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Abstract. The paper studies performance of the subscription operation
in smart spaces for the case when the notification delivery to a client is
subject to losses. We consider an active control of the check interval for
the client to adapt to the observable loss rate. The adaptive strategy
takes into account the number of lost notifications. The performance is
analyzed and compared with other strategies under simplified assump-
tions about the loss distribution.
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1 Introduction

Information sharing in a smart space employs the subscription operation for
detection of content changes and for subsequent delivery of notifications to
clients [10,13]. Both change detection and notification delivery are subject to
losses in networked environments [14], especially with the emergency of Internet
of Things (IoT).

In existing solutions for smart spaces, the major role is played by information
brokers [5,9]. In this paper, we study a solution closer to the Internet philosophy,
in which the control of notification delivery is partially delegated to clients. The
latter actively request the broker for new notifications, in addition to default
passive waiting for incoming notifications from the broker. A key performance
parameter is the check interval, whose length is adapted to the observable loss
rate. This issue resembles the “classical” congestion control in Transmission
Control Protocol (TCP) [1–3], by which the window size is reduced in case
of losses and incremented otherwise.

Our study continues research [8,14]. We consider an active control of notifi-
cation delivery for subscription operation for the case of notification losses. The
problem was initially stated in [14]. In our solution, the client follows an adap-
tive strategy controlling the check interval based on the number of notifications
lost in the latest window. This adaptive strategy was early experimented in [8].
In this extended paper we show that the strategy is a generalization of the
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TCP algorithm of additive–increase/multiplicative–decrease (AIMD). We per-
form simulation experiments to compare the performance with other strategies.
Several different notification loss distributions and performance metrics are used
to make this comparison more comprehensive.

The rest of the paper is organized as follows. Section 2 states the notification
loss problem for subscription operation in smart spaces. Section 3 introduces
strategies that a client can additionally use for controlling the notification deliv-
ery. Section 4 describes the results of our simulation experiments to evaluate and
compare the performance of the considered control strategies. Finally, Sect. 5
concludes the paper.

2 Subscription Notification Delivery in Smart Spaces

The pub/sub model is widely used for organizing multi-agent interactions in
distributed systems [4]. In this study we consider this model for the case of
smart spaces [10,13].

In general, a smart space forms a sparse-connected multi-agent system
deployed in a networked computing environment, typically with access to the
Internet [7]. Such an environment consists of various digital devices, including
the growing family of IoT devices. Software agents run on the devices and interact
over the shared information content. This type of interaction involves, in parallel
and asynchronously, a lot of informational sources and destinations. Information
sharing makes the interaction indirect, based on a semantic information bro-
ker (SIB) [9,13]. The latter implements a shared information storage, serving
requests from agents on read/write operations. In other words, SIB acts as an
information hub maintaining knowledge of the whole environment and enabling
the agents to construct digital services over this cooperative knowledge.

The subscription operation specifies a persistent query from an agent (a sub-
scription client) to the SIB (a subscription server) for a particular part of the
shared content [10]. Whenever the specified part is changed, the agent should
receive the subscription notification. Changes are due to parallel activity of other
agents, which act as publishers in this interaction (note that an agent may com-
bine the roles of publisher and subscriber). SIB monitors subscriptions of all
clients and maps all incoming content changes to the specified interests. There-
fore, changes are controlled on the SIB side, and corresponding notifications are
sent to the clients. SIB acts as a passive receiver, and we call such subscription
notifications passive [14].

We employ Smart-M3 as a reference software platform for creating smart
spaces [5,9]. For each subscription, the SIB maintains a network connection (e.g.,
a TCP connection) established by the client’s request [10,11]. Knowing the set
of all subscriptions, the SIB regularly checks that they are alive, removing the
subscription if its network connection is lost.

Smart-M3 follows the best effort style in subscription notification delivery.
A notification should be sent to a client if a related change in the content has
happened. Some notifications can be unsent by SIB due to its overload or internal
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operability faults. SIB does not check delivery for already sent notifications, and
a new notification can be sent although the underlying network connection is
broken on the client side.

The above properties do not ensure the dependable notification delivery even
if reliable network protocols are used, such as TCP. A possible solution is for
a client to have an additional mechanism reducing the number of undelivered
notifications. The obvious way is augmenting the passive notification delivery
with an active control strategy that the client performs individually on its own.

Consider the following model to formalize the key properties of the subscrip-
tion notification loss problem in smart spaces. Let i = 1, 2, . . . be the event-based
time evolution on the client side, where i is the index of notification events.
An event i is either a passive notification (i.e., received from SIB) or an explicit
check of the notification delivery (made by the client within its active control).

Denote by ti and ki the time elapsed and the number of losses occurred
between i and i + 1, respectively. Assume that some initial value t0 is always
defined. The values for ki are non-negative integers. We consider the following
distributions to model the notification losses.

1. Let the time elapsed between consecutive losses follow a uniform distribu-
tion U {0, ξt0}. Hence, the average number of losses in any check interval is
proportional to its length ti

2. Let ki follow a Poisson process of parameter λti. Hence, the number of losses
during ti has the probability mass function

P(ki = k) =
(λti)k

k!
e−λti (1)

3. Let ki follow a two-state alternated Poisson process: the loss rate is λ1 and
λ2 with probability p1 and p2 = 1 − p1, respectively. The assumptions 0 <
p2 < p1 and λ1 � λ2 describe that the network typically operates with
moderate losses (λ1), while from time to time the network suffers from high
losses (λ2), e.g., due to burst overload.

3 Control Strategies

The notification loss problem is similar to the packet loss problem in TCP conges-
tion control [1–3]. The additive–increase/multiplicative–decrease (AIMD) algo-
rithm is a feedback control algorithm used in the TCP congestion avoidance
mechanism. The AIMD algorithm calculates the size ω(τ) of congestion window
at time τ , after the initial slow start phase.

Denote by τi the end of the ith TCP round, whose duration is then given by
ti = τi −τi−1 and by ω(τ), where the latter is expressed in MSS units (maximum
segment size). The following equation describes the process [2]:

ωi+1 = ω(τi + 0) =

{
ω(τi) + 1 if no loss,

�ω(τi)
κ

� if losses are observed on [τi−1, τi],
(2)
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Fig. 1. Typical stepwise evolution of TCP congestion window.

The stepwise behavior of ω(τ) is schematically depicted in Fig. 1.
The standard case is κ = 2, and the multiplicative reduction is applied as

soon as a loss is detected (by triple duplicate acknowledgment). Although in TCP
modeling the analysis is often carried out at round level, actual TCP implemen-
tations react at the arrival of each acknowledgement and not just at the end
of round. Moreover, handling of multiple losses for congestion window is still
an open issue and highly impacts on TCP performance, especially in wireless
and satellite networks [3]. Consequently, the AIMD algorithm cannot be applied
directly for the case of subscription notification losses.

For the case of subscription in smart spaces, let us introduce an analogue
of the AIMD algorithm to perform active control of notification delivery. If
the client has observed no losses during ti−1 (i.e., ki−1 = 0) then this obser-
vation indicates that the system state is “good”. To save resources the client
can increase additively the check interval, i.e. ti = ti−1 + δ for a fixed parameter
δ > 0. As in the AIMD algorithm, the increment is conservative, since a high
increase of ti might determine a clear risk for suffering a burst of losses.

On the contrary, if the client has observed losses, i.e., ki−1 > 0, it must
reduce ti to decrease the number of losses in near future. The reduction is mul-
tiplicative, since the client is interested in fast achieving ki = 0. Moreover, the
reaction should take into account the amount of losses and the previous value of
the control interval. We apply the multiplicative average

ti = αti−1 + (1 − α)
ti−1

ki−1 + 1
,

where 0 ≤ α < 1 is a fixed parameter (cf. Fig. 1 for κ = ki−1 + 1 and α = 0).
We yield the recurrent system that describes an adaptive strategy [14], by

which the check interval ti is reduced (multiplicative decrease) in case of losses
and incremented (additive increase) otherwise:

ti =

⎧⎨
⎩

ti−1 + δ if ki−1 = 0,
1 + αki−1

ki−1 + 1
ti−1 if ki−1 > 0.

(3)

Note that (3) is valid only for active control of subscription notifications. When
a passive notification i is delivered, then the value of ti is not set by the client.
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This adaptive strategy refines the AIMD algorithm of TCP, i.e., providing
a TCP-like control of notification delivery. One can interpret ti in (3) as TCP
congestion window. Fixed δ = 1 means the additive increment by one full-sized
segment. In the AIMD algorithm, α = 0. TCP congestion implies ki−1 = 1, and
κ = ki−1 + 1 = 2 halves the value of ti, as it is described in (3).

In order to evaluate and compare the performance, we consider alternative
control strategies and present some auxiliary analytical results. The simplest
approach is the strategy of a constant check interval, i.e., ti = t0 for i = 1, 2, . . ..
The mean and variance of the random variable K, which describes the number
of losses, depend only on the loss distributions introduced in Sect. 2. In the case
of Poissonian losses, we have:

E

[
K

]
= Var

[
K

]
= λt0. (4)

Since in many networked systems, randomness can improve the performance,
an interesting strategy is random selection of the check interval. Intuitively, let ti
be chosen at random around t0. In particular, we consider a continuous uniform
distribution U

{
t0 −Δ, t0 +Δ

}
with 0 < Δ < t0. In the case of Poissonian losses,

applying the laws of total expectation and variance (e.g., see [15]), we have

E

[
K

]
= λt0, Var

[
K

]
= ET

[
Var

[
K|T

]]
+ VarT

[
E

[
K|T

]]
= λt0 +

1
3
λ2Δ2. (5)

The mean value is the same as in (4), while the variance is increased due to the
variability of the interval length. Roughly speaking, in this case the randomness
does not change the average performance indexes, but increases the probability
that higher number of notifications can be lost.

Finally, we consider a semi-adaptive approach, in which the check interval is
halved in case of losses and set to the initial (reference) value t0 otherwise:

ti =

{
ti−1/2 if ki−1 > 0,

t0 if ki−1 = 0.
(6)

We shall refer this strategy as multiplicative–decrease. The evolution of the
check interval can be described by a discrete-time Markov chain [6]. State i cor-
responds to a check interval of length ti = 2−it0 and the only possible transitions
from state i are back to state 0 (no loss is experienced) with probability pi and
to the following state i + 1 (the check interval is halved in case of losses) with
probability qi = 1 − pi, as shown in Fig. 2.

Due to the particular structure of the Markov chain, the state probabilities
can be easily written as a function of π0 (local balance equations):

πn+1 = π0

n∏
i=0

qi (7)

with the additional normalization condition
∞∑

n=0

πn = 1 ⇒ π0

[
1 +

∞∑
n=0

n∏
i=0

qi

]
= 1. (8)
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Fig. 2. Markov chain for the multiplicative–decrease strategy.

Note that the sum converges under reasonable assumptions over the loss
processes. (It is enough to assume that the loss probability goes to zero as
n → ∞.) The state probabilities permit to find all the relevant statistics, such
as the average check interval

E
[
T

]
=

∞∑
n=0

πntn = t0

∞∑
n=0

πn2−n.

The numerical values of pn and qn = 1 − pn depend on the loss distribution.
In the case of Poissonian losses, we have{

p0 = P(K = 0|T = t0) = e−λt0 ,

pn = P(K = 0|T = tn) = p0
2−n

, n ≥ 1.

In the case of uniformly distributed losses, the transition probability
qn = 1 − pn is proportional to the length of the check interval tn = t02−n, i.e.,
qn = q02−n. Then (7) is rewritten as

πn = π0q
n
0

(
1
2

)n(n−1)/2

Taking into account the specific values of pn and qn as well as the normal-
ization condition (8), it is possible to calculate the state probabilities (at least
numerically). In the special case in which the loss probabilities do not depend
on the duration of the check interval (i.e., qn = q ∀n), the close-form expression
for the state probabilities is πn = (1 − q)qn with the average check interval

E
[
T

]
=

∞∑
n=0

πntn = t0
1 − q

1 − q/2
> t0,

and the variance

Var
[
K

]
= E

[
T 2

]−E
2
[
T

]
= t20

q(1 − q)/4
(1 − q/4)(1 − q/2)2

.
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The assumption that the number of losses does not depend on the length of
the check interval might be unrealistic. Nevertheless, it provides a lower bound
for the average (and an upper bound for the variance) w.r.t. the more realistic
assumptions described in Sect. 2.

Moreover, a practical implementation does not use very short check intervals.
This property corresponds to truncating the Markov chain at state N , remaining
in that state in case of further losses (returning to state 0 with the probability pN

as usual). Hence, (7) is still valid for all the states up to N − 1, while

πN = π0
1

1 − qN

N−1∏
i=0

qi,

and the normalization condition (8) involves just N + 1 terms.

4 Simulation Experiments

In the experiments, we use the three notification loss distributions (see Sect. 2).
The key simulation parameters are summarized in Table 1. In all four control
strategies, we take t0 = 20 s. According to the selected parameters of the loss
distributions, it means that every 20 s one notification is lost on average. The
simulation parameters of the four control strategies are presented in Table 2.

The average check interval is exactly t0 = 20 for the strategies of constant
check interval and random selection. The adaptive strategy starts from t0 and
then forgets about t0, balancing in accordance with the observed number of
losses. The multiplicative–decrease strategy attempts to be below t0 when losses
are observed, leading to shorter check interval on average.

Experimental behavior of the four control strategies for the given three
losses distributions is shown in Figs. 3, 4, and 5. From the visually compari-
son, it is immediately clear that the adaptive strategy makes the check interval
longer compared with the other strategies. From the point of view of the per-
formance, the adaptive strategy saves the resources, reducing the number of
network requests from the client to SIB.

Consider quantitative performance indexes. The basic metrics are the average
number of losses kavg and the average length of the check interval tavg:

kavg =
1
n

n∑
i=1

ki , tavg =
1
n

n∑
i=1

ti.

Table 1. Simulation parameters of the notification loss distributions.

Uniform losses Poissonian losses Two-state alternated Poissonian losses

ξ = 0.1 λ = 0.05 p1 = 0.8 and λ1 = 0.0375, p2 = 0.2 and λ2 = 0.1
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Table 2. Simulation parameters of the control strategies for notification delivery.

Adaptive Constant check Random selection Multiplicative–decrease

α = 0.3, δ = t0 = 20 ti = t0 = 20 a = 10, b = 30 t0 = 20

Fig. 3. Experimental evolution of the check interval: uniform losses.

Fig. 4. Experimental evolution of the check interval: Poissonian losses.

Fig. 5. Experimental evolution of the check interval: 2-state alternated Poissonian
losses.
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Table 3. Performance comparison based on the metrics Qtot and Qavg.

Loss Metric Multiplicative– Random Constant check Adaptive

distribution decrease selection interval strategy

Uniform losses kavg/tavg 0.60/14.15 0.78/19.24 1.04/20.00 1.09/30.36

Qtot 0.043 0.041 0.052 0.035

Qavg 0.053 0.045 0.052 0.040

Poissonian losses kavg/tavg 0.76/15.60 1.10/20.38 1.13/20.00 1.13/25.18

Qtot 0.048 0.054 0.057 0.044

Qavg 0.038 0.057 0.057 0.046

Two-state kavg/tavg 1.01/14.25 1.66/18.81 1.54/20.00 1.33/20.81

alternated Qtot 0.071 0.088 0.077 0.063

Poissonian losses Qavg 0.060 0.087 0.077 0.067

Intuitively, the client is interested in reducing the losses (i.e., kavg → min) for
high values of the check interval (i.e., tavg → max). Since these two requirements
are in opposition, in analogy with the concept of power in computer networks
defined as the ratio between the throughput and the delay [12], we use the ratio
among the two, such as the following metrics:

Qtot =
kavg
tavg

→ min , Qavg =
1
n

n∑
i=1

ki

ti
→ min .

The performance comparison based on these metrics is shown in Table 3. The
experiments indicate that the control by the multiplicative–decrease strategy and
adaptation strategy achieves the lowest loss level. The efficiency of multiplicative
decrease is due to frequent checks, which consumes resources of the client and
the network. On the other hand, the adaptive strategy tries to increase the check
interval length (on the risk of higher losses).

Fig. 6. Experiemental behavior of the cumulative average: Poissonian losses, β = γ = 1.
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Table 4. Performance comparison based on the metric Ccum(n; β, γ).

Loss distribution Cost Strategy performance in terms of Ccum(n; β, γ)

β γ Multiplicative– Random Constant check Adaptive

decrease selection interval strategy

Uniform losses 0.5 1.5 0.016 0.010 0.009 0.007

0.75 1.25 0.028 0.021 0.022 0.016

1 1 0.053 0.045 0.052 0.041

1.25 0.75 0.102 0.098 0.126 0.109

1.5 0.75 0.204 0.215 0.307 0.308

Poissonian losses 0.5 1.5 0.006 0.009 0.010 0.008

0.75 1.25 0.015 0.023 0.024 0.0019

1 1 0.038 0.054 0.057 0.046

1.25 0.75 0.097 0.130 0.137 0.119

1.5 0.75 0.251 0.329 0.340 0.325

Two-state 0.5 1.5 0.011 0.014 0.012 0.012

alternated 0.75 1.25 0.025 0.034 0.030 0.028

Poissonian 1 1 0.059 0.087 0.077 0.067

losses 1.25 0.75 0.146 0.224 0.201 0.170

1.5 0.75 0.370 0.594 0.530 0.453

For further performance comparison, we consider the cumulative average

Ccum(j;β, γ) =
1
j

j∑
i=1

kβ
i

tγi
, j = 1, 2, . . . , n , β + γ = 2 , β, γ > 0

Parameters β and γ allow defining the performance tradeoff between losses
and check interval. Clearly, the case of Qtot and Qavg corresponds to β = γ = 1,
i.e., losses and check interval have the same cost influence to the performance.
In particular, Ccum(n; 1, 1) = Qavg. Experimental behavior of Ccum(j; 1, 1) for
the case of Poissonian losses is shown in Fig. 6.

If β < 1 < γ then longer check intervals are preferable, i.e., many active
checks degrade the performance more significantly than a high number of
occurred losses. If β > 1 > γ then less loss rate is preferable, i.e., many losses
degrade the performance more significantly than a high rate of check requests.
Our experiment results with varying β and γ are summarized in Table 4. When
notification losses are considered less expensive then the multiplicative–decrease
strategy becomes more efficient.

5 Conclusion

This paper has studied the problem of efficient notification delivery for the sub-
scription operation in smart spaces. We considered different assumptions on the
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notification loss distribution in wireless networked environments. We introduced
several control strategies, including a proposal for a TCP-like control for adapta-
tion of the check interval to the observable loss rate. A client can implement such
a strategy individually to increase the delivery efficiency. The presented strate-
gies are provided with initial analytical estimates and simulation experiments
for performance comparison.
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