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Abstract. Accurate segmentation of ischemic lesions is still a challeng-
ing task. In this paper, we propose a framework to extract ischemic
lesions from multi-spectral MR images. In the proposed framework,
MR images of each modality are first segmented into brain tissues and
ischemic lesions by weighting suppressed fuzzy c-means. Preliminary
lesion segmentation results are then fused among all the imaging modali-
ties by majority voting. The fused segmentation results are finally refined
by a three phase level set method. The level set formulation is defined on
multi-spectral images with the capability of dealing with intensity inho-
mogeneities. The proposed framework has been applied to the MICCAI
2015 ISLES challenge. According to the ranking rules of the challenge,
the proposed framework took the second place and the fourth place in
sub-acute lesion segmentation and acute stroke estimation, respectively.

Keywords: Lesion segmentation · Fuzzy c-means · Label fusion · Level
set

1 Introduction

Ischemic stroke generally manifests as a loss of neurological brain function due
to the sudden loss of blood circulation to an area of the brain [15]. It is by far the
most common type of stroke and has become to be the most frequent cause of
permanent disability in adults worldwide and the third leading cause of death in
industrialized countries [17]. Magnetic resonance imaging (MRI) has become the
modality of choice for diagnosing and evaluating ischemic stroke in clinic due
to its excellent soft tissue contrast and multi-spectral imaging capability [11].
As ischemic stroke lesions usually change over time and remote and secondary
changes may also occur in response to the injury, it is therefore necessary to
characterize the injury and changes with different acquisition parameters and
distinctive spectral signatures [4].
c© Springer International Publishing Switzerland 2016
A. Crimi et al. (Eds.): BrainLes 2015, LNCS 9556, pp. 233–245, 2016.
DOI: 10.1007/978-3-319-30858-6 20



234 C. Feng et al.

In clinical practice, diffusion weighted imaging (DWI), T1-weighted (T1w)
and T2-weighted (T2w) images, and fluid attenuated inversion recovery (FLAIR)
images are often used to diagnose ischemic stroke, locate the lesions and monitor
their progression [15]. In the acute phase of stroke, DWI is particularly sensitive
to detect the anatomical location and infarcted territory of the lesions and reveal
differentiation of brain tissues with hyperintense signal [5]. The lesions appear
slightly to strongly hyperintense in T2w and FLAIR images for stroke in sub-
acute stage, whereas they are decreasingly hyperintense in DWI images and
hypointense in T1w images [13]. For chronic ischemic stroke, lesions appear as
hyperintense in FLAIR images with some heterogeneity within the lesion due to
ongoing gliosis and demyelination [14]. In contrast, intensities of ischemic lesions
are hypointense in T1w images for stroke in the more chronic phase [9]. Figure 1
shows an example of intensity characteristics of ischemic stroke lesions that are
in the sub-acute phase.

Fig. 1. Intensity characteristics of ischemic stroke lesion in different imaging modalities.
Images come from http://www.isles-challenge.org/.

Above all, early diagnosis of ischemic lesions in multi-spectral magnetic reso-
nance images is particularly important for ischemic stroke prevention and treat-
ment [13]. But it is really challenging for neuro-radiologists to read the images
slice-by-slice [18]. Although lesion segmentation is able to rescue radiologists
from the labor of image reading, manual segmentation is tedious, time consum-
ing, and prone to intraobserver and interobserver variability [11]. Therefore, a
few semi-automatic or automatic segmentation methods have been proposed in
the literature [6,7,11,16]. However, due to varieties of possible shapes and loca-
tions of ischemic lesions, and noise and intensity inhomogeneity in MR images,
segmentation of ischemic lesions is still a challenging task [8].

In this paper, we propose a framework to automatically segment ischemic
stroke lesions in multi-spectral images (e.g. DWI, T1w, T2w, and FLAIR). The
rest of this paper is organized as follows. The proposed framework is described
in Sect. 2. Experimental results and quantitative evaluation are given in Sect. 3.
This paper is finally summarized and discussed in Sect. 4.

http://www.isles-challenge.org/
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2 Method

In this paper, we suppose that the input images of different modalities have
already been rigidly registered in the same coordinate system and non-brain
tissues have already been removed from the images. Lesion segmentation is
then performed by the proposed framework which consists of three major steps:
(1) preliminary segmentation, (2) segmentation fusion, and (3) boundary refine-
ment. More details will be given in the following subsections.

2.1 Preliminary Segmentation of Lesions and Normal Tissues

Given an image Ii from the i-th imaging modality, the image characterizes an
intrinsic physical property of human brain, which ideally takes a specific inten-
sity for each type of brain tissue (white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF)) and lesion. That is to say, the image Ii approximately
takes distinct constant values ci1, ci2, ..., and ciN for N − 1 brain tissues and
the lesions in disjoint regions Ω1, Ω2, ..., and ΩN , i.e.

Ii(x) ≈ cij for x ∈ Ωj. (1)

where j = 1, 2, ..., N . Note that the variable i takes all integers in the interval
of [1, L] where L is the total number of imaging modalities. It is obvious that
intensities in the set Iij = {Ii(x) : x ∈ Ωj} form a cluster with the cluster
centroid mij ≈ cij . This clustering property indicates that intensities in the
image domain Ω can be classified into N clusters.

To classify these intensities, we define

Fi =
∫

Ω

N∑
j=1

λij ‖ Ii(x) − cij ‖2 uq
ij(x)dx (2)

where ‖ ∗ ‖ is the Euclidean distance between measured intensity Ii(x) and
the cluster centroid cij , q is any real number that is not less than 1, λi1, λi2,
..., λiN are positive weighting coefficients for the N clusters, and uij(x) is the
membership function that indicates whether voxel x belongs to the j-th tissue.
In fact, the smaller parameter λij is, the greater the j-cluster is, and vice versa.

It is obvious that the proposed method, which we call weighting suppressed
fuzzy c-means, is a generalization of the standard fuzzy c-means. Note that the
objective function defined above is the same with standard fuzzy c-means if λi1,
λi2, ..., λiN are all set to be 1. This objective function is minimized when high
membership values are assigned to voxels, intensities of which are close to the
centroid, and low membership values are assigned to the voxels if they are far
from the centroids under the condition

∑N
j=1 uij(x) = 1 where uij(x) ∈ [0, 1].

For convenience, we represent the constants ci1, ci2, ..., and ciN with a vector
ci = (ci1, ci2, ..., ciN ), the member functions ui1, ui2, ..., and uiN with a vector
ui = (ui1, ui2, ..., uiN ). Thus, the vectors ci and ui are the variables of the energy
function Fi, which can therefore be written as Fi(ci,ui).
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Energy minimization of Fi(ci,ui) can be achieved by alternately minimiz-
ing it with respect to each of its variables ci and ui. For fixed ui, we mini-
mize Fi(ci,ui) with respect to ci by resolving ∂Fi(ci,ui)

∂ci
= 0 where 0 is the

constant vector with value 0. It is obvious that Fi(ci,ui) is minimized at
ĉi = (ĉi1, ĉi2, ..., ĉiN ), given by

ĉij =

∫
Ω

Ii(x)uq
ij(x)∫

Ω
uq

ij(x)
(3)

where j = 1, 2, ..., N .
For the case q > 1, it can be shown that Fi(ci,ui) is minimized at ûi(x) =

(ûi1(x), ûi2(x), ..., ûiN (x)) for fixed ci, given by

ûij(x) =

(
λij‖ Ii(x) − cij ‖2) 1

1−q

∑N
k=1 (λik ‖ Ii(x) − cik ‖2) 1

1−q

(4)

where j = 1, 2, ..., N .
For the case q = 1, it can be shown that the minimizer ûi(x) =

(ûi1(x), ûi2(x), ..., ûiN (x)) is given by

ûij(x) =
{

1, j = jmin(x)
0, j �= jmin(x) j = 1, 2, ..., N (5)

where
jmin(x) = argmin

j
(λij ‖ Ii(x) − cij‖2). (6)

In fact, segmentation of WM, GM, CSF, and stroke lesions in this step is per-
formed in an iterative process, which will be described in detail in Sect. 2.4.

2.2 Fusion of Preliminary Segmentation Results of Lesions

Label fusion is one of the most important steps for multi-spectral segmentation
due to its significance in merging useful knowledge of different labels [3]. In the
literature, many efforts have already been devoted to developing effective and
accurate label fusion strategies [2,3,12]. As one of the well known label fusion
strategies, majority voting is much more straightforward and concise [1]. There-
fore, majority voting is used in the proposed framework to fuse segmentation
results of ischemic stroke lesions obtained by the above described fuzzy c-means
method. The judge rule is that candidate voxels are regarded as lesions only
if (1) they are considered as brain lesions in FLAIR images, and (2) they are
viewed as brain lesions in more than 1 imaging modality beside FLAIR.

2.3 Boundary Refinement of Brain Lesions Using 3-Phase Level Set

Since miss- and over- segmentations may arise in the above mentioned two steps.
A three phase level set method is proposed in this subsection as the third step to
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refine segmentation boundaries of the lesions. The proposed method can be seen
as an extension of the local intensity clustering (LIC) model with the capability
of segmenting ischemic stroke lesions from multi-spectral MR images [10].

Before defining the energy formulation of the proposed level set method, we
first view inhomogeneous intensities of an observed MR brain image Ii coming
from the i-th imaging modality, which is defined on a continuous domain Ω ⊂ R3,
as a product of the true image Ji and the bias field bi, i.e.,

Ii(x) = bi(x)Ji(x) + ni(x) (7)

where x ∈ Ω and ni is the zero-mean additive noise.
Consider a relatively small spherical neighborhood with a radius ρ centered

at a given point y ∈ Ω, defined by Oy � {x :| x − y |≤ ρ}. The bias field
bi in the neighborhood can be ignored due to its slowly and smoothly varying
property. Taking into account the constant intensity cij of the true image Ji in
Ωj as mentioned in Sect. 2.1, we obtain

bi(x)Ji(x) ≈ bi(y)cij for x ∈ Ωj ∩ Oy. (8)

This local intensity clustering property allows us to apply the standard K-means
algorithm in the following continuous form to classify these local inhomogeneous
intensities in the neighborhood Oy. Taking all images of the L imaging modalities
into account, we define

Ey =
N∑

j=1

γj

∫
Oy

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

uj(x)dx (9)

where γj is a weighting coefficient used to control size of the j-th tissue, χi is
a weighting coefficient for images from the i-th imaging modality, and uj is the
binary membership function of Ωj . On account of the inherent property of the
membership function uj in representing Ωj , Ey can be rewritten as

Ey =
N∑

j=1

γj

∫
Ωj

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dx (10)

where Kσ is a nonnegative kernel function with the property
∫

|u|≤ρ
Kρ(u) = 1

and Kρ(u) = 0 for u /∈ Oy.
To ensure the partition {Ωj}N

j=1 of the entire domain Ω to be the one such
that Ey is minimized for all y in Ω, we minimize the integral of Ey with respect
to y over the entire image domain Ω and define

E =
∫

Ω

⎛
⎝ N∑

j=1

γj

∫
Ωj

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dx

⎞
⎠ dy. (11)

As our goal is to segment brain lesions, we consider the lesions as one region,
brain tissues (WM, GM, and CSF) as the second region, and the background as
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the third region. Let H be the Heaviside function and φ1 and φ2 be two level
set functions both defined on Ω. We therefore use M1(φ1, φ2) = (1−H(φ1))(1−
H(φ2)), M2(φ1, φ2) = H(φ1)(1 − H(φ2)), and M3(φ1, φ2) = H(φ2) to represent
these three regions, respectively, and rewrite E as

E =
∫

Ω

⎛
⎝ N∑

j=1

γjej(x)Mj(φ1(x), φ2(x))

⎞
⎠ dx (12)

where

ej(x) =
∫

Ω

Kσ(x − y)

(
L∑

i=1

χi ‖ Ii(x) − bi(y)cij ‖2
)

dy (13)

For convenience, we represent the bias field b1, b2, ..., bL with a vector
b = (b1, b2, ..., bL) and further rewrite c1, c2, ..., and cL into a new vector
c = (c1, c2, ..., cL). Thus, the level set functions φ1 and φ2 and the vectors b and
c are variables of the energy E , which can therefore be written as E(φ1, φ2,b, c).

The energy E(φ1, φ2,b, c) defined above is used as the data term of the final
energy functional of the proposed level set formulation, defined by

F(φ1, φ2,b, c) = E(φ1, φ2,b, c) + P(φ1, φ2) + L(φ1, φ2). (14)

where P(φ1, φ2) and L(φ1, φ2) are the regularization term and arc length term.
These two terms are introduced to maintain the regularity of the level set func-
tions and smooth the 0-level set contours of the level set functions, defined by

P(φ1, φ2) = μ1

∫
1
2
(| �φ1(x) | −1)2dx + μ2

∫
1
2
(| �φ2(x) | −1)2dx (15)

and
L(φ1, φ2) = ν1

∫
| �H(φ1(x)) | dx + ν2

∫
| �H(φ2(x)) | dx (16)

where μ1, μ2, ν1 and ν2 are weighting coefficients.
Energy minimization of F(φ1, φ2,b, c) can be achieved by alternately mini-

mizing it with respect to each of its variables. For fixed b and c, we minimize the
final energy functional F using standard gradient descent method and obtain

∂φ1

∂t
= δ(φ1)(1 − H(φ2))(λ1e1 − λ2e2)

+ μ1

(
�2φ1 − div

(
�φ1

| �φ1 |
))

+ ν1δ(φ1)div
(

�φ1

| �φ1 |
)

(17)

and

∂φ2

∂t
= δ(φ2)(λ1e1(1 − H(φ1)) + λ2e2H(φ1) − λ3e3)

+ μ2

(
�2φ2 − div

(
�φ2

| �φ2 |
))

+ ν2δ(φ2)div
(

�φ2

| �φ2 |
)

. (18)
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For fixed φ1, φ2, and b, the optimal c̃ = (c̃1, c̃2, ..., c̃L) where c̃i =
(c̃i1, c̃i2, ..., c̃iN ) and i = 1, 2, ..., L minimizes the final energy functional
F(φ1, φ2,b, c), given by

cij =
∫

Ii(x)Mj(φ1(x), φ2(x))(bi ∗ Kσ)(x)dx∫
Mj(φ1(x), φ2(x))(b2i ∗ Kσ)(x)dx

, j = 1, 2, ..., N. (19)

For fixed φ1, φ2, and c, the optimal b̃ = (b̃1, b̃2, ..., b̃L) that minimizes the final
energy functional F(φ1, φ2,b, c) is given by

b̃i =

(
Ii

∑N
j=1 cijMj(φ1, φ2)

)
∗ Kσ∑N

j=1 c2ijMj(φ) ∗ Kσ

, i = 1, 2, ..., L. (20)

2.4 Implementation

In the implementation of the proposed framework, the choice of K is important
but flexible as long as it is a normalized even function and satisfies the property
that K(u) ≥ K(v), if | u |<| v |, and lim|u|→∞K(u) = 0. In this paper, an
averaging filter with size of ρ is chosen as K. In our numerical implementation,
the stepped Heaviside function H is approximated by a smoothed Heaviside
function Hε with ε = 1, defined by Hε(x) = 1

2

[
1 + 2

π arctan
(

x
ε

)]
. The derivative

of Hε is used to approximate the Dirac delta function δ, which can be written
as δε(x) = H ′

ε(x) = 1
π

ε
ε2+x2 .

The implementation of the proposed framework can be straightforwardly
expressed in the following steps.

• Step 1. Segment images of each modality separately using the weighting
suppressed fuzzy c-means as described in Sect. 2.1. Update each variable of
the energy function defined in Eq. (2) iteratively until the iteration number
exceeds a predetermined maximum number or convergence criterion has been
reached.

• Step 2. Fuse segmentation results of different modalities using the voting strat-
egy as described in Sect. 2.2.

• Step 3. Refine fused segmentation results using the three phase level set
method as described in Sect. 2.3 where the level set functions φ1 and φ2 are
initialized to the results of Step 2. Update each variables of energy functional
defined in Eq. (14) iteratively until the solution is stable or the iteration num-
ber exceeds a predetermined maximum number.

3 Results

To evaluate the proposed framework, we participated in the ischemic stroke lesion
segmentation (ISLES) challenge of MICCAI 2015 and applied it to images of the
challenge. Figure 2 shows a segmentation example of the proposed framework.
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Fig. 2. Segmentation results of the proposed framework on images from four different
imaging modalities (http://www.isles-challenge.org/). Orignal images and correspond-
ing preliminary segmentations are given in the 1st and 2nd rows. Fusion result, final
segmentation, and the ground truth are given from left to right in the 3rd row.

3.1 Dataset and Parameter Set

The ISLES challenge consists of two sub-challenges: sub-acute ischemic stroke
lesion segmentation (SISS) and acute stroke outcome/penumbra estimation
(SPES). Dataset of the former includes 28 training cases and 36 testing cases,
whereas there are 30 training and 20 testing cases in the latter one. The images
are all from MRI and modalities DWI, T1w, T2w, and FLAIR are adopted by
the first sub-challenge SISS. In contrast, T1c, T2, DWI, CBF, CBV, TTP, Tmax
images are provided by the second sub-challenge SPES. The images are all skull-
stripped and have been re-sampled to an isotropic spacing of 13 mm (SISS) and
23 mm (SPES) and have also been co-registered to the FLAIR (SISS) and T1w
contrast (SPES) sequences, respectively.

For SISS, the number of imaging modalities L are set to be 4 with DWI, T1w,
T2w, and FLAIR as viewed as the 1st, 2nd, 3rd, and 4th imaging modalities,
respectively. When the images are segmented by the proposed weighting sup-
pressed fuzzy c-means separately, we set N = 4, 3, 2, 4, respectively. For each
imaging modality, e.g., the i-th modality, elements of the cluster centroid vec-
tor ci are initialized with equally spaced intensities. The other weighting coeffi-
cients of the proposed weighting suppressed fuzzy c-means are set to λ11 = λ12 =
λ13 = λ14 = 1.0, λ21 = 1.0, λ22 = 0.4, λ23 = 1.5, λ31 = 1.0, λ32 = 0.5, and
λ41 = λ42 = λ43 = λ44 = 1.0. The level set function in the third step was

http://www.isles-challenge.org/
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initialized as a binary step function, defined by φ(x) = −c for x inside the ini-
tial zero-level contour of φ and φ(x) = c otherwise. Unless otherwise specified, we
set c = 10, γ1 = ... = γL = 1.0, χ1 = ... = χL = 1.0, μ1 = ... = μL = 1.0,
ν1 = ... = νL = 0.1 × 255 × 255, Δt = 0.1, and ρ = 6 in this paper. Note that
these parameters can be set to be values learning from training sets.

We have also applied the proposed framework to sub-challenge SPES. We
set N = 3, 5, 3 for preliminarily segmenting images of modalities CBF, TTP,
Tmax, respectively. All weighting coefficients of the proposed weighting sup-
pressed fuzzy c-means are set to be 1.0. As the ground truth provided by the
organizers are not smooth enough and there are holes in the lesion-like regions,
fusion results obtained by the proposed framework are considered as final seg-
mentation results.

3.2 Evaluation Measures

To evaluate segmentation accuracy of automatic methods that participated in
the challenge quantitatively, segmentation results are compared with the refer-
ence ground-truth in terms of Dice’s coefficient (DC), average symmetric surface
distance (ASSD), and Hausdorff distance (HD).

It is well known that the DC is defined as twice of the quotient between
intersection size of a pairwise variable and sum of their sizes where the variables
are a segmentation result B and the ground truth A for image segmentation,
which can therefore be written as

DC =
2 | A ∩ B |
| A | + | B | (21)

where ∩ is the intersection operator. It is obvious that values of DC are in the
interval of [0, 1] with a higher value indicating a better match between A and B.

Considering two sets of surface points that constitute the segmentation result
B and the ground truth A, the average surface distance (ASD) is given by

ASD(A,B) =
∑

a∈A minb∈B d(a, b)
| A | (22)

where d(a, b) is the Euclidean distance between the points of a and b. Since
ASD(A,B) �= ASD(B,A), the ASSD can be then defined by

ASD(A,B) =
ASD(A,B) + ASD(B,A)

2
. (23)

Note that that ASSD is given in mm, a lower value indicating a better match
between the ground truth A and the segmentation result B.

The HD denotes the maximum distance between the obtained volume surface
points B and corresponding points in the ground truth A. It can be defined by

HD(A,B) = max{max
a∈A

(min
b∈B

d((a, b))),max
b∈B

(min
a∈A

d((b, a)))}. (24)

Thus, HD is given in mm and a smaller HD value indicates a better agreement
of the segmentation result with the ground truth.



242 C. Feng et al.

3.3 Quantitative Evaluation of the Proposed Framework

As shown in Table 1, 16 teams from all over the world participated in the chal-
lenge, where our team information are emphasized in bold font.

Quantitative comparison of the proposed framework with the other partic-
ipants’ methods on images from sub-challenges SISS and SPES are given in
Tables 2 and 3, respectively. It is obvious that the proposed framework is the

Table 1. Participants of the ISLES challenge of MICCAI 2015.

Team name Team leader Affiliation

UK-Imp1 Chen, Liang Biomedical Image Analysis Group, Imperial College London

CA-USher Dutil, Francis Université de Sherbrooke, Sherbrooke

CN-Neu Feng, Chaolu College of Inform. Science and Engineering,

Northeastern University, Shenyang

DE-Dkfz Goetz, Michael Junior Group Medical Image Computing, German Cancer

Research Center (DKFZ), Heidelberg

BE-Kul1 Haeck, Tom ESAT/PSI, Department of Electrical Engineering, KU Leuven

FI-Hus Halme, Hanna HUS Medical Imaging Center, University of Helsinki and

Helsinki University Hospital

CA-McGill Jesson, Andrew Centre for Intelligent Machines, McGill University

UK-Imp2 Kamnitsas, Konstantinos Biomedical Image Analysis Group, Imperial College London

SE-Cth Mahmood, Qaiser Signals and Systems, Chalmers University of Technology,

Gothenburg

DE-UzL Maier, Oskar Institute of Medical Informatics, Universität zu Lübeck

US-Jhu Muschelli, John Johns Hopkins Bloomberg School of Public Health

US-Odu Reza, Syed Vision Lab, Old Dominion University, Norfolk

BE-Kul2 Robben, David ESAT/PSI, Department of Electrical Engineering, KU Leuven

TW-Ntust Wang, Ching-Wei Graduate Institute of Biomedical Engineering, National

Taiwan University of Science and Technology

DE-Ukf Kellner, Elias Department of Radiology, Medical Physics, University Medical

Center Freiburg

CH-Insel McKinley, Richard Department of Diagnostic and Interventional Neuroradiology,

Inselspital, Bern University Hospital

Table 2. Accuracy comparison of segmentation results of the proposed framework with
the other participants’ methods on images from sub-challenge SISS.

Place Rank Team Cases ASSD DC HD

1st 3.25 UK-Imp2 (Kamnitsas, Konstantinos) 34/36 5.96 ± 9.38 0.59 ± 0.31 37.88 ± 30.06

2nd 3.82 CN-Neu (Feng, Chaolu) 32/36 3.27 ± 3.62 0.55 ± 0.30 19.78 ± 15.65

3rd 5.63 FI-Hus (Halme, Hanna) 31/36 8.05 ± 9.57 0.47 ± 0.32 40.23 ± 33.17

4th 6.40 US-Odu (Reza, Syed) 33/36 6.24 ± .21 0.43 ± 0.27 41.76 ± 25.11

5th 6.67 BE-Kul2 (Robben, David) 33/36 11.27 ± 10.17 0.43 ± 0.30 60.79 ± 31.14

6th 6.70 DE-UzL (Maier, Oskar) 31/36 10.21 ± 9.44 0.42 ± 0.33 49.17 ± 29.6

7th 7.07 US-Jhu (Muschelli, John) 33/36 11.54 ± 11.14 0.42 ± 0.32 62.43 ± 28.64

8th 7.54 UK-Imp1 (Chen, Liang) 34/36 11.71 ± 10.12 0.44 ± 0.30 70.61 ± 24.59

9th 7.66 CA-USher (Dutil, Francis) 27/36 9.25 ± 9.79 0.35 ± 0.32 44.91 ± 32.53

10th 7.92 BE-Kul1 (Haeck, Tom) 30/36 12.24 ± 13.49 0.37 ± 0.33 58.65 ± 29.99

11th 7.97 CA-McGill (Jesson, Andrew) 31/36 11.04 ± 13.68 0.32 ± 0.26 40.42 ± 26.98

12th 9.18 SE-Cth (Mahmood, Qaiser) 30/36 10.00 ± 6.61 0.38 ± 0.28 72.16 ± 17.32

13th 9.21 DE-Dkfz (Goetz, Michael) 35/36 14.20 ± 10.41 0.33 ± 0.28 77.95 ± 22.13

14th 10.99 TW-Ntust (Wang, Ching-Wei) 15/36 7.59 ± 6.24 0.16 ± 0.26 38.54 ± 20.36
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Table 3. Accuracy comparison of segmentation results of the proposed framework with
the other participants’ methods on images from sub-challenge SPES.

Place Rank Team Cases ASSD DC

1st 2.02 CH-Insel (McKinley, Richard) 20/20 1.65 ± 1.40 0.82 ± 0.08

2nd 2.20 DE-UzL (Maier, Oskar) 20/20 1.36 ± 0.74 0.81 ± 0.09

3rd 3.92 BE-Kul2 (Robben, David) 20/20 2.77 ± 3.27 0.78 ± 0.09

4th 4.05 CN-Neu (Feng, Chaolu) 20/20 2.29± 1.76 0.76± 0.09

5th 4.60 DE-Ukf (Keller, Elias) 20/20 2.44 ± 1.93 0.73 ± 0.13

6th 5.15 BE-Kul1 (Haeck, Tom) 20/20 4.00 ± 3.39 0.67 ± 0.24

7th 6.05 CA-USher (Dutil, Francis) 20/20 5.53 ± 7.59 0.54 ± 0.26

best in terms of ASSD and HD and the second best in DC for sub-challenge
SISS. According to the ranking rules of the challenge, which can be found on the
website http://www.isles-challenge.org/, the proposed framework finally took
the second and fourth places for SISS and SPES, respectively.

4 Conclusion and Discussions

An ischemic lesion segmentation framework has been proposed, which consists
of preliminary segmentation, label fusion, and boundary refinement. As most
of level set methods are usually time consuming and sensitive to initialization,
an improved fuzzy c-means method is first used to coarsely extract ischemic
lesions from normal brain tissues. The preliminary segmentation results are only
used as initialization of the level set method. Therefore, there is no need to
introduce bias correction rules in the first step in consideration of saving time.
Quantitative evaluation and comparison with methods that participated in the
ISLES challenge have demonstrated advantages of the proposed framework in
terms of accuracy.

Note that as the zero level contour of φ2 is used to represent boundaries
between brain tissues and the background, update of φ2 is not important for
seeking lesion boundaries. Therefore, φ2 can be fixed in the evolution of φ1 to
improve computational efficiency. In addition, narrow band implementation can
be used to further improve time performance of the proposed level set method.

In the future, we will further improve and validate the proposed method on
more datasets, such as MICCAI 2008 lesion segmentation data.
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