
On Hyper-local Web Pages

D. Namiot1(B) and M. Sneps-Sneppe2

1 Lomonosov Moscow State University, Moscow, Russia
dnamiot@gmail.com

2 Ventspils University College, Ventspils, Latvia
manfreds.sneps@gmail.com

Abstract. In this paper, we discuss one approach for development
and deployment of web sites (web pages) devoted to the description of
objects (events) with a precisely delineated geographic scope. This arti-
cle describes the usage of context-aware programming models for web
development. In our paper, we propose mechanisms to create mobile
web applications which content links to some predefined geographic area.
The accuracy of such a binding allows us to distinguish individual areas
within the same indoor space. Target areas for such development are
applications for Smart Cities and retail.

Keywords: Browsers · Computer networks · Context awareness ·
HTML5 · Indoor communication

1 Introduction

Our paper deals with mobile web presentations of location-based services. How
can we present some local (attached to a certain geographical location) informa-
tion to mobile users? We are talking about programming (creating) mobile web
sites, which content pages correspond to the current location of the mobile user.
The traditional scheme is very straightforward. We have to determine the user’s
location and then create a dynamic web page, the issuance of which is clearly
defined by specific geographical coordinates. For example, geo-location is a part
of HTML5 standard [1].

As soon as web application obtained (as per user permission, of course) geo-
coordinates, it can build a dynamic web page, which content depends on the
current location (content is associated with obtained location). Technically, we
can render our dynamic page on the client side (right in the browser), when
application requests data from server via some asynchronous calls (AJAX) [2],
or right on our server (in some CGI-script). In both cases obtained location
info is used as a parameter either to AJAX script or to CGI script. For some
of the applications (classes of applications), we may use several location-related
datasets (e.g., so-called geo-fence [3]), but the common principles are similar. It
is so called Location Based Services (LBS) [4].

c© Springer International Publishing Switzerland 2016
V. Vishnevsky and D. Kozyrev (Eds.): DCCN 2015, CCIS 601, pp. 11–18, 2016.
DOI: 10.1007/978-3-319-30843-2 2



12 D. Namiot and M. Sneps-Sneppe

There are different methods for obtaining location information for mobile
users [5]. Not all of them use GPS (GLONAS) positioning actually. Alterna-
tive approaches use Wi-Fi, Cell ID, collaborative location, etc. [6]. The above-
mentioned geo-location in HTML5 has been a wrapper (interface) for location
service. For the most of LBS, their top-level architecture is standard. LBS use
obtained location info as a key for any database (data store) with location-
dependent data. Location info is actually no more than a key for linking physical
space (location) and virtual (e.g., coupon for the store). Only a small number
of services actually use the coordinates. The typical example is indoor location
based services. The paradigm Location first requires a digital map for an indoor
space. This map should be created prior to the deployment, and it should be sup-
ported in an actual state during service’s life time. On the other hand, there is
a direction, called context-aware computing. In context-aware computing (ubiq-
uitous computing) services can use other information (not related to geographic
coordinates) as the “characteristics” of a user’s location. Simplistically, the con-
text is any additional information on the geographical location [7,8]. In this case,
additional information (context), with the presence of certain metrics can serve
as a unique (up to a certain approximation, of course) feature of a user’s location.
Or, in other words, we can substitute geo-location with context identification.
Why might it be necessary? The typical example is indoor LBS [9]. Traditional
geo-positioning can be difficult and positioning accuracy may be insufficient to
distinguish the position of the mobile subscriber within the same premises. And
yet, it is the distinction between positions within the same space (buildings) may
be important for all kinds of services (for example, the buyer is located on the
first or second floor of the hall).

Actually, it is a starting point for new approaches in LBS architecture, when
the stage with obtaining (detecting) location info could be completely eliminated.
Indeed, if location info is no more than a key for some database, then why do
not replace geo-keys (e.g., latitude and longitude) with context-related IDs? It
is sufficient to identify context and use this identification to search data.

The rest of the paper is organized as follows. In Sect. 2, we describe context
identification. In Sect. 3, we describe how this identification could be used in web
programming. In Sect. 4, we discuss the generic approaches for incorporating
sensing information into web pages.

2 Network Proximity

One of the widely used methods for the identification of context is the use of wire-
less network interfaces of mobile devices (Wi-Fi, Bluetooth). The reasons for this
are straightforward. On the first hand, these interfaces are supported in all mod-
ern smart-phones. Secondly, for obvious reasons, monitoring of network interfaces
is directly supported and executed by the mobile operating systems. Therefore,
a survey of network interfaces on the application level can be simplified and not
cause additional power consumption, as compared with, for example, a specially
organized monitoring for the accelerometer. Information received through the



On Hyper-local Web Pages 13

network interface is used to estimate the proximity of the mobile user to the ele-
ments of the network infrastructure (network proximity [10]). Note, that other
mobile devices can act as these elements too (e.g., Wi-Fi access point, opened
right onto mobile phone [11]). The classical form for collecting data about Wi-Fi
devices are so-called Wi-Fi fingerprints sets [12]. Wi-Fi fingerprints are digital
objects that describe availability (visibility) for network nodes. Their primary
usage is navigation related tasks. The alternative approach lets users directly
associate some data chunks with existing (or artificially created) network nodes.
In other words, it is a set of user generated links between network nodes and
some content that could be used by those in proximity to networks nodes. This
approach is presented in SpotEx project and associated tools [13,14]. SpotEx lets
users create a set of rules (logical productions) for linking network elements and
available content. A special mobile application (context-aware browser) is based
on the external set of rules (productions, if-then operators). The conditional part
of the each rule includes predicates with the following objects:

– identity for Wi-Fi network (name, MAC-address)
– RSSI (signal strength),
– time of the day (optionally),

In other words, it is a set of operators like this:

IF AccessPointIsVisible (‘Cafe’) THEN { show content for Cafe }
Block { show content for Cafe } is some data (information) snippet presented

in the rule. Each snippet has got a title (text) and some HTML content (it
could be simply a link to any external site for example). Snippets could present
coupons/discount info for malls, news data for campuses, etc. The context-aware
browser (mobile application) maps current network environment against existing
database, detects relevant rules (fires them) and builds a dynamic web page. This
web page is presented to a mobile user in proximity. In fact, even the name of the
application (context-aware browser) suggests the movement of this functionality
in a mobile browser. This would eliminate the separate rule base as well as the
special (separate) application. In fact, the standard mobile browser should play
a role of this application. Rules for the content (data snippets) must be specified
directly on the mobile web pages. And data snippets itself are HTML code chunks
anyway. As applied implementations, we can mention, for example, Internet of
Things applications [15,16]. The usage is very transparent. Data snippets (data,
presented to mobile users) depends on visibility for some Wi-Fi access points.
It lets us specify the positions for mobile users inside of some building (campus,
etc.) Mobile users will see different information for different positions. And this
approach does not use geo-coordinates at all. The next interesting direction is
EU project FI-WARE [17]. Integration with the FI-CONTENT platform is one
of the nearest goals.

3 Information Services

Technically, for the reuse of information about network proximity, we can talk
about the two approaches. At the first hand, the implementation of a mobile



14 D. Namiot and M. Sneps-Sneppe

browser can follow the same ideology that supports geo-coding in HTML5 [18].
A function from browser’s interface

navigator.geolocation.getCurrentPosition()

accepts as a parameter some user-defined callback (another function). The call-
back should be called as soon as geo-location is completed. Obtained data should
be passed as parameters. Note, that the whole process is asynchronous. By the
analogue with the above-mentioned model, a mobile browser can add a new
interface function. E.g., getNetworks() this function will accept a user-defined
callback for accumulating network information (current fingerprint). A good can-
didate for data model is JSON. The browser will pass fingerprint as a JSON array
to a user-defined callback. Each element from this array describes one network
and contains the following information:

– SSID - name for access point
– MAC - MAC-address
– RSSI - signal strength

Note, that scanning networks is an asynchronous process in mobile OS. So,
callback pattern is a good fit for this. Firefox OS is closest in ideology to this
approach [19]. Also, Firefox OS offers Bluetooth API [20]. It has got the similar
ideology, but there is no general unifier (e.g., even fields for objects are different).
It should be possible, of course, to create some unified wrapper (shell), which
will give a general list of networks. The biggest problem (we are not mentioning
here the own prevalence and popularity for Firefox OS) is the status for both
APIs. Wi-Fi API has just been scheduled yet. At the same time, the Bluetooth
API exists, but it is declared preferred (privileged). Privileged APIs can be
used by the operating system only. So, it could not be used in applications.
The reason for this solution is security. API combines both network scanning
and network connection (data exchange). It is the wrong design by our opinion.
APIs functionality should be separated. The above-mentioned SpotEx approach
is not about the connectivity. Mobile OS should use two separate APIs: one for
scanning (networks poll) and one for connecting. Polling for networks does not
require data exchange. So, scanning API is safe, and it should not be privileged.
It is simple - we should have WiFiManager interface (as is, and it could be
privileged), and WiFiScan with only one function getNetworks():

<script>
function callback function(json data ) { ... }
WiFiScan.getNetworks(callback function);
</script>

The callback function can loop over an array of existing networks IDs and
show (hide) HTML div blocks with data related (associated) to the existing
(visible) networks. Actually, it is a fundamental question. Traditionally, wireless
networks on mobile phones are used as networks. But they are sensors too. The
fact that some network node is reachable (visible) is a separate issue. And it



On Hyper-local Web Pages 15

could be used in mobile applications even without the ability to connect to
that node. It is the main idea behind SpotEx, and it is the feature (option) we
suggest to embed into mobile browsers. How can we present our rules for network
proximity? As per our suggestion, each data snipped should be presented as a
separate div block in HTML code. E.g., the above-mentioned example looks so:

<div id=“Cafe rule”>
show content for Cafe
</div>

We can use CSS styles to hide/show this block. And this CSS visibility
attribute depends on the visibility of Wi-Fi (Bluetooth) nodes. Of course, CSS
visibility could be changes in JavaScript. So, our rules could be implemented in
JavaScript code. We can directly present the predicates in our code, or describe
their parts in CSS too. HTML5 custom attributes are good candidates for new
attributes [21]. It means also, that adding some set of rules to existing web page
looks like as adding (including) some JavaScript code (JavaScript file).

In general, this approach could change the paradigm of designing mobile
web sites. It eliminates the demand to make separate versions for local sites
or events. It is enough to have one common site with local offers (events, etc.)
placed in hidden blocks. Blocks will be visible to mobile users in a proximity
of some network nodes. Local blocks visibility depends on the network nodes
visibility and so, it depends on the current location of mobile users. E.g., for
the above-mentioned example, mobile users opened Cafe site being physically
present in the proximity of Cafe, will see different (additional) data compared
with any regular mobile visitor.

Of course, single data source (just one web site) support simplifies (makes
it cheaper) the maintenance during life time. Web Intents [22] present the next
interesting model for this approach. The Web Intents formation is a client frame-
work (everything is executed in the browser) for the monitoring (polling) and
building services interaction within the application. Interactions include data
exchange and transfer of control. Web Intents form the core architecture of
Android OS [23], but their future status is still unknown after some initial exper-
iments from Google. We should note in this context a similar (by its concept)
initiative from Mozilla Labs - Web Activities [24]. But the further status of this
initiative is also unclear.

The next possible toolbox is seriously underrated in our opinion. It is a local
web server. The first implementation, as far as we know, refers to the Nokia
[25]. In our opinion, this is one of the most promising areas for communicating
with phone sensors. The next possible idea resembles in some ways the old
projects with WAP (Wireless Access Protocol). In this case, a mobile device
used some intermediate server (WAP Gateway) for access to internet resources.
This intermediate server should be able to collect sensing information (including
network sensors). Internet service will get sensing info from our proxy.



16 D. Namiot and M. Sneps-Sneppe

4 A Generic Approach for Web Sensing

In this part, we would like to discuss the more generic approach (approaches)
for embedding sensing information into web pages. As a workaround and pro-
totype for this development, we can present a custom WebView for Android.
On Android platform is possible to access from JavaScript to Java code for a
web page, loaded into WebView control. Java code will provide a list of nearby
network nodes (calculate the network fingerprint). The key moment here is the
need for an asynchronous call from JavaScript, because scanning for wireless
networks in Java is the asynchronous process. Let us describe this approach a
bit more detailed. On Android side we activate JavaScript interface:

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
WebView webView = new WebView(this);
setContentView(webView);
WebSettings settings = webView.getSettings();
settings.setJavaScriptEnabled(true);
webView.addJavascriptInterface(new MyJavascriptInterface(), “Network”); }
Now we can describe our Java code for getting network fingerprint. As a para-
meter, we will pass a name for callback function in JavaScript.

@JavascriptInterface
public void getNetworks(final String callbackFunction) { }
We skip the code for network scanning and demonstrate the final part only. As
soon as a fingerprint in obtained, we can present it as JSON array and invoke
our callback:

webView.loadUrl(“javascript:” + callbackFunction + “(‘ “ + data + ” ’)”);

And on our web page, we can describe our callback function and call Java code:

function f callback(json) { }
Network.getNetworks(“f callback”);

This approach lets us proceed network proximity right in JavaScript (in other
words, right on the web page). Actually, by the similar manner we can work with
other sensors too. It is so-called Data Program Interface [26]. We would like to
see something similar as a standard feature in the upcoming versions of Android.

5 Conclusion

The paper discusses the use of information about the network environment to
create dynamic web pages. We propose several approaches to the implementation
of a mobile browser that can handle data on a network (network proximity) to
provide users with information tied to the current context. Also, we considered
possible implementation details. The basic idea is to separate the functional for
scanning network information and real data exchange.



On Hyper-local Web Pages 17

References

1. Holdener, A.T.: HTML5 Geolocation. O’Reilly Media Inc., Sebastopol (2011)
2. Namiot, D., Sneps-Sneppe, M.: Where are they now – safe location sharing. In:

Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012.
LNCS, vol. 7469, pp. 63–74. Springer, Heidelberg (2012)

3. Namiot, D., Sneps-Sneppe, M.: Geofence and network proximity. In: Balandin, S.,
Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2013. LNCS, vol. 8121,
pp. 117–127. Springer, Heidelberg (2013)

4. Prasad, M.: Location Based Services, GIS Development, pp. 3–35 (2002)
5. Tabbane, S.: Location management methods for third generation mobile systems.

IEEE Commun. Mag. 35(8), 72–78 (1997). 10.1109/35.606034
6. Namiot, D.: Context-aware browsing - a practical approach. In: 6th International

Conference on Next Generation Mobile Applications, Services and Technologies
(NGMAST), pp. 18–23 (2012). http://dx.doi.org/10.1109/NGMAST.2012.13

7. Schilit, G., Theimer, B.: Disseminating active map information to mobile hosts.
IEEE Netw. 8(5), 22–32 (1994). 10.1109/65.313011

8. Namiot, D., Sneps-Sneppe, M.: Context-aware data discovery. In: 2012 16th Inter-
national Conference on Intelligence in Next Generation Networks (ICIN), pp. 134–
141 (2012). http://dx.doi.org/10.1109/ICIN.2012.6376016

9. Kolodziej, K., Danado, J.: In-building positioning: modeling location for indoor
world. In : Proceedings of the 15th International Workshop on Database and
Expert Systems Applications, pp. 830–834. IEEE (2004). http://dx.doi.org/10.
1109/DEXA.2004.1333579

10. Sharma, P., Xu, Z., Banerjee, S., Lee, S.: Estimating network proximity
and latency. ACM SIGCOMM Comput. Commun. Rev. 36(3), 39–50 (2006).
10.1145/1140086.1140092

11. Namiot, D.: Network proximity on practice: context-aware applications and Wi-Fi
proximity. Int. J. Open Inf. Technol. 1(3), 1–4 (2013)

12. Cheng, Y.C., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy characterization
for metropolitan-scale Wi-Fi localization. In: Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, pp. 233–245. ACM
(2005). http://dx.doi.org/10.1145/1067170.1067195

13. Namiot, D., Schneps-Schneppe, M.: About Location-aware Mobile Messages:
Expert System Based on WiFi Spots. In: 5th International Conference on Next
Generation Mobile Applications, Services and Technologies (NGMAST), pp. 48–
53. IEEE (2011). http://dx.doi.org/10.1109/NGMAST.2011.19

14. Namiot, D., Sneps-Sneppe, M.: Wi-Fi proximity as a service. In: 1st Interna-
tional Conference on Smart Systems, Devices and Technologies, SMART, pp. 62–68
(2012)

15. Schneps-Schneppe, M., Namiot, D.: Open API for M2M applications: what is next?.
In: 8th Advanced International Conference on Telecommunications, AICT, pp. 18–
23 (2012)

16. Namiot, D., Schneps-Schneppe, M.: Smart cities software from the developer’s
point of view. In: 6th International Conference on Applied Information and Com-
munication Technologies (AICT), LUA Jelgava, Latvia, pp. 230–237 (2013)

17. Castrucci, M., Cecchi, M., Priscoli, F.D., Fogliati, L., Garino, P., Suraci, V.: Key
concepts for the future internet architecture. In: Future Network & Mobile Summit
(FutureNetw), pp. 1–10. IEEE (2011). http://dx.doi.org/10.1145/1067170.1067195

http://dx.doi.org/ 10.1109/35.606034
http://dx.doi.org/ 10.1109/NGMAST.2012.13
http://dx.doi.org/10.1109/65.313011
http://dx.doi.org/10.1109/ICIN.2012.6376016
http://dx.doi.org/10.1109/DEXA.2004.1333579
http://dx.doi.org/10.1109/DEXA.2004.1333579
http://dx.doi.org/10.1145/1140086.1140092
http://dx.doi.org/10.1145/1067170.1067195
http://dx.doi.org/10.1109/NGMAST.2011.19
http://dx.doi.org/10.1145/1067170.1067195


18 D. Namiot and M. Sneps-Sneppe

18. Aghaee, S., Cesare, P.: Mashup development with HTML5. In: Proceedings of the
3rd and 4th International Workshop on Web APIs and Services Mashups, pp. 10.
ACM (2010). http://dx.doi.org/10.1145/1944999.1945009

19. Amatya, S., Kurti, A.: Cross-platform mobile development: challenges and oppor-
tunities. In: Trajkovik, V., Anastas, M. (eds.) ICT Innovations 2013. Advances in
Intelligent Systems and Computing, vol. 231, pp. 219–229. Springer, Heidelberg
(2014)

20. Paul, A., Steglich, S.: Virtualizing devices. In: Crespi, N., Magedanz, T., Bertin,
Emmanuel (eds.) Evolution of Telecommunication Services. LNCS, vol. 7768, pp.
182–202. Springer, Heidelberg (2013)

21. Cazenave, F., Quint, V., Roisin, C.: Timesheets. js: when SMIL meets HTML5 and
CSS3. In: Proceedings of the 11th ACM Symposium on Document Engineering,
pp. 43–52. ACM (2011). http://dx.doi.org/10.1145/2034691.2034700

22. Zheng, C., Shen, W., Ghenniwa, H.H.: An intents-based approach for service dis-
covery and integration. In: IEEE 17th International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD), pp. 207–212. IEEE (2013). http://
dx.doi.org/10.1109/CSCWD.2013.6580964

23. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, pp. 239–252. ACM (2011). http://dx.
doi.org/10.1145/1999995.2000018

24. Firtman, M.: Programming the Mobile Web, pp. 619–624. O’Reilly Media Inc,
Sebastopol (2013)

25. Oliveira, L., Ribeiro, A.N., Campos, J.C.: The mobile context framework: providing
context to mobile applications. In: Streitz, N., Stephanidis, C. (eds.) DAPI 2013.
LNCS, vol. 8028, pp. 144–153. Springer, Heidelberg (2013)

26. Namiot, D., Sneps-Sneppe, M.: On software standards for smart cities: API or DPI.
In: Proceedings of the 2014 ITU Kaleidoscope Academic Conference: Living in a
Converged World-Impossible Without Standards?, pp. 169–174. IEEE (2014)

http://dx.doi.org/10.1145/1944999.1945009
http://dx.doi.org/10.1145/2034691.2034700
http://dx.doi.org/10.1109/CSCWD.2013.6580964
http://dx.doi.org/10.1109/CSCWD.2013.6580964
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/1999995.2000018

	On Hyper-local Web Pages
	1 Introduction
	2 Network Proximity
	3 Information Services
	4 A Generic Approach for Web Sensing
	5 Conclusion
	References


