
Reflections on Monadic Lenses

Faris Abou-Saleh1, James Cheney2(B), Jeremy Gibbons1, James McKinna2,
and Perdita Stevens2

1 University of Oxford, Oxford, UK
{faris.abou-saleh,jeremy.gibbons}@cs.ox.ac.uk

2 University of Edinburgh, Edinburgh, UK
{james.cheney,james.mcKinna,perdita.stevens}@ed.ac.uk

Abstract. Bidirectional transformations (bx) have primarily been
modeled as pure functions, and do not account for the possibility of the
side-effects that are available in most programming languages. Recently
several formulations of bx that use monads to account for effects have
been proposed, both among practitioners and in academic research. The
combination of bx with effects turns out to be surprisingly subtle, leading
to problems with some of these proposals and increasing the complexity
of others. This paper reviews the proposals for monadic lenses to date,
and offers some improved definitions, paying particular attention to the
obstacles to naively adding monadic effects to existing definitions of pure
bx such as lenses and symmetric lenses, and the subtleties of equivalence
of symmetric bidirectional transformations in the presence of effects.

1 Introduction

Programming with multiple concrete representations of the same conceptual
information is a commonplace, and challenging, problem. It is commonplace
because data is everywhere, and not all of it is relevant or appropriate for every
task: for example, one may want to work with only a subset of one’s full email
account on a mobile phone or other low-bandwidth device. It is challenging
because the most direct approach to mapping data across sources A and B is to
write separate functions, one mapping to B and one to A, following some (not
always explicit) specification of what it means for an A value and a B value to
be consistent. Keeping these transformations coherent with each other, and with
the specification, is a considerable maintenance burden, yet it remains the main
approach found in practice.

Over the past decade, a number of promising proposals to ease programming
such bidirectional transformations have emerged, including lenses (Foster et al.
2007), bx based on consistency relations (Stevens 2010), symmetric lenses (Hof-
mann et al. 2011), and a number of variants and extensions (e.g. (Pacheco et
al. 2014; Johnson and Rosebrugh 2014)). Most of these proposals consist of an
interface with pure functions and some equational laws that characterise good
behaviour; the interaction of bidirectionality with other effects has received com-
paratively little attention.
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 1–31, 2016.
DOI: 10.1007/978-3-319-30936-1 1

2 F. Abou-Saleh et al.

Some programmers and researchers have already proposed ways to combine
lenses and monadic effects (Diviánszky 2013; Pacheco et al. 2014). Recently, we
have proposed symmetric notions of bidirectional computation based on entan-
gled state monads (Cheney et al. 2014; Abou-Saleh et al. 2015a) and coalge-
bras (Abou-Saleh et al. 2015b). As a result, there are now several alternative
proposals for bidirectional transformations with effects. While this diversity is
natural and healthy, reflecting an active research area, the different proposals
tend to employ somewhat different terminology, and the relationships among
them are not well understood. Small differences in definitions can have dispro-
portionate impact.

In this paper we summarise and compare the existing proposals, offer some
new alternatives, and attempt to provide general and useful definitions of
“monadic lenses” and “symmetric monadic lenses”. Perhaps surprisingly, it
appears challenging even to define the composition of lenses in the presence
of effects, especially in the symmetric case. We first review the definition of pure
asymmetric lenses and two prior proposals for extending them with monadic
effects. These definitions have some limitations, and we propose a new definition
of monadic lens that overcomes them.

Next we consider the symmetric case. The effectful bx and coalgebraic bx in
our previous work are symmetric, but their definitions rely on relatively heavy-
weight machinery (monad transformers and morphisms, coalgebra). It seems
natural to ask whether just adding monadic effects to symmetric lenses in the
style of (Hofmann et al. 2011) would also work. We show that, as for asym-
metric lenses, adding monadic effects to symmetric lenses is challenging, and
give examples illustrating the problems with the most obvious generalisation.
We then briefly discuss our recent work on symmetric forms of bx with monadic
effects (Cheney et al. 2014; Abou-Saleh et al. 2015a, b). Defining composition
for these approaches also turns out to be tricky, and our definition of monadic
lenses arose out of exploring this space. The essence of composition of symmetric
monadic bx, we now believe, can be presented most easily in terms of monadic
lenses, by considering spans, an approach also advocated (in the pure case) by
Johnson and Rosebrugh (2014).

Symmetric pure bx need to be equipped with a notion of equivalence, to
abstract away inessential differences of representation of their “state” or “com-
plement” spaces. As noted by Hofmann et al. (2011) and Johnson and Rosebrugh
(2014), isomorphism of state spaces is unsatisfactory, and there are competing
proposals for equivalence of symmetric lenses and spans. In the case of spans
of monadic lenses, the right notion of equivalence seem even less obvious. We
compare three, increasingly coarse, equivalences of spans based on isomorphism
(following Abou-Saleh et al. (2015a)), span equivalence (following Johnson and
Rosebrugh (2014)), and bisimulation (following Hofmann et al. (2011) and Abou-
Saleh et al. (2015b)). In addition, we show a (we think surprising) result: in the
pure case, span equivalence and bisimulation equivalence coincide.

In this paper we employ Haskell-like notation to describe and compare for-
malisms, with a few conventions: we write function composition f · g with a

Reflections on Monadic Lenses 3

centred dot, and use a lowered dot for field lookup x .f , in contrast to Haskell’s
notation f x . Throughout the paper, we introduce a number of different represen-
tations of lenses, and rather than pedantically disambiguating them all, we freely
redefine identifiers as we go. We assume familiarity with common uses of monads
in Haskell to encapsulate effects (following Wadler (1995)), and with the do-
notation (following Wadler’s monad comprehensions Wadler (1992)). Although
some of these ideas are present or implicit in recent papers (Hofmann et al. 2011;
Johnson and Rosebrugh 2014; Cheney et al. 2014; Abou-Saleh et al. 2015a, b),
this paper reflects our desire to clarify these ideas and expose them in their
clearest form — a desire that is strongly influenced by Wadler’s work on a wide
variety of related topics (Wadler 1992; King and Wadler 1992; Wadler 1995),
and by our interactions with him as a colleague.

2 Asymmetric Monadic Lenses

Recall that a lens (Foster et al. 2007, 2012) is a pair of functions, usually called
get and put :

data α � β = Lens {get :: α → β, put :: α → β → α}
satisfying (at least) the following well-behavedness laws:

(GetPut) put a (get a) = a
(PutGet) get (put a b) = b

The idea is that a lens of type A � B maintains a source of type A, providing
a view of type B onto it; the well-behavedness laws capture the intuition that
the view faithfully reflects the source: if we “get” a b from a source a and then
“put” the same b value back into a, this leaves a unchanged; and if we “put”
a b into a source a and then “get” from the result, we get b itself. Lenses are
often equipped with a create function

data α � β = Lens {get :: α → β, put :: α → β → α, create :: β → α}
satisfying an additional law:

(CreateGet) get (create b) = b

When the distinction is important, we use the term full for well-behaved lenses
equipped with a create operation. It is easy to show that the source and view
types of a full lens must either both be empty or both non-empty, and that the
get operation of a full lens is surjective.

Lenses have been investigated extensively; see for example Foster et al. (2012)
for a recent tutorial overview. For the purposes of this paper, we just recall the
definition of composition of lenses:

(;) :: (α � β) → (β � γ) → (α � γ)
l1 ; l2 = Lens (l2.get · l1.get)

(λa c → l1.put a (l2.put (l1.get a) c))
(l1.create · l1.create)

which preserves well-behavedness.

4 F. Abou-Saleh et al.

2.1 A Naive Approach

As a first attempt, consider simply adding a monadic effect μ to the result types
of both get and put .

data [α �0 β]μ = MLens0 {mget :: α → μ β,mput :: α → β → μ α}
Such an approach has been considered and discussed in some recent Haskell
libraries and online discussions (Diviánszky 2013). A natural question arises
immediately: what laws should a lens l :: [A �0 B]M satisfy? The following gen-
eralisations of the laws appear natural:

(MGetPut0) do {b ← mget a;mput a b} = return a
(MPutGet0) do {a ′ ← mput a b;mget a ′} = do {a ′ ← mput a b; return b}

that is, if we “get” b from a and then “put” the same b value back into a, this
has the same effect as just returning a (and doing nothing else), and if we “put”
a value b and then “get” the result, this has the same effect as just returning b
after doing the “put”. The obvious generalisation of composition from the pure
case for these operations is:

(;) :: [α �0 β]µ → [β �0 γ]µ → [α �0 γ]µ
l1 ; l2 = MLens0 (λa → do {b ← l1.mget a; l2.mget b})

(λa c → do {b ← l1.mget a; b′ ← l2.mput b c; l1.mput a b′ })

This proposal has at least two apparent problems. First, the (MGetPut0) law
appears to sharply constrain mget : indeed, if mget a has an irreversible side-
effect then (MGetPut0) cannot hold. This suggests that mget must either be
pure, or have side-effects that are reversible by mput , ruling out behaviours
such as performing I/O during mget . Second, it appears difficult to compose
these structures in a way that preserves the laws, unless we again make fairly
draconian assumptions about μ. In order to show (MGetPut0) for the composition
l1 ; l2, it seems necessary to be able to commute l2.mget with l1.mget and we
also need to know that doing l1.mget twice is the same as doing it just once.
Likewise, to show (MPutGet0) we need to commute l2.mget with l1.mput .

2.2 Monadic Put-Lenses

Pacheco et al. (2014) proposed a variant of lenses called monadic putback-
oriented lenses. For the purposes of this paper, the putback-orientation of their
approach is irrelevant: we focus on their use of monads, and we provide a slightly
simplified version of their definition:

data [α �1 β]μ = MLens1 {mget :: α → β,mput :: α → β → μ α}
The main difference from their version is that we remove the Maybe type con-
structors from the return type of mget and the first argument of mput . Pacheco
et al. state laws for these monadic lenses. First, they assume that the monad μ
has a monad membership operation

Reflections on Monadic Lenses 5

(∈) :: α → μ α → Bool

satisfying the following two laws:

(∈-ID) x ∈ return x ⇔ True
(∈->>=) y ∈ (m >>= f) ⇔ ∃x . x ∈ m ∧ y ∈ (f x)

Then the laws for MLens1 (adapted from Pacheco et al. (2014 Proposition 3,
p. 49)) are as follows:

(MGetPut1) v = mget s =⇒ mput s v = return s
(MPutGet1) s ′ ∈ mput s v ′ =⇒ v ′ = mget s ′

In the first law we correct an apparent typo in the original paper, as well as
removing the Just constructors from both laws. By making mget pure, this
definition avoids the immediate problems with composition discussed above, and
Pacheco et al. outline a proof that their laws are preserved by composition.
However, it is not obvious how to generalise their approach beyond monads that
admit a sensible ∈ operation.

Many interesting monads do have a sensible ∈ operation (e.g. Maybe, []).
Pacheco et al. suggest that ∈ can be defined for any monad as x ∈ m ≡ (∃h :
h m = x), where h is what they call a “(polymorphic) algebra for the monad at
hand, essentially, a function of type m a → a for any type a.” However, this
definition doesn’t appear satisfactory for monads such as IO , for which there is
no such (pure) function: the (∈-ID) law can never hold in this case. It is not clear
that we can define a useful ∈ operation directly for IO either: given that m ::IO a
could ultimately return any a-value, it seems safe, if perhaps overly conservative,
to define x ∈ m = True for any x and m. This satisfies the ∈ laws, at least, if we
make a simplifying assumption that all types are inhabited, and indeed, it seems
to be the only thing we could write in Haskell that would satisfy the laws, since
we have no way of looking inside the monadic computation m :: IO a to find out
what its eventual return value is. But then the precondition of the (MPutGet1)
law is always true, which forces the view space to be trivial. These complications
suggest, at least, that it would be advantageous to find a definition of monadic
lenses that makes sense, and is preserved under composition, for any monad.

2.3 Monadic Lenses

We propose the following definition of monadic lenses for any monad M :

Definition 2.1 (Monadic Lens). A monadic lens from source type A to view
type B in which the put operation may have effects from monad M (or “M -lens
from A to B”), is represented by the type [A � B]M , where

data [α � β]μ = MLens {mget :: α → β,mput :: α → β → μ α}
(dropping the μ from the return type of mget , compared to the definition in
Sect. 2.1). We say that M -lens l is well-behaved if it satisfies

6 F. Abou-Saleh et al.

(MGetPut) do { l .mput a (l .mget a)} = return a
(MPutGet) do {a ′ ← l .mput a b; k a ′ (l .mget a ′)}

= do {a ′ ← l .mput a b; k a ′ b} ♦
Note that in (MPutGet), we use a continuation k ::α → β → μ γ to quantify over
all possible subsequent computations in which a ′ and l .mget a ′ might appear. In
fact, using the laws of monads and simply-typed lambda calculus we can prove
this law from just the special case k = λa b → return (a, b), so in the sequel
when we prove (MPutGet) we may just prove this case while using the strong
form freely in the proof.

The ordinary asymmetric lenses are exactly the monadic lenses over μ = Id ;
the laws then specialise to the standard equational laws. Monadic lenses where
μ = Id are called pure, and we may refer to ordinary lenses as pure lenses also.

Definition 2.2. We can also define an operation that lifts a pure lens to a
monadic lens:

lens2mlens :: Monad μ ⇒ α � β → [α � β]μ
lens2mlens l = MLens (l .get) (λa b → return (l .put a b)) ♦

Lemma 2.3. If l :: Lens α β is well-behaved, then so is lens2mlens l . ♦
Example 2.4. To illustrate, some simple pure lenses include:

idl :: α � α
idl = Lens (λa → a) (λ a → a)
fstl :: (α, β) � α
fstl = MLens fst (λ(s1, s2) s ′

1 → (s ′
1, s2))

Many more examples of pure lenses are to be found in the literature (Foster
et al. 2007, 2012), all of which lift to well-behaved monadic lenses. ♦
As more interesting examples, we present asymmetric versions of the partial and
logging lenses presented by Abou-Saleh et al. (2015a). Pure lenses are usually
defined using total functions, which means that get must be surjective whenever
A is nonempty, and put must be defined for all source and view pairs. One way
to accommodate partiality is to adjust the return type of get to Maybe b or give
put the return type Maybe a to allow for failure if we attempt to put a b-value
that is not in the range of get . In either case, the laws need to be adjusted
somehow. Monadic lenses allow for partiality without requiring such an ad hoc
change. A trivial example is

constMLens :: β → [α � β]Maybe

constMLens b = MLens (const b)
(λa b′ → if b b′ then Just a else Nothing)

which is well-behaved because both sides of (MPutGet) fail if the view is changed
to a value different from b. Of course, this example also illustrates that the mget
function of a monadic lens need not be surjective.

Reflections on Monadic Lenses 7

As a more interesting example, consider:

absLens :: [Int � Int]Maybe

absLens = MLens abs
(λa b → if b < 0

then Nothing
else Just (if a < 0 then − b else b))

In the mget direction, this lens maps a source number to its absolute value; in
the reverse direction, it fails if the view b is negative, and otherwise uses the
sign of the previous source a to determine the sign of the updated source.

The following logging lens takes a pure lens l and, whenever the source value
a changes, records the previous a value.

logLens :: Eq α ⇒ α � β → [α � β]Writer α

logLens l = MLens (l .get) (λa b →
let a ′ = l .put a b in do {if a � a ′ then tell a else return (); return a ′})

We presented a number of more involved examples of effectful symmetric bx in
(Abou-Saleh et al. 2015a). They show how monadic lenses can employ user inter-
action, state, or nondeterminism to restore consistency. Most of these examples
are equivalently definable as spans of monadic lenses, which we will discuss in
the next section.

In practical use, it is usually also necessary to equip lenses with an ini-
tialisation mechanism. Indeed, as already mentioned, Pacheco et al.’s monadic
put-lenses make the α argument optional (using Maybe), to allow for initiali-
sation when only a β is available; we chose to exclude this from our version of
monadic lenses above.

We propose the following alternative:

data [α � β]μ = MLens {mget :: α → β,
mput :: α → β → μ α,
mcreate :: β → μ α}

and we consider such initialisable monadic lenses to be well-behaved when they
satisfy the following additional law:

(MCreateGet) do {a ← mcreate b; k a (mget a)} = do {a ← mcreate b; k a b}

As with (MPutGet), this property follows from the special case k = λx y →
return (x , y), and we will use this fact freely.

This approach, in our view, helps keep the (GetPut) and (PutGet) laws simple
and clear, and avoids the need to wrap mput ’s first argument in Just whenever
it is called.

Next, we consider composition of monadic lenses.

(;) :: Monad μ ⇒ [α � β]μ → [β � γ]μ → [α � γ]μ
l1 ; l2 = MLens (l2.mget · l1.mget) mput mcreate where

8 F. Abou-Saleh et al.

mput a c = do {b ← l2.mput (l1.mget a) c; l1.mput a b}
mcreate c = do {b ← l2.mcreate; l1.mcreate }

Note that we consider only the simple case in which the lenses share a com-
mon monad μ. Composing lenses with effects in different monads would require
determining how to compose the monads themselves, which is nontrivial (King
and Wadler 1992; Jones and Duponcheel 1993).

Theorem 2.5. If l1 :: [A � B]M , l2 :: [B � C]M are well-behaved, then so is
l1 ; l2. ♦

3 Symmetric Monadic Lenses and Spans

Hofmann et al. (2011) proposed symmetric lenses that use a complement to store
(at least) the information that is not present in both views.

data α
γ←→ β = SLens {putR :: (α, γ) → (β, γ),

putL :: (β, γ) → (α, γ),
missing :: γ}

Informally, putR turns an α into a β, modifying a complement γ as it goes,
and symmetrically for putL; and missing is an initial complement, to get the
ball rolling. Well-behavedness for symmetric lenses amounts to the following
equational laws:

(PutRL) let (b, c′) = sl .putR (a, c) in sl .putL (b, c′)
= let (b, c′) = sl .putR (a, c) in (a, c′)

(PutLR) let (a, c′) = sl .putL (b, c) in sl .putR (a, c′)
= let (a, c′) = sl .putL (b, c) in (b, c′)

Furthermore, the composition of two symmetric lenses preserves well-
behavedness, and can be defined as follows:

(;) :: (α σ1←→ β) → (β σ2←→ γ) → (α
(σ1,σ2)←→ γ)

l1 ; l2 = SLens putR putL (l1.missing , l2.missing) where
putR (a, (s1, s2)) = let (b, s ′

1) = putR (a, s1)
(c, s ′

2) = putR (b, s2)
in (c, (s ′

1, s
′
2))

putL (c, (s1, s2)) = let (b, s ′
2) = putL (c, s2)

(a, s ′
1) = putL (b, s1)

in (a, (s ′
1, s

′
2))

We can define an identity symmetric lens as follows:

idsl :: α
()←→ α

idsl = SLens id id ()

Reflections on Monadic Lenses 9

It is natural to wonder whether symmetric lens composition satisfies identity and
associativity laws making symmetric lenses into a category. This is complicated
by the fact that the complement types of the composition idsl; sl and of sl differ,
so it is not even type-correct to ask whether idsl; sl and sl are equal. To make it
possible to relate the behaviour of symmetric lenses with different complement
types, Hofmann et al. defined equivalence of symmetric lenses as follows:

Definition 3.1. Suppose R ⊆ C1×C2. Then f ∼R g means that for all c1, c2, x ,
if (c1, c2) ∈ R and (y , c′

1) = f (x , c1) and (y ′, c′
2) = g (y , c2), then y = y ′ and

(c′
1, c

′
2) ∈ R. ♦

Definition 3.2 (Symmetric Lens Equivalence). Two symmetric lenses sl1 ::
X C1←→ Y and sl2 :: X C2←→ Y are considered equivalent (sl1 ≡sl sl2) if there is a
relation R ⊆ C1 × C2 such that

1. (sl1.missing , sl2.missing) ∈ R,
2. sl1.putR ∼R sl2.putR, and
3. sl1.putL ∼R sl2.putL. ♦

Hofmann et al. show that ≡sl is an equivalence relation; moreover it is sufficiently
strong to validate identity, associativity and congruence laws:

Theorem 3.3 (Hofmann et al. 2011). If sl1 :: X C1←→ Y and sl2 :: Y C2←→ Z
are well-behaved, then so is sl1 ; sl2. In addition, composition satisfies the laws:

(Identity) sl ; idsl ≡sl sl ≡sl idsl ; sl
(Assoc) sl1 ; (sl2 ; sl3) ≡sl (sl1 ; sl2) ; sl3
(Cong) sl1 ≡sl sl ′1 ∧ sl2 ≡sl sl ′2 =⇒ sl1 ; sl2 ≡sl sl ′1 ; sl ′2 ♦

3.1 Naive Monadic Symmetric Lenses

We now consider an obvious monadic generalisation of symmetric lenses, in which
the putL and putR functions are allowed to have effects in some monad M :

Definition 3.4. A monadic symmetric lens from A to B with complement type
C and effects M consists of two functions converting A to B and vice versa, each
also operating on C and possibly having effects in M , and a complement value
missing used for initialisation:

data [α
γ←→ β]μ = SMLens {mputR :: (α, γ) → μ (β, γ),

mputL :: (β, γ) → μ (α, γ),
missing :: γ}

Such a lens sl is called well-behaved if:

(PutRLM) do {(b, c′) ← sl .mputR (a, c); sl .mputL (b, c′)}
= do {(b, c′) ← sl .mputR (a, c); return (a, c′)}

(PutLRM) do {(a, c′) ← sl .mputL (b, c); sl .mputR (a, c′)}
= do {(a, c′) ← sl .mputL (b, c); return (b, c′)} ♦

10 F. Abou-Saleh et al.

The above monadic generalisation of symmetric lenses appears natural, but
it turns out to have some idiosyncrasies, similar to those of the naive version of
monadic lenses we considered in Sect. 2.1.

Composition and Well-Behavedness. Consider the following candidate definition
of composition for monadic symmetric lenses:

(;) :: Monad μ ⇒ [α σ1←→ β]μ → [β σ2←→ γ]μ → [α
(σ1,σ2)←→ γ]μ

sl1 ; sl2 = SMLens putR putL missing where
putR (a, (s1, s2)) = do {(b, s ′

1) ← sl1.mputR (a, s1);
(c, s ′

2) ← sl2.mputR (b, s2);
return (c, (s ′

1, s
′
2))}

putL (c, (s1, s2)) = do {(b, s ′
2) ← sl2.mputL (c, s2);

(a, s ′
1) ← sl1.mputL (b, s1);

return (a, (s ′
1, s

′
2))}

missing = (sl1.missing , sl2.missing)

which seems to be the obvious generalisation of pure symmetric lens composition
to the monadic case. However, it does not always preserve well-behavedness.

Example 3.5. Consider the following construction:

setBool :: Bool → [()
()←→ ()]State Bool

setBool b = SMLens m m () where m = do {set b; return ((), ())}
The lens setBool True has no effect on the complement or values, but sets the
state to True. Both setBool True and setBool False are well-behaved, but their
composition (in either direction) is not: (PutRLM) fails for setBool
True; setBool False because setBool True and setBool False share a single Bool
state value. ♦
Proposition 3.6. setBool b is well-behaved for b ∈ {True,False }, but
setBool True ; setBool False is not well-behaved. ♦

Composition does preserve well-behavedness for commutative monads, i.e.
those for which

do {a ← x ; b ← y ; return (a, b)} = do {b ← y ; a ← x ; return (a, b)}
but this rules out many interesting monads, such as State and IO .

3.2 Entangled State Monads

The types of the mputR and mputL operations of symmetric lenses can be seen
(modulo mild reordering) as stateful operations in the state monad State γ α =
γ → (α, γ), where the state γ = C . This observation was also anticipated by
Hofmann et al. In a sequence of papers, we considered generalising these oper-
ations and their laws to an arbitrary monad (Cheney et al. 2014; Abou-Saleh

Reflections on Monadic Lenses 11

et al. 2015a, b). In our initial workshop paper, we proposed the following defin-
ition:

data [α −�−� β]μ = SetBX {getL :: μ α, setL :: α → μ (),
getR :: μ β, setR :: β → μ ()}

subject to a subset of the State monad laws (Plotkin and Power 2002), such as:

(GetLSetL) do {a ← getL; setL a } = return ()
(SetLGetL) do {setL a; getL} = do {setL a; return a }

This presentation makes clear that bidirectionality can be viewed as a state
effect in which two “views” of some common state are entangled. That is, rather
than storing a pair of views, each independently variable, they are entangled, in
the sense that a change to either may also change the other. Accordingly, the
entangled state monad operations do not satisfy all of the usual laws of state:
for example, the setL and setR operations do not commute.

However, one difficulty with the entangled state monad formalism is that, as
discussed in Sect. 2.1, effectful mget operations cause problems for composition.
It turned out to be nontrivial to define a satisfactory notion of composition,
even for the well-behaved special case where μ = StateT σ ν for some ν, where
StateT is the state monad transformer (Liang et al. 1995), i.e. StateT σ ν α =
σ → ν (α, σ). We formulated the definition of monadic lenses given earlier in
this paper in the process of exploring this design space.

3.3 Spans of Monadic Lenses

Hofmann et al. (2011) showed that a symmetric lens is equivalent to a span of two
ordinary lenses, and later work by Johnson and Rosebrugh (2014) investigated
such spans of lenses in greater depth. Accordingly, we propose the following
definition:

Definition 3.7 (Monadic Lens Spans). A span of monadic lenses (“M -lens
span”) is a pair of M -lenses having the same source:

type [α �σ � β]μ = Span { left :: [σ � α]μ, right :: [σ � β]μ}
We say that an M -lens span is well-behaved if both of its components are. ♦
We first note that we can extend either leg of a span with a monadic lens
(preserving well-behavedness if the arguments are well-behaved):

(�) :: Monad μ ⇒ [α1 � α2]μ → [α1 �σ � β]μ → [α2 �σ � β]μ
ml � sp = Span (sp.left ; ml) (sp.right)
() :: Monad μ ⇒ [α �σ � β1]μ → [β1 � β2]μ → [α �σ � β2]μ
sp 	 ml = Span sp.left (sp.right ; ml)

To define composition, the basic idea is as follows. Given two spans
[A �S1 � B]M and [B �S2 � C]M with a common type B “in the middle”,

12 F. Abou-Saleh et al.

A B C

S1 S2

S1 S2

Fig. 1. Composing spans of lenses

we want to form a single span from A to C . The obvious thing to try is to form
a pullback of the two monadic lenses from S1 and S2 to the common type B ,
obtaining a span from some common state type S to the state types S1 and
S2, and composing with the outer legs. (See Fig. 1.) However, the category of
monadic lenses doesn’t have pullbacks (as Johnson and Rosebrugh note, this is
already the case for ordinary lenses). Instead, we construct the appropriate span
as follows.

(��) :: Monad μ ⇒ [σ1 � β]μ → [σ2 � β]μ → [σ1 �(σ1��σ2) � σ2]μ
l1 �� l2 = Span (MLens fst putL createL) (MLens snd putR createR) where

putL (, s2) s ′
1 = do {s ′

2 ← l2.mput s2 (l1.mget s ′
1); return (s ′

1, s
′
2)}

createL s1 = do {s ′
2 ← l2.mcreate (l1.mget s1); return (s1, s ′

2)}
putR (s1,) s ′

2 = do {s ′
1 ← l1.mput s1 (l2.mget s ′

2); return (s ′
1, s

′
2)}

createR s1 = do {s ′
1 ← l1.mcreate (l2.mget s2); return (s ′

1, s2)}
where we write S1��S2 for the type of consistent state pairs {(s1, s2) ∈ S1 × S2 |
l1.mget (s1) = l2.mget (s2)}. In the absence of dependent types, we represent
this type as (S1,S2) in Haskell, and we need to check that the mput and mcreate
operations respect the consistency invariant.

Lemma 3.8. If ml1 :: [S1 � B]M and ml2 :: [S2 � B]M are well-behaved then
so is ml1 �� ml2 :: [S1 �(S1��S2) � S2]μ. ♦
Note that (MPutGet) and (MCreateGet) hold by construction and do not need
the corresponding properties for l1 and l2, but these properties are needed to
show that consistency is established by mcreate and preserved by mput .

We can now define composition as follows:

(;) :: Monad μ ⇒ [α �σ1 � β]μ → [β �σ2 � γ]μ → [α �(σ1��σ2) � γ]μ
sp1 ; sp2 = sp1.left � (sp1.right �� sp2.left) 	 sp2.right

The well-behavedness of the composition of two well-behaved spans is imme-
diate because � and 	 preserve well-behavedness of their arguments:

Theorem 3.9. If sp1 :: [A �S1 � B]M and sp2 :: [B �S2 � C]M are well-
behaved spans of monadic lenses, then their composition sp1 ; sp2 is well-
behaved. ♦

Reflections on Monadic Lenses 13

Given a span of monadic lenses sp :: [A �S � B]M , we can construct a

monadic symmetric lens sl :: [A
Maybe S←→ B]M as follows:

span2smlens (left , right) = SMLens mputR mputL Nothing where

mputR (a, Just s) = do {s′ ← left .mput s a; return (right .mget s′, Just s′)}
mputR (a,Nothing) = do {s′ ← left .mcreate a; return (right .mget s′, Just s′)}
mputL (b, Just s) = do {s′ ← right .mput s b; return (left .mget s′, Just s′)}
mputL (b,Nothing) = do {s′ ← right .mcreate b; return (left .mget s′, Just s′)}

Essentially, these operations use the span’s mput and mget operations to update
one side and obtain the new view value for the other side, and use the mcreate
operations to build the initial S state if the complement is Nothing .

Well-behavedness is preserved by the conversion from monadic lens spans to
SMLens, for arbitrary monads M :

Theorem 3.10. If sp :: [A �S � B]M is well-behaved, then span2smlens sp is
also well-behaved. ♦

Given sl :: [A C←→ B]M , let S ⊆ A × B × C be the set of consistent
triples (a, b, c), that is, those for which sl .mputR (a, c) = return (b, c) and
sl .mputL (b, c) = return (a, c). We construct sp :: [A �S � B]M by

smlens2span sl = Span (MLens getL putL createL) (MLens getR putR createR)
where

getL (a, b, c) = a
putL (a, b, c) a ′ = do {(b′, c′) ← sl .mputR (a ′, c); return (a ′, b′, c′)}
createL a = do {(b, c) ← sl .mputR (a, sl .missing); return (a, b, c)}
getR (a, b, c) = b
putR (a, b, c) b′ = do {(a ′, c′) ← sl .mputL (b′, c); return (a ′, b′, c′)}
createR b = do {(a, c) ← sl .mputL (b, sl .missing); return (a, b, c)}

However, smlens2span may not preserve well-behavedness even for simple mon-
ads such as Maybe, as the following counterexample illustrates.

Example 3.11. Consider the following monadic symmetric lens construction:

fail :: [()
()←→ ()]Maybe

fail = SMLens Nothing Nothing ()

This is well-behaved but smlens2span fail is not. In fact, the set of consistent
states of fail is empty, and each leg of the induced span is of the following form:

failMLens :: MLens Maybe ∅ ()
failMLens = MLens (λ → ()) (λ () → Nothing) (λ → Nothing)

which fails to satisfy (MGetPut). ♦
For pure symmetric lenses, smlens2span does preserve well-behavedness.

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl
is also well-behaved, with state space S consisting of the consistent triples
of sl . ♦

14 F. Abou-Saleh et al.

To summarise: spans of monadic lenses are closed under composition, and
correspond to well-behaved symmetric monadic lenses. However, there are well-
behaved symmetric monadic lenses that do not map to well-behaved spans. It
seems to be an interesting open problem to give a direct axiomatisation of the
symmetric monadic lenses that are essentially spans of monadic lenses (and are
therefore closed under composition).

4 Equivalence of Spans

Hofmann et al. (2011) introduced a bisimulation-like notion of equivalence for
pure symmetric lenses, in order to validate laws such as identity, associativity
and congruence of composition. Johnson and Rosebrugh (2014) introduced a
definition of equivalence of spans and compared it with symmetric lens equiva-
lence. We have considered equivalences based on isomorphism (Abou-Saleh et al.
2015a) and bisimulation (Abou-Saleh et al. 2015b). In this section we consider
and relate these approaches in the context of spans of M -lenses.

Definition 4.1 (Isomorphism Equivalence). Two M -lens spans sp1::
[A �S1 � B]M and sp2::[A �S2 � B]M are isomorphic (sp ≡i sp′) if there is
an isomorphism h ::S1 → S2 on their state spaces such that h ; sp2.left = sp1.left
and h ; sp2.right = sp1.right . ♦
Note that any isomorphism h :: S1 → S2 can be made into a (monadic) lens; we
omit the explicit conversion.

We consider a second definition of equivalence, inspired by Johnson and Rose-
brugh (2014), which we call span equivalence:

Definition 4.2 (Span Equivalence). TwoM -lens spans sp1 :: [A �S1 � B]M
and sp2 :: [A �S2 � B]M are related by � if there is a full lens h :: S1 � S2 such
that h ; sp2.left = sp1.left and h ; sp2.right = sp1.right . The equivalence relation
≡s is the least equivalence relation containing �. ♦
One important consideration emphasised by Johnson and Rosebrugh is the
need to avoid making all compatible spans equivalent to the “trivial” span
[A �∅ � B]M . To avoid this problem, they imposed conditions on h: its get
function must be surjective and split, meaning that there exists a function c
such that h.get · c = id . We chose instead to require h to be a full lens. This
is actually slightly stronger than Johnson and Rosebrugh’s definition, at least
from a constructive perspective, because h is equipped with a specific choice of
c = create satisfying h.get · c = id , that is, the (CreateGet) law.

We have defined span equivalence as the reflexive, symmetric, transitive clo-
sure of �. Interestingly, even though span equivalence allows for an arbitrary
sequence of (pure) lenses between the respective state spaces, it suffices to con-
sider only spans of lenses. To prove this, we first state a lemma about the (��)
operation used in composition. Its proof is straightforward equational reasoning.

Reflections on Monadic Lenses 15

Lemma 4.3. Suppose l1 :: A � B and l2 :: C � B are pure lenses. Then (l1 ��

l2).left ; l1 = (l1 �� l2).right ; l2. ♦
Theorem 4.4. Given sp1 :: [A �S1 � B]M and sp2 :: [A �S2 � B]M , if
sp1 ≡s sp2 then there exists sp :: S1 �S � S2 such that sp.left ; sp1.left =
sp.right ; sp2.left and sp.left ; sp1.right = sp.right ; sp2.right . ♦
Proof. Let sp1 and sp2 be given such that sp1 ≡s sp2. The proof is by induction
on the length of the sequence of � or � steps linking sp1 to sp2.

If sp1 = sp2 then the result is immediate. If sp1 � sp2 then we can complete
a span between S1 and S2 using the identity lens. For the inductive case, suppose
that the result holds for sequences of up to n � or � steps, and suppose sp1 ≡s

sp2 holds in n � or � steps. There are two cases, depending on the direction
of the first step. If sp1 � sp3 ≡s sp2 then by induction we must have a pure
span sp between S3 and S2 and sp1 � sp3 holds by virtue of a lens h :: S3 → S1,
so we can simply compose h with sp.left to obtain the required span between
S1 and S2. Otherwise, if sp1 � sp3 ≡s sp2 then by induction we must have a
pure span sp between S3 and S2 and we must have a lens h ::S1 → S3, so we use
Lemma 4.3 to form a span sp0 :: S1 �(S1��S3) � S3 and extend sp0.right with
sp.right to form the required span between S1 and S3. ��

Thus, span equivalence is a doubly appropriate name for ≡s: it is an equiva-
lence of spans witnessed by a (pure) span.

Finally, we consider a third notion of equivalence, inspired by the natural
bisimulation equivalence for coalgebraic bx (Abou-Saleh et al. 2015b):

Definition 4.5 (Base Map). Given M -lenses l1 :: [S1 � V]M and l2::
[S2 � V]M , we say that h : S1 → S2 is a base map from l1 to l2 if

l1.mget s = l2.mget (h s)
do {s ← l1.mput s v ; return (h s)} = l2.mput (h s) v
do {s ← l1.mcreate v ; return (h s)} = l2.mcreate v

Similarly, given two M -lens spans sp1 :: [A �S1 � B]M and sp2::
[A �S2 � B]M we say that h :: S1 → S2 is a base map from sp1 to sp2 if h
is a base map from sp1.left to sp2.left and from sp1.right to sp2.right . ♦
Definition 4.6 (Bisimulation Equivalence). A bisimulation of M -lens
spans sp1 :: [A �S1 � B]M and sp2 :: [A �S2 � B]M is a M -lens span
sp :: [A �R � B]M where R ⊆ S1 × S2 and fst is a base map from sp to sp1

and snd is a base map from sp to sp2. We write sp1 ≡b sp2 when there is a
bisimulation of spans sp1 and sp2. ♦

Figure 2 illustrates the three equivalences diagrammatically.

Proposition 4.7. Each of the relations ≡i, ≡s and ≡b are equivalence relations
on compatible spans of M -lenses and satisfy (Identity), (Assoc) and (Cong). ♦
Theorem 4.8. sp1 ≡i sp2 implies sp1 ≡s sp2, but not the converse. ♦

16 F. Abou-Saleh et al.

A B

S1

S2

A B

S1

S2

S A B

S1

S2

R ⊆ S1×S2

fst

snd

(a) (b) (c)

Fig. 2. (a) Isomorphism equivalence (≡i), (b) span equivalence (≡s), and (c) bisimu-
lation (≡b) equivalence. In (c), the dotted arrows are base maps; all other arrows are
(monadic) lenses.

Proof. The forward direction is obvious; for the reverse direction, consider

h :: Bool � ()
h = Lens (λ → ()) (λa () → a) (λ() → True)
sp1 :: [() �() � ()]μ
sp1 = Span idMLens idMLens
sp2 = (h ; sp1.left , h ; sp2.right)

Clearly sp1 ≡s sp2 by definition and all three structures are well-behaved, but
h is not an isomorphism: any k :: () � Bool must satisfy k .get () = True or
k .get () = False, so (h ; k).get = k .get · h.get cannot be the identity function. ��
Theorem 4.9. Given sp1 :: [A �S1 � B]M , sp2 :: [A �S2 � B]M , if sp1 ≡s

sp2 then sp1 ≡b sp2. ♦
Proof. For the forward direction, it suffices to show that a single sp1 � sp2 step
implies sp1 ≡b sp2, which is straightforward by taking R to be the set of pairs
{(s1, s2) | l1.get s1 = s2}, and constructing an appropriate span sp : A �R � B .
Since bisimulation equivalence is transitive, it follows that sp1 ≡s sp2 implies
sp1 ≡b sp2 as well. ��

In the pure case, we can also show a converse:

Theorem 4.10. Given sp1 :: A �S1 � B , sp2 :: A �S2 � B , if sp1 ≡b sp2

then sp1 ≡s sp2. ♦
Proof. Given R and a span sp :: A �R � B constituting a bisimulation sp1 ≡b

sp2, it suffices to construct a span sp′ = (l , r) :: S1 �R � S2 satisfying l ;
sp1.left = r ; sp2.left and l ; sp1.right = r ; sp2.right . ��

This result is surprising because the two equivalences come from rather
different perspectives. Johnson and Rosebrugh introduced a form of span equiva-
lence, and showed that it implies bisimulation equivalence. They did not explic-
itly address the question of whether this implication is strict. However, there

Reflections on Monadic Lenses 17

are some differences between their presentation and ours; the most important
difference is the fact that we assume lenses to be equipped with a create func-
tion, while they consider lenses without create functions but sometimes consider
spans of lenses to be “pointed”, or equipped with designated initial state values.
Likewise, Abou-Saleh et al. (2015b) considered bisimulation equivalence for coal-
gebraic bx over pointed sets (i.e. sets equipped with designated initial values).
It remains to be determined whether Theorem 4.10 transfers to these settings.

We leave it as an open question to determine whether ≡b is equivalent to
≡s for spans of monadic lenses (we conjecture that they are not), or whether an
analogous result to Theorem4.10 carries over to symmetric lenses (we conjecture
that it does).

5 Conclusions

Lenses are a popular and powerful abstraction for bidirectional transformations.
Although they are most often studied in their conventional, pure form, practical
applications of lenses typically grapple with side-effects, including exceptions,
state, and user interaction. Some recent proposals for extending lenses with
monadic effects have been made; our proposal for (asymmetric) monadic lenses
improves on them because M -lenses are closed under composition for any fixed
monad M . Furthermore, we investigated the symmetric case, and showed that
spans of monadic lenses are also closed under composition, while the obvious
generalisation of pure symmetric lenses to incorporate monadic effects is not
closed under composition. Finally, we presented three notions of equivalence
for spans of monadic lenses, related them, and proved a new result: bisimula-
tion and span equivalence coincide for pure spans of lenses. This last result is
somewhat surprising, given that Johnson and Rosebrugh introduced (what we
call) span equivalence to overcome perceived shortcomings in Hofmann et al.’s
bisimulation-based notion of symmetric lens equivalence. Further investigation
is necessary to determine whether this result generalises.

These results illustrate the benefits of our formulation of monadic lenses
and we hope they will inspire further research and appreciation of bidirectional
programming with effects.

Acknowledgements. The work was supported by the UK EPSRC-funded project
A Theory of Least Change for Bidirectional Transformations (TLCBX Project
2013–2016) (EP/K020218/1, EP/K020919/1).

A Proofs for Sect. 2

Theorem 2.5. If l1 :: [A � B]M and l2 :: [B � C]M are well-behaved, then so
is l1 ; l2.

Proof. Suppose l1 and l2 are well-behaved, and let l = l1 ; l2. We reason as follows
for (MGetPut):

18 F. Abou-Saleh et al.

do { l .mput a (l .mget a)}
= [[definition]]
do {b ← l2.mput (l1.mget a) (l2.mget (l1.mget a)); l1.mput a b}

= [[(MGetPut)]]
do {b ← return (l1.mget a); l1.mput a b}

= [[monad unit]]
do { l1.mput a (l1.mget a)}

= [[(MGetPut)]]
return a

For (MPutGet), the proof is as follows:

do {a ′ ← l .mput a c; return (a ′, l .mget a ′)}
= [[Definition]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, l2.mget (l1.mget a ′))}

= [[(MPutGet)]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, l2.mget b)}

= [[(MPutGet)]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, c)}

= [[definition]]
do {a ′ ← l .mput a c; return (a ′, c)} ��

B Proofs for Sect. 3

Proposition 3.6. setBool x is well-behaved for x ∈ {True,False }, but
setBool True ; setBool False is not well-behaved. ♦
For the first part:

Proof. Let sl = setBool x . We consider (PutRLM), and (PutLRM) is symmetric.

do {(b, c′) ← (setBool x).mputR ((), ()); (setBool x).mputL (b, c′)}
= [[Definition]]
do {(b, c′) ← do {set x ; return ((), ())}; set x ; return ((), c′)}

= [[monad associativity]]
do {set x ; (b, c′) ← return ((), ()); set x ; return ((), c′)}

= [[commutativity of return]]
do {set x ; set x ; (b, c′) ← return ((), ()); return ((), c′)}

= [[set x ; set x = set x]]
do {set x ; (b, c′) ← return ((), ()); return ((), c′)}

Reflections on Monadic Lenses 19

= [[monad associativity]]
do {(b, c′) ← do {set x ; return ((), ())}; return ((), c′)}

= [[Definition]]
do {(b, c′) ← (setBool x).mputR ((), ()); return ((), c′)}

For the second part, taking sl = setBool True ; setBool False, we proceed as
follows:

do {(c, s ′) ← sl .mputR (a, s); sl .mputL (c, s ′)}
= [[let s = (s1, s2) and s ′ = (s ′′′

1 , s ′′′
2); definition]]

do {(b, s ′
1) ← (setBool True).mputR (a, s1);

(c, s ′
2) ← (setBool False).mputR (b, s2);

(c′, (s ′′
1 , s ′′

2)) ← return (c, (s ′
1, s

′
2));

(b′, s ′′′
2) ← (setBool False).mputL (c′, s ′′

2);
(a ′, s ′′′

2) ← (setBool True).mputL (b′, s ′′
1);

return (c, (s ′′′
1 , s ′′′

2))}
= [[monad unit]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(b′, s ′′′

2) ← (setBool False).mputL (c′, s ′
2);

(a ′, s ′′′
2) ← (setBool True).mputL (b′, s ′

1);
return (c, (s ′′′

1 , s ′′′
2))}

= [[(PutRLM) for setBool False]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(b′, s ′′′

2) ← return (b, s ′
2);

(a ′, s ′′′
2) ← (setBool False).mputL (b′, s ′

1);
return (c, (s ′′′

1 , s ′′′
2))}

= [[monad unit]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(a ′, s ′′′

2) ← (setBool True).mputL (b, s ′
1);

return (c, (s ′′′
1 , s ′

2))}
However, we cannot simplify this any further. Moreover, it should be clear that
the shared state will be True after this operation is performed. Considering the
other side of the desired equation:

do {(c, s ′) ← sl .mputR (a, s); sl .mputL (c, s ′′)}
= [[let s = (s1, s2) and s ′ = (s ′′′

1 , s ′′′
2); Definition]]

do {(b, s ′
1) ← (setBool True).mputR (a, s1);

(c, s ′
2) ← (setBool False).mputR (b, s2);

(c′, (s ′′
1 , s ′′

2)) ← return (c, (s ′
1, s

′
2));

return (c′, (s ′′
1 , s ′′

2))}
= [[Monad unit]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
return (c, (s ′

1, s
′
2))}

20 F. Abou-Saleh et al.

it should be clear that the shared state will be False after this operation is
performed. Therefore, (PutRLM) is not satisfied by sl . ��
Lemma 3.8. If ml1 :: [σ1 � β]μ and ml2 :: [σ2 � β]μ are well-behaved then so
is ml1 �� ml2 :: [σ1 �(σ1��σ2) � σ2]μ. ♦
Proof. It suffices to consider the two lenses l1 = MLens fst putL createL and l2 =
MLens snd putR createR in isolation. Moreover, the two cases are completely
symmetric, so we only show the first.

For (MGetPut), we show:

do { l1.mput (s1, s2) (l1.mget (s1, s2))}
= [[definition]]
do {putL (s1, s2) (fst (s1, s2))}

= [[definition of putL and fst]]
do {s ′

2 ← ml2.mput s2 (ml1.mget s1)}
= [[(s1, s2) consistent]]
do {s ′

2 ← ml2.mput s2 (ml2.mget s2)}
= [[(MGetPut)]]
return s

The proof for (MPutGet) goes as follows. Note that it holds by construction,
without appealing to well-behavedness of ml1 or ml2.

do {(s ′
1, s

′
2) ← l1.mput (s1, s2) a; return ((s ′

1, s
′
2), l1.mget (s ′

1, s
′
2))}

= [[definition]]
do {(s ′

1, s
′
2) ← putR (s1, s2) a; return ((s ′

1, s
′
2), fst (s ′

1, s
′
2))}

= [[definition]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2);
return ((s ′

1, s
′
2), fst (s ′

1, s
′
2))}

= [[definition of fst]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2);
return ((s ′

1, s
′
2), s

′
1)

= [[monad laws]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2);
return ((s ′

1, s
′
2), a)}

= [[definition]]
do {(s ′

1, s
′
2) ← putL (s1, s2) a; return ((s ′

1, s
′
2), a)}

= [[definition]]
do {(s ′

1, s
′
2) ← l1.mput (s1, s2) a; return ((s ′

1, s
′
2), a)}

The proof for (MCreateGet) is similar.
Finally, we show that putL :: (σ1��σ2) → σ1 → μ (σ1��σ2), and in particular,

that it maintains the consistency invariant on the state space σ1��σ2. Assume
that (s1, s2) :: σ1��σ2 and s ′

1 :: σ1 are given. Thus, ml1.mget s1 = ml2.mget s2.
We must show that any value returned by putL also satisfies this consistency
criterion. By definition,

Reflections on Monadic Lenses 21

putL (s1, s2) s ′
1 = do {s ′

2 ← ml2.mput s2 (ml1.mget s ′
1); return (s ′

1, s
′
2)}

By (MPutGet), any s ′
2 resulting from ml2.mput s2 (ml1.mget s ′

1) will satisfy
ml2.mget s ′

2 = ml1.mget s ′
1. The proof that createL :: σ1 → μ (σ1��σ2) is similar,

but simpler. ��
Theorem 3.10. If sp :: [A �S � B]M is well-behaved, then span2smlens sp is
also well-behaved. ♦
Proof. Let sl = span2smlens sp. We need to show that the laws (PutRLM) and
(PutLRM) hold. We show (PutRLM), and (PutLRM) is symmetric.

We need to show that

do {(b′,mc′) ← sl .mputR (a,mc); sl .mputL (b′,mc′)}
=
do {(b′,mc′) ← sl .mputR (a,mc); return (a,mc′)}

There are two cases, depending on whether the initial state mc is Nothing or
Just c for some c.

If mc = Nothing then we reason as follows:

do {(b′,mc′) ← sl .mputR (a,Nothing); sl .mputL (b′,mc′)}
= [[Definition]]
do {s ′ ← sp.left .mcreate a; (b′,mc′) ← return (sp.right .mget s ′, Just s ′);

sl .mputL (b′,mc′)}
= [[monad unit]]
do {s ′ ← sp.left .mcreate a; sl .mputL (sp.right .mget s ′, Just s ′)}

= [[definition]]
do {s ′ ← sp.left .mcreate a; s ′′ ← sp.right .mput s ′ (sp.right .mget s ′);

return (sp.left .mget s ′′, Just s ′′)}
= [[(MGetPut)]]
do {s ′ ← sp.left .mcreate a; s ′′ ← return s ′;

return (sp.left .mget s ′′, Just s ′′)}
= [[monad unit]]
do {s ′ ← sp.left .mcreate a; return (sp.left .mget s ′, Just s ′)}

= [[(MCreateGet)]]
do {s ′ ← sp.left .mcreate a; return (a, Just s ′)}

= [[monad unit]]
do {s ′ ← sp.left .mcreate a; (b′,mc′) ← (sp.right .get s ′, Just s ′);

return (a,mc′)}
= [[Definition]]
do {(b′,mc′) ← sl .mputR (a,Nothing); return (a,mc′)}

If mc = Just c then we reason as follows:

do {(b′,mc′) ← sl .mputR (a, Just s); sl .mputL (b′,mc′)}
= [[Definition]]
do {s ′ ← sp.left .mput s a; (b′,mc′) ← (sp.right .mget s ′, Just s ′);

22 F. Abou-Saleh et al.

sl .mputL (b′,mc′)}
= [[monad unit]]
do {s ′ ← sp.left .mput s a; sl .mputL (sp.right .mget s ′, Just s ′)}

= [[definition]]
do {s ′ ← sp.left .mput s a; s ′′ ← sp.right .mput s ′ (sp.right .mget s ′);

return (sp.left .mget s ′′, Just s ′′)}
= [[(MGetPut)]]
do {s ′ ← sp.left .mput s a; s ′′ ← return s ′;

return (sp.left .mget s ′′, Just s ′′)}
= [[monad unit]]
do {s ′ ← sp.left .mput s a; return (sp.left .mget s ′, Just s ′)}

= [[(MPutGet)]]
do {s ′ ← sp.left .mput s a; return (a, Just s ′)}

= [[monad unit]]
do {s ′ ← sp.left .mput s a; (b′,mc′) ← (sp.right .get s ′, Just s ′);

return (a,mc′)}
= [[Definition]]
do {(b′,mc′) ← sl .mputR (a, Just c); return (a,mc′)} ��

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl
is also well-behaved, with state space S consisting of the consistent triples
of sl . ♦
Proof. First we show that, given a symmetric lens sl , the operations of sp =
smlens2span sl preserve consistency of the state. Assume (a, b, c) is consis-
tent. To show that sp.left .mput (a, b, c) a ′ is consistent for any a ′, we have
to show that (a ′, b′, c′) is consistent, where a ′ is arbitrary and return (b′, c′) =
sl .mputR (a ′, c). For one half of consistency, we have:

sl .mputL (b′, c′)
= [[sl .mputR (a ′, c) = return (b′, c′), and (PutRLM)]]
return (a ′, c′)

The proof that sl .mputR (a ′, c′) = return (b′, c′) is symmetric.

sl .mputR (a ′, c′)
= [[above, and (PutLRM)]]
return (b′, c′)

as required. The proof that sp.right .mput (a, b, c) b′ is consistent is dual.
We will now show that sp = smlens2span sl is a well-behaved span for any

symmetric lens sl . For (MGetPut), we proceed as follows:

sp.left .mput (a, b, c) (sp.left .mget (a, b, c))
= [[Definition]]
do {(b′, c′) ← sl .mputR (a, c); return (a, b′, c′)}

= [[Consistency of (a, b, c)]]

Reflections on Monadic Lenses 23

do {(b′, c′) ← return (b, c); return (a, b′, c′)}
= [[monad unit]]
return (a, b, c)

For (MPutGet), we have:

do {s ′ ← sp.left .put (a, b, c) a ′; return (s ′, sp.left .mget s ′)}
= [[Definition]]
do {(b′, c′) ← sl .mputR (a ′, c); s ′ ← return (a ′, b′, c′);

return (s ′, sp.left .mget s ′)}
= [[monad unit]]
do {(b′, c′) ← sl .mputR (a ′, c);

return ((a ′, b′, c′), sp.left .mget (a ′, b′, c′))}
= [[Definition]]
do {(b′, c′) ← sl .mputR (a ′, c); return ((a ′, b′, c′), a ′)}

= [[monad unit]]
do {(b′, c′) ← sl .mputR (a ′, c); s ′ ← return (a ′, b′, c′); return (s ′, a ′)}

= [[Definition]]
do {s ′ ← sp.left .put (a, b, c) a ′; return (s ′, a ′)}

The proof for (MCreateGet) is similar.

do {s ← sp.left .create a; return (s, sp.left .mget s)}
= [[Definition]]
do {(b′, c′) ← sl .mputR (a, c); s ← return (a, b′, c′);

return (s, sp.left .mget s)}
= [[monad unit]]
do {(b′, c′) ← sl .mputR (a, c);

return ((a, b′, c′), sp.left .mget (a, b′, c′))}
= [[Definition]]
do {(b′, c′) ← sl .mputR (a, c); return ((a, b′, c′), a)}

= [[monad unit]]
do {(b′, c′) ← sl .mputR (a, c); s ← return (a, b′, c′); return (s, a)}

= [[Definition]]
do {s ← sp.left .create a; return (a, s)} ��

C Proofs for Sect. 4

Lemma 4.3. Suppose l1 :: A � B and l2 :: C � B are pure lenses. Then (l1 ��

l2).left ; l1 = (l1 �� l2).right ; l2. ♦
Proof. Let (l , r) = l1 �� l2. We show that each component of l ; l1 equals the
corresponding component of r ; l2.

For get :

(l ; l1).get (a, c)
= [[Definition]]

24 F. Abou-Saleh et al.

l1.get (l .get (a, c))
= [[Definition]]
l1.get a

= [[Consistency]]
l2.get c

= [[Definition]]
l2.get (r .get (a, c))

= [[Definition]]
(r ; l2).get (a, c)

For put :

(l ; l1).put (a, c) b
= [[Definition]]
l .put (a, c) (l1.put (l .get (a, c)) b)

= [[Definition]]
l .put (a, c) (l1.put a b)

= [[Definition]]
let a ′ = l1.put a b in
let c′ = l2.put c (l1.get a ′) in (a ′, c′)

= [[inline let]]
(l1.put a b, l2.put c (l1.get (l1.put a b)))

= [[(PutGet)]]
(l1.put a b, l2.put c b)

= [[reverse above steps]]
(r ; l2).put (a, c) b

Finally, for create:

(l ; l1).create b
= [[Definition]]
l .create (l1.create b)

= [[Definition]]
let c = l2.create (l1.get (l1.create b)) in (l1.create b, c)

= [[(CreateGet)]]
let c = l2.create b in (l1.create b, c)

= [[Inline let]]
(l1.create b, l2.create b)

= [[reverse above steps]]
(r ; l2).create b ��

Theorem 4.9. Given sp1 :: [A �S1 � B]M , sp2 :: [A �S2 � B]M , if
sp1 ≡s sp2 then sp1 ≡b sp2. ♦
Proof. We give the details for the case sp1 � sp2. First, write (l1, r1) = sp1 and
(l2, r2) = sp2, and suppose l ::S1 �S2 is a lens satisfying l1 = l ; l2 and r1 = l ; r2.

We need to define a bisimulation consisting of a set R ⊆ S1 × S2 and a span
sp = (l0, r0) :: [A �R � B]M such that fst is a base map from sp to sp1 and

Reflections on Monadic Lenses 25

snd is a base map from sp to sp2. We take R = {(s1, s2) | s2 = l .get (s1)} and
proceed as follows:

l0 :: [R � A]M
l0.mget (s1, s2) = l1.mget s1
l0.mput (s1, s2) a = do {s ′

1 ← l1.mput s1 a; return (s ′
1, l .get s

′
1)}

l0.mcreate a = do {s1 ← l1.mcreate a; return (s1, l .get s1)}
r0 :: [R � B]M
r0.mget (s1, s2) = r1.mget s1
r0.mput (s1, s2) b = do {s ′

1 ← r1.mput s1 b; return (s ′
1, l .get s

′
1)}

r0.mcreate b = do {s1 ← r1.mcreate a; return (s1, l .get s1)}

We must now show that l0 and r0 are well-behaved (full) lenses, and that the
projections fst and snd map sp = (l0, r0) to sp1 and sp2 respectively.

We first show that l0 is well-behaved; the reasoning for r0 is symmetric. For
(MGetPut) we have:

l0.mput (s1, s2) (l0.mget (s1, s2))
= [[Definition]]
do {s ′

1 ← l1.mput s1 (l1.mget s1); return (s ′
1, l .get s

′
1)}

= [[(MPutGet)]]
do {s ′

1 ← return s1; return (s ′
1, l .get s

′
1)}

= [[Monad unit]]
return (s1, l .get s1)

= [[s2 = l .get s1]]
return (s1, s2)

For (MPutGet) we have:

do {(s ′′
1 , s ′′

2) ← l0.mput (s1, s2) a; return ((s ′′
1 , s ′′

2), l0.mget (s ′′
1 , s ′′

2))}
= [[Definition]]
do {s ′

1 ← l1.mput s1 a; (s ′′
1 , s ′′

2) ← return (s ′
1, l .get s

′
1);

return ((s ′′
1 , s ′′

2), l1.mget s ′
1)}

= [[Monad unit]]
do {s ′

1 ← l1.mput s1 a; return ((s ′
1, l .get s

′
1), l1.mget s ′

1)}
= [[(MPutGet)]]
do {s ′

1 ← l1.mput s1 a; return ((s ′
1, l .get s

′
1), a)}

= [[Monad unit]]
do {s ′

1 ← l1.mput s1 a; (s ′′
1 , s ′′

2) ← return (s ′
1, l .get s

′
1);

return ((s ′′
1 , s ′′

2), a)}
= [[Definition]]
do {(s ′′

1 , s ′′
2) ← l0.mput (s1, s2) a; return ((s ′′

1 , s ′′
2), a)}

Finally, for (MCreateGet) we have:

do {(s1, s2) ← l0.mcreate a; return ((s1, s2), l0.mget (s1, s2))}
= [[Definition]]

26 F. Abou-Saleh et al.

do {s ′
1 ← l1.mcreate a; (s1, s2) ← return (s ′

1, l .get s
′
1);

return ((s1, s2), l1.mget s1)}
= [[Monad unit]]
do {s ′

1 ← l1.mcreate a; return ((s ′
1, l .get s

′
1), l1.mget s ′

1)}
= [[(MCreateGet)]]
do {s ′

1 ← l1.mcreate a; return ((s ′
1, l .get s

′
1), a)}

= [[Monad unit]]
do {s ′

1 ← l1.mcreate a; (s1, s2) ← return (s ′
1, l .get s

′
1);

return ((s1, s2), a)}
= [[Definition]]
do {(s1, s2) ← l0.mcreate a; return ((s1, s2), a)}

Next, we show that fst is a base map from l0 to l1 and snd is a base map from l0
to l2. It is easy to show that fst is a base map from l0 to l1 by unfolding definitions
and applying of monad laws. To show that snd is a base map from l0 to l2, we
need to verify the following three equations that show that snd commutes with
mget , mput and mcreate:

l0.mget (s1, s2) = l2.mget s2
do {(s ′

1, s
′
2) ← l0.mput (s1, s2) a; return s ′

2} = l2.mput s2 a
do {(s1, s2) ← l0.mcreate a; return s2} = l2.mcreate a

For the mget equation:

l0.mget (s1, s2)
= [[Definition]]
l1.mget s1

= [[Assumption l ; l2 = l1]]
(l ; l2).mget s1

= [[Definition]]
l2.mget (l .get s1)

= [[(s1, s2) ∈ R]]
l2.mget s2

For the mput equation:

do {(s ′
1, s

′
2) ← l0.mput (s1, s2) a; return s ′

2}
= [[Definition]]
do {s ′′

1 ← l1.mput s1 a; (s ′
1, s

′
2) ← return (s ′′

1 , l .get s
′′
1); return s ′

2}
= [[Monad laws]]
do {s ′′

1 ← l1.mput s1 a; return (l .get s ′′
1)}

= [[l ; l2 = l1]]
do {s ′′

1 ← (l ; l2).mput s1 a; return (l .get s ′′
1)}

= [[Definition]]
do {s ′′

2 ← l2.mput (l .get s1) a; s ′′
1 ← return (l .put s1 s ′′

2); return (l .get s ′′
1)}

= [[Monad laws]]
do {s ′′

2 ← l2.mput (l .get s1) a; return (l .get (l .put s1 s ′′
2))}

= [[(PutGet)]]

Reflections on Monadic Lenses 27

do {s ′′
2 ← l2.mput (l .get s1) a; return s ′′

2 }
= [[(s1, s2) ∈ R so l .get s1 = s2]]
do {s ′′

2 ← l2.mput s2 a; return s ′′
2 }

= [[Monad laws]]
l2.mput s2 a

For the mcreate equation:

do {(s1, s2) ← l0.mcreate a; return s2}
= [[Definition]]
do {s ′

1 ← l1.mcreate a; (s1, s2) ← return (s ′
1, l .get s

′
1); return s2}

= [[Monad laws]]
do {s ′

1 ← l1.mcreate a; return (l .get s ′
1)}

= [[l ; l2 = l1]]
do {s ′

1 ← (l ; l2).mcreate a; return (l .get s ′
1)}

= [[Definition]]
do {s ′

2 ← l2.mcreate a; s ′
1 ← return (l .create s ′

2); return (l .get s ′
1)}

= [[Monad laws]]
do {s ′

2 ← l2.mcreate a; return (l .get (l .create s ′
2))}

= [[(CreateGet)]]
do {s ′

2 ← l2.mcreate a; return s ′
2}

= [[Monad laws]]
l2.mcreate a

Similar reasoning suffices to show that fst is a base map from r0 to r1 and snd
is a base map from r0 to r2, so we can conclude that R and (l , r) constitute a
bisimulation between sp1 and sp2, that is, sp1 ≡b sp2. ��
Theorem 4.10. Given sp1 :: A �S1 � B , sp2 :: A �S2 � B , if sp1 ≡b sp2

then sp1 ≡s sp2. ♦
Proof. For convenience, we again write sp1 = (l1, r1) and sp2 = (l2, r2). We are
given R and a span sp0 :: A �R � B constituting a bisimulation sp1 ≡b sp2.
Let sp0 = (l0, r0). For later reference, we list the properties that must hold by
virtue of this bisimulation for any (s1, s2) ∈ R:

l0.get (s1, s2) = l1.get s1 l0.get (s1, s2) = l2.get s2
fst (l0.put (s1, s2) a) = l1.put s1 a snd (l0.put (s1, s2) a) = l2.put s2 a
fst (l0.create a) = l1.create s1 snd (l0.create a) = l2.create a
r0.get (s1, s2) = r1.get s1 r0.get (s1, s2) = r2.get s2
fst (r0.put (s1, s2) b) = r1.put s1 b snd (r0.put (s1, s2) b) = r2.put s2 b
fst (r0.create b) = r1.create s1 snd (r0.create b) = r2.create b

In addition, it follows that:

l0.put (s1, s2) a = (l1.put s1 a, l2.put s2 a) ∈ R
r0.put (s1, s2) b = (r1.put s1 b, r2.put s2 b) ∈ R

28 F. Abou-Saleh et al.

l0.create a = (l1.create a, l2.create a) ∈ R
r0.create b = (r1.create b, r2.create b) ∈ R

which also implies the following identities, which we call twists:

r1.get (l1.put s1 a) = r0.get (l1.put s1 a, l2.put s2 a) = r2.get (l2.put s2 a)
l1.get (r1.put s1 b) = l0.get (r1.put s1 b, r2.put s2 b) = l2.get (r2.put s2 b)
r1.get (l1.create a) = r0.get (l1.create a, l2.create a) = r2.get (l2.create a)
l1.get (r1.create b) = l0.get (r1.create b, r2.create b) = l2.get (r2.create b)

It suffices to construct a span sp = (l , r) :: S1 �R � S2 satisfying l ; l1 = r ; l2
and l ; r1 = r ; r2. Define l and r as follows:

l .get = fst
l .put (s1, s2) s ′

1 = l0.put (s1, s2) (l1.get s ′
1)

l .create s1 = l0.create (l1.get s1)
r .get = snd
r .put (s1, s2) s ′

2 = l0.put (s1, s2) (l2.get s ′
2)

r .create s2 = l0.create (l2.get s2)

Notice that by construction l :: R � S1 and r :: R � S2, that is, since we have
used l0 and r0 to define l and r , we do not need to do any more work to check
that the pairs produced by create and put remain in R. Notice also that l and r
only use the lenses l1 and l2, not r1 and r2; we will show nevertheless that they
satisfy the required properties.

First, to show that l ; l1 = r ; l2, we proceed as follows for each operation.
For get :

(l ; l1).get (s1, s2)
= [[definition]]
l1.get (l .get (s1, s2))

= [[definition of l .get = fst , fst commutes with get]]
l0.get (s1, s2)

= [[reverse reasoning]]
(r ; l2).get (s1, s2)

For put , we have:

(l ; l1).put (s1, s2) a
= [[Definition]]
l .put (s1, s2) (l1.put s1 a)

= [[Definition]]
l0.put (s1, s2) (l1.get (l1.put s1 a))

= [[(PutGet) for l1]]
l0.put (s1, s2) a

= [[(PutGet) for l2]]
l0.put (s1, s2) (l2.get (l2.put s2 a))

Reflections on Monadic Lenses 29

= [[Definition]]
r .put (s1, s2) (l2.put s2 a)

= [[Definition]]
(r ; l2).put (s1, s2) a

Finally, for create we have:

(l ; l1).create a
= [[Definition]]
l .create (l1.create a)

= [[Definition]]
l0.create (l1.get (l1.create a))

= [[(CreateGet) for l1]]
l0.create a

= [[(CreateGet) for l2]]
l0.create (l2.get (l2.create a))

= [[Definition]]
r .create (l2.create a)

= [[Definition]]
(r ; l2).create a

Next, we show that l ; r1 = r ; r2. For get :

(l ; r1).get (s1, s2)
= [[Definition]]
r1.get (l .get (s1, s2))

= [[definition of l .get = fst , fst commutes with r1.get]]
r0.get (s1, s2)

= [[reverse above reasoning]]
(r ; r2).get (s1, s2)

For put , we have:

(l ; r1).put (s1, s2) b
= [[Definition]]
l .put (s1, s2) (r1.put s1 b)

= [[Definition]]
l0.put (s1, s2) (l1.get (r1.put s1 b))

= [[Twist equation]]
l0.put (s1, s2) (l2.get (r2.put s2 b))

= [[Definition]]
r .put (s1, s2) (r2.put s2 b)

= [[Definition]]
(r ; r2).put (s1, s2) b

Finally, for create we have:

(l ; r1).create b
= [[Definition]]

30 F. Abou-Saleh et al.

l .create (r1.create b)
= [[Definition]]
l0.create (l1.get (r1.create b))

= [[Twist equation]]
l0.create (l2.get (r2.create b))

= [[Definition]]
r .create (r2.create b)

= [[Definition]]
(r ; r2).create b

We must also show that l and r are well-behaved full lenses. To show that l is
well-behaved, we proceed as follows. For (GetPut):

l .get (l .put (s1, s2) s ′
1)

= [[Definition]]
fst (l0.put (s1, s2) (l1.get s ′

1))
= [[fst commutes with put]]
l1.put s1 (l1.get s ′

1))
= [[(GetPut) for l1]]
s ′
1

For (PutGet):

l .put (s1, s2) (l .get (s1, s2))
= [[Definition]]
l0.put (s1, s2) (l1.get s1)

= [[Eta-expansion for pairs]]
(fst (l0.put (s1, s2) (l1.get s1)), snd (l0.put (s1, s2) (l1.get s1)))

= [[fst , snd commutes with put]]
(l1.put s1 (l1.get s1), l2.put s2 (l1.get s1))

= [[l1.get s1 = l2.get s2]]
(l1.put s1 (l1.get s1), l2.put s2 (l2.get s2))

= [[(PutGet) for l1, l2]]
(s1, s2)

For (CreateGet):

l .create (l .get (s1, s2))
= [[Definition]]
l0.create (l1.get s1)

= [[Eta-expansion for pairs]]
(fst (l0.create (l1.get s1)), snd (l0.create (l1.get s1)))

= [[fst , snd commutes with put]]
(l1.create (l1.get s1), l1.create (l1.get s1))

= [[l1.get s1 = l2.get s2]]
(l1.create (l1.get s1), l1.create (l2.get s2))

= [[(CreateGet)]]
(s1, s2)

Reflections on Monadic Lenses 31

Finally, notice that l and r are defined symmetrically so essentially the same
reasoning shows r is well-behaved.

To conclude, sp = (l , r) constitutes a span of lenses witnessing that
sp1 ≡s sp2. ��

References

Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Notions of bidirec-
tional computation and entangled state monads. In: Hinze, R., Voigtländer, J. (eds.)
MPC 2015. LNCS, vol. 9129, pp. 187–214. Springer, Heidelberg (2015a)

Abou-Saleh, F., McKinna, J., Gibbons, J.: Coalgebraic aspects of bidirectional com-
putation. In: BX 2015, CEUR-WS, vol. 1396, pp. 15–30 (2015b)

Cheney, J., McKinna, J., Stevens, P., Gibbons, J., Abou-Saleh, F.: Entangled state
monads. In: Terwilliger and Hidaka (2014)

Diviánszky, P.: LGtk API correction. http://people.inf.elte.hu/divip/LGtk/
CorrectedAPI.html

Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for
bidirectional tree transformations: a linguistic approach to the view-update problem.
TOPLAS 29(3), 17 (2007)

Foster, N., Matsuda, K., Voigtländer, J.: Three complementary approaches to bidi-
rectional programming. In: Gibbons, J. (ed.) Generic and Indexed Programming.
LNCS, vol. 7470, pp. 1–46. Springer, Heidelberg (2012)

Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL, pp. 371–384.
ACM (2011)

Johnson, M., Rosebrugh, R.: Spans of lenses. In: Terwilliger and Hidaka (2014)
Jones, M.P., Duponcheel, L.: Composing monads. Technical report RR-1004, DCS,

Yale (1993)
King, D.J., Wadler, P.: Combining monads. In: Proceedings of the 1992 Glasgow Work-

shop on Functional Programming, pp. 134–143 (1992)
Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters. In:

POPL, pp. 333–343 (1995)
Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-

tional programming. In: PEPM, pp. 39–50. ACM (2014). http://doi.acm.org/10.
1145/2543728.2543737

Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Eng-
berg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg
(2002)

Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. SoSyM 9(1), 7–20 (2010)

Terwilliger, J., Hidaka, S. (eds.): BX Workshop (2014). http://ceur-ws.org/Vol-1133/
#bx

TLCBX Project: a theory of least change for bidirectional transformations (2013–2016).
http://www.cs.ox.ac.uk/projects/tlcbx/, http://groups.inf.ed.ac.uk/bx/

Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493 (1992).
http://dx.org/10.1017/S0960129500001560

Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.) AFP
1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

http://people.inf.elte.hu/divip/LGtk/CorrectedAPI.html
http://people.inf.elte.hu/divip/LGtk/CorrectedAPI.html
http://doi.acm.org/10.1145/2543728.2543737
http://doi.acm.org/10.1145/2543728.2543737
http://ceur-ws.org/Vol-1133/#bx
http://ceur-ws.org/Vol-1133/#bx
http://www.cs.ox.ac.uk/projects/tlcbx/
http://groups.inf.ed.ac.uk/bx/
http://dx.org/10.1017/S0960129500001560

	Reflections on Monadic Lenses
	1 Introduction
	2 Asymmetric Monadic Lenses
	2.1 A Naive Approach
	2.2 Monadic Put-Lenses
	2.3 Monadic Lenses

	3 Symmetric Monadic Lenses and Spans
	3.1 Naive Monadic Symmetric Lenses
	3.2 Entangled State Monads
	3.3 Spans of Monadic Lenses

	4 Equivalence of Spans
	5 Conclusions
	A Proofs for Sect.2
	B Proofs for Sect.3
	C Proofs for Sect.4
	References

