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Preface

Oriental Thinking and Fuzzy Logic in Dalian, China, an international conference,
was held during August 17-20, 2015, to celebrate the 50th anniversary of Fuzzy
Sets. The honorary chair for this conference was Prof. L.A. Zadeh, the founder of
fuzzy sets theory, who has guided an information revolution, and constructed a
great bridge between qualitative and quantitative.

The conference focused on six main topics as follows: fuzzy information pro-
cessing; fuzzy engineering; Internet and big data applications; factor space and
factorial neural networks; information granulation and granular computing; exten-
sion and innovation methods. Here, topic three, the theory of factor space was
initiated by Prof. Pei-Zhuang Wang with the oriental thinking. And extension topic
six, is a new field of the disciplinary initiated by Prof. Wen Cai, who achieved
innovation facing a problem where impossible cases seem to be possible.

There were 15 plenary talks in the conference including Wen Cai, fuzzy logic
and extenics; Y.X. Chen, inter-definability and application of fuzzy logic operators;
L. Dzitac, fuzzy logic and artificial intelligence; J.L. Feng, theory of meta-synthetic
wisdom based on fusion of qualitative, quantitative and imagery operations; J.F.
Gu, system science and Chinese medicine; Ouyang He, a mathematical foundation
for factor spaces; Qing He, uncertainty learning; C.F. Huang, an approach checking
whether an intelligent internet can be improved into intelligence; D.Y. Li, cognitive
physics; Z.L. Liu, factorial neural networks; W. Pedrycz, new frontiers of com-
puting and reasoning with qualitative information: a perspective of granular com-
puting; Germano Resconi, from inconsistent topology to consistent in big data;
Yong Shi and Y.J. Tian, uncertainty and big databases; P.Z. Wang, fuzzy sets and
factor space; Z.S. Xu, complex information decision making. As a special guest,
Mr. H.R. Lin, with his 18-year teaching practice in Shanghai Middle School,
introduced his book “Preliminary of Fuzzy Mathematics” for pupils in his schools.

Apart from the organized speeches, we much appreciated the articles from
individuals with natural interest and deep friendship toward Prof. L. Zadeh. They
developed fuzzy theory along probability representation, rough sets, intuitionistic
fuzzy sets, nonlinear Particle Swarm Optimization, ranking method to structure
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elements and they apply fuzzy theory into recommendation, feature extraction,
qualitative mapping, etc. Among all papers presented at the conference, we care-
fully selected over 60 papers to form this book as assorted appetizers to com-
memorate the 50th anniversary of fuzzy sets from the Dalian conference.

Finally, we thank the publisher, Springer, for publishing the proceedings as
Advance in Intelligent and Soft Computing.

December 2015 Bing-Yuan Cao
Pei-Zhuang Wang

Zeng-Liang Liu

Yu-Bin Zhong
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(€, € vq,,,))-Fuzzy Weak Ideal
of Complemented Semirings

Zuhua Liao, Chan Zhu, Xiaotang Luo, Xiaoying Zhu, Wangui Yuan
and Juan Tong

Abstract In this paper,the notions of generalized fuzzy weak ideal of complemented
semiring, (€, € V g, ,))-fuzzy weak ideal of complemented semiring are introduced.
By discussing, the two new concepts are found to be equivalent. Furthermore, some
fundamental properties of their intersection, union, level sets, homomorphic image
and homomorphic preimage are investigated.

Keywords (€,€ Vg, ,))-Fuzzy weak ideal * Generalized fuzzy weak ideal -
Homomorphic image + Homomorphic preimage

1 Introduction

Rosenfeld in 1971 introduced fuzzy sets in the context of group theory and formu-
lated the concept of a fuzzy subgroup of a group [1]. Since then, many researches
have extended the concepts of abstract algebra to a fuzzy framework. In 2006, Liao
etc. generalized “quasi-coincident with” relation (g) between a fuzzy point and a
fuzzy set of Liu to “generalized quasi-coincident with” relation (q(, ,) between a
fuzzy point and a fuzzy set, and extended Rosenfeld’s (€, €)-fuzzy algebra, Bhakat
and Das’s (€, € Vqg)-fuzzy algebraand (€, € v q;.)-fuzzy algebrato (€, € vq, ,)-
fuzzy algebra [2] with more abundant hierarchy [3].

Vandiver [4] in 1939 put forward the concept of semiring. The applications of
semirings to areas such as optimization theory, graph theory, theory of discrete event
dynamical systems, generalized fuzzy computation, automata theory, formal lan-
guage theory, coding theory and analysis of computer programs have been exten-
sively studied in the literature [5, 6]. Liu [7] introduced fuzzy ideals in a ring.
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Following this definition, Mukherjee and Sen [8, 9]obtained many interesting results
in the theory of rings.

On the study of fuzzy semiring, there has been a large number of researches at
home and abroad. Feng and Zhan [10] proposed complemented semiring. They put
the Boolean algebra as its proper class, and studied the algebraic structure of it.

This paper is the continuation of the above work.

Section 2 of this paper list some necessary preliminaries that support our results.
Section 3 is the kernel of the whole paper, which display main results obtained by
the authors, including the relationships among generalized fuzzy weak ideal, (€, €
VG, )-fuzzy weak ideal and level subsets of a fuzzy set and relative properties
about the intersection, union, homomorphic image and homomorphic preimage of
such generalized fuzzy weak ideal. In section, we make a conclusion and prospect
the further study of generalized fuzzy weak ideal.

2 Preliminaries

In this section we recall some basic notions and results which will be needed in the
sequel.
Throughout the paper we always consider S as a semigroup.

Definition 1 [11] A semiring S is a structure consisting of a nonempty set S together
with two binary operations on S called addition and multiplication (denoted in the
usual manner) such that

(1) S together with addition is a semigroup. o is additive identity element;

(2) S together with multiplication is a semigroup.l is multiplicative identity ele-
ment;

3) alb+c)=ab+ ac,(a+ b)c =ac+ bc,Ya,b,c € S,

4) o-a=a-o0=o.

Definition 2 [10] Assume « is an element of semiring S, if there exists a comple-
ment a which makes aa = 0,a + a = 1, a is called complemented. S is said to be a
complemented semiring if every element of S has a complement.

Definition 3 [12] Let S be a semiring. A nonempty subset A of S is said to be a
complemented subsemiring of S if A is closed under three binary operations on S:

(1) Ifa,b e A, thena+ b € A,
2) Ifa,be A, thenab € A;
(3) Ifae A, thena € A.

From now on, we write S and H for complemented semirings.

Definition 4 [13] Leta, 4, 4 € [0, 1] and A < p, if A(x) >a, then a fuzzy point x,, is
said to belongs to a fuzzy subset A written x, € A; if A < @ and A(x) + a > 2y, then
a fuzzy point x, is called to be generalized quasi-coincident with a fuzzy subset A,
denoted by x,q, ,,A. If x, € A or x,q; ,»A, then x, € Vg, ,A.
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Definition 5 [12] Let a, A, u € [0,1] and A < u, A fuzzy subset A of S is called
an (€, € vy, M))—fuzzy complemented subsemiring of S, if V&,r € (4,1], a,b € S
satisfy:

(1) Ifa, b, €A, we have (a + b),,, € Vg, ,)A;
(2) Ifa,, b, € A, there exist (ab),,, € Vq; ,yA;
(3) Ifa, €A, a, € vq; A holds.

Definition 6 [12] Let a, A, € [0,1] and A < u, A is a fuzzy set of S. We call A a
generalized fuzzy complemented subsemiring of S if Va, b € § satisfy:

(1) Al@+b)V 4> A@ AAD) A
(2) A(ab)V A > Aa) AAD) A u;
(3) A@) V 1 > Aa) A .

Definition 7 [14] Let S;(1 <i < n) be complemented semirings and direct prod-
uct: [],.,.,S; = {(a),ap, ... a,)|a; € S;}. Then [],..,S; is a complemented semi-
ring under the operations as following:
(ay,ay,...a,) + (b, b,,...b,)=(a, +b,a,+ b,,...,a,+Db,);
(aj,ay,...a,)(b,,b,,...b,) = (a,b,a;b,, ...a,b,);

(a;,ay,...a,) = (a;,a,,...a,).

Definition 8 [14] LetA;(1 < i < n)be fuzzy subsets of S, then a fuzzy set [ ], A,
defined as ([, .,.,AD(x1, x5, ... x,) = inf ;. A;(x,) is called fuzzy direct product.

Theorem 1 [12] Let A be a fuzzy subset of S, then A is a generalized fuzzy com-
plemented subsemiring of S if and only if A is an (€, € Vqq, ,))-fuzzy complemented
subsemiring of S.

Theorem 2 [12] Let A be a fuzzy subset of S, then A is a generalized fuzzy comple-
mented subsemiring of S if and only ifVa € (4, ul, nonempty A, is a subsemiring of S.

Theorem 3 [12] Let A and B be generalized fuzzy complemented subsemirings of
S, then A N B is a generalized fuzzy complemented subsemiring of S.

Theorem 4 [12] A subset A of S is a complemented subsemiring of S if and only if
X4 is a generalized fuzzy complemented subsemiring of S.

Theorem 5 [12] Letf : S — H be a full homomorphism. If A is a generalized fuzzy
complemented subsemiring of S, then f(A) is a generalized fuzzy complemented sub-
semiring of H.

Theorem 6 [12] Let f : S — H be a homomorphism. If B is a generalized fuzzy
complemented subsemiring of H, then f~'(B) is a generalized fuzzy complemented
subsemiring of S.
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3 (&, € vq,,))-Fuzzy Completely Prime Ideals

The following if no special instructions, we suppose A, u € [0, 1] and A < pu. Firstly,
the definitions of weak idea of complemented semiring generalized fuzzy weak ideal
and (€, € vV q, ,))-fuzzy weak ideal are given.

Definition 9 Let A be a complemented subsemiring of S, then A is said to be a weak
idea of complemented semiring S if forallx € A,y € §, xy + yx € A.

Definition 10 Let A be a generalized fuzzy complemented subsemiring of S, then A
is called a generalized fuzzy weak ideal of S if A(xy + yx) VA > A(x) A u. Vx,y € S.

Definition 11 Let A be an (€, € vq, ,))-fuzzy complemented subsemiring of S.
Then A is called an (€, € Vq(,w))-fuzzy weak ideal of S, if « € (4,1],y € S,x, €A
imply (xy + yx), € Vg »A.

By the research on the relationships among generalized fuzzy complemented sub-
semiring, (€, € \Zm M))—fuzzy weak ideal, and level subsets of a fuzzy set, we obtain
the following result.

Theorem 7 Let A be a fuzzy subset of S, then the following conditions are equiva-
lent:

(1) Aisan (€, € Vq; ,))-fuzzy weak ideal of S;
(2) Ais a generalized fuzzy weak ideal of S;
(3) Va € (A, ul, nonempty set A, is a weak ideal of S.

Proof (1) = (2):

From Theorem 1, we know A is an (€, € \m M))-fuzzy complemented subsemir-
ing of S thus A is a generalized fuzzy complemented subsemiring of S.

Next we prove A is a generalized fuzzy weak ideal of A. Assume that there exist
X, Yo € S such that A(xyy, + yoXg) V 4 < A(xy) A p. choose a such that A(xyy, +
YoXo) VA < a < A(xg) A u, then A(xgyo + YoXo) < @, A(xg) > a and A < a < p, so
(xp), € A. Since A is an (€, € vq, ,))-fuzzy weak ideal of S, thus (xoy, + ypXo), €
VG A But A(xgyg + yoXo) + @ < @ + a < 2, a contradiction.

So A is a generalized fuzzy weak ideal of S.

@)= 1)

It is easy to prove that A is an (€, € vq, ,)-fuzzy complemented subsemiring of
S.Vx,y € S,a € (4,1],if x, € A, then A(x) > a. Since A is a generalized fuzzy weak
ideal of S, then A(xy + yx) VA > AX) Au > a A u.

Case l: Ifa > p,thenA(xy + yx) VA > u.By A < u,s0A(xy + yx) > u. ThenA(xy +

y)ta = p+a>2pu,ie(xy+yx),qgu A

Case 2: If « < pu, then we can obtain that A(xy + yx) > «, i.e.(xy + yx), € A. So

(xy +xy), € Vg, 0A- Therefore A is an (€, € Vg, ,))-fuzzy weak ideal of S.
=03

We know that A, is a subsemiring of S based on Theorem 2. Vx € A, a € (4, u]
andy € §, then A(x) > a. Since A is a generalized fuzzy weak ideal of S, then A(xy +
YOVAZAX)ApZ>aApu=a,by A<a,soAlxy+yx)>a,ie,xy+yx €A,
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Therefore A, is a weak ideal of S, Va € (4, u].

=00

We obtain that A is a generalized fuzzy complemented subsemiring of S based on
Theorem 2. Assume that there exist x,,, y, € S such that A(xyy, + yoxy) V 4 < A(xg) A
u. Choose a such that A(xyy, + yoxo) V 4 < @ < A(xg) A i, then A(xyy, + yoxo) < @,
A(xy) >aand A < a < u.Sox, €A,. Since A, is a weak ideal of S, then A(xyy, +
YoXo) = a, a contradiction. Therefore A is a generalized fuzzy weak ideal of S.

The above theorem shows that generalized fuzzy weak ideal and (€, € v g, ,))-
fuzzy weak ideal are equivalent. Thus we can prove a normal fuzzy set be an (€, €
V q(; )-fuzzy weak ideal by proving it be a generalized fuzzy weak ideal, which is
easier than the former. Meanwhile, Theorem 7 establishes a kind of link between
generalized fuzzy weak ideal and ordinary weak ideal.

Theorem 8 Let A and B be generalized fuzzy weak ideal of S, then AN B is a gen-
eralized fuzzy weak ideal of S.

Proof We obtain that A N B is a generalized fuzzy complemented subsemiring of S
based on Theorem 3. For all x,y € S, we have (A N B)(xy + yx) V 4 = (A(xy + yx) A
B(xy+yx)) vV A = (Alxy + yx) V ) A (Bxy +yx) V 4) 2 (AX) A iABX) A p) =
(AN B)(x) A p.

Therefore A N B is a generalized fuzzy weak ideal of S.

Corollary 1 Let A,(i € 1) be generalized fuzzy weak ideals of S, then N;A; is a
generalized fuzzy weak ideal of S.

Theorem 9 Let A;(i € I) be generalized fuzzy weak ideals of S, andVi,j € I,A; C Aj
orA; CA;. Then Ui A, is a generalized fuzzy weak ideal of S.

Proof Firstly, we prove that V;;(A;,(x) AA;(y) A ) = (U;A)X) A (Uil ADQ) A .
Obviously, V;c;(A;(x) AA;WAM) < (UjgADX) A (Ui, ADY) A . Assume that Vg,
(A;(0) AA; (D) A ) # (Ui AD@) A (Ui AD() A, then there exists 7 such that Vi,
(A ANA) A p) <1 < (UigAD)X) A (Ui A)() A p. Since Vi, jEL,A; CAjorA; ©
A;,then 3k € I, such that r <A (x) AA,(Y) A u. But A;(x) AA(OW)Au<rViel, a
contradiction. Thus {V,c;(A4,(x) AA;() A u)} = (Ui A)X) A (Ui A A . Next,
Vx,y € S, we have (Uig; A +y) VA=V Aix+y) VA=V Ax+y) VA >
Viei(A;(x) AA,() A ) = (UjADX) A (Ui, AD) A p. Similarly, we can prove that
(UigfADy) V A > (UigiADX) A (Ui ;A A u. Vi €1, since A; is a generalized fuzzy
complemented subsemiring of S, so A;,(@) V A > A;(a) A p. Then (V,g;A; (@) vV A >
Aj@) Vv A >A(a) A u. Wehave (V,g;A;(@) V A > (VA (a) A u. Thatis (U;;A,(a))
VA2 (UigAj(a) A .

Thus, U,A; is a generalized fuzzy complemented subsemiring of S.

Finally,Vx,y € S,U;g;(xy + yX) V 4 = Vg A;(xy + yX) V A =V, (A;(xy + yx) V 1)
> Vg (A0 A p) = VigAi(x) A i =(U;gA)(X) A .

Therefore U;;A; is a generalized fuzzy weak ideal of S.

Theorem 10 Let A, and A, be generalized fuzzy weak ideals of S, and S, respec-
tively, then A| X A, is a generalized fuzzy weak ideal of S| X S,.
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Proof Firstly, we prove that A; X A, is a generalized fuzzy subsemiring of §; X S,.
For all x,y € S| X S,, where x = (x;,x,),y = (y;,¥,), since A; and A, are general-
ized fuzzy subsemirings of S| and S, respectively, then (A; X A))(x + y)VA = (4, X
A0+ Y1 + 1) VA = Ay (g +3) AAy(6 + 9)VA = (A0 +37) VD) A (4,
( + ) VA Z A () AATODAR) A (A () AA (1) A ) = (A XA((x, %)) A
(A XAy >y2) A= (A1 XA)X) A (A XA A .

Similarly, we can prove that (A; X A,)(X) V 4 > (A} X A,)(x)Ap and (A X A,)(xy)
VA2(A XA)X)AA; XA)Y) A p. So A; XA, is a generalized fuzzy comple-
mented subsemiring of S; X S,.

Next, for all x,y € S| X S,, where x=(x},x,),y =, (¥, ¥2), (A; X Ay)(xy + yx) V
A=A XAy, + 71X %)) + Yax)VA=(A,0x;y; +Y1x1) AAy(xy, + ¥2X)) V 4
= (A () + Y3V A Ay +3950) V A) 2 (A () A ) A (Ay000) A ) = (A} X
Ay))(xp, %) A= (A] XAy))(X) A .

Therefore A; X A, is a generalized fuzzy weak ideal of S; X S,.

Theorem 11 Let A; be generalized fuzzy weak ideals of S, then [, <i<hA; IS a gen-
eralized fuzzy weak ideal OfHISiSnSi'

Proof Firstly, we prove that [],.,.,A; is a generalized fuzzy subsemiring of
T <i<,,S;- For all x,y € [T,<;<,S;» Where x = (x;, %y, ... x,) and y = (¥, Y2, --- ¥)s
then ([T,<ic, A)(x +¥) VA =inf A, (x; +y,) V 4 = inf(A,(x; + y,)VA) > inf(A;(x;) A
A,(v) A )= inf A(x) A inf A(v) A =TT, i, AD)@) AT <ic, AD D) A 1.
Similarly, we can prove (I],.;., A0V 4> (I],<,AD@A (IT,<i<,A00) A p.
Next in addition, ([],;.,4)@®) V 4 = inf A,(x;) V A = inf(A,(X;) V ) > inf(A;(x;) A
W) = inf A,00) A = ([ <A A e

Therefore [],.,.,A; is a generalized fuzzy complemented subsimiring of
HISiSnSi'

Finally, for all x,y € [],.,.,S;, where x = (x;,x,,...x,) and y = (y;, 2, ... y,),
then ([],.,A)y+yx)Vv A =infA,(xy; +yx) VA =inf(A,(x;y; + y,x) vV A)>
inf(A;(x;) A p) = inf A;(x;) A pt = (I1,<j<,AD@) A p. Thus [, ,.,A, is a generalized
fuzzy weak ideal of [, .,.,S:- o o

Theorem 12 Let A be a subset of S, then y, is a generalized fuzzy weak ideal of S
if and only if A is a weak ideal of S.

Proof We know that A is a complemented subsemiring of S based on Theorem
4. For all x € A and y € S, since y, is a generalized fuzzy weak ideal of S, then
XAy +yX)VA> pa)Au=1Apu=pn By A<pu, so ys(xy+yx) > pu>0 and
xa(xy + yx) = 1. Then xy + yx € A. Therefore A is a weak ideal of S.

Conversely, we can obtain that y, is a generalized fuzzy complemented subsemir-
ing of S based on Theorem 4.

Assume that there exist x,,y, € S such that y,(xgyy + YoXo) V 4 < xa(xg) A p.
Choose «a such that y,(xoyy + YoXo) <a < ya(xg) A < a < y4(xo) A u, then
Xa(XoYo + YoXo) < o, x4 (Xg) > @ and A < a < p.1i.e. xy € A. Since A is a weak ideal
of S then xyyy + yoxy € A. So x4 (xgyy + YoXo) = 1 > a, a contradiction.

Thus y, is a generalized fuzzy weak ideal of S.
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Theorem 13 Let A be a generalized fuzzy weak ideals of S, then A; = {x|A(x) > 4}
is a generalized weak ideal of S. B

Proof Firstly, we prove that A, is a complemented subsemiring of S. For all x,y €
A, since A is a generalized fuzzy weak ideals of S, then A(x + y) V 4 > A(x) AA(Y) A
U> A, 50Ax+y) > A ie.,x+y €A, Similarly, we can prove that xy,x € A,.
Therefore A, is a complemented submiring of S. Next, for allx € A, and y € S,
then A(x) > A. Since A is a generalized fuzzy weak ideals of S, then A(xy + yx) V 1 >
AX) A p > 4,50 Alxy +yx) > A, i.e,xy+yx €EA,.
Therefore A, is a weak ideal of S. N

Theorem 14 Let f : S — H be a full homomorphism, if A is a generalized fuzzy
weak ideal of S, then f(A) is a generalized fuzzy weak ideal of H.

Proof Based on Theorem 5, we know that f(A) is a generalized fuzzy complemented
subsemiring of H. For all z;, z, € H, there exist x;,x, € S, such that f(x;) = z;,f(x,)
=25, then fOrx, +xx) =f00x) + f(0ox) = fO)f)+Hf () (x) =212, +
2521, S0 f(A)(z212p + 2521) V A = sup{A@)|f(x)=z,2, + 202, } V A=sup{A(x) V A|f(x)
=212 +2271 } 2 sup{AQxx, +x0x1) V Af(x)) = 2, f(5) =25} 2 sup{A(x)) A plf(x))
=21} = sup{A(x) A ulf(x) = 21} == f(A)(z)) A p.

Therefore f(A) is a generalized fuzzy ideal of H.

Theorem 15 Let f : S — H be a homomorphism, if B is a generalized fuzzy weak
ideal of H, then f~'(B) is a generalized fuzzy weak ideal of S.

Proof Based on Theorem 6, we can obtain that f~!(B) is a generalized fuzzy com-
plemented subsemiring of S. For all x,y € S, thenf(x),f(y) € H. Since Bis a general-
ized fuzzy weak ideal of H, so f~1(B)(xy + yx) V A = B(f(xy+yx)) V A = B(f(x)f (y) +
FOW DV A= BE) A pu=f1B)X) A p.

Therefore f~'(B) is a generalized fuzzy weak ideal of S.

4 Conclusion

In this present investigation, the concepts of generalized fuzzy weak ideal and (€, €
Vq,..)-Tuzzy weak ideal are proposed. Moreover, the relevant properties are studied.
Further we will do some relevant properties on chain condition of fuzzy weak ideal.

Acknowledgments This work is supported by Program for Innovative Research Team of Jiangnan
University(No:200902).
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Generalized Fuzzy Sets and Fuzzy Relations

Yan-cai Zhao, Zu-hua Liao, Teng Lu and Juan Tong

Abstract In classical fuzzy set theory, a fuzzy set is a membership function which
associates with each element a real number in [0, 1], a fuzzy relation is a function
which associates with each pair of elements a real number in [0, 1]. In the present
paper, we generalize the above two concepts by associating with each set a real num-
ber in [0, 1], and associating with each pair of sets a real number in [0, 1], respec-
tively. We then give a series of properties for these two types of generalized concepts.
We also show that a generalized fuzzy relation can be induced by a classical fuzzy
relation, which shows the communication of our generalized fuzzy concepts with the
classical fuzzy theory.

Keywords Fuzzy set + Fuzzy relation « Generalized fuzzy set * Generalized fuzzy
relation + Power set

1 Introduction

The concept of a fuzzy set was introduced by Zadeh [10]. A fuzzy set in a referential
(universe of discourse) X is characterized by a membership function A which asso-
ciates with each element x € X areal number A(x) € [0, 1], having the interpretation
that A(x) is the membership degree of x in the fuzzy set A. For convenience, we also
call the set X in above definition the base set of a the fuzzy set A.

Let X, Y be two sets. Amapping R : X X Y — [0, 1] is called a fuzzy relation [10].
The number R(x,y) € [0, 1] can be interpreted as the degree of relationship between
x and y.
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Since fuzzy set was introduced by Zadeh in 1965 [10], many extensions have been
developed, such as intutionistic fuzzy set [1], type-2 fuzzy set [2, 4], type-n fuzzy
set [2], fuzzy multiset [5, 9] and hesitant fuzzy set [6-8, 11]. So far as we know, all
types of fuzzy set assign a value or a set of values to an element of a classical set.
However, there are many situations in our real lives in which one has to make decision
on a whole set. For example, a patient usually has several symptoms. His/Her doctor
has to make a decision by whole of his/her symptoms, which means that the doctor
assigns a value to the set of all the patient’s symptoms. We will give the details of
this example later.

In this paper, we first generalize the classical fuzzy set on a base set X to one
on a collection of sets. Then, we concentrate on the study of the generalized fuzzy
sets on base set P(X), the power set of X, and obtain a series of properties; We
also generalize the classical fuzzy relation between two elements to several types of
relations between two sets, and obtain a series of properties for these generalized
fuzzy relations. Among them, we construct a equivalence fuzzy relation at the end
of the paper.

2 Generalized Fuzzy Sets and Their Operations

In our real lives, there exist many situations in which we should make decisions on
a collection of sets.

Example 1 A doctor usually judge that if a patient has caught a cold by the following
symptoms of this patient: Fever (F for short), Headache (H for short) and Cough (C
for short). The following table give the corresponding numbers to different sets of
symptoms. Each number means a degree of a patient catch a cold.

In the following table, the collection D of decisions is a fuzzy set on the collection
of the set of different symptoms of a patient (Fig. 1).

_0,02 01 02 03 0.5 0.4 0.9
@ {(F} (H} (C} (F.H} ({F.C} {HC} ({(F.HC}

A classical fuzzy set assigns a value to an element. We now give a generalized
type of fuzzy set which assigns a value to a set.

Definition 1 Let S = {S;| i € I} be a collection of sets. Then a mapping A such
that A : S — [0,1],S — A(S),VS € S is called a fuzzy set on S. A(S) is called the
membership degree of S in S. Let the collection of all the fuzzy sets on S be F(S).

Fig. 1 Fuzzy decisions on symptoms|0]{ F}[{H}[{C}|{F, H}|{F,C}|{H, C}|{F, H,C}
the power set of a set decision [0[0.2]0.1]0.2] 03 | 05 | 04 0.9
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As an special collection of sets, the power set of a set is interesting. So we will
concentrate our studies on the fuzzy sets on a power set.

Definition 2 Let X be a set. Then a mapping A, such that
Ap 1 P(X) - [0,1],P — Ap(P),VP € P(X)

is called a fuzzy set on P(X). Ap(P) is called the membership degree of P in P(X).
Let the collection of all the fuzzy sets on P(X) be F(P(X)).
Give a fuzzy set on X, we can deduce a fuzzy set on P(X) as follows.

Definition 3 Given a fuzzy set A on X, the mapping such that
A P PX) = [0,1],P = A, (P) = V,cpA(x)

is called the max-type induced fuzzy set by A. Denote F,,, (P(X)) ={A,. | AE

FX)}.

max

Definition 4 Given a fuzzy set A on X, the mapping such that
Amin : p(X) - [07 1]7P = Amm(P) = VxePA(x)

is called the min-type induced fuzzy set by A. Denote F, . (P(X)) = {A S
FX)}.

Given any fuzzy set A on X, then A induces a relation ~ on X by defining that
x ~y & A(x) = A(y). It is easy to see that ~ is an equivalence relation on X. There-
fore, there exists the quotient set X /~. Similarly, A, or A,,;, induces a relation ~
on P(X) such that P, ~' P, & Ap(x) = Ap(y) for any P, P, € P(X). ~' is an equiv-
alence relation on P(X) and thus there exists the quotient set P(X)/~'.

The order relation of elements in a set is usually defined as x <y & A(x) < A(y).

Now we define the order relation of two sets as follows.

min min |

Definition 5 LetA be afuzzy seton X. Forany P, P, € P(X), P, < P, © Ap(P)) <
Ap(P,).
We further give a more general order relation on P(X) as follows.

Definition 6 Let A, B € F(P(X)). If VP € P(X),A(P) < B(P), then we say A C B.
IfVP € P(X), A(P) B(P) then we say that A = B.

Theorem 1 Let Z, E, Ce € F(P(X)), then we have the follows.

(1) Self-reflexivity. §§2~~ o
(2) Anti-symmetry. A C B.BCA = A=B.
(3) Transitivity. ACB,BC C=>ACC.

From Theorem 1 we know that (F(P(X)), C) is a partially ordered set.
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3 Generalized Fuzzy Relations

The classical fuzzy set theory defined the relations between two elements as follows.
Let X, Y be two classical sets. Amapping R : X X Y — [0, 1]is called a fuzzy relation
[10]. The number R(x,y) € [0, 1] can be interpreted as the degree of relationship
between x and y.

Now we define the fuzzy relation between two sets as follows.

Definition 7 Let X, Y be two classical sets. A mapping R : P(X) X P(Y) — [0, 1] is
called a fuzzy relation. The number R(A, B) € [0, 1] can be interpreted as the degree
of relationship between A and B.

Further, we give two types of induced relations between two sets as follows.

Definition 8 Let R : X X X — [0, 1] be a fuzzy relation on X. The mapping R:
P(X) X P(X) = [0, 1] such that R(A, B) = \/ ;¢4 pe5 R(a, b) for A, B € P(X) is called
the max-type induced fuzzy relation between A and B.

Definition 9 Let R : X X X — [0, 1] be a fuzzy relation on X. The mapping R:
PX)x P(X) — [0, 1] suchthat R(A, B) = /\aeA’beB R(a,b)forA,B € P(X)is called
the min-type induced fuzzy relation between A and B.

Theorem 2 If R is a fuzzy relation on X, then the max-type induced fuzzy relation
R on P(X) has the following properties.

(1) ACC,BC D= R(A,B) <R(C,D);

(2) IfRis self-reflexive and AN B # @, then INQ(A,B) =1;
(3) R(A,BUC)=R(A,B)VR(A,C);

(4) RA,BNC) < R(A,B) AR(A,C).

Proof (1). By Definition 8, it is easy to see.

(2). Since R is self-reflexive, R(x,x) =1 for any x € X. Choose an element
Y € AnB. Then by (1) R(A,B) > R({x}, {x}) = R(x,x) = 1. SoR(A,B) = 1.

3).

R(A,BUC) = vV R(a,u)
a€eA
ueBUC
\Y, R(a,u)
a€A a€eA
ueB”uec

VvV R@a,u) Vv vV  R(a,u)
a€A a€A
u€eB uecC

= R(A,B)V R(A, C).
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(4). Itis easy to be deduced from (1).

Theorem 3 If R is a fuzzy relation on X, then the min-type induced fuzzy relation R
on P(X) has the following properties.

(1) ACC,BC D= R(A,B) > R(C,D); B B

(2) IfRis self-reflexive and A — B # (J (Res. B — A # (), then R(A, B) = R(A — B, B)
(Res. R(A, B) = R(A, B - A));

(3) R(A,BUC) =R(A,B) AR, O);

(4) R(A,BNnC) > R(A,B)VR(A,C).

Proof The proofs are similar to those in Theorem 2, and thus we omit.
Now we give two types of definitions of transitivity of fuzzy relations on P(X),
and will provide an equivalence fuzzy relation on P(X).

Definition 10 A fuzzy relation R on P(X) is called I-type transitive, if R”> = RoR C
R, that is, V(U, V) € P(X) X P(X), \/ yepcx) ROU, W) ARW, V) < R(U, V).

Definition 11 A fuzzy relation R on P(X) is called II-type transitive,if R”> = RoR C
R, thatis, V(U,V) € P(X) X P(X), \/{x}ep(X) R(U, {x}) AR({x},V) <R(U,V).

Definition 12 LetR : X X X — [0, 1] be a fuzzy relation on X. For any two different
elements x,y € X, a path from x to y, denoted P(x,y), is a set of continuous pairs
(x,a,),(a;,a,),(ay,as), ..., (a,,y), where, each pair is called an edge of the path. Let
E(P(x,y)) be the set of all edges in a path P(x,y). The degree of a path P(x,y) is
S(P(x,y)) = /\eeE(P(x’y)) R(e). Suppose that there are [ paths Py, P,, ..., P, from x to
y. Then the connective degree between x and y is
__[Visw®), ifx#y
Sex.) “{ 1, if x = y.
The set of paths from A to B is P(A,B) = {P(a,b)|la € A,b € B}. The connective

degree between A and B is S(A, B) = \/aeA’heB S(a, b).
The induced fuzzy relation S on P(X) has the following properties.

Theorem 4 If R is a fuzzy relation on X, then the fuzzy relation S on P(X) has the
following properties.

(1) ACC,BC D= SA,B) < S(C,D);
(2) FANB # 0, then S(A,B) = 1;

(3) S(A,BUC) = S(A,B)V S(4, C);

(4) S(A,BNC) < S(A,B) ASA, C).

Proof The proof is similar to that of Theorem 2, and thus we omit.

Theorem 5 If R is a symmetric fuzzy relation on X, then S is an equivalence relation
on P(X), under the meaning of the II-type transitivity.
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Proof By (2) of Theorem 4, S(A,A) = 1, and thus S is self-reflexive. Since R is sym-
metric, it is easy to see that S is symmetric. It remains to prove that § satisfies tran-
sitivity. Note that

$%(A.B) = \/ (S, {w}) AS({w}. B)). VA, B € P(X).

weX

If AN B # @, then S(A, B) = 1, we have S(4, B) > S?(A, B). Now assume that A N
B = J. Choose an arbitrary element w € X. If w € A, then S(A, {w}) = 1. It follows
that S(A,B) > S({w},B) = SA, {w}) AS({w},B). If w € B, then S({w},B)=1. It
follows that S(A, B) > S(A, {w}) = SA, {w}) AS({w},B). When w € AUB, let P,
and P, are the optimal paths of (A, {w}) and ({w}, B), respectively. Then P, U P,
contains a path P of (A, B), and thus E(P) C E(P,) U E(P,). Therefore, S(A,B) >
S(P) > S(P)) AS(P,) = S(A, {w}) A S({w}, B). In either case, S(A, B) > S(A, {w}) A
S({w},B). So S(A, B) > S*(A, B), which means the transitivity of S(A, B).
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Fuzzy Topologies and Fuzzy Preorders Based
on Complete Co-residuated Lattices

Piwei Chen and Yu Zeng

Abstract For a complete co-residuated lattice L, the concepts of Z—topological
spaces and Z-preorders are introduced by virtue of the nonmembership functions
in the intuitionistic fuzzy set theory. Furthermore, the methods to induce one from
another are studied in order to establish a stable relationship between each other.

Keywords Fuzzy topology * Fuzzy order * Complete co-residuated lattice + Many-
valued logic

1 Introduction

Since Zadeh [16] proposed fuzzy sets and Chang [2] introduced fuzzy theory into
topology, many authors discussed various aspects of fuzzy topology [11, 13, 15,
17]. Fuzzy topology theory has formed its own research pattern. On the other hand,
fuzzy order is a basic concept in fuzzy set theory and plays an important role in
many branches of fuzzy set theory, which is closely related to many basic concepts
in mathematics [1]. From a mathematical viewpoint the important feature of fuzzy
set theory is the replacement of the two-valued logic by a many-valued logic [8]. In
the setting of complete residuated lattice being the truth table of many-valued logic,
many authors discussed the close relationships between fuzzy topologies and fuzzy
orders [3-5, 10, 14].

This paper is devoted to a special topic in the research of the interrelationship
between fuzzy topologies and fuzzy orders in the setting of complete co-residuated
lattice being the truth table.

P. Chen
School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
e-mail: cpw @ouc.edu.cn

Y. Zeng (5=2)
College of Basic Education, Qingdao University of Technology, Qingdao 266300, China
e-mail: zhugewochong@qq.com

© Springer International Publishing Switzerland 2016 17
B.-Y. Cao et al. (eds.), International Conference on Oriental Thinking

and Fuzzy Logic, Advances in Intelligent Systems and Computing 443,

DOI 10.1007/978-3-319-30874-6_3



18 P. Chen and Y. Zeng

2 Preliminaries

In this section, we recall some basic definitions and results about lattices and fuzzy
sets, which are needed in this paper. Readers can refer to [6, 7, 9, 12].

A complete co-residuated lattice is a triad (L, @, ©), where L is a complete lat-
tice with top element 1 and bottom element 0, and @,6 : L X L — L are binary
operations on L such that

(i) @ is monotone on each variable;
>ii) (L, e, 0) is a commutative monoid;
(i) a<b®c < a6&b<cforalla,b,ce L.

Example I Let L = [0, 1] be the unit interval, a@® b =a Vv b,

0,a<b;
aeb_{a,a>b.

Then ([0, 1], v, ©) is a complete co-residuated lattice.

In this paper, (L, @, ©) is always assumed to be a complete co-residuated lattice.
We also write simply L for (L, @, ©) when there will be no confusion. Some basic
properties of complete co-residuated lattices are collected in the following proposi-
tion.

Proposition 1 Suppose (L, ®, ©) is a complete co-residuated lattice. Then
I 1®a=1, 0a=a;

I2) a©60=a; a©&61=0; a©a=0;

(13) a©c<@ob)B®bOSC);

I4) a® /\jej b; = /\jej(a @ by;

15 (Vjesa) ©b=V\,c,(a;©b);

16) a© /\jEJ b; = \/jej(a ©b)).

Let X be a nonempty set and L a complete lattice. An intuitionistic L-fuzzy set A
on X is an object having the form

A= {{(x,AX),A()) : x € X}

where the function A : X — L and A : X — L denote the degree of membership

(namely A(x)) and the degree of nonmembership (namely Z(x)) of each element
x € X to the set A. In this sense, we call the object A = {(x,A(x)) : x € X} an L-

subset of X, and A = {({x,A(x)) : x € X} an L-subset of X respectively.

Definition 1 Let L be a complete co-residuated lattice. A = {{x,A(x)) : x € X} and
B = {{x,B(x)) : x € X} are two L-subsets of X. For any a € L, define
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(1) A CBiffA(x) > B(x) forall x € X;

(2) A=BiffA C Band B C A; L
(3) AUuB = {{x,AUB(x)) : x € X} where A U B(x) = A(x) A B(x);
(4) AnB = {{(x,AnB(x)) : x € X} where A N B(x) = A(x) V B(x);
(5) ay = {{x,ax(x)) : x € X} where ay(x) = a for all x € X;

©6) ADa={{(x,ADakx)) : x € X} where A @ a(x) = A(x) ® a;
(7 A6a={{(x,ABa(x)) : x € X} where A & a(x) =AX) Oa.

3 Fuzzy Topologies and Fuzzy Orders Valued
by a Complete Co-residuated Lattice

Definition 2 Let X be a nonempty set and L a complete co-residuated lattice. If the
family 7 of L-subsets of X satisfies

©O1) I,eT, 0,T;
(02) ForanyA,BET,ANBET,
(03) Forany {A;|jeJ}CcT,UA €T,

jel
then 7 is called an Z—topology on X. Further, if an Z—topology T on X satisfies

(O4) Foranya€ LandA € T,A®a€T;
(O5) Foranya€e LandA € T,A8a€T,

then 7 is called a strong Z—topology onX.

Definition 3 An Z-topology T on X is Alexandroff if

(02°) Forany {A;|j€J}CT,NAET,
jel

Example 2 Let X = {x,y} and L = ([0, 1], V, ©). Then
T ={AlA® <1, Ap) < 1} U {1y}
is a strong Z—topology on X. However, (X, T) is not Alexandroft.

In fact, for any a € [0, 1], put an L-subset A, of X ={x,y} as A_a(x) =a and
A, = 0. Then for any a € [0, 1) we have A, € 7. But

() A=4¢&T.

a€gl0,1)

Theorem 1 Let L be a complete co-residuated lattice and T an Z-topology on X.
Then for any L-subset A of X, define the interior of A as
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int(4) = | JIGI1 GeT,GcA}.

Then

1) int(0y) = Oy,

(I12) int(A) C A;

(I3) int(A N B) = int(A) N int(B);
(I4) int(int(A)) = int(A);

In addition, if T is a strong Z-top()logy on X, then
I5) int(A © a) = int(A) © a forany a € L.

Proof The proofs of (I1), (I2), (I3) and (I4) are trivial. Now suppose that 7 is a
strong z-topology onX and a € L.

Since int(A) € T, we have int(A) © a € T. Then int(A) © a C A © a, Therefore
int(A) © a C int(A © a).

On the other hand, for any x € X,

mASaw®a=|JIGIGET.GcABa)WBa
= \{Gw|GeT.GcAoal@a
= \Gw®a|GeT.GcAca)
= \l(Go®a®|GeT,GdacA)
> \(Hw) |H e T.HcA)

= tH|HeT . HcA®
= int(A)(x).
So int(A)(x) © a < int(A © a)(x). Therefore int(A © a) C int(A) © a.

Definition 4 Let X be a nonempty set and L a complete co-residuated lattice. If the
L-subset R of X X X satisfies

(P1) R(x,x) =0 forall x € X;
(P2) R(x,z) < R(x,y) ® R(y,z) forall x,y,z € X,

then R is called an Z-preorder on X.

Theorem 2 For any Z—preorder R on X, set a family of L-subsets of X as follows:

T'(R) = {u | 5(y) © H(x) < R(x,y) for any x,y € X}.

Then I'(R) is an Alexandroff strong Z-[opology on X.
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Proof (O1): For any x,y €X, 1,(y) © 1y(x)=16 1=0 < R(x, ). Then 1, € I'(R).

Forany x,y € X, 05() 8 04x5(x) =060=0< ﬁ(x, v). Then Oy € I'(R).
(02’) and (O3): Suppose {Aj |jeJ} c I'(R). For any x,y € X,

A <A ® Ry < \/Ax) @R, ).

=y

Then - . _
VA < \/A® R y.
jes jel

That is,
(A <A &R, ).
jeJ jel

So _ _
4,006 ()4 < R.y).
jel jel

We have ﬂAj e I'R).
jeJ

Uaw @Ry = A4 @Ry = \@&E &R.y)

jer jel jel

> Ao =Jaw
jeJ jes
So _
Uame | Jam < Rey.

jer =

Therefore, | A; € T(R).
j€l
(O4) and (O5): Suppose a € Land A € I'(R). For any x,y € X,

A®a)x) ®R(x,y) =AX) ®a®RX,y) =Ax) ® R(x,y) D a
>A)@a=ASa)).

Then

A a)y) © A a)x) <R, y).

We have A @ a € I'(R).
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(AY) O AX) B (A B a)x) = (A(Y) ©A()) & (A(x) © a)
>A(y)©a=(ASa)y).

So

(ASa)y) & (A a)x) < (Ay) © AW)) < R(x, y).

Therefore, A & a € I'(R).
Theorem 3 Let T be an Z-topology on X. For any x,y € X, set

QNy = \/ (1) © 7).

HET

then (T ) is an Z-prearder on X.
Proof For any x,y,z € X,

QN)(xx) = \/ (Ax) © 7)) =0.

HET

QN)(xy) @ T2 = \/ (o) 0 1w) & \/ (1) 0 1))

ueT ueT

> (u(y) © HW) & (1(z) © u()
> 1u(2) © ux)

= Q(T)(x.2).

Theorem 4 Let R be an Z—preorder on X. Then R = Qol'(R).
Proof For any x,y € X,

QoTr(R)(x,y) = \/ (F0)© ) <RX,y)

HEL(R)
Conversely, set an L-subset [x]z of X as
[x1g(2) = R(x,z), foranyz € X.

Then [x], € I'(R). Therefore,

QoTRYx,y) = \/ (E)© W)

HeI(R)
> [x1x(») © [¥1x(x) = R(x,y) © R(x,x) = R(x,y) © 0
= E(x, y).
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Theorem 5 Let T be an Z—topology on X. Then T is Alexandroff and strong if and
only if T =T o Q(T).

Proof (ii) The sufficiency is obvious. As to the necessity, let 7 be an Alexandroff
strong L-topology on X.
If A € T, then for any x,y € X,

AW AW < \/ (1) 0 W) = 2N)(x.y).

HET

Therefore, A € I' o Q2(T). _
Conversely, suppose A € I'o€2(T'). For any fixed x € X, define an L-subset m, of
X as follow: _ _
m(2) = A(x) ® (T )(x,z), foranyze X.

Then m,(x) = A(x) and m(2) > A(z) for any z € X. Therefore, A = | m,.

xeX
For any u € T, define an L-subset g, of X as follow:

2,(2) = u(z2) © u(x), foranyz e X.

Then g, € T by (O5). Since T is Alexandroff, we have () g, € 7.
HeT
Notice that

() = A © 2AT)x2) =A@ \/ (1) © A(x)

HET
=Aw e \/ 2,0 =40 [,
HET HET

Therefore, m, € 7 by (O4) and A = |J m, € T by (03).

xeX
By virtue of Theorems 4 and 5, we have the following conclusion.

Theorem 6 There is a one-to-one correspondence between the set of all Alexandroff
strong L-topologies on X and that of all L-preorders on X.

4 Conclusion

In this paper, the concepts of Z—topological spaces and Z—preorders are introduced
where L is a complete co-residuated lattice, by virtue of the degree of nonmember-
ship in intuitionistic fuzzy set theory. A given L-preorder on a set X can induce an
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Z-topology on X, and vice versa. It is shown that there is a one-to-one correspon-
dence between the set of all Alexandroff strong L-topologies on X and that of all
L-preorders on X.
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A Classification Method of Fuzzy Sets
Based on Rough Fuzzy Number

X. Liu, K. Liang, Z. Liu and S. Wang

Abstract In view of the fuzzy classification problem, based on the theory of rough
sets and fuzzy sets, we established a way of approaching fuzzy number—rough
fuzzy number. Then a classification judgment function is established according to
the classification of the two principles, it is used to evaluate classification effec-
tively. Under the guidance of this idea, we got a fuzzy classification method. The
paper also gives a application example, shows the whole process of taxonomy, to
facilitate understanding and application.

Keywords Fuzzy classification + Rough fuzzy number - Fuzzy classification
judgment function

1 Introduction

The classification of fuzzy sets is a complex uncertainty problem. Due to the fuzzy
set is describing uncertain problems, so the classification problems has the char-
acteristics of the unique solution. This kind of problem is complicated and is one of
hot research issues.

Fuzzy classification should starting from two aspects, one is the study of the
fuzzy sets, the other is a study of classification criteria. In this paper, using the
theory of rough set, a fuzzy sets is established in general form—rough fuzzy
number. It is a kind of approximation of fuzzy sets, but also has the characteristics
of convenient operation, this opens the door for the application of the fuzzy set

The key of classification problem is to establish classification criteria. Com-
bining with the fuzzy mean value method, a classification evaluation function is
established, and completed the classification of fuzzy sets.
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2 Rough Fuzzy Number

In order to simplify the problem, assuming a fuzzy set A is a regular convex fuzzy
sets on [0,1]. Obviously, the transformation from the real number domain to the unit
interval is easier, this kind of A€ F{[0, 1]} won’t lose the general.

Let [0, 1]R={[0,11], (L, L], - - s (lue2s bnr], =1, ] = {X1, X2, <. ., X0}

Definition 1 Assume ([0, 1], R) is a approximate space, for A € F{[0,1]}
Let a;=R(A) (x) =min{A(y)|y €X; = [x] }

@ =R(A) () =max (A y € X = i}

E(A) is called lower approximation of fuzzy set A according to (

[0, 1], R),

similarly, R(A) is called upper approximation of fuzzy set A according to ([0, 1], R).

It is not difficult to verify, R(A) CACR(A), or R(A)(x) <pu;(x) <R(A)(x),
p;(x) is the membership function of fuzzy set A.
Definition 2 Let F/’f is a rough fuzzy number, x€X;,i=1,2, ...,n, q; SFE <a;
and F/’f(x) is a constant. Fg is a Step function of [0, 1], it is a constant when x € X;,
i=1,2,...,n

Thus F g is an approaching form of fuzzy set A, and Fg can be represented as a
vector form in determined approximation space ([0, 1],R) [2].

F@(_x): U?=1ﬁX"’ﬁ=F§(x)’ xeXi
F{(x)={fi.for oS}

The support of FZ(x) is same with R(A), the kernel of F%(x) is same with R (A),
F’3 (x) is a constant between a and @, As the membership degree of A(x) in X;, for

a+a

example let 45 —Ff‘f(x), i=1,2,...,n

Theorem 1 In a given approximation space, F' /’f has the following properties:

(1) VA,BeF{[0,1]}, if ACB, then F¥ C F%;
(2) YA,BeF{[0,1]}, if A=B, then F§ =Fg;
But instead is not necessarily true.
When FR( )=
R R\, R
S FAué = FA UFB

2 , we have:

Proof For a given approximation space ([0, 1],R), for VA, B€ F{[0,1]}, there is

R R IR R R
always AUBDAAUBDBF 25 i 5 2F5 S0 there are Fio52
FRUFE.
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Proof For a given approximation space ([0, 1],R) and VA, B€ F{[0, 1]}, there is
always AN B C B, so when FR 5 C FR FR 5 C F therefor ané C F/’f mFg[S].

3 Classification Method of Fuzzy Sets and Classification
Judgment Function

Let Y\,Ys, ... Y, be fuzzy sets, f/: EINT{[O, 1]},i=1,2, ...,n,([0,1],R), is a given
approximation space, from previous chapter we get rough fuzzy numbers:
FROFR . FR and FR={f,.f,, ....f,, }, O<f, SLk=1,2, ....,m

Y, Yi

i n

Each fuzzy set is written as approaching form of m dimensional vector, by the
ideas of the geometric proximity, we classificate n fuzzy sets:

Let Classification number c is determined, and assume the initial classification of
n fuzzy sets is k, remark as F§l ...F§k, simply remark as Xi,Xp, ..., X, X;=
{x;l,xiz, Ce ,x,»m}, i= 1, 2, e ,k.

When k> c, then let k fuzzy sets be ¢ class is called as clustering process;

When k <c, then let k fuzzy sets be ¢ class is called as Classification process.

When k > ¢, clustering process is:

Step 1 Select a subclass center V;(i=1,2, ...,k) for every subclass;
i Xi;tXist
Assume for subclass s: {X;,Xi, ...,X;}, we have V;, =15 =
/;lxi/-r
1,2, ...,m

Step 2 Calculate each subclass of each element and the subclass center distance
(according to the Euclidean distance), and sum, remark as
@i=1,2, ...k

Step 3 Calculate the distance between each subclass center, remark as Wiis denote
the distance between i and j subclass.

Step 4 Calculate M, =max{¢,}, min{g;} =m,, M, = max{y/lj}, min{y/lj} =my,.

Step 5 Introduct classiﬁcation judgment function LL(@,y)(1 <c<n):

LL(p.y) = ZM“’_m; }Z_'qu

Calculate LL(¢, y), the maximum as the classification mode of ¢ =k.
When k > c, select m, =y, let X; and X; as aggregate object, from step 1
to step 5 again, get new LL(¢,y), untill c=k stop.
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Similarly, when k <c, select M, =¢,, let X, as classification object, Divided
subclass X into two new subclasses X, and X, , then calculate new LL(¢, ), untill
c=k stop.

When ¢=2,in ¥} v/, ’:nw, w;; only have y,, then Y V” " is wys.

l< 1=j

When ¢ =1, Classification of the object as a whole, that there is no classification,
at this moment, LL(¢, ) as the distance sum of classification object and its center.

When ¢ =n, every classification object as a subclass, denote that classification
arrive its limits, at this moment, preceding paragraph of LL(¢@, y) is zero, LL(¢p, )
is equal to the distance sum between n objects.

LL(¢,y) Consists of two item, The first item is geometric proximity between the
elements for the subclass, describe classification from local, the index as small as
possible. The second item is geometric proximity among the subclass, describe
classification from global, the index is larger, the better. So LL(¢,y) Mcompre-
hensively evaluate classification from the local and global. we can Introduct pref-
erence factor A according to the actual situation.Then LL(¢p,y)=

/12 o (1= )2‘“""‘/’ 0<a<l.

Dec1s1de the balance of local and global relations by LL(¢, ), get satisfactory
classification model Finally [4].
3 An example of fuzzy classification analysis

Let fuzzy classification sample set X = {)?1,)?2,}?3,)?4} }? i=1,2,3,4), is tri-
angular  fuzzy  number.  And =(0,0.4,0.9); X;(i=1,2,3,4); X.
(0.4,0.8,0.9); X, = (0.6, 0.85, 0.95).

Divided {)?1,}?2,)?3,)?4} into c=2.

B 2.5x 0<x<04 B 2x 0<x<0.5
X;=¢1-2(x—04) 04<x<09 X, = 1—13—0(x—0.5) 0.5<x<0.8
0 09<x<1 0 0.8<x<1
0 0<x<04 0 0<x<0.6
- 25(x-04) 04<x<08 5 _ 4(x—0.6) 0.6<x<0.85
T 1= 10(x—0.8) 0.8<x<0.9 TY1- 10(x—0.85) 0.85<x<0.95
0 09<x<1 0 095<x<1

Divided [0, 1] into seven interval:

[0,0.35),]0.35,0.45), [0.45,0.55), [0.55, 0.65), [0.65,0.85), [0.85,0.9), [0.9, 1]



A Classification Method of Fuzzy Sets ... 29

We get rough fuzzy sets:

X, ={0,0.88,0.9,0.7,0.5,0.1,0}, X, ={0.88,0.9,0.7,0.5,0.1,0, 0}
X, ={0,0.7,0.9,0.83,0.5,0,0},X, = {0.7,0.9,0.83,0.5,0,0,0}

X3 ={0,0,0.13,0.38,0.63,0.5,0}, X = {0,0.13,0.38,0.63,0.5,0,0}
X4={0,0,0,0,0.2,1,0.5},X4={0,0,0,0.2,1,0.5,0}

Calculation of rough fuzzy number is:

F;':i ={0.44,0.89,0.8,0.6,0.3,0.05, 0},F§ ={0.35,0.8,0.87,0.67,0.25,0,0},
1 2
F% ={0,0.07,0.26,051,0.57,0.25,0}, F% ={0,0,0,0.1,0.6,0.75,0.25}
3 4

At present ¢ =4, each )N(i as a kind, calculate the distance between them, d;; =

denote the distance between )N(,- and )?]

FREFR
X X

di2=0.1688,d13=1.1129,d,4 =1.4843,d,3 = 1.0749
drs =1.4889, d34 =0.6550

From the above results we find d;, is the minimum, then we combine X 1 and )N(z
as a kind, get three kind:{X 1,X2},X3,X4. Then according to the classification step,
we have:

2 Xi - Xig

Step 1 calculate the first subclass center: Vi, = =5
> X
i=1

it

F£ ={0.44,0.89,0.8,0.6,0.3,0.05,0}, F% ={0.35,0.8,0.87,0.67.0.25.0,0}
1 2
Vii1=0.4,V,=0.847,V3=0.836, V14, =0.637, V5 =0.277
Vi =0.05,V7=0
The new classification of X 1 and )~(2 is )N(i, its center is in, Shorthand for
vih, v =1{0.4,0.847,0.836,0.637,0.277,0.05,0}.

Step 2 calculate ¢,
The distance between X 1 and )71 is denoted by d’l, The distance between )~(2

and X, is denoted by d,: d, =0.0687, d, =0.0769.
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Step 3 calculate w3, W4, Wy
Wl3 = 1.1129, Wl4 = 1.5883, l//34 = d34 = 06550
From the above results we find the distance between )~(3 and )~(4 is the minimum,

combine )~(3 and )~(4, then )73 = {)?3,)?4}, )~(/1 = {)?1 },)72 = {)?2}, Then according to
the classification step, we have:

Step 1 calculate the subclass center of )?é, denoted by V3 ={v31,v32, ...,v37}
4
Z Xik * Xik
Var = %,k: L2, ...,7
Y Xik
i=3

V31 = 0, V3p = 0.07, V33 = 0.26, V34 = 0.4428, V35 = 0.5854, V36 = 0.625, V37 = 0.25

Step 2 calculate @;(p, =0,¢9,=0)
The distance between X3 and X, is denoted by d;, The distance between X,
and X; is denoted by d.

dy=0.4559, d, = 0.4537

Step 3 calculate ),, 5, Wy, (among them, v\, =d;, =0.1688)
w3 =1.2872, 5, = 1.2825 combine X, and X,, then we get two classifi-
cation X| = {)~(1,)~(2} and X, = {)?35(4}.

Step 1 calculate the center of two subclass:

v, ={0.4,0.847,0.836,0.637,0.277,0.05,0}
v, ={0,0.07,0.26,0.4428,0.5854, 0.625,0.25}

) (1

Step 2 calculate ¢, and ¢,, dfj denote the distance between X; and vj. (that is, d}

denote the distance between X 1 and vy, dé”, dgz) . df), is similarly)

d\" =0.0687,d\" =0.0709,d =0.4559,d\” =0.4537
@, =0.0687 +0.0709 =0.1396, , = 0.4559 + 0.4537 = 0.9096

Step 3 calculate y,,w;, =1.2738
Step 4 calculate M,,, m,, M, my,

M, =0.9096, m, =0.1396, M,, = 1.2738, m, = 1.2738
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Step 5 calculate LL(¢, y)

LL(p,w)=1+1.2738=2.2738

To verify the other classification: (please verify X|= {)?1},)72=
{X2. X3, X4 })

It is easy to verify, when ¢ =2, other classification combination Less than
2.2738, By the principle of the optimal, the classification results are

(X1, X}, { X3, X4}

4 Conclusion

The method proposed in this paper approximating a fuzzy set by the theory of rough
fuzzy set. This method is a complement of fuzzy classification. It is a kind of
exploration and attemption according to fuzzy classification problem and provides a
new thought.

Fuzzy approximation covering the partition of approximation space etc., its
affection to fuzzy approximation is the further topics should be discussed; About
classification under the control of local and global balance also has a lot of content
to talk about [6]. This article is only a kind of balance and using the method, there
will be more better way in practice, this is what we are looking forward to.
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A Prediction Model for Hot Metal
Desulfurization Rate Based on Fuzzy
Structured Element

Jun-hong Ji, Ru-quan Liang and Ji-cheng He

Abstract The desulfurization quantity is a fuzzy number in the hot metal
desulfurization process. The fuzzy multiple linear regression model was established
using the fuzzy structure element and multiple linear regression theory, in which
the fuzzy desulphurization quantity was related to the original condition of hot
metal, the composition of desulfurizer, and injection operational parameters. The
fuzzy desulfurization rate was used to measure the fuzzy desulfurization quantity,
and 3000 group desulfurization data of hot metal from Anshan Iron and Steel were
used for the empirical study. The results show that the present model can provide
decision-makers with richer information, which can express the uncertain relation-
ship between parameters of hot metal desulfurization and the fuzzy desulfurization
quantity with a lower average absolute error.

Keywords Hot metal desulfurization rate * Forecasting model * Fuzzy multiple
linear regression model * Structural element

1 Introduction

The hot metal desulphurization is an essential process for improving the product
quality and the production efficiency. If the final sulfur content and target sulfur
content have big difference after desulphurization, which not only increases the bur-
den of converter and other refining equipment, but also causes the sulfur content to
exceed the standard, which can not meet the requirements of steel types. So the study
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of forecasting model on the effect of the hot metal desulphurization can provide more
accurate desulfurization information, thus providing guidance for steel production.

So far, scholars have conducted a lot of researches about the hot metal desulphur-
ization process. In Refs. [1-3], in which radial basis function neural network (RBF-
RNN), back-propagation neural network (BP-RNN) etc. were applied to improve
the forecasting model to predict the desulfurization quantity of injection desulfur-
ization, respectively. In Ref. [4], basis on BP neural network forecasting model, the
neural network forecasting model was established for desulfurization according to
the gray correlation degree in the gray theory. In Ref. [5], the parameters controlling
model was established during the injection process according to the experience data
of engineering practice, which achieved automatic calculation and precise control
of process parameters. In Refs. [6, 7], the comparison expression between process
parameters and the desulfurization rate was established by applying the statistical
principles for regression, through a large number of statistics about the practical data
of enterprise production, and the corresponding control software about the desulfu-
rizer consumption was developed. In Refs. [8, 9], the reaction essence was studied
and the desulfurization rate was discussed from the desulfurization mechanism. The
above researches can promote the cognition to the factors affecting the desulfuriza-
tion quantity effectively and improving the accuracy effect of forecasting desulphur-
ization.

The final sulfur content of hot metal is a important index for enterprises to mea-
sure the desulfurization effect. However, in production practice, final sulfur content is
different from the target sulfur content which set in theory, due to following reasons,
different initial parameters of desulfurization, difficult-to-control operating parame-
ters and some defects in the data acquisition and detection of final sulfur content.
Furthermore, it is difficult to completely skim slag after injection, so resulfurization
occurred in converter steelmaking process, the sulfur content in the resulfurization
phenomenon is related to the result of hot metal desulfurization directly, and it is not
calculated to the final sulfur content in the process of hot metal desulphurization.
Therefore, the final sulfur content is an uncertain value. It is obvious that consider
the final sulfur content as a fixed value, there is the strong possibility that the sulfur
content in the subsequent working procedure exceeds the threshold and affects the
steel quality. So taking the final sulfur content as an uncertain value is more practical.

Since the final sulfur content is an uncertain value, it is supposed as a fuzzy num-
ber. In practice, desulfurizing rate is usually used to measure the final sulfur content,
and desulfurization rate is related to hot metals initial condition, the composition
of desulfurizer, injection operation parameters, and the dosage of desulfurizer etc.
So, present work regards the desulfurization rate as a fuzzy number, and uses fuzzy
structure element theory to propose a fuzzy multiple linear regression model of hot
metals desulphurization rate. Meanwhile, we use an example to prove the validity of
the model, and solve the controlling problem of the desulfurizer quantity for produc-
tion practice.
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2 Preliminaries

2.1 Fuzzy Structure Element and Its Expression

Definition 1 [10] Set E as fuzzy set in the real number field R, and the membership
function is E(x),x € R. If E(x) satisfies the following properties, E(0) = 1; in the
interval [—1, 0), the E(x) is right continuously monotonic function, and in the interval
(0, 11, the E(x) is left continuously monotonic function; when x € (-0, —1) or x €
(1, +0), E(x) = 0, then E is called the fuzzy structure in the R.

Theorem 1 [12] Set E as any structure element, and the membership function is
E(x). Meanwhile let a function of f(x) be monotonic and bounded in the interval
[—1, 1], then f(E) is a fuzzy number in the R , and the membership function of f(E)
is E(f~'(x)), in which f~!(x) is the symmetric alternating function of f(x) about the
variables x and y. If f(x) is continuous and strictly monotonic function, then £~ (x)
is the inverse function of f(x).

Definition 2 Let R and L respectively be strictly decreasing continuous function in
the [0, +o0] and [0, 1] interval,and L(0) = 1;x > 0, L(x) < 1;x < 1, L(x) > 0. L(1) =
Oor (Vx €R, L(x) > 0, L(+c0) = 0), R and L are the same in kind. Then the fuzzy
number A is called LR- type fuzzy number, and ifa, @, f € R,a > 0, f > 0, then

L= x<a,
ﬂA(x) - R()%a), x=a (1)

The LR-type fuzzy number A is remembered as A =< a, @, ff >;z. When L(x) =
Rx)=1-x,A=<a,a,f >, is the triangular fuzzy number, which is denoted as
A=<a, a, f > in short.

Theorem 2 Let E be the triangular structure element, and A is the LR- type fuzzy
number, and its membership function is the formula (1), then there will exist a
monotonic and bounded function f in the [—1, 1] interval, and make A= f(E),
of which

—al! —
f(x)z{a al=' (1 + x), 1<x @)

<07
a+ pR'(1+x),0< 1

X
<

2.2 The Fuzzy Multiple Linear Regression Model

Fuzzy multivariate linear regression model [10—12] can be used to study the relations
between precise input and fuzzy output, and fuzzy input and fuzzy output. In prac-
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tice, the model has good suitability and superiority for problems with multiple out-
puts. In forecasting hot metal desulfurization, the maximum possible desulfurization
quantity and its possible interval can be obtained at the same time. And the informa-
tion obtained will be more reliable, and its practical significance is more outstanding.
According to the Ref. [12], Let inputs be precise numbers and outputs be fuzzy num-
bers among a set of observation data (Z;, y,), in which Z; = (x;, x;, ..., X,,;), Z; € R™,
y; € NC(R), i=1,2,...,n,n > 2. Fuzzy linear regression model can be expressed as
the following formula (3):

Y =ag+ax; +ayx, + - + a,,x, 3)
In(3),a; € No(R),i =0,1,2,...,m. And N(R) are the whole of all boundary-closed
fuzzy numbers in the real number set R. As can be shown in the formula (3),if Z; > 0,
for any ¥;, the formula (4) can be obtained.

A A A A

A A
Vi = o+ 151 +Foxo + -+ fuXndyl =g = 8i(E) 4)

Inthe formula (4), g;,(y) = (fy + fix1; + foxo; + = + %)), f; € Bl—1, 11,4, =f,(E).
B[—1, 1] is the standard monotonic and bounded function with all of the same order
in the [—1, 1] interval, E is the fuzzy structure element.

A
From the formula (4), estimated value ¥; of y; can be expressed as the formula (5)

A A A A A A
Vi = o+ 1%+ 2% + -+ fXndyl =g = 8i(E) ®)
A A A A A A
In the formular (5), g,(y) = (fg + /1 X1; +f2X0; + -+ + [ %)), fi(E) is the estimated

A

parameter of f;(E) in (5), f; € B[-1, 1].

Thus on the basis of the fuzzy correlation coefficient (formula (5)), can be determined
according to the formula (6)

R PP A
min )" d(5;,5,) = min )" d;(g,(E), &,(E)) (6)
i=1 i=1
In the formula (6), the membership function of can be expressed as the formula (7).

A A A A
M%(xli’xzn X Y) = E((fo + 11X + foXgs 4 -+ F )™ 0) @)
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3 Fuzzy Multivariate Linear Regression
Model of Desulfurization Rate

3.1 Problem Description and Model Establishment

The final sulfur content measured in the process of hot metal desulfurization has
great influence on the subsequent steelmaking process. However, the final sulfur con-
tent is closely related to the operation parameters of injection and initial parameters
of hot metal. In the desulfurization process, the detection is usually done after com-
pleting injection, to test the final sulfur content whether it meets the requirement
or not. Because the desulfurizer injecting into the hot metal is a complicated gas-
solid-liquid multiphase flow chemical reaction process, after completing the injec-
tion, there is still some desulfurizer reacting with the hot metal, after skim slag, it is
inevitable to remain some residual slag in the hot metal, and the resulfurization can
occur for those slag.

In order to get the interval in which the final sulfur content exists and the most pos-
sible values in this interval, the calculation model of the final sulfur content related to
other parameters needs to be established. And the relevant simplifications conditions
must be introduced into the theoretical analysis. So based on the actual production
condition and operation experience of Anshan Iron and Steel Complex hot metal
injection desulphurization, present paper establishes the calculation model of the
injection desulphurization rate and injection parameter applying metallurgical reac-
tion principle. Based on Refs. [7, 13], there exist a multielement linear relationship
among desulphurization rate, temperature of hot metal, initial sulfur content of hot
metal, and the dosage of desulfurizer and injection speed. Because the desulphur-
ization rate is a fuzzy number, treating the relationship as fuzzy multivariate linear
relationship is more grounded in the reality. So the relationship can be established
as the formula (8).

Infj} = ay + a, Insy + ?1271, +azIn(l +1)+a,InR +asIn G (8)

In (8), s, is the initial sulfur content of hot metal; T is the temperature of hot metal
at the beginning of desulphurization; / is the ratio of calcium and magnesium; R; is
e . . e Gy G,
the speed of injection; G; is the quantity of injection; and / = ﬁ RI’; = TP GI’; =
Mg

GeaotGug G*

) cao T GLg, Kg/t.Fe; Q is the quantity of hot metal.

3.2 Solution of the Model

In order to express easily, make J; = In nf, x; =1Insy, x, = x3=In(+1), x4 =

InR*, x5 =InG?.
P P

L
T;’
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Make all of the fuzzy numbers involved in the model (8) LR- fuzzy numbers [12],
namely: ¥; =< b, p,q;>r =25, —p L '1+E)+ ¢RI —EY),i=1,2,....n,
a; =< a;, ;B> =2a; — L' (1 + E7) + BR7I(1 — EY),i=1,2,...,m.In which,
A = (ag,ay,a,, ... a,)", a = (g, ay, a5, ... a,)T, B = (Bo, B> Bps - B,)T, X = (1,x,,
Xy oo X)) T, B = (bys bysbyy .. b)), P = (Do P1sPos - P) > Q = (G0 G1>G2s -+ Q) s
X; = (1, X)X 0 X)L

And then

5/ = Zlo + lexl +6~12x2 + eee + &mxm
=< agy, &y, fy>pt < apap, fi>px + oo+ < a,. @, B> R %
=2ATX —a"™X - L'A-E)+ "X - L7'1 - E")

€))

And then A, a, f, can be determined according to the Ref. [12], and they are shown
in Eq. (10).
A O .G\
a = X™X)"1XxTp
B X"™X)"'XTQ

(10)

4 Calculation Examples

The desulfurization rate is related to the operating parameters of desulphurization
and the initial parameters of hot metal in the process of hot metal desulfurization.
The following is the relevant data collected about Calcium Magnesium compound
injection desulphurization in Anshan Iron and Steel Complex and it includes 3000
groups, and 2966 groups among the data sets are effective, as shown in Table 1. Ran-
domly select 2370 groups of data as experimental samples, and other 596 groups of

Table 1 Sample data

A
Xy X, X3 X, Xs | Yo Voi
1 0.037 1345 [3.295 |14.293| 45.1| <0.724,0.08, 0.06> <0.724,0.063,0.045>
0.040 |1343 |3.314 |13.304| 46.6| <0.632,0.12, 0.04> <0.633,0.09,0.032>
3 0.035 1324 |3.673 |10.185| 47.2| <0.562,0.14, 0.08> <0.563,0.12,0.065>
2370 1 0.058 | 1299 [2.684 |14.516| 43.5| <0.754,0.07, 0.05> <0.754,0.054,0.038>
2371 10.036 |1343 |3.670 |7.669 | 46.7| <0.663,0.090.05> <0.664,0.075,0.038>
2372 10.065 | 1297 |2.610 |12.519| 47.3| <0.653,0.1, 0.04> <0.654,0.08,0.026>
2373 10.072 | 1240 [2.620 |8.415 | 46.7| <0.768,0.06,0.02> <0.768,0.054,0.015>
2966 | 0.048 | 1293 |3.038 |18.517| 42 <0.784,0.08, 0.06> <0.784,0.079,0.056>

Note The experimental samples are from 1 to 2370, and the test samples are from 2371 to 2966, the

data are listed with three significant figures after the decimal point in the table
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data as samples for inspection. The desulphurization rate of hot metal on production
site is calculated by the formula 7, = = X 100 %. The related variables x, is the

natural logarithm of initial sulfur content of hot metal s, (%), and x, is the reciprocal
of hot metals temperature 7 (?C) at the beginning of desulphurization, and x; is the
natural logarithm of the sum of Ca-Ma ratio I and 1, and x, is the natural logarithm
of the speed of injecting powder R, (Kg/.Femin), and xs is the natural logarithm
of injection quantity of desulfurizer G, (Kg/t.Fe).

NY

4.1 Establishment and Calculation of Model

We record these operating parameters and desulfurization rate before and after the
desulphurization of each car of hot metal ladle, and then summarize the data of desul-
furization rate. If just replaced with a accurate value, much of the information will
be lost, and the feasible method is to regard the desulfurization rate of each car of
hot metal ladle as LR-fuzzy number y; =< b;, p;, ¢;>;x, in whichi = 1,2, ... ,n; b, is
the value of desulfurization rate of the order i hot metal ladle; p; is the mean value
that is less than b;; g; is the mean value that is more than b;. The results are shown
in Table 1.

It can be known from the second part in present paper, the fuzzy multiple regres-
sion model of hot metal desulphurization rate can be established like the formula
(8). If recording the parameters of the ordermetal ladle as Z; = (xy;, Xy, ... s X,1)»
the desulphurization rate of the order metal ladle is ¥, =< b;, p;, g;>;, in which
i=1,2,...,n. And then by using, A = XTX)X™B,a = X"X)XTP, f = XTX)XTQ
the parameter estimation of fuzzy valued function will be obtained which are a
group of LR-fuzzy numbers, namely @, =< 3.5956, —0.5647,0.3663> , ‘@, =<
0.4538,—0.2687,0.0512 >, ,’a, =< 0.6642, —0.2569,0.1255 >, ,’a; =< —3.7336,
0.0066, —0.0785 >, z,'a, =< —0.0405,0.0213,-0.0011 >, ,’as =< 0.9405,0.0221,
—0.0731 > .

4.2 The Prediction and Test of Model

The model is trained by using experimental samples from 1 to 2370, and the results
are shown in Table 1, based on the multiple linear regression model of desulphuriza-
tion rate in hot metal desulfurization process. The average absolute error of desul-
furization efficiency is 0.0349. It can be known that the model is reliable, and it can
be applied in reality. According to the fuzzy model which has been trained, predic-
tion is made for the test samples from 2371 to 2966, comparison is made with the
actual observed values. The results are shown in Table 1. The average absolute error
of desulfurization efficiency is 0.0274. Therefore, it is feasible by applying fuzzy
structure element theory and regression analysis theory to predict the desulfuriza-
tion efficiency of hot metals pretreatment with injection method.
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It can be known from the test samples in Table 1 that the desulfurization rate
obtained is a fuzzy value, which has the possible upper limit and lower limit, and
then according to the formula of desulfurization rate, the variation range of desul-
furization quantitycan be obtained. As an example of the No. 2966 sample, the pre-
dicted value of desulfurization rate is< 0.784, 0.079,0.056 >. As can be known, the
possibility that the predicted value of desulfurization rate in this furnace is 0.784 is
the maximum, and the possibility that the value is not more than 0.705 or not less
than 0.84 is 0; the possibility that the predicted value of desulfurization quantity is
0.010368 is the maximum, and its membership degree is

x—0.010368
1+ oo, 0.00768 < x < 0.010368,

1 — 001 010368 < x < 0.1416.

”:

5 Conclusions

The fuzzy multiple linear regression model was established by using the fuzzy struc-
ture element and multiple linear regression theory. The fuzzy desulfurization rate
was used to measure the fuzzy desulfurization quantity, and 3000 group desulfur-
ization data of hot metal were used for the empirical study. the present model can
provide decision-makers with richer information and the fuzzy desulfurization quan-
tity with a lower average absolute error.

(1) In this paper, based on fuzzy mathematics and multiple linear regression corre-
lation theory, the desulphurization problem of hot metal was studied, the desul-
furization rate obtained was not a concrete number, but an interval, and the cor-
responding possibility of each value occurrence was obtained, which was more
grounded in reality.

(2) According to initial parameters and the target of hot metals desulfurization, the
model can more accurately forecast the desulfurization rate and its fluctuation
range, which is conducive to rapidly adjust the dosage of desulfurizer and get
acclimatized to the change of complex working condition, improve production
efficiency and improve the performance of steel.

(3) The desulphurization effect of hot metal has big uncertainty, and the uncertainty
can be better expressed by fuzzy analysis theory. The solving processes is con-
sidered more comprehensively, and the content of results is more rich. But in the
solving process of practical problems, the expression of triangular fuzzy number
for fuzzy numbers should be paid attention to (some other expressions such as
rectangular fuzzy number, trapezoidal fuzzy number, etc.), which is related to
the scientificity of the solving process of problem and the reliability of the final
results.

Acknowledgments The present work is supported financially by the National Natural Science
Foundation of China under the grants of 51376040 and 11072057.
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Fuzzy Reasoning Triple I Constraint Method
Based on Family of Implication Operator
L—-\-1I

Jing-ning Shuang, Xiao-jing Hui and Jin-rui He

Abstract The new family of implication operator L — )\ —IT is given, which
illustrates it is Lukasiewicz implication operator and Goguen implication operator
of more general form. Four methods are discussed and proved based on L — ) —IT
implication operators, they are FMP model and FMT model fuzzy reasoning triple I
constraint method and a—triple I constraint method.

Keywords Family of implication operator L — )\ —z * Fuzzy reasoning * Triple I
constraint method * a—triple I constraint method

1 Introduction

In 1973, Zadeh proposed the famous composition rule of inference (CRI) method
[1] to solve FMP model and FMT model, which widely used in many industrial
and scientific research. Later on, Professor Wang supposed conclusions that effec-
tively improve the CRI method, and proposed the basic ideas of universal triple I
method, new triple I method, reverse triple I method and reverse triple I constraint
method [2-9]. The obtained conclusions further enriched and developed the theory
of fuzzy reasoning. [10, 11] discussed the universal triple I method and reverse triple
I method that based on some common implication operators in fuzzy reasoning. We
can find that, for different implication operator, the corresponding method and rea-
soning results are different, even the difference is very significant. Therefore, Wang
proposed family of implication operator, that combined several implication operator
into a family of implication operator. Which improved reliability of fuzzy reasoning
and provided guarantees for practical application. On the basis of the above, the arti-
cle constructed a new family of implication operator L — )\ —IT, which will improve
the reliability of fuzzy reasoning results.
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2 Preliminaries

Definition 1 [17] Lukasiewicz t-norm (denoted by) ®; is as follows:
Whena,bel0,1],a®;, b=(@+b-1)VvO.
And an implication operator adjoin to ®; :

1,a < b;
Rya.b)y=a— b= { l—a+b,a>b.
Definition 2 [17] Goguen t-norm (denoted by) ®; is as follows:
When a,be[0,1],a ®; b = ab.
And an implication operator adjoin to ® ;:

l,a < b;
Ry(a,by=a—-; b= S,a > b.
Definition 3 (L — )\ —IT implication operators) Suppose that V ) € [0,1], the fuzzy
implication operator R(x,y) = x —, y of L —\ —II implication operators is defined
as follows,

Lx<y;
X2 Y= miondon . x,y€[0,1]
I-n+xx

Specially, when \. = 0, 1, corresponding to R; and R ;; implication operator, so called
it R;_, _j; implication operator, also called all of these implication operator is L —
» —II implication operators.

Definition 4 (Triple I constraint principle for FMP model) [10] Suppose that X, Y
are nonempty sets, and F(X), F(Y) are sets of all fuzzy subsets on X, Y. When A(x),
A*(x) e F(X),

B(y) e F(Y) seek out the largest B*(y) € F(Y), so that:

(A(x) = B()) = (A*(x) = B*(»)) e))

For all the x € X, y € Y have the smallest possibility.

Definition 5 (Triple I constraint principle for FMT model) [10] Suppose that X, Y
are nonempty sets, and F(X), F(Y)are sets of all fuzzy subsets on X, Y. When
A(x) € F(X), B(y),

B*(y) € F(Y), seek out the smallest A*(x) € F(X) so that formula (1) have the smallest
possibility for all the xe Y, ye Y.

Theorem 1 The fuzzy implication operator R(x,y) = x —, y of L — '\ —1II implica-
tion operators is not reducing on the second variable.
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Proof Yy, y,, suppose 0 <y, <y, <1, we need to discuss in two cases:

(1) When x <y,, that x <y,, so R(x,y;) =x = y;=1, R(x,y,) =x — y,=1, then
R(x, 1) = R(x,y,);

(2) When x> y,, R(x,y,) = x — y, =200,

T I-h+ax (; s
—_npt-MU—x .
= then R(x, y;) < R(x,y,);

If x <y,, R(x,y,) = x = y,=1, obviously R(x,y;) < R(x,y,).

Meanwhile, if x > y,, R(x,y,) =x = y,

Therefore, the implication operator R(x,y) = x —, y is not reducing on the second
variable.

Definition 6 (a—triple I constraint principle for FMP model) [10] Suppose that X,
Y are nonempty sets, and F(X), F(Y) are sets of all fuzzy subsets on X, Y. When
A(x), A*(x) e F(X),

B(y) € F(Y) seek out the largest B*(y) € F(Y), so that:

(A(x) = B(y) = (A*(x) = B*(y) <« 2

Definition 7 (a—triple I constraint principle for FMT model) [10] Suppose that
X, Y are nonempty sets, and F(X), F(Y) are sets of all fuzzy subsets on X, Y. When
Ax) e F(X),

B(y), B*(y) e F(Y), seek out the smallest A*(x) e F(X) so that formula (2) have the
smallest possibility for all the xe ¥, ye Y.

3 The a—Triple I Constraint Method for FMP

Remark 1 According to a—triple I constraint principle for FMP model, formula (1)
have the smallest value, that
(AX) = B(y)) = (A*(x) » 0) =

1,A*(x) = 0;

1) (1-A*
LA(x) # 0. RAR). B)) < (2=
A=mA=ATD) (1 ) (1-RAR),B(O))

1—% + 1A% (x) % (1=01-A*(x)).
1=\ + A R(A(x),B(y)) L AT() # 0, RAG), BG) > I=n+rA%(x)

Based on the above analysis, First, discussed @ = 1 triple I constraint method for
FMP model, Theorem 2 as follows.

Theorem 2 (Triple I constraint method for FMP model) Suppose that X,Y are non-
empty sets, When A(x), A*(x) e F(X), B(y) € F(Y), seek out the largest B*(y), so that
formula (1) establish.
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B* ) = 1xg,ux, + 0xm,uk o>y €Y

WhichE, = {x € X|A*(x) = 0}.K, = {x € XIRA(). B)) < A= is

characteristic function of E, U K|, (E, U Ky)c is complementary set of E, U K|,

Proof (1) Whenx € Ey U Ky, according to the Remark 1, the smallest value of for-
mula (1) is 1, then the largest B*(y) = 1;

(2) Whenx € (E, UK,)C, that A*(x) # 0, RA(), BY)) > 2=, according to

U=RA=ATG) 4 ()3 (1-R(A(0).B(Y))
. 1=) 4+ 0 A*(x) -
the Remark 1, the smallest value of formula (1) is o T RAGIEO) s

then the largest B*(y) = 0;
If Ay, € Y, satisfy D(y,) > B*(y,) = 0, then D(y,) must not make formula (1) estab-
lish. Because of D(y,) > B*(y,), so we need to discuss in two cases:
When A*(xy) < D(yy),
(A(xg) = B(yy)) = (A*(xy) = D(yp)) = R(A(x(), B(yp)) — 1 =

UAATCOD 4 (1) (1=R(ACx) B(3o)))
; When A*(xg) > D(y,),

1 > 1= +21A%(x))
D)+ -1(1-A"(x))

1=+ X R(A(xy).B(y))
(Axg) = B(yp)) = (A"(xo) = D)) = R(A(xo), B()) = == - so we
need to discuss in two cases again:

D(y)+(1-=M(1-A"(x))
If R(A ), B(yy)) < 2ol gy
(A(xg) = B(yy) = (A*(;Co)1 —>) 1D(yo)) =1
D(y)+(1-1(1-A"(x))
If R(Ay), B(yy)) > 22U bo) gy
(1=0(1-A%(x))

A 5 " b e H(1=0)(1 =R (A BOY))
(Axo) = By)) = (A*(xg) = D)) > 5

Therefore, when x € (E, U Ky)c, B*(y) have the largest value 0.
To sum up, the Theorem 2 is a constant establishment.

Remark 2 According to the discussion of Remark 1, when A*(x) =0 or when

A*(x) # 0 and R(AX), B(y)) < % the smallest value of formula (1) is 1.

Meanwhile, if « = 1, then the largest B*(y) of formula (2) is also 1; if & < 1, formula

(2) is not establishment. When A*(x) # 0, R(A(x), B(y)) > % ifa =1, the
(1=3)(1=A* (x)) +(1=3)(1-RAG),BO)))

* : . 1—)+0A*(x)
largest B*(y) of formula (2) is also 1; When a < o T RAGEG) , formula

(2) is not establishment. Therefore, formula (2) need to establish, the value rang of

A=D0=A*E) |1y y(]— !
o TU=MU=RAX),B))

1%+ L RA®,B0))
U0 4 (1)(1-R(AG).BO))

1=+ hA*(x)

1=0 + % R(AMX).B()

a must satisfy a € [ , 1]. Next we only discussed when

s

a € (
Theorem 3 (a-triple I constraint method for FMP model) Suppose that X, Y are
nonempty sets, When A(x), A*(x) e F(X), B(y) e F(Y), seek out the largest B*(y), so
that formula (2) establish. When x € E,

B*(y) = inf{A"(0) A [(1 = X+ RAT)RAX), BR)) = 1) + AW A[A*(x) = (1 — a)
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(I =X+ XRAX, BN =X+ 1A () = (I = RAAX), BO))(1 = L+ XA (X))},
yeY
Which E, = {x € X|R(A(x), B(y)) > % ).
Proof On the one hand, Vy € Y, C(y) € F(Y), satisfy C(y) < B*(y), then C(y) make
the formula (2) establish. In fact, because of C(y) < A*(x) and C(y) < (1 — 1+
MATX))RAX), BO) — 1)+ A*(x) and C(y) < A*(x) — (1 —a)(1 = L+ NRAX),
By = n+rA*(x) — (1 = R(Ax), B())(1 — X\ + X A*(x)), then

. SO 4 (1-)(-RAWBOY)
(AE) = BY) = (A*(x) = C() = ey T <
Therefore (A(x) — B(y)) = (A*(x) — C(y)) < a, then C(y) make the formula (2)
establish. On the other hand, if 3y, € Y, satisfy D(y,) > B*(y,), then D(y,) isnt make
the formula (2) establish. In fact, because of D(y,) > B*(y,),
D(yp) = A*(xp) A [(1 = %+ L A* o) (RAM,). B(y)) — 1) + A*(xg)] A [A* (x) -
(1= a)(1 = h+ % RAG). BO(L = %+ 1 A*(xp) — (1 = RAG), BO)(L = %+
A ()],
so we need to discuss in two cases:
(1) When D(y,) > A*(x,), that
(Ax) = B(yp)) = (A*(xp) = D)) = RAGy). By) = 1 = 1> as
(2) When D(yp) < A*(xo). then D(yp) > [(1 = %+ % A* () (R(A(x). BQ) — 1) +
A* ()] A [A*(xg) — (1 = a)(1 = %+ L RAGQ) B = A+ 1 A*(xp)
—(1 = R(A(xp), Byg))(1 — n + N A*(xy))], so we need to discuss in two cases again:
If D(yg) = (1 = A+ NA"(x0))(R(A(x), B(yp)) — 1) + A*(x), then
(A(xg) = B(yp)) = (A*(xp) = D(yp)) = 1
If D(yg) < (1 =N+ NA*(x)(R(A(xy), B(yy)) — 1) + A*(xy), D(yg) = A*(x) — (1 —
a)(1 = N+ N RAG), Byo))(I — h+1A™(xp) — (1 = R(A(xp), Byo))(1 = x +
NA*(xp)), then
(A(xg) = B(yy) = (A*(xy) = D(yp)) > a;
Therefore (A(xy) = B(yy)) = (A*(xy) = D(y,)) > a, then D(y,) isnt make the for-
mula (2) establish.
To sum up, the Theorem 3 is a constant establishment.

4 The a—Triple I Constraint Method for FMT

Remark 3 According to triple I constraint principle for FMT model A*(x) = 1, for-
mula (1) have the smallest value, that

(AX) = B(y) - (1 - B () =

B*(n)+(1-M(I—-RAX),B()) % (1)) -
PHIORADHD, RA), BG)) > B ()

{ 1, R(A(x), B(y)) < B*(y);

Based on the above discussion, when a = 1, triple I constraint method for FMT
model as follows.



48 J. Shuang et al.

Theorem 4 (Triple I constraint method for FMT model) Suppose that X, Y are
nonempty sets, When A(x) e F(X), B(y), B*(y) e F(Y), seek out the smallest A*(x),
so that formula (1) establish.

A*(.x) = IIE)‘ + OI(EX)C"X eX

Which E, = {y € Y|R(A(x), B()) > B*(y)}.

Proof (1)Ify € E,, R(A(x), B(y)) > B*(y);
According to the Remark 3, when R(A(x), B(y)) > B*(y), the smallest value of for-

s B+ -W(A-RAX),B()) * —1-
mula (1) is o T2 RAWEG) then the smallest A*(x) = 1;

If 3x, € X, make C(x,) < A*(x,) = 1, we need to discuss in two cases:
If C(xy) < B*(y,), that

(A(xo) - B()’o)) - (C(xo) - B*(Y())) = R(A(xo)»B()’o)) -1=1

If C(xy) > B*(y,), that

(A(xp) = B(yg)) = (C(xy) = B*(yy)) = R(A(x), B(yy)) =
we need to discuss in two cases again:

B*(yo)+(1-3)(1-C(xp)
When R(A(x,), B(y,)) < et then

(AGx) = B(yy)) = (Clxg) = B*(yp)) = 13
When  R(A(x)). B(yy)) > “E0=Stl - then (Axy) = B(yp)) = (Clxp) =
— o
# B* () +(1 =M1 -R(A(x),B(1))) .
B (o)) > 1= + % R(A ). B())
Therefore, when y € E,, A*(x) have the smallest value 1.
(2) When y € (E,)€, R(A(x), B(y)) < B*(y);
According to the Remark 3, when R(A(x), B(y)) < B*(y), the smallest value of for-
mula (1) is 1, then the smallest A*(x) = 1;

To sum up, the Theorem 4 is a constant establishment.

B*(yp)+(1-M(1-C(xp))

, then
10+ Clxg)

Remark 4 According to the discussion of Remark 3, when R(A(x), B(y)) < B*(y),
the smallest value of formula (1) is 1. Meanwhile, if @ = 1, the smallest A*(x) = 0;
If @ < 1, formula (2) is not establishment. When R(A(x), B(y)) > B*(y), if « =1,

the smallest A*(x) = 0; If @ < ZWHIZWNARAWBG) ©formyla (2) is not establish-
1=% + L RAX),B())
ment. Therefore, formula (2) need to establish, the value rang of a must satisfy
B*()+(1-MU-RAX),B())) :
a €| o T2 RAWMBO) 1], Next we only discussed when
B*()+(1-MN(1-RAX),B())) 1
10+ RAWBOY) 7

a € (

Theorem 5 (a—triple I constraint method for FMT model) Suppose that X, Y are
nonempty sets, When A(x) € F(X), B(y), B*(y) ¢ F(Y), seek out the smallest A*(x) so

that formula (2) establish. When'y € E_,
*0) — o s B*()—-R(AX).B()) B* +I=W[1—aRAX.By)+1—a)(1 =M =RAX).B()]
A*() =sup{B*(Y) v [1—x+xR(A(x),B(y)) +11v 1=% +a h RAX),By)—r(1—a)(1-2)(1-R(Ax),B())) }

x € X; ’
Which E, = {y € Y|R(A(x), B(y)) > B*(y)}.
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Proof On the one hand, Vx € X, C(x) € F(X), satisfy C(x) > A*(x), then C(x) make
the formula (2) establish. In fact, because of C(x)>A*x), Cx)>
s B*()—R(A(x),B()) B* )+ -M[1-aRA®),B()+(1-a)(1 =N -RAX),B()]
B v [I—X+XR(A(X),B(V)) +1]v 1=k +a L RA®,BE)-1(1-a)(1-V(1-RAX).BY) then
" B (0)+(1-0)(1-C .
(A() = BO)) = (C() = B*() = RAE), B)) » ZHEEHEED) < o
On the other hand, if 3x, € X, satisfy D(x,) < A*(x,), then D(x,) isnt make the
formula (2) establish. In fact, because of D(x;) < A*(xy), y, € ¥, make D(x,) <
s B* (yy)—R(A(x0),B()) B (yo)+(1 =M1 —aR(A(xp),B(yp))+(1—a)(1 =) (1 —R(A(x)). B(yp)))]
B*(yy) V[ + 1] v ,
1=+ 0 R(A().B(0)) I=X +a h R(A(x).B(yp))—M(1—a)(1=0)(1=R(A(x)).B(yy)))
we need to discuss in two cases:
(1) When D(x,) < B*(y,), then
(A(xg) = B(yy)) = (D(xy) = B*(yp)) = R(A(xy), B(yp)) = 1 = 1;
(2) When D(x,) > B*(y,), then
D(x,) < [3*0’0>—R(A(x0),3(y0)) + 1] v B0+ U —aRAGy) By (1 —a)I (R4 @) Bog)]
1= + % R(A(x0).B(5)) I R(AGG),B(o) =M1 =a)(1=0) (1 =R(A(x)),B())))
we need to discuss in two cases again:
B*(yo)—R(A(x)).B(yy))
< =7 - 0n L0
If D(x,) < Ton 2 RAGD.BoW) + 1, then
(A(xg) = B(yp)) = (D(xy) = B*(yp) = 1> «a;
B* (yy)—R(A(x0),B())
If D(x,) > Ton+ 7 RAG) Bow) + 1, that
D(x,) < B*(yg)+(1=W)[1—aR(A(x).B(yp))+(1—a)(1 =01 —R(A(xy).B(yp))]
07 = Ion @ L RAG)BG)—r(1=)(1=0)(1=R(Ax)BOY))
(A(xp) = B(yg)) = (D(xp) = B*(yy)) > a.
To sum up, the Theorem 5 is a constant establishment.

, then

5 Conclusion

This paper constructs a family of implication operation L — ) —I1, which improve
the reliability of fuzzy reasoning results. And four methods are discussed and proved
that based on L — '\ —IT implication operators, they are FMP model and FMT model
fuzzy reasoning triple I constraint method and a—triple I constraint method. The
obtained conclusions are enriched and developed the relevant theory of fuzzy rea-
soning triple I constraint method, and reduce adventure in the practical application.
In other papers, based on the new family of implication operation L — ) —IT, we dis-
cuss FMP model and FMT model fuzzy reasoning reverse triple I method, reverse
triple I constraint method.
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Fuzzy Information Fusion Approach
for Supplier Selection

Guangxu Li, Gang Kou and Yi Peng

Abstract Supplier selection plays an important role in supply chain system. In order
to select the suitable suppliers, some methods of supplier selection have been studied
extensively in fuzzy environment. In this paper, a fuzzy information fusion approach
based on generalized fuzzy numbers (GFNs) is proposed to select the best supplier.
Some aggregation operators with GFNs are also proposed. In addition, a new ranking
formula based on mean values of GFNs is adopted to rank the suppliers. Finally, an
empirical study of supplier selection is introduced to illustrate the proposed method.
The results indicate that the proposed method could meet the different evaluation
requirements of decision makers and offer an effective and practical way to select
the best supplier.

Keywords Information fusion * Supplier selection * Fuzzy decision making °
Generalized fuzzy numbers * Mean value

1 Introduction

The supplier selection in its nature is a multi-criteria decision-making (MCDM)
problem since some conflicting criteria have influence on evaluation and selection
of suppliers [1]. MCDM methods are important issues for decision science, and they
have been applied many fields [2-4]. S Moreover, MCDM methods have been also
applied to evaluate or rank the suppliers with respect to multiple attributes [5, 6].
However, some supplier selection problems usually involve in uncertain, indefinite,
imprecise and subjective data.
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Fuzzy set theory, initially proposed by Zadeh [7], has been extensively applied
to objectively reflect the ambiguities in human judgment. One of applications of the
fuzzy theory is used in fuzzy MCDM. So some fuzzy MCDM methods were pro-
posed to evaluate the supplier selection. Chen et al. [8] proposed a hierarchy MCDM
model based on fuzzy-sets theory to deal with the supplier selection problems in the
supply chain system. Junior et al. [9] presents a comparative analysis of fuzzy AHP
and fuzzy TOPSIS methods in the context of supplier selection decision making.
Senvar et al. [10] proposed a fuzzy PROMETHEE method to select suppliers. How-
ever, they considered the linear fuzzy numbers and the viewpoints of experts cannot
capture the sophisticated nuances when they selected suppliers. In order to meet the
different evaluation requirements of decision makers, Li et al. [11] proposed a new
form of fuzzy number, named a generalized fuzzy number (GFN). The GFN is a non-
linear fuzzy number, and it can represent different information when the parameter
changes in supplier selection. Therefore, in the paper, GFNs are applied to express
the values of attributes in supplier selection.

The supplier selection in its nature is a multi-criteria decision-making (MCDM)
problem. Wu et al. [12] proposed a fuzzy multi-objective programming model to
decide on supplier selection taking risk factors into consideration. Lin [13] proposed
to adopt the fuzzy analytic network process (FANP) approach first to identify top sup-
pliers by considering the effects of interdependence among selection criteria and to
handle inconsistent and uncertain judgments. Nazari-Shirkouhi et al. [14] presented
a two-phase fuzzy multi-objective linear programming to solve supplier selection
and order allocation problem. However, these methods did not consider the mul-
tiple persons decision making processes. In order to integrate the expert informa-
tion, the uniform information are usually aggregated by aggregation operators. For
example, an ordered weighted averaging (OWA) aggregation operator was applied
in [15]. Chiclana et al. [16] designed a new choice scheme using the concept of fuzzy
majority and a new aggregation operator, which is called ordered weighted geomet-
ric (OWG) operator. Therefore, some other aggregation operators have been devel-
oped to aggregate preference information. Such as: an uncertain OWA operator [17]
and a generalized ordered weighted logarithm aggregation (OWLA) operator [18].
However, these aggregation operators are linear operators, and do not capture the
sophisticated nuances in the aggregated value. Moreover, the interrelations among
the integrated preferences are not considered in the aggregation processes. In order
to overcome the shortcomings of the aggregation operators, the power average oper-
ator was proposed by Yager [19]. Xu and Yager [20] developed a power geometric
operator and gave the applications to MCDM. However, aggregation operators with
GFNss are rarely researched. Based on this idea, we propose some nonlinear aggre-
gation operators of generalized fuzzy numbers (GFNs), and give the applications in
supplier selection.

In fuzzy MCDDM, many ranking methods have been done on how to rank the
alternatives based on the priority vector. For example, Ergu et al. [21] advanced a
rapid decision making method to assess the key factors of risks. Asady [22] gave
a revised ranking method based on deviation degree. Matarazzo and Munda [23]
presented a ranking fuzzy numbers method based on triangular fuzzy numbers. But
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they did not consider the mean values of GFNs. Based on the mean values of fuzzy
numbers, a ranking formula based on the mean values of GFNs is proposed to apply
in supplier selection in our paper.

2 Definitions and Properties of GFNs

Definition 1 [11] A GFN A is given by A = (a,b,¢,d),,n>0,0<a<b<c<d,
if the membership function y;(x) : R — [0, 1] is defined as follows

X —

%

a)”,aﬁxsb
i 1, b<x<c
a d_x)”,c§x§d

(d —-c
0, others

In order to intuitively illustrate the GFN, we suppose a =2,b = 6,c = 8,d = 12,
and give the graphs of the GFN with different values of n in Fig. 1.

From the graphs of the GFN, some aspects of the GFNs are proposed. For exam-
ple, trapezoidal fuzzy numbers or triangular fuzzy numbers are the special forms
of GFNs. Let n = 1, then A is reduced to a trapezoidal fuzzy number, and if n = 1
and b = c, then A is reduced to a triangular fuzzy number. Moreover, if n > 1, then
the left and right branches contract for the membership function of the GFN, and
if 0 < n < 1, then the left and right branches expand for the membership function
of the GFN. With diversification of the parameter n, some characteristics about the
GFNs are also given. For example, with the values of parameter n increasing, the
fuzzy degrees of A will be reduced, and then the information of A will be more

Fig. 1 GFN with different a=2,b=6,c=8,0=12,n=0.001  a=2,b=6,0=8,d=12,=0.01  a=2,b=6,c=8,d=12,n=0.1
1 1
values of n 7oy
0.5 05 05 ‘ }
0 oL 0 .
0 10 20 0 10 20 0 10 20
a=2,b=6,c=8,d=12,n=0.5 a=2,b=6,c=8,d=12,n=1 a=2,b=6,c=6,d=12,n=2
1 1 T 1
/ \ N
I
Ly 0.5 \ os| [\
1 Y VA W [ I/
0 i0 20 1] 10 20 o 10 20
a=2,b=6,c=8,d=12,n=5 a=2,b=6,c=8,d=12,n=50 a=2,b=6,c=8,d=12,n=100
1 o 1 1
05 J,'I \ 05 0.5 ‘
0 j n 1 1 0 ‘

0 10 20 0 10 20 0 10 20
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clearly. Thus, the GFN is applied in the decision making process, the subjectivity of
selecting the model parameters should be reduced, and the robustness of the model is
improved. Therefore, the GFN could be suitable for all kinds of fuzzy environment.
Moreover, some main operations of GFNs are also given by [11].

3 Nonlinear Aggregation Operators with GFNs

Information aggregation is an important process in GDM. PA operator, introduced
by Yager [19], is a nonlinear operator which allows argument values to support each
other in the aggregation process. The definition of PA operator is given as follows

Definition 2 [19] Let a,,a,, ..., a, be a collection of arguments, then the power
average (PA) operator PA(a,,a,, ... ,a,) is defined as

"+ T@)a
PA(ay,a,, ..., a,) = 221711(]—4_7"?61)(; o
i=1 i

where

T(a;) = Z Sup(a;, a;) )

J#

Sup(a, b) is denoted as the support between a and b. Three properties of the support
are given as follows: (1) Sup(a, b) € [0, 11; (2) Sup(a, b) = Sup(b, a); (3) Sup(a, b) >
Sup(x,y) if |a — b| < |x —y|.

Obviously, the support measure is essentially a similarity index. The more similar,
the closer the two values, and the more they support each other.

Based on Definition 2, some nonlinear aggregation operators with GFNs can be
given as follows

Definition 3 Let A|,A,,...,A, be a collection of GFNs, then the power average
(PA) operator of GNFs is defined as

>+ TA)A,

GFNsPA(A|,A,, ... ,A,) = == =
Yo (L+T@A))

3)

where ;
T(A) =Y Sup(A,.A) @

i

Sup(A, B) is denoted as the support between A and B. Three properties of the support
are also given as follows: (1) Sup(A,B) € [0, 1]; (2) Sup(A,B) = Sup(B,A); 3) If
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Dy(A,B) < Dy(X,Y), then Sup(A, B) > Sup(x,y), and the formula of D, is given
by [11, 17].

Obviously, the more similar, the closer two values, the more they support each
other. Based on the properties of the supports, the formula of support can be given
as follows o
Dy (A, A)

Z7=l DH(A,', Aj)

J#E

Sup(A,A) =1- o)

Especially, if Dy (A;,A;) = 0, then we stipulate Sup(A,,A;) = 1.
The PA operator of GFNs exhibits a number of properties desirable for an aggre-
gation operator.

(1) Commutativity: If (C;, C,, ..., C,) is any permutation of (4,,A,, ...,A,), then
GFNsPA(A,,A,, ..., A)) = GFNsPA(C,,C,, ..., C,).

(2) Idempotency: IfAl. = Aj =A@ # J), then GFNsPA(Al,AZ, ,An) =A.

(3) Boundedness: The PA operator of GFNs satisfies min(A,A,,...,A,) <
GFNsPA(A|,A,, ... ,A,) < max(A},A,, ..., A).

(4) Generality: If Sup(Ai, Aj) = k, for all i # j, then the PA operator of GFNs satisfies

GFNsPA(A,,A,,...,A)=Y" &,

i=i

Proof (1)Let(Cy,C,, ..., C,)isany permutationof (4,,4,, ...,A,),7 : {1,2,...,n}
— {1,2,...,n} be a permutation function, there exists one and only one C‘j such that
Ai =AT® = C’j, i=1,2,...,n, then we have

T(A) =) Sup(A, A) = Y SupA, . A, ) = Y, Sup(C;, C) = T(A))
Jj=1 J=1 j=1

J# J# J#i

By formulas (7)-(9), we obtain
GFNsPA(C,, G, ...,C,) = D (1+ T(C)T;/ D1+ T([C))
i=1 i=1

= Y+ TADA,/ Y (A +T@A))
i=1 =1
= GFNsPA(A,,A,, ... ,A,)

Therefore, the property 1 holds.
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() IfA; = A; = A(i #j), then Dyy(A;,A;) = 0 and Sup(A;, A;) = 1, so we can get
GFNsPA(A,,A,,...,A,) = D (14 (n—1)A,/ D (1+(n-1)
i=1 i=1

= zn:nﬁi/ in =A
i=1 i=1

Therefore, the property 2 holds.
(3) Let min(A,,A,, ..., A,) = A, and max(A,A,, ... ,A,)) = A, then we have

- “‘max>
n n n
Ay YA+TA) < Y (1 +TADA, <A, Y (1+TA))
i=1 i=1 i=1
since Y (1 + T(A,;)) > 0, again we get
Apin X A+TADA/ Y (1 +TAY) £4,,,
i=1 i=1

and then, we obtain

min(A,,A,, ...,A,) < GFNsPA(A,,A,, ... ,A)) < max(A,,A,, ... ,A,)

Therefore, the property 3 holds.
(4) If Sup(A;, A)) = k, for all i # j, then T(A)) = Y\, Sup(A;,A;) = (n — D)k, thus

i
we get

B 5 5 n B n n A
GFNsPAQ Ay, ... A)= Y1 +n- DA/ Y1 +@m-Db=Y =
b i=1 ; ; n

This means when all the matrix similarity are not different, the PA operator of
GFNss is simplified as the arithmetic average operator of GFNs. Therefore, the prop-
erty 4 holds.

Definition 4 The weighted power average (WPA) operator of GFNs is defined as

. s - "1+ TANAw,
GENsWPA(A,,A,,...,A) = Z,:nl( + TADA, ©
zi=1(1 + T(Al))w,
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where

TA) =Y oSupA,A) (7)
-

Sup(A, B) is denoted as the support between A and B.

Similarly, the WPA operator of GFNs has the properties such as idempotency,
boundedness, generality, but commutativity property does not hold.

Definition 5 Let Al ,;\2, ,;\n be a collection of GFNs, then the power geometric
average (PGA) operator of GNFs is defined as

n (1+1'<A,.)3
GFNsPGA(A,,A,, ... ,A) = H AiZ,:mmA;)) ®)
i=1
where
N o - Dy(A,A)
; ! ! Z/‘:l DH(A,"AJ')
J# J#

The PGA operator of GFNs also exhibits a number of properties such as commu-
tativity, idempotency, boundedness and generality.

After the information are integrated by the nonlinear operators of GFNs, the
results in the aggregation process are also showed by GFNs. In order to evaluate
the results, we should rank the fuzzy numbers. A ranking formula based on mean
values of GFNss is given in the next section.

4 Ranking Formula in GDM Based on Mean Values
of GFNs

In the section, a ranking formula based on mean values of GFNs is proposed. Firstly,
some definitions of mean values of fuzzy numbers should be given as follows.

Definition 6 [23]LetA = (a,b,c)bea triangular fuzzy number, y;(x) be the mem-
bership function, and x be an element of the triangular fuzzy number A, the mean

value of A is given by
E@A) = %b-l—c )

Based on Definition 6, the definition of mean value with a GFN is given as follows
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Definition 7 Let A = (a, b, c, d),,n>0,0<a<b<c<dbeaGFN, uz(x) be the
membership function, and x be an element of the GFN A, the mean value of GFN is
given by

[ 20 fm)

EA) = 10
@ /_:o 1z (x)dx gn) .
where ) ) ) )
f@ﬁ:cgb;¥+(65b + cd — ab)n + d* — d* (11)
g(n) = (c—bn*+(d—a+2c—2bn+2(d—a) (12)

Especially, if n = 1, A is reduced to a positive trapezoidal fuzzy number, and f(1) =
2+ d?>—b>—a®>+cd—ab and g(1) = 3(c + d — a — b), then the mean value of a
trapezoidal fuzzy number is given as follows

E+d? - —a*+cd—ab
3(c+d—a->b)

EQA) =

Ifn=1and b = ¢, A is reduced to a positive triangular fuzzy number, and f(1) =
bd — ab + d*> — a* and g(1) = 3(d — a), then we have

bd—ab+d>—a* (d—a)a+b+d) a+b+d

Ed=—=a"0 3(d—a) 3

The results are consistent with the Definition 6. For convenience, the alterna-
tives could be expressed as X = (¥, X,, ..., X,) and the evaluation attributes could be
expressed as ¢ = (¢, Cy, ... ,C,). The attributes are additively independent. X; is the
assessed value of attribute ¢; of alternative ¥;, and is expressed in a GFN in this paper.
The different values of X; can be represented by a matrix V= (X;)mn» Which is called
the decision making matrix. The vector of attribute weights is w = {w,, @,, ..., ®,}.
To eliminate the difference of the attribute indexes on the dimension, each attribute
index is normalized

ANLVieM,jel

LALVieMjel

where I, is associated with a set of benefit criteria, and /, is associated with a set of
cost criteria and M = {1,2,...,m}.

When the information are integrated by nonlinear operators of GFNs, the results
in the aggregation process are also showed by GFNs. In order to evaluate the results,
a five-step hybrid ranking formula based on mean values of GFNs is given as follows:
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Step 1. Set up decision matrix based on GFNs and normalize decision-making
matrix

Step 2. Integrate information by nonlinear operators of GFNs based on formu-
las (5)—(7)

Step 3. Calculate the comprehensive property values by weighted arithmetic
average

Step 4. Calculate the mean values of GFNs based on formulas (10)—(12)

Step 5. Rank the alternatives based on the mean values of GFNs.

5 Numerical Example

A numerical example is considered in the section. Assume that a car company
needs to purchase some auto parts from three auto parts suppliers A;,A,,A;. Four
attributes: C; (the producing ability), C, (the ability of capital currency), C; (the
ability of research), C, (the level of technology innovation) are taken into considera-
tion and the weight vector is given by @ = (0.2, 0.2,0.3,0.3)”. During the decision-
making process, three experts e, e,, e; are invented to evaluate the three auto parts
suppliers. Their weighting vector is given by A = (0.3,0.3,0.4)7. After analyzing
and assessing these suppliers, the decision making process is shown as follows

Step 1. Set up group decision matrix based on GFNs and normalize the decision
matrix in Tables 1, 2, 3, 4, 5 and 6, respectively.

Table 1 Decision matrix given by expert ¢,

A Ay Az
C, (1,2,3,4), 4,5,6,7), (2,4,5,98),
C, (2,3,4,9), (1,3,5,6), (2,3,4,5),
Cy (3,4,6,7), 4,6,7,9), 1,3,6,7),
C, (4,5,7,8), (1,3,6,7), (7,8,8,9),

Table 2 Decision matrix given by expert e,

A Ay A;
C, (3,5,6,8), (1,2,3,4), (2,3,4,6),
C, (2,3,4,9), (3,4,5,8), (1,3,5,98),
C; (2,4,5,7), (3,4,6,7), 1,2,4,6),

C, (5,6,8,9), (1,3,6,8), (2,3,4,6),
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Table 3 Decision matrix given by expert e;
A, A, A;
C, (5,6,7,8), 0,1,1,2), (2,3,4,9),
C, (2,4,6,7), (4,5,6,98), (2,4,5,7),
C; (5,6,8,9), (1,4,5,8), (3,4,6,7),
C, (5,7,8,9), (3,4,5,6), (5,6,7,8),
Table 4 Normalized decision matrix given by expert e,
Ay A, A,
C, (0.125,0.333,0.6, 1), (0.5,0.833,1, 1), (0.25,0.667,1,1),
C, (0.333,0.6,1,1), (0.167,0.6,1, 1), (0.333,0.6,1, 1),
G (0.333,0.571,1,1), (0.444,0.857,1, 1), (0.111,0.429,1, 1),
C, (0.444,0.625,0.875, 1), (0.111,0.375,0.75, 1), (0.778,1,1,1),
Table 5 Normalized decision matrix given by expert e,
A, A, A,
C, (0.375,0.833,1, 1), (0.125,0.333,0.6, 1), (0.25,0.5,0.8,1),
C, (0.25,0.6,1,1), (0.375,0.8,1, 1), (0.125,0.6,1, 1),
C (0.286,0.667,1,1), (0.429,0.667,1,1), (0.143,0.333,1, 1),
C, (0.556,0.75,1, 1), (0.111,0.375,1, 1), (0.222,0.375,0.667, 1),
Table 6 Normalized decision matrix given by expert e;
A A, A;
C, (0.625,0.857,1,1), (0,0.143,0.167, 1), (0.25,0.429,0.667, 1),
C, (0.25,0.667,1,1), (0.5,0.833,1,1), (0.25,0.667,1,1),
G, (0.556,0.75,1, 1), (0.111,0.5,0.833, 1), (0.333,0.5,1, 1),
Cy (0.556,0.875,1,1), (0.333,0.5,0.714, 1), (0.556,0.75,1, 1),
Table 7 Integrated decision matrix
A, A, A,
C, (0.397,0.691,0.879, 1), (0.190,0.410,0.514, 1), (0.25,0.523,0.808, 1),
C, (0.275,0.626,1, 1), (0.361,0.753,1, 1), (0.237,0.626,1, 1),
C; (0.407,0.671,1, 1), (0.309,0.659,0.934, 1), (0.208,0.428,1,1),
C, (0.522,0.761,0.962, 1), (0.198,0.424,0.812, 1), (0.522,0.712,0.898, 1),

Step 2. Aggregate information by nonlinear operators of GFNs based on formula
(5), formula (6) and formula (7), then get the integrated decision-making matrix as
listed in Table 7.
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Step 3. Calculate the comprehensive property values by weighted arithmetic aver-
age, we have

V=((0.413,0.693,0.964, 1),,(0.262,0.558,0.827, 1),,, (0.316,0.572,0.931, 1), )T

Step 4. Calculate the mean values of GFNs based on formula (10), formula (11)
and formula (12), we get

BA) = 0.224572 + 0.90237 + 0.8294
! 027112 + 1.1297 + 1.174
BA,) = 0.186312 + 0.8671n + 0.9314
2 0.269n2 + 1.276n + 1.476
2
Ay = 0.26987 + 1.021 + 0.9001

0.359n% + 1.402n + 1.368

Step 5. Rank the alternatives based on the mean values of GFNs.

Based on the mean values, the ranking of the alternatives under different n values
could be shown in Fig. 2.

According to the Fig. 2, for the decision makers of the car company, the ranking
orderis A; > A; > A,.

At the same time, by comparing the sorted results under different n values, it could
be shown that the final assessment results become more stable with the increase of n
values. These results are suitable for the characteristics of the GFN, the robustness
and adaptability of decision-making methods could be improved when the GFNs are
considered in supplier selection. Moreover, the fuzziness of attribute is smaller and
decision makers get more information with the increase of n values, therefore, the
decision makers are easy to choose the best supplier.

Fig. 2 Ranking of the 0.85
alternatives under different n :;
A3 _
0.8 R
S
0.75 /
= S
< _pmmenee
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= o7/ 1
065 .
0 2 4 6 8 10
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6 Conclusions

In the real decision problems, it is difficult to select the excellent supplier according
to the different preference relations in fuzzy MCDM. In order to efficiently solve
the complex decision making problems and find reasonable decision making meth-
ods, the fuzzy MCDM method with GFNs is proposed in the paper. Some nonlinear
aggregation operators with generalized fuzzy numbers (GFNs) are also proposed.
Furthermore, a ranking formula based on mean values of GFNSs is adopted to rank
alternatives. Finally, experimental results indicate that the proposed method offers
a practical and effective way in fuzzy MCDM. It could be also shown that the final
assessment results become more stable with the increase of n values. These results
are suitable for the characteristics of the GFN. Furthermore, because the member-
ship function of the GFN has different forms, the subjectivity of selecting the model
parameters is reduced, and the robustness of the model is also improved.
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Possibility-Based Outranking Comparison
for PROMETHEE II with Uncertain
Linguistic Fuzzy Variables

Binquan Liao, Lidong Wang and Xiaodong Liu

Abstract Linguistic variable is an effective tool to represent the complexity and
uncertainty of alternatives information, which closes to the fuzziness of man’s think-
ing. In this paper, PROMETHEE II-based ranking method is studied under the envi-
ronment of uncertain linguistic fuzzy variables. The preference measure functions
are refined by introducing the overall dominance possibility assignment methods
among uncertain linguistic fuzzy variables, by which the exiting flow, entering flow
and net flow are obtained respectively. Additionally, the rank of alternative can be
achieved easily by comparing net flow. The convenience and applicability of the
proposed methods are illustrated with a practical example about the evaluation of
socio-economic systems.

Keywords Uncertain linguistic fuzzy variables + The overall dominance possibil-
ity - PROMETHEE II method

1 Introduction

Multiple attribute decision making (MADM) problems exist widely in real-life deci-
sion making situation [1-5]. For traditional MADM problems, decision makers
assess each alternative under each attribute expressing with numerical values. How-
ever, numerical values are not enough to reflect the human cognitive mechanism.
Uncertain knowledge exist broadly in daily life and the process of decision making,
it is suitable for decision-makers to give the evaluation information by virtue of lin-
guistic terms as opposed to precise values [6]. For instance, a decision maker may
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evaluate the financial environment of a city with the fuzzy linguistic term “good”
instead of numerical values 85. MADM problem under uncertain linguistic informa-
tion has been a hot research topic and attracted more and more researcher to study it
during the last several years.

Due to the complexity of certain decision-making problems, the evaluation infor-
mation provided by decision-makers may be exists between two linguistic phrases
[6]. For instance, experts provide his/her preferences over alternatives with range
from a linguistic label to another. In order to deal with this case, Xu defined the
uncertain linguistic variables and introduced some of their operational laws [7, 8],
in which experts can provide quantitative information expressed by a pair of linguis-
tic variables. In group linguistic decision analysis, except the choice and operations
of the linguistic term set, how to establish an appropriate aggregation operator is a
necessary step, by which one can obtain comprehensive evaluation result derived
from multiple experts [9]. Xu developed the uncertain linguistic ordered weighted
averaging (ULOWA) operator and uncertain linguistic hybrid aggregation (ULHA)
operator [10]. Xu introduced a distance measures between two uncertain linguistic
fuzzy sets, and solved the problem under different types of linguistic information
[11]. Yue and Fan provided the property of the dominance degree on pairwise com-
parisons of uncertain linguistic variables [12]. Peng developed an uncertain pure
linguistic hybrid harmonic averaging operator and a generalized interval aggrega-
tion operator, and applied it in an investment company that invest a sum of money
in the best option [13]. Meng and Tan discussed the Choquet aggregation operators
ranking decision under uncertain linguistic environment [14].

The likelihood-based assignment was introduced in the MADM problem, in
which the evaluative of the alternatives and the importance weights of the attribute
are expressed in interval fuzzy numbers [15]. Likelihood-based assignment denotes
the evaluative rating of alternative is not smaller than the evaluative rating of another
alternative with respect to criterion, which can avoided the loss and distortion of
information, so the feasibility and the applicability of this method can solve the
MADM problem. Chen established an interval type-2 fuzzy PROMETHEE method
using lower and upper likelihoods-based outranking index [15]. Wang and Chen
employed likelihoods-based outranking methods to interval-valued intuitionistic
fuzzy problem [16].

Inspired by work above mentioned, this paper introduces overall dominance pos-
sibility assignment methods to a MADM problem with uncertain linguistic informa-
tion. The rest of this paper is organized as follows. Section 2. describes the concepts
of uncertain linguistic variables. In Sect. 3, an improved PROMETHEE II method
is described under uncertain linguistic fuzzy sets by introducing overall dominance
possibility assignment method. In Sect. 4, an example is provided for showing the
feasibility and applicability of the proposed methodology. Finally, the conclusions
are draw in Sect. 5.
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2 Preliminaries

In this section, some related concepts and operators of the uncertain linguistic vari-
ables are recalled.

It is necessary to choose an appropriate linguistic labels set in advance. Let
S={s|=0,1,...,L— 1}, where s represents a linguistic variable, L is odd number
[10]. In general, L can takes 3, 5, 7, 9 and so on. The S has the following character-
istics [10].

(1) Ifi > j, then s; > 8; (i.e., s; is better than sj),

(2) There exists a negative operator neg(s;) = S;_;_;»

(3) If's; > s; (i.e., 5; is not worse than s;), then max(s;, s;) = s;,
4) Ifs; < 5 (i.e., s; is not better than Si)’ then min(s;, sj) =5,

As is pointed by Xu [10], in order to minimize the linguistic information loss
during the operational process, the original discrete linguistic assessment set S =
(8> S5 ---»5,_1) is extended to continuous linguistic assessment set s = {s,|a €
[0, g]}, where g is a sufficiently large number. If s, € S, then s, is called a origi-
nal linguistic term, or else s, is called an extended linguistic term [10].

Due to the experts’ uncertain knowledge about the preference degrees of one alter-
native over another, linguistic preference information provided by the experts pre-
sented interval linguistic values is better than that of precise linguistic variables. In
the following paragraphs, some related concepts are introduced. Suppose S is a set
of all uncertain linguistic variables, § = [s,, s,] € S where a <b,s,,s, are lower and
upper limit of § respectively, then § is called an uncertain linguistic variable.

Definition 1 ([11]) Suppose S is a set of all uncertain linguistic variables, and for

any 3, = [S,1,8511, 55 =[50, 5,01 € S, then the operational rules are shown as fol-
lows:

(1) 3, ® 5 = [5515 5511 ® [5525 5621 = [Sa14025 Sp146215

() 31 @5, = [S41> 5511 ® [522- S2] = [Sarxazs Spixea]s

(3) 31/35 = [8a1> 11/ [Sa2s $12] = [Sa1 /52> Sv1/a2]s if @y # 0, by # 0,
4 251 = [S40a1>Saep1 ], 420,

(5) 4B, ®3)) =43, @ 43,, 120,

(6) (A4, + 4,)5; = A3, @ A5, A;,4, >0.

Definition 2 ([17]) Let 5, = [su] , sbl] and §, = [s,, , sbz] be two uncertain linguistic
variables, and ; = b, — a, and 5, = b, — a,, then the degree of possibility of 5| > 5,
is defined as:

max{0,l; +[; —max(b, —a;,0)}

p(§1 23‘2) = (1

L.+
1 2
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From Definition 2, one can get the following results:

(1) 0<pG; 25,)<1,0<p5, 25) <1,
(2) p(; =23,) +p@3, = 5,) = 1. Especially, p(5, > 5,) = p(, =2 5,) =1/2.

For the two interval fuzzy numbers, the degree of possibility of them is defined
as follows:

Definition 3 ([18]) Let @ = [a,a™] and b = [b~,b"] be any two interval fuzzy
numbers, then the degree of possibility of a > b is defined as:

~ max(0,at — b~) — max(0,a” — b*)
>b)= 2
plazb) at—a +bt—>b- @

3 Possibility-Based Comparison for PROMETHEE II
Model

This section establishes a PROMETHEE II method involving the interval weight
information by introducing the degree of overall dominance possibility index of the
uncertain linguistic preference relations.

3.1 Uncertain Linguistic Decision System

Considering a multiple attribute decision making with uncertain linguistic informa-
tion: letX = {x,x,, ...,x,} be adiscrete set of alternatives, and U = {u,,u,, ..., u,,}
be the set of attributes, W = {w,w,,...,w,} be the interval weight vector of
attribute, where w; = [wj‘,w;r],wj‘,w;r > 0, wr < w;'. Suppose that A = (A nxcm 18
decision matrix, where A; € S(A; = [A;,A;],A; e S,A; € S), which takes the form
of uncertain linguistic variable given by the decision maker for alternative x; € X
with respect to the attribute u; € U.

3.2 The Overall Dominance Possibility Assignment Methods

The index p(A; = A;;) only reflects the degree of dominance possibility between
the two alternatives, and it cannot reflect the degree of overall dominance possi-
bility between one alternative and other alternatives under an attribute. Inspired by
the Chen’s work [15], the degree of overall dominance possibility index OP(A;) is
defined under the uncertain linguistic environment. It can reflect the overall degree
of possibility between one alternative and other alternatives with respect to each

attribute.
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Definition 4 Assume that A; and A;; are two ULF evaluative information of the
alternatives x;,x, € X with respect to the attribute u; € U. The degree of overall

dominance possibility index OP(4;) of A; € S is defined as follows:

OP(Ay) = n%l 27 (452 A) 3)

i'=1

il #i

where p(A; > A;;) defined by Eq. (1).

3.3 Dominance Possibility Preference Functions
Jor PROMETHEE II Model

The PROMETHEE II is a powerful and effective method dealed with MADM prob-
lem. There are six shapes of preference functions in the original PROMETHEE II
methods, which proposed by Brans [19], Brans and Vincke [20], and Brans et al. [21].
Classical preference functions derived from the differences between alternatives for
a certain attribute, which bring some difficulties of the comparison between the two
of the evaluations rating under fuzzy linguistic environment. The likelihood-based
outing index LI (A),-j is introduced to define new preference functions by Chen [15],
which shows that the comparison between two of the evaluations rating is obtained
by introducing the relative differences between alternatives for a certain attribute.

3.3.1 Overall Dominance Possibility Preference Function

In this part, the overall dominance possibility preference function is employed to
replace the traditional preference function under ULF evaluation rating and interval
weight. This preference function integrates the difference between the two degree of
overall dominance possibility index. Then we obtain the alternative rank by using
PROMETHEE II methods.

Inspired by the Chen’s work [15], the overall dominance possibility Gaussian
preference function PV’ (A; > Ay;) is described specifically as follows.

Definition S Let OP(A;) and OP(A;;) be two overall dominance possibility indices
of the ULF evaluative ratings A;; and A, for the alternatives x;, x;, € X withrespect to
the criterion u; € U, respectively. The overall dominance possibility Gaussian pref-
erence function P"/(A; > A;;) of A;; with respect to A, ; is defined as follows:

The overall dominance possibility Gaussian preference function:

1 — ¢ (OPAP=0PUL /25 i OP(A;) — OP(Ay;) > 0

0 if OP(A;j) — OP(Ay;) < 0. @

\%4 _
P(A, > Ay) = {
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3.3.2 Comprehensive Preference Measures

In this section, a comprehensive preference measure I1;, is constructed for each pair
of alternatives x; and x, based on the overall dominance possibility preference func-
tion and the interval weight of attribute.

Definition 6 For each pair of alternatives x; and x;, € X(i,i’ = 1,2, ...,nandi # '),
the comprehensive preference measure I1;; of x; with respect to x; is defined as
follows:

1y = (®L,PY (4 > Agy) v, ) / (@Lw,) 5)
where

I, = [, 1T},
I, =30, PY(A; > Ay - wi /30w

ii
Iy, =30 PP (A > Ay - wi /X0 wr

i’ (j

Notice that x;,x, € X and i # i/, and II,, is an interval number.

3.3.3 ULF Flows

In this part, in order to determine the outranking relationships, the comprehensive
preference measures are applied to define the ULF exiting flow, the ULF entering
flow, and the ULF net flow.

Definition 7 For any x;, x; € X, the ULF exiting flow DL, entering flow @F and net
flow @" for each alternative x; € X are defined as follows:

i =) 0

I=1,0 i

E _ mn
q)i - i’=1,i’#iﬂi’i (6)
oY = oledf = [0V, V],

- - + + + - . .
where @) = @1 — @F" @V = ®L" — ®F ], is the comprehensive preference
measure of x; with respect to x;, where x;, x, € X.

Definition 8 For any x; € X, the comprehensive outranking index ®@I-(x;), the com-
prehensive outranked index @I (x;), and the comprehensive dominance index
@IV (x;) of x; are defined, respectively, as follows:
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oM (x) = — Z/ lp(GDL
PIEG) = 555 T PO 2 @) )
@ﬁwx)—-——- ,11K¢N o).

-D

where &%, @ and @F denote the ULF exiting flow, the ULF entering flow, and the
ULF net flow, respectively. ﬁ((DiL > (DiL,) represents the degree of possibility of two
interval fuzzy numbers defined as Eq. (2).

For any x; € X, the following properties hold:

0< @I (x) < 1,0 <PIF(x,) < 1,0 < DIV (x) < 1.

3.34 PROMETHEE II-Based Ranking

The comprehensive dominance index @7V (x;) is employed to rank the alternatives in
a total preorder, the larger @IV (x;), the more the alternative x; dominates the other
alternatives in X [22]. The ULF PROMETHEE II complete relationships with respect
to an MADM problem.

3.4 Steps of Proposed Model

According to the above mentioned analysis, detailed steps are given to solve the ULF
MADM problem.

Step 1: Establish the decision matrix of A = (Ajj)sm With the uncertain linguistic
evaluative rating for each alternative x; € X with respect to the attribute u; € U.

Step 2: Determine the interval weight w; for the attribute u; € U.

Step 3: Calculate the degree of p0551b111ty p(A; = Ayj) with respect to u; € U for
each alternative pair (x;, x;).

Step 4: Calculate the overall dominance possibility index OP(A;;) of the uncertain
linguistic evaluative ratings A;;.

Step 5: Specify the corresponding parameters o, then calculate the overall dom-
inance possibility Gaussian preference function PV’ (A; > A, ])

Step 6: Compute the comprehensive preference measure I1;; for each of (x;,x;)
where x; € X,x, € Xand i # '.

Step 7: Calculate the uncertain fuzzy exiting flow <Dl.L, the uncertain fuzzy enter-
ing flow ch , and the uncertain fuzzy net flow @ﬁv for each alternative x; € X.

Step 8: Calculate the comprehensive dominance index @IV (x;) for each alterna-
tive x; € X, by which the complete ranking orders can be obtained for all alternatives
in X.

ij =
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4 [TIllustrative Applications

In this section, an example for evaluation of socio-economic systems in reference [7]
is employed to verify the feasibility and applicability of the proposed method. The
evaluation of socio-economic systems including five candidate city is denoted by X =
{x;,%,,%3,%4,X5}, described by attribute set U = {u, u,, i3, Uy, Us, Ug, U7, Ug, Ug }
with ULF language description S = {s,|i € [0, 10]}, where political environment u,,
economic environment u,, financial environment 5, administrative environment i,
market environment us, technical condition u4, material basis u, legal environment
ug, and natural environment u, [7]. Uncertain information of experts decision are
listed in Tables 1 and 2.

This paper combines the degree of the overall dominance possibility and Gaussian
preference function to reflect the difference of that alternatives, in which the para-
meter o takes 0.3.

Step 1. The decision matrix of A = (Aj)xm showed in Table 1.

Step 2. Interval weight information is determine as Table 2.

Step 3. Calculate the p(A; > A;;) for each pair of alternatives x;, x, in regard to
each u; € U. For example, measure the ULF binary relationship A3, > Ay,

max{(8 — 6) + (7 —5) — max(7 — 6,0),0}

8—6)+(7-5) =075

PAzy, 2 Ay) =

Step 4. Calculate the overall dominance possibility index OP(A;) for x; € X and
u; € U, and the results are showed in Table 3.

Step 5. According to the overall dominance possibility preference function men-
tioned above, one can obtain the preference measure PV (Aij > Ai/j) for any i,i’ €
{1,2,3,4,5},j € {1,2,...,9}. For instances,

Table 1 Uncertain linguistic decision matrix [7]

Uy i U3 Uy us Ug g g L)
X [s7, s8] | [ss, 591 | [ss, 591 |[s3,S9] |[s6, 571 |[sg, So] |[ss5, 58] |[sgs 591 |[sgs 89l
X [s6> 591 | [ss, 571 | [ss, ol | [Se, s71 | [sg, S10] | [Sgs Sl | [8g. 891 | [0, 550 | [57, 53]
X3 [s6> 571 | [s6> 551 | [s7, 551 | [s6> 571 | [s7, S9] | [sg, sg] | [gs 891 | [sgs sl | [57, 551
X4 [s6, 571 | [ss, Sol | [s7, 58] |[sg. 591 | 565581 | [87. 58] |[s9, 8101 | [s7, 891 | [S6. s3]
A5 [s6: 571 | [56> So] | [57. 5101 | [57. 81 | [57, 8101 | [57. 58] | [S6 571 | [S6» 53] | [sg. So]

Table 2 Weight information [7]

u, Uy U3 u, us

[0.08, 0.10] [0.05, 0.09] [0.10, 0.12] [0.08, 0.11] [0.10, 0.13]
U Uy ug U

[0.12, 0.14] [0.14, 0.16] [0.09, 0.11] [0.11, 0.15]
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Table 3 The degree of overall dominance possibility index

OP(A;)) | OP(A,) | OP(A;) | OP(Ay) | OP(A;s) | OP(Ag) | OP(A;;) | OP(Ag) | OP(Ay)

X 0.88 0.81 0.75 0.88 0.08 0.88 0.13 0.54 0.88
X, 0.69 0.11 0.75 0.13 0.84 0.88 0.63 1 0.29
X3 0.31 0.29 0.19 0.13 0.6 0.17 0.63 0.54 0.29
Xy 0.31 0.81 0.19 0.88 0.28 0.29 1 0.35 0.17
X5 0.31 0.48 0.63 0.5 0.7 0.29 0.13 0.06 0.88
Table 4 Comprehensive preference measures I7;;

1, ji=1 j=2 j=3 j=4 j=5
i=1 [0.21, 0.39] [0.43,0.71] [0.34, 0.53] [0.28, 0.45]
i=2 [0.24,0.37] [0.3,0.46] [0.36, 0.56] [0.32,0.49]
i=3 [0.16, 0.25] [0.01, 0.02] [0.06, 0.10] [0.15, 0.23]
i=4 [0.14,0.21] [0.18, 0.32] [0.18, 0.31] [0.21, 0.34]
i=5 [0.08,0.13] [0.15,0.27] [0.20, 0.35] [0.21,0.35]

Table 5 Exiting flow tDiL, entering flow @f , net flow tDII.V

Lo oF oV

X [1.26, 2.08] [0.62, 0.96] [0.30, 1.46]

Xy [1.22,1.88] [0.55, 1] [0.22, 1.33]

X3 [0.38, 0.60] [1.11,1.83] [-1.45,-0.51]

Xy [0.71, 1.18] [0.97, 1.54] [-0.83,0.21]

X5 [0.64, 1.10] [0.96, 1.51] [-0.87,0.14]

P(Ay, > Ayy) = 1 — ¢~ (OPAR-0P@A)?/20°

— ] — o~ (081-0.11?/20.3

= 0.93.

Step 6. Combining preference measure and interval weights, one can get the com-
prehensive preference measures I1;; for x;,x; € X and u; € U, and the results are
showed in Table 4.

Step 7. Calculate the ULF exiting flow @, the ULF entering flow &% and the
ULF net flow cDﬁV for each x; € X. The results are showed in Table 5.

The comprehensive dominance index is obtained in Table 6. By the comprehen-
sive dominance index, one can obtain the complete ranking orders of all alternative
as follows:

X| > Xy > Xy > X5 > X3

So, the alternative x; is the best scheme selection.
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Table 6 Exiting flow (DI.L, entering flow df , net flow CD?V

DIL(x;) DIE(x) ®IN(x,)
X 0.90 0.13 0.89
X 0.85 0.14 0.86
X 0 0.84 0.09
X 0.40 0.71 0.34
xs 0.35 0.69 0.32

5 Conclusion

In this paper, PROMETHEE II based on ranking method is established under the
uncertain linguistic information and interval weight. By introducing overall domi-
nance possibility assignment methods among uncertain linguistic fuzzy variables,
exiting flow, entering flow and net flow are obtained with the form of interval num-
ber. The rank of alternatives is achieved by employing comprehensive dominance
index. A practical example is given to demonstrate its practicality and effectiveness
for the evaluation of socio-economic systems.
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Hesitant Fuzzy Correlation Measures
Considering the Credibility

Jian-hui Yang and Chuan-yang Ruan

Abstract Presenting corresponding credibility on every hesitant fuzzy evaluation
value, According to the hesitant fuzzy comprehensive evaluation problem of
unknown attribute weights information, we define several hesitant fuzzy correlation
formulas considering credibility. Then we construct several optimal attribute
weighs model based on correlation for attribute weights.

Keywords Hesitant fuzzy - Correlation measures - Credibility

1 Introduction

Torra [1, 2] introduced the hesitant fuzzy set, which allows an element belonging to a
set’s membership grade can be different values. Currently, multi-attribute
decision-making problem with the attribute value given in the form of hesitant
fuzzy information has attracted the attention of scholars home and abroad. Xu [3-5]
researched the distance measures, similarity degree, entropy and cross entropy in
hesitant fuzzy sets, and apply them to multi-attribute decision-making. Farhadinia [6]
discussed the relationship among hesitant fuzzy entropy, distance and similarity
degree, and apply similarity degree into cluster analysis. In order to consider the
decision maker’s familiarity in professional field, Xia and Xu [7] proposed a credibility
induced hesitant fuzzy aggregation operators, and applied it to the supplier selection.

Aiming at the fuzzy comprehensive evaluation problem of partial unknown attri-
bute (index) weights information in alternatives, Xu [8] utilized IFHG operator to
aggregate decision-making information and established the linear programming
model, solved the corresponding index weight under scheme to maximize the score
function, and established a mathematical programming model of the overall scheme of
maximizing the score; Park [9] defined the correlation coefficient of interval-valued
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intuitionistic fuzzy number, and put forward a decision-making method based on
interval-valued correlation coefficient decision-making method. Aiming at the fuzzy
comprehensive evaluation problem of completely unknown attribute weights, Xu [10]
defined the deviation degree between two intuitionistic fuzzy values, aggregated the
individual intuitionistic fuzzy decision-making matrix into a comprehensive intu-
itionistic fuzzy decision-making matrix by using IFHA operators, and established the
optimization model based on total deviation degree maximization to solve the optimal
attribute weights; Liu [11] assign corresponding credibility to each evaluation values,
gave several hesitant fuzzy information correlation formulas based on credibility, and
established attribute weights model based on the correlation between evaluation
matrix and preference of decision makers Ruan [12] proposes the weighted mutation
rate correction incompletion G1 method which is used to measure the development
balance degree and determines weights of evaluation indicators, which avoids the
problem of integration of subjective and objective weights.

According to current literatures analysis, this paper attempts to study the fol-
lowing problems: how to take the credibility and the importance of hesitant fuzzy
number weights into account. So we propose several correlation formulas consid-
ering the credibility, and construct several optimal attribute weights models based
on the correlation between attribute evaluated values and the ideal values.

2 Basic Theory of Hesitant Fuzzy Sets

Zadeh [13] attempted to use membership function to express uncertain information
firstly. However there exists lots of uncertainty in the actual decision-making
problems, which leads to experts’ hesitation in giving evaluation values. Hesitant
fuzzy sets can solve this kind of problems effectively.

Definition 1 [I, 2] Let X ={x;,x,, ..., x,} be an non-empty set, then call
E={{x,hg(x))]x€X} (1)

the Hesitant Fuzzy Set. Among them /5 (x) is a set of several possible membership
values in [0, 1], which x € X means the membership grade of E to a set.

As to some practical problems such as the foundation and paper review, the
familiarity with this field (credibility), usually need to be considered during the
selection of evaluation experts, making the results more reasonable and credible. At
present, when aggregating the hesitant fuzzy information, the decision-makers’
familiarity with the professional field has been seldom considered, then Xia and Xu
[7] put forward a hesitant fuzzy aggregation operator based on credibility.

Definition 2 [7] Let the hesitant fuzzy set be Ay, ho, ..., hy, Vy; € h;, credibility
[;€[0,1], and the weight vector of h;(1=1,2, ...,n) is w=(w, wa, ...,w,,)T,
€[0,1], X w;=1, then

i=1
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n

CIHFWA(hl,hg, - ,hn) = .®] Wi(lihi) = UJ’l Ehl,yzehz,...,y,,eh”(l - H (1 - li]/i)wi)
i= i=1
(2)

is called the Credibility Induced Hesitant Fuzzy Weighted Averaging operator.
When all credibility /; =1, the credibility induced hesitant fuzzy weighted operator
degrades to the hesitant fuzzy weighted averaging operator.

HFWA(hy by, ... hy) = @ wil; (3)
j=1

Definition 3 [7] Let the hesitant fuzzy set be &y, hy, and its correlation degree
satisfies the conditions as follows:

(1) 0<|C(h1, hp)| <1
@) C(hi,hy) =1
(3) C(hi,hy) = C(ha, )

For that the elements number in may be different, in order to carry out the effective
operation, elements should be added in the hesitant fuzzy set with less elements
until the elements number in the set reaches k =max(k;,k;), ki, k, represent the
elements number in the hesitant fuzzy set respectively. The adding principle can
reflect the decision-makers’ risk preference, and the decision-maker that prefers risk
will add the element of the largest set value, while the decision-maker that hate risk
will be on the contrary.

Based on the Definition 3, the literature [4] gave the following correlation degree
formula about the hesitant fuzzy set:

] . .
AZ] 775
J=

Ci(h, )= T
max{ X (1", T (3")’)
! . p
XA
Co (b, ) = — F_l ) (5)
(2 @) X 00"

j=1 j=1

Among which, },zlf(i)’yg(/) denote the jth smallest element in the hesitant fuzzy set

hi, hy respectively, representing the elements number in hesitant fuzzy sets Ay, h;.
Give another correlation degree formula below:
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The above correlation degree formula (4)-(6) have the relationship as follows.

Property 1 For any two hesitant fuzzy sets hy, h,, the hesitant fuzzy correlation
degree formula Ci(hy,hy),i=1,2,3 satisfies the following relationship:

Co(h1, ) = C3(hy, hy) = Cy(hy, hy) (7)

Proof From the in equation vab < % <max{a,b},a,b>0, we can get

(£ G £ 0P S(5 010+ T 0802 smax(E 010 X (A7)

then
L o) ol L o) ol Lol ol
DIN AR Z 71 2 X
j=1 > j=1 j=1
1 1 - 1 . 1 . - 1 B 1 .
(21@?“)2 D) (59~ (z <y’f‘”>2+421<y2“>2>/z max{zwr, z (3"}
j= Jj= Jj= j= j= j=

Thus the conclusion is proved, and the proof is completed.

3 Determination Method of the Attribute Weight Based
on Correlation Degree

In the multi-attribute comprehensive evaluation, sometimes the experts group need
to give the weight of selected attributes. However, because of time pressure, the
lack of knowledge and data, and the decision-makers’ specialty limitation, the
attribute weight information provided by the expert group tends to be incomplete.
Therefore, how to carry out the schemes sorting and optimization according to the
known evaluation knowledge is an interesting and important question. In this paper,
we studied this kind of problem in the hesitant fuzzy environment, and put forward
a kind of solution based on the correlation degree.
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3.1 The Correlation Degree of the Hesitant Fuzzy Set
and Its Properties Considering the Credibility

Considering the importance of the credibility, the following words will propose
several hesitant fuzzy correlation formula based on the relative credibility and
absolute credibility on the condition of Definition 3, and discuss their relationship.

Definition 4 [11] For any two hesitant fuzzy sets h(x;),h(x;), k =max(k, k),
among which ki, k, denotes the elements number in %(x;),k(x;) respectively.
Vy; € h(x;) there is credibility ;=[0,1],i=1,2, then we call

( T(/) T(I )(l;(i)yg(i))

M~

1

k
T 7(j)\2 7(j) 7(j)\2
(1 (/)71(1)) i _Zl (12(1)72(1)) }

1 j=

(8)

Cl =

M» m

max{
j

the hesitant fuzzy correlation degree based on credibility. In which
y¥(j=1,2, ..., k) means the jth smallest element in A(x;)(i=1,2), and [V
the corresponding absolute credibility to ny).

Similarly, we can put forward the hesitant fuzzy correlation formula based on the

absolute credibility as follows:

means

k . . . .
PNGRHDICEY
Cl=—F" R )
t(j) 7(j)\2 T(j) 7(j)\27y\1
(X GO 2 @0y

j= j=1

—_

k L L
PAULASLED
Cl=— - (10)
( Z ( 7(1 T(l E T(/) /2
=1 =

J J

Property 2 For any two hesitant fuzzy set, the hesitant fuzzy correlation degree
satisfies the following relationship:

C3(hy, hy) > C3 (hy, ) > CF (hy, ha) (11)
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Definition 5 For any two hesitant fuzzy sets f(x;), (x2), k=max(ki, k2), among
which ki, k, denotes the elements number in %(x; ), h(x;) respectively. Vy; € h(x;)
there is credibility /; =10, 1],i=1,2, then we call

3 W)@

1

Cl= (12)

max( 3 (0710 3 @707

j=1
the hesitant fuzzy correlation degree based on credibility. In which
yf(j)(j= 1,2, ...,k) means the jth smallest element in h(x;)(i=1,2), lTO) means the
) 0

, and l(’ =nX —t— m means the corre-
Z 1

corresponding absolute credibility to y;

sponding relative credibility to yf(i). Similarly, we can put forward the hesitant

fuzzy correlation formula based on the absolute credibility as follows:

k ; ;
; (1970 (1920

2
(Y ( l(/ S Y ( l(/ 1/2
j=1 j=1
k
Z l(]) T(l)
o - (14)
(X W+ X @Wr?? e
j=1 j=1

Property 3 For any two hesitant fuzzy set, the hesitant fuzzy correlation degree
satisfies the following relationship:

Cl (i, hy) 2 C (hy, hy) > C) (b, hy) (15)

The selection of large, geometric mean and arithmetic mean in the correlation
formula reflect the decision-maker’s risk attitude, which is risk preference, disgust
and neutral. The decision-makers can choose different correlation formula based on
actual needs.
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3.2 Determination of the Attribute Weight

Consider the multi-index comprehensive evaluation problem in the hesitant fuzzy
environment. Let A={A;,A,, ...,A,} be the scheme set, G={G,G,, ...,G,} be

the index set. aij(i= 1,2,...,m;j=1,2, ...,n) denotes the aggregation value of

the jth attribute in the ith scheme, w= (wy,wy, ..., w,) is the weight vector of the
n

attribute, w; € [0, 1], Z wi=1, w" = (wy, w5, w:) is the optimal attribute

weight vector, w; eo,1], ¥ w;.k =1. H denotes the partial weight information
j=1

proposed by the expert group.

Method 1: If the decision-making group has no preference for the alternatives,

the scheme preference is not considered.

Suppose Cj(A;,A")(i=1,2,...,m) is the correlation between the scheme
A;i(i=1,2,...,m) and the ideal value A*. The definition of is in 2.1, and
A" =(d}, a5, ...,a,) is the set of the maximum attribute value in each scheme
aggregating from CIHFHA. In general, the actual evaluation value of the scheme
A;=(i=1,2,...,m) has a certain gap with the ideal value A", so the larger the
value of C; (A,-,A*), the more close A; is to A*, which means the better the scheme
A; is. Therefore, the reasonable weight should make Cy(A;,A")(i=1,2, ..., m) as
large as possible. Based on this, we can construct the optimization model to solve
the weight.

n
Model1 max E w;Ci (ay;. a; Z‘, 1(ay, q;), Z‘, wiCi(an, a;)) (16)
j=1 j=

Each scheme is coequal, so the scheme preference does not exist. Therefore, we can
aggregate the above optimization model to the single objective optimization model
according to the weight [14]:

max w;Ci(aj, a;
Model 2 igljz:l Crla4;) (17)

stweH

Model 2 can be easily solved by the single shape method used in the linear pro-
gramming model, and we can get the optimal solution w* = (w’f, w;, cee w:) as the
index weight vector.
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If the weight vector is unknown, we can utilize the following model to obtain the
weight vector:

- é} yo0 420
max Z Z w;Ci(ay, ,) z Z wj T .
Model 3 i=1=1 i=1j=1 max({y (1" T 05 (1)

n
s.t. lejz=1,wj20,j=1,2, c.n
i=

Without loss of generality, the correlation degree formula C(ay, a;f) in model 3 is
calculated according to formula (4). To solve the equation, we construct the
Lagrange Function:

M=
M=

L(w,A)=

i

W) + 53 =) (19)

1j

Calculating the partial derivative, and let them be 0. Then we have

Lwid) ZCl(aU, )+ w; =0

Sw;
! (20)
SL((\;:{J) — Z WJZ —1=0
j=1
Solve the equations, and we have
z Cl (all’ aj )
W= = (21)
n m b
2 (X Ci(ay,q))
j=1 i=1
Processing w; to unitization and the optimal attribute weight is
Z alj’ ]
W)= ——=1 (22)

¢i@aw@»
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Substitute the correlation formula (4) to the above formula, and we have

!
I
. i=1max{ ; (ay) § (@)}
w; = — J=12,...,n (23)
m 2 dij “;

[

)y v —
1 iS1max( ¥ (@) ¥ (@)
j=1

j=1

.
I ™M =
—
<
i

In particular, when I = 1, and the ideal values are the maximum value of each
attribute comprehensive values. Then

w%: i=1° ,j=1,2,...,n (24)

w; is the optimal attribute weight vector solved by optimization model con-
structed according to the correlation degree.

Method 2: Determination of the Attribute Weight Considering the
Scheme Preference

For the multi-attribute decision-making problems with credibility and the attribute
value from the hesitant fuzzy set, we propose the hesitant fuzzy information attri-
bute weight determination model with scheme preference, considering the
decision-maker’s subjective preference and objective preference. The

decision-making group gives the preference value I?,-(i =1,2,...,m) for the
scheme, and measure the scheme according to the attributes, and the hesitant fuzzy
decision-making matrix D;= (fi),,x,x, With credibility is worked out, A
denoting the kth hesitant fuzzy number of the jth attribute in the ith scheme. The
attribute value h;; in the scheme D, = (h;;),,,., can be seen as objective preference,

and the preference value h,-(i =1,2, ...,m) can be seen as the subjective prefer-
ence. Because of the influence of the decision-makers and decision-making envi-
ronment, there exists certain correlation between the subjective and objective
preferences. In order to make the decision-making more reasonable, the selection of
the attribute weight vector w= (w1, wy, ..., w,) should make the overall correlation
degree between the subjective and objective preferences the biggest. Therefore, we
propose the hesitant fuzzy attribute weight determination model considering the
credibility [11, 13]:
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n n Z (l(k l’\))(l(k) T())
max Y, C!(hy, h) =y = - wj
~ 1 r(k 2, ® 1(1»
Model 4 /=t —lmax{z SR a0 (2s)

S.t. zlw}=1,w,~zo,j=1,2, cen
=

Without loss of generality, the correlation degree formula C! (h;;, h ;) in model 4 is
calculated according to formula (12), reflecting the correlation between the sub-
jective and objective preference of decision-makers. The schemes are competing
fairly, and no preference relationship, so model 4 can turn to the single objective
planning model:

m n f(z(” A>)(,<k> _r_())
<\ Vi
max Z Z Cl( ij> ) = 2 k; (k) v, LI r(k wj
Model 5 ==l i=ty=tmax{y (7" X 07y
st Y wjz:l,wJ-ZO,j:l,Z, )
j=1
(26)
Then we have
) ; Cl(ay, a;)
Wi = (27)

Cl(ay,a;))

M=
||'[\/2§ -

Jj=1 i

4 Concluding Remarks

In order to get more reasonable result, we give the corresponding credibility to
represent the decision-maker’s familiarity with the field. This paper proposed
several kinds of optimization model to solve the attribute weight based on the
correlation degree considering the credibility, which could utilize the known
information effectively, and the calculated attribute weight would be more sub-
jective and reasonable. So the method has high practical value, and can be applied
to personnel management, supplier selection, evaluation of economic efficiency etc.
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Pan-uncertain Measure

Chao Wang, Minghu Ha and Xiaowei Liu

Abstract Probability measure, possibility measure and uncertain measure can
effectively deal with random phenomenons, fuzzy phenomenons, uncertainty
phenomenons in real-world correspondingly. In order to establish a unified tool to
handle random phenomenons, fuzzy phenomenons and uncertainty phenomenons,
pan-uncertain measure is defined by normality, pan duality, pan subadditivity. Then,
corresponding pan-uncertain product measure and pan-uncertainty space are given.
In the end, pan-uncertain variable and pan-uncertain distribution are defined and
discussed on pan-uncertain space.

Keywords Pan-uncertain measure * Pan-uncertain variable < Pan-uncertain
distribution * Uncertain measure

1 Introduction

The probability measure formulated axiomatically by Kolmogorov [1] in 1933 is a
non-negative, norm, countable additive set function, which is an effective tool to
deal with the random phenomenon in the real-world. While the additivity property
is too restrictive in some application contexts, that there exist more non-additive
set functions [2-9]. For example, possibility measure as an important non-additive
measure, emerged from the concept of fuzzy set [10], which was proposed by Zadeh
[2, 3] via membership function. It can measure the fuzzy events and process the
fuzzy phenomenon effectively.
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In addition to the random and fuzzy phenomenon, there also exist uncertainty
phenomenons in the real-world. Liu [9] wrote that “when the sample size is too
small (even no-sample) to estimate a probability distribution, we have to invite some
domain experts to evaluate their belief degree that each event will occur. Since
human beings usually overweight unlikely events, the belief degree may have much
larger variance than the real frequency, this phenomenon was named uncertainty.”
To deal with the above uncertainty phenomenon, uncertain measure and correspond-
ing uncertainty theory were founded by Liu [8] in 2007. Subsequently, uncertainty
theory has been applied into many aspects [11, 12].

Uncertain measure is a non-additive set function with normality, self-duality,
countable subadditivity, and product axioms. Both possibility measure with normal-
ity, fuzzy additivity and probability measure with normality, monotonicity, countable
additivity satisfy the first three axioms of uncertain measure, but probability measure
cannot be regarded as a special case of uncertain measure because it does not satisfy
the product axiom. The operator of probability product measure is multiplication *-’,
while the operator of uncertain product measure is minimization ‘A’. On the other
hand, though random, fuzzy and uncertainty are three different phenomenons, there
are also some relations. When the sample size is too small to estimate a probabil-
ity distribution, the uncertainty appears, we should deal with uncertainty theory [9].
When the sample size becomes large, the uncertainty disappears. Then, the prob-
lem becomes probabilistic (random). Besides, fuzzy and random can make up fuzzy
random phenomenons, and uncertainty and random can also make up uncertain ran-
dom phenomenons. Therefore, it is important to establish a unified tool to process the
above three phenomenons. Then, pan-uncertain measure is proposed with normality,
pan duality, pan subadditivity, and corresponding pan-uncertain theory is initially
founded, which can deal with random, fuzzy, and uncertainty phenomenons.

2 Preliminary

Let be €2 anonempty set, and be A a o-algebra over 2. Each element A € A in called
an event, and P(A) indicates the probability that A may occur. Probability measure
[1] P is a set function satisfying the following three axioms:

Axiom 1. P(Q2) = 1.

Axiom 2. P(A) > 0,VA € A.

Axiom 3. For every countable sequence of mutually disjoint events {4;},A; € A,

we have - .
P (UAl) =) P(A).
i=1 i=1

The triples (£2, A, P) is called a probability measure space. Let (£2,, A, P,), k =
1,2, ... be probability measure spaces. The probability product measure is defined by
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P QjAk) = i[lpk (A)

where A, are chosen from A,,k=1,2, ...
Zadeh [2, 3] introduce possibility measure to deal with fuzzy problems. It satisfies
the following three axioms:
Axiom 1. Pos(£) = 1 for the universal set £2.
Axiom 2. Pos(¢p) = 0 for empty set ¢.
Axiom 3. For every sequence events {4;}, we have

Pos <OA,-) = {O/Pos (Ai).

In order to deal with human uncertainty, Liu [8] proposed uncertain measure in
2007. Let I" be a nonempty set, and L be a o-algebra over I'. Each element A € 2
called an uncertain event, uncertain measure is interpreted as the personal belief
degree of the uncertain event A. Then, the uncertain measure is defined by
Axiom 1. M(I") = 1 for the universal set I.

Axiom 2. M(A) + M(A€) for any even A € L.
Axiom 3. For every countable sequence events {A;}, we have

M<D A,.> < gM (A;).

i=1

Let (F o Lik,Mk) ,k = 1,2, ... be uncertain spaces. Then, the uncertain product
measure M is given by

M (i[l Ak> = ng (A)

for each element A, € I.
Pan-uncertain Measure

In order to establish a unified tool to process random phenomenons, fuzzy phe-
nomenons and uncertainty phenomenons in the real-world, we first proposed pan-
uncertain measure based on two binary pan operators [13].

Definition 1 Let & and © be two binary pan operators on [0, co]. If for any
a,b,c,a;,b; € [0,0](i = 1,2), we have

1) a®b=b®a,a®b=>b0oa.
2) @ADL Bc=a®bDc),@Ob)Oc=addOc).
(3) alSbl,a2gb2:111@02Sblebz,GIQClZshl@bZ.
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(4) There exists a zero element 0, anda @0 =a;a© 0 =0.
(5) There exists an unit element I, anda @I =10a =a.
6) If {a,} C[0,],{b,} C[0,0]and lim a, < oo, lim b, < co. Then

n—oo n—oo

lim (an @ bn) = lim a, @ lim b,, lim (an 0] bn) = lim g, © lim b,.

n—0oo n—0o0

It is easy to find that ‘-’ and ‘A’ satisfy the pan operator ‘®’, ‘+” and ‘V’ satisfy
the pan operator ‘@’.

In the paper, let X be a nonempty set, and F be a o-algebra over X. Each element
A € F called a pan-uncertain event.

Definition 2 A pan-uncertain measure y is a mapping from 7 to [0, co] satisfying
Axiom 1. u(¢) = 0 for the empty set ¢, where 0 is a zero element.

Axiom 2. u(A) @ u(A°) = I for any pan-uncertain event A € F, where I is an unit
element.

Axiom 3. For every countable sequence pan-uncertain events A;, we have

H(QA,-) < éu (4;) -

In this paper, (X, F, u) is called a pan-uncertain space.
Let (X, Fi, ui).k = 1,2,... be pan-uncertain spaces. Then, the pan-uncertain
product measure is defined by

M<HAk> = @#k (Ak> (D
k=1 k=1
LetA,B € F and A C B. Then, the pan-uncertain measure is monotonic if
u(A) < u(B).
Property 1 u(X) = I for the universal set X.
Proof 1= pu(X) @ u(¢) = u(X) & 0 = u(X)
Property 2 u(A) < I for any pan-uncertain event A
Proof As u(A°) > 0, we have u(A) = u(A) ®0 < u(A) + u(A°) =1

Property 3 u(A; UA,) < u(A)) & u(A,) for any Pan-uncertain events A;, A,.

Proof Denote Ay =A, = - = ¢. As u <UAI.> <@ u(4;), we have
i=1 i=1



Pan-uncertain Measure 93

p(AUAy) = p OAi> < @# (A;) =n (A)) © u(A) ® (@”(Ai)>

() B (as).

Theorem 1 Let the operator ‘@’ be ‘+’. Then, the pan-uncertain measure y satisfies
monotonicity.

Proof If A C B, we have A° U B = X. Then,
I=uX)=uA“UB) < u(A°) + u(B) = I — u(A) + u(B) = u(A) < u(B)

Remark 1 When the operator ‘@’ is ‘V’, the pan-uncertain measure y does not sat-
isfy monotonicity sometimes. For example, let X = {xl,xz,x3}. A pan-uncertain
measure y is given by

u {xl} =04, u {xz} =08, u {x3} =1
u {xl,xz} =0.7,u {xl,x3} =1,u {xz,xS} =1
H {-xl’-x29x3} = 1?/" {d)} =0

It is obvious that
{2} C {x, x5}, while u{x,} > pf{x,x,}

Theorem 2 Let the operator ‘@’ be vV’ and I = 1. Then, the monotonic pan-
uncertain measure p is also a possibility measure.

Proof It is obvious that the zero element 0 = 0. Then we have
(@) =0, uX) = 1.
Since A; € |JA;,i=1,2,..., we have
i=1

umgSM<QA>:fQMMJSM<GADJ=LLM.

i=1

For every countable sequence pan-uncertain events {A;}, we have

u<Q&>sguM»
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by the use of the Axiom 3 of pan-uncertain measure. Then,

,u<QAi> = i\:c/l,l (A)).

i.e. the pan-uncertain measure satisfies the three axioms of possibility measure.
Remark 2 Tt is obvious that the pan-uncertain measure is also a uncertain measure
while the operator ‘@’ is ‘+’, the operator ‘©’ is ‘A’ and I = 1

For the operator ‘®’, both probability product measure and uncertainty product
measure satisfy the Eq. (1). It is that probability measure, possibility measure, and
uncertain measure are all the special case of pan-uncertain measure. Therefore, the
pan-uncertain measure indicates the pan level (probability, possibility, and uncer-
tainty) that pan-uncertain even will occur.

However, some pan-uncertain measure does not satisfy monotonicity such as the
example in Remark 1, and it is not probability measure, possibility measure or uncer-
tain measure. Since probability measure, possibility measure, and uncertain measure
are all monotonic, we mainly study the monotonic pan-uncertain measure in the rest
of the paper.

Theorem 3 Let u be a monotonic pan-uncertain measure. Then

(1) u(A,)) & u(A,) <I for any disjoint events A; and A,;
(2) lim pu (A UAi) = limpyu (A\Ai) = u(A) for every countable sequence pan-

uncertain events A; with lim p (Al.) =0.
11— 00

Proof (1) Since A; NA, =¢ = A, C AS, we have
n(A) @ p(A) S (A3) @A) =T
(2) Aspu(A) < u(AUA;) < u(A) @ u (A;). Then
p(A) < lim p (AUA;) < p(A) @ lim 4 (A) =u@).
Since A\A; C A = (A\A;) UA,, so

lim p (A\A;) < p(A) < lim 4 (A\A,) @ lim pu (A;) = lim p (A\A;).

3 Pan-uncertain Variables

Definition 3 Let u be a monotonic pan-uncertain measure. Pan-uncertain variable
is a measurable mapping from pan-uncertain space (X, F, ) to real number set R,
i.e. for any Borel set B, the set {w € X |£ (w) € B} is a pan-uncertain event.
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Definition 4 Let &, 5 be pan-uncertain variables on pan-uncertain space. Then

(1) If u {¢ < 0} = 0, the pan-uncertain variable & is nonnegative.
(2) If u {& <0} =0, the pan-uncertain variable £ is positive.
3) If u{& # n} = 0, the pan-uncertain variables &,  are almost equal.

Definition 5 The pan-uncertain distribution of pan-uncertain variable & is defined by

X)) =pu{&<x},x€ER

Property 4 The pan-uncertain distribution of pan-uncertain variable & satisfies

(1) 0< ) <L

(2) 9@) < @(y),Vx<y€ER

(3) px)=0=> u{&>x} =1I; While p(x) = I, we cannot get u{& > x} = 0.
Proof Itis obvious by the use of the properties of monotonic pan-uncertain measure.

Remark 3 1If the pan-uncertain measure does not satisfy monotonicity, the corre-
sponding distribution may not be monotonic (see Example 1). So, the pan-uncertain
variable is defined based on monotonicity pan-uncertain measure.

Example 1 Let the binary operator ‘@’ be ‘v’, I =1, and X = {x,x,,x;}. A pan-
uncertain measure is given by

U {xl} =0.8, u {xz} =04, u {x3} =1,
pu{xx} =07, u{xx3) = Lu{xyxs} =1,
U {xl,xz,x3} =1Lu{¢p}=0.

Then the variable

1, w=1x
(=12, 0=x,
3, 0=x3

has a non-monotonicity distribution as follows

0, x<1

o) = 08,1<x<?2
04,2<x<3°
1, x>3

Definition 6 Let &, be pan-uncertain variables on pan-uncertain space. Then

(1) the pan-uncertain variables &, 5 are identical distributed if

ul{E<x}=pu{n<x},vxeRrR.
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(2) the pan-uncertain variables &,  are said to be independent if

ulé<x,n<x}=u{é<x}ou{n<x},Vx€R.

Definition 7 Let &,&,, ..., &, be pan-uncertain variables on pan-uncertain space.
Then (§,,¢,, ...,¢&,) is called an n-dimension uncertain variable.
Definition 8 Let (¢,,&,,...,&,) be an n-dimension uncertain variables. Then the

joint uncertain dis