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Abstract. We report our methodological developments to investigate,
in a multi-center study using mean diffusivity, the tissue damage caused
by a severe traumatic brain injury (GSC < 9) in the 10 days post-
event. To assess the diffuse aspect of the injury, we fuse several atlases to
parcel cortical, subcortical and WM structures into well identified regions
where MD values are computed and compared to normative values. We
used P-LOCUS to provide brain tissue segmentation and exclude voxels
labeled as CSF, ventricles and hemorrhagic lesion and then automatically
detect the lesion load. Preliminary results demonstrate that our method
is coherent with expert opinion in the identification of lesions. We outline
the challenges posed in automatic analysis for TBI.

1 Introduction

Traumatic brain injury (TBI) remains a leading cause of death and disabil-
ity among young people worldwide and current methods to predict long-term
outcome are not strong. TBI initiates a cascade of events that can lead to
secondary brain damage or exacerbate the primary injury, and these develop
hours to days after the initial accident. The concept of secondary brain damage
is the focus of modern TBI management in Intensive Care Units. The imbal-
ance between oxygen supply to the brain tissue and utilization, i.e. brain tis-
sue hypoxia, is considered the major cause for the development of secondary
brain damage, and hence poor neurological outcome Monitoring brain tissue
oxygenation after TBI using brain tissue O2 pressure (PbtO2) probes surgically
inserted into the parenchyma, may help clinicians to initiate adequate actions
when episodes of brain ischemia/hypoxia are identified. The aggressive treat-
ment of low PbtO2 values (< 15 mmHg for more than 30 min) was associated
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 57–68, 2016.
DOI: 10.1007/978-3-319-30858-6 6



58 C. Maggia et al.

with better outcome compared to standard therapy in some cohort studies of
severe head-injury patients [1]. However, another study was unable to find similar
benefits to patient outcome [2]. We are in the process of starting a randomized
controlled multi-center trial (23 centers, 400 patients) in order to assess the
impact of such therapeutic strategies (standard vs PbtO2-based).

MRI is an excellent modality for estimating global and regional alterations in
TBI and for following their longitudinal evolution [3]. To assess the complexity
of TBI, several morphological sequences are required: FLAIR (Fluid Attenu-
ated Inversion Recovery) and T2-weighted images for visualizing respectively
non hemorrhagic lesions and hemorrhagic lesions, and 3D T1-weighted image
(such as MPRAGE) for assessing volume loss. Moreover, diffusion tensor imag-
ing (DTI) offers the most sensitive modality for the detection of changes in the
acute phase of TBI [4,5] and increases the accuracy of long-term outcome pre-
diction compared to the available clinical/radiographic pronostic score [6]. Mean
Diffusivity (MD) or Apparent Diffusion Coefficient (ADC) have been widely used
to determine the volume of ischemic tissue, and assess intra- and extracellular
conditions. A reduction of MD is related to cytotoxic edema (intracellular) while
an increase of MD indicates a vasogenic edema (extracellular). Changes of MD
are expected with severe TBI. The volume of lesions on DTI shows a strong
correlation with neurological outcome at patient discharge [6]. We consider a
clinically relevant criterion to be the volume of vulnerable brain lesions after
TBI, as previously suggested [7]. In consequence, we need an automatic segmen-
tation method to assess the tissue damage in severe trauma (GSC < 9), acute
phase i.e. before 10 days after the event.

There are only a few studies that investigated alterations in TBI, mainly
on moderate or mild TBI (Glasgow score > 12) (see [8] for a review) and very
few on severe TBI, in chronic stage i.e. more than several months post-injury
[9–13] or acute phase, less than 10 days post-injury [6,14]. Clearly, current pro-
posed methods lack sufficient robustness to capture TBI-related changes without
excessive user input [15]. Skull deformation, the presence of blood in the acute
phase, the high variability of brain damage that excludes the use of anatomical a
priori information and the diffuse aspect of brain injury affecting potentially all
brain structures render TBI segmentation particularly demanding. To assess the
diffuse aspect of the injury, the brain is firstly divided into ROIs using an atlas
[6,9,16] or multiple atlases [17]. Then, a selection of the structures frequently
implicated in TBI such as thalamus, putamen, brainstem and occipital cortices is
considered [13,17]. The methods proposed in the literature are mainly concerned
with volumetric changes following TBI and scarcely report lesion load.

In this paper, we report about our methodological developments to assess
lesion load in severe brain trauma in the entire brain. We use P-LOCUS [18] to
provide brain tissue segmentation and exclude voxels labeled as CSF, ventricles
and hemorrhagic lesion. We propose a fusion of several atlases to parcel cortical,
subcortical and white matter (WM) structures into well identified regions where
MD values can be expected to be homogenous. Abnormal voxels are detected
in these regions by comparing MD values with normative values computed from
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healthy volunteers. The preliminary results, evaluated in a single center, are a
first step in defining a robust methodology intended to be used for in multi-center
studies.

2 Materials and Methods

2.1 Patients

The patients (n = 5) had a GCS < 9 with a diagnosis of severe trauma. The con-
trol group (n = 2) had no evidence of a past or present brain trauma. The study
was approved by the Institutional Review Board at the Hospital of Marseille and
informed consents were obtained prior to participation directly from the partici-
pants (controls) or next of kin (patients). Compared to the standard CT scan, MR
imaging allows to detect more brain lesions. For this reason, the participation to
this trial may offer benefits to each individual that largely outweighs the risks.

2.2 Data Acquisition

Images were acquired on a Siemens Verio 3 T system whole body scanner (CHU
Marseille-Timone). The following morphological sequences were acquired: axial
FLAIR (TR/TE/TI:7840/96/2500 ms, 27 contiguous slices, 0.7 × 0.7× 5 mm3),
and T2 Susceptibility Weighted-Imaging (TR/TE: 35/20 ms, 0.8× 0.8×
1.6 mm3), 3D sagittal T1-weighted sequence (MPRAGE,TR/TE/TI: 2300/2.98/
900 ms, 1 × 1 × 1 mm3). In addition, DTI was acquired in an axial plane per-
pendicular to the main field B0. The DTI parameters used were: field of view of
300 mm, matrix size 96 96, and slice thickness 2 mm (resulting in nearly isotropic
voxels). Magnetic field gradients were applied in 63 directions with a value of
1000 mT/m.

2.3 Image Processing

Preprocessing. All MRI scans were reviewed to check for motion and other
artifacts. T1-weighted and FLAIR images were processed using P-LOCUS, a
Bayesian HMRF approach for tissue and lesion segmentation [18] and resam-
pled at a resolution of 2× 2× 2 mm3. DTI images were first denoised [19] and
preprocessed using the FSL software1. The images were corrected for geometric
distortions caused by Eddy currents and intensity inhomogeneity. The diffusion
tensor was estimated, and the local diffusion parameter MD was calculated for
the entire brain in each patient and control. These parameters were computed
from the three estimated eigenvalues that quantify the parameters of water dif-
fusion in three orthogonal directions. Brain extraction, coregistration and resam-
pling were successfully realized using P-LOCUS even in cases exhibiting large
skull deformations.

1 http://www.fmrib.ox.ac.uk/fsl/.

http://www.fmrib.ox.ac.uk/fsl/
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SegmentationModel Specification. We consider a finite set V of N voxels on
a regular 3D grid. We denote by y = {y1, . . . ,yN} the intensity values observed
respectively at each voxel. Each yi = {yi1, . . . , yiM} is itself a vector of M = 2
intensity values corresponding toT1-weighted and FLAIR sequences. The segmen-
tation task is to assign each voxel i to one of K classes considering the observed
features data y. This assignment is considered latent data and is denoted by z =
{z1, . . . , zN}. Typically, the zi’s corresponding to class memberships, take their
values in {e1, . . . , eK} where ek is a K-dimensional binary vector whose kth com-
ponent is 1, all other components being 0. We will denote by Z = {e1, . . . , eK}N
the set in which z takes its values. We considered 5 classes, 4 for tissues: WM, grey
matter (GM), and cephalo spinal fluid (CSF) divided in two classes (ventricles and
extra-ventricular), plus an additional lesion class. The set of voxels V is associated
to a neighborhood system. Spatial dependencies between voxels are modeled by
assuming a Markov Random Field (MRF) prior. Denoting ψ = {η, φ} additional
parameters, we assume that the joint distribution p(y, z;ψ) is a MRF with the fol-
lowing energy function:

H(y, z;ψ) = HZ(z; η) +
∑

i∈V

log g(yi|zi;φ), (1)

where the g(yi|zi; φ)’s are probability density functions of yi.
The energy decomposes into a data term and missing data term further

specified below. For brain data, the data term
∑

i∈V

log g(yi|zi; φ) in (1) corre-

sponds to the modelling of tissue dependent intensity distributions. For our
multi-dimensional observations, we consider M-dimensional Gaussian distribu-
tions with diagonal covariance matrices. For each class k, (μk1, . . . , μkM ) is the
mean vector and {sk1, . . . , skM} the covariance matrix components. We will use
the notation μm = t(μkm, k = 1 . . . K) and sm = t(skm, k = 1 . . . K). When zi = ek
then G(yim; 〈zi, φm〉) and G(yim; 〈zi, μm〉, 〈zi, sm〉) both represent the Gaussian dis-
tribution with mean μkm and variance skm. The entire set of Gaussian parame-
ters is denoted by φ = {φkm, k = 1, . . . K, m = 1, . . . , M}. Our data term is then

defined by setting g(yi|zi; φ) ∝
M∏

m=1

G(yim; 〈zi, φm〉).
The missing data term HZ(z;β) involving z in (1) is set as follows. The

dependencies between neighboring Zi’s are modeled by further assuming that
the joint distribution of {Z1, . . . , ZN} is a discrete MRF on the voxels grid :

P (z;β) = W (η)−1 exp (−HZ(z; η)) (2)

where η is a set of parameters, W (η) is a normalizing constant and HZ is a
function restricted to pair-wise interactions,

HZ(z; η) = −
∑

i∈S

ztiγ −
∑

i,j
i∼j

ztiBzj ,

where we write zti for the transpose of vector zi and i ∼ j when voxels i and j
are neighbors. The set of parameters η consists of two sets η = (γ,B). Parameter
γ is a K−dimensional vector which acts as weights for the different values of zi.
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When γ is zero, no tissue is favored, i.e. for a given voxel i, if no information
on the neighboring voxels is available, then all tissues have the same probability.
Then, B is a K×K matrix that encodes interactions between the different classes.
If in addition to a null γ, B = b×IK where b is a real scalar and IK is the K ×K
identity matrix, parameters η reduce to a single scalar interaction parameter b
and we get the Potts model traditionally used for image segmentation.

Note that the standard Potts model is often appropriate for classification
since it tends to favor neighbors that are in the same class. However, this model
penalizes pairs that have different classes with the same penalty, regardless of the
tissues they represent. In practice, it may be more appropriate, to encode higher
penalties when the tissues are known to be unlikely neighbors. For example, the
penalty for a white matter and CSF pair is expected to be greater than that
of a grey matter and CSF pair, as these two classes are more likely to form
neighborhoods.

In practice, these parameters can be tuned according to experts, a priori
knowledge, or they can be estimated from the data. More generally, when prior
knowledge indicates that, for example, two given classes are likely to be next to
each other, this can be encoded in the matrix with a higher entry for this pair.
Conversely, when there is enough information in the data, a full free B matrix
can be estimated and will reflect the class structure (i.e. which class is next to
which as indicated by the data) and will then mainly serve as a regularizing term
to encode additional spatial information.

For the distribution of the observed variables y given the classification z, the
usual conditional independence assumption is made. It follows that the condi-
tional probability of the hidden field z given the observed field y is

P (z|y;ψ, η) = W (η)−1 exp

(
−HZ(z; η) +

∑

i∈S

log g(yi|zi, φ)

)
.

Parameters are estimated using the variational EM algorithm which provides
a tractable solution for non trivial Markov models [20].

Atlas-Based Approach. Given the variability in the spatial extent and the
magnitude of the injury in case of severe TBI, the use of values averaged from
large regions of WM would not allow the accurate detection of ‘abnormal’ values.
Indeed, if the lesions are focal, the detection power is hampered by the averaging
with healthy tissues values. The standard way is to use an atlas-based approach
where MD at each voxel is compared with normative values computed from
homogeneous regions of interest (ROIs) of a healthy volunteer’s brain acting as
a reference. We expect MD values to be homogenous inside well identified brain
regions defining local normative values. In order to be as exhaustive as possible,
we combined two atlases found in the literature. First, the Neuromorphomet-
rics atlas2, as provided with SPM123 for academic use, was used to demarcate
2 http://www.neuromorphometrics.com/.
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.

http://www.neuromorphometrics.com/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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cortical and sub-cortical regions (mainly GM). For WM regions, we used the
ICBM DTI81 atlas, largely used in tractography studies to demarcate the prin-
cipal fiber tracts. In the case of overlapping labels, the ICBM DTI81 label was
selected. However these tracts represent only a small part of the WM volume. To
our knowledge there is no atlas dividing the entire volume of WM volume into
anatomically meaningful subregions. Consequently, we automatically divided the
remaining volume into cubes of 20 mm3. This size allows to obtain sufficiently
local information while maintaining WM regions large enough to compute reli-
able normative values. Our combined atlas defines 238 ROIs.

Fig. 1. Overview of the processing pipeline. After denoising, we used PLOCUS for brain
extraction and tissue segmentation, FSL for mean diffusion (MD) map creation and
SMP12 for realignment to a template (normalization). The atlas and the brain tissue
maps were combined to define 238 ROIs where detection of lesion was performed.

Our final combined atlas was then realigned (non-linear deformation using
P-LOCUS) to our control subject’s images and MD values were computed for
each ROI. Figure 1 shows the different processing steps. In the literature, for
lesion detection, authors usually transform DTI scalar maps (mostly FA) into z-
score maps to detect extreme values [3]. Given that MD value distribution is not
normal, the z-score would give a biased measure of extreme values. To avoid this
effect we chose to use two different thresholds: percentile-based and size-based.
By fixing percentile thresholds α1 for minimal and α2 for maximal values, we
identified clusters of extreme values. The skewness of the distribution is directed
toward high values of MD and knowing these values are a marker of cell death
and vasogenic edema, which are very frequent in severe TBI, we used a more
lenient threshold for α2. Figure 2 indicates the form of the MD distribution for
our two control subjects.

We considered lesions as clusters with a size higher than a given threshold β. P-
LOCUS [18] uses T1-weighted and FLAIR images conjointly to perform brain seg-
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Fig. 2. Histogram of MD values for control subjects. Percentile thresholds α1 for min-
imal and α2 for maximal values.

mentation in five classes WM, GM, Lesion and CSF (ventricles extra-ventricular).
Voxels labeled as CSF and hemorrhagic lesion were automatically excluded. The
three thresholds were empirically set on control data to keep the lesion volume
under 1% of the brain volume. α1 was fixed at the 2nd percentile, α2 at the
97.5th percentile (i.e. 2.5% for the highest values) and β at 21 contiguous voxels
(i.e. 168 ml). These thresholds were the used for lesion detection on patient data.

Manual Approach. To quantify the volume of lesions, three neuroradiologists
(OH, CB and YT) with extensive experience in lesion assessment manually seg-
mented the lesion area using the MRIcron software4. They underwent a specific
intensive training to visually detect focal lesions in MD images. Focal lesions
included any focal regions of abnormal signal in the MD map. The task was
time-consuming: for each subject (n = 5) and each rater (n = 3), fifty slices were
examined to detect high values and low values of MD. The raters were unsatisfied
with their results: they were not familiar with such precise manual delineation
and despite training the task remained particularly difficult because of low con-
trast and low spatial resolution in the MD images compared to FLAIR and
T1-weighted images. To obtain a reference from these segmentations we used
the STAPLE algorithm [21]. The algorithm considers our collection of segmen-
tations and computes a probabilistic estimate of the true segmentation and a
measure of the performance level represented by each segmentation. To assess
the inter-rater variability we also computed three STAPLE segmentation refer-
ences using manual results in a leave-one-out strategy. We used four evaluation
measures to evaluate the quality of the automatic segmentation compared to the
reference ground-truth: The Dice coefficient (DC) denotes the volume overlap
(DC value of 0 indicates no overlap, a value of 1 perfect similarity), the aver-
age symmetric surface distance (ASSD) the surface fit (the lower the better),
the Hausdorff distance (HD) the maximum error (the lower the better) and
precision & recall (see details in evaluation measures computation in http://
www.isles-challenge.org/).
4 http://www.mccauslandcenter.sc.edu/mricro/mricron/.

http://www.isles-challenge.org/
http://www.isles-challenge.org/
http://www.mccauslandcenter.sc.edu/mricro/mricron/
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Fig. 3. Automatic and manual lesion delineation for five subjects (S1 to S5). For each
subject: left: automatic delineation, right: manual delineation. Green: abnormal low
MD values, Red: abnormal high MD values (Color figure online).

3 Results

Figure 3 shows for our five patients, on transverse views, the reference segmen-
tation computed using STAPLE from three rater segmentations and the corre-
sponding automatic segmentation. The normative values were computed from
two controls in each of the 238 ROIs to keep lesion below 1% for controls.

Figure 4 indicates the volumetric comparison between manual vs automatic
delineation for high MD and low MD values respectively for our five patients.
Using STAPLE, for each subject, we computed three references from the manual
segmentation provided by two raters among three. This allows to highlight the
important inter-rater variability (for instance see for S2). Volume agreements
between manual and automatic results are not perfect. Clearly, the automatic
delineation minimizes high MD values (Fig. 4, left). This is confirmed by the
low precision values with high recall values for high MD (see Table 1). Table 1
reports the values for our different evaluation measures for our five subjects. To
our knowledge no such values are available in the literature for a comparison.

Fig. 4. Left: Automatic vs manual high MD values in voxels. Right: Automatic vs
manual low MD values in voxels. Using a leave-one-out strategy we obtained three
values for each subject. Black line correlation slope.
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Table 1. Measures to evaluate the quality of the automatic segmentation compared
to the reference ground-truth. DC: the Dice coefficient, ASSD: the average symmetric
surface distance, HD: the Hausdorff distance

Evaluation measure S1 S2 S3 S4 S5

– Low High Low High Low High Low High Low High

DC 0.05 0.34 0.36 0.36 0.26 0.39 0.21 0.42 0.15 0.58

ASSD (in mm) 21.48 6.71 5.24 4.14 7.99 4.28 6.85 6.74 10.37 3.06

HD (in mm) 83.76 35.78 46.39 45.61 50.99 39.45 44.36 44.77 48.17 56.67

Precision 0.03 0.29 0.33 0.23 0.20 0.28 0.28 0.31 0.37 0.45

Recall 0.10 0.42 0.42 0.85 0.37 0.63 0.17 0.65 0.10 0.82

4 Discussion

In our study, vulnerable brain lesions were defined based on morphological images
and by abnormal values of MD using DTI to distinguish between cytotoxic and
vasogenic edema. We used specific analysis of each individual case because the
spatial distribution of brain trauma lesion is highly heterogeneous and can not
be revealed by a group study. We compared lesion volume delineation using a
multi-modal atlas-based automatic method to that of manual delineation by three
neuroradiologists. Our results show that the proposed method allows identifica-
tion of some lesions in severe TBI in coherence with that defined by our experts.
Several measures that assess the quality of the automatic segmentation com-
pared to the reference ground-truth (see Table 1) reveal that some discrepan-
cies exist between manual and automatic methods. Clearly, these results should
be improved. To our knowledge no such measures have been published yet for
automatic lesion detection in severe TBI. These values may serve as a starting
point for comparison with alternative techniques. Our trained experts reported
that there were not totally confident with their final rating. We observed that
lesions were particularly difficult to segment manually due to low contrast and
low spatial resolution in diffusion images compared to FLAIR or T1-weighted
images; these latter being more familiar to the experts. This was reflected by
the high inter-rater variations across the experts (see Fig. 4). We used STA-
PLE to compute a probabilistic estimate of the true segmentation. However, the
low number of raters involved (n = 3) and high inter-rater variability limit the
validity of such a “ground truth”. This could explain in part the observed dis-
crepancies between manual vs automatic approaches. The manual task required
a specific training and was time-consuming. Consequently, it was difficult to
involve more trained experts to define an “expert consensus” and limit bias.
In this study we considered mean diffusivity (MD), a physiological parame-
ter extracted from DTI scans, to distinguish between vasogenic and cytotoxic
edema. While MD is sensitive to sparse small lesions with low MD values (cor-
responding to high-level intensity spots in FLAIR) and allows physical quantifi-
cation of the lesion in terms of water molecule diffusivity alteration, high-level
contrast in FLAIR images allows an easy delineation of large damaged regions
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with high MD values. Further work should be done to improve brain injury
characterisation in exploiting such complementary information with our auto-
matic method.

The methodological difficulties in performing MRI in the acute phase of
severe TBI explain the rarity of studies for this period. Only two studies [6,14]
address the problem of severe trauma (Glasgow score < 9) in acute phase i.e.
less than 10 days post-injury. The former, a multi-center study, aimed to define a
long-term outcome prediction from quantitative parameters extracted from DTI
in specific ROIs in white matter. The latter was concerned with the evolution
of ADC values in the traumatic lesions. No quantitative measurement of the
lesion volume was reported for these two studies. Compared to Tumor, Stroke
or Multiple Sclerosis, a few papers addressed automatic lesion segmentation in
TBI5. The majority of TBI studies report volume changes computed in specific
ROIs. Few approaches report the lesion load [15,22]. Because the spatial distri-
bution of the lesion cannot be anticipated, our approach considered the entire
brain without any a priori spatial hypothesis. We used two atlases to parcel the
entire brain. MD was then computed in each ROI. An MD-driven alternative will
be to search for homogenous MD territories clustering directly from the set of
control DTI. Strangman et al. [13] reported inadequate skull stripping and poor
subcortical structure segmentation with the most common method, FreeSurfer.
Using non-linear deformation of a priori tissue probability maps on individ-
ual T1-weighted and FLAIR images we successfully used P-LOCUS to provide
brain tissue segmentation and exclude voxels labeled as CSF in ventricules and
hemorrhagic lesions. To detect outlier/abnormal MD values, we defined norma-
tive values on normal controls. Such normative values are highly scanner and
sequence dependent and, as in our multi-center study, should be defined for each
center involved. Because the influence of age on MD values, the range of normal
control age should be matched with TBI patients. The influence of the size of the
normal control population on the norm definition should be evaluated. Recently,
[23] proposed a method to harmonize diffusion MRI data across multiple scan-
ners. Several rotation-invariant features are computed from spherical harmonic
basis functions and used to estimate a region-based linear mapping between
signal from different scanners. Such a method might be used to define norma-
tive values in pooling normal controls from different sites. A poor estimation of
the normative mean in each ROI of the control group biases the detection of
aberrant values [22]. Instead of an atlas-based approach, a voxel-based approach
to segment abnormal values directly from individual diffusion-weighted images
could be introduced avoiding the definition of normative values. However, such
an approach remains difficult due to the low contrast present in these images.

In conclusion, this paper reports the image processing steps and the diffi-
culties encountered of the first program aiming to assess the impact of a thera-
peutic strategy based on PbtO2 in monitoring the volume of severe post-trauma

5 Between 2004–2014, more than 500 papers were published on lesion segmentation for
each of these pathologies and only 53 for TBI. Source WebOfScience with keywords:
Brain and MRI and (Segmentation or Classification) and ‘Pathology’.
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cerebral lesions and on neurological outcome in a randomized controlled trial.
We hypothesise that early monitoring of brain oxygenation with PbtO2 can
reduce the volume of vulnerable brain lesions and, possibly, improve neurolog-
ical outcome in TBI patients from an unfavorable to a favorable neurological
outcome. These preliminary results obtained on a small number of subjects in
one center are encouraging and a larger evaluation including more controls and
patients is undergoing.
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