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Abstract. In their most aggressive form, the mortality rate of gliomas
is high. Accurate segmentation is important for surgery and treatment
planning, as well as for follow-up evaluation. In this paper, we propose
to segment brain tumors using a Deep Convolutional Neural Network.
Neural Networks are known to suffer from overfitting. To address it,
we use Dropout, Leaky Rectifier Linear Units and small convolutional
kernels. To segment the High Grade Gliomas and Low Grade Gliomas
we trained two different architectures, one for each grade. Using the
proposed method it was possible to obtain promising results in the 2015
Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the
second position in the on-site challenge.
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1 Introduction

Gliomas are brain tumors originated from the glial cells, and can be divided into
Low Grade Gliomas (LGG) and High Grade Gliomas (HGG). Although the former
are less aggressive, the mortality rate of the later is high [4,19]. In fact, the most
aggressive gliomas are called Glioblastoma Multiforme, with most patients not
surviving more than fourteen months, on average, even when under treatment [29].
The accurate segmentation of the tumor and its sub-regions is important for treat-
ment and surgery planning, but also for follow-up evaluation [4,19].

Over the years, several approaches were proposed for brain tumor seg-
mentation [4,19]. Some probabilistic methods explicitly model the underlying
data [9,12,20,23]. In these approaches, besides the model for the tissue intensi-
ties, it is possible to include priors on the neighborhood through Markov Random
Field models [20], estimate a tumor atlas at segmentation time [9,12,20] and take
advantage of biomechanical tumor growth models [9,12]. Agn et al. [1] used a
generative method based on Gaussian Mixture Models and probabilistic atlases,
extended with a prior on the tumor shape learned by convolutional Restricted
Boltzmann Machines.
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Other approaches learn a model directly from the data in a supervised
way [3,14,17,22,27,30]. In their core, all of these supervised methods have clas-
sifiers that learn how to classify each individual voxel into a tissue type, which
may result in isolated voxels, or small clusters, misclassified inside another tissue;
however, it is possible to regularize the segmentation by taking the neighborhood
into account using Conditional Random Fields [3,14,17,18]. Among the classi-
fiers, Random Forests obtained some of the most promising results [17,27,30].
Bakas et al. [2] employed a hybrid generative-discriminative approach. The
method is semi-automatic, requiring the user to select some seed points in the
image. These points will be used in a modified version of Glistr [9] to obtain
a first segmentation; then, it is refined with the gradient boosting algorithm.
Lastly, a probabilistic refinement based in intensity statistics is used to obtain
the final segmentation.

All the previous supervised methods require the computation of hand-crafted
features, which may be difficult to design, or require specialized knowledge on
the problem. On the other hand, Deep Learning methods automatically extract
features [13]. In Convolutional Neural Networks (CNNs), a set of filters is opti-
mized and convolved with the input image to compute certain characteristics; so,
CNNs can deal with the raw data directly. Those filters represent weights of the
neural network. Since the filters are convolved over the features, the weights are
shared across neural units in the resulting feature maps. In this way, the num-
ber of weights in these networks is lower than in neural networks constituted
by only fully-connected (FC) layers, making them less prone to overfitting [13].
Overfitting can be a severe problem in neural networks; so, Dropout appears as
a regularization method that removes nodes of the network according to some
probability in each training step, thus enforcing all nodes to learn good fea-
tures [25]. Some methods employing CNN for brain tumor segmentation were
already proposed [8,10,15,28]. Havaei et al. [10] used a complex architecture of
parallel branches and two cascaded CNNs; training of the network was accom-
plished in two stages: first with balanced classes and, then, a refinement of the
last layer was accomplished using a number of samples of each class closer to
the observed in brain tumors. Lyksborg et al. [15] trained a CNN in each of
the three orthogonal planes of the Magnetic Resonance Imaging (MRI) images,
using them as an ensemble of networks for segmentation. Dvořák and Menze [8]
used CNNs for structured predictions.

Inspired by Simonyan and Zisserman [24], we developed CNN architectures
using small 3×3 kernels. In this way, we can have more convolutional layers, with
the opportunity to apply more non-linear transformations of the data. Addition-
ally, we use data augmentation to increase the amount of training data and Leaky
Rectifier Linear Units (LReLU) as non-linear activation function. This approach
and architecture obtained the second position in the 2015 BraTS challenge.

2 Materials and Methods

The processing pipeline has three main stages: pre-processing, classification
through CNNs and post-processing; Fig. 1 presents an overview of the proposed
method and interactions between the Training and Testing stages.
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Fig. 1. Overview of the processing pipeline. During training, we artificially augment
the data, but at test time we use just the original version of patches.

2.1 Data

BraTS 2015 [11,19] includes two data sets: Training and Challenge. The Train-
ing data set comprises 220 acquisitions from patients with HGG and 54 from
patients with LGG. Four MRI sequences are available for each patient: T1-,
T1- post contrast (T1c), T2- and FLAIR-weighted. In this data set, the man-
ual segmentations are publicly available. In the Challenge data set, both the
manual segmentations and tumor grade are unknown. This set contains 53 sub-
jects with the same MRI sequences as the Training set. All images were already
rigidly aligned with the T1c and skull stripped; the resolution was guaranteed
to be coherent among all MRI sequences and patients by interpolation of the
sequences with thickest slices to 1 mm × 1 mm × 1 mm voxels.

2.2 Method

Given the differences between HGG and LGG, a model was trained for each
grade. Thus, when segmenting a data set where the tumor grade is unknown, we
require the user to visually inspect the images and identify the grade beforehand.
After this procedure, the remaining pipeline is automatic, without requiring
further intervention of the user, for example, to select parameters, seed points
or regions of interest.

Pre-processing. The bias field in each MRI sequence was corrected using the
N4ITK method [26]. This procedure was similar for all sequences, using 20, 20,
20 and 10 iterations, a shrink factor of 2 and a B-spline fitting distance of 200.
After that, the intensities of each individual MRI sequence were normalized [21].
The method for this normalization procedure learns a standardized histogram
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with a set of intensity landmarks from the Training set, then, the intensities
between two landmarks are linearly transformed to fit in the same landmarks of
the standardized histogram; we selected 12 matching landmarks both in LGG
and HGG. Finally, the patches are extracted in the axial slices and are normalized
to have zero mean and unit variance in each sequence; the mean and variance
are calculated for in each sequence using all training patches.

In brain tumor images the classes are highly imbalanced. There are much
more samples of normal tissue than tumor tissue; additionally, among the tumor
classes there are also classes more common than others, for example, edema
represents a bigger volume than necrosis, which may even not exist in some
patients. To cope with this, around 40 % of our training samples are extracted
from normal tissue, while the remaining 60 % corresponds to brain tumor samples
with approximately balanced numbers of samples across classes. However, since
some classes are rare, the number of training samples of some tissues must be
reduced to keep the classes balanced; so, during training each patch is rotated
on the fly (in a parallel process) by 90, 180 and 270 to artificially augment the
training data; at test time the patches are not rotated and we classify just the
central voxel.

Convolutional Neural Network. In convolutional layers of CNNs the features
are extracted by convolving a set of weights, organized as kernels, with the input.
These weights are optimized during training to enhance different features of the
images. The computation of the ith feature map in layer l (F l

i ) is defined as

F l
i = f

⎛
⎝bl

i +
∑

j

W l
i,j ∗X l−1

j

⎞
⎠ (1)

where f denotes the activation function, b represents the bias, j indexes the
input channel, W denotes the kernels and X l−1 the output of the previous layer.

The architectures of the CNNs were developed following [24] and are described
in Table 1; several variations were experimented, but these were found to obtain
better results in the validation set. By using small kernels, we can stack more lay-
ers and have a deeper architecture, while maintaining the same effective receptive
field of bigger kernels. For example, two layers with 3 × 3 filters have the same
receptive field of one layer with 5 × 5 kernels, but we have fewer weights to train
and we can apply two non-linear transformations to the data. We trained a deeper
architecture for HGG than for LGG; adding more layers to the LGG architecture
did not improve results, possibly because of the nature of LGG, such as its lower
contrast in the core, when compared to HGG. The input consists in 33 × 33 axial
patches in each of the 4 MRI sequences. Max-pooling consists in downsampling
the features maps by only keeping the maximum inside a neighborhood of units in
the feature maps; in this way, the computational load of the next layers decrease
and small irrelevant details can be discarded. However, segmentation must also
detect fine details in the image, thus, in our architectures, max-pooling is per-
formed with some overlapping of the receptive fields, to keep important details
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Table 1. Architecture of the CNN for HGG (left) and LGG (right). All non-linearities
were LReLU, with the exception of the last FC layer, where softmax was used.

Input: 33 X 33 X 4
Layer Receptive Field Stride # of feat. maps/FC units
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64

Max-Pool. 3X3 2X2 -
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128

Max-Pool. 3X3 2X2 -
FC - - 256
FC - - 256
FC - - 5

Input: 33 X 33 X 4
Layer Receptive Field Stride # of feat. maps/FC units
Conv. 3X3 1X1 64
Conv. 3X3 1X1 64

Max-Pool. 3X3 2X2 -
Conv. 3X3 1X1 128
Conv. 3X3 1X1 128

Max-Pool. 3X3 2X2 -
FC - - 256
FC - - 256
FC - - 5

for segmentation. In all the FC layers we use Dropout with p = 0.5 as regulariza-
tion, in order to reduce overfitting. Besides preventing nodes to co-adapt to each
other, Dropout works as an extreme case of bagging and ensemble of networks,
since in each mini-batch there are different nodes exposed to a small and different
portion of the training data [25]. LReLU was the activation function in almost all
layers, expressed as

f(x) = max (0, x) + α min (0, x) (2)

where α denotes the leakyness parameter defined as α = 1
3 . Contrasting with

ReLU, which imposes a constant 0 in the negative part of the function, LReLU
has a small negative slope in that part of the function. This is useful for training,
since imposing a constant forces the back-propagated gradient to become 0 in
the negative values [16]. The loss function was defined as the Categorical Cross-
entropy

H = −
∑

j∈voxels

∑
k∈classes

cj,k log(ĉj,k) (3)

where ĉ denotes the probabilistic predictions (after the softmax activation func-
tion) and c denotes the target. Training is accomplished by optimizing the
loss function through Stochastic Gradient Descent using Nesterov’s Momen-
tum with momentum coefficient of 0.9. The learning rate ε was initialized with
ε = 0.003 and linearly decreased after each epoch during the first 25 epochs until
ε = 0.00003. All convolutional layers operate over padded inputs to maintain its
sizes in the output.

The CNNs were implemented using Theano [5] and Lasagne [7].

Post-processing. A morphological filter was applied to impose volumetric con-
strains. Consequently, the clusters are identified and we remove those with less
than 10,000 voxels in HGG and 3,000 voxels in LGG.
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2.3 Evaluation

Although we segment each image into five classes (normal tissue, necrosis,
edema, non-enhancing tumor and enhancing tumor), the evaluation appraises
three tumor regions: Enhancing tumor, Core (necrosis + non-enhancing tumor
+ enhancing tumor) and the Complete tumor (all tumor classes). To evaluate the
segmentations, the following metrics were computed: Dice Similarity Coefficient
(DSC), Positive Predictive Value (PPV), Sensitivity and Robust Hausdorff Dis-
tance. The DSC [6] measures the overlap between the manual and the automatic
segmentation. It is defined as,

DSC =
2TP

FP + 2TP + FN
, (4)

where TP, FP and FN denote the numbers of true positive, false positive and
false negative detections, respectively. PPV represents the proportion of detected
positive results that are really positive and is defined as,

PPV =
TP

TP + FP
. (5)

Sensitivity measures the proportion of positive detections that are correctly iden-
tified as such and is useful to evaluate the number of true positive and false
negative detections, being defined as

Sensitivity =
TP

TP + FN
. (6)

The metrics provided by the organizers for the Challenge set were DSC
and robust Hausdorff Distance. The Hausdorff Distance measures the distance
between the surface of computed (∂P ) and manual (∂T ) segmentation, as

Haus(∂P, ∂T ) = max{ sup
p∈∂P

inf
t∈∂T

d (p, t) , sup
t∈∂T

inf
p∈∂P

d (t, p)} (7)

In the robust version of this measure, instead of calculating the maximum dis-
tance between the surface of the computed and manual segmentation, it is taken
into account the 95 % quantile.

3 Results and Discussion

Some segmentation examples obtained in the Training data set are illustrated in
Fig. 2, where we can observe the necrosis, edema, non-enhanced and enhanced
tumor classes; quantitative results in the same set are presented in Table 2 and
Fig. 3. These results were obtained by 2-fold cross-validation and 3-fold cross-
validation in HGG and LGG, respectively. Observing Table 2, metrics in the
Core and Enhanced regions of LGG are lower than in HGG, which may be due
to the lower contrast of the former. In fact, the contrast in the Core region
is lower in LGG [19] than in HGG. Additionally, although brain tumors are
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very heterogeneous, LGG tend to be smaller than HGG, with less Core tissues,
as observed from the first and third rows of Fig. 2b. Another issue with LGG
is the smaller number of training patients, when compared to HGG. From the
boxplots in Fig. 3, we can observe the higher dispersion in the Core region of LGG
compared to HGG; in the enhanced tumor in LGG the boxplots range almost the
full scale of the metrics, possibly because some of these tumors do not possess
enhancing tumor. However, the results for the Complete region are similar in

(a)

(b)

Fig. 2. Segmentation examples on the training data set from (a) HGG and (b) LGG.
From left to right: T1, T1c, FLAIR, T2, manual segmentation and obtained segmen-
tation. Colors in the segmentations represent: blue - necrosis, green - edema, yellow -
non-enhanced tumor, red - enhanced tumor (Color figure online).
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LGG and HGG, with similar dispersion as observed in the boxplots. There are
some outliers in Fig. 3, mainly in HGG, which may be due to the high variability
of brain tumors and to the bigger amount of patients with HGG. Following
the results in Table 2, in Fig. 2 the boundaries of the complete tumor seem well
defined, both in LGG and HGG. However, from the second and third rows in

Table 2. Results (mean) obtained with BraTS 2015 training data set.

DSC PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

LGG 0.86 0.64 0.40 0.86 0.67 0.39 0.88 0.71 0.51

HGG 0.87 0.75 0.75 0.89 0.76 0.80 0.86 0.79 0.75

LGG + HGG 0.87 0.73 0.68 0.89 0.74 0.72 0.86 0.77 0.70

(a)

(b)

Fig. 3. Boxplot of the results in each of the evaluated brain tumor regions using the
Training data set in (a) HGG and (b) LGG; black dots represent outliers
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Fig. 2b it seems that we are over-segmenting the Core classes in LGG; neverthe-
less, the second example looks particularly difficult with a big portion of tumor
Core tissues in a very heterogeneous distribution, sharp shapes and details.

Figure 4 presents segmentation examples obtained in the Challenge data set,
while Table 3 and Fig. 5 present the quantitative results. In this case, all subjects

Fig. 4. Segmentation examples on the challenge data set. From left to right: T1, T1c,
FLAIR, T2 and obtained segmentation. Colors in the segmentations represent: blue -
necrosis, green - edema, yellow - non-enhanced tumor, red - enhanced tumor (Color
figure online).
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Table 3. Results (mean) using the challenge data set of BraTS 2015.

DSC Robust Hausdorff

Complete Core Enh. Complete Core Enh.

0.78 0.65 0.75 15.83 26.54 6.99

Fig. 5. Boxplots of DSC and Robust Hausdorff Distance obtained using the challenge
data set of BraTS 2015.

in each grade of the Training data set were used for training the CNN, with
the exception of six validation patients in each grade. To train the CNNs we
extracted around 4,000,000 training patches of HGG and 1,800,000 of LGG, and
we used mini-batches of 128 training samples. However, the number of training
patches was 4 times bigger due to the data augmentation. Observing Fig. 4, the
segmentations seem coherent with the expected tumor tissues, for example, the
enhanced tumor portions appear delineated following the enhancing parts in
T1c. Also, the complete tumor appears to be well delineated, when comparing
with the FLAIR and T2 sequences, where the edema is hyperintense.

The training stage of each CNN took around one week. However, the entire
processing pipeline takes approximately 8 min to segment each patient, using
GPU processing on a Intel Core i7 3.5 GHz CPU, 32 GB of RAM, with a Nvidia
Geforce GTX 980 computer running Ubuntu 14.04 OS.

4 Conclusions and Future Work

In this paper, we presented a CNN to segment brain tumors in MRI. Exclud-
ing when the user needs to identify the tumor grade, all steps in the process-
ing pipeline are automatic. Although simple, this architecture shows promising
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results, with space for further developments, especially in the Core region and
segmentation of LGG; in the Challenge data set the proposed method was ranked
in the second position. As future work, we want to make a totally grade inde-
pendent method, possibly through a joint LGG/HGG training or an automatic
grade identification procedure before segmentation.
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