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Preface

This volume is dedicated to Professor Phil Wadler, and the collection of papers form a
Festschrift for Phil. The contributions are made by some of the many who know Phil
and have been influenced by him. The research papers included here represent some
of the areas in which Phil has been active, and the editors thank their colleagues for
agreeing to contribute to this Festschrift. Each paper received at least two reviews, and
we thank the many external reviewers who helped to make this feasible. These pro-
ceedings were prepared with the aid of EasyChair.

In this preface, we attempt to summarize Phil Wadler’s scientific achievements. In
addition, we describe the personal style and enthusiasm that Phil has brought to the
subject.

Introduction

Throughout his career Phil has made fundamental contributions to programming
language design and formal systems for capturing the essence of programming lan-
guage features. In his research he fruitfully combines theory with practice. Many of his
contributions have opened up entire fields of investigation, for example, the “Theorems
for Free!” paper [82] inspired much research on parametricity. At other times Phil has
worked to bring a technique into the mainstream, for example, popularizing the use of
monads for describing effectful computations in functional languages [92].

He has contributed to widely used programming languages and important type
systems. His contributions to popular languages include many aspects of the design and
implementation of Haskell [31], a formal account of the XQuery declarative query
language [103], and generic types for Java [6]. His contributions to important type
systems include his work on effects [118], linearity [88], and blame [113].

He has also developed experimental programming languages. Orwell was an early
experimental lazy functional programming language, and a precursor to Haskell, and
Links [14] is a current experimental functional programming language for the Web.

Phil stimulates fellow researchers. He asks hard and unexpected questions, and often
provides valuable critical insights. He takes a personal interest in the work of his
research students, providing timely and creative feedback.

Phil sets high standards. He will not accept a technical explanation until it is crisp,
clear, and concise. As a result, interacting with Phil can sometimes be painful, par-
ticularly if your idea has not yet fully crystallized. However, if you persist and carefully
address each of Phil’s concerns then you often end up with a much deeper under-
standing of the original problem.



Scientific Contribution

Rather than giving a detailed review of Phil’s research, we provide a few highlights.
Much of Phil’s work is collaborative with other research workers and with his research
students and post-docs, often with long-standing collaborations. Our abridged summary
does not mention all of the many collaborators in his work, but the list of co-authors in
the bibliography below documents these collaborations.

In addition to specific technical contributions outlined below, Phil has provided
leadership in the community, for example, serving as chair of the ACM Special Interest
Group on Programming Languages (SIGPLAN) between 2009 and 2012.

Programming Languages Phil has made major contributions to programming lan-
guage design, in particular contributing to functional programming and the theory
underpinning functional languages.

Phil’s PhD thesis, entitled “Listlessness Is Better Than Laziness,” made an early
contribution to the field of deforestation, and the title, like many of his research paper
titles, contains an apposite wordplay. (Phil’s paper titles even appear as the subject of a
“spotlight on style” in a book by Helen Sword, Stylish Academic Writing.)

In 1984 he developed the Orwell lazy functional language, a precursor of Haskell. In
the late 1980s he added ad hoc polymorphism to Haskell in the form of type classes
[115]. Type classes became influential, for example, laying the foundation for concepts
in C++ and inspiring the design of implicits and traits in Scala.

Phil proposed views [79] as a way of reconciling pattern matching with abstract data
types. His work on views was influential in the design of pattern matching for
dependently typed programming languages such as Agda and Idris. Abstractions
similar to views are now part of F# and Haskell.

Another important piece of work was to develop the theory of, and evangelize the
use of, monads for structuring functional programs. Monads were originally proposed
by Eugenio Moggi as a basis for reasoning about program equivalence, by making a
distinction between values and computations, and allowing the notion of computation
to vary. Phil showed how they could be used for a variety of purposes, for instance,
expressing queries over collection classes and stateful computations in a functional
language. Monads were initially adopted in Haskell, and subsequently in other lan-
guages, such as OCaml, F#, and Scala. Phil proposed monad comprehensions [86],
which have recently made a comeback in Microsoft’s LINQ, F#, and Haskell.

His work on type erasure for Java [6] directly inspired the current design and
implementation of generics in Java [53].

His work on the XQuery typed functional language for querying XML [103] is
another example of Phil applying theory to improve a programming language tech-
nology. He encouraged the development of a formal semantics for XQuery by showing
that the natural language semantics was flawed.

In 2005 Phil began working on the Links functional web programming language
[14]. From a single source file, Links generates target code for all three tiers of a typical
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Web application (client, server, and database). Ideas developed in Links have had
significant impact in industry. For instance, formlets [15], a canonical abstraction for
constructing Web forms, have become an integral part of IntelliFactory’s WebSharper
framework for Web programming in F#. Similarly, the Links approach to
language-integrated query has influenced the design of Microsoft’s LINQ.

Links remains an active research vehicle. Phil currently heads a research project
entitled “From Data Types to Session Types—A Basis for Concurrency and Distri-
bution” (or simply “ABCD”). An important part of the ABCD project involves adding
session types to Links. The design is partly inspired by Phil’s theoretical work con-
necting classical linear logic and session types [111].

Type Systems Phil has made major contributions to type systems for programming
languages and logic.

Phil’s work on free theorems [82] helped popularize relational parametricity, a
fundamental notion of uniformity enjoyed by second-order logic and hence the poly-
morphic lambda calculus [106]. Relational parametricity underlies the design of
generics in Java and C#. Free theorems and relational parametricity have been applied
in areas ranging from dimension types to bidirectional programming to physics.

In the 1990s Phil wrote a series of papers on linear logic [3, 48, 49, 61, 68, 85, 88,
89], promoting its application to programming languages via linear type systems.
Nowadays a number of research languages, including F*, Clean, Cyclone, Idris, and
Links, make use of some form of linear typing. Mozilla’s language Rust, intended as a
safe alternative to C, also incorporates a form of linearity. Furthermore, linear types are
fundamental to session typing.

Having successfully popularized the idea of using monads to structure effectful
programs, Phil later observed a deep correspondence between monads and effect type
systems [118]. Recently, his work has inspired the investigation of an important
refinement of monads known as graded monads.

Phil has long been interested in the Curry-Howard correspondence between
propositions in logic and types in programming languages. His CACM article [114]
and regular invited talks at industry conferences are helping to make the Curry-Howard
correspondence much more widely appreciated. As well as the Curry-Howard corre-
spondence between second-order intuitionistic logic and polymorphic lambda calculus
[106], a notable correspondence Phil has worked on recently is that between classic
linear logic and session types [111].

Within the last ten years Phil has developed an interest in gradual typing—systems
that combine statically typed programs with untyped programs in a controlled fashion.
He introduced the blame calculus [116] (along with the slogan “well-typed programs
cannot be blamed”), a formal language for tracking which untyped part of a program
causes a run-time error in gradually typed programming languages. He continues to
develop the theory of blame, for instance, extending it to account for new features such
as polymorphism [1].
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Biographical Details

Philip Lee Wadler was born in 1956. He received a Bachelor of Science degree in
Mathematics from Stanford University in 1977, and a Master of Science degree in
Computer Science from Carnegie Mellon University in 1979. He completed his Doctor
of Philosophy in Computer Science at Carnegie Mellon University in 1984. His thesis,
“Listlessness Is Better Than Laziness,” was supervised by Nico Habermann.

Between 1983 and 1987 Phil worked as a Research Fellow at St. Cross College in
Oxford, working in the Programming Research Group with Mary Sheeran, Richard
Bird, John Hughes, and others. (Richard and Phil co-authored the influential book
Introduction to Functional Programming [4]). In 1987 Phil moved to the University of
Glasgow to join Mary Sheeran and John Hughes, and shortly thereafter they attracted
Simon Peyton Jones to join them. At Glasgow Phil was appointed Reader in 1990, and
Professor in 1993. In 1996 he joined Bell Labs, Lucent Technologies, as a researcher.
Subsequently, his group was spun out as part of Avaya Labs. In 2003 Phil took up his
current position as Professor of Theoretical Computer Science in the Laboratory for
Foundations of Computer Science, in the School of Informatics at the University of
Edinburgh. In 2006, Phil wrote the O’Reilly book Java Generics and Collections [53],
co-authored with his friend Maurice Naftalin.

Phil maintains an impressive group of post-docs, PhD students, and visitors. He has
held visiting positions in Chalmers University of Technology and the Universities of
Sydney and Copenhagen. He is regularly invited to speak at conferences across the
world, both academic and industrial. Phil also regularly performs computer
science-oriented stand-up comedy.

The quality of Phil’s research has been recognized by a plethora of awards, and
some of the notable ones are as follows. He was elected to the Royal Society of
Edinburgh in 2005, and as an ACM Fellow in 2007. He held a Wolfson-Royal Society
Research Merit award between 2004 and 2009. Together with Simon Peyton Jones he
was awarded the Most Influential POPL Paper Award in 2003 (for 1993) for their paper
“Imperative Functional Programming” [39].

Throughout his career Phil has been passionate about teaching. At Edinburgh he
successfully established the first-year Haskell course—Haskell is now the first pro-
gramming language undergraduate students are exposed to. He has often taught more
courses than required, and inspires students with his passion for the subject. This
enthusiasm has been recognized, for example, in the Edinburgh University Student
Association (EUSA) Teaching Awards 2009.

At the end of 2014, Phil fell ill with what turned out to be a serious illness. Initially,
his symptoms were mysterious to doctors, so they performed a full range of tests. He
had a serious, but treatable, heart and liver infection. Additionally, but unrelated, a
small tumor on one of his kidneys was detected. Phil was fortunate to have the
infection when he did, because otherwise the kidney tumor would probably have gone
undetected until much later. After the infection had cleared, Phil had the offending
kidney removed, and is now fully recovered.

Phil was supported by his wife Catherine from the time they met in Oxford in 1985
until their amicable separation in 2015. Phil and Catherine are devoted parents to their
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twin son and daughter, Adam and Leora. Phil is actively engaged in wider society, for
example, maintaining a liberal Jewish faith, being active in the University and College
Union, and the Scottish Green Party.

January 2016 Sam Lindley
Conor McBride
Don Sannella
Phil Trinder
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Abstract. Bidirectional transformations (bx) have primarily been
modeled as pure functions, and do not account for the possibility of the
side-effects that are available in most programming languages. Recently
several formulations of bx that use monads to account for effects have
been proposed, both among practitioners and in academic research. The
combination of bx with effects turns out to be surprisingly subtle, leading
to problems with some of these proposals and increasing the complexity
of others. This paper reviews the proposals for monadic lenses to date,
and offers some improved definitions, paying particular attention to the
obstacles to naively adding monadic effects to existing definitions of pure
bx such as lenses and symmetric lenses, and the subtleties of equivalence
of symmetric bidirectional transformations in the presence of effects.

1 Introduction

Programming with multiple concrete representations of the same conceptual
information is a commonplace, and challenging, problem. It is commonplace
because data is everywhere, and not all of it is relevant or appropriate for every
task: for example, one may want to work with only a subset of one’s full email
account on a mobile phone or other low-bandwidth device. It is challenging
because the most direct approach to mapping data across sources A and B is to
write separate functions, one mapping to B and one to A, following some (not
always explicit) specification of what it means for an A value and a B value to
be consistent. Keeping these transformations coherent with each other, and with
the specification, is a considerable maintenance burden, yet it remains the main
approach found in practice.

Over the past decade, a number of promising proposals to ease programming
such bidirectional transformations have emerged, including lenses (Foster et al.
2007), bx based on consistency relations (Stevens 2010), symmetric lenses (Hof-
mann et al. 2011), and a number of variants and extensions (e.g. (Pacheco et
al. 2014; Johnson and Rosebrugh 2014)). Most of these proposals consist of an
interface with pure functions and some equational laws that characterise good
behaviour; the interaction of bidirectionality with other effects has received com-
paratively little attention.
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 1–31, 2016.
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Some programmers and researchers have already proposed ways to combine
lenses and monadic effects (Diviánszky 2013; Pacheco et al. 2014). Recently, we
have proposed symmetric notions of bidirectional computation based on entan-
gled state monads (Cheney et al. 2014; Abou-Saleh et al. 2015a) and coalge-
bras (Abou-Saleh et al. 2015b). As a result, there are now several alternative
proposals for bidirectional transformations with effects. While this diversity is
natural and healthy, reflecting an active research area, the different proposals
tend to employ somewhat different terminology, and the relationships among
them are not well understood. Small differences in definitions can have dispro-
portionate impact.

In this paper we summarise and compare the existing proposals, offer some
new alternatives, and attempt to provide general and useful definitions of
“monadic lenses” and “symmetric monadic lenses”. Perhaps surprisingly, it
appears challenging even to define the composition of lenses in the presence
of effects, especially in the symmetric case. We first review the definition of pure
asymmetric lenses and two prior proposals for extending them with monadic
effects. These definitions have some limitations, and we propose a new definition
of monadic lens that overcomes them.

Next we consider the symmetric case. The effectful bx and coalgebraic bx in
our previous work are symmetric, but their definitions rely on relatively heavy-
weight machinery (monad transformers and morphisms, coalgebra). It seems
natural to ask whether just adding monadic effects to symmetric lenses in the
style of (Hofmann et al. 2011) would also work. We show that, as for asym-
metric lenses, adding monadic effects to symmetric lenses is challenging, and
give examples illustrating the problems with the most obvious generalisation.
We then briefly discuss our recent work on symmetric forms of bx with monadic
effects (Cheney et al. 2014; Abou-Saleh et al. 2015a, b). Defining composition
for these approaches also turns out to be tricky, and our definition of monadic
lenses arose out of exploring this space. The essence of composition of symmetric
monadic bx, we now believe, can be presented most easily in terms of monadic
lenses, by considering spans, an approach also advocated (in the pure case) by
Johnson and Rosebrugh (2014).

Symmetric pure bx need to be equipped with a notion of equivalence, to
abstract away inessential differences of representation of their “state” or “com-
plement” spaces. As noted by Hofmann et al. (2011) and Johnson and Rosebrugh
(2014), isomorphism of state spaces is unsatisfactory, and there are competing
proposals for equivalence of symmetric lenses and spans. In the case of spans
of monadic lenses, the right notion of equivalence seem even less obvious. We
compare three, increasingly coarse, equivalences of spans based on isomorphism
(following Abou-Saleh et al. (2015a)), span equivalence (following Johnson and
Rosebrugh (2014)), and bisimulation (following Hofmann et al. (2011) and Abou-
Saleh et al. (2015b)). In addition, we show a (we think surprising) result: in the
pure case, span equivalence and bisimulation equivalence coincide.

In this paper we employ Haskell-like notation to describe and compare for-
malisms, with a few conventions: we write function composition f · g with a
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centred dot, and use a lowered dot for field lookup x .f , in contrast to Haskell’s
notation f x . Throughout the paper, we introduce a number of different represen-
tations of lenses, and rather than pedantically disambiguating them all, we freely
redefine identifiers as we go. We assume familiarity with common uses of monads
in Haskell to encapsulate effects (following Wadler (1995)), and with the do-
notation (following Wadler’s monad comprehensions Wadler (1992)). Although
some of these ideas are present or implicit in recent papers (Hofmann et al. 2011;
Johnson and Rosebrugh 2014; Cheney et al. 2014; Abou-Saleh et al. 2015a, b),
this paper reflects our desire to clarify these ideas and expose them in their
clearest form — a desire that is strongly influenced by Wadler’s work on a wide
variety of related topics (Wadler 1992; King and Wadler 1992; Wadler 1995),
and by our interactions with him as a colleague.

2 Asymmetric Monadic Lenses

Recall that a lens (Foster et al. 2007, 2012) is a pair of functions, usually called
get and put :

data α � β = Lens {get :: α → β, put :: α → β → α}
satisfying (at least) the following well-behavedness laws:

(GetPut) put a (get a) = a
(PutGet) get (put a b) = b

The idea is that a lens of type A � B maintains a source of type A, providing
a view of type B onto it; the well-behavedness laws capture the intuition that
the view faithfully reflects the source: if we “get” a b from a source a and then
“put” the same b value back into a, this leaves a unchanged; and if we “put”
a b into a source a and then “get” from the result, we get b itself. Lenses are
often equipped with a create function

data α � β = Lens {get :: α → β, put :: α → β → α, create :: β → α}
satisfying an additional law:

(CreateGet) get (create b) = b

When the distinction is important, we use the term full for well-behaved lenses
equipped with a create operation. It is easy to show that the source and view
types of a full lens must either both be empty or both non-empty, and that the
get operation of a full lens is surjective.

Lenses have been investigated extensively; see for example Foster et al. (2012)
for a recent tutorial overview. For the purposes of this paper, we just recall the
definition of composition of lenses:

(;) :: (α � β) → (β � γ) → (α � γ)
l1 ; l2 = Lens (l2.get · l1.get)

(λa c → l1.put a (l2.put (l1.get a) c))
(l1.create · l1.create)

which preserves well-behavedness.
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2.1 A Naive Approach

As a first attempt, consider simply adding a monadic effect μ to the result types
of both get and put .

data [α �0 β]μ = MLens0 {mget :: α → μ β,mput :: α → β → μ α}
Such an approach has been considered and discussed in some recent Haskell
libraries and online discussions (Diviánszky 2013). A natural question arises
immediately: what laws should a lens l :: [A �0 B ]M satisfy? The following gen-
eralisations of the laws appear natural:

(MGetPut0) do {b ← mget a;mput a b} = return a
(MPutGet0) do {a ′ ← mput a b;mget a ′} = do {a ′ ← mput a b; return b}

that is, if we “get” b from a and then “put” the same b value back into a, this
has the same effect as just returning a (and doing nothing else), and if we “put”
a value b and then “get” the result, this has the same effect as just returning b
after doing the “put”. The obvious generalisation of composition from the pure
case for these operations is:

(;) :: [α �0 β]µ → [β �0 γ]µ → [α �0 γ]µ
l1 ; l2 = MLens0 (λa → do {b ← l1.mget a; l2.mget b})

(λa c → do {b ← l1.mget a; b′ ← l2.mput b c; l1.mput a b′ })

This proposal has at least two apparent problems. First, the (MGetPut0) law
appears to sharply constrain mget : indeed, if mget a has an irreversible side-
effect then (MGetPut0) cannot hold. This suggests that mget must either be
pure, or have side-effects that are reversible by mput , ruling out behaviours
such as performing I/O during mget . Second, it appears difficult to compose
these structures in a way that preserves the laws, unless we again make fairly
draconian assumptions about μ. In order to show (MGetPut0) for the composition
l1 ; l2, it seems necessary to be able to commute l2.mget with l1.mget and we
also need to know that doing l1.mget twice is the same as doing it just once.
Likewise, to show (MPutGet0) we need to commute l2.mget with l1.mput .

2.2 Monadic Put-Lenses

Pacheco et al. (2014) proposed a variant of lenses called monadic putback-
oriented lenses. For the purposes of this paper, the putback-orientation of their
approach is irrelevant: we focus on their use of monads, and we provide a slightly
simplified version of their definition:

data [α �1 β]μ = MLens1 {mget :: α → β,mput :: α → β → μ α}
The main difference from their version is that we remove the Maybe type con-
structors from the return type of mget and the first argument of mput . Pacheco
et al. state laws for these monadic lenses. First, they assume that the monad μ
has a monad membership operation
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(∈) :: α → μ α → Bool

satisfying the following two laws:

(∈-ID) x ∈ return x ⇔ True
(∈->>=) y ∈ (m >>= f ) ⇔ ∃x . x ∈ m ∧ y ∈ (f x )

Then the laws for MLens1 (adapted from Pacheco et al. (2014 Proposition 3,
p. 49)) are as follows:

(MGetPut1) v = mget s =⇒ mput s v = return s
(MPutGet1) s ′ ∈ mput s v ′ =⇒ v ′ = mget s ′

In the first law we correct an apparent typo in the original paper, as well as
removing the Just constructors from both laws. By making mget pure, this
definition avoids the immediate problems with composition discussed above, and
Pacheco et al. outline a proof that their laws are preserved by composition.
However, it is not obvious how to generalise their approach beyond monads that
admit a sensible ∈ operation.

Many interesting monads do have a sensible ∈ operation (e.g. Maybe, [ ]).
Pacheco et al. suggest that ∈ can be defined for any monad as x ∈ m ≡ (∃h :
h m = x), where h is what they call a “(polymorphic) algebra for the monad at
hand, essentially, a function of type m a → a for any type a.” However, this
definition doesn’t appear satisfactory for monads such as IO , for which there is
no such (pure) function: the (∈-ID) law can never hold in this case. It is not clear
that we can define a useful ∈ operation directly for IO either: given that m ::IO a
could ultimately return any a-value, it seems safe, if perhaps overly conservative,
to define x ∈ m = True for any x and m. This satisfies the ∈ laws, at least, if we
make a simplifying assumption that all types are inhabited, and indeed, it seems
to be the only thing we could write in Haskell that would satisfy the laws, since
we have no way of looking inside the monadic computation m :: IO a to find out
what its eventual return value is. But then the precondition of the (MPutGet1)
law is always true, which forces the view space to be trivial. These complications
suggest, at least, that it would be advantageous to find a definition of monadic
lenses that makes sense, and is preserved under composition, for any monad.

2.3 Monadic Lenses

We propose the following definition of monadic lenses for any monad M :

Definition 2.1 (Monadic Lens). A monadic lens from source type A to view
type B in which the put operation may have effects from monad M (or “M -lens
from A to B”), is represented by the type [A � B ]M , where

data [α � β]μ = MLens {mget :: α → β,mput :: α → β → μ α}
(dropping the μ from the return type of mget , compared to the definition in
Sect. 2.1). We say that M -lens l is well-behaved if it satisfies
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(MGetPut) do { l .mput a (l .mget a)} = return a
(MPutGet) do {a ′ ← l .mput a b; k a ′ (l .mget a ′)}

= do {a ′ ← l .mput a b; k a ′ b} ♦
Note that in (MPutGet), we use a continuation k ::α → β → μ γ to quantify over
all possible subsequent computations in which a ′ and l .mget a ′ might appear. In
fact, using the laws of monads and simply-typed lambda calculus we can prove
this law from just the special case k = λa b → return (a, b), so in the sequel
when we prove (MPutGet) we may just prove this case while using the strong
form freely in the proof.

The ordinary asymmetric lenses are exactly the monadic lenses over μ = Id ;
the laws then specialise to the standard equational laws. Monadic lenses where
μ = Id are called pure, and we may refer to ordinary lenses as pure lenses also.

Definition 2.2. We can also define an operation that lifts a pure lens to a
monadic lens:

lens2mlens :: Monad μ ⇒ α � β → [α � β]μ
lens2mlens l = MLens (l .get) (λa b → return (l .put a b)) ♦

Lemma 2.3. If l :: Lens α β is well-behaved, then so is lens2mlens l . ♦
Example 2.4. To illustrate, some simple pure lenses include:

idl :: α � α
idl = Lens (λa → a) (λ a → a)
fstl :: (α, β) � α
fstl = MLens fst (λ(s1, s2) s ′

1 → (s ′
1, s2))

Many more examples of pure lenses are to be found in the literature (Foster
et al. 2007, 2012), all of which lift to well-behaved monadic lenses. ♦
As more interesting examples, we present asymmetric versions of the partial and
logging lenses presented by Abou-Saleh et al. (2015a). Pure lenses are usually
defined using total functions, which means that get must be surjective whenever
A is nonempty, and put must be defined for all source and view pairs. One way
to accommodate partiality is to adjust the return type of get to Maybe b or give
put the return type Maybe a to allow for failure if we attempt to put a b-value
that is not in the range of get . In either case, the laws need to be adjusted
somehow. Monadic lenses allow for partiality without requiring such an ad hoc
change. A trivial example is

constMLens :: β → [α � β]Maybe

constMLens b = MLens (const b)
(λa b′ → if b b′ then Just a else Nothing)

which is well-behaved because both sides of (MPutGet) fail if the view is changed
to a value different from b. Of course, this example also illustrates that the mget
function of a monadic lens need not be surjective.
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As a more interesting example, consider:

absLens :: [Int � Int ]Maybe

absLens = MLens abs
(λa b → if b < 0

then Nothing
else Just (if a < 0 then − b else b))

In the mget direction, this lens maps a source number to its absolute value; in
the reverse direction, it fails if the view b is negative, and otherwise uses the
sign of the previous source a to determine the sign of the updated source.

The following logging lens takes a pure lens l and, whenever the source value
a changes, records the previous a value.

logLens :: Eq α ⇒ α � β → [α � β]Writer α

logLens l = MLens (l .get) (λa b →
let a ′ = l .put a b in do {if a � a ′ then tell a else return (); return a ′})

We presented a number of more involved examples of effectful symmetric bx in
(Abou-Saleh et al. 2015a). They show how monadic lenses can employ user inter-
action, state, or nondeterminism to restore consistency. Most of these examples
are equivalently definable as spans of monadic lenses, which we will discuss in
the next section.

In practical use, it is usually also necessary to equip lenses with an ini-
tialisation mechanism. Indeed, as already mentioned, Pacheco et al.’s monadic
put-lenses make the α argument optional (using Maybe), to allow for initiali-
sation when only a β is available; we chose to exclude this from our version of
monadic lenses above.

We propose the following alternative:

data [α � β]μ = MLens {mget :: α → β,
mput :: α → β → μ α,
mcreate :: β → μ α}

and we consider such initialisable monadic lenses to be well-behaved when they
satisfy the following additional law:

(MCreateGet) do {a ← mcreate b; k a (mget a)} = do {a ← mcreate b; k a b}

As with (MPutGet), this property follows from the special case k = λx y →
return (x , y), and we will use this fact freely.

This approach, in our view, helps keep the (GetPut) and (PutGet) laws simple
and clear, and avoids the need to wrap mput ’s first argument in Just whenever
it is called.

Next, we consider composition of monadic lenses.

(;) :: Monad μ ⇒ [α � β]μ → [β � γ]μ → [α � γ]μ
l1 ; l2 = MLens (l2.mget · l1.mget) mput mcreate where
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mput a c = do {b ← l2.mput (l1.mget a) c; l1.mput a b}
mcreate c = do {b ← l2.mcreate; l1.mcreate }

Note that we consider only the simple case in which the lenses share a com-
mon monad μ. Composing lenses with effects in different monads would require
determining how to compose the monads themselves, which is nontrivial (King
and Wadler 1992; Jones and Duponcheel 1993).

Theorem 2.5. If l1 :: [A � B ]M , l2 :: [B � C ]M are well-behaved, then so is
l1 ; l2. ♦

3 Symmetric Monadic Lenses and Spans

Hofmann et al. (2011) proposed symmetric lenses that use a complement to store
(at least) the information that is not present in both views.

data α
γ←→ β = SLens {putR :: (α, γ) → (β, γ),

putL :: (β, γ) → (α, γ),
missing :: γ}

Informally, putR turns an α into a β, modifying a complement γ as it goes,
and symmetrically for putL; and missing is an initial complement, to get the
ball rolling. Well-behavedness for symmetric lenses amounts to the following
equational laws:

(PutRL) let (b, c′) = sl .putR (a, c) in sl .putL (b, c′)
= let (b, c′) = sl .putR (a, c) in (a, c′)

(PutLR) let (a, c′) = sl .putL (b, c) in sl .putR (a, c′)
= let (a, c′) = sl .putL (b, c) in (b, c′)

Furthermore, the composition of two symmetric lenses preserves well-
behavedness, and can be defined as follows:

(;) :: (α σ1←→ β) → (β σ2←→ γ) → (α
(σ1,σ2)←→ γ)

l1 ; l2 = SLens putR putL (l1.missing , l2.missing) where
putR (a, (s1, s2)) = let (b, s ′

1) = putR (a, s1)
(c, s ′

2) = putR (b, s2)
in (c, (s ′

1, s
′
2))

putL (c, (s1, s2)) = let (b, s ′
2) = putL (c, s2)

(a, s ′
1) = putL (b, s1)

in (a, (s ′
1, s

′
2))

We can define an identity symmetric lens as follows:

idsl :: α
()←→ α

idsl = SLens id id ()
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It is natural to wonder whether symmetric lens composition satisfies identity and
associativity laws making symmetric lenses into a category. This is complicated
by the fact that the complement types of the composition idsl; sl and of sl differ,
so it is not even type-correct to ask whether idsl; sl and sl are equal. To make it
possible to relate the behaviour of symmetric lenses with different complement
types, Hofmann et al. defined equivalence of symmetric lenses as follows:

Definition 3.1. Suppose R ⊆ C1×C2. Then f ∼R g means that for all c1, c2, x ,
if (c1, c2) ∈ R and (y , c′

1) = f (x , c1) and (y ′, c′
2) = g (y , c2), then y = y ′ and

(c′
1, c

′
2) ∈ R. ♦

Definition 3.2 (Symmetric Lens Equivalence). Two symmetric lenses sl1 ::
X C1←→ Y and sl2 :: X C2←→ Y are considered equivalent (sl1 ≡sl sl2) if there is a
relation R ⊆ C1 × C2 such that

1. (sl1.missing , sl2.missing) ∈ R,
2. sl1.putR ∼R sl2.putR, and
3. sl1.putL ∼R sl2.putL. ♦

Hofmann et al. show that ≡sl is an equivalence relation; moreover it is sufficiently
strong to validate identity, associativity and congruence laws:

Theorem 3.3 (Hofmann et al. 2011). If sl1 :: X C1←→ Y and sl2 :: Y C2←→ Z
are well-behaved, then so is sl1 ; sl2. In addition, composition satisfies the laws:

(Identity) sl ; idsl ≡sl sl ≡sl idsl ; sl
(Assoc) sl1 ; (sl2 ; sl3) ≡sl (sl1 ; sl2) ; sl3
(Cong) sl1 ≡sl sl ′1 ∧ sl2 ≡sl sl ′2 =⇒ sl1 ; sl2 ≡sl sl ′1 ; sl ′2 ♦

3.1 Naive Monadic Symmetric Lenses

We now consider an obvious monadic generalisation of symmetric lenses, in which
the putL and putR functions are allowed to have effects in some monad M :

Definition 3.4. A monadic symmetric lens from A to B with complement type
C and effects M consists of two functions converting A to B and vice versa, each
also operating on C and possibly having effects in M , and a complement value
missing used for initialisation:

data [α
γ←→ β]μ = SMLens {mputR :: (α, γ) → μ (β, γ),

mputL :: (β, γ) → μ (α, γ),
missing :: γ}

Such a lens sl is called well-behaved if:

(PutRLM) do {(b, c′) ← sl .mputR (a, c); sl .mputL (b, c′)}
= do {(b, c′) ← sl .mputR (a, c); return (a, c′)}

(PutLRM) do {(a, c′) ← sl .mputL (b, c); sl .mputR (a, c′)}
= do {(a, c′) ← sl .mputL (b, c); return (b, c′)} ♦
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The above monadic generalisation of symmetric lenses appears natural, but
it turns out to have some idiosyncrasies, similar to those of the naive version of
monadic lenses we considered in Sect. 2.1.

Composition and Well-Behavedness. Consider the following candidate definition
of composition for monadic symmetric lenses:

(;) :: Monad μ ⇒ [α σ1←→ β]μ → [β σ2←→ γ]μ → [α
(σ1,σ2)←→ γ]μ

sl1 ; sl2 = SMLens putR putL missing where
putR (a, (s1, s2)) = do {(b, s ′

1) ← sl1.mputR (a, s1);
(c, s ′

2) ← sl2.mputR (b, s2);
return (c, (s ′

1, s
′
2))}

putL (c, (s1, s2)) = do {(b, s ′
2) ← sl2.mputL (c, s2);

(a, s ′
1) ← sl1.mputL (b, s1);

return (a, (s ′
1, s

′
2))}

missing = (sl1.missing , sl2.missing)

which seems to be the obvious generalisation of pure symmetric lens composition
to the monadic case. However, it does not always preserve well-behavedness.

Example 3.5. Consider the following construction:

setBool :: Bool → [()
()←→ ()]State Bool

setBool b = SMLens m m () where m = do {set b; return ((), ())}
The lens setBool True has no effect on the complement or values, but sets the
state to True. Both setBool True and setBool False are well-behaved, but their
composition (in either direction) is not: (PutRLM) fails for setBool
True; setBool False because setBool True and setBool False share a single Bool
state value. ♦
Proposition 3.6. setBool b is well-behaved for b ∈ {True,False }, but
setBool True ; setBool False is not well-behaved. ♦

Composition does preserve well-behavedness for commutative monads, i.e.
those for which

do {a ← x ; b ← y ; return (a, b)} = do {b ← y ; a ← x ; return (a, b)}
but this rules out many interesting monads, such as State and IO .

3.2 Entangled State Monads

The types of the mputR and mputL operations of symmetric lenses can be seen
(modulo mild reordering) as stateful operations in the state monad State γ α =
γ → (α, γ), where the state γ = C . This observation was also anticipated by
Hofmann et al. In a sequence of papers, we considered generalising these oper-
ations and their laws to an arbitrary monad (Cheney et al. 2014; Abou-Saleh
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et al. 2015a, b). In our initial workshop paper, we proposed the following defin-
ition:

data [α −�−� β]μ = SetBX {getL :: μ α, setL :: α → μ (),
getR :: μ β, setR :: β → μ ()}

subject to a subset of the State monad laws (Plotkin and Power 2002), such as:

(GetLSetL) do {a ← getL; setL a } = return ()
(SetLGetL) do {setL a; getL} = do {setL a; return a }

This presentation makes clear that bidirectionality can be viewed as a state
effect in which two “views” of some common state are entangled. That is, rather
than storing a pair of views, each independently variable, they are entangled, in
the sense that a change to either may also change the other. Accordingly, the
entangled state monad operations do not satisfy all of the usual laws of state:
for example, the setL and setR operations do not commute.

However, one difficulty with the entangled state monad formalism is that, as
discussed in Sect. 2.1, effectful mget operations cause problems for composition.
It turned out to be nontrivial to define a satisfactory notion of composition,
even for the well-behaved special case where μ = StateT σ ν for some ν, where
StateT is the state monad transformer (Liang et al. 1995), i.e. StateT σ ν α =
σ → ν (α, σ). We formulated the definition of monadic lenses given earlier in
this paper in the process of exploring this design space.

3.3 Spans of Monadic Lenses

Hofmann et al. (2011) showed that a symmetric lens is equivalent to a span of two
ordinary lenses, and later work by Johnson and Rosebrugh (2014) investigated
such spans of lenses in greater depth. Accordingly, we propose the following
definition:

Definition 3.7 (Monadic Lens Spans). A span of monadic lenses (“M -lens
span”) is a pair of M -lenses having the same source:

type [α �σ � β]μ = Span { left :: [σ � α]μ, right :: [σ � β]μ}
We say that an M -lens span is well-behaved if both of its components are. ♦
We first note that we can extend either leg of a span with a monadic lens
(preserving well-behavedness if the arguments are well-behaved):

(�) :: Monad μ ⇒ [α1 � α2]μ → [α1 �σ � β]μ → [α2 �σ � β]μ
ml � sp = Span (sp.left ; ml) (sp.right)
(	) :: Monad μ ⇒ [α �σ � β1]μ → [β1 � β2]μ → [α �σ � β2]μ
sp 	 ml = Span sp.left (sp.right ; ml)

To define composition, the basic idea is as follows. Given two spans
[A �S1 � B ]M and [B �S2 � C ]M with a common type B “in the middle”,
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A B C

S1 S2

S1 S2

Fig. 1. Composing spans of lenses

we want to form a single span from A to C . The obvious thing to try is to form
a pullback of the two monadic lenses from S1 and S2 to the common type B ,
obtaining a span from some common state type S to the state types S1 and
S2, and composing with the outer legs. (See Fig. 1.) However, the category of
monadic lenses doesn’t have pullbacks (as Johnson and Rosebrugh note, this is
already the case for ordinary lenses). Instead, we construct the appropriate span
as follows.

(��) :: Monad μ ⇒ [σ1 � β]μ → [σ2 � β]μ → [σ1 �(σ1��σ2) � σ2]μ
l1 �� l2 = Span (MLens fst putL createL) (MLens snd putR createR) where

putL ( , s2) s ′
1 = do {s ′

2 ← l2.mput s2 (l1.mget s ′
1); return (s ′

1, s
′
2)}

createL s1 = do {s ′
2 ← l2.mcreate (l1.mget s1); return (s1, s ′

2)}
putR (s1, ) s ′

2 = do {s ′
1 ← l1.mput s1 (l2.mget s ′

2); return (s ′
1, s

′
2)}

createR s1 = do {s ′
1 ← l1.mcreate (l2.mget s2); return (s ′

1, s2)}
where we write S1��S2 for the type of consistent state pairs {(s1, s2) ∈ S1 × S2 |
l1.mget (s1) = l2.mget (s2)}. In the absence of dependent types, we represent
this type as (S1,S2) in Haskell, and we need to check that the mput and mcreate
operations respect the consistency invariant.

Lemma 3.8. If ml1 :: [S1 � B ]M and ml2 :: [S2 � B ]M are well-behaved then
so is ml1 �� ml2 :: [S1 �(S1��S2) � S2]μ. ♦
Note that (MPutGet) and (MCreateGet) hold by construction and do not need
the corresponding properties for l1 and l2, but these properties are needed to
show that consistency is established by mcreate and preserved by mput .

We can now define composition as follows:

(;) :: Monad μ ⇒ [α �σ1 � β]μ → [β �σ2 � γ]μ → [α �(σ1��σ2) � γ]μ
sp1 ; sp2 = sp1.left � (sp1.right �� sp2.left) 	 sp2.right

The well-behavedness of the composition of two well-behaved spans is imme-
diate because � and 	 preserve well-behavedness of their arguments:

Theorem 3.9. If sp1 :: [A �S1 � B ]M and sp2 :: [B �S2 � C ]M are well-
behaved spans of monadic lenses, then their composition sp1 ; sp2 is well-
behaved. ♦
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Given a span of monadic lenses sp :: [A �S � B ]M , we can construct a

monadic symmetric lens sl :: [A
Maybe S←→ B ]M as follows:

span2smlens (left , right) = SMLens mputR mputL Nothing where

mputR (a, Just s) = do {s′ ← left .mput s a; return (right .mget s′, Just s′)}
mputR (a,Nothing) = do {s′ ← left .mcreate a; return (right .mget s′, Just s′)}
mputL (b, Just s) = do {s′ ← right .mput s b; return (left .mget s′, Just s′)}
mputL (b,Nothing) = do {s′ ← right .mcreate b; return (left .mget s′, Just s′)}

Essentially, these operations use the span’s mput and mget operations to update
one side and obtain the new view value for the other side, and use the mcreate
operations to build the initial S state if the complement is Nothing .

Well-behavedness is preserved by the conversion from monadic lens spans to
SMLens, for arbitrary monads M :

Theorem 3.10. If sp :: [A �S � B ]M is well-behaved, then span2smlens sp is
also well-behaved. ♦

Given sl :: [A C←→ B ]M , let S ⊆ A × B × C be the set of consistent
triples (a, b, c), that is, those for which sl .mputR (a, c) = return (b, c) and
sl .mputL (b, c) = return (a, c). We construct sp :: [A �S � B ]M by

smlens2span sl = Span (MLens getL putL createL) (MLens getR putR createR)
where

getL (a, b, c) = a
putL (a, b, c) a ′ = do {(b′, c′) ← sl .mputR (a ′, c); return (a ′, b′, c′)}
createL a = do {(b, c) ← sl .mputR (a, sl .missing); return (a, b, c)}
getR (a, b, c) = b
putR (a, b, c) b′ = do {(a ′, c′) ← sl .mputL (b′, c); return (a ′, b′, c′)}
createR b = do {(a, c) ← sl .mputL (b, sl .missing); return (a, b, c)}

However, smlens2span may not preserve well-behavedness even for simple mon-
ads such as Maybe, as the following counterexample illustrates.

Example 3.11. Consider the following monadic symmetric lens construction:

fail :: [()
()←→ ()]Maybe

fail = SMLens Nothing Nothing ()

This is well-behaved but smlens2span fail is not. In fact, the set of consistent
states of fail is empty, and each leg of the induced span is of the following form:

failMLens :: MLens Maybe ∅ ()
failMLens = MLens (λ → ()) (λ () → Nothing) (λ → Nothing)

which fails to satisfy (MGetPut). ♦
For pure symmetric lenses, smlens2span does preserve well-behavedness.

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl
is also well-behaved, with state space S consisting of the consistent triples
of sl . ♦
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To summarise: spans of monadic lenses are closed under composition, and
correspond to well-behaved symmetric monadic lenses. However, there are well-
behaved symmetric monadic lenses that do not map to well-behaved spans. It
seems to be an interesting open problem to give a direct axiomatisation of the
symmetric monadic lenses that are essentially spans of monadic lenses (and are
therefore closed under composition).

4 Equivalence of Spans

Hofmann et al. (2011) introduced a bisimulation-like notion of equivalence for
pure symmetric lenses, in order to validate laws such as identity, associativity
and congruence of composition. Johnson and Rosebrugh (2014) introduced a
definition of equivalence of spans and compared it with symmetric lens equiva-
lence. We have considered equivalences based on isomorphism (Abou-Saleh et al.
2015a) and bisimulation (Abou-Saleh et al. 2015b). In this section we consider
and relate these approaches in the context of spans of M -lenses.

Definition 4.1 (Isomorphism Equivalence). Two M -lens spans sp1::
[A �S1 � B ]M and sp2::[A �S2 � B ]M are isomorphic (sp ≡i sp′) if there is
an isomorphism h ::S1 → S2 on their state spaces such that h ; sp2.left = sp1.left
and h ; sp2.right = sp1.right . ♦
Note that any isomorphism h :: S1 → S2 can be made into a (monadic) lens; we
omit the explicit conversion.

We consider a second definition of equivalence, inspired by Johnson and Rose-
brugh (2014), which we call span equivalence:

Definition 4.2 (Span Equivalence). TwoM -lens spans sp1 :: [A �S1 � B ]M
and sp2 :: [A �S2 � B ]M are related by � if there is a full lens h :: S1 � S2 such
that h ; sp2.left = sp1.left and h ; sp2.right = sp1.right . The equivalence relation
≡s is the least equivalence relation containing �. ♦
One important consideration emphasised by Johnson and Rosebrugh is the
need to avoid making all compatible spans equivalent to the “trivial” span
[A �∅ � B ]M . To avoid this problem, they imposed conditions on h: its get
function must be surjective and split, meaning that there exists a function c
such that h.get · c = id . We chose instead to require h to be a full lens. This
is actually slightly stronger than Johnson and Rosebrugh’s definition, at least
from a constructive perspective, because h is equipped with a specific choice of
c = create satisfying h.get · c = id , that is, the (CreateGet) law.

We have defined span equivalence as the reflexive, symmetric, transitive clo-
sure of �. Interestingly, even though span equivalence allows for an arbitrary
sequence of (pure) lenses between the respective state spaces, it suffices to con-
sider only spans of lenses. To prove this, we first state a lemma about the (��)
operation used in composition. Its proof is straightforward equational reasoning.
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Lemma 4.3. Suppose l1 :: A � B and l2 :: C � B are pure lenses. Then (l1 ��

l2).left ; l1 = (l1 �� l2).right ; l2. ♦
Theorem 4.4. Given sp1 :: [A �S1 � B ]M and sp2 :: [A �S2 � B ]M , if
sp1 ≡s sp2 then there exists sp :: S1 �S � S2 such that sp.left ; sp1.left =
sp.right ; sp2.left and sp.left ; sp1.right = sp.right ; sp2.right . ♦
Proof. Let sp1 and sp2 be given such that sp1 ≡s sp2. The proof is by induction
on the length of the sequence of � or � steps linking sp1 to sp2.

If sp1 = sp2 then the result is immediate. If sp1 � sp2 then we can complete
a span between S1 and S2 using the identity lens. For the inductive case, suppose
that the result holds for sequences of up to n � or � steps, and suppose sp1 ≡s

sp2 holds in n � or � steps. There are two cases, depending on the direction
of the first step. If sp1 � sp3 ≡s sp2 then by induction we must have a pure
span sp between S3 and S2 and sp1 � sp3 holds by virtue of a lens h :: S3 → S1,
so we can simply compose h with sp.left to obtain the required span between
S1 and S2. Otherwise, if sp1 � sp3 ≡s sp2 then by induction we must have a
pure span sp between S3 and S2 and we must have a lens h ::S1 → S3, so we use
Lemma 4.3 to form a span sp0 :: S1 �(S1��S3) � S3 and extend sp0.right with
sp.right to form the required span between S1 and S3. ��

Thus, span equivalence is a doubly appropriate name for ≡s: it is an equiva-
lence of spans witnessed by a (pure) span.

Finally, we consider a third notion of equivalence, inspired by the natural
bisimulation equivalence for coalgebraic bx (Abou-Saleh et al. 2015b):

Definition 4.5 (Base Map). Given M -lenses l1 :: [S1 � V ]M and l2::
[S2 � V ]M , we say that h : S1 → S2 is a base map from l1 to l2 if

l1.mget s = l2.mget (h s)
do {s ← l1.mput s v ; return (h s)} = l2.mput (h s) v
do {s ← l1.mcreate v ; return (h s)} = l2.mcreate v

Similarly, given two M -lens spans sp1 :: [A �S1 � B ]M and sp2::
[A �S2 � B ]M we say that h :: S1 → S2 is a base map from sp1 to sp2 if h
is a base map from sp1.left to sp2.left and from sp1.right to sp2.right . ♦
Definition 4.6 (Bisimulation Equivalence). A bisimulation of M -lens
spans sp1 :: [A �S1 � B ]M and sp2 :: [A �S2 � B ]M is a M -lens span
sp :: [A �R � B ]M where R ⊆ S1 × S2 and fst is a base map from sp to sp1

and snd is a base map from sp to sp2. We write sp1 ≡b sp2 when there is a
bisimulation of spans sp1 and sp2. ♦

Figure 2 illustrates the three equivalences diagrammatically.

Proposition 4.7. Each of the relations ≡i, ≡s and ≡b are equivalence relations
on compatible spans of M -lenses and satisfy (Identity), (Assoc) and (Cong). ♦
Theorem 4.8. sp1 ≡i sp2 implies sp1 ≡s sp2, but not the converse. ♦
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A B
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S2

A B
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S2

S A B

S1

S2

R ⊆ S1×S2

fst

snd

(a) (b) (c)

Fig. 2. (a) Isomorphism equivalence (≡i), (b) span equivalence (≡s), and (c) bisimu-
lation (≡b) equivalence. In (c), the dotted arrows are base maps; all other arrows are
(monadic) lenses.

Proof. The forward direction is obvious; for the reverse direction, consider

h :: Bool � ()
h = Lens (λ → ()) (λa () → a) (λ() → True)
sp1 :: [() �() � ()]μ
sp1 = Span idMLens idMLens
sp2 = (h ; sp1.left , h ; sp2.right)

Clearly sp1 ≡s sp2 by definition and all three structures are well-behaved, but
h is not an isomorphism: any k :: () � Bool must satisfy k .get () = True or
k .get () = False, so (h ; k).get = k .get · h.get cannot be the identity function. ��
Theorem 4.9. Given sp1 :: [A �S1 � B ]M , sp2 :: [A �S2 � B ]M , if sp1 ≡s

sp2 then sp1 ≡b sp2. ♦
Proof. For the forward direction, it suffices to show that a single sp1 � sp2 step
implies sp1 ≡b sp2, which is straightforward by taking R to be the set of pairs
{(s1, s2) | l1.get s1 = s2}, and constructing an appropriate span sp : A �R � B .
Since bisimulation equivalence is transitive, it follows that sp1 ≡s sp2 implies
sp1 ≡b sp2 as well. ��

In the pure case, we can also show a converse:

Theorem 4.10. Given sp1 :: A �S1 � B , sp2 :: A �S2 � B , if sp1 ≡b sp2

then sp1 ≡s sp2. ♦
Proof. Given R and a span sp :: A �R � B constituting a bisimulation sp1 ≡b

sp2, it suffices to construct a span sp′ = (l , r) :: S1 �R � S2 satisfying l ;
sp1.left = r ; sp2.left and l ; sp1.right = r ; sp2.right . ��

This result is surprising because the two equivalences come from rather
different perspectives. Johnson and Rosebrugh introduced a form of span equiva-
lence, and showed that it implies bisimulation equivalence. They did not explic-
itly address the question of whether this implication is strict. However, there
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are some differences between their presentation and ours; the most important
difference is the fact that we assume lenses to be equipped with a create func-
tion, while they consider lenses without create functions but sometimes consider
spans of lenses to be “pointed”, or equipped with designated initial state values.
Likewise, Abou-Saleh et al. (2015b) considered bisimulation equivalence for coal-
gebraic bx over pointed sets (i.e. sets equipped with designated initial values).
It remains to be determined whether Theorem 4.10 transfers to these settings.

We leave it as an open question to determine whether ≡b is equivalent to
≡s for spans of monadic lenses (we conjecture that they are not), or whether an
analogous result to Theorem4.10 carries over to symmetric lenses (we conjecture
that it does).

5 Conclusions

Lenses are a popular and powerful abstraction for bidirectional transformations.
Although they are most often studied in their conventional, pure form, practical
applications of lenses typically grapple with side-effects, including exceptions,
state, and user interaction. Some recent proposals for extending lenses with
monadic effects have been made; our proposal for (asymmetric) monadic lenses
improves on them because M -lenses are closed under composition for any fixed
monad M . Furthermore, we investigated the symmetric case, and showed that
spans of monadic lenses are also closed under composition, while the obvious
generalisation of pure symmetric lenses to incorporate monadic effects is not
closed under composition. Finally, we presented three notions of equivalence
for spans of monadic lenses, related them, and proved a new result: bisimula-
tion and span equivalence coincide for pure spans of lenses. This last result is
somewhat surprising, given that Johnson and Rosebrugh introduced (what we
call) span equivalence to overcome perceived shortcomings in Hofmann et al.’s
bisimulation-based notion of symmetric lens equivalence. Further investigation
is necessary to determine whether this result generalises.

These results illustrate the benefits of our formulation of monadic lenses
and we hope they will inspire further research and appreciation of bidirectional
programming with effects.

Acknowledgements. The work was supported by the UK EPSRC-funded project
A Theory of Least Change for Bidirectional Transformations (TLCBX Project
2013–2016) (EP/K020218/1, EP/K020919/1).

A Proofs for Sect. 2

Theorem 2.5. If l1 :: [A � B ]M and l2 :: [B � C ]M are well-behaved, then so
is l1 ; l2.

Proof. Suppose l1 and l2 are well-behaved, and let l = l1 ; l2. We reason as follows
for (MGetPut):
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do { l .mput a (l .mget a)}
= [[ definition ]]
do {b ← l2.mput (l1.mget a) (l2.mget (l1.mget a)); l1.mput a b}

= [[ (MGetPut) ]]
do {b ← return (l1.mget a); l1.mput a b}

= [[ monad unit ]]
do { l1.mput a (l1.mget a)}

= [[ (MGetPut) ]]
return a

For (MPutGet), the proof is as follows:

do {a ′ ← l .mput a c; return (a ′, l .mget a ′)}
= [[ Definition ]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, l2.mget (l1.mget a ′))}

= [[ (MPutGet) ]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, l2.mget b)}

= [[ (MPutGet) ]]
do {b ← l2.mput (l1.mget a) c;

a ′ ← l1.mput a b;
return (a ′, c)}

= [[ definition ]]
do {a ′ ← l .mput a c; return (a ′, c)} ��

B Proofs for Sect. 3

Proposition 3.6. setBool x is well-behaved for x ∈ {True,False }, but
setBool True ; setBool False is not well-behaved. ♦
For the first part:

Proof. Let sl = setBool x . We consider (PutRLM), and (PutLRM) is symmetric.

do {(b, c′) ← (setBool x ).mputR ((), ()); (setBool x ).mputL (b, c′)}
= [[ Definition ]]
do {(b, c′) ← do {set x ; return ((), ())}; set x ; return ((), c′)}

= [[ monad associativity ]]
do {set x ; (b, c′) ← return ((), ()); set x ; return ((), c′)}

= [[ commutativity of return ]]
do {set x ; set x ; (b, c′) ← return ((), ()); return ((), c′)}

= [[ set x ; set x = set x ]]
do {set x ; (b, c′) ← return ((), ()); return ((), c′)}



Reflections on Monadic Lenses 19

= [[ monad associativity ]]
do {(b, c′) ← do {set x ; return ((), ())}; return ((), c′)}

= [[ Definition ]]
do {(b, c′) ← (setBool x ).mputR ((), ()); return ((), c′)}

For the second part, taking sl = setBool True ; setBool False, we proceed as
follows:

do {(c, s ′) ← sl .mputR (a, s); sl .mputL (c, s ′)}
= [[ let s = (s1, s2) and s ′ = (s ′′′

1 , s ′′′
2 ); definition ]]

do {(b, s ′
1) ← (setBool True).mputR (a, s1);

(c, s ′
2) ← (setBool False).mputR (b, s2);

(c′, (s ′′
1 , s ′′

2 )) ← return (c, (s ′
1, s

′
2));

(b′, s ′′′
2 ) ← (setBool False).mputL (c′, s ′′

2 );
(a ′, s ′′′

2 ) ← (setBool True).mputL (b′, s ′′
1 );

return (c, (s ′′′
1 , s ′′′

2 ))}
= [[ monad unit ]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(b′, s ′′′

2 ) ← (setBool False).mputL (c′, s ′
2);

(a ′, s ′′′
2 ) ← (setBool True).mputL (b′, s ′

1);
return (c, (s ′′′

1 , s ′′′
2 ))}

= [[ (PutRLM) for setBool False ]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(b′, s ′′′

2 ) ← return (b, s ′
2);

(a ′, s ′′′
2 ) ← (setBool False).mputL (b′, s ′

1);
return (c, (s ′′′

1 , s ′′′
2 ))}

= [[ monad unit ]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
(a ′, s ′′′

2 ) ← (setBool True).mputL (b, s ′
1);

return (c, (s ′′′
1 , s ′

2))}
However, we cannot simplify this any further. Moreover, it should be clear that
the shared state will be True after this operation is performed. Considering the
other side of the desired equation:

do {(c, s ′) ← sl .mputR (a, s); sl .mputL (c, s ′′)}
= [[ let s = (s1, s2) and s ′ = (s ′′′

1 , s ′′′
2 ); Definition ]]

do {(b, s ′
1) ← (setBool True).mputR (a, s1);

(c, s ′
2) ← (setBool False).mputR (b, s2);

(c′, (s ′′
1 , s ′′

2 )) ← return (c, (s ′
1, s

′
2));

return (c′, (s ′′
1 , s ′′

2 ))}
= [[ Monad unit ]]
do {(b, s ′

1) ← (setBool True).mputR (a, s1);
(c, s ′

2) ← (setBool False).mputR (b, s2);
return (c, (s ′

1, s
′
2))}
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it should be clear that the shared state will be False after this operation is
performed. Therefore, (PutRLM) is not satisfied by sl . ��
Lemma 3.8. If ml1 :: [σ1 � β]μ and ml2 :: [σ2 � β]μ are well-behaved then so
is ml1 �� ml2 :: [σ1 �(σ1��σ2) � σ2]μ. ♦
Proof. It suffices to consider the two lenses l1 = MLens fst putL createL and l2 =
MLens snd putR createR in isolation. Moreover, the two cases are completely
symmetric, so we only show the first.

For (MGetPut), we show:

do { l1.mput (s1, s2) (l1.mget (s1, s2))}
= [[ definition ]]
do {putL (s1, s2) (fst (s1, s2))}

= [[ definition of putL and fst ]]
do {s ′

2 ← ml2.mput s2 (ml1.mget s1)}
= [[ (s1, s2) consistent ]]
do {s ′

2 ← ml2.mput s2 (ml2.mget s2)}
= [[ (MGetPut) ]]
return s

The proof for (MPutGet) goes as follows. Note that it holds by construction,
without appealing to well-behavedness of ml1 or ml2.

do {(s ′
1, s

′
2) ← l1.mput (s1, s2) a; return ((s ′

1, s
′
2), l1.mget (s ′

1, s
′
2))}

= [[ definition ]]
do {(s ′

1, s
′
2) ← putR (s1, s2) a; return ((s ′

1, s
′
2), fst (s ′

1, s
′
2))}

= [[ definition ]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2 );
return ((s ′

1, s
′
2), fst (s ′

1, s
′
2))}

= [[ definition of fst ]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2 );
return ((s ′

1, s
′
2), s

′
1)

= [[ monad laws ]]
do {s ′′

2 ← ml2.mput s2 (ml1.mget a); (s ′
1, s

′
2) ← return (a, s ′′

2 );
return ((s ′

1, s
′
2), a)}

= [[ definition ]]
do {(s ′

1, s
′
2) ← putL (s1, s2) a; return ((s ′

1, s
′
2), a)}

= [[ definition ]]
do {(s ′

1, s
′
2) ← l1.mput (s1, s2) a; return ((s ′

1, s
′
2), a)}

The proof for (MCreateGet) is similar.
Finally, we show that putL :: (σ1��σ2) → σ1 → μ (σ1��σ2), and in particular,

that it maintains the consistency invariant on the state space σ1��σ2. Assume
that (s1, s2) :: σ1��σ2 and s ′

1 :: σ1 are given. Thus, ml1.mget s1 = ml2.mget s2.
We must show that any value returned by putL also satisfies this consistency
criterion. By definition,



Reflections on Monadic Lenses 21

putL (s1, s2) s ′
1 = do {s ′

2 ← ml2.mput s2 (ml1.mget s ′
1); return (s ′

1, s
′
2)}

By (MPutGet), any s ′
2 resulting from ml2.mput s2 (ml1.mget s ′

1) will satisfy
ml2.mget s ′

2 = ml1.mget s ′
1. The proof that createL :: σ1 → μ (σ1��σ2) is similar,

but simpler. ��
Theorem 3.10. If sp :: [A �S � B ]M is well-behaved, then span2smlens sp is
also well-behaved. ♦
Proof. Let sl = span2smlens sp. We need to show that the laws (PutRLM) and
(PutLRM) hold. We show (PutRLM), and (PutLRM) is symmetric.

We need to show that

do {(b′,mc′) ← sl .mputR (a,mc); sl .mputL (b′,mc′)}
=
do {(b′,mc′) ← sl .mputR (a,mc); return (a,mc′)}

There are two cases, depending on whether the initial state mc is Nothing or
Just c for some c.

If mc = Nothing then we reason as follows:

do {(b′,mc′) ← sl .mputR (a,Nothing); sl .mputL (b′,mc′)}
= [[ Definition ]]
do {s ′ ← sp.left .mcreate a; (b′,mc′) ← return (sp.right .mget s ′, Just s ′);

sl .mputL (b′,mc′)}
= [[ monad unit ]]
do {s ′ ← sp.left .mcreate a; sl .mputL (sp.right .mget s ′, Just s ′)}

= [[ definition ]]
do {s ′ ← sp.left .mcreate a; s ′′ ← sp.right .mput s ′ (sp.right .mget s ′);

return (sp.left .mget s ′′, Just s ′′)}
= [[ (MGetPut) ]]
do {s ′ ← sp.left .mcreate a; s ′′ ← return s ′;

return (sp.left .mget s ′′, Just s ′′)}
= [[ monad unit ]]
do {s ′ ← sp.left .mcreate a; return (sp.left .mget s ′, Just s ′)}

= [[ (MCreateGet) ]]
do {s ′ ← sp.left .mcreate a; return (a, Just s ′)}

= [[ monad unit ]]
do {s ′ ← sp.left .mcreate a; (b′,mc′) ← (sp.right .get s ′, Just s ′);

return (a,mc′)}
= [[ Definition ]]
do {(b′,mc′) ← sl .mputR (a,Nothing); return (a,mc′)}

If mc = Just c then we reason as follows:

do {(b′,mc′) ← sl .mputR (a, Just s); sl .mputL (b′,mc′)}
= [[ Definition ]]
do {s ′ ← sp.left .mput s a; (b′,mc′) ← (sp.right .mget s ′, Just s ′);
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sl .mputL (b′,mc′)}
= [[ monad unit ]]
do {s ′ ← sp.left .mput s a; sl .mputL (sp.right .mget s ′, Just s ′)}

= [[ definition ]]
do {s ′ ← sp.left .mput s a; s ′′ ← sp.right .mput s ′ (sp.right .mget s ′);

return (sp.left .mget s ′′, Just s ′′)}
= [[ (MGetPut) ]]
do {s ′ ← sp.left .mput s a; s ′′ ← return s ′;

return (sp.left .mget s ′′, Just s ′′)}
= [[ monad unit ]]
do {s ′ ← sp.left .mput s a; return (sp.left .mget s ′, Just s ′)}

= [[ (MPutGet) ]]
do {s ′ ← sp.left .mput s a; return (a, Just s ′)}

= [[ monad unit ]]
do {s ′ ← sp.left .mput s a; (b′,mc′) ← (sp.right .get s ′, Just s ′);

return (a,mc′)}
= [[ Definition ]]
do {(b′,mc′) ← sl .mputR (a, Just c); return (a,mc′)} ��

Theorem 3.12. If sl :: SMLens Id C A B is well-behaved, then smlens2span sl
is also well-behaved, with state space S consisting of the consistent triples
of sl . ♦
Proof. First we show that, given a symmetric lens sl , the operations of sp =
smlens2span sl preserve consistency of the state. Assume (a, b, c) is consis-
tent. To show that sp.left .mput (a, b, c) a ′ is consistent for any a ′, we have
to show that (a ′, b′, c′) is consistent, where a ′ is arbitrary and return (b′, c′) =
sl .mputR (a ′, c). For one half of consistency, we have:

sl .mputL (b′, c′)
= [[ sl .mputR (a ′, c) = return (b′, c′), and (PutRLM) ]]
return (a ′, c′)

The proof that sl .mputR (a ′, c′) = return (b′, c′) is symmetric.

sl .mputR (a ′, c′)
= [[ above, and (PutLRM) ]]
return (b′, c′)

as required. The proof that sp.right .mput (a, b, c) b′ is consistent is dual.
We will now show that sp = smlens2span sl is a well-behaved span for any

symmetric lens sl . For (MGetPut), we proceed as follows:

sp.left .mput (a, b, c) (sp.left .mget (a, b, c))
= [[ Definition ]]
do {(b′, c′) ← sl .mputR (a, c); return (a, b′, c′)}

= [[ Consistency of (a, b, c) ]]
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do {(b′, c′) ← return (b, c); return (a, b′, c′)}
= [[ monad unit ]]
return (a, b, c)

For (MPutGet), we have:

do {s ′ ← sp.left .put (a, b, c) a ′; return (s ′, sp.left .mget s ′)}
= [[ Definition ]]
do {(b′, c′) ← sl .mputR (a ′, c); s ′ ← return (a ′, b′, c′);

return (s ′, sp.left .mget s ′)}
= [[ monad unit ]]
do {(b′, c′) ← sl .mputR (a ′, c);

return ((a ′, b′, c′), sp.left .mget (a ′, b′, c′))}
= [[ Definition ]]
do {(b′, c′) ← sl .mputR (a ′, c); return ((a ′, b′, c′), a ′)}

= [[ monad unit ]]
do {(b′, c′) ← sl .mputR (a ′, c); s ′ ← return (a ′, b′, c′); return (s ′, a ′)}

= [[ Definition ]]
do {s ′ ← sp.left .put (a, b, c) a ′; return (s ′, a ′)}

The proof for (MCreateGet) is similar.

do {s ← sp.left .create a; return (s, sp.left .mget s)}
= [[ Definition ]]
do {(b′, c′) ← sl .mputR (a, c); s ← return (a, b′, c′);

return (s, sp.left .mget s)}
= [[ monad unit ]]
do {(b′, c′) ← sl .mputR (a, c);

return ((a, b′, c′), sp.left .mget (a, b′, c′))}
= [[ Definition ]]
do {(b′, c′) ← sl .mputR (a, c); return ((a, b′, c′), a)}

= [[ monad unit ]]
do {(b′, c′) ← sl .mputR (a, c); s ← return (a, b′, c′); return (s, a)}

= [[ Definition ]]
do {s ← sp.left .create a; return (a, s)} ��

C Proofs for Sect. 4

Lemma 4.3. Suppose l1 :: A � B and l2 :: C � B are pure lenses. Then (l1 ��

l2).left ; l1 = (l1 �� l2).right ; l2. ♦
Proof. Let (l , r) = l1 �� l2. We show that each component of l ; l1 equals the
corresponding component of r ; l2.

For get :

(l ; l1).get (a, c)
= [[ Definition ]]
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l1.get (l .get (a, c))
= [[ Definition ]]
l1.get a

= [[ Consistency ]]
l2.get c

= [[ Definition ]]
l2.get (r .get (a, c))

= [[ Definition ]]
(r ; l2).get (a, c)

For put :

(l ; l1).put (a, c) b
= [[ Definition ]]
l .put (a, c) (l1.put (l .get (a, c)) b)

= [[ Definition ]]
l .put (a, c) (l1.put a b)

= [[ Definition ]]
let a ′ = l1.put a b in
let c′ = l2.put c (l1.get a ′) in (a ′, c′)

= [[ inline let ]]
(l1.put a b, l2.put c (l1.get (l1.put a b)))

= [[ (PutGet) ]]
(l1.put a b, l2.put c b)

= [[ reverse above steps ]]
(r ; l2).put (a, c) b

Finally, for create:

(l ; l1).create b
= [[ Definition ]]
l .create (l1.create b)

= [[ Definition ]]
let c = l2.create (l1.get (l1.create b)) in (l1.create b, c)

= [[ (CreateGet) ]]
let c = l2.create b in (l1.create b, c)

= [[ Inline let ]]
(l1.create b, l2.create b)

= [[ reverse above steps ]]
(r ; l2).create b ��

Theorem 4.9. Given sp1 :: [A �S1 � B ]M , sp2 :: [A �S2 � B ]M , if
sp1 ≡s sp2 then sp1 ≡b sp2. ♦
Proof. We give the details for the case sp1 � sp2. First, write (l1, r1) = sp1 and
(l2, r2) = sp2, and suppose l ::S1 �S2 is a lens satisfying l1 = l ; l2 and r1 = l ; r2.

We need to define a bisimulation consisting of a set R ⊆ S1 × S2 and a span
sp = (l0, r0) :: [A �R � B ]M such that fst is a base map from sp to sp1 and
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snd is a base map from sp to sp2. We take R = {(s1, s2) | s2 = l .get (s1)} and
proceed as follows:

l0 :: [R � A]M
l0.mget (s1, s2) = l1.mget s1
l0.mput (s1, s2) a = do {s ′

1 ← l1.mput s1 a; return (s ′
1, l .get s

′
1)}

l0.mcreate a = do {s1 ← l1.mcreate a; return (s1, l .get s1)}
r0 :: [R � B ]M
r0.mget (s1, s2) = r1.mget s1
r0.mput (s1, s2) b = do {s ′

1 ← r1.mput s1 b; return (s ′
1, l .get s

′
1)}

r0.mcreate b = do {s1 ← r1.mcreate a; return (s1, l .get s1)}

We must now show that l0 and r0 are well-behaved (full) lenses, and that the
projections fst and snd map sp = (l0, r0) to sp1 and sp2 respectively.

We first show that l0 is well-behaved; the reasoning for r0 is symmetric. For
(MGetPut) we have:

l0.mput (s1, s2) (l0.mget (s1, s2))
= [[ Definition ]]
do {s ′

1 ← l1.mput s1 (l1.mget s1); return (s ′
1, l .get s

′
1)}

= [[ (MPutGet) ]]
do {s ′

1 ← return s1; return (s ′
1, l .get s

′
1)}

= [[ Monad unit ]]
return (s1, l .get s1)

= [[ s2 = l .get s1 ]]
return (s1, s2)

For (MPutGet) we have:

do {(s ′′
1 , s ′′

2 ) ← l0.mput (s1, s2) a; return ((s ′′
1 , s ′′

2 ), l0.mget (s ′′
1 , s ′′

2 ))}
= [[ Definition ]]
do {s ′

1 ← l1.mput s1 a; (s ′′
1 , s ′′

2 ) ← return (s ′
1, l .get s

′
1);

return ((s ′′
1 , s ′′

2 ), l1.mget s ′
1)}

= [[ Monad unit ]]
do {s ′

1 ← l1.mput s1 a; return ((s ′
1, l .get s

′
1), l1.mget s ′

1)}
= [[ (MPutGet) ]]
do {s ′

1 ← l1.mput s1 a; return ((s ′
1, l .get s

′
1), a)}

= [[ Monad unit ]]
do {s ′

1 ← l1.mput s1 a; (s ′′
1 , s ′′

2 ) ← return (s ′
1, l .get s

′
1);

return ((s ′′
1 , s ′′

2 ), a)}
= [[ Definition ]]
do {(s ′′

1 , s ′′
2 ) ← l0.mput (s1, s2) a; return ((s ′′

1 , s ′′
2 ), a)}

Finally, for (MCreateGet) we have:

do {(s1, s2) ← l0.mcreate a; return ((s1, s2), l0.mget (s1, s2))}
= [[ Definition ]]
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do {s ′
1 ← l1.mcreate a; (s1, s2) ← return (s ′

1, l .get s
′
1);

return ((s1, s2), l1.mget s1)}
= [[ Monad unit ]]
do {s ′

1 ← l1.mcreate a; return ((s ′
1, l .get s

′
1), l1.mget s ′

1)}
= [[ (MCreateGet) ]]
do {s ′

1 ← l1.mcreate a; return ((s ′
1, l .get s

′
1), a)}

= [[ Monad unit ]]
do {s ′

1 ← l1.mcreate a; (s1, s2) ← return (s ′
1, l .get s

′
1);

return ((s1, s2), a)}
= [[ Definition ]]
do {(s1, s2) ← l0.mcreate a; return ((s1, s2), a)}

Next, we show that fst is a base map from l0 to l1 and snd is a base map from l0
to l2. It is easy to show that fst is a base map from l0 to l1 by unfolding definitions
and applying of monad laws. To show that snd is a base map from l0 to l2, we
need to verify the following three equations that show that snd commutes with
mget , mput and mcreate:

l0.mget (s1, s2) = l2.mget s2
do {(s ′

1, s
′
2) ← l0.mput (s1, s2) a; return s ′

2} = l2.mput s2 a
do {(s1, s2) ← l0.mcreate a; return s2} = l2.mcreate a

For the mget equation:

l0.mget (s1, s2)
= [[ Definition ]]
l1.mget s1

= [[ Assumption l ; l2 = l1 ]]
(l ; l2).mget s1

= [[ Definition ]]
l2.mget (l .get s1)

= [[ (s1, s2) ∈ R ]]
l2.mget s2

For the mput equation:

do {(s ′
1, s

′
2) ← l0.mput (s1, s2) a; return s ′

2}
= [[ Definition ]]
do {s ′′

1 ← l1.mput s1 a; (s ′
1, s

′
2) ← return (s ′′

1 , l .get s
′′
1 ); return s ′

2}
= [[ Monad laws ]]
do {s ′′

1 ← l1.mput s1 a; return (l .get s ′′
1 )}

= [[ l ; l2 = l1 ]]
do {s ′′

1 ← (l ; l2).mput s1 a; return (l .get s ′′
1 )}

= [[ Definition ]]
do {s ′′

2 ← l2.mput (l .get s1) a; s ′′
1 ← return (l .put s1 s ′′

2 ); return (l .get s ′′
1 )}

= [[ Monad laws ]]
do {s ′′

2 ← l2.mput (l .get s1) a; return (l .get (l .put s1 s ′′
2 ))}

= [[ (PutGet) ]]
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do {s ′′
2 ← l2.mput (l .get s1) a; return s ′′

2 }
= [[ (s1, s2) ∈ R so l .get s1 = s2 ]]
do {s ′′

2 ← l2.mput s2 a; return s ′′
2 }

= [[ Monad laws ]]
l2.mput s2 a

For the mcreate equation:

do {(s1, s2) ← l0.mcreate a; return s2}
= [[ Definition ]]
do {s ′

1 ← l1.mcreate a; (s1, s2) ← return (s ′
1, l .get s

′
1); return s2}

= [[ Monad laws ]]
do {s ′

1 ← l1.mcreate a; return (l .get s ′
1)}

= [[ l ; l2 = l1 ]]
do {s ′

1 ← (l ; l2).mcreate a; return (l .get s ′
1)}

= [[ Definition ]]
do {s ′

2 ← l2.mcreate a; s ′
1 ← return (l .create s ′

2); return (l .get s ′
1)}

= [[ Monad laws ]]
do {s ′

2 ← l2.mcreate a; return (l .get (l .create s ′
2))}

= [[ (CreateGet) ]]
do {s ′

2 ← l2.mcreate a; return s ′
2}

= [[ Monad laws ]]
l2.mcreate a

Similar reasoning suffices to show that fst is a base map from r0 to r1 and snd
is a base map from r0 to r2, so we can conclude that R and (l , r) constitute a
bisimulation between sp1 and sp2, that is, sp1 ≡b sp2. ��
Theorem 4.10. Given sp1 :: A �S1 � B , sp2 :: A �S2 � B , if sp1 ≡b sp2

then sp1 ≡s sp2. ♦
Proof. For convenience, we again write sp1 = (l1, r1) and sp2 = (l2, r2). We are
given R and a span sp0 :: A �R � B constituting a bisimulation sp1 ≡b sp2.
Let sp0 = (l0, r0). For later reference, we list the properties that must hold by
virtue of this bisimulation for any (s1, s2) ∈ R:

l0.get (s1, s2) = l1.get s1 l0.get (s1, s2) = l2.get s2
fst (l0.put (s1, s2) a) = l1.put s1 a snd (l0.put (s1, s2) a) = l2.put s2 a
fst (l0.create a) = l1.create s1 snd (l0.create a) = l2.create a
r0.get (s1, s2) = r1.get s1 r0.get (s1, s2) = r2.get s2
fst (r0.put (s1, s2) b) = r1.put s1 b snd (r0.put (s1, s2) b) = r2.put s2 b
fst (r0.create b) = r1.create s1 snd (r0.create b) = r2.create b

In addition, it follows that:

l0.put (s1, s2) a = (l1.put s1 a, l2.put s2 a) ∈ R
r0.put (s1, s2) b = (r1.put s1 b, r2.put s2 b) ∈ R
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l0.create a = (l1.create a, l2.create a) ∈ R
r0.create b = (r1.create b, r2.create b) ∈ R

which also implies the following identities, which we call twists:

r1.get (l1.put s1 a) = r0.get (l1.put s1 a, l2.put s2 a) = r2.get (l2.put s2 a)
l1.get (r1.put s1 b) = l0.get (r1.put s1 b, r2.put s2 b) = l2.get (r2.put s2 b)
r1.get (l1.create a) = r0.get (l1.create a, l2.create a) = r2.get (l2.create a)
l1.get (r1.create b) = l0.get (r1.create b, r2.create b) = l2.get (r2.create b)

It suffices to construct a span sp = (l , r) :: S1 �R � S2 satisfying l ; l1 = r ; l2
and l ; r1 = r ; r2. Define l and r as follows:

l .get = fst
l .put (s1, s2) s ′

1 = l0.put (s1, s2) (l1.get s ′
1)

l .create s1 = l0.create (l1.get s1)
r .get = snd
r .put (s1, s2) s ′

2 = l0.put (s1, s2) (l2.get s ′
2)

r .create s2 = l0.create (l2.get s2)

Notice that by construction l :: R � S1 and r :: R � S2, that is, since we have
used l0 and r0 to define l and r , we do not need to do any more work to check
that the pairs produced by create and put remain in R. Notice also that l and r
only use the lenses l1 and l2, not r1 and r2; we will show nevertheless that they
satisfy the required properties.

First, to show that l ; l1 = r ; l2, we proceed as follows for each operation.
For get :

(l ; l1).get (s1, s2)
= [[ definition ]]
l1.get (l .get (s1, s2))

= [[ definition of l .get = fst , fst commutes with get ]]
l0.get (s1, s2)

= [[ reverse reasoning ]]
(r ; l2).get (s1, s2)

For put , we have:

(l ; l1).put (s1, s2) a
= [[ Definition ]]
l .put (s1, s2) (l1.put s1 a)

= [[ Definition ]]
l0.put (s1, s2) (l1.get (l1.put s1 a))

= [[ (PutGet) for l1 ]]
l0.put (s1, s2) a

= [[ (PutGet) for l2 ]]
l0.put (s1, s2) (l2.get (l2.put s2 a))
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= [[ Definition ]]
r .put (s1, s2) (l2.put s2 a)

= [[ Definition ]]
(r ; l2).put (s1, s2) a

Finally, for create we have:

(l ; l1).create a
= [[ Definition ]]
l .create (l1.create a)

= [[ Definition ]]
l0.create (l1.get (l1.create a))

= [[ (CreateGet) for l1 ]]
l0.create a

= [[ (CreateGet) for l2 ]]
l0.create (l2.get (l2.create a))

= [[ Definition ]]
r .create (l2.create a)

= [[ Definition ]]
(r ; l2).create a

Next, we show that l ; r1 = r ; r2. For get :

(l ; r1).get (s1, s2)
= [[ Definition ]]
r1.get (l .get (s1, s2))

= [[ definition of l .get = fst , fst commutes with r1.get ]]
r0.get (s1, s2)

= [[ reverse above reasoning ]]
(r ; r2).get (s1, s2)

For put , we have:

(l ; r1).put (s1, s2) b
= [[ Definition ]]
l .put (s1, s2) (r1.put s1 b)

= [[ Definition ]]
l0.put (s1, s2) (l1.get (r1.put s1 b))

= [[ Twist equation ]]
l0.put (s1, s2) (l2.get (r2.put s2 b))

= [[ Definition ]]
r .put (s1, s2) (r2.put s2 b)

= [[ Definition ]]
(r ; r2).put (s1, s2) b

Finally, for create we have:

(l ; r1).create b
= [[ Definition ]]
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l .create (r1.create b)
= [[ Definition ]]
l0.create (l1.get (r1.create b))

= [[ Twist equation ]]
l0.create (l2.get (r2.create b))

= [[ Definition ]]
r .create (r2.create b)

= [[ Definition ]]
(r ; r2).create b

We must also show that l and r are well-behaved full lenses. To show that l is
well-behaved, we proceed as follows. For (GetPut):

l .get (l .put (s1, s2) s ′
1)

= [[ Definition ]]
fst (l0.put (s1, s2) (l1.get s ′

1))
= [[ fst commutes with put ]]
l1.put s1 (l1.get s ′

1))
= [[ (GetPut) for l1 ]]
s ′
1

For (PutGet):

l .put (s1, s2) (l .get (s1, s2))
= [[ Definition ]]
l0.put (s1, s2) (l1.get s1)

= [[ Eta-expansion for pairs ]]
(fst (l0.put (s1, s2) (l1.get s1)), snd (l0.put (s1, s2) (l1.get s1)))

= [[ fst , snd commutes with put ]]
(l1.put s1 (l1.get s1), l2.put s2 (l1.get s1))

= [[ l1.get s1 = l2.get s2 ]]
(l1.put s1 (l1.get s1), l2.put s2 (l2.get s2))

= [[ (PutGet) for l1, l2 ]]
(s1, s2)

For (CreateGet):

l .create (l .get (s1, s2))
= [[ Definition ]]
l0.create (l1.get s1)

= [[ Eta-expansion for pairs ]]
(fst (l0.create (l1.get s1)), snd (l0.create (l1.get s1)))

= [[ fst , snd commutes with put ]]
(l1.create (l1.get s1), l1.create (l1.get s1))

= [[ l1.get s1 = l2.get s2 ]]
(l1.create (l1.get s1), l1.create (l2.get s2))

= [[ (CreateGet) ]]
(s1, s2)
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Finally, notice that l and r are defined symmetrically so essentially the same
reasoning shows r is well-behaved.

To conclude, sp = (l , r) constitutes a span of lenses witnessing that
sp1 ≡s sp2. ��
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Abstract. Session types provide a static guarantee that concurrent pro-
grams respect communication protocols. Recent work has explored a
correspondence between proof rules and cut reduction in linear logic
and typing and evaluation of process calculi. This paper considers two
approaches to extend logically-founded process calculi. First, we con-
sider extensions of the process calculus to more closely resemble π-
calculus. Second, inspired by denotational models of process calculi, we
consider conflating dual types. Most interestingly, we observe that these
approaches coincide: conflating the multiplicatives (⊗ and �) allows
processes to share multiple channels; conflating the additives (⊕ and
& ) provides nondeterminism; and conflating the exponentials (! and ?)
yields access points, a rendezvous mechanism for initiating session typed
communication. Access points are particularly expressive: for example,
they are sufficient to encode concurrent state and general recursion.

1 Introduction

The Curry-Howard correspondence, formulated by Howard (1980) and building
on ideas of Curry (1934) and Tait (1965), observes a remarkable correspondence
between (propositional) intuitionistic logic and the λ-calculus. The correspon-
dence identifies logical propositions with λ-calculus types, proofs with well-typed
terms, and cut elimination with reduction. The correspondence is fruitful from
the perspectives of both logic and programming languages (Wadler, 2015).

Recent work, initiated by Caires and Pfenning (2010), attempts a similar
identification between linear logic and process calculi. In this case, propositions
of (intuitionistic) linear logic are identified with session types, a mechanism for
typing interacting processes originally proposed by Honda (1993). Proofs of those
propositions are identified with π-calculus processes, and cut elimination in linear
logic with π-calculus reduction. However, this identification is not as satisfying as
that for intuitionistic logic and the λ-calculus. In particular, numerous features
of the π-calculus are excluded by the resulting session-typing discipline, and
there is not yet an approach to restore them. Philip Wadler posed the following
question at an invited talk by Frank Pfenning at the TLDI Workshop in January
2012 [paraphrased]:
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Simply-typed λ-calculus has a propositions as types interpretation as
intuitionistic logic, but has limited expressiveness. By adding a fix point
operator it becomes Turing-complete. Similarly, Caires and Pfenning’s
calculus has a propositions as types interpretation as intuitionistic linear
logic. Is there a feature, analogous to the fix point operator, that we can
add to Caires and Pfenning’s calculus in order to recover the full power
of π-calculus?

Wadler has since reposed the same question, but with respect to his classical
variant of Caires and Pfenning’s system (Wadler (2014)).

This paper describes an approach to more expressive, logically founded
process calculi, inspired by Wadler’s question. We begin by considering exten-
sions of Wadler’s CP calculus that increase its expressiveness—at the cost of
properties such as deadlock freedom—while retaining session fidelity (well-typed
communication). To do so, we explore two approaches. On the one hand, we
directly investigate the inclusion of π-calculus terms excluded by CP’s type sys-
tem, bringing CP more in line with the term calculi in most existing presentations
of session types. Doing so requires the addition of new typing rules, and we con-
sider their interpretation as proof rules and their logical consequences. On the
other hand, inspired by the semantics of the π-calculus described by Abramsky
et al. (1996), we attempt to conflate the various dual types. Our primary con-
tribution is the observation that these disparate approaches converge: the new
proof rules allow us to show bi-implications between dual types, while assuming
such bi-implications make the new logical rules derivable.

The paper proceeds as follows. We begin with a short introduction to ses-
sion types and their connection to linear logic and its semantics (Sect. 2). We
recall Wadler’s CP calculus (Sect. 3). We then describe the conflation of the
various dual types and their consequences (Sect. 4). Finally, we conclude with a
discussion of future work and open questions (Sect. 5).

2 Background

Unlike the propositions of intuitionistic logic, linear logic propositions are finite
resources—the assumptions of a proof must each be used exactly once in the
course of the proof. When he introduced linear logic, Girard (1987) suggested
that it might be suited to reasoning about parallelism. Abramsky (1992) and
Bellin and Scott (1994) give embeddings of linear logic proofs in π-calculus, and
show that cut reduction is simulated by π-calculus reduction. Their work is not
intended to provide a type system for π-calculus: there are many processes which
are not the image of some proof.

Session types were originally introduced by Honda (1993) as a type system for
π-calculus-like communicating processes. The key constructors of session types
include input and output, characterising the exchange of data, and internal and
external choice, characterising branching evaluation. Honda’s typing discipline
assures session fidelity, meaning that at each synchronisation the communicating
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processes agree on the types of values exchanged. His system is extended to π-
calculus-like processes by Takeuchi et al. (1994) and Honda et al. (1998). Session
typing relies on a substructural type system to assure session fidelity; however,
Honda did not relate his types to the propositions of linear logic, and he relies on
a self-dual type for closed channels. Kobayashi et al. (1996) give a linear, typed
polyadic π-calculus, in which each channel must be used exactly once, and show
how it can be used to encode serial uses, as in session types; they do not address
choice or nondeterminism.

Recent work by Caires and Pfenning (2010) and Wadler (2014), among oth-
ers, has developed a propositions-as-types correspondence between session typing
and linear logic. Session types are interpreted via the connectives of linear logic—
for example, the tensor product A⊗B characterises processes that output values
of type A, and then proceed as B. Caires and Pfenning (2010) interpret the proof
rules for intuitionistic linear logic as a type system for the π-calculus; they then
show that the reduction steps for well-typed π-calculus terms correspond to the
cut elimination rules for intuitionistic linear logic. Wadler (2014) adapts their
approach to classical linear logic, emphasising the role of duality in typing; in his
system, the semantics of terms is given directly by the cut elimination rules. As
a consequence of their logical connections, both systems enjoy deadlock freedom,
termination, and a lack of nondeterministic behaviour; however, both systems
also impose additional limitations on the underlying process calculus, and differ
in some ways from traditional presentations of session types.

Abramsky et al. (1996) propose an alternative approach to typing communi-
cating processes. Their approach is based on a denotational model for processes,
called interaction categories. Their canonical interaction category, called SProc
is sufficient to interpret linear logic; unusually, the interpretations of the dual
connectives are conflated. SProc is quite expressive: it can faithfully interpret
all of Milner’s synchronous CCS calculus. However, we are not aware of any
work extending interaction categories to interpret channel-passing calculi, such
as π-calculus or the calculi of Caires and Pfenning and Wadler.

There have been several type systems for deadlock-free processes not derived
from linear logic, including those of Kobayashi (2006), Padovani (2014), and
Giachino et al. (2014). These systems all include composition of processes shar-
ing multiple channels, but at the cost of additional type-system complexity.
Dardha and Pérez (2015) compare Kobayashi’s approach with the linear-logic
based approaches of Caires, Pfenning, and Wadler. They observe that the lin-
ear logic-based approaches coincide with that of Kobayashi when restricted to
one shared channel between processes. They also give a rewriting procedure from
Kobayashi-typable processes with multiple shared channels to processes with one
shared channel, and show an operational correspondence between the original
and rewritten processes.

Some of our results above are reminiscent of results obtained in category-
theoretic settings closely related to linear logic. Fiore (2007) shows that confla-
tion of products and coproducts into biproducts is equivalent to the existence of a
monoidal structure on morphisms; we will attempt a similar conflation (Sect. 4.3)
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to give a logical interpretation of nondeterminism. Compact closed categories
provide a model of classical linear logic in which ⊗ and � are identified; we will
consider a similar conflation as well (Sect. 4.2). However, we do not yet under-
stand the exact relationship between compact closed categories, and our system
with the multicut rule. In compact closed categories it is known that finite prod-
ucts are automatically biproducts Houston (2008), and it would be interesting
to see how his proof translates to a logical setting.

Finally, there have been several attempts to relate π-calculus to proof nets,
one approach to the semantics of linear logic. Honda and Laurent (2010) demon-
strate a two-way correspondence between proof nets for polarised linear logic and
a typed π-calculus previous presented by Honda et al. (2004). The type system
used for the π-calculus in this work is rather restrictive, however: it ensures
that all processes are deterministic and effectively sequential, removing much of
the expressivity of the π-calculus. Ehrhard and Laurent (2010) give a transla-
tion from finitary π-calculus (i.e., π-calculus without replication) into differen-
tial interaction nets. Differential interaction nets are an untyped formalism for
representing computation, based on proof nets for differential linear logic. Dif-
ferential linear logic is an extension of linear logic that, amongst other features
adds a form of nondeterminism. It is this nondeterminism that Ehrhard and
Laurent use to model the π-calculus. However, Mazza (2015) argues forcefully
that Ehrhard and Laurent’s translation incorrectly models the nondeterminism
present in the π-calculus. In short, Mazza shows that differential proof nets can
only model “localised” nondeterminism—nondeterminism that can be resolved
via a local coin flip—and not the global nondeterminism that arises when two
processes “race” to communicate with another process. Mazza makes the follow-
ing provocative statement:

However, although linear logic has kept providing, even in recent times,
useful tools for ensuring properties of process algebras, especially via
type systems (Kobayashi et al., 1999; Yoshida et al., 2004; Caires and
Pfenning, 2010; Honda and Laurent, 2010), all further investigations have
failed to bring any deep logical insight into concurrency theory, in the
sense that no concurrent primitive has found a convincing counterpart
in linear logic, or anything even remotely resembling the perfect corre-
spondence between functional languages and intuitionistic logic. In our
opinion, we must simply accept that linear logic is not the right frame-
work for carrying out Abramsky’s “proofs as processes” program (which,
in fact, more than 20 years after its inception has yet to see a satisfactory
completion).

We will show that, while not entirely answering Mazza’s critique, our identifica-
tions provide some logical justification for π-calculus-like features.

3 Classical Linear Logic and the Process Calculus CP

We begin by reviewing Wadler’s CP calculus (Wadler, 2014), its typing, and its
semantics. For simplicity, we restrict ourselves to the propositional fragment of
CP, omitting second-order existential and universal quantification.
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3.1 Types and Duality

The types of the CP calculus are built from the multiplicative, additive, and
exponential propositional connectives of Girard’s classical linear logic (CLL).

Types A,B ::= A ⊗ B | A � B | 1 | ⊥ | A ⊕ B | A& B | 0 | � | !A | ?A

Wadler’s contribution with the CP calculus was to give the logical connectives
of CLL an explicit reading in terms of session types. As is standard with session
typing, CP types denote the types of channel end points. The connectives come in
dual pairs, indicating complementary obligations for each end point of a channel.
The tensor connective A⊗B means output A and then behave like B; and dually,
par A � B means input A and then behave like B. The unit of ⊗ is 1, empty
output; dually, the unit of � is ⊥, empty input. Internal choice A ⊕ B means
make a choice between A and B; dually, external choice A& B means accept a
choice of A or B. Replication !A means produce an arbitrary number of copies
of A; dually, query ?A means consume a copy of A.

The dual relationships between ⊗ and �, 1 and ⊥, ⊕ and & , and ! and ?
are formalised in the duality operation −⊥, which takes each type to its dual.

(A ⊗ B)⊥ = A⊥ �B⊥

(A�B)⊥ = A⊥ ⊗ B⊥

1⊥ = ⊥
⊥⊥ = 1

(A ⊕ B)⊥ = A⊥ & B⊥

(A& B)⊥ = A⊥ ⊕ B⊥

�⊥ = 0
0⊥ = �

(!A)⊥ = ?(A⊥)
(?A)⊥ = !(A⊥)

Example: Sending and Receiving Bits. CP is a rather low-level calculus. The
multiplicative fragment (⊗ and �) handles only sending and receiving of chan-
nels, on which data may be subsequently transmitted. The only actual data that
may be transmitted between processes are single bits, which take the form of a
choice between a pair of sessions. Transmission of a single bit is represented by
internal choice between two empty outputs.

Bool = 1 ⊕ 1

Dually, receiving a single bit is represented by an external choice between two
empty inputs.

Bool⊥ = ⊥& ⊥
The other propositional connectives of CLL can now be used to build more
complex specifications. For example, we can write down the type of a server
that offers a choice of a binary operation on booleans (single bits) and a unary
operation on booleans, arbitrarily many times.

Server = !((Bool⊥ � Bool⊥ � Bool ⊗ 1)& (Bool⊥ � Bool ⊗ 1))

The outer ! indicates that an implementation of this type is obliged to offer the
server as many times as a client requires. The inner part of the type is a client-
choice, indicated by the external choice (& ), between the two operations. The



Conflation Confers Concurrency 37

left-hand choice Bool⊥ � Bool⊥ � Bool ⊗ 1 can be read as “the server must
input two booleans, output a boolean, and then signal the end of the session”.
The right-hand choice is similar, but only specifies the input of a single boolean
input.

A compatible client type is obtained by taking the dual of the Server type.

Client = Server⊥ = ?((Bool ⊗ Bool ⊗ Bool⊥ � ⊥) ⊕ (Bool ⊗ Bool⊥ � ⊥))

Dually to the server’s obligations, the outer ? indicates that the client may
make as many uses of this session as it desires. The inner part of the type is an
internal choice (⊕), indicating that the implementation of this type must make a
choice between the two services. The two choices then describe the same pattern
as the server, but from the point of view of the client. The left-hand choice
Bool⊗Bool⊗Bool⊥ � ⊥ can be read as “the client must output two booleans,
input a boolean, and then signal the end of the session”. The right-hand choice
is similar, but only specifies the output of a single boolean.

3.2 Terms and Typing

The terms of CP are given by the following grammar.

Terms P,Q ::= x ↔ y | νy (P | Q) | x(y).P | x[y].(P | Q) | !x(y).P | ?x[y].P
| x[ini].P | case x.{P ;Q} | x().P | x[].0 | case x.{}

Figure 1 gives the typing rules of CP. The typing judgement is of the form P � Γ ,
where P is a CP process term, and Γ is a channel typing environment. In rule
(Bang), ?Γ denotes a context Γ in which all types are of the form ?A for some
type A. Note that CP’s typing rules implicitly rebind identifiers: for example, in
the hypothesis of the rule for �, x identifies a proof of B, while in the conclusion
it identifies a proof of A � B.

CP includes two rules that are logically derivable: the axiom rule, which
is interpreted as channel forwarding, and the cut rule, which is interpreted as
process composition. Two of CP’s terms differ from standard π-calculus terms.
The first is composition—rather than having distinct name restriction and com-
position operators, CP provides one combined operator. This syntactically cap-
tures the restriction that composed processes must share exactly one channel.
The second is output: the CP term x[y].(P | Q) includes output, composition,
and name restriction (the name y designates a new channel, bound in P ). Finally,
note that CP includes only replicated input, not arbitrary replicated processes.

A Simpler Send. The CP rule Tensor is appealing because if one erases the
terms it is exactly the classical linear logic rule for tensor. However, this corre-
spondence comes at a price. Operationally, the process x[y].(P | Q) does three
things: it introduces a fresh variable y, it sends y to a freshly spawned process P ,
and in parallel it continues as process Q. Fortunately, we can straightforwardly
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Typing

Axiom

x ↔ w x : A,w : A⊥

Cut
P Γ, x : A Q Δ, x : A⊥

νx (P | Q) Γ, Δ

One

x [].0 x : 1

Tensor
P Γ, y : A Q Δ, x : B

x [y ].(P | Q) Γ, Δ, x : A ⊗ B

Par
P Γ, y : A, x : B

x (y).P Γ, x : A ` B

Bot
P Γ

x ().P Γ, x : ⊥

Plus
P Γ, x : Ai

x [ini].P Γ, x : A1 ⊕ A2

With
P Γ, x : A Q Γ, x : B

case x .{P ;Q Γ, x : A & B

Top

case x . Γ, x :

Bang
P ?Γ, y : A

!x (y).P ?Γ, x : !A

Query

P Γ, y : A

?x [y ].P Γ, x : ?A

Weaken?
P Γ

P Γ, x : ?A

Contract?
P Γ, y : ?A, z : ?A

P{x/y , x/z Γ, x : ?A

Fig. 1. CP typing

define the operation that sends a free variable along a channel as syntactic
sugar (Lindley and Morris (2015) discuss this in more detail).

x〈y〉.P def= x[z].(y ↔ z | P )

Example: Sending and Receiving Bits. As mentioned above, CP is quite low-level,
so we use some syntactic sugar for sending and receiving bits.

x[0].P def= x[y].(y[in1].y[].0 | P )

x[1].P def= x[y].(y[in2].y[].0 | P )

case p.{0 
→ P ; 1 
→ Q} def= case p.{p().P ; p().Q}
Let us define a logic server process P � x : Server, in which the binary operation
is “and”, and the unary operation is “not”.

P = !x(y).case y.{y(p).y(q).
case p.{0 
→ case q.{0 
→ y[0].y[].0; 1 
→ y[0].y[].0};

1 
→ case q.{0 
→ y[0].y[].0; 1 
→ y[1].y[].0}};
y(p).

case p.{0 
→ y[1].y[].0; 1 
→ y[0].y[].0}}
This process operates over replicated channel x, accepting a channel y.

A client process communicating along the other end of x will begin by choosing
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between the “and” and “not” operations. If “and” is requested, then two bits (p
and q) are received along y, and their logical conjunction is sent back along y.
If “not” is requested, then a single bit (p) is received along y, and its logical
negation is sent back along y.

We now define a client process Q that uses P to compute “not (p and q)”,
using the result to choose between two processes P0 and P1 as continuations.

Q = ?x[y].y[in1].y〈p〉.y〈q〉.y(z).y().
?x[y].y[in2].y〈z〉.y(r).y().
case r.{0 
→ P0; 1 
→ P1}

The process Q connects to P twice using channel x, selecting the “and” opera-
tion, and then the “not” operation. We have that Q � p : Bool⊥, q : Bool⊥, x :
Client,Δ whenever P0 � Δ and P1 � Δ.

3.3 Semantics via Cut Reduction

The semantics of CP terms are given by cut reduction, as shown in Fig. 2. We
write fv(P ) for the free names of process P . Terms are identified up to structural
congruence ≡ (as name restriction and composition are combined into one form,
composition is not always associative). We write −→C for the cut reduction
relation and −→CC for the commuting conversion relation. We denote sequential
composition of relations by juxtaposition. We write R∗ for the transitive reflexive
closure and R? for the reflexive closure of relation R.

The majority of the cut reduction rules correspond closely to synchronous
reductions in π-calculus—for example, the reduction of & against ⊕ corresponds
to the synchronisation of an internal and external choice. The rule for reduction
of � against ⊗ is more complex than synchronisation of input and output in
π-calculus, as it must also manipulate the implicit name restriction and parallel
composition in the output term. We deviate slightly from Wadler’s presenta-
tion in that substitution and duplication and discarding of replicated processes
happens in the structural congruence rules for weakening and contraction and
not as part of the rule for dereliction. These choices ensure that reduction only
concerns interactions between dual prefixes and other non-intensional behaviour
is handled by the structural congruence.

Theorem 1 (Preservation). The relations ≡, −→C, and −→CC preserve well-
typing: if P � Γ then P ≡ Q implies Q � Γ , P −→C Q implies Q � Γ , and
P −→CC Q implies Q � Γ .

Just as cut elimination in logic ensures that any proof may be transformed
into an equivalent cut-free proof, the reduction rules of CP transform any term
into a term blocked on external communication—that is to say, if P � Γ , then
P (≡−→C)∗(≡−→CC)? P ′ where P ′ 
= νx (Q | Q′) for any x,Q,Q′. The optional
final commuting conversion plays a crucial role in this transformation, moving
any remaining internal communication after some external communication (pre-
cluding deadlock). Note, however, that commuting conversions do not correspond
to computational steps (i.e., any reduction rule in π-calculus).
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Structural congruence

x ↔ w ≡ w ↔ x
νx (w ↔ x | P) ≡ P [w/x ]

νx (P | Q) ≡ νx (Q | P)
νx (P | νy (Q | R)) ≡ νy (νx (P | Q) | R), if x ∈ fv(R)

νx (!x (y).P | Q) ≡ Q , x /∈ fv(Q)
νx (!x (y).P | Q{x/z}) ≡ νx (!x (y).P | νz (!z (y).P | Q))

Primary cut reduction rules

νx (x [].0 | x ().P) −→C P
νx (x [y ].(P | Q) | x (y).R) −→C νx (Q | νy (P | R))

νx (x [ini].P | case x .{Q1;Q2}) −→C νx (P | Qi)
νx (!x (y).P | ?x [y ].Q) −→C νy (P | Q), if x /∈ fv(Q)

P −→C P

νx (P | Q) −→C νx (P | Q)

Commuting conversions

νz (x [y ].(P | Q) | R) −→CC x [y ].(νz (P | R) | Q), if z ∈ fv(Q)
νz (x [y ].(P | Q) | R) −→CC x [y ].(P | νz (Q | R)), if z ∈ fv(P)

νz (x (y).P | Q) −→CC x (y).νz (P | Q)
νz (x ().P | Q) −→CC x ().νz (P | Q)

νz (x [ini].P | Q) −→CC x [ini].νz (P | Q)
νz (case x .{P ;Q} | R) −→CC case x .{νz (P | R); νz (Q | R)}

νz (case x .{} | Q) −→CC case x .{}
νz (!x (y).P | Q) −→CC !x (y).νz (P | Q)
νz (?x [y ].P | Q) −→CC ?x [y ].νz (P | Q)

Fig. 2. CP congruences and cut reduction

Example: Sending and Receiving Bits. Recall that, under the assumption of two
processes P0 � Δ and P1 � Δ, we have P � x : Server and Q � p : Bool⊥, q :
Bool⊥, x : Client,Δ. In order to connect the client and server, we bind x to the
replicated channel they communicate along: PQ = νx (P | Q). We can set the
values of the bits p and q by placing further processes in parallel with PQ, which
allows reduction. For instance,

νp (p[1] | νq (q[1] | PQ)) −→∗
C P0

and:
νp (p[0] | νq (q[1] | PQ)) −→∗

C P1

Properties of Cut Reduction. Unsurprisingly, being a term calculus for classical
linear logic, CP is well-behaved. CP cut reduction is terminating, CP does not
admit deadlocks, and CP is deterministic.
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Theorem 2 (Termination). The relation −→C is strongly-normalising mod-
ulo ≡: if P � Γ , then there are no infinite ≡−→C reduction sequences starting
from P .

Theorem 3 (Deadlock-Freedom). If P � Γ , then there exist P ′, Q such that
P (≡−→C)∗ P ′ and P (≡−→CC)? Q, and Q is not a cut.

Theorem 4 (Determinism). The relation −→C is confluent modulo ≡: if
P � Γ , P (≡−→C)∗ Q1 and P (≡−→C)∗ Q2, then there exist R1, R2 such that
Q1 (≡−→C)∗ R1, Q2 (≡−→C)∗ R2, and R1 ≡ R2.

All of these theorems follow from well known results about classical linear logic.

4 Conflating Duals

In light of the results above about CP’s semantics, it would seem that CP is not
a particularly expressive calculus. In particular, nondeterminism is frequently
seen as a defining characteristic of concurrency, and the guaranteed deterministic
behaviour of CP (Theorem4) would appear to indicate that it is not possible to
express much interesting behaviour in CP.

One property of CP that appears to be essential for its behavioural properties
is its strict adherence to duality. Each connective has an accompanying dual, and
the fact that communicating processes must match dual connectives precisely
means that “nothing goes wrong”, in the sense of non-termination, deadlock or
nondeterministic behaviour. Observing that this precise matching makes CP a
relatively inexpressive calculus, we now systematically investigate relaxation of
the strict duality of CP to see whether or not it yields greater expressivity by
conflating each of the dual pairs of connectives in turn.

How to Conflate Duals. There are choices over exactly how to conflate duals in
a proof theory. In a standard session-typed calculus, for instance, one literally
replaces 1 and ⊥ with a single type (usually called end). However, in order to keep
our modified calculus conservative with respect to the existing one, we initially
take a different approach following Wadler (2014), who considers extensions of
CP in which certain maps between duals are derivable. Logically, we can say that
we have conflated propositions (session types) A and B if there exist processes
PAB and PBA such that PAB � x : A � B and PBA � x : B � A (where A �
B = A⊥ � B), which amounts to giving back-and-forth translations between
A and B. In this paper, we do not necessarily require that these translations
be mutually inverse in any way, though we usually expect this to be the case.
Our general pattern will be to add some feature (parallelism, multi-channel cut,
nondeterminism, access points) and then observe that this is logically equivalent
to conflation of a dual pair.
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As indicated above, we defineA � B
def= A⊥ �B. Furthermore,� is invertible

P � z : A�B

w ↔ x � w : A⊥, x : A y ↔ z � y : B, z : B⊥

� z : A⊥ ⊗ B⊥, x : A, y : B

νz (P | z[w].(w ↔ x | y ↔ z)) � x : A, y : B

so without loss of generality we shall seek PAB and PBA such that PAB � x :
A⊥, y : B and PBA � x : B⊥, y : A and we shall systematically treat a proof
PAB � x : A⊥, y : B as a proof of A � B.

4.1 Concurrency Without Communication (1 and ⊥)

The first pair of connectives we conflate are 1 and ⊥. Conflation of this pair corre-
sponds to the addition of communication-free concurrency and inactive processes
to CP, via the Mix and 0-Mix rules.

The Mix rule allows processes P and Q to be composed in parallel P | Q
without creating a communication channel between them.

Mix
P � Γ Q � Δ

P | Q � Γ,Δ

The unit of Mix is the inactive process 0.

0-Mix

0 �
Using Mix we can prove ⊥ � 1.

x[].0 � x : 1 y[].0 � y : 1
x[].0 | y[].0 � x : 1, y : 1

Conversely, if we already have a proof P⊥1 of ⊥ � 1, then we can derive a proof
of the Mix rule.

P � Γ

x().P � Γ, x : ⊥

Q � Δ

y().Q � Δ, y : ⊥ P⊥1 � x : 1, y : 1
νy (Q | P⊥1) � Δ,x : 1

νx (P | νy (Q | P⊥1)) � Γ,Δ

Thus, Mix and ⊥ � 1 are logically equivalent and we choose to define a process
P⊥1 in terms of Mix.

P⊥1
def= x[].0 | y[].0
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In the other direction, using 0-Mix we can prove 1 � ⊥.

0 �
y().0 � y : ⊥

x().y().0 � x : ⊥, y : ⊥
Conversely, if we already have a proof P1⊥ of 1 � ⊥, then we can derive a proof
of the 0-Mix rule.

P1⊥ � x : ⊥, y : ⊥ y[].0 � y : 1
νy (P1⊥ | y[].0) � x : ⊥ x[].0 � x : 1

νx (νy (P1⊥ | y[].0) | x[].0) �
Thus, 0-Mix and 1 � ⊥ are logically equivalent and we choose to define the
process P1⊥ in terms of 0-mix.

P1⊥
def= x().y().0

Semantics. To account for Mix and 0-Mix, we extend the structural congruence
with the following rules.

P | 0 ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
νx (P | (Q | R)) ≡ (νx (P | Q)) | R, if x 
∈ fv(R)

The only cut reduction rule we add allows reduction under a Mix.

P −→C P ′

P | Q −→C P ′ | Q

For each standard commuting conversion involving a cut, there is a corresponding
one where the cut is replaced by a Mix.

x[y].(P | Q) | R −→CC x[y].((P | R) | Q)
x[y].(P | Q) | R −→CC x[y].(P | (Q | R))

(x(y).P ) | Q −→CC x(y).(P | Q)
(x().P ) | Q −→CC x().(P | Q)

(x[ini ].P ) | Q −→CC x[ini ].(P | Q)
case x.{P ;Q} | R −→CC case x.{P | R;Q | R}

case x.{} | Q −→CC case x.{}

Adding Mix and 0-Mix does not disturb any of the usual meta-theoretic proper-
ties of CP: termination, deadlock-freedom, and determinism all still hold. There-
fore, the conflation of 1 and ⊥ does not greatly alter the properties of CP, though
it is does weaken the separation between ⊗ and �, as we shall see in the next
section.
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4.2 Concurrency with Multiple Channels (⊗ and �)

The second pair of connectives we consider for conflation are ⊗ and �. This
conflation is logically equivalent to the addition of a multi-cut rule that enables
communication over several channels at the same time, generalising the single
channel of the standard Cut rule, and the zero channels of the Mix rule. As we
shall see, the introduction of this rule results in the possibility of deadlock.

Conflation of the units 1 and ⊥ of ⊗ and � via Mix already yields a trans-
lation from the former to the latter.

x ↔ y � x : A⊥, y : A w ↔ z � w : B⊥, z : B

x ↔ y | w ↔ z � x : A⊥, w : B⊥, y : A, z : B

y(z).(x ↔ y | w ↔ z) � x : A⊥ �B⊥, y : A, z : B

x(w).y(z).(x ↔ y | w ↔ z) � x : A⊥ �B⊥, y : A�B

Conversely, if we already have a proof P⊗ � of A ⊗ B � A � B, then we can
prove � 1, 1, and hence the Mix rule

P⊗� � x : 1� 1, y : ⊥�⊥
� x : 1 � y : 1

y[x].(x[].0 | y[].0) � y : 1 ⊗ 1
νy (P⊗� | y[x].(x[].0 | y[].0)) � x : 1� 1

νx (νy (P⊗� | y[x].(x[].0 | y[].0)) | x[w].w ↔ z | x ↔ y) � y : 1, z : 1

where we make use of the invertibility of �.
Whereas Mix is a variation on cut in which no channels communicate between

the two processes, another natural variation is to allow two channels to commu-
nicate simultaneously between two processes.

BiCut
P � Γ, x : A⊥, y : B⊥ Q � Δ,x : A, y : B

νxy (P | Q) � Γ,Δ

In general one might consider n channels communicating across a cut so the Mix
rule is the nullary case of such a multicut.

Using BiCut we can show that A � B � A ⊗ B.

y : A⊥, w : A x : B⊥, z : B

x : A⊥ ⊗ B⊥, w : A, z : B

x : A,w : A⊥ y : B, z : B⊥

y : A ⊗ B,w : A⊥, z : B⊥

νwz (x[y].(w ↔ y | x ↔ z)
|y[x].(w ↔ x | y ↔ z)) � x : A⊥ ⊗ B⊥, y : A ⊗ B

Conversely, if we already have a proof P�⊗ of A � B � A ⊗ B, then we can
derive a proof of the BiCut rule.

P � Γ, x : A⊥, y : B⊥

y[x].P � Γ, y : A⊥ ⊗ B⊥
Q � Δ,x : A, y : B

y(x).Q � Δ, y : A�B

νy (y[x].P | y(x).Q) � Γ,Δ
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where we write y[x].P as syntactic sugar for νz (z(x).P{z/y} | P�⊗).

P � Γ, x : A, y : B

P{z/y} � Γ, x : A, z : B

z(y).P{z/y} � Γ, z : A�B P�⊗ � z : (A�B)⊥, y : A ⊗ B

νz (z(x).P{z/y} | P�⊗) � Γ, y : A ⊗ B

Thus, BiCut and A � B � A ⊗ B are logically equivalent and we choose to
define the process P�⊗ in terms of BiCut.

P�⊗ = νwz (x[y].(w ↔ y | x ↔ z) | y[x].(w ↔ x | y ↔ z))

We can also derive 0-Mix using BiCut and Axiom.

0 def= νxy (x ↔ y | x ↔ y) �
As 0 does not have any observable behaviour in any context and neither does
this term, we can perfectly well take this to be our definition of 0 when working
with variants of CP that include BiCut.

From Bicut to Multicut. A natural way to try to define cut reduction in the
presence of BiCut is to lift each of the existing cut rules to bicut rules in which
the inactive name remains in place. Unfortunately, this does not work for the
rule reducing the interaction between ⊗ introduction and � introduction (i.e.
sending and receiving a fresh channel).

νzx (x[y].(P | Q) | x(y).R) −→C νzy (P | νx (Q | R))

The problem is that z may be bound in Q, so moving Q across the z cut may
require contradictory types for z. One can attempt to work around the issue by
analysing whether z occurs in P or Q. But if z has type ?A for some A then
it may occur in both. To avoid the problem we take a more uniform approach,
introducing a multicut construct that generalises Mix, BiCut, and Cut.

MultiCut
P � Γ, x1 : A⊥

1 , . . . , xn : A⊥
n Q � Δ,x1 : A1, . . . , xn : An

νx1, . . . , xn (P | Q) � Γ,Δ

Now we can construct a send/receive rule that does not move any of the sub-
terms across a cut. (We shall delegate all such cut-shuffling to the structural
congruence.)

ν�xx (x[y].(P | Q) | x(y).R) −→C ν�xxy ((P | Q) | R)

Extending the pattern for BiCut, one can encode n-cut, for n > 2 in terms of
P�⊗ (and hence BiCut).

νx1 . . . xn (P | Q) def= νxn (xn[x1]. · · · x[xn−1].P | xn(x1). · · · xn(xn−1).Q)

This shows us that BiCut is logically equivalent to MultiCut, but it does not
help with defining the semantics of BiCut, which we specify using MultiCut
anyway.
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Semantics. The structural congruence in the presence of MultiCut is as follows.

ν�xxy�y (P | Q) ≡ ν�xyx�y (P | Q)

x ↔ w ≡ w ↔ x
ν�xx (w ↔ x | P ) ≡ P [w/x], if w /∈ �x

ν�x (P | Q) ≡ ν�x (Q | P )
ν�x�y (P | ν�z (Q | R)) ≡ ν�y�z (ν�x (P | Q) | R),

if �x /∈ fv(R) and �z /∈ fv(P )
ν�xx (!x(y).P | Q) ≡ Q, if x /∈ fv(Q)

ν�xx (!x(y).P | Q{x/z}) ≡ ν�xxz ((!x(y).P | !z(y).P ) | Q)

The first rule allows reordering of bound variables. The remaining rules cor-
respond to the original structural rules, taking into account the possibility of
additional cut variables. The third rule is constrained such that a substitution
can only be performed if the substituted variable is not bound by the cut. The
fifth rule allows us to focus on any pair of processes while moving the cut vari-
ables between the multicuts appropriately. The final rule takes advantage of
Mix to avoid the problem we already encountered with adapting the original
send/receive rule for use with BiCut.

The primary cut rules are as follows.

ν�x (x[].0 | x().P ) −→C P
ν�xx (x[y].(P | Q) | x(y).R) −→C ν�xxy ((P | Q) | R)

ν�xx (x[ini ].P | case x.{Q1;Q2}) −→C ν�xx (P | Qi)
ν�xx (!x(y).P | ?x[y].Q) −→C ν�xy (P | Q), if x /∈ fv(Q)

P −→C P ′

ν�x (P | Q) −→C ν�x (P ′ | Q)

The send/receive rule uses mix and extends the existing multicut. The other
rules are straightforward generalisations of the original ones.

Adding MultiCut introduces the possibility of deadlock. Termination (but
not cut-elimination) and determinism are preserved.

4.3 Nondeterminism (0 and �/⊕ and & )

The previous two sections dealt with the conflation of the multiplicative con-
nectives, 1/⊥ and ⊗/�. Conflation of the additive connectives 0/�, and ⊕/&
yields a calculus that has local nondeterminism: processes can be defined as the
nondeterministic combination of two processes, or as processes that may fail.

As in π-calculus, we can easily extend CP with a construct to nondetermin-
istically choose between two processes.

Choose
P � Γ Q � Γ

P + Q � Γ
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The unit of nondeterminism fail makes no choices.

Fail

fail � Γ

Binary nondeterminism does not change the properties we can prove, and indeed
the Choose rule is derivable in two ways.

P � Γ

x().P � Γ, x : ⊥
Q � Γ

x().Q � Γ, x : ⊥
case x.{x().P ;x().Q} � Γ, x : ⊥& ⊥

x[].0 � x : 1
x[in1].x[].0 � x : 1 ⊕ 1

νx (case x.{x().P ;x().Q} | x[in1].x[].0) � Γ

P � Γ

x().P � Γ, x : ⊥
Q � Γ

x().Q � Γ, x : ⊥
case x.{x().P ;x().Q} � Γ, x : ⊥& ⊥

x[].0 � x : 1
x[in2].x[].0 � x : 1 ⊕ 1

νx (case x.{x().P ;x().Q} | x[in2].x[].0) � Γ

The proofs are not cut-free, and they both fail to capture the semantics of
nondeterminism: the first always reduces to P and the second to Q.

We do not need to add any features to CP in order to prove that 0 �
�. Logically 0 represents falsehood, and thus implies everything including �.
However, there are two distinct cut-free proofs of 0 � �.

case x.{} � x : �, y : � case y.{} � x : �, y : �
We can combine these using nondeterminism.

case x.{} + case y.{} � x : �, y : �

Similarly, there are two distinct cut-free proofs of A& B � A ⊕ B in plain CP.

x ↔ y � A⊥, A

y[in1].x ↔ y � x : A⊥, y : A ⊕ B

x[in1].y[in1].x ↔ y � x : A⊥ ⊕ B⊥, y : A ⊕ B

x ↔ y � x : B⊥, y : B

y[in2].x ↔ y � x : B⊥, y : A ⊕ B

x[in2].y[in2].x ↔ y � x : A⊥ ⊕ B⊥, y : A ⊕ B

Again, we can combine these using nondeterminism.

(x[in1].y[in1].x ↔ y) + (x[in2].y[in2].x ↔ y) � x : A⊥ ⊕ B⊥, y : A ⊕ B
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Reading CP as a logic, the Fail rule has obvious logical problems: it allows us to
prove anything! However, that is not to say that it does not have a meaningful
dynamic semantics in terms of cut reduction. Failure immediately yields a proof
of � � 0.

fail � x : 0, y : 0

Conversely, if we already have a proof P�0 of � � 0, then we can derive a proof
of the Fail rule.

case x.{} � x : �
P�0 � x : 0, y : 0 case y.{} � y : �, Γ

νy (P�0 | case y.{}) � x : 0, Γ

νx (case x.{} | νy (P�0 | case y.{})) � Γ

Thus, Fail and � � 0 are logically equivalent and we can define P�0 in terms
of Fail.

P�0
def= fail

Of course, A ⊕ B � A& B can be proved with fail. We could simply use fail
to prove this immediately, but this does not have the right dynamic semantics
in terms of nondeterminism. A more satisfying proof is given by the following
judgement.

case x.{case y.{x ↔ y; fail}; case y.{fail;x ↔ y}} � Γ

This judgement captures the idea that reduction can succeed if the two channels
make compatible choices. In the other direction, we can prove � 0 (and hence
� Γ for any Γ ) from P⊕& � A ⊕ B � A& B.

x[].0 � x:1
P � x:1 ⊕ 0 P⊕& � x:⊥& �, y:1& 0

νx (P | P⊕& ) � y : 1& 0
case y.{} � y:�, z:0

Q � y:⊥⊕�, z:0
νy (νx (x[in1].x[].0 | P⊕& ) | y[in2].case y.{}) � z:0

where P = x[in1].x[].0 Q = y[in2].case y.{}

Thus, Fail and A⊕B � A& B are logically equivalent and we choose to define
the semantics of P⊕& in terms of Fail.

P⊕&
def= case x.{case y.{x ↔ y; fail}; case y.{fail;x ↔ y}}

Bicut and Fail. It turns out that Fail is also derivable from BiCut. If we have
BiCut then we can define Fail as follows.

fail
def= νxy (x ↔ y | case x.{})
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Semantics. Following π-calculus, we add two reduction rules.

P + Q −→C P
P + Q −→C Q

Nondeterminism (without BiCut) does not disturb cut-elimination. Termi-
nation and deadlock-freedom are preserved. Of course, determinism is lost.
However, the determinism we have added is local, in the sense that while an
individual process may nondeterministically evolve, this nondeterminism does
not arise from two separate processes racing for some shared resource. If we are
to capture interesting concurrent behaviour then it seems natural to allow for
racy communication. We will see in the next section how to introduce races.

4.4 Access Points (! and ?)

Access points provide a dynamic match-making service for initiating session
communication. An access point a of type �A allows an arbitrary number of
channels of type A to nondeterministically accept requests from an arbitrary
number of channels of type A⊥. Each channel of type A is nondeterministically
paired up with a matching channel of type A⊥. If at any point the numbers of
A channels and A⊥ channels differ, then any unmatched channels block until a
matching channel becomes available (which may never happen).

It is not clear to us if it is possible to conflate ! and ? in quite the same way
as we did for the other type constructors. Nevertheless, we can achieve a similar
effect by a slightly different route, whereby we replace ! and ? with access points.

The rules for accepting and requesting a connection through an access point
replace the Bang and Query rules.

Accept
P � Γ, x : !A, y : A

�x(y).P � Γ, x : !A

Request

P � Γ, x : ?A, y : A

�x[y].P � Γ, x : ?A

The two differences from the Bang and Query rules are that: in each rule x is
bound in P , allowing the access point to be reused in the continuation; and there
are no restrictions on Γ in Accept. The weakening and contraction capabilities
are extended to propositions of the form !A.

Weaken!
P � Γ

P � Γ, x : !A

Contract!
P � Γ, y : !A, z : !A

P{x/y, x/z} � Γ, x : !A

The original Bang and Query rules are derivable from the above rules:

P � ?Γ, y : A

P � ?Γ, x : !A, y : A

�x(y).P � ?Γ, x : !A

P � Γ, y : A

P � Γ, x : ?A, y : A

�x[y].P � Γ, x : ?A
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Conversely, if for all A we have proofs of !A � ?A and ?A � !A, then we can
straightforwardly derive Accept, Request, Weaken!, and Contract!.

Access points liberate name restriction from parallel composition. We will
use the following syntactic sugar.

0 def= νa (�a[x].x[].0 | �a[x].x[].0)
(νa)P def= νa (P | 0)

(νa1 . . . an)P def= (νa) . . . (νan)P

In addition to the changes to the typing rules, we also add a type equation

�A = !A = ?A⊥

capturing the idea that access points play the role of both ! and ?. This equation
immediately implies that !A � ?A⊥ and ?A � !A⊥, which does not quite
fit with our previous pattern. However, if it is the case that A and all of its
subformulas are self-dual then we can show that !A � ?A and ?A � !A are
admissible, as we might expect. As it turns out, we can encode Mix, MultiCut,
and Choice using access points, so indeed these properties are admissible and
all types are self-dual.

P | Q
def= νa (P | Q)

νx1 . . . xn (P | Q) def= (νa1 . . . an)(�a1(x1). · · · �an(xn).P | �an[x1]. · · · �an[xn].Q)

fail
def= νx (case x.{} | (νa)�a(y).x ↔ y)

P + Q
def= νa ((�a(x).x[in1].x[].0 | �a(x).x[in2].x[].0) | �a[x].case x.{x().P ;x().Q})

Semantics. In the presence of access points, it makes sense to add a garbage col-
lection rule to the structural congruence to dispense with unused cut variables.

νx�x (P | Q) ≡ ν�x (P | Q), if x /∈ fv(P ) ∪ fv(Q)

The reduction for ! against ? need not operate across the cut at which the access
point is bound, and the channel is not discarded as the access point can be used
an arbitrary number of times.

ν�x (�a(x).P | �a[x].Q) −→C ν�xx (P | Q)

In order to give a closed system of reduction rules we assume MultiCut. We
disable the structural congruence rules for explicitly performing replication and
garbage collection of ! channels, as these are no longer necessary due to weakening
and contraction on !.

The commuting conversions for access points are unsurprising.

ν�z (�x(y).P | Q) −→CC �x(y).ν�z (P | Q)
ν�z (�x[y].P | Q) −→CC �x[y].ν�z (P | Q)
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CP extended with access points does not enjoy termination, deadlock-
freedom, or determinism. In return for losing these properties, access points
significantly increase the expressiveness of CP. Indeed, the stateful nondetermin-
ism inherent in the semantics of access points also admits a meaningful notion
of racy communication. A critical feature that CP lacks, even if we add multicut
and nondeterminism, is any form of concurrent shared state. For instance, it is
not possible to represent the standard session typing example of a book seller in
CP in such a way that different buyers can observe any information about which
books have been sold by the book seller to other buyers. Plain replication only
allows us to copy the entire book seller. Access points do allow us to implement
such examples.

Example: State. We implement a state cell of type A as an access point of
type �A.

StateA
def= �A

new(v).(νr)P def= (νr)(�r(x).x ↔ v | P )
put(r, v).P def= �r[v′].(�r(x).x ↔ v | P )

get(r).(νv)P def= �r[v].(�r(x).x ↔ v | P )

The new operation allocates a new reference cell (r) initialised to the supplied
value. The put operation discards the existing state (v′). The get operation
duplicates the existing state (v).

Using this encoding of state we can construct Landin’s knot (Landin, 1964),
which in sequential languages shows how higher-order state entails recursion. In
CP, this provides a way of implementing recursive and replicated processes. For
example, a nonterminating process can be defined by

forever
def= νf (id(f) | new(f).(νr)νg (suspend(g,GF (r)) | put(r, g).GF (r)))

where
suspend(f, P ) def= �f(x).P

force(f) def= �f [x].0
id(f) def= suspend(f, 0)

GF (r) def= get(r).(νf)force(f)

The contents of the reference cell has type �(�A), where A can by any type.
More usefully, we can implement replication in the same way as forever,

except the replicated process is placed in parallel with the recursive call repre-
sented by the body of the suspension.

!x(y).P def= νf (id(f) | new(f).(νr)νg ( suspend(g, (GF (r) | �x(y).P ))
| put(r, g).GF (r)))
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Example: Phil’s Bookstore. As a simple example of using access points to capture
concurrent state, we model a scenario in which Phil has three books: two copies
of Introduction to Functional Programming (Bird and Wadler, 1988) and one
copy of Java Generics and Collections (Naftalin and Wadler, 2006), which he is
willing to give to his students.

Phil
def= !phil(x).case x.{FP → �fp[y].x ↔ y;JG → �jg[y].x ↔ y}

Fp
def= �fp(x).x[Y es].�fp(x).x[Y es].�fp(x).x[No].0

Jg
def= �jg(x).x[Y es].�jg(x).x[No].0

For clarity, we tag the sums, as we did for booleans in (Sect. 3). The Phil
process accepts communications on the phil channel, dispatching requests for
Java Generics and Collections to the Jg process and requests for Introduction
to Functional Programming to the Fp process. The types of the access point
channels are as follows.

phil : �(JG : (Y es : �0 ⊕ No : �0) & FP : (Y es : �0 ⊕ No : �0)}
fp : �(Y es : �0 ⊕ No : �0)
jg : �(Y es : �0 ⊕ No : �0)

We exploit the type �0 to allow processes to be implicitly terminated. Now let
us define processes to represent Phil’s PhD students.

Jack
def= �phil[x].x[JG].case x.{Y es → JackHappy;No → JackSad}

Jakub
def= �phil[x].x[JG].case x.{Y es → JakubHappy;No → JakubSad}

Shayan
def= �phil[x].x[FP ].case x.{Y es → ShayanHappy;No → ShayanSad}

Simon
def= �phil[x].x[FP ].case x.{Y es → SimonHappy;No → SimonSad}

Jack and Jakub request Java Generics and Collections. Shayan and Simon
request Introduction to Functional Programming. We can compose all of these
processes in parallel.

(Phil | Jg | Fp) | Jack | Jakub | Shayan | Simon

Reduction will nondeterministically assign each book to a student, until at some
point Phil runs out of the Java Generics and Collections book and either Jack
or Jakub has a request denied, having to go to the library instead. Note that the
choice of whether Jack or Jakub is sad is not made locally by any of the Jack,
Jakub or Phil processes, but as a result of the racy interaction between them.
Without access points it is not possible in CP to represent this kind of stateful
and racy interaction.

Do We need Access Points? In classical linear logic, and hence CP, weaken-
ing and contraction are derivable for each type built up from the “negative”
connectives (�, ⊥, & ,�, ?). Once we conflate dual connectives, weakening and
contraction also become derivable for each type built up from corresponding the
positive connectives as well.
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Given that conflating duals allows us to define weakening and contraction at
all types, even in the multiplicative additive fragment of CP (without ! and ?),
one might suspect that this would result in the effective identification of ! and ?,
and hence we should be able to define unlimited state without using access points.
This suggests a contradiction, because we claim that the resulting calculus is
terminating.

In fact, we can simulate a form of unlimited state in this manner, but with
a caveat. The implementation of weakening and contraction in this encoding is
explicit. Correspondingly, the size of the definition of each operation is at least
linear in the number of times the reference cell is accessed. Non-terminating
programs written using Landin’s knot necessarily access the same reference cell
an infinite number of times. Hence, a process (without access points) encoding
such a program would necessarily be infinite. Thus, we cannot encode full higher-
order state and Landin’s knot without access points.

5 Conclusions and Future Work

We have explored extensions to Wadler’s CP calculus that make it more expres-
sive, inspired syntactically by session types and the π-calculus and semantically
by Abramsky et al.’s canonical interaction category SProc. In doing so, we have
discovered an unexpected coincidence: that adding π-calculus terms “missing”
from CP allows us to realise the identification of dual types present in SProc,
while introducing bi-implications between the dual types allows us to derive the
logical rules corresponding to the missing terms. Our approach seems to cover
much of the expressivity gap between CP and π-calculus, including nondeter-
minism, concurrent state, and recursion. We conclude by sketching several future
directions suggested by this work.

SProc has more structure than that necessary to express linear logic; in
particular, individual SProc processes may have internal notions of state, and
thus changing behaviour, without changing types. In contrast, CP (and other
linear logic-inspired process calculi) capture all state explicitly in the types,
and each copy of a replicated process always behave identically. This poses two
questions. First, can an approach similar to interaction categories be adapted to
describe channel passing behaviour? Second, how do notions of state, as encoded
using access points (i.e., the identification of the dual access points) correspond
to the notion of state internal to an SProc process?

Access points are rather a blunt tool. While they do yield concurrent state,
they also destroy many of the nice meta-theoretic properties of CP. We believe
that it should be possible to distil better behaved abstractions that still provide
some of the extra expressiveness of access points.

While we believe that the extended calculus is sufficient to encode the (typed)
π-calculus, we think it would be valuable to demonstrate such a semantics-
preserving encoding explicitly. We would also like to address quantification,
both first-order (corresponding to value-passing calculi) and second-order (cor-
responding to polymorphic channel-passing calculi).
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In recent work (Lindley and Morris, 2015), we demonstrate a tight corre-
spondence between cut-reduction in CP and a small-step operational semantics
for GV, a linear lambda-calculus extended with primitives for session-typing. It
would be interesting to extend that correspondence to include additional features
such as access points. Moreover, we are also studying well-founded recursive and
corecursive session types in CP and their relationship to inductive linear data
types in GV. We conjecture that conflating well-founded recursive and core-
cursive session types in CP will yield non-well-founded recursive session types
and hence a way of encoding the entirety of the untyped π-calculus through a
universal session type.
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Abstract. We give a simple effect system for non-deterministic pro-
grams, tracking static approximations to the number of results that may
be produced by each computation. A relational semantics for the effect
system establishes the soundness of both the analysis and its use in
effect-based program transformations.
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1 Introduction

Back in 1998, Wadler showed [30,31] how type-and-effect systems, a form of
static analysis for impure programs that was first introduced by Gifford and
Lucassen [15,21], may be re-presented, both syntactically and algorithmically,
in terms of a variant of Moggi’s computational metalanguage [22] in which the
computation type constructor is refined by annotations that delimit the possible
effects of computations. The same year, Tolmach described the use of a hierarchy
of monadic types in optimizing compilation [26] and, in the same conference as
Wadler’s paper, two of us presented an optimizing compiler for Standard ML
that used the same kind of refined monadic metalanguage as its intermediate
language, inferring state, exception and divergence effects to enable optimizing
transformations [9].

“That’s all very well in practice,” we thought, “but how does it work out in
theory?” But devising a satisfactory semantics for effect-refined types that both
interprets them as properties of the original, un-refined terms, and validates pro-
gram transformations predicated on effect information proved surprisingly tricky,
until we adopted another Wadleresque idea [29]: the relational interpretation of
types. Interpreting static analyses in terms of binary relations, rather than unary
predicates, deals naturally with independence properties (such as secure informa-
tion flow or not reading parts of the store), is naturally extensional (by contrast
with, say, instrumenting the semantics with a trace of side-effecting operations),
and accounts for the soundness of program transformations at the same time
as soundness of the analysis [2]. We have studied a series of effect systems, of
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 56–72, 2016.
DOI: 10.1007/978-3-319-30936-1 3
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ever-increasing sophistication, using relations, concentrating mainly on tracking
uses of mutable state [4,7,8].

Here we consider a different effect: non-determinism. Wadler studied non-
determinism in a famous thirty-year-old paper on how lazy lists can be used to
program exception handling, backtracking and pattern matching in pure func-
tional languages [28], and returned to it in his work on query languages [23].
That initial paper draws a distinction between two cases. The first is the use
of lists to encode errors, or exceptions, where computations either fail, repre-
sented by the empty list, or succeed, returning a singleton list. The second is
more general backtracking, encoding the kind of search found in logic program-
ming languages, where computations can return many results. This paper is in
the spirit of formalizing that distinction. We refine a non-determinism monad
with effect annotations that approximate how many (different) results may be
returned by each computation, and give a semantics that validates transforma-
tions that depend on that information. To keep everything as simple as possible,
we work with a total language and a semantics that uses powersets, rather than
lists or multisets, so we do not observe the order or multiplicity of results. The
basic ideas could, however, easily be adapted to a language with recursion or a
semantics with lists instead of sets.

2 Effects for Non-determinism

2.1 Base Language

We consider a monadically-typed, normalizing, call-by-value lambda calculus
with operations for failure and non-deterministic choice. A more conventionally-
typed impure calculus may be translated into the monadic one via the usual
‘call-by-value translation’ [6], and this extends to the usual style of presenting
effect systems in which every judgement has an effect, and function arrows are
annotated with ‘latent effects’ [31].

We define value types A, computation types TA and contexts Γ as follows:

A,B := unit | int | bool | A × B | A → TB

Γ := x1 : A1, . . . , xn : An

Value judgements, Γ � V : A, and computation judgements, Γ � M : TA,
are defined by the rules in Fig. 1. The presence of types on lambda-bound vari-
ables makes typing derivations unique, and addition and comparison should be
considered just representative primitive operations.

Our simple language has an elementary denotational semantics in the cate-
gory of sets and functions. The semantics of types is as follows:

[[unit]] = 1 [[int]] = Z [[bool]] = B [[A × B]] = [[A]] × [[B]]

[[A → TB]] = [[A]] → [[TB]] [[TA]] = Pfin([[A]])
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Γ n : int Γ b : bool Γ () : unit Γ, x : A x : A

Γ V1 : int Γ V2 : int

Γ V1 + V2 : int

Γ V1 : int Γ V2 : int

Γ V1 > V2 : bool

Γ V1 : A Γ V2 : B

Γ (V1, V2) : A × B

Γ V : A1 × A2

Γ πi V : Ai

Γ, x : A M : TB

Γ λx : A.M : A → TB

Γ V1 : A → TB Γ V2 : A

Γ V1 V2 : TB

Γ V : A

Γ val V : TA

Γ M : TA Γ, x : A N : TB

Γ let x⇐M in N : TB

Γ V : bool Γ M : TA Γ N : TA

Γ if V then M else N : TA

Γ fail : TA

Γ M1 : TA Γ M2 : TA

Γ M1 orM2 : TA

Fig. 1. Simple computation type system

The interpretation of the computation type constructor is the finite powerset
monad. The meaning of contexts is given by [[x1 : A1, . . . , xn : An]] = [[A1]] ×
· · · × [[An]], and we can then give the semantics of judgements

[[Γ � V : A]] : [[Γ ]] → [[A]] and [[Γ � M : TA]] : [[Γ ]] → [[TA]]

inductively in a standard way. The interesting cases are

[[Γ � val V : TA]] ρ = {[[Γ � V : A]] ρ}
[[Γ � let x⇐M in N ]] ρ =

⋃
v∈[[Γ�M :A]] ρ[[Γ, x : A � N : TB]] (ρ, v)

[[Γ � fail : TA]] ρ = ∅
[[Γ � M1 orM2 : TA]] ρ = ([[Γ � M1 : TA]] ρ) ∪ ([[Γ � M1 : TA]] ρ)

So, for example

[[� let f ⇐val (λx : int.if x < 6 then val x else fail) in
let x⇐val 1 or val 2 in let y⇐val 3 or val 4 in f(x + y) : Tint]] = {4, 5}

The semantics is adequate for the obvious operational semantics and a contextual
equivalence observing, say, the set of unit values produced by a closed program.

2.2 Effect System

We now present an effect analysis that refines the simple type system by annotat-
ing the computation type constructor with information about how many results a
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X ≤ X

X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X Y ≤ Y

X × Y ≤ X × Y

X ≤ X TεY ≤ Tε Y

(X → TεY ) ≤ (X → Tε Y )

ε ≤ ε X ≤ X

TεX ≤ Tε X

Fig. 2. Subtyping refined types

computation may produce. Formally, define refined value types X, computation
types TεX and contexts Θ by

X,Y := unit | int | bool | X × Y | X → TεY

ε ∈ {0, 1, 01, 1+, N}
Θ := x1 : X1, . . . , xn : Xn

A computation of type T0X will always fail, i.e. produce zero results. One of type
T1X is deterministic, i.e. produces exactly one result. More generally, writing |S|
for the cardinality of a finite set S, a computation of type TεX can only produce
sets of results S such that |S| ∈ [[ε]], where [[ε]] ⊆ N:

[[0]] = {0}
[[1]] = {1}

[[01]] = {0, 1}

[[1+]] = {n | n ≥ 1}
[[N]] = N

There is an obvious order on effect annotations, given by ε ≤ ε′ ⇐⇒ [[ε]] ⊆ [[ε′]]:

N

01 1+

0 1

This order induces a subtyping relation on refined types, which is axiomatised in
Fig. 2. The refined type assignment system is shown in Fig. 3. The erasure map,
U(·), takes refined types to simple ones by forgetting the effect annotations:

U(int) = int U(bool) = bool U(unit) = unit
U(X × Y ) = U(X) × U(Y )

U(X → TεY ) = U(X) → U(TεY )
U(TεX) = T (U(X))

U(x1 : X1, . . . , xn : Xn) = x1 : U(X1), . . . , xn : U(Xn)

Lemma 1. If X ≤ Y then U(X) = U(Y ), and similarly for computations. �

The use of erasure on bound variables means that the subject terms of the refined
type system are the same as those of the unrefined one.
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Θ n : int Θ b : bool Θ () : unit Θ, x : X x : X

Θ V1 : int Θ V2 : int

Θ V1 + V2 : int

Θ V1 : int Θ V2 : int

Θ V1 > V2 : bool

Θ V1 : X Θ V2 : Y

Θ (V1, V2) : X × Y

Θ V : X1 × X2

Θ πi V : Xi

Θ, x : X M : TεY

Θ λx : U(X).M : X → TεY

Θ V1 : X → TεY Θ V2 : X

Θ V1 V2 : TεY

Θ V : X

Θ val V : T1X

Θ M : TεX Θ, x : X N : Tε Y

Θ let x⇐M in N : Tε·ε Y

Θ V : bool Θ M : TεX Θ N : TεX

Θ if V then M else N : TεX

Θ fail : T0X

Θ M1 : Tε1X Θ M2 : Tε2X

Θ M1 orM2 : Tε1+ε2X

Θ V : X X ≤ X

Θ V : X

Θ M : TεX TεX ≤ Tε X

Θ M : Tε X

Fig. 3. Refined type system

Lemma 2. If Θ � V : X then U(Θ) � V : U(X), and similarly for computa-
tions. �

It is also the case that the refined system does not rule out any terms from the
original language. Let G(·) be the map from simple types to refined types that
adds the ‘top’ effect N to all computation types; we can then show the following:

Lemma 3. If Γ � V : A then G(Γ ) � V : G(A) and similarly for computations.�

The interesting aspect of the refined type system is the use it makes of
abstract multiplication (in the let-rule) and addition (in the or rule) operations
on effects. The definitions are:

· 0 1 01 1+ N
0 0 0 0 0 0
1 0 1 01 1+ N

01 0 01 01 N N
1+ 0 1+ N 1+ N
N 0 N N N N

+ 0 1 01 1+ N
0 0 1 01 1+ N
1 1 1+ 1+ 1+ 1+

01 01 1+ N 1+ N
1+ 1+ 1+ 1+ 1+ 1+
N N 1+ N 1+ N

The operations endow our chosen set of effect annotations with the structure of
a commutative semiring with idempotent multiplication.
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Lemma 4. The + operation is associative and commutative, with 0 as a unit.
The · operation is associative, commutative and idempotent, with 1 as unit and
0 as zero. We also have the distributive law (ε1 + ε2) · ε3 = ε1 · ε3 + ε2 · ε3. �

The correctness statement concerning the abstract operations that we will
need later is a consequence of a trivial fact about the cardinality of unions:

|A| ≤ |A ∪ B| ≤ |A| + |B|

which leads to the following:

Lemma 5. For any ε1,ε2,
⋃

a∈[[ε1]], b∈[[ε2]]
{n | max(a, b) ≤ n and n ≤ a + b} ⊆ [[ε1 + ε2]]⋃

a∈[[ε1]]

⋃
(b1,...,ba)∈[[ε2]]a

{n | ∀i, bi ≤ n and n ≤ Σibi} ⊆ [[ε1 · ε2]]. �

The intuition behind the awkward-looking correctness condition for multiplica-
tion deserves some explanation. Consider how many results may be produced by
let x⇐M in N when M produces results x1, . . . , xa for some a ∈ [[ε1]] and for
each such result, xi, N(xi) produces a set of results of size bi ∈ [[ε2]]. Then, by
the inequality above, the number n of results of the let-expression is bounded
below by each of the bis and above by the sum of the bis. The set of all possible
cardinalities for the let-expression is then obtained by unioning the cardinality
sets for each possible a and each possible tuple (b1, . . . , ba).

The reader may also be surprised by the asymmetry of the condition for
multiplication, given that we observed above that the abstract operation is com-
mutative. But that commutativity is actually an accidental consequence of our
particular choice of sets of cardinalities to track. Indeed, if M produces a sin-
gle result and for each x, N(x) produces exactly two results (a case we do not
track here), then let x ⇐ M in N produces two results. Conversely, however,
if M produces two results and for each x, N(x) produces a single result, then
let x ⇐ M in N can produce either one or two distinct results. This case also
shows that, in general, 1 will only be left unit for multiplication. Idempotency
also fails to hold in general.

We remark that the abstract operations are an example of the Cousots’ αγ
framework for abstract interpretation [12], and were in fact derived using a little
list-of-successes ML program that computes with abstractions and concretions.

2.3 Semantics of Effects

The meanings of simple types are just sets, out of which we will carve the
meanings of refined types as subsets, together with a coarser notion of equality.

We first recall some notation. If R is a (binary) relation on A and Q a relation
on B, then we define relations on Cartesian products and function spaces by

R × Q = {((a, b), (a′, b′)) ∈ (A × B) × (A × B) | (a, a′) ∈ R, (b, b′) ∈ Q}
R → Q = {(f, f ′) ∈ (A → B) × (A → B) | ∀(a, a′) ∈ R. (f a, f ′ a′) ∈ Q}
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A binary relation on a set is a partial equivalence relation (PER) if it is symmetric
and transitive. If R and Q are PERs, so are R → Q and R × Q. Write ΔA for
the diagonal relation {(a, a) | a ∈ A}, and a : R for (a, a) ∈ R. If R is a PER on
A and a ∈ A then we define the ‘equivalence class’ [a]R to be {a′ ∈ A|(a, a′) ∈ R},
noting that this is empty unless a : R.

We can now define the semantics of each refined type as a partial equivalence
relation on the semantics of its erasure as follows:

[[X]] ⊆ [[U(X)]] × [[U(X)]]

[[int]] = ΔZ [[bool]] = ΔB [[unit]] = Δ1

[[X × Y ]] = [[X]] × [[Y ]]

[[X → TεY ]] = [[X]] → [[TεY ]]

[[TεX]] = {(S, S′) | S ∼X S′ and |S/[[X]]| ∈ [[ε]]}

The key clause is the last one, in which S ∼X S′ means ∀x ∈ S,∃x′ ∈ S′, (x, x′) ∈
[[X]] and vice versa. The ∼X relation is a lifting of [[X]] to sets of values; this is
a familar, canonical construction that appears, for example, in the definition of
bisimulation or of powerdomains. The quotient S/[[X]] is defined to be {[x][[X]] |
x ∈ S}.1 We observe that if S ∼X S′ then S/[[X]] = S′/[[X]] and ∅ /∈ S/[[X]].

The way one should understand the clause for computation types is that
two sets S,S′ are related when they have the same elements up to the notion of
equivalence associated with the refined type X and, moreover, the cardinality
of the sets (again, as sets of Xs, not as sets of the underlying type UX) is
accurately reflected by ε.

We also extend the relational interpretation of refined types to refined con-
texts in the natural way:

[[Θ]] ⊆ [[U(Θ)]] × [[U(Θ)]]
[[x1 : X1, . . . , xn : Xn]] = [[X1]] × · · · × [[Xn]]

Lemma 6. For any Θ, X and ε, all of [[Θ]], [[X]] and [[TεX]] are partial equiva-
lence relations. �

The interpretation of a refined type with the top effect annotation everywhere
is just equality on the interpretation of its erasure:

Lemma 7. For all A, [[G(A)]] = Δ[[A]]. �
The following establishes semantic soundness for our subtyping relation:

Lemma 8. If X ≤ Y then [[X]] ⊆ [[Y ]], and similarly for computation types. �
And we can then show the ‘fundamental theorem’ that establishes the sound-

ness of the effect system itself:
1 It is tempting to replace S ∼X S′ by S/[[X]] = S′/[[X]], but S/[[X]] contains the

empty set when there is an x ∈ S with (x, x) /∈ [[X]].
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Theorem 1.

1. If Θ � V : X, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � V : U(X)]] ρ, [[U(Θ) � V : U(X)]] ρ′) ∈ [[X]]

2. If Θ � M : TεX, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � M : T (U(X))]] ρ, [[U(Θ) � M : T (U(X))]] ρ′) ∈ [[TεX]]

Proof. A largely standard induction; we just sketch the interesting cases.

Trivial Computations. Let Γ = U(Θ) and A = U(X). Given (ρ, ρ′) ∈ [[Θ]] we
need to show

([[Γ � val V : TA]] ρ, [[Γ � val V : TA]] ρ′) ∈ [[T1X]]

which means

({[[Γ � V : A]]ρ}, {[[Γ � V : A]]ρ′}) ∈ {(S, S′) | S ∼X S′ and |S/[[X]]| = 1}
Induction gives ([[Γ � V : A]]ρ, [[Γ � V : A]]ρ′) ∈ [[X]], which deals with the · ∼X ·
condition, and it is clear that |{[[[Γ � V : A]]][[X]]}| = 1.

Choice. We want firstly that

[[Γ � M1 orM2 : TA]]ρ ∼X [[Γ � M1 orM2 : TA]]ρ′

which is

[[Γ � M1 : TA]]ρ ∪ [[Γ � M2 : TA]]ρ ∼X [[Γ � M1 : TA]]ρ′ ∪ [[Γ � M2 : TA]]ρ′

Induction gives [[Γ � M1 : TA]]ρ ∼X [[Γ � M1 : TA]]ρ′ and similarly for M2,
from which the result is immediate. Secondly, we want

|[[Γ � M1 orM2 : TA]]ρ / [[X]]| ∈ [[ε1 + ε2]]

and because quotient distributes over union, this is

|[[Γ � M1 : TA]]ρ /[[X]] ∪ [[Γ � M2 : TA]]ρ /[[X]]| ∈ [[ε1 + ε2]]

By induction, |[[Γ � M1 : TA]]ρ /[[X]]| ∈ [[ε1]], and similarly for M2, so we are
done by Lemma 5.

Sequencing. Pick y ∈ [[Γ � let x ⇐ M in N : TB]]ρ. By the semantics of let,
there’s an x ∈ [[Γ � M : TA]]ρ such that y ∈ [[Γ, x : A � N : TB]](ρ, x). By
induction on M , there’s an x′ ∈ [[Γ � M : TA]]ρ′ such that (x, x′) ∈ [[X]]. So
by induction on N , [[Γ, x : A � N : TB]](ρ, x) ∼Y [[Γ, x : A � N : TB]](ρ′, x′),
and therefore ∃y′ ∈ [[Γ, x : A � N : TB]](ρ′, x′) with (y, y′) ∈ [[Y ]]. Then as
y′ ∈ [[Γ � let x⇐M in N : TB]]ρ′, we are done.
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For the cardinality part, note that
(⋃

x∈[[Γ�M :TA]]ρ[[Γ, x : A � N : TB]](ρ, x)
)

/[[Y ]]
=

⋃
x∈[[Γ�M :TA]]ρ ([[Γ, x : A � N : TB]](ρ, x)/[[Y ]])

=
⋃

[x]∈[[Γ�M :TA]]ρ/[[X]] ([[Γ, x : A � N : TB]](ρ, x)/[[Y ]])

and then since, by induction, |Γ � M : TA]]ρ/[[X]]| ∈ [[ε1]], and also for any
[x] ∈ [[Γ � M : TA]]ρ/[[X]],

|[[Γ, x : A � N : TB]](ρ, x)/[[Y ]]| ∈ [[ε2]]

we are done by Lemma 5. �

2.4 Basic Equations

The semantics validates all the generic equations of the computational metalan-
guage: congruence laws, β and η laws for products, function spaces, booleans and
computation types. We show some of these rules in Fig. 4. The powerset monad
also validates a number of more specific equations that hold without restrictions
on the involved effects. These are shown in Fig. 5: choice is associative, com-
mutative and idempotent with fail as a unit, the monad is commutative, and
choice and failure distribute over let.

The correctness of the basic congruence laws subsumes Theorem 1. Note that,
slightly subtly, the reflexivity PER rule is invertible. This is sound because our
effect annotations are purely descriptive (Curry-style, or extrinsic in Reynolds’s
terminology [24]) whereas the simple types are more conventionally prescriptive
(Church-style, which Reynolds calls intrinsic). We actually regard the rules of
Fig. 3 as abbreviations for a subset of the equational judgements of Fig. 4; thus
we can allow the refined type of the conclusion of interesting equational rules
to be different from (in particular, have a smaller effect than) the rules in Fig. 3
would assign to one side. This shows up already: most of the rules in Fig. 5 are
type correct in simple syntactic sense as a consequence of Lemma 4. But the
idempotency rule for choice is not, because the abstract addition is, rightly, not
idempotent. The idempotency law effectively extends the refined type system
with a rule saying that if M has type TεX, so does M orM .

In practical terms, having equivalences also improve typing allows inferred
effects to be improved locally as transformations are performed, rather than
requiring periodic reanalysis of the whole program to obtain the best results.

3 Using Effect Information

More interesting equivalences are predicated on the effect information. We
present these in Fig. 6.

The Fail transformation allows any computation with the 0 effect, i.e. that
produces no results, to be replaced with fail.
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PER rules (+ similar for computations):

Θ V : X
============
Θ V = V : X

Θ V = V : X

Θ V = V : X

Θ V = V : X Θ V = V : X

Θ V = V : X

Θ V = V : X X ≤ X

Θ V = V : X

Congruence rules (extract):

Θ V1 = V1 : int Θ V2 = V2 : int

Θ (V1 + V2) = (V1 + V2 ) : int

Θ V = V : X1 × X2

Θ πi V = πi V : Xi

Θ, x : X M = M : TεY

Θ (λx : U(X).M) = (λx : U(X).M ) : X → TεY

β rules (extract):

Θ, x : X M : TεY Θ V : X

Θ (λx : U(X).M) V = M [V/x] : TεY

Θ V : X Θ, x : X M : TεY

Θ let x⇐val V in M = M [V/x] : TεY

η rules (extract):

Θ V : X → TεY

Θ V = (λx : U(X).V x) : X → TεY

Θ M : TεX

Θ (let x⇐M in val x) = M : TεX

Commuting conversions:

Θ M : Tε1Y Θ, y : Y N : Tε2X Θ, x : X P : Tε3Z

Θ let x⇐(let y⇐M in N) in P = let y⇐M in let x⇐N in P : Tε1·ε2·ε3Z

Fig. 4. Monad-independent equivalences

The Dead Computation transformation allows the removal of a computa-
tion, M , whose value is unused, provided the effect of M indicates that it always
produces at least one result. If M can fail then its removal is generally unsound,
as that could transform a failing computation into one that succeeds.

The Duplicated Computation transformation allows two evaluations of a
computation M to be replaced by one, provided that M produces at most one
result. This is, of course, generally unsound, as, for example,

let x⇐val 1 or val 2 in let y⇐val 1 or val 2 in val (x + y)
�= let x⇐val 1 or val 2 in val (x + x).

The Pure Lambda Hoist transformation allows a computation to be
hoisted out of a lambda abstraction, so it is performed once, rather than every
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Choice:
Θ M1 : Tε1X Θ M2 : Tε2X

Θ M1 orM2 = M2 orM1 : Tε1+ε2X

Θ M : TεX

Θ M orM = M : TεX

Θ M : TεX

Θ M or fail = M : TεX

Θ M1 : Tε1X Θ M2 : Tε2X Θ M3 : Tε3X

Θ M1 or (M2 orM3) = (M1 orM2) orM3 : Tε1+ε2+ε3X

Commutativity:

Θ M : Tε1Y Θ N : Tε2X Θ, x : X, y : Y P : Tε3Z

Θ let x⇐M in let y⇐N in P = let y⇐N in let x⇐M in P : Tε1·ε2·ε3Z

Distribution:

Θ M1 : Tε1X Θ M2 : Tε2X Θ, x : X N : Tε3Y

Θ let x⇐(M1 orM2) in N = (let x⇐M1 in N) or (let x⇐M2 in N) : T(ε1+ε2)·ε3Y

Θ, x : X N : TεY

Θ let x⇐fail in N = fail : T0Y

Θ M : Tε3X Θ, x : X N1 : Tε1Y Θ, x : X N2 : Tε2Y

Θ let x⇐M in (N1 orN2) = (let x⇐M in N1) or (let x⇐M in N2) : Tε3·(ε1+ε2)Y

Θ M : TεX

Θ let x⇐M in fail = fail : T0Y

Fig. 5. Monad-specific, effect-independent equivalences

Fail:
Θ M : T0X

Θ M = fail : T0X

Dead Computation:
Θ M : T1+X Θ N : TεY

Θ let x⇐M in N = N : TεY

Duplicated Computation:

Θ M : T01X Θ, x : X, y : X N : TεY

Θ
let x⇐M in let y⇐M in N

= let x⇐M in N [x/y]
: T01·εY

Pure Lambda Hoist:

Θ M : T1Z Θ, x : X, y : Z N : TεY

Θ
val (λx : U(X).let y⇐M in N)

= let y⇐M in val (λx : U(X).N)
: T1(X → TεY )

Fig. 6. Effect-dependent equivalences
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time the function is applied, provided that it returns exactly one result (and, of
course, that it does not depend on the function argument).

Theorem 2. All of the equations shown in Figs. 4, 5, and 6 are soundly mod-
elled in the semantics:

– If Θ � V = V ′ : X then Θ |= V = V ′ : X.
– If Θ � M = M ′ : TεX then Θ |= M = M ′ : TεX.

Proof. We present proofs for the equivalences in Fig. 6.

Dead Computation. If we let Γ = U(Θ), A = U(X) and B = U(Y ) and (ρ, ρ′) ∈
[[Θ]] then we have to show

([[Γ � let x⇐M in N : TB]] ρ, [[Γ � N : TB]] ρ′) ∈ [[TεY ]]

which is
⋃

x∈[[Γ�M :TA]]ρ[[Γ, x : A � N : TB]](ρ, x) ∼Y [[Γ � N : TB]]ρ′ and∣
∣
∣
⋃

x∈[[Γ�M :TA]]ρ[[Γ, x : A � N : TB]](ρ, x) / [[Y ]]
∣
∣
∣ ∈ [[ε]].

Since for any x, [[Γ, x : A � N : TB]](ρ, x) = [[Γ � N : TB]]ρ, and induction on
M tells us that |[[Γ � M : TA]]ρ/[[X]]| > 0, so |[[Γ � M : TA]]ρ| > 0, that’s just

[[Γ � N : TB]]ρ ∼Y [[Γ � N : TB]]ρ′ and |[[Γ � N : TB]]ρ/[[Y ]]| ∈ [[ε]]

which is immediate by induction on N .

Duplicated Computation. Let Γ = U(Θ), A = U(X), B = U(Y ) and (ρ, ρ′) ∈
[[Θ]]. We want (eliding contexts and types in semantic brackets to reduce clutter)

⋃
x∈[[M ]]ρ

⋃
y∈[[M ]]ρ[[N ]](ρ, x, y) ∼Y

⋃
x′∈[[M ]]ρ′ [[N [x/y]]](ρ′, x′)

and
∣
∣
∣
⋃

x∈[[M ]]ρ

⋃
y∈[[M ]]ρ[[N ]](ρ, x, y) / [[Y ]]

∣
∣
∣ ∈ [[01 · ε]]

Let a = |[[M ]]ρ/[[X]]|. By induction, a ∈ [[01]]. If a = 0 then we must have
[[M ]]ρ = ∅ and (also by induction) [[M ]]ρ′ = ∅, so the first clause above is satisfied.
For the second, we just have to check that 0 ∈ [[01 · ε]] for any ε, which is true.

If a = 1 we can pick any x ∈ [[M ]]ρ and x′ ∈ [[M ]]ρ′ and know ∀y ∈
[[M ]]ρ, (x, y) ∈ [[X]] as well as ∀y′ ∈ [[M ]]ρ′, (x, y′) ∈ [[X]]. Then by induction
on N and the fact that S ∼Y S′ implies S ∪ S′ ∼Y S we have

⋃
x∈[[M ]]ρ

⋃
y∈[[M ]]ρ[[N ]](ρ, x, y) ∼Y [[N ]](ρ, x, x)

∼Y [[N ]](ρ′, x′, x′)
∼Y

⋃
x′∈[[M ]]ρ′ [[N ]](ρ′, x′, x′)

=
⋃

x′∈[[M ]]ρ′ [[N [x/y]]](ρ′, x′)

For the second part, we get |[[N ]](ρ, x, x) / [[Y ]]| ∈ [[ε]] by induction, and we then
just need to know that [[ε]] ⊆ [[01 · ε]], which is easily checked.
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Pure Lambda Hoist. Define Γ = U(Θ), A = U(X), B = U(Y ), C = U(Z) and
pick (ρ, ρ′) ∈ [[Θ]]. We need

({
λx ∈ [[A]].

⋃
z∈[[M ]]ρ[[N ]](ρ, x, z)

}
,
⋃

z∈[[M ]]ρ′ {λx ∈ [[A]].[[N ]](ρ′, x, z)}
)

∈ [[T1(X → TεY )]]

Since the first component of the pair above is a singleton, the cardinality con-
straint associated with the outer computation type is easily satisfied. For the ∼
part, we look at typical elements of the first and second components above. By
induction on M , we can pick z′ ∈ [[M ]]ρ′ and we claim that for any such z′,

(
λx ∈ [[A]].

⋃
z∈[[M ]]ρ[[N ]](ρ, x, z), λx ∈ [[A]].[[N ]](ρ′, x, z′)

)
∈ [[X → TεY ]]

which will suffice. So assume (x, x′) ∈ [[X]] and we want
(⋃

z∈[[M ]]ρ[[N ]](ρ, x, z), [[N ]](ρ′, x′, z′)
)

∈ [[TεY ]]

The cardinality part of the above is immediate by induction on N . If y is
an element of the union, then y ∈ [[N ]](ρ, x, z) for some z ∈ [[M ]]ρ. But then
(z, z′) ∈ [[Z]] because |[[M ]]ρ/[[Z]]| = 1, so ∃y′ ∈ [[N ]](ρ′, x′, z′) with (y, y′) ∈ [[Y ]].
Conversely, if y′ ∈ [[N ]](ρ′, x′, z′) then for any z ∈ [[M ]] there’s y ∈ [[N ]](ρ, x, z)
with (y, y′) ∈ [[Z]], so the two expressions are in the ∼Z relation, as required. �

For example, if we define

f1 = λg : unit → Tint.let x⇐g () in let y⇐g () in val x + y

f2 = λg : unit → Tint.let x⇐g () in val x + x

then we have � f1 = f2 : (unit → T01int) → T01int and hence, for example,

� (val f1) or (val f2) = val f2 : T1((unit → T01int) → T01int).

Note that the notion of equivalence really is type-specific. We have

�� f1 = f2 : (unit → TNint) → TNint

and that equivalence indeed does not hold in the semantics, even though both
f1 and f2 are related to themselves at (i.e. have) that type.

Extensions. The syntactic rules can be augmented with anything proved sound
in the model. For example, one can add a subtyping rule T1+X ≤ T1X for any
X such that |[[UX]]/[[X]]| = 1. Or one can manually add typing or equational
judgements that have been proved by hand, without compromising the general
equational theory. For example, Wadler [28] considers parsers that we could give
types of the form PεX = string → Tε(X ×string). One type of the alternation
combinator

alt(p1, p2) = λs : string.
let (v, s′)⇐p1s in val (inlv, s′)
or let (v, s′)⇐p2s in val (inrv, s′)



Effects and Transformations for Non-deterministic Programs 69

is P01X × P01Y → PN(X + Y ). But if we know that p1 : P01X and p2 : P01Y
cannot both succeed on the same string, then we can soundly ascribe alt(p1, p2)
the type P01(X + Y ).

A further extension is to add pruning. One way is

Γ � M1 : TAΓ � M2 : TA

Γ � M1 orelseM2 : TA

[[Γ � M1 orelseM2 : TA]]ρ =
{

[[Γ � M2 : TA]]ρ if [[Γ � M1 : TA]]ρ = ∅
[[Γ � M1 : TA]]ρ otherwise

with refined typing

Θ � M1 : Tε1XΘ � M2 : Tε2X

Θ � M1 orelseM2 : Tε1�ε2X

where ε1�ε2 is defined to be ε1+ε2 if 0 ≤ ε1 and ε1 otherwise. The orelse oper-
ation can be used to improve efficiency in search-style uses of non-determinism
and is, of course, the natural combining operation to use in error-style uses.

4 Discussion

We have given an elementary relational semantics to a simple effect system for
non-deterministic programs, and shown how it may be used to establish effect-
dependent program equivalences. Extending or adapting the constructions to
richer languages or slightly different monads should be straightforward. One can
also enrich the effect language itself, for example by adding conjunctive refine-
ments and effect polymorphism, as we have done previously [3]. The simple style
of effect system presented here seems appropriate for fairly generic compilation
of a source language with a pervasively non-deterministic semantics, but for
which much code could actually be expected to be deterministic. For serious
optimization of non-trivially non-deterministic code, one would need to combine
effects with refinements on values, to formalize the kind of reasoning used in the
parser example above.

Non-determinism monads are widely used to program search, queries, and
pattern matching in functional languages. In Haskell, the basic constructs we use
here are abstracted as the MonadPlus class, though different instances satisfy dif-
ferent laws, and there has been much debate about which laws one should expect
to hold in general [25,27,32].2 Several researchers have studied efficient imple-
mentations of functional non-determinism and their various equational proper-
ties [14,17].

Static analysis of functional non-determinism is not so common, though
Kammar and Plotkin have developed a general theory of effects and effect-based
transformations, based on the theory of algebraic effects [18]. Non-determinism
2 Phil was involved in this debate at least as far back as 1997 [11].
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is just one example of that theory, and Kammar and Plotkin establish some
equational laws that are very similar to the ones presented here. One interesting
difference between their work and that we describe here is that our refinements
of the computation type are not necessarily monads in their own right. The inter-
pretation of T0X is {(∅, ∅)}, which is not preserved by the underlying monadic
unit a �→ {a}. If we were to track slightly more refined cardinalities (e.g. sets of
size two) then, as we have already observed, the abstract multiplication would
no longer be idempotent (or commutative), which also implies that the Tε(·)s
would no longer be themselves monads.

Katsumata has presented an elegant general theory of effect systems, using
monoidal functors from a preordered monoid (the effect annotations) to end-
ofunctors on the category of values [19]. The effect system given here is an
instance of Katsumata’s theory. Our very concrete approach to specific effects is
by comparison, perhaps rather unsophisticated. On the other hand, the elemen-
tary approach seems to scale more easily to richer effect systems, for example
for concurrency [5]. (Indeed, it would be natural to augment concurrent state
effects with non-determinism information.) Ahman and Plotkin are developing
a still more general framework for refining algebraic effects, which can express
temporal properties and of which our analysis should be a special case [1].

There is considerable literature on determinism and cardinality analyses in the
context of logic programming (e.g. [10,13]) with applications including introduc-
ing cuts and improving the efficiency of parallel search. Many of these analyses can
also detect mutual exclusion between tests [20]. Mercury allows programmers to
specify determinism using (we were pleased to discover) the same cardinalities as
we do here (0 = failure, 1 = det, 01 = semidet, 1+ = multidet, N = nondet)
and similar abstract operations in the checking algorithm [16].

Acknowledgements. We thank the referees for their thorough and helpful comments.
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Abstract. Programming languages serve a dual purpose: to communi-
cate programs to computers, and to communicate programs to humans.
Indeed, it is this dual purpose that makes programming language design
a constrained and challenging problem. Inheritance is an essential aspect
of that second purpose: it is a tool to improve communication. Humans
understand new concepts most readily by first looking at a number
of concrete examples, and later abstracting over those examples. The
essence of inheritance is that it mirrors this process: it provides a formal
mechanism for moving from the concrete to the abstract.

Keywords: Inheritance · Object-oriented programming · Programming
languages · Abstraction · Program understanding

1 Introduction

Shall I be abstract or concrete?
An abstract program is more general, and thus has greater potential to be

reused. However, a concrete program will usually solve the specific problem at
hand more simply.

One factor that should influence my choice is the ease with which a program
can be understood. Concrete programs ease understanding by making manifest
the action of their subcomponents. But, sometimes a seemingly small change
may require a concrete program to be extensively restructured, when judicious
use of abstraction would have allowed the same change to be made simply by
providing a different argument.

Or, I could use inheritance.
The essence of inheritance is that it lets us avoid the unsatisfying choice

between abstract and concrete. Inheritance lets us start by writing a concrete
program, and then later on abstracting over a concrete element. This abstraction
step is not performed by editing the concrete program to introduce a new para-
meter. That is what would be necessary without inheritance. To the contrary:
inheritance allows us to treat the concrete element as if it were a parameter,
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without actually changing the code. We call this ex post facto parameterization;
we will illustrate the process with examples in Sects. 2 and 3.

Inheritance has been shunned by the designers of functional languages. Cer-
tainly, it is a difficult feature to specify precisely, and to implement efficiently,
because it means (at least in the most general formulations) that any apparent
constant might, once inherited, become a variable. But, as Einstein is reputed
to have said, in the middle of difficulty lies opportunity. The especial value of
inheritance is as an aid to program understanding. It is particularly valuable
where the best way to understand a complex program is to start with a simpler
one and approach the complex goal in small steps.

Our emphasis on the value of inheritance as an aid to human understanding,
rather than on its formal properties, is deliberate, and long overdue. Since the
pioneering work of Cook and Palsberg (1989), it has been clear that, from a
formal point of view, inheritance is equivalent to parameterization. This has,
we believe, caused designers of functional languages to regard inheritance as
unimportant, unnecessary, or even undesirable, arguing (correctly) that it can
be simulated using higher-order parameterization. This line of argument misses
the point that two formally-equivalent mechanisms may behave quite differently
with respect to human cognition.

It has also long been known that Inheritance is Not Subtyping (Cook et al.
1990). In spite of this, many programming languages conflate subtyping and
inheritance; Java, for example, restricts the use of inheritance so that the inher-
itance hierarchy is a sub-tree of the type hierarchy. Our goal in this paper is to
consider inheritance as a mechanism in its own right, quite separate from the
subtyping relation. We are aided in this goal by casting our example in the Grace
programming language (Black et al. 2012), which cleanly separates inheritance
and subtyping.

The form and content of this paper are a homage to Wadler’s “Essence
of Functional Programming” (1992), which was itself inspired by Reynold’s
“Essence of ALGOL” (1981). The first example that we use to illustrate the
value of inheritance, discussed in Sect. 2, is based on Wadler’s interpreter for
a simple language, which is successively extended to include additional fea-
tures. (Reynolds (1972) had previously defined a series of interpreters in a classic
paper that motivated the use of continuations.) The second example is based on
Armstrong’s description of the Erlang OTP Platform (Armstrong 2007,
Chap. 16); this is discussed in Sect. 3. We conclude in Sect. 4, where we also
discuss some of the consequences for type-checking.

2 Interpreting Inheritance

This section demonstrates the thesis that inheritance enhances understandability,
by presenting several variations of an implementation of a fragment of an expres-
sion language. Wadler (1992) uses an interpreter for the lambda calculus, but we
use a simpler language inspired by the “First Monad Tutorial” (Wadler 2013).

We show our examples in Grace (Black et al. 2012), a simple object-oriented
language designed for teaching, but no prior knowledge of the language is
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assumed. What the reader will require is a passing familiarity with the basics of
object-oriented programming; for general background, see Cox (1986), or Black
et al. (2009). Like Haskell, Grace does not require the programmer to specify
types on every declaration, although, also like Haskell, the programmer may well
find that adding type annotations makes it easier to find errors.

2.1 Variation Minus One: Object-Oriented Evaluation

We start with a simple object-oriented evaluator for Wadler’s tutorial exam-
ple (2013)— mathematical expressions consisting only of constants con and divi-
sion div— so 1/2 is represented as div(con 1, con 2). The object-oriented style
integrates the data and the descriptions of the computations on that data. Thus,
there is no separation between the “interpreter” and the “terms” that it inter-
prets; instead the object-oriented program contains “nodes” of various kinds,
which represent both expressions and the rules for their evaluation.

In Grace, con and div are classes; they correspond to Wadler’s algebraic data
constructors. Grace classes (like those in O’Caml and Python) are essentially
methods that return new objects. Evaluation of an expression in the example
language is accomplished by requesting that the objects created by these classes
execute their own eval methods, rather than by invoking a globally-defined func-
tion interp. The resulting representation of simpleExpressions is straightforward. In
addition to the eval methods, the objects are also given asString methods that play
a role similar to that of Wadler’s show∗ functions: they return strings for human
consumption. (Braces in a string constructor interpolate values into the string.)

module "simpleExpressions"
class simpleExpressions {

2 class con(n) {
method asString −> String { "con {n}" }

4 method eval −> Number { n }
}

6 class div(l, r) {
method asString −> String { "div({l}, {r})" }

8 method eval −> Number { l.eval / r.eval }
}

10 }

Given these definitions, we can instantiate an expression tree, evaluate it,
and print out the result. (Grace’s def is similar to ML and Scala’s val).

import "simpleExpressions" as s
def e = s.simpleExpressions
def answer = e.div(e.div(e.con 1932, e.con 2), e.con 23)
print (answer.eval) // prints 42
def error = e.div(e.con 1, e.con 0)
print (error.eval) // prints infinity

Wadler (1992) does not present code equivalent to this variation, which is
why we have labelled it “Variation Minus One”. Instead, he starts with “Variation
Zero”, which is a monadic interpreter based on a trivial monad.
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2.2 What is a Monad?

For our purposes, a monad is an object that encapsulates an effectful computa-
tion. If the underlying computation produces an answer a, then the monad can
be thought of as “wrapping” the computation of a. If you already understand
monads, you should feel free to skip to Sect. 2.3.

All monad objects provide a “bind” method, which, following Haskell, we
spell >>=. (In Grace, binary methods can be named by arbitrary sequences of
operator symbols; there is no precedence.) In general, a monad will also encap-
sulate some machinery specialized to its particular purpose and accessible to its
computations. For example, the output monad of Sect. 2.6 encapsulates a string
and an operation by which a computation can append its output thereto.

The bind method >>= represents sequencing. The right-hand argument of
>>= is a Grace code block, which denotes a λ-expression or function, and which
represents the computation that should succeed the one in the monad. (The suc-
cessor computation is like a continuation; Wadler (1992, Sect. 3) explores the sim-
ilarities and differences.) The request m>>= { a −> ... } asks the monad object
m to build a new monad that, when executed, will first execute m’s computation,
bind the answer to the parameter a of the block, and then execute the successor
computation represented by .... Think of the symbol >>= as piping the result of
the computation to its left into the function object to its right. The block should
answer a monad, so the type of >>= is (Block1<A, Monad>) −> Monad. (The
Grace type Block1<X, Y> describes a λ-expression that takes an argument of
type X and returns a result of type Y.) The monad type is actually parameterized
by the type of its contents, but Grace allows us to omit type parameters, which
we do here for simplicity. (In Grace’s gradual type system, omitted types and
type parameters are assumed to be Unknown, which means that we are choosing
to say nothing about the type of the corresponding object.)

In the object-oriented formulation of monads, the monad classes construct
monad objects, and thus subsume the operation that Haskell calls unitM or return.
In the sections that follow, we will introduce four monad classes: pure(contents),
which encapsulates pure computations that have no effects; raise(reason), which
encapsulates computations that raise exceptions; stateMonad(contents), which
encapsulates stateful computations; andmonad(contents)output(str),whichencap-
sulates computations that produce output.Thenameof this last class is an example
ofamethodnamewithmultipleparts, aGrace featuredesignedto improve readabil-
ity that is similar to Smalltalkmethod selectors.The classmonad()output() expects
two argument lists, each with a single argument.

Informally, the monad classes get us into a monad, and >>= gets us around
the monad. How do we get out of the monad? In general, such operations require
a more ad hoc design. In this article, it will suffice to provide the monads with
asString methods, which answer strings.

2.3 Variation Zero: Monadic Evaluation

We now adapt the code of Sect. 2.1 to be monadic. Here we see the key differ-
ence between an approach that uses inheritance and one that does not: rather
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than define the new expression evaluation mechanism from scratch, we make a
new monadicExpression module that uses inheritance to modify the components
imported from the previous simpleExpressions module.

For a monadic interpreter, we of course need a monad, which we define in
Grace as a class called pure, since it encapsulates effect-free computations that
answer pure values. The bind method >>= applies its parameter k to the contents
of the monad; in Grace, application of a λ-expression is performed explicitly using
the method apply.

module "monadicExpressions"

import "simpleExpressions" as se
2

type Monad = type {
4 >>= (k:Block1) −> Monad

}
6 class monadicExpressions {

inherits se.simpleExpressions
8

class pure(contents) −> Monad {
10 method asString −> String { "pure({contents})" }

method >>= (k) −> Monad { k.apply(contents) }
12 }

14 class con(n) {
inherits se.simpleExpressions.con(n)

16 alias simpleEval = eval
method eval −> Monad is override { pure(simpleEval) }

18 }
class div(l, r) {

20 inherits se.simpleExpressions.div(l, r)
method eval −> Monad is override {

22 l.eval >>= { a −>
r.eval >>= { b −>

24 pure(a / b) } }
}

26 }
}

Having established this framework, we then define the nodes of this monadic
variant of expressions; these differ from the simple ones of Sect. 2.1 only in the
eval method, so the only content of these new classes are eval methods that over-
ride the inherited ones. The inherits statement on line 15 says that the methods
of con in monadicExpressions are the same as those of con in simpleExpressions,
except for the overridden method eval. The alias clause on the inherits statement
provides a new name for the inherited eval, so that the overriding method body
can lift the value produced by the inherited eval method into the monad. The
eval method of div is similar. We ask readers concerned about type-checking this
instance of “the expression problem” to suspend disbelief until Sect. 4.2.

Notice that the original definition of se.simpleExpressions in Sect. 2.1 did not
specify that eval was a parameter. On the contrary: it was specified as a simple
concrete method. The method eval becomes a parameter only when an inheritor
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of se.simpleExpressions chooses to override it. This is what we meant by ex post
facto parameterization in the introduction.

Here is a test program parallel to the previous one: the output indicates that
the results are in the monad.

import "monadicExpressions" as m
def e = m.monadicExpressions
def answer = e.div(e.div(e.con 1932, e.con 2), e.con 23)
print (answer.eval) // prints pure(42)
def error = e.div(e.con 1, e.con 0)
print (error.eval) // prints pure(infinity)

In the remainder of this section, we show how three of Wadler’s variations
on this monadic interpreter— for exceptions, state, and output— can be imple-
mented incrementally using inheritance.

2.4 Variation One: Evaluation with Exceptions

The basic idea behind adding exceptions is that the result of an evaluation is no
longer always a simple value (like 42) but may also be an exception. Moreover,
exceptions encountered during the evaluation of an expression terminate the
evaluation and emit the exception itself as the answer. In our toy language, the
only source of exceptions will be division by zero.

We have to extend our monad to deal with exceptional results. Working in
Haskell, Wadler redefines the algebraic data type contained in the monad, start-
ing from scratch. Working in Grace, we define exceptionExpressions by inheriting
from monadicExpressions, and need write code only for the differences. We start
by defining a new monad class raise (lines 5–8), whose bind method stops exe-
cution when an exception is encountered by immediately returning self, thus
discarding any computations passed to it as its parameter k.

module "exceptionExpressions"

import "monadicExpressions" as m
2

class exceptionExpressions {
4 inherits m.monadicExpressions

class raise(reason) −> m.Monad {
6 method asString −> String is override { "raise({reason})" }

method >>= (k) −> m.Monad is override { self }
8 }

class div(l, r) {
10 inherits m.monadicExpressions.div(l, r)

method eval −> m.Monad is override {
12 l.eval >>= { a −>

r.eval >>= { b −>
14 if (b == 0)

then { raise "Divide {a} by zero" }
16 else { pure(a / b) } } } }

}
18 }
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We must also change the eval methods to raise exceptions at the appropriate
time. Since the evaluation of constants cannot raise an exception, the con class is
unchanged, so we say nothing, and use the inherited con. In contrast, evaluating
a div can raise an exception, so we have to provide a new eval method for div,
shown on lines 11–16. This code returns a value in the raise monad when the
divisor is zero.

If you are familiar with Wadler’s addition of error messages to his monadic
interpreter (Wadler 1992, Sect. 2.3) this will look quite familiar. In fact, the
developments are so similar that it is easy to overlook the differences:

1. At the end of his description of the changes necessary to introduce error
messages, Wadler writes: “To modify the interpreter, substitute monad E for
monad M, and replace each occurrence of unitE Wrong by a suitable call to
errorE. . . . No other changes are required.” Wadler is giving us editing instruc-
tions! In contrast, the box above represents a file of real Grace code that can
be compiled and executed. It contains, if you will, not only the new definitions
for the eval method and the monad, but also the editing instructions required
to install them.

2. Not only does the boxed code represent a unit of compilation, it also repre-
sents a unit of understanding. We believe that it is easier to understand a
complex structure like a monad with exceptions by first understanding the
monad pure, and then understanding the exceptions. Perhaps Wadler agrees
with this, for he himself uses just this form of exposition in his paper. But,
lacking inheritance, he cannot capture this stepwise exposition in his code.

2.5 Variation Three: Propagating State

To illustrate the manipulation of state, Wadler keeps a count of the number of
reductions; we will count the number of divisions. Each computation is given
an input state in which to execute, and returns a potentially different output
state; the difference between the input and output states reflect the changes to
the state effected by the computation. Rather than representing 〈result , state〉
pairs with anonymous tuples, we will use Response objects with two methods,
shown below.

module "response"
type Response = type {

2 result −> Unknown
state −> Unknown

4 }
class result(r) state(s) −> Response {

6 method result { r }
method state { s }

8 method asString { "result({r}) state({s})" }
}

What changes must be made to monadicExpressions to support state? The key
difference between the stateMonad and the pure monad is in the >>= method.
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We follow the conventional functional approach, with the contents of the monad
being a function that, when applied to a state, returns a Response. The method
executeIn captures this idea.

module "statefulEvaluation"

import "monadicExpressions" as m
2 import "response" as rp

4 class statefulEvaluation {
inherits m.monadicExpressions

6 class stateMonad(contents:Block1) −> m.Monad {
method asString −> String { "stateMonad({executeIn 0})" }

8 method executeIn(s) −> rp.Response { contents.apply(s) }
method >>= (k:Block) −> m.Monad {

10 stateMonad { s −>
def resp = executeIn(s)

12 k.apply(resp.result).executeIn(resp.state) }
}

14 }
method pure(a) −> m.Monad is override {

16 stateMonad { s −> rp.result(a) state(s) }
}

18 method tally −> m.Monad {
stateMonad { s −> rp.result(done) state(s + 1) }

20 }
class div(l, r) is override {

22 inherits m.monadicExpressions.div(l, r)
alias monadicEval = eval

24 method eval −> m.Monad is override {
tally >>= { x −> monadicEval }

26 }
}

28 }

The >>= method of the state monad (lines 9–13) returns a new state monad
that, when executed, will first execute its contents in the given state s, then
apply its argument k to the result, and then execute the contents of that monad
in the threaded state. Given this definition of >>=, and a redefinition of the pure
method to ensure that values are lifted into the correct monad, we do not need
to redefine any of the tree nodes — so long as their evaluation does not involve
using the state.

Of course, the point of this extension is to enable some evaluations to depend
on state. We will follow Wadler in using state in a somewhat artificial way: the
state will be a single number that counts the number of divisions. The tallymethod
increments the count stored in the state and answers done (Grace’s unit), indicat-
ing that its purpose is to cause an effect rather than to compute a result.

Naturally, counting divisions requires extending the eval operation in the div
class (but not elsewhere) to do the counting. The overriding eval method on lines
24–26 first counts using tally, and then calls the inherited eval method. Notice
also that the asString operation of the monad (line 7) executes the contents of
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the monad in the state 0, representing the initial value of the counter. This is
exactly parallel to Wadler’s function showS.

Here is an example program similar to the previous one:

import "statefulEvaluation" as se
def e = se.statefulEvaluation

def simple = e.con 34
print (simple.eval) // prints stateMonad(result(34) state(0))

def answer = e.div(e.div(e.con 1932, e.con 2), e.con 23)
print (answer.eval) // prints stateMonad(result(42) state(2))

def error = e.div(e.con 1, e.con 0)
print (error.eval) // prints stateMonad(result(infinity) state(1))

2.6 Variation Four: Output

Our final example builds up an output string, using similar techniques. We reuse
monadicExpressions, this time overriding the inherited eval methods to produce
output. We provide a new monad that holds both result and output, and is
equipped with a bind operator that accumulates the output at each step.

module "outputEvaluation"

import "monadicExpressions" as m
2

class outputEvaluation {
4 inherits m.monadicExpressions

class con(n) {
6 inherits m.monadicExpressions.con(n)

method eval −> m.Monad {
8 out "{self.asString} = {n}\n" >>= { _ −> pure(n) }

}
10 }

class div(l, r) {
12 inherits m.monadicExpressions.div(l, r)

method eval −> m.Monad is override {
14 l.eval >>= { a: Number −>

r.eval >>= { b: Number −>
16 out "{self.asString} = {a / b}\n" >>= { _ −> pure(a / b) } } }

}
18 }

method pure(a) −> m.Monad is override { monad(a) output "" }
20 method out(s) −> m.Monad { monad(done) output(s) }

class monad(contents') output(output') {
22 method contents {contents'}

method output {output'}
24 method asString {"output monad contents: {contents} output:\n{output}"}

method >>= (k) {
26 def next = k.apply(contents)

monad(next.contents) output(output ++ next.output)
28 }

}
30 }
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Here is an example program, with its output.
import "outputEvaluation" as o

def e = o.outputEvaluation
def answer = e.div(e.div(e.con 1932, e.con 2), e.con 23)
print (answer.eval)
// prints output monad contents: 42 output:
// con 1932 = 1932
// con 2 = 2
// div(con 1932, con 2) = 966
// con 23 = 23
// div(div(con 1932, con 2), con 23) = 42
def error = e.div(e.con 1, e.con 0)
print (error.eval)

// prints output monad contents: infinity output:
// con 1 = 1
// con 0 = 0
// div(con 1, con 0) = infinity

3 The Erlang OTP Platform

The essential role that inheritance can play in explaining how a software system
works was brought home to Black in 2011. Black was on sabbatical in Edinburgh,
hosted by Phil Wadler. Black and Wadler had been discussing ways of character-
izing encapsulated state — principally monads and effect systems. Erlang came
up in the conversation as an example of a language in which state is handled
explicitly, and Black started studying Armstrong’s Programming Erlang (2007).

The Erlang OTP “generic server” provides properties such as transac-
tions, scalability, and dynamic code update for arbitrary server behaviours.
Transactions can be implemented particularly simply because state is explicit.
Armstrong writes: “Put simply, the [generic server] solves the nonfunctional parts
of the problem, while the callback solves the functional part. The nice part about
this is that the nonfunctional parts of the problem (for example, how to do live
code upgrades) are the same for all applications.” (Armstrong 2007, p. 286)

A reader of this section of Armstrong’s book can’t help but get the sense
that this material is significant. In a separate italicized paragraph, Armstrong
writes: “This is the most important section in the entire book, so read it once,
read it twice, read it 100 times — just make sure the message sinks in.”

The best way that Armstrong can find to explain this most-important-of-
messages is to write a small server program in Erlang, and then generalize this
program to add first transactions, and then hot code swapping. The best way that
Black could find to understand this message was to re-implement Armstrong’s
server in another language — Smalltalk. Using Smalltalk’s inheritance, he was
able to reflect Armstrong’s development, not as a series of separate programs,
but in the stepwise development of a single program.
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3.1 Armstrong’s Goal

What does Armstrong seek to achieve with the generic server? In this context,
a “server” is a computational engine with access to persistent memory. Servers
typically run on a remote computer, and in the Erlang world the primary server
is backed-up by a secondary server that takes over if the primary should fail. For
uniformity with the proceeding example, we here present a simplified version of
the OTP server in Grace; in addition to Armstrong’s Erlang version, our code is
also based on Parkinson, and Noble’s translation of the OTP server to a Java-like
language (2008). For brevity, and to focus attention on the use of inheritance,
our version omits name resolution, remote requests, concurrency and failover.

To be concrete, let’s imagine two particular servers: a “name server” and a
“calculation server”. The name server remembers the locations of objects, with
interface:

type NameServer = {
add(name:String) place(p:Location) −> Done
whereIs(name:String) −> Location

}

The name of the first method in the above type is add()place(), a two-part name
with two parameters.

The calculation server acts like a one-function calculator with a memory;
clear clears the memory, and add adds its argument to the memory, and stores
the result in the memory as well as returning it. The calculation server has the
interface

type CalculationServer = {
clear −> Number
add(e:Number) −> Number

}

Both of these servers maintain state; we will see later why this is relevant.
Armstrong refers to the actual server code as “the callback”. His goal is to

write these callbacks in a simple sequential style, but with explicit state. The
generic server can then add properties such as transactions, failover and hot-
swapping. The simple sequential implementation of the name server is shown on
the following page.

The state of this “callback” is represented by a Dictionary object that stores
the name → location mapping. The method initialState returns the initial state:
a new, empty, Dictionary. The method add()place()state() is used to implement
the client’s add()place() method. The generic server provides the additional state
argument, an object representing the callback’s state. The method returns a
Response (as in Sect. 2.5) comprising the newState dictionary, and the actual
result of the operation, p. Similarly, the method whereIs()state() is used to imple-
ment the client’s whereIs() method. The generic server again provides the addi-
tional state argument. This method returns a Response comprising the result of
looking-up name in dict and the (unchanged) state.
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module "nameServer"

import "response" as r
2

type Location = Unknown
4 type NameServer = {

add(name:String) place(p:Location) −> Done
6 whereIs(name:String) −> Location

}
8 type NsState = Dictionary<String, Location>

10 class callback {
method initialState −> NsState { dictionary.empty }

12 method add(name:String) place(p) state (dict:NsState) −> r.Response {
def newState = dict.copy

14 newState.at(name) put(p)
r.result(p) state(newState)

16 }
method whereIs(name:String) state(dict:NsState) −> r.Response {

18 def res = dict.at(name)
r.result(res) state(dict)

20 }
}

Finally, let’s consider what happens if this name server callback is asked for
the location of a name that is not in the dictionary. The lookup dict.at(name)
will raise an exception, which the callback itself does not handle.

Notice that our nameServer module contains a class callback whose instances
match the type

type Callback<S> = type {
initialState −> S

}

for appropriate values of S. This is true of all server callback modules. Particular
server callbacks extend this type with additional methods, all of which have a
name that ends with the word state, and which take an extra argument of type
S that represents their state.

3.2 The Basic Server

Our class server corresponds to Armstrong’s module server1. This is the “generic
server” into which is installed the “callback” that programs it to provide a par-
ticular function (like name lookup, or calculation).

A Request encapsulates the name of an operation and an argument list. The
basic server implements two methods: handle(), which processes a single incoming
request, and serverLoop(), which manages the request queue.
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module "basicServer"

import "mirrors" as m
2

type Request = type {
4 name −> String

arguments −> List<Unknown>
6 }

8 class server(callbackName:String) {
var callbackMirror

10 var state
startUp(callbackName)

12

method startUp(name) {
14 def callbackModule = m.loadDynamicModule(name)

def callbackObject = callbackModule.callback
16 callbackMirror := m.reflect(callbackObject)

state := callbackObject.initialState
18 }

method handle(request:Request) {
20 def cbMethodMirror = callbackMirror.getMethod(request.name ++ "state")

def arguments = request.arguments ++ [state]
22 def ans = cbMethodMirror.requestWithArgs(arguments)

state := ans.state
24 ans.result

}
26 method serverLoop(requestQ) {

requestQ.do { request −>
28 def res = handle(request)

log "handle: {request.name} args: {request.arguments}"
30 log " result: {res}"

}
32 }

method log(message) { print(message) }
34 }

A server implements three methods. Method startUp(name) loads the callback
module name and initializes the server’s state to that required by the newly-
loaded callback.

The method handle accepts an incoming request, such as "add()place()", and
appends the string "state", to obtain method name like "add()place()state". It
then requests that the callback executes its method with this name, passing it the
arguments from the request and an additional state argument. Thus, a request
like add "BuckinghamPalace" place "London" might be transmitted to the name-
Server as add "BuckinghamPalace" place "London" state (dictionary.empty). The
state component of the response would then be a dictionary containing the map-
ping from "BuckinghamPalace" to "London"; this new dictionary would provide
the state argument for the next request.

The method serverLoop is a simplified version of Armstrong’s loop/3 that
omits the code necessary to receive messages and send back replies, and instead
uses a local queue of messages and Grace’s normal method-return mechanism.
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Here is some code that exercises the basic server:

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"]

]
print "starting basicServer"
basic.server("nameServer").serverLoop(queue)
print "done"

To keep this illustration as simple as possible, this code constructs the
requests explicitly; in a real remote server system, the requests would be con-
structed using reflection, or an RPC stub generator. This is why they appear as,
for example, request "add()place()" withArgs ["BuckinghamPalace", "London"],
instead of as add "BuckinghamPalace" place "London". Here is the log output:

starting basicServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
done

Note that if the server callback raises an exception, it will crash the whole server.

3.3 Adding Transactions

Armstrong’s server2 adds transaction semantics: if the requested operation raises
an exception, the server loop continues with the original value of the state. In
contrast, if the requested operation completes normally, the server continues
with the new value of the state.

Lacking inheritance, the only way that Armstrong can explain this to his
readers is to present the entire text of a new module, server2. The reader is
left to compare each function in server2 with the prior version in server1. The
start functions seem to be identical; the rpc functions are similar, except that
the receive clause in server2 has been extended to accommodate an additional
component in the reply messages. The function loop seems to be completely
different.

In the Grace version, the differences are much easier to find. In the trans-
actionServer module, the class server is derived from basicServer ’s server using
inheritance:
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module "transactionServer"

import "mirrors" as mirrors
2 import "basicServer" as basic

4 type Request = basic.Request

6 class server(callbackName:String) {
inherits basic.server(callbackName)

8 alias basicHandle = handle

10 method handle(request:Request) is override {
try {

12 basicHandle(request)
} catch { why −>

14 log "Error — server crashed with {why}"
"!CRASH!"

16 }
}

18 }

The handle method is overridden, but nothing else changes. It’s easy to see that
the extent of the change is the addition of the try()catch() clause to the handle
method.

If we now try and make bogus requests:

import "transactionServer" as transaction

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"],
request "boojum()" withArgs ["EiffelTower"],
request "whereIs()" withArgs ["BuckinghamPalace"]

]
print "starting transactionServer"
transaction.server("nameServer").serverLoop(queue)
print "done"

they will be safely ignored:

starting transactionServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
Error — server crashed with NoSuchMethod: no method boojum()state in mir-
ror for a callback
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handle: boojum() args: [EiffelTower]
result: !CRASH!

handle: whereIs() args: [BuckinghamPalace]
result: London

done

Armstrong emphasizes that the same server callback can be run under both
the basic server and the transaction sever. This is also true for the Grace version,
but that’s not what we wish to emphasize. Our point is that inheritance makes
it much easier to understand the critical differences between basicServer and
transactionServer than does rewriting the whole server, as Armstrong is forced
to do.

3.4 The Hot-Swap Server

Armstrong’s server3 adds “hot swapping” to his server1; once again he is forced
to rewrite the whole server from scratch, and the reader must compare the two
versions of the code, line by line, to find the differences. Our Grace version
instead adds hot swapping to the transactionServer, again using inheritance.

module "hotSwapServer"
import "mirrors" as mirrors

2 import "transactionServer" as base

4 type Request = base.Request

6 class server(callbackName:String) {
inherits base.server(callbackName)

8 alias baseHandle = handle

10 method handle(request:Request) is override {
if ( request.name == "!HOTSWAP!" ) then {

12 def newCallback = request.arguments.first
startUp(newCallback)

14 "{newCallback} started."
} else {

16 baseHandle(request)
}

18 }
}

In hotSwapServer, class server overrides the handle method with a version that
checks for the special request !HOTSWAP!. Other requests are delegated to the
handle method inherited from transactionServer. Once again, it is clear that
nothing else changes.

Now we can try to change the name server into a calculation server:

import "hotSwapServer" as hotSwap

class request(methodName) withArgs(args) {
method name { methodName }
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method arguments { args }
}
def queue = [

request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"],
request "!HOTSWAP!" withArgs ["calculator"],
request "whereIs()" withArgs ["EiffelTower"],
request "add()" withArgs [3],
request "add()" withArgs [4]

]
print "starting hotSwapServer"
hotSwap.server("nameServer").serverLoop(queue)
print "done"

Here is the output:

starting hotSwapServer
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
handle: !HOTSWAP! args: [calculator]

result: calculator started.
Error — server crashed with NoSuchMethod: no method whereIs()state in mir-
ror for a callback
handle: whereIs() args: [EiffelTower]

result: !CRASH!
handle: add() args: [3]

result: 3
handle: add() args: [4]

result: 7
done

3.5 Summary

In summary, we can say that what Armstrong found necessary to present as a
series of completely separate programs, can be conveniently expressed in Grace
as one program that uses inheritance. As a consequence, the final goal— a hot-
swappable server that supports transactions — cannot be found in a single, mono-
lithic piece of code, but instead is a composition of three modules. But far from
being a problem, this is an advantage. The presentation using inheritance lets
each feature be implemented, and understood, separately. Indeed, the structure
of the code mirrors quite closely the structure of Armstrong’s own exposition in
his book.

4 Discussion and Conclusion

We will be the first to admit that a few small examples prove nothing. Moreover,
we are aware that there are places where our argument needs improvement. Here
we comment on two of these.
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4.1 From the Abstract to the Concrete

Inheritance can be used in many ways other than the way illustrated here. Our
own experience with inheritance is that we sometimes start out with a concrete
class X, and then write a new concrete class Y doing something similar. We then
abstract by creating an (abstract) superclass A that contains the attributes that
A and B have in common, and rewrite X and Y to inherit from A.

When programmers have a lot of experience with the domain, they might even
start out with the abstract superclass. We did exactly this when building the
Grace collections library, which contains abstract superclasses like iterable, which
can be inherited by any concrete class that defines an iterator method. Syntax
aside, an abstract superclass is essentially a functor returning a set of methods,
and the abstract method(s) of the superclass are its explicit parameters. Used in
this way, inheritance is little more than a convenient parameterization construct.

If we admit that this use of inheritance as a parameterization construct is
common, the reader may wonder why have we used the bulk of this paper to
emphasize the use of inheritance as a construct for differential programming. The
answer is that we wish to capture the essence of inheritance. According to The
Blackwell Dictionary of Western Philosophy, “essence is the property of a thing
without which it could not be what it is.” (Bunnin and Yu 2004, p. 223). In this
sense, the essence of inheritance is its ability to override a concrete entity, and
thus effectively turn a constant into a parameter. There is nothing at all wrong
with using inheritance to share abstract entities designed for reuse, that is, to
move from the abstract to the concrete. But what makes inheritance unique is
its ability to create parameters out of constants — what we have called ex post
facto parameterization.

4.2 What About Types?

Anyone who has read both Wadler’s “The Essence of Functional Programming”
and our Sect. 2 can hardly fail to notice that Wadler’s code is rich with type
information, while our code omits many type annotations. This prompts the
question: can the inheritance techniques that we advocate be well-typed?

The way that inheritance is used in Sect. 2 — overriding the definition of the
monad in descendants — poses some fundamental difficulties for typechecking.
As the components of the expression class are changed to add new functionality,
the types that describe those components also change. For example, the para-
meters l and r of the class div in module “simpleExpressions” have eval methods
that answer numbers, whereas the corresponding parameters to div in module
“monadicExpressions” have eval methods that answer monads. If there were other
methods that used the results of eval, these would also need to be changed to
maintain type correctness. Even changing a type to a subtype is not safe in gen-
eral, because the type may be used to specify a requirement on a parameter as
well as a property of a result.

Allowing an overriding method in a subclass to have a type different from
that of the overridden method clashes with one of the sacred cows of type-theory:
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“modular typechecking” (Cardelli 1997). The idea behind modular typechecking
is that each component of the program can be typechecked once and for all,
regardless of how and where it is used. Since the methods of an object are
generally interdependent, it seems clear that we cannot permit unconstrained
changes to the type of a method after the typecheck has been performed. This
runs contrary to the need to override methods to generalize functionality, as we
have done in these examples.

Two paths are open to us. The first, exemplified by Ernst (2001), Bruce
(2003), and Nystrom et al. (2004), is to devise clever restrictions that permit
both useful overriding and early typechecking. The second is to question the
value of modular typechecking.

While modular typechecking seems obviously desirable for a subroutine
library, or for a class that we are to instantiate, its importance is less clear
for a class that we are going to inherit. After all, inheritance lets us interfere
with the internal connections between the methods of the inherited class, substi-
tuting arbitrary new code in place of existing code. It is quite possible to break
the inherited class by improper overriding: it is up to the programmer who uses
inheritance to understand the internal structure of the inherited class. In this
context, running the typechecker over both the inherited code and the inherit-
ing code seems like a small price to pay for the security that comes from being
able to override method types and have the resulting composition be certified as
type-safe.

4.3 Further Extensions

An issue we have not yet discussed is the difficulty of combining separate
extensions, for example, including both output and exceptions in the expres-
sion language of Sect. 2. Some form of multiple inheritance would seem to be
indicated, but most attempts at multiple inheritance run into difficulties when
the inherited parts conflict. A particularly troublesome situation is the “diamond
problem” (Bracha and Cook 1990; Snyder 1986), also known as “fork-join inher-
itance” (Sakkinen 1989); this occurs when a class inherits a state component
from the same base class via multiple paths.

In our view, the most promising solution seems to be to restrict what can
be multiply inherited. For example, traits, as defined by Ducasse, Nierstrasz,
Schärli, Wuyts, and Black (2006), consist of collections of methods that can
be “mixed into” classes. Traits do not contain state; they instead access state
declared elsewhere using appropriate methods. The definition of a trait can also
specify “required methods” that must be provided by the client. In exchange for
these modest restrictions on expressiveness, traits avoid almost all of the prob-
lems of multiple inheritance. Traits have been adopted by many recent languages;
we are in the process of adding them to Grace. Delegation may provide an alter-
native solution, but seems to be further from the mainstream of object-oriented
language development.

One of the anonymous reviewers observed that Edwards’ Subtext (2005a)
is also based on the idea that humans are better at concrete thinking than at
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abstraction. Subtext seeks to “decriminalize copy and paste” (Edwards 2005b) by
supporting post hoc abstraction. Because Subtext programs are structures in a
database rather than pieces of text, the same program can be viewed in multiple
ways. Thus, whether someone reading a program sees a link to an abstraction
or an embedded implementation of that abstraction depends on a check-mark
on a style sheet, not on a once-and-for-all decision made by the writer of the
program. Moreover, the view can be changed in real time to suit the convenience
of the reader. Similar ideas were explored by Black and Jones (2004).

As we have shown in this article, inheritance can lead to highly-factored
code. This can be a double-edged sword. We have argued that the factoring is
advantageous, because it lets the reader of a program digest it in small, easily
understood chunks. But it can sometimes also be a disadvantage, because it
leaves the reader with a less integrated view of the program. The ability to view
a program in multiple ways can give us the best of both worlds, by allowing the
chunks either to be viewed separately, or to be “flattened” into a single larger
chunk without abstraction boundaries. A full exploration of these ideas requires
not only that we “step away from the ASR-33” (Kamp 2010), but that we move
away from textual representations of programs altogether.

4.4 Conclusion

Introducing a new concept by means of a series of examples is a technique as old
as pedagogy itself. All of us were taught that way, and teach that way. We do
not start instruction in mathematics by first explaining the abstractions of rings
and fields, and then introducing arithmetic on the integers as a special case. On
the contrary: we introduce the abstractions only after the student is familiar
with not one, but several, concrete examples.

As Baniassad and Myers (2009) have written,

the code that constitutes a program actually forms a higher-level, program-
specific language. The symbols of the language are the abstractions of the
program, and the grammar of the language is the set of (generally unwritten)
rules about the allowable combinations of those abstractions. As such, a pro-
gram is both a language definition, and the only use of that language. This
specificity means that reading a never-before encountered program involves
learning a new natural language

It follows that when we write a program, we are teaching a new language.
Isn’t it our duty to use all available technologies to improve our teaching? So,
next time you find yourself explaining a complex program by introducing a series
of simpler programs of increasing complexity, think how that explanation, as well
as the final program, could be captured in your programming language. And if
your chosen programming language does not provide the right tools, ask whether
it could be improved.
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Abstract. Session types describe the structure of bi-directional point-
to-point communication channels by specifying the sequence and format
of messages on each channel. A session type defines a communication
protocol. Type systems that include session types are able to statically
verify that communication-based code generates, and responds to, mes-
sages according to a specified protocol. It is natural to consider subtyping
for session types, but the literature contains conflicting definitions. It is
now folklore that one definition is based on safe substitutability of chan-
nels, while the other is based on safe substitutability of processes. We
explain this point in more detail, and show how to unify the two views.

1 Prologue

My first encounter with Phil Wadler was at the Marktoberdorf Summer School
in 1992, where he lectured on monads in functional programming. His course
had the characteristically punning title “Church and State: taming effects in
functional languages”, and during his first lecture he removed his shirt to reveal
a T-shirt printed with the category-theoretic axioms for a monad. The following
year I met him again, at POPL in Charleston, South Carolina. He presented
the paper “Imperative Functional Programming”, also covering the monadic
approach and co-authored with Simon Peyton Jones, which in 2003 won the
award for the most influential paper from POPL 1993.

At that time, in the early 1990s, Phil was a professor at the University of
Glasgow, and I was a PhD student at Imperial College London, attending POPL
to present my own very first paper, which was about types for pi calculus. We
PhD students in the Imperial theory group had a view of the world in which a
small number of other departments were admired for their theoretical research,
and the rest were ignored. The Glasgow functional programming group was
admired, as was the LFCS in Edinburgh, where Phil now works. More than
twenty years later, I myself am a professor at the University of Glasgow, but
when I arrived here as a lecturer in 2000, Phil had already departed for the USA.
When he returned to Scotland to take a chair in theoretical computer science
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at Edinburgh, we started the Scottish Programming Languages Seminar, which
is still active. Eventually the opportunity for a technical collaboration arose,
when Phil developed an interest in session types because of the Curry-Howard
correspondence between session types and linear logic, discovered by Lúıs Caires
and Frank Pfenning. This led to a successful EPSRC grant application by Phil,
myself, and Nobuko Yoshida, which is still running.

I am delighted to contribute this paper to Phil’s 60th birthday Festschrift.

2 Introduction

Session types were introduced by Honda et al. (1998; 1994), based on ear-
lier work by Honda (1993), as a way of expressing communication protocols
type-theoretically, so that protocol implementations can be verified by static
typechecking. The original formulation, now known as binary session types,
covers pairwise protocols on bidirectional point-to-point communication chan-
nels. Later, the theory was extended to multiparty session types (Honda et al.,
2008), in order to account for collective protocols among multiple participants.

Gay and Hole (1999; 2005) extended the theory of session types by adding
subtyping, to support more flexible interaction between participants in a proto-
col. Many papers now include subtyping. However, not all of them use the same
definition as Gay and Hole; some papers give the opposite variance to the session
type constructors. The alternative definition first appears in the work of Carbone
et al. (2007) and has been used in many papers by Honda et al., including one by
Demangeon and Honda (2011) whose main focus is subtyping. For example, con-
sider two simple session types with branching (external choice), one which offers
a choice between labels a and b, and one which offers label a alone. According to
Gay and Hole’s definition, the session type constructor for branch is covariant in
the set of labels, so that &〈a : end〉 � &〈a : end, b : end〉. According to the Honda
et al. definition, branch is contravariant, so that &〈a : end, b : end〉 � &〈a : end〉.
Each paper defines a type system and an operational semantics and proves that
typability guarantees runtime safety. How can both definitions of subtyping be
correct?

The fundamental way of justifying the definition of subtyping for any lan-
guage is by Liskov and Wing’s (1994) concept of safe substitutability. Type T is
a subtype of type U if a value of type T can be safely used whenever a value of
type U is expected, where “safely” means without violating the runtime safety
property that the type system guarantees. In this paper we will analyse safe
substitutability in the setting of session types, to see how each definition of
subtyping can be justified. The answer lies in careful consideration of what is
being safely substituted. Gay and Hole’s definition is based on safe substitution
of communication channels, whereas Honda et al.’s definition is based on safe
substitution of processes. This situation contrasts with that of λ-calculus, where
the syntax consists only of expressions and there is no choice about which kind
of entity is being substituted.
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The remainder of the paper is structured as follows. Section 3 reviews the
concepts of session types and motivates the need for subtyping. Section 4 consid-
ers safe substitution of channels, and gives several justifications of the Gay and
Hole definition. Section 5 considers safe substitution of processes, and justifies
the Honda et al. definition. Section 6 describes a session type system for higher-
order communication, introduced by Mostrous and Yoshida (2007; 2015), and
shows how that setting allows the two definitions of subtyping to be reconciled.
Finally, Sect. 7 concludes. In order to reduce the volume of definitions, we focus
on intuition and explanation, and do not give full details of the languages and
type systems that we discuss.

3 Session Types and Subtyping

To illustrate the need for a theory of subtyping for session types, consider the
example of a server for mathematical operations (Gay and Hole, 2005). There are
two services: addition of integers, which produces an integer result, and testing
of integers for equality, which produces a boolean result. A client and a server
run independently and communicate on a bidirectional point-to-point channel,
which has two endpoints, one for the client and one for the server. The protocol
is specified by defining a pair of dual session types, one for each endpoint. The
type of the server’s endpoint is S, defined as follows.

S = &〈 add :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

The &〈 . . . 〉 constructor specifies that a choice is offered between, in this
case, two options, labelled add and eq. It is an external choice, often called
“branch”: the server must be prepared to receive either label. Each label leads
to a type describing the continuation of the protocol, different in each case.
The constructors ?[. . .] and ![. . .] indicate receiving and sending, respectively.
Sequencing is indicated by . and end marks the end of the interaction. For
simplicity this protocol allows only a single service invocation.

In a run of the protocol, the first message is one of the labels plus and eq, sent
from the client to the server. Subsequently, the client sends messages according
to the continuation of the label that was chosen, and then receives a message
from the server. The type of the client’s endpoint is S, the dual of S.

S = ⊕〈 add : ![int].![int].?[int].end,
eq : ![int].![int].?[bool].end 〉

The structure is the same, but the directions of the communications are
reversed. The ⊕〈 . . . 〉 constructor is an internal choice, often called “select” or
“choice”: the client can decide which label to send.

Suppose that the server is upgraded by the addition of new services and an
extension of an existing service. The equality test can now handle floating point
numbers, and there is a multiplication service. The type of the new server is S′.
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S′ = &〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

The requirement for a theory of subtyping is to allow a client that has been
typechecked with type S to interact with the new server. In Sects. 4 and 5 we will
discuss the two approaches to subtyping that have appeared in the literature,
and explain how they account for this example.

Another possibility is to upgrade the type of the addition service to

add :?[float].?[float].![float].end.

This motivates the development of a theory of bounded polymorphism (Gay,
2008) that allows the addition service to have type

add(X � float) :?[X].?[X].![X].end

so that the client chooses an instantiation of the type variable X as either int
or float and then proceeds appropriately. We do not consider bounded polymor-
phism further in the present paper.

4 Channel-Oriented Subtyping

In Sect. 3 we defined session types for the mathematical server and client, without
choosing a language in which to implement them. We will now give pi calculus
definitions, following the example of Gay and Hole (2005). The core of the server
process is serverbody, parameterised by its channel endpoint x.

serverbody(x) = x�{ add :x?[u:int].x?[v:int].x![u + v].0,
eq :x?[u:int].x?[v:int].x![u = v].0 }.

The branching construct x�{. . .} corresponds to the type constructor &〈 . . . 〉;
it receives a label and executes the code corresponding to that label. The rest
of the syntax is pi calculus extended with arithmetic operations. The process
x?[u:int].P receives an integer value on channel x, binds it to the name u, and
then executes P . The process x![u + v].Q sends the value of the expression u+ v
on channel x and then executes Q. Finally, 0 is the terminated process.

The type system derives judgements of the form Γ � P , where Γ is an
environment of typed channels and P is a process. A process does not have a
type; it is either correctly typed or not. The typing of serverbody is

x :S � serverbody(x)

where S is the session type defined in Sect. 3. Although we are not showing the
typing rules here, it should be clear that the process and the type have the same
communication structure.
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Similarly, the core of one possible client process, which uses the addition
service, is clientbody, again parameterised by its channel endpoint.

clientbody(x) = x�add.x![2].x![3].x?[u:int].0

The typing is

x :S � clientbody(x).

The client and server need to establish a connection so that they use opposite
endpoints c− and c+ of channel c. The original formulation of session types
(Takeuchi et al., 1994) used matching request and accept constructs, but here
we follow Gay and Hole’s approach in which the client uses standard pi calculus
name restriction to create a fresh channel and then sends one endpoint to the
server. This requires a globally known channel a of type [̂S] (the standard pi
calculus channel type constructor). The complete definitions and typings are

server(a) = a?[y:S].serverbody(y)
client(a) = (νx : S)(a![x+].clientbody(x−))

a : [̂S] � server(a)
a : [̂S] � client(a)

where (νx : S) binds x+ with type S and x− with type S.
In Sect. 3 we defined the session type S′ for an upgraded server. The corre-

sponding definition of newserverbody is

newserverbody(x) = x�{ add :x?[u:int].x?[v:int].x![u + v].0,
mul :x?[u:int].x?[v:int].x![u ∗ v].0,
eq :x?[u:float].x?[v:float].x![u = v].0 }.

and we have x : S′ � newserverbody(x). Now newserver is defined in terms of
newserverbody in the same way as before.

Clearly client can interact safely with newserver; the question is how to extend
the type system so that

a : [̂S′] � client(a) | newserver(a).

In Gay and Hole’s theory, this is accounted for by considering safe substitu-
tion of channels. It is safe for newserverbody to interact on a channel of type S
instead of the channel of type S′ that it expects; the substitution means that
newserverbody never receives label mul and always receives integers in the eq
service, because the process at the other endpoint of the channel is using it with
type S. Subtyping is defined according to this concept of safe substitution, giving
S � S′. We see that branch (external choice) is covariant in the set of labels, and
input is covariant in the message type. If we imagine changing the definitions so
that the server creates the channel and sends one endpoint to the client, we find
that select (internal choice) is contravariant in the set of labels and output is
contravariant in the message type. These are the variances established by Pierce
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S-End
end end

T U U T
S-Chan

[T ] [U ]

T U V W
S-InS

?[T ].V ?[U ].W

m n ∀i ∈ {1, . . . ,m}.Si Ti

S-Branch
& li : Si 1 i m & li : Ti 1 i n

U T V W
S-OutS

![T ].V ![U ].W

m n ∀i ∈ {1, . . . ,m}.Si Ti

S-Choice
li : Si 1 i n li : Ti 1 i m

Fig. 1. Subtyping for non-recursive types.

and Sangiorgi (1996) in the first work on subtyping for (non-session-typed) pi
calculus. Furthermore, it is clear that all of the session type constructors are
covariant in the continuation type, simply because after the first communica-
tion we can again consider safe substitutability with the continuation types in
the substituting and substituted positions. The definition of subtyping for non-
recursive session types is summarised in Fig. 1, which includes the invariant rule
for standard channel types. For recursive types, the same principles are used as
the basis for a coinductive definition (Gay and Hole, 2005).

This definition of subtyping is justified by the proof of type safety in Gay
and Hole’s system. In the rest of this section, we give alternative technical jus-
tifications for the definition.

4.1 Safe Substitutability of Channels, Formally

Gay and Hole express safe substitutability of channels for channels by (a more
general form of) the following result, in which zp is either z+ or z−.

Lemma 1 (Substitution (Gay and Hole, 2005, Lemma8)). If Γ,w :W � P
and Z � W and zp �∈ dom(Γ ) then Γ, zp :Z � P{zp/w}.

They define subtyping first, taking into account recursive types by giv-
ing a coinductive definition based on the principles of Fig. 1, and then prove
type safety, for which Lemma 1 is a necessary step. Alternatively, we can take
Lemma 1 as a statement of safe substitutability, i.e. a specification of the prop-
erty that we want subtyping to have, and then derive the definition of subtyping
by considering how to prove the lemma by induction on typing derivations. For
example, in the inductive case for an input process, the relevant typing rule is
T-InS. The occurrence of subtyping in the rule is based on safe substitutability
of channels: the received value of type T must be substitutable for the bound
variable y of type U .

Γ, xp:S, y:U � P T � U
T-InS

Γ, xp:?[T ].S � xp?[y:U ].P
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The specific case in the proof of the lemma is that we substitute zp for x in
the process x?[y:U ].Q. The typing derivation for x?[y:U ].Q concludes with an
application of rule T-InS.

Γ, x:S, y:U � Q T � U
T-InS

Γ, x:?[T ].S � x?[y:U ].Q

To prove this case of Lemma 1 we need to establish Γ, zp : Z �
zp?[y:U ].Q{zp/x}, which has to have a derivation ending with an application
of rule T-InS:

Γ, zp:S′, y:U � Q{zp/x} A � U
T-InS

Γ, zp:?[A].S′ � zp?[y:U ].Q{zp/x}
From the assumptions Z � ?[T ].S and T � U , we need to be able to conclude

Z = ?[A].S′ and S′ � S (to use the induction hypothesis) and A � U . To go
from T � U to A � U , for arbitrary U , requires A � T . Overall, in order to
make the proof of Lemma 1 work, we need:

if Z � ?[T ].S then Z = ?[A].S′ with A � T and S′ � S.

This is essentially one of the clauses in the coinductive definition of subtyping
(Gay and Hole, 2005, Definition 3); the only difference is that the coinductive
definition unfolds recursive types.

As another example we can consider the case of branch, with the typing
rule T-Offer. It contains the raw material of subtyping in the form of the
condition m � n, which guarantees that the received label is within the range
of possibilities.

m � n ∀i ∈ {1, . . . , m}.(Γ, xp:Si � Pi)
T-Offer

Γ, xp:&〈 li : Si 〉1�i�m � xp�{ li : Pi }1�i�n

The relevant case in the proof of Lemma 1 is that we substitute zp for x in
the process x �{ li : Pi }1�i�n. The typing derivation for x �{ li : Pi }1�i�n

concludes with an application of rule T-Offer.

m � n ∀i ∈ {1, . . . , m}.(Γ, x:Si � Pi)
T-Offer

Γ, x:&〈 li : Si 〉1�i�m � x�{ li : Pi }1�i�n

We need to establish Γ, zp:Z � zp�{ li : Pi{zp/x} }1�i�n, whose derivation
must end with an application of T-Offer:

r � n ∀i ∈ {1, . . . , r}.(Γ, zp:Zi � Pi)
T-Offer

Γ, zp:&〈 li : Zi 〉1�i�r � zp�{ li : Pi }1�i�n

From the assumptions Z � &〈 li : Si 〉1�i�m and m � n we need to be able
to conclude Z = &〈 li : Zi 〉1�i�r and ∀i ∈ {1 . . . r}.Zi � Si and r � n. Therefore
we need:
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end = cap∅[]
?[T ].S = capi[ T , S ]

![T ].S = capo[ T , S ]
& l1 : S1, . . . , ln : Sn = capi[ l1 : S1 , . . . , ln : Sn ]

l1 : S1, . . . , ln : Sn = capo[ l1 : S1 , . . . , ln : Sn ]

Fig. 2. Translation of session types into linear and variant types (Dardha et al., 2012).
Data types such as int and bool are translated into themselves.

if Z � &〈 li : Si 〉1�i�m then Z = &〈 li : Zi 〉1�i�r with r � m and
∀i ∈ {1 . . . r}.Zi � Si.

Again this is essentially a clause in the coinductive definition of subtyping.
The other clauses are obtained similarly by considering other possibilities for the
structure of P , with the exception of the clause for end which requires proving
(straightforwardly) that Γ, x:end � P if and only if Γ � P and x �∈ fn(P ). In
order to type as many processes as possible we take the largest relation satisfying
this clause, which leads to the coinductive definition.

4.2 Channel-Oriented Subtyping by Translation

Kobayashi (2003) observed informally that the branch and choice constructors of
session types can be represented by variant types, which have been considered in
pi calculus independently of session types (Sangiorgi and Walker, 2001). Specif-
ically, making a choice corresponds to sending one label from a variant type,
and offering a choice corresponds to a case-analysis on a received label. With
this representation, Gay and Hole’s definition of subtyping follows by combin-
ing the standard definition of subtyping for variants in λ-calculus (Pierce, 2002)
with Pierce and Sangiorgi’s (1996) definition of subtyping for input and output
types in pi calculus. Dardha et al. (2012) developed this idea in detail1. They
showed that not only subtyping, but also polymorphism, can be derived from a
translation of session types into linear pi calculus (Kobayashi et al., 1999) with
variants.

The translation combines three ideas. First, in the linear pi calculus, a linear
channel can be used for only one communication. To allow a session channel to
be used for a series of messages, a continuation-passing style is used, so that
each message is accompanied by a fresh channel which is used for the next
message. Second, the linear pi calculus separates the capabilities for input (capi)
and output (capo) on a channel. A session type corresponding to an initial input
or output is translated into an input-only or output-only capability. Polyadic
channel types of the form capi[T1, . . . , Tn] are used. Third, branch and select
session types are both translated into variant types 〈l1 : T1, . . . , ln : Tn〉, with
the input or output capability as appropriate. The translation of types is defined
in Fig. 2; note the use of the empty capability cap∅ in the translation of end.

1 See also Dardha’s (2014) PhD thesis.
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To illustrate the translation, consider the session types S and S from Sect. 3.

�S� = capi[〈 add : capi[int, capi[int, capo[int, cap∅[] ] ] ]
eq : capi[int, capi[int, capo[bool, cap∅[] ] ] ] 〉 ]

�S� = capo[〈 add : capi[int, capi[int, capo[int, cap∅[] ] ] ]
eq : capi[int, capi[int, capo[bool, cap∅[] ] ] ] 〉 ]

Duality appears as a reversal of input/output capability at the top level only,
so that the message types of �S� and �S� are the same.

The standard definition of subtyping for variant types is covariant in the set
of labels. With the definitions in Fig. 2, considering that capi is covariant and
capo is contravariant, this gives the same variances for branch and select that
Gay and Hole define.

4.3 Channel-Oriented Subtyping by Semantic Subtyping

Castagna et al. (2009) use the idea of semantic subtyping (Frisch et al., 2002) to
develop a set-theoretic model of session types in which subtyping is simply set
inclusion. The foundation for their model is a duality relation �� on session types,
which characterises safe communication. Gay and Hole generalised the duality
function (·) to a coinductively-defined relation ⊥ (in order to handle recursive
types) which requires exact matching of label sets and message types. For exam-
ple, with the definitions in Sect. 3, we have S ⊥ S but not S′ ⊥ S. In contrast,
S′ �� S because every message sent on an endpoint of type S will be understood
by the process at the opposite endpoint of type S′, and vice versa. Deriving the
definition of subtyping from this definition of duality is technically more com-
plicated because of the circularity that the definition of duality itself involves
subtyping of message types, which in general can be session types. When the
theory is worked out, the session type constructors have the same variances as in
Fig. 1. The paper does not discuss the distinction between channel-oriented and
process-oriented subtyping, but the fact that the definition of duality includes
subtyping on message types, which can be channel types, implies that substi-
tutability of channels is being considered.

5 Process-Oriented Subtyping

We consider the paper by Demangeon and Honda (2011) as a typical example
that defines subtyping in the Honda et al. style. Like Dardha et al., they study
subtyping for session types by translating into a simpler language. Apart from
the definition of subtyping, the main difference is that their linear pi calculus
combines variant types and input/output types so that a label is accompanied
by a message. The intuition behind the Honda et al. definition of subtyping is
easiest to understand by considering the type environment to be the type of a
process, which we emphasize here by writing judgements in the form P � Γ .
Their subsumption result has a clear analogy with subtyping for λ-calculus.
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Here, the relation � is the subtyping relation on session types, lifted pointwise
to environments.

Proposition 1 (Subsumption (Demangeon and Honda, 2011, Proposi-
tion 9)). If P � Γ and Γ � Γ ′ then P � Γ ′.

Considering the type environment as a specification of the interactions that
process must allow, we can return to the maths server to see that all of the
following typings make sense.

serverbody(x) � x :S
newserverbody(x) � x :S′

newserverbody(x) � x :S

In the first two judgements, the type and the process match exactly. The
third judgement states that the process with more behaviour, newserverbody,
satisfies the requirement expressed by the original type S, i.e. it provides the
add and eq services. In relation to subtyping, and Proposition 1, this means
S′ � S, i.e.

&〈 add :?[int].?[int].![int].end,
mul :?[int].?[int].![int].end,
eq :?[float].?[float].![bool].end 〉

⎫
⎬

⎭
�

{
&〈 add :?[int].?[int].![int].end,

eq :?[int].?[int].![bool].end 〉

This is the opposite of the subtyping relationship for these types in Gay and
Hole’s theory, which we described in Sect. 4. Indeed, Demangeon and Honda
define subtyping for branch types to be contravariant in the set of labels, and
subtyping for select types is covariant. The example above also shows that input
needs to be contravariant in the message type and output needs to be covari-
ant, so that the subtyping relation is exactly the converse of Gay and Hole’s
definition. We emphasise that branch and input both involve receiving a value,
so it makes sense that they have the same variance; similarly select and out-
put. Demangeon and Honda actually define subtyping for input, which in their
presentation is unified with branch, to be covariant in the message type, and
conversely subtyping for output, which they unify with select, is contravariant.
It seems that this is just a typographical error, as other papers in the Honda
et al. style, for example by Chen et al. (2014), use the expected variance in the
message type. In some definitions of subtyping, for example by Mostrous and
Yoshida (2015), the variance depends on whether data or channels are being
communicated; the technical details need further investigation to clarify this
point.

Demangeon and Honda give further justification for their definition of sub-
typing by relating it to duality with the following result, stated here in a form
that combines their Definition 10 and Proposition 12.

Proposition 2. S1 � S2 if and only if for all S, S1 �� S ⇒ S2 �� S.

In words: if a process satisfies type S1, then it also satisfies type S2 if and
only if all safe interactions with S1 are also safe interactions with S2.
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The view of the session type environment as the specification of a process,
and consideration of when one process satisfies the specification originally given
for another process, correspond to working with safe substitution of processes,
instead of safe substitution of channels as in Sect. 4. Explicitly, consider the
following typing derivation for a server and client in parallel; we ignore the step
of establishing the connection, because in Demangeon and Honda’s system this
is achieved by a symmetrical request/accept construct rather than by sending a
channel endpoint.

serverbody(x+) � x+ :S clientbody(x−) � x− :S

serverbody(x+) | clientbody(x−) � x+ :S, x− :S

Because we also have newserverbody(x+) � x+ : S, the process
newserverbody(x+) can be safely substituted for serverbody(x+) in the deriva-
tion, i.e. in the typed system.

It should be possible to prove a formal result about safe substitutability of
processes, along the following lines, where C[·] is a process context.

Conjecture 1. If P � ΓP and Q � ΓQ and ΓQ � ΓP and C[P ] � Γ then C[Q] � Γ .

6 Unifying Channel- and Process-Oriented Subtyping

Sections 4 and 5 described two separate type systems, with two definitions of sub-
typing. To better understand the relationship between these definitions, we use
a language and type system in which both channel substitution and process sub-
stitution can be expressed internally, by message-passing. This requires higher-
order communication, i.e. the ability to send a process as a message.

A natural way to develop a higher-order process calculus is to require a
process, before being sent as a message, to be made self-contained by being
abstracted on all of its channels. When a process is received, it can be applied to
the channels that it needs, and then will start executing. This approach is realis-
tic for distributed systems, as it does not assume that channels are globally avail-
able. Therefore we need a system that combines pi calculus and λ-abstraction,
with session types. This combination has been studied by Mostrous and Yoshida
(2015). We will now informally discuss typings in such a system.

In our presentation of Honda et al. style subtyping (Sect. 5) we used typing
judgements of the form P � Γ . We will now write this as

P � proc(Γ )

to emphasise the view of Γ as the type of P . In our presentation of Gay and
Hole subtyping (Sect. 4) we used typing judgements of the form Γ � P . We will
now write this as

Γ � P : proc

to emphasise that P is being given the type which says that it is a correct process.
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In Mostrous and Yoshida’s language of higher-order processes we can abstract
a process on its channels to obtain an expression with a function type, for
example

� λx.server(x) : S → proc

and

� λx.newserver(x) : S′ → proc.

Now we can identify proc(x : S) with S → proc. If we use Gay and Hole’s
subtyping relation, so that S � S′, then the standard definition of subtyping for
function types gives proc(x :S′) � proc(x : S), which is Honda et al.’s definition.
In other words, by moving to a setting in which safe substitution of both channels
and processes can be expressed in terms of message-passing, we can explain the
difference between Honda et al. subtyping and Gay/Hole subtyping by the fact
that subtyping on function types is contravariant in the parameter.

7 Conclusion

We have discussed two definitions of subtyping for session types, both justified
in terms of safe substitutability. The first definition, due to Gay and Hole, is
based on safe substitutability of channels and has been derived in several ways
in the literature. The second definition, due to Honda et al., is based on safe
substitutability of processes. We have shown that the two definitions can be
reconciled in a session type system for higher-order processes, of the kind defined
by Mostrous and Yoshida. This is achieved by identifying the type of a process
(its session environment, à la Demangeon and Honda) with a function type that
abstracts all of its channels. The Honda et al. definition, in which branch types
are contravariant, therefore arises from the combination of the Gay and Hole
definition, in which branch types are covariant, and the standard definition of
subtyping for function types, which is contravariant in the parameter.

We have used an informal presentation in order to focus on intuition and
reduce the number of definitions being quoted from the literature. A more tech-
nically detailed account, including a proof of Conjecture 1, will be left for a
future longer paper.

Acknowledgements. I am grateful to Nobuko Yoshida for discussion of the origin
of the Honda et al. definition of subtyping, and to the anonymous referees for their
comments.
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Abstract. Parametricity is one of the foundational principles which
underpin our understanding of modern programming languages. Roughly
speaking, parametricity expresses the hidden invariants that programs
satisfy by formalising the intuition that programs map related inputs
to related outputs. Traditionally parametricity is formulated with proof-
irrelevant relations but programming in Type Theory requires an exten-
sion to proof-relevant relations. But then one might ask: can our proofs
that polymorphic functions are parametric be parametric themselves?
This paper shows how this can be done and, excitingly, our answer
requires a trip into the world of higher dimensional parametricity.

1 Introduction

According to Strachey (2000), a polymorphic program is parametric if it applies
the same uniform algorithm at all instantiations of its type parameters. Reynolds
(1983) proposed relational parametricity as a mathematical model of parametric
polymorphism. Phil Wadler, with his characteristic ability to turn deep math-
ematical insight into practical gains for programmers, showed how Reynolds’
relational parametricity has strong consequences (Wadler 1989, 2007): it implies
equivalences of different encodings of type constructors, abstraction properties
for datatypes, and famously, it allows properties of programs to be derived “for
free” purely from their types.

Within relational parametricity, types containing free type variables map
not only sets to sets, but also relations to relations. A relation R between sets A
and B is a subset R ⊆ A × B. We call these proof-irrelevant relations as, given
a ∈ A and b ∈ B, the only information R conveys is whether a is related to b and
not, for example, how a is related to b. However, the development of dependently
type programming languages, constructive logics and proof assistants means such
relations are insufficient in a number of settings. For example, it is often natural
to consider a relation R between sets A and B to be a function R : A×B → Set,
where we think of R(a, b) as the set of proofs that R relates a and b. Such
proof-relevant relations are needed if one wants to work in the pure Calculus of
Constructions (Coquand and Huet 1988) without assuming additional axioms (in
contrast, Atkey (2012) formalised (proof-irrelevant) relational parametricity in
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Coq, an implementation of the Calculus of Constructions, by assuming the axiom
of Propositional Extensionality). This paper asks the fundamental question:

Does the relational model of parametric polymorphism extend from proof-
irrelevant relations to proof-relevant relations?

At first sight, one might hope for a straightforward answer. Many properties
in the proof-irrelevant world have clear analogues as proof-relevant construc-
tions. Indeed, as we shall see, this approach gives a satisfactory treatment of the
function space. However, universally quantified types pose a much more signifi-
cant challenge; it is insufficient to simply take the uniformity condition inherent
within a proof-irrelevant parametric polymorphic function and replace it with
a function acting on proofs; this causes the Identity Extension Lemma to fail.
Instead, to prove this lemma in a proof-relevant setting, we need to strengthen
the uniformity condition on parametric polymorphic functions by requiring it to
itself be parametric.

Proof-relevant parametricity thus entails adding a second layer of parametric-
ity to ensure that the proofs that functions are parametric are themselves para-
metric. This takes us into the world of 2-dimensional parametricity where type
constructors now act upon sets, relations and 2-relations. But, there are actually
surprisingly many choices as to what a 2-relation is! Further, at higher dimen-
sions, there are a number of potential equality relations and it is not a priori
clear which of these need to be preserved and which do not. Relations are nat-
urally organised in a cubical or simplicial manner, and so this will not surprise
those familiar with simplicial and cubical methods, where there is an analogous
choice of which face maps and degeneracies to consider. For example, do con-
nections (Brown et al. 2011) have a role to play in proof-relevant parametricity?
These questions are not at all obvious — we went down many false routes before
finding the right answer.

The paper is structured as follows: in Sect. 2, we introduce the preliminaries
we need, while Sects. 3 and 4 introduce proof-relevant relations and 2-relations.
Section 5 constructs a 2-dimensional model of System F, and proves it correct
by establishing 2-dimensional analogues of the Identity Extension Lemma and
the Abstraction Theorem. We present a proof-of-concept application in Sect. 6,
where we generalise the usual proof that parametricity implies naturality to the
2-dimensional setting. Section 7 concludes, with plans for future work including
higher-dimensional logical relations, and the relationship with the cubical sets
model of HoTT.

2 Impredicative Type Theory and the Identity Type

In order to make proof-relevant relations precise, we work in the constructive
framework of impredicative Martin-Löf Type Theory (Coquand and Huet 1988,
Martin-Löf 1972). Impredicativity allows us to quantify over all types of sort Type
in order to construct a new object of sort Type.1 Following Atkey (2012), we will
1 In Coq, this feature can be turned on by means of the command line option
-impredicative-set.
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use impredicative quantification in the meta-theory to interpret impredicative
quantification in the object theory. This simplifies the presentation, and allows
us to focus on the proof-relevant aspects of the logical relations.

Apart from impredicativity, the type theory we employ is standard; we
make use of dependent function types (Πx : A)B(x) and dependent pair types
(Σx : A)B(x) with the usual introduction and elimination rules. We write
A → B for (Πx : A)B and A × B for (Σx : A)B when B does not depend
on x : A. Crucial for our development will be Martin-Löf’s identity type, given
by the following rules:

A : Type a, b : A

IdA(a, b) : Type
a : A

refl(a) : IdA(a, a)

C : (Πx, y : A)(IdA(x, y) → Type) d : (Πx : A)C(x, x, refl(x))
J(C, d) : (Πx, y : A)(Πp : IdA(x, y))C(x, y, p)

In the language of the HoTT book (The Univalent Foundations Program,
2013), the elimination rule J is called path induction. We stress that we are
not assuming Uniqueness of Identity Proofs, as that would in effect result in
proof-irrelevance once again. In this paper, we will however restrict attention to
types where identity proofs of identity proofs are unique, i.e. to types A where
IdIdA(x,y)(p, q) is trivial. Garner (2009) has investigated the semantics of Type
Theory where all types are of this form. For our purposes, it is enough to work
with a subuniverse of such types. To make this precise, define

isProp(A) := (Πx, y : A)IdA(x, y) Prop := (ΣX : Type)(isProp(X))

isSet(A) := (Πx, y : A)isProp(IdA(x, y)) Set := (ΣX : Type)(isSet(X))

is-1-Type(A) := (Πx, y : A)isSet(IdA(x, y)) 1-Type := (ΣX : Type)(is-1-Type(X))

Here Prop is the subuniverse of propositions, i.e. types with at most one
inhabitant up to identity, while Set is the subuniverse of sets, i.e. types whose
identity types in turn are propositional. Finally, we are interested in the subuni-
verse 1-Type of 1-types, i.e. types whose identity types are sets. Subuniverses of
an impredicative universe are also impredicative. Furthermore, all three of Prop,
Set and 1-Type are closed under Π- and Σ-types. The witness that a type is in
a subuniverse is itself a proposition, and so we will abuse notation and leave it
implicit — if there is a proof, it is unique up to identity.

We denote by a ≡A b the existence of a proof p : IdA(a, b). We often leave
out the subscript if it can be inferred from context. A function f : A → B
is said to be an equivalence if it has a left and a right inverse, and if there
exists an equivalence A → B, we write A ∼= B. If P : A → Prop, then we
write {x : A |P (x)} for (Σx : A)P (x). Since P (x) is a proposition for each
x : A, we have that Id{x:A | P (x)}((a, p), (b, q)) ∼= IdA(a, b). For this reason, we will
often leave the proof p : P (a) implicit when talking about an element (a, p) of
{x : A |P (x)}. We also suggestively write a ∈ P for P (a). The identity type has
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a rich structure. In order to introduce notation, we list some basic facts here,
and refer to the HoTT book (The Univalent Foundations Program, 2013) for
more information.

Lemma 1 (Structure on IdA(a, b)).

(i) For any p : IdA(a, b) there is p−1 : IdA(b, a).
(ii) For any p : IdA(a, b) and q : IdA(b, c) there is p � q : IdA(a, c), and refl(a),

−−1 and − � − satisfy the laws of a (higher) groupoid.
(iii) All functions f : A → B are functorial in IdA, i.e. there is a term ap(f) :

IdA(a, b) → IdB(f(a), f(b)).
(iv) All type families respect IdA, i.e. there is a function

tr : (P : A → Type) → IdA(a, b) → P (a) → P (b). ��
We frequently use the following characterisation of equality in Σ-types:

Lemma 2. Id(Σx:A)B(x)((x, y), (x′, y′)) ∼= (Σp : IdA(x, x′))IdB(x′)(tr(B, p, y), y′).

For function types, the corresponding statement is not provable, so we rely
on the following axiom:

Axiom 3 (Function Extensionality). The function

happly : Id(Πx:A)B(x)(f, g) → (Πx : A)IdB(x)(f(x), g(x))

defined using J in the obvious way is an equivalence. In particular, we have an
inverse

ext : (Πx : A)IdB(x)(f(x), g(x)) → Id(Πx:A)B(x)(f, g).

This axiom is justified by models of impredicative Type Theory in intuition-
istic set theory. It also follows from Voevodsky’s Univalence Axiom (Voevodsky
2010), which we do not assume in this paper. We will use function extensional-
ity in order to derive the Identity Extension Lemma for arrow types, as in e.g.
Wadler (2007).

3 Proof-Relevant Relations

We now define proof-relevant relations:

Definition 4. The collection of proof-relevant relations is denoted Rel and con-
sists of triples (A,B,R), where A,B : 1-Type and R : A × B → Set. The 1−type
of morphisms from (A,B,R) to (A′, B′, R′) is

(Σf : A → A′)(Σg : B → B′)(Πx : A, y : B)R(a, b) → R′(fa, gb).
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In the rest of this paper we take relation to mean proof-relevant relation.
The above definition means morphisms between relations have a proof-relevant
equality and, thus, showing morphisms are equal involves constructing explicit
proofs to that effect. Indeed, the equality of morphisms is given by

Id((f, g, p), (f ′, g′, p′)) ∼= (Σφ : Id(f, f ′), ψ : Id(g, g′)) Id(tr(φ, ψ)p, p′)

However, since R : A×B → Set has codomain Set, while A and B are 1−types,
the complexity of R compared to A and B has decreased. This means relations
between proof-relevant relations are in fact proof-irrelevant (see Sect. 4).

Given a relation (A,B,R), we often denote A by R0 and B by R1, write
R : Rel(R0, R1), or R : R0 ↔ R1, and call R a relation between A and B.
Similarly, given a morphism (f, g, p), we denote f by p0, g by p1 and write
p : (R0 → R1)(p0, p1). If R : Rel(R0, R1) and P : Rel(P0, P1), then we have
1 : Rel(1,1), P ×R : Rel(P0 ×R0, P1 ×R1) and R ⇒ P : Rel(R0 → P0, R1 → P1)
defined by

1(x, y) := 1

(R × P )((x, y), (x′, y′)) := R(x, x′) × P (y, y′)
(R ⇒ P )(f, g) := (Πx : R0, y : R1)(R(x, y) → P (fx, gy))

Interpreting abstraction and application requires the following functions:

Lemma 5. Let R : Rel(A,B), R′ : Rel(A′, B′), and R′′ : Rel(A′′, B′′). There
is an equivalence abs : (R × R′ → R′′) → (R → (R′ ⇒ R′′)) with inverse
app : (R → (R′ ⇒ R′′)) → (R × R′ → R′′). ��

We will also make use of the equality relation Eq(A) for each 1-type A:

Definition 6. Equality Eq : 1-Type → Rel is defined by Eq(A) = (A,A, IdA) on
objects and Eq(f) = (f, f, ap(f)) on morphisms.

Proposition 7. Eq is full and faithful in that (EqX → EqY ) ∼= X → Y .

Proof. By function extensionality and contractability of singletons, we have

(EqX → EqY ) = (Σf : X → Y )(Σg : X → Y )(Πxx′)IdX(x, x′) → IdY (fx, gx′)
∼= (Σf : X → Y )(Σg : X → Y )IdX→Y (f, g)
∼= (Σf : X → Y )1 ∼= X → Y. ��

Similarly, the exponential of equality relations is an equality relation. Here,
we abuse notation and use the same symbol for equivalence of types and isomor-
phisms of relations:

Proposition 8. For all X,Y : 1-Type, we have (EqX ⇒ EqY ) ∼= Eq(X → Y ).

Proof. By extensionality it is enough to show

((Πx, x′ : X)Id(x, x′) → Id(fx, gx′)) ∼= (Πx : X)Id(fx, gx)

for every f, g : X → Y . Functions can easily be constructed in both directions
and proved inverse using extensionality and path induction. ��
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4 Relations Between Relations

Intuitively, 2-relations should relate proofs of relatedness in proof-relevant rela-
tions. Although conceptually simple, formalising 2-relations is non-trivial as var-
ious choices arise. For instance, if R and R′ are proof-relevant relations, one may
consider 2-relations between them as being given by functions

Q : (Πa : R0, a
′ : R′

0, b : R1, b
′ : R′

1) (R(a, b) × R′(a′, b′)) → Prop

with the intuition of (p, p′) ∈ Q(a, a′, b, b′) being that Q relates the proof p to the
proof p′. However, the natural arrow type of such 2-relations does not preserve
equality. The problem is that, while a is related to b, and a′ is related to b′,
there is no relationship between a and a′ and b and b′. Thus, we were led to
the following definition which seems to originate with Grandis (see e.g. Grandis
(2009)).

Definition 9. A 2-relation consists of the following 1-types and proof-relevant
relations between them

Q00��

Q0r

��

�� Qr0 �� Q10��

Q1r

��
Q01

��
Qr1

�� Q11

together with a predicate

Q : (Πa : Q00, b : Q10, c : Q01, d : Q11)
Qr0(a, b) × Q0r(a, c) × Qr1(c, d) × Q1r(b, d) → Prop

A morphism of 2-relations consists of 4 functions between each corresponding
node, 4 maps of relations such that each is over the appropriate pair of mor-
phisms of 1-types, and a predicate stating that proofs related in one 2-relation
are mapped to proofs which are related in the other 2-relation.

Thus a 2-relation is a 9-tuple and, even worse, a morphism of 2-relations is a
27-tuple! This combinatorial complexity is enough to scupper any noble math-
ematical intentions. We therefore develop a more abstract treatment beginning
with the indices in a 2-relation. This extends the notion of reflexive graphs
(Robinson and Rosolini 1994; O’Hearn and Tennent 1995; Dunphy and Reddy
2004) to a second level of 2-relations; this notion, in turn, is just the first few
levels of the notion of a cubical set (Brown and Higgins 1981).

Definition 10. Let I0 be the type with elements {00, 01, 10, 11} of indices for
1-types, and I1 the type with elements {0r, r0, 1r, r1} of indices for proof-relevant
relations. Define the source and target function @ : I1 × Bool → I0 where w@i
replaces the occurrence of r in w by i. We write w@i as wi.
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I0-types: Next we develop algebra for the types contained in 2-relations.

Definition 11. An I0-type is a function X : I0 → 1-Type. To increase legibility
we write Xw for Xw. The collection of maps between two I0-types is defined by

X → X ′ := (Πw : I0)Xw → X ′
w

We define the following operations on I0-types:

1 := λw.1

X × X ′ := λw.Xw × X ′
w

X ⇒ X ′ := λw.Xw → X ′
w

If X is an I0-type, define its elements ElX = (Πw : I0)Xw. The natural extension
of this action to morphisms f : X → X ′ is denoted El f : ElX → ElX ′.

Note that elements deserve that name as ElX ∼= 1 → X. The construction of
elements preserves structure as the following lemma shows:

Lemma 12. Let X and X ′ be I0-types. Then

El 1 ∼= 1

El(X × X ′) ∼= ElX × ElX ′

El(X ⇒ X ′) = (Πw : I0)Xw → X ′
w. ��

Finally, we show how to interpret abstraction and application over I0-types:

Lemma 13. Let X,X ′ and X ′′ be I0-types. The function

abs = λw. λf. λx. λx′. f(x, x′) : (X × X ′ → X ′′) → (X → (X ′ ⇒ X ′′))

is an equivalence with inverse app = λw. λf. λy. f (π0y) (π1y). ��
I1-Relations: Next we develop algebra for the relations contained in 2-relations.

Definition 14. An I1-relation is a pair (X,R) of an I0-type X and a function
R : (Πw : I1)Rel(Xw0,Xw1). The collection of maps between two I1-relations is
defined by

(X,R) → (X ′, R′) := (Σf : X → X ′)(Πw : I1)(Rw → R′
w)(fw0, fw1)

We define the following operations on I1-relations:

1 := (1, λw.1)
(X,R) × (X ′, R′) := (X × X ′, λw.Rw × R′

w)
(X,R) ⇒ (X ′, R′) := (X ⇒ X ′, λw.Rw ⇒ R′

w)

If (X,R) is an I1-relation, define its elements

El(X,R) = (Σx : ElX)(Πw : I1)Rw(xw0, xw1)

The natural extension of El to morphisms (f, g) : (X,R) → (X ′, R′) is denoted
El(f, g) : El(X,R) → El(X ′, R′).
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Note that elements deserve that name as El(X,R) ∼= 1 → (X,R). The con-
struction of elements preserves structure as the following lemma shows:

Lemma 15. Let (X,R) and (X ′, R′) be I1-relations. Then

El 1 ∼= 1

El((X,R) × (X ′, R′)) ∼= El(X,R) × El(X ′, R′)
El((X,R) ⇒ (X ′, R′)) = (Σf : El(X ⇒ X ′))(Πw : I1)(Rw ⇒ R′

w)(fw0, fw1). ��
Finally, we show how to interpret abstraction and application over I0-types:

Lemma 16. Let (X,R), (X ′, R′) and (X ′′, R′′) be I1-relations. There is an
equivalence abs : ((X,R) × (X ′, R′) → (X ′′, R′′)) → ((X,R) → ((X ′, R′) ⇒
(X ′′, R′′))) with inverse

app : ((X,R) → ((X ′, R′) ⇒ (X ′′, R′′))) → ((X,R) × (X ′, R′) → (X ′′, R′′)).

Proof. The proof is similar to the proof of Lemma 5, but rests crucially on the
fact that R ⇒ P : Rel(R0 → P0, R1 → P1). ��
2-Relations: Finally, we develop the same algebra for 2-relations.

Definition 17. An 2-relation is a pair consisting of an I1-relation (X,R) and
a function Q : El(X,R) → Prop. The collection of maps between two 2-relations
is defined by

((X, R), Q) → ((X′, R′), Q′) := (Σ(f, g) : (X, R) → (X′, R′))
(Π(x, p) : El(X, R))p ∈ Q(x) ⇒ (El g p) ∈ Q′(El f x)

We define the following operations on 2-relations

1 = (1, λ .1)
((X,R), Q) × ((X ′, R)′, Q′) = ((X,R) × (X ′, R′),

λ(x, y)λ(p, q).p ∈ Q(x) ∧ q ∈ Q′(y))
((X,R), Q) ⇒ ((X ′, R′), Q′) = ((X,R) ⇒ (X ′, R′),

λ(f, g).(Π(x, p) : El(X,R))p ∈ Q(x) ⇒ (El g p) ∈ Q′(El f x)).

Lemma 18. Let ((X,R), Q), ((X ′, R′), Q′) and ((X ′′, R′′), Q′′) be 2-relations.
There is an equivalence

abs : (((X,R), Q) × ((X ′, R′), Q′) → ((X ′′, R′′), Q′′)) ∼=
(((X,R), Q) → (((X ′, R′), Q′) ⇒ ((X ′′, R′′), Q′′)))

with inverse app.
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Proof. Note that if X,X ′ and X ′′ are I0-types, and if f : X × X ′ → X ′′ and
absf : X → (X ′ ⇒ X ′′), then for any x : ElX,x′ : ElX ′, and w : I0

(Elf) (x, x′) w ≡ (El (absf) x w)(x′ w)

Similar results hold for app and for the analogous lemmas for I1-sets. This,
together with Lemma 16, extensionality and direct calculation gives the
result. ��

As in cubical and simplicial settings, there is more than one “degenerate”
relation in higher dimensional relations. For example, we can duplicate a relation
vertically or horizontally giving two functors Eq‖,Eq= : Rel → 2Rel sending a
relation R to the 2-relation indexed, respectively, by

R0

Eq‖(R)

��

R

��

��Eq(R0)�� R0��

R

��

R0

Eq=(R)

�� R ��
��

Eq(R0)

��

R1��

Eq(R0)

��
R1

��
Eq(R1)

�� R1 R0
��

R
�� R1

where (p, q, p′, q′) ∈ Eq‖(R)(a, b, c, d) if and only if tr(p, p′)q ≡R(b,d) q′, while
(p, q, p′, q′) ∈ Eq=(R)(a, b, c, d) if and only if tr(q, q′)p ≡R(c,d) p′. Note that both
the compositions Eq‖ ◦Eq and Eq= ◦Eq define the same functor which we denote
Eq2. Another degeneracy, called a connection (Brown et al. 2011), is defined by
a functor C : Rel → 2Rel which maps a relation R to the 2-relation indexed by

R0

CR

��Eq(R0)��
��

Eq(R0)

��

R0��

R

��
R0

��
R

�� R1

and with (p, q, p′, q′) ∈ C(R)(a, b, c, d) if and only if tr(q−1 �p)p′ ≡R(b,d) q′ (there
is of course also a symmetric version which swaps the role of Eq(R0) and R, but
we will not make us of this in the current paper). Again C ◦ Eq gives Eq2.

Proposition 19. The functor Eq‖ is full and faithful.

Proof. Similar to the proof of Proposition 7. ��
Again, we can prove that exponentiation preserves all the degeneracies and

the connection:

Proposition 20. For all R,R′ : Rel, we have

(i) an equivalence Eq‖R ⇒ Eq‖R
′ ∼= Eq‖(R → R′)

(ii) an equivalence Eq=R ⇒ Eq=R′ ∼= Eq=(R → R′)
(iii) an equivalence CR ⇒ CR′ ∼= C(R → R′). ��
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5 Proof-Relevant Two-Dimensional Parametricity

We now have the structure needed to define a 2-dimensional, proof-relevant
model of System F. We recall the rules of System F in Fig. 1. Each type judge-
ment Γ 
 T type, with |Γ | = n, will be interpreted in the semantics as

�T �0 : |1-Type|n → 1-Type
�T �1 : |Rel|n → Rel

�T �2 : |2Rel|n → 2Rel

by induction on type judgements with �T �1 over �T �0 × �T �0, and �T �2 over
�T �1 × �T �1 × �T �1 × �T �1. This is similar to our previous work on bifibrational
functorial models of (proof-irrelevant) parametricity (Ghani et al. 2015a, 2015b,
but with an additional 2-relational level.

Type formation rules:

Γ X type
(X ∈ Γ )

Γ A type Γ B type

Γ A → B type

Γ, X A type

Γ X.A type

Term typing rules:

Γ ; Δ x : A
(x : A ∈ Δ)

Γ ; Δ, x : A t : B

Γ ; Δ λx. t : A → B

Γ ; Δ s : A → B Γ ; Δ t : A

Γ ; Δ s t : B

Γ, X; Δ t : A

Γ ; Δ ΛX.t : ∀X.A
(X /∈ FV (Δ))

Γ ; Δ t : ∀X.A Γ ; Δ B type

Γ ; Δ t[B] : A[X → B]

Judgemental equality:

Γ ; Δ (λx. t)u = t[x → u] : B Γ ; Δ t = λx. tx : A → B
(x : A /∈ Δ)

Γ ; Δ (ΛX.t)[B] = t[X → B] : A[X → B] Γ ; Δ t = ΛX.t[X] : ∀X.A
(X /∈ Γ )

Fig. 1. Typing rules for System F

5.1 Interpretation of Types

The full interpretation can be found in Fig. 2. For type variables and arrow types,
we just use projections and exponentials at each level. Elements of �∀X.T �0Ā
consist of an ad-hoc polymorphic function f0, a proof f1 that f0 is suitably
uniform, and finally a (unique) proof (A0) that also the proof f1 is parametric.
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Similarly, elements of (�∀X.T �1R̄)(f, g) are proofs φ that are suitably parametric
in relation to f and g, both with respect to equalities (conditions (A1.1) and
(A1.2)) and connections (condition (A1.3)). We have not included uniformity
also with respect to the “symmetric” connection since it is not needed for our
applications, and we wish to keep the logical relation minimal.

Using Lemma 2 and function extensionality, we can characterise equality in
the interpretation of ∀-types in the following way (note that Id(�∀X.T �2Q̄)�f (	φ, 	ψ)

is trivial by assumption, since (�∀X.T �2Q̄)	f is a proposition):

Lemma 21. For all f, g : �∀X.T �0Ā,

Id�∀X.T �0Ā(f, g) ∼= { τ : (ΠA : 1-Type)Id�T �0(Ā,A)(f0A, g0A) |
(∀R : Rel) (f1R, τR0, g1R, τR1) ∈

Eq=(�T �1(Eq(Ā), R))(f0R0, f0R1, g0R0, g0R1)}

X0, . . . , Xn Xk type iY = Yk S → T iY = S iY ⇒i T iY

∀X.T 0Ā = { f0 : (ΠA : 1-Type) T 0(Ā, A),

f1 : (ΠR : Rel) T 1(Eq(Ā), R)(f0R0, f0R1) |
(∀Q : 2Rel) (f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈

T 2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11)} (A0)

( ∀X.T 1R̄)((f0, f1), (g0, g1)) = { φ : (ΠR : Rel) T 1(R̄, R)(f0R0, g0R1) |
(∀Q : 2Rel)

(f1Qr0, φQ0r, g1Qr1, φQ1r) ∈
T 2(Eq (R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.1)

∧ (φQr0, f1Q0r, φQr1, g1Q1r) ∈
T 2(Eq=(R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.2)

∧ (f1Qr0, f1Q0r, φQr1, φQ1r) ∈
T 2(CR̄, Q)(f0Q00, f0Q10, f0Q01, g0Q11) }

(A1.3)

(φ0, φ1, φ2, φ3) ∈ ( ∀X.T 2Q̄)(f, g, h, l) iff

(∀Q : 2Rel) (φ0Qr0, φ1Q0r, φ2Qr1, φ3Q1r) ∈
T 2(Q̄, Q)(f0Q00, g0Q10, h0Q01, l0Q11)

Fig. 2. Interpretation of types
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This can be used to prove a generalised version of the Identity Extension Lemma:

Theorem 22 (IEL). For every type judgement Γ 
 T type, we have

(i) an equivalence ΘT,0 : �T �1 ◦ Eq ∼= Eq ◦ �T �0,
(ii) an equivalence ΘT,‖ : �T �2 ◦ Eq‖ ∼= Eq‖ ◦ �T �1 over ΘT,0,
(iii) an equivalence ΘT,= : �T �2 ◦ Eq=

∼= Eq= ◦ �T �1 over ΘT,0, and
(iv) an equivalence ΘT,C : �T �2 ◦ C ∼= C ◦ �T �1 over ΘT,0. ��
Proof. We prove (i) for ∀-types, since it is useful in order to understand the
logical relations in Fig. 2. We refer to the appendix for the rest of the proof.

We define maps

Θ∀X.T,0 : �∀X.T �1Eq(Ā)(f, g) → Eq(�∀X.T �0Ā)(f, g)

Θ−1
∀X.T,0 : Eq(�∀X.T �0Ā)(f, g) → �∀X.T �1Eq(Ā)(f, g)

for all f , g and show that they are inverses — this does not come for free,
as in the proof-irrelevant setting, but will be considerably easier since we are
considering 1-types only, and not arbitrary types. We first define Θ∀X.T,0(ρ) :=
ϕ(λ(A : 1-Type). ρEq(A)), where ϕ is part of the equivalence given by Lemma 21.
The condition from Lemma 21 is satisfied by (A1.1) together with the induction
hypothesis.

For Θ−1
∀X.T,0, we define Θ−1

∀X.T,0(τ) := λR : Rel. tr(f1Eq(R0), τR1)f1R. We
need to check that conditions (A1.1), (A1.2) and (A1.3) are satisfied — we
verify (A1.1) in detail here, (A1.2) and (A1.3) follow analogously. Let Q : 2Rel.
By (A0), we have

(f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈ �T �2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11)

while we want to prove

(f1Qr0, tr(f1Eq(Q00), τQ01)f1Q0r, g1Qr1, tr(f1Eq(Q10), τQ11)f1Q1r)
∈ �T �2(Eq‖(Eq(Ā)), Q)(f0Q00, f0Q10, g0Q01, g0Q11).

Since Eq‖(Eq(Ā)) ∼= Eq2(Ā), we only need to prove

p : (f0Q00, f0Q10, f0Q01, f0Q11) ≡ (f0Q00, f0Q10, g0Q01, g0Q11)

and

q : tr(p)(f1Qr0, f1Q0r, f1Qr1, f1Q1r) ≡
(f1Qr0, tr(f1Eq(Q00), τQ01)f1Q0r, g1Qr1, tr(f1Eq(Q10), τQ11)f1Q1r)

and transport along pair=(p, q). We use p = pair=(f1Eq(Q00), f1Eq(Q10), τQ01,
τQ11) and q given by conditions (A1.1), (A1.3), (A0) for f1 and the condition
from Lemma 21.

We now check that Θ∀X.T,0 ◦ Θ−1
∀X.T,0 = id and Θ−1

∀X.T,0 ◦ Θ∀X.T,0 = id. One
way round

Θ∀X.T,0(Θ
−1
∀X.T,0(τ))(A) = tr(f1Eq(A), τA)f1Eq(A) ≡ (f1Eq(A))−1 � f1Eq(A) � τA ≡ τA
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by Lemma 1 as required. By definition we have Θ−1
∀X.T,0(Θ∀X.T,0(ρ))(R) =

tr(f1Eq(A), ρEq(B))f1R. Condition A1.3 implies that

(f1Eq(A), ρR, ρEq(B), f1R) ∈ �T �2(C(Eq(Ā)),Eq‖(R))(f0A, f0A, f0B, fB)

and since C(Eq(Ā)) ∼= Eq‖(Eq(Ā)), by the induction hypothesis (f1Eq(A), ρR,

ρEq(B), f1R) are related in Eq‖�T �2(Eq(Ā), R), i.e. tr(f1Eq(A), ρEq(B))f1R =
ρ(R) as required. ��

The proof critically uses of the uniformity condition (A1.3) for connections. In
the interpretation of ∀-types in Fig. 2, and in the proof of Theorem 22, we made
some seemingly arbitrary choices: we choose to only be uniform with respect to
one connection, and we used the given f1, not the given g1, in order to construct
the isomorphism Θ−1

∀X.T,0. The following lemma shows that these choices are
actually irrelevant:

Lemma 23. For every type judgement Γ,X 
 T type and (f0, f1) ∈ �∀X.T �0
	A,

φ ∈ �∀X.T �1(Eq 	A)(f, g), we have:

(i) For every relation R, tr(f1EqR0, φEqR1)f1R = φR.
(ii) For every relation R,

tr(f1EqR0, φEqR1)f1R = tr((φEqR0)−1, (g1EqR1)−1)g1R.

(iii) For every 2-relation Q,

(φQr0, φQ0r, g1Qr1, g1Q1r) ∈ �T �2(C◦Eq 	A,Q)(f0Q00, g0Q10, g0Q01, g0Q11).

��
Here, item (i) is a technical lemma, while item (ii) says that one can equally well
use g1 as f1 in the proof of Theorem 22. Finally item (iii) shows that in certain
cases, the interpretation of terms of ∀-type are uniform also with respect to the
other connection which is not explicitly mentioned in the logical relation for ∀.

5.2 Interpretation of Terms

We next show how to interpret terms. A term Γ ;Δ 
 t : T , with |Γ | = n, will
be given a “standard” interpretation

�t�0 	A : �Δ�0
	A → �T �0

	A,

for every 	A : 1-Typen, a relational interpretation

(�t�0 	R0, �t�0 	R1, �t�1 	R) : �Δ�1
	R → �T �1

	R,

for every 	R : Reln, and finally a 2-relational interpretation

((�t�0 	Q−, �t�1 	Q−), �t�2 	Q) : �Δ�2
	Q → �T �2

	Q
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for every 	Q : 2Reln, where we have written e.g. �t�0 	Q− for the map of I0-types
with components (�t�0 	Q−)w = �t�0 	Qw : �Δ�0

	Qw → �T �0
	Qw and similarly for

�t�1 	Q−. At each level, Δ = x1 : T1, . . . , xm : Tm is interpreted as the product

�x1 : T1, . . . , xm : Tm�i = �T1�i × . . . × �Tm�i.

The full interpretation is given in Fig. 3. Variables, term abstraction and term
application are again given by projections and the exponential structure at each
level. For type abstraction and type application, we use the same concepts at
the meta-level, but we also have to prove that the resulting term satisfies the
uniformity conditions (A0), (A1.1), (A1.2) and (A1.3). In addition, we have to
put in a twist for the relational interpretation in order to validate the β- and
η-rules.

Lemma 24. The interpretation in Fig. 3 is well-defined.

Proof. The interpretation of Γ ;Δ 
 ΛX.t : ∀X.T is type-correct, since Δ is
weakened with respect to X in Γ,X;Δ 
 t : T . The uniformity conditions (A0),
(A1.1), (A1.2) and (A1.3) can all be proven using �t�2. ��

x0 : T0, . . . , xn : Tn xk : Tk iX := πk Δ, x : S t : T i = Δ t : T i ◦ π0

Δ λx. t : S → T 0A(γ) = λs. Δ, x : S t : T 0A(γ, s)

Δ λx. t : S → T 1R(γ) = λs0. λs1. λs. Δ, x : S t : T 1R((γ0, s0), (γ1, s1), (γ, s))

Δ λx. t : S → T 2Q((x, p), γ) = λ((x, p), γ). Δ, x : S t : T 2Q((x, x), (p, p))(γ, γ)

f t 0A(γ) = f 0A(γ) ( t 0A(γ))

f t 1R(γ0, γ1, γ) = f 1R(γ0, γ1, γ, t 0R0(γ0), t 0R1(γ1), t 1R(γ0, γ1, γ))

f t 2Q((x, p), γ) = f 2Q((x, p), γ, t 0Qi(x), t 1Qj(p), t 2Q((x, p), γ))

ΛX.t 0A(γ) = (λA. Δ, X; Δ t : T 0(A, A)γ, λR. t 1(Eq(A), R)ΘΔ,0(refl(γ)))

ΛX.t 1R(γ0, γ1, γ) = λR. ( t 1(R, R))(γ0, γ1, γ)

Δ ΛX.t : ∀X.T 2Q((x, p), γ) = λQ. t 2(Q, Q)((x, p), γ)

Δ t[S] : T [S → X] 0A(γ) = fst( t 0A(γ))( S 0A)

t[S] 1R(γ0, γ1, γ) = tr(ΘT,0(snd( t 0R0γ0)Eq( S 0R0)))
−1( t 1R(γ0, γ1, γ)( S 1R))

t[S] 2Q((x, p), γ) = t 2Q((x, p), γ)( S 2Q)

Fig. 3. Interpretation of terms
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Theorem 25. The interpretation defined in Fig. 3 is sound, i.e. if Γ ;Δ 
 s =
t : T , then there is pĀ : Id�T �0Ā(�s�0, �t�0) and qR̄ : Id�T �1R̄(tr(pR̄0

)(�s�1), �t�1).
(We automatically have tr(p, q)�s�2 ≡ �t�2 by proof-irrelevance of 2-relations). ��
This model reveals hidden uniformity not only in the “standard” interpretation
of terms as functions, but also in the canonical proofs of this uniformity via
the Reynolds relational interpretation of terms. In more detail: consider a term
Γ ;Δ 
 t : T with |Γ | = n. By construction, our model shows that if 	R : Reln, a :
�Δ�0

	R0, b : �Δ�0
	R1 and p : �Δ�1

	R(a, b), then �t�1 	Rp : �T �1
	R(�t�0 	R0 a, �t�0 	R1 b),

i.e. �t�1 	R p is a proof that �t�0 	R0 a and �t�0 	R1 b are related at �T �1
	R. This

is a proof-relevant version of Reynolds’ Abstraction Theorem. Furthermore, if
	Q : 2Reln, (a, b, c, d) : �Δ�0

	Q00 × �Δ�0
	Q10 × �Δ�0

	Q01 × �Δ�0
	Q11 and (p, q, r, s) ∈

�Δ�2
	Q(a, b, c, d), then

(�t�1 	Qr0 p, �t�1 	Q0r q, �t�1 	Qr1 r, �t�1 	Q1r s) ∈
�T �2

	Q(�t�0 	Q00 a, �t�0 	Q10 b, �t�0 	Q10 c, �t�0 	Q11 d)

This is the Abstraction Theorem “one level up” for the proofs �t�1, which we
will put to use in the next section.

6 Theorems About Proofs for Free

In Phil Wadler’s famous ‘Theorems for free!’ (Wadler 1989), the fact that para-
metric transformations are always natural in the categorical sense is shown to
have many useful and fascinating consequences. Among other things, it is shown
that

�A�
∼= �∀X.(A → X) → X�

for all types A — the categorically inclined reader will recognise this as an
instance of the Yoneda Lemma (see e.g. Mac Lane (1998)) for the identity func-
tor, if only we dared to consider the right hand side of the equation to consist
of natural transformations only. And indeed, as Wadler shows (and Reynolds
already knew (1983)), all System F terms �t� : �∀X.(A → X) → X� are nat-
ural by parametricity. Hence, in proof-irrelevant parametric models of System
F, indeed �A�

∼= �∀X.(A → X) → X�.
In a more expressive theory such as (impredicative) Martin-Löf Type Theory

with proof-irrelevant identity types and function extensionality, we can go fur-
ther even without a relational interpretation, as pointed out by Steve Awodey
(personal communication). Taking inspiration from the Yoneda Lemma once
again, we can show

A ∼= (Σt : (ΠX : Set)(A → X) → X) isNat(t) (1)

where

isNat(t) := (ΠX,Y : Set)(Πf : X → Y )Id(A→X)→Y (f ◦ tX , tY ◦ (f ◦ ))
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expresses that t is a natural transformation (note that we need the identity type
in order to state this). If we start with the interpretation of a System F term
in a proof-irrelevant model of parametricity, we can automatically derive this
naturality proof using Wadler’s argument.

The above isomorphism (1) relied on A being a set, i.e. that A has no non-
trivial higher structure. If we instead consider A : 1-Type, the isomorphism (1)
fails; instead we have

A ∼= (Σt : (ΠX : Set)(A → X) → X)(Σp : isNat(t)) isCoh(p) (2)

where

isCoh(p) := (ΠX,Y,Z : 1-Type)(Πf : X → Y )(Πg : Y → Z)
(p X Z (g ◦ f)) ≡ (p Y Z g) � (p X Y f)

expresses that the proof p is suitably coherent. Here (p Y Z g) � (p X Y f) is the
operation that pastes the two proofs p X Y f and p Y Z g of diagrams commuting
into a proof that the composite diagram commutes. Proof-irrelevant parametric-
ity can not ensure this coherence condition, but as we will see, an extension
of the usual naturality argument to proof-relevant parametricity will guarantee
this extra uniformity of the proof as well.

6.1 Graph Relations and Graph 2-Relations

Relations representing graphs of functions are key to many applications of para-
metricity.

Definition 26. Let f : A → B in 1-Type. We define the graph 〈f〉 of f as 〈f〉 :=
(A,B, λa. λb. IdB(fa, b)) : Rel. This extends to an action on commuting squares:
if g : A′ → B′, α : A → A′, β : B → B′ and p : (Πx : A) IdB′(g(α(a)), β(f(a))),
then we define 〈α, β〉 = (α, β, λa. λb. λ(r : fa ≡ b). p(a) � ap(β)(r)) : 〈f〉 → 〈g〉.

Abstractly, we see that 〈f〉 is obtained from Eq(B) by “reindexing” along
(f, id) and there is a morphism 〈f, id〉 : 〈f〉 → Eq(B); in particular, we recover
Eq(B) as 〈idB〉. Just like Eq is full and faithful, so is 〈−〉 : 1-Type→ → Rel:

Lemma 27. For all f : A → B, g : A′ → B′,

(〈f〉 ⇒ 〈g〉) ∼= (Σα : A → A′)(Σβ : B → B′)IdA→B′(g ◦ α, β ◦ f). ��
The main tool for deriving consequences of parametricity is the Graph

Lemma, which relates the graph of the action of a functor on a morphism with
its relational action on the graph of the morphism.

Theorem 28. Let F0 : 1-Type → 1-Type and F1 : Rel → Rel over F0 be func-
torial. If F1(Eq(A)) ∼= Eq(F0A) for all A, then for any f : A → B, there are
morphisms (id, id, φF,f ) : 〈F0f〉 → F1〈f〉 and (id, id, ψF,f ) : F1〈f〉 → 〈F0f〉. ��
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Note that in our proof-relevant setting, this theorem does not construct an
equivalence 〈F0f〉 ∼= F1〈f〉. Instead, we only have a logical equivalence, i.e. maps
in both directions, and that seems to be enough for all known consequences of
parametricity. (In a proof-irrelevant setting, the constructed logical equivalence
would automatically be an equivalence.)

Next, we consider also graph 2-relations. Since we have multiple “equality
2-relations”, one could expect also multiple graph 2-relations, but for the appli-
cation we have in mind, one suffices. Given functions f , g, l and h, we write
�(f, g, l, h) for the 1-type of proofs that the square

A
f ��

h

��

B

g

��
C

l
�� D

commutes, i.e. �(f, g, l, h) = (Πx : A)IdD(g(fx), l(hx)). We define the 1-type of
commuting squares by

(1-Type→)→ := (Σf : A → B)(Σg : B → D)(Σl : C → D)(Σh : A → C)�(f, g, l, h)

A morphism (f, g, l, h, p) → (f ′, g′, l′, h′, p′) in (1-Type→)→ consists of four
morphisms α : A → A′, β : B → B′, γ : C → C ′ and δ : D → D′, and four
proofs q : �(α, h′, γ, h), q′ : �(β, f ′, δ, g), r : �(γ, l′, δ, l) and r′ : �(α, f ′, β, f)
such that they form a “commuting cube”

B
β ��

g

��

B′

g′

��

A

f �������
α

��

h

��

A′

f ′ �������

h′

��

D
δ

�� D′

C γ
��

l
�������

C ′ l′

�������

i.e. such that p � q � r ≡ p′ � q′ � r′, where p � q � r and p′ � q′ � r′ are pastings
of the squares that proves that both ways from one corner of the cube to the
opposite one commutes. The 2-graph 〈 〉2 : (1-Type→)→ → 2Rel is defined by

〈f, g, h, l, p〉2 := (〈f〉, 〈g〉, 〈h〉, 〈l〉, λ(a, b, c, d). λ(q, r, s, t). w(a) � ap(g)p � q ≡ ap(l)s � r)

It also has an action on morphisms, which we omit here. The 2-relation says
that the two ways to prove h(l(a)) = d using p, q, r, s, t are in fact equal.
Again, more abstractly, this is a “reindexing” of Eq‖(〈g〉) along the morphism
(〈f, l〉, 〈f, id〉, id〈g〉), 〈l, id〉) : (〈h〉, 〈f〉, 〈g〉, 〈l〉) → (〈g〉,Eq(B), 〈g〉,Eq(D)) in Rel4.

Lemma 29. 〈−〉2 is full and faithful in the sense that

(〈f, g, h, l, p〉2 →2Rel 〈f ′, g′, h′, l′, p′〉2) ∼= (f, g, h, l, p) →(1-Type→)→ (f ′, g′, h′, l′, p′). ��
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This lemma can be used to prove a 2-relational version of the Graph Lemma.

Theorem 30 (2-relational Graph Lemma). Let F2 : 2Rel → 2Rel be func-
torial, and over (F0, F1) where F0 and F1 are as in Theorem 28. If F2(EqR) ∼=
Eq(F1R) for all R, then for any (f, g, h, l, p) in (1-Type→)→, there are morphisms
φ2 : 〈F0f, F0g, F0h, F0l, ap(F0)p〉2 → F2〈f, g, h, l, p〉2 and ψ2 : F2〈f, g, h, l, p〉2 →
〈F0f, F0g, F0h, F0l, ap(F0)p〉 in 2Rel over (φ, φ) and (ψ,ψ) from Theorem 28. ��

6.2 Coherent Proofs of Naturality

Let us now apply the tools we have developed to the question of the coherence
of the naturality proofs from parametricity. We first recall the standard theorem
that holds also with proof-irrelevant parametricity:

Theorem 31 (Parametric Terms are Natural). Let F (X) and G(X) be
functorial type expressions in the free type variable X in some type context Γ .
Every term Γ ;− 
 t : ∀X.F (X) → G(X) gives rise to a natural transformation
�F �0 → �G�0, i.e. if f : A → B then there is nat(f) : Id(�G�0(f) ◦ �t�0 A, �t�0 B ◦
�F �0(f)).

Proof. We construct nat(f) using the relational interpretation of t: By construc-
tion, �t�1 〈f〉 : �F �1(〈f〉) → �G�1(〈f〉), hence using Theorem 28,

ψG,f ◦ �t�1 〈f〉 ◦ φF,f : (Πxy) 〈�F �0f〉(x, y) → 〈�G�0f〉(�t�0 Ax, �t�0 B y)

and since refl : 〈�F �0f〉(a, (�F �0f)a) for each a : �F �0A, we can define nat(f) :=
ext(λa. (ψG,f ◦ �t�1 〈f〉 ◦ φF,f ) a ((�F �0f)a) refl). ��

In order for (�t�0, nat) to lie in the image of the isomorphism (2), we also
need the naturality proofs to be coherent. But thanks to the 2-relational inter-
pretation, we can show that they are:

Theorem 32. (Naturality Proofs are Coherent). Let F , G and t be as in
Theorem 31. The proof nat : isNat(�t�0) is coherent, i.e. for all f : A → B and
g : B → C, there is a proof coh(f, g) : Id(nat(g ◦ f), nat(g) � nat(f)).

Proof. We construct coh(f, g) using the 2-relational interpretation of t. By con-
struction, �t�2〈f, g, g ◦ f, id, refl〉2 : �F �2〈f, g, g ◦ f, id, refl〉2 → �G�2〈f, g, g ◦
f, id, refl〉2, hence using Theorem 30,

φ2 ◦ �t�2〈f, g, g ◦ f, id, refl〉2 ◦ ψ2 :

(Π(x̄, r̄))
(
r̄ ∈ 〈F0f, F0g, F0(g ◦ f), id, ap(F0)p〉2x̄

→ (�t�1r̄) ∈ 〈G0f,G0g,G0(g ◦ f), id, ap(G0)p〉2(�t�0x̄)
)

We define

coh(f, g) := ext(λa. (φ2 ◦ �t�2〈f, g, g ◦ f, id, refl〉2 ◦ ψ2) (a, (F0f)a, F0(g ◦ f)a, a) �refl)

— this works, since φ2 and ψ2 are over (φ, φ) and (ψ,ψ) respectively, since
nat(h) is defined to be (φ ◦ �t�1 ◦ ψ)refl, and since the 2-relation 〈G0f,G0g,G0

(g ◦ f), id, ap(G0)p〉2 exactly says that pasting the two diagrams produces the
third in this case. ��
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7 Conclusions and Future Work

In this paper, we tackled the concrete problem of transporting Reynolds’ theory
of relational parametricity to a proof-relevant setting. This is non-trivial as one
must modify Reynolds’ uniformity predicate on polymorphic functions so that it
itself becomes parametric. Implementing this intuition has significant mathemat-
ical ramifications: an extra layer of 2-dimensional relations is needed to formalise
the idea of two proofs being related to each other. Further, there are a variety
of choices to be made as to what face maps and degeneracies to use between
proof-relevant relations and 2-relations. Having made these choices, we showed
that the key theorems of parametricity, namely the identity extension lemma
and the fundamental theorem of logical relations hold. Finally, we explored how
a standard consequence of relational parametricty — namely the fact that para-
metricity implies naturality — also holds in the proof-relevant setting. This work
complements the more proof-theoretic work on internal parametricity in proof-
relevant frameworks (Bernardy et al. 2015, 2012; Polonsky 2015). Relevant is
also the work on parametricity for dependent types in general (Atkey et al.
2014; Krishnaswami and Dreyer 2013), assuming proof-irrelevance.

In terms of future work, we are extending the results of this paper to arbitrary
dimensions. We have a candidate definition of higher-dimensional relations, the
requisite face maps and degeneracies and we have proven the Identity Exten-
sion Lemma. What remains to do is to fully investigate the consequences. For
instance, what form of higher dimensional initial algebra theorem can be proved
with higher dimensional parametricity? More generally, we need to compare the
methods, structures and results of higher dimensional parametricity with (where
possible) Homotopy Type Theory and in particular its cubical sets model (Bezem
et al. 2014), which shares many striking similarities. Finally, once the theoretical
framework is settled, we will want to implement it and then use that implemen-
tation in formal proof.

Acknowledgements. We thank Bob Atkey, Peter Hancock and the anonymous
reviewers for helpful discussions and comments.

A Proofs from Section 5

Proof (of Theorem 22). The proof is done by induction on type judgements. For
type variables, all statements are trivial. For arrow types, this is Propositions 8
and 20.

It remains to prove (ii), (iii) and (iv) for ∀-types. In this case we only need
to produce maps in both directions — they will automatically compose to the
identity by proof-irrelevance of 2-relations. The structure of the proof is the same
for all of the three points.
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For (ii) consider (τ0, ρ0, τ1, ρ1) ∈ Eq‖(�∀X.T �1R̄)(f, g, h, l). We want to
show that (Ψ(τ0), ρ0, Ψ(τ1), ρ1) ∈ �∀X.T �2Eq‖(R̄)(f, g, h, l), i.e. that for every
2-relation Q,

(Ψ(τ0)Qr0, ρ0Q0r, Ψ(τ1)Qr1, ρ1Q1r) ∈ �T �2(Eq‖(R̄), Q)(f0Q00, g0Q10, h0Q01, l0Q11).

By condition A1.1, we have

(f1Qr0, ρ0Q1r, f1Qr1, ρ0Q0r) ∈ �T �2(Eq‖(R̄), Q)(f0Q00, f0Q10, h0Q01, h0Q11)

and using the equalities (f1EqQ00, τ0EqQ10, h1EqQ01, τ1EqQ11), we can show

(f0Q00, g0Q10, h0Q01, l0Q11, Ψ(τ0)Qr0, ρ0Q0r, Ψ(τ1)Qr1, ρ1Q1r)
≡ (f0Q00, f0Q10, h0Q01, h0Q11, f1Qr0, ρ0Q1r, f1Qr1, ρ0Q0r)

We now transport across this equality to finish the argument.
Finally, in the other direction, if (ρ0, ρ1, ρ2, ρ3) ∈ �∀X.T �2Eq‖(R̄)(f, g, h, l),

then (Θ(ρ0), ρ1, Θ(ρ2), ρ3) ∈ Eq‖(�∀X.T �1R̄)(f, g, h, l) by straightforward calcu-
lation and the definition of �∀X.T �2.

The case (iii) is just the same as the previous case, the only difference is that
we now transport starting from condition (A1.2) and adjust the equalities along
which we transport.

The last case (iv) ismore complicated.Consider (τ0, τ1, ρ0, ρ1) ∈ C(�∀X.T �1R̄)
(f, g, h, l). We want to show that (Ψ(τ0), Ψ(τ1), ρ0, ρ1) ∈ �∀X.T �2C(R̄)
(f, g, h, l), i.e. that for every 2-relation Q,

(Ψ(τ0)Qr0, Ψ(τ1)Q0r, ρ0Qr1, ρ1Q1r) ∈ �T �2(C(R̄), Q)(f0Q00, g0Q10, h0Q01, l0Q11).

By condition A1.3, we have

(h1Qr0, h1Q1r, ρ0Qr1, ρ0Q0r) ∈ �T �2(CR̄,Q)(h0Q00, h0Q10, h0Q01, l0Q11)

and using the equalities

((τ1Q00)−1) � f1EqQ00, (τ1EqQ10)−1 � τ0Q10, (h1EqQ01)−1 � h1EqQ01, refl),

we can show

(f0Q00, g0Q10, h0Q01, l0Q11, Ψ(τ0)Qr0, Ψ(τ1)Q0r, ρ0Qr1, ρ1Q1r)
≡ (h0Q00, h0Q10, h0Q01, l0Q11, h1Qr0, h1Q1r, ρ0Qr1, ρ0Q0r)

We can now transport across this equality to finish the argument. This
requires the use of Lemma 23 (i) and (ii), and the fact that (τ0, τ1, ρ0, ρ1) ∈
C(�∀X.T �1R̄)(f, g, h, l).

Finally, In the other direction, if (ρ0, ρ1, ρ2, ρ3) ∈ �∀X.T �2C(R̄)(f, g, h, l),
then (Θ(ρ0), Θ(ρ1), ρ2, ρ3) ∈ C(�∀X.T �1R̄)(f, g, h, l) by straightforward calcula-
tion and the definition of �∀X.T �2. ��
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Proof (of Lemma 23).

(i) Since

(f1R, f1EqR0, f1R, f1EqR1) ∈ �T �2(C ◦ Eq( �A),Eq=(R))(f0R0, f0R1, g0R0, g0R1)

and �T �2(C ◦ Eq( 	A),Eq=(R)) = �T �2(Eq= ◦ Eq( 	A),Eq=(R)) ∼= Eq=(�T �1

(Eq 	A,R)), by Theorem 22 (iii), the thesis follows.
(ii) By assumption,

(f1R,φEqR0, g1R,φEqR1) ∈ �T �2(Eq=Eq 	A,Eq=R)(f0R0, f1R1, g0R0, g0R1).

By Theorem 22 (iii), �T �2(Eq=Eq 	A,Eq=R) ∼= Eq=(�T �1(Eq 	A,R)), hence
we have tr((φEqR0)−1, (g1EqR1)−1)g1R = tr(f1EqR0, φEqR1)f1R. If
we now transport (f1R,φEqR0, g1R,φEqR1) along the equality proof
((f1EqR0)−1, (f1EqR1)−1, (φEqR0)−1, (g0EqR1)−1), the result follows.

(iii) By assumption,

(g1Qr0, g1Q0r, g1Qr1, g1Q1r) ∈ �T �2(Eq2 	A,Q)(g0Q00, g0Q10, g0Q01, g0Q11)

We can transport (g1Qr0, g1Q0r, g1Qr1, g1Q1r) along the equality
((φEqQ00)−1, (g1EqQ10)−1, (g1EqQ01)−1, (g1EqQ11)−1). By (i) and (ii),
condition (A0), and �T �2(Eq2 	A,Q) = �T �2(C ◦ Eq 	A,Q), the thesis
follows. ��

Proof (of Theorem 25). We need to check that the β- and η-rules for both
term and type abstraction are respected. For term abstraction, this follows from
Lemmas 13 and 16.

We next consider the η-rule for type abstraction. Let Γ ;Δ 
 t : ∀X.T be
given. Let �t�0 	Aγ = (f0, f1). Showing �ΛX.t[X]�0 ≡ �t�0 means giving p0 : Id
(λA.f0A, f0) and p1 : Id(λR.(tr(p0 � (snd((�t�0Āγ)Eq(R0))))−1(�t�1Eq(Ā)ΘΔ,0

(refl(γ))R)), snd(�t�0Āγ)). For p0, we choose p0 = refl. Note that

(�t�1Eq(Ā)ΘΔ,0(refl(γ))R)) = ΘΔ,0(refl(�t�0 	Aγ))R =

tr(f1Eq(R0), refl)f1R

under the equivalence with respect to τ = refl, and

tr(refl � (snd((�t�0Āγ)Eq(R0))))−1 = tr(f1Eq(R0), refl)−1.

In this way we can conclude

tr(f1Eq(R0), refl)
−1(ΘΔ,0(refl(�t�0 �Aγ)) R) = tr(f1Eq(R0), refl)

−1tr(f1Eq(R0), refl)f1R

= f1R.

Similarly, things are exactly lined up to make tr(pair=(p0, p1))(�ΛX.t[X]�1) ≡
�t�1 trivial.

For the β-rule, consider Γ,X 
 t : T . We can use pĀ =
(�t�1Eq( 	A, �S�0

	A)ΘΔ,0(refl(γ)))−1 to prove �(ΛX.t)[S]�0Āγ ≡ �t[X �→ S]�0Āγ.
This makes tr(pR̄0

)(�(ΛX.t)[S]�1)R̄γ̄ ≡ �t[X �→ S]�1R̄γ̄ trivial, again using
Lemma 1. ��
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Abstract. List comprehensions are a widely used programming con-
struct, in languages such as Haskell and Python and in technologies
such as Microsoft’s Language Integrated Query. They generalize from
lists to arbitrary monads, yielding a lightweight idiom of imperative
programming in a pure functional language. When the monad has the
additional structure of a so-called ringad, corresponding to ‘empty’ and
‘union’ operations, then it can be seen as some kind of collection type,
and the comprehension notation can also be extended to incorporate
aggregations. Ringad comprehensions represent a convenient notation for
expressing database queries. The ringad structure alone does not provide
a good explanation or an efficient implementation of relational joins;
but by allowing heterogeneous comprehensions, involving both bag and
indexed table ringads, we show how to accommodate these too.

1 Introduction

We owe a lot to Phil Wadler, not least for his work over the years on monads
and comprehensions. Wadler was an early proponent of list comprehensions as a
syntactic feature of functional programming languages, literally writing the book
(Peyton Jones 1987, Chap. 7) on them. Together with his student Phil Trinder,
he argued (Trinder and Wadler 1989; Trinder 1991) for the use of comprehen-
sions as a notation for database queries; this prompted a flourishing line of
work within database programming languages, including the Kleisli language
from Penn (Wong 2000) and LINQ from Microsoft (Meijer 2011), not to men-
tion Wadler’s own work on XQuery (Fernandez et al. 2001) and Links (Cooper
et al. 2006).

Wadler was also the main driving force in explaining monads to functional
programmers (Wadler 1992b), popularizing the earlier foundational work of
Moggi (1991). He showed that the notions of list comprehensions and mon-
ads were related (Wadler 1992a), generalizing list comprehensions to arbitrary
monads—of particular interest to us, to sets and bags, but also to monads like
state and I/O. More recently, with Peyton Jones (Wadler and Peyton Jones 2007)
he has extended the list comprehension syntax to support ‘SQL-like’ ordering
and grouping constructs, and this extended comprehension syntax has subse-
quently been generalized to other monads too (Giorgidze et al. 2011).
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 132–151, 2016.
DOI: 10.1007/978-3-319-30936-1 7
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In this paper, we look a little more closely at the use of comprehensions as a
notation for queries. The monadic structure explains most of standard relational
algebra, allowing for an elegant mathematical foundation for those aspects of
database query language design. Unfortunately, monads per se offer no good
explanation of relational joins, a crucial aspect of relational algebra: expressed
as a comprehension, a typical equijoin [(a, b) | a ← x , b ← y , f a g b ] is
very inefficient to execute. But the ingredients we need in order to do better
are all there, in Wadler’s work, as usual. The novel contribution of this paper
is to bring together those ingredients: the generalizations of comprehensions
to different monads and to incorporate grouping are sufficient for capturing a
reasonable implementation of equijoins.

2 Comprehensions

The idea of comprehensions can be seen as one half of the adjunction between
extension and intension in set theory—one can define a set by its extension, that
is by listing its elements:

{1, 9, 25, 49, 81}

or by its intension, that is by characterizing those elements:

{n2 | 0 < n < 10 ∧ n ≡ 1 (mod 2)}

Expressions in the latter form are called set comprehensions. They inspired
the “set former” programming notation in the SETL language (Schwartz 1975;
Schwartz et al. 1986), dating back to the late 1960s, and have become widely
known through list comprehensions in languages like Haskell and Python.

2.1 List Comprehensions

Just as a warm-up, here is a reminder about Haskell’s list comprehensions:

[2 × a + b | a ← [1, 2, 3], b ← [4, 5, 6], b ‘mod ‘ a 0]

This (rather concocted) example yields the list [6, 7, 8, 8, 10, 12] of all values of
the expression 2×a +b, as a is drawn from [1, 2, 3] and b from [4, 5, 6] and such
that b is divisible by a.

To the left of the vertical bar is the term (an expression). To the right is a
comma-separated sequence of qualifiers, each of which is either a generator (of
the form a ← x , with a variable a and a list expression x ) or a filter (a boolean
expression). The scope of a variable introduced by a generator extends to all
subsequent generators and to the term.

Note that, in contrast to the naive set-theoretic inspiration, bound vari-
ables in list comprehensions need to be explicitly generated from some exist-
ing list, rather than being implicitly quantified. Without such a condition, the
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set-theoretic axiom of unrestricted comprehension (“for any predicate P , there
exists a set B whose elements are precisely those that satisfy P”) leads directly
to Russell’s Paradox; with the condition, we get the axiom of specification (“for
any set A and predicate P , there exists a set B whose elements are precisely the
elements of A that satisfy P”), which avoids the paradox.

The semantics of list comprehensions is defined by translation; see for exam-
ple Wadler’s chapter of Peyton Jones’s book (1987, Chap. 7). The translation
can be expressed equationally as follows:

[e | ] = [e ]
[e | b ] = if b then [e ] else [ ]
[e | a ← x ] = map (λa → e) x
[e | q , q ′ ] = concat [[e | q ′ ] | q ]

(Here, the first clause involves the empty sequence of qualifiers. This is not
allowed in Haskell, but it is helpful in simplifying the translation.)

Applying this translation to the example at the start of the section gives

[2 × a + b | a ← [1, 2, 3], b ← [4, 5, 6], b ‘mod ‘ a 0]
= concat (map (λa → concat (map (λb →

if b ‘mod ‘ a 0 then [2 × a + b ] else [ ]) [4, 5, 6])) [1, 2, 3])
= [6, 7, 8, 8, 10, 12]

More generally, a generator may match against a pattern rather than just a
variable. In that case, it may bind multiple (or indeed no) variables at once;
moreover, the match may fail, in which case it is discarded. This is handled by
modifying the translation for generators to use a function defined by pattern-
matching, rather than a straight lambda-abstraction:

[e | p ← x ] = concat (map (λa → case a of p → [e ]; → [ ]) x )

or, perhaps more perspicuously,

[e | p ← x ] = let h p = [e ]
h = [ ]

in concat (map h x ).

2.2 Monad Comprehensions

It is clear from the above translation that the necessary ingredients for list
comprehensions are map, singletons, concat , and the empty list. The first three
are the operations arising from lists as a functor and a monad, which suggests
that the same translation might be applicable to other monads too.

class Functor m where
fmap :: (a → b) → m a → m b
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class Functor m ⇒ Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b
mult :: m (m a) → m a
mult = (>>=id)

(we write mult for the multiplication of the monad, rather than join as in Haskell,
to avoid confusion with the relational joins discussed later). But the fourth ingre-
dient, the empty list, does not come from the functor and monad structures; that
requires an extra assumption:

class Monad m ⇒ MonadZero m where
mzero :: m a

Given this extra assumption, the translation for list comprehensions can be gen-
eralized to other monads:

[e | ] = return e
[e | b ] = if b then return e else mzero
[e | p ← x ] = let h p = return e; h = mzero in mult (fmap h x )
[e | q , q ′ ] = mult [[e | q ′ ] | q ]

Note that [e | ] = [e | True ], so the empty case is not really needed; and that
we could have written mult (fmap h x ) as x >>= h, but this would not be so
obviously a generalization of the list instance. The actual monad to be used is
implicit in the notation, possibly determined by any input value m on the right-
hand side of a generator; if we want to be explicit, we could write a subscript,
as in “[e | q ]List”.

This translation is different from the one used in the Haskell language specifi-
cation for do notation (Haskell 2010, Sect. 3.14) and in the GHC documentation
for monad comprehensions (GHC 7.10 2015, Sect. 7.3.15), which are arguably a
little awkward: the empty list crops up in two different ways in the translation
of list comprehensions—for filters, and for generators with patterns—and these
are generalized in two different ways to other monads: to the mzero method of
the MonadPlus class in the first case, and the fail method of the Monad class
in the second. It is perhaps neater to have a monad subclass MonadZero with
a single method subsuming both these operators. (The fail method of Haskell’s
Monad class is generally unpopular. There is a current proposal (Luposchainsky
2015) to remove fail to a MonadFail subclass, but the proposal would still retain
both fail and mzero, and their applications in do notation and monad compre-
hensions.) Of course, this change does mean that the translation forces a monad
comprehension with filters to be interpreted in an instance of the MonadZero
subclass rather than just of Monad—the type class constraints that are gener-
ated depend on the features used in the comprehension (as already happens in
Haskell for generators with patterns).

Taking this approach gives basically Wadler’s monad comprehension notation
(Wadler 1992a); it loosely corresponds to Haskell’s do notation, except that the
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term is a value to the left of a vertical bar rather than a computation at the
end, and that filters are just boolean expressions rather than introduced using
guard .

We might impose the law that mult distributes over mzero, in the sense

mult mzero = mzero

or, in terms of comprehensions,

[e | a ← mzero ] = mzero

Informally, this means that any failing steps of the computation cleanly cut off
subsequent branches. Another way of saying it is that mzero is a ‘left’ zero of
composition:

mzero >>= k = mzero

Conversely, we do not require that mzero is a ‘right’ zero of composition:

m >>= λa → mzero �= mzero (in general)

Imposing this law would have the consequence that a failing step also cleanly
erases any effects from earlier parts of the computation, which is too strong a
requirement for many monads—particularly those of the “launch missiles now”
variety.

2.3 Heterogeneous Comprehensions

We have seen that comprehensions can be interpreted in an arbitrary monad;
for example, [a2 | a ← x , odd a ]Set denotes the set of the squares of the odd
elements of the set x , whereas [a2 | a ← y , odd a ]Bag denotes the bag of squares
of odd elements of bag y . These are both ‘homogeneous comprehensions’, each
involving just one monad; can we make sense of ‘heterogeneous comprehensions’,
involving several different monads?

For monads M and N , a monad morphism ϕ : M → N is a natural transfor-
mation M .→ N—that is, a family ϕα :: M α → N α of arrows, coherent in the
sense that ϕβ · fmapM f = fmapN f · ϕα for f :: α → β—that also preserves the
monad structure:

ϕ · returnM = returnN

ϕ · multM = multN · ϕ · fmapM ϕ = multN · fmapN ϕ · ϕ

A monad morphism behaves nicely with respect to monad comprehensions—
a comprehension interpreted in monad M , using inputs of type M , with the
result coerced via a monad morphism ϕ : M .→ N to monad N , is equivalent to
the comprehension interpreted in monad N in the first place, with the inputs
having been coerced to type N . Informally, there will be no surprises arising
from when coercions take place, because the results are the same whatever stage
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this happens. This property is straightforward to show by induction over the
structure of the comprehension.

For example, if bag2set : Bag .→ Set is the obvious monad morphism from
bags to sets, discarding information about the multiplicity of repeated elements,
and x a bag of numbers, then

bag2set [a2 | a ← x , odd a ]Bag = [a2 | a ← bag2set x , odd a ]Set

and both yield the set of squares of the odd members of bag x . As a notational
convenience, we might elide use of the monad morphism when it is ‘obvious
from context’—we might write just [a2 | a ← x , odd a ]Set even when x is a
bag, relying on the ‘obvious’ morphism bag2set . This would allow us to write
heterogeneous comprehensions such as

[a + b | a ← [1, 2, 3], b ← �4, 4, 5� ]Set = {5, 6, 7, 8}
(writing � ... � for the extension of a bag), instead of the more pedantic

[a + b | a ← list2set [1, 2, 3], b ← bag2set � 4, 4, 5� ]Set

Sets, bags, and lists are all members of the so-called Boom Hierarchy of types
(Backhouse 1988), consisting of types whose values are constructed from ‘empty’
and ‘singleton’s using a binary ‘union’ operator; ‘empty’ is the unit of ‘union’,
and the hierarchy pertains to which properties out of associativity, commutativ-
ity, and idempotence the ‘union’ operator enjoys. The name ‘Boom hierarchy’
seems to have been coined at an IFIP WG2.1 meeting by Stephen Spackman, for
an idea due to Hendrik Boom, who by happy coincidence is named in his native
language after another member of the hierarchy, namely (externally labelled,
possibly empty, binary) trees:

data Tree a = Empty | Tip a | Bin (Tree a) (Tree a)

for which ‘union’ is defined as a smart Bin constructor, ensuring that the empty
tree is a unit:

bin Empty u = u
bin t Empty = t
bin t u = Bin t u

but with no other properties of bin. It is merely a historical accident that the
familiar members of the Boom Hierarchy are linearly ordered by their properties;
one can perfectly well imagine other more exotic combinations of the laws—such
as ‘mobiles’, in which the union operator is commutative but not associative or
idempotent (Uustalu 2015).

There is a forgetful function from any poorer member of the Boom Hierarchy
to a richer one, flattening some distinctions by imposing additional laws—for
example, from bags to sets, flattening distinctions concerning multiplicity—and
one could class these forgetful functions as ‘obvious’ morphisms. On the other
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hand, any morphisms in the opposite direction—such as sorting, from bags to
lists, and one-of-each, from sets to bags—are not ‘obvious’ (and in particular,
contradicting Wong (1994, p. 114–115), they are not monad morphisms), and so
should not be elided; and similarly, it would be hard to justify as ‘obvious’ any
morphisms involving non-members of the Boom Hierarchy, such as probability
distributions.

3 Ringads and Collections

One more ingredient is needed in order to characterize monads that correspond
to ‘collection’ types such as sets and lists, as opposed to other monads such as
State and IO ; that ingredient is an analogue of set union or list append. It’s not
difficult to see that this is inexpressible in terms of the operations introduced so
far: given only collections x of at most one element, any comprehension using
generators of the form a ← x will only yield another such collection, whereas
the union of two one-element collections will in general have two elements.

To allow any finite collection to be expressed, it suffices to introduce a binary
union operator mplus:

class Monad m ⇒ MonadPlus m where
mplus :: m a → m a → m a

We require mult to distribute over union, in the following sense:

mult (x ‘mplus‘ y) = mult x ‘mplus‘ mult y

or, in terms of comprehensions,

[e | a ← x ‘mplus‘ y , q ] = [e | a ← x , q ] ‘mplus‘ [e | a ← y , q ]

or of monadic bind:

(x ‘mplus‘ y) >>= k = (x >>= k) ‘mplus‘ (y >>= k)

Note that, in contrast to the Haskell libraries, we have identified separate type
classes MonadZero,MonadPlus for the two methods mzero,mplus. We have
already seen that there are uses of mzero that do not require mplus; and con-
versely, there is no a priori reason to insist that all uses of mplus have to be
associated with an mzero.

But for our model of collection types, we will insist on a monad in both
MonadZero and MonadPlus. We will call this combination a ringad, a name
coined by Wadler (1990):

class (MonadZero m,MonadPlus m) ⇒ Ringad m

There are no additional methods; the class Ringad is the intersection of the
two parent classes MonadZero and MonadPlus, thereby denoting the union of
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the two interfaces. Haskell gives us no good way to state the laws that should
be required of instances of a type class such as Ringad , but they are the three
monad laws, distribution of mult over mzero and mplus:

mult mzero = mzero
mult (x ‘mplus‘ y) = mult x ‘mplus‘ mult y

and mzero being the unit of mplus:

mzero ‘mplus‘ x = x = x ‘mplus‘ mzero

(There seems to be no particular reason to insist also that mplus be associative;
we discuss the laws further in Sect. 3.2.) To emphasize the additional constraints,
we will write “∅” for “mzero” and “�” for “mplus” when discussing a ringad. All
members of the Boom hierarchy—sets, bags, lists, trees, and exotica too—are
ringad instances. Another ringad instance, but one that is not a member of the
Boom Hierarchy, is the type of probability distributions—either normalized, with
a weight-indexed family of union operators, or unnormalized, with an additional
scaling operator.

3.1 Aggregation

The well-behaved operations over monadic values are called the algebras for
that monad—functions k such that k · return = id and k · mult = k · fmap k .
In particular, mult is itself a monad algebra. When the monad is also a ringad,
k necessarily distributes also over �—it is a nice exercise to verify that defining
a ⊕ b = k (return a � return b) establishes that k (x � y) = k x ⊕ k y . Without
loss of generality, we write reduce(⊕) for k ; these are the ‘reductions’ of the
Bird–Meertens Formalism (Backhouse 1988). In that case, mult = reduce(�) is
a ringad algebra.

The algebras for a ringad amount to aggregation functions for a collection: the
sum of a bag of integers, the maximum of a set of naturals, and so on. We could
extend the comprehension notation to encompass aggregations too, for exam-
ple by adding an optional annotation, writing say “[e | q ]⊕”; but this doesn’t
add much, because we could just have written “reduce(⊕) [e | q ]” instead.
We could generalize from reductions reduce(⊕) to collection homomorphisms
reduce(⊕) · fmap f ; but this doesn’t add much either, because the map is easily
combined with the comprehension—it’s easy to show the ‘map over comprehen-
sion’ property

fmap f [e | q ] = [f e | q ]

Fegaras and Maier (2000) develop a monoid comprehension calculus around such
aggregations; but their name is arguably inappropriate, because it adds nothing
essential to insist on associativity of the binary aggregating operator—‘ringad
comprehension calculus’ might be a better term.

Note that, for reduce(⊕) to be well-defined, ⊕ must satisfy all the laws that
� does—⊕ must be associative if � is associative, and so on. It is not hard to
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show, for instance, that there is no ⊕ on sets of numbers for which sum (x ∪y) =
sum x ⊕ sum y ; such an ⊕ would have to be idempotent, which is inconsistent
with its relationship with sum. (So, although [a2 | a ← y , odd a ]+Bag denotes
the sum of the squares of the odd elements of bag y , the expression [a2 | a ←
x , odd a ]+Set (with x a set) is not defined, because + is not idempotent.) In
particular, reduce(⊕) ∅ must be the unit of ⊕, which we write 1⊕.

We can calculate from the definition

[e | q ]⊕ = reduce(⊕) [e | q ]

the following translation rules for aggregations:

[e | ]⊕ = e
[e | b ]⊕ = if b then e else 1⊕
[e | p ← x ]⊕ = let h p = e; h = 1⊕ in reduce(⊕) (fmap h x )
[e | q , q ′ ]⊕ = [[e | q ′ ]⊕ | q ]⊕

Multiple aggregations can be performed in parallel: the so-called banana split
theorem (Fokkinga 1990) shows how to lift two binary operators ⊕ and ⊗ into
a single binary operator � on pairs, such that

(reduce(⊕) x , reduce(⊗) x ) = reduce(�) x

for every m.
If we are to allow aggregations over heterogeneous ringad comprehensions

with automatic coercions, then we had better insist that the monad morphisms
ϕ : M .→ N concerned are also ringad morphisms, that is, homomorphisms over
the empty and union structure:

ϕ (∅M ) = ∅N

ϕ (x �M y) = ϕ x �N ϕ y

Fig. 1. Six possible laws for ringads (not all of them required)

3.2 Notes on “Notes on Monads and Ringads”

As observed above, Wadler introduced the term ‘ringad’ a quarter of a century
ago in an unpublished document Notes on Monads and Ringads (Wadler 1990).
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He requires both distributivities for “monads with zero” (the EmptyBind and
BindEmpty laws in Fig. 1); for ringads, he additionally requires that � is asso-
ciative (UnionAssoc), with ∅ as its unit (UnionUnit), and that bind distrib-
utes from the right through � (UnionBind). He does not require that bind also
distributes from the left through � (BindUnion).

The name ‘ringad’ presumably was chosen because, just as monads are
monoids in a category of endofunctors, considered as a monoidal category under
composition, ringads are ‘right near-semirings’ in such a category, considered as
what Uustalu (2015) calls a ‘right near-semiring category’ under composition
and product. A right near-semiring is an algebraic structure (R,+,×, 0, 1) in
which (R,+, 0) and (R,×, 1) are monoids, × distributes rightwards over + (that
is, (a + b) × c = (a × c) + (b × c)) and is absorbed on the right by zero (that is,
0 × a = a). It is called ‘semi-’ because there is no additive inverse (a semiring is
sometimes called a ‘rig’), ‘near-’ because addition need not be commutative, and
‘right-’ because we require distributivity and absorption only from the right, not
from the left too. This structure doesn’t quite fit our circumstances, because we
haven’t insisted on associativity of the additive operation �; but Wadler does
in his note (and there seems to be no standard name for the structure when
associativity of addition is dropped).

Wadler’s note was cited in a few papers from the 1990s (Trinder 1991; Watt
and Trinder 1991; Boiten and Hoogendijk 1995, 1996; Suciu 1993a, 1993b), of
which only Trinder’s DBPL paper (Trinder 1991) seems to have been formally
published. Some other works (Wong 1994; Grust 1999) describe ringads, but cite
Trinder’s published paper (Trinder 1991) instead of Wadler’s unpublished note
(Wadler 1990).

Somewhat frustratingly, despite all citing a common source, the various
papers differ on the laws they require for a ringad. For the monoidal aspects,
everyone agrees that ∅ should be a unit of � (UnionUnit), but opinions vary
on whether � should at least be associative (UnionAssoc). Trinder (1991) does
not require (UnionAssoc); Boiten and Hoogendijk (1995, 1996) do, as does
Uustalu (2015), and Wadler (1997) in a mailing list message about monads with
zero and plus but not explicitly mentioning ringads; Grust requires it for his
own constructions (Grust 1999, Sect. 72), but implies (Grust 1999, Sect. 73) that
ringads need not satisfy it; Kiselyov (2015) argues that one should not insist on
associativity without also insisting on commutativity, which not everyone wants.

For the distributivity aspects, everyone agrees that monadic bind should dis-
tribute from the right over � (UnionBind). Moreover, everyone agrees that bind
need not distribute from the left over � (BindUnion); such a law would at least
suggest that � should be commutative—in particular, it does not hold for the
list monad. Nearly everyone agrees that bind should also distribute from the
right over ∅ (EmptyBind)—the exception being Boiten and Hoogendijk (1995,
1996), who appear not to require it. Opinions vary as to whether bind should
also distribute from the left over ∅ (BindEmpty); such a law does not hold
for a monad that combines a ‘global’ log with the possibility of failure (such as
Haskell’s MaybeT (Writer w) a, which is equivalent to (w ,Maybe a)), although
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it does hold when the log is ‘local’ (as with Haskell’s WriterT w Maybe a,
which is equivalent to Maybe (w , a)). Trinder (1991) does require (BindEmpty),
in addition to (EmptyBind). Boiten and Hoogendijk (1995, 1996) require
(BindEmpty), instead of (EmptyBind). Grust (1999, Sect. 58) requires both
directions (EmptyBind) and (BindEmpty) for “monads with zero”, following
Wadler (1992a), but imposes only distributivity from the right (EmptyBind)
for ringads (Grust 1999, Sect. 73). Wadler himself “would usually insist on” only
(EmptyBind) and not (BindEmpty), writing later (Wadler 1997) about “mon-
ads with zero and plus”. Buneman et al. (1995) attribute to ringads distributiv-
ity from the right over both ∅ (EmptyBind) and � (UnionBind), saying that
“they seem to express fundamental properties”, but say of the two distributivi-
ties from the left (BindEmpty,BindUnion) that their “status [. . . ] is unclear”.
(Whether one thinks of a particular property of bind as ‘distributing from the
left’ or ‘distributing from the right’ depends of course on which way round one
writes bind’s arguments, and this varies from author to author.)

4 Comprehending Joins

Comprehensions form a convenient syntax for database queries, explaining the
selection and projection operations of relational algebra. For example, consider
a table of invoices

invoices(name, address, amount, due)

The SQL query

SELECT name, address, amount
FROM invoices
WHERE due < today

which selects the overdue invoices and projects out the corresponding customer
names and addresses and the outstanding amounts, can be expressed as the
following comprehension:

[ (name, address, amount)
| (name, address, amount , due) ← invoices,
due < today ]

This is a reasonable approximation to how database systems implement selection
and projection. However, the comprehension notation does not explain the third
leg of relational algebra, namely join operations. For example, if the invoice
database is normalized so that customer names and addresses are in a separate
table from the invoices,

customers(cid, name, address)
invoices(cust, amount, due)
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then the query becomes

SELECT name, address, amount
FROM customers, invoices
WHERE cid = cust AND due < today

and the obvious comprehension version

[ (name, address, amount)
| (cid ,name, address) ← customers, (cust , amount , due) ← invoices ,
cid cust , due < today ]

entails a traversal over the entire cartesian product of the customers and invoices
tables, only subsequently to discard the great majority of pairs of tuples. This
is an extremely naive approximation to how database systems implement joins.

In this section, we sketch out how to achieve a more reasonable implemen-
tation for joins too, while still preserving the convenient comprehension syntax.
We do this only for equijoins, that is, for joins where the matching condition on
tuples is equality under two functions. The techniques we use are two extensions
to comprehension syntax: parallel comprehensions (Plasmeijer and van Eekelen
1995), which introduce a kind of ‘zip’ operation, and comprehensive comprehen-
sions (Wadler and Peyton Jones 2007), which introduce a ‘group by’. Both were
introduced originally just for list comprehensions, but have recently (Giorgidze
et al. 2011) been generalized to other monads. The result will be a way of writing
database queries using joins that can be executed in time linear in the number
of input tuples, instead of quadratic.

4.1 Parallel Comprehensions

Parallel list comprehensions were introduced in Clean 1.0 in 1995 (Plasmeijer
and van Eekelen 1995), and subsequently as a Haskell extension in GHC around
2001 (GHC 5.0 2001), desugaring to applications of the zip function:

zip :: [a ] → [b ] → [(a, b)]
zip (a : x ) (b : y) = (a, b) : zip x y
zip = [ ]

For example,

[a + b | a ← [1, 2, 3] | b ← [4, 5]]
= zip [1, 2, 3] [4, 5] >>= λ(a, b) → return (a + b)
= [5, 7]

Essentially the same translation can be used for an arbitrary monad (Giorgidze
et al. 2011):

[e | (q | r), s ] = mzip [vq | q ] [vr | r ] >>= λ(vq , vr ) → [e | s ]
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(where vq denotes the tuple of variables bound by qualifiers q), provided that
the monad supports an appropriate ‘zip’ function. In the GHC implementation,
the appropriate choice of mzip function is type-directed: mzip is a method of a
type class MonadZip, a subclass of Monad :

class Monad m ⇒ MonadZip m where
mzip :: m a → m b → m (a, b)

of which the monad in question should be an instance.
There is some uncertainty about what laws one should require of instances of

mzip, beyond naturality. The GHC documentation specifies only an information
preservation requirement: that if two computations x , y have the same ‘shape’

fmapM (const ()) x = fmapM (const ()) y

then zipping them can be undone:

(x , y) = let z = mzip x y in (fmapM fst z , fmapM snd z )

Petricek (2011) observes that one probably also wants associativity:

fmapM (λ(a, (b, c)) → ((a, b), c)) (mzip x (mzip y z )) = mzip (mzip x y) z

so that it doesn’t matter how one brackets a comprehension [(a, b, c) | a ← x |
b ← y | c ← z ] with three parallel generators. One might also consider unit and
commutativity properties.

4.2 Grouping Comprehensions

Grouping list comprehensions were introduced (along with ‘ordering’) by Wadler
and Peyton Jones (2007), specifically motivated by trying to “make it easy to
express the kind of queries one would write in SQL”. Here is a simple example:

[(the a, b) | (a, b) ← [(1, ’p’), (2, ’q’), (1, ’r’)],
then group by a using groupWith ]

= [(1, "pr"), (2, "q")]

Here, the :: [a ] → a returns the common value of a non-empty list of equal
elements, and groupWith :: Ord b ⇒ (a → b) → [a ] → [[a ]] groups a list into
sublists by some ordered key. The comprehension desugars to

groupWith (λ(a, b) → a) [(1, ’p’), (2, ’q’), (1, ’r’)] >>= λabs →
case (map fst abs,map snd abs) of (a, b) → return (the a, b)

The full translation is given below, but in a nutshell, the input list of a, b pairs
[(1, ’p’), (2, ’q’), (1, ’r’)] is grouped according to their a component, and then
for each group we return the common a component and the list b of correspond-
ing characters. Note in particular the ingenious trick, that the group qualifier
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rebinds the previously bound variables a :: Int and b :: Char as lists a :: [Int ]
and b :: [Char ]—so of different types. (Suzuki et al. (2016) point out that this
ingenious trick can backfire: it would be a runtime error to try to compute the b
in the above query, because the b collection generally will not have all elements
equal. They present a more sophisticated embedding of queries that turns this
mistake into a type error.)

As with parallel comprehensions, grouping too generalizes to other monads,
provided that they support an appropriate ‘group’ function. In Giorgidze et al.’s
formulation (2011), this is again specified via a subclass of Monad :

class Monad m ⇒ MonadGroup m b where
mgroupWith :: (a → b) → m a → m (m a)

(so any given mgroupWith method is polymorphic in the a, but for fixed m and
b). However, this type turns out to be unnecessarily restricted: there’s no reason
why the inner type constructor of the result, the type of each group, needs to
coincide with the outer type constructor, the type of the collection of groups; in
fact, all that the translation seems to require is

mgroupWith :: (a → b) → m a → m (n a)

with n some Functor . One could add n as another type class parameter; but
the current GHC implementation (GHC 7.10 2015) instead dispenses with the
MonadGroup type class altogether, and requires the grouping function to be
explicitly specified. Let us call this variant “heterogeneous grouping”. The trans-
lation is then:

[e | q , then group by b using f , r ]
= f (λvq → b) [vq | q ] >>= λys →

case (fmap vq1 ys, ..., fmap vqn ys) of vq → [e | r ]

where, as before, vq denotes the tuple of variables bound by qualifiers q , and
in addition vqi projects out the ith component from this tuple. We make crucial
use below of this extra generality. (GHC also provides a simpler variant omitting
the “by b” clause, but we don’t need it for this paper.)

It is not clear what laws we might expect of the grouping function f , at
least partly because of its rather general type; moreover, because it is no longer
associated with a type class, it is not clear where one ought morally to attach
those laws. But for Giorgidze et al.’s homogeneous formulation, it is tempting
to think of mgroupWith f as a partitioning function, which suggests

mult · mgroupWith f = id

(which doesn’t hold of the function groupWith on lists, since this reorders ele-
ments; that would be appropriate behaviour for bags, and Haskell’s groupBy
function, a pre-inverse of concat , more appropriate for lists). One might also
want it to partition as finely as possible, so that subsequent grouping is redun-
dant:
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fmapM (mgroupWith f ) · mgroupWith f = fmapM return · mgroupWith f

which would exclude size-based partitions, such as splitting a list of length n2

into n lists of length n.

4.3 Relational Tables

The implementation that we will present of relational joins using comprehensions
will depend crucially on the interplay between two different monads ; that’s why
we need the extra generality of heterogeneous grouping described above. One of
these is the Bag monad—that is, a ringad in which � is also commutative. The
other is the Table monad, which to a first approximation (not yet accommodating
aggregation—we turn to that question in Sect. 4.4) is simply a combination of
the Reader and Bag monads:

type Table k v = Reader k (Bag v)

Readers are essentially just functions; in Haskell, there are a few type wrappers
involved too, but we can hide these via the following isomorphism:

apply :: Reader k v → (k → v)
tabulate :: (k → v) → Reader k v

Consider the canonical equijoin of two bags x , y by the two functions f , g , spec-
ified by

equijoin f g x y = [(a, b) | a ← x , b ← y , f a g b ]

We can read this straightforwardly in the list monad; but as we have already
observed, this leads to a very inefficient implementation. Instead, we want to be
able to index the two input collections by their keys, and zip the two indices
together. What else can we zip, apart from lists? Readers are the obvious
instance:

instance MonadZip (Reader k) where
mzip x y = tabulate (λk → (apply x k , apply y k))

Plain Readers aren’t ringads; but Tables are, inheriting the ringad structure of
Bags:

∅ = tabulate (λk → ∅)
x � y = tabulate (λk → apply x k � apply y k)

Note that Bags alone won’t do, because they don’t support zip, only cartesian
product.

For grouping, we will use a function

indexBy :: Eq k ⇒ (v → k) → Bag v → Table k v
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that partitions a bag of values by some key, collecting together subbags with a
common key; with a careful choice of representation of the equality condition,
this can be computed in linear time (Henglein and Larsen 2010). We will also
use its postinverse

flatten :: Table k v → Bag v

that flattens the partitioning. We need bags rather than lists, because indexBy
reorders elements; the equation

flatten · indexBy f = id

holds for bags, but would be hard to satisfy had we used lists instead.
With these ingredients, we can capture the equijoin using comprehensions:

equijoin f g x y
= flatten [cp (a, b) | a ← x , then group by f a using indexBy

| b ← y , then group by g b using indexBy ]

which desugars to

flatten (fmap cp (mzip (indexBy f x ) (indexBy g y)))

Informally, this indexes the two bags as tables by the key on which they will
be joined, zips the two tables, computes small cartesian products for subbags
with matching keys, then discards the index. In the common case that one of
the two functions f , g extracts a primary key, the corresponding subbags will be
singletons and so the cartesian products are trivial. Better still, one need not
necessarily perform the cps and flatten immediately; stopping with

[(a, b) | a ← x , then group by f a using indexBy
| b ← y , then group by g b using indexBy ]

yields a table of pairs of subbags, and with care the cartesian products may
never need actually to be expanded (Henglein and Larsen 2010).

4.4 Finite Maps

If we want to retain the ability to compute aggregations over tables—and we
do, not least in order to define flatten—then we must restrict attention to finite
maps, disallowing infinite ones. Then we can equip tables also with a mechanism
to support traversal over the keys in the domain; so they should not simply be
Readers, they should also be paired with some traversal mechanism. (This is the
‘refinement’ mentioned earlier.) However, there is a catch: if we limit ourselves
to finite maps, we can no longer define return for Tables or Readers—return a
yields an infinite map, when the key type itself is infinite.

Two possible solutions present themselves. One is to live without the return
for Table, leaving what is sometimes called a semi-monad (but not obviously
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in the same sense as Fernandez et al. (2001)) or non-unital monad, that is, a
monad with a mult but no unit. This seems to be feasible, while still retaining
“semi-monad comprehensions”; we only really use return in the common base
case [e | ] of comprehensions with an empty sequence of qualifiers, and this
is mostly only for convenience of definition anyway (as noted already, it’s not
actually valid Haskell syntax). We instead have to provide separate base cases
for each singleton sequence of qualifiers; we can’t use a bare guard [e | b ], and
we have to define comprehensions with guards and other qualifiers by

[e | b, q ] = if b then [e | q ] else ∅

A second solution is to generalize from plain monads to what have variously been
called indexed monads (Orchard et al. 2014), parametric monads (Katsumata
2014), or graded monads (Milius et al. 2015; Orchard and Yoshida 2016; Fujii
et al. 2016); we use the latter term. In a graded monad (M , return, >>=) over a
monoid (I , ε,⊗), the functor M has a type index drawn from the monoid I as
well as the usual polymorphic type parameter; return yields a result at the unit
index ε, and >>= combines indices using ⊗:

return :: a → M ε a
(>>=) :: M i a → (a → M j b) → M (i ⊗ j ) b

A familiar example is given by vectors. Vectors of a fixed length—say, vectors
of length 3—form a monad, in which return replicates its argument and mult
takes the diagonal of a square matrix. Vectors of different lengths, however, form
not a simple monad but a graded monad, over the monoid (Nat , 1,×) of natural
numbers with multiplication: return yields a singleton vector, and mult flattens
an i -vector of j -vectors into a single (i × j )-vector. Technically, a graded monad
is no longer simply a monad; but it is still essentially a monad—it has the same
kind of categorical structure (Fujii et al. 2016), supports the same operations, and
can even still be used with monad comprehensions and do notation in Haskell,
by using GHC’s RebindableSyntax extension (Williams 2014). For our purposes,
we want the monoid of finite sequences of finite types, using concatenation ++
and the empty sequence 〈〉, so that we can define

return :: a → Table 〈〉 a
(>>=) :: Table k a → (a → Table k ′ b) → Table (k ++ k ′) b

Now return yields a singleton table, which is a finite map.

5 Conclusions

We have explored the list comprehension notation from languages like Haskell,
its generalization to arbitrary monads, and the special case of collection monads
or ‘ringads’ that support aggregation; and we have shown how to use GHC’s
parallel and grouping constructs for monad comprehensions to express relational
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join accurately and efficiently. All of these ingredients owe their genesis or their
popularization to Phil Wadler’s work; we have merely drawn them together.

Having said all that, writing this paper was still a voyage of discovery. The
laws that one should require for MonadPlus and MonadZero are a subject of
great debate; arguably, one expects different laws for backtracking search, for
nondeterministic enumeration, and for collections of results—despite all con-
forming to the same interface. The matter is not settled definitely here (and
perhaps the waters have been muddied a bit further—should we insist on asso-
ciativity of �, as some other authors do?).

Wadler’s unpublished note (Wadler 1990) on ringads is not currently widely
available; it is apparently not online anywhere, and even Phil himself does not
have a copy (Wadler 2011)—for a long time I thought it had been lost entirely to
history, despite being relatively widely cited. However, I am happy to report that
Eerke Boiten had preserved a copy, and the document has now been secured.

Trinder’s work with Wadler (Trinder and Wadler 1989; Trinder 1991) on
using list comprehensions for database queries had quite an impact at the time,
but they weren’t the first to make the connection: Nikhil (1990), Poulouvassilis
(1988), and Breuer (1989) at least had already done so.

Wadler and Peyton Jones (2007, Sect. 3.8) mention parallel list comprehen-
sions, but don’t connect them to grouping or to relational join; they write that
“because of the generality of these new constructs, we wonder whether they
might also constructively feed back into the design of new database programming
languages”. We hope that we have provided here more evidence that they could.
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Abstract. String diagrams provide category theory with a different and
very distinctive visual flavour. We demonstrate that they are an effective
tool for equational reasoning using a variety of examples evolving around
the composition of monads. A deductive approach is followed, discover-
ing necessary concepts as we go along. In particular, we show that the
Yang–Baxter equation arises naturally when composing three monads.
We are also concerned with the pragmatics of string diagrams. Diagrams
are carefully arranged to provide geometric intution for the proof steps
being followed. We introduce thick wires to distinguish composite func-
tors and suggest a two-dimensional analogue of parenthesis to partition
diagrams.

1 Introduction

Phil has a soft spot for presenting classic results in new clothes, providing a
fresh or unifying view on old material. In this paper we follow his lead. The
old results concern compositions of monads (Beck 1969), including iterated ones
(Cheng 2007). The fresh view is afforded by string diagrams, which provide
category theory with a different and very distinctive visual flavour.

String diagrams have been around since the work of Penrose (1971) and
their use in a categorical setting was formalized in (Joyal and Street 1991).
Despite the tremendous notational advantages they provide, their full potential
for categorical calculations has yet to be realized. They are rarely mentioned in
introductory texts and few research papers make explicit use of them, outside of
certain sub-disciplines such as quantum computation. That’s a shame—it’s like
not using a master’s knife.

As we explore monad composition using string diagrams, we will “discover”
Beck’s distributive laws and the Yang-Baxter equation. These concepts can be
identified visually from the structure of diagrams. To aid this discovery process,
we stress the importance of good diagrammatic choices, introducing “fat” nodes
and edges where needed for emphasis, and a two-dimensional analogue of paren-
theses for partitioning up our diagrams into components.

The rest of the paper is structured as follows. We briefly review monads and
monad maps in Sect. 2, taking the opportunity to introduce string diagrams.
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 152–168, 2016.
DOI: 10.1007/978-3-319-30936-1 8
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Sections 3 and 4 investigate Beck’s work on composing monads, dressed in string-
diagrammatic notation. The graphical exploration is continued in Sect. 5, which
studies Cheng’s work on iterated monad composition. Finally, Sect. 6 concludes.
We assume a basic understanding of string diagrams, although we will briefly
refresh some of the basics as we go along.

2 Monads and Monad Maps

Phil is Mr. Monad (Wadler 1992; King and Wadler 1993; Wadler 1990; Peyton
Jones and Wadler 1993), therefore it seems appropriate to start the exploration
of string diagrams with a discussion of monads. There are at least three different
ways to introduce monads (Manes 1976). For our purposes, the so-called monoid
form, which is based on two natural transformations, is most useful.

A monad, also historically referred to as a triple or a standard construction,
consists of an endofunctor M : C → C and natural transformations:

η : Id →̇ M and μ : M◦M →̇ M

Drawn as a string diagram the unit η looks a tad like a lollipop whereas the
multiplication μ resembles a tuning fork or a champagne cup:

η

M

or η

Id

M

μ

M

M M

or
μ

M M

M

A string diagram is a planar graph. An edge in the graph corresponds to a
functor, while a vertex (drawn as a small disc) corresponds to a natural trans-
formation. The unit has no incoming functors and one outgoing functor. Identity
functors are usually omitted from the diagrams. If required for emphasis, we hint
at them using dotted edges. Likewise, the multiplication has two incoming and
one outgoing functor. Edges can be arbitrary curves, as shown on the right, with
the important restriction that they must not have a horizontal tangent.

The operations are required to satisfy unit and associativity axioms:

μ · (η◦M) = M = μ · (M◦η) (1a)
μ · (μ◦M) = μ · (M◦μ) (1b)

where β · α and β◦α respectively denote vertical and horizontal composition of
natural transformations. Written algebraically, these axioms are not particularly
instructive. The equivalent string diagrams are much more revealing:

η

μ

M

M

=

M

M

=
η

μ

M

M

(2a)

M
μ

M

μ

M

M

=

M
μ

M

μ

M

M

(2b)
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Equations (2a) and (2b) make plain the idea that monads can be seen as
monoids in an appropriate way, as hinted at by the suggestive names unit and
multiplication for η and μ.

Observe that horizontal and vertical composition of natural transformations
correspond to horizontal and vertical composition of diagrams in the obvious way.
We stipulate that the flow is from right to left for horizontal composition β◦α,
and from top to bottom for vertical composition β · α.

Whenever a new class of structures is introduced, the definition of structure-
preserving maps follows hard on its heels. Monads are no exception, where these
maps are variably called monad morphisms, monad transformers, monad func-
tors, or, indeed, monad maps. We pick the latter term, because it is the shortest.

Given a pair of monads over the same base category, S,T : C → C, a monad
map is a natural transformation τ : S→̇T that preserves unit and multiplication:

η

S
τ

T

= η

T

(3a)
μ

S S

τ

T

= μτ

S

τ

S

T

(3b)

Again the string notation is instructive. If we view monads as monoids, then τ is a
monoid homomorphism, commuting appropriately with unit and multiplication.

The identity id : T→̇T is clearly a monad map, and monad maps compose—
we simply apply the coherence conditions twice, sliding the monad maps up, one
after the other:

η

R
τ

S
ν

T

{ (
3a

)
}

=

η

S
ν

T

{(
3a

)
}

=

η

T

μ
R R

τ
S

ν

T

{(
3b

)
}

=

μτ

S

R

τ

S

R

ν

T

{(
3b

)
}

=
μν

S
τ

R

ν
S

τ

R

T

This entails that monads over some fixed category and monad maps between
them form a category themselves.



Dragging Proofs Out of Pictures 155

Table 1. Properties of distributive laws.

δ

η

T

TS

=

η

T

TS

(4a)

μ

SS

S T

T

δ

=
μ

SS

S T

T

δδ (4b)

δ

η

S

S T

=

η

S

S T

(4c)

μ

T T

TS

S

δ

=
μ

T T

TS

S

δ δ (4d)

3 Composing Monads

Suppose we wish to form the composite of monads S and T. To figure out the
definitions of the unit and multiplication, we draw the obvious string diagrams:

η

M

= η

T

η

S

and μ

M

M M

= μ

S

μ

T

S TT S

δ

The definition of the unit for M = S◦T works out nicely. For the multiplica-
tion, we observe that we have to cross the S and T wires, requiring a natural
transformation δ : T◦S→̇S◦T, commonly referred to as a distributive law (Beck
1969).

Note that we draw “fat wires” for the edges corresponding to the functor M
simply to emphasise that is it a composite. As M is unfolded into S◦T, each of
the wires on the left-hand sides is expanded into a corresponding pair of wires
on the right-hand sides.

Of course, not any old natural transformation δ will do. Let’s try to prove
the monad properties for the composite M and see what’s needed. We begin by
tackling the left unit law, the first equation of (2a):
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η

μ

M

M
{d

efi
ni

ti
on

s
}

=

μ

S

η

μ

T

η
S T

δ

{r
ed

ra
w

}

=

μ

S

η

S
η

μ

T

T

δ

{r
eq

u
ir
em

en
t

}

=

μ μ

S

η

S

T

η

T

{r
ed

ra
w

}
=

μ μ

S

η

S

T

η

T

{(
2a

)
}

=
M

M

The goal is to invoke the left unit law for the constituent monads. In the third
step, it therefore seems natural to “drag” the unit of T across the S edge. For
reference, we record the requirement in Table 1. The right unit law, the second
Eq. of (2a), follows symmetrically, leading to a symmetric requirement (4c).

In the proof above, as a first step after unfolding the definitions, we redraw the
diagram to suggest a possible axiom to be applied. We take a similar approach
in the proof of associativity:

μ

M

M

μ

M M

{d
efi

ni
ti

on
s

}

=

δ
T S

μ μ

δ

μ

S

μ

T

S T S T

{r
ed

ra
w

}

=

δ
T S

μ μ

μ

μ

T

S T

S

TS

δ

{r
eq

u
ir
em

en
t

}

=

δ
T S

μ

μ

μ

μ

T

S T

S

TS

δ
δ {(

2b
)

}

=

δ
T S

μ

μ

T

μ

μ

S T

S

TS

δ

δ

{r
ed

ra
w

}

=

μ

S

μ

S T S

μ

T

μ

TST

δ δ

δ

By assuming we can “drag” the multiplication of T across the S wire (4b), we
have transformed our original diagram into a symmetrical position. Assuming a
symmetric axiom (4d), we can then transform the right-hand side of the asso-
ciativity law to the same position completing our proof. Quite pleasingly, by
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attempting the proof we have discovered the defining properties of distributive
laws, see Table 1.

A composite monad S◦T is most useful if we are able to embed the base
monads S and T into it. It turns out that the “one-sided” units S◦η : S →̇ S◦T
and η◦T : T →̇ S◦T are suitable monad maps. For S◦η we have to show:

η

T

η

S

= η

T

η

S

(5a)
μ

S

S S

η

T

=
μ

S

μ

T

S

ηη

S

δ

(5b)

The diagrams are instances of (3a) and (3b). For emphasis, we have divided them
into parts, to aid identifying the key components, the monad map and the monad
operations. The white lines can be seen as the two-dimensional counterpart of
parentheses: Eq. (5a) corresponds to (S◦η) · (η) = (η◦η) and (5b) corresponds
to (S◦η) · (μ) = (μ◦μ · S◦δ◦T) · (S◦η)◦(S◦η).

Now, the proof that S◦η preserves the unit (5b) is void; the proof that it
preserves multiplication (5b) essentially uses the fact that the distributive law
preserves the unit (4a):

rhs
of

(5b) {r
ed

ra
w

}

=

μ

T

T T
η

μ

S

η

δ

{(
4a

)
}

=
μ μ

T

T

S

η η

T

{(
2a

)
}

=

lhs
of

(5b)

A symmetric argument establishes that η◦T is a monad map.

4 Compatible Compositions

An interesting question is whether every monad of the form (S◦T, η◦η, μ) arises
via a distributive law. In other words, can we reconstruct a distributive law from
the data? Now, from a given composite multiplication we can extract a candidate
law by placing a lollipop on its left- and rightmost arms. Exploring this space a
bit more, we observe that there are

(
4
2

)
= 6 ways to place two lollipops on four

arms—it is useful to investigate all of them:
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μ
η η

S◦T

S◦T

μ
η
T

η
T

S◦T

μ
η
T

η
S

S◦T

μ
η

S
η
T

S◦T

μ
η

S
η

S

S◦T

μ
ηη

S◦T

S◦T

= = = = = =

S◦T

S◦T

μ

T T

TS

η

δ

T S

S T

S◦T

S◦T

μ

SS

ST

η

S◦T

S◦T
left unit η◦T monad extract middle S◦η monad right unit

S◦T map distr. law unitary law map S◦T
(6a) (6b) (6c) (6d)

The diagrams now feature both thick composite wires, and their thinner com-
ponent wires when we need to access the individual threads. The composite
multiplication is depicted by a fat vertex, to provide room for plugging in paral-
lel wires. Hopefully, these twists will improve the readability of the forthcoming
diagrams.

All of the equalities with the notable exception of the fourth one, the so-
called middle unitary law (6c), have a familiar reading. If the composite monad
is constructed using a distributive law, then these equations are indeed satisfied.
Perhaps surprisingly, the converse is also true: a composite monad that satisfies
all of these is given by a distributive law! To introduce some terminology: the
composition S◦T is called compatible with S and T if

– S◦T is a monad with unit η = η◦η;
– the one-sided units S◦η : S →̇ S◦T ←̇ T : η◦T are monad maps; and
– the middle unitary law (6c) holds.

Distributive laws and compatible compositions are in one-to-one correspondence.
We have already noted that a composite monad given by a distributive law is
compatible. For the other direction we need to work a bit harder:

As a first warm-up, we relate the multiplication of the composite monad to
the multiplications of the base monads, generalizing (6d) and (6a):

μ

S◦T

S◦T
η

S

= μ

S

S S

T

T

(7a) μ

S◦T

S◦T
η
T

= μ

T

TT

S

S

(7b)
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The proof of (7a) makes essential use of the middle unitary law (6c):

lhs
of

(7a) {(
6c

)
}

= μ

S◦T

μη

S
η

S
η
T

{(
2b

)
}

= μ

S◦T

μ η

T
η

S
η

S

{(
6d

)
}

= μ

S◦T

η

T

η

μ
S S

{(
6c

)
}

=

rhs
of

(7a)

The middle unitary law is first used to create a nested composite multiplica-
tion. After reassociating the multiplication, we can then apply the monad map
axiom (6d), which (7a) generalizes. A second application of the middle unitary
law drives the proof home.

As a second warm-up, we establish pseudo-associative laws, which allow us
to reassociate a nesting of a composite fork and a base fork:

μ

S◦T

S◦T

μ

S ST

= μ

ST

S

μ

S◦T S◦T

(8a) μ

S◦T

S◦T

μ

TTS

= μ

TS

T

μ

S◦TS◦T

(8b)

The proof of left pseudo-associativity (8a) combines the previous auxiliary
result (7a) and associativity (2b):

lhs
of

(8a) {(
7a

)
}

=
μ

S◦T

S◦T

μ

S◦T
η

S

{(
2b

)
}

=

μ

S◦T

μ

S◦T S◦T

η

S

{(
7a

)
}

=

rhs
of

(8a)

The “proof strategy” is similar to the previous one: we work towards a situation
where associativity for the composite multiplication can be invoked.

We are now in a position to prove the first main result: the natural trans-
formation defined by (6b) is a distributive law. We content ourselves with prov-
ing (4a) and (4b), as the remaining properties, (4c) and (4d), follow dually.
Instantiating the equations to the natural transformation at hand (highlighted
below for clarity) we have the following proof obligations:
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μ

S

S

T

η

η

η

= η

T

S
S

μ

T

μ
T T

S

S

η

η

=
μ

μ

S

S

η

ηη
η

T T

μ

T

(9)

The first property follows immediately from the unit law for S◦T. For the second
property we reason:

rhs
of
(9) {r

ed
ra

w
}

=

μ
η η

μ

T

μ
η
T

η
ST

S

{(
8b

)
}

=
μ

η μ

η

S◦T

μ
η
T

η
ST

{(
2a

)
}

=

μ

S◦T

η μ
η
T

η
ST

{(
2b

)
}

=

μ

S◦T

ημ
η
T

η
T S

{(
6a

)
}

=

μ

S◦T

η

μ
T T

η

S
{r

ed
ra

w
}

=

lhs
of
(9)

Finally, for the round trip—distributive laws and compatible monads are in
one-to-one correspondence—we have to show:

μ

S

μ

T

η η
T S

δ =
δ

T S

S T

μη
T

η
S

μ

S

S

μ

T

T

=
μ

S◦T

S◦T S◦T

(10)
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The first equation is an immediate consequence of the unit laws (2a); the proof
of the second equation is a one-liner:

lhs
of

(10)

{(
8a

)
an

d
(8

b)
}

=

μ

S◦T

μ

η
S

μ

η
TT S

{(
2a

)
}

=

rhs
of

(10)

In the first step we apply the two pseudo-associative laws (8a) and (8b) in
parallel. This moves the forks upwards, where they meet their lollipops, only to
dissolve collectively into thin air.

5 Iterated Distributive Laws

Using a distributive law we can form the composite of two monads. Does the
construction also work for three or more monads over the same category? The
answer due to Cheng (2007) is an enthusiastic ‘yes, but . . . ”. So let’s see what’s
involved. To form the composite of T1, T2, and T3, using Beck’s result, we either
need a distributive law that distributes the composite T2◦T3 over T1, or a law
that distributes T3 over the composite T1◦T2. Assuming the existence of laws

δ31 : T3◦T1 →̇ T1◦T3 δ21 : T2◦T1 →̇ T1◦T2 δ32 : T3◦T2 →̇ T2◦T3

suitable candidates are:

δ =

T1 (T2T3)

T1T3)(T2

δ21
δ31

(11a) δ′ =

T3T2)(T1

T3 (T1T2)

δ31
δ32 (11b)

The candidates δ and δ′ are formed by joining two of the given laws. Unfortu-
nately, distributive laws are not closed under this form of composition (simply
because monads do not compose in general), so we have to actually verify the
coherence conditions. However, if the candidates satisfy the requirements, then
the resulting monads are the same, regardless of the bracketing. Clearly, the
underlying functors, (T1◦T2)◦T3 and T1◦(T2◦T3), and the units, (η1◦η2)◦η3
and η1◦(η2◦η3), are identical; to see that the multiplications do not depend on
the bracketing, we construct the corresponding string diagrams:
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T1 (T2T3) T1 (T2T3)

T1

μ

(T2

μ

T3)

μδ21

δ31

δ32
=

T3T2)(T1T3T2)(T1

T3

μ

T2)

μ

(T1

μ δ32

δ31

δ21

Returning to the coherence requirements of the composite laws, the candidate
law δ (11a) satisfies (4a) and (4b). This can be seen most easily if we redraw the
diagrams:

δ =

δ31

T1
T3

T3
δ21

T1

T2

T2

δ′ =

δ31

T3

T1

T1

δ32
T3

T2

T2

To show the unit axiom (4a), we drag the unit of T1 twice, first across the
functor T3 and then a second time across the functor T2. We proceed in an
analogous fashion to establish the multiplication axiom (4b), dragging the fork
twice. Thus, it remains to show that δ satisfies the dual axioms, (4c) and (4d).
Dually, the candidate law δ′ (11b) satisfies the latter, but not in general the
former axioms. See redrawing on the right above.

We concentrate on the left candidate; a dual argument establishes the require-
ments for the right one. We need to prove that δ preserves unit (4c) and multi-
plication (4d) of the composite monad T2◦T3:

δ21

T2

η

T1

δ31

T3

η T1

= ηT1

T2

η

T3

T1

(12a)

δ32

T3 T2

μ

T2

μ

T3

T2 T3

T1

T1δ21
δ31

=
δ32μ

T2

μ

T3

T2 T3 T2 T3

T1

T1 δ21

δ31 δ21
δ31

(12b)

The first equation follows from the fact that the constituent laws δ21 and δ31
preserve the units (4c); for the second equation we reason:
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lhs
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(12b) {(
4d

)
}

=

δ32

μ

T2

μ

T3

T3 T2T2 T3

δ21
δ21 δ31

δ31

{r
ed

ra
w

,
se

e
be

lo
w

}

=

δ32

μ

T2

μ

T3

T3 T2T2 T3

δ21

δ21
δ31

δ31
{Y

an
g–

B
ax

te
r

(1
3)

}

=

δ32

μ

T2

μ

T3

T3 T2

T1

T1

T2 T3

δ21

δ21

δ31
δ31

{r
ed

ra
w

}
=

rhs
of

(12b)

The second and the fourth step are redrawings employing the topological freedom
inherent in the notation. The central step is the third one where we drag the
distributive law δ32 across the diagonal line, shown below in detail:

T1

T1

δ32

T2T3

T3T2

δ31
δ21

= T1

T1

δ32

T2 T3

T3 T2

δ31 δ21
(13)

We have discovered the so-called Yang–Baxter equation, which relates three dis-
tributive laws. The left- and the right-hand side are related by a rotation of 180◦.
This entails that the order of δ21 and δ31 is reversed as we drag δ32 down.

Up to now we have added redrawing operations for clarity, to emphasize
the moves being made. This is one of the exceptional cases where such a move
is actually necessary. Consider the second step. If we hadn’t lifted the right-
most distributive law δ31, then we wouldn’t be able to execute the subsequent
“dragging” step, as this step would cause the last edge of the diagonal to have
a horizontal tangent.1 (The second redrawing is then a cosmetic one.)
1 String diagrams that are equivalent up to planar isotopy denote the same natural

transformation. A planar isotopy is a continuous deformation of a plane diagram that
preserves cusps, crossings, and the property of having no horizontal tangents (Joyal
and Street 1991).
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For the right candidate δ′ (11b) we obtain vertically reflected diagrams, which
are, however, semantically equivalent—the diagram on the left (right) below
denotes the same natural transformation as the diagram on the right (left) above.

T3

T3

δ21

T2 T1

T1 T2

δ31
δ32

= T3

T3

δ21

T2T1

T1T2

δ31δ32

A more neutral depiction places the laws on the corners of equilateral triangles:

T1

T1

T3

T3

T2

T2

δ21

δ32

δ31 =

T3

T3

T1

T1

T2

T2

δ32

δ21

δ31

The diagrams above suggest an alternative reading of Yang–Baxter: the condi-
tion allows us to exchange the laws δ21 and δ32. Note that T2 is the vertical
edge; T3 travels from left to right; and T1 in the opposite direction. The laws
that swap adjacent indices, δ21 and δ32, are either on the top or at the bottom;
the third law δ31 is bound to be in between.

As an amusing aside, note that both composites “sort” the monads:
T3◦T2◦T1 is transmogrified to T1◦T2◦T3. And indeed, the two arrangements
correspond to the two ways of constructing an odd-even transposition network
(Knuth 1998) for three inputs:

23 1

21 3

=

2 13

2 31

A transposition network is a special comparator network where comparators
only connect adjacent wires. Such a network is a sorting network if and only if it
sorts the decreasing sequence n, n − 1, . . . , 2, 1, a remarkable property that links
odd-even transposition networks to Yang–Baxter.

As a short intermediate summary, we can compose three monads if the three
distributive laws for the constituent monads satisfy Yang–Baxter (13).

Now, let’s become more ambituous and consider compositions of n monads:
T1, . . . , Tn . It is instructive to visualize the multiplication of the composite
monad for some small n, say, 6 first (ignore the diagram on the right):
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T1T6

T6

T2T5

T5

T3T4

T4

T4T3

T3

T5T2

T2

T6T1

T1

δ61

δ51

δ41

δ31

δ21

μ1

δ62

δ52

δ42

δ32

μ2

δ63

δ53

δ43

μ3

δ64

δ54

μ4

δ65

μ5 μ6

T1T6

T6

T2T5

T5

T3T4

T4

T4T3

T3

T5T2

T2

T6T1

T1

δ42

δ32

μ2

δ43

μ3 μ4

The left diagram has a very regular structure, consisting of two key parts. Firstly,
an “interchanging network”, the triangle of δs that pairwise swaps the positions
of the functors, sending T1◦ · · · ◦T6◦T1◦ · · · ◦T6 to T1◦T1◦ · · · ◦T6◦T6. Secondly,
a “merging network”, the bottom row of μs that combine adjacent matching
pairs of wires, taking the reorganized sequence to the composite T1◦ · · · ◦T6.
The triangle consists of no less than 15 distributive laws. In general, we need
δji : Tj◦Ti →̇Ti◦Tj for n ≥ j>i ≥ 1. Perhaps unsurprisingly, the total number of
required laws is given by the triangular numbers:

(
n
2

)
= 1

2 (n − 1)n. The network
above contains as sub-diagrams the multiplications for all “sub-composite mon-
ads”, i.e. compositions of contiguous subsequences of T1, . . . , T6. The diagram
on the right above provides an example. The sub-diagram of labelled vertices is
the multiplication of T2◦T3◦T4. In fact, each distributive law serves as the root of
a sub-diagram: δji spans the multiplication of the composite monad Ti◦ · · · ◦Tj .

Of course, the distributive laws have to go together—they must satisfy suit-
able instances of Yang–Baxter (13). To see which instances are needed, it is
again useful to visualize the proof for some small n. Continuing our running
example, we have to show that we can distribute T2◦ · · · ◦T6 over T1 i.e. that
the composite distributive law respects the multiplication of T2◦ · · · ◦T6.

T2T6

T6

T3T5

T5

T4T4

T4

T5T3

T3

T6T2

T2

δ62

δ52

δ42

δ32

μ2

δ63

δ53

δ43

μ3

δ64

δ54

μ4

δ65

μ5 μ6

T1

T1

δ21 δ31 δ41 δ51 δ61
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The bottom diagonal line amounts to the composite law, the horizontal com-
position of δ21, . . . , δ61. The proof involves moving the diagonal upwards, first
across the multiplications and then across the triangle of distributive laws. The
first move is justified as the δji are distributive laws which preserve multiplica-
tions (4b). The other moves require instances of Yang–Baxter, in fact, a triangu-
lar number of instances: δji , δkj , and δki for i = 1 and 6 ≥ k > j ≥ 2. Analogous
proofs are needed to show that we can distribute T3◦ · · · ◦T6 over T2, T4◦ · · · ◦T6

over T3, and T5◦T6 over T4. In general, we require that δji , δkj , and δki satisfy
the Yang–Baxter equation for n ≥ k > j > i ≥ 1:

Ti

Ti

δkj

TjTk

TkTj

δki
δji

= Ti

Ti

δkj

Tj Tk

Tk Tj

δki δji

The total number of proof obligations is therefore given by the sum of the tri-
angular numbers, the so-called tetrahedral numbers:

(
n
3

)
= 1

6 (n − 2)(n − 1)n.

6 Conclusion

We have explored various aspects of composing monads using string diagrams.
Although not emphasized in the paper, but see (Marsden 2014) and (Hinze
and Marsden 2015), this notation silently handles trivial bookkeeping steps such
associativity, identity laws, functoriality, and naturality, allowing us to focus on
the essentials of our proofs. In order to highlight key proof steps, we enthusias-
tically exploited the visual nature of the notation, and the topological freedom
it affords. Many diagrams were drawn so that proof steps have intuitive inter-
pretations such as sliding or dragging components within them. We have also
addressed the pragmatics of string diagrams, adding new bells and whistles to
the graphical notation. Fat wires were introduced to distinguish composite func-
tors within our diagrams, and large vertices provided space to clearly insert
parallel wires where required. We also introduced a two-dimensional analogue of
parentheses by partitioning diagrams into regions using white lines.

Traditional mathematics follows a rhythm of “definition, theorem, proof, def-
inition, theorem, proof”. In this paper we adopted a different approach. We
typically began with an equation we wished to prove. We then optimistically
attempted a proof, and our graphical notation allowed us to see the missing
properties that were required to complete it. These properties were then incor-
porated into our definitions. In this way, we rediscovered Beck’s distributive
laws for composing monads, and the axioms they are required to satisfy. We also
identified the significance of the Yang-Baxter equation in iterating composition
of monads, in a straightforward visual manner.
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As we have been working within a single fixed category, our diagrams have
been “monochrome”, with all regions the same colour. In fact string diagrams can
be extended to support coloured regions, so we can work with multiple categories
within our proofs. This extension also allows us to work with ordinary objects
and arrows, and in fact we can conduct a large part of elementary category
theory within this setting. Detailed discussion of these colourful diagrams can
be found in the recent papers (Marsden 2014) and (Hinze and Marsden 2015).

String diagrams are not the only two-dimensional notation for categories,
functors, and natural transformations. Their Poincaré dual, so-called pasting
schemes, seem to be in wider use. When the first author presented string dia-
grams at a recent IFIP WG 2.8 meeting (June 2015), Phil initially wasn’t very
convinced of their advantages. Overnight he worked out the properties using the
more traditional pasting schemes only to discover that they don’t provide any
geometric intuition at all. Hopefully the present paper fully convinces you of the
virtues of string diagrams, Phil.
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Abstract. This is not a typical scientific paper. It does not present a
new method, with careful experiments to evaluate it, and detailed refer-
ences to related work. Rather, it recounts some of my experiences over
the last 15 years, working with QuickCheck, and its purpose is as much
to entertain as to inform.

QuickCheck is a random testing tool that Koen Claessen and I
invented, which has since become the testing tool of choice in the Haskell
community. In 2006 I co-founded Quviq, to develop and market an Erlang
version, which we have since applied for a wide variety of customers,
encountering many fascinating testing problems as a result.

This paper introduces Quviq QuickCheck, and in particular the exten-
sions made for testing stateful code, via a toy example in C. It goes on
to describe the largest QuickCheck project to date, which developed
acceptance tests for AUTOSAR C code on behalf of Volvo Cars. Finally
it explains a race detection method that nailed a notorious bug plagu-
ing Klarna, northern Europe’s market leader in invoicing systems for
e-commerce. Together, these examples give a reasonable overview of the
way QuickCheck has been used in industrial practice.

1 Introduction

Here’s an interesting little experiment. Try asking a room full of software devel-
opers, “who really, really loves testing?” Very, very few will raise their hands. For
whatever reason, most developers see testing as more of a chore than a pleasure;
few go to work in the morning raring to write some test cases. And yet, testing
is a vital part of software development! Why should it be so unpopular?

To understand why, imagine writing a suite of unit tests for software with,
say, n different features. Probably you will write 3–4 test cases per feature. This
is perfectly manageable—it’s a linear amount of work. But, we all know you will
not find all of your bugs that way, because some bugs can only be triggered by a
pair of features interacting. Now, you could go on to write test cases for every pair
of features—but this is a quadratic amount of work, which is much less appealing.
And even if you do so, you will still not find all of your bugs—some bugs only
appear when three features interact! Testing for all of these would involve O(n3)
work, which is starting to sound very unappealing indeed—and this is before we
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 169–186, 2016.
DOI: 10.1007/978-3-319-30936-1 9
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even start to consider race conditions, which by definition involve at least two
features interacting, and even worse, only manifest themselves occasionally even
in test cases that can provoke them in principle!

This is the fundamental problem with testing—you can never be “done”. No
wonder it’s not so popular. What is the answer to this conundrum? Simply this:

DON’T WRITE TESTS!

But of course, we can’t just deliver untested code to users. So the message is
actually more nuanced: don’t write tests—generate them!

This is how I have spent much of my time in recent years, working with a test
case generator called QuickCheck. QuickCheck was first developed in Haskell
by Koen Claessen and myself (Claessen and Hughes 2000), and has become
the testing tool of choice among Haskell developers. The idea has been widely
emulated—Wikipedia now lists no fewer than 35 reimplementations of the basic
idea, for languages ranging from C to Swift. Thomas Arts and I founded a
company, Quviq, to market an Erlang version in 2006 (Hughes 2007), and since
then we have made many extensions, and had great fun finding bugs for Ericsson
(Arts et al. 2006), Volvo Cars (Arts et al. 2015), and many others. In this paper I
will sketch what Quviq QuickCheck does, and tell a few stories of its applications
over the years.

#include <stdlib.h>

typedef struct queue

{ int *buf;

int inp , outp , size;

} Queue;

Queue *new(int n)

{ int *buff =

malloc(n*sizeof(int));

Queue q = {buff ,0,0,n};

Queue *qptr =

malloc(sizeof(Queue ));

*qptr = q;

return qptr; }

void put(Queue *q, int n)

{ q -> buf[q -> inp] = n;

q -> inp = (q -> inp + 1)

% q -> size; }

int get(Queue *q)

{ int ans = q -> buf[q -> outp];

q -> outp = (q -> outp + 1)

% q -> size;

return ans; }

int size(Queue *q)

{ return (q->inp - q->outp)

% q -> size; }

Fig. 1. A queue ADT, implemented as a circular buffer in C.

2 A Simple Example

Let us begin with a simple example: a queue, implemented as a circular buffer,
in C. The code appears in Fig. 1. It declares a struct to represent queues, con-
taining a pointer to a buffer area holding integers, the indices in the buffer where
the next value should be inserted respectively removed, and the total size of the
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buffer. The new function, which creates a queue of size n, allocates memory for
the struct and the buffer, initializes the struct, and returns a pointer to it. get
and put read and write the buffer respectively at the appropriate index, incre-
menting the index afterwards modulo the size. Finally, size returns the number
of elements currently in the queue, by taking the difference of the input and
the output indices, modulo the size. The code is straightforward, and obviously
correct—it’s just a simple example to give us something to test.

Quviq QuickCheck provides a mechanism for testing C code directly from
Erlang. In the Erlang shell, we can call

1> eqc_c:start(q).

which compiles q.c (containing the code from Fig. 1), and makes the functions
in it callable from Erlang. This is done by parsing the C code to extract the
types and functions it contains, generating a server that calls the C functions on
demand, generating client code in Erlang that passes a function and arguments
to the server and collects the result, and then running the server in a separate
OS process so that buggy C code cannot interfere with the OS process running
QuickCheck. The result is a safe test environment for C functions that might
behave arbitrarily badly.

We can now perform simple tests to verify that the code is working as it
should:

2> Q = q:new (5).

{ptr ,"Queue " ,6696712}

3> q:put(Q,1).

ok

4> q:put(Q,2).

ok

5> q:size(Q).

2

6> q:get(Q).

1

7> q:get(Q).

2

We create a queue with space for 5 elements, binding the pointer returned to Q.
Then we put 1 and 2 into the queue, test size, and take the elements out of the
queue again. All the results are as expected. We can even continue the test:

8> q:get(Q).

100663302

9> q:get(Q).

27452

10> q:get(Q).

6696824

11> q:get(Q).

1

12> q:get(Q).

2

which returns the contents of uninitialized memory, as expected, until we reach
the values 1 and 2 again. We really are running C code, which is just as unsafe as
ever, and the queue implementation does not—and is not intended to—perform
any error checking. If you abuse it by removing elements from an empty queue,
you will get exactly what you deserve.

Testing with QuickCheck. Like much of the code Quviq works with, this
example is stateful. We test stateful systems by generating sequences of calls
to the API under test, just like the test cases that developers write by hand.
But we also model the state of the system abstractly, and define model state
transitions for each operation in the API. Using these state transition functions,
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Fig. 2. Adjudging a test based on a state machine model.

Fig. 3. A sample test case for the queue.

we compute the model state at every point in a test. We define postconditions for
each API call, relating the actual result of the call to the model state—see Fig. 2.
A test passes if all postconditions hold. While the code we test can be in any
programming language (such as C), the model—the state transition functions,
postconditions, etc.—is defined in Erlang.

In this case, we might model the state of the queue by a list of the integers
that should be in it; with this model, a sample test case might appear as in Fig. 3.
Here we start with an empty queue (modelled by the empty list []), each put
operation appends an element to the model state, each get operation removes
an element from the state, and get’s postcondition checks that the actual result
(in red) was the first element of the model state before the call.

We will not present all the code of the model here, but to give its flavour, we
present the specification of get:

get_pre(S) -> S#state.ptr /= undefined andalso

S#state.contents /= [].

get_next(S,_Value ,_Args) ->

S#state{contents=tl(S#state.contents )}.

get_post(S,_Args ,Res) -> eq(Res ,hd(S#state.contents )).

Here the model state S is actually an Erlang record (state) with fields ptr
(pointer to the queue), contents (expected list of elements), and size (max-
imum size). get pre is the precondition: get may only be called if the ptr is
defined (i.e. new has been called), and the queue is non-empty. get next is the
state transition function: it replaces the list of elements in the model state by its
tail. get post is the postcondition, which checks that the actual result of get,
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Res, is equal to the first element of the expected contents. QuickCheck recognises
these functions by virtue of their names (get followed by a particular suffix),
and uses them to generate and run random tests. The property tested is: if all
operation preconditions hold during a test run, then so do the postconditions.

Tests are run by invoking QuickCheck from the Erlang shell, giving this
property as a parameter. In this case, the tests fail almost immediately:

18> eqc:quickcheck(q_eqc:prop_q ()).

.... Failed! After 5 tests.

[{set ,{var ,1},{call ,q,new ,[1]}} ,

{set ,{var ,2},{call ,q,put ,[{var ,1},1]}},

...10 lines of output elided ...

q:new(1) -> {ptr ,"Queue", 4003800}

q:put({ptr ,"Queue", 4003800} , 1) -> ok

q:get({ptr ," Queue", 4003800}) -> 1

q:put({ptr ,"Queue", 4003800} , -1) -> ok

q:put({ptr ,"Queue", 4003800} , -1) -> ok

q:put({ptr ,"Queue", 4003800} , 0) -> ok

q:get({ptr ," Queue", 4003800}) -> 0

Reason: Post -condition failed: 0 /= -1

After four successful tests (represented by a ‘.’ in the output), QuickCheck
generated a failing example, which appears next in a symbolic form—but in this
paper, we focus on the pretty-printed results that follow it (beginning with the
line q:new(1) -> . . . ). These show the calls made and results returned—and
clearly, something is wrong, because the postcondition of the last call failed. 0,
the actual result of the call, was not equal to −1, the expected value.

Like most randomly generated failing tests, this one contains irrelevant calls
as well as those few that actually provoked the failure. So QuickCheck then
shrinks the test case to a simpler one, searching for the smallest similar test that
also fails. In this case,the output continues:

Shrinking xxxx..xx.xx.xxxx.xxx(5 times)

[{set ,{var ,1},{call ,q,new ,[1]}} ,

{set ,{var ,2},{call ,q,put ,[{var ,1},1]}},

{set ,{var ,3},{call ,q,put ,[{var ,1},0]}},

{set ,{var ,4},{call ,q,get ,[{var ,1}]}}]

q:new(1) -> {ptr ,"Queue", 4009248}

q:put({ptr ,"Queue", 4009248} , 1) -> ok

q:put({ptr ,"Queue", 4009248} , 0) -> ok

q:get({ptr ," Queue", 4009248}) -> 0

Reason: Post -condition failed: 0 /= 1

During shrinking, each ‘.’ represents a smaller test that also failed—progress
towards the minimal failing test—while ‘x’ represents a smaller test that passed.
Shrinking not only removes unnecessary calls from the test case, but also simpli-
fies arguments where possible—in particular, −1 no longer appears in the test.
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While randomly generated failing tests vary widely, the result after shrinking
is very consistent—always either the test case above, or this very similar one:

q:new (1) -> {ptr ,"Queue", 4027504}

q:put({ptr ,"Queue", 4027504} , 0) -> ok

q:put({ptr ,"Queue", 4027504} , 1) -> ok

q:get({ptr ," Queue", 4027504}) -> 1

Reason: Post -condition failed: 1 /= 0

Debugging the Model. But why does the test above fail? Inspecting the
results, we see that first we create a queue with space for one element, then we
put a 0 into it, then we put a 1 into it—and at this point, the queue should
contain [0, 1]—then finally we get the first element, which should be 0, but was
actually 1! Clearly this is wrong!

But why did the C code return 1? Tracing through the example, we see
that we allocated a buffer large enough to hold one integer, and then put two
integers into it! Since we implemented a circular buffer, then the second value (1)
overwrites the first (0). This is why get returns 1—the data has been corrupted
by putting too many elements into the queue.

This really is a minimal test case for this error: not only must we perform two
puts and a get, but we must put two different values—otherwise we overwrite a
value with an equal one, and the error is not detectable. This is why the values
put are 0 and 1—one of them is arbitrary, so can shrink to 0, while the other
must be different. The simplest value different from 0 is 1, so this is the value we
see. In retrospect, it was very informative that we did not see two zeroes—this
told us immediately that if we were to put two zeroes, then the test would pass.

So where is the error? Recall that the code is not intended to behave sensibly
when abused—and putting two elements into a queue of size one is surely abuse.
Arguably, there is nothing wrong with the code—this is a bad test. This means
that the fault is not in the implementation, but in the model. Inspecting the
precondition of put in the model we have been using so far, we find

put_pre(S) -> S#state.ptr /= undefined.

This allows tests to call put at any time, as long as the queue pointer is defined.
We should of course only allow calls of put if the queue is not already full:

put_pre(S) -> S#state.ptr /= undefined andalso

length(S#state.contents) < S#state.size.

With this change to the precondition, we can repeat the last failed test, and see

q:new (1) -> {ptr ,"Queue", 4027648}

q:put({ptr ,"Queue", 4027648} , 0) -> ok

q:put({ptr ,"Queue", 4027648} , 1) -> !!! precondition_failed

Reason: precondition_failed

It still fails, but at an earlier point and for a different reason—the second call to
put can no longer be made, because its precondition is not satisfied.
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Random tests now pass, and we see satisfying output from QuickCheck:

28> eqc:quickcheck(q_eqc:prop_q ()).

...........................................................

.........................................

OK, passed 100 tests

53.5% {q,put ,2}

40.2% {q,get ,1}

6.3% {q,new ,1}

We usually collect statistics as tests are run; in this case we collect the names
of the functions called ({q,new,1} represents q:new/1, the new function with 1
argument in module q, and so on). Over 50% of the calls tested were to put,
around 40% were to get—which is not so surprising, since given our precondi-
tions, we cannot call get unless there is a corresponding call to put. However,
these statistics reveal that we have not tested the size function at all! There is
a simple reason for this—for simplicity, we omitted it from the model.

Debugging the Code. It is easy to model the behaviour of size as well, but
with this extension to the model, tests fail immediately. The shrunk example is
this:

q:new(1) -> {ptr ,"Queue", 4033488}

q:put({ptr ,"Queue", 4033488} , 0) -> ok

q:size({ptr ,"Queue", 4033488}) -> 0

Reason: Post -condition failed: 0 /= 1

We create a queue with room for one element, put an element into it, then ask
how many there are—which of course should be 1, but size returns 0! This time
the model is not at fault—the C code is simply returning the wrong answer.

Using this example we can trace through the code in Fig. 1 to find the prob-
lem. new(1) initializes q->size to 1. size returns

(q->inp - q->outp) % q->size

But q->size is 1, and any value modulo 1 is zero! It follows that size always
returns 0 when the queue size is 1, no matter how many times we call put.
Likewise, put and get increment their respective indices modulo 1, so these
indices are also always zero. Putting an element into the queue does not change
its state—a full queue looks exactly the same as an empty one! This is the real
problem, and it is not limited to queues of size one. If we create a queue of size
n, and put n items into it, then the same thing happens—the input index wraps
around back to zero, and a full queue looks the same as an empty one. Our
representation of queues is inadequate—it cannot distinguish full from empty.

How to fix this? There are several possibilities—we could, for example, add
a boolean to the Queue struct to distinguish full queues, but this would lead to
special cases throughout the code. Much nicer is to modify the new function so
that, when asked to create a queue with space for n elements, we actually create
one with space for n + 1 elements!
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Queue *new(int n)

{ int *buff = malloc ((n+1)* sizeof(int ));

Queue q = {buff ,0,0,n+1};

Queue *qptr = malloc(sizeof(Queue ));

*qptr = q;

return qptr;

}

Let this be our secret. Now, the only way for a caller to witness the ‘bug’ is by
putting n+1 elements into a queue with room for n—violating the precondition
of put, which means the problem is their fault! We successfully avoid blame, and
can go home happy.

Sure enough, with this change then repeating the last test succeeds:

32> eqc:check(q_eqc:prop_q ()).

OK , passed the test.

However, running random tests provokes another failure, which always
shrinks to the same test case:

q:new (1) -> {ptr ,"Queue", 5844232}

q:put({ptr ,"Queue", 5844232} , 0) -> ok

q:get({ptr ," Queue", 5844232}) -> 0

q:put({ptr ,"Queue", 5844232} , 0) -> ok

q:size({ptr ," Queue", 5844232}) -> -1

Reason: Post -condition failed: -1 /= 1

We create a queue of size one (that’s really two!), and put a zero into it—now
it’s full. We get the zero—and now it’s empty, so we can put another zero in.
Now the queue should contain one zero. . . but when we ask the size, then −1 is
returned! This is clearly a bug in the C code—the size should never be negative.

Tracing this example through the code in Fig. 1, we see that we really created
a queue with a q->size of 2, then called put twice, so the input index q->inp
wraps around back to zero. We called get once, so q->outp is 1, and in size,
(q->inp - q->outp) % q->size computes (-1) % 2—but (−1)mod 2 is +1,
as we all learned in school. Or is it? Trying it in Erlang:

34> (-1) rem 2.

-1

In Erlang, at least, rem is not the modulo operator—it computes the remainder
after integer division, rounding towards zero. Since (-1) div 2 is zero, then
(-1) rem 2 must be −1. The same is true in C.

With this in mind, we see that size returns a negative result whenever
q->inp has wrapped around, but q->outp has not—whenever

q->inp - q->outp

is negative. To fix the bug, we must ensure that this expression is never negative,
and a simple way to do so is to apply abs to it. We modify size as follows,



Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane 177

int size(Queue *q)

{ return abs(q->inp - q->outp) % q -> size;

}

and repeat the last test:

36> eqc:check(q_eqc:prop_q ()).

OK , passed the test.

Of course it passes, as we would expect.
Now, notice what we did. We found a subtle bug in our implementation. We

created a test case that provoked the bug. We fixed the code, and our test now
passes. All our tests are green! So. . . we’re done, right?

In practice, many developers would be satisfied at this point. But let us just
run a few more random tests. . . we find they fail immediately!

q:new(2) -> {ptr ,"Queue", 6774864}

q:put({ptr ,"Queue", 6774864} , 0) -> ok

q:put({ptr ,"Queue", 6774864} , 0) -> ok

q:get({ptr ," Queue", 6774864}) -> 0

q:put({ptr ,"Queue", 6774864} , 0) -> ok

q:size({ptr ,"Queue", 6774864}) -> 1

Reason: Post -condition failed: 1 /= 2

What’s going on here? First, we create a queue of size two. Progress! The code
now works—for queues of size one. We put three items into the queue, and remove
one. Now there should be two items in the queue, but size returns 1.

This is actually very similar to the example we just fixed. The queue is size
two (really three!), so calling put three times makes the input index wrap around
back to zero. We called get once, so the output index is one. The correct answer
for size is thus (−1)mod 3, which is 2, but we computed abs(-1) % 2, which
is 1. Taking the absolute value was the wrong thing to do; it worked for the first
test case we considered, but not in general.

A correct implementation must ensure that the operand of % is non-negative,
without changing its value modulo q->size. We can do this by adding q->size
to it, instead of taking the absolute value:

int size(Queue *q)

{ return (q->inp - q->outp + q->size) % q -> size;

}

When we make this change, then this last failing test—and all the others we can
generate—pass. The code is correct at last.

Lessons from the Queue Example. What can we learn from this? Three
lessons that apply in general:

– The same property can find many different bugs. This is the whole point of
test case generation: one model can provoke a wide variety of bugs.
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– Errors are often in the model, rather than the code. Calling something a
specification does not make it right! QuickCheck finds discrepancies between
the model and the code; it is up to the developer to decide which is correct.

– Minimal failing test cases make debugging easy. They are often much smaller
than the first failing one found. We think of shrinking as “extracting the
signal from the noise”. Random tests contain a great deal of junk—that is
their purpose! Junk provokes unexpected behaviour and tests scenarios that
the developer would never think of. But tests usually fail because of just a
few features of the test case. Debugging a test that is 90 % irrelevant is a
nightmare; presenting the developer with a test where every part is known to
be relevant to the failure, simplifies the debugging task enormously.

Property-Based Testing. I referred several times above to the “property”
that is being tested, namely that “if all operation preconditions hold during a test
run, then so do the postconditions”. Properties are fundamental to QuickCheck:
indeed, QuickCheck always tests a property, by generating suitable test cases and
checking that the property holds in each case. Properties are often expressed in
terms of a stateful model—as in this section—but this is not always the case, and
even for the same model, the properties tested may differ. Since properties are
fundamental here, we call the general approach “property-based testing”, rather
than “model-based testing” which is a better-established term.

3 The Volvo Project

So far, we only considered a toy example—the reader could be forgiven for
wondering if the method really scales. After all, in this example, the specification
was actually larger than the code! QuickCheck would not be useful if this were
true in general. So, let us summarize the results of the largest QuickCheck project
so far—acceptance testing of AUTOSAR Basic Software for Volvo Cars (Arts
et al. 2015).

Modern cars contain 50–100 processors, and many manufacturers base their
software on the AUTOSAR standard. Among other things, this defines the ‘Basic
Software’, which runs on every processor in the car. It consists of an Ethernet
stack, a CAN-bus stack (the CAN bus, or “Controller Area Network”, is heavily
used in vehicles), a couple of other protocol stacks, a routing component, and a
diagnostics cluster (which records fault codes as you drive). The basic software is
made up of many modules, whose behaviour is specified in detail, but there are a
number of suppliers offering competing implementations. Usually a car integrates
basic software from several different suppliers—which means that if they do not
follow the standard, then there is a risk of system integration problems. It is
not even easy to tell, if two processors cannot talk to each other, which of the
suppliers is at fault!

Volvo Cars wanted to test their suppliers code for conformance with the
standard, and funded Quviq to develop QuickCheck models for this purpose.
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Most errors we found are confidential, but we can describe one involving the
CAN bus stack, which we tested using a mocked hardware bus driver. Now, every
message sent on the CAN bus has a CAN identifier, or message type, which also
serves as the priority of the message—the smaller the CAN identifier, the higher
the priority. QuickCheck found a failing test with the following form:

– Send a message with CAN identifier 1 (and check that the hardware driver
is invoked to put it onto the bus).

– Send a message with CAN identifier 2 (which should not be passed to the
driver yet, because the bus is busy).

– Send a message with CAN identifier 3 (which should also not be sent yet).
– Confirm transmission of message 1 by the bus (and check that the driver is

now invoked to send message 2).

Of course, the bug was that the stack sent the message with identifier 3 instead.
This is the smallest test case that can provoke the bug. We must first send a

message, making the bus busy, and then send two more with different priorities,
which are both queued. Then we must release the bus, and observe that the
wrong message is taken from the queue. This is just what the test does.

The source of the bug was this: the original CAN standard allowed only
11 bits for the message identifier, but today 2048 different message types is no
longer enough, so the current standard also allows an ‘extended CAN id’ of 29
bits. Both kinds have the same meaning—in particular, the priority does not
depend on the encoding—but when the stack sends a message, it must know
which format to use. This particular stack stored both kinds of identifier in the
same unsigned integer, but used bit 31 to indicate an extended identifier. In
this test, message number 2 used an extended CAN identifier, while message
number 3 used the original format. Of course, when comparing stored message
identifiers in order to decide which message to send, it is essential to mask off the
top bit. . . which the developer forgot to do in this case. So the second message
was treated as priority 231 + 2, and was not chosen for sending next.

The actual fault is a tricky mistake in low-level C code—nevertheless, it can
be provoked with a short sequence of API calls, and we can find this sequence by
generating a random one and shrinking it.

The fault is also potentially serious. Those priorities are there for a reason.
Almost everything in the car can talk on the CAN bus—the brakes, the stereo. . . .
Here’s a tip: don’t adjust the volume during emergency braking!

For this project we read around 3,000 pages of PDFs (the standards doc-
uments). We formalized the specification in 20,000 lines of QuickCheck code.
We used it to test a million lines of C code in total, from 6 different suppliers,
finding more than 200 problems—of which well over 100 were ambiguities or
inconsistencies in the standard itself! In the few cases where we could compare
our test code to traditional test suites (in TTCN3), our code was an order of
magnitude smaller—but tests more.

So, does the method scale? Yes, it scales.
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4 Debugging a Database

The last story (Hughes and Bolinder 2011) begins with a message to the Erlang
mailing list, from Tobbe Törnqvist at Klarna.

“We know there is a lurking bug somewhere in the dets code. We have
got ‘bad object’ and ‘premature eof’ every other month the last year. We
have not been able to track the bug down since the dets files is repaired
automatically next time it is opened.”

The context: Klarna was a Swedish start-up offering invoicing services to web
shops1. They built their product in Erlang, and stored their data in Mnesia, the
database packaged with the Erlang distribution. Mnesia provides transactions,
distribution, replication, and so on, but needs a back end to actually store the
data. The back end for storage on disk is dets, which stores tuples in files. This
problem piqued my interest—it was quite notorious in the Erlang community,
and sounded as though it might involve a race condition.

To explain how QuickCheck tests for race conditions, let us consider a much
simpler example: a ticket dispenser such as one finds at delicatessen counters,
which issues each customer with a ticket indicating their place in the queue.
We might model such a dispenser in Erlang by two functions, take ticket()
and—because the roll of tickets needs to be replaced sometimes—reset().
A simple unit test for these functions might look as follows:

ticket_test () ->

ok = reset(),

1 = take_ticket (),

2 = take_ticket (),

3 = take_ticket (),

ok = reset(),

1 = take_ticket ().

Here we use Erlang pattern matching to compare the result of each call with its
expected value (ok being an atom, a constant, in Erlang—conventionally used
as the result of a function with no interesting result). This test case is typical
of test cases written in industry: we make a sequence of calls, and compare the
results to expected values.

It is easy to create a QuickCheck state machine for testing the dispenser
also. We can model its state as a single integer, which is set to 0 by reset(),
incremented by take ticket(), and used in the postcondition of take ticket
to check the result.

However, running sequential tests of the ticket dispenser is not enough: the
whole point of the system is to regulate the flow of many concurrent customers
to one delicatessen counter. If we do not also run parallel tests of the API, then
we are failing to test an essential part of its behaviour.

1 They have since grown to well over 1,000 people, serving 8 countries and counting.
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Now, consider one simple parallel test:

reset()
take ticket() take ticket()
take ticket()

which represents first resetting the dispenser, then two customers taking tickets
in parallel—the left customer taking two tickets, the right customer taking one.
What are the expected results? Well, the left customer might get tickets #1 and
#2, and the right customer ticket #3. Or, the left customer might get tickets
#1 and #3, while the right customer gets ticket #2! But if both customers get
ticket number #1, then the test has failed.

This poses a problem for the traditional way of writing test cases, because we
cannot predict the expected results. In this case, we could in principle compute
all three possibilities (in which the right customer gets ticket number #1, #2 or
#3), and compare the actual results against all three—but this approach does
not scale at all. Consider this only slightly larger test:

reset()
take ticket() take ticket() reset()
take ticket() take ticket()

This test has thirty possible correct outcomes! No developer in their right mind
would try to enumerate all of these—and anyone who tried would surely get at
least one wrong. The only practical way to decide if a test such as this has passed
or failed, is via a property that distinguishes correct from wrong results. Parallel
testing is a ‘killer app’ for property-based testing.

The way that QuickCheck decides whether a test like this has passed is
by searching for any interleaving of the calls which makes their results match
the model. If there is such an interleaving, then the test passes—but if there
is no such interleaving, then it has definitely failed. Here we are using the
same model as we used for sequential testing, to test a different property of
the implementation—namely, serializability of the operations.

Testing a buggy version of the dispenser, QuickCheck immediately reports:

Parallel:

1. dispenser:take_ticket () --> 1

2. dispenser:take_ticket () --> 1

Result: no_possible_interleaving

That is, two parallel calls of take ticket can both return 1—but no sequence of
two calls can return these results. In this case, there is a blatant bug in the code:
take ticket() reads and then writes a global variable containing the next ticket
number, with no synchronization at all—so no wonder there is a race condition.
But the point is that QuickCheck finds the bug very fast, and shrinks it to this
minimal example very reliably indeed.

Returning to dets, it stores tuples of the form {Key,Val1, Val2...} in a
file, and its API is unsurprising. For example,
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– insert(Table,List) inserts a list of tuples into a table,
– delete(Table,Key) deletes all tuples with the given key from the table, and
– insert new(Table,List) is like insert, unless one of the keys to be inserted

is already in the table, in which case it is a no-op.

These operations are all guaranteed to be atomic.
A state machine modelling dets is easy to construct—it is almost enough just

to model the table by a list of the tuples that should be in it. My model of the
core of the dets API is less than 100 lines of code—which compares well to the
implementation, over 6,000 lines of code spread over four modules, maintaining
hash tables on the disk, supporting an old format for the files, and so on. Thus,
although dets is quite complex, its intended behaviour is simple.

I first tested the model thoroughly by running tens of thousands of sequen-
tial tests. This ensures that the model and the code are consistent—and it did
turn up a few surprises. There is no point running parallel tests of a system,
if inconsistencies can already be found using sequential tests. (I assumed that
dets behaves correctly in the sequential case—it is mature and well-tested code,
after all—so any inconsistencies indicate a misunderstanding of the intended
behaviour, i.e. a bug in the model).

Once the model was correct, I began to run parallel tests. This only required
writing a few lines of code, because we reuse the same model for sequential and
parallel testing. Almost immediately, a real bug appeared:

Prefix:

open_file(dets_table ,[{type ,bag }]) --> dets_table

Parallel:

1. insert(dets_table ,[]) --> ok

2. insert_new(dets_table ,[]) --> ok

Result: no_possible_interleaving

In the sequential prefix of the test, we open the dets file, then in parallel call
insert and insert new. Both insert an empty list of tuples—so they are both
no-ops—and they both return ok! At first sight this looks reasonable—but the
documentation for insert new says it should return a boolean! Indeed, in tens of
thousands of sequential tests, insert new returned true or false every time—
now, suddenly, it returned ok. Strange!

Another run of QuickCheck reported a second bug:

Prefix:

open_file(dets_table ,[{type ,set }]) --> dets_table

Parallel:

1. insert(dets_table ,{0 ,0}) --> ok

2. insert_new(dets_table ,{0 ,0}) ... time out ...

In this case, both insert and insert new try to insert the same tuple, which
means that insert new could succeed or fail. . . but it should not time out, and
we should not see the message

=ERROR REPORT ==== 4-Oct -2010::17:08:21 ===

** dets: Bug was found when accessing table dets_table
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At this point I disabled the testing of insert new, which seemed not work
in parallel, and discovered a third bug:

Prefix:

open_file(dets_table ,[{type ,set }]) --> dets_table

Parallel:

1. open_file(dets_table ,[{type ,set }]) --> dets_table

2. insert(dets_table ,{0 ,0}) --> ok

get_contents(dets_table) --> []

Result: no_possible_interleaving

Here we first open the file, and then in parallel open it again, and insert a
tuple, then fetch the entire contents of the table. The test fails because process
2 sees an empty table, even though it just inserted a tuple! It may seem a little
suspicious to open the table twice, but it is not at all—Erlang is designed for
highly concurrent applications, so we expect many processes to be using the table
at the same time, and all of them need to make sure it is open.

I reported these bugs to Hans Bolinder at Ericsson, who was responsible for
the dets code, and next day he sent me a thank you and a fixed version. However,
he thought these were probably not the bugs that were plaguing Klarna, because
the symptoms were different. At Klarna, the file was being corrupted. Hans gave
me one line of code that could check for corruption, and I added it to the test
to check that, after executing a parallel test, the file was not corrupt.

This time it took around 10 min of testing to find a bug:

Prefix:

open_file(dets_table ,[{type ,bag }]) --> dets_table

close(dets_table) --> ok

open_file(dets_table ,[{type ,bag }]) --> dets_table

Parallel:

1. lookup(dets_table ,0) --> []

2. insert(dets_table ,{0 ,0}) --> ok

3. insert(dets_table ,{0 ,0}) --> ok

Result: ok

First we open, close, and open the file again, and then we do three things in
parallel: a lookup of a key that is not found, and two insertions of the same tuple.
All results are consistent with the model—but the corruption check encountered
a ‘premature eof’.

This is really the smallest test case that can provoke this error. It was ini-
tially hard to believe that the open–close–open sequence was really necessary. I
manually removed the first open and close, and ran the smaller test case tens of
thousands of times. It passed, every single time. Today I know why: the first call
to open creates the file, while the second call opens an existing file. It’s slightly
different, and dets enters a slightly different state—and that state is key to pro-
voking the bug. Three parallel operations are needed because the first makes
the dets server busy, causing the next two to be queued up, and then (wrongly)
dispatched in parallel by the server, once the first call is complete.
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The final bug was found when preparing a talk on this experience soon after-
wards, while rerunning the tests in order to copy the output onto slides. Again,
after around ten minutes of testing, the following bug was found:

Prefix:

open_file(dets_table ,[{type ,set }]) --> dets_table

insert(dets_table ,[{1 ,0}]) --> ok

Parallel:

1. lookup(dets_table ,0) --> []

delete(dets_table ,1) --> ok

2. open_file(dets_table ,[{type ,set }]) --> dets_table

Result: ok

We open the file and insert a tuple, then, in parallel, reopen the file, and lookup
a key not in the table, then delete the key that is. All the results are consistent
with the model—but the corruption check encountered a ‘bad object’. Recall the
mailing list message:

“We know there is a lurking bug somewhere in the dets code. We have got
‘bad object’ and ‘premature eof’ every other month the last year.”

So it seemed these might indeed be the Klarna bugs.
In each case, Hans Bolinder returned a fixed version of the code within a day

of receiving the bug report—and at Klarna, where the problem had meanwhile
begun to appear once a week, there has been only one ‘bad object’ error since
the new code went into production. . . when a reading a file last written before
the new code was installed.

Prior to this work Hans Bolinder had spent six weeks at Klarna hunting for
the bug, and the best theory was that it struck when the file was around 1 GB,
and might be something to do with rehashing. Now we know the bugs could
be provoked with a database with at most one record, using only 5–6 calls to
the API. In each case, given the minimal failing test, it was less than a day’s
work to find and fix the bug. This really demonstrates the enormous value of
shrinking—and shows just how hopeless it is to try to debug this kind of problem
from failures that happen in production, where not only the five or six relevant
things have occurred, but also millions of irrelevant others.

5 In Conclusion

This paper recounts some of our experiences of using an advanced testing tool
in real applications—its purpose is as much to entertain as to inform. Of course,
there is a wealth of other work in the area, that this paper makes no attempt to
cover—RANDOOP (Pacheco et al. 2007), DART (Godefroid et al. 2005), and
their successors would be good starting points for further reading.

I have also just touched the surface of the work that we have done. There was
far more to the Volvo project than could be described here. We needed to develop
a property-based approach to mocking (Svenningsson et al. 2014). We needed
to develop ways to cluster models of individual components into an integrated
model of a subsystem, because AUTOSAR subsystems are typically implemented
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monolithically, but specified as a collection of interacting components. We found
that QuickCheck’s shrinking tended to isolate the same bug in each run—which
is not ideal when generating a test report on a component with several differ-
ent bugs—so we developed methods to direct testing away from already-known
problems towards areas where unknown bugs might still lurk, and report all
the bugs at once. We were asked “does your model cover this test case?”, so we
developed tools to answer such questions—and when the AUTOSAR consortium
released six “official” test cases for the CAN bus stack, we used them to show
that three of these test cases were not covered by the model, because they were
not consistent with the standard (Gerdes et al. 2015). We were asked: “which
requirements have you tested?”, so we developed ways to collect requirements
coverage during testing—leading us to question what testing a requirement even
means (Arts and Hughes 2016).

In other areas, we helped Basho test their no-SQL database, Riak, for the key
property of eventual consistency—and found a bug (now fixed, of course) that
was present, not only in Riak, but in the original Amazon paper (DeCandia et al.
2007) that kicked off the no-SQL trend. Recently we tested Dropbox’s file syn-
chronization service, with some surprising results there too (Hughes et al. 2016).
Both these applications were based in part on the state machine framework
presented here, but added additional properties to express subtle correctness
conditions.

Perhaps the most general lesson from all this experience is that formulat-
ing specifications is hard—and many developers struggle with it. It may often
be easier to give examples of correct behaviour, than to define in general what
correctness means. This should not come as a surprise, since mathematicians
have used examples for centuries—but it does suggest that starting from a spec-
ification may not always be appropriate. Sometimes I am asked: “wouldn’t it
be great if we could just synthesize code from a specification?” It would not:
we would just replace buggy code with buggy specifications. A key insight from
using QuickCheck is that we find bugs by comparing two independent descrip-
tions of the desired behaviour—the implementation, and the specification—and
it is the inconsistencies between the two that reveal errors.

The need for a specification is the real weakness of property-based testing—
not that we use testing, rather than static analysis or proof, to relate specifi-
cations and implementations. Testing works well enough! The real question is:
how can we make specifications more useable, and easier to construct—for real
systems with all their complex behaviours? There is much work to be done
here—perhaps future tools will even help developers construct specifications
from examples.

In any event, there are many fascinating problems waiting to be addressed.
If this paper helps persuade the reader that testing is not a chore that must be
done, but a fascinating research area in its own right, then it will have fulfilled
its purpose.

And don’t forget,

DON’T WRITE TESTS, GENERATE THEM!
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Abstract. In the field of program transformation, one often transforms
programs into continuation-passing style to make their flow of control
explicit, and then immediately removes the resulting continuations using
defunctionalisation to make the programs first-order. In this article, we
show how these two transformations can be fused together into a single
transformation step that cuts out the need to first introduce and then
eliminate continuations. Our approach is calculational, uses standard
equational reasoning techniques, and is widely applicable.

1 Introduction

In his seminal work on definitional interpreters for higher-order programming
languages, Reynolds [12] popularised two techniques that have become central to
the field of program transformation: (i) transforming programs into continuation-
passing style (CPS) to make their flow of control explicit; and (ii) transforming
higher-order programs into first-order style using defunctionalisation. These two
transformations are often applied together in sequence, for example to trans-
form high-level denotational semantics for programming languages into low-level
implementations such as abstract machines or compilers [1,2,11–13].

However, there is something rather unsatisfactory about applying these two
transformations in sequence: the CPS transformation introduces continuations,
only for these to immediately be removed by defunctionalisation. This seems
like an ideal opportunity for applying fusion, which in general aims to combine
a series of transformations into a single transformation that achieves the same
result, but without the overhead of using intermediate structures between each
step. In our case, the intermediate structures are continuations.

Despite CPS transformation and defunctionalisation being obvious candi-
dates for being fused into a single transformation, this does not appear to have
been considered before. In this article, we show how this can be achieved in
a straightforward manner using an approach developed in our recent work on
calculating compilers [5]. Our approach starts with a specification that captures
the intended behaviour of the desired output program in terms of the input
program. We then calculate definitions that satisfy the specification by con-
structive induction [4], using the desire to apply induction hypotheses as the
driving force for the calculation process. The resulting calculations only require
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standard equational reasoning techniques, and achieve the combined effect of
CPS and defunctionalisation without the intermediate use of continuations.

We illustrate our approach by means of two examples: a minimal language
of arithmetic expressions to introduce the basic ideas in a simple manner, and
a call-by-value lambda calculus to show how it can be applied to a language
with variable binding. More generally, the approach scales up to a wide range
of programming language features and their combination, including exceptions,
state, loops, non-determinism, interrupts, and different orders of evaluation.

The article is aimed at a general functional programming audience rather
than specialists, and all the programs and calculations are written in Haskell.
The calculations have also been mechanically verified using the Coq proof assis-
tant, and the proof scripts for our two examples, together with a range of other
applications, are freely available online via GitHub [7].

2 Arithmetic Expressions

Consider a simple language of arithmetic expressions built up from integers and
addition, whose syntax and denotational semantics are defined as follows:

data Expr = Val Int | Add Expr Expr
eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y

Now suppose that we wish to calculate an abstract machine for this language,
which is given by a set of first-order, tail-recursive functions that are together
semantically equivalent to the function eval . We initially perform this calcula-
tion using the standard two step approach [1]: transformation into continuation-
passing style, followed by defunctionalisation. Then in Sect. 3 we show how these
two transformation steps can be combined into a single step.

Step 1 - Add Continuations

The first step is to transform the evaluation function into continuation-passing
style. More specifically, we seek to derive a more general evaluation function

eval ′ :: Expr → (Int → Int) → Int

that takes a continuation of type Int → Int as additional argument, which is
applied to the result of evaluating the expression. More precisely, the desired
behaviour of eval ′ is specified by the following equation:

eval ′ x c = c (eval x ) (1)

Rather than first defining the new function eval ′ and then separately proving by
induction that it satisfies the above equation, we aim to calculate a definition
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for eval ′ that satisfies this equation by constructive induction on the expression
argument x . In each case, we start with the term eval ′ x c and gradually trans-
form it by equational reasoning, aiming to arrive at a term t that does not refer
to the original semantic function eval , such that we can then take eval ′ x c = t as
a defining equation for eval ′ in this case. For the base case, when the expression
has the form Val n, the calculation is trivial:

eval ′ (Val n) c
= { specification (1) }
c (eval (Val n))

= { applying eval }
c n

By means of this calculation, we have discovered the definition for eval ′ in the
base case, namely: eval ′ (Val n) c = c n. In the inductive case, when the
expression has the form Add x y , we start in the same manner as above:

eval ′ (Add x y) c
= { specification (1) }
c (eval (Add x y))

= { applying eval }
c (eval x + eval y)

Now we appear to be stuck, as no further definitions can be applied. However, as
we are performing an inductive calculation, we can use the induction hypotheses
for x and y , that is, eval ′ x c′ = c′ (eval x ) and eval ′ y c′′ = c′′ (eval y). To
use these hypotheses, we must rewrite the term being manipulated into the form
c′ (eval x ) and c′′ (eval y) for some continuations c′ and c′′. This can be readily
achieved by abstracting over eval x and eval y using lambda expressions. Using
this idea, the rest of the calculation is then straightforward:

c (eval x + eval y)
= { abstracting over eval y }

(λm → c (eval x + m)) (eval y)
= { induction hypothesis for y }
eval ′ y (λm → c (eval x + m))

= { abstracting over eval x }
(λn → eval ′ y (λm → c (n + m))) (eval x )

= { induction hypothesis for x }
eval ′ x (λn → eval ′ y (λm → c (n + m))

The same result can also be achieved by applying the induction hypotheses in the
opposite order to the above, but for the purposes of the later fused calculation
it is important that we apply the induction hypothesis on y first if we want to
ensure that the resulting abstract machine evaluates the arguments of addition
from left-to-right. In conclusion, we have calculated the following definition:
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eval ′ :: Expr → (Int → Int) → Int
eval ′ (Val n) c = c n
eval ′ (Add x y) c = eval ′ x (λn → eval ′ y (λm → c (n + m)))

Finally, our original evaluation function can now be redefined in terms of
the new version by taking the identity function as the continuation in specifica-
tion (1), which results in the definition eval x = eval ′ x (λn → n).

Step 2 - Defunctionalise

The second step is to transform the new evaluation function back into first-order
style, using defunctionalisation. The basic idea is to replace the higher-order type
Int → Int of continuations by a first-order datatype whose values represent the
specific forms of continuations that we actually need.

Within the definitions for the functions eval and eval ′, there are only three
forms of continuations that are used, namely one to terminate the evaluation
process, one to continue once the first argument of an addition has been eval-
uated, and one to add two integer results together. We begin by defining an
abbreviation Cont for the type of continuations, together with three combina-
tors halt , next and add for constructing the required forms of continuations:

type Cont = Int → Int
halt :: Cont
halt = λn → n
next :: Expr → Cont → Cont
next y c = λn → eval ′ y (add n c)
add :: Int → Cont → Cont
add n c = λm → c (n + m)

Using these definitions, our evaluator can now be rewritten as:

eval :: Expr → Int
eval x = eval ′ x halt
eval ′ :: Expr → Cont → Int
eval ′ (Val n) c = c n
eval ′ (Add x y) c = eval ′ x (next y c)

The next stage in the process is to define a first-order datatype whose construc-
tors represent the three combinators:

data CONT where
HALT :: CONT
NEXT :: Expr → CONT → CONT
ADD :: Int → CONT → CONT

Note that the constructors for the new type have the same names and types as
the combinators for the Cont type, except that all the items are now capitalised.



Cutting Out Continuations 191

The fact that values of type CONT represent continuations of type Cont is
formalised by the following denotational semantics:

exec :: CONT → Cont
exec HALT = halt
exec (NEXT y c) = next y (exec c)
exec (ADD n c) = add n (exec c)

In the literature this function is typically called apply [12]. The reason for using
the name exec in our setting will become clear shortly. Using these ideas, our
aim now is to derive a new evaluation function

eval ′′ :: Expr → CONT → Int

that behaves in the same way as our continuation semantics eval ′ :: Expr →
Cont → Int , except that it uses values of type CONT rather than continuations
of type Cont . The desired behaviour of eval ′′ is specified by the equation:

eval ′′ x c = eval ′ x (exec c) (2)

We can now calculate a definition for eval ′′ from this specification, and in turn
new definitions for exec and eval in terms of the new function eval ′′. The calcu-
lations are entirely straightforward, and can be found in Hutton and Wright [8].
The end result is the following set of definitions:

eval ′′ :: Expr → CONT → Int
eval ′′ (Val n) c = exec c n
eval ′′ (Add x y) c = eval ′′ x (NEXT y c)
exec :: CONT → Int → Int
exec HALT n = n
exec (NEXT y c) n = eval ′′ y (ADD n c)
exec (ADD n c) m = exec c (n + m)
eval :: Expr → Int
eval x = eval ′′ x HALT

Together with the new type, these definitions form an abstract machine for
evaluating expressions: CONT is the type of control stacks for the machine,
which specify how it should continue after the current evaluation has concluded;
eval ′′ evaluates an expression in the context of a control stack; exec executes a
control stack in the context of an integer argument; and finally, eval evaluates an
expression by invoking eval ′′ with the empty control stack HALT . The fact that
the machine operates by means of two mutually recursive functions, eval ′′ and
exec, reflects the fact that it has two modes of operation, depending on whether
it is being driven by the structure of the expression or the control stack.

3 Fusing the Transformation Steps

We now show how the two separate transformation steps that were used to derive
the abstract machine for evaluating expressions can be combined into a single
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step that avoids the use of continuations. In the previous section, we started off
by defining a datatype Expr and a function eval ::Expr → Int that respectively
encode the syntax and semantics for arithmetic expressions. Then in two steps
we derived an abstract machine comprising four components:

– A datatype CONT that represents control stacks;
– A function eval ′′ :: Expr → CONT → Int that evaluates expressions;
– A function exec :: CONT → Int → Int that executes control stacks;
– A new definition for eval :: Expr → Int in terms of eval ′′.

By combining specifications (1) and (2), the relationship between the three func-
tions is captured by the following equation:

eval ′′ x c = exec c (eval x ) (3)

That is, evaluating an expression in the context of a control stack gives the
same result as executing the control stack in the context of the value of the
expression. The key to combining the CPS and defunctionalisation steps is to
use this equation directly as a specification for the four additional components,
from which we then aim to calculate definitions that satisfy the specification.
Given that the equation involves two known definitions (Expr and the original
eval) and four unknown definitions (CONT , eval ′′, exec, and the new eval), this
may seem like an impossible task. However, with the benefit of the experience
gained from our earlier calculations, it turns out to be straightforward.

We proceed from specification (3) by constructive induction on the expres-
sion x . In each case, we aim to rewrite the term eval ′′ x c into a term t that does
not refer to the original semantics eval , such that we can then take eval ′′ x c = t
as a defining equation for eval ′′. In order to do this we will find that we need to
introduce new constructors into the CONT type, along with their interpretation
by the function exec. The base case is once again trivial:

eval ′′ (Val n) c
= { specification (3) }
exec c (eval (Val n))

= { applying eval }
exec c n

The inductive case begins in the same way:

eval ′′ (Add x y) c
= { specification (3) }
exec c (eval (Add x y))

= { applying eval }
exec c (eval x + eval y)

At this point no further definitions can be applied. However, we can make use
of the induction hypotheses for the argument expressions x and y . In order to
use the induction hypothesis for y , that is, eval ′′ y c′ = exec c′ (eval y), we
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must rewrite the term that is being manipulated into the form exec c′ (eval y)
for some control stack c′. That is, we need to solve the equation:

exec c′ (eval y) = exec c (eval x + eval y)

First of all, we generalise eval x and eval y to give:

exec c′ m = exec c (n + m)

Note that we can’t simply use this equation as a definition for exec, because
n and c would be unbound in the body of the definition. The solution is to
package these two variables up in the control stack argument c′ by adding a new
constructor to the CONT type that takes these two variables as arguments,

ADD :: Int → CONT → CONT

and define a new equation for exec as follows:

exec (ADD n c) m = exec c (n + m)

That is, executing the command ADD n c in the context of an integer argu-
ment m proceeds by adding the two integers and then executing the remaining
commands in the control stack c, hence the choice of the name for the new
constructor. Using these ideas, we continue the calculation:

exec c (eval x + eval y)
= { define: exec (ADD n c) m = exec c (n + m) }
exec (ADD (eval x ) c) (eval y)

= { induction hypothesis for y }
eval ′′ y (ADD (eval x ) c)

No further definitions can be applied at this point, so we seek to use the induction
hypothesis for x , that is, eval ′′ x c′ = exec c′ (eval x ). In order to do this, we
must rewrite the term eval ′′ y (ADD (eval x ) c) into the form exec c′ (eval x )
for some control stack c′. That is, we need to solve the equation:

exec c′ (eval x ) = eval ′′ y (ADD (eval x ) c)

As with the case for y , we first generalise eval x to give

exec c′ n = eval ′′ y (ADD n c)

and then package the free variables y and c up in the argument c′ by adding a
new constructor to CONT that takes these variables as arguments

NEXT :: Expr → CONT → CONT

and define a new equation for exec as follows:

exec (NEXT y c) n = eval ′′ y (ADD n c)
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That is, executing the command NEXT y c in the context of an integer argu-
ment n proceeds by evaluating the expression y and then executing the control
stack ADD n c. Using this idea, the calculation can now be completed:

eval ′′ y (ADD (eval x ) c)
= { define: exec (NEXT y c) n = eval ′′ y (ADD n c) }
exec (NEXT y c) (eval x )

= { induction hypothesis for x }
eval ′′ x (NEXT y c)

Finally, we conclude the development of the abstract machine by aiming to
redefine the original evaluation function eval :: Expr → Int in terms of the new
evaluation function eval ′′ :: Expr → CONT → Int . In this case there is no need
to use induction as simple calculation suffices, during which we introduce a new
constructor HALT :: CONT to transform the term being manipulated into the
required form in order that specification (3) can then be applied:

eval x
= { define: exec HALT n = n }
exec HALT (eval x )

= { specification (3) }
eval ′′ x HALT

In summary, we have calculated the following definitions:

data CONT where
HALT :: CONT
NEXT :: Expr → CONT → CONT
ADD :: Int → CONT → CONT

eval ′′ :: Expr → CONT → Int
eval ′′ (Val n) c = exec c n
eval ′′ (Add x y) c = eval ′′ x (NEXT y c)
exec :: CONT → Int → Int
exec HALT n = n
exec (NEXT y c) n = eval ′′ y (ADD n c)
exec (ADD n c) m = exec c (n + m)
eval :: Expr → Int
eval x = eval ′′ x HALT

These are precisely the same definitions as in the previous section, except that
they have now been calculated directly from a specification for the correctness
of the abstract machine, rather than indirectly using two transformation steps.

In a similar manner to the first calculation step in Sect. 2, we could have
reversed the order in which we apply the induction hypotheses in the case of
Add , which would result in an abstract machine that evaluates the arguments
of addition right-to-left rather than left-to-right.
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Reflection

The fundamental drawback of the two step approach is that we have to find
the right specification for the first step in order for the second step to yield the
desired result. This is non-trivial. How would we change the specification for
the CPS transformation such that subsequent defunctionalisation yields a com-
piler rather than an abstract machine? Why did the specification we used yield
an abstract machine? By combining the two transformation steps into a single
transformation, we avoid this problem altogether: we write one specification that
directly relates the old program to the one we want to calculate. As a result, we
have an immediate link between the decisions we make during the calculations
and the characteristics of the resulting program. Moreover, by avoiding CPS and
defunctionalisation, the calculations become conceptually simpler. Because the
specification directly relates the input program and the output program, it only
requires the concepts and terminology of the domain we are already working on:
no continuations or higher-order functions are needed.

4 Lambda Calculus

For our second example, we consider a call-by-value variant of the untyped
lambda calculus. To this end, we assume for the sake of simplicity that our meta-
language is strict. For the purposes of defining the syntax for the language, we
represent variables using de Bruijn indices:

data Expr = Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index i � 0, Abs x constructs
an abstraction over the expression x , and App x y applies the abstraction that
results from evaluating the expression x to the value of the expression y .

In order to define the semantics for the language, we will use an environ-
ment to interpret the free variables in an expression. Using de Bruijn indices we
can represent an environment simply as a list of values, in which the value of
variable i is given by indexing into the list at position i :

type Env = [Value ]

In turn, we will use a value domain for the semantics in which functional values
are represented as closures [10] comprising an expression and an environment
that captures the values of its free variables:

data Value = Clo Expr Env

Using these ideas, it is now straightforward to define an evaluation function that
formalises the semantics of lambda expressions:

eval :: Expr → Env → Value
eval (Var i) e = e !! i
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eval (Abs x ) e = Clo x e
eval (App x y) e = case eval x e of

Clo x ′ e ′ → eval x ′ (eval y e : e ′)

Keep in mind that although we use Haskell syntax, we now assume a strict
semantics for the meta language. In particular, in the case of App x y above,
this means that the argument expression y is evaluated before x ′.

Unlike our first example, however, the above semantics is not compositional.
That is, it is not structurally recursive: in the case for App x y we make a
recursive call eval x ′ on the expression x ′ that results from evaluating the argu-
ment expression x . As a consequence, we can no longer use simple structural
induction to calculate an abstract machine, but must use the more general tech-
nique of rule induction [14]. To this end, it is convenient to first reformulate
the semantics in an explicit rule-based manner. We define an evaluation relation
⇓ ⊆ Expr ×Env ×Value by means of the following set of inference rules, which
are obtained by rewriting the definition of eval in relational style:

e !! i is defined
Var i ⇓e e !! i Abs x ⇓e Clo x e

x ⇓e Clo x ′ e ′ y ⇓e u x ′ ⇓u:e′ v
App x y ⇓e v

Note that eval is not a total function because (i) evaluation may fail to terminate,
and (ii) looking up a variable in the environment may fail to return a value.
The first cause of partiality is captured by the ⇓ relation: if eval x e fails to
terminate, then there is no value v with x ⇓e v . The second cause is captured
by the side-condition “e !! i is defined” on the inference rule for Var i .

Specification

For the purposes of calculating an abstract machine based on the above seman-
tics, the types for the desired new evaluation and execution functions remain
essentially the same as those for arithmetic expressions,

eval ′′ :: Expr → CONT → Int
exec :: CONT → Int → Int

except that eval ′′ now requires an environment to interpret free variables in its
expression argument, and the value type is now Value rather than Int :

eval ′′ :: Expr → Env → CONT → Value
exec :: CONT → Value → Value

For arithmetic expressions, the desired behaviour of the abstract machine was
specified by the equation eval ′′ x c = exec c (eval x ). For lambda expressions,
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this equation needs to be modified to take account of the presence of an envi-
ronment e, and the fact that the semantics is expressed by a relation ⇓ rather
than a function eval . The resulting specification is as follows:

x ⇓e v ⇒ eval ′′ x e c = exec c v (4)

Note that there is an important qualitative difference between the specifica-
tion above and specification (3) for arithmetic expressions. The latter expresses
soundness and completeness of the abstract machine, whereas the above only
covers completeness, that is, every result produced by the semantics is also pro-
duced by the machine. But the specification does not rule out that exec termi-
nates with a result for an expression that diverges according to the semantics. A
separate argument about soundness has to be made. Bahr and Hutton [5] discuss
this issue in more detail in the context of calculating compilers.

Calculation

Based upon specification (4), we now calculate definitions for the functions eval ′′

and exec by constructive rule induction on the assumption x ⇓e v . In each case,
we aim to rewrite the left-hand side eval ′′ x e c of the equation into a term t
that does not refer to the evaluation relation ⇓, from which we can then conclude
that the definition eval ′′ x e c = t satisfies the specification in this case. As in
our first example, along the way we will find that we need to introduce new
constructors into the CONT type, together with their interpretation by exec.
The base cases for variables and abstractions are trivial.

Assuming Var i ⇓e e !! i , we have that

eval ′′ (Var i) e c
= { specification (4) }
exec c (e !! i)

and assuming Abs x ⇓e Clo x e, we have that

eval ′′ (Abs x ) e c
= { specification (4) }
exec c (Clo x e)

In the case for App x y ⇓e v , we may assume x ⇓e Clo x ′ e ′, y ⇓e u and
x ′ ⇓u:e′ v by the inference rule that defines the behaviour of App x y , together
with induction hypotheses for the three component expressions x , y and x ′.
The calculation then proceeds by aiming to rewrite the term being manipulated
into a form to which these induction hypotheses can be applied. Applying the
induction hypothesis for x ′, i.e. eval ′′ x ′ (u :e ′) c′ = exec c′ v , is straightforward:

eval ′′ (App x y) e c
= { specification (4) }
exec c v
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= { induction hypothesis for x ′ }
eval ′′ x ′ (u : e ′) c

In turn, to apply the induction hypothesis for y , i.e. eval ′′ y e c′ = exec c′ u,
we need to rewrite the term eval ′′ x ′ (u : e ′) c into the form exec c′ u for some
control stack c′, i.e. we need to solve the equation:

exec c′ u = eval ′′ x ′ (u : e ′) c

As in our first example, the solution is to package the free variables x ′, e ′ and c
in this equation up in the control stack argument c′ by adding a new constructor
to the CONT type that takes these variables as arguments

FUN :: Expr → Env → CONT → CONT

adding a new equation for exec

exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c

and then continuing the calculation:

eval ′′ x ′ (u : e ′) c
= { define: exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c }
exec (FUN x ′ e ′ c) u

= { induction hypothesis for y }
eval ′′ y e (FUN x ′ e ′ c)

Finally, to apply the induction hypothesis for the expression x , i.e. eval ′′ x e c′ =
exec c′ (Clo x ′ e ′), we need to solve the equation

exec c′ (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)

for which purposes we add another new constructor to the CONT type that
takes the free variables y , e and c in this equation as arguments,

ARG :: Expr → Env → CONT → CONT

add a new equation for exec

exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)

and then conclude as follows:

eval ′′ y e (FUN x ′ e ′ c)
= { define: exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c) }
exec (ARG y e c) (Clo x ′ e ′)

= { induction hypothesis for x }
eval ′′ x e (ARG y e c)

In a similar manner to the first example, we can then define the top-level eval-
uation function simply by applying eval ′′ to a nullary constructor HALT .
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In summary, we have calculated the following definitions, which together form
an abstract machine for evaluating lambda expressions:

data CONT where
HALT :: CONT
ARG :: Expr → Env → CONT → CONT
FUN :: Expr → Env → CONT → CONT

eval ′′ :: Expr → Env → CONT → Value
eval ′′ (Var i) e c = exec c (e !! i)
eval ′′ (Abs x ) e c = exec c (Clo x e)
eval ′′ (App x y) e c = eval ′′ x e (ARG y e c)
exec :: CONT → Value → Value
exec (ARG y e c) (Clo x ′ e ′) = eval ′′ y e (FUN x ′ e ′ c)
exec (FUN x ′ e ′ c) u = eval ′′ x ′ (u : e ′) c
eval :: Expr → Env → Value
eval x e = eval ′′ x e HALT

The names of the control stack commands are based on the intuition that ARG
evaluates the argument of a function application, whereas FUN evaluates the
function body. The resulting abstract machine coincides with the CEK machine
[6]. We have also calculated abstract machines for lambda calculi with call-by-
name and call-by-need semantics, which correspond to the Krivine machine [9]
and a lazy variant of the Krivine machine derived by Ager et. al [3], respectively.
The calculations can be found in the associated Coq proofs [7].

5 Summary and Conclusion

We presented the simple idea of applying fusion on the level of program cal-
culations. Instead of first producing continuations via CPS transformation and
then immediately turning them into data via defunctionalisation, we transform
the original program in one go into the target program. Despite its conceptual
simplicity, the benefits of this idea are considerable: the input program and the
output program are linked directly to the desired output program via the spec-
ification that drives the calculation. This directness simplifies the calculation
process and allows us to guide the process towards the desired output more eas-
ily. Moreover, by cutting out the continuations as the middleman, we avoid some
of its complexities. For example, we have found that using CPS transformation
for deriving compilers often yields non-strictly-positive datatypes, which makes
the transformation unsuitable for formalisation in proof assistants. However, the
non-strictly-positive datatypes disappear after defunctionalisation, and by fusing
the two transformations we avoid the issue entirely.

To demonstrate the generality of the idea presented in this paper, we applied
it to a variety of examples. The associated Coq proofs [7] contain formal calcu-
lations of abstract machines for different varieties of lambda calculi as well as
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languages with exception handling and state. The systematic nature of the cal-
culations indicates the potential for automation of the entire derivation process
with little or no interaction from the user apart from the specification.

Acknowledgements. We thank the anonymous reviewers for their comments and
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Abstract. The Lambda Calculus has perplexed students of computer sci-
ence for millennia, rendering many incapable of understanding even the
most basic precepts of functional programming. This paper gently intro-
duces the core concepts to the lay reader, assuming only a minimum of
background knowledge in category theory, quantum chromodynamics, and
paleomagnetism.

In addition, this paper goes on to its main results, showing how the
Lambda Calculus can be used to easily prove the termination of Leibniz’
Hailstone numbers for all n > 0, to show that matrix multiplication is pos-
sible in linear time, and to guarantee Scottish independence.

1 Introduction
The fascinating story of the discovery of the Lambda Calculus is well known to all
school children, but we here recount the essentials of the story for completeness.
In the 27th century BC, Egyptian slaves were quarrying stone for the Pyramid of
Djoser, northwest ofMemphis. Buried deep in the sand, they unearthed a rare stele,
completewith the full LambdaCalculus,written inhieroglyphics.At the time, none
of the finest scholars of the ancient world could decipher the tablet and for many
years it lay forgotten, a relic of a bygone era.

All that changed, however, when in 1929 Alonzo Church came upon the Djoser
stele in the British Museum. In the decade before, Church had been working as a
chorus girl in amusic hall production of the Social Network during its long and infa-
mous tour of the Middle East. There he had developed a passion for hieroglyphics
and early Egyptian history. Thus it was that when he first laid eyes on the stone
carvings, he instantly knew the significance of the markings and began fervently to
decode them. He completed the work in 1932 with the paper, “A set of postulates
for the foundation of logic”. His article was an instant success, reaching number one
on the New York Times best seller list for twelve weeks running, and earning him
a much coveted Turing Award1. The rest, as they say, is history.

1.1 Lambda Calculus Defined
But, what is the Lambda Calculus? Despite the usual confusion that surrounds it,
this dainty and delightful logic can be perfectly described in one short sentence:

“The square of the hypotenuse is the sum of the squares of the other two sides.”

Or more formally:
E = mc2 (1)

Now that the reader is fully conversant with the calculus, the next section
describes the importance of Lambda Calculus to circadian rhythm biology.
1 ThisseriouslyannoyedAlanTuringwhodidnotwinaTuringAward.Inresponse,Turing

changedhisnametoBenedictCumberbatchandwonanOscar.Oscardidn’treallymind.

c© Springer International Publishing Switzerland 2016
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2 Conclusion and Further Work

This paper has two major contributions. The first is that we are the first
researchers to the best of our knowledge to have found a bonefide use for Comic
Sans in a scientific paper2. The second, arguably more important contribution,
is that we have wished Phil Wadler a very happy sixtieth birthday. In the future
we hope that while we are exploring more uses for Comic Sans, that Phil has a
jolly good time.

We would also strongly recommend that, no matter how much Phil wants to
have a washboard stomach and to fight crime, he does not experiment trying to
make a radioactive ethernet cable. And, under no circumstances should he go
inserting ethernet cables anywhere other than ethernet sockets.
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Abstract. Work to date on combining linear types and dependent types
has deliberately and successfully avoided doing so. Entirely fit for their
own purposes, such systems wisely insist that types depend only on the
replicable sublanguage, thus sidestepping the issue of counting uses of
limited-use data either within types or in ways which are only really
needed to shut the typechecker up. As a result, the linear implication
(‘lollipop’) stubbornly remains a non-dependent S � T . This paper
defines and establishes the basic metatheory of a type theory supporting
a ‘dependent lollipop’ (x :S) � T [x], where what the input used to be is
in some way commemorated by the type of the output. For example, we
might convert list to length-indexed vectors in place by a function with
type (l : List X) � Vector X (length l). Usage is tracked with resource
annotations belonging to an arbitrary rig, or ‘riNg without Negation’.
The key insight is to use the rig’s zero to mark information in contexts
which is present for purposes of contemplation rather than consumption,
like a meal we remember fondly but cannot eat twice. We need no run-
time copies of l to form the above vector type. We can have plenty of
nothing with no additional runtime resource, and nothing is plenty for
the construction of dependent types.

1 Introduction

Girard’s linear logic [15] gives a discipline for parsimonious control of resources,
and Martin-Löf’s type theory [18] gives a discipline for precise specification of
programs, but the two have not always seen eye-to-eye.

Recent times have seen attempts to change that. Pfenning blazed the trail in
2002, working with Cervesato on the linear logical framework [8], returning to the
theme in 2011 to bring dependency on values to session types in joint work with
Toninho and Caires [27]. Shi and Xi have linear typing in ATS [24]. Swamy and
colleagues have linear typing in F � [25]. Brady’s Idris [6] has uniqueness typing,
after the fashion of Clean [9]. Vákár has given a categorical semantics [28] where
dependency is permitted on the cartesian sublanguage. Gaboardi and colleagues
use linear types to study differential privacy [12]. Krishnaswami, Pradic and
Benton [16] give a beautiful calculus based on a monoidal adjunction which
relates a monoidal closed category of linear types to a cartesian closed category
of intuitionistic dependent types.

c© Springer International Publishing Switzerland 2016
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Linear dependent types are a hot topic, but for all concerned bar me, linearity
stops when dependency starts. The application rules (for twain they are, and
never shall they meet) from Krishnaswami and coauthors illustrate the puzzle.

Γ ;Δ � e : A � B Γ ;Δ′ � e′ : A
Γ ;Δ,Δ′ � e e′ : B

Γ ;Δ � e : Πx :X.A Γ � e′ : X
Γ ;Δ � e e′ : A[e′/x]

Judgments have an intuitionistic context, Γ , shared in each premise, and a
linear context Δ, carved up between the premises. Later types in Γ may depend
on earlier variables, so Γ cannot be freely permuted, but in order to distribute
resources in the linear application, the linear context must admit permutation.
Accordingly, types in Δ can depend on variables from Γ , but not on linear
variables. How could they? When the linear context is chopped in two, some
of the linear variables disappear! Accordingly, the argument in the dependent
application is a purely intutionistic term, depending only on shared information,
and the result type is thus well formed.

In this paper, I resolve the dilemma, with one idea: nothing. Contexts account
for how many of each variable we have, and when we carve them up, we retain
all the variables in each part but we split their quantities, so that we know
of which we have none. That is, contexts with typed variables in common are
modules, in the algebraic sense, with pointwise addition of resources drawn from
some rig (‘riNg without Negation’). Judgments account for how many of the
given term are to be constructed from the resources in the context, and when
we are constructing types, that quantity will be zero, distinguishing dynamic
consumption from static contemplation. Correspondingly, we retain the ability
to contemplate variables which stand for things unavailable for computation. My
application rule (for there is but one) illustrates the point.

Δ0 � ρ f ∈ (π x :S) → T Δ1 � ρπ S � s
Δ0 + Δ1 � ρ f s ∈ T [s :S/x]

The function type is decorated with the ‘unit price’ π to be paid in copies of
the input for each output required, so to make ρ outputs, our resource must be
split between ρ functions and ρπ arguments. The two contexts Δ0 and Δ1 have
the same variables, even if some of them have zero resource, so the resulting type
makes sense. If the ring has a 1, we may write (1 x :S) → T as (x :S) � T .

In summary, this paper contributes the definition of a type theory with uni-
form treatment of unit-priced dependent function spaces which is even
unto its syntax bidirectional, in the sense of Pierce and Turner [22], resulting
in a metatheoretic treatment of novel simplicity, including type preservation
and a proof that erasure of all zero-resourced components retains type safety.

2 A Rig of Resources

Let us model resources with a rig, rather as Petricek, Orchard and Mycroft do,
in their presentation of coeffects [21].
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Definition 1 (Rig). Let R be a set (whose elements are typically called ρ, π, φ),
equipped with a value 0, an addition ρ + π, and a ‘multiplication’, φρ, such that

0 + ρ = ρ ρ + (π + φ) = (ρ + π) + φ ρ + π = π + ρ
φ(ρπ) = (φρ)π 0ρ = 0 = ρ0 φ(ρ + π) = φρ + φπ (ρ + π)φ = ρφ + πφ

I was brought up not to presume that a rig has a 1. Indeed, the trivial rig {0} will
give us the purely intuitionistic type theory we know and love. Moreover, every
rig has the trivial sub-rig, a copy of intuitionistic type theory, in which we shall
be able to construct objects (types, especially) whose runtime resource footprint
is nothing but whose contemplative role allows more precise typechecking. The
{0, 1} rig gives a purely linear system, but the key example is ‘none-one-tons’.

Definition 2 (None-One-Tons).

ρ+π 0 1 ω

0 0 1 ω

1 1 ω ω

ω ω ω ω

ρπ 0 1 ω

0 0 0 0
1 0 1 ω

ω 0 ω ω

The 0 value represents the resource required for usage only in types; 1 resources
linear runtime usage; ω indicates relevant usage with no upper limit, or with
weakening for ω (as treated in Sect. 12), arbitrary usage. With the latter in
place, we get three recognizable quantifiers,

informally ∀x :S. T (x :S) � T Πx :S. T
formally (0x :S) → T (1x :S) → T (ω x :S) → T

where ∀ is parametric, effectively an intersection rather than a product, with
abstractions and applications erasable at runtime, but Π is ad hoc and thus
runtime persistent. In making that valuable distinction, I learn from Miquel’s
Implicit Calculus of Constructions [20]: a dependent intersection collects only
the functions which work uniformly for all inputs; a dependent product allows
distinct outputs for distinguishable inputs.

Unlike Miquel, I shall remain explicit in the business of typechecking, but
once a non-zero term has been checked, we can erase its zero-resourced sub-
structures to obtain an untyped (for types are zero-resourced) λ-term which is
the runtime version of it and computes in simulation with the unerased original,
as we shall see in Sect. 11. Note that erasure relies on the absence of negation:
zero-resourcing should not be an accident of ‘cancellation’.

Although I give only the bare functional essentials, one can readily imagine
an extension with datatypes and records, where the type of an in place sorting
algorithm might be (1 xs :List Int) → {1 ys :OrderedList Int; 0 p :ys ∼ xs}.

We can, of course, contemplate many other variations, whether for usage
analysis in the style of Wadler [30], or for modelling partial knowledge as
Gaboardi and coauthors have done [12].
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3 Syntax and Computation

The type theory I present is parametrised by its system of sorts (or ‘universes’).
I keep it predicative: each sort is closed under quantification, but quantifying over
‘higher’ sorts is forbidden. My aim (for further work) is to support a straight-
forward normalization proof in the style championed by Abel [2]. Indeed, the
resource annotations play no role in normalization, so erasing them and embed-
ding this system into the predicative type theory in Abel’s habilitationsschrift [1]
may well deliver the result, but a direct proof would be preferable.

Definition 3 (Sort Ordering). Let S be a set of sorts (i, j, k) with a well-

founded ordering j � i: k � jj � i
k � i

∀j. (∀i. j � i → P [i]) → P [j]
∀k. P [k] .

Asperti and the Matita team give a bidirectional ‘external syntax’ for the
Calculus of Constructions [4], exploiting the opportunities it offers to omit type
annotations. I have been working informally with bidirectional kernel type theo-
ries for about ten years, so a precise treatment is overdue. Here, the very syntax
of the theory is defined by mutual induction between terms, with types specified
in advance, and eliminations with types synthesized. Types are terms, of course.

Definition 4 (Term, Elimination).

R,S, T, s, t ::= ∗i sort i
| (π x :S) → T function type
| λ x. t abstraction
| e elimination

e, f ::= x variable
| f s application
| s :S annotation

Sorts are explicit, and the function type is annotated with a ‘price’ π ∈ R:
the number of copies of the input required to compute each copy of the output.
This bidirectional design ensures that λ need not have a domain annotation—
that information always comes from the prior type. An elimination becomes a
term without annotation: indeed, we shall have two candidates for its type.

In the other direction, a term can be used as an elimination only if we give
a type at which to check it. Excluding type annotations from the syntax would
force terms into β-normal form. Effectively, type annotations mark places where
computation is unfinished—the ‘cuts’, in the language of logical calculi: we see
the types of the ‘active’ terms. I plan neither to write nor to read mid-term type
annotations, but rather to work with β-normal forms and typed definitions.

Syntactically, terms do not fit where variables go: we must either compute the
β-redexes after substitution, as in the hereditary method introduced by Watkins
and coauthors [32] and deployed to great effect by Adams [3], or we must find
some other way to suspend computation in a valid form. By adding cuts to the
syntax of eliminations, I admit a small-step characterization of reduction which
allows us to approach the question of type preservation without first establishing
β-normalization, which is exactly cut elimination in the sense of Gentzen [14].
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The syntax is set up so that a redex pushes a cut towards its elimination.
The β-rule replaces a redex elimination at a function type by redexes at the
domain and range. The υ-rule strips the annotation from a fully computed term.

Definition 5 (Contraction, Reduction, Computation). Contraction
schemes are as follows:

(λ x. t : (π x :S) → T ) s �β (t :T )[s :S/x] t : T �υ t

Closing �β and �υ under all one-hole contexts yields reduction, s � t. The
reflexive-transitive closure of reduction is computation: →→=�∗.

Let us defer the metatheory of computation and build more of the type theory.

4 Typing Rules

What we might be used to calling a context is here a precontext, Γ .

Definition 6 (Precontext, Context). Γ ::= · | Γ, x :S.
A Γ -context is a marking-up of Γ with a rig element for each variable.

· is a Cx(·)
Δ is a Cx(Γ )

Δ, ρx :S is a Cx(Γ, x :S)

If Δ is a Γ -context, we may take 
Δ� = Γ.

It is my tidy habit to talk of “Γ -contexts”, rather than slicing “contexts” by

−�, after the fact: Γ -contexts form an R-module: addition Δ + Δ′ is pointwise,
and multiplication φΔ premultiplies all the rig-annotations on variables in Δ by
φ, keeping types the same. It is another (similar) habit to suppress the conditions
required for wellformedness of expressions like Δ + Δ′: that is how I am telling
you that Δ and Δ′ are both Γ -contexts for some Γ .

Definition 7 (Prejudgment). The prejudgment forms, P, are as follows.

type checking Γ � T � t
type synthesis Γ � e ∈ S

As with contexts, judgments decorate prejudgments with resources from R.
We may define a forgetful map 
−� from judgments to prejudgments.

Definition 8 (Judgment). The judgment forms, J , and 
−� : J → P are
given as follows.

type checking 
Δ � ρ T � t� = 
Δ� � T � t
type synthesis 
Δ � ρ e ∈ S� = 
Δ� � e ∈ S
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Let us say that t and e are, respectively, the subjects of these judgments. Let
us further designate Δ and T inputs and S an output. My plan is to arrange
the rules so that, presupposing input to a judgment makes sense, the subjects
are validated and sensible output (if any) is synthesized. My policy is “garbage
in; garbage out” and its benefit is that information flows as typing unfolds from
subjects (once checked) to inputs and outputs, but never from inputs back to
subjects. By restricting the interaction between the parts of the judgments in
this way, I arrange a straightforward inductive proof of type preservation.

Readers familiar with traditional presentations may be surprised by the lack
of a context validity judgment: I was surprised, too. Rather, we must now main-
tain the invariant that if a derivable judgment has valid input, every judgment
in its derivation has valid input and output, and its own output is valid.

Any assignment of resources to a valid precontext Γ gives a context Δ. The
typing judgments indicate that the resources in Δ are precisely enough to con-
struct the given t or e with multiplicity ρ: it may help to think of ρ as ‘how
many runtime copies’. The types S and T consume no resources. We may use
the derived judgment form Γ �0 T � t to abbreviate the all-resources-zero judg-
ment 0Γ � 0 T � t which is common when checking that types are well formed.

Definition 9 (Type Checking and Synthesis). Type checking and synthesis
are given by the following mutually inductive definition.

pre
Δ � ρ R � t
Δ � ρ T � t

T � R

sort
Γ �0 ∗j � ∗i

j � i

fun

Γ �0 ∗i � S
Γ, x :S �0 ∗i � T

Γ �0 ∗i � (π x :S) → T

lam
Δ, ρπ x :S � ρ T � t

Δ � ρ (π x :S) → T � λx. t

elim
Δ � ρ e ∈ S
Δ � ρ T � e

S � T

post
Δ � ρ e ∈ S
Δ � ρ e ∈ R

S � R

var 0Γ, ρ x :S, 0Γ ′ � ρ x ∈ S

app

Δ0 � ρ f ∈ (π x :S) → T
Δ1 � ρπ S � s

Δ0 + Δ1 � ρ f s ∈ T [s :S/x]

cut

Δ� �0 ∗i � S Δ � ρ S � s

Δ � ρ s :S ∈ S

Introduction forms require a type proposed in advance. It may be necessary
to pre-compute that type, e.g., to see it as a function type when checking a
lambda. The sort rule is an axiom, reflecting the presupposition that the context
is valid already. Wherever the context is extended, the rules guarantee that the
new variable has a valid type: in fun, it comes from the subject and is checked;
in lam, it is extracted from an input. The fun rule pushes sort demands inward
rather than taking the max of inferred sorts, so it is critical that elim allows
cumulative inclusion of sorts as we switch from construction to usage.

The var or cut at the heart of an elimination drives the synthesis of its type,
which we may need to post-compute if it is to conform to its use. E.g., to use
app, we must first compute the type of the function to a function type, exposing
its domain (to check the argument) and range (whence we get the output type).
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Presuming context validity, var is an axiom enforcing the resource policy. Note
how app splits our resources between function and argument, but with the same
precontext for both. The usual ‘conversion rule’ is replaced by elim sandwiched
between posts and pres computing two types to compatible forms.

Valid typing derivations form R-modules. Whatever you make some of with
some things, you can make none of with nothing—plenty for making types.

5 Dependent Iterative Demolition of Lists

Thus far, I have presented a bare theory of functions. Informally, let us imag-
ine some data by working in a context. Underlines e help readability only of
metatheory: I omit them, and sorts to boot. I telescope some function types for
brevity. Let us have zero type constructors and plenty of value constructors.

0 List : (0 X :∗) → ∗, ω nil : (0 X :∗) → List X,
ω cons : (0 X :∗, 1 x :X, 1 xs :List X) → List X

Let us add a traditional dependent eliminator, resourced for iterative demolition.

ω lit : (0 X :∗, 0 P : (0 x :List X) → ∗) →
(1 n :P (nil X)) →
(ω c : (1 x :X, 0 xs :List X, 1 p :P xs) → P (cons X x xs)) →
(1 xs : List X) → P xs

The nil case is used once. In the cons case the tail xs has been reconsituted as p
but remains contemplated in types. The intended computation rules conform.

lit X P n c (nil X) � n lit X P n c (cons X x xs) � c x xs (lit X P n c xs)

Typechecking both sides of each rule, we see that n occurs once on both sides
of each, but that c is dropped in one rule and duplicated in the other—some
weakening is needed. Meanwhile, for cons, the tail xs has its one use in the
recursive call but can still be given as the zero-resourced tail argument of c.

Some familiar list operations can be seen as simple demolitions:

ω append : (0 X :∗, 1 xs :List X, 1 ys :List X) → List X
append = λ X. λ xs. λ ys. lit X (λ . List X) ys (λ x. λ . λ xs ′. cons X x xs ′) xs

ω reverse : (0 X :∗, 1 xs :List X) → List X
reverse = λ X. λ xs. lit X (λ . (1 ys :List X) → List X)

(λ ys. ys) (λ x. λ . λ f. λ ys. f (cons X x ys)) xs (nil X)

Now let us have unary numbers for contemplation only, e.g. of vector length.

0 Nat : ∗, 0 zero : Nat, 0 suc : (0 n :Nat) → Nat
0 Vector : (0 X :∗, 0 n :Nat) → ∗, ω vnil : (0 X :∗) → Vector X zero,

ω vcons : (0 X :∗, 0 n :Nat, 1 x :X, 1 xs :Vector X n) → Vector X (suc n)
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We can measure length statically, so it does not matter that we drop heads.
Then, assuming length computes as above, let us turn lists to vectors.

0 length : (0 X :∗, 0 xs :List X) → Nat
length = λ X. lit X (λ .Nat) zero (λ x. λ . suc)

ω vector : (0 X :∗, 1 xs :List X) → Vector X (length xs)
vector = λ X. lit X (λ xs.Vector X (length xs))

(vnil X) (λ x. λ xs. λ xs ′. vcons X (length xs) x xs ′)

In the step case, the zero-resourced list tail, xs, is used only to compute a
zero-resourced length: the actual runtime tail is recycled as the vector xs ′. The
impact is to demolish a list whilst constructing a vector whose length depends
on what the list used to be: that is the dependent lollipop in action.

6 Confluence of Computation

We shall need to establish the diamond property for computation.

Definition 10 (Diamond Property). A binary relation R has the diamond
property if ∀s, p, q. sRp ∧ sRq ⇒ ∃r. pRr ∧ qRr.

Appealing to visual intuition, I will typically depict such propositions,
s R p
R ∃ R
q R r

where the existential quantifier governs points and proofs below and right of it.
The Tait–Martin-Löf–Takahashi method [26] is adequate to the task. We

introduce a ‘parallel reduction’, 
, which amounts to performing none, any or
all of the available contractions in a term, but no further redexes thus arising.
Proving the diamond property for 
 will establish it for →→. Here is how.

Lemma 11 (Parallelogram). Let R,P be binary relations with R ⊆ P ⊂ R∗.
If P has the diamond property, then so has R∗.

Proof. If sR∗p then for some m, sRmp, hence also sPmp. Similarly, for some n,
sPnq. We may now define a ‘parallelogram’ tij for 0 ≤ i ≤ m, 0 ≤ j ≤ n, first
taking two sides to be the P -sequences we have, s = t00Pt10P . . . P tm0 = p and
s = t00Pt01P . . . P t0n = q, then applying the diamond property

for 0 ≤ i < m, 0 ≤ j < n
tij P t(i+1)j

P ∃ P
ti(j+1) P t(i+1)(j+1)

Let r = tmn. The lower two sides give pPnr and qPmr, so pR∗r and qR∗r. ��
By design, parallel reduction fits Lemma 11. We have structural rules for

each construct, together with υ and β rules.
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Definition 12 (Parallel Reduction). Let parallel reduction, 
, be defined by
mutual induction for terms and eliminations, as follows.

∗i � ∗i

S � S′ T � T ′
(π x :S) → T � (π x :S′) → T ′

t � t′

λ x. t � λ x. t′
e � e′
e � e′

t � t′ T � T ′
t :T � t′

x � x
f � f ′ s � s′

f s � f ′ s′
t � t′ T � T ′
t :T � t′ :T ′

t � t′ S � S′ T � T ′ s � s′
(λ x. t : (π x :S) → T ) s � (t′ :T ′)[s′ :S′/x]

Lemma 13 (Parallel Reduction Computes). � ⊆ 
 ⊆ →→.

Proof. Both inclusions are easy inductions on derivations. ��
Crucially, parallel reduction commutes with substitution, because the latter

duplicates or drops redexes, but never subdivides them.

Lemma 14 (Vectorized Substitution). Admissibly, t 
 t′ e 
 e′
t[e/y] 
 t′[e′/y] .

Proof. Proceed by structural induction on the derivation of t 
 t′. Effectively
we are lifting a substitution on terms to a substitution on parallel reduction
derivations. The only interesting cases are for variables and β-contraction.

For yi 
 yi where ei/yi and e′
i/yi are in the substitutions ‘before’ and ‘after’:

here, we substitute the given derivation of ei 
 e′
i.

For (λ x. t : (π x :S) → T )s 
 (t′ :T ′)[s′ :S′/x], where our ‘argument’ inductive
hypotheses yield (s :S)[e/y] 
 (s′ :S′)[e′/y], we may extend the term and deriva-
tion substitutions, then use ‘body’ hypotheses to deduce t[(s :S)[e/y]/x,e/y] 

t′[(s′ :S′)[e′/y]/x,e′/y] and similarly for T ; the usual composition laws allow us
to substitute in phases −[(s :S)[e/y]/x,e/y] = −[s′ :S′/x][e/y] and the β rule
then yields ((λ x. t : (π x :S) → T ) s)[e/y] 
 (t′ : T ′)[s′ :S′/x][e/y]. ��

Iterating Lemma 14, we get that if e →→ e′ and t →→ t′, then t[e/x] →→ t′[e′/x].

Lemma 15 (Parallel Reduction Diamond).

s 
 p
� ∃�
q 
 r

Proof. We use induction on the derivation of s 
 p, then case analysis on the
derivation of s 
 q. Where both use the same rule, the inductive hypotheses yield
common parallel reducts. The only interesting cases are where computation is
possible but one side declines the opportunity.

For υ, we have s 
 p S 
 P
s :S 
 p

s 
 q S 
 Q
s :S 
 q :Q
s :S 
 q :Q .
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Inductively, we obtain
s 
 p
� ∃�
q 
 r

and
S 
 P
� ∃ �
Q 
 R

, then also q 
 r Q 
 R
q :Q 
 r

.

For β, we have s′ 
 p′ S 
 P S′ 
 P ′ s 
 p
(λ x. s′ : (π x :S) → S′) s 
 (p′ :P ′)[p :P/x]

s′ 
 q′ S 
 Q S′ 
 Q′
...

...
... s 
 q

(λ x. s′ : (π x :S) → S′) s 
 (λ x. q′ : (π x :Q) → Q′) q

Induction yields common reducts r′, R,R′, r, so (p′ :P ′)[p :P/x] 
 (r′ :R′)[r :R/x]
by Lemma 14, then the β rule gives us the required

q′ 
 r′ Q 
 R Q′ 
 R′ q 
 r
(λ x. q′ : (π x :Q) → Q′) q 
 (r′ :R′)[r :R/x] ��

Corollary 16 (Confluence).
s →→ p
↓↓ ∃ ↓↓
q →→ r

Proof. Apply Lemma 11 with Lemmas 13 and 15. ��

7 Subtyping and Its Metatheory

Subtyping is the co- and contravariant lifting of the universe ordering through
the function type, where Luo’s Extended Calculus of Constructions is covariant
in the codomain and equivariant in the domain [17]. It is not merely convenient,
but crucial in forming polymorphic types like ∗1 � (0X :∗0) → (1x :X) → X, as
the fun rule demands X : ∗1. To establish that cut elimination preserves typing,
we must justify the subtyping in the elim rule with a proof of subsumption, i.e.,
that term can be lifted from sub- to supertype. While developing its proof, below,
I had to adjust the definition to allow a little wiggle room where the application
rule performs substitution: type annotations obstruct the proof. Rather than
demanding cut elimination to get rid of them, I deploy wilful ignorance.

Definition 17 (Subtyping). Let ∼ (‘similarity’) identify terms and elimina-
tions structurally up to s :S ∼ s :S′. Define subtyping inductively thus.

S ∼ T
S � T

j � i
∗i � ∗j

S′ � S T � T ′
(π x :S) → T � (π x :S′) → T ′

In particular, subtyping is reflexive, so a term e is accepted if its synthesized
type S and its checked type T have a common reduct.

Note that computation plays no role in subtyping: given that it is deployed at
the ‘change of direction’, we can always use post and pre to compute as much
as is needed to make this rather rigid syntactic definition apply. The rigidity then
makes it easier to establish the crucial metatheoretic properties of subtyping.
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Lemma 18 (Subtyping Transitivity). Admissibly, R � S S � T
R � T

.

Proof. Contravariance in the rule for function types obliges us to proceed by
induction on the maximum of the heights of the derivations (or, in effect, the
‘size change’ principle, for which subtyping is a paradigmatic example). If both
derivations are by similarity, the result is by similarity. Otherwise, we have either
sorts, in which case the transitivity of � suffices, or function types, in which case
the result follows from the inductive hypotheses. ��

We need two results about the interaction between subtyping and compu-
tation. If we compute one side, we can compute the other side to match, and
if we compute both sides independently, we can compute further to reestablish
subtyping. Both will depend on the corresponding fact about similarity.

Lemma 19 (Similarity Preservation). Again, with ∃ applying below and
right,

S ∼ T
� ∃ �
S′ ∼ T ′

S ∼ T
� �
S′ T ′

∃ � �
S′′ ∼ T ′′

S ∼ T
↓↓ ∃ ↓↓
S′ ∼ T ′

S ∼ T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ ∼ T ′′

Proof. For 
, use copycat induction on derivations. If just one side computes, we
need only compute the other. When both compute apart, we need to compute
both back together, hence the far left ∃. For →→, we iterate the results for 
. ��
Lemma 20 (Subtyping Preservation).

S � T
↓↓ ∃ ↓↓
S′ � T ′

S � T →→ T ′

∃ ↓↓ ‖
S′ � T ′

S � T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

Proof. Induction on the derivation of S � T . Lemma 19 covers similarity. For
sorts, there is no way to compute. For function types, computation occurs only
within sources and targets, so the inductive hypotheses deliver the result. ��
Lemma 21 (Subtyping Stability). S � T ⇒ S[r :R/x] � T [r :R′/x].

Proof. Induction on derivations. Wherever R and R′ occur distinctly, ∼
ignores. ��

The key result about subtyping is that it is justified by the admissibility of
subsumption, pushing terms up the ordering. We may extend subtyping point-
wise to contexts and establish the following rule, contravariant in contexts.
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Theorem 22 (Subsumption). If Δ′ � Δ, then admissibly,

Δ � ρ S � s
Δ′ � ρ T � s

S � T
Δ � ρ e ∈ S

∃S′.S′ � S ∧ Δ′ � ρ e ∈ S′

Proof. We proceed by induction on typing derivations. For pre, we make use
of Lemma 20. We may clearly allow iterated pre to advance types by →→, not
just �. I write ∴ to mark an appeal to the inductive hypothesis.

Δ � ρ R � t
Δ � ρ S � t

S � R

S � T
↓↓ ∃ ↓↓
R � R′

∴ Δ′ � ρ R′ � t
Δ′ � ρ T � t

For sort, transitivity of � suffices. For fun, we may pass the inflation of the
desired sort through to the premises and appeal to induction.

For

lam, we have S′ � S T � T ′
(π x :S) → T � (π x :S′) → T ′

Δ, ρπ x :S � ρ T � t
Δ � ρ (π x :S) → T � λ x. t

. The

contravariance of function subtyping allows us to extend the context with the

source subtype and check the target supertype, ∴ Δ′, ρπ x :S′ � ρ T ′ � t
Δ′ � ρ (π x :S′) → T ′ � λ x. t

.

For elim, we have Δ � ρ e ∈ R
Δ � ρ S � e

R � S S � T . Inductively, for some R′ � R

we have Δ′ � ρ e ∈ R′ and by Lemma 18, we get R′ � T and apply elim.
For post, we may again appeal to Lemma 20. For var, we look up the

subtype given by the contextual subtyping.

For app, we have Δ0 � ρ f ∈ (π x :S) → T Δ1 � ρπ S � s
Δ0 + Δ1 � ρ f s ∈ T [s :S/x] . Given that Δ0

and Δ1 share a precontext, we have Δ′
0 � Δ0 and Δ′

1 � Δ1. Inductively, we may
deduce in succession, ∴ ∃S′, T ′. S � S′ ∧ T ′ � T ∧ Δ′

0 � ρ f ∈ (π x :S′) → T ′

∴ Δ′
1 � ρπ S′ � s

from which we obtain Δ′
0 + Δ′

1 � ρ f s ∈ T ′[s :S′/x] where Lemma 21 gives, as
required, T ′[s :S′/x] � T [s :S/x]. ��

8 Not That Kind of Module System

Above, I claimed that Γ -contexts and typing deriviations yield R-modules. Let
us make that formal. Firstly, what is an R-module?

Definition 23 (R-module). An R-module is a set M with

zero 0 : M
addition − + − : M × M → M

scalar multiplication − − : R × M → M

which make (M, 0,+) a commutative monoid and are compatible R in that, for
all m ∈ M 0m = m (ρ + π)m = ρm + πm (ρπ)m = ρ(πm).
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The obvious (and, for us, adequate) way to form R-modules is pointwise.

Lemma 24 (Pointwise R-modules). X → R is an R-module with

0x = 0 (f + g) x = f x + g x (ρf) x = ρ(f x).

Proof. Calculation with rig laws for R. �
By taking X = 0 and, we get that 0 → R ∼= 1 is an R-module. By taking

X = 1, we get that 1 → R ∼= R itself is an R-module.

Lemma 25 (Contexts R-modules). Γ -contexts form an R-module.

Proof. The Γ -contexts, Δ are given by functions Δ|− : dom(Γ ) → R, where
(Δ, ρx :S,Δ′)|x = ρ. Lemma 24 applies. �

Where the ‘coeffects’ treatment of resources from Petricek and coauthors [21]
retains the non-dependent mode of splitting the context—some variables into
one premise, the rest in the other—the potential for type dependency forces
more rigidity upon us. The module structure of Γ -contexts lets us send Γ to all
premises, splitting up the resources the context gives each of Γ ’s variables.

What about typing derivations? We can play the same game. Let T (X) be
the set of finitely branching trees whose nodes are labelled with elements of X.
The typing rules tell us which elements D, of T (J ) constitute valid deductions
of the judgment at the root. We can separate such a tree into a shape and a
set of positions. The elements of T (J ) with a given shape form a module by
lifting R pointwise over positions. That is but a dull fact about syntax, but
more interesting is that the module can then be restricted to valid derivations.

Definition 26 (Shape and Positions). Shapes, d, of derivations inhabit trees
T (P) of prejudgments. The shape of a given derivation is given by taking

−� : T (J ) → T (P) to be the functorial action T (
−�) which replaces each
judgment with its corresponding prejudgment. Position sets, Pos : T (P) → Set
and prejudgment positions Pos′ : P → Set are given structurally:

Pos
(

d1...dn
P

)

= Pos′(P ) +
∑

i

Pos(di) Pos′(Γ �) = 0
Pos′(Γ � T � t) = dom(Γ ) + 1
Pos′(Γ � e ∈ S) = dom(Γ ) + 1

where 1 is the unit type with element �.

That is, each typing prejudgment has a resource position for each quantity in
its context and for the number of things to be constructed. A straightforward
recursive labelling strategy then yields the following.

Lemma 27 (Representing Derivations).

∀d ∈ T (P)

{D : T (J ) | 
D� = d} ∼= Pos(d) → R.



220 C. McBride

Proof. Structural induction. At each node, {J : J | 
J� = P} ∼= Pos′(P ) → R.

P J Pos′(P ) → R
Γ � Γ �
Γ � T � t Δ � ρ T � t x �→ Δ|x ; � �→ ρ
Γ � e ∈ S Δ � ρ e ∈ S x �→ Δ|x ; � �→ ρ �

The derivation trees of shape d thus form an unremarkable R-module. Let us
establish something a touch more remarkable. In fact it is obvious, because when
designing the system, I took care to ensure that any nonzero resource demand
in the conclusion of each rule is linearly a factor of the demands in the premises.

Theorem 28 (Valid Derivation Modules). For any valid derivation tree D
of shape d, the R-module on {D′ : T (J ) | 
D′� = d} refines to an R-module on
{D′ : T (J ) | 
D′� = d,D′ valid}.
Proof. It is necessary and sufficient to check closure under addition and scalar
multiplication as the latter gives us that 0D is a valid zero. The proof is a
straightforward induction on d, then inversion of the rules yielding the conclu-
sion. For scalar multiplication, I give the cases for var, app and cut, as they
give the pattern for the rest, showing local module calculuations by writing true
equations in places where one side is given and the other is needed.

φ

(
Γ, x :S, Γ ′ �

0Γ, ρ x :S, 0Γ ′ � ρ x ∈ S

)

= Γ, x :S, Γ ′ �
0Γ, φρ x :S, 0Γ ′ � φρ x ∈ S

φ

⎛

⎜
⎜
⎜
⎝

Δ � ρ f ∈ (π x :S) → T
Δ′ � ρπ S � s

Δ + Δ′ � ρ f s ∈ T [s :S/x]

⎞

⎟
⎟
⎟
⎠

=

φΔ � φρ f ∈ (π x :S) → T
φΔ′ � (φρ)π S � s

φΔ + φΔ′ � φρ f s ∈ T [s :S/x]

φ

(

Δ� �0 ∗i � S Δ � ρ S � s

Δ � ρ s :S ∈ S

)

= 
φΔ� �0 ∗i � S φΔ � φρ S � s
φΔ � φρ s :S ∈ S

For addition, I give just the app case, which makes essential use of commutativity
of the rig’s addition and distributivity of multplication over addition.

Δ0 � ρ0 f ∈ (π x :S) → T
Δ0

′ � ρ0π S � s
Δ0 + Δ0

′ � ρ0 f s ∈ T [s :S/x] +

Δ1 � ρ1 f ∈ (π x :S) → T
Δ1

′ � ρ1π S � s
Δ1 + Δ1

′ � ρ1 f s ∈ T [s :S/x]

=

Δ0 + Δ1 � (ρ0 + ρ1) f ∈ (π x :S) → T
Δ0

′ + Δ1
′ � (ρ0 + ρ1)π S � s

(Δ0 + Δ1) + (Δ0
′ + Δ1

′) � (ρ0 + ρ1) f s ∈ T [s :S/x]

Hence, valid derivations form an R-module. �
Not only can we multiply by scalars and add. We can also pull out common

factors and split up our resources wherever they make multiples and sums.
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Lemma 29 (Factorization). If Δ � φρ T � t then for some context named
Δ/φ, Δ = φ(Δ/φ) and Δ/φ � ρ T � t. Similarly, if Δ � φρ e ∈ S then for some
Δ/φ, Δ = φ(Δ/φ) and Δ/φ � ρ e ∈ S.

Proof. Induction on derivations. The only interesting case is app.

Δ0 � φρ f ∈ (π x :S) → T Δ1 � (φρ)π S � s
Δ0 + Δ1 � φρ f s ∈ T [s :S/x]

Inductively, Δ0/φ � ρ f ∈ (π x :S) → T , and reassociating, Δ1/φ � ρπ S � s, so
distribution gives us φ(Δ0/φ + Δ1/φ) � φρ f s ∈ T [s :S/x]. ��

This result does not mean R has multiplicative inverses, just that to make φ
things at once, our supplies must come in multiples of φ, especially when φ = 0.

Corollary 30 (Nothing from Nothing). If Δ � 0 T � t then Δ = 0
Δ�.
Proof. Lemma 29 with φ = ρ = 0. ��
Lemma 31 (Splitting). If Δ � (φ + ρ) T � t then for some Δ = Δ′ + Δ′′,
Δ′ � φ T � t and Δ′ � ρ T � t. Similarly, if Δ � (φ + ρ) e ∈ S then for some
Δ = Δ′ + Δ′′, Δ′ � φ e ∈ S and Δ′′ � ρ e ∈ S.

Proof. Induction on derivations. The only interesting case is app.

Δ0 � (φ + ρ) f ∈ (π x :S) → T Δ1 � (φ + ρ)π S � s
Δ0 + Δ1 � (φ + ρ) f s ∈ T [s :S/x]

Inductively, Δ′
0 � φ f ∈ (π x : S) → T and Δ′′

0 � ρ f ∈ (π x : S) → T , and
distributing, Δ′

1 � φπ S � s and Δ′′
1 � ρπ S � s, so Δ′

0 + Δ′
1 � φπ f s ∈ T [s :S/x]

and Δ′′
0 + Δ′′

1 � ρπ f s ∈ T [s :S/x]. ��

9 Resourced Stability Under Substitution

Let us establish that basic thinning and substitution operations lift from syntax
(terms and eliminations) to judgments (checking and synthesis). It may seem
peculiar to talk of thinning in a precisely resourced setting, but as the precontext
grows, the context will show that we have zero of the extra things.

Notationally, it helps to define localization of judgments to contexts, in that
it allows us to state properties of derivations more succinctly.



222 C. McBride

Definition 32 (Localization). Define

− � − : Cx(Γ ) × J → J
Δ � Δ′ � ρ T � t = Δ,Δ′ � ρ T � t
Δ � Δ′ � ρ e ∈ S = Δ,Δ′ � ρ e ∈ S

Strictly speaking, I should take care when localizing Δ � J to freshen the
names in J ’s local context relative to Δ. For the sake of readability, I shall pre-
sume that accidental capture does not happen, rather than freshening explicitly.

Lemma 33 (Thinning). Admissibly, Δ � J
Δ, 0Γ � J .

Proof. Induction on derivations, with J absorbing local extensions to the con-
text, so the inductive hypothesis applies under binders. We can thus replay the
input derivation with 0Γ inserted. In the app case, we need that 0Γ +0Γ = 0Γ .
In the var case, inserting 0Γ preserves the applicability of the rule. ��

Lemma 34 (Substitution Stability). Admissibly, Δ, φ x :S � J Δ′ � φ e ∈ S
Δ + Δ′ � J [e/x]

.

Proof. Induction on derivations, effectively substituting a suitable Δ′, 0Γ � φ e ∈
S for every usage of the var rule at some 
Δ�, φ x : S, 0Γ � φ x ∈ S. Most cases
are purely structural, but the devil is in the detail of the resourcing, so let us take
account. For pre, lam, elim and post, the resources in Δ are undisturbed and
the induction goes through directly. For sort and fun, Δ = 0Γ , and Corollary 30
tells us that φ = 0 and hence Δ′ = 0Γ , pushing the induction through. For var
with variables other than x, again, φ = 0 and the induction goes through. For var
at x itself, Lemma 33 delivers the correct resource on the nose. For cut, we may
give all of the es to the term and (multiplying by 0, thanks to Theorem 28) exactly
none of them to its type. In the app case, Lemma 31 allows us to share out our es
in exactly the quantities demanded in the premises. ��

10 Computation Preserves Typing

The design of the system allows us to prove that computation in all parts of a judg-
ment preserves typing: inputs never become subjects at any point in the derivation.
While following the broad strategy of ‘subject reduction’ proofs, exemplified by
McKinna and Pollack [19], the result comes out in one delightfully unsubtle dollop
exactly because information flows uniformly through the rules.

We can lift →→ to contexts, simply by permitting computation in types, and
we can show that any amount of computation in judgment inputs, and a parallel
reduction in the subject, preserves the derivability of judgments upto computa-
tion in outputs. We should not expect computation to preserve the types we can
synthesize: if you reduce a variable’s type in the context, you should not expect
to synthesize the unreduced type, but you can, of course, still check it.



I Got Plenty o’ Nuttin’ 223

Theorem 35 (Parallel Preservation).

Δ T t
↓↓ ↓↓ �
Δ′ T ′ t′

⇒ Δ � ρ T � t
Δ′ � ρ T ′ � t′

Δ e
↓↓ �
Δ′ e′

⇒
S

∃↓↓
S′

∧ Δ � ρ e ∈ S
Δ′ � ρ e′ ∈ S′

Proof. We proceed by induction on derivations and inversion of 
. Let us work
through the rules in turn.

Type Checking. For pre, we have

Δ � ρ R � t
Δ � ρ T � t

Δ t T � R
↓↓ � ↓↓ ∃ ↓↓
Δ′ t′ T ′ →→ R′

∴ Δ′ � ρ R′ � t′
Δ′ � ρ T ′ � t′

with the confluence of computation telling me how much computation to do to
R if I want T ′ to check t′. For sort, subject and checked type do not reduce,
but one axiom serves as well as another.

given Γ �0 ∗j � ∗i j � i Γ →→ Γ ′ deduce Γ ′ �0 ∗j � ∗i

For fun and lam, respectively, we must have had

Γ �0 ∗i � S
Γ, x :S �0 ∗i � T

Γ �0 ∗i � (π x :S) → T

Γ S T
↓↓ � �
Γ ′ S′ T ′

∴ Γ ′ �0 ∗i � S′

∴ Γ ′, x :S′ �0 ∗i � T ′

Γ ′ �0 ∗i � (π x :S′) → T ′

Δ, ρπ x :S � ρ T � t
Δ � ρ (π x :S) → T � λ x. t

Γ S T t
↓↓ ↓↓ ↓↓ �
Γ ′ S′ T ′ t′

∴ Δ′, ρπ x :S′ � ρ T ′ � t′

Δ′ � ρ (π x :S′) → T ′ � λ x. t′

For elim, we have two cases. For the structural case, we must compute.

Δ � ρ e ∈ S
Δ � ρ T � e

S � T

Δ T e
↓↓ ↓↓ �
Δ′ T ′ e′

∴
S

∃↓↓
S′

∧ Δ′ � ρ e′ ∈ S′

S � T
↓↓ ↓↓
S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

Δ′ � ρ e′ ∈ S′
Δ′ � ρ e′ ∈ S′′ S′ →→ S′′

Δ′ � ρ T ′′ � e′ S′′ � T ′′

Δ′ � ρ T ′ � e′ T ′ →→ T ′′

Lemma 20 reestablishes subtyping after computation.
For υ-contraction, we have a little more entertainment. We start with

Δ � ρ S � s
· · ·

Δ � ρ s :S ∈ S′

Δ � ρ T � s :S

Δ s S � T
↓↓ � ↓↓ ↓↓
Δ′ s′ S′ T ′

∃ ↓↓ ↓↓
S′′ � T ′′

∴ Δ′ � ρ S′′ � s′
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Then by Theorem 22 (subsumption), we obtain

Δ′ � ρ S′′ � s′
Δ′ � ρ T ′′ � s′ S′′ � T ′′

Δ′ � ρ T ′ � s′ T ′ →→ T ′′.

Type Synthesis. For post, we have

Δ � ρ e ∈ S
Δ � ρ e ∈ R

Δ e S � R
↓↓ � ∃ ↓↓ ∃ ↓↓
Δ′ e′ S′ →→ R′

∴ Δ′ � ρ e′ ∈ S′
Δ′ � ρ e′ ∈ R′

For var, again, one axiom is as good as another

0Γ0, ρ x :S, 0Γ1 � ρ x ∈ S

Γ0 S Γ1

↓↓ ↓↓ ↓↓
Γ ′
0 S′ Γ ′

1

0Γ ′
0, ρ x :S′, 0Γ ′

1 � ρ x ∈ S′

The case of cut is just structural.


Δ� �0 ∗i � S Δ � ρ S � s
Δ � ρ s :S ∈ S

Δ S s
↓↓ � �
Δ′ S′ s′

∴ 
Δ′� �0 ∗i � S′ ∴ Δ′ � ρ S′ � s′
Δ′ � ρ s′ :S′ ∈ S′

For app, we have two cases. In the structural case, we begin with

Δ0 � ρ f ∈ (π x :S) → T Δ1 � ρπ S � s
Δ0 + Δ1 � ρ f s ∈ T [s :S/x]

Δ0 + Δ1 f s
↓↓ ↓↓ � �
Δ′
0 + Δ′

1 f ′ s′

and we should note that the computed context Δ′
0 + Δ′

1 continue to share a
common (but more computed) precontext. The inductive hypothesis for the
function tells us the type at which to apply the inductive hypothesis for the

argument. We obtain
S T

∃ ↓↓ ∃ ↓↓
S′ T ′

∴ Δ′
0 � ρ f ∈ (π x :S′) → T ′ ∴ Δ′

1 � ρπ S′ � s
Δ′
0 + Δ′

1 � ρ f ′ s′ ∈ T ′[s′ :S′/x]

where Lemma 14 tells us that T [s : S/x] →→ T ′[s′ : S′/x]. This leaves only the
case where application performs β-reduction, the villain of the piece. We have

Δ0 � ρ (λ x. t : (π x :S0) → T0) ∈ (π x :S1) → T1

Δ1 � ρπ S1 � s
Δ0 + Δ1 � ρ (λ x. t : (π x :S0) → T0) s ∈ T1[s :S1/x]

Δ0 + Δ1 t S0 T0 s S0 T0

↓↓ ↓↓ � � � � ↓↓ ↓↓
Δ′
0 + Δ′

1 t′ S′
0 T ′

0 s′ S1 T1

noting that post might mean we apply at a function type computed from that
given. Let us first interrogate the type checking of the function. There will have
been some fun, and after pre computing S0 →→ S2 and T0 →→ T2, some lam:


Δ0� �0 ∗i � S0 
Δ0�, x :S0 �0 ∗i � T0


Δ0� �0 ∗i � (π x :S0) → T0

Δ0, ρπ x :S2 � ρ T2 � t
Δ0 � ρ (π x :S2) → T2 � λx. t
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We compute a common reduct S0 →→ {S′
0, S1, S2} →→ S′

1, and deduce inductively

∴ 
Δ′
0�, x :S′

1 �0 ∗i � T ′
0 ∴ 
Δ′

1� �0 ∗i � S′
0

∴ Δ′
0, ρπ x :S′

1 � ρ T ′
0 � t′ ∴ Δ′

1 � ρπ S′
0 � s′

so that cut and post give us Δ′
1 � ρπ s′ : S′

0 ∈ S′
1. Now, Lemma 34 (stability

under substitution) and cut give us


Δ′
0 + Δ′

1� �0 ∗i � T ′
0[s

′ :S′
0/x] Δ′

0 + Δ′
1 � ρ T ′

0[s
′ :S′

0/x] � t′[s′ :S′
0/x]

Δ′
0 + Δ′

1 � ρ (t′ :T ′
0)[s

′ :S′
0/x] ∈ T ′

0[s
′ :S′

0/x]

so post can compute our target type to a common reduct T0 →→ {T ′
0, T1, T2} →→

T ′
1, and deliver Δ′

0 + Δ′
1 � ρ (t′ :T ′

0)[s
′ :S′

0/x] ∈ T ′
1[s

′ :S′
1/x]. �

Corollary 36 (Preservation).

Δ T t
↓↓ ↓↓ ↓↓
Δ′ T ′ t′

⇒ Δ � ρ T � t
Δ′ � ρ T ′ � t′

Δ e
↓↓ ↓↓
Δ′ e′

⇒
S

∃↓↓
S′

∧ Δ � ρ e ∈ S
Δ′ � ρ e′ ∈ S′ .

Proof. Iteration of Theorem 35. ��

11 Erasure to an Implicit Calculus

Runtime programs live in good old lambda calculus and teletype font, to boot.

Definition 37 (Programs). p ::= x | \x -> p | p p.
I introduce two new judgment forms for programs, which arise as the erasure

of our existing fully explicit terms.

Definition 38 (Erasure Judgments). When ρ �= 0, we may form judgments
as follows: Δ � ρ T � t � p Δ � ρ e ∈ S � p.

That is, programs are nonzero-resourced. Such judgments are derived by an
elaborated version of the existing rules which add programs as outputs. For
checking, we must omit the type formation rules, but we obtain implicit and
explicit forms of abstraction. For synthesis, we obtain implicit and explicit forms
of application. In order to ensure that contemplation never involves consumption,
we must impose a condition on the rig R that not only is the presence of negation

unnecessary, but also its absence is vital: ρ + π = 0
ρ = π = 0.
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Definition 39 (Checking and Synthesis with Erasure).

pre+
Δ � ρ R � t � p
Δ � ρ T � t � p

T � R

lam0
Δ, 0x :S � ρ T � t � p

Δ � ρ (φ x :S) → T � λ x. t � p
ρφ = 0

lam+
Δ, ρπ x :S � ρ T � t � p

Δ � ρ (π x :S) → T � λ x. t � \x -> p
ρπ �= 0

elim+
Δ � ρ e ∈ S � p
Δ � ρ T � e � p

S � T

post+
Δ � ρ e ∈ S � p
Δ � ρ e ∈ R � p

S � R

var+ 0Γ, ρ x :S, 0Γ ′ � ρ x ∈ S � x

app0
Δ � ρ f ∈ (φ x :S) → T � p 
Δ� �0 S � s

Δ � ρ f s ∈ T [s :S/x] � p
ρφ = 0

app+
Δ � ρ f ∈ (π x :S) → T � p Δ′ � ρπ S � s � p′

Δ + Δ′ � ρ f s ∈ T [s :S/x] � p p′ ρπ �= 0

cut+

Δ� �0 ∗i � S Δ � ρ S � s � p

Δ � ρ s :S ∈ S � p

We can be sure that in the lam0 rule, the variable x bound in t occurs
nowhere in the corresponding p, because it is bound with resource 0, and it
will remain with resource 0 however the context splits, so the rule var+ cannot
consume it, even though var can still contemplate it. Accordingly, no variable
escapes its scope. We obtain without difficulty that erasure can be performed.

Lemma 40 (Erasures Exist Uniquely and Elaborate). If ρ �= 0, then

Δ � ρ T � t
∃!p. Δ � ρ T � t � p

Δ � ρ T � t � p
Δ � ρ T � t

Δ � ρ e ∈ S
∃!p. Δ � ρ e ∈ S � p

Δ � ρ e ∈ S � p
Δ � ρ e ∈ S

.

Proof. Induction on derivations. ��
The unerased forms may thus be used to form types, as Theorem 28 then

gives us that Δ � ρ T � t � p

Δ� �0 T � t

Δ � ρ e ∈ S � p

Δ� �0 e ∈ S

.

How do programs behave? They may compute by β reduction, liberally.

Definition 41 (Program Computation).

(\x -> p) p′ � p[p′/x]
p � p′

\x -> p � \x -> p′
p � p′

p pa � p′ pa

p � p′
pf p � pf p′
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The key to understanding the good behaviour of computation is to observe
that any term which erases to some \x -> p must contain a subterm on its left
spine typed with the lam+ rule. On the way to that subterm, appeals to app0
will be bracketed by appeals to lam0, ensuring that we can dig out the non-zero
λ by computation. Let us now show that we can find the lam+.

Definition 42 (n-to-ρ-Function Type). Inductively, (πx :S) → T is a 0-to-
ρ-function type if ρπ �= 0; (φx :S) → T is an n + 1-to-ρ-function type if ρφ = 0
and T is an n-to-ρ-function type.

Note that n-to-ρ-function types are stable under substitution and subtyping. Let
λn denote λ-abstraction iterated n times.

Lemma 43 (Applicability). If Δ � ρ T � t � \x -> p, then T →→ some
n-to-ρ-function type T ′ and t →→ some λn y. λ x. t′ such that

Δ � ρ T ′ � n
λy. λ x. t′ � \x -> p

If Δ � ρ e ∈ S � \x -> p, then S →→ some n-to-ρ-function type S′ and e →→
some λn y. λ x. t′ : S′ such that

Δ � ρ
n
λy. λ x. t′ : S′ ∈ S′ � \x -> p.

Proof. Proceed by induction on derivations. Rules var+ and app+ are excluded
by the requirement to erase to \x->p. For pre+, the inductive hypothesis applies
and suffices. For lam0, the inductive hypothesis tells us how to compute t and
T to an abstraction in an n-to-ρ-function type, and we glue on one more λ y. −
and one more (φ y : S) → −, respectively. At lam+, we can stop. For post+,
the inductive hypothesis gives us a cut at type S′, where S →→ S′, so we can take
the common reduct S →→ {S′, R} →→ R′ and deliver the same cut at type R′. For
cut+, we again proceed structurally. This leaves only the entertainment.

For elim+, we had e ∈ S with S � T . Inductively, e →→ λy. λ x. t′ : S′

with S →→ S′, some n-to-ρ-function type. Lemma 20 gives us that T →→ T ′

with S′ � T ′, also an n-to-ρ-function type. Hence T ′ � λy. λ x. t′ : S′ and then
Theorem 35 (preservation) allows the υ-reduction to T ′ � λy. λ x. t′.

For app0, the inductive hypothesis gives us f →→ λ y. λn y. λ x. t′ : (φ x :
S′) → T ′ with S →→ S′ and T →→ T ′, and T ′ an n-to-ρ-function type. Hence
f s →→ (λn y. λ x. t′ :T ′)[s :S′/x]. Preservation tells us the reduct is well typed at
some other reduct of T [s :S/x], but the common reduct is the type we need. ��
Theorem 44 (Step Simulation). The following implications hold.

Δ � ρ T � t � p
∃t′. t →→ t′ ∧ Δ � ρ T � t′ � p′ p � p′

Δ � ρ e ∈ S � p
∃e′, S′. e →→ e′ ∧ S →→ S′ ∧ Δ � ρ e′ ∈ S′ � p′ p � p′.
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Proof. Induction on derivations and inversion of program computation. The only
interesting case is the app+ case when the computation takes a β-step.

Δ � ρ f ∈ (π x :S) → T � \x -> p Δ′ � ρπ S � s � p′
Δ + Δ′ � ρ f s ∈ T [s :S/x] � (\x -> p) p′ � p[p′/x] ρπ �= 0

We have some f whose type is a 0-to-ρ function type and which erases to some
\x -> p, so we may invoke Lemma 43 to get that f →→ λx. t at some reduced
function type, (π x :S′) → T ′, where S′ still accepts the argument s, by preser-
vation, erasing to p′. Accordingly, f s →→ (t :T ′)[s :S′/x], where the latter is still
typed at a reduct of T [s :S/x] and erases to p[p′/x]. ��

Accordingly, once we know terms are well typed, contemplation has done its
job and we may erase to virtuous and thrifty 0-free programs.

12 Take It or Leave It

Let us consider liberalising our rig-based resource management. At present, the
{0, 1,ω} rig imposes a kind of relevance, but not traditional relevance, in that it
takes at least two uses at multiplicity 1 or one at ω to discharge our spending
needs: what if we want traditional relevance, or even the traditional intuitionistic
behaviour? Similarly, we might sometimes want to weaken the linear discipline
to affine typing, where data can be dropped but not duplicated.

One option is to impose an ‘order’, ≤ on the rig. We can extend it pointwise
to Γ -contexts, so Δ ≤ Δ′ if Δ′ has at least as many of each variable in Γ as Δ.

The ≤ relation should be reflexive and transitive, and at any rate we shall
need at least that the order respects the rig operations

ρ ≤ ρ
ρ ≤ π π ≤ φ

ρ ≤ φ
π ≤ φ

ρ + π ≤ ρ + φ
π ≤ φ

ρπ ≤ ρφ
π ≤ φ

πρ ≤ φρ

to ensure that valid judgments remain an R-module when we add weakening:

weak
Δ � ρ T � t
Δ′ � ρ T � t

Δ ≤ Δ′

To retain Lemmas 29 and 31 (factorization and splitting), we must also be able
to factorize and split the ordering, so two more conditions on ≤ emerge: factor-
ization and additive splitting.

ρπ ≤ ρφ
π ≤ φ

φ + ρ ≤ π
∃φ′, ρ′. φ ≤ φ′ ∧ ρ ≤ ρ′ ∧ π = φ′ + ρ′

Stability under substitution requires no more conditions but a little more work.
The following lemma is required to deliver the new case for weak.
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Lemma 45 (Weakening). If ρ ≤ ρ′ then

Δ′ � ρ′π T � t
∃Δ. Δ ≤ Δ′ ∧ Δ � ρπ T � t

Δ′ � ρ′π e ∈ S
∃Δ. Δ ≤ Δ′ ∧ Δ � ρπ e ∈ S

.

Proof. Induction on derivations, with the interesting cases being var, weak and
app: the rest go through directly by inductive hypothesis and replay of the rule.
For var, form Δ by replacing the ρ′π in Δ′ by ρπ, which is smaller.

For weak, we must have delivered Δ′′ � ρ′πT � t from some Δ′ with Δ′ ≤ Δ′′

and Δ′ � ρ′π T � t. By the inductive hypothesis, there is some Δ ≤ Δ′ with
Δ � ρπ T � t and transitivity gives us Δ ≤ Δ′′.

For app, the fact that ≤ respects multiplication allows us to invoke the
inductive hypothesis for the argument, and then we combine the smaller contexts
delivered by the inductive hypotheses to get a smaller sum. ��

As a consequence, we retain stability of typing under substitution and thence
type preservation. To retain safe erasure, we must prevent weak from bringing

a contemplated variable back into a usable position by demanding ρ ≤ 0
ρ = 0.

If we keep ≤ discrete, nobody will notice the difference with the rigid system.
However, we may now add, for example, 1 ≤ ω to make ω capture run-time
relevance, or 0 ≤ 1 ≤ ω for affine typing, or 0, 1 ≤ ω (but not 0 ≤ 1) to make
(ω x :S) → T behave like an ordinary intuitionistic function type whilst keeping
(1x :S) → T linear: you can throw only plenty away.

13 Contemplation

Our colleagues who have insisted that dependent types should depend only on
replicable things have been right all along. The R-module structure of deriva-
tions ensures that every construction fit for consumption has an intuitionistic
counterpart fit for contemplation, replicable because it is made from nothing.

In a dependent type theory, the variables in types stand for things: which
things? It is not always obvious, because types may be used to classify more
than one kind of thing. The things that variables in types stand for are special:
when substituted for variables, they appear in types and are thus contemplated.
A fully dependent type theory demands that everything classified by type has a
contemplatable image, not that everything is contemplatable.

Here, we use the same types to classify terms and eliminations in what-
ever quantity, and also to classify untyped programs after erasure, but it is the
eliminations of quantity zero which get contemplated when the application rule
substitutes them for a variable, and everything classified by a type in one way
or another corresponds to just such a thing.

Such considerations should warn us to be wary of jumping to conclusions,
however enthusiastic we may feel. We learned from Kohei Honda that session
types are linear types, in a way which has been made precise intuitionistically
by Caires and Pfenning [7], and classically by Wadler [31], but we should not
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expect a linear dependent type theory, to be a theory of dependent session types
per se. The linear dependent type theory in this paper is not a theory of session
types because contemplated terms give too much information: they represent
the participants which input and output values according to the linear types.

Dependency in protocol types should concern only the signals exchanged
by the participants, not the participants’ private strategies for generating those
signals. In fact, the signal traffic, the participants and the channels are all sorts
of things classified by session types, but it is only the signal traffic which must
inform dependency. That is another story, and I will tell it another time, but
it is based on the same analysis of how dependent type theories work. It seems
realistic to pursue programming in the style of Gay and Vasconcelos [13] with
dependent session types and linearly managed channels.

What we do have is a basis for a propositions-as-types account of certifying
linearly typed programs, where the idealised behaviour of the program can be
contemplated in propositions. When proving theorems about functions with unit-
priced types, we know to expect uniformity properties when the price is zero:
from parametricity, we obtain ‘theorems for free’ [23,29]. What might we learn
when the price is small but not zero? Can we learn that a function from lists to
lists which is parametric in the element type and linear in its input necessarily
delivers a permutation? If so, the mission to internalise such results in type
theory, championed by Bernardy, Jansson and Paterson [5] is still more crucial.

Looking nearer, I have mentioned the desirability of a normalization proof,
and its orthogonality to resourcing. We must also look beyond � and give
dependent accounts of other linear connectives: dependent ⊗ clearly makes sense
with a pattern matching eliminator; dependent (x :S)&T [x] offers the intriguing
choice to select an S or a T [x] whose type mentions what the S used to be, like
money or goods to the value of the money. But what are the duals?

It would be good to study datatypes supporting mutation. We have the
intriguing prospect of linear induction principles like

∀X :∗. ∀P :List X → ∗.
(n :P []) � (c : (x :X) � (xsp : (xs :List X)&P xs) � P (x :: fst xsp)) →
(xs :List X) � P xs

which allow us at each step in the list either to retain the tail or to construct a P
from it, but not both. Many common programs exhibit this behaviour (insertion
sort springs to mind) and they seem to fit the heuristic identified by Domı́nguez
and Pardo for when the fusion of paramorphisms an optimisation [11].

What we can now bring to all these possibilities is the separation of con-
templation from consumption, ensuring that contemplation requires no resource
and can correspondingly be erased. More valuable, perhaps, than this particular
technical answer to the challenge of fully integrating linear and dependent types
is the learning of the question ‘What are the contemplated images?’.
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Abstract. Extensible sparse functional arrays (ESFA) is a persistent
data structure with an implementation that performs every operation
in O(1) time and space. There is no requirement for single threading
of arrays, and no performance penalty for sharing. The implementa-
tion is an example of hardware/software co-design and also of active
data structures. This makes the work interdisciplinary, and it builds on
many ideas from functional programming. These include the definition of
new array operations, observations about mutability and purity, monads,
program transformations to remove unnecessary data structures, equa-
tional reasoning, and fixing space leaks in the garbage collector. This
paper summarises a recently published exposition of the system, focus-
ing on drawing connections with some of these foundational ideas. It
also presents some new results on a simulation of ESFA on a GPU. A
surprising result is that although the simulation has high overheads and
limited parallelism, it can outperform a state of the art red black tree
implementation when there is a large amount of sharing between arrays.

1 Introduction

Sometimes a program can be transformed to run faster by eliminating unnec-
essary work. An example is Wadler’s “listless” transformation (Wadler 1984),
which avoids the creation of unnecessary intermediate lists. This improves effi-
ciency, but the remaining lists still limit performance because it takes time to
follow chains of pointers in order to find a particular item.

By combining digital circuit design with algorithms — transforming the
underlying machine as well as the software — we can get rid of some of the
pointers too. The idea is to design a “smart memory” with a small amount
of processing capability in each location. The benefit comes from the massive
parallelism inherent in digital circuits: every logic gate is operating in parallel,
all the time. Many of them can be made to do useful work much of the time,
although conventional architectures waste nearly all of this processing power.
Such machines are called associative memories or content addressable parallel
processors, and the combination of parallel circuits and software is an example
of hardware/software co-design. The general approach is sometimes called active
data structures because a memory operation initiated by the CPU causes the
memory to perform many small computations internally (O’Donnell, Hall, and
Monro 2013).
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A particularly challenging data structure is the pure functional array, which
might better be called a persistent array. When an array a is updated with a
mapping i �→ v from an index i to a value v , the result is a new array a ′ which
is identical to a except that it contains the new mapping. The original array
a is unchanged — it is persistent. Functional arrays can be implemented using
data structures related to binary search trees (Graefe 2010), giving logarithmic
time access provided the trees are balanced. To be efficient, the algorithms need
both to rebalance trees and maintain sharing between arrays (O’Neill 1994) and
(O’Neill 2000).

This paper discusses the application of circuit parallelism to extensible sparse
functional arrays (ESFA). The system consists of a machine (a digital circuit)
called ESFM, along with algorithms running on ESFM that implement the oper-
ations for ESFA. Circuit parallelism enables the machine to perform a variety of
data structure operations in unit time, while chains of pointers need to be fol-
lowed on a conventional architecture. Each lookup and each update takes a small
constant number of memory accesses, regardless of the past history of updates.
There is no restriction on which arrays may be updated, and there is no loss
of sharing.

The system has been described in a previous paper (O’Donnell 2015). In this
paper we give a high level overview of the main ideas and provide a broader
context. Then we present some new results about an implementation of ESFM
using general purpose graphical processing units (GPUs) and compare the per-
formance with that of a C library. Finally, we discuss work in progress on memory
management.

There are several other approaches to functional arrays, and the choice
depends on the nature of the application. We argue that functional arrays are
simply a different data structure than imperative arrays. Both kinds of array
can be used in an imperative language, and also in a functional language. The
distinction between imperative and functional arrays lies in the API, not in the
programming language.

Section 2 presents two APIs for functional arrays: a pure one and a stateful
one using a monad. Section 3 explains the main idea: using a novel circuit to
eliminate explicit tree structures and avoid following pointers. Section 4 shows
two applications of equational reasoning in deriving or proving the correctness
of the implementation: one application is in the hardware design, and the other
is in the algorithm running on that hardware. In Sect. 5 we discuss using a
multicore (a GPGPU) to simulate the ESFM circuit, and show how the GPU
architecture suggests a new family of bulk array operations. Future directions
are suggested in Sect. 6, where a space leak is identified along with a possible
solution using a hardware garbage collector. Section 7 concludes with a discussion
of the links between this work and some of the classic early research in functional
programming.
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2 Shall I Be Pure?

Imperative languages are based on the assignment statement, which calculates a
new value, destroys the information stored in a variable, and replaces it with the
new value. The new value of a variable is stored in the same place as the original
one. This has several advantages: it enables circular structures to be traversed by
marking nodes as they are encountered, and a small part of a large structure can
be changed allowing efficient incremental updates to an array. However, variables
vary over time, so equational reasoning is not valid.

Pure functional languages are based on the equation, which also calculates a
new value and saves it but does not insist on destroying any existing information.
The new value may be stored in a newly allocated memory location. Values are
persistent and immutable, while destruction is left to the garbage collector. This
approach is pure and retains referential transparency, but is incompatible with
imperative arrays and makes some algorithms harder to implement efficiently
(e.g. traversing circular data structures).

Effects introduce impurity, while purity leads to inefficiency. Wadler asked
rhetorically “is there a way to combine the indulgences of impurity with the
blessings of purity?” (Wadler 1992). Answering in the affirmative, he showed how
to apply monads to allow computational effects in a pure functional language.
This makes it possible to use imperative arrays in a functional language, retaining
the benefits of both effects and purity.

But that is not the end of the story for functional arrays. When you update
an imperative array, the old array contents are gone. If an algorithm needs access
to the old array value as well as the new one, then monads don’t help: the sharing
of pure functional arrays is needed.

Imperative arrays and functional arrays are distinct data structures, with dif-
ferent APIs. They are not tied to particular programming paradigms. You can use
imperative arrays in a functional language (withmonads, or unique types), and you
can also use functional arrays in an imperative language. The historical terminol-
ogy can be misleading; the essential distinction is whether the arrays are persistent,
not whether the host programming language is functional or imperative.

It has turned out to be useful to give two APIs for ESF arrays: a high level
one where each array operation is a pure function (Table 1), and a low level one
that makes the machine state explicit (Table 2). The high level interface allows
the programmer to manipulate arrays with pure update and lookup functions,
and requires storage management to be handled automatically. The low level
interface gives access to operations needed by the storage manager, and requires
performing all the array operations in a monad.

Table 1 defines the high level API, which consists of ordinary expressions and
pure function applications. This API places no constraints on the structure of
the program; there is no need to perform array operations in a monad. There is
a constant empty which is an array containing no elements. Every array other
than empty must be constructed using update, and arrays are accessed using
lookup. The remaining operations support sparse access by traversing the defined
elements of an array. Two laws state the relationship between lookup and update.
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Table 1. Array operations: pure functional API

empty :: Array

update :: Array → (Idx �→ Val) → Array

lookup :: Array → Idx → Maybe Val

minDef,maxDef :: Array → Maybe (Idx �→ Val)

nextDef,prevDef :: Array → Idx → Maybe (Idx �→ Val)

Law 1 (Empty Array). For all i :: Idx ,

lookup empty i = Nothing

Law 2 (Nonempty Array). For all a ::Array, element (j �→ v) :: (Idx �→ Val)
and index i :: Idx ,

lookup (update a (j �→ v)) i
| i ≡ j = Just v
| i �≡ j = lookup a i

Memory management is essential and is not expressible in the pure interface.
It could be performed either by the user program or by an automatic garbage
collector. In either case, it is better to write the memory management as an
imperative functional program (Peyton Jones and Wadler 1993), rather than
doing it all at the lowest level of programming. Therefore a lower level interface
is needed to make memory management explicit. The crucial low level operation
is to delete an array. This operation changes the state, so it needs to be provided
in a monad.

type SystemState s e a = StateT (CircuitState s, e) IO a
type EsfaState a = SystemState Cell AuxState a
type Result a = Either ErrMsg a

Table 2 shows the lower level API. The array accesses (updateS etc.) are
similar to the pure counterparts. The last two operations change the machine
state. When an array is deleted, the array handle is reclaimed and all elements
that have become inaccessible are identified (but see Sect. 6).

There is a special facility to enable a finaliser to be run when an element
is reclaimed. This is necessary, for instance, if the element contains a pointer
back into the heap in the CPU’s memory. When an updateS creates a new array
with a new element, a Boolean parameter notify indicates whether the main
program wants to be notified when the element is reclaimed. Later, when the
element is identified as garbage, it is reclaimed immediately if the Boolean is
False. If notify is true, then the element is left in the ESFM memory but marked
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Table 2. Array operations in the stateful API. The deleteS and killZombieS operations
support memory management, and the others correspond to functions in the pure API
in Table 1.

updateS :: Array → (Idx �→ Val) → Bool → EsfaState (Result Array)

lookupS :: Array → Idx → EsfaState (Result Val)

minDefS,maxDefS :: Array → EsfaState (Result (Idx �→ Val))

nextDefS,prevDefS :: Array → Idx → EsfaState (Result (Idx �→ Val))

deleteS :: Array → EsfaState ()

killZombieS :: EsfaState (Maybe Val)

as a zombie. There is an operation killZombie that searches associatively for a
zombie, reclaims it, and returns the value of the element for finalisation.

Both the deleteS and killZombie operations are single machine operations;
they take O(1) time.

Monads are not needed for pure functional arrays, but they do allow for
explicit implementation of memory management. The programmer can choose
which approach is suitable for an application.

3 Transforming Programs to Eliminate Trees

Wadler showed how to transform programs to eliminate trees (Wadler 1990).
The reason functional arrays are tricky to implement on a conventional machine
is that the resulting trees require time to traverse and to rebalance.

The essential idea behind ESFA is to eliminate all the trees used to represent
arrays. To do this we need to do some circuit design, because the new algorithms
do not run on conventional hardware. For the full details see (O’Donnell 2015);
this section just introduces some of the ideas.

Ordinary memory hardware (“random access memory”) accesses data by its
address. Associative memory hardware accesses data by its contents. For exam-
ple, suppose each memory word contains two fields: a key and a value. Instead
of an instruction like load Reg,address — which requires finding the address
of the data — the hardware provides an instruction like loadval Reg,key. This
instruction broadcasts the key to each memory cell, which compares it with the
local key value. If a cell finds a match, it returns the corresponding value.

The ESF Machine (ESFM) is related to associative memory but provides
more general computational capabilities. Instead of memory words, it holds a
set of cells. Each cell contains several fields, including the index and value of an
array element, and some control bits indicating whether the cell is full or empty.

We can think of an imperative array as “knowing” where its elements are.
That is, given the address of an array a, the element of a[i] is just a+k×i where k
is the size of an element. That approach is inconsistent with the massive sharing
that ESF arrays may have.
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The key idea is to reverse the perspective completely. We will represent an
array by a handle, which is just a unique number that is unrelated to the locations
of any of the array’s elements. Instead, we will just place the elements (the
mappings i �→ v from index i to value v) in random locations anywhere in the
machine. Associative searching rather than address is used to locate an element.

In this reverse perspective, an array doesn’t know its elements, but instead
each element knows the set of arrays that contain the element. This is called the
element’s inclusion set.

To perform all the operations in the API within O(1) time and space — with
no restrictions whatsoever on sharing — we need to be able to represent every
inclusion set in constant space, and test for set membership in constant time.
For arbitrary sets this would be impossible, but inclusion sets are not arbitrary:
they satisfy a set of invariants that are maintained by all the ESFA operations.

The invariants ensure that (1) we can identify each array a by a code c and
(2) associate a pair of natural numbers low and high with each cell x containing
an element, such that a is in the inclusion set of the element in x if and only if
low x � c � high x . For an explanation of why this is so, see (O’Donnell 2015).
For now, the point is that every inclusion set can be represented by just two
numbers, and set membership can be determined by two comparisons.

When a lookup takes place, the elements are found by parallel comparisons in
each cell. When an update takes place, many (typically half) of the array codes
and low/high values in the entire machine need to be incremented. When a delete
takes place, many of these are decremented. This looks like a lot of overhead,
but it is exactly the kind of computation that circuit parallelism is good at: each
cell has enough logic gates to perform a comparison and an increment, and all
the cells can do this in parallel.

4 Calculating is Better than Scheming

The implementation of ESF arrays contains two levels. The lower level is a digital
circuit design that provides combinators for parallel maps, folds, and scans. The
upper level implements each operation in the API using the parallel combinators.
Both levels contain many details, are rather complex, and tricky to get right.
For both, it has proved more successful to calculate the algorithm rather than
to do ad hoc coding (Wadler 1987a).

4.1 Deriving Circuit Combinators

The lower level is a digital circuit specified functionally with the Hydra hardware
description language, a domain specific language embedded in Haskell. Rather
than describing the circuit directly, a circuit generator is used. This is a higher
order function that constructs a large circuit from building blocks. The overall
structure is a tree circuit, with building block circuits at the leaves (called cells)
and nodes. A clock cycle in the circuit performs an upsweep and downsweep
vertically through the tree.
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sweep
:: (s → d → (s, u)) -- cf = cell function
→ (d → u → u → (u, d , d)) -- nf = node function
→ d -- a = root input
→ CircuitState s -- state of tree circuit
→ (CircuitState s, u) -- (new state, root output)

A sweep causes each cell to apply a logic function to its state to produce
an output to send up; later this function also calculates the new state using
the current state and the incoming down message. These two logic functions are
combined in the single function cf .

sweep cf nf a (Leaf c) = (Leaf c′, y)
where (c′, y) = cf c a

Each node uses its nf function to calculate the value a ′ to send up, and the
values p′ and q ′ to send down to the left and right subtrees. Again, all these
calculations are combined in one function nf . An alternative way to define a
general tree circuit is to separate the cell and node functions into separate up
and down functions, and then to define separate upsweep and dnsweep functions.

sweep cf nf a (Node x y) = (Node x ′ y ′, a ′)
where (a ′, p′, q ′) = nf a p q

(x ′, p) = sweep cf nf p′ x
(y ′, q) = sweep cf nf q ′ y

The operations in Table 2 are implemented using a family of combinators that
define global parallel computations. These include map and several varieties of
fold and scan. The combinators are implemented by instantiating sweep with cell
and node circuits, in order to generate the full machine. The tscanl combinator
is similar to the scanl function defined in the Haskell prelude.

tscanl
:: (s → a) -- get singleton from cell
→ (s → a → s) -- update cell using singleton
→ (a → a → a) -- h: function to be folded
→ a -- initial accumulator
→ SystemState s e a

This function defines a communication pattern that begins with the cells,
transmits information up the tree, and then transmits further information back
down the tree. If h is associative, then tscanl performs a scan-from-left over the
cells of the tree.

The implementation of tscanl is short but subtle, and some incorrect ver-
sions have been published. It can be derived using equational reasoning; this
gives a clear insight as well as a correctness proof (O’Donnell 1994). The other
combinators can be derived as well.
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. .tscanl f g h a = sweepm cf nf a
where cf s a = (g s a, f s)

nf a p q = (h p q , a, h a p).

4.2 Deriving Effect on State of Array Operations

The implementation of the array operations using the parallel combinators is
even more subtle than the combinators themselves. Each operation must perform
a combination of associative searches and conditional changes to fields within
each cell. For most operations there are a number of different cases for each cell,
depending on the relationship between that cell’s fields and the arguments to
the operation.

Again, equational reasoning is the key to calculating what each cell needs to
do. The calculation is carried out at the level of sets rather than the machine
representation; this abstracts away from some low level details and also allows
for choices about the lowest level representation to be deferred.

We focus on the inclusion sets of the cells, not directly on the arrays. The
aim is to show that after an operation, every element in the machine has the
right inclusion set. An interesting case is a ′ ← updateS a elt nfy where the new
array (with code c) must be added to the inclusion set of a cell x . In this case,
low x � c � high x . This case is called expand because the inclusion set of the
cell x ′ after the operation has been expanded to include the new array b.

The full proof is given in (O’Donnell 2015), but the following calculation
gives the flavour of the proofs underlying the system.

Lemma 1 (Case Expand). If low x � c � high x then iset x ′ st ′ = iset x st∪
{b} where b is the result of the update.

Proof.
≡ 〈 definition of iset 〉

{p | p ∈ Nat ∧ q = encode p st ′ ∧ low x ′ � q � high x ′}
≡ 〈 substitute x for x ′ 〉

〈 low x ′ = low x and high x ′ = high x + 1 〉
{p | p ∈ Nat ∧ q = encode p st ′ ∧ low x � q � high x + 1}

≡ 〈 split into three sets based on location of c 〉
{p | p ∈ Nat ∧ q = encode p st ′ ∧ low x � q � c}
∪ {p | p ∈ Nat ∧ q = encode p st ′ ∧ q ≡ c + 1}
∪ {p | p ∈ Nat ∧ q = encode p st ′ ∧ c + 1 < q � high x + 1}

≡ 〈 (1) Where q � c, q = encode p st ′ ≡ encode p st. 〉
〈 (2) Since encode b st ′ = c + 1 〉
〈 (3) Where q > c, q = encode p st ′ ≡ encode p st + 1. 〉

{p | p ∈ Nat ∧ q = encode p st ∧ low x � q � c}
∪ {b}
∪ {p | p ∈ Nat ∧ q = encode p st ∧ c + 1 < q + 1 � high x + 1}
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≡ 〈 Subtract 1 from both sides of inequalities in (3) 〉
〈 Reorder the sets as ∪ is commutative 〉

{p | p ∈ Nat ∧ q = encode p st ∧ low x � q � c}
∪ {p | p ∈ Nat ∧ q = encode p st ∧ c < q � high x }
∪ {b}

≡ 〈 Combine the set comprehensions 〉
{p | p ∈ Nat ∧ q = encode p st ∧ low x � q � high x }
∪ {b}

≡ 〈 Definition of iset 〉
iset x st ∪ {b}.

5 A New Array Operation: Performance on a GPU

Thinking about both the implementation and the usage of a data structure
can suggest ways to enhance the API. An early example is Wadler’s new array
operation, which performs monolithic update with folds used to combine values
at the same index (Wadler 1986). This section describes yet another new array
operation(s) which appeared as the result of developing a parallel simulator for
ESFA. The results in this section are preliminary, and have not been published.

The ESFM is a digital circuit that implements a smart memory. In some situ-
ations a simulation of ESFM can actually be faster than a direct implementation
using state of the art tree algorithms. Simulation is a useful technique to study
the behaviour of a circuit, but circuit simulators are slow because they make
a calculation for each component on each clock cycle. Therefore we developed
a parallel simulator for ESFA using a multicore GPGPU (a graphics process-
ing unit enhanced for general purpose computing) (Owens 2007). The simulator
was written in C+CUDA, and experiments were performed using an NVidia
GeForce GTX 590 GPGPU with CUDA capability 2.0, 512 CUDA cores, and a
clock speed of 1.22 GHz.

We would not expect the multicore simulator to be fast enough for real usage
of ESFA, but it could be a helpful research tool. Instead of simulating the circuit
at a very low level (registers and logic functions), the simulator implements the
ESFM at the level of the parallel combinators. It was written to take advantage
of the capabilities of a GPU, as well as overcoming the considerable difficulties
with this architecture.

One property of GPGPUs is the ability for each thread to copy a value
from shared memory to global memory, or vice versa, more or less in parallel.
This suggests that we can introduce two new operations for the ESFA API: bulk
update and bulk lookup. For a bulk lookup, we first identify the cells that belong
to an array, and then copy the corresponding elements in parallel to the global
memory. For a bulk update, we first allocate the required number of new cells
in parallel (if the machine contains enough free cells), set the values of the low
and high fields in parallel, and then copy the elements in parallel from global
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memory into these cells. This is decidedly not the same as copying a slice from
an array stored in contiguous memory locations.

A bulk update takes an array a and a vector of k values x0, x1, . . . , xk−1.
It creates a new array a ′ which is the same as a but with the mappings
0 �→ x0, . . . , k − 1 �→ xk−1. The indices must be consecutive because they
are generated by a parallel scan; it is also possible to define a more general
bulk update where the indices are provided explicitly, but the implementation
is slower.

In addition to the bulk operations we also introduced associative searching,
which is a natural application of circuit parallelism. Indeed, the ESFM is a
distant descendant of associative memories from nearly 50 years ago.

The entire API for ESFA has been implemented on the GPU, along with the
bulk operations. For comparison, we have also implemented the ESFA API using
the Map library in C++, a state of the art implementation of red black trees.

The C++ Map library implements essentially the same API as ESFA. It
supports sparse array operations that are part of the ESFM API, and so makes
an excellent basis for functional arrays. The main difference between C++ Map
and ESFM is that Map performs side effects on the trees, so copying is sometimes
necessary. If most updates are single threaded, then Map performs very well, but
if there is a large amount of sharing then ESFM is faster and uses less space.
The Map copy constructor can form the basis of an implementation of functional
arrays, with a space penalty when arrays are shared.

We developed an experimental testbed for measuring performance. This uses
two separate implementations of the API: one using the ESFM implemented in
C+CUDA running on the GPU, and one using C++ Map running on a single
CPU. We used a variety of test data: some small cases worked out by hand, and
some large test data that was generated by machine.

Several points should be kept in mind while considering the performance
measurements. The ESFM tests ran on a GPU with 512 relatively small processor
cores, while the Map tests ran on a sequential CPU. However, the nominal
performance of the GPU is not 512 times that of the CPU, due to a variety
of overheads. (It is not really meaningful to say that the GPU is x times more
powerful than the CPU, but a factor of 20 to 50 might be a reasonable guess.)

We found that initial tests of functional arrays in C++ were very fast, much
faster than ESFM. In particular, one test run containing 50,000 (relatively) ran-
dom operations created by Hydra, which we used to test our GPU implemen-
tation of ESFM, ran with 2µs per operation under C++, as opposed to 18µs
for ESFM.

This appears to show that the copying required to implement functional
arrays in C++ is not an undue burden when there is not too much sharing.
However, the story becomes more interesting when we consider what happens
when long arrays are created without deletes to control the use of space, asso-
ciative search and bulk updates, and the use of no-copying semantics to make
the C++ implementation as efficient as possible.
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5.1 Bulk Updates

A bulk update is potentially more efficient than an equivalent sequence of incre-
mental updates, even on a sequential machine, because the implementation of
update knows something about the shape of the resulting data structure. On the
GPU, bulk update is even better because many of the memory transfers can be
done in parallel. We experimented with bulk updates of various “chunk sizes”.

Ideally, we would expect that the C++ implementation would take time pro-
portional to the size of the update chunk, while the GPU would be not too much
worse than constant time, until the chunks become large enough to overwhelm
the processor cores. Table 3 shows that this is largely true. However, because
the C++ implementation was not doing copying, but was instead building the
arrays from an empty array, this test was optimal for that implementation.

Table 3. Bulk update and search

5.2 Searches

A search operation specifies an array and a value, and it produces a list of all
indices in the array that are mapped to the value. If several indices map to
the value there is a “collision”, and resolving collisions is the hardest aspect of
associative search. In general, searches are very fast on the ESFM. To investigate
the worst case, we experimented with searches where all the elements of a chunk
have the same value. The arrays used in these experiments were generated by
bulk updates.

Our hypothesis was that the time for an associative search over an array
where all indices map to the same value would be proportional to the array size
on the C++ implementation, while it would remain constant on the GPU. This
proved to be the case, as can be seen in Table 3.
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Both the bulk update and search operations on the GPU require two par-
allel scans, one of which operates over 1024 cells per block. Several techniques
were used to obtain a reasonably efficient implementation; these include loop
unrolling, avoidance of bank conflicts, and the Xiao and Feng inter-block syn-
chronisation algorithm (Xiao and Feng 2010).

5.3 Long Arrays Created Using Updates

The C++ implementation is fast when there is relatively limited sharing and
plenty of bulk updates; this allows the C++ program to do little copying.

The situation is quite different when there is a lot of sharing, which requires
expensive copying for C++ but which is easy for ESFM. Table 4 shows the aver-
age time per update for the C++ Map implementation and the ESFM running
on the GPU. Each line shows the array size n and the time per update (averaged
over the n updates to create the array) for each implementation. The arrays con-
tain extensive sharing, and as a result the C++ implementation slows down in
line with the array size; it fails to terminate with 16K elements. In contrast, the
ESFM implementation takes constant time per update.

It is worth reiterating that the GPU program is simulating a circuit-parallel
system. The GPU has limited parallelism (512 cores, which is a small number
for circuit simulation) and the program has considerable overhead, especially in
synchronisation. Despite this, the GPU version of ESFA can outperform a state
of the art red black tree implementation when there is a large amount of sharing
between arrays.

5.4 Long Arrays with Deletes for Intermediate Arrays

Since keeping intermediate arrays was eventually a disaster for the C++ imple-
mentation, we experimented with what happened when deletes were inserted
at critical moments, ensuring that the most recent arrays still remained. This
corresponds to a situation where a program builds arrays with a lot of sharing,
but does not actually need the sharing and periodically cleans up by deleting
the arrays that will not be needed again.

Manual cleanup using delete operations sped up the C++ version consider-
ably, suggesting that explicit space management by the user program is really
quite important for the C++ version. Of course, this technique cannot be used
if the program needs access to the old arrays.

For the ESFM, each delete operation takes a constant time (13µs on the
machine we used). The time for a deletion does not depend on the shapes or
sizes of the arrays, or the past history of operations. Furthermore, the usage of
delete has no effect on the speed of the other operations; the only purpose of
delete is to reclaim memory so that a future update will succeed.
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Table 4. Update with sharing (µs per update)

Array Size C++ Map ESFM

1 1 19

2 1 20

4 2 20

8 3 20

16 5 20

32 10 20

64 18 20

128 34 20

256 63 20

512 114 20

1024 218 20

2048 428 20

4096 853 20

8192 1711 20

16384 Hangup 20

6 Fixing Some Space Leaks with a Hardware
Garbage Collector

One of the greatest practical advances in functional programming has proven to
be automatic memory management, which has been adopted widely. When the
programmer must explicitly allocate and free memory, serious errors are hard to
avoid. If memory is released that shouldn’t be, the result is a dangling reference;
conversely, if memory isn’t released which is actually inaccessible, the result is a
space leak.

Garbage collectors greatly reduce such errors, but they are not always perfect.
Wadler identified a situation where a space leak results from a perfectly reason-
able programming style, and showed how to fix the space leak by modifying the
garbage collector (Wadler 1987b).

An analogous situation arises with ESF arrays, although the details are dif-
ferent. The low level API for ESFA provides an operation to delete an array
a. The array handle is reclaimed, and all array elements that are inaccessible
are reclaimed in one instruction. Any array elements that can be accessed via
a different handle (some array other than a) are of course retained. The delete
operation seems almost like a garbage collector that takes O(1) time — apart
from one problem.

The problem stems from shadowing: if an index is bound to several different
values in an array, only the most recent binding is visible and the older ones
are shadowed (inaccessible). More precisely, suppose array a0 is empty and ai+1
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is defined by updating ai, for 0 � i < n. Consider an arbitrary update in this
sequence: say aj was created with the new element i �→ x . Now if another array
ak in the sequence is created later (so k > j) with the same index (e.g. with a
new element i �→ y) we say that the older element i �→ x is shadowed in an.
That is, lookup a i should return y, not x.

Shadowing is relative to a specific array. Thus the element i �→ x is shadowed
in a, but it is visible in aj and possibly many other arrays. The associative
techniques, based on comparing an array code with the low and high fields of
a cell, determine the set of candidates for the elements of an array. If this set
contains two elements i �→ x and i �→ y , then the rank is used to choose the
right one for a lookup.

Now suppose aj is deleted, while an still exists. Should the element associated
with aj be reclaimed? If is inaccessible via aj but it might be accessible via some
other array that still exists. But what if the element happens to be shadowed
in all such arrays? In that case, the element is inaccessible in the sense that
there does not exist a lookup that would return it. But delete cannot reclaim the
element without knowing its shadowing status.

Work on this problem is currently in progress, with the ultimate goal of
stating precisely the correctness conditions for a storage manager and proving
that the system satisfies them.

7 Conclusion

ESF arrays are based on implementing an API using novel hardware as well as
algorithms. Thus it brings together several diverse topics, including algorithms,
data structures, parallelism, and digital circuits.

This work builds on a number of foundational ideas in computer science, and
a remarkable number of them were introduced or advanced by Philip Wadler.
These include new functional array operations, giving low level support for data
structures in the garbage collector, using monads to allow effects to combine with
purity, and arguing eloquently for the use of equational reasoning and program
transformation.

Research is often insular and focused on narrow topics. A broader perspective
can lead to solutions that would be unachievable within a specialised area.
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Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.
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1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
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Here is a function which applies a given key generator to every element of a
list of strings.

def mapKeys(k: Keys, ss: List[String]): List[k.Key] =
ss.map(k.key)

The function returns a list of elements of type k.Key. This is a path-dependent
type, which depends on the variable name k. In general a path in Scala consists
of a variable name potentially followed by field selections, but in this paper
we consider only simple paths consisting of a single variable reference. Path-
dependent types give a limited form of type/term dependency, where types can
depend on variables, but not on general terms. This form of dependency already
gives considerable power, but at the same time is easier to handle than full term
dependency because the equality relation on variables is just syntactic equality.

There are three essential elements of a system for path-dependent types.
First, there needs to be a way to define a type as an element of a term, as in
the definitions type Key and type Key = Int. We will consider initially only type
tags, values that carry just one type and nothing else. Second, there needs to
be a way to recover the tagged type from such a term, as in p.Key. Third, there
needs to be a way to define and apply functions whose types depend on their
parameters.

These three elements are formalized in System D<:, a simple calculus for
path-dependent types that has been discovered recently in an effort to recon-
struct and mechanize foundational type system proposals for Scala bottom-up
from simpler systems (Rompf and Amin 2015). One core aspect of our approach
to modeling path-dependent types is that instead of general substitutions we
only have variable/variable renamings. This ensures that paths always map to
paths and keeps the treatment simple. On the other hand, with substitutions not
available, we need another way to go from a type designator like k.Key to the
underlying type it represents. The mechanism used here is subtyping. Types of
type tags define lower and upper bound types. An abstract type such as type Key
has the minimal type ⊥ and the maximal type � as bounds. A type alias such
as type Key = T has T as both its lower and upper bound. A type designator is
then a subtype of its upper bound and a supertype of its lower bound.

The resulting calculus is already quite expressive. It emerges as a general-
ization of System F<: (Cardelli et al. 1994), mapping type lambdas to term
lambdas and type parameters to type tags. We proceed to develop System D<:

into a richer calculus supporting objects as first class modules. This is done in
three incremental steps. The first step adds records and intersections, the sec-
ond adds type labels, and the third adds recursion. The final calculus, DOT, is a
foundation for path-dependent object types. Many programming language con-
cepts, including parameterized types and polymorphic functions, modules and
functors, classes and algebraic data types can be modeled on this foundation via
simple encodings.

A word on etymology: The term “System D” is associated in English and
French with “thinking on your feet” or a “quick hack”. In the French origin of
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the word, the letter ‘D’ stands for “se débrouiller”, which means “to manage”
or “to get things done”. The meaning of the verb “débrouiller” alone is much
nicer. It means: “Create order for things that are in confusion”. What better
motto for the foundations of a programming language?

Even if the name “System D” suggests quick thinking, in reality the devel-
opment was anything but quick. Work on DOT started in 2007, following earlier
work on higher-level formalizations of Scala features (Odersky et al. 2003; Cremet
et al. 2006). Preliminary versions of a calculus with path-dependent types were
published in FOOL 2012 (Amin et al. 2012) and OOPSLA 2014 (Amin et al.
2014). Soundness results for versions of System D<: and DOT similar to the
ones presented here, but based on big-step operational semantics, were recently
established with mechanized proofs (Rompf and Amin 2015).

The rest of this paper is structured as follows. Section 2 describes System
D<:. Section 3 shows how it can encode F<:. Section 4 extends D<: to DOT.
Sections 5 and 6 study the expressiveness of DOT and show how it relates to
Scala. Section 7 outlines the implementation of the DOT constructs in a full
Scala compiler. Section 8 discusses related work and Sect. 9 concludes.

2 System D<:

Figure 1 summarizes our formulation of System D<:. Its term language is essen-
tially the lambda calculus, with one additional form of value: A type tag {A = T}
is a value that associates a label A with a type T . For the moment we need only
a single type label, so A can be regarded as ranging over an alphabet with just
one name. This will be generalized later.

Our description differs from Rompf and Amin (2015) in two aspects. First,
terms are restricted to ANF form. That is, every intermediate value is abstracted
out in a let binding. Second, evaluation is expressed by a small step reduction
relation, as opposed to a big-step evaluator. Reduction uses only variable/vari-
able renamings instead of full substitution. Instead of being copied by a substi-
tution step, values stay in their let bindings. This is similar to the techniques
used in the call-by-need lambda calculus (Ariola et al. 1995).

We use Barendregt’s Variable Convention throughout. For example, in the
third evaluation rule, which un-nests let-bindings, we assume that we can appro-
priately α-rename the variable y which changes scope so that it is not captured
in the final term u.

The type assignment rules in Fig. 1 define a straightforward dependent typing
discipline. A lambda abstraction has a dependent function type ∀(x :S)T . This
is like a dependent product Π(x :S)T in LF (Harper et al. 1993), but with the
restriction that the variable x can be instantiated only with other variables, not
general terms. Type tags have types of the form {A : S..U}, they represent types
labeled A which are lower-bounded by S and upper-bounded by U . A type tag
referring to one specific type is expressed by having the lower and upper bound
coincide, as in {A : T..T}. The type of a variable x referring to a type tag can
be recovered with a type projection x.A.
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Fig. 1. System D<:
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The subtyping rules in Fig. 1 define a preorder S <: T between types with
rules (Refl) and (Trans). They specify � and ⊥ as greatest and least types
(Top), (Bot), and make a type projection x.A a supertype of its lower bound
(<:-Sel) and a subtype of its upper bound (Sel-<:). Furthermore, the stan-
dard co/contravariant subtyping relationships are introduced between pairs of
function types (All-<:-All) and tagged types (Typ-<:-Typ).

System D<: can encode System F<: as we will see in Sect. 3. However, unlike
System F<:, System D<: does not have type variables. Instead, type definitions,
such as {A = T}, are first-class values of type {A : T..T}. Combined with
dependent functions, these path-dependent types can express the idioms of type
variables, such as polymorphism.

For example, take the polymorphic identity function in System F<::

� Λ(α <: �).λ(x : α).x : ∀(α <: �).α → α

and in System D<::

� λ(a : {A : ⊥..�}).λ(x : a.A).x : ∀(a :{A : ⊥..�})∀(x :a.A)a.A

Like in System F<:, we can apply the polymorphic identity function to some
type, say T , to get the identity function on T :

� let f = . . . in let a = {A = T} in f a : ∀(x :T )T

The role of subtyping is essential: (1) the argument a of type {A : T..T} can
be used for the parameter a of type {A : ⊥..�}, (2) the dependent result type
∀(x :a.A)a.A can be converted to ∀(x :T )T because T <: a.A <: T .

2.1 Example: Dependent Sums

Dependent sums can be encoded using dependent functions, through an encoding
similar to that of existential types in System F.

Σ(x : S)T ≡ ∀(z :{A : ⊥..�})∀(f :∀(x :S)∀(y :T )z.A)z.A

pack [x, y]asΣ(x : S)T ≡ λ(z :{A : ⊥..�})λ(f :∀(x :S)∀(y :T )z.A)f x y

unpack x : S, y : T = t inu ≡ let z1 = t in let z2 = {A = U} in
let z3 = (λ(x :S)λ(y :T )u) in
let z4 = z1 z2 in z4 z3

z.1 ≡ unpack x : S, y : T = z inx

z.2 ≡ unpack x : S, y : T = z in y

where U is the type of u. The associated, admissible subtyping and typing rules
are easy to derive and can be found in AppendixA.1. Note that

1. unpacking via unpack x, y = t inu is only allowed if x and y do not appear
free in the type U of u,
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2. similarly, the second projection operator −.2 may only be used if x does not
appear free in T . In such cases, we have Σ(x : S)T = S × T , i.e. z is in fact
an ordinary pair.

These restrictions may come as a surprise: while they are similar to the hygiene
conditions imposed on existential types in System F/F<:, they do not apply
to dependent sums in (fully) dependently typed languages. In such languages,
the bound names x, y can be prevented from leaking into the overall type of an
unpack statement by substituting the projections t.1 and t.2 for occurrences of x
and y in U . The same is true for the return type of the second projection z.2,
which would be [x := z.1]T . Unfortunately, such substitutions are forbidden
in D<: because types may only depend on variables, as opposed to arbitrary
terms (like z.1 or t.2). For the same reason, the typing rule (Let) for let expres-
sions features a similar hygiene condition. Finally, note that the above encoding
allows for the unrestricted projection of “existential witnesses” via −.1, whereas
no such operation exists on existential types in System F/F<:.

3 Embedding F<: in D<:

System D<: initially emerged as a generalization of F<:, mapping type lamb-
das to term lambdas and type parameters to type tags, and removing certain
restrictions in a big-step evaluator for F<: (Rompf and Amin 2015). We make
this correspondence explicit below.

Pick an injective mapping from type variables X to term variables xX . In
the following, any variable names not written with an X subscript are assumed
to be outside the range of that mapping. Let the translation ∗ from F<: types
and terms to D<: types and terms be defined as follows.1

X∗ = xX .A

�∗ = �
(T → U)∗ = ∀(x :T ∗)U∗

(∀(X <: S)T )∗ = ∀(xX :{A : ⊥..S∗})T ∗

x∗ = x

(λ(x : T )t)∗ = λ(x : T ∗)t∗

(Λ(X <: S)t)∗ = λ(xX : {A : ⊥..S∗})t∗

(t u)∗ = letx = t∗ in let y = u∗ inx y x, y fresh
(t[U ])∗ = letx = t∗ in let yY = {A = U∗} inx yY x, Y fresh

1 The definition of t∗ assumes a countable supply of fresh names x, X /∈ fv(t).
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Note that there are D<: terms that are not in the image of ∗. An example is
λ(x : {A :�..�})x. Typing contexts are translated point-wise as follows:

(X <: T )∗ = xX : {A : ⊥..T ∗}
(x : T )∗ = x : T ∗

Theorem 1. If Γ �F S <: T then Γ ∗ �D S∗ <: T ∗.

Proof. The proof is by straight-forward induction on F<: subtyping derivations.
The only non-trivial case is subtyping of type variables, which follows from (Var)
and (Sel-<:).

Γ ∗, xX : {A : ⊥..T ∗}, Γ ′∗ � xX : {A : ⊥..T ∗}
(Sel− <:)

Γ ∗, xX : {A : ⊥..T ∗}, Γ ′∗ � xX .A <: T ∗

Theorem 2. If Γ �F t : T then Γ ∗ �D t∗ : T ∗.

Proof (Sketch). The proof is by induction on (System F) typing derivations. The
case for subsumption follows immediately from preservation of subtyping. The
only remaining interesting cases are type and term application, which are given
in detail in AppendixA.2.

4 DOT

Figure 2 presents three extensions needed to turn D<: into a basis for a full
programming language. The first extension adds records, the second adds type
labels, and the third adds recursion. For reasons of space, all three extensions
are combined in one figure.

4.1 Records

We model records by single field values that can be combined through intersec-
tions. A single-field record is of the form {a = t} where a is a term label and t
is a term. Records d1, d2 can be combined using the intersection d1 ∧ d2. The
selection x.a returns the term associated with label a in the record referred to
by x. The evaluation rule for field selection is:

letx = v in e[x.a] −→ letx = v in e[t] if v = . . . {a = t} . . .

It’s worth noting that records are “call-by-name”, that is, they associate labels
with terms, not values. This choice was made because it sidesteps the issue how
record fields should be initialized. The choice does not limit expressiveness, as
a fully evaluated record can always be obtained by using let bindings to pre-
evaluate field values before they are combined in a record.

New forms of types are single field types {a :T} and intersection types T ∧U .
Subtyping rules for fields and intersection types are as expected. The typing



256 N. Amin et al.

Fig. 2. DOT extensions to D<:

rules (Fld-I) and (Fld-E) introduce and eliminate field types in the standard
way. The typing rule (AndDef-I) types record combinations with intersection
types. To ensure that combinations are consistent, it requires that the labels of
the combined records are disjoint.
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There is also the general introduction rule (And-I) well known from lambda
calculus with intersections (Coppo et al. 1979). In the system with non-recursive
records, that rule is redundant, because it can be obtained from subsumption
and (<:-And). As demonstrated in Sect. 5, the rule does add expressiveness once
recursion is added.

4.2 Type Labels

Records with multiple type fields are supported simply by extending the alphabet
of type labels from a single value to arbitrary names. In the following we let
letters A,B,C range over type labels.

4.3 Recursion

The final extension introduces objects and recursive types. An object ν(x :T )d
represents a record with definitions d that can refer to each other via the variable
x. Its type is the recursive type μ(x :T ). Following the path-dependent approach,
a recursive type recurses over a term variable x, since type variables are absent
from DOT. Note that type tags are no longer terms in their own right: they
must now be wrapped in a ν binder like any other record definition.

The evaluation rule for records is generalized to the one in Fig. 2. There,
when selecting x.a, the selected reference x and the self-reference in the object
ν(x :T )d are required to coincide (this can always be achieved by α-renaming).

The rule ({}-I) assigns a recursive type to an object by typing its definition.
Note that the definitions are typed without subsumption (which is only defined
on terms, and in this final extension, definitions d are syntactically not terms t).

The introduction and elimination rules (Rec-I) and (Rec-E) for recursive
types are as simple as they can possibly be. There is no subtyping rule between
recursive types (Amadio and Cardelli 1993). Instead, recursive types of variables
are unwrapped with (Rec-E) and re-introduced with (Rec-I).

The choice of leaving out subtyping between recursive types represents a
small loss in expressiveness but a significant gain in simplifying the meta-theory.

4.4 Meta-Theory

This section presents the main type soundness theorems of DOT and outlines
their proofs, which have been machine-checked.2 The central results are the usual
small-step preservation and progress theorems.

Soundness results for slightly different versions of D<:, DOT, and a number
of variations were established previously with mechanized proofs by Rompf and
Amin. These soundness results are phrased with respect to big-step evaluators.
The type systems are slightly more expressive than the ones presented here in
that they are not restricted to terms in ANF, and in including a subtyping
rule on recursive types. This particular rule poses lots of challenges, which are
described in detail in the technical report (Rompf and Amin 2015).
2 The full development on paper and in Coq is at http://wadlerfest.namin.net.

http://wadlerfest.namin.net
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Definition 1. An answer n is defined by the production

n :: = x | v | letx = v inn

Theorem 3 (Progress). If � t : T then t is an answer or there is a term u such
that t −→ u.

Theorem 4 (Preservation). If � t : T and t −→ u then � u : T .

Note that the preservation property is weaker than normally stated in that
it demands an empty context. We will strengthen the theorem in the proofs to
get a useful induction property.

The central difficulty for coming up with proofs of these theorems was out-
lined in a previous FOOL workshop paper (Amin et al. 2012): it is possible to
arrive at type definitions with unsatisfiable bounds. For instance a type label
A might have lower bound � and upper bound ⊥. By subtyping rules (Sel-
<:), (<:-Sel) and transitivity of subtyping one obtains � <: ⊥, which makes
every type a subtype of every other type. So a single “bad” definition causes the
whole subtyping relation to collapse to one point, just as an inconsistent theory
can prove every proposition. With full type intersection and full recursion, it is
impractical to rule out such bad bounds a priori. Instead, a soundness proof has
to make use of the fact that environments corresponding to an actual execution
trace correspond to types of concrete values. In a concrete object value any type
definition is of the form A = T , so lower and upper bounds are the same, and bad
bounds are excluded. Similar reasoning applied in the big-step proofs (Rompf
and Amin 2015), where the semantics has a natural distinction between static
terms and run-time values. Here, we need to establish this distinction first.

We first define a precise typing relation Γ � ! t : T as follows:

Definition 2. Γ � ! t: T if Γ � t: T and the following two conditions hold.

1. If t is a value, the typing derivation of t ends in (All-I) or ({}-I).
2. If t is a variable, the typing derivation of t consists only of (Var), (Rec-E)

and (Sub) steps and every (Sub) step makes use of only the subtyping rules
(And1-<:), (And2-<:) and (Trans).

Definition 3. A store s is a sequence of bindings x = v, with ε representing the
empty store.

Definition 4. The combination s | t combines a store s and a term t. It is
defined as follows:

x = v, s | t ≡ letx = v in (s | t)
ε | t ≡ t

Definition 5. An environment Γ = xi : Ti corresponds to a store s = xi = vi,
written Γ ∼ s, if Γ � ! vi : Ti.
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A precise typing relation over an environment that corresponds to a store can
only derive type declarations where lower and upper bounds coincide. We make
use of this in the following definition.

Definition 6. A typing or subtyping derivation is tight in environment Γ if it
only contains the following tight variants of (Sel-<:), (<:-Sel) when Γ ′ = Γ :

Γ ′ � ! x : {A :T..T}
Γ ′ T <: x.A

(<:-Sel-tight)
Γ ′ � ! x : {A :T..T}

Γ ′ x.A <: T
(Sel-<:-tight)

For environments that extend Γ , full (Sel-<:) and (<:-Sel) are permitted. We
write Γ �# t : T or Γ �# S <: U if Γ � t : T or Γ � S <: U with a derivation
that is tight in Γ .

A core part of the proof shows that the full (Sel-<:) and (<:-Sel) rules are
admissible wrt �# if the underlying environment corresponds to a store.

Lemma 1. If Γ ∼ s and s(x) = ν(x : T )d and Γ � # x : {A : S..U} then
Γ �# x.A <: U and Γ �# S <: x.A.

The next step of the proof is to characterize the possible types of a variable
bound in a store s in an environment that corresponds to s.

Definition 7. The possible types Ts(Γ, x, v) of a variable x bound in an envi-
ronment Γ and corresponding to a value v is the smallest set S such that:

1. If v = ν(x :T )d then T ∈ S.
2. If v = ν(x :T )d and {a = t} ∈ d and Γ � t : T ′ then {a :T ′} ∈ S.
3. If v = ν(x : T )d and {A = T ′} ∈ d and Γ � S <: T ′, Γ � T ′ <: U then

{A :S..U} ∈ S.
4. If v = λ(x :S)t and Γ, x : S � t : T and Γ � S′ <: S and Γ, x : S′ � T <: T ′

then ∀(x :S′)T ′ ∈ S.
5. If S1 ∈ S and S2 ∈ S then S1 ∧ S2 ∈ S.
6. If S ∈ S and Γ � ! y : {A :S..S} then y.A ∈ S.
7. If T ∈ S then μ(x :T ) ∈ S.
8. � ∈ S.
The possible types of a variable are closed under subtyping:

Lemma 2. If Γ ∼ s, s(x) = v, T ∈ Ts(Γ, x, v) and Γ � T <: U , then U ∈
Ts(Γ, x, v).

The possible types of a variable include each of its typings:

Lemma 3. If Γ ∼ s and Γ � x : T then T ∈ Ts(Γ, x, s(x)).

These possible types lemmas are proved first for tight subtyping and typing,
by induction on the subtyping or typing derivation, and extended to standard
subtyping and typing with Lemma1, since (Sel-<:) and (<:-Sel) are admissible
for �# over Γ .

With the above lemmas it is easy to establish a standard canonical forms
lemma.
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Lemma 4 (Canonical Forms). If Γ ∼ s, then

1. If Γ � x : ∀(x : T )U then s(x) = λ(x : T ′)t for some T ′ and t such that
Γ � T <: T ′ and Γ, x : T � t : U .

2. If Γ � x : {a :T} then s(x) = ν(x : S)d for some S, d, t such that Γ � d : S,
{a = t} ∈ d, Γ � t : T .

As usual, we also need a substitution lemma, the proof of which is by a standard
mutual induction on typing and subtyping derivations.

Lemma 5 (Substitution). If Γ, x : S � t : T and Γ � y : [x := y]S then
Γ � [x := y]t : [x := y]T .

With (Canonical Forms) and (Substitution) one can then establish the following
combination of progress and preservation theorems by an induction on typing
derivations.

Proposition 1. Assume Γ � t : T and Γ ∼ s. Then either

– t is an answer, or
– There exist a store s′ and a term t′ such that s | t −→ s′ | t′ and for any such

s′, t′ there exists an environment Γ ′ such that Γ, Γ ′ � t′ : T and Γ, Γ ′ ∼ s′.

Theorems 3 and 4 follow from Proposition 1, since the empty environment cor-
responds to the empty store.

5 Encodings

In this section, we explore the expressiveness of DOT by studying program frag-
ments that are typable in it. We start with an encoding of booleans, which is
in spirit similar to the standard Church encoding, except that it also creates
Boolean as a new nominal type. We use the abbreviation

IFT ≡ { if: ∀(x: {A: ⊥..�})∀(t: x.A)∀(f: x.A): x.A }

A first step defines the type boolImpl.Boolean as an alias of its implementation,
a record with a single member if.

let boolImpl =
ν (b: { Boolean: IFT..IFT } ∧ { true: IFT } ∧ { false: IFT

})
{ Boolean = IFT } ∧
{ true = λ(x: {A: ⊥..�})λ(t: x.A)λ(f: x.A)t } ∧
{ false = λ(x: {A: ⊥..�})λ(t: x.A)λ(f: x.A)f }

in ...

In a second step, the implementation of Boolean gets wrapped in a function
that produces an abstract type. This establishes bool.Boolean as a nominal type,
which is different from its implementation. The type is upper bounded by IFT ,
which means that the conditional if is still accessible as a member.
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let bool =
let boolWrapper =

λ(x: μ(b: {Boolean: ⊥..IFT} ∧ {true: b.Boolean} ∧ { false:
b.Boolean })) x

in boolWrapper boolImpl
in ...

This example shows that that direct mappings into DOT can be tedious at
times. The following shorthands help.

5.1 Abbreviations

– We group multiple intersected definitions or declarations in one pair of braces,
replacing ∧ with ; or a newline. E.g.

{ A = T; a = t } ≡ { A = T } ∧ { a = t }
{ A: S..T; a: T } ≡ { A: S..T } ∧ { a: T }

– We allow terms in applications and selections, using the expansions

t u ≡ let x = t in x u
x u ≡ let y = u in x y
t.a ≡ let x = t in x.a

– We expand type ascriptions to applications:

t: T ≡ (λ(x: T)x)t

– We abbreviate ν(x: T)d to ν(x)d if the type of definitions d is given explicitly.
– We abbreviate type bounds by expanding A <: T to A: ⊥..T, A >: S to A:
S..�, A = T to A: T..T, and A to A: ⊥..�.

5.2 Example: A Covariant Lists Package

As a more involved example we show how can define a parameterized abstract
data type as a class hierarchy. A simplified version of the standard covariant List
type can be defined in Scala as follows:

package scala.collection.immutable
trait List[+A] {
def isEmpty: Boolean; def head: A; def tail: List[A]

}
object List {
def nil: List[Nothing] = new List[Nothing] {
def isEmpty = true; def head = head; def tail = tail /*

infinite loops */
}
def cons[A](hd: A, tl: List[A]) = new List[A] {
def isEmpty = false; def head = hd; def tail = tl
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}
}

This defines List as a covariant type with head and tail members. The nil
object defines an empty list of element type Nothing, which is Scala’s bottom
type. Its members are both implemented as infinite loops (lacking exceptions
that’s the only way to produce a bottom type). The cons function produces a
non-empty list.

In the DOT encoding of this example, the element type A becomes an abstract
type member of List, which is now itself a type member of the object denoting
the package. From the outside, List is only upper-bounded, so that it becomes
nominal: the only way to construct a List is through the package field members
nil and cons. Also, note that the covariance of the element type A is reflected
because the tail of the List only requires the upper bound of the element type to
hold.

let scala_collection_immutable = ν(sci) {
List = μ(self: {A; isEmpty: bool.Booleam; head: self.A; tail: sci.List∧{A

<: self.A}})
nil: sci.List∧{A = ⊥} =
let result = ν(self) {
A = ⊥; isEmpty = bool.true; head = self.head; tail = self.tail }

in result
cons: ∀(x: {A})∀(hd: x.A)∀(tl: sci.List∧{A <: x.A})sci.List∧{A <: x.A} =

λ(x: {A})λ(hd: x.A)λ(tl: sci.List∧{A <: x.A})
let result = ν(self) {
A = x.A; isEmpty = bool.false; head = hd; tail = tl }

in result
}: { μ(sci: {
List <: μ(self: {A; head: self.A; tail: sci.List∧{A <: self.A}})
nil: sci.List∧{A = ⊥}
cons: ∀(x: {A})∀(hd: x.A)∀(tl: sci.List∧{A <: x.A})sci.List∧{A <: x.A}

})}
in . . .

As an example of a typing derivation in this code fragment consider the right
hand side of the cons method. To show that result corresponds to the given result
type sci.List∧{A <: x.A}, the typechecker proceeeds as follows. First step:

by typing of rhs
result: ν(self: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}})

by (Rec-E)
result: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}}

by (Sub), since self.A = x.A
result: { A = x.A, hd: self.A, tl: sci.List∧{A = self.A}}

by (Sub), since A: x.A..x.A <: A
result: { A, hd: self.A, tl: sci.List∧{ A = self.A}}

by (Rec-I)
result: ν(self: { A, hd: self.A, tl: sci.List∧{ A = self.A}})

by (Sub) via (<:-Sel) on sci.List
result: sci.List
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Second step:

result: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}}
by (Sub)

result: {A <: x.A}

Combining both steps with (And-I) gives

result: sci.List∧{A <: x.A}

The explicit naming of the result was necessary so that we could “unwrap”
the recursive type on it, apply subsumption and then “rewrap” using (Rec-I)
and (And-I). In Scala, this sequence of steps can be an automatic conversion
on the value; no separate let-binding is needed.

How close is this encoding to actual Scala? Here’s legal Scala code which
closely mimicks the previous list encoding in DOT.

object scala_collection_immutable { sci =>
trait List { self =>
type A
def isEmpty: Boolean
def head: self.A
def tail: List{type A <: self.A}

}

def nil: sci.List{type A = Nothing} = new List{ self =>
type A = Nothing
def isEmpty = true
def head: A = self.head
def tail: List{type A = Nothing} = self.tail

}

def cons(x: {type A})(hd: x.A)(tl: sci.List{type A <: x.A})
: sci.List{type A <: x.A} = new List{ self =>
type A = x.A
def isEmpty = false
def head = hd
def tail = tl

}
}

The main difference between the DOT and Scala versions concerns recursive
types. Scala does not support recusive types directly, but recursion is employed
indirectly in the definition of traits and objects. Consequently, List in now a trait
instead of a type definition, and scala collection immutable is an object instead
of a let-bound variable. Otherwise, there are only minor syntactic differences.
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6 Dependent Types in Scala

The previous section showed how generic types can be encoded as path-
dependent types in DOT. So it established that DOT is sufficiently expressive
to encode standard abstraction patterns we expect in programming languages
today. In this section we show by means of an example3 that path-dependent
types are themselves a useful programming concept.

The example models command line options using heterogeneous maps. Say,
you want to represent the settings given in the bash command line

ls -l --sort time --width=120

There are two settings: sort is associated with the string “time” and width is
associated with the integer 120. We’d like to store these settings in a map in a
typesafe way. This map is necessarily heterogeneous: if the key is “sort” it should
accept and return a string as value, whereas for the “width” key it should accept
and return integer values.

Here is the interface of a HMap trait for heterogeneous maps in Scala:

trait Key { type Value }

trait HMap {
def get(key: Key): Option[key.Value]
def add(key: Key)(value: key.Value): HMap

}

Type dependencies are expressed with the Key type which contains a single
type field Value to indicate the type of the value associated with that key. HMap
contains two methods, get and add with result types that depend on the passed
key argument.

To represent command line settings as HMap keys, we define a class Setting
that extends Key and that defines a str field:

class Setting(val str: String) extends Key

Settings for sort and width define the setting name and the type of the values
associated with the setting.

val sort = new Setting("sort") { type Value = String }
val width = new Setting("width") { type Value = Int }

The settings in the command line above can now be represented as:

val params = HMap.empty
.add(width)(120)
.add(sort)("time")

The system keeps track of the type associated with a setting, so the following
two accesses of the params map both typecheck:
3 The example is based on a talk by Jon Pretty (2015).
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val x: Option[Int] = params.get(width)
val y: Option[String] = params.get(sort)

Here is a minimally complete implementation of HMap that makes this work:

trait HMap { self =>
def get(key: Key): Option[key.Value]
def add(key: Key)(value: key.Value) = new HMap {
def get(k: Key) =
if (k == key) Some(value.asInstanceOf[k.Value])
else self.get(k)

}
}

object HMap {
def empty = new HMap { def get(k: Key) = None }

}

Note the asInstanceOf cast in the definition of get. This is necessary
because the type checker cannot conclude that k == key implies k.Value
== key.Value, i.e. that equality is extensional. Equality (==) is user-defined
in Scala, so extensionality needs to be ensured in the definitions of the actual
key types and values.

If we compare this to Haskell’s HMap (van der Ploeg 2013) we notice several
differences. First, Haskell, lacking dependent method types, expresses a depen-
dent method type with an additional polymorphic parameter. Second, the type
of keys in Haskell’s implementation is fixed, whereas in Scala’s approach it can
be augmented with new information through subclassing, as was seen in the case
of Setting. Third, in Haskell key creation is a monadic operation, so all code
manipulating HMap has to be placed in a monad. By contrast, the Scala code is
Monad-free (and also side-effect-free).

7 Implementation

The DOT calculus is at the core of the new dotty compiler for Scala (Odersky
et al. 2013), which has been under development since 2013. dotty is currently
used as an experimental platform to develop future versions of Scala. One of the
first changes, influenced by DOT, is the introduction of true intersection types.

Unlike nsc, the current reference compiler for Scala, dotty does not maintain
parameterized types and type applications. Instead, parameterized types in Scala
sources are immediately mapped to types with abstract type members, and type
applications are mapped to type refinements, very similar to what is shown in
Sect. 5.

An important benefit of this reductionist approach is that it gives for the first
time a satisfactory explanation of wildcard types, which arise when modeling type
parameter variance. If we combine generics and subtyping, we inevitably face the
problem that we want to express a generic type where the type argument is an
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unknown type that can range over a set of possible types. The prototypical case is
where the argument ranges over all subtypes or supertypes of some type bound,
as in List[ <: Fruit] (or List<? extends Fruit> in Java).

Such partially undetermined types come up when we want to express vari-
ance. We would like to have that List[Apple] is a subtype of List[Fruit] since Apple
is a subtype of Fruit. An equivalent way to state this is to say that the type
List[Fruit] includes lists where the elements are of an arbitrary subtype of Fruit.
The wildcard type List[ <: Fruit] expresses that notion directly. Definition-site
variance can be regarded as a user-friendly notation that expands into use-site
variance expressions using wildcards.

The problem is how to model a wildcard type such as List[ <: Fruit] in a for-
mal type system. The original proposal of wildcard types by Igarashi and Viroli
(Igarashi and Viroli 2002) interpreted them as existential types. However, the
implementation of the feature in Java uses subtyping rules that are not explica-
ble using just existential types. A tentative formalization exists with WildFJ
(Torgersen et al. 2004), but the issues look quite complicated. Tate, Leung and
Learner have explored some possible explanations (Tate et al. 2011); however
their treatment raises about as many questions as it answers.

Say, C is a class with type parameter A, which can be declared nonvariant,
covariant, or contravariant. The scheme used in dotty is to model C as a class
with a single type member

class C { type A }

A type application C[T] is then expressed as C & { type A = T } if A is nonvariant,
as C & { type A <: T } if C is covariant and as C & { type A >: T } if C is
contravariant.

Wildcard type applications are mapped as they are written. For instance,
C[ <: T] would be expressed as C & { type A <: T }. So the previously thorny
issue how to model wildcards has an almost trivially simple solution in this
approach.

8 Related Work

The DOT calculus represents the latest development in a long-standing effort
to formalize the core features of the Scala programming language. Previous
formalizations include the νObj calculus (Odersky et al. 2003), Featherweight
Scala (Cremet et al. 2006) and Scalina (Moors et al. 2008). The νObj calculus
features a rich type language, including distinct notions of singleton types, type
selections, record types, class types and compound types. However, this richness
makes νObj rather unwieldy in practice and somewhat unsuitable as a core cal-
culus. Furthermore, subtyping in νObj lacks unique upper or lower bounds, and
mixin composition is not commutative. Type checking in νObj was shown to be
undecidable, prompting the development of Featherweight Scala (Cremet et al.
2006) as an attempt at a calculus with decidable type checking. Scalina (Moors
et al. 2008) was proposed as a formal underpinning for introducing higher-kinded
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types in Scala. Among these three systems, only the νObj has been proven sound,
and its proof has not been machine-verified.

A common theme among earlier systems is their complexity, which makes
them hard to reason about and extend with new features. The goal of DOT is to
provide a more streamlined calculus that could serve as a basis for mechanized
proofs of various extensions. To this end, DOT focuses on the essence of path-
dependent types and reduces complexity as far as having only variables as paths.
Despite and due to such restrictions, DOT is more general than previous models
as it does not assume a class-based language or any other particular choice of
implementation reuse. A preliminary version of DOT was formalized using a
small-step operational semantics with a store (Amin et al. 2012) without giving
a soundness proof. The first mechanized soundness proof was established for a
more restricted variant (μDOT) using a closure-based big-step semantics (Amin
et al. 2014). Soundness results with mechanized proofs for versions of System
D<: and DOT similar to the ones presented here (but still based on big-step
semantics) were only recently established (Rompf and Amin 2015).

Our work shares many goals with recent work on ML modules. In this con-
text, path-dependent types go back at least to SML (Macqueen 1986), with
foundational work on transparent bindings by Harper and Lillibridge (1994) and
Leroy (1994). Unlike DOT, their systems are stratified, i.e. definitions can only
depend on earlier definitions in the same type. This ensures well-formedness of
definitions by construction, but rules out recursive definitions. Also, type bounds
are not considered. MixML (Dreyer and Rossberg 2008) drops the stratification
requirement between module and term language and enables modules as first
class values as well as mixin-style recursive definitions. More recent work models
key aspects of modules as extensions of System F (Montagu and Rémy 2009;
Rossberg et al. 2014). The latest development, 1 ML (Rossberg 2015), unifies
the ML module and core languages through an elaboration to System Fω. Our
work differs from these in its integration of subtyping and recursive definitions,
as well as an overriding focus on keeping the formalism minimal.

In object-oriented programming languages, Ernst first proposed path-
dependent types for family polymorphism (2001) and virtual classes (2003) in
gbeta. Calculi for virtual classes include vc (Ernst et al. 2006) and Tribe (Clarke
et al. 2007). Virtual classes abstract not only over types, but also over classes
and inheritance – requiring additional restrictions or type machinery to control
interactions between statically unknown class hierarchies. In contrast, the core
DOT calculus does not model inheritance by design.

Abstract type tags {A : S..T} provide a form of first-class subtyping con-
straints in DOT. As illustrated in Sect. 3, this subsumes the type of bounded
polymorphism found in e.g. F<:. However, unlike F<:, DOT allows abstract types
to be lower-bounded, and even to assume absurd bounds, such as {A : �..⊥}.
This makes the type system more expressive, but complicates the meta theory
and renders reduction under abstraction unsafe in general (see Sect. 4). In DOT,
these issues are solved by adopting a weak-reduction strategy and ensuring type
safety only in run-time typing contexts (i.e. those that correspond to a store).
Cretin, Scherer and Rémy propose an alternative approach in their Fcc and Fth

systems (Cretin and Rémy 2014; Scherer and Rémy 2015). They consider a more
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general notion of coercion constraints which come in two flavors: consistent con-
straints, under which reduction is safe, and (potentially) inconsistent constraints,
under which reduction is forbidden. Their approach thus regains a more flexible
reduction strategy at the expense of a considerably more complex type system.

9 Conclusion and Future Work

We have developed DOT, a minimal formal foundation for Scala. The calculus
departs from standard practice in that it places type names related by subtyping
constraints and path-dependent types at the center and regards type parame-
terization as a secondary feature that can be expressed through encodings.

Developing a sound meta-theory for DOT has been difficult because the issues
were at first poorly understood. In retrospect, the main difficulty came from the
fact that the combination of upper and lower type bounds4 allows programmers
to define their own subtyping theory and that theory might well be inconsistent.
An inconsistent subtyping theory arises from bad bounds, where the lower bound
of a type is not a subtype of its upper bound. Through transitivity of subtyping,
bad bounds can turn every type into a subtype of every other type, which makes
the progress part of type soundness fail. Because of recursion and intersection
types, it’s impossible to stratify the system so that bad bounds are ruled out a
priori.

We solve the issue by carefully distinguishing values that can arise at run-time
from other terms. Run-time values carrying types are always constructed using a
ν-term and its typing rule makes sure that every type member is defined as an
alias of a concrete type. So run-time values cannot have bad bounds. The tricky
aspect of the meta theory was how to exploit this intuition in the formal proofs.

The intuitions gained by DOT feed into Scala in several ways. For one, Scala
is set to adopt constructs studied in DOT, such as full intersection types. Further-
more, the dotty Scala compiler has an internal type representation that generally
resembles DOT and in particular encodes type parameterization as membership.

We also plan to study several extensions of DOT with the aim of bridging the
gaps between the calculus and the programming language. Areas to be studied
include formalizations of type parameters, variance, traits and classes, as well as
inheritance. We expect that most of these extensions will be formalized through
encodings into the base calculus. Their soundness will likely be established by
proving type preservation of the encodings instead of adding to the meta-theory
of DOT itself.
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A Additional Rules and Detailed Proofs

A.1 Typing of Dependent Sums/Σs

There are one subtyping rule and four typing rules (all admissible in D<:) asso-
ciated with the encoding of dependent sums given in Sect. 2.1.

Γ � S1 <: S2 Γ, x : S1 � T1 <: T2

Γ � Σ(x : S1)T1 <: Σ(x : S2)T2

(Σ-<:-Σ)

Γ � x : S Γ � y : T x /∈ fv(S)
Γ � pack [x, y]asΣ(x : S)T : Σ(x : S)T

(Σ-I)

Γ � t : Σ(x : S)T Γ, x : S, y : T � u : U x, y /∈ fv(U)
Γ � unpack x : S, y : T = t inu : U

(Σ-E)

Γ � z : Σ(x : S)T
Γ � z.1 : S

(Σ-Proj1)

Γ � z : Σ(x : S)T x /∈ fv(T )
Γ � z.2 : T

(Σ-Proj2)

The proofs of admissibility are left as an (easy) exercise to the reader.

A.2 Proof of Theorem2

We want to show that the translation −∗ preserves typing, i.e. if Γ �F t : T
then Γ ∗ �D t∗ : T ∗.

We start by stating and proving two helper lemmas. Write [x.A := U ]T for
the capture-avoiding substitution of x.A for U in T .

Lemma 6. Substitution of type variables for types commutes with translation of
types, i.e.

([X := U ]T )∗ = [xX .A := U∗]T ∗

Proof. The proof is by straight-forward induction on the structure of T .

Lemma 7. The following subtyping rules are admissible in D<:
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Γ x : {A : U..U}
Γ [x.A := U ]T <: T

Γ x : {A : U..U}
Γ T <: [x.A := U ]T

Proof. The proof is by induction on the structure of T .

Proof (Theorem 2). Proof is by induction on (F<:) typing derivations. The case
for subsumption follows immediately from preservation of subtyping (Theo-
rem 1). The only remaining non-trivial cases are type and term application.

Term Application Case. We need to show that

Γ ∗ s∗ : ∀(z :S∗)T ∗ Γ ∗ t∗ : S∗

Γ ∗ letx = s∗ in let y = t∗ inx y : T ∗

is admissible. First note that z is not in fv(T ∗), hence [z := y]T ∗ = T ∗ for all
y. In particular, using (Var) and (All-E), we have

Γ ′ x : ∀(z :S∗)T ∗ Γ ′ y : S∗
(All-E)

Γ ′ x y : T ∗

where Γ ′ = Γ ∗, x : ∀(z : S∗)T ∗, y : S∗. Applying the induction hypothesis,
context weakening and (Let), we obtain

Γ ∗, x : ∀(z :S∗)T ∗ t∗ : S∗ Γ ′ x z : T ∗
(Let)

Γ ∗, x : ∀(z :S∗)T ∗ let y = t∗ inx y : T ∗

The result follows by applying the induction hypothesis once more:

Γ ∗ s∗ : ∀(z :S)∗T ∗ Γ ∗, x : ∀(z :S)∗T ∗ let y = t∗ inx y : T ∗
(Let)

Γ ∗ letx = s∗ in let y = t∗ inx y : T ∗

Type Application Case. By preservation of subtyping, we have Γ ∗ � U∗ <: S∗,
hence it suffices to show that

Γ ∗ t∗ : ∀(xX :{A : ⊥..S∗})T ∗ Γ ∗ U∗ <: S∗

Γ ∗ letx = t∗ in let yY = {A = U∗} inx yY : ([X := U ]T )∗

is admissible. By context weakening, (Typ-<:-Typ), (Bot) and (Sub), we have

Γ ′ yY : {A : U∗..U∗}
Γ ′ ⊥ <: U∗ Γ ′ U∗ <: S∗

(Typ-<:-Typ)
Γ ′ yY : {A : ⊥..S∗}

(Sub)
Γ ′ yY : {A : ⊥..S∗}

where Γ ′ = Γ ∗, x : ∀(xX : {A : ⊥..S∗})T ∗, yY : {A : U∗..U∗}. By (Var) and
(All-E), we have
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Γ ′ x : ∀(xX :{A : ⊥..S∗})T ∗ Γ ′ yY : {A : ⊥..S∗}
(All-E)

Γ ′ x yY : [xX := yY ]T ∗

Next, we observe that, by Lemma 6

([X := U ]T )∗ = [xX .A := U∗]T ∗

= [yY .A := U∗][xX := yY ]T ∗

By Lemma 7, (Var) and (Sub), we thus have

Γ ′ xyY : [x :=] XyY T ∗
Γ ′ yY : {A : U∗..U∗}

(Lemma 7)
Γ ′ [xX := yY ]T ∗ <: ([X := U ]T )∗

(Sub)
Γ ′ x yY : ([X := U ]T )∗

The result follows from applying (Let) twice. Note that, being fresh, neither x
nor yY appear free in ([X := U ]T )∗, hence the hygiene condition of (Let) holds.

References

Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Trans. Program. Lang.
Syst. 15(4), 575–631 (1993)

Amin, N., Moors, A., Odersky, M.: Dependent object types. In: FOOL (2012)
Amin, N., Rompf, T., Odersky, M.: Foundations of path-dependent types. In: OOPSLA

(2014)
Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need lambda

calculus. In: POPL (1995)
Cardelli, L., Martini, S., Mitchell, J.C., Scedrov, A.: An extension of system F with

subtyping. Inf. Comput. 109(1/2), 4–56 (1994)
Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Tribe: a simple virtual class

calculus. In: AOSD (2007)
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Abstract. In this paper we compare Wadler’s CP calculus for classical
linear processes to a linear version of Parigot’s λμ calculus for classical
logic. We conclude that linear λμ is “more or less” CP, in that it equa-
tionally corresponds to a polarized version of CP. The comparison is
made by extending a technique from Melliès and Tabareau’s tensor logic
that correlates negation with polarization. The polarized CP, which is
written CP± and pronounced “CP more or less,” is an interesting bridge
in the landscape of Curry-Howard interpretations of logic.

1 Introduction

In 2012 Philip Wadler introduced CP, a language of “classical processes” in the
style of Caires and Pfenning’s session-typed processes (2010). CP is a recent
advance in the long and distinguished line of work that connects logic to compu-
tation via the Curry-Howard correspondence. In this instance, Wadler connects
Girard’s (classical) linear logic (1987) to a variant of Milner’s π-calculus (1992)
by using types to express communication protocols—sessions—that synchronize
concurrent threads of execution. The connection to logic endows CP with strong
correctness properties: type safety and deadlock freedom.

Over the years, research into the Curry-Howard isomorphism has built up a
vast landscape of languages and logics. One particularly rich and relevant domain
is calculi typed by classical (but not necessarily linear) logic. Among these are
Griffin’s λC-calculus (1990), Parigot’s λμ-calculus (1992), Curien and Heberlin’s
λμμ̃-calculus/System L (2000), and Wadler’s own dual calculus (2003). With
CP in mind, we can even consider linear versions of these calculi, such as Lin-
ear L (Munch-Maccagnoni 2009; Spiwack 2014) and linear λμ, the natural linear
variant of Parigot’s λμ-calculus.

A natural question then arises:

How doesCP relate to linear interpretations of classical calculi?

In this paper, we answer the question by showing that CP is almost (but not
quite) the same thing as linear λμ. In particular, linear λμ corresponds exactly
with a polarized version of CP, which we introduce here and dub CP±. Com-
pared to Wadler’s original CP, CP± (which can be read “CP more or less”)
separates positive (sending) from negative (receiving) types and inserts shift
connectives between them. Operationally, polarization reduces the amount of
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 273–291, 2016.
DOI: 10.1007/978-3-319-30936-1 15
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nondeterminism, statically making more choices about how processes synchro-
nize.1 CP± is thus “more or less” CP, where the scheduling is statically decided.
We summarize our results in the following Wadleresque slogan:

Linearλμ isCP (more or less).

The relationship between linear λμ and CP hinges on duality. Linear λμ is
a classical logic of two-sided sequents, while CP (and consequently CP±) is a
classical logic of one-sided sequents. To relate them, we follow a plan laid out by
Melliès and Tabareau (2010) in the context of tensor logic, which similarly comes
in two flavors. The two-sided presentation of tensor logic is an intuitionistic logic
of (non-involutive) negation; the one-sided presentation is a polarized logic of
(non-invertible) shift operators. When linear λμ takes the place of the two-sided
presentation, CP± arises naturally from the dualization procedure.

The contributions of this paper are summarized as follows. Section 2 presents
a core formulation of Wadler’s CP, using a novel and elegant operational seman-
tics. Section 3 introduces linear λμ, including both call-by-value and call-by-name
operational semantics. We define CP± in Sect. 4, first describing the duality
derived from tensor logic, and then inferring the syntax and semantics from the
type structure. Section 5 gives the main result, establishing the equational cor-
respondence between linear λμ and CP±. We briefly conclude with a discussion
of the relationships between CP, CP±, and other computational interpretations
of classical logics.

2 CP and Session Types

In this section we describe a variation on Wadler’s CP calculus (2012; 2014),
based on the line of work by Caires and Pfenning (2010) that treats the types
of linear logic as descriptions of session protocols and the proofs of linear logic
as processes obeying these protocols. A (binary) session is just a communication
channel between two processes. The types of linear logic describe the protocols
by which these channels should behave.

X ,Y ::= 1 | X ⊗ Y | ⊥ | X &

Y | 0 | X ⊕ Y | � | X & Y

Consider a process P that offers a channel x obeying protocol X . The process
at the other end of the channel, Q , must obey the dual protocol X⊥. Duality
is involutive—that is, we have (X⊥)⊥ = X . We write the composition of these
two processes as νx .〈P | Q〉, and the session type X describes their behavior as
shown in Fig. 1.

Each connective has an associated direction—processes send messages over
channels behaving like a tensor ⊗, but they receive messages over channels behav-
ing like a par

&

. However, the direction of each channel is not fixed. For example,
a process may send a value on a channel, then immediately receive a flag on the
same channel. The session-based type of such a channel would be X1⊗(X2 & X3).
1 Pfenning and Griffith (2015) have also studied polarization in their work on

intuitionistic session types, where it distinguishes synchronous and asynchronous
communication.
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Fig. 1. Session types and their intended semantics. Process P interacts with Q via the
cut νx .〈P | Q〉. By duality, P could equally well offer a channel behaving as X⊥.

2.1 Syntax and Static Semantics

As in the π-calculus, a process P is made up of bodies and prefixes to manipulate
channels.

P :: = x ↔ y | νx .〈P1 | P2〉
| x [].0 | x ().P
| x [y ].(P1 | P2) | x (y).P

| x .case()
| x [inji ].P | x .case(P1 | P2)

The link operator x ↔ y connects the channels x and y together. The cut
operator νx .〈P1 | P2〉 synchronizes communication on a channel whose endpoints
lie in P1 and P2. The other syntactic forms are prefix actions, which send or
receive on channels according to one of the session protocols.

The typing judgment P 	 Ω specifies that the channels offered by P obey
certain protocols, specified by Ω. Here Ω is a collection of channel names x with
their types X . The typing rules for CP are shown in Fig. 2.

2.2 Operational Semantics

Wadler (2012) nicely summarizes the Curry-Howard interpretation of session
types as follows: propositions are session types, proofs are processes, and cut
elimination is communication. The operational behavior of processes is the
description of how communication occurs over channels. The end goal of this
communication is a process that is free of both cuts and (non-atomic) links. With
that goal in mind, each step of communication falls into one of three groups.

First, β-reduction rules describe the synchronous communication between
two processes.

νx .〈y ↔ x | P〉 →β P{y/x}
νx .〈x [].0 | x ().P〉 →β P

νx .〈x [y ].(P1 | P2) | x (y).P3〉 →β νy .〈P1 | νx .〈P2 | P3〉〉
νx .〈x [inji ].P | x .case(P1 | P2)〉 →β νx .〈P | Pi〉
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Fig. 2. The CP calculus

Structural equivalence rules allow us to swap the order of cuts and forwarding
links in these rules to avoid unnecessary duplication.

νx .〈P1 | P2〉 ≡s νx .〈P2 | P1〉 x ↔ y ≡s y ↔ x (1)

Second, link forwarding is defined by η-expansion rules.

(y ↔ x 	 y : ⊥, x : 1) →η y().x [].0

(y ↔ x 	 y : X⊥ &

Y
⊥

, x : X ⊗ Y ) →η y(y ′).x [x ′].(y ′ ↔ x ′ | y ↔ x )
(y ↔ x 	 y : �, x : 0) →η y .case()

(y ↔ x 	 y : A⊥ & B
⊥

, x : A ⊕ B) →η y .case(x [inj1].y ↔ x | x [inj2].y ↔ x )

The rest of the operational behavior of processes deals with commuting conver-
sions, by which non-interfering actions can be executed in any order. Presenta-
tions of commuting conversions are often very intricate, as there are a quadratic
number of interleavings of non-interfering actions. Here, we present a unified
view of commuting conversions by classifying them into three groups.

The first group of commuting conversions permutes an action (corresponding
to one of the session protocols) around a cut. For example, when x does not occur
in P2 and y does not occur in P1, then

νx .〈P1 | y [z ].(P2 | P3)〉 →CC y [z ].(P2 | νx .〈P1 | P3〉).
The presence of the additives, � and & , adds even stranger looking conversions:

νx .〈y .case() | Q〉 →CC y .case()
νx .〈y .case(P1 | P2) | Q〉 →CC y .case(νx .〈P1 | Q〉 | νx .〈P2 | Q〉)

This class of conversions is directed, to push the cut after the action so that
it becomes closer to its own synchronizing channel. The combination of this
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class of conversions with the β-reduction rules results in a cut elimination pro-
cedure (Theorem 1).

The second group of commuting conversions says that two cuts on different
channels can be performed in either order. Assuming that x does not occur in
P2 and y does not occur in P1, we have

νx .〈P1 | νy .〈P2 | P3〉〉 ≡CC νy .〈P2 | νx .〈P1 | P3〉〉.

This type of conversion is classified by Wadler as a structural equivalence, which
we denote ≡s. However, while the two structural equivalences in Eq. (1) are
necessary to define the normalization or communication procedure of processes,
the conversion in this section is not.

The third class of conversions says that prefix actions on different channels
can occur in any order. For example, if x (which is not equal to z ) does not
occur in P1, then

x [inj1].z [y ].(P1 | P2) ≡CC z [y ].(P1 | x [inj1].P2).

The motivation behind this type of commuting conversion is the independence
of non-interfering sessions. That is, when two prefixes do not refer to each other,
they should not interfere. Again, this class of conversions is undirected; it is not
necessary for the definition of a communcation/cut-elimination procedure. The
relation ≡CC instead defines behavioral equivalence of processes, as described by
Pérez et al. (2014).

Commuting Conversions via Contexts. A context C is any process with
holes (possibly zero or more than one) for other processes. The number of holes
in C is called its arity. We write C [P1, .. ,Pi ] for the operation that fills holes
with processes.2 Two contexts are disjoint, written C1⊥C2, if the set of channels
referred to by C1 is disjoint from the set of channels referred to by C2.

The composition of two contexts C2◦C1 replicates the inner context C1 in all
of the holes of the outer context C2. This is illustrated by the following examples:

νx .〈� | P〉 ◦ C = νx .〈C | P〉
x .case() ◦ C = x .case()

x .case(� | �) ◦ C = x .case(C | C )

The arity of C1 ◦ C2 is the product of the arities of the two subcontexts.
For any context C with a single hole, we have a congruence rule to reduce

processes under actions.
P ≡s P ′

C [P ] ≡s C [P ′] (2)

2 To give the definitions in this section precisely, it would be necessary to use named
holes and substitutions to fill in the holes. For the purposes of this paper we leave
these operations informal.
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To define commuting conversions, we pick out certain classes of contexts that
refer to the different components of the commuting conversion rules. Evaluation
contexts, written Ce, consist of cuts with a single top-level hole, and action
contexts, written Ca, consist of prefix actions also with top-level holes.

Ce ::= νx .〈� | P2〉 | νx .〈P1 | �〉
Ca ::= x ().� | x [y ].(� | P2) | x [y ].(P1 | �) | x (y).�

| x .case() | x [inji ].� | x .case(� | �)

Notice that x .case() is a context with arity zero, and x .case(� | �) is a context
with arity two.

The three classes of commuting conversion rules can be summarized neatly
as follows:

Ce⊥Ca

Ce ◦ Ca[P1, .. ,Pi ] →CC Ca ◦ Ce[P1, .. ,Pi ]
action-cut

Ce
1⊥Ce

2

Ce
1 ◦ Ce

2 [P ] ≡CC Ce
2 ◦ Ce

1 [P ]
cut-cut

Ca
1⊥Ca

2

Ca
1 ◦ Ca

2 [P1, .. ,Pi ] ≡CC Ca
2 ◦ Ca

1 [P1, .. ,Pi ]
action-action

2.3 Reduction and Equivalence

The step relation on processes is the least relation generated by →β , →η, →CC ,
and ≡s. Behavioral equivalence, written ≡, is defined to be the least congruence
containing the step relation and ≡CC .

Theorem 1 (Progress and Preservation).

1. If P 	 Ω then either P is cut- and link-free, or P can take a step.
2. If P 	 Ω and P steps to P ′, then P ′ 	 Ω.

The structural equivalence relation ≡s makes reduction in CP extremely
non-deterministic. We conjecture that the step relation is confluent up to com-
muting conversions ≡CC , but have not proved this fact. In addition, there is no
meaningful notion of evaluation order; the properties of call-by-name and call-
by-value are not even expressible. In Sect. 4 we will see that CP± has the ability
to resolve this non-determinism by employing different evaluation strategies, in
the style of Wadler’s dual calculus (2003).

3 Linear λμ and Linear Classical Logic

In this section we answer the question: what is a linearized classical language,
as opposed to a language for classical linear logic? Just as the simply-typed
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λ-calculus can be linearized to obtain a calculus for intuitionistic linear logic,
we can similarly linearize Parigot’s λμ-calculus for classical logic (1992). Such
systems have been considered before, for example by Munch-Maccagnoni (2009)
and Spiwack (2014).

Following Wadler (2005), we take the types of linear λμ to consist of nega-
tion, units, products and sums—implication is defined in terms of negation and
products. Products and sums are written in the style of linear logic.

A,B ::= ¬A | 1 | A ⊗ B | 0 | A ⊕ B .

3.1 Syntax and Static Semantics

The syntax of λμ consists of two parts: terms and commands. Terms t are
typed expressions, while commands c have no types, but instead define a relation
between the two different sorts of variables. Term variables, written x , can be
thought of in the usual way—as providing input to an expression. Continuation
variables, written α, consume the output of an expression.

The quintessential command feeds a term t into a continuation variable α,
and is written [α]t . On the other hand, if a continuation variable α is used in a
command c, the term μα.c extracts the value passed to α inside of c.

The syntax of terms and commands is summarized below. We use expressions
e to refer to either syntactic form.

t ::= x | μα.c
| λx .c | let x = t1 in t2
| () | let () = t1 in t2
| (t1, t2) | let (x1, x2) = t1 in t2

| case t of ()
| inji t | case t of (inj1 x1 → t1, inj2 x2 → t2)

c ::= [α]t
| t1 t2 | let x = t in c
| let () = t in c | let (x1, x2) = t in c
| case t of () | case t of (inj1 x1 → c1, inj2 x2 → c2)

There are similarly two typing judgments: Γ 	 t : A | Π for terms, and
Γ 	 c | Π for commands. Here Γ is a context of term variables x , and Π is
a context of continuation variables α. For rules that are polymorphic in the
judgment, we write Γ 	 e : Θ | Π, where Θ is a stoup of either zero or one
types.

Figure 3 shows the typing rules. Many of the rules are unsurprising for a
linear λ-calculus. Note that λ is used for negation abstraction instead of the
usual λ, and every application is a command, not a term.

To understand how these language features interact, consider the encoding
of linear implication A � B in classical logic as ¬ (A⊗¬B). We can encode the
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Fig. 3. The Linear λμ-calculus

application rule as

Γ1 	 t1 : A � B | Π1 Γ2 	 t2 : A | Π2

Γ1, Γ2 	 t1 t2 : B | Π1,Π2

�-E ⇒

Γ1 	 t1 : ¬ (A ⊗ ¬B) | Π1

Γ2 	 t2 : A | Π2

y : B 	 y : B | ·
y : B 	 [β]y | β : B

· 	 λy .[β]y : ¬B | β : B

Γ2 	 (t2, λy .[β]y) : A ⊗ ¬B | Π2, β : B

Γ1, Γ2 	 t1 (t2, λy .[β]y) | Π1,Π2, β : B

Γ1, Γ2 	 μβ.t1 (t2, λy .[β]y) : B | Π1,Π2

We can also consider the encoding of Felleisen’s C operator (1988), which is typed
by double negation elimination.

Γ 	 t : ¬¬A | Δ · 	 λx .[α]x : ¬A | α : A

Γ 	 t (λx .[α]x ) | Δ,α : A

Γ 	 μα.t (λx .[α]x ) : A | Δ
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3.2 Operational Semantics

In this section we define an operational semantics for linear λμ in both call-by-
value and call-by-name style. We first give the β and η rules that are shared
by the two reduction strategies. The β rules are given in terms of let bindings,
and the difference between CBV and CBN comes down to the treatment of let
reduction and evaluation contexts, as shown in Fig. 4.

First, the β rules:

(μ) −
(¬) (λx .c) t →β let x = t in c
(1) let () = () in e →β e
(⊗) let (x1, x2) = (t1, t2) in e →β let x1 = t1 in let x2 = t2 in e
(0) −
(⊕) case inji t of (inj1 x1 → e1, inj2 x2 → e2) →β let xi = t in ei

Next we have local η expansions:

(μ) t : A →η μα.[α]t
(¬) t : ¬A →η λx .t x
(1) t : 1 →η let () = t in ()
(⊗) t : A1 ⊗ A2 →η let (x1, x2) = t in (x1, x2)
(0) t : 0 →η case t of ()
(⊕) t : A1 ⊕ A2 →η case t of (inj1 x1 → inj1 x1, inj2 x2 → inj2 x2)

CBV

let x = v in e →β e{v/x}
v ::= λx .c | () | (v1, v2) | inji v
E ::= � | [α]E

| E t | let x = E in e

| let () = E in e

| (E , t) | (v ,E) | let (x1, x2) = E in e

| caseE of (inj1 x1 → e1, inj2 x2 → e2)

| inji E

CBN

let x = t in e →β e{t/x}
v ::= λx .c | () | (t1, t2) | inji t
E ::= � | [α]E

| E t

| let () = E in e

| let (x1, x2) = E in e

| caseE of (inj1 x1 → e1, inj2 x2 → e2)

Fig. 4. CBV and CBN for linear λμ: let reduction, values, and evaluation contexts

Terms reduce under arbitrary evaluation contexts, and under μ binders.
Notice that evaluation contexts are closed under term variables x ; we only con-
sider reduction over closed terms. However, evaluation contexts are open under
continuation variables α, and these contexts characterize the capturing of μ
binders inside larger expressions.

t → t ′

E [t ] → E [t ′]
c → c′

μα.c → μα.c′
E [μα.c] is a command
E [μα.c] → c{E/α}
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As an example of the last rule, consider the application (μα.c) t which captures
the current context � t as the continuation α inside the command c. To achieve
this, the continuation variable α should be replaced everywhere by the actual
continuation � t . We write this substitution c{E/α}, with the defining clause as

([β]t){E/α} =

{
E [t ] if α = β

[β]t{E/α} otherwise

Note that in the first case, substitution does not continue inside of t because the
use of continuation variables is linear.

Since this rule only applies to evaluation contexts that form a command,
how do such contexts reduce when E [μα.c] is a term? First, the term undergoes
η-expansion, and then μ-capturing applies to the new context [β]E :3

E [μα.c] →η μβ.[β](E [μα.c]) → μβ.c{[β]E/α}.

We define two classes of normal forms, tN for terms and cN for commands:

tN ::= v | μα.cN cN ::= [β]v

Theorem 2 (Progress and Preservation).

1. If Γ 	 e : Θ | Π then e is either one of tN or cN , or e can take a step.
2. If Γ 	 e : Θ | Π and e → e ′, then Γ 	 e ′ : Θ | Π.

4 Dualization and CP±

On the surface, the programming style of CP seems alien to the programming
style of λμ. To rephrase Bernardy et al. (2014), the λμ-calculus is still a λ-
calculus; CP is not. To go even further, the type systems are not obviously
equivalent; it is not clear how negation relates to the operators of CLL.

Tensor logic (Melliès and Tabareau 2010) provides insight into the relation-
ship between a λ calculus and a one-sided judgment. Introduced in the setting of
game theory, it also has applications in category theory (Melliès and Tabareau
2010) and as a type theory for CPS (Paykin et al. 2015). Perhaps the defining
feature of tensor logic is that it can be studied equally well from two perspec-
tives. The two-sided perspective results in a logic of non-involutive negation,
while the one-sided perspective results in a logic of non-invertible polarization.

In this section we will replicate the two perspectives of tensor logic in the
setting of classical linear logic. The question we must answer is: how does the
two-sided λμ calculus relate to the one-sided CP?
3 The operational semantics we present here is quite a bit different from Selinger (2001)

and Wadler (2005). Their μ−β rules are encompassed by our notion of μ-capturing.
Their ξ rule corresponds to the procedure of μ-capturing inside a term described
here.
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4.1 Duality in λμ

De Morgan duality, written (−)⊥, is the key to permuting types around the
turnstile in a derivation. The canonical rules for duality are

Γ 	 A,Π

Γ,A⊥ 	 Π

Γ,A 	 Π

Γ 	 A⊥,Π

Duality is strictly involutive ((A⊥)⊥ = A), which means that the above rules
are also invertible. This flexibility allows us to shift perspective by freely moving
hypotheses to different parts of the judgment. Therefore, any judgment Γ 	 Π
in a two-sided logic can be viewed in a one-sided logic as · 	 Γ⊥,Π.

In classical logics, De Morgan duality is a meta-operation on types. We saw
this operation in CLL, where (X ⊗ Y )⊥ = X⊥ &

Y ⊥, for example. But what
is duality in the λμ calculus, where

&

is not a type operator? We could try to
encode duality as negation ¬A, except that negation is not strictly involutive.

And yet, for any type A of linear λμ, we may imagine its syntactic dual A⊥,
not as a meta-operation, but as an explicit constructor. If we respect the fact
that A⊥⊥ is syntactically equal to A, we find that there are two disjoint classes of
propositions: negative propositions A−, which are syntactic duals, and positive
propositions A+, which correspond to the original types.4

We assign names to the duals of various connectives to simplify their presen-
tation. In the style of CLL, we write A⊥ &

B⊥ for (A ⊗ B)⊥ where A and B are
positive types. Thus each connective gets attributed both a positive and a nega-
tive copy, as summarized in Fig. 5. Seen another way, the positive and negative
types are axiomatized as follows:

A+ ::= 1 | A1
+ ⊗ A2

+ | 0 | A1
+ ⊕ A2

+

A− ::= ⊥ | A1
− &

A2
− | � | A1

− & A2
−

Operator Positive Copy Negative Copy

1 1 ⊥
⊗ ⊗
0 0 �
⊕ ⊕ &

&

¬ ↓ ↑

Fig. 5. Positive and negative copies of linear operators

4 Drawing the connection to category theory, every object A ∈ C has a dual object
Aop ∈ Cop. Thus A and its dual live in distinct categories.



284 J. Paykin and S. Zdancewic

Negation. To incorporate negation into this analysis, first consider that it is
self-dual: (¬A)⊥ = ¬A⊥. Close examination tells us that these are really two
distinct copies of negation, one positive and one negative.

However, this presentation of negation is incompatible with the one-sided
sequent calculus, because negation is contravariant : it moves a proposition from
one side of the judgment to the other. In the presence of syntactic duality, we
could imagine negation being partitioned into two parts: the contravariant dual-
ity operator (−)⊥, along with a covariant shift operator written ↓, which turns
a negative proposition into a positive proposition. The left and right negation
rules from the two-sided formulation might instead be written as follows, where
¬A+ = ↓(A+)⊥:

Γ 	 A,Π

Γ,A⊥ 	 Π

Γ, ↓A⊥ 	 Π

Γ,A 	 Π

Γ 	 A⊥,Π

Γ 	 ↓A⊥,Π

The shift operator ↓, as well as its dual copy ↑, explicitly change the polarity
of their argument. These fit nicely into Fig. 5, and they augment the syntax of
types as follows:

A+ ::= · · · | ↓A−

A− ::= · · · | ↑A+

Thus the act of dualizing a logic with negation naturally generates polar-
ized types, in the sense of Girard (1991). This relationship between negation
and polarization is not new. It has been explored by Laurent and Regnier (2003)
relating polarization procedures of classical logic to CPS translations using nega-
tion. Similarly, Laurent (2003) gave a semantics of the (non-linear) λμ-calculus
in terms of polarized proof nets. Finally, Zeilberger (2008) takes negation to be
a primitive operator in his polarized logic and observes that ¬A+ is isomorphic
to ↓(A+)⊥.

4.2 Polarizing CP

It remains to see how polarization can be incorporated into the type system of
CP. This question has already been addressed, at least in the case of intuition-
istic session types, by Pfenning and Griffith (2015). In their setting, channels
are directed, where positive channels are outgoing, and negative channels are
incoming. Shift operations explicitly change the direction of the channel.

This intuition carries over naturally to the classical case. We define a term
language CP±, pronounced “CP more or less,” to be a polarized version of
CP. The syntax of processes is identical to that of CP, with the addition of
two actions for shifting the direction of a channel. The syntax of processes is as
follows:

P := · · · | ↓x .P | ↑x .P
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Fig. 6. CP±

The process ↓x .P offers an output channel x : ↓A−, which sends a special “shift”
message over x , before reversing the direction of the channel and continuing with
an input channel x : A−. Similarly, ↑x .Q waits to receive a shift message on x ,
before treating x as output in Q .

Judgments of CP± have the form P 	 Δ;Π, where Δ consists of negative
(incoming) channels, and Pi consists of positive (outgoing) channels. The typing
rules are given in Fig. 6.

The operational semantics of CP± augments the semantics of CP with rules
for the shift operators. The β and η rules are as follows:

νx .〈↓x .P1 | ↑x .P2〉 →β νx .〈P2 | P1〉
(y ↔ x 	 y : ↑A+; x : ↓(A+)⊥) →η ↓x . ↑y .y ↔ x

The structural equivalences ≡s in Eq. (1) are no longer applicable in CP±. The
reason is that only one of νx .〈P1 | P2〉 and νx .〈P2 | P1〉 is ever well-typed in
CP±, and similarly for x ↔ y and y ↔ x .

Action contexts in CP± are extended with the shift operators.

Ca ::= · · · | ↓x .� | ↑x .�.

4.3 Evaluation Order

Taking the commuting conversion rules verbatim from CP results in a similarly
nondeterministic reduction strategy for CP±. However, CP± has the ability to
express other reduction strategies. In particular, we can specify either a call-by-
name and call-by-value evaluation strategy in a way similar to Wadler’s dual
calculus (2003).
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To illustrate what we mean by CBV and CBN in this context, consider the
following encoding of implication as the polarized type ↓(A+ � B−). Application
can be encoded as follows:

P 	 x : ↓(A+ � B−)

Q 	 y : A+ z ↔ x 	 z : B−; x : (B−)⊥

x [y ].(Q | z ↔ x ) 	 z : B−; x : A+ ⊗ (B−)⊥

↑x .x [y ].(Q | z ↔ x ) 	 z : B−, x : ↑(A+ ⊗ (B−)⊥); ·
νx .〈P | ↑x .x [y ].(Q | z ↔ x )〉 	 z : B−; ·

The process P is the equivalent of a λ-abstraction if it has the form ↓x .x (y).P ′ for
P ′ 	 x : B−, y : (A+)⊥. In this case, the application reduces to νy .〈Q | P ′{z/x}〉.

It is here we can talk about evaluation order. A call-by-value evaluation order
reduces the argument Q before continuing in the evaluation of the result z : B−.
We can achieve this by prioritizing commuting conversions on the right of a
cut over conversions on the left. This can be done by refining the definition of
evaluation contexts.

Ce := νx .〈P | �〉 | νx .〈� | Px 〉
where Px is any process starting with an action on x .

Similarly, a call-by-name evaluation order tries to compute z : B− before
evaluating the argument Q , by prioritizing conversions on the left:

Ce := νx .〈� | P〉 | νx .〈Px | �〉.

5 Equational Correspondence

The dualization described in the previous section shows how typing judgments
in the linear λμ-calculus relate to typing judgments in a CP-like language. But
the structure of the typing judgments says nothing about the equivalence of the
operational semantics of the two languages. The notion of equational correspon-
dence (Sabry and Felleisen 1993) makes this relationship formal.

Definition 3. Let L1 and L2 be term languages with equality, written t1 =1 t ′
1

and t2 =2 t ′
2. Suppose that there exist two maps F1 and F2 as shown below. These

maps form an equational correspondence if the following conditions hold:

L1 L2

F1

F2

1. If t1 =1 t ′
1 then F1 (t1) =2 F1 (t ′

1).
2. If t2 =2 t ′

2 then F2 (t2) =1 F2 (t ′
2).

3. For all terms t1 ∈ L1, t1 =1 F2 (F1 (t1)).
4. For all terms t2 ∈ L2, t2 =2 F1 (F2 (t2)).

We thus come to our main theorem:

Theorem 4. Linear λμ equationally corresponds with CP±.
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Fig. 7. Equational correspondence between linear λμ and CP±

Proof (Sketch). We start by defining translations, shown in Fig. 7, between the
two languages. First, for Γ 	 e : Θ | Π, we define e(x) to be a process so that
e(x) 	 Γ⊥;Π, x : Θ. When e is a command c we write c∗.

Next, for P 	 Δ;Π, we define (P)∗ to be a command so that Δ⊥ 	 (P)∗ | Π.
The classes of term and continuation variables are collapsed in CP±, so we move
between them freely in the translations.

The remainder of the proof must show that the four conditions in the defin-
ition of equational correspondence hold. But condition (4), which says that all
λμ expressions e satisfy e = (e(α))∗, is not quite right for terms, because every
(P)∗ is a command. Instead we amend the condition to say that for every term
t , we have t = μα.(t (α))∗. ��

6 Discussion

6.1 Comparing Classical Type Systems

Unlike the simply-typed λ-calculus for intuitionistic logic, there is no canonical
type system for classical logic. Instead, there are a number of candidate type
systems corresponding to different well-known formulations of classical logic.

• Classical logic can be formulated as intuitionistic logic plus the property of dou-
ble negation elimination. The λC-calculus (Griffin 1990) is a typed λ-calculus
with the addition of the control operator C, of type ((A → ⊥) → ⊥) → A.
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• Classical logic can alternatively be formulated as intuitionistic logic with
multiple conclusions, which corresponds to the structure of the λμ-calculus
(Parigot 1992).

• The logic may be in natural deduction or sequent calculus form. Curien and
Herbelin’s λμμ̃-calculus (2000), which is also called System L (Spiwack 2014),
and Wadler’s dual calculus (2003) are variations on equivalent sequent calculus
formulations of λμ.

These systems are all related by equational correspondences—de Groote
(1994) proves the correspondence between λμ and λC , and Wadler (2005) proves
the correspondence between λμ and the dual calculus. Our work continues in this
tradition by indicating that the linear versions of these systems (for example,
Spiwack’s Linear L 2014) are also equivalent to CP±.

6.2 A Syntax for Tensor Logic

Melliès and Tabareau introduce tensor logic in the setting of game-theoretic
semantics for linear logic. While they study the denotational semantics of the
logic extensively and provide translations from CLL, Melliès and Tabareau do
not give proof terms for either of the two formulations—two-sided or one-sided.

However, proof terms are not hard to imagine in the style of λμ and CP±.
The two-sided perspective types a (strict) sublanguage of linear λμ with nega-
tion but without the μ operator. The result is a simply-typed λ-calculus where
the return type of every function is ⊥, as described by Lafont et al. (1993). The
one-sided perspective of tensor logic can similarly type a (strict) sublanguage
of CP±, where each process offers at most one output channel. This formula-
tion is equivalent to Spiwack’s Polarized L (2014), and corresponds to a focused
polarized logic, as opposed to CP±, which is unfocused.

6.3 Session Types and Linear Logic

Linear logic has long been explored as a type system for concurrent program-
ming, especially process calculi in the style of the π-calculus (Bellin and Scott
1994; Beffara 2006; Kobayashi et al. 1999). Caires and Pfenning (2010) present
an elegant interpretation of an (intuitionistic) linearly-typed fragment of the π-
calculus by interpreting linear propositions as session types (Honda 1993; Honda
et al. 1998) in a calculus they call π-DILL. The connections between session types
and linear logic have been studied in the past (Mazurak and Zdancewic 2010;
Gay and Vasconcelos 2010) but had not been formally compared. Wadler (2014)
makes the connection formal by exhibiting a translation between CP, a classical
variant of π-DILL, and GV, a variation of the session-typed calculus of Gay and
Vasconcelos (2010). Lindley and Morris (2014, 2015) expand this translation to
a bisimulation between CP and GV.
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6.4 Variations on CP

The process calculus described in Sect. 2 varies from Wadler’s original formula-
tion of CP in a few significant ways. The first is that Wadler’s processes only
communicate at the top level, never under prefix actions. This means that nor-
mal forms consist of any processes that do not begin with a cut. Following Pérez
et al. (2014), we allow communication to take place at any point in a process,
even if another channel is waiting to synchronize. For example, in the process

x ().νy .〈y [].0 | y().P〉,

communication takes place over the channel y even though x sends a message
first. Operationally, the difference is the exclusion of the structural rule in Eq. (2).
Wadler’s equational theory is thus finer-grained than ours, and does not reach
the level of behavioral equivalence.

In the same vein, Wadler does not equate the processes defined by our third
class of commuting conversions. Following Bellin and Scott (1994) and Pérez
et al. (2014), behavioral equivalence means that the order of non-interfering
prefix actions is unobservable, and should be equated.

The treatment of η-expansions for link forwarding is another departure
from Wadler’s presentation. Like Wadler, we allow link forwarding at arbi-
trary type for the sake of expressibility. However, just as in the λ-calculus,
η-expansion reduces the allowable normal forms by equating behaviorally equiv-
alent processes.

The operational semantics we define for CP in Sect. 2 extends naturally to
CP±. It is worth noting, however, that the equational correspondence proved
in Sect. 5 relies on the second class of commuting conversions (cut-cut) but
not the third (action-action). Therefore it would still be applicable using a
semantics closer to Wadler’s original presentation (2014).

Finally, Wadler’s presentation of CP includes the linear exponentials ! and ?,
as well as polymorphism ∀ and ∃. In this paper we work with the linear “core” of
CP, excluding the exponentials for the sake of clarity. To incorporate polymor-
phism into our presentation, we would need to extend types with type variables.
In that case, communication would eliminate all cuts, but not necessarily links
at atomic type.

6.5 How Much is “More or Less”?

In the introduction we made the claim that linear λμ was “more or less” CP,
and we made the statement precise by exhibiting CP±. However, we haven’t
addressed exactly how much CP± is “more or less” CP.

We can easily define an erasure operation |−| on both types and processes
that removes all shift operations. Trivially, if P 	 Δ;Π then |P | 	 |Δ|, |Π|. As
Zeilberger (2008) shows for a different polarized term syntax, the completeness
of such an erasure can be summarized as follows: If Q 	 |Δ|, |Π| in CP, then
there exists a CP± process P such that P 	 Δ;Π and |P | = Q . In addition, we
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would require that this “expansion” of Q respects equalities in a similar way to
equational correspondences. However, even describing the necessary relationship
in detail is beyond the scope of this work.

Meanwhile, CP± offers operational behaviors not expressible in CP. In par-
ticular, CP± has the ability to set a particular reduction strategy such as CBV,
CBN, or something in between. Once an evaluation strategy is fixed, the types
dictate the evaluation of any particular process. The programmer thus has full
control over scheduling in CP±, while in CP the programmer has no control.
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Abstract. The ability to perform type tests at runtime blurs the line
between statically-typed and dynamically-checked languages. Recent
developments in Haskell’s type system allow even programs that use
reflection to themselves be statically typed, using a type-indexed runtime
representation of types called TypeRep. As a result we can build dynamic
types as an ordinary, statically-typed library, on top of TypeRep in an
open-world context.

1 Preface

If there is one topic that has been a consistent theme of Phil Wadler’s research
career, it would have to be types. Types are the heart of the Curry-Howard
isomorphism, occupying the intersection of logic and practical programming. Phil
has always been fascinated by this remarkable dual role, and many of his papers
explore that idea in more detail.

One of his most seminal ideas was that of type classes, which (with his student
Steve Blott) he proposed, fully-formed, to the Haskell committee in February
1988 [WB89]. At that time we were wrestling with the apparent compromises
necessary to support equality, numerics, serialisation, and similar functions that
have type-specific, rather than type-parametric, behaviour. Type classes com-
pletely solved that collection of issues, and we enthusiastically adopted them for
Haskell [HHPJW07]. What we did not know at the time is that, far from being
a niche solution, type classes would turn out to be a seed bed from which would
spring all manner of remarkable fruit: before long we had multi-parameter type
classes; functional dependencies; type classes over type constructors (notably
the Monad and Functor classes, more recently joined by a menagerie of Foldable,
Traversable, Applicative and many more); implicit parameters, derivable classes,
and more besides.

One particular class that we did not anticipate, although it made an early
appearance in 1990, was Typeable. The Typeable class gives Haskell a handle on
reflection: the ability to examine types at runtime and take action based on those
tests. Many languages support reflection in some form, but Haskell is moving
steadily towards an unusually statically-typed form of reflection, contradictory
c© Springer International Publishing Switzerland 2016
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though that sounds, since reflection is all about dynamic type tests. That topic
is the subject of this paper, a reflection on types in homage to Phil.

2 Introduction

Static types are the world’s most successful formal method. They allow program-
mers to specify properties of functions that are proved on every compilation.
They provide a design language that programmers can use to express much of
the architecture of their programs before they write a single line of algorithmic
code. Moreover this design language is not divorced from the code but part of it,
so it cannot be out of date. Types dramatically ease refactoring and maintenance
of old code bases.

Type systems should let you say what you mean. Weak type systems get in
the way, which in turn give types a bad name. For example, no one wants to write
a function to reverse a list of integers, and then duplicate the code to reverse a
list of characters: we need polymorphism! This pattern occurs again and again,
and is the motivating force behind languages that support sophisticated type
systems, of which Haskell is a leading example.

And yet, there comes a point in every language at which the static type
system simply cannot say what you want. As Leroy and Mauny put it “there are
programming situations that seem to require dynamic typing in an essential way”
[LM91]. How can we introduce dynamic typing into a statically typed language
without throwing the baby out with the bathwater? In this paper we describe
how to do so in Haskell, making the following contributions:

– We motivate the need for dynamic typing (Sect. 3), and why it needs to work in
an open world of types (Sect. 4). Supporting an open world is a real challenge,
which we tackle head on in this paper. Many other approaches are implicitly
closed-world, as Sect. 9 discusses.

– Dynamic typing requires a runtime test of type equality, so some structure that
represents a type—a type representation—must exist at runtime, along with
a way to get the type representation for a value. We describe a type-indexed
form of type representation, TypeRep a (Sects. 5.1 and 5.2), and explain how
to use it for a type-safe dynamic type test (Sect. 5.3).

– We show that simply comparing type representations is not enough; in some
applications we must also safely decompose them (Sect. 5.4).

– Rather unexpectedly, it turns out that supporting decomposition for type
representations requires GADT-style kind equalities, a feature that has only
just been added to GHC 8.0 (Sect. 5.5). Type-safe reflection requires a very
sophisticated type system indeed!

Our key result is a way to build open-world dynamic typing as an ordinary
statically-typed library (i.e. not as part of the trusted code base), using a very
small (trusted) reflection API for TypeRep. We also briefly discuss our imple-
mentation (Sect. 6), metatheory (Sect. 7), and other applications (Sect. 8), before
concluding with a review of related work (Sect. 9). This paper is literate Haskell
and our examples compile under GHC 8.0.
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3 Dynamic Types in a Statically Typed Language

Haskell’s type system is so expressive that it is remarkably hard to find a com-
pelling application for dynamic typing. But here is one. Suppose you want to
write a Haskell library to implement the following familiar state-monad API1,2:

data ST s a -- Abstract type for state monad
data STRef s a -- Abstract type for references (to value of type a)
runST :: (∀ s. ST s a) → a
newSTRef :: a → ST s (STRef s a)
readSTRef :: STRef s a → ST s a
writeSTRef :: STRef s a → a → ST s ()

Papers about state monads usually assume that the implementation is built in,
but what if it were not? This is not a theoretical question: actively-used Haskell
libraries, such as vault3 face exactly this challenge. To implement ST we need
some kind of “store” that maps a key (a STRef ) to its value. This Store should
have the following API (ignore the Typeable constraints for now):

extendStore :: Typeable a ⇒ STRef s a → a → Store → Store
lookupStore :: Typeable a ⇒ STRef s a → Store → Maybe a

It makes sense to implement the Store by a finite map, keyed by Int or some
other unique key, which itself is kept inside the STRef . For that purpose, we can
use the standard Haskell type Map k v , mapping keys k to values v . But what
type should v be? As the type of extendStore declares, we must be able to insert
any type of value into the Store. This is where type Dynamic is useful:

type Key = Int
data STRef s a = STR Key
type Store = Map Key Dynamic

Dynamic suffices if we have the following operations available, used to create and
take apart Dynamic values:4

toDynamic :: Typeable a ⇒ a → Dynamic
fromDynamic :: Typeable a ⇒ Dynamic → Maybe a

1 There is another connection with Phil’s work here: an API like this was first pro-
posed in “Imperative functional programming” [PJW93], a collaboration between one
of the present authors and Phil, directly inspired by Phil’s ground-breaking paper
“Comprehending monads” [Wad90].

2 For our present purposes you can safely ignore the “s” type parameter; the paper
“State in Haskell” explains what is going on [LPJ95].

3 https://hackage.haskell.org/package/vault.
4 These types also motivate the Typeable constraint above. We discuss that constraint
further in Sect. 5.2, but without looking that far ahead, Phil’s insight about “the-
orems for free” tells us that the type fromDynamic :: Dynamic → Maybe a is a
non-starter [Wad89]. Any function with that type must return Nothing , Just ⊥, or
diverge.

https://hackage.haskell.org/package/vault
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We can now implement the functions on Store, thus:

extendStore (STR k) v s = insert k (toDynamic v) s
lookupStore (STR k) s = case lookup k s of

Just d → fromDynamic d
Nothing → Nothing

In lookupStore the dynamic type check made by fromDynamic will always succeed.
(That is, when looking up a STRef s a, we should always find a value of type a.)
The runtime tests compensate where the static type system is inadequate.

In summary, there are a few occasions when even a type system as sophisti-
cated as Haskell’s is not powerful enough to give the static guarantees we seek.
A Dynamic type, equipped with toDynamic and fromDynamic , can plug the gap.

4 The Challenge of an Open World

Where does type Dynamic come from? One classic approach is to make Dynamic
a tagged union of all the types we care about, like this:

data Dynamic = DInt Int
| DBool Bool
| DChar Char
| DPair Dynamic Dynamic

...

toDynInt :: Int → Dynamic
toDynInt = DInt

fromDynInt :: Dynamic → Maybe Int
fromDynInt (DInt n) = Just n
fromDynInt = Nothing

toDynPair :: Dynamic → Dynamic → Dynamic
toDynPair = DPair

dynFst :: Dynamic → Maybe Dynamic
dynFst (DPair x1 x2) = Just x1
dynFst = Nothing

For each type constructor (Int, Bool , pairs, lists, etc.) we define a data construc-
tor (e.g. DPair) in the Dynamic type, plus a constructor function (e.g. toDynPair)
and one or more destructors (e.g. dynFst, dynSnd).

This approach has a fundamental shortcoming: it is not extensible. Con-
cretely, what is the “...” above? The data type declaration for Dynamic can
enumerate only a fixed set of type constructors (integers, booleans, pairs, etc.)5.
We call this the closed-world assumption. Sometimes a closed world is accept-
able. For example, if we were writing an evaluator for a small language we would
5 Although the set of type constructors is fixed, you can use them to build an infinite
number of types; e.g. (Int,Bool), (Int, (Bool , Int)), etc.
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need Dynamic to have only enough data constructors to represent the types of
the object language.

But in general the world is simply not closed; it is unreasonable to extend
Dynamic , whenever the user defines a new data type! In the ST example, it is
fundamental that the monad be able to store values of user-declared types.

So in this paper we focus exclusively on the challenge of open-world exten-
sibility. Before moving on, it is worth noting that a surprisingly large fraction
of the academic literature on dynamics in a statically typed language makes
a closed-world assumption (see Sect. 9). Moreover, even if we accept a closed
world, the approach sketched above has other difficulties, discussed in Sect. 9.2.

5 TypeRep: Runtime Reflection in an Open World

We can implement an open-world Dynamic as an ordinary, type-safe Haskell
library, on top of a new abstraction, that of type-indexed type representations or
TypeRep. In fact, Haskell has supported (un-type-indexed) type representations
and an open-world Dynamic for years, but in a rather unsatisfactory way (the
“old design”). However, recent developments in Haskell’s type system—notably
GADTs [XCC03,PJVWW06], kind polymorphism [YWC+12], and kind equali-
ties [WHE13]—have opened up new opportunities (the “new design”). A major
purpose of this paper is to motivate and describe this new design. For readers
familiar with the old design, we compare it with the new one in Sect. 9.1.

5.1 Introducing TypeRep

The key to our approach is our type-indexed type representation TypeRep. But
what is a type-indexed type representation? It is best understood by example:

– The representation of Int is the value of type TypeRep Int.
– The representation of Bool is the value of type TypeRep Bool .
– And so on.

That is, the index in a type-indexed type representation is itself the represented
type. TypeRep is abstract, and thus we don’t write the TypeRep value in the
examples above. Note, however, that we have said the value, not a value—there
is precisely one value of type TypeRep Int6. TypeRep thus defines a family of
singleton types [EW12]; indeed, TypeRep is the singleton family associated with
the kind � of types.

As we build out the API for TypeRep, we will consider how to build an
efficient, type-safe, and open-world implementation of Dynamic . Converting to
and from Dynamic should not touch the value itself; instead we represent a
dynamic value as a pair of a value and a runtime-inspectable representation of
its type. Thus:

6 Recall that ⊥ is not a value.
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data Dynamic where
Dyn :: TypeRep a → a → Dynamic

Here we are using GADT-style syntax to declare the constructor Dyn, whose
payload includes a runtime representation of a type a and a value of type a. The
type a is existentially bound; that is, it does not appear in the result type of the
data constructor.

Now we have two challenges: where do we get the TypeRep from when creating
a Dynamic in toDynamic (Sect. 5.2); and what do we do with it when unpacking
it in fromDynamic (Sect. 5.3)?

5.2 The Typeable Class

Because each type has its own TypeRep, the obvious approach is to use a type
class, thus:

class Typeable a where
typeRep :: TypeRep a

This class has only one operation, a nullary function (or simple value) that is
the type representation for the type. Now we can write toDynamic :

toDynamic :: Typeable a ⇒ a → Dynamic
toDynamic x = Dyn typeRep x

The type of the data constructor Dyn ensures that the call of typeRep produces
a type representation for the type a. Easy!

But where do instances of Typeable come from? The magic of type classes
gives us a simple way to solve the open-world challenge, by using a single piece
of built-in compiler support: every data type declaration gives rise to a Typeable
instance for that type (Sect. 6). Furthermore, because Typeable and its instances
are built in, we can be sure that these representations uniquely define types; for
example, the user cannot write bogus instances of Typeable that use the same
TypeRep for two different types.

5.3 Type-Aware Equality for TypeReps

The second challenge is to unpack dynamics. We need a function with this
signature:

fromDynamic :: Typeable a ⇒ Dynamic → Maybe a

The function fromDynamic takes a Dynamic and tests whether it wraps a value
of the desired type; if so, it returns the value wrapped in Just; if not, it returns
Nothing . The Typeable constraint allows fromDynamic to know what the “desired
type” is.
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But how is fromDynamic implemented? Patently it must compare type rep-
resentations, so we might try this:

fromDynamic :: ∀ d . Typeable d ⇒ Dynamic → Maybe d
fromDynamic (Dyn (ra :: TypeRep a) (x :: a))

| rd == ra = Just x -- Eeek! Type error!
| otherwise = Nothing
where
rd = typeRep :: TypeRep d

The type signatures for ra and x could be omitted, but we have put them
in to remind ourselves that the types of ra and x are connected through the
existentially-bound type a. The value rd is (the runtime representation of) the
“desired type”, disambiguated by a type signature. We compare rd with ra, (the
representation of) x ’s type, and return Just x if they match. The operational
behaviour is just what we want, but the type checker will reject it. It has no
reason to believe that x actually has type d : the type-checker surely does not
understand that we have just compared TypeReps linking up x ’s type with d .

Fortunately, we have a fine tool to use whenever a runtime operation needs to
inform us about types: generalised algebraic data types, or GADTs. We need an
equality on TypeRep that returns a GADT; pattern-matching on the return value
gives the type-checker just the information it needs. Here are the definitions7:

eqT :: TypeRep a → TypeRep b → Maybe (a :≈: b)
-- Primitive; implemented by compiler

data a :≈: b where
Refl :: a :≈: a

Here eqT returns Nothing if the two TypeReps are different, and (Just Refl) if
they are the same. The data constructor Refl is the sole, nullary data constructor
of the GADT (a :≈: b). Pattern matching on Refl tells the type checker that the
two types are the same. In short, when the argument types are equal, eqT returns
a proof of this equality, in a form that the type checker can use.

To be concrete, here is the definition of fromDynamic :

fromDynamic :: ∀ d . Typeable d ⇒ Dynamic → Maybe d
fromDynamic (Dyn (ra :: TypeRep a) (x :: a))

= case eqT ra (typeRep :: TypeRep d) of
Nothing → Nothing
Just Refl → Just x

We use eqT to compare the two TypeReps, and pattern-match on Refl , so that
in the second case alternative we know that a and d are equal, so we can return
Just x where a value of type Maybe d is needed.

Since Maybe is a monad, we can use do notation for this code, and instead
write it like this:
7 Here we are using GHC’s ability to define infix type constructors.



A Reflection on Types 299

fromDynamic (Dyn ra x)
= do Refl ← eqT ra (typeRep :: TypeRep d)

return x

When we make multiple matches this style is more convenient, so we use it from
now on.

More generally, eqT allows to implement type-safe cast, a useful operation
in its own right [Wei04,LPJ03,LPJ05].

cast :: ∀ a b. (Typeable a,Typeable b) ⇒ a → Maybe b
cast x = do Refl ← eqT (typeRep :: TypeRep a)

(typeRep :: TypeRep b)
return x

5.4 Decomposing Type Representations

So far, the only operation we have provided over TypeRep is eqT , which com-
pares two type representations for equality. But that is not enough to implement
dynFst:

dynFst :: Dynamic → Maybe Dynamic
dynFst (Dyn pab x)
= -- Check that pab represents a pair type

-- Take (fst x) and wrap it in Dyn

How can we decompose the type representation pab, to check that it indeed
represents a pair, and extract its first component? Since types in Haskell are
built via a sequence of type applications (much like how an expression applying
a function to multiple arguments is built with several nested term applications),
the natural dual is to provide a way to decompose type applications:

splitApp :: TypeRep a → Maybe (AppResult a)
-- Primitive; implemented by compiler

data AppResult t where
App :: TypeRep a → TypeRep b → AppResult (a b)

The primitive operation splitApp allows us to observe the structure of types.
If splitApp is applied to a type constructor, such as Int, it returns Nothing ;
otherwise, for a type application, it decomposes one layer of the application,
and returns (Just (App ra rb)) where ra and rb are representations of the sub-
components. Like eqT , it returns a GADT, AppResult, to expose the type equal-
ities it has discovered to the type checker.

Now we can implement dynFst:

dynFst :: Dynamic → Maybe Dynamic
dynFst (Dyn rpab x)

= do App rpa rb ← splitApp rpab
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App rp ra ← splitApp rpa
Refl ← eqT rp (typeRep :: TypeRep (, ))
return (Dyn ra (fst x))

We check that the type of x , whose TypeRep, rpab, is of form (, ) a b, by decom-
posing it twice with splitApp. Then we must check that rp, the TypeRep of the
function part of this application, is indeed the pair type constructor (, ); we can
do that using eqT . These three GADT pattern matches combine to tell the type
checker that the type of x , which began life in the (Dyn rpab x) pattern match
as an existentially-quantified type variable, is indeed a pair type (a, b). So we
can safely apply fst to x , to get a result whose type representation ra we have in
hand.

In the same way we can use splitApp to implement dynApply , which applies
a function Dynamic to an argument Dynamic , provided the types line up:

dynApply :: Dynamic → Dynamic → Maybe Dynamic
dynApply (Dyn rf f ) (Dyn rx x) = do

App ra rt2 ← splitApp rf
App rtc rt1 ← splitApp ra
Refl ← eqT rtc (typeRep :: TypeRep (→))
Refl ← eqT rt1 rx
return (Dyn rt2 (f x))

In both cases, the code is simple enough, but the type checker has to work
remarkably hard behind the scenes to prove that it is sound. Let us take a closer
look.

5.5 Kind Polymorphism and Kind Equalities

There is something suspicious about our use of typeRep :: TypeRep (, ). So far
we have discused type representations for only types of kind �. But (, ) has
kind (� → � → �); does it too have a TypeRep? Of course it must, to allow
TypeRep Int, TypeRep Maybe, and TypeRep (, ). So the type constructor TypeRep
must be polymorphic in the kind of its type argument, or poly-kinded, and so
must be its accompanying class Typeable, thus:

data TypeRep (a :: k) -- primitive, indexed by type and kind
class Typeable (a :: k) where

typeRep :: TypeRep a

Fortunately, GHC has offered kind polymorphism for some years [YWC+12].
Similarly, the result GADT AppResult must be kind-polymorphic. Here is its
definition with kind signatures added8:

8 The kind signatures are optional. With PolyKinds enabled, GHC infers them, but we
often add them for clarity.
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data AppResult (t :: k) where
App :: ∀ k1 k (a :: k1 → k) (b :: k1).

TypeRep a → TypeRep b → AppResult (a b)

In AppResult, note that k1, the kind of b, is existentially bound in this data
structure, meaning that it does not appear in the kind of the result type (a b).
We know the result kind of the type application but there is no way to know the
kinds of the subcomponents.

With kind polymorphism in mind, let’s add some type annotations to see
what existential variables are introduced by the two calls to splitApp in dynFst:

dynFst :: Dynamic → Maybe Dynamic
dynFst (Dyn (rpab :: TypeRep pab) (x :: pab))

= do App (rpa :: TypeRep pa) (rb :: TypeRep b) ← splitApp rpab
-- introduces kind k2, and types pa :: k2 → �, b :: k2

App (rp :: TypeRep p) (ra :: TypeRep a) ← splitApp rpa
-- introduces kind k1, and types p :: k1 → k2 → �, a :: k1

Refl ← eqT rp (typeRep :: TypeRep (, ))
-- introduces p ∼ (, ) and (k1 → k2 → �) ∼ (� → � → �)

return (Dyn ra (fst x))

Focus on the arguments to the call to eqT in the third line. We know that:

– rp :: TypeRep p and p :: k1 → k2 → �
– typeRep :: TypeRep (, ) and (, ) :: � → � → �

So eqT must compare the TypeReps for two types of different kinds; if the run-
time test succeeds, we know not only that p ∼ (, ), but also that k1 ∼ � and
k2 ∼ �. That is, the pattern match on Refl GADT constructor brings local kind
equalities into scope, as well as type equalities.

We can make this more explicit by writing out kind-annotated definitions for
(:≈:) and eqT , thus:

eqT :: ∀ k1 k2 (a :: k1) (b :: k2). TypeRep a → TypeRep b → Maybe (a :≈: b)
data (a :: k1) :≈: (b :: k2) where
Refl :: ∀ k (a :: k). a :≈: a

If the two types are the same, then eqT returns a proof that the types are equal
and simultaneously a proof that the kinds are equal: a heterogeneous (often
referred to as “John Major”) equality [McB02].

In the case of dynFst, if eqT succeeds, the type checker can conclude
(k1 → k2 → �) ∼ (� → � → �) and p ∼ (, ). The GHC constraint solver
uses these equalities to conclude that the type of x is (a, b), validating the pro-
jection fst x .

The addition of first-class kind equalities, to accompany first-class type equal-
ities, is the most recent innovation in GHC 8.0. Indeed, they motivate a systemic
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change, namely collapsing types and kinds into a single layer, so that we have
� :: �. This change is described and motivated in a recent paper [WHE13]. Type-
safe decomposition of type representations is a compelling motivation for kind
equalities.

5.6 Visible vs. Invisible Type Representations

Here are two functions with practically identical functionality:

cast :: (Typeable a,Typeable b) ⇒ a → Maybe b
castR :: TypeRep a → TypeRep b → a → Maybe b

A Typeable class constraint is represented at runtime by a value argument, a
Typeable “dictionary” in the jargon of type classes [WB89]. A dictionary is just
a record of the methods of the class. Since Typeable a has only one method, a
Typeable a dictionary is represented simply by a TypeRep a value. So, in imple-
mentation terms the function cast actually takes two TypeRep arguments exactly
like castR . It’s just that castR takes visible TypeRep arguments, while cast takes
invisible (compiler-generated) Typeable arguments. So which is “better”?

The answer is primarily stylistic. Sometimes, in library code that manipulates
many different TypeRep values, it is much clearer to name them explicitly, as we
have done in the earlier examples in this section. But in other places (usually
client code) it is vastly more convenient to take advantage of type classes to
construct relevant Typeable evidence.

The two are, of course, equally expressive, since the implementation is the
same in either case. Going from an implicit type representation (Typeable) to an
explicit one (TypeRep) is easy, if inscrutable: just use the method typeRep. For
example, here is how to define cast using castR :

cast :: (Typeable a,Typeable b) ⇒ a → Maybe b
cast = castR typeRep typeRep

The two calls to typeRep are at different types, but that is not very visible in
the code. That is why it is often clearer to pass TypeRep values explicitly. But
for the caller of cast is it much easier to pass invisible arguments; for example,
in the call:

(cast x) :: Maybe Bool

the compiler will construct a TypeRep for x ’s type and one for Bool , both
wrapped as Typeable dictionaries, and pass them to cast.

However, going from explicit to implicit is not as easy. Suppose we have a
TypeRep a and we wish to call a function with a Typeable a constraint. We
essentially need to invent an instance Typeable a on the spot. Haskell provides
no facility for local instances, chiefly because doing so would imperil class coher-
ence.9 In the context of type representations, though, incoherence is impossible:
9 Though, some Haskellers have hacked around this restriction with abandon. See
Kiselyov and Shan [KS04] and Edward Kmett’s reflection package (at http://hackage.
haskell.org/package/reflection).

http://hackage.haskell.org/package/reflection
http://hackage.haskell.org/package/reflection
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there really is only one TypeRep a in existence, and so one Typeable a instance
is surely the same as any other. Our API thus provides the following additional
function withTypeable, which we can use to close the loop by writing castR in
terms of cast:

withTypeable :: TypeRep a → (Typeable a ⇒ r) → r

castR :: TypeRep a → TypeRep b → a → Maybe b
castR ta tb = withTypeable ta (withTypeable tb cast)

We cannot implement withTypeable in Haskell source. But we can implement it
in GHC’s statically-typed intermediate language, System FC [SCPJD07]. The
definition is simple, roughly like this:

withTypeable tr k = k tr -- Not quite right

Its second argument k expects a Typeable dictionary as its value argument. But
since a Typeable dictionary is represented by a TypeRep, we can simply pass tr
to k . When written in System FC there is a type-safe coercion to move from
TypeRep a to Typeable a, but that coercion is erased at runtime. Since the
definition can be statically type checked, withTypeable does not form part of the
trusted code base.

5.7 Comparing TypeReps

It is sometimes necessary to use type representations in the key of a map. For
example, Shake [Mit12] uses a map keyed on type representations to look up class
instances (dictionaries) at runtime; these instances define class operations for the
types of data stored in a collection of Dynamics. Storing the class operations once
per type, instead of with each Dynamic package, is much more efficient.10

More specifically, we would like to implement the following interface:

data TyMap
empty :: TyMap
insert :: Typeable a ⇒ a → TyMap → TyMap
lookup :: Typeable a ⇒ TyMap → Maybe a

But how should we implement these type-indexed maps? One option is to
use the standard Haskell library Data.Map. We can define the typed-map as a
map between the type representation and a dynamic value.

data TypeRepX where
TypeRepX :: TypeRep a → TypeRepX

type TyMap = Map TypeRepX Dynamic

10 See also http://stackoverflow.com/q/32576018/791604 for another use case for a map
keyed on type representations.

http://stackoverflow.com/q/32576018/791604
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Notice that we must wrap the TypeRep key in an existential TypeRepX , otherwise
all the keys would be for the same type, which would rather defeat the purpose!
The insert and lookup functions can then use toDynamic and fromDynamic to
ensure that the right type of value is stored with each key.

insert :: ∀ a. Typeable a ⇒ a → TyMap → TyMap
insert x = Map.insert (TypeRepX (typeRep :: TypeRep a)) (toDynamic x)
lookup :: ∀ a. Typeable a ⇒ TyMap → Maybe a
lookup = fromDynamic <=<Map.lookup (TypeRepX (typeRep :: TypeRep a))

Because Data.Map uses balanced binary trees, TypeRepX must be an instance
of Ord :

instance Ord TypeRepX where
compare (TypeRepX tr1) (TypeRepX tr2) = compareTypeRep tr1 tr2

compareTypeRep :: TypeRep a → TypeRep b → Ordering -- primitive

The TypeRep API includes a comparison function compareTypeRep that com-
pares two TypeReps, indexed by possibly-different types a and b. Notice that we
cannot make an instance for Ord (TypeRep a): if we compare two values both
of type TypeRep t, following the signature of compare, they should always be
equal!

Alternatively, we could use a more strongly typed data structure that inter-
nally keeps track of the dependency between the key and the element type. A
simple example might be the following binary search tree:

data TyMap = Empty | Node Dynamic TyMap TyMap

Of course, much more general structures are also possible.11

Looking up values in this tree requires comparing the ordering of type
representations. We could implement this comparison using the ordering for
TypeRepX , but that implementation is clumsy. Once we have found the value,
we must do an extra cast to show that it has the correct type.

lookup :: TypeRep a → TyMap → Maybe a
lookup tr1 (Node (Dyn tr2 v) left right) =

case compareTypeRep tr1 tr2 of
LT → lookup tr1 left
EQ → castR tr2 tr1 v -- know this cast will succeed
GT → lookup tr1 right

lookup tr1 Empty = Nothing

However, we can improve this implementation using the following more infor-
mative comparison function, thereby avoiding this redundant check. In partic-
ular, when the two type representations are equal, this function will return an
equality proof, just like eqT .
11 The dependent-map library is an example of such a data structure. See https://

hackage.haskell.org/package/dependent-map-0.1.1.3/docs/Data-Dependent-Map.
html.

https://hackage.haskell.org/package/dependent-map-0.1.1.3/docs/Data-Dependent-Map.html
https://hackage.haskell.org/package/dependent-map-0.1.1.3/docs/Data-Dependent-Map.html
https://hackage.haskell.org/package/dependent-map-0.1.1.3/docs/Data-Dependent-Map.html


A Reflection on Types 305

cmpT :: TypeRep a → TypeRep b → OrderingT a b
-- definition is primitive

data OrderingT a b where
LTT :: OrderingT a b
EQT :: OrderingT t t
GTT :: OrderingT a b

It is, of course, trivial to define compareTypeRep in terms of cmpT .

5.8 Representing Polymorphic and Kind-Polymorphic Types

Our interface does not support representations of polymorphic types, such as
TypeRep (∀ a. a → a). Although plausible, supporting those in our setting brings
in a whole new range of design decisions that are as of yet unexplored (e.g.
higher-order representations vs. de-Bruijn?). Furthermore, it requires the lan-
guage to support impredicative polymorphism (the ability to instantiate quan-
tified variables with polymorphic types, for instance the a variable in TypeRep a
or Typeable a), which GHC currently does not. Finally, representations of poly-
morphic types have implications on semantics and possibly parametricity, an
issue that we discuss in the next section.

Similarly, constructors with polymorphic kinds would require impredicative
kind polymorphism. A representation of type TypeRep (Proxy :: ∀ kp. kp → �)
would require the kind parameter k of TypeRep (a :: k) to be instantiated to
the polymorphic kind ∀ kp. kp → �. Type inference for impredicative kind
polymorphism is no easier than for impredicative type polymorphism and we
have thus excluded this possibility.

5.9 Summary

It is time to draw breath. We used the ST example to motivate a Dynamic type
(Sect. 3); then we used Dynamic to motivate type-indexed type representations
(Sect. 5.1); and in the rest of Sect. 5 we have discussed the various operations
we need over those representations. Our final API for TypeRep is summarised in
Fig. 1.

Why do we make TypeRep primitive rather than Dynamic? When we design
a primitive, built-in feature for a language, we seek the smallest, most sharply-
focused feature that serves the need. We need built-in support for something like
TypeRep and the Typeable class to implement Dynamic . If the Dynamic library
becomes just an ordinary library, with no uses of unsafeCoerce, that usefully
shrinks the trusted code base. Moreover, TypeRep is independently useful to
support other abstractions (not just Dynamic), as we describe in Sect. 8.
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Fig. 1. New Typeable interface

6 Implementation

How do we implement type representations? We use a GADT like this:

data TypeRep (a :: k) where
TrApp :: TypeRep a → TypeRep b → TypeRep (a b)
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TrTyCon :: TyCon → TypeRep k → TypeRep (a :: k)
data TyCon = TyCon {tc module :: Module, tc name :: String }
data Module = Module {mod pkg :: String ,mod name :: String }

The TyCon type is a runtime representation of the “identity” of a type con-
structor. For every datatype declaration, GHC silently generates a binding for a
suitable TyCon. For example, for Maybe GHC will generate:

$tcMaybe :: TyCon
$tcMaybe = TyCon {tc module = Module {mod pkg = "base"

,mod name = "Data.Maybe"}
, tc name = "Maybe"}

The name $tcMaybe is not directly available to the programmer. Instead (this is
the second piece of built-in support), GHC’s type-constraint solver has special
behaviour for Typeable constraints, as follows.

To solve Typeable (t1 t2), GHC simply solves Typeable t1 and Typeable t2,
and combines the results with TrApp. To solve Typeable T where T is a type
constructor, the solver uses TrTyCon. The first argument of TrTyCon is straight-
forward: it is the (runtime representation of the) type constructor itself, e.g.
$tcMaybe.

But TrTyCon also stores the representation of the kind of this very con-
structor, of type TypeRep k . Recording the kind representations is impor-
tant, otherwise we would not be able to distinguish, say, Proxy :: � → � from
Proxy :: (� → �) → �, where Proxy has a polymorphic kind (Proxy :: ∀ k. k → �).
We do not support direct representations of kind-polymorphic constructors like
Proxy , for reasons outlined in Sect. 5.8; rather TrTyCon encodes the instanti-
ation of a kind-polymorphic constructor (such as Proxy). There is a limitation
here: the kind of the instantiated type constructor must be monomorphic (again,
for reasons outlined in Sect. 5.8), so (a) the type constructor must have a rank-1
prenex-polymorphic kind, and (b) it can be instantiated only with monomorphic
kinds (i.e. predicatively).

Notice that TrTyCon is fundamentally insecure: you could use it to build a
TypeRep t for any t whatsoever. That is why we do not expose the representation
of TypeRep to the programmer. Instead the part of GHC’s Typeable solver that
builds TrTyCon applications is part of GHC’s trusted code base.

Another reason for keeping TypeRep abstract is that it allows us to vary
details of the representation. For example, the SYB pattern (Sect. 8.2) makes
many equality tests for TypeRep. If we stored a fingerprint, or even a hash-value,
in every node, we could make comparisons work in constant time. Another aspect
that we might want to vary is how much meta-data we make available in a TyCon.

7 Properties of a Language with Reflection

The addition of features such as Dynamic and TypeRep has implications to the
semantics and metatheory of a programming language.
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Strong Normalization. The addition of type Dynamic (whether implemented
with TypeRep or not) creates the possibility for loops without explicitly using
recursion (nor recursive data types):

delta :: Dynamic → Dynamic
delta dn = case fromDynamic dn of
Just f → f dn
Nothing → dn

loop = delta (toDynamic delta)

Effectively Dynamic behaves like a negative recursive datatype, a feature that
breaks strong normalization.

A similar example can be encoded with the more primitive TypeRep, adapting
an example from previous work [VW10] (Sect. 5.3):

data Rid = MkT (∀ a. TypeRep a → a → a)
rt :: TypeRep Rid
rt = typeRep
delta :: ∀ a. TypeRep a → a → a
delta ra x = case (eqT ra rt) of

Just Refl → case x of MkT y → y rt x
Nothing → x

loop = delta rt (MkT delta)

These examples demonstrate that primitives like TypeRep or Dynamic cannot
be incorporated in languages where logical consistency is required, such as Coq
or Agda, without further restrictions (e.g. predicative polymorphism, or weaker
elimination forms). Fortunately Haskell is not one of those.

Parametricity. Now that we have added TypeRep, Typeable and automatically-
generated type representations as built-in features, the alert reader might wonder
whether we have perhaps accidentally weakened parametricity, and thereby lost
Phil’s free theorems.

Fortunately, the type system makes it explicit when run-time reflection is
used, and must do so even though every type is Typeable. Phil’s free theorems
would go out of the window if we allowed cast to have the type cast :: a →
Maybe b! That is the principled reason for requiring explicit Typeable constraints.
There is an operational reason too: the Typeable constraint is implemented as
a runtime argument; if there was no explicit Typeable constraint we would be
forced to pass a Typeable dictionary to every polymorphic function, just in case
it needed it, which would be disgusting.

Thanks to those explicit type representation arguments, techniques that have
appeared in previous work [VW10] for a closed world of representations can be
used to deduce “free theorems” from the types of all polymorphic functions.
When those functions include TypeRep arguments (or Typeable constraints) then
such theorems can still be derived but are often not very informative.
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We conjecture that these results will carry over to (a) an open world of type
representations, and (b) representations of types that hide polymorphic types in
their defining equations (such as Rid above; see Sect. 5.3 of [VW10]), but both
directions are open problems – perhaps new puzzles for Phil to solve!

8 Other Applications of TypeRep and dynamic

One of the advantages of building Dynamic on top of TypeRep is that the latter
is independently useful to build other abstractions. We briefly describe some of
these applications in this section.

8.1 Variants of Dynamic

In ML, the extensible exception type is built-in, but not so in Haskell: it is
programmed as a library using Typeable, using a design described by “An exten-
sible dynamically-typed hierarchy of exceptions” [MPJMR01]. Here are the key
definitions:

throw# :: SomeException → a

data SomeException where
SomeException :: Exception e ⇒ e → SomeException

class (Typeable e,Show e) ⇒ Exception e where {...}

The primitive exception-raising operation is throw#. Its argument is the fixed
type SomeException, whose definition is an existential rather like Dynamic ; the
difference is that as well as having a Typeable superclass (which makes it like
Dynamic), Exception also has Show superclass, and some methods of its own.

The fundamental data structure of the Shake build system [Mit12] is a
directed acyclic graph (DAG) in which each node contains a value, a recipe
for recomputing that value, and the dependencies of the node. If the values of
any of the dependent nodes changes, the node’s own value should be recomputed.
The value in a node may be of any type, including types defined by the client of
the Shake library, so again we have a fundamentally open-world problem. Shake
solves this by ubiquitous use of dynamically typed values, both as keys and as
values of its finite mappings [Mit12, Sect. 4.1]. For example, the Shake type Any
is just like Dynamic , except that it includes Binary , Eq, Hashable, Show , and
NFData constraints.

8.2 Supporting Generic Programming

Here is the opening example from “Scrap Your Boilerplate” [LPJ03]:

increase :: Float → Company → Company
increase k = everywhere (mkT (incS k))
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A Company is a tree-shaped data structure describing a company; the function
increase is supposed to find every employee in the data structure and increase his
or her salary by k, using incS ::Float → Salary → Salary . The function everywhere
applies its argument function to every node in the data structure; we will not
consider it further here. Our focus is the function mkT , which depends critically
on Typeable:

mkT :: (Typeable a,Typeable b) ⇒ (b → b) → a → a
mkT f x = case (cast f ) of

Just g → g x
Nothing → x

That is, mkT takes a type-specific function (such as incS) and lifts it to work on
values of any type, as follows: if types match use g , otherwise use the identity
function. (cast was described in Sect. 5.7.)

So the SYB approach to generic programming depends crucially on dynamic
type tests. The popular Uniplate library for generic programming also makes
essential use of comparison of TypeReps, for a similar purpose as SYB [MR07].
Note, however, that TypeRep alone is not enough to support generic program-
ming (see Sect. 9.5).

8.3 Distributed Programming and Persistence

Cloud Haskell is an Erlang-style library for programming a distributed system
in Haskell [EBPJ11]. A key component of the implementation, described in the
paper, is the ability to serialise a code pointer and send it from one node to another
in the distributed system. This code pointer could be implemented in a variety of
ways, such as: a machine address, a small integer, a long string, a URL.

But regardless of how it is implemented, the receiving node must deserialise
the code pointer to some code. To guarantee that the code is then applied to appro-
priately typed values, the receiving node must perform a dynamic type test. That
way, even if the code pointer was corrupted in transit, by accident or malice, the
receiving node will be type-sound. A simple way to do this is to serialise a code
pointer as a key into a static pointer table containingDynamic values. When receiv-
ing code pointer with key k , the recipient can lookup up entry k in the table, find
a Dynamic , and check that it has the expected type. The key can be an integer,
a string, or whatever; regardless, if it is corrupted, the recipient might access the
wrong entry in the table, but the type test will ensure soundness.

In other variants of this idea, one might want to serialise and deserialise values
of type Dynamic , and hence of type TypeRep. It turns out that this raises some
quite interesting issues that are beyond the scope of this paper12.

12 See the tree of wiki pages rooted at https://ghc.haskell.org/trac/ghc/wiki/
DistributedHaskell for lots more information.

https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
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8.4 Meta Programming

It is perhaps unsurprising that meta programming for a statically typed target
language often involves type reflection. For example, it is popular to define a type-
indexed version of the syntax tree of expressions, so that a value of type Expr t
is a syntax tree for an expression of type t. But then what is the type of a front
end for the language, which takes a String , parses it (presumably to an un-typed
syntax tree), and then typechecks it to reject type-incorrect programs. The front
end cannot have this type

frontEnd :: String → Maybe (Expr a) -- No!

because that is too polymorphic. The type a has to depend on the contents of the
string! So we need something more like this:

data DynExp where
DE :: TypeRep a → Expr a → DynExp

frontEnd :: String → DynExp

Here frontEnd returns an existential pair of a Expr a, and aTypeRep that describes
the type of the expression. The earliest paper we have found that clearly embod-
ies this idea is “Tagless staged interpreters for typed languages” [PTS02], but it
has become more widespread since Haskell has supported this programming style
[GM08,MCGN15].

9 RelatedWork

9.1 The Old Implementation of Typeable and Dynamic

GHC has supportedDynamic and a non-indexed version ofTypeRep for some time.
Here is the essence of the implementation in GHC 7.10:

data TypeRep -- Abstract
class Typeable a where
typeRep :: proxy a → TypeRep

data Dynamic where
Dyn :: TypeRep → a → Dynamic

data Proxy a = Proxy

Typeable had built-in support, so that newly declared data types would automat-
ically get Typeable instances. But TypeRep was not indexed, so there was no con-
nection between the TypeRep stored in a Dynamic and the corresponding value.
Indeed, accessing the typeRep required a proxy argument to specify the type that
should be represented.

Because there is no connection between types and their representations, this
implementation of Dynamic requires unsafeCoerce. For example, here is the old
fromDynamic :
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fromDynamic :: ∀ d . Typeable d ⇒ Dynamic → Maybe d
fromDynamic (Dyn trx x)
| typeRep (Proxy :: Proxy d)== trx = Just (unsafeCoerce x)
| otherwise = Nothing

Likewise, unsafeCoerce was used in the definition of dynApply :

dynApply :: Dynamic → Dynamic → Maybe Dynamic
dynApply (Dyn trf f ) (Dyn trx x) =

case splitTyConApp trf of
(tc , [t1, t2 ]) | tc == funTc && t1 == trx →

Just (Dyn t2 ((unsafeCoerce f ) x))
→ Nothing

Here splitTyConApp, a special definition fromData.Typeable that decomposes type
representations, and funTc is the function type constructor. There is nothing spe-
cial about function types. Other forms of data also need their own unsafe elimi-
nation functions to be defined. For example, the implementations of dynFst and
dynSnd are similar, and also require unsafeCoerce.

Furthermore, the library designer cannot hide all such uses of unsafeCoerce
from the user. If they want to use their own parameterized type with Dynamic ,
then they too must use unsafeCoerce. In short, the old interface to this library is
not expressive enough to work with type representations and dynamics safely.

9.2 Dynamics in a Closed World

We have focused entirely on an open-world setting (Sect. 4). If, however, your
application can work with a closed world, with a predetermined set of type con-
structors, then simpler designs are available.

Universal Datatype Implementation of Dynamic. The most obvious way
to implement closed-world dynamics is to use a universal datatype to represent
dynamic values (see Sect. 4). But even in a closed-world setting this approach
is unsatisfactory. Most prominently it suffers from a serious efficiency problem,
because converting a value to or fromDynamic traverses the value itself. For exam-
ple, to convert an (Int,Bool) pair to a Dynamic , we would have to deep-copy the
value, and then do the reverse when we get it out. This is silly: in the ST example
of Sect. 3 we only want to store the value in the Store, and read it back out later; we
shouldn’t need to process the value in any way whatsoever! Processing the value
has a semantic problem too: a dynamic type test forces evaluation of a term, so it
will fail on diverging terms; in our ST example, we could not store bottom in the
Store.

GADT-BasedTypeRepresentations. In a closed-world setting,TypeRep can
be implemented as an ordinary library without built-in support, thus:
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data TypeRep (a :: �) where
TBool :: TypeRep Bool
TFun :: TypeRep a → TypeRep b → TypeRep (a → b)
TProd :: TypeRep a → TypeRep b → TypeRep (a, b)

...

With this representation for TypeRep, the functions eqT , dynApply , dynFst, etc.,
are all easily written, using pattern-matching on the TypeRep GADT. The trouble
with this approach is simply that it is not extensible: the set of representable types
is limited those with data constructors in TypeRep.

History of Encoding Type Representations. In concurrent work, Cheney and Hinze
[CH02] and Baars and Swierstra [BS02] showed how to implement type Dynamic
by first encoding indexed type representations, similar to the GADT shown
above. (GADTs were not a part of GHC at that time). These type representation
encodings were based on earlier work by Yang [Yan98] and Weirich [Wei04]. In
particular, Yang showed how to encode the TypeRep type above using higher-
order polymorphism (available in the ML module system). And Weirich used type
classes to encode a version of type Dynamic that supported type-safe cast (i.e.
toDynamic and fromDynamic) but could not destruct types (i.e. no dynApply).

9.3 Dynamic Typing in Other Statically-Typed Languages

Several statically typed languages include a Dynamic type as a language primi-
tive. Abadi et al. [ACPP91,ACPR95] laid the groundwork for such extensions, by
incorporating a special typeDynamic to contain values of unknown type. Values of
this type could be refined using a typecase operator that allowed pattern matching
on the actual type of the value.

Clean. The Clean language includes a dynamic type as well as a class constraint
similar to Typeable, called TC , for types that support “type codes” [Pil99]. Unlike
Haskell, where Dynamic is defined in terms of Typeable, both of these structures
are language primitives in Clean. Pil [Pil99] makes the case that type Dynamic
is not enough on its own; languages should also include something like Typeable.
Making Dynamic a language primitive is powerful. For example, Clean can sup-
port polymorphic values embedded into dynamics. In other words, types such as
∀ a. a → a are Typeable, unlike in Haskell (Sect. 5.8).

Clean’s interface to runtime types is also different from a user perspective.
Clean includes runtime type unification using type-pattern variables. This fea-
tures subsumes both runtime type equality (as in our eqT ) as type patterns may
be nonlinear, and type destruction (as in our splitApp). We conjecture that this
difference is cosmetic.

OCaml. Leroy and Mauny [LM91] used similar mechanism to Abadi et al. in order
to extend the ML language with a dynamic type. However, more recent exten-
sions in support of dynamic typing in OCaml have been proposed in workshop
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talks [Fri11,HG13]. Like the design presented here, these extensions include a type
for type representations ’a ty, and a comparison operation that returns a GADT-
based witness for type equality.

These extensions also include a mechanism to decompose type representations.
In this case, every type constructor needs its own a decomposition GADT and
function. For example (using Haskell syntax), the pair type constructor would be
accompanied by the following:

data IsPair a where
TypePair :: TypeRep a → TypeRep b → IsPair (a, b)

isPair :: TypeRep a → Maybe (IsPair a) -- Primitive implementation

These definitions could then be used to implement dynFst.

dynFst :: Dynamic → Maybe Dynamic
dynFst (Dyn tab x) = case isPair tab of

Just (TypePair ta tb) → Just (fst x)
Nothing → Nothing

Our AppResult GADT and splitApp function uses GHC’s kind-polymorphism to
generalize these definitions for any type constructor.

9.4 Reflection in Java

In a language with subtyping and down-casting, a maximal supertype acts like a
dynamic type. For example, in Java, a reference type, like String , can be coerced
to Object (the maximal supertype) without runtime overhead. Furthermore, Java
also supports a simple equivalent of fromDynamic using a runtime cast.

Here is another connection to Phil, who introduced generics to Java
[BOSW98]. Java’s generics are limited in two (related) ways: Java has no notion
of higher-kinded types, and type parameters to generic classes (such as List〈T 〉)
and methods are erased, disallowing dynamic checks involving those parameters.

Generics have enhanced Java’s reflection feature, which has remarkable paral-
lels to Haskell’s. From its first versions, Java had the Class type, which was useful
for queries about a type, but not for casting. Phil’s generics then allowed Class to
be type-indexed [NW06], just like we are doing with TypeRep. For any reference
type T in modern Java, the expression T .class is a runtime type representation,
of type Class〈T 〉. With a Class〈T 〉 in hand, we can cast an arbitrary value to T ,
even if T is a type parameter.

9.5 Generic Programming and Type Representations

The type representations described in this paper are not designed for full-blown
datatype generic programming [Gib07]. TypeRep allows one to compare and
explore just the shape of a type including names of type constructors and type
arguments. But generic programming requires the additional capability to gener-
ically explore the structure of the values inhabiting a type; for instance by allowing
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one to iterate over the data constructors of some unknown type without having
the actual type definition in scope.

There are many ways to support generic programming; from isomorphisms of
types to sums and products (for example the Generic class in Haskell [MDJL10]),
to providing built-in generic instances for iterators (for example the Data class
in Haskell [LPJ03]), to advanced variants of TypeRep that additionally include
type-indexed data structures for describing data constructors and introduc-
ing/eliminating values generically [Wei06].

10 Conclusions and FurtherWork

In this paper, we have designed a powerful API for type reflection and shown
that it can be used to implement a flexible and extensible dynamic type. The
next major challenge is to provide a better story for polymorphic dynamic
values (Sect. 5.8).
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Abstract. Embedded domain-specific languages (DSLs) are the subject
of wide-spread interest, and a variety of implementation techniques exist.
Some of them have been invented, and some of them discovered. Many
are based on a form of generative or multi-stage programming, where
the host language program builds up DSL terms during its evaluation.
In this paper, we examine the execution model of LMS (Lightweight
Modular Staging), a framework for embedded DSLs in Scala, and link it
to evaluation in a two-stage lambda calculus. This clarifies the seman-
tics of certain ad-hoc implementation choices, and provides guidance for
implementing similar multi-stage evaluation facilities in other languages.

Keywords: Multi-stage programming · Scala · Domain-specific
languages · LMS (Lightweight Modular Staging) · Partial evaluation

1 Introduction

Embedded domain-specific languages (DSLs) are the subject of wide-spread
interest across communities and languages. If a host-language program com-
putes and assembles DSL terms, we are dealing with a form of generative or
multi-stage programming [65]. Exactly how this is done depends on the lan-
guage and framework that is used. But in any case, the interactions between
meta-language and object-language (DSL) semantics can be non-trivial.

In this paper, we examine the evaluation mechanism of LMS (Lightweight
Modular Staging) [54]. LMS is a framework for building embedded DSLs and
program generators in Scala that uses types to identify staged expressions: any
normal Scala expression of type Int, String, or in general T, is evaluated at
program generation time, and expressions of type Rep[Int], Rep[String],
or in general Rep[T], produce staged expressions that will evaluate to values of
the corresponding type T when the generated code is run. In general, operations
on Rep[T] mirror those on T but lifted to the Rep level. For example, adding
two Rep[Int] values will produce a Rep[Int] result.

While this description succeeds in giving an overall idea of the approach,
it leaves many details unspecified. For example, how does one deal with func-
tions? Primitive constants of, e.g., type Int can be lifted to Rep[Int] values
without much effort as constant expressions, but it is less clear how to cre-
ate a staged function of type Rep[A=>B]. The approach chosen by LMS is to
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use an explicit constructor fun that converts a present-stage function of type
Rep[A]=>Rep[B] into a staged function of type Rep[A=>B].

Armed with this knowledge, we can build up some intuition on how Rep
types enable interesting program transformations. Here is a staged version of
Ackermann’s function (note the use of the fun constructor):
val ack: Int => Rep[Int => Int] = { m: Int => fun { n: Rep[Int] =>

if (m==0) n+1
else if (n==0) ack(m-1)(1)
else ack(m-1)(ack(m)(n-1))

}}
ack(2)

What will be the result of this computation? The type of ack is a mixed-stage
function type Int => Rep[Int => Int], so ack(m) for a given integer m
will have type Rep[Int => Int]: a staged function from Int to Int that
corresponds to the body of ack but with all computations that depend on m
but not n (nor any other Rep value) readily evaluated.
val ack0: Int => Int = { n: Int => n+1 }
val ack1: Int => Int = { n: Int => if (n==0) ack0(1) else ack0(ack1(n-1)) }
val ack2: Int => Int = { n: Int => if (n==0) ack1(1) else ack1(ack2(n-1)) }
ack2

The question we would like to address in this paper is: how does all this work?
To do so, we will link the evaluation strategy of Scala and LMS to a two-stage
lambda calculus. Such multi-level calculi have been popularized by Nielson and
Nielson [46] and play a key role in the partial evaluation literature to describe
binding-time information similar to the Rep[T] vs T distinction in LMS.

Our two-level language is derived from Chaps. 8 and 10 in the book by Jones,
Gomard, and Sestoft [32]. We will build an evaluator for this calculus from
the ground up and show how it computes the specialized ack function above,
pointing to similarities and differences with systems from the literature.

While partial evaluation experts will most likely not find much novelty in
this paper, we hope that this exposition will be useful in clarifying the semantics
of multi-stage evaluation as it is implemented in LMS and that it may serve as
guidance for implementing similar facilities in other languages or frameworks.

2 A Two-Stage Lambda Calculus

The term language of our calculus is as follows:
Exp ::= Lit(Int) | Var(Int) | Let(Exp,Exp)

| Lit2(Exp)
| Lam(Exp) | App(Exp,Exp) | Tic
| Lam2(Exp) | App2(Exp,Exp) | Tic2
| Ifz(Exp,Exp,Exp) | Plus(Exp,Exp) | Minus(Exp,Exp)
| Ifz2(Exp,Exp,Exp) | Plus2(Exp,Exp) | Minus2(Exp,Exp)

For ease of implementation, we use DeBrujin levels to represent binders. The
term syntax contains integer literals, variables, let expressions, lambda abstrac-
tions, function application, simple side effects (Tic), conditionals, and arith-
metic. Most (but not all) constructs come in two versions. For example, Lam
is the present-stage lambda abstraction and Lam2 is the future-stage lambda
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abstraction. We will see later that variables and let bindings need not be dupli-
cated.

In what sense does this calculus model Scala and LMS? Since Rep types are
just regular Scala types and operations on Rep[T] are implemented within the
Scala language using operator overloading, Scala’s local type inference mecha-
nism essentially performs a local binding-time analysis [32] for us.

Here is the desugared version of ack:
val ack: Int => Rep[Int => Int] = { m: Int =>

fun { n: Rep[Int] =>
if (m==0) __plus(n, __lit(1))
else __ifThenElse(__equals(n, __lit(0)),

__apply(ack(m-1), __lit(1)),
__apply(ack(m-1), __apply(ack(m), __minus(n, __lit(1)))))

}
}
ack(2)

We can see that Scala’s typechecker has replaced all operations that involve Rep
values with method calls like plus and minus, using standard language
facilities like method overloading and implicits. These methods serve as smart
constructors that create corresponding expression terms when the program is
executed.

If we want to model the same behavior in our calculus, we can directly
translate the program above to our two-level language, replacing the primitive
Scala constructs with first-level terms and method calls with second-level terms:
Let(Lam(

Lam2(Lam(
Ifz(m,n+1,

Ifz2(n,App2(App(ack,m-1),Lit2(Lit(1))),
App2(App(ack,m-1),App2(App(ack,m),n-1)))))),

App(ack,Lit(2)))

A few expressions have been factored out for clarity:
ack = Var(0) m = Var(1) n = Var(3)

m-1 = Minus(m,Lit(1)) n-1 = Minus2(n,Lit2(Lit(1)))
n+1 = Plus2(n,Lit2(Lit(1)))

Note that we map staged function definitions such as fun { m => ...
} to nested expressions Lam2(Lam(...)). For a faithful correspondance, we
need to model both the constructor invocation and the Scala function passed
as argument. Likewise, we map staged constant literals like lit(1) to nested
terms Lit2(Lit(1)).

Now that we have introduced the two-level term language, how should multi-
stage evaluation proceed? Intuitively, each future-stage operator should create a
program term at runtime, but a priori it is not clear how these terms are to be
composed. For example:
Let(Tic2,

Lit2(Lit(1)))

This term could either evaluate to Lit(1), assuming that Tic2 evaluates
to Tic, which is then discarded, or it could evaluate to Let(Tic,Lit(1)).
Arguably, the second option is the desired one, but it takes some additional work
to preserve the evaluation order and sharing behavior across evaluation stages.
A well established approach to achieve this is to insert let-bindings eagerly for all
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“serious” expressions and pass around only atomic identifiers or primitve con-
stants. We will build our multi-stage evaluator in steps, starting from a standard
single-stage evaluator, and add the necessary let-insertion logic in a second step,
by composing the evaluator with a transformation into administrative normal
form (ANF) [23].

3 Single-Stage Evaluation

The starting point for our multi-stage evaluator is a completely standard lambda
calculus evaluator with environments and closures:
Exp ::= Lit(Int) | Var(Int) | Tic | Lam(Exp) | Let(Exp,Exp) | App(Exp,Exp)
Val ::= Cst(Int) | Clo(Env,Exp)
Env = List[Val]

var stC = 0
def tick() = { stC += 1; stC - 1 }

def eval(env: List[Val], e: Exp): Val = e match {
case Lit(n) => Cst(n)
case Var(n) => env(n)
case Tic => Cst(tick())
case Lam(e) => Clo(env,e)
case Let(e1,e2) => eval(env:+eval(env,e1),e2)
case App(e1,e2) =>
val Clo(env3,e3) = eval(env,e1)
eval(env3:+eval(env,e2),e3)

}

In Scala, the snoc operator :+ appends an element to the right of a list,
so env:+eval(env,e1) will first evaluate e1 in environment env, and then
append the result to the right of env. Variable lookup uses DeBruijn levels,
where env(n) returns the nth element from the left of a list.

To make matters slightly more interesting, we include a side-effecting oper-
ation Tic in our language, which we implement using side effects of the meta
language: the implicit Scala monad. Of course we could also build a purely func-
tional version based on monads, but for our purposes it is beneficial to trade off
this bit of impurity for ease in composition later.

4 ANF Conversion/Let-Insertion

The second building block is ANF conversion [23], which brings programs into a
normal form that makes the evaluation order explicit in a program and extracts
all intermediate results into let bindings. The ANF syntax is given by the non-
terminal N as follows:
V ::= Lit(Int) | Var(Int)
M ::= V | Lam(N) | App(V,V) | Tic
N ::= V | Let(M,N)

We will implement ANF conversion again using side-effects in the meta lan-
guage of our evaluator. We need two pieces of state: an accumulator for generated
let bindings stBlock and a counter for the next fresh variable name stFresh.
We also introduce a function run that implements a dynamic scoping discipline
for these two variables:
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var stFresh = 0
var stBlock: List[Exp] = Nil
def run[A](f: => A): A = {

val sF = stFresh
val sB = stBlock
try f finally { stFresh = sF; stBlock = sB }

}

With this handling of mutable state in place, we can implement a first cut
of our ANF conversion function:
def anf(env: List[Exp], e: Exp): Exp = e match {

case Lit(n) => Lit(n)
case Var(n) => env(n)
case Tic =>

val s = Tic
val f = stFresh
stBlock:+= s
stFresh += 1
Var(f)

case App(e1,e2) =>
val ex1 = anf(env,e1)
val ex2 = anf(env,e2)
val s = App(ex1,ex2)
val f = stFresh
stBlock:+= s
stFresh += 1
Var(f)

case Lam(e) =>
val e1 = run {

val f = stFresh
stBlock = Nil
stFresh += 1
val res = anf(env:+Var(f),e)
stBlock.foldRight(res)(Let)

}
val f = stFresh
stBlock:+= Lam(e1)
stFresh += 1
Var(f)

case Let(e1,e2) =>
val ex1 = anf(env,e1)
anf(env:+ex1,e2)

}

Function anf recurses structurally over the given term e and emits a let
binding for each encountered non-trivial expression. For lambda abstractions, we
use the dynamically scoped run construct to clear the stateful list of bindings
when entering the nested scope and to reset the bindings and the fresh name
reservoir when exiting the nested scope.

While this implementation gets the job done, it is not pretty. But it is easy
to recognize some patterns: fresh variables are created in several places, and the
emitting of let bindings can also be abstracted over. We factor out the repetitive
operations as follows:
def fresh() = { stFresh += 1; Var(stFresh-1) }
def reflect(s:Exp) = { stBlock :+= s; fresh() }
def reify(f: => Exp) = run { stBlock = Nil; val last = f; stBlock.foldRight(last)(Let) }

Function fresh creates a fresh variable, reflect emits a let binding and
returns the new identifier, and reify accumulates all let bindings created in a
given block (note that f is a by-name parameter =>Exp).

Now we can go ahead and greatly simplify our implementation:
def anf(env: List[Exp], e: Exp): Exp = e match {

case Lit(n) => Lit(n)
case Var(n) => env(n)
case Tic => reflect(Tic)
case Lam(e) => reflect(Lam(reify(anf(env:+fresh(),e))))



The Essence of Multi-stage Evaluation in LMS 323

case App(e1,e2) => reflect(App(anf(env,e1),anf(env,e2)))
case Let(e1,e2) => anf(env:+(anf(env,e1)),e2)

}

In fact, we no longer mention mutable state directly in the conversion function
anymore, which brings it much closer to common definitions of ANF conversion
based on evaluation contexts [23].

Based on this formulation it is easy to convince oneself that ANF conversion
preserves semantics:
eval(Nil, anf(Nil, e)) = eval(Nil, e)

5 Multi-stage Evaluation

We now turn our attention to multi-stage evaluation. We start off with a slightly
more uniform term language than the one given above:
Exp ::= Lit(Int) | Var(Int) | Tic | Lam(Exp) | Let(Exp,Exp) | App(Exp,Exp)

| Lit2(Int) | Var2(Int) | Tic2 | Lam2(Exp) | Let2(Exp,Exp) | App2(Exp,Exp)
Val ::= Cst(Int) | Clo(Env,Exp) | Code(Exp)

For every operation in the term language there is a corresponding future-
stage variant that serves as term constructor. In addition, the syntax of values
now includes a Code(e) case for future-stage expressions.

The key idea now is to combine present-stage evaluation with future-stage
normalization into ANF. The ANF conversion part is adapted slightly to map
present-stage term constructors (App2, Lam2, ...) to code values containing their
normal term equivalents (App, Lam, ...). This wrapping in Code values necessi-
tates a few tweaks to the helper functions:
def freshc() = Code(fresh())
def reflectc(s: Exp) = Code(reflect(s))
def reifyc(f: => Val) = reify { val Code(r) = f; r }

Now we are ready to put together eval and anf into a single multi-stage
evaluator (Fig. 1). As we can see, term constructors like App2 first evaluate their
arguments in the present-stage to code values, from which the argument terms
are extracted and the new App term is reflected.

It is important to note that there are only three ways in which code values
are constructed: (1) via reflectc, which creates a variable reference; (2) via
freshc in the environment, and then accessed through variable lookup; (3)
directly from a constant literal. The results of the only call to reifyc, which
may create non-atomic expressions, are only used to fill in the bodies of Lam
terms which are itself reflected immediately.

Thus, all code values are atomic expressions, terminating, and side-effect free.
They can be freely stored, duplicated and passed around without changing the
meaning of the program. Staged expressions will appear in the generated code in
the same order they were encountered when running the multi-stage program.

Partial evaluators that support side effects work in a similar way, insert-
ing let-bindings to prevent reordering or duplication of code. Many specializers
are implemented in continuation-passing style, which also leads to an elegant
on-the-fly ANF conversion. A version that corresponds very closely to the one



324 T. Rompf

Fig. 1. Multi-stage evaluation: composing eval and anf

above is shown by Lawall and Thiemann [37,67]. Our method of ANF conversion
with direct-style reflect and reify operators can be seen as an instance of
normalization by evaluation [17,22,40] or monadic reflection [21,44].

To obtain the full generated code for a top-level expression e one can use
reifyc(evalms(Nil,e)). Another thing that becomes clear when looking
at evalms is that Var2 and Let2 behave in exactly the same way as Var and
Let. Therefore, we can drop them from our term language, as we had done in
Sect. 2. Adding the other constructs, Ifz, Plus, and Minus, is straightforward.

6 Recursion

Where does this multi-stage evaluator leave us? We can almost, but not quite,
run our ack example. The last missing bit is support for recursion. We could add
an explicit fix combinator but instead, we chose to pass closures to themselves
as first argument when called. Thus, all functions can potentially be recursive.

However, if we leave it at that, we will find that our example (and in fact
many programs) will not terminate in the first stage. Here is a simpler example:
def f: Rep[Int => Int] = fun { n: Rep[Int] =>

if (n == 0) 1 else f(n-1)
}

If we multi-stage evaluate this code naively, we will end up in a sequence
of calls trying to compute the body of f — but in order to do that, we must
compute the body of f again!

We need an additional insight: the body of fun in LMS or of Lam2 in
the calculus is itself an expression that will be evaluated. And if two functions
have the same body expression, and the same free variables, then they must
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compute the same results for all inputs: intensional, i.e., structural equality
implies extensional equality.

Thus, we can memoize the function expressions we are in the process of
evaluating and tie the recursive knot to an enclosing function if we hit a recursive
call. We achieve this by adding a small lookup table to the existing dynamically
scoped mutable state:
var stFun: List[(Int,Env,Exp)] = Nil
def run[A](f: => A): A = {

...
val sN = stFun
try f finally { ...; stFun = sN }

}

In addition, we modify the handling of lambda abstractions to check whether
we are trying to expand a given function body inside itself. If that is the case, we
just return the already existing parent symbol. Otherwise, the function is new.
We create an entry in our memo table and proceed to evaluate the body.
def evalms(env: Env, e: Exp): Val = e match {

...
case App(e1,e2) =>
val Clo(env3,e3) = evalms(env,e1)
val v2 = evalms(env,e2)
evalms(env3:+Clo(env3,e3):+v2,e3)

...
case Lam2(e) =>
stFun collectFirst { case (n,‘env‘,‘e‘) => n } match {

case Some(n) =>
Code(Var(n))

case None =>
stFun :+= (stFresh,env,e)
reflectc(Lam(reifyc(evalms(env:+freshc():+freshc(),e))))

}
...

}

The code snippet also shows the modified App case that passes the closure
to itself as first argument. The Lam case is updated correspondingly to create
two fresh vars as placeholders for the arguments.

With this support for specializing recursive functions in place, we can suc-
cessfully evaluate our ack example. We obtain the following result for ack(2).
Term syntax on the left, translated to Scala on the right:

Let(Lam(
Let(Ifz(Var(1),
Let(Lam(Let(Ifz(Var(3),
Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(App(Var(4),Lit(1)),Var(5))),

Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(Minus(Var(3),Lit(1)),Let(App(Var(2),Var(5)),

Let(App(Var(4),Var(6)),Var(7)))))
),Var(4))),
Let(App(Var(2),Lit(1)),Var(3))),

Let(Lam(Let(Ifz(Var(3),
Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(App(Var(4),Lit(1)),Var(5))),

Let(Lam(Let(Plus(Var(5),Lit(1)),Var(6))),
Let(Minus(Var(3),Lit(1)),Let(App(Var(2),Var(5)),

Let(App(Var(4),Var(6)),Var(7)))))
),Var(4))),

Let(Minus(Var(1),Lit(1)),Let(App(Var(0),Var(3)),
Let(App(Var(2),Var(4)),Var(5)))))

),Var(2))),
Let(App(Var(0),Lit(2)),Var(1)))

val ack2: Int => Int = { n: Int =>
if (n==0) {
val ack1: Int => Int = { n: Int =>
if (n==0) {

val ack0: Int => Int = { n: Int => n+1 }
ack0(1)

} else {
val ack0: Int => Int = { n: Int => n+1 }
ack0(ack1(n-1))

}
}
ack1(1)

} else {
val ack1: Int => Int = { n: Int =>
if (n==0) {

val ack0: Int => Int = { n: Int => n+1 }
ack0(1)

} else {
val ack0: Int => Int = { n: Int => n+1 }
ack0(ack1(n-1))

}
}
ack1(ack2(n-1))

}
}
ack2
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We can see that this code does the right thing and corresponds to the right
recursion pattern, but it contains duplicated function definitions for ack0 and
ack1. These are easily reclaimed by a code motion and common subexpres-
sion elimination or global value numbering algorithm. Hoisting functions and
removing duplicates yields exactly the desired result:
val ack0: Int => Int = { n: Int => n+1 }
val ack1: Int => Int = { n: Int => if (n==0) ack0(1) else ack0(ack1(n-1)) }
val ack2: Int => Int = { n: Int => if (n==0) ack1(1) else ack1(ack2(n-1)) }
ack2

In the partial evaluation literature such patterns are known as polyvariant
specialization [8]: one function in the source yields multiple specialized variants
in the residual generated code. Sophisticated partial evaluators such as Similix
or PGG implement similar techniques [6,28,37,67].

7 Relation to LMS

We have seen how we can model and describe a simple multi-stage evaluation
algorithm for a small language. But how can we relate it to the actual implemen-
tation of LMS? Essentially we take the evalms function and turn it inside out,
from an interpreter over an initial term language to an evaluator in tagless-final
[10] style. But there is a problem: since we are working inside a running Scala
program we cannot get our hands on unevaluated Scala expressions, as would be
required by our implementation of staged literals and staged lambdas:
def evalms(env: Env, e: Exp): Val = e match {

...
case Lit2(n) => Code(Lit(n))
case Lam2(e) => reflectc(Lam(reifyc(evalms(env:+freshc(),e))))

}

The argument n for Lit2 would correspond to a literal constant in the Scala
source code, and the argument e for Lam2 corresponds to an unevaluated Scala
expression, which we would evaluate at our own leisure, in an extended context,
on the right hand side. The fact that tools like LMS operate as libraries inside
a general-purpose host language is a key difference to offline partial evaluation
systems that operate on the program text.

We generalize our implementation in such a way that Lit2 takes an expres-
sion that evaluates to a constant, and Lam2 takes an expression that evaluates
to a function. The intention is that Lit2(Lit(n)) and Lam2(Lam(e)) cor-
respond to the previous behavior. The construct Lit2 now implements a lifting
facility, which enables embedding of arbitrary values computed in the present
stage as constants in the generated code. Note, however, that lifting (or cross-
stage-persistance) is not automatically valid for all possible types. It is easy to
see, for example, that a present-stage Scala closure does not necessarily have a
valid representation as C source code. For this reason, we restrict Lit to integers
here, and handle functions separately using Lam2. The implementation of Lam2
can be seen as a pretty standard use of higher-order abstract syntax.

We modify our evaluator as follows to immediately evaluate all subexpres-
sions and introduce the required indirection for functions:
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def evalms(env: Env, e: Exp): Val = e match {
...
case Lit2(e) => val Cst(n) = evalms(env,e); Code(Lit(n))
case Tic2 => reflectc(Tic)
case Lam2(e) =>
val f = evalms(env,e) // memoization elided
reflectc(Lam(reifyc(evalms(env,App(f,freshc())))))

case App2(e1,e2) =>
val Code(s1) = evalms(env,e1)
val Code(s2) = evalms(env,e2)
reflectc(App(s1,s2))

}

As the last step towards our tagless-final interpreter, we refactor the evaluator
to introduce constructor methods for each kind of term:
def evalms(env: Env, e: Exp): Val = e match {

...
case Lit2(e) => val Cst(n) = evalms(env,e); Code(lit(n))
case Tic2 => Code(tic())
case Lam2(e) =>
val f = evalms(env,e)
val f1 = { x => val Code(r) = evalms(env,App(f,Code(x))); r }
Code(lam(f1))

case App2(e1,e2) =>
val Code(s1) = evalms(env,e1)
val Code(s2) = evalms(env,e2)
Code(app(s1,s2))

}

These term constructors are defined as follows to abstract over explicit envi-
ronments, recursive calls to evalms, and Code values:
type Rep[T] = Exp
def lit(n: Int): Rep[Int] = Lit(n)
def tic() = reflect(Tic)
def app[A,B](f:Rep[A=>B],x:Rep[A]): Rep[B] = reflect(App(f,x))
def lam[A,B](f:Rep[A]=>Rep[B]): Rep[A=>B] = reflect(Lam(reify(f(fresh()))))

// memoization elided

At this point, we no longer need the explicit evaluator, and we can just use
the standard Scala evaluation to construct staged terms.

This API corresponds almost directly to the actual implementation in LMS.
Behind the reflect and reify API, the internal representation of LMS is dif-
ferent though. Rather than as simple expression trees, LMS has a graph-based
intermediate representation (IR) that directly supports code motion, common
subexpression elimination, dead code elimination and a range of other optimiza-
tions [14,54,55]. LMS also makes pervasive use of smart constructors to perform
rewriting while the IR is constructed.

But can we still handle recursion correctly in this setting? By switching away
from our explicit evaluator we lose control over the representation of closures,
which was key for detecting recursive calls through memoization. Fortunately,
Scala implements closures as objects on the JVM, with free references stored as
fields that can be queried via runtime reflection. In practice, LMS uses Java seri-
alization to convert closures to byte arrays, and then takes this binary fingerprint
as a key for memoization. This method neatly takes care of cyclic references, too.
To implement a framework similar to LMS in other languages, a similar facil-
ity would likely be needed, or an alternative strategy for supporting recursive
functions would need to be used (e.g. explicit staged fixpoint combinators).
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8 Case Study: Regular Expression Matchers

While the ack example in the previous sections served as a good example for
exposition, it is arguable not one that has a lot of practical uses. But the pattern
directly translates to more interesting applications.

In this section, we give a short overview of a fast regular expression matcher
that was developed using essentially the same technique by Nada Amin and the
author. Part of the code and description below has appeared in the author’s
Ph.D. thesis [53] and in a paper at POPL 2013 [55]. Specializing string matchers
and parsers is a popular benchmark in the partial evaluation and supercompila-
tion literature [1,15,58,59,61,69].

We consider regular expression matchers that are “multi-threaded” and
spawn a new conceptual thread to process alternatives in parallel. Of course
these matchers do not actually spawn OS-level threads, but rather need to be
advanced manually by client code. Thus, they are similar to coroutines.

From these non-deterministic matchers, we generate a set of mutually tail-
recursive functions that implement a deterministic finite automaton (DFA) that
recognizes the same regexp pattern without backtracking.

8.1 Regexp Matchers as Nondeterministic Finite Automata (NFA)

Here is a simple example for the fixed regular expression ‘.*AAB’:
def findAAB(): NIO = {

guard(Set(’A’)) {
guard(Set(’A’)) {

guard(Set(’B’), Found)) {
stop()

}}} ++
guard(None) { findAAB() } // in parallel...

}

We can easily add combinators on top of the core abstractions that take care
of producing matchers from textual regular expressions. However the point here
is to demonstrate how the implementation works. The given matcher uses an
API that models nondeterministic finite automata (NFA):
type NIO = List[Trans] // state: many possible transitions
case class Trans(c: Set[Char], x: Flag, s: () => NIO)
def guard(cond: Set[Char], flag: Flag)(e: => NIO): NIO =

List(Trans(cond, flag, () => e))
def stop(): NIO = Nil

An NFA state consists of a list of possible transitions (type NIO). Each tran-
sition may be guarded by a set of characters and it may have a flag to be signaled
if the transition is taken. It also knows how to compute the following state. We
use Chars for simplicity, but of course we could use generic types as well. From
a given NFA transition, we can obtain the following state, and thus recursively
unfold the state space. Thus, it is sometimes useful to identify the notions of
NFA and NFA state. NFA states, and thus NFAs, can be composed in parallel
through list concatenation. Method guard implements sequential composition.
It creates a new NFA state with a single start transition and “the rest of the
automaton” given as a by-name expression (type =>NIO) that computes the fol-
lowing state. Note that the API does not mention where input is obtained from
(files, streams, etc.).



The Essence of Multi-stage Evaluation in LMS 329

8.2 From NFA to DFA Using Staging

We will translate NFAs to DFAs using LMS. This is the unstaged DFA API that
will be used by the generated code:
abstract class DfaState {

def hasFlag(x: Flag): Boolean
def next(c: Char): DfaState

}
def dfaFlagged(flag: Flag, link: DfaState) = new DfaState {

def hasFlag(x: Flag) = x == flag || link.hasFlag(x)
def next(c: Char) = link.next(c)

}
def dfaState(f: Char => DfaState) = new DfaState {

def hasFlag(x: Flag) = false
def next(c: Char) = f(c)

}

The staged API is just a thin wrapper:
type DIO = Rep[DfaState]
def dfa_flag(x: Flag)(link: DIO): DIO
def dfa_trans(f: Rep[Char] => DIO): DIO

Translating an NFA to a DFA is accomplished by creating a DFA state for each
encountered NFA configuration (removing duplicate states via canonicalize):
def convertNFAtoDFA(state: NIO): DIO = {

val cstate = canonicalize(state)
dfa_trans { c: Rep[Char] =>
exploreNFA(cstate, c)(dfa_flag) { next =>

convertNFAtoDFA(next)
}

}
}
convertNFAtoDFA(findAAB())

Since LMS memoizes functions in the same was as we have shown in Sect. 6
(here, the argument to dfa trans), the framework ensures termination if the
NFA is indeed finite. We use a separate function to explore the NFA space
(see below), advancing the automaton by a symbolic character cin to invoke
its continuations k with a new automaton, i.e. the possible set of states after
consuming cin. The given implementation assumes that character sets contain
either zero or one characters, the empty set Set() denoting a wildcard match.
More elaborate cases such as character ranges are easy to add. The algorithm
tries to remove as many redundant checks and impossible branches as possible.
This only works because the character guards are staging-time values.
def exploreNFA[A](xs: NIO, cin: Rep[Char])(flag: Flag => Rep[A] => Rep[A])

(k: NIO => Rep[A]):Rep[A] = xs match {
case Nil => k(Nil)
case Trans(Set(c), e, s)::rest =>
if (cin == c) {

// found match: drop transitions that look for other chars and
// remove redundant checks
val xs1 = rest collect { case Trans(Set(‘c‘)|None,e,s) => Trans(Set(),e,s) }
val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(xs1, cin)(acc => k(acc ++ s())))

} else {
// no match, drop transitions that look for same char
val xs1 = rest filter { case Trans(Set(‘c‘),_,_) => false case _ => true }
exploreNFA(xs1, cin)(k)

}
case Trans(Set(), e, s)::rest =>
val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(rest, cin)(acc => k(acc ++ s())))

}
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8.3 Generated State Machine Code

The generated matcher code for regular expression .*AAB is shown below, with
some slight syntactic changes to make it more readable. Each function corre-
sponds to one DFA state. Note how negative information has been used to prune
the transition space: given input such as ...AAB the automaton jumps back to
the initial state, i.e. it recognizes that the last character B cannot also be A, and
it starts looking for two As after the B.
def stagedFindAAB(): DfaState = {

val found = dfaFlagged(Found, matched_nothing)
val matched_AA = dfaState { c: (Char) =>

if (c == B) found
else if (c == A) matched_AA
else matched_nothing

}
val matched_A = dfaState { c: (Char) =>

if (c == A) matched_AA
else matched_nothing

}
val matched_nothing = dfaState { c: (Char) =>

if (c == A) matched_A
else matched_nothing

}
}

9 Related Work

Multi-stage programming (MSP, staging for short), as established by Taha and
Sheard [65] enables programmers to delay evaluation of certain expressions to a
generated stage. MetaOCaml [9] implements a classic staging system based on
quasi-quotation. Lightweight Modular Staging (LMS) [54] uses types instead of
syntax to identify binding times, and generates an intermediate representation
instead of target code. LMS draws inspiration from earlier work such as Task-
Graph [4], a C++ framework for program generation and optimization. Delite
is a compiler framework for embedded DSLs that provides parallelization and
heterogeneous code generation on top of LMS [7,38,55,56,63].

Partial Evaluation. Partial evaluation [32] is an automatic program specializa-
tion technique. Despite their automatic nature, most partial evaluators also pro-
vide annotations to guide specialization decisions. Some notable systems include
DyC [26], an annotation-directed specializer for C, JSpec/Tempo [57], the JSC
Java Supercompiler [34], and Civet [58].

Partial evaluation has addressed higher-order languages with state using sim-
ilar let-insertion techniques as discussed here [6,28,37,67]. Further work has
studied partially static structures [43] and partially static operations [66], and
compilation based on combinations of partial evaluation, staging and abstract
interpretation [16,33,60]. Two-level languages are frequently used as a basis for
describing binding-time annotated programs [32,47].

Embedded DSLs. Embedded languages have a long history [36]. Hudak intro-
duced the concept of embedding DSLs as pure libraries [30,31]. Steele proposed
the idea of “growing” a language [62]. The concept of linguistic reuse goes back
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to Krishnamurthi [35]; Language virtualization to Chafi et al. [12]. The idea of
representing an embedded language abstractly as methods (finally tagless) is due
to Carette et al. [10] and Hofer et al. [29], going back to much earlier work by
Reynolds [52]. Compiling embedded DSLs through dynamically generated ASTs
was pioneered by Leijen and Meijer [39] and Elliot et al. [20]. All these works
greatly inspired the development of LMS. Haskell is a popular host language for
embedded DSLs [25,64], examples being Accelerate [42], Feldspar [3], Nikola [41].
Recent work presents new approaches around quotation and normalization for
DSLs [13,45]. Other performance oriented DSLs include Firepile [48] (Scala),
Terra [18,19] (Lua). Copperhead [11] (Python). Rackets macros [68] provide full
control over the syntax and semantics.

Program Generators. A number of high-performance program generators
have been built, for example ATLAS [70] (linear algebra), FFTW [24] (dis-
crete fourier transform), and Spiral [49] (general linear transformations). Other
systems include PetaBricks [2], CVXgen [27] and Halide [50,51].
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Abstract. We take another look at 1ML, a language in the ML tradi-
tion, but with core and modules merged into one unified language, ren-
dering all modules first-class values. 1ML already comes with a simple
form of effect system that distinguishes pure from impure computations.
Now we enrich it with effect polymorphism: by introducing effect decla-
rations and, more interestingly, abstract effect specifications, effects can
be parameterised over, and treated as abstract or concrete in the type
system, very much like types themselves. Because type generativity in
1ML is controlled by (im)purity effects, this yields a somewhat exotic
novel notion of generativity polymorphism – that is, a given functor can
be asked to behave as either “generative” or “applicative”. And this time,
we even get to define an interesting (poly)monad for that!

1 Introduction

In a recent paper [13] we introduced 1ML, a reboot of ML where modules are
first-class values. In this language, there no longer is any distinction between
core and modules, records or structures, functions or functors. Morally, every
expression denotes a module.

One peculiar feature of 1ML is its distinction between pure and impure
functions and computations, through a – very simple – form of effect system.
Although this is primarily motivated by the semantics of functors (as we will
see below), it obviously is an interesting distinction to make for “core-like” func-
tions as well. Effect systems [3,9,18] are regularly proposed as a complement to
functional type systems. They serve a similar role as monads [12,20], which have
been successfully incorporated into languages like Haskell, but with a little extra
flexibility – Wadler & Thiemann showed that both are essentially equivalent [21].

Telling pure from impure statically allows much better control over side
effects. Like any other form of type discipline, it allows more accurate specifica-
tion of interfaces, and prevents certain classes of errors. For example, a module
can specify that some of its interface functions are free of side effects. Or not.
Higher-order functions can shield against unwanted side effects when invoking
an argument function (or “callback”, as laymen say nowadays). All useful capa-
bilities, and in principle it is possible to put them to good use in 1ML already.

What makes the use of effects cumbersome in 1ML, however, is the lack
of support for effect polymorphism. In a higher-order language that is a real
c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 336–355, 2016.
DOI: 10.1007/978-3-319-30936-1 18
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bummer, because the purity of a higher-order function will typically depend on
the purity of its argument. For example, consider

map f xs = if null xs then [] else f (head xs) :: map f (tail xs)

Is this a pure or impure function? It depends on f. We can imagine (at least)
two different signatures for map:

map : ∀ a b. (a → P b) → P list a → P list b
map : ∀ a b. (a → I b) → P list a → I list b

Here, we use “→P” to denote pure function types, and “→I” for impure ones.
Unfortunately however, map may only have one of these types in 1ML. If we
needed both, we would need to write different functions for the different sig-
natures. (Notably, 1ML’s pure arrows are subtypes of impure ones, but such
subtype polymorphism is insufficient to handle this case.)

Or we introduce the ability to abstract over (im)purity via polymorphism.
Both map and its argument could be polymorphic in their (joint) effect:

map : ∀ a b e. (a → e b) → P list a → e list b

In this signature, we assume that e is a (universally quantified) effect variable.
By instantiating it with either P or I, we can use the same implementation of
map on either a pure or an impure argument, and get a corresponding pure or
impure computation in return.

Okay, you might think, that looks like a fairly trivial and standard extension.
Others proposed this long ago [9]. Well, what makes it interesting in 1ML is that
the (im)purity effect is intimately tied to the notion of type generativity.

Functions that return abstract types – “functors” in ML speak – are interest-
ing beasts. There are two traditional schools of semantics: “generative” functors
(the SML way) and “applicative” functors (the OCaml way). In 1ML, both
notions coexist, and depend on whether a functor is pure or impure. Consider:

F : (a : type) → P type

A pure functor like this is “applicative” [8,15], meaning that all applications to
equivalent types yield equivalent types:

type t = F bool
type u = F bool

defines types t and u to be equivalent. (Regardless, they are still abstract!)
An impure functor is “generative”, however:

G : (a : type) → I type

generates a fresh type with every application. So,

type v = G bool
type w = G bool
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are different types! This is important in the face of impurity, since the types
produced by an impure computation may e.g. depend on state, and thus equating
them would be plain unsound. (More reasons why you all want both applicative
and generative functors are disclosed in Sects. 7 and 8 of [15].)

Now, what would happen if we allowed such a functor to be polymorphic
over its effect? Say,

H : (a : type) → P (e : effect) → e type

Depending on the choice of e, it would be either applicative or generative: that
is, H bool P = H bool P, while H bool I is not reflexive (or even a well-formed
type expression).

In other words, introducing polymorphism over effects implies a notion of
generativity polymorphism. Is that actually a thing?

It is! In this paper, we show that this – rather esoteric – notion can actually
be defined. And we don’t even have to leave the familiar grounds of System Fω

for that. Well, except for one small extension. We also show that generativity
polymorphism is the essence of MacQueen & Tofte & Kuan’s (arguably equally
esoteric) notion of “true” higher-order functors [6,7,10].

2 The Language

Figure 1 presents the syntax of 1ML extended with explicit effects, separated
into core syntax and various syntactic sugar. For space reasons, we focus on
the explicitly typed fragment 1MLex [13] here (though complementing this with
effect inference in full 1ML is an easy addition). The effect-related constructs
that are new relative to the original formulation of 1MLex are highlighted in the
figure.

As in the original paper, the syntax is normalised to require named subterms
in most constructs. The general forms, as well as many other familiar module or
core-level constructs, can easily be defined as syntactic sugar. See [13] for enough
sugar to upset your stomach.

2.1 Basic Use of Effects

The extended language incorporates three main additions.

Effect Annotations. First, function types acquire an explicit annotation F , that
specifies the effect that is released when calling the function. Because real pro-
gramming language syntax better works as plain text, we use the notation “F/T”
instead of making F a subscript on the arrow, as we did in the introduction.

There are two basic effect constants: pure and impure. To ease notation in
the common cases, we allow abbreviating pure function types with a plain arrow
“→”, and impure ones with a squiggly arrow “�”.1

1 I apologise for any confusion this may cause with the original 1ML paper, where
“→” is spelled “⇒” and “�” is spelled “→”. I chose to change the syntax for the
extended system because pure arrows are the more common case now, and I like
them to be represented by their natural operator.
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(identifiers) X
(types) T ::= E | bool | {D} | (X:T )→F/T | type | effect | =E | T where (.X:T )
(effects) F ::= E | pure | impure | F ,F
(declarations) D ::= X : T | include T | D;D | ε
(expressions) E ::= X | true | false | if X then E else E:T | {B} | E.X |

fun (X:T ) ⇒E | X X | type T | effect F | X:>T
(bindings) B ::= X=E | include E | B;B | ε

Abbreviations:

(types)
(X:T1) → T2 := (X:T1) → pure/T2

(X:T1) � T2 := (X:T1) → impure/T2

T1
→
� T2 := (X:T1) →

� T2

where: (parameter) P ::= (X:T )

(declarations)

effect X P := X : P → effect
effect X P=F := X : P → (= effect F )

(bindings)

effect X P=F := X = funP ⇒ effect F

Fig. 1. Syntax of 1MLex with effect polymorphism (see [13] for more abbreviations)

For example, the type of the polymorphic identity function,

id = fun a ⇒ fun (x : a) ⇒ a

can be denoted as

id : (a : type) → pure/(x : a) → pure/a

or shorter, as just

id : (a : type) → (x : a) → a

Similarly, we can add impure operators to the language; for example, an
ML-style type ref T of mutable references with operators

new : (a : type) → (x : a) � ref a
rd : (a : type) → (r : ref a) � a
wr : (a : type) → (r : ref a) → a � {}

Note how these types mix pure and impure arrows. A type parameter – express-
ing (explicit) polymorphism – is best considered a pure function: “instantiating”
a polymorphic type should not have any effect. Similarly, an impure function
with curried value parameters (like wr) releases its effect only when the last
argument is provided.

Effect Values. Second, what makes the new syntax for function types interesting
instead of just verbose is that effects can now be “computed”: F can not just
refer to the two effect constants, it can also consist of an expression E. This has
to be a (pure) expression of the new type effect, a type that is inhabited by effect
“values”. Those values are formed by the corresponding expression effectF . Just
like types in 1ML, effects can thus be named or passed around as if they were
first-class values.
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For example, we can write an effect-polymorphic apply combinator:

apply = fun (a : type) (b : type) (e : effect) (f : a → e/b) (x : a) ⇒ f x

The type of this function is:

apply : (a : type) → (b : type) → (e : effect) → (a → e/b) → a → e/b

To apply it, we have to provide the right effect argument:

t = apply bool bool pure id true
f = apply (ref bool) bool impure (rd bool) (new false)

Similarly, the map function from the introduction can be given the (explicitly)
polymorphic type

map : (a : type) → (b : type) → (e : effect) → (a → e/b) → list a → e/list b

Like any other value, effects can also be named by a binding:

effect e = pure
t = apply bool bool e id true

Analogous to type bindings in 1ML, this effect binding is just sugar for the value
binding “e = (effect pure)”. Admittedly, such bindings are a bit boring with just
effect constants, but they become more interesting with the following feature.

Effect Composition. Finally, how are we going to type the following function?

To give a type to that, we need the ability to compose effects. That is the
role of the effect operator “,”:

“F1,F2” denotes the least upper bound of effects F1 and F2 in a lattice where
pure is the bottom element and impure is top (the direction of this lattice is
consistent with the natural notion of subtyping on effects, where pure ≤ impure;
see Sect. 3). Consequently, an invocation of compose will be impure if at least
one of the effect parameters is instantiated with impure; only if both are pure
the result is pure as well. That should come as no surprise.

2.2 Generativity Polymorphism

So far, we have only looked at effects of simple functions. If you are already
familiar with effect polymorphism, and much of the above looked boring, then
you can wake up now – we are now turning to modules and functors.

First-Order Generativity Polymorphism. Let us start with the simplest possible
functor – essentially, the identity type constructor:

Id = fun (a : type) ⇒ a
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The most specific type derivable for Id in 1ML is the fully transparent type

type ID TRANS = (a : type) → (= a)

where the singleton type (= a) indicates that the function returns the argument
a itself. This transparent signature is a subtype of two possible opaque signatures
that do not reveal the identity of their resulting type:

type ID PURE = (a : type) → type
type ID IMPURE = (a : type) � type

We can seal Id with either of these signatures:

Id pure = Id :> ID PURE
Id impure = Id :> ID IMPURE

Both these functors now return an abstract type, but the first is “applicative”,
i.e., always returns the same type for equivalent arguments, while the second is
“generative”, i.e., always returns a fresh type, regardless of the argument.

But in our extended 1ML, there now is a third choice:

type ID POLY (e : effect) = (a : type) → e/type
Id poly (e : effect) = Id :> ID POLY e

We have just created our first “poly-generative” functor! This one can be applied
to our choice of effect: for example, Id poly pure bool = Id poly pure bool are equiv-
alent types, while Id poly impure bool is a generative (and thus impure) expression
that cannot be used as a type without binding it to a name. This is exactly the
functor H we wondered about in the introduction.

Higher-Order Generativity Polymorphism. Okay, that was a contrived exam-
ple. Generativity polymorphism becomes more relevant in the higher-order case.
Because we can now write the kind of functors that MacQueen always wanted to
write, under his slogan of “true higher-order functors” [6,7,10]. Recast in 1ML,
the problem he is concerned with, as formulated by Kuan & MacQueen [7], boils
down to the ability to define a generic Apply functor over types:

Apply (F : type → e/type) (a : type) = F a

Kuan & MacQueen want to be able to use such a functor transparently (i.e.,
such that type identities are fully propagated) in both of the following cases:

Id (a : type) = a
t = Apply Id bool
f (x : t) = (x : bool) ;; type-checks because t = bool

Const (a : type) = int
u = Apply Const bool
g (x : u) = (x : int) ;; type-checks because u = int
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As it turns out, these examples already type-check in plain 1ML: both appli-
cations are well-typed, provided one picks e = pure in the parameter type of F
when defining Apply (which is equivalent to a plain 1ML pure function type). In
fact, even the application to an abstract functor works, as long as that is pure
as well:

Abs = Id :> type → type
v = Apply Abs bool
h (x : v) = (x : Abs bool) ;; type-checks because v = Abs bool

However, Kuan & MacQueen didn’t deal with a language of (only) applicative
functors (and neither do we), so the above isn’t quite a fair answer to their
challenge. What they really meant in particular is that Apply should also be
applicable to a generative functor, like here:

Gen (a : type) = a :> type
w = Apply Gen bool

That also works in plain 1ML, but only if the parameter F is typed as an
impure functor in the definition of Apply, equivalent to picking e = impure in our
extended language. That is, in plain 1ML, we can write Apply such that either
the former three examples type-check, or the last, but not all at the same time.

Effect polymorphism to the rescue! You already guessed it: in extended 1ML
we can escape that dilemma by making e into a parameter itself:

Apply (e : effect) (F : type → e/type) (a : type) = F a

Now all examples are expressible:

t = Apply pure Id bool
u = Apply pure Const bool
v = Apply pure Abs bool
w = Apply impure Gen bool

The extra argument is a bit more tedious to write than Kuan & MacQueen
would want, but it could easily be inferred (though we don’t discuss that here).

Existential Effect Polymorphism. Just for completeness, we mention that effects
can also – like types – be sealed, introducing the notion of an “abstract effect”:

M = {effect e = pure; f (g : int → e/bool) = ...} :> {effect e; f : (int → e/bool) →...}
let g (h : int → M.e/bool) = ... in g M.f

Honestly, this does not look like it would be a particularly useful feature,
but it falls out from 1ML’s design naturally and for free. Ruling it out would
be more complicated than allowing it. Maybe there even is some crazy use case
that we don’t foresee yet... Phantom effects, anyone?
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3 Type System

Here’s how we build a type system for 1MLex with generativity polymorphism.
(Unfortunately, for the lack of space, we have to focus on the novelties, and refer
the interested reader to [13] for many basic details and rules omitted here.)

Semantic Types. Following the F-ing modules approach [15], 1ML’s type sys-
tem [13] is not defined in terms of its own syntactic types. Instead, it is defined
by translating those types into semantic types. (The short story behind that
approach is that syntactic module types are not expressive enough to accurately
account for all details of type abstraction and functorisation, especially the prob-
lem of local types, a.k.a. the avoidance problem. See [15] for the long story.)

(computation) Φ ::= Ξ | (Φ + Φ)η

(abstracted) Ξ ::= ∃α.Σ

(large) Σ ::= π | bool | [= Ξ] | [= η] | {l:Σ} | ∀α.Σ →η Φ

(small) σ ::= π | bool | [= σ] | [= η] | {l:σ} | σ →η σ
(paths) π ::= α | π σ
(effects) η ::= P | I | ι | η ∨ η

Notation:
P ∨ η := η ∨ P := η
I ∨ η := η ∨ I := I

η(Σ) := P

η(∃αα.Σ) := I

Ξ ! := Ξ
(Φ1 + Φ2)

P! := Φ1!
(Φ1 ⊕ Φ2)

P := Φ1

(Φ1 ⊕ Φ2)
I := Φ2

(Φ1 ⊕ Φ2)
η := Φ1 if Φ1 = Φ2

(Φ1 ⊕ Φ2)
η := (Φ1 + Φ2)

η otherwise

Fig. 2. Semantic types

Figure 2 shows the grammar of semantic types needed for 1MLex with effect
polymorphism (plus some auxiliary notation we’ll get to). They are written in
the style of System F types with explicit quantifiers (and as we will see later
they actually are System F types). Once more, additions to the original 1ML
system are highlighted. Type variables can be higher-order in these types, but
we assume they are kinded implicitly, and we use the notation κα if we need to
talk about the kind of α.

Let us recap the main intuitions behind those F-ing module types. The central
idea is introducing explicit quantifiers to remove all dependencies within a type.

Following Mitchell & Plotkin [11], signature types containing abstract types
(i.e., ADTs) are represented as existential types. For example, the signature

{type t; type u; type v = t → t; f : t → u}
where components v and f depend on t and u, corresponds to the semantic type

∃α1α2.{t : [= α1], u : [= α2], v : [= α1 → α1], f : α1 → α2}
where α1 and α2 are the local names for type components t and u, respectively,
and there are no dependencies inside the record. The notation [= τ ] denotes



344 A. Rossberg

the type of τ reified “as a value”, i.e., represents the type type (recall that a
component specification “type t” is just short for “t: type” in 1ML).

Functors, on the other hand, correspond to universal types. Any abstract
type from their domain signature becomes a universal type variable with scope
widened to include the codomain. For example, the functor type

(X : {type t; v : t}) → pure/{type u = X.t → X.t; x : X.t}
with dependencies from its codomain on the type X.t from the domain, maps to

∀α.{t : [= α], v : α} →P {u : [= α → α], x : α}
More interesting are cases where an abstract type is bound in the codomain:

(X : {type t; v : t}) → e/{type u; f : X.t → u}
If e is impure, then this is a generative functor, which is modeled in the semantic
types by returning an existential package:

∀α.{t : [= α], v : α} →I ∃β.{u : [= β], f : α → β}
If e is pure, however, then the functor is supposed to behave applicatively, i.e.,
return the same abstract type on each application. That is modeled by lifting
the existential out of the function:

∃β.∀α.{t : [= α], v : α} →P {u : [= β α], f : α → β α}
In fact, it as an invariant of our semantic types that a pure arrow never has an
existential quantifier to the right – a pure functor cannot generate types. There
is one subtlety involved with the above type, though: in the implementation of
a functor matching this signature, the definition of u may depend on the para-
meter type t. Following Biswas [1] and Russo [16], all uses of β in the semantic
interpretation are hence skolemised over α accordingly. Consequently, β needs
to have higher kind κβ = Ω → Ω here (other variables had base kind Ω so far).

As we can see, the structure of the semantic type modeling the functor type
above is quite different depending on the choice of e. It differs in terms of where
the quantifier goes (inside vs. outside), its variable kind (Ω vs. Ω → Ω), and how
the abstract type u is denoted (β vs. β α). How can we reconcile these structural
differences to support a parametric choice of effect?

We can’t. Not really, anyway. We need something new.
The natural trick is to use sums: we generalise function types such that their

codomain is a “computation” type Φ that allows arbitrary many alternative
results. That is, if e is not statically known to be either pure or impure, then the
functor signature above will be represented as

∃β1.∀α.{t : [= α], v : α} →η

({u : [= β1 α], f : α → β1 α} + ∃β2.{u : [= β2], f : α → β2})η

This encodes both possibilities: the left side of the sum is for the pure choice, the
right for the impure one. In this type, η is the representation of the effect e as
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a semantic type. If η is not a constant P or I, then it either is an effect variable
ι, or the least upper bound of several of those, represented by the “∨” operator.
Since the two effect constants are the top and bottom elements of the effect
lattice, least upper bounds that contain those constants can always be simplified
to either ones that don’t, or directly to I. We assume that this simplification is
always performed implicitly, according to the notational rules given in Fig. 2.

The effect η appears twice in the above type: once as an annotation on the
arrow, and once as an index on the sum, which is written (Φ1 + Φ2)η. The
former occurrence tracks the effect of the function, in a generalisation of what
we already had in plain 1ML. The latter tracks the choice of the sum: if, at some
point, the free effect variables of η get substituted such that the result normalises
to an effect constant, then the choice is statically determined – this basically is a
binary GADT. We say that a Φ with all effect indices being constants is unique.
As we will see below, this static extra knowledge is important for figuring out
when an expression of type type unambiguously denotes a type, such that it is
legal to project it.

It may be surprising that we need η twice. The reason is that, in general,
the computation type Φ in the codomain of an arrow can consist of many nested
sums, indexed by different effects – e.g., when a functor itself invokes several
other functors with variable effects. The effect on the arrow then only is an
upper bound of all these individual indices (and not necessarily the least); for
example, we could construct a functor of type Σ →η1∨η2 ((Ξ1 + Ξ2)η1 + Ξ3)η2 .
In a pure function, however, this upper bound is P, so all effect indices in Φ must
be pure as well, such that Φ is already guaranteed to be unique.

Types and Effects. The new and modified rules for translating syntactic types T
into semantic types Ξ are collected in Fig. 3 (please see [13] for the others). The
individual modifications over plain 1ML are again highlighted.

The new rule Teffect for the type effect is analogous to the rule for type,
in that it introduces a fresh type variable to name the abstract effect. We use
ι to range over type variables that encode effects. We assume that these type
variables are a subcategory of general type variables α, such that they can be
uniformly written as α wherever we don’t care about the distinction.

The rule Tfun for function types effectively merges the previous rules Tfun
and Tpfun from 1ML, covering both impure and pure functors, but also effect-
polymorphic ones. It refers to the simple effect elaboration judgement also shown
in the figure. The auxiliary operator “⊕” (defined in Fig. 2) avoids the sum in
those cases where the effect is statically known or does not change the type.
Likewise, we write “∃αι �=I” to say that a quantifier is to be empty if η = I.

Another change is in rules Tpath and Tsing (and inherited by Fpath): the
notation Φ! (also defined in Fig. 2) requires E’s type Φ to be unique – it selects
Φ’s unique summand and is undefined otherwise. It is here where we rely on the
effect index on sums: only sums whose indices are constant are unique, and can
be used for unambiguous projection of static information.



346 A. Rossberg

Types Γ � T � ΞΓ � E :P Φ � e Φ! = [= Ξ]

Γ � E � Ξ
Tpath

κα = Ω

Γ � type � ∃α.[= α]
Ttype

Γ � effect � ∃ι.[= ι]
Teffect

Γ � T1 � ∃α1.Σ1

Γ, α1, X:Σ1 � T2 � ∃α2.Σ2 Γ � F � η κα′
2

= κα1 → κα′
2

Γ � (X:T1) → F/T2 � ∃α′
2

η �=I.∀α1. Σ1 →η ((∃α2.Σ2) ⊕ (Σ2[α′
2 α1/α2]))η

Tfun

Γ � E :P Φ � e Φ! = Σ

Γ � (= E) � Σ
Tsing

Effects Γ � F � ηΓ � E :P Φ � e Φ! = [= η]

Γ � E � η
Fpath

Γ � pure � [= P]
Fpure

Γ � impure � [= I]
Fimpure

Γ � F1 � η1 Γ � F2 � η2

Γ � F1,F2 � η1 ∨ η2
Fjoin

Fig. 3. Elaboration of types and effects (new and modified rules)

Expressions and Bindings. Figure 4 shows selected typing rules for expressions
E and bindings B, novelties once more highlighted. Before we go into details,
let us recap the main idea of typing modules using the F-ing modules approach.

As we saw before, the main trick in interpreting module types is introducing
quantifiers for abstract types. That is reflected in the typing of expressions: an
expression that defines new abstract types will have an “abstracted” type Ξ
with existential quantifiers, one quantifier for each new type.

When such an expression is nested into a larger expression then the rules
have to propagate these quantifiers accordingly. For example, for a projection
E.x to be well-typed, E obviously needs to have a type of the form {x : Σ, . . . };
the resulting type would be Σ then. However, if E creates abstract types locally,
then its type will be of the form ∃α.{x : Σ, . . . } instead. The central idea of F-ing
modules is to handle such types implicitly by extruding the existential quantifier
automatically: that is, the projection E.x is well-typed and assigned type ∃α.Σ,
with the same sequence of quantifiers. And so on for other constructs.

As we pointed out in [15], this handling of existential types is akin to a monad
– the monad of type generation! More precisely, it is a stack of nested monads,
one for each generated type. By extending 1ML with generativity polymorphism,
however, there no longer necessarily is a unique quantifier sequence for a given
expression. Expressions are now classified by “computation” types Φ, which are
sums over heterogeneous existentials. Our monad just became more interesting!
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Expressions Γ � E :η Φ � e

Γ � T � Ξ

Γ � type T :P [= Ξ] � [Ξ]
Etype

Γ � F � η

Γ � effect F :P [= η] � [η]
Eeffect

Γ � E :η Mλα.{X ′:Σ′} � e X:Σ ∈ X ′:Σ′

Γ � E.X :η Mλα.Σ � doM α, y ← e in y.X
Edot

Γ � T � ∃α.Σ Γ, α, X:Σ � E :η Φ � e

Γ � fun (X:T ) ⇒E :P ∀α. Σ →η Φ � λα.ληX:Σ.e
Efun

Γ � X1 :P (∀α. Σ1 →η Φ) � e1
Γ � X2 :P Σ2 � e2 Γ � Σ2 ≤α Σ1 � δ; f

Γ � X1 X2 :η δΦ � (e1 (δα) (f e2)).val
Eapp

Bindings Γ � B :η Φ � e

Γ � E :η Mλα.Σ � e

Γ � X=E :η Mλα.{X:Σ} � doM α, x ← e in {X=x}Bvar

Γ � B1 :η1 M1λα1.{X1:Σ1} � e1 X
′
1 = X1 − X2

Γ, α1, X1:Σ1 � B2 :η2 M2λα2.{X2:Σ2} � e2 X ′
1:Σ

′
1 ⊆ X1:Σ1

Γ � B1;B2 :η1∨η2 M1M2λα1α2.{X ′
1:Σ

′
1, X2:Σ2}

� joinM1M2
doM1 α1, y1 ← e1 in let X1 = y1.X1 in

doM2 α2, y2 ← e2 in {X ′
1 = y1.X ′

1, X2 = y2.X2}

Bseq

Fig. 4. Elaboration of expressions (selected rules)

Fortunately, the sums we are dealing with are not arbitrary. Ultimately, they
all originate, directly or indirectly, from uses of the rule Tfun introducing effect-
polymorphic function types. And a quick look at this rule reveals that the inner
structure of the type is the same in both cases, up to the presence of quantifiers
and the internal naming of the abstract types introduced.

That allows to factor computation types Φ such that we separate their inner
structure from their quantification scheme. To that end, Fig. 5 defines an aux-
iliary syntactic class of monadic type constructors M . Any computation type
Φ can be expressed β-equivalently as an application of such an M to a suit-
able type constructor defining the inner structure of the result. For example, the
effect-polymorphic functor type from earlier can be written equivalently as

∃β1.∀α.{t : [= α], v : α} →η (∃[β1 α] + ∃β2[β2])η (λβ.{u : [= β], f : α → β})

That is, an application of (M1 + M2)η with M1 = ∃[β1 α] (which has an empty
existential quantifier) and M2 = ∃β2[β2] to the structural template λβ.{u :
[= β], f : α → β}, with β being mapped to either β1 α or β2, accordingly.

The set of all monadic types M forms a polymonad [5] or productoid [19],
with ∃[] as its identity element. We can define the composition M1M2 as given
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(monadic type) M ::= ∃α[π] | (M + M)η

with:

∃α[π]κ := λc:(κ → Ω).∃α.c π
(M1 + M2)

η
κ := λc:(κ → Ω).(M1c + M2c)

η

(M1M2)κ1κ2 :=

⎧⎨
⎩

∃α1α2[π1π2] if M1 = ∃α1[π1] and M2 = ∃α2[π2]
(M1M21 + M1M22)

η2 if M1 = ∃α1[π1] and M2 = (M21 + M22)
η2

(M11M2 + M12M2)
η1 if M1 = (M11 + M12)

η1

doM α, x ← e1 in e2 :=

⎧⎪⎪⎨
⎪⎪⎩

unpack 〈α′, x〉 = e1 in pack 〈α′, e2〉 if M = ∃α′[π]

let f = λα.λx.e2 in case e1 of if M = (M1 + M2)
η

inl x1.(doM1 α, x ← x1 in inl e2 α x) |
inr x2.(doM2 α, x ← x2 in inr e2 α x)

joinM1M2
e :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

case e of if M1 = (M11 + M12)
η1

inl x.inl (joinM11M2
x) |

inr x.inr (joinM12M2
x)

unpack 〈α1, x〉 = e in case x of if M1 = ∃α1[π1]
inl y.inl (joinM1M21

pack 〈α1, y〉) | and M2 = (M21 + M22)
η2

inr y.inr (joinM1M22
pack 〈α1, y〉)

e otherwise

Fig. 5. Polymonad notation for computation types

in Fig. 5. We won’t go into details here, but leave proving the polymonad laws
as an exercise (see also Sect. 4).

It suffices to observe that we can use this notation to uniformly access the
structure of all alternatives of a computation type. Moreover, we can construct a
new computation type that lives in the same monadic envelope M . In particular,
this happens in rules Edot and Bvar, which project and inject a value from/into
a structure, respectively. The notation is put to more interesting use in rule
Bseq, where two nested monadic computations in M1 and M2 are lifted to their
composition M1M2.

On the term level, the polymonad is witnessed by suitably defined do-notation
(which expresses a mapping over some M) and a join operator. The definition
of these operators, indexed by M , is given in Fig. 5.

Subtyping. The existing rules for 1ML subtyping don’t change, but subtyping
now needs to be generalised to computation types Φ. Figure 6 shows how.

Basically, the six new rules inductively express that Φ1 ≤ Φ2 holds if each Ξ1

from Φ1 is a subtype of each Ξ2 from Φ2. Except that in the case of a constant
effect index, the excluded alternative can be ignored.

The most interesting case is rule Sr. It coerces a unique type Ξ ′ into a sum
indexed by an effect η. Since η may force later which alternative to pick, the
coercion has to perform a case distinction over η. To enable that, effects need
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Subtyping Γ � Φ′ ≤π Φ � δ; fΓ � Φ′ ≤ Φ � f := Γ � Φ′ ≤ε Φ � id; f

Γ � Φ′
1 ≤π Φ � δ; f1 Γ � Φ′

2 ≤π Φ � δ; f2
Γ � (Φ′

1 + Φ′
2)

η′ ≤π Φ � δ; λx.case x of inl y.f1y | inr y.f2y
Sl

Γ � Φ′
1 ≤π Φ � δ; f

Γ � (Φ′
1 + Φ′

2)
P ≤π Φ � δ; λx.f (asl x)

Slp
Γ � Φ′

2 ≤π Φ � δ; f

Γ � (Φ′
1 + Φ′

2)
I ≤π Φ � δ; λx.f (asr x)

Sli

Γ � Φ′ ≤π Φ1 � δ; f1 Γ � Φ′ ≤π Φ2 � δ; f2
Γ � Ξ ′ ≤π (Φ1 + Φ2)η � δ; λx.case η of inl y.inl (f1x) | inr y.inr (f2x)

Sr

Γ � Φ′ ≤π Φ1 � δ; f

Γ � Ξ ′ ≤π (Φ1 + Φ2)P � δ; λx.inl (f x)
Srp

Γ � Φ′ ≤π Φ2 � δ; f

Γ � Ξ ′ ≤π (Φ1 + Φ2)I � δ; λx.inr (f x)
Sri

η′ ≤ η
η ≤ I

Ftop
P ≤ η

Fbot
ι′ ⊇ ι∨
ι′ ≤ ∨

ι
Fjoin

Fig. 6. Elaboration of subtyping (new rules)

to be reified as terms in the elaboration. We refer to the Appendix for details.
There, we also explain the operators asl and asr used in the elaboration of rules
Slp and Sli, which are akin to a one-armed case over the binary “+” GADT.

Metatheory. For space reasons, we have banished all metatheory to the Appendix,
where we define the encoding of semantic types into System Fω, and state the
obvious soundness results for the elaboration.

4 Related Work

There has been a broad range of work on effect systems and effect polymorphism,
starting from Gifford & Lucassen’s original work [3,9] and Talpin & Jouvelot’s
refinements [18]. But as noted in the introduction, the implications of effect
polymorphism that we have investigated in this paper is rather esoteric – to the
best of our knowledge, there is no other work on effect systems for modules, or
generativity polymorphism of the kind we introduced here.

“True” Higher-Order Modules. The idea most closely related hence actually is
MacQueen’s notion of “true” higher-order modules, as originally introduced by
MacQueen & Tofte [10], implemented in SML of New Jersey, and later recast
by Kuan & MacQueen [6,7]. In this semantics, every functor type is implicitly
“generativity polymorphic” as much as possible.

However, the formal details are rather involved, defining a specialised oper-
ational calculus of type name creation, path trees, and explicit environment
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manipulation (named the “entity calculus” in Kuan & MacQueen’s more recent
work). This semantics has so far escaped a more type-theoretic treatment, and
consequently, none of the other formalisations of higher-order modules on the
market [2,4,8,13–15,17] has followed its lead.

The system we presented is coming from a completely different angle. Yet, as
we show in Sect. 2, it has similar expressiveness, while maintaining most of the
relative simplicity of the 1ML semantics. One could argue that effect polymor-
phism is what was hiding in MacQueen’s system all along, and that our system
makes that explicit and gives it a foundation in standard type theory.

Monads, Polymonads and Productoids. Moggi [12] suggested monads as a means
for semantic modeling of effectful computations. Wadler [20] recognised their
broader value for language design, as an immensely viable user-facing feature,
which became a cornerstone of Haskell.

Our paper on F-ing modules [15] already pointed out that existentials behave
“like a monad” in our semantics, encapsulating the underlying “effect” of type
generation. However, we never formally investigated the connection. A slightly
more careful look reveals that it’s not really a single monad, but a whole stack
of them: one for each abstract type generated.

In the current paper, this interpretation as nested monads is no longer suf-
ficient. Computation types are sums of existentials. In order to maintain this
invariant under composition, composition can no longer be just nesting. Conse-
quently, they give rise to a more general, more heterogeneous structure.

Hicks et al. [5] have recently investigated a generalisation of this kind of struc-
ture under the name polymonad. One way to describe it is as a set of monadic
type constructors with heterogeneous bind (or join) operators. Independently,
Tate [19] introduced a similar, slightly more general notion he calls productoids.
In both cases, these formal structures were motivated by the desire to model
certain forms of effects (though both works only investigate classical term-level
effects).

Our computation types Φ, when factored into monadic constructors M , are
an instance of this general structure. However, they are higher-kinded: they take
a(nother) type constructor as argument, to allow transmitting the choice of type
names to the “value” type. We leave a closer investigation of their exact relation
to polymonads and productoids, and their formal properties, to future work.

5 Future Work

The current paper is primarily a sketch of a basic system. As always, there are
many future roads to go. To mention only a few:

Implementation. We would like to integrate effect polymorphism into our 1ML
prototype interpreter (mpi-sws.org/˜rossberg/1ml/), to gather some practical
experience from more experiments with the system.

Effect Inference. In the current paper we have only investigated the explicitly-
typed fragment of 1ML. We believe that it is straightforward to incorporate
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implicit functions over effects to full 1ML, and enable the inference of effect
parameters and arguments, just like for types.

More Effects. Our little language provides “impurity” (or partiality, if you prefer)
as the only effect. That is as coarse as it can get. While already useful, it would
be interesting to refine it to distinguish different concrete effects.

Abstract Effects. We have not yet explored what kind of abstractions might be
enabled by the notion of abstract effect that our system introduces. Is it useful?

A Elaboration

A.1 Internal Language

As in the F-ing modules semantics [15] and the original 1ML paper [13], we
define the semantics of the extended language by elaborating 1MLex types and
terms into types and terms of a (call-by-value, impredicative) variant of System
Fω with simple record types – see the syntax in Fig. 7.

(kinds) κ ::= Ω | κ → κ

(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ | � | ⊥ | (τ + τ)τ | λα:κ.τ | τ τ

(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ |
pack 〈τ, e〉τ | unpack 〈α, x〉=e in e |
inlτ e | inrτ e | asl e | asr e | case e of inl x.e | inr x.e

Γ � � : Ω Γ � ⊥ : Ω

Γ � τ1 : Ω Γ � τ1 : Ω Γ � τ : Ω

Γ � (τ1 + τ2)τ : Ω

Γ � e : τ1 Γ � τ2 : Ω

Γ � inlτ2 e : (τ1 + τ2)�
Γ � e : τ2 Γ � τ1 : Ω

Γ � inrτ1 e : (τ1 + τ2)⊥

Γ � e : (τ1 + τ2)
�

Γ � asl e : τ1

Γ � e : (τ1 + τ2)
⊥

Γ � asr e : τ2

Γ � e : (τ1 + τ2)
τ ′

Γ, x1:τ1 � e1 : τ Γ, x2:τ2 � e2 : τ

Γ � case e of inl x1.e1 | inr x2.e2 : τ

Fig. 7. Syntax and non-standard typing rules of Fω with binary GADTs

However, this time we need a small extension over plain Fω: to track gen-
erativity effects and the different forms of quantification they can cause in an
indexed sum, we require a simple notion of GADT. We add this to Fω in the
simplest possible form: an indexed binary sum (τ1 + τ2)τ . Operationally, it is
equivalent to an ordinary sum, with injections inl e and inr e and a case con-
struct for elimination. However, the index τ allows deducing the choice statically:
if it is equivalent to the type �, then the value is known to be a left injection;
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analogously, ⊥ implies a right injection. Accordingly, there are two additional
elimination constructs, asl e and asr e, that are only valid on operands with
known index, and perform the respective projection (they correspond to a one-
armed case in more general forms of GADTs).

Figure 7 shows the syntax for this IL. The non-standard extensions just
described are highlighted. The figure also includes the typing and kinding rules
for those additional constructs. We omit reduction rules, because they are
straightforward. The semantics is otherwise completely standard, and reuses
the formulation from [15].

We write Γ 
 e : τ for the Fω typing judgement, and let e ↪→ e′ denote (one-
step) reduction. As one would hope, the language enjoys the standard soundness
properties:

Theorem 1 (Preservation). If · 
 e : τ and e ↪→ e′, then · 
 e′ : τ .

Theorem 2 (Progress). If · 
 e : τ and e is not a value, then e ↪→ e′ for some e′.

To establish soundness of 1ML it suffices to ensure that elaboration always
produces well-typed Fω terms (Sect. A.3).

(kinds)
Eff := Ω → Ω → Ω
Monκ := (κ → Ω) → Ω

(types)
[= τ ] := {typ : τ → {}}
[= η] := {typ : η → {}}
τ1 →η τ2 := τ1 → {val : τ2, eff : [= η]}
(Φ1 + Φ2)

η := (Φ1 + Φ2)
(η�⊥)

∀ι.τ := ∀αι.eff αι → τ
∃ι.τ := ∃αι.{eff : eff αι, val : τ}
eff := λα:Eff.({} + {})(α �⊥)

I := λα1α2.α1

P := λα1α2.α2

ι := αι

η1 ∨ η2 := λα1α2.η1 α1 (η2 α1 α2)

(environments)
Γ, ι := Γ, αι, xι: eff αι

(terms)
[τ ] := {typ = λx:τ.{}}
[η] := {eff = λx:(η�⊥).{}, val = η}
ληx:τ.e := λx:τ.{val = e, eff = [η]}

λι.e := λαι.λxι:(eff αι).e
pack 〈η, e〉 := pack 〈η, {eff = η, val = e}〉

I := inl {}
P := inr {}
ι := xι

η1 ∨ η2 := case η1 of inl x.I | inr x.
case η2 of inl x.I | inr x.P

Fig. 8. Encoding of semantic types in Fω

A.2 Encoding Semantic Types

Elaboration translates 1MLex types directly into “equivalent” System Fω types.
The shape of these semantic types was given by the grammar in Fig. 2.
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Not all the forms in that grammar are unadorned Fω types, however. Some
are auxiliary forms that are definable as syntactic sugar. Figure 8 shows how
they can be encoded, along with respective term-level constructs for defining
the evidence terms of the elaboration.

Several tricks in the elaboration are new relative to plain 1ML:

– Computation types are represented using the indexed binary sums introduced
in the previous section. Their index is (the desugaring of) an effect type
applied to � and ⊥.

– To this end, effect types are represented as type constructors representing a
simple Church-style encoding of Booleans. The kind of effect types hence is
Eff = Ω → Ω → Ω, and their application behaves like a conditional.

– Effects also need to be reified on the term level, however, in order to enable
reflection as needed in rule Sr. We use a binary sum (over units) for that
purpose that is indexed by the corresponding type-level effect encoding –
terms of type eff η are term-level encodings of effect type η.

– Since effects η can contain effect variables ι, this in turn requires those to be
represented on both the type and term level. We use the trick of “twinning”
each effect variable ι in the environment Γ as both a type variable αι and a
term variable xι, assuming appropriate namespace injections. Likewise, every
abstraction and quantification over effect variables consistently happens on
both levels.

These encodings make sense, because the following consistency properties hold
(note how we overload effects η as notation for both types and terms):

Proposition 1 (Derivable Rules for Effect Encodings). Let Γ be a well-
formed System Fω environment.

1. Γ 
 I : Eff.
2. Γ 
 P : Eff.
3. If ι ∈ Γ , then Γ 
 αι : Eff.
4. If Γ 
 η1 : Eff and Γ 
 η2 : Eff, then Γ 
 η1 ∨ η2 : Eff
5. Γ 
 I : eff I.
6. Γ 
 P : eff P.
7. If ι ∈ Γ , then Γ 
 xι : eff αι.
8. If Γ 
 η1 : eff η1 and Γ 
 η2 : eff η2, then Γ 
 η1 ∨ η2 : eff (η1 ∨ η2).

Here, we write “ι ∈ Γ as a shorthand for “Γ (αι) = Eff ∧ Γ (xι) = eff αι”, in
correspondence to the twinning for effect variables explained above.

With the notation Monκ to denote the kind of a monadic computation con-
structor mentioning abstract types of kinds κ, similar consistency properties can
be shown for the polymonad notation from Fig. 5:

Proposition 2 (Derivable Rules for Polymonads). Let Γ be a well-formed
System Fω environment.

1. If Γ, α 
 π : κ, then Γ 
 ∃α[π] : Monκ.
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2. If Γ 
 M1 : Monκ and Γ 
 M2 : Monκ and Γ 
 η : Eff,
then Γ 
 (M1 + M2)η : Monκ.

3. If Γ 
 M1 : Monκ1 and Γ 
 M2 : Monκ2 , then Γ 
 M1M2 : Monκ1κ2 .
4. If Γ 
 M : Monκα and Γ 
 e1 : Mλα.τ1 and Γ, α, x:τ1 
 e2 : τ2,

then Γ 
 (doM α, x ← e1 in e2) : Mλα.τ2.
5. If Γ 
 M1 : Monκ1 and Γ 
 M2 : Monκ2 and Γ 
 e : M1λα1.M2λα2.τ ,

then Γ 
 joinM1M2
e : M1M2λα1α2.τ .

Note that our use of do-notation is a slight abuse (if you’re coming from Haskell,
anyway): it actually is a map, not a monadic bind – both are instances of poly-
monadic binds, however.

A.3 Meta-Theory

With the previous propositions we can verify that elaboration is correct:

Proposition 3 (Correctness of Elaboration). Let Γ be a well-formed Fω

environment.

1. If Γ 
 T/D � Ξ, then Γ 
 Ξ : Ω.
2. If Γ 
 F � η, then Γ 
 η : Eff.
3. If Γ 
 E/B :η Φ � e, then Γ 
 e : Φ and Γ 
 η : Eff.

Furthermore, if η = P then Φ ! = Σ.
4. If Γ 
 Φ′ ≤αα′ Φ � δ; f and Γ 
 Φ′ : Ω and Γ, α 
 Φ : Ω, then dom(δ) = α

and Γ 
 δ : Γ, α and Γ 
 f : Φ′ → δΦ.

Together with the standard soundness result for Fω we can tell that the extension
of 1MLex is still sound:

Theorem 3 (Soundness of 1MLex with Effect Polymorphism). If · 
 E :
Φ � e, then either e ↑ or e ↪→∗ v such that · 
 v : Φ and v is a value.
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Hop has recently been used by a small French company, which we will call
AIMM in the rest of this paper, to implement a new widget for a web multimedia
application. This widget contained two parts: a music selector that lets end users
browse a database of artists and music, and an HTML5 music player supporting
on-demand conversion from one music format to another.

Figure 1 presents a screenshot of the widget. The music player is on the top,
the database browser on the bottom. Clicking an artist name pushes a new panel
presenting the songs that artist has produced. Clicking the small black arrow to
the left of the name restores the previous panel. Graphical effects improve user
experience. Depending on the speed of the platform and the web browser used,
a new panel slides from left to right or blends into the previous one.

More than a real application, this was an endeavor, or an evaluation in order
to understand how Hop fits in the context of realistic multimedia web appli-
cation. The development was a priori easy because all the elements needed to
implement the widget were provided by the Hop development kit off the shelf.
I was in charge of the development that I estimated would take only a handful of
days. With the AIMM engineers, we agreed on a common API that Hop could
use to access the actual database; then I started to develop the widget. After a
couple of days, everything went as we wished. The prototype was operational.
Early tests showed that it was reliable enough to enter the second stage: to be
tested on the AIMM server.

The AIMM server was a classical Linux Debian hosted by an x86/64 proces-
sor. A usual setting, almost the same as the one I used for developing the widget.
After having installed additional Linux packages required by Hop, I installed the
development kit and the prototype. Then I started to test the widget. At first,
it seemed to be doing perfectly well. Everything seemed to be working as it
should, until I realized that, on some browsers, clicking the artist names on the
selector produced no effect. The new panel never showed up. Plagued with this
erroneous behavior, the application was utterly useless. So began the battle I
fought to understand and eliminate that bug.

1 A Multitier Bug

Mainly Firefox appeared to be affected by the disease. Other browsers, such as
Chrome, Midori, or Opera, were doing well. At that early moment the logical

c© Springer International Publishing Switzerland 2016
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Fig. 1. The Hop web widget

suspicion was that something specific to Firefox prevented it from executing
the application correctly. However, this first intuition was contradicted by an
obvious observation: the same Firefox was doing well when the web page was
served by a server running on my machine, that is, when the application was
executed entirely locally. This was particularly shocking because the client-side
code served by the two servers, the AIMM server and my local machine, were
supposed to be identical. My first investigation drove me to inspect the imple-
mentation of the client-side part of the application in order to spot which Firefox
specificity was breaking its execution.

Hop is a multitier language. A single formalism is used to program the server-
side and the client-side of web applications. The web page visualized on a browser
is first elaborated on a server as an abstract syntax tree that is eventually com-
piled on-the-fly into Html. Both ends of the application use the same Document
Object Model to reify Html trees as first class values. In Hop, Html tags are
standard functions. Hop extends the official set of Html tags with numerous
new widgets that are implemented by composing elementary objects. The artist
selector was implemented using one of these objects: the SPAGE widget.

A SPAGE, which stands for sliding page, is an Html container (i.e., a box)
augmented with a title and a stack of inner elements. Only the top-most element
is visible at a time. A visual effect gives the feeling that new elements slide over
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the previous ones. The source code using the SPAGE in the AIMM application
was similar to:

(<SPAGE> :title "languages" :id "lang"

(<DIV>

(<SPAGE> :title "functional" :parent "lang"

(<UL>

(<LI> "Lisp")

(<LI> "ML")

(<LI> "Haskell"))))

(<DIV>

(<SPAGE> :title "sequential" :parent "lang"

(<UL>

(<LI> "Fortran")

(<LI> "Pascal")

(<LI> "C")))))

The functions <DIV>, <UL>, and <LI> are the Hop functions for the eponymous
Html tags1. The function <SPAGE> is the constructor for the sliding page. In this
example, the first page displays the words functional and sequential. When
one is clicked, the corresponding page slides onto the screen and the associated
enumeration is displayed. The default graphical configuration of SPAGE is defined
by the following CSS rule set:

spage {

background: white;

border: 1px solid darkorange;

font-size: 12px;

border-radius: 0.2em;

effect: auto;

}

The AIMM widget overrides these rules to use a gray background gradient and
white texts, as shown in Fig. 1. The effect field lets applications choose the
graphical effect they desire when a new element is pushed or popped. The
four possible values are “fade”, “slide”, “auto”, or “none”. It defaults to
“auto”, which tells Hop to select the most suitable effect according to the char-
acteristic of the browser. The CSS declaration is used by the client-side func-
tion spage-effect which implements the graphical effect on the browser. It is
defined as:

1 Note that in Hop, identifiers may contain the special characters “<”, “>”, “!”, or
“+”. Hence, “<DIV>” is a regular identifier as is “string->integer”, “remq!”, or
even “+”.
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(define (spage-effect node width step)

(let ((e (node-computed-style-get node :effect)))

(cond

((eq? e ’fade)

(spage-fade node (if (> step 0) -0.3 0.2)))

((eq? e ’slide)

(spage-slide node width step))

((eq? e ’none)

(spage-none node (- step)))

((< (hop-config :browser-speed) 80)

(spage-fade node (if (> step 0) -0.3 0.2)))

(else

(spage-slide node width step)))))

When the effect is “auto”, it chooses the best effect according to the browser
graphical animation speed. If the browser graphical animation is slow, it fades
elements. Otherwise, it slides them. At the time that problem occurred, browsers
based on Gecko (Firefox) were not able to animate smoothly the visual effect,
while browsers based on Webkit (Google-Chrome, Midori, Safari) could do it. So,
the configuration effect: auto of the SPAGE widget yield two different visual
effects on the two browser families. This explained why Firefox and Google-
Chrome behaved differently: they were simply not using the same code for the
animation. A brief additional examination of the client-side code unveiled that
the very call to spage-fade was the reason for the problem.

The central piece of the Hop development kit is the web broker. It is a
full-fledged web server which embeds the Hop compilers. When a program runs
on the broker, i.e., the server-side of the application, it generates the program
which is installed on the web browser, i.e., the client-side of the application. This
client-side part is compiled on-the-fly into JavaScript, the universal language of
web browsers, by the Hop broker. As it turned out, the call to spage-fade was
erroneously compiled into JavaScript. Instead of:

SpageFade( node, step > 0 ? -0.3 : 0.2 );

it was compiled into:

SpageFade( node, step > 0 ? -0.0 : 0.0 );

These zeroes were of course the reason for the problem: the step of the fad-
ing being 0, the element stayed invisible forever. So, the problem was not due
to Firefox executing incorrectly the code it received but to Hop delivering this
incorrect code! Firefox being innocent, the question remained: what was so spe-
cial with the compilation of the SpageFade call that drove Hop to generate these
wrong zeroes?
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2 Read, Compile, Print

Although Hop and JavaScript share many similarities (they are both fully poly-
morphic functional languages, using dynamic type checking, and automatic
memory management), the compilation from Hop to JavaScript is not straight-
forward. First, JavaScript is not fully lexically scoped. Hence, a closure analysis
is needed to compile Hop closures into JavaScript closures. Second, JavaScript
is not properly tail-recursive, so static analyses are needed to efficiently com-
pile Hop tail recursion into JavaScript loops. Third, because on the web the
client-side code first traverses the network, its size matters. The client-side Hop
compiler uses fancy features to generate code as compact as possible. All in all,
this makes the implementation of the JavaScript compiler about 17KLOC of Hop
code (the system is fully bootstrapped). The reason for the erroneous generation
of “0.0” was likely to be located somewhere in these lines.

After thorough investigations I ended up with the conclusion that the Hop
reader, that is the server-side function in charge of reading Hop files, was at
some point broken. At the beginning of the application, the reader was correct
and then, after a while, it was returning 0 for all floating point numbers. The
compiler was then probably not broken per se, only the reader was wrong.

The Hop syntax is defined by a regular language. It can then be parsed
efficiently by a finite state automaton such as those generated by the Hop form
“regular-grammar”. The actual implementation of the Hop parser looks like:

(regular-grammar ((float (or (: (* digit) "." (+ digit))

(: (+ digit) "." (* digit))))

...)

...

((: (* digit)

(or letter special)

(* (or letter special digit (in ))))

(the-symbol))

((: (? (in "-+"))

(or float

(: (or float (+ digit))

(in "eE") (? (in "+-")) (+ digit))))

(the-flonum))

...)

The first part defines variables (float in the code snippet above) which
bind regular expressions used in the rules. These rules bind regular expres-
sions, defined in a infix syntax, to expressions that are executed when a pat-
tern matches. Regular grammars are compiled on the fly into Hop procedures.
The implementation of regular grammars is about 3.5KLOC of Hop code for the
compiler, seconded by 1.1KLOC of native code for the IO layer.

Compiling the Hop reader produces a function such as:
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(lambda (ip)

(define (the-flonum::double)

(rgc buffer flonum ip))

(define (the-fixnum::long)

(rgc buffer fixnum ip))

(define (the-symbol::symbol) ...)

...

(define (STATE0 ip) ...)

(case (STATE0 ip)

...

((10) (the-flonum))

...))

The function rgc buffer flonum extracts from the input buffer the correspond-
ing floating point number. It is part of the native runtime system. The Hop
native compiler (73KLOC of Hop code) can produce either native code, JVM
bytecode, or .NET bytecode. The function rgc buffer flonum thus exists for
the three backends. C was the backend used for the AIMM experiment. Its
implementation is:

#define rgc buffer flonum( ip ) \

strtod( RGC INPUT PORT BUFFER( ip ), 0 );

As the reader at some point was no longer able to read numbers correctly,
either RGC INPUT PORT BUFFER or the libc function strtod had to be wrong!
This was very shocking. I could not believe that Hop IO buffers were wrong. The
overall size of the Hop implementation is about 325KLOC of Hop code which
are all read by the Hop reader. If the buffers were not correctly managed, the
bootstrap which reads all the 12,371,080 characters composing the source code
could not reasonably succeed! I could not either believe that strtod was wrong.
The Gnu libc is too widely used and too many applications depend on it for such
an obvious error to occur. However, the Linux version running on the AIMM
server being rather old, I spent half an hour googling to check if that particular
version of the library was known to have a wrong strtod implementation. It
was not.

3 The Usual Suspects

At this point of the paper, it is probably useful to make a short point. I was
chasing a bug that (i) only appeared with Firefox but Firefox was innocent;
(ii) appeared in the client-side of the application but it was located in the server-
side of the application; (iii) was due to an error in the server-side code in charge
of producing the client-side; (iv) was due to server-side code that seemed to first
behave correctly and then, at some point of the execution, started to behave
badly; (v) was not observable when executed on my machine but systematic when
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executed on the AIMM server. The obvious conclusion of all these observations
was that something specific to the AIMM server was responsible for the wrong
behavior.

When portability across a single operating system seems broken, the first idea
that usually comes to mind is to check if there could be a potential confusion
between pointers size. In our case we had an ideal suspect: my personal machine
was using 32 bit pointers while the AIMM server was using 64 bit pointers! This
suspicion was even strengthened by my previous investigation. As said before,
I was more or less suspecting an IO buffer overflow and a confusion between
32 bit pointers and 64 bit pointers is very prone to buffer overflows. A quick
test conducted on another x86/64 Linux machine of our own showed that Hop
and the AIMM widget were running like a charm on that other 64 bit pointers
computer. The problem was elsewhere.

The Hop broker (75KLOC) is deeply multi-threaded. When started, it spawns
several preemptive threads (usually 20) that wait for connections. Each client
request is handled in a separate thread. So, several client-side compilations may
occur simultaneously. Multi-threaded applications are known to be a nightmare
to program and an even worse nightmare to debug, in particular because multi-
threading may break sequentially correct code. The C standard library is plagued
with several non-thread-safe functions. In particular, all those that use static
buffers, such as strtok. Would it be possible that strtod was also using a static
buffer that made it non thread-safe? An excerpt of the Linux man page is given
Fig. 2. It tells nothing about multi-threading and it proposes no thread-safe alter-
native. So, at least with the Gnu libc, it is very likely that strtod is thread safe.
Another observation mostly invalidates the theory of a potential multi-threading
problem. The bug was far too reproducible! The charm of multi-threading errors
is their non-deterministic behavior. Here, the bug always occurred, at the same
moment, on the same machine. Not something that could have happened with
an error in the implementation of the parallelism.

After all, since the bug was reproducible, it was an ideal candidate for a
debugger. I recompiled everything in debug mode and tried to learn more. No
success. Firstly, the debugger was not easy to use because the error did not show
up until the function had been called several thousand times. Secondly, it merely
validated some already known facts: yes, the problem also showed up when the
application was running inside the debugger; yes, after a while the-flonum was
returning 0. Nothing else to learn. In addition to the debugger, I tried the read-
eval-print loop Hop can spawn. Same result.

Since the debugger and the interactive loop were mostly useless, I instru-
mented the application to log all the calls to strtod and I wrote another program
for replaying the logs. Surprisingly, this new program ran well, as all the calls to
strtod completed correctly. So, if strtod was broken, it was broken in a weird
context-dependent way. This experiment taught me another important fact: by
observing the log player running correctly, I realized that many Hop instances
were running well on the AIMM server. Something specific to the AIMM widget
made it run incorrectly on the AIMM server!



The Computer Scientist Nightmare 363

STRTOD(3) Linux Programmer’s Manual STRTOD(3)

NAME

strtod, strtof, strtold - convert ASCII string to floating-point number

SYNOPSIS

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

...

DESCRIPTION

The strtod(), strtof(), and strtold() functions convert the initial

portion of the string pointed to by nptr to double, float, and long

double representation, respectively.

The expected form of the (initial portion of the) string is optional

leading white space as recognized by isspace(3), an optional plus (’+’)

or minus sign (’-’) and then either (i) a decimal number, or (ii) a

hexadecimal number, or (iii) an infinity, or (iv) a NAN (not-a-number).

A decimal number consists of a nonempty sequence of decimal digits pos-

sibly containing a radix character (decimal point, locale-dependent,

usually ’.’), optionally followed by a decimal exponent. A decimal

exponent consists of an ’E’ or ’e’, followed by an optional plus or

minus sign, followed by a nonempty sequence of decimal digits, and

indicates multiplication by a power of 10.

...

CONFORMING TO

C89 describes strtod(), C99 describes the other two functions.

Fig. 2. The Linux man page for strtod

4 The Solution

At a moment, for no particular reason, by luck, or because I was unconsciously
examining all the possible directions, the small detail that I had in front of my
eyes since the beginning and that I had neglected so far attracted my attention:
if strtod was wrong by returning 0.0 how come it returned −0.0 and not just 0.0
for “-0.3”? Where did this “-” come from? After all, it seemed that something
was correct in the result since the sign was correct! A further experiment showed
that actually the result was only wrong for the decimal part of the numbers.
That is “0.2” was read as 0.0 but “1.2” was read as 1.0. After this observation
everything went fast and easy.

As stated in the Linux man page (see above), strtod is locale-dependent.
In French, the radix character is “,”, contrary to English that uses “.”.
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Hence, parsing -0.3 in English must return −0.3 while parsing it in French
must return -0.0, because the french parsing of the number stops after parsing
the characters - and 0, ignoring the rest of the string. My computer and the
AIMM server were both located in France but my machine was using an English
setting while the AIMM server was using a French setting. On the AIMM server,
the Linux global environment variable LOCALE was set to “fr FR”. This was the
reason for the bug. The only problem yet to be solved was to understand why
the behavior of strtod changed during the execution. Why did it start with an
English setting and at some point switch to French?

The Hop server starts in a bare minimal core image. When an application
is loaded it dynamically loads the libraries it depends on. Many multimedia
Hop applications depend on the widely used Gstreamer library to manipulate
multimedia material. In the AIMM application, it was used to encode MP3 into
OGG on the fly (while Google-Chrome supports MP3, Firefox only supports
OGG). So, when the AIMM application started it loaded Gstreamer.

The Gstreamer documentation specifies that an application should first call
gst init to initialize the library but it says nothing about the locale. However
inspecting the source code, and in particular, the file gst/gst.c, I spotted the
following:

static gboolean

init pre (GOptionContext * context, GOptionGroup * group,

gpointer data, GError ** error)

{

...

#ifdef ENABLE NLS

setlocale (LC ALL, "");

bindtextdomain (GETTEXT PACKAGE, LOCALEDIR);

bind textdomain codeset (GETTEXT PACKAGE, "UTF-8");

#endif /* ENABLE NLS */

...

}

This clearly meant that Gstreamer allowed itself to change the locale of the
application, with the side effect of changing the behavior of strtod, and in that
case, breaking the Hop client-side compiler. The fix was straightforward and it
took exactly two lines of code. It merely required saving the current locale before
calling the gst init function and to restore it afterward as in:

char *locale = setlocale( LC ALL, 0 );

gst init( &argc, &argv );

setlocale( LC ALL, locale );
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5 Concluding Remarks

This article is unacademic on purpose. It is written in a first-person narrative
mode. it contains no citations, no mathematical formulae of any kind, and no
algorithms, but it does contain code! Readers will eventually judge, but I think
that in spite of containing no theorem, it demonstrates a flaw in the principles
we use to design our languages and to write our programs because the bug that
is described in this paper could probably occur in many different contexts and
with most programming languages. How many readers of this paper can be sure
that none of their programs are affected by a similar problem?

This paper tells a story of a program that apparently broke none of our
commonly accepted rules but that still went wrong. The program suffered no
memory leak. It was type safe, with respect to the common understanding of
what a type should be. It suffered no data race. But still it went wrong!

Who is to blame for the error then? This is a legitimate question. Someone
has to be blamed! Obviously I have my share of responsibility. It might be
argued that the Hop implementation of the-flonum is incorrect and this is
the reason for the whole problem. It definitively is and the function should
be re-written. My knowledge of the C function strtod was too imprecise and
it had yielded to the problem described in the paper. I’m the main culprit.
However, it is inconceivable to re-implement all the low level functions used by
Hop. It is likely that some other functions rely on a hidden state that might
be changed externally, in particular amongst the functions used to implement
the network and DNS APIs. However, re-writing these functions would take an
unreasonable amount of work and independently of the feasibility of the task
it is also worth wondering if this approach makes any sense. The purpose of
Hop is to provide an infrastructure to help re-using code written elsewhere by
other people, maybe using other formalisms. Re-writing all the core APIs in Hop
would then contradict the overall goal of the whole system.

If I’m not the only one to blame, who else? Clearly the C functions strtod
and atof have a peculiar design that is partly responsible for the problem.
First, relying on external information, the locale, they make programs that use
them unsealed. Second, using a weak definition for the external representation
of numbers, they are prone to incorrectly parse numbers. Even worse, they offer
no means to isolate the code relying on them. The locale used by this function
is always a kind of oracle that cannot be controlled by the program.

In my opinion, the Gstreamer library also shares a part of the responsibility.
First, it might be argued that no API should ever change the global context in
which programs that use them execute. Second, if such a modification cannot be
avoided, then it should be stated very explicitly in the documentation. In that
particular case, Gstreamer seemed to call setlocale for no particularly good
reason (parsing ID3 tags potentially expressed in the locale of the host is a weak
motivation). Second, as reported, the documentation of the gst init function
does not even mention the change of the locale. This might be the biggest fault.

What tool could have helped to prevent the error or to detect it? Usual debug-
gers were of no help because, first, the execution was correct although with an
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unintended behavior (after all, strtod was configured to return −0.0), second,
the lines of code that were incorrect were not implemented in the main language
but in a hidden implementation language that the system tries hard to make
invisible to the end programmer.

It is frequently argued that strong static type checking is a powerful tool
that helps detecting errors soon. In this particular case it would have been of
no help. With respect to the type system found in general purpose languages,
everything in the execution was correct. Maybe this tells us that the types we
are used to are inadequate? Maybe this tells that we should rely on types that
denote concrete entities and not abstract mathematical things? Maybe the type
of strtod should not be a function that takes a string of characters and that
returns a real but a function that takes a floating point number represented as
a string of characters and that returns a real? Maybe the type of gst init
should not only be a function that accepts an integer and an array of strings
and that returns an integer but also something that denotes the effect on the
current locale?

I think the real reason for the error presented in this paper is that the lan-
guages we have designed so far, and maybe even the way we think a program
should be written, do not allow programs to compose safely. The error presented
in this article came from an apparently innocuous function of a widely used
library that was permitted to modify the whole behavior of the application. As
long as the systems we design will be liable to such behaviors this kind of error
will keep occurring. I think this story shows the limit of the current direction
we are following in designing our languages and programs. I also think that it
shows that we should explore different paths where safe composition is the start-
ing point of the design. In the era we are to enter where programs need to use
heterogeneous sets of resources and data, this will be vital for the reliability of
our yet to be invented brave new applications.
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Abstract. In the course of building a compiler from business rules to a
database run-time, we encounter the need for a type system that includes
a class hierarchy and subtyping in the presence of complex record opera-
tions. Since our starting point is based on structural typing and targets a
data-centric language, we develop an approach inspired by Wadler’s work
on XML types (Siméon and Wadler 2003). Our proposed type system has
strong similarities with branded or tagged objects, combining nominal
and structural typing, and is designed to support a rich set of operations
on records commonly found in database languages. We show soundness
of the type system and illustrate its use on two of the intermediate lan-
guages involved in our compiler for business rules: a calculus for pattern
matching with aggregation (CAMP) that captures rules semantics, and
the nested relational algebra (NRA) used for optimization and code gen-
eration. We show type soundness for both languages. The approach and
correctness proofs are fully mechanized using the Coq proof-assistant.

1 Introduction

In order to support the growing amount of data routinely processed by appli-
cations, many programming languages are being developed (Cooper et al. 2007;
Green et al. 2012) or extended (Cheney et al. 2013; Meijer et al. 2006) with query-
like capabilities. Existing database techniques can then be leveraged for scalabil-
ity through compilation to a database query language such as SQL (Grust et al.
2009) or a cloud library such as Spark (Armbrust et al. 2015). When extending
object-oriented languages with such query capabilities, one of the key challenges
is type system integration: database languages (e.g., SQL or the relational alge-
bra) most often rely on structural types and feature rich operations on records
(e.g., record concatenation), while object-oriented languages most often rely on
nominal types and feature rich forms of subtyping. Inspired by Wadler’s work on
XML types (Siméon and Wadler 2003) as well as recent work on brands (Jones
et al. 2015) or tagged objects (Lee et al. 2015), we propose a new type system
that provides an elegant and natural way to combine nominal and structural
typing in the presence of complex record operations, and illustrate its use in the
context of a compiler for business rules.

Business Rules. Our work takes place as part of META (Arnold et al. 2016),
a project in which rules are used to program applications that combine event
processing and analytics. The use of rules is common in business intelligence
c© Springer International Publishing Switzerland 2016
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Fig. 1. Business object model.

applications as they can encode complex data-centric policies in a flexible man-
ner. Languages for business rules go back to production rules (Forgy 1981), and
modern specimens include Drools (Bali 2009) and JRules (Boyer and Mili 2011),
the latter being our focus. Rules are written against collection(s) of objects
described in a Business Object Model (BOM), which is essentially an object-
oriented class hierarchy. Figure 1 shows an example BOM for a marketing appli-
cation. A general Entity class is used to describe objects with an id attribute
which serves as a primary key. Other classes derive from Entity and include
Clients with an attribute name of type string, and Marketers with attributes
name of type string and client of type Client. Two additional classes corre-
sponding to categories of marketers are also defined: DirectMarketer with an
attribute targets and ProductRep with an attribute products, both of which
of type list of strings. The extends clause indicates the derivation hierarchy for
each class, and when omitted means the class derives from the built-in Object
class. Finally, class C2Ps is used to materialize a mapping from clients to their
product reps, computed through the rule shown in Fig. 2.

That rule consists of a condition (when, Lines 2–7) and an action (then,
Line 8). In effect, expressions in such rules perform pattern matching over an
implicit value, in the context of an environment (variable bindings). The initial
implicit value is not set and the initial environment is a single variable containing
the collection of objects against which the rule is being matched. The rule con-
struct sets the implicit value to be that input collection and the rule condition
is matched against any of those objects and “fires” when a match is found. In
our example, the condition binds variable C to a Client, and then aggregates all
ProductRep objects P for whom C’s id is the same as P’s client. The aggrega-
tion expression is essentially an embedded query, with a syntax similar to that
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Fig. 2. Rule computing a reverse mapping from clients to product reps.

of comprehensions (Trinder and Wadler 1988). The List<String> { P.name }
expression builds a new collection containing the names of all matching ele-
ments resulting from the aggregate, and that collection is bound to variable Ps.
The action part of the rule in Line 8 creates a new object of class C2Ps which
materializes the mapping from C to Ps. Environment manipulation (e.g., binding
variable P) is reflected in the compiler as record operations (e.g., concatenating
a record with field P to the record for the current environment).

A Branding Strategy. A calculus and compilation scheme for business rules tar-
geting the nested relational algebra (NRA) for optimization and scalability was
proposed in (Shinnar et al. 2015). Proper typing is essential in order to exploit
optimization techniques for bulk data processing developed by the database com-
munity (Beeri and Kornatzky 1993; Cluet and Moerkotte 1993; Fegaras and
Maier 2000; May et al. 2006). However, most existing type systems for database
languages, including the one we used in (Shinnar et al. 2015), rely on a purely
structural approach which does not account for the nominal aspects of object-
oriented data models and types. In addition, those typically assume homogeneous
collections of objects and do not account for the subtyping relation implicit in
the class hierarchy. In the context of Object-Oriented Databases, OQL relies
on a purely nominal type system (Alagic 1999), while underlying algebras or
calculi for optimization rely on a purely structural type system (Fegaras and
Maier 2000; Cluet and Moerkotte 1993). A notable exception is Wadler’s work
on a type system for XML and XQuery presented in (Siméon and Wadler 2003),
which integrates nominal and structural typing by annotating values and types
with type names related through a derivation hierarchy. However, the focus on
XML types and lack of support for records means it cannot be directly applied
to classic object models or to operators from the nested relational algebra.

Inspired by this work, we propose a novel type system that can handle collec-
tions of objects in a class hierarchy that we believe is well suited for integration
with database languages or language-integrated query systems (Cooper et al.
2007; Grust et al. 2009; Cheney et al. 2013). The approach relies on a notion
of branded types and objects, where brands can be used to annotate values and
types. Relationship between brands is captured by a derivation relation which
encodes the nominal part of the semantics. From a structural typing stand point,
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we support open and closed records along with the corresponding subtyping rela-
tion, in the presence of a rich set of record operations that include projection
and concatenation. From a nominal typing stand point, we support inheritance
and (up/down) casting. Most of the treatment is language-agnostic, in that we
define a set of core operators over brands independently from the host language.
We then illustrate how those core operations can be integrated within two lan-
guages used in our business rules compiler: a calculus which captures rules’
pattern matching semantics, and the nested relational algebra.

Paper Outline. The rest of the paper is organized as follows. In Sect. 2, we provide
an overview for the proposed branding approach through examples. In Sect. 3,
we describe the data model and type system. In Sect. 4, we introduce the subtyp-
ing relation and a notion of well-formed models which captures object-oriented
schemas. In Sect. 5, we define key operators on records, bags and branded values
along with their typing rules. Finally, in Sect. 6, we apply the proposed type sys-
tem to a compiler from rules to NRA. Section 7 reviews related work and Sect. 8
concludes the paper with a brief report on our implementation and a discussion
of future work.

2 Overview

Even though our work is motivated by business rules, most of the approach can
be explained in terms of core operations over an object model. We first explain
how classes and objects are encoded with brands, present key operations on
those, then illustrate their use as part of our rules compiler.

Branded Model. In essence, branded types are types annotated with a name
(a brand). Figure 3 shows the branded model corresponding to the Business
Object Model from Fig. 1. Each class is described by a brand (the class name)
and a type (the type of values of that class). For instance, the Client class
corresponds to Brand Client which contains values of type record with attributes
id of type INT and name of type STRING. We use [ ] to denote records, and { }
to denote collection types1. The ‘[ ..]’ (resp. ‘[ |]’) notation indicates open (resp.
closed) records. An open record can be extended with new attributes while a
closed one cannot. In our example, all branded types use open record, except
for C2Ps and DirectMarketer which are declared as final in the source object
model.

The brand derivation hierarchy is listed at the bottom of Fig. 3 and captures
the nominal component of the type hierarchy. For instance, brand ProductRep
derives from brand Marketer which itself derives from brand Entity. We assume
the presence of an Object brand whose type is that of all possible records and
which encodes the built-in Object class. We use Any to denote the top of the
brand hierarchy. Compared to Fig. 1, we eliminate the extends relation, i.e., we
fully expand the type for each class, and expose the inheritance relation in the
1 We rely on a bag semantics but support for other collection types can be added

easily, e.g., along the lines of (Fegaras and Maier 2000).
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Fig. 3. Branded object model.

derivation hierarchy2. This separation follows directly from (Siméon and Wadler
2003) and is central to our approach in that it allows to clearly separate the nom-
inal and structural aspects of the type system. The branded model along with its
derivation hierarchy is well-formed on the condition that the types of two brands
related through (nominal) derivation be properly related through (structural)
subtyping. For instance, adding the relation C2Ps derives from Entity would be
invalid since the type for brand C2Ps does not have and id attribute.

Note that the model allows any type to be branded. For instance, INT is the
type of integer values but we could give integers an object-like treatment by
defining a brand for them. We could then define a special kind of integer for ids
through derivation, as illustrated by the following declarations.

Brand Int INT
Brand Id INT

Id derives from Int

Through subtyping, every operation taking a branded value of type Brand Int
also takes a value of type Brand Id, but not the converse.

Branded Values. In essence, branded values are values annotated with a name
(a brand). Figure 4 shows examples of values in our data model. In each case
we provide a name for the value (variable), a type and the value itself. All the

2 The formal model actually relies on the reflexive and transitive closure of the deriva-
tion hierarchy which must be a partial order (i.e., without cycles).
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Fig. 4. Branded values.

examples are well-typed, i.e., the given value has the given type. The first three
are simple values without brands: M1Id is an integer value, C1 and C2 are records.
Note that C1 (resp. C2) is declared as having a closed (resp. open) record type.
M1 is a value with brand DirectMarketer whose content is a record with id 101
and name “John”, working for client with id 1 and targeting “iOS” and “Gawker”.
Value M2 is the same value but declared with type Brand Marketer, which is also
valid since DirectMarketer derives from Marketer. The remaining of Fig. 4 shows
examples of collections. Clients is an homogeneous collection of values with
brand Client, and Marketers a collection of object in the sub-brand hierarchy
for brand Marketer. Finally the last collection WM is the union of Clients and
Marketers and can be typed as a collection of values with brand Entity.

Brand Operations. We provide three core operations on brands: branding,
unbranding, and casting. The first two are constructors/destructors for branded
values. For instance, the following operations create a value with brands Id, Client
and Entity. (We use the notation: Var : Type = Expr ⇓ V alue to indicate that
variable V ar has type Type and value V alue which is the result of Expr).
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M1Id’ : Brand Id = brand Id (M1Id) ⇓ brand Id (1)
C1’ : Brand Client = brand Client (C1) ⇓

brand Client ([id : 1;name : “Disney”])
C1” : Brand Entity = brand Client (C1) ⇓

brand Client ([id : 1;name : “Disney”])
C1”’ : Brand Entity = brand Entity (C1) ⇓

brand Entity ([id : 1;name : “Disney”])

Note that branding checks that the value being branded has the type declared
for the corresponding brand. In the previous examples, C1 is declared as a closed
record with attributes id and name and is indeed a subtype of the correspond-
ing open record for both brands Client and Entity. However, the following two
operations are not well typed, since the type for C1 (resp. M1Id) isn’t a subtype
of the type for brand Marketer (resp. Entity).

brand Marketer (C1)
brand Entity (M1Id)

Unbranding, denoted !, always succeeds on a branded value and returns its
content. Unbranding uses the static type of the brand (which can be changed
with a cast) to determine the type of the returned contents. Here are a few
examples, also illustrating record operations such as field access (denoted .A
where A is an attribute) and record projection (denoted πAi

where Ai is a set of
attributes). Note that the typing rule for projection yields a closed record type.

Id1 : INT =!M1Id’ ⇓ 1
C1id : INT =!C1’.id ⇓ 1

C1proj : [id : INT |] = πid(!C1’) ⇓ [id : 1]

Unbranding is typed using the statically known brand type, which means that
!C1”.name is not well typed. In other words, the fields that are present in C1”
but not declared for the brand Entity are hidden, unless casting is first applied
to the value. This once again corresponds to the standard behavior in an OO
context. At run-time, casting checks if a given brand is a supertype (or the same)
as a brand’s dynamic type and returns the original branded value or fails3. The
typing rule for casting asserts that the returned brand has the provided brand
type. This allows safe downcasting on brands, allowing code to enrich the static
type of a brand at the cost of a runtime check. Here are some examples of
successful casts applied in the context of the nested relational algebra, in which
success (resp. failure) is represented as a singleton (resp. empty) bag.

UpM1Id : {Brand Int} = (Int) M1Id’ ⇓ {brand Id (1)}
UpC1 : {Brand Entity} = (Entity) C1’ ⇓

{brand Client ([id : 1;name : “Disney”])}
DownC1 : {Brand Client} = (Client) C1” ⇓

{brand Client ([id : 1;name : “Disney”])}
3 What failure means may vary as we will show when applying casting in the context

the two intermediate languages (CAMP and NRA) involved in our rules compiler.
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The first two examples are upcasts: from Brand Id to Brand Int, and from
Brand Client to Brand Entity. The third example is a downcast from Brand Entity
to Brand Client. We now give some examples of cast failures, all of which return
the empty bag in the context of the nested relational algebra.

Fail1 : {Brand Entity} = (Entity) M1Id’ ⇓ {}
Fail2 : {Brand Client} = (Client) C1”’ ⇓ {}
Fail3 : {Brand ProductRep} = (ProductRep) M1 ⇓ {}

Note that the specific failure semantics for NRA is unusual from a classic
OO perspective, but it enables easy integration with other relational operators.
For instance, the following combination of flatten, map (χ) and casting can be
used to select all objects in variable WM that are product reps. In that example,
In stands for the current element in the input collection processed by the map.
The output of the map is a bag of either singleton or empty bags which can then
be flattened. The final type is a bag of Brand ProductRep as expected.

Reps : {Brand ProductRep} = flatten(χ〈(ProductRep) In〉(WM)) ⇓
{ProductRep([id : 102;name : “Julie”; client : 1;

products : {“Star Wars”}])}

Rules Compiler. With that notion of branded values and types in hand, we extend
the rules calculus and compiler proposed in (Shinnar et al. 2015) to provide
proper support for the class hierarchy. Going back to the example rule from
Fig. 2, the binding within the aggregate expression on Line 5 can be translated
to the nested-relational algebra as follows:

��d〈[P :In.it]〉
(
σ〈!(In.C).id=!(In.it).client〉

(

ρit/{br}
(

��d〈[br:(ProductRep) (In.it)]〉(In)
))) (1)

From an input bag of records (rightmost In) each containing a working
memory elements (in attribute it) and a binding for variable C (in attribute
C ), select those whose brand is ProductRep. Then, select those whose client
attribute is the same as the client id (!(In.C).id). Then, add the attribute P
containing the current value in attribute it to each remaining record. Note that
the notion of current value (In) depends on context and its scope changes within
every sub-operator between angle brackets 〈..〉. In the first operand of the select
(σ) operator, it is bound to each record from the bag returned by its second
operand. The ��d operator (traditionally called dependent join in the database
literature (Cluet and Moerkotte 1993)) performs record concatenation, adding
attribute P to every record in its input. The expression makes use of casting and
unbranding. The first expression within the right-most ��d uses a cast to filter the
input objects with the right brand ((ProductRep) (In.it)) and adds a temporary
field br in the input record that contains values of type {Brand ProductRep}.
The next NRA operator (ρ) is used to unnest the content of attribute br, then
re-bind it to attribute it, which now has type Brand ProductRep. The subsequent
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selection operator can now access the client attribute safely by unbranding the
input value (!(In.it).client).

Remarks. Before we move to a formal treatment of the proposed model, a few
aspects are worth pointing out. Firstly, support for both open and closed records
is a key requirement: open records allow to model classes and inheritance, while
closed records are essential when using relational operations such as Carte-
sian product or (dependent) join both of which perform record concatenation.
We handle both by combining: (i) subtyping between open and closed records,
(ii) record operations, notably projection, that allow to coerce an open record
into a closed record. Secondly, the combination of operations on brands and
records enables a rich feature set that includes classic features from OO lan-
guage, many of which can be expressed as combinations of our core operators.
The presentation here focuses on data-centric languages and notably, we do not
attempt to model features such as methods or object identity.

3 Data and Types

In this section, we first define the data model and core type system with the
notion of brands. Note that both rely only on a hierarchy of brand names.

3.1 Data Model

Values in our data model, the set D, are atoms, records, bags or branded values.
We assume a sufficiently large set of atoms a, b, ... including integers in Z, strings
in S, the Boolean values true and false, and a null value written nil. A bag is a
multiset of values in D; we write ∅ for the empty bag and {d1, ..., dn} for the bag
containing the values d1, ..., dn.

A record is a mapping from a finite set of attributes to values in D, where
attribute names are drawn from a sufficiently large set A,B, .... We write [ ] for
the empty record and [Ai : di] for the record mapping Ai to di. We define the
concatenation x∗y of two records as a mapping from dom(x)∪dom(y) to values,
such that [x∗ y](A) = x(A) if A ∈ dom(x) and [x∗ y](A) = y(A) if A ∈ dom(y)\
dom(x). Records x and y are compatible if ∀A ∈ dom(x) ∩ dom(y), x(A) = y(A).
We define the sum [x+ y] of compatible records as the union x ∪ y, and leave it
undefined for non-compatible records.

A branded value is a pair of a brand name and a value, where brand names
are drawn from a sufficiently large set A,B, .... We write brand A (d) for the
value d branded with A. We assume a derivation hierarchy, which is a partial
order relation δ between brands, with a most general brand denoted Any. We
write δ(A,A′) to denote that A derives from A’ (through reflexive and transitive
closure). For every brand A, we assume that δ(A,Any). The fact that δ is a partial
order is essential for the soundness of the type system. We allow a brand name
to derive from several brand names which accounts for multiple inheritance.

Finally, we assume structural equality between values, denoted d1
.= d2, and

defined inductively as follows. Two atomic values are equal if their underlying
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built-in equality (between two booleans, two strings, two integers) holds. Two
bags are equal if they have the same values (compared through equality) modulo
permutation. Two record are equal if they have the same set of attributes and
the values associated to corresponding attribute are equal. Branded values are
equal if they have the same brand and their contents are equal.

3.2 Types

Our types include primitive types NIL, INT, BOOL, and STRING. The type of a
(homogeneous) bag with elements of type τ is written {τ}. We also assume the
existence of a top (resp. bottom) type denoted � (resp. ⊥).

We define two kinds of record types: closed and open. [Ai : τi |] is the type
of a closed record with attributes Ai of type τi. [Ai : τi ..] is the type of an open
record with attributes Ai of type τi. When there is no ambiguity, we sometimes
write [Ai : τi] for a record type that can be either open or closed.

As with data records, we define a notion of compatibility for record types.
Two open (resp. closed) record types are considered compatible if all their over-
lapping attributes (resp. known overlapping attributes) have the same type. Note
that two records can have compatible types but incompatible data. Record con-
catenation, [Ai : τAi

∗Bj : τBj
|] concatenates two record types, favoring the types

of A’s attributes in case of conflict and is only defined for closed records. Record
merge, [Ai : τAi

+Bj : τBj
], also concatenates the record types and is defined for

both open and closed records, but only if they are compatible.
Finally, Brand A is the type of values with brand A.

4 Subtyping and Models

In this section, we define structural subtyping and the notion of well-formed
model used to capture class hierarchies. We then describe what it means for a
value to be well-typed and show this notion is consistent with subtyping.

4.1 Subtyping

We can now define the subtyping relation, which is still purely structural,
depending only on the given derivation hierarchy δ over brand names. Figure 5
defines τ �δ τ ′, the subtyping relation between two types given δ. The first two
rules simply place � (resp. ⊥) at the top (resp. bottom) of the type hierarchy.
A type is a subtype of itself (SRefl). A bag of type τ is a subtype of a bag of
type τ ′ iff, τ is a subtype of τ ′ (SBag). A type with brand A is a subtype of a
type with brand A′ iff A derives from A’ in δ (SBrand).

A record is a subtype of a closed record iff, it is also closed, has the same
domain (same attributes), and each of its attributes’ type is a subtype of the
corresponding attribute in the super type (SClosed). The subtype of an open
record can be open or closed, and it must have at least the same attributes, with
the proper subtyping relationship between the attribute in common (SOpen). In
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Fig. 5. Subtyping. τ �δ τ ′

other words, open records support both width and depth subtyping, while closed
records support only depth subtyping.

Figure 5 does not include rules for transitivity and antisymmetry which are
both consequences of the definition. Subtyping is indeed a partial order over
types, as stated by the following theorem4.

Theorem 1 (Subtype is a Partial Order). Given a derivation hierarchy δ,
for all types τ1, τ2, τ3:

(τ1 �δ τ1)
if (τ1 �δ τ2) ∧ (τ2 �δ τ3) then (τ1 �δ τ3)
if (τ1 �δ τ2) ∧ (τ2 �δ τ1) then (τ1 = τ2)

4.2 Models

A model μδ is a relation from brands to types wrt a given derivation hierarchy
δ. We write 〈〉δ for the empty model and 〈Ai �→τi〉δ for the model mapping Ai to
type μδ(Ai) = τi.

Definition 1 (Well-Formed Model). A model μδ is well-formed with respect
to a brand derivation hierarchy δ, denoted |= μδ, iff:

∀A,A′, if δ(A,A′) then μδ(A) �δ μδ(A′)

4.3 Typed Data

We use the notation μδ � d : τ to mean that data d has type τ in the context of
model μδ. Figure 6 defines the typing rules for data. The first few rules are trivial:
every data has type � (TTop), and atoms have the type corresponding to the
kind of data they belong to (TNil, TInt, TString, TTrue, TFalse). As expected,
no data can have the type ⊥.5 Bags are values of uniform types (TEmpty, TBag).
4 All theorems in the paper have been verified using Coq.
5 Note that ⊥ is still useful to have in the type system, for instance the type {⊥} is

the most precise type for the empty bag.
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Fig. 6. Typed data. μδ � d : τ

For a closed record type, a record value belongs to that type if it has the
same attributes as its type and if each attribute value has the corresponding
attribute type (TClosed). For an open record type, a record value belongs to
that type if it has at least the attributes defined in its type and for those, each
attribute value has the corresponding attribute type (TOpen). Those attributes
not declared in the open record type are only assumed to be well typed. The
rule for brands simply state that the content of a branded value must be of the
type declared for that brand in the model μδ (TBrand).

The key property of the typing rules for data is that they are sound with
respect to subtyping, as expressed by the following theorem.

Theorem 2 (Soundness of Typing Rules for Data). Given a well-formed
model, i.e., μδ such that |= μδ:

if (μδ � d : τ) ∧ (τ �δ τ ′) then (μδ � d : τ ′)

I.e., if data d has type τ in the context of μδ, and τ is a subtype of τ ′, then
data d has type τ ′ in the context of μδ.

5 Operators

We now define operations over the proposed data model. Besides operations on
records and bags typically found in data languages (notably record concatenation
and projection), we include operations for branding and unbranding. We leave
casting for the next section, as the semantics of cast depends on the specific
ways failure is handled in the host language.
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5.1 Syntax and Semantics

Unary or binary operators are basic operations over the data model defined as
functions. Most of those are only defined for data with a specific type. We provide
an informal dynamic semantics, followed by typing rules which gives the precise
conditions under which those operators are well-typed. A small denotational
semantics is given for reference in Appendix A.

Definition 2 (Operators).

(uops) ⊕ d :: = ident d | {d} | flatten d | ¬d | [A :d] | d.A
| d−A | πAi

| brand A (d) | !d
(bops) d1 ⊗ d2 :: = d1 = d2 | d1 ∈ d2 | d1 ∪ d2 | d1 ∗ d2 | d1 + d2

In order of presentation, the unary operators do the following:

ident d returns d.
{d} constructs a singleton bag containing the value d.
flatten d flattens a bag of bags.
¬d negates a Boolean.
[A :d] constructs a record with a single attribute A and value d.
d.A accesses the value associated with attribute A in record d.
d−A returns a record with all attributes of d except A.
πAi

(d) returns the projection of record d over attributes Ai.
brand A (d) returns a value with brand A containing d.
!d returns the content of branded value d.

In order of presentation, the binary operators do the following:
d1 = d2 compares two values for equality.
d1 ∈ d2 returns true if and only if d1 is an element of bag d2.
d1 ∪ d2 returns the union of two bags.
d1 ∗ d2 concatenates two records, favoring d1 for overlapping attributes.
d1 + d2 returns a singleton bag with the concatenation of the two records if

they are compatible, and returns ∅ otherwise.
Operators can be easily extended (e.g., for arithmetics or aggregation). flatten

corresponds to a single-level flattening of a nested bag. Record operations are
sufficient to support all standard relational and nested relational operators. The
last two unary operators correspond to branding and unbranding. Branding,
brand A (d), creates a new value with brand A and content d. Unbranding, !d,
returns the content of a branded value d. The definition for those does not make
any assumption about the model of the corresponding brands, but consistency
with a given model results from their typing rules which are given next.

5.2 Typing

Given a well-formed model μδ, the type signatures of unary operators, written
μδ � ⊕d : τ → τ ′ (i.e., operator ⊕ applied to a value d of type τ has return type
τ ′), are as follows:



380 A. Shinnar and J. Siméon

μδ � ident d : τ → τ
μδ � ¬d : BOOL → BOOL

μδ � {d} : τ → {τ}
μδ � flatten d : {{τ}} → {τ}

μδ � [A :d] : τ → [A : τ |]
μδ � d.A : [A : τ ] → τ

μδ � d−A : [A : τ,Bi : τi] → [Bi : τi]
μδ � πAi

: [Ai : τi] → [Ai : τi |]
μδ � brand A (d) : μδ(A) → Brand A

μδ � !d : Brand A → μδ(A)

Note that record construction ([A : d]) and projection (πAi
) always return a

closed record, and that field access (d.A) and field removal (d−A) work on both
closed and open records. The typing rules for branding (resp. unbranding) takes
as input (resp. returns) values of the type associated with its brand in μδ.

Given a well-formed model μδ, the type signatures of binary operators, writ-
ten μδ � d1 ⊗ d2 : τ1 → τ2 → τ3 (i.e., operator ⊗ applied to values d1 of type τ1
and d2 of type τ2 has return type τ3), are as follows:

μδ � d1 = d2 : τ → τ → BOOL
μδ � d1 ∈ d2 : τ → {τ} → BOOL
μδ � d1 ∪ d2 : {τ} → {τ} → {τ}
μδ � d1 ∗ d2 : [Ai : τAi

|] → [Bj : τBj
|] → [Ai : τAi

∗ Bj : τBj
|]

μδ � d1 + d2 : [Ai : τAi
|] → [Bj : τBj

|] → {[Ai : τAi
+ Bj : τBj

|]}
μδ � d1 + d2 : [Ai : τAi

] → [Bj : τBj
] → {[Ai : τAi

+ Bj : τBj
..]} otherwise

Note that record concatenation is well typed only for closed records, while
record merge is well typed for both closed and open records. If both records in
a merge are closed the type of its record output is closed, otherwise it is open.

We end this section with a theorem showing operators are total under typing
conditions i.e., given value(s) of the correct input type(s), an operator always
returns a value of the expected output type. The formulation relies on the evalu-
ation judgments (⊕d ⇓ d for unary operators and d⊗d ⇓ d for binary operators)
defined in Appendix A.

Theorem 3 (Typed Operators Consistency). Given a well-formed model,
i.e., μδ such that |= μδ, typing for unary and binary operators is consistent:

if (μδ � d : τ) ∧ (μδ � ⊕ : τ → τ ′)
then ∃d′, (⊕d ⇓ d′) ∧ (μδ � d′ : τ ′)

if (μδ � d1 : τ1) ∧ (μδ � d2 : τ2) ∧ (μδ � ⊗ : τ1 → τ2 → τ3)
then ∃d′, (d1 ⊗ d2 ⇓ d′) ∧ (μδ � d′ : τ3)

6 Business Rules Compiler

We now show how the proposed brand model and type system can be applied in
the context of a business rules compiler. Due to space limitations, we focus on
the changes from the version without brands from (Shinnar et al. 2015).
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6.1 CAMP

The Calculus for Aggregating Matching Patterns was proposed in (Shinnar et al.
2015) to model the query fragment of production rules (Forgy 1981) with aggre-
gation (Boyer and Mili 2011). That query fragment is a (nested) pattern matched
against working memory. CAMP patterns scrutinize an implicit datum (it), in
the context of an environment (env) mapping variables to data. Patterns may
fail if they do not match the given data. Match failure, denoted err, is not fatal
and can trigger alternative pattern matching attempts.

Definition 3 (CAMP Syntax).

(patterns) p :: = d | ⊕p | p1 ⊗ p2 | map p | assert p | p1||p2 | it
| let it = p1 in p2 | env | let env += p1 in p2 | cast A

Definition 3 shows the syntax for CAMP with one expression added for cast-
ing. d returns a constant data. Unary (⊕) and binary (⊗) operators can be
applied to the result of a pattern or patterns. map p maps a pattern p over
the implicit data it. Assuming that it is a bag, the result is the bag of results
obtained from matching p against each datum in it. Failing matches are skipped.
The assert p construct allows a pattern p to conditionally cause match failure. If
p evaluates to false, matching fails, otherwise, it returns the empty record [ ]. The
p1||p2 construct allows for recovery from match failure: if p1 matches successfully,
p2 is ignored; if p1 fails to match, p2 is evaluated. it returns the datum being
matched. let it = p1 in p2 binds the implicit datum to the result of a pattern.
env reifies the current environment as a record, which can then be manipulated
via standard record operators. let env += p1 in p2, adds new bindings to the
environment. The result of matching p1 must be a record, which is interpreted as
a reified environment. If the current environment is compatible with the new one
(all common attributes have equal values) they are merged and the pattern p2
is evaluated with the merged environment. If they are incompatible, the pattern
fails. Merge captures the standard semantics in rules languages where multiple
bindings of the same variable must bind to the same value.

We add a new expression, cast A, which casts it to a given brand A and
accounts for the specific failure semantics in CAMP. It returns the same value if
it succeeds, and err if it fails. The semantics (resp. typing) for that extension of
CAMP proceeds identically to the one described in (Shinnar et al. 2015), except
that it takes a derivation hierarchy (resp. a model) as additional context. Instead
of the evaluation judgment σ � p@ d ⇓ d?, we use δ;σ � p@ d ⇓ d?, where δ is a
derivation hierarchy, σ an environment binding variables to values, p a pattern,
d an (implicit) input value, and d? the successful match or a match failure. All
the evaluation rules pass that additional context along, and the rules for casting
are as follows.
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δ(A′,A)
(PCast)

δ;σ � cast A@ brand A′ (d) ⇓ brand A′ (d)
¬δ(A′,A)

(PCastFail)
δ;σ � cast A@ brand A′ (d) ⇓ err

Instead of the typing judgment Γ � p : τ0 → τ1, we use μδ;Γ � p : τ0 → τ1,
where μδ is a well-formed model, Γ a type environment, p a pattern, τ0 the type
of the (implicit) input, and τ1 the type of successful matches. All the typing
rules pass that additional context along, and the rule for casting is as follows.

(TPCast)
μδ;Γ � cast A : Brand A′ → Brand A

Note that the dynamic semantics only requires δ which means evaluation can
proceed entirely based on the brand name derivation with no need for structural
checks. This suggests techniques for efficient representation and manipulation of
objects should also apply in our context. The model μδ still needs to be passed
at compile time as it is used in the typing rules for branding and unbranding
operators (See Sect. 5). Type soundness holds for CAMP with brands.

Theorem 4 (Soundness of Type System for CAMP). Given a well-
formed model, i.e., μδ such that |= μδ:

if (μδ;Γ � p : τ0 → τ1) ∧ (μδ � σ : Γ ) ∧ (μδ � d0 : τ0)
then ∃d1?, (δ;σ � p @ d0 ⇓ d1?) ∧ (μδ � d1? : τ1)

6.2 NRA

We use the NRA from (Shinnar et al. 2015) with one additional expression for
casting. Other operators, e.g., ρ for unnesting, can be defined in terms of this
core algebra (Cluet and Moerkotte 1993).

Definition 4 (NRA Syntax).

(queries) q :: = d | In | ⊕q | q1 ⊗ q2 | χ〈q2〉(q1) | σ〈q2〉(q1)
| q1 × q2 | ��d〈q2〉(q1) | q1 || q2 | (A) q

Here, d returns constant data, In returns the context value (usually a bag or
a record), and ⊕ and ⊗ are the unary and binary operators from Sect. 5. χ is the
map operation on bags, σ is selection, × is Cartesian product. The dependent
join, ��d, evaluates q2 with its context set to each value in the bag resulting
from evaluating q1, then concatenates records from q1 and q2 as in a Cartesian
product. The || expression, which we call default, evaluates its first operand and
returns its value, unless that value is ∅, in which case it returns the value of its
second operand (as default).
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(A) q, casts the result of q to a brand A. It returns a singleton bag containing
that same value if the cast succeeds, and ∅ otherwise. The semantics (resp.
typing) for the NRA proceeds identically to the one described in (Shinnar et al.
2015), except that it takes a derivation hierarchy (resp. a model) as additional
context. Instead of the evaluation judgment q @ d ⇓ d′, we use δ � q @ d ⇓ d′,
where δ is a derivation hierarchy, q an expression, d the (implicit) input value,
and d′ the output value. All the evaluation rules pass that additional context
along, and the rules for casting are as follows.

δ � q @ d0 ⇓ brand A′ (d) δ(A′,A)
(Cast)

δ � (A) q @ d0 ⇓ {brand A′ (d)}
δ � q @ d0 ⇓ brand A′ (d) ¬δ(A′,A)

(CastFail)
δ � (A) q @ d0 ⇓ {}

Instead of the typing judgment q : τ0 → τ1, we use μδ � q : τ0 → τ1, where
μδ is a well-formed model, q an expression, τ0 the type of the (implicit) input,
and τ1 the type of the output. All the typing rules pass that additional context
along, and the rule for casting is as follows.

μδ � q : τ → Brand A′
(TCast)

μδ � (A) q : τ → {Brand A}

Type soundness holds for NRA with brands.

Theorem 5 (Soundness of Type System for NRA). Given a well-formed
model, i.e., μδ such that |= μδ:

if (μδ � q : τ0 → τ1) ∧ (μδ � d0 : τ0) then ∃d1, (δ � q @ d0 ⇓ d1) ∧ (μδ � d1 : τ1)

6.3 From CAMP to NRA

Translation from CAMP to NRA proceeds identically as the one in (Shinnar
et al. 2015), with one additional rule for the cast pattern:

�cast A� = (A) (In.D)

We now restate the key correctness theorems of semantics and type preserva-
tion for that translation. A CAMP pattern that evaluates to d becomes an NRA
query that evaluates to {d} and a CAMP pattern that evaluates to err becomes
an NRA query that evaluates to ∅.

Theorem 6 (Correctness of Translation from CAMP to NRA).

δ;σ � p @ d1 ⇓ d2 ⇐⇒ δ � �p� @ ([E : σ] ∗ [D : d1]) ⇓ {d2}
δ;σ � p @ d1 ⇓ err ⇐⇒ δ � �p� @ ([E : σ] ∗ [D : d1]) ⇓ ∅
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Theorem 7 (Type Preservation). Given a well-formed model, i.e., μδ such
that |= μδ:

CAMP↔NRA: μδ;Γ � p : τ0 → τ1 ⇔ μδ � �p� : [E : Γ,D : τ0] → {τ1} .

7 Related Work

Our work is related to several areas of databases and programming languages
research which have all been influenced by Philip Wadler’s work. Compiling
rules to a database backend shares similarities with database-supported execu-
tion of programming languages with embedded queries, such as Links (Cooper
et al. 2007) and others (Cheney et al. 2013). The Nested Relational Algebra
is closely related to languages based on comprehensions such as (Trinder and
Wadler 1988), and others (Tannen et al. 1992; Beeri and Kornatzky 1993; Cluet
and Moerkotte 1993; Fegaras and Maier 2000). The idea to use of type anno-
tations with a structural subtyping relation to marry nominal and structural
typing is inspired by (Siméon and Wadler 2003) and others (Lee et al. 2015;
Jones et al. 2015). Compared to (Siméon and Wadler 2003) we must account for
the different data model which includes bags and records. This allows us to shed
some of the complexity inherent to XML and XML Schema, such as derivation
by restriction or substitution groups. However, the subtyping relation requires
specific care to handle complex record operations. Compared to (Jones et al.
2015) and (Lee et al. 2015), we do not address typing for a full OO program-
ming language but we integrate brands into a language suitable for bulk data
processing.

Typing issues similar to ours are found in object-oriented databases, which
support queries over nested objects (Berler et al. 2000). Implementations of
OQL (Cluet and Moerkotte 1993) also compile queries into a nested algebra
or calculus (Fegaras and Maier 2000; Trigoni and Bierman 2001; Cluet and
Moerkotte 1993; Beeri and Kornatzky 1993; Claußen et al. 1997). At the surface
language level, proposed type systems (Alagic 1999; Trigoni and Bierman 2001)
rely on a purely nominal approach. In contrast, the type system for underlying
algebras used for optimization (Cluet and Moerkotte 1993) involves structural
typing and record operations but does not address inheritance. The approach
presented here unifies both those type systems in a simple and natural way,
allowing us to prove type-preservation for the resulting compiler.

8 Conclusion

In this paper, we have described a novel type system for languages that involve
complex record operations in the context of a class hierarchy. Our compiler
includes a translator from JRules to CAMP, a backend that generates Javascript
code from NRA, and a query optimizer. Brands are integrated in the full pipeline
and, with the exception of the initial front-end translation and Javascript gen-
eration, it has been fully mechanized and verified using the Coq proof assistant.
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We are currently pursuing further development on both theoretical and practical
aspects of our compiler. From a theoretical standpoint, we are exploring type
inference and extensions with intersection types. From a practical standpoint,
we are looking into the use types for optimization, and code-generation for vari-
ous database runtimes. Beyond his work on XML types, we are indebted to Phil
Wadler’s long held interest in cross pollination between programming languages
and databases without which this work would simply not exist.

Acknowledgments. We want to thank Joshua Auerbach, Martin Hirzel, and Louis
Mandel, for their feedback on earlier versions of this draft.

A Operators Semantics

Figure 7 provides a denotational semantics for core unary operators using the
judgment ⊕d1 ⇓ d2 where ⊕ is the operator, d1 the value it is applied to and
d2 the resulting value. Note that when writing e.g., {d} ⇓ {d}, the left hand-
side is really the application of the operator on d. I.e., it is really meant as
λx.{x}(d) ⇓ {d}.

Fig. 7. Unary operators semantics. ⊕d ⇓ d

Figure 8 provides a denotational semantics for core binary operators using
the judgment d1 ⊗ d2 ⇓ d3 where ⊗ is the operator, d1 and d2 the values it is
applied to and d3 the resulting value. Note that for concat and merge operators
we rely on underlying merge and concat defined at the data model level (see
Sect. A).



386 A. Shinnar and J. Siméon

Fig. 8. Binary operators semantics. d ⊗ d ⇓ d
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Abstract. We study union types and recursive types in the setting of
a gradually typed lambda calculus. Our goal is to obtain a foundational
account for languages that enable recursively defined data structures to
be passed between static and dynamically typed regions of a program. We
discuss how traditional sum types are not appropriate for this purpose
and instead study a form of “true” union in the tradition of soft typing
(Cartwright and Fagan, 1991) and occurrence typing (Tobin-Hochstadt
and Felleisen, 2008). Regarding recursive types, our formulation is based
on the axiomatization of subtyping by Brand and Henglein (1998).

This paper defines three artifacts. First, in the context of the simply
typed lambda calculus, we define the semantics of our unions and inte-
grate them with equi-recursive types. Second, we add a dynamic type �
to obtain a gradually typed lambda calculus. Its semantics is defined by
translation to the third artifact, a blame calculus (Wadler and Findler,
2009) extended with unions and equi-recursive types.

1 Introduction

The following program is gradually typed, with a dynamically typed region
enclosed in �·�. The dynamically typed code creates a list of two integers and
passes the list to the statically-typed sum function.

letrec sum = λls : IntList. case×?(ls) then
λx : Int × IntList.

fstx + sum(sndx)
else λy : Unit. 0

in sum �cons 1 (cons 2 nil)�
The case construct queries for the category of a value, e.g., whether it is

a pair. The runtime semantics of this construct is intended to have the same
power as value inspection primitives in languages like Scheme (Kelsey et al.,
1998) and Racket (Flatt and PLT, 2014) (e.g. procedure?, pair?, etc.), and
similar to those in other dynamic languages such as Python or JavaScript. We
seek a foundational account of a language in which the above program can be
written. The literature includes several candidate languages from which we could
start.

c© Springer International Publishing Switzerland 2016
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The language CDuce (Frisch et al., 2008, Castagna et al., 2014) includes
recursive types, union types, and more. However, the dynamic type dispatch
feature of CDuce, of the form x = L ∈ A ? M | N , does not quite match our
needs. (Here L,M,N are terms and A is a type). The type dispatch of CDuce
requires more power (i.e., is more expensive) because it relies on type checking
values in a deep manner:

(x = V ∈ A ? M | N) −→
{

[x:=V ]M if � V : A

[x:=V ]N if � V : ¬A

The set-theoretic union studied by Pierce (1991) and others comes to mind,
but the case construct from that line of research does not enable runtime dis-
patching but instead requires the body of the case to be well typed for each
alternative type in the union:

Γ � L : A1 ∪ A2 Γ, x:Ai � N : B i ∈ 1, 2
Γ � (caseL ofx ⇒ N) : B

Alternatively, one might try to use sum types (Pierce, 2002) and define the
above IntList type as follows.

IntList � μX. Unit + (Int × X)

However, sum types do not interoperate well with the dynamic type � of grad-
ual typing. For example, what should the following sequence of casts reduce to?

4 : Int =⇒ � =⇒ (Int + Int)

Should it be inl 4 or inr 4? There is not a good answer which suggests that
one should not ask the question. To solve this, one could require the branches of
the sums to be different types. In some sense this is what we propose to do in
this paper, but with the following caveat. We require the branches of the sum to
differ in their top-most type constructor, for example, disallowing the sum type

(Int → Int) + (Int → Bool)

With this restriction, the value inspection primitives alluded to above are
powerful enough to choose between the branches of the sum.

The case construct and union type in this paper can also be seen as a modern
take on the case and union type of Cartwright and Fagan (1991). Our formal-
ism differs from theirs in that we give a succinct typing rule for case, encode all
of our restrictions on union and recursive types in the grammar of types, and
provide syntax-directed subtyping rules that are more suggestive of a subtyping
algorithm. Recently, Tobin-Hochstadt and Felleisen (2008, 2010) studied union
types and proposed a type system that supports occurrence typing based on
predicates and Boolean conditionals. The Typed Racket implementation sup-
ports recursive types but its combination of recursive types and union types has
not been formalized. Here we study a case construct that is simpler than the
one in Typed Racket, one that is more appropriate for a foundational calculus
rather than a full-fledged programming language.
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The contributions of this paper are threefold.

– Sect. 2 defines a simply typed lambda calculus with recursive types, union
types, and a case construct for discriminating on the category of a value
(λμ∪). Our subtyping rules for unions are inspired by Vouillon (2004) whereas
our handling of recursive types is inspired by Brandt and Henglein (1998).
However, the combined system is novel.

– Sect. 3 defines a gradually typed lambda calculus with recursive types and
union types (λ�

μ∪). This section includes both a declarative type system and
an algorithmic type system as well as a cast-inserting translation to a blame
calculus.

– Sect. 4 presents a blame calculus with unions and recursive types (λBμ∪).

2 STLC with Recursive Types and Unions, λμ∪

Every gradual type system needs a static type system to be gradual with respect
to. Thus, we begin with the Simply Typed Lambda Calculus (STLC) extended
with union types and equi-recursive types, which we refer to has λμ∪. We discuss
unions first and then the recursive types.

2.1 Union Types and Case

The case construct that we study in this paper has the form

case c?(L) then M else N

where c ranges over the type constructors (Int, →, ×, etc.). The dynamic seman-
tics of case is to test whether the value V of term L matches the type construc-
tor c. If it does, apply M to V , and if not, apply N to V .

case c?(V ) then M else N −→
{

M V if tycon(V ) = c

N V otherwise

The tycon function is defined as follows:

tycon(k) = Δ(k) tycon((V1, V2)) = × tycon(λx:A. N) = →
where Δ assigns base types to constants.

The above case construct is the elimination form of our union type. Given a
union type, the then branch needs the element of the union type that matches
the type constructor c. The else branch needs all of the elements of the union
type that do not match c. Our union types therefore take the form

∪C
where C is a function from type constructors to pre-types. We require that the
pre-type C(c) have c as its top-most type constructor. We use the notation C − c
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for the function whose domain has been restricted to omit c. The following is
the typing rule for case.

Γ � L : ∪C Γ � M : C(c) → A Γ � N : (∪ (C − c)) → A

Γ � (case c?(L) then M else N) : A

The typing rule makes it clear why the two branches have function type:
their parameter types take into account the knowledge learned about L, so our
case can be viewed as supporting a limited form of occurrence typing.

The introduction rule for our union type is subsumption, that is, terms may
be implicitly up-cast via subtyping to have a union type. The subtyping rules for
unions, shown below, are inspired by Vouillon (2004). If the left-hand side is a
union, then we require every type in the union to be a subtype of the right-hand
side. If the left-hand side is not a union, but the right-hand side is, then the
left-hand side needs to be a subtype of one of the types in the union.

∀c ∈ dom(C). Σ � C(c) <: Q

Σ � ∪C <: Q

Σ � c(Ā) <: C(c) c ∈ dom(C)
Σ � c(Ā) <: ∪C

2.2 Equi-Recursive Types

Equi-Recursive types are best thought of as trees with
back edges. For example, the tree on the right is the
IntList type of the earlier example. To conveniently
define subtyping rules, we define a syntax for types
in Fig. 1. We choose a particular canonical form that
streamlines the subtyping rules. Every node in the tree
has two syntactic parts: (1) a μ binder so that it can be the target of a back
edge and (2) a pre-type that describes its shape: either a union type or a type
constructor with arguments. A back edge is represented using an occurrence of
a type variable X.

The IntList type is therefore represented syntactically as follows:

IntList ≡ μX. ∪ {Unit �→ Unit,× �→ (μY. Int) × X}
As usual, we often write the application of a type constructor using infix

notation (i.e., A1 × A2 is ×(A1, A2), A1 → A2 is → (A1, A2), and ι is ι()). The
canonical form requires μ binders in many places in which they are not used, as
in μY. Int, but this is harmless.

The definition of subtyping in the presence of equi-recursive types is delicate
and is often expressed using coinduction (Pierce, 2002). Here we define subtyp-
ing using an inductive definition that mimics coinduction through the use of
subtyping assumptions, an idea due to Brandt and Henglein (1998). The result-
ing subtyping definition is simpler than the classic one of Amadio and Cardelli
(1993) in that it does not require a separate definition of type equality to allow
for the unfolding of recursive types and it does not require the subtle “contract”
rule. The basic idea is that when trying to deduce that A <: B, one can assume
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Base types ι ::= Unit | Int | Bool | · · ·
Constructors c ∈ C ::= ι | × |→
Cnstr. to type C ::= {c �→ c(Ā), . . .}
Pre-types P, Q ::= c(Ā) | ∪ C
Types A, B, C ::= μX. P | X

Fig. 1. Types for the STLC with recursive types and unions

Subtype Env. Σ ::= ∅ | Σ, A <: B

Subtyping on pre-types Σ � P <: Q

Σ � ι <: ι
Σ � A <: C Σ � B <: D

Σ � A×B <: C×D
Σ � C <: A Σ � B <: D

Σ � A→B <: C→D

∀c ∈ dom(C). Σ � C(c) <: Q

Σ � ∪ C <: Q

Σ � c(Ā) <: C(c) c ∈ dom(C)
Σ � c(Ā) <: ∪ C

Subtyping Σ � A <: B

A <: B ∈ Σ
Σ � A <: B

A = μX. P B = μY. Q
Σ, A <: B � [X:=A]P <: [Y :=B]Q

Σ � A <: B

Fig. 2. Subtyping for recursive types and unions.

A <: B. The trick to avoid circular reasoning is to make sure not to use the
assumption right away, but only after progressing past a type constructor.

We accomplish this restriction in a slightly more compact way than Brandt
and Henglein (1998). We separate the subtyping relation into two mutually recur-
sive relations in Fig. 2, one on pre-types and the other on types. Assumptions
may only be used for subtyping on types (not pre-types) and the body of a recur-
sive type is a pre-type. The subtyping rules for pre-types are the usual ones for
base types, products, and functions together with the above-described rules for
unions. The rules for (recursive) types enable the use of assumptions or unfold
the two recursive types, adding them to the set of assumptions. We abbreviate
subtyping in an empty environment as A <: B. As usual, subtyping is reflexive
and transitive.

The subtyping rules are syntax directed and therefore suggestive of an algo-
rithm for subtyping. To obtain an efficient algorithm, one should thread the sub-
typing environment as both an input and an output and use structure sharing
so that structural type equality checks can be implemented as pointer equality.

2.3 Type System

Figure 3 defines the type system for λμ∪. The standard rules for the STLC are
in gray so as to emphasize the rules concerning recursive types and unions.
Our syntax for types induces a slight inconvenience; we split the typing relation
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into two parts to handle whether the term’s type is a pre-type or a recursive
type. The introduction rules are generally in the typing relation for pre-types
whereas the elimination rules typically produce types. There are two rules that
convert back and forth between recursive types and pre-types. A recursive type
can be turned into a pre-type by unfolding. A pre-type can be turned into a
recursive type by folding it into the recursive type.

2.4 Operational Semantics

The operational semantics for λμ∪ is also given in Fig. 3. Except for the reduction
rule for case, which we discussed in Sect. 2.1, the rules are standard. The type
system of λμ∪ is sound with respect to the operational semantics. The proof is
in Appendix A.1.

3 GTLC with Recursive Types and Unions, λ�
μ∪

This section defines a gradually typed lambda calculus equipped with equi-
recursive types and unions, λ�

μ∪. We define the static semantics (that is, the
type system) for λ�

μ∪ in Sect. 3.1 and then present a type checking algorithm
in the form of a syntax-directed inductive definition (Sect. 3.2). The dynamic
semantics, as usual for gradually typed languages, is defined by translation to
a blame calculus. That translation is given in Sect. 3.3. (This blame calculus is
defined in Sect. 4.)

3.1 Type System

We define the type system for λ�
μ∪ following the methodology for modifying a

statically typed language, in this case λμ∪, to be gradually typed. Recent work
by Cimini and Siek (2016) formalizes this methodology and provides a tool for
automating the creation of gradual type systems, but does not yet handle types
with binders, such as recursive or universal types. So here we proceed by hand.

We add the dynamic type � and change the elimination rules to use matching
to handle the case when what is being eliminated has type �. (The introduction
rules remain unchanged.) We write P � Q to say that pre-type P matches Q
and define this relation as follows.

c(Ā) � c(Ā) ∪ C � ∪ C � � � × � � � �→ � � � ∪ {c �→ c(�̄) | c ∈ C} P � Q

We replace uses of type equality with either compatibility (e.g., the application
rule) or by taking the meet with respect to naive subtyping (e.g., the case rule).
We extend the usual definition of naive subtyping (Wadler and Findler, 2009)
to handle unions and recursive types in a straightforward way:

P <:n �
∀i. Ai <:n Bi

c(Ā) <:n c(B̄)

dom(C) = dom(C ′)
∀c ∈ dom(C). C(c) <:n C′(c)

∪C <:n ∪C′ P <:n Q

P <:n Q

μX. P <:n μX. Q
X <:n X A <:n B
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L, M, N

Terms L, M, N ::= k | op(M̄) | λx:A. N | L N | (M, N) | fstL | sndL |
case c?(L) then M else N

Type Env. Γ ::= ∅ | Γ, x:A
Values V, W ::= k | λx:A. N | (V, W )
Frames F ::= � N | V � | (�, N) | (V, �) | fst� | snd� |

case c?(�) then M else N

Term typing Γ � M : P

Γ � k : Δ(k)
Γ � M : A Γ � N : B

Γ � (M, N) : A × B

Γ, x:A � N : B

Γ � (λx:A. N) : A → B

Γ � M : μX. P

Γ � M : [X:=μX. P ]P

Γ � M : A

Γ � M : A ∅ � A <: B
Γ � M : B

Γ (x) = A

Γ � x : A

Δ(op) = (Ā, B) Γ � M̄ : Ā

Γ � op(M̄) : B

Γ � M : A × B

Γ � fstM : A

Γ � M : A × B

Γ � sndM : B
Γ � L : A → B Γ � M : A

Γ � L M : B

Γ � L : ∪ C Γ � M : C(c) → A
Γ � N : (∪ (C − c)) → A

Γ � (case c?(L) then M else N) : A

Γ � M : [X:=μX. P ]P

Γ � M : μX. P

Reduction

op(V̄ ) −→ δ(op, V̄ )

(λx:A. N) V −→ [x:=V ]N

fst (V, W ) −→ V

snd (V, W ) −→ W

case c?(V ) then M else N −→
{

M V if tycon(V ) = c

N V otherwise

F [M ] −→ F [N ] if M −→ N

Fig. 3. Semantics of STLC with recursive types and unions, λμ∪

Two types are compatible, written A ∼ B, when there exists a lower bound
of the two types with respect to naive subtyping. The meet, written A 
 B, is
the greatest lower bound with respect to naive subtyping.

Finally, because λμ∪ supports subtyping, we use the approach of Siek and
Taha (2007) which recommends adding a subsumption rule to the gradual type
system and defining subtyping for � as follows.

Σ � � <: �

With these ingredients in place, we present the static semantics of λ�
μ∪ in Fig. 4.
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Pre-types P, Q ::= c(Ā) | ∪ C | �
Terms L, M, N ::= k | op(M̄) | λx:A. N | L N | (M, N) | fstL | sndL |

case c?(L) then M else N | M :: A

Term typing Γ � M : P
identical to λµ∪

Γ � M : A

Γ � M : A ∅ � A <: B
Γ � M : B

Γ (x) = A

Γ � x : A

Δ(op) = Ā → B Γ � M̄ : C̄
∀i ∈ 1..n. Ci ∼ Ai

Γ � op(M̄) : B

Γ � M : P
P 	 (B × C)

Γ � fstM : B

Γ � M : P
P 	 (B × C)

Γ � sndM : C

Γ � L : P P 	 (B → C)
Γ � M : B′ B′ ∼ B

Γ � L M : C

Γ � M : A
A ∼ B

Γ � (M :: B) : B

Γ � L : P P 	 ∪ C
Γ � M : C(c) → C Γ � N : (∪ (C − c)) → C′

Γ � (case c?(L) then M else N) : (C 
 C′)

Γ � M : P X /∈ ftv(P )

Γ � M : μX. P

Fig. 4. Type system for the GTLC with recursive types and union, λ�
μ∪

3.2 Algorithmic Type System

As was the case for Siek and Taha (2007), more work is required to obtain a
type checking algorithm. As usual, we need to remove the subsumption rule
and incorporate subtyping into the elimination rules (Pierce, 2002). However,
the presence of matching and compatibility presents a challenge. For example, a
naive attempt to incorporate subtyping into the application rule gives us:

Γ � L : A A <: A′ A′ � (B → C)
Γ � M : B′ B′ <: B′′ B′′ ∼ B

Γ � L M : C
(Naive)

This rule is still not syntax directed because of the types A′ and B′′. We intro-
duce two new relations, compatible-subtyping (�) and subtype-matching (�), that
combine subtyping with compatibility and matching, respectively, in a syntax
directed manner (defined in Fig. 5).

Lemma 11.

1. A � C iff A <: B and B ∼ C for some B.
2. A � Q iff A <: μX. P and [X:=μX. P ]P � Q for some μX. P .

The interaction of subtyping and the meet operator in the typing rule for
case raises a similar problem. Given a case whose branches have type C and
C ′, the type of the entire case needs to be some type A such that A = B 
 B′,
C <: B, and C ′ <: B′. So we need a type that is like an upper bound of C and
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Compatible-subtyping on pre-types Σ � P � Q

Same as subtyping on pre-types, but replace <: with � and add:

Σ � � � Q Σ � P � �

Compatible-Subtyping Σ � A � B

Same as subtyping, but replace <: with �.

Subtype-matching P � Q A � Q

c(Ā) � c(Ā) � � � × � � � �→ � � � ∪ {c �→ c(�̄) | c ∈ C}

∪ C � ∪ C dom(C) = {c}
∪ C � C(c)

[X:=μX. P ]P � Q

μX. P � Q

Fig. 5. Compatible-subtyping and subtype-matching.

C ′ with respect to <: but a lower bound with respect to <:n. To accomplish
this we define the meet-join relation (�) and the accompanying meet-meet (�)
relation (Fig. 10 of the Appendix).

Lemma 12.

1. A � B = C iff A <: A′, B <: B′, and C = A′ 
 B′ for some A′ and B′.
2. A � B = C iff A′ <: A, B′ <: B, and C = A′ 
 B′ for some A′ and B′.

Using these auxiliary definitions, we define a type checking algorithm for λ�
μ∪

in Fig. 6. This algorithm coincides with the type system.

Theorem 11. Γ � M : A iff Γ � M ↪→ A

3.3 Translation to the Blame Calculus via Cast Insertion

The dynamic semantics for λ�
μ∪ is defined in terms of the blame calculus λBμ∪

defined in Sect. 4. That blame calculus is an extension of λμ∪ with an explicit
cast construct of the form

M : A
p

=⇒ B

where A is the static type of M , p is a blame label, and B is the target type
of the cast, which must be compatible with A. To indicate whether the blame
for a cast failure goes to the inside of a cast or its context, each blame label
p has a complement p. Complement is involutive, p = p. Unlike the gradually
typed λ�

μ∪, casts to and from � are explicit. However, because this blame calculus
supports unions and recursive types, it supports implicit up-casts with respect
to subtyping.
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Algorithmic term typing Γ � M ↪→ A

X /∈ ftv(Δ(k))

Γ � k ↪→ μX. Δ(k)

Γ � M ↪→ A Γ � N ↪→ B
X /∈ ftv(A × B)

Γ � (M, N) ↪→ μX. A×B

Γ, x:A � N ↪→ B
X /∈ ftv(A → B)

Γ � (λx:A. N) ↪→ μX. A→B

Γ (x) = A

Γ � x ↪→ A

Δ(op) = (Ā, B)
∀i. Γ � Mi ↪→ Ci Ci � Ai

Γ � op(M̄) ↪→ B

Γ � M ↪→ A
A � (B × C)

Γ � fstM ↪→ B

Γ � M ↪→ A
A � (B × C)

Γ � sndM ↪→ C

Γ � L ↪→ A A � (B → C)
Γ � M ↪→ B′ B′ � B

Γ � L M ↪→ C

Γ � L ↪→ A A � ∪ C
Γ � M ↪→ C(c) → C Γ � N ↪→ (∪ (C − c)) → C′

Γ � (case c?(L) then M else N) ↪→ (C � C′)

Γ � M ↪→ A A � B

Γ � (M :: B) ↪→ B

Fig. 6. Algorithmic type system for λ�
μ∪

The translation to λBμ∪, defined in Fig. 7, turns the implicit casts to and
from � into explicit casts but ignores the implicit upcasts from subtyping. The
translation is type directed, so its structure is similar to the algorithmic type
system of Fig. 6. We define two judgments

Γ � M : P � M ′ and Γ � M : A � M ′

where M ′ is the translated term in the blame calculus. An important property
of the translation is that it be type preserving, which we prove in Appendix A.3.

Lemma 13 (Cast Insertion Preserves Types). If Γ � M : A � M ′ then
Γ � M ′ : A.

Towards explaining the cast insertion translation, we first consider the trans-
lation of a type ascripted term M :: B. In Fig. 6, M has type A and we require
A � B. Naively, we might insert a cast from A to B as follows:

Γ � M : A � M ′ A � B

Γ � (M :: B) : B � (M ′ : A
p

=⇒ B)

but the inserted casts requires that A ∼ B and we only know that A � B. That
is, there may be an implicit upcast from A to B with respect to subtyping. Thus,
the explicit cast to B needs start at some type A′ such that A <: A′ and A′ ∼ B.
Again taking inspiration from Siek and Taha (2007), we define a merge operator
(⇀) (defined in Fig. 8) that computes A′. The correct translation rule for type
ascription uses merge and is defined in Fig. 7.
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Translation (cast insertion) Γ � M : A � M ′

X /∈ ftv(Δ(k))

Γ � k : μX. Δ(k) � k

Γ � M : A � M ′ Γ � N : B � N ′

X /∈ ftv(A × B)

Γ � (M, N) : μX. A×B � (M ′, N ′)

Γ, x:A � N : B � N ′ X /∈ ftv(A → B)

Γ � (λx:A. N) : μX. A→B � (λx:A. N ′)

Γ (x) = A

Γ � x : A � x

Δ(op) = (Ā, B) Γ � M̄ : C̄ � M̄ ′

∀i ∈ 1..n. M ′′
i = (M ′

i : (Ci ⇀ Ai)
p

=⇒ Ai)

Γ � op(M̄) : B � op(M̄ ′′)

Γ � M : A � M ′ A � (B×C)
A′ = (A ⇀ B×C)

M ′′ = (M ′ : A′ p
=⇒ B×C)

Γ � fstM : B � fstM ′′

Γ � M : A � M ′ A � (B×C)
A′ = (A ⇀ B×C)

M ′′ = (M ′ : A′ p
=⇒ B×C)

Γ � sndM : C � sndM ′′

Γ � L : A � L′ A � (B → C) Γ � M : B′ � M ′

L′′ = (L : (A ⇀ B→C)
p

=⇒ B→C) M ′′ = (M ′ : (B′ ⇀ B)
p

=⇒ B)

Γ � L M : C � L′′ M ′′

Γ � L : A � L′ A � ∪ C L′′ = L′ : (A ⇀ ∪ C) p
=⇒ ∪ C

B1 = C(c)→C B′
1 = (∪ (C − c)) → C′ Γ � M : B1 � M ′ Γ � N : B′

1 � N ′

C2 = C � C′ B2 = C(c)→C2 B′
2 = (∪ (C − c)) → C2

M ′′ = (M ′ : (B1 ⇀ B2)
p

=⇒ B2) N ′′ = (N ′ : (B′
1 ⇀ B′

2)
p′
=⇒ B′

2)

Γ � (case c?(L) then M else N) : C2 � (case c?(L′′) then M ′′ else N ′′)

Γ � M : A � M ′ A � B

Γ � (M :: B) : B � M ′ : (A ⇀ B)
p

=⇒ B

Fig. 7. Translation from λ�
μ∪ to a blame calculus via cast insertion

Merge on pre-types Σ � P ⇀ Q = P ′

Σ � � ⇀ Q = � Σ � P ⇀ � = P
∀i ∈ 1..n. Σ � Ai ⇀ Bi = Ci

Σ � c(Ā) ⇀ c(B̄) = c(C̄)

C = {c �→ c(Ā)} Σ � c(Ā) ⇀ P = P ′

P �= �

Σ � ∪ C ⇀ P = P ′

Σ � P ⇀ C(c) = Q c ∈ dom(C)
P �= �

Σ � P ⇀ ∪ C = ∪ ([c := Q]C)

Merge Σ � A ⇀ B = A′

Z �→ A ⇀ B ∈ Σ
Σ � A ⇀ B = Z

A = μX. P B = μY. Q
Σ, Z �→ A ⇀ B � [X:=A]P ⇀ [Y :=B]Q = Q′

Σ � μX. P ⇀ μY. Q = μZ. Q′

Fig. 8. Merge operator
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4 Blame Calculus with Recursive Rypes and Union, λBμ∪

In this section we study a blame calculus, named λBμ∪, that is the appropriate
intermediate language for λ�

μ∪. As discussed in Sect. 3.3, this blame calculus
extends λμ∪ with an explicit cast operation from one type to another compatible
type. This blame calculus is related to the original one of Wadler and Findler
(2009) in that it adds recursive types and unions but omits subset types. The
syntax for λBμ∪ is defined at the top of Fig. 9.

With the addition of the type �, the first question is what values of type �
should look like. Wandler and Findler (2009) choose them to be values injected
from ground types to �:

V : G
p

=⇒ �

We make the same choice here but extend the notion of ground type to
handle recursive types and unions (Fig. 9). The inclusion of μ binders and type
variables in the ground types is somewhat gratuitous because a well-formed
ground type does not contain any type variables. However, if we were to enforce
this in the grammar, it would require considerable special-casing elsewhere in
the formalism. The type system of λBμ∪ defined in Fig. 9 is a straightforward
extension of λμ∪ (Fig. 3) to include the typing rule for explicit casts and blame.

Regarding the reduction rules, many of them concern casts between pre-types
and not between (recursive) types, so we expand the syntax of terms to include
casts between pre-types, i.e., M : P

p
=⇒ Q. Also, as usual, we abbreviate a pair

of casts in the following way to avoid the duplication of the middle type.

(M : A
p

=⇒ B) : B
q

=⇒ C ≡ M : A
p

=⇒ B
q

=⇒ C

Now, the reduction rules for casts must handle every combination of source A
and target type B where A ∼ B. Thus, we need to handle casting from a union
type to a compatible union type and similarly for recursive types. When casting
a value between union types, V : ∪C p

=⇒ ∪C′, we can ask for V ’s category via
tycon and use it to select out the appropriate alternatives from the two union
types (Fig. 9). This reduction rule preserves types because C′(c) <: ∪C′.

Regarding casts between recursive types, we unfold the recursive types, yield-
ing a cast between two pre-types (Fig. 9). This reduction rule preserves types
because of the typing rule for implicit folding into a recursive type (Fig. 3).

The final reduction rules that deserve mention are the two rules that handle
an injection followed by a projection, that is, V : G

p′
=⇒ �

p
=⇒ H. In recent

accounts of the blame calculus (Siek et al., 2015), the projection succeeds if
G = H. In the current setting, we also need to consider the case where G �= H
but G <: H. For example, take G = μX. Int and H = μX. ∪ {Int �→ Int,× �→
μY. Bool × μY. Bool}. We want to allow such casts so we alter the reduction
rule to succeed when G <: H and fail otherwise. This reduction rule preserves
types because ∅ � V : H by subsumption.



400 J.G. Siek and S. Tobin-Hochstadt

Pre-types P, Q ::= c(Ā) | ∪ C | �
Blame p, q
Terms L, M, N ::= k | op(M̄) | λx:A. N | L N | (M, N) | fstL | sndL |

case c?(L) then M else N | M : A
p

=⇒ B | blame p
Ground pre-types γ ::= c(�̄) | ∪ {c �→ c(�̄), . . .}
Ground types G, H ::= μX. γ | X

Values V, W ::= k | λx:A. N | (V, W ) | V : G
p

=⇒ �
Frames F ::= � N | V � | (�, N) | (V, �) | fst� | snd� |

case c?(�) then M else N

Term typing

(same as λµ∪) · · · Γ � M : A A ∼ B

Γ � M : A
p

=⇒ B Γ � blame p : A

Reduction

(same as λµ∪)

...

V : ι
p

=⇒ ι −→ V (1)

V : A→B
p

=⇒ C→D −→ λx:C. V (x : C
p

=⇒ A) : B
p

=⇒ D (2)

(V, W ) : A×B
p

=⇒ C×D −→ (V : A
p

=⇒ C, W : B
p

=⇒ D) (3)

V : ∪ C p
=⇒ ∪ C′ −→ V : C(c) p

=⇒ C′(c) where c = tycon(V ) (4)

V : μX. P
p

=⇒ μX. Q −→ V : [X:=μX. P ]P
p

=⇒ [X:=μX. Q]Q (5)

V : �
p

=⇒ � −→ V (6)

V : A
p

=⇒ � −→ V : A
p

=⇒ G
p

=⇒ � if A �= �, A �= G, A ∼ G (7)

V : �
p

=⇒ A −→ V : �
p

=⇒ G
p

=⇒ A if A �= �, A �= G, A ∼ G (8)

V : G
q

=⇒ �
p

=⇒ H −→ V if G <: H (9)

V : G
q

=⇒ �
p

=⇒ H −→ blame p if G �<: H (10)

Fig. 9. Blame calculus with recursive types and unions, λBμ∪.

4.1 Example Revisited

Now that we have defined the translation from λ�
μ∪ and λBμ∪ (Sect. 3.3) and the

operational semantics for λBμ∪, we can give an account for the example in the
Sect. 1. We start by showing the result of cast insertion. To keep things concise,
we introduce some shorthand notation. We use the notation �e� to stand for the
result of performing cast insertion on a dynamically typed expression e. Also,
to make types more concise, we write P̂ to turn the pre-type P into a type
by adding an unused recursive variable, as in μX. P . Also, for union types we
introduce the binary notation

c1(Ā) ∪ c2(B̄) ≡ ∪{c1 �→ c1(Ā), c2 �→ c2(B̄)}
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Recall that
IntList ≡ μX. Unit ∪ ( ˆInt × X)

Finally, we define cons and nil as follows

cons ≡ λx:�̂. λy:�̂. (x, y) : (�̂ ×̂ �̂)
p4=⇒ �̂

nil ≡ (unit : ˆUnit
p5=⇒ �̂)

The statically typed sum function remains unchanged by cast insertion and
has type IntList → Int, but the dynamically typed code that creates the list
is translated as follows

(cons �1� (cons �2� nil)) : �̂
p3=⇒ IntList

Starting with the β reductions for cons, we have the following reduction sequence.

−→∗((
1�, 
(2,nil)�) : (�̂ ×̂ �̂)
p4=⇒ �̂

p3=⇒ IntList)

−→ ((
1�, 
(2,nil)�) : (�̂ ×̂ �̂)
p4=⇒ �̂

p3=⇒ (μX. Unit ∪ (�̂ × �̂))
p3=⇒ IntList) rule (8)

−→ ((
1�, 
(2,nil)�) : (μX. Unit ∪ (�̂ × �̂))
p3=⇒ IntList) rule (9)

−→ ((
1�, 
(2,nil)�) : (Unit ∪ (�̂ × �̂))
p3=⇒ (Unit ∪ (Int × IntList))) rule (5)

−→ ((
1�, 
(2,nil)�) : (�̂ × �̂)
p3=⇒ (Int × IntList)) rule (4)

−→ (
1� : �̂
p3=⇒ Int, 
(2,nil)� : �̂

p3=⇒ IntList) rule (3)

−→ (1, 
(2,nil)� : �̂
p3=⇒ IntList) rule (1)

−→∗(1, (2, unit))

As expected, the list normalizes to a value of type IntList. We skipped the
final two-thirds of the reductions because they are repetitive, applying the same
rules as in the above reductions.

4.2 Type Safety of λBμ∪

We state the main lemmas for type safety here and include the proofs in
Appendix A.4.

Lemma 14 (Canonical Forms).

– Suppose ∅ � V : P .
1. If P = � then V = (V ′ : c(Ā)

p
=⇒ �) for some V ′, c, Ā, and p.

2. If P = ι then V = k and Δ(k) = ι for some constant k.
3. If P = A × B then V = (V1, V2) for some V1 and V2.
4. If P = A → B then V = λx:A′. M for some x, A′, and M .
5. If P = ∪C then ∅ � V : C(c) for some c ∈ dom(C).

– Suppose ∅ � V : μX. P . Then ∅ � V : [X:=μX. P ]P and the first part of this
proposition can be applied.

Lemma 15 (Preservation). If ∅ � M : A and M −→ N , then ∅ � N : A.

Lemma 16 (Progress). If ∅ � M : A then either M is a value or M −→ N
for some N .



402 J.G. Siek and S. Tobin-Hochstadt

4.3 Blame Safety

Here we adapt the standard blame safety theorem (Wadler and Findler, 2009,
Siek et al., 2015) to λBμ∪. A cast from A to B decorated with p is safe for blame
label q, if evaluation of the cast never allocates blame to q. The following three
rules reflect that if A <:+ B the cast never allocates positive blame, if A <:− B
the cast never allocates negative blame, and a cast with label p never allocates
blame other than to p or p. Positive and negative subtyping are defined in Fig. 11
in Appendix A.5.

A <:+ B

(A
p

=⇒ B) safe p

A <:− B

(A
p

=⇒ B) safe p

p �= q p �= q

(A
p

=⇒ B) safe q

Safety extends to terms in the obvious way: M safe q if every cast in M is
safe for q. Blame safety is established via a variant of preservation and progress.
The proof is in Appendix A.5.

Theorem 11 (Blame Safety).

1. If M safe p and M −→ N then N safe p.
2. If M safe p then M �−→ blame p.

5 Conclusion

Disjoint unions, in the form of sum types as seen in languages such as ML
and Haskell, have been widely successful in programming languages. However,
non-disjoint unions, while mathematically natural, have seen much less adoption,
even though they naturally model the reasoning programmers employ in dynamic
languages. We contend that this failure is due to a lack of a natural elimination
rule for union types. In this paper, we show that dynamic type tests are the
natural elimination rule for union types. Furthermore, support for true unions
fits naturally with equi-recursive types.

The need for type systems with true union types is particularly pressing
in gradually-typed languages, and we show that existing approaches to gradual
type systems scale naturally to handle both unions and equi-recursive types. Our
model is both simple enough to serve as a core calculus, while also including the
key features we need to model languages such as Typed Racket and TypeScript.

Our development scales from a simple, typed language through a gradual
type system, to a calculus of casts which demonstrates the operational behavior
of casts, including casts to union and recursive types. We show both declarative
and algorithmic versions of our type system, as well as how to assign blame
when casts fail, proving the blame theorem showing that our dynamic checks
adequately enforce the corresponding static types.
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A Appendix

A.1 Type Safety of λμ∪

Lemma 1 (Subtyping Substitution). If μX. P <: μX. Q, then [X:=μX. P ]
P <: [X:=μX. Q]Q.

Lemma 2 (Canonical Forms).

– Suppose ∅ � V : P .
1. If P = ι then V = k and Δ(k) = ι for some constant k.
2. If P = A × B then V = (V1, V2) for some V1 and V2.
3. If P = A → B then V = λx:A′. M for some x, A′, and M .
4. If P = ∪C then ∅ � V : C(c) for some c ∈ dom(C).

– Suppose ∅ � V : μX. P . Then ∅ � V : [X:=μX. P ]P and the first part of this
proposition can be applied.

Proof. The proof is by mutual induction on the derivation of ∅ � V : P and
∅ � V : μX. P . The cases for constants, pairs, and abstraction are immediate.

Case
∅ � V : μX. P

∅ � V : [X:=μX. P ]P

From ∅ � V : μX. P we have ∅ � V : [X:=μX. P ]P by induction. Then again
by induction we conclude.

Case ∅ � V : A ∅ � A <: B
∅ � V : B

Let A = μX. P and B = μX. Q. By induction we have ∅ � V : [X:=A]P . From
A <: B we have [X:=A]P <: [X:=B]Q by Lemma 1. Thus we conclude that
∅ � V : [X:=μX. Q]Q

Case
Γ � V : [X:=μX. P ]P

Γ � V : μX. P

The rest of the typing rules don’t apply to values. 
�
Lemma 3 (Preservation). If ∅ � M : A and M −→ N , then ∅ � N : A.

Proof. The proof is by induction on the derivation of M −→ N . All of the
reduction rules are standard except for the reduction rule for case.

Case case c?(V ) then M ′ else N ′ −→
{

M ′ V if tycon(V ) = c

N ′ V otherwise
We have ∅ �

V : ∪C, ∅ � M ′ : C(c) → A, and ∅ � N ′ : (∪C − c) → A. We have two subcases
to consider.

Subcase tycon(V ) = c. From ∅ � V : ∪C, canonical forms (Lemma 2), and
tycon(V ) = c, we have ∅ � V : C(c). We conclude that ∅ � M ′ V : A.
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Subcase tycon(V ) �= c. From ∅ � V : ∪C, canonical forms (Lemma 2), and
tycon(V ) �= c, we have ∅ � V : ∪ (C − c). We conclude that ∅ � N ′ V : A.

Lemma 4 (Progress). If ∅ � M : A then either M is a value or M −→ N
for some N .

Proof. The proof is by induction on the derivation of ∅ � M : A. The only novel
case in the proof is for the typing rule of case.

Case

∅ � L : ∪C ∅ � M ′ : C(c) → A
∅ � N ′ : (∪ (C − c)) → A

∅ � (case c?(L) then M ′ else N ′) : A

By induction, either L is a value or L −→ L′. In the later case we conclude
immediately using the frame reduction rule. Suppose L is a value. From canonical
forms (Lemma 2) we have ∅ � L : C(c′) for some c′ ∈ dom(C). We have two cases
to consider.

Subcase c = c′. We have ∅ � L : c(B̄) so by cases on the canonical forms, we
have tycon(L) = c. Therefore the following reduction applies:

(case c?(L) then M ′ else N ′) −→ M ′ L

Subcase c �= c′. We have ∅ � L : c′(B̄) so by cases on the canonical forms, we
have tycon(L) �= c. Therefore the following reduction applies:

(case c?(L) then M ′ else N ′) −→ N ′ L

A.2 Correctness of Algorithmic Type System for λ�
μ∪

Figure 10 defines the meet-join and meet-meet operators.

A.3 Translation to λBμ∪ Preserves Types

Lemma 5 (Merge and Subtyping). If A � B then A <: (A ⇀ B).

Lemma 6 (Merge and Compatibility). (A ⇀ B) ∼ B

Lemma 7 (Meet-Join and Compatible-Subtype). A � (A � B) and
B � (A � B).

Lemma 13 (Cast Insertion Preserves Types). If Γ � M : A � M ′ then
Γ � M ′ : A.

Proof. The proof is by induction on the derivation of Γ � M : A � M ′.

Case

Γ � M : A � M ′ A � (B×C) A′ = (A ⇀ B×C)
M ′′ = (M ′ : A′ p

=⇒ B×C)
Γ � fstM : B � fstM ′′
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Fig. 10. Combining meet and join with respect to <:n and <:.
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By the induction hypothesis, we have Γ � M ′ : A. From A � (B×C) we
have A � (B×C). Then by Lemma 5, we have A <: A′, so Γ � M ′ : A′. By
Lemma 6 we have A′ ∼ B×C and therefore Γ � M ′′ : B×C. We conclude
that Γ � fstM ′′ : B.

Case Γ � M : A � M ′

Γ � (M :: B) : B � M ′ : (A ⇀ B)
p

=⇒ B

By the induction hypothesis, we have Γ � M ′ : A. From A � B we have
A <: (A ⇀ B). So Γ � M ′ : (A ⇀ B). Also, we have (A ⇀ B) ∼ B.

Γ � (M ′ : (A ⇀ B)
p

=⇒ B) : B

Case

Γ � L : A � L′ A � ∪ C L′′ = L′ : (A ⇀ ∪ C) p
=⇒ ∪ C

B1 = C(c)→C B′
1 = (∪ (C − c)) → C′

Γ � M : B1 � M ′ Γ � N : B′
1 � N ′

C2 = C � C′ B2 = C(c)→C2 B′
2 = (∪ (C − c)) → C2

M ′′ = (M ′ : (B1 ⇀ B2)
p

=⇒ B2) N ′′ = (N ′ : (B′
1 ⇀ B′

2)
p′
=⇒ B′

2)

Γ � (case c?(L) then M else N) : C2 � (case c?(L′′) then M ′′ else N ′′)

From C2 = C � C ′ we have C � C2 (Lemma 7) and so C <: (C ⇀ C2).
Similarly, we have C ′ <: (C ′ ⇀ C2). Also, we have (C ⇀ C2) ∼ C2 and
(C ′ ⇀ C2) ∼ C2 (Lemma 6). Thus, with the induction hypotheses for M
and N , we have Γ � M ′′ : B2 and Γ � N ′′ : B′

2. Similarly, we also have
Γ � L′′ : ∪C. Therefore, we have

Γ � (case c?(L′′) then M ′′ else N ′′) : C2

The rest of the cases are similar. 
�

A.4 Type Safety of λBμ∪

Lemma 8. If μX. P ∼ μY. Q then [X:=μX. P ]P ∼ [Y :=μY. Q]Q.

Lemma 15 (Preservation). If ∅ � M : A and M −→ N , then ∅ � N : A.

Proof. The proof is by induction on the derivation of M −→ N . We only consider
the novel cases.

Case V : ∪C p
=⇒ ∪C′ −→ V : C(c)

p
=⇒ C′(c) where c = tycon(V )

By canonical forms (Lemma 14) and because tycon(V ) = c, we have ∅ � V :
C(c). Also, because ∪C ∼ ∪C′, we have C(c) ∼ C′(c). So ∅ � (V : C(c)

p
=⇒

C′(c)) : C′(c). Finally, because C′(c) <: ∪C′ we conclude that

∅ � (V : C(c)
p

=⇒ C′(c)) : ∪C′
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Case V : μX. P
p

=⇒ μY. Q −→ V : [X:=μX. P ]P
p

=⇒ [Y :=μY. Q]Q

By canonical forms (Lemma 14) we have ∅ � V : [X:=μX. P ]P . Also, because
μX. P ∼ μY. Q we have [X:=μX. P ]P ∼ [Y :=μY. Q]Q (Lemma 8). Thus, we
have

∅ � (V : [X:=μX. P ]P
p

=⇒ [Y :=μY. Q]Q) : [Y :=μY. Q]Q

Case V : G
q

=⇒ �
p

=⇒ H −→ V

We have ∅ � V : G and G <: H, so ∅ � V : H. 
�
Lemma 16 (Progress). If ∅ � M : A then either M is a value or M −→ N
for some N .

Proof. The proof is by induction on the derivation of ∅ � M : A. All of the cases
in the proof are standard except for the case for cast.

Case Γ � M ′ : A′ A′ ∼ A

Γ � M ′ : A′ p
=⇒ A

By the induction hypothesis, either M ′ is a value or M ′ −→ N ′. In the later
case we can conclude immediately by applying the reduction rule for frames.
Suppose M ′ is a value. We proceed by cases on A′ ∼ A.

Subcase � ∼ � We have

M ′ : �
p

=⇒ � −→ M ′

Subcase � ∼ Q,Q �= � By canonical forms (Lemma 14), M ′ = V :

G
q

=⇒ �. Now if Q is a ground type (let it be H), then we have either

V : G
q

=⇒ �
p

=⇒ H −→ V or V : G
q

=⇒ �
p

=⇒ H −→ blame p

depending on whether G <: H or not.
Subcase P ∼ �, P �= � If P is a ground type, then M ′ : P

p
=⇒ � is a

value. Otherwise, we have

M ′ : P
p

=⇒ G
p

=⇒ �

where G is the unique ground type compatible with P .
Subcase ι ∼ ι We have

M ′ : ι
p

=⇒ ι −→ M ′

Subcase (A×B) ∼ (C×D) By canonical forms (Lemma 14), we have
M ′ = (V,W ). So

(V,W ) : A×B
p

=⇒ C×D −→ (V : A
p

=⇒ C,W : B
p

=⇒ D)
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Subcase (A→B) ∼ (C→D) We have

M ′ : A→B
p

=⇒ C→D −→ λx:C. M ′ (x : C
p

=⇒ A) : B
p

=⇒ D

Subcase ∪C ∼ ∪C′ Let c = tycon(M ′). We have

M ′ : ∪C p
=⇒ ∪C′ −→ M ′ : C(c)

p
=⇒ C′(c)

Subcase μX. P ∼ μX. Q We have

M ′ : μX. P
p

=⇒ μX. Q −→ M ′ : [X:=μX. P ]P
p

=⇒ [X:=μX. Q]Q


�

A.5 Blame Safety

Figure 11 defines the positive and negative subtype relations used to define blame
safety in Sect. 4.3.

Lemma 9 (Unfolding Positive and Negative Subtyping).

1. If μX. P <:+ μX. Q then [X:=μX. P ]P <:+ [X:=μX. Q]Q
2. If μX. P <:− μX. Q then [X:=μX. P ]P <:− [X:=μX. Q]Q

Theorem 12 (Blame Safety).

1. If M safe p and M −→ N then N safe p.
2. If M safe p then M �−→ blame p.

Proof.

1. The proof of the first part is by induction on the derivation M −→ N . The
interesting cases involve the reduction of casts.

Case V : ∪C q
=⇒ ∪C′ −→ V : C(c)

q
=⇒ C′(c) where c = tycon(V )

We have V safe p and (∪C p
=⇒ ∪C′) safe p. There are three cases to

consider:
(a) Subcase q = p: So ∪C <:+ ∪C′ and therefore C(c) <:+ C′(c). Thus

(V : C(c)
p

=⇒ C′(c)) safe p

(b) Subcase q = p: So ∪C <:− ∪C′ and therefore C(c) <:− C′(c). Thus

(V : C(c)
p

=⇒ C′(c)) safe p

(c) Subcase q �= p, q �= p: We immediately have

(V : C(c)
q

=⇒ C′(c)) safe p
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Fig. 11. Positive and negative subtyping

Case V : μX. P
p

=⇒ μX. Q −→ V : [X:=μX. P ]P
p

=⇒ [X:=μX. Q]Q

We have V safe p and (μX. P
p

=⇒ μX. Q) safe p. There are three cases
to consider:
(a) Subcase q = p: So μX. P <:+ μX. Q and therefore [X:=μX. P ]P

<:+ [X:=μX. Q]Q (Lemma 9). Thus

(V : [X:=μX. P ]P
p

=⇒ [X:=μX. Q]Q) safe p

(b) Subcase q = p: So μX. P <:− μX. Q and therefore [X:=μX. P ]P
<:− [X:=μX. Q]Q (Lemma 9). Thus

(V : [X:=μX. P ]P
p

=⇒ [X:=μX. Q]Q) safe p

(c) Subcase q �= p, q �= p: We immediately have

(V : [X:=μX. P ]P
q

=⇒ [X:=μX. Q]Q) safe p

The rest of the cases are the same as for the original blame calculus.
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2. The proof of the second part is by induction on M −→ blame p and we
seek to reach a contradiction. The only reduction rule that triggers blame is

V : G
q

=⇒ �
p

=⇒ H −→ blame p where G �<: H

We have (�
p

=⇒ H) safe p so � <:+ H. Thus H = � but � is not a ground
type, hence a contradiction. 
�
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Abstract. A hybrid type checker defers parts of the type checking to run
time. At compile time, the checker attempts to statically verify as many
subtyping constraints as possible. Constraints that cannot be proved by
the static checker, are reified as run-time casts in an intermediate lan-
guage, which is a variant of the blame calculus.

The goal of this work is to simplify casts in the intermediate blame
calculus by exploiting context information. To this end, we develop a
coercion calculus that corresponds to the blame calculus via a pair of
translations and we define the formal framework to simplify these coer-
cions. We give a concrete instance of the calculus and demonstrate that
simplification can be regarded as a synthesis problem.

1 Introduction

Flanagan and others [7] introduce hybrid type checking as a method to combine
the best of two worlds, static and dynamic type checking. Their work provides
a framework that employs static type checking as much as possible and reverts
to dynamic checking when typing constraints cannot be resolved statically. The
basis of their work is a highly expressive language with dependent types and
refinements at base types.

Such a language supports refinement types like x : int{x > 0} for the set of
positive integers and x : int{x%2 = 0} for the set of even integers. On top of that,
there are dependent function types like the type of strictly increasing functions
x : int{x > 0} → y : int{y > x}.1 These types come with the standard notion of
subtyping for dependent types [1] (see also Fig. 3).

The extra ingredient of a language with hybrid type checking is a cast expres-
sion that we write as M : S ⇒ T for casting the value of M from source type S
to target type T . For instance, a cast may further restrict an increasing function
F so that it never returns a value greater than twice its input.

G = (F : (x : int{x > 0} → y : int{y > x})
⇒ (x : int{x > 0} → y : int{y > x ∧ y < 2 ∗ x}))

1 This notation is borrowed from Swamy [11]. It stands for a dependent type with
argument type x : int{x > 0} and result type y : int{y > x} where the scope of x
extends to the result type. We sometimes omit the type annotation : int if the base
type is clear from the context.

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 411–432, 2016.
DOI: 10.1007/978-3-319-30936-1 22
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If we apply the resulting function G to a suitable argument, say 42, then after a
few steps (and skipping over some details), we end up with a term that applies
a cast that is derived from the ranges of the original function type cast to the
result of the function application:

(F 42) : y : int{y > 42} ⇒ y : int{y > 42 ∧ y < 2 ∗ 42}

The implementation of this cast checks the predicate Q = y > 42 ∧ y < 2 ∗ 42
on the result y = (F 42) of the function call. But this check performs more
work than strictly necessary because it ignores the static knowledge P = y > 42
from the precondition on y. Our goal is to develop a framework to find the delta
predicate, which we check at run time, which is cheaper to test than Q, but which
is equivalent to Q when assuming P . In this particular example, a suitable delta
predicate is y < 84.

In a cast between dependent types, restricting the argument type can also
lead to simplifying the run-time check on the result. As an example consider
a function cast, where the source type is modeled after the intersection type
(Pos → Pos) ∩ (Even → Even):

x : int{x > 0 ∨ x%2 = 0} → y : int{(x > 0 ⇒ y > 0) ∧ (x%2 = 0 ⇒ y%2 = 0)}
⇒
x : int{x > 0 ∧ x%2 = 0} → y : int{y > 0 ∧ y%2 = 0}

To evaluate this cast, we first have to cast the argument x according to

x : int{x > 0 ∧ x%2 = 0} ⇒ x : int{x > 0 ∨ x%2 = 0}

This argument cast requires no run-time check because it casts to a supertype
(since x > 0 ∧ x%2 = 0 implies x > 0 ∨ x%2 = 0 for all x : int). To simplify the
result cast, we can exploit the knowledge from both domain predicates. It turns
out that x > 0 ∧ x%2 = 0 and (x > 0 ⇒ y > 0) ∧ (x%2 = 0 ⇒ y%2 = 0) implies
y > 0 ∧ y%2 = 0, so that no run-time check is required for the result cast, either.
This freedom of run-time checks should not come as a surprise, because the cast’s
target is a (dependent) subtype of the cast’s source. In our framework, we want
to eliminate all run-time checks from this cast.

In the rest of the paper, we formalize a dependently typed blame calculus
based on the ideas of hybrid typing. This calculus can be seen as an intermedi-
ate language in compiling a dependently typed language with refinement types:
Subtyping constraints that can be discharged at compile time are eliminated and
the remaining ones are reified as run-time type casts. The calculus can also be
considered as a source language where programmers place explicit casts. This sit-
uation is similar as in the blame calculus considered by Wadler and Findler [14].
However, their base calculus is simply typed and their predicates are boolean-
typed terms in the calculus. In contrast, our calculus is dependently typed and
we employ a separate language of predicates (first-order predicate logic).

Following Wadler and others [9], we develop the corresponding coercion calcu-
lus and define a translation between the calculi that embodies the simplification
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motivated by the above examples. While our initial development happens in a
setting with first order logic with abstract predicates in types, we subsequently
instantiate abstract predicates to linear integer constraints and demonstrate that
finding the simplified run-time checks amounts to a synthesis problem. We imple-
mented this synthesis procedure using the Rosette system [12,13] and performed
some experiments.

2 The Hybrid Blame Calculus

The main difference between our hybrid blame calculus λhb and previous work
on hybrid type checking and blame calculi is that refinements are formed using a
separate language of predicates that only shares (first-order) variables, constants,
and primitive operations with the usual term language. In particular, predicates
are not subject to evaluation, but a predicate P is checked by appealing to an
external solver written as |= P .

2.1 Syntax and Dynamics

Figure 1 defines the syntax of λhb, the hybrid blame calculus. The term language
of λhb comprises variables, abstractions, applications, constants, and casts M :
S ⇒ T from source S to target T . First-order constants are (at least) booleans
and integers; we write �m	 for the syntactic encoding of the integer m. Higher-
order constants include primitive operations; in examples, we freely use infix
notation for familiar arithmetic operations.

A type is either a refinement of a base type x : B{P}, where B is a base
type (e.g., booleans and integers) and P is a first-order logic predicate where all
variables range over base types. Predicates are constructed from an open set of
atomic predicates that includes equality between primitive terms (consisting of
variables, constants, and primitive operations), the standard logical connectives,
and existential quantification over a base type variable.

We define a small-step dynamics of the language using as values abstractions,
constants, and function casts applied to a value. Evaluation contexts are defined
in the usual way to specify left-to-right call-by-value evaluation.

The dynamics are defined using three judgments on closed terms, M −→ N
for an evaluation step, M −→ blame to indicate a failed cast, and M value to
test for a syntactic value. Evaluation steps are beta-value reduction and delta
reduction, the rules for dealing with casts, and the obvious context rules. We
do not give a full definition for delta reduction but provide two examples for
addition and remainder.

The rules for casts at base type are standard. The rule Cast-Refine deals
with a successful cast between two refinements: it checks that the target predicate
Q holds on the cast’s subject m. The companion rule Cast-Refine-Fail applies
if the cast does not succeed (i.e., if Q does not hold).
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For function casts, the astute reader may expect a rule reminiscent of the
standard rule introduced by Findler and Felleisen [3], that is

Cast-Fun-FF

(V : (x : S) → T ⇒ (x : S′) → T ′)W −→ (V (W : S′ ⇒ S)) : T ⇒ T ′

However, this rule disregards the variable x that may occur in T and T ′. Knowles
and Flanagan [7] apply the cast eagerly to a value by wrapping it in a suitable
conversion function. A transliteration of their rule to our setting yields the fol-
lowing rule, which amounts to the picky semantics of dependent casts:

Cast-Fun-KF
(V : (x : S) → T ⇒ (x : S′) → T ′)W

−→ (λx.(V (x : S′ ⇒ S)) : (T [x : S′ ⇒ S/x]) ⇒ T ′)W

Unfortunately, the rule Cast-Fun-KF breaks type preservation in our system
because it substitutes a cast into a type: T [x : S′ ⇒ S/x]. This substitution is
syntactically forbidden in our calculus to avoid evaluation inside of types: any
free occurrence of x in T is in a predicate and the syntax of predicates excludes
casts. This restriction is necessary because a failing cast in a type would be non-
sensical. Knowles and Flanagan seem to get around this problem by allowing
arbitrary terms to be substituted into types, but omitting a conversion rule that
would evaluate inside types.

For these reasons, we split the function cast rule in three rules that perform
the argument cast in the assumption. The rule Cast-Arg-Fail applies if the
first-order cast S′ ⇒ S fails on the function’s argument. The assumption of this
rule corresponds to a single application of rule Cast-Refine-Fail.

The rule Cast-Arg-Base applies if S′ ⇒ S is a successful first-order refine-
ment check on the argument W , that is, its assumption corresponds to a single
application of rule Cast-Refine. After the successful cast, we know that W : S′

and W : S both hold, so that we can safely substitute the value W in T and T ′.
The rule Cast-Arg-Fun applies if the argument cast S′ ⇒ S is a function

cast, which is tested using the · value judgment. In this case x cannot occur free
in either T or T ′ because variables that occur in refinements are restricted to
first-order base types. Thus, the functions involved are not truly dependent and
the traditional reduction rule Cast-Fun-FF for non-dependent function casts
is applicable.

2.2 Statics

Figure 2 contains the definitions of type environments Γ, ground types G (which
strip refinements and dependencies from types and thus amount to simple types),
and ground type environments Δ. The figure also defines two auxiliary func-
tions. The function 
·� maps a type to its underlying ground type (i.e., it maps
a refinement to its underlying base type and a dependent function type to the
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M,N ::= x | λx.M | M N | C | M : S ⇒ T terms
C ::= c | + | · | . . . constants
c ::= true | false | �m	 | . . . first-order constants

S, T ::= x : B{P} | (x : S) → T types
B ::= bool | int | . . . base types

P,Q, R ::= A | ¬P | P ⊃ Q | ∃x : B.P predicates
A ::= true | false | u = v | . . . atoms

u, v ::= c | x | u + v | c · u primitive terms
V,W ::= λx.M | C | V : (x : S) → T ⇒ (x : S′) → T ′ values

E ::= �N | V � | � : S ⇒ T evaluation contexts

Dynamics

Beta-Value

(λx.M) W −→ M [W/x]

Delta
c ∈ dom(δC)
C c −→ δC(c)

Value

W value

Cast-Refine
|= Q[c/x]

c : (x : B{P}) ⇒ (x : B{Q}) −→ c

M −→ N

E[M ] −→ E[N ]

Cast-Refine-Fail
|= ¬Q[c/x]

c : (x : B{P}) ⇒ (x : B{Q}) −→ blame

M −→ blame

E[M ] −→ blame

Cast-Arg-Fail
(W : S′ ⇒ S) −→ blame

(V : (x : S) → T ⇒ (x : S′) → T ′) W −→ blame

Cast-Arg-Base
(W : S′ ⇒ S) −→ W

(V : (x : S) → T ⇒ (x : S′) → T ′) W −→ (V W ) : (T ⇒ T ′)[W/x]

Cast-Arg-Fun
(W : S′ ⇒ S) value

(V : (x : S) → T ⇒ (x : S′) → T ′) W −→ (V (W : S′ ⇒ S)) : (T ⇒ T ′)

Examples for primitive operations

δ+(�m	) = +m δ%(�m	) = %m

δ+m(�n	) = �m + n	 δ%m
(�n	) = �m%n	 if n �= 0

Fig. 1. Syntax and dynamics of hybrid blame calculus
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Γ ::= · | x : S, Γ type environments
G ::= B | G → G ground types
Δ ::= · | x : G, Δ ground environments

Shape of a dependent type; extracting a ground environment


x : B{P}� = B 
·� = ·

(x : S) → T � = 
S� → 
T � 
x : S, Γ� = x : 
S�, 
Γ�

Extracting first-order quantification from type environment

∀[ · ]
.P = P

∀[
x : B{Q},Γ

]
.P = ∀x : B.Q ⊃ ∀[

Γ
]
.P

∀[
x : (y : S) → T, Γ

]
.P = ∀[

Γ
]
.P

Fig. 2. Environments and environment manipulation

corresponding plain function type) and which is lifted pointwise to type envi-
ronments. The last part of the figure defines a function ∀[

Γ
]
.P that extracts all

first-order quantifications from typing environment Γ into a sequence of universal
quantifications which is prepended to predicate P .

Figure 3 contains the definitions of the judgments for the statics. The first
group of formation rules deals with the judgments

• � Γ ctx for valid contexts,
• Γ � S type for well-formed types,
• Δ � P pred for well-formed predicates,
• Δ � A atom for atomic predicates,
• Δ � u term for first-order terms (see Fig. 8).

The definition of atom for atomic predicates is intentionally open-ended. This
definition only includes the essential constructs to define the calculus. A concrete
instance is expected to provide further predicates. The rules are unsurprising,
except that the predicate in a refinement type may refer to all (first-order)
variables in scope.

The typing rules for variables, abstractions, and application are standard
for dependently typed lambda calculi. The application rule has an additional
premise (taken from Sjöberg and others [10]) to adapt to a call-by-value calculus
with effects—our sole effect is a cast failure. The additional premise requires the
result type to be well-formed after substituting the argument term for the argu-
ment variable. This requirement forces terms in predicates to remain primitive
and thus free of effects.

The rule for constants, which include primitive operations, is inspired by the
corresponding definitions for hybrid type checking [7]. It relies on a function
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Formation

Δ � true atom Δ � false atom
Δ � u term Δ � v term

Δ � u = v atom

Δ � A atom

Δ � A pred

Δ � P pred

Δ � ¬P pred

Δ � P pred Δ � Q pred

Δ � P ⊃ Q pred

Δ, x : B � P pred

Δ � ∃x : B.P pred

� Γ ctx 
Γ�, x : B � P pred

Γ � x : B{P} type

Γ � S type Γ, x : S � T type

Γ � (x : S) → T type

� · ctx � Γ ctx Γ � S type

� Γ, x : S ctx

Typing

� Γ, x : T, Γ′ ctx
Γ, x : T, Γ′ � x : T

Γ � S type Γ, x : S � M : T

Γ � λx.M : (x : S) → T

Γ � M : (x : S) → T Γ � N : S Γ � T [N/x] type
Γ � M N : T [N/x]

� Γ ctx

Γ � C : Ty(C)

Γ � M : S Γ � T type 
S� = 
T �
Γ � (M : S ⇒ T ) : T

Γ � M : S Γ � S ≤ T

Γ � M : T

Subtyping

� Γ ctx 
Γ�, x : B � P ⊃ Q pred |= ∀[
Γ, x : x : B{P}]

.Q

Γ � x : B{P} ≤ x : B{Q}

Γ � S′ type Γ, x : S′ � T ′ type Γ � S′ ≤ S Γ, x : S′ � T ≤ T ′

Γ � (x : S) → T ≤ (x : S′) → T ′

Typing of constants (excerpt cf. [7])

Ty(�m	) = x : int{x = m}
Ty(true) = x : bool{x = true}
Ty(+) = x : int{P} → (y : int{Q} → z : int{∃xy.P ∧ Q ∧ z = x + y})

Ty(+m) = y : int{Q} → z : int{∃y.Q ∧ z = m + y}
Ty(%) = x : int{P} → (y : int{Q ∧ y �= 0} → z : int{∃xy.P ∧ Q ∧ z = x%y})

Ty(%m) = y : int{Q ∧ y �= 0} → z : int{∃y.Q ∧ z = x%y}

Fig. 3. Typing for the hybrid blame calculus
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Ty(C) that maps a constant to a type. The bottom part of Fig. 3 gives some
examples. The rule for cast requires that the source and target type, S and T ,
of a cast share the same underlying shape 
S� = 
T �. The subsumption rule is
standard.

Subtyping between refinements is generated by implication of the predicates,
which is proved using the external solver |= P ⊃ Q. As further preconditions,
we take the first-order knowledge accumulated in the environment. The function
∀[ · ] (see Fig. 2) performs this task. It skips over variables of function type and
poses first-order knowledge as a precondition. The subtyping rule for dependent
function types is taken straight from Aspinall and Compagnoni’s work [1].

3 The Hybrid Coercion Calculus

We define the hybrid coercion calculus λhc as an extension of the hybrid blame
calculus λhb by coercions. Usually, a program is written entirely using casts or
using coercions, but our calculus admits an arbitrary mix. This view is supported
by the existence of translations in both directions elaborated in Sect. 4.

3.1 Syntax and Dynamics

Figure 4 contains the new syntactic elements and evaluation rules. There is a
new term for coercion application, where coercions are either primitive coercions
between refinements, written as x.R, or dependent function coercions, written
as (x : k) → d. The set of values is extended by the application of a function
coercion to a value.

The primitive coercion x.R just states the predicate R to check on the value
using the same solver as before. See rules CoerceRefine and Coerce-Refine-
Fail.

The picky semantics of the function coercion has the same subtleties as the
function cast, so it is also implemented by three reduction rules: rule Coerce-
Arg-Fail raises an exception if the first-order argument cast fails; rule Coerce-
Arg-Base continues with the function call if the argument cast succeeds; and
rule Coerce-Arg-Fun applies if the coercion application is a value, in which
case no substitution for x is needed.

3.2 Statics

Figure 5 contains the typing rules for coercions and the obvious rule for coercion
application. The rules for coercions define a judgment Γ � k :: S =⇒ T that
affirms that coercion k maps from type S to type T under assumptions Γ. The
main workhorse of this judgment is the typing rule for the primitive coercion
between base type refinements. The obvious rule would state that x.R coerces
from x{P} to x{R}. Such a rule would be correct, but it totally ignores the
knowledge that predicate P already holds for x. Clearly, knowing that P holds
and checking R successfully establishes any predicate Q such that P ∧ R ⊃ Q.
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Syntax

M,N ::= · · · | M〈k〉 Coercion application
k, d ::= x.R | (x : k) → d Coercions

V,W ::= · · · | V 〈(x : k) → d〉 Values

Dynamics

Coerce-Refine
|= R[c/x]

c〈x.R〉 −→ c

Coerce-Refine-Fail
|= ¬R[c/x]

c〈x.R〉 −→ blame

Coerce-Arg-Fail
W 〈k〉 −→ blame

(V 〈(x : (x.R)) → d〉) W −→ blame

Coerce-Arg-Base
W 〈k〉 −→ W

(V 〈(x : k) → d〉) W −→ (V W )〈d[W/x]〉

Coerce-Arg-Fun
W 〈k〉 value

(V 〈(x : k) → d〉) W −→ (V (W 〈k〉))〈d〉

Fig. 4. Coercion calculus

∀[
Γ
] ∀x : B. P ⊃ (Q ⇔ R) 
Γ�, x : B � P,Q, R pred

Γ � x.R :: x : B{P} =⇒ x : B{Q}

Γ � k :: S′ =⇒ S Γ, x : S � S′ � d :: T =⇒ T ′

Γ � (x : k) → d :: (x : S) → T =⇒ (x : S′) → T ′

Γ � M : S Γ � k :: S =⇒ T

Γ � M〈k〉 : T

Fig. 5. Typing for coercion calculus

To establish a given predicate Q, the task is now to find a suitable R to check.
Clearly, such a predicate exists. For example, R = Q or R = false would work.
However, it would be useless if R was overly restrictive; for example, checking the
extreme case R = false would make the cast x.R fail always, but establish any Q
nevertheless. Hence, the idea is to choose some test predicate R that is equivalent
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to Q when P is assumed: find a predicate R such that P ⊃ (Q ⇔ R). Such an R
also exists (e.g., R = Q), but there may be less restrictive test predicates that
are cheaper to check than Q. For an extreme example, if P ⊃ Q already, then
x{P} is a subtype of x{Q} and we can choose R = true as test predicate.

For the typing of the dependent function coercion (x : k) → d, we need to
extract an assumption on the type of x from the coercion k :: S′ =⇒ S to derive
the type of d. While the shapes of S and S′ are the same, it is not clear which
of those types should be assumed for x. Unlike the case for subtyping, S and S′

need not be in a subtyping relationship. Furthermore, S may only make sense as
an argument type with T , but not with T ′, and vice versa. For that reason, we
use S �S′, a conjunction of S and S that is restricted to first-order refinements.
It is defined only for types of the same shape:

S � S′ =

{
x : B{P ∧ P}′ S = x : B{P}, S′ = x : B{P}′

S 
S� = 
S′� = G → G′

For function types, the choice does not matter because the type of x does not
influence the typing.

4 Translations

Casts can be translated to coercions and vice versa. The translations are nonde-
terministic to encompass the design space for an actual implementation. How-
ever, the nondeterminism is not essential to obtain a correct solution. Any local
nondeterministic choice can be completed to a full translation.

Typically, a compiler would translate from casts to coercions and exploit the
nondeterminism to choose “minimal” test predicates in the primitive coercions.
We use the word “minimal” informally to mean that the test should be exe-
cutable in as few cycles as possible. In our experiments (Sect. 6), we minimize
the size of a syntactic representation for the predicate.

Figure 6 contains the nondeterministic specification of the translation from
casts to coercions, that is, from λhb to λhc. It is defined as a judgment Γ �
S ⇒ T � k where coercion k is the result of translating the cast from S to
T under assumptions Γ. For first-order refinements, the translation facilitates
simplification: the cast from x{P} to x{Q} is translated to a coercion x.R,

∀[
Γ
] ∀x : B. P ⊃ (Q ⇔ R) 
Γ�, x : B � P,Q, R pred

Γ � x : B{P} ⇒ x : B{Q} � x.R

Γ � S′ ⇒ S � k Γ, x : S � S′ � T ⇒ T ′ � d

Γ � (x : S) → T ⇒ (x : S′) → T ′ � (x : k) → d

Fig. 6. Translation from blame to coercions
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∀[
Γ
] ∀x : B. P ⊃ (Q ⇔ R) 
Γ�, x : B � P,Q, R pred

Γ � x.R � x : B{P} ⇒ x : B{Q}

Γ � k � S′ ⇒ S Γ, x : S � S′ � d � T ⇒ T ′

Γ � (x : k) → d � (x : S) → T ⇒ (x : S′) → T ′

Fig. 7. Translation from coercions to blame

where R and Q are equivalent when assuming Γ and P . This choice is not
empty, because choosing R = Q is always possible.

The rule for translating a function cast to a function coercion is unsurprising
up to one point: When it comes to picking the assumption for the type of x in
the translation the result part of the function coercion, we can choose between
S and S′ because when evaluation reaches the function return and S and S′ are
refinement types, then we certainly know that x : S and x : S′. If conjunction
was part of the type language, we could even have chosen x : S ∧ S′. On the
other hand, if the types S and S′ are function types, then the choice does not
matter because the type of x cannot influence the translation of T ⇒ T ′. As in
the coercion typing, we use the first-order conjunction S �S′ in the assumption.

Figure 7 contains the nondeterministic translation from coercions to casts. It
is defined by the judgment Γ � k � S ⇒ T which relates a coercion k to the
cast from S to T under assumptions Γ. The base type coercion x.R is related to
any cast from x{P} to x{Q} where Q and R are equivalent assuming Γ and P
(as seen before).

For the translation of function coercions, the same remarks apply as for the
reverse direction. To ensure correctness, the handling of the argument type must
match its handling in the reverse translation.

5 Results

This section collects some results of the metatheory of λhb and λhc that are
important for the purposes of the present paper. The results are mostly standard.

Lemma 1 (Substitution). Let J range over formation, typing, and subtyping
judgments.

If Γ, x : S,Γ′ � J and Γ � W : S, then Γ � J [W/x].

Proposition 1 (Narrowing). Let J range over formation, typing, and subtyping
judgments.

Suppose that Γ, x : T,Γ′ � J and Γ � S ≤ T . Then Γ, x : S,Γ′ � J .

Proof. By simultaneous induction on all judgments. There are two key steps.

1. In the variable case for x, we have Γ, x : S,Γ′ � x : S and obtain x : T by
subsumption.
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2. In the subset-type case for subtyping, S and T may be assumed to be subset
types with predicates Px and Qx (otherwise, x is removed from the assump-
tions by the ∀[ ]

operation and the subtyping is independent of x), so that |=
∀[

Γ
]
.Px ⊃ Qx. From here, it is easy to conclude that subtyping is

preserved. ��
Subtyping is reflexive and transitive.

Lemma 2.

1. For all S, Γ � S ≤ S.
2. For all S, S′, S′′, if Γ � S ≤ S′ and Γ � S ≤ S′′, then Γ � S ≤ S′′.

Here are some results, which are specific for λhb and λhc. Subtyping is only
possible between types of the same shape.

Lemma 3. If Γ � S ≤ T , then 
S� = 
T �.
Subtyping judgments are independent of type assumptions that concern func-

tion types. This result holds because refinements are restricted to first-order
predicates, so that only first-order typed variables can influence subtyping.

Lemma 4. Let Γ � S type and Γ � S′ type with 
S� = 
S′� = G → G′. If
Γ, x : S,Γ′ � T ≤ T ′, then Γ, x : S′,Γ′ � T ≤ T ′.

Taken together with narrowing, we obtain the following result about first-
order conjunction.

Lemma 5. Let Γ � S type and Γ � S′ type with 
S� = 
S′�. Γ, x : S,Γ′ � T ≤
T ′ implies Γ, x : S � S′,Γ′ � T ≤ T ′.

Proof. If 
S� = B, then Γ � S � S′ ≤ S, and we conclude by narrowing.
Otherwise, apply Lemma 4. ��

The combined calculus λhb and λhc enjoys type soundness. This result is
proven in Wright-Felleisen style [15] by establishing type preservation and
progress. Details may be found in the appendix.

Proposition 2 (Type Preservation for λhb and λhc). If · � M : T and M −→
N , then · � N : T .

Proposition 3 (Progress). Suppose that · � M : T . Then exactly one of the
following holds:

1. ∃N such that M −→ N ;
2. M value;
3. M −→ blame.

The next result is specific to our calculus and establishes a tight connection
between the translations from casts to coercions and back and typing of a coer-
cion. The final piece would relate to the typing of a cast S ⇒ T , which is trival
given the typing rule for casts.
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Proposition 4. The following three statements are equivalent.

1. Γ � S ⇒ T � k.
2. Γ � k � S ⇒ T .
3. Γ � k :: S =⇒ T .

Proof. By rule induction on the translation. ��

Δ � c term Δ, x : B � x term

Δ � u term

Δ � c · u term

Δ � u term Δ � v term

Δ � u + v term

Δ � u term Δ � v term

Δ � u ≤ v atom

Δ � u term Δ � v term

Δ � u = v atom

Δ, x : bool � x atom

Fig. 8. Formation rules for atomic predicates

6 A Concrete Instance

To consider a concrete instance of the hybrid system, we choose boolean values
and linear inequations as atomic predicates and we make the translation to
coercions deterministic.

A :: = x | u = v | u ≤ v atomic predicates
u, v :: = c · u | c | x | u + v first-order linear terms

Figure 8 contains the formation rules for atoms.
Recall that the refinement rule is the source of nondeterminism in the trans-

lation from casts to coercions (Fig. 6):

∀[
Γ
]∀x : B.P ⊃ (Q ⇔ R) 
Γ�, x : B � P,Q,R pred

Γ � x : B{P} ⇒ x : B{Q} � x.R

The key to making this rule deterministic is to realize that finding a suitable
predicate R for the coercion can be considered as a synthesis problem that can
be solved with a system like Rosette [12,13]. To this end, we first exhibit a
grammar that restricts the search space for R when Γ, x, P , and Q are given.

r :: = true | false | p

p, q :: = z ≤ c | c ≤ z | z ≤ y | ¬p | p ∧ q | p ∨ q
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(define r (grammar vars depth ))

(evaluate

r

(synthesize

#: forall vars

#: guarantee

(assert

(=> (interpret p) (<=> (interpret q) (interpret r))))))

Listing 1. Synthesis code for Rosette

We obtain a finite set of candidates by restricting the variables y and z to range
over the variables quantified in ∀[

Γ
]

and x (but with y �= z), having c range
over integer constants representable in a small number of bits, and by imposing
a depth bound on terms. Then we define an interpretation function that maps
a predicate r to true or false. This function can be used to drive the synthesis
as demonstrated in the code fragment in Listing 1.

The function grammar is parameterized over the variables as just explained
and a depth bound. It produces a representation of r as a symbolic value suit-
able for synthesis. The function synthesize finds a model of the assertion (if
one exists) and function evaluate takes a symbolic value r and converts it to
a concrete value using that model. In our example, the model determines all
choices that need to be taken when deriving a predicate from the grammar for
r and evaluate fixes these choices and returns a syntactic representation of the
resulting predicate.

The code fragment in Listing 1 is good enough for obtaining a solution, but
we are interested in a minimal solution. To this end, we define a cost function
on predicates:

cost(true) = cost(false) = 0
cost(z ≤ c) = cost(c ≤ z) = cost(y ≤ z) = 1

cost(¬p) = 1 + cost(p)
cost(p ∧ q) = cost(p ∨ q) = 1 + cost(p) + cost(q)

Then we instruct the synthesizer to find a solution with minimal cost. Doing
so is slightly more involved, but recent versions of the system support synthesis
queries including minimzation out of the box [2].

We applied our system to a range of examples, which are summarized in
Table 1. For readability, we sometimes contracted conjunctions like a ≤ x∧x ≤ b
to a ≤ x ≤ b and reordered literals in the output. The first two lines are
concerned with overlapping intervals. In each case, the tested predicate only
includes the tighened bound. The third line deals with overlapping rectangles
where the y dimension is properly nested so that both bounds need to be tested.
The required predicate in the fourth line carves a triangle out of a rectangle such
that only the test x ≤ y is required. Line 5 assumes a disjunction of intervals and
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Table 1. Delta predicates R synthesized by Rosette

P given Q required R tested

1 ≤ x ∧ x ≤ 10 5 ≤ x ∧ x ≤ 15 5 ≤ x

5 ≤ x ∧ x ≤ 15 1 ≤ x ∧ x ≤ 10 x ≤ 10

1 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 9 5 ≤ x ≤ 15 ∧ 3 ≤ y ≤ 6 3 ≤ y ≤ 6 ∧ 5 ≤ x

1 ≤ x ≤ 9 ∧ 1 ≤ y ≤ 5 1 ≤ x ≤ 5 ∧ x ≤ y x ≤ y

0 ≤ x ≤ 5 ∨ 10 ≤ x ≤ 15 6 ≤ x ≤ 9 false

6 ≤ x ≤ 9 5 ≤ x ≤ 10 true

requires a disjoint interval. As the intersection of P and Q is empty, the minimal
test is false. In the last line, the requirement is weaker than the assumption, so
no test is needed.

7 More Manifestation

The results on the translation from λhb into the coercion calculus λhc show that
it is possible to simplify the predicate that is tested at run time by taking into
account what is already known at this point. However, this additional knowledge
is not manifested in the type system and one may wonder about the ramifications
of such a manifestation.

As an example, consider the cast

x : int{x > 0} ⇒ x : int{x < 10} (1)

While the run-time test for checking this cast cannot be simplified, we could
imagine a typing rule that manifests the entire accumulated knowledge: Clearly,
a term whose value passes the cast (1) fulfills x > 0 and x < 10 so that it could
be given type x : int{x > 0 ∧ x < 10}.

Obtaining such a refined typing requires a separate typing judgment Δ �
S ⇒ T :: S′ =⇒ T ′ for casts because a cast S ⇒ T will now transform values
between types S′ and T ′, as determined by the judgment, which is defined in
Fig. 9. The only interesting rule is the one between refinements x{P} and x{Q}
which concludes x{P ∧Q}. The rule for functions is the obvious one, but it forces
using a ground type environment for the judgment. Otherwise, it would not be
clear whether x : S1 or x : S2 should be added to the type environment, but
their ground types are equal.

The typing rules for the coercion calculus from Fig. 5 can be refined in a
similar way. The rule for base type coercions is very similar to the one for casts
while the rule for function coercions remains as before.


Γ�, x : B � P,R pred

Γ � x.R :: x : B{P} =⇒ x : B{P ∧ R}
The first question to ask about the typing rules for casts is about the relation
between the advertised type of a cast and its inferred type.
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Δ � Q pred

Δ � x : B{P} ⇒ x : B{Q} :: x : B{P} =⇒ x : B{P ∧ Q}

Δ � S2 ⇒ S1 :: S′
2 =⇒ S′

1 Δ, x : 
S1� � T1 ⇒ T2 :: T ′
1 =⇒ T ′

2

Δ � (x : S1) → T1 ⇒ (x : S2) → T2 :: (x : S′
1) → T ′

1 =⇒ (x : S′
2) → T ′

2

Γ � M : S′ 
Γ� � S ⇒ T :: S′ =⇒ T ′

Γ � (M : S ⇒ T ) : T ′

Fig. 9. Precise typing for casts

Proposition 5. If 
Γ� � S ⇒ T :: S′ =⇒ T ′, then Γ � S ≤ S′ and Γ � T ′ ≤ T .

Proof. By rule induction on the typing of casts.

Case

Γ� � Q pred


Γ� � x : B{P} ⇒ x : B{Q} :: x : B{P} =⇒ x : B{P ∧ Q} .

1. By reflexivity, Γ � x : B{P} ≤ x : B{P}.
2. From ∀[

Γ
]∀x : B.P ∧ Q ⊃ Q, we have Γ � x : B{P ∧ Q} ≤ x : B{Q}.

Case

Γ� � S2 ⇒ S1 :: S′

2 =⇒ S′
1 
Γ�, x : 
S1� � T1 ⇒ T2 :: T ′

1 =⇒ T ′
2


Γ� � (x : S1) → T1 ⇒ (x : S2) → T2 :: (x : S′
1) → T ′

1 =⇒ (x : S′
2) → T ′

2

.

1. Induction on the premise 
Γ� � S2 ⇒ S1 :: S′
2 =⇒ S′

1 yields
(a) Γ � S2 ≤ S′

2 and
(b) Γ � S′

1 ≤ S1

2. Induction on the premise 
Γ�, x : 
S1� � T1 ⇒ T2 :: T ′
1 =⇒ T ′

2 yields
(a) Γ, x : S′

1 � T1 ≤ T ′
1 and

(b) Γ, x : S2 � T ′
2 ≤ T2

It is key that the inductive hypothesis permits us to freely choose types for
x subject to 
S1� = 
S′

1� = 
S2�.
3. It remains to establish the conclusion

(a) Γ � (x : S1) → T1 ≤ (x : S′
1) → T ′

1 by Item 1b and Item 2a
(b) Γ � (x : S′

2) → T ′
2 ≤ (x : S2) → T2 by Item 1a and Item 2b. ��

The proof reflects that all that matters in establishing the subtyping relations
is the base case for the refinements. The choice of the “preconditions” in Items 2a
and 2b does not affect the subtyping relation which is “caused” by the tautology
P ∧ Q ⊃ Q.

Examination of the proof shows that, for refinements, the source type of a
cast coincides with its inferred source type. This coincidence enables us to find
a subtyping relation between the first-order conjunctions as follows.

Lemma 6. If Γ � S ⇒ T :: S′ =⇒ T ′ and 
S� = B, then

1. S = S′ and Γ � S′ � T ′ ≤ S � T ;
2. Γ � T ′ ≤ S and T ′ = S � T .



A Delta for Hybrid Type Checking 427

Proof. If 
S� = B, then S = x : B{P} = S′ (see first case of proof of Proposi-
tion 5). Furthermore, T = x : B{Q} and T ′ = x : B{Q′} and Γ � T ′ ≤ T by the
proposition. By the definition of subtyping, it must be that ∀[

Γ
]
.Q′ ⊃ Q. Hence,

∀[
Γ
]
.(P ∧ Q′) ⊃ (P ∧ Q), which proves that Γ � S′ � T ′ ≤ S � T .

To see the second part, recall from the proof that Q′ = P ∧ Q which means
∀[

Γ
]
.Q′ ⊃ P and thus Γ � T ′ ≤ S. Finally, S � T = x : B{P ∧ Q} = T ′. ��

With the new typing rules in place, we can ask again whether the translation
from casts to coercions preserves types. We write Γ � S ≡ T for type equivalence,
indicating that S and T are mutual subtypes Γ � S ≤ T and Γ � T ≤ S.

Conjecture 1. Suppose that Γ � S ⇒ T � k and 
Γ� � S ⇒ T :: S′ =⇒ T ′.
Then Γ � k :: S′′ =⇒ T ′′ and Γ � S′ ≡ S′′ and Γ � T ′ ≡ T ′′.

Unfortunately, the proof of the conjecture does not go through with the
present statement of the translation rules.

8 Related Work

Knowles and Flanagan’s work on Hybrid Type Checking [7] (HTC) is most
closely related. As already remarked in the text, the metatheory of HTC is
slightly different. First, HTC does not commit to a particular evaluation order,
whereas our calculi λhb and λhc are call-by-value. Second, while we restrict predi-
cates to first-order predicates suitable for synthesis, HTC permits arbitrary terms
of type boolean as predicates. Third, neither HTC nor our calculi have a conver-
sion rule for evaluating in types, but our system imposes an additional restriction
on the application rule to guarantee well-formed cast- and coercion-free types.

Greenberg and others [4] consider calculi that are closely related to our set-
ting. Their calculus λH includes dependent casts, refinement types, and depen-
dent function types. Compared to their work, we restrict to a specific predicate
language and we omit blame labels, which would be easy to add.

The idea to relate cast and coercion calculi (introduced in the dynamic typing
works of Henglein [5]) and to translate between them goes back to Herman, Tomb,
and Flanagan [6]. It was further refined by Siek, Thiemann, and Wadler [9] who
give fully abstract translations between calculi with casts, coercions, and space-
efficient coercions. However, the latter work is concerned with dynamic typing and
considers casts/coercions between types of different precision, whereas the present
work considers refinements of a simply-typed language.

Dependent types in connection with casts have been considered by Ou and
others [8]. Their language has similar features than ours, but they define a trans-
lation into an internal language that implements the coercions inline rather than
coming up with a specific coercion calculus. As their language is (also) a call-
by-value language that includes computational effects, they restrict dependent
function application to pure arguments. Furthermore, our treatment of casts at
dependent function types seems related to theirs.
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A Proofs

A.1 Preservation for λhb

Proof of Proposition 2. Induction on the derivation of M −→ N .

Case (λx.M)W −→ M [W/x].

1. Inversion of · � (λx.M)W : T yields the next two items

2.
· � (λx.M) : (x : S) → T ′ · � W : S · � T ′[W/x] type

· � (λx.M)W : T ′[W/x]
3. · � T ′[W/x] ≤ T
4. Inversion on the first premise of Item 2 yields the next two items
5. x : S′ � M : T ′′

6. · � (x : S′) → T ′′ ≤ (x : S) → T ′ which implies · � S ≤ S′ andx : S � T ′′ ≤ T ′

7. From Items 5 and 6 and the premise · � W : S in Item 2, the substitution
lemma yields · � M [W/x] : T ′′[W/x]

8. From Item 6 and substitution, we obtain · � T ′′[W/x] ≤ T ′[W/x]
9. Item 3, transitivity of subtyping, and subsumption yield · � M [W/x] : T

Case �m	 + �n	 −→ �m + n	.
1. Inversion of · � �m	 + �n	 : T yields the following three items
2. · � z : int{∃xy.z = x + y ∧ P ∧ Q} ≤ T
3. · � �m	 : x : int{P} where · � x : int{x = m} ≤ x : int{P}
4. · � �n	 : y : int{Q} where · � y : int{y = n} ≤ y : int{Q}
5. Hence, x = m ⊃ P and y = n ⊃ Q
6. Now · � �m + n	 : z : int{z = m + n}
7. The predicate is equivalent to ∃xy.z = x + y ∧ x = m ∧ y = n.
8. By Item 5, the predicate in Item 7 implies ∃xy.z = x + y ∧ P ∧ Q
9. Taking Items 6, 7, 8, and 2 and applying subsumption yields · � �m + n	 : T

Case

Cast-Refine
|= Q[m/x]

�m	 : x : B{P} ⇒ x : B{Q} −→ �m	 .

1. Inversion applied to · � �m	 : x : B{P} ⇒ x : B{Q} : T yields
2. · � x : B{Q} ≤ T and
3. · � �m	 : x : B{P} and
4. |= Q[m/x]
5. For the reduct, · � �m	 : x : B{x = m}
6. Since |= Q[m/x], we have |= ∀x.x = m ∧ Q, which establishes the subtyping

· � x : B{x = m} ≤ x : B{Q}
7. The claim follows by subsumption with Item 2.
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Case

Cast-Arg-Base
(W : S′ ⇒ S) −→ W

(V : (x : S) → T ⇒ (x : S′) → T ′)W −→ (V W ) : (T ⇒ T ′)[W/x]
.

1. Applying inversion to · � (V : (x : S) → T ⇒ (x : S′) → T ′)W : T ′[W/x]
yields the following items

2. · � (V : (x : S) → T ⇒ (x : S′) → T ′) : (x : S′) → T ′

3. · � W : S′

4. · � T ′[W/x]
5. Inverting the premise of Cast-Arg-Base, we further obtain
6. S = x : B{P}
7. S′ = x : B{P}′

8. |= P ′[W/x]
9. From Item 3 and 6, we obtain |= P [W/x]

10. Applying inversion to Item 2, we obtain
11. · � V : (x : S) → T and
12. 
(x : S) → T � = 
(x : S′) → T ′�
13. Using Item 9, we obtain · � W : S (with an intermediate subsumption step)
14. Hence · � T [W/x] and · � V W : T [W/x]
15. We conclude that · � (V W : (T ⇒ T ′)[W/x]) : T ′[W/x]

Case

Cast-Arg-Fun
(W : S′ ⇒ S) value

(V : (x : S) → T ⇒ (x : S′) → T ′)W −→ (V (W : S′ ⇒ S)) : (T ⇒ T ′)
.

1. From the premise, we know that 
S′� = 
S� = G → G′

2. Applying inversion to · � (V : (x : S) → T ⇒ (x : S′) → T ′)W : T0 yields
3. T0 = T ′[W/x]
4. · � W : S′

5. · � (V : (x : S) → T ⇒ (x : S′) → T ′) : (x : S′) → T ′

6. From Item 1 and 3, we obtain T0 = T ′[W/x] = T ′ and, in fact, T ′[N/x] = T ′

and T [N/x] = T , for any N , because all free variables in types are restricted
to base types.

7. Inversion of Item 5 yields the following
8. · � V : (x : S) → T and
9. 
(x : S) → T � = 
(x : S′) → T ′�

10. From Item 5, we conclude · � (W : S′ ⇒ S) : S
11. From Item 10 and 8, we obtain · � (V (W : S′ ⇒ S)) : T [(W : S′ ⇒ S)/x],

where Item 6 assures us that T [(W : S′ ⇒ S)/x] = T is well-formed.
12. We conclude that · � (V (W : S′ ⇒ S) : (T ⇒ T ′)) : T ′ where T ′ =

T ′[W/x] = T0 by Item 6.

Case reduction in context: immediate by application of the inductive
hypothesis. ��
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A.2 Preservation for λhc

Proof of Proposition 2 ; cases for λhc. We just state the additional inductive
cases for the reductions involving coercions.

Case
|= R[m/x]

�m	〈x.R〉 −→ �m	 .

1. From · � �m	〈x.R〉 : T (wlog, we omit inversion of a potential outermost
application of the subsumption rule) we obtain the following two items

2. · � �m	 : S
3. · � x.R :: S =⇒ T
4. Inversion of Item 2 yields · � x : B{x = m} ≤ S
5. Hence, S = x : B{P} for some P such that ∀x.x = m ⊃ P
6. Inversion of Item 3 yields T = x : B{Q} such that ∀x : B.P ⊃ (Q ⇔ R).
7. Since |= R[m/x], we obtain that ∀x.x = m ⊃ P ∧ R and thus ∀x.x = m ⊃ Q

by Item 6.
8. Hence, · � �m	 : T = x : B{Q} by subsumption.

Case

Coerce-Arg-Base
W 〈k〉 −→ W

(V 〈(x : k) → d〉)W −→ (V W )〈d[W/x]〉 .

1. From the premise, we obtain
2. k = x.R and
3. |= R[W/x].
4. Applying inversion to · � (V 〈(x : k) → d〉)W : T0 yields
5. · � (V 〈(x : k) → d〉) : (x : S′) → T ′

6. · � W : S′

7. · � T0 where T0 = T ′[W/x]
8. Inversion of Item 5 yields
9. · � (x : k) → d :: (x : S) → T =⇒ (x : S′) → T ′

10. · � V : (x : S) → T
11. From Item 9, we obtain by inversion
12. · � k :: S′ =⇒ S and
13. x : S � d :: T =⇒ T ′.
14. Hence, S = x : B{P} and S′ = x : B{P}′

15. Using Item 3, · � W : S
16. Hence · � (V W ) : T [W/x]
17. By substitution on Item 13: · � d[W/x] ::T [W/x] =⇒ T ′[W/x]
18. Hence · � (V W )〈d[W/x]〉 : T ′[W/x]

Case

Coerce-Arg-Fun
W 〈k〉 value

(V 〈(x : k) → d〉)W −→ (V (W 〈k〉))〈d〉 .

1. From the premise, we obtain that k = (x′ : k′) → d′ a function coercion.
2. By inversion on · � (V 〈(x : k) → d〉)W : T0 we obtain
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3. · � (V 〈(x : k) → d〉) : (x : S′) → T ′

4. · � W : S′

5. · � T0 where T0 = T ′[W/x]
6. Further inversion on Item 3 yields
7. · � V : (x : S) → T and
8. · � (x : k) → d :: (x : S) → T =⇒ (x : S′) → T ′

9. By inversion · � k :: S′ =⇒ S and x : S � d :: T =⇒ T ′

10. By the premise, we know that 
S� = G → G′

11. Hence x does not occur free in T , T ′, and d
12. Hence · � :: T =⇒ T ′

13. Thus · � W 〈k〉 : S (using Item 9)
14. By Item 11, · � T [W 〈k〉/x] because T [W 〈k〉/x] = T
15. Hence · � V (W 〈k〉) : T
16. We conclude · � (V (W 〈k〉))〈d〉 : T ′ ��
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Abstract. Multiparty session types (MPST) are a typing discipline for
ensuring the coordination and orchestration of multi-agent communica-
tion in concurrent and distributed programs. However, by mostly focus-
ing on the communication aspects of concurrency, MPST are often unable
to capture important data invariants in programs. In this work we pro-
pose to increase the expressiveness of MPST by considering a notion of
value dependencies in order to certify invariants of exchanged data in
concurrent and distributed settings.

1 Introduction

Theoretical principles can have transformational effects on computing practice.
Well-known examples include program logics and the structured programming
discipline. Many theoretical principles established by Philip Wadler have already
produced a broad impact on current practices. Wadler’s work was instrumental
in the introduction of generic types to Java [10], which are now an established
feature of statically typed languages such as Java, C#, and the .NET framework.
He was a co-designer of Haskell, and features he designed have influenced a wide
range of programming languages such as F# and Scala; and database languages
such as Ferry and LINQ.

At the core of Wadler’s long list of contributions is the notion of types as the
fundamental tool for abstraction and reasoning about programs, and as a means of
exposing a program’s true meaning. In more recent work, Phil has devoted some his
efforts to tackling the challenges of communication, concurrency and distributed
computation. Naturally, and fruitfully, the answer presents itself in type form.

Meeting these challenges, our mobility group [13] is working with Wadler
within the scope of our EPSRC project, ABCD: A Basis for Concurrency and
Distribution [1]. We quote from Ambition and Vision which was (mainly) written
by Wadler:

Ambition and Vision [1]. The data type is one of computing’s most successful
concepts. The notion of data type appears in programming languages from the
oldest to the newest, and it covers concepts ranging from a single bit to organised
tables containing petabytes of data. Types act as the fundamental unit of com-
positionality: the first thing a programmer writes or reads about each method or
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EP/L00058X/1; and by EU FetOpen UPSCALE 612985.
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module is the data types it acts upon, and type discipline guarantees that each
call of a method matches its definition and each import of a module matches its
export. Data types play a central role in all aspects of software, from architectural
design to interactive development environments to efficient compilation.

The ambition of our project is to position session types as the analogue of
the data type for concurrency and distribution. Session types impose structure
to sessions, in the same way data types impose structure to data instances.
Session types were first devised two decades ago by Takeuchi, Honda, Kubo and
Vasconcelos [8,17], and later developed by Wadler and others [3,4,12,20,21].
Session types build upon data types, as data types specify the lowest level of
data exchange, upon which more complex protocols are built. Just as data type
discipline matches use and definition of a method, and import and export of a
module, a session type discipline ensures consistency and compatibility between
the two ends of a communication. Session types offer a mechanism for ensuring
communication safety (and a variety of other fundamental properties such as
absence of deadlocks or races) of systems involving two interacting parties.

A more general view of a session is that it combines multiple interactions form-
ing a meaningful scenario into a single logical unit, offering a basic programming
abstraction for communicating processes. Given that in a wide range of applica-
tion scenarios it is often necessary to specify and ensure the coordination of multi-
ple communicating agents, Honda et al. [5,9] introduced multiparty session types
(MPST), enabling the specification of interactions involving multiple peers from
a global perspective, which is then automatically mapped (or projected) to local
types that may be checked against the individual endpoint processes. Using this
framework, communication safety is ensured among multiple endpoints.

This paper seeks to extend Wadler’s viewpoint of a session type: we pro-
pose a session type discipline for expressing and certifying global properties that
may depend on the exchanged data, by introducing value dependent types for
multiparty sessions.

Our proposed typing discipline ensures that implementations of a multiparty
conversation not only adhere to the session discipline but also satisfy rich con-
straints imposed on the exchanged data, which may be explicitly witnessed at
runtime by proof objects. Our aim is to thus raise the standard of types in con-
currency to that of data types: the programmer with a precise description of the
interaction patterns followed by the communicating parties but also specify (and
certify) the global invariants of data that are required and ensured throughout
the multiparty communication.

2 Multiparty Session Types and Certified Data

This section motivates a technique to certify properties of exchanged data in
multiparty session types (MPST) through a notion of value dependencies [19].
We begin with a brief introduction of the original MPST framework and its
shortcomings with respect to expressing certain functional constraints on global
protocols. We then address these issues through the use of value dependencies
in the framework.
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Fig. 1. Projections of global type G (with p �∈ G′)

In MPST, we begin with a global type, consisting of a global view of the inter-
actions shared amongst the several interested parties. For instance, the following
consists of a global type specification of a toy protocol involving three parties:

G = p → q : (Int).p → r : (String).q → r :
(
yes:G′; no:end

)
(1)

In the specification G above, participant p sends an integer and a string to
participants q and r, respectively. Afterwards, q will either send to r a no message,
ending the global interaction; or a yes message, causing the interaction to proceed
to G′. We may assume that G specifies a portion of some coordinated agreement,
such as that between a service broker p, giving a price quote to a client q while
making a tentative reservation of the service to provider s (encoded as a string),
which is then accepted or rejected by q.

Given a global type, we must define a notion of projection, which constructs
the view for each endpoint of the global interaction as a local type. For G, the pro-
jection of G for p, written G�p, is given by the local type q!(Int); r!(String); end,
assuming p does not participate in G′, which describes the parts of the global
interaction that pertain to actions of participant p. Given the projected local
types (Fig. 1) for each communicating party we may then check that the global
specification is satisfied by the interactions of the several endpoint processes to
ensure deadlock-freedom.

The framework sketched above is only suited for describing the shape of
communication. While we may argue that G does indeed specify the interactions
between a service broker p, a client q, and a provider r, such a global specification
is satisfied by many process instances of p, q and r that may not in fact offer
the desired functionality. For instance, the implementation of the broker p may
send an incorrect price to client q, or the wrong service identifier to provider r
and the system would still be correct according to G. The crucial issue is that
while a global type specifies precisely how parties communicate, it only captures
what the parties should communicate in a very loose sense (for example, “send a
string” vs. “send a string corresponding to the service code for which the client
was sent the price”).

To overcome this issue, we propose the adoption of value dependent multi-
party session types, which refine multiparty session types by adding type depen-
dencies to specifications of exchanged data (extending the work of [15,19] for
the binary setting).

The technical challenge here is reconciling the global specification of the dis-
tributed interaction, which may reference properties depending on data spread
across multiple endpoints, with the local knowledge of each participant. Projec-
tion must ensure that whenever two endpoint processes exchange a proof object,
the object is consistent with the knowledge of both endpoints. Specifically, the
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sender must know each term referenced by the proof object and propagate the rele-
vant information to the receiver in a consistent way. Another issue is that the local
types generated for each endpoint may not necessarily have matching dependen-
cies due to the potentially incomplete views of the global agreement (for instance,
participant p may assert some relationship between two data elements to q, where
q only knows one of the datum). We must nevertheless ensure that endpoint pro-
jections are well-formed given the local knowledge of each endpoint and preserve
the intended data dependencies, given the partial view of the system.

2.1 Value Dependent Multiparty Session Types

The key motivation for using value dependent types is to enable type level specifi-
cations of properties of data used in computation. Given that MPST have a natural
distributed interpretation, we wish not only to express properties of exchanged
data but also to support the ability for processes to exchange proof objects wit-
nessing the properties of interest, providing a degree of certified communication
in some sense. For instance, a value dependent version of G above can be:

GDep = p → q : (x:Int).p → r : (y:String).
p → q : (z:isPrice(x, y)).q → r :

(
yes:G′; no:end) (2)

where the predicate isPrice(x, y) holds only if the integer x is indeed the price
for service y. In the specification GDep, p must also send to q a proof of the
relationship between the previously sent price and the service code. While the
notion of proofs as first-class objects might seem somewhat foreign insofar as
one might simply expect some runtime verification mechanism that ensures the
received data is in the required form (as specified by the type-level assertions),
explicit proof exchange is a more general approach: proof generation might not
be decidable in general, whereas proof checking should be. Moreover, even when
proof generation is decidable, it can often require more computational resources
than checking the validity of a proof object.

By leveraging the Curry-Howard correspondence between propositions and
types (and proofs and programs), we can represent such proof objects as terms in
a language with a suitable (dependent) type discipline, such that the only well-
typed instances of processes implementing the role of p will be those that not only
adhere to the session discipline but also satisfy the functional constraints encoded
in the dependently typed values. The framework also ensures that proof objects
are explicitly exchanged between communicating parties, which is of practical
significance in a distributed setting.

Global Types. The syntax for value dependent MPST is given in Fig. 2. A mes-
sage exchange p → q : (x:τ).G specifies communication between sender p and
receiver q of a value of type τ , bound to x in G. The type structure of τ is some-
what generic, with the following requirements: we assume a dependently typed
λ-calculus with dependent functions Πx:τ.σ and pairs Σx:τ.σ, where x binds its
occurrence in Π and Σ. In our theory and examples, we generalise dependent
pair types Σx:τ.σ to Σl.σ, where l is a list of type bindings of the form xi:τi.
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Fig. 2. Syntax of global and local types

We manipulate such lists using Haskell-style notation. We assume some base
types b and singleton types [16], written S(M), where M is a value of some base
type b and S(M) denotes a value of type b equal to M . For example, if we assume
natural numbers Nat as base types then the natural number 5 can be typed with
both Nat and Nat(5). We require type preservation and progress for this language
of message values, as well as decidability of type-checking (although, crucially,
not of type inhabitance).

The branching p → q :
(
lj :Gj

)
j∈J

denotes a selection made by p between a
set of behaviours Gj identified by labels lj , achieved by the emission of a label li
with {li : i ∈ J} from p to q. The session then continues as Gi for all participants.

Session delegation p → q : (T ).G denotes that participant p delegates to q its
interactions with a session channel of local type T (defined below), achieved by
sending the channel endpoint, after which the interaction proceeds as G. Note
that there is no binding for T since we only consider dependencies of values,
rather than on sessions.

Recursive global types μt (x = M :τ).G, where t and x bind its occurrences in
G, enable the specification of how a recursive interaction should proceed among
the different participants. The parameter x is a recursion variable standing for
a term M of type τ , which defines the initial value of x in the first recursive
instance, acting as a parameter of the recursion. A recursion is instantiated with
t〈M〉, where M denotes the value taken by x in the next instance. We assume
that recursive type definitions are contractive and, for the sake of simplicity,
that there is at least one occurrence of t in G. We consider recursive types in the
typical equirecursive sense, up to unfolding. Finally, end denotes a lack of further
interactions. We often omit end and write message exchange and recursion as
p → q : (τ).G and μt.G if x does not occur in G.

We write fv(G) for the free variables of G, defined inductively in the usual
way. We state that a global type G is closed (resp. open) if fv(G) = ∅ (resp.
fv(G) �= ∅). We write C�−� for a global type context (i.e., a global type with a
hole). G � G′ stands that G is a subterm of G′.

Definition 2.1 (Global Type Context). Given a global type, we define its
subterms via the following notion of context:

C :: = | p → r : (x:τ).C | p → r : (T ).C | p → r :
(
li : Ci

)
i∈I

| μt(x = M :τ).C
| end | t〈M〉

with the hole occurring in at most one Ci.
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Fig. 3. Buyer - seller - distributor global type

Local (Endpoint) Types. Value dependent local types specify the behaviour
and data constraints of each endpoint involved in the multiparty session. The
send types p!(x:τ);T and p!(U);T denote, respectively, sending a value M of
type τ to participant p and proceeding with the behaviour T{M/x} or send-
ing a channel of type U and continuing with behaviour T . The selection type
⊕p

(
li:Ti

)
i∈I

encodes the transmission to p of a label li following by the com-
munication specified in Ti. Receive types (p?(x:τ);T and p?(U);T ) and branch
types ⊕p

(
li:Ti

)
i∈I

specify the dual behaviours of sending and selection. Recur-
sive types μt (x = M :τ).T (and their instantiations t〈M〉) specify a recursive
behaviour T parameterised by a term M of type τ , bound to x.

2.2 Examples of Value Dependent Global Types

We now introduce two examples of value dependent global types, showcasing
their heightened expressiveness.

Three Party Interaction: Buyer - Seller - Distributor. We specify the
interaction patterns between three parties: a buyer, a seller and a distributor,
illustrating the combined use of recursion and dependencies (Fig. 3).

The session begins with the buyer requesting a query of a product from
the distributor. The distributor then communicates with the seller, sending the
number of items currently available. The seller sends to the buyer the number of
available product and an initial price. The buyer and the seller then initiate in a
recursive negotiation, where the buyer selects to either proceed with the negoti-
ation or to quit the protocol. In the latter case, the seller notifies the distributor
of the cancellation. In the former, the buyer sends the seller an offer, upon which
the seller must decide whether to continue negotiating, to terminate the nego-
tiation by rejecting the offer, or to terminate the negotiation by accepting the
offer. The decision is then forwarded to the distributor.

This interaction, beyond the equality constraints between the stock message
sent from the distributor to the seller and then from the seller to the buyer,
captures in a relatively simple way the encoding of the loop invariant – that
each offer made by the buyer is always increasing, and at least as much as the
initial quote.
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MapReduce. We specify a distributed computation where a client sends to
a server some data upon which the server is intended to run some potentially
computationally expensive computation, represented by a map-style function f
and a reduce-style function g.

GMR � Client → Server : (d : String).
Server → Worker1 : (d1 : String).Server → Worker2 : (d2 : String).
Server → Aggr : (p : d = d1 ++ d2).
Worker1 → Aggr : (r1 : Σr:String.r = f(d1)).
Worker2 → Aggr : (r2 : Σr:String.r = f(d2)).
Aggr → Server : (r3 : Σr:String.r = g(π1(r1), π1(r2)))
Server → Client : (res : String(π1(r3)))

Upon receiving the data from the client, the server divides it into two parts
which are then sent to be processed by the two workers. The system includes an
aggregator service, which is informed by the server of the division of the data.
The workers then send to the aggregator the result of the computation f on their
respective data partitions, which then sends back to the server the aggregation
result (computed using the aggregation function g). Finally, the server sends
back to the client the final result.

The crucial aspect of this simple example is that not only are we describing
the structure of communication (and to some extent, the topology of the service),
we are specifying in a very precise way the actual functionality of the global
coordination.

Recursive Game. To clarify the interaction of recursion and value dependen-
cies, we encode a simple toy game protocol between three parties: Alice,Bob and
Carol.

GABC � Carol → Alice : (n : Σy:Nat.y > 0).
Carol → Bob : (n′ : Nat(π1(n))).
μt(x = n : Σy:Nat.y > 0).
Alice → Carol : (m : Nat).
Bob → Carol : (m′ : Nat).
Carol → Alice : (correct : Gc1,wrong : t〈x − 1,M〉)

Gc1 � Carol → Bob(correct : end,wrong : t〈x − 1,M〉)
In the protocol above, Carol sends both Alice and Bob a number of total tries

n the two participants are allowed to attempt to guess some random number
generated by Carol. The protocol then proceeds by repeatedly accepting guesses
from both Alice and Bob until they both guess correctly, upon which the protocol
terminates, or until the number of tries n runs out.

While very minimal in its features, this example showcases how the com-
bination of recursion and value dependencies allows us to specify sophisticated
global types, such as counting down from a sent or received number, insofar as
we are able to make the actual communication structure of the protocol depend
on previously received data.
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2.3 Well-Formedness of Global Types

We detail the well-formedness conditions on global value-dependent MPST. In
contrast with the work on design-by-contract [2], which introduces assertions to
MPST, we do not in general enforce the property that all well-formed global
types are realisable by some well-typed endpoint processes. In [2], global type
well-formedness entails that assertions expressed in a global type are possible to
satisfy, by restricting the assertion language to decidable logics. Given our aim
of maintaining a general dependent type theory as our proof language, we opt
for a different design.

In our general setting, we can use a larger set of well-formed global types for
which no process realisers may exist. The decision problem of determining if such
process realisers exist is itself undecidable. Our goal is to define well-formedness
of global and local types such that:

1. Projection of a well-formed global type produces well-formed local types by
a simple projection rule; and

2. If a collection of processes which satisfy local types exist, then the global
specification is satisfied.

Below we define simple well-formedness conditions which are sufficient to ensure
the above properties. The first condition defines a binding restriction on recur-
sions; the second captures the fact that in a message exchange between two
participants, the sender should always know all the message variables mentioned
in the message’s type. We note that history-sensitivity has been shown decidable
in [2], where a compositional proof system for history sensitivity is presented.

Definition 2.2 (Well-Formedness Conditions).

1. (recursion) Let G be a closed global type. We say that G has well-formed
recursion iff for all t〈M〉 ∈ G, x ∈ fv(M), there exists C�−� such that either:
G = C�p → q : (x:σ).G′

� or G = C�μt (x = M : τ).G′
�.

2. (history sensitivity) Given a global type G, we say that p ensures τ in G iff
there is C such that G = C�p → q : (x:τ).G′

�. Then for any natural number
n, G is n-history sensitive on a message variable x iff for all G′ such that G′

is a n-times unfolding of G, and for all types τ in G′ such that x ∈ fv(τ)
there is p → q : (x:τ ′).G′′ � G′ such that p or q ensures τ in G′′. We say that
G is history sensitive iff it is n-history sensitive for all natural numbers n on
all message variables in G.

G is well-formed if all recursions in G are well-formed and G is history sensitive.

Hereafter we consider only well-formed global types.

3 Projection and Data Dependencies

We now motivate some of the challenges of defining projection of a global type
while respecting the partial local knowledge of each participant.
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Recall the global type GDep of Sect. 2.1 (Eq. 2), which is a well-formed global
type. In the final interaction between participants p and q, p is supposed to send
a proof that the previously received integer value x is indeed the price for the
service code sent to r, identified by the string y. From the perspective of p, the
value of both x and y are known. However, q only knows the value of x since
y was sent only to r. Thus, if we consider a typical notion of projection that
traverses the type GDep and collects the direction of communication accordingly
we obtain the following local types for p and q (for some Tq):

GDep �p = q!(x:Int); r!(y:String); q!(z:isPrice(x, y)); end
GDep �q = p?(x:Int); p?(z:isPrice(x, y));Tq

The local type for q cannot be correct since it contains a free variable y (given q’s
local knowledge), which is not free in the local type for p. In order to generate
adequate local types for both endpoints we must ensure that the two types
respect the local knowledge of each participant.

Intuitively, the type for the endpoint corresponding to participant p must bun-
dle in the message identified by z all the unknown information from participant
q’s perspective. However, if we modify the projection for participant p to,

q!(x:Int); r!(y:String); q!(z:Σy′:String.isPrice(x, y′)); end (3)

we do not preserve the semantics of GDep, in the sense that a process with the
type above may send to q any price, provided it is indeed the price of a service
in the system.

In order to preserve both the semantics of data dependencies in global types
and generate well-formed local types for both endpoints, we make use of singleton
types and subtyping, which is formally defined in Sect. 3.1. Crucially, we make
use of singleton types to implicitly refer to the equality constraints induced by
dependencies in a global type. In the example above, generating the following
local type for p,

q!(x:Int); r!(y:String); q!(z:Σy′:String(y).isPrice(x, y′)); end (4)

we can preserve the semantics of GDep, in the sense that p may only send x and
y such that one is the price of the other. Moreover, we exploit the fact that for
any base type b, if M : b then S(M) ≤ b in order to produce the following local
type for endpoint q,

p?(x:Int); p?(z:Σy′:String.isPrice(x, y′));Tq (5)

The type above not only respects the local knowledge of endpoint q but
is also compatible with the interactions specified by the local type for end-
point p due to the subtyping of singletons, since Σy′:String(y).isPrice(x, y′) ≤
Σy′:String.isPrice(x, y′) by the usual covariant subtyping rules for Σ-types and
the fact that a singleton is always a subtype of its corresponding base type (we
note that session subtyping for message input is covariant in the message type;
and dually, contravariant for output).
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Fig. 4. Subtyping for local and data types (Abridged)

3.1 Defining Projection

Having discussed the main challenges of preserving global data dependencies in
local types, we define a notion of projection that generates compatible message
types (in the sense of Definition 3.2) for well-formed global types.

We begin by introducing the subtyping rules for both local and data types.
The rules are mostly standard from the literature of subtyping in session types
[7] and singleton types [16]. For conciseness we only consider session subtyping
for input and output types. Subtyping for choices and branching are orthogonal.
The subtyping judgement, written Ψ � τ ≤ σ for data types and Ψ � T ≤ S for
local types, denotes that τ (resp. T ) is a subtype of σ (resp. S), where Ψ is a
context tracking free variables in types. Note that if T is a subtype of U , then
a process implementing type T may be safely used wherever one of type U is
expected. We write Ψ � M : τ for the typing judgement of terms M , which we
maintain mostly unspecified. We write Ψ � τ for the well-formedness of τ and
Ψ � M ≡ N : τ for definitional equality of M and N . The key subtyping rules
are given in Fig. 4.

The key rules for the development of a well-defined notion of projection is the
singleton subtyping rule (SUB-S), which specifies that a singleton for a base type
is always a subtype of its base type and the rules for subtyping of input and output
local types, enabling receiving processes to receive instances of the singleton type
when expecting to receive instances of the corresponding base types.

We make precise the notion of a participant knowing the identity of a message
or recursion variable occurring in a global type. Intuitively, a participant knows
the identity of a message variable if it is involved in corresponding communica-
tion. Similarly, knowing a recursion variable requires knowledge of all message
variables that occur in the recursive parameter.

Definition 3.1 (Knowledge). Let G be a closed global type and p ∈ G. We
say that p knows x:τ in G iff there is C such that either:

– G = C�s → r : (x : τ).G′
� with p ∈ {s, r}; or

– G = C�μt(x = M : τ).G′
� where for all y ∈ fv(M) ∪ ⋃

t〈M ′〉∈G′ fv(M ′) \ {x}
and p knows y in G.
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We say that a participant p knows M in G iff p knows all the free variables of
M in G.

Equipped with our notion of subtyping and knowledge, we define compati-
bility between message types in Definition 3.2, appealing to a consistent priming
of the variables in a type. Given a variable x:τ with x ∈ fv(σ), we say that x′ is
a primed version of x iff x′:τ(x). A priming of type σ is a pointwise priming of
(some) of its free variables. We maintain the connection between a primed vari-
able and its unprimed version (we write primedV ars(r) to denote the primed
variables of set r).

Definition 3.2 (Compatible Message Types). Given a well-formed global
type G with p → q : (x : τ).G′ � G we say that the pair of data types (σ1, σ2) is
compatible with p and q for message x iff

1. Ψ � σ1 and Ψ � σ2, for some Ψ ;
2. p (resp. q) knows all the (free) variables in σ1 (resp. σ2);
3. Ψ � σ1 ≤ σ2 for some Ψ ;
4. Ψ � σ1 ≡ Σl.τ ′, for some priming of τ and some (possibly empty) list l.

Two message types σ1 and σ2 are deemed compatible from the perspective of
participants p and q if both types are well-formed, their free variables are known
by the corresponding participants and they are related by subtyping. Moreover,
we enforce that compatible message types must be dependent tuples (without
loss of generality). For example, in the global type GDep discussed above, for the
last message exchange between participants p and q, the pair of message types
Σy′:String(y).isPrice(x, y′) and Σy′:String.isPrice(x, y′) is compatible for p and
q, respectively.

We make use of an auxiliary function, dubbed compatible type binding gen-
eration (CTB), that given a message exchange p → q : (x:τ).G′ in a global type
G produces a dependent tuple Σl.τ ′, where τ ′ is a priming of τ (τ and τ ′ differ
only on the names of free variables of base type, where x′ ∈ fv(τ ′) corresponds
to x ∈ fv(τ)) and l is a list of variable bindings (occurring in τ ′) that are known
by participant p and not known by q, making use of singleton types to preserve
the value dependencies specified in the global type G.

Definition 3.3 (Compatible Type Binding Generation). For any closed
global type G, with p → q : (x : τ).G′ � G. We generate a compatible type binding
for x:τ , written CTB(x:τ), as follows. If τ is a base type then CTB(x:τ) = [x:τ ].
Otherwise, the compatible type binding for x:τ is given by the recursive function
F (x:τ), given below making use of typical list manipulation notation:

1. If τ is a base type, then F (x:τ) = [x′:τ(x)]; otherwise,
2. Let u be the list of bindings corresponding to the free variables of τ , known

by p and not by q.
3. If u = [ ] then F (x:τ) = [x:τ ]; otherwise,
4. Let r = fold (λb.λacc .merge(F (b), acc)) [ ] u1.
5. Let τ ′ = τ{primedV ars(r)′/primedV ars(r)}, then F (x:τ) = r ++ [x:τ ′].



444 B. Toninho and N. Yoshida

We note that in recursive calls to F , the participants p and q are fixed in the
sense that F (b) considers variables in the binding b known by p and unknown
by q. Moreover, usages of CTB tacitly assume that we convert the resulting list
into a dependent tuple in the natural dependency-preserving way.

For instance, in the global type GDep (Eq. 2), the CTB for the third exchange
between p and q produces the type Σy′:String(y).isPrice(x, y′) which may be used
as the message type for the output of p, bundling all the necessary data that
is unknown by q at the given point in the protocol. The key insight is that
CTB consists of a terminating function that computes a tuple bundling all the
unknown information from the perspective of the recipient of a message, using
singleton types to preserve data dependencies from the perspective of the sender.

Theorem 3.4 (Compatible Type Binding Generation – Termination).
Compatible type binding generation (Definition 3.3) is a terminating function.

Proof. We first point out that the fact that we consider closed global types
enforces some constraints on free variables in data types. In particular, a data
type’s free variables must have all been defined by previous communication
actions, which immediately excludes circular dependencies where two data types
mutually depend on each other (e.g. the binding for a free variable y of a type
x:P(y) being of the form y:Q(x)).

Function CTB(x:τ) in Definition 3.3 inspects bindings of free variables of τ ,
known by participant p and unknown by q (c.f. Definition 3.1). By construction,
these variables are bound by previous interactions involving p. Since there is no
possibility for circularity, the free variables of a data type and the free variables
of types in their binding occurrences form a directed acyclic graph (DAG).

The termination of F follows from the observation that it simply performs
a traversal of this DAG, producing a reverse topological ordering of the graph.
Specifically, F traverses the subgraph of this DAG made up of variables known
by p and not by q (itself a DAG). This is straightforward to see: the terminal
nodes of the graph are those when we reach a base type or have no unknown
variables; for non-terminal nodes, that is, those with unknown variables, we
perform a depth-first search traversal of the DAG, collecting the outcomes in
a merged list with the appropriately primed type as the last element. We note
that this traversal produces a reverse topological ordering of the DAG. ��

To ensure that projection produces well-formed local types for both end-
points, we make use of singleton erasure (Definition 3.5) to erase singletons
from a dependent tuple. Intuitively, we use CTB to generate the message type
for the sender and its singleton erasure to generate the type for the recipient,
observing that the two are related by subtyping.

Definition 3.5 (Singleton Erasure). Given a type τ of the form Σl.σ, we
write τ † for its singleton erased version, that is, where each primed binding in l
of the form x′

i:σi(x) is replaced by x′
i:σi.

Finally, for projection of choices and branchings we appeal to a merge oper-
ator along the lines of [6], written T � T ′, ensuring that if the locally observable
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Fig. 5. Projection.

behaviour of the local type is not independent of the chosen branch then it is
identifiable via a unique choice/branching label (the merge operator is otherwise
undefined).

Definition 3.6 (Merge). Let T = �r
(
li : Ti

)
i∈I

and T ′ = �r
(
l′j : T ′

j

)
j∈J

. The
merge T � T ′ of T and T ′ is defined as:

T � T ′ � �r
(
lh : Th

)
h∈I\J

∪ (
l′h : T ′

h

)
h∈J\I

∪ (
lh : Th � T ′

h

)
h∈I∩J

T � T � T

if lh = l′h for each h ∈ I∩J . Merge is homomorphic (i.e. C[T1]�C[T2] = C[T1�T2])
and is undefined otherwise.

Definition 3.7 (Global Projection). Let G by a global type. The projection
of G in a participant p is defined by the function G � p in Fig. 5. If no side
conditions hold then projection is undefined.

Example 3.8 (MapReduce). A projection of MapReduce in Sect. 2.2 from the
viewpoint of participant Server is given below (projections for the other roles are
given in Fig. 6):

GMR � Server � Client?(d:String);Worker1!(d1:String);Worker2!(d2:String);
Aggr!(p:Σd′:String(d), d′

1:String(d1), d
′
2:String(d2).d

′ = d′
1 ++ d′

2);
Aggr?(r3:Σr1:Σr:String.r = f(d1),

r2:Σr:String.r = f(d2),
r:String.r = g(π1(r1), π1(r2)));

Client!(res:Σd′
1:String(d1), d

′
2:String(d2),

r1:Σr:String.r = f(d′
1),

r2:Σr:String.r = f(d′
2),

r3:Σr:String.r = g(π1(r1), π1(r2)).
String(π1(r3))); end
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Fig. 6. Projections for GMR – Client, Worker and Aggr roles.

The projection for the server role illustrates the key elements in our notion
of endpoint projection. In the third message (the output to the aggregator),
we bundle the information unknown by the aggregator in order to ensure the
type is well-formed from the perspective of the recipient. Moreover, the usage of
singletons preserves the dependencies specified in the global type (i.e. that the
objects in question are indeed those received from the client and subsequently
sent to the two worker endpoints). Note that in the input from the aggregator,
the projected type does not require singletons since the server endpoint knows
the identities of d1 and d2.

4 Value Dependent Processes and Typing

This section presents semantics and a typing system of value dependent processes.

4.1 Syntax and Operational Semantics

We define the process syntax, introducing the operational semantics, which is an
extension of the synchronous multiparty session π-calculus studied in [11]. We use
s to range over session names, c to range over channels which are either variables
z, x or session names with role s[p], a to range over shared names. The process
a[n](z).P is a session initiation request, established through synchronisation by
rule 〈Init〉, with the complementary accepting processes a[p](z).P (with 2 ≤
p ≤ n) on a shared channel a. We use c[p] in all session interactions, where
c denotes a channel and p the participant implemented the by other endpoint
process. Interactions within a session are: c[p]!(M);P sends the message M to
participant p, continuing as P ; and c[p]?(x);P receives a message or a channel
from participant p, binding it to variable x in the continuation P (by rule 〈Com〉)
where terms are reduced to values (denoted by M ⇓ V ); process c[p]!(s);P
delegates channel s to participant p and continues as P (by rule 〈Del〉). c[p] � l;P
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Fig. 7. Operational semantics of processes – reduction and structural congruence

and c[p] � (li:Pi)i∈I denote, respectively, selecting a label l by communicating
with participant p and continuing as P and receiving a label li from participant p
and continuing as Pi (by rule 〈Sel〉). Recursive process definitions μX(x = M).P
have the recursion variable x as a formal parameter, instantiated with M in
the first iteration (we assume P always contains at least one recursive call on
X) (by rule 〈Rec〉). The remaining operational semantics, structure congruence
≡ and context rules which closed under parallel and shared and session name
restrictions, are standard.

4.2 Typing System

We now introduce the typing system assigning local types to channels in
processes. The key typing rules are given in Fig. 8. We omit the rules that are
not particular to our development, such as those for choice, branching, inactiv-
ity and session initiation for conciseness. We define the judgement Ψ ;Γ ;Δ � P ,
where Ψ is a typing context for message terms, Γ a mapping of shared names
to global types and process variables to the specification of their variables, and
Δ a (linear) mapping of channels to local types. The intuitive reading of the
typing judgement is that P uses channels (and recursion variables) according
to the types specified in Γ and Δ and message variables according to the types
specified in Ψ . We write Γ � a:G iff a:G ∈ Γ . We also make use of a typing
judgement for message terms Ψ � M : τ , denoting that M has type τ under
the typing assumptions recorded in Ψ . We omit this typing judgement for the
sake of generality of the underlying type theory. We recall the requirement of
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Fig. 8. Local typing rules.

the usual type safety results of progress and type preservation (and so, a sub-
stitution principle) in the presence of singleton types and subtyping (as detailed
in Sect. 3.1).

Rule (VSEND) types sending of data messages. Sending a datum M binds it
to x in the continuation type, as expected in a (value) dependently-typed setting.
Sending a channel requires its existence in the context with the appropriate type.
Dually, rule (VRECV) types the reception of data, where the process that expects
to receive a data message of type τ is warranted to use it in its continuation.

The typing rule for (REC) recursive process definitions assigns a channel
with a parameterised recursive type by registering in Γ the necessary informa-
tion regarding the process recursion variable (the channel name, the recursive
type variable and the parameter variable), where the local typing environment
must be empty. Rule (VAR) simply matches the process recursion variable with
the type recursion variable according to the information if Γ , checking that
the recursive parameter is appropriately typed. The remaining rules are stan-
dard in the MPST literature [9,11,22], of which we highlight the (SRES) rule
for session channel restriction, requiring that all the several role annotatted
endpoints be coherent (Definition 4.5). Coherence relies on a notion of partial
projection (Definition 4.2) and session duality (Definition 4.3), which we now
introduce.

Partial projection is defined as a function taking an endpoint type and a
role identifier. Intuitively, it extracts from the endpoint type the behaviour that
pertains only to the specified role, erasing all role annotations (since the type
is now completely localised to a single role – i.e. a binary session type). We
range over binary session types with S, T . Duality is defined in the natural
way, matching inputs with outputs (appealing to subtyping in the case for data
communication to ensure compatibility of the data types); and branching with
selection.
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Fig. 9. Partial projection.

Definition 4.1 (Binary Type Merge). Let T = ⊕(
li : Ti

)
i∈I

and T ′ = ⊕(
l′j :

T ′
j

)
j∈J

. The merge T � T ′ of T and T ′ is defined as:

T � T ′ � ⊕(
lh : Th

)
h∈I\J

∪ (
l′h : T ′

h

)
h∈J\I

∪ (
lh : Th � T ′

h

)
h∈I∩J

T � T � T

if lh = l′h for each h ∈ I∩J . Merge is homomorphic (i.e. C[T1]�C[T2] = C[T1�T2])
and is undefined otherwise.

Definition 4.2 (Partial Projection). The partial projection of a local type T
onto p, denoted by T � p, is defined by the rules of Fig. 9.

Definition 4.3 (Duality). The duality relation between projections of local
types is the minimal symmetric relation satisfying:

end �� end t〈M〉 �� t〈M ′〉
T �� T ′ =⇒ (μt(x = M : τ).T ) �� (μt(x = M ′ : τ).T ′)

T �� T ′ ∧ τ ≤ τ ′ =⇒!(x:τ);T ��?(x:τ ′);T ′

T �� T ′ =⇒!(U);T ��?(U);T ′

∀i ∈ I Ti �� T ′
i =⇒ ⊕(li:Ti) �� �(li : T ′

i )

Duality is crucial to ensure compatibility between the different participants in a
multiparty conversions. This notion is made precise in the following lemma.
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Lemma 4.4. Let G be a global type and p �= q. Then (G � p) � q �� (G � q) � p.

Coherence thus ensures compatibility of all participants in a multiparty ses-
sion, requiring that for each role in the multiparty conversation, all performed
actions are matched by a dual action performed by the expected recipient.

Definition 4.5 (Coherence). A session environment Δ is coherent for the
session s, written co(Δ, s) if s[p] : T ∈ Δ and s[q] : T ′ ∈ Δ imply T � q �� T ′ � p.
A session environment is coherent if it is coherent for all sessions which occur
in it.

5 Safety Properties of Value Dependencies

This section lists the main properties of the typing system. Recalling the notion
of history sensitivity (Definition 2.2), which intuitively requires that in a global
type G, for each interaction in which s sends some data of type τ , all free variables
of type τ must have been defined in a previous interaction of G involving s, we
state soundness of compatible type binding generation.

Theorem 5.1 (Compatible Type Binding Generation is Sound). Let G
be a well-formed, history sensitive global type such that p → q : (x:τ).G′ � G.
We have that the pair of data types ((CTB(x:τ)), (CTB(x:τ))†) is compatible
with p and q.

Intuitively, it is easy to see that CTB generates pairs of compatible types
given the subtyping rules for singletons (and Definition 3.5 of singleton erasure),
combined with the fact that CTB collects only data known by p and unknown
by q, relevant to the message exchange of type τ .

Given that types intrinsically specify properties of exchanged data, subject
congruence and reduction ensure that any well-typed process is guaranteed to
conform with its behavioural specification in a strong sense. Subject reduction
relies crucially on a substitution principle for types and processes, which is a
lifted version of the substitution principle for the dependent data layer.

Lemma 5.2 (Term Substitution). If Ψ, x:τ ;Γ ;Δ � P and Ψ � M :τ then we
have that Ψ ;Γ ;Δ{M/x} � P{M/x}.
Theorem 5.3 (Subject Congruence and Reduction). If Ψ ;Γ ;Δ � P and
P ≡ Q then there is Δ′ ≡ Δ such that Ψ ;Γ ;Δ′ � Q; and If Γ � P and P −→ P ′

then Γ � P ′.

Note that adherence to the properties of data specified in types is intrinsic: values
occurring in well-typed processes act as proof witnesses to the stated properties
which are thus inherently satisfied, entailing a notion of communication safety,
see [9, Th. 5.5].
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Error Freedom. In order to characterise the kind of communication errors
that are disallowed by our typing discipline, we define a notion of extended
process which explicitly references message typing information by considering
the following process constructs for (data) input and output:

P,Q :: = c[p]!(M){x:τ};P | c[p](x){x:τ};P | . . .

We then define a typed reduction and labelled semantics, written �−→ and α�−→,
respectively. Typed reduction �−→ is defined by the same rules as those of Fig. 7
but where the message synchronisation rule is replaced with (error is a special
process construct denoting the error state):

M ⇓ V · � τ ≤ τ ′ · � V : τ

s[p][q]!(M){x:τ};P | s[q][p]?(x){x:τ ′};Q �−→ P{V/x} | Q{V/x}
M ⇓ V · �� τ ≤ τ ′ ∨ · �� V : τ

s[p][q]!(M){x:τ};P | s[q][p]?(x){x:τ ′};Q �−→ error

Equipped with extended processes and typed reduction, we may then show that
well-typed (extended) processes never reach an error state.

Theorem 5.4 (Error Freedom). Let Γ � P and P �−→∗ P ′. Then error is not
a subterm of P ′.

6 Specification Without Communication

So far we have mostly been concerned with the challenges of certifying data
exchanges in a multiparty setting by having process endpoints exchange explicit
proof objects. However, it is quite often the case that we may wish to reference
data and constraints that are reasonable at a specification level but that have
little computational interest at runtime. For instance, consider the following
global type,

p → q : (x:Nat).p → q : (y:x > 2).G (6)

In the example above, participant p sends q some natural number x, followed
by a proof denoting that x is greater than 2. While such an exchange does
ensure that a well-typed implementation of the endpoint p must necessarily
send to q an integer greater than 2, the endpoint q may have little interest in
actually receiving a proof that x > 2. Rather, the exchange denoted by the
second message from p to q appears as an encoding artefact due to the fact that
the framework requires explicit proof exchanges by default.

While it is the case that we could omit a second exchange by “currying” the
two communication actions into a pair,

p → q : (x:Σa:Nat.a > 2).G (7)

the issue still remains that we are forced to send potentially unnecessary data.
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We can alleviate this issue through the usage of a proof irrelevance modality,
written [τ ], denoting that there exists a term of type τ (and thus, a proof of τ),
but the identity of the term itself is deemed computationally irrelevant. To make
this notion precise, we appeal to a new class of typing assumptions x÷τ , meaning
that x stands for a term of type τ that is not computationally available; and
to a promotion operation on contexts (written Ψ⊕) mapping computationally
irrelevant assumptions to ordinary ones:

Ψ⊕ � M : τ

Ψ � [M ] : [τ ]
([]I)

Ψ � M : [τ ] Ψ, x ÷ τ � N : σ

Ψ � let [x] = M in N : σ
([]E)

Given that we are only warranted in using irrelevant assumptions within proof
irrelevant terms, it is easy to see that proof irrelevance cannot affect the compu-
tational outcome of a program and so we may consistently erase proof irrelevant
terms at runtime.

We combine this notion of proof irrelevance with an erasure operation that
eliminates communication of proof irrelevant terms – since they may not be used
in a computationally significant way, they bear no impact on the computational
outcome of the session. For instance, we may rewrite the global type of (7) as:

p → q : (x:Σa:Nat.[a > 2]).G (8)

marking that the proof of a > 2 is not computationally significant, but must
exist during type-checking.

With the combined use of proof irrelevance and erasure we ensure that the
specification must still hold, in the sense that the proof objects must be present
in endpoint processes for the purposes of type-checking, but are then omitted
at runtime to minimise potentially unnecessary communication. An alternative
approach, only feasible for decidable theories, would be to generate proofs auto-
matically by appealing to some external decision procedure.

6.1 Erasure of Proof Irrelevant Terms

We introduce a simple erasure procedure on types, processes and terms that
replaces proof irrelevance with the unit type (and the unit element at the term
level). Recall that since proof irrelevant terms have no bearing on the computa-
tional outcome of programs, the erasure is safe w.r.t the behaviour of programs.

Definition 6.1 (Erasure). We inductively define erasure on local types, terms
and processes, written T ↓ (resp. τ↓, M↓ and P ↓) by the following rules (we
show only the most significant cases, all others simply traverse the underlying
structure inductively):
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(p!(x:τ);T )↓ � p!(x:τ↓);T ↓ (p!(x:τ);T )↓ � p?(x:τ↓);T ↓

(⊕p(lp:Ti)i∈I)
↓ � (⊕p(lp:Ti ↓)i∈I) (�p(lp:Ti)i∈I)

↓ � �p(lp:T
↓
i )i∈I

(p!(U);T )↓ � p!(U↓);T ↓ (p?(U);T )↓ � p?(U↓);T ↓

(μt.(x = M : τ).T )↓ � μt.(x = M↓ : τ↓).T ↓ t〈M〉↓ � t〈M↓〉

(a[n](z).P )↓ � a[n](z).P ↓ (a[p](z).P )↓ � a[p](z).P ↓

(c[p]!(M);P )↓ � c[p]!(M↓);P ↓ (c[p]!(s);P )↓ � c[p]!(s);P ↓

(c[p]?(x);P )↓ � c[p]?(x);P ↓ (c[p] � l;P )↓ � c[p] � l;P ↓

(c[p] � (li:Pi

)
i∈I

)↓ � c[p] � (li:P ↓
i

)
i∈I

(μX(x = M).P )↓ � μX(x = M↓).P ↓

X〈M〉↓ � X〈M↓〉

(Πx : τ.σ)↓ � Πx : τ↓.σ↓ (Σx : τ.σ)↓ � Σx : τ↓.σ↓

b↓ � b S(M)↓ � S(M↓)
[τ ]↓ � unit (♦pτ)↓ � ♦pτ↓

[M ]↓ � 〈〉 (λx.M)↓ � λx.M↓

〈M, N〉↓ � 〈M↓, N↓〉 〈〉↓ � 〈〉

The goal of the erasure function above is to essentially replace all instances of
proof irrelevant objects with the unit element 〈〉. We note that it is not in general
the case that (G � p)↓ = (G↓) � p, since projection of an erased global type may
not need to preserve some dependencies that were present in the original global
type. We may then consistently erase communication of messages of unit type.

Definition 6.2 (Communication Erasure). We write T ∗, P ∗, M∗ and τ∗

for the following erasure (the remaining cases are obtained by homomorphic
extension):

(p → q : (x:unit).G)∗ � G∗ (p!(x:unit).T )∗ � T ∗ (p?(x:unit).T )∗ � T ∗

To summarise, our proposed methodology for the usage of ghost variables in
specifications is to mark specification-level terms as proof irrelevant at the level
of global types. Projection is then performed on the global type, propagating the
proof irrelevance accordingly to the local types which we use to type the several
endpoint processes (which contain the explicit proof objects, now marked as
proof irrelevant).

Having successfully checked the endpoints, we may then perform the erasure
procedure(s) described above: by performing the erasure ↓ on the original global
type, we generate local types in which instances of proof irrelevance have been
replaced with unit; by applying the erasure ∗ we eliminate irrelevant communi-
cation actions from types, erasing those actions from the endpoints and refactor-
ing message payloads accordingly. We thus remove unnecessary communication
actions but ensure that specified properties are satisfied.

MapReduce. In our running example of a certified MapReduce-style com-
putation, where the global type GMR specifies that the workers and aggregator
endpoints indeed perform the appropriate computation, we may easily apply the
ghost variable technique introduced in this section to eliminate several poten-
tially unnecessary communication steps, including the potentially excessive pass-
ing of data that appears in local types as an artefact of endpoint projection.
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Consider the following revision of GMR, referred to as G[MR], where we mark
the message from the server to the aggregator which informs of the partition of
data as proof irrelevant (Server → Aggr : (p : [d = d1 ++ d2])), and similarly
for the proofs that the sent data objects are indeed the results of performing
the specified computation (Workeri → Aggr : (ri : Σr:String.[r = f(di)]) and
Aggr → Server : (r3 : Σr:String.[r = g(π1(r1), π2(r2))])). We then have the follow-
ing endpoint projections:

G[MR] � Client � Server!(d:String);
Server?(res:Σd1:String, d2:String,

r1:Σr:String.[r = f(d1)],
r2:Σr:String.[r = f(d1)],
r3:Σr:String.[r = g(π1(r1), π1(r2)]).

String(π1(r3))); end
G↓

[MR] � Client � Server!(d:String);
Server?(res:Σr3:(Σr:String.unit).String(π1(r3)))

By performing the erasure before projecting, we eliminate a substantial amount
of dependency information from the local type for the Client. We note that
transforming processes satisfying G[MR] � Client into ones satisfying G↓

[MR] �
Client can easily be achieved by some simple program transformations, related
to those used in program generation for dependently typed functional languages
[14,18].

6.2 Soundness of Erasure

We make precise the static and dynamic soundness of our erasure procedures.
The static safety theorem (Theorem 6.3) states that a consistent usage of erasures
does not violate the typing discipline.

Theorem 6.3 (Static Safety). Let Ψ ;Γ ;Δ � P . Then we have that:

(a) Ψ↓;Γ ↓;Δ↓ � P ↓

(b) (Ψ↓)∗; (Γ ↓)∗; (Δ↓)∗ � (P ↓)∗

We also show that erased processes have an operational correspondence with
their un-erased counterparts.

Theorem 6.4 (Operational Correspondence). Let Γ � P :

(a) If P −→ P ′ then P ↓ −→ P ′↓

(b) If (P ↓)∗ −→ P ′ then P −→∗ Q such that (Q↓)∗ ≡ P ′.

For the erasure of Definition 6.1, we have a very precise operational cor-
respondence by virtue of the computational insignificance of proof irrelevant
terms (Theorem 6.4 (a)). For the communication erasure of Definition 6.2, the
processes in the image of the erasures may naturally produce less reductions,
which account for the erased communication steps. However, we can ensure that
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a reduction in an erased process (P ↓)∗ −→ P ′ can be matched by potentially
a sequence of reductions in the original process P , such that applying the two
erasures to the reduct of P produces a structurally equivalent process to P ′

(Theorem 6.4, (b)).

7 Conclusion

In this section we present some additional discussion of key design choices and
avenues of future work and conclude.

7.1 Further Discussion

We discuss two fundamental considerations: some of the particulars of compati-
ble type binding generation and how they may be potentially simplified through
a fundamental use of proof irrelevance akin to that of Sect. 6; and how our design
choices affect a potential implementation of the language discussed in this paper,
specifically what should be verified statically and/or dynamically and in what
circumstances does the type system help guide these choices.

Compatible Type Binding Generation. In Sect. 3 we have discussed the
challenges of defining projection in the presence of value dependencies, given
that each participant only has a partial view of the global protocol and thus
the notion of projection from previous works on multiparty sessions produce
endpoint types that are either not well-formed or fail to capture the appropriate
data restrictions specified in global types.

We address this issue by bundling in each message exchange all the infor-
mation that is unknown by message recipients such that the endpoint types
for senders and receivers are well-formed, compatible and preserve the intended
semantics of global types. A potential disadvantage of our approach is that the
bundling procedure can insert a non-trivial amount of extra information in mes-
sage exchanges. For instance, in the global type:

G � A → B : (x1:τ1).
A → B : (x2:τ2).

...
A → B : (xn:τn).
A → C : (y:Σz : τ.P(z, x1, . . . , xn))

Participant A sends to participant B a sequence of n messages, after which it
sends to participant C a message of type Σz : τ.P(z, x1, . . . , xn), such that C
does not know x1 through xn. In this scenario, when projecting the exchange of
message y, A must not only send the object of type Σz : τ.P(x1, . . . , xn) but
also the n messages previously sent to participant B which are unknown to C.

In Sect. 6 we have introduced a way of minimising potentially unnecessary
communications through the usage of proof irrelevance and type-oriented era-
sure, where certain portions of data types are marked as irrelevant and subse-
quently erased. At the level of compatible type binding generation, it should also
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be possible to directly make use of proof irrelevance to reduce the communica-
tion overheads mentioned above, given that unknown message variables have a
somewhat proof irrelevant flavour (i.e. they cannot be used precisely because
they are unknown).

One potential approach to this issue is to introduce a proof-irrelevant Σ-type,
written Σx ÷ τ.σ and modify compatible type binding generation to quantify
over unknown variables using these proof irrelevant pairs. The main issue is that
it forces type families using such proof irrelevant variables to be themselves proof
irrelevant. We leave these challenges for future work.

On Implementation. The main contribution of this paper is the conceptual
extension of the multiparty session typed framework with value dependencies,
the language presented in this paper leads itself towards more realistic imple-
mentation considerations. Our basic foundation is that proofs are exchanged as
witnesses to the properties specified in types. These proof objects are no more
than terms from a dependently-typed language, but one may wonder if it is
indeed feasible to explicitly exchange proof objects instead of somehow verifying
the necessary properties dynamically. Regardless, given the potential distributed
nature of the framework, it seems natural to require that communicated proof
objects be checked at runtime on the recipient side.

While there are circumstances where proof objects may not be exchanged
and instead generated (or have the necessary properties checked) at runtime
on the receiver side, this requires the property language to be decidable, which
may be too restrictive (we note that we require proof checking to be decidable,
which is a significantly weaker condition), although a potentially reasonable
assumption in certain application scenarios, or for settings where programmers
cannot be expected to write proof objects by hand. Another alternative worth
considering is to have participants exchange digitally signed objects that hold
them accountable for the existance of certain proofs.

While there seems to be a somewhat flexible range of possibilities in terms of
proof communication, it is unavoidable that an implementation of the language
integrates both static and dynamic checking in order to ensure that the specified
properties indeed hold throughout execution. To this end, an extension of the sys-
tem where trust amongst session participants is determined a priori might help
guide the static/dynamic verification procedures. For instance, among trusted
participants one may avoid dynamic checks entirely, among “somewhat” trusted
participants, digital proof certificates might be required, but not the complete
proof objects, whereas communication with untrusted agents would require the
full range of dynamic and static checks.

We are currently investigating some of these avenues of research, in partic-
ular how the exchange of signed certificates interacts with assurances of data
provenance. Another aspect that needs to be studied is the potential leakage
of sensitive information that may occur while generating compatible endpoint
types due to unknown message dependencies, which should be alleviated by the
techniques discussed in the sections above.
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7.2 Concluding Remarks

We shall conclude this paper with a quotation from the end of Ambition and
Vision in [1] to record what we promised for the future:

Ambition and Vision [1]. As with data types, we expect session types to play
a role in all aspects of software. Today, architects model systems using types
that are directly supported in the programming language, whereas they model
communications using protocols that have no direct support in the programming
language; tomorrow, they will model communication using session types that are
directly supported in the programming language. Today, programmers use inter-
active development environments that prompt for methods based on types, and
give immediate feedback indicating where code violates type discipline, whereas
they have no similar support for coding communications; tomorrow, interactive
development environments will prompt for messages based on session types, and
give immediate feedback indicating where code violates session type discipline.
Today, software tools exploit types to optimise code, whereas they do not exploit
protocols; tomorrow, software tools will exploit session types to optimise commu-
nication. In short, architects, programmers, and software tools will all be aided by
session types to reduce the cost of producing concurrent and distributed software,
while increasing its reliability and efficiency.

The work introduced in this paper is a small step to move towards the ambi-
tion and vision of the ABCD project statement, proposing a session type dis-
cipline that builds on the current usages of data types as a tool for modelling,
developing and improving modern software, integrating them at a deep level with
MPST in order to provide a unified framework for statically certified programs,
from computation to communication.
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languages as a potential alternative to conventional programming languages,
particularly since Backus’s Turing lecture (Backus 1978). This interest arises
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from developments in the hardware. On the software side, there is mounting
evidence that the collection of ideas that came to maturity in the late sixties
and are loosely called “structured programming” have simply failed to deliver the
reduction in software costs that was originally hoped for — perhaps because the
break then proposed with traditional programming practices was insufficiently
radical. At the same time, people on the hardware side are searching for new
architectures, and therefore new methods of programming, that are capable of
taking advantage of the possibility of a very large degree of concurrency in the
machine, a possibility that is opening up because of the development of VLSI.
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This paper is included with the kind permission of Cambridge University Press.

c© Cambridge University Press 1982
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 459–478, 2016.
DOI: 10.1007/978-3-319-30936-1 24



460 D.A. Turner

In both cases, the key step is the abolition of the assignment statement and
with it the notion of sequencing. Before looking in more detail at an applicative
language and its properties it is worthwhile to review the software and hardware
arguments for considering such a radical change in our programming practice.

1 The Software Crisis and Its Causes

It is commonly observed that we have a software crisis and in a gathering of com-
puter scientists it should not be necessary to multiply examples. Everyone has
their own favourite horror story about a project that failed in some catastrophic
way because of a bug in a program. Less spectacular but equally worrying is
the high cost of producing software even for comparatively simple applications.
It is by now clear that the largest single obstacle to the wider use of comput-
ers is our inability to produce cheap, reliable and manageable software. The
more dramatic the advances on the hardware side the more embarrassing this
fact becomes. Does it seem too unreasonable to suggest that there is something
fundamentally wrong about the way in which we produce software?

I shall argue that the basic problem lies in the nature of existing programming
languages. Existing programming languages emerged in a relatively short period
between 1955 and 1960 — Fortran and Cobol set the pattern for later languages.
They have evolved since primarily by way of becoming more complicated — the
underlying principles have not changed. When we compare, say, Pascal with
Fortran, the similarities are much more significant than the differences. More
precisely, the differences are superficial but the similarities are fundamental. At
a certain level of abstraction all the programming languages in production use
today are the same. All are sequential, imperative languages with assignment as
their basic action.

When we compare our programming languages with all previous mathemat-
ical notation, however, the differences are very striking. Mathematical notation
has evolved over many centuries and obeys certain basic rules which are common
to every area of mathematics and which give mathematical notation its deductive
power. Let us briefly enumerate some of these basic properties of mathematical
notation.

First of all mathematics is static. There is no equivalent in mathematics of the
programming language notion of a procedure which gives a different answer each
time you call it. The mathematical idea of a function is a fixed table of input–
output pairs. Given the same f and the same x, the value of f x must always
be the same. This is so even when mathematics is used to describe processes
of change as in physics. We proceed by making time a parameter. That is we
formalise the notion of a three dimensional world which is changing by talking
about a static four dimensional world. Physics as a science became possible only
because Newton showed us how to reduce dynamics to statics in this way.

Secondly, and relatedly, there is in mathematics a certain kind of consistency
in the use of names — consider for example the equation

x2 − 2x + 1 = 0
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which has only one solution, namely x = 1. Now, supposing someone were to say
“no, there is another solution — we can take the first occurrence of x to be 3 and
the second to be 5, giving 3×3−2×5+1 = 0, which is also correct”, what would
we say? We would say that this proposed “solution” is invalid because it ignores
a basic premise of the whole exercise, namely that x is supposed to stand for
the same value throughout its scope, otherwise there would have been no point
in always calling the value x. Paradoxical though it may sound, in mathematics
variables do not vary; they stand for a constant value throughout their scope.

These basic properties of mathematical notation have been termed by logi-
cians “referential transparency” (Russell and Whitehead 1925, Quine 1960). In
mathematics, an expression is used only to refer to (or denote) a value and the
same expression always denotes the same value (within the same scope).

Finally, we can relate this to the notion of equality, which plays a fundamental
role in mathematical reasoning. Two expressions are said to be equal if and
only if they denote the same value. An immediate consequence of referential
transparency is that equality is substitutive — equal expressions are everywhere
interchangeable. It is this which gives mathematical notation its deductive power.

Now, how do our conventional programming languages relate to this tradi-
tion? It is clear that they don’t adhere to it, because in introducing the assign-
ment statement, which can change the value of a variable in the middle of
its scope, they have broken the basic ground rules of mathematical notation.
Instead of being referentially transparent, programming languages are referen-
tially opaque. In fact, the things that we call “variables” in languages like Algol
are not really variables in the mathematical sense at all — in the last analysis
they are names for registers in the store of a Von–Neumann computer.

It is because of this that it is difficult to reason about programs. Since expres-
sions can change their value through time, equality is not substitutive. Indeed,
in a programming language it does not even have to be true that an expression
is equal to itself — because the presence of side effects may mean that evaluat-
ing the same expression twice in succession can produce two difference answers!
In general it is not possible to reason about such programs on the basis of a
static analysis of the program text — instead, we have to think of the program
dynamically and follow the detailed flow of control, and this seems unreasonably
difficult.

A particularly sharp symptom of the software crisis is the fact that after
more than a decade of intensive effort — starting with say Floyd (1967) and
Hoare (1969) — we still do not have anything resembling a practically viable
set of techniques for giving formal proofs of program correctness on production
programs. It seems likely that this is because existing programming languages
lack the basic substitution properties on which a smooth running proof theory
could be built.

Apart from the problems connected with their referential opacity, the other
basic difficulty with existing programming languages is that they are very long–
winded, in terms of the amount one has to write to achieve a given effect. Even
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a comparatively straightforward program like a compiler can easily run to ten
thousand lines and there exist commercial packages up to a million lines long.

A number of studies carried out in industry have shown that a given pro-
grammer tends to produce a relatively fixed number of lines of code per year —
typically around 1500 lines of debugged and documented code — and while the
number of lines varies quite a lot from programmer to programmer, it is for a
given individual largely independent of the language in which he is working —
for example, it doesn’t seem to matter whether it is assembly code or PL/1.

The significance of this result is that it means that the most important single
variable in determining software production costs, apart from the quality of the
programmers, is the level of language at which they are working. The reason why
FORTRAN was such an enormous step forward, for example, is that programs
written in FORTRAN are from five to ten times shorter than the equivalent
assembly code. Other things being equal then, the FORTRAN programmer is
from five to ten times more productive than the assembly code programmer.

Our problem today is that in the twenty five years that have elapsed since
the invention of FORTRAN, we have failed to produce any further substantial
improvement in this basic ratio of expressive power. If you compare a program
written in a “modern” imperative language, such as PASCAL or ADA with its
FORTRAN equivalent, you will not find it very much shorter — in fact, it might
even be longer because of the extra declaratory information necessitated by the
current fashion for very restrictive forms of strong typing.

It is becoming clear that in order to solve the software crisis, we have to
find a way to move up to a whole new level of language that will be more
expressive than our conventional high level languages by about the same ratio
as our conventional languages were better than assembly code. That sort of
increase in power can only arise by letting go of a level of detail that our present
programming languages force us to express — which seems to imply a move to
some kind of non-procedural language.

In fact, our experience to date with applicative programming is very promis-
ing in this respect. Programs written in languages like SASL (Turner 1976, 1981)
are consistently an order of magnitude shorter than the equivalent programs in a
conventional high level language. We will see some examples of programs in this
style below, but at this stage we can give a general reason why the change from
an imperative language to a descriptive one should lead to programs becoming
so much shorter.

Expressed at an appropriate level of abstraction (for example as a dataflow
graph — see Treleaven 1979), an algorithm is a partially ordered set of compu-
tations, the partial ordering being imposed by data dependencies. In order to
execute an algorithm on a Von–Neumann computer, however, we have to con-
vert this to a total ordering, in one of the many possible ways, and organise
storage for the intermediate results. In an imperative programming language
both of these tasks must be carried out by the programmer with the result that
he has to specify a great deal of extra information. A second reason why conven-
tional high level languages are so long winded is that they lack certain necessary
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abstraction tools, in particular higher order functions, of which we shall say more
below.

In summary, a good case can be made out for saying that the fundamental
cause of the software crisis is the imperative and machine oriented nature of our
programming languages, and that to overcome it we have to abandon the use of
side effects and programmer control of sequencing in favour of purely functional
notation. The theoretical possibility of programming in a purely functional style
has been known for two decades — the obstacle to its use in practice has always
been the difficulty of achieving acceptable efficiency in the use of existing hard-
ware while using such techniques. The current rebirth of interest in functional
programming is largely triggered by the fact that developments are now taking
place on the hardware side which seem likely to overturn this situation.

2 The Development of VLSI and the Challenge
of Parallelism

The basic design of the computer was laid down by John Von Neumann in
the 1940 s and has remained largely unaltered since (see Fig. 1). There is a single
active processor and a large passive store — the connection between the processor
and the store is relatively narrow, only one word in the store can be accessed
at a time. Initially, and for a long time afterwards, the processor and the store
were made of two fundamentally different technologies, and the processor was
very much the more expensive of the two.

Fig. 1. The Von Neumann computer

The rationality of this arrangement is now being fatally undermined by the
development of VLSI. First of all, note that processor and memory are now
built of the same technology, namely VLSI chips. Moreover, processing power
is becoming very cheap indeed. There is no longer any compelling reason for
building mono–processor architectures — it would make equally good economic
sense to build a machine which had a network of many processors.
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Secondly, we have an obvious motive for doing so — to obtain increased
performance. The speed of operation of a conventional Von Neumann computer
is limited basically by the bandwidth of the connection between the processor
and memory — Backus has called this “the Von Neumann bottleneck”. In order
to make such a computer go faster we have to improve the technology out of
which the components are built, and there are obvious limits to this process.
In a multiprocessor architecture, by contrast, we can obtain arbitrary increases
in speed simply by adding more processors to the network — provided of course,
and this is crucial, that we can find ways of programming it that exploit the
potential concurrency.

The first step towards using the possibilities for parallelism opened up by
VLSI has been taken by the development of the various “array processors” now
appearing on the market — for example, the ICL “DAP”. These capture a
particular type of parallelism, which can be called “lockstep parallelism” in which
the same instruction is performed simultaneously on a large number of data
items.

This is appropriate only to certain specialised applications. A more general
type of parallelism is where we have many processors each executing different
instructions. A number of architectures of this general type are now under devel-
opment, of which the best known are the various kinds of dataflow computer —
see for example (Dennis 1979).

The potential performance of this type of architecture is enormous (thousands
of megaflops, using current technology) but how can they be programmed? An
idea that can be dismissed more or less straight away is that we should take
some conventional sequential language and add facilities for explicitly creating
and co–ordinating processes — the tasking facilities of ADA are an example of
this approach. This may work where the number of processes is small, but when
we are talking about thousands and thousands of independent processes, this
cannot possibly be under the conscious control of the programmer.

Parallelism on this scale can only arise from some basic asynchronousness
of the language being used. Workers in dataflow are converging on the use of
functional languages as a solution to this problem — see Ackermann and Dennis
(1979), Arvind, Gostelow and Plouffe (1978). Paradoxically then, notwithstand-
ing their former reputation for inefficiency, it is precisely the need for higher
performance that may ultimately force the adoption of functional languages.

Incidentally, the historical efficiency disadvantage of functional languages
arises partly from the fact that they have been running on machines with inap-
propriate instruction sets. There are simple theoretical arguments which show
that given an appropriately designed instruction set there is no reason in prin-
ciple why functional programs should be less efficient than the corresponding
imperative programs, even on a Von Neumann machine. It is therefore welcome
that in addition to the work currently being done with parallel architectures,
some recent efforts have been directed towards the development of sequential
machines specifically adopted to functional languages (Clarke et al. 1980; Hol-
loway et al. 1980).
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3 A Simple Language Based on Higher Order Recursion
Equations

For the sake of having a definite syntax to work with, I will give the ensuing
examples of functional programming in the notation of KRC (“Kent Recursive
Calculator”) a system I have implemented at the University of Kent and which
I have been using for teaching purposes. It is fairly closely based on the earlier
language SASL (Turner 1976) which I developed while working at the University
of St Andrews in the period 1972–1976, but I have added a new language feature
based on Zermelo–Frankel set abstraction.

Fig. 2. Ackermann’s function in LISP and KRC

Perhaps I should explain why I don’t teach my students LISP (McCarthy
et al. 1962) which is still the language most people first think of when functional
programming is mentioned. There are two reasons — the first is that the syntax
of LISP is so clumsy that it constitutes a real obstacle to comprehension. Figure 2
illustrates this with a definition of Ackermann’s function in LISP — note that
there are eighteen pairs of parentheses! — and for contrast a definition of the
same function in KRC, which looks more like a piece of ordinary mathematics.
The second and more serious reason is that the semantics of LISP are rather
complicated and include a number of features which could in no sense be regarded
as functional. The nett effect, at least in my experience, is that as a vehicle
for teaching people about functional programming, LISP is apt to cause more
confusion than enlightenment and I prefer to avoid using it.

KRC is purely a functional language — there are no side effects and no
concept of flow of control. A program in KRC (actually, we call it a “script”)
is a set of equations giving mathematical definitions of various entities in which
the user is interested. For example, a simple script might be
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r = u / v
u = x + y
v = x - y
x = 23
y = 10

The order in which the above equations are listed is of no significance — we have
shown them in alphabetical order but that is purely for clerical convenience. The
KRC system is interactive and includes built in commands for editing scripts,
saving them in and retrieving them from, files and so on. In particular, the user
can ask to have expressions evaluated in the environment established by the
script. So for example, typing

r?

here causes the value of r to be printed at the terminal.
The only ordering of calculations established by a KRC script is that implied

by the data dependencies — so for example, in the above case u and v must be
calculated before r, but that is the only constraint — note in particular that u
and v could be calculated in parallel.

The types of object in KRC’s universe of discourse are — numbers, strings,
written e.g. "pig", lists and functions. Numbers and strings have the sorts of
properties one would expect with the usual sorts of operators defined on them.
Lists are written using square brackets and commas, thus

days = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

elements of a list are accessed by indexing1. So for example, the expression

days 3

would here have the value "wed". The operator # takes the length of a list, so

# days

is here 7. Another important operator on lists is “:” which adds a new element
at the front, corresponding to the LISP function “CONS”. So for example, the
expression

0 : [1, 2, 3]

takes the value [0, 1, 2, 3]. The elements of a list can be of any type — enabling
us to use lists of lists to represent matrices for example — and can also be of
mixed type, enabling us to represent trees, etc.

Lists can be concatenated using an infix “++” operator and there is also a
list difference operator, written “--”. So for instance

[1, 2, 3, 4, 5] -- [1, 3, 5]

1 KRC indexed lists starting from 1 rather than from 0.
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has the value [2, 4].
Finally, a useful piece of shorthand is the “..” notation, allowing, for example,

[1..100]

as a notation for the list of integers from 1 through 100. An interesting property
of the implementation in this latter case, by the way, is that this list does not
immediately occupy 100 words of store, but only about 3 — enough to store a
formula for calculating the elements when they are accessed.

This is part of a general strategy called “lazy evaluation” (Henderson and
Morris 1976, Turner 1976) whereby the KRC system consistently avoids per-
forming any calculation until it becomes necessary. Perhaps the most important
consequence of this is that it permits the system to accept definitions involving
infinite data structures as well as finite ones. For example, the equation

x = 2 : x

defines x to be the infinite list all of whose elements are 2, and we also permit
the form, e.g.

[1..]

meaning the list of all the natural numbers starting at 1.
Notice by the way that in the applicative style appropriate to a language like

KRC, the use of explicit lists of values replaces the use of loops in an imperative
language. For example, suppose we wanted to calculate the sum of the numbers
from 1 to 1000. We would write

sum [1..1000]?

in which we first set up the list of values in which we are interested and then
apply the library function for summing a list. Lazy evaluation enables us to set
up intermediate data structures in this way without incurring a space penalty.

The fourth and final type of object in KRC’s universe of discourse is the
function. Functions are defined by including in the script one or more equations
with the name of the function followed by some formal parameters on the left
and an expression describing the corresponding value in the right. For example
the factorial function could be defined by the following equation (product is a
library function)

factorial n = product [1..n]

Sometimes there are several possible right hand sides — we can show them
differentiated by “guards” (a guard is Boolean expression written on the far right
of the equation, after a comma). Consider for example the following definition
of a function for calculating greatest common divisor by Euclid’s algorithm

gcd a b = a, a=b
= gcd (a-b) b, a>b
= gcd a (b-a), b>a
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An alternative to the use of guards on the right is the use of pattern matching
on the left, in which one or more of the formal parameters are replaced by con-
stants — an example of this is shown by the definition of Ackermann’s function
given in Fig. 2 above.

A more sophisticated type of pattern matching involves the use of list struc-
tures in formal parameter positions, for example in the following definition of a
function which takes a pair of 2–lists representing complex numbers and returns
their complex product

mult [a,b] [c,d] = [a*c - b*d, a*d + b*c]

The operator “:” is also allowed in pattern matching, as in this definition of
the library function sum

sum [] = 0
sum (a:x) = a + sum x

Here [] represents the empty list and in the second equation, the formal para-
meter matches any non–empty list, whose first member corresponds to a and
whose rest or “tail” to x.

The KRC “Prelude” contains definitions of many useful functions and the
reader is recommended to study it for more examples of programming in the
same style.

Notice by the way that because of the absence of side effects, KRC functions
are purely static in nature — applied to the same argument, a given function
always gives the same answer. Note also that functions are “first class citizens” —
they can be made elements of lists, passed as parameters and returned as results.

3.1 Partial Application and Higher Order Functions

A particularly powerful kind of abstraction is a higher order function — that is,
a function that returns another function as a result. In KRC, these are made
available through the following very simple mechanism. If a function is to defined
to have, say, n arguments, it can always be applied to less than n arguments,
say m, and the result is a function of (n − m) arguments in which the first m
arguments have been “frozen in”.

So for example, if we define

twice f x = f (f x)
sq x = x * x
f = twice sq

what is the effect of the function f? Answer — it takes the fourth power; twice
is here being used as a higher order function.

Higher order functions can be used to bring about an extremely compressed
programming style. Consider, for example, the definition of sum given earlier.
This represents an extremely common pattern of recursion for “folding” a list
using a given binary operator, in this case “+”, and a given start value, in this
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case “0”. We can capture the general pattern in the following definition of a 3
argument function, fold2

fold op s [] = s
fold op s (a:x) = op a (fold op s x)

We can now define sum in a single line by partially applying fold

sum = fold ’+’ 0

The advantage of doing things this way is that a great number of analogous
functions become available without any further effort. For example

product = fold ’*’ 1

[Note the use of single quotes, e.g.’+’, to denote an infix operator as a function.]

3.2 The Use of ZF Expressions

It is extremely useful to be able to quantify over a collection of objects without
having to explicitly recurse down them. To this end, KRC includes a facility
based on Zermelo–Frankel set abstraction. The basic idea of this kind of set
abstraction is that one is allowed to write3

{fx | x ∈ S}

meaning “the set of all f x where x is a member of S”. Notice that x is a local
variable of the above construction. We make this into a KRC language feature
by working with lists, rather than sets and using “<-” for the membership sign
and “;” instead of the vertical bar — the bar being already in use to mean
logical “or”. So for example

{x * x; x <- [1..100]}

is a list of the squares of the first hundred numbers. The variable binding con-
struct to the right of the semicolon is called a “generator”. We further extend
the power of the notation by allowing more than one generator, separated by
semicolons, and also one or more Boolean expressions, further restricting the
range of the variables if required.

So we can define the Cartesian product of two lists (a list of all pairs formed
with a member from each) as follows

cp x y = {[a,b]; a<-x; b<-y}

2 This function would now be called foldr; foldr and foldl with their now familiar
definitions first appeared in the 1983 release of SASL.

3 ZF expressions are now called “list comprehensions”, a term coined by Phil Wadler
in 1985. The ZF expressions of 1981 KRC differ from modern list comprehensions
in one significant respect — outputs of multiple generators are interleaved to ensure
that all combinations are reached, even with two or more infinite generators.
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and a list of all Pythagorean triangles with sides less than 30 can be written

{[a,b,c]; a,b,c<-[1..30]; a*a+b*b=c*c}

notice that in an obvious piece of shorthand, we allow more than one variable
to be bound by the same generator.

ZF expressions are particularly powerful when combined with recursion, as
in the following definition of a function for generating all the subsets of a given
set (here represented as a list) — note that append is a prelude function which
joins a list of lists to form a single list.

subsets [] = [[]]
subsets (a:x) = append {[y,a:y]; y<-subsets x}

Another example is this definition of a function for generating all permutations
of a list

perms [] = [[]]
perms x = {a:p; a<-x; p<-perms (x -- [a])}

Generators come into scope from left to right, so later generators can involve
earlier ones, but not vice versa. This more or less completes our survey of KRC (it
is not a very large language) and we now turn to some programming examples.

4 Some Programming Examples

4.1 Primes by the Method of Eratosthenses

Our first example is generating prime numbers by the sieve of Eratosthenes
(“%” is the remainder operator)

primes = sieve [2..]
sieve (p:x) = p : sieve {n; n<-x; n%p>0}

Given the above as the script the command

primes?

will cause the KRC system to print prime numbers indefinitely (or rather until
it runs out of space) producing the output

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ... etc.]

It is instructive to compare this definition of the sieve of Eratosthenes using infinite
lists, with amore operational one involving explicit notions of co–operating process
— see (Kuo, Linck and Saadat 1978) for a solution in Hoare’s CSP notation.

4.2 The Digits of e

Another example which demonstrates nicely the convenience of being able to
work with infinite lists is the following program for printing the digits of e, for
the idea of which I am grateful to E. W. Dijkstra. We know that e can be defined,
writing i! for factorial(i)
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e =
∞∑

i=0

1/i!

Now we can choose to represent fractional numbers using a peculiar base
system, in which the weight of the i’th digit is 1/i! — so note that the “carry
factor” from the i’th digit back to the (i–1)’th is i. Written to this funny base e
is just

2.1111111 . . .

the problem now being to convert from the funny base to decimal. The general
algorithm for converting from any base to decimal can be stated in words as
follows.

First print the integer part of the number, then take the remaining digits,
multiply them all by 10 and renormalize using the appropriate carry factors —
the new integer part will be the next decimal digit and this process can be
repeated indefinitely. We can capture this in a purely functional way by repre-
senting the number before and after conversion as two infinite lists, and defining
a function convert recursively, thus

e = convert (2 : ones)
ones = 1 : ones
convert (d:x) = d : convert (normalise 2 (0 : mult x))
mult x = {10 * a; a<-x}
normalise c (d:x) = carry c (d : normalise (c+1) x)
carry c (d:e:x) = d+e/c : e%c : x

The above will not quite do, however — if we try to print e, we get the first digit
2, followed by a long silence. The problem is that the recursion for normalise
is not well founded — it tries to look infinitely far to the right before producing
the first digit. We need some result which limits the distance from which a carry
can propagate, or else we are stuck.

The necessary cut–off rule is provided by the observation that in the above
conversion, the maximum possible carry from a digit to its immediately leftward
neighbour is 9 (we leave the proof of this as an exercise for the reader). This
leads us to rewrite the definition of normalise in the following more cautious
form

normalise c (d:e:x) = d : normalise (c+1) (e : x), e+9 < c
= carry c (d : normalise (c+1)(e : x))

This simple modification is all that is required. If we now issue the command

e!

the system responds by printing the digits of e indefinitely (subject to space
limitations)

2.7182818284590 ...
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Note on KRC Printing Conventions. The use of “!” rather than “?” causes
lists to be printed unformatted, without square brackets or commas. This is
useful in case the user wants to organise his own formatting by including layout
characters at various points in the data structure being printed.

The reader should study the function show defined in the KRC prelude —
the instruction “x?” is actually equivalent to “show x!”

4.3 The Eight Queens Problem

For our final example of functional programming, we shall take the well known
eight queens problem, which is representative of a large class of problems which,
at least when programmed imperatively, seem to require the use of backtracking.

We have to find a way of placing eight queens on a chess board so that no
queen is in check from any other. Queens can give check vertically, horizontally
or diagonally (in two ways). A moment’s reflection tells us that in any solution,
there must be exactly one queen in each column. So an obvious way to proceed
is to start with an empty board and proceed from left to right, say, placing
one queen in each column, always putting the new queen in a position where it
cannot be checked by those already there — and if there is no such position, we
have boxed ourselves into a blind alley. A reasonable representation of a board
is as a list of integers, giving the row numbers of the queens so far placed on it.
So for example

[2,5,3]

represents a board with queens in the first three columns at the positions shown.
So the empty board is represented just by the empty list, [].

We proceed by defining a function queens n that returns a list of all the
solutions to the “n queens” problem — that is the problem of placing n queens
on an n by 8 board

queens 0 = [[]]
queens n = {b++[q]; q<-[1..8]; b<-queens(n-1); safe q b}

safe q b = and {\checks q b i; i<-[1..#b]}
checks q b i = q = b i | abs (q - b i) = #b - i + 1

This is everything that is needed, to print the solutions, we can say

layn (queens 8)!

which will cause them to be printed one per line, with numbered lines (abs, and,
layn are defined in the KRC prelude).

Notice by the way that if we decide to print only the first solution, e.g. by
saying

hd (queens 8)?
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then because of lazy evaluation, the other solutions do not even get generated. So
we would still program in the above way, even if we only wanted one solution. The
key abstraction that enables us to get rid of the whole problem of backtracking
(here and in all similar cases) is to think in terms of a function that returns all
the solutions at a given level, instead of only one of them.

Acknowledgements. This paper was first published in Darlington et al. (1982) and
I am grateful to CUP for permission to include it in this collection dedicated to
Phil Wadler.

The Appendix which follows includes most of the KRC prelude as it stood in 1981.
Many of the definitions — hd, tl, filter, map, product, sum, take, drop, and so on,
will be familiar to contemporary functional programmers but it may be of historical
interest.

A working implementation of Kent Recursive Calculator, including both the 1981
prelude and a more modern prelude, can found at http://krc-lang.org — I am most
grateful to Martin Guy for translating my code from an obsolete dialect of BCPL to
C and getting it working.

Appendix - The KRC Prelude of Standard Definitions

In the following note that entries of the form

name :- explanatory text ;

are comments and that infix “.” is functional composition.

abs x = x, x >= 0
= -x

and = fold ’&’ "TRUE"

append = fold ’++’ []

char :- predicate, "TRUE" on strings of length one, "FALSE"
otherwise (defined in machine code);

cjustify n x = cjustify’ (n - printwidth x) x
cjustify’ n x = [spaces (n / 2),x,spaces ((n + 1) / 2)]

code :- converts a character to its ascii code number
(defined in machine code);

compose = fold ’.’ I

concat :- takes a list of strings and concatenates them to
make one string (defined in machine code);

http://krc-lang.org
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cons a x = a : x

decode :- converts an integer to the character of that ascii
number (defined in machine code);

digit x = char x & "0" <= x <= "9"

digitval x = code x - code "0", digit x

drop 0 x = x
drop n [] = []
drop n (a:x) = drop (n - 1) x

even x = x % 2 = 0

explode :- explodes a string into a list of its constituent
characters (defined in machine code);

filter f x = {a; a<-x; f a}

fold op s [] = s
fold op s (a:x) = op a (fold op s x)

for a b f = map f [a..b]

function :- type testing predicate (defined in machine code);

hd (a:x) = a

I x = x

insert :- auxiliary function used by sort, inserts a
number into a sorted list in the correct position;

insert a [] = [a]
insert a (b:x) = a : b : x, a <= b

= b : insert a x

interleave :- merges two lists into one by taking members from
them alternately;

interleave (a:x) y = a : interleave y x
interleave [] y = y

intersection [x] = x
intersection (x:xx) = filter (member x) (intersection xx)
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lay [] = []
lay (a:x) = show a : nl : lay x

layn x = layn’ 1 x
layn’ n [] = []
layn’ n (a:x) = rjustify 4 n:") ":show a:nl:layn’ (n + 1) x

letter x = uppercase x | lowercase x

list :- type testing predicate (defined in machine code);

listdiff :- defines the action of the "--" operator;
listdiff [] y = []
listdiff x [] = x
listdiff (a:x) (b:y) = listdiff x y, a = b

= listdiff (a : listdiff x [b]) y

ljustify n x = [x,spaces (n - printwidth x)]

lowercase x = char x & code "a" <= code x <= code "z"

map f x = {f a; a<-x}

max [a] = a
max [a,b] = a, a >= b

= b
max (a:x) = max [a,max x]

member [] a = "FALSE"
member (a:x) b = a = b | member x b

min = hd . sort

mkset x = mkset’ x []
mkset’ [] y = []
mkset’ (a:x) y = mkset’ x y, member y a

= a : mkset’ x (a:y)

neg x = -x

nl = decode 10

not x = \x

np = decode 12



476 D.A. Turner

number :- type testing predicate (defined in machine code);

odd x = \even x

or = fold ’|’ "FALSE"

perms [] = [[]]
perms x = {a : p; a<-x; p<-perms (x -- [a])}

printwidth :- for any x, gives width of x on printing with ‘!’
(defined in machine code);

product = fold ’*’ 1

quote = decode 34

read :- takes a file or device name and returns a list of
characters (defined in machine code);

reverse [] = []
reverse (a:x) = reverse x ++ [a]

rjustify n x = [spaces (n - printwidth x),x]

show x = "nl", x = nl
= "np", x = np
= "tab", x = tab
= "vt", x = vt
= [quote,x,quote], string x
= ["[",show’ x,"]"], list x
= x

show’ [] = []
show’ [a] = [show a]
show’ (a:x) = show a : "," : show’ x

sort [] = []
sort (a:x) = insert a (sort x)

spaces 0 = []
spaces n = "" : spaces (n - 1)

string :- type testing predicate (defined in machine code);

sum = fold ’+’ 0

tab = decode 9
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take 0 x = []
take n [] = []
take n (a:x) = a : take (n - 1) x

tl (a:x) = x

union = mkset . append

uppercase x = char x & code "A" <= code x <= code "Z"

vt = decode 11

write :- marks data to be sent to a file on output with !, thus
write "filename" x

where x is any KRC data item (defined in machine code);

zip x = [], hd x = []
= map hd x : zip (map tl x)
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