
Simulation of a Model for Refactoring
Approach for Parallelism Using Parallel
Computing Tool Box

Shanthi Makka and B.B. Sagar

Abstract Refactoring is the process of retaining the behavior of a program by
making changes to the structure of a program. Initially refactoring is used only for
sequential programs, but due to highly configurated architectural availability, it also
aids parallel programmers in implementing their parallel applications. Refactoring
provides many advantages to parallel programmers, in identifying independent
modules, in refining process of programs, it also helps in separating concerns
between application and system programmers, and it reduces the time for deploy-
ment. All mentioned advantages benefit the programmer in writing parallel pro-
grams. The approach for refactoring using multi core system is already developed.
Hence all these advantages made us to thought of a system to develop refactoring
approach for parallelism which uses heterogeneous parallel architectures which
uses combination of both Graphic Processing Unit (GPU) and Central Processing
Unit (CPU). A Tool in MATLAB, Parallel Computing Toolbox can be used to
execute programs on multiple processing elements simultaneously with local
workers available in the toolbox, which takes benefit of GPUs. This tool box uses
complete processing speed of multi core system to execute applications on local
workers without changing the code. Our suggested model can be simulated by
using Parallel Computing Toolbox.

Keywords Refactoring � MATLAB � Parallel computing toolbox � GPU � CPU �
Heterogeneous parallel architecture

S. Makka (&) � B.B. Sagar
BITs, Mesra (Noida Campus), Sector-15, Noida, India
e-mail: shanthi_makka@yahoo.com; shanthi.makka@jre.edu.in

B.B. Sagar
e-mail: drbbsagar@gmail.com

S. Makka
JRE Group of Institutes, Plot no-5,6,7,8, Greater Noida 201308, Uttar Pradesh, India

© Springer International Publishing Switzerland 2016
S.C. Satapathy and S. Das (eds.), Proceedings of First International Conference
on Information and Communication Technology for Intelligent Systems: Volume 2,
Smart Innovation, Systems and Technologies 51, DOI 10.1007/978-3-319-30927-9_8

77



1 Introduction

According to Moore’s law [1], for every two years the number of transistors on
Integrated Circuit is getting double, i.e., the speed of processor increases double.
For decades, programmers relied on Moore’s Law [2] to improve the performance
of their applications. With the advent of multi cores, programmers are forced to
exploit parallelism if they want to improve the performance of their applications,
and if they want to enable new applications and services that were not possible
earlier i.e., to have enhanced user experience and better quality of service. Haskell
[3], intel’s multi core architecture has eight cores by default. In future computer
hardware is likely to have even more cores, with many cores. This makes pro-
grammers to think parallel, i.e., we should move away from conventional
(sequential) programming approach to parallel approach.

There are two different approaches for parallelizing a programs, one is to rewrite it
from scratch, it is very expensive and time consuming and second is parallelize a
program incrementally, one piece at a time. Each small segment can be seen as a
behavior preserving transformation, i.e., a refactoring. Mostly Programmers prefers
second approach because it is safer and economical because it provides workable and
deployable version of the program. MATLAB is proprietary programming language
[4] for implementing mathematical computations and it is also used for development
of algorithms, simulation of models, data reduction, testing and evaluation process
and it also provides an excellent platform to create an accessible parallel computing
environment. A Parallel Computing Toolbox [5], a tool in MATLAB can be used to
run applications on a multi core system where the local workers available in the
toolbox, can run applications concurrently by taking the benefit of GPUs.

2 Refactoring

The term refactoring was introduced by William Opdyke in his PhD Thesis [6].
Refactoring is process of changing lines of program without changing its originality
or in other words changing of internal structure without altering its external
behavior to improve understandability and maintainability of code. Refactoring
improves [7] its internal structure.

The different activities are to be performed during the refactoring process are:

a. Identify the segments in a program where the refactoring can be applied.
b. Determine what type of refactoring i.e., extract method, renaming etc. Should be

applied to the identified segments.
c. Make sure that the applied refactoring preserves application behavior.
d. Apply the refactoring.
e. Assess the effect of refactoring on quality characteristics of the software.
f. Maintain the consistency between the refactored program and other software

artifacts.

78 S. Makka and B.B. Sagar



A refactoring approach for parallelism is already developed for multi core sys-
tem. Then we thought of to extend our vision to develop a new refactoring approach
for parallelism using heterogeneous parallel architectures. Key issues include
dealing with advanced heterogeneous parallel architectures, involving combina-
tions of GPUs and CPUs; providing good hygienic abstractions that cleanly sep-
arate components written in a variety of programming languages; identifying new
high level patterns of parallelism; developing new rule based mechanisms for
rewriting (refactoring) source-level programs based on those patterns etc.

Consider a below example for refactoring “the class A is derived from C and D
and class B is derived from C, D, and F. That means the class A can use features of
C and D and class B can use features of C, D, and F. Instead of making copy of
features of C and D twice once for A and second time for B, We can make new
class N which has feature of C and D and that can be used when class A and B
requires those features” (Fig. 1).

The refactoring tools [8, 9] or automatic refactoring compilers can improve
programmer productivity, performance of applications, and program portability and
currently the toolset supports various refactoring techniques for following:

a. To increase throughput, a sequential program can be divided into threads,
b. To make programs thread safe, and
c. To improve scalability of applications.

3 Parallel Computing Toolbox

Parallel ComputingToolbox [5] can solve computationally intensive aswell as and data
intensive problems onmulti core processor environment, GPUs, and computer clusters.
This toolbox enables us to parallelize applications without Compute Unified Device
Architecture (CUDA) and MPI programming environment. Simulink is a simulator
which simulates suggested model which runs multiple parts of the model parallel.

Key Features

a. Parallel Computing Toolbox provides GPU Array, which is associated with
certain functions through which we can perform computations on CUDA.

B

C D F
N

A B

C D

F

A

before refactoring after refactoring

Fig. 1 Example of a refactoring. before refactoring. after refactoring

Simulation of a Model for Refactoring Approach for … 79



b. Use of multi core processors on a system through workers that run locally.
c. Interactive and batch execution of parallel applications.
d. Data parallel applications implementation can also be done.
e. You can increase the execution speed of applications by dividing application

into independent tasks and executing multiple tasks concurrently.
f. Parallel for loops (parfor) are used for run task parallel applications on multi

core or processor system.

4 Refactoring for Parallelism Using GPUs and CPU

(See Fig. 2).

Algorithm

1. Program Dependence Graph can be used to represent an application.
2. Independent modules can be identified using refactoring technique.
3. Those modules can be directed (using appropriate mapping technique) to

heterogeneous pool during running time of applications.

Parallelized application

Pattern-based Development/

Refactoring

Dynamic Mapping

Application
Design

HETROGENEOUS HARDWARE POOL

GPU GPU

GPU GPU

CPU CPU

GPU

GPU

GPU

GPU

Fig. 2 refactoring approach for parallelism using combination of GPU and CPU

80 S. Makka and B.B. Sagar



4.1 Why Refactoring

Refactoring [10, 11] is the process of preserving program behavior by changing its
structure which makes program more readable, understandable and maintainable.
After a refactoring, program should not give any syntactic errors. Refactoring never
change the behavior of a program; i.e., if any program called twice before and after
refactoring the results must be same for same set of inputs.

While refactoring do not change the external behavior of a program, it can
support for designing of software in very effective way and also in evolution
process by restructuring a program in the way that allows other modifications to be
made more easily and rapidly. Complicated changes to a program can require both
refactoring and additions. Refactoring is behavior preserving so that, whenever the
preconditions are met it do not break the program.

A refactoring approach has many advantages in parallel programming: it helps
the programmer in the process of identification of independent modules, it also
guides the programmer in the refining process of a parallel program and it also
reduces time for deployment.

Applications of refactoring:

1. Refactoring [12] aims to improve software design.
2. It encourages good program design.
3. It makes software easier to understand.
4. It improves readability of the code.
5. A good program design is not only guarantees rapid rate, but also accurate

software development.

4.2 Why the Combination of Both GPUs and CPU

1. GPU are designed for highly parallel architectures [13] which allows large
blocks of data to be processed.

2. GPUs does similar computations are being made on data at the same time (rather
than in a sequence one after other).

3. The GPU has emerged as a computational accelerator [14] that dramatically
reduces the time to discovery in High End Computing (HEC).

4. GPU can easily reduce the execution time of a parallel code.

CPU is required to coordinate all GPUs which are executing segments con-
currently or to manage communication overhead between GPUs, and also to exe-
cute lighter segments of program. GPUs are very expensive, so it should be used
when there essential requirement.

Simulation of a Model for Refactoring Approach for … 81



5 Related Work

The refactoring is different for both software development and optimization. The
frame work chosen for refactoring is depending on overall program design and
knowledge representation. The Object oriented refactoring was first introduced by
Opdyke [6] in his Ph.D. thesis. The transformation of program into modules is
being described in [15]. There are certain automatic compilers exist which can
make transformations automatically by acting either on source level programs or
their intermediate language representations or during parsing of program, this
approach has been discussed in [16]. Burstall and Darlington [17] mentioned
algorithms for transformations of source program for both sequential and parallel
machines. In critical situations, non executable modules may transformed into an
executable program. Later work is exemplified by the relational approach of Bird
and de Moor [18]. A catalogue for refactoring is given by Fowler in [11] an website
and this is also kept up to date at www.refactoring.com, which also has links to
tools and other resources. The most widely known tool for refactoring is the
Refactoring Browser Smalltalk [19].

6 Simulation of Suggested Model Using Parallel
Computing Toolbox

The suggested model can be simulated by using parallel computing toolbox as
follows: After identification of independent modules which can be executed
simultaneously or parallel through refactoring approach can be assigned to local
workers, which makes use of processing speed of GPUs. Scheduling of these
modules can be done by Job Scheduler (CPU). All these local workers produce
solution to their individual modules and finally merging of these solutions gives the
solution for original problem (Fig. 3).

Fig. 3 Parallel computing
tool box in MATLAB

82 S. Makka and B.B. Sagar

http://www.refactoring.com


7 Conclusion

a. To increase the execution speed of applications, if we use single processor
system to run applications at higher clock speeds which consumes lots of power
and which also generates large amount of heat. To avoid such circumstances,
programmer should think parallel.

b. Refactoring is an approach through which we can identify modules which can
be executed simultaneously.

c. To execute applications parallel, we can use multi core system, which has been
already developed.

d. Finally we thought of to develop a system which uses refactoring approach to
identify modules for simultaneous execution on heterogeneous parallel archi-
tectures which uses the combination of both GPUs and CPUs.

e. A parallel computing toolbox can be used to simulate above said Model.

References

1. Moore, G.E.: Readings in computer architecture: Cramming more components onto integrated
circuits. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 56–59 (2000)

2. Dig, D.: A refactoring approach to parallelism. Software, IEEE 28(1), 17–22 (2011)
3. Brown, C., Loidl, H.W., Hammond, K.: Paraforming: forming parallel haskell programs using

novel refactoring techniques. Trends in Functional Programming. Springer, Berlin Heidelberg,
82–97 (2012)

4. Kim, H., Mullen, J., Kepner, J.: Introduction to parallel programming and pMatlab v2. 0.
Massachusetts Inst Of Tech Lexington Lincoln Lab (2011)

5. http://in.mathworks.com/products/parallel-computing
6. Opdyke, W.F.: Refactoring: a program restructuring aid in designing object-oriented

application frameworks. University of Illinois at Urbana Champaign, (1992)
7. Tom, M., Tourwé, T.: A survey of software refactoring. IEEE Trans. on Softw. Eng. 30(2),

126–139 February 2004
8. Liao, SW., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: Suif explorer: an interactive

and interprocedural parallelizer. In PPoPP’99 7th symposium on Principles and practice of
parallel programming ACM SIGPLAN, 37–48 (1999)

9. Dig, D., Marrero, J. Ernst, M.D.: Refactoring sequential Java code for concurrency via
concurrent libraries. In 31st International Conference on Software Engineering. IEEE
Computer Society, 397–407 (2009)

10. Murphy-Hill, E., Black, A.P.: Breaking the barriers to successful refactoring. 30th
International Conference on ACM/IEEE Software Engineering ICSE’08. IEEE (2008)

11. Fowler, M., Refactoring: Improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc (1999)

12. Berthold, H., Pére, J., Mens, T.: A case study for program refactoring. Proc. of the GraBaTS
Tool Context (2008)

13. Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-aware high
performance computing with graphic processing units. In Workshop on Power Aware
Computing and System, December 2008

Simulation of a Model for Refactoring Approach for … 83

http://in.mathworks.com/products/parallel-computing


14. Huang, S., Xiao, S., Feng, W.C.: On the energy efficiency of graphics processing units for
scientific computing. International Symposium on. Parallel & Distributed Processing IPDPS.
IEEE (2009)

15. Partsch, H., Steinbrüggen, R.: Program transformation systems. ACM Computing Surveys, 15
(3). September 1983

16. Jones, S.L.P.: Compiling Haskell by program transformation: a report from the trenches. In
European Symposium on Programming (ESOP’96), April 1996

17. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.
J. ACM 24(1), 44–67 (1977)

18. Bird, R., De Moor, O.: Algebra of Programming. Prentice-Hall, (1997)
19. Roberts, D., Brant, J., Johnson, R. A.: Refactoring Tool for Smalltalk. Theory and Prac. of

Obj. Sys. (TAPOS). Special Issue on Software Reengineering, 3(4),253–263 (1997) see also
http://st-www.cs.uiuc.edu/users/brant/Refactory/

84 S. Makka and B.B. Sagar

http://st-www.cs.uiuc.edu/users/brant/Refactory/

	8 Simulation of a Model for Refactoring Approach for Parallelism Using Parallel Computing Tool Box
	Abstract
	1 Introduction
	2 Refactoring
	3 Parallel Computing Toolbox
	4 Refactoring for Parallelism Using GPUs and CPU
	4.1 Why Refactoring
	4.2 Why the Combination of Both GPUs and CPU

	5 Related Work
	6 Simulation of Suggested Model Using Parallel Computing Toolbox
	7 Conclusion
	References


