Double Fully Homomorphic Encryption
for Tamper Detection in Incremental
Documents

Vishnu Kumar, Bala Buksh and Iti Sharma

Abstract The famous scheme of Van Dijk, Gentry, Halevi and Vaikuntanathan
(DGHV) style of Fully Homomorphic Encryption (FHE) is simple to implement.
This paper proposes how this scheme can be modified and used for double
encryption to secure files stored at third party like Cloud service provider (CSP).
The files belong to an incremental text model which is followed by majority of
confidential documents. Encryption is similar to a homomorphic hash function.
A protocol is also proposed to detect if files have been tampered, and the tampering
can be located up to single file level or up to a word of file level.

Keywords Incremental documents - Homomorphic encryption - Tamper detection

1 Introduction

Confidential documents mostly follow an incremental structure, where files arrive
like chunks of a large file. Say files have arrived in sequence f, f>,f3, - . ., fi, then
each of f; is a file in its own, and any sequence from beginning fi > f3. . . f is also a
file at the moment file f; arrives. Tamper detection commonly relies on hashing and
message authenticators (MAC) code computations. In case, these incremental
documents are stored with a third party, like a cloud service provider, the files need
to be stored in encrypted form. This encryption secures the crucial information
stored in files from being leaked. At the same time, now files cannot be used, not
even concatenated without decrypting them back. Considering the amount of data,

V. Kumar (B<)) - B. Buksh
R.N. Modi Engineering College, Kota, Rajasthan, India
e-mail: vishnumkota@gmail.com

B. Buksh
e-mail: balabuksh@gmail.com

I. Sharma
Rajasthan Technical University, Kota, Rajasthan, India
e-mail: itisharma.uce @gmail.com

© Springer International Publishing Switzerland 2016 165
S.C. Satapathy and S. Das (eds.), Proceedings of First International Conference

on Information and Communication Technology for Intelligent Systems: Volume 2,

Smart Innovation, Systems and Technologies 51, DOI 10.1007/978-3-319-30927-9_17

166 V. Kumar et al.

downloading the files back from cloud to the user site, decrypting and then con-
catenating, then uploading to the cloud is an impractical solution. If this stupendous
task is outsourced to the cloud, there will be a need to share the encryption key;
losing all the point of encryption in the first place. Here we assume that cloud might
be honest but curious. So, the first requirement is that CSP should be able to
concatenate files in encrypted form only. This can be simply achieved if the files are
encrypted at word level, that is, each word of the file is encrypted separately and
concatenated to form a file. Though it can be taken to bit-level, it would be very
expensive. Once this has been done, one can implement any message digest or hash
computation function homomorphically over the files for the purpose of tamper
detection. The real problem starts when the files are a part of an incremental
document. The message digest or hash has to be now computed for fi,f f2,f1 £ /3
and so on. This requires a homomorphic hash as has been suggested in this paper.

2 Incremental Text Model

Documents like appeals, applications, project reports, annual reports etc. are crucial
and large sized. They are incremental in both use and storage. Though so common in
practice, the similar model for the soft copies of incremental documents has yet not
been formalized. We present here an elementary idea how such documents can be
stored and viewed as soft copies. Let every individual part of the document be called
a file, denoted by f. At any point, the document is a sequential concatenation of files
generated till now, Dy = (fifa. . fi)- Since, the files are generated and maintained
chronologically, for any file f; and file f;, i <j suggests that file f; has been generated
before f;. Files either have independent existence or the entire document has. No other
sequence or combination of file can be retrieved or has any meaningful interpretation.
Thus, at any point of time k, Dy is sequence of k files beginning at f; till f;.

3 DGHY Style FHE Scheme

Homomorphic encryption is a technique which allows operations to be performed
over encrypted data, and the results when decrypted give the same output as would
have been produced by actual desired operation on plaintexts. Thus, the operation
‘g’ performed over cipher texts is homomorphic to desired function °f’ over
plaintexts. If the operations ‘f” contain any arbitrary circuit and homomorphic ‘g’
exist for any such ‘f”, the scheme is called fully homomorphic. The idea was asked
for by Rivest et al. [1], and the first solution arrived in 2009 through Gentry [2]. The
idea has been developed from bits to integers, based on several hard problems. The
recent works based on ring learning with errors [3, 4] are efficient and secure
enough. Yet, practical issues like number and size of keys involved, noise growth
etc. make implementing FHE debatable.

Double Fully Homomorphic Encryption ... 167

In this section we first discuss the FHE scheme to be used, based on those
suggested in [5], which in turn are symmetric versions of DGHV [6] style FHE
systems. Any file is assumed to be divided into equal sized words, which may be 1,
2 or 4 bytes long or more as per the computation power available at the data owner.
The size of word affects the runtime cost of encryption. File is to be encrypted
before storage to ensure security. The key used remains secret with the data owner.
Let the word size be w (256, 65,536 or 4,294,967,296), and length of key n bits.
The file to be encrypted consists of ‘B’ words, and each word by, b,, ..., bg is
encrypted as

X =bj+pxr; (1)

where p is the secret key, an odd number of length # bits. Each 7; is a random odd
number of length n bits, r; # p, Vj. Thus, file (by,bs, ..., bg) is now encrypted and
stored in Cloud as (xi,xz,...,xg). The length of each encrypted word, now
onwards called cipherword, is of O(1).

Each file is associated with a hash value, which is equivalent to bitwise XOR of
all words of the file, producing a hash word of length O(1). Since the encryption is
fully homomorphic, instead of computing XOR of all words and then encrypting it
under key p, the encrypted hash value, y, can be directly computed as modulo sum
of all cipher words. Here, we require a homomorphic hash, so the encrypted hash is
re-encrypted under a new key g,

y=(Zx)w (2)
z=y+gs (3)

where, g is a public key, an odd number of A bits and s is a random odd number of A
bits, s # ¢. This produces the final hash value of a file to be stored as z, a number of
length O(4) bits.

The fully homomorphic properties of the suggested scheme can be observed
directly, as proved in [5].

Note on parameter selection: The word size, w, makes it mandatory that
n > log, w, so that modular arithmetic remains correct. Moreover, A > #, for hash
computations. Our experiments suggest that minimum difference of 2 be
maintained.

4 Proposed Protocol

Let the incremental document be a chronological sequence of n files, D = (fif>. . .f,).
The user generates any file f;, encrypts it into a sequence of cipherwords under
key p using Eq. (1), and uploads it to the third-party storage (TPS). TPS computes

168 V. Kumar et al.

the hash value of file as z; using Eqs. (2) and (3) under key g. At a subsequent instant,
file f;; | is generated, and similar procedure is followed. At any arbitrary instant k,
the document Dy is concatenation of k files (fifa.. .fx), it is required to have
hash values associated with documents too. The hash values of documents are
computed as

Hash(D,) = Hash(fi) = z;
Hash(D,) = Hash(fifa) =21+ 22

Thus,

Hash(Dy) = Hash(fi,f>- . fi) = sz.

We proceed to discuss how hash value of a document D; can be verified for
correctness.

ALGORITHM Verification
INPUT: Document Dy
OUTPUT: YES/NO
Step 1: For each file f;inD,, compute the sum of
cipherwords as
A= Zi{:1(z xj)
Step 2: Let hash value ofD, bez,, then
B = z;ymodq
Step 3: If A=Bmodw, return YES else return NO

vXx;j inf;

The steps 1 till 4 of the protocol are repeated many times at arbitrary instances.
Files are concatenated in chronological sequence. At any point k, the command is
Dy and user may want to perform a tamper check. The request of tamper check is
handled by sending hash value of current document. It is verified using verification
algorithm. If verification is positive, protocol stops In case verification is negative,
tamper is detected and user now proceeds to locate the tamper. This is done by
running verification algorithm over all documents beginning at D;. But now the
hash values have to be recomputed by TPS under a new key sent by user. Let the
point at which verification fails is £ This implies that file f; is tampered. The error
can further be located by checking file f;. The cipher word which does not decrypt
correct is tampered.

When the verification process returns a negative reply, a tamper in one or more
files is expected. The protocol for tamper detection can be summarized as shown in
Fig. 1.

Double Fully Homomorphic Encryption ... 169

USER TPS
1. Encrypt all words of file 2. Send file 3. Concatenate fi to D ,
f, using Eq(1) > to make document Dy

4. Compute hash of D, as
per Eqg(2) and Eq(3)

5. Reguest a file check

7. Verify as per Algorithm o 6. Send zk
Verification -

if NO

8. Generate new value of 10. Compute all z; usin
: Y 9. Send TD request with g’ P , €
key q - q
k 11. Send all z,
. Verify all inni
12. Verify a ; z, beginning 13. Request f,
at z;. Failure at z, -
1 14.Extractf, |

16. Check all cipherwords

15. Send f
to locate tampered word il

A

Fig. 1 Tamper detection protocol

5 Analysis of Proposal

The proposal was implemented as a Java program and growth of runtime recorded
for different values of 1,4 and w. The extensive results cannot be reported due to
limitation of space. Figure 2 is a plot of encryption time with different combinations
of 1 and A, keeping w = 256. It can be seen that growth is quadratic as the value of
parameters increase. This is apt even for a lightweight client.

Fig. 2 Growth of encryption Encryption Time(in ms)
time with increasing values 25
of parameters

170 V. Kumar et al.

5.1 Performance Analysis

Formal analysis can be performed for each step involved. To encrypt a word of size
log, w bits, under key of # bits, major cost is incurred during multiplication of p and
r, making it O(5?) operation, since log, w < 7. Computing hash involves addition
of O(n), and multiplication of O(4*). Time complexity of verification process for
any document Dy is O(k4), thus depending on number of files in the document Dy.
Tamper detection process, once the tampered file has been detected, involves
checking all cipherwords of suspected file. This amounts to cost of encryption of all
words of file that depends on both n and 5.

5.2 Security Analysis

Brute-force method to guess a b-bit odd number is of effort O(2~!). Since the
secret key ‘p’ is never shared, it can only be guessed, requiring O(2"7~!) effort.
Forging a valid hash requires picking a correct number of length (21 + 1), since ‘g’
may be leaked. This amounts to naive effort of O(2n + 1).

At present, an effort of 25 cycles is considered secure. This means that sug-
gested scheme and protocol is secure at parameters 1 = 40, A = 42. Considering
other kind of attacks, a key of length 128 bits is considered secure enough. The
parameter values n = 128, A = 140, when experimented incur encryption time of
less than 10 ms.

6 Conclusion

The security and tamper detection problem for incremental documents has not been
considered till now. We present a simple solution based on DGHV style FHE. The
protocol for tamper detection and location is simple yet powerful. Keeping the
efficiency issue in mind, a lightweight scheme is suggested, which is fast enough
even for very large keys.

7 Future Scope

Better candidates of FHE can be explored for a similar application. The overall
protocol is still under implementation. We plan to analyze growth of verification time
and tamper detection time with increasing size of file. Security analysis in context of
known plaintext-ciphertext pairs of the suggested scheme is yet to be done. Formal
ontology related to incremental documents can be a further research area.

Double Fully Homomorphic Encryption ... 171
References

1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms.
Found. Secure Comput. 4(11), 169-180 (1978)

2. Gentry, C.: Fully homomorphic encryption scheme. In: Diss. Stanford University (2009)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In: Advances in Cryptology—CRYPTO, pp 505-524. Springer,
Berlin (2011)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without
bootstrapping. In: Cryptology ePrint Archive, Report 2011/277

5. Aggarwal, N., Gupta, C., Sharma, I.: Fully homomorphic symmetric scheme without
bootstrapping. In: International Conference on Cloud Computing and Internet of Things
(CCIOT), Chengdu, China (2014)

6. Van-Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Advances in Cryptology—~EUROCRYPT, pp 24-43. Springer, Berlin (2010)

	17 Double Fully Homomorphic Encryption for Tamper Detection in Incremental Documents
	Abstract
	1 Introduction
	2 Incremental Text Model
	3 DGHV Style FHE Scheme
	4 Proposed Protocol
	5 Analysis of Proposal
	5.1 Performance Analysis
	5.2 Security Analysis

	6 Conclusion
	7 Future Scope
	References

