
A Branding Strategy for Business Types

Avraham Shinnar and Jérôme Siméon(B)

IBM Research, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
{shinnar,simeon}@us.ibm.com

Abstract. In the course of building a compiler from business rules to a
database run-time, we encounter the need for a type system that includes
a class hierarchy and subtyping in the presence of complex record opera-
tions. Since our starting point is based on structural typing and targets a
data-centric language, we develop an approach inspired by Wadler’s work
on XML types (Siméon and Wadler 2003). Our proposed type system has
strong similarities with branded or tagged objects, combining nominal
and structural typing, and is designed to support a rich set of operations
on records commonly found in database languages. We show soundness
of the type system and illustrate its use on two of the intermediate lan-
guages involved in our compiler for business rules: a calculus for pattern
matching with aggregation (CAMP) that captures rules semantics, and
the nested relational algebra (NRA) used for optimization and code gen-
eration. We show type soundness for both languages. The approach and
correctness proofs are fully mechanized using the Coq proof-assistant.

1 Introduction

In order to support the growing amount of data routinely processed by appli-
cations, many programming languages are being developed (Cooper et al. 2007;
Green et al. 2012) or extended (Cheney et al. 2013; Meijer et al. 2006) with query-
like capabilities. Existing database techniques can then be leveraged for scalabil-
ity through compilation to a database query language such as SQL (Grust et al.
2009) or a cloud library such as Spark (Armbrust et al. 2015). When extending
object-oriented languages with such query capabilities, one of the key challenges
is type system integration: database languages (e.g., SQL or the relational alge-
bra) most often rely on structural types and feature rich operations on records
(e.g., record concatenation), while object-oriented languages most often rely on
nominal types and feature rich forms of subtyping. Inspired by Wadler’s work on
XML types (Siméon and Wadler 2003) as well as recent work on brands (Jones
et al. 2015) or tagged objects (Lee et al. 2015), we propose a new type system
that provides an elegant and natural way to combine nominal and structural
typing in the presence of complex record operations, and illustrate its use in the
context of a compiler for business rules.

Business Rules. Our work takes place as part of META (Arnold et al. 2016),
a project in which rules are used to program applications that combine event
processing and analytics. The use of rules is common in business intelligence
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 367–387, 2016.
DOI: 10.1007/978-3-319-30936-1_20

368 A. Shinnar and J. Siméon

Fig. 1. Business object model.

applications as they can encode complex data-centric policies in a flexible man-
ner. Languages for business rules go back to production rules (Forgy 1981), and
modern specimens include Drools (Bali 2009) and JRules (Boyer and Mili 2011),
the latter being our focus. Rules are written against collection(s) of objects
described in a Business Object Model (BOM), which is essentially an object-
oriented class hierarchy. Figure 1 shows an example BOM for a marketing appli-
cation. A general Entity class is used to describe objects with an id attribute
which serves as a primary key. Other classes derive from Entity and include
Clients with an attribute name of type string, and Marketers with attributes
name of type string and client of type Client. Two additional classes corre-
sponding to categories of marketers are also defined: DirectMarketer with an
attribute targets and ProductRep with an attribute products, both of which
of type list of strings. The extends clause indicates the derivation hierarchy for
each class, and when omitted means the class derives from the built-in Object
class. Finally, class C2Ps is used to materialize a mapping from clients to their
product reps, computed through the rule shown in Fig. 2.

That rule consists of a condition (when, Lines 2–7) and an action (then,
Line 8). In effect, expressions in such rules perform pattern matching over an
implicit value, in the context of an environment (variable bindings). The initial
implicit value is not set and the initial environment is a single variable containing
the collection of objects against which the rule is being matched. The rule con-
struct sets the implicit value to be that input collection and the rule condition
is matched against any of those objects and “fires” when a match is found. In
our example, the condition binds variable C to a Client, and then aggregates all
ProductRep objects P for whom C’s id is the same as P’s client. The aggrega-
tion expression is essentially an embedded query, with a syntax similar to that

A Branding Strategy for Business Types 369

Fig. 2. Rule computing a reverse mapping from clients to product reps.

of comprehensions (Trinder and Wadler 1988). The List<String> { P.name }
expression builds a new collection containing the names of all matching ele-
ments resulting from the aggregate, and that collection is bound to variable Ps.
The action part of the rule in Line 8 creates a new object of class C2Ps which
materializes the mapping from C to Ps. Environment manipulation (e.g., binding
variable P) is reflected in the compiler as record operations (e.g., concatenating
a record with field P to the record for the current environment).

A Branding Strategy. A calculus and compilation scheme for business rules tar-
geting the nested relational algebra (NRA) for optimization and scalability was
proposed in (Shinnar et al. 2015). Proper typing is essential in order to exploit
optimization techniques for bulk data processing developed by the database com-
munity (Beeri and Kornatzky 1993; Cluet and Moerkotte 1993; Fegaras and
Maier 2000; May et al. 2006). However, most existing type systems for database
languages, including the one we used in (Shinnar et al. 2015), rely on a purely
structural approach which does not account for the nominal aspects of object-
oriented data models and types. In addition, those typically assume homogeneous
collections of objects and do not account for the subtyping relation implicit in
the class hierarchy. In the context of Object-Oriented Databases, OQL relies
on a purely nominal type system (Alagic 1999), while underlying algebras or
calculi for optimization rely on a purely structural type system (Fegaras and
Maier 2000; Cluet and Moerkotte 1993). A notable exception is Wadler’s work
on a type system for XML and XQuery presented in (Siméon and Wadler 2003),
which integrates nominal and structural typing by annotating values and types
with type names related through a derivation hierarchy. However, the focus on
XML types and lack of support for records means it cannot be directly applied
to classic object models or to operators from the nested relational algebra.

Inspired by this work, we propose a novel type system that can handle collec-
tions of objects in a class hierarchy that we believe is well suited for integration
with database languages or language-integrated query systems (Cooper et al.
2007; Grust et al. 2009; Cheney et al. 2013). The approach relies on a notion
of branded types and objects, where brands can be used to annotate values and
types. Relationship between brands is captured by a derivation relation which
encodes the nominal part of the semantics. From a structural typing stand point,

370 A. Shinnar and J. Siméon

we support open and closed records along with the corresponding subtyping rela-
tion, in the presence of a rich set of record operations that include projection
and concatenation. From a nominal typing stand point, we support inheritance
and (up/down) casting. Most of the treatment is language-agnostic, in that we
define a set of core operators over brands independently from the host language.
We then illustrate how those core operations can be integrated within two lan-
guages used in our business rules compiler: a calculus which captures rules’
pattern matching semantics, and the nested relational algebra.

Paper Outline. The rest of the paper is organized as follows. In Sect. 2, we provide
an overview for the proposed branding approach through examples. In Sect. 3,
we describe the data model and type system. In Sect. 4, we introduce the subtyp-
ing relation and a notion of well-formed models which captures object-oriented
schemas. In Sect. 5, we define key operators on records, bags and branded values
along with their typing rules. Finally, in Sect. 6, we apply the proposed type sys-
tem to a compiler from rules to NRA. Section 7 reviews related work and Sect. 8
concludes the paper with a brief report on our implementation and a discussion
of future work.

2 Overview

Even though our work is motivated by business rules, most of the approach can
be explained in terms of core operations over an object model. We first explain
how classes and objects are encoded with brands, present key operations on
those, then illustrate their use as part of our rules compiler.

Branded Model. In essence, branded types are types annotated with a name
(a brand). Figure 3 shows the branded model corresponding to the Business
Object Model from Fig. 1. Each class is described by a brand (the class name)
and a type (the type of values of that class). For instance, the Client class
corresponds to Brand Client which contains values of type record with attributes
id of type INT and name of type STRING. We use [] to denote records, and { }
to denote collection types1. The ‘[..]’ (resp. ‘[|]’) notation indicates open (resp.
closed) records. An open record can be extended with new attributes while a
closed one cannot. In our example, all branded types use open record, except
for C2Ps and DirectMarketer which are declared as final in the source object
model.

The brand derivation hierarchy is listed at the bottom of Fig. 3 and captures
the nominal component of the type hierarchy. For instance, brand ProductRep
derives from brand Marketer which itself derives from brand Entity. We assume
the presence of an Object brand whose type is that of all possible records and
which encodes the built-in Object class. We use Any to denote the top of the
brand hierarchy. Compared to Fig. 1, we eliminate the extends relation, i.e., we
fully expand the type for each class, and expose the inheritance relation in the
1 We rely on a bag semantics but support for other collection types can be added

easily, e.g., along the lines of (Fegaras and Maier 2000).

A Branding Strategy for Business Types 371

Fig. 3. Branded object model.

derivation hierarchy2. This separation follows directly from (Siméon and Wadler
2003) and is central to our approach in that it allows to clearly separate the nom-
inal and structural aspects of the type system. The branded model along with its
derivation hierarchy is well-formed on the condition that the types of two brands
related through (nominal) derivation be properly related through (structural)
subtyping. For instance, adding the relation C2Ps derives from Entity would be
invalid since the type for brand C2Ps does not have and id attribute.

Note that the model allows any type to be branded. For instance, INT is the
type of integer values but we could give integers an object-like treatment by
defining a brand for them. We could then define a special kind of integer for ids
through derivation, as illustrated by the following declarations.

Brand Int INT
Brand Id INT

Id derives from Int

Through subtyping, every operation taking a branded value of type Brand Int
also takes a value of type Brand Id, but not the converse.

Branded Values. In essence, branded values are values annotated with a name
(a brand). Figure 4 shows examples of values in our data model. In each case
we provide a name for the value (variable), a type and the value itself. All the

2 The formal model actually relies on the reflexive and transitive closure of the deriva-
tion hierarchy which must be a partial order (i.e., without cycles).

372 A. Shinnar and J. Siméon

Fig. 4. Branded values.

examples are well-typed, i.e., the given value has the given type. The first three
are simple values without brands: M1Id is an integer value, C1 and C2 are records.
Note that C1 (resp. C2) is declared as having a closed (resp. open) record type.
M1 is a value with brand DirectMarketer whose content is a record with id 101
and name “John”, working for client with id 1 and targeting “iOS” and “Gawker”.
Value M2 is the same value but declared with type Brand Marketer, which is also
valid since DirectMarketer derives from Marketer. The remaining of Fig. 4 shows
examples of collections. Clients is an homogeneous collection of values with
brand Client, and Marketers a collection of object in the sub-brand hierarchy
for brand Marketer. Finally the last collection WM is the union of Clients and
Marketers and can be typed as a collection of values with brand Entity.

Brand Operations. We provide three core operations on brands: branding,
unbranding, and casting. The first two are constructors/destructors for branded
values. For instance, the following operations create a value with brands Id, Client
and Entity. (We use the notation: Var : Type = Expr ⇓ V alue to indicate that
variable V ar has type Type and value V alue which is the result of Expr).

A Branding Strategy for Business Types 373

M1Id’ : Brand Id = brand Id (M1Id) ⇓ brand Id (1)
C1’ : Brand Client = brand Client (C1) ⇓

brand Client ([id : 1;name : “Disney”])
C1” : Brand Entity = brand Client (C1) ⇓

brand Client ([id : 1;name : “Disney”])
C1”’ : Brand Entity = brand Entity (C1) ⇓

brand Entity ([id : 1;name : “Disney”])

Note that branding checks that the value being branded has the type declared
for the corresponding brand. In the previous examples, C1 is declared as a closed
record with attributes id and name and is indeed a subtype of the correspond-
ing open record for both brands Client and Entity. However, the following two
operations are not well typed, since the type for C1 (resp. M1Id) isn’t a subtype
of the type for brand Marketer (resp. Entity).

brand Marketer (C1)
brand Entity (M1Id)

Unbranding, denoted !, always succeeds on a branded value and returns its
content. Unbranding uses the static type of the brand (which can be changed
with a cast) to determine the type of the returned contents. Here are a few
examples, also illustrating record operations such as field access (denoted .A
where A is an attribute) and record projection (denoted πAi

where Ai is a set of
attributes). Note that the typing rule for projection yields a closed record type.

Id1 : INT =!M1Id’ ⇓ 1
C1id : INT =!C1’.id ⇓ 1

C1proj : [id : INT |] = πid(!C1’) ⇓ [id : 1]

Unbranding is typed using the statically known brand type, which means that
!C1”.name is not well typed. In other words, the fields that are present in C1”
but not declared for the brand Entity are hidden, unless casting is first applied
to the value. This once again corresponds to the standard behavior in an OO
context. At run-time, casting checks if a given brand is a supertype (or the same)
as a brand’s dynamic type and returns the original branded value or fails3. The
typing rule for casting asserts that the returned brand has the provided brand
type. This allows safe downcasting on brands, allowing code to enrich the static
type of a brand at the cost of a runtime check. Here are some examples of
successful casts applied in the context of the nested relational algebra, in which
success (resp. failure) is represented as a singleton (resp. empty) bag.

UpM1Id : {Brand Int} = (Int) M1Id’ ⇓ {brand Id (1)}
UpC1 : {Brand Entity} = (Entity) C1’ ⇓

{brand Client ([id : 1;name : “Disney”])}
DownC1 : {Brand Client} = (Client) C1” ⇓

{brand Client ([id : 1;name : “Disney”])}
3 What failure means may vary as we will show when applying casting in the context

the two intermediate languages (CAMP and NRA) involved in our rules compiler.

374 A. Shinnar and J. Siméon

The first two examples are upcasts: from Brand Id to Brand Int, and from
Brand Client to Brand Entity. The third example is a downcast from Brand Entity
to Brand Client. We now give some examples of cast failures, all of which return
the empty bag in the context of the nested relational algebra.

Fail1 : {Brand Entity} = (Entity) M1Id’ ⇓ {}
Fail2 : {Brand Client} = (Client) C1”’ ⇓ {}
Fail3 : {Brand ProductRep} = (ProductRep) M1 ⇓ {}

Note that the specific failure semantics for NRA is unusual from a classic
OO perspective, but it enables easy integration with other relational operators.
For instance, the following combination of flatten, map (χ) and casting can be
used to select all objects in variable WM that are product reps. In that example,
In stands for the current element in the input collection processed by the map.
The output of the map is a bag of either singleton or empty bags which can then
be flattened. The final type is a bag of Brand ProductRep as expected.

Reps : {Brand ProductRep} = flatten(χ〈(ProductRep) In〉(WM)) ⇓
{ProductRep([id : 102;name : “Julie”; client : 1;

products : {“Star Wars”}])}

Rules Compiler. With that notion of branded values and types in hand, we extend
the rules calculus and compiler proposed in (Shinnar et al. 2015) to provide
proper support for the class hierarchy. Going back to the example rule from
Fig. 2, the binding within the aggregate expression on Line 5 can be translated
to the nested-relational algebra as follows:

��d〈[P :In.it]〉
(
σ〈!(In.C).id=!(In.it).client〉

(

ρit/{br}
(
��d〈[br:(ProductRep) (In.it)]〉(In)

))) (1)

From an input bag of records (rightmost In) each containing a working
memory elements (in attribute it) and a binding for variable C (in attribute
C), select those whose brand is ProductRep. Then, select those whose client
attribute is the same as the client id (!(In.C).id). Then, add the attribute P
containing the current value in attribute it to each remaining record. Note that
the notion of current value (In) depends on context and its scope changes within
every sub-operator between angle brackets 〈..〉. In the first operand of the select
(σ) operator, it is bound to each record from the bag returned by its second
operand. The ��d operator (traditionally called dependent join in the database
literature (Cluet and Moerkotte 1993)) performs record concatenation, adding
attribute P to every record in its input. The expression makes use of casting and
unbranding. The first expression within the right-most ��d uses a cast to filter the
input objects with the right brand ((ProductRep) (In.it)) and adds a temporary
field br in the input record that contains values of type {Brand ProductRep}.
The next NRA operator (ρ) is used to unnest the content of attribute br, then
re-bind it to attribute it, which now has type Brand ProductRep. The subsequent

A Branding Strategy for Business Types 375

selection operator can now access the client attribute safely by unbranding the
input value (!(In.it).client).

Remarks. Before we move to a formal treatment of the proposed model, a few
aspects are worth pointing out. Firstly, support for both open and closed records
is a key requirement: open records allow to model classes and inheritance, while
closed records are essential when using relational operations such as Carte-
sian product or (dependent) join both of which perform record concatenation.
We handle both by combining: (i) subtyping between open and closed records,
(ii) record operations, notably projection, that allow to coerce an open record
into a closed record. Secondly, the combination of operations on brands and
records enables a rich feature set that includes classic features from OO lan-
guage, many of which can be expressed as combinations of our core operators.
The presentation here focuses on data-centric languages and notably, we do not
attempt to model features such as methods or object identity.

3 Data and Types

In this section, we first define the data model and core type system with the
notion of brands. Note that both rely only on a hierarchy of brand names.

3.1 Data Model

Values in our data model, the set D, are atoms, records, bags or branded values.
We assume a sufficiently large set of atoms a, b, ... including integers in Z, strings
in S, the Boolean values true and false, and a null value written nil. A bag is a
multiset of values in D; we write ∅ for the empty bag and {d1, ..., dn} for the bag
containing the values d1, ..., dn.

A record is a mapping from a finite set of attributes to values in D, where
attribute names are drawn from a sufficiently large set A,B, We write [] for
the empty record and [Ai : di] for the record mapping Ai to di. We define the
concatenation x∗y of two records as a mapping from dom(x)∪dom(y) to values,
such that [x∗ y](A) = x(A) if A ∈ dom(x) and [x∗ y](A) = y(A) if A ∈ dom(y)\
dom(x). Records x and y are compatible if ∀A ∈ dom(x) ∩ dom(y), x(A) = y(A).
We define the sum [x+ y] of compatible records as the union x ∪ y, and leave it
undefined for non-compatible records.

A branded value is a pair of a brand name and a value, where brand names
are drawn from a sufficiently large set A,B, We write brand A (d) for the
value d branded with A. We assume a derivation hierarchy, which is a partial
order relation δ between brands, with a most general brand denoted Any. We
write δ(A,A′) to denote that A derives from A’ (through reflexive and transitive
closure). For every brand A, we assume that δ(A,Any). The fact that δ is a partial
order is essential for the soundness of the type system. We allow a brand name
to derive from several brand names which accounts for multiple inheritance.

Finally, we assume structural equality between values, denoted d1
.= d2, and

defined inductively as follows. Two atomic values are equal if their underlying

376 A. Shinnar and J. Siméon

built-in equality (between two booleans, two strings, two integers) holds. Two
bags are equal if they have the same values (compared through equality) modulo
permutation. Two record are equal if they have the same set of attributes and
the values associated to corresponding attribute are equal. Branded values are
equal if they have the same brand and their contents are equal.

3.2 Types

Our types include primitive types NIL, INT, BOOL, and STRING. The type of a
(homogeneous) bag with elements of type τ is written {τ}. We also assume the
existence of a top (resp. bottom) type denoted � (resp. ⊥).

We define two kinds of record types: closed and open. [Ai : τi |] is the type
of a closed record with attributes Ai of type τi. [Ai : τi ..] is the type of an open
record with attributes Ai of type τi. When there is no ambiguity, we sometimes
write [Ai : τi] for a record type that can be either open or closed.

As with data records, we define a notion of compatibility for record types.
Two open (resp. closed) record types are considered compatible if all their over-
lapping attributes (resp. known overlapping attributes) have the same type. Note
that two records can have compatible types but incompatible data. Record con-
catenation, [Ai : τAi

∗Bj : τBj
|] concatenates two record types, favoring the types

of A’s attributes in case of conflict and is only defined for closed records. Record
merge, [Ai : τAi

+Bj : τBj
], also concatenates the record types and is defined for

both open and closed records, but only if they are compatible.
Finally, Brand A is the type of values with brand A.

4 Subtyping and Models

In this section, we define structural subtyping and the notion of well-formed
model used to capture class hierarchies. We then describe what it means for a
value to be well-typed and show this notion is consistent with subtyping.

4.1 Subtyping

We can now define the subtyping relation, which is still purely structural,
depending only on the given derivation hierarchy δ over brand names. Figure 5
defines τ �δ τ ′, the subtyping relation between two types given δ. The first two
rules simply place � (resp. ⊥) at the top (resp. bottom) of the type hierarchy.
A type is a subtype of itself (SRefl). A bag of type τ is a subtype of a bag of
type τ ′ iff, τ is a subtype of τ ′ (SBag). A type with brand A is a subtype of a
type with brand A′ iff A derives from A’ in δ (SBrand).

A record is a subtype of a closed record iff, it is also closed, has the same
domain (same attributes), and each of its attributes’ type is a subtype of the
corresponding attribute in the super type (SClosed). The subtype of an open
record can be open or closed, and it must have at least the same attributes, with
the proper subtyping relationship between the attribute in common (SOpen). In

A Branding Strategy for Business Types 377

Fig. 5. Subtyping. τ �δ τ ′

other words, open records support both width and depth subtyping, while closed
records support only depth subtyping.

Figure 5 does not include rules for transitivity and antisymmetry which are
both consequences of the definition. Subtyping is indeed a partial order over
types, as stated by the following theorem4.

Theorem 1 (Subtype is a Partial Order). Given a derivation hierarchy δ,
for all types τ1, τ2, τ3:

(τ1 �δ τ1)
if (τ1 �δ τ2) ∧ (τ2 �δ τ3) then (τ1 �δ τ3)
if (τ1 �δ τ2) ∧ (τ2 �δ τ1) then (τ1 = τ2)

4.2 Models

A model μδ is a relation from brands to types wrt a given derivation hierarchy
δ. We write 〈〉δ for the empty model and 〈Ai �→τi〉δ for the model mapping Ai to
type μδ(Ai) = τi.

Definition 1 (Well-Formed Model). A model μδ is well-formed with respect
to a brand derivation hierarchy δ, denoted |= μδ, iff:

∀A,A′, if δ(A,A′) then μδ(A) �δ μδ(A′)

4.3 Typed Data

We use the notation μδ � d : τ to mean that data d has type τ in the context of
model μδ. Figure 6 defines the typing rules for data. The first few rules are trivial:
every data has type � (TTop), and atoms have the type corresponding to the
kind of data they belong to (TNil, TInt, TString, TTrue, TFalse). As expected,
no data can have the type ⊥.5 Bags are values of uniform types (TEmpty, TBag).
4 All theorems in the paper have been verified using Coq.
5 Note that ⊥ is still useful to have in the type system, for instance the type {⊥} is

the most precise type for the empty bag.

378 A. Shinnar and J. Siméon

Fig. 6. Typed data. μδ � d : τ

For a closed record type, a record value belongs to that type if it has the
same attributes as its type and if each attribute value has the corresponding
attribute type (TClosed). For an open record type, a record value belongs to
that type if it has at least the attributes defined in its type and for those, each
attribute value has the corresponding attribute type (TOpen). Those attributes
not declared in the open record type are only assumed to be well typed. The
rule for brands simply state that the content of a branded value must be of the
type declared for that brand in the model μδ (TBrand).

The key property of the typing rules for data is that they are sound with
respect to subtyping, as expressed by the following theorem.

Theorem 2 (Soundness of Typing Rules for Data). Given a well-formed
model, i.e., μδ such that |= μδ:

if (μδ � d : τ) ∧ (τ �δ τ ′) then (μδ � d : τ ′)

I.e., if data d has type τ in the context of μδ, and τ is a subtype of τ ′, then
data d has type τ ′ in the context of μδ.

5 Operators

We now define operations over the proposed data model. Besides operations on
records and bags typically found in data languages (notably record concatenation
and projection), we include operations for branding and unbranding. We leave
casting for the next section, as the semantics of cast depends on the specific
ways failure is handled in the host language.

A Branding Strategy for Business Types 379

5.1 Syntax and Semantics

Unary or binary operators are basic operations over the data model defined as
functions. Most of those are only defined for data with a specific type. We provide
an informal dynamic semantics, followed by typing rules which gives the precise
conditions under which those operators are well-typed. A small denotational
semantics is given for reference in Appendix A.

Definition 2 (Operators).

(uops) ⊕ d :: = ident d | {d} | flatten d | ¬d | [A :d] | d.A
| d−A | πAi

| brand A (d) | !d
(bops) d1 ⊗ d2 :: = d1 = d2 | d1 ∈ d2 | d1 ∪ d2 | d1 ∗ d2 | d1 + d2

In order of presentation, the unary operators do the following:

ident d returns d.
{d} constructs a singleton bag containing the value d.
flatten d flattens a bag of bags.
¬d negates a Boolean.
[A :d] constructs a record with a single attribute A and value d.
d.A accesses the value associated with attribute A in record d.
d−A returns a record with all attributes of d except A.
πAi

(d) returns the projection of record d over attributes Ai.
brand A (d) returns a value with brand A containing d.
!d returns the content of branded value d.

In order of presentation, the binary operators do the following:
d1 = d2 compares two values for equality.
d1 ∈ d2 returns true if and only if d1 is an element of bag d2.
d1 ∪ d2 returns the union of two bags.
d1 ∗ d2 concatenates two records, favoring d1 for overlapping attributes.
d1 + d2 returns a singleton bag with the concatenation of the two records if

they are compatible, and returns ∅ otherwise.
Operators can be easily extended (e.g., for arithmetics or aggregation). flatten

corresponds to a single-level flattening of a nested bag. Record operations are
sufficient to support all standard relational and nested relational operators. The
last two unary operators correspond to branding and unbranding. Branding,
brand A (d), creates a new value with brand A and content d. Unbranding, !d,
returns the content of a branded value d. The definition for those does not make
any assumption about the model of the corresponding brands, but consistency
with a given model results from their typing rules which are given next.

5.2 Typing

Given a well-formed model μδ, the type signatures of unary operators, written
μδ � ⊕d : τ → τ ′ (i.e., operator ⊕ applied to a value d of type τ has return type
τ ′), are as follows:

380 A. Shinnar and J. Siméon

μδ � ident d : τ → τ
μδ � ¬d : BOOL → BOOL

μδ � {d} : τ → {τ}
μδ � flatten d : {{τ}} → {τ}

μδ � [A :d] : τ → [A : τ |]
μδ � d.A : [A : τ] → τ

μδ � d−A : [A : τ,Bi : τi] → [Bi : τi]
μδ � πAi

: [Ai : τi] → [Ai : τi |]
μδ � brand A (d) : μδ(A) → Brand A

μδ � !d : Brand A → μδ(A)

Note that record construction ([A : d]) and projection (πAi
) always return a

closed record, and that field access (d.A) and field removal (d−A) work on both
closed and open records. The typing rules for branding (resp. unbranding) takes
as input (resp. returns) values of the type associated with its brand in μδ.

Given a well-formed model μδ, the type signatures of binary operators, writ-
ten μδ � d1 ⊗ d2 : τ1 → τ2 → τ3 (i.e., operator ⊗ applied to values d1 of type τ1
and d2 of type τ2 has return type τ3), are as follows:

μδ � d1 = d2 : τ → τ → BOOL
μδ � d1 ∈ d2 : τ → {τ} → BOOL
μδ � d1 ∪ d2 : {τ} → {τ} → {τ}
μδ � d1 ∗ d2 : [Ai : τAi

|] → [Bj : τBj
|] → [Ai : τAi

∗ Bj : τBj
|]

μδ � d1 + d2 : [Ai : τAi
|] → [Bj : τBj

|] → {[Ai : τAi
+ Bj : τBj

|]}
μδ � d1 + d2 : [Ai : τAi

] → [Bj : τBj
] → {[Ai : τAi

+ Bj : τBj
..]} otherwise

Note that record concatenation is well typed only for closed records, while
record merge is well typed for both closed and open records. If both records in
a merge are closed the type of its record output is closed, otherwise it is open.

We end this section with a theorem showing operators are total under typing
conditions i.e., given value(s) of the correct input type(s), an operator always
returns a value of the expected output type. The formulation relies on the evalu-
ation judgments (⊕d ⇓ d for unary operators and d⊗d ⇓ d for binary operators)
defined in Appendix A.

Theorem 3 (Typed Operators Consistency). Given a well-formed model,
i.e., μδ such that |= μδ, typing for unary and binary operators is consistent:

if (μδ � d : τ) ∧ (μδ � ⊕ : τ → τ ′)
then ∃d′, (⊕d ⇓ d′) ∧ (μδ � d′ : τ ′)

if (μδ � d1 : τ1) ∧ (μδ � d2 : τ2) ∧ (μδ � ⊗ : τ1 → τ2 → τ3)
then ∃d′, (d1 ⊗ d2 ⇓ d′) ∧ (μδ � d′ : τ3)

6 Business Rules Compiler

We now show how the proposed brand model and type system can be applied in
the context of a business rules compiler. Due to space limitations, we focus on
the changes from the version without brands from (Shinnar et al. 2015).

A Branding Strategy for Business Types 381

6.1 CAMP

The Calculus for Aggregating Matching Patterns was proposed in (Shinnar et al.
2015) to model the query fragment of production rules (Forgy 1981) with aggre-
gation (Boyer and Mili 2011). That query fragment is a (nested) pattern matched
against working memory. CAMP patterns scrutinize an implicit datum (it), in
the context of an environment (env) mapping variables to data. Patterns may
fail if they do not match the given data. Match failure, denoted err, is not fatal
and can trigger alternative pattern matching attempts.

Definition 3 (CAMP Syntax).

(patterns) p :: = d | ⊕p | p1 ⊗ p2 | map p | assert p | p1||p2 | it
| let it = p1 in p2 | env | let env += p1 in p2 | cast A

Definition 3 shows the syntax for CAMP with one expression added for cast-
ing. d returns a constant data. Unary (⊕) and binary (⊗) operators can be
applied to the result of a pattern or patterns. map p maps a pattern p over
the implicit data it. Assuming that it is a bag, the result is the bag of results
obtained from matching p against each datum in it. Failing matches are skipped.
The assert p construct allows a pattern p to conditionally cause match failure. If
p evaluates to false, matching fails, otherwise, it returns the empty record []. The
p1||p2 construct allows for recovery from match failure: if p1 matches successfully,
p2 is ignored; if p1 fails to match, p2 is evaluated. it returns the datum being
matched. let it = p1 in p2 binds the implicit datum to the result of a pattern.
env reifies the current environment as a record, which can then be manipulated
via standard record operators. let env += p1 in p2, adds new bindings to the
environment. The result of matching p1 must be a record, which is interpreted as
a reified environment. If the current environment is compatible with the new one
(all common attributes have equal values) they are merged and the pattern p2
is evaluated with the merged environment. If they are incompatible, the pattern
fails. Merge captures the standard semantics in rules languages where multiple
bindings of the same variable must bind to the same value.

We add a new expression, cast A, which casts it to a given brand A and
accounts for the specific failure semantics in CAMP. It returns the same value if
it succeeds, and err if it fails. The semantics (resp. typing) for that extension of
CAMP proceeds identically to the one described in (Shinnar et al. 2015), except
that it takes a derivation hierarchy (resp. a model) as additional context. Instead
of the evaluation judgment σ � p@ d ⇓ d?, we use δ;σ � p@ d ⇓ d?, where δ is a
derivation hierarchy, σ an environment binding variables to values, p a pattern,
d an (implicit) input value, and d? the successful match or a match failure. All
the evaluation rules pass that additional context along, and the rules for casting
are as follows.

382 A. Shinnar and J. Siméon

δ(A′,A)
(PCast)

δ;σ � cast A@ brand A′ (d) ⇓ brand A′ (d)
¬δ(A′,A)

(PCastFail)
δ;σ � cast A@ brand A′ (d) ⇓ err

Instead of the typing judgment Γ � p : τ0 → τ1, we use μδ;Γ � p : τ0 → τ1,
where μδ is a well-formed model, Γ a type environment, p a pattern, τ0 the type
of the (implicit) input, and τ1 the type of successful matches. All the typing
rules pass that additional context along, and the rule for casting is as follows.

(TPCast)
μδ;Γ � cast A : Brand A′ → Brand A

Note that the dynamic semantics only requires δ which means evaluation can
proceed entirely based on the brand name derivation with no need for structural
checks. This suggests techniques for efficient representation and manipulation of
objects should also apply in our context. The model μδ still needs to be passed
at compile time as it is used in the typing rules for branding and unbranding
operators (See Sect. 5). Type soundness holds for CAMP with brands.

Theorem 4 (Soundness of Type System for CAMP). Given a well-
formed model, i.e., μδ such that |= μδ:

if (μδ;Γ � p : τ0 → τ1) ∧ (μδ � σ : Γ) ∧ (μδ � d0 : τ0)
then ∃d1?, (δ;σ � p @ d0 ⇓ d1?) ∧ (μδ � d1? : τ1)

6.2 NRA

We use the NRA from (Shinnar et al. 2015) with one additional expression for
casting. Other operators, e.g., ρ for unnesting, can be defined in terms of this
core algebra (Cluet and Moerkotte 1993).

Definition 4 (NRA Syntax).

(queries) q :: = d | In | ⊕q | q1 ⊗ q2 | χ〈q2〉(q1) | σ〈q2〉(q1)
| q1 × q2 | ��d〈q2〉(q1) | q1 || q2 | (A) q

Here, d returns constant data, In returns the context value (usually a bag or
a record), and ⊕ and ⊗ are the unary and binary operators from Sect. 5. χ is the
map operation on bags, σ is selection, × is Cartesian product. The dependent
join, ��d, evaluates q2 with its context set to each value in the bag resulting
from evaluating q1, then concatenates records from q1 and q2 as in a Cartesian
product. The || expression, which we call default, evaluates its first operand and
returns its value, unless that value is ∅, in which case it returns the value of its
second operand (as default).

A Branding Strategy for Business Types 383

(A) q, casts the result of q to a brand A. It returns a singleton bag containing
that same value if the cast succeeds, and ∅ otherwise. The semantics (resp.
typing) for the NRA proceeds identically to the one described in (Shinnar et al.
2015), except that it takes a derivation hierarchy (resp. a model) as additional
context. Instead of the evaluation judgment q @ d ⇓ d′, we use δ � q @ d ⇓ d′,
where δ is a derivation hierarchy, q an expression, d the (implicit) input value,
and d′ the output value. All the evaluation rules pass that additional context
along, and the rules for casting are as follows.

δ � q @ d0 ⇓ brand A′ (d) δ(A′,A)
(Cast)

δ � (A) q @ d0 ⇓ {brand A′ (d)}
δ � q @ d0 ⇓ brand A′ (d) ¬δ(A′,A)

(CastFail)
δ � (A) q @ d0 ⇓ {}

Instead of the typing judgment q : τ0 → τ1, we use μδ � q : τ0 → τ1, where
μδ is a well-formed model, q an expression, τ0 the type of the (implicit) input,
and τ1 the type of the output. All the typing rules pass that additional context
along, and the rule for casting is as follows.

μδ � q : τ → Brand A′
(TCast)

μδ � (A) q : τ → {Brand A}

Type soundness holds for NRA with brands.

Theorem 5 (Soundness of Type System for NRA). Given a well-formed
model, i.e., μδ such that |= μδ:

if (μδ � q : τ0 → τ1) ∧ (μδ � d0 : τ0) then ∃d1, (δ � q @ d0 ⇓ d1) ∧ (μδ � d1 : τ1)

6.3 From CAMP to NRA

Translation from CAMP to NRA proceeds identically as the one in (Shinnar
et al. 2015), with one additional rule for the cast pattern:

�cast A� = (A) (In.D)

We now restate the key correctness theorems of semantics and type preserva-
tion for that translation. A CAMP pattern that evaluates to d becomes an NRA
query that evaluates to {d} and a CAMP pattern that evaluates to err becomes
an NRA query that evaluates to ∅.

Theorem 6 (Correctness of Translation from CAMP to NRA).

δ;σ � p @ d1 ⇓ d2 ⇐⇒ δ � �p� @ ([E : σ] ∗ [D : d1]) ⇓ {d2}
δ;σ � p @ d1 ⇓ err ⇐⇒ δ � �p� @ ([E : σ] ∗ [D : d1]) ⇓ ∅

384 A. Shinnar and J. Siméon

Theorem 7 (Type Preservation). Given a well-formed model, i.e., μδ such
that |= μδ:

CAMP↔NRA: μδ;Γ � p : τ0 → τ1 ⇔ μδ � �p� : [E : Γ,D : τ0] → {τ1} .

7 Related Work

Our work is related to several areas of databases and programming languages
research which have all been influenced by Philip Wadler’s work. Compiling
rules to a database backend shares similarities with database-supported execu-
tion of programming languages with embedded queries, such as Links (Cooper
et al. 2007) and others (Cheney et al. 2013). The Nested Relational Algebra
is closely related to languages based on comprehensions such as (Trinder and
Wadler 1988), and others (Tannen et al. 1992; Beeri and Kornatzky 1993; Cluet
and Moerkotte 1993; Fegaras and Maier 2000). The idea to use of type anno-
tations with a structural subtyping relation to marry nominal and structural
typing is inspired by (Siméon and Wadler 2003) and others (Lee et al. 2015;
Jones et al. 2015). Compared to (Siméon and Wadler 2003) we must account for
the different data model which includes bags and records. This allows us to shed
some of the complexity inherent to XML and XML Schema, such as derivation
by restriction or substitution groups. However, the subtyping relation requires
specific care to handle complex record operations. Compared to (Jones et al.
2015) and (Lee et al. 2015), we do not address typing for a full OO program-
ming language but we integrate brands into a language suitable for bulk data
processing.

Typing issues similar to ours are found in object-oriented databases, which
support queries over nested objects (Berler et al. 2000). Implementations of
OQL (Cluet and Moerkotte 1993) also compile queries into a nested algebra
or calculus (Fegaras and Maier 2000; Trigoni and Bierman 2001; Cluet and
Moerkotte 1993; Beeri and Kornatzky 1993; Claußen et al. 1997). At the surface
language level, proposed type systems (Alagic 1999; Trigoni and Bierman 2001)
rely on a purely nominal approach. In contrast, the type system for underlying
algebras used for optimization (Cluet and Moerkotte 1993) involves structural
typing and record operations but does not address inheritance. The approach
presented here unifies both those type systems in a simple and natural way,
allowing us to prove type-preservation for the resulting compiler.

8 Conclusion

In this paper, we have described a novel type system for languages that involve
complex record operations in the context of a class hierarchy. Our compiler
includes a translator from JRules to CAMP, a backend that generates Javascript
code from NRA, and a query optimizer. Brands are integrated in the full pipeline
and, with the exception of the initial front-end translation and Javascript gen-
eration, it has been fully mechanized and verified using the Coq proof assistant.

A Branding Strategy for Business Types 385

We are currently pursuing further development on both theoretical and practical
aspects of our compiler. From a theoretical standpoint, we are exploring type
inference and extensions with intersection types. From a practical standpoint,
we are looking into the use types for optimization, and code-generation for vari-
ous database runtimes. Beyond his work on XML types, we are indebted to Phil
Wadler’s long held interest in cross pollination between programming languages
and databases without which this work would simply not exist.

Acknowledgments. We want to thank Joshua Auerbach, Martin Hirzel, and Louis
Mandel, for their feedback on earlier versions of this draft.

A Operators Semantics

Figure 7 provides a denotational semantics for core unary operators using the
judgment ⊕d1 ⇓ d2 where ⊕ is the operator, d1 the value it is applied to and
d2 the resulting value. Note that when writing e.g., {d} ⇓ {d}, the left hand-
side is really the application of the operator on d. I.e., it is really meant as
λx.{x}(d) ⇓ {d}.

Fig. 7. Unary operators semantics. ⊕d ⇓ d

Figure 8 provides a denotational semantics for core binary operators using
the judgment d1 ⊗ d2 ⇓ d3 where ⊗ is the operator, d1 and d2 the values it is
applied to and d3 the resulting value. Note that for concat and merge operators
we rely on underlying merge and concat defined at the data model level (see
Sect. A).

386 A. Shinnar and J. Siméon

Fig. 8. Binary operators semantics. d ⊗ d ⇓ d

References

Alagic, S.: Type-checking OQL queries in the ODMG type systems. ACM Trans. Data-
base Syst. 24(3), 319–360 (1999)

Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaftan,
T., Franklin, M.J., Ghodsi, A., et al.: Spark SQL: relational data processing in
Spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1383–1394 (2015)

Arnold, M., Grove, D., Herta, B., Hind, M., Hirzel, M., Iyengar, A., Mandel, L.,
Saraswat, V.A., Shinnar, A., Siméon, J., Takeuchi, M., Tardieu, O., Zhang, W.:
META: middleware for events, transactions, and analytics. IBM J. Res. Devel.
(IBMRD). (2016, to appear)

Bali, M.: Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, Birmingham
(2009)

Beeri, C., Kornatzky, Y.: Algebraic optimization of object-oriented query languages.
Theor. Comput. Sci. 116(1&2), 59–94 (1993)

Berler, M., Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, San Francisco (2000)

Boyer, J., Mili, H.: IBM websphere ILOG JRules. In: Boyer, J., Mili, H. (eds.) Agile
Business Rule Development, pp. 215–242. Springer, Heidelberg (2011)

Cheney, J., Lindley, S., Wadler, P.: A practical theory of language-integrated query. In:
International Conference on Functional Programming (ICFP), pp. 403–416 (2013)

Claußen, J., Kemper, A., Moerkotte, G., Peithner, K.: Optimizing queries with univer-
sal quantification in object-oriented and object-relational databases. In: Proceedings
of the 23rd International Conference on Very Large Data Bases (VLDB), pp. 286–295
(1997)

Cluet, S., Moerkotte, G.: Nested queries in object bases. In: Workshop on Database
Programming Languages (DBPL), pp. 226–242 (1993)

Cooper, E., Lindley, S., Yallop, J.: Links: web programming without tiers. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol.
4709, pp. 266–296. Springer, Heidelberg (2007)

A Branding Strategy for Business Types 387

Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM
Trans. Database Syst. (TODS) 25(4), 457–516 (2000)

Forgy, C.L.: OPS5 user’s manual. Technical report. 2397, CMU (1981)
Green, T.J., Aref, M., Karvounarakis, G.: LogicBlox, platform and language: a tuto-

rial. In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 1–8.
Springer, Heidelberg (2012)

Grust, T., Mayr, M., Rittinger, J., Schreiber, T.: Ferry: Database-supported program
execution. In: International Conference on Management of Data (SIGMOD), pp.
1063–1066 (2009)

Jones, T., Homer, M., Noble, J.: Brand objects for nominal typing. In: 29th
European Conference on Object-Oriented Programming, ECOOP 2015, 5–10 July
2015, Prague, Czech Republic, pp. 198–221 (2015)

Lee, J., Aldrich, J., Shaw, T., Potanin, A.: A theory of tagged objects. In: 29th
European Conference on Object-Oriented Programming, ECOOP 2015, 5–10 July
2015, Prague, Czech Republic (2015)

May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in XML databases.
Trans. Database Syst. (TODS) 31(3), 968–1013 (2006)

Meijer, E., Beckman, B., Bierman, G.: Linq: reconciling object, relations and XML
in the.NET framework. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pp. 706–706 (2006)

Shinnar, A., Siméon, J., Hirzel, M.: A pattern calculus for rule languages: expressive-
ness, compilation, and mechanization. In: 29th European Conference on Object-
Oriented Programming, ECOOP 2015, 5–10 July 2015, Prague, Czech Republic, pp.
542–567 (2015)

Siméon, J., Wadler, P.: The essence of XML. In: The 30th SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, New Orleans, Louisisana, USA,
15–17 January 2003, pp. 1–13 (2003)

Tannen, V., Buneman, P., Wong, L.: Naturally embedded query languages. In: Hull,
R., Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 140–154. Springer, Heidelberg
(1992)

Trigoni, A., Bierman, G.: Inferring the principal type and the schema requirements
of an OQL query. In: Read, B. (ed.) BNCOD 2001. LNCS, vol. 2097, pp. 185–201.
Springer, Heidelberg (2001)

Trinder, P., Wadler, P.: List comprehensions and the relational calculus. In: Proceedings
of 1988 Glasgow Workshop on Functional Programming, Rothesay, Scotland, pp.
115–123, August 1988

	A Branding Strategy for Business Types
	1 Introduction
	2 Overview
	3 Data and Types
	3.1 Data Model
	3.2 Types

	4 Subtyping and Models
	4.1 Subtyping
	4.2 Models
	4.3 Typed Data

	5 Operators
	5.1 Syntax and Semantics
	5.2 Typing

	6 Business Rules Compiler
	6.1 CAMP
	6.2 NRA
	6.3 From CAMP to NRA

	7 Related Work
	8 Conclusion
	A Operators Semantics
	References

