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Abstract This chapter presents data and traffic analyses in 5G networks. We setup
experiments with Zigbee sensors and measure different traffic patterns by changing
the environmental conditions and number of channels. Due to the differences in
read, write operations, message fragmentations and backoff of the Carrier Sense
Multiple Access/Collision Avoidance algorithm we demonstrated that the traffic
flows are changing dynamically. This leads to different behaviour of the network
domain and requires special attention to network design. Statistical analyses are
performed using Easyfit tool. It allows to find best fitting probability density
function of traffic flows, approximation toward selected distributions as Pareto and
Gamma and random number generation with selected distribution. Our chapter
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concludes with future plan for distribution parameters mapping to different traffic
patterns, network topologies, different protocols and experimental environment.

Keywords Sensor measurements « Best-fitting pdf + 5G traffic

1 Introduction

The aim of this chapter is to present generic approach to modelling of traffic flow
patterns in 5G sensor networks. The transparency of data in place and time com-
bined with node mobility, distributed data processing and network virtualization
cause traffic patterns to change dynamically and often unexpectedly. Depending on
the type of communication (peer-to-peer, client/server, machine-to-machine, sensor
and personal area networks, delay tolerant applications) and the layer of observation
(application, virtual platform, Internet Protocol (IP) or physical machine) traffic
sources produce distinct traffic patterns, which are further complicated by traffic
shaping and engineering applied by overlay networks [16], network services [9] and
software defined network functionality [8].

The diversity in flow behaviour needs appropriate and customized modelling to
support the development of network management schemes able to cope with
modern traffic patterns. Topology adaptations, mapping of sources to network paths
(scheduling), traffic engineering and policing, reliability and failover algorithms fall
under management. Main part of the challenge ahead of traffic models is the variety
and dynamic nature of modern application and services [7]. While some may
generate rather static, predictable patterns, e.g., replicated storage backups or
software updates, others generate high variable and difficult to predict patterns, e.g.,
opportunistic content dissemination [5], distributed media services [9], sensor data,
machine-to-machine data flows. For example, a large network of Zigbee sensor,
although generating only few bytes of payload, can produce high intensity traffic in
real-time. Worse is the case of surveillance and security or social analytics, which
make a perfect example of big data applications, causing distinctly different
traffic patterns in and across data centers. Newly emerging device-to-device
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communications (in mobile networks) and peer-port application lead to more fuzzy
data models [8]. Additional aspects which influence the construction of traffic
models and on which we will reflect are engineering approaches such as redun-
dancy, power-efficient operation and distributed processing. Redundancy benefits
service availability but also causes traffic to be load balanced over several available
paths and when applied at the packet level breaks the flow traffic pattern at the
source. Power consumption dictates certain transmission policies, especially in
energy-constraint devices and with green technology requirements [4]. Distributed
processing often results in big amounts of data transferred across the network.
Understanding and simulation of the complexity of the traffic sources, including the
statistical parameters and probability density functions (pdf) of the inter-arrival and
servicing processes in 5G, is essential for further network planning and design [16].

This chapter consists of state of the art part that explains details on traffic
measurements, Zigbee sensor networks and their traffic specific features. After
detailed description of the experiments in the next section, main results are shown
and commented. Finally, we expose views of open-research issues for offering
analytical traffic models that fit to the traffic flows and will allows optimization in
the 5G traffic.

2 State of the Art

Zigbee technology and especially applications in body/personal area networks and
smart environments became popular recent years. Connection to the cloud and
cloud-based data gathering and analyses allows high level of data processing and
better data interpretation [8]. Usually the traffic generated by these networks is
considered small or even negligible. When the number of sources is significant, the
networks are dynamically created and destroyed, traffic sources are moving and
change their behaviour it is difficult to predict the load to the processing equipment
and plan the resources properly. Details on similar software defined networks and
the interfaces and attributes could be found in [15]. In our papers [10, 11] we
demonstrate Zigbee technology and its applicability to the body/personal envi-
ronments. We setup experiments there to measure round trip delays and loss in the
network. In this chapter, we enrich the analyses toward delay distributions and
statistical parameters.

An interesting approach using priorities at application/session layer is presented
in [1, 2]. The authors demonstrated the complexity of the traffic models when the
traffic is prioritized and is transmitted via congested network elements. Possible
solution for network node configuration taking into account the nature of the traffic
could be found in [3]. Specific applications [6] and the influence on the network
configuration could be diverse and irregular by nature. More abstract and complete
approach to network design is presented in [13]. Machine-to-machine vehicle
network is shown in [19]. In [20] authors demonstrated an approach for assisted
living networks. A very specific almost complete underwater network is presented
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in [14]. A decision for energy harvesting and big data analyses in sensor network
could be seen in [18].

Delay and priority analyses could be found in [21]. Reliable solution through
different access scenarios is presented in [22].

3 Experiment Setup

In order to analyze the behaviour of the sensors as traffic sources we setup an
experiment in the laboratory shown on Fig. 1. The channel is duplex. Under the
same serial radio channel, at least three pairs of sensors are transmitting simulta-
neously interfering all the time. In different measurements (Table 1) the conditions
are changing. The operations are reads and writes with different length of the
information sent. During part of the experiments, there are additional radio trans-
missions that emulate a radio noise and/or an 802.11 radio signal with two levels of
intensity.

The protocol is Modbus RTU. Sensors are connected to the controller for data
gathering and acquisition. For more complexity, the number of transmitting sensors
could be increased. Such case is not presented in this chapter. Session 1 between
sensors 1 and 4 is used for delay and loss measurements. Session 2 between sensors
2 and 5 as well as session 3 between sensors 3 and 6 are used for changing the
conditions in the radio channel. In Table 1 there are 21 experiments presented. In
Sect. 4, we show only part of the results concerning the best fitting probability
density function of packet round trip delays. The collected data for delay is
exported and evaluated by Easyfit statistical tool. The fitting is also performed

Fig. 1 Many sensors
transmitting simultaneously
over the same radio channels

Sensor 1
Sensor 3

Sensor 6
Sensor 4

Sensor 5
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Table 1 List of measurements in Zigbee network

No Description

1 No interference, sessions 1 and 2 active, read operation with 2 and 40 bytes at 200 and
500 ms intervals, Burr distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov and Anderson-Darling approximations

2 No interference, sessions 1 and 2 active, read operation with 120 and 40 bytes at 200 and
500 ms intervals, Burr (4P) distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov and Anderson-Darling approximations

3 No interference, sessions 1 and 2 active, read operation with 240 and 40 bytes at 200 and
500 ms intervals, Cauchy distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared approximations

4 No interference, sessions 1, 2 and 3 active, read operation with 240, 40 and 240 bytes at
200, 500 and 1,000 ms intervals, Cauchy distribution as the best fitting pdf in accordance
to Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared approximations

5 No interference, sessions 1, 2 and 3 active, read operation with 240, 40 and 2 bytes at
200, 500 and 10 ms intervals, Cauchy distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov and Anderson-Darling approximations

6 No interference, sessions 1, 2 and 3 active, read operation with 240, 40 and 240 bytes at
200, 500 and 10 ms intervals, Cauchy distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared approximations

7 RF radio interference, sessions 1 and 2 active, read operation with 240 and 40 bytes at
200 and 500 ms intervals, Cauchy distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared approximations

8 Doubled RF radio interference, sessions 1 and 2 active, read operation with 240 and 40
bytes at 200 and 500 ms intervals, Cauchy distribution as the best fitting pdf in
accordance to Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared
approximations

9 802.11 radio interference, sessions 1 and 2 active, read operation with 240 and 40 bytes
at 200 and 500 ms intervals, Cauchy distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared approximations

10 Doubled 802.11 radio interference, sessions 1 and 2 active, read operation with 240 and
40 bytes at 200 and 500 ms intervals, Cauchy distribution as the best fitting pdf in
accordance to Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared
approximations

11 Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, read operation
with 240, 40 and 240 bytes at 200, 500 and 10 ms intervals, Cauchy distribution as the
best fitting pdf in accordance to Kolmogorov-Smirnov, Anderson-Darling and
Chi-Squared approximations

12 Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, read operation
with 240, 40 and 240 bytes at 10, 500 and 10 ms intervals, Cauchy distribution as the
best fitting pdf in accordance to Kolmogorov-Smirnov, Anderson-Darling and
Chi-Squared approximations

13 Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, read operation

with 240, 40 and 240 bytes at 1000, 500 and 10 ms intervals, Cauchy distribution as the
best fitting pdf in accordance to Kolmogorov-Smirnov, Anderson-Darling and
Chi-Squared approximations

(continued)
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Table 1 (continued)

No

Description

14

No radio interference, sessions 1 and 2 active, write operation with 2 and 40 bytes at 200
and 500 ms intervals, Gen. Pareto distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov and Burr distribution in accordance to the Anderson-Darling
approximation

15

No radio interference, sessions 1 and 2 active, write operation with 120 and 40 bytes at
200 and 500 ms intervals, Burr distribution as the best fitting pdf in accordance to
Kolmogorov-Smirnov and Log-Logistic (3P) distribution in accordance to the
Anderson-Darling approximation

16

No radio interference, sessions 1 and 2 active, write operation with 240 and 40 bytes at
200 and 500 ms intervals, Log-Logistic (3P) distribution as the best fitting pdf in
accordance to Kolmogorov-Smirnov and Frechet (3P) distribution in accordance to the
Anderson-Darling approximation

17

Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, write operation
with 240, 40 and 240 bytes at 200, 500 and 10 ms intervals, Beta distribution as the best
fitting pdf in accordance to Kolmogorov-Smirnov and Anderson-Darling approximations

18

Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, write operation
with 240, 40 and 240 bytes at 10, 500 and 10 ms intervals, Phased Bi-Weibull
distribution as the best fitting pdf in accordance to Kolmogorov-Smirnov and
Anderson-Darling approximations

Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, write operation
with 240, 40 and 240 bytes at 1000, 500 and 10 ms intervals, Pearson 5 (3P) distribution
as the best fitting pdf in accordance to Kolmogorov-Smirnov and Anderson-Darling
approximations

20

Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, read operation
with 240, 240 and 240 bytes at 1000, 10 and 10 ms intervals, Cauchy distribution as the
best fitting pdf in accordance to Kolmogorov-Smirnov, Anderson-Darling and
Chi-Squared approximations

21

Doubled RF and 802.11 radio interference, sessions 1, 2 and 3 active, write operation
with 240, 240 and 240 bytes at 1000, 10 and 10 ms intervals, Beta distribution as the
best fitting pdf in accordance to Kolmogorov-Smirnov and Anderson-Darling
approximations

towards well known from our previous experiments Pareto and Gamma distribu-
tions for better comparison. Sensors collide when tried to transmit at once. The
protocol for collusion avoidance applies backoff timer. Depending on the number of
collisions, the losses and delays also change rapidly.

4 Results

Part of the results concerning best fitting probability density functions are already
shown on Table 1. In order to save space we demonstrated only part of the data
graphically and numerically in Tables 2 and 3 as well as next graphs. Table 2
demonstrates the best fitting pdf parameters and fitting parameters to the Gamma
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Table 2 Fitting distribution parameters
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Experiment Fitting pdf Approximation Parameters
1: Low traffic Best fitting: Kolmogorov-Smirnov k = 0.1229; a = 141.6777;
Burr and Anderson-Darling p = 143.55
Gen. Pareto Kolmogorov-Smirnov k = —0.01455; 0 = 9.74865;
p = 142.564

Gen. Gamma
(4P)

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

k = 0.4714; o = 13.7316;
f =0.052; y = 137.216

2: Medium traffic

Best fitting:
Burr (4P)

Kolmogorov-Smirnov,
Anderson-Darling

k = 0.422; o = 17.661; p = 52.644;
y = 300.24

Gen. Gamma
(4P)

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

k = 1.61; o = 13.96; p = 10.8313;
y = 303.51

Gen. Pareto

Kolmogorov-Smirnov,
Anderson-Darling

k = 0.5558; o = 7.002;
p = 349.1967

3: High traffic

Best fitting:

Kolmogorov-Smirnov,

o = 5.133; p = 484.046

Cauchy Anderson-Darling and
Chi-Squared

Gen. Pareto Kolmogorov-Smirnov, k = 0.658; 0 = 10.221;
Anderson-Darling p = 470.6347

Gamma (3P) | Kolmogorov-Smirnov, o =5.915; p =32.458; y =308.528

Anderson-Darling and
Chi-Squared

4: High
interference and
high traffic

Best fitting:
Cauchy

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

6 =2195; p=53591

Gen. Gamma
4P)

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

k = 0.381; o = 26.393;
B = 0.09564; y = 50.675

Gen. Pareto Kolmogorov-Smirnov, k = 0.59675; 6 = 88.86;
Anderson-Darling p = 425.808
14: Writes, low Best fitting: Kolmogorov-Smirnov, k = —=0.10785; 0 = 10.696;
traffic Gen. Pareto Anderson-Darling p = 162.399

Gen. Gamma
4P)

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

k =0.6; a = 9.424; = 0.345;
y = 156.75

16: Writes, high
traffic

Best fitting:
Log-Logistic
(3P

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

o=1.592; f=8.7069; y = 510.936

Gen. Pareto

Kolmogorov-Smirnov,
Anderson-Darling and
Chi-Squared

k =0.915; 6 = 13.72; p = 509.53

Gen. Gamma
(4P)

Kolmogorov-Smirnov,
Anderson-Darling

k= 1.62; a = 0.108; p = 1562.184;
y=511.0

(continued)
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Table 2 (continued)

Experiment Fitting pdf Approximation Parameters
18: Writes, high | Best fitting: Kolmogorov-Smirnov, o = 0.87184; B, = 367.225;
traffic, high Phased Anderson-Darling y1 = 474; o, = 0.4053;
interference Bi-Weibull B> = 1,660.4535; v, = 99
Gen. Gamma | Kolmogorov-Smirnov, k=0.524; 0 = 1.106; p = 1,045.74;
(4P) Anderson-Darling and y = 474.0
Chi-Squared
Pareto Kolmogorov-Smirnov, o = 0.8856; p =474
Anderson-Darling and
Chi-Squared

and Pareto distributions. The data allows random number generation and compar-
ison to the well known distributions [12]. Tables 3 and 4 present general data of the
measured traffic flows. The values for variance on Table 3 are very high due to the
irregularity of the sources. Table 4 contains data percentiles.

The main conclusion from the experiments is that the traffic in sensor networks is
varying rapidly depending on the protocol, topology, interference, amount,
mobility, etc. Keeping this in mind and knowing that in the Internet of Things
environment billions of traffic sources will transmit simultaneously and will need
processing the design of the platforms could be done in the way to meet these
challenging requirements. On Fig. 2 best fitting pdf is shown from the 1,000
independent measurements during experiment 1. On the figure bars represent the
measured data as well as continuous line represents the approximated density
function. When the traffic increases, the pdf is not always changing (Fig. 3). The
main differences in comparison to the Fig. 2 are due to the collisions and backoff.

Modbus RTU limits the maximal interval between bytes from any single mes-
sage. Zigbee protocol limits the number of bytes in a single message in the radio
interface. Due to this Modbus RTU messages are often fragmented over the radio
interface adding additional delay for fragmentation and end-to-end transmission.

Further increase of the traffic, collisions and interference results in best fitting
distribution change to Cauchy (Fig. 4). The main differences between reads and
writes (Figs. 4, 5, 6, 7 and 8) are due to the difference in sensor sensitivity and the
power needed to perform the operations.

On Figs. 6, 7 and 8 experiments with writes demonstrate different best fitting
distributions depending on the traffic from Generalized Pareto, Log.-Logistics and
Phased Bi-Weibull. Special attention should be paid to the last one. Due to the big
messages, fragmentation and collisions the delays for part of the messages
are increasing rapidly and they form the second right peak on the graph (Fig. 8).
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Table 4 Percentile

R. Goleva et al.

Experiment (Min (5% |10 % |25 % 50 % 75 % 90 % 95 % Max
QD) | (Median) | (Q3)
1 138 [ 143 | 144 | 146 149 156 | 164 168 376
2 314 |347 [349 353 357 364 369 375 5,278
3 312 | 475 |476 | 478 485 489 | 497 503.95 5,902
4 72 | 356 |386 |518 536 560 |605.9 666.95 5,929
14 157 |[163 | 164 |166 169 176 | 184 187 239
16 511 |513 |514 |516 519 526 |536 548.95 5,991
18 474 | 547 | 554 | 566 626 5,364 | 5,678.5 |5,777.95 | 6,002
Probability Density Function
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Fig. 2 Experiment 1, standard traffic, no backoff because the channel is idle

X

Such multimodal functions had been investigated previously also in [17]. As a
general rule in case of the lack of fragmentation, a high interference in the channel
does not change round trip time variations due to the CSMA/CA during read
operations. The only visible effect is reduced peak that means that the round trip
times are spread around the mean value due to the backoff.
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Fig. 3 Experiment 2, increased traffic, backoff because the channel is not always idle
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Fig. 4 Bigger traffic in experiment 3 and bigger probability for backoff
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Probability Density Function
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Fig. 5 Experiment 12, very high interference, very high traffic
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Fig. 6 Experiment 14, write operation with 2 bytes payload
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Fig. 7 Experiment 16, write operation with 240 bytes payload
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Fig. 8 Experiment 18, write operation with high traffic and high interference

5 Conclusion and Future Work Plan

In this chapter, we show traffic measurements and analyses in sensor networks
aiming to obtain necessary information for network design. We investigated round
trip delay of read, write operations, and found them different from traffic point of
view. Round trip delay depends mostly on transmission channel characteristics and
end-devices. Backoff timer influences the data significantly as well as message
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fragmentations. With high traffic, write operation round trip time variance tends to
become similar to read operation round trip time variance with higher mean value.
Due to the high traffic and interference, the distribution could become multimodal.

Our future research continues with mesh network measurements and analyses as
well as traffic relaying phenomenon investigation. We continue our experiments
with different types of sensors. We aim also to map inter-arrival times to Gamma
distribution and find mapping between gamma parameters and transmission nature.
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