;n�1

c .C /, we have

Z

.C ;m/
d0�0 D

Z

@.C ;m/
�0;

Z

.C ;m/
d00�00 D

Z

@.C ;m/
�0:

Proof. This follows immediately from Stokes’ formula for polyhedra given in
Proposition 2.9. ut
Example 3.6. If .C ;m/ is a weighted integral R-affine polyhedral complex of pure
dimension n, then we get a supercurrent ı.C ;m/ 2 Dn;n.NR/ by setting ı.C ;m/.�/ DR
.C ;m/ � for any � 2 An;n

c .NR/.

3.7. A weighted integral R-affine polyhedral complex .C ;m/ of pure dimension n
is called a tropical cycle if its weight m satisfies the following balancing condition:
For every .n � 1/-dimensional � 2 C , we have

X

�2Cn; ���
m�!�;� 2 N�:

Here, N� is the canonical lattice contained in the affine space generated by � and
!�;� 2 N� is the lattice vector pointing outwards of � (see 2.8). Tropical cycles are
the basic objects in tropical geometry.

Proposition 3.8. Let .C ;m/ be a weighted integral R-affine polyhedral complex of
pure dimension n on NR. Then the following conditions are equivalent:

(a) .C ;m/ is a tropical cycle;
(b) ı.C ;m/ is a d0-closed supercurrent on NR and
(c) ı.C ;m/ is a d00-closed supercurrent on NR.

Proof. Let ˛ 2 An�1;n
c .NR/. By Stokes’ formula in Proposition 3.5, we have

ı.C ;m/.d
0˛/ D

Z

@.C ;m/
˛ D

X

�

Z

�

h˛I
X

���
m�!�;� if2n�1g;

where � (resp., � ) ranges over all elements of C of dimension n � 1 (resp., n).
Suppose now that

P
��� m�!�;� 2 N� for some .n � 1/-dimensional � 2 C . Recall

that we may view ˛ as a multilinear map N2n�1
R

! C1.NR/ which is alternating
in the first n � 1 arguments and also alternating in the last n arguments. But an
alternating n-linear map on a vector space of dimension n � 1 is zero and hence the
restriction of h˛IP��� m�!�;� if2n�1g to � is zero. Then the above display proves
(a)) (b).
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Conversely, if
P

��� m�!�;� 62 N� for some .n � 1/-dimensional � 2 C , then
there is an ˛ 2 An�1;n

c .NR/ such that the restriction of h˛IP��� m�!�;� if2n�1g to
� is nonzero. We may also assume that the support of ˛ is disjoint from all other
.n� 1/-dimensional polyhedra of C . Then the above display proves (b)) (a). The
equivalence of (a) and (c) is shown similarly. ut
3.9. Now let F W N0

R
! NR be an affine map whose underlying linear map is

integral, i.e. induced by a homomorphism N0 ! N. We will define the push-forward
of a weighted integral R-affine polyhedral complex .C 0;m/ of pure dimension n
on N0

R
. For details, we refer to [1, Sect. 7]. After a subdivision of C 0, we may assume

that

F�.C 0/ WD fF.� 0/ j � 0 is a face of �0 2 C 0 with dim.F.�0// D ng
is a polyhedral complex in NR. We define the multiplicity of an n-dimensional
F.� 0/ 2 F�.C 0/ by

mF.� 0/ WD
X

�02C 0n ; �0�F�1.F.� 0//

ŒM0
�0 W MF.� 0/�m�0 :

Endowed with these multiplicities, we get a weighted integral R-affine polyhedral
complex F�.C 0;m/ of NR. If .C 0;m/ is a tropical cycle, then F�.C 0;m/ is also a
tropical cycle. It might happen that F�.C 0;m/ is empty, then we get the tropical
zero cycle.

Proposition 3.10 (Projection Formula). Using the assumptions above and ˛ 2
An;n

c .F�.C 0//, we have
R

F�.C 0;m/
˛ D R

.C 0;m/ F�.˛/.

Proof. Let � 0 be an n-dimensional polyhedron of C 0. Then � WD F.� 0/ is an integral
R-affine polyhedron in NR. We assume for the moment that � is also n-dimensional.
As above, we consider the lattice N� WD N \ L� in NR, where L� is the linear
space which is a translate of the affine space generated by � . Let A be the matrix
of the homomorphism F W N� 0 ! N� with respect to integral bases. Then we have
j det.A/j D ŒN� 0 W N� � and hence the transformation formula (1) shows

Z

� 0
F�˛ D ŒN� 0 W N� �

Z

�

˛: (2)

If dim.�/ < n, then both sides are zero and hence formula (2) is true in any case.
Using the weighted sum over all � 0, the claim follows immediately from (2). ut

4 Moment Maps and Tropical Charts

A complex manifold is locally defined using analytic charts ' W U ! C
r. The charts

help to transport the analysis from C
r to M. The idea in the non-Archimedean setting

is similar to replacing the above charts by algebraic moment maps ' W U ! G
r
m
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to multiplicative tori and the corresponding tropicalizations 'trop W U ! R
r. The

restriction of 'an to the preimage of an open analytic subset will be called a tropical
chart.

In this section, K is an algebraically closed field endowed with a complete
nontrivial non-Archimedean absolute value j j. Note that the residue field QK is
also algebraically closed. Let v WD � log j j be the associated valuation and let
� WD v.K�/ be the value group. We will study analytifications, tropicalizations and
moment maps of the algebraic variety X over K. This will be used in the next section
to define .p; q/-forms on Xan.

4.1. We recall first the construction of the analytification of X. Let U D Spec.A/
be an open affine subset of X, then Uan is the set of multiplicative seminorms on A
extending the given absolute value j j on K. This set is endowed with the topology
generated by the functions Uan ! R; p 7! p.a/ with a ranging over A. By glueing,
we get a topological space Xan which is connected locally compact and Hausdorff.
We can endow it with a sheaf of analytic functions leading to a Berkovich analytic
space over K which we call the analytification of X. For a morphism ' W Y ! X of
algebraic varieties over K, we get an analytic morphism 'an W Yan ! Xan induced by
composing the multiplicative seminorms with '] on suitable affine open subsets. We
refer to [4] for details, or to [9, Sect. 1.2], for a neat description of the analytification.

4.2. We will define some local invariants in x 2 Xan. On an open affine neigh-
bourhood U D Spec.A/, the point x is given by a multiplicative seminorm p on
A and we often write jf .x/j WD p.f / for f 2 A. Dividing out the prime ideal
I WD ff 2 A j p.f / D 0g, we get a multiplicative norm on the integral domain
B WD A=I which extends to an absolute value j jx on the quotient field of B. The
completion of this field is denoted by H .x/. It does not depend on the choice of U
and it may be also constructed analytically. The absolute value of H .x/ is denoted
by j j as it extends the given absolute value on K. Note that the completed residue
field H .x/ of x remains the same if we replace the ambient variety X by the Zariski
closure of x in X.

Let s.x/ be the transcendence degree of the residue field of H .x/ over QK. The
quotient of the value group of H .x/ by � is a finitely generated abelian group
and we denote its Q-rank by t.x/. Finally, we set d.x/ WD s.x/ C t.x/. Note that
Abhyankar’s inequality shows that d.x/ is bounded by the transcendence degree
of H .x/=K. By Berkovich [4, Proposition 9.1.3], we have dim.X/ D dim.V/ D
supx2V d.x/ for every open subset V of Xan.

Example 4.3. Let T D G
r
m be the split multiplicative torus of rank r with

coordinates z1; : : : ; zr. Then a point x of Tan could be visualized by the coordinates
z1.x/; : : : ; zr.x/ 2 H .x/ and the multiplicative seminorm corresponding to x is
given by jf .x/j D jf .z1.x/; : : : ; zr.x//j for every Laurent polynomial f on T .
Conversely, every field extension L=K with an absolute value extending the given
absolute value on K and every .ˇ1; : : : ; ˇr/ 2 .L�/r give rise to a point x 2 Tan by
jf .x/j WD jf .ˇ1; : : : ; ˇr/j. Note that L and .ˇ1; : : : ; ˇr/ are not uniquely determined
by x.
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In particular, we get an inclusion of T.K/ into Tan. For every x 2 T.K/, we have
d.x/ D 0. However, there can be also other points with d.x/ D 0. If T D G

1
m, then

precisely the points of type 1 (i.e. the K-rational points) and the points of type 4
satisfy d.x/ D 0 (see [4, 1.4.4]).

Returning to the case T D G
r
m, there are some distinguished points of Tan

which behave completely different than K-rational points. For positive real numbers
s1; : : : ; sr, we define the associated weighted Gauss norm on KŒT� by

jf js WD max
m2Zr
j˛mjsm

for every Laurent polynomial f D P
m2Zr ˛mzm 2 KŒT� D KŒz˙1

1 ; : : : ; z˙1
r �. It fol-

lows from the Gauss Lemma that the weighted Gauss norm is a multiplicative semi-
norm giving rise to a point �s 2 Tan. The set S.Tan/ W Df�s j s1 > 0; : : : ; sr > 0g
is called the skeleton of Tan. Every point �s 2 S.Tan/ satisfies d.�s/ D r (see [15,
(0.12) and (0.13)]).

4.4. Let T WD G
r
m be a split multiplicative torus over K with coordinates z1; : : : ; zr.

Then we have the tropicalization map

trop W Tan ! R
r; p 7! .� log p.z1/; : : : ;� log p.zr//:

It is immediate from the definitions that the map trop is continuous and proper.
To get a coordinate free approach, we could use the character group M and its
dual N. Then trop is a map from Tan to NR. We refer to [19] for details about tropical
geometry.

Remark 4.5. Note that we have a natural section R
r ! Tan of the tropicalization

map. It is given by mapping the point ! 2 R
r to the weighted Gauss norm �s

associated with s WD .e�!1 ; : : : ; e�!r /. It follows from [4, Example 5.2.12], that this
section is a homeomorphism of Rr onto a closed subset of Tan which is the skeleton
S.Tan/ introduced in 4.3. In this way, we may view the tropicalization map as a map
from Tan onto S.Xan/. Then it is shown in [4, Sect. 6.3], that the tropicalization map
is a strong deformation retraction of Tan onto the skeleton S.Tan/. This point of view
is used very rarely in our paper.

4.6. For a closed subvariety Y of T of dimension n, the tropical variety associated
with X is defined by Trop.Y/ WD trop.Yan/. The Bieri–Groves theorem says that
Trop.Y/ is a finite union of n-dimensional integral �-affine polyhedra in R

r. It is
shown in tropical geometry that Trop.Y/ is an integral �-affine polyhedral complex.
The polyhedral structure is only determined up to subdivision which does not matter
for our constructions. We will see below that the tropical variety is endowed with a
positive canonical weight m satisfying the balancing condition from 3.7. We get a
tropical cycle of pure dimension n which we also denote by Trop.Y/ forgetting the
weight m in the notation.
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4.7. The tropical weight m on an n-dimensional polyhedron � of Trop.Y/ is defined
in the following way. By density of the value group � in R, there is ! 2 �r \
relint.�/. We choose t 2 G

r
m.K/ with trop.t/ D !. Then the closure of t�1Y in

.Gr
m/Kı is a flat variety over Kı whose special fibre is called the initial degeneration

in!.Y/ of Y at !. Note that in!.Y/ is a closed subscheme of .Gr
m/ QK . Let mW be the

multiplicity of an irreducible component W of in!.Y/. Then the tropical weight m�

is defined by m� WD P
W mW , where W ranges over all irreducible components of

in!.Y/. One can show that the definition is independent of the choices of ! and t. It
is a nontrivial fact from tropical geometry that .Trop.Y/;m/ is a tropical cycle (see
[19, Sect. 13], for details).

4.8. For an open subset U of the algebraic variety X, a moment map is a morphism
' W U ! T to a split multiplicative torus T WD G

r
m over K. The tropicalization of

' is

'trop WD trop ı 'an W Uan 'an

�! Tan trop�! R
r:

Obviously, this is a continuous map with respect to the topology on the analytifica-
tion Uan. Note that our moment maps are algebraic which differ from the moment
maps in [11] which are defined analytically.

We say that the moment map '0 W U0 ! T 0 of the open subset U0 of X refines
the moment map ' W U ! T if U0 � U and if there is an affine homomorphism
 W T 0 ! T of the multiplicative tori such that ' D  ı '0 on U0. Here, an affine
homomorphism means a group homomorphism composed with a (multiplicative)
translation on T . This group homomorphism induces a homomorphism M ! M0
of character lattices. Its dual is the linear part of an integral affine map Trop. / W
N0
R
! NR such that 'trop D Trop. / ı '0

trop on .U0/an.
If 'i W Ui ! Ti are finitely many moment maps of nonempty open subsets Ui of X

with i 2 I, then U WDTi Ui is a nonempty open subset of X and ' W U !Q
i Ti; x 7!

.'i.x//i2I is a moment map which refines every 'i. Moreover, it follows easily from
the universal property of the product that every moment map '0 W U0 ! T 0 which
refines every 'i refines also '.

Lemma 4.9. Let ' W U ! G
r
m be a moment map on an open subset U of X and let

U0 be a nonempty open subset of U. Then 'trop..U0/an/ D 'trop.Uan/.

Proof. Let ! 2 'trop.Uan/. We note that '�1
trop.!/ is a Laurent domain in Uan and

hence it has the same dimension as U. We conclude that '�1
trop.!/ is not contained in

the analytification of the lower dimensional Zariski-closed subset U nU0 and hence
! 2 'trop..U0/an/. ut

4.10. If f W X1 ! X2 is a morphism of varieties over K, then we define the push-
forward of X1 with respect to f as the cycle f�.X1/ WD deg.f /f .X1/, where the degree
of f is defined as deg.f / WD ŒK.X1/ W K.f .X1//� if f is generically finite and we set
deg.f / WD 0 if ŒK.X1/ W K.f .X1//� D 1. By restriction, the push-forward can be
defined in the same way on prime cycles of X1 and extends by linearity to all cycles
of X1.
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Now let ' W U ! T D G
r
m be a moment map of the open subset U of X. By 4.6,

Trop.'�.U// WD deg.'/Trop.'.U//

is a tropical cycle on R
r. If ' is generically finite, then this tropical cycle is of pure

dimension dim.X/ and the support is equal to 'trop.Uan/ (see Lemma 4.9).

The following result is called the Sturmfels–Tevelev multiplicity formula. It was
proved by Sturmfels and Tevelev [22] in the case of a trivial valuation and later
generalized by Baker, Payne and Rabinoff [3] for every valued field.

Proposition 4.11. Let '0 W U0 ! T 0 be a moment map of the nonempty open
subset U0 of X which refines the moment map ' W U ! T, i.e. there is an affine
homomorphism  W T 0 ! T such that ' D  ı '0 on U0 � U. Then we have

.Trop. //�.Trop.'0�.U0/// D Trop.'�.U//

in the sense of tropical cycles (see 3.9).

Proof. In fact, the Sturmfels–Tevelev multiplicity formula is the special case where
X D U0 is a closed subvariety of T 0 (see [19, Theorem 13.17], for a proof in our
setting deducing it from the original sources). In the general case, we conclude that

.Trop. //�.Trop.'0�.U0/// D Trop. �..'0/�.U0/// D Trop.'�.U0//:

Since U0 is dense in U, the claim follows. ut
4.12. We will show that every open affine subset U of X has a canonical moment
map. We note that the abelian group MU WD O.U/�=K� is free of finite rank (see
[21, Lemme 1]). Here, we use that K is algebraically closed (or at least that X is
geometrically reduced). We choose representatives '1; : : : ; 'r in O.U/� of a basis.
This leads to a moment map 'U W U ! TU D Spec.KŒMU�/. By construction, 'U

refines every other moment map on U. Note that this moment map 'U is canonical
up to (multiplicative) translation by an element of TU.K/.

Let f W X0 ! X be a morphism of algebraic varieties over K and let U0 is an
open subset of X0 with f .U0/ � U. Then f ] induces a homomorphism MU ! MU0

of lattices. We get a canonical affine homomorphism  U;U0 W TU0 ! TU of the
canonical tori with  U;U0 ı 'U0 D 'U ı f . This will be applied very often in the case
where U0 is an open subset of U in X0 D X and f D id. Then we get a canonical
affine homomorphism  U;U0 W TU0 ! TU .

4.13. Recall that an open subset U of X is called very affine if U has a closed embed-
ding into a multiplicative torus. Clearly, the following conditions are equivalent for
an open affine subset U of X:

(a) U is very affine;
(b) O.U/ is generated as a K-algebra by O.U/�;
(c) the canonical moment map 'U from 4.12 is a closed embedding.
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The intersection of two very affine open subsets is again very affine (see the proof
of Proposition 4.16). Moreover, the very affine open subsets of X form a basis for
the Zariski topology. We conclude that all local considerations can be done using
very affine open subsets.

On a very affine open subset, we will almost always use the canonical moment
map 'U W U ! TU which is a closed embedding by the above. To simplify the
notation, we will set Trop.U/ for the tropical variety of U in TU . It is a tropical
cycle in .NU/R, where NU is the dual abelian group of MU . The tropicalization
map will be denoted by tropU WD .'U/trop W Uan ! .NU/R. Recall that 'U is only
determined up to translation by an element of TU.K/ and hence tropU and Trop.U/
are only canonical up to an affine translation. This ambiguity is not a problem as our
constructions will be compatible with affine translations.

The following result of Ducros relates the local invariant d.x/ from 4.2 with
tropical dimensions.

Proposition 4.14. For x 2 Xan, there is a very affine open neighbourhood U of x
in X such that for any open neighbourhood W of x in the analytic topology of Uan,
there is a compact neighbourhood V of x in W such that tropU.V/ is a finite union
of d.x/-dimensional integral �-affine polytopes.

Proof. We choose rational functions f1; : : : ; fs on X with jf1.x/j D � � � D jfs.x/j D 1
such that the reductions ef1; : : : ;efs form a transcendence basis of the residue field
extension of H .x/=K. There are rational functions g1; : : : ; gt which are regular at x
such that jg1.x/j; : : : ; jgt.x/j form a basis of .jH .x/�j=jK�j/˝Z Q. By definition,
we have d.x/ D s C t. By (0.12) in [15], f1.x/; : : : ; fs.x/; g1.x/; : : : ; gt.x/ reduce
to a transcendence basis of the graded residue field extensions of H .x/=K in the
sense of Temkin. There is a very affine open neighbourhood U of x in X such that
f1; : : : ; fs; g1; : : : ; gt are invertible on U. Let '1; : : : ; 'r 2 O.U/� be the coordinates
of the canonical moment map 'U W U ! TU D G

r
m. Then the graded reductions

of '1; : : : ; 'r generate a graded subfield of the graded residue field extension of
H .x/=K. By construction, this graded subfield has transcendence degree d.x/ over
the graded residue field of K. By Ducros [15, Theorem 3.2], TropU.V/ is a finite
union of integral �-affine polytopes for every compact neighbourhood V of x in Uan

which is strict in the sense of Berkovich [5]. For any open neighbourhood W of x in
Uan, Theorem 3.4 in [15] shows that there is a compact strict neighbourhood V of x
in W such that tropU.V/ is a finite union of d.x/-dimensional polytopes. ut
4.15. A tropical chart .V; 'U/ on Xan consists of an open subset V of Xan contained
in Uan for a very affine open subset U of X with V D trop�1

U .	/ for some open
subset 	 of Trop.U/. Here the canonical moment map 'U W U ! TU from 4.12
plays the role of (tropical) coordinates for V . By 4.13, 'U is an embedding. The
condition V D trop�1

U .	/ means that V behaves well with respect to the tropical
coordinates. In particular, tropU.V/ D 	 is an open subset of Trop.U/.
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We say that the tropical chart .V 0; 'U0/ is a tropical subchart of .V; 'U/ if V 0 � V
and U0 � U. We note that the definition of tropical chart here is different from the
tropical charts in [11, Sect. 3.1], which consist of an analytic morphism to a split
torus and a finite union of polytopes containing the tropicalization.

Proposition 4.16. The tropical charts on Xan have the following properties:

(a) They form a basis on Xan, i.e. for every open subset W of Xan and for every
x 2 W, there is a tropical chart .V; 'U/ with x 2 V � W. We may find such a V
such that the open subset tropU.V/ of Trop.U/ is relatively compact.

(b) The intersection .V \ V 0; 'U\U0/ of tropical charts .V; 'U/ and .V 0; 'U0/ is a
tropical subchart of both.

(c) If .V; 'U/ is a tropical chart and if U00 is a very affine open subset of U with
V � .U00/an, then .V; 'U00/ is a tropical subchart of .V; 'U/.

Proof. To prove (a), we may assume that X D Spec.A/ is a very affine scheme.
A basis of Xan is formed by subsets of the form V WD fx 2 X j s1 < jf1.x/j <
r1; : : : ; sk < jfk.x/j < rkg with all fa 2 A and real numbers sa < ra. Using the
ultrametric triangle inequality as applied to fa C 
 for a nonzero 
 2 K of small
absolute value if fa.x/ D 0, it is easy to see that we may choose the basis in such a
way that 0 < sa for all a D 1; : : : k. Note that V is contained in the analytification
of the very affine open subset U WD fx 2 X j f1.x/ ¤ 0; : : : ; fk.x/ ¤ 0g of X. It is
obvious that .V; 'U/ is a tropical chart proving (a).

To prove (b), let us consider the moment map

ˆ W U \ U0 ! TU � TU0 ; x 7! .'U.x/; 'U0.x//:

Since X is separated, it is easy to see that ˆ is a closed embedding and hence
U \ U0 is very affine. By definition of a tropical chart, 	 WD tropU.V/ (resp.,
	0 WD tropU0.V

0/) is an open subset of Trop.U/ (resp., Trop.U0/). Note that

	00 WD ˆtrop..U \ U0/an/ \ .	 �	0/ � .NU/R � .NU0/R

is an open subset of ˆtrop..U \ U0/an/. An easy diagram chase yields ˆ�1
trop.	

00/ D
V \ V 0. Since 'U\U0 refines the moment map ˆ, we deduce that .V \ V 0; 'U\U0/ is
a tropical chart. This proves (b).

Finally, we prove (c). Let  WD  U;U00 W TU00 ! TU be the canonical affine
homomorphism from 4.12. Then we have tropU D Trop. / ı tropU00 on .U00/an.
Since .V; 'U/ is a tropical chart, 	 WD tropU.V/ is an open subset of Trop.U/ and
V D trop�1

U .	/. Using V � .U00/an, we get V D trop�1
U00.	

00/ for the open subset
	00 WD Trop. /�1.	/ of Trop.U00/. We conclude that .V; 'U00/ is a tropical chart
proving (c). ut
Remark 4.17. In [11], everything is defined for an arbitrary analytic space. In
Sect. 7, we will compare their analytic constructions with our algebraic approach.
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5 Differential Forms on Algebraic Varieties

On a complex analytic manifold M, we use open analytic charts ' W U ! C
r to

define .p; q/-forms on U by pull-back. The idea in the non-Archimedean setting is
similar to replacing the above charts by tropical charts .V; 'U/ from the previous
section in order to pull-back Lagerberg’s superforms to Uan.

In this section, K is an algebraically closed field endowed with a complete
nontrivial non-Archimedean absolute value j j. Let v WD � log j j be the associated
valuation and let � WD v.K�/ be the value group. The theory could be done
for arbitrary fields (see [11]), but it is no serious restriction to assume that K is
algebraically closed as the theory is stable under base extension and in the classical
setting, the analysis is also done over C. We will introduce .p; q/-forms on the
analytification Xan of a n-dimensional algebraic variety X over K.

5.1. We recall from 4.15 that a tropical chart .V; 'U/ consists of an open subset V
of Uan for a very affine open subset U of X such that V D trop�1

U .	/ for an open
subset 	 of Trop.U/. Here, 'U W U ! TU is the canonical moment map. It is a
closed embedding to the torus TU D Spec.KŒMU�/. The tropical variety Trop.U/
is a tropical cycle of .NU/R and tropU W Uan ! .NU/R is the tropicalization map.
The embedding 'U is only determined up to translation by an element in TU.K/ and
hence the tropical constructions are canonical up to integral �-affine isomorphisms.

Suppose that we have another tropical chart .V 0; 'U0/. Then .V \ V 0; 'U\U0/ is a
tropical chart (see Proposition 4.16) and we get a canonical affine homomorphism
 U;U\U0 W TU\U0 ! TU of the underlying tori with 'U D  U;U\U0 ı 'U\U0 on
U \ U0 (see 4.12). The associated affine map Trop. U;U\U0/ W .NU\U0/R ! .NU/R
maps the tropical variety Trop.U \ U0/ onto Trop.U/ (use Lemma 4.9). Then we
define the restriction of the superform ˛ 2 Ap;q.tropU.V// to a superform ˛jV\V0

on tropU\U0.V \ V 0/ by using the pull-back to tropU\U0.V \ V 0/ with respect to
Trop. U;U\U0/. This plays a crucial role in the following definition:

Definition 5.2. A differential form ˛ of bidegree .p; q/ on an open subset V of Xan

is given by a covering .Vi/i2I of V by tropical charts .Vi; 'Ui/ of Xan and superforms
˛i 2 Ap;q.tropUi

.Vi// such that ˛ijVi\Vj D ˛jjVi\Vj for every i; j 2 I. If ˛0 is another
differential form of bidegree .p; q/ on V given by ˛0

j 2 Ap;q.tropU0j
.V 0

j // with respect

to the tropical charts .V 0
j ; 'U0j

/j2J covering V , then we consider ˛ and ˛0 as the same

differential forms if and only if ˛ijVi\V0j
D ˛0

j jVi\V0j
for every i 2 I and j 2 J. We

denote the space of .p; q/-differential forms on V by Ap;q.V/. As usual, we define
the space of differential forms on V by A.V/ WD L

p;q Ap;q.V/. The subspace of
differential forms of degree k 2 N is denoted by Ak.V/ WDLpCqDk Ap;q.V/.

5.3. It is obvious from the definitions that the differential forms form a sheaf
on Xan. Using the corresponding constructions for superforms on tropical cycles,
it is immediate to define the wedge product and differential operators d, d0 and d00
on differential forms on V . By 4.6, we have Ap;q.V/ D f0g if max.p; q/ > dim.X/.
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For a morphism ' W X0 ! X and open subsets V (resp., V 0) of Xan (resp.,
.X0/an) with '.V 0/ � V , we get a pull-back '� W Ap;q.V/ ! Ap;q.V 0/ defined in
the following way: Suppose that ˛ 2 Ap;q.V/ is given by the covering .Vi/i2I and
the superforms ˛i 2 Ap;q.tropUi

.Vi// as above. Then there is a covering .V 0
j /j2J of

V 0 by tropical charts .V 0
j ; 'U0j

/ which is subordinate to ..'an/�1.Vi//i2I . This means

that for every j 2 J, there is i.j/ 2 I with V 0
j � Vi.j/ and '.U0

j/ � Ui.j/ for the
corresponding very affine open subsets. Then '�.˛/ is the differential form on V 0
given by the covering .V 0

j /j2J and the superforms '�.˛i.j// 2 Ap;q.Trop.U0
j//. We

leave the details to the reader. This construction is functorial as usual.

Remark 5.4. We obtain the same sheaf of differential forms on Xan as in [11,
Sect. 3]. In the latter reference, all analytic moment maps were used to define
differential forms on Xan and so it is clear that our differential forms here are also
differential forms in the sense of Chambert-Loir and Ducros [11]. To see the
converse, we argue as follows: By Proposition 4.16, tropical charts .V; 'U/ form
a basis in Xan. It follows from Proposition 7.2 that an analytic moment map
' W V ! .Gr

m/
an may be locally in x 2 V approximated by an algebraic moment

map '0 W U0 ! G
r
m such that .'0/trop D tropı' in an open neighbourhood of x in V .

Here, U0 is a suitable very affine open subset of U with x 2 .U0/an. It follows from
[11, Lemma 3.1.10], that we may use algebraic moment maps to define differential
forms in the sense of Chambert-Loir and Ducros [11]. Using that 'U0 factorizes
through '0 (see 4.12), we get the claim.

Definition 5.5. Let ˛ be a differential form on an open subset V of Xan. The support
of ˛ is the complement in V of the set of points x of V which have an open
neighbourhood Vx such that ˛jVx D 0. Let Ap;q

c .V/ be the space of differential forms
of bidegree .p; q/ with compact support in V .

Proposition 5.6. Let .V; 'U/ be a tropical chart of Xan and let ˛ 2 Ap;q.V/ be
given by ˛U 2 Ap;q.tropU.V//. Then ˛ D 0 in Ap;q.V/ if and only if ˛U D 0 in
Ap;q.tropU.V//.

Proof. See [11, Lemme 3.2.2]. ut
Remark 5.7. It follows from Proposition 5.6, that tropU.supp.˛// D supp.˛U/

(see [11, Corollaire 3.2.3]). Note however that not every differential form ˛ on the
tropical chart .V; 'U/ is given by a single ˛U 2 Ap;q.tropU.V// as in Proposition 5.6.

5.8. In analogy with differential geometry on manifolds, we set C1.V/ WD A0;0.V/
for any open subset V of Xan and a smooth function on V is just a differential form of
bidegree .0; 0/. Since tropicalization maps are continuous, it is clear that a smooth
function is a continuous function on V . By the Stone–Weierstrass theorem, the space
C1

c .V/ of smooth functions with compact support in V is a dense subalgebra of
Cc.V/ endowed with the supremum norm (see [11, Proposition 3.3.5]).

Definition 5.9. Let .Wi/i2I be an open covering of an open subset W of Xan.
A smooth partition of unity on W with compact supports subordinated to the
covering .Wi/i2I is a family .�j/j2J of nonnegative smooth functions with compact
support on W with the following properties:
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(i) The family .supp.�j//j2J is locally finite on W.
(ii) We have

P
j2J �j � 1 on W.

(iii) For every j 2 J, there is i.j/ 2 I such that supp.�j/ � Wi.j/.

For the following result, we note that Xan is paracompact as it is a � -compact
locally compact Hausdorff space, but not necessarily every open subset of Xan is
paracompact.

Proposition 5.10. Let .Wi/i2I be an open covering of a paracompact open subset W
of Xan. Then there is a smooth partition of unity .�j/j2J on W with compact supports
subordinated to the covering .Wi/i2I .

Proof. A locally compact Hausdorff space is paracompact if and only if it is the
topological sum of locally compact � -compact spaces (see [8, Chap. 1, Sect. 9, no.
10, Théorème 5]). Therefore we may assume that W is � -compact. It is enough to
show that for every x 2 W and every open neighbourhood V of x in W, there is a
nonnegative smooth function � with compact support in V and with �.x/ > 0. Then
standard arguments from differential geometry yield the existence of the desired
partition of unity (see [25, Theorem 1.11]).

To prove the crucial claim at the beginning of the proof, we may assume that V is
coming from a tropical chart .V; 'U/ (see Proposition 4.16). Then 	 WD tropU.V/
is a open subset of Trop.U/ with trop�1

U .	/ D V and hence there is an open subset
e	 in .NU/R with 	 D Q	 \ Trop.U/. There is a smooth nonnegative function
f on .NU/R with compact support in Q	 such that f .tropU.x// > 0. Since the
tropicalization map is proper, the smooth function � WD f ı tropU has compact
support in V and hence � fulfils the claim. ut

So far, we have seen properties of differential forms which are completely similar
to the archimedean case. The next result of Chambert-Loir and Ducros [11, Lemme
3.2.5] shows that the support of a differential form of degree at least one is disjoint
from X.K/.

Lemma 5.11. Let W be an open subset of Xan. We consider ˛ 2 Ap;q.W/ and x 2 W
with d.x/ < max.p; q/. Then x 62 supp.˛/.

Proof. Using Proposition 4.16 and shrinking the open neighbourhood W of x, we
may assume that W is a tropical chart .W; 'U/ on which ˛ is given by the superform
˛U 2 Ap;q.tropU.W//. By Proposition 4.14, there is a very affine open subset Ux

of U and a compact neighbourhood Vx of x in .Ux/
an \ W such that tropUx

.Vx/

is of dimension d.x/. By Proposition 4.16, there is a tropical chart .V 0; 'U0/ with
x 2 V 0 � Vx and U0 � Ux. By 4.12, there is an affine homomorphism  W TU0 ! TU

such that 'U D 'U0 ı  . Using the same factorization for the tropicalizations, we
see that the restriction of ˛ to V 0 is given by Trop. /�.˛U/ 2 Ap;q.tropU0.V

0//. The
inclusion Ux � U yields that tropUx

factorizes through tropU (use 4.12). Since V 0 �
Vx, we get dim.tropU.V

0// � dim.tropUx
.V 0// � d.x/ < max.p; q/. As tropU.V

0/ D
Trop. /.tropU0.V

0//, we conclude that Trop. /�.˛U/ D 0. This proves ˛ D 0. ut
Corollary 5.12. Let W be an open subset of Xan and let U be a Zariski open subset
of X. If ˛ 2 Ap;q.W/ with dim.X n U/ < max.p; q/, then supp.˛/ � W \ Uan.
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Proof. Let x 2 W n Uan. Then 4.2 shows that d.x/ � dim.X n U/ < max.p; q/. By
Lemma 5.11, we get x 62 supp.˛/ proving the claim. ut
Proposition 5.13. Let ˛ 2 Ap;q

c .Xan/ be a differential form with max.p; q/ D
dim.X/. Then there is a very affine open subset U of X such that supp.˛/ � Uan

and such that ˛ is given on Uan by a superform ˛U 2 Ap;q
c .Trop.U//.

Proof. By assumption, the support of ˛ is a compact subset of Xan. We conclude that
there are finitely many tropical charts .Vi; 'Ui/iD1;:::;s covering supp.˛/ such that ˛
is given on Vi by the superform ˛i 2 Ap;q.tropUi

.Vi//. Recall that 	i WD tropUi
.Vi/

is an open subset of Trop.Ui/. By 4.13, U WD U1 \ � � � \ Us is a nonempty very
affine open subset of X. We define the open subset V of Uan by V WD Uan\Ss

iD1 Vi.
Since max.p; q/ D dim.X/, Corollary 5.12 yields supp.˛/ � Uan. Using 4.12, we
see that tropUi

D Trop. i/ ı tropU for an affine homomorphism  i W TU ! TUi of
tori. Then we have

tropU.Vi \ Uan/ D .Trop. i//
�1.	i/ \ Trop.U/

and we denote this open subset of Trop.U/ by 	0
i. It follows that the preimage of

	 WD Ss
iD1 	0

i with respect to .'U/trop is equal to V . We conclude that .V; 'U/ is
a tropical chart of Xan. Note that ˛ is given on Uan \ Vi by ˛0

i WD Trop. i/
�.˛i/ 2

Ap;q.	0
i/. By Proposition 5.6, ˛0

i agrees with ˛0
j on	0

i\	0
j for every i; j 2 f1; : : : ; sg

and hence they define a superform ˛U 2 Ap;q.	/. By construction, ˛U gives the
differential form ˛ on V . It follows from Remark 5.7 that ˛U has compact support
in 	. Since ˛ has compact support in V , we conclude that ˛U is a superform on
Trop.U/ which defines ˛ on Uan. ut
5.14. Let ˛ 2 An;n

c .W/ for an open subset W of Xan, where n WD dim.X/. Obviously,
we may view ˛ as an .n; n/-form on Xan with compact support. We call a very affine
open subset U as in Proposition 5.13 a very affine chart of integration for ˛. Then ˛
is given by a superform ˛U 2 An;n

c .Trop.U//. We define the integral of ˛ over W by
Z

W
˛ WD

Z

Trop.U/
˛U:

Here, we view Trop.U/ as a tropical cycle (see 4.6) and we integrate as in 3.4.

Lemma 5.15. For ˛ 2 An;n
c .W/, the following properties hold:

(a) If U is a very affine chart of integration for ˛, then every nonempty very affine
open subset U0 of U is a very affine chart of integration for ˛.

(b) The definition of
R

W ˛ is independent of the choice of the very affine chart of
integration for ˛.

Proof. By Corollary 5.12, supp.˛/ � .U0/an and (a) follows. To prove (b), it is
enough to show

Z

Trop.U/
˛U D

Z

Trop.U0/
˛U0 (3)
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for a nonempty very affine open subset U0 of U by using (a). The differential form ˛

is given on Uan (resp., .U0/an) by ˛U 2 An;n
c .Trop.U// (resp., ˛U0 2 An;n

c .Trop.U0//).
By 4.12, there is an affine homomorphism  W TU0 ! TU of the underlying
canonical tori such that 'U D Trop. /ı'U0 . It follows that ˛ is given on U0 also by
Trop. /�.˛U/. By Proposition 5.6, we have ˛U0 D Trop. /�.˛U/. The Sturmfels–
Tevelev multiplicity formula shows that Trop. /�.Trop.U0// D Trop.U/ (see
Proposition 4.11). Then Proposition 3.10 shows that (3) holds. ut
Proposition 5.16. Let �; � 2 R and let ˛; ˇ 2 An;n

c .W/. Then we have

Z

W
�˛ C �ˇ D �

Z

W
˛ C �

Z

W
ˇ:

Proof. By Lemma 5.15, we may choose a simultaneous very affine chart of
integration for both ˛ and ˇ. Then the claim follows by the corresponding property
of the integration of superforms. ut

We have also Stokes’ theorem for differential forms on the open subset W of Xan.
Note that W has trivial boundary in the algebraic situation [4, Theorem 3.4.1] and
hence the boundary does not occur as in the version [11, Theorem 3.12.1] for
analytic spaces.

Theorem 5.17. For n WD dim.X/ and ˛ 2 A2n�1
c .W/, we have

R
W d0˛ D RW d00˛ D

0 and hence
R

W d˛ D 0.

Proof. By Proposition 5.13, there is a very affine open subset U of X such
that supp.˛/ � Uan and such that ˛ is given on Uan by a superform ˛U 2
A2n�1

c .Trop.U//. Then U is a very affine chart of integration for d0˛ and d00˛ and
the claim follows from Propositions 3.5 and 3.8. ut
Remark 5.18. Integration of differential forms on complex manifolds is defined by
using a partition of unity with compact supports subordinated to a covering by
holomorphic charts. Surprisingly, this was not necessary in our non-Archimedean
algebraic setting as we have defined integration by using a single suitable tropical
chart. In fact, the use of a smooth partition of unity .�j/j2J with compact supports
subordinate to an open covering of W by tropical charts .Vi; 'Ui/i2I would not
work here directly. To illustrate this, suppose that ˛ 2 An;n

c .W/ is given on Vi by
˛i 2 An;n.tropUi

.Vi//. If the functions �j are of the form �j D fj ı tropUi.j/
for

some Vi.j/ � supp.�j/ and fj 2 C1
c .tropUi.j/

.Vi.j///, then we could set
R

W ˛ DP
j2J

R
Trop.Ui.j//

fj˛i.j/. However, the functions �j could not be expected to have this
form and so this approach fails.

Chambert-Loir and Ducros define integration more generally for differential
forms on paracompact good analytic spaces (see [11, Sect. 3.8]). The idea is to use
a covering by the interiors of affinoid subdomains. Then there is a smooth partition
of unity with supports subordinated to this covering which reduces the problem to
defining integration over an affinoid subdomain. But in the affinoid case, one can



22 W. Gubler

find a single tropical chart of integration similarly as in Proposition 5.13. It follows
from Remark 7.6 and Proposition 7.11 that both definitions give the same integral
on the analytification of an algebraic variety.

6 Currents on Algebraic Varieties

In this section, K is an algebraically closed field endowed with a nontrivial non-
Archimedean complete absolute value j j. We consider an open subset W of Xan for
an algebraic variety X over K of dimension n. Similarly as in the complex case, we
will first define a topology on Ap;q

c .W/ and then we will define currents as continuous
linear functionals on this space. We will see that the Poincaré–Lelong equation holds
for a rational function.

6.1. Let .Vi; 'Ui/i2I be finitely many tropical charts contained in W and let �i

be a polytope contained in the open subset 	i WD tropUi
.Vi/ of Trop.Ui/. We

consider the space Ap;q.Vi;Ui; �i W i 2 I/ of .p; q/-forms ˛ on W with support
in C WDSi2I trop�1

Ui
.�i/ such that ˛ is given on Vi by a superform ˛i 2 Ap;q.	i/ for

every i 2 I. Since the tropicalization map is proper (see 4.4), the set C is compact.
Similarly as in the complex case, we endow Ap;q.Vi;Ui; �i W i 2 I/with the structure
of a locally convex space such that a sequence ˛k converges to ˛ if and only if
all derivatives of the superforms ˛k;i converge uniformly to the derivatives of the
superform ˛i on �i. Here, ˛k;i (resp., ˛i) is the superform on 	i which defines
˛k (resp., ˛) on Vi and we mean more precisely the derivatives of the coefficients
of ˛k;ij�i (resp., ˛ij�i ). It follows easily from Proposition 4.16 that Ap;q

c .W/ is the
union of all spaces Ap;q.Vi;Ui; �i W i 2 I/ with .Vi;Ui; �i W i 2 I/ ranging over all
possibilities as above.

6.2. A current on an open subset W of Xan is a linear functional T on Ap;q
c .W/ such

that the restriction of T to all subspaces Ap;q.Vi;Ui; �i W i 2 I/ is continuous. The
space of currents is a C1.W/-module denoted by Dp;q.W/. As usual (cf. 2.11), we
define the differential operators d0, d00 and d WD d0Cd00 on the total space of currents
D.W/ WD L

p;q Dp;q.W/. Using partitions of unity from Proposition 5.10, one can
show that the currents form a sheaf on Xan (see [11, Lemme 4.2.5]).

Example 6.3. A signed Radon measure  on an open subset W of Xan induces a
current Œ� 2 D0;0.W/ by setting Œ�.f / WD R

Xan fd using ordinary integration
theory on Xan. Since the topology on A0;0c .W/ D C1

c .W/ is finer than the topology
induced by the supremum norm, we conclude that Œ� is indeed a current on W.

Remark 6.4. Let ' W X0 ! X be a proper morphism of algebraic varieties over K.
Then there is a linear map '� W Dp;q..X0/an/ ! Dp;q.Xan/, where the push-forward
'�.T 0/ 2 Dp;q.Xan/ of T 0 2 Dp;q..X0/an/ is characterized by

'�.T 0/.˛/ D T 0.'�.˛//
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for every ˛ 2 Ap;q
c .Xan/. It follows from continuity of the map '� W Ap;q

c .Xan// !
Ap;q

c ..X0/an/ that '�.T/ is indeed a current on T . To define the push-forward, we
need the fact that a proper algebraic morphism induces a proper morphism between
the analytifications which implies that the preimage of a compact subset in Xan is
compact (see [4, Proposition 3.4.7]).

Example 6.5. We have the current of integration ıX 2 D2n.Xan/ given by ıX.˛/ DR
X ˛ for ˛ 2 A2n

c .X
an/. More generally, we define the current of integration along a

closed s-dimensional subvariety Y of X as the push-forward of ıY 2 D2s.Yan/ to Xan.
By abuse of notation, we denote this element of D2s.Xan/ also by ıY . By linearity in
the components, we define the current of integration along a cycle on X. If W is an
open subset of Xan, then we get a current ıW 2 D2n.W/ by restricting ıX .

6.6. Let T 2 Dp;q.W/ and ! 2 Ar;s.W/ for an open subset W of Xan. Then we define
T ^ ! 2 Dp�r;q�s.W/ by .T ^ !/.˛/ D T.! ^ ˛/ for ˛ 2 Ap�r;q�s

c .W/. Since the
wedge product with a given form is a continuous operation on Ac.W/, it is clear that
T ^ ! is really a current on W.

Example 6.7. For ! 2 Ar;s.W/, the current Œ!� 2 Dn�r;n�s.W/ associated with !
is defined by Œ!� WD ıW ^ ! and we get an injective linear map a W Ar;s.W/ !
Dn�r;n�s.W/ given by a.!/ WD Œ!�.
Proposition 6.8. Let ! 2 A2n

c .W/ for an open subset W of Xan. Then there is
a unique signed Radon measure  on W such that

R
W fd D Œ!�.f / for every

f 2 C1
c .W/ and we have jj.W/ <1.

Proof. It is easy to prove that Œ!� induces a continuous linear functional on C1
c .W/

where this locally convex vector space is endowed with the subspace topology of
Cc.W/. By 5.8, this subspace is dense and the Riesz representation theorem proves
the claim. ut
6.9. Let us again consider an open subset W of Xan. A function f W W ! R[f˙1g
is called locally integrable if f is integrable with respect to the measure  associated
with any ! 2 A2n

c .W/. Then we write
R

W f! WD RW fd.
For a locally integrable function f on W and � 2 Ap;q.W/, we define Œf � �� 2

Dp;q.W/ by Œf � ��.˛/ WD RW f� ^ ˛ for every ˛ 2 An�p;n�q
c .W/.

Chambert-Loir and Ducros proved the Poincaré–Lelong equation for rational
functions:

Proposition 6.10. Let f be a rational function on X which is not identically zero.
Then log jf j is a locally integrable function on Xan and we have d0d00Œlog jf j� D
ıdiv.f /.

Proof. See [11, Theorem 4.6.5]. ut



24 W. Gubler

7 Generalizations to Analytic Spaces

The final section shows how our notions fit with the paper [11]. While we are
restricted to the algebraic case, the paper of Chambert-Loir and Ducros works for
arbitrary analytic spaces. We assume that the reader is familiar with the theory
of analytic spaces as given in [5] or [23]. For simplicity, we assume again that
K is algebraically closed, endowed with a nontrivial non-Archimedean complete
absolute value j jwith corresponding valuation v WD � log j j and that all occurring
analytic spaces are strict in the sense of Berkovich [5]. This situation can always
be obtained by base change without changing the theory of differential forms and
currents. As usual, we use the value group � WD v.K�/.

7.1. Let Z be a compact analytic space over K. An analytic moment map on Z is an
analytic morphism ' W Z ! Tan for a split torus T D G

r
m over K as before. Let M be

the character group of T , then we have T D Spec.KŒM�/. The map 'trop WD tropı' W
Z ! NR is called the tropicalization map of ' and we may use the coordinates on
T to identify NR with R

r.

The next result shows that for the construction of differential forms in the
algebraic case, we may restrict our attention to algebraic moment maps.

Proposition 7.2. Let X be an algebraic variety over K and let ' W W ! Tan be an
analytic moment map defined on an open subset W of Xan. For every x 2 W, there is
a very affine open subset U of X with an algebraic moment map '0 W U ! T and an
open neighbourhood V of x in Uan \W such that 'trop D '0

trop on V.

Proof. We may assume that X D Spec.A/. Similarly as in the proof of Proposi-
tion 4.16, there is a neighbourhood V 0 WD fx 2 X j s1 � jf1.x/j � r1; : : : ; sk �
jfk.x/j � rkg of x in W with all fa 2 A and real numbers 0 < sa < ra. We may assume
that f1; : : : ; fk form an affine coordinate system y1; : : : ; yk on X. Using coordinates on
T D G

r
m, the moment map ' is given by analytic functions '1; : : : ; 'r on W which

restrict to strictly convergent Laurent series in y1; : : : ; yk on V 0. Cutting the Laurent
series in sufficiently high positive and negative degree, we get Laurent polynomials
p1; : : : ; pr with jpaj D j'aj on V 0 for a D 1; : : : ; r. By Proposition 4.16, there is
a very affine open subset U of X such that Uan contains x and such that p1; : : : pr

define an algebraic moment map '0 W U ! T with 'trop D '0
trop on V 0. Choosing a

neighbourhood V of x in Uan \ V 0, we get the claim. ut
We have the following generalization of the Bieri–Groves theorem. Working with

analytic spaces, the boundary @Z of Z becomes an issue.

Theorem 7.3 (Berkovich, Ducros). If Z is a compact analytic space over K of
dimension n and if ' W Z ! Tan is an analytic moment map, then 'trop.Z/ is a finite
union of integral �-affine polytopes of dimension at most n. Moreover, 'trop.@Z/ is
contained in a finite union of integral �-affine polytopes of dimension � n � 1. If Z
is affinoid, then 'trop.@Z/ is equal to a finite union of such polytopes.
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Proof. The first claim is due to Berkovich and the remaining claims are due to
Ducros (see [15, Theorem 3.2]). ut
7.4. We consider now a compact analytic space Z over K of pure dimension n.
Theorem 7.3 shows that the tropical variety 'trop.Z/ is the support of an integral
�-affine polytopal complex in NR. Our next goal is to endow this complex with
canonical tropical multiplicities. This will lead to the definition of a weighted
polytopal complex .'trop/�.cyc.Z// which is canonical up to subdivision.

If dim.'trop.Z// < n, then we set .'trop/�.cyc.Z// D 0 meaning that we choose
all tropical weights equal to zero. It remains to consider the case dim.'trop.Z// D
n. We choose a generic surjective homomorphism q W T ! T 0 onto a split
multiplicative torus T 0 D Spec.KŒM0�/ of rank n D dim.Z/. Generic means that
the corresponding linear map F WD Trop.q/ is injective on every polytope contained
in 'trop.Z/. By Theorem 7.3, there is an integral �-affine polytopal complex C in
NR with jC j D 'trop.Z/ such that F.�/ is disjoint from .q ı '/trop.@Z/ for every
n-dimensional face � of C and � WD relint.�/. By passing to a subdivision, we may
assume that F�.C / is a polyhedral complex in N0

R
as in 3.9, where N0 is the dual of

M0 as usual.
We identify F.�/ � N0

R
Š R

n with an open subset of the skeleton S..T 0/an/ as
in Remark 4.5. Then it is clear that q ı ' restricts to a map .q ı '/�1.�/ ! F.�/
which agrees with F ı 'trop using the identification S..T 0/an/ D N0

R
. It is shown in

[11, Sect. 2.4], that this restriction of q ı ' is a finite flat and surjective morphism
which means that every point p of F.�/ has a neighbourhood W 0 in .T 0/an such that
.q ı '/�1.W 0/ ! W 0 has these properties. Using that F�1.F.�// D `

� 0 �
0, where

� 0 is ranging over all open faces of C with F.� 0/ D F.�/, we get

.q ı '/�1.F.�// D
a

� 0

'�1
trop.�

0/ \ .q ı '/�1.F.�//:

We conclude that the map '�1
trop.�/ \ .q ı '/�1.F.�// ! F.�/ is finite, flat and

surjective. Again, this has to be understood in some open neighbourhoods. Since
� is connected, the corresponding degree depends only on � and not on the choice
of p. We denote this degree by Œ'�1

trop.�/ W F.�/�.
Recall that N� is the canonical lattice in the affine space generated by � . Then

the character lattice M0 of T 0 is of finite index in M� D Hom.N� ;Z/.

Definition 7.5. Using the notation from above, the tropical multiplicity m� along �
is defined by

m� WD Œ'�1
trop.�/ W F.�/� � ŒM� W M0��1:

Furthermore, .'trop/�.cyc.Z// is the weighted polyhedral complex C endowed with
these tropical multiplicities. The weights might be rational numbers, at least we have
no argument that they are integers in the analytic case.
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Remark 7.6. It is not so easy to show that the tropical multiplicity is well-defined,
i.e. independent of the choice of q. Chambert-Loir and Ducros do not use tropical
multiplicities, but the latter are equivalent to the canonical calibration introduced in
[11, Sect. 3.5]. To summarize this construction, let e1; : : : ; en (resp., f1; : : : ; fn) be a
basis of M0 (resp., M� ). Then the canonical calibration of � is defined as

Œ'�1
trop.�/ W F.�/� � .Fj.N� /R/�.e1 ^ � � � ^ en/ 2 ƒn..N� /R/

together with the orientation induced by the pull-back of e1; : : : ; en with respect to
the linear isomorphism Fj.N� /R . The canonical calibration is equal to the calibration
m� f1^� � �^fn together with the orientation induced by f1; : : : ; fn. Since the canonical
calibration does not depend on the choice of q up to refinement [11, Sect. 3.5], the
same is true for the tropical multiplicities.

Remark 7.7. One can define the irreducible components of an analytic space (see
[13]). A compact analytic space Z has finitely many irreducible components Zi. Then
we define the cycle cyc.Z/ associated with Z as a positive formal Z-linear combi-
nation of the irreducible components Zi by restriction to affinoid subdomains and
then by glueing (see [18, Sect. 2]). One can show that the weighted n-dimensional
polyhedral complex .'trop/�.cyc.Z// depends only on cyc.Z/ and this dependence
is linear. We leave the details to the reader.

The next result shows that the Sturmfels–Tevelev multiplicity formula holds for
analytic spaces.

Proposition 7.8. Let Z be a compact analytic space over K of pure dimension n,
let ' W Z ! Tan be an analytic moment map and let  W T ! T 0 be an affine
homomorphism of tori. Then we have

Trop. /�..'trop/�.cyc.Z/// D .. ı '/trop/�.cyc.Z//:

Proof. The corresponding statement for canonical calibrations is shown in [11,
Lemma 3.5.2], and hence the claim follows from Remark 7.6. ut
Proposition 7.9. Let Z be a compact analytic space over K of pure dimension n
and let C be the same integral �-affine polytopal complex with support 'trop.Z/
as in 7.4. Then for every .n � 1/-dimensional polyhedron � of C not contained in
'trop.@Z/, the balancing condition

X

�2Cn; ���
m�!�;� 2 N�

from 3.7 holds in �.

Proof. Chambert-Loir and Ducros prove in [11, Theorem 3.6.1], that � is harmo-
nious in C which is a condition for the canonical calibration equivalent to the
balancing condition by Remark 7.6. ut
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7.10. In an algebraic setting, our goal is to compare the tropical multiplicities
introduced in 4.7 with the ones from Definition 7.5. Let us consider an algebraic
variety X over K of dimension n and an algebraic moment map ' W X !
T D Spec.KŒM�/ Š G

r
m over K. Note that 'trop.Xan/ D Trop.'.X//. We endow

'trop.Xan/ with the tropical multiplicities malg
� of the tropical cycle Trop.'�.X// WD

deg.'/Trop.'.X// of NR.
The analytification Xan is not compact (unless n D 0), but as @X D ;, we can

define tropical multiplicities in the same analytic manner as in Definition 7.5. This
means that we choose a generic projection q W T ! T 0 D Spec.KŒM0�/ onto a torus
T 0 of rank n and an integral �-affine polyhedral complex C with support equal to
'trop.Xan/ such that F�.C / is a polyhedral complex on N0

R
for the associated linear

map F W NR ! N0
R

. For every � 2 Cn and � WD relint.�/, we define

man
� WD Œ'�1

trop.�/ W F.�/� � ŒM� W M0��1

as in Definition 7.5. Since the tropical multiplicities malg and man are compatible
with subdivision, we may assume that the underlying integral �-affine polyhedral
complex C is the same in both definitions.

Now we are ready to compare these two tropical multiplicities.

Proposition 7.11. Let ' W X ! T be an algebraic moment map and n WD dim.X/.
Using the notations from above, we have man

� D malg
� for every � 2 Cn.

Proof. The following argument is quite close to the proof of the Sturmfels–Tevelev
formula given by Baker, Payne and Rabinoff (see [3, Theorem 8.2]). We may assume
that ' is generically finite, otherwise 'trop.Xan/ has dimension < n and all tropical
multiplicities are zero. Let Y be the closure of '.X/ in T and let q W T ! T 0
be a generic homomorphism onto a split torus T 0 D Spec.KŒM0�/ of rank n with
associated linear map F W NR ! N0

R
. There is an open dense subset U of Y such

that ' is finite over U. Since the tropical multiplicities man and malg are compatible
with subdivision of the polyhedral complex C , we may assume that Trop.Y n U/ is
contained in the support of Cn�1.

Let Y 0 be the closure of q.Y/ in T 0 and let ! 2 � \ N� . We consider the affinoid
subdomains U! WD trop�1.!/ in Tan and U0

!0
WD trop�1.!0/ in .T 0/an. By finiteness

of ' over U, the set X! WD .'an/�1.U!/ D '�1
trop.!/ is an affinoid subdomain of Xan

and ' restricts to a finite morphism X! ! Y! WD Yan \ U! . Let X!;Y!;U!;U
0
!0

be the canonical formal affine Kı-models of X!;Y!;U!;U0
!0

associated with the
algebra of power bounded elements in the corresponding affinoid algebra. Moreover,
let Y! be the closure of Y! in U! . Then we have canonical morphisms

X!

'! Y!
�! Y!

q! U 0
!0 (4)

of admissible formal affine schemes over Kı in the sense of Bosch, Lütkebohmert
and Raynaud (see [6, Sect. 1]). We claim that all these morphisms are finite and
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surjective. Obviously, the generic fibres of the first and second morphism are finite
and surjective. To see that the generic fibre of the third morphism is finite, we note
first that F�1.!0/\Trop.Y/ is finite by construction of q and hence q�1.U0

!0
/\ Yan

is in the relative interior of an affinoid subdomain of Tan which is contained in
q�1.U0

!0
/. We conclude that q�1.U0

!0
/ \ Yan ! U0

!0
is a proper map (see the proof

of Theorem 4.31 in [3] for more details about the argument). Since q�1.U0
!0
/ \ Yan

is the disjoint union of the finitely many affinoids U�\Yan, � 2 F�1.!0/\Trop.Y/,
we conclude that q induces a proper morphism Y! ! U0

!0
of affinoids. By Kiehl’s

direct image theorem [7, Theorem 9.6.3/1], this morphism is finite and hence also
surjective using dimensionality arguments. We conclude that all three morphisms
in (4) are surjective and finiteness follows from [3, Proposition 3.13].

The degree ŒX! W U0
!0
� of X! over the affinoid torus U0

!0
is well-defined as U0

!0

is irreducible (see [3, Sect. 3] for a discussion of degrees). Since the degree does
not change by passing to an affinoid subdomain of U0

!0
(see [3, Proposition 3.30]),

we get

Œ'�1
trop.�/ W F.�/� D ŒX! W U0

!0 �: (5)

The projection formula [3, Proposition 3.32] shows

ŒX! W U0
!0 � D

X

B

ŒB W .U 0
!0/s� D

X

B

ŒB W .Gn
m/ QK �; (6)

where B ranges over all irreducible components of .X!/s. We conclude from (5)
and (6) that

Œ'�1
trop.�/ W F.�/� D

X

C

X

B over C

ŒB W C� � ŒC W .Gn
m/ QK �; (7)

where C ranges over all irreducible components of .Y!/s and B ranges over all
irreducible components of .X!/s mapping onto C. Since the special fibre of Y!
is isomorphic to the initial degeneration in!.Y/, all irreducible components C are
isomorphic to the torus Spec. QKŒM� �/ (see [3, Theorem 4.29]) proving

ŒC W .Gn
m/ QK � D ŒM� W M0�: (8)

Using (7) and (8), we get

man
� D Œ'�1

trop.�/ W F.�/� � ŒM� W M0��1 D
X

C

X

B over C

ŒB W C�: (9)

Since X! is the preimage of the affinoid subdomain Y! of Tan, we deduce from
[3, Proposition 3.30], that X! is of degree deg.'/ over Y! and hence the projection
formula again shows the equality

deg.'/cyc..Y!/s/ D .� ı '/�.cyc..X!/s/ (10)
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of cycles in .U!/s. Inserting (10) in (9) by using that the special fibre of X! is
reduced, we get

man
� D deg.'/

X

C

m.C; .Y!/s/;

where m.C; .Y!/s/ is the multiplicity of the irreducible component C in the special
fibre of Y! . By definition, the right-hand side is equal to malg

� which proves the claim.
ut

Remark 7.12. Note that in the algebraic case, Proposition 7.11 yields that the
tropical multiplicities in Definition 7.5 are well-defined integers, i.e. independent
of the choice of the generic projection q. Moreover, the argument of Chambert-
Loir and Ducros for Proposition 7.9 gives a new proof for the classical balancing
condition for tropical varieties which is based mainly on degree considerations.
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The Non-Archimedean Monge–Ampère
Equation

Sébastien Boucksom, Charles Favre, and Mattias Jonsson

Abstract We give an introduction to our work on the solution to the non-
Archimedean Monge–Ampère equation and make comparisons to the complex
counterpart. These notes are partially based on talks at the 2015 Simons Symposium
on Tropical and Nonarchimedean Geometry.

Keywords Monge–Ampère equation • Non-Archimedean geometry • Berkovich
spaces • Calabi-Yau theorem • Complex geometry • Metrics on line bundles

1 Introduction

The purpose of these notes is to discuss the Monge–Ampère equation

MA.�/ D 

in both the complex and non-Archimedean setting. Here  is a positive measure1

on the analytification of a smooth projective variety, � is a semipositive metric on
an ample line bundle on X, and MA is the Monge–Ampère operator. All these terms
will be explained below.

In the non-Archimedean case, our presentation is based on the papers [13, 14]
to which we refer for details. In the complex case, we follow [6] rather closely.
Generally speaking, we avoid technicalities or detailed proofs.

1All measures in this paper will be assumed to be Radon measures.
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2 Metrics on Lines Bundles

Let K be a field equipped with a complete multiplicative norm and let X be a smooth
projective variety over K. To this data we can associate an analytification Xan. When
K is the field of complex numbers with its usual norm, Xan is a compact complex
manifold. When the norm is non-Archimedean, Xan is a K-analytic space in the
sense of Berkovich [3]. In either case, it is a compact Hausdorff space.

Let L be a line bundle on X. It also admits an analytification Lan. A metric on Lan

is a rule that to a local section s W U ! Lan, where U � Xan, associates a function
ksk on U, subject to the condition kfsk D jf j � ksk, for any analytic function f on U.
The metric is continuous if ksk is continuous on U for every s.

For our purposes it is convenient to use additive notation for metrics and line
bundles. Given an open cover U˛ of Xan and local trivializations of Lan on each U˛ ,
we can identify a section s of L with a collection .s˛/˛ of analytic functions. A metric
� is then a collection of functions .�˛/˛ in such a way that ksk� D js˛je��˛ on U˛ .
With this convention, if � is a metric on Lan, any other metric is of the form � C f ,
where f is a function on Xan. If �i is a metric on Li, i D 1; 2, then �1C�2 is a metric
on L1 C L2.

Over the complex numbers, smooth metrics � (i.e., each �˛ is smooth) play an
important role. Of similar status, for K non-Archimedean, are model metrics defined
as follows.2 Let R be the valuation ring of K and k the residue field. A model of
X is a normal scheme X , flat and projective over Spec R and with generic fiber
isomorphic to X. A model of L is a Q-line bundle L on X whose restriction to X is
isomorphic to L. It defines a continuous metric �L on L in such a way that any local
nonvanishing section of a multiple of L has norm constantly equal to one. Model
functions, that is, model metrics on OX , are dense in C0.Xan/. We refer to [21]
or [14] for a more thorough discussion.

Over C, a smooth metric � on Lan is semipositive (positive) if its curvature form
ddc� is a semipositive (positive) .1; 1/-form. Here ddc� D ddc�˛ D i



@@�˛ for

any ˛. Such metrics only exist when L is nef.
In the non-Archimedean setting we say that a model metric �L on Lan is

semipositive if the line bundle L is relatively nef, that is, its degree is nonnegative
on any proper curve contained in the special fiber X0. This implies that L is nef.

In both the complex and non-Archimedean case we say that a continuous metric
� is semipositive if there exists a sequence .�m/

1
1 of semipositive smooth/model

metrics such that limm!1 supXan j�m � �j D 0. In the non-Archimedean case, this
notion was first introduced by Zhang [51] and Gubler [28]. In the complex case,
it is more natural to say that a continuous metric � is semipositive if its curvature
current ddc� is a positive closed current. At least when L is ample, one can then

2Model metrics are not smooth in the sense of Chambert-Loir and Ducros [22] but nevertheless,
for our purposes, play the same role as smooth metrics in the complex case.
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prove (see Sect. 7 below) that � can be approximated by smooth metrics; such an
approximation is furthermore crucial for many arguments in pluripotential theory.

In the non-Archimedean case, Chambert-Loir and Ducros have introduced a
notion of forms and currents on Berkovich spaces. However, it is not known whether
a continuous metric whose curvature current (in their sense) is semipositive can be
approximated by semipositive model metrics.

In both the complex and non-Archimedean case we denote by PSH0.Lan/

the space of continuous semipositive metrics on Lan. Here the superscript refers
to continuity (C0) whereas “PSH” reflects the fact that in the complex case,
semipositive metrics are global versions of plurisubharmonic functions.

3 The Monge–Ampère Operator

In the complex case, the Monge–Ampère operator is a second order differential
operator: we set MA.�/ D .ddc�/n for a smooth metric �. It is a nonlinear operator
if n > 1. When � is semipositive, MA.�/ is a smooth positive measure on Xan

of mass .Ln/. It is a volume form, that is, equivalent to Lebesgue measure, if � is
positive.

Next we turn to the non-Archimedean setting. From now on we assume that K is
discretely valued. Pick a uniformizer t of the maximal ideal in the valuation ring R
of K.

Consider a model metric �L, associated to a model .X ;L/ of .X;L/ over Spec R.
Write the special fiber as X0 D div.t/ D P

i2I biEi, where Ei are the irreducible
components of X0 and bi 2 Z>0. To each Ei is associated a unique (divisorial) point
xi 2 Xan. We then define

MA.�/ WD
X

i2I

bi.LjEi/
nıxi :

If �L is semipositive, LjEi is nef; hence, .LjEi/
n 	 0 and MA.�L/ is a positive

measure. Its total mass is
Z

Xan
1 �MA.�L/ D

X

i2I

bi.LjEi/
n D .Ln � X0/ D .Ln � X�/ D .Ln/:

Here the second to last equality follows from the flatness of X over Spec R, and the
last equality from X� ' X and L� ' L.

From now on assume that L is ample, that is, we have a polarized pair .X;L/. In
both the complex and non-Archimedean case we define MA.�/ for a continuous
semipositive metric by MA.�/ WD limm!1 MA.�m/ for any sequence .�m/

1
1

converging uniformly to �. Of course, it is not obvious that the limit exists or
independent of the sequence .�m/

1
1 . In the complex case this is a very special case

of the Bedford–Taylor theory developed in [8, 9]. The analogous analysis in the
non-Archimedean case is due to Chambert-Loir [20].
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4 The Complex Monge–Ampère Equation

Theorem 4.1. Let .X;L/ be a polarized complex projective variety of dimension n
and let  be a positive measure on Xan of total mass .Ln/.

(i) If  is a volume form, then there exists a smooth positive metric � on Lan such
that MA.�/ D .

(ii) If  is absolutely continuous with respect to Lebesgue measure, with density
in Lp for some p > 1, then there exists a (Hölder) continuous metric � on Lan

such that MA.�/ D .
(iii) The metrics in (i) and (ii) are unique up to additive constants.

The uniqueness statement in the setting of (i) is due to Calabi. The much harder
existence part was proved by Yau [48], using PDE techniques. The combined result
is often called the Calabi–Yau theorem.

The general setting of (ii) and (iii) was treated by Kołodziej [37, 38] who used
methods of pluripotential theory together with a nontrivial reduction to Yau’s result.
Guedj and Zeriahi [34] more generally established the existence of solutions of
MA.�/ D  for positive measures  (of mass .Ln/) that do not put mass on
pluripolar sets. In this generality, the metrics � are no longer continuous but rather
lie in a suitable energy class, modeled upon work by Cegrell [19]. Dinew [24],
improving upon an earlier result by Błocki [10], proved the corresponding unique-
ness theorem. All these existence and uniqueness results are furthermore valid (in a
suitable formulation) in the transcendental case, when .X; !/ is a Kähler manifold.

The complex Monge–Ampère equation is of fundamental importance to complex
geometry. For example, it implies that every compact complex manifold with
vanishing first Chern class (such manifolds are now called Calabi–Yau manifolds)
admits a Ricci flat metric in any given Kähler class. The complex Monge–Ampère
equation also plays a key role in recent work on the space of Kähler metrics.

5 The Non-Archimedean Monge–Ampère Equation

As before, suppose K ' k..t// is a discretely valued field with valuation ring
R ' kŒŒt�� and residue field k. We further assume that K has residue characteristic
zero, char k D 0. This implies that R ' kŒŒt�� and K ' k..t//, where k is the residue
field of K. More importantly, X then admits SNC models, that is, regular models
X such that the special fiber X0 has simple normal crossings. The dual complex
�X , encoding intersections between irreducible components of X0, then embeds as
a compact subset of Xan.

Theorem 5.1. Let .X;L/ be a polarized complex projective variety of dimension n
over K. Assume that X is defined over a smooth k-curve. Let  be a positive measure
on Xan of total mass .Ln/, supported on the dual complex of some SNC model.
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(i) There exists a continuous metric � on Lan such that MA.�/ D .
(ii) The metric in (i) is unique up to an additive constant.

Here the condition on X means that there exists a smooth projective curve C over
k, a smooth projective variety Y over C, and a point p 2 C such that X is isomorphic
to the base change Y �k Spec K, where K is the fraction field of bOC;p. This condition
is presumably redundant, but is used in the proof: see Sect. 9.

To our knowledge, the first to consider the Monge–Ampère equation (or Calabi–
Yau problem) in a non-Archimedean setting were Kontsevich and Tschinkel [40].
They outlined a strategy in the case when  is a point mass.

The case of curves (n D 1) was treated in detail by Thuillier in his thesis [47];
see also [2, 26]. In this case, the Monge–Ampère equation is linear and one can
construct fundamental solutions by exploring the topological structure of Xan.

In higher dimensions, Yuan and Zhang [50] proved the uniqueness statement (ii).
Their proof, based on the method by Błocki, is valid in a more general context
than stated above. The first existence result was obtained by Liu [43], who treated
the case when X is a maximally degenerate abelian variety and  is equivalent to
Lebesgue measure on the skeleton of X. His approach amounts to solving a real
Monge–Ampère equation on the skeleton. The existence result (i) above was proved
by the authors in [13] and the companion paper [14]. We will discuss our approach
below.

The geometric ramifications of the non-Archimedean Monge–Ampère equations
remain to be developed.

6 A Variational Approach

We shall present a unified approach to solving the complex and non-Archimedean
Monge–Ampère equations in any dimension. The method goes back to Alexan-
drov’s work in convex geometry [1]. It was adapted to the complex case in [6] and
to the non-Archimedean analogue in [13].

The general strategy is to construct an energy functional

E W PSH0.Lan/! R

whose derivative is the Monge–Ampère operator, E0 D MA, in the sense that

d

dt
E.� C tf /jtD0 D

Z

Xan
f MA.�/;

for every continuous semipositive metric � 2 PSH0.Lan/ and every smooth/model
function f on Xan.
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Grant the existence of this functional for the moment. Given a measure  on Xan,
consider the functional F W PSH0.Lan/! R defined by

F.�/ D E.�/ �
Z
� :

Suppose we can find � 2 PSH0.Lan/ that maximizes F. Since the derivative of F
is equal to F0

 D MA�, we then have 0 D F0
.�/ D MA.�/ �  as required.

Now, there are at least three problems with this approach:

(1) There is a priori no reason why a maximizer should exist in PSH0.Lan/. We
resolve this by introducing a larger space PSH.Lan/ with suitable compactness
properties and find a maximizer there.

(2) Granted the existence of a maximizer � 2 PSH.Lan/, we are maximizing over
a convex set rather than a vector space, so there is no reason why F0

.�/ D 0.
Compare maximizing the function f .x/ D x2 on the real interval Œ�1; 1�: the
maximum is not at a critical point.

(3) In the end we want to show that—after all—the maximizer is continuous, that
is, � 2 C0.Lan/.

We shall discuss how to address (1) and (2) in the next two sections. The continuity
result in (3) requires a priori capacity estimates due to Kołodziej, and will not be
discussed in these notes.

7 Singular Semipositive Metrics

Plurisubharmonic (psh) functions are among the objets souples (soft objects) in
complex analysis according to P. Lelong [42]. This is reflected in certain useful
compactness properties. The global analogues of psh functions are semipositive
singular metrics on holomorphic line bundles. Here “singular” means that vectors
may have infinite length.

Theorem 7.1. Let K be either C or a discretely valued field of residue characteris-
tic zero, and let .X;L/ be a smooth projective polarized variety over K. Then there
exists a unique class PSH.Lan/, the set of singular semipositive metrics, with the
following properties:

• PSH.Lan/ is a convex set which is closed under maxima and addition of
constants;

• PSH.Lan/ \ C0.Lan/ D PSH0.Lan/;
• if si, 1 � i � p, are nonzero global sections of mL for some m 	 1, then � WD

1
m maxi log jsij 2 PSH.Lan/; further, � is continuous iff the sections si have no
common zero;
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• if .�j/ is an arbitrary family in PSH.Lan/ that is uniformly bounded from above,
then the usc regularization of supj �j belongs to PSH.Lan/;

• if .�j/ is a decreasing net in PSH.Lan/, then either �j ! �1 uniformly on Xan

or �j ! � pointwise on Xan for some � 2 PSH.Lan/;
• Regularization: for every � 2 PSH.Lan/ there exists a decreasing sequence
.�m/

1
mD1 of smooth/model metrics such that �m converges pointwise to � on Xan

as m!1; and
• Compactness: the space PSH.Lan/=R is compact.

To make sense of the compactness statement we need to specify the topology
on PSH.Lan/. In the complex case, one usually fixes a volume form  on Xan and
takes the topology induced by the L1-norm: k� �  k D R

Xan j� �  j. In the non-
Archimedean case, there is typically no volume form on Xan. Instead, we say that
a net .�j/j in PSH.Lan/ converges to � if limj sup�X j�j � �j D 0 for every SNC
model X . Implicit in this definition is that the restriction to �X of every singular
metric in PSH.Lan/ is continuous: see Theorem 7.2 below.

In the complex case, one typically defines PSH.Lan/ as the set of usc singular
metrics � that are locally represented by L1 functions and whose curvature current
ddc� (computed in the sense of distributions) is a positive closed current. Thus �
is locally given as the sum of a smooth function and a psh function. Most of the
statements above then follow from basic facts about plurisubharmonic functions
in Cn. The regularization result is the most difficult. On Cn it is easy to regularize
using convolutions. With some care, one can in the global (projective) case glue
together local regularizations to obtain a global one. See [23] for a general result
and [11] for a relatively simple argument applicable in our setting.

In the non-Archimedean case, we are not aware of any workable a priori
definition of PSH.Lan/. Chambert-Loir and Ducros [22] have a notion of forms and
currents on Berkovich spaces, but it is unclear if it gives the right objects for the
purposes of the theorem above. Instead, we prove the following result:

Theorem 7.2. For any SNC model X , the restriction of the dual complex�X � Xan

of the set of model metrics on Lan forms an equicontinuous family.

This is proved using a rather subtle argument, involving intersection numbers on
toroidal models dominating X . It would be interesting to have a different proof. At
any rate, Theorem 7.2 allows us to define PSH.Lan/ as the set of usc singular metrics
� satisfying, for every sufficiently large SNC model X ,

(i) .� � �0/ ı rX 	 � � �0 and
(ii) the restriction of � to �X is a uniform limit of a sequence �mj�X , where each

�m is a semipositive model metric.

Here �0 is a fixed model metric, determined by some model dominated by X . The
map rX W Xan ! �X � Xan is a natural retraction. Since � is usc, condition
(i) implies that � D �0ClimX .���0/ırX , so that � is determined by its restrictions
to all dual complexes.
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With this definition, the compactness of PSH.Lan/=R follows from Theorem 7.2
and Ascoli’s theorem. Regularization, however, is quite difficult to show. We are not
aware of any procedure that would replace convolution in the complex case. Instead
we use algebraic geometry. Here is an outline of the proof.

Fix � 2 PSH.Lan/. For any SNC model X , � naturally induces a model
metric �X . The semipositivity of � implies that the net .�X /X indexed by the
collection of (isomorphism classes of) SNC models decreases to �. Unfortunately,
except in the curve case n D 1, �X has no reason to be semipositive; this reflects
the fact that the pushforward of a nef line bundle may fail to be nef. We address this
by defining  X as the supremum of all semipositive (singular) metrics dominated
by �X . We then show that  X is continuous and can be uniformly approximated by
a sequence . X ;m/1m of semipositive model metrics. From this data it is not hard to
produce a decreasing net of semipositive model metrics converging to �.

Let us say a few words on the construction of the semipositive model metrics
�X ;m since this is a key step in the paper [14]. For simplicity assume that L is base
point free and that �X is associated with a line bundle L (rather than an R-line
bundle) on X . Let am be the base ideal of mL, cut out by the global sections; it
is cosupported on the special fiber X0. The sequence .am/m is a graded sequence
in the sense that al � am � alCm. Each am naturally defines a semipositive model
metric  X ;m on Lan. The fact that  X ;m converges uniformly to  X translates into a
statement that the graded sequence .am/m is “almost” finitely generated. This in turn
is proved using multiplier ideals and ultimately reduces to the Kodaira vanishing
theorem; to apply the latter, it is crucial to work in residue characteristic zero.

The argument above proves that any � 2 PSH.Lan/ is the limit of a decreasing net
of semipositive model metrics. When � is continuous, the convergence is uniform
by Dini’s theorem, and we can use the sup-norm to extract a decreasing sequence
of model metrics converging to �. In the general case, the Monge–Ampère capacity
developed in [13, § 4] (and modeled on [8, 33]) can similarly be used to extract a
convergent sequence from a net.

8 Energy

In the complex case, the (Aubin–Mabuchi) energy functional is defined as follows.
Fix a smooth semipositive reference metric �0 and set

E.�/ WD 1

nC 1
nX

jD0

Z

Xan
.� � �0/.ddc�/j ^ .ddc�0/

n�j: (1)

for any smooth metric �. Here .ddc�/j ^ .ddc�0/
n�j is a mixed Monge–Ampère

measure. It is a positive measure if � is semipositive.



The Non-Archimedean Monge–Ampère Equation 39

In the non-Archimedean case, mixed Monge–Ampère measures can be defined
using intersection theory when � and �0 are model metrics, and the energy of � is
then defined exactly as above.

For two smooth/model metrics � and  we have

E.�/ � E. / D 1

nC 1
nX

jD0

Z

Xan
.� �  /.ddc�/j ^ .ddc /n�j: (2)

This is proved using integration by parts in the complex case and follows from basic
intersection theory in the non-Archimedean case.

We can draw two main conclusions from (2). First, the derivative of the energy
functional is the Monge–Ampère operator, in the sense that

d

dt
E.� C tf /

ˇ̌
ˇ̌
tD0
D
Z

Xan
f MA.�/ (3)

for a smooth/model metric � on Lan and a smooth/model function f on Xan.
Second, E. / 	 E.�/ when  	 � are semipositive. It then makes sense to set

E.�/ WD inffE. / j  	 �;  a semipositive smooth/model metric on Lang:

for any singular semipositive metric � 2 PSH.Lan/. The resulting functional

E W PSH.Lan/! Œ�1;1/

has many good properties: E is concave, monotonous, and satisfies E.� C c/ D
E.�/C c for c 2 R. Further, E is usc and continuous along decreasing nets.

The energy functional singles out a class E1.Lan/ of metrics with finite energy,
E.�/ > �1. This class has good properties. In particular, one can (with some
effort) define mixed Monge–Ampère measures .ddc�/j ^ .ddc /n�j for �; 2
E1.Lan/, and (1) continues to hold.

Let us now go back to the variational approach to solving the Monge–Ampère
equation. Fix a positive measure  on Xan of mass .Ln/. In the complex case
we assume that  is absolutely continuous with respect to Lebesgue measure,
with density in Lp for some p > 1. In the non-Archimedean case we assume
that  is supported on some dual complex. In both cases, one can show that the
functional � ! R

.� � �0/ is (finite and) continuous on PSH.Lan/, where �0 is
the same reference metric as in (1). Thus the functional FWPSH.Lan/! Œ�1;1/
defined by

F.�/ WD E.�/ �
Z
.� � �0/
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is upper semicontinuous. It follows from (2) that F does not depend on the choice
of reference metric �0. We also have F.� C c/ D F.�/ for � 2 PSH.Lan/,
c 2 R. Thus F descends to a usc functional on the quotient space PSH.Lan/=R. By
Theorem 7.1, the latter space is compact, so we can find � 2 PSH.Lan/ maximizing
F. It is clear that � 2 E1.Lan/, so the mixed Monge–Ampère measures of � and
�0 are well defined. However, equation (3) no longer makes sense, since there is no
reason for the metric � C tf to be semipositive for t ¤ 0. Therefore, it is not clear
that MA.�/ D , as desired. In the next section, we explain how to get around this
problem.

9 Envelopes, Differentiability, and Orthogonality

We define the psh envelope of a (possibly singular) metric  on Lan by

P. / WD supf� 2 PSH.Lan/ j � �  g�:

As before, �� denotes the usc regularization of a singular metric �. In all cases, we
need to consider,  will be the sum of a metric in E1.Lan/ and a continuous function
on Xan. In particular,  is usc, P. / 2 E1.Lan/ and P. / �  .

This envelope construction was in fact already mentioned at the end of Sect. 7 as
it plays a key role in the regularization theorem. The psh envelope is an analogue of
the convex hull; see Fig. 1.

The key fact about the psh envelope is that the composition EıP is differentiable
and that .E ı P/0 D E0 ı P. More precisely, we have

Theorem 9.1. For any � 2 E1.Lan/ and f 2 C0.Xan/, the function t 7! E.P.�Ctf //
is differentiable at t D 0, with derivative d

dt E.� C tf /jtD0 D
R

f MA.�/.

Granted this result, let us show how to solve the Monge–Ampère equation. Pick
� 2 E1.Lan/ that maximizes F.�/ D E.�/ � R .� � �0/ and consider any f 2
C0.Xan/. For any t 2 R we have

E.P.� C tf // �
Z
.� C tf � �0/ � E.P.� C tf // �

Z
.P.� C tf / � �0/

� E.�/ �
Z
.� � �0/:

Since the left-hand side is differentiable at t D 0, the derivative must be zero, which
amounts to

R
f MA.�/�R f D 0. Since f 2 C0.Xan/ was arbitrary, this means that

MA.�/ D , as desired.
The proof of this differentiability results proceeds by first reducing to the case

when � and f are continuous. A key ingredient is then
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Fig. 1 The convex hull P.f /
of a continuous function f of
one variable. Note that P.f /
is affine, i.e., P.f /00 D 0

where P.f / ¤ f

Theorem 9.2. For any continuous metric � on Lan we have

Z

Xan
.� � P.�//MA.P.�// D 0: (4)

In other words, the Monge–Ampère measure MA.P.�// is supported on the locus
P.�/ D �. A version of this for functions of one variable is illustrated in Fig. 1.

To prove this result, we can reduce to the case when � is a smooth/model
metric. In the complex case, Theorem 9.2 was proved by Berman and the first
author in [5] using the pluripotential theoretic technique known as “balayage.” In
the non-Archimedean setting, Theorem 9.2 is deduced in [13] from the asymptotic
orthogonality of Zariski decompositions in [12] and is for this reason called the
orthogonality property. The assumption in Theorem 5.1 that the variety X be defined
over a smooth k-curve is used exactly in order to apply the result from [12].

The solution to the non-Archimedean Monge–Ampère equation MA.�/ D 

can be made slightly more explicit in the case when the support of  is a singleton,
 D dL ıx, where dL WD .Ln/ and x 2 Xan belongs to some dual complex; such
points x are known as quasimonomial or Abhyankar points.

The fiber Lan
x of Lan above x 2 Xan is isomorphic to the Berkovich affine line over

the complete residue field H.x/. Fix any nonzero y 2 Lan
x and set

�x WD supf� 2 PSH.Lan/ j kyk� 	 1g:

By Boucksom et al. [13, Proposition 8.6], MA.�x/ is supported on x, so
MA.�x/ D dL ıx. It would be interesting to find an example of a divisorial point
x 2 Xan such that �x is not a model function.

10 Curves

The disadvantage of the variational approach to the Monge–Ampère equation is that
it gives very little control on the solution beyond continuity. Here we shall make
the solution more concrete in the case of curves; the next section deals with toric
varieties.

Thus assume that X is a smooth projective curve over K. In this case, the Monge–
Ampère operator (which one would normally refer to as the Laplacian) is linear: if
�i is a metric on Li, i D 1; 2, then MA.�1C�2/ D MA.�1/CMA.�2/. Furthermore,
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as we shall see, the Monge–Ampère operator is naturally defined on any singular
semipositive metric on Lan, for an ample line bundle L, and we can solve MA.�/ D
 for any positive measure  of mass deg L.

Let us first explain this in the complex case; Xan is then a compact Riemann
surface. Fix a smooth metric �0 on Lan. The curvature form !0 WD ddc�0 is a volume
form of mass deg L. A singular metric � on Lan is then semipositive iff ' WD � � �0
is an !0-psh function, that is, a locally integrable function ' that is locally the sum of
a smooth function and a psh function, and such that !0Cddc' is a positive measure.
We then set MA.�/ WD !0 C ddc�; this definition does not depend on the choice
of �0.

Now we explain how to solve the equation MA.�/ D  for any positive measure
 of mass dL WD deg L. Writing � D �0C' as above, we must solve ddc' D �!0,
where !0 WD ddc�0. It suffices to do this when  D dLıx for some x 2 Xan: indeed,
if we normalize the solution 'x to ddc'x D  � dLıx by

R
Xan 'x !0 D 0, then the

function ' defined by '.y/ WD d�1
L

R
Xan 'x.y/ d.x/ satisfies ddc' D !0� and

is normalized by
R

Xan ' !0 D 0.
The function 'x can be “physically” interpreted as the voltage (suitably normal-

ized) when putting a charge of CdL at the point x and a total charge of �dL spread
out according to the measure !0. Mathematically, Perron’s method describes it as
the supremum of all !0-subharmonic functions ' on Xan satisfying

R
Xan ' !0 D 0

and ' � dL log jzj C O.1/, where z is a local coordinate at x.
Now we consider the non-Archimedean case. As before, let us assume that K is

a discretely valued field of residue characteristic zero, even though this is not really
necessary in the one-dimensional case.3

The main point is that any Berkovich curve has the structure of a generalized4

metric graph. We will not describe this in detail, but here is the idea. The dual graph
�X of any SNC model X is a connected, one-dimensional simplicial complex. As
before, we view it as a subset of Xan. It carries a natural integral affine structure,
inducing a metric. If X 0 is an SNC model dominating X (in the sense that the
canonical birational map X Ü X 0 is a morphism), then �X is a subset of �X 0
and the inclusion �X ! �X 0 is an isometry. There is a also a (deformation)
retraction rX W Xan ! �X , and Xan ' lim �X �X . In this way, the metrics on the
dual complexes induce a generalized metric on Xan.

The structure of each �X and of Xan as metric graphs allows us to define a
Laplacian on these spaces, by combining the real Laplacian on segments and the
combinatorial Laplacian at branch points (and endpoints). This Laplacian allows us
to understand both semipositive singular metrics and the Monge–Ampère operator.

Namely, fix a model metric �0 on Lan. It is represented by a Q-line bundle on
some SNC model X .0/. The measure !0 WD ddc�0 is supported on the vertices
of �X .0/ . Now, a singular metric � is semipositive iff for every SNC model X
dominating X .0/, the restriction of the function � � �0 to �X is a !0-subharmonic

3Indeed, Thuillier [47] systematically develops a potential theory on Berkovich curves in a very
general setting.
4This means that some distances may be infinite.
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function in the sense that �..� � �0/j�X / D X � !0, where X is a positive
measure on �X of mass dL. In this case, there further exists a unique measure  on
Xan of mass dL such that .rX /� D X for all X , and we have MA.�/ D .

To solve the equation MA.�/ D  for a positive measure of mass dL, it suffices
by linearity to treat the case  D dLıx for a point x 2 Xan. In this case, the function
' WD � � �0 will be locally constant outside the convex hull of fxg [ �X .0/ . The
latter is essentially a finite metric graph on which we need to find a function whose
Laplacian is equal to dLıx � !0. This can be done in a quite elementary way.

An interesting example of semipositive metrics, both in the complex and non-
Archimedean case, comes from dynamics [51]. Suppose f W .X;L/ � is a polarized
endomorphism of degree � > 1. In other words, f W X ! X is an endomorphism and
f �L is linearly equivalent to �L. Then there exists a unique canonical metric �can on
Lan, satisfying f �� D ��. This metric is continuous and semipositive but usually
not a model metric.

As a special case, suppose X is an elliptic curve and that f is the map given
by multiplication by �. In the complex case, Xan ' C=ƒ is a torus and can WD
MA.�can/ is given by a multiple of Haar measure on Xan. In the non-Archimedean
case, there are two possibilities. If X has good reduction over Spec R, then can is
a point mass. Otherwise, can is proportional to Lebesgue measure on the skeleton
Sk.Xan/, a subset homeomorphic to a circle. A similar description of the measure
can in the case of higher-dimensional abelian varieties is given in [29].

11 Toric Varieties

For general facts about toric varieties, see [18, 27, 36]. In this section we briefly
describe how the complex and non-Archimedean points of view elegantly come
together in the toric setting and translate into statements about convex functions
and the real Monge–Ampère operator. As before, we only consider the non-
Archimedean field K D k..t// with char k D 0; however, most of what we say
here should be true in a more general context: see [30].

Let M ' Zn be a free abelian group, N its dual, and let T D Spec KŒM� be the
corresponding split K-torus. A polarized toric variety .X;L/ is then determined by
a rational polytope � � MR. The variety X is described by the normal fan to � in
NR and the points of M \ � are in 1–1 correspondence with equivariant sections
of L; we write �u for the section of L associated with u 2 M. This description is
completely general and holds over any field as well as over Z.

There is also a “tropical” space Xtrop associated with X. As a topological space, it
is compact and contains NR as an open dense subset.5 For any valued field K, there

5In our setting, Xtrop can be identified with the (moment) polytope � in such a way that NR

corresponds to the interior of�, but this identification does not preserve the affine structure on NR.
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is a tropicalization map trop W Xan ! Xtrop, where Xan refers to the analytification
with respect to the norm on K. The inverse image of NR is the torus Tan.

There is a natural correspondence between equivariant metrics on Lan and
functions on NR. Let � is an equivariant metric on Lan. For every u 2 M, �u is a
nonvanishing section of L on T so � � log j�uj defines a function on Tan that is
constant on the fibers of the tropicalization map. In particular, picking u D 0, we
can write

� � log j�0j D g ı trop (5)

for some function g on NR. Conversely, given a function g on NR, (5) defines an
equivariant metric on the restriction of Lan to Tan.

We now go from the torus T to the polarized variety .X;L/. After replacing L by
a multiple, we may assume that all the vertices of � belong to M. Set

�� WD max
u2� log j�uj:

This is a semipositive, equivariant model metric on Lan. Its restriction to Tan

corresponds to the homogeneous, nonnegative, convex function

g� WD max
u2� u

on NR. In general, an equivariant singular metric � on Lan corresponds to a convex
function g on NR such that g � g� C O.1/. It is bounded iff g � g� is bounded
on NR.

The real Monge–Ampère measure of any convex function g on NR is a well-
defined positive measure MAR.g/ on NR (see, e.g., [46]). When g D g�CO.1/, its
total mass is given by

Z

NR

MAR.g/ D Vol.�/ D .Ln/

nŠ
;

where the last equality follows from [27, p. 111].
We now wish to relate the real Monge–Ampère measure of g and the Monge–

Ampère measure of the corresponding semipositive metric � on Lan.
First consider the non-Archimedean case, in which there is a natural embedding

j W NR ! Tan � Xan given by monomial valuations that sends v 2 NR to the norm

X

u2M

auu 2 KŒM� 7! max
u2M
fjauj exp.�hu; vi/g:

In particular, j.0/ D xG, the Gauss point of the open T-orbit.
If g is a convex function on NR with g D g�CO.1/, and if � is the corresponding

continuous semipositive metric on L, then [18, Theorem 4.7.4] asserts that

MA.�/ D nŠ j� MAR.g/:
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For a compactly supported positive measure � on NR of mass .Ln/, solving the
Monge–Ampère equation MA.�/ D j�.�/ therefore amounts to solving the real
Monge–Ampère equation MAR.g/ D �=nŠ. This can be done explicitly when � is a
point mass, say, supported at v0 2 NR. Indeed, the function gv0 W N ! R defined by
g D g�.��v0/ is convex and satisfies g D g�CO.1/. Further, for every point v ¤ v0
there exists a line segment in NR containing v in its interior and on which g is affine.
This implies that MAR.g/ is supported at v0. As a consequence, the corresponding
continuous metric � on Lan satisfies MAR.�/ D .Ln/ıj.u0/.

This solution can be shown to tie in well with the construction at the end
of Sect. 9, but is of course much more explicit. For example, when u0 2 NQ, so
that j.u0/ 2 Xan is divisorial, the function gu0 is Q-piecewise linear so that the
corresponding metric � is a model metric.

Finally we consider the complex case. In this case we cannot embed NR in Tan.
However, the preimage of any point v 2 NR under the tropicalization is a real torus
of dimension n in Tan on which the multiplicative group .S1/n acts transitively. To
any compactly supported positive measure � on NR of mass .Ln/=nŠwe can therefore
associate a unique measure  on Tan, still denoted  WD j��, that is invariant under
the action of .S1/n and satisfies trop�  D �.

If � is an equivariant semipositive metric on Lan, corresponding to a convex
function g on NR, we then have

MA.�/ D nŠ j� MAR.g/:

For .S1/n-invariant measures  on Lan of mass .Ln/, solving the complex Monge–
Ampère equation MA.�/ D  thus reduces to solving the real Monge–Ampère
equation MAR.g/ D 1

nŠ trop� .

12 Outlook

In this final section we indicate some possible extensions of our work and make a
few general remarks.

First of all, it would be nice to have a local theory for semipositive singular
metrics. Indeed, while the global approach in [13, 14] works well for the Calabi–Yau
problem, it has some unsatisfactory features. For example, it is not completely trivial
to prove that the Monge–Ampère operator is local in the sense that if �1; �2 are two
(say) continuous semipositive metrics that agree on an open subset U � Xan, then
MA.�1/ D MA.�2/ on U. We prove this in [13] using the Monge–Ampère capacity.
Still, it would be desirable to say that the restriction of a semipositive metric to (say)
an open subset of Xan remains semipositive!

In contrast, in the complex case, the classical approach is local in nature. Namely,
one first defines and studies psh functions on open subsets of Cn and then defines
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singular semipositive metrics as global analogues. By construction, the Monge–
Ampère operator is a local (differential) operator.6

In a general non-Archimedean setting, Chambert-Loir and Ducros [22] (see
also [31, 32]) define psh functions as continuous functions ' such that d0d00' is
a positive closed current (in their sense), for suitable operators d0 and d00 analogous
to their complex counterparts and modeled on notions due to Lagerberg [41]. While
this leads to a very nice theory, that moreover works for general Berkovich spaces,
the crucial compactness and regularization results are so far missing. At any rate,
the tropical charts used in [22] may be a good substitute for dual complexes of SNC
models.

Going back to the projective setting, there are several open questions and
possible extensions, even in the case of a discretely valued ground field of residue
characteristic zero.

First, when solving the Monge–Ampère equation, we needed to assume that
the variety X was obtained by base change from a variety over a k-curve. This
assumption was made in order to use the orthogonality result in [12], but is
presumably redundant.

Second, one should be able to solve the Monge–Ampère equation MA.�/ D
 for more general measures . In the complex setting, this is done in [24, 34]
for non-pluripolar measures . The analogous result should be valid in the non-
Archimedean setting, too, although some countability issues seem to require careful
attention. Having such a general result would allow for a nice Legendre duality, as
explored in [4, 6] in the complex case.

Third, one could try to get more specific information about the solution. We
already mentioned at the end of Sect. 9 that we don’t know whether the solution
to the equation MA.�/ D dL x is a model function for x a divisorial point (and
dL D .Ln/). In a different direction, one could consider the case when X is a
Calabi–Yau variety, in the sense that KX ' OX . Then there exists a canonical
subset Sk.X/ � Xan, the Kontsevich–Soibelman skeleton, see [39, 44, 45]. It is
a subcomplex of the dual complex of any SNC model and comes equipped with
an integral affine structure, inducing a volume form on each face. One can solve
MA.�/ D , for linear combinations of these volume forms, viewed as measures on
Xan. Can we say anything concrete about the solution �, as in the case of maximally
degenerate abelian varieties considered in [43]?

It would obviously be interesting to work over other types of non-Archimedean
fields, such as Qp. Here there are several challenges. First, we systematically
use SNC models, which are only known to exist in residue characteristic zero
(except in low dimensions). It is possible that the tool of SNC models can,
with some additional effort, be replaced by alterations, tropical charts, or other
methods. However, we also crucially use the assumption of residue characteristic

6However, one also needs to verify that the Monge–Ampère operator is local for the plurifine
topology. This is nontrivial in both the complex and non-Archimedean case.



The Non-Archimedean Monge–Ampère Equation 47

zero when applying the vanishing theorems that underlie the regularization theorem
for singular semipositive metrics. Here some new ideas are needed.

A simpler situation to handle is that of a trivially valued field. This is explored
in [17] and can be briefly explained as follows. Let k be any field of characteristic
zero, equipped with the trivial norm. Let .X;L/ be a polarized variety over k. In
this setting, the notion of model metrics and model functions seemingly does not
take us very far, as the only model of X is X itself! Instead, the idea is to use
a non-Archimedean field extension. Set K D k..t//, XK WD X ˝k K, etc. The
multiplicative group G WD Gm;k acts on Xan

K and Xan can be identified with the set
of G-equivariant points in Xan

K . Similarly, singular semipositive metrics on Lan are
defined as G-invariant singular semipositive metrics on Lan

K . In this way, the main
results about PSH.Lan/ follow from the corresponding results about PSH.Lan

K / and
the same is true for the solution of the Monge–Ampère equation.

A primary motivation for studying the trivially valued case, at least in the case
k D C, is that the space of singular semipositive metrics on Lan naturally sits “at
the boundary” of the space of positive (Kähler) metrics on the holomorphic line
bundle L. As such, it can be used to study questions on K-stability and may be
useful for the study of the existence of constant scalar curvature metrics, see [15, 16].
A different scenario where a complex situation degenerates to a non-Archimedean
one occurs in [35].

In yet another direction, one could try to consider line bundles that are not
necessarily ample, but rather big and nef, or simply big. In the complex case this
was done in [7, 25]. One motivation for such a generalization is that it is invariant
under birational maps and would hence allow us to study singular varieties.

Finally, it would be interesting to have transcendental analogues. Indeed, in the
complex case, one often starts with a Kähler manifold X together with a Kähler
class !, rather than a polarized pair .X; !/. A notion of Kähler metric is proposed
in [40, 49], but it is not clear whether or not this plays the role of a (possibly)
transcendental Kähler metric.
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Convergence Polygons for Connections
on Nonarchimedean Curves

Kiran S. Kedlaya

In classical analysis, one builds the catalog of special functions by repeatedly
adjoining solutions of differential equations whose coefficients are previ-
ously known functions. Consequently, the properties of special functions depend
crucially on the basic properties of ordinary differential equations. This naturally
led to the study of formal differential equations, as in the seminal work of Turrittin
[165]; this may be viewed retroactively as a theory of differential equations over a
trivially valued field. After the introduction of p-adic analysis in the early twentieth
century, there began to be corresponding interest in solutions of p-adic differential
equations; however, aside from some isolated instances (e.g., the proof of the
Nagell–Lutz theorem; see Theorem 3.4), a unified theory of p-adic ordinary
differential equations did not emerge until the pioneering work of Dwork on the
relationship between p-adic special functions and the zeta functions of algebraic
varieties over finite fields (e.g., see [57, 58]). At that point, serious attention began
to be devoted to a serious discrepancy between the p-adic and complex-analytic
theories: on an open p-adic disc, a nonsingular differential equation can have a
formal solution which does not converge in the entire disc (e.g., the exponential
series). One is thus led to quantify the convergence of power series solutions of
differential equations involving rational functions over a nonarchimedean field; this
was originally done by Dwork in terms of the generic radius of convergence [59].
This and more refined invariants were studied by numerous authors during the half-
century following Dwork’s initial work, as documented in the author’s book [92].

At around the time that [92] was published, a new perspective was introduced
by Baldassarri [13] (and partly anticipated in prior unpublished work of Baldassarri
and Di Vizio [15]) which makes full use of Berkovich’s theory of nonarchimedean
analytic spaces. Given a differential equation as above, or more generally a
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connection on a curve over a nonarchimedean field, one can define an invariant
called the convergence polygon; this is a function from the underlying Berkovich
topological space of the curve into a space of Newton polygons, which measures
the convergence of formal horizontal sections and is well-behaved with respect to
both the topology and the piecewise linear structure on the Berkovich space. One can
translate much of the prior theory of p-adic differential equations into (deceptively)
simple statements about the behavior of the convergence polygon; this process
was carried out in a series of papers by Poineau and Pulita [132, 134, 135, 140],
as supplemented by work of this author [97] and upcoming joint work with
Baldassarri [16].

In this paper, we present the basic theorems on the convergence polygon,
which provide a number of combinatorial constraints that may be used to extract
information about convergence of formal horizontal sections at one point from
corresponding information at other points. We include numerous examples to
illustrate some typical behaviors of the convergence polygon. We also indicate
some relationships between convergence polygons, index formulas for de Rham
cohomology, and the geometry of finite morphisms, paying special attention to the
case of cyclic p-power coverings with p equal to the residual characteristic. This case
is closely linked with the Oort lifting problem for Galois covers of curves in
characteristic p, and some combinatorial constructions arising in that problem turn
out to be closely related to convergence polygons. There are additional applications
to the study of integrable connections on higher-dimensional nonarchimedean
analytic spaces, both in the cases of zero residual characteristic [94] and positive
residual characteristic [95], but we do not pursue these applications here.

To streamline the exposition, we make no attempt to indicate the techniques of
proof underlying our main results; in some cases, quite sophisticated arguments are
required. We limit ourselves to saying that the basic tools are developed in a self-
contained fashion in [92] (but without reference to Berkovich spaces), and the other
aforementioned results are obtained by combining results from [92] in an intricate
manner. (Some exceptions are made for results which do not occur in any existing
paper; their proofs are relegated to an Appendix.) We also restrict generality by
considering only proper curves, even though many of the results we discuss can be
formulated for open curves, possibly of infinite genus.

At the suggestion of the referee, we include (see Appendix 2) a thematic
bibliography in the style of [147] listing additional references germane to the topics
discussed in the article. We also include references for the following topics which
we have omitted out of space considerations, even though in practice they are
thoroughly entangled with the proofs of the results which we do mention.

• Decomposition theorems, which give splittings of connections analogous to the
factorizations of polynomials given by various forms of Hensel’s lemma.

• Monodromy theorems, which provide structure theorems for connections at the
expense of passing from a given space to a finite cover.

• Logarithmic growth, i.e., secondary terms in the measurement of convergence of
horizontal sections.
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1 Newton Polygons

As setup for our definition of convergence polygons, we fix some conventions
regarding Newton polygons.

Definition 1.1. For n a positive integer, let PŒ0; n� be the set of continuous functions
N W Œ0; n�! R satisfying the following conditions.

(a) We have N .0/ D 0.
(b) For i D 1; : : : ; n, the restriction of N to Œi � 1; i� is affine.

For i D 1; : : : ; n, we write hi W PŒ0; n� ! R for the function N 7! N .i/; we call
hi.N / the i-th height of N . The product map h1 � � � � � hn W PŒ0; n� ! R

n is a
bijection, using which we equip PŒ0; n� with a topology and an integral piecewise
linear structure. We sometimes refer to hn simply as h and call it the total height.

Definition 1.2. Let NPŒ0; n� be the subset of PŒ0; n� consisting of concave func-
tions. For i D 1; : : : ; n, we write si W PŒ0; n� ! R for the function N 7!
N .i/ � N .i � 1/; we call si.N / the i-th slope of N . For N 2 NPŒ0; n�, we have
s1.N / 	 � � � 	 sn.N /.
Definition 1.3. Let I 
 R be a closed interval. A function N W I ! NPŒ0; n� is
affine if it has the form N .t/ D N0 C tN1 for some N0;N1 2 PŒ0; n�. In this case,
we call N1 the slope of N . We say that N has integral derivative if N1.i/ 2 Z for
i D n and for each i 2 f1; : : : ; n � 1g such that for all t in the interior of I, N .t/ has
a change of slope at i. This implies that the graph of N1 has vertices only at lattice
points, but not conversely. (It would be natural to use the terminology integral slope,
but we avoid this terminology to alleviate confusion with Definition 1.2.)

2 PL Structures on Berkovich Curves

We next recall the canonical piecewise linear structure on a Berkovich curve
(e.g., see [9]).

Hypothesis 2.1. For the rest of this paper, let K be a nonarchimedean field, i.e., a
field complete with respect to a nonarchimedean absolute value; let X be a smooth,
proper, geometrically connected curve over K; let Z be a finite set of closed points
of X; and put U D X � Z.

Convention 2.2. Whenever we view Qp as a nonarchimedean field, we normalize
the p-adic absolute value so that jpj D p�1.

Remark 2.3. Recall that the points of the Berkovich analytification Xan may be
identified with equivalence classes of pairs .L; x/ in which L is a nonarchimedean
field over K and x is an element of X.L/, where the equivalence relation is generated
by relations of the form .L; x/ � .L0; x0/ where x0 is the restriction of x along a
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continuous K-algebra homomorphism L ! L0. As is customary, we classify points
of Xan into types 1, 2, 3, 4 (e.g., see [97, Proposition 4.2.7]). To lighten notation, we
identify Z with Zan, which is a finite subset of Xan consisting of type 1 points.

Definition 2.4. For � > 0, let x� denote the generic point of the disc jzj � � in P
1
K .

A segment in Xan is a closed subspace S homeomorphic to a closed interval for
which there exist an open subspace V of Xan, a choice of values 0 � ˛ < ˇ � C1,
and an isomorphism of V with fz 2 P

1;an
K W ˛ < jzj < ˇg identifying the interior of

S with fx� W � 2 .˛; ˇ/g. A virtual segment in Xan is a connected closed subspace
whose base extension to some finite extension of K is a disjoint union of segments.

A strict skeleton in Xan is a subspace � containing Zan equipped with a
homeomorphism to a finite connected graph, such that each vertex of the graph
corresponds to either a point of Z or a point of type 2, and each edge corresponds to
a virtual segment, and Xan retracts continuously onto � . Using either tropicalizations
or semistable models, one may realize Xan as the inverse limit of its strict skeleta;
again, see [9] for a detailed discussion.

Definition 2.5. Note that

�.U/ D 2 � 2g.X/ � length.Z/;

so �.U/ � 0 if and only if either g.X/ 	 1 or length.Z/ 	 2. In this case, there
is a unique minimal strict skeleton in Xan, which we denote �X;Z . Explicitly, if K is
algebraically closed, then the underlying set of �X;Z is the complement in Xan of the
union of all open discs in Uan; for general K, the underlying set of �X;Z is the image
under restriction of the minimal strict skeleton in Xan

L for L a completed algebraic
closure of K. In particular, if K0 is the completion of an algebraic extension of K,
then the minimal strict skeleton in Xan

K0 is the inverse image of �X;Z in Xan
K0 . However,

the corresponding statement for a general nonarchimedean field extension K0 of K
is false; see Definition 8.5 for a related phenomenon.

3 Convergence Polygons: Projective Line

We next introduce the concept of the convergence polygon associated with a
differential equation on P

1.

Hypothesis 3.1. For the rest of this paper, we assume that the nonarchimedean
field K is of characteristic 0, as otherwise the study of differential operators on
K-algebras has a markedly different flavor (for instance, any derivation on a ring R
of characteristic p > 0 has the subring of p-th powers in its kernel). By contrast,
the residue characteristic of K, which we call p, may be either 0 or positive unless
otherwise specified (e.g., if we refer to Qp, then we implicitly require p > 0).
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Hypothesis 3.2. For the rest of Sect. 3, take X D P
1
K , assume1 2 Z, and consider

the differential equation

y.n/ C fn�1.z/y.n�1/ C � � � C f0.z/y D 0 (1)

for some rational functions f0; : : : ; fn�1 2 K.z/ with poles only within Z. If
Z D f1g, let m be the dimension of the K-vector space of entire solutions of (1);
otherwise, take m D 0.

Definition 3.3. For any nonarchimedean field L over K and any x 2 U.L/, let Sx be
the set of formal solutions of (1) with y 2 L�z � x�. By interpreting (1) as a linear
recurrence relation of order n on the coefficients of a power series, we see that every
list of n initial conditions at z D x corresponds to a unique formal solution; that is,
the composition

Sx ! L�z � x�! L�z � x�=.z � x/n

is a bijection. In particular, Sx is an L-vector space of dimension n.

Theorem 3.4 (p-Adic Cauchy Theorem). Each element of Sx has a positive radius
of convergence.

Proof. This result was originally proved by Lutz [106, Théorème IV] somewhat
before the emergence of the general theory of p-adic differential equations; Lutz
used it as a lemma in her proof of the Nagell–Lutz theorem on the integrality of
torsion points on rational elliptic curves. One can give several independent proofs
using the modern theory; see [92, Propositions 9.3.3, 18.1.1]. ut
Definition 3.5. For i D 1; : : : ; n � m, choose si.x/ 2 R so that e�si.x/ is the
supremum of the set of � > 0 such that Uan contains the open disc jz�xj < � and Sx

contains n � iC 1 linearly independent elements convergent on this disc. Note that
this set is nonempty by Theorem 3.4 and bounded above by the definition of m, so
the definition makes sense. In particular, s1.x/ is the joint radius of convergence of
all of the elements of Sx, while sn�m.x/ is the maximum finite radius of convergence
of a nonzero element of Sx.

Since s1.x/ 	 � � � 	 sn�m.x/, the si.x/ are the slopes of a polygon Nz.x/ 2
NPŒ0; n�m�, which we call the convergence polygon of (1) at x. (We include z in the
notation to remind ourselves that Nz depends on the choice of the coordinate z of X.)
This construction is compatible with base change: if L0 is a nonarchimedean field
containing L and x0 is the image of x in U.L0/, then Nz.x/ D Nz.x0/. Consequently,
we obtain a well-defined function Nz W Uan ! NPŒ0; n � m�.

Definition 3.6. Suppose that Z ¤ f1g. By definition, e�s1.Nz.x// can never exceed
the largest value of � for which the disc jz� xj < � does not meet Z. When equality
occurs, we say that (1) satisfies the Robba condition at x.
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Theorem 3.7. The function Nz W Uan ! NPŒ0; n � m� is continuous; more
precisely, it factors through the retraction of P1;an

K onto some strict skeleton � , and
the restriction of Nz to each edge of � is affine with integral derivative.

Proof. See [140] or [97] or [16]. ut
One can say quite a bit more, but for this it is easier to shift to a coordinate-free

interpretation, which also works for more general curves; see Sect. 5.

4 A Gallery of Examples

To help the reader develop some intuition, we collect a few illustrative examples of
convergence polygons. Throughout Sect. 4, retain Hypothesis 3.1.

Example 4.1. Take K D Qp, Z D f1g, and consider the differential equation
y0 � y D 0. The formal solutions of this equation with y 2 L�z � x� are the scalar
multiples of the exponential series

exp.z � x/ D
1X

iD0

.z � x/i

iŠ
;

which has radius of convergence p�1=.p�1/. Consequently,

s1.Nz.x// D 1

p � 1 log pI

in particular, Nz is constant on Uan.

In this next example, we illustrate the effect of changing Z on the convergence
polygon.

Example 4.2. Set notation as in Example 4.1, except now with Z D f0;1g. In this
case we have

s1.Nz.x// D max

�
� log jxj; 1

.p � 1/ log p

�
:

In particular, Nz factors through the retraction of P1;an
K onto the path from 0 to1.

For x 2 Uan, the Robba condition holds at x if and only if jxj � p�1=.p�1/.

Example 4.3. Take K D Qp, Z D f0;1g, and consider the differential equation
y0 � 1

p z�1y D 0. The formal solutions of this equation with y 2 L�z � x� are the
scalar multiples of the binomial series

1X

iD0

 
1=p

i

!
x�iCp�1 .z � x/i;
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which has radius of convergence p�p=.p�1/jxj. Consequently,

s1.Nz.x// D p

p � 1 log p � log jxj;

so again Nz factors through the retraction of P1;an
K onto the path from 0 to1. In this

case, the Robba condition holds nowhere.

Example 4.4. Assume p > 2, take K D Qp, Z D f0;1g, and consider the Bessel
differential equation (with parameter 0)

y00 C z�1y0 C y D 0:

This example was studied by Dwork [61], who showed that

s1.Nz.x// D s2.Nz.x// D max

�
� log jxj; 1

p � 1 log p

�
:

Again, Nz factors through the retraction of P
1;an
K onto the path from 0 to 1.

As in Example 4.2, for x 2 Uan, the Robba condition holds at x if and only if
jxj � p�1=.p�1/.

Our next example illustrates a typical effect of varying a parameter.

Example 4.5. Let K be an extension of Qp, take Z D f0;1g, and consider the
differential equation y0 � �z�1y D 0 for some � 2 K (the case � D 1=p being
Example 4.3). Then

s1.Nz.x// D cC 1

p � 1 log p � log jxj

where c is a continuous function of

c0 D minfj� � tj W t 2 ZpgI

namely, by [66, Proposition IV.7.3] we have

c D

8
ˆ̂<

ˆ̂:

log c0 if c0 	 1
� pm�1
.p�1/pm log pC 1

pmC1 log.pmc0/ if p�m�1 � c0 � p�m .m D 0; 1; : : : /
� 1

p�1 log p if c0 D 0.

In particular, the Robba condition holds everywhere if � 2 Zp and nowhere
otherwise. In either case, Nz factors through the retraction of P

1;an
K onto the path

from 0 to1.
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Example 4.6. Take K D Qp, Z D f1g, and consider the differential equation y0 �
aza�1y D 0 for some positive integer a not divisible by p (the case a D 1 being
Example 4.1). The formal solutions of this equation are the scalar multiples of

exp.za � xa/:

This series converges in the region where jza � xaj < p�1=.p�1/; consequently,

s1.Nz.x// D max

�
1

p � 1 log pC .a � 1/ log jxj; 1

a.p � 1/ log p

�
:

In this case, Nz factors through the retraction onto the path from xp�1=.p�1/ to1.

Example 4.7. Take K D C..t// (so p D 0), Z D f1g, and consider the differential
equation

y000 C zy00 C y D 0:
It can be shown that

s1.Nz.x// D max f0; log jxjg ; s2.Nz.x// D s3.Nz.x// D min

�
0;�1

2
log jxj

�
:

In this case, Nz factors through the retraction onto the path from x1 to 1. Note
that this provides an example where the slopes of Nz.x/ are not bounded below
uniformly on .P1K � Z/an; that is, as x approaches1, two linearly independent local
solutions have radii of convergence growing without bound, but these local solutions
do not patch together.

Example 4.8. Assume p > 2, take K D Qp, Z D f0; 1;1g, and consider the
Gaussian hypergeometric differential equation

y00 C .1 � 2z/

z.1 � z/
y0 � 1

4z.1 � z/
y D 0:

This example was originally studied by Dwork [58] due to its relationship with the
zeta functions of elliptic curves. Using Dwork’s calculations, it can be shown that

s1.Nz.x// D s2.Nz.x// D maxflog jxj;� log jxj;� log jx � 1jg:

In this case, Nz factors through the retraction from P
1;an
K onto the union of the paths

from 0 to1 and from 1 to1, and the Robba condition holds everywhere.

Remark 4.9. One can compute additional examples of convergence polygons asso-
ciated with first-order differential equations using an explicit formula for the radius
of convergence at a point, due to Christol–Pulita. This result was originally reported
in [36] but with an error in the formula; for a corrected statement, see [141,
Introduction, Théorème 5].
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5 Convergence Polygons: General Curves

We now describe an analogue of the convergence polygon in a more geometric
setting.

Hypothesis 5.1. Throughout Sect. 5, assume that �.U/ � 0, i.e., either g.X/ 	 1 or
length.Z/ 	 2. Let E be a vector bundle on U of rank n equipped with a connection
r W E ! E ˝OU 	U=K . As is typical, we describe sections of E in the kernel of r
as being horizontal.

Remark 5.2. For the results in this section, one could also allow X to be an analytic
curve which is compact but not necessarily proper. To simplify the discussion, we
omit this level of generality; the general results can be found in any of [16, 97, 132].

Definition 5.3. Let L be a nonarchimedean field containing K and choose x 2 U.L/,
which we identify canonically with a point of Uan

L . Since X is smooth, Uan
L contains

a neighborhood of x isomorphic to an open disc over L. Thanks to our restrictions
on X and Z, the union Ux of all such neighborhoods in Uan

L is itself isomorphic to an
open disc over L. The construction is compatible with base change in the following
sense: if L0 is a nonarchimedean field containing L, then Ux;L0 is the union of all
neighborhoods of x in Uan

L0 isomorphic to an open disc over L0. For each � 2 .0; 1�,
let Ux;� be the open disc of radius � centered at x within Ux (normalized so that
Ux;1 D Ux).

Let bOXL;x denote the completed local ring of XL at x; it is abstractly a power series
ring in one variable over L. Let Ex denote the pullback of E to bOXL;x, equipped with
the induced connection. One checks easily that Ex is a trivial differential module;
more precisely, the space ker.r; Ex/ is an n-dimensional vector space over L and the
natural map

ker.r; Ex/˝L bOXL;x ! Ex

is an isomorphism.
For i D 1; : : : ; n, choose si.x/ 2 Œ0;C1/ so that e�si.x/ is the supremum of

the set of � 2 .0; 1� such that Ex contains n � i C 1 linearly independent sections
convergent on Ux;�. Again, this set of such � is nonempty by Theorem 3.4. Since
s1.x/ 	 � � � 	 sn.x/, the si.x/ are the slopes of a polygon N .x/ 2 NPŒ0; n�, which
we call the convergence polygon of E at x. Again, the construction is compatible
with base change, so it induces a well-defined function N W Uan ! NPŒ0; n�.
Definition 5.4. For x 2 Uan, we say that E satisfies the Robba condition at x if N .x/
is the zero polygon.

We have the following analogue of Theorem 3.7.

Theorem 5.5. The function N W .X � Z/an ! NPŒ0; n� is continuous. More
precisely, there exists a strict skeleton � such that N factors through the retraction
of Xan onto � , and the restriction of N to each edge of � is affine with integral
derivative.
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Proof. See [132] or [97] or [16] (and Remark 5.6). ut
Remark 5.6. It is slightly inaccurate to attribute Theorem 5.5 to [132] or [16], as
the results proved therein are slightly weaker: they require an uncontrolled base
extension on K, which creates more options for the strict skeleton � . In particular,
Theorem 5.5 as stated implies that N is locally constant around any point of type 4,
which cannot be established using the methods of [132] or [16]; one instead requires
some dedicated arguments found only in [97]. These extra arguments are crucial for
the applications of Theorem 5.5 in the contexts described in [94, 95].

Remark 5.7. Suppose that X D P
1
K and 1 2 Z. Given a differential equation as

in (1), we can construct an associated connection E of rank n whose underlying
vector bundle is free on the basis e1; : : : ; en and whose action of r is given by

r.e1/ D f0.z/en

r.e2/ D f1.z/en � e1

:::

r.en�1/ D fn�2.z/en � en�2
r.en/ D fn�1.z/en � en�1:

A section of E is then horizontal if and only if it has the form ye1 C y0e2 C � � � C
y.n�1/en where y is a solution of (1). If length.Z/ 	 2, each of Nz and N can
be computed in terms of the other; this amounts to changing the normalization of
certain discs. In particular, the statements of Theorems 3.7 and 5.5 in this case are
equivalent.

If length.Z/ D 1, we cannot define N as above. However, if K is nontrivially
valued, one can recover the properties of Nz by considering N with Z replaced by
Z[fxg for some x 2 U.K/ with jxj sufficiently large (namely, larger than the radius
of convergence of any nonentire formal solution at 0). We refer to [16] for further
details.

Remark 5.8. One can extend Remark 5.7 by defining Nz in the case where X D P
1
K

and1 2 Z, and using Theorem 5.5 to establish an analogue of Theorem 3.7. With
this modification, we still do not define either N or Nz in the case where X D P

1
K

and Z D ;, but this case is completely trivial: the vector bundle E must admit a
basis of horizontal sections (see [16]).

Theorem 5.9. Suppose that x 2 � \ Uan is the generic point of a open disc D
contained in X and the Robba condition holds at x.

(a) If D \ Z D ;, then the restriction of E to D is trivial (i.e., it admits a basis of
horizontal sections).

(b) If D \ Z consists of a single point z at which r is regular, then the Robba
condition holds on D � fzg.
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Proof. Part (a) is a special case of the Dwork transfer theorem; see, for instance,
[92, Theorem 9.6.1]. Part (b) follows as in the proof of [92, Theorem 13.7.1]. ut
Remark 5.10. Theorem 5.9(b) is a variant of a result of Christol, which has
a slightly stronger hypothesis and a slightly stronger conclusion. In Christol’s
result, one must assume either that p D 0 or that p > 0, and the pairwise
differences between the exponents of r at z are not p-adic Liouville numbers (see
Example 7.19). One however gets the stronger conclusion that the “formal solution
matrix” of r at z converges on all of D. Both parts of Theorem 5.9 are examples
of transfer theorems, which can be viewed as transferring convergence information
from one disc to another.

Remark 5.11. Let k be the residue field of K. Suppose that X D P
1
K , r is regular

everywhere, and the reduction map from Z to P
1
k is injective. Then Theorem 5.9

implies that if the Robba condition holds at x1, then it holds on all of Uan. For
instance, this is the case for (the connection associated via Remark 5.7 to) the
hypergeometric equation considered in Example 4.8; more generally, it holds for
the hypergeometric equation

y00 � c � .aC bC 1/z
z.1 � z/

y0 � ab

z.1 � z/
y D 0

if and only if a; b; c 2 Zp (the case of Example 4.8 being a D b D 1=2; c D 1).
This example and Example 4.5, taken together, suggest that for a general differential
equation with one or more accessory parameters, the Robba condition at a fixed
point is likely to be of a “fractal” nature in these parameters. For some additional
examples with four singular points, see the work of Beukers [21].

Remark 5.12. One can also consider some modified versions of the convergence
polygon. For instance, one might take e�si.x/ to be the supremum of those � 2 .0; 1�
such that the restriction of E to Ux;� splits off a trivial submodule of rank at least
n� iC1; the resulting convergence polygons will again satisfy Theorem 5.5. It may
be that some modification of this kind can be used to eliminate some hypotheses on
p-adic exponents, as in Theorem 7.23.

6 Derivatives of Convergence Polygons

We now take a closer look at the local variation of convergence polygons. Through-
out Sect. 6, continue to retain Hypothesis 5.1.

Definition 6.1. For x 2 Xan, a branch of X at x is a local connected component
of X � fxg, that is, an element of the direct limit of 
0.U � fxg/ as U runs over
all neighborhoods of x in X. Depending on the type of x, the branches of X can be
described as follows.
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Type 1: A single branch.
Type 2: One branch corresponding to each closed point on the curve Cx (defined

over the residue field of K) whose function field is the residue field of H.x/.
Type 3: Two branches.
Type 4: One branch.

For each branch Et of X at x, by Theorem 5.5 we may define the derivative of N
along Et (away from x), as an element of PŒ0; n� with integral vertices; we denote this
element by @Et.N /. For x of type 1, we also denote this element by @x.N / since there
is no ambiguity about the choice of the branch. We may similarly define @Et.hi.N // 2
R for i D 1; : : : ; n, optionally omitting i in the case i D n; note that @Et.h.N // 2 Z.

Theorem 6.2. For z 2 Z, �@z.N / is the polygon associated with the Turrittin–
Levelt–Hukuhara decomposition of Ez (see [66, Chap. 4], [82, Sect. 11], or [92,
Chap. 7]). In particular, this polygon belongs to NPŒ0; n�, its slopes are all
nonnegative, and its height equals the irregularity Irrz.r/ of r at z.

Proof. See [133, Sect. 5.7] and [134, Sect. 3.6], or see [16]. ut
Corollary 6.3. For z 2 Z, N extends continuously to a neighborhood of z if and
only if r has a regular singularity at z (i.e., its irregularity at z equals 0). In
particular, N extends continuously to all of Xan if and only if r is everywhere
regular.

Remark 6.4. Using a similar technique, one can compute the asymptotic behavior
of N in a neighborhood of z 2 Z in terms of the “eigenvalues” occurring in
the Turrittin–Levelt–Hukuhara decomposition of Ez. For example, r satisfies the
Robba condition on some neighborhood of z if and only if r is regular at z with all
exponents in Zp.

Remark 6.5. In the complex-analytic setting, the decomposition of Ez does not typ-
ically extend to any nonformal neighborhood of z; this is related to the discrepancy
between local indices in the algebraic and analytic categories (see Remark 7.8).
Nonetheless, there are still some close links between the formal decomposition and
the asymptotic behavior of local solutions on sectors at z (related to the theory of
Stokes phenomena).

In the nonarchimedean setting, by contrast, the decomposition of Ez always lifts
to some nonformal neighborhood of z; this follows from a theorem of Clark [46],
which asserts (modulo some hypotheses as in Remark 7.18) that formal solutions
of a connection at a (possibly irregular) singular point always converge in some
punctured disc.

Theorem 6.6. Assume p D 0. For x 2 Uan and Et a branch of X at x not pointing
along �X;Z, we have @Et.N / � 0.

Proof. This requires somewhat technical arguments not present in the existing
literature; see Theorem A.6. ut
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Remark 6.7. In the setting of Theorem 6.6, the statement that @Et.h1.N // � 0

is equivalent to the Dwork transfer theorem (again see [92, Theorem 9.6.1]).
In general, Theorem 6.6 is deduced by relating @Et.N / to local indices, as discussed
in Sect. 7. This argument cannot work for p > 0 due to certain pathologies related
to p-adic Liouville numbers (see Remark 7.18). We are hopeful that one can use
a perturbation argument to deduce the analogue of Theorem 6.6 for p > 0, by
reducing to the case where N .x/ has no slopes equal to 0 and applying results of
[92] (especially [92, Theorem 11.3.4]); however, a proof along these lines was not
ready at the time of this writing.

Remark 6.8. By Theorem 5.5, for each x 2 Uan, there exist only finitely many
branches Et at x along which N has nonzero slope. If x is of type 1 or 4, there are in
fact no such branches. If x is of type 3, then the slopes along the two branches at x
add up to 0.

7 Subharmonicity and Index

Using the piecewise affine structure of the convergence polygon, we formulate
some additional properties, including local and global index formulas for de
Rham cohomology. The local index formula is due to Poineau and Pulita [135],
generalizing some partial results due to Robba [142, 143, 145, 146] and Christol–
Mebkhout [40–42, 44]. Unfortunately, in the case p > 0 one is forced to interact with
a fundamental pathology in the theory of p-adic differential equations, the effect of
p-adic Liouville numbers; consequently, the global formula we derive here cannot
be directly deduced from the local formula (see Remarks 7.14 and 7.18).

Hypothesis 7.1. Throughout Sect. 7, continue to retain Hypothesis 5.1, but assume
in addition that K is algebraically closed. (Without this assumption, one can still
formulate the results at the expense of having to keep track of some additional
multiplicity factors.)

Definition 7.2. For x 2 Uan, let .�N /x 2 PŒ0; n� denote the sum of @Et.N / over
all branches Et of X at x (oriented away from x); by Remark 6.8, this sum can only
be nonzero when x is of type 2. Define the Laplacian of N as the PŒ0; n�-valued
measure �N taking the continuous function f W Uan ! R to

P
x2Uan f .x/.�N /x.

For i D 1; : : : ; n, we may similarly define the multiplicities .�hi.N //x 2 R and the
Laplacian �hi.N /; we again omit the index i when it equals n.

Remark 7.3. The definition of the Laplacian can also be interpreted in the context of
Thuillier’s potential theory [159], which applies more generally to functions which
need not be piecewise affine.
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Lemma 7.4. We have
Z
�h.N / D

X

z2Z

Irrz.r/:

Proof. For e an edge of � , we may compute the slopes of N along the two branches
pointing into e from the endpoints of e; these two slopes add up to 0. If we add up
these slopes over all e, then regroup this sum by vertices, then the sum at each vertex
z 2 Z equals � Irrz.r/ by Theorem 6.2, while the sum at each vertex x 2 Uan is the
multiplicity of x in � N . This proves the claim. ut
Definition 7.5. For any open subset V of Xan, consider the complex

0! E r! E ˝	! 0

of sheaves, keeping in mind that if V \ Z ¤ ;, then the sections over V are allowed
to be meromorphic at V\Z (but not to have essential singularities; see Remark 7.8).
We define �dR.V; E/ to be the index of the hypercohomology of this complex, i.e.,
the alternating sum of K-dimensions of the hypercohomology groups.

Lemma 7.6. We have

�dR.X
an; E/ D n�.U/�

X

z2Z

Irrz.r/ D n.2�2g.X/�length.Z//�
X

z2Z

Irrz.r/: (2)

Proof. Let K0 be a subfield of K which is finitely generated over Q to which
X;Z; E ;r can be descended. Then choose an embedding K0 � C and let XC

be the base extension of the descent of X, again equipped with a meromorphic
vector bundle E and connection r. Note that �dR.Xan; E/ is computed by a spectral
sequence in which one first computes the coherent cohomology of E and E ˝ 	
separately. By the GAGA principle both over C [75, Exposé XII] and K [48,
Example 3.2.6], these coherent cohomology groups can be computed equally well
over any of Xan, X (or its descent to K0), XC, or Xan

C
. Consequently, despite the

fact that the connection is only K-linear rather than O-linear, we may nonetheless
conclude that �dR.Xan; E/ D �dR.Xan

C
; E/. (As an aside, this argument recovers a

comparison theorem of Baldassarri [11].)
To compute �dR.Xan

C
; E/, we may either appeal directly to [53, (6.21.1)] or argue

directly as follows. Form a finite open covering fVigi2I of XC such that for each
nonempty subset S of I, the set VS DTi2S Vi satisfies the following conditions.

• If nonempty, VS is isomorphic to a simply connected domain in C.
• The set VS \ Z contains at most one element.

We then have

�dR.X
an
C
; E/ D

X

S�I;S¤;
.�1/#S�1�dR .VS; E/ :
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It then suffices to check that for each nonempty subset S of I,

�dR.VS; E/ D

8
ˆ̂<

ˆ̂:

� Irrz.r/ .VS \ Z D fzg/
n .VS \ Z D ;;VS ¤ ;/
0 .VS D ;/:

(3)

In case VS D ;, there is nothing to check. In case VS ¤ ; but VS \ Z D ;, this is
immediate because the restriction of E to VS is trivial. In case VS\Z D fzg, we may
similarly replace VS with a small open disc around z, and then invoke the Deligne–
Malgrange interpretation of irregularity as the local index of meromorphic de Rham
cohomology on a punctured disc [108, Théorème 3.3(d)]. ut
Theorem 7.7 (Global Index Formula). We have

�dR.X
an; E/ D n�.U/�

Z
�h.N / D n.2�2g.X/�length.Z//�

Z
�h.N /: (4)

Proof. This follows by comparing Lemma 7.4 with Lemma 7.6. ut
Remark 7.8. It may not be immediately obvious why Theorem 7.7 is of value,
i.e., why it is useful to express the index of de Rham cohomology in terms
of convergence polygons instead of irregularity. As observed by Baldassarri [11,
(0.13)], there is a profound difference between the behavior of the index in the
complex-analytic and nonarchimedean settings. In the complex case, for any open
analytic subspace V of Xan

C
, we have

�dR.V; E/ D n�.V \ Uan/ �
X

z2V\Z

Irrz.r/ (5)

by the same argument as in the proof of (3). In particular, �dR.V; E/ ¤ �dR.V �
Z; E/; that is, the index of de Rham hypercohomology depends on whether we allow
poles or essential singularities at the points of Z. By contrast, in the nonarchimedean
case, these two indices coincide under a suitable technical hypothesis to ensure that
they are both defined; see Example 7.9 for a simple example and Corollary 7.13 for
the general case (and Example 7.19 and Remark 7.20 for a counterexample failing
the technical hypothesis). This means that in the nonarchimedean case, the “source”
of the index of de Rham cohomology is not irregularity, but rather the Laplacian of
the convergence polygon (see Theorem 7.12).

Example 7.9. Consider the connection associated with Example 4.2 as per
Remark 5.7; note that Irr0.r/ D 0, Irr1.r/ D 1, so �dR.Xan; E/ D �1. For
0 < ˛ < ˇ, let Vˇ;W˛ be the subspace jzj < ˇ, jzj > ˛ of Xan. By Mayer–Vietoris,

�dR.Vˇ; E/C �dR.W˛; E/ � �dR.Vˇ \W˛; E/ D �dR.X
an; E/ D �1: (6)
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On the other hand, �dR.Vˇ; E/ (resp., �dR.W˛; E/) equals the index of the operator
y 7! y0� y on Laurent series in z convergent for jzj < ˇ (resp., in z�1 convergent for
jz�1j < ˛�1). If f DPn fnz�n, g DPn gnz�n are two such series, then the equation
g D f 0 � f is equivalent to

fn D �gn � .n � 1/fn�1 .n 2 Z/: (7)

Suppose first that p�1=.p�1/ < ˛ < ˇ. Then given g 2 K..z�1//, we may solve
uniquely for f 2 K..z�1//, and if g converges on W˛ �f1g, then so does f . We thus
compute that

�dR.Vˇ; E/ D �1; �dR.W˛; E/ D 0; �dR.Vˇ \W˛; E/ D 0I

namely, the second equality is what we just computed, the third follows from
Robba’s index formula [146] (see also [97, Lemma 3.7.5]), and the first follows
from the other two plus (6). In particular, the local index at1 equals 0, whereas in
the complex-analytic setting it equals �1 by the Deligne–Malgrange formula (see
the proof of Lemma 7.6).

Suppose next that ˛ < ˇ < p�1=.p�1/. Then by contrast, we have

�dR.Vˇ; E/ D 0; �dR.W˛; E/ D �1; �dR.Vˇ \W˛; E/ D 0I

namely, the first and third equalities follow from the triviality of r on Vˇ , and the
second follows from the other two plus (6).

With Example 7.9 in mind, we now describe a local refinement of Theorem 7.7,
in which we dissect the combinatorial formula for the index into local contributions.

Definition 7.10. For x 2 Uan \ �X;Z , let val�.x/ be the valence of x as a vertex of
�X;Z , taking val�.x/ D 2 when x lies on the interior of an edge. (We refer to valence
instead of degree to avoid confusion with degrees of morphisms.) For x 2 Uan,
define

�x.E/ D
(

n.2 � 2g.Cx/ � val�.x// � .�h.N //x if x 2 �X;Z

��h.N /x otherwise.
(8)

Let �.E/ be the R-valued measure whose value on a continuous function f W Uan !
R is

P
x2Uan f .x/�x.E/.

Lemma 7.11. We have

�dR.X
an; E/ D n�.U/ �

Z
�h.N / D

Z
�.E/:
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Proof. This follows from Theorem 7.7 plus the identity
X

x2Uan\�X;Z

.2 � 2g.Cx/ � val�.x// D 2 � 2g.X/ � length.Z/;

which amounts to the combinatorial formula for the genus of an analytic curve
[9, Sect. 4.16]. ut
Theorem 7.12 (Local Index Formula). Let V be an open subspace of Xan which
is the retraction of an open subspace of �X;Z. If p > 0, assume some additional
technical hypotheses (see Remark 7.14). Then

�dR.V; E/ D
Z

V\Uan
�.E/:

Proof. See [135, Theorem 3.5.2]. ut
Corollary 7.13. With hypotheses as in Theorem 7.12, �dR.V; E/ D �dR.V \
Uan; E/; that is, the index of de Rham hypercohomology is the same whether we
allow poles or essential singularities at Z.

Remark 7.14. Let � be a strict skeleton for which the conclusion of Theorem 5.5
holds. For v a vertex of � , define the star of v, denoted ?v , as the union of v and the
interiors of the edges of � incident to v. Let 
� W X ! � be the retraction onto � ,
through which N factors. Under the hypotheses of Theorem 7.12, we have

�dR.

�1
� .?v/; E/ D �v.E/; �dR.


�1
� .?v \ ?w/; E/ D 0: (9)

We can then recover Theorem 7.7 from (9) by using Mayer–Vietoris (and GAGA
over K; see Remark 7.8) to write

�dR.X
an; E/ D

X

v

�dR.

�1
� .?v/; E/ �

X

v¤w

�dR.

�1
� .?v \ ?w/; E/I

one may similarly deduce Theorem 7.12 from (9).

Remark 7.15. For a given connection, one can extend the range of applicability of
Theorem 7.12 by enlarging the set Z; however, this depends on an understanding
of how the two sides of the formula depend on Z. To this end, let us rewrite the
equality as

�dR.V; E ;Z/ D
Z

V\Uan
�.E ;Z/

with Z included in the notation.
Put Z0 D Z [ fz0g for some z0 2 U.K/. Let x0 2 �X;Z be the generic point of the

open disc Uz0 ; by subdividing if necessary, we may view x0 as a vertex of �X;Z . Then
�X;Z0 is the union of �X;Z with a single edge joining x0 to z0 within Uz0 .
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Let V be an open subset of Xan containing z0 which is the retraction of an open
subspace of �X;Z ; it is then also a retraction of an open subspace of �X;Z0 . We then
have

�dR.V; E ;Z0/ � �dR.V; E ;Z/ D �nI
namely, by Mayer–Vietoris this reduces to the case where V is a small open disc
around z0, in which case we may assume E is trivial on V and make the computation
directly.

By this computation, Theorem 7.12, and the fact that �z0.E ;Z/ D 0, we must
also have

Z

.V\Uan/nfz0g
�
�.E ;Z0/ � �.E ;Z/� D �n:

From (8), we see that �.E ;Z0/ � �.E ;Z/ is supported within Uz0 [ fx0g. However,
while one can easily compute the convergence polygon associated with Z0 from the
one associated with Z (see Example 4.2 and Remark 8.13, for example), we do not
know how to predict a priori where the support of �.E ;Z0/��.E ;Z/ will lie within
Uz0 [ fx0g.
Remark 7.16. One of the main reasons we have restricted attention to meromorphic
connections on proper curves is that in this setting, Theorem 5.5 ensures that
�x.E/ D 0 for all but finitely many x 2 Uan. It is ultimately more natural to
state Theorem 7.12 for connections on open analytic curves, as is done in [135,
Theorem 3.8.10]; however, this requires some additional hypotheses to ensure that
�.E/ is a finite measure.

Definition 7.17. Assume p > 0. A p-adic Liouville number is an element x 2
Zp � Z such that

lim inf
m!1

� jyj
m
W y 2 Z; y � x 2 pm

Zp

�
< C1:

As in the classical case, p-adic Liouville numbers are always transcendental [66,
Proposition VI.1.1].

Remark 7.18. Assume p > 0. The technical hypotheses of Theorem 7.12 are
needed to guarantee the existence of the indices appearing in (9). In case r has
a regular singularity at z 2 Z with all exponents in Zp, these hypotheses include
the condition that no two exponents of r at z differ by a p-adic Liouville number;
see Example 7.19 for a demonstration of the necessity of such a condition. (Such
hypotheses are not needed in Theorem 7.7 because there we only allow poles rather
than essential singularities.)

Unfortunately, the full hypotheses are somewhat more complicated to state. They
arise from the fact that with notation as in Remark 7.14, one can separate off a
maximal component of E on 
�1

� .?v \ ?w/ which satisfies the Robba condition, to
which one may associate some p-adic numbers playing the role of exponents; the
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hypothesis is that (for any particular v;w) no two of these numbers differ by p-adic
Liouville numbers. The difficulty is that the definition of these p-adic exponents,
due to Christol and Mebkhout (and later simplified by Dwork) is somewhat indirect;
they occur as “resonant frequencies” for a certain action by the group of p-power
roots of unity, which are hard to control except in some isolated cases where they
are forced to be rational numbers (e.g., Picard–Fuchs equations, a/k/a Gauss–Manin
connections, or connections arising from F-isocrystals in the theory of crystalline
cohomology). See [92, Chap. 13] for more discussion.

Example 7.19. Assume p > 0 and take X D P
1
K , Z D f0;1g. Take E to be free of

rank 1 with the action of r given by

r.f / D �f
dz

z
C df

for some � 2 K. For ˛; ˇ with 0 < ˛ < ˇ, let V be the open annulus ˛ < jzj < ˇ.
The 1-forms on V are series

P1
nD�1 cnzn dz

z such that for each � 2 .˛; ˇ/,
jcnj�n ! 0 as n!˙1.

If � D 0, then jcnj�n ! 0 for all � 2 .˛; ˇ/ if and only if jcn=nj�n ! 0 for
all � 2 .˛; ˇ/, so every 1-form on V with c0 D 0 is in the image of r. Note that
multiplying the generator of E by t has the effect of replacing � by �C 1; it follows
that if � 2 Z, then the kernel and cokernel of r on V are both 1-dimensional, so
�dR.V; E/ D 0.

If � 2 K � Z, then a 1-form is in the image of r on V if and only if for each
� 2 .˛; ˇ/, jcn=.n��/j�n ! 0 as n!˙1. This holds if � is not a p-adic Liouville
number (see [66, Sect. VI.1] or [92, Proposition 13.1.4]); otherwise, one shows that
r has infinite-dimensional cokernel on V , so �dR.V; E/ is undefined.

Remark 7.20. Example 7.19 provides an example showing that the equality
�dR.V; E/ D �dR.V \ Uan; E/ of Corollary 7.13 cannot hold without conditions on
p-adic Liouville numbers. In this example, for all �, �dR.Xan; E/ D 0 by Lemma 7.6;
but, when � is a p-adic Liouville number, �dR.Uan; E/ is undefined.

Remark 7.21. The net result of Remark 7.18 is that in general, one can only view
�x.E/ as a virtual local index of E at x, not a true local index. Nonetheless, this
interpretation can be used to predict combinatorial properties of the convergence
polygon which often continue to hold even without restrictions on p-adic exponents.
For example, Theorem 6.6 corresponds to the fact that if V is an open disc in Uan,
then the dimension of the cokernel of r on V is nonnegative; this argument appears
in the proof of Theorem 6.6 (see Theorem A.6).

Remark 7.22. In light of Remark 7.21, one might hope to establish some inequal-
ities on �x.E/. One might first hope to refine Theorem 7.23 by analogy with (5),
by proving that the measure �h.N / is nonnegative; however, this fails already in
simple examples such as Example 7.25.
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On the other hand, since our running hypothesis is that �.U/ � 0, Theorem 7.7
and Lemma 7.11 imply that

X

x2Uan

�x.E/ D �dR.X
an; E/ � n�.U/ � 0:

One might thus hope to refine Theorem 7.23 by proving that �x.E/ � 0 for all
x 2 Uan. Unfortunately, this is not known (and may not even be safe to conjecture)
in full generality, but see Theorem 7.23 for some important special cases.

Theorem 7.23. Choose x 2 Uan.

(a) Let R.x/ be the infimum of the radii of open discs in Ux containing x. If N .x/
has no slopes equal to � log R.x/, then �x.E/ D 0.

(b) If x 2 �X;Z, then �x.E/ � 0.
(c) If p D 0, then �x.E/ � 0.

Proof. For (a), see [133, Proposition 6.2.11] or [16] (or reduce to the case where
N .x/ has all slopes greater than � log R.x/ and then apply [97, Theorem 5.3.6]). A
similar argument implies (b) because in this case, R.x/ D 1 and the zero slopes are
forced to make a nonpositive contribution to the index. For (c), see Theorem A.9.

ut
Remark 7.24. The proof of Theorem 7.23 can also be used to quantify the extent to
which N fails to factor through the retract onto �X;Z , and hence to help identify a
suitable skeleton � for which the conclusion of Theorem 5.5 holds. To be precise,
for x 2 �X;Z , if the restriction of N to �X;Z is harmonic at x, then N is constant on
the fiber at x of the retraction of Xan onto �X;Z . See also [133, Sect. 6.3].

Example 7.25. Let h be a nonzero rational function on X, and take Z to be the
pole locus of h. Let E be the free bundle on a single generator v equipped with the
connection

r.f v/ D v˝ .df C f dh/:

For each z 2 Z, Irrz.r/ equals the multiplicity of z as a pole of h. By Lemma 7.11,
X

x2Uan

�x.E/ D �.U/ � m

where m is the number of poles of h counted with multiplicity.
Suppose now that there exists a point x 2 Uan with g.Cx/ > 0. By multiplying h

by a suitably large element of K, we can ensure that N .x/ has positive slope. In this
case, by Theorem 7.23 we must have

�x.E/ D 0 > 2 � 2g.Cx/ � val�.x/:

In particular, while
R
�h.N / D P

z2Z Irrz.r/ 	 0, the measure �h.N / is not
necessarily nonnegative.
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8 Ramification of Finite Morphisms

Hypothesis 8.1. Throughout Sect. 8, let f W Y ! X be a finite flat morphism
of degree d of smooth, proper, geometrically connected curves over K (a non-
archimedean field of characteristic 0), and suppose that the restriction of f to U
(the complement of a finite set Z of closed points of X) is étale and Galois with
Galois group G.

Let 
 W G ! GL.V/ be a faithful representation of G on an n-dimensional
vector space V over K. Note that since G is finite and 
 is faithful (and K is
of characteristic 0), the Tannakian category generated by V contains all finite-
dimensional K-linear representations of G, including the regular representation.

Definition 8.2. Equip EV D OY ˝K V_ with the diagonal action of G induced by
the Galois action on OY and the action via 
_ on V_. By faithfully flat descent,
G-invariant sections of EV can be identified with sections of a vector bundle E on U;
moreover, the trivial connection on EV induces a connection r on E . We are thus in
the situation of Hypothesis 5.1.

Remark 8.3. One way to arrive at Hypothesis 8.1 is to start with a non-Galois cover
g W W ! X, let f be the Galois closure, and let 
 be the representation of G induced
by the trivial representation of the subgroup of G fixing W. In this case, E is just the
pushforward of the trivial connection on g�1.U/.

Remark 8.4. Following up on the previous remark, note that .E ;r/ is always a
subobject of the pushforward of the trivial connection on f �1.U/. Since the latter is
the Gauss–Manin connection associated with a smooth proper morphism (of relative
dimension 0), it is everywhere regular by virtue of the Griffiths monodromy theorem
[82, Theorem 14.1]. This implies in turn that for z 2 Z, our original connection
satisfies Irrz.r/ D 0 and the exponents of r at z are rational.

To say more, let N be the order of the inertia subgroup of G corresponding
to some element of f �1.fzg/; we then claim that the exponents of r at z belong
to 1

NZ and generate this abelian group. To check this, we may assume that K is

algebraically closed. By the Cohen structure theorem, the field Frac.bOX;z/ may be
identified with K..t//. The vector space Ez D E˝OU Frac.bOX;z/ over this field splits
compatibly with r as a direct sum

M

y2f�1.fzg/
Frac.bOY;y/;

each summand of which is isomorphic to K..t1=N//. If we split this summand further
as
LN�1

iD0 ti=NK..t//, then the i-th summand contributes an exponent congruent to
i=N modulo Z. In particular, when 
 is the regular representation, the exponents
of r at z belong to 1

NZ and fill out the quotient 1
NZ=Z. For a general 
 , on one

hand, 
 occurs as a summand of the regular representation, so the exponents of r
at z again belong to 1

NZ. On the other hand, the regular representation occurs as a
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summand of some tensor product of copies of V and its dual (see Hypothesis 8.1), so
the group generated by the exponents must also fill out the quotient 1

NZ=Z (although
the exponents themselves need not).

Definition 8.5. For L a nonarchimedean field over K, let CL denote a completed
algebraic closure of L, and let BL be the subset of XL for which x 2 BL if and only if
the preimage of x in Yan

CL
does not consist of d distinct points. (For a demonstration

of this definition, see Example 8.12.)

We have the following remark about BL echoing an earlier observation about �X;Z

(see Definition 2.5).

Remark 8.6. Let L0 be a nonarchimedean field containing L. Then BL0 is contained
in the inverse image of BL under the restriction map Xan

L0 ! Xan
L , but this containment

is typically strict if L0 is not the completion of an algebraic extension of L. This is
because BL0 only contains points of types 2 or 3 (except for the points of Z), whereas
the inverse image of BL typically also contains some points of type 1.

Example 8.7. Take K D Qp.�p/, X D P
1
K , Z D f0;1g, Y D P

1
K , let f W Y ! X be

the map z 7! zp, identify G with Z=pZ so that 1 2 Z=pZ corresponds to the map
z 7! �z on f �1.U/, and let 
 W G! GL1.K/ be the character taking 1 to ��1

p . Then
E is free on a single generator v satisfying r.v/ D � 1p z�1v ˝ dz. This is also the
connection obtained from Example 4.3 by applying Remark 5.7.

Put ! D p�1=.p�1/ D j�p � 1j. For each x 2 U, we may define the normalized
diameter of x as an element of Œ0; 1� defined as follows: choose an extension L
of K such that x lifts to some Qx 2 U.L/, then take the infimum of all � 2 .0; 1�
such that UQx;� meets the inverse image of x in Uan

L (or 1 if no such � exists). With
this definition, for any L, the set BL consists of Z plus all points with normalized
diameter in Œ!p; 1� (see, for example, [92, Lemma 10.2.2]).

Lemma 8.8. Suppose that L is algebraically closed. Let V be an open subset of Xan
L

which is disjoint from BL. Then the map f �1.V/ ! V of topological spaces is a
covering space map.

Proof. For each x 2 V , the local ring of Xan
L at x is Henselian [17, Theorem 2.1.5];

hence, for each y 2 f �1.fxg/, we can find a neighborhood Wy of y in f �1.V/which is
finite étale over its image in Xan

L . Since Yan
L is Hausdorff, we can shrink the Wy so that

they are pairwise disjoint and all have the same image V 0 in Xan
L . The maps Wy ! V 0

are then finite étale of some degrees adding up to deg.f / D d. Since #f �1.fxg/ D d
by hypothesis, these degrees must all be equal to 1; hence, each map Wy ! V 0 is
actually an isomorphism of analytic spaces, and in particular a homeomorphism of
topological spaces. ut
Theorem 8.9. For L a nonarchimedean field over K and x 2 U.L/, e�s1.N .x// equals
the supremum of � 2 .0; 1� such that Ux;� \ BL D ;.
Proof. We may assume without loss of generality that L is itself algebraically
closed. If Ux;� \ BL D ;, then by Lemma 8.8, the map f �1.Ux;�/ ! Ux;� is
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a covering space map of topological spaces. Since Ux;� is contractible and hence
simply connected, f �1.Ux;�/ splits topologically as a disjoint union of copies of Ux;�.
From this, it follows easily that the restriction of E to Ux;� is trivial.

Conversely, suppose that the restriction of E to Ux;� is trivial. Then the same
holds when V is replaced by any representation in the Tannakian category generated
by V; since G is finite and 
 is faithful, this includes the regular representation. That
is, the pushforward of the trivial connection on f �1.U/ has trivial restriction to Ux;�.

In addition to the connection, the sections of this restriction inherit from OY a
multiplication map, and the product of two horizontal sections is again horizontal.
Consequently, the horizontal sections form a finite reduced L-algebra of rank d;
since L is algebraically closed, this algebra must split as a direct sum of d copies of
L. This splitting corresponds to a splitting of f �1.Ux;�/ into d disjoint sets, proving
that Ux;� \ BL D ;. ut
Remark 8.10. One may view Theorem 8.9 as saying that under a suitable nor-
malization, e�s1.N .x// measures the distance from x to BL. This suggests the
interpretation of BL as an “extended ramification locus” of the map f ; for maps from
P
1
K to itself, this interpretation has been adopted in the context of nonarchimedean

dynamics (e.g., see [67, 68]). However, this picture is complicated by Remark 8.6;
roughly speaking, even for x 2 BL, the “distance from x to itself” must be interpreted
as a nonzero quantity. In any case, Theorem 8.9 suggests the possibility of relating
the full convergence polygon to more subtle measures of ramification, such as those
considered recently by Temkin [47, 157]. One older result in this direction is the
theorem of Matsuda and Tsuzuki; see Theorem 8.11 below.

Theorem 8.11. Assume that K has perfect residue field of characteristic p > 0.
Suppose that x 2 �X;Z is of type 2, choose y 2 f �1.fxg/, and suppose that
H.y/ is unramified over H.x/. Let �x; �y be the residue fields of the nonar-
chimedean fields H.x/;H.y/. Let 
 be the restriction of 
 along the identification
of H WD Gal.�y=�x/ Š Gal.H.y/=H.x// with the stabilizer of y in G.

(a) The polygon N .x/ is zero.
(b) Let Et be a branch of X at x, and let v be the point on Cx corresponding to Et

(see Definition 6.1). Then @Et.N / computes the wild Hasse–Arf polygon of 
 at
v, i.e., the Newton polygon in which the slope s 	 0 occurs with multiplicity
dimK.VHsC

=VHs
/. In particular, @Et.h.N // computes the Swan conductor of 


at v.

Proof. See any of [87, 114, 163]. ut
Example 8.12. Set notation as in Example 8.7, except take Z D f0; 1;1g. Let
x 2 �X;Z be the generic point of the disc jz � 1j � !p, which we can also write
as juj � 1 for u D .z � 1/=.�p � 1/p. Let y be the unique preimage of x in Y . Let t
be the coordinate .z � 1/=.�p � 1/ on Y; then, �x D Fp.u/ while �y D Fp.t/ where
tp � t D u. For Et the branch of x towards x1, we have @Et.h.N // D 1; as predicted by
Theorem 8.11, this equals the Swan conductor of the residual extension at1.
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Remark 8.13. In Example 8.12, it is necessary to include 1 in Z to force x into
�X;Z , so that Theorem 8.11 applies; otherwise, we would have @Et.h.N // D 0 as in
Example 4.3. This provides an explicit example of the effect of enlarging Z on the
behavior of N , as described in Remark 7.15.

Remark 8.14. To generalize Theorem 8.11 to cases where H.y/ is ramified over
H.x/, it may be most convenient to use Huber’s ramification theory for adic
curves [79], possibly as refined in [47, 157]. In a similar vein, the global index
formula (Theorem 7.7) is essentially the Riemann–Hurwitz formula for the map f ,
in which case it should be possible to match up the local contributions appearing in
Theorem 7.7 with ramification-theoretic local contributions.

Remark 8.15. Suppose that p > 0, X D P
1
K , and f extends to a finite flat morphism

of smooth curves over oK with target P1oK
. By [51, Theorem 3.1], E admits a unit-root

Frobenius structure in a neighborhood of x1, from which it follows that E satisfies
the Robba condition at x1.

Let k be the residue field of K. If in addition the points of Z have distinct
projections to P

1
k , then by Remark 5.11, E satisfies the Robba condition everywhere.

By Remark 6.4, this implies that E has exponents in Zp; by Remark 8.4, this implies
that f is tamely ramified (i.e., the inertia group of each point of Y has order coprime
to p). By contrast, if the points of Z do not have distinct projections to P

1
k , then f

need not be tamely ramified; see Sect. 11.

Remark 8.16. For a connection derived from a finite morphism, in case p > 0 the
technical conditions of Remark 7.18 are always satisfied. An important consequence
of this statement for our present work is that the conclusion of Theorem 7.23(c) can
be established for such a connection even when p > 0; see Remark A.11.

9 Artin–Hasse Exponentials and Witt Vectors

We will conclude by specializing the previous discussion to cyclic covers of discs
in connection with the Oort local lifting problem. In preparation for this, we need to
recall some standard constructions of p-adic analysis.

Hypothesis 9.1. Throughout Sect. 9, fix a prime p and a positive integer n. In some
algebraic closure of Qp, fix a sequence of primitive pn-th roots of unity �pn such that
�

p
pn D �pn�1 .

Definition 9.2. The Artin–Hasse exponential series at p is the formal power series

Ep.t/ WD exp

 1X

iD0

tpi

pi

!
:

Lemma 9.3. We have Ep.t/ 2 Z.p/�t�. In particular, Ep.t/ converges for jtj < 1.

Proof. See, for instance, [92, Proposition 9.9.2]. ut
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Lemma 9.4. Let Z.p/hti be the subring of Z.p/�t� consisting of series
P1

iD0 citi for
which the ci converge p-adically to 0 as i!1. Then if we define the power series

f .z; t/ WD Ep.zt/Ep.tp/

Ep.t/Ep.ztp/
2 Z.p/�t; 1 � z�

using Lemma 9.3, we have

f .z; t/ 2 zC .t � 1/Z.p/hti�1 � z�:

Proof. Write f .z; t/ D exp g.z; t/ with

g.z; t/ D
1X

iD0

.zpi � 1/.tpi � tpiC1
/

pi

D
1X

iD0

1X

jD1
.�1/j

 
pi

j

!
.1 � z/j

tpi � tpiC1

pi

D
1X

jD1

.�1/j
j
.1 � z/j

1X

iD0

 
pi � 1
j � 1

!
.tpi � tpiC1

/

D
1X

jD1

.�1/j
j
.1 � z/j

  
0

j � 1

!
tC

1X

iD1

  
pi � 1
j � 1

!
�
 

pi�1 � 1
j � 1

!!
tpi

!
:

For each fixed j,
�pi�1

j�1
�

converges p-adically to
��1

j�1
� D .�1/j�1 as i!1. It follows

that g.z; t/ 2 .Z.p/hti ˝Z Q/�1 � z� and

g.z; t/ � �
1X

jD1

.1 � z/j

j
.mod .t � 1/.Z.p/hti ˝Z Q/�1 � z�/:

This then implies that f .z; t/ 2 .Z.p/hti ˝Z Q/�1 � z� and

f .z; t/ � z .mod .1 � t/.Z.p/hti ˝Z Q/�1 � z�/:

Since f .z; t/ also belongs to Z.p/�t; 1�z� by Lemma 9.3, we may deduce the claimed
inclusion. ut
Definition 9.5. Let Wn denote the p-typical Witt vector functor. Given a ring R, the
set Wn.R/ consists of n-tuples a D .a0; : : : ; an�1/, and the arithmetic operations on
Wn.R/ are characterized by functoriality in R and the property that the ghost map
w W Wn.R/! Rn given by

.a0; : : : ; an�1/ 7! .w0; : : : ;wn�1/; wi D
iX

jD0
pjapi�j

j (10)
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is a ring homomorphism for the product ring structure on Rn. For any ideal I of R,
let Wn.I/ denote the subset of Wn.R/ consisting of n-tuples with components in I;
since Wn.I/ D ker.Wn.R/! Wn.R=I//, it is an ideal of Wn.R/.

Various standard properties of Witt vectors may be derived by using functoriality
to reduce to polynomial identities over Z, then checking these over Q using the fact
that the ghost map is a bijection if p�1 2 R. Here are two key examples.

(i) Define the Teichmüller map sending r 2 R to Œr� WD .r; 0; : : : ; 0/ 2 Wn.R/.
Then this map is multiplicative: for all r; s 2 R, Œrs� D Œr�Œs�.

(ii) Define the Verschiebung map sending a 2 Wn.R/ to V.a/ WD .0; a0; : : : ; an�2/ 2
Wn.R/. Then this map is additive: for all a; b 2 Wn.R/, Vn.a C b/ D
Vn.a/C Vn.b/.

Definition 9.6. In case R is an Fp-algebra, the Frobenius endomorphism ' W R! R
extends by functoriality to Wn.R/ and satisfies

pa D .V ı '/.a/ D .' ı V/.a/ .a 2 Wn.R//I (11)

see, for instance, [80, Sect. 0.1]. It follows that for general R, if we define the map
� sending a 2 Wn.R/ to �.a/ D .ap

0; : : : ; a
p
n�1/ 2 Wn.R/, then

pa � .V ı �/.a/ 2 Wn.pR/ .a 2 Wn.R//: (12)

Beware that � is in general not a ring homomorphism.

Definition 9.7. By Lemma 9.3, we have

En;p.t/ WD Ep.�pn t/

Ep.t/
D exp

 
n�1X

iD0
.�pn�i � 1/ tpi

pi

!
2 Z.p/Œ�pn ��t�:

We may also define

En;p.a/ WD
n�1Y

iD0
En�i;p.ai/ 2 Z.p/Œ�pn ��a0; : : : ; an�1�;

which we may also write as

En;p.a/ D exp

 
n�1X

iD0
.�pn�i � 1/wi

pi

!
(13)

for wi as in (10). Consequently, in Z.p/Œ�pn ��a0; : : : ; an�1; b0; : : : ; bn�1�,

En;p.a/En;p.b/ D En;p.aC b/: (14)

Definition 9.8. By Lemma 9.3, we may define the formal power series

Fn;p.t/ WD En;p.t/

En;p.tp/
D exp

 
n�1X

iD0

.�pn�i � 1/.tpi � tpiC1
/

pi

!
2 Z.p/Œ�pn ��t�
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and

Fn;p.a/ WD En;p.a/

En;p.�.a//
D

n�1Y

iD0
Fn�i;p.ai/ 2 Z.p/Œ�pn ��a0; : : : ; an�1�:

By (13), in Z.p/Œ�pn ��a0; : : : ; an�1; b0; : : : ; bn�1� we have

Fn;p.a/Fn;p.b/ D Fn;p.aC b/En;p.�.aC b/ � �.a/ � �.b//: (15)

We will see shortly (Lemma 9.10) that Fn;p.t/ has radius of convergence greater
than 1, which implies an analogous assertion for Fn;p.a/. For p > 2, this is shown
in [113, Proposition 1.10] using a detailed computational argument; our argument
follows the more conceptual approach given in [139, Theorem 2.5].

Definition 9.9. By Lemma 9.3, we may define the formal power series

Gn;p.a/ D En;p.pa/

En�1;p.a/
2 Z.p/Œ�pn ��a0; : : : ; an�1�:

By (14),

Gn;p.a/Gn;p.b/ D Gn;p.aC b/: (16)

We also have

Gn;p.a/ D En;p.pa � .0; ap
0; : : : ; a

p
n�2//Fn�1;p.a/�1: (17)

Lemma 9.10. (a) We have

Gn;p.a/ 2 Z.p/Œ�pn ��.�pn � 1/a0; : : : ; .�p � 1/an�1�:

(b) The power series Fn;p.a/ converges on a polydisc with radius of convergence
strictly greater than 1.

Proof. Write

Gn;p.a/ D
n�1Y

jD0
exp

0

@
n�j�1X

iD0
.p.�pn�j�i � 1/ � .�pn�j�1�i � 1//api

j

pi

1

A

D
n�1Y

jD0
exp

0

@
n�j�1X

iD0
.�pn�j�i � 1/.p � 1 � �pn�j�i � � � � � �p�1

pn�j�i/
api

j

pi

1

A

D
n�1Y

jD0
En�j;p

�
.p � 1 � Œ�pn�j � � � � � � Œ�p�1

pn�j �/Œaj�
�
:

Note that p � 1 � Œ�pn�j � � � � � � Œ�p�1
pn�j � maps to zero in Wn�j.Fp/ and so belongs to

Wn�j..�pn�j � 1/Z.p/Œ�pn�j �/. This proves (a).
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To prove (b), apply (17) to write

Fn;p.a/ D GnC1;p.a/�1EnC1;p.pa � .V ı �/.a//:

Since GnC1;p.0/ D 1, (a) implies that GnC1;p.a/�1 converges on a polydisc
with radius of convergence strictly greater than 1. Since EnC1;p.a/ 2
Z.p/Œ�pnC1 ��a0; : : : ; an�1� and (12) implies that pa � .V ı �/.a/ 2 Wn.pR/,
EnC1;p.pa � .V ı �/.a// also converges on a polydisc with radius of convergence
strictly greater than 1. This proves (b). ut
Lemma 9.11. For m 2 Z, we have

Fn;p.aC bC m/Fn;p.a/
�1En;p.�.aC bC m/ � �.a/ � �.b/ � m/ D �m

pn (18)

as an equality of elements of ZpŒ�pn ��a0; : : : ; an�1; b0; : : : ; bn�1�.

Note that the presence of m prevents us from heedlessly applying (14), because,
for instance, En;p.m/ does not make sense. (We like to think of this as an example
of conditional convergence in a nonarchimedean setting.) Similarly, we must work
over Zp rather than Z.p/.

Proof. Convergence of Fn;p.aCbCm/ is guaranteed by Lemma 9.10. Convergence
of En;p.�.aC bCm/� �.a/� �.b/�m/ is guaranteed by Lemma 9.3 and the fact
that

�.aCbCm/��.a/��.b/�m 2 Wn..�pn �1/ZpŒ�pn ��a0; : : : ; an�1; b0; : : : ; bn�1�/:

Thus the left side of (18) is well-defined. Using (14), we see that this quantity is
constant as a power series in a0; : : : ; an�1; b0; : : : ; bn�1; it thus remains to prove that

Fn;p.m/En;p.�.m/ � m/ D �m
pn : (19)

Using (14) and (15), we see that for m;m0 2 Z,

Fn;p.m/En;p.�.m/ � m/Fn;p.m
0/En;p.�.m

0/ � m0/

D Fn;p.mC m0/En;p.�.mC m0/ � �.m/ � �.m0//

En;p.�.m/ � m/En;p.�.m
0/ � m0/

D Fn;p.mC m0/En;p.�.mC m0/ � m � m0/;

so both sides of (19) are multiplicative in m. It thus suffices to check (19) for
m D 1 D .1; 0; : : : /, in which case �.m/ D m and so the desired equality becomes
Fn;p.1/ D �pn . This follows from Lemma 9.4 by evaluating at z D �pn . ut
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10 Kummer–Artin–Schreier–Witt Theory

In further preparation for discussion of the Oort local lifting problem, we describe a
form of Kummer–Artin–Schreier–Witt theory for cyclic Galois extensions of a power
series field.

Hypothesis 10.1. Throughout Sect. 10, fix a positive integer n, assume that K is
discretely valued, the residue field k of K is algebraically closed of characteristic
p > 0, and K contains a primitive pn-th root of unity �pn . Put F D k..z//.

Definition 10.2. For � 2 .0; 1/, let A.�; 1/ be the annulus � < jzj < 1 in P
1
K ; the

analytic functions on A.�; 1/ can be viewed as certain Laurent series in z. The union
of the rings O.A.�; 1// over all � 2 .0; 1/ is called the Robba ring over K and will
be denoted R. (This ring can be interpreted as the local ring of the adic point of
P
1;an
K specializing x1 in the direction towards 0.)

Let Rbd be the subring of R consisting of formal sums with bounded coefficients;
these are exactly the elements of R which define bounded analytic functions on
A.�; 1/ for some � 2 .0; 1/. The ring Rbd carries a multiplicative Gauss norm
defined by

ˇ̌
ˇ̌
ˇ
X

i2Z
aiz

i

ˇ̌
ˇ̌
ˇ D max

i
fjaijgI

let Rint be the subring of Rbd consisting of elements of Gauss norm at most 1.

Lemma 10.3. The ring Rint is a Henselian discrete valuation ring. Consequently,
Rbd is a Henselian local field with residue field F.

Proof. See [112, Proposition 3.2]. ut
We next prepare to formulate the comparison between Kummer theory and

Artin–Schreier–Witt theory by introducing the two sides of the comparison.

Definition 10.4. For any field L of characteristic not equal to p, for Lsep a separable
closure of L, taking Galois cohomology on the exact sequence

1! pn ! .Lsep/� 	pn

! .Lsep/� ! 1

of GL-modules gives the Kummer isomorphism

L�=L�pn Š H1.GL; pn/

because H1.GL; .Lsep/�/ D 0 by Noether’s form of Hilbert’s Theorem 90.
In the case L D Rbd, by Lemma 10.3 we have a surjection GL ! GF

identifying GF with the quotient of the maximal unramified extension of L.
We thus obtain a restriction map H1.GF; pn/ ! H1.GL; pn/ and thus a map
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H1.GF; pn/! L�=L�pn
. Note that GF acts trivially on pn , so we may identify

pn as a GF-module with Z=pn
Z by identifying our chosen primitive pn-th root of

unity �pn 2 pn with 1 2 Z=pn
Z. We thus end up with a homomorphism

H1.GF;Z=pn
Z/! .Rbd/�=.Rbd/�pn

: (20)

(Beware that the opposite sign is used to normalize the isomorphism pn Š Z=pn
Z

in [113, 139], leading to some minor differences in the formulas.)

Definition 10.5. Consider the exact sequence

0! Z=pn
Z D Wn.Fp/! Wn.F

sep/
1�'! Wn.F

sep/! 0

where ' denotes the Frobenius endomorphism of Wn.Fsep/. The additive group
Wn.Fsep/ is a successive extension of copies of the additive group of Fsep;
since H1.GF;Fsep/ D 0 by the additive version of Theorem 90, we also have
H1.GF;Wn.Fsep// D 0. We thus obtain the Artin–Schreier–Witt isomorphism

coker.1 � ';Wn.F// Š H1.GF;Z=pn
Z/: (21)

Combining this isomorphism with the map (20) derived from the Kummer isomor-
phism, we obtain a homomorphism

coker.1 � ';Wn.F//! .Rbd/�=.Rbd/�pn
: (22)

We note in passing how Swan conductors appear in the Artin–Schreier–Witt
isomorphism. See also [81, Theorem 3.2], [70, Theorem 1.1], [158, Proposition 4.2];
see especially [28, Theorem 4.9] for the full computation of coker.1 � ';Wn.F//.

Lemma 10.6. For a 2 Wn.F/, let 
 W GF ! K� be the character corresponding
via (21) to the class of a in coker.' � 1;Wn.F//. For j D 0; : : : ; n � 1, let mj be the
negation of the z-adic valuation of aj, and assume that mj is not a positive multiple
of p. Then the Swan conductor of 
 equals

maxf0;m0p
n�1;m1p

n�2; : : : ;mn�1g:

Proof. By hypothesis, if mj is positive, then it is not divisible by p, so mjpn�1�i

has p-adic valuation n � i � 1. Consequently, any two of the quantities
m0pn�1;m1pn�2; : : : ;mn�1, if they are nonzero, must be distinct. It thus suffices
to check the claim in case a is a Teichmüller element Œa� for some a 2 F of z-adic
valuation �m for some integer m which is positive and not divisible by p. By
splitting a into powers of z, we may further reduce to the case a D cz�m. Using
the compatibility of Swan conductors with tame base extensions, we may further
reduce to the case a D z�1.
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For j D 1; : : : ; n, let Fj be the extension of F obtained by adjoining the
coordinates b0; : : : ; bj�1 of a Witt vector b satisfying

b � '.b/ D Œa�:

It is clear that b0�b
p
0 D a. By direct computation, one sees that for j D 1; : : : ; n�1,

bj�b
p
j has the same z-adic valuation as bj�1apj�pj�1

and that this valuation is �.pj�
pj�1 C � � � C p�j/. It follows that the breaks in the lower numbering filtration of
Gal.Fn=F/ occur at .p2jC1C1/=.pC1/ for j D 0; : : : ; n�1; by Herbrand’s formula
[154, Chap. IV], the breaks in the upper numbering filtration occur at 1; p; : : : ; pn�1.
The last of these breaks is the Swan conductor of 
 , proving the claim. ut
Corollary 10.7. With notation as in Lemma 10.6, if bj is the Swan conductor of


˝pn�j
, then bj 	 pbj�1 for j D 1; : : : ; n.

Proof. The representation 
˝pn�j
corresponds via (21) to the class of pn�ja in

coker.' � 1;Wj.F//. By (11), this class is also represented by Vn�j.a/. We may
now apply Lemma 10.6 to deduce the claim. ut

We now make explicit the relationship between the Kummer and Artin–Schreier–
Witt isomorphisms.

Theorem 10.8 (Matsuda). The homomorphism (22) is induced by a homomor-
phism

Wn.Rint/! .Rint/�; a 7! En;p.p
na/: (23)

Proof. We first clarify the interpretation of the expression En;p.pna/ as an element
of Rint. Since by definition En;p.a/ D Qn�1

iD0 En�i;p.ai/, this amounts to evaluating
the formal power series En;p.pnt/ at t D g for some g D P

i2Z gizi 2 Rint.
By Lemma 9.3, there exists �1 > 1 such that the series En;p.pnt/ converges for
jtj < �1. By the definition of R, there exists �2 2 .0; 1/ such that for any z in
any nonarchimedean field containing K with �2 < jzj < 1, jgizij < �1 for all
but finitely many i < 0. The same remains true if we replace �2 by any larger
value in .0; 1/; by so doing, we can force the inequality jgizij < �1 to hold for all
i < 0. The same inequality also holds for i 	 0 because jgij � 1 by the definition
of Rint; consequently, g.z/ belongs to the region of convergence of En;p.pnt/, and
the evaluation En;p.png/ is well-defined as an analytic function on the annulus
A.�2; 1/. Since both En;p.pnt/ and g have coefficients in oK , the same is true of
the composition, so En;p.png/ 2 Rint.

By (14), the map (23) is a homomorphism. Given a, choose a minimal finite
separable extension S of F such that there exists b 2 Wn.S/ with

b � '.b/ D a:
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(This amounts to forming a tower of Artin–Schreier extensions over F.) Apply
Lemma 10.3 to construct a finite étale algebra S int over Rint with residue field S.
Choose a lift b 2 S int of b; then aC �.b/ � b 2 Wn.pS int/. By Lemma 9.10(b), we
may define an element

f WD Fn;p.b/En;p.aC �.b/ � b/ 2 S int:

Then f pn D En;p.pna/.
On one hand, the image of a in coker.' � 1;Wn.F// corresponds to the element

of H1.GF;Z=pn
Z/ which factors through H1.Gal.S=F/;Z=pn

Z/ and sends g 2
Gal.S=F/ to the integer m 2 Z=pn

Z for which '.b/ D bC m. On the other hand,
we have g.b/ D bC mC c for some c 2 W..�pn � 1/Rint

n /, and so

g.f / D Fn;p.bC cC m/En;p.aC �.bC cC m/ � b � c � m/

D Fn;p.bC cC m/Fn;p.b/
�1

En;p.�.bC cC m/ � �.b/ � c � m/

Fn;p.b/En;p.aC �.b/ � b/

D �m
pn f

by Lemma 9.11. It follows that (23) induces (22) as desired. ut
Remark 10.9. By comparing a character with its p-th power, we may deduce from
Theorem 10.8 that

En;p.pna/

En�1;p.pn�1a/
2 .Rint/�pn�1

:

This may also be seen directly from Lemma 9.10 by rewriting the left side as
Gn�1;p.a/p

n�1
.

11 Automorphisms of a Formal Disc

To conclude, we use Kummer–Artin–Schreier–Witt theory to translate the Oort local
lifting problem into a question about the construction of suitable connections on P

1
K ,

and use this interpretation to describe existing combinatorial invariants connected
with the Oort problem in terms of convergence polygons.

Hypothesis 11.1. Throughout Sect. 11, retain Hypothesis 10.1 and additionally fix
a 2 Wn.Rint/.
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Definition 11.2. Let 
 W GF ! pn be the character corresponding to a via the
maps Wn.Rint/ ! coker.' � 1;Wn.F// Š H1.GF; pn/ (the latter isomorphism
being (21)). For i D 1; : : : ; n, let bi be the Swan conductor of 
˝pn�i

.
As before, let x1 2 P

1;an
K denote the generic point of the disc jzj < 1. The

residue field H.x1/ is the fraction field of a Cohen ring for the field k.z/. We have an
embedding of H.x1/ into the completion of Rbd for the Gauss norm, arising from
an inclusion of Cohen rings lifting the inclusion k.z/ � F.

Apply the Katz–Gabber construction [83] to lift 
 to a representation of Gk.z/

unramified away from f0;1g, then identify the latter with a representation Q
 W
GH.x1/ ! pn . By Crew’s analogue of the Katz–Gabber construction for p-adic
differential equations [52], the character Q
 arises from a finite Galois cover of
A.�1; �2/ for some �1 < 1 < �2. We may then proceed as in Definition 8.2 to obtain
a rank 1 bundle En with connection on this subspace. As in [139, Theorem 3.1]
(modulo a sign convention; see Definition 10.4), this connection can be described
explicitly as the free vector bundle on a single generator v equipped with the
connection

r.v/ D
n�1X

iD0

n�i�1X

jD0
.�pn�j � 1/apj�1

i v˝ dai:

Formally, we have dv D v˝ d log En;p.a/.
For i D 1; : : : ; n, put Ei D E˝pn�i

n . Then Ei corresponds to the character 
˝pn�i

of order pi in a similar fashion.

Remark 11.3. The construction given in Definition 11.2 is precisely the .';r/-
module associated with 
 by the work of Fontaine and Tsuzuki [162]. In particular,
it is unique in the sense that given any other construction, the two become
isomorphic on A.�1; �2/ for some convenient choice of �1 < 1 < �2. Similarly,
the restriction of the connection to A.1; �2/ is the .';r/-module associated with the
restriction of 
 to the decomposition group at1, and enjoys a similar uniqueness
property.

In fact, we can say something stronger. Recall that the Katz extension of
a representation of GF has only tame ramification at 1. Since 
 factors through
a p-group, its Katz extension must in fact be unramified at 1, so it descends to a
representation of the étale fundamental group of P1K � f0g. Such a representation
gives rise to an overconvergent F-isocrystal, as shown by Crew [50, Theorem 3.1];
this means that for some choice of �1 < 1 < �2, the connection on A.�1; �2/
described above extends to the subspace jzj > �1 of P1K .

Definition 11.4. Let S be the fixed field of ker.
/; we may identify S with k..u//
for some parameter u. The action of GF defines a continuous k-linear action � of
pn on k�u�. A solution of the lifting problem for 
 is a lifting of � to a continuous
oK-linear action Q� of pn on oK�u�.

Conjecture 11.5 (Oort). A solution of the lifting problem exists for every 
 .
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A spectacular breakthrough on this problem has been made recently in work of
Obus–Wewers and Pop [123, 138].

Theorem 11.6. For fixed 
 , a solution of the lifting problem exists over some finite
extension of K (that is, the lifting problem is solved if we do not insist on the field of
definition).

We will not say anything more here about the techniques used to prove
Theorem 11.6. Instead, we describe an equivalence between solutions of the lifting
problem for 
 and extensions of the connection on En.

Definition 11.7. Suppose that Q� is a solution of the lifting problem. Then Q� gives
rise to a finite Galois cover of the disc jzj < 1, which thanks to Remark 11.3 may
be glued together with the cover from Definition 11.2 to give a finite ramified cover
fn W Yn ! X with X D P

1
K , such that x1 has a unique preimage in Yn. (This cover

is constructed a priori at the level of analytic spaces, but descends to a cover of
schemes by rigid GAGA; see Remark 7.8.) For i D 1; : : : ; n, let fi W Yi ! X be the
cover corresponding to �pn�i

in similar fashion, and let Zi be the ramification locus
of fi; also put Z0 D ;. For each x 2 Zi � Zi�1, En is regular at x with exponent
m=pn�iC1 for some m 2 Z � pZ.

Using the Riemann–Hurwitz formulas in characteristic 0 and p, we obtain the
following relationship between the ramification of � and of fn.

Lemma 11.8. With notation as in Definition 11.7, for i D 1; : : : ; n,

2 � 2g.Yi/ D 2pi �
iX

jD1
.pi � pj�1/.length.Zj/ � length.Zj�1// (24)

D 2pi �
iX

jD1
.pj � pj�1/bj: (25)

Consequently,

length.Zi/ D bi C 1 .i D 1; : : : ; n/: (26)

Proof. The Riemann–Hurwitz formula for fi asserts that

2 � 2g.Yi/ D deg.fi/.2 � 2g.P1K// �
X

z2X

.deg.fi/ � length.f �1
i .z///:

For z 2 X, we have deg.fi/ � length.f �1
i .z// D 0 unless z 2 Zi. If z 2 Zj � Zj�1

for some j 2 f1; : : : ; ig, then each preimage of z in Yi is fixed by a group of order
pi�jC1, so length.f �1

i .z// D pj�1. This yields (24).
Let f i W Yi ! P

1
k be the reduction of fi; then, g.Yi/ D g.Yi/. Set notation as in the

proof of Lemma 10.6. Since f i is Galois and only ramifies above 0, the Riemann–
Hurwitz formula for f i (see [156, Corollary 3.4.14, Theorem 3.8.7]) can be written
in the form
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2 � 2g.Yi/ D deg.fi/.2 � 2g.P1k// �
1X

mD0
.# Gal.Fi=F/m � 1/

where Gal.Fi=F/m denotes the m-th subgroup of Gal.Fi=F/ in the lower numbering
filtration. By identifying these subgroups as in the proof of Lemma 10.6, we
obtain (25). By combining (24) and (25), we may solve for bi for i D 1; : : : ; n
in succession to obtain (26). ut

We have the following explicit version of Theorem 5.5 in this setting.

Theorem 11.9. Retain notation as in Definition 11.7. Let � D �X;Zn[f1g be the
union of the paths from1 to the elements of Zn. Let Nn be the convergence polygon
of En.

(a) The function Nn factors through the retraction of Xan onto � , and is affine on
each edge of � .

(b) Let �1 � � be the path from x1 to1. For each x 2 �1, s1.Nn.x// D 0.
(c) The measure �.E/ (more precisely, the measure �.E ;Zn/ in the notation of

Remark 7.15) is discrete, supported at x1, of total measure 1 � bn.
(d) For each x 2 � ��1, for Et the branch of x towards x1, @Ets1.Nn/ D `� 1 where

` is the length of the subset of Zn dominated by x.
(e) For i D 1; : : : ; n, for each x 2 Zi � Zi�1, let �x be the pendant edge of �

terminating at x. For each y 2 �x,

s1.Nn.y// D
�

n � iC 1C 1

p � 1
	

log p: (27)

Proof. By Theorem 8.11(a), we have s1.Nn.x1// D 0; by Theorem 5.9(a), Nn is
identically zero on all x outside of the closed unit disc. In particular, we deduce (b).

By Theorem 7.23(c) and Remark 8.16, we must have �x.En/ � 0 for all x 2 Xan.
By Theorem 7.7 (as reformulated in Theorem 7.12), Lemma 7.6, and Lemma 11.8,
we have

Z

Xan
�.En/ D �dR.X

an; En/ D �dR.U
an/ D 2 � length.Zn/ D 1 � bn:

By the previous paragraph plus Theorem 8.11(b), �x1 .E/ D 1 � bn; we thus
deduce (c), which in turn immediately implies (a). Using Theorem 7.12 (which
again applies in this situation thanks to Remark 8.16), we deduce (d). To obtain
(e), in light of (a) we need only check (27) for y in some neighborhood of x. This
follows by noting that as in Example 4.3, the binomial series .1C z/1=pn

has radius
of convergence p�n�1=.p�1/. ut
Remark 11.10. Retain notation as in Definition 11.7 and Theorem 11.9. The union
of the paths from x1 to the points of Z then forms a tree on which s1.Nn/ restricts
to a harmonic function which is affine on each edge of the tree, with prescribed
values and slopes at the pendant vertices (i.e., x1 and the points of Z). However, the
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existence of such a function imposes strong combinatorial constraints on the relative
positions of the points of Z; the resulting data are well-known in the literature on
the Oort lifting problem, under the rubric of Hurwitz trees [24]. Similar data arise
in [47, 157].

Remark 11.11. Conversely, suppose X D P
1
K ; Z equals f1g plus a subset of the

open unit disc; E is a rank 1 vector bundle with connection on U D X � Z; for
each z 2 Z, r is regular at z with exponent in p�n

Z; and for some � 2 .0; 1/, the
restriction of E to the space jzj > � is isomorphic to En. The connection E˝pn

has
only removable singularities, so it can be shown to be trivial either by passing to C

as in the proof of Lemma 7.6 and invoking complex GAGA (using the Riemann–
Hilbert correspondence and the fact that P1;an

C
is simply connected) or by applying

the Dwork transfer theorem (Theorem 5.9(a)) to the disc jzj < � for some � > �.
From this, we may see that E arises as En for some data as in Definition 11.2, i.e.,

that E arises from a solution of the lifting problem. For example, to construct the
finite map f W Y ! X, we may work analytically over C (again as in the proof of
Lemma 7.6), using complex GAGA to descend to the category of schemes. In the
complex-analytic situation, we may locally choose a generator v of E , then form Y
from X by adjoining s1=p where sv˝p is a nonzero horizontal section of E˝pn

. By
similar considerations, we see that f is Galois with group pn and that E Š En.

Remark 11.12. For a given 
 , it should be possible to construct a moduli space
of solutions of the lifting problem in the category of rigid analytic spaces over K.
Theorem 11.6 would then imply that this space is nonempty. Given this fact, it may
be possible to derive additional results on the lifting problem, e.g., to resolve the
case of dihedral groups. For p > 2, this amounts to showing that if � anticommutes
with the involution z 7! �z, then the action of the involution z 7! �z fixes some
point of the moduli space.
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(Warschawski Professorship), and by a Simons Visiting Professorship grant during November 2014
(visiting Pulita).

Appendix 1: Convexity

In this appendix, we give some additional technical arguments needed for the proofs
of Theorems 6.6 and 7.23(c), which do not appear elsewhere in the literature. These
arguments are not written in the same expository style as the rest of the main text;
for instance, they assume much more familiarity with the author’s book [92].

Definition A.1. For I a subinterval of Œ0;C1/, let RI be the ring of rigid analytic
functions on the space jtj 2 I within the affine t-line over K, as in [97,
Definition 3.1.1].
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Hypothesis A.2. Throughout Appendix 1, assume p D 0, and let .M;D/ be a
differential module of rank n over RŒ0;ˇ/. For I a subinterval of Œ0; ˇ/, write MI

as shorthand for M ˝RŒ0;ˇ/ RI .

Definition A.3. Let Dˇ be the Berkovich disc jtj < ˇ over K. For x 2 Dˇ , define
the real numbers si.M; x/ for i D 1; : : : ; n as in [97, Definition 4.3.2]; note that they
are invariant under extension of K [97, Lemma 4.3.3]. For r > � logˇ, define the
functions

gi.M; r/ D � log si.M; xe�r /

Gi.M; r/ D g1.M; r/C � � � C gi.M; r/:

We begin with a variant of Theorem 7.23.

Lemma A.4. The right slope of Gn.M; r/ at r D � logˇ equals � dimK H1.M/,
provided that at least one of the two is finite.

Proof. Apply [135, Theorem 3.5.2]. ut
Lemma A.5. For � 2 .0; ˇ/, let x� be the generic point of the disc jtj � �. Then
for i D 1; : : : ; n, the function � 7! s1.M; x�/ � � � si.M; x�/ is nonincreasing in �.

Proof. The case i D n is immediate from Lemma A.4. To deduce the case i < n, it
suffices to work locally around some �0 D e�r0 , and to check only those values of
i for which gi.M; r0/ > giC1.M; r0/. For � 2 K, let M� be the differential module
obtained from M by adding � to D; we may also view M� as the tensor product
of M with the rank one differential module N� on a single generator v satisfying
D.v/ D �v. From the tensor product description, for j D 1; : : : ; n we have

gj.M�; r/ � maxfgj.M; r/; g1.N�; r/g; gj.M; r/ � maxfgj.M�; r/; g1.N
_
� ; r/g:

(28)

In addition, by Example 4.1, we have

g1.N�; r/ D g1.N
_
� ; r/ D max

�
� log jˇj ; 1

p � 1 log pC log j�j
�

independently of r.
Choose an open subinterval I of .giC1.M; r0/; gi.M; r0//. After replacing K with

a finite extension (which does not affect Gj.M; r/), we may choose � in such a way
that g1.N�; r/ D g1.N_

� ; r/ is equal to a constant value contained in I. We then have
gi.M; r/ > g1.N�; r/ > giC1.M; r/ for all r in some neighborhood of r0. For such r,
for j � i we apply (28) to see that gj.M�; r/ D gj.M; r/.

For j > i, (28) implies gj.M�; r/ � g1.N�; r/, but we claim that in fact equality
must hold. To wit, assume to the contrary that the inequality is strict; then, the
restriction of M to the disc jtj < e�gj.M�;r/ would have a submodule isomorphic
to N_

� . This would mean that M has a local horizontal section whose exact radius of
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convergence is equal to e�g1.N�;r/, which would imply that there exists some value
of k for which gk.M; r/ D g1.N�; r/. However, this contradicts our choice of the
interval I.

To summarize, for r in a neighborhood of r0 we have

gj.M�; r/ D
(

gj.M; r/ .j D 1; : : : ; i/
gj.N�; r/ .j D iC 1; : : : ; n/:

We thus deduce the original claim by applying the case i D n to M�. ut
We now deduce Theorem 6.6.

Theorem A.6. For x; y 2 Dˇ such that x is the generic point of a disc containing y,
for i D 1; : : : ; n, we have

s1.M; x/ � � � si.M; x/ � s1.M; y/ � � � si.M; y/:

In particular, the conclusion of Theorem 6.6 holds.

Proof. This follows from Lemma A.5 thanks to the invariance of the si under base
extension. ut

We next proceed towards Theorem 7.23(c).

Definition A.7. Define the convergence polygon N of M as in Definition 5.3, using
the same disc at every point.

Lemma A.8. Assume p D 0. For i D 1; : : : ; n, for x 2 Dˇ , we have �hi.N /x 	 0.

Proof. By base extension, we may reduce to the case x D x1; we may also assume
that the norm on K is nontrivial. As in the proof of Lemma A.5, we may further
reduce to the case i D n. We may further reduce to the case where H0.MŒ0;ı// D 0

for all ı 2 .1; ˇ/.
Choose a nonempty set W of K-rational points of Dˇ with the following

properties.

(a) For each w 2 W, Uw;1 is a branch of P1K at x1, which we also denote by Etw.
(b) The branches Etw for w 2 W are pairwise distinct.
(c) Let Et1 be the branch of P1K at x in the direction of1. Then for all branches Et of

P
1
K at x1, we have @Et.N / D 0 unless Et D Et1 or Et D Etw for some w 2 W.

Let Rw;I be the ring of rigid analytic functions on the space jz � wj 2 I, and put
Mw;I D M ˝RŒ0;ˇ/ Rw;I . Then by Lemma A.4, to prove the desired result, it suffices
to check that for any � 2 .0; 1/, ı 2 .1; ˇ/ sufficiently close to 1,

dimK H1.MŒ0;ı// 	
X

w2W

dimK H1.Mw;Œ0;�//:
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It would hence also suffice to prove surjectivity of the map

H1.MŒ0;ı//!
M

w2W

H1.Mw;Œ0;�//: (29)

Since p D 0, we may invoke Theorem 7.12 to see that H1.Mw;Œ0;�// is a finite-
dimensional K-vector space, and so is complete with respect to its natural topology
as a K-vector space (i.e., the one induced by the supremum norm with respect to
some basis). Since the map Mw;Œ0;�/ ! H1.Mw;Œ0;�// is a K-linear surjection from a
Fréchet space over K to a Banach space over K, the Banach open mapping theorem
implies that this map is a quotient map of topological spaces. In particular, since the
map

MŒ0;ı/ !
M

w2W

Mw;Œ0;�/

has dense image, so then does (29), proving the claim. ut
Theorem A.9. The conclusion of Theorem 7.23(c) holds.

Proof. By Theorem 7.23(b), we may assume x … �X;Z ; the claim thus reduces to
Lemma A.8. ut
Remark A.10. In the proof of Lemma A.8, to deduce the finite-dimensionality of
H1.Mw;Œ0;�//, one may replace the invocation of Theorem 7.12 with the following
argument. For ı1 2 .0; �/, ı2 2 .ı1; �/ sufficiently large, by [97, Lemma 3.7.6] we
have

dimK H0.Mw;.ı1;�// D dimK H1.Mw;.ı1;�//; dimK H0.Mw;.ı1;ı2// D dimK H1.Mw;.ı1;ı2//:

By this calculation plus Mayer–Vietoris, the map H1.Mw;Œ0;�// ! H1.Mw;Œ0;ı2// has
finite-dimensional kernel and cokernel. Since Rw;Œ0;�/ ! Rw;Œ0;ı2/ is a compact map
of topological K-vector spaces, the same is true of Mw;Œ0;�/ ! Mw;Œ0;ı2/; we may thus
apply the Schwartz–Cartan–Serre lemma [100, Satz 1.2] to conclude.

Remark A.11. At this point, it is natural to consider what happens when p > 0. If
we also add suitable hypotheses on p-adic non-Liouville exponents, then all of the
preceding statements remain true (as in Remark 8.16). Absent such hypotheses, we
cannot rely on finite-dimensionality of cohomology groups, but it may nonetheless
be possible to adapt the proof of Theorem A.9 to the case p > 0 by establishing
a relative version of Lemma A.4. To be precise, in the notation of the proof of
Lemma A.8, one might hope to prove that

H1.MŒ0;ı/=
M

w2W

Mw;Œ0;�// D 0

and to relate this vanishing directly to the Laplacian, bypassing the potential failure
of finite-dimensionality for the individual cohomology groups.
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Appendix 2: Thematic Bibliography

As promised in the introduction, we include an expansive but unannotated list of
references related to key topics in the paper. For those topics discussed in [92], the
chapter endnotes therein may be consulted for additional context.

• Underlying structure of Berkovich spaces: [8, 9], [6, Chap. 1], [18, 19, 25, 54–
56, 76, 78, 130, 131, 166]. See also the survey [170] in this volume.

• Potential theory for Berkovich curves: [7, chapter by Baker], [6, 159].
• Formal structure of singular connections: [66, Chap. 4], [71], [82, Sect. 11], [92,

Chap. 7], [93, 94, 102, 103, 108, 109, 118, 119], [155, Chap. 3], [165].
• Convergence of solutions of p-adic differential equations: [10, 13, 15, 16, 33, 36,

39, 45, 46, 64], [92, Chaps. 9–11], [99, 106, 132, 133, 136, 137, 140, 174]. For a
retrospective circa 2000, see also [35].

• Transfer principles and effective convergence bounds: [34, 38, 63, 65], [92, 98,
Chaps. 9, 13, 18].

• Logarithmic growth of p-adic solutions: [3, 29, 30, 33, 59, 60], [92, Chap. 18],
[110, 124, 126].

• Stokes phenomena for complex connections: [104, 105, 107, 120, 148, 149], [155,
Chaps. 7–9], [167, 168].

• Index formulas for nonarchimedean differential equations: [37, 40–42, 44, 86,
87, 113, 135, 142, 143, 145, 146, 161, 174]. See also the thematic bibliography
of [147], and [43] for a survey of [40–42, 44].

• Comparison between algebraic and complex-analytic cohomology of connec-
tions: [4, 5, 53, 74, 115].

• Comparison between algebraic and nonarchimedean analytic cohomology of
connections: [2, 4, 11, 12, 26, 27], [7, chapter by Kedlaya], [101].

• Decomposition theorems for nonarchimedean connections: [33, 37, 40–42, 44,
63], [92, Chap. 12], [97, 134, 142, 144].

• Monodromy for p-adic connections (Crew’s conjecture): [1, 51, 84, 85, 89–91],
[92, Chaps. 20, 21], [95, 97, 116, 162, 163].

• p-adic Liouville numbers and p-adic exponents: [37, 40–42, 44, 46, 62], [92,
Chap. 13], [97].

• Ramification of maps of Berkovich curves: [47, 67, 68, 79], [92, Chap. 19], [157].
• Measures of ramification and p-adic differential equations: [14, 28, 86, 88],

[92, Chap. 19], [96, 111–114, 125, 161, 171–173].
• Kummer theory in mixed characteristic (Kummer–Artin–Schreier–Witt

theory): [72, 112, 117, 128, 139, 151, 152] (unpublished; see [117] instead),
[153, 160, 169].

• Oort lifting problem: [20, 22, 24, 31, 32, 49, 69, 72, 73], [77, Sect. 9], [121–
123, 127–129, 138, 150]. See also the lecture notes [23], the introductions to
[123, 138], and the PhD thesis [164].
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About Hrushovski and Loeser’s Work
on the Homotopy Type of Berkovich Spaces

Antoine Ducros

Abstract Using sophisticated model-theoretic tools, Hrushovski and Loeser have
proved that the Berkovich analytification of a quasi-projective algebraic variety is
locally contractible and has the homotopy type of a finite simplicial complex. This
text is a survey of their work. We begin with a presentation of the model-theoretic
notions involved (definability, types, etc.), and then give a sketch of their proof. At
the end, we explain how one of their intermediate results can be applied to describe
the pre-image of the skeleton of a torus under a finite map.

Keywords Berkovich analytic spaces • Skeletons • Definability • Model-
theoretic types

1 Introduction

(1.1) At the end of the 1980s, Berkovich developed in [2, 3] a new theory of analytic
geometry over non-Archimedean fields, coming after those by Krasner, Tate [22],
and Raynaud [20]. One of the main advantages of this approach is that the resulting
spaces enjoy very nice topological properties: they are locally compact and locally
pathwise connected (although non-Archimedean fields are totally disconnected, and
often not locally compact). Moreover, Berkovich spaces have turned out to be
“tame” objects—in the informal sense of Grothendieck’s Esquisse d’un programme.
Before illustrating this rather vague assertion by several examples, let us fix some
terminology and notations.

(1.2) Let k be a field which is complete with respect to a non-Archimedean absolute
value j:j and let ko be the valuation ring fx 2 k; jxj 6 1g.

(1.2.1) A (Berkovich) analytic space over k is a (locally compact, locally path-
connected) topological space X equipped with some extra-data, among which:
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– a sheaf of k-algebras whose sections are called analytic functions, which makes
X a locally ringed space;

– for every point x of X, a complete non-Archimedean field .H .x/; j:j/ endowed
with an isometric embedding k ,! H .x/, and an “evaluation” morphism from
OX;x to H .x/, which is denoted by f 7! f .x/.

(1.2.2) To every k-scheme of finite type X is associated in a functorial way a
k-analytic space Xan, which is called its analytification [3, Sect. 2.6]; it is provided
with a natural morphism of locally ringed spaces Xan ! X. If f is a section of OX ,
we will often still denote by f its pullback to OXan.Xan/.

Let us recall what the underlying topological space of Xan is. As a set, it consists
of couples .�; j:j/ where � 2 X and where j:j is a non-Archimedean absolute value
on �.�/ extending the given absolute value of k. If x D .�; j:j/ is a point of Xan, then
H .x/ is the completion of the valued field .�.�/; j:j/. The map Xan ! X is nothing
but .�; j:j/ 7! �; note that the pre-image of a Zariski-open subset U of X on Xan can
be identified with Uan. The set Xan is equipped with the coarsest topology such that:

• Xan ! X is continuous (otherwise said, Uan is an open subset of Xan for every
Zariski-open subset U of X);

• for every Zariski-open subset U of X and every f 2 OX.U/, the map .�; j:j/ 7!
jf .�/j from Uan to RC is continuous.

Let us now assume that X is affine, say X D Spec A. The topological space
underlying Xan can then be given another description: it is the set of all multiplicative
maps 'WA ! RC that extend the absolute value of k and that satisfy the inequality
'.a C b/ 6 max.'.a/; '.b// for every .a; b/ 2 A2 (such a map will be simply
called a multiplicative semi-norm); its topology is the one inherited from the product
topology on R

AC. This is related as follows to the former description:

• to any couple .�; j:j/ as above corresponds the multiplicative semi-norm '

defined by the formula '.f / D jf .�/j;
• to any multiplicative semi-norm ' corresponds the couple .p; j:j/ where p is the

kernel of ' (this is a prime ideal of A) and j:j is the absolute value on Frac A=p
extending the multiplicative norm on A=p induced by '.

Modulo this new description the map Xan ! X simply sends a semi-norm to its
kernel.

Definition 1.2.3. Let X be a k-scheme of finite type. A subset of Xan is said to
be semi-algebraic if it can be defined, locally for the Zariski-topology of X, by a
boolean combination of inequalities jf j ‰ �jgj where f and g are sections of OX ,
where ‰2 f<;>;6;>g, and where � 2 RC; it is called strictly semi-algebraic if
the �’s can be chosen in jkj.
(1.2.4) To every ko-formal scheme X (topologically) of finite type is associated in
a functorial way a compact k-analytic space X�, which is called its generic fiber
[4, Sect. 1].

In what follows, we will be interested in the generic fiber X� for X being
a polystable ko-formal scheme. This notion has been introduced by Berkovich
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(Definition 1.2 of Berkovich [5]); let us simply emphasize here that semi-stable
ko-formal schemes are polystable.

Definition 1.2.5. A polyhedron is a subset of Rn (for some n) which is a finite union
of rational simplices.

(1.3) Examples of tameness properties of Berkovich spaces.

(1.3.1) Let X be a polystable ko-formal scheme. Berkovich proves in [5] that its
generic fiber X� admits a strong deformation retraction to one of its closed subset
S.X/ which is homeomorphic to a polyhedron1 of dimension 6 dimX.

(1.3.2) Smooth k-analytic spaces are locally contractible; this is also proved in [5]
by Berkovich, by reduction to Assertion (1.3.1) above through de Jong’s alterations.

(1.3.3) Let X be a k-scheme of finite type. Every semi-algebraic subset of Xan

has finitely many connected components, each of which is semi-algebraic; this was
proved by the author in [9].

(1.3.4) Let X be a compact k-analytic space and let f be an analytic function on X;
for every " > 0, denote by X" the set of x 2 X such that jf .x/j > ". There
exists a finite partition P of RC in intervals such that for every I 2 P and
every ."; "0/ 2 I2 with " 6 "0, the natural map 
0.X"0/ ! 
0.X"/ is bijective. This
has been established by Poineau in [17] (it had already been proved in the particular
case where f is invertible by Abbes and Saito in [1]).

(1.4) Hrushovski and Loeser’s work. As far as tameness is concerned, there has
been in 2009–2010 a major breakthrough, namely, the work [16], by Hrushovski
and Loeser. Let us quickly explain what their main results consist of. We fix a quasi-
projective k-scheme and a semi-algebraic subset V of Xan. Hrushovski and Loeser
have proven the following.

(1.4.1) There exists a strong deformation retraction from V to one of its closed
subsets which is homeomorphic to a polyhedron. More precisely, Hrushovski and
Loeser build a continuous map h W Œ0I 1� � V ! V , and prove the existence of a
compact subset S of V homeomorphic to a polyhedron such that the following hold:

(i) h.0; v/ D v and h.1; v/ 2 S for all v 2 V;
(ii) h.t; v/ D v for all t 2 Œ0I 1� and all v 2 S;

(iii) h.1; h.t; v// D h.1; v/ for all t 2 Œ0I 1� and all v 2 V .

(1.4.2) The topological space V is locally contractible.

(1.4.3) Let Y be a k-scheme of finite type and let 'WX ! Y be a k-morphism. The
set of homotopy types of fibers of the map 'anjV W V ! Yan is finite.2

1It is more precisely homeomorphic to the (abstract) “incidence polyhedron” of the special fiber
Xs that encodes the combinatorics of its singularities, e.g., it is reduced to a point if Xs is smooth
and irreducible.
2One could ask the same question concerning the set of homeomorphism types; to the author’s
knowledge, the answer is not known, and likely not easy to obtain using Hrushovski and Loeser’s
approach.
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(1.4.4) Let f be a function belonging to OX.X/. For every " > 0 let us denote
by V" the set of x 2 V such that jf .x/j > ". There exists a finite partition P of RC
in intervals such that for every I 2 P and every ."; "0/ 2 I2 with " 6 "0, the
embedding V"0 ,! V" is a homotopy equivalence.

(1.5) Comments.

(1.5.1) Since V has a basis of open subsets which are semi-algebraic subsets
of Xan, Assertion (1.4.2) is an obvious corollary of Assertion (1.4.1) and of the local
contractibility of polyhedra; note that the property (iii) of (1.4.2) is here crucial.

(1.5.2) Even when X is smooth, projective and when V D Xan, Assertion (1.4.1)
was previously known only when X has a polystable model.

(1.5.3) The quasi-projectivity assumption on X is needed by Hrushovski and
Loeser for technical reasons, but everything remains likely true for X any k-scheme
of finite type.

(1.5.4) In order to prove these tameness results, Hrushovski and Loeser develop
a new kind of geometry over valued fields of arbitrary height, using highly
sophisticated tools from model theory. In fact, most of their work is actually devoted
to this geometry, and they transfer their results to the Berkovich framework only at
the very end of their paper (Chap. 14 of Hrushovski and Loeser [16]); for instance,
they first prove counterparts of Assertions (1.4.1)–(1.4.4) in their setting.

(1.6) About this text. In this article we survey the methods and results of [16].3 We
will describe roughly the geometry of Hrushovski and Loeser, say a few words about
the links between their spaces and those of Berkovich, and give a coarse sketch of
the proof of their version of Assertion (1.4.1).

In the last section, we will explain how a key finiteness result of [16] has been
used by the author in [10], to show the following: if X is an n-dimensional analytic
space and if f W X ! G

an
m;k is any morphism, the pre-image of the “skeleton” of Gn;an

m;k
under f inherits a canonical piecewise-linear structure.

2 Model Theory of Valued Fields: Basic Definitions

(2.1) General conventions about valued fields.

(2.1.1) In this text, a valuation will be an abstract Krull valuation, neither assumed
to be of height one nor nontrivial. We will use the multiplicative notation: if k is a
valued field, then unless otherwise stated its valuation will be denoted by j:j, and
its value group will not be given a specific name—we will simply use the notation
jk�j, and 1 for its unit element. We will formally add to the ordered group jk�j an

3The reader may also refer to the more detailed survey [12].
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absorbing, smallest element 0 and set j0j D 0; with these conventions one then has
jkj D f0g [ jk�j and

jaC bj 6 max.jaj; jbj/
for every .a; b/ 2 k2.

We will denote by jk�jQ the divisible hull of the ordered group jk�j, and set for
short jkjQ D f0g [ jk�jQ.

The reader should be aware that the multiplicative notation, which is usual in
Berkovich’s theory, is not consistent with Hrushovski and Loeser’s choice. Indeed,
they use the additive notation, call “0” what we call “1”, call “C1” what we call
“0”, and their order is the opposite of ours.

(2.1.2) If k is a valued field, we will set

ko D fx 2 k; jxj 6 1g and koo D fx 2 k; jxj < 1g:
Then ko is a subring of k; it is local, and koo is its unique maximal ideal. The quotient
ko=koo will be denoted by Qk; it is called the residue field of .k; j:j/ (or simply of k if
there is no ambiguity about the valuation).

(2.2) Definable functors: the embedded case. Let k be a valued field. We fix an
algebraic closure Nk of k, and an extension of the valuation of k to Nk. Let M be the
category of algebraically closed valued extensions of Nk whose valuation is nontrivial
(morphisms are isometric Nk-embeddings).

(2.2.1) Definable subsets. Let X and Y be k-schemes of finite type and let F 2 M.
A subset of X.F/ will be said to be k-definable if it can be defined, locally for the
Zariski-topology of X, by a boolean combination of inequalities of the form

jf j ‰ �jgj
where f and g are regular functions, where � 2 jkj, and where ‰2 f6;>; <;>g.
A map from a k-definable subset of X.F/ to a k-definable subset of Y.F/ will be said
to be k-definable if its graph is a k-definable subset of X.F/� Y.F/ D .X �k Y/.F/.

(2.2.2) Comments. Definability is in fact a general notion of model theory which
makes sense with respect to any given language. The one we have introduced here is
actually definability in the language of valued fields, and the reader is perhaps more
familiar with the two following examples: definability in the language of fields,
which is nothing but Zariski-constructibility; and definability in the language of
ordered fields, which is nothing but semi-algebraicity.

(2.2.3) Definable sub-functors. The scheme X induces a functor F 7! X.F/
from M to Sets, which we will also denote by X. A sub-functor D of X will be
said to be k-definable if it can be defined, locally for the Zariski-topology of X, by
a boolean combination of inequalities of the form

jf j ‰ �jgj



104 A. Ducros

where f and g are regular functions, where � 2 jkj, and where ‰2 f6;>; <;>g.
A natural transformation from a k-definable sub-functor of X to a k-definable sub-
functor of Y will be said to be k-definable if its graph is a k-definable sub-functor
of X �k Y . If D is a k-definable sub-functor of X, then D.F/ is for every F 2 M a k-
definable subset of X.F/; if D0 is a k-definable sub-functor of Y and if f W D ! D0
is a k-definable natural transformation, f .F/ W D.F/ ! D0.F/ is for every F 2 M
a k-definable map.

The following fundamental facts are straightforward consequences of the
so-called quantifier elimination for nontrivially valued algebraically closed fields.
It is usually attributed to Robinson, though the result proved in his book [21] is
weaker—but the main ideas are there; for a complete proof, cf. [7, 19] or [23].

(i) For every F 2 M, the assignment D 7! D.F/ establishes a one-to-one
correspondence between k-definable sub-functors of X and k-definable subsets
of X.F/. The analogous result holds for k-definable natural transformations
and k-definable maps.

(ii) If f W D ! D0 is a k-definable natural transformation between two k-definable
sub-functors D � X and D0 � Y , the sub-functor of D0 that sends F to the image
of f .F/ W D.F/! D0.F/ is k-definable.

Comments about assertion (i). For a given F 2 M, assertion (i) allows to
identify k-definable subsets of X.F/ with k-definable sub-functors of X, and the
choice of one of those viewpoints can be somehow a matter of taste. But even if
one is actually only interested in F-points, it can be useful to think of a k-definable
subset D of X.F/ as a sub-functor of X. Indeed, this allows to consider points of D
over valued fields larger than F, which often encode in a natural and efficient way
the “limit” behavior of D.

(2.2.4) Subvarieties of X and definable sub-functors. Here we consider only field-
valued points; for that reason, this theory is totally insensitive to nilpotents. For
example, Xred and X define the same functor in our setting. But let us now give
a more subtle example of this phenomenon. If Y ,! X is a k-subscheme, then
F 7! Y.F/ is obviously a k-definable sub-functor of X.

Now, let L be the perfect closure of k (which embeds canonically in any F 2 M),
and let Y be an L-subscheme of XL. The functor F 7! Y.F/ is then again k-definable,
even if Y cannot be defined over k in the usual, algebro-geometric sense. Indeed, to
see it we immediately reduce to the case where X is affine; now, Y is defined by an
ideal .fi/16i6n, where the fi’s all belong to OXL.XL/. But then, again since we only
consider field-valued points, the sub-functor F 7! Y.F/ is equal to the one defined
by the ideal .f pn

i / for any n, where p is the characteristic exponent of k. By taking n

large enough so that f pn

i 2 OX.X/ for every i, we see that our functor is k-definable.

(2.3) Definable functors: the abstract case.

(2.3.1) Definably embeddable functors. Let us say that a functor D from M
to Sets is k-definably embeddable if there exist a k-scheme of finite type X, a
definable sub-functor D0 of X, and an isomorphism D ' D0.
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The functor D0 is not a priori uniquely determined (up to unique k-definable
isomorphism). But for all functors D we will consider below, we will be given
implicitly not only D.F/ for every F 2 M, but also D.T/ for every F 2 M and
every F-definable sub-functor T of an F-scheme of finite type; otherwise said, if D
classifies objects of a certain kind, we not only know what such an object defined
over F is, but also what an embedded F-definable family of such objects is. It follows
from Yoneda’s lemma that such data ensure the canonicity of D0 as soon as it exists
(see [12, Sect. 1] for more detailed explanations about those issues).

(2.3.2) It turns out that the class of k-definably embeddable functors is too
restrictive, for the following reason. Let D be such a functor and let R be a sub-
functor of D � D. Assume that R is itself k-definably embeddable, and that it is
an equivalence relation—that is, that R.F/ � D.F/ � D.F/ is the graph of an
equivalence relation on D.F/ for every F 2 M. The quotient functor

D=R WD F 7! D.F/=R.F/

is then not necessarily k-definably embeddable. In order to remedy this, one simply
enlarges our class of functors by forcing it to be stable under such quotient
operations.

Definition 2.3.3. A functor �WM ! Sets is said to be k-definable if it is iso-
morphic to D=R for some k-definably embeddable functor D and some k-definably
embeddable equivalence relation R � D � D.

A natural transformation between k-definable functors is called k-definable if its
graph is itself a k-definable functor.

Remark 2.3.4. Let D be k-definable functor and let R � D � D be a k-definable
equivalence relation. It follows from the definition that the quotient functor D=R is
k-definable.

(2.3.5) Comments. Quantifier elimination ensures that there is no conflict of
terminology: if X is a k-scheme of finite type, then a sub-functor D of X is
k-definable in the above sense if and only if it is k-definable in the sense of (2.2.3).

The following counterparts of assertions (i) and (ii) of loc. cit. hold (the first
one is again a consequence of quantifier elimination; the second one comes from
Remark 2.3.4 above).

• Counterpart of (i). Let � be a k-definable functor. For every F 2 M, let
us say that a subset of �.F/ is k-definable if it can be written D.F/ for D
a k-definable sub-functor of �. The assignment D 7! D.F/ then induces a
one-to-one correspondence between k-definable subsets of �.F/ and k-definable
sub-functors of �. The analogous statement for k-definable transformations
holds.

• Counterpart of (ii). If f W D! D0 is a k-definable natural transformation between
two k-definable functors, the sub-functor of D0 that sends F to the image of f .F/ W
D.F/! D0.F/ is k-definable.

Examples 2.3.6. The following functors are k-definable; their descriptions as
quotients are left to the readers.
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• The functor � W F 7! jF�j.
• The functor �0 W F 7! jFj.
• The functor F 7! eF.
• If a and b are elements of jkjQ with a 6 b, the functor ŒaI b� that sends F to

fc 2 jFj; a 6 c 6 bg
is k-definable (note that jkjQ � jFj for every F 2 M). One defines in an analogous
way the functors ŒaI b/, .aI b/, ŒaIC1/, etc. Such functors are called k-definable
intervals; a k-definable interval of the form ŒaI b� will be called a k-definable
segment.

Remark. One can prove that none of the functors above is k-definably embeddable,
except the singleton and the empty set (which can be described as generalized
intervals). What it means can be roughly rephrased as follows, say, for �0 (there
is an analogous formulation for every of the other functors): one cannot find an
algebraic variety X over k and a natural way to embed jFj in X.F/ for every F 2 M.

(2.3.7) Example of k-definable natural transformations. Let I and J be two
k-definable intervals. A k-monomial map from I to J is a natural transformation
of the form

x 7! axr

with a 2 jkjQ and r 2 QC (resp., Q) if 0 2 I (resp., if 0 … I); here we use the
convention 00 D 1. Such a natural transformation is k-definable. Moreover, for any
k-definable natural transformation uW I ! J, there exists a finite partition I D `n In

of I in k-definable intervals such that ujIn is k-monomial for every n.
Assume now that we are given a k-definable injection uW I ! J, that I contains an

interval of the form �0I aŒ with a 2 jk�jQ and that J is bounded, i.e., contained
in Œ0IR� for some R 2 jk�jQ. Then we can always decrease a so that uj�0IaŒ is
k-monomial. Since u is injective, the corresponding exponent will be nonzero; since
J is bounded, it will even be positive. Hence the map u induces an increasing
k-monomial bijection between �0I aŒ and a k-definable interval �0I bŒ� J.

(2.4) More involved examples of k-definable functors.

(2.4.1) One can concatenate a finite sequence of k-definable segments: one makes
the quotient of their disjoint union by the identification of successive endpoints and
origins; one gets that way k-definable generalized segments.

The concatenation of finitely many k-definable segments with nonzero origin
and endpoints is k-definably isomorphic to a single k-definable segment; the proof
consists in writing down an explicit isomorphism and is left to the reader.

But be aware that this does not hold in general without our assumption on the
origins and endpoints. For instance, the concatenation I of two copies of Œ0I 1�,
where the endpoint 1 of the first one is identified with the origin 0 of the second
one, is not k-definably isomorphic to a k-definable segment; indeed, it follows even
from (2.3.7) that there is no k-definable injection from I to a bounded k-definable
interval.
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(2.4.2) A sub-functor of �n
0 is k-definable if and only if it can be defined by

conjunctions and disjunctions of inequalities of the form

axe1
1 : : : x

en
n ‰ bxf1

1 : : : x
fn
n

where a and b belong to jkj, and where the ei’s and the fi’s belong to N, and where
‰2 f<;6; >;>g.

Any k-definable generalized segment is k-definably isomorphic to some
k-definable sub-functor of �n

0 (the proof is left to the reader).

(2.4.3) The functor B that sends a field F 2 M to the set of its closed balls
is k-definable. Indeed, let us denote by T the k-definable functor

F 7!
��

a b
0 a

	�

a2F�; b2F

;

and by T 0 its k-definable sub-functor F 7! T.F/ \ GL2.Fo/. The quotient
functor T=T 0 is k-definable, and the reader will check that the map that sends

�
a b
0 a

	

to the closed ball with center b and radius jaj induces a functorial bijection
between T.F/=T 0.F/ and the set of closed balls of F of positive radius. The functor B
is thus isomorphic to F 7! .T.F/=T 0.F//

`
F, and is therefore k-definable.

(2.5) About the classification of all k-definable functors. By definition, the
description of a k-definable functor involves a k-definably embeddable functor and
a k-definably embeddable equivalence relation on it.

In fact, in the seminal work [14] Haskell et al. prove that the equivalence relation
above can always be chosen to be in a particular explicit list, as we now explain.

(2.5.1) Let n 2 N. We denote by Sn the functor that sends F 2 M to
GLn.F/=GLn.Fı/; note that S1 ' � .

We denote by Tn be the functor that sends F 2 M to the quotient of GLn.F/ by
the kernel of GLn.Fı/! GLn.Fı=Fıı/.

By construction, Sn and Tn appear as quotients of GLn by k-definable relations,
hence are k-definable.

(2.5.2) Let X be a k-scheme of finite type, and let .ni/ and .mj/ be two finite families
of integers. Let D be a k-definable sub-functor of the product X�Qi GLni�

Q
j GLmj

The image � of D under the map

X �
Y

i

GLni �
Y

j

GLmj ! X �
Y

i

Sni �
Y

j

Tmj

is a k-definable sub-functor of X �Qi Sni �
Q

j Tmj . Haskell et al. have then shown
that every k-definable functor is isomorphic to such a �.
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(2.6) Ground field extension. Let F 2 M, let F0 be a subfield of F containing
k, and let F0 be the algebraic closure of F0 inside F. Let N be the category of all
nontrivially valued, algebraically closed fields containing F0; note that F 2 N, that
N � M (since Nk � F0), and that N D M as soon as F0 is algebraic over k (since then
F0 D Nk).

The notion of an F0-definable functor from N to Sets, and that of an F0-definable
subset of�.L/ for such a functor� and for L 2 N, makes sense. If D is a k-definable
functor from M! Sets, its restriction to N is F0-definable ; in particular, the notion
of an F0-definable subset of D.L/ for any L 2 N makes sense.

3 Hrushovski and Loeser’s Fundamental Construction

For every F 2 M, we denote by MF the category of valued extensions of F that
belong to M.

(3.1) The notion of a type (cf. [16, Sects. 2.3–2.9]). Let F 2 M and let D be an F-
definable functor.

(3.1.1) Let L and L0 be two valued fields belonging to MF. Let us say that a point x
of D.L/ and a point x0 of D.L0/ are F-equivalent if for every F-definable sub-
functor � of D, one has

x 2 �.L/ ” x0 2 �.L0/:

Roughly speaking, x and x0 are equivalent if they satisfy the same formulas with
parameters in F.

We denote by S.D/ the set of couples .L; x/ where L belongs to MF and where x
belongs to D.L/, up to F-equivalence; an element of S.D/ is called a type on D.

(3.1.2) Any x 2 D.F/ defines a type on D, and one can identify that way D.F/ with
a subset of S.D/, whose elements will be called simple types.

(3.1.3) Functoriality. Let f be an F-definable natural transformation from D to
another F-definable functor D0 and let x 2 S.D/. If t is a representative of x, then
the F-equivalence class of f .t/ only depends on x, and not on t; one thus gets a
well-defined type on D0, that will usually be denoted by f .x/.

If� is an F-definable sub-functor of D, the induced map S.�/! S.D/ identifies
S.�/ with the subset of S.D/ consisting of types admitting a representative .L; x/
with x 2 �.L/ (it will then be the case for all its representatives, by the very
definition of F-equivalence); we simply say that such a type lies on �.

(3.1.4) Let L 2 MF, and let DL be the restriction of D to ML. Let t be a type
on DL. Any representative of t defines a type on D, which only depends on t (indeed,
L-equivalence is stronger than F-equivalence); one thus has a natural restriction
map S.DL/! S.D/.
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Remark 3.1.5. Let x 2 S.D/. Let Ux be the set of subsets of D.F/ which are
of the kind �.F/, where � is an F definable sub-functor of D on which x lies.
One can rephrase the celebrated compactness theorem of model theory by saying
that x 7! Ux establishes a bijection between S.D/ and the set of ultra-filters of
F-definable subsets of D.F/.

(3.1.6) Definable types. Let t 2 S.D/. By definition, the type t is determined by
the data of all F-definable sub-functors of D on which it lies. We will say that t is
F-definable if, roughly speaking, the following holds: for every F-definable family
of F-definable sub-functors of D, the set of parameters for which t lies on the
corresponding F-definable sub-functor is itself F-definable.

Let us be more precise. If D0 is an F-definable functor, and if� is an F-definable
sub-functor of D � D0, then for every L 2 MF and every x 2 D0.L/, the fiber �x

of �L over x is an L-definable sub-functor �x of DL.
We will say that t is F-definable if for every .D0; �/ as above, the subset of D0.F/

consisting of points x such that t lies on �x is F-definable.

(3.1.7) Canonical extension of an F-definable type. If t is an F-definable type
on D, then it admits for every L 2 MF a canonical L-definable pre-image tL on S.DL/,
which is called the canonical extension of t.

Roughly speaking, tL is defined by the same formulas as t. This means the
following. Let † be an L-definable sub-functor of DL. Considering the coefficients
of the formulas that define † as parameters, we see that there exist an F-definable
functor D0, an F-definable sub-functor � of D � D0, and a point y 2 D0.L/ such
that † D �y.

Now since t is F-definable, there exists an F-definable sub-functor E of D0 such
that for every x 2 D0.F/, the type t lies on �x if and only if x 2 E.F/. Then the
type tL belongs to † D �y if and only if y 2 E.L/.

(3.1.8) Orthogonality to � . Let t be a type on D. We will say that t is orthogonal
to � if it is F-definable and if for every F-definable natural transformation f W D!
�0;F, the image f .t/, which is a priori a type on �0;F, is a simple type, that is, belongs
to �0.F/ D jFj. If this is the case, tL remains orthogonal to � for every L 2 MF.

It follows from the definitions that any simple type on D is orthogonal to � .

(3.1.9) Functoriality of those definitions. If f WD ! D0 is an F-definable natural
transformation, then for every type t 2 S.D/ the image f .t/ is F-definable (resp.,
orthogonal to �) as soon as t is F-definable (resp., orthogonal to �).

(3.2) A very important example: the case of an algebraic variety. Let Y be
an algebraic variety over F. The purpose of this paragraph is to get an explicit
description of S.Y/; as we will see, this descriptions looks like that of the Berkovich
analytification of an algebraic variety (1.2.2).

(3.2.1) The general case. Let t be a type on Y . Let .L; x/ be a representative of t.
The point x of Y.L/ induces a scheme-theoretic point y of Y and a valuation j:jx
on the residue field F.y/, extending that of F; the data of the point y and of (the
equivalence class of) the valuation j:jx only depend on t, and not on the choice
of .L; x/.
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Conversely, if y is a schematic point of Y , any valuation on F.y/ extending that
of F is induced by an isometric embedding F.y/ ,! L for some L 2 MF, hence arises
from some type t on Y . One gets that way a bijection between S.Y/ and the valuative
spectrum of Y , that is, the set of couples .y; j:j/ with y a scheme-theoretic point on Y
and j:j a valuation on F.y/ extending that of F (considered up to equivalence). Note
that there is a natural map from S.Y/ to Y , sending a couple .y; j:j/ to y.

(3.2.2) The affine case. Let us assume now that Y D Spec B, let y 2 Y and let j:j
be a valuation on F.y/ extending that of F. By composition with the evaluation
map f 7! f .y/, we get a valuation ' W B ! jF.y/j (the definition of a valuation on
a ring is mutatis mutandis the same as on a field—but be aware that it may have a
nontrivial kernel); this valuation extends that of F.

Conversely, let ' be a valuation on B extending that of F. Its kernel corresponds
to a point y of Y , and ' is the composition of the evaluation map at y and of a
valuation j:j on F.y/ extending that of F.

These constructions provide a bijection between the valuative spectrum of Y and
the set of (equivalence classes of) valuations on B extending that of F; eventually,
we get a bijection between S.Y/ and the set of valuations on B extending that of F.
Modulo this bijection, the natural map S.Y/! Y sends a valuation to its kernel.

(3.2.3) Interpretation of some properties. Let t 2 S.Y/, let ' be the correspond-
ing valuation on B, and let p be the kernel of ' (that is, its image on Y D Spec B).
Let G be the subset of B2 consisting of couples .b; b0/ such that '.b/ 6 '.b0/.

Interpretation of definability. The type t is F-definable if and only if for every
finite F-dimensional subspace E of B the following hold:

– the intersection E \ p is an F-definable subset of E;
– the intersection .E � E/ \G is an F-definable subset of E � E.

Interpretation of orthogonality to � . The type t is orthogonal to � if and only it
is F-definable, and if ' takes its values in jFj. This is equivalent to require that '
takes its values in jFj and that 'jE W E ! jFj is F-definable for every finite F-
dimensional subspace E of B.

Interpretation of the canonical extension. Assume that the type t is F-definable
and let L 2 MF; we want to describe the valuation 'L on B˝F L that corresponds to
the canonical extension tL (3.1.7). It is equivalent to describe the kernel pL of 'L and
the subset GL of .B˝F L/2 consisting of couples .b; b0/ such that 'L.b/ 6 'L.b0/.
It is sufficient to describe the intersection pL (resp., GL) with E ˝k L (resp., with
.E˝k L/2) for any finite dimensional F-vector subspace E of B.

Let us fix such an E. Since t is definable, there exist a unique k-definable sub-
functor D of E WD ƒ 7! E ˝F ƒ such that E \ p D D.F/ and a unique k-definable
sub-functor D0 of E2 such that .E � E/ \G D D0.F/. One then has

pL \ .E˝F L/ D D.L/ and GL \ .E˝F L/2 D D0.L/:
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Let us assume moreover that t is orthogonal to � . In this situation, ' induces
a k-definable map E ! jFj. This definable map comes from a unique k-definable
transformation E! �0. By evaluating it on L, one gets an L-definable map

E˝F L! jLj;
which coincides with the restriction of 'L.

(3.3) The fundamental definition [16, Sect. 3]. Let V be a k-definable functor. The
stable completion4 of V is the functor

bV W M! Sets

defined as follows:

• if F 2 M, then bV.F/ is the set of types on VF that are orthogonal to �;
• if L 2 MF, the arrow bV.F/ ! bV.L/ is the embedding that sends a type t to its

canonical extension tL (3.1.7).

(3.4) Basic properties and first examples.

(3.4.1) The formation of bV is functorial in V with respect to k-definable maps
(3.1.9).

(3.4.2) Since any simple type (3.1.2) is orthogonal to � , one has a natural
embedding of functors V ,! bV . We will therefore identify V with a sub-functor
of bV . For every F 2 M, the points of bV that belong to V.F/ will be called simple
points.

(3.4.3) The stable completion of a polyhedron. Let F 2 M. It follows immedi-
ately from the definition that a type on �0;F is orthogonal to � if and only if it is
simple. In other words, b�0 D �0. This fact extends to k-definable sub-functors of �n

0

(2.4.2): if V is such a functor, then the natural embedding V ,! bV is a bijection.

(3.5) The stable completion of a definable sub-functor of an algebraic variety.
Let X be a k-scheme of finite type, and let V be a k-definable sub-functor of X.

(3.5.1) Assume that V D X D Spec A. From (3.2.2) and (3.2.3) we get the
following description ofbX. Let F 2 M. The setbX.F/ is the set of valuations

' W A˝k F! jFj
extending that of F and such that for every finite dimensional F-vector space E
of A ˝k F, the restriction 'jE W E ! jFj is F-definable. Let L 2 MF and
let ' 2 bX.F/. For every finite dimensional F-vector subspace E of A ˝k F,
the F-definable map 'jE W E ! jFj arises from a unique F-definable natural

4This is named after the model-theoretic notion of stability which plays a key role in Hrushovski
and Loers’s work (cf. [16, Sects. 2.4, 2.6, and 2.9]), but is far beyond our scope and will thus in
some sense remain hidden in this text.
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transformation ˆE W E! �0, which itself gives rise to an L-definable map ˆE.L/ W
E˝F L! jLj. By gluing the maps ˆE.L/’s for E going through the set of all finite
F-dimensional vector subspaces of A we get a valuation A˝kL! jLj extending that
of L; this is precisely the image 'L of ' under the natural embeddingbX.F/ ,! bX.L/.
Roughly speaking, 'L is “defined by the same formulas as '.”

We thus see that Hrushovski and Loeser mimic in some sense Berkovich’s
construction (1.2.2), but with a model-theoretic and definable flavor.

(3.5.2) Assume that X D Spec A, and that V is defined by a boolean combination
of inequalities of the form jf j ‰ �jgj (with f and g in A and � 2 jkj). The functorbV
is then the sub-functor of bX consisting of the semi-norms ' satisfying the same
combination of inequalities.

(3.5.3) In general, one defines bV by performing the above constructions locally
and gluing them.

(3.6) A topology on bV.F/. Let V be a k-definable functor and let F 2 M. We are
going to define a topology onbV.F/ in some particular cases; all those constructions
will we based upon the order topology on jFj.
(3.6.1) If V is a k-definable sub-functor of �n

0 , thenbV.F/ D V.F/ is endowed with
the topology induced from the product topology on �0.F/ D jFjn. In particular if I
is a k-definable interval, it inherits a topology.

(3.6.2) If V is a k-definable generalized segment, then bV.F/ D V.F/ inherits a
topology using the above construction and the quotient topology.

(3.6.3) If V is a k-scheme of finite type, then bV.F/ is given the coarsest topology
such that:

• for every Zariski-open subset U of V , the subset bU.F/ of bV.F/ is open;
• for every affine open subset U D Spec A of V and every a 2 A ˝k F, the map
bU.F/! jFj obtained by applying valuations to a is continuous.

(3.6.4) If V is a k-definable sub-functor of a k-scheme of finite type X, then bV.F/
is endowed with the topology induced from that ofbX.F/, defined at (3.6.3) above.

(3.7) Comments.

(3.7.1) Let V be a k-definable functor which is a sub-functor of �n
0 , a k-definable

generalized segment or a sub-functor of a k-scheme of finite type. For a given F 2 M
the set bV.F/ inherits a topology as described above at (3.6) et sq.

We emphasize that this topology does not depend only on the abstract k-definable
functor V , but also on its given presentation. For example, let

iW .Spec k/
a

Gm;k ! A
1
k

be the morphism induced by the closed immersion of the origin and the open
immersion of Gm;k into A

1
k . The natural transformation induced by i is then a k-

definable isomorphism, because for every F 2 M the induced map f0g`F� ! F
is bijective. But it is not a homeomorphism: f0g is open in the left-hand side, and
not in the right-hand side.
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(3.7.2) Let V be a k-definable sub-functor of some k-scheme of finite type X. The
valuation on F defines a topology on X.F/; if V.F/ is given the induced topology,
the inclusion V.F/ � bV.F/ is then a topological embedding with dense image.

(3.7.3) Let F 2 M and let L 2 MF. Be aware that in general, the topology on jFj
induced by the order topology on jLj is not the order topology on jFj; it is finer. For
instance, assume that there exists ! 2 jLj such that 1 < ! and such that there is no
element x 2 jFj with 1 < x 6 ! (in other words, ! is upper infinitely close to 1
with respect to jFj). Then for every x 2 jF�j the singleton fxg is equal to

fy 2 jFj; !�1x < y < !xg:

It is therefore open for the topology induced by the order topology on jLj; hence,
the latter induces the discrete topology on jF�j.

Since all the topologies we have considered above ultimately rely on the order
topology, this phenomenon also holds for them. That is, let V be as in (3.7.1).
The natural embedding bV.F/ ,! bV.L/ is not continuous in general; the topology
on bV.F/ is coarser than the topology induced from that of bV.L/.

(3.7.4) Let V and W be two k-definable functors, each of which being of one of the
form considered in (3.7.1). We will say that a k-definable natural transformation f W
bV ! bW is continuous if f .F/ W bV.F/ ! bW.F/ is continuous for every F 2 M; we
then define in an analogous way the fact for f to be a homeomorphism, or to induce
a homeomorphism between bV and a sub-functor of bW, etc.

(3.8) The affine and projective lines ([16, Example 3.2.1]). Let F 2 M.

(3.8.1) For every a 2 F and r 2 jFj, the map �a;r;F from FŒT� to jFj that sendsP
ai.T � a/i to max jaij � ri is a valuation on FŒT� whose associated type belongs

to cA1k.F/. Note that for every a 2 F, the semi-norm �a;0;F is nothing but P 7! jP.a/j;
hence, it corresponds to the simple point a 2 F D A

1
k.F/. If L 2 ML, the natural

embedding cA1k.F/ ,! c
A
1
k.L/ is induced by the map that sends the semi-norm �a;r;F

(for given a 2 F and r 2 jFj) to the semi-norm on LŒT� “that is defined by the same
formulas,” that is, to �a;r;L.

Remark 3.8.2. If the ground field F is clear from the context, we will sometimes
write simply �a;r instead of �a;r;F.

(3.8.3) For every .a; b/ 2 F2 and .r; s/ 2 jFj2, an easy computation shows that the
valuations �a;r and �b;s are equal if and only if r D s and ja � bj 6 r, that is, if
and only if the closed balls B.a; r/ and B.b; s/ of F are equal. Moreover, one can

prove that every valuation belonging to cA1k.F/ is of the form �a;r for suitable .a; r/ 2
F� jFj. Therefore we get a functorial bijection between cA1k.F/ and the set of closed

balls of F; it then follows from (2.4.3) that the functor cA1k is k-definable.

(3.8.4) The functor bP1k is simply obtained by adjoining the simple point1 to cA1k ;
hence it is k-definable too.
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Definitions 3.9. In order to be able to state fundamental results about the stable
completions, we need some definitions.

(3.9.1) Let X be a k-scheme of finite type and let V be a k-definable sub-functor of
X. Let F 2 M. The set of integers n such that there exists an F-definable injection
.Fo/n ,! V.F/ does not depend on F (this follows from quantifier elimination)
and is bounded by dim X. Its supremum is called the dimension of V; this is a
nonnegative integer 6 dim X if V ¤ ¿, and .�1/ otherwise.

Let us mention for further use that there is also a notion of dimension for k-
definable sub-functors of �n

0 . Let D be such a sub-functor and let F 2 M. The set of
integers m such that there exists elements a1; b1; : : : ; am; bm in jF�j with ai < bi for
every i and a k-definable injection

Œa1I b1� � : : : � ŒamI bm� ,! D

does not depend on F. Its supremum is called the dimension of D. This is a
nonnegative integer 6 n if D ¤ ¿, and .�1/ otherwise.

(3.9.2) A functor from M to Sets is said to be pro-k-definable if it is isomorphic
to a projective limit of k-definable functors. This being said, let us quickly mention
two issues we will not discuss in full detail (the interested reader may refer to [16,
Sect. 2.2]).

1. If one wants this isomorphism with a projective limit to be canonical, one has to
be implicitly given a definition of this functor “in families” [compare to (2.3.1)];
this is the case here: there is a natural notion of a k-definable family of types
orthogonal to � .

2. The set of indices of the projective system has to be of small enough (infinite)
cardinality; in the cases we consider in this paper, it can be taken to be countable.

(3.9.3) Let V D proj lim Vi and W D proj lim Wj be two pro-k-definable functors.
For every .i; j/, let Dij be the set of all k-definable natural transformations from
Vi to Wj. A natural transformation from V to W is said to be pro-k-definable if it
belongs to

lim
 �

j

 
lim
�!

i

Dij

!
:

(3.9.4) A functor V from M to Sets is said to be strictly pro-k-definable if for every
pro-k-definable natural transformation f from V to a k-definable functor D, the direct
image functor f .V/ is a k-definable sub-functor of D (it is a priori only a (possibly
infinite) intersection of k-definable sub-functors).

(3.9.5) Let V be a pro-k-definable functor from M to Sets. A sub-functor D of V
is said to be relatively k-definable if there exist a k-definable functor �, a pro-k-
definable natural transformation f W V ! �, and a k-definable sub-functor �0 of �
such that D D f �1.�0/.
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Let F 2 M. By evaluating those functors at F-points, one gets the notion of a rel-
atively k-definable subset of V.F/, and more generally of a relatively F0-definable
subset of V.F/ for F0 any valued field lying between k and F [compare to (2.6)].

Replacing F-definable sub-functors by relatively F-definable ones, in the defi-
nitions of (3.1) et sq., one gets the notion of a type on VF, and of an F-definable
type on VF. There is a natural bijection between the set of types on VF and that of
ultra-filters of relatively F-definable subsets of V.F/ [compare to Remark 3.1.5].

Theorem 3.10 ([16, Lemma 2.5.1, Theorems 3.1.1, 7.1.1, and Remark 7.1.3]).
Let V be a k-definable sub-functor of a k-scheme of finite type. The stable
completionbV is strictly pro-k-definable, and is k-definable if and only if dim V 6 1.

(3.10.1) The pro-k-definability of bV comes from general arguments of model-
theory, which hold in a very general context, that is, not only in the theory of
valued fields. Its strict pro-k-definability comes from model-theoretic properties of
the theory of algebraically closed fields, used at the “residue field” level.

(3.10.2) The definability of bV in dimension 1 is far more specific. It ultimately
relies on the Riemann–Roch theorem for curves, through the following consequence
of the latter: if X is a projective, irreducible, smooth curve of genus g over an
algebraically closed field F, the group F.X/� is generated by rational functions with
at most gC 1 poles (counted with multiplicities).

(3.11) Definable compactness. Let V be a k-definable sub-functor of �n
0 , a

k-definable generalized segment or a k-definable subscheme of a scheme of finite
type. The functor bV is then pro-k-definable: indeed, in the first two cases it is equal
to V , hence even k-definable; in the third case, this is Theorem 3.10 above.

(3.11.1) We have defined at (3.6) et sq. for every F 2 M a topology on bV.F/. By
construction, there exists for every F 2 M a set OF of relatively F-definable sub-
functors of cVF such that:

• the set fD.F/gD2OF is a basis of open subsets of bV.F/;
• for every D 2 OF and every L 2 MF, the sub-functor DL of bVL belongs to OL (in

particular, D.L/ is an open subset of bV.L/).

Let F 2 M and let t be a type on cVF (this makes sense in view of (3.9.5) since
bV is pro-k-definable by Theorem 3.10). We say that a point x 2 bV.F/ is a limit of t
if the following holds: for every D 2 OF such that x 2 D.F/, the type t lies on D.
If X is separated, bV.F/ is Hausdorff, and the limit of a type is then unique provided
it exists.

(3.11.2) We will say that bV is definably compact if for every F 2 M, every
F-definable type on cVF has a unique limit inbV.F/.

Remarks 3.11.3. Viewing types as ultra-filters, we may rephrase the above defini-
tion by saying that bV is definably compact if for every F 2 M, every F-definable
ultra-filter of relatively F-definable subsets of bV.F/ has a unique limit on bV.F/.
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(3.12) The following propositions provide evidence for definable compactness
being the right model-theoretic analogue of usual compactness; they are particular
cases of some general results proved (or at least stated with references) in [16,
Sects. 4.1 and 4.2].

Proposition 3.12.1. Let V be a k-definable sub-functor of �n
0 . If V is contained in

Œ0IR�n for some R 2 jkjQ and can be defined by conjunction and disjunction of
non-strict monomial inequalities, then V is definably compact.

Remark 3.12.2. Any k-definable generalized segment is definably compact: this can
be proved either directly, or by writing down an explicit k-definable homeomorphism
between such a segment and a functor V as in Proposition 3.12.1 above.

Proposition 3.12.3. Let X be a k-scheme of finite type.

(1) The stable completionbX is definably compact if and only if X is proper.
(2) Assume that X is proper, let .Xi/ be an affine covering of X and let V be a

k-definable sub-functor of X such that V \ Xi can be defined for every i by
conjunction and disjunction of non-strict inequalities. The stable completionbV
is then definably compact.

4 Homotopy Type of OV and Links with Berkovich Spaces

(4.1) The link between stable completions and Berkovich spaces. For this
paragraph, we assume that the valuation j:j of k takes real values, and that k is
complete.

(4.1.1) Let X be an algebraic variety over k, and let V be a k-definable sub-functor
of X. The inequalities that define V also define a strict semi-algebraic subset Van of
Xan [for the definition of such a subset see (1.3.3)]; as the notation suggests, Van only
depends on the sub-functor V of X, and not on its chosen description (this follows
from quantifier elimination). Any strict semi-algebraic subset of Xan is of that kind.

(4.1.2) Let F 2 M be such that jFj � RC. Any point of bV.F/ can be interpreted
in a suitable affine chart as a valuation with values in jFj � RC; it thus induces a
point of Van. We get that way a map 
 W bV.F/ ! Van which is continuous by the
very definitions of the topologies involved. One can say a bit more about 
 in some
particular cases; the following facts are proved in [16, Sect. 14].

(4.1.3) We assume that k is algebraically closed, nontrivially valued and that
F D k. The map 
 then induces a homeomorphism onto its image.

Let us describe this image for V D X D A
1
k . By the explicit description of cA1k ,

it consists precisely of the set of points �a;r with a 2 k and r 2 jkj, that is,
of the set of points of type 1 and 2 according to Berkovich’s classification (see
[2, Chaps. 2 and 4]).
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This generalizes as follows: if X is any curve, then 
.bV.k// is precisely the set of
points of Van that are of type 1 or 2.

Comments. The fact that Hrushovski and Loeser’s theory, which focuses on
definability, only sees points of type 1 and type 2, encodes the following (quite
vague) phenomenon: when one deals only with algebraic curves and scalars
belonging to the value groups of the ground field, points of type 1 and type 2 are
the only ones at which something interesting may happen.

Of course, considering all Berkovich points is useful because it ensures good
topological properties (like pathwise connectedness and compactness if one starts
from a projective, connected variety). Those properties are lost when one only
considers points of type 1 and type 2; Hrushovski and Loeser remedy it by intro-
ducing the corresponding model-theoretic properties, like definable compactness, or
definable arcwise connectedness (see below for the latter).

(4.1.4) We assume that jFj D RC and that F is maximally complete (i.e., it does
not admit any proper valued extension with the same value group and the same
residue field). In this case (without any particular assumption on k) the continuous
map 
 is a proper surjection.

(4.1.5) We assume that jkj D RC, that k is algebraically closed and maximally
complete, and that F D k. Fitting together (4.1.3) and (4.1.4) we see that 

establishes then a homeomorphism bV.k/ ' Van.

Suppose for the sake of simplicity that V D X D Spec A. By definition, a
point of Xan is a valuation ' W A ! RC D jkj extending that of k. Therefore
the latter assertion says that for any finite dimensional k-vector space E of A the
restriction 'jE is automatically k-definable, because of the maximal completeness
of k. This “automatic definability” result comes from the previous work [15] by
Haskell, Hrushovski, and Macpherson about the model theory of valued fields
(which is intensively used by Hrushovski and Loeser throughout their paper); the
reader who would like to have a more effective version of it with a somehow explicit
description of the formulas describing 'jE may refer to the recent work [18] by
Poineau.

(4.2) Hrushovski and Loeser therefore work purely inside the “hat” world; they
transfer thereafter their results to the Berkovich setting (in [16, Sect. 14]) using
the aforementioned map 
 and its good properties in the maximally complete case
(4.1.4) and (4.1.5).

For that reason, we will not deal with Berkovich spaces anymore. We are now
going to state the “hat-world” avatar of (1.4.1) (this is Theorem 4.3 below) and
sketch its proof very roughly.

In fact, Theorem 4.3 is more precisely the “hat world” avatar of a weakened
version of (1.4.1), consisting of the same statement for strict (instead of general)
semi-algebraic subsets of Berkovich spaces. But this is not too serious a restriction:
indeed, Hrushovski and Loeser prove their avatar of (1.4.1) by first reducing it to
the strict case through a nice trick, consisting more or less in “seeing bad scalars as
extra parameters” ([16], beginning of Sect. 11.2; the reader may also refer to [12,
Sect. 4.3] for detailed explanations).
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Theorem 4.3 (Simplified Version of Theorem 11.1.1 of Hrushovski and
Loeser [16]). Let X be a quasi-projective k-variety, and let V be a k-definable
sub-functor of X. Let G be a finite group acting on X and stabilizing V, and let E
be a finite set of k-definable transformations from V to �0 (if f 2 E, we still denote
by f the induced natural transformation bV ! b�0 D �0; if g 2 G, we still denote
by g the induced automorphism ofbV). There exist:

• a k-definable generalized segment I, with endpoints o and e;
• a k-definable sub-functor S of bV (where S stands for skeleton);
• a k-definable sub-functor P of �m

0 (for some m) of dimension 6 dim X;
• a k0-definable homeomorphism S ' P, for a suitable finite extension k0 of k

inside k;
• a continuous k-definable map h W I �bV ! S satisfying the following properties

for every F 2 M, every x 2 bV.F/, every t 2 I.F/, every g 2 G, and every f 2 E:

– h.o; x/ D x, and h.e; x/ 2 S.F/;
– h.t; x/ D x if x 2 S.F/;
– h.e; h.t; x// D h.e; x/;
– f .h.t; x// D f .x/;
– g.h.t; x// D h.t; g.x//.

(4.4) Comments.

(4.4.1) We will refer to the existence of k0, of P, and of the k0-definable homeomor-
phism S ' P by saying that S is a tropical subfunctor of bV . The finite extension k0
of k cannot be avoided; indeed, it reflects the fact that the Galois action on the homo-
topy type ofbV is not necessarily trivial. In the Berkovich language, think of the Q3-
elliptic curve E W y2 D x.x � 1/.x � 3/. The analytic curve Ean

Q3.i/
admits a Galois-

equivariant deformation retraction to a circle, on which the conjugation exchanges
two half-circles; it descends to a deformation retraction of Ean to a compact interval.

(4.4.2) We will sum up the three first properties satisfied by h by simply calling h
a homotopy with image S, and the two last ones by saying that h preserves the
functions belonging to E and commutes with the elements of G.

(4.4.3) The quasi-projectivity assumption can likely be removed, but it is currently
needed in the proof for technical reasons.

(4.4.4) The theorem does not simply assert the existence of a (model-theoretic)
deformation retraction of bV onto a tropical sub-functor; it also ensures that this
deformation retraction can be required to preserve finitely many arbitrary natural
transformations from V to �0, and to commute with an arbitrary algebraic action of
a finite group. This strengthening of the expected statement is of course intrinsically
interesting, but this is not the only reason why Hrushovski and Loeser have decided
to prove it. Indeed, even if one only wants to show the existence of a deformation
retraction onto a tropical functor with no extra requirements, there is a crucial step
in the proof (by induction) at which one needs to exhibit a deformation retraction
of a lower dimensional space to a tropical functor which preserves some natural
transformations to �0 and the action of a suitable finite group.
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(4.4.5) The remaining part of this section will now be devoted to (a sketch of) the
proof of Theorem 4.3. We will first explain (4.5)–(4.7) what happens for curves;
details can be found in [16, Sect. 7].

(4.5) The stable completion b
P
1
k is uniquely path-connected.

(4.5.1) Let F 2 M and let x and y be two points of bP1k.F/. One proves the following

statement, which one can roughly rephrase by saying that bP1k is uniquely path-

connected, or is a tree: there exists a unique F-definable sub-functor ŒxI y� of cP1F
homeomorphic to a k-definable generalized segment with endpoints x and y.

(4.5.2) Let us describe ŒxI y� explicitly. If x D y, there is nothing to do; if not,
let us distinguish two cases. In each of them, we will exhibit an F-definable

generalized interval I and an F-definable natural transformation ' W I ! c
P
1
F

inducing a homeomorphism between I and a sub-functor of cP1F, and sending one
of the endpoints of I to x, and the other one to y.

(4.5.3) The case where, say, y D 1. One then has x D �a;r for some a 2 F
and some r 2 jFj. We take for I the generalized interval ŒrIC1� defined in a
natural way: if r > 0, it is homeomorphic to the interval Œ0I 1=r�; if r D 0, one
concatenates Œ0I 1� and Œ1IC1�. We take for ' the natural transformation given by
the formula s 7! �a;s, with the convention that �a;C1 D1.

(4.5.4) The case where x D �a;r and y D �b;s for a; b 2 F and r; s 2 jFj. We may
assume that r 6 s.

• If ja� bj 6 s, then y D �a;s. We take for I the F-definable interval ŒrI s� and for '
the natural transformation given by the formula t 7! �a;t.

• If ja � bj > s, we take for I the concatenation of I1 WD ŒrI ja � bj� and of I2 D
Œja � bjI s�, and for ' the natural transformation given by the formulas t 7! �a;t

for t 2 I1 and t 7! �b;t for t 2 I2.

(4.5.5) If � is a finite, k-definable (that is, Galois-invariant) subset of bP1
k
, the sub-

functor
S

x;y2�ŒxI y� of bP1k is called the convex hull of �. It is a k-definable “twisted

finite sub-tree” of bP1k , where “twisted” refers to the fact that the Galois action on this
sub-tree is possibly nontrivial.

(4.6) Retractions from b
P
1
k to twisted finite sub-trees [16, Sect. 7.5].

(4.6.1) Let U and V be the k-definable sub-functors of P1k , respectively described
by the conditions jTj 6 1 and jTj > 1. Note that V is k-definably isomorphic to U
through  W T 7! 1=T; we still denote by  the induced isomorphismbV ' bU.

Let F 2 M and let x 2 bU.F/. One has x D �a;r for some a 2 Fo and some r 2 jFoj.
For every t 2 jFoj, set

h.t; x/ D �a;max.t;r/;
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and for every y 2 bV.F/, set

h.t; y/ D  �1.h.t;  .y//:

One immediately checks that both definitions of h agree on bU \ bV , and we get by

gluing a homotopy h W Œ0I 1�� bP1k ! b
P
1
k with image f�0;1g. Hence bP1k is “k-definably

contractible.”

(4.6.2) Let � be a finite, k-definable subset of bP1
k
, and let D be the convex hull

of � [ f�0;1g (4.5.5). Define h� W Œ0I 1� � bP1k ! b
P
1
k as follows: for every x, we

denote by �x the smallest time t such that h.t; x/ 2 D, and we set h�.t; x/ D h.t; x/
if t 6 �x, and h�.t; x/ D h.�x; x/ otherwise. The natural transformation h� is then a
homotopy, whose image is the twisted polyhedron D.

(4.7) Retractions from a curve to a twisted finite graph. In this paragraph we
will sketch the proof of the theorem when X D V is a projective algebraic curve;
the reader will find more details in the survey [12, Sect. 4.2]. One first chooses a

finite G-equivariant map f W X ! P
1
k , inducing a natural transformationbf W bX ! b

P
1
k .

(4.7.1) The key point is the following [16, Theorem 7.5.1]: there exists a finite
k-definablesubset�0 of P1.k/ (or, in other words, a divisor on P

1
k) such that for every

finite k-definable subset � of P1.k/ containing �0, the homotopy h� lifts uniquely
to a homotopy hX

� W Œ0I 1� � bX ! bX. Hrushovski and Loeser prove it by carefully

analyzing the behavior of the cardinality of the fibersbf , as a function from b
P
1
k to N

[16, Proposition 7.4.5]. The definability of bX and b
P
1
k plays a crucial role for that

purpose.

(4.7.2) Let us now explain why (4.7.1) allows to conclude. Let� be as above, let D
be the convex hull of � [ f�0;1g, and set D0 Dbf �1.D/.

• By a definability argument, D0 is a “twisted finite sub-graph” ofbX.
• By choosing � sufficiently big, one may ensure that every function belonging

to E is locally constant outside D0. This comes from the fact that every k-definable
natural transformation from bX to �0 is locally constant outside a twisted finite
subgraph of bX: indeed, any k-definable function can be described by using
only norms of regular functions; and the result for such a norm is deduced

straightforwardly from the behavior of jTj on b
P
1
k , which is locally constant

outside Œ0I1�.
This implies that hX

� preserves the functions belonging to E. Moreover the
uniqueness of hX

� ensures that it commutes with the elements of G, and we are
done.

(4.7.3) A consequence: path-connectedness of stable completions. Let W be
a k-definable sub-functor of a k-scheme of finite type, a k-definable sub-functor
of �n

0 or a k-generalized interval. We say that bW is definably path-connected
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if for every F 2 M and every .x; y/ 2 bW.F/2 there exists an F-definable
generalized interval I with endpoints o and e, and an F-definable continuous natural
transformation h W I ! bWF such that h.o/ D x and h.e/ D y.

It follows easily from the above that if W is a projective curve, then bW has finitely
many path-connected components, each of which is Nk-definable (indeed, this holds
for any twisted finite subgraph of bW). Starting from this result, Hrushovski and
Loeser prove in fact that if Y is a k-algebraic variety,bY is definably path-connected
as soon as Y is geometrically connected [16, Theorem 10.4.2]; in general, there is a
Galois-equivariant bijection between the set of geometrical connected components
of Y and that of path-connected components ofbY .

(4.8) The general case of Theorem 4.3: preliminaries.

(4.8.1) First reductions. By elementary geometrical arguments ([16], beginning
of Sect. 11.2) one proves that there exists a G-equivariant embedding of X as a
subscheme of an equidimensional projective k-variety X] on which G acts. Hence
by replacing X with X] we may assume that X is projective and of pure dimension n
for some n; by extending the scalars to the perfect closure of k and by replacing X
with its underlying reduced subscheme, one can also assume that its smooth locus
is dense. One proceeds then by induction on n. The case n D 0 is obvious; now one
assumes that n > 0 and that the theorem holds for smaller integers.

We will explain how to build a homotopy from the whole space bX to a tropical
sub-functor S of bX, which commutes with the elements of G and preserves the
characteristic function of V and the functions belonging to E; this homotopy will
stabilize bV and the image of bV will be a k-definable sub-functor of S (since V is
strictly pro-definable), hence will be tropical as well.

By adding the characteristic function of V to E we thus reduce to the case where
V D X.

(4.8.2) Use of blowing-up to get a curve fibration. One can blow up X
along a finite set of closed points so that the resulting variety X0 admits a
morphism X0 ! P

n�1
k whose generic fiber is a curve; this is the point where we

need X to be projective. By proceeding carefully (and paying a special attention to
the case where k is finite) one can even ensure the following [16, Sect. 11.2]:

• The action of G on X extends to X0, and X0 ! P
n�1
k is G-equivariant.

• There exists a G-equivariant divisor D0 on X0, finite over Pn�1
k and containing the

exceptional divisor D of X0 ! X, and a G-equivariant étale map from X0 n D0

to A
n
k (in particular, D0 contains the singular locus of X0).

• There exists a nonempty open subset U of Pn�1
k , whose pre-image on X0 is the

complement of a divisor D1, and a factorization of X0 nD1 ! U through a finite,
G-equivariant map f W X0 n D1 ! P

1
k �k U.

If one builds a homotopy from bX0 to a twisted polyhedron which commutes with
the action of G, preserves the functions belonging to the (pullback of) E, and the
characteristic function of the exceptional divisor D, it will descend to a homotopty
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on bX satisfying the required properties, because every connected component of bD
collapses to a point. Hence we reduce to the case where X0 D X.

(4.9) The concatenation of a homotopy on the base and a fiberwise homotopy.
This step is the core of the proof; we sum up here what is done in [16, Sects. 11.3
and 11.4].

(4.9.1) One first applies the relative version of the general construction we have
described in (4.7) to the finite map f . It provides a divisor� on P

1
k�k U finite over U

and a “fiberwise” homotopy h� on 2P1k �k U which lifts uniquely to a homotopy hX
�

on 1X n D1 whose image is a relative (at most) one-dimensional tropical functor
over bU. By taking � big enough, one ensures that hX

� preserves the functions
belonging to E, and commutes with the elements of G. Moreover, we can also
assume that the pre-image of � on X n D1 contains D0 n D1. Under this last

assumption, 2D0 n D1 is pointwise fixed under hX
� at every time; therefore, hX

� extends

to a homotopy (which is still denoted by hX
�) on 1X n D1 [ cD0 which fixes bD0

pointwise at every time. This homotopy preserves the functions belonging to E
and commutes with the action of G, and its image ‡ is a relative (at most) one-

dimensional tropical functor over bPn�1
k . Indeed, this is true by construction over bU;

and over the complement of bU, the fibers of ‡ coincide with those of cD0, which are
finite.

(4.9.2) Use of the induction hypothesis. Our purpose is now to exhibit a homo-
topy h‡ on ‡ , preserving the functions belonging to E and commuting with the
action of G, whose image is tropical of dimension at most n. The key point allowing
such a construction is a theorem by Hrushovski and Loeser [16, Theorem 6.4.4]
which ensures that this problem is under algebraic control, in the following sense:
there exists a finite quasi-Galois cover Z ! P

n�1
k , with Galois group H, and a finite

family F of k-definable natural transformation from Z to �0, such that for every

homotopy � on bPn�1
k the following are equivalent:

(i) � lifts to a homotopy onbZ preserving the functions belonging to F;
(ii) � lifts to a homotopy on ‡ preserving the functions belonging to E and

commuting with the action of G.

Now by induction hypothesis there exists a homotopy �0 on bZ, preserving the
functions belonging to F and commuting with the action of H, and whose image is
tropical of dimension 6 n� 1. Since �0 commutes with the action of H, it descends

to a homotopy � on bPn�1
k . By its very definition, � satisfies condition (i) above,

hence also condition (ii). Let h‡ be a homotopy on ‡ lifting �, preserving the
functions belonging to E, and commuting with the action of G. Since the image of �0
is tropical of dimension 6 n � 1, so is the image of � (because it is the quotient of
that of �0 by the action of the finite group H). As a consequence, the image † of h‡

is a relative (at most) one-dimensional tropical functor over a tropical functor of
dimension 6 n � 1; therefore, † is itself tropical of dimension 6 n.
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By making h‡ follow hX
�, we get a homotopy h0 on 1X n D1 [cD0, preserving the

functions belonging to E and commuting with the action of G, whose image is the
tropical functor †.

(4.10) Fleeing away from cD1.

(4.10.1) The inflation homotopy: quick description. Hrushovski and Loeser
define [16, Lemma 10.3.2] a “inflation” homotopy hinf W Œ0I 1��bX ! bX which fixes
pointwise cD0 at every time, preserves the functions belonging to E and commutes
with the action of G, and which is such that hinf.t; x/ 2 bX ncD1 for every x …cD0 and
every t > 0.

(4.10.2) The inflation homotopy: construction. One first defines a homotopy ˛
on cAn

k by “making the radii of balls increase” (or, in other words, by generalizing
to the higher dimension case the formulas we have given for the affine line). It
has the following genericity property: if x 2 cAn

k.F/ for some F 2 M, if Y is
a .n � 1/-dimensional Zariski-closed subset of A

n
F, and if t is a nonzero element

of jFoj, then ˛.t; x/ … bY.F/. The homotopy ˛ is lifted to a homotopy  on 1X n D0

thanks to the étale G-equivariant map XnD0 ! A
n
k , and the genericity property of ˛

is transferred to . The homotopy hinf is then defined using a suitable “stopping time
function” x 7! �x from 1X n D0 to � by the formulas:

• hinf.t; x/ D .t; x/ if x …cD0 and if t 6 �x;
• hinf.t; x/ D .�x; x/ if x …cD0 and if t > �x;
• hinf.t; x/ D x if x 2cD0.

(4.10.3) Let us quickly explain why hinf satisfies the required properties.

• Its continuity comes from the choice of the stopping time �x: the closer x is to cD0,
the smaller is �x.

• The G-equivariance of hinf comes from its construction, and from the
G-equivariance of X n D0 ! A

n
k .

• The fact that hinf.t; x/ 2 bX ncD1 for every x … cD0 and every t > 0 is a particular
case of the aforementioned genericity property of .

˘ The fact that hinf preserves the functions belonging to E goes as follows. Those
functions are defined using norms of regular functions; now if a regular function
is invertible at a point x of 1X n D0, then its norm is constant in a neighborhood
of x, hence will be preserved by hinf.:; x/ if �x is small enough; this is also
obviously true, if the function vanishes in the neighborhood of x.

Of course, it may happen that the zero locus of a regular function involved in
the description of E has some .n � 1/-dimensional irreducible component Y , and
if x 2 bY ncD0, none of the above arguments will apply around it. One overcomes
this forthcoming issue by an additional work at the very beginning of the proof: one
simply includes such bad components in the divisor D0.
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(4.10.4) By first applying hinf, and then h0, one gets a continuous natural transfor-
mation h1 W J � bX ! bX for some k-definable generalized interval J. Its image is
a k-definable sub-functor †0 of †, hence is in particular tropical of dimension 6 n.

(4.11) The tropical homotopy and the end of the proof.

(4.11.1) The homotopy h1 of (4.10.4) now enjoys all required properties, except
(possibly) one of them: there is no reason why†0 should be pointwise fixed at every
time, because hinf could disturb it.

(4.11.2) Hrushovski and Loeser remedy it as follows. They proceed to the above
construction in such a way that there exists a k-definable G-equivariant sub-functor
†0 of † satisfying the following conditions.

(1) †0 is pointwise fixed at every time under h1. This is achieved by ensuring
that †0 is purely n-dimensional and that there exists a finite extension k0 of
k and a k0-definable continuous injection †0 ,! �m

0 that is preserved by h1;
this implies the required assertion by Hrushovski and Loeser [16, Proposition
8.3.1].

(2) There exists a homotopy htrop on †, preserving the functions belonging to E
and commuting with the action of G, and whose image is precisely †0. The
construction is purely tropical and rather technical, and we will not give any
detail here (see [16, Sect. 11.5]).

(4.11.3) The expected homotopy h on bX is now defined by applying first h1, and
then htrop. Its image S is equal to htrop.†0/, hence is a k-definable sub-functor of †0.
By condition 1), it is pointwise fixed at every time under h1, hence under h.

5 An Application of the Definability of OC for C a Curve

(5.1) Presentation of the main result. We fix a field k which is complete with
respect to a non-Archimedean absolute value.

(5.1.1) Let us introduce some vocabulary (essentially coming from [3, Sect. 1.3]).
If Z is a topological space and if Z0 is a subset of Z, a family .Zi/ of subsets of Z0 is
said to be a G-covering of Z0 (where G stands for “Grothendieck”) if every point z
of Z0 has a neighborhood in Z0 of the form

S
i2J Zi where J is a finite set of indices

such that z 2 Zi for every i 2 J.
Any k-analytic space X is equipped with a class of distinguished compact subsets,

the affinoid domains; the typical example to have in mind is the subset of A
n;an
k

defined by the inequalities

jT1j 6 r1 and : : : and jTnj 6 rn

where the ri’s are positive real numbers (this is the “Berkovich compact polydisc of
polyradius .r1; : : : ; rn/”).



About Hrushovski and Loeser’s Work on the Homotopy Type of Berkovich Spaces 125

The subsets of X that are G-covered by the affinoid domains they contained
are called analytic domains, and inherit a canonical k-analytic structure. The open
subsets of X are analytic domains; so are the compact subsets of X which are unions
of finitely many affinoid domains.

(5.1.2) About piecewise-linear geometry (after Berkovich, [6, Sect. 1]). We will
follow Berkovich’s convention in piecewise-linear geometry, which is based upon
the multiplicative notation, in order to avoid using many somehow irrelevant “log”
symbols. We will thus say that a subset of .R�C/n is a polyhedron if its image
under log is a polyhedron of R

n (Definition 1.2.5), and that a map between two
polyhedra is piecewise-linear if it is piecewise Q-linear in the usual sense modulo
log isomorphisms.

A polyhedral structure on a compact topological space P is a map P ! .R�C/n
(for some n) inducing a homeomorphism between P and a polyhedron of .R�C/n.
Two polyhedral structures iWP! .R�C/n and jWP! .R�C/m are said to be equivalent
if there exists a PL homeomorphism uW i.P/ ' j.P/ such that j D u ı i.

A polyhedral chart on a topological space Z is a compact subset P of Z (the
support of the chart) equipped with a class of polyhedral structures. Two polyhedral
charts iWP ' P0 and jWQ ' Q0 are compatible if both i.P \ Q/ and j.P \ Q/ are
polyhedra (this depends only of the classes of i and j).

A polyhedral atlas on a topological space S is a family of polyhedral charts which
are pairwise compatible and whose support G-cover S. Two polyhedral atlases on
S are said to be equivalent if their union is a polyhedral atlas, that is, if any chart
of the first one is compatible with any chart of the second one. A piecewise-linear
space, or PL space for short, is a topological space equipped with an equivalence
class of polyhedral atlases, or with a maximal polyhedral atlas—this amounts to the
same. When we will speak about a polyhedral atlas on a given PL space, we will
implicitly assume that it belongs to the equivalence class defining the PL structure
involved.

If S is a PL space, a PL subspace of S is a subset of S which is G-covered by
(support of) charts of the maximal polyhedral atlas of S ; such a subspace† inherits
a canonical PL structure. Open subsets of S and compact subsets which are the
union of finitely many (support of) charts of the maximal polyhedral atlas of S are
examples of PL subspaces of S.

A map f W S! † between PL spaces is said to be PL if there is a polyhedral atlas
A on S such that for every P 2 A the image f .P/ belongs to the maximal polyhedral
atlas of†, and P! f .P/ is PL modulo the identifications of its source and its target
with polyhedra. If moreover A can be chosen so that P! f .P/ is injective for every
P 2 A, we say that f is a piecewise immersion.

(5.1.3) Let n 2 N. Once equipped with the family of all its polyhedra, .R�C/n
becomes a PL space.

Let us denote by Sn the “skeleton” of Gn;an
m . This is the set of semi-norms of the

form �r1;:::;rn WD
P

aITI 7! max jaIjrI . The very definition of Sn provides it with a
homeomorphism onto .R�C/n, through which it inherits a piecewise-linear structure.
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(5.1.4) Let X be a k-analytic space of dimension n, and let f W X ! G
n;an
m be a

morphism. In [10] (see also the erratum [11]) the author has proven that f �1.Sn/

inherits a canonical PL structure, with respect to which f �1.Sn/! Sn is a piecewise
immersion. This generalizes his preceding work [8], in which some additional
assumptions on X were needed, and in which the canonicity of the PL structure
(answering a question by Temkin) had not been addressed.

Moreover, the proof given in [8] used de Jong’s alterations, while that given
in [10] replaces it by the k-definability ofbC for C an algebraic curve (Theorem 3.10)
which simply comes from Riemann–Roch theorem for curves— together with some
general results about model theory of valued fields that are established by Haskell,
Hrushovski, and Macpherson in [15].

The purpose of this section is to give a very rough sketch of the latter proof.

(5.2) Canonical PL subsets of Berkovich spaces. Let X be a Hausdorff k-analytic
space of dimension n.

(5.2.1) Let x 2 X, let d be transcendence degree of AH .x/ over ek, and let r be
the rational rank of the abelian group jH .x/�j=jk�j. One always has the inequality
dC r 6 n; the point x will be said to be Abhyankar if dC r D n.

(5.2.2) Let S be a locally closed subset of X. We will say that S is a skeleton
if it consists of Abhyankar points and if it it admits a PL structure satisfying the
following conditions.

• For every analytic domain Y of X and every invertible function f on Y , the
intersection Y \ S is a PL subspace of S, and the restriction of jf j to Y \ S is PL.

• There exists a polyhedral atlas A on S having the following property: for
every P 2 A, the class of polyhedral structures defining the chart P admits a
representative of the form .jf1j; : : : ; jfmj/jP where the fi’s are invertible functions
on an analytic domain Y of X which contains P.

If such a structure exists on S, it is easily seen to be unique. The archetypal
example of a skeleton is Sn (5.1.3).

(5.2.3) A simple criterion for being a skeleton. The conditions for being a
skeleton may seem slightly complicated to check. But in fact, in practice this is not
so difficult. Indeed, let us assume that X is affinoid and irreducible, of dimension n,
and let P be a compact subset of X consisting of Abhyankar points. The latter
property ensures that every point of P is Zariski-generic. In particular, any nonzero
analytic function on X is invertible on P.

Now assume that for every finite family .f1; : : : ; fm/ of nonzero analytic functions
on X, the image .jf1j; : : : ; jfmj/.P/ is a polyhedron of .R�C/m, and that there exists
such a family .f1; : : : ; fm/ with .jf1j; : : : ; jfmj/jP injective. Under this assumption, P
is a skeleton [10, Lemme 4.4].

The two main ingredients of the proofs are the Gerritzen–Grauert theorem (that
describes the affinoid domains of X, see, for instance, [9, Lemme 2.4]), and the
density of rational functions on X inside the ring of analytic functions of any rational
affinoid domain of X.
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(5.2.4) We can now rephrase Theorem (5.1.4) as follows.

Theorem 5.2.5 ([10, Theorem 5.1]). If f is any morphism from X to G
n;an
m , then

f �1.Sn/ is a skeleton, and f �1.Sn/! Sn is a piecewise immersion.

(5.3) The general strategy: algebraization and choice of a faithful tropi-
calization.

(5.3.1) Algebraization. In order to prove Theorem 5.2.5 we first algebraize the
situation by standard arguments which we now outline (for more details, see [10,
Sects. 5.4 and 5.5]).

First of all, one extends the scalars to the perfect closure of k, and then replaces X
with its underlying reduced space; we can do it because the expected assertions are
insensitive to radicial extensions and nilpotents. Now X is generically quasi-smooth
(quasi-smoothness is the Berkovich version of rig-smoothness, see [13, Sect. 4.2]
et sq.). Every point of f �1.Sn/ is Abhyankar (because so are the points of Sn and
because dim X D n), hence is quasi-smooth; one can thus shrink X so that it is
itself quasi-smooth. Krasner’s lemma then ensures that X is G-locally algebraizable
(see, for instance, [10, (0.21)]) which eventually allows, because being a skeleton is
easily seen to be a G-local property, to reduce to the case where X is a connected,
irreducible rational affinoid domain of X an for X an irreducible, normal (and even
smooth) algebraic variety over k.

By density arguments, we also can assume that f is induced by a dominant,
generically finite algebraic map from X to G

n
m (which we still denote by f ). Now

let x 2 f �1.Sn/. It is Abhyankar hence Zariski-generic. By openness of finite, flat
morphisms, it therefore admits a connected affinoid neighborhood Ux in X an such
that f induces a finite and flat map from Ux to an affinoid domain Vx of G

n;an
m

with Vx \ Sn being a nonempty n-dimensional simplex. Now there are finitely many
such Ux’s covering X \ f �1.Sn/. It is then sufficient to prove that for every x 2 Sn

the intersection Ux\ f �1.Sn/ is a skeleton and that Ux\ f �1.Sn/! Sn is a piecewise
immersion. Therefore we may assume that f induces a finite and flat map from X to
an affinoid domain V of Gn;an

m with V\Sn being a nonempty n-dimensional simplex.
The key result is now the following theorem.

(5.3.2) Finite separation theorem. There exist finitely many nonzero rational
functions g1; : : : ; gr on X whose norms separate the pre-images of x under f for
every x 2 Sn.

We postpone the outline of the proof of Theorem (5.3.2) to paragraph (5.4); we
are first going to explain how one can use it to prove Theorem (5.1.4), or more
precisely its rephrasing written down at (5.2.4).

(5.3.3) Pre-image of Sn and tropical dimension. Let f1; : : : ; fn be the invertible
functions on X that define f . For every compact analytic domain Y of X an, the
subset .jf1j; : : : ; jfnj/.Y/ is a polyhedron (cf. [6, Corollary 6.2.2]; see also [10,
Theorem 3.2]).

If x 2 X an, the tropical dimension of f at x is the infimum of the dimensions of
the polyhedra .jf1j; : : : ; jfnj/.Y/ for Y going through the set of compact analytic
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neighborhoods of x. One can then characterize f �1.Sn/ as the subset of X an

consisting of points at which the tropical dimension of f is exactly n (this follows
from [10, Theorem 3.4]).

(5.3.4) The compact subset f �1.Sn/ \ X of X an is a skeleton, and

Ux \ f �1.Sn/! Sn

is a piecewise immersion. Since every point of f �1.Sn/ is Zariski-generic, the
functions gi’s are invertible on f �1.Sn/; hence we can shrink X so that the gi’s are
invertible on it. Let h1; : : : ; hm be arbitrary nonzero analytic functions on X.

We set for short jf j D .jf1j; : : : ; jfnj/WX ! .R�C/n and define jgj and jhj
analogously. Let 
 be the map .jf j; jgj; jhj/ from X to .R�C/nCmCr; the image 
.X/
is a polyhedron.

The restriction of jf j to Sn is injective by the very definition of Sn, and jgj
separates the pre-images of every point of Sn on X an; therefore, the restriction of
.jf j; jgj/ to f �1.Sn/ is injective; hence 
jf�1.Sn/\X is injective.

Let us choose a triangulation of the compact polyhedron 
.X/ by convex
compact polyhedra, and let P be the union of the n-dimensional closed cells Q such
that the following holds: the restriction of .jf1j; : : : ; jfnj/ to Q is injective. Using
the characterization of f �1.Sn/ through tropical dimension (5.3.3), the openness of
finite, flat morphism and the fact that V \ Sn is nonempty of pure dimension n, one
proves that 
.f �1.Sn/ \ X/ D P [10, 5.5.1]; in particular, this is a polyhedron and
in view of (5.2.3) this implies that f �1.Sn/ \ X is a skeleton. Moreover modulo the
isomorphism .f �1.Sn/ \ X/ ' P induced by 
 , the function jf j is nothing but the
projection to the first n variables; it is PL and injective on each cell of P, which
implies that f �1.Sn/ \ X ! Sn is a piecewise immersion. This ends the proof of
Theorem 5.2.5.

(5.4) About the proof of the finite separation Theorem (5.3.2).

(5.4.1) This theorem asserts that there exist finitely many elements g1; : : : ; gr of the
function field k.X / which separate the extensions of every real-valued Gauß norm
on k.T1; : : : ;Tn/. In fact, we establish the more general, purely valuation-theoretic
following theorem [10, Theorem 2.8]. Let k be an arbitrary valued field, let n be an
integer, and let L be a finite extension of k.T1; : : : ;Tn/. There exists a finite subset E
of L such that the following hold: for every ordered abelian group G containing jkj
and every element r D .r1; : : : ; rn/ of Gn, the elements of E separate the extensions
of the G-valued valuation �r of k.T1; : : : Tn/ to L.

(5.4.2) A particular case. In order to illustrate the general idea the proof is based
upon, let us explain what is going on in a simple particular case, namely, if k is
algebraically closed, and if n D 1; we write T instead of T1. The field L can then be
written k.C/ for a suitable projective, smooth, irreducible curve C over k, equipped
with a finite morphism C! P

1
k inducing the extension k.T/ ,! L. The map C! P

1
k

induces a k-definable natural transformation bf W bC ! b
P
1
k at the level of stable

completions; it follows from Theorem 3.10 that bC and b
P
1
k are k-definable (for bP1k

this can also be seen directly, cf. (3.8)).
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The map r 7! �r defines a k-definable natural embedding � ,! b
P
1
k ; let � be the

pre-image of � underbf . This is a sub-functor of bC which is k-definable by its very
definition, and the fibers of �! � are finite.

Let F be an algebraically closed valued extension of k, and let r 2 jFj. The
pre-image D of �r;F inside �.F/ is by construction definable over the set of
parameters k [ frg, and is finite. By a result proven in [15], this implies that every
element of D is individually .k [ frg/-definable.5 In other words, for every d 2 D,
there exists a k-definable natural transformation � W � ! � such that d D �.�r;F/.

As this holds for arbitrary F and r, the celebrated compactness theorem of
model theory ensures the existence of finitely many sections �1; : : : ; �m of � ! �

such that � D S
�i.�/. Every sub-functor �i.�/ is k-definable, and k-definably

isomorphic to � through �i. One then easily builds, starting from the equality
� D S

�i.�/, a k-definable embedding � ,! �N (for some big enough N—one
simply has to be able to realize the “coincidence diagram” of the �i’s inside �N).

Now Hrushovski and Loeser have proven that S is a k-definable sub-functor ofbC
such that there exists a k-definable embedding S ,! �N then there exists such an
isomorphism induced by the norms of finitely many k-rational functions on bC [16,
Proposition 6.2.7]; this comes from the explicit description of bC as a k-definable
functor, and from general results established in [15]. Applying this to �, we get
the existence of finitely many rational functions on C whose norms separate points
of �; in particular, those functions separate for every algebraically closed valued
extension F of k and every r 2 jF�j the pre-images of �r;F in bC.F/. They a fortiori
separate the extensions of the valuation �r;k to the field L because by elementary
valuation-theoretic arguments, such an extension is always the restriction of a
valuation on F.CF/ D L˝k.T/ F.T/ inducing �r;F on F.T/.

(5.4.3) The general case. The proof goes by induction on n. The crucial step is of
course the one that consists in going from n � 1 to n, and it roughly consists of a
relative version of what we have done above.

(5.5) Some complements. We still denote by k a complete, non-Archimedean field
and by X an n-dimensional k-analytic space.

(5.5.1) Finite union of pre-images of the skeleton. Let f1; : : : ; fm be morphisms
from X to G

n;an
m .

Theorem 5.2.5 states that f �1
i .Sn/ is a skeleton for every i. Theorem 5.1 of [10]

in fact also states that the union
S

i f �1
i .Sn/ is still a skeleton; this essentially means

that for every .i; j/, the intersection of the skeletons f �1
i .Sn/ and f �1

j .Sn/ is PL in
both of them. The proof consists in exhibiting in a rather explicit way an integer N,

5It is crucial for this result that the additional parameter r belongs to the value group of F, and
not to F itself. For instance, let a be an element of F which is transcendent over k, assume that
char. k ¤ 2 and let E be the two-element set of square roots of a. Then E is globally definable
over k [ fag, but this is not the case of any of those two square roots: one cannot distinguish
between them by a formula involving only a and elements of k.
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a “Shilov section with non-constant radius” � W X ! A
N
X , and a skeleton P � A

N
X

(described as the pre-image of SNCn under a suitable map) such that for every i, the
section � identifies f �1

i .Sn/ with a PL subspace of P [10, 5.6.2].

(5.5.2) Stabilization after a finite, separable extension. For every complete
extension F of k, let †F � XF be the skeleton

S
i f �1

i;F .Sn;F/, where Sn;F is the
skeleton of Gn;an

m;F .
If F ,! L, there is a natural surjection †L ! †F, which is a piecewise

immersion of PL spaces. Theorem 5.1 of [10] in fact also states that there exists
a finite separable extension F of k such that †L ! †F is a homeomorphism for
every complete extension L of F. To see it, one essentially refines the proof of the
“separation theorem” on Gauß norms that is sketched at (5.4) et sq. to show that
after making a finite, separable extension of the ground field, one can exhibit a finite
family of functions separating universally (that is, after any extension of the ground
field) the extensions of Gauß norms; this is part of aforementioned Theorem 2.8 of
loc. cit.
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Excluded Homeomorphism Types for Dual
Complexes of Surfaces

Dustin Cartwright

Abstract We study an obstruction to prescribing the dual complex of a strict
semistable degeneration of an algebraic surface. In particular, we show that if
� is a complex homeomorphic to a 2-dimensional manifold with negative Euler
characteristic, then � is not the dual complex of any semistable degeneration.
In fact, our theorem is somewhat more general and applies to a certain class of
complexes homotopy equivalent to such a manifold. Our obstruction is provided by
the theory of tropical complexes.

Keywords Semistable • Degeneration • Dual complex

1 Introduction

The dual complex of a semistable degeneration is a combinatorial encoding of the
combinatorics of the components of the special fiber. In recent years, it has been
studied because of connections to tropical geometry [11], non-Archimedean analytic
geometry [2], and birational geometry [3, 6]. In this paper, we study obstructions to
realizing arbitrary complexes as dual complexes of degenerations of surfaces.

We let R be any rank 1 valuation ring with algebraically closed residue field
and we will consider a degeneration over R to be a flat, proper scheme X over
Spec R which is strictly semistable in the sense of [9, Sect. 3]. Specifically, we
require that X is covered by open sets which admit étale morphisms over R to
Spec RŒx0; : : : ; xn�=hx0 � � � xm � 
i for some m � n and some non-zero 
 in the
maximal ideal of R. The dual complex of X is a �-complex with one vertex for
each irreducible component of the special fiber and higher-dimensional simplices
for each connected component where irreducible components intersect.

Since semistability implies that the special fiber is normal crossing, the dimen-
sion of the dual complex is at most the relative dimension of the family X.
In dimension 1, any graph is the dual complex of some degeneration of curves
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[1, Corollary B.3]. However, in this paper, we show that the analogous statement
is not true in dimension 2.

Theorem 1.1. There is no strict semistable degeneration over a rank 1 valuation
ring R, whose general fiber is a smooth, geometrically irreducible surface and
such that the dual complex of the special fiber is homeomorphic to a topological
surface † with �.†/ < 0.

We conjecture that Theorem 1.1 can be strengthened to replace “homeomorphic”
with “homotopy equivalent.” In fact, we can prove a strengthening in this direction
which applies to �-complexes formed from a manifold with negative Euler
characteristic by attaching additional simplices in a controlled way. First, what we
call “fins” are allowed so long as they don’t change the homotopy type and where
the gluing is along a subset that’s not too complicated. Second, arbitrary complexes
may be attached to the manifold, so long as the gluing is along a finite set. These
complexes are collectively the “ornaments” in the following definition.

Definition 1.2. We say that a 2-dimensional �-complex � is a manifold with
fins and ornaments if there exists a subcomplex †, the manifold, subcomplexes
F1; : : : ;Fn, the fins, and a subcomplex O, the ornaments, such that:

(1) We have a decomposition � D † [ F1 [ : : : [ Fn [ O.
(2) † is homeomorphic to a connected 2-dimensional topological manifold.
(3) For any i, Fi is contractible and Fi \† is a path.
(4) For any i > j, Fj \ Fi is a subset of the endpoints of the path Fi \†.
(5) The intersection O \ .† [ F1 [ � � � [ Fn/ is a finite set of points.

If the manifold† has negative Euler characteristic, we call� a hyperbolic manifold
with fins and ornaments and if the subcomplex O is empty, then we call� a manifold
with fins.

Theorem 1.3. If � is a hyperbolic manifold with fins and ornaments, then there is
no degeneration with dual complex �.

The obstruction used in the proof of Theorem 1.3 is in lifting the dual complex
to a tropical complex. A tropical complex is a �-complex, together with the
intersection numbers of the 1-dimensional strata inside the 2-dimensional strata,
which are called the structure constants of the tropical complex [5].

Theorem 1.4. If � is a hyperbolic manifold with fins and ornaments, then there is
no 2-dimensional tropical complex with � as its underlying topological space.

Note that when we construct the tropical complex from a degeneration, we do
not incorporate valuations from the defining equations, in contrast with both the
suggestion from the introduction of [5] and the construction in [9, Example 3.10],
where edges of the dual complex have lengths coming from the value group of R.
We believe that for many applications, such metric information will be essential,
but in this paper, we intentionally ignore it for the purpose of being able to use the
results from [4], where the edges implicitly all have length 1. Philosophically, we
think of our approach as taking a deformation in the category of “metric tropical
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complexes” from the complex which encodes the valuations to a tropical complex
with all edges of length 1, where we can apply Theorem 1.4.

There are two characteristics of the special fiber of a degeneration which are
incorporated into the axioms of a tropical complex. The first is that the special
fiber is principal which gives a relationship among the intersection numbers with
a fixed curve. The second is that Hodge index theorem, which restricts the possible
intersection matrices of a fixed surface in the special fiber.

Both axioms of a tropical complex are necessary in the proof of the obstruction.
Without the condition coming from the Hodge index theorem, the object would only
be a weak tropical complex, and any �-complex lifts to a weak tropical complex.
For example, if � is homeomorphic to a topological manifold, then choosing all
structure constants equal to 1 gives a weak tropical complex, but this will not be a
tropical complex if �.�/ < 0, as explained in Example 2.2.

On the other hand, Kollár has shown that any finite n-dimensional simplicial
complex is realizable as the dual complex of a simple normal crossing divisor
[13, Theorem 1], but such a divisor would not give a tropical complex because
the divisor is not necessarily principal. However, when connected, such a divisor
can be realized as the exceptional locus of the resolution of a normal, isolated
singularity [13, Theorem 2]. Thus, we see Theorem 1.3 as an example of how the
global geometry of a smooth algebraic variety is more restricted than the local
geometry of a singularity, in line with [12].

We also note that unlike the cases in Theorem 1.1, topological surfaces with
non-negative Euler characteristic are all possible as homeomorphism types of
degenerations. In particular, the 2-sphere, the real projective plane, the torus, and
the Klein bottle appear as degenerations of K3 surfaces, Enriques surfaces, Abelian
surfaces, and bielliptic surfaces, respectively. In fact, a partial converse is possible
in that the dual complexes of such degenerations have been classified by results of
Kulikov, Persson, Pinkham, and Morrison [14–17]. Note that topological surfaces
of non-negative Euler characteristic all arose from degenerations of varieties of
Kodaira dimension 0. However, these classification results would already suffice
to prove Theorem 1.1 if we assumed that the general fiber had Kodaira dimension 0.

2 Tropical Complexes and Tropical Surfaces

We begin by recalling the definition of tropical complexes, as introduced in [5] and
their properties, as studied in [4]. Unlike those papers, we additionally assume that
the underlying�-complex is regular, meaning that the faces of any fixed simplex are
distinct. All of our combinatorial results also hold without a regularity assumption,
but the dual complex of a strictly semistable degeneration is always regular, so
that case is sufficient for our applications. In addition, we will only work with
2-dimensional tropical complexes, which we will call tropical surfaces. We will
refer to the simplices of dimensions 0, 1, and 2 in a 2-dimensional�-complex as its
vertices, edges, and facets, respectively.
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Definition 2.1. A weak tropical surface is a finite, connected, regular �-complex
whose cells have dimension at most 2, together with integers ˛.v; e/ for every
endpoint v of an edge e, such that for each edge e, we have an equality:

˛.v; e/C ˛.w; e/ D deg.e/; (1)

where v and w are the endpoints of e and deg.e/ is the number of 2-dimensional
facets containing e.

At a vertex v of a weak tropical surface �, the local intersection matrix Mv is a
symmetric matrix whose rows and columns are indexed by edges containing v and
such that the entry corresponding to edges e and e0 is

.Mv/e;e0 D
(

#ffacets containing both e and e0g if e ¤ e0

�˛.w; e/ if e D e0;
(2)

where w is the endpoint of e other than v. A tropical surface is a weak tropical
surface� such that for every vertex v of�, Mv has exactly one positive eigenvalue.

Example 2.2. Let � be a triangulated manifold, meaning a regular �-complex
which is homeomorphic to a 2-dimensional, connected topological manifold. Then,
every edge e is contained in two facets, so a symmetric choice for the structure
constants satisfying the constraint (1) on e is to set ˛.v; e/ D ˛.w; e/ D 1 for both
endpoints v and w. This gives us a weak tropical surface.

At any vertex v, the link is a cycle and so, for example, if this cycle has length 5,
the local intersection matrix is

Mv D

0

BBBBB@

�1 1 0 0 1

1 �1 1 0 0

0 1 �1 1 0

0 0 1 �1 1

1 0 0 1 �1

1

CCCCCA

An m � m matrix of this form always has a positive eigenvalue of 1 for the
eigenvector .1; : : : ; 1/T . However, if m > 6, then there exist at least two other
positive eigenvalues. Therefore,� is a tropical complex if and only if each vertex is
contained in at most six edges. A simple counting argument shows that if each vertex
is contained in at most six edges, then the Euler characteristic �.�/ is non-negative.
Thus, we’ve verified the special case of Theorem 1.4 that there is no tropical surface
with all structure constants equal to 1 for which the underlying topological space is
a hyperbolic manifold.

In this paper, the main purpose of the structure constants ˛.v; e/ is to define a
sheaf of linear functions on a weak tropical surface �. These linear functions are
the tropical analogue of non-vanishing regular functions in algebraic geometry.
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Definition 2.3 (Construction 4.2 and Definition 4.3 in [5]). Let� be a weak trop-
ical surface and e an edge of�. We define Ne to be the simplicial complex consisting
of e with a 2-dimensional simplex attached for each facet of � containing e. Then,
there exists a natural map 
eWNe ! � which is an open inclusion on No

e , which we
define to be the union of interior of e and of the interiors of the facets of Ne.

We also define a map �eWNe ! R
dC2=R, where d is the number of facets

of � containing e and the quotient is by the line in R
dC2 generated by the vector

.1; : : : ; 1;�˛.v; e/;�˛.w; e//. The map �e sends each vertex of Ne to the image ei

of the ith basis vector of RdC2, with v and w going to edC1 and edC2, respectively.
We then extend �e linearly to all of Ne. The vectors e1; : : : ; edC2 generate a lattice
inside R

dC2=R and we say that a function `WRdC2=R ! R has linear slopes if
`.ei/ � `.ej/ is an integer for any two vectors ei and ej.

Finally, we say that a continuous function � on an open subset U � � is linear
if the following two conditions hold. First, if we identify the interior of any facet f
meeting U with a unimodular simplex in R

2, then � is an affine linear function with
integral slopes on the interior of f . Second, on any edge e meeting U, �jU\No

e
D `ı�e

for some linear function `WRdC2=R ! R with integral slopes. We write A for the
sheaf of linear functions on �.

Note that the image of the map �e in Definition 2.3 lies in the affine linear space
consisting of the linear combinations

P
ciei such that c1C� � �CcdC2 D 1, which is a

proper subset of RdC2=R because of relation (1) in the definition of a weak tropical
surface. Roughly speaking, the quotient in Definition 2.3 means that linearity on a
weak tropical surface imposes one condition beyond linearity on each facet of �.
More precisely, we have the following:

Lemma 2.4. Let e be an edge of a tropical surface � and let No
e be the union of

the interiors of e and of the facets containing e, as in Definition 2.3. If � is a linear
function on No

e , and is constant on all but one of these facets, then � is constant.

Proof. If �e is as in Definition 2.3, then � factors as ` ı �e for some affine linear
function `. We also let d and e be as in Definition 2.3, and we can assume that the
facets containing e are numbered so that � is constant on all but the first one. Then,
we have the linear relation

e1 D �e2 � � � � � ed C ˛.v; e/edC1 C ˛.w; e/edC2;

where the sum of the coefficients is 1 by the relation (1), and so `.e2/ D � � � D
`.edC2/ implies that `.e1/ D `.e2/ D � � � D `.edC2/. Therefore, ` is constant on
�e.No

e /, which is what we wanted to show. ut
Example 2.5. As in Example 2.2, suppose we have a triangulated manifold with
˛.v; e/ D 1 for all endpoints v of all edges e. Then, in Definition 2.3, the interior
of e and of the two facets containing e is identified with the interior of a unit
square in R

2, with the square triangulated along a diagonal. Linear functions on
this neighborhood of e are equivalent to affine linear functions on the square. Thus,
in this case, Lemma 2.4 amounts to the observation that affine linear functions on R

2

are determined by their restriction to any open set.
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Any constant function on a weak tropical surface is linear, so the sheaf of locally
constant R-valued functions is a subsheaf of A. If we denote the quotient sheaf A=R
by D, then we have a long exact sequence in sheaf cohomology [4, Sect. 3]:

0! H0.�;R/! H0.�;A/! H0.�;D/! H1.�;R/! � � � (3)

One of the main results from [4] is the following:

Theorem 2.6 (Theorem 4.7 in [4]). If � is a tropical surface which is locally
connected through codimension 1, the R-span of the image of the morphism
H0.�;D/! H1.�;R/ has codimension at most 1 in H1.�;R/.

In Theorem 2.6, locally connected through codimension 1 means that the link of
each vertex is connected.

If linear functions on weak tropical surfaces are taken to be analogous to non-
vanishing regular functions, then the analogues of rational functions on an algebraic
variety come from relaxing the linearity condition in codimension 1. More precisely,
suppose that d1; : : : ; dm are closed line segments, each in one facet of a weak tropical
surface �, such that di \ dj is finite for distinct i and j. Then we say a function � on
an open subset U � � is a piecewise linear function whose divisor is supported in
d1 [ � � � [ dm if � is continuous and � is linear on U n .d1 [ � � � [ dm/. Although we
will not need it in this paper, we can justify our terminology with:

Proposition 2.7 (Proposition 4.5 in [5]). Let d1; : : : ; dm be line segments in a weak
tropical surface� as above. If U is an open set meeting all of the di, then there exists
a homomorphism from the group of piecewise linear functions � whose divisor is
supported on d1 [ � � � [ dm under addition to formal sums of the di, known as the
divisor of �. The maximal open subset of U on which such a function � is linear is
the complement of those di with non-zero coefficient in the divisor of �.

Finally, we have an analogue of the maximum modulus principle from complex
analysis. The result in [4] also applies to piecewise linear functions whose divisor
has non-negative coefficients, but we’ll only need it for linear functions, i.e., when
the divisor is trivial.

Proposition 2.8 (Proposition 2.11 in [4]). Let � be a tropical surface which is
connected through codimension 1. If � is a linear function on a connected open
set U which achieves its maximum on U, then � is constant.

3 Degenerations

In this section, we construct weak tropical surfaces from strictly semistable
degenerations. The case of regular semistable degenerations over discrete valuation
rings was treated in [5, Sect. 2], but here we want to work over possibly non-discrete
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valuation rings. The data of a weak tropical surface only depends on the special fiber
as a simple normal crossing scheme over the residue field, and not on the valuation
ring, so we can use the same construction as [5, Sect. 2], which we now recall.

We let X be a strictly semistable degeneration over R and, as stated in the
introduction, the dual complex � has one k-dimensional simplex for each stratum
of dimension 2 � k in the special fiber of X. Thus, if e is an edge with endpoints
v and w, then we let Ce and Cw denote the curve and surface corresponding to e
and w, respectively. We set ˛.v; e/ D �C2

e , where C2
e denotes the self-intersection

number of Ce in Cw. Even for regular strictly semistable degenerations over discrete
valuation rings, this data may only give a weak tropical surface without an additional
technical condition of robustness in dimension 2 [5, Proposition 2.7]. Over non-
discrete valuation rings, we also get weak tropical surfaces.

Proposition 3.1. The special fiber of any degeneration X yields a weak tropical
surface � such that the local intersection matrix Mv has at most one positive
eigenvalue for each vertex v of �.

Proof. For � to be a weak tropical surface, we need to check that for any edge e
with endpoints v and w, we have the equality (1):

˛.v; e/C ˛.w; e/ D deg e: (4)

Let Ce be the curve corresponding to e in the special fiber of X, and by our
semistability condition, on a Zariski open neighborhood meeting Ce, there is an étale
map to Spec RŒx; y; z�=hxy�
i for some element 
 in the maximal ideal of R. Then,
the principal Cartier divisor defined by 
 can be written, at least in a formal open
neighborhood of Ce, as the union of Cartier divisors, each of which is supported on
an irreducible component of the special fiber of X. For example, in the above chart,
the functions x and y pull back to give defining equations for each of the components
containing Ce.

Thus, using linearity of the intersection product [8, Proposition 5.9(b)], we can
split up the intersection of the principal divisor defined by 
 with the curve Ce into
terms coming from the components of the special fiber of X. For components of the
special fiber which don’t contain Ce, if we pull back to Ce we get a Cartier divisor
equal to the points of intersection, with multiplicities equal to 1. Thus, the degree
of the intersection of such a Cartier divisor with Ce is equal to the number of points
of intersection by the projection formula [8, Proposition 5.9(c)]. The total degree
for all components which don’t contain Ce gives deg e, which is the right-hand side
of (4).

Now consider the two components Cv and Cw containing Ce. If we pull back
the Cartier divisor supported on Cv to Cw, then we get the divisor Ce on Cw. The
self-intersection of Ce is �˛.v; e/ by the definition of the structure constants. Thus,
using the projection formula again, the components containing Ce contribute a cycle
of degree equal to �˛.v; e/� ˛.w; e/, so the desired equality (4) follows because 

obviously defines a principal divisor.
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Finally, we claim that the local intersection matrix Mv records the intersection
theory on the surface of the special fiber corresponding to v, restricted to curves
of the special fiber. For the diagonal entries of the local intersection matrix (2),
this follows immediately from our definition of the structure constants. The off-
diagonal entries of the local intersection matrix count facets containing two edges e
and e0, which are in bijection with the number of reduced points in the intersection of
corresponding curves Ce and Ce0 , and thus equal to the intersection number Ce �Ce0 .
Therefore, by the Hodge index theorem, the local intersection matrix Mv can have
at most one positive eigenvalue. ut

One approach to obtaining a tropical surface instead of a weak tropical surface
is Proposition 2.10 in [5], which shows that for degenerations with projective
components, robustness can be obtained by appropriate blow-ups. Rather than
adapting this proposition to the case of non-discrete valuations, while also keeping
track of the effect on the underlying topological space, it is more convenient to
perform the modification combinatorially:

Lemma 3.2. Let � be a weak tropical surface and suppose that for each vertex v
of �, the local intersection matrix Mv has at most one positive eigenvalue. Then,
there exists a tropical surface �0 such that the underlying topological space of �0
is formed by attaching a finite number of 2-simplices to edges of �.

Proof. We suppose that v is a vertex of� such that Mv has no positive eigenvalues,
i.e., it is negative semidefinite. Let e be an edge containing v and let w be the other
endpoint of e. We attach an additional 2-simplex onto e and label the new vertex u0,
with the new edges e0

v and e0
w. We use v0, w0, and e0 to denote the representatives of

v, w, and e in the new weak tropical surface �0. We assign the coefficients on �0 to
be the same as on �, except that

˛.w0; e0/ D ˛.w; e/ ˛.v0; e0/ D ˛.v; e/C 1
˛.w0; e0

w/ D 0 ˛.u0; e0
w/ D 1

˛.v0; e0
v/ D 2 ˛.u0; e0

v/ D �1

Then we claim the local intersection matrices Mu0 and Mv0 each have exactly one
positive eigenvalue and that the number of positive eigenvalues of Mw0 is the same
as that of Mw. Once we show the claim, then we can repeat the above construction
at each vertex v whose local intersection matrix Mv is negative semidefinite to get
the desired tropical surface.

The first part of the claim is that the local intersection matrices

Mu0 D
�
0 1

1 �2
	

and Mv0 D

0

BBB@

� � � � � 0
:::

:::
:::

� � � � �˛.w; e/ 1
0 � � � 1 1

1

CCCA
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have exactly one positive eigenvalue each, where � indicates the parts of Mv0 that
coincide with Mv . For Mu0 , there is exactly one positive eigenvalue because it has
determinant �1. For Mv0 , we use the change of coordinates:

NMv0N
T D

0

BBB@

� � � � � 0
:::

:::
:::

� � � � �˛.w; e/ � 1 0
0 � � � 0 1

1

CCCA where N D

0

BBB@

1 � � � 0 0
:::
: : :

:::
:::

0 � � � 1 �1
0 � � � 0 1

1

CCCA

to get a block diagonal matrix whose upper left block is Mv minus a negative
semidefinite diagonal matrix, and is thus negative semidefinite. Moreover, the lower
right block of NMv0NT is a single positive entry, so NMv0NT has exactly one positive
eigenvalue, as in the first part of the claim.

For the second part of our claim, we want to show that

Mw0 D

0

BBB@

� � � � � 0
:::

:::
:::

� � � � �˛.v; e/ � 1 1

0 � � � 1 �1

1

CCCA

has the same number of positive eigenvalues as Mw, where � denotes parts of the
matrix which coincide with Mw. We again use a change of coordinates to a block
diagonal matrix:

PMw0P
T D

0

BBB@

� � � � � 0
:::

:::
:::

� � � � �˛.v; e/ 0
0 � � � 0 �1

1

CCCA where P D

0

BBB@

1 � � � 0 0
:::
: : :

:::
:::

0 � � � 1 1
0 � � � 0 1

1

CCCA :

The upper left block of PMw0PT agrees with Mw and the lower right block adds a
single negative eigenvalue. Thus, Mw0 has the same number of positive eigenvalues
as Mw, which completes the proof of the claim. ut

4 Proof of the Main Theorems

The crux of Theorem 1.4 and thus of Theorem 1.3 is the following lemma:

Lemma 4.1. Let � be a tropical surface whose underlying �-complex is a mani-
fold with fins and is connected through codimension 1. If s is a facet contained in
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the manifold subcomplex of �, and Us denotes the interior of s, then the restriction
map

H0.�;D/! H0.Us;D/ Š Z
2

is injective.

Proof. Note that the isomorphism H0.Us;D/ Š Z
2 holds because affine linear

functions on Us are equivalent to affine linear functions with integral slopes on a
unimodular simplex in R

2 by definition. Thus, A restricted to Us is isomorphic to
the locally constant sheaf with values in R � Z

2, and the quotient sheaf D D A=R
is isomorphic to Z

2.
Now, we let † and F1; : : : ;Fn denote the manifold and fins of the simplicial

complex, as in Definition 1.2. We suppose ! is a global section of D such that the
restriction of ! to Us is trivial, and we want to show that ! is trivial. We start with
V D Us and then we’ll expand the open set V until it is all of �. At each step, V
will either be disjoint from each fin Fi or contain Fi, except possibly the endpoints
of Fi \†. In particular, the boundary of V will be contained in †.

First suppose that there exists an edge e in the boundary of V such that e is not
contained in any of the fins. Let f denote the 2-simplex bordering e whose interior
is in V and let f 0 denote the 2-simplex on the other side of e. Then, Definition 2.3
identifies the union of the interiors of f , f 0, and e with an open subset of R2, and the
sections of A are exactly affine linear functions with integral slope on this set. As
above, A and D are therefore locally constant sheaves with values in R � Z

2 and
Z
2, respectively. Thus, we can expand V to include the interiors of e and f 0, where
! is also zero.

Second, we assume that every edge in the boundary of V is contained in some
†\ Fi. Let i be the maximal index such that Fi intersects the boundary of V . Then,
the entire path † \ Fi must be in the boundary of V or else there would be a fin Fj

with j < i intersecting Fi not at its endpoint, which would contradict Definition 1.2.
In particular, ! must vanish along † \ Fi.

Let eAi be the sheaf of piecewise linear functions on � whose divisors are
supported on † \ Fi. If we let eDi denote the quotient sheaf eAi=R, then we can
give a global section Q!i of eDi defined piecewise such that Q!i vanishes on� nFi and
it agrees with ! on Fi n†. This defines a valid section of eDi because, as we noted,
! vanishes along † \ Fi, and Q!i is clearly a section of D away from † \ Fi, on
which we only require continuity. Consider the long exact sequence of cohomology
associated with the quotient eDi, analogous to (3):

0! H0.�;R/! H0.�;eAi/! H0.�;eDi/! H1.�;R/!
Since Q!i is only non-trivial on Fi, which is contractible, the image of Q!i in H1.�;R/

is trivial, so Q!i lifts to an element of H0.�;eAi/, which we also denote by Q!i and we
choose the representative such that Q!i is zero on †.

If Q!i is non-constant, then it must have a maximum value strictly greater than
zero or minimum value strictly less than zero. Then, it would have its maximum or
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minimum, respectively, on Fi n †. We apply Proposition 2.8 to the linear function
Q!ijFin† or to its negative to show that Q!ijFin† must be constant, and so Q!i is zero
everywhere. Thus, ! is identically zero on Fi, and so we can expand V to include
Fi n†.

We’ve now shown that for each edge e of †\ Fi, the section ! is zero on all but
one simplex containing e, namely, the simplex in † on the other side from V . As in
Definition 2.3, we let No

e denote the union interior of e with the interiors of the facets
containing e. Since No

e is simply connected, we can lift !jNo
e

to a linear function � on
No

e . Then, by Lemma 2.4, � is constant on No
e , and so ! vanishes on No

e . Therefore,
we can further expand V to also include the interiors of all 2-simplices meeting Fi

and the path † \ Fi.
At the end, we will have that ! is zero on an open set V which contains the

interior of every 2-simplex in � and since affine linear functions are continuous by
definition, this means that ! is zero, which finishes the proof of the lemma. ut

We use Lemma 4.1 to prove the following strengthening of Theorem 1.4.

Theorem 4.2. If � is a hyperbolic manifold with fins and ornaments, then there is
no weak tropical surface, with � as its underlying topological space, and such that
for every vertex v of �, Mv has at most one positive eigenvalue.

Proof. Suppose that � is a weak tropical surface whose underlying �-complex
is as in the theorem statement. We can assume that when decomposing � as in
Definition 1.2, the subcomplex of ornaments O is maximal, so that if we let �0
denote the subcomplex consisting of just the manifold and fins, then �0 is locally
connected through codimension 1. Then, taking the restriction of the structure
constants from �, we get that �0 has the structure of a weak tropical surface,
because the local structure around each edge of �0 is unchanged. Moreover, at each
vertex v of �0, the local intersection matrix M0

v is a block of the block diagonal
matrix Mv for �. Therefore, M0

v also has at most one positive eigenvalue.
Next, we apply Lemma 3.2 to transform �0 into a tropical surface �00 by gluing

simplices onto edges of �0. Whenever we glue a simplex onto an edge e which is
contained in one of the fins Fi � �0, we can include that simplex in the fin, which
remains contractible and its intersection with the manifold † is unchanged. If we
glue a simplex onto an edge e contained in the manifold †, then the simplex forms
a new fin FnC1, numbered after all the other fins. Since FnC1 \ † is a single edge,
the intersection of FnC1 with any other fin will be a subset of the endpoints of this
edge. Thus, �00 is still a hyperbolic manifold with fins.

Finally, suppose that the manifold † � �00 is not orientable. Then † has a
2-to-1 orientable cover, corresponding to an index 2 subgroup of its fundamental
group [10, Proposition 3.25]. Since† � �00 is a homotopy equivalence, the oriented
cover extends to a cover of �00, which we call e�00. Each fin Fi of �00 is attached
along a path of †, and so the preimage of Fi in e�00 is two disjoint fins, which we
number F2i�1 and F2i to get a manifold with fins. Moreover, the Euler characteristic
is multiplicative when taking covers, so �.e�00/ is again negative. Therefore, we can
replace �00 with e�00 and so from now on we assume that the manifold † � �00 is
orientable.
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By the classification of compact topological surfaces [7, Theorem 6.3], the Euler
characteristic of a compact oriented surface is even, and so �.�00/ � �2. Therefore,
dimR H1.�00;R/ D 2 � �.�00/ 	 4. By Theorem 2.6, the R-span of the image of
H0.�00;D/ has codimension at most 1 in H0.�00;R/, so the rank of H0.�00;D/ as an
Abelian group is at least dim H1.�00;R/�1 	 3. On the other hand, by Lemma 4.1,
H0.�00;D/ is a subgroup of Z

2, and so a free Abelian group of rank at most 2.
Therefore, we have a contradiction, so the weak tropical surface� cannot exist. ut
Proof of Theorem 4.3. Suppose X is a strict semistable degeneration whose dual
complex � is a hyperbolic manifold with fins and ornaments. Then, by Proposi-
tion 3.1,� has the structure of a weak tropical complex such that the matrix Mv has
at most one positive eigenvalue for every vertex v. However, by Theorem 4.2, such
a weak tropical complex cannot exist, so we conclude that X cannot exist. ut
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Analytification and Tropicalization Over
Non-archimedean Fields

Annette Werner

Abstract In this paper, we provide an overview of recent progress on the interplay
between tropical geometry and non-archimedean analytic geometry in the sense
of Berkovich. After briefly discussing results by Baker et al. (Algebr. Geom.
3, 63–105 (2016); Contemporary Mathematics, vol 605, pp 93–121. American
Mathematical Society, Providence, 2013) in the case of curves, we explain a
result from Cueto et al. (Math. Ann. 360, 391–437 (2014)) comparing the tropical
Grassmannian of planes to the analytic Grassmannian. We also give an overview
of most of the results in Gubler et al. (Adv. Math. 294, 150–215 (2016)), where
a general higher-dimensional theory is developed. In particular, we explain the
construction of generalized skeleta in Gubler et al. (Adv. Math. 294, 150–215
(2016)) which are polyhedral substructures of Berkovich spaces lending themselves
to comparison with tropicalizations. We discuss the slope formula for the valuation
of rational functions and explain two results on the comparison between polyhedral
substructures of Berkovich spaces and tropicalizations.
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• Faithful tropicalization
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1 Introduction

Tropical varieties are polyhedral images of varieties over non-archimedean fields.
They are obtained by applying the valuation map to a set of toric coordinates.
From the very beginning, analytic geometry was present in the systematic study
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of tropical varieties, e.g., in [16] where rigid analytic varieties are used. The theory
of Berkovich spaces which leads to spaces with nicer topological properties than
rigid varieties is even better suited to study tropicalizations.

A result of Payne [24] states that the Berkovich space associated with an
algebraic variety is homeomorphic to the inverse limit of all tropicalizations in
toric varieties. However, individual tropicalizations may fail to capture topological
features of an analytic space. The present paper is an overview of recent results
on the relationship between analytic spaces and tropicalizations. In particular, we
address the question of whether a given tropicalization is contained in a Berkovich
space as a combinatorial substructure.

A novel feature of Berkovich spaces compared to rigid analytic varieties is that
they contain interesting piecewise linear combinatorial structures. In fact, Berkovich
curves are, very roughly speaking, generalized graphs, where infinite ramifications
along a dense set of points are allowed, see [4, Chap. 4], [1], and [3].

In higher dimensions, the structure of Berkovich analytic spaces is more
involved, but still they often contain piecewise linear substructures as deformation
retracts. This was a crucial tool in Berkovich’s proof of local contractibility for
smooth analytic spaces, see [5] and [6]. Berkovich constructs these piecewise
linear substructures as the so-called skeleta of suitable models (or fibration of
models). These skeleta basically capture the incidence structure of the irreducible
components in the special fiber.

In dimension one, Baker, Payne, and Rabinoff studied the relationship between
tropicalizations and subgraphs of Berkovich curves in [2] and [3]. Their results show
that every finite subgraph of a Berkovich curve admits a faithful, i.e., homeomorphic
and isometric tropicalization. They also prove that every tropicalization with tropical
multiplicity one everywhere is isometric to a subgraph of the Berkovich curve.

As a first higher-dimensional example, the Grassmannian of planes was studied
in [12]. The tropical Grassmannian of planes has an interesting combinatorial
structure and is a moduli space for phylogenetic trees. It is shown in [12] that it
is homeomorphic to a closed subset of the Berkovich analytic Grassmannian.

In [22], the higher-dimensional situation is analyzed from a general point of view.
This approach is based on a generalized notion of a Berkovich skeleton which is
associated with the datum of a semistable model plus a horizontal divisor. This
naturally leads to unbounded skeleta and generalizes a well-known construction on
curves, see [28] and [3].

For every rational function f with support in the fixed horizontal divisor it is
shown in [22] that the “tropicalization” log jf j factors through a piecewise linear
function on the generalized skeleton. This function satisfies a slope formula which
is a kind of balancing condition around any one-codimensional polyhedral face.
Moreover, for every generalized skeleton there exists a faithful tropicalization—
where faithful in higher dimension refers to the preservation of the integral affine
structures. In dimension one, this can be expressed via metrics. It is also proven
that tropicalizations with tropical multiplicity one everywhere admit sections of the
tropicalization map, which generalizes the above-mentioned result in [2] on curves.
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The paper is organized as follows. In Sect. 2 we collect basic facts on Berkovich
spaces and tropicalizations, giving references to the literature for proofs and more
details. In Sect. 3 we briefly recall some of the results by Baker et al. [2] on
curves. Section 4 starts with the definition and basic properties of the tropical
Grassmannian. Theorem 4.1 claims the existence of a continuous section to the
tropicalization map on the projective tropical Grassmannian. We give a sketch of the
proof for the dense torus orbit, where some constructions are easier to explain than
in the general case. In Sect. 5 we explain the construction of generalized skeleta
from [22], and in Sect. 6 we investigate log jf j for rational functions f . In particular,
Theorem 6.5 states the slope formula. Section 7 explains the faithful tropicalization
results in higher dimension.

2 Berkovich Spaces and Tropicalizations

2.1 Notation and Conventions

A non-archimedean field is a field with a non-archimedean absolute value. Our
ground field is a non-archimedean field which is complete with respect to its
absolute value. Examples are the field Qp, which is the completion of Q after the
p-adic absolute value, finite extensions of Qp, and also the p-adic cousin Cp of the
complex numbers which is defined as the completion of the algebraic closure of Qp.
The field of formal Laurent series k..t// over an arbitrary base field k is another
example. Besides, we can endow any field k with the trivial absolute value (which
is one on all non-zero elements). A nice feature of Berkovich’s general approach
is that it also gives an interesting theory in the case of a trivially valued field. The
reason behind this is that Berkovich geometry encompasses also points with values
in transcendental field extensions—and those may well carry interesting non-trivial
valuations.

Let K be a complete non-archimedean field. We write Kı D fx 2 K W jxj � 1g
for the ring of integers in K, and Kıı D fx 2 K W jxj < 1g for the valuation ideal.
The quotient QK D Kı=Kıı is the residue field of K. The valuation on K� associated
with the absolute value is given by v.x/ D � log jxj. By � D v.K�/ � R we denote
the value group.

A variety over K is an irreducible, reduced, and separated scheme of finite type
over K.

2.2 Berkovich Spaces

Let us briefly recall some basic results about Berkovich spaces. This theory was
developed in the ground-breaking treatise [4]. The survey papers [11, 15], and [26]
provide additional information. For background information on non-archimedean
fields and Banach algebras and for an account of rigid analytic geometry see [8]
and [7].
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For n 2 N and every n�tuple r D .r1; : : : ; rn/ of positive real numbers we define
the associated Tate algebra as

Kfr�1xg D
(

X

ID.i1;:::;in/2Nn
0

aIx
I W jaIjrI ! 0 as jIj ! 1

)
:

Here we put x D .x1; : : : ; xn/, and for I D .i1; : : : ; in/ we write xI D xi1 : : : xin .
Moreover, we define jIj D i1 C : : :C in.

A Banach algebra A is called K-affinoid, if there exists a surjective K-algebra
homomorphism ˛ W Kfr�1xg ! A for some n and r such that the Banach norm on
A is equivalent to the quotient seminorm induced by ˛. If such an epimorphism
can be found with r D .1; : : : ; 1/, then A is called strictly K-affinoid. In rigid
analytic geometry only strictly K-affinoid algebras are considered (and called
affinoid algebras).

The Berkovich spectrum M.A/ of an affinoid algebra A is defined as the set of all
bounded (by the Banach norm), multiplicative seminorms on A. It is endowed with
the coarsest topology such that all evaluation maps on functions in A are continuous.

If x is a seminorm on an algebra A, and f 2 A, we follow the usual notational
convention and write jf .x/j for x.f /, i.e., for the real number which we get by
evaluating the seminorm x on f .

The Shilov boundary of a Berkovich spectrum M.A/ of a K-affinoid algebra
A is the unique minimal subset � (with respect to inclusion) such that for every
f 2 A the evaluation map M.A/ ! R
0 given by x 7! jf .x/j attains its maximum
on � . Hence for every f 2 A there exists a point z in the Shilov boundary such that
jf .z/j 	 jf .x/j for all x 2M.A/. The Shilov boundary of M.A/ exists and is a finite
set by Berkovich [4, Corollary 2.4.5].

The Berkovich spectrum of a K-affinoid algebra carries a sheaf of analytic
functions which we will not define here. Some care is needed since, very roughly
speaking, not all coverings are suitable for glueing analytic functions. Analytic
spaces over K are ringed spaces which are locally modelled on Berkovich spectra
of affinoid algebras.

There is a GAGA-functor, associating to every K-scheme X locally of finite type
an analytic space Xan over K. It has the property that X is connected, separated
over K, or proper over K, respectively, if and only if the topological space Xan is
arcwise connected, Hausdorff, or compact, respectively. If X D SpecR is affine, the
topological space Xan can be identified with the set of all multiplicative seminorms
on the coordinate ring R extending the absolute value on K. This space is endowed
with the coarsest topology such that for all f 2 R the evaluation map on f is
continuous.

With the help of the GAGA-functor we associate analytic spaces to algebraic
varieties. Another way of obtaining analytic spaces is via admissible formal
schemes. An admissible formal scheme over Kı is, roughly speaking, a formal
scheme over Kı such that the formal affine building blocks are given by Kı-flat
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algebras of the form Kıfx1; : : : ; xng=a for a finitely generated ideal a in the ring
Kıfx1; : : : ; xng D fPI2Nn

0
aIxI W aI 2 Kı and jaIj ! 0 as jIj ! 1g. For a precise

definition see [7] or [11].
An admissible formal scheme X has a natural analytic generic fiber X�. On the

formal affine building block given by Kıfx1; : : : ; xng=a the analytic generic fiber is
the Berkovich spectrum of Kfx1; : : : ; xng=aKfx1; : : : ; xng.

If we start with a Kı-scheme X , which is separated, flat, and of finite presen-
tation, its completion with respect to any element 
 2 Kıınf0g is an admissible
formal scheme X . This has an analytic generic fiber X�. On the other hand, we
can apply the GAGA-functor to the algebraic generic fiber X D X ˝Kı K and get
another analytic space Xan. They are connected by a morphism X� ,! Xan, which
is an isomorphism if X is proper over Kı. In the basic example X D SpecKıŒx�
we get the natural inclusion M.Kfxg/ ,! .A1K/

an, whose image is the set of all
multiplicative seminorms on the polynomial ring KŒx� which extend the absolute
value on K and whose value on x is bounded by 1.

2.3 Tropicalization

We start by considering a split torus T D SpecKŒx˙1
1 ; : : : ; x˙1

n �. Evaluating
seminorms on characters we get a map trop W Tan ! R

n on the associated Berkovich
space, which is given by

trop.p/ D .� log jx1.p/j; : : : ;� log jxn.p/j/:

Here we are using the valuation map to define tropicalizations. In some papers,
tropicalizations are defined via the negative valuation map, i.e., the logarithmic
absolute value of the coordinates.

If X is a variety over K together with a closed embedding ' W X ,! T , we
consider the composition

trop' W Xan 'an

�! Tan trop�! R
n (1)

of the tropicalization map with the embedding '. Note that the map trop' is
continuous. Its image Trop'.X/ D trop'.X

an/ is the support of a polyhedral complex
† in R

n. This complex is integral �-affine in the sense of Sect. 5.1. It has pure
dimension d D dim.X/. For a nice introductory text on tropical geometry see the
textbook [23]. The survey paper [21] is also very useful.

Note that for all ! 2 Trop'.X/ the preimage trop�1
' .f!g/ can be identified with

the Berkovich spectrum of an affinoid algebra, see [20, Proposition 4.1].
For every point ! 2 Trop'.X/ there is an associated initial degeneration, which

is the special fiber of a model of X over the valuation ring in a suitable non-
archimedean extension field of K. The geometric number of irreducible components
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of this special fiber is the tropical multiplicity of !. There is a balancing formula for
tropicalizations involving tropical multiplicities on all maximal-dimensional faces
of Trop'.X/ around a fixed codimension one face, see [23, Chap. 3.4].

Let K be the algebraic closure of K. It can be endowed with an absolute value
extending the one on K. By means of the coordinates x1; : : : ; xn we can identify
T.K/ D K

n
. Then we can define a natural tropicalization map trop W T.K/! R

n by
trop.t1; : : : ; tn/ D .� log jt1j; : : : ;� log jtnj/. Note that every point t D .t1; : : : ; tn/
in T.K/ gives rise to the multiplicative seminorm f 7! jf .t/j on the coordinate ring
KŒx˙1

1 ; : : : ; x˙1
n �, which is an element in Tan. Hence the tropicalization map on T.K/

is induced by the map trop on Tan.
We could define the tropicalization Trop'.X/ without recourse to Berkovich

spaces. If the absolute value on K is non-trivial, the tropicalization Trop'.X/ is
equal to the closure of the image of the map

X.K/
'�! T.K/

trop�! R
n:

Considering a tropical variety as the image of an analytic space makes some
topological considerations easier. For example, in this way it is evident that the
tropicalization of a connected variety is connected since it is a continuous image of
a connected space.

Let Y be a toric variety associated with the fan � in NR, where N is the
cocharacter group of the dense torus T . Then � defines a natural partial compact-
ification N�

R
(due to Kajiwara and Payne) of the space NR. Roughly speaking, we

compactify cones by dual spaces. For details see [24], Sect. 3. There is also a natural
tropicalization map

trop W Yan ! N�
R
;

which extends the tropicalization map on the dense torus. As an example, we
consider Y D P

n
K with its dense torus G

n
m;K and N D Z

n. Put R D R [ f1g and
endow it with the natural topology such that half-open intervals �a;1� form a basis
of open neighborhoods of1. Then the associated compactification of NR D R

n is
the tropical projective space

TP
n D �RnC1 X f.1; : : : ;1/g�=R.1; : : : ; 1/

which is endowed with the product-quotient topology. The Berkovich projective
space .Pn

K/
an can be described as the set of equivalence classes of elements in

.AnC1
K /annf0g with respect to the following equivalence relation: Let x and y be

points in .AnC1
K /annf0g, i.e., multiplicative seminorms on KŒx0; : : : ; xn� extending

the absolute value on K. They are equivalent if and only if there exists a constant
c > 0 such that for every homogeneous polynomial f of degree d we have
jf .y/j D cdjf .x/j.
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We can describe the tropicalization map on the toric variety P
n
K as follows:

trop W .Pn
K/

an ! TP
n (2)

maps the class of the seminorm p on KŒx0; : : : ; xn� to the class .� log jx0.p/j; : : :,
� log jxn.p/j/C R.1; : : : ; 1/ in tropical projective space.

An important result about the relation between tropical and analytic geometry
due to Payne says that for every quasi-projective variety X over K the associated
analytic space Xan is homeomorphic to the inverse limit over all Trop'.X/, where the
limit runs over all closed embeddings ' W X ,! Y in a quasi-projective toric variety
Y (see [24, Theorem 4.2]). For a generalization which omits the quasi-projectivity
hypothesis see [17].

Hence tropicalizations are combinatorial images of analytic spaces, which
recover the full analytic space in the projective limit. Individual tropicalizations
however may not faithfully depict all topological features of the analytic space.
We will discuss a basic example at the beginning of the next section.

3 The Case of Curves

Let K be a field which is algebraically closed and complete with respect to a non-
archimedean, non-trivial absolute value, and let X be a smooth curve over K.

As an example, let us consider an elliptic curve E in Weierstrass form y2 D x3C
axCb over K. The affine curve E has a natural embedding in A

2
K . The intersection E0

of E with G
2
m;K has a natural tropicalization in R

2, which is one of the trees depicted
in the next figure.

If however E is a Tate curve, then the analytic space Ean contains a circle, i.e.,
it has topological genus 1. Hence the Weierstrass tropicalization does not faithfully
depict the topology of the analytic space.

As stated before, if X is a smooth curve over K, the Berkovich space Xan is
some kind of generalized graph, allowing infinite ramification along a dense set
of points. In particular, it makes sense to talk about its leaves. The space of non-
leaves H0.Xan/ in the Berkovich analytification Xan admits a natural metric which
is defined via semistable models, see [3, Sect. 5.3]. Any tropicalization of X with
respect to a closed embedding in a torus carries a natural metric which is locally
given by lattice length on each edge (and globally by the shortest paths). Another
problem in the case of the Weierstraß tropicalizations from Fig. 1 is the fact that
tropical multiplicities ¤ 1 are present. This may indicate that the tropicalization
map will not be isometric on a subgraph, see [2, Corollary 5.9].

It is explained in [2, Theorem 6.2], how one can construct better tropicalizations
of the Tate curve.

Based on a detailed study of the structure of analytic curves there are the
following two important comparison theorems in [2].
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Fig. 1 Tropicalization of an elliptic curve in Weierstraß form. The left-hand side shows the case
3v.a/ 
 2v.b/ and the right-hand side the case 3v.a/ < 2v.b/. The numbers on the edges indicate
the tropical multiplicities. If no number is given, the multiplicity is one

Theorem 3.1 ([2, Theorem 5.20]). Let � be any finite subgraph of Xan for a
smooth, complete curve X over K. Then there exists a closed immersion ' W X ,! Y
into a toric variety Y with dense torus T such that the restriction '0 W X0 D
X \ '�1.T/ ,! T induces a tropicalization map trop'0 W Xan

0 ! R
n which maps �

homeomorphically and isometrically onto its image.

Theorem 3.2 ([2, Theorem 5.24]). Consider a smooth curve X0 over K and a
closed immersion ' W X0 ,! T into a split torus with associated tropical variety
Trop'0.X0/. If � 0 is a compact connected subset of Trop'0.X0/ which has tropical
multiplicity one everywhere, then there exists a unique closed subset � in H0.Xan

0 /

mapping homeomorphically onto � 0, and this homeomorphism is in fact an isometry.

We will discuss higher-dimensional generalizations of these theorems in Sect. 7.

4 Tropical Grassmannians

4.1 The Setting

In view of the results [2] for curves, it is a natural question whether they can
be generalized to varieties of higher dimensions. As a first example, the tropical
Grassmannian of planes was studied in [12]. In this section we discuss the main
theorem of this paper.

For natural numbers d � n we denote by Gr.d; n/ the Grassmannian of
d-dimensional subspaces of n-space. The tropical Grassmannian is defined
as the tropicalization of Gr.d; n/ with respect to the Plücker embedding
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' W Gr.d; n/! P.
n
d/�1. Recall that the Plücker embedding maps the point

corresponding to the d-dimensional subspace W to the line in
�n

d

�
-space given

by the dth exterior power of W.
During this section we will deviate from the exposition in Sect. 2.3 and consider

tropicalizations with respect to the negative valuation map. The choice between
.min;C/ and .max;C/ tropical geometry is always a difficult one.

Hence our tropical projective space is

TP
.n

d/�1 D �.R [ f�1g/.n
d/ X f.�1; : : : ;�1/g�=R.1; : : : ; 1/;

and the tropical Grassmannian T Gr.d; n/ D Trop'.Gr.d; n// is defined as the image

of trop ı 'an W Gr.d; n/an ! TP.
n
d/�1, where trop is given by the map

p 7! .log jx0.p/j; : : : ; log jx.n
d/
.p/j/C R.1; : : : ; 1/

on the analytic projective space, see (2).
Tropical Grassmannians were first studied by Speyer and Sturmfels [25] who

focused on the toric part Gr0.d; n/ D Gr.d; n/\'�1�
G
.n

d/�1
m;K

�
which is embedded in

the torus G
.n

d/�1
m;K via '. The tropicalization T Gr0.d; n/ D Trop'.Gr0.d; n// (which

is called G0
d;n in [25]) is a fan of dimension d.n � d/ containing a linear space of

dimension n � 1, see [25, Sect. 3].
Moreover, if d D 2, Speyer and Sturmfels proved that T Gr0.2; n/ can be

identified with the space of phylogenetic trees, see [25, Sect. 4]. For our purposes, a
phylogenetic tree on n leaves is a pair .T; !/, where T is a finite combinatorial tree
with no degree-two vertices together with a labelling of its leaves in bijection with
f1; : : : ; ng, and ! is a real-valued function on the set of edges of T . The tree T is
called the combinatorial type of the phylogenetic tree .T; !/. For every phylogenetic
tree .T; !/ and all i ¤ j in f1; : : : ; ng we denote by xij the sum of the weights
along the uniquely determined path from leaf i to leaf j. This tree-distance function
satisfies the four-point-condition, which states that for all pairwise distinct indices
i; j; k; l in f1; : : : ; ng the maximum among

xij C xkl; xik C xjl; xil C xjk

is attained at least twice.

4.2 A Section of the Tropicalization Map

For the rest of this section we will always consider the case d D 2. In [12], we
investigate the full projective Grassmannian T Gr.2; n/ D Trop'Gr.2; n/ in tropical

projective space TP.
n
2/�1. The main result of this paper is the following theorem:
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Theorem 4.1 ([12, Theorem 1.1]). There exists a continuous section � W TGr.2; n/
! Gr.2; n/an of the tropicalization map trop ı 'anWGr.2; n/an ! TGr.2; n/. Hence,
the tropical Grassmannian TGr.2; n/ is homeomorphic to a closed subset of the
Berkovich analytic space Gr.2; n/an.

Note that we are not considering semistable models or their Berkovich skeleta in
this approach.

The first idea one might have is to look at the big open cells of the Grassmannians.
Since d D 2, the coordinates of the ambient projective space are indexed by the two
element subsets fi; jg of f1; : : : ; ng. If i < j, we write pij for this coordinate, and
we put pji D �pij. We intersect the Grassmannian with the standard open affine
covering of projective space and get open affine subvarieties

Uij D Gr.2; n/ \ '�1fpij ¤ 0g:

The affine Plücker coordinates are ukl D pkl=pij. Since the Plücker ideal is generated
by the relations pijpkl�pikpjlCpilpjk D 0 for fi; j; k; lg running over the four-element

subsets of f1; : : : ; ng, the subvariety Uij can be identified with A
n.n�2/
K by means of

the coordinates uik D pik=pij and ujk D pjk=pij for all k different from i and j.

Recall that .An.n�2/
K /an is the set of all multiplicative seminorms on KŒuik; ujk W

k … fi; jg� which extend the absolute value on K. As explained in Sect. 2, the toric
variety A

n.n�2/
K has a natural tropicalization. With the sign conventions in the present

section, it is given by

trop W .An.n�2/
K /an ! .R [ f�1g/2.n�2/

p 7! .log juik.p/j; log jujk.p/j/k…fi;jg

This induces the tropicalization map

trop W Uan
ij �! .R [ f�1g/2.n�2/:

Now the tropicalization map on an affine space .AN
K/

an has a natural section,
which is given by the map ı W .R [ f�1g/N ! .AN

K/
an, mapping a point

r D .r1; : : : ; rN/ 2 .R [ f�1g/N to the seminorm

ı.r/WKŒx1; : : : ; xN � �! R
0 j
X

˛2NN
0

c˛x˛.ı.r//j D max
˛

(
jc˛j

NY

iD1
exp.ri˛i/

)
:

(3)

Here we put exp..�1/˛/ D 0 for all ˛ 2 N. Note that the restriction of ı to R
N

is a map from R
N to the torus .GN

m/
an. We call the image of ı on .R [ f�1g/N the

standard skeleton of .AN
K/

an, and the image of ıjRN the standard skeleton of the torus
.GN

m/
an.
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However, the map ı for N D n.n � 2/ does not in general provide a section of
the tropicalization map on the whole of Uij. Consider n 	 4, and let x D .xkl/kl

be a point in the tropical Grassmannian TGr.2; n/ which lies in the image of Uij

under the tropicalization map. Let ! be the projection to the affine coordinates
! D .xik � xij; xjk � xij/k…fi;jg 2 R

2.n�2/. Then ı.!/ is a point in the Berkovich
space Uan

ij with log juik.ı.!//j D xik � xij and log jujk.ı.!//j D xjk � xij. Since
ukl WD pkl=pij D uikujl � uilujk by the Plücker relations, the definition of ı gives us
log jukl.ı.!//j D maxfxik C xjl; xilC xjkg � 2xij. Hence ı can only provide a section
of the tropicalization map if this maximum is equal to xkl C xij. This may fail if the
labelled tree T has the wrong shape, e.g., if it looks like this:

i

k l

j

The strategy for the proof of Theorem 4.1 is to compare the tropical Grassmannian
with a standard skeleton of an affine space on a smaller piece of the tropicalization,
namely, on the part consisting of phylogenetic trees such that the underlying
combinatorial tree has the right shape. If we want to make this precise, the definition
of these smaller pieces is quite involved. A considerable part of the difficulties is
due to the fact that we take into account the boundary strata of the Grassmannian in
projective space. In order to explain the general strategy we will from now on restrict
our attention to the torus part of the tropical Grassmannian. The general case can be
found in [12].

4.3 Sketch of Proof in the Dense Torus Orbit

In this section we explain the proof of Theorem 4.1 for the subset TGr0.2; n/ of the
tropical Grassmannian TGr.2; n/. Recall that TGr0.2; n/ is the tropicalization of the
dense open subset Gr0.2; n/ of the Grassmannian which is mapped to the torus via
the Plücker map.

We fix a pair ij as above and work in the big open cell Uij. The coordinate ring
Rij of Uij is a polynomial ring KŒuik; ujk W k … fi; jg� in 2.n � 2/ variables. The
other Plücker coordinates are expressed as ukl D uikujl � uilujk in Rij. Note that
the affine variety Gr0.2; n/ is contained in Uij. The coordinate ring of Gr0.2; n/ is
equal to the localization of Rij after the multiplicative subset generated by all ukl for
fk; lg ¤ fi; jg.

We also fix a labelled tree T with n leaves 1; : : : ; n, and arrange T as in Fig. 2
with subtrees T1; : : : ;Tr.
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Fig. 2 Arrangement of T

T1 T2 Tr

ji

Fig. 3 Cherry property i m

lk

i l

km

Definition 4.2. Let  be a partial order on the set f1; : : : ; ngX fi; jg. We write k � l
if k  l and k ¤ l. Then  has the cherry property on T (see Fig. 3) with respect to
i and j if the following conditions hold:

(i) Two leaves of different subtrees Ta and Tb for a; b 2 f1; : : : rg as in Fig. 2
cannot be compared by .

(ii) The partial order  restricts to a total order on the leaf set of each Ta,
a D 1; : : : ; r.

(iii) If k � l � m, then either fk; lg or fl;mg is a cherry of the quartet fi; k; l;mg, i.e.,
the subtree given by this quartet of leaves contains a node which is adjacent to
both elements of the cherry:

An induction argument shows the following lemma:

Lemma 4.3 ([12, Lemma 4.7]). Fix a pair of indices i; j, and let T be a tree on n
labelled leaves. Then, there exists a partial order  on the set fi; : : : ; ng X fi; jg that
has the cherry property on T with respect to i and j.

For an example of the inductive construction of such a partial order see [12], Fig. 3.
The leaves in each subtree Ta are totally ordered, say as s1 � s2 � : : : � sp, if

Ta contains p D p.a/ leaves. We consider the variable set Ia D fuis1 ; : : : ; uispg [
fujs1 ; us1s2 ; : : : usp�1spg. Then I D I1 [ : : : [ Ir is a set of 2.n � 2/ affine Plücker
coordinates of the form ukl 2 Rij.

We can successively reconstruct the variables of the form ujl which are not
contained in I as follows: In the tree Ta with leaves s1 � s2 � : : : � sp, we have
us1s2 D uis1ujs2 � uis2ujs1 , hence

ujs2 D u�1
is1 .us1s2 C uis2ujs1 /:

The right-hand side is an expression in the variables contained in the coordinate set
I with uis1 inverted. Now we use the relation us2s3 D uis2ujs3 � uis3ujs2 to express
ujs3 D u�1

is2
.us2s3 C uis3ujs2 /. Plugging in the expression for ujs2 we can write ujs3 as a

polynomial in the variables in I plus all u�1
ik .

Proceeding by induction, we find for all m ¤ i; j that

ujm 2 KŒukl W ukl 2 I�Œu�1
ik W k ¤ i; j�
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and hence

KŒukl W ukl 2 I� � Rij � KŒukl W ukl 2 I�Œu�1
ik W k ¤ i; j�: (4)

This shows that the variable set I generates the function field Quot.Rij/ of Uij.
Recall that the coordinate ring of Gr0.2; n/ is KŒGr0.2; n/� D S�1Rij, where S is
the multiplicative subset of Rij generated by all ukl for fklg ¤ fijg. By the previous
result, KŒGr0.2; n/� is equal to the localization of the Laurent polynomial ring
KŒuk̇l W ukl 2 I� after the multiplicative subset generated by all ukl expressed as
Laurent polynomials in the coordinates contained in I.

Definition 4.4. Let CT be the cone in TGr0.2; n/ whose interior corresponds to
the phylogenetic trees with underlying tree T . Let x D .xkl/kl C R.1; : : : ; 1/ be a
point in CT � TGr0.2; n/. We associate to it a point � ij

T .x/ in Gr0.2; n/an, i.e., a
multiplicative seminorm on the coordinate ring of Gr0.2; n/, as follows. For every
Laurent polynomial f DP˛ c˛u˛ 2 KŒuk̇l W ukl 2 I� (where ˛ runs over ZI) we put

jf .� ij
T .x//j D max

˛

˚jc˛j
Y

ukl2I

exp
�
˛kl.xkl � xij/

�

; where ˛ D .˛kl/ukl2I :

This defines a multiplicative norm on KŒuk̇l W fklg 2 I� which has a unique extension
to a multiplicative norm on the localization KŒGr0.2; n/�. Let � ij

T .x/ be the resulting
point in the Berkovich space Gr0.2; n/an.

Since for every f 2 KŒGr0.2; n/� the evaluation map on CT given by

x 7! jf .� ij
T .x//j

is continuous, we have constructed a continuous map

�
ij
T W CT ! Gr0.2; n/

an:

We want to show that it is a section of the tropicalization map trop ı 'an W
Gr0.2; n/an ! TGr0.2; n/ on trop�1.CT/, which amounts to checking that

log jukl.�
ij
T .x//j D xkl � xij for all fklg ¤ fijg and for all x 2 CT :

For variables ukl in I this is clear from the definition of � ij
T . Hence it holds

in particular for all indices of the form fikg for k … fi; jg. In order to check
this fact for the other indices, recall the definition of I after Lemma 4.3. Since
ujs2 D u�1

is1
.us1s2 C uis2ujs1 /, we find

log jujs2 .�
ij
T .x//j D maxf�xis1 C xs1s2 ; �xis1 C xis2 C xjs1 � xijg:
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Since s1 and s2 are in the same subtree (see Fig. 2), we find that xis1 C xjs2 D xis2 C
xjs1 	 xij C xs1s2 , which implies log jujs2 .�

ij
T .x//j D xjs2 � xij. Inductively, we can

show in this way our claim for all indices of the form fjkg. If we consider an index
of the form fklg where k; l … fi; jg, we have ukl D uikujl � uilujk. If k is a leaf in the
subtree Ta and l is a leaf in the subtree Tb for a < b, we find xkl C xij D xil C xjk >

xik C xjl. Hence the non-archimedean triangle inequality gives log jukl.�
ij
T .x//j D

log j.uilujk/.�
ij
T .x//j D xkl � xij. If k and l are leaves in the same subtree Ta, we may

assume that k � l. If k is the predecessor of l in the total ordering  restricted to Ta,
we are done, since then ukl is contained in I. If not, we let m be the predecessor of l,
so that k � m � l. The Plücker relations give uimukl D uikuml C uilukm, hence

ukl D u�1
im .uikuml C uilukm/:

Note that all variables on the right-hand side except possibly ukm are contained in I.
Hence we can calculate log jukl.�

ij
T .x//j by developing ukm in a Laurent series in the

variables in I. The resulting Laurent series does not allow any cancellation between
the variables. Now we can apply the cherry property for the ordering , which says
that fk;mg or fm; lg is a cherry for the quartet fi; k;m; lg. Hence we have

xil C xkm � xim C xkl D xik C xml

or

xik C xml � xim C xkl D xil C xkm:

In both cases, one can check directly that our claim holds.
In fact, the section � ij

T has a more conceptual description. Let  W Gr0.2; n/ !
SpecKŒuk̇l W ukl 2 I� D G

2.n�2/
m be the open embedding induced by (4), and let † be

the standard skeleton of .G2.n�2/
m /an as in (3). It is contained in the open analytic sub-

variety Gr0.2; n/an, since it consists entirely of norms and does therefore not meet a
closed subvariety of strictly lower dimension. Then the map � ij

T is the composition
of the projection from CT to the coordinates .xkl � xij/ukl2I 2 R

2.n�2/ D † followed
by the inclusion of † in Gr0.2; n/an.

Recall from Sect. 2.3 that for every x 2 TGr0.2; n/ the preimage trop�1
' .x/ under

the tropicalization map is the Berkovich spectrum M.Ax/ of an affinoid algebra
Ax. It follows from our construction that � ij

T .x/ is the unique Shilov boundary point
of Ax. We can formulate this fact explicitly as follows.

Lemma 4.5 ([12, Lemma 4.17]). For every x 2 CT the seminorm �
ij
T .x/ con-

structed above has the following maximality property: For every f in the coordinate
ring KŒGr0.2; n/� and every seminorm p 2 trop�1

' .x/ � Gr0.2; n/an we have

jf .p/j � jf .� ij
T .x//j:
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As an immediate consequence we see that � ij
T .x/ does not depend on the choice

of the partial ordering  or on the pair ij, and that � ij
T .x/ D �

ij
T0.x/ if x is contained

in the intersection CT \CT0 . Hence we can patch these maps together and get a well-
defined section � W TGr0.2; n/ ! Gr0.2; n/an of the tropicalization map. It follows
from the construction that it is continuous.

This proves Theorem 4.1 on the dense torus orbit Gr0.2; n/. In order to define
a section of the tropicalization map also on the boundary strata of Gr.2; n/, we
follow the same strategy of constructing an index set I such that the associated
Plücker variables generate the function field of the Grassmannian. This construction
is more involved, see [12, Sect. 4] for details. The most important problem here is
to find these local index sets in such a way that the section is also continuous when
passing from one stratum of the Grassmannian to another. This continuity statement
is shown in [12, Theorem 4.19].

Using the index set I, we may also calculate the initial degenerations of all
points in the tropical Grassmannian and deduce that their tropical multiplicity is
one everywhere. We will explain a general argument showing the existence of a
section in this case in Sect. 7.2.

In [14], Draisma and Postinghel give a different proof of Theorem 4.1. They work
with the affine cone over the Grassmannian Gr.2; n/, define the section on a suitable
subset, and use torus actions and tropicalized torus actions to move it around. Also
in this approach a maximality statement such as Lemma 4.5 is used.

5 Skeleta of Semistable Pairs

In the next three sections, we give an overview of the results in [22]. In order to
compare polyhedral substructures of Berkovich spaces with tropicalizations, we
start by generalizing Berkovich’s notion of skeleta. Such skeleta are induced by
the incidence complexes of the special fibers of suitable models. We extend this
notion by adding a horizontal divisor on the model. For the rest of this paper, we
fix an algebraically closed ground field K which is complete with respect to a non-
archimedean, non-trivial absolute value.

5.1 Integral Affine Structures

For curves, metrics play an important role in the comparison results between tropical
and analytic varieties, as we have seen in Sect. 3. The right way to generalize this
to higher dimensions is to consider integral affine structures. Let M be a lattice in
the finite-dimensional real vector space MR D M ˝Z R, and let N D Hom.M;Z/
its dual, which is a lattice in the dual space NR D N ˝Z R of MR. We denote the
associated pairing by h ; i W MR � NR ! R. Recall that � D log jK�j.
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An integral �-affine polyhedron in NR is a subset of NR of the form

� D ˚v 2 NR j hui; vi C �i 	 0 for all i D 1; : : : ; r


for some u1; : : : ; ur 2 M and �1; : : : ; �r 2 � . Any face of an integral �-affine
polyhedron� is again integral �-affine. An integral �-affine polyhedral complex in
NR is a polyhedral complex whose faces are integral �-affine.

An integral �-affine function on NR is a function from NR to R which is of
the form

v 7! hu; vi C �

for some u 2 M and � 2 � . More generally, let M0 be a second finitely generated
free abelian group and let N0 D Hom.M0;Z/. An integral �-affine map from NR to
N0
R

is a function of the form F D �� C v, where � W M0 ! M is a homomorphism,
�� W NR ! N0

R
is the dual homomorphism extended to NR, and v 2 N0 ˝Z � .

If N0 D M0 D Z
m and F D .F1; : : : ;Fm/ W NR ! R

m is a function, then F is integral
�-affine if and only if each coordinate Fi W NR ! R is integral �-affine.

An integral �-affine map from an integral �-affine polyhedron � � NR to N0
R

is
defined as the restriction to � of an integral �-affine map NR ! N0

R
. If �0 � N0

R

is an integral �-affine polyhedron, then a function F W �! �0 is integral �-affine
if the composition � ! �0 ,! N0

R
is integral �-affine. We say that an integral

�-affine map F W � ! N0
R

is unimodular if F is injective and if the inverse map
F.�/ ! � is integral �-affine. Note that F.�/ is an integral �-affine polyhedron
in N0

R
.

5.2 Semistable Pairs

Note that since our ground field K is algebraically closed, the ring of integers Kı is
a valuation ring which is not discrete and not noetherian. We begin by describing
the building blocks of the polyhedral substructures of Berkovich spaces which lend
themselves to comparison with tropicalizations.

Let 0 � r � d be natural numbers and consider the Kı-scheme

S D Spec.KıŒx0; : : : ; xd�=.x0 : : : xr � 
//

for some 
 2 Kı satisfying j
j < 1. Then S is a flat scheme over Kı with smooth
generic fiber. Its special fiber contains rC1 irreducible components whose incidence
complex is an r-dimensional simplex. Now fix a natural number s 	 0 such that rC
s � d, and consider the principal Cartier divisor H.s/ D div.xrC1/C : : :Cdiv.xrCs/

on S .
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As explained in Sect. 2.2, the Kı-scheme S gives rise to two analytic spaces
in the following way. On the one hand, we have an associated admissible formal
scheme

S D Spf
�
Kıfx0; : : : ; xdg=.x0 : : : xr � 
/

�
(5)

which we get by completing S with respect to a non-zero element in K of absolute
value < 1. Its analytic generic fiber is M.AS/ for the affinoid algebra

AS D Kfx0; : : : ; xdg=.x0 : : : xr � 
/:

It is a subset of the analytification of the generic fiber SK D Spec.KŒx0; : : : ; xd�=

.x0 : : : xr � 
// of S .
Now we look at the tropicalization map on M.AS/which only takes into account

the first rC sC 1 coordinates, i.e., the map

Val WM.AS/nH! R
rCsC1

0

p 7! .� log jx0.p/j; : : : ;� log jxrCs.p/j/;

where H is the support of the Cartier divisor induced by H.s/. Its image is�.r; 
/�
R

s
0, where�.r; 
/ D f.v0; : : : ; vr/ 2 R
rC1

0 W v0C: : :Cvr D � log j
jg is a simplex

in R
rC1.

We define a continuous section �.r; 
/ � R
s
0 !M.AS/ as follows. Note that

the projection .x0; x1; : : : ; xd/ 7! .x1; : : : ; xd/ induces an isomorphism from M.AS/
to the affinoid subdomain B D fp W � log jx1.p/j � : : : � log jxr.p/j � � log j
jg of
M.Kfx1; : : : ; xdg/.

Similarly, the projection .v0; v1; : : : ; vrCs/ 7! .v1; : : : ; vrCs/ induces a homeo-
morphism

�.r; 
/ � R
s
0 ! † D f.v1; : : : ; vrCs/ 2 R

rCs

0 W v1 C : : :C vr � � log j
jg

For every v D .v1; : : : ; vrCs/ 2 † there is a bounded multiplicative norm jj jjv
on Kfx1; : : : ; xdg which is defined as follows:

jj
X

ID.i1;:::;id/
aIx

I jjv D max
I
fjaIj exp.�i1v1 � : : : � irCsvrCs/g:

It satisfies � log jjx1jjv � : : : � log jjxrjjv D v1 C : : : C vr � � log j
j. Therefore
the point jj jjv is contained in the affinoid domain B. Hence there is a uniquely
determined continuous map

� W �.r; 
/ � R
s
0 !M.AS/
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making the diagram

commutative. The map � is by construction a section of the map Val. We define
S.S;H.s// � M.AS/ � .SK/

an as the image of � and call it the skeleton of the
pair .S;H.s//.

Now we consider schemes which étale locally look like some S .

Definition 5.1. A strictly semistable pair .X ;H/ consists of an irreducible proper
flat scheme X over the valuation ring Kı and a sum H D H1C� � �CHS of effective
Cartier divisors Hi on X such that X is covered by open subsets U which admit
an étale morphism

 W U �! S D Spec.KıŒx0; : : : ; xd�=.x0 � � � xr � 
// (6)

for some r � d and 
 2 K� with j
j < 1. We assume that each Hi has irreducible
support and that the restriction of Hi to U is either trivial or defined by  �.xj/ for
some j 2 frC 1; : : : ; dg.

This is a generalization of de Jong’s notion of a strictly semistable pair over a
discrete valuation ring [13], if we add the divisor of the special fiber to the horizontal
divisor H. It is sometimes convenient to include only the horizontal divisor H as part
of the data, since it is a Cartier divisor, whereas the special fiber of X may not be
one. For a more detailed discussion of this issue see [22, Proposition 4.17]. If d D 1,
i.e., in the case of curves, semistable models and therefore nice skeletons are always
available after an extension of the ground field. In higher dimensions, we have to
allow alterations in order to find semistable models, see [13, Theorem 6.5].

5.3 Skeleta

Let .X ;H/ be a semistable pair in the sense of Definition 5.1. The generic fiber X
of X is smooth of dimension d. Hence d is constant in every chart U , whereas
the numbers r and s may vary with U . We denote the special fiber of X by
Xs DX ˝Kı QK.

Denote by V1; : : : ;VR the irreducible components of the special fiber Xs of
X . The Cartier divisors Hi which are part of our data give rise to horizontal
closed subschemes Hi of X , which are locally cut out by a defining equation
of Hi. Putting Di D Vi for i D 1; : : : ;R and DiCR D Hi, we get a Weil divisor
D D PRCS

iD1 Di on X . This gives rise to a stratification of X , where a stratum is
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defined as an irreducible component of a set of the form
T

i2I DinSi…I Di for some
I � f1; : : : ;RC Sg. We call any stratum contained in the special fiber Xs a vertical
stratum and denote the set of all vertical strata by str.Xs;H/.

Now we want to glue skeleta of local charts together in such a way that the
faces of the resulting polyhedral complex are in bijective correspondence with the
vertical strata in str.Xs;H/. In order to achieve this, we may have to pass to a smaller
covering in the category of admissible formal schemes.

Let .X ;H/ be a strictly semistable pair with a covering as in Definition 5.1.
We consider the induced formal open covering of the associated admissible formal
scheme X which is defined by completion. Hence X is covered by formal open
subsets U which admit an étale morphism  W U ! S to a formal scheme S as
in (5).

It is shown in [22, Proposition 4.1] that, after passing to a refinement, the formal
étale covering

 W U ! S

has the property that  �1fx0 D : : : D xrCs D 0g is a vertical stratum S in the special
fiber Xs such that for every vertical stratum T the following condition holds: The
closure T of T in Xs meets Us if and only if S � T .

We define the skeleton of .U ;HjU / as the preimage of the skeleton of the standard
pair: S.U ;HjU / D  �1.S.S;H.s//. This is a subset of the analytic generic fiber U�
of U which does not meet the horizontal divisor H.

It follows from results of Berkovich [5] that the étale map  actually induces
a homeomorphism between S.U ;HjU / and S.S;H.s// ' �.
; r/ � R

s
0. Hence
the map

Val ı  W S.U ;HjU /! �.
; r/ � R
s
0

is a homeomorphism.
It is shown in [22, Sect. 4.5] that the skeleton S.U ;HjU / only depends on the

minimal stratum S contained in the special fiber of U . Therefore we denote it by �S

and call it the canonical polyhedron of S (see Fig. 4). The dimensions of S and of
the canonical polyhedron�S are defined in an obvious way and add up to d, see [22,
Proposition 4.10].

As we have seen, �S is homeomorphic to �.
; r/ � R
s
0 for suitable data r; s,

and 
 as above. We call �.
; r/ the finite part and R
s
0 the infinite part of �S.

As explained above, S 7! �S is a bijective correspondence between faces �S of
the skeleton S.X ;H/ and vertical strata S induced by the divisor D in the special
fiber Xs. Recall that D is given by the horizontal divisor H plus all irreducible
components of X (which we also call vertical divisors). Note that a vertical stratum
T satisfies S � T if and only if �T is a closed face of �S.
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Fig. 4 The canonical polyhedron �S in the case r D 0 and s D 2, in the case r D s D 1, and in
the case r D 2 and s D 0 (from left to right)

Now we can glue �S and �S0 along the union of all canonical polyhedra
associated with vertical strata R such that R � S [ S0. In this way we define the
skeleton of .X ;H/ as the union of all �S for strata S in the special fiber Xs:

S.X ;H/ D
[

S

�S:

We obtain a piecewise linear space S.X ;H/ whose charts are integral �-affine
polyhedra.

The skeleton S.X ;H/ is a closed subset of the analytic space XannHK , where
we write HK for the generic fiber of the support of H on X . Using methods from
[5], one can prove that it is in fact a strong deformation retract of XannHK . In [22,
Theorem 4.13] it is shown that the retraction map can be extended to a retraction
map from Xan to a suitable compactification of the skeleton.

If the horizontal divisor H D 0, then the skeleton S.X ; 0/ is equal to Berkovich’s
skeleton of a semistable scheme, see [5].

6 Functions on the Skeleton

Throughout this section we fix a strictly semistable pair .X ;H/. We use the notation
from the previous sections.

We want to show that for every non-zero rational function f on X such that the
support of the divisor of f is contained in HK , the function � log jf j factors through
a piecewise integral �-affine map on the skeleton. Moreover, we will show a slope
formula for this map.

Theorem 6.1 ([22, Proposition 5.2]). Let f be a non-zero rational function on X
such that the support of div.f / is contained in HK. We put U D XnHK and consider
the function

F D � log jf j W Uan ! R:
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Then F factors through the retraction map � W Uan ! S.X ;H/ to the skeleton:

Moreover, the restriction of F to S.X ;H/ is an integral �-affine function on each
canonical polyhedron.

The theorem is proved by considering the formal building blocks with distin-
guished strata and using a result of Gubler [20, Proposition 2.11].

Recall that we denote the dimension of X by d. The slope formula for F
is basically a balancing condition around each .d � 1/-dimensional canonical
polyhedron of the skeleton which involves slopes in the direction of all adjacent
d-dimensional polyhedra.

Let �S be a d-dimensional canonical polyhedron of the skeleton S.X ;H/
containing the .d � 1/-dimensional canonical polyhedron �T . Then the stratum S
in the special fiber Xs is contained in the closure T (which is a curve), and it is
obtained as a component of the intersection of T with one additional irreducible
component of the divisor D.

This component is either vertical, i.e., a component of the special fiber, or
horizontal, i.e., given by some component of H. If it is vertical, then the finite part of
�S ' �.r; 
/�Rs
0 (i.e., the simplex�.r; 
/) is strictly larger than the finite part of
�T . In this case we say that�S extends�T in a bounded direction. If the component
is horizontal, then the infinite part of�S (i.e., the product Rs
0) is strictly larger than
the infinite part of �T . In this case we say that �S extends �T in an unbounded
direction.

We define the bounded degree degb.�T/ as the number of canonical polyhedral
�S extending�T in a bounded direction. Similarly, we define the unbounded degree
degu.�T/ as the number of canonical polyhedra �S extending �T in an unbounded
direction.

In the case d D 1, i.e., if X is a curve, all �T are vertices. A one-dimensional
canonical polyhedron �S extending �T in a bounded direction is simply an edge of
length v.
/ > 0. In this case, the stratum S is a component of the intersection of
two irreducible components in the special fiber Xs. A one-dimensional canonical
polyhedron �S extending �T in an unbounded direction is a ray of the form R
0.
In this case, the stratum S is a component of the intersection of the irreducible
component of the special fiber given by T with a horizontal component of the
divisor. Hence the degree degb.�T/ is the number of bounded edges in �T , and
degu.�T/ is the number of unbounded rays starting in the vertex �T .
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Now we want to define multiplicities via intersection theory. Since X is not
noetherian, the standard intersection theory tools from algebraic geometry are not
available. However, on admissible formal schemes one can use analytic geometry to
associate Weil divisors to Cartier divisors, and there is a refined intersection product
with Cartier divisors, see [18, 19] and Appendix A in [22].

Definition 6.2. For every vertex u 2 �T we denote by Vu the associated irreducible
component of the special fiber Xs. We define an integer ˛.u; �T/ as follows:

If �T has zero-dimensional finite part fug, we simply put ˛.u; �T/ D degb.�T/.
If not, then T lies in at least two irreducible components of the special fiber Xs,

which means that the finite part of T is a simplex �.r; 
/ of dimension at least
one. If U is a suitable formal chart, it is shown in [22, Proposition 4.17] that there
exists a unique effective Cartier divisor Cu on U such that its Weil divisor is equal
to v.
/.Vu \ Us/. We define �˛.u; �T/ as the intersection number .Cu:T/, which
is equal to the degree of the pullback of the line bundle associated with Cu from
U to T .

Note that Cartwright [9] introduced the intersection numbers ˛.u; �T/ in the
(noetherian) situation where Kı is discrete valuation ring. He uses them to endow
the compact skeleton S.X / with the structure of a tropical complex, see [9,
Definition 1.1]. This notion also involves a local Hodge condition which plays no
role in our slope formula. The paper [9] develops a theory of divisors on tropical
complexes and investigates their relation to algebraic divisors.

Here we also need multiplicities for rays in �T , which are defined as one-
dimensional faces of the unbounded part of T .

Definition 6.3. Let Hr be the horizontal component corresponding to the ray r in
�T . We put

˛.r; �T/ D �.Hr:T/;

where we take the intersection product of T with the Cartier divisor Hr on X .

Let F be a function on the skeleton S.X ;H/, which is integral �-affine on each
canonical polyhedron. Now we are ready to define outgoing slopes of F on a .d�1/-
dimensional canonical polyhedron �T along a d-dimensional polyhedron �S.

Definition 6.4. Let �T be a .d � 1/-dimensional canonical polyhedron and let �S

be a d-dimensional canonical polyhedron of S.X ;H/ containing�T . We denote by
�.r; 
/ the finite part of �S. Let F W �S ! R be an integral �-affine function.

(i) If �S extends �T in a bounded direction, then there exists a unique vertex w of
�S not contained in �T . We put

slope.FI�T ; �S/ D 1

v.
/

0

@F.w/ � 1

degb.�T/

X

u2�T

˛.u; �T/F.u/

1

A ;

where we sum over all vertices u in �T .
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(ii) If �S extends �T in an unbounded direction, then there exists a unique ray s in
�S not contained in �T , and we put

slope.FI�T ; �S/ D dsF � 1

degu.�T/

X

r2�T

˛.r; �T/drF;

where we sum over all rays in �T . For any ray r we denote by drF the derivative of
F along the primitive vector in the direction of r.

If X is a curve, �T D u is a vertex and �S is an edge with vertices u and w,
then slope.FI�T ; �S/ D 1

v.
/
.F.w/ � F.u//. If �S is a ray s starting in u, then

we simply have slope.FI�T ; �S/ D dsF. In higher dimensions, the definition is
more involved, since the naive slope 1

v.
/
.F.w/ � F.u// depends on the choice of a

vertex u in�T . Therefore we define a replacement for a weighted midpoint in�T as
1

degb.�T /

P
u2�T

˛.u; �T/u. Note that this point does not necessarily lie in �T , since
˛.u; �T/ may be negative.

We can now formulate the slope formula for skeleta.

Theorem 6.5 ([22, Theorem 6.9]). Let f 2 K.X/� be a non-zero rational function
such that the support of div.f / is contained in HK. Let F W S.X ;H/ ! R be the
restriction of the function� log jf j to the skeleton. Then F is continuous and integral
�-affine on each canonical polyhedron of S.X ;H/, and for all .d�1/-dimensional
canonical polyhedra we have

X

�S��T

slope.FI�T ; �S/ D 0;

where the sum runs over all d-dimensional canonical polyhedra �S containing �T .

If X is a curve, the slope formula basically says that the sum of all outgoing slopes
along edges or rays in a fixed vertex is zero. In this case, the slope formula is shown
in [3, Theorem 5.15]. It is a reformulation of the non-archimedean Poincaré–Lelong
formula proven in Thuillier’s thesis [27, Proposition 3.3.15]. The Poincaré–Lelong
formula is an equation of currents in the form ddc log jf j D ıdiv.f /, where ddc

is a certain distribution-valued operator. This version of the slope formula was
generalized to higher dimensions in the ground-breaking paper [10], where a theory
of differential forms and currents on Berkovich spaces is developed. The approach
of [10] uses tropical charts and does not rely on models or skeleta. In higher
dimensions we see no direct relation to our slope formula.

7 Faithful Tropicalizations

We will now investigate the relation between skeleta, which are polyhedral sub-
structures of analytic varieties, and tropicalizations, which are polyhedral images of
algebraic or analytic varieties.
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7.1 Finding a Faithful Tropicalization for a Skeleton

We start with a strictly semistable pair .X ;H/ with skeleton S.X ;H/ and generic
fiber X. We consider rational maps f W X Ü G

n
m;K from X to a split torus. If U � X

is a Zariski open subvariety where f is defined, then f jU W U ! G
n
m;K induces a

tropicalization Tropf .U/ of U, which is defined as the image of the map trop ı f an W
Uan ! R

n as in Sect. 2.3.
Note that the skeleton is contained in the analytification of every Zariski open

subset of X, since it only contains norms on the function field of X.

Definition 7.1. A rational map f W X Ü G
n
m;K from X to a split torus is called a

faithful tropicalization of the skeleton S.X ;H/ if the following conditions hold:

(i) The map trop ı f an is injective on S.X ;H/.
(ii) Each canonical polyhedron �S of S.X ;H/ can be covered by finitely many

integral �-affine polyhedra such that the restriction of tropı f an to each of those
polyhedra is a unimodular integral �-affine map.

For the definition of unimodular integral affine maps see Sect. 5.1.
It is easy to see that a rational map which is unimodular on the skeleton stays

unimodular if we enlarge it with more rational functions on X, see [22, Lemma 9.3].
If we look at a building block S D SpecKıŒx0; : : : ; xd�=.x1 : : : xr � 
/ as

in Definition 5.1 with the local tropicalization �.r; 
/ � R
s
0, we find that the

coordinate functions x0; : : : ; xrCs induce a faithful tropicalization. Collecting the
corresponding rational functions on X for all canonical polyhedra of the skeleton,
we get a rational map on X which is locally unimodular on the skeleton. It is shown
in the proof of Theorem 9.5 of [22] how to enlarge this collection of rational function
in order to ensure injectivity of the tropicalization map on the skeleton. In this way
one can show the following result.

Theorem 7.2 ([22, Theorem 9.5]). Let .X ;H/ be a strictly semistable pair. Then
there exists a collection of non-zero rational functions f1; : : : ; fn on X such that the
resulting rational map f D .f1; : : : ; fn/ W X Ü G

n
m;K is a faithful tropicalization of

the skeleton S.X ;H/.

7.2 Finding a Copy of the Tropicalization Inside
the Analytic Space

Let us now start with a given tropicalization of a very affine K-variety U, i.e., with
a closed immersion ' W U ,! G

n
m;K of a variety U in a split torus. As in Sect. 2.3 we

consider the tropicalization map

trop' D trop ı 'an W Uan ! R
n:
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Recall that for every point ! 2 Trop'.U/ the preimage trop�1
' .!/ � Uan of the

tropicalization map is the Berkovich spectrum of an affinoid algebra A! .

Lemma 7.3 ([22, Lemma 10.3]). If the tropical multiplicity of ! is equal to one,
then A! contains a unique Shilov boundary point.

This lemma follows basically from [2], Remark after Proposition 4.17, which
shows how the preimage of tropicalization is related to initial degenerations.

Now we can show that on the locus of tropical multiplicity one there exists a
natural section of the tropicalization map.

Theorem 7.4 ([22, Theorem 10.7]). Let Z � Trop'.U/ be a subset such that the
tropical multiplicity of every point in Z is equal to one. By Lemma 7.3 this implies
that for every ! 2 Z the affinoid space trop�1

' .!/ has a unique Shilov boundary
point which we denote by s.!/.

The map s W Z ! Uan, given by ! ! s.!/, is continuous and a partial section of
the tropicalization map, i.e., on Z we have trop' ı s D idZ. Hence the image s.Z/ is
a subset of Uan which is homeomorphic to Z.

Moreover, if Z is contained in the closure of its interior in Trop'.U/, then s is the
unique continuous section of the tropicalization map on Z.

We give a sketch of the proof. It is enough to show that the section s is continuous
and uniquely determined under our additional assumption. Since everything behaves
nicely under base change we may assume that the valuation map K� ! R>0 is
surjective. Let us first consider the case that U D G

n
m;K and ' the identity map. Then

the section s is the identification of the tropicalization R
n (which has multiplicity one

everywhere) with the skeleton of Gn
m;K as defined in (3). It is clear from the explicit

description of s in (3) that it is continuous in this case.
Moreover, if s0 is a different section of the tropicalization map in the case

U D G
n
m;K which satisfies s.!/ ¤ s0.!/, we find a Laurent polynomial f on

which those two seminorms differ. Since s.!/ is the unique Shilov boundary point
in the fiber of tropicalization, s0.!/ applied to f is strictly smaller than s.!/ applied
to f . Since s.!/ is equal to s0.!/ on all monomials, it follows that the initial
degeneration of f at ! cannot be a monomial. Therefore ! is contained in the
tropical hypersurface Trop.f /. A continuity argument shows that the same argument
works in a small neighborhood of !. This is a contradiction since Trop.f / has
codimension one. Therefore s is indeed uniquely determined if ' is the identity map.

For general ' W U ,! G
n
m;K , where U has dimension d � n, one shows that there

exists a linear map Z
n ! Z

d with the following property: Let ˛ W Gn
m;K ! G

d
m;K

be the corresponding homomorphism of tori and consider  D ˛ ı ' W U !
G

d
m;K . Let S.Gd

m;K/ be the skeleton of the torus as in (3). Then for all ! 2 Z we
have fs.!/g D trop�1

' .!/ \  �1.S.Gd
m;K//. This implies that s.Z/ D trop�1

' .Z/ \
 �1.S.Gd

m;K// is closed, from which we can deduce continuity of s. Uniqueness
follows from uniqueness in the torus case by composing the sections with  .

Note that the preceding theorem does not make any assumption on the existence
of specific models. If we assume that .X ;H/ is a semistable pair and U D XnHK ,
then the image of the section s defined in Theorem 7.4 is contained in the skeleton
S.X ;H/. This is shown in [22, Proposition 10.9].
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The preceding theorem treats the case of tropicalizations in tori. Let ' W X ,! Y
be a closed embedding of X in a toric variety Y associated with the fan �. Then
we may consider the associated tropicalization Trop'.X/ of X, i.e., the image of
trop ı 'an W Xan ! Yan ! N�

R
, where N�

R
is the associated partial compactification

of NR, see Sect. 2.3. We can apply Theorem 7.4 to all torus orbits. In this way,
we get a section of the tropicalization map on the locus Z � Trop'.X/ of tropical
multiplicity one which is continuous on the intersection with each toric stratum. It is
a natural question under which conditions this section is continuous on the whole
of Z. This might shed new light on Theorem 4.1 for the tropical Grassmannian.

Acknowledgements The author is very grateful to Walter Gubler for his helpful comments.
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Berkovich Skeleta and Birational Geometry

Johannes Nicaise

Abstract We give a survey of joint work with Mircea Mustaţă and Chenyang
Xu on the connections between the geometry of Berkovich spaces over the field
of Laurent series and the birational geometry of one-parameter degenerations
of smooth projective varieties. The central objects in our theory are the weight
function and the essential skeleton of the degeneration. We tried to keep the text
self-contained, so that it can serve as an introduction to Berkovich geometry for
birational geometers.

Keywords Berkovich spaces • Skeleta • Weight function • Minimal model
program

1 Introduction

Let R be a complete discrete valuation ring with residue field k and quotient field K.
The main example to keep in mind is R D CŒŒt��. The discrete valuation on K gives
rise to a non-archimedean absolute value on K that one can use to develop a theory
of analytic geometry over K. The theory that we will use is the one introduced
by Berkovich in [2]. The principal purpose of these notes is to describe some
interactions between Berkovich geometry over K and the birational geometry of
degenerations of algebraic varieties over R. For a nice introduction to related results
over trivially valued base fields, we refer to [15].

In fact, we will use only a small part of the theory of Berkovich spaces: we
are mainly interested in the underlying topological space of the analytification of an
algebraic K-variety. The structure of this space can be described in terms of classical
valuation theory; this will be explained in Sect. 2.

Let X be a connected, smooth, and proper K-variety of dimension n. We denote
by Xan the Berkovich analytification of K. An sncd-model of X is a regular scheme
X of finite type over R, endowed with an isomorphism of K-schemes XK ! X,
such that the special fiber Xk is a divisor with strict normal crossings. To any
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proper sncd-model X of X over R one can attach a subspace Sk.X / of Xan,
called the Berkovich skeleton of X, which is canonically homeomorphic to the dual
intersection complex of the strict normal crossings divisor Xk. This skeleton can
be viewed as the space of real valuations on the function field of X that extend
the discrete valuation on K and that are monomial with respect to Xk. The most
important property of the skeleton Sk.X / is that it controls the homotopy type
of Xan: it is a strong deformation retract of Xan. This provides an interesting link
between the geometry of Xan and the birational geometry of models of X.

If X has dimension one and genus at least one, then X has a unique minimal sncd-
model, and thus a canonical Berkovich skeleton. In higher dimensions, minimal
sncd-models no longer exist. Nevertheless, one can ask whether it is still possible
to construct a canonical skeleton in Xan. We will present two constructions, which
we developed in collaboration with Mircea Mustaţă [12] and Chenyang Xu [13],
respectively. The first construction is based on work of Kontsevich and Soibelman
on degenerations of Calabi–Yau varieties and mirror symmetry [10]; the second one
relies on the Minimal Model Program, and in particular on the results in [6]. As we
will see, both approaches yield the same result. We assume in the remainder of this
introduction that the residue field k has characteristic zero.

The main idea behind the first approach is the following. Each proper sncd-model
X of X gives rise to a Berkovich skeleton Sk.X / in Xan. We will use pluricanonical
forms ! on X to single out certain essential faces of the simplicial complex Sk.X /,
which must be contained in the skeleton of every proper sncd-model of X. The union
of these !-essential faces is called the Kontsevich–Soibelman skeleton of .X; !/
and denoted by Sk.X; !/. It only depends on X and !, but not on the choice of X .
Taking the union of the skeleta Sk.X; !/ over all non-zero pluricanonical forms !
on X, we obtain a subspace of Xan with piecewise affine structure that we call the
essential skeleton of X and that we denote by Sk.X/.

This construction has the merit of being quite natural and elementary, but it
is not at all clear from the definition what Sk.X/ looks like or whether Sk.X/ is
still a strong deformation retract of Xan. Therefore, we will also consider a second
approach. As we have already mentioned, minimal sncd-models usually do not exist
if the dimension of X is at least two, but we can enlarge our class of models in
such a way that minimal models exist and such that we can still use the members
of this class to describe the homotopy type of Xan. The Minimal Model Program
suggests to consider the so-called dlt-models of X, which should be viewed as proper
sncd-models with mild singularities. We can define the skeleton Sk.X / of such
a dlt-model by simply ignoring the singularities. The theory of minimal models
guarantees that minimal dlt-models exist if the canonical sheaf of X is semi-ample,
which means that some tensor power is generated by global sections. Minimal dlt-
models are not unique, but the skeleton Sk.X / does not depend on the choice of
a minimal dlt-model X . By a careful analysis of the steps in the Minimal Model
Program, it was proven in [6] that the skeleton Sk.X / can be obtained from the
skeleton of any proper sncd-model of X by a sequence of elementary collapses.
This implies that Sk.X / is still a strong deformation retract of Xan.
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One of the main results of [13] is that these two constructions yield the same
result: if the canonical sheaf of X is semi-ample, then the essential skeleton Sk.X/ of
X coincides with the skeleton of any minimal dlt-model of X. In particular, Sk.X/ is a
strong deformation retract of Xan. The semi-ampleness condition can be understood
as follows: it guarantees that X has enough pluricanonical forms to detect all the
important pieces of the skeleton of a proper sncd-model.

Notation We denote by R a complete discrete valuation ring with maximal ideal
m, residue field k, and quotient field K. We denote by vK the discrete valuation
K� � Z. We define an absolute value on K by setting jxjK D exp.�vK.x// for
every element x of K�. A variety over a field F is a separated F-scheme of finite
type. If ˛ and ˇ are elements of Rm for some positive integer m, then we denote by
˛ � ˇ their scalar product

Pm
iD1 ˛iˇi.

2 The Berkovich Skeleton of an sncd-Model

2.1 Birational Points

(2.1.1) Let X be a connected and smooth K-variety of dimension n. We denote
by Xan the Berkovich analytification of X and by i W Xan ! X the analytification
morphism. We will mainly be interested in the underlying topological space of Xan,
which is easy to describe. As a set, Xan consists of the couples .x; j � j/ where x is a
scheme-theoretic point of X and j � jW �.x/ ! R is an absolute value on the residue
field �.x/ of X at x that extends the absolute value j � jK on K. The analytification
map i W Xan ! X is simply the forgetful map that sends a couple .x; j � j/ to x. The
topology on Xan is the coarsest topology such that the following two properties are
satisfied:

(1) the topology on Xan is finer than the Zariski topology, that is, the map i W Xan !
X is continuous, and

(2) for every Zariski-open subset U of X and every regular function f on U, the map

jf jW i�1.U/! R
CW .x; j � j/ 7! jf .x/j

is continuous.

Note that the definition of jf j makes sense because f .x/ is an element of the residue
field �.x/. We will often denote a point of Xan simply by x, leaving the absolute value
j � j implicit in the notation. It is convenient in many situations to switch between the
multiplicative and additive viewpoint: we will denote by vx the real valuation

vxW �.x/� ! RW a 7! � ln jaj:
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As usual, we extend it to zero by setting vx.0/ D C1. The residue field of Xan

at a point x is defined as the completion of the residue field �.i.x// of X at i.x/
with respect to the absolute value j � j. It is a complete valued extension of the field
K, which we denote by H .x/. The valuation ring of H .x/ will be denoted by
H .x/o. If f is a rational function on X that is defined at i.x/, then we can think of
f .i.x// 2 �.i.x// as an element of H .x/, and we denote this element by f .x/.

(2.1.2) The topological space Xan is Hausdorff, and it is compact if and only if
X is proper over K. If X is a curve, then there exists a simple classification of the
points on Xan and one can draw a fairly explicit picture of Xan; see, for instance,
Sect. 5.1 in [1]. If the dimension of X is at least two, it is much more difficult to
give a precise description of the whole space Xan. We will see in the following
sections, however, that one can produce many interesting points in this space using
the birational geometry of X, and that these points suffice to control the homotopy
type of Xan.

(2.1.3) The set Xbir of birational points of Xan is defined as the inverse image
under i W Xan ! X of the generic point of X. In the additive notation, this is simply
the set of real valuations on the function field K.X/ of X that extend the discrete
valuation vK on K. We endow Xbir with the topology induced by the Berkovich
topology on Xan. We will see in (2.4.13) that the inclusion Xbir ! Xan is a homotopy
equivalence if k has characteristic zero. By its very definition, Xbir is a birational
invariant of X, so we can hope to recover interesting birational invariants of X from
this topological space.

2.2 Models

(2.2.1) We will define certain subclasses of birational points using the geometry
of R-models of X. An R-model of X is a flat separated R-scheme of finite type X
endowed with an isomorphism of K-schemes XK ! X. Note that we do not impose
any properness condition on X or X . We say that X is an sncd-model of X if X
is regular and its special fiber Xk is a divisor with strict normal crossings.

(2.2.2) Let X be an R-model of X and let x be a point of Xan. We say that
x has a center on X if the canonical morphism SpecH .x/ ! X extends to a
morphism SpecH .x/o ! X . Such an extension is unique if it exists, by the
valuative criterion of separatedness. If it exists, the center of x on X is defined
as the image of the closed point of SpecH .x/o in X and denoted by spX .x/.
Note that the point spX .x/ always lies on the special fiber Xk of X because m is
contained in the maximal ideal of H .x/o. We denote by cX � the set of points on Xan

that have a center on X . If X is proper over R, then cX � D Xan by the valuative
criterion of properness. The map

spX W cX � !Xk

is called the reduction map or specialization map. It has the peculiar property of
being anti-continuous, which means that the inverse image of an open set is closed.
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Example 2.2.3. If X D A
1
K D Spec KŒT� and X D A

1
R, then

cX � D fx 2 Xan j jT.x/j � 1g

and spX .x/ is the reduction of T.x/ 2H .x/o modulo the maximal ideal of H .x/o

(viewed as a point of Xk D Spec kŒT�).

(2.2.4) Assuming a bit more technology [3, Sect. 1], we can give an equivalent
description of cX � and spX . If we denote by cX the formal m-adic completion

of X , then the generic fiber of cX is a compact analytic domain in Xan whose
underlying set is precisely cX �. The reduction map spX is the map underlying the
specialization morphism of locally ringed spaces

spX W cX � ! cX :

2.3 Divisorial and Monomial Points

(2.3.1) Let X be a normal R-model of X. If E is an irreducible component of the
special fiber Xk with generic point � , then the fiber sp�1

X .�/ consists of a unique
point, which we call the divisorial point of Xan associated with .X ;E/. It is the
birational point x on Xan that corresponds to the discrete valuation vx on K.X/ with
valuation ring OX ;� , normalized in such a way that vx extends the discrete valuation
vK on K. Thus if f is a non-zero rational function on X, then

vx.f / D 1

N
ordEf

where N denotes the multiplicity of E in the Cartier divisor Xk on X and ordEf is
the order of f along E. A point of Xan is called divisorial if it is the divisorial point
associated with some couple .X ;E/ as above. We will denote the set of divisorial
points by Xdiv � Xbir. It is not difficult to show that the set Xdiv is dense in Xan; see,
for instance, [12, Proposition 2.4.9].

(2.3.2) The set of divisorial points is totally disconnected. We will define a
more general class of points that should be viewed as some kind of interpolations
between divisorial points: the monomial points. Let X be an sncd-model of X
and let E1; : : : ;Er be distinct irreducible components of the special fiber Xk with
respective multiplicities N1; : : : ;Nr in Xk, and assume that the intersection \r

iD1Ei

is non-empty. Let ˛ D .˛1; : : : ; ˛r/ be a tuple of positive real numbers such thatPr
iD1 ˛iNi D 1 and let � be a generic point of \r

iD1Ei (by the definition of an sncd-
model, this intersection is regular and of pure dimension n C 1 � r, but it is not
necessarily connected).
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Proposition 2.3.3. There exists a unique minimal real valuation

vWOX ;� n f0g ! R
C

such that v.Ti/ D ˛i for every i in f1; : : : ; rg and every local equation Ti D 0 for Ei

in X at � .

(2.3.4) Proposition 2.3.3 can be proven by combining [12, Propositions 2.4.4 and
3.1.6]. We will not give a complete proof here, but only sketch how the valuation
v can be constructed. For every i in f1; : : : ; rg we choose a local equation Ti D 0

of Ei in X at � . Then the elements Ti form a regular system of local parameters in
the local ring OX ;� . It is not difficult to show that every element f in OX ;� can be
written in the completed local ring bOX ;� as a power series

f D
X

ˇ2Nr

cˇTˇ (1)

where each coefficient cˇ is either zero or a unit in bOX ;� . Such an expansion is not
unique, but one can show that the expression

v.f / WD minf˛ � ˇ jˇ 2 N
r; cˇ ¤ 0g (2)

does not depend on any choices and that it defines a valuation v with the required
properties. If R has equal characteristic, then the arguments can be simplified by
using the fact that bOX ;� is isomorphic to the power series ring �.�/ŒŒT1; : : : ;Tr�� by
Cohen’s structure theorem.

(2.3.7) The valuation v in Proposition 2.3.3 extends to a real valuation vWK.X/�
! R. It extends the discrete valuation vK on K: if 
 is a uniformizer in R, then in
the ring OX ;� we can write


 D u
rY

iD1
TNi

i

with u a unit, so that v.
/ DPr
iD1 ˛iNi D 1. Thus v defines a birational point x on

Xan, which we call the monomial point associated with the data

.X ; .E1; : : : ;Er/; ˛; �/: (3)

The point x belongs to cX �, and spX .x/ D � . We remark for later use that
formula (2) can be generalized as follows: if

f D
X

ˇ2Nr

cˇdˇTˇ



Berkovich Skeleta and Birational Geometry 179

where each coefficient cˇ is either zero or a unit in bOX ;� and each coefficient dˇ
belongs to K, then

v.f / D minfvK.dˇ/C ˛ � ˇ jˇ 2 N
r; cˇ ¤ 0g (4)

since we can rewrite dˇ as the product of


vK .dˇ/ D .u
rY

iD1
TNi

i /
vK .dˇ/

with a unit in R to get an expansion for f of the form (1).
(2.3.10) A point on Xan is called monomial if it is the monomial point associated

with a tuple of data as in (3); we will also say that such a point is monomial
with respect to the model X . If r D 1, then we get precisely the divisorial point
associated with .X ;E1/. Thus every divisorial point is monomial. Conversely,
the monomial point associated with (3) is divisorial (possibly with respect to a
different model X ) if and only if the parameters ˛i all belong to Q (see [12,
Proposition 2.4.8]). The set of monomial points on Xan will be denoted by Xmon.
We have the following inclusions:

Xdiv � Xmon � Xbir � Xan:

2.4 The Berkovich Skeleton

(2.4.1) Let X be an sncd-model of X. We define the Berkovich skeleton of X as
the set of all points of Xan that are monomial with respect to X , and we denote it
by Sk.X /. By construction, the Berkovich skeleton Sk.X / is a subspace of cX � \
Xmon. The importance of this object is that we can give an explicit description of the
topology on Sk.X / and that this suffices to understand the homotopy type of cX �,
as we will now explain.

(2.4.2) We first need to recall the definition of the dual complex of the strict
normal crossings divisor Xk. We write Xk D P

i2I NiEi and for every non-empty
subset J of I, we set EJ D \i2JEi. The dual complex of Xk is a simplicial complex1

j�.Xk/j whose simplices of dimension d correspond bijectively to the connected
components of the regular k-varieties EJ where J runs through the set of subsets
of I of cardinality d C 1. If J and J0 are non-empty subsets of I, and C and C0 are
connected components of EJ and EJ0 , respectively, then the simplex corresponding

1To be precise, j�.Xk/j is not a simplicial complex in the strict sense, because we allow, for
instance, multiple edges between two vertices. This has no importance for the present exposition
(and can always be remediated by blowing up X at connected components of the subvarieties
EJ , which gives rise to a stellar subdivision of the corresponding face of j�.Xk/j). In any case,
j�.Xk/j is the topological realization of a finite simplicial set.
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to C is a face of the simplex corresponding to C0 if and only if C contains C0.
Thus the vertices of j�.Xk/j correspond to the irreducible components Ei of Xk,
and we will denote the vertices accordingly by �i, i 2 I. If i and j are distinct
elements of I, then the number of edges between �i and �j is the number of connected
components of Ei \ Ej, and so on. In this way, the dual complex j�.Xk/j encodes
the combinatorial structure of the intersections of prime components in Xk. The
dimension of j�.Xk/j is at most n, the dimension of X. If X has dimension one,
then the dual complex j�.Xk/j is more commonly known as the dual graph of the
special fiber Xk.

Example 2.4.3. Assume that X has dimension one and that Xk has four irreducible
components E1;E2;E3;E4 such that E1 intersects each of the other components in
precisely one point and there are no other intersection points. Then j�.Xk/j is a
graph with four vertices v1; v2; v3; v4 with one edge between v1 and vi for i D 2; 3; 4
and no other edges.

If X has dimension two and Xk is isomorphic to the union of the coordinate
planes in A

3
k , then j�.Xk/j is the standard 2-simplex.

(2.4.4) We will now construct a map

ˆW j�.Xk/j ! Sk.X /:

For each i 2 I, our map ˆ sends the vertex �i of j�.Xk/j to the divisorial point
associated with .X ;Ei/. In order to define ˆ on the higher-dimensional faces
of j�.Xk/j, we use monomial valuations to interpolate between these divisorial
valuations, as follows. Let y be a point of j�.Xk/j. Then there exists a unique face
� of j�.Xk/j such that y lies in the interior �o of � . By the construction of j�.Xk/j,
the face � corresponds to a connected component C of an intersection EJ for some
subset J of I. We denote by � the generic point of C. The vertices of � correspond
precisely to the irreducible components Ei with i 2 J. We can represent the point y
by a tuple of barycentric coordinates ˇ 2 R

J where each coordinate ˇi is a positive
real number and their sum is equal to one. Now we define ˆ.y/ as the monomial
point of Xan associated with the data

.X ; .Ei/i2J; .ˇi=Ni/i2J; �/:

(2.4.5) It is easy to see that ˆ is a bijection, since we can give the following
description of the map ˆ�1. Let x be a point of Sk.X /. Then spX .x/ is a generic
point � of EJ , for some uniquely determined non-empty subset J of I. For each i 2 J
we choose a local equation Ti D 0 for Ei in X at � , and we set ˛i D vx.Ti/. Then
ˆ�1.x/ lies in the interior of the face � of j�.Xk/j corresponding to the connected
component of � in EJ , and its tuple of barycentric coordinates is equal to .˛iNi/i2J .
In fact, we can say more.
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Proposition 2.4.6. The map

ˆW j�.Xk/j ! Sk.X /

is a homeomorphism.

Proof. Since the source ofˆ is compact and the target is Hausdorff, we only need to
prove thatˆ is continuous. This is not difficult: using the definition of the Berkovich
topology in (2.1.1) and the explicit description of monomial valuations in (2.3.4),
one immediately checks that ˆ is continuous on the interior of each of the faces of
j�.Xk/j. To get the continuity at the boundary faces, one uses the following easy
observation. Suppose that some of the ˛i are zero in the construction of the valuation
v in (2.3.4), say, ˛1; : : : ; ˛s ¤ 0 and ˛sC1 D : : : D ˛r D 0 for some s < r. Then
the formula we gave in (2) defines the monomial valuation associated with X ,
the components E1; : : : ;Es, the parameters ˛1; : : : ; ˛s, and the unique generic point
of E1 \ : : : \ Es whose closure contains � . For details, see [12, Section 2.4.6 and
Proposition 3.1.4]. ut

(2.4.7) We can use the homeomorphism ˆ to endow Sk.X / with a piecewise
Z-affine structure; see [12, Sect. 3.2]. This structure can be defined intrinsically
on Xan and is independent of the choice of the model X . The induced piecewise
Q-affine structure is simply the one inherited from the faces of j�.X /j. We will
not use the finer Z-affine structure so we will not recall its definition here. If f is a
non-zero rational function on X, then the function

Sk.X /! RW x 7! ln jf .x/j

is continuous and piecewise affine.
(2.4.8) Proposition 2.4.6 gives an explicit description of the topological space

Sk.X /. We will now explain how one can use this description to determine the
homotopy type of cX �. First, we construct a retraction

�X W cX � ! Sk.X /

for the embedding of Sk.X / in cX �. Let x be a point of cX �. Let J be the set of
indices i 2 I such that Ei contains the center spX .x/ of x on X . We denote by C
the connected component of x in EJ and by � the generic point of C. For each i 2 J
we choose a local equation Ti D 0 for Ei in X at spX .x/, and we set ˛i D vx.Ti/.
Then �X .x/ is the monomial point in Xan associated with the data

.X ; .Ei/i2J; .˛i/i2J; �/:

In other words, it is the unique point of the skeleton such that the Zariski closure of
its center contains the center of x and which gives the same valuation to each local
defining equation of an irreducible component Ei of Xk passing through spX .x/.
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It is an easy exercise to verify that �X is continuous. The most fundamental result
about Berkovich skeleta is the following theorem.

Theorem 2.4.9 (Berkovich, Thuillier). There exists a continuous map

H W cX � � Œ0; 1�! cX �

such that H.�; 0/ is the identity, H.�; 1/ is the map �X W cX � ! Sk.X /, and
H.x; t/ D x for every point x of Sk.X / and every t in Œ0; 1�. Thus Sk.X / is a
strong deformation retract of cX �.

Corollary 2.4.10. If X is proper and X is a proper sncd-model of X, then Sk.X /

is a strong deformation retract of Xan. In particular, Xan has the same homotopy type
as the simplicial complex j�.Xk/j.
Proof. This follows from the fact that cX � D Xan if X is proper, and from
Proposition 2.4.6. ut

(2.4.11) Giving a proof of Theorem 2.4.9 goes beyond the scope of this
survey, but we will work out an elementary example in Sect. 2.5. The origins
of Theorem 2.4.9 are the results by Berkovich on skeleta of the so-called poly-
stable formal schemes [4]. Berkovich used these skeleta to prove that smooth
non-archimedean analytic spaces are locally contractible. An sncd-model X (or
rather, its formal m-adic completion) is not poly-stable unless the special fiber
Xk is reduced2. Thus we cannot directly apply Berkovich’s result here. If R has
equal characteristic and X is defined over an algebraic curve, we explained in
[13, Theorem 3.1.3] how one can deduce Theorem 2.4.9 from results by Thuillier
on skeleta over trivially valued fields [17]. The general case can be proven by
translating Thuillier’s toroidal methods into the language of log-geometry; details
will be given in a forthcoming publication.

(2.4.12) If X is proper over K, then the existence of a proper sncd-model X is
known if k has characteristic zero (by Hironaka’s resolution of singularities), and
also if k has arbitrary characteristic and X is a curve (by Lipman’s resolution of
singularities for excellent schemes of dimension two). Most experts believe that it
should exist in general, but at this moment, resolution of singularities in positive and
mixed characteristic remains one of the big open problems in algebraic geometry.
Corollary 2.4.10 implies in particular that the homotopy type of the dual complex
j�.Xk/j does not depend on the choice of the proper sncd-model Xk. This is an
analog of Thuillier’s generalization of Stepanov’s theorem in [17], saying that the
homotopy type of the dual complex of a log resolution of a pair of algebraic varieties
over a perfect field is independent of the choice of the log resolution.

(2.4.13) If X is a smooth compactification of X and X is a proper sncd-
model of X, then the explicit construction of the strong deformation retract H from

2However, the class of poly-stable formal schemes is much larger than the class of sncd-models
with reduced special fiber.
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Theorem 2.4.9 shows that it restricts to strong deformation retracts of Xan and Xbir

onto Sk.X / (in fact, H.x; t/ lies in Xbir for every x in X
an

and every t > 0). Thus the
inclusions Xbir ! Xan and Xan ! X

an
are homotopy equivalences. In particular, the

homotopy type of the analytification of a smooth K-variety is a birational invariant
if k has characteristic zero.

2.5 The Deformation Retraction in a Basic Example

(2.5.1) We will give an explicit construction of the map H from Theorem 2.4.9 for
the following elementary example:

X D Spec RŒT1;T2�=.T
N1
1 TN2

2 � 
/;

with 
 a uniformizer in R and N1 and N2 positive integers. Then X is an sncd-
model for its generic fiber X D XK , and cX � is the set of points x in Xan such that
jT1.x/j � 1 and jT2.x/j � 1. We denote by Ei the component of Xk defined by
Ti D 0 for i D 1; 2 and by O the unique intersection point of E1 and E2. The dual
complex j�.Xk/j is the standard 1-simplex

�1 D f.�; 1 � �/ 2 R
2 j 0 � � � 1g

and the morphism ˆ constructed in (2.4.4) sends .1; 0/ to the divisorial point
associated with .X ;E1/, .0; 1/ to the divisorial point associated with .X ;E2/, and
.�; 1 � �/ to the monomial point associated with

.X ; .E1;E2/; .
�

N1
;
1 � �

N2
/;O/

for all � 2 �0; 1Œ.
(2.5.2) The construction of the map H is best understood in terms of torus

actions. We set c D gcd.N1;N2/ and Mi D Ni=c for i D 1; 2, and we choose
integers a1 and a2 such that a1M1 C a2M2 D 1. For every complete valued field
extension .L; j � jL/ of K we set

GL D fx 2 .Spec LŒU1;U2�=.U
M1

1 UM2

2 � 1//an j jU1.x/j D 1g

with the group structure given by componentwise multiplication. For every element
t in the interval Œ0; 1� we define a point �L.t/ in GL as follows. We will make use of
the isomorphism of L-algebras

LŒV;V�1�! LŒU1;U2�=.U
M1

1 UM2

2 � 1/WV 7! Ua2
1 U�a1

2
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whose inverse is given by U1 7! VM2 and U2 7! V�M1 . We can write every
polynomial f in LŒV� as a Taylor expansion

f D
X

i
0
ci.V � 1/i

around the point 1, where the coefficients ci lie in L. Then the point �L.t/ is fully
determined by the property that

jf .�L.t//j D max
i
0 jcijLti:

In other words, the point �L.t/ is the sup-norm on the closed disc of radius t around
the point 1 in a completed algebraic closure bLa of L. Note that

jU1.�L.t//j D jVM2 .�L.t//j D 1

for every t so that �L.t/ is indeed a point of GL. The map

�L W Œ0; 1�! GL W t 7! �.t/

is a continuous path from �L.0/ D 1 to �L.1/.
(2.5.3) The torus GK acts on cX � by componentwise multiplication, and we can

use this action together with the paths �L to produce paths in cX �. For every point x

of cX �, the action of GK gives rise to a continuous map

GH .x/ ! .cX �/ �K H .x/ W g 7! g � x:

For every t in Œ0; 1�, we define H.x; t/ as the image of �H .x/.t/�x under the projection
map

.cX �/ �K H .x/! cX �:

In this way, we obtain a map

HW cX � � Œ0; 1�! cX �W .x; t/ 7! H.x; t/:

The map H is continuous by continuity of the paths �L and of the torus action
on cX �.

(2.5.4) We can also give a more explicit and down-to-earth (but less conceptual)
description of the map H. Let x be a point of cX � and let t be an element of Œ0; 1�.
For notational convenience, we set x1 D T1.x/ and x2 D T2.x/; these are elements
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of the residue field H .x/ of Xan at x. Let f be an element of KŒT1;T2�. Then we
can write the Laurent polynomial f .x1VM2 ; x2V�M1 / in H .x/ŒV;V�1� as a rational
function

f .x1V
M2 ; x2V

�M1 / D 1

Vj

X

i
0
ci.V � 1/i;

where the coefficients ci belong to the valued field H .x/ and only finitely many of
them are non-zero. The point H.x; t/ is fully characterized by the property

jf .H.x; t//j D max
i
jcijti:

We remark for later reference that

jf .H.x; t//j 	 jc0j D jf .x/j: (5)

(2.5.5) Now we prove that H is a strong deformation retract onto Sk.X /. Setting
t D 0 we find jf .H.x; 0//j D jf .x/j so that H.x; 0/ D x. To compute H.x; 1/ we use
the fact that for every complete valued extension .L; j � jL/ of K, the closed disc with
radius one around 1 in bLa coincides with the closed disc with radius one around 0,
so that

jg.�L.1//j D max
i
jcijL

for every polynomial g D P
i
0 ciVi in LŒV�. In this way, we see that for every

polynomial

f D
X

i;j
0
cijT

i
1T

j
2

in KŒT1;T2�, we have

jf .H.x; 1//j D max
i;j
jcijjK jx1jijx2jj;

or, in additive notation:

vH.x;1/.f / D min
i;j
fvK.cij/C ivx.T1/C jvx.T2/g:

Thus we find by using formula (4) that H.x; 1/ is the monomial point on Xan

associated with

.X ; .E1;E2/; .vx.T1/; vx.T2//;O/:
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This is precisely the image �X .x/ of x under the retraction �X W cX � ! Sk.X /.
Finally, we show that H.x; t/ D x for all t in Œ0; 1� when x is a point of the skeleton
Sk.X /, that is, a monomial point with respect to X . Direct computation shows
that jT1.H.x; t//j D jx1j and jT2.H.x; t//j D jx2j. Combining the inequality (5) with
the minimality property of monomial valuations in Proposition 2.3.3, we see at once
that H.x; t/ must be equal to x.

3 Weight Functions and the Kontsevich–Soibelman Skeleton

3.1 The Work of Kontsevich and Soibelman

(3.1.1) In [10], Kontsevich and Soibelman proposed a new interpretation of mirror
symmetry based on non-archimedean geometry over the field of complex Laurent
series C..t//. Their fundamental idea was to encode a part of the geometry of
a one-parameter degeneration of complex Calabi–Yau varieties into a topological
manifold endowed with a Z-affine structure with singularities, and to interpret
mirror symmetry as a certain combinatorial duality between such manifolds. They
worked out in detail the case of degenerations of K3-surfaces. Similar ideas were
developed by Gross and Siebert in their theory of toric degenerations. Gross and
Siebert replaced the use of non-archimedean geometry by methods from tropical
and logarithmic geometry and extended the results for K3-surfaces to higher-
dimensional degenerations [7].

(3.1.2) An essential ingredient of the construction of Kontsevich and Soibelman
is the following. We denote by � a small disc around the origin of the complex
plane and we set �� D � n f0g. We denote by t a local coordinate on � centered
at 0. Let X be a smooth projective family of varieties over �� and let ! be a
relative differential form of maximal degree on the family X ! ��. Kontsevich and
Soibelman associated with these data a skeleton Sk.X; !/, which is a topological
subspace of the Berkovich analytification of the C..t//-variety obtained from X by
base change. If X is a family of Calabi–Yau varieties, then we set Sk.X; !/ D Sk.X/
where ! is any relative volume form on X. This definition does not depend on the
choice of !.

(3.1.3) Kontsevich and Soibelman proved that Sk.X; !/ can be explicitly
computed on any strict normal crossings model X for X over �: it is a union of
faces of the Berkovich skeleton Sk.X / of the model X on which ! is minimal
in a suitable sense. Their proof relied on the Weak Factorization Theorem. It is
interesting to note that, even though the Berkovich skeleton Sk.X / from Sect. 2.4
heavily depends on the chosen model X , the Kontsevich–Soibelman skeleton
Sk.X; !/ only depends on X and !. It singles out certain faces of Sk.X / that must
appear in the skeleton of every strict normal crossings model.
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(3.1.4) In [12], Mircea Mustaţă and the author extended this construction to
varieties over complete discretely valued fields K of arbitrary characteristic, and
to pluricanonical forms !. Our approach does not use the Weak Factorization
Theorem but only relies on basic computations on valuations and canonical sheaves.
Moreover, we proved that the skeleton of a Calabi–Yau variety over C..t// is always
connected. An interesting gadget that appears in our work is the weight function

wt! W Xan ! R [ fC1g
associated with a smooth and proper K-variety X and a pluricanonical form !

on X. This weight function is piecewise affine on the Berkovich skeleton of any
strict normal crossings model of X and strictly increasing as one moves away from
the Berkovich skeleton. The Kontsevich–Soibelman skeleton is precisely the set of
points where wt! reaches its minimal value; see Sect. 3.3.

3.2 Log Discrepancies in Birational Geometry

(3.2.1) Our approach is inspired by interesting analogies with some fundamental
invariants in birational geometry. Let X be a smooth complex variety and I a
coherent ideal sheaf on X. Let v be a divisorial valuation on X, that is, a positive
real multiple of the discrete valuation ordE on the function field C.X/ associated
with a prime divisor E on a normal birational modification Y of X. We denote by N
the multiplicity of the scheme Z.IOY/ along E and by � the multiplicity of E in the
relative canonical divisor KY=X . We set

wtI.v/ D � C 1
N

if N ¤ 0 and C1 otherwise;

and we call this value the weight of I at v. Then the infimum of the values wtI.v/ at
all divisorial valuations v on X is called the log-canonical threshold of the pair .X; I/
and denoted by lct.X; I/. This is a measure for the singularities of the zero locus
Z.I/ of I on X, and one of the most important invariants in birational geometry. We
refer to [9] for more background.

(3.2.2) It is a fundamental fact that the log-canonical threshold of .X; I/ can be
computed on a single log resolution of .X; I/, i.e., a proper birational morphism
h W Y ! X such that Y is smooth, h is an isomorphism over the complement of
Z.I/, and Z.IOY/ is a strict normal crossings divisor on Y . Namely, we have

lct.X; I/ D minfwtI.v/g
where v runs over the divisorial valuations associated with the prime components
of Z.IOY/. If this minimum is reached on a prime component E of Z.IOY/,
then we say that E computes the log-canonical threshold of .X; I/. If we denote
by E the union of such prime components E, then the Connectedness Theorem
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of Shokurov and Kollár [9, Theorem 7.4] states that for every point x of Z.I/
and every sufficiently small open neighborhood U of x in Z.I/, the topological
space h�1.U/ \ E is connected. This was the main source of inspiration for our
theorem on the connectedness of the skeleton of a Calabi–Yau variety over C..t//
(Theorem 3.5.6).

(3.2.3) In [5] and [8], a function closely related to the weight function wtI was
extended from the set of divisorial valuations on X to the non-archimedean link
of Z.I/ in X, that is, the analytic space over the field C with the trivial absolute
value that we obtain by removing the generic fiber of the C-variety Z.I/ from the
generic fiber of the formal completion of X along Z.I/. We have made a similar
construction to define weight functions on analytic spaces over discretely valued
fields; this construction will be explained in Sect. 3.4.

3.3 Definition of the Kontsevich–Soibelman Skeleton

(3.3.1) Let X be a connected, smooth, and proper K-variety of dimension n, and
let ! be a non-zero m-pluricanonical form on X, that is, a non-zero element of
!˝m

X=K.X/. Let X be a regular R-model of X, E an irreducible component of Xk,
and x the divisorial point on Xan associated with .X ;E/. The relative canonical
sheaf !X =R is a line bundle on X that extends the canonical line bundle !X=K

on X. The differential form ! on X defines a rational section of !˝m
X =R and thus a

divisor divX .!/ on X . We denote by N the multiplicity of E in Xk and by � the
multiplicity of E in divX .!/. We define the weight of ! at x by the formula

wt!.x/ D .� C m/=N:

This definition only depends on x and not on the choice of X and E. We define the
weight of X with respect to ! by

wt!.X/ D inffwt!.x/ j x 2 Xdivg 2 R [ f�1g:

(3.3.2) A divisorial point x on Xan is called !-essential if the weight function
wt! reaches its minimal value at x, that is,

wt!.X/ D wt!.x/:

The skeleton Sk.X; !/ of the pair .X; !/ is defined as the closure of the set of !-
essential divisorial points in the space of birational points Xbir. It is obvious from the
definition that Sk.X; !/ is a birational invariant of the pair .X; !/, since the spaces
Xbir and Xdiv and the weight function wt! are birational invariants.
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3.4 Definition and Properties of the Weight Function

(3.4.1) Without suitable assumptions on the existence of resolutions of singularities,
we cannot say much more about the skeleton Sk.X; !/; for instance, we cannot
prove that Sk.X; !/ is non-empty. Therefore, we will assume from now on that k
has characteristic zero or X is a curve. With the current state of affairs, these are
the cases where resolution of singularities is known in the form that we need. In
particular, it is known that every proper R-model of X can be dominated by a proper
sncd-model of X.

(3.4.2) In Sect. 2.4 we have attached to each sncd-model X of X its Berkovich
skeleton Sk.X /. It was defined as the set of all birational points on X that are
monomial with respect to the strict normal crossings divisor Xk on X . We have
shown in Proposition 2.4.6 that the skeleton Sk.X / is canonically homeomorphic
to the dual complex j�.Xk/j of the strict normal crossings divisor Xk.

Theorem 3.4.3 (Proposition 4.5.5 in [12]). There exists a unique smallest function

wt! W Xan ! R [ fC1g

with the following properties.

(1) The function wt! is lower semi-continuous.
(2) Let X be an sncd-model for X and let x be a point of the Berkovich skeleton

Sk.X /. Let f be a rational function on X such that, locally at spX .x/, we
have

div.f / D divX .!/C m.Xk/red:

Then

wt!.x/ D � ln jf .x/j:
In particular, wt! is continuous and piecewise affine on Sk.X /, and we get the
same value as in (3.3.1) on divisorial points. Moreover, for all x in cX �, we have

wt!.x/ 	 wt!.�X .x//

with equality if and only if x 2 Sk.X /.
(3) The restriction of wt! to Xbir is a birational invariant of .X; !/.

Proof. We only give a rough sketch of the arguments and refer to [12] for details.
The formula in (2) can be used to extend the weight function wt! to the set Xmon of
monomial points on X. Of course, each monomial point will belong to the Berkovich
skeleta of several sncd-models, and one must show that the formula does not depend
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on the choice of an sncd-model. Next, one proves that the inequality in (2) holds for
monomial points. When x is any point of Xan, one sets

wt!.x/ D sup
X
fwt!.�X /g

where X runs through the set of proper sncd-models of X. Then one can prove that
the resulting function wt! on Xan satisfies all the properties in the statement. ut

3.5 Computation of the Kontsevich–Soibelman Skeleton

(3.5.1) We can use the properties of the weight function in Theorem 3.4.3 to
compute the Kontsevich–Soibelman skeleton Sk.X; !/ on a fixed proper sncd-
model X of X. The divisorial points are dense in each face of Sk.X / (they are
precisely the points with barycentric coordinates in Q). Point (2) of the theorem
immediately implies that Sk.X; !/ is the subspace of the compact space Sk.X /

consisting of the points where the continuous function wt! jSk.X / reaches its
minimal value, because it says that the weight function is strictly increasing if we
move away from the skeleton (recall that cX � D Xan if X is proper over R). In
particular, Sk.X; !/ is a non-empty compact topological space. We can make this
description much more explicit, as follows.

(3.5.2) We write Xk D P
i2I NiEi. For each i 2 I, we denote by �i

the multiplicity of Ei in the divisor divX .!/. Recall that each face of Sk.X /

corresponds to a connected component C of an intersection EJ D \j2JEj where
J is a non-empty subset of I. We say that the face is !-essential if

�j C m

Nj
D min

�
�i C m

Ni
j i 2 I

�

for every j in J and C is not contained in the Zariski closure in X of the
pluricanonical divisor divX.!/ (the divisor of zeroes of ! on the K-variety X). The
reason for the latter condition will be explained in the proof of Theorem 3.5.3.

Theorem 3.5.3 (Theorem 4.7.5 in [12]). The weight of X with respect to ! is given
by

wt!.X/ D min

�
�i C m

Ni
j i 2 I

�

and the skeleton Sk.X; !/ is the union of the !-essential faces of Sk.X /. In partic-
ular, this union only depends on X and !, and not on the choice of the model X .
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Proof. This follows easily from the properties of the weight function described in
Theorem 3.4.3(2). We have already explained in (3.5.1) that Sk.X; !/ is the locus of
points in Sk.X / where wt! reaches its minimal value. Recall that for every i 2 I,
the value of wt! at the vertex of Sk.X / corresponding to Ei is given by .�iCm/=Ni.
The explicit formula for the weight function on Sk.X / implies that it is piecewise
affine and concave on every face of Sk.X /. It is affine on a face if and only if the
corresponding subvariety C of Xk is not contained in the closure of divX.!/; see
[12, Theorem 4.7.5] for details. Thus Sk.X; !/ is the union of the !-essential faces
of Sk.X /. ut
Example 3.5.4. Suppose that R D CŒŒt�� and that X is a K3-surface over K. Assume
that X has an sncd-model X such that Xk is reduced and !X =R is trivial. Such
models play an important role in the classification of semi-stable degenerations of
K3-surfaces by Kulikov [11] and Persson–Pinkham [16]. They have the special
property that Sk.X; !/ D Sk.X / for every volume form ! on X, since all
multiplicities Ni are equal to one, and all �i are equal by the triviality of !X =R.

(3.5.5) In [12] we proved the following variant of the Shokurov–Kollár
Connectedness Theorem. Like the proofs of Shokurov and Kollár, our proof is
based on vanishing theorems: we proved generalizations of Kawamata–Viehweg
Vanishing and Kollár’s Torsion-free Theorem for varieties over power series rings
of characteristic zero in one variable by means of Greenberg approximation.

Theorem 3.5.6 (Corollary 5.5.4 in [12]). Assume that the residue field k of K has
characteristic zero. If X is a geometrically connected, smooth, and proper K-variety
of geometric genus one, and ! is a non-zero canonical form on X, then Sk.X; !/ is
connected.

One can say much more using advanced tools from the Minimal Model Program,
as we will explain in the following section.

4 The Essential Skeleton and the Minimal Model Program

4.1 The Essential Skeleton

(4.1.1) Throughout this section, we assume that the residue field k of K has
characteristic zero. Let X be a connected, smooth, and projective K-variety (the
projectivity condition is needed to apply results from the Minimal Model Program).
Let X be a proper sncd-model of X. We have seen in Theorem 3.5.3 that for
every non-zero pluricanonical form ! on X, the Kontsevich–Soibelman skeleton
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Sk.X; !/ singles out certain faces of Sk.X / that do not depend on the model X .
In [12, Sect. 4.9] we defined the essential skeleton Sk.X/ of X as the union of
the Kontsevich–Soibelman skeleta Sk.X; !/ for all non-zero pluricanonical forms
! on X.

(4.1.2) If !X=K is trivial and ! is a volume form on X, then it is not hard to see
that Sk.X/ D Sk.X; !/: multiplying ! with an element � in K� simply shifts the
weight function by vK.�/, and for every m > 0, the space of m-pluricanonical forms
on X is generated by the mth tensor power of !. It is not true for general X, however,
that Sk.X/ D Sk.X; !/ for some fixed pluricanonical form ! on X.

(4.1.3) Without suitable conditions on X, we cannot hope that Sk.X/ is a strong
deformation retract of Xan. For instance, if X is rational (e.g., a projective space
P

n
K), then all pluricanonical forms on X are zero and the essential skeleton is

empty. However, Chenyang Xu and the author proved in [13] that Sk.X/ is a strong
deformation retract of Xan if X has “enough” pluricanonical forms. Our proof is
based on the Minimal Model Program, and in particular on the results in [6]. We
will now briefly explain the main ideas.

4.2 dlt-Models

(4.2.1) If X is a curve of genus 	 1, then X has a unique minimal sncd-model
X , and thus a canonical Berkovich skeleton Sk.X /. If X has dimension at least
two, however, minimal sncd-models no longer exist in general. In order to get a
good notion of minimal model, we have to enlarge the class of sncd-models to
the so-called (good) dlt-models. The abbreviation dlt stands for divisorially log
terminal. The precise definition of a dlt-model X is quite technical; we do not give
it here but refer to [13, Sect. 2.3] instead. The basic idea is that we allow certain
mild singularities on X , in accordance with the general philosophy of the Minimal
Model Program. The set of points of X where X is regular and Xk is a strict
normal crossings divisor is an open subscheme of X that we denote by X sncd. The
definition of a dlt-model guarantees that X sncd is still sufficiently large to capture
all the important information about the skeleton; we set

Sk.X / WD Sk.X sncd/ � Xbir:

(4.2.2) A dlt-model X of X is called minimal if the line bundle !X =R..Xk/red/

is semi-ample, which means that some power of this line bundle is generated by
global sections. Fundamental theorems in birational geometry imply that X has
a minimal dlt-model if and only if the canonical line bundle !X=K is semi-ample
(we refer to [13, Theorem 2.3.6] for detailed references). To be precise, we should
assume that X is defined over an algebraic curve because the necessary tools from
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the Minimal Model Program have only been developed under that assumption, but
we will ignore this issue here; if !X=K is trivial, one can get rid of the algebraicity
condition by using tools from logarithmic geometry [13, Sect. 4.2].

(4.2.3) Minimal dlt-models are not unique, but they are closely related (bira-
tionally crepant) and the skeleton Sk.X / does not depend on the choice of the
minimal dlt-model X . One of the main results in [13] is the following.

Theorem 4.2.4 (Theorem 3.3.3 in [13]). If !X=K is semi-ample and X is any
minimal dlt-model of X, then the skeleton Sk.X / is equal to the essential skeleton
Sk.X/ of X.

(4.2.5) If X 0 is any proper sncd-model of X, then the Minimal Model Program
tells us how to modify X 0 into a minimal dlt-model X by a series of divisorial
contractions and flips. The effect of the steps in the Minimal Model Program on
the Berkovich skeleton Sk.X 0/ was carefully studied in [6], and these authors
proved that Sk.X / can be obtained from Sk.X 0/ by means of a sequence of
elementary collapses, combinatorial operations on simplicial complexes which are,
in particular, strong deformation retracts. Since we already know that Sk.X 0/ is a
strong deformation retract of Xan by Theorem 2.4.9, we obtain the following result.

Theorem 4.2.6 (Corollary 3.3.5 in [13]). If !X=K is semi-ample, then the essential
skeleton Sk.X/ is a strong deformation retract of Xan.

(4.2.7) Under certain conditions on X, one can use further results from the
Minimal Model Program to obtain information about the topological properties of
Sk.X/. For instance, if !X=K is trivial, the residue field k is algebraically closed, and
the skeleton Sk.X/ has maximal dimension (that is, the same dimension as X), then
results by Kollár and Kovács imply that Sk.X/ is a closed pseudo-manifold (see [13,
Theorems 4.1.7 and 4.2.4]).

(4.2.8) It would be quite interesting to have a proof of Theorem 4.2.6 that does
not make use of the Minimal Model Program and the arguments in [6], but instead
uses the properties of the weight function from Sect. 3.4 and the geometric structure
of the Berkovich space Xan. A possible approach is the following. Assume that !X=K

is trivial and let ! be a volume form on X. Then the essential skeleton Sk.X/ of X
is the locus where the weight function wt! on Xan reaches its minimal value, and
we have seen in Theorem 3.4.3 that it is strictly increasing if one moves away from
the Berkovich skeleton of any sncd-model of X. It is tempting to speculate that one
can attach a gradient vector field on Xan to wt! that induces a flow that contracts Xan

onto Sk.X/. We refer to [14] for partial results in this direction and applications to
the study of motivic zeta functions.

Acknowledgements I am grateful to Sam Payne for helpful comments on an earlier version of
this text.
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Metrization of Differential Pluriforms
on Berkovich Analytic Spaces

Michael Temkin

Abstract We introduce a general notion of a seminorm on sheaves of rings or
modules and provide each sheaf of relative differential pluriforms on a Berkovich
k-analytic space with a natural seminorm, called Kähler seminorm. If the residue
field Qk is of characteristic zero and X is a quasi-smooth k-analytic space, then we
show that the maximality locus of any global pluricanonical form is a PL subspace
of X contained in the skeleton of any semistable formal model of X. This extends
a result of Mustaţă and Nicaise, because the Kähler seminorm on pluricanonical
forms coincides with the weight norm defined by Mustaţă and Nicaise when k is
discretely valued and of residue characteristic zero.

Keywords Berkovich analytic spaces • Kähler seminorms • Pluriforms •
Skeletons

1 Introduction

1.1 Motivation

It often happens that a Berkovich space X possesses natural skeletons, which are,
in particular, deformational retracts of X of finite topological type, see [4, Sect. 4.3]
and [6]. In some special cases, such as the case of curves of positive genus or abelian
varieties, there is a canonical (usually, minimal) skeleton. As a rule, skeletons are
obtained from nice formal models, e.g. polystable or, more generally, log smooth
ones, though we should mention for completeness that a different and very robust
method of constructing skeletons was developed very recently by Hrushovski and
Loeser, see [20].

In [25], Kontsevich and Soibelman constructed a canonical skeleton of analytic
K3 surfaces over k D C..t// by use of a new method: the skeleton is detected as
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the extremality locus of the canonical form. In [28], this method was extended by
Mustaţă and Nicaise as follows. If k is discretely valued and X is the analytification
of a smooth and proper k-variety, they constructed norms on the pluricanonical
sheaves !˝n

X and showed that the maximality locus of any non-zero pluricanonical
form � is contained in the skeleton associated with any semistable formal model of
X. The union of the maximality loci of non-zero pluricanonical forms is called the
essential skeleton of X in [28]. It is an important “combinatorial” subset of X, see
[29], although it does not have to be a skeleton of X.

An advantage of the above approach is that it constructs a valuable combinatorial
subset, the essential skeleton, in a canonical way. In particular, the only input is the
metrization of pluricanonical sheaves, and no choice of a formal model is involved.
Slightly ironically, one heavily exploits formal models to metrize !˝n

X . On the one
hand, existence of nice global formal models is not needed since it suffices for
any so-called divisorial point x to find a sufficiently small domain that contains x
and possesses a regular formal model. The latter problem is much easier and the
construction works fine when char.Qk/ > 0 and existence of nice global models is a
dream. But on the other hand, this still leads to technical restrictions, including the
assumption that k is discretely valued. In addition, the construction of the norm is
not so geometric: first one defines it at divisorial points by use of formal models,
and then extends it to the whole X by continuity.

The original aim of this project was to provide a natural local analytic con-
struction of Mustaţă–Nicaise norm, which applies to all points on equal footing
and eliminates various technical restrictions of their method. The basic idea is very
simple: provide 	X with the maximal seminorm making the differential d W OX !
	X a non-expansive map, and induce from it a seminorm on !˝n

X D .^d	X/
˝n.

Moreover, the same definition makes sense for any morphism f W X ! S, so the
construction generalizes to the relative situation and no assumption on k and f
is needed. This increases the flexibility even in the original setting; for example,
one obtains a way to work with analytic families of proper smooth varieties.
Unfortunately, implementation of the basic idea is not so simple due to lack of
various foundations. So, a large part of this project is devoted to developing basic
topics, including a theory of Kähler seminorms on modules of differentials, its
application to real-valued fields, metrization of sheaves of modules, etc. On the
positive side, we think that this foundational work will be useful for future research
in non-archimedean geometry and related areas.

Once Kähler seminorms will have been defined, we will study the maximality
locus of pluricanonical forms. Unfortunately, the assumption that char.Qk/ D 0

seems unavoidable with current technique, but we manage to treat the non-discrete
case as well. In particular, we only use a result à la de Jong (see [41, Theorem 3.4.1])
instead of the existence of semistable model (a result à la Hironaka). Finally,
under the assumptions of [28], we compare the Kähler seminorm to the Mustaţă–
Nicaise norm on the pluricanonical sheaves. Surprisingly, they coincide only when
char.Qk/ D 0, and in general they are related by a factor which up to a constant
coincides with the log different of H.x/=k.
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1.2 Methods

At few places in the paper, including the definition of Kähler seminorms, we have
to choose one method out of few possibilities. Let us discuss briefly what these
choices are.

1.2.1 An Approach Via Unit Balls

One way to define a seminorm on a k-vector space V is by using its unit ball V˘,
which is a kı-module. Technically, this leads to the easiest way to metrize a coherent
OX-sheaf F : just choose an Oı

X-submodule FX̆ (subject to simple restrictions).
For example, if the valuation is not discrete, one can simply define the Kähler
seminorm k k	 on	X=S as the seminorm associated with the sheaf Oı

XdX=S.Oı
X/, the

minimal Oı
X-submodule of 	X=S containing dX=SOı

X . Unfortunately, this definition
is problematic when the valuation is discrete or trivial (though, see Remark 6.1.6).
In order to consider ground fields with discrete or trivial valuations on the
equal footing, we have to develop all basic constructions in terms of seminorms
themselves. For example, k k	 can be characterized as the maximal seminorm such
that the map d W OX ! 	X=S is non-expansive (see Lemma 6.1.4). Still, some
implicit use of unit balls is made in Sect. 5, e.g. see Theorem 5.1.8.

1.2.2 Seminormed Algebras Versus Banach Algebras

Most seminormed rings in Berkovich geometry are Banach. Nevertheless, more
general seminormed rings also show up, with the main example being the local
rings OX;x and their residue fields �.x/. For this reason, it is technically much more
convenient to work with seminormed rings and modules rather than their Banach
analogues throughout the paper. In addition, it turns out to be important to consider
only non-expansive homomorphisms, while classical Banach categories contain all
bounded homomorphisms.

1.2.3 Metrization of Sheaves

There exist two ways to define seminorms on sheaves of rings or modules.
In this paper we implement a sheaf theoretic approach, which applies to any site.
We introduce the notions of (pre)sheaves of seminorms on a sheaf of abelian groups
(resp. rings or modules) A. In fact, this is equivalent to introducing (pre)sheaves of
seminormed abelian groups with the underlying sheaf A. Various operations, such
as tensor products, are defined using sheafification. A slight technical complication
of the method is that one has to consider unbounded seminorms.
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A simpler ad hoc method to metrize sheaves on topological spaces or sites
with enough points is to metrize the stalks in a semicontinuous way: for a section
s 2 F.U/ let jsj W U ! R
0 denote the function sending x 2 U to jsjx, then
all functions jsj should be upper semicontinuous. All operations are then defined
stalkwise. The main problem with applying this method to our case is that one has
to work with all points of the G-topology site XG, which is not a standard tool in
Berkovich geometry. We describe these points in the end of the paper, but they are
not used in our main constructions.

Remark 1.2.4. (i) It is more usual to consider only continuous metrics. For
example, the definition of metrization in [9] requires that all sections jsj are
continuous. Nevertheless, it is the semicontinuity that encodes the condition
that j j is a sheaf, see Theorem 3.2.11.

(ii) In the case of Kähler seminorms, non-continuous functions k�k	 arise in the
simplest cases. For example, already the function kdtk	 on the disc M.kftg/ is
not continuous; in fact, kdtk	 is the radius function, see Sect. 6.2.1.

1.3 Overview of the Paper and Main Results

In Sect. 2 we fix our notation and study seminorms on vector spaces over real-valued
fields and modules over real valuation rings. Most of the material is probably known
to experts but some of it is hard to find in the literature, especially the material
on index of semilattices and content of torsion modules. Section 3 deals with
metrization of sheaves. First, we study sheaves on arbitrary sites and then specialize
to the case of G-sheaves on analytic spaces. In Sect. 4, we extend the theory
of Kähler differentials to seminormed rings. In particular, given a non-expansive
homomorphism of seminormed rings A! B we show that dB=A W B! .	B=A; k k	/
is the universal non-expansive A-derivation, where the Kähler seminorm k k	 is
defined as the maximal seminorm making the homomorphism dB=A non-expansive.

In Sect. 5 we study the Kähler seminorm on a vector space 	K=A, where K is
a real-valued field. In Theorem 5.1.8 we show that 	log

Kı=Aı modulo its torsion is
an almost unit ball of the Kähler seminorm on 	K=A. Thus, the study of Kähler
seminorms is tightly related to study of 	log

Kı=Aı and ramification theory. Although
this is classical in the discretely valued case, [18, Chap. 6] is the only reference for
such material when jK�j is dense. Unfortunately, even loc.cit. does not cover all our
needs, so we have to dig into the theory of real-valued fields, that makes this section
the most technical in the paper. One of our main results there is that if K is dense in

a real-valued field L then b	K=A
��!b	L=A, see Theorem 5.6.6 and its corollary.

In Sect. 6 we define the Kähler seminorm k k	 on 	X=S for any morphism
f W X ! S. This is done by sheafifying the presheaf of Kähler seminorms on affinoid
domains and it follows easily from the definition that k k	 is the maximal seminorm
on 	X=S making the map d W OXG ! 	X=S non-expansive. In Theorem 6.1.8 we
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show that the completed stalk 1	X=S;x is isomorphic to b	H.x/=H.s/, where s D f .x/.
This provides the main tool for explicit work with the seminorm k k	 and its
stalks. Note that the main ingredient in proving Theorem 6.1.8 is that b	�.x/=�.s/ D
b	H.x/=H.s/ by Theorem 5.6.6. Another fundamental property of Kähler seminorms
is established in Theorem 6.1.13: Kähler seminorms are determined by the usual
points of X (the G-analyticity condition from Sect. 3.3) and the functions ksk	
are semicontinuous with respect to the usual topology of X (and not only the G-
topology). Some examples of Kähler seminorms are described in Sect. 6.2, including
the ones demonstrating that Kähler seminorms behave weirdly when k possesses
wildly ramified extensions. Also, we study the compatibility of k k	 with base
change in Sect. 6.3. In particular, we show that it is compatible with restriction to the
fibers and tame extensions of the ground field (Theorem 6.3.11 and its corollaries),
but is incompatible with wild extensions of the ground field. Finally, we use k k	 to
metrize the sheaves Sm.	n

X=S/ of relative pluriforms on X.
Section 7 is devoted to recalling basic facts about formal models and skeletons

of Berkovich spaces. Then we study in Sect. 8 metrization of the sheaves !˝m
X

of pluricanonical forms on a rig-smooth space X. In Corollary 8.1.3 we obtain a
simple formula that evaluates Kähler seminorms at monomial points, and we deduce
in Theorem 8.1.6 that the restrictions of geometric Kähler seminorms onto PL
subspaces of X are PL. The main ingredient here is Theorem 9.4.8. In Theorem 8.3.3
we establish the connection between Kähler seminorm on pluricanonical sheaves
and the weight norm of Mustaţă and Nicaise. Finally, in Sect. 8.2 we study the
maximality locus of a non-zero pluricanonical form with respect to the geometric
Kähler seminorm. We prove that it is contained in the essential skeleton of X, see
Theorem 8.2.4, and, if char.Qk/ D 0, it is a PL subspace of X, see Theorem 8.2.9.
When char.Qk/ D 0 this extends the results of Mustaţă and Nicaise to the case of non-
discrete jk�j and arbitrary quasi-smooth X, not necessarily algebraizable or even
strictly analytic. (If char.Qk/ > 0, our norm differs from the weight norm.)

Finally, Sect. 9 is devoted to study the topological realizations of the G-topologies
on analytic spaces and PL spaces. Our description of the topological space jXGj
seems to be new, see Sect. 9.1 and Remark 9.2.9(ii) concerning the connection to
adic and reified adic spaces. In particular, we interpret the points of jXGj in terms
of the graded reductions of germs. Also, we interpret points of the PL topologies in
terms of combinatorial valuations (or valuations on lattices), see Sect. 9.3, and for a
PL subspace P 
 X we describe the embedding jPGj ,! jXGj. This is used to prove
a strong result on the structure of P: locally P possesses a residually unramified
chart, see Theorem 9.4.8. It seems that our usage of the space jPGj is more or less
equivalent to the use of model theory in [13, 16], see Remark 9.3.3. Note also that
Theorem 9.4.8 is the only result of Sect. 9 used in the main part of the paper (in the
proof of Theorem 8.1.6).
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2 Real-Valued Fields

In this section we study seminormed vector spaces over a real-valued field K and
modules over the ring of integers Kı.

2.1 Conventions

First, let us fix basic terminology and notation on valued fields and analytic spaces.

2.1.1 Valued Fields

By a valued field we mean a field F provided with a non-archimedean valuation
j j W F! f0g [ � , where � is an ordered group. The conditions jxj � 1 and jxj < 1
define the ring of integers Fı and its maximal ideal Fıı, respectively. In addition,
eF D Fı=Fıı denotes the residue field of F.

2.1.2 The Real-Valued Case

Assume that a valued field K is real-valued, i.e. � D R>0. Then j j is a norm and
hence defines a topology on K. We will use the notation jKııj D sup
2Kıı j
j.
Thus, jKııj D 0 if the valuation is trivial, jKııj D j
j if K is discretely valued with
uniformizer 
 , and jKııj D 1 otherwise.

Let, now, 
 be any element of Kıı n f0g if the valuation is non-trivial, and set

 D 0 otherwise. In particular, the induced topology on Kı is the 
-adic one.
Given a Kı-module M we say that an element x 2 M is divisible if it is infinitely

-divisible. In particular, if the valuation of K is trivial, then 0 is the only divisible
element. A Kı-module is divisible if all its elements are divisible.

2.1.3 Analytic Spaces

Throughout this paper, k is a non-archimedean analytic field, i.e. a real-valued
field which is complete with respect to its valuation. Trivial valuation is allowed.
All analytic spaces we will consider are k-analytic spaces in the sense of [5, Sect. 1].

In addition, we fix a divisible subgroup H 
 R>0 such that H ¤ 1 and jk�j 
 H
and consider only H-strict analytic spaces in the sense of [10]. For shortness, we
will often call them analytic spaces.
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2.1.4 The G-Topology

The usual topology of an analytic space X can be used for working with coherent
sheaves only when X is good. In general, one has to work with the G-topology of
analytic domains whose coverings are the set-theoretical coverings U D [i2IUi

such that fUig is a quasi-net on U in the sense of [4, Sect. 1.1]. These coverings are
usually called G-coverings or admissible coverings. By XG we denote the associated
site: its objects are (H-strict) analytic domains and coverings are the G-admissible
ones. The structure sheaf OXG of X is a sheaf on XG, and by Oı

XG
we denote the

subsheaf of kı-algebras whose sections have spectral seminorm bounded by 1, i.e.
Oı

XG
.V/ D Aı

V for an affinoid domain V DM.AV/.

2.2 Seminormed Rings and Modules

In Sect. 2.2 we recall well-known facts and definitions concerning seminorms.
All seminorms we consider are non-archimedean. Ring seminorms will be denoted
j j, j j0, etc., and module seminorms will be denoted k k, k k0, etc.

2.2.1 Seminormed Abelian Groups

Throughout this paper, a seminorm on an abelian group A is a function k k W A !
R
0 such that

(1) k0k D 0,
(2) the inequality kx � yk � max.kxk; kyk/ holds for any x; y 2 A.

Note that (2) is a short way to encode the more standard conditions that kxC yk �
max.kxk; kyk/ and k�xk D kxk. The pair .A; k k/ will be called a seminormed
group. If k k has trivial kernel, then it is called a norm.

2.2.2 Bounded and Non-expansive Homomorphisms

A homomorphism � W A ! B is called bounded with respect to k kA and k kB if
there exists C D C.�/ such that kak � Ck�.a/k for any a 2 A. If C D 1, then � is
called non-expansive.

2.2.3 The Non-expansive Category

As in [3, Sect. 5.1], the category of seminormed abelian groups with non-expansive
homomorphisms will be called the non-expansive category (of seminormed abelian
groups).
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Remark 2.2.4. (i) Often one works with the larger category whose morphisms are
arbitrary bounded morphisms; let us call it the bounded category. In fact, it is
equivalent to the localization of the non-expansive category by bounded maps
that possess a bounded inverse.

(ii) Working with the bounded category is natural when one wants to study
seminorms up to equivalence; for example, this is the case in the theory of
Banach spaces. On the other side, working with the non-expansive category is
natural when one distinguishes equivalent seminorms, so this fits the goals of
the current paper.

(iii) A serious advantage of working with the non-expansive category is that one
can describe limits and colimits in a simple way, see [3, Sect. 5.1].

2.2.5 Seminormed Rings

A seminorm on a ring A is a seminorm j j on the underlying group .A;C/ that
satisfies j1j D 1 and jxyj � jxjjyj for any x; y. A ring with a fixed seminorm is
called a seminormed ring. Usually it will be denoted by calligraphic letters and the
seminorm will be omitted from the notation, e.g. A D .A; j jA/. An important
example of a normed ring is a real-valued field.

2.2.6 Seminormed Modules

A seminormed A-module M is an A-module provided with a seminorm k kM such
that kamkM � jajAkmkM for any a 2 A and m 2 M. The notions of non-expansive
homomorphisms of seminormed rings and modules are defined in the obvious way.

2.2.7 Quotient Seminorms and Cokernels

If � W A! B is a surjective homomorphism of seminormed abelian groups, rings, or
modules, then the quotient seminorm on B is defined by kxkB D infy2��1.x/kykA. It
is the maximal seminorm such that � is non-expansive, hence, in the case of groups
and modules, .B; k kB/ is the cokernel of any non-expansive homomorphism C! A
whose image is Ker.�/.

2.2.8 Strictly Admissible Homomorphisms

Recall that a homomorphism  W C! D of seminormed abelian groups (resp. rings
or modules) is called admissible if the quotient seminorm on  .C/ is equivalent
to the seminorm induced from D. In the non-expansive category, it is natural to
consider the following more restrictive notion:  is strictly admissible if the
quotient seminorm on  .C/ equals to the seminorm induced from D.
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2.2.9 Tensor Products

Given a seminormed ring A, by tensor product of seminormed A-modules M and
N we mean the module L D M˝A M provided with the tensor seminorm k k˝ such
that klk˝ D inf.maxikmik�knik/, where the infimum is taken over all representations
l D Pn

iD1 mi ˝ ni. Note that k k˝ is the maximal seminorm such that the bilinear
map � W M � N ! L is non-expansive, i.e. satisfies k�.m; n/k˝ � kmk � knk.
Obviously, M � N ! .L; k k˝/ is the universal non-expansive bilinear map.

2.2.10 Exterior and Symmetric Powers

If M is a seminormed A-module, then the modules SnM and
Vn M acquire a

natural seminorm as follows: both are quotients of ˝nM, so we consider the tensor
seminorm on ˝nM and endow SnM and

Vn M with the quotient seminorms. The
latter can be characterized as the maximal seminorms such that km1 ˝ � � � ˝ mnkSn

and km1 ^ � � � ^ mnkVn do not exceed
Qn

iD1kmik for any m1; : : : ;mn 2 M.

2.2.11 Filtered Colimits

Assume that f.A�; k k�/g�2ƒ is a filtered family of seminormed abelian groups
(resp. rings or A-modules) with non-expansive transition homomorphisms,
A D colim�A� is the filtered colimit, and f� W A� ! A are the natural maps. We
endow A with the colimit seminorm given by kak D inf�2ƒ;b2f�1� .a/kbk�. Obviously,
this is the maximal seminorm making each homomorphism f� non-expansive, and
hence A is the colimit of A� in the category of seminormed rings.

Lemma 2.2.12. Filtered colimits of seminormed rings and modules are compatible
with quotients, tensor products, symmetric and exterior powers.

Proof. For concreteness, consider the case of tensor products. Assume that fMig and
fNig are two filtered families and set Li D Mi ˝ Ni, M D colimiMi, N D colimiNi

and L D colimiLi. By the universal properties of tensor and colimit seminorms
we obtain a non-expansive homomorphism � W L ! M ˝ N, whose underlying
homomorphism is the classical isomorphism. It remains to show that ��1 is non-
expansive too. If l 2 M ˝ N satisfies klkM˝N < r, then l D Pr

jD1 mj ˝ nj with
maxj.kmjkM � knjkN/ < r. Choosing i large enough we can achieve that mj and nj

come from elements m0
j 2 Mi and n0

j 2 Ni whose norms are so close to the norms of
mj and nj that the inequality maxj.km0

jkMi �kn0
jkNi/ < r holds. Then l0 DPj m0

j˝n0
j 2

Li is a lifting of l satisfying kl0kLi < r and hence k��1.l/kL < r, as required. ut
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2.2.13 The Completion Along a Seminorm

Throughout this paper “complete” means what one sometimes calls “Hausdorff
and complete.” Similarly, by “completion” we mean what one sometimes calls
“separated completion.”

The completion of A with respect to the semimetric d.x; y/ D kx � yk is
denoted bA. Note that k k extends to bA by continuity and the completion map
˛ W A ! bA is an isometry (i.e., kxk D k˛.x/k) whose kernel is the kernel of
k k. Completion is functorial and, in the case of groups or modules, it takes exact
sequences to semiexact sequences, i.e. sequences in which Im.diC1/ is dense in
Ker.di/. Moreover, if all morphisms of an exact sequence are strictly admissible,
then the completion is exact and strictly admissible.

2.2.14 Banach Rings and Modules

A seminormed ring or module is called Banach if it is complete; in particular, the
seminorm is a norm. Note that a Banach A-module M is automatically a Banach
bA-module.

2.2.15 Unit Balls

The unit ball of a seminormed ring A will be denoted A˘; it is a subring of A. The
unit ball of a seminormed A-module M will be denoted M˘; it is an A˘-module.

Remark 2.2.16. (i) Perhaps, Mı would be a better notation, but the sign ı is
traditionally reserved for the unit ball of the spectral seminorm of a Banach
algebra. So, we use the diamond sign ˘ instead.

(ii) If k is a real-valued field, 0 ¤ 
 2 kıı, and V is a seminormed k-space, then
the induced topology on V˘ is the 
-adic one. In this case, V is Banach if and
only V˘ is 
-adic.

2.2.17 Bounded Categories

For the sake of completeness, we make some remarks on the categories of semi-
normed abelian groups (resp. rings or A-modules) with bounded homomorphisms.
Usually, seminormed A-modules in our sense are called non-expansive and a
general seminormed A-module M is defined to be an A-module provided with a
seminorm k kM such that there exists C D C.M/ satisfying kamkM � CjajAkmkM

for any a 2 A and m 2 M. Some results below can be extended to bounded
homomorphisms using the following lemma, but we will not pursue this direction
in the sequel.
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Lemma 2.2.18. Assume that � W S ! R is a bounded homomorphism of
seminormed abelian groups, rings, or modules. Then replacing the norm of S with
an equivalent norm one can make � non-expansive.

Proof. Define a new seminorm k k0S by kak0S D max.kakS; k�.a/kR/. ut

2.3 Kı-Modules

In this section we study Kı-modules for a real-valued field K. This material will
be heavily used later, in particular, because such modules appear as unit balls of
seminormed K-vector spaces.

2.3.1 Almost Isomorphisms

Let K be a real-valued field and let M be a Kı-module. We say that M is a torsion
module if any its element has a non-zero annihilator. By Mtor and Mtf D M=Mtor we
denote the (maximal) torsion submodule and the (maximal) torsion free quotient,
respectively. We say that an element x 2 M is almost zero if for any r < 1 there
exists 
 2 Kı such that r < j
j and 
x D 0, and x is called essential otherwise.
If jK�j is discrete, then any non-zero element is essential. As in [18], we say that a
module is almost zero if all its elements are so, and a homomorphism is an almost
isomorphism if its kernel and cokernel almost vanish.

2.3.2 Almost Isomorphic Envelope

Let N be a Kı-module with submodules M and M0. We say that M and M0 are almost
isomorphic as submodules if the embeddings M ,! MCM0 and M0 ,! MCM0 are
almost isomorphisms. By the almost isomorphic envelope, or just envelope, Menv of
M in N we mean the maximal submodule M0 
 N which is almost isomorphic to
M. Obviously, M0 consists of all elements x 2 N such that for any r < 1 there exists

 2 Kı satisfying r < j
j and 
x 2 M. Thus, if jK�j is discrete then Menv D M for
any M and N, and if jK�j is dense then Menv is the maximal submodule M0 
 N such
that KııM0 
 M. For example, if N D K and jK�j is dense, then .Kıı/env D Kı.

2.3.3 Adic Seminorm

Given a Kı-module M we define the adic seminorm as

kxkadic D inf
a2Kıj x2aM

jaj:
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Lemma 2.3.4. Let M be a Kı-module and x 2 M an element.

(i) The adic seminorm is the maximal Kı-seminorm on M bounded by 1.
(ii) kxkadic D 0 if and only if x is divisible (see Sect. 2.1.2).

Proof. The claim is almost obvious and the only case that requires a little care is
when the valuation is trivial. In this case, k kadic is trivial, i.e. kxkadic D 1 whenever
x ¤ 0, and so kxkadic D 0 if and only if x D 0, i.e. x is divisible. ut
Lemma 2.3.5. (i) Any homomorphism � W M ! N between Kı-modules is non-

expansive with respect to the adic seminorms.
(ii) Assume that M and N are torsion free. Then � is an isometry if and only if

Ker.�/ is divisible and Coker.�/ contains no essential torsion elements.

Proof. The first claim is obvious, so let us prove (ii). If Q D Ker.�/ is not divisible,
then it contains an element x which is not infinitely divisible in Q and hence also not
infinitely divisible in M. Then kxkadic ¤ 0, and hence � is not an isometry. So, we
can assume that Q is divisible and we should prove that in this case � is an isometry
if and only if Coker.�/ contains no essential torsion elements. Since Q is divisible,
M=Q is torsion free and the map M ! M=Q is an isometry. Thus, replacing M with
M=Q we can assume that � is injective. In this case the assertion is obvious. ut

2.3.6 Finitely Presented Modules

The following result is proved as its classical analogue over DVR by reducing a
matrix to a diagonal one by elementary operations.

Lemma 2.3.7. Assume that L 
 M are free Kı-modules of ranks l and m,
respectively. Then there exists a basis e1; : : : ;em of M and elements 
1; : : : ;
l 2 Kı
such that 
1e1; : : : ;
lel is a basis of L.

Corollary 2.3.8. Any finitely presented Kı-module M is of the form ˚n
iD1Mi with

each Mi non-zero cyclic, say Mi D Kı=
iKı, and 1 > j
1j 	 � � � 	 j
nj 	 0. In
addition, the sequence j
1j; : : : ;j
nj is determined by M uniquely.

2.4 Seminorms on K-Vectors Spaces

Now, let us study seminorms on vector spaces over a real-valued field K.

2.4.1 Orthogonal Bases and Cartesian Spaces

We recall some results from [8, Chap. 2]. For simplicity we only consider the finite-
dimensional case; generalizations to the case of infinite dimension can be found
in loc.cit. So, assume that .V; k k/ is a finite-dimensional seminormed K-vector
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space. A basis e1; : : : ;en of V is called r-orthogonal, where r 2 .0; 1�, if for any
v D P

i aiei the inequality kvk 	 r maxi.jaij � keik/ holds. If r D 1, then the basis
is called orthogonal, and if in addition keik D 1 for 1 � i � n then the basis
is called orthonormal. One says that the seminormed space V and the seminorm
k k are weakly cartesian (resp. cartesian, resp. strictly cartesian) if V possesses an
r-orthogonal basis for some r (resp. an orthogonal basis, resp. an orthonormal basis).

Remark 2.4.2. (i) If V is weakly cartesian, then it possesses an r-orthogonal basis
for any r < 1, see [8, Proposition 2.6.2/3].

(ii) If K is complete, then V is weakly cartesian if and only if its seminorm is
a norm, see [8, Proposition 2.3.3/4]. Conversely, if K is not complete, say
x 2 bK n K then it is easy to see that K C Kx with the norm induced from
bK is a normed vector space of dimension two which is not weakly cartesian
(e.g., its completion is the one-dimensional bK-vector space bK).

(iii) If K is spherically complete, then any normed vector space is cartesian by
[8, Proposition 2.4.4/2]. Conversely, if K is not spherically complete one
can easily construct two-dimensional normed vector spaces which are not
cartesian.

2.4.3 Index of Norms

If U is one-dimensional with basis e, then sending a seminorm to its value on e
provides a one-to-one correspondence between seminorms (resp. norms) on V and
the half-line R
0 (resp. R>0). In particular, if k k is a norm and k k0 is a seminorm
on U, then the index Œk k0 W k k� D kek0=kek is a well-defined number independent
of the choice of e.

We can extend this construction using the top exterior powers. Assume that
dim.V/ D d and set U D det.V/ D Vd V . Any seminorm k k on V induces the
determinant seminorm k kdet D k kVd on U, see Sect. 2.2.10. Moreover, if k k is
weakly cartesian then it is easy to see that k kdet is a norm, hence for any pair of
weakly cartesian norms we can define the index Œk k0 W k k� to be Œk k0det W k kdet�.
Obviously, the index is transitive, i.e.

Œk k0 W k k� � Œk k00 W k k0� D Œk k00 W k k�:

Remark 2.4.4. The intuitive meaning of the index is that it measures the inverse
ratio of volumes of the unit balls of the norms, at least when jK�j is dense. This will
be made precise in Lemma 2.6.4 below.
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2.5 Unit Balls

Next, we study seminorms in terms of their unit balls. In this section, the trivially
valued case will be uninteresting: we will often have to exclude it and in the
remaining cases it will reduce to a triviality.

2.5.1 Semilattices

Assume that V is a K-vector space and M 
 V is a Kı-submodule. If M˝Kı K D V ,
then we say that M is a semilattice of V . If a semilattice M is a free Kı-module, then
we say that M is a lattice. Note that M is a semilattice if and only if it contains a
basis of V and hence contains a lattice.

2.5.2 Almost Unit Balls

For any K-seminorm k k on a K-vector space V the unit ball V˘ is a Kı-module.
More generally, we say that a Kı-submodule M 
 V is an almost unit ball of k k if
it is almost isomorphic to V˘ in the sense of Sect. 2.3.2. In particular, V˘ itself is an
almost unit ball too. If the valuation on K is non-trivial, then any almost unit ball M
is a semilattice.

2.5.3 Seminorm Determined by a Semilattice

Any semilattice M 
 V determines a K-seminorm on V as follows: M possesses the
canonical adic seminorm and there is a unique way to extend it to a K-seminorm
k kM on V D KM. By Lemma 2.3.4, k kM is the maximal seminorm whose unit ball
contains M. The following lemma shows to which extent these correspondences
between seminorms and semilattices are inverse one to another. The proof is simple
so we omit it.

Lemma 2.5.4. Let V be a vector space over a real-valued field K.

(i) Assume that M 
 V is a semilattice and let k k be the maximal seminorm such
that kMk � 1. Then Menv is the unit ball of k k. In particular, M is an almost
unit ball of V.

(ii) Assume that the valuation on K is non-trivial, V is provided with a K-seminorm,
k k and V˘ is the unit ball. Let k k0 be the maximal seminorm bounded by 1 on
V˘. Then k k0 is the minimal seminorm that dominates k k and takes values in
the closure of jKj in R
0.

Corollary 2.5.5. Assume that K is a real-valued field whose valuation is non-trivial
and V is a K-vector space. Then the above constructions establish a one-to-one
correspondence between almost isomorphism classes of semilattices M 
 V and
K-seminorms on V taking values in the closure of jKj in R
0.
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2.5.6 Bounded Semilattices

Assume now that V is finite-dimensional and let us interpret the results of Sect. 2.4
in terms of semilattices. A semilattice M of V is called bounded if it is contained
in a lattice. Equivalently, for some (and then any) sublattice L 
 M one has that

M 
 L for some 0 ¤ 
 2 Kı.

Lemma 2.5.7. Let M be a semilattice in a finite-dimensional K-vector space V with
the associated seminorm k kM.

(i) The following conditions are equivalent: (a) M is almost isomorphic to a lattice
of V in the sense of Sect. 2.3.2, (b) Menv is a lattice, (c) k kM is strictly cartesian.

(ii) The following conditions are equivalent: (d) M is bounded, (e) for any 
 2 Kıı
there exists a lattice L 
 M such that 
M 
 L, (f) k kM is weakly cartesian.

Proof. Since any lattice is an almost isomorphic envelope of itself, the equivalence
(a)”(b) is clear. By Lemma 2.5.4(i), Menv is the unit ball of k kM , hence a basis of
V is orthonormal if and only if it is also a basis of Menv. This shows that (b)”(c).

Obviously, (e) implies (d). If 
M 
 L 
 M and j
j D r, then any basis of L
is r-orthogonal with respect to k kM and we obtain that (d) H) (f). Finally, let us
prove that (f) implies (e). Assume that k kM is weakly cartesian and choose an r-
orthogonal basis e1; : : : ;en for some r 2 .0; 1�. If 0 < j
j < r, then M is contained in
the lattice ˚n

iD1
�1Kıei. It follows that if jK�j is discrete then M is a lattice, so we
can assume that jK�j is dense. Choose any number s 2 .0; 1/. By Remark 2.4.2(i),
there exists an s-orthogonal basis e1; : : : ;en. Multiplying ei by elements of K we can
also achieve that ei 2 M and ei … 
M for any 
 2 K with j
j < s. Then ei generate
a lattice L 
 M such that 
M 
 L for any 
 2 K with j
j < s2. ut
Remark 2.5.8. (i) By definition, m 2 M is divisible if and only if kmkM D 0.

So, Remark 2.4.2(ii) implies that K is complete if and only if any semilattice
without non-zero divisible elements is bounded.

(ii) One can introduce a class of almost lattices using property (e) of Lemma 2.5.7
as the definition. We do not use this terminology since an almost lattice is the
same as a bounded semilattice. Using Lemma 2.5.7 and Remark 2.4.2(iii) one
can easily check that if K is spherically complete and jK�j D R>0 then M is an
almost lattice if and only if it is almost isomorphic to a lattice, but in general
there exist almost lattices which are not almost isomorphic to a lattice.

2.5.9 Index of Bounded Semilattices

If M is a semilattice in V , then
Vi M is a semilattice in

Vi V . Furthermore, if M is
bounded, then it is contained in a lattice L and hence

Vi M is contained in the latticeVi L. In particular,
Vi M is bounded. If d D dim.V/, then we call det.M/ D Vd M

the determinant of M. As in the case of seminorms, we define the index of two
bounded semilattices M;N of V to be the ratio of their determinants:

ŒM W N� Dj det.M/ W det.N/j D sup fj
jW
 2 K; 
 det.N/ 
 det.M/g :
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Lemma 2.5.10. Let V be a finite-dimensional vector space over a real-valued field
K, let M;M0 be two bounded semilattices of V, and let k k and k k0 be the associated
norms on V. Then,

(i) For any i, k kVi is the norm associated with
Vi M.

(ii) Œk k W k k0� D ŒM W M0��1.

Proof. Since M is an almost unit ball of k k, it is easy to see that k kVi is the maximal

norm such that kv1^� � �^vikVi � 1 for any v1; : : : ;vi 2 M. Thus the module
Vi M,

which is generated by the elements v1 ^ � � � ^ vi with v1; : : : ;vi 2 M, is an almost
unit ball of k kVi . This implies (i), and taking i D dim.V/ we reduce (ii) to the
one-dimensional case, which is clear. ut

2.6 Content of Kı-Modules

2.6.1 The Definition

Given a finitely presented Kı-module M we represent it as in Corollary 2.3.8
and define the content of M to be cont.M/ D Qn

iD1j
ij. In general, we set
cont.M/ D inf˛ cont.M˛/, where M˛ run through all finitely presented subquotients
of M. Obviously, this is compatible with the definition in the finitely presented case.
Note that cont.M/ D 0 if M is not a torsion module.

Remark 2.6.2. The content invariant adequately measures the “size” of a torsion
module M. In particular, cont.M/ D 1 if and only if M almost vanishes. Also, if the
valuation of K is discrete and 
K is a uniformizer then cont.M/ D j
K jlength.M/.

2.6.3 Relation to the Index

We will study the content by relating it to index of semilattices.

Lemma 2.6.4. Assume that V is a finite-dimensional vector space over a real-
valued field K and L 
 M are two bounded semilattices of V. Then ŒM W L� D
cont.M=L/�1.

Proof. If M and L are lattices, then the assertion follows by use of Lemma 2.3.7.
In particular, this covers the case of DVRs, so in the sequel we assume that jK�j is
dense. Choose 0 ¤ 
 2 Kıı. Then it is easy to see that ŒM W 
L� D 
�dŒM W L� and
cont.M=
L/ D 
dcont.M=L/, where d D dim.V/. Therefore, it suffices to prove
the lemma for M and 
L, and we can assume in the sequel that L 
 
M for some

 with j
j < 1.
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Let 
1; 
2; : : : be elements of Kı such that the sequence j
ij strictly increases
and tends to 1. By Lemma 2.5.7(d)”(e), for each i 2 N there exist lattices Li and
Mi such that


iLi 
 L 
 Li 
 Mi 
 M 
 
�1
i Mi:

Since the case of lattices was established, it suffices to check the equalities

lim
i

cont.Mi=Li/ D cont.M=L/; lim
i
ŒMi W Li� D ŒM W L�:

The latter follow from the observation that

cont.Mi=Li/ 	 cont.M=L/ 	 cont.
�1
i Mi=
iLi/ D 
2d

i cont.Mi=Li/

and

ŒMi W Li� � ŒM W L� � Œ
�1
i Mi W 
iLi� D 
�2d

i ŒMi W Li�:

ut

2.6.5 Properties

The following continuity result reduces computation of contents to the finitely
generated case.

Lemma 2.6.6. If a Kı-module M is a filtered union of submodules Mi, then

cont.M/ D inf
i

cont.Mi/ D lim
i

cont.Mi/:

Proof. Any subquotient of Mi is a subquotient of M hence cont.Mi/ 	 cont.M/.
Also, it is easy to see that any finitely presented subquotient of M is a subquotient
of each Mi with a large enough i. Hence the equalities hold. ut

Now we can establish the main property of content, the multiplicativity.

Theorem 2.6.7. If 0 ! M0 ! M ! M00 ! 0 is a short exact sequence of Kı-
modules, then cont.M/ D cont.M0/ � cont.M00/:

Proof. If M is not torsion, then either M0 or M00 is not torsion and hence both
cont.M/ and cont.M0/cont.M00/ vanish. So assume that M is torsion. First, we
consider the case when M is finitely generated. Fix an epimorphism L D .Kı/n �
M and denote its kernel Q. Then L is a lattice in V D Kn and since M D L=Q
is torsion, Q is a semilattice of V . Let Q0 be the kernel of the composition L !
M ! M00 then M00 D L=Q0 and M0 D Q0=Q. Hence the claim follows from the
multiplicativity of the index and Lemma 2.6.4.
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Assume now that M is a general torsion module and let fMig be the family of
finitely generated submodules of M. Then M0 is the filtered union of the submodules
M0

i D M0 \ Mi and M00 is the filtered union of the modules M00
i D Mi=M0

i . By the
above case, cont.Mi/ D cont.M0

i/ � cont.M00
i / and it remains to pass to the limit and

use Lemma 2.6.6. ut

3 Metrization of Sheaves

3.1 Seminormed Sheaves

Throughout Sect. 3.1, C is a site, i.e. a category provided with a Grothendieck
topology. In our applications, C will be the category associated with a G-topological
space, more concretely, it will be of the form XG for an analytic space X.

3.1.1 Quasi-Norms

The sup seminorm can be infinite on a non-compact set, so it is technically
convenient to introduce the following notion. Let R
0 D R
0 [ f1g be the
one-pointed compactification of R
0 with addition and multiplication satisfying all
natural rules and the rule 0 � 1 D 0. Quasi-norms on abelian groups, rings, and
modules are defined similarly to seminorms but with the target R
0. For example,
a quasi-norm j j on a ring A is a map j j W A ! R
0 such that j0j D 0, j1j D 1,
ja � bj � max.jaj; jbj/ and jabj � jaj � jbj. The material of Sect. 2.2, including
the constructions of quotient and tensor product seminorms, extends to quasi-norms
straightforwardly.

3.1.2 Seminorms on Sheaves

Let A be a sheaf of abelian groups on C. By a pre-quasi-norm k k on A we mean
a family of quasi-norms k kU on A.U/, where U runs through the objects of C,
such that the restriction maps A.U/ ! A.V/ are non-expansive. In the same way
one defines quasi-norms on sheaves of rings and quasi-norms on sheaves of modules
over a sheaf of rings provided with a pre-quasi-norm. The constructions we describe
below for pre-quasi-norms on sheaves of abelian groups hold also for pre-quasi-
norms on sheaves of rings and modules.

A pre-quasi-norm is called a quasi-norm if it satisfies the following locality
condition: for any covering fUi ! Ug in C the equality kskU D supiksikUi holds.
A pre-quasi-norm is called locally bounded if for any U in C and s 2 A.U/ there
exists a covering fUi ! Ug such that ksikUi < 1 for any i, where si denotes sjUi .
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A locally bounded quasi-norm will be called a seminorm, and once a seminorm k k
is fixed we call the pair A D .A; k k/ a seminormed sheaf of abelian groups.

Remark 3.1.3. (i) Our ad hoc definitions have the following categorical interpre-
tation. If k k is a pre-quasi-norm on A, then the pair .A; k k/ can also be viewed
as a presheaf of quasi-normed abelian groups on C, and this presheaf is a sheaf
if and only if k k is a quasi-norm.

(ii) If an object U is quasi-compact (i.e., any of its coverings possesses a finite
refinement) and k k is locally bounded, then k kU is a seminorm. In particular,
if the subcategory of quasi-compact objects Cc is cofinal in C, then seminorms
on A can be viewed as sheaves of seminormed abelian groups on Cc with the
underlying sheaf of abelian groups A.

3.1.4 Sheafification

For any pre-quasi-norm k k0 on a sheaf of abelian groups A we define the
sheafification k k D ˛.k k0/ by the rule

kskU D inf
fUi!Ug

sup
i2I
ksik0Ui

;

where U is an object of C, s 2 A.U/ and the infimum is over all coverings of U.

Lemma 3.1.5. Keep the above notation. Then k k is a quasi-norm and it is the
maximal quasi-norm dominated by k k0. In addition, if k k0 is locally bounded, then
k k is a seminorm.

Proof. The fact that k k is a quasi-norm follows easily from the transitivity of
coverings. The other assertions are obvious. ut
Remark 3.1.6. The universal property from the first part of the lemma justifies the
notion “sheafification.” In fact, the same argument shows that .A; k k0/! .A; k k/
is the universal (non-expansive) map from .A; k k0/ to a sheaf of abelian groups
with a quasi-norm. Thus, .A; k k/ is even the sheafification of .A; k k0/ as a sheaf
of quasi-normed abelian groups.

3.1.7 Operations on Seminormed Sheaves

Let us extend various operations, including quotients, tensor products, symmetric
powers, and exterior powers to seminormed sheaves. This is done in two stages.
First one works with sections over each U separately. This produces a sheaf with
a pre-quasi-norm, which is easily seen to be locally bounded. Then one sheafifies
this pre-quasi-norm if needed. As in the case of usual sheaves of rings and modules,
the second step is needed in the case of constructions that are not compatible with
limits, such as colimits (including quotients), tensor products, etc.
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For the sake of illustration, let us work this out in the case of quotients. Assume
that � W A! B is an epimorphism of sheaves of abelian groups and A is provided
with a seminorm k k. First, we endow B with the quotient pre-quasi-norm k k00, i.e.
for each U in C the quasi-norm k k00U on B.U/ is the maximal quasi-norm making
the map .A.U/; k kU/! .B.U/; k k00U/ non-expansive. Then the quotient seminorm
k k0 on B is defined to be the sheafification of k k00. In particular, k k0 is the maximal

seminorm on B making the homomorphism .A; k k/ �! .B; k k0/ non-expansive.

Remark 3.1.8. Provide K D Ker.�/ with any seminorm k kK making the embed-
ding K ,! A non-expansive. For example, one can take the restriction of k k on K.
Then the universal property characterizing � implies that .B; k k0/ is the cokernel of
the map of the seminormed sheaves of abelian groups .K; k kK/! .A; k k/.

3.1.9 Pushforwards

Recall that a morphism f W C0 ! C of sites is a functor F W C ! C0 that satisfies
certain properties, see [36, Tag:00X0]. If A0 is a sheaf of abelian groups on C0 with
a pre-quasi-norm k k0, then we endow A D f�.A0/ with the pushforward pre-quasi-
norm k k as follows: for any U in C and U0 D F.U/ we have that A.U/ D A0.U0/
and we set k kU D k kU0 . Clearly, if k k0 is a quasi-norm, then k k is also a quasi-
norm, but the pushforward of a seminorm can be unbounded.

Remark 3.1.10. An important case when the pushforward of a seminorm is a
seminorm is when f corresponds to a proper map of topological spaces. This fact
will not be used, so we do not check it here.

3.1.11 Pullbacks

Assume, now, that A is a sheaf of abelian groups on C with a pre-quasi-norm k k
and A0 D f �1.A/. Then A0.U0/ D colimU0!F.U/A.U/ and we define k k0U0 to be
the colimit of the quasi-norms k kU . If k k is a quasi-norm, it still may happen
that the pre-quasi-norm k k0 is not a quasi-norm, so we define f �1.k k/ to be
the sheafification of k k0. On the positive side we note that local boundedness is
preserved by the pullback, so if k k is a seminorm then f �1.k k/ is a seminorm too.

3.2 Points and Stalks of Seminorms

In this section we study stalks of seminorms at points and describe seminorms
that are fully controlled by stalks. For concreteness, we usually consider sheaves
of abelian groups but the cases of rings and modules are similar.
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3.2.1 Points of Sites

We use the terminology of [36, Tag:00Y3] when working with points of sites. Recall
that a point x of C is a functor x W C ! Sets that satisfies certain properties and given
an object U of C an elements f 2 x.U/ is interpreted as a morphism f W x! U. The
set of isomorphism classes of points of C will be denoted jCj.

3.2.2 Stalks

Assume that k k is a pre-quasi-norm on a sheaf of abelian groups A. Given a point
x 2 jCj, we endow the stalk Ax D colimx!UA.U/ at x with the stalk quasi-norm
k kx defined as follows: if x ! V and s 2 A.V/, then kskx D infx!U!VkskU . The
following result follows by unveiling the definitions.

Lemma 3.2.3. Assume that k k is a pre-quasi-norm on a sheaf of abelian groups
A. Then,

(i) The stalks of k k and of the sheafification ˛.k k/ coincide.
(ii) If k k is locally bounded, then the stalks k kx are seminorms.

Also, Lemma 2.2.12 implies the following result.

Lemma 3.2.4. Stalks of seminormed sheaves of rings or modules are compatible
with quotients, tensor products, symmetric and exterior powers. For example, given
a seminormed sheaf of rings A, seminormed A-modules M, N and L DM˝AN ,
and a point x 2 jCj, there is a natural isomorphism of seminormed Ax-modules
Mx ˝Ax Nx D Lx.

3.2.5 Semicontinuity

Let P 
 jCj be a subset. A seminorm k k on A induces the set of stalk seminorms
fk kxgx2P which satisfies the following semicontinuity condition: if x 2 P and
sx 2 Ax, then for any " > 0 there exists a morphism x! U such that sx is induced
from s 2 A.U/ and kskU < kskx C ", in particular, ksky < kskx C " for any
y ! U. Any family of seminorms satisfying this condition will be called upper
semicontinuous.

Example 3.2.6. If C is the site of open subsets of a topological space X, then a
family of seminorms fk kxgx2X is upper semicontinuous if and only if for any open
U and a section s 2 A.U/ the function ksk W U ! R sending x to kskx is upper
semicontinuous.
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3.2.7 P-Seminorms

Let P 
 jCj. Given a seminorm k k on A set kskP ;U D supx2P ;x!Uksxkx. Clearly,
k kP is a seminorm on A, and we say that k k is a P-seminorm if k k D k kP .

Lemma 3.2.8. Keep the above notation then,

(i) k kP is the maximal P-seminorm on A that is dominated by k k. The stalks of
k kP and k k at any point of P coincide.

(ii) There is a natural bijection between P-seminorms on A and upper semicontin-
uous families of seminorms on the stalks of A at the points of P .

Proof. The first claim is clear. We noticed earlier that any seminorm gives rise to an
upper semicontinuous family. Conversely, to any family of seminorms fk kxg on the
stalks at the points x 2 P we assign the sup seminorm kskP ;U D supx2P ;x!Uksxkx.
To prove (ii) we should prove that if the family is upper semicontinuous then the
stalk k kP ;x coincides with the original seminorm k kx. Clearly, k kx � k kP ;x.
In addition, if kskx < r, then there exists a morphism x ! U such that s is
induced from an element sU 2 A.U/ and ksUky < r for any y ! U. Then
kskP ;x � ksUkP ;U < r, thus proving (ii). ut
Remark 3.2.9. The class of P-seminorms is not preserved under quotients and other
operations. One can easily construct such examples already when C is associated
with the topological space X D f�; sg consisting of an open point � and a closed
point s, and P D f�g.

3.2.10 Conservative Families

As one might expect, if C possesses enough points then the theory of seminorms
can be developed in terms of stalks. More concretely, assume that C possesses
a conservative family of points P . Then seminorms and operations on them are
completely controlled by the P-stalks. In particular, one can define all operations
on seminormed sheaves stalkwise. This follows from the following result.

Theorem 3.2.11. Assume that P is a conservative family of points of a site C and
A is a sheaf of abelian groups (resp. rings, resp. modules over a seminormed sheaf
of rings) on C. Then any seminorm k k on A is a P-seminorm. In particular,
there is a natural bijective correspondence between seminorms on A and upper
semicontinuous families of seminorms on the stalks of A at the points of P .

Proof. All cases are proved similarly, so assume that A is a sheaf of abelian groups.
Fix r > 0 and let Ar̆ 
 A denote the ball of radius r; it is the presheaf such that
Ar̆ .U/ is the set of all elements s 2 A.U/ with kskU � r. The locality condition
satisfied by k k implies that Ar̆ is, in fact, a sheaf. Note that the stalk of Ar̆ at a
point x coincides with the ball .Ax/r̆ .
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Define a subsheaf AP̆ ;r
ir
,! Ar̆ by the condition that s 2 AP̆ ;r.U/ if for any

x ! U with x 2 P the inequality kskx � r holds. Note that AP̆ ;r is the r-ball of
the seminorm k kP and the stalk of AP̆ ;r at a point x 2 P equals to .Ax/r̆ . So, the
embedding of sheaves ir induces isomorphisms of stalks at the points of P , and
using that P is conservative we obtain that ir is an equality. Thus, the balls of the
seminorms k k and k kP coincide and hence the seminorms coincide. We proved
that k k is a P-seminorm, and the second claim follows from Lemma 3.2.8(ii). ut

3.3 Sheaves on Analytic Spaces

In this section we study seminorms on OXG -modules, where X is a H-strict k-analytic
space and XG denotes the site of H-strict analytic domains in X.

3.3.1 Analytic Points

Note that any point x 2 X defines a point of XG, so we can view jXj as a subset of
jXGj. A point of XG is called analytic if its isomorphism class lies in jXj. A seminorm
on a sheaf of abelian group on XG is called G-analytic if it is an jXj-seminorm in
the sense of Sect. 3.2.7. For example, the spectral seminorm j j on OXG satisfies
jf jU D supx2Ujf .x/j, i.e. it is G-analytic.

Example 3.3.2. (i) A typical example of a non-analytic point z on a unit disc
E D M.kftg/ is as follows: the family of neighborhoods of z is the set of
all domains U 
 E that contain an open annulus r < jtj < 1 for some r. One
can view z as the maximal point with jtjz < 1. In Huber adic geometry (see
[21]) it corresponds to a valuation of height two such that jtjz < 1 and r < jtjz
for any real r < 1.

(ii) Using z one easily constructs a seminorm k k on OXG which is not G-analytic.
For example, set kfkU D 0 if z … U and kfkU D kf .p/k otherwise, where p
is the maximal point of E. In fact, all stalks of k k, excluding the stalk at z,
are zero.

For the sake of simplicity, we only use analytic points in Sect. 3.3 (and in the
main part of this paper). Arbitrary points of XG will be described in Sect. 9.1, and
then we will extend to them some results of this section.

3.3.3 Analytic Seminorms

Let A be a sheaf of abelian groups on XG with a seminorm k k. For any domain U
and a section s 2 A.U/ consider the function ksk W U ! R
0 that sends x 2 U to
kskx. As we saw in Sect. 3.2.5, this function is upper G-semicontinuous, i.e. if x 2 X
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satisfies kskx < r then there exists an analytic domain V such that x 2 V 
 U and
ksky < r for any y 2 V . We say that the seminorm k k is analytic if it is G-analytic
and all functions ksk are upper semicontinuous with respect to the usual topology
of X, i.e. in the above situation V can be chosen to be a neighborhood of x.

Remark 3.3.4. (i) Both conditions are essential in the definition of analytic
seminorms. For example, the seminorm k k in Example 3.3.2 has zero stalks at
all analytic points, hence all functions ksk vanish though the seminorm is not
analytic.

(ii) Assume that X D [iXi is an admissible covering. Then a function X !
R is upper semicontinuous if and only if its restrictions to Xi are upper
semicontinuous. Therefore, a seminorm on A is analytic if and only if its
restrictions onto AjXi are analytic, i.e. analyticity is a G-local condition.

(iii) The following simple observation will not be used, so we omit a justification.
A seminorm k k is analytic if and only if for any affinoid domain U 
 X, a
section s 2 A.U/, a point x 2 U and r > kskx there exists a neighborhood V of
x in U such that kskV < r. This can also be reformulated using stalks of A in
the usual topology: k k is analytic if and only if for any affinoid domain U 
 X
and a point x 2 U the map AjUj;x ! Ax is an isometry with respect to the stalk
seminorms of k k, where AjUj denotes the restriction of A onto the topological
space jUj.

3.3.5 Local Rings of OXG

In Berkovich geometry, one usually works with local rings OX;x of good spaces and
their residue fields �.x/ D OX;x=mx. We will also need the local rings OXG;x and
their residue fields �G.x/ D OXG;x=mG;x.

Lemma 3.3.6. Let X be an analytic space with a point x 2 X. Then

(i) .OXG;x; j jx/ is a seminormed local ring whose maximal ideal mG;x is the kernel
of j jx.

(ii) The residue norm on �G.x/ is a valuation and the completion coincides with
H.x/. In particular, H.x/ is the completion of .OXG;x; j jx/.

Proof. Note that OXG;x is the filtered colimit of the rings OV;x, where V is an affinoid
domain containing x, and the transition maps are local. Hence (i) follows from the
observation that the maximal ideal of OV;x is the kernel of the restriction of j jx.
Furthermore, this implies that the residue field �G.x/ of OXG;x is the filtered union
of the residue fields of OV;x. The latter are dense subfields of H.x/, hence the same
is true for �G.x/. It remains to note that the completion of .OXG;x; j jx/ is isomorphic
to the completion of its quotient by the kernel of the seminorm. ut
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3.3.7 Seminormed OXG -Modules

Assume that .F ; k k/ is a seminormed OXG -module. For any analytic point x the
kernel of k kx contains mG;xFx and hence k kx is induced from the residue seminorm
on the fiber F.x/ D Fx=mG;xFx. We call the latter the fiber seminorm and denote
it k k.x/. The completion of F.x/ with respect to k k.x/ is a Banach H.x/-space that

will be called the completed fiber and denoted bF.x/.

3.3.8 Pullbacks

If f W Y ! X is morphism of Berkovich spaces and F is a seminormed OXG -module,
then we define the pullback as f �F D f �1F ˝f�1OXG

OYG , where both f �1 and the
tensor product are taken in the sense of seminormed sheaves.

3.3.9 The Case of Invertible Sheaves

For illustration, let us describe G-analytic OXG -seminorms on an invertible module
F . Such a seminorm k k is determined by a G-semicontinuous family of seminorms
k kx for x 2 X. Sending a seminorm to its fiber establishes a bijection between
OXG;x-seminorms on Fx and �G.x/-seminorms on the one-dimensional vector space
F.x/. Finally, if sx is a basis of F.x/, then sending a seminorm to its value on sx

provides a parametrization of �G.x/-seminorms on F.x/ by numbers r 2 R
0.

Lemma 3.3.10. Assume that X is an analytic space and F is a free OXG -module of
rank one with basis s. Then the correspondence k k 7! ksk establishes a bijection
between G-analytic OXG -seminorms on F and upper G-semicontinuous functions
r W X ! R
0. Furthermore, a seminorm is analytic if and only if the function ksk is
upper semicontinuous.

Proof. For any seminorm k k the function ksk is upper G-semicontinuous and
the argument above the lemma shows that it determines a G-analytic seminorm
uniquely. Conversely, given a G-semicontinuous function r consider the seminorm
k kx on Fx such that kskx D r.x/. It is easy to see that the family fk kxgx2X is G-
semicontinuous and hence gives rise to a G-analytic seminorm by Lemma 3.2.8(ii).
It remains to show that if ksk is upper semicontinuous then the seminorm is analytic.
Indeed, a section t 2 F.U/ is of the form fs with f 2 OXG.U/, and using that the
function jf j is continuous we obtain that ktk D jf j �ksk is upper semicontinuous. ut

3.3.11 Analytic OXG -Seminorms on Coherent Sheaves

For coherent sheaves one can describe analyticity in terms of fiber seminorms of X
and XG.
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Lemma 3.3.12. Assume that X is a good analytic space with a coherent OX-module
F and let FG denote the associated coherent OXG -module on XG. Let k k be an
OXG -seminorm on FG and for any x 2 X endow stalks Fx and FG;x and the fibers
F.x/ and FG.x/ with the stalk and the fiber seminorms of k k. Then the following
conditions are equivalent:

(i) k k is analytic.
(ii) The map Fx ! FG;x is an isometry for any x 2 X.

(iii) The map F.x/! FG.x/ is an isometry for any x 2 X
(iv) The map F.x/˝�.x/�G.x/! FG.x/ is an isometric isomorphism for any x 2 X.

Proof. (iii)”(iv) Set K D �.x/, K0 D �G.x/, V D F.x/ and endow
V 0 D V ˝K K0 with the tensor seminorm. The map h W V 0 ! FG.x/ is an
isomorphism since F is coherent, so (iv) is satisfied if and only if h is an isometry.
Note also that the inclusion K ,! K0 is an isometry, hence V ,! V 0 is an isometry
by [32, Lemma 3.1]. In particular, if h is an isometry, then g W V ! FG.x/ is an
isometry, i.e. (iv) H) (iii). Conversely, if g is an isometry, then h is an isometry
because h is non-expansive and V is dense in V 0.

(ii)”(iii) This follows from the fact that the seminorm of Fx is induced from
the seminorm of F.x/, and similarly for FG;x and FG.x/.

(i) H) (ii) We should prove that if x 2 X and s 2 Fx then the image sG 2 FG;x of
s satisfies ksGkx 	 ksk. Choose a neighborhood U of x such that s is defined on
U. Since the seminorm is analytic, for any r > ksGkx there exists a neighborhood
V 
 U of x such that ksky < r for any y 2 V . Since k k is G-analytic, this implies
that kskV < r and hence kskx < r.

(ii) H) (i) First, we claim that (ii) holds for the restriction of FG onto any good
domain U 
 X. Let G denote the coherent OU-module FGjU . Choose any x 2 U
and let �U.x/ be the residue field of x in U, in particular, �.x/ 
 �U.x/ 
 �G.x/.
Since (ii) and (iii) are equivalent, we should check that the map h W G.x/ !
GG.x/ D FG.x/ is an isometry. This follows easily from the fact that G.x/ D
F.x/˝�.x/ �U.x/ as vector spaces, h is non-expansive and F.x/ ! FG.x/ is an
isometry.

Now, let us prove that k k is analytic. Let U 
 X be an affinoid domain and
s 2 FG.U/. We claim that the function ksk is upper semicontinous. It suffices to
check this for affinoid domains in U hence we can assume that U is affinoid. Fix
x 2 U and let r > kskx. We showed that Gx ! FG;x is an isometry, where G D FGjU ,
hence there exists a neighborhood V 
 U of x with kskV < r. In particular, ksky < r
for any y 2 V and hence ksk is upper semicontinous at x.

It remains to show that k k is G-analytic. If this is not so, then kskU > r >
supx2Ukskx for some choice of U, s 2 A.U/ and r. If U D [iUi is an admissible
affinoid covering, then kskUi > r for some i, and replacing U with Ui we can assume
that U is affinoid. By the same argument as above, for any point x 2 U there exists an
open neighborhood Vx 
 U of x with kskVx < r. Since U D [xVx is an admissible
covering, we obtain that kskU � supxkskVx < r. The contradiction concludes the
proof. ut
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3.3.13 Operations

Finally, let us study when the property of a seminorm to be analytic is pre-
served by various operations. Certainly, some restrictions should be imposed (see
Remark 3.2.9), so we only consider the coherent case, which will be used later.

Lemma 3.3.14. Analyticity of OXG -seminorms on coherent sheaves is preserved
under the following operations: quotients, tensor products, symmetric and exterior
powers.

Proof. We consider the case of quotients. The tensor products are dealt with
similarly and the other cases follow. So, let M � N be a surjection of coherent
OXG -modules and let k kM be an analytic OXG -seminorm on M. We should prove
that the quotient seminorm k kN is analytic. By Remark 3.3.4(ii), the question is
G-local on X, hence we can assume that X is good.

In the sequel, M and N denote the OX-sheaves, while MG and NG denote the
associated OXG -sheaves. Set K D �.x/ and K0 D �G.x/, and endow U D M.x/,
U0 DMG.x/, V D N .x/ and V 0 D NG.x/ with the fiber seminorms of k kM and
k kN . In particular, we have surjections f W U � V and f 0 D f ˝K K0 W U0 � V 0
such that the seminorms on the targets are the quotient seminorms.

By the equivalence (i)”(iv) in Lemma 3.3.12, the isomorphism U˝K K0 ��!U0

is an isometry and it suffices to prove that the isomorphism h W V ˝K K0 ��!V 0
of seminormed vector spaces is an isometry. By definition, k kV is the maximal
seminorm such that kf .u/kV � kukU for any u 2 U, hence the seminorm on V˝K K0
is the maximal one such that kf .u/˝ak � jaj�kukU for any u 2 U and a 2 K0. In the
same way, the seminorm on V 0 is the maximal one such that kf 0.u˝a/k � jaj �kukU .
Since h.f .u/˝ a/ D f 0.u˝ a/, the seminorms match and h is an isometry. ut

4 Differentials of Seminormed Rings

4.1 Kähler Seminorms

4.1.1 The Definition

Given a seminormed ring B and a homomorphism of rings � W A ! B we equip
	B=A with the Kähler seminorm k k	 given by the formula

kxk	 D inf
xDP cidbi

max
i
jcijBjbijB;

where x 2 	B=A and the infimum is over all representations of x as
P

cidB=A.bi/

with ci; bi 2 B. In fact, we will always work with k k	 when � is a non-expansive
homomorphism of seminormed rings, but its independence of the seminorm of A
will be used.
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4.1.2 Universal Properties

Both the Kähler seminorm and the seminormed module .	B=A; k k	/ can be
characterized by appropriate universal properties.

Lemma 4.1.3. Assume that A ! B is a non-expansive homomorphism of semi-
normed rings. Then,

(i) k k	 is the maximal B-seminorm that makes dB=A W B ! 	B=A a non-
expansive A-homomorphism.

(ii) dB=A is the universal non-expansive A-derivation of B with values in a
seminormed B-module:

HomB;nonexp.	B=A;M/
��!DerA;nonexp.B;M/

for any seminormed B-module M.

Proof. The first claim is obvious. In (ii), we should only prove that any non-
expansive A-derivation d W B ! M with values in a seminormed B-module
M factors into a composition of dB=A and a non-expansive homomorphism
h W 	B=A ! M. By the usual universal property, we have a unique such factoring
with h being a homomorphism of modules, and it remains to show that h is
non-expansive. Let k k0	 be defined by kxk0	 D max.kxk	; kh.x/kM/. Then it
immediately follows that .	B=A; k k0	/ is a seminormed B-module and dB=A is
non-expansive with respect to k k0	. So, k k	 D k k0	 by (i), and hence h is non-
expansive. ut

4.1.4 An Alternative Definition

Similarly to the case of usual rings, one can define the seminormed module 	B=A

in terms of the kernel of B ˝A B ! B. The proof reduces to repeating the
classical argument (see [27, Sect. 26.C]) and checking that all relevant maps are
non-expansive.

Lemma 4.1.5. Assume that f W A ! B is a non-expansive homomorphism of
seminormed rings and I is the kernel of the induced homomorphism of seminormed

rings B˝AB! B. Then the classical isomorphism � W 	B=A
��!I=I2 is an isometry.

Proof. Recall that � is induced by the derivation d W B ! I=I2 given by
db D b˝ 1� 1˝ b. By Lemma 4.1.3(ii), it suffices to show that any non-expansive
A-derivation @ W B ! M factors uniquely into a composition of d and a non-
expansive homomorphism of B-modules h W I=I2 ! M. In fact, a homomorphism
h exists and is unique by the classical theory, so we should only check that it is
non-expansive.

Let C D B � M denote the B-module B ˚ M provided with the multiplication
.b;m/.b0;m0/ D .bb0; bm0 C b0m/ and the seminorm j.b;m/jC D max.jbjB; kmkM/.
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The A-bilinear map B�B! B�M sending .b; b0/ to .bb0; b@.b0// is non-expansive,
hence it induces a non-expansive homomorphism � W B ˝A B ! B � M. By the
classical argument, � vanishes on I2 and takes I to M, in particular, it induces a non-
expansive homomorphism h W I=I2 ! M. It remains to notice that h ı d D @. ut

4.2 Basic Properties of Kähler Seminorms

4.2.1 Fundamental Sequences

First and second fundamental sequences extend to the context of seminormed rings.

Lemma 4.2.2. Assume that A ! B ! C are non-expansive homomorphisms of
seminormed rings. Then,

(i) The maps of the first fundamental sequence

	B=A ˝B C
g! 	C=A

f! 	C=B ! 0

are non-expansive and f is strictly admissible.
(ii) If the homomorphism � W B ! C is onto and J is its kernel, then the maps of

the second fundamental sequence

J=J2 ! 	B=A ˝B C
g! 	C=A ! 0

are non-expansive. Furthermore, if B ! C is strictly admissible, then g is
strictly admissible.

Proof. This directly follows from the definition of Kähler seminorms. For example,
let us check the second assertion in (ii). We should prove that the quotient seminorm
does not exceed the Kähler seminorm of	C=A. The latter is the maximal seminorm
satisfying the inequalities kdck � jcjC . For any r > jcjC we can find b 2 ��1.c/
such that jbjB < r. Therefore kdbk	 < r and we obtain that the quotient seminorm
of dc does not exceed r. ut
Remark 4.2.3. Even if the map g W 	B=A˝B C ! 	C=A is an isomorphism, it does
not have to be an isometry. Simple examples of this type are obtained when B! C
is an isomorphism but not an isometry.

Corollary 4.2.4. Let A! B be a local homomorphism of seminormed local rings
and let kA and kB be the residue fields provided with the quotient seminorms.
If jmBjB D 0, then the natural map 	B=A ! 	kB=kA is an isometry.

Proof. By our assumption, the map 	B=A ! 	B=A=mB	B=A is an isometry.
Hence the map 	B=A ! 	kB=A is an isometry by Lemma 4.2.2(ii). Since the map
A! kB factors through kA there is also an isometry 	kB=A ! 	kB=kA . ut
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4.2.5 Base Change

Similarly to the classical case, Kähler differentials of seminormed modules are
compatible with base changes.

Lemma 4.2.6. Assume that A ! B and A ! A0 are non-expansive homomor-
phism of seminormed rings and set B0 D B˝AA0. Then � W 	B=A˝A0B0 ! 	B0=A0
is an isomorphism of seminormed modules.

Proof. Since � is an isomorphism of modules we should prove that it is an isometry.
Let k ks and k kt denote the seminorms on the source and on the target, respectively.
Recall that k ks is the maximal seminorm making the bilinear map 	B=A � B0 !
	B=A ˝A0 B0 non-expansive (see Sect. 2.2.9). This fact and Lemma 4.1.3(i) imply
that k ks is the maximal seminorm for which kad.b/˝ cks � jajBjbjBjcjB0 for any
a; b 2 B and c 2 B0. In addition, Lemma 4.1.3(i) implies that k kt is the maximal
seminorm such that kxd.y/kt � jxjB0 jyjB0 for any choice of x; y 2 B0. Since ad.b/˝c
goes to acd.b/, it follows that any inequality defining k ks holds also for k kt, and
so � is non-expansive.

It remains to check that ��1 is non-expansive and for this we will check that any
inequality defining k kt holds for k ks too. As we noted above, k kt is defined by the
inequalities kzkt � jxjB0 jyjB0 , where x; y 2 B0 and z D xdy. Fix r > jyjB0 and find a
representation y D Pn

iD1 bi ˝ a0
i with bi 2 B, a0

i 2 A0, and jbijBja0
ijA0 � r for any

1 � i � n. Then ��1.z/ DPn
iD1 d.bi/˝ a0

ix and hence

k��1.z/ks � max
i
jbijBja0

ijA0 jxjB0 � rjxjB0 :

Thus k��1.xdy/ks � jyjB0 jxjB0 for any x; y 2 B0, and we are done. ut

4.2.7 Density

Lemma 4.2.8. If � W B0 ! B is a non-expansive homomorphism of seminormed
rings with a dense image, then the Kähler seminorm of 	B=B0 vanishes.

Proof. For any b 2 B and " > 0 there exists b0 2 B0 such that jb � b0j < ". Hence
kdbk D kd.b � b0/k � ". ut
Corollary 4.2.9. If A ! B0 ! B are homomorphisms of seminormed rings and
the image of B0 ! B is dense, then the homomorphism � W 	B0=A˝B0 B! 	B=A
has a dense image.

Proof. By Lemma 4.2.2(ii), K D Im.�/ is the kernel of the admissible surjection
	B=A ! 	B=B0 . Since the seminorm on 	B=B0 is trivial by Lemma 4.2.8, it
follows that any element of 	B=A can be approximated by an element of K with
any precision, i.e. K is dense. ut
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4.2.10 Filtered Colimits

We will also need that Kähler seminorms are compatible with filtered colimits.

Lemma 4.2.11. Assume that A is a seminormed ring and fB�g�2ƒ is a filtered
family of seminormed A-algebras with non-expansive transition homomor-
phisms. Let B be the colimit seminormed algebra, see Sect. 2.2.11. Then
	B=A D colim�	B�=A as seminormed A-modules.

Proof. It is a classical result that the modules are isomorphic, so we should compare
the seminorms. Let k k be the colimit seminorm on 	B=A. By Lemma 4.1.3(i)
and Sect. 2.2.11, k k is the maximal seminorm such that the composed

A-homomorphisms B�
d�! 	B�=A ! 	B=A are non-expansive. The latter

decompose as B�
��! B d! 	B=A and it follows from the definition of j jB that

d W B ! 	B=A is non-expansive and k k is the maximal seminorm for which this
happens. Thus, k k coincides with the Kähler seminorm. ut

4.3 Completed Differentials

4.3.1 The Module O�B=A

By b	B=A we denote the completion of 	B=A. It is a Banach B-module and we
call its norm the Kähler norm. The corresponding A-derivation will be denoted
OdB=A W B! b	B=A.

4.3.2 The Universal Property

Lemma 4.1.3 and the universal property of the completions imply the following
result.

Lemma 4.3.3. If � W A ! B is a non-expansive homomorphism of seminormed
rings, then OdB=A is the universal non-expansive A-derivation of B with values in
Banach B-modules. Namely,

HomB;nonexp.b	B=A;M/
��!DerA;nonexp.B;M/

for any Banach B-module M.

Remark 4.3.4. (i) In the case of k-affinoid algebras, Berkovich defines b	B=A in
[5, Sect. 3.3] as J=J2, where J D Ker.B ! B Ő AB/. Note that the notation in
[5] does not use hat because uncompleted modules of Kähler differentials are
never considered there, but we have to distinguish them in our paper. It follows
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from [5, Proposition 3.3.1(ii)] and Lemma 4.3.3 that Berkovich’s definition
is equivalent to ours. In particular, if X D M.B/ and S D M.A/, then
�.	X=S/ D b	B=A.

(ii) Alternatively, one could deduce the equivalence of the two definitions from
Lemma 4.1.5. Even more generally, Lemma 4.1.5 implies that if A ! B is a
homomorphism of Banach rings, J D Ker.B ! B Ő AB/ and J2 is the closure

of J2 in J, then b	B=A D bJ=J2 D J=J2. In the affinoid case, all ideals are
automatically closed, so J2 D J2.

5 Kähler Seminorms of Real-Valued Fields

Our next aim is to study Kähler seminorms on the vector spaces 	K=A, where K is
a real-valued field and � W A! K is a homomorphism of rings. In this case we will
use the notation Aı D ��1.Kı/. In fact, we are mainly interested in the cases when
A D Z or A is a field, but we will consider an arbitrary A when possible.

5.1 Log Differentials

The aim of this section is to express the Kähler seminorm on 	K=A in terms of
modules of log differentials, so we start with recalling some basic facts about the
latter.

5.1.1 Log Rings

A log structure on a ring A is a homomorphism of monoids ˛A W MA ! .A; �/
inducing an isomorphism M�

A

��!A�. The triple .A;MA; ˛A/ is called a log ring.
Usually we will denote it as .A;MA/ and, when this cannot cause to a confusion,
denote elements ˛A.m/ simply by m. Homomorphisms of log rings are defined in
the natural way.

5.1.2 Log Differentials

If .A;MA/ ! .B;MB/ is a homomorphism of log rings, then we denote by
	.B;MB/=.A;MA/ the module of log differentials. Recall that the latter is defined in
[23, Sect. 1.7] as the quotient of 	B=A ˚ .B ˝ Mgp

B / by the relations of the form
.0; 1 ˝ a/, where a 2 MA, and .dB=A.b/;�b ˝ b/, where b 2 MB. The full form
of the latter relation is .dB=A.˛B.b//;�˛B.b/ ˝ b/, and we used our convention to
present it in a more compact form. For any b 2 MB we denote by ıB=A.b/ the image
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of 1˝ b 2 B˝ Mgp
B in 	.B;MB/=.A;MA/. It satisfies the equality bıB=A.b/ D dB=A.b/.

Intuitively, one may view ıb as the log differential d log b and 	.B;MB/=.A;MA/ is
the universal module obtained from 	B=A by adjoining the log differentials of the
elements of MB.

5.1.3 The Universal Log Derivative

A log .A;MA/-derivation of .B;MB/ with values in a B-module N consists of an
A-derivation d W B ! N and a homomorphism ı W MB ! N such that dm D mım
for any m 2 MB and ım D 0 for any m coming from MA. The B-module of all log
derivations is denoted Der.A;MA/..B;MB/;N/.

Lemma 5.1.4. If .A;MA/! .B;MB/ is a homomorphism of log rings, then

�
dB=A W B! 	.B;MB/=.A;MA/; ıB=A W MB ! 	.B;MB/=.A;MA/

�

is a universal log .A;MA/-derivation of .B;MB/. Namely, for any B-module N the
induced homomorphism

HomB.	.B;MB/=.A;MA/;N/
��!Der.A;MA/..B;MB/;N/

is an isomorphism.

This fact is proved similarly to its classical analogue for Kähler differentials, so
we skip the proof (see also [30, Proposition IV.1.1.6]). As an immediate corollary
one obtains the first fundamental sequence (see also [30, Proposition IV.2.3.1]).

Corollary 5.1.5. Assume that .A;MA/! .B;MB/! .C;MC/ are homomorphisms
of log rings. Then the sequence

	.B;MB/=.A;MA/ ˝B C! 	.C;MC/=.A;MA/ ! 	.C;MC/=.B;MB/ ! 0

is exact.

5.1.6 The Integral Log Structure

Given a valued field K and a homomorphism � W B! Kı, we will use the notation

	
log
Kı=B D 	.Kı;Kınf0g/=.B;BnKer.�//

and 	log
Kı D 	log

Kı=Z.
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5.1.7 The Kähler Seminorm on�K=A

The following result expresses the Kähler seminorm in terms of a module of log
differentials.

Theorem 5.1.8. Assume that K is a real-valued field with a subring A and let k k	
denote the Kähler seminorm of 	K=A. Then,

(i) Localization induces an isomorphism 	
log
Kı=Aı ˝Kı K D 	K=A. In particular,

one can naturally view .	log
Kı=Aı/tf as a semilattice in 	K=A.

(ii) k k	 is the maximal K-seminorm whose unit ball contains .	log
Kı=Aı/tf. In par-

ticular, .	log
Kı=Aı/tf is an almost unit ball of k k	.

Proof. Part (i) follows from the fact that the modules of log differentials are
compatible with localizations and the log structure at the generic point of Kı is
trivial:

	
log
Kı=Aı ˝Kı K D 	log

.K;K�/=.Aı;Aınf0g/ D 	K=Aı D 	K=A:

Note that k k	 is determined by the inequalities kdxk	 � jxj with x 2 K. For any
seminorm, kdxk � jxj if and only kd.x�1/k D k�x�2dxk � jx�1j, hence already
the inequalities kıxk	 � 1 with 0 ¤ x 2 Kı determine k k	. This proves (ii). ut

In view of Sect. 2.5.3 we obtain the following formula for k k	.

Corollary 5.1.9. Keep the assumptions of Theorem 5.1.8. Then the restriction of
the Kähler seminorm of	K=A to .	log

Kı=Aı/tf coincides with the adic seminorm of the

latter: kxk	 D kxkadic for any x 2 .	log
Kı=Aı/tf.

Remark 5.1.10. (i) We have just seen that the Kähler seminorm on	K=A is tightly
related to the torsion free quotient of 	log

Kı=Aı . Nevertheless, we will later see

(e.g., in Theorem 5.6.4) that the torsion submodules of the modules	log
Kı=Aı do

affect subtle issues related to Kähler seminorms.
(ii) It follows from Corollary 5.3.3 below that if A itself is a field and jA�j

is dense then one can replace 	log
Kı=Aı by 	Kı=Aı in Theorem 5.1.8 and its

corollary. However, in the discretely valued case the discrepancy between the
two modules is essential, and one has to stick to logarithmic differentials (e.g,
see Sect. 8.3).

(iii) Although any serious investigation of ramification theory of valued fields
should study the modules 	Lı=Kı and 	log

Lı=Kı and their torsion, it seems that
[18, Chap. 6] is the only source where this topic was systematically explored.
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5.2 Main Results on�Lı=Kı

In Sects. 5.2–5.5 we will study (logarithmic) differentials of real-valued fields.
In fact, all results hold for general valued fields whose height does not exceed one,
but we prefer to fix the group of values to keep uniformness of the paper: we still
work within the “seminormed framework.”

We start with studying modules 	Lı=Kı , and we are especially interested in a
control on their torsion submodules. To large extent this is based on results of
Gabber and Ramero from [18, Chap. 6], where arbitrary valued fields are studied.

5.2.1 Basic Ramification Theory Notation

We say that a finite extension L=K is unramified if Lı=Kı is étale. An algebraic
extension L=K is called unramified if its finite subextensions are so. As in [18,
Sects. 6.2], we denote by Ksh the strict henselization of K (in the sense that .Ksh/ı
is the strict henselization of Kı); it is the maximal unramified extension of K. By Kt

we denote the maximal tame extension of K; it is the union of all extensions L=Ksh

whose degree is invertible in eK. For example, if K is trivially valued, then Kt D Ksh

is the separable closure of K.

5.2.2 The Cotangent Complex LLı=Kı

The module 	Lı=Kı is the zeroth homology of the cotangent complex LLı=Kı .
Studying the latter is the central topic of [18, Sects. 6.3,6.5] and we formulate
the main result below. We say that a field extension L=K is separable if L is
geometrically reduced over K.

Theorem 5.2.3. Let L=K be an extension of real-valued fields. Then,

(i) Hi.LLı=Kı/ D 0 for i > 1.
(ii) The module H1.LLı=Kı/ is torsion free and it vanishes if and only if L=K is

separable.
(iii) The module 	Lı=Kı is torsion whenever L=K is algebraic and separable.

Proof. (i) and the first assertion of (ii) are proved in [18, Theorem 6.5.12(i)]. Since
H1.LLı=Kı/˝Lı L D H1.LL=K/ and the latter module vanishes if and only if L=K is
separable, we obtain the second assertion of (ii). Finally,	Lı=Kı ˝Lı L D 	L=K and
the latter module vanishes whenever L=K is algebraic and separable. ut
Remark 5.2.4. The proving method of [18, Theorem 6.5.12(i)] is as follows: first
one explicitly computes LLı=Kı for certain elementary extensions L=K using that in
this case Lı is a filtered colimit of subrings KıŒxi� (see [18, Propositions 6.3.13 and
6.5.9]), then the general case is deduced via transitivity triangles.
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5.2.5 The Six-Term Exact Sequence

In the sequel, we will use the notation ‡Lı=Kı D H1.LLı=Kı/. By [22, Proposi-
tion II.2.1.2] any tower of real-valued extensions F=L=K gives rise to a distinguished
transitivity triangle of cotangent complexes

LLı=Kı ˝Lı Fı ! LFı=Kı ! LFı=Lı
C1!

and by Theorem 5.2.3 we obtain a six-term exact sequence of homologies

0! ‡Lı=Kı˝LıF
ı ! ‡Fı=Kı ! ‡Fı=Lı ! 	Lı=Kı˝LıF

ı ! 	Fı=Kı ! 	Fı=Lı ! 0:

5.2.6 Tame Extensions

Cotangent complexes of tame extensions are especially simple.

Lemma 5.2.7. If L=K is a tame algebraic extension, then the Lı-module 	Lı=Kı

is isomorphic to Lıı=KııLı and hence LLı=Kı is quasi-isomorphic to the module
Lıı=KııLı placed in the degree 0.

Proof. By Theorem 5.2.3 it suffices to prove the first isomorphism. The claim is
obvious for unramified extensions since both sides vanish. Using the transitivity
triangles we can now replace L and K with Lsh and Ksh and assume in the sequel
that K D Ksh. Both sides of the asserted equality commute with filtered unions of
extensions, hence we can assume that L=K is finite. Then the lemma reduces to two
cases: (a) if the valuation of K is discrete K, then	Lı=Kı is cyclic of length eL=K�1,
(b) if jK�j is dense, then 	Lı=Kı D 0. The first claim is classical, so we only check
the second one.

Since K D Ksh it follows that L=K breaks into a tower of elementary extensions
of the form F.
1=l/=F with l invertible in eK and j
j … jK�jl. Using the transitivity
triangles it suffices to consider the case when L D K.
1=l/. Note that Lı is the
filtered union of the subalgebras Ai D KıŒx1=l

i �where xi 2 
Kl satisfy jxij < 1. Since
l 2 .Lı/� one easily sees that 	Ai=Kı D Aidxi=xl�1

i Aidxi, and hence 	Lı=Kı is the
filtered colimit of the modules Mj D Lıdxi=xl�1

i Lıdxi with the following transition
maps: if jxij � jxjj, then Ai 
 Aj and the map Mi ! Mj is given by dxi 7! xi

xj
dxj. The

image of dxi in Mj vanishes whenever jxij
jxjj � jxjjl�1, that is jxij � jxjjl. Since jK�j

is dense, jxjj can be arbitrarily close to 1 and taking jxjj > jxij1=l we kill the image
of dxi. Thus colimiMi D 0 and we are done. ut
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5.2.8 Dense Extensions

Using the method outlined in Remark 5.2.4 we will also study LLı=Kı when K is
dense in L. It is easy to see that b	Lı=Kı D 0 and hence 	Lı=Kı D 0 is divisible,
but we will need a more precise statement. We say that an Lı-module M is a vector
space if it is an L-module. Equivalently, M is divisible and torsion free.

Lemma 5.2.9. Assume that L=K is an extension of real-valued fields and K is dense
in L. Then both 	Lı=Kı and ‡Lı=Kı are L-vector spaces.

Proof. We start with three classes of elementary extensions, and then the general
case will be deduced in three more steps.

Case 1. Assume that L=K is separable algebraic. Since K is dense in L, it follows
that L lies in the henselization of K, i.e. Lı=Kı is étale. In this case, the cotangent
complex vanishes.

Case 2. Assume that L=K is purely inseparable of degree p. In this case, L D K.x/
with a D xp 2 K n Kp and there exist ci 2 K such that limijx � cij D 0. Clearly,
f .t/ D tp � a is the minimal polynomial of x. It is easy to see that Lı is the
filtered colimit of its subrings KıŒxi�, with xi D x�ci


i
where 
i 2 K are such

that limij
ij D 0 (same argument as in the proof of [18, 6.3.13(i)]). It follows
that LLı=Kı D colimiLKıŒxi�=Kı . Since KıŒxi� D KıŒt�=Ii where Ii D .fi/ and

fi.t/ D tp� a�c
p
i



p
i

is the minimal polynomial of xi, the homologies of LKıŒxi�=Kı are

easily computable (cf. the proof of [18, 6.3.13(iv)]): 	KıŒxi�=Kı is the invertible
module with basis dxi and ‡KıŒxi�=Kı D Ii=I2i is the invertible module with basis
fi. Since dxi D dx


i
, we obtain that 	Lı=Kı D Ldx.

To describe the map ‡KıŒx�=Kı ! ‡KıŒxi�=Kı we consider compatible presenta-
tions KıŒt� � KıŒx� and KıŒti� � KıŒxi�, where the connecting maps take t and
x to 
iti C ci and 
ixi C ci, respectively. The connecting maps induce the map
I=I2 ! Ii=I2i that sends f D tp � a to 
p

i tp
i C cp

i � a D 
p
i fi.ti/. This completely

determines the filtered family ‡KıŒxi�=Kı , and since limij
p
i j D 0, its colimit is

the one-dimensional L-vector space with basis f .
Case 3. Assume that L D K.x/ is purely transcendental. In this case we have

that ‡Lı=Kı ˝Lı L D ‡L=K D 0, and since ‡Lı=Kı is torsion free, it actually
vanishes. The module 	Lı=Kı is computed as in Case 2. First, one shows that Lı
is the filtered colimit of localizations of the Kı-algebras KıŒxi� where xi D x�ci


i
and limij
ij D 0 (same argument as in [18, 6.3.13(i)] or [18, 6.5.9]). It then
follows that 	Lı=Kı is the colimit of invertible modules Lıdxi and dxi D dx


i
.

Thus, 	Lı=Kı D Ldx.
Case 4. Assume that L=K is finite. We induct on ŒL W K�. If L=K is as in Cases 1

or 2 then we are done. Otherwise, it can be split into a tower K ¨ F ¨ L, and
the claim holds true for F=K and L=F by the induction. Therefore, in the six-
term exact sequence the terms corresponding to F=K and L=F are vector spaces.
It follows easily that the remaining terms are vector spaces too.

Case 5. Assume that L=K is finitely generated. This time we induct on
d D tr:deg:.L=K/. If d D 0, then we are in Case 4. Otherwise choose a
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purely transcendental subextension F D K.x/ 
 L and note that the assertion
holds for F=K by Case 3 and for L=F by the induction. The same argument with
the six-term sequence completes Case 5.

Case 6. The general case. Obviously, L is the filtered colimit of its finitely
generated K-subfields Li and Lı D colimiLı

i . It remains to use that the cotangent
complex and the homology are compatible with filtered colimits, and filtered
colimits of vector spaces are vector spaces. ut

5.2.10 The Different

We have defined the content of Kı-modules in Sect. 2.6. For any separable extension
of real-valued fields L=K we define the different to be ıL=K D cont..	Lı=Kı/tor/.
In particular, ıL=K D 1 if L is trivially valued. For inseparable extensions we set
ıL=K D 0.

Theorem 5.2.11. Let F=L=K be a tower of algebraic extensions of real-valued
fields, then

(i) ıF=K D ıF=LıL=K.
(ii) If L is not trivially valued and L=K is tame, then ıL=K D jKııj=jLııj.

In particular, if K is not trivially valued, then ıKt=K D jKııj.
(iii) If L=K is finite and separable, then ıL=K > 0.

Proof. If F=K is inseparable, then either F=L or L=K is inseparable and both sides
of the equality in (i) vanish. So, assume that F=K is separable. By Theorem 5.2.3
we have a short exact sequence of torsion modules

0! 	Lı=Kı ˝Lı Fı ! 	Fı=Kı ! 	Fı=Lı ! 0:

Hence (i) follows from Theorem 2.6.7 and the fact that for any Lı-module M and
the Fı-module M0 D M ˝Lı Fı the equality cont.M/ D cont.M0/ holds.

If L is not trivially valued, then cont.Lıı=KııLı/ D jKııj=jLııj and hence (ii)
follows from Lemma 5.2.7.

Let us prove (iii). Using (i) it suffices to prove that the different of the larger
extension KtL=L does not vanish. Furthermore, ıKt=K > 0 by (ii), hence it suffices
to consider the finite extension KtL=Kt. Thus, we can assume that K D Kt and then
L=K splits to a tower of extensions of degree p D char.eK/. Using (i) again it suffices
to consider the case when K D Kt and ŒL W K� D p. By [18, Proposition 6.3.13] we
have that Lı is a filtered colimit of subalgebras KıŒaix C bi�, where x 2 L and
ai; bi 2 K. We can also assume that x 2 Lı. Note that the numbers jaij are bounded
by a finite number C because otherwise x 2 bK and hence bK contains the separable
extension L=K, which is impossible since K is henselian.

Set xi D aixC bi, then 	Lı=Kı is generated by the elements dxi. Let f .x/ be the
minimal polynomial of x over K. Then dx is annihilated by f 0.x/ and f 0.x/ ¤ 0 since
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L=K is separable. It follows that dxi is annihilated by any 
 with j
j < jf 0.x/jC�1
and since	Lı=Kı is the filtered union of the submodules generated by dxi, we obtain
by Lemma 2.6.6 that cont.	Lı=Kı/ 	 jf 0.x/jC�1 > 0. ut
Remark 5.2.12. (i) We will not need this, but our definition of the different is

compatible with the definition of Gabber and Ramero in the following sense.
They introduced in [18, Sect. 2.3] a class C of uniformly almost finitely
generated Kı-modules M and defined for them the formation of Fitting’s ideals
Fi.M/. It is not difficult to show that for any uniformly almost finitely generated
torsion module M the equality jF0.M/j D cont.M/ holds. In addition, it is
proved in [18, Proposition 6.3.8] that if L=K is a finite separable extension
of real-valued fields then 	Lı=Kı is uniformly finitely generated, and then the
different of L=K is defined to be F0.	Lı=Kı/. Thus, in this case ıL=K equals to
the absolute value of the different from [18].

(ii) Classically, one defines the different only for algebraic extensions, but it is a
reasonable invariant in the transcendental case too. For example, one can show
that if k is not trivially valued and x 2 A1

k is the maximal point of a disc E
then (the non-classical) ıH.x/=k is the maximum of ıH.z/=k where z runs over
rigid points in E. In the algebraic case, the different measures how wild the
extension K=k is. This also provides a good intuition for the meaning of the
different when K=k is not algebraic.

5.3 Relations Between�log
Lı=Kı

and�Lı=Kı

Our next aim is to compare the modules 	log
Lı=Kı and 	Lı=Kı .

5.3.1 Comparison Homomorphism

Let �K=A denote the natural map 	Kı=Aı ! 	
log
Kı=Aı , and let �K D �K=Z.

Lemma 5.3.2. For any real-valued field K there is an exact sequence of Kı-
modules

0! 	Kı
�K�! 	

log
Kı

�K�! jK�j ˝eK ! 0;

where �K.xıKy/ D jyj ˝ Qx for x; y 2 Kı and Kı acts on jK�j ˝ eK through eK. In
particular, if K is not discretely valued (but K may be trivially valued), then �K is
an almost isomorphism.

Proof. The map �L is injective for any valued field L by [18, Corollary 6.4.18(i)].
Furthermore, if L is of a finite height h, then [18, Corollary 6.4.18(ii)] constructs
a filtration of Coker.�L/ of length h with explicitly described quotients. Since
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the height of K is one, this filtration degenerates and the cited result yields an

isomorphism Coker.�K/
��!jK�j ˝ .Kı=Kıı/. The explicit description of �K is due

to the description of a map � in the proof of [18, Proposition 6.4.15] (see the formula
for Q� above [18, Claim 6.4.16]). ut
Corollary 5.3.3. If L=K is an extension of real-valued fields, then Ker.�L=K/ is
annihilated by any element of Kıı and Coker.�L=K/ is annihilated by any element
of Lıı. In particular, if jK�j is dense, then �L=K is an almost isomorphism.

Proof. Let N be the image of the map 	log
Kı ˝Kı Lı ! 	

log
Lı and let  be the

composition of �K ˝Kı Lı and the map 	log
Kı ˝Kı Lı � N. Applying the snake

lemma to the commutative diagram

we obtain an exact sequence

0! Ker.�L=K/! Coker./! Coker.�L/! Coker.�L=K/! 0: (1)

By Lemma 5.3.2, Coker.�L/ is annihilated by Lıı, hence the same is true for
Coker.�L=K/. Similarly, Coker.�K/ is annihilated by Kıı, hence the same is true
for Coker.�K/˝Kı Lı D Coker.�K ˝Kı Lı/, for its quotient Coker./, and for the
submodule Ker.�L=K/ of Coker./. ut

Using Lemma 5.3.2 and its corollary one can easily verify the following
examples.

Example 5.3.4. (i) If K is discretely valued with uniformizer 
 , then
Coker.�K/ D eK with generator ıK.
/. In particular, �K is not an almost
isomorphism in this case.

(ii) If char.eK/ D p > 0 and jK�j is p-divisible, then �K is an isomorphism.
(iii) Assume that L=K is a tamely ramified finite extension of discretely valued

fields with uniformizers 
K and 
L. Note that 	log
Lı=Kı D 0 (in fact, Lı=Kı

is log étale), but 	Lı=Kı
��!
KLı=
LLı is a cyclic module of length eL=K � 1.

In particular, �L=K is not injective if the tamely ramified extension L=K is not
unramified.
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5.3.5 The Discrete Valuation Case

If the valuation of K is discrete, then the discrepancy between 	log
Lı=Kı and 	Lı=Kı

can be sensitive. However, the following trick reduces the study of modules 	log
Lı=Kı

to the non-discrete case.

Lemma 5.3.6. Assume that K is a discrete-valued field, A! K a homomorphism,

and L=K a tamely ramified algebraic extension. Then 	log
Kı=Aı ˝Kı Lı ��!	log

Lı=Aı .

Proof. Since the formation of modules of log differentials is compatible with
filtered colimits it suffices to consider the case when L=K is finite. Then the situation
is well known: the log structures are fine and the inclusion Kı ,! Lı is log étale. By
[31, 1.1(iii)] Olsson’s log cotangent complex Llog

Lı=Kı is quasi-isomorphic to zero,
and the lemma follows by considering the transitivity triangle

Llog
Kı=Aı ˝Kı Lı ! Llog

Lı=Aı ! Llog
Lı=Kı

C1!

of Lı=Kı=Aı (see [31, 1.1(v)]) and the associated sequence of homologies. ut

5.4 Main Results on�log
Lı=Kı

One can define the whole log cotangent complex Llog
Lı=Kı using an approach of

Gabber that was elaborated by Olsson in [31, Sect. 8]. The advantage of Gabber’s
theory is that it deals with not necessarily fine log rings, as our case is. It seems very
probable that analogues of all main results of Sect. 5.2 hold also in the logarithmic
setting. We do not explore this here and only study the maps

 
log
Lı=Kı=Aı W 	log

Kı=Aı ˝Kı Lı ! 	
log
Lı=Aı

by comparing them with the non-logarithmic analogues

 Lı=Kı=Aı W 	Kı=Aı ˝Kı Lı ! 	Lı=Aı :

Note that  log
Lı=Kı=Aı is obtained from  

log
Lı=Kı=Z by dividing both the source and the

target by the image of 	log
Aı ˝Aı Lı, in particular, the following result holds.

Lemma 5.4.1. Keep the above notation then Coker. log
Lı=Kı=Z/ D Coker. log

Lı=Kı=Aı/

and Ker. log
Lı=Kı=Aı/ is a quotient of Ker. log

Lı=Kı=Z/.



236 M. Temkin

5.4.2 Tame Extensions

The assertion of Lemma 5.3.6 holds for non-discretely valued fields, but we will
only need the following slightly weaker version.

Lemma 5.4.3. Assume that L=K is a tamely ramified algebraic extension of real-
valued fields and A ! K is a homomorphism. Then the homomorphism  

log
Lı=Kı=Aı

is an almost isomorphism.

Proof. Lemma 5.3.6 covers the case of a discrete-valued K. The trivially graded
case is obvious since the logarithmic structures are trivial. It remains to consider
the case when jK�j is dense. By Lemma 5.3.2, the maps �K and �L are almost
isomorphisms. Since  Lı=Kı=Z is an isomorphism by Lemma 5.2.7, we obtain that
 

log
Lı=Kı=Z is an almost isomorphism. The assertion for an arbitrary A follows by

applying Lemma 5.4.1. ut

5.4.4 Separable Extensions

The logarithmic version of Theorem 5.2.3 would imply that  log
Lı=Kı=Aı is injective

whenever L=K is separable. Comparison with the non-logarithmic case yields a
slightly weaker result:

Lemma 5.4.5. Assume that L=K is a separable algebraic extension of real-valued
fields and A! K is a homomorphism. Then the kernel of the map  log

Lı=Kı=Aı almost
vanishes.

Proof. Again, Lemma 5.4.1 reduces the general claim to the case of the maps
 

log
Lı=Kı=Z. Furthermore, using Lemma 5.4.3, it suffices to prove that the kernel

of  log
.Lt/ı=.Kt/ı=Z almost vanishes. Both Kt and Lt are not discrete-valued, hence

 
log
.Lt/ı=.Kt/ı=Z is almost isomorphic to  .Lt/ı=.Kt/ı=Z by Lemma 5.3.2. The latter map

has trivial kernel by Theorem 5.2.3(ii). ut

5.4.6 Dense Extensions

Next we consider the case when K is dense in L.

Lemma 5.4.7. Assume that L=K is an extension of real-valued fields such that K is
dense in L and A! K is a homomorphism. Then the Lı-modules Ker. log

Lı=Kı=Z/ and

Coker. log
Lı=Kı=Aı/ are vector spaces and the Lı-module Ker. log

Lı=Kı=Aı/ is divisible.

Proof. Consider the following commutative diagram where � D �K ˝Kı Lı and
� D �K ˝Kı Lı:
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The rows are exact by Lemma 5.3.2. Moreover, the formulas for �K and �L provided
by Lemma 5.3.2 imply that � is the natural map. Since jK�j D jL�j and eK D eL
we obtain that � is an isomorphism, and hence  Lı=Kı=Z and  log

Lı=Kı=Z have the
same kernel and cokernel. By Lemma 5.2.9 these Lı-modules are vector spaces.
The general case follows by applying Lemma 5.4.1. ut

5.4.8 Log Different

Given a separable extension L=K of real-valued fields we define the log different of
L=K to be ılog

L=K D cont..	log
Lı=Kı/tor/. For inseparable extensions we set ılog

L=K D 0.
The log different is related to the usual different in a very simple way and this allows
to easily establish its basic properties:

Theorem 5.4.9. Let L=K be an algebraic extension of real-valued fields, then

(i) If K is not trivially valued, then ılog
L=K D ıL=K jLııj=jKııj.

(ii) If F=L is another algebraic extension, then ılog
F=K D ılog

F=Lı
log
L=K.

(iii) If L=K is tame, then ılog
L=K D 1.

(iv) If L=K is finite and separable, then ılog
L=K > 0.

Proof. The map 	
log
Kı ˝Kı .Kt/ı ! 	

log
.Kt/ı

is an almost isomorphism by
Lemma 5.4.3. Using this and the similar fact for L, one obtains an almost
isomorphism

	
log
Lı=Kı ˝Lı .L

t/ı ! 	
log
.Lt/ı=.Kt/ı

;

in particular, ılog
L=K D ı

log
Lt=Kt . By Lemma 5.3.2, 	log

.Lt/ı=.Kt/ı
is almost isomorphic to

	.Lt/ı=.Kt/ı , hence ılog
Lt=Kt D ıLt=Kt . Finally,

ıLt=Kt D ıL=KıLt=L=ıKt=K D ıL=K jLııj=jKııj

by Theorem 5.2.11, and we obtain (i). Using (i), one immediately deduces the other
assertions from their non-logarithmic analogues proved in Theorem 5.2.11. ut
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5.5 Almost Tame Extensions and Fields

5.5.1 Almost Unramified Extensions

Let L=K be a separable algebraic extension of real-valued fields. Following Faltings
we say that L=K is almost unramified if 	Lı=Kı almost vanishes.

Lemma 5.5.2. Assume that F=L=K is a tower of separable algebraic extensions of
real-valued fields, then

(i) L=K is almost unramified if and only if ıL=K D 1.
(ii) F=K is almost unramified if and only if both F=L and L=K are so.

Proof. Recall that the module 	Lı=Kı is torsion by Theorem 5.2.3(iii). So, 	Lı=Kı

almost vanishes if and only if its content equals to 1, and we obtain (i). The second
claim follows from (i) because the different is multiplicative by Theorem 5.2.11(i).

ut

5.5.3 Almost Tame Extensions

In the discrete valuation case, almost unramified is the same as unramified, but in
general there even are wildly ramified almost unramified extensions. Thus, being
almost unramified is not a good measure of “wildness” of extensions: there are
tamely ramified extensions which are not almost unramified, and there are wildly
ramified extensions which are almost unramified. Another weird property is that a
tame extension L=K is almost unramified if and only if K is not discretely valued.

It is natural to seek for a natural enlargement of the class of almost unramified
extensions that includes all tame ones, and this can be achieved very simply: one
should pass to logarithmic differentials. So, we say that a separable algebraic
extension L=K is almost tame if 	log

Lı=Kı almost vanishes. Note that any tame
extension is almost tame by Theorem 5.4.9(iii). As earlier, we immediately obtain
the following result:

Lemma 5.5.4. Assume that F=L=K is a tower of separable algebraic extensions of
real-valued fields, then

(i) L=K is almost tame if and only if ılog
L=K D 1.

(ii) F=K is almost tame if and only if both F=L and L=K are so.

5.5.5 The Non-discrete Case

In the non-discrete case, there is no difference between almost tame and almost
unramified because the kernel and cokernel of 	Lı=Kı ! 	

log
Lı=Kı almost vanish by

Corollary 5.3.3.
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5.5.6 The Discrete Case

As one should expect, in the discrete-valued case the “almost” version of tameness
does not provide anything new.

Lemma 5.5.7. Assume that L=K is a separable algebraic extension of real-valued
fields and the valuation on K is discrete. Then L=K is almost tame if and only if it is
tame.

Proof. Assume first that L=K is finite. Then it is a classical result that ıL=K �
jKııj=jLııj and the equality holds if and only if the extension is tame. Using
Theorem 5.4.9(i) we obtain that ılog

L=K D 1 if and only if L=K is tame. The general
case follows due to the following two observations: (1) L=K is tame if and only if all
its finite subextensions Li=K are tame, (2) ılog

L=K is the limit of ılog
Li=K because 	log

Lı=Kı

is the filtered colimit of 	log
Lıi =Kı

. ut

5.5.8 The Defectless Case

In fact, one can describe a more general situation where almost tameness reduces to
tameness. Recall that a finite extension of real-valued fields L=K is called defectless
if eL=KfL=K D ŒL W K�, and an algebraic extension is defectless if all its finite
subextensions are so.

Lemma 5.5.9. Assume that L=K is a defectless separable extension of real-valued
fields. Then L=K is almost tame if and only if it is tame.

Proof. The case of a trivially valued K is obvious, and the case of a discretely valued
K was established in Lemma 5.5.7, so assume that jK�j is dense. In this case, L=K
is almost tame if and only if it is almost unramified by Sect. 5.5.5, hence the lemma
reduces to the following claim: if jK�j is dense and L=K is defectless and not tame
then L=K is not almost unramified. We start with establishing special cases of the
claim. Lemma 5.5.4(ii) will be used all the time so we will not mention it.

Case 1. L=K is wildly ramified of degree p. If fL=K D p choose x 2 Lı such that
Qx … eK, and if eL=K D p choose x 2 L such that jxj … jKj. In either case, the
elements 1; x; : : : ;xp�1 form an orthogonal K-basis of L. We claim that ıL=K D
r1�pjh0.x/j, where h.t/ is the minimal polynomial of x and r D jxj.
If fL=K D p, then Lı D KıŒx� and hence	Lı=Kı D Lıdx=Lıh0.x/dx. In particular,
ıL=K D jh0.x/j, as claimed. If eL=K D p, then Lı is the filtered union of subrings
Aj D KıŒxj� with j 2 N, where xj D x


j
and 
j 2 K are such that rj D j
jj

decrease and tend to r from above. It follows that

	Lı=Kı D colimj	Aj=Kı D colimjL
ıdxj=Lıh0

j.xj/dxj;
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where hj.t/ is the minimal polynomial of xj over K. Note that hj.t/ D 
�p
j h.
jt/.

Hence h0
j.xj/ D 
1�p

j h0.
jxj/ D 
1�p
j h0.x/ and using that dxj D 
�1

j dx we obtain

	Lı=Kı D
[

j


�1
j Kıdx=

[

j



�p
j h0.x/Kı D Kıı

r�1dx=Kıı
r�pjh0.x/j;

where we set Kıı
s D fa 2 Kj jaj > sg. Therefore, ıL=K is as claimed.

It remains to estimate jh0.x/j, so let h.t/ D tp CPp�1
iD0 aiti. We claim that jaij <

rp�i for i > 0. First, jaij � rp�i by [8, Proposition 3.2.4/3]. If eL=K D p, then
rp�i … jK�j for 0 < i < p, hence ai < rp�i. If fL=K D p then Qh.t/ is the minimal
polynomial of Qx. SinceeL=eK is inseparable, Qh.t/ is of the form tp � c and hence
jaij < 1 D r for 0 < i < p. Thus,

ˇ̌
h0.x/

ˇ̌ D
ˇ̌
ˇ̌
ˇpxp�1 C

p�1X

iD1
iaix

i�1
ˇ̌
ˇ̌
ˇ � max

�
jprp�1j; max

0<i<p
.jair

i�1j/
	
< rp�1

and we obtain that ıL=K < 1, proving that L=K is not almost tame.
Case 2. L=K is finite, Galois, and totally wildly ramified. In this case, L=K splits

into a tower of defectless wildly ramified extensions of degree p. Hence L=K is
not almost tame by Case 1.

Case 3. L=K is a composition of a tame extension F=K and a Galois totally wildly
ramified extension L=E (i.e. ŒL W E� D pn). Since L=K is not tame, we have that
n > 0 and hence L=K is not almost tame by Case 2.

Case 4. L=K is finite. By the standard ramification theory there exists a finite tame
extension F=L such that F=K splits into a composition of a tame extension and
a Galois totally wildly ramified extension. Since F=L is tame it is defectless and
hence F=K is defectless. Thus, F=K is not almost tame by Case 3, and since F=L
is almost tame we necessarily have that L=K is not almost tame.

Case 5. The general case. By definition, L=K contains a finite non-tame defectless
subextension F=K, which is not almost tame by Case 4. Hence L=K is not
almost tame. ut

5.5.10 Almost Tame Extensions: The Summary

We can summarize a few above results as follows.

Theorem 5.5.11. Assume that L=K is a separable algebraic extension of real-
valued fields, then

(i) L=K is almost tame if and only if it is either tame or almost unramified.
(ii) Assume that L=K is defectless; in particular, this is the case when L=K is tame

or jK�j is discrete. Then L=K is almost tame if and only if it is tame.
(iii) If jK�j is dense, then L=K is almost tame if and only if L=K is almost

unramified.
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5.5.12 Deeply Ramified Fields

Assume that the valuation on K is non-trivial. We refer the reader to [18, Sect. 6.6]
for the definition and basic properties of deeply ramified fields. Recall that a
real-valued field K is called deeply ramified if 	.Ks/ı=Kı D 0, and by [18,
Proposition 6.6.2] this condition can be weakened by requiring that Ks=K is almost
unramified (i.e., 	.Ks/ı=Kı almost vanishes). Furthermore, any deeply ramified field
is perfect by [18, Proposition 6.6.6(i)”(ii)], hence K is deeply ramified if and
only if the algebraic closure Ka is almost unramified over K.

5.5.13 Almost Tame Fields

We extend the notion of deeply ramified fields by replacing almost unramified
extensions with almost tame ones. Assume that K is a real-valued field, whose
valuation can be trivial. We say that K is almost tame if the extension Ka=K is
almost tame. For example, a trivially valued field is almost tame if and only if it is
perfect.

Remark 5.5.14. (i) Giving a name to a special class of valued fields K one often
refers either to the property of K over a ground valued field (e.g., over Qp) or
to the properties all extensions of K satisfy. It is slightly confusing but both
approaches are used in the theory of valued fields. On the one hand, deeply
ramified extensions are “deeply ramified” over a discretely valued subfield. On
the other hand, in the model theory of valued fields, K is called tame if the
extension Ka=K is tame. Our notion of almost tame fields is an analogue (and
generalization) of this classical notion.

(ii) Scholze defines in [33, Sect. 3] perfectoid fields to be complete deeply ramified
fields of height one and positive residue characteristic. In a sense, the condition
of being perfectoid is a valuation-theoretic version of perfectness. So, it seems
natural to extend the class of perfectoid fields by allowing non-complete fields
and including perfect trivially valued fields and fields of residue characteristic
zero. As we are going to prove, this larger class coincides with the class of
almost tame fields. So, the notion “perfectoid” is a reasonable alternative to
“almost tame.”

Theorem 5.5.15. A real-valued field K is almost tame if and only if at least
one of the following assertions is true: (i) K is a perfect trivially valued field,
(ii) char.eK/ D 0, (iii) K is deeply ramified.

Proof. We can assume that the valuation is non-trivial, as the other case is obvious.
If p D char.eK/ D 0 then any algebraic extension of K is tamely ramified, so K is
almost tame. In the sequel we assume that p > 0. If K is discretely valued, then it
possesses wildly ramified extensions, so K is not almost tame by Lemma 5.5.7.
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If jK�j is dense, then there is no difference between almost tame and almost
unramified extensions. In particular, in this case K is almost tame if and only if
it is deeply ramified. ut
Corollary 5.5.16. Assume that K is a real-valued field.

(i) If char.K/ > 0, then K is almost tame if and only if it is perfect.
(ii) Assume that the valuation is non-trivial. Then K is almost tame if and only if

Ks=K is almost tame.

5.5.17 Separable Extensions of Almost Tame Fields

One can also characterize almost tame fields in terms of separable extensions, at
cost of considering transcendental ones.

Theorem 5.5.18. Let K be a real-valued field. Then K is almost tame if and only if
for any separable extension of real-valued fields L=K the module 	log

Lı=Kı is almost
torsion free.

Proof. We start with the direct implication, so assume that K is almost tame. If the
valuation of K is trivial, then the module 	log

Lı=Kı D Coker. log
Lı=Kı=Z/ is torsion

free by [18, Corollary 6.5.21], so assume that the valuation is non-trivial. If p D
char.eK/ D 0, then	log

Lı=Kı is torsion free by [18, Lemma 6.5.16], so assume that p >
0. Then jK�j is dense and hence �L=K is an almost isomorphism by Corollary 5.3.3.
So, it suffices to show that 	Lı=Kı is torsion free. Recall that K is deeply ramified
by Theorem 5.5.15 and hence 	Kı is divisible.

Case 1: char.K/ D p. Then 	Lı D 	Lı=Fp is torsion free by [18, Claim 6.5.21].
Thus 	Lı=Kı is the cokernel of the map 	Kı ˝Kı Lı ! 	Lı whose source is
divisible and target is torsion free. Hence 	Lı=Kı is torsion free.

Case 2: char.K/ D 0. Consider the algebraic closure F D Ka provided with
an extension of the valuation. Let E be the composite valued field FL. Then
	Lı=Kı ˝Lı Eı ,! 	Eı=Kı by [18, Lemma 6.3.32(ii)], hence it suffices to show
that 	Eı=Kı is torsion free. The latter follows from the facts that 	Fı=Kı D 0

since K is deeply ramified and 	Eı=Fı is torsion free by [18, Lemma 6.5.20(i)].

Now, let us prove the inverse implication. The case when the valuation of K is
non-trivial follows from Corollary 5.5.16: if the torsion module 	log

.Ks/ı=Kı is almost
torsion free, then it almost vanishes and hence Ks=K is almost tame. Assume, now,
that the valuation is trivial. It suffices to prove that if K is not perfect, say a 2
K n Kp, then there exists a separable extension L=K such that 	log

Lı=Kı contains an
essential torsion element. Let R be the localization of KŒt� at the maximal ideal
generated by 
 D tp � a; it corresponds to a point x 2 A1

K with k.x/ D K.a1=p/.
Then R is a discrete valuation ring of K.t/ with uniformizer 
 and, since A1

K is a
smooth K-curve,	R=K D Rdt is a free module with basis dt. The R-module	log

R=K is
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generated over 	R=K by ı
 subject to the relation 
ı
 � d
 D 0. Since d
 D 0,
we obtain that 	log

R=K D R˚ R=
R and ı
 is a non-trivial torsion element. ut
Remark 5.5.19. It might look surprising that R with the log structure generated by 

is not log smooth over K. The reason for this is that the log structure is geometrically
“non-reduced” over K because 
 D .t � a1=p/p in R˝K K.a1=p/.

5.6 Kähler Seminorms and Field Extensions

Assume that L=K is an extension of real-valued fields and A ! K is a homo-
morphism of rings. In this section we will apply the theory of real-valued field
extensions to compare the Kähler seminorms j j	;K=A and j j	;L=A on	L=A and	K=A,
respectively.

5.6.1 The Map  L=K=A

The two seminorms are related by the non-expansive map

 L=K=A W 	K=A ˝K L! 	L=A;

where the seminorm on the source is the base change of k k	;K=A. Naturally, we
say that k k	;K=A and k k	;L=A agree if  L=K=A is an isometry. For shortness, the
seminorms on both sides of  L=K=A will be denoted k k. This is safe since we
consider only one seminorm on each vector space.

To study  L=K=A it is useful to consider the following commutative diagram

where the top and the bottom rows are the first fundamental sequences. Note that
the source and the target of � are the almost unit balls of the two seminorms by
Theorem 5.1.8.
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Lemma 5.6.2. Keep the above notation. Then  L=K=A is an isometry if and only if
Ker.�/ is divisible and Coker.�/ contains no essential torsion elements.

Proof. By Corollary 5.1.9,  L=K=A is an isometry if and only if � is an isometry with
respect to the adic seminorm. It remains to use Lemma 2.3.5(ii). ut

5.6.3 Separable Algebraic Extensions

Note that  L=K=A is an isomorphism whenever L=K is separable and algebraic.

Theorem 5.6.4. Assume that L=K is a separable algebraic extension of real-valued
fields and A! K is a homomorphism.

(i) If L=K is almost tame, then the isomorphism  L=K=A is an isometry.

(ii) Assume that 	log
Lı=Aı is torsion free. Then  L=K=A is an isometry if and only if

L=K is almost tame. Moreover, the content of the quotient of the unit balls of
the two seminorms equals to ılog

L=K.

Proof. Note that	log
Lı=Kı is a torsion module because	log

Lı=Kı˝Lı L D 	L=K D 0.

(i) Being a quotient of	log
Lı=Kı , the module Coker.�/ in diagram (2) is almost zero.

In addition, Ker.�/ 
 Ker. L=K=A/ D 0. Thus, (i) follows from Lemma 5.6.2.
(ii) The kernel of  log

Lı=Kı=Aı almost vanishes by Lemma 5.4.5, hence its source is
almost torsion free. Thus, " is an isomorphism and � is an almost isomorphism,
in particular, log

Lı=Kı=Aı is almost isomorphic to �. By Theorem 5.1.8, log
Lı=Kı=Aı

is almost isomorphic to the embedding of the unit balls. Therefore, the quotient
of the unit balls is almost isomorphic to 	log

Lı=Kı giving rise to equality of the
contents. ut

5.6.5 Dense Extensions

Another case that will be very important in the sequel is when K is dense in L, for
example, K D �.x/ and L D H.x/.
Theorem 5.6.6. Assume that L=K is an extension of real-valued fields such that K
is dense in L, and let A! K be a homomorphism of rings. Then the map  L=K=A is
an isometry with a dense image.

Proof. Density of the image follows from Corollary 4.2.9. Set � D  
log
Lı=Kı=Aı for

shortness. To prove that  L=K=A is an isometry we recall that Coker.�/ is a vector
space and Ker.�/ is divisible by Lemma 5.4.7. Let �tor and �tf be the maps � induces
between the torsion submodules and the torsion free quotients of its arguments.
In particular, �tf is the map � from diagram (2). The snake lemma yields an exact
sequence
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Ker.�/
ˇ! Ker.�/! Coker.�tor/

˛! Coker.�/! Coker.�/! 0:

Since Coker.�/ is torsion free and Coker.�tor/ is torsion, ˛ D 0 and so Coker.�/ D
Coker.�/ is a vector space. In addition, the torsion free group Ker.�/ is an extension
of the divisible group Im.ˇ/ by the torsion group Coker.�tor/. It follows easily that,
in fact, Ker.�/ D Im.ˇ/. Thus, Ker.�/ is divisible and hence  L=K=A is an isometry
by Lemma 5.6.2. ut
Corollary 5.6.7. In the situation of Theorem 5.6.6, the completion of O L=K=A is an

isometric isomorphism. In particular, b	K=A
��!b	L=A.

5.7 Kähler Seminorms and Monomial Valuations

In this section we study finitely generated extensions L=K such that Lı=Kı behaves
similarly to log smooth extensions, though it does not have to be finitely presented.

5.7.1 Orthonormal Bases of�L=K

Note that if t1; : : : ; tn is a separable transcendence basis of a field extension L=K
then dt1; : : : ;dtn is a basis of 	L=K . The following result is an immediate corollary
of Theorem 5.1.8.

Lemma 5.7.2. Given an extension of real-valued fields L=K with a separable
transcendence basis t1; : : : ;tn consider the following conditions:

(i) 	log
Lı=Kı is a free Lı-module with basis ıt1; : : : ;ıtn.

(ii) dt1
t1
; : : : ; dtn

tn
is an orthonormal basis of 	L=K.

Then (i) H) (ii) and the conditions are equivalent whenever 	log
Lı=Kı is

torsion free.

5.7.3 Generalized Gauss Valuations

We will use the underline to denote tuples, e.g. r D .r1; : : : ;rn/. Assume that K is a
real-valued field and A D KŒt� for t D .t1; : : : ;tn/. For any tuple r D .r1; : : : ;rn/ 2
Rn
>0 by j jr we denote the generalized Gauss valuation on A defined by the formula

ˇ̌
ˇ̌
ˇ
X

i2Nn

ait
i

ˇ̌
ˇ̌
ˇ
r

D max
i

�jaijri
� D max

i

0

@jaij
nY

jD1
r

ij
j

1

A :
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The normed ring .A; j jr/ will be denoted KŒt�r. Since j jr is multiplicative it extends
to a norm on K.t/ that will be denoted by the same letter, and we use the notation
.K.t/; j jr/ D K.t/r. The following lemma indicates that .K.t/r/ı=Kı behaves as a
log smooth extension.

Lemma 5.7.4. Assume that K is a real-valued field, r1; : : : ;rn > 0 and
L D K.t1; : : : ;tn/r. Then 	log

Lı=Kı is a free Lı-module with basis ıt1; : : : ;ıtn.

Proof. By Lemma 5.1.4 it suffices to show that for any Lı-module M and elements
m1; : : : ;mn there exists a unique log Kı-derivation .d; ı/ W .Lı;Lı n f0g/! M such
that ıti D mi. If u 2 KŒt� satisfies jujr D 1, then u 2 .Lı/� and u D P

l2Nn altl,
where jaltlj � 1, so we set

ıu D u�1
 
X

l2Nn

nX

iD1
lialt

lmi

!
:

Since jL�j D jK�jrZ
1 : : : r

Z
n , an arbitrary element z 2 Lı is of the form atlu=v for

l 2 Zn, a 2 K and u; v 2 KŒt� with jujr D jvjr D 1, so we set ız D lıt C ıu � ıv
and dz D zız. It is a direct check that the so-defined .d; ı/ is a log Kı-derivation.
Any other log Kı-derivation should satisfy the same formulas for ıu, ız and dz,
so uniqueness is clear. ut

5.7.5 A Characterization of Gauss Valuations

Under mild technical assumptions, one can also characterize generalized Gauss
valuations in terms of 	log

Lı=Kı .

Lemma 5.7.6. Let L D K.t1; : : : ;tn/=K be a purely transcendental extension of
real-valued fields, let ri D jtij, let p D exp:char.eK/, and assume that eK is
perfect and jK�j is p-divisible. If dt1

t1
; : : : ; dtn

tn
is an orthonormal basis of 	L=K, then

L D K.t1; : : : ;tn/r as a valued field.

Proof. Assume that, conversely, the valuation j j on L is not generalized Gauss with
respect to t. Then the valuation on KŒt� is strictly dominated by j jr, in particular,
there exists a polynomial f .t/ D P

l2Nn altl in Lı such that jf j < jf jr D maxljaljrl.
Removing all monomials of absolute value strictly smaller than jf jr we can achieve
that the following condition holds: (*) jf j < jf jr and jaltlj D jf jr for each al ¤ 0.

Choose f satisfying (*) and of minimal possible degree. We claim that if p > 1

then not all monomials are pth powers. Indeed, assume that the claim fails, say
f D P

l2pNn altl. By our assumption on K, for any a 2 K there exists b 2 K with
ja � bpj < jaj. Indeed, since jK�j is p-divisible we have that a D xpy with jyj D 1,
and using thateK is perfect we can find z 2 K with Qy D Qzp. Then b D xz is as required.
Now, for any al fix bl such that jbp

l � alj < jalj. Clearly,
P

l2pNn bp
l tl satisfies (*) and

hence
P

l2Nn bpltl also satisfies (*), but its degree is smaller than that of f . It follows
that there exists l 2 Nn and 1 � i � n such that al ¤ 0 and jlij D 1.
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Since the basis dt1
t1
; : : : ; dtn

tn
of 	L=K is orthonormal, jf j 	 kdfk	 and

df D
X

l2Nn

nX

iD1
lialt

l dti
ti
;

the inequality jlialtlj � jf j holds for any choice of l and i. However, jlialtlj D jaltlj D
jf jr > jf j for the choice with al ¤ 0 and jlij D 1, a contradiction. ut

5.7.7 t-Monomial Valuations

Let L=K be an extension of real-valued fields and t D .t1; : : : ;tn/ a tuple of elements
of L. We say the valuation on L is t-monomial with respect to K if the induced
valuation on kŒt� is a generalized Gauss valuation. This happens if and only if L
contains the valued subfield K.t/r where ri D jtij. All results proved in Sect. 5.7 can
be summarized as follows.

Theorem 5.7.8. Assume that L=K is an extension of real-valued fields with a
separable transcendence basis t1; : : : ;tn. Consider the following conditions:

(i) The valuation on L is t-monomial and 	log
Lı=K.t/ı D 0.

(ii) 	log
Lı=Kı is a free Lı-module with basis ıt1; : : : ;ıtn.

(iii) dt1
t1
; : : : ; dtn

tn
is an orthonormal basis of 	L=K.

(iv) k dt1
t1
^ � � � ^ dtn

tn
k	n D 1 in 	n

L=K.

Then (i) H) (ii) H) (iii)”(iv). Furthermore, if K is almost tame, then all
four conditions are equivalent.

Proof. (i) H) (ii) Set F D K.t/. By the first fundamental sequence, we have a
surjective map  ı W 	log

Fı=Kı˝Fı Lı ! 	
log
Lı=Kı , which becomes the isomorphism

 W 	F=K ˝F L
��!	L=K after tensoring with L. In particular, the kernel of  ı is

torsion. By Lemma 5.7.4, the source of ı is a free module with basis ıt1; : : : ;ıtn.
So, the kernel of  ı is trivial, and hence  ı is an isomorphism.

(ii) H) (iii) This is covered by Lemma 5.7.2.
(iii)”(iv) The direct implication is obvious. Conversely, assume that (iii) fails.

Then the lattice M generated by the elements ei D dti
ti

is strictly smaller than
	L̆=K and hence there exists a lattice M0 such that M ¨ M0 
 	L̆=K . Choose a
basis e0

1; : : : ;e
0
n of M0 then

1 	 ke0
1 ^ � � � ^ e0

nk	n D ŒM0 W M� � ke1 ^ � � � ^ enk	n ;

and since ŒM0 W M� > 1 we obtain that (iv) fails.

Finally, assume that K is almost tame, in particular, 	log
Lı=Kı is torsion free. Then

the implication (iii) H) (ii) follows from Lemma 5.7.2. Assume, now, that (ii)
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holds; in particular,  ı is surjective and hence 	log
Lı=Fı D 0. Furthermore, the

isomorphism  is non-expansive and k dti
ti
k	 � 1 in its source. Therefore,  is

an isometry and dt1
t1
; : : : ; dtn

tn
is an orthonormal basis of 	F=K . By Lemma 5.7.6, the

valuation on F is generalized Gauss, i.e. L is t-monomial. ut
Remark 5.7.9. The assumption that K is almost tame in Theorem 5.7.8 is needed
for the implication (iii) H) (ii) even when n D 1 and K is trivially valued. For
example, assume that p D char.K/ > 0 and a 2 Kı is such that Qa … eKp and define
the norm on L D K.t/ so that jtp � aj D r for some r 2 .0; 1/ and the norm is
.tp � a/-monomial. Then one can check that 	log

Lı=Kı is a direct sum of Lııt and an

essential torsion submodule generated by ı.tp � a/, and hence dt
t is of norm one.

Note that 	log
Lı=Kı is not free in this case, although its torsion free quotient is free

with basis ıt. In the particular case of the trivial valuation, the same example in a
non-complete setting was already used in the end of proof of Theorem 5.5.18.

6 Metrization of�X=S

Throughout Sect. 6, f W X ! S denotes a morphism of k-analytic spaces. In the
case of sheaves, j j will always denote spectral seminorms on the structure sheaves
and their stalks, and k k will always denote Kähler seminorms (defined below) on
sheaves of pluriforms and their stalks.

6.1 Kähler Seminorm on�X=S

In this section we introduce a seminorm k k D k k	;X=S on 	X=S. We will mention
	 and X=S in the notation only when a confusion is possible.

6.1.1 The Definition

The construction is straightforward: we simply sheafify the presheaf of Kähler
seminorms on affinoid algebras. Let C be the full subcategory of XG whose objects
are affinoid domains V D M.B/ in X such that f .V/ is contained in an affinoid
domain U D M.A/ 
 S. Note that 	X=S.V/ D b	B=A, in particular, b	B=A
is independent of the choice of U. Furthermore, the Kähler seminorm on b	B=A
is the quotient of the Kähler seminorm on b	A=k by Lemma 4.2.2(i), hence it is
independent of U too and we can denote it k k0B=S. This construction produces a
locally bounded pre-quasi-norm k k0 on the restriction of	X=S to C. Its sheafification
is a seminorm on 	X=SjC , and we can extend this seminorm to a seminorm
k k D k k	;X=S on the whole 	X=S since C is cofinal in XG. We call k k	;X=S the
Kähler seminorm of X=S.
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Remark 6.1.2. (i) By definition, if V is a domain in X and � 2 	X=S.V/, then
k�kV D inf maxik�k0Ai=S, where the infimum is over admissible coverings V D
[iVi with Vi DM.Ai/ in C.

(ii) We do not study the question whether k kV D k k0V for any V in C (i.e.,
whether k k0 is already a seminorm on 	X=SjC). This is not essential for our
needs because all results about k k will be proved using stalks.

6.1.3 The Universal Property

The universal property satisfied by Kähler seminorms of seminormed rings, see
Lemma 4.1.3(i), and the universal property of sheafification, see Lemma 3.1.5,
imply the following characterization of k k.
Lemma 6.1.4. The Kähler seminorm k k	;X=S is the maximal seminorm on 	X=S

that makes the differential d W OX ! 	X=S a non-expansive map.

6.1.5 Unit Balls

There is an alternative approach to Kähler seminorms via unit balls. It is more
elementary but less robust and we will not use it. For the sake of completeness we
outline it in the following remark leaving some simple verifications to the interested
reader.

Remark 6.1.6. (i) If jk�j is dense, then Lemma 6.1.4 provides a simple way to
describe the unit ball 	X̆=S of k k, and we obtain another way to define k k.
This involves the sheaf-theoretic extension of the terminology of Sect. 2.4. Let
BX=S D Oı

XG
dOı

XG
denote the subsheaf of Oı

XG
-modules of 	X=S generated by

dOı
XG

. Lemma 6.1.4 implies that k k is the maximal seminorm whose unit ball
contains dOı

X=G, hence BX=S is an almost unit ball of k k and the unit ball 	X̆=S
is the almost isomorphic envelope of BX=S.

(ii) Let k be arbitrary. Already for the unit disc E D M.kftg/, the inclusion
i W BE=k ,! 	Ĕ=k is usually not an isomorphism. For example, if x is the

maximal point of a disc around zero of radius r … jk�jQ then dt
t is contained

in 	Ĕ=k;x but not in BE=k;x. Moreover, if jk�j is discrete, then i is not even an
almost isomorphism. This example suggests that one can improve the situation
by adding logarithmic differentials of units, so we set

Blog
X=S D BX=S C Oı

XG
ıO�

X=S;

where ı W O�
X=S ! 	X=S is the logarithmic differential. It is easy to see that

Blog
X=S 
 	X̆=S and the inclusion is an equality for E=k. It is an interesting

question whether Blog
X=S D 	X̆=S in general.
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6.1.7 The Stalks and the Fibers

Our next aim is to study local behavior of the Kähler seminorm k k at points of
X. Given x 2 X with s D f .x/, fix an affinoid domain U D M.A/ containing
s and let fV� D M.B�/g� be the family of affinoid domains in X such that x 2
V� and f .V�/ 
 U. Provide 	X=S;x with the stalk seminorm k kx, then we saw in
Sect. 6.1.1 that 	X=S;x is the filtered colimit of the seminormed A-modules b	B�=A
(see Sect. 2.2.11). In fact, 	X=S;x is an (uncompleted) filtered colimit of completed
modules of differentials, so it can be informally thought of as a partial completion
of 	Ox=Os , where we set Ox D OXG;x and Os D OSG;s for shortness. Consider the
following commutative diagram of seminormed modules

where x is the non-expansive A-homomorphism induced by the A-homomorphisms
 � via the universal property of colimits.

Theorem 6.1.8. Keep the above notation. Then ˛x and x are isometries with dense
images. In particular, b	H.x/=H.s/ is the completion of both 	X=S;x and 	Ox=Os .

Proof. By Lemma 4.2.11, 	Ox=Os D colim�	B�=A as seminormed modules. In
particular, ˛x is the colimit of isometries with dense images ˛�, and hence ˛x itself
is an isometry with a dense image. Therefore, it suffices to show that the map
	Ox=Os ! b	H.x/=H.s/ is the completion homomorphism. Indeed, the surjection
	Ox=Os ! 	�G.x/=�G.s/ is an isometry by Corollary 4.2.4 and b	�G.x/=�G.s/ D
b	H.x/=H.s/ by Corollary 5.6.7. ut
Corollary 6.1.9. In the situation of Theorem 6.1.8, x identifies the completed fiber
2	X=S.x/ with b	H.x/=H.s/.

Remark 6.1.10. (i) Corollary 6.1.9 provides an alternative way to define k kx.
Instead of the colimit definition in Sect. 6.1.7, one can simply induce k kx from
b	H.x/=H.s/ by the rule k�kx D k x.�/kb	;H.x/=H.s/ for � 2 	X=S;x.

(ii) Even more importantly, the corollary provides a convenient way to compute the
values of k kx since the finite-dimensional normed vector spaces b	H.x/=H.s/ are
often pretty explicit. For comparison, we note that it is not clear how to describe
the fiber 	X=S.x/ in terms of �G.x/=�G.s/. One can only say that 	X=S.x/ is
a finite-dimensional quotient, in fact, a partial completion of the huge vector
space	�G.x/=�G.s/. However, the seminorm of	X=S.x/ can still have a non-trivial
kernel.
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6.1.11 Kähler Seminorms on Pluriforms

By the constructions of Sect. 3.1.7, k k	 induces seminorms on the sheaves obtained
from	X=S by tensor products, symmetric powers and exterior powers. In particular,
it induces a canonical seminorm k k.	l

X/
˝m on the sheaf of pluriforms .	l

X/
˝m, that

will be called Kähler seminorm too.
Of particular interest will be the situation when X ! S is quasi-smooth of relative

dimension n. Then the relative canonical sheaf !X=S DVn
	X=S is invertible, as well

as the relative pluricanonical sheaves !˝m
X=S . The corresponding seminorms will be

denoted k k! and k k!˝m .

6.1.12 Analyticity of the Seminorms

We have already used Corollary 5.6.7 when studying the stalk seminorms of k k.
As another application, let us show that all seminorms we have constructed are
analytic.

Theorem 6.1.13. The seminorm k k	 and the induced seminorms on the sheaves
obtained from 	X=S by tensor products, symmetric powers and exterior powers are
analytic.

Proof. By Remark 3.3.4(ii), analyticity is G-local, hence it suffices to consider the
case when X is affinoid. In the sequel 	X=S denotes the OX-module and the OXG -
module will be denoted 	XG=SG . By Lemma 3.3.12(i)”(iii) we should prove that
for each x 2 X the map h W 	X=S;x ! 	XG=SG;x is an isometry with respect to
the stalks of k k	. It suffices to check that the completion of h is an isometry and
we know by Theorem 6.1.8 that the completion of 	XG=SG;z is b	H.x/=H.s/. So, it
suffices to check that b	H.x/=H.s/ is also the completion of 	X=S;x, and for this we
will copy the argument from the proof of Theorem 6.1.8 but with sheaves in the
usual topology.

Set s D f .x/, Ox D OX;x and Os D OS;s, and provide 	�.x/=�.s/ with the
Kähler seminorm. We claim that b	H.x/=H.s/ is the completion of	Ox=Os . Indeed, the
surjection 	Ox=Os ! 	�.x/=�.s/ is an isometry by Corollary 4.2.4 and b	�.x/=�.s/ D
b	H.x/=H.s/ by Corollary 5.6.7. ut

6.2 Examples

In this section, we compute k k	 and its completed fibers in a few basic cases.
We try to choose simple examples that illustrate the general situation. In par-
ticular, we will see that k k	 discovers a rather subtle behavior even in the
one-dimensional case.
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6.2.1 The Case of a Disc

Assume that k D ka and X D M.kfTg/ is the unit disc. Then 	X is a free sheaf
with basis dT , so we can identify it with OX by sending dT to 1. Let r.x/ be the
radius function, i.e. r.x/ is the infimum of radii of subdiscs of X containing x. We
claim that kdTkx D r.x/ for any x 2 X. If x is contained in a disc of radius s with
center at a, then jT � ajx � s and hence kdTkx D kd.T � a/kx � s. The function
kdTk W X ! R
0 is semicontinuous by Theorem 6.1.13, therefore it suffices to
check that kdTkx 	 r.x/ at a type 2 or 3 point x. In such case, replacing T by a
suitable T � a with a 2 k we can achieve that jTjx D r.x/ and the valuation on H.x/
is T-monomial. But then k dT

T k	;H.x/=k D 1 by Theorem 5.7.8(i) H) (iii), and so
kdTkx D jTjx D r.x/.

The formula for kdTk implies that its maximality locus consists of a single
point, the maximal point of X. Another consequence is that k k is the seminorm
corresponding to r.x/ in the sense of Lemma 3.3.10.

Remark 6.2.2. The radius function r.x/ is upper semicontinuous but not continuous,
and this is a typical behavior for functions of the form k�k. This indicates that the
Kähler seminorm on	X=S is very different from the spectral seminorm on OXG even
when 	X=S is invertible. For example, if X is a curve and f 2 �.OXG/ is a global
function, then jf j is locally constant outside of a finite graph. On the other hand,
if � 2 �.	X/ then for any type 2 point x the value of k�k decreases in almost
all directions leading from x. This property is tightly related to the fact that the
maximality locus of such � is a finite graph. Also, this indicates that the unit balls
	X̆=S are usually huge Oı

XG
-modules.

6.2.3 Rigid Points: Perfect Ground Field

Assume that k is perfect. Let x 2 X be any point with H.x/ 
 bka, for example, a
rigid point (i.e., a point with ŒH.x/ W k� < 1), or a type 1 point on a curve. Note
that b	H.x/=k D 0, since ka \ H.x/ is dense in H.x/ by Ax-Sen–Tate theorem, see
[2]. Therefore, any differential form � satisfies k�k	;x D 0 by Corollary 6.1.9.

6.2.4 Rigid Points: Non-perfect Ground Field

If k is not perfect, then the situation is different. For example, assume that x is a
rigid point with l D H.x/ inseparable over k; a disc contains plenty of such points,
e.g. the points given by Tp � a D 0 for a 2 k n kp. One can easily give examples
when Kähler seminorm on the finite dimensional vector space 	l=k is a norm and
hence b	l=k D 	l=k ¤ 0. (Probably, this is always the case since k is complete.) On
the other hand, b	l=k is the completion of 	X=k;x, so the seminorm on the latter does
not vanish.
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Let us outline a concrete particular case. Assume that l D k.˛/ is a purely
inseparable extension of k of degree p; in particular, 	l=k D ld˛. Then
r D infc2kj˛ � cj is positive since k is complete. Since d˛ D d.˛ � c/, we
obviously have that kd˛k	;l=k � r. One can check straightforwardly that the choice
of kd˛k D r makes the map dl=k non-expansive, so, in fact, kd˛k	;l=k D r.
In particular, if T is the coordinate on X D A1

k and x 2 X is the type 1 point given
by Tp D a, then kdTkx D s1=p, where s D infc2kja � cpj.

6.2.5 Disc Over Non-perfect Field

Assume that char.k/ D p > 0 and Qk is not perfect and let X DM.kfTg/. Choose
any a 2 kı such that Qa … Qkp and let x be the rigid point given by Tp D a. Then
kdTkx D 1 by Sect. 6.2.4, and we claim that, more generally, kdTk D 1 on the
whole line connecting x with the maximal point of X. In particular, the maximum
locus of kdTk contains a huge subgraph, whose combinatorial cardinality (i.e., the
cardinality of the set V [ E of vertices and edges) is easily seen to be equal to the
cardinality of k (it is infinite since Qk ¤ Qkp).

To verify our claim, let q be the maximal point of the disc around x given by
jTp � aj � r. Set S D Tp � a and L D bk.S/ 
 H.q/, then the valuation on L is
S-monomial and hence infc2LjS C a � cpj D 1. Since T D .a C S/1=p we obtain
by Sect. 6.2.4 that kdTk	;H.q/=L D 1, and hence kdTk	;H.q/=k 	 1. The opposite
inequality is obvious, so kdTkq D kdTk	;H.q/=k D 1.

Remark 6.2.6. In the mixed characteristic case the situation is even weirder. On
the one hand, the Kähler seminorm vanishes at rigid points, but on the other hand,
if Qk is not perfect, say Qa … Qkp, and I is the interval connecting x D .Tp � a/
with the maximal point q then a similar argument shows that kdTk D 1 on some
neighborhood of q in I. In fact, the maximality locus of kdTk is a huge tree with
root q but its leaves are points of type 2.

6.3 Kähler Seminorms and Base Changes

6.3.1 Domination

For general base changes, Kähler seminorms are related as follows.

Lemma 6.3.2. Assume that X ! S and S0 ! S are morphisms of k-analytic spaces
and X0 D X �S S0. Let � 2 �.	X=S/ and let �0 2 �.	X0=S0/ be the pullback of
�. Then for any point x0 2 X0 with image x 2 X one has that k�0.x0/k � k�.x/k.
In other words, the pullback of k k	;X=S (see Sect. 3.3.8) dominates k k	;X0=S0 .

Proof. Let s 2 S and s0 2 S0 be the images of x0. Unrolling the definitions of the
Kähler seminorms and the pullback operation we see that the assertion of the lemma
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reduces to the claim that the map b	H.x/=H.s/ ˝H.x/ H.x0/ ! b	H.x0/=H.x/ is non-
expansive. The latter follows straightforwardly from the definition of the seminorm
on the source: similarly to the argument in Lemma 4.2.6, all inequalities defining
the seminorm of the source hold in the target. ut
Remark 6.3.3. (i) The domination of seminorms from Lemma 6.3.2 is not an

equality in general. We will later see that this is often the case when X is a
disc, S DM.k/ and S0 DM.l/ for a finite wildly ramified extension l=k. One
can also provide a characteristic-free example. Assume that k D ka, S DM.k/
and X D S0 is the unit disc over k, and let x D s0 be a point. It is easy to see that
the fiber over .x; s0/ in X0 contains a type 1 point x0. So, k kx0 D 0 by Sect. 6.2.3.
On the other hand, if r.x/ > 0 then k kx ¤ 0.

(ii) At first glance, the above examples are surprising because in the context of
seminormed rings, Kähler seminorms are compatible with base changes by
Lemma 4.2.6. However, we use structure sheafs provided with the spectral
seminorms in the definition of Kähler seminorms, while the tensor seminorms
do not have to be spectral. For example, if E=k and F=k are finite extensions
of analytic fields such that K D E ˝k F is a field, the tensor norm on K can
be strictly larger than the valuation. As we will prove below, this phenomenon
may only happen when the extensions are wild.

6.3.4 Universally Spectral Norms

Remark 6.3.3(ii) motivates the following definition. We say that a Banach k-algebra
A is spectral if its norm is power-multiplicative. In other words, j jA coincides with
the spectral seminorm. We say that a Banach k-algebra is universally spectral if
A Ő kl provided with the tensor seminorm is spectral for any extension of analytic
fields l=k.

Remark 6.3.5. (i) The condition that a Banach algebra is spectral is an analogue of
reducedness in the usual ring theory. Thus, universal spectrality can be viewed
as an analogue of geometric reducedness over a field.

(ii) For comparison, we note that a point x 2 X was called universal by Poineau,
see [32, Definition 3.2], if the tensor norm on H.x/ Ő kl is multiplicative for
any l=k (originally, universal norms were called peaked, see [4, Sect. 5.2]). The
algebraic analogue of the property that a Banach field is universal over k is
geometrical integrality.

6.3.6 Defectless Case

One can show that an algebraic extension is universally spectral if and only if it is
almost tame, but this will be worked out elsewhere. Here we only check this for
defectless extensions.



Metrization of Differential Pluriforms on Berkovich Spaces 255

Lemma 6.3.7. Assume that K=k is a finite defectless extension of analytic fields.
Then K is universally spectral over k if and only if K=k is tame.

Proof. Throughout the proof, given an analytic k-field l we set L D K ˝k l
and provide it with the tensor seminorm k kL. Let Qkgr D ˚r>0 Qkr be the R>0-
graded reduction of k, and define eLgr, eKgr and Qlgr similarly. Also, let eL0

gr be the
R>0-graded ring associated with the filtration on L induced by k kL; in particular,
eL0

gr D eLgr only when k kL coincides with the spectral seminorm. Note that k kL is
not spectral if and only if kxnkL < kxkn

L for some x and large n, and this happens if
and only if Qx is a homogeneous nilpotent element ofeL0

gr. Thus, k kL is spectral if and
only if the graded ringeL0

gr is reduced in the sense of graded commutative algebra of
[37, Sect. 1]. [This also reinforces Remark 6.3.5(i).]

Since K=k is defectless, K possesses an orthogonal k-basis a1; : : : ;an. Then, this
basis is also an orthogonal basis of L over l and hence Qa1; : : : ;Qan is a basis of both
eKgr over Qkgr andeL0

gr over Qlgr. In particular, we obtain thateL0
gr D eKgr ˝Qkgr

Qlgr.

Now, let us prove the lemma. The extension K=k is tame if and only if eK=Qk
is separable and jK�j=jk�j has no p-torsion. By [14, Proposition 2.10 ] the latter
happens if and only if the extension of graded fields eKgr=Qkgr is separable (in the
graded setting). This implies that for any extension of analytic fields l=k, the graded
Qlgr-algebra eKgr ˝Qkgr

Qlgr is reduced, and as we saw above this happens if and only if
the tensor seminorm on K ˝k l is spectral.

Conversely, if K=k is wild, then we showed in the above paragraph thateKgr=Qkgr is
not separable. For simplicity take l D bka (in fact, l D K would suffice). Then Qlgr is an
algebraically closed graded field and eKgr ˝Qkgr

Qlgr is an inseparable finite Qlgr-algebra.

By [14, 1.14.3], this implies that eKgr ˝Qkgr
Qlgr is not reduced, and hence k kL is not

spectral. ut
Corollary 6.3.8. Any tame extension is universally spectral.

Proof. This follows from the lemma since any tame extension is defectless. ut

6.3.9 Residually Tame Morphisms

We say that a morphism g W S0 ! S is residually tame (resp. residually unramified)
at s0 2 S0 if the extension of completed residue fields H.s0/=H.s/, where s D g.s0/,
is finite and tame (resp. unramified). A morphism is residually tame or residually
unramified if it is so at all points of the source.

6.3.10 Compatibility with Base Changes

In view of Remark 6.3.3(i), one has to restrict base change morphisms in order to
ensure compatibility of Kähler seminorms with the base change. Here is a natural
way to impose such a restriction.
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Theorem 6.3.11. Let f W X ! S and g W S0 ! S be two morphisms of analytic
k-spaces. Assume that for any point s0 2 S0 with s D g.s0/ the field H.s0/ is finite
and universally spectral over H.s/ (by Corollary 6.3.8 this includes the case of a
residually tame g). Then the pullback of the Kähler seminorm on 	X=S coincides
with the Kähler seminorm on 	X�SS0=S0 .

Proof. Fix a point x0 2 X0 D X �S S0 and let x 2 X, s0 2 S0 and s 2 S be its images.
Set also K D H.s/, K0 D H.s0/, L D H.x/, and L0

1 D H.x0/. We should prove that if
� 2 	X=S;x and �0 2 	X0=S0;x0 is its pullback then k�kx D k�0kx0 . By Corollary 6.1.9,
the values of the seminorms can be computed at b	L=K and b	L01=K0 , respectively. This

reduces the question to proving that the map  W b	L=K ˝L L0
1 ! b	L01=K0 is an

isometry.

Consider the seminormed ring L0 D L˝KK0 and note that � W b	L=K˝LL0 ��!b	L0=K0

is an isometry by Lemma 4.2.6. In addition, L0 is reduced since it is spectral, and L0 is

a finite L-algebra since K0=K is finite. Hence L0 ��!Qn
iD1 L0

i, where L0
i are extensions

of L and L0
1 is as defined earlier. We claim that this isomorphism is also an isometry.

Indeed, the right-hand side is provided with the sup seminorm, hence this follows
from [8, Theorem 3.8.3/7]. Thus, 	L0=K0 D Qn

iD1 	L0i=K0 and hence  0 W b	L0=K0 ˝L0

L0
1 ! b	L01=K0 is an isometric isomorphism. Therefore, the composition  D  0 ı
.�˝L0 L0

1/ is an isometry. ut
Let us record the most important particular cases of the theorem.

Corollary 6.3.12. Assume that X ! S is a morphism of k-analytic spaces, s 2 S is
a point and Xs is the fiber over s. Then k k	;Xs=s equals to the restriction of k k	;X=S

onto the fiber.

Corollary 6.3.13. Assume that f W X ! S is a morphism of k-analytic spaces and
l=k is a finite extension such that l is universally spectral over k (e.g., l=k is tame).
Set Xl D X ˝ l and Sl D Y ˝ l. Then k k	;Xl=Sl is the pullback of k k	;X=S.

Remark 6.3.14. (i) In fact, instead of finiteness of l=k it suffices to assume that
the extension is algebraic. The proof is based on passing to a colimit and
completing and we leave the details to the interested reader.

(ii) In particular, the Kähler seminorm is preserved when we replace k with
its completed tame closure. In principle, this reduces the study of Kähler
seminorms to the case of a tamely closed ground field k.

6.3.15 Geometric Kähler Seminorm

Given a morphism f W X ! S, let f W X ! S denote its ground field extension
with respect to bka=k and let g denote the morphism X ! X. Provide g�	X=S with
the pushout quasi-norm g�.k k	;X=S/ (see Sect. 3.1.9) and let k k	;X=S be the quasi-
norm it induces on 	X=S via the embedding 	X=S ,! g�	X=S. By definition, if
� 2 	X=S.U/, then k�k	;V D kg��k	;g�1.V/. It follows easily that k k	;X=S is an
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analytic seminorm and k�k	;x D kg��k	;x0 for any x0 2 X and x D g.x0/. We call
k k	;X=S the geometric Kähler seminorm on	X=S and use	 in the notation to stress
that it is geometric.

Absolutely in the same way one defines the geometric Kähler seminorm
k k

.	
l
X=S/
˝m on the sheaf of pluriforms .	l

X=S
/˝m.

Remark 6.3.16. If k possesses non-trivial wild extensions, Kähler seminorms on
k-analytic spaces can behave rather weird (see Sects. 6.2.4 and 6.2.5). So, in this
case it is often more useful to work with the geometric Kähler seminorm.

7 PL Subspaces

Main results about Kähler seminorms are related to the PL structure of analytic
spaces, so in the current section we describe what this structure is.

7.1 Invariants of a Point

We start with recalling basic results about invariants t and s associated with points
of k-analytic spaces, see [4, Sect. 9]. To stress the valuative-theoretic origin of these
invariants we prefer to denote them F and E, the transcendental analogues of e and f .

7.1.1 Invariants of Extensions of Valued Fields

To any extension of valued fields L=K one can associate two cardinals that measure
the “transcendence size” of the extension: the residual transcendence degree FL=K D
tr:deg:eK.eL/ and the rational rank EL=K D dimQ.jL�j=jK�j ˝Z Q/. Both invariants
are additive in towers of extensions L0=L=K, i.e. EL0=K D EL0=LC EL=K and FL0=K D
FL0=L C FL=K .

7.1.2 Invariants of Points

For a point x of a k-analytic space X we define the residual transcendence degree
FX;x D FH.x/=k and the rational rank EX;x D EH.x/=k. Usually, we will omit the space
X in this notation. Additivity of the invariants can now be expressed as follows.
Assume that f W X ! Y is a morphism of k-analytic spaces, x 2 X is a point with
y D f .x/, and the H.y/-analytic space Z D X �Y M.H.y// is the fiber over y. Then
FX;x D FY;yCFZ;x and EX;x D EY;yCEZ;x. In particular, if f is finite, then FX;x D FY;y

and EX;x D EY;y.
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7.1.3 Classification of Points on a Curve

Starting with [4, Sect. 1.4.4] and [5, Sect. 3.6], points of k-analytic curves are
classified into four types: (1) H.x/ 
 bka, (2) Fx D 1, (3) Ex D 1, (4) the rest.
In all cases, it is easy to see that Ex C Fx � 1, i.e., Ex D 0 for type 2 points, Fx D 0
for type 3 points, and Ex D Fx D 0 for type 1 and 4 points.

If x is of type 2 or 3, then the following three claims hold: eH.x/ is finitely
generated over Qk, jH.x/�j is finitely generated over jk�j, if k is stable then H.x/ is
stable. The first two are simple, and we refer to [38, Corollary 6.3.6] for the stability
theorem. Note that all three claims can fail for types 1 and 4.

7.1.4 Monomial Points

Fibering X by curves and using the additivity of E and F and induction on
dimension, it is easy to see that any point x 2 X satisfies the inequality Ex C Fx �
dimx.X/. A point x 2 X is called monomial or Abhyankar if Fx C Ex D dimx.X/.
The set of all monomial points of X will be denoted Xmon.

Remark 7.1.5. (i) Monomial points are adequately controlled by the invariants Ex

and Fx. This often makes the work with them much easier than with general
points. For example, see Corollary 7.2.5 below.

(ii) Analogues of monomial points in the theory of Riemann–Zariski spaces are
often called Abhyankar valuations. They are much easier to work with too; for
example, local uniformization is known for such points.

7.2 PL Subspaces

The set Xmon is huge and, at first glance, may look a total mess when dim.X/ > 1.
Nevertheless, it possesses a natural structure of an ind-PL space that we are going
to recall.

7.2.1 The Model Case

Recall that points of the affine space

An
k D

[

r

M.kfr�1t1; : : : ;r�1tng/

with coordinates t1; : : : ;tn can be identified with real semivaluations on kŒt1; : : : ;tn�
that extend the valuation of k. The semivaluations that do not vanish at t1; : : : ;tn
form the open subspace Gn

m. Thus, for each tuple r 2 Rn
>0 the generalized gauss
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valuation j jr (see Sect. 5.7.3) defines a point pr 2 Gn
m, and the correspondence

r 7! pr provides a topological embedding ˛ W Rn
>0 ,! Gn

m. Let S be the image of ˛.

Remark 7.2.2. (i) One often calls S the skeleton of Gn
m; this terminology is

justified by (ii) and (iii) below. Sometimes one refers to the points of S as
t-monomial valuations because they are determined by their restriction to the
monoid

Qn
iD1 tN

i .
(ii) Any semivaluation x 2 Gn

m is dominated by the t-monomial valuation pjt.x/j.
The map x 7! pjt.x/j is a retraction r W Gn

m � S. Moreover, Berkovich
constructs in [4, Sect. 6] a deformational retraction of Gn

m onto S whose level
at 1 is the above map.

(iii) All t-monomial valuations are distinguished by invertible functions (in fact, by
monomials ta), hence they are incomparable with respect to the domination.
Thus, S is the set of all points of Gn

m that are maximal with respect to the
domination. In particular, it is independent of the coordinates.

7.2.3 Monomial Charts

By a monomial chart of an analytic space X we mean a morphism f W U ! Gn
m such

that U is an analytic domain in X and f has zero-dimensional fibers. Clearly, f is
determined by invertible functions t1; : : : ;tn 2 O�

X .U/. A point x 2 U of the chart is
called t-monomial or f -monomial if the restriction of j jx to kŒt1; : : : ;tn� is monomial.
In this case, we also say that t1; : : : ;tn is a family of monomial parameters at x. Note
that H.f .x// Dbk.t/ is provided with a generalized Gauss valuation and H.x/ is its
finite extension.

In addition, we say that the chart is residually tame or unramified (at a point
x 2 U) if the morphism f is so, see Sect. 6.3.9. In this case we also say that the
family of monomial parameters t1; : : : ;tn is residually tame or unramified (at x). The
following result shows that monomial charts adequately describe the whole Xmon.

Lemma 7.2.4. A point x 2 X is monomial if and only if there exists a monomial
chart f W U ! Gn

m such that x is f -monomial.

Proof. Set L D H.x/. If there exists a monomial chart f such that f .x/ is a monomial
point, then the induced map f W U ! Gn

m has zero-dimensional fibers and hence L
is finite over K D H.y/, where y D f .x/. Since Ey C Fy D n, we obtain that
Ex C Fx D n, i.e. x is monomial.

Conversely, assume that the sum of E D Ex and F D Fx equals to n D dimx.X/.
Choose t1; : : : ;tF 2 �G.x/ such that Qt1; : : : ;QtF is a transcendence basis of eL=Qk, and
choose ftFC1; : : : ;tng such that its image in .jL�j=jk�j/ ˝ Q is a basis. Then the

valuation on K D 4k.t1; : : : ;tn/ is a generalized Gauss valuation. Take an analytic
domain U 
 X containing x such that dim.U/ D n and t induces a morphism
f W U ! Gn

m. Then y D f .x/ is a monomial point of Gm
n (even a point of its skeleton).

Consider the fiber Uy D f �1.y/. By [15, Corollary 8.4.3] dimy.Uy/ D 0, hence using
[12, Theorem 4.9] we can shrink U around y so that f has zero-dimensional fibers.

ut
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Corollary 7.2.5. Assume that x 2 X is a monomial point, then

(1) The ring OXG;x is Artin. In particular, if X is reduced, then mG;x D 0 and
OXG;x D �G.x/.

(2) The extension eH.x/=Qk is finitely generated.
(3) The group jH.x/�j=jk�j is finitely generated.
(4) If k is stable, then H.x/ is stable.

Proof. By Lemma 7.2.4 there exists a chart f W U ! Gn
m that takes x to a point y

corresponding to a generalized Gauss valuation. Note that OXG;x is finite over OYG;y.
All four properties are satisfied by y, hence they also hold for x. ut

We can now strengthen Lemma 7.2.4 in the case of an algebraically closed k.

Corollary 7.2.6. Assume X is a k-analytic space, k algebraically closed and x 2 X
is a monomial point. Then there exists a monomial chart f such that x is f -monomial
and f is residually unramified at x.

Proof. The proof repeats that of Lemma 7.2.4, but we will choose ti more carefully.
Set L D H.x/, E D EL=k, F D FL=k and n D E C F. Since k D ka the field Qk is
algebraically closed and the group jk�j is divisible. In particular, the extensioneL=Qk
is separable and the group jL�j=jk� is torsion free. SinceeL=Qk is finitely generated by
Corollary 7.2.5(2), it possesses a separable transcendence basis. Choose t1; : : : ;tF 2
�G.x/ so that Qt1; : : : ;QtF is such a basis. Since the group jL�j=jk�j is finitely generated
by Corollary 7.2.5(3), it is isomorphic to ZE. Choose tFC1; : : : ;tn 2 �G.x/ so that
their images form a basis of jL�j=jk�.

The elements t1; : : : ;tn define a morphism f W U ! Gn
m for a small enough

analytic domain U containing x, and we claim that f is as required. Indeed, it suffices

to check that L is unramified over K D H.f .x// D 4k.t1; : : : ;tn/. By our choice
jL�j D jK�j andeL=eK is separable. Since K is stable by Corollary 7.2.5(4), L=K is
unramified. ut

7.2.7 Skeletons of Monomial Charts

The set of all f -monomial points of U will be denoted S.f / and called the skeleton
of the chart. Note that S.f / is nothing else but the preimage of the skeleton of Gn

m
under f . By Lemma 7.2.4, Xmon D [f S.f /, where f runs over all monomial charts
of X. We warn the reader that, in general, S.f / does not have to be a retract of U.

7.2.8 RS-PL Structures

We will usually abbreviate “piecewise linear” as PL. We refer to [7, Sect. 1] for
the definition of an RS-PL space Q for a ring R 
 R and its exponential module
S 
 R>0. Here we only recall that Q has an atlas fPig of RS-PL polytopes, i.e.
polytopes in Rn

>0 given by finitely many inequalities ste1
1 : : : t

en
n � 1 with s 2 S,

ei 2 R and provided with the family of RS-PL functions.
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7.2.9 Rational PL-Subspaces

Absolute values of the coordinates of Gn
m induce coordinates ti W S ! R>0 on its

skeleton S. The latter are unique up to the action of GL.n;Z/Ë jk�jn combined from
the action of GL.n;Z/ on

Qn
iD1 tZ

i and rescaling the coordinates by elements of jk�j.
Therefore, S acquires a canonical Zjk�j-PL structure.

The following facts were proved by Ducros: (1) for any monomial chart
f W U ! Gn

m the skeleton S.f / possesses a unique QH-PL structure such that the map
S.f /! S is QH-PL, see [11, Theorem 3.1], (2) for any two monomial charts f and g
the intersection S.f / \ S.g/ is QH-PL in both S.f / and S.g/, see [13, Theorem 5.1],
and so S.f / [ S.g/ acquires a natural QH-PL structure and the whole Xmon acquires
a natural structure of an ind-QH-PL space. By a rational QH-PL subspace of X we
mean a subset of the form [n

iD1S.fi/ with its induced QH-PL structure.

7.2.10 Integral Structure

One may wonder if the QH-PL structure on a rational PL subspace P of X can be
refined to an integral one. Ducros and Thuillier showed in [16] that this is indeed
the case: there is a ZH-PL structure on P such that a function f W P ! R>0 is ZH-
PL if and only if G-locally it is of the form rjf j, where f is an analytic function on
X and r 2 H (see [16, 3.7] and note that HQ D H). Obviously, such a structure
is unique but consistency of the definition requires an argument. In addition, they
show that the associated QH-PL space, obtained by adjoining integral roots of all
ZH-PL functions on P, coincides with the original QH-PL space. In the sequel, we
provide P with this ZH-PL structure and call it a ZH-PL subspace of X.

7.3 Semistable Formal Models

7.3.1 Semistable Formal Schemes

We say that a formal kı-scheme is strictly semistable if locally it admits an étale
morphism to a formal scheme of the form Zn;a D Spf.kıfT0; : : : ;Tng=.T0 : : : Tn�a//
with 0 ¤ a 2 kı. A formal kı-scheme is called semistable if it is étale-locally strictly
semistable.

Remark 7.3.2. (i) Sometimes one does not require that a ¤ 0, thereby obtaining
a wider class of semistable formal schemes. If X is semistable in this sense,
then X� is quasi-smooth if and only if one can find charts with a ¤ 0. Since
we will only be interested in formal models of quasi-smooth spaces, we use the
definition that includes the condition a ¤ 0.
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(ii) If the valuation is discrete and a is a uniformizer, one often considers schemes
Z D Spf.kıfT0; : : : ;Tng=.Tl0

0 : : : T
ln
n � a//. They are regular with SNC closed

fiber. If li > 1, then the closed fiber is not reduced and hence Z is not semistable.
Note also that if .l1; : : : ;ln/ 2 Qk� then Z is log smooth, see Remark 7.3.4 below.

7.3.3 Skeletons Associated to Semistable Formal Models

To any semistable formal kı-scheme X with generic fiber X D X� Berkovich
associated in [6, Sect. 5] the skeleton S.X/ � X and constructed a deformational
retraction X � S.X/. Moreover, these constructions are compatible with any étale
morphism � W Y! X, i.e. S.Y/ D ��1

� .S.X// and the retraction is compatible with
��, see [6, Theorem 5.2(vii)].

Since any semistable formal kı-scheme is connected with semistable formal
schemes Zn;a by a zigzag of two étale morphisms, description of the skeleton
and the retraction reduces to the model case, and the latter is induced from Gn

m.
Namely, let Gn

m be the n-dimensional torus with coordinates T1; : : : ;Tn. The affinoid
subdomain given by jT1 : : : Tnj 	 jaj and jTij � 1 for 1 � i � n equals to
Z D M.kfT0; : : : ;Tng=.T0 : : : Tn � l/ and hence can be identified with the generic
fiber of Z D Zn;a. Then T1; : : : ;Tn give rise to the monomial chart f W Z ,! Gn

m with
skeleton S.f / D S.Gm

n / \ Z, and S.Z/ coincides with S.f /. The retraction of Z onto
S.Z/ is the restriction of the retraction of Gm

n onto S.Gm
n /.

Remark 7.3.4. (i) Slightly more generally, Berkovich makes the above construc-
tions for polystable models, i.e. those models that are étale-locally isomorphic
to products of semistable ones. In fact, this can be extended further to log
smooth formal models with trivial generic log structure—these are formal
schemes that étale-locally admit smooth morphisms to formal schemes of the
form Spf.kıfP=…g/, where… and P are sharp fs monoids, ˛ W … ,! kı nf0g is
an embedding such that the composition…! jkınf0gj is injective, � W …! P
is an injective homomorphism with no p-torsion in the cokernel and such that
…gpP D Pgp, and kıfP=…g is the quotient of kıfPg by the ideal generated by
elements ˛.
/ � �.
/ for 
 2 …. The details will be worked out elsewhere.

(ii) The main motivation for considering log smooth formal models is that it is
believed (at least by the author) that any quasi-smooth compact strictly analytic
space possesses a log smooth formal model. This is absolutely open when
char.Qk/ > 0, but one may hope to prove this by current techniques when
char.Qk/ D 0. Currently, the latter is only known for a discretely valued k:
desingularization of excellent formal schemes implies that there even exists a
semistable formal model. If the Q-rank of jk�j is larger than one, then it is easy
to give examples when semistable models do not exist, e.g. Spf.kfat�1; tg/ �
Spf.kfbt�1; tg/, where jbj … jajQ (see also [41, Remark 1.1.1(ii)]). The situation
with polystable models is unclear: it is still an open combinatorial question
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(in dimension at least 4) whether any log smooth formal model possesses a
polystable refinement. A tightly related question was raised by Abramovich
and Karu in [1, Sect. 8]: log smooth (resp. polystable) models are analogues of
weakly semistable (resp. semistable) morphisms in the sense of [1, Sect. 0].

8 Metrization of Pluricanonical Forms

Throughout Sect. 8, X is assumed to be quasi-smooth of pure dimension n. In
particular, 	X D 	1

X=k is a locally free sheaf of rank n and the pluricanonical

sheaves !˝m
X D .Vn

	X/
˝m are invertible.

8.1 Monomiality of Kähler Seminorms

8.1.1 Stalks at Monomial Points

Recall that if k D ka then any monomial point possesses a family of residually tame
monomial parameters by Corollary 7.2.6. This allows to describe k k! as follows.

Theorem 8.1.2. Assume that k is algebraically closed. Let X be a quasi-smooth
k-analytic space of dimension n with a point x 2 X, and let t1; : : : ;tn be invertible
elements of OXG;x. Then k dt1

t1
^ � � � ^ dtn

tn
k!;x � 1 and the following conditions are

equivalent:

(i) k dt1
t1
^ � � � ^ dtn

tn
k!;x D 1.

(ii) dt1
t1
; : : : ; dtn

tn
form an orthonormal basis of b	H.x/=k.

(iii) t is a family of residually tame monomial parameters at x.

Proof. Since kdtik	;x � jtijx, it follows that k dt1
t1
^� � �^ dtn

tn
k!;x � 1. The equivalence

(i)”(ii) is proved precisely as the equivalence (iii)”(iv) in the proof of
Theorem 5.7.8. We will complete the proof by showing that (ii)”(iii).

Set l D k.t/ and L D Ol. First, assume that ti form a family of residually
tame monomial parameters. Then dt1

t1
; : : : ; dtn

tn
is an orthonormal basis of b	l=k by

Theorem 5.7.8. It remains to use that b	l=k D b	L=k by Corollary 5.6.7, and
b	L=k D b	H.x/=k because H.x/=L is tame.

Conversely, assume that dt1
t1
; : : : ; dtn

tn
is an orthonormal basis of b	H.x/=k. Since

the isomorphism  H.x/=L=k W b	L=k ˝L H.x/ ! b	H.x/=k is non-expansive and
k dti

ti
k	;L=k � 1, we obtain that H.x/=L=k is an isometry and dt1

t1
; : : : ; dtn

tn
is an orthonor-

mal basis of b	L=k. The module 	log
H.x/ı=kı is almost torsion free by Theorem 5.5.18,

hence H.x/=L is almost tame by Theorem 5.6.4.
It remains to show that t1; : : : ;tn is a family of monomial parameters because then

L is stable by Corollary 7.2.5(4) and hence H.x/=L is tame by Theorem 5.5.11(ii).
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Note that t1; : : : ;tn are algebraically independent over k because dt1; : : : ;dtn are
linearly independent in b	H.x/=k, hence t1; : : : ;tn is a separable transcendence basis of
l=k. Since 	l=k is finite-dimensional, the completion 	l=k ! b	l=k is surjective, and
comparing the dimensions we see that it is an isomorphism. Thus,	l=k˝l L! b	L=k

is an isometric isomorphism by Corollary 5.6.7. This implies that dt1
t1
; : : : ; dtn

tn
is

an orthonormal basis of 	l=k, and hence the valuation on l is t-monomial by
Theorem 5.7.8. ut
Corollary 8.1.3. Assume that k is algebraically closed, X is quasi-smooth, elements
t1; : : : ;tn 2 OXG;x form a family of residually tame monomial parameters at a point
x, and F D .	l

X/
˝m. Then

B D
��

dti1
ti1
^ � � � ^ dtil

til

	
˝ � � � ˝

�
dtj1
tj1
^ � � � ^ dtjl

tjl

	�

is an orthonormal basis of Fx. In particular, any pluriform � 2 �..	l
X/

˝m/ can be
represented as � DPe2B �ee locally at x, and the following equality holds

k�k.	l
X/
˝m;x D max

e2B
j�ejx:

Proof. By Theorem 8.1.2, dt1
t1
; : : : ; dtn

tn
is an orthonormal basis of 	X;x. This reduces

the claim to simple multilinear algebra. ut
Corollary 8.1.4. Keep the assumptions of Corollary 8.1.3 and assume that
F D !˝m

X . Then e D . dt1
t1
^ � � � ^ dtn

tn
/˝m is a basis of Fx, and if � D fe is the

representation of a pluricanonical form � at x then k�k!˝m;x D jf jx.

8.1.5 Piecewise Monomiality

Now, we can prove that norms of pluriforms induce ZH-PL functions on ZH-PL
subspaces of X (see Sect. 7.2.9). In particular, when restricted to ZH-PL subspaces of
X, spectral seminorm and Kähler seminorms demonstrate similar behavior, although
their global behavior is very different.

Theorem 8.1.6. Assume that X is a reduced k-analytic space and � 2 �..	l
X/

˝m/

is a pluriform on X, and consider the function k�k W X ! R
0 that sends x to the
value k�k

.	
l
X/
˝m;x

of the geometric Kähler seminorm. Then for any ZH-PL subspace

P � X the restriction of k�k onto P is a ZH-PL function.

Proof. Since X is reduced, any monomial point satisfies mx D 0 and hence X is
quasi-smooth at x. Therefore, replacing X by a neighborhood of P we can assume
that X is quasi-smooth.

First, we consider the case when k D ka. By Theorem 9.4.8 that will be proved
in the end of the paper, we can cover S by finitely many skeletons of residually tame
(even unramified) monomial charts, hence it suffices to consider the case when P
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itself is the skeleton of a residually tame monomial chart f W U ! Gn
m given by

t1; : : : ;tn 2 �.O�
U/. By Corollary 8.1.3, locally at a point x 2 P we can represent

k�k as the maximum of ZH-PL functions j�ij. Hence k�k is ZH-PL too.
Assume, now, that k is arbitrary. Set X D X Ő kka and let � 2 �..	l

X
/˝m/ be the

pullback of �. The preimage P � X of P is a ZH-PL subspace: just take the charts of
P and extend the ground field to bka. Also, it follows from the description with charts
that the map P! P is ZH-PL. Since the pullback of k�k

.	
l
X/
˝m;x

to P is k�k.	l
X
/˝m;x

and the latter function is ZH-PL by the case of an algebraically closed ground field,
k�k

.	
l
X/
˝m;x

is a ZH-PL function as well. ut
Remark 8.1.7. Most probably, the assumption that X is reduced can also be
removed. Also, it seems probable that the theorem holds for the Kähler seminorm
too.

8.2 Maximality Locus of Pluricanonical Forms

Given a pluricanonical form �, let M� be the maximality locus of the Kähler semi-
norm of � and let M� be the maximality locus of the geometric Kähler seminorm
of �. Our next aim is to study M� ; recall that it is closed by Theorem 6.1.13 and
Lemma 3.3.10. The main results of this section, including Theorems 8.2.4 and 8.2.9,
do not hold for the maximality locus M� , at least when the residue field is not
perfect; the counterexamples being as in Sect. 6.2.5 and Remark 6.2.6.

8.2.1 The Torus Case

We start with studying the standard pluricanonical form on a torus.

Lemma 8.2.2. Let X be the k-analytic torus Gn;an
m with coordinates t1; : : : ;tn.

Consider the pluricanonical form � D . dt1
t1
^ � � � ^ dtn

tn
/˝m. Then k�k!˝m;x � 1

for any x 2 X and the equality takes place if and only if x is a generalized Gauss
point (see Sect. 7.2.1). In particular, the maximum locus of k�k!˝m is the skeleton
Rn
>0 of X.

Proof. This immediately follows from Theorem 8.1.2. ut

8.2.3 The Semistable Case

Recall that the skeleton S.X/ � X associated with a strictly semistable formal model
has a natural structure of a simplicial complex.
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Theorem 8.2.4. Assume that X is a quasi-smooth compact strictly k-analytic space,
� 2 �.!˝m

X / is a pluricanonical form on X, X is a strictly semistable formal model
of X, and S.X/ � X is the skeleton associated with X. Then the maximality locus
M� is a union of faces of S.X/.

Proof. Set k k D k k!˝m for shortness. First, let us prove that M� 
 S.X/. Working
locally on X we can assume that there exists an étale morphism

g W X! Y D Spf.kıft0; : : : ;tng=.t0 : : : tn � a//;

where 0 ¤ a 2 kı. Since Y D Y� is a domain in Gn
m with coordinates t1; : : : ;tn (see

Sect. 7.3.3), e D . dt1
t1
^ � � � ^ dtn

tn
/˝m is a nowhere vanishing pluricanonical form on

Y and therefore � D he for a function h 2 �.OX/. By [6, Theorem 5.3.2(ii)], the
retraction r W X ! S.X/ is compatible with domination, in particular, jhjx � jhjr.x/.
Since k�kx D jhjxkekx, it remains to prove that kekx � kekr.x/ and the equality
holds if and only if x D r.x/, i.e. x 2 S.X/.

When working with e, we can also view it as a form on Y . Let g W X ! Y be
the generic fiber of g. Since g is étale, if x 2 X and y D g.x/ then the extension
H.x/=H.y/ is unramified by [6, Lemma 1.6]. So, Theorem 6.3.11 and Lemma 6.3.7
imply that kekx D keky. By Corollary 8.2.2, keky � 1 for any point y 2 Y and the
equality holds precisely for the points of S.Y/. So, kekx � 1 for any x 2 X and the
equality holds precisely for the points of g�1.S.Y// D S.X/.

It remains to show that if � is a face of S.X/ then either � � M� or the interior
�ı is disjoint from M� . This claim is local on X so we can assume that X D Spf.Aı/
is affine and there is an étale morphism g W X ! Y as above. In particular, we can
assume that � D he, as above, and so k�kx D jhjx at any point x 2 S.X/. Note that X
is pluri-nodal in the sense of [6, Sect. 1], hence jhjA 2 jk�j by [6, Proposition 1.4].
Thus, multiplying � by an element of k� we can achieve that jhjA D 1, and then
h 2 Aı is a function on X. Note that �ı is the preimage in S.X/ of a point x 2 X. If
Qh.x/ D 0, then jhjx < 1 at any point in the preimage of x in X, and hence�ı\M� D
;. Otherwise, jhjx D 1 for any x as above, hence �ı 
 M� and by the closedness
of M� we obtain that � 
 M� . ut
Remark 8.2.5. (i) Theorem 8.2.4 is an analogue of [28, Theorem 4.5.5], though it

applies to a wider context (e.g., X is only assumed to be quasi-smooth). Note,
however, that these results consider different seminorms when char.Qk/ > 0

(see Sect. 8.3 below).
(iii) The lemma can be extended to general semistable models at cost of considering

generalized simplicial complexes. Moreover, it should extend to arbitrary log
smooth formal models, once the foundations are set (see Remark 7.3.4).

8.2.6 Residually Tame Coverings

Recall that residual tameness was defined in Sect. 6.3.9.
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Lemma 8.2.7. Assume that X is a quasi-smooth compact strictly k-analytic space
admitting a residually tame quasi-étale covering Y ! X such that Y possesses a
strictly semistable formal model. Then for any pluricanonical form � 2 �.!˝m

X / on
X the geometric maximality locus M� is a compact ZH-PL subspace of X.

Proof. Let 2 �.!Y/ be the pullback of �. By Theorem 6.3.11, the norm functions
k�k!˝m and k k!˝m are compatible, and hence M� D f .M /. It remains to recall
that M is a compact ZH-PL subspace by Theorem 8.2.4, and hence its image under
f is a ZH-PL subspace by [16, Proposition 2.1]. ut

8.2.8 Residue Characteristic Zero

In order to use the previous lemma, one should construct an appropriate covering
Y ! X. The author conjectures that any quasi-smooth strictly analytic space
possesses a quasi-net of analytic subdomains that admit a semistable model (this is
an analogue of the local uniformization conjecture in the desingularization theory).
However, this seems to be out of reach when char.Qk/ > 0. Even the case of
char.Qk/ D 0, which should be relatively simple, is missing in the literature. We
can avoid dealing with it here in view of the following generalization of a theorem
of U. Hartl to ground fields with non-discrete valuations, see [41, Theorem 3.4.1]:
there exist a finite extension l=k and a quasi-étale surjective morphism Y ! Xl D
X ˝k l such that Y possesses a strictly semistable formal model. The theorem does
not provide any control on residual tameness of f , but it is automatic whenever
char.Qk/ D 0.

Theorem 8.2.9. Assume that char.Qk/ D 0 and X is a quasi-smooth compact
strictly k-analytic space. Then for any pluricanonical form � 2 �.!˝m

X / on X, the
maximality locus M� is a compact ZH-PL subspace of X.

Proof. In this case, there is no difference between k k!˝m and k k!˝m . Take Y and
l as in [41, Theorem 3.4.1], then the composition Y ! X ˝k l! X is a quasi-étale
covering, which is automatically residually tame. It remains to use Lemma 8.2.7.

ut
We us say that a point x 2 X is divisorial if x is monomial and EH.x/=k D 0.

Thus, x is divisorial if and only if tr:deg:
eH.x/=Qk D dimx.X/. We will not need this,

but it is easy to see that if X is strictly analytic then x is divisorial if and only if there
exists a formal model X such that x is the preimage of a generic point of Xs under
the reduction map.

Corollary 8.2.10. Keep the assumptions of Theorem 8.2.9 and let Xdiv be the set of
divisorial points of X. Then k�k!˝m D maxx2Xdivk�k!˝m;x.

Proof. By Theorem 8.2.9, the maximality locus M� is a compact ZH-PL subspace.
By Theorem 8.1.6, the restriction of k�k on M� is a ZH-PL function, hence it
achieves maximum at a ZH-rational point x. Any such x is a divisorial point of X.

ut
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8.3 Comparison with the Weight Norm of Mustaţă–Nicaise

We conclude Sect. 8 by comparing k k! with the weight norm à la Mustaţă and
Nicaise, see [28]. Unless said to the contrary, k is assumed to be discretely valued.

8.3.1 Weight Seminorm

Assume that K=k is a separable finitely generated extension of real-valued fields of
transcendence degree n such that tr:deg:.eK=Qk/ D n. Note that K is discretely valued
and such extensions correspond to divisorial valuations. Let us recall how a norm
on !K=k D 	n

K=k is defined in [28]. We will call it the weight norm and denote k kwt.

Fix t1; : : : ;tn 2 Kı such that Qt1; : : : ;Qtn is a transcendence basis of eK=Qk. We claim
that replacing ti with elements t0i such that jti � t0ij < 1 one can in addition achieve
that t1; : : : ;tn is a separable transcendence basis of K. To prove this we will use
the observation that the latter happens if and only if dt1; : : : ;dtn is a basis of 	K=k.
Choose a separable transcendence basis x1; : : : ;xn, in particular, dxi form a basis.
Then the elements d.ti C axi/ D dti C adxi form a basis for all but finitely many
values of a 2 k. In particular, we can choose a 2 k such that d.tiC axi/ form a basis
and jaxij < 1 for any i, and then t0i D ti C axi are as required.

Note that the induced valuation on l D k.t1; : : : ;tn/ is Gauss, and so lı is a
localization of kıŒt1; : : : ;tn�. Since lı ,! Kı is a finite lci homomorphism, there
exists a representation Kı D lıŒs1; : : : ;sm�=.f1; : : : ;fm/ and then Kı is a localization
of kıŒt; s�=.f /. By [28, 4.1.4], the canonical module !Kı=kı is generated by ��1�,

where � D dt1^� � �^dtn and� D det
�
@fi
@sj

�
. To describe k kwt it suffices to compute

the norm of �. The definitions of [28, 4.2.3–4.2.5] introduce a log-norm that we
call weight: wt.�/ D �k.�/C1

e , where e D eK=k and �k W k� ! Z is the additive
valuation of k (the weight function wt� considered in loc.cit. is a function of a point
x 2 X where K appears as the residue field of x; it is the logarithmic analogue of the
function k�k on X). So, we define the weight norm by k�kwt D j�
K j, where 
K

is a uniformizer of K. (The factor 1=e is only needed in the additive setting to make
the group of values of K equal to e�1Z, so that �k agrees with �K .) The weight norm
on !˝m

K=k is defined via k�˝mkwt˝m D .k�kwt/
m.

Note that 	Kı=lı is the cokernel of the map

˚m
iD1fiKı d!˚m

jD1Kıdsj;

where dfi DPn
jD1

@fi
@sj

dsj. It follows that � D cont.	Kı=lı/ D ıK=l.
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8.3.2 Comparison

The norms k k! and k kwt on the one-dimensional vector space !K=k differ
by a factor, so to compare them it suffices to evaluate the Kähler seminorm
at �. Since jtij D 1, Theorem 5.7.8 implies that dt1; : : : ; dtn is a basis of the
Kı-module 	log

lı=kı ˝lı Kı. The homomorphism  
log
Kı=lı=kı is an almost embedding

by Lemma 5.4.5, and since its source is torsion free (even free), it is injective and
we obtain an exact sequence

0! 	
log
lı=kı ˝lı Kı ! 	

log
Kı=kı ! 	

log
Kı=lı ! 0:

Note that
�
	

log
Kı=kı

�

tf
=
�
	

log
lı=kı ˝lı Kı� D 	log

Kı=lı=
�
	

log
Kı=kı

�

tor

and denote this module by M.
By Theorem 5.1.8, .	log

Kı=kı/tf is an almost unit ball of k k!;K=k. Since � is a basis

of det.	log
lı=kı ˝lı Kı/ we have that

k�k!;K=k D
h�
	

log
Kı=kı

�

tf
W
�
	

log
lı=kı ˝lı Kı�i�1

;

and then Lemma 2.6.4 implies that k�k!;K=k D cont.M/. By Theorem 2.6.7

cont.M/ D cont
�
	

log
Kı=lı

�
=cont

��
	

log
Kı=kı

�

tor

�
D ılog

K=l=ı
log
K=k;

and we obtain that k�k! D ı
log
K=l=ı

log
K=k. Since ılog

K=l D ıK=lj
K

�1
l j and j
lj D j
kj,

the equality rewrites as k�k! D .ı
log
K=k/

�1�j
K

�1
k j. Thus, k kwt D j
kjılog

K=kk k!
and twisting by m we obtain the following comparison result.

Theorem 8.3.3. If k is discretely valued, X is quasi-smooth and x 2 X is a divisorial
point, i.e. a monomial point with discretely valued K D H.x/, then the Kähler and
the weight norms on m-canonical forms are related by

k kwt˝m D j
kjm
�
ı

log
K=k

�m k k!˝m :

Remark 8.3.4. (i) If X is the analytification of a smooth k-variety, Mustaţă and
Nicaise extend the weight norms k kwt;x to a weight seminorm k kX;wt on the
whole X by semicontinuity, i.e. k kX;wt is the minimal seminorm that extends
the family fk kwt;xgx2Xdiv . If char.Qk/ D 0, then k kX;!˝m is an Xdiv-seminorm by
Corollary 8.2.10, hence Theorem 8.3.3 implies that k kX;wt˝m D j
kjmk kX;!˝m .
If char.Qk/ > 0 then it is easy to see that X D A1

k contains divisorial points x

with ılog
H.x/=k < 1. Hence the seminorms differ already for A1

k .
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(ii) The constant factor j
kj in the formula for k kwt is analogous to the �1
shift in [28, 4.5.3], while the log different factor is rather subtle (whenever
char.Qk/ > 0). It seems very probable that for any K and quasi-smooth X, the
function ılog.x/ D ı

log
H.x/=k is upper semicontinuous on X. In particular, the

seminorms k kwt;x D j
kjılog
H.x/=kk k!;x should define an analytic seminorm

k kX;wt on !X . Also, I expect that k kX;wt (as well as k kX;!˝m ) is an
Xdiv-seminorm, and hence it coincides with the weight seminorm of Mustaţă–
Nicaise in the situation they considered.

9 The Topological Realization of XG

Let X be an analytic space. In Sect. 9 we study the topological space jXGj associated
with XG and prove Theorem 9.4.8 that was used earlier in the paper. The section is
independent of the rest of the paper, so there is no cycle reasoning here.

9.1 Topological Realization of XG

9.1.1 Prime Filters

Let us recall the definition of completely prime filters on G-topological spaces (e.g.,
see [42, p. 83]). Let p D fUig be a set of analytic domains of X then

(1) p is proper if ; … p and X 2 p.
(2) p is saturated if for any analytic domains U 
 V with U 2 p also V 2 p.
(3) p is filtered if for any U;V 2 p also U \ V 2 p.
(4) p is completely prime if for any admissible covering U D [iUi with U 2 p at

least one Ui is in p.

We say that p is a filter if it is proper, saturated, and filtered. Note that these three
conditions are purely set-theoretic, while the complete primality condition involves
the G-topology.

Remark 9.1.2. (i) A filter is called prime if it satisfies (4) for finite admissible
coverings. Van der Put and Schneider considered in [42] prime filters of quasi-
compact analytic domains. In this case, primality and complete primality are
equivalent. Moreover, any finite covering of a quasi-compact domain by quasi-
compact domains is admissible, hence primality reduces to a set-theoretical
condition.

(ii) Our definition deals with arbitrary analytic domains. In this case, prime filters
do not form an interesting class and one has to work with completely prime
ones.
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9.1.3 The Space jXGj

By a point x of XG we mean a completely prime filter fUig of analytic domains of X.
Intuitively, this is the prime filter of all analytic domains “containing” x. We denote
by jXGj the set of all points of XG. For any analytic domain U 
 X saturation of a
filter of U in X induces an embedding jUGj ,! jXGj.

We provide jXGj with the topology whose base is formed by all sets of the form
jUGj. Obviously, any sheaf F on XG extends to a sheaf F 0 on jXGj by setting
F 0.jUGj/ D F.U/ and sheafifying, so we obtain a functor ˛X W X�

G ! jXGj�
between the associated topoi, where, as in [34], given a site C we denote by C� the
topos of sheaves of sets on C. The stalk of F 0 at x 2 jXGj is simply colimU2xF.U/.
For shortness, we will denote this stalk as Fx.

Remark 9.1.4. We refer to [36, Tag:00Y3] for the definition of points of a general
site. It is easy to see that for G-topological spaces this definition agrees with our
definition given in terms of completely prime filters.

9.1.5 Abundance of Points

Since any point of X possesses a compact neighborhood and any compact analytic
space is quasi-compact in the G-topology, the site of X is locally coherent in the
sense of [35, VI.2.3]. Therefore, X�

G has enough points by Deligne’s theorem, see
[35, VI.9.0].

Theorem 9.1.6. For any k-analytic space X the topological space jXGj is sober and
the functor ˛X W X�

G ! jXGj� is an equivalence of categories.

Proof. In view of [34, IV.7.1.9] and [34, VI.7.1.6], it suffices to show that X�
G is

generated by subsheaves of the final sheaf 1X . For any analytic subdomain U 
 X,
let LU 
 1X denote the extension of 1U , i.e. LU.V/ D f1g if V 
 U and LU.V/ D ;
otherwise. If F is a sheaf on X then any section s 2 F.U/ induces a morphism
LU ! F . In particular, we obtain an epimorphism � W `s;U LU ! F , where U
runs over all analytic subdomains and s runs over F.U/. ut

9.1.7 Ultrafilters

Our next aim is to classify the points of XG and we start with those corresponding
to the maximal completely prime filters.

Lemma 9.1.8. The completely prime filter Px of all analytic domains containing a
point x 2 X is maximal, and any maximal completely prime filter is of the form Px.
In particular, we obtain an embedding of sets X ,! jXGj whose image consists of
all points that have no non-trivial generizations.
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Proof. If Px is not maximal then it can be increased to a larger completely prime
filter P . Fix an analytic domain U 2 PnPx. Take an affinoid domain V containing x,
then W D U\V lies in P . Choose an admissible covering of W by affinoid domains
Wi. Then at least some W 0 D Wi lies in P . Since W 0 is a compact domain in V not
containing x, there exists a neighborhood V 0 of x in V such that V 0 \W 0 D ;. Since
V 0 2 Px � P , this contradicts P being a filter, so Px is maximal.

Assume, now, that P is a maximal completely prime filter. Since X possesses an
admissible covering X D [iVi by affinoid domains we can fix V D Vi 2 P . Assume
that P is not of the form Px with x 2 V . By the maximality of P , for any x 2 V we
have that P ª Px and hence there exists an affinoid domain Vx � V with x … Vx.
Then \x2VVx D ;, and hence already the intersection of finitely many sets Vx is
empty. This contradicts P being a filter. ut

In the sequel we will freely consider X as a subset of jXGj.
Remark 9.1.9. One may wonder whether X ,! XG is a topological embedding.
Clearly, this may make sense only for the G-topology of X since any analytic domain
U 
 X is the preimage of the open subset UG of XG. Nevertheless, even for the
G-topology the answer is negative simply because X is not a topological space for
the G-topology. Moreover, there exist analytic domains U and V such that U [ V is
not an analytic domain (e.g., the closed polydisc of radii .1; 2/ and the open polydisc
of radii .2; 1/). So, UG [ VG is open in XG but its restriction to X is not an analytic
domain.

Corollary 9.1.10. Any point z 2 jXGj possesses a unique generization r.z/ lying
in X.

Proof. We should prove that any completely prime filter is contained in a single
filter of the form Px. One such Px exists by Lemma 9.1.8. Assume that P is
contained in Px and Py with x ¤ y. Choose any V 2 P , then Vx D X n fyg and
Vy D V n fxg form an open and, hence, admissible covering of V . Thus, either Vx or
Vy lies in P and we obtain a contradiction. ut

9.1.11 The Retraction

By Corollary 9.1.10 we obtain a retraction rX W jXGj ! X given by z 7! r.z/. For
each x 2 X, the fiber r�1

X .x/ is the set of all specializations of x in jXGj. Thus, r�1
X .x/

is the closure of x in jXGj and we will also denote it xX;G.

Theorem 9.1.12. Let X be a k-analytic space, U 
 X a k-analytic subdomain, and
x 2 U a point. Then,

(i) rX W jXGj ! X is a topological quotient map and X is the maximal locally
Hausdorff quotient of jXGj.

(ii) U is a neighborhood of x if and only if the inclusion xU;G 
 xX;G is an equality.
In particular, U is open if and only if the inclusion jUGj 
 r�1

X .U/ is an equality.
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Proof. We start with (ii). For an analytic domain V 
 X with x 2 V let .V; x/
denote the germ of V at x. Define a presheaf of abelian groups on jXGj as follows:
F.V/ is either 0 or Z, and the second case takes place if and only if x 2 V and
.V; x/ is not contained in .U; x/, i.e. for any neighborhood W of x one has that
W \ V ª W \ U. The restriction maps are either identities or the map Z ! 0.
If V1; : : : ;Vn are domains containing x and satisfying [n

iD1.Vi; x/ D .V; x/, then
.V; x/ ª .U; x/ if and only if .Vi; x/ ª .U; x/ for some i. It follows that the presheaf
F is separated and hence the sheafification map F ! F D ˛F is injective by [34,
II.3.2]. In particular, F D 0 if and only if F D 0. Obviously, F D 0 if and only if U
is a neighborhood of x.

On the other hand, the stalk of F at a point z 2 jXGj is given by
Fz D colimz2WF.W/, in particular, Fz is either 0 or Z. The second possibility
holds if and only if for any W with z 2 W one has that x 2 W and .W; x/ is not
contained in .U; x/. The first condition means that rX.z/ D x and then the second
condition holds if and only if z … jUGj, i.e. z … jUGj \ xX;G D xU;G. Thus, F has
non-zero stalks if and only if the inclusion xU;G 
 xX;G is not equality, and hence
F D 0 if and only if xU;G D xX;G. Combining this with the conclusion of the above
paragraph we obtain (ii).

Let us prove (i). If U 
 X is open then r�1
X .U/ D jUGj by (ii). Thus, r�1

X .U/ is
open in jXGj and we obtain that rX is continuous.

To prove that rX is a topological quotient map, assume that U 
 X is not open
and let us prove that r�1

X .U/ is not open. Choose a point x 2 U not lying in the
interior of U. By (ii) there exists a point z 2 xX;G n xU;G, in particular, z … jUGj
and z 2 r�1

X .U/. We claim that r�1
X .U/ is not a neighborhood of z. Assume to the

contrary that z lies in the interior of r�1
X .U/. Then there exists an analytic domain

W 
 X such that z 2 jWGj 
 r�1
X .U/. Since z … jUGj, we have that W ª U. So

there exists a point y 2 W n U, and observing that y 2 jWGj and y … r�1
X .U/ we

obtain a contradiction. Thus, rX is a topological quotient map.
Finally, X is the maximal locally Hausdorff quotient of jXGj because any locally

Hausdorff quotient jXGj ! Z should identify each point x 2 X with any of its
specialization z 2 xX;G. ut

9.1.13 Notation XG

Starting from this point we will not distinguish the site XG and the topological space
jXGj. In particular, we will usually write x 2 XG instead of x 2 jXGj.

9.1.14 Non-analytic Points

Our next aim is to describe the non-analytic or infinitesimal points of XG, i.e. the
points of XG n X. For this we have to recall some results about reductions of germs.
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9.1.15 Germ Reduction

By eAH we denote the H-graded reduction ˚h2HeAh. In [10, Sect. 8] and [15,
Sect. 1.5], to any germ .X; x/ of an H-strict analytic space at a point one associates an
H-graded reduction A.X; x/H , which is a H-graded Riemann–Zariski space associated
with the extension of H-graded fields eH.x/H=QkH . In particular, any point z 2A.X; x/H
induces a graded valuation on eH.x/H and if .X; x/ is separated then z is also
determined by this valuation.

Theorem 9.1.16. Let X be a H-strict k-analytic space and x 2 X a point. Then the
closure of x in XG is canonically homeomorphic to A.X; x/H.

Proof. Let L denote the set-theoretical lattice of subdomains .U; x/ 
 .X; x/.
Clearly, the closure of x is a sober topological space and L is its topology base. On
the other hand, subdomains of .X; x/ are in a one-to-one correspondence with quasi-
compact open subspaces of A.X; x/H by [37, Theorem 4.5] and [10, Theorem 8.5].
So, L is also the lattice of a topology base of the sober topological space
A.X; x/H . Since, a sober topological space is determined by such a lattice (it can
be reconstructed as points of the corresponding topos), we obtain the asserted
homeomorphism. ut

9.2 Stalks of OXG and Oı
XG

Our next aim is to describe the stalks of the sheaves OXG and Oı
XG

at non-analytic
points. In particular, this will lead to an explicit description of the homeomorphism
from Theorem 9.1.16.

9.2.1 Spectral Seminorm

We provide each stalk OXG;x with the stalk j jx of the spectral seminorm, i.e.
jsjx D infx2UG jsjU , where j jU is the spectral seminorm of U.

Lemma 9.2.2. Let X be an analytic space and let x 2 XG be a point. Then,

(i) The seminorm j jx is a semivaluation and OXG;x is a local ring whose maximal
ideal is the kernel of j jx.

(ii) If y 2 XG generizes x, then the generization homomorphism �x;y W OXG;x !
OXG;y is an isometry with respect to j jx and j jy. In particular, � is local.

For the sake of comparison we note that in the case of schemes any non-trivial
generization is not local.

Proof. Let z D rX.x/ be the maximal generization of x. We claim that jsjx D jsjz for
any s 2 OXG;x. If U is an analytic domain with x 2 UG then z 2 U and so jsjx 	 jsjz.
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Conversely, set r D jsjz and note that X" D Xfjsj � r C "g is a neighborhood of
z for any " > 0. Since x 2 .X"/G we obtain that jsjx � r C " for any ", and so
jsjx � jsjz. In other words, �x;z is an isometry. In the same way, �y;z is an isometry,
and therefore �x;y is an isometry.

It remains to prove (i). Since �x;z is an isometry and j jz is multiplicative, it
follows that j jy is multiplicative. If jsjx D 0 for s 2 OXG;x, then s is not invertible.
Conversely, if jsjx D r > 0, then jsjz > 0 and hence there exists a neighborhood U
of z such that s 2 OXG.U/

�. Since x 2 UG, we obtain that s is invertible. ut

9.2.3 Residue Fields

Once we know that OXG;x is local, we denote its maximal ideal by mG;x. The residue
field will be denoted �G.x/ D OXG;x=mG;x. Since mG;x is the kernel of j jx, the residue
field acquires a real valuation and we denote its completion by H.x/. This extends
the notation of Sect. 3.3.5 to non-analytic points.

9.2.4 Generization Homomorphisms

Recall that by Lemma 9.2.2(ii), any generization homomorphism �x;y W OXG;y !
OXG;x induces an embedding of real-valued fields �G.y/ ,! �G.x/.

Lemma 9.2.5. If y 2 XG generizes x 2 XG, then the induced embedding �G.x/ ,!
�G.y/ has dense image and so H.x/ D H.y/.
Proof. Note that we can replace X with an analytic domain X0 such that x 2 X0

G.
In particular, we can assume that X is affinoid. Let z 2 X be the maximal
generization of y and x. The local embeddings OX;z ,! OXG;x ,! OXG;y ,! OXG;z

induce embeddings of the residue fields �.z/ ,! �G.x/ ,! �G.y/ ,! �G.z/. It
remains to use that �.z/ ,! �G.z/ has a dense image. ut

9.2.6 Stalks of Oı
XG

As in [39, Sect. 2.1], by a semivaluation ring A with semifraction ring B we mean
the following datum: a local ring .B;m/ and a subring A 
 B such that m � A and
A=m is a valuation ring of k D B=m. Such a datum defines an equivalence class of
semivaluations � W B! � [ f0g whose kernel is m, and A D ��1.��1 [ f0g/ is the
ring of integers of �.

Lemma 9.2.7. For any x 2 XG, the stalk Oı
XG;x

is a semivaluation ring with
semifraction ring OXG;x. In particular, Oı

XG;x
=mG;x is a valuation ring of �G.x/.

Proof. If s 2 mG;x, then jsjx D 0 and hence jsj < 1 in a neighborhood of x.
In particular, s 2 Oı

XG;x
. It remains to show that if u 2 O�

XG;x
then either u or u�1
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lies in Oı
XG;x

. Shrinking X we can assume that u 2 OXG.X/
�. Then X is the union of

Y D Xfug and Z D Xfu�1g, hence x lies in either YG or ZG, and then u 2 Oı
XG;x

or
u�1 2 Oı

XG;x
, respectively. ut

9.2.8 Valuation �x

Let �x denote both the semivaluation induced by Oı
XG;x

on OXG;x and the valuations
induced on �G.x/ and H.x/. If x 2 X, then an element s 2 OXG;x lies in Oı

XG;x
if and

only if jsjx � 1. Thus, Oı
XG;x

=mG;x D H.x/ı, i.e. �x is the standard real valuation
of H.x/. If x is arbitrary, we only have an inclusion Oı

XG;x
=mG;x ,! H.x/ı, so �x is

composed from the real valuation of H.x/ and the residue valuation Q�x on eH.x/.
The following remark clarifies the relation between these valuations and germ

reductions. It will not be used in the sequel so we just formulate the results.

Remark 9.2.9. (i) The construction of Q�x can be extended by associating with x a
graded valuation ring of eH.x/H (see Sect. 9.1.15) whose component in degree
1 is Oı

XG;x
=mG;x, and the argument is essentially the same. Set O D OXG for

shortness and let Oı
r and Oıı

r be the subsheaves of O whose sections on U
satisfy jsjU � r and jsjU < r, respectively. Then Ax D ˚h2H.Oı

h/x=.Oıı
h /x is a

graded valuation ring of eH.x/H D ˚h2H.Ox/
ı
h=.Ox/

ıı
h that coincides with the

graded valuation ring induced by the image of x under the homeomorphism
r�1

X .y/ D A.X; y/H from Theorem 9.1.16, where y 2 X is the maximal

generization of x. In particular, x 2 X if and only if Ax D eH.x/H , i.e. the
graded valuation is trivial.

(ii) Assume that H D pjk�j and hence XG is the usual strictly analytic G-
topology. Then the H-graded reduction coincides (as a topological space) with
the ungraded reduction A.X; x/ because taking the degree-1 components provides
a one-to-one correspondence between graded valuation QkH-rings in eH.x/H
and valuation Qk-rings in eH.x/. In particular, x is determined by its maximal
generization y and a point of A.X; y/, or, that is equivalent, x is determined by
the valuation �x. This implies that XG coincides with the Huber adic space Xad

corresponding to X, and x 2 X if and only if �x is of height one. Furthermore,
if H D R>0, then XG coincides with the so-called reified adic space introduced
by Kedlaya in [24], and (perhaps) the case of a general H will be set in detail
in [16].
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9.3 Topological Realization of PL Spaces and Skeletons

9.3.1 The n-Dimensional Affine RS-PL Space

Consider the RS-PL space A D Rn
>0 with coordinates t1; : : : ;tn. It is provided with

the G-topology AG of RS-PL subspaces. Recall that U 
 A is an RS-PL subspace
if the RS-polytopes contained in U form a quasi-net (hence also a net) of U, and a
covering U D [iUi by RS-PL subspaces is admissible if fUigi is a quasi-net of U.

For any polytope P � A the topological realization jPGj is a quasi-compact
topological space. As in the case of analytic spaces (see Sect. 9.1.5), Deligne’s
theorem implies that AG has enough points, and, moreover, .AG/

� is equivalent
to jAGj�. For shortness, we will not distinguish AG (resp. PG) and its topological
realization jAGj (resp. jPGj).

9.3.2 G-Skeletons

If X is an analytic space with a ZH-PL subspace P, then the embedding i W P ,! X
is continuous with respect to the G-topologies, see [7, Theorem 6.3.1]. Since the
functor that associates with a sober topological space the lattice of its open subsets
is fully faithful, this implies that i extends to a continuous embedding iG W PG ,! XG

and we say that PG is a ZH-PL subspace of XG.

Remark 9.3.3. (i) The main advantage of working with PG is that it is a honest
topological space, so one can use local arguments. One has to describe the new
points but, as we will see, this is simple: points of PG correspond to valuations
on abelian groups, and points of iG.PG/ correspond to t-monomial valuations.

(ii) It seems that the use of model theory in [16] is mainly needed for the same aim.
One interprets PG in terms of definable sets and types in the theory of ordered
groups, and Deligne’s theorem on points of locally coherent sites is replaced
with Gödel’s completeness theorem. This is not so surprising, since it is known
that Gödel’s theorem and Deligne’s theorem are equivalent, when appropriately
translated (for example, see [17]).

9.3.4 Monomiality

Notions of t-monomial and generalized Gauss valuations naturally extend to general
valuations. Namely, let L=l be an extension of valued fields and let .t1; : : : ;tn/ be a
tuple of elements of L. We say that the valuation on l.t/ is a generalized Gauss
valuation (with respect to l) if for any polynomial a DPi2Nn aiti 2 lŒt� the equality
jaj D maxijaitij holds. Such a valuation on l.t/ is uniquely determined by its
restrictions onto l and the monoid tZ WD Qn

jD1 tZ
j . If, in addition, L is finite over

the closure of l.t/ in L, then we say that L and its valuation are t-monomial. The
following result is proved in [16, Proposition 1.8.3].
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Lemma 9.3.5. Assume that X is an analytic space, f W U ! Gn
m is a monomial

chart given by t1; : : : ;tn 2 O�
XG
.U/, and x 2 XG is a point whose maximal

generization y is contained in the ZH-PL subspace P D S.f /. Let l denote the field
eH.y/ provided with the valuation Q�x [see Remark 9.2.9(i)], and let d D tr:deg:.l=Qk/.

Assume that jtijx D 1 for 1 � i � d, and set si D Qti for 1 � i � d. Then x 2 PG if
and only if the extension l=Qk is s-monomial.

Consider a monomial chart f W U ! Gn
m given by u1; : : : ;un 2 O�

XG
.U/. Let

g W U ! Gn
m be given by ti D ci

Qn
jD1 u

lij
i , where ci 2 k� and .lij/ is an n-by-n

integer matrix with non-zero determinant. Then it is easy to see that g is another
monomial chart and S.f / D S.g/. Note also that if x 2 UG is a point whose
maximal generization y is monomial then choosing monomials ti appropriately we
can achieve that jtijx D 1 for 1 � i � Fy D tr:deg:.eH.x/=Qk/ (in terms of [16,
Sect. 1.8], ti are well presented at x). Therefore, Lemma 9.3.5 implies the following
corollary.

Corollary 9.3.6. Assume that P is a ZH-PL subspace of X and x 2 PG is a point,
and let l denote the residue field eH.x/ with the valuation Q�x. Then the extension l=Qk
is Abhyankar.

9.3.7 Structure Sheaf of A

In the remaining part of Sect. 9.3 we provide the promised valuation-theoretic
description of the points of PG. This will not be used in the sequel, so the reader
can skip to Sect. 9.4.

Until the end of Sect. 9.3, we fix arbitrary R and S, and L D S˚.˚n
iD1tR

i / denotes
the group of RS-monomial functions on A. We provide A with the sheaf Oı

A such that
if P is an RS-polyhedron then Oı

A.P/ is the monoid of RS-PL functions with values
in .0; 1�.

9.3.8 Combinatorial Valuations

By an RS-valuation on L we mean any homomorphism j j W L ! � to an ordered
group such that if r 2 RC D R \ R
0 and x 2 L with jxj � 1 then jxrj � 1, and the
restriction of j j onto S 
 L is equivalent to the embedding S ,! R>0. We say that a
valuation is bounded if for any x 2 L there exists s 2 S with jxj � jsj.

9.3.9 Valuation Monoids

Analogously to ring valuations, the valuation is determined up to an equivalence by
the valuation monoid Lı consisting of all elements x 2 L with jxj � 1. It is bounded



Metrization of Differential Pluriforms on Berkovich Spaces 279

if and only if SLı D L. In addition, .Lı/gp D L and Lı is an .RS/
ı-monoid, i.e. it

contains Sı D S \ .0; 1� and is closed under the action of RC. In this case, we say
that Lı is a bounded valuation RC-monoid of L.

9.3.10 Valuative Interpretation of Points

Similarly to the points of XG, points of PG admit a simple valuative-theoretic
interpretation.

Theorem 9.3.11. Let A and L be as above. Then for any point x 2 AG the stalk
Oı

AG;x
is a bounded valuation RC-monoid of L, and this establishes a one-to-one

correspondence between points of PG and bounded RS-valuations on L.

Proof. Choose an RS-polytope P with x 2 PG. Clearly, M D Oı
AG;x

is an RC-monoid.
Also, Mgp D L D SM because these equalities hold already for the monoid M0 D
Oı

AG
.P/. To prove that M is a valuation monoid it suffices to show that if a 2 L

then either a 2 M or a�1 2 M, but this follows from the fact that P D Pfa �
1g [ Pfa�1 � 1g.

It remains to show that any bounded valuation RC-monoid Lı of L equals to
Oı

AG;x
for a unique point x. Consider the set F of all RS-polytopes given by finitely

many inequalities ai � 1 with ai 2 Lı. Then F is a completely prime filter and
the stalk at the corresponding point x is Lı. Uniqueness of F is also clear from the
construction. ut

9.3.12 G-Skeleton of the Torus

Now let us assume that RS D ZH and so L D H ˚ tZ. Set T D Gn
m, and consider

the embedding i W A ,! T sending s to the generalized Gauss valuation j js and the
retraction r W T! A from Remark 7.2.2(ii). Both are continuous in the G-topology,
see [7, Theorems 6.3.1 and 6.4.1], hence extend to continuous maps iG W AG ,! TG

and rG W TG ! AG. Furthermore, the description of the maps i and r can be naturally
extended to iG and rG. For simplicity, we explain this only in the case when H D
jk�jQ, and the reduction is ungraded.

Given a point x 2 TG consider its maximal generization y 2 T and provide H.x/
with the valuation �x, see Remark 9.2.9. Then the restriction of �x onto jk�j ˚ tZ

is a bounded ZH-valuation, so we obtain a map rG. Conversely, given a bounded
ZH-valuation  W L ! � , we extend it to a generalized Gauss valuation on kŒt�
by the max formula jPi aitij D maxijaij.ti/. Since j j is composed from a real
valuation and a valuation on its residue field, we obtain a point of TG. Clearly,
rG ı iG D Id, so rG is a retraction onto S.T/G WD iG.A/.
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9.4 Residually Unramified Monomial Charts

Our last goal is to prove a theorem on existence of residually unramified monomial
charts that was used earlier in the paper.

9.4.1 Residual Unramifiedness at Non-analytic Points

Assume that f W Y ! X is a morphism of k-analytic spaces, y 2 YG, x D f .y/ and
provide H.y/ and H.x/ with the valuations �y and �x, respectively (see Sect. 9.2.8).
We say that f is residually unramified at y (resp. residually tame at y) if the extension
of valued fields .H.y/; �y/=.H.x/; �x/ is finite and unramified (resp. tame). This
extends the analogous notion from the case of analytic points to the whole YG.

Lemma 9.4.2. Keep the above notation. Then f is residually unramified at y if
and only if the extension of the real-valued fields .H.y/; j jy/=.H.x/; j jx/ and the
extension of the valued fields .eH.y/; Q�y/=.eH.x/; Q�x/ are unramified.

Proof. This follows from a criterion for an extension of composed valued fields to
be unramified, see [38, Proposition 2.2.2]. ut

9.4.3 Generators of Unramified Extensions

Assume that L=K is a finite unramified extension of valued fields. We say that u 2 L
is an integral generator of L over K if Lı is a localization of KıŒu�. Note that in this
case g0.u/ is invertible in Lı, where g.T/ is the minimal polynomial of u over K.

Lemma 9.4.4. Assume that L=K is a finite extension of valued fields. Then,

(i) If L=K is unramified, then it possesses an integral generator.
(ii) An element u 2 L is an integral generator if and only if L D KŒu�, u 2 Lı and

g0.u/ 2 .Lı/�, where g is the minimal polynomial of u over K.

Proof. The first claim is a (simple) special case of Chevalley’s theorem [19, IV4,
18.4.6]. Only the inverse implication needs a proof in (ii), so let us establish it.
Consider the subring A D KıŒu; g0.u/� of Lı. By [19, IV4, 18.4.2(ii)], A is étale over
Kı. Therefore, A is a semilocal Prüfer ring (i.e., all its localizations are valuation
rings) and it follows that any intermediate ring A 
 R 
 Frac.A/ is a localization of
A. In particular, Lı is a localization of A. ut

9.4.5 Residually Unramified Locus

Given a morphism f W Y ! X, by the residually unramified locus of f we mean the
set of all points y 2 jYGj such that f is residually unramified at y.
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Theorem 9.4.6. Assume that f W Y ! X is a quasi-étale morphism. Then the
residually unramified locus of f is open in jYGj.
Proof. Assume that f is residually unramified at y 2 YG. We should prove that f
is residually unramified in a neighborhood of y. Set x D f .y/, L D .H.y/; �y/ and
K D .H.x/; �x/. Also, let y0 2 Y and x0 2 X be the maximal generizations of y and
x, respectively, and consider the real-valued fields L0 D H.y0/ and K0 D H.x0/.
Step 1. We can assume that X D M.A/ is affinoid and f is finite étale.

The question is G-local at x and y hence we can assume that X and Y are
affinoid. It follows easily from [5, Theorem 3.4.1] that replacing X and Y with
neighborhoods of y0 and x0, we can achieve that f factors as Y ,! Y ! X,
where Y is an affinoid domain in Y and Y ! X is finite étale (see [16, 3.12]). So,
replacing Y with Y we can assume that f is finite étale.
Note that X and Y are good. We will use the usual local rings OX;x0 , OY;y0 and
the residue fields �.x0/, �.y0/ in the sequel. Also, we will freely replace X with
a neighborhood of x0 when needed.

Step 2. We can assume that Y D M.B/, where B D AŒu� and u.y/ is an
integral generator of Lı over Kı. By our assumption, Lı=Kı is étale, hence by
Lemma 9.4.4(i) there exists an integral generator v of L over K. We claim that
using Lemma 9.4.4(ii) one can slightly move v achieving that v 2 �.y0/. Indeed,
L0=K/ is separable hence K0Œv� is preserved under small deformations of u by
Krasner’s lemma applied to L0=K0. Similarly, if gv is the minimal polynomial
of v, then g0

v.v/ changes slightly under small deformations of v. In particular,

a slight change of v preserves the reduction Ag0
v.v/ and hence also the equality

Q�y.Ag0
v.v// D 1, which is equivalent to the inclusion g0

v.v/ 2 .Lı/�.
In the sequel, v 2 �.y0/. Since �.x0/ is henselian by [5, Theorem 2.3.3], it is
separably closed in H.x/ and therefore the minimal polynomial gv.T/ of v lies
in �.x0/ŒT�. Choose a monic lifting G.T/ 2 OX;x0 ŒT� and shrink X around x0 so
that G.T/ 2 AŒT�.
Set B D AŒT�=.G.T// and Y 0 DM.B/. Then Y 0 ! X is a finite map of degree
d D deg.G/ and the preimage of x0 is a single point y0

0 such that H.y0
0/=H.x0/

is the extension L0=K0. Therefore, Y 0 ! X is étale at y0
0 and the maps of germs

.Y 0; y0
0/ ! .X; x0/ and .Y; y0/ ! .X; x0/ are isomorphic by [5, Theorem 3.4.1].

In particular, after shrinking X around x0 the morphism Y 0 ! X becomes étale,
and then we can replace Y with Y 0. Then the image u 2 B of T is as required
since u.y/ D v.

Step 3. The domain U D YfG0.u/�1g is as required. Clearly y 2 U, so we should
only check that for any z 2 U with F D H.z/ and E D H.f .z//, the extension
F=E is unramified. Set w D u.z/, then F D EŒw� and the minimal polynomial
h.T/ of w over E is a factor of G.T/, where G D G.z/ is obtained from G by
evaluating its coefficients at z. Since h.w/ D 0 and G

0
.w/ is invertible, we obtain

that h0.w/ is invertible. By Lemma 9.4.4(ii), w is an integral generator of F over
E, in particular, F=E is unramified. ut
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9.4.7 Construction of Charts

Now we are in a position to prove the main result of Sect. 9.4.

Theorem 9.4.8. Assume that k is algebraically closed. Let X be a k-analytic space
and P a compact ZH-PL subspace of X. Then there exist finitely many residually
unramified monomial charts fi W Ui ! Gni

m such that P D [iS.fi/.

Proof. First, we observe that it suffices to show that for any point x 2 PG there exists
a residually unramified monomial chart f W U ! Gn

m such that x 2 S.f /G. Indeed,
intersecting this chart with a chart g such that x 2 S.g/G and S.g/ 
 P we can also
achieve that S.f / 
 P, and then the assertion follows from the quasi-compactness
of PG.

By Lemma 9.4.9 below, there exists a monomial chart such that x 2 S.f /G and
f is residually unramified at x. Applying Theorem 9.4.6 we can find an analytic
domain V 
 U such that x 2 VG and the map f jV is residually unramified. Hence
f jV is a required monomial chart and we are done. ut
Lemma 9.4.9. Assume that X is an analytic space and x 2 XG is a monomial point.
Then there exists a monomial chart f W U ! Gn

m such that x 2 S.f /G and f is
residually monomial at x.

Proof. The argument is similar to that in Corollary 7.2.6, but this time we should
choose the transcendence basis of the residue field more carefully. Let x0 2 X be
the maximal generization of x and consider the real-valued field L0 D .H.x0/; j jx/
and the valued fields L D .H.x/; �x/ and l D .eL0; Q�x/. Then x0 is monomial and l=Qk
is Abhyankar by Corollary 9.3.6. Set E D Ex0 and F D Fx0 , and choose elements
aFC1; : : : ;aFCE such that their images in jL�

0 j=jk�j form a basis. Next, choose a
transcendence basis b1; : : : ;bF of l=Qk such that l=Qk.b1; : : : ;bF/ is unramified; this is
possible by [26, Theorem 1.3].

Remark 9.4.10. Existence of such a basis is the valuation-theoretic ingredient of
local uniformization of Abhyankar valuations. It is an immediate consequence of
the difficult theorem that l is stable, see [26, Theorem 1.1] or [40, Remark 2.1.3].
In fact, one can take b1; : : : ;bF to be any basis such that b1; : : : ;beE is mapped to
a basis of jl�j ˝ Q, where eE D El=Qk, and beEC1; : : : ;bF is mapped to a separable

transcendence basis of Ql=Qk.

Choose any lifts a1; : : : ;aF 2 �G.x/ of b1; : : : ;bF. We obtain elements a1; : : : ; an,
where n D ECF D dimx0 .X/, and let t1; : : : ;tn 2 OXG;x be any lifts of a1; : : : ;an. Let
U be such that ti are defined on U and x 2 UG. Then t induces a morphism f W U !
Gn

m and the fiber f �1.f .x0// is zero-dimensional at x0 by [15, Corollary 8.4.3]. It then
follows from [12, Theorem 4.9] that replacing U by a Zariski open neighborhood
of x0 we can achieve that f has zero-dimensional fibers and hence is a monomial
chart. By our construction, the induced valuations on K D k.a1; : : : ; an/ and
eK D Qk.b1; : : : ; bF/ are generalized Gauss valuations. The first implies that x0 2 S.f /,
hence the second implies that x 2 S.f /G by Lemma 9.3.5.
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The residue field extension l=Qk.b1; : : : ;bF/ is unramified and hence separable.

In addition, L0 is unramified over H.f .x0// D 5k.a1; : : : ;aF/ because the fields are
stable and have the same group of values and the extension of the residue fields is
separable. Hence f is residually unramified at x by Lemma 9.4.2, and we are done.

ut
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1 Introduction

1.1 Toric Varieties, Toroidal Embeddings, and Logarithmic
Structures

Toric varieties were introduced in [21] and studied in many sources, see, for
instance, [19, 20, 23, 35, 43, 44]. They are the quintessence of combinatorial
algebraic geometry: there is a category of combinatorial objects called fans, which
is equivalent to the category of toric varieties with torus-equivariant morphisms
between them. Further, classical tropical geometry probes the combinatorial struc-
ture of subvarieties of toric varieties. We review this theory in utmost brevity in
Sect. 2 below.

In [35] some of this picture was generalized to toroidal embeddings, especially
toroidal embeddings without self-intersections, and their corresponding polyhedral
cone complexes (Sect. 2.7). Following Kato [34] we argue that the correct generality
is that of fine and saturated logarithmic structures. Working over perfect fields,
toroidal embeddings can be identified as logarithmically regular varieties. Since
logarithmic structures might not be familiar to the reader, we provide a brief review
of the necessary definitions in Sect. 3. To keep matters as simple as possible, all the
logarithmic structures we use below are fine and saturated (Definition 3.12). These
are the logarithmic structures closest to toroidal embeddings which still allow us to
pass to arbitrary subschemes.

The purpose of this text is to survey a number of ways one can think of
generalizing fans of toric varieties to the realm of logarithmic structures: Kato fans,
Artin fans, polyhedral cone complexes, and skeletons. These are all closely related
and, under appropriate assumptions, equivalent. But the different ways they are
realized provide for entirely different applications. We do not address skeletons
of logarithmic structures over non-trivially valued non-Archimedean fields—see
Werner’s contribution [63]. Nor do we address the general theory of skeletons of
Berkovich spaces and their generalizations [13, 28, 40].

1.2 Kato Fans

In [34], Kato associated a combinatorial structure FX , which has since been called
the Kato fan of X, to a logarithmically regular scheme X (with Zariski-local charts),
see Sect. 4. This is a reformulation of the polyhedral cone complexes of [35]
which realizes them within the category of monoidal spaces. In [59], one further
generalizes the construction of the associated Kato fan to logarithmic structures
without monodromy. As in [35], Kato fans provide a satisfying theory encoding
logarithmically smooth birational modifications in terms of subdivisions of Kato
fans. Procedures for resolution of singularities of polyhedral cone complexes of



Skeletons and Fans of Logarithmic Structures 289

Kato fans are given in [35] and [34]. As an outcome, we obtain a combinatorial pro-
cedure for resolution of singularities of logarithmically smooth structures without
self-intersections.

Kato fans, or generalizations of them, can be constructed for more general
logarithmic structures. We briefly discuss such a construction using sheaves on the
category of Kato fans. A different, and possibly more natural approach, is obtained
using Artin fans.

1.3 Artin Fans and Olsson’s Stack of Logarithmic Structures

In order to import notions and structures from scheme theory to logarithmic
geometry, Olsson [46] showed that a logarithmic structure X on a given underlying
scheme X is equivalent to a morphism X ! Log, where Log is a rather large,
zero-dimensional Artin stack—the moduli stack of logarithmic structures. It carries
a universal logarithmic structure whose associated logarithmic algebraic stack we
denote by Log—providing a universal family of logarithmic structures Log! Log.

Being universal, the logarithmic stack Log cannot reflect the combinatorics of
X. In Sect. 5 we define, following [3, 8], the notion of Artin fans, and show that the
morphism X ! Log factors through an initial morphism X ! AX , where AX is an
Artin fan and AX ! Log is étale and representable.

We argue that, unlike Log, the Artin fan AX is a combinatorial object which
encodes the combinatorial structure of X. Indeed, when X is without monodromy,
the underlying topological space of AX is simply the Kato fan FX . In other words,
AX combines the advantages of the Kato fan FX , being combinatorial, and of Log,
being algebraic.

In addition AX exists in greater generality, when X is allowed to have self-
intersections and monodromy—even not to be logarithmically smooth; in a round-
about way, it provides a definition of FX in this generality, by taking the underlying
“monoidal space”—or more properly, “monoidal stack”—of AX .

The theory of Artin fans is not perfect. Its current foundations lack full func-
toriality of the construction of X ! AX , just as Olsson’s characteristic morphism
X ! Log is functorial only for strict morphisms Y ! X of logarithmic schemes. In
Sect. 5.4.2 we provide a patch for this problem, again following Olsson’s ideas.

1.4 Artin Fans and Unobstructed Deformations

Artin fans were developed in [3, 8] and the forthcoming [6] in order to study
logarithmic Gromov–Witten theory. The idea is that since an Artin fan A is
logarithmically étale, a map f W C ! AX from a curve to AX is logarithmically
unobstructed. Precursors to this result for specific X were obtained in [4, 5, 7, 16].
In [5] an approach to Jun Li’s expanded degenerations was provided using what
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in hindsight we might call the Artin fan of the affine line A D AA1 . The papers
[4, 7, 16] use this formalism to prove comparison results in relative Gromov–Witten
theory. For logarithmically smooth X, the map X ! AX was used in [3] to prove that
logarithmic Gromov–Witten invariants are invariant under logarithmic blowings up;
in [8], it was used for general X to complete a proof of boundedness of the space of
logarithmic stable maps. We review these results, for which both the combinatorial
and algebraic features of AX are essential, in Sect. 6. They serve as evidence that
the algebraic structure of Artin fans is an advantage over the purely combinatorial
structure of their associated Kato fans.

1.5 Skeletons and Tropicalization

In Sect. 7 we follow Thuillier [58] and associate to a Zariski-logarithmically smooth
scheme X its extended cone complex ˙X . This is a variant of the cone complex ˙X

of [35], and is related to the Kato fan in an intriguing manner:

˙X D FX.R
0 t f1g/:

The complex ˙X is canonically homeomorphic to the skeleton S.X/ of the non-
Archimedean space XÆ associated to the logarithmic scheme X, when viewing the
base field as a valued field with trivial valuation, as developed by Thuillier [58]. In
this case there is a continuous map XÆ ! ˙X , and˙X � XÆ is a strong deformation
retract. Thuillier used this formalism to prove a compelling result independent of
logarithmic or non-Archimedean considerations: the homotopy type of the dual
complex of a logarithmic resolution of singularities does not depend on the choice
of resolution.

For a general fine and saturated logarithmic scheme X, we still have a continuous
mapping XÆ ! ˙X , although we do not have a continuous section ˙X � X. It is
argued in [59] that the image of XÆ ! ˙X can be viewed as the tropicalization
of X.

Note that in this discussion we have limited the base field of X to have a trivial
absolute value. A truly satisfactory theory must apply to subvarieties defined over
valued-field extensions, in particular with nontrivial valuation.

1.6 Analytification of Artin Fans

Artin fans can be tied into the skeleton picture via their analytifications, as we
indicate in Sect. 8. We again consider our base field as a trivially valued field. The
analytification of the morphism �X W X ! AX is a morphism �Æ

X W XÆ ! AÆ
X into

an analytic Artin stack AÆ
X . The whole structure sits in a commutative diagram



Skeletons and Fans of Logarithmic Structures 291

On the left side of the diagram the horizontal arrows remain in their respective
categories—algebraic on the bottom, analytic on top—but discard all geometric
data of X and XÆ except the combinatorics of the logarithmic structure. On the
right side the arrows AÆ

X ! ˙X and AX ! FX discard the analytic and algebraic
data and preserve topological and monoidal structures. In particular AÆ

X ! ˙X

is a homeomorphism, endowing the familiar complex ˙X with an analytic stack
structure.

1.7 Into the Future

While we have provided evidence that the algebraic structure of AX has advantages
over the underlying monoidal structure FX , at this point we can only hope that
the analytic structure AÆ

X would have significant advantages over the underlying
piecewise-linear structure ˙X , as applications are only starting to emerge, see [55].

We discuss some questions that might usher further applications in Sect. 9.

2 Toric Varieties and Toroidal Embeddings

Mostly for convenience, we work here over an algebraically closed field k. We recall,
in briefest terms, the standard setup of toric varieties and toroidal embeddings.

2.1 Toric Varieties

Consider a torus T ' G
n
m and a normal variety X on which T acts with a dense orbit

isomorphic to T—and fix such isomorphism. Write M for the character group of T
and write N for the co-character group. Then M and N are both isomorphic to Z

n

and are canonically dual to each other. We write MR D M ˝ R and NR D N ˝ R

for the associated real vector spaces.

2.2 Affine Toric Varieties and Cones

If X is affine, it is canonically isomorphic to X� D Spec kŒS� �, where � � NR is a
strictly convex rational polyhedral cone, and S� D M \ �_ is the monoid of lattice
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Fig. 1 The fan of P2

points in the n-dimensional cone �_ � MR dual to � . Such affine X� contains a
unique closed orbit O� , which is itself isomorphic to a suitable quotient torus of T .

2.3 Invariant Opens

A nonempty torus-invariant affine open subset of X� is always of the form X� where
� � � is a face of �—either � itself or the intersection of � with a supporting
hyperplane. For instance, the torus T itself corresponds to the vertex f0g of � .

2.4 Fans

Any toric variety X is covered by invariant affine opens of the form X�i , and the
intersection of X�i with X�j is of the form X�ij for a common face �ij D �i \ �j. It
follows that the cones �i form a fan �X in N. This means precisely that �X is a
collection of strictly convex rational polyhedral cones in N, that any face of a cone
in �X is a member of �X , and the intersection of any two cones in �X is a common
face (see Fig. 1).

And vice versa: given a fan � in N one can glue together the associated affine
toric varieties X� along the affine opens X� to form a toric variety X.�/.

2.5 Categorical Equivalence

One defines a morphism from a toric variety T1 � X1 to another T2 � X2 to be an
equivariant morphism X1 ! X2 extending a homomorphism of tori T1 ! T2. On
the other hand one defines a morphism from a fan �1 in .N1/R to a fan �2 in .N2/R
to be a group homomorphism N1 ! N2 sending each cone � 2 �1 into some cone
� 2 �2.
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A fundamental theorem says

Theorem 2.1. The correspondence above extends to an equivalence of categories
between the category of toric varieties over k and the category of fans.

Under this equivalence, toric birational modifications X1 ! X2 of X2 correspond
to subdivisions �X1 ! �X2 of �X2 .

2.6 Extended Fans

The closure O� � X of a T-orbit O� , which is itself a toric variety, is encoded in�X ,
but in a somewhat cryptic manner. Thuillier [58] provided a way to add all the fans
of these loci O� and obtain a compactification�X � �X: instead of gluing together
the cones � along their faces, one replaces � with a natural compactification, the
extended cone

� WD HomMon.S� ;R
0 [ f1g/;

where the notation HomMon stands for the set of monoid homomorphisms. This has
the effect of adding, in one step, lower dimensional cones isomorphic to �=Span �
at infinity corresponding to the closure of O� in X� , for all � � � . We still have that
� ij D � i\� j, and one can glue together these extended cones to obtain the extended
fan �X (Fig. 2).

Fig. 2 The extended fan
of P2
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2.7 Toroidal Embeddings

The theory of toroidal embedding was developed in [35] in order to describe
varieties that look locally like toric varieties. A toroidal embedding U � X is a dense
open subset of a normal variety X such that, for any closed point x, the completion
bUx � bXx is isomorphic to the completion of an affine toric variety Tx � X�x .
Equivalently, each x 2 X should admit an étale neighborhood �x W Vx ! X and
an étale morphism  x W Vx ! X�x such that  �1

x Tx D ��1
x U. Note that the open set

U � X serves as a global structure connecting the local pictures Tx � X�x .

2.8 The Cone Complex of a Toroidal Embedding
Without Self-Intersections

If the morphisms �x W Vx ! X are assumed to be Zariski open embeddings, then the
toroidal embedding is a toroidal embedding without self-intersections. In this case
the book [35] provides a polyhedral cone complex ˙X replacing the fan of a toric
variety. The main difference is that the cones of the complex ˙X do not lie linearly
inside an ambient space of the form NR.

For a toroidal embedding without self-intersections, the strata of X�x glue
together to form a stratification fOig of X. For x 2 Oi the cone �x, along with its
sublattice �x\N, is independent of x. It can be described canonically as follows. Let
Xi be the star of Oi, namely the union of strata containing Oi in their closures. It is an
open subset of X. LetM i be the monoid of effective Cartier divisors on Xi supported
on Xi X U. Let N� D HomMon.M i;N/ be the dual monoid. Then �x D .N� /R is the
associated cone. When one passes to another stratum contained in Xi one obtains a
face � � � , and N� D � \ N� . These cones glue together naturally, in a manner
compatible with the sublattices, to form a cone complex ˙X with integral structure.
Unlike the case of fans, the intersection �i \ �j could be a whole common subfan of
�i and �j, and not necessarily one cone (Fig. 3).

2.9 Extended Complexes

Just as in the case of toric varieties, these complexes canonically admit compactifi-
cations ˙X � ˙X , obtained by replacing each cone �x by the associated extended
cone � x. This structure was introduced in Thuillier’s [58].

Fig. 3 The complex of P2

with the divisor consisting of
a line and a transverse conic:
the cones associated to the
zero-dimensional strata meet
along both their edges
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2.10 Functoriality

Let U1 � X1 and U2 � X2 be toroidal embeddings without self-intersections and f W
X1 ! X2 a dominant morphism such that f .U1/ � U2. Then one canonically obtains
a mapping ˙X1 ! ˙X2 , simply because Cartier divisors supported away from U2

pull back to Cartier divisors supported away from U1. This mapping is continuous,
sends cones into cones linearly, and sends lattice points to lattice points. Declaring
such mappings to be mappings of polyhedral cone complexes with integral structure,
we obtain a functor from toroidal embeddings to polyhedral cone complexes. This
functor is far from being an equivalence.

In [35] one focuses on toroidal modifications f W X1 ! X2, namely those
birational modifications described on charts of X2 by toric modifications of the toric
varieties X�x . Then one shows

Theorem 2.2. The correspondence X1 7! ˙X1 extends to an equivalence of
categories between toroidal modifications of U2 � X2, and subdivisions of ˙X2 .

3 Logarithmic Structures

We briefly review the theory of logarithmic structures [33].

3.1 Notation for Monoids

Definition 3.1. A monoid is a commutative semi-group with a unit. A morphism of
monoids is required to preserve the unit element.

We denote the category of monoids by the symbol Mon.

Given a monoid P, we can associate a group

Pgp WD f.a; b/j.a; b/ � .c; d/ if 9s 2 P such that sC aC d D sC bC cg:

Note that any morphism from P to an abelian group factors through Pgp uniquely.

Definition 3.2. A monoid P is called integral if P ! Pgp is injective. It is called
fine if it is integral and finitely generated.

An integral monoid P is said to be saturated if whenever p 2 Pgp and n is a
positive integer such that np 2 P then p 2 P.

As has become customary, we abbreviate the combined condition “fine and
saturated” to fs.
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3.2 Logarithmic Structures

Definition 3.3. Let X be a scheme. A pre-logarithmic structure on X is a sheaf of
monoids MX on the small étale site Ket.X/ combined with a morphism of sheaves of
monoids: ˛ W MX �! OX , called the structure morphism, where we view OX as
a monoid under multiplication. A pre-logarithmic structure is called a logarithmic
structure if ˛�1.O�

X/ Š O�
X via ˛. The pair .X;MX/ is called a logarithmic scheme,

and will be denoted by X.
The structure morphism ˛ is frequently denoted exp and an inverse O�

X ! MX is
denoted log.

Definition 3.4. Given a logarithmic scheme X, the quotient sheaf M X D MX=O�
X

is called the characteristic monoid, or just the characteristic, of the logarithmic
structure MX .

Definition 3.5. Let M and N be pre-logarithmic structures on X. A morphism
between them is a morphism M ! N of sheaves of monoids which is compatible
with the structure morphisms.

Definition 3.6. Let ˛ W M ! OX be a pre-logarithmic structure on X. We define
the associated logarithmic structure Ma to be the push-out of

in the category of sheaves of monoids on Ket.X/, endowed with

Ma ! OX .a; b/ 7! ˛.a/b .a 2 M; b 2 O�
X/:

The following are two standard examples from [33, (1.5)]:

Example 3.7. Let X be a smooth scheme with an effective divisor D � X. Then we
have a standard logarithmic structure M on X associated to the pair .X;D/, where

MX WD ff 2 OX j f jXnD 2 O�
Xg

with the structure morphism MX ! OX given by the canonical inclusion. This is
already a logarithmic structure, as any section of O�

X is already in MX .

Example 3.8. Let P be an fs monoid, and X D SpecZŒP� be the associated affine
toric scheme. Then we have a standard logarithmic structure MX on X associated to
the pre-logarithmic structure



Skeletons and Fans of Logarithmic Structures 297

P! ZŒP�

defined by the obvious inclusion.
We denote by Spec.P! ZŒP�/ the log scheme .X;MX/.

3.3 Inverse Images

Let f W X ! Y be a morphism of schemes. Given a logarithmic structure MY on
Y , we can define a logarithmic structure on X, called the inverse image of MY , to
be the logarithmic structure associated to the pre-logarithmic structure f �1.MY/!
f �1.OY/ ! OX . This is usually denoted by f �.MY/. Using the inverse image of
logarithmic structures, we can give the following definition.

Definition 3.9. A morphism of logarithmic schemes X ! Y consists of a morphism
of underlying schemes f W X ! Y , and a morphism f [ W f �MY ! MX of logarithmic
structures on X. The morphism is said to be strict if f [ is an isomorphism.

We denote by LogSch the category of logarithmic schemes.

3.4 Charts of Logarithmic Structures

Definition 3.10. Let X be a logarithmic scheme, and P a monoid. A chart for MX

is a morphism P! �.X;MX/, such that the induced map of logarithmic structures
Pa ! MX is an isomorphism, where Pa is the logarithmic structure associated to the
pre-logarithmic structure given by P! �.X;MX/! �.X;OX/.

In fact, a chart of MX is equivalent to a morphism

f W X ! Spec.P! ZŒP�/

such that f [ is an isomorphism. In general, we have the following:

Lemma 3.11 ([45, 1.1.9]). The mapping

HomLogSch.X;Spec.P! ZŒP�// ! HomMon.P; �.X;MX//

associating to f the composition

P! �.X;PX/
�.f b/���! �.X;MX/

is a bijection.
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We will see in Example 5.2 that Artin cones have a similar universal property on
the level of characteristic monoids.

Definition 3.12. A logarithmic scheme X is said to be fine, if étale locally there is
a chart P! MX with P a fine monoid. If moreover P can be chosen to be saturated,
then X is called a fine and saturated (or fs) logarithmic structure. Finally, if P can
be chosen isomorphic to N

k, we say that the logarithmic structure is locally free.

Lemma 3.13. Let X be a fine and saturated logarithmic scheme. Then for any
geometric point Nx 2 X, there exists an étale neighborhood U ! X of Nx with a
chart M Nx;X ! MU, such that the composition M Nx;X ! MU !M Nx;X is the identity.

Proof. This is a special case of [46, Proposition 2.1]. ut

3.5 Logarithmic Differentials

To form sheaves of logarithmic differentials, we add to the sheaf 	X=Y symbols of
the form d log.˛.m// for all elements m 2 MX , as follows:

Definition 3.14. Let f W X ! Y be a morphism of fine logarithmic schemes. We
introduce the sheaf of relative logarithmic differentials 	1

X=Y given by

	1
X=Y D

�
	X=Y ˚ .OX ˝Z Mgp

X /
�ı

K

where K is the OX-module generated by local sections of the following forms:

(1) .d˛.a/; 0/ � .0; ˛.a/˝ a/ with a 2 MX and
(2) .0; 1˝ a/ with a 2 im.f �1.MY/! MX/.

The universal derivation .@;D/ is given by @ W OX
d! 	X=Y ! 	1

X=Y and D W MX !
OX ˝Z Mgp

X ! 	1
X=Y .

Example 3.15. Let h W Q ! P be a morphism of fine monoids. Denote X D
Spec.P! ZŒP�/ and Y D Spec.Q! ZŒQ�/. Then we have a morphism f W X ! Y
induced by h. A direct calculation shows that 	1

f D OX ˝Z coker.hgp/. The free
generators correspond to the logarithmic differentials d log.˛.p// for p 2 P, which
are regular on the torus SpecZŒPgp�, modulo those coming from Q. This can also be
seen from the universal property of the sheaf of logarithmic differentials.
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3.6 Logarithmic Smoothness

Consider the following commutative diagram of logarithmic schemes illustrated
with solid arrows:

(1)

where j is a strict closed immersion (Definition 3.9) defined by the ideal J with
J2 D 0. We define logarithmic smoothness by the infinitesimal lifting property:

Definition 3.16. A morphism f W X ! Y of fine logarithmic schemes is called
logarithmically smooth (resp., logarithmically étale) if the underlying morphism
X ! Y is locally of finite presentation and for any commutative diagram (1), étale
locally on T1 there exists a (resp., there exists a unique) morphism g W T1 ! X such
that � D g ı j and  D f ı g.

We have the following useful criterion for smoothness from [33, Theorem 3.5].

Theorem 3.17 (K. Kato). Let f W X ! Y be a morphism of fine logarithmic
schemes. Assume we have a chart Q! MY, where Q is a finitely generated integral
monoid. Then the following are equivalent:

(1) f is logarithmically smooth (resp., logarithmically étale) and
(2) étale locally on X, there exists a chart .PX ! MX;QY ! MY ;Q ! P/

extending the chart QY ! MY, satisfying the following properties:

(a) The kernel and the torsion part of the cokernel (resp., the kernel and the
cokernel) of Qgp ! Pgp are finite groups of orders invertible on X.

(b) The induced morphism from X ! Y�SpecZŒQ�SpecZŒP� is étale in the usual
sense.

Remark 3.18. (1) We can require Qgp ! Pgp in (a) to be injective, and replace the
requirement that X ! Y �SpecZŒQ� SpecZŒP� be étale in (b) by requiring it to be
smooth without changing the conclusion of Theorem 3.17.

(2) In this theorem something wonderful happens, which Kato calls “the magic of
log.” The arrow in (b) shows that a logarithmically smooth morphism is “locally
toric” relative to the base. Consider the case where Y is a logarithmic scheme
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with underlying space given by SpecC with the trivial logarithmic structure,
and X D Spec.P ! CŒP�/ where P is a fine, saturated, and torsion free
monoid. Then X is a toric variety with the action of SpecCŒPgp�. According
to the theorem, X is logarithmically smooth relative to Y , though the underlying
space might be singular. These singularities are called toric singularities in [34].
This is closely related to the classical notion of toroidal embeddings [35].

Logarithmic differentials behave somewhat analogously to differentials:

Proposition 3.19. Let X
f! Y

g! Z be a sequence of morphisms of fine logarithmic
schemes.

(1) There is a natural exact sequence f �	1
g ! 	1

fg ! 	1
f ! 0.

(2) If f is logarithmically smooth, then	1
f is a locally free OX-module, and we have

the following exact sequence: 0! f �	1
g ! 	1

gf ! 	1
f ! 0.

(3) If gf is logarithmically smooth and the sequence in (2) is exact and splits locally,
then f is logarithmically smooth.

A proof can be found in [45, Chap. IV].

4 Kato Fans and Resolution of Singularities

4.1 The Monoidal Analogues of Schemes

In parallel to the theory of schemes, Kato developed a theory of fans, with the role
of commutative rings played by monoids. As with schemes, the theory begins with
the spectrum of a monoid:

Definition 4.1 ([34, Definition (5.1)]). Let M be a monoid. A subset I � M is
called an ideal of M if M C I � I. If M X I is a submonoid of M, then I is called
a prime ideal of M. The set of prime ideals of M is denoted Spec M and called the
spectrum of M.

If f W M ! N is a homomorphism of monoids and P � N is a prime ideal, then
f �1P � M is a prime ideal as well. Therefore f induces a morphism of spectra:
Spec N ! Spec M.

Definition 4.2 ([34, Definition (5.2)]). Suppose that M is a monoid and S is a
subset of M. We write MŒ�S� for the initial object among the monoids N equipped
a morphism f W M ! N such that f .S/ is invertible. When S consists of a single
element s, we also write MŒ�s� in lieu of MŒ�fsg�.
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Fig. 4 Points and topology
of SpecN2: The big point
corresponds to the ideal ¿,
the intermediate points are
the primes N � N>0 and
N>0 � N, and the small
closed point is the maximal
ideal N2>0. The arrows
indicate specialization, thus
determining the topology ∅ N>0 × N

N × N>0 N
2
>0

It is not difficult to construct MŒ�S� with the familiar Grothendieck group
construction M 7! Mgp of Definition 3.1. Certainly MŒ�S� coincides with MŒ�S0�
where S0 is the submonoid of M generated by S. One may therefore assume that S is
a submonoid of M. Then for MŒ�S� one may take the set of formal differences m� s
with m 2 M and s 2 S, subject to the familiar equivalence relation:

m � s � m0 � s0 ” 9 t 2 S; tC mC s0 D tC m0 C s

If M is integral, then one may construct MŒ�S� as a submonoid of Mgp.
The topology of the spectrum of a monoid is defined exactly as for schemes:

Definition 4.3 ([34, Definition (9.2)]). Let M be a monoid. For any f 2 M, let
D.f / � Spec M be the set of prime ideals P � M such that f 62 P. A subset of
Spec M is called open if it is open in the minimal topology in which the D.f / are
open subsets.

Equivalently D.f / is the image of the map Spec.MŒ�f �/ ! Spec M. The
intersection of D.f / and D.g/ is D.f C g/ so the sets D.f / form a basis for the
topology of Spec M (Fig. 4).

We equip Spec M with a sheaf of monoids MSpec M where

MSpec M.D.f // D MŒ�f �=MŒ�f ��

where MŒ�f �� is the set of invertible elements of M. This is a sharply monoidal
space:

Definition 4.4 ([34, Definition (9.1)]). Recall that a monoid is called sharp if its
only invertible element is the identity element 0. If M and N are sharp monoids,
then a sharp homomorphism f W M ! N is a homomorphism of monoids such that
f �1f0g D f0g.

A sharply monoidal space is a pair .S;MS/, where S is a topological space and
MS is a sheaf of sharp monoids on S. A morphism of sharply monoidal spaces
f W .S;MS/ ! .T;MT/ consists of a continuous function f W S ! T and a sharp
homomorphism of sheaves of sharp monoids f �1MT !MS.
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A sharply monoidal space is called an affine Kato fan or a Kato cone if it is
isomorphic to .Spec M;MSpec M/. A sharply monoidal space is called a Kato fan if
it admits an open cover by Kato cones.

We call a Kato fan integral or saturated if it admits a cover by the spectra of
monoids with the respective properties (Definition 3.2). A Kato fan is called locally
of finite type if it admits a cover by spectra of finitely generated monoids. We use
fine as a synonym for integral and locally of finite type.

A large collection of examples of Kato fans is obtained from fans of toric varieties
(see Sect. 4.3) or logarithmically smooth schemes (Sect. 4.5). In particular, any toric
singularity is manifested in a Kato fan.

Any Kato cone Spec M of a finitely generated integral monoid M contains
an open point corresponding to the ideal ¿ � M, carrying the trivial stalk
Mgp=Mgp D 0. We can always glue an arbitrary collection of such Kato cones along
their open points. If the collection is infinite, this gives examples of connected Kato
fans which are not quasi-compact.

4.2 Points and Kato Cones

Definition 4.5. Let F0 ! F be a morphism of fine, saturated Kato fans. The
morphism is said to be quasi-compact if the preimage of any open subcone of F
is quasi-compact.

Lemma 4.6. Let F be a Kato fan. There is a bijection between the open Kato
subcones of F and the points of F.

Proof. Suppose that U D Spec M is an open subcone of F. Let P � M be the
complement of 0 2 M. Then P is a prime ideal, hence corresponds to a point of F.

To give the inverse, we show that every point of F has a minimal open affine
neighborhood. Indeed, suppose that U is an open affine neighborhood of p 2 F.
Then the underlying topological space of U is finite, so there is a smallest open
subset of U containing p. Replace U with this open subset. It must be affine, since
affine open subsets form a basis for the topology of U.

It is straightforward to see that these constructions are inverse to one another. ut
Lemma 4.7. A morphism of fine, saturated Kato fans is quasi-compact if and only
if it has finite fibers. In particular, a Kato fan is quasi-compact if and only if its
underlying set is finite.

4.3 From Fans to Kato Fans

If � is a fan in NR in the sense of toric geometry, it gives rise to a Kato fan F�.
The underlying topological space of F� is the set of cones of � and a subset is
open if and only if it contains all the faces of its elements. In particular, if � is one
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of the cones of �, then the set of faces of � is an open subset F� of K and these
open subsets form a basis. We set M.F� / D .M \ �_/=.M \ �_/� where M is
the dual lattice of N and �_ is the dual cone of � . With this sheaf of monoids,
F� ' Spec.M \ �_/=.M \ �_/�, so F� has an open cover by Kato cones, hence is
a Kato fan.

4.4 Resolution of Singularities of Kato Fans

Kato introduced the following monoidal space analogue of subdivisions of fans of
toric varieties, in such a way that a subdivision of a fan˙ gives rise to a subdivision
of the Kato fan F˙ . A morphism of fans ˙1 ! ˙2 is a subdivision if and only if
it induces a bijection on the set of lattice points [�N� . The Kato fan notion is the
direct analogue:

Definition 4.8. A morphism p W F0 ! F of fine, saturated Kato fans is called a
proper subdivision if it is quasi-compact and the morphism

Hom.SpecN;F0/! Hom.SpecN;F/

is a bijection.

Remark 4.9. This definition has an appealing resemblance to the valuative criterion
for properness.

Explicitly subdividing Kato fans is necessarily less intuitive than subdividing
fans. The following examples, which are in direct analogy to subdivisions of fans,
may help in developing intuition:

Example 4.10. (i) Suppose that F is a fine, saturated Kato fan and v W SpecN! F
is a morphism. The star subdivision of F along v is constructed as follows:
If U D Spec M is an open Kato subcone of F not containing v, then U is
included as an open Kato subcone of F0; if U does contain v, then for each
face V D Spec N contained in U that does not contain v, we include the face
v C V D Spec MvCV , where

MvCV D
˚
˛ 2 Mgp W ˛ˇ̌V 2 N and v�˛ 2 N



:

(ii) Let F D Spec M be a fine, saturated Kato cone. There is a canonical morphism
SpecN ! F by regarding Hom.SpecN;F/ D Hom.M;N/ as a monoid and
taking the sum of the generators of the 1-dimensional faces of F. This morphism
is called the barycenter of F.

If F is a fine, saturated Kato fan, we obtain a subdivision F0 ! F by
performing star subdivision of F along the barycenters of its open subcones,
in decreasing order of dimension. A priori this is well defined if cones of F
have bounded dimension, but as the procedure is compatible with restriction to
subfans, this works for arbitrary F. This subdivision is called the barycentric
subdivision.
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Definition 4.11. A fine, saturated Kato fan F is said to be smooth if it has an open
cover by Kato cones U ' SpecNr.

Theorem 4.12 ([35, Theorem I.11], [23, Sect. 2.6], [34, Proposition (9.8)]). Let
F be a fine, saturated Kato fan. Then there is a proper subdivision F0 ! F such that
F0 is smooth.

The classical combinatorial proofs start by first using star or barycentric subdivi-
sions to make the fan simplicial, and then repeatedly reducing the index by further
star subdivisions.

4.5 Logarithmic Regularity and Associated Kato Fans

In this section we will work only with logarithmic structures admitting charts Zariski
locally.

Let X be a logarithmic scheme and x a schematic point of X. Let I.x;MX/ be the
ideal of the local ring OX;x generated by the maximal prime ideal of MX;x.

Definition 4.13 ([34, Definition (2.1)]). A locally noetherian logarithmic scheme
X admitting Zariski-local charts is called logarithmically regular at a schematic
point x if it satisfies the following two conditions:

(i) the local ring OX;x=I.x;MX/ is regular and
(ii) dimOX;x D dimOX;x=I.x;M/C rankM gp

X;x.

Example 4.14 ([34, Example (2.2)]). A toric variety with its toric logarithmic
structure is logarithmically regular.

If X is a logarithmic scheme, then the Zariski topological space of X is
equipped with a sheaf of sharp monoids M X . Thus .X;M X/ is a sharply monoidal
space. Moreover, morphisms of logarithmic schemes induce morphisms of sharply
monoidal spaces. We therefore obtain a functor from the category of logarithmic
schemes to the category of sharply monoidal spaces. We may speak in particular
about morphisms from logarithmic schemes to Kato fans.

Theorem 4.15 (cf. [34, (10.2)]). Let X be a fine, saturated locally noetherian,
logarithmically regular logarithmic scheme that admits charts Zariski locally. Then
there is an initial strict morphism X ! FX to a Kato fan.

We call the Kato fan FX the Kato fan associated to X.
Kato constructs the Kato fan FX as a skeleton of the logarithmic strata of X.

Let FX � X be the set of points x 2 X such that I.x;MX/ coincides with the
maximal ideal of OX;x. As we indicate below these are the generic points of the
logarithmic strata of X. Let MFX be the restriction of M X to FX . We denote the
resulting monoidal space by FX .
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Lemma 4.16 ([34, Proposition (10.1)]). If X is a fine, saturated, locally noethe-
rian, logarithmically regular scheme admitting a chart Zariski locally, then the
sharply monoidal space constructed above is a fine, saturated Kato fan.

Lemma 4.17 ([34, (10.2)]). There is a canonical continuous retraction of X onto
its Kato fan FX.

We briefly summarize the definition of the map and omit the rest of the proof.
Let x be a point of X. The quotient OX;x=I.x;MX/ is regular, hence in particular a
domain, so it has a unique minimal prime corresponding to a point y of FX � X. We
define 
.x/ D y.

Lemma 4.18. The Kato fan of X is the initial Kato fan admitting a morphism
from X.

Proof. Let ' W X ! F be another morphism to a Kato fan. By composition with the
inclusion FX � X we get a map FX ! F. We need to show that ' factors through

 W X ! FX .

Let x be a point of X and let A be the local ring of x in X. Let P D M X;x.
Let y D 
.x/. Then y is the generic point of the vanishing locus of I.x;MX/. We
would like to show '.y/ D '.x/. We can replace X with Spec A, replace FX with
FX \ Spec A, and replace F with an open Kato cone in F containing '.x/. Then
F D Spec Q for some fine, saturated, sharp monoid Q and we get a map Q ! P.
Since X ! F is a morphism of sharply monoidal spaces, X ! F factors through
the open subset defined by the kernel of Q ! P, so we can replace F by this open
subset and assume that Q! P is sharp. But then X ! F factors through no smaller
open subset, so '.x/ is the closed point of F. Moreover, we have M X;y D M X;x so
the same reasoning applies to y and shows that '.y/ D '.x/, as desired. ut

This completes the proof of Theorem 4.15.

4.6 Towards the Monoidal Analogues of Algebraic Spaces

4.6.1 The Need for a More General Approach: The Nodal Cubic

Not every logarithmically smooth scheme has a Kato fan. For example, the divisorial
logarithmic structure on A

2 associated to a nodal cubic curve does not have a chart in
any Zariski neighborhood of the node of the cubic. The Kato fan of this logarithmic
structure wants to be the Kato fan of the plane with the open subsets corresponding
to the complements of the axes glued together (Fig. 5).

This cannot be a Kato fan, because there is no open neighborhood of the closed
point that is a Kato cone. Indeed, the closed point has two different generizations to
the codimension 1 point.
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Fig. 5 The fan of the nodal
cubic, drawn as a cone with
the two edges glued to each
other

Clearly, the solution here is to allow more general types of gluing (colimits) into
the definition of a Kato fan. The purpose of this section is to outline what this might
entail. Our favorite solution will only come in the next section, where we discuss
Artin fans.

The theory of algebraic spaces provides a blueprint for how to proceed. The
universal way to add colimits to a category is to pass to its category of presheaves.
In order to retain the Kato fans as colimits of their open Kato subcones, we look
instead at the category of sheaves. Finally, we restrict attention to those sheaves that
resemble Kato cones étale locally.

4.6.2 The Need for a More General Approach: The Whitney Umbrella

These cone spaces are general enough to include a fan for the divisorial logarithmic
structure of the nodal cubic. However, one cannot obtain a fan for the punctured
Whitney umbrella this way:

Working over C, let X D A
2 � Gm with the logarithmic structure pulled back

from the standard logarithmic structure on A
2, associated to the divisor xy D 0 as

in Example 3.7. Let G D Z=2Z act by t:.x; y; z/ D .y; x;�z/. Since the divisor is
G stable, the action lifts to the logarithmic structure, so the logarithmic structure
descends to the quotient Y D X=G.

There is a projection 
 W Y ! Gm, and traversing the nontrivial loop in
Gm results in the automorphism of A2 exchanging the axes. Thus the logarithmic
structure of Y has monodromy.

If there is a map from Y to a cone space Z, then it is not possible for M Y to be
pulled back from MZ . Just as in a Kato fan, the strata of Z on which MZ is locally
constant are discrete and therefore cannot have monodromy.

However, Deligne–Mumford stacks can have monodromy at points. By enlarging
our perspective to include cone stacks, the analogues of Deligne–Mumford stacks
for Kato fans, we are able to construct fans that record the combinatorics of
the logarithmic strata for any locally connected logarithmic scheme (logarithmic
smoothness is not required). The construction proceeds circuitously, by showing
that cone stacks form a full subcategory of Artin fans (defined in Sect. 5) and then
constructing an Artin fan associated to any logarithmically smooth scheme (Fig. 6).
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Fig. 6 The fan of the
Whitney umbrella drawn
as a cone—the first
quadrant—folded over itself
via the involution
.x; y/ 7! .y; x/

5 Artin Fans

In order to simplify the discussion we work over an algebraically closed field k.

5.1 Definition and Basic Properties

Definition 5.1. An Artin fan is a logarithmic algebraic stack that is logarithmically
étale over Spec k. A morphism of Artin fans is a morphism of logarithmic algebraic
stacks. We denote the 2-category of Artin fans by the symbol AF.

Olsson showed that there is an algebraic stack Log over the category of schemes
such that morphisms S ! Log correspond to logarithmic structures S on S [46,
Theorem 1.1].1 Equipping Log with its universal logarithmic structure yields the
logarithmic algebraic stack Log. If X is an Artin fan, then the morphism X ! Log
induced by the logarithmic structure of X is étale, and conversely: any logarithmic
algebraic stack whose structural morphism to Log is étale is an Artin fan.

Example 5.2. Let V be a toric variety with dense torus T . The toric logarithmic
structure of V is T-equivariant, hence descends to a logarithmic structure on ŒV=T�,
making ŒV=T� into an Artin fan.

If V D Spec kŒM� for some fine, saturated, sharp monoid M, then ŒV=T�
represents the following functor on logarithmic schemes [46, Proposition 5.17]:

.X;MX/ 7! Hom
�
M; �.X;M X/

�
:

As M X is an étale sheaf over X, it is immediate that ŒV=T� is logarithmically étale
over a point.

Definition 5.3. An Artin cone is an Artin fan isomorphic to AM D ŒV=T�, where
V D Spec kŒM� and M is a fine, saturated, sharp monoid (Fig. 7).

1Our conventions differ from Olsson’s: in [46], the stack Log parameterizes all fine logarithmic
structures; to conform with our convention that all logarithmic structures are fine and saturated,
we use the symbol Log to refer to the open substack of Olsson’s stack parameterizing fine and
saturated logarithmic structures. This was denoted Tor in [46].
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Fig. 7 AN2 : The small closed
point is BG2

m, the
intermediate points are BGm,
and the big point is just a
point

{∗} BGm

BGm BG
2
m

If X ! Log is étale and representable, then X is determined by its étale stack of
sections over Log. Moreover, any étale stack on Log corresponds to an Artin fan by
passage to the espace (champ) étalé. The following lemma characterizes the étale
site of Log as a category of presheaves:

Lemma 5.4. (i) The Artin cones are an étale cover of Log.
(ii) An Artin cone has no nontrivial representable étale covers.

(iii) If M and N are fine, saturated, sharp monoids, then

HomAF.AM;AN/ D HomMon.N;M/:

Proof. Statement (i) was proved in [46, Corollary 5.25]. It follows from the fact that
every logarithmic scheme admits a chart étale locally.

Statement (ii) follows from [3, Corollary 2.4.3]. Concretely, étale covers of Artin
cones correspond to equivariant étale covers of toric varieties, which restrict to
equivariant étale covers of tori, of which there are none other than the trivial ones
[3, Proposition 2.4.1].

Statement (iii) follows from �.AM;MAM / D M and consideration of the functor
represented by AN (Example 5.2). ut

5.2 Categorical Context

Lemma 5.4 (iii) enables us to relate the 2-category of Artin fans to the notions
surrounding Kato fans. Let us write RPC for the category of rational polyhedral
cones. The category RPC is equivalent to the opposite of the category of fine,
saturated, sharp monoids.2 Therefore RPC is equivalent to the category of Kato
cones and, by Lemma 5.4 (iii), to the category of Artin cones. Furthermore, we
obtain

2In fact, the category of fine, saturated, sharp monoids is equivalent to its own opposite. However,
we find it helpful to maintain a distinction between cones (which we view as spaces) and monoids
(which we view as functions).
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Corollary 5.5. The 2-category of Artin fans with faithful monodromy is fully
faithfully embedded in the 2-category of fibered categories over RPC.

Proof. Lemma 5.4 gives an embedding of AF in the 2-category of fibered categories
on the category of Artin cones and identifies the category of Artin cones with RPC.

ut
This enables us to relate the 2-category AF with the framework proposed in

Sects. 4.6.1 and 4.6.2: the 2-category of cone stacks suggested in Sect. 4.6.2 is
necessarily equivalent to a full subcategory the 2-category AF. The key to proving
this is the fact that the diagonal of an Artin fan is represented by algebraic spaces,
which enables one to relate it to a morphism of “cone spaces” as suggested in
Sect. 4.6.1.

In particular, we have a fully faithful embedding KF ! AF of the category of
Kato fans in the 2-category of Artin fans.

5.3 The Artin Fan of a Logarithmic Scheme

Definition 5.6. A Zariski logarithmic scheme X is said to be small with respect to
a point x 2 X, if the restriction morphism �.X;M/!M X;x is an isomorphism and
the closed logarithmic stratum

˚
y 2 X

ˇ̌
M X;y 'M X;x




is connected. We say X is small if it is small with respect to some point.

Let N D �.X;M X/. There is a canonical morphism

X ! AN

corresponding to the morphism N ! �.X;M X/. It is shown in [8] that if X is small
this morphism is initial among all morphisms from X to Artin fans. We therefore
call AN the Artin fan of such small X. By the construction, the Artin fan of X is
functorial with respect to strict morphisms.

Now consider a logarithmic algebraic stack X with a groupoid presentation

V � U ! X

in which U and V are disjoint unions of small Zariski logarithmic schemes. Then
V and U have Artin fans V and U and we obtain strict morphisms of Artin fans
V ! U . Strict morphisms of Artin fans are étale, so this is a diagram of étale spaces
over Log. It therefore has a colimit, also an étale space over Log, which we call the
Artin fan of X.
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5.4 Functoriality of Artin Fans: Problem and Fix

The universal property of the Artin fan implies immediately that Artin fans are
functorial with respect to strict morphisms of logarithmic schemes. They are not
functorial in general, but we will be able to salvage a weak replacement for
functoriality in which morphisms of logarithmic schemes induce correspondences
of Artin fans.

5.4.1 The Failure of Functoriality

We use the notation for the punctured Whitney umbrella introduced in Sect. 4.6.2.
As X has a global chart, its Artin fan X is easily seen to be A2. The Artin fan Y
of Y is the quotient of A2 by the action of Z=2Z exchanging the components, as
a representable étale space over Log. In other words, the group action induces an
étale equivalence relative to Log by taking the image of the action map

Z=2Z �A2 ! A2 �
Log

A2:

A logarithmic morphism from a logarithmic scheme S into A2 �Log A2 consists of
two maps N2 ! �.S;M S/ and an isomorphism between the induced logarithmic
structures M1 and M2 commuting with the projection to MS. This implies that

A2 �
Log

A2 D A2q
A0

A2

where by A0 we mean the open point of A2. The nontrivial projection in

A2q
A0

A2 D A2 �
Log

A2 � A2

is given by the identity map on one component and the exchange of coordinates on
the other component. (The trivial projection is the identity on both components.)

It is now easy to see that Z=2Z�A2 surjects onto A2qA0 A2, so the Artin fan of
Y is the image of A2 in Log. We will write AŒ2� for this open substack and observe
that it represents the functor sending a logarithmic scheme S to the category of pairs
.M; '/ where M is an étale sheaf of monoids on S and ' W M ! M S is a strict
morphism that can be presented étale locally by a map N2 ! M S. Equivalently, it
is a logarithmic structure over MS that has étale-local charts by N2.

Of course, there is a map X ! Y consistent with the maps X ! Y: it is the
canonical projection A2 ! AŒ2�. However, we takeeX to be the logarithmic blowup
of X at f0g�Gm and leteY be the logarithmic blowup of Y at the image of this locus.
Then we have a Cartesian diagram, since X is flat over Y:
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We will compute the Artin fans ofeX andeY .
Since X and Y are flat over their Artin fans, the blowupseX andeY are pulled back

from the blowups eX and eY of X and Y . Furthermore, the square in the diagram
below is Cartesian:

We have written Z for the Artin fan of eY . Since eY ! eY is strict and smooth with
connected fibers, the mapeY ! Z factors through eY . We will see in a moment that
there is no dashed arrow making the triangle on the right above commutative, thus
witnessing the failure of the functoriality of the Artin fan construction with respect
to the morphismeY ! Y .3

The reason no map Z ! Y can exist making the diagram above commutative
is that eY has monodromy at the generic point of its exceptional divisor, pulled back
from the monodromy at the closed point of Y . However, the image of the exceptional
divisor of eY in Z is a divisor, and Z ! Log is representable by algebraic spaces.
No rank 1 logarithmic structure can have monodromy, so there is no monodromy at
the image of the exceptional divisor in Z .

A variant of the last paragraph shows that there is no commutative diagram

We can find a loop � in the exceptional divisor E of eY that projects to a nontrivial
loop in Y , around which the logarithmic structure of Y has nontrivial monodromy.
Even though the logarithmic structure ofeY has no monodromy around � , the image

3More specifically, there is no way to make the Artin fan functorial while also making the maps
Y ! Y natural in Y .
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of � in Y is nontrivial. But all of the exceptional divisor E is collapsed to a point in
Z , so the image of � in Y must act trivially.4

5.4.2 The Patch

There seem to be two ways to get around this failure of functoriality. The first is to
allow the Artin fan to include more information about the fundamental group of the
original logarithmic scheme X. However, the most naive application of this principle
would introduce the entire étale homotopy type of X into the Artin fan, sacrificing
Artin fans’ essentially combinatorial nature.

Another approach draws inspiration from Olsson’s stacks of diagrams of loga-
rithmic structures [47]. Let LogŒ1� be the stack whose S-points are morphisms of
logarithmic structures M1 ! M2 on S. A morphism of logarithmic schemes X ! Y
induces a commutative diagram

where LogŒ1� ! Log sends M1 ! M2 to M1. If LogŒ1� is given M2 as its
logarithmic structure, this is a commutative diagram of logarithmic algebraic stacks.
The construction of the Artin fan works in a relative situation, and we take Y D

0.Y=Log/ and X D 
0.X=LogŒ1�/. Note that Y �Log LogŒ1� is étale over LogŒ1�, so
we get a map

X ! Y �
Log

LogŒ1� ! Y

salvaging a commutative diagram:

Theorem 5.7 ([3, Corollary 3.3.5]). For any morphism of logarithmic schemes
X ! Y with étale-locally connected logarithmic strata there is an initial commuta-
tive diagram

4Here is a rigorous version of the above argument. Observe that Y is the quotient of R � X ,
where X ' A2 and R is two copies of X joined along their open point. Pulling X back to the
center of the blowup Y0 ' Gm inside Y yields the cover by Gm�f0g � X. This cover has nontrivial
monodromy. On the other hand, Z ' A2 has no nontrivial étale covers. Therefore the pullback of
X �eY Z viaeY ! Z yields a trivial étale cover of Y0.
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in which the horizontal arrows are strict and both X and Y are Artin fans
representable by algebraic spaces relative to LogŒ1� and Log, respectively.

6 Algebraic Applications of Artin Fans

6.1 Gromov–Witten Theory and Relative
Gromov–Witten Theory

Algebraic Gromov–Witten theory is the study of the virtually enumerative invari-
ants, known as Gromov–Witten invariants, of algebraic curves on a smooth target
variety X. In Gromov–Witten theory one integrates cohomology classes on X against
the virtual fundamental class ŒM�.X/�vir of the moduli space M�.X/ of stable maps
with target X. The subscript � indicates fixed numerical invariants, including the
genus of the domain curve, the number of marked points on it, and the homology
class of its image.

Relative Gromov–Witten theory comes from efforts to define Gromov–Witten
invariants for degenerations of complicated targets that, while singular, are still
geometrically simple. In the mild setting of two smooth varieties meeting along
a smooth divisor, such a theory has been developed by Li [37, 38], following work
in symplectic geometry by Li–Ruan [39] and Ionel–Parker [30, 31].

Working over C, one considers a degeneration

(2)

where 
 W X ! B is a flat, projective morphism from a smooth variety to a smooth
curve, and where the singular fiber X0 D Y1 tD Y2 consists of two smooth varieties
meeting along a smooth divisor.

Jun Li proved an algebro-geometric degeneration formula through which one can
recover Gromov–Witten invariants of the possibly complicated but smooth general
fiber of X from relative Gromov–Witten invariants determined by a space M�i.Yi/

of relative stable maps to each of the two smooth components Yi of X0. Here, in
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addition to the genus, the number of markings, and homology class, one must fix
the contact orders of the curve with the given divisor.

6.1.1 Expanded Degenerations and Pairs

In order to define Gromov–Witten invariants of the singular degenerate fiber X0, Jun
Li constructed a whole family of expansions X0

0 ! X0, where

X0
0 D Y1 tD P tD � � � tD P tD Y2:

Here P is the projective completion of ND=Y1 ' N_
D=Y2

(explicitly, it is P.O˚ND=Y1 /)
and the gluing over D attaches 0-sections to1-sections.

Similarly, in order to guarantee that contact orders of maps in each Yi are
maintained, Jun Li constructed a family of expansions Y 0

i ! Yi where

Y 0
i D Yi tD P tD � � � tD P:

Here is the first point where Artin fans, in their simplest form and even without
logarithmic structures, become of use:

In Jun Li’s construction, not every deformation of an expansion Y 0
i ! Yi is itself

an expansion. For instance, the expansion Yi tD P can deform to Yi tD P0, where
P00 D P.O ˚ N00/ with N00 a deformation of ND=Y1 . Precisely the same problem
occurs with deformation of an expansion X0

0 ! X0.

6.1.2 The Artin Fan as the Universal Target, and Its Expansions

In [5], following ideas in [14], it was noted that the Yi has a canonical map Yi !
A WD ŒA1=Gm�. From the point of view of the present text, A D AYi , the Artin fan
associated to the divisorial logarithmic structure .Yi;D/, and its divisor D D BGm �
A is the universal divisor. Next, if A0 ! A is an expansion, then all deformations
of A0 ! A are expansions of A in the sense of Jun Li. And finally, any expansion
Y 0

i ! Yi is obtained as the pullback Y 0
i D A0 �A Yi of some expansion A0 ! A.

This means that the moduli space of expansions of any pair .Yi;D/ is identical
to the moduli space of expansions of .A;D/, and the expansions themselves are
obtained by pullback.

A similar picture occurs for degenerations: the Artin fan of X ! B is the
morphism A �A! A induced by the multiplication morphism A

2 ! A
1:
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There is again a stack of universal expansions of A�A! A, and every expansion
X0
0 ! X0 is the pullback of a fiber of the universal expansion:

From the point of view of logarithmic geometry this is not surprising: expansions
are always stable under logarithmic deformations. But the approach through Artin
fans provides us with further results, which we outline below.

6.1.3 Redefining Obstructions

Using expanded degenerations and expanded pairs, Jun Li defined moduli spaces
of degenerate stable maps M�.X=B/ and of relative stable maps M�i.Yi;D/.
Jun Li had an additional challenge in defining the virtual fundamental classes of
these spaces, which he constructed by bare hands. With a little bit of hindsight,
we now know that Li’s virtual fundamental classes are associated to the natural
relative obstruction theories of the morphisms M�.X=B/ ! M�.A2=A/ and
M�i.Yi;D/ ! M�i.A;D/, where M�.A2=A/ and M�i.A;D/ are the associated
moduli spaces of prestable maps. Moreover, the virtual fundamental classes can
be understood with machinery available off the shelf of any deformation theory
emporium. This observation from [7] made it possible to prove a number of
comparison results, including those described below.

6.1.4 Other Approaches and Comparison Theorems

Denote by .Y;D/ a smooth pair, consisting of a smooth projective variety Y with a
smooth and irreducible divisor D. Jun Li’s moduli space M�.Y;D/ of relative stable
maps to .Y;D/ provides an algebraic setting for relative Gromov–Witten theory.
Only recently have efforts to generalize the theory to more complicated singular
targets come to fruition [1, 24, 29, 48, 49]. Because of the technical difficulty of Jun
Li’s approach, several alternate approaches to the relative Gromov–Witten invariants
of .Y;D/ have been developed:

• Listab
� .Y;D/ W Li’s original moduli space of relative stable maps;

• AFstab
� .Y;D/ W Abramovich–Fantechi’s stable orbifold maps with expansions [2];

• Kimstab
� .Y;D/ W Kim’s stable logarithmic maps with expansions [36]; and

• ACGSstab
� .Y;D/ W Abramovich–Chen and Gross–Siebert’s stable logarithmic

maps without expansions [1, 17, 24].
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There are analogous constructions

Listab
� .X=B/ AFstab

� .X=B/ Kimstab
� .X=B/ ACGSstab

� .X=B/

for a degeneration.
This poses a new conundrum: how do these approaches compare? The answer,

which depends on the Artin fan A, is as follows:

Theorem 6.1 ([7, Theorem 1.1]). There are maps

such that

‰�ŒAF�vir D ŒLi�vir ‚�ŒKim�vir D ŒLi�vir ‡�ŒKim�vir D ŒACGS�vir:

In particular, the Gromov–Witten invariants associated to these four theories
coincide.

The principle behind this comparison for each of the three maps ‰;‚, and ‡
is the same, and we illustrate it on ‰: there are algebraic stacks parametrizing
orbifold and relative stable maps to the Artin fan .A;D/, which we denote here
by AF�.A;D/ and Li�.A;D/. These stacks sit in a Cartesian diagram

such that

(1) The virtual fundamental classes of the spaces AFstab
� .Y;D/ and Listab

� .Y;D/may
be computed using the natural obstruction theory relative to the vertical arrows

AF and 
Li.

(2) The obstruction theory for 
AF is the pullback of the obstruction theory of 
Li.
(3) The morphism ‰A is birational.

One then applies a general comparison result of Costello [18, Theorem 5.0.1] to
obtain the theorem.

What makes all this possible is the fact that the virtual fundamental classes
of AF�.A;D/ and Li�.A;D/ agree with their fundamental classes. This in turn
results from the fact that the Artin fan .A;D/ of .X;D/ discards all the complicated
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geometry of .X;D/, retaining just enough algebraic structure to afford stacks of
maps such as AF�.A;D/ and Li�.A;D/. In effect, the virtual birationality of ‰ is
due to the genuine birationality of ‰A.

Similar results were obtained by similar methods in [16] and [4].

6.2 Birational Invariance for Logarithmic Stable Maps

More general Artin fans have found applications in the logarithmic approach to
Gromov–Witten theory.

Let X be a projective logarithmically smooth variety over C, and denote by M.X/
the moduli space of logarithmic stable maps to X, as defined in [1, 17, 24]. Fix a
logarithmically étale morphism h W Y ! X of projective logarithmically smooth
varieties. There is a natural morphism M.h/ WM.Y/ !M.X/ induced by h, and
the central result of [3] is the following pushforward statement for virtual classes.

Theorem 6.2. M.h/�
�
ŒM.Y/�vir

� D ŒM.X/�vir: In particular the logarithmic
Gromov–Witten invariants of X and Y coincide.

This theorem is proven by working relative to the underlying morphism of Artin
fans Y ! X provided by Theorem 5.7. This morphism and h fit into a Cartesian
diagram

(3)

One carefully constructs a Cartesian diagram of moduli spaces

(4)

to which principles (1), (2), and (3) in the proof of Theorem 6.1 apply. Costello’s
comparison theorem [18, Theorem 5.0.1] again gives the result.
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6.3 Boundedness of Logarithmic Stable Maps

A recent application of both Theorem 6.2 and the theory of Artin fans can be found
in [8], where a general statement for the boundedness of logarithmic stable maps to
projective logarithmic schemes is proven.

Theorem 6.3 ([8, Theorem 1.1.1]). Let X be a projective logarithmic scheme.
Then the stack M�.X/ of stable logarithmic maps to X with discrete data � is
of finite type.

The boundedness of M�.X/ has been established when the characteristic monoid
M X is globally generated in [1, 17], and more generally when the associated group
M

gp
X is globally generated in [24]. The strategy used in [8] for the general setting

is to reduce to the case of a globally generated sheaf of monoids M X by studying
the behavior of stable logarithmic maps under an appropriate modification of X.
This is accomplished by modifying the Artin fan X D AX constructed in Sect. 5.3,
lifting this modification to the level of logarithmic schemes, and applying a virtual
birationality result refining Theorem 6.2.

A key step is the modification of X :

Proposition 6.4 ([8, Proposition 1.3.1]). Let X be an Artin fan. Then there exists
a projective, birational, and logarithmically étale morphism Y ! X such that Y
is a smooth Artin fan, and the characteristic sheaf MY is globally generated and
locally free.

The proof of this Proposition is analogous to [35, I.11]: successive star subdi-
visions are applied until each cone is smooth (see Example 4.10), and barycentric
subdivisions guarantee that the resulting logarithmic structure has no monodromy.

7 Skeletons and Tropicalization

7.1 Berkovich Spaces

Ever since [56] it has been known that affinoid algebras are the correct coordinate
rings for defining non-Archimedean analogues of complex analytic spaces. Working
just with affinoid algebras as coordinate rings, we have enough information to build
an intricate theory with many applications. The work of Berkovich [11] and [12]
beautifully enriches this theory by providing us with an alternative definition of non-
Archimedean analytic spaces, which naturally come with underlying topological
spaces that have many of the favorable properties of complex analytic spaces, such
as being locally path-connected and locally compact.

Let k be a non-Archimedean field, i.e., suppose that k is complete with respect
to a non-Archimedean absolute value j:j. We explicitly allow k to carry the trivial
absolute value. If U D Spec A is an affine scheme of finite type over k, as a set the
analytic space Uan associated to U is equal to the set of multiplicative seminorms on
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A that restrict to the given absolute value on k. We usually write x for a point in Uan

and j:jx, if we want to emphasize that x is thought of as a multiplicative seminorm
on A. The topology on Uan is the coarsest that makes the maps

Uan �! R

x 7�! jf jx
continuous for all f 2 A. There is a natural continuous structure morphism � W
Uan ! U given by sending x 2 Uan to the preimage of zero

˚
f 2 A

ˇ̌jf jx D 0


.

A morphism f W U ! V between affine schemes U D Spec A and V D Spec B
of finite type over k, given by a k-algebra homomorphism f # W B ! A, induces a
natural continuous map f an W Uan ! Van given by associating to x 2 Uan the point
f .x/ 2 Van given as the multiplicative seminorm

j:jf .x/ D j:jx ı f #

on B. The association f 7! f an is functorial in f .
Let X be a scheme that is locally of finite type over k. Choose a covering Ui D

Spec Ai of X by open affines. Then the analytic space Xan associated to X is defined
by glueing the Uan

i over the open subsets ��1.Ui \ Uj/. It is easy to see that this
construction does not depend on the choice of a covering and that it is functorial with
respect to morphisms of schemes over k. We refrain from describing the structure
sheaf on Xan, since we are only going to be interested in the topological properties
of Xan, and refer the reader to [11, 12, 57] for further details.

Example 7.1. Suppose that k is algebraically closed and endowed with the trivial
absolute value. Let t be a coordinate on the affine line A

1 D Spec kŒt�. One can
classify the points in .A1/an as follows:

• For every a 2 k and r 2 Œ0; 1/ we have the seminorm j:ja;r on kŒt� that is uniquely
determined by

jt � aja;r D r;

and
• for r 2 Œ1;1/ we have the seminorm j:j1;r that is uniquely determined by

jt � aj1;r D r

for all a 2 k.

Noting that

lim
r!1
j:ja;r D j:j1;1
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for all a 2 k we can visualize .A1/an as follows:

In particular, we can embed the closed points of A
1.k/ into .A1/an by the

association a 7! j:ja;0 for a 2 k.

One can give an alternative description of Xan as the set of equivalence classes of
non-Archimedean points of X. A non-Archimedean point of X consists of a pair
.K; �/ where K is a non-Archimedean extension of k and � W Spec K ! X. Two
non-Archimedean points .K; �/ and .L;  / of X are equivalent, if there is a common
non-Archimedean extension 	 of both K and L such that the diagram commutes.

Proposition 7.2. The analytic space Xan is equal to the set of non-Archimedean
points modulo equivalence.

Proof. We may assume that X D Spec A is affine. A non-Archimedean point .K; �/
of X naturally induces a multiplicative seminorm

A
�#

�! K
j:j�! R

on A. Conversely, given x 2 Xan, we can consider the integral domain A= ker j:jx
and form the completion H.x/ of its field of fractions. The natural homomorphism
A ! H.x/ defines a non-Archimedean point on X and these two constructions are
inverse up to equivalence. ut

Now suppose that k is endowed with the trivial absolute value. In [58, Sect. 1]
Thuillier introduces a slight variant of the analytification functor that functorially
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associates to a scheme locally of finite type over k a non-Archimedean analytic
space XÆ. Its points are pairs .R; �/ consisting of a valuation ring R extending k
together with a morphism � W Spec R ! X modulo an equivalence relation as
above: two pairs .R; �/ and .S;  / are equivalent, if there is a common valuation
ring O extending both R and S such that the diagram commutes.

So, if U D Spec A is affine, then UÆ is nothing but the set of multiplicative
seminorms j:jx on A that are bounded, i.e., that fulfill jf jx � 1 for all f 2 A. The
topology on UÆ is the one induced from Uan and there is a natural anti-continuous
reduction map r W UÆ ! U that sends x 2 UÆ to the prime ideal

˚
f 2 A

ˇ̌jf jx < 1


.

For a general scheme X locally of finite type over k, we again choose a covering Ui

by open affine subsets, and now glue the UÆ
i over the closed subsets r�1.Ui\Uj/ in

order to obtain XÆ.
As an immediate application of the valuative criteria for separatedness and

properness, we obtain that, if X is separated, then XÆ is naturally a locally closed
subspace of Xan, and, if X is complete, then XÆ D Xan.

Example 7.3. The space .A1/Æ is precisely the subspace of .A1/an consisting of the
points j:ja;r for a 2 k and r 2 Œ0; 1/ as well as the Gauss point j:j1;1.

7.2 The Case of Toric Varieties

Let k be a non-Archimedean field. As observed in [10, 22, 25, 26], there is an
intricate relationship between non-Archimedean analytic geometry and tropical
geometry. In particular, in many interesting situations the tropicalization of an
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algebraic variety X over k can be regarded as a natural deformation retract of Xan, a
so-called skeleton of Xan. In this section we are going to give a detailed explanation
of this relationship in the simplest possible case, that of toric varieties.

Let T be a split algebraic torus with character lattice M and co-character lattice
N, and X D X.�/ a T-toric variety that is defined by a rational polyhedral fan � in
NR. We refer the reader to Sect. 2 for a brief summary of this beautiful theory, and
to [23] and [19] for a more thorough account.

In [32] and [50] Kajiwara and Payne independently construct a tropicalization
map

trop� W Xan �! NR.�/

associated to X, whose codomain is a partial compactification of NR, uniquely
determined by � (also see [51, Sect. 4] and [53, Sect. 3]).

For a cone � in � set NR.�/ D Hom.S� ;R/, where S� denotes the toric monoid
�_ \M and write R for the additive monoid .Rt f1g;C/. Endow NR.�/ with the
topology of pointwise convergence.

Lemma 7.4 ([53, Proposition 3.4]).

(i) The space NR.�/ has a stratification by locally closed subsets isomorphic to
the vector spaces NR=Span.�/ for all faces � of � .

(ii) For a face � of � the natural map S� ! S� induces the open embedding

NR.�/ ,�! NR.�/

that identifies NR.�/ with the union of strata in NR.�/ corresponding to faces
of � in NR.�/.

So one can think of NR.�/ as a partial compactification of NR given by adding
a vector space NR=Span.�/ at infinity for every face � ¤ 0 of � . The partial
compactification NR.�/ of NR is defined to be the colimit of the NR.�/ for all cones
� in �. Since the stratifications on the NR.�/ are compatible, the space NR.�/ is a
partial compactification of NR that carries a stratification by locally closed subsets
isomorphic to NR=Span.�/ for every cone � in �.

On the T-invariant open affine subset X� D Spec kŒS� � the tropicalization map

trop� W Xan
� �! NR.�/

is defined by associating to an element x 2 Xan the homomorphism s 7! � log j�sjx
in NR.�/ D Hom.S� ;R/.

Lemma 7.5. The tropicalization map trop� is continuous and, for a face � of � , the
natural diagram
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commutes and is Cartesian.

Therefore we can glue the trop� on local T-invariant patches X� and obtain a
global continuous tropicalization map

trop� W Xan �! NR.�/

that restricts to trop� on T-invariant open affine subsets X� . Its restriction to T-orbits
is the usual tropicalization map in the sense of [26, Sect. 3].

The following Proposition 7.6 is well-known among experts and can be found in
[58, Sect. 2] in the constant coefficient case, i.e., the case that k is trivially valued.

Proposition 7.6. The tropicalization map trop� W Xan ! NR.�/ has a continuous
section J� and the composition

p� D J� ı trop� W Xan ! Xan

defines a strong deformation retraction.

The deformation retract

S.X/ D J�
�
NR.�/

� D p�.Xan/

is said to be the non-Archimedean skeleton of Xan.

Proof Sketch of Proposition 7.6. Consider a T-invariant open affine subset X� D
Spec kŒS� �. We may construct the section J� W NR.�/ ! Xan

� by associating to
u 2 NR.�/ D Hom.S� ;R/ the seminorm J� .u/ defined by

J� .u/.f / D max
s2S�

n
jasj exp

��u.s/
�o

for f D P
s as�

s 2 kŒS� �. A direct verification shows that J� is continuous and
fulfills trop� ıJ� D idNR.�/.

The construction of J� is compatible with restrictions to T-invariant affine open
subsets and we obtain a global section J� W NR.�/ ! Xan of the tropicalization
map trop� W Xan ! NR.�/.

Since J� is a section of trop�, the continuous map

p� D J� ı trop� W Xan �! Xan
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is a retraction map. On X� the image p� .x/ of x 2 Xan
� is the seminorm given by

p� .x/.f / D max
s2S�

˚jasj j�sjx



for f DPs as�
s 2 kŒS� �. The arguments in [58, Sect. 2.2] generalize to this situation

and show that p� is, in fact, a strong deformation retraction (see in particular [58,
Lemma 2.8(1)]). ut
Example 7.7. The skeleton of A1 is given by the half open line connecting 0 to1,
i.e., for trivially valued k we have

S.X/ D
n
j � j0;r

ˇ̌
ˇ r 2 Œ0; 1/

o
[
n
j � j1;r

ˇ̌
ˇ r 2 Œ1;1/

o

in the notation of Example 7.1.

Let k now be endowed with the trivial absolute value. As seen in [58, Sect. 2.1]
the deformation retraction p� W Xan ! Xan restricts to a deformation retraction
pX W XÆ ! XÆ, whose image is homeomorphic to the closure� of� in NR.�/. On
T-invariant open affine subsets X� D Spec kŒS� � this homeomorphism is induced by
the tropicalization map

tropX W XÆ �! Hom.S� ;R
0/

x �! �
s 7! � log j�sjx

�

into the extended cone � D Hom.S� ;R
0/.

7.3 The Case of Logarithmic Schemes

7.3.1 Zariski Logarithmic Schemes

Suppose that k is endowed with the trivial absolute value and let X be logarithmi-
cally smooth over k. In [58] Thuillier constructs a strong deformation retraction
pX W XÆ ! XÆ onto a closed subset S.X/ of XÆ, the skeleton of XÆ. We summarize
the basic properties of this construction in the following Proposition 7.8. We refer
to Definition 5.6 for the notion of small Zariski logarithmic schemes.

Proposition 7.8. (i) The construction of pX is functorial with respect to logarith-
mic morphisms, i.e., given a logarithmic morphism f W X ! Y, there is a
continuous map fS W S.X/! S.Y/ that makes the diagram
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commute. Moreover, if f is logarithmically smooth, then fS is the restriction of
f Æ to S.X/.

(ii) For every strict étale neighborhood U ! X that is small with respect to x 2 U
and for every strict étale morphism � W U ! Z into a �.x/-small toric variety

Z the analytic map �Æ induces a homeomorphism �S W S.U/ ��! S.Z/ that
makes the diagram commute.

(iii) The skeleton S.X/ is the colimit of all skeletons S.U/ associated to strict étale
morphisms U ! X from a Zariski logarithmic scheme U that is small and the
deformation retraction pX W XÆ ! XÆ is induced by the universal property of
colimits.

Suppose now that the logarithmic structure on X is defined in the Zariski
topology. In this case, following [59], one can use the theory of Kato fans in order
to define a tropicalization map tropX W XÆ ! ˙X generalizing the map defined for
toric varieties.

Let F be a fine and saturated Kato fan and consider the cone complex

˙F D F.R
0/ D Hom
�

SpecR
0;F
�

and the extended cone complex

˙F D F.R
0/ D Hom
�

SpecR
0;F
� � ˙F

associated to F. In order to describe the structure of ˙F and ˙F one can use the
structure map

� W ˙F �! F

u 7�! u
�f1g�

and the reduction map
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r W ˙F �! F

u 7�! u.R>0/ :

Proposition 7.9 ([61] Proposition 3.1). The inverse image r�1.U/ of an open
affine subset U D Spec P in ˙F is the canonical compactification �U D
Hom.P;R
0/ of a rational polyhedral cone �U D Hom.P;R
0/ and its relative
interior V�U is given by r�1.x/ for the unique closed point x in U.

(i) If V 
 U for open affine subsets U;V 
 F, then �V is a face of �U.
(ii) For two open affine subsets U and V of F the intersection �U \ �V is a union of

finitely many common faces.

So the cone complex ˙F is a rational polyhedral cone complex in the sense of
[35]. It naturally carries the weak topology, in which a subset A 
 ˙F is closed
if and only if the intersections A \ �U for all open affine subsets U D Spec P of
F are closed. The extended cone complex ˙F is a canonical compactification of
˙F, carrying the weak topology with the topology of pointwise convergence on
�U D Hom.P;R
0/ as local models.

Proposition 7.10. (i) The reduction map r W ˙F ! F is anti-continuous.
(ii) The structure map � W ˙F ! F is continuous.

(iii) There is a natural stratification

G

x2Spec F

��1.x/ ' ˙F

of ˙F by locally closed subsets.

Let X be a Zariski logarithmic scheme that is logarithmically smooth over k and
denote by �X W .X;OX/ ! FX the characteristic morphism into its Kato fan FX .
We write ˙X and ˙X for the cone complex and the extended cone complex of FX ,
respectively.

Following [59, Sect. 6.1] one can define the tropicalization map tropX ! ˙X as
follows: a point x 2 XÆ can be represented by a morphism x W Spec R ! .X;OX/

for a valuation ring R extending k. Its image tropX.x/ in˙X D Hom.SpecR
0;FX/

is defined to be the composition

SpecR
0
val#���! Spec R

x�! .X;OX/
�X��! FX;

where val# is the morphism SpecR
0 ! Spec R induced by the valuation val W R!
R
0 on R.
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Proposition 7.11 ([59] Proposition 6.2).

(i) The tropicalization map is well-defined and continuous. It makes the diagrams

commute.
(ii) A morphism f W X ! X0 of Zariski logarithmic schemes, both logarithmically

smooth and of finite type over k, induces a continuous map ˙.f / W ˙X ! ˙X0

such that the diagram commutes. The association f 7! ˙.f / is functorial in f .

Corollary 7.12 (Strata-Cone Correspondence, [61] Corollary 3.5). There is an
order-reversing one-to-one correspondence between the cones in ˙X and the strata
of X. Explicitly it is given by

V� 7�! r
�

trop�1
X . V�/�

for a relatively open cone V� 
 ˙X and

E 7�! tropX

�
r�1.E/ \ Xan

0

�

for a stratum E of X.

Proof. This is an immediate consequence of the commutativity of

from Propositions 7.11, 7.9, and the fact that �X sends every point in a stratum
E D E.�/ to its generic point � . ut
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Corollary 7.13 ([61] Corollary 3.6). The tropicalization map induces a continu-
ous map XÆ \ Xan

0 ! ˙F.

Proof. This follows from the commutativity of

and the observations that ��1.X0/ D XÆ \ Xan as well as ��1.X0 \ FX/ D ˙F. ut

7.3.2 Étale Logarithmic Schemes

Let X be an étale logarithmic scheme that is logarithmically smooth over k. We can
define the generalized extended cone complex associated to X as the colimit of all
˙X0 taken over all strict étale morphisms X0 ! X from a Zariski logarithmic scheme
X0. The tropicalization map tropX W XÆ ! ˙X is induced by the universal property
of colimits.

In analogy with Proposition 7.6 we have the following compatibility result stating
that pX and tropX are equal up to a natural homeomorphism.

Theorem 7.14 ([59] Theorem 1.2). Suppose that X is logarithmically smooth

over k. There is a natural homeomorphism JX W ˙X
��! S.X/ making the diagram

commute.

Moreover, we obtain the following Corollary of Proposition 7.11 (ii).

Corollary 7.15 ([59] Theorem 1.1). A morphism f W X ! X0 of logarithmic
schemes, logarithmically smooth and of finite type over k, induces a continuous
map ˙.f / W ˙X ! ˙X0 such that the natural diagram
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is commutative. The association f 7! ˙.f / is functorial in f .

8 Non-Archimedean Geometry of Artin Fans

8.1 Analytification of Artin Fans

In Sect. 7.3 we have seen that the extended cone complex ˙F associated to a
Kato fan F has topological properties analogous to the non-Archimedean analytic
space XÆ associated to a scheme X of finite type over k. Moreover, if X is a
Zariski logarithmic scheme that is logarithmically smooth over k, the tropicalization
map tropX W XÆ ! ˙X is the “analytification” of the characteristic morphism
�X W .X;OX/! FX . Using the theory of Artin fans we can make this analogy more
precise, and even generalize the construction of tropX to all logarithmic schemes.

Let k be endowed with the trivial absolute value. As explained in [62, Sect. V.3]
the .:/Æ-functor, originally constructed in [58], generalizes to a pseudofunctor from
the 2-category of algebraic stacks locally of finite type over k into the category of
non-Archimedean analytic stacks, such that whenever ŒU=R� ' X is a groupoid
presentation of an algebraic stack X we have a natural equivalence ŒUÆ=RÆ� ' XÆ.
We refer the reader to [52, 60], and [64, Sect. 6] for background on the theory of
non-Archimedean analytic stacks.

Let X be an algebraic stack locally of finite type over k. Then the underlying
topological space jXÆj of the analytic stack X can be identified with the set of
equivalence classes of pairs .R; �/ consisting of a valuation ring R extending k
and a morphism � W Spec R ! X . Two such pairs .�;R/ and . ; S/ are said to
be equivalent, if there is a valuation ring O extending both R and S such that the
diagram
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is 2-commutative. The topology on jXÆj is the coarsest making all maps jUÆj !
jXÆj induced by surjective flat morphisms U ! X from a scheme U locally of
finite type over k onto X into a topological quotient map.

Suppose that X is a logarithmic scheme that is logarithmically smooth and of
finite type over k. Consider the natural strict morphism X ! AX into the Artin fan
associated to X as constructed in Sect. 5.

Theorem 8.1 ([62]). There is a natural homeomorphism

X W
ˇ̌
AÆ

X

ˇ̌ ��! ˙X

that makes the diagram

commute.

So, by applying the functor .:/Æ to the morphism X ! AX we obtain the
tropicalization map on the underlying topological spaces. Note that this construction
also works for étale logarithmic schemes and we do not have to take colimits as
in Sect. 7.3.2 (they are already taken in the construction of AX). Theorem 7.14
immediately yields the following Corollary.

Corollary 8.2. There is a natural homeomorphism

QX W
ˇ̌
AÆ

X

ˇ̌ ��! S.X/

that makes the diagram

commute.
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8.2 Stack Quotients and Tropicalization

Let X be a T-toric variety over k. In this case, Theorem 8.1 precisely says that on
the underlying topological spaces the tropicalization map tropX W XÆ ! ˙X is
nothing but the analytic stack quotient map XÆ ! ŒXÆ=TÆ�. Due to the favorable
algebro-geometric properties of toric varieties we can generalize this interpretation
to general ground fields.

Let k be any non-Archimedean field, and suppose that X is a T-toric variety
defined by a rational polyhedral fan � 
 NR as in Sect. 7.2. Denote by Tı the
non-Archimedean analytic subgroup

˚
x 2 Tan

ˇ̌ j�mjx D 1 for all m 2 M



of the analytic torus Tan. Note that, if k is endowed with the trivial absolute value,
then Tı D TÆ. In general, we can think of Tı as a non-Archimedean analogue of the
real n-torus NS1 D N ˝Z S1 naturally sitting in NC� D N ˝Z C

�. The T-operation
on X induces an operation of Tı on Xan.

Theorem 8.3 ([60] Theorem 1.1). There is a natural homeomorphism

� W
ˇ̌
ŒXan=Tı�

ˇ̌ ��! NR.�/

that makes the diagram

Xan

[Xan/T ◦] NR(Δ)

tropΔ

μΔ

∼

commute.

The proof Theorem 8.3 is based on establishing that the skeleton S.X/ of X is
equal to the set of Tı-invariant points of Xan. Then the statement follows, since by
Ulirsch [60, Proposition 5.4 (ii)] the topological space

ˇ̌
ŒXan=Tı�

ˇ̌
is the colimit of

the maps (Fig. 8)

Tı � Xan � Xan :
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0

∞

η

(A1)an

0

∞

η

G
◦
m

η

[
(A1)an

/
G

◦
m

]
0

∞

Fig. 8 Consider the affine line A1 over a trivially valued field k. The non-Archimedean unit circle
G
ı

m is given as the subset of elements in x 2 .A1/an with jtjx D 1, where t denotes a coordinate
on A

1. The skeleton S.A1/ of .A1/an is the line connecting 0 to 1. It is precisely the set of
“Gım-invariant” points in .A1/an, and therefore naturally homeomorphic to the topological space
underlying

�
.A1/an

ı
G
ı

m

�
(see [60, Example 6.2])

9 Where We Are, Where We Want to Go

9.1 Skeletons Fans and Tropicalization Over Non-Trivially
Valued Fields

In almost all of our discussion, we have constructed Kato fans, Artin fans, and
skeletons for a logarithmic variety over a trivially valued field k. One exception is the
discussion of toric varieties in Sect. 7.2. This is quite useful and important: given a
subvariety Y of a toric variety X, over a non-trivially valued field, the tropicalization
trop.Y/ of Y is a polyhedral subcomplex of NR.�/ which is not itself a fan. Much of
the impact of tropical geometry relies on the way trop.Y/ reflects on the geometry
of Y . So even though the toric variety X itself can be defined over a field with trivial
valuation, the fact that Y—whose field of definition is non-trivially valued—has a
combinatorial shadow is fundamental.

Can we define Artin fans over non-trivially valued fields? What should their
structure be? In what generality can we canonically associate a skeleton with a
logarithmic structure?

Some results in these directions are available in the recent paper of Gubler,
Rabinoff, and Werner [27]. See also Werner’s contribution to this volume [63].
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9.2 Improved Fans and Moduli Spaces

One of the primary applications of tropical geometry, and therefore of fans, is
through moduli spaces. Mikhalkin’s correspondence theorem [41], Nishinou and
Siebert’s vast extension [42], the work [15] of Cavalieri, Markwig, and Ran-
ganathan, and the manuscript [6], all show that tropical moduli spaces Mtrop.Xtrop/

of tropical curves in tropical varieties serve as good approximations of the tropical-
ization trop.M.X// of moduli spaces M.X/ of algebraic curves in algebraic varieties.
But the picture is not perfect:

1. Apart from very basic cases of the moduli space of curves itself [9] and genus-0
maps with toric targets [54] the tropical moduli space does not coincide with
the tropicalization of the algebraic moduli space

Mtrop.Xtrop/ ¤ trop.M.X//:

2. Even when it does, it is always a coarse moduli space, lacking the full power of
universal families.

These seem to be two distinct challenges, but experience shows that they are
closely intertwined. It also seems that the following problem is part of the puzzle:

3. The construction to the Artin fan AX of a logarithmic scheme X is not functorial
for all morphisms of logarithmic schemes.

The following program might inspire one to go some distance towards these
challenges:

1. Good combinatorial moduli:

(a) Construct a satisfactory monoidal theory of cone spaces and cone stacks as
described in Sects. 4.6.1 and 4.6.2.

(b) Construct a corresponding enhancement of Mtrop
g;n which is a fine moduli

stack of tropical curves, with a universal family.

This is part of current work of Cavalieri, Chan, Ulirsch, and Wise.
2. Stacky Artin fans:

(a) Find a way to relax the representability condition in the definition of AX

so that the enhanced moduli spaces above are canonically associated to the
moduli stacks Mg;n

(b) Try to extend all of the above to moduli of maps.
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Introduction to Adic Tropicalization

Tyler Foster

Abstract This is an expository article on the adic tropicalization of algebraic
varieties. We outline joint work with Sam Payne in which we put a topology
and structure sheaf of local topological rings on the exploded tropicalization. The
resulting object, which blends polyhedral data of the tropicalization with algebraic
data of the associated initial degenerations, is called the adic tropicalization.
It satisfies a theorem of the form “Huber analytification is the limit of all adic
tropicalizations.” We explain this limit theorem in the present article, and illustrate
connections between adic tropicalization and the curve complexes of O. Amini and
M. Baker.

Keywords Non-archimedean geometry • Tropicalization • Huber adic spaces •
limits of tropicalizations

1 Introduction

There is a close relationship between tropical geometry and the geometry of
degenerations of algebraic varieties. This relationship takes a particularly suggestive
form in much of the recent work that reinterprets mirror symmetry and enumer-
ative geometry in terms of fibrations of complex varieties over affine manifolds.
[8, 9, 16, 17]. An interesting manifestation of these ideas appears in the recent
work of Parker [19, 21, 22]. Working in the paradigm of symplectic manifolds,
with a view toward applications to pseudoholomorphic curve counting, Parker
defines topological spaces called exploded fibrations, which he uses to construct log
Gromov–Witten invariants [20], as required by the Gross–Siebert program. Roughly
speaking, an exploded fibration is a topological space with structure semiring, which
can be glued along boundary strata from pieces of the form

�
C

��n � P, where P is
an integral polytope in R

m, for some m. For further details, see [19, Sect. 4] and
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[21, Sect. 3]. An illustrative example of an exploded fibration is the exploded curve
given by the fibration p W Y �!! B of topological spaces where B � R

2 is the union
of the subspaces

B1 D
˚
.x; 0/ 2 R

2 W x 	 0
; B2 D
˚
.0; y/ 2 R

2 W y 	 0
; and

B3 D
˚
.x; x/ 2 R

2 W x � 0
;
and where the space Y is glued from pieces

B1 �C� � �.0; 0/; 0�; B2 �C� � �.0; 0/; 1�; and B3 �C� � �.0; 0/;1�

along an inclusion of
˚
.0; 0/


 � �P1
C
� f0; 1;1g� into each Bi � C

�, i D 1; 2; 3

(Fig. 1).
A tropical geometer recognizes the exploded curve above as a close analogue to

the family of initial degenerations over all rational points in the tropicalization of
an algebraic K-curve X. In more detail, let K be a non-Archimedean field, which
is to say that K is complete with respect to a non-Archimedean absolute value j �
j W K� �! R
0. Assume that K is algebraically closed, with value group � defD
�log jK�j � R. Consider an n-dimensional split algebraic torus T with character
lattice M and cocharacter lattice N D HomZ.M;Z/. Each vector v 2 NR

defD R˝Z N
determines the tilted group ring RŒUv�, the ring generated by all those monomials
a�u for which hu; vi � log jaj > 0. Its spectrum Tv

defD Spec RŒUv� is an R-scheme
with generic fiber Tv;K Š T. When v 2 N�

defD � ˝Z N, this ring RŒUv� is finitely
generated, with special fiber of the same dimension as its generic fiber T. If X is
any K-scheme, realized as a closed subvariety of the K-torus T via some closed

embedding ı W X � � �� T , then the initial degeneration of X at v, denoted invX,

is the special fiber .X/k of the closure X inside Tv .
The Fundamental Theorem of Tropical Geometry [18, Theorem 3.2.4] says that

the tropicalization of X is the closure, in NR, of the set of those vectors v 2 N� at
which the initial degeneration invX is nonempty:

Trop.X; ı/ D ˚
v 2 N� W invX ¤ ;g:

This means that we can retain more information about the subvariety X � T by
remembering not just the points of the tropical variety Trop.X; ı/, but the points of

Fig. 1 An example of an
exploded curve in the sense of
Parker [21]
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all initial degenerations of X at all vectors v 2 N� . Payne makes use of this set-
theoretical union

G

v2Trop.X/\N�

jinvXj

in order to study the fibers of the tropicalization map X.K/ �! Trop.X/ [24, 25]. He
refers to this set as the “exploded tropicalization,” taking inspiration from Parker’s
exploded fibrations. In the present paper, we keep track of initial degenerations at
all points of Trop.X/, �-rational or not, and define the exploded tropicalization to
be the union

Trop.X/
defD

G

v2Trop.X/

jinvXj:

One major difference between Parker and Payne’s exploded objects is the
presence of both a topology and a structure sheaf (of semirings) on Parker’s
exploded fibrations, whereas Payne’s exploded tropicalizations are mere sets. The
present paper is an exposition that complements the forthcoming research paper
[5], joint with Sam Payne, in which we explain how to put both a topological
structure and a structure sheaf (of topological rings) on the exploded tropicalization
Trop.X/ of any closed subvariety X of a torus T over a non-Archimedean field K.
Our construction turns Trop.X/ into a locally topologically ringed space. We denote
this space Ad.X/, and refer to it as the adic tropicalization of X in T.

The locally topologically ringed space Ad.X/ interacts with Huber’s adic spaces
[13, 14] in much the same way that tropical varieties interact with Berkovich
spaces. In [23], Payne shows that the if X is a quasi-projective variety over
an algebraically closed non-Archimedean field K, then the topological space
underlying the Berkovich analytification Xan is the inverse limit of all the tropical
varieties Trop.X; ı/, taken over the inverse system formed by all closed embeddings
ı W X � � �� Y† into quasi-projective toric varieties Y†. In [6], Gross, Payne,
and the author give a criterion extending this result to the case of certain non-
quasi-projective varieties X over an algebraically closed, non-trivially valued non-
Archimedean field K. In particular, [6, Theorem 1.2] X says that if X is a closed
subvariety of a toric K-variety, then the topological space underlying Xan is the
inverse limit of tropical varieties Trop.X; ı/, taken over the inverse system formed
by all closed embeddings ı W X � � �� Y† into arbitrary toric varieties Y†. One of
the central results of the forthcoming paper [5] is a theorem stating that the Huber
analytification Xad of a closed subvariety X of a proper toric variety is isomorphic, as
a locally topologically ringed space, to the inverse limit of the adic tropicalizations
of X associated with all closed embeddings of X into proper toric varieties. Section 4
of the present paper provides a brief exposition on this result. See Theorem 4.4 and
Proposition 4.8 below for precise statements.

Because the present paper is expository, it omits most proofs. The interested
reader can find all the proofs in [5]. The present paper makes up for its lack of
proofs by providing concrete details and examples that do not appear in [5]. In
what follows, we focus more heavily on the basic geometry of adic spaces, which
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underlies our geometrization of Trop.X/, and on concrete examples of the resulting
topological spaces and their relationship to the metrized curve complexes of Amini
and Baker [1].

2 Preliminaries on Huber Analytification

In the present Sect. 2, we review the basics of Huber’s theory of adic spaces
and Huber’s analytification functor, which produces an adic space from any
K-scheme X. The original sources for this material are [13] and [14]. We also
strongly recommend Wedhorn’s notes [28] for a rather accessible introduction.

The reader already well versed in the theory of adic spaces can skip ahead to
Sect. 3.

Notation. Fix a non-Archimedean field K, i.e., a field complete with respect to
some non-trivial, non-Archimedean valuation v W K �! R t f1g. Assume that
K is algebraically closed. Let R denote the ring of integers in K, let m denote the
unique maximal ideal in R, and let k D R=m denote the residue field. Choose a real
number 0 < " < 1 once and for all, and let j � jv W K �! R>0 denote the norm
jajv D "val.a/ associated with v.

Recall that the Tate algebra, denoted KhT1; : : : ;Tni, is the subalgebra of
KŒŒT1; : : : ;Tn�� consisting of those formal power series f D P

ai1;:::;in T
mi1
i1
� � � Tmin

in
for which jai1;:::;in jv ! 0 as i1 C � � � C in ! 1. The Tate algebra comes with
the Gauss norm k � kG W KhT1; : : : ;Tni �! R
0, which takes f 7! kfkG

defD
maxjai1;:::;in jv . The Gauss norm induces a quotient norm k � kq on any quotient

pr W KhT1; : : : ;Tni �� �� KhT1; : : : ;Tni=a , defined according to

kfkq
defD inf

˚kgkG W g 2 pr�1.f /


:

This quotient norm k � kq gives KhT1; : : : ;Tni=a the structure of a commutative
K-Banach algebra. A K-affinoid algebra is any commutative Banach algebra A
admitting at least one isomorphism of K-Banach algebras A Š KhT1; : : : ;Tni=a.
We use “k � kq” to denote the norm on an arbitrary affinoid algebra A, even when
there is no explicit mention of the presentation of A that gives rise to k � kq.

2.1 Adic Spectra and Adic Spaces

For an arbitrary totally ordered abelian group � 0, written multiplicatively, let f0gt� 0
denote the totally ordered abelian semigroup where 0 < � for all � 2 � 0, and where
0 � � D 0 for all � 2 f0g t � 0. A continuous seminorm k � kx W A �! f0g t � 0 is
any homomorphism of multiplicative semigroups satisfying
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k0kx D 0; k1kx D 1; and kaC bkx � max.kakx; kbkx/;

such that the set fa 2 A W kakx < �g is open for each � 2 � 0. Two continuous
seminorms

k � kx W A �! f0g t �1 and k � ky W A �! f0g t �2
are equivalent if there exists an inclusion ˛ W f0gt�1 � � �� f0gt�2 of ordered
abelian semigroups such that ˛ ık � kx D k � ky.

Let A be a K-affinoid algebra. The norm k � kq on A determines the power

bounded subring Aı defD ˚
f 2 A W kfkq � 1



. The adic spectrum of the pair .A;Aı/,

denoted Spa.A;Aı/, is the set of all equivalence classes of continuous seminorms
k � kx W A �! f0g t � such that kakx � 1 for all a 2 Aı. The topology on
Spa.A;Aı/ is the topology generated by its rational subsets, that is, the coarsest
topology containing the images of all inclusions

Spa
�

A f̋1;:::;fm
g

˛
; A f̋1;:::;fm

g
ı̨ � � � �� Spa.A;Aı/ ;

where A
D
f1;:::;fm

g

E
is any rational K-algebra determined by a set of elements

ff1; : : : ; fm; gg � A generating the unit ideal in A (see [2, Sect. 2.2.2.(ii)] and
[28, Sect. 8.1]).

If A is an affinoid algebra, with adic spectrum X D Spa.A;Aı/, and if U is a
rational subset of X, let OX.U/ denote a choice of rational affinoid algebra associated
with U as above. These rational algebras induce a structure presheaf OX on the adic
spectrum X, which returns, at each open subset U0 � X, the topological ring OX.U0/
given by the inverse limit

OX.U
0/ D lim �

U�U0

OX.U/

taken over all rational subsets U of U0 in X. The theorem [13, Theorem 2.2]
implies that the resulting structure presheaf OX is in fact a sheaf. Furthermore,
we can form the stalk OX;x at each point x in Spa.A;Aı/. This stalk is a local
topological ring, and the seminorm k � kx induces a continuous seminorm on OX;x

[13, Proposition 1.6].

2.1.1 Adic Spaces

Let LRS denote the category of locally ringed spaces. By a locally topologically
ringed space, we mean a locally ringed space .Y;OY/ such that OY comes with the
structure of a sheaf of topological rings. Let LTRS denote the category of locally
topologically ringed spaces.
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An adic space over K is a locally topologically ringed space .X;OX/ that comes
equipped with a continuous seminorm k � kx on the stalk OX;x at each point x 2 X,
and which admits an atlas fUi

� � �� Xg in LTRS, whose charts Ui are adic
spectra of K-affinoid algebras, such that the seminorm k � kx on each stalk OX;x D
OUi;x coincides with the seminorm described in the previous paragraph. Note that
this means, in particular, that the structure presheaf OX on any adic space must be
a sheaf. A morphism of adic spaces is any morphism ' W .X;OX/ �! .Y;OY/

of locally topologically ringed spaces such that, at each point x 2 X, the induced
morphism

'# W OY;'.x/ �! OX;x

on stalks satisfies k � kx ı'
# D k � k'.x/. We let AdicK denote the category of adic

spaces over K.

2.1.2 The Sheaf of Power Bounded Sections

Every adic space .X;OX/ comes with a second sheaf of topological rings, called the
sheaf of power bounded sections. This is the subsheaf O ı

X � OX that, on each open
subset U � X, returns those sections f 2 OX.U/ for which kfkx � 1 at every point
x 2 U.

The sheaf of power bounded sections is closely related to the theory of degen-
erations of K-varieties to the special fiber in Spec R, and it will play an important
role in our formulation of the statement that “Huber analytification is the limit of all
exploded tropicalizations” (see Theorem 4.4 below).

2.2 Huber Analytification

Fix a separated scheme X of finite type over K. It is a space defined locally by
the vanishing of algebraic functions, and has no analytic structure. The Berkovich
analytification Xan provides one way to realize an analytic structure on X. There is
also an adic space Xad that we can associate to X, called the Huber analytification
of X. Intuitively, the Huber analytification of X is the pullback of X to the category
of adic spaces over K along the morphism Spa.K;R/ �! SpecK of locally ringed
spaces.

To make this precise, observe that there is a forgetful functor U W AdicK �!
LRS that takes a given adic space Y and forgets both the seminorms on its stalks
OY;y and the topological structure on the sheaf OY . Let LRSK denote the category
of locally ringed spaces over SpecK. There is a canonical isomorphism

U
�
Spa.K;R/

� ���! SpecK (1)
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of locally ringed spaces, which lets us interpret the forgetful functor U as a functor
of the form

U W AdicK �! LRSK :

Definition 2.1 (Huber Analytification). If X is a separated scheme of finite type
over K, then its Huber analytification, denoted Xad, is any adic space over Spa.K;R/
that comes equipped with a morphism U.Xad/ �! X of locally ringed spaces over
SpecK satisfying the following universal property:

(H) If Y is any adic space over K that comes equipped with a map ' W U.Y/ �!
X of locally ringed spaces over Spec K, then there exists a unique morphism
Q' W Y �! Xad of adic spaces over K for which the diagram

commutes.

Remark 2.2. The universal property (H) gives the Huber analytification the struc-
ture of a functor

.�/ad W SchK �! AdicK :

For an explicit construction of the adic space Xad as a fiber product of locally
ringed spaces, see [28, Sect. 8.7 and Definition 8.63]. Most relevant to our purposes
is the alternate description of Xad as an inverse limit over admissible formal models
of Xan, as established by van der Put and Schneider in [27]. To this end, we briefly
review the theory of admissible formal models of X.

2.2.1 Admissible Formal Models

Recall that m denotes the maximal ideal in R, and that k D R=m denotes our
residue field. The theory of admissible formal models provides us with a tool for
degenerating adic spaces over K to algebraic varieties over k. These degenerations
are realized as certain formal R-schemes. Not all formal R-schemes will do. For
instance, the category of formal R-schemes includes k-schemes as a full subcategory.
A k-scheme is an example of a formal R-scheme that contains no information
whatsoever over the generic point of Spec R. We want to excise these from our
category of interest.
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We say that a topological R-algebra A is admissible if there exists an isomorphism

A Š Rht1; : : : ; tni
ı
a

of topological rings, where Rht1; : : : ; tni
ı
a has its m-adic topology, such that:

(1) the ideal a � Rht1; : : : ; tni is finitely generated and
(2) the ring Rht1; : : : ; tni

ı
a is free of m-torsion.

An admissible formal R-scheme is any formal scheme X over the formal
spectrum SpfR of R (see [12, Chp. II, Sect. 9] for details) that admits an open
covering

˚
Ui

� � �� X



by formal spectra Ui D SpfAi, such that each Ai is an
admissible R-algebra.

Each admissible formal R-scheme X has an associated adic space .Xad;OXad/. To
construct Xad, choose a formal affine cover

˚
Ui

� � �� X


, say, with Ui D SpfAi,

where Ai is an admissible R-algebra. Then K ˝R Ai is a K-affinoid algebra, and we
can define

Uad
i

defD Spa
�
K ˝R Ai ; .K ˝R Ai/

ı�:

These adic spaces glue along the intersections .Ui \ Uj/
ad D Uad

i \ Uad
j to produce

an adic space over K that we denote Xad. The adic space that we obtain in this way is
independent of our choice of covering

˚
Ui

� � �� X



(see [13, Proposition 4.1]
for details).

Definition 2.3 (Admissible Formal Models of a Scheme). Let X be any scheme
locally of finite type over K. An admissible formal model of X is a datum consisting

of an admissible formal R-scheme X and an isomorphism Xad ���! Xad of adic
spaces.

A morphism of admissible formal models of X is a morphism X1 �! X2
whose induced morphism Xad

1 �! Xad
2 of K-analytic spaces commutes with the

isomorphisms Xad
1

���! Xad and Xad
2

���! Xad. We let AFSR denote the category of
admissible formal R-schemes, and we let AFSX

R denote the category of admissible
formal models of X.

2.2.2 Specializations of Adic Spaces

The adic space Xad associated with the formal R-scheme X comes with a special-
ization morphism

spX W .Xad;O ı
Xad/ �! .X;OX/ (2)

of locally topologically ringed spaces over Spec K. Recall that O ı
Xad is the sheaf of

power bounded sections on Xad. The fact that spX is a morphism of locally ringed
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spaces is one feature of adic spaces that Berkovich spaces do not satisfy, as the
reduction map Xan �! Xk for Berkovich spaces fails to be continuous.

The specialization morphism (2) satisfies the following universal property:

(Hf) If Y is any adic space over K that comes equipped with a morphism ' W
.Y;Oı

Y / �! .X;OX/ of locally topologically ringed spaces over Spec K, then
there exists a unique morphism Q' W .Y;OY/ �! .Xad;OXad/ of adic spaces over
K for which the diagram

commutes.

Remark 2.4. The universal property (Hf) gives us a functor .�/ad W AFSR �!
AdicK into the category of adic spaces over K. If X is a separated finite-type
K-scheme, then the resulting specialization morphisms

spX W .Xad;O ı
Xad/ �! .X;OX/; (3)

induced by the specialization morphisms (2) commute with morphisms in AFSX
R .

Gillam proved in [7, Corollary 5] that LRS contains all inverse limits. It is not
difficult to show that one can compute any inverse limit lim �.Yi;OYi/ in LTRS by
first computing the inverse limit .Y;OY/ in LRS of the underlying locally ringed
spaces, and then equipping each ring OY.U/ with the finest topology for which each
of the morphisms

OYi.Vi/ �! OX.U/; (4)

for each open subset Vi � Yi mapping to U under Yi �! Y , becomes continuous.
This means, in particular, that the inverse limit of an inverse system of formal

schemes remains a topologically ringed space on which stalks are local rings. Thus
the morphisms (3) induce a morphism

sp W .Xad;Oı
Xad/ ��! lim �

AFSX
R

.X;OX/ (5)

of locally topologically ringed spaces.

Proposition 2.5. The morphism (5) is an isomorphism of locally topologically
ringed spaces.

Proof. For a sketch of the proof of Proposition 2.5, see [26, Theorem 2.22]. ut
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3 The Exploded Tropicalization as a Locally Ringed Space

3.1 The Combinatorics of Toric Degenerations

In the present Sect. 3.1, we briefly review the combinatorial and algebraic geometry
of toric degenerations of toric varieties. We work exclusively over the toric k-variety
A
1
k , where k D R=m is our original residue field. The reader already familiar with the

geometry of toric degenerations over A1k , as developed by Kempf et al. in [15], may
proceed to Sect. 3.2, where we review the formalism of toric R-schemes introduced
by Gubler in [10]. The theory of toric R-schemes is further developed by Gubler and
Soto in [11].

Fix a split, n-dimensional algebraic torus T over k, with character lattice M.
We have a canonical isomorphism T Š Spec kŒM�. Let N defD HomZ.M;Z/ be the
cocharacter lattice, and let

h�;�i W M � NR �! R

denote the canonical paring.
If Y† is a proper toric variety over K, built from a complete n-dimensional fan

† in NR, then we can freely produce degenerations of Y† by writing down certain
.nC1/-dimensional fans extending†. Specifically, consider the .n�1/-dimensional
half-space NR � R
0, along with its projection to the second factor

pr2 W NR � R
0 �!! R
0: (6)

If � is any fan in NR � R with support NR � R
0, such that

� \ �
NR � f0g

� Š †;

then the projection (6) induces a morphism of fans

pr2 W � �!!
˚
0;R
0



with pr�1

2 .0/ D †: (7)

This induces a torus-equivariant morphism of toric varieties

fpr2 W Y� �!! A
1 D Spec kŒt�: (8)

See Fig. 2 below for an example. Note that the fiber pr�1
2 .1/ D � \ �NR � f1g

�
is

not a fan but a polyhedral complex. We identify it with a polyhedral complex C� in
NR whose support is all of NR. See Fig. 3 below for an example.

Proposition 3.1. The map fpr2 W Y� �!! A
1 induced by the projection (7) realizes

the complex toric variety Y� as an A
1-model of the toric variety glued from†. More

precisely:
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(i) The generic fiber of fpr2 is the toric k.t/-variety Y†.
(ii) The special fiber of fpr2 at t D 0 is a union of toric varieties Ystar.v/ indexed by

the vertices of v of C�, glued along torus-invariant divisors according to the
higher-dimensional face incidences appearing in C�.

Proof. The complex toric variety Y� is glued from the affine open toric varieties
Uı

defD Spec kŒSı�, where ı runs over all cones in�. Because� is a fan in NR �R
0,
the semigroup Sı associated with ı takes the form

Sı
defD ˚

.u; n/ 2 M�Z W hu; vi C rn 	 0 for all .v; r/ 2 ı
: (9)

Fix a monomial a tn�u 2 kŒSı�, where a 2 k and u 2 M. If .u; 0/ … Sı\.NR�f0g/,
then there exist some .v0; 0/ 2 ı \ �NR � f0g

�
such that hu; v0i < 0. Thus, for some

choice of r � 0, we have hu; v C rv0i < 0. Because ı is closed under translation
by ı \ �NR � f0g

�
, this implies that u 2 Sı\.NR�f0g/. This proves part (i) of the

proposition.
Part (ii) is a consequence of the orbit-cone correspondence for toric varieties

[4, Sect. 3.2], upon observing that the special divisors in Y� are exactly those
codimension-1 orbit closures in Y� that correspond to rays in� not lying in NR�f0g.
ut
Example 3.2. Let M D Z

2, and let † be the complete, 2-dimensional fan
in NR D R

2 pictured at left in Fig. 3 below. Then Y† D P
2
C

. Let � be the
3-dimensional, Z-admissible fan in R

2 � R
0 pictured in Fig. 2 below.
Because � satisfies �\ �R2 � f0g� D †, it produces a complex toric variety Y†

that comes equipped with a torus-equivariant map Y† �!! A
1. The generic fiber of

the family is P2 over k.t/. The special fiber over t D 0 is a union of four complex
surfaces: a copy of P

2, a copy of P
1 � P

1, and two Hirzebruch surfaces. These
four surfaces are in one-to-one correspondence with the vertices of the polyhedral
decomposition � \ �R2 � f1g� pictured at left in Fig. 3. More precisely, they are
the toric varieties described by the stars at each vertex, and they are glued to one
another along the torus-invariant divisors corresponding to the edges connecting
their corresponding vertices in C�.

Fig. 2 A map of fans pr2 W � �!! ˚
0;R�0



inducing toric morphism of toric varieties fpr2 W

Y� �!! A
1
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The fan Σ The complex Δ ∩ R
2 × {1}

Fig. 3 The fan † Š �\ �
R
2 � f0g� and the polyhedral complex �\ �

R
2 � f1g�

3.2 Algebraic Gubler Models

The fundamental observation underlying Gubler’s approach to integral toric geom-
etry, already anticipated by Kempf et al. in [15], is that a significant part of the
geometry of toric degenerations discussed in the previous Sect. 3.1 works just as
well upon replacing the curve A

1 D Spec kŒt� with the spectrum of the ring of
integers R in any non-Archimedean field K. This requires that we replace the factor
Z in M � Z with the value group � D val.K�/ � R of K. The fact that we can
express each semigroup Sı appearing in the proof of Proposition 3.1 in the form (9)
implies that we can express the corresponding semigroup rings as

kŒSı� D
nX

u2M

au.t/�
u 2 kŒt; t�1�ŒM� W hu; viCrordt

�
au.t/

� 	 0 for all .v; r/ 2 ı
o
;

(10)
where the coefficients au.t/ are Laurent polynomials in t, and where

ordt W k.t/� �! Z

is the valuation on k.t/ given by order-of-vanishing at t D 0. In Gubler’s formalism,
one replaces the ring kŒt; t�1� in (10) with a non-Archimedean field K. This produces
R-algebras that glue to give an R-model of the toric K-variety Y†. The present
Sect. 3.2 is devoted to a review of Gubler’s formalism, with slight upgrades to
the setting of formal R-schemes. In the next Sect. 3.3, we use the resulting formal
R-schemes to put a topology and locally ringed structure sheaf on each exploded
tropicalization.

Definition 3.3. A �-admissible cone is any convex cone ı � NR�R>0 that can be
written as an intersection of the form
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ı D
n\

iD1

˚
.v; c/ 2 N�R>0 W hui; vi C �ic > 0




for vectors .u1; �1/; : : : ; .un; �n/ in M�� . A �-admissible fan is any fan� in NR�R>0
whose every cone ı is �-admissible.

Definition 3.4. If ı is a �-admissible cone in NR � R
0, its associated ı-tilted
algebra is the ring

RŒUı�
defD

nX

u2M

au�
u 2 KŒM� W hu; vi C val.au/ � c > 0 for all .v; c/ 2 ı

o
:

By [10, Proposition 11.3], every ı-titled algebra RŒUı� is in fact a finite-type, flat
R-algebra. We let Uı denote the R-scheme Uı D SpecRŒUı�.

Each inclusion ı0 ,! ı of �-admissible cones in NR � R
0 realizing ı0 as a face
of ı induces a functorial, open embedding of R-schemes

Uı0
� � �� Uı: (11)

If � is a �-admissible fan in NR � R
0, then we can glue the affine R-schemes
fUıgı2� along these induced open embeddings (11) to obtain a single R-scheme Y�.
The R-scheme Y� is locally of finite type over R. Gubler shows [10] that when the
support of� is NR�R
0, the scheme Y� is in fact proper over Spec R, with generic
fiber canonically isomorphic to the toric K-variety Y† glued from the fan

†
defD � \ �

NR � f0g
�
;

upon interpreting † as a fan in NR. In short:

.Y�/K Š Y†: (12)

Identifying NR � f0g with NR, we refer to the intersection � \ �NR � f0g
�

as the
recession fan of � in NR, and denote it rec.�/. Just as in Proposition 3.1. (ii), the
special fiber of Y� over the unique maximal ideal in Spec R is a union of toric k-
varieties indexed by the vertices in the height-1 polyhedral complex

� \ �
NR � f1g

�
; (13)

and glued along torus-invariant divisors according to the incidence profile of higher-
dimensional polyhedra in this height-1 complex.

We refer to Y� as the (algebraic) Gubler model associated with the �-admissible
fan �.

Example 3.5. Let K D k..t//, so that R D kŒŒt�� and � D Z. Then the fan �
from Example 3.2 above, being integral, is �-admissible. If Y� denotes the toric
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k-variety that we constructed in Example 3.2, equipped with its torus-equivariant
fibration fpr2 W Y� �!! A

1, then the algebraic Gubler model associated with � is
the fiber

Y� Š Spec kŒŒt�� �
A1
Y�

over the kŒŒt��-valued point Spec kŒŒt�� �! A
1 supported at t D 0.

Example 3.6. Let K D Qp, so that R D Zp and � D Z. Define M D Z and N D Z,
so that the standard pairing is just multiplication. Let � be the Z-admissible fan in
NR � R
0 D R � R
0 pictured at left in Fig. 4 below.

Going from left to right, the 2-dimensional cones in � have corresponding tilted
algebras

ZpŒt
�1�; ZpŒt; pt�1� Š ZpŒx; y�

ı
.xy � p/; and ZpŒp

�1t�:

Thus Y� describes the projective line over Qp degenerating to a pair of projective
lines over Fp intersecting at a node.

3.3 Formal Gubler Models

If � is a �-admissible fan in NR � R
0, whose support is all of NR � R
0, then
we let Y� denote the formal R-scheme obtained as the completion of Y� along its
special fiber,

Y�
defD bY�:

Δ

0

→−�

Spec Zp (p)

YΔ

(YΔ)
Fp

Fig. 4 A Z-admissible fan in R � R�0, and its associated Zp-model of P1
Qp
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If, at each cone ı in �, we let RŒUı� denote the formal completion

RŒUı�
defD 1RŒUı�

along the ideal generated by m in RŒUı�, then Y� is glued from the formal spectra

Uı D Spf RŒUı�:

Because each Uı is an admissible formal R-scheme, this implies that Y� is itself an
admissible formal R-scheme.

Because Y� is a formal completion, the “generic fiber” of Y� is no longer a
K-scheme as in the previous Sect. 3.2. Instead, [3, Sect. 2.4] tells us that in the formal
setting, the topological K-algebras

K
R̋

RŒUı�; for ı in �;

are K-affinoid algebras. Their adic spectra

Uad
ı

defD Spa
�
K˝R RŒUı�; RŒUı�

�
(14)

glue to produce an adic generic fiber Yad
� of the formal R-scheme Y�. In place

of the isomorphism of K-varieties (12), we have a canonical isomorphism of adic
spaces

Yad
� Š Yad

† :

In the language of Definition 2.3, the formal R-scheme Y� is an admissible formal
model of the K-scheme Y†.

3.4 Adic Tropicalization of a Closed Embedding

Fix a proper algebraic variety X over K. Even if X fails to be projective, we can
still ask for closed embeddings into proper toric K-varieties. Let us suppose that X
is a proper K-variety admitting at least one closed embedding into a proper toric
K-variety

ı : X YΣ,

where † is a complete fan in NR. Using the machinery of Sect. 3.2, we can produce
a flat, proper, algebraic R-model Y� of Y† by making a choice of �-admissible fan
� in NR � R
0 with support equal to NR � R
0. Our variety X sits in the generic
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fiber of this model, and Gubler shows [10] that the closure X of X in Y� is itself a
flat, proper R-model of X. Let

X.�;ı/
defD cX

denote the formal completion of the algebraic R-model X along its special fiber. This
formal completion admits a canonical isomorphism Xad

.�;ı/ Š Xad:

Definition 3.7. The category of fans recessed over ı, denoted REC†;ı, is the
category with:

objects: Any locally finite �-admissible fan � in NR � R
0 with recession
fan rec.�/ D † and

morphisms: Any pair of locally finite �-admissible fans �0 and � in NR � R
0
such that each cone ı0 in �0 is contained in at least one cone ı in �.

We refer to a morphism � W �0 �! � in REC†;ı as a refinement of �.

If � W �0 �! � is a refinement of�, then it induces a morphism f� W Y�0 �! Y�
of R-models of Y†. This map of R-models itself restricts to a morphism

f� W X.�0;ı/ �! X.�;ı/

of admissible formal R-models of X. In this way, the assignment � 7! X.�;ı/
becomes a functor REC†;ı �! AFSX

R that takes values in the category of admissible
formal models of Xan.

Definition 3.8 (Adic Tropicalization). The adic tropicalization of the closed

embedding ı W X � � �� Y† is the inverse limit

�
Ad.X; ı/; OAd.X;ı/

� defD lim �
REC†;ı

�
X
.�;ı/ ;OX

.�;ı/

�

in the category of locally topologically ringed spaces.

The utility of Definition 3.8 comes from the fact that, as an immediate conse-
quence of Remark 2.4, it gives Ad.X; ı/ the structure of a locally topologically
ringed topological space. But Definition 3.8 obscures the relationship between
Ad.X; ı/ and the exploded tropicalization of X. To clarify this relationship, first
consider the special case where ı W X0 � � �� T

0 is a closed embedding into a
torus, with N0 the cocharacter lattice of T0. In this case, the exploded tropicalization
is as described in Sect. 1: it is the union

Trop.X0; ı0/ defD
G

v2N0
R

jinvX0j:
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(v, 1) τv
def= R≥0(v, 1) (v, 1)

Γ-admissible cone
δ containing the

ray τv = R≥0(v, 1)

Fig. 5 The ray �v spanned by a vector .v; 1/ in NR � f1g, at left, and a �-admissible cone ı
containing �v when �v is not itself �-rational

For a closed embedding ı W X � � �� Y† into an arbitrary toric variety Y†, the
extended exploded tropicalization, denoted Trop.X; ı/, is the set-theoretical union

Trop.X; ı/ D
G

�2†
Trop

�
ı�1
�
O.�/

�
; ı
�
;

where ı�1
�
O.�/

�
is the part of X that maps to the torus orbit O.�/ Š TN=�\N under

ı (see [4, Sect. 3.2]). In other words, the extended exploded tropicalization is the
union of all exploded tropicalizations encoded in ı as we run over all locally closed
torus-orbit strata in Y†.

Note that each �-rational vector v in NR determines a �-admissible ray �v
defD

R
0.v; 1/ in NR�R
0, and vice versa, as depicted at left in Fig. 5. When v is not �-
rational, the ray �v is no longer �-admissible, but there are still many �-admissible
cones ı containing �v , as depicted at right in Fig. 5.

Proposition 3.9. For any vector v in NR, we have a natural isomorphism

invX Š lim �
ı��v

�
Xı
�

k; (15)

where the limit runs over all �-admissible cones ı in NR � R
0 that contain
the ray �v . When v is �-rational, the above isomorphism (15) simplifies to an
isomorphism

invX Š �
X�v

�
k:

One uses Proposition 3.9 to prove that the topological space underlying Ad.X; ı/
coincides with the extended exploded tropicalization Trop.X; ı/:
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Theorem 3.10. Given any closed embedding ı W X � � �� Y† of a K-variety X
into a proper toric K-variety Y†, there is a natural bijection

Ad.X; ı/
���! Trop.X; ı/

from the underlying set of the adic tropicalization to the exploded extended
tropicalization.

3.5 Adic Tropicalization and Metrized Complexes

In this section, we describe the adic tropicalization of a generic hyperplane in the
toric variety P

2 in detail, and we make some remarks about the relationship between
adic tropicalizations and the metrized complexes of Amini and Baker [1].

3.5.1 Tropical Complexes and Metrized Complexes

Fix a K-variety X and a closed embedding ı W X � � �� Y† into a toric variety.
Each complete fan � in NR�R
0, with recession fan rec.�/ D †, determines a
formal R-scheme X�. As explained in Sect. 2.2.2, the associated adic space Xad

� Š
Xad comes with a specialization morphism

spX�
W Xad �! X�:

Because the Berkovich analytification Xan is the maximal Hausdorff quotient h W
Xad �!! Xan, we also have a map

q W Xad h�!! Xan trop��! Trop.X; ı/:

Define the tropical complex (of varieties) associated with �, denoted CX�, to be
the image, inside the product of topological spaces Trop.X; ı/ � X�, of the product
map

q � spX�
W Xad �! Trop.X; ı/ � X�:

Example 3.11 (Metrized Complex Associated with a Generic Hyperplane in P
2).

For a concrete example, let Y† D P
2 with its standard toric structure, let ı W

X � � �� Y be the closed embedding of the hyperplane X D V.x C y C 1/ into

P
2, and let C be any polyhedral complex decomposing NR D R

2 such that the
intersection CX

defD C\Trop.X; ı/ is the one pictured at left in Fig. 6 below. Then our
tropical complex CX�C is the metrized complex (of curves), in the sense of Amini
and Baker [1, Sect. 1.2], pictured at right in Fig. 6.
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Fig. 6 A �-rational polyhedral decomposition of Trop.X/ induced by a convex polyhedral
decomposition C of NR, and its associated tropical complex CX�C

3.5.3 The General 1-Dimensional Case and Metrized Complexes

Consider the case where our embedding ı W X � � �� Y† is a closed embedding
of a smooth curve X into the toric variety Y†. Recall that ı is schön if the initial
degeneration Xv is smooth at every vector v in the tropicalization of each torus orbit
in Y†.

We claim if Y† is proper and ı is schön, then each tropical complex CX� is a
metrized complex (of curves) in the sense of Amini and Baker [1, Sect. 1.2]. Indeed,
Lemma 3.9, in conjunction with the schön condition, implies that if ı is a cone in�
whose intersection ı\ �Trop.X; ı/�f1g� is a (necessarily �-rational) point .v; 1/ 2
Trop.X; ı/ � f1g, then the k-scheme underlying Xı is the nonsingular curve invX.
Any point in Xad that gets mapped to v under q W Xad �! Trop.X; ı/ goes to a point
of this nonsingular curve invX under the specialization map spX�

W Xad �! X�.
Similarly, Lemma 3.9 and the schön condition imply that if ı \ �Trop.X; ı/ � f1g�
is an edge connecting points .u; 1/ and .v; 1/ in Trop.X; ı/� f1g, then the k-scheme
underlying Xı is a k-curve with two smooth components meeting at a point, one of
the components containing inuX and the other containing invX. The points of Xad

mapping to Xı �
�
inuX [ invX

�
under the specialization map spX�

are mapped to
interior points of the edge corresponding to ı inside Trop.X; ı/.

In this way, we can describe the tropical complex CX� using exactly the
kind of gluing datum that Amini and Baker use to define a metrized complex in
[1, Sect. 1.2].

Example 3.12 (An Example of a 2-Dimensional Tropical Complex). Let X D Y† D
P
2, where † � NR D R

2 is the standard fan describing P
2 as a toric variety. Let C

be the polyhedral decomposition of NR D R
2 pictured in Fig. 7 below. It determines

a fan �C in NR�R
0 with recession fan rec.�C/ D †. Using Lemma 3.9, we can
build the tropical complex CX�C from the datum of the k-varieties underlying the
formal models XıP associated with each polygon P in C.
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Fig. 7 The tropical complex CX�C in Example 3.12

The polyhedral complex C consists of three vertices, edges di and ei for 1 �
i � 3, and 2-dimensional polygons Pj for 0 � j � 3. The tropical complex CX�C

is glued from a copy of P1k at each vertex, a product Di�di with a 1-dimensional
k-variety Di associated with each edge di, 1 � i � 3, and similarly for edges ei,
and then the three 2-dimensional polygons Pj, 1 � j � 3, understood as products
Spec k�Pj. The data telling us how to glue these topological spaces comes from the
incidence relations between the irreducible components of the k-variety underlying
the formal model X�C .

Lemma 3.13. If ı W X � � �� Y† is a closed embedding into a proper toric

variety, then there is a canonical bijection lim �REC†;ı
CX�

���! Ad.X; ı/.

Proof. Each projection Trop.X; ı/�X� �!! X� induces a map CX� �! X�, and
these maps give rise to a map

lim �
REC†;ı

CX� �! Ad.X; ı/: (16)

Fix a compatible system of points x D .x�/�2Rec†;ı , where x� lies in the k-variety
underlying X�. This system describes a point x in Ad.X; ı/. Because Xı1 \Xı2 D Ø
in X� whenever ı1\ı2 D Ø in NR�R
0, we know that the compatible system x has
an associated point vx 2 Trop.X; ı/, determined by the condition that vx lie in the
polygon Pı associated with a cone ı in � whenever x� lies in Xı . Here Pı denotes
the unique polygon in NR satisfying Pı�f1g D ı \ �NR�f1g

�
. The very definition

of vx implies that if x0 is any point of Xad mapping to x under spX�
W Xad �! X�,

then x0 maps to vx under the map q W Xad �! Trop.X; ı/. This implies subjectivity
of the comparison map (16).

To see that (16) is injective, note that the argument of the previous paragraph
implies that points given by pairs .x; u/ and .y; v/ in CX� must map to distinct
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points of Ad.X; ı/ if their second coordinates u; v 2 Trop.X; ı/ differ. On the other
hand, if u D v, but the inverse systems y D .y�/�2Rec†;ı and x D .x�/�2Rec†;ı differ,
then they map to distinct points of Ad.X; ı/. ut
Example 3.14 (The Adic Tropicalization of a Generic Hyperplane in P

2). As in
Example 3.11 above, let ı W X � � �� Y be the closed embedding of the

hyperplane X D V.x C y C 1/ into P
2. Lemma 3.13 says that we can visualize

Ad.X; ı/ by understanding it as the object that results, in the inverse limit, when
we bubble of a copy of P

1
k at every �-rational point in Trop.X; ı/. The resulting

topological space appears in Fig. 8 below.

3.5.7 Tropical “Type 5” Points and Inverse Systems of R-Models.

We take a moment to highlight a phenomenon that occurs in adic tropicalizations,
related to the presence of “type 5” points in the adic affine line .A1/ad.

Consider a polygonal interval P1 D inside NR D R. The k-variety
underlying the model XP1 consists of two copies of A1k intersecting at a single k-
point x1 as pictured in Fig. 9 below. If we subdivide P1 by adding a single �-rational
vertex in the interior of P1, then the k-variety underlying our formal R-scheme picks
up a P

1
k component where x1 used to be.

A copy of       lies over
each Γ-rational point of
Trop(V(x+y+1))

P1
k

A single point lies over
each Γ-irrational point
of Trop(V(x+y+1))

A single point lies
over each boundary
point of Trop(V(x+y+1))

Fig. 8 Adic tropicalization of the hyperplane V.x C y C 1/ in P
2. Compare this to the exploded

curve, in the sense of Parker [21], appearing in Fig. 1
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Fig. 9 The formal R-schemes associated with several decompositions of the interval P1 inside
NR D R. For each decomposition, the k-variety underlying the R-scheme Xv associated with the
left endpoint v is a copy of A1k �f0g that does not change from decomposition to decomposition.
The nodal point xi that partially compactifies A

1
k �f0g in each of the R-schemes “stays fixed” as

further decompositions move every P
1
k component further and further from Xv

Clearly Xv sits in the inverse limit of R-models associated with all subdivisions
of the interval, but the inverse limit also contains a point in the closure of Xv ,
which does not map to the component of any model associated with a segment
not containing v. The sequence of points xi in Fig. 9 form an inverse system, and
hence determine a single point x in the adic tropicalization Ad.P1/.

4 The Adic Limit Theorem

In this final Sect. 4, we explain that adic tropicalizations satisfy a form of “ana-
lytification is the limit of all tropicalizations,” namely, that one can recover the
Huber analytification Xad of any closed subvariety of a proper toric K-variety,
along with the sheaf of power bound sections Oı

Xad on Xad, from an inverse limit
of adic tropicalizations of X. The exact statement appears in Theorem 4.4 and
Proposition 4.8 below. We begin with a brief review of the corresponding theorem
in the setting of Berkovich analytic spaces, as proved in [23] and [6].
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4.1 The Limit Theorem in the Berkovich Setting

Since each multiplicative seminorm KŒU� � �! R>0 induces a homomorphism
S� �! R t f1g of semigroups, each closed embedding ı W X � � �� Y† comes
with a continuous map of topological spaces


ı W Xan �! Trop.X; ı/;

called the tropicalization map associated with the closed embedding ı.
If f� W Y† �! Y†0 is a toric morphism, necessarily induced by morphisms � W

† �! †0 of fans, and if ı W X � � �� Y† and ı0 W X � � �� Y†0 are closed
embeddings for which the diagram

(17)

commutes, then the corresponding tropicalization maps 
ı and 
ı0 fit into a
commutative diagram

(18)

Let S denote any small category whose set of objects consists of some family
of closed embeddings ı W X � � �� Y†, and in which each homset HomS.ı; ı0/
consists of all commutative diagrams of the above form (17). Then the system of
tropicalization maps 
ı associated objects and morphisms in S induce a map



defD lim �

S


ı W Xan �! lim �
S

Trop.X; ı/ (19)

We call this map the Berkovich comparison map.
In [23], S. Payne showed that if X admits at least one closed embedding into a

quasi-projective toric variety Y†, and if S is the system of all closed embeddings
into quasi-projective toric varieties, then the Berkovich comparison map (19) is a
homeomorphism. In [6], Gross, Payne, and the present author extended this result
to the case of any K-scheme admitting at least one closed embedding into a toric
variety. This result is a consequence of the following Theorem 4.1, which describes
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conditions under which an arbitrary system S of closed toric embeddings gives rise
to a homeomorphism (19):

Theorem 4.1 ([6, Theorem 1.1]). If the system S satisfies conditions (C1) and (C2)
below, then the Berkovich comparison map (19) is a homeomorphism:

(C1) If ı W X � � �� Y† and ı0 W X � � �� Y†0 are closed embeddings in S,
then their product ı � ı0 W X � � �� Y†�†0 is also in S and

(C2) There exists a finite affine open cover
˚

Ui
� � �� X



such that for each

nonzero regular function f 2 KŒUi�, there is some closed embedding ı W
X � � �� Y† in S that realizes Ui as the preimage of a torus-invariant
open affine, and realizes f as the pullback of a monomial.

4.2 Adic Tropicalization Morphisms

Fix a K-variety X, and let ı W X � � �� Y† be a closed embedding into a proper

toric variety Y†. As explained in Sect. 3.3, each �-admissible fan � in NR � R
0,
satisfying

supp.�/ D NR � R
0 and � \ �NR � f0g
� D † � f0g; (20)

gives rise to an admissible formal model X.ı;�/ of X. By 2.2.2, this model X.ı;�/
comes with a morphism of locally topologically ringed spaces

spX.ı;�/
W �Xad;Oı

Xad

� �! �
X.ı;�/;OX.ı;�/

�
: (21)

Our very construction of the adic tropicalization Ad.X; ı/ as an inverse limit implies
that as � ranges over all �-admissible fans in NR � R
0 satisfying the twin
conditions (20), the resulting specialization morphisms (21) give rise to a single
morphism of locally topologically ringed spaces

$ı
defD lim �

REC†;ı

sp.ı;�/ W .Xad;Oı
Xad/ �!

�
Ad.X; ı/; OAd.X;ı/

�
: (22)

This morphism (22) is the adic counterpart to the tropicalization map


ı W Xan �! Trop.X; ı/;

and so we refer to (22) as the adic tropicalization morphism at ı.

Definition 4.2. A system of embeddings for X is any category S such that ob S is
some class of closed embeddings ı W X � � �� Y† into proper toric varieties,
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and where the set of morphisms between two such embeddings is the set of all
commutative diagrams

(23)

where f� is any torus-equivariant morphism induced by a morphism � W † �! †0
of fans.

Remark 4.3. If † and †0 are complete fans in NR and N0
R

, then for each fan �0 in
N0
R
�R
0 satisfying the twin conditions (20), we can refine any fan � in NR �R
0

to a fan �C such that the product map

f� � id W NR � R
0 �! N0
R
� R
0

induces a morphism of fans f��id W �C �! �0. Thus if S is a system of embeddings
for X, then each morphism (23) induces a morphism of locally topologically ringed
spaces

Ad.X; f�/ W Ad.X; ı/ �! Ad.X; ı0/: (24)

These morphisms (24) give the assignment
�
ı W X � � �� Y†

� 7�! Ad.X; ı/ the
structure of a functor

Ad.X;�/ W S �! LTRS:

The inverse limit of the adic tropicalization morphisms (22) over S provides us with
a morphism of locally topologically ringed spaces

lim �
ı2S
$ı W .Xad;Oı

Xad/ ��! lim �
ı2S

�
Ad.X; ı/; OAd.X;ı/

�
; (25)

an adic counterpart to the comparison map (19) that appears in the context of
Berkovich analytic spaces.

Theorem 4.4. Let X be a proper variety over an algebraically closed, non-trivially
valued non-Archimedean field K, and let S be a system of embeddings for X.
If S satisfies conditions (C0), (C1), and (C2) below, then the adic comparison
morphism (25) is an isomorphism of locally topologically ringed spaces.

(C0) If ı W X � � �� Y† is a closed embedding in S, with T the dense torus in
Y†, then any translation of ı by a K-point of T is again in S;

(C1) If ı W X � � �� Y† and ı0 W X � � �� Y†0 are closed embeddings in S,
then their product ı � ı0 W X � � �� Y†�†0 is also in S; and
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(C2) There exists a finite affine open cover
˚

Ui
� � �� X



such that for each

nonzero regular function f 2 KŒUi�, there is a closed embedding ı W
X � � �� Y† in S that realizes Ui as the preimage of a torus-invariant
open affine, and realizes f as the pullback of a monomial.

Corollary 4.5 (Adic Limit Theorem on Point Sets). If S satisfies conditions (C0)
through (C2), then the point set underlying the Huber analytification of X is in
natural bijection with the inverse limit of all extended exploded tropicalizations of X:

jXadj Š lim �
ı2S

Trop.X; ı/

Proof. This follows immediately from Theorems 3.10 and 4.4. ut
Remark 4.6. One proves Theorem 4.4 by showing that the system of all Gubler
models of X, for all closed embeddings ı W X � � �� Y† in proper toric
embeddings, is cofinal in the system of all admissible formal R-models of X. The
key technical step in the proof is Proposition 4.7 below. As in the statement of
Theorem 4.4, let X be a proper K-variety over an algebraically closed, non-trivially
valued non-Archimedean field K, and let S be a system of embeddings for X
satisfying conditions (C0), (C1), and (C2) of Theorem 4.4.

Proposition 4.7. Every admissible formal R-model X of X is dominated by a formal
Gubler model. More precisely, if X is any admissible formal R-model of X, then there
exist

(i) a closed embedding ı W X � � �� Y† into the proper toric variety associated
with some complete fan † in some R-vector space NR,

(ii) a �-admissible fan � in NR � R
0 satisfying the twin conditions (20),

such that the formal Gubler model X.ı;�/ associated with the pair .ı; �/ admits a
proper morphism

X.ı;�/ �!! X

of formal R-models of X.

To close, we give several examples of systems of embeddings that satisfy the
hypotheses of Theorem 4.4, so that the comparison morphism (25) becomes an
isomorphism.

Proposition 4.8. Let X be a K-variety satisfying the two-point condition (A2)
appearing in Sect. 3.4 above. Then in each of the following situations, the system
S satisfies conditions (C0), (C1), and (C2) of Theorem 4.4:

(i) X proper, S the category of all closed embeddings of X into proper toric
varieties;
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(ii) X projective, S the category of all closed embeddings of X into projective toric
varieties; and

(iii) X smooth and proper, S the category of all closed embeddings of X into smooth,
proper toric varieties.

Proof. Case (ii) follows from [23, Lemma 4.3]. Cases (i) and (iii) follow from
the construction described in the proof of [6, Theorem 4.2], using the fact that
we can construct the toric embedding with the requisite property in each of these
cases, as explained in [29, Theorem A]. ut
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Degeneration of Linear Series from the Tropical
Point of View and Applications

Matthew Baker and David Jensen

Abstract We discuss linear series on tropical curves and their relation to classical
algebraic geometry, describe the main techniques of the subject, and survey some
of the recent major developments in the field, with an emphasis on applications to
problems in Brill–Noether theory and arithmetic geometry.

Keywords Chip firing • Tropical curves • Brill-Noether theory

1 Introduction

Algebraic curves play a central role in the field of algebraic geometry. Over the
past century, curves have been the focus of a significant amount of research, and
despite being some of the most well-understood algebraic varieties, there are still
many important open questions. The goal of classical Brill–Noether theory is to
study the geometry of a curve C by examining all of its maps to projective space,
or equivalently the existence and behavior of all line bundles on C. Thus, we have
classical results such as Max Noether’s Theorem [12, p. 117] and the Enriques–
Babbage Theorem [13] that relate the presence of linear series on a curve to its
geometric properties. A major change in perspective occurred during the twentieth
century, as the field shifted from studying fixed to general curves—that is, general
points in the moduli space of curves Mg. Many of the major results in the field,
such as the Brill–Noether [66] and Gieseker–Petri [65] theorems, remained open
for nearly a century as they awaited this new point of view.

A major milestone in the geometry of general curves was the development of
limit linear series by Eisenbud and Harris [58]. This theory allows one to study
linear series on general curves by studying one-parameter degenerations where the
central fiber is a special kind of singular curve, known as a curve of compact type.
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One property of curves of compact type is that if they have positive genus then
they must have components of positive genus. Shortly after the development of
limit linear series, many researchers became interested in a different type of nodal
curve, which has only rational components, and where the interesting geometric
data is encoded by the combinatorics of how the components meet each other. Early
examples using the so-called graph curves to establish properties of general curves
include Bayer and Eisenbud’s work on Green’s conjecture for the general curve [28],
and the Ciliberto–Harris–Miranda result on the surjectivity of the Wahl map [47].

Much like the theory of limit linear series does for curves of compact type, the
recent development of tropical Brill–Noether theory provides a systematic approach
to this kind of degeneration argument [5, 17, 19]. A major goal of this survey is to
introduce the basic definitions and techniques of this theory, as well as describing
some recent applications to the geometry of general curves and the behavior of
Weierstrass points in degenerating families. Degeneration arguments also play a
major role in arithmetic geometry, and we also survey how linear series on tropical
curves can be used to study rational points on curves.

Here are just a few of the interesting theorems which have been proved in recent
years with the aid of the theory of linear series on tropical curves.

1. The Maximal Rank Conjecture for quadrics. In [79], Jensen and Payne prove
that for fixed g; r; and d, if C is a general curve of genus g and V � L.D/ is
a general linear series on C of rank r and degree d, then the multiplication map
2 W Sym2V ! L.2D/ is either injective or surjective.

2. Uniform boundedness for rational points of curves of small Mordell–Weil rank.
In [81], Katz, Rabinoff, and Zureick–Brown prove that if C=Q is a curve of genus
g with Mordell–Weil rank at most g � 3, then #C.Q/ � 76g2 � 82gC 22: This
is the first such bound depending only on the genus of C.

3. Non-Archimedean equidistribution of Weierstrass points. In [4], Amini proves
that if C is an algebraic curve over C..t// and L is an ample line bundle on C, then
the Weierstrass points of L˝n become equidistributed with respect to the Zhang
measure on the Berkovich analytic space Can as n goes to infinity. This gives
precise asymptotic information on the limiting behavior of Weierstrass points in
degenerating one-parameter families.

4. Mnëv universality for the lifting problem for divisors on graphs. In [40],
Cartwright shows that if X is a scheme of finite type over SpecZ, there exist
a graph G and a rank 2 divisor D0 on G such that, for any infinite field k, there
are a curve C over k..t// and a rank 2 divisor D on C tropicalizing to G and D0,
respectively, if and only if X has a k-point.

We will discuss the proofs of these and other results after going through the
foundations of the basic theory. To accommodate readers with various interests,
this survey is divided into three parts. The first part covers the basics of tropical
Brill–Noether theory, with an emphasis on combinatorial aspects and the relation to
classical algebraic geometry. The second part covers more advanced topics, includ-
ing the non-Archimedean Berkovich space perspective, tropical moduli spaces, and
the theory of metrized complexes. Each of these topics is an important part of the
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theory, but is not strictly necessary for many of the applications discussed in Part 3,
and the casual reader may wish to skip Part 2 on the first pass. The final part covers
applications of tropical Brill–Noether theory to problems in algebraic and arithmetic
geometry. For the most part, the sections in Part 3 are largely independent of each
other and can be read in any order. Aside from a few technicalities, the reader can
expect to follow the applications in Sects. 9, 10, and 11, as well as most of Sect. 12,
without reading Part 2.

Part 1: Introductory Topics

2 Jacobians of Finite Graphs

2.1 Degeneration of Line Bundles in One-Parameter Families

A recurring theme in the theory of linear series on curves is that it is very important
to understand the behavior of line bundles on generically smooth one-parameter
families of curves. One of the key facts about such families is the semistable
reduction theorem, which asserts that after a finite base change, one can guarantee
that the singularities of the family are “as nice as possible,” i.e., the total space
is regular and the fibers are reduced and have only nodal singularities (see [72,
Chap. 3C] or [94, Sect. 10.4]). The questions we want to answer about such families
are all local on the base, so it is convenient to consider the following setup. Let R be
a discrete valuation ring with field of fractions K and algebraically closed residue
field �, let C be a smooth proper and geometrically integral curve over K, and let C
be a regular strongly semistable model for C, that is, a proper flat R-scheme with
general fiber C satisfying:

1. The total space C is regular.
2. The central fiber C0 of C is strongly semistable, i.e., the irreducible components

of C0 are all smooth and C0 has only nodes as singularities.1

By the semistable reduction theorem, a regular strongly semistable model for C
always exists after passing to a finite extension of K.

Let L be a line bundle on the general fiber C. Because the total space C is regular,
there exists an extension L of L to the family C. One can easily see, however,
that this extension is not unique—one can obtain other extensions by twisting the
components of the central fiber. More concretely, if L is an extension of L and
Y � C0 is an irreducible component of the central fiber, then L.Y/ D L˝OC.Y/ is
also an extension of L.

1We say C0 is semistable if it is reduced and has only nodes as singularities. The term strongly
semistable is not completely standard.
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To understand the effect of the twisting operation, we consider the dual graph of
the central fiber C0. One constructs this graph by first assigning a vertex vZ to each
irreducible component Z of C0, and then drawing an edge between two vertices for
every node at which the corresponding components intersect.

Example 2.1. If C0 is a union of m general lines in P
2, its dual graph is the complete

graph on m vertices. Indeed, every pair of lines meets in one point, so between every
pair of vertices in the dual graph, there must be an edge.

Example 2.2. If C0 � P
1 � P

1 is a union of a lines in one ruling and b lines in the
other ruling, then the dual graph is the complete bipartite graph Ka;b. This is because
a pair of lines in the same ruling do not intersect, whereas a pair of lines in opposite
rulings intersect in one point.

Example 2.3. Let C0 be the union of the �1 curves on a del Pezzo surface of
degree 5. In this case, the dual graph of C0 is the well-known Petersen graph.

2.2 Divisors and Linear Equivalence on Graphs

In this paper, by a graph we will always mean a finite connected graph which is
allowed to have multiple edges between pairs of vertices but is not allowed to have
any loop edges. Given a graph G, we write Div.G/ for the free abelian group on the
vertices of G. An element D of Div.G/ is called a divisor on G, and is written as a
formal sum

D D
X

v2V.G/

D.v/v;

where the coefficients D.v/ are integers. The degree of a divisor D is defined to be
the sum

deg.D/ D
X

v2V.G/

D.v/:

Returning now to our family of curves, let us fix for a moment an extension L
of our line bundle L. We define a corresponding divisor mdeg.L/ on G, called the
multidegree of L, by the formula

mdeg.L/ D
X

Z

.degLjZ/ vZ ;

where the sum is over all irreducible components Z of C0. The quantity degLjZ
can also be interpreted as the intersection multiplicity of L with Z considered as
a (vertical) divisor on the surface C. Note that the degree of mdeg.L/ is equal to
deg.L/.
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We now ask ourselves how mdeg.L/ changes if we replace L by a different
extension. Since any two such extensions differ by a sequence of twists by
components of the central fiber, it suffices to study the effect of twisting by one
such component Y . Given a vertex v of a graph, let val.v/ denote its valence. As the
central fiber C0 is a principal divisor on C, we have

mdeg.L.Y// D mdeg.L/C
X

Z

.Y � Z/ vZ

with

Y � Z D
� � val.vY/ if Z D Y
jZ \ Yj if Z ¤ Y

�
:

The corresponding operation on the dual graph is known as a chip-firing move.
This is because we may think of a divisor on the graph as a configuration of chips
(and anti-chips) on the vertices. In this language, the effect of a chip-firing move
is that a vertex v “fires” one chip along each of the edges emanating from v. This
decreases the number of chips at v by the valence of v, and increases the number of
chips at each of the neighbors w of v by the number of edges between v and w.

Motivated by these observations, we say that two divisors D and D0 on a graph
G are equivalent, and we write D � D0, if one can be obtained from the other by
a sequence of chip-firing moves. We define the Picard group Pic.G/ of G to be the
group of divisors on G modulo equivalence. Note that the degree of a divisor is
invariant under chip-firing moves, so there is a well-defined homomorphism

deg W Pic.G/! Z:

We will refer to the kernel Pic0.G/ of this map as the Jacobian Jac.G/ of the
graph G. This finite abelian group goes by many different names in the mathematical
literature—in combinatorics, it is commonly referred to as the sandpile group or the
critical group of G (see, for example, [30, 56, 92, 109]).

Remark 2.4. There is a tremendous amount of combinatorial literature concerning
Jacobians of graphs. As our focus is on applications in algebraic geometry, however,
we will not go into many details here—we refer the reader to [19, 76] and the
references therein. We cannot resist mentioning one remarkable fact, however: the
cardinality of Jac.G/ is the number of spanning trees in G. (This is actually a
disguised form of Kirchhoff’s celebrated Matrix-Tree Theorem.)

Our discussion shows that for any two extensions of the line bundle L, the
corresponding multidegrees are equivalent divisors on the dual graph G. There is
therefore a well-defined degree-preserving map

Trop W Pic.C/! Pic.G/;

which we refer to as the specialization or tropicalization map.
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For later reference, we note that there is a natural homomorphism � W Div.C/!
Div.G/ defined by setting �.D/ D mdeg.D/, where D is the Zariski closure of
D in C. The map � takes principal (resp., effective) divisors to principal (resp.,
effective) divisors, and the map Jac.C/ ! Jac.G/ induced by � coincides with
Trop (cf. [17, Sect. 2.1]).

It is useful to reformulate the definition of equivalence of divisors on G as
follows. For any function f W V.G/! Z, we define

ordv.f / WD
X

w adjacent to v

f .v/ � f .w/

and

div.f / WD
X

v2V.G/

ordv.f /v:

Divisors of the form div.f / are known as principal divisors, and two divisors are
equivalent if and only if their difference is principal. The reason is that the divisor
div.f / can be obtained, starting with the 0 divisor, by firing each vertex v exactly
f .v/ times.

2.3 Limit Linear Series and Néron Models

The Eisenbud–Harris theory of limit linear series focuses on the case where the
dual graph of C0 is a tree. In this case, the curve C0 is said to be of compact type.2

Although they would not have stated it this way, a key insight of the Eisenbud–
Harris theory is that the Jacobian of a tree is trivial. Given a line bundle L of degree
d on C, if the dual graph of C0 is a tree, then one can repeatedly twist to obtain a line
bundle with any degree distribution summing to d on the components of the central
fiber. In particular, given a component Y � C0, there exists a twist LY such that

degLY jZ D
�

d if Z D Y
0 if Z ¤ Y

�
:

This observation is the jumping-off point for the basic theory of limit linear series.
At the other end of the spectrum is the maximally degenerate case where all

of the components of C0 have genus 0. In this case, the first Betti number of the
dual graph G (which we refer to from now on as the genus of G) is equal to the

2The reason for the name compact type is that the Jacobian of a nodal curve C0 is an extension of
the Jacobian of the normalization of C0 by a torus of dimension equal to the first Betti number of
the dual graph. It follows that the Jacobian of C0 is compact if and only if its dual graph is a tree.
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geometric genus of the curve and essentially all of the interesting information about
degenerations of line bundles is combinatorial. At its core, tropical Brill–Noether
theory studies the behavior of line bundles on the curve C using the combinatorics
of their specializations to the graph G.

This discussion can also be understood in the context of Néron models. An
important theorem of Raynaud [111] asserts (in the language of this paper) that
the group ˆ of connected components of the special fiber NJ of the Néron model
of J D Jac.C/ is canonically isomorphic to Jac.G/, where G is the dual graph of
the special fiber of C. This result can be summarized by the commutativity of the
following diagram:

(1)

where the right vertical arrow is the canonical quotient map

J.K/! J.K/=J 0.R/ D ˆ:

The tropical approach to Brill–Noether theory and the approach via the theory of
limit linear series are in some sense orthogonal. The former utilizes the component
group ˆ, or its analytic counterpart, the tropical Jacobian, whereas classical limit
linear series are defined only whenˆ is trivial. On the other hand, limit linear series
involve computations in the compact part of NJ , which is trivial in the maximally
degenerate case.

Recent developments have led to a sort of hybrid of tropical and limit linear series
that can be used to study degenerations of line bundles to arbitrary nodal curves. We
will discuss these ideas in Sect. 8.

3 Jacobians of Metric Graphs

3.1 Behavior of Dual Graphs Under Base Change

The field of fractions of a DVR is never algebraically closed. For many applications,
we will be interested in Pic.CK/ rather than Pic.CK/, and we must therefore study
the behavior of the specialization map under base change.

Let K0 be a finite extension of K, let R0 be the valuation ring of K0, and let
CK0 D C �K K0. An important issue is that the new total space CK0 D C �K K0
may not be regular; it can pick up singularities at the nodes of the central fiber.
More specifically, if a point z on C corresponding to a node of the central fiber
has a local analytic equation of the form xy D 
 , where 
 is a uniformizer for
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R, then a local analytic equation for z over R0 will be xy D .
 0/e, where 
 0 is a
uniformizer for R0 and e is the ramification index of the extension K0=K. A standard
computation shows that we can resolve such a singularity by a chain of e � 1
blowups. Repeating this procedure for each singular point of the special fiber, we
obtain a regular strongly semistable model C0 for CK0 . The dual graph G0 of the
central fiber of C0 is obtained by subdividing each edge of the original dual graph
G e � 1 times. In other words, if we assign a length of 1 to each edge of G, and a
length of 1

e to each edge of G0, then G and G0 are isomorphic as metric graphs.
A metric graph � is, roughly speaking, a finite graph G in which each edge e has

been identified with a real interval Ie of some specified length `e > 0. The points
of � are the vertices of G together with all points in the relative interiors of the
intervals Ie. More precisely, a metric graph is an equivalence class of finite edge-
weighted graphs, where two weighted graphs G and G0 give rise to the same metric
graph if they have a common length-preserving refinement. A finite weighted graph
G representing the equivalence class of � is called a model for � .

Example 3.1. Let K D C..t//, and consider the family C W xy D tz2 of smooth
conics degenerating to a singular conic in P

2. The dual graph G of the central fiber
consists of two vertices v; v0 connected by a single edge. Let D D P C Q be the
divisor on the general fiber cut out by the line y D x. In homogeneous coordinates,
we have P D .pt W pt W 1/ and Q D .�pt W �pt W 1/. Although the divisor D itself
is K-rational, P and Q are not, and both points specialize to the node of the special
fiber. It is not hard to check that �.D/ D vCv0 2 Div.G/. If K0 D C..

p
t//, then the

total space of the family C�K K0 has a singularity at the node of the central fiber. This
singularity can be resolved by blowing up the node, and the dual graph G0 of the new
central fiber is a chain of 3 vertices connected by two edges, with the new vertex
v00 corresponding to the exceptional divisor of the blowup (see Fig. 1). The base
change D0 of D to K0 specializes to a sum of two smooth points on the exceptional
divisor, and in particular �C0.D0/ D 2v00 is not the image of �C.D/ with respect
to the natural inclusion map Div.G/ ,! Div.G0/. Note, however, that �C0.D0/ and
�C.D/ are linearly equivalent on G0 (this turns out to be a general phenomenon).

Remark 3.2. A similar example, with a semistable family of curves of genus 3, is
given in [17, Sect. 4.4].

v

v′

v

v′′

v′

Fig. 1 The dual graph of the central fiber in Example 3.1 initially (on the left), and after base
change followed by resolution of the singularity (on the right). If we give the segment on the left
a length of 1 and each of the segments on the right a length of 1=2, then both weighted graphs are
models for the same underlying metric graph � , which is a closed segment of length 1
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There are two possible ways to address the lack of functoriality with respect to
base change illustrated in Example 3.1. One is to only consider the induced maps
on Picard groups, rather than divisors. The other is to replace � W Div.C/! Div.G/
with a map Div.C NK/! Div.�/, where � is the metric graph underlying G, defined
by first base-changing to an extension K0 over which all points in the support
of D are rational and then applying �. The most natural way to handle these
simultaneous base changes and prove theorems about the resulting map is to work
on the Berkovich analytification of C; see Sect. 6 for details.

3.2 Divisors and Linear Equivalence on Metric Graphs

Let � be a metric graph. A divisor D on � is a formal linear combination

D D
X

v2�
D.v/v

with D.v/ 2 Z for all v 2 � and D.v/ D 0 for all but finitely many v 2 � . Let
PL.�/ denote the set of continuous, piecewise linear functions f W � ! R with
integer slopes. The order ordv.f / of a function f at a point v 2 � is the sum of its
incoming3 slopes along the edges containing v. As in the case of finite graphs, we
write

div.f / WD
X

v2�
ordv.f /v:

A divisor is said to be principal if it is of the form div.f / for some f 2 PL.�/, and
two divisors D;D0 are equivalent if D � D0 is principal. We let Prin.�/ denote the
subgroup of Div0.�/ (the group of degree-zero divisors on �) consisting of principal
divisors. By analogy with the case of finite graphs, the group

Jac.�/ WD Div0.�/=Prin.�/

is called the (tropical) Jacobian of � .

Example 3.3. The Jacobian of a metric tree � is trivial. To see this, note that given
any two points P;Q 2 � , there is a unique path from P to Q. One can construct
a continuous, piecewise linear function f that has slope 1 along this path, and has
slope 0 everywhere else. We then see that div.f / D Q� P, so any two points on the
tree are equivalent (Fig. 2).

Example 3.4. A circle � is a torsor for its own Jacobian. To see this, fix a point O 2
� . Given two points P;Q 2 � , there exists a continuous, piecewise linear function f
that has slope 1 on the interval from O and P, slope�1 on the interval from some 4th

3As a caution, some authors use the opposite sign convention.
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Fig. 2 Slopes of a function f
on a tree with div.f / D Q � P

P

Q

1
1

1

0 0

0

Fig. 3 A function f on the
circle with
div.f / D O C Q � .P C R/

P Q

O

R

1

0 1

0

point R to Q, and slope 0 everywhere else. We then have div.f / D OCQ� .PCR/,
so P � Q � R � O. It follows that every divisor of degree zero is equivalent to a
divisor of the form R � O for some point R. It is not difficult to see that the point R
is in fact unique (Fig. 3).

Note that if two divisors are equivalent in the finite graph G, then they are also
equivalent in the corresponding metric graph � , called the regular realization of G,
in which every edge of G is assigned a length of 1. It follows that there is a natural
inclusion � W Pic.G/ ,! Pic.�/. As we saw above, the multidegree of a line bundle
L on CK can be identified with a divisor on some subdivision of G, which can in turn
be identified with a divisor on � . One can show that this yields a well-defined map

Trop W Pic.CK/! Pic.�/

whose restriction to Pic.C/ coincides with the previously defined map

Trop W Pic.C/! Pic.G/

via the inclusion �.
One can see from this construction that principal divisors on C specialize to

principal divisors on � . More precisely, there is a natural way to define a map

trop W K.C/� ! PL.�/

on rational functions such that

Trop.div.f // D div.trop.f //

for every f 2 K.C/�. This is known as the Slope Formula, cf. Theorem 6.4 below.
We refer the reader to Sect. 6.3 for a formal definition of the map trop.
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As already discussed in the remarks following Example 3.1, there is also a natural
way to define a map Div.CK/! Div.�/ which induces the map Trop W Pic.CK/!
Pic.�/. As with the map trop on rational functions, the map Trop on divisors is
most conveniently described using Berkovich’s theory of non-Archimedean analytic
spaces, and we defer a detailed discussion to Sect. 6.

3.3 The Tropical Abel–Jacobi Map

A 1-form on a graph G is an element of the real vector space generated by the formal
symbols de, as e ranges over the oriented edges of G, subject to the relations that
if e; e0 represent the same edge with opposite orientations then de0 D �de. After
fixing an orientation on G, a 1-form ! D P

!ede is called harmonic if, for all
vertices v, the sum

P
!e over the outgoing edges at v is equal to 0. Denote by

	.G/ the space of harmonic 1-forms on G. It is well-known that 	.G/ is a real
vector space of dimension equal to the genus g of G, which can also be defined
combinatorially as the number of edges of G minus the number of vertices of G plus
one, or topologically as the dimension of H1.G;R/.

If G and G0 are models for the same metric graph � , then 	.G0/ is canonically
isomorphic to 	.G/. We may therefore define the space 	.�/ of harmonic 1-forms
on � as	.G/ for any weighted graph model G. (We also define the genus of a metric
graph � to be the genus of any model for � .) Given an isometric path � W Œa; b�! � ,
any harmonic 1-form ! on � pulls back to a classical 1-form on the interval, and
we can thus define the integral

R
�
!. Note that the definition of a harmonic 1-form

does not depend on the metric, but the integral
R
�
! does.

Fix a base point v0 2 � . For any point v 2 � , the integral

Z v

v0

!

is well-defined up to a choice of path from v0 to v. This gives a map

AJv0 W � ! 	.�/�=H1.�;Z/

known as the tropical Abel–Jacobi map. Extending linearly to Div.�/ and then
restricting to Div0.�/, we obtain a map

AJ W Div0.�/! 	.�/�=H1.�;Z/

which does not depend on the choice of a base point. As in the classical case of
Riemann surfaces, we have (cf. [101]):
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Fig. 4 Two metric graphs �
and � 0 of genus 2

v0 v0

Tropical Abel–Jacobi Theorem. The map AJ is surjective and its kernel is
precisely Prin.�/. Thus there is a canonical isomorphism

AJ W Div0.�/=Prin.�/ Š 	.�/�=H1.�;Z/

between the Jacobian of � and a g-dimensional real torus.

Example 3.5. We consider the two metric graphs of genus 2 pictured in Fig. 4. In the
first case, we can choose a basis !1; !2 of harmonic 1-forms by assigning the integer
1 to one of the (oriented) loops, and the integer 0 to the other. We let �1; �2 be the
elements of the dual basis. We then see from the tropical Abel–Jacobi theorem that

Jac.�/ Š R
2=.Z�1 C Z�2/:

A similar argument in the second case yields

Jac.� 0/ Š R
2=

�
ZŒ�1 C 1

2
�2�C ZŒ

1

2
�1 C �2�

	
:

Although the Jacobians of the metric graphs � and � 0 from Example 3.5 are
isomorphic as abstract real tori, they are non-isomorphic as principally polarized
real tori in the sense of Mikhalkin and Zharkov [101]. In fact, there is an analogue
of the Torelli theorem in this context saying that up to certain “Whitney flips,” the
Jacobian as a principally polarized real torus determines the metric graph �; see
[36]. The map AJv0 W � ! 	.�/�=H1.�;Z/ is harmonic (or balanced) in a certain
natural sense; see, e.g., [18, Theorem 4.1]. This fact is used in the paper [81], about
which we will say more in Sect. 11.2. Basic properties of the tropical Abel–Jacobi
map are also used in important ways in [41, 52].

4 Ranks of Divisors

4.1 Linear Systems

By analogy with algebraic curves, a divisor D D P
D.v/v on a (metric) graph is

called effective if D.v/ 	 0 for all v, and we write D 	 0. The complete linear series
of a divisor D is defined to be

jDj D fE 	 0 j E � Dg:
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Fig. 5 The linear system
j2v C wj is not
equidimensional vw

Similarly, we write

R.D/ D ff 2 PL.�/ j div.f /C D 	 0g

for the set of tropical rational functions with poles along the divisor D.
As explained in [63], the complete linear series jDj has the structure of a

compact polyhedral complex. However, this polyhedral complex often fails to be
equidimensional, as the following example shows.

Example 4.1. Consider the metric graph pictured in Fig. 5, consisting of two loops
attached at a point v. Let D D 2v C w, where w is a point on the interior of the first
loop. The complete linear system is the union of two tori. The first, which consists
of divisors equivalent to D that are supported on the first loop, has dimension two,
while the other, which consists of divisors equivalent to D that have positive degree
on the second loop, has dimension one.

We now wish to define the rank of a divisor on a graph. As the previous example
shows, the appropriate definition should not be the dimension of the linear system
jDj, considered as a polyhedral complex.4 Instead, we note that a line bundle L on
an algebraic curve C has rank at least r if and only if, for every collection of r points
of C, there is a nonzero section of L that vanishes at those points. This motivates the
following definition.

Definition 4.2. Let D be a divisor on a (metric) graph. If D is not equivalent to an
effective divisor, we define its rank to be �1. Otherwise, we define r.D/ to be the
largest nonnegative integer r such that jD � Ej ¤ ; for all effective divisors E of
degree r.

Example 4.3. Even when a linear series is equidimensional, its dimension may not
be equal to the rank of the corresponding divisor. For example, consider the metric
graph pictured in Fig. 6, consisting of a loop meeting a line segment in a vertex v.
The linear system jvj is 1-dimensional, because v is equivalent to any point on the
line segment. The rank of v, however, is 0, because if w lies in the interior of the
loop, then v is not equivalent to w.

4Another natural idea would be to try to define r.D/ as one less than the “dimension” of R.D/
considered as a semimodule over the tropical semiring T consisting of R [ f1g together with the
operations of min and plus. However, this approach also faces significant difficulties. See [73] for
a detailed discussion of the tropical semimodule structure on R.D/.
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Fig. 6 The vertex v moves in
a one-dimensional family, but
has rank zero

v

Remark 4.4. There are several other notions of rank in the literature related to our
setup of a line bundle on a degenerating family of curves. We mention, for example,
the generalized rank functions of Katz and Zureick-Brown [80] and the algebraic
rank of Caporaso [35]. The rank as defined here is sometimes referred to as the
combinatorial rank to distinguish it from these other invariants.

As in the case of curves, we write

Wr
d.�/ WD fD 2 Picd.�/ j r.D/ 	 rg:

We similarly define the gonality of a graph to be the smallest degree of a divisor of
rank at least one. The Clifford index of the graph is

Cliff.�/ WD minfdeg.D/ � 2r.D/ j r.D/ > maxf0; deg.D/ � gC 1gg:

Remark 4.5. The definition of gonality above is sometimes called the divisorial
gonality, to distinguish it from the stable gonality, which is the smallest degree of
a harmonic morphism from a modification of the given metric graph to a tree. The
divisorial gonality is always less than or equal to the stable gonality, see, e.g., [9].

4.2 Specialization

One of the key properties of the combinatorial rank is its behavior under special-
ization. Note that the specialization map takes effective line bundles to effective
divisors. Combining this with the fact that it takes principal divisors to principal
divisors, we see that, for any divisor D on C, we have

Trop jDj 
 jTrop.D/j and

tropL.D/ 
 R.Trop.D//:

Combining this with the definition of rank yields the following semicontinuity
result.

Specialization Theorem. [17] Let D be a divisor on C. Then

r.D/ � r.Trop.D//:
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Another way of stating this is that Trop.Wr
d.C// 
 Wr

d.�/: The power of the
Specialization Theorem lies in the fact that the rank of the divisor D is an algebro-
geometric invariant, whereas the rank of Trop.D/ is a combinatorial invariant. We
can therefore use techniques from each field to inform the other. For example, an
immediate consequence of specialization is the following fact.

Theorem 4.6. Let � be a metric graph of genus g, and let d; r be positive integers
such that g � .rC 1/.g � dC r/ 	 0. Then Wr

d.�/ ¤ ;.
Proof. As we will see in Corollary 7.2, there exist a curve C over a discretely valued
field K, and a semistable R-model C of C such that the dual graph of the central fiber
is isometric to � . A well-known theorem of Kempf and Kleiman–Laksov [84, 86]
asserts that Wr

d.C/ ¤ ;. It follows from Theorem 4.2 that Wr
d.�/ ¤ ; as well.

Corollary 4.7. A metric graph of genus g has gonality at most d gC2
2
e.

Remark 4.8. We are unaware of a purely combinatorial proof of Theorem 4.6. There
are many reasons that such a proof would be of independent interest. For example,
a combinatorial proof could shed some light on whether the analogous statement is
true for finite graphs, as conjectured in [17, Conjectures 3.10, 3.14].5

4.3 Riemann–Roch

Another key property of the combinatorial rank is that it satisfies a tropical analogue
of the Riemann–Roch theorem:

Tropical Riemann–Roch Theorem ([63, 101]). Let � be a metric graph of genus
g, and let K� WDP

v2�.val.v/ � 2/v be the canonical divisor on � . Then for every
divisor D on � ,

r.D/ � r.K� � D/ D deg.D/ � gC 1:

The first result of this kind was the discrete analogue of Theorem 4.3 for finite
(non-metric) graphs proved in [19]. In the Baker–Norine Riemann–Roch theorem,
one defines r.D/ for a divisor D on a graph G exactly as in Definition 4.2, the
subtle difference being that the effective divisor E is restricted to the vertices of
G. Gathmann and Kerber [63] showed that one can deduce Theorem 4.3 from the
Baker–Norine theorem using a clever approximation argument, whereas Mikhalkin
and Zharkov [101] generalized the method of proof from [19] to the metric graph

5Sam Payne has pointed out that there is a gap in the proof of Conjectures 3.10 and 3.14 of
Baker [17] given in [34]. The claim on page 82 that Wr

d;� has nonempty fiber over b0 does not

follow from the discussion that precedes it. A priori, the fiber of Wr
d;� over b0 might be contained

in the boundary Pd
� X Picd

� of the compactified relative Picard scheme.
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setting. Later on, Hladky–Kral–Norine [75] and Luo [96] proved theorems which
imply that one can also deduce Riemann–Roch for graphs from tropical Riemann–
Roch. (We will discuss Luo’s theory of rank-determining sets in Sect. 5.2.) So
in retrospect, one can say that in some sense the Baker–Norine theorem and the
theorem stated above are equivalent.

Baker and Norine’s strategy of proof for Theorem 4.3, as modified by Mikhalkin
and Zharkov, is to first show that if O is an orientation of the graph (i.e., a choice of
a head vertex and tail vertex for each edge of G), then

DO WD
X

v2V.G/

.indegO.v/ � 1/v

is a divisor of degree g�1, and this divisor has rank �1 if and only if the orientation
O is acyclic. This fact helps to establish the Riemann–Roch theorem in the case
of divisors of degree g � 1, which serves as the base case for the more general
argument. It is interesting to note that the tropical Riemann–Roch theorem has thus
far resisted attempts to prove it via classical algebraic geometry. At present, neither
the tropical Riemann–Roch theorem nor the classical Riemann–Roch theorem for
algebraic curves is known to imply the other.

If C is a strongly semistable R-model for a curve C over a discretely valued field
K with the property that all irreducible components of the special fiber C0 have
genus 0, then the multidegree of the relative dualizing sheaf 	1

C=R is equal to the
canonical divisor of the graph G. This is a simple consequence of the adjunction
formula, which shows more generally that mdeg.	1

C=R/ D K#
.G;!/ in the terminology

of Sect. 4.4 below. If K is not discretely valued, this is still true with the right
definition of the sheaf 	1

C=R (see [81]). This “explains” in some sense why there
is a canonical divisor on a metric graph while on an algebraic curve there is merely
a canonical divisor class.

It is clear from the definition of rank that if D and E are divisors on a metric
graph � having nonnegative rank, then r.D C E/ 	 r.D/ C r.E/. Combining this
with tropical Riemann–Roch, one obtains a tropical version of Clifford’s inequality:

Tropical Clifford’s Theorem. Let D be a special divisor on a metric graph � , that
is, a divisor such that both D and K� � D have nonnegative rank. Then

r.D/ � 1

2
deg.D/:

Remark 4.9. The classical version of Clifford’s theorem is typically stated in two
parts. The first part is the inequality above, while the second part states that, when
equality holds, either D � 0, D � KC or the curve C is hyperelliptic and the
linear equivalence class of D is a multiple of the unique g12. The same conditions
for equality hold in the tropical case as well, by a recent theorem of Coppens, but
the proof is quite subtle as the classical methods do not work in the tropical context.
See [52] for details.
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Fig. 7 Two metric graphs of genus 3, the first of which is hyperelliptic, and the second of which
is not. (All edges have length 1)

Note that, as in the case of curves, the Riemann–Roch theorem significantly
limits the possible ranks that a divisor of fixed degree on a metric graph may have.
For example, a divisor of negative degree necessarily has rank �1, so a divisor
of degree d > 2g � 2 must have rank d � g. It is only in the intermediate range
0 � d � 2g � 2 where there are multiple possibilities for the rank.

Example 4.10. The canonical divisor on a circle is trivial, and it is the only divisor
of degree 0 with nonnegative rank. If D is a divisor of degree d > 0, then by
Riemann–Roch D has rank d� 1. This can also be seen using the fact that the circle
is a torsor for its Jacobian, as in Example 3.4: if E is an effective divisor of degree
d � 1, then there is a unique point P such that D� E � P, and hence r.D/ 	 d � 1.

Example 4.11. The smallest genus for which the rank of an effective divisor is not
completely determined by the degree is genus 3. Pictured in Fig. 7 are two examples
of genus 3 metric graphs, the first of which is hyperelliptic, meaning that it admits
a divisor of degree 2 and rank 1, and the second of which is not. For the first graph,
one can check by hand that the sum of the two vertices on the left has rank at least 1,
and it cannot have rank higher than 1 by Clifford’s theorem. We will show that the
second graph is not hyperelliptic in Example 5.4, as the argument will require some
techniques for computing ranks of divisors that we will discuss in the next section.

4.4 Divisors on Vertex-Weighted Graphs

In [6], Amini and Caporaso formulate a refinement of the Specialization Theorem
which takes into account the genera of the components of the special fiber. In this
section we describe their result following the presentation in [5].

A vertex-weighted metric graph is a pair .�; !/ consisting of a metric graph �
and a weight function ! W � ! Z
0 such that !.x/ D 0 for all but finitely many
x 2 � . Following [6], we define a new metric graph �# by attaching !.x/ loops
of arbitrary positive length at each point x 2 � . There is a natural inclusion of �
into �#. The canonical divisor of .�; !/ is defined to be
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K# D K� C
X

x2�
2!.x/;

which can naturally be identified with the canonical divisor of K�# restricted to � .
Its degree is 2g# � 2, where g# D g.�/CPx2� !.x/ is the genus of �#.

Following [6], the weighted rank r# of a divisor D on � is defined to be r#.D/ WD
r�#.D/. By [5, Corollary 4.12], we have the more intrinsic description

r#.D/ D min
0�E�W

�
deg.E/C r�.D � 2E/

�
;

where W DPx2� !.x/.x/.
The Riemann–Roch theorem for �# implies the following “vertex-weighted”

Riemann–Roch theorem for �:

r#.D/ � r#.K# � D/ D deg.D/C 1 � g#:

If C is a curve over K, together with a semistable model C over R, we define
the associated vertex-weighted metric graph .�; !/ by taking � to be the skeleton
of C and defining the weight function ! by !.v/ D gv . With this definition, the
genus of the weighted metric graph .�; !/ is equal to the genus of C and we
have trop.KC/ � K# on � [5, Sect. 4.7.1]. The following weighted version of the
Specialization Theorem, inspired by the results of [6], is proved in [5, Theorem
4.13]:

Weighted Specialization Theorem. For every divisor D 2 Div.C/, we have
rC.D/ � r#.trop.D//.

5 Combinatorial Techniques

The tropical approach to degeneration of line bundles in algebraic geometry derives
its power from the combinatorial tools which one has available, many of which have
no classical analogues. We describe some of these tools in this section.

5.1 Reduced Divisors and Dhar’s Burning Algorithm

Definition 5.1. Let G be a finite graph. Given a divisor D 2 Div.G/ and a vertex v
of G, we say that D is v-reduced if

(RD1) D.w/ 	 0 for every w ¤ v and
(RD2) for every nonempty set A 
 V.G/ X fvg there is a vertex w 2 A such that

outdegA.w/ > D.w/.
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Here outdegA.w/ denotes the outdegree of w with respect to A, i.e., the number
of edges connecting w 2 A to a vertex not in A. The following important result
(cf. [19, Proposition 3.1]) shows that v-reduced divisors form a distinguished set of
representatives for linear equivalence classes of divisors on G:

Lemma 5.2. Every divisor on G is equivalent to a unique v-reduced divisor.

If D has nonnegative rank, the v-reduced divisor equivalent to D is the divisor in
jDj that is lexicographically “closest” to v. It is a discrete analogue of the unique
divisor in a classical linear series jDj with the highest possible order of vanishing at
a given point p 2 C.

There is a simple algorithm for determining whether a given divisor satisfying
(RD1) above is v-reduced, known as Dhar’s burning algorithm. For w ¤ v, imagine
that there are D.w/ buckets of water at w. Now, light a fire at v. The fire starts
spreading through the graph, burning through an edge as soon as one of its endpoints
is burnt, and burning a vertex w if the number of burnt edges adjacent to w is greater
than D.w/ (that is, there is not enough water to fight the fire). The divisor D is
v-reduced if and only if the fire consumes the whole graph. For a detailed account
of this algorithm, we refer to [55] and the more recent [22, Sect. 5.1].

There is a completely analogous set of definitions and results for metric graphs.
Let � be a metric graph, let D be a divisor on � , and choose a point v 2 �

(which need not be a vertex). We say that D is v-reduced if the two conditions
from Definition 5.1 hold, with the second condition replaced by

(RD20) for every closed, connected, nonempty set A 
 � X fvg there is a point
w 2 A such that outdegA.w/ > D.w/.

It is not hard to see that condition (RD20) is equivalent to requiring that for every
non-constant tropical rational function f 2 R.�/ with a global maximum at v, the
divisor D0 WD DC div.f / does not satisfy (RD1), i.e., there exists w ¤ v in � such
that D0.w/ < 0.

The analogue of Lemma 5.2 remains true in the metric graph context: every
divisor on � is equivalent to a unique v-reduced divisor. Moreover, Dhar’s burning
algorithm as formulated above holds almost verbatim for metric graphs: the fire
starts spreading through � , getting blocked at a point w 2 � iff the number of burnt
tangent directions at w is less than or equal to D.w/; the divisor D is v-reduced if
and only if the fire consumes all of � .

We note the following important fact, which is useful for computing ranks of
divisors.

Lemma 5.3. Let D be a divisor on a finite or metric graph, and suppose that D is
v-reduced for some v. If D has nonnegative rank, then D.v/ 	 r.D/.

Example 5.4. Let � be the complete graph on 4 vertices endowed with arbitrary
edge lengths. We can use the theory of reduced divisors to show that � is not
hyperelliptic, justifying one of the claims in Example 4.11. Suppose that there exists
a divisor D on � of degree 2 and rank 1 and choose a vertex v. Since D has rank 1,
D � D0 WD v C v0 for some v0 2 � . Now, let w ¤ v; v0 be a vertex. Note that there
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Fig. 8 Using Dhar’s burning algorithm to compute the v5-reduced divisor equivalent to v1 C v2.
The burnt vertices after each iteration are colored white

are at least two paths from w to v that do not pass through v0, and if v D v0, there are
three. It follows by Dhar’s burning algorithm that D0 is w-reduced. But D0.w/ D 0,
contradicting the fact that D (and hence D0) has rank 1.

If a given divisor is not v-reduced, Dhar’s burning algorithm provides a method
for finding the unique equivalent v-reduced divisor. In the case of finite graphs, after
performing Dhar’s burning algorithm, if we fire the vertices that are left unburnt we
obtain a divisor that is lexicographically closer to the v-reduced divisor, and after
iterating the procedure a finite number of times, it terminates with the v-reduced
divisor (cf. [22]). For metric graphs, there is a similar procedure but with additional
subtleties—we refer the interested reader to [96, Algorithm 2.5] and [14].

Example 5.5. Consider the finite graph depicted in Fig. 8, consisting of two trian-
gles meeting at a vertex v3. We let D D v1 C v2, and compute the v5-reduced
divisor equivalent to D. After performing Dhar’s burning algorithm once, we see
that vertices v1 and v2 are left unburnt. Firing these, we see that D is equivalent to
2v3. Performing Dhar’s burning algorithm a second time, all three of the vertices
v1; v2; v3 are not burnt. Firing these, we obtain the divisor v4 C v5. A third run of
Dhar’s burning algorithm shows that v4 C v5 is v5-reduced.

5.2 Rank-Determining Sets

The definition of the rank of a divisor on a finite graph G implies easily that there
is an algorithm for computing it.6 Indeed, since there are only a finite number of
effective divisors E of a given degree on G, we are reduced to the problem of
determining whether a given divisor is equivalent to an effective divisor or not. This
problem can be solved in polynomial time by using the iterated version of Dhar’s
algorithm described above to compute the v-reduced divisor D0 equivalent to D for
some vertex v. If D0.v/ < 0, then jDj D ;, and otherwise jDj ¤ ;.

6Although there is no known efficient algorithm; indeed, it is proved in [85] that this problem is
NP-hard.
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If one attempts to generalize this algorithm to the case of metric graphs, there is
an immediate problem, since there are now an infinite number of effective divisors
E to test. The idea behind rank-determining sets is that it suffices, in the definition
of r.D/, to restrict to a finite set of effective divisors E.

Definition 5.6. Let � be a metric graph. A subset A 
 � is a rank-determining set
if, for any divisor D on � , D has rank at least r if and only if jD � Ej ¤ ; for every
effective divisor E of degree r supported on A.

In [96], Luo provides a criterion for a subset of a metric graph to be rank-
determining. A different proof of Luo’s criterion has been given recently by
Backman [15]. Luo defines a special open set to be a connected open set U 
 �

such that every connected component X 
 � XU contains a boundary point v such
that outdegX.v/ 	 2.

Theorem 5.7 ([96]). A subset A 
 � is rank-determining if and only if all
nonempty special open subsets of � intersect A.

Corollary 5.8. Let G be a model for a metric graph � . If G has no loops, then the
vertices of G are a rank-determining set.

There are lots of other interesting rank-determining sets besides vertices of
models.

Example 5.9. Let G be a model for a metric graph � . Choose a spanning tree of
G and let e1; : : : ; eg be the edges in the complement of the spanning tree. For each
such edge ei, choose a point vi in its interior, and let w be any other point of � . Then
the set A D fv1; : : : ; vgg [ fwg is rank-determining. This construction is used, for
example, in [52].

Example 5.10. Let G be a bipartite finite graph, and let � be a metric graph having
G as a model. If we fix a 2-coloring of the vertices of G, then the vertices of one
color are a rank-determining set. This is the key observation in [77], in which the
second author shows that the Heawood graph admits a divisor of degree 7 and
rank 2, regardless of the choice of edge lengths. The interest in this example arises
because it shows that there is a nonempty open subset of the (highest-dimensional
component of the) moduli space Mtrop

8 containing no Brill–Noether general metric
graph. (See Sect. 7.1 for a description of Mtrop

g .)

5.3 Tropical Independence

Many interesting questions about algebraic curves concern the ranks of linear
maps between the vector spaces L.D/. For example, both the Gieseker–Petri
theorem and the Maximal Rank Conjecture are statements about the rank of the
multiplication maps



386 M. Baker and D. Jensen

 W L.D/˝ L.D0/! L.DC D0/

for certain pairs of divisors D;D0 on a general curve.
One simple strategy for showing that a map, such as , has rank at least k is

to carefully choose k elements of the image, and then check that they are linearly
independent. To this end, we formulate a notion of tropical independence, which
gives a sufficient condition for linear independence of rational functions on a curve
C in terms of the associated piecewise linear functions on the metric graph � .

Definition 5.11 ([78]). A set of piecewise linear functions ff1; : : : ; fkg on a metric
graph � is tropically dependent if there are real numbers b1; : : : ; bk such that the
minimum

minff1.v/C b1; : : : ; fk.v/C bkg

occurs at least twice at every point v in � .

If there are no such real numbers b1; : : : ; bk, then we say ff1; : : : ; fkg is tropically
independent. We note that linearly dependent functions on C specialize to tropically
dependent functions on � . Although the definition of tropical independence is
merely a translation of linear dependence into tropical language, one can often
check tropical independence using combinatorial methods. The following lemma
illustrates this idea.

Lemma 5.12 ([78]). Let D be a divisor on a metric graph � , with f1; : : : ; fk
piecewise linear functions in R.D/, and let

� D minff1; : : : ; fkg:

Let �j � � be the closed set where � D fj, and let v 2 �j. Then the support of
div.�/C D contains v if and only if v belongs to either

1. the support of div.fj/C D or
2. the boundary of �j.

5.4 Break Divisors

Another useful combinatorial tool for studying divisor classes on graphs and
metric graphs is provided by the theory of break divisors, which was initiated
by Mikhalkin–Zharkov in [101] and studied further by An–Baker–Kuperberg–
Shokrieh in [10]. Given a metric graph � of genus g, fix a model G for � . For
each spanning tree T of G, let †T be the image of the canonical map
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Y

e62T

e! Divg
C.�/

sending .p1; : : : ; pg/ to p1 C � � � C pg. (Here Divg
C.�/ denotes the set of effective

divisors of degree g on � and e denotes a closed edge of G, so the points pi are
allowed to be vertices of G.) We call B.�/ WD S

T †T the set of break divisors
on � . The set of break divisors does not depend on the choice of the model G.
The following result shows that the natural map B.�/ � Divg

C.�/ ! Picg.�/ is
bijective:

Theorem 5.13 ([10, 101]). Every divisor of degree g on � is linearly equivalent to
a unique break divisor.

Since B.�/ is a compact subset of Divg
C.�/ and Picg.�/ is also compact, it

follows from general topology that there is a canonical continuous section � to
the natural map 
 W Divg.�/ ! Picg.�/ whose image is precisely the set of
break divisors. In particular, every degree g divisor class on a metric graph � has
a canonical effective representative. The analogue of this statement in algebraic
geometry is false: when g D 2, for example, the natural map Sym2.C/ D
Div2C.C/ ! Pic2.C/ is a birational isomorphism which blows down the P

1

corresponding to the fiber over the unique g12, and this map has no section. This
highlights an interesting difference between the algebraic and tropical settings.

The proof of Theorem 5.13 in [101] utilizes the theory of tropical theta functions
and the tropical analogue of Riemann’s theta constant. A purely combinatorial
proof based on the theory of q-connected orientations is given in [10], and the
combinatorial proof yields an interesting analogue of Theorem 5.13 for finite
graphs. If G is a finite graph and � is its regular realization, in which all edges
are assigned a length of 1, define the set of integral break divisors on G to be
B.G/ D B.�/ \ Div.G/. In other words, B.G/ consists of all break divisors for
the underlying metric graph � which are supported on the vertices of G.

Theorem 5.14 ([10]). Every divisor of degree g on G is linearly equivalent to a
unique integral break divisor.

Since Picg.G/ and Pic0.G/ D Jac.G/ have the same cardinality (the former is
naturally a torsor for the latter), it follows from Remark 2.4 that the number of
integral break divisors on G is equal to the number of spanning trees of G, though
there is in general no canonical bijection between the two. A family of interesting
combinatorial bijections is discussed in [23].

If we define CT D 
.†T/, then Picg.�/ D S
T CT by Theorem 5.13. It turns

out that the relative interior of each cell CT is (the interior of) a parallelotope, and
if T ¤ T 0, then the relative interiors of CT and CT0 are disjoint. Thus Picg.�/

has a polyhedral decomposition depending only on the choice of a model for � .
The maximal cells in the decomposition correspond naturally to spanning trees, and
the minimal cells (i.e., vertices) correspond naturally to integral break divisors, as
illustrated in Fig. 9.
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Fig. 9 A polyhedral
decomposition of Pic2.�/ for
the metric realization of the
graph G obtained by deleting
an edge from the complete
graph K4

2

2

Remark 5.15. Mumford’s non-Archimedean analytic uniformization theory for
degenerating abelian varieties [102], as recently refined by Gubler and translated
into the language of tropical geometry [67, 68], shows that if G is the dual graph of
the special fiber of a regular R-model C for a curve C, then the canonical polyhedral
decomposition fCTg of Picg.�/ gives rise to a canonical proper R-model for Picg.C/.
Sam Payne has asked (Payne, 2013, Personal communication) whether (up to the
identification of Picg with Pic0) this model coincides with the compactification of
the Néron model of Jac.C/ introduced by Caporaso in [32].

Break divisors corresponding to the relative interior of some cell CT are called
simple break divisors. They can be characterized as the set of degree g effective
divisors D on � such that �nsupp.D/ is connected and simply connected. Dhar’s
algorithm shows that such divisors are universally reduced, i.e., they are q-reduced
for all q 2 � . A consequence of this observation and the Riemann–Roch theorem
for metric graphs is the following result, which is useful in tropical Brill–Noether
theory (cf. Sect. 9.2).

Proposition 5.16. Let � be a metric graph and let D be a simple break divisor
(or more generally any universally reduced divisor) on � . Then D has rank 0 and
K� � D has rank �1. Therefore:

(1) The set of divisor classes in Picg.�/ having rank at least 1 is contained in the
codimension one skeleton of the polyhedral decomposition

S
T CT.

(2) If T is a spanning tree for some model G of � and D;E are effective divisors
with DCE linearly equivalent to K� , then there must be an open edge eı in the
complement of T such that D has no chips on eı.
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Remark 5.17. The set B.�/ of all break divisors on � can be characterized as the
topological closure in Divg

C.�/ of the set of universally reduced divisors.

Remark 5.18. The real torus Picg.�/ has a natural Riemannian metric. One can
compute the volume of Picg.�/ in terms of a matrix determinant associated with G,
and the volume of the cell CT is the product of the lengths of the edges not in T .
Comparing the volume of the torus to the sums of the volumes of the cells CT yields
a dual version of a weighted form of Kirchhoff’s Matrix-Tree Theorem. See [10]
for details.

Part 2: Advanced Topics

We now turn to the more advanced topics of non-Archimedean analysis, tropical
moduli spaces, and metrized complexes. Each of these topics plays an important
role in tropical Brill–Noether theory, and we would be remiss not to mention them
here. We note, however, that most of the applications we discuss in Part 3 do not
require these techniques, and the casual reader may wish to skip this part on the first
pass.

6 Berkovich Analytic Theory

Rather than considering a curve over a discretely valued field and then examining
its behavior under base change, we could instead start with a curve over an
algebraically closed field and directly associate a metric graph to it. We do this
by making use of Berkovich’s theory of analytic spaces. In addition to being a
convenient bookkeeping device for changes in dual graphs and specialization maps
under field extensions, Berkovich’s theory also allows for clean formulations of
some essential results in the theory of tropical linear series, such as the Slope For-
mula (Theorem 6.4 below). The theory also furnishes a wealth of powerful tools for
understanding the relationship between algebraic curves and their tropicalizations.

6.1 A Quick Introduction to Berkovich Spaces

We let K be a field which is complete with respect to a non-Archimedean valuation

val W K� ! R:

We let R � K be the valuation ring, � the residue field, and j � j D exp.�val/ the
corresponding norm on K.
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A multiplicative seminorm on a nonzero ring A is a function j � j W A ! R such
that for all x; y 2 A we have j0j D 0; j1j D 1; jxyj D jxj � jyj, and jxC yj � jxj C jyj.
A multiplicative seminorm is non-Archimedean if jx C yj � maxfjxj; jyjg for all
x; y 2 A, and is a norm if jxj D 0 implies x D 0. If L is a field, a function j�j W L! R

is a non-Archimedean norm if and only if � log j � j W L ! R [ f1g is a valuation
in the sense of Krull.

If X D Spec .A/ is an affine scheme over K, we define its Berkovich analyti-
fication Xan to be the set of non-Archimedean multiplicative seminorms on the
K-algebra A extending the given absolute value on K, endowed with the weakest
topology such that the map Xan ! R defined by j � jx 7! jf jx is continuous for
all f 2 A. One can globalize this construction to give a Berkovich analytification
of an arbitrary scheme of finite type over K. As we have defined it, the Berkovich
analytification is merely a topological space, but it can be equipped with a structure
similar to that of a locally ringed space and one can view Xan as an object in a larger
category of (not necessarily algebraizable) Berkovich analytic spaces. The space
Xan is locally compact and locally path-connected. It is Hausdorff if and only if X
is separated, compact if and only if X is proper, and path-connected if and only if
X is connected. We refer the reader to [29, 51] for more background information
on Berkovich spaces in general, and [16, 25] for more details in the special case of
curves.

There is an alternate perspective on Berkovich spaces which is often useful and
highlights the close analogy with schemes. If K is a field, points of an affine K-
scheme Spec .A/ can be identified with equivalence classes of pairs .L; �/ where
L is a field extension of K, � W A ! L is a K-algebra homomorphism, and two
pairs .L1; �1/ and .L2; �2/ are equivalent if there are embeddings of L1 and L2 into a
common overfield L0 and a homomorphism �0 W A ! L0 such that the composition
�i W A ! Li ! L is �0. Indeed, to a pair .L; �/ one can associate the prime ideal
ker.�/ of A, and to a prime ideal p of A one can associate the pair .K.p/; �/ where
K.p/ is the fraction field of A=p and � W A! K.p/ is the canonical map.

Similarly, if K is a complete valued field, points of Spec .A/an can be identified
with equivalence classes of pairs .L; �/, where L is a complete valued field extension
of K and � W A ! L is a K-algebra homomorphism. The equivalence relation is as
before, except that L0 should be complete and extend the valuation on the Li. Indeed,
to a pair .L; �/ one can associate the multiplicative seminorm a 7! j�.a/j on A, and
to a multiplicative seminorm j � jx one can associate the pair .H.x/; �/ where H.x/ is
the completion of the fraction field of A=ker.j�jx/ and � W A! H.x/ is the canonical
map.

We will assume for the rest of this section that K is algebraically closed and
nontrivially valued. This ensures, for example, that the set X.K/ is dense in Xan.
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If X=K is an irreducible variety, there is a dense subset of Xan consisting of the set
ValX of norms7 on the function field K.X/ that extend the given norm on K. Within
the set ValX , there is a distinguished class of norms corresponding to divisorial
valuations. By definition, a valuation v on K.X/ is divisorial if there is an R-model
X for X and an irreducible component Z of the special fiber of X such that v.f / is
equal to the order of vanishing of f along Z. The set of divisorial points is known to
be dense in Xan.

Remark 6.1. In this survey we have intentionally avoided the traditional perspective
of tropical geometry, in which one considers subvarieties of the torus .K�/n, and the
tropicalization is simply the image of coordinatewise valuation. We refer the reader
to [98] for a detailed account of this viewpoint on tropical geometry. The Berkovich
analytification can be thought of as a sort of intrinsic tropicalization—the one that
does not depend on a choice of coordinates. This is reinforced by the result that the
Berkovich analytification is the inverse limit of all tropicalizations [62, 108].

6.2 Berkovich Curves and Their Skeleta

If C=K is a complete nonsingular curve, the underlying set of the Berkovich analytic
space Can consists of the points of C.K/ together with the set ValC. We write

valy W K.C/� ! R

for the valuation corresponding to a point y 2 ValC D Can X C.K/. The points in
C.K/ are called type-1 points, and the remaining points of Can are classified into
three more types. We will not define points of type 3 or 4 in this survey article; see,
e.g., [24, Sect. 3.5] for a definition. Note, however, that every point of Can becomes
a type-1 point after base-changing to a suitably large complete non-Archimedean
field extension L=K.

If the residue field of K.C/ with respect to valy has transcendence degree 1 over
�, then y is called a type-2 point. These are exactly the points corresponding to
divisorial valuations. Because it has transcendence degree 1 over �, this residue
field corresponds to a unique smooth projective curve over �, which we denote Cy.
A tangent direction at y is an equivalence class of continuous injections � W Œ0; 1�!
Can sending 0 to y, where � � � 0 if �.Œ0; 1�/\ � 0.Œ0; 1�/ © fyg. Closed points of Cy

are in one-to-one correspondence with tangent directions at y in Can.
There is natural metric on the set ValC which is described in detail in [25,

Sect. 5.3]. This metric induces a topology that is much finer than the subspace

7Note that there is a one-to-one correspondence between norms on K.X/ and valuations on K.X/,
hence the terminology ValX . It is often convenient to work with (semi-)valuations rather than (semi-
)norms.
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topology on ValC � Can, and with respect to this metric, ValC is locally an R-tree8

with branching precisely at the type-2 points. The type-1 points should be thought
of as infinitely far away from every point of ValC.

The local R-tree structure arises in the following way. If C is an R-model for
C and Z is a reduced and irreducible component of the special fiber of C, then Z
corresponds to a type-2 point yZ of C. Blowing up a nonsingular closed point of Z
(with respect to some choice of a uniformizer$ 2 mR) gives a new point yZ0 of Can

corresponding to the exceptional divisor Z0 of the blowup. We can then blow up a
nonsingular closed point on the exceptional divisor Z0 to obtain a new point of Can,
and so forth. The resulting constellation of points obtained by all such sequences of
blowups, and varying over all possible choices of $ , is an R-tree TZ rooted at yZ ,
as pictured in Fig. 10. The distance between the points yZ and yZ0 is val.$/.

A semistable vertex set is a finite set of type-2 points whose complement is a
disjoint union of finitely many open annuli and infinitely many open balls. There is
a one-to-one correspondence between semistable vertex sets and semistable models
of C. More specifically, the normalized components of the central fiber of this
semistable model are precisely the curves Cy for y in the semistable vertex set,
and the preimages of the nodes under specialization are the annuli. The annulus
corresponding to a node where Cy meets Cy0 contains a unique open segment with
endpoints y and y0, and its length (with respect to the natural metric on ValC) is
the logarithmic modulus of the annulus. The union of these open segments together
with the semistable vertex set is a closed connected metric graph � contained in
Can, called the skeleton of the semistable model C. If C has genus at least 2, then
there is a unique minimal semistable vertex set in Can and a corresponding minimal
skeleton.

Fix a semistable model C of C and a corresponding skeleton � D �C . Each
connected component of Can X � has a unique boundary point in � , and there is a
canonical retraction to the skeleton

� W Can ! �

taking a connected component of Can X � to its boundary point. There is a natural
homeomorphism of topological spaces Can Š lim ��C , where the inverse limit is
taken over all semistable models C (cf. [25, Theorem 5.2]).

Example 6.2. Figure 10 depicts the Berkovich analytification of an elliptic curve
E=K with non-integral j-invariant jE. In this case, the skeleton � associated with a
minimal proper semistable model of R is isometric to a circle with circumference
� val.jE/. There are an infinite number of infinitely branched R-trees emanating
from the circle at each type-2 point of the skeleton. The retraction map takes a point

8See [21, Appendix B] for an introduction to the theory of R-trees. For our purposes, what is most
important about R-trees is that there is a unique path between any two points.
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Fig. 10 The skeleton of an
elliptic curve with
non-integral j-invariant

x 2 Ean to the endpoint in � of the unique path from x to � . The points of E.K/ lie
“out at infinity” in the picture: they are ends of the R-trees.

6.3 Tropicalization of Divisors and Functions on Curves

Restricting the retraction map � to C.K/ and extending linearly give the tropicaliza-
tion map on divisors

Trop W Div.C/! Div.�/:

If K0 is a discretely valued subfield of K over which C is defined and has
semistable reduction, and if D is a divisor on C whose support consists of K0-rational
points, then the divisor mdeg.D/ on G (identified with a divisor on � via the natural
inclusion) coincides with the tropicalization Trop.D/ defined via retraction to the
skeleton.

Example 6.3. Returning to Example 3.1, in which the metric graph � is a closed
line segment of length 1, by considering the divisor cut out by ya D xbza�b for
positive integers a > b we see that a divisor on CK can tropicalize to any rational
point on � .

Given a rational function f 2 K.C/�, we write trop.f / for the real valued function
on the skeleton � given by y 7! valy.f /. The function trop.f / is piecewise linear with
integer slopes, and thus we obtain a map

trop W K.C/� ! PL.�/:

Moreover, this map respects linear equivalence of divisors, in the sense that if
D � D0 on C then trop.D/ � trop.D0/ on � . In particular, the tropicalization map
on divisors descends to a natural map on Picard groups
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Trop W Pic.C/! Pic.�/:

One can refine this observation as follows. Let x be a type-2 point in Can.
Given a nonzero rational function f on C, one can define its normalized reduction
Nfx with respect to x as follows. Choose c 2 K� such that jf jx D jcj. Define
Nfx 2 �.Cx/

� to be the image of c�1f in the residue field of K.C/ with respect to valx,
which by definition is isomorphic to �.Cx/. Although fx is only well-defined up to
multiplication by an element of ��, its divisor div.fx/ is completely well-defined.
We define the normalized reduction of the zero function to be zero.

Given an .r C 1/-dimensional K-vector space H � K.C/, its reduction NHx D
fNfx j f 2 Hg is an .r C 1/-dimensional vector space over �. Given Qf in the function
field of Cx and a closed point � of Cx, we let s�.Qf / WD ord�.Qf / be the order of
vanishing of Qf at �. If Qf D Nfx for f 2 K.C/�, then s�.Qf / is equal to the slope of
trop.f / in the tangent direction at x corresponding to �. This is a consequence of
the non-Archimedean Poincare–Lelong formula, due to Thuiller [116]. Using this
observation, one deduces the following important result (cf. [25, Theorem 5.15]):

Theorem 6.4 (Slope Formula). For any nonzero rational function f 2 K.C/,

Trop.div.f // D div.trop.f //:

6.4 Skeletons of Higher-Dimensional Berkovich Spaces

The construction of the skeleton of a semistable model of a curve given in Sect. 6.2
can be generalized in various ways to higher dimensions. For brevity, we mention
just three such generalizations. In what follows, X will denote a proper variety of
dimension n over K.

1. Semistable models. Suppose X is a strictly semistable model of X over R. Then
the geometric realization of the dual complex �.X / of the special fiber embeds
naturally in the Berkovich analytic space Xan, and as in the case of curves there is
a strong deformation retraction of Xan onto �.X /. These facts are special cases
of results due to Berkovich; see [104] for a lucid explanation of the constructions
in the special case of strictly semistable models, and [70] for a generalization to
“extended skeleta.”

2. Toroidal embeddings. A toroidal embedding is, roughly speaking, something
which looks étale-locally like a toric variety together with its dense big open
torus. When K is trivially valued, Thuillier [117] associates a skeleton†.X/ of U
and an extended skeleton †.X/ of X to any toroidal embedding U � X (see also
[1]). As in the case of semistable models, the skeleton †.X/ embeds naturally
into Xan and there is a strong deformation retract Xan ! †.X/.

3. Abelian varieties. If E=K is an elliptic curve with non-integral j-invariant, the
skeleton associated with a minimal proper semistable model of R can also be
constructed using Tate’s non-Archimedean uniformization theory. In this case,
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the skeleton of Ean is the quotient of the skeleton of Gm (which is isomorphic to R

and consists of the unique path from 0 to1 in .P1/an) by the map x 7! x�val.jE/.
Using Mumford’s higher-dimensional generalization of Tate’s theory [102], one
can define a skeleton associated with any totally degenerate abelian variety A;
it is a real torus of dimension dim.A/. This can be generalized further using
Raynaud’s uniformization theory to define a canonical notion of skeleton for
an arbitrary abelian variety A=K (see, e.g., [68]). If A is principally polarized,
there is an induced tropical principal polarization on the skeleton of A, see [20,
Sect. 3.7] for a definition. It is shown in [20] that the skeleton of the Jacobian of
a curve C is isomorphic to the Jacobian of the skeleton as principally polarized
real tori:

Theorem 6.5 ([20]). Let C be a curve over an algebraically closed field, com-
plete with respect to a nontrivial valuation, such that the minimal skeleton of
the Berkovich analytic space Can is isometric to � . Then there is a canonical
isomorphism of principally polarized real tori Jac.�/ Š †.Jac.C/an/ making the
following diagram commute.

Remark 6.6. Theorem 6.5 has the following interpretation in terms of tropical
moduli spaces, which we discuss in greater detail in Sect. 7. There is a map

trop W Mg ! Mtrop
g

from the moduli space of genus g 	 2 curves to the moduli space of tropical curves
of genus g which takes a curve C to its minimal skeleton, considered as a vertex-
weighted metric graph. There is also a map (of sets, for example)

trop W Ag ! Atrop
g

from the moduli space of principally polarized abelian varieties of dimension g to
the moduli space of “principally polarized tropical abelian varieties” of dimension
g, taking an abelian variety to its skeleton in the sense of Berkovich. Finally, there
are Torelli maps Mg ! Ag (resp., Mtrop

g ! Atrop
g ) which take a curve (resp.,

metric graph) to its Jacobian [31]. Theorem 6.5 implies that the following square
commutes:
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This is also proved, with slightly different hypotheses, in [118, Theorem A].

7 Moduli Spaces

7.1 Moduli of Tropical Curves

The moduli space of tropical curves Mtrop
g has been constructed by numerous authors

[1, 33, 64, 87]. In this section, we give a brief description of this object, with an
emphasis on applications to classical algebraic geometry.

Given a finite vertex-weighted graph G D .G; !/ in the sense of Sect. 4.4, the
set of all vertex-weighted metric graphs .�; !/ with underlying finite graph G is
naturally identified with

Mtrop
G WD R

jE.G/j
>0 =Aut.G/

with the Euclidean topology. If G0 is obtained from G by contracting an edge, then
we may think of a metric graph in Mtrop

G0 as a limit of graphs in Mtrop
G in which the

length of the given edge approaches zero. Similarly, if G0 is obtained from v by
contracting a cycle to a vertex v and augmenting the weight of v by one, we may
think of a metric graph in Mtrop

G0 as a limit of graphs in Mtrop
G . In this way, we may

construct the moduli space of tropical curves

Mtrop
g WD

G
Mtrop

G ;

where the union is over all stable9 vertex-weighted graphs G of genus g, and the
topology is induced by gluing Mtrop

G0 to the boundary of Mtrop
G whenever G0 is a

contraction of G in one of the two senses above.
We note that the moduli space Mtrop

g is not compact, since edge lengths in a
metric graph must be finite and thus there is no limit if we let some edge length
tend to infinity. There exists a compactification M

trop
g , known as the moduli space of

extended tropical curves, which parameterizes vertex-weighted metric graphs with
possibly infinite edges; we refer to [1] for details.

9A vertex-weighted finite graph .G; !/ is called stable if every vertex of weight zero has valence
at least 3.
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Let Mg be the (coarse) moduli space of genus g curves and Mg its Deligne–
Mumford compactification, considered as varieties over C endowed with the trivial
valuation. Points of Man

g can be identified with equivalence classes of points of
Mg.L/, where L is a complete non-Archimedean field extension of C (with possibly
nontrivial valuation). There is a natural map Trop W Man

g ! Mtrop
g which on

the level of L-points takes a smooth proper genus g curve C=L to the minimal
skeleton of its Berkovich analytification Can. This map extends naturally to a map
Trop W Man

g ! M
trop
g .

Let †.Mg/ (resp., †.Mg/) denote the skeleton, in the sense of Thuillier, of Man
g

(resp., M
an
g ) with respect to the natural toroidal structure coming from the boundary

strata of Mg X Mg. According to the main result of Abramovich et al. [1], there is
a very close connection between the moduli space of tropical curves Mtrop

g and the
Thuillier skeleton †.Mg/:

Theorem 7.1 ([1]). There is a canonical homeomorphism10

ˆ W †.Man
g /! Mtrop

g

which extends uniquely to a map

ˆ W †.Man
g /! M

trop
g

of compactifications in such a way that

commutes, where P W Man
g ! †.M

an
g / is the canonical deformation retraction.

It follows from Theorem 7.1 that the map Trop W M
an
g ! M

trop
g is continuous,

proper, and surjective. From this, one easily deduces:

Corollary 7.2. Let K be a complete and algebraically closed non-Archimedean
field with value group R, and let � be a stable metric graph of genus at least 2.
Then there exists a curve C over K such that the minimal skeleton of the Berkovich
analytic space Can is isometric to � .

10This homeomorphism is in fact an isomorphism of “generalized cone complexes with integral
structure” in the sense of Abramovich et al. [1].



398 M. Baker and D. Jensen

Remark 7.3. A more direct proof of Corollary 7.2, which in fact proves a stronger
statement by replacing � with an arbitrary metrized complex of curves, and the field
K with any complete and algebraically closed non-Archimedean field whose value
group contains all edge lengths in some model for � , can be found in Theorem
3.24 of [8]. The proof uses formal and rigid geometry. A variant of Corollary 7.2 for
discretely valued fields, proved using deformation theory, can be found in Appendix
B of [17].

Remark 7.4. Let R be a complete DVR with field of fractions K and infinite residue
field �. The argument in Appendix B of [17] shows that for any finite connected
graph G, there exists a regular, proper, flat curve C over R whose generic fiber is
smooth and whose special fiber is a maximally degenerate semistable curve with
dual graph G. One should note the assumption here that � has infinite residue
field. In the case where the residue field is finite—for example, when K D Qp—
the question of which graphs arise in this way remains an open problem. The
significance of this problem is its relation to the rational points of the moduli space
of curves. For example, the existence of Brill–Noether general curves defined over
Q for large g is a well-known open question. Lang’s conjecture predicts that, for
large g, such curves should be contained in a proper closed subset of the moduli
space of curves. One suggested candidate for this closed subset is the stable base
locus of the canonical bundle, which is known to contain only Brill–Noether special
curves.

7.2 Brill–Noether Rank

The motivating problem of Brill–Noether theory is to describe the variety Wr
d.C/

parameterizing divisors of a given degree and rank on a curve C. A first step in
such a description should be to compute numerical invariants of Wr

d.C/, such as its
dimension. Our goal is to use the combinatorics of the dual graph � to describe
Wr

d.�/. Combining this combinatorial description with the Specialization Theorem,
we can then hope to understand the Brill–Noether locus of our original curve.
One might be tempted to think that the tropical analogue of dim Wr

d.C/ should be
dim Wr

d.�/, but as in the case of linear series, the dimension is not a well-behaved
tropical invariant. We note one example of such poor behavior.

Example 7.5. In [93, Theorem 1.1], it is shown that the function that takes a metric
graph � to dim Wr

d.�/ is not upper semicontinuous on Mtrop
g . To see this, the authors

construct the following example. Let � be the loop of loops of genus 4 depicted in
Fig. 11, with edges of length `1 < `2 < `3 as pictured. Suppose that `1 C `2 > `3.
Then dim W1

3 .�/ D 1. If, however, we consider the limiting metric graph �0 as
`1; `2, and `3 approach zero, then on this graph the only divisor of degree 3 and
rank 1 is the sum of the three vertices, hence dim W1

3 .�0/ D 0.



Degenerations of Linear Series from the Tropical Point of View 399

�1�2

�3w3 v3

v2 w1

w2 v1

Fig. 11 The metric graph � from [93]

The solution to this problem has a very similar flavor to the definition of rank
recorded in Definition 4.2. Specifically, given a curve C, consider the incidence
correspondence

ˆ D f.p1; : : : ; pd;D/ 2 Cd �Wr
d.C/ j p1 C � � � C pd 2 jDjg:

The forgetful map to Wr
d.C/ has fibers of dimension r, so dimˆ D rC dim Wr

d.C/,
and hence the image ofˆ in Cd has the same dimension. This suggests the following
surrogate for the dimension of Wr

d.C/.

Definition 7.6. Let � be a metric graph, and suppose that Wr
d.�/ is nonempty. The

Brill–Noether rank wr
d.�/ is the largest integer k such that, for every effective divisor

E of degree rC k, there exists a divisor D 2 Wr
d.�/ such that jD � Ej ¤ ;.

Example 7.7. Note that, in the previous example, although dim W1
3 .�/ D 1, the

Brill–Noether rank w13.�/ D 0. To see this, it suffices to find a pair of points such
that no divisor of degree 3 and rank 1 passes through both points simultaneously.
Indeed, it is shown in [93, Theorem 1.9] that no divisor of rank 1 and degree 3
contains v3 C w3.

The Brill–Noether rank is much better behaved than the dimension of the Brill–
Noether locus; for example (cf. [93, Theorem 1.6] and [90, Theorem 5.4]):

Theorem 7.8. The Brill–Noether rank is upper semicontinuous on the moduli
space of tropical curves.

The Brill–Noether rank also satisfies the following analogue of the Specialization
Theorem (cf. [93, Theorem 1.7] and [90, Theorem 5.7]):
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Theorem 7.9. If C is a curve over an algebraically closed field K with nontrivial
valuation, and the skeleton of the Berkovich analytic space Can is isometric to � ,
then

dim Wr
d.C/ � wr

d.�/:

We note the following generalization of Theorem 4.6.

Corollary 7.10. Let � be a metric graph of genus g. Then wr
d.�/ 	 � WD g�.rC1/

.g � dC r/.

Proof. The general theory of determinantal varieties shows that, if Wr
d.C/ is

nonempty, then its dimension is at least �. The result then follows from [84, 86]
and Theorem 7.9.

Remark 7.11. It is unknown whether Wr
d.�/ must have local dimension at least �.

Note, however, that this must hold in a neighborhood of a divisor D 2 Trop Wr
d.C/.

Hence, if Wr
d.�/ has smaller than the expected local dimension in a neighborhood

of some divisor D, then D does not lift to a divisor of rank r on a curve C having �
as its tropicalization.

8 Metrized Complexes of Curves and Limit Linear Series

In this section we describe the work of Amini and Baker [5] on the Riemann–Roch
and Specialization Theorems for divisors on metrized complexes of curves, along
with applications to the theory of limit linear series.

8.1 Metrized Complexes of Curves

Metrized complexes of curves can be thought of, loosely, as objects which interpo-
late between classical and tropical algebraic geometry. More precisely, a metrized
complex of algebraic curves over an algebraically closed field � is a finite metric
graph � together with a fixed model G and a collection of marked complete
nonsingular algebraic curves Cv over �, one for each vertex v of G; the set Av

of marked points on Cv is in bijection with the edges of G incident to v. A metrized
complex over C can be visualized as a collection of compact Riemann surfaces
connected together via real line segments, as in Fig. 12.

The geometric realization jCj of a metrized complex of curves C is defined as the
topological space given by the union of the edges of G and the collection of curves
Cv , with each endpoint v of an edge e identified with the corresponding marked
point xe

v (as suggested by Fig. 12). The genus of a metrized complex of curves C,
denoted g.C/, is by definition g.C/ D g.�/CPv2V gv , where gv is the genus of Cv
and g.�/ is the first Betti number of � .
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A divisor on a metrized complex of curves C is an element D of the free abelian
group on jCj. Thus a divisor on C can be written uniquely as D DPx2jCj ax x where
ax 2 Z, all but finitely many of the ax are zero, and the sum is over all points of �nV
as well as Cv.�/ for v 2 V . The degree of D is defined to be

P
ax.

A nonzero rational function f on a metrized complex of curves C is the data of
a rational function f� 2 PL.�/ and nonzero rational functions fv on Cv for each
v 2 V . We call f� the �-part of f and fv the Cv-part of f. The divisor of a nonzero
rational function f on C is defined to be

div.f/ WD
X

x2jCj
ordx.f/ x;

where ordx.f/ is defined as follows11:

• If x 2 �nV , then ordx.f/ D ordx.f�/, where ordx.f�/ is the sum of the slopes of
f� in all tangent directions emanating from x.

• If x 2 Cv.�/nAv , then ordx.f/ D ordx.fv/.
• If x D xe

v 2 Av , then ordx.f/ D ordx.fv/Cslpe.f�/, where slpe.f�/ is the outgoing
slope of f� at v in the direction of e.

Divisors of the form div.f/ are called principal, and the principal divisors form
a subgroup of Div0.C/, the group of divisors of degree zero on C. Two divisors in
Div.C/ are called linearly equivalent if they differ by a principal divisor. Linear
equivalence of divisors on C can be understood rather intuitively in terms of “chip-
firing moves” on C. We refer the reader to Sect. 1.2 of [5] for details.

A divisor E D P
x2jCj ax.x/ on C is called effective if ax 	 0 for all x. The rank

rC of a divisor D 2 Div.C/ is defined to be the largest integer k such that D � E is
linearly equivalent to an effective divisor for all effective divisors E of degree k on
C (so in particular rC.D/ 	 0 if and only if D is linearly equivalent to an effective
divisor, and otherwise rC.D/ D �1).

Fig. 12 An example of a
metrized complex

11Note that our sign convention here for the divisor of a rational function on � , which coincides
with the one used in [5], is the opposite of the sign convention used in Sect. 3.2, which is also used
in a number of other papers in the subject. This should not cause any confusion, but it is good for
the reader to be aware of this variability when perusing the literature.
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The theory of divisors, linear equivalence, and ranks on metrized complexes of
curves generalizes both the classical theory for algebraic curves and the correspond-
ing theory for metric graphs. The former corresponds to the case where G consists
of a single vertex v and no edges and C D Cv is an arbitrary smooth curve. The
latter corresponds to the case where the curves Cv have genus zero for all v 2 V .
Since any two points on a curve of genus zero are linearly equivalent, it is easy to
see that the divisor theories and rank functions on C and � are essentially the same.

The canonical divisor on C is

K D
X

v2V

.Kv C
X

w2Av

w/;

where Kv is a canonical divisor on Cv .
The following result generalizes both the classical Riemann–Roch theorem for

algebraic curves and the Riemann–Roch theorem for metric graphs:

Riemann–Roch for Metrized Complexes. Let C be a metrized complex of alge-
braic curves over �. For any divisor D 2 Div.C/, we have

rC.D/ � rC.K �D/ D deg.D/ � g.C/C 1:
As with the tropical Riemann–Roch theorem, the proof of this theorem makes

use of a suitable notion of reduced divisors for metrized complexes of curves.
We note that the proof of the Riemann–Roch theorem for metrized complexes uses
the Riemann–Roch theorem for algebraic curves and does not furnish a new proof
of that result.

8.2 Specialization of Divisors from Curves to Metrized
Complexes

Let K be a complete and algebraically closed non-Archimedean field with valuation
ring R and residue field �, and let C be a smooth proper curve over K. As in Sect. 6,
there is a metrized complex C canonically associated with any strongly semistable
model C of C over R. The specialization map Trop defined in Sects. 2 and 3 can
be enhanced in a canonical way to a map from divisors on C to divisors on C. The
enhanced specialization map, which by abuse of terminology we continue to denote
by Trop, is obtained by linearly extending a map � W C.K/ ! jCj. The map � is
defined as follows:

• For P 2 C.K/ reducing to a smooth point red.P/ of the special fiber C0 of C,
�.P/ is just the point red.P/.

• For P 2 C.K/ reducing to a singular point, �.P/ is the point Trop.P/ in the
relative interior of the corresponding edge of the skeleton � of C.

The motivation for the definitions of Trop W C.K/! jCj and div.f/ comes in part
from the following extension of the Slope Formula (Theorem 6.4):
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Proposition 8.1. Let f be a nonzero rational function on C and let f be the
corresponding nonzero rational function on C, where f� is the restriction to � of the
piecewise linear function log jf j on Can and fv 2 �.Cv/ for v 2 V is the normalized
reduction of f to Cv (cf. Sect. 6.1). Then

Trop.div.f // D div.f/:

In particular, we have Trop.Prin.C// 
 Prin.C/.
The Specialization Theorem from Sect. 4.2 generalizes to metrized complexes as

follows:

Specialization Theorem for Metrized Complexes. For all D 2 Div.C/, we have

rC.D/ � rC.trop.D//:

Since rC.trop.D// � r�.trop.D//, the specialization theorem for metrized
complexes is a strengthening of the analogous specialization result for metrized
graphs. In conjunction with a simple combinatorial argument, this theorem also
refines the Specialization Theorem for vertex-weighted graphs.

A simple consequence of the Riemann–Roch and Specialization Theorems for
metrized complexes is that for any canonical divisor KC on C, the divisor trop.KC/

belongs to the canonical class on C. Indeed, the Specialization Theorem shows that
rC.trop.KC// 	 g � 1, while Riemann–Roch shows that a divisor of degree 2g � 2
and rank at least g � 1 must be equivalent to K.

There is also a version of specialization in which one has equality rather
than just an inequality. One can naturally associate to a rank r divisor D on C a
collection H D fHvgv2V of .r C 1/-dimensional subspaces of �.Cv/, where Hv is
the normalized reduction of L.D/ to Cv (cf. Sect. 6). If F D fFvgv2V , where Fv
is any �-subspace of the function field �.Cv/, then for D 2 Div.C/ we define the
F-restricted rank of D, denoted rC;F .D/, to be the largest integer k such that for
any effective divisor E of degree k on C, there is a rational function f on C whose
Cv-parts fv belong to Fv for all v 2 V , and such that D � E C div.f/ 	 0.

Theorem 8.2 (Specialization Theorem for Restricted Ranks). With notation as
above, the H-restricted rank of the specialization of D is equal to the rank of D, i.e.,
rC;H.trop.D// D r.

8.3 Connections with the Theory of Limit Linear Series

The theory of linear series on metrized complexes of curves has close connections
with the Eisenbud–Harris theory of limit linear series for strongly semistable curves
of compact type, and allows one to generalize the basic definitions in the Eisenbud–
Harris theory to more general semistable curves. The Eisenbud–Harris theory, which
they used to settle a number of longstanding open problems in the theory of
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algebraic curves, only applies to a rather restricted class of reducible curves, namely,
those of compact type (i.e., nodal curves whose dual graph is a tree). It has been an
open problem for some time to generalize their theory to more general semistable
curves.12

Recall that the vanishing sequence of a linear series L D .L;W/ at p 2 C, where
W � H0.C;L/ is the ordered sequence

aL
0.p/ < � � � < aL

r .p/

of integers k with the property that there exists some s 2 W vanishing to order
exactly k at p. For strongly semistable curves of compact type, Eisenbud and Harris
define a notion of crude limit gr

d L on C0, which is the data of a (not necessarily
complete) degree d and rank r linear series Lv on Cv for each vertex v 2 V with the
following property: if two components Cu and Cv of C0 meet at a node p, then for
any 0 � i � r;

aLv
i .p/C aLu

r�i.p/ 	 d :

We can canonically associate to a proper strongly semistable curve C0 a metrized
complex C of �-curves, called the regularization of C0, by assigning a length of 1 to
each edge of G. This is the metrized complex associated with any regular smoothing
C of C0 over any discrete valuation ring R with residue field �.

Theorem 8.3. Let C be the metrized complex of curves associated with a strongly
semistable curve C0=� of compact type. Then there is a bijective correspondence
between the following:

1. Crude limit gr
d’s on C0 in the sense of Eisenbud and Harris.

2. Equivalence classes of pairs .H;D/, where H D fHvg, Hv is an .r C 1/-
dimensional subspace of �.Cv/ for each v 2 V, and D is a divisor of degree
d supported on the vertices of C with rC;H.D/ D r. Here we say that .H;D/ �
.H0;D0/ if there is a rational function f on C such that D0 D D C div.f/ and
Hv D H0

v � fv for all v 2 V, where fv denotes the Cv-part of f.

Theorem 8.3, combined with the Riemann–Roch theorem for metrized com-
plexes of curves, provides a new proof of the fact, originally established in [58],
that limit linear series satisfy analogues of the classical theorems of Riemann and
Clifford. The point is that rC;H.D/ � rC.D/ for all D 2 Div.C/, and therefore
upper bounds on rC.D/ which follow from Riemann–Roch imply corresponding
upper bounds on the restricted rank rC;H.D/.

Motivated by Theorem 8.3, Amini and Baker propose the following definition.

Definition 8.4. Let C0 be a strongly semistable (but not necessarily compact type)
curve over � with regularization C. A limit gr

d on C0 is an equivalence class of pairs

12Brian Osserman [107] has recently proposed a different framework for doing this.
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.fHvg;D/ as above, where Hv is an .rC 1/-dimensional subspace of �.Cv/ for each
v 2 V , and D is a degree d divisor on C with rC;H.D/ D r.

As partial additional justification for Definition 8.4, Amini and Baker prove,
using specialization, that a gr

d on the smooth general fiber C of a semistable family
C gives rise in a natural way to a crude limit gr

d on the central fiber.

Part 3: Applications

In this part, we discuss several recent applications of tropical Brill–Noether theory
to problems in algebraic and arithmetic geometry. These sections are largely
independent of each other, so the reader should be able to peruse them according
to his or her interest.

9 Applications of Tropical Linear Series to Classical
Brill–Noether Theory

Recent years have witnessed several applications of tropical Brill–Noether theory to
problems in classical algebraic geometry. In this section, we survey the major recent
developments in the field.

9.1 The Brill–Noether Theorem

The Brill–Noether theorem predicts the dimension of the space Wr
d.C/ parameter-

izing divisor classes (or, equivalently, complete linear series) of a given degree and
rank on a general curve C.

Brill–Noether Theorem ([66]). Let C be a general curve of genus g over C. Then
Wr

d.C/ has pure dimension �.g; r; d/ D g� .rC1/.g�dC r/, if this is nonnegative,
and is empty otherwise.

The original proof of the Brill–Noether theorem, due to Griffiths and Harris,
involves a subtle degeneration argument [66]. The later development of limit linear
series by Eisenbud and Harris led to a simpler proof of this theorem [57, 58]. The
literature contains several other proofs, some of which work in any characteristic.
One that is often referenced is due to Lazarsfeld, because rather than using
degenerations, Lazarsfeld’s argument involves vector bundles on K3 surfaces [89].

The first significant application of tropical Brill–Noether theory was the new
proof of the Brill–Noether theorem by Cools, Draisma, Payne, and Robeva [48],
which successfully realized the program laid out in [17]. In [48], the authors
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v1

w1

v2 wg−1

vg wg

�i

mi

Fig. 13 The graph �

consider the family of graphs pictured in Fig. 13, colloquially known as the chain
of loops.13 The edge lengths are further assumed to be generic, which in this case
means that, if `i;mi are the lengths of the bottom and top edges of the ith loop, then
`i=mi is not equal to the ratio of two positive integers whose sum is less than or
equal to 2g � 2.

Using Theorem 4.6 as the only input from algebraic geometry, the authors of [48]
employ an intricate combinatorial argument to prove the following:

Theorem 9.1 ([48]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . Then dim Wr

d.C/ D �.g; r; d/ if this number is
nonnegative, and Wr

d.C/ D ; otherwise.

We note that such a curve C exists by Corollary 7.2. The Brill–Noether theorem
(over an arbitrary algebraically closed field) then follows from Theorem 9.1 using
the theory of Brill–Noether rank discussed in Sect. 7.2.

In fact, [48] proves more. Theorem 4.6 of [48] completely describes Wr
d.�/,

explicitly classifying all divisors of given degree and rank on a generic chain of
loops. Indeed, it is shown that Wr

d.�/ is a union of �-dimensional tori. The set
of tori is in bijection with the so-called lingering lattice paths, which in turn are
in bijection with standard Young tableaux on a rectangle with r C 1 columns and
g � d C r rows containing the numbers 1; : : : ; g. From this, one can compute the
number of tori to be

 
g

�

!
.g � �/Š

rY

iD0

iŠ

.g � dC rC i/Š

if � 	 0, and 0 if � < 0.
We briefly discuss the argument here. Given an effective divisor D, we may

assume that D is v1-reduced. The divisor D then has some number d1 of chips at

13In fact, they consider the graph in which the lengths of the bridge edges between the loops are all
zero. There is, however, a natural rank-preserving isomorphism between the Jacobian of a metric
graph with a bridge and the Jacobian of the graph in which that bridge has been contracted, so their
argument works equally well in this case. We consider the graph with bridges because of its use in
[78, 79].
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v1

γ1

w1

br1

· · ·

γi

bri

· · ·

γg

wg

Fig. 14 A decomposition of �

v1, and by Dhar’s burning algorithm D has at most 1 chip on each of the half-open
loops �k pictured in Fig. 14, and no chips on the half-open bridges brk.

The associated lingering lattice path is a sequence of vectors pi 2 Z
r, starting at

p1 D .d1; d1 � 1; : : : ; d1 � rC 1/, with the ith step given by

piC1 � pi D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

.�1;�1; : : : ;�1/ if D has no chip on �i

ej if D has a chip on �i, the distance from vi

to this chip is precisely .pi.j/C 1/miC1;
and both pi and pi C ej are in W

0 otherwise

9
>>>>>=

>>>>>;

Here, the distance from vi is in the counterclockwise direction. Since the chip lies on
a circle of circumference mi C `i, this distance should be understood to be modulo
.miC `i/. The symbols e0; : : : er�1 represent the standard basis vectors in Z

r and W
is the open Weyl chamber

W D fy 2 Z
rjy0 > y1 > � � � > yr�1 > 0g:

The steps where piC1 D pi are known as lingering steps. The basic idea of the
lingering lattice path is as follows. By Theorem 5.7, the set fv1; v2; : : : ; vg;wgg is
rank-determining. Hence, if D fails to have rank r, there is an effective divisor E
of degree r, supported on these vertices, such that jD � Ej D ;. Starting with
the v1-reduced divisor D, we move chips to the right and record the vi-degree of
the equivalent vi-reduced divisor. The number pi.j/ is then the minimum, over all
effective divisors E of degree j supported at v1; : : : ; vi, of the vi-degree of the vi-
reduced divisor equivalent to D � E. From this it follows that, when D has rank at
least r, we must have pi.j/ 	 r � j, so the corresponding lingering lattice path must
lie in the open Weyl chamber W .

The corresponding tableau is constructed by placing the moves in the direction
ei in the ith column of the rectangle, and the moves in the direction .�1; : : : ;�1/ in
the last column. If the kth step is lingering, then the integer k does not appear in the
tableau. Given this description, we see that each tableau determines the existence
and position of the chip on the half-open loop �k if and only if the integer k appears
in the tableau. Otherwise, the chip on the kth loop is allowed to move freely. The
number of chips that are allowed to move freely is therefore � D g�.rC1/.g�dCr/.
Indeed, we see that not only is the Brill–Noether rank wr

d.�/ equal to �, but in fact
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dim Wr
d.�/ D � as well. Theorem 9.1 then follows from the specialization result for

Brill–Noether rank, Theorem 7.9.

9.2 The Gieseker–Petri Theorem

Assume that �.g; r; d/ 	 0. The variety Wr
d.C/ is singular along WrC1

d .C/. Blowing
up along this subvariety yields the variety Gr

d.C/ parameterizing (not necessarily
complete) linear series of degree d and rank r on C. A natural generalization of the
Brill–Noether theorem is the following:

Gieseker-Petri Theorem ([65]). Let C be a general curve of genus g. If �.g; r; d/ 	
0, then Gr

d.C/ is smooth of dimension �.g; r; d/.

It is a standard result, following [12, Sect. IV.4], that the Zariski cotangent space
to Gr

d.C/ at a point corresponding to a complete linear series L.D/ is naturally
isomorphic to the cokernel of the adjoint multiplication map

D W L.D/˝ L.KC � D/! L.KC/:

Thus the cotangent space has dimension �.g; r; d/ C dim kerD, and in particular,
Gr

d.C/ is smooth of dimension �.g; r; d/ at such a point if and only if the
multiplication map D is injective. More generally, if P 2 Gr

d.C/ corresponds to
a possibly incomplete linear series W � L.D/, then Gr

d.C/ is smooth of dimension
�.g; r; d/ at P if and only if the multiplication map W ˝ L.KC � D/ ! L.KC/ is
injective. One deduces that the Gieseker–Petri theorem is equivalent to the assertion
that if C is a general curve of genus g, then D is injective for all divisors D on C.

A recent application of tropical Brill–Noether theory is the following result [78],
which yields a new proof of the Gieseker–Petri theorem:

Theorem 9.2 ([78]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . Then the multiplication map

D W L.D/˝ L.KC � D/! L.KC/

is injective for all divisors D on C.

The argument has much in common with the tropical proof of the Brill–Noether
theorem, using the same metric graph with the same genericity conditions on edge
lengths. The new ingredient is the idea of tropical independence, as defined in
Sect. 5.3. Given a divisor D 2 Wr

d.C/, the goal is to find functions

f0; : : : ; fr 2 trop.L.D//

g0; : : : ; gg�dCr�1 2 trop.L.KC � D//

such that ffi C gjgi;j is tropically independent.
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There is a dense open subset of Wr
d.�/ consisting of divisors D with the following

property: given an integer 0 � i � r, there exists a unique divisor Di � D such that

Di � iwg � .r � i/v1 	 0:

These are the divisors referred to as vertex-avoiding in [41].
We first describe the proof of Theorem 9.2 in the case that D is vertex-avoiding.

If D is the specialization of a divisor D 2 Wr
d.C/, and p1; pg 2 C are points

specializing to v1;wg, respectively, then there exists a divisor Di � D such that

Di � ipg � .r � i/p1 	 0;

and, by the uniqueness of Di, Di must specialize to Di. It follows that there is a
function fi 2 trop.L.D// such that div.fi/ D Di � D.

For this open subset of divisors, the argument then proceeds as follows. By the
classification in [48], the divisor Di fails to have a chip on the kth loop if and only
if the integer k appears in the ith column of the corresponding tableau. The adjoint
divisor E D K� � D corresponds to the transpose tableau [2, Theorem 39], so the
divisor Di C Ej fails to have a chip on the kth loop if and only if k appears in the
.i; j/ position of the tableau. Since for each k at most one of these divisors fails to
have a chip on the kth loop, we see that if

� D minffi C gj C bi;jg

occurs at least twice at every point of � , then the divisor

� D div.�/C K�

must have a chip on the kth loop for all k.
To see that this is impossible, let pk be a point of � in �k, and let

D0 D p1 C � � � C pg:

Then by construction K� �D0 is equivalent to an effective divisor, so by the tropical
Riemann–Roch theorem we see that r.D0/ 	 1. On the other hand, Dhar’s burning
algorithm shows that D0 is universally reduced, so by Proposition 5.16 we have
r.D0/ D 0, a contradiction.

It is interesting to note that this obstruction is, at heart, combinatorial. Unlike the
earlier proofs via limit linear series, which arrive at a contradiction by constructing
a canonical divisor of impossible degree (larger than 2g � 2), this argument arrives
at a contradiction by constructing a canonical divisor of impossible shape.

The major obstacle to extending this argument to the case where D is not vertex-
avoiding is that the containment trop.L.D// 
 R.Trop.D// is often strict. Given an
arbitrary divisor D 2 Wr

d.C/ and function f 2 R.Trop.D//, it is difficult to determine
whether f is the specialization of a function in L.D/. To avoid this issue, the authors
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make use of a patching construction, gluing together tropicalizations of different
rational functions in a fixed algebraic linear series on different parts of the graph, to
arrive at a piecewise linear function in R.K�/ that may not be in trop.L.KC//. Once
this piecewise linear function is constructed, the argument proceeds very similarly
to the vertex-avoiding case.

9.3 The Maximal Rank Conjecture

One of the most well-known open problems in Brill–Noether theory is the Maximal
Rank Conjecture, which predicts the Hilbert function for sufficiently general
embeddings of sufficiently general curves. This conjecture is attributed to Noether
in [11, p. 4] (see [105, Sect. 8] and [43, pp. 172–173] for details), was studied
classically by Severi [112, Sect. 10], and popularized by Harris [71, p. 79].

Maximal Rank Conjecture. Fix nonnegative integers g; r; d, let C be a general
curve of genus g, and let V � L.D/ be a general linear series of rank r and degree
d on C. Then the multiplication maps

m W SymmV ! L.mD/

have maximal rank for all m. That is, each m is either injective or surjective.

While the Maximal Rank Conjecture remains open in general, several important
cases are known [27, 61, 115, 119]. For example, it is shown in [27] that the Maximal
Rank Conjecture holds in the non-special range d 	 g C r. When d < g C r, the
general linear series of degree d and rank r on a general curve is complete, and
for this reason, most of the work in the subject focuses on the case where V D
L.D/. We note that the arguments of Ballico and Ellia [27] and Farkas [61] involve
degenerations to unions of two curves that meet in more than one point. Since such
curves are not of compact type, the arguments do not make use of limit linear series.

In [79], tropical Brill–Noether theory is used to prove the m D 2 case of the
Maximal Rank Conjecture.

Theorem 9.3 ([79]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . For a given r and d, let D be a general divisor of rank
r and degree d on C. Then the multiplication map

2 W Sym2L.D/! L.2D/

has maximal rank.

The genericity conditions placed on the edge lengths of � in Theorem 9.3
are stricter than those appearing in the tropical proofs of the Brill–Noether and
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Gieseker–Petri theorems. First, the bridges between the loops are assumed to be
much longer than the loops themselves, and second, one must assume that certain
integer linear combinations of the edge lengths do not vanish.

A simplifying aspect of the Maximal Rank Conjecture is that it concerns a
general, rather than arbitrary, divisor. It therefore suffices to prove that the maximal
rank condition holds for a single divisor of the given degree and rank on C. The
main result of Cartwright et al. [41] is that every divisor on the generic chain of
loops is the specialization of a divisor of the same rank on C. We are therefore
free to choose whatever divisor we wish to work with, and in particular we may
choose one of the vertex-avoiding divisors described in the previous section. Recall
that, if D 2 Wr

d.�/ is vertex-avoiding, then we have an explicit set of piecewise
linear functions fi 2 R.D/ that are tropicalizations of a basis for the linear series on
the curve C. The goal, in the case where the multiplication map is supposed to be
injective, is to show that the set ffiC fjgi�j is tropically independent. In the surjective
case, we must choose a subset of the appropriate size, and then show that this subset
is tropically independent.

The basic idea of the argument is as follows. Assume that

� D minffi C fj C bi;jg

occurs at least twice at every point of � , and consider the divisor

� D div.�/C 2D:

To arrive at a contradiction, one studies the degree distribution of the divisor �
across the loops of � . More precisely, one defines

ık WD deg.�j�k/:

The first step is to show that ık 	 2 for all k. One then identifies intervals Œa; b� for
which this inequality must be strict for at least one k 2 Œa; b�. As one proceeds from
left to right across the graph, one encounters such intervals sufficiently many times
to obtain deg� > 2 deg D, a contradiction.

10 Lifting Problems for Divisors on Metric Graphs

In this section we discuss the lifting problem in tropical Brill–Noether theory: given
a divisor of rank r on a metric graph � , when is it the tropicalization of a rank r
divisor on a smooth curve C? There are essentially two formulations of this problem,
one in which the curve C is fixed, and one in which it is not.

Throughout this section, we let K be a complete and algebraically closed
nontrivially valued non-Archimedean field.
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Question 10.1. Given a metric graph � and a divisor D on � , under what conditions
do there exist a curve C=K (together with a semistable model R) and a divisor of the
same rank as D tropicalizing to � and D, respectively?

Question 10.2. Given a curve C=K (together with a semistable model R) tropical-
izing to a metric graph � , and given a divisor D on � , under what conditions does
there exist a divisor on C of the same rank as D tropicalizing to D?

These are very difficult questions. Even for the earlier theory of limit linear series
on curves of compact type, the analogous questions remain open. A partial answer
in that setting is given by the Regeneration Theorem of Eisenbud and Harris [58],
which says that if the space of limit linear series has local dimension equal to the
Brill–Noether number �, then the given limit linear series lifts in any one-parameter
smoothing. At the time of writing, there is no corresponding theorem in the tropical
setting.14

10.1 Specialization of Hyperelliptic Curves

One of the first results concerning lifting of divisors is the classification of vertex-
weighted metric graphs that are the specialization of a hyperelliptic curve. Recall
from Sect. 4.4 that given a curve C=K and a semistable model C=R for C, there is a
natural way to associate to C a vertex-weighted metric graph .�; !/. We call such a
pair minimal if there is no vertex v with val.v/ D 1 and !.v/ D 0.

Theorem 10.3 ([9, 34]). Let .�; !/ be a minimal vertex-weighted metric graph.
There is a smooth projective hyperelliptic curve over a discretely valued field with a
regular, strongly semistable model whose special fiber has dual graph � if and only
if the following conditions hold:

(HYP1) there exists an involution s on � such that the quotient �=s is a tree and
s.v/ D v for all v 2 � with !.v/ > 0 and

(HYP2) for every point v 2 � , the number of bridge edges adjacent to v is at
most 2!.v/C 2.

Kawaguchi and Yamaki show moreover that, when � satisfies these conditions,
there is a smoothing C for which every divisor on � lifts to a divisor of the same
rank on C [83].

We outline the necessity of the conditions above in the special case where ! D 0,
which is equivalent to requiring that g.C/ D g.�/. Note that if C is a hyperelliptic
curve, then by the Specialization Theorem any divisor of degree 2 and rank 1 on C
specializes to a divisor D of rank at least 1 on � , and by tropical Clifford’s theorem D
must have rank exactly 1. Now, if P 2 � is not contained in a bridge, then jPj D fPg.

14Amini has apparently made substantial progress in this direction.
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Fig. 15 A hyperelliptic
metric graph of genus 3 that
is not the skeleton of any
hyperelliptic curve of genus 3

On the other hand, if P 2 � is contained in a bridge, a simple analysis reveals that
D � 2P. In this way we obtain an involution s on � mapping each point P to the
P-reduced divisor equivalent to D � P.

To see why (HYP2) holds, note that for each type-2 point v 2 � , the linear series
of degree 2 and rank 1 on C specializes to a linear series of degree 2 and rank 1
on the corresponding curve Cv . Each of the bridges adjacent to v corresponds to
ramification points of this linear series, but such a linear series has only 2g.Cv/ C
2 D 2 ramification points.

To see that the conditions (HYP1) and (HYP2) are sufficient requires signifi-
cantly more work.

Example 10.4. Consider the metric graph � pictured in Fig. 15, consisting of a tree
with a loop attached to each leaf, with all edge lengths being arbitrary. Then � is
hyperelliptic, because any divisor of degree 2 supported on the tree has rank 1. On
the other hand, this graph is not the dual graph of the limit of any family of genus 3
hyperelliptic curves, because the vertex of valence 3 in the tree is adjacent to more
than 2 bridges.

For metric graphs of higher gonality, the lifting problem is significantly harder.
In [97], Luo and Manjunath describe an algorithm for smoothability of rank one
generalized limit linear series on metrized complexes.

10.2 Lifting Divisors on the Chain of Loops

For some specific families of graphs, such as the chain of loops discussed Sect. 9,
one can show that the lifting problem is unobstructed.

Theorem 10.5 ([41]). Let C=K be a smooth projective curve of genus g. If the dual
graph of the central fiber of some regular model of C is isometric to a generic chain
of loops � of genus g, then every divisor class on � that is rational over the value
group of K lifts to a divisor class of the same rank on C.

The general strategy for proving Theorem 10.5 is to study the Brill–Noether loci
as subschemes

Wr
d.C/ � Jac.C/:
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Since C is maximally degenerate, the universal cover of Jac.C/an gives a uniformiza-
tion

Tan ! Jac.C/an

by an algebraic torus T of dimension g. The tropicalization of this torus is the
universal cover of the skeleton of Jac.C/, which as discussed in Sect. 6 is canonically
identified with the tropical Jacobian of � [20].

A key tool in the proof of Theorem 10.5 is Rabinoff’s lifting theorem [110],
which can be applied to the analytic preimages in T of algebraic subschemes of
Jac.C/. This lifting theorem says that isolated points in complete intersections of
tropicalizations of analytic hypersurfaces lift to points in the analytic intersection
with appropriate multiplicities. This theorem can be applied to translates of the
preimage of the theta divisor ‚� D W0

g�1.�/, as follows.
When � is the generic chain of loops, one can use the explicit description

of Wr
d.�/ from [48] to produce explicit translates of ‚C whose tropicalizations

intersect transversally and locally cut out Wr
d.�/. By intersecting with � additional

translates of ‚C, one obtains an isolated point in a tropical complete intersection,
to which we may apply Rabinoff’s lifting theorem. This complete intersection
is typically larger than Wr

d.�/, but the argument shows that the tropicalization
map from a 0-dimensional slice of Wr

d.C/ to the corresponding slice of Wr
d.�/ is

injective. Using again the explicit description of Wr
d.�/, one then shows that the

two finite sets have the same cardinality, and hence the map is bijective.

Remark 10.6. As mentioned in the section on the Maximal Rank Conjecture,
Theorem 10.5 is one of the key ingredients in the proof of Theorem 9.3 (the Maximal
Rank Conjecture for quadrics). In particular, in order to show that the maximal rank
condition holds for a generic line bundle of a given degree and rank, it suffices to
show that it holds for a single line bundle. Since every divisor of a given rank on the
chain of loops lifts to a line bundle on C of the same rank, one is free to work with
any divisor of this rank on the chain of loops.

10.3 Examples of Divisors That Do Not Lift

Among the results on lifting divisors, there is a plethora of examples of divisors
that do not lift. For example, in [53], Coppens defines a base-point free divisor on
a metric graph � to be a divisor D such that r.D � p/ < r.D/ for all p 2 � . He
then shows that the Clifford and Riemann–Roch bounds are the only obstructions
to the existence of base-point free divisors on metric graphs of arbitrary genus. This
is in contrast to the case of algebraic curves, where, for example, a curve of genus
greater than 6 cannot have a base-point free divisor of degree 5 and rank 2.

Another example of divisors that do not lift comes from the theory of matroids.
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Theorem 10.7 ([40]). Let M be any rank 3 matroid. Then there exist a graph GM

and a rank 2 divisor DM on GM such that, for any infinite field k, there are a curve C
over k..t// (together with a semistable model C of C over kŒŒt��) and a rank 2 divisor
on C tropicalizing to GM and DM, respectively, if and only if M is realizable over k.

Combining this with the scheme-theoretic analogue of Mnëv universality, due to
Lafforgue [88], one obtains the following.

Corollary 10.8 ([40]). Let X be a scheme of finite type over SpecZ. Then there
exist a graph G and a rank 2 divisor D on G such that, for any infinite field k, G,
and D are the tropicalizations of a curve C=k..t// and a rank 2 divisor on C if and
only if X has a k-point.

In other words, the obstructions to lifting over a valued field of the form k..t//
are essentially as general as possible.

Cartwright’s construction is as follows. Recall that a rank 3 simple matroid on
a finite set E consists of a collection of subsets of E, called flats, such that every
pair of elements is contained in exactly one flat. (Here we are abusing language,
using the word flat to refer to the maximal, or rank 2, flats.) The bipartite graph
GM is the Levi graph of the matroid M, where the vertices correspond to elements
and flats, and there is an edge between two vertices if the corresponding element is
contained in the corresponding flat. The divisor DM is simply the sum of the vertices
corresponding to elements of E. A combinatorial argument then shows that the rank
of DM is precisely 2.

If M is realizable over k, then by definition, there exists a configuration of lines in
P
2
k where the lines correspond to the elements of E, and the flats correspond to points

where two or more of the lines intersect. If we blow up the plane at the intersection
points, the dual graph of the resulting configuration is the Levi graph GM , and the
pullback of the hyperplane class specializes to the divisor DM . After some technical
deformation arguments, one then sees that the pair .GM;DM/ admits a lifting when
M is realizable over k.

For the converse, one must essentially show that the above construction is the
only possibility. That is, if C is a regular semistable curve over kŒŒt��, the dual graph
of the central fiber is GM and the divisor DM is the specialization of a rank 2 divisor
on C, then in fact the image of the central fiber under the corresponding linear series
must provide a realization of the matroid M in P

2
k .

11 Bounding the Number of Rational Points on Curves

By Faltings’ theorem (née the Mordell conjecture), if C is a curve of genus g 	 2
over a number field K, then the set C.K/ of rational points on C is finite. Shortly
after Faltings proved this theorem, Vojta published a new proof which furnishes an
effective upper bound on the number of points in C.K/. However, the Vojta bound is
completely theoretical—to our knowledge no one has ever written down the bound
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explicitly (and the bound is surely quite far from optimal). None of the existing
proofs of the Mordell conjecture gives an algorithm—even in theory!—to compute
the set C.K/. And in practice the situation is even worse—it seems safe to say that no
one has ever used the Faltings or Vojta proofs of the Mordell conjecture to compute
C.K/ in a single nontrivial example.

11.1 The Katz–Zureick-Brown Refinement
of Coleman’s Bound

One of the first significant results in the direction of the Mordell conjecture was
Chabauty’s theorem that C.K/ is finite provided that the rank of the finitely
generated abelian group Jac.C/.K/ is less than g. Much later, Coleman used his
theory of p-adic integration to give an effective upper bound on C.K/ in this
situation. Coleman’s bound has the advantage of being sharp in certain cases, and
the method of proof can be used to compute C.K/ in a wide range of concrete
examples. For simplicity, we state the results in this section for K D Q only,
but everything extends with minor modifications to curves over a number field K.
Coleman’s theorem is as follows.

Theorem 11.1 ([50]). Let C be a curve of genus g over Q, and suppose that the
Mordell–Weil rank r of Jac.C/.Q/ is strictly less than the genus g. Then for every
prime p > 2g of good reduction for C, we have

#C.Q/ � #C.Fp/C 2g � 2: (2)

Coleman’s theorem was subsequently strengthened in different ways. In [95],
Lorenzini and Tucker (see also McCallum–Poonen [99]) generalized Theorem 11.1
to primes of bad reduction, replacing C.Fp/ in (2) by the smooth Fp-points of the
special fiber of the minimal proper regular model for C over Zp. Stoll replaced the
quantity 2g � 2 in (2) by 2r when C has good reduction at p, and asked if this
improvement could be established in the bad reduction case as well. Stoll’s question
was answered affirmatively by Katz and Zureick-Brown in [80] by supplementing
Stoll’s method with results from the theory of linear series on tropical curves:

Theorem 11.2 ([80]). Let C be a curve of genus g over Q and suppose that the
rank r of Jac.C/.Q/ is less than g. Then for every prime p > 2rC 2, we have

#C.Q/ � #Csm.Fp/C 2r;

where C denotes the minimal proper regular model of C over Zp.

In order to explain the relevance of linear series on tropical curves to such a result,
we need to briefly explain the basic ideas underlying the previous work of Coleman
et al. Let us first outline a proof of Theorem 11.1. Fix a rational point P 2 C.Q/
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(if no such point exists, then the theorem is vacuously true) and let � W C ,! J be
the corresponding Abel–Jacobi embedding. Coleman’s theory of p-adic integration
of 1-forms associates to each ! 2 H0.C; 	1

C/ and Q 2 C.Qp/ a (definite) p-adic
integral

R Q
P ! 2 Qp, obtained by pulling back a corresponding p-adic integral on

J via the map �. Locally on C, such p-adic integrals can be computed by formally
integrating a power series expansion f!.T/ for ! with respect to a local parameter
T on some residue disc U. One can show fairly easily that the p-adic closure J.Q/
of J.Q/ in J.Qp/ has dimension at most r as a p-adic manifold. The formalism
of Coleman’s theory implies that forcing the p-adic integral of a 1-form on J to
vanish identically on J.Q/ imposes at most r linear conditions on H0.J; 	1

J/. The
functoriality of Coleman integration implies that the Qp-vector space Vchab of all
! 2 H0.C; 	1

C/ such that
R Q

P ! D 0 for all Q 2 C.Q/ has dimension at least
g � r > 0.

The condition p > 2g implies, by a p-adic analogue of Rolle’s theorem which
can be proved in an elementary way with Newton polygons, that if f!.T/ has n
zeroes on U then

R
f!.T/ dT has at most nC 1 zeroes on U. Using this observation,

Coleman deduces, by summing over all residue classes, that if ! is a nonzero 1-form
in H0.C; 	1

C/ vanishing on all of C.Q/ then

#C.Q/ �
X

Q2 NC.Fp/

�
1C ordQ!

�
;

where ! denotes the reduction of ! to NC. Since the 1-form ! on NC has a total of
2g � 2 zeros counting multiplicity, we have

X

Q2 NC.Fp/

ordQ! � 2g � 2;

which yields Coleman’s bound.
Stoll observed in [113] that one could do better than this by adapting the

differential ! to the point Q rather than using the same differential ! for all residue
classes. Define the Chabauty divisor

Dchab D
X

Q2 NC.Fp/

nQ.Q/;

where nQ is the minimum over all nonzero ! in Vchab of ordQ!, and let d be the
degree of Dchab. Since Dchab and K NC�Dchab are both equivalent to effective divisors,
Clifford’s inequality (applied to the smooth proper curve NC) implies that

h0.K NC � Dchab/ � 1 � 1

2
.2g � 2 � d/:
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On the other hand, the semicontinuity of h0.D/ D r.D/ C 1 under specialization
shows that h0.Dchab/ 	 dimVchab 	 g � r. Combining these inequalities gives

g � r � 1 � 1

2
.2g � 2 � d/

and thus d � 2r, giving Stoll’s refinement of Coleman’s bound.
Lorenzini and Tucker [95] had shown earlier that one can generalize Coleman’s

bound to the case of bad reduction as follows. Since points of C.Q/ specialize to the
set NCsm.Fp/ of smooth Fp-points on the special fiber of C under the reduction map,
one obtains by an argument similar to the one above the bound

#C.Q/ �
X

Q2 NCsm.Fp/

�
1C nQ

�
; (3)

where ! denotes the reduction of ! to the unique irreducible component of the
special fiber of C containing Q. Choosing a nonzero ! 2 Vchab as in Coleman’s
bound, the fact that the relative dualizing sheaf for C has degree 2g � 2 gives
the Lorenzini–Tucker bound. A similar argument was found independently by
McCallum and Poonen [99].

We now explain where the subtlety occurs when one tries to combine the bounds
of Stoll and Lorenzini–Tucker. As above, we define the Chabauty divisor

Dchab D
X

Q2 NCsm.Fp/

nQ.Q/

and we let d be its degree. As in the case where C has good reduction, the goal is to
show that d � 2r. When C has good reduction, Stoll proves this by combining
the semicontinuity of h0 and Clifford’s inequality. For singular curves, one can
still define h0 of a line bundle and it satisfies the desired semicontinuity theorem.
However, even when C has semistable reduction, it is well-known that Clifford’s
inequality does not hold in the form needed here. Katz and Zureick-Brown replace
the use of Clifford’s inequality in Stoll’s argument by a hybrid between the classical
Clifford inequality and Clifford’s inequality for linear series on tropical curves. In
this way, they are able to obtain the desired bound d � 2r.

We briefly highlight the main steps in the argument, following the reformulation
in terms of metrized complexes given in [5].

1. As noted by Katz and Zureick-Brown, if one makes a base change from Qp

to an extension field over which there is a regular semistable model C0 for C
dominating the base change of C, the corresponding Chabauty divisors satisfy
D0

chab 	 Dchab. We may therefore assume that C is a regular semistable model
for C.

2. Let s D dim Vchab � 1. We can identify Vchab with an .sC 1/-dimensional space
W of rational functions on C in the usual way by identifying H0.C; 	1

C/ with
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L.KC/. The divisor Dchab on NCsm defines in a natural way a divisor D of degree d
on the metrized complex C associated with C. We can promote the divisor KC�D
to a limit linear series .KC�D; fHvg/ by defining Hv to be the reduction of W to
Cv for each v 2 V.G/. By the definition of Dchab, each element of Hv vanishes to
order at least nQ at each point Q in supp.Dchab/\Cv . The Specialization Theorem
for limit linear series on metrized complexes then shows that

rC.KC �D/ 	 s 	 g � r � 1:
3. On the other hand, Clifford’s inequality for metrized complexes implies that

rC.KC �D/ � 1

2
.2g � 2 � d/:

Combining these inequalities gives d � 2r as desired.

11.2 The Uniformity Theorems
of Katz–Rabinoff–Zureick-Brown

Together with Rabinoff, Katz, and Zureick-Brown have recently used linear series
on tropical curves to refine another result due to Stoll. In [37], Caporaso, Harris,
and Mazur proved that if one assumes the Bombieri–Lang conjecture then there is
a uniform bound M.g;K/ depending only on g and the number field K such that
jC.K/j � M.g;K/ for every curve C of genus g 	 2 over K. The Bombieri–Lang
conjecture, which asserts that the set of rational points on a variety of general type
over a number field is not Zariski dense, remains wide open, and until recently little
progress had been made in the direction of unconditional proofs of the Caporaso–
Harris–Mazur result. In [114], Stoll proved that a uniform bound M.g;K/ exists for
hyperelliptic curves provided that one assumes in addition that the Mordell–Weil
rank of Jac.C/.K/ is at most g � 3. Katz, Rabinoff, and Zureick-Brown succeeded
in removing the hypothesis in Stoll’s theorem that C is hyperelliptic, obtaining the
following result.

Theorem 11.3 ([81]). There is an explicit bound N.g; d/ such that if C is a curve of
genus g 	 3 defined over a number field K of degree d over Q and having Mordell–
Weil rank r � g � 3, then

#C.K/ � N.g; d/:

When K D Q, one can take N.g; 1/ D 76g2 � 82gC 22.

Note that the bound in Theorem 11.2 is not uniform, because the quantity
jCsm.Fp/j can be arbitrarily large for a given prime p of bad reduction, and the
smallest prime p of good reduction can be arbitrarily large as a function of g.
Stoll’s main new idea was to apply the Chabauty–Coleman method on residue
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annuli instead of just on discs. Stoll’s proof exploits the concrete description of
differentials on a hyperelliptic curve as f .x/dx=y; the restriction of such a differential
to an annulus has a bounded numerator, and Stoll is able to analyze the zeroes of the
resulting p-adic integral via explicit computations with Newton polygons.

For general curves, such an explicit description of differentials and the Newton
polygons of their p-adic integrals is not possible. This is where the theory of linear
systems on metric graphs becomes useful. To circumvent the difficulty posed by not
having an explicit description of differentials on C, Katz, Rabinoff, and Zureick-
Brown generalize the Slope Formula (Theorem 6.4) to sections of a metrized line
bundle. For a differential !, the associated tropical function F D log j!j on the
skeleton � of C belongs to the space R.K#

�/ of tropical rational functions G with
K#
� C div.G/ 	 0. (The absolute value here comes from a natural formal metric on

the canonical bundle.) Belonging to R.K#
�/ gives strong constraints on the slopes of

F, and hence on the number of zeroes of the p-adic integral of !. The Slope Formula
thus replaces the Newton polygons in Stoll’s arguments, and estimates on the slopes
of the Newton polygon are replaced by properties of the tropical linear series jK#

� j.
A major issue one faces in trying to establish Theorem 11.3 (which also shows

up in the earlier work of Stoll) is that when C has bad reduction at p, there are two
different kinds of p-adic integrals which need to be considered. On the one hand,
there are the p-adic abelian integrals studied by Colmez, Zarhin, and Vologodsky,
which have no periods and are obtained by pulling back the logarithm map on the
p-adic Lie group Jac.C/.Qp/ to C. These are the integrals for which one knows that
dim.Vchab/ 	 g � r. On the other hand, there are the p-adic integrals of Berkovich
and Coleman–de Shalit which do have periods but also have better functoriality
properties. These are the integrals which are given locally on residue annuli of
a semistable model C by formally integrating a local Laurent series expansion
of ! 2 H0.C; 	1/. In order to prove Theorem 11.3, one needs to study the
difference between the two kinds of p-adic integrals. One of the new discoveries
of Katz, Rabinoff, and Zureick-Brown is that the difference can be understood
quite concretely using tropical geometry by combining Theorem 6.5 with Raynaud’s
uniformization theory.

The methods used by Katz–Rabinoff–Zureick-Brown in [81] also provide new
results in the direction of a “uniform Manin-Mumford conjecture.” The Manin–
Mumford conjecture, proved by Raynaud, asserts that if C is a curve of genus at
least 2 embedded in its Jacobian via an Abel–Jacobi map � W C ! Jac.C/, then
�.C/ \ Jac.C/.K/tors is finite. One can ask whether there is a uniform bound on
the size of this intersection as one varies over all curves of a fixed genus g. The
following uniform result for the number of K-rational points on C which are torsion
on J is proved in [81]:

Theorem 11.4. There is an explicit bound N.g; d/tors (which one can equal to the
bound N.g; d/ above) such that if C is a curve of genus g 	 3 defined over a number
field K of degree d over Q and � W C! Jac.C/ is an Abel–Jacobi embedding defined
over K, then

#�.C/ \ Jac.C/.K/tors � N.g; d/tors:
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Note that in Theorem 11.4 there is no restriction on the Mordell–Weil rank of
Jac.C/. It has been conjectured that #A.K/tors is bounded uniformly in terms of
ŒK W Q� and g for all abelian varieties of dimension g over K, which would of course
imply Theorem 11.4 as a special case, but this is known only for g D 1 [100] and
the general case seems far out of reach at present.

Katz, Rabinoff, and Zureick-Brown also prove a uniformity result concerning
the number of geometric (K-rational) torsion points lying on C, under a technical
assumption about the structure of the stable model at some prime p. We refer to [81]
for the precise statement.

12 Limiting Behavior of Weierstrass Points
in Degenerating Families

The theory discussed in this paper has interesting applications to the behavior of
Weierstrass points under specialization. To motivate this kind of question, we begin
with a seemingly unrelated classical result due to Andrew Ogg [106].

12.1 Weierstrass Points on Modular Curves

Let N be a positive integer. The finite-dimensional space S D S2.�0.N// of weight
2 cusp forms for the congruence subgroup �0.N/ of SL2.Z/ is an important object
in number theory. An element f 2 S has a q-expansion of the form f DP1

nD1 anqn

with an 2 C, which uniquely determines f . For f ¤ 0 in S, define

ord.f / D inffn j an ¤ 0g � 1: (4)

If g D g0.N/ D dim.S/, then by Gaussian elimination there exists an element f 2 S
with ord.f / 	 g�1. Is there any unexpected cancellation? Under certain restrictions
on the level N, the answer is no:

Theorem 12.1 ([106]). If N D pM with p prime, p − M, and g0.M/ D 0, then there
is no nonzero element f of S2.�0.N// with ord.f / 	 g. (In particular, this holds if
N D p is prime.)

One can give an enlightening proof of Ogg’s theorem using specialization of
divisors from curves to metric graphs; the following argument is taken from [17].

First of all, Ogg’s theorem can be recast in the following purely geometric way,
which is in fact how Ogg formulated and proved the result in [106]:

Theorem 12.2. If N D pM with p prime, p − M, and g0.M/ D 0, then the cusp1
is not a Weierstrass point on the modular curve X0.N/.
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Recall that a point P on a genus g curve X is called a Weierstrass point if
there exists a holomorphic differential ! 2 H0.X; 	1

X/ vanishing to order at least
g at P. To see the equivalence between Theorems 12.1 and 12.2, recall that q is an
analytic local parameter on X0.N/ at the cusp 1 and the map f 7! f .q/ dq

q gives
an isomorphism between S2.�0.N// and the space of holomorphic differentials on
X0.N/. Under this isomorphism, the function ord defined in (4) becomes the order of
vanishing of the corresponding differential at1. So there is a nonzero element f of
S2.�0.N// with ord.f / 	 g if and only if there is a nonzero holomorphic differential
! vanishing to order at least g at1.

The reduction of X D X0.N/ modulo p when p exactly divides N D pM is
well-understood; the special fiber of the so-called Deligne–Rapoport model for
X0.N/ over Zp consists of two copies of X0.M/ intersecting transversely at the
supersingular points in characteristic p. This model is always semistable but is not
in general regular. (It is very easy to describe the minimal regular model, but we will
not need this here.) In any case, the skeleton � of X0.N/ over Qp is a “metric banana
graph” consisting of two vertices connected by a number of edges, as pictured in
Fig. 16, and the cusp1 specializes to one of the two vertices, call it P. Under the
hypotheses of Theorem 12.1, each X0.M/ is a rational curve and so the genus of �
is equal to the genus of X0.N/. That is, there are gC 1 edges. By the Specialization
Theorem, if there is a nonzero global section of KX vanishing to order at least g at
1, then r.K� � gP/ 	 0. However, since K� D .g � 1/PC .g � 1/Q, where Q is
the other vertex, we have K� � gP D .g � 1/Q � P, which is P-reduced by Dhar’s
algorithm and non-effective. Therefore r.K� � gP/ D �1, and Ogg’s theorem is
proved.

12.2 Specialization of Weierstrass Points

The essence of the above argument is that if C is a totally degenerate curve, meaning
that the genus of its minimal skeleton � equals the genus of C, then the Weierstrass
points on C must specialize to Weierstrass points on � , where a Weierstrass point
on � is a point P such that r.K� � gP/ 	 0. It follows from the Specialization
Theorem and the corresponding fact from algebraic geometry that if � is a metric
graph of genus g 	 2 then the set of Weierstrass points on � is nonempty. A purely
combinatorial proof of this fact was given by Amini [3].

The specialization of Weierstrass points is also a natural thing to study from
the purely algebro-geometric point of view, where one is asking about the limiting

Fig. 16 The “Banana” graph
of genus 2
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behavior of the Weierstrass points in a semistable one-parameter family of curves.
This subject, which was previously studied by Eisenbud–Harris [59], Esteves–
Medeiros [60], and several other authors, has seen important recent advances by
Amini [4]. We now summarize the main results proved in Amini’s paper.

Let L be a line bundle of degree d and rank r 	 0 on a curve C of genus g
over an algebraically closed field k of characteristic zero. Given a point P 2 C.k/,
we define the vanishing set SP.L/ of L at P to be the set of orders of vanishing of
global sections of L at P. We have jSP.L/j D r C 1 for all P 2 C.k/, and for all but
finitely many P 2 C.k/ the vanishing set is Œr� WD f0; 1; : : : ; rg. A point P 2 C.k/
whose vanishing set is not Œr� is called a Weierstrass point for L. Equivalently, P is
a Weierstrass point for L if there exists a global section of L vanishing to order at
least rC 1 at P. A Weierstrass point of C is by definition a Weierstrass point for the
canonical bundle KC.

The L-weight of a point P 2 C.k/ is

wtP.L/ D
0

@
X

m2SP.L/

m

1

A �
 

rC 1
2

!
D

X

m2SP.L/

m �
X

i2Œr�
i:

Thus wtP.L/ 	 0 for all P 2 C.k/ and wtP.L/ > 0 if and only if P is a Weierstrass
point for L. The Weierstrass divisor for L is W D W.L/ D P

P2C.k/ wtP.L/.P/.
If we fix a basis F for H0.C;L/, the corresponding Wronskian WrF is a nonzero

global section of L˝.rC1/˝K
˝ r.rC1/

2

C whose divisor is precisely W.L/. In particular,
the degree of W.L/ (i.e., the total number of Weierstrass points counted according
to their weights) is W.L/ WD d.rC 1/C .g � 1/r.rC 1/.

We seek an explicit formula for Trop.W/. For this, it is convenient to fix a divisor
with L D L.D/, and to define as usual L.D/ D ff 2 k.C/� j div.f / C D 	 0g.
Let D� D P

x2� dx.x/ be the specialization Trop.D/ of D to � . Let K#
� be the

canonical divisor of � considered as a vertex-weighted metric graph, as in Sect. 4.4.
Concretely, we have K#

� D
P

x2� .2gx � 2C val.x// x.
For a tangent direction � at x, define S�.D/ to be the set of integers occurring

as s�.f / for some f 2 L.D/, where s�.f / is defined as in Sect. 6 to be the slope of
trop.f / in the tangent direction �. Since s�.f / coincides with the order of vanishing
of the normalized reduction Nfx at the point of Cx corresponding to �, one sees easily
that jS�.D/j D rC 1.

For x 2 � , let

Sx.D/ D
( P

�2Tx.�/

�P
s2S� .D/ s

�
if x is of type-2

0 otherwise,
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where Tx.�/ denotes the set of tangent directions at x in � , and let

S.D/ D
X

x2�
Sx.D/ x:

Note that deg.S.D// D 0, since if f 2 k.C/� then the slope of F D � log jf j
along an oriented edge Ee of � is the negative of the slope of F along the same edge
with the orientation reversed.

The following formula is due to Amini. When � is the skeleton of a semistable
R-model C for C, the formula shows how the Weierstrass points of the generic fiber
C specialize to the various components of the special fiber of C, providing a simple
and satisfying answer to a question of Eisenbud and Harris.

Theorem 12.3 ([3]). Let Trop W Div.C NK/! Div.�/ be the natural map. Then

Trop.W.L// D .rC 1/Trop.D/C
 

rC 1
2

!
K#
� � S.D/: (5)

Note that since deg.S.D// D 0, the degree of the right-hand side of (5) is W.L/ D
deg.W.L// as expected. Amini also proves an analogue of (5) when the residue field
of k has positive characteristic. As this is more technical to state, we will not discuss
this here.

Remark 12.4. A metric graph can have infinitely many Weierstrass points; this
happens, for example, with the banana graphs of genus g 	 3 discussed above
(see [17]). In general, the set of Weierstrass points on a metric graph � is a finite
disjoint union of closed connected sets. It is an open problem to determine whether
there are intrinsic multiplicities m.A/ attached to each connected component A of
the Weierstrass locus on a metric graph � such that for any curve C having � as a
skeleton, exactly m.A/ Weierstrass points of C tropicalize to A.

12.3 Distribution of Weierstrass Points

Amini uses formula (5) to prove a non-Archimedean analogue of the Mumford–
Neeman equidistribution theorem, previously conjectured by Baker. We first recall
the statement of the latter result, and then present Amini’s analogous theorem.

Let C be a compact Riemann surface of genus at least 1. There is a natural volume
form !Ar on C, called the Arakelov form, which can be defined as follows. Let
!1; : : : ; !g be a orthonormal basis of L.KC/ with respect to the Hermitian inner
product

h!; �i D i

2

Z

C
! ^ N�:
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Then the .1; 1/-form !C D i
2

Pg
jD1 !j ^ N!j does not depend on the choice of

!1; : : : ; !g and has total mass g. We define

!Ar WD 1

g
!C:

Geometrically, the curvature form of !C is the pullback of the curvature form
of the flat metric on the Jacobian J of C with respect to any Abel–Jacobi map
C! J. Since the flat metric on J is translation-invariant, the pullback in question is
independent of the choice of base point in the definition of the Abel–Jacobi map.

The Mumford–Neeman theorem [103] asserts that for any ample line bundle L
on C, the Weierstrass points of L˝n become equidistributed with respect to !Ar as n
tends to infinity:

Theorem 12.5. Let C be a compact Riemann surface of genus at least 1 and let L
be an ample line bundle on C. Let

ın D 1

W.L˝n/

X

P2C

wtP.L
˝n/ıP

be the probability measure supported equally on the Weierstrass points of L˝n. Then
as n tends to infinity, the measures ın converge weakly15 to the Arakelov metric !Ar.

In order to state Amini’s non-Archimedean analogue of Theorem 12.5, we
will first define the analogue of the Zhang measure on vertex-weighted metric
graphs/Berkovich curves following [18].

Let � be a metric graph of genus g. We fix a weighted graph model G of � and
for each edge e of G let `.e/ denote the length of e. For each spanning tree T of G,
let e1; : : : ; eg denote the edges of G not belonging to T , and let

T D
gX

jD1
�.ej/

where �.e/ is Lebesgue measure along e, normalized to have total mass 1 (so that
T has total mass g). We also let w.T/ DQg

jD1 `.ej/, and let

w.G/ D
X

T

w.T/

be the sum of w.T/ over all spanning trees T of G. Then the measure

� D
X

T

w.T/

w.G/
T

is a weighted average of the measures T over all spanning trees T , and in particular
has total mass g.

15This means that for every continuous function f W C ! R, we have
R

C f ın D R
C f !Ar.
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In other words, a random point in the complement of a random spanning tree of
G is distributed according to the probability measure 1

g� .
Now let .�; !/ be a vertex-weighted metric graph, in the sense of Sect. 4.4, of

genus g D g.�/CPx2� !.x/. Then the measure

.�;!/ WD � C
X

x2�
!xıx

has total mass g. If g 	 1, we define the Zhang measure on .�; !/ to be the
probability measure

Zh WD 1

g
.�;!/:

Theorem 12.6 ([4]). Let C be an algebraic curve of genus at least 1 over the non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle on
C. Let C be a strongly semistable model of C over the valuation ring of k, let .�; !/
be the weighted graph associated with C in the sense of Sect. 4.4, and let Zh be the
Zhang measure associated with .�; !/. Finally, let

ın D 1

W.L˝n/

X

P2C

wtP.L
˝n/ıTrop.P/

be the probability measure on � supported equally on the tropicalizations of the
Weierstrass points of L˝n (taken with multiplicities). Then as n tends to infinity, the
measures ın converge weakly on � to Zh.

A new and concrete consequence of Theorem 12.6 is the following:

Corollary 12.7. Let C be an algebraic curve of genus at least 1 over a non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Fix a strongly semistable model C for C over the valuation ring of k, let Z be
an irreducible component of the special fiber of C, and let gZ be the genus of Z. Let
WZ.L˝n/ be the set of Weierstrass points of L˝n specializing to a nonsingular point
of Z. Then

lim
n!1

jWZ.L˝n/j
jW.L˝n/j D

gZ

g
:

It is convenient and enlightening to rephrase Theorem 12.6 in terms of the
Berkovich analytic space Can. If � is any skeleton of Can and ! is the corresponding
weight function defined by !.x/ D gx, we define the Zhang measure on Can to be
the probability measure

Zh WD 1

g
��.�;!/
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with respect to the natural inclusion � W � ! Can. This measure on Can is easily seen
to be independent of the choice of � , and has total mass equal to the genus g of C.
Using the fact that Can Š lim ��C (cf. Sect. 6.2), one deduces using standard results
from real analysis that Theorem 12.6 is equivalent to the following reformulation,
which more closely resembles Theorem 12.5:

Theorem 12.8 ([4]). Let C be an algebraic curve of genus at least 1 over the non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Let

ın D 1

W.L˝n/

X

P2C

wtP.L
˝n/ıP

be the probability measure on Can supported equally on the Weierstrass points of
L˝n. Then as n tends to infinity, the measures ın converge weakly on Can to the
Zhang measure Zh.

Remark 12.9. The measure Zh, which was first introduced in the context of
vertex-weighted metric graphs by Shouwu Zhang in [120], plays the role in the non-
Archimedean setting of the Arakelov volume form. Using a result of Heinz [74]
and the recent work of Chambert-Loir–Ducros [44] and Gubler–Kunnemann [69]
on non-Archimedean Arakelov theory, one can show that, as in the Archimedean
case, C is obtained by pulling back the curvature form of a canonical translation-
invariant metric on J via an Abel–Jacobi map. There is also evidently a close
connection between the measure � and the polyhedral decomposition fCTg of
Picg.�/ associated with G (cf. Sect. 5.4) which is deserving of further study.

The proof of Theorem 12.6 (and its equivalent formulation Theorem 12.8) is
based on formula (5) together with the theory of Okounkov bodies. The rough idea
is that fixing a type-2 point x of Can and a tangent direction � at x, as well as a
divisor D with L D L.D/, the rational numbers 1

n S�.nD/ defined above become
equidistributed in a real interval of length d D deg.L/ as n ! 1. Combining this
“local” equidistribution result with (5) and a careful analysis of the variation of the
minimum slope along edges of � give the desired result.

13 Further Reading

There are many topics closely related to the contents of this paper which we have
not had space to discuss. Here is a brief and non-exhaustive list of some related
topics and papers which we recommend to the interested reader:

1. Harmonic morphisms. In algebraic geometry, a base-point free linear series of
rank r on a curve C is more or less the same thing as a morphism C ! P

r.
In tropical geometry, the situation is much more subtle, and no satisfactory
analogue of this correspondence is known. For r D 1, there is a close relationship
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(although not a precise correspondence) between tropical g1d’s on a metric graph
� and degree d harmonic morphisms from � to a metric tree. The theory of
harmonic morphisms of metric graphs and metrized complexes of curves is
explored in detail in the papers [8, 9, 45, 97], among others.

2. Spectral bounds for gonality. In [49], Cornelissen et. al. establish a spectral
lower bound for the stable gonality (in the sense of harmonic morphisms) of
a graph G in terms of the smallest nonzero eigenvalue of the Laplacian of G.
This is a tropical analogue of the Li–Yau inequality for Riemann surfaces. They
give applications of their tropical Li–Yau inequality to uniform boundedness of
torsion points on rank two Drinfeld modules, as well as to lower bounds on the
modular degree of elliptic curves over function fields. The spectral bound from
[49] was subsequently refined by Amini and Kool in [7] to a spectral lower bound
for the divisorial gonality (i.e., the minimal degree of a rank 1 divisor) of a metric
graph � . In [7], as well as in the related paper [54], this circle of ideas is applied
to show that the expected gonality of a random graph is asymptotic to the number
of vertices.

3. Tropical complexes. In [39], Cartwright formulates a higher-dimensional ana-
logue of the basic theory of linear series on graphs, including a Specialization
Theorem for the rank function. He calls the objects on which his higher-
dimensional linear series live tropical complexes. A generalization of the Slope
Formula to the context of non-Archimedean varieties and tropical complexes is
proved in [70].

4. Abstract versus embedded tropical curves. In this paper we have dealt exclusively
with linear series on abstract tropical curves (thought of as metric graphs) and
have eschewed the more traditional perspective of tropical varieties as non-
Archimedean amoebas associated with subvarieties of tori. The two approaches
are closely related, however: see, for example, [24, 42, 70]. The theory of linear
series on abstract tropical curves has concrete consequences for embedded trop-
ical curves, e.g., with respect to the theory of bitangents and theta characteristics
as in [26, 46].

5. Algebraic rank. In [35], Caporaso introduces a notion of rank for divisors on
graphs known as the algebraic rank, which is defined geometrically by varying
over all curves with the given dual graph and all line bundles with the given
specialization. The algebraic rank differs in general from the combinatorial rank
[38], but the two invariants agree for hyperelliptic graphs and graphs of genus 3
[82]. Many of the results we have discussed also hold for the algebraic rank. For
example, there are specialization, Riemann–Roch, and Clifford’s theorems for
algebraic rank [35], and Mnëv universality holds for obstructions to the lifting
problem for algebraic rank [91].
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Matroid Theory for Algebraic Geometers

Eric Katz

Abstract This article is an introduction to matroid theory aimed at algebraic
geometers. Matroids are combinatorial abstractions of linear subspaces and hyper-
plane arrangements. Not all matroids come from linear subspaces; those that do are
said to be representable. Still, one may apply linear algebraic constructions to non-
representable matroids. There are a number of different definitions of matroids, a
phenomenon known as cryptomorphism. In this survey, we begin by reviewing the
classical definitions of matroids, develop operations in matroid theory, summarize
some results in representability, and construct polynomial invariants of matroids.
Afterwards, we focus on matroid polytopes, introduced by Gelfand–Goresky–
MacPherson–Serganova, which give a cryptomorphic definition of matroids. We
explain certain locally closed subsets of the Grassmannian, thin Schubert cells,
which are labeled by matroids, and which have applications to representability,
moduli problems, and invariants of matroids following Fink–Speyer. We explain
how matroids can be thought of as cohomology classes in a particular toric variety,
the permutohedral variety, by means of Bergman fans, and apply this description to
give an exposition of the proof of log-concavity of the characteristic polynomial of
representable matroids due to the author with Huh.

Keywords Matroid theory • Intersection theory • Toric varieties

1 Introduction

This survey is an introduction to matroids for algebraic geometry-minded readers.
Matroids are a combinatorial abstraction of linear subspaces of a vector space with
distinguished basis or, equivalently, a set of labeled set of vectors in a vector space.
Alternatively, they are a generalization of graphs and are therefore amenable to
a structure theory similar to that of graphs. For algebraic geometers, they are a
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source of bizarre counterexamples in studying moduli spaces, a combinatorial way
of labelling strata of a Grassmannian, and a testing ground for theorems about
representability of cohomology classes.

Matroids were introduced by Whitney [108] as an abstraction of linear indepen-
dence. If k is a field, one can study an .nC 1/-tuple of vectors .v0; : : : ; vn/ of kdC1
by defining a rank function

r W 2f0;:::;ng ! Z
0

by, for S � f0; : : : ; ng,

r.S/ D dim.Span.fvi j i 2 Sg//:

This rank function satisfies certain natural properties, and one can consider rank
functions that satisfy these same properties without necessarily coming from a set
of vectors. This rank function is what Whitney called a matroid. Whitney noticed
that there were matroids that did not come from a set of vectors over a particular
field k. Such matroids are said to be non-representable over k. Matroids can also
be obtained from graphs as a sort of combinatorial abstraction of the cycle space of
a graph. In fact, it is a piece of folk wisdom that any theorem about graph theory
that makes no reference to vertices is a theorem in matroid theory. The important
structure theory of matroids that are representable over particular finite fields (or
over all fields) was initiated by Tutte. In fact, Tutte was able to demarcate the
difference between graphs and matroids in a precise way. The enumerative theory
of matroids as partially ordered sets was initiated by Birkhoff, Whitney, and Tutte
and systematized and elaborated by Rota [82]. From this enumerative theory, there
were associated polynomial invariants of matroids, among them the characteristic
and Tutte polynomials. The theory of matroids was enlarged and formulated in
more categorical terms by a number of researchers including Brylawski, Crapo,
Higgs, and Rota [22]. Matroids were found to have applications to combinatorial
optimization problems by Edmonds [32] who introduced a polytope encoding the
structure of the matroid.

Throughout the development of the subject, many alternative formulations of
matroids were found. They were combinatorial abstractions of notions like the
span of a subset of a set of vectors, independent sets of vectors, vectors forming
a basis of the ambient space, or minimally dependent sets of vectors. Each of these
definitions made different structures of matroids more apparent. The multitude of
non-obviously equivalent definitions goes by the name of cryptomorphism. Matroid
theory is, in fact, sometimes forbidding to beginners because of the frequent
switching between definitions.

The point of view of matroids in this survey is one initiated in the work of
Gelfand–Goresky–MacPherson–Serganova, which relates representable matroids to
certain subvarieties of a Grassmannian. One views the vector configuration spanning
kdC1 as a surjective linear map
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knC1 ! kdC1; .x0; : : : ; xn/ 7! x0v0 C � � � C xnvn:

By dualizing, one has an injective linear map .kdC1/� ! .knC1/� where we
consider the image of the map as a subspace V 
 .knC1/� Š knC1. Now, we
may scale this subspace by the action of the algebraic torus .k�/nC1 acting on the
coordinates of knC1. The closure of the algebraic torus orbit containing Vdefines a
subvariety of Gr.d C 1; n C 1/. The set of characters of the algebraic torus acting
on V leads to the notion of matroid polytopes and a new perspective on matroids. It
is this perspective that we will explore in this survey. In particular, we will study
how the matroid polytope perspective leads to a class of valuative invariants of
matroids, how the subvarieties of Gr.d C 1; nC 1/ that correspond to subspaces V
representing a particular matroid are interesting in their own right and give insight
to representability, and finally how the study of an object, called the Bergman fan,
parameterizing degenerations of the matroid sheds light on the enumerative theory
of matroids. In fact, we will use the Bergman fan to present a proof of a theorem
of Huh and the author [47] of a certain set of inequalities among coefficients of
the characteristic polynomial of matroids, called log-concavity, addressing part of a
conjecture of Rota, Heron, and Welsh [83].

Another theme of this survey is cryptomorphism. The new ways of thinking about
matroids introduced by algebraic geometry have introduced two new definitions
of matroids that are quite different from the more classical characterizations:
matroid polytopes and Bergman fans. The definition of matroids in terms of matroid
polytopes comes out of the work of Gelfand–Goresky–MacPherson–Serganova. The
Bergman fan definition was motivated by valuation theory [8], rephrased in terms
of tropical geometry, and can be described as studying matroids as cohomology
classes on a particular toric variety called the permutohedral variety. In this survey,
we advocate for the combinatorial study of a slight enlargement of the category of
matroids, that of Minkowski weights on permutohedral varieties. This enlargement
allows a new operation called .r1; r2/-truncation introduced by Huh and the author
which is essential to the proof of log-concavity of the characteristic polynomial.

We have picked topics to appeal to algebraic geometers. We have put some
emphasis on representability, which through Mnëv’s theorem and Vakil’s work
on Murphy’s Law plays a central role in constructing pathological examples in
algebraic geometry.

This survey’s somewhat bizarre approach and assumptions of background reflect
how the author learned the subject. We assume, for example, that the reader is
familiar with toric varieties and K-theory but provide an introduction to Möbius
inversion. We include just enough of the highlights of the structure theory of
matroids to give readers a sense of what is out there. The literature on matroids
is vast and the author’s ignorance keeps him from saying more. The more purely
combinatorial research in matroid theory has a quite different flavor from our survey.
Also, there are a number of topics that would naturally fit into this survey that we
had to neglect for lack of expertise. Such topics include Coxeter matroids [15],
oriented matroids [14], matroids over a ring as defined by Fink and Moci [35],
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hyperplane arrangements [73], and tropical linear subspaces [89]. This survey is
rather ahistorical. We neglect nearly all the motivation coming from graph theory.

We make no claims towards originality in this survey. The presentation of Huh–
Katz’s proof of log-concavity of the characteristic polynomial differs from that of
the published paper [47] but is similar to the exposition in Huh’s thesis [45].

We would like to acknowledge Matthew Baker, Graham Denham, Michael Falk,
Alex Fink, June Huh, Sam Payne, Margaret Readdy, Hal Schenck, and Frank Sottile
for valuable conversations. This survey arose from an expository talk given at the
Simons Symposium on Non-Archimedean and Tropical Geometry. We’d like to
thank the organizers of the symposium for their invitation and encouragement.

There are a number of references that we can recommend enthusiastically and
which were used extensively in the writing of this survey. Oxley’s textbook [74]
is invaluable as a guide to the combinatorial theory. Welsh’s textbook [102] is
very broad and geometrically oriented. Wilson [109] gives a nice survey with
many examples. Reiner’s lectures [80] explain the theory of matroids and oriented
matroids in parallel while also providing historical background. The three Ency-
clopedia of Mathematics and its Applications volumes, Combinatorial Geometries
[106], Theory of Matroids [105], and Matroid Applications [107] are collections
of valuable expository articles. In particular, we found [16] very helpful in the
writing of this survey. Denham’s survey on hyperplane arrangements [25] is a useful
reference for more advanced topics. Thin Schubert cells are treated in detail in [23].

1.1 Notation

We will study algebraic varieties over a field k. We will use k to denote A
1
k, the

affine line over k, and we will use k� to denote .Gm/k, the multiplicative group
over k. For a vector space V;V� will be the dual space. Consequently, .kn/� will be
a vector space and .k�/n will be a multiplicative group. We will refer to such .k�/n
as an algebraic torus. Our conventions are geared towards working in projective
space: matroids will usually be rank dC 1 on a ground set E D f0; 1; : : : ; ng.

This survey is organized largely by the mathematical techniques employed.
The first six sections are largely combinatorial while the next six are increas-
ingly algebraic. Section 2 provides motivation for the definition of matroids
which is given in Sect. 3. Section 4 provides examples while Sect. 5 explains
constructions in matroid theory with an emphasis on what the constructions mean
for representable matroids viewed as vector configurations, projective subspaces,
or hyperplane arrangements. Section 6 discusses representability of matroids.
Section 7 introduces polynomial invariants of matroids, in particular the Tutte
and characteristic polynomial. Section 8 reviews the matroid polytope construction
of Gelfand–Goresky–MacPherson–Serganova and the valuative invariants that it
makes possible. Section 9 reviews constructions involving the Grassmannian,
describing the relationships between Plücker coordinates and the matroid axioms
and between the matroid polytope and torus orbits, and then it discusses realization
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spaces and finally, the K-theoretic matroid invariants of Fink and Speyer. Section 10
is a brief interlude reviewing toric varieties. Section 11 introduces Bergman fans
and shows that they are Minkowski weights. Section 12 gives a proof of log-
concavity of the characteristic polynomial through intersection theory on toric
varieties. Section 13 points out some future directions.

2 Matroids as Combinatorial Abstractions

A matroid is a combinatorial object that captures properties of vector configurations
or equivalently, hyperplane arrangements. We will informally discuss different ways
of thinking about vector configurations as motivation for the rest of the survey.
This section is provided solely as motivation and will not introduce any definitions
needed for the rest of the paper.

Let k be a field, and let v0; v1; : : : ; vn be vectors in kdC1 that span kdC1. We
can study the dimension of the span of a subset of these vectors. Specifically, for
S � f0; 1; : : : ; ng, we set

VS D Span.fvi j i 2 Sg/;

and we define a rank function r W 2E ! Z, by for S 
 f0; 1; : : : ; nC 1g,

r.S/ D dim.VS/:

There are some obvious properties that r satisfies: we must have 0 � r.S/ � jSj;
r must be non-decreasing on subsets (so S 
 U implies r.S/ � r.U/); and
r.f0; 1; : : : ; ng/ D dim.kdC1/ D d C 1. There is a less obvious property: because
for S;U 
 f0; 1; : : : ; ng;VS\U 
 VS \ VU , we must have

r.S\U/ � dim.VS \ VU/ D dim.VS/C dim.VU/� dim.VS[U/ D r.S/C r.U/� r.S[U/:

We can take this one step further and study all rank functions that satisfy these
properties. Such a rank function, we will call a matroid. Not all matroids will
come from vector configurations. Those that do will be said to be representable.
Remarkably, a number of geometric constructions will work for matroids regardless
of their representability.

Instead of studying rank functions, we can study certain collections of subsets
of f0; 1; : : : ; ng that capture the same combinatorial data. We can study bases
which are .d C 1/-element subsets of f0; 1; : : : ; ng corresponding to subsets of
fv0; v1; : : : ; vng that span kdC1. Or we can study independent sets which are subsets
of f0; 1; : : : ; ng corresponding to linearly independent sets of vectors. We can study
circuits which are minimal linearly dependent sets of vectors. Or we can study flats
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which correspond to subspaces spanned by some subset fv0; v1; : : : ; vng. Each of
these collections of subsets can be used to give a definition of a matroid.

Alternatively, we can consider linear subspaces instead of vector configurations.
Let V 
 knC1 be a .d C 1/-dimensional subspace that is not contained in any
coordinate hyperplane. If e0; e1; : : : ; en is the standard basis of knC1, then the dual
basis e�

0 ; e
�
1 ; : : : ; e

�
n induce linear forms on V . This gives a vector configuration in

V�. We can projectivize V to obtain a projective subspace P.V/ � P
n. We can

rephrase the data of the rank function in terms of a hyperplane arrangement of P.V/.
Indeed, if the e�

i ’s are all non-zero, each linear form e�
i vanishes on a hyperplane, Hi

on P.V/, giving a hyperplane arrangement. Note that Hi is the intersection of P.V/
with the coordinate hyperplane in P

n cut out by Xi D 0 where Xi is a homogeneous
coordinate. Now, we can define the rank function by, for S � f0; 1; : : : ; ng,

r.S/ D codim

 
.
\

i2S

Hi/ � P.V/

!
:

There are interpretations of bases, independent sets, circuits, and flats in this
language as well.

There are a number of invariants of matroids that correspond to remembering the
matroids up to a certain equivalence class, analogous to passing to a Grothendieck
ring. One invariant, the Tutte polynomial can be related to the class of the matroid
in a Grothendieck ring whose equivalence relation comes from deletion and con-
traction operations. In the hyperplane arrangement language, deletion corresponds
to forgetting a hyperplane on the projective subspace, and contraction corresponds
to restricting the arrangement to a hyperplane.

There are geometric constructions that can be performed on the linear sub-
space V . These constructions can be studied not just for linear subspaces but for
matroids. Some of these constructions, we shall see, can be used to give new
combinatorial abstractions of linear subspaces and therefore, new definitions of
matroids.

One construction involves the Grassmannian. A linear subspace V corresponds
to a point in the Grassmannian Gr.dC1; nC1/ parameterizing .dC1/-dimensional
subspaces of knC1. Certain information about this point is equivalent to the data of
the matroid. To speak of it, we have to study the geometry of the Grassmannian. The
Grassmannian has a Plücker embedding,

i W Gr.dC 1; nC 1/ ,! P
N

where N D �nC1
dC1
� � 1. The homogeneous coordinates pB on P

N are labeled by
B � f0; 1; : : : ; ng with jBj D d C 1 and are called Plücker coordinates. The data of
the matroid is captured by which Plücker coordinates are non-zero. Alternatively,
the data can be phrased in terms of a certain group acting on the Grassmannian. Let
T D .k�/nC1 act on knC1 by dilating the coordinates. This induces an action on the
Grassmannian by, for t 2 T , taking V 2 Gr.d C 1; nC 1/ to t � V D ftv j v 2 Vg.
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Note that the diagonal torus of T acts trivially on Gr.d C 1; n C 1/. This group
action extends to the ambient PN . Given V 2 Gr.d C 1; n C 1/ � P

N , we can lift
V to a point QV 2 kNC1 and ask what are the characters of T of the smallest sub-
representation of T containing QV . This set of characters captures exactly the data
of the matroid. Alternatively, we can rephrase this data in terms of group orbits.
The closure of the T-orbit containing V;T � V � P

N is a polarized projective toric
variety. By well-known results in toric geometry, this toric variety corresponds to a
polytope. The data of this polytope also corresponds to the matroid. Moreover, one
can study polytopes that arise in this fashion combinatorially and even associate
them with non-representable matroids. These matroid polytopes can be used to
produce an interesting class of invariants of matroids, called valuative invariants.
These invariants are those that are well behaved under subdivision of the matroid
polytope into smaller matroid polytopes. The K-theory class of the structure sheaf
of the closure of the torus orbit, OT V 2 K0.Gr.dC1; nC1// is a valuative invariant
of the matroid introduced by Speyer. By a combinatorial description of K-theory of
the Grassmannian, the invariant can be extended to describe non-representable
matroids.

Given a matroid M, one can study the set of points on the Grassmannian
that have M as their matroid. This locally closed subset of Gr.d C 1; n C 1/ is
called a thin Schubert cell. Such sets have arbitrarily bad singularities (up to an
equivalence relation) and can be used to construct other pathological moduli spaces.
The pathological nature of thin Schubert cells are responsible for some difficulties
in understanding representability of matroids.

Given a subspace P.V/ � P
n, one can blow up the ambient Pn to understand

P.V/ as a homology class. Homogeneous coordinates on P
n provide a number

of distinguished subspaces. In fact, we can consider all subspaces that occur asT
i2S Hi for all proper subsets S � f0; 1; : : : ; ng. If we intersect n distinct coordinate

hyperplanes of Pn, we get a point all but one of whose coordinates are 0. There are
n C 1 such points. If we intersect n � 1 distinct coordinate hyperplanes, we get a
coordinate line between two of those points. If we intersect n�2 distinct coordinate
hyperplanes, we get a coordinate plane containing three of those points, and so on.
We can produce a new variety, called the permutohedral variety, X by first blowing
up the nC 1 points, then blowing up the proper transforms of the coordinate lines,
then blowing up the proper transforms of the coordinate planes, and so on. The
proper transform eP.V/ of P.V/ is an iterated blow-up of intersections of hyperplanes
from the induced arrangement. The homology class of eP.V/ in X depends only
on the matroid of V . It has been studied as the Bergman fan by Sturmfels and
Ardila-Klivans. Moreover, it can be defined for non-representable matroids. The
characteristic polynomial, which is a certain specialization of the Tutte polynomial,
can be phrased as the answer to an intersection theory problem on the Bergman fan.
In the representable case, one may apply intersection-theoretic inequalities derived
from the Hodge index theorem to prove inequalities between the coefficients of the
characteristic polynomial, resolving part of the Rota–Heron–Welsh conjecture.

We will discuss all this and more below.
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3 Matroids

There are many definitions of a matroid. The equivalence of these definitions goes
by the buzzword of cryptomorphism. They are all structures on a finite set E which
will be called the ground set.

The rank formulation of matroids is the one that will be most useful to us in the
sequel:

Definition 3.1. A matroid on E of rank dC 1 is a function

r W 2E ! Z

satisfying

(1) 0 � r.S/ � jSj,
(2) S 
 U implies r.S/ � r.U/,
(3) r.S [ U/C r.S \ U/ � r.S/C r.U/, and
(4) r.f0; : : : ; ng/ D dC 1.

Definition 3.2. Two matroids M1;M2 with Mi on Ei with rank function ri are
said to be isomorphic if there is a bijection f W E1 ! E2 such that for any
S 
 E1,r2.f .S// D r1.S/.

The definition of matroids makes sense from the point of view of vector
configuration in a vector space. Let E D f0; 1; : : : ; ng. Let k be a field. Consider
the vector space kdC1 together with nC 1 vectors v0; : : : ; vn 2 kdC1 spanning kdC1.
For S 
 E, set

r.S/ D dim.Span.fvi j i 2 Sg//:

Then r is a matroid. If we write

VS D Span.fvi j i 2 Sg/;

then item (3.1) is equivalent to

dim.VS\U/ � dim.VS \ VU/:

Note that this inequality may be strict because there may be no subset of E exactly
spanning VS \ VU . Several of the matroid axioms are simple-minded and obvious
while one is non-trivial. This is very much in keeping with the flavor of the subject.

Definition 3.3. A matroid is said to be representable over k if it is isomorphic to a
matroid arising from a vector configuration in a vector space over k. A matroid is
said to be representable if it is representable over some field. A matroid is said to be
regular if it is representable over every field.
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Regular matroids are much studied in combinatorics. They have a characteri-
zation due to Tutte (see [74] for details). Given a representable matroid, we may
form the matrix whose columns are the coordinates of the vectors in the vector
configuration. A matrix is said to be totally unimodular if each square submatrix
has determinant 0,1, or �1. It is a theorem of Tutte that regular matroids are those
representable by totally unimodular matrices with real entries [74].

Representable matroids are an important class of matroids but are not all of them.
In fact, it is conjectured that they are asymptotically sparse among matroids. We will
discuss non-representable matroids at length in this survey.

Instead of considering a rank function, we may consider instead the set of flats
of the matroids.

Definition 3.4. A flat of r is a subset S 
 E such that for any j 2 E; j 62 S; r.S [
fjg/ > r.S/.

We think of flats as the linear subspaces of knC1 spanned by vectors labeled by a
subset of E. We may also axiomatize matroids as a set of flats.

Definition 3.5. A matroid is a collection of subsets F of a set E that satisfy the
following conditions

(1) E 2 F ,
(2) if F1;F2 2 F , then F1 \ F2 2 F , and
(3) if F 2 F and fF1;F2; : : : ;Fkg is the set of minimal members of F properly

containing F, then the sets F1 n F;F2 n F; : : : ;Fk n F partition E n F.

Note that axiom (3) implies that for any flat F and j 62 F, there is a unique flat F0
containing F[fjg that does not properly contain any flat properly containing F. We
can also encode the data of the flats in terms of a closure operation where the closure
of a set S 
 E; cl.S/ is the intersection of the flats containing S. The set of flats form
a lattice which is a poset equipped with operations that abstract intersection and
span. The lattice of flats of M is denoted by L.M/. We will let O0 be the minimal flat.
Given a collection of flats F , we may recover the rank function of a set S 
 E by
setting it to be the length of the longest chain of non-trivial flats properly contained
in cl.S/.

We can also axiomatize matroids in terms of their bases. A basis for a vector
configuration labeled by E is a subset B 
 E such that fvi j i 2 Bg is a basis for
kdC1. In terms of the rank function, a basis is a .d C 1/-element set B 
 E with
r.B/ D dC 1.

Definition 3.6. A matroid is a collection B of subsets of E such that

(1) B is nonempty and
(2) If B1;B2 2 B and i 2 B1 n B2, then there is an element j of B2 n B1 such that

.B1 n i/ [ fjg 2 B.

The second axiom is called basis exchange. It is a classical property of pairs
of bases of a vector space and is due to Steinitz. By applying it repeatedly, we
may show that all bases have the same number of elements. This is the rank of the
matroid. It is straightforward to go from a rank function to a collection of bases and
vice versa.
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Another axiomatization comes from the set of independent subsets which should
be thought of subsets of E labelling linearly independent subsets. These would be
subsets I � E such that r.I/ D jIj.
Definition 3.7. A matroid is a collection of subsets I of E such that

(1) I is nonempty,
(2) Every subset of a member of I is a member of I, and
(3) If X and Y are in I and jXj D jYj C 1, then there is an element x 2 X n Y such

that Y [ fxg is in I.

Definition 3.8. A loop of a matroid is an element i 2 E with r.fig/ D 0. A pair of
parallel points .i; j/ of a matroid are elements i; j 2 E such that r.fig/ D r.fjg/ D
r.fi; jg/ D 1. A matroid is said to be simple if it has neither loops nor parallel points.

For vector configurations, a loop corresponds to the zero vector while parallel
points correspond to a pair of parallel vectors.

Definition 3.9. A coloop of a matroid is an element i 2 E that belongs to every
basis.

In terms of vector configurations, a coloop corresponds to a vector not in the span
of the other vectors.

A circuit in a matroid is a minimal subset of E that is not contained in a basis. For
a set of vectors, this should be thought of as a subset C 
 E such that the vectors
labeled by C are linearly dependent but for any i 2 C;Cnfig is linearly independent.
Circuits can be axiomatized to give another definition of matroids.

4 Examples

In this section, we explore difference classes of matroids arising in geometry, graph
theory, and optimization.

Example 4.1. The uniform matroid UdC1;nC1 of rank d C 1 on n C 1 elements is
defined for E D f0; 1; : : : ; ng by a rank function r W 2E ! Z
0 given by

r.S/ D min.jSj; dC 1/:

It corresponds to a vector configuration v0; v1; : : : ; vn given by n C 1 generically
chosen vectors in a .d C 1/-dimensional vector space. Any set of d C 1 vectors is
a basis. Note that if the field k does not have enough elements, then the vectors
cannot be chosen generically. For example, because F

2
2 has only three non-zero

elements, U2;4 does not arise as a vector configuration over F2. Equivalently, it is
not representable over F2.
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The matroids on a singleton set will be important below. The matroid U0;1 is
represented by a vector configuration consisting of 0 2 k. The single element of the
ground set of U0;1 is a loop. On the other hand, U1;1 is represented by any non-zero
vector in k. The single element of the ground set of U1;1 is a coloop.

Example 4.2. Let x0; x1; : : : ; xn be points in P
d
k not contained in any proper

projective subspace. Pick a vector vi 2 knC1 n f0g on the line described by xi.
Then v0; v1; : : : ; vn gives a vector configuration in kdC1 and therefore a matroid on
f0; 1; : : : ; ng of rank dC1. Specifically, the rank function, for S � E D f0; 1; : : : ; ng
is given by

r.S/ D dim.Span.vi j i 2 S//:

This vector configuration can be thought of as a surjective map:

knC1 ! kdC1

.t0; : : : ; tn/ 7! t0v0 C : : :C tnvn:

Alternatively, we can dualize this map to get an injective map .kdC1/� ! .knC1/�
whose image is a subspace V . Note here that every nonempty set has positive rank
so the matroid has no loops. Coloops are elements i such that the minimal projective
subspace containing fx0; x1; : : : ; xng n fxig is of positive codimension. Flats corre-
spond to minimal projective subspaces containing some subset of fx0; x1; : : : ; xng.
Bases are .d C 1/-element subsets of fx0; x1; : : : ; xng that are not contained in a
proper projective subspace of Pd.

If x0; x1; : : : ; xn are contained in a proper projective subspace, we may replace
the ambient space by the minimal projective subspace containing x0; x1; : : : ; xn in
order to define a matroid.

Example 4.3. Let V 
 knC1 be an .dC 1/-dimensional subspace. Let e0; e1; : : : ; en

be a basis for knC1. The inclusion i W V ,! knC1 induces a surjection i� W .knC1/� !
V�. The image of the dual basis, fi�e�

0 ; i
�e�
1 ; : : : ; i

�e�
n g gives a vector configuration

in V�. We can take its matroid.
Let us use the basis to put coordinates .x0; x1; : : : ; xn/ on knC1. We can define

subspaces of V as follows: for I 
 E, set

VI D fx 2 V j xi D 0 for all i 2 Ig:

Then r.I/ D codim.dim VI � V/. A flat in this case is a subset F � E such that
for any G � F;VG ¨ VF. The lattice of flats is exactly the lattice of subsets of V
of the form VS, ordered under reverse inclusion. An element j is a loop if and only
if V is contained in the coordinate hyperplane xj D 0. A basis is a .d C 1/-element
subset B 
 f0; 1; : : : ; ng such that VB D f0g. An element j is a coloop if and only if
V contains the basis vector ej.
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If we replace V and knC1 by their projectivizations, and V is not contained in
any coordinate hyperplane, then the definition still makes sense. In this case we
consider an r-dimensional projective subspace P.V/ in P.V/. We consider P.Vi/

as an arrangement of hyperplanes on P
n [73]. In this case, the subsets P.VF/ as F

ranges over all flats correspond to the different possible intersections of hyperplanes
(including the empty set).

Example 4.4. Given V � knC1 as above, we may define a matroid by considering
the quotient


 W knC1 ! knC1=V:

For I � E, let kI � knC1 be the subspace given by

kI D Span.fei j i 2 Ig/:

We set

r.I/ D dim.
.kI//:

This is the matroid given by the vector configuration f
.e0/; 
.e1/; : : : ; 
.en/g.
This example is related to the previous one by matroid duality which we will

investigate in Sect. 5.3.

Example 4.5. One can draw simple matroids as point configurations. We imagine
the points as lying in some projective space, and if the matroid were representable,
they would give a vector configuration as in Example 4.2. For example, if we have
a rank 3 matroid, we view the points as spanning a projective plane. We specify
the rank 2 flats that contain more than two points by drawing lines through the
points. These lines together with all lines between pairs of points are exactly the
rank 2 flats. Higher rank matroids can be described by point configurations in higher
dimensional spaces where we specify the k-flats that contain more points than what

Fig. 1 The Fano and non-Fano matroids
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Fig. 2 The Pappus and
non-Pappus matroids

is predicted by rank considerations (e.g., for 3-flats which correspond to planes,
we would show the planes that are not merely those containing three non-collinear
points or a line and a non-incident point).

The Fano and non-Fano matroids denoted by F7 and F�
7 , respectively, are

pictured in Fig. 1. The Fano matroid is a rank 3 matroid consisting of seven points
together with seven lines passing through particular triples of points. A line through
three of those points is drawn as a circle. The Fano matroid is representable
exactly over fields of characteristic 2. In fact, it is the set of all points and lines
in the projective plane over F2;P

2
F2

. The non-Fano matroid is given by the same
configuration but with the center line removed. We see that as meaning that those
three points on that line are no longer collinear. This matroid is representable exactly
over fields whose characteristic is different from 2.

Example 4.6. The Pappus and non-Pappus matroids are pictured in Fig. 2. The non-
Pappus matroid is obtained from the Pappus matroid by mandating that the three
points in the middle not be collinear. This is in violation of Pappus’s theorem which
is a theorem of projective geometry over a field. Therefore, the non-Pappus matroid
is not representable over any field.

Example 4.7. Let G be a graph with nC 1 edges labeled by E D f0; 1; : : : ; ng. We
can define the graphic matroid M.G/ to be the matroid whose set of bases are G’s
spanning forests. The flats of this matroid are the set of edges F such that F contains
any edge whose endpoints are connected by a path of edges in F. Note that the loops
of this matroid are the loops of the graphs while the coloops are the bridges. In fact,
coloops are sometimes called bridges or isthmuses in the literature.

This matroid comes from a vector configuration. Pick a direction for each edge.
Let C1.G;k/ be the vector space of simplicial 1-chains on G considered as a
1-dimensional simplicial complex. There is a basis of C1.G;k/ given by the edges
e0; : : : ; en with their given orientation. Let @ W C1.G;k/ ! C0.G;k/ be the
differential. Then M.G/ is given by the vector configuration @.e0/; : : : ; @.en/. Here,
the rank of the matroid is

dim.@C1.G;k// D dim C0.G;k/ � dim H0.G;k/ D jV.G/j � �.G/

where �.G/ is the number of connected components of G.
By Whitney’s 2-isomorphism theorem [74, Theorem 5.3.1], one can reconstruct

a connected graph G from M.G/ up to two moves, vertex cleaving and Whitney
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twists. If G is 3-connected, it can be uniquely reconstructed from M.G/. In fact,
matroids can be considered to be generalizations of graphs. Tutte [98] stated, “If
a theorem about graphs can be expressed in terms of edges and circuits only it
probably exemplifies a more general theorem about matroids.”

As a special case, consider KdC1, the complete graph on d C 1 vertices. Let
us denote its vertices by w0; : : : ;wd. The edges are denoted by eij for 0 � i <
j � d. The differential is given by @eij D wi � wj. The associated subspace as
in Example 4.2 is dC0.G;k/ � C1.G;k/. We can put coordinates y0; : : : ; yd on
C0.G;k/ by taking as a basis the characteristic functions of vertices ıw0 ; : : : ; ıwd .
Therefore,

dC0.G;k/ Š knC1=k

where we quotient by the diagonal line. The hyperplane arrangement induced by the
coordinate subspaces of C1.G;k/ is the braid arrangement

fyi � yj D 0 j 0 � i < j � dg:

Example 4.8. Let G be a graph with nC 1 edges labeled by E D f0; 1; : : : ; ng. We
can also define another matroid, the cographic matroid M�.G/ of G. The bases of
M�.G/ are complements of the spanning forests of G.

The cographic matroid of a graph also comes from a vector configuration. We
pick a direction for each edge as before. Let C1.G;k/ be the 1-cochains of G.
It has a basis given by ıe0 ; ıe1 ; : : : ; ıen , the characteristic function of each edge
with given orientation. Let d W C0.G;k/ ! C1.G;k/ be the differential. Let
V D C1.G;k/=dC0.G;k/. The matroid is given by the image of ıe0 ; ıe1 ; : : : ; ıen

in V .

Matroids that are isomorphic to M.G/ for some graph G are said to be graphic.
Cographic matroids are defined analogously. Observe that because cycle and
cocycle spaces can be defined over any field, graphic and cographic matroids are
regular. The uniform matroid U2;4, because it is not regular, is neither graphic
nor cographic. There are examples of regular matroids that are neither graphic nor
cographic.

Example 4.9. Transversal matroids arise in combinatorial optimization. Let E D
f0; : : : ; ng. Let A1; : : : ;Am be subsets of E. A partial transversal is a subset I 
 E
such that there exists an injective � W I ! f1; : : : ;mg such that i 2 A�.i/.
A transversal is a partial transversal of size m. We can view elements of E as people
and elements of f1; : : : ;mg as jobs where Ai is the set of people qualified to do job i.
A partial transversal is a set of people who can each be assigned to a different job.
The transversal matroid is defined to be the matroid on E whose independent sets
are the sets of partial transversals.

An important generalization of Hall’s theorem is due to Rado. See [102, Chap. 7]
for details:
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Theorem 4.10. Let M be a matroid on a set E. A family of subsets A1; : : : ;Am 
 E
has a transversal that is an independent set in M if and only if for all J 
 f1; : : : ;mg,

r.[j2JAj/ 	 jJj:

This has applications to finding a common transversal for two collections of
subsets.

Example 4.11. Algebraic matroids come from field extensions. Let F be a field and
let K be an extension of F generated by a finite subset E � K. We define a rank
function as follows: for S 
 E,

r.S/ D tr: deg.F.S/=F/;

the transcendence degree of F.S/ over F. It turns out that r defines a matroid. It can
be shown that every matroid representable over some field is an algebraic matroid
over that same field [74, Proposition 6.7.11]. There are examples of non-algebraic
matroids and of algebraic, non-representable matroids.

Algebraic matroids can be interpreted geometrically. Let V � A
nC1
F

be an
algebraic variety. Set K D K.V/, the function field of V . Let E D fx0; x1; : : : ; xng
be the coordinate functions on V . The rank of the algebraic matroid given by K is
the transcendence degree of K over F, which is equal to dim V . A subset S 
 E of
size dim V is a basis when tr: deg.K=F.S// D 0 which happens when the projection
onto the coordinate space 
S W V ! A

S
F

is generically finite.

Example 4.12. An important class of matroids are the paving matroids. Conjec-
turally, they form almost all matroids [68]. A paving matroid of rank r C 1 is a
matroid such that any set I � E with jIj � r is independent. Paving matroids can
be specified in terms of their hyperplanes, that is, their rank r flats as there is a
cryptomorphic axiomatization of matroids in terms of their hyperplanes. We use
the following proposition where an r-partition of a set E is a collection of subsets
T D fT1;T2; : : : ;Tkg where for all i; jTij 	 r and each r element subset of E is a
subset of a unique Ti:

Proposition 4.13 ([74, Proposition 2.1.24]). If T D fT1;T2; : : : ;Tkg is an r-
partition of a set E, then T is the set of hyperplanes of a rank r C 1 matroid on E.
Moreover, for r 	 1, the set of hyperplanes of every rank rC 1 paving matroid on E
is an r-partition of E.

One example of a paving matroid is the Vámos matroid. Here we follow the
definition of [74]. We set E D f1; 2; 3; 4; 10; 20; 30; 40g. We set

T1 D ff1; 2; 10; 20g; f1; 3; 10; 30g; f1; 4; 10; 40g; f2; 3; 20; 30g; f2; 4; 20; 40g

and

T D T1 [ fT � Ej jTj D 3 and T is not contained in any element of T1g
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Then T is a 3-partition and the set of hyperplanes of a rank 4 matroid V8.
This matroid is not representable over any field. One can view V8 as the set
of vertices of a cube whose bottom and top faces are labeled f1; 3; 2; 4g and
f10; 30; 20; 40g where we mandate that none of the following quadruples of points
are coplanar: f1; 3; 2; 4g; f10; 30; 20; 40g, and f3; 4; 30; 40g. This matroid turns out to
be non-algebraic [49].

For details on paving matroids, see [74, Sect. 2.1].

Example 4.14. Schubert matroids are the matroids whose linear subspaces corre-
spond to the generic point of a particular Schubert cell. They were introduced by
Crapo [20]. See [4] for more details.

Schubert cells form an open stratification of the Grassmannian Gr.dC 1; nC 1/
of .d C 1/-dimensional subspaces of knC1. The Schubert cells consist of all the
subspaces that intersect a flag of subspaces in particular dimensions. Specifically,
we have a flag of subspaces

f0g ¨ W1 ¨ W2 ¨ : : : ¨ Wn ¨ WnC1 D knC1

with dim Wi D i. For a subspace V 2 Gr.d C 1; n C 1/, this flag induces a nested
sequence of subspaces

f0g 
 V \W1 
 V \W2 
 : : : 
 V \Wn 
 V \WnC1 D V

The dimensions of these subspaces increase by 0 or 1 with each inclusion, so we
can mandate where the jump occurs. In the most generic situation, the sequence of
dimensions would be 0; : : : ; 0; 1; 2; : : : ; d; dC 1, that is, dim.V \Wn�dCi/ D i. We
consider cases where the sequence of the jumps differs from that situation. Specifi-
cally, we let a1; : : : ; adC1 be a non-increasing sequence of integers with a1 � n� d.
The Schubert cell is cut out by the open conditions that dim.V \Wn�dCi�ai/ D i.
Its closure, the corresponding Schubert variety is cut out by replacing the equality
by “	”.

To put Schubert cells into a matroid context, we must pick a flag. Let Wi D
Span.e0; : : : ; ei�1/. In other words, Wi is cut out by the system xi D : : : D xn D 0.
Therefore, we expect to have fn � adC1; n � 1 � ad; : : : ; n � d � a1g as a basis.
However, we need to impose more conditions to specify a matroid. We will suppose
that V is generic with respect to the flag apart from these conditions. We declare the
bases of the matroid to be exactly the subsets fs0; s1; : : : ; sdg 
 f0; : : : ; ng such that
si � .n � i/ � adC1�i. A point of view that will be taken up later is that matroids
allow one to specify points in Schubert cells more precisely.



Matroid Theory for Algebraic Geometers 451

5 Operations on Matroids

In this section, we survey some of the operations for constructing and relating
matroids. Our emphasis is on explaining these constructions in the representable
case. For more complete references we recommend [16, 74].

5.1 Deletion and Contraction

Let M be a matroid of rank d C 1 on a finite set E. For X � E, we may define the
deletion M nX. The ground set of M nX is EnX with rank function given as follows:
for S 
 E n X,

rMnX.S/ D rM.S/:

If M is represented by a vector configuration v0; : : : ; vn;M n X is represented by
fvi j i 62 Xg. Similarly, if M is represented by a vector space V 
 knC1;M n X
is represented by 
.V/ 
 kn where 
 W knC1 ! knC1�jXj is given by projecting
out the coordinates corresponding to elements of X. Deletion on graphic matroids
corresponds to deleting an edge from the graph.

For T 
 E, we define the restriction by

MjT D M n .E n T/:

If F is a flat of M, then it is easy to see that the lattice of flats L.MjF/ is the interval
ŒO0;F� in L.M/.

A special case which will be of interest below is the deletion of a single element.
Let i 2 E. If i is not a coloop, then there is a basis B of E not containing i. This is
a rank d C 1 subset of M n i, and so M n i is a matroid of rank d C 1. The bases of
M n i are the bases of M that do not contain i. By considering the matroid as a linear
subspace, we see that dim
.V/ D dim V .

There is a dual operation to deletion called contraction. Let X � E. We define
the contraction M=X to be the matroid on ground set E n X given by for S 
 E n X,

r.S/ D r.S [ X/ � r.X/:

Consequently, M=X is of rank nC 1 � r.X/. If F is a flat of M, then L.M=F/ is the
interval ŒF;E� in L.M/. If M is represented by a vector configuration, v0; : : : ; vn in
kdC1;M=X is represented by f
.vi/ j i 62 Xg where 
 W kdC1 ! kdC1=W is the
projection and

W D Span.fvi j i 2 Xg/:
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Likewise if M is represented by a subspace V 
 knC1;M=X is given by V\LX 
 LX

where LX is the coordinate subspace given by

LX D fx j xi D 0 if i 2 Xg:

If i 2 E that is not a loop, then the rank of M=i is d. In this case, if M is
represented by a subspace V , then V intersects Li transversely. If i is a loop, the
rank of M=i is dC1. In this case, V is contained in the subspace Li. If i is not a loop,
the bases of M=i are

B.M=i/ D fB n fig j i 2 B; B is a basis for Mg:

Definition 5.1. A matroid M0 is said to be a minor of M if it is obtained by deleting
and contracting elements of the ground set of M.

Note that a minor of a representable matroid is representable because we have a
geometric interpretation of deletion and contraction on a vector arrangement or
linear subspace.

5.2 Direct Sums of Matroids

Given two matroids M1;M2 on disjoint sets E1;E2, we may produce a direct sum
matroid M1 ˚M2 on E1 t E2. Specifically, for S1 
 E1; S2 
 E2, we define

r.S1 t S2/ D r1.S1/C r2.S2/:

The bases of M are of the form B1 t B2 for B1 2 B1;B2 2 B2. The circuits of
M1 ˚M2 are the circuits of M1 together with the circuits of M2. The lattice of flats
obeys

L.M1 ˚M2/ D L.M1/ � L.M2/

where the underlying set is the Cartesian product and .F1;F2/ � .F0
1;F

0
2/ if and only

if F1 � F0
1 and F2 � F0

2. If M1 is represented by vectors v0; : : : ; vm 2 kd1C1 and M2

is represented by vectors w0; : : : ;wn 2 kd2C1, then M1 ˚M2 is represented by

.v0; 0/; : : : ; .vm; 0/; .0;w0/; : : : .0;wn/ 2 kd1C1 ˚ kd2C1:

If M1;M2 are represented by subspace V1 
 kn1C1;V2 
 kn2C1, then M1 ˚ M2 is
represented by

V1 ˚ V2 
 kn1C1 ˚ kn2C1:
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For graphic matroids, direct sum corresponds to producing a new graph by
identifying a vertex in one graph with a vertex in the other.

Every matroid has a decomposition analogous to the decomposition of a graph
into 2-connected components. Here, a graph is said to be 2-connected if it cannot
be disconnected by removing one vertex. A decomposition into two 2-connected
components involves repeatedly removing each cut vertices and then replacing it
with a new vertex in each component.

Definition 5.2. A matroid is connected if for every i; j 2 E, there exists a circuit
containing i and j.

We can define connected components of the matroid by saying that two elements
i; j are in the same connected component if and only if there exists a circuit
containing i and j. This is an equivalence relation. It can be stated in terms of bases
in the following form which will be important when we study matroid polytopes:
two elements i,j are in the same connected component if and only if there exists
bases B1 and B2 such that B2 D .B1 n fig/ [ fjg. If T1; : : : ;T� are the connected
components of M, then we have a direct sum decomposition

M Š MjT1 ˚ � � � ˚MjT� :

Connected matroids are indecomposable under direct sum, and matroids have a
unique direct sum decomposition into connected matroids.

Loops and coloops play a particular role in direct sum decompositions. Because
the only circuit in which a loop i occurs is fig; fig is a connected component.
Similarly, because a coloop j does not occur in any circuit, fjg is a connected
component. Therefore, loops and coloops may be split off from the matroid as in
the following proposition:

Proposition 5.3. Any matroid M can be written as a direct sum

M Š M0 ˚ .U0;1/
˚l ˚ .U1;1/

˚c

where M0 has neither loops nor coloops.

5.3 Duality

Duality is a natural operation on matroids that generalizes duality of planar graphs.

Definition 5.4. The dual of a matroid M on E with rank function r is defined to be
the matroid on E with rank function given by

r�.S/ D r.E n S/C jSj � r.E/:
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This rank function satisfies the axioms of a matroid. If M is rank d C 1 on E D
f0; 1; : : : ; ng, then M� is rank n � d. The bases of M� can be seen to be the set

B� D fE n B j B 2 Bg:

Duality interchanges loops and coloops, commutes with direct sum, and takes
deletion to contraction: .M n i/� D M�=i. As an example, we have .UrC1;nC1/� D
Un�r;nC1.

The dual of a representable matroid is representable. Let M be represented by a
vector configuration v0; v1; : : : ; vn spanning kdC1. This configuration can be thought
of as a surjection p W knC1 ! kdC1 which fits into an exact sequence as

0 �� ker.p/
j

�� knC1 p
�� kdC1 �� 0 :

We can take duals to get an injection p� W .kdC1/� ,! .knC1/�. The dual of M is
given by the vector configuration corresponding to the quotient

.knC1/� ! .knC1/�=p�..kdC1/�/ D ker.p/�:

Indeed, let w0;w1; : : : ;wn be the dual basis of .knC1/�. For S 
 f0; : : : ; ng, the
span of fwi j i 2 Sg induces a linear projection 
S W knC1 ! kS. Write kEnS � knC1
for the kernel of that projection. The rank of S in the vector configuration induced
by fw0; : : : ;wng is

r�.S/ D dim.j�
�
S ..k

S/�//

D dim.
S.ker.p///

D dim..ker.p/C kEnS/=kEnS/

D dim.kEnS C ker.p/= ker.p//C dim.ker.p// � dim.kEnS/

D dim.p.kEnS//C dim.ker.p// � dim.kEnS/

D r.E n S/C .n � d/ � ..nC 1/ � jSj/
D r.E n S/C jSj � r.E/:

If a matroid is represented by a subspace V � knC1, its dual is represented by
V? � .knC1/� where V? D ker..knC1/� ! V�/.

By interpreting of M.G/ and M�.G/ as vector configurations given by chain and
cochain groups, we see that these are dual matroids. If G is a planar graph, it turns
out that M�.G/ D M.G�/ where G� is the planar dual of G. Because one can take
the dual of any graphic matroids, the theory of matroids allows one to take the dual
of a non-planar graph.
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5.4 Extensions

Single-element extension is an operation on matroids inverse to single-element
deletion. Its properties were worked out by Crapo. Given a matroid M on a ground
set E, it produces a new matroid M0 on a ground set E0 D E t fpg such that
M D M0 n p. Here we will follow the exposition of [16]. We can partition the flats
of M into three sets based on how they change under extension:

K1 D fF 2 F j F and F [ fpg are both flats of M0g
K2 D fF 2 F j F is a flat of M0 but F [ fpg is notg
K3 D fF 2 F j F [ fpg is a flat of M0 but F is notg:

This partition can be understood in the case where M0 is given by a vector
configuration fv0; : : : ; vn; vpg 
 kdC1 and M D M0 n p. The flats in K3 correspond
to subspaces that contain vp and are spanned by a subset of fv0; : : : ; vng. A flat
F of M is in K1 when vp 62 Span.F/ and Span.F [ vp/ is not among the linear
subspaces corresponding to flats of M. Finally, F 2 K2 when vp 62 Span.F/ but
Span.F [ vp/ corresponds to some flat of M. This flat must be an element of K3. If
one knows K3, one can determine K2 and therefore K1: elements of K2 are exactly
those that are contained in an element of K3. Now, let us determine what properties
that K1 and K3 should have. If F1 
 F2 and F2 2 K1, then F1 2 K1. Also, if
F1 
 F2 and F1 2 K3, then F2 2 K3. A more subtle property can be seen by
considering intersections: if F1;F2 2 K3, then vp 2 Span.F1/\Span.F2/; therefore,
if Span.F1 \F2/ D Span.F1/\ Span.F2/, then F1 \F2 2 K3. These properties can
all be established in the abstract combinatorial setting. Translated into the matroid
axioms, these properties say that K3 is a modular cut:

Definition 5.5. Let M be a matroid. A subset M 
 F is said to be a modular
cut if

(1) If F1 2M and F2 2 F with F1 
 F2, then F2 2M and
(2) if F1;F2 2M satisfy

r.F1/C r.F2/ D r.F1 \ F2/C r.F1 [ F2/

then F1 \ F2 2M.

Note that the condition on ranks in (5.5) above says that Span.F1 \ F2/ D
Span.F1/ \ Span.F2/.

This characterization of K3 holds for all extensions of matroids and is in fact a
sufficient condition for an extension to exist:

Proposition 5.6. For any single-element extension M0 of M, the set K3 is a modular
cut. Moreover, given any modular cut M of a matroid M, there is a unique single-
element extension M0, denoted by M CM p such that K3 DM.
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An extension is a composition of single-element extensions. Single-element
extensions may leave the class of representable matroids: the matroid M may be
representable but M0 may not be. Indeed, given a matroid M, there may not exist
a set of vectors fv0; : : : ; vng 
 kdC1 representing M such that there is a vector vp

contained in the subspaces corresponding to flats in the modular cut. In fact, one
can produce such an M by beginning with a non-representable matroid and deleting
elements until it becomes representable.

Single-element extensions have a geometric interpretation when one considers
matroids represented by a subspace V 
 knC1. Specifically, one looks for a subspace
V 0 � knC2 such that 
.V 0/ D V where 
 W knC2 ! knC1 is projection onto the first
nC 1 factors. We can interpret such a V 0 as the graph of a linear function l W V ! k.
Then K3 can be interpreted as the flats contained in l�1.0/.

A special case of single-element extension is that of a principal extension.
Specifically, one takes the modular cut to be all flats containing a given flat F. In
terms of vector configuration, this corresponds to adjoining a generic vector in the
subspace corresponding to F. The extension is denoted by MCF p. In the case where
F D E, this is called the free extension and it corresponds to extending by a generic
vector.

There is an operation inverse to contraction, called coextension. In other words,
given a matroid M, one produces M0 such that M D M0=p. Note that the rank of
M0 will be one greater than the rank of M. Because deletion is dual to contraction,
coextension can be defined in terms of extension. Specifically, let M be a modular
cut in M�. Then the coextension associated with M is

M0 D .M� CM p/�:

One can similarly define principal and free coextension.

5.5 Quotients and Lifts

There is a natural quotient operation on matroids. Specifically, one extends a matroid
by an element, and then one contracts the element. The quotient given by a modular
cut M is defined to be M CM p=p. In the case of vector configuration, this
corresponds to taking a quotient of the ambient subspace: if M0 D M CM p is
represented by fv0; : : : ; vn; vpg in knC1, then M0=p is represented by the image of
fv0; : : : ; vng in knC1=kvp. One can define principal quotients by taking modular cuts
associated with a flat. If M D fEg, then the quotient is given by a free extension by
vp followed by a contraction by vp. This is called the truncation Truncd.M/ of M.
It corresponds to taking the quotient of the ambient space by a generic vector. In
general, for 0 � k � dC1, we define the k-truncation as the matroid on E with rank
function given by

rTrunck.M/.S/ D max.r.S/; k/:
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If we view the matroid as a linear subspace V � knC1, then truncation has a
geometric interpretation as follows:

Lemma 5.7. Let M be a rank dC 1 matroid on f0; 1; : : : ; ng represented by a .dC
1/-dimensional subspace V 
 knC1. Let H be a hyperplane in knC1 that intersects
VI transversely for all I � f0; 1; : : : ; ng. Then V \ H represents Truncd.M/.

Proof. We see that the rank function associated with V \ H obeys

rV\H.S/ D codim.dim.VS \ H/ � .V \ H// D max.codim.VS � V//; d/ D rTruncd.M/.S/:

ut
Consequently, the k-truncation corresponds to intersecting with a generic nC1�

.dC1�k/-dimensional subspace. This will be important in the sequel. There is also
a dual notion to quotient, that of lifts.

5.6 Maps

There are several rival notions of morphisms between matroids. We briefly review
the notion of strong maps following Kung [59] noting that there is also a notion of
weak maps.

Definition 5.8. Let M1 and M2 be matroids on sets E1 and E2, respectively. Let the
direct sums Mi ˚U0;1 be given by extending by a loop oi. A strong map � from M1

to M2 is a function � W E1[fo1g ! E2[fo2g taking o1 to o2 such that the preimage
of any flat of M2 ˚ U0;1 is a flat in M1 ˚ U0;1.

A strong map turns out to be the composition of an extension and a contraction.

Definition 5.9. An embedding of a matroid M on E into a matroid MC on EC is an
inclusion i W E ,! EC such that MCji.E/ D M where we identify elements of E with
their images under i.

Embeddings are strong maps. Contractions are strong maps as well. If we
contract by a set U 
 E, then the map is given by � W E [ fo1g ! .E n U/ [ fo2g
where � is the identity on E n U and takes U [ fo1g to o2. We see that we need to
add a loop to define strong maps because we will need a zero element as a target for
elements. We have the following factorization theorem:

Theorem 5.10. Let � W M1 ! M2 be a strong map. Then there is a matroid MC
such that � can be factored as the composition

� W M1

i
�� MC p

�� M2

where i is an embedding and p is a contraction.
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5.7 Relaxation

New matroids can be obtained from old by the technique of relaxation. Recall that
a circuit of a matroid is a minimal dependent set. Matroids can be axiomatized in
terms of circuits. Let X 
 E be a circuit that is also a hyperplane. We call such a set
a circuit-hyperplane. We construct a new matroid by mandating that X be a basis.

Proposition 5.11 ([74, Proposition 1.5.14]). Let X be a circuit-hyperplane of a
matroid M on E. Let B be the set of bases of M and set B0 D B [ fXg. Then B0
is the set of bases for a matroid M0

By relaxing a representable matroid, one may obtain a non-representable
matroid. In fact, the non-Pappus matroid is obtained from the Pappus matroid
by relaxing one line through three points. The fields over which a matroid is
representable may change by relaxation as the non-Fano matroid is a relaxation of
the Fano matroid.

6 Representability and Excluded Minor Characterizations

6.1 Introduction to Representability

Representability is a central part of the combinatorial study of matroids. Here, one
would like a combinatorial description of representable matroids. This is probably
too much to ask. However, one can study matroids that are representable over a
fixed field. Here, we need to discuss which classes of matroids might have a good
structure theory.

The analogy with graph theory is particularly strong here. The prototypical
structural result that one would like to generalize is Wagner’s characterization of
planar graphs which states that a graph is planar if and only if it does not contain a
K3;3 or K5 minor. Note that the class of planar graphs is minor closed, that is, any
minor of a graph in this class is also in this class. Wagner’s theorem produces a
finite list of forbidden minors for this class of graphs. A far-reaching generalization
of this theorem is the Robertson–Seymour graph minors theorem which states that
any minor-closed class of graphs has a finite list of excluded minors. Examples
of minor-closed classes of graphs include trees, linklessly embeddable graphs, and
graphs with embedding genus at most g for a fixed g. The theorem gives a structural
decomposition of an arbitrary minor-closed class of graphs and takes up more than
500 journal pages. While it shows that the number of forbidden minors is finite, it
does not construct an explicit list. See [28] for a nice summary.

Just as one might study particular classes of graphs like planar graphs, one can
study particular classes of matroids. The most natural classes of matroids would be
those that are closed under taking minors, i.e. deleting and contracting elements.
One would hope for forbidden minor characterizations of these classes.
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There are a number of natural minor-closed classes of matroids. For a fixed field
k, the class of matroids that are representable over k is minor-closed. This follows
from the explicit construction of deletion and contraction on matroids represented
by, say, a vector configuration. Other minor-closed classes of graphs are graphic
matroids (those of the form M.G/ for some graph G), cographic matroids (M�.G/)
which are minor-closed because deletion and contraction correspond to operations
on the graphs. Also, regular matroids, that is, matroids that are represented over
every field, form a minor closed class.

There are all sorts of interesting containments between these classes of matroids.
All graphic matroids are regular, but the converse is not true. For example, M�.K5/,
being cographic, is regular, but it is not graphic while by duality M.K5/ is not
cographic. The direct sum, M.K5/ ˚ M�.K5/ is regular but is neither graphic nor
cographic since it contains M.K5/ and M�.K5/ as minors. Not all matroids are
representable over F2. For example, the uniform matroid U2;4 is not representable
over F2 because there do not exist four vectors in general position in F

2
2. Moreover,

not all F2-representable matroids are regular. For example, the Fano matroid, F7 is
representable over F2 without being regular. Indeed, it is representable over fields
k of characteristic 2. The non-Fano matroid, on the other hand, turns out to be
representable only over fields of characteristic not equal to 2.

There are well-known forbidden minor characterizations of certain classes of
matroids, a line of inquiry initiated by Tutte [97]. Matroids representable over
F2 are characterized by not having a U2;4-minor by a theorem of Tutte. Graphic
matroids are exactly the matroids that do not have a U2;4;M�.K3;3/; or M�.K5/
minor. This fact is closely related to Wagner’s theorem: because the dual of a
graphic matroid is the graphic matroid of the dual graph, if it exists, it turns out
that M�.K3;3/ and M�.K5/ are not graphic. One can even phrase Wagner’s theorem
in the language of matroids: a matroid is the graphic matroid of a planar graph
if and only if it is does not contain any of the following matroids as minors:
U2;4;M.K3;3/;M�.K3;3/;M.K5/;M�.K5/. Matroids representable over F3 are those
without minors isomorphic to U2;5;U3;5;F7; or F�

7 by a theorem due independently
to Bixby [12] and Seymour [85]. By [97], regular matroids are exactly the matroids
not containing U2;4;F7; or F�

7 .
These forbidden minor theorems can be proved by looking at possible matrices

whose columns are the vectors of a representation. One figures out the pattern of
zero and non-zero entries in the matrix by considering the fundamental circuits of
the matroid. Specifically, one fixes a basis B, say B D f0; 1; : : : ; dg and supposes
that in the representation, the elements of the basis are given by the standard basis
vectors. Then given i 62 B, one can look at the circuit containing i and some elements
of B. The vector representing i must be a linear combination of the standard basis
vectors in the circuit. One considers different possibilities for the non-zero entries. If
one begins with a matroid that is minor-minimal among non-representable matroids,
then the matrix turns out not to represent the matroid. By applying matrix operations
organized by combinatorial operations on the matroid, one can put the matrix and
matroid in a standard form. For example, because F2 has only one non-zero element,
if a matroid is F2-representable, once one fixes a basis, only one matrix needs to be
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considered. Many of these representability theorems were originally proved using
Tutte’s Homotopy Theorem [97], a deep and difficult theorem about the structure
of a particular polyhedral complex on the flats of low corank. Current research in
representability relies on quite difficult theorems on decomposing matroids. See [74,
Chap. 14] for a survey.

These excluded minor characterizations are over a fixed finite field, not over
a field of fixed characteristic. In particular, one is not allowed to take algebraic
extensions of a given field. This in essence creates two ways in which a matroid
may fail to be representable: that there are not enough elements; or there is a
contradiction in the linear conditions. For example, the uniform matroid U2;4 is
not representable over F2 because there are no generic planes in F

4
2. The second

problem is much more serious as can be seen in the matroids built by applying
Mnëv’s theorem as we will discuss in Sect. 9.6.

The question of representability over infinite fields is much more difficult and is
connected to Hilbert’s Tenth problem, the question of algorithmic decidability of a
system of polynomial equations. We will discuss this connection below. It turns
out that there are infinitely many excluded minors for real representability. The
hopelessness of the situation can be distilled into the following theorem of Mayhew,
Newman, and Whittle [67] which gives an explicit construction:

Theorem 6.1. Let K be an infinite field. Let N be a matroid that is repre-
sentable over K. Then there exists a matroid M that is an excluded minor for
K-representability, is not representable over any field, and has N as a minor.

There has been research on the question of whether it is possible at all to give a
finite, combinatorial condition for a matroid to be representable. This is the so-
called missing axiom of matroid theory. A paper of Vámos [100] from 1978 asserted
that the “missing axiom of matroid theory is lost forever.” In other words, there
is no way of axiomatizing representability in second-order logic. More recently,
however, a paper of Mayhew, Newman, and Whittle [69] criticized Vámos’s paper
by stating that the matroids in it differed from matroids as commonly studied and
asked again “Is the missing axiom of matroid theory lost forever?” conjecturing that
representability cannot be axiomatized in a specific second-order logical language.
They answered that question with “yes, the missing axiom of matroid theory is lost
forever” in a very recent preprint [70].

The general situation of representability over finite fields is the subject of Rota’s
conjecture that given any finite field Fq, there are finitely many forbidden minors
for Fq-representability [83]. A solution has been announced by Geelen, Gerards,
and Whittle [41]. In addition, they have announced an excluded minor theorem for
classes of Fq-representable matroids:

Theorem 6.2. Any minor-closed class of Fq-representable matroids has a finite set
of excluded Fq-representable minors.

Their work relies on a deep structure theory of matroids which generalizes the
work of Robertson and Seymour. See the survey [40] for an earlier account of their
progress on Rota’s conjecture.
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6.2 Inequivalent Representations

A matroid may have several representations that are essentially different. Here, we
follow the exposition of Oxley [74]. Suppose a matroid is represented by two vector
configurations fv0; v1; : : : ; vng and fv0

0; v
0
1; : : : ; v

0
ng in knC1. The two representations

are said to be inequivalent if there does not exist an element of GlnC1.k/ taking
one vector configuration to the other. We may also consider representations of
simple matroids as point configurations in P

n. Then we say two representations are
projectively inequivalent if they are not related by an element of PGLnC1.k/.

It is not too hard to find matroids with inequivalent representations. For example,
U3;5 has projectively inequivalent representations over F5. Perhaps surprisingly,
there are cases where matroids have projectively unique representations. There is
the following theorem of White:

Theorem 6.3. Let M be a simple matroid that is representable over F2. Then for
any field k, any two representations of M over k are projectively equivalent.

Similarly, matroids have at most one representations over F3 up to projective
equivalence by a theorem of Brylawski and Lucas. There is much research in trying
to bound the number of inequivalent representations of certain classes of matroids.

The existence of inequivalent representations is important for questions of rep-
resentability: given a matroid M that we wish to represent, we may delete different
elements, try to find representations of various deletions, and then glue the represen-
tations of the deletions together; the existence of inequivalent representations is an
obstruction to gluing the smaller representations together. This phenomenon seems,
to this author at least, reminiscent of the issues with automorphisms in moduli
theory.

6.3 Ingleton’s Criterion

By linear algebraic arguments, Ingleton provided a necessary condition for a
matroid to be representable over some field [48].

Theorem 6.4. Let M be a representable matroid on E. Then for any subsets
X1;X2;X3;X4 
 E, the rank function obeys the following inequality:

r.X1/C r.X2/C r.X1 [ X2 [ X3/C r.X1 [ X2 [ X4/C r.X3 [ X4/

� r.X1 [ X2/C r.X1 [ X3/C r.X1 [ X4/C r.X2 [ X3/C r.X2 [ X4/:

More recently, Kinser discovered an infinite family of independent inequalities
whose leading member is Ingleton’s [55].

Theorem 6.5. Let k 	 4 and let M be a representable matroid on E. Let
X1;X2; : : : ;Xk 
 E be subsets. Then the rank function obeys the following:
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r.X1 [ X2/C r.X1 [ X3 [ Xk/C r.X3/C
kX

iD4
.r.Xi/C r.X2 [ Xi�1 [ Xi//

� r.X1 [ X3/C r.X1 [ Xn/C r.X2 [ X3/C
kX

iD4
.r.X2 [ Xi/C r.Xi�1 [ Xi// :

The Vamós matroid, V8 violates Ingleton’s criterion with the choice of Xi D fi; i0g
and is therefore not representable over any field [74, Exercise 6.1.7]. The Vamós
matroid turns out to be a non-representable matroid on the minimum number of
elements.

6.4 Are Most Matroids Not Representable?

In [17], Brylawski and Kelly claimed

“It is an exercise in random matroids to show that most matroids are not coordinatizable
[representable] over any field (or even any division ring).”

Unfortunately, to this date no one has been able to complete this exercise. However,
one can study matroid properties asymptotically: one examines the proportion of
matroids on an n element ground set that have a given property and take the limit
as n goes to infinity. It is suspected that asymptotically most matroids are non-
representable paving matroids. A good reference for what is known is [68]. It is
mentioned there that by counting arguments, for a fixed finite field F, asymptotically,
most matroids are not representable over F.

7 Polynomial Invariants of Matroids

7.1 The Characteristic and Tutte Polynomials

The characteristic polynomial is an invariant of matroids that generalizes the
chromatic polynomial of graphs as introduced by Birkhoff [11]. Let G be a graph.
The chromatic polynomial of G is the function �G given by setting �G.q/ to be the
number of proper colorings of G with q colors for q 2 Z
1. A proper coloring with q
colors is a function c W V.G/! f1; 2; : : : ; qg such that adjacent vertices are assigned
different values. The function �G.q/ can easily be shown to be a polynomial. Note
that a graph with a loop has no proper colorings. Recall that for e D v1v2, an
edge of G, the deletion G n e is the graph G with the edge e removed while the
contraction G=e is the graph G with e; v1; v2 contracted to a single vertex. The
chromatic polynomial obeys the deletion/contraction relation
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�G.q/ D �Gne.q/ � �G=e.q/:

This can be seen by interpreting �Gne.q/ as the count of colorings where we
do not impose the condition that the colors of the end-points of e are different
and interpreting �G=e.q/ as colorings where the colors of the end-points of e are
mandated to be the same. One can show that �G.q/ is a polynomial by applying
deletion/contraction repeatedly and then noting that the chromatic polynomial is
multiplicative over disjoint union of graphs and that if G consists of a single vertex,
then �G.q/ D q.

The chromatic polynomial can be extended to matroids in a straightforward
fashion. One looks for a polynomial �M.q/, called the characteristic polynomial
for a matroid M which satisfies

1. (loop property) if M has a loop, then �M.q/ D 0,
2. (normalization) the characteristic polynomial of the uniform matroid U1;1 satis-

fies

�U1;1 .q/ D q � 1:

3. (direct sum) If M D M1 ˚M2 then

�M.q/ D �M1 .q/�M2 .q/;

4. (deletion/contraction) if i is not a loop or coloop of M then

�M.q/ D �Mni.q/ � �M=i.q/;

By inducting on the size of the ground set, we easily see that an invariant satisfying
these properties is unique. Note that loops and coloops split off from a matroid in
a direct sum decomposition. It turns out that �M.q/ is well defined. In fact, we will
construct it explicitly below by using Möbius functions.

The characteristic polynomial is a generalization of the chromatic polynomial in
the following sense:

Proposition 7.1. If G is a graph and M.G/ is its matroid, then

�G.q/ D q� � �M.G/.q/

where � is the number of components of G.

This theorem is proved by showing that both sides obey the same deletion-
contraction relation and then checking the equation on the seed value of a graph
with two vertices and a single edge between them whose matroid is U1;1.

One can generalize the characteristic polynomial further by removing the restric-
tion that it vanishes on loops. Tutte [96] introduced his eponymous polynomial
for graphs by studying all possible topological invariants of graphs that were
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well behaved under deletion and contraction. The definition was extended to
matroids by Crapo [21]. We consider all invariants that are well behaved under
deletion/contraction and multiplicative under direct sum. Let Mat be the class of all
matroids. We define the Tutte–Grothendieck ring K0.Mat/ as the commutative ring
given by formal sums of isomorphism classes of matroids subject to the relations

1. if i is neither a loop nor a coloop of a matroid M, then ŒM� D ŒM n i�C ŒM=i�;
2. ŒM1 ˚M2� D ŒM1�ŒM2�;

This Tutte–Grothendieck ring was used implicitly by Tutte for graphs before
Grothendieck’s introduction of the Grothendieck group. Because deletion and
contraction commute, a matroid can be written uniquely in K0.Mat/ as a polynomial
in the rank 1 matroids. Consequently, the Grothendieck group K0.Mat/ is the free
polynomial ring over Z generated by U0;1 (a loop) and U1;1 (a coloop).

Definition 7.2. Let R be a commutative ring. A Tutte–Grothendieck invariant
valued in R is a homomorphism

h W K0.Mat/! R:

Definition 7.3. The rank generating polynomial of a matroid M is defined by

RM.u; v/ D
X

I�E

ur.M/�r.I/vjIj�r.I/:

The Tutte polynomial of M is defined by

TM.x; y/ D RM.x � 1; y � 1/:

The definition is justified by the following:

Proposition 7.4. The Tutte polynomial is the unique Tutte–Grothendieck invariant
T W K0.Mat/! ZŒx; y� satisfying TU1;1 .x; y/ D x and TU0;1 .x; y/ D y.

This result naturally generalizes a formula for the characteristic polynomial that we
will explore later.

This theorem shows that U0;1 and U1;1 are algebraically independent in K0.Mat/.
The Tutte polynomial specializes to the characteristic polynomial:

�M.q/ D .�1/r.M/TM.1 � q; 0/:

This can be seen by observing that the characteristic polynomial has the following
properties: it takes the value q � 1 on coloops; it vanishes on loops; and it obeys
a deletion/contraction relation. Its deletion/contraction relation has a sign which is
accounted for by the fact that r.M=i/ D r.M/ � 1 for a non-coloop i.

The Tutte polynomial is well behaved under duality: TM.x; y/ D TM�.y; x/.



Matroid Theory for Algebraic Geometers 465

7.2 Motivic Definition of Characteristic Polynomial

Consider the Grothendieck ring of varieties over k;K0.Vark/ where k D C or k D
Fpr . This is the ring of formal sums of varieties where addition is disjoint union and
multiplication is Cartesian product subject to the scissors relation: for closed Z � X,

ŒX� D ŒZ�C ŒX n Z�:

The identity of the ring is the class of a point.
One can show that there is a homomorphism

e W K0.Vark/! ZŒq�

such that

e.Œk�/ D q:

Definition 7.5. For VdC1 
 knC1, a .d C 1/-dimensional linear subspace, the
characteristic polynomial of V is

�V.q/ � e.ŒV \ .k�/nC1�/:

Example 7.6. By inclusion/exclusion, for a generic subspace, we have

�V.q/ D qdC1 �
 

dC 1
1

!
qr C

 
dC 1
2

!
qd�1 � � � � C .�1/dC1

 
dC 1
0

!
:

Here, we begin with V remove the d C 1 coordinate hyperplanes, add back in�dC1
2

�
codimension 2 coordinate flats, and so on.

Theorem 7.7. Let V 
 knC1 be a linear subspace with matroid M. Then, we have
the following equality in K0.Vark/:

ŒV \ .k�/nC1� D �M.Œk�/:

Consequently, by applying e, we obtain the equality �V.q/ D �M.q/.

Proof. We induct on n. For n D 0, if V is disjoint from k�, then it is contained in
the point x0 D 0. Consequently, 0 is a loop in M and both sides of the equality are
0. If V intersects k�, then V D k and ŒV \ k�� D Œk� � 1. Then M D U1;1, and
�M.Œk�/ D Œk� � 1.

In general, if M has a loop, then V is contained in a coordinate subspace, and
each side of the equation is 0. Therefore, we may suppose that M is loopless.

If M D M1 ˚M2, then V D V1 ˚ V2 
 kn1 ˚ kn2 . Consequently,



466 E. Katz

ŒV \ .k�/nC1� D ŒV1 \ .k�/n1 �ŒV2 \ .k�/n2 � D �M1 .Œk�/�M2 .Œk�/

by induction.
Therefore, we may suppose that M is a connected matroid and, therefore, has

neither loops nor coloops. Pick i 2 E, and let Hi � knC1 be the hyperplane cut out
by xi D 0. Let Ai be the set given by

Ai D f.x0; x1; : : : ; xn/ j xj ¤ 0 if i ¤ jg:

Then, we have the following motivic equation

ŒV \ .k�/nC1� D ŒV \ Ai� � ŒV \ Ai \ Hi�:

Since i is not a coloop, the coordinate projection 
 W knC1 ! kn forgetting the ith
component is injective on V . Moreover, 
 takes V \ Ai bijectively to 
.V/\ .k�/n.
Now, 
.V/ 
 kn is the subspace representing Mn i. On the other hand, V\Ai\Hi is
the intersection of V\Hi with the algebraic torus in Hi. Now, V\Hi is the subspace
representing M=i. Therefore, by induction, we have

ŒV \ .k�/nC1� D �Mni.Œk�/ � �M=i.Œk�/ D �M.Œk�/:

ut
Note that �M.q/ has degree d C 1 with the leading coefficient equal to 1 as the

only dC 1-dimensional variety that contributes to the motivic expression is V itself.
We now relate the characteristic polynomial to geometric invariants of V \

.k�/nC1. If V � knC1 is a subspace, the motivic class of ŒV \ .k�/nC1� lies in the
commutative subring with unity hŒk�i 
 K0.Vark/ generated by Œk�. Consequently,
for any ring R and homomorphism e0 W K0.Vark/ ! R; e0.ŒV \ .k�/nC1�/ is
determined by e0.Œk�/ 2 R. It follows that

e0.ŒV \ .k�/nC1/ D �V.e
0Œk�/:

If k D C, we can choose the homomorphism �c
y W K0.Vark/ ! ZŒu� to be the

compactly supported �y-characteristic given on varieties by

�c
y.X/ D

X

p;q

X

m

.�1/mhp;q.Hm
c .X//u

p

where the Hodge numbers are taken with respect to Deligne’s mixed Hodge
structure [76]. Since �c

y.Œk�/ D u, we derive the following result related to that
of Orlik–Solomon [72] as proved in [2, 54]

Theorem 7.8. Let V 
 C
nC1 be a subspace, then we have

�c
y.ŒV \ .C�/nC1�/ D �V.u/:



Matroid Theory for Algebraic Geometers 467

Similarly, if k D Fpr , counting the number of Fpr -points gives a homomorphism
K0.Vark/! Z. Since jFr

pj D pr, we have the following theorem of Athanasiadis [6]:

Theorem 7.9. Let V 
 F
nC1
pr be a subspace, then we have

jV \ .F�
pr /

nC1j D �V.p
r/:

7.3 Mobius Inversion and the Characteristic Polynomial

The characteristic polynomial has a description given by inclusion/exclusion along
the poset of flats. This is phrased in the language of Möbius inversion which is a
combinatorial abstraction of the above motivic arguments. We will only make use
of the Möbius function evaluated from the minimal flat. Let L.M/ be the poset of
flats of M ordered by inclusion. We define .E;F/ for every pair of flats E 
 F
recursively by

1. .E;E/ D 1;
2. .E;F/ D �PE�F0�F .E;F

0/.

We will suppose that M is loopless and concentrate on .;;F/. For I 
 E D
f0; 1; : : : ; ng, let LI be the coordinate subspace

LI D fx j xi D 0 if i 2 Ig:

Note that codim.V \ LI/ D r.I/ and V \ LI D V \ LF where F is the smallest flat
containing I. Let

L�
I D fx j xi D 0 if and only if i 2 Ig:

The following lemma, which is a special case of Möbius inversion, is the motivation
for the above definition.

Lemma 7.10. We have the following equality in K0.Vark/:

ŒV \ .k�/nC1� D
X

F2L.M/

.;;F/ŒV \ LF�:

Proof. We note that for any flat F,

ŒV \ LF� D
X

F02L.M/
mathbbF0�F

ŒV \ L�
F0 �:

Consequently,
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X

F2L.M/

.;;F/ŒV \ LF� D
X

F;F02L.M/
mathbbF�F0

.;;F/ŒV \ L�
F0 �

D
X

F02L.M/

0

BB@
X

F2L.M/
mathbbF�F0

.;;F/

1

CCA ŒV \ L�
F0 �

D ŒV \ L�;�:

ut
As a consequence of Weisner’s theorem [91, Sect. 3.9], [92, Theorem 3.10] for

loopless matroids, we have the following result which will be important in the
sequel:

Lemma 7.11. Let F be a flat of a loopless matroid M. For any a 2 F,

.;;F/ D �
X

a…F0ÉF

.;;F0/

where F0 É F means that F0 � F and r.F0/ D r.F/ � 1.

We have the following description of the characteristic polynomial:

Theorem 7.12. The characteristic polynomial for a loopless matroid M of rank
dC 1 is given by

�M.q/ D
X

F2L.M/

.;;F/qdC1�r.F/:

If M has loops, then �M.q/ D 0.

This theorem can be proven for representable matroids by combining
Lemma 7.10 and Theorem 7.7. Before we give the proof of this theorem, we
will need the following lemma:
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Lemma 7.13. Let F be a flat of a matroid M. Then

UF WD
X

S�E
cl.S/DF

.�1/jSj D
(
.;;F/ if M is loopless

0 otherwise.

Proof. First, suppose M is loopless. We will show that UF agrees with .;;F/
inductively. It is clear that U; D 1 and so it suffices to show (where � means
containment of flats)

UF D �
X

;�F<F0

UF0 :

Now,

X

;�F0�F

UF0 D
X

;�F0�F

X

S�E
cl.S/DF0

.�1/jSj D
X

S�F

.�1/jSj D .1 � 1/jSj D 0:

Suppose that M has loops. Let F 
 E be the minimal flat of M, which consists of
all the loops. Then

UF D
X

S�F

.�1/jSj D .1 � 1/jSj D 0:

The same inductive argument shows that UF D 0 for all flats. ut
Note that in the notation of the above proof, Theorem 7.12 is equivalent to

�M.q/ D
X

F2L.M/

UFqdC1�r.F/:

Now we continue with the proof of Theorem 7.12.

Proof. We verify the axioms for the characteristic polynomial.
By definition, the formula is true if M has a loop.
If M D U1;1, it has two flats. We have .;;;/ D 1; .;; f0g/ D �1.

Consequently, our formula gives q � 1.
Suppose M D M1 ˚M2. If either Mi has a loop, then so does M and the formula

is verified. Otherwise, the lattice of flats obeys L.M/ D L.M1/ � L.M2/. It is easily
seen that for F1 2 L.M1/;F2 2 L.M2/, the Möbius function obeys

M.;;F1 � F2/ D M1 .;;F1/M2 .;;F2/:

Therefore, �M.q/ D �M1 .q/�M2 .q/.
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Now, we verify the deletion/contraction relation using an approach due to
Whitney. Let i 2 E be neither a loop nor coloop. Then we have

X

F2L.M/

UFqdC1�r.F/ D
X

F2L.M/

0

BB@
X

S�F
cl.S/DF

.�1/jSj

1

CCA qdC1�r.F/

D
X

S�E

.�1/jSjqdC1�r.S/

D
X

S�Enfig
.�1/jSjqdC1�r.S/ C

X

S�Enfig
.�1/jS[figjqdC1�r.S[fig/

D
X

S�Enfig
.�1/jSjqdC1�rMni.S/ �

X

S�Enfig
.�1/jSjqd�rM=i.S/

D
X

F2L.Mni/

.UMni/FqdC1�rMni.F/ �
X

F2L.M=i/

.UM=i/Fqd�rM=i.S/

D �Mni.q/ � �M=i.q/

where we have used the fact that because i is neither a loop nor a coloop,

r.M n i/ D dC 1; r.M=i/ D d:

ut
We see from Lemma 7.11 that the coefficients of the characteristic polynomial

alternate and the degree of the characteristic polynomial is equal to the rank of the
matroid.

7.4 The Reduced Characteristic Polynomial

In this section, we introduce the reduced characteristic polynomial which will be
important for the proof of the log-concavity of the characteristic polynomial of
representable matroids. We will only consider loopless matroids. We begin by
noting that �M.q/ is divisible by q � 1. This can be proved combinatorially. In
the representable case, we interpret �M.q/ as the image of the motivic class of
V \ .k�/nC1. Because k� acts freely on V \ .k�/nC1 we have

e.ŒV \ .k�/nC1�/ D e..ŒV \ .k�/nC1/=k��/e.Œk��/

with e.Œk��/ D q � 1.
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Definition 7.14. The reduced characteristic polynomial is

�M.q/ D
�M.q/

q � 1 :

Define the numbers 0; 1; : : : ; d by

�M.q/ D
dX

iD0
.�1/iiqd�i:

Note that 0 D 1. We follow the convention that �1 D 0.

Lemma 7.15. Let a 2 E. The coefficients of �M.q/ are given by

k D .�1/k
X

F2L.M/k
a62F

.;;F/ D .�1/kC1 X

F2L.M/kC1
a2F

.;;F/

where the sum over the rank k flats not containing a.

Proof. We begin by proving the second equality by applying Lemma 7.11

X

F2L.M/kC1
a2F

.;;F/ D �
X

F2L.M/kC1
a2F

X

F0ÉF
a62F0

.;;F0/

D �
X

F02L.M/k
a62F

X

FÊF0
a2F

.;;F0/

D �
X

F02L.M/k
a62F

.;;F0/

where the last equality follows from the fact that for F0 not containing a, there is a
unique flat F with r.F/ D r.F0/C 1 and a 2 F. If we write

�M.q/ D 0qrC1 � 1qr C � � � C .�1/dC1rC1

then

k D
X

F2L.M/k

.;;F/

and by equating coefficients of �M.q/ and �M.q/
q�1 ,

k D k C k�1:

The theorem is true for k D 0. It now follows by induction using the above formula.
ut
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7.5 Log-Concavity of Whitney Numbers

We now discuss some conjectured inequalities for characteristic polynomials.

Definition 7.16. A polynomial

�.q/ D 0qrC1 C 1qr C � � � C rC1

is said to be unimodal if the coefficients are unimodal in absolute value, i.e. there is
a j such that

j0j � j1j � � � � � jjj 	 jjC1j 	 � � � 	 jrC1j:

The chromatic polynomial of a graph was conjectured to be unimodal by Read
[79]. This conjecture was proved by Huh in 2010 [44]. In fact, Huh did more.
He proved the characteristic polynomial of a matroid representable over a field of
characteristic 0 is log-concave.

Definition 7.17. The polynomial �.q/ is said to be log-concave if for all i,

ji�1iC1j � 2i :

If the inequality is strict, then the polynomial is said to be strictly log-concave.
Log-concavity means that the logarithms of the absolute values of the (alternating)
coefficients form a concave sequence. Log-concavity implies unimodality as long as
the sequence of coefficients has no internal zeroes. Below we will give a streamlined
version of the proof of Huh and the author [47] that the characteristic polynomial
of any representable matroid is log-concave. This proof is very similar to Huh’s
original proof except that it replaces singularity theory with intersection theory on
toric varieties. This theorem is a special case of the still-open Rota–Heron–Welsh
conjecture:

Conjecture 7.18. For any matroid, �M.q/ is log-concave.

The characteristic polynomial of a matroid representable over a field of char-
acteristic 0 was proved to be strictly log-concave by Huh in [46] by studying the
variety of critical points that arises in maximum likelihood estimation.

A closely related conjecture is Mason’s conjecture. Let M be a matroid of rank
dC 1. Let I be the set of independent sets of M. We define the f -vector by setting fi
to be the number of independent sets of cardinality i. It was conjectured by Mason
the f -vector was log-concave, that is the polynomial

f .q/ D
X

iD0
fiq

rC1�i
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is log-concave. In fact, Mason strengthened his conjecture to these statements for
every k to the following:

1. f 2k 	 kC1
k fk�1fkC1

2. f 2k 	 kC1
k

f1�kC1
f1�k fk�1fkC1

Mason’s original log-concavity conjecture was proved in the representable case
by Lenz:

Theorem 7.19 ([64]). The f -vector of a realizable matroid is strictly log concave.

The h-polynomial is defined by

h.q/ D f .q � 1/:

Dawson [24] conjectures this to be log-concave. Huh [46] proved that h is
log-concave and without internal zeroes if M is representable over a field of
characteristic 0.

A much less tractable sequence of numbers conjectured to be log-concave are
the Whitney numbers of the second kind. They are Wk, the number of flats of
M of rank k. There are strengthenings of the log-concavity conjecture for Wk by
Mason analogous to those of the f -vector. A special case is the Points–Lines–Planes
conjecture:

Conjecture 7.20. If M is a rank four matroid, then

W2
2 	

3

2
W1W3:

In the representable case, we image having W1 points in 3-space determining
W2 lines and W3 planes. A slightly strengthening of this conjecture was proved by
Seymour for all matroids in which no line has more than four points [86]. See [1]
for a survey.

8 Matroid Polytopes

8.1 Definition of Matroid Polytope

We first give a historical introduction to matroid polytopes using the independence
polytope of Edmonds [32], which he introduced as a tool in combinatorial optimiza-
tion. Specifically, Edmonds was interested in maximizing a weight function along
independent subsets. Let c W E ! R be a function on the ground set. For I 
 E, an
independent subset, set the weight function on I to be

c.I/ D
X

i2I

c.i/:
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Now, a natural problem is to find a basis for the matroid of maximum weight.
Matroids have the property that this problem is solvable by a greedy algorithm:

1. Set B WD ;,
2. While B is not a basis, pick i 62 B such that B [ fig is independent and i is of

maximum weight and replace B by B [ fig.
The resulting set B is a basis of maximum weight. Moreover, matroids can be
characterized as a structure for which the greedy algorithm succeeds.

The basis optimization problem can also be phrased in terms of maximizing a
linear functional on the independence polytope P.I.M// � R

E given by

P.I.M// D Conv.feI j I 2 Ig/

where eI is the characteristic vector of an independent set I,

eI D
X

i2I

ei:

We can define a weight vector w 2 R
n by

w D
X

c.i/ei:

The set of points x 2 P that maximize the function hx;wi is a face of the
independence polytope. The vertices of that faces are the independent sets of
maximum weight.

Edmonds studied the structure of independence polytope and was able to prove
the following important theorem in combinatorial optimization:

Theorem 8.1. Let M1;M2 be two matroids on the same ground set where inter-
section is given by intersecting the collection of independent subsets. Then the
independence polytope is well behaved under intersections in the following sense:

P.I.M1/ \ I.M2// D P.I.M1// \ P.I.M2//

This theorem has relevance to finding common transversals. We recommend [13] as
a survey on matroid polytopes in optimization.

Matroid polytopes received renewed attention due to work of Gelfand–Goresky–
MacPherson–Serganova [42]. In this case, they investigated the convex hull of the
characteristic vectors of the bases of a matroid.
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Definition 8.2. The matroid polytope of a matroid M is given as the following
convex hull:

P.M/ D Conv.feB j B 2 Bg/:

Lemma 8.3. The vertices of the matroid polytope P.M/ are exactly the character-
istic vectors of the bases of M.

Proof. If eB was a convex combination of feB1 ; : : : ; eBkg, then we could write

eB D
X

j

�jeBj

for 0 < �j;
P
�j D 1. For each i 2 B, by extracting the component of ei from the

above equation, we would have i 2 Bj for all j. Therefore, we conclude B1 D � � � D
Bk D B. Consequently, eB cannot be written as a non-trivial convex combination. ut
Example 8.4. The matroid polytope of the uniform matroid UdC1;nC1 is�.dC1; nC
1/, the .d C 1; n C 1/-hypersimplex which is defined to be the convex hull of the�nC1

dC1
�

vectors eB as B ranges over all .dC 1/-element subsets of E D f0; 1; : : : ; ng.
Example 8.5. The matroid polytope of U2;4 is an octahedron in R

4 whose vertices
are

f.1; 1; 0; 0/; .1; 0; 0; 1/; .1; 0; 1; 0/; .0; 1; 1; 0/; .0; 1; 0; 1/; .0; 0; 1; 1/g

where there is an edge between a pair of vertices if and only if they differ in exactly
two coordinates.

Remarkably, matroid polytopes can be abstractly characterized leading to a cryp-
tomorphic definition of matroids by the work of Gelfand–Goresky–MacPherson–
Serganova:

Definition 8.6. A matroid polytope P is a convex lattice polytope in R
nC1 which is

contained in �.d C 1; n C 1/ for some d such that all vertices of P are vertices of
�.dC 1; nC 1/ and each edge is a translate of ei � ej for i ¤ j.

Proposition 8.7. Let M be a rank d C 1 matroid on E D f0; 1; : : : ; ng. Then P.M/
is a matroid polytope.

Proof. We sketch the proof. Clearly every vertex of P.M/ is a vertex of�.dC1; nC
1/. Let L be the line segment between eB1 and eB2 . If we have jB14B2j ¤ 2, we must
show that L is not an edge of P.M/. By the repeated use of the basis exchange axiom,
one can show that the midpoint of the edge

eB1CeB2
2

lies in the convex hull of other
vertices of the matroid polytope. ut

We give the proof of the converse following [42].
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Theorem 8.8. Let P be a matroid polytope. Then there exists a unique matroid M
such that P D P.M/.

Proof. Let B be the set of .d C 1/-element subsets of E D f0; 1; : : : ; ng such that
feB j B 2 Bg is the set of vertices of P. We will show that B is the collection of
bases for a matroid by verifying the basis exchange axiom.

Let B1;B2 2 B. Let i 2 B1nB2. We must find j 2 B2nB1 such that .B1ni/[j 2 B.
Let B0

1; : : : ;B
0
k be the bases such that feB1eB0l

gl are the edges of P at eB1 . If B2 is
among the B0

l’s, then we are done because then jB14B2j D 2. Otherwise, because
the midpoint between eB1 and eB2 is contained in P, it is contained in the convex
cone at eB1 spanned by the edges containing eB1 . Therefore, we may write

eB1 C eB2

2
D eB1 C

X

l

�l.eB0l
� eB1 /

or

eB2 � eB1

2
D
X

l

�l.eB0l
� eB1 / (1)

for �l 	 0. Extracting the coefficient of ei, we get

�1
2
D �

X

lji62B0l

�l:

Let l0 be such that i 62 B0
l0 and �l0 > 0. Let j be the unique element of Bl0nB1. Because

the coefficient of ej on the right side of (1) is positive, we have that j 2 B2 n B1. ut
It turns out that the dimension of P.M/ is nC1��.M/where �.M/ is the number

of connected components of M. In fact, if M is connected, then the dimension of
P.M/ is n for the following reasons: all vertices of the matroid polytope lie in the
hyperplane described by x0Cx1C� � �Cxn D dC1 corresponding to the fact that all of
the bases have the same number of elements; and for all pairs i ¤ j; ei�ej is parallel
to an edge of P.M/. If E is partitioned as E D E1t: : :tE� where M D M1˚: : :˚M�

and Mi is a matroid on Ei, then P.M/ D P.M1/˚ : : :˚ P.M�/ � R
E1 ˚ : : :˚R

E� .

8.2 Faces of the Matroid Polytope

In this section, we study faces of the matroid polytope following [3]. They
correspond to bases maximizing a certain weight vector. Further details can be found
in [33]. We first review faces of polytopes.
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Definition 8.9. Let P be a convex polytope in R
nC1. For w 2 R

nC1, let Pw be the
set of points x 2 P that minimize the function hx;wi.

The set Pw is a face of the polytope P. Observe that any face of the matroid
polytope is itself a matroid polytope. We will identify its matroid.

Definition 8.10. Let M be a matroid on E D f0; : : : ; ng and let w 2 R
E. For a basis

B 2 B.M/, let the w-weight of B be

wB D
X

i2B

wi:

Let Mw be the matroid whose bases are the bases of M of minimal w-weight.

We know that Mw is a matroid for the following reason: the convex hull of the
characteristic vectors of its bases is the matroid polytope P.M/w allowing us to apply
Theorem 8.8.

We give a description of the matroid Mw following [3]. Let S	 be the flag of
subsets

S	 D f; D S0 ¨ S1 ¨ : : : ¨ Sk 
 FkC1 D Eg;

where w is constant on Si n Si�1 and wjSinSi�1 is strictly increasing with i.

Lemma 8.11. We have the following equality:

Mw D
kC1M

iD1
.MjSi/=Si�1:

Proof. Every basis of minimal w weight can be constructed by the greedy algorithm.
In others words, it will start with the empty set, add elements of S1 as long as the
result is independent, move on to S2, and so on. Consequently, a basis of Mw consists
of r.Si/� r.Si�1/ elements of Si nSi�1 for all i. Such a set of r.Si/� r.Si�1/ elements
is exactly a basis of .MjSi/=Si�1. ut

We will make use of this description in Sect. 11 when we discuss the Bergman
fan of a matroid.

8.3 Valuative Invariants

The polytope definition of matroids allows one to think about invariants of matroids
in a different light. One can study invariants of matroids that are well behaved
under subdivisions of the matroid polytope. This is the approach taken by Fink and
Derksen [26, 27].
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Definition 8.12. A matroidal subdivision of a matroid polytope P.M/ � R
nC1 is a

polyhedral complex D whose cells are polytopes in R
nC1 such that

(1) Each cell of D is a matroid polytope, and
(2)

S
P2D P D P.M/

Example 8.13. As an example of a matroid subdivision, consider U2;4 whose
matroid polytope is an octahedron. It has a matroid subdivision into two pyramids
that meet along the square whose vertices are f.1; 0; 0; 1/; .1; 0; 1; 0/; .0; 1; 1; 0/g,
f.0; 1; 0; 1/g [89]. In fact, let Mtop be the rank 2 matroid on E D f0; 1; 2; 3g
where 0 and 1 are taken to be parallel but all other two element subsets
are bases. Its matroid polytope is the top pyramid whose vertices are
f.0; 0; 1; 1/; .1; 0; 0; 1/; .1; 0; 1; 0/; .0; 1; 1; 0/; .0; 1; 0; 1/g. Similarly, the bottom
pyramid is the matroid polytope corresponding to Mbot where 2 and 3 are mandated
to be parallel. The middle square is the matroid polytope of Mmid where 0 and 1 are
mandated to be parallel as are 2 and 3while the bases are f0; 2g; f1; 2g; f0; 3g; f1; 3g.

Write P1; : : : ;Pk for the top-dimensional cells of D. For J 
 f1; : : : ; kg, let PJ DT
j2J Pj. Let M be the set of all matroid polytopes in R

nC1 and let A be an abelian
group.

Definition 8.14. A function f WM ! A is a matroid valuation if for all matroidal
subdivisions of a matroid polytope P.M/,

f .P.M// D
X

;¤J�f1;:::;kg
.�1/jJj�1f .PJ/:

In other words, f obeys an inclusion/exclusion relation for matroidal subdi-
visions. Consequently, a valuative invariant of lattice polytopes like the Ehrhart
polynomial immediately gives valuative invariants of matroids. When the subdi-
vision is regular, the matroidal subdivision can be interpreted as a tropical linear
subspace [89] which is a combinatorial abstraction of a family of linear subspaces
defined over a disk that degenerates into a union of linear subspaces.

The Tutte polynomial along with a quasi-symmetric function-valued invariant
introduced by Billera–Jia–Reiner [10] is valuative. Derksen [26] introduced a
valuative invariant which was proved to be universal among valuative invariants
[27]. It takes values in the ring of quasi-symmetric functions, whose underlying
vector space has a basis indexed by compositions ˛ D .˛1; ˛2; : : : ; ˛l/. Let U˛ be
some basis for the ring of quasi-symmetric functions over Z. Derksen’s invariant G
is defined as

G D
X

E

Ur.E/

where E D f; D E0 � E1 � E2 � � � � � EnC1 D Eg ranges over all .n C 1/Š
maximal chains of subsets of E and

r.E/ D .r.E1/ � r.E0/C 1; r.E2/ � r.E1/C 1; : : : ; r.EnC1/ � r.En/C 1/:
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This invariant specializes to any valuative invariant under homomorphisms from
quasi-symmetric functions to an abelian group [27]. This is proved by showing that
Schubert matroids (after allowing permutations of the ground set) are a basis for the
dual space to valuative invariants.

9 Grassmannians and Matroid Polytopes

9.1 Plücker Coordinates and Basis Exchange

The Grassmannian Gr.dC1; nC1/ is an algebraic variety whose points correspond
to the .d C 1/-dimensional linear subspaces of knC1. Equivalently, it is the set of
all d-dimensional projective subspaces of Pn. It generalizes projective space in the
sense that Gr.1; nC 1/ is isomoprhic to P

n.
We present the Grassmannian as a quotient of the Stiefel variety following [43].

The Stiefel variety St.d C 1; n C 1/ parameterizes linearly independent .d C 1/-
tuples of vector in knC1. We denote their span as the .d C 1/-dimensional subspace
P � knC1 and write the .dC 1/-tuple .v1; : : : ; vn/ as a .dC 1/ � .nC 1/-matrix X.
Now, GldC1 acts on the .dC 1/-tuple without changing P. This is the same thing as
the left-action of GldC1 on the matrix. Because the action is free and acts transitively
on bases of P, the Grassmannian is the quotient

Gr.dC 1; nC 1/ D St.dC 1; nC 1/=GldC1 :

There are homogeneous coordinates, the Plücker coordinates that embed this
quotient into projective space: let B be a .d C 1/-tuple of distinct elements of
f1; : : : ; nC1g, the Plücker coordinate pB is the determinant of the .dC1/� .dC1/-
matrix formed by the columns indexed by B. The Plücker coordinates are indeed
coordinates on the Grassmannian. Indeed, because X is rank dC1, we may permute
the columns of M so that the first d C 1 columns form a non-singular matrix. By
applying an element of Gl.dC 1/, we may suppose X is the form

X D ŒIdC1jA�
where A is a .dC 1/� .n� d/-matrix. Let B consist of d elements of f1; : : : ; dC 1g
together with an element i of fd C 2; : : : ; n C 1g. Then pB is equal (up to sign) to
an entry of the ith column of X. Therefore, from the Plücker coordinates, we can
recover X.

Now, because if B and B0 are related by a permutation, pB and pB0 are equal
up to a sign, it suffices to consider only the Plücker coordinates corresponding to
B D .i1; : : : ; idC1/ with i1 < i2 < � � � < idC1. Therefore, there are

�nC1
dC1
�

Plücker
coordinates. The Plücker coordinates give an embedding

Gr.dC 1; nC 1/ ,! P
.nC1

dC1/�1:
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The Plücker coordinates obey natural quadratic relations, called the Plücker rela-
tions: for 1 � i1 < � � � < id � n C 1; 1 � j1 < � � � < jdC2 � n C 1, we have, for
every point of the Grassmannian,

dC1X

aD1
.�1/api1:::id ja pj1:::Oja:::jdC2 D 0

where Oja means ja is deleted. Moreover, these relations generate the ideal defining
Gr.dC 1; nC 1/.

Given a point of the Grassmannian whose Plücker coordinates are .pB/, we can
define a matroid by setting the bases to be

B D
(

B 2
 
f1; : : : ; nC 1g

dC 1

! ˇ̌
ˇ̌
ˇ pB ¤ 0

)
:

Lemma 9.1. The set B defined above is the set of bases for a matroid.

Proof. Because the matrix X is of rank d C 1, the set B is nonempty. We need only
show that it satisfies the basis exchange axiom. Let B1;B2 2 B; i 2 B1 nB2. We must
show that there is an element j 2 B2 nB1 such that .B1 n i/[fjg 2 B. The left side of
the Plücker relation for this choice of i’s and j’s has pB1pB2 as a summand. Because
this monomial is non-zero, there must be another non-zero monomial of the form
p.B1nfig/[fjgp.B2nfjg/[fig. ut

We can view this matroid as coming from a vector configuration. Specifically,
pick a matrix X 2 St.d C 1; n C 1/ representing that linear subspace. Take the
vectors to be the columns of X. The set of d C 1 vectors is a basis for the matroid
if and only if the corresponding determinant is non-zero. This occurs exactly when
these vectors give a basis of kdC1.

We note that Gr.d C 1; n C 1/ is isomorphic to Gr.n � d; n C 1/. Specifically
if V � knC1 is a d-dimensional subspace, there is a map dual to inclusion i� W
.knC1/� ! V�. The map is surjective so its kernel is .n � d/-dimensional. This
isomorphism is analogous to matroid duality.

9.2 Projective Toric Varieties

We give a review of not-necessarily-normal (or Sturmfeldian) projective toric
varieties. They are important for relating the matroid polytope to the Grassmannian
For more details, see [19]. Let A � Z

nC1 be a finite subset. Write A D
f!0; !1; : : : ; !Ng. We can define a morphism i W .k�/nC1 ! P

N by

x 7! Œx!0 W : : : W x!N �
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where if x D .x0; : : : ; xn/ and !i D .!i0; : : : ; !in/,

x!i D x!i0
0 : : : x!in

n :

Let A be the .nC1/� .NC1/-matrix whose columns are the !’s. If A is unimodular
and full rank, then i is an inclusion. The toric variety PA associated with A is the
closure i..k�/nC1/. The weight polytope of XA is the convex hull of A. The torus
orbits in PA are in bijective correspondence with the faces of the weight polytope.

This definition can be extended to include closures of torus orbits in projective
spaces. Suppose that k is an algebraically closed field. Let H D .k�/nC1 act on a
vector space V . There is a character decomposition

V D
M

�

V�

where for a character � of H,

V� D fv 2 V j t � v D �.t/v for all t 2 Hg:

Let v 2 P.V/. We will study the H-orbit closure H � v 
 P.V/. Lift v to an element
of Qv 2 V , and write

Qv D
X

�

Qv�

for Qv� 2 V�. Let A.v/ D f� j Qv� ¤ 0g. By unpacking definitions, we have H � v Š
XA.v/. The weight polytope of v is the convex hull of A.v/ in N_ ˝ R where N_
is the character lattice of H. If the image of v in P.V/ is stabilized by a subtorus
H0 
 H, there is an induced linear map N_ ! .N0/_ and the weight polytope lies
in a translate of ker.N_ ! .N0/_/.

9.3 Torus Orbits and Matroid Polytopes

In this section, we consider a torus acting on the Grassmannian. Note that the
algebraic torus .k�/nC1 acts on P

n by dilating the homogeneous coordinates. This
induces an action on Gr.d C 1; n C 1/: for t 2 .k�/nC1;P � P

n, a d-dimensional
subspace, t � P is also a d-dimensional subspace. We can see this action in terms
of the Stiefel variety: .k�/nC1 dilates the columns of the matrix X. Note that the
diagonal k� acts trivially on the Grassmanian since it preserves any subspace P.

For P 2 Gr.n � d; n/, we may consider the closure of the .k�/nC1-orbit of P,

PP D .k�/nC1 � P:
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As observed in [90, Proposition 12.1], this orbit closure is a normal toric variety
by arguments of White [104]. Now, by Lemma 9.1, we may produce a rank d C 1
matroid M on f0; 1; : : : ; ng from P.

We have the following combinatorial description of the toric variety by Gelfand–
Goresky–MacPherson–Serganova [42]:

Theorem 9.2. The weight polytope of PP is the matroid polytope P.M/.

Proof. The .k�/nC1-action extends to the ambient space of the Plücker embedding

P
.nC1

dC1/�1. In fact, by the matrix description of the group action, if t 2 .k�/nC1 is
given by .t0; : : : ; tn/, then

t � pB D
 
Y

i2B

ti

!
pB

Consequently, pB lies in the character space given by eB, the characteristic vector
of B. The weight polytope is the convex hull of eB for B 2 B. ut
Note that the weight polytope lies in an affine hyperplane corresponding to the fact
that all bases have d C 1 elements. This reflects the fact that the diagonal torus of
.k�/nC1-stabilizes P 2 Gr.dC 1; nC 1/.

9.4 Thin Schubert Cells

We can use matroids to define thin Schubert cells, locally closed subsets of
the Grassmannian that refine Schubert cells. A thin Schubert cell consists of all
subspaces with a given matroid. Thin Schubert cells were introduced in [42]
by Gelfand–Goresky–MacPherson–Serganova. Prior to their introduction in the
algebraic geometric context, White [103] studied their coordinate rings. Following
the notation of [42], we will think of matroids as vector configuration given by the
projection of the coordinate vectors.

The closure of the usual Schubert cells, called Schubert varieties, can be
described by the vanishing of some Plücker coordinates. The data of the matroid
corresponds to imposing exactly which Plücker coordinates vanish. We will use this
data to define a thin Schubert cell.

Definition 9.3. Let M be a rank dC1matroid on E D f0; : : : ; ng. The thin Schubert
cell GrM in Gr.dC 1; nC 1/ is the locally closed subset given by

GrM D fP 2 Gr.dC 1; nC 1/ j pB.P/ ¤ 0 if and only if B is a basis of Mg:

Another convention is to consider the thin Schubert cell associated with M in
Gr.n�d; nC1/ D Gr.dC1; nC1/ as follows: for an .n�d/-dimensional subspace
P 2 Gr.n�d; nC1/, there is a projection 
P W knC1 ! knC1=P. For S � f0; : : : ; ng,
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let kS be the linear space spanned by ei for i 2 S. We may consider the matroid given
by the vector configuration 
P.e0/ : : : 
P.en/ which has the rank function r.I/ D
dim.
P.kI//.

We can describe the stabilizer of GrM under the torus action in terms of M. Let
M D M1˚ : : :˚M� be a connected component decomposition of M where each Mi

is a matroid on Fi for a partition E D F1 t : : :t F� . Then we have a decomposition
of P,

knC1 D kF1 ˚ : : :˚ kF�

given by

P D P1 ˚ : : :˚ P�

for Pi 
 kEi . We have an inclusion .k�/Fi ,! knC1. The image of the diagonal torus
in .k�/Fi stabilizes Pi. One can show that the stabilizer of P is .k�/� corresponding
to the direct product of these diagonal tori.

The thin Schubert cells do not provide a stratification of the Grassmannian. In
fact, the closure of a thin Schubert cell is not always a finite union of thin Schubert
cells. However, thin Schubert cells do occur as the intersection of finitely many
Schubert cells with respect to different flags.

We have the following proposition which describes how the thin Schubert cells
behave under direct sums of matroids:

Proposition 9.4. If the matroid M has a unique decomposition into connected
components

M D MjF0 ˚ � � � ˚MjFc ;

for flats, Fi, then there is a natural isomorphism

GrM Š GrMjF0 � � � � � GrMjFc

9.5 Realization Spaces

Given a simple matroid M of rank d C 1 on f0; 1; : : : ; ng, we can define realization
spaces, space whose points correspond to representations of M. These spaces exist
as moduli spaces, but we will focus our attention on their k-points and treat them as
parameter spaces. The results of this subsection, however, can be stated in moduli-
theoretic language.

Thin Schubert cells can be related to a universal family of representations. Here,
we say that a d-dimensional subspace V � P

n represents M if the matroid associated
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with V is M. Recall that the Grassmannian Gr.dC1; nC1/ has a universal family of
subspaces over it: there is a subvariety V � P

n
Gr.dC1;nC1/ that fits in a commutative

diagram

V

��

� � �� P
n
Gr.dC1;nC1/

�����
���

���
��

Gr.dC 1; nC 1/

such that V is flat over Gr.d C 1; nC 1/ and the fiber VV for V 2 Gr.d C 1; nC 1/
is the subspace of Pn corresponding to V .

Definition 9.5. A family of representations of M over a scheme X is a flat family
V ! X of d-dimensional subspaces in P

n
X such that for every closed point x, the

fiber Vx is a representation of M.

The base-change VGrM over the thin Schubert cell GrM is a family of realizations.
Its k-points, GrM.k/ are exactly the representations of M over k.

One can also consider the space of representations of M as a hyperplane arrange-
ment. Recall that if V � P

n is a representation of M as a subspace, intersecting
V with each coordinate hyperplane gives an arrangement of n C 1 hyperplanes on
P

d Š V representing M. We can alternatively consider an arrangement of n C 1
hyperplanes on P

d by considering an .nC 1/-tuple of non-zero linear forms on P
d

up to constant multiples. Let � D A
dC1 n f0g. Therefore, an nC1-tuple of non-zero

linear forms .s0; s1; : : : ; sn/ is described by a point of �nC1.

Definition 9.6. The linear form realization space for M is the subscheme �M of
�nC1 consisting of hyperplane arrangements realizing M.

Two tuples of sections cut out the same family of hyperplane arrangements if
and only if they differ by an element of .k�/nC1 scaling the sections .s0; s1; : : : ; sn/

and two families of hyperplane arrangements are isomorphic, by definition, if
they differ by an element of PGLdC1. These actions commute, and the product
PGLdC1 �.k�/nC1 acts freely on �M .

The quotient

RM D �M=.PGLdC1 �.k�/nC1/

is called the realization space of the matroid M. Points of this realization space cor-
respond to isomorphism class of representations of M as hyperplane arrangements.

The thin Schubert cells are naturally torus torsors over realization spaces of
hyperplane arrangements which we will now describe using the subtori .k�/Fi from
the above subsection following [53], which summarizes the discussion in [60, Sect.
1.6].
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Proposition 9.7 ([60, 1.6]). If M is connected, then RM is the quotient of GrM by
the free action of .k�/nC1=k�. If M is not connected, there is a natural isomorphism

RM Š RMjF0 � � � � � RMjF�

where M D MjF0 ˚ � � � ˚ MjF� is the direct sum decomposition. In this case, the
.k�/nC1=.k�/-action naturally factors through the projection

.k�/nC1=k� ! .k�/F0=k� � � � � � .k�/F� =k�:

9.6 Matroid Representability and Universality

In a certain sense, the question of the representability of matroids is maximally
complicated as a consequence of Mnëv’s universality theorem which states that any
possible singularity defined over Z occurs on some thin Schubert cell (up to a natural
equivalence). This has applications to moduli problems and logic. Here we state
Mnëv’s theorem in the form applied by Lafforgue [60].

Theorem 9.8. Let X be an affine scheme of finite type over SpecZ. Then there exists
a connected rank 3 matroid M, an integer N 	 0, and an open set U 
 X � A

N

projecting onto X such that U is isomorphic to the realization space RM.

A very brief proof is given in [60]. More details in a slightly different context
can be found in [62]. An accessible treatment that only considers the set-theoretic
case is [81]. A new proof giving explicit bounds on the size of the matroid is given
in [18]. The central idea of most proofs of this theorem, following Shor [88], is to
add auxiliary variables and present X as being cut out by a very large system of
equations each involving three variables and a single arithmetic operation. This new
system is encoded as a line arrangement by using the von Staudt constructions (see
[81] for an illustration).

This theorem quickly gives interesting counterexamples. If X is disconnected,
then the realization space RM will be disconnected and the matroid will have
representations (as hyperplane arrangements) that cannot be continuously deformed
into each other. One can also control the fields over which X has a representation: a
matroid M is representable over k if and only RM has a k-point. If X D SpecF2 and
k is some infinite field, then X and consequently RM only has k-points if and only if
char k D 2. Similarly, if X D SpecZŒx�=.2x � 1/, then RM only has k-points if and
only if char k ¤ 2.

As observed by Sturmfels [93], a decision procedure to determine if a matroid is
representable over Q is equivalent to a decision procedure to determine whether a
system of polynomial equations has a solution in Q. The existence of the decision
procedure is a famous unsolved problem, Hilbert’s Tenth Problem over Q. See
Poonen’s survey [77] for more details about this problem.
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For finite fields k, the situation is a bit different. Because RM is isomorphic to
an open set U 
 X � A

N , and it is possible for some k-points to be missing from
U 
 X�AN , it is not necessarily true that the existence of k-points in X is equivalent
to the representability of M over k. Moreover, the number of points of X.k/ and
RM.k/ may be drastically different. For this reason, it’s possible to have unique
representability theorems similar to Theorem 6.3 for finite fields.

Mnëv’s theorem is the primordial example of Murphy’s Law in algebraic
geometry. Murphy’s Law, due to Vakil [99], is a theorem that states that certain
classes of moduli spaces contain every singularity type over Z up to a particular
natural equivalence. In fact, Vakil was able to prove that a large number of moduli
spaces obey Murphy’s Law by relating them to realization spaces of matroids.

Matroid representability has been applied in tropical geometry to the study of
linear systems on graphs in recent work of Cartwright [18], Jensen [50], and Len
[63]. In particular, Mnëv’s theorem has been used to construct linear systems on
graphs that have pathological lifting behavior.

9.7 Matroid Representability and Semifields

One can view matroids as points of thin Schubert cells over field-like objects like
blueprints or partial fields. This is the point of view taken in Dress’s matroids over
fuzzy rings [29] as studied by Dress with Wenzel [30] . Here, we use the notation of
Lorscheid’s blueprints and blue schemes [65] for the following highly speculative
subsection.

Definition 9.9. A blueprint B is a multiplicatively written monoid A with neutral
element 1 and absorbing element 0 together with an equivalence relation R (given
by�) on the semiring NŒA� of finite formal sums of elements of A such that

(1) the relation R is closed under addition and multiplication,
(2) the absorbing element is equivalent to the empty sum, and
(3) for a; b 2 A with a � b, then a D b.

For example, one can define an object called the field of one element F1 to be
the blueprint with A D f0; 1g and R to be the empty relation. Moreover, given
any semiring R, one can produce a blueprint by setting A to be R�, where R� is R,
considered as a multiplicative monoid, and setting

R D
nX

ai �
X

bi j
X

ai D
X

bi in R
o
:

In particular every field and idempotent semiring can be interpreted as a blueprint.
An important blueprint is the none-some semifield B1 where we set A D f0; 1g
and R D f1 C 1 � 1g. Here we imagine a primitive culture with addition and
multiplication but only numbers for 0 and more than 0. This is isomorphic to the
min-plus semifield f0;1g by taking � log.
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For a blueprint B, we can view a linear subspace defined over B as a B-point of
Gr.dC1; nC1/ provided that we can treat Gr.dC1; nC1/ in its Plücker embedding
as a model of Gr.d C 1; n C 1/ over B. While there are various rival notions for
the definition of a B-point, one notion is an assignment of the Plücker coordinates
to elements of A such that Plücker relations are satisfied. Under that definition, a
matroid is a B1-point. The value of a Plücker coordinate in B1 determines whether
or not it is zero. The Plücker relations in B1 become the basis exchange axiom. In
the case that B is induced from a field k, then a B-point of Gr.d C 1; nC 1/ is the
same thing as a k-point.

Regular matroids should perhaps be thought of as F12 -points of Gr.dC1; nC1/.
Here F12 , the degree 2 cyclotomic extension of F1, is the blueprint generated by
A D f0; 1;�1g subject to the relation 1C.�1/ � 0. This is because regular matroids
are those representable by totally unimodular matrices and therefore, all the Plücker
coordinates are 0; 1; or�1. An important idea in the study of the field of one element
is the numerical prediction that the number F1-points is the limit of the number of
Fq-points as q! 1. Is there a similar prediction for the number of regular matroids?

Excluded minor characterizations of matroids can be thought of as matroid lifting
results. Specifically, we have a morphism of blueprints B0 ! B, and a B-point of
the Grassmannian, and we ask when this B-point is in the image of the induced
map Gr.d C 1; nC 1/.B0/ ! Gr.d C 1; nC 1/.B/. For example, there is a natural
blueprint morphism F12 ! F2. If M is a matroid that is representable over F2, the
question of whether it is regular corresponds to whether it lifts from a F2-point to a
F12 -point. This is the point of view taken in the work of Pendavingh and van Zwam
[75] phrased in the language of partial fields which include the usual fields and F12 .
They are able to give unified proofs of a number of representability results including
the following theorem of Tutte:

Theorem 9.10. A matroid is regular if and only if it is representable over both F2

and F3.

Here, they manipulate matrix representations of matroids by matrix operations, but
it would be very interesting to rephrase their work in the language of deformation
theory. The category of partial fields is more interesting than that of fields because
of the existence of tensor products and many more morphisms.

9.8 K-theoretic Matroid Invariants

Speyer [90] introduced a way of producing valuative invariants of matroids by
using the K-theory of the Grassmannian. He begins with an invariant valued in
the K-theory of the Grassmannian. This invariant can be specialized by particular
geometric operations to take values in less exotic rings. In fact, it is the main result
of [36] that this invariant specializes to the Tutte polynomial.
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We first review algebraic K-theory. See [37, Sect. 15.1] for a very brief summary.
For a scheme X, let K0.X/ be the Grothendeick group of coherent sheaves on X. It
is the group of formal linear combinations of coherent sheaves on X subject to the
relation

ŒF � D ŒF 0�C ŒF 00�

whenever there is an exact sequence of coherent sheaves

0 �� F 0 �� F �� F 00 �� 0:

Given a proper morphism of schemes f W X ! Y , there is a pushforward
homomorphism f� W K0.X/! K0.Y/ given by

f�F D
1X

iD0
.�1/iŒRif�F �

On the other hand, we may define K0.X/ as the Grothendieck group of vector
bundles on X, the group of formal linear combinations of vector bundles on X subject
to the relation

ŒE� D ŒE0�C ŒE00�

whenever E0 is a sub-bundle of E with quotient E00 D E=E0. Given a morphism
f W X ! Y , there is a pullback homomorphism f � W K0.Y/ ! K0.X/ given
by pullback of vector bundles. The group K0.X/ can be made into a ring by
introducing tensor product as multiplication. The natural group homomorphism
K0.X/ ! K0.X/ taking a vector bundle to its sheaf of sections is an isomorphism
if X is a non-singular variety. We will freely switch between K0.X/ and K0.X/ as
all of our schemes will be non-singular varieties. We will make use of the fact that
K0.Pn/ D QŒx�=.xnC1/ where x D 1 � O.�1/ which corresponds to the structure
sheaf of a hyperplane.

Let T D .k�/nC1 be an algebraic torus acting on a scheme X. We may define
equivariant K-groups KT

0 .X/ and K0
T.X/ by considering equivariant coherent sheaves

and vector bundles. There are non-equivariant restriction maps

KT
0 .X/! K0.X/; K0

T.X/! K0.X/

forgetting the T-action. Now, the equivariant K-theory of a point is particularly
simple: K0

T.pt/ is the Grothendieck group of representations of T . By taking
characters, we see K0

T D ZŒt0̇ ; : : : ; tṅ �, the ring of Laurent polynomials.
The Grassmannian has a natural group action which allows us to consider

equivariant K-theory [58]. By localization, this equivariant K-theory has a quite
combinatorial flavor. Let T act on Gr.d C 1; n C 1/ as follows: t 2 T dilates the
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coordinates of ambient knC1 taking a subspace P 2 Gr.d C 1; n C 1/ to t � P.
Note that the diagonal subtorus in T acts trivially. The equivariant K-theory of the
Grassmannian can be expressed in terms of its fixed points and 1-dimensional orbits
under T . The following is easily verified:

Lemma 9.11. The fixed points of the T-action on Gr.d C 1; n C 1/ are in one-to-
one correspondence with subsets B � f0; 1; : : : ; ng with jBj D d C 1 with the fixed
points xB given by the .d C 1/-dimensional subspaces of the form Span.ei j i 2 B/.
The 1-dimensional torus orbits of the action are in one-to-one correspondence with
pairs B1;B2 � f0; 1; : : : ; ng with jB1j D jB2j D d C 1 and jB4B0j D 2 with the
closure of the torus orbit parameterized by P

1 as

Œs W t� 7! Span.e0
i j i0 2 B1 \ B2/C k.sei C tej/

where i 2 B1 n B2 and j 2 B2 n B1.

Because Gr.d C 1; n C 1/ is a smooth projective variety, has finitely many
fixed points, and the closure of each 1-dimensional torus orbits is isomorphic to
P
1;Gr.d C 1; n C 1/ is equivariantly formal [101, Corollary 5.12], [58, Corollary

A.5] which means that its equivariant K-theory is controlled by the fixed points and
1-dimensional orbits. Specifically, the restriction map to the fixed points

K0
T.Gr.dC 1; nC 1//! K0

T.Gr.dC 1; nC 1/T/ D
M

B

K0
T.xB/

is an injection whose image is given by fB 2 KT
0 .xB/ for all B satisfying

fS[fig � fS[fjg mod 1 � ti=tj

where S 2 �f0;:::;ng
d

�
; i; j 62 S.

Now, we describe Speyer’s matroid invariant. Let P 2 Gr.d C 1; n C 1/. The
invariant is produced from the K-theory class of the orbit closure T � P,

OT P 2 K0.Gr.dC 1; nC 1//:

Because T � P is T-invariant, its structure sheaf is T-equivariant. The corresponding
equivariant K-theory class, y.P/ 2 KT

0 .Gr.dC1; nC1// can be given in terms of the
matroid polytope. We will give the description of its restrictions y.P/B 2 KT

0 .xB/.
For B, a basis of the matroid, let ConeB.P.M// be the cone of P.M/ at B, in other
words the real nonnegative span of all vectors of the form v� eB for v 2 P.M/. The
Hilbert series of a cone C is given by

Hilb.C/ D
X

a2C\ZnC1

ta:
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We define y.P/ by

y.P/B D
(

Hilb.ConeB.P.M///
Q

i2B

Q
j62B.1 � t�1i tj/ if B is a basis of P

0 else

The rational function y.P/B turns out to be a Laurent polynomial. Note that y.P/
depends only on the matroid of P and so can be written y.M/. This definition gives
a well-defined class of KT

0 .Gr.d C 1; n C 1// even when M is not representable.
This invariant turns out to be valuative although it is not universal among valuative
invariants.

The invariant y.M/ specializes to the Tutte polynomial in a geometric fashion.
Recall that Fl.d1; : : : ; drI nC 1/ is the flag variety whose points parameterize flags
of projective subspaces Fd1�1 � : : : � Fdr�1 � P

n where dim Fi D i� 1. There is a
natural inclusion

Fl.1; nI nC 1/ ,! P
n � P

n

taking F1 � Fn�1 to .F1;Fn�1/ where the two P
n’s parameterize points and

hyperplanes in P
n. There is a diagram (borrowed from [36]) of morphisms forgetting

various stages of the flags:

Fl.1; dC 1; nI nC 1/

dC1

�����
���

���
���

�

����
���

���
���

��


1n

���
��

��
��

��
��

��
��

��
��

��
�

Gr.dC 1; nC 1/ Fl.1; nI nC 1/
� �

��

P
n � P

n

(2)

If we write K0.Pn � P
n/ D QŒx; y�=.xnC1; ynC1/, one has

Theorem 9.12 ([36]). Let H be the pullback of O.1/ on P
.nC1

dC1/�1 to Gr.dC1; nC1/
by the Plücker embedding. Interpreting y.M/ as a non-equivariant class, we have

.
1n/�
�
dC1.y.M/ � ŒH�/ D TM.x; y/:

The proof works by relating the K-theoretic class to the rank-generating polynomial.
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10 Review of Toric Varieties

We give a quick review of toric varieties in preparation for the next section. More
complete references are [19, 38].

10.1 Rational Fans and Minkowski Weights

A toric variety X D X.�/ is an algebraic variety specified by a rational fan � in
NR D N ˝Z R for a lattice N Š Z

n. They are normal varieties compactifying
the algebraic torus T D .k�/n such that the natural multiplication of T on itself
extends to a T-action. A rational fan is a particular set,� of strongly convex rational
polyhedral cones. A strongly convex rational polyhedral cone is the nonnegative
span of finitely many vectors in N which contains no lines through the origin.
A rational fan is defined as a polyhedral complex whose cells are strongly convex
rational polyhedral cones, that is:

1. if � 2 �, then every face of � is an element of �, and
2. if �; � 0 2 �, then � \ � 0 2 �.

We say that a fan is pure of dimension d if every maximal cone is d-dimensional.
For a cone � , let �ı denote the relative interior of � . Associated with a fan � is a
toric variety X.�/ defined over a field k.

The toric variety is stratified by torus orbits. Write N_ for the lattice dual to N.
Write N� for the sublattice of N given by Span.�/ \ N. For a cone � , let �? 
 N_
be the kernel of the projection N_ ! N_

� that is dual to the natural inclusion. Given
a cone � with dim.�/ D k, there is a torus orbit O� with dim.O� / D n � k.
This torus orbit is canonically isomorphic to Hom.�?;k�/ . The torus orbit O0 D
Hom.N_;k�/ corresponding to 0 2 � is called the big open torus and is isomorphic
to T . We can view elements of N_ as regular functions on T . Specifically, we view
m 2 N_ as the function �m, for t 2 Hom.N_;k�/,

�m W t 7! t.m/:

We refer to �m as a character of T . The group T acts on O� as follows: for � W �? !
k�, we have t � � given by for m 2 �?,

t � �.m/ D �m.t/�.m/:

The toric variety X.�/ can be decomposed (as a set with action of T as)

X.�/ D
G

�2�
O� :
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The closure of the orbit O� is denoted by V.�/. The cones of � are in inclusion-
reversing bijection with orbit closures of X.�/: if � is a face of � in�, then V.�/ 

V.�/. In other words, O� 
 O� if and only if � 
 � . The closure of T D O0 is
X.�/. Characters of T extend to X.�/ as rational functions.

A toric variety X.�/ is compact if and only if the support of �,
S
� is equal to

NR. A toric variety is smooth if and only if every cone is unimodular, that is, it is the
nonnegative span of a set of vectors that can be extended to a basis of the lattice N.

Example 10.1. The building blocks of smooth toric varieties are the toric varieties
associated with unimodular simplices. Let N D Z

n. Write the basis vectors of
N as e1; : : : ; en. Let � be the nonnegative span of e1; : : : ; ek. Let � consist of
� and its faces. Then X.�/ D kk � .k�/n�k. Write the coordinates on X.�/ as
.x1; : : : ; xk; xkC1; : : : ; xn/. The faces of � are

�S D Span
0.ei j i 2 S/

for S 
 f1; : : : ; kg. The torus orbits and their closures are given by

O�S D fx j xi D 0 if and only if i 2 Sg;
V.�S/ D fx j xi D 0 if i 2 Sg:

The group .k�/n acts by multiplication on coordinates. The characters are the usual
monomials in the xi’s.

Example 10.2. The most basic compact toric variety is Pn. Let N D Z
nC1=Z where

Z
nC1 is spanned by unit vectors e0; e1; : : : ; en and the quotient is by the span of the

diagonal element e0Ce1C� � �Cen. The cones of�Pn are given by �S D Span
0.ei j
i 2 S/ for each proper subset S ¨ f0; 1; : : : ; ng. Then X.�Pn/ D P

n. The torus orbits
and their closures are given in homogeneous coordinates by

O�S D fŒX0 W X1 W � � � W Xn� 2 P
n j Xi D 0 if and only if i 2 Sg;

V.�S/ D fŒX0 W X1 W � � � W Xn� 2 P
n j Xi D 0 if i 2 Sg:

The group T D .k�/nC1=k� acts on P
n by

.t0; t1; t2; : : : ; tn/ � ŒX0 W X1 W � � � W Xn� D Œt0X0 W t1X1 W � � � W tnXn�:

Note that the diagonal of .k�/nC1 acts trivially. The characters are rational functions
on P

n: N_ is canonically isomorphic to the sublattice of vectors .m0;m1; : : : ;mn/ 2
Z

nC1 satisfying m0 C m1 C � � � C mn D 0, and

�m.ŒX0 W X1 W � � � W Xn�/ D
Y

i

Xmi
i :
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There is an important notion of morphisms of toric varieties. Let N and N0 be
lattices with rational fans �;�0 in NR;NR, respectively. Let � W N0 ! N be a
homomorphism of lattices such that for any cone � 0 2 �0, there is a cone � 2 �
with �R.� 0/ � � . In this case, we say � W �0 ! � is a morphism of fans. Then,
there is an induced map of toric varieties �� W X.�0/ ! X.�/ that intertwines
the torus actions. Of particular interest for us is the case where N D N0 and the
homomorphism � is the identity. In that case,�0 is a refinement of�, that is, every
cone � 0 2 �0 is contained in a cone of �. The induced morphism �� W X.�0/ !
X.�/ is a birational morphism.

Example 10.3. Blow-ups of X.�/ at the orbit closures V.�/ can be phrased in terms
of refinements of fans [38, Sect. 2.4], [19, Definition 3.3.17]. We will explain the
case of a unimodular cone as in Example 10.1. The general case is similar. Let �
be the cone spanned by e1; : : : ; en. Let � be the fan consisting of all faces of � . Let
e0 be the barycenter of � given by e0 D e1 C � � � C en. Let �0 be the fan consisting
of all cones spanned by subsets of fe0; e1; : : : ; eng not containing fe1; : : : ; eng. By an
explicit computation, one can show that X.�0/ is the blow-up of kn at the origin.
This has the effect of subdividing the cone � while not changing its boundary.

We can apply this operation to a top-dimensional cone of a toric variety. Let �
be a fan, and let � be a top-dimensional, unimodular cone of �. We can form Q�
by replacing � with the cones considered above and not changing any of the other
cones. Then X. Q�/ is the blow-up of X.�/ at the smooth point V.�/.

This operation can also be applied to smaller-dimensional cones as well. Here,
we follow the exposition of [19]. Let X.�/ be a smooth toric variety. For a cone � ,
let �.1/ be the set of primitive lattice vectors through the 1-dimensional faces of � .
Recall that a primitive lattice vector is a vector v 2 N such that if v D nw for n 2 Z

and w 2 N then n D ˙1. Let � be a cone of �. Let the barycenter of � be

u� D
X

u�2�.1/
u�:

For each cone � containing � , define a fan

�0
� .�/ D fSpan
0.S/ j S 
 fu�g [ �.1/; �.1/ 6
 Sg:

Then the subdivision of � relative to � is the fan

�0.�/ D f� 2 � j � 6� �g [
[

���
�0
� .�/:

It turns out that X.�0.�// is the blow-up of X.�/ along the subvariety V.�/. The
orbit closure V.R
0u� / is the exceptional divisor of the blow-up. Observe that only
the cones containing � are affected by the subdivision.

We can form the barycentric subdivision of � by first subdividing the cones �
with dim.�/ D n and then subdividing the cones � of � with dim.�/ D n � 1 and
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so on down to the 2-dimensional cones. This produces an iterated blow-up of X.�/.
This construction will be very important in the sequel.

A natural way that rational fans arise is as normal fans to lattice polytopes. Let
P be a lattice polytope in R

n, that is, a polytope whose vertices are in Z
n. Set N D

Hom.Zn;Z/.

Definition 10.4. For a face Q of P, the (inward) normal cone to Q is the set

�Q D fw 2 N j Pw � Qg :

For w in the relative interior of �Q, we have Pw D Q.

Definition 10.5. The inward normal fan, N.P/ of the polytope P is the union of the
cones �Q as Q ranges over the faces of P.

The correspondence between Q and �Q is inclusion-reversing. If P is full-
dimensional, then N.P/ is strongly convex. Because P is an integral polytope, N.P/
is a rational fan.

We can use normal fans to relate not-necessarily-normal toric varieties to the
more usual toric varieties. Suppose we have i W PA ! P

N . If i is an inclusion and
PA is normal, then PA is the toric variety associated with the normal fan of the
weight polytope of PA.

The fan �Pn occurs as the normal fan to the simplex whose vertices are
�e0;�e1; : : : ;�en in the hyperplane defined by x0 C x1 C � � � C xn D �1 in R

nC1.

10.2 Intersection Theory and Minkowski Weights

We review the central notions of intersection theory [37], eventually specializing to
toric varieties. We recommend [38] as a reference for toric varieties, [39] for results
on intersection theory on toric varieties, and [51] for results most directly suited to
our purposes.

Let X be an n-dimensional algebraic variety over k. The cycle group Zp.X/ is the
group of finite formal integer combinations

P
niŒZi� where each Zi is an irreducible

p-dimensional subvariety of X. These sums are called cycles. If all the coefficients
are nonnegative, the cycle is said to be effective. A cycle is declared to be rationally
equivalent to 0 if there exists irreducible .pC 1/-dimensional varieties W1; : : : ;Wl

together with rational functions f1; : : : ; fl on W1; : : : ;Wl, respectively, such that

X
niZi D

X

j

.fj/

where .fj/ denotes the principal divisor on Wj associated with the rational function fj.
The Chow group Ap.X/ is the quotient of Zp.X/ by the subgroup of cycles rationally
equivalent to 0. Elements of Ap.X/ are cycle classes, but we may refer to them
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as cycles when we have picked a member of their class. A cycle class is said to
be effective if it is rationally equivalent to an effective cycle. The Chow groups
should be thought of as an algebraic analogue of the homology groups H2p.X/ with
the caveat that not every homology class is realizable by a cycle and that rational
equivalence is a much finer relation than homological equivalence.

If X is smooth, then there is an intersection product

� W Ap.X/˝ Ap0.X/! ApCp0�n.X/

which should be thought of as taking two irreducible subvarieties Z;Z0 to the rational
equivalence class of their intersection ŒZ \ Z0� if the subvarieties meet transversely.
A lot of work has to be done to make this intersection product well defined for pairs
of subvarieties that do not meet transversely. The intersection product is well defined
on rational equivalence classes. We think of elements of A0.X/ as a formal sum of
points, and if X is compact, there is a degree map:

deg W A0.X/! Z

taking
P

niPi to
P

ni. When X is smooth and compact, we may define the Chow
cohomology groups simply as Ak.X/ D An�k.X/. These groups are, in fact, graded
rings under the cup product

[ W Ak.X/˝ Ak0.X/! AkCk0.X/

which is simply the intersection product. We will make use of the cap-product

\ W Ak.X/˝ Ap.X/! Ap�k.X/

where c\ z is given by taking the intersection product of c (considered as a .n� k/-
dimensional cycle) with z considered as a p-dimensional cycle. By definition, for
c; d 2 A�.X/; z 2 A�.X/,

c \ .d \ z/ D .c [ d/ \ z:

For non-smooth varieties, the definition of Chow cohomology is quite different.
Here, we used Poincaré duality to simplify our exposition.

Definition 10.6. A Chow cohomology class c 2 A1.X.�// is said to be numerically
effective or nef if for every curve C on X; deg.c \ ŒC�/ 	 0.

For X.�/, a compact toric variety, the Chow cohomology groups Ak.X.�// are
canonically isomorphic to a combinatorially defined object, the group of Minkowski
weights. Let �.k/ denote the set of all cones in � of dimension n � k. If � 2 �.kC1/
is contained in a cone � 2 �.k/, let v�=� 2 N=N� be the primitive generator of the
ray .� C N� /=N� .
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Definition 10.7. A function c W �.k/ ! Z is said to be a Minkowski weight of
codimension k if it satisfies the balancing condition, that is, for every � 2 �.kC1/,

X

�2�.k/
���

c.�/v�=� D 0

in N=N� . The support of c is the set of cones in �.k/ on which c is non-zero.

Theorem 10.8 ([39]). The Chow group Ak.X.�// is canonically isomorphic to the
group of codimension k Minkowski weights.

The correspondence between Chow cohomology classes and Minkowski weights
is as follows: given d 2 Ak.X/, define c.�/ D deg

�
d \ ŒV.�/��. The content

of the above theorem t is that Chow cohomology classes are determined by
their intersections with orbit closures. The balancing condition is a combinatorial
translation of the fact that cohomology classes are constant on rational equivalence
classes generated by the rational functions given by characters of the torus O� on
the orbit closure V.�/. The degree deg.c/ of a class c 2 An.X/ is defined to be
c.0/, the value of c on the unique zero-dimensional cone 0. There is a combinatorial
description of the cup product of Chow cohomology classes by the fan-displacement
rule which we will not describe. The identity in the Chow ring is c 2 A0.X.�//
given by

c.�/ D 1 for � 2 �.0/:

For compact smooth toric varieties, Chow cohomology is isomorphic to singular
cohomology.

Example 10.9. Let us consider �Pn . We know that Ak.Pn/ D ZHk where H is a
hyperplane class, and, consequently, Hk is the class of a codimension k projective
subspace. Now, we will see this fact in terms of Minkowski weights. Let c be
a Minkowski weight of codimension k. It is straightforward to verify that the
Minkowski weight condition is equivalent to c being constant on �.k/. If � 2
�.k/;V.�/ is a k-dimensional coordinate subspace. Now, c, considered as a cycle,
must intersect V.�/ in c.�/ points counted with multiplicity. Therefore, c is in the
class of c.�/Hk.

There is an equivariant version of Chow cohomology which has a combinatorial
description on toric varieties. Here, equivariant Chow cohomology means equivari-
ant with respect to the T-action and is analogous to equivariant cohomology. We will
only make use of the codimension 1 case. Let N_ D Hom.N;Z/ be the dual lattice
to N, interpreted as linear functions on NR with integer slopes. A linear function on
a cone � can be interpreted as an element of N_.�/ D N_=�?. A piecewise linear
function ˛ on � is a continuous function on the support of � whose restriction to
each cone is a linear function with integer slopes, or more formally as the following:
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Definition 10.10. A piecewise linear function on the fan � is a collection of
elements ˛� 2 N_=�? for each � 2 � such that for � � � , the image of ˛�
under the quotient N_=�? ! N_=�? is ˛� .

Observe that if � W �0 ! � is a morphism of fans, and ˛ is a piecewise linear
function on �, then the pullback ��˛ is a piecewise linear function of �0. The
piecewise linear function ˛ can be thought of as a T-Cartier divisor on X.�/: if the
restriction of ˛ to �; ˛� is given by m 2 M=M.�/, and the Cartier divisor is locally
defined by the rational function �m, the character associated with m on the toric open
affine associated with � . This T-Cartier divisor can be thought of as an element of
A1T.X.�//, the equivariant Chow cohomology group [31]. There is a natural non-
equivariant restriction map �� W A1T.X.�// ! A1.X.�// that takes the T-Cartier
divisor to an ordinary Chow cohomology class. The piecewise linear function ˛
induces a T-equivariant line bundle L on X.�/ and ��˛ D c1.L/, the first Chern
class of L.

If c 2 Ak.X.�// is viewed as a Minkowski weight, we may compute the cup
product ��˛ [ c as an element of AkC1.X/ by using a formula that first appeared in
[5]: for � 2 �.k/; � 2 �.kC1/, let u�=� be a vector in N� descending to v�=� in N=N� ;
then the value of ��˛ [ c on a cone � 2 �.kC1/ is

.��˛ [ c/.�/ D �
X

�2�.k/j���
˛� .u�=� /c.�/C ˛�

0

@
X

�2�.k/j���
c.�/u�=�

1

A

where ˛� (respectively ˛� ) is the linear function on N� (on N� ) which equals ˛ on
� (on � ). Taking ��˛ [ c yields a Minkowski weight. The following lemma can be
proved using intersection theory [52] or by elementary means [5, Proposition 3.7]:

Lemma 10.11. Let ˛ be a piecewise linear function on�, and let c be a Minkowski
weight of codimension k. Then ��˛[ c is a Minkowski weight of codimension kC 1.

A T-Cartier divisor ˛ is said to be nef if for every codimension 1 cone � 2 �.1/,
we have ��˛.�/ 	 0. This says that the cohomology class ��˛ is nonnegative on any
1-dimensional orbit closure. This happens if and only if ��˛ is nonnegative on every
curve class and is therefore nef in the classical sense. Consequently if ˛ is nef, it
induces a T-equivariant line bundle on X.�/ whose first Chern class is nef. Nefness
can be interpreted in terms of convexity. If � is a codimension 1 cone of �, it is
contained in two top-dimensional cones, �1; �2. We can pick u�1=� ; u�2=� such that
u�1=� C u�2=� D 0. Then, we have

��˛.�/ D �˛�1.u�1=� / � ˛�2.u�2=� /

which expresses how the slope of ˛ changes as we pass through the wall � from
�1 to �2. Therefore, the condition ��˛.�/ 	 0 can be interpreted as a convexity
condition on the piecewise linear function ˛.
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Example 10.12. Consider the fan �Pn . Let w1; : : : ;wn be coordinates on NR given
by the basis vectors e1; : : : ; en. Set e0 D �e1�� � ��en. Let ˛ be the piecewise linear
function given by

˛ D min.0;w1; : : :wn/:

Let us compute ��˛ 2 An�1.Pn/. The .n � 1/-dimensional cones of �Pn are of the
following form: for fj; j0g � f0; 1; : : : ; ng

�jj0 D Span.ei j i 2 f0; 1; : : : ; ng; i ¤ j; i ¤ j0/;

By explicit computation,

��˛.�jj0/ D 1:

The orbit closures V.�jj0/ are the coordinate lines in P
n cut out by setting all but two

homogeneous coordinates to 0. This tells us that ��˛ intersects each 1-dimensional
coordinate line in a point, and therefore, it is a hyperplane class.

If � W �0 ! � is a refinement of fans, then we can treat a piecewise linear
function ˛ on � as a piecewise linear function on �0, the pullback ��˛. Moreover,
if ˛ is nef on �, then ��˛ is nef on �0.

There is a way of associating a Minkowski weight of codimension r with
a codimension r subvariety Y of a smooth, complete toric variety X.�/. This
Minkowski weight should be thought of as a Poincaré dual to the cycle ŒY�. Define
a function

c W �.r/ ! Z; � 7! deg
�
ŒY� � ŒV.�/��:

Then c is a Minkowski weight, called the associated cocycle of Y . See [51] or [95]
for details.

Definition 10.13. A d-dimensional irreducible subvariety Y of X.�/ is said to
intersect the torus orbits of X.�/ properly, if for any cone � of �,

dim.Y \ V.�// D dim.Y/C dim V.�/ � n:

Lemma 10.14 ([51, Lemma 9.2]). If c is the associated cocycle of a subvariety Y,
then

c \ ŒX� D ŒY� 2 Ar.X/:

If Y intersects orbits properly, the associated cocycle is essentially the same thing
as the tropicalization of Yı � .k�/n where Yı is defined below.
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Definition 10.15. For a subvariety Y � X.�/, the interior of Y is

Yı D Y \ .k�/n

where .k�/n is the big open torus of X.�/.

It is not difficult to show that the Chow ring of projective space, A�.Pn/ is
ZŒH�=HnC1 where H is the class of a hyperplane. Because the intersection of n
hyperplanes in generic position is a point, deg.Hn/ D 1. Moreover, we have

A�.Pn � P
n/ Š ZŒH1;H2�=.H

nC1
1 ;HnC1

2 /

where the codimension of a cohomology class is the total degree of the correspond-
ing polynomial in H1;H2. An element of Ak.Pn � P

n/ can be written as

c D
kX

iD0
aiH

i
1H

k�i
2

for ai 2 Z. Because deg.Hn
1Hn

2/ D 1; ai D deg.Hn�i
1 Hn�kCi

2 [ c/.

11 Bergman Fans

11.1 Definition of a Bergman Fan

The Bergman fan is a combinatorial object associated with a matroid. We will see
that it leads to a cryptomorphic definition of a matroid. It was first introduced as
the logarithmic limit set by Bergman [8] and then shown to be a finite polyhedral
complex by Bieri–Groves [9]. Sturmfels gave a combinatorial definition [94] which
was elaborated by Ardila–Klivans [3].

The logarithmic limit set is an invariant of a .dC1/-dimensional linear subspace
V � C

nC1. The amoeba A.V/ of V is the set of all vectors of the form

�
log jx0j; log jx2j; : : : ; log jxnj

� 2 R
nC1

for x 2 V . One considers the Hausdorff limit of dilates tA.V/ as t goes to 0.
This gives a logarithmic limit set, which is also called the tropicalization and
captures the asymptotic behavior of the amoeba. Because V is invariant under
dilation by elements of C

�, the amoeba and hence the logarithmic limit set is
invariant under translation by the diagonal vector .1; : : : ; 1/. Therefore, we may
view the logarithmic limit set as a subset of RnC1=R. We will give a definition of
the logarithmic limit set with reference only to the matroid of V and which makes
sense for non-representable matroids.
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Let M be a matroid on E D f0; 1; : : : ; ng. We first define the underlying set of the
Bergman fan. Recall that for w 2 R

E, by Definition 8.10, Mw is the matroid whose
bases are the bases of M of minimal w-weight.

Definition 11.1. An element w 2 R
E is said to be valid if Mw has no loops. The

underlying set of the Bergman fan of M is the subset of RE consisting of valid w.

Observe that the underlying set of the Bergman fan is closed. If we have a
sequence fwig in the underlying set of the Bergman fan with lim wj D w, then
P.M/w contains P.M/wj for sufficiently large j. If Mwj has no loops, every element
of the ground set occurs as an element of some basis of Mwj . To show that this is true
for Mw, let i 2 E. Then, for all j;P.M/wj is not contained in the hyperplane xi D 0.
It follows that the same is true for Mw. Consequently, i is an element of some basis
of P.M/w and hence is not a loop.

Proposition 11.2 ([94]). The underlying set of the Bergman fan is the logarithmic
limit set of any realization of M as a linear subspace in knC1.

Now, because the underlying set of the Bergman fan is invariant under translation
by the vector .1; 1; : : : ; 1/, we quotient by that vector. Consider the lattice N D
Z

nC1=Z.1; 1; : : : ; 1/. We write NR for RnC1=R.1; 1; : : : ; 1/. We will treat N as dual
to the lattice in the hyperplane x0C x1C � � � C xn D dC 1 that contains the matroid
polytope P.M/. The underlying set of the Bergman fan is the union of cones of the
normal fan to the matroid polytope because the matroid Mw only depends on which
cone of the normal fan to which w belongs. Therefore, the underlying set of the
Bergman fan can be given the structure of a subfan of the normal fan of the matroid
polytope. However, following [3], we will put a finer structure on the Bergman fan.
This structure will be very important in the sequel.

We first define cones �S� in NR that refine the normal fan to the matroid polytope.
That means that every cone �S� will be contained in a cone �P.M/w of the normal
fan of the matroid polytope. These cones will therefore have the property that if
w1;w2 2 �ı

S�
, then Mw1 D Mw2 .

For a subset S � E, let eS be the vector

eS D
X

i2S

ei

in NR. Note that eE D 0. For a flag of subsets,

S	 D f; ¨ S1 ¨ : : : ¨ Sk ¨ Eg;

let �S� D Span
0.eS1 ; : : : ; eSl/. If w is in the relative interior of �S� then wi < wj

if and only if i occurs in an Sk with a larger index than j does. Similarly, given
w 2 R

E
0, we may pick subsets ; ¨ S1 ¨ : : : ¨ Sl ¨ E such that the elements of
E with maximum w-weight are exactly the elements of S1, the ones with the next
smallest w-weight are the elements of S2, and so on. Consequently, w is an element
of the relative interior of �S� .
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Lemma 11.3. Let M be a matroid. For any S	; �S� is contained in a cone of the
normal fan to the matroid polytope, N.P.M//.

Proof. It suffices to show that the relative interior �ı
S�

is contained in the relative
interior of a cone of N.P.M//. By our description of the normal fan of the matroid
polytope, we need to show that for w1;w2 2 �ı

S�
;Mw1 D Mw2 . However, the

condition w1;w2 2 �ı
S�

implies the relative ordering of weights of bases with respect
to w1 and w2 are the same. ut
Lemma 11.4 ([3]). A cone �S� consists of valid vectors w if and only if S	 is a flag
of flats.

Proof. Because the underlying set of the Bergman fan is closed, it suffices to prove
the same statement with �S� replaced by �ı

S�
.

Suppose some Si is not a flat of M. Then there exists j 2 cl Si n Si and an i0 > i
such that j 2 Si0 n Si0�1. Because j is in the closure of a flat in Si0�1; j must be a loop
in MjSi0

=Si0�1, hence in Mw by the behavior of loops under direct sum.
Now, suppose that each Si is a flat of M. Let j 2 E. We must find a basis of Mw

containing j. There is an i such that j 2 Si n Si�1. Because M has no loops, j is not
a loop of MjSi . Because j is not in the closure of Si�1, it is not a loop of MjSi=Si�1,
and therefore, it is not a loop in Mw. ut

Lemma 11.4 shows us that the underlying set of the Bergman fan is a union
of cones of the form �S� . We use this fact to define the Bergman fan �M as the
simplicial fan in NR given by �F� for flags of flats. A k-step flag of proper flats is a
sequence of proper flats ordered by containment:

F	 D f; ¨ F1 ¨ � � � ¨ Fk ¨ Eg

The cone associated with F	 is the nonnegative span

�F� D Span
0feF1 ; : : : ; eFkg:

Definition 11.5. The Bergman fan of M is the fan �M consisting of the cones �F�
for all flags of flats F	.

Note that this is a fan structure, not just an underlying set. Ardila and Klivans
introduced this fan in [3] and called it the fine subdivision of the Bergman fan of the
matroid. Because every flag of flats in a matroid can be extended to a maximal flag
of proper flats of length d, the fan �M is pure of dimension d.

Recall that the order complex of a finite poset [91] is the simplicial complex
whose vertices are elements of the poset and whose simplices are the chains of the
poset. The Bergman fan is a realization of the cone over the order complex of the
lattice of proper, non-trivial flats, L.M/ n f;;Eg.
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11.2 The Uniform Matroid and the Permutohedral Variety

Of particular interest is the Bergman fan associated with the uniform matroid. We
will consider U D UnC1;nC1, the rank n C 1 uniform matroid on E D f0; : : : ; ng.
Its Bergman fan consists of cones in NR D R

nC1=R. Every subset of E is a flat.
Consequently, the top-dimensional cones of �U are of the form

Span
fei0 ; ei0 C ei1 ; : : : ; ei0 C � � � C ein�1g

for every permutation i0; : : : ; in of 0; : : : ; n. Because these cones are generated by
a basis of N;X.�U/ is smooth. The fan is the barycentric subdivision of the fan
corresponding to P

n, and X.�U/ is the toric variety obtained from P
n by a sequence

of blow-ups,


1 W X.�U/ D Xn�1 ! � � � ! X1 ! X0 D P
n;

where XiC1 ! Xi is the blow-up along the proper transforms of the i-dimensional
torus-invariant subvarieties of Pn. The fan, �U is the normal fan to the permutohe-
dron in its affine span, where the permutohedron is the convex hull of all coordinate
permutations of the point .0; 1; : : : ; n/ 2 R

nC1 [43].

Example 11.6. The Bergman fan of UdC1;nC1 also has a simple description. The
top-dimensional cones are of the form

Span
0fei0 ; ei0 C ei1 ; : : : ; ei0 C � � � C eid�1g

for every d-tuple .i0; : : : ; id�1/ of distinct elements of f0; : : : ; ng.
In particular, if d C 1 D 1, then the Bergman fan consists simply of the

origin. If d C 1 D 2; n C 1 D 3, then the Bergman has top-dimensional cones
R
0e0;R
0e1;R
0e2, and its underlying set is the much-pictured tropical line in
the plane with vertex at the origin.

Definition 11.7. The n-dimensional permutohedral variety is X.�U/, the toric
variety associated with the Bergman fan of the uniform matroid U D UnC1;nC1.

Now, the permutohedral variety X.�U/ possesses two maps, 
1; 
2, to P
n that

will be of particular importance. As noted above, every cone of �U is contained in
a cone of �Pn . The induced map 
1 W X.�U/! P

n is the blow-up described above.
Now, let ��Pn be the fan whose cones are of the form �� for each � 2 �Pn . The
toric variety X.��Pn/ is Pn but with its torus action precomposed by taking inverse.
Now, �U is a refinement of ��Pn according to the following lemma:
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Lemma 11.8. Each cone of �U is contained in a cone of ��Pn .

Proof. For a subset S 
 E D f0; 1; : : : ; ng; eS D �eEnS. Consequently, if

F	 D f; ¨ F1 ¨ � � � ¨ Fk ¨ Eg

is a flag of flats, so is

Fc	 D f; ¨ E n Fk ¨ � � � ¨ E n F1 ¨ Eg:

Therefore, ��F� D �Fc
�

is a cone of �U, and ��U D �U. Since �U refines �Pn ,
the conclusion follows. ut

We set 
2 to be the induced birational morphism 
2 W X.�U/ ! X.��Pn/.
The existence of 
1 and 
2 shows that the permutohedral variety resolves the
indeterminacy of the standard generalized Cremona transformation

Crem W Pn Ü P
n; Œz0 W � � � W zn� 7! Œz�1

0 W � � � W z�1
n �:

This map is induced by multiplication by �1 on N. This map is only a rational
map on P

n because multiplication by �1 does not take cones of �Pn to cones of
�Pn . However, it does induce a birational automorphism of X.�U/ fitting into a
commutative diagram

X.�U/
Crem

��


1

��

X.�U/


1

��

P
n

Crem
������� P

n:

Note that 
2 D 
1 ı Crem. There is a natural morphism 
1 � 
2 W X.�U/! P
n �

P
n. The presence of the Cremona transformation is related to the use of reciprocal

hyperplanes as in [78, 84].
There are natural subvarieties of X.�U/, called proper transforms, that are

associated with subspaces of Pn:

Definition 11.9. Let V be a .d C 1/-dimensional subspace of knC1 that is not
contained in any hyperplane, and let P.V/ � P

n be its projectivization. The proper
transform of P.V/ in X.�U/ is

eP.V/ D 
�1
1 .P.V/ı/:

By the blow-up interpretation of the permutohedral variety, the proper transform
is an iterated blow-up of P.V/ at its intersections with the coordinate subspaces of
P

n. First one blows up the 0-dimensional intersections, then the proper transforms
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of 1-dimensional intersections, and then so on. It is easily seen that eP.V/ intersects
the torus orbits of X.�U/ properly.

There are two piecewise linear functions of �U that will be of great importance
in the sequel. We have the piecewise linear function on �Pn from Example 10.12,

˛ D min.0;w1; : : : ;wn/

We will abuse notation and denote the pullback 
�
1 ˛ on X.�U/ by ˛. We can also

pull back the analogous piecewise linear function from X.��Pn/ to obtain

ˇ D min.0;�w1; : : : ;�wn/:

The non-equivariant cohomology class ��˛ corresponds to the proper transform of
a generic hyperplane in X.�U/. On the other hand, ��ˇ corresponds to the closure
in X.�U/ of reciprocal hyperplanes in .k�/n given by

a0 C a1
x1
C � � � C an

xn
D 0

for generic choices of ai 2 k where .k�/n is the big open torus. We may suppress ��
and write ˛ and ˇ for the induced non-equivariant cohomology classes.

11.3 The Bergman Fan as a Minkowski Weight

In this section, we show how the Bergman fan �M can be thought of a Minkowski
weight on �U. We will let M be a rank d C 1 matroid so that for F	, a flag of flats
in M of maximum length, �F� is a d-dimensional cone.

Definition 11.10. The Minkowski weight on �U corresponding to the rank d C 1
matroid M is given by �M W �.n�d/

U
! Z where

�M.�F�/ D
(
1 if F	 is a flag of flats in M

0 otherwise:

Lemma 11.11. The function �M is a Minkowski weight on �U

Proof. Let �G� be a codimension 1 cone in �M . Then �G� corresponds to a flag of
flats of length d � 1 of the form

G	 D f; ¨ F1 ¨ � � � ¨ Fj�1 ¨ FjC1 ¨ � � � ¨ Fdg

where r.Fi/ D i. We restrict M to FjC1 since any cone containing �G� corresponds
to a flag of flats refining G	. The flats F0

1; : : : ;F
0
l of MjFjC1 properly containing Fj�1
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are exactly the flats that can be inserted in G	 to obtain a flag of flats of length d.
The sets F0

k n Fj�1 partition FjC1 n Fj�1 by Definition 3.5. Let .F	/k be the flag of
flats given by inserting F0

k into G	. Therefore, u�.F�/k =�G�
D eF0k

. From

lX

kD1
�M.�.F�/k/u�.F�/k =�G�

D
lX

kD1
eF0k
2 Span.eFj�1 ; eFjC1 / 
 N�G�

;

we see that �M is a Minkowski weight. ut
The following is straightforward:

Lemma 11.12. Let V � knC1 be a representation of a simple rank dC1matroid on
f0; 1; : : : ; ng. Then the Minkowski weight�M is the associated cocycle of the proper
transform eP.V/ � X.�U/.

It follows that the Bergman fan is the same thing as the tropicalization of P.V/ı.
In less technical terms, the Minkowski weight records the toric strata that eP.V/
intersects. These corresponds to flags of flats of M.

It turns out that among tropicalizations, the Bergman fans exactly correspond to
the tropicalizations of linear subspaces. This follows from a theorem that emerged
in a discussion of Mikhalkin and Ziegler and which was written down in [53]. See
[45] for another proof perhaps more suitable for the statement here. We call this
theorem, “the duck theorem” in the sense that if it looks like a duck, swims like a
duck, and quacks like a duck, then it is probably a duck:

Theorem 11.13. Let Yı � .k�/n � X.�U/ be a variety whose associated cocycle
is �M, the Bergman fan of a matroid M. Then Yı D P.V/ı where V is a subspace
realizing the matroid M.

This theorem can be used to come up with counterexamples to questions about
tropical lifting, that is, to determine whether a Minkowski weight is the associated
cocycle of an algebraic subvariety of .k�/n. By starting with a non-representable
matroid, one can produce a Minkowski weight �M on X.�U/ which is not the
associated cocycle of any subvariety of X.�U/. Indeed if such a subvariety existed,
it would be the closure of P.V/ı where V is a representation of M.

In addition, this theorem can be used to study which homology classes in X.�U/

can be realized by irreducible subvarieties. In [45], it is shown that the Bergman
class of a loopless matroid of rank d C 1, considered as cohomology class is
nef in the sense that it has nonnegative intersection with all effective cycles of
complementary dimension. Moreover, it generates an extremal ray of the nef cone
in dimension d. It is effective in that it can be written as the sum of effective cycles.
However, it can be represented by an irreducible subvariety over k if and only if
the matroid is representable over k. This shows that the study of the realizability of
homology classes in toric varieties is heavily dependent on the ground field and is
as complicated as the theory of representability of matroids.
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11.4 .r1; r2/-Truncation of Bergman fans

One advantage of working with Minkowski weights in �U rather than matroids is
that they allow a new operation, .r1; r2/-truncation as developed by Huh and Katz.
More details can be found in [45].

Definition 11.14. Let M be a matroid of rank d C 1. Let r1; r2 be integers with
1 � r1 � r2 � d C 1. The .r1; r2/-truncation of M is the Minkowski weight
of dimension r2 � r1 C 1;�MŒr1;r2� on �U defined as follows: if �F� is the cone
determined by

F	 D fFr1 ¨ Fr1C1 ¨ : : : ¨ Fr2g
then �MŒr1;r2�.�F�/ is

(1) j.;;Fr1 /j if each Fi is a flat of M of rank i, or
(2) 0 otherwise.

Note that the .1; r2/-truncation of M is the Bergman fan of the matroid
Truncr2C1.M/. However, if r1 	 2, the .r1; r2/-truncation of M is not the Bergman
fan of any matroid. It is not obvious that�MŒr1;r2� is indeed a Minkowski weight. This
will follow from the following lemma whose proof we will defer until Sect. 12.2.

Proposition 11.15. We have the following relation among Minkowski weights:

˛d�r2ˇr1�1 [�M D �MŒr1;r2�:

Moreover, we have the following degree computations:

(1) deg.˛ [�MŒr;r�/ D r�1
(2) deg.ˇ [�MŒr;r�/ D r

where r is a coefficient of the reduced characteristic polynomial.

Note that applying powers of ˛ in the above makes geometric sense. The theorem
states that ˛k [�M D �TruncdC1�k.M/. Because ˛ is the class of a hyperplane in P

n,
we are intersecting a projective subspace P.V/ with generic hyperplanes to obtain a
projective subspace whose matroid is a truncation of M by Lemma 5.7.

We have the following easy corollary:

Corollary 11.16. There is the Following intersection-theoretic description of coef-
ficients of the reduced characteristic polynomial:

deg.˛d�rˇr [�M/ D r:

Proof. By applying the above proposition, we have

deg.˛d�rˇr [�M/ D deg.ˇ [ .˛d�rˇr�1 [�M// D deg.ˇ [�MŒr;r�/ D r:

ut
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11.5 The Bergman Fan as a Cryptomorphic Definition
of a Matroid

Minkowski weights on �U are interesting combinatorial objects in their own right.
They contain matroids on f0; 1; : : : ; ng as a specific subclass but are closed under the
truncation operation defined above. It would be an interesting exercise to generalize
the matroid operations that we discussed in Sect. 5 to them. Here, extensions are
closely related to the notion of tropical modifications as introduced by Mikhalkin.
See [87] for more on tropical modifications.

It is a consequence of Proposition 11.15 that if c is a Minkowski weight
associated with a rank dC 1 matroid on f0; 1; : : : ; ng then ˛d [ c is the Minkowski
weight corresponding to the rank 0 matroid. Consequently, deg.˛d [ c/ D 1. The
converse is true by the following theorem which was noted by Mikhalkin, Sturmfels,
and Ziegler as described by [71] and proved by Fink [34].

Theorem 11.17. Let c 2 An�d.X.�U// be a Minkowski weight of codimension n �
d. Then c D �M for some matroid M of rank dC 1 if and only deg.˛d [ c/ D 1.

The above theorem can be thought of as cryptomorphic definition of a matroid. In
the course of the proof, Fink gives an explicit recipe for finding the matroid polytope
associated with c.

12 Log-Concavity of the Characteristic Polynomial

12.1 Proof of Log-Concavity

We will prove that �M.q/ is log-concave when M is a representable matroid. By
an easy algebra computation, it suffices to show that the reduced characteristic
polynomial �M.q/ is log-concave.

We will identify k with intersection numbers on a particular algebraic variety.
Let V � knC1 be a linear subspace representing M. We will give the proof assuming
Proposition 11.15 for now.

Proposition 12.1. There is a complete irreducible algebraic variety eP.V/ with nef
divisors ˛; ˇ such that

k D deg.˛d�kˇk \ ŒeP.V/�/:

Log-concavity then follows by applying the Khovanskii–Teissier inequality [61,
Example 1.6.4]:

Theorem 12.2. Let X be a complete irreducible d-dimensional variety, and let ˛; ˇ
be nef divisors on X. Then deg..˛d�kˇk/ \ ŒX�/ is a log-concave sequence.
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Proof. We give an outline of the proof of this inequality. By resolution of singular-
ities, Chow’s lemma and the projection formula, we may suppose that X is smooth
and projective. It suffices to show

deg..˛d�kˇk/ \ ŒX�/2 	 deg..˛d�kC1ˇk�1/ \ ŒX�/ deg..˛d�k�1ˇkC1/ \ ŒX�/:

By Kleiman’s criterion [56] and continuity of intersection numbers, we can perturb
˛ and ˇ in A1.X/ so that they are ample classes. By homogeneity of the desired
inequality, we can replace ˛ and ˇ by m˛ and mˇ for m 2 Z
1 so that they are very
ample. By the Kleiman–Bertini theorem [57], the intersection ˛d�k�1ˇk�1 \ ŒX� is
represented by an irreducible smooth surface Y . Now, we need only prove

deg.˛ˇ \ ŒY�/2 	 deg.˛2 \ ŒY�/ deg.ˇ2 \ ŒY�/:

By the Hodge index theorem, the intersection product on A1.Y/ has signature
.1; n � 1/. The restriction of the intersection product to the subspace spanned by
˛ and ˇ is indefinite. The desired inequality is exactly the non-positivity of the
determinant of the matrix of the intersection product. ut

We now give the proof of Proposition 12.1:

Proof. Let M be represented by the linear subspace V � knC1, and let eP.V/ be the
proper transform of P.V/ in X.�U/. Let ˛; ˇ be as in Sect. 11.1. Now, we know

�M \ ŒX.�U/� D eP.V/
by Lemmas 10.14 and 11.12. Consequently,

deg.˛d�kˇk \ ŒeP.V/�/ D deg.˛d�kˇk [�M/ D k

where the last equality follows from Corollary 11.16. ut
By viewing ˛ and ˇ as hyperplane classes on P

n, we immediately have the
following corollary:

Corollary 12.3. The cycle class of Œ.
1 � 
2/.eP.V//� in P
n � P

n is

0ŒPd � P
0�C 1ŒPd�1 � P

1�C � � � C rŒP0 � P
d�:

Now, we outline Lenz’s proof of Mason’s conjecture in the representable case
which relates the f -vector of a matroid to the characteristic polynomial of a different,
well-chosen matroid. We form the f -polynomial of M by setting

fM.q/ D
dC1X

iD0
fiq

dC1�i:

The free co-extension of M is the matroid
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M � e D .M� CE e/�

for a new element e. Because M is representable, after a possible extension of
the field k, so is M � e. Lenz proves the following formula for the characteristic
polynomial of M � e

.�1/d�M�e.�q/ D .1C q/fM.q/

by considering various specializations of the rank-generating polynomial. The log-
concavity of fM then follows from the log-concavity of the reduced characteristic
polynomial of M � e.

12.2 Intersection Theory Computations

Now, we will give a proof of Proposition 11.15 following the exposition of [45]. We
will derive the conclusion from three lemmas:

Lemma 12.4. Let M be a rank dC 1 matroid on E D f0; : : : ; ng. Then,

˛ [�M D �MŒ1;d�1�

in A��X.�U/
�
.

Note here that �MŒ1;d�1� D �Truncd.M/.

Lemma 12.5. Let M be a rank dC 1 matroid on E D f0; : : : ; ng. Then,

ˇ [�MŒr1;d� D �MŒr1C1;d�

in A��X.�U/
�
.

To simplify the proofs of these lemmas, we homogenize our piecewise lin-
ear functions. We begin with the lattice Z

nC1 spanned by e0; e1; : : : ; en. Let
w0;w1; : : : ;wn be the induced coordinates on R

nC1 D Z
nC1 ˝ R. We will let our

lattice N be defined by w0 D 0 in Z
nC1. Consider the quotient by the diagonal line

p W RnC1 ! R
nC1=R Š NR:

Let �0 be the fan in R
nC1 whose cones are the inverse images of the cones of �U

under p. Write � 0
F�
D p�1.�F�/. By assigning it the same values on relevant cones,

we may treat �M as a Minkowski weight on �0, denoted by �0
M . We will consider

the piecewise linear functions on �0,

˛0 D min.w0;w1; : : : ;wn/

ˇ0 D min.�w0;�w1; : : : ;�wn/
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Then ˛ and ˇ are the restrictions of ˛0 and ˇ0 to NR, respectively. Because the entire
situation is invariant under translation by the diagonal vector e0C e1C � � � C en, we
can do the intersection theory computation on R

nC1 and then intersect with NR.
We first give the proof of Lemma 12.4.

Proof. The Minkowski weight ˛[�0
M is supported on d-dimensional cones in�0

U
.

They correspond to .d � 1/-step flags of proper flats

F	 D f; ¨ F1 ¨ F2 ¨ � � � ¨ Fd�1 ¨ Fd D Eg:

The cone � 0
F�

is contained in � 0
G�

if and only if the flag G	 is obtained from F	
by inserting a single flat. Write this relation as G	 Ê F	. This flat must be inserted
between two flats Fj � FjC1 where r.FjC1/ D r.Fj/C2. There is a unique choice of
j where this happens. Suppose G	 is obtained from inserting a proper flat F between
Fj � FjC1. Let uG�=F� be an integer vector in �G� that generates the image of �G� in
N=N�F�

. We may choose uG�=F� to be eF. The value of ˛0 [�0
M on � 0

F�
is given by

.˛0 [�0
M/.�

0
F�/ D �

X

G�ÊF�

˛0
G�.uG�=F�/C ˛0

F�

� X

G�ÊF�

uG�=F�

�

where ˛0
G�

(respectively ˛0
F�

) is the linear function on N�G�
(on N�F�

) which equals
˛0 on �G� (on �F� ).

We now compute the right side. Because F ¤ E,

˛0
G�.uG�=F�/ D ˛0.eF/ D 0:

Let f be the number of flats that can be inserted between Fj and FjC1. Because every
element of FjC1 n Fj is contained in exactly one such flat F by Definition 3.5 (3.5),
we have

X

G�ÊF�

uG�=F� D eFjC1 C .f � 1/eFj :

and so

˛0
F�

� X

G�ÊF�

uG�=F�

�
D
(
1 if FjC1 D E

0 otherwise
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Consequently, we have

.˛0 [�0
M/.�

0
F�/ D

(
1 if j D d � 1
0 if otherwise:

Therefore ˛[�M is non-zero on exactly the cones in the support of�Truncd.M/ where
it takes the value 1. ut

Now, we prove Lemma 12.5.

Proof. The setup is as in the proof of the above lemma. For a flag of flats

F	 D f; D F0 ¨ F1 ¨ F2 ¨ � � � ¨ Fd�1 ¨ Fd D Eg;

write �F� D j.;;F1/j. Let F be a flat inserted between Fj � FjC1 to obtain a flag
of flats G	. Here, we have

.ˇ0 [�0
MŒr1;d�/.�

0
F�/ D �

X

G�ÊF�

�G�ˇ
0
G�.uG�=F�/C ˇ0

F�

� X

G�ÊF�

�G�uG�=F�

�

Because F ¤ ;,

ˇ0
G�.uG�=F�/ D ˇ0.eF/ D �1:

Now we consider two cases: Fj ¤ ; and Fj D ;. If Fj ¤ ;,
X

G�ÊF�

�G�ˇ
0
G�.uG�=F�/ D f j.;;F1/j:

and

X

G�ÊF�

�G�uG�=F� D j.;;F1/j.eFjC1 C .f � 1/eFj/:

Therefore, ˇ0.
P

G�ÊF�
�G�uG�=F�/ D f j.;;F1/j and .ˇ0 [�0

MŒr1;d�
/.� 0

F�
/ D 0.

If Fj D ;,
X

G�ÊF�

�G�ˇ
0.uG�=F�/ D �

X

FÉF1

j.;;F/j

and

ˇ0
F�

� X

G�ÊF�

�G�uG�=F�

�
D ˇ0.

X

FÉF1

j.;;F/jeF/ D �
X

a2FÉF1

j.;;F/j
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where some a 2 F1 chosen so to maximize the quantity on the right. Then,

.ˇ0 [�MŒr1;d�/.�
0
F�/ D

X

a…FÉF1

j.;;F/j D j.;;F1/j

where the last equality follows from Lemma 7.11. Therefore ˇ[�M is non-zero on
exactly the cones in the support of �MŒr1C1;d� where it takes the expected value. ut
Lemma 12.6. We have the following equality of degrees:

(1) deg.˛ [�MŒr;r�/ D r�1
(2) deg.ˇ [�MŒr;r�/ D r

where k is the coefficient of the reduced characteristic polynomial.

Proof. Let � 0 be ˛0 or ˇ0 as above. Because the only codimension 1 cone in �MŒr;r�

is the origin, we have the following formula for the degree:

deg.� 0 [�MŒr;r�/ D �
X

F2L.M/r

j.;;F/j� 0.eF/C � 0� X

F2L.M/r

j.;;F/jeF

�

For � 0 D ˛0, this becomes

˛0� X

F2L.M/r

j.;;F/jeF

�
D

X

a2F2L.M/r

j.;;F/j D r�1

for some a 2 E where the last equality follows from Lemma 7.15. For � 0 D ˇ0, we
have

deg.ˇ0 [�MŒr;r�/ D X

F2L.M/r

j.;;F/j � X

a2F2L.M/r

j.;;F/j D X

a62F2L.M/r

j.;;F/j D r

ut

13 Future Directions

One would like to prove the log-concavity of the characteristic polynomial in
the non-representable case. There are a couple of lines of attack that are being
considered in future work by Huh individually and with the author.

The proof presented above requires representability to invoke the Khovanskii–
Teissier inequality. The proof of the Khovanskii–Teissier inequality reduces to the
Hodge index theorem on a particular algebraic surface. Recall that the log-concavity
statement concerns only three consecutive coefficients of the characteristic polyno-
mial at a time. These three coefficients are intersection numbers on this surface.
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One might try to prove a combinatorial analogue of the Hodge index theorem on
the combinatorial analogue of this surface which is the truncated Bergman fan
�MŒr;rC1� by showing that a combinatorial intersection matrix has a single positive
eigenvalue. This combinatorial intersection matrix is called the Tropical Laplacian
and will be investigated in future work with Huh. Unfortunately, the algebraic
geometric arguments used in proofs of the Hodge index theorem do not translate
into combinatorics, and the hypotheses for a combinatorial Hodge index theorem
are unclear. Still, the conclusion of the combinatorial Hodge index theorem for
�MŒr;rC1� has been verified experimentally for all matroids on up to nine elements
by Theo Belaire [7] using the matroid database of Mayhew and Royle [66].

Another approach to the Rota–Heron–Welsh conjecture is to relax the definition
of representability. In our proof above, we needed the Chow cohomology class �M

to be Poincaré-dual to an irreducible subvariety of X.�U/ in order to apply the
Khovanskii–Teissier inequality. However, it is sufficient that some positive integer
multiple of �M be Poincaré-dual to an irreducible subvariety. It is part of a general
philosophy of Huh [45] that it is very difficult to understand which homology classes
are representable while it is significantly easier to understand their cone of positive
multiples.

Another question of interest is to understand the relation between the work
of Huh–Katz and Fink–Speyer. What does positivity (in the sense of [61]) say
about K-theory. How does positivity restrict the Tutte polynomial? Are there other
specializations of the Tutte polynomial that obey log-concavity?

Finally, the author would like to promote the importance of a combinatorial
study of Minkowski weights on the permutohedral variety. They are very slight
enlargements of the notion of matroids. One can certainly introduce notions of
deletion and contraction and therefore minors. Are there interesting structure
theorems? To this author, .r1; r2/-truncation is an attractive and useful operation
and should be situated in a general combinatorial theory.
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notation, 147
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charts, construction of, 282–283



526 Index

Topological space (cont.)
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Tropical varieties, 145, 146
Turrittin–Levelt–Hukuhara decomposition, 62
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semilattices, 208
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Valued fields, 200
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Weierstrass point, 423
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